

EUROMAR 2011 Magnetic Resonance Conference **33. Discussion Meeting**

of the MR Spectroscopy **Division of the GDCh**

8. European Federation of EPR Groups Meeting

21.-25. August 2011 Frankfurt am Main Germany

Cuvillier Verlag Göttingen Internationaler wissenschaftlicher Fachverlag

CONTENTS		
GENERAL INFORMATION	4	
IN MEMORY OF ANATOLE ABRAGAM	12	
AWARDS	15	
PROGRAM	17	
PLENARY LECTURES	22	
PARALLEL SESSION LECTURES	32	
POSTERS	75	
AUTHOR INDEX 3	67	
PARTICIPANTS LIST 3	95	

EUROMAR 2011

MAGNETIC RESONANCE CONFERENCE 21 – 25 August 2011, Frankfurt am Main, Germany

SCIENTIFIC COMMITTEE Marc Baldus, Utrecht University, The Netherlands Lucia Banci, University of Florence, Italy Marina Bennati, MPI for Biophysical Chemistry, Germany Aharon Blank, Technion, Israel Muriel Delepierre, Institute Pasteur, France Sabine Van Doorslaer, University of Antwerp, Belgium Astrid Gräslund, Stockholm University, Sweden Edgar Groenen, Leiden University, The Netherlands Bruno Guigliarelli, University of Provence, France Wolfgang Jahnke, Novartis, Switzerland Malcolm Levitt, University of Southampton, UK Gil Navon, Tel Aviv University, Israel Thomas Prisner, University of Frankfurt, Germany Harald Schwalbe, University of Frankfurt, Germany Graham Smith, University of St Andrews, United Kingdom Hans Spiess, MPI for Polymer Research, Germany Christina Thiele, Technical University Darmstadt, Germany

LOCAL ORGANIZING COMMITTEE Volker Dötsch, University of Frankfurt, Germany Clemens Glaubitz, University of Frankfurt, Germany Peter Güntert, University of Frankfurt, Germany Thomas Prisner, University of Frankfurt, Germany Harald Schwalbe, University of Frankfurt, Germany Jens Wöhnert, University of Frankfurt, Germany

WELCOME TO THE EUROMAR 2011 IN FRANKFURT

We are extremely grateful and proud to announce that more than 800 scientists will participate in this major European conference. The EUROMAR emerged 2004 from the AMPERE congress, the European Experimental NMR conference (EENC) and the UK RSC NMR Discussion Group meeting and covers the whole field and bandwidth of magnetic resonance spectroscopy. Presentations cover all aspects of magnetic resonance spectroscopy, ranging from methodological and technical advancements in NMR, DNP, MRI and EPR to new areas of application in material and life sciences, physics, chemistry and biology. In the afternoon, during poster sessions, many new results will be presented and discussed. Moreover, all major companies will present their new products and achievements to the scientific community.

This year the meeting will be joint by the 33rd Discussion Meeting of the Magnetic Resonance Spectroscopy Division of the Gesellschaft Deutscher Chemiker (GDCh), which commonly takes place in September. Traditionally in the annual meeting of the German Magnetic Resonance Spectroscopy Division, the Ernst Awards for exceptional papers of young scientists will be presented in a dedicated plenary session, followed by short talks of the price winners. We are in particular proud that Richard Ernst himself will hand over the awards! Additionally, the EUROMAR 2011 will be accompanied by the European Federation of EPR Groups Meeting, a triennial joint meeting of all European EPR Groups and Societies. For this reason the EUROMAR is also the main meeting of the International EPR Society (IES). The Ulderico Segre Prize for an outstanding doctoral thesis in the field of theoretical or computational modeling applied to magnetic resonance will be awarded to two young scientists: one working in the field of NMR and one in EPR. I dearly hope that this 'crossing of borders' also takes place within the conference between the various fields of magnetic resonance. This is as well the spirit of the Sunday afternoon tutorial "Crossing the Borders: From Liquid and Solid State NMR to DNP and EPR".

Sponsorship by a number of scientific institutions are gratefully acknowledged: EMAR, DFG, Goethe University (Freunde und Förderer), BMRZ, CEF and GDCh all contributed to the conference, allowing us to keep the registration fees for students very low and to give numerous travel grants to young scientists from countries around the whole world. Many companies support the conference by their attendance and by sponsoring social activities, as stated in the program.

Organizing such a huge event is a big challenge and task; fortunately the Scientific Committee was very helpful to propose and select the invited speakers and, even more difficult, the other half of the speakers - out of numerous very good abstracts! I am very thankful to the tutorial speakers, who accepted to prepare students to be able to get the most from conference talks, especially in other disciplines. Finally, our entire Center for Biological Magnetic Resonance (BMRZ), with six research groups and about 100 persons (the blue shirts), has been and will be involved within this week to get everything smoothly done. Nevertheless, the success of the conference has to come from you: I wish all of us stimulating talks with new and unpublished results, challenging questions and interesting scientific discussions at the posters.

Thomas Prisner

(Chair of EUROMAR 2011 Conference)

GENERAL INFORMATION

BADGES

All participants are kindly asked to visibly wear their badges on Campus throughout the duration of the conference.

LOCATIONS OF SESSIONS

All sessions will take place at Goethe University, Frankfurt am Main, Campus Westend in the Lecture Hall Center.

The plenary sessions: ground floor in lecture halls 1 and 2 (red).

The parallel sessions: first and second floor in lecture halls 3 (yellow), 4 (orange) and 5 (pink).

The poster session: in foyers on first, second and third floors as well as in Casino building in ground floor in hall 823.

CONFERENCE OFFICE

The conference office and registration desk, ground floor of Lecture Hall Center, will be open at 10:00 on Sunday 21st August for registration, and daily from 08:00 to 19:00 during the conference.

SPEAKERS

Speakers are asked to bring their presentation to the lecture halls 15 minutes before the session starts. Stewards are available to assist in transferring presentations or settingup of personal computers. Please also familiarize yourself with audiovisual system.

POSTERS

CATEGORIES

All poster abstracts uploaded prior to the according deadline of 20th July 2011 are listed in the poster abstract section, sorted by category:

Bs	Biosolids	Mi	Molecular Magnets and
Cs	Catalysis and Surface		Inorganic Materials
Ct	Computation and Theory	Na	Nucleic Acids
Hs	Hyperfine Spectroscopy	Ps	Paramagnetic Systems
Im	Ιμασίησ	Rc	Radical Chemistry
Cv	In Cell and In Vivo Studies	Rd	Relaxation and Dynamics
		Se	Sensitivity Enhancement
LS	Liquid State NMR Methods	Sm	Small Molecules
Мр	Materials and Polymers	Ss	Solid State NMR Methods
Me	Membrane Proteins	Sp	Solid State Physics
Mb	Metabolomics	So	Soluble Proteins
Md	Methodological Developments	Td	Transport and Diffusion
	in EPR	Ot	Other Topics

SESSIONS

There are four formal poster sessions from Monday to Thursday from 14:30 - 16:00. Authors are asked to present their posters according to the following schedule (modulo-4):

Poster session One: Monday, MOD4 (poster Nr.) = 0	(e.g. 200, 204, 208,)
Poster session Two: Tuesday, MOD4 (poster Nr.) = 1	(e.g. 201, 205, 209,)
Poster session Three: Wednesday, MOD4 (poster Nr.) = 2	(e.g. 202, 206, 210,)
Poster session Four: Thursday, MOD4 (poster Nr.) $= 3$	(e.g. 203, 207, 211,)

SET-UP AND REMOVAL

Posters should be on display for the duration of the conference. The authors are asked to put the posters on the boards by 14:00 on Monday, 22nd August latest and to remove them by 19:00 on Thursday, 25th August. Posters will be discarded after the deadline. The poster boards are numbered in the same way as the poster abstracts in this book (see the author index).

SPECIAL SESSIONS

The special sessions will be held daily from 13:00 to 14:30. EUROMAR Board, Ampere Board, EUROMAR 2012 Scientific Committee and EMAR Committee will meet in the Casino building on first floor in room number 1.802 (special invitation only). International EPR (ESR) Society General Assembly, EFEPR Meeting, FGMR General Assembly and Industrial Lunch will be held in the Lecture Hall Center on third floor in lecture hall 5.

VENDOR ACTIVITIES

The main sponsors, Bruker and Agilent Technologies, have organized their users meetings on Sunday in the Lecture Hall Center. Both companies also organize hospitality suites in the Casino building next to their exhibition areas on Monday and Tuesday at 19:00, respectively. Agilent Technologies holds in addition a lunch time seminar on Tuesday at noon in the Lecture Hall Center lecture hall 5.

REFRESHMENTS AND MEALS

Lunch boxes will be distributed daily from 13:00 to 14:00 in the Casino building. Refreshments, coffee and tea will be available at several points in Lecture Hall Center, as well as in the Casino building

SOCIAL EVENTS

WELCOME MIXER

Join us to the welcome party and get an impression of the famous Octoberfest. Sunday 21st August at 19:30-23:00, at the oval Cafeteria in "IG Farben Building" on Campus Westend.

CONFERENCE DINNER

Thursday 25th August at 20:00, at Zoo-Palais, Bernhard-Grzimek-Allee 1, Frankfurt am Main. The easiest way to the Zoo-Palais from Campus Westend is via subway: take U1, U2, U3 or U8 (direction Südbahnhof), to Hauptwache. Change to U6 (direction Frankfurt Ost) or U7 (direction Enkheim) and exit at Zoo.

PUBLIC TRANSPORTATION

All EUROMAR 2011 attendees receive a free public transportation ticket being valid on regional trains, subway, trans and buses from $21^{st} - 26^{th}$ August.

INTERNET

WiFi is available during the conference in the whole area of Campus Westend. Due to internet security, individual access codes (username and password) have to be used. Access codes are available at the conference office. Moreover, a computer pool in the Casino will allow free access to the web.

Hörsaalgebäude / Lecture Hall

SPONSORS / EXHIBITORS

Casino Building

In Memory of Anatole Abragam

Abragam

Anatole Abragam has been born in Moscow on December 15, 1914. He left Russia for France at the age of ten. He graduated in Sciences in 1936, and after an interruption due to World War II he resumed studies at Ecole Supérieure d'Electricité, from which he graduated in 1947. He joined the same year the newly founded Commissariat à L'Energie Atomique (in short CEA, the French Atomic Energy Commission) and he made his entire career at the Centre of Saclay, successively as Physicist, Chief of Section, Chief of Service, Chief of Department and Director of the Physics of CEA. He became Professor of Nuclear Magnetism at the prestigious Collège de France in 1960 and lectured there until his retirement in 1985.

Through his scientific achievements and his lectures and books, Anatole Abragam has become very early, and continued to be in the following and up to now, a leading and prestigious figure in the theory of EPR and NMR, not counting some excursions in other physical domains. It is his career that we have endeavoured to present at the occasion of his 90th birthday, through a brief description of some of his most important scientific contributions.

Initially in the Group of Mathematical Physics, it is during a 2-year visit at the Clarendon Laboratory in Oxford, Great Britain from 1948 to 1950 that he started working on the theory of EPR, essentially in collaboration with Maurice Pryce. He developed with him the theory of the Spin Hamiltonian (1949), which brought about an enormous conceptual simplification in the theoretical description and understanding of localized paramagnetic ions in non-conducting solids. The following year he developed the theory of core polarization, a major theoretical success, which made it possible to explain the anomalous hyperfine structures and was Anatole Abragam's first step towards fame.

Jumping from Oxford (England) to Cambridge (Massachusetts, USA) in 1952, he developed with Robert Pound the complete theory of perturbed angular correlations in a cascade of two radiations emitted in a nuclear radioactive decay, produced in condensed matter by static or variable electric and magnetic fields. This work was the seed of the formalism of relaxation theory developed a few years later at Saclay.

This development was triggered by the work of Ionel Solomon at Harvard in 1955, who generalized the Overhauser effect to dipolar interactions and discovered cross-relaxation. Abragam's formalism of relaxation was entirely based on the use of operators and of the density matrix. For most cases, it has become and remains up to this day *the* method of relaxation calculations.

Another major achievement was the invention in 1958, in collaboration with Jean Combrisson and Ionel Solomon, of an earth-field magnetometer of unprecedented sensitivity. It is a MASER oscillating at the proton Larmor frequency in the earth field, based on the Overhauser inversion of the solvent proton polarization by saturating an appropriate hyperfine resonance of dissolved nitroso radicals. This magnetometer is routinely used for geophysical surveys, in particular in connection with oil prospecting, and for the detection of metallic objects underground or under sea, such as sunken ships, submarines, gas pipes, etc.

The validity of the Spin Temperature Concept in the laboratory frame was established beyond doubts by a series of supremely elegant experiments devised by Anatole Abragam and performed in 1957 with Warren Proctor. Equally important has been the role of Abragam in popularizing the slightly earlier invention, by Alfred Redfield, of Spin Temperature in the rotating frame and in showing how the theories for both cases could be expressed in a common conceptual frame.

Barely a few months after the excitement of the Spin Temperature experiments, another invention of fundamental importance was made by Anatole Abragam, that of Dynamic Nuclear Polarization (DNP), initially under the name of Solid Effect, whereby the polarization of nuclear spins can be made nearly equal to unity, either parallel or antiparallel to the external magnetic field, by offresonance irradiation of paramagnetic centres at low concentration in non-conducting solids. The main objective of this invention was the production of polarized targets for Nuclear and Particle physics experiments. Initially developed in the Saclay laboratory and in parallel in Berkeley by Carson Jeffries, polarized targets became extremely successful, popular and important tools used at the most important accelerator centres around the world. In recent years, polarized targets proved to be indispensable for new important physics, firstly for the experimental study of Time Reversal and Parity Conservation violation in neutron-nucleus interactions, and secondly for the investigation of the completely unexpected spin structure of the nucleons, that is protons and neutrons, still under study and not elucidated yet. The invention of DNP cannot be dissociated from another one devised in collaboration with Jacques Winter: an experimental scheme for producing polarized proton beams, whose interest complements that of polarized targets in nuclear and particle physics.

One of the most brilliant ideas of Anatole Abragam was to combine the concepts of Spin Temperature and of DNP for inventing the principle of production of Nuclear Magnetic Ordering. The idea was to perform in succession a polarization of the nuclear spins by DNP followed by a nuclear adiabatic demagnetization, either in the laboratory frame or in the rotating frame. Increasing the nuclear polarization amounts to lowering the nuclear entropy. The role of the adiabatic demagnetization it is to turn the Zeeman order into dipolar order at constant entropy. At sufficient low entropy, the nuclear spins undergo a phase transition to an ordered state. The interactions, in the rotating frame. In this last case, the interactions depend on the orientation of the single-crystal sample in the external magnetic field. Furthermore, it is possible to choose at will the spin temperature to be either positive or negative. This method was used in the Saclay laboratory for over two decades and led to the production in a number of different crystals of a whole series of nuclear spin orders: ferromagnetic, antiferromagnetic and rotating transverse helical structures, whose study was made both through NMR and neutron diffraction.

As an offspring of Abragam's pondering about the possibility of using neutron diffraction for studying nuclear magnetic ordering, he invented the so-called nuclear pseudo magnetism. When a neutron travels through a polarized material, the average spin-dependent interaction between the neutron and the nuclear spins has the same form as a Zeeman interaction for the neutron. The corresponding pseudo-magnetic field is proportional to the nuclear concentration, their polarization and their "pseudo-magnetic moment". The latter has nothing to do with magnetism: it describes the spin-dependent neutron-nucleus interaction originating from strong interactions. Although the analogy with a Zeeman interaction had been found slightly earlier by two soviet physicists, it was Abragam's merit to push the concept to its limits and to devise experimental schemes to investigate it. This was done essentially in the Saclay laboratory. After a verification of the reality of pseudo-magnetic moments of more than 25 nuclear isotopes, providing the practitioners of neutron scattering with information of fundamental importance.

Last but not least, Anatole Abragam has revolutionized the practice of μ SR (Muon Spin Rotation) with the idea of level crossing, an idea which arose during his last course at the Collège de France before his retiring. Physicists then used pulsed beams to implant polarized muons into matter, and followed the time evolution of their polarization, oscillation or damping, through the angular anisotropy of the μ emission. Abragam's idea was to sweep a magnetic field parallel to the initial muon polarization. At those fields where a level crossing takes place in the system of the muon coupled to other spins, flip-flop processes result in a decrease of the muon polarization, which is monitored. There is a double advantage in this procedure. Firstly, one can use a *continuous* beam rather than a pulsed one, thereby increasing by an enormous factor the counting rate, and as a consequence the sensitivity of the method. Secondly, one can detect not only the resonance frequency of the muon itself, but also the level structure of the spins coupled to the muon, which was a decisive progress that turned μ SR into a completely mature spectroscopic method. Both μ SR and level crossing had a long history at the time of this discovery, but nobody had had the idea of combining them together.

Anatole Abragam's prestige is not only due to his scientific achievements, but also to his remarkable pedagogical qualities and his prominent role in diffusing an elaborate and theoretically rigorous "wisdom" in Magnetic Resonance. This was done for the benefit of the members of his laboratory through his constant interest in their work, his advice and example. The French community took advantage of his remarkably brilliant and penetrating lectures, at Saclay and later at the Collège de France. The rest of the world was deeply influenced by his classic books. The first of them, *The Principles of Nuclear Magnetism*, published in 1961 by Oxford University Press, was welcome as a major event in scientific literature and became known as "The Bible". Forty-three years later, and after all the important developments that were done in NMR since, it is still considered as the fundamental basic treatise in the field. Among his principal other books, two are purely scientific:

<u>1970:</u> Electron Paramagnetic Resonance of Transition ions, with B. Bleaney (Oxford University Press),

1982: Nuclear Magnetism: Order and Disorder, with M. Goldman (Oxford University Press),

one is a collection of essays about science and scientists:

1983: Réflexions d'un Physicien, (in French) (Hermann),

and three consist of the respective French, English and Russian versions of his memoirs:

1987: De la physique avant toute chose, (Odile Jacob),

<u>1989:</u> *Time Reversal*, (Oxford Press),

1991: Physicist, where have you been ?, (in Russian) (Nauka).

Anatole Abragam was recognized and honoured in many ways through Prizes and Medals in France and abroad, and through becoming Doctor *Honoris Causa* of various universities and institutes. He has been President of the French Physical Society and Vice-President of the International Union of Pure and Applied Physics (IUPAP). He has been Invited Professor in the universities of Oxford, Harvard, Amsterdam, Yale, Washington, Leiden, etc. He is Member of the Académie des Sciences in France and Foreign Member of the American Academy of Arts and Sciences, of the National Academy of Sciences (USA) and of the Royal Society of London.

Maurice Goldman

Ionel Solomon

Reprinted from the EPR newsletter vol. 14, 8-9, 2005 (www.epr-newsletter.ethz.ch) with permission from the International EPR(ESR)Society, picture of Anatole Abragam with permission of Nina Abragam.

Registration desk: A. Abragam's "Bible" is available at a special EUROMAR rate.

The Russell Varian Prize of the AMPERE Group:

Gareth A. Morris (University of Manchester)

The Raymond Andrew Prize of the AMPERE Group:

Mark Hunter (Victoria University of Wellington)

The MRC Award for Young Scientists by John Wiley & Sons

- <u>Ilia Kaminker</u> (Weizmann Institute of Science): "Mn²⁺-nitroxide W-band DEER as tool to measure nm scale distances in RNA and protein RNA complexes"
- Sami Jannin (École Polytechnique Fédérale de Lausanne): "Ultra High Resolution NMR: Sustained Induction Decays of Long-Lived Coherences"
- Maria-Teresa Türke (Max Planck Institute for Biophysical Chemistry): "Saturation factor of nitroxide radicals in liquid DNP by pulsed ELDOR experiments at 0.34 T and 3.4 T"

International EPR/ESR Society (IES) Awards

Gold Medal:

Ronald P. Mason (National Institute of Environmental Health Sciences)

Silver Medal – Instrumentation: <u>Graham Smith</u> (University of St Andrews)

Young Investigator Award:

Enrica Bordignon (ETH Zurich) and Alexey Silakov (Max-Planck Institute of Bioinorganic Chemistry)

IES Fellows of the Society:

Klaus Möbius (Free University Berlin)

AWARDS

Ernst Award of the Magnetic Resonance Spectroscopy Division of the GDCh

Michael Braun (Technical University Munich) for his article: "Cooperative Pulses", Michael Braun and Steffen Glaser, J.Magn.Reson (2010), 207: 114-123.

- Jiři Nováček (Masaryk University) for his article: "5D ¹³C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion", Jiři Nováček, Anna Zawadzka-Kazimierczuk, Veronika Papoušková, Lukáš Žídek, Hanna Šanderová, Libor Krásný, Vladimír Sklenař, J. Biomol. NMR, (2011), 50: 1-11
- <u>Robert Hänsel</u> and <u>Ivan Krstić</u> (Goethe University) for their article: "Long Range Distance Measurements on Nucleic Acids in Cells by Pulsed EPR Spectroscopy", Ivan Krstić, Robert Hänsel, Olga Romainczyk, Joachim W. Engels, Volker Dötsch and Thomas F. Prisner, Angew.Chem. Int. Ed. (2011) 50: 5070-5074.

The Ulderico Segre Prize

Loïc Salmon (Université Joseph Fourier, Grenoble)

Hans Moons (University of Antwerp)

for their outstanding contribution to the development of new methodologies in the field of Magnetic Resonance.

PROGRAM

EUROMAR 2011 33RD DISCUSSION MEETING OF THE MR SPECTROSCOPY DIVISION OF THE GDCH 8TH EUROPEAN FEDERATION OF EPR GROUPS MEETING

21-25 AUGUST 2011, FRANKFURT AM MAIN, GERMANY

Sunday 21st August

10:00-17:30		Registration	
		Tutorial Lectures	
13:15-17:00	James Keeler: Malcolm Levitt: Marina Bennati: Edgar Groenen:	"Coherence order and coherence selection" "Superoperators and relaxation phenomena" "Dynamic nuclear polarization" "Trends in pulsed and high-frequency EPR"	
	Opening & Prize Session		
17:30-19:30	Gareth A. Morris: Mark Hunter:	"What's in a name?" "Measurement and simulation of the nonlocal dispersion tensor"	
	Ronald P. Mason:	"The Fidelity of Spin Trapping with DMPO in Biological Systems"	
19:30-23:00		Welcome Mixer	

PROGRAM

Monday 22nd August

08:30	Geoffrey Bodenhausen: "Shuttling and Spinning Samples with Dynamic Nuclear Polarization"			
09:15	Mei Hong: "Structure, dynamics, and mechanisms of the influenza M2 protein from solid-state NMR"			
10:00	Coffee			
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5	
10:50	P.E. Wright: "Characterization of Transient Protein Folding and Unfolding Processes by NMR Relaxation Dispersion"	I.V. Koptyug: "Recent Advances in MR Imaging of Heterogeneous Catalysis"	W. Lubitz: "Multifrequency EPR Studies of Oxygen-Tolerant Hydrogenases"	
11:25	P. Neudecker: "Solution Structure of a Low-populated Protein Folding Intermediate from NMR Relaxation Dispersion Spectroscopy Rationalizes Aggregation Propensity at Atomic Resolution"	S. Gloeggler: "Para-hydrogen Induced Polarization of Amino Acids, Peptides and Deuterium- hydrogen Gas"	A.M. Bowen: "Progress and Challenges in Measuring the Orientational Dependence of DEER for Transition Metals in Model Systems and Proteins"	
11:50	B. Brutscher: "Polarization Enhancement in BEST-TROSY NMR. Application to the Study of Protein Folding Intermediates and Intrinsically Disordered Proteins"	Y. Hertzberg: "Tissue Elasticity Measurement Using Acoustic Radiation Force Imaging"	G. Mathies: "Continuous-wave EPR at 275 GHz. New Insights into the Iron-binding Sites of Transferrin"	
12:15	J. Christodoulou: "Co- translational protein folding on the ribosome: Using NMR spectroscopy to provide structure and dynamics of ribosomes and ribosome-nascent chains"	S. Aime: "CEST (Chemical Exchange Saturation Transfer) agents for innovative MR- Molecular Imaging investigation"	D. Goldfarb: "Nanometer scale distance measurements in biomolecules using Gd ³⁺ spin labelling"	
12:50		Lunch		
14:30		Poster Session One		
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5	
16:00	R. Boelens: "Structure and Dynamics in Gene Regulation and DNA Repair"	B. Griffin: "Dynamic Nuclear Polarization at High Magnetic Fields"	A. Schnegg: "FD FT THz EPR on High Spin Transition Metal Ion Clusters"	
16:35	C.B. Post: "Domain Orientation for Controlling Protein Interactions"	M. Lelli: "Surface Enhanced NMR by DNP: Analysis of the Sensitivity Enhancement and Application to a New Class of Porous Materials"	A. Blank: "High Sensitivity Pulsed Electron Spin Resonance Spectroscopy with Induction Detection"	
17:00	D. Lee: "Molecular Recognition Kinetics within Inaccessible Time Window"	C. Hilty: "Hyperpolarized NMR of Polypeptides"	I. Kaminker: "Mn ²⁺ – Nitroxide W-band DEER as Tool to Measure nm Scale Distances in RNA and Protein RNA Complexes"	
17:25	M. Blackledge: "Towards A Robust Description of Intrinsic Protein Disorder using Nuclear Magnetic Resonance Spectroscopy"	W. Köckenberger: "Dissolution Dynamic Nuclear Polarization – Advances in Theory and Experimental Implementation"	D. Suter: "EPR with Small Resonators and Small Numbers of Spins"	
18:15	Kurt Wüthrich: "Exploring the Protein Universe with Biomolecular NMR"			
19:00	Hospitality Suites			

Program

Tuesday 23rd August

08:30	Anne McDermott: "Conformational Exchage Processes in the Ion Channel KcsA"			
09:15	Wayne L. Hubbell: "Exploring Molecular Flexibility and the Energy Landscape of a Protein with Site-Directed Spin Labeling"			
10:00	Coffee			
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5	
10:50	I. Garcia-Rubio: "Magnetic Resonance Studies on Magnetotactic Bacteria"	G. Parigi: "Is There a Sensible Approach to the Inverse Problem of Many Conformations Providing Only Few Average Parameters?"	D. Gourier: "What EPR Reveals about the Origin of Life"	
11:25	I. Krstić: "In-cell Pulsed EPR on Nucleic Acids"	B. Corzilius: "High Field Dynamic Nuclear Polarization with High-spin Transition Metal Ions "	J. van Slageren: "Quantum Coherence in Molecular Nanomagnets"	
11:50	P. Barraud: "An Unexpected Zinc-binding Motif Embedded in a dsRBD Revealed a New Class of Regulatory Domain Mediating Nuclear Localization of Dicer "	M.J. Knight: "Fast Fold Determination of the 153-residue Protein Superoxide Dismutase by High-Resolution Proton-detected Solid-state MAS NMR "	G. Mitrikas: "Pulsed EPR Charac- terization of Encapsulated Atomic Hydrogen in Octasilsesquioxane Cages"	
12:15	T. Carlomagno: "Protein Recognition and Functional Mechanisms of Non-coding RNAs "	J. Kowalewski: "Field-dependent Paramagnetic Relaxation Enhancement in Solutions of Ni(II): What Happens above the Proton Frequency of 1 GHz?"	D. Hinderberger: "EPR Spectroscopy on Serum Albumin"	
12:50	Lunch			
14:30		Poster Session Two		
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5	
16:00	R.M. Gschwind: "Enamine and Brønsted Acid Catalysis- Intermediates Trapped by NMR"	C. Glaubitz: "Biophysical Insight into Structure and Function of Proteorhodopsin by Solid-state NMR"	J. Dolinšek: "NMR of Quasicrystals and Complex Metallic Alloys"	
16:35	A. Jerschow: "Long Lived Coherent Response Signal Imaging"	A. Loquet: "Supramolecular Assemblies Studied by Solid-state NMR: The Structure of the Type Three Secretion System Needle"	T.E. Exner: "Towards Quantum Chemical NMR Chemical Shifts of Proteins"	
17:00	B.E. Bode: "The Heart of Photosynthesis Illuminated by Joining Photo-CIDNP and Quantum Chemistry"	G. Gröbner: "Insight into Apoptotic Events in Intact Mitochondria by Solid State NMR"	D.J. Hirsh: " Measuring Long-Range Distances and Exchange Couplings in DNA Using Saturation-Recovery EPR"	
17:25	M. Pons: "Dynamic Interactions of Proteins and DNA Related to Pathogenicity"	A. Böckmann: "Prion structures: a single architecture?"	J.H. Enemark: "Determination of the Structure of the Mo(V) Center of Sulfite Oxidase by Variable Frequency Pulsed EPR Spectroscopy, ³³ S and ¹⁷ O Labeling, and DFT Calculations"	
18:15	Ilme Schlichting: "Nanocrystals – Extending Opportunities in Structural Biology"			
19:00	Hospitality Suites			

Wednesday 24th August

08:30	Klaas Pruessmann: "Mind the field - Dynamic magnetometry for MRI"		
09:15	Jürgen Haase: "NMR at the Highest Magnetic Fields and Pressures – Applications to Quantum Solids"		
10:00		Coffee	
10:30	Horst Kessler: "NMR Studies of Hel	Proteins and Their Interactions: Dyna ices is Essential for Biological Functi	amics of Folding and Defolding of on"
11:15	 <u>Ernst Awards</u> Michael Braun: "Cooperative Pulses" Jiří Nováček: "5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion" Robert Hänsel & Ivan I. Krstić: "Long Range Distance Measurements on Nucleic Acids in Cells by Pulsed EPR Spectroscopy" 		
12:15	Gunnar Jeschke: "Membrane Protein Structure and Structural Transitions: An EPR View"		
13:00	Lunch		
14:30	Poster Session Three		
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
16:00	S. Zinn-Justin: "Structural Organization of Bacteriophage Head-to-tail Connection, as Characterized by EM, NMR and Bioinformatics"	F. Neese: "Theoretical EPR Spectroscopy of Open-Shell Transition Metal Complexes with Strong Spin Orbit Coupling"	S. Sigurdsson: "Strategies for Site-Directed Spin Labeling of Nucleic Acids"
16:35	U. Akbey: "Spin Gymnastics with Deuterated Proteins: Solid-State NMR & DNP"	N.C. Nielsen: "Optimal Rf Pulse, Cross-Polarization, and Multiple-Dimensional Sampling Package for Solid-State on Perdeuterated Proteins"	B. Guigliarelli: "Dynamic Disorder Evidenced by SDSL-EPR in a Multienzyme Complex Involved in CO ₂ Assimilation by Microalgae"
17:00	K. Tripsianes: "Structural Basis for Dimethyl-arginine Recognition by Tudor Domains"E.R.H. van Eck: "Unprecedented 27AI MAS NMR Resolution on Zeolite Single Crystals"MT. Türke: "Saturation Factor Nitroxide Radicals in Liquid DN by Pulsed ELDOR Experiments 0.34 T and 3.4 T"		MT. Türke: "Saturation Factor of Nitroxide Radicals in Liquid DNP by Pulsed ELDOR Experiments at 0.34 T and 3.4 T"
17:25	A.M. Gronenborn: "Mannose- binding Lectins – Cyanovirin and Beyond"	G. Papavissiliou: "NMR Studies of Novel Strongly Correlated Electron Materials"	HJ. Steinhoff: "Lipid Sensing and Transmembrane Signaling Studied by Site-directed Spin Labeling EPR"
18:15	Ivano Bertini: "Lightening from NMR in Life Sciences"		
19:00	Cracker & Drinks		

Thursday 25th August

08:30	Shimon Vega: "A closer look at Dynamic Nuclear Polarization"		
09:15	Robert Bittl: "Multi-frequency EPR in biophysics and material science"		
10:00	Coffee		
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
10:50	J. Balbach: "Exploring Protein Energy Landscapes by NMR"	B. Reif: "Solid-State NMR Investigations of Aggregates Formed by Perdeuterated Alzheimer's Disease Ab Peptides"	O. Schiemann: "X- and W-Band PELDOR: Conformational States of Model Systems and the Ion Channel MscS"
11:25	S. Jannin: "Ultra High Resolution NMR: Sustained Induction Decays of Long-lived Coherences"	M.R. Hansen: "A Method for Re- vealing the Local Packing Organi- zation in Conjugated Semi-crystalline Polymers"	O.G. Poluektov: "Biomimetic Hydrogen Production: Multifrequency EPR and DFT Study of Cobaloxime Catalyst"
11:50	G. Pileio: "Longtime Storage of Hyperpolarization via Singlet States in High Field"	M.J.N. Junk: "Interplay of Order, Disorder, and Dynamics in Polymer-Fullerene Blends for Photovoltaic Applications"	S. van Doorslaer: "EPR Analysis of Chromium-sugar Interactions"
12:15	S. Glaser: "Robust and Cooperative Control of Spins"	H. Heise: "Protein Misfolding, Membrane Interactions and Paramagnetism Studied by Solid State NMR Spectroscopy"	J.H. Freed: "ESR Studies of Dynamics and Structure of Proteins and Membranes at ACERT"
12:50		Lunch	
14:30		Poster Session Four	
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
16:00	A. Ramos: "Molecular Bases of Gene Regulation by FUSE Binding Proteins"	L. Frydman: "Alternatives in the Rapid Acquisition of Multidimensional NMR and MRI Data"	G. Smith: "Bringing the NMR Paradigm to EPR"
16:35	L. Salmon: "Protein Conformational Dynamics and Weak Complex Formation"	T. Meersmann: "Hyperpolarization of spin I > 1/2 Noble Gasses Beyond 10% Spin Polarization for Biomedical MR Applications"	E. Bordignon: "Helpful tools for SDSL EPR on membrane proteins: DNP water accessibility, His-tag labeling and high power Q band"
17:00	E. Kupce: "Detecting the 'Afterglow' of ¹³ C NMR in Proteins Using Multiple Receivers"	E.B. Brunner: "High-Pressure in situ ¹²⁹ Xe NMR spectroscopy of breathing transitions in Metal-Organic Framework (MOF) compounds	A. Silakov: "Understanding the Hydrogen-converting Cluster of [FeFe] Hydrogenase"
17:25	J. Wöhnert: "The Functional Dynamics of Synthetic Riboswit- ches"	A. Lesage: "Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization"	K. Möbius: "Conformational Changes During Primary Photosynthesis as Studied by Orientation Resolving Pulse Dipolar EPR Spectroscopy"
18:15	Beat H. Meier: "Amyloids by Solid-State NMR: Structure, Dynamics and Interactions with Small Molecules"		
20:00	Dinner		

PLENARY LECTURES

	SUNDAY 21 st August
19:30	Gareth A. Morris
	Mark Hunter
	Ronald P. Mason
	Monday 22 nd August
8:30	Geoffrey Bodenhausen
	Mei Hong
18:00	Kurt Wüthrich
	Tuesday 23 rd August
8:30	Ann McDermott
	Wayne L. Hubbell
18:00	Ilme Schlichting
	Wednesday 24 th August
8:30	Klaas Pruessmann
	Jürgen Haase
10:30	Horst Kessler
	Ernst Awards:
	Michael Braun
	Jiři Nováček
	Robert Hänsel & Ivan Krstič
12:15	Gunnar Jeschke
18:00	Ivano Bertini
	Thursday 25 th August
8:30	Shimon Vega
	Robert Bittl
18:00	Beat Meier

What's in a name?

Gareth A. Morris

School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK, email: g.a.morris@manchester.ac.uk

INEPT began life as an extension of early 2D 1 H- 13 C correlation experiments^{1,2}. These showed surprisingly good sensitivity, because of the twin advantages of polarization transfer from the higher γ protons and the shorter proton T_1 . It was then an obvious step to crystallise these advantages in a 1D experiment by removing the evolution period and adding refocusing pulses to make the technique broadband³. Two different experiments were performed, one generating antiphase peaks and the other refocused to allow the measurement of decoupled spectra, but only the first of these was published at the time³, the refocused experiment being developed independently by Burum and Ernst⁴. One of the first applications of INEPT was, at the suggestion of Howard Hill, to enhance 15 N signals⁵, but the method was rapidly extended to multiplicity determination and to incorporation as a building block in ever more complex sequences for protein structure determination. New uses continue to appear, including applications in high resolution solid state NMR and quantum computing.

The early history of the INEPT pulse sequence will be described, and, time permitting, some more recent developments touched on.

1. A.A. Maudsley, L. Müller and R.R. Ernst, Chem. Phys. Lett., 50, 368 (1977)

- 2. R. Freeman and G.A. Morris, J. Chem. Soc., Chem. Commun. 684-686 (1978)
- 3. R. Freeman and G.A. Morris, J. Am. Chem. Soc. 101, 760-762 (1979) 4. D.P. Burum and R.R. Ernst, J. Magn. Reson. 39, 533-538 (1980)
- 5. G.A. Morris, J. Am. Chem. Soc. 102, 428-429 (1980)

PL02

Measurement and simulation of the nonlocal dispersion tensor

Mark W. Hunter and Paul T. Callaghan

MacDiarmid Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand. mark.hunter@vuw.ac.nz

Dispersion describes the phenomenon whereby particles on the same streamline separate during flow. The physics of dispersion is governed by stochastic processes arising from the interplay between advective velocity gradients, molecular diffusion and boundary layer effects¹. The dispersion tensor, \mathbf{D}^* , commonly measured with NMR², is a local measurement in the sense that it does not depend on positional relationships and is measured as time asymptotes. For situations where the length- and time-scales on which transport occurs are not much larger than the scale of the fluctuations in the velocity field, a nonlocal description is required³. The study of fluid dispersion in porous media is important to a wide range of applications including chromatography, filtration, oil recovery, groundwater flows and catalysis.

Pulsed Gradient Spin Echo (PGSE)-NMR provides a wealth of information about the separation of particles and velocity correlations in porous media. Presented here is a set of NMR pulse sequences and a superposition designed to extract the velocity correlations necessary to calculate the dispersion as a function of displacement and hence the nonlocal dispersion⁴. Experiments performed on porous media will be discussed including further tensors and nonlocal measurements with higher dimensionality. Measurements on rock cores will also be discussed. Numerically, a lattice-Boltzmann generated flow field⁵, with a large set of virtual tracer particles is used to calculate the nonlocal dispersion tensor⁴ in regimes difficult to access experimentally. REFERENCES:

- 1. G. Taylor, *Proc. Royal Soc. Lon. B.* 67, 857-869 (1954)
- 2. J.D. Seymour and P.T. Callaghan, AIChE J. 43, 2096-2111 (1997)
- 3. Koch, D. L. and Brady, J.F. J. Fluid Mech. 180, 387-403 (1987)
- 4. Hunter, M.W. and Callaghan, P.T. PRL 99, 210602-1, 4(2007), Hunter, M.W. et. al. Phys. Fluids. 22 027101 (2010),
- 5. Manz, B. et. al. AIChE J 45, 1845-1854 (1999)

PL03

The Fidelity of Spin Trapping in Biological Systems

Ronald P. Mason

National Institute of Environmental Health Sciences, National Institutes of Health, MD F0-02, P.O. Box 12233, Research Triangle Park, NC, USA. Email: mason4@niehs.nih.gov

Unlike direct ESR, the spin trap methodology depends on the absolute fidelity of the spin trap reaction. Two alternative reactions of 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) leading to radical adduct artifacts have been discovered: inverted spin trapping and the Forrester-Hepburn nucleophilic mechanism. These two alternate pathways to radical adducts are a combination of one-electron oxidation and nucleophilic addition in either order. In biological systems the most serious artifact is due to the Forrester-Hepburn mechanism, which is initiated by the addition of a nucleophile to DMPO. These challenges to spin trapping were first put forward forty years ago, but only recently have approaches been developed to distinguish these artifacts from authentic spin trapping and another indirect approach. Since oxygen is Mother Nature's spin trap, we used the rate of its consumption resulting from its reaction with the free radical.² Another approach developed by Timmins and coworkers^{3,4} uses isotopically labeled spin traps to detect the nucleophilic addition of spin traps to the free radical precursors in preincubation experiments. We have used a related approach where the free radical precursor is isotopically labeled and preincubated with the spin trap to detect the nucleophilic addition.

1. Ranguelova, K., and Mason, R.P., Magn. Reson. Chem. 49, 152-158 (2011)

- 2. Ranguelova, K., and Mason, R.P., Free Radic. Biol. Med. 47, 128-134 (2009)
- 3. Timmins, G.S., Barlow, G.K., Silvester, J.A., Wei, X., and Whitwood, A.C., Redox Report, 3, 125-133 (1997)
- 4. Silvester, J.A., Wei, X.D., Davies, M.J., and Timmons, G.S., Redox Report, 3, 225-231 (1997)

P∟04

Shuttling and Spinning Samples with Dynamic Nuclear Polarization

Geoffrey Bodenhausen^{1,2}

¹Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland, ²Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231, Paris Cedex 05, France,

Dynamic Nuclear Polarization (DNP) at temperatures around 1.5 K can lead to population differences across spin states that may be 10 000 times larger than Boltzmann's law would imply at room temperature. DNP can be followed by rapid 'dissolution', but care must be taken to avoid losses of the polarization through longitudinal relaxation. It will be shown that long-lived states (LLS) can offer a safe haven where polarization can be stored over extensive intervals, after shuttling the sample to a moderate field on the order of 0.1 T. Dissolution DNP can be combined with various 'one-shot' experiments, such as 'on-the-fly detection' of Long-Lived Coherences (LLC), which can provide remarkably narrow line-widths (on the order of 0.01 Hz) for protons in suitable systems.

DNP can also be combined with low-temperature magic angle spinning (LT-MAS) to 'see' signals of organic molecules that can be grafted on the surfaces of porous materials. One can observe dipole-dipole couplings between protons belonging to the organic grafts on the one hand, and silicon-29 on surfaces of silicates on the other. This allows one to check hypotheses about the orientation of organic grafts with respect to surfaces.

This research involves several co-authors from EPF Lausanne, ENS Lyon, ETH Zurich, and ENS Paris.

PL05

Structure, dynamics, and mechanisms of the influenza M2 protein from solid-state NMR

Mei Hong

Department of Chemistry, Iowa State University, Ames, Iowa, USA, mhong@iastate.edu

The influenza M2 protein forms a pH-activated tetrameric proton channel that mediates virus entry into the cell. We present our studies of M2 structure and dynamics using MAS solid-state NMR, which give valuable insights into the molecular basis for the proton channel function. We determined the conformation, dynamics, hydrogen-bonding and proton exchange of the proton-selective residue, His37, as a function of pH. pH-dependent chemical shifts indicate the presence of both τ and π tautomers at high pH for the closed channel, which pack in a CH- π stacked fashion based on backbone - sidechain distances and rotameric conformation. The high-pH neutral rings are immobilized, while the cationic imidazoliums at low pH are dynamic, with bond order parameters that indicate restrictedamplitude two-site reorientations on the sub-microsecond timescale. The energy barrier of this motion was measured through temperature-dependent dipolar couplings and found to be consistent with the functional barrier of proton conduction. His-water proton exchange was directly observed in ¹⁵N spectra at physiological pH, and ¹⁵N T₂'s of the exchange peaks, when analyzed taking into account chemical exchange, ¹H decoupling and MAS, gave quantitative estimates of the proton exchange rate. These results show definitively that M2 conducts protons through a His37-mediated shuttle mechanism, while several alternative models, such as water wire and hydrogen-bonded His-His dimer, are ruled out by the data. The antiviral drug, amantadine, inhibits the M2 proton channel function. We measured protein-drug distances by REDOR, drug dynamics by ²H NMR, and protein conformational perturbation through 2D correlation NMR. These results elucidate the pharmacologically relevant binding site in the protein and reveal the inhibition mechanism of this channel.

P∟06

Exploring the Protein Universe with Biomolecular NMR

<u>Kurt Wüthrich</u>^{1,2}, Pedro Serrano¹, Reto Horst¹, Michael Geralt¹, Biswaranjan Mohanty¹, Pawel Stanczak¹, Fred F. Damberger², Barbara Christen²

¹Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA; and ²Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.

In classical "structural biology", NMR structure determination is focused on previously well-characterized proteins with known biological roles or biomedical interest. In today's post-genomic era, with the availability of the complete DNA sequences of a wide range of organisms, we have additional new opportunities and challenges "structural genomics". For PSI:Biology 2010-15 in (http://www.nigms.nih.gov/Research/FeaturedPrograms/PSI/psi biology/) the initially formulated goal of structural genomics to provide coverage of large parts of the protein sequence universe with three-dimensional structures has been expanded with a more function-focused strategy. In this context, my research team represents solution NMR in three structural genomics consortia, JCSG (http://www.jcsg.org), JCIMPT-Complexes (<u>http://jcimpt.scripps.edu/</u>) and GPCR-Network (<u>http://gpcr.scripps.edu/</u>), which all use structure determination by X-ray crystallography as the principal technique. This presentation describes our approach for use of solution NMR spectroscopy with soluble and membrane proteins in these crystallography-centered environments. The strategies used should ensure an exciting role for NMR in the longer-term challenge leading from the expanding protein structure universe to new insights into protein functions and chemical biology, by generating data on protein structure, conformational equilibria, dynamics and intermolecular interactions in solution, as will be illustrated with studies of prion proteins.

P∟07

Conformational Exchage Processes in the Ion Channel KcsA

Ann McDermott, Manasi Bhate, Ben Wylie, Caitlin Quinn, Wenbo Li, Kuo-Yin Huang.

Department of Chemistry, Columbia University, MC 3113 3000 Broadway NY NY 10027 USA aem5@columbia.edu

ABSTRACT The plasticity of ion channels is clearly critical to the many essential processes they carry out in all cells. A conformational exchange process in the ion-binding selectivity filter of a simple ion channel, KcsA, will be discussed. This highly conserved region of KcsA exhibits clearly resolved and site specifically assigned NMR chemical shifts. These reporters allowed us to probe site-specific affinities of the ions, and to observe a related slow conformational exchange process. We observe a significant degree of anti-cooperativity in their binding behaviour. Methods for characterizing millisecond and microsecond conformational exchange processes in high resolution SSNMR experiments will also be discussed.

PL08

Exploring Molecular Flexibility and the Energy Landscape of a Protein with Site-Directed Spin Labeling

Wayne L. Hubbell, Mark R. Fleissner, Michael D. Bridges, Carlos J. Lopez, John McCoy, Michael T. Lerch, Christian Altenbach

Jules Stein Eye Institute and Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095. hubbellw@jsei.ucla.edu

Protein function relies on molecular flexibility, particularly for proteins involved in signal transduction, where flexibility gives rise to promiscuity in protein-protein interactions. Remarkably, high flexibility may even characterize interaction domains in the complexes themselves. Discovery in the field of functional protein dynamics requires techniques capable of monitoring backbone and conformational motions in the time range of ps to ms under physiological conditions without restrictions as to molecular size. Site-directed spin labeling (SDSL)-EPR meets these requirements. For example, spectral line shape analysis of a spin labeled protein provides quantitative information on the amplitude of ps-ns backbone dynamics, while pulse saturation recovery (pSR), osmotic perturbation and high pressure perturbation can reveal the presence of conformations in slow exchange on the EPR time scale, including "invisible" states of low population. Exchange rates in the 10 KHz to 1 MHz range can be measured by pSR and pulse electron-electron double resonance (pELDOR). To access slower motions, high pressure jump EPR will allow exchange rates of ≤ 10 KHz to be measured. With the above strategies, protein states with a life time ps to ms and beyond can be characterized via SDSL/EPR using extremely small samples of systems of any degree of complexity.

Nanocrystals – extending opportunities in structural biology

Ilme Schlichting

Max Planck Advanced Study Group, Center for Free Electron Laser Science Hamburg and Max Planck Institute for Medical Research, Jahnstr 29, 69120 Heidelberg, Germany. Ilme. Schlichting@mpimf-heidelberg.mpg.de

Crystalline nanoparticles have drawn a lot attention recently. Reasons include technological interests since many of their electrical and thermodynamic properties show strong size dependence (e.g. quantum dots), favorable formulation properties for drug delivery, use as molecular sieves etc. Structures of crystalline nanoparticles can be determined for example by solid state NMR. So far, analysis by X-ray crystallography was limited to powder diffraction due to radiation damage. Crystals cooled to liquid nitrogen temperature tolerate a dose of ~ 30 MGy (1). It has been predicted that this dose can be increased significantly if the diffraction data is collected using intense femtosecond X-ray pulses that are short enough to have passed the sample before significant electronic rearrangements and atomic displacements occur ("diffraction-before-destruction" (2). The advent of free-electron lasers (FELs) provides femtosecond pulses with a peak brilliance that is about nine orders of magnitude higher than that provided by third generation synchrotron sources. Recently, the Linac Coherent Light Source (LCLS) has become accessible to users, accessing the hard X-ray regime, thereby allowing Angstrom-resolution studies with femtosecond time resolution. The concept of serial femtosecond crystallography has been demonstrated on photosystem I by injecting a stream of hydrated nanocrystals into the FEL interaction region, collecting stroboscopic diffraction patterns from single, randomly oriented crystals, hit by the femtosecond X-ray pulses (3).

1. Owen, R.L., et al. PNAS 103, 4912-4917 (2006).

Neutze, R., et al., *Nature* 406, 752-757 (2000).
 Chapman, H. N. *Nature* 470, 73-77 (2011).

P∟10

Mind the field - Dynamic magnetometry for MRI

Klaas P. Pruessmann

Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland, Email: klaas@biomed.ee.ethz.ch.

This contribution will discuss the concept of magnetic field monitoring during MRI scans, a recent approach designed to enhance reconstruction results by improving the accuracy of the underlying encoding models. Arrays of miniature NMR probes yield highly sensitive, time-resolved accounts not only of intentional gradient encoding but also of undesired field dynamics.

Field perturbations from 0th spatial order (uniform) to very high spatial orders frequently occur in MRI scans due to hardware imperfections, physiological susceptibility effects, and external sources. It is shown that field monitoring permits incorporating such perturbations in a suitable signal model, enabling high-fidelity reconstruction despite experimental imperfections. Special attention will be given to the sensitivity of NMR field probes and the important distinction between measuring the magnetic field per se and measuring its integral over time, which is required for image reconstruction purposes. Concerning reconstruction on the basis of measured field evolutions, the presentation will cover current algorithms and requirements in terms of computing resources. One important realm of applications of field monitoring per se is the characterization of MR hardware, including measurements of impulse responses of gradient and shim systems as well as the assessment of thermal and mechanical effects, main magnet drifts and siting issues.

Current imaging applications include high-field imaging in the presence of physiological field fluctuations, diffusion-tensor imaging with higher-order image reconstruction to account for eddy current effects, enhancing the geometric fidelity of anatomical scans, and correcting for gradient imperfections in phase-contrast flow measurements.

P∟11

NMR at the Highest Magnetic Fields and Pressures - Applications to Quantum Solids

Jürgen Haase

Faculty of Physics and Earth Science, University of Leipzig, Germany

Nuclear Magnetic Resonance analyzes the interaction of nuclei with an external magnetic field and draws rich conclusions about a material's chemical or electronic structure from electron-nucleus and inter-nuclear interactions. The applied magnetic field, pressure, or temperature also influence the electronic properties or internal degrees of freedom, and structure, which is reflected in corresponding changes of the NMR parameters. This makes NMR a powerful tool in the physics and chemistry of today's functional materials. We will report here on two frontiers of our current research. First, the development of NMR in pulsed high-field magnets that aim at 100 Tesla fields. Here we could show recently, e.g., that one can track the field over about 10 milliseconds with ppm precision above 60 Tesla, demonstrating that shift measurements with ppm resolution are possible. Second, we report on our endeavor to perform high-sensitivity diamond anvil cell Giga-Pascal-NMR. We demonstrate our powerful new approach that uses NMR micro-coils inside the high-pressure region with two examples. We show for simple aluminum metal an unexpected shift as a function of pressure, which let us solve some old riddles. We also show how high pressure pushes up important new details about the electronic physics of high-temperature superconductors.

P∟12

NMR Studies of proteins and their interactions: dynamics of folding and defolding of helices is essential for biological function

Horst Kessler¹, Franz Hagn^{1,2,3}, Stephan Lagleder^{1,2}, Johannes Buchner², Thomas Scheibel³

¹Institute for Advanced Study and ²Center of Integrated Protein Science, Technische Universität München, Department Chemie, Garching, Germany, ²Harvard Medical School, USA, ³Universität Bayreuth, Germany. e-mail: kessler@tum.de

Protein-protein interactions are preferentially investigated by NMR which allows studying a system under native-like conditions. Molecular recognition often occurs in flexible regions affording mutual adoption of the interaction partners. These flexible regions are not only provided in loops but also (partial) defolding of helices is used for this function.

One prominent example is the tumor suppressor protein p53 whose DNA binding domain mediates the interaction with different proteins like BclxL and Hsp90. Here, the flexibility of the helices enables for binding (recognition of) different shapes to regulate apoptosis.

Helix formation is induced in SDS micells in the small heat shock proteins Hsp12, which functions directly at the membrane and not by interaction with cytosolic proteins.

Kinetic investigation of some antibody fragments CL, VL and in β 2 microglobulin identified the initial formation of a helix as essential to prevent dangerous fibril formation of these domains.

The folded C- and N-terminal domains (CTD and NTD) of spidroin, the proteins spider silk is composed of, control formation of the thread. The NMR structure of the CTD and their properties under the different conditions (salt concentration, pH) in the gland and in the duct explains how spidroin can be stored at high concentration but form silk in less than a second on demand. The controlled dimerization of the NTD in the duct yields a multivalent cross linking of the microcrystalline substructures to form the extremely stable silk thread.

P∟13

Membrane protein structure and structural transitions: An EPR view

Gunnar Jeschke

Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland e-mail: gunnar.jeschke@phys.chem.ethz.ch

Combination of site-directed spin labeling with EPR techniques provides information on membrane proteins that are too large for current NMR technology and on protein states that evade crystallization. Long range distance restraints and distance distribution widths from the DEER experiment allow for characterization of disordered parts of the structures. These opportunities have led to a still increasing surge of EPR studies on membrane proteins. Yet, most of the conclusions drawn from the primary data are qualitative or at best semi-quantitative, and it is often unknown whether these data would be consistent with alternative models, too.

These problems arise mainly from uncertainties in accounting for conformational distribution of the spin label¹ and from sparsity of restraints. Here, I try to give an answer to the question what can and what cannot be concluded from such data at the current state of the art.

Examples include 1) folding of major plant light harvesting complex LHCII^{2,3} and structure of its N-terminal domain, 2) EPR-restraint supported homology modeling of proline/sodium symporter PutP, and 3) an assessment of reliability and precision of modeling of structural transitions in cases where the structure is known in one endpoint of the transition.

REFERENCES:

- 1. Polyhach Y., Bordignon E., Jeschke G., Phys. Chem. Chem. Phys., 13, 2356-2366 (2011)
- 2. Dockter C., Volkov A., Bauer C., Polyhach Ye., Joly-Lopez Z., Jeschke G., Paulsen H. Proc. Natl. Acad. Sci. USA 106, 18485-90 (2009)
- 3. Volkov A., Dockter C., Polyhach Y., Paulsen H., Jeschke G., J. Phys. Chem. Lett. 1, 663–667 (2010)

P∟14

Lightening from NMR in Life Sciences

Ivano Bertini

University of Florence, CERM, Via Sacconi 6, Sesto Fiorentino, ITALY.

NMR is a flagship in life sciences. The NMR power in structure determination is well documented. An application towards mechanistic systems biology will be presented.

The contribution of paramagnetic metal ions to "adjust" X-ray structures to the solution state is addressed. Attention will be payed to proteins with two mobile domains and reflection will be devoted to the inverse problem of extracting structures from few parameters of conformationally mobile proteins, again using paramagnetic restraints or other pieces of information. Methodological advancements in solution, solid state and sedimented systems will be discussed.

Metabolomics by NMR may not be a challenging field for NMR but surely is of help in biomedicine projects. Finally, NMR should enter into Information and Communication Technology projects. The future of NMR is still bright as it is an essential part of the ESFRI (European Strategy Forum on Research Infrastructures) infrastructures, INSTRUCT, Openscreen, Eurobioimaging and BBMRI.

A closer look at Dynamic Nuclear Polarization

Shimon Vega

Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. shimon.vega@weizmann.ac.il.

The renewed broad interest in DNP in recent years has motivated us to have a closer look at the spin dynamics of electron-nuclear systems that are exposed to microwave irradiation, resulting in large nuclear spin polarizations. Distinctions must be made between liquid-DNP, relying on the Overhauser effect, and the solid effect (SE), cross effect (CE) and thermal mixing (TM) mechanisms in DNP on static and rotating solid samples. In this presentation the action of the different DNP mechanisms providing the nuclear polarizations during static- and magic angle spinning-DNP will be discussed. Special attention will be given to the competition between the SE and CE mechanisms, the extra signal enhancements of TM, DNP-assisted spin diffusion processes¹ and the characteristics of MAS-DNP.

All discussions will be based on quantum descriptions, including the necessary relaxation processes, of the DNP mechanisms and conclusions will be supported by simulations of the eigenstate populations of model spin systems.

Experimental results showing the transition between CE and SE enhancements in static solids as well as MAS-DNP enhancement² data will be presented and discussed.

REFERENCES:

1. Y. Hovav, A Feintuch, S. Vega, Journal of Chem. Phys., 134, 074509-1-20 (2011)

2. Ü. Akbey, W.T. Franks, A. Linden, S. Lange, R.G. Griffin, B-J. van Rossum, H. Oschkinat, Angewandte Chemie, 49, 7803–7806 (2010)

P∟16

Multi-frequency EPR in biophysics and material science

Robert Bittl

Fachbereich Physik, Freie Universität Berlin, Berlin, Germany. robert.bittl@fu-berlin.de.

Multi-frequency EPR has proven a powerful tool in biophysics, in particular for studying bioenergetic processes as photosynthesis. In this talk applications in blue-light photo-reception and biological hydrogen conversion will be discussed, focusing on studies under *in cell* conditions^{1,2}. In both cases results from the *in cell* experiments are at variance to results obtained on isolated protein, e.g. a standard protein environment of the catalytically active NiFe site from oxygen tolerant hydrogenases was deduced from the *in cell* EPR, while modifications have been deduced earlier from isolated protein studies and the unusual oxygen tolerance was interpreted as related to such modifications.

The concept of multi-frequency EPR is similarly powerful in material science but so far not as commonly used as in biophysics. As an example, analysis of light-induced defects in thin-film photovoltaic cell materials will be discussed, including S-, X-, Q-, and W-band EPR on stationary paramagnetic defects as well as multi-frequency electrically detected EPR (EDMR) on spin-dependent transport processes in fully processed solar cell devices.

Acknowledgment: Work supported by DFG Cluster of Excellence UniCat and BMBF EPR-Solar

REFERENCES:

^{1.} Schleicher E. et al., Appl. Magn. Reson., 37, 339-352 (2010)

^{2.} Horch M. et al., Angewandte Chemie Int. Ed., 49, 8026-8029 (2010)

P∟17

Amyloids by Solid-State NMR: Structure, Dynamics and Interactions with Small Molecules.

Beat H. Meier¹, Anja Böckmann², Luc Bousset³, Matthias Ernst¹, Julia Gath¹, Andreas Grommek¹, Birgit Habenstein², Matthias Huber¹, Ronald Melki³, Anders Nielsen¹ Francesco Ravotti¹, Roland Riek¹, Paul Schanda¹, Anne Schütz¹, Carolin Seuring¹, Kathrin Szekely¹

¹ ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland

³ LEBS, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

The solid-state NMR characterization of amyloids remains a challenge. We will discuss technical advances including optimized polarization-transfer sequences, the application of 3D and 4D spectroscopy, structure determination from experimental restraints in the presence of high ambiguities, protein dynamics, as well as the choice of optimum labeling schemes and sample preparation techniques. The state of the art in the authors' lab on systems like α -synuclein, a-beta, and on peptide-hormones in their amyloid storage form will be discussed in detail.

Amyloids are universally defined by their stainability with Congo red and the resulting green birefringence. Yet, remarkably, the binding mechanism, geometry, and fine structure of the Congo red/amyloid complex remained longtime unknown. We characterized, at atomic resolution, the binding interface between Congo red and amyloid fibrils formed from the prion domain of the fungal HET-s protein. The three-dimensional (3D) structure of the fibril is strongly conserved upon the binding of Congo red. Remarkably, a single point mutation, designed according to the binding information, provides an artificial amyloid structurally indistinguishable from HET-s but not stainable by Congo red. We presently extend our studies to further dyes, markers and drugs to further characterize the pharmacophore of an amyloid.

² IBCP, CNRS, 7 passage du Vercors, 69367 Lyon, France

PARALLEL SESSIONS LECTURES

Monday 22nd August

	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
10:50	Wright	Koptyug	Lubitz
11:25	Neudecker	Gloeggler	Bowen
11:50	Brutscher	Hertzberg	Mathies
12:15	Christodoulou	Aime	Goldfarb
16:00	Boelens	Griffin	Schnegg
16:35	Post	Lelli	Blank
17:00	Lee	Hilty	Kaminker
17:25	Blackledge	Köckenberger	Suter
	-	Tuesday 23 rd August	
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
10:50	Garcia Rubio	Parigi	Gourier
11:25	Krstić	Corzilius	van Slageren
11:50	Barraud	Knight	Mitrikas
12:15	Carlomagno	Kowalewski	Hinderberger
16:00	Gschwind	Glaubitz	Dolinšek
16:35	Jerschow	Loquet	Exner
17:00	Bode	Gröbner	Hirsh
17:25	Pons	Böckmann	Enemark
	W	Vednesday 24 th August	
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
16:00	Zinn-Justin	Neese	Sigurdsson
16:35	Akbey	Nielsen	Guigliarelli
17:00	Tripsianes	van Eck	Türke
17:25	Gronenborn	Papavissiliou	Steinhoff
	7	Thursday 25 th August	
	Lecture Hall 3	Lecture Hall 4	Lecture Hall 5
10:50	Balbach	Reif	Schiemann
11:25	Jannin	Hansen	Poluektov
11:50	Pileio	Junk	van Doorslaer
12:15	Glaser	Heise	Freed
16:00	Ramos	Frydman	Smith
16:35	Salmon	Meersmann	Bordignon
17:00	Kupce	Brunner	Silakov
17:25	Wöhnert	Lesage	Möbius

Lesage

Characterization of transient protein folding and unfolding processes by NMR relaxation dispersion

Peter E. Wright

Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA wright@scripps.edu

NMR relaxation measurements provide a powerful approach for direct experimental characterization of protein dynamics and protein folding processes on a broad range of time scales, ranging from ps to ms, and yield unique insights into the protein energy landscape. In particular, relaxation dispersion experiments permit quantitative analysis of the kinetics and mechanism of spontaneous protein folding and unfolding events under equilibrium conditions. Dispersion experiments also provide chemical shift data that allow detailed structural characterization of weakly populated folding intermediates. Applications of NMR to study kinetic folding and unfolding pathways of apomyoglobin will be discussed. Native apomyoglobin unfolds on a sequential pathway via two intermediates: an intermediate that involves local unfolding of one helix, and a disordered molten globule intermediate. Analysis of transient state chemical shifts reveals the location and population of residual helical structure in the intermediates and identifies regions that unfold or rearrange into non-native structure during the transition to the molten globule state. The experiments also identify regions of energetic frustration that "crack" during unfolding and impede the refolding process. Relaxation dispersion measurements on acid-denatured states of apomyoglobin provide novel insights into the earliest steps in the refolding process. Folding is seen to proceed along a sequential pathway, although unproductive off-pathway processes are observed. Application of relaxation dispersion methods yields unprecedented insights into the complex protein folding landscape of apomyoglobin.

Ps101

Solution Structure of a Low-Populated Protein Folding Intermediate from NMR Relaxation Dispersion Spectroscopy Rationalizes Aggregation Propensity at Atomic Resolution

Philipp Neudecker^{1,2,3}, Paul Robustelli⁴, Andrea Cavalli⁴, Patrick Walsh^{1,5}, Patrik Lundström¹, Arash Zarrine-Afsar¹, Simon Sharpe^{1,5}, Michele Vendruscolo⁴ & Lewis E. Kay¹

¹Departments of Biochemistry, Chemistry, and Molecular Genetics, University of Toronto, Canada; ² Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany; ³ ICS-6 (Strukturbiochemie), Forschungszentrum Jülich, Germany; ⁴ Department of Chemistry, University of Cambridge, UK; ⁵ Hospital for Sick Children, Toronto, Canada. E-mail: p.neudecker@fz-juelich.de.

Protein folding intermediates are suspected to play a critical role in amyloid fibrillation commonplace in neurodegenerative disorders. The structural basis by which this occurs has, however, remained largely elusive. Here we present the atomic-resolution three-dimensional solution structure of a 2% populated on-pathway folding intermediate of the A39V/N53P/V55L Fyn SH3 domain, which was determined by reconstructing the backbone chemical shifts and RDCs/RCSAs of the "invisible" intermediate from CPMG relaxation dispersion NMR spectroscopy and using them as experimental input for structure calculations based on chemical shift restrained replica exchange molecular dynamics simulations. Formation of the 5-stranded SH3 fold proceeds via a 4-stranded intermediate that is stabilized by several non-native long-range interactions, most notably an additional inter-strand hydrogen bond and non-native hydrophobic core packing. Critically, the C-terminus is disordered, thereby exposing an aggregation-prone β -strand. Accordingly, mutants lacking the C-terminus and thereby mimicking the intermediate spontaneously form β -sheet-rich fibrillar aggregates with a diameter of several nanometers and an affinity for the dye Congo red. The structure provides a rare atomic-resolution glimpse of interactions stabilizing aggregation-prone intermediates under native conditions and strong experimental evidence for a link between such intermediates and fibrillation.

Polarization enhancement in BEST-TROSY NMR. Application to the study of protein folding intermediates and intrinsically disordered proteins

Adrien Favier, Thomas Cutuil, Enrico Rennella, Sophie Feuerstein, <u>Bernhard Brutscher</u> Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, F-38027 Grenoble; CEA; CNRS; Université Grenoble 1; France

Experimental sensitivity and spectral resolution remain the major drawbacks for the application of NMR spectroscopy to challenging biomolecular systems. Here we describe an efficient polarization enhancement mechanism in longitudinal-relaxation enhanced fast-pulsing (BEST-TROSY)¹ experiments. By recovering undetectable ¹H polarization originating from longitudinal relaxation during the pulse sequence, the steady-state ¹⁵N polarization becomes enhanced by up to a factor of ~5 with respect to thermal equilibrium yielding significant sensitivity and/or resolution improvements compared to conventional schemes.² We show two different applications where such improvements are of particular importance. The first application concerns the NMR assignment and structural characterization of short-lived protein states. This will be illustrated for the example of β 2-microglobulin (B2M), a protein of the immunoglobulin family that converts into amyloid fibrils in patients undergoing long-term dialysis. Using sensitivity-optimized real-time 2D and 3D NMR, we have identified and characterized distinct folding intermediates (monomeric and oligomeric) that are also potential precursors of fibril formation.³ In a second example, we have investigated a 188-residue fragment of non-structural protein 5A (NS5A) of hepatitis C virus, an intrinsically disordered protein (IDP). The use of BEST-TROSY experiments provided the required spectral resolution for NMR assignment,⁴ and titration studies to identify binding modes with SH3 domains.

- 1. Lescop E., Kern T., Brutscher B., J. Magn. Reson. 203, 190-198 (2010).
- 2. Favier A., Brutscher B., J. Biomol. NMR 49, 9-15 (2011).
- 3. Corazza A. et al., *J. Biol. Chem.* 285, 5827-5835 (2010).
- 4. Feuerstein S. et al., Biomol. NMR Assign. (2011)- DOI 10.1007/s12104-011-9309-2

Ps103

Co-translational protein folding on the ribosome: Using NMR spectroscopy to provide structure and dynamics of ribosomes and ribosome-nascent chains

John Christodoulou

Institute of Structural and Molecular Biology, University College London, and School of Crystallography, Birkbeck College, Gower Street, London, UK; j.christodoulou@ucl.ac.uk.

The folding processes of nascent chains are intricately linked to their chain elongation, which occurs in a vectorial manner as the N-terminal part of the nascent chain emerges from the ribosome. The use of NMR spectroscopy on ribosomes and ribosome nascent-chain complexes to provide structural insights of the conformations of protein chains while they are being created on the ribosome will be described as will some of the advances in preparative biochemistry that have made this work possible. This work is allowing us to describe in detail the relationship between biosynthesis and folding and also in our understanding of how molecular chaperones such as the trigger factor, that interact with the nascent chain, affect protein folding.

Recent Advances in MR Imaging of Heterogeneous Catalysis

Kirill V. Kovtunov, Vladimir V. Zhivonitko, Anna A. Lysova, Ivan V. Skovpin, Danila A. Barskiy, Igor V. Koptyug

International Tomography Center, SB RAS, 3A Institutskaya Street, 630090, Novosibirsk, Russia. koptyug@tomo.nsc.ru

In heterogeneous catalysis, mass and heat transport processes are important. We used ¹H MRI technique to map liquid distributions in a packed catalyst bed reactor with a co-current gas-liquid flow. The results demonstrate that these distributions are significantly different during alkene hydrogenation and under non-reactive conditions. The direct ²⁷Al MRI of Pd/Al₂O₃ catalyst was used for the spatially resolved thermometry of an operating packed bed catalytic reactor. The 2D temperature maps of the catalyst obtained directly in the course of an exothermic catalytic reaction revealed the temperature changes with the variation of the reactant feed and also the temperature gradients within the catalyst at a constant feed. We also utilize parahydrogen-induced polarization produced using various types of solid catalysts for the development of the novel hypersensitive NMR/MRI techniques for heterogeneous catalysis. This approach can also provide hyperpolarized gases and catalyst-free hyperpolarized liquids for a wide range of novel applications of NMR and MRI in, e.g., materials science, chemical engineering and in vivo biomedical research. Applications of this hypersensitive approach to the studies of microfluidic chips and packed bed microreactors will be demonstrated.

This work was supported by the grants RAS 5.1.1, RFBR 11-03-00248-a and 11-03-93995-CSICa, SB RAS integration grants 9, 67, 88, NSh-7643.2010.3, FASI 02.740.11.0262 and MK-1284.2010.3.

REFERENCES:

1. Lysova A. A., Koptyug I. V., Chem. Soc. Rev., 39, 4585-4601 (2010).

Telkki V.-V., Zhivonitko V. V., Ahola S., Kovtunov K. V., Jokisaari J., Koptyug I. V., Angew. Chem. Int. Ed., 49, 8363-8366 (2010).
 Bouchard L.-S., Burt S. R., Anwar M. S., Kovtunov K. V., Koptyug I. V., Pines A., Science, 319, 442-445 (2008).

4. Kovtunov K. V., Beck I. E., Bukhtiyarov V. I., Koptyug I. V., Angew. Chem. Int. Ed., 47, 1492-1495 (2008).

Ps105

Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas

Stefan Gloeggler,¹ Rafael Mueller,¹ Johannes Colell,¹ Meike Emondts,¹ Martin Dabrowski,¹ Bernhard Bluemich,¹ Stephan Appelt^{1,2}

¹Department of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.

²Central Institute for Electronics, Research Center Juelich, Juelich, Germany

stgloeggler@gmx.de

We demonstrate, that traces down to nanomoles of all proteinogenic amino acids as well as some peptides can be hyperpolarized by non-hydrogenative para-hydrogen induced polarization, in specific by the Signal Amplification by Reversible Exchange (SABRE)¹ method and can be detected at low magnetic fields down to 0.25 mT. An outstanding observation is, that depending on the amino acid and the chemical state of the used catalyst, which is necessary for SABRE, hyperpolarized deuteriumhydrogen gas is formed, which can still be detected at 10 kHz proton frequency and 20 kHz deuterium frequency.

REFERENCES:

^{1.} Adams R. W., Aguilar J. A., Atkinson K. D., Cowley M. J., Elliott P. I. P., Duckett S. B., Green G., Khazal I., Lopez-Serrano J., Williamson D. C., Science, 323, 1708-1711 (2009).

Tissue Elasticity Measurement Using Acoustic Radiation Force Imaging

Y. Hertzberg¹, M. Hugeri², H. Azhari², G. Navon³

¹School of Physics, Tel-Aviv University, Israel; ²Deapartment of Biomedical Engineering, Technion-IIT, Haifa Israel; ¹School of Chemistry, Tel-Aviv University, Israel: yeho7@tau.ac.il

Magnetic resonance acoustic radiation force imaging (MR-ARFI) is a recently developed technique [1], which utilizes MRI to measure the displacement caused by the ultrasound radiation force. The focused ultrasound (FUS) pulse induces micron-scale static displacement, which is encoded to the MR phase signal by gradients. We have shown how that aberration caused by the skull can be corrected using the MR-ARFI technique, leading to near optimal focus and more reliable and safer brain FUS treatments [2].

Here we show that the temporal behavior on the displacement caused by the radiation force can be utilized for the assessment of the elastic properties of the tissue. Development of accurate tissue elasticity measurement using MR-ARFI sequences can improve small tumors detection and classification (benign, malignant) using clinical MRI system equipped with FUS. The early detection of small tumors, e.g. cancer breast tumors, is critical for the success of the clinical treatment. The small wavelength (~0.5mm) of the ultrasound waves in tissue in combination with high-resolution MRI provides the most accurate (up to 10^{-8} m displacement resolution and spatial resolution of few tens of microns) elasticity measurement tool for noninvasive detection of small tumors *in vivo*.

REFERENCES:

1. N. McDannold and S.E. Maier, Med. Phys. 35, 3748-58 (2008).

2. Y. Hertzberg, A. Volovick, Y. Zur, Y. Medan and G. Navon., Med. Phys. 37 2943-51 (2010).

Ps107

CEST (Chemical Exchange Saturation Transfer) agents for innovative MR-Molecular Imaging investigation

Silvio Aime

¹Department of Chimica i.f.m., and Center of Molecular Imaging University of Turin, Turin, Italy; silvio.aime@unito.it

Paramagnetic complexes (mostly Gd(III)- and Mn(II)-based chelates) and superparamagnetic particles (primarily based on iron-oxide nanoparticles) have been the two major classes of contrast agents for MRI applications. These species have played an important role in the development of clinical applications of MRI technique. The advent of molecular imaging era prompted the search for new paradigms in the design of MR imaging reporters. MRI-CEST agents^{1,2} are frequency-encoding probes. They offer the possibility of tackling novel applications as multiplex detection in cell tracking or as responsive agents to the physico-chemical parameter of the microenvironment. Research in this field has progressed along different paths in order to tackle the issue of the overall safety of the MRI-CEST experiment and the sensitivity/reliability of the CEST detection. The systems developed so far range from small diamagnetic molecules to nanosized paramagnetic liposomes passing through paramagnetic complexes and supramolecular adducts. In an attempt to accelerate the entry of these agents in the clinical practice, it was deemed of interest to consider chemicals already approved for human use and potentially able to generate CEST contrast. On this basis we have undertaken a systematic study of either currently used X-ray agents containing mobile protons (e.g. iopamidol) or the paramagnetic lanthanide analogues of the clinically approved MRI agent Gadoteridol. The *in vivo* results are very encouraging for a future clinical translation of these CEST agents for many Molecular Imaging applications.

2. Terreno E., Delli Castelli D., Viale A. and Aime S., Chem. Rev, 5, 3019-3042 (2010)

^{1.} Terreno E., Delli Castelli D and Aime S., CMMI, 5, 1-22 (2010)

Multifrequency EPR Studies of Oxygen-Tolerant Hydrogenases

Wolfgang Lubitz

Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany, wolfgang.lubitz@mpi-mail.mpg.de

The enzyme hydrogenase catalyzes the reversible oxidation of molecular hydrogen via a heterolytic splitting mechanism. It plays an important role in the metabolism of many anaerobic micro-organisms. Its understanding is of great interest for a future hydrogen economy based on modified organisms (bacteria, algae) or bioinspired chemical catalysts.¹

The active site of the [NiFe] hydrogenase contains a bridged transition metal core and a special ligand environment, including sulfur (cysteinyl) and CN⁻/CO ligands. Pulse EPR/ENDOR studies of the various paramagnetic intermediates of the activation, inhibition and catalytic cycle are presented that are instrumental in understanding the electronic structure and function of this enzyme.²

Electron transport from the catalytic site to exogenous electron acceptors/donors is performed by a chain of three iron-sulfur centers (2 [4Fe4S], 1 [3Fe4S]). The different states are characterized by multifrequency EPR and Mössbauer spectroscopy. In the important class of oxygen-tolerant [NiFe] hydrogenases a complex spin coupling situation is observed including spin states of the FeS centers and the [NiFe] cluster.^{3,4} The redox potentials of all clusters were determined using EPR-monitored titration experiments.³ For the 4Fe cluster proximal to the active site two reversible one-electron redox transitions were observed in a small potential range. This is related to two extra cysteines in the surrounding of this 4Fe cluster and plays a role in the oxygen tolerance of such enzymes.^{3,5}

1. Lubitz W., Reijerse E.J., Messinger J., Energy Environ. Sci. 1, 15 (2008)

- 3. Pandelia M.-E., Nitschke W., Infossi P., Giudici-Orticoni M.-T., Bill E., Lubitz W., Proc. Natl. Acad. Sci. USA 108, 6097 (2011)
- 4. Saggu M. et al., Phys. Chem. Chem. Phys. 12, 2139 (2010)
- 5. Goris T. et al., Nature Chemical Biology 7, 310 (2011)

Ps109

Progress and challenges in measuring the orientational dependence of DEER for transition metals in model systems and proteins.

<u>Alice M. Bowen</u>, Michael W. Jones, Janet E. Lovett, Jeffrey Harmer, John R. Dilworth and Christiane R. Timmel.

Center for Advanced Electron Spin Resonance, University of Oxford, Inorganic Chemistry Department, South Parks Road, Oxford, OX1 3QR. alice.bowen@chem.ox.ac.uk

This work presents a complete study, including measurement and analysis, of the orientational selectivity in DEER spectra recorded between two copper(II) centres in the protein homodimer of copper amine oxidase from *Arthrobacter globiformis* as well as model chemical systems with differing inter-copper distances.

The degree to which orientational selectivity affects the shape of the resultant DEER trace differs across the EPR spectrum with regard to the selected pump and probe positions. Therefore in order to observe and interpret significant orientational effects some prior knowledge of the system is required.

Orientationally selective DEER spectra were simulated using home-written software.¹ This program requires an initial structural input; in the case of the copper amine oxidase this was an X-ray structure of the protein. However for the model systems it was necessary to use a combination of Density Functional Theory (DFT) calculations and X-ray structures of chemical precursors to predict likely conformers of the molecular structure. In order to verify the structural model used for the model systems similar Copper-Nitroxide and Nitroxide-Nitroxide compounds were also studied. DFT calculations were also employed to confirm the orientation of the g-matrix with respect to the molecular structure for both the model systems and the protein.

[1] J. E. Lovett, A. M. Bowen, et al., Physical Chemistry Chemical Physics, 2009, 11, 6840-6848.

^{2.} Lubitz W., Reijerse E.J., van Gastel M., Chem. Rev. 107, 4331 (2007)
Continuous-wave EPR at 275 GHz. New Insights into the Iron-Binding Sites of Transferrin

<u>Guinevere Mathies</u>^a, Ashley N. Steere^b, N. Dennis Chasteen^c, Anne B. Mason^b, Peter Gast^a, and Edgar J. J. Groenen^a

^aDepartment of Molecular Physics, Leiden University, The Netherlands, ^bDepartment of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States, ^cDepartment of Chemistry, Parsons Hall, University of New Hampshire, Durham, New Hampshire, United States

The understanding of the electronic structure of the active sites of metalloproteins can be greatly advanced by performing EPR spectroscopy at microwave frequencies higher than the conventional 9 GHz. Recording high-frequency EPR spectra of metalloproteins is challenging, particularly if relaxation times are short and only continuous-wave (cw) EPR is feasible. The spectra tend to cover large field ranges and due to conformational strain the resonances are very broad. Recently we have acquired the ability to record high-quality cw EPR spectra on 20 nl of 1 mM frozen solution of high-spin Fe³⁺ proteins (S = 5/2) at 275 GHz.¹

We have applied this acquisition in the study of the iron-binding sites of transferrin. Present-day transferrins consist of two homologous lobes, which each contain a deep cleft capable of strong, but reversible iron binding. They transport iron to cells and act as bacteriostatic agents in a variety of biological fluids. We have recorded cw 275 GHz spectra of two mutants of human serum transferrin in which either of the binding sites is disabled, which has given us new information on the electronic structure of the individual iron-binding sites. This led to reconsideration of the current interpretation of the characteristic 9 GHz spectrum of transferrin and, moreover, to new insight into the iron binding.

REFERENCES: 1. G. Mathies et al., J. Magn. Reson. 210, 126-132 (2011)

Ps111

Nanometer scale distance measurements in biomolecules using Gd³⁺ spin labelling

Daniella Goldfarb

Departments of Chemical Physics, and ³Biological Chemistry. The Weizmann Institute of Science, Rehovot, Israel 76100.

Methods for measuring nanometer scale distances between specific sites in bimolecules (proteins and nucleic acids) and their complexes are essential for analysis of their structure and function. In the last decade pulse EPR techniques, mainly pulse double-electron-electron resonance (DEER), have been shown to be a very effective for measuring distances between two spin labels attached to a bimolecule. DEER is routine for distances up to 5 nm and with some extra effort and favorable conditions distances as high as 8 nm can be accessed. So far such measurements have been applied mostly to biomolecules labeled with nitroxide stable radicals. The measurements are usually carried out at standard X-band frequencies (~9.5 GHz, 0.35 mT). Here we introduce a new family of spin labels that are based on Gd^{3+} for DEER measurements at high frequencies, particularly W-band (95 GHz, ~3.5 T). The benefit such spin label offers is the considerable increase in sensitivity that reduces the amount of the biomolecule needed by more than an order of magnitude. Gd^{3+} has a spin of 7/2 and its unique ERP spectral properties turn it into an excellent spin label for distance measurements at high fields and this will be discussed. Then, examples of Gd^{3+} - Gd^{3+} distance measurements in models compounds will be described followed by a presentation of a few applications distance measurements in peptides, proteins, protein complexes and DNA molecules. The Gd³⁺ is attached to the biomolecule using a chelator that can be covalently attached at specific sites of the molecule, just like nitroxide spin labels. The chemical and physical requirement for the ultimate Gd^{3+} will be discussed.

Structure and dynamics in gene regulation and DNA repair

<u>Rolf Boelens¹</u>, Hans Wienk¹, Gert E. Folkers¹, Anding Huang¹, Rick Hibbert³, Eugene Tischenko¹, Ramachandra Dongre¹, Simona Tomaselli¹, Roberto Spurio², Claudio Gualerzi², Titia Sixma³

¹Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands. E-mail: r.boelens@uu.nl; ²Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino, MC, Italy; ³Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Various regulatory mechanisms exist to control gene expression in response to changes in the environment. Such control can be during transcription by DNA binding proteins, post-transcriptionally by interference with mRNA or by ribosomal proteins during translation. We study the factors involved in such regulatory processes by high resolution NMR spectroscopy, other biophysical methods and computational modelling. Our studies focus on the following topics: (i) structural studies of gene regulatory and DNA repair proteins, (ii) ribosomal translation initiation factors and (iii) molecular recognition modeling, as of the *E.coli* Lac repressor^{1,2}, initiaton factor IF2^{3,4}, complexes of human DNA repair proteins Rad6 and Rad18.^{5,6} The examples demonstrate the strength and flexibility of NMR for studying the structure and dynamics of proteins and complexes involved in transcription, translation and DNA repair.

Ps113

Domain orientation for controlling protein interactions

Yajie Zhang¹, Nina Gorenstein¹, Chih-Hong Chen¹, Carol B. Post^{1,2}

AUTHOR ADDRESSES. ¹Department of Medicinal Chemistry, Purdue University, West Lafayette IN, U.S.A; ²cbp@purdue.edu

ABSTRACT. Many multidomain signaling proteins interact with multiple binding partners, and thus function by exchanging partners spatially and temporally during signaling. Proper selection among alternative binding partners in response to external stimuli is an essential component of control of signaling networks. Protein association/dissociation of these complexes is often tied to domaindomain rearrangements, and a variety of mechanisms have evolved to carefully regulate these binding processes. We discovered an unusual allosteric mechanism whereby tyrosine phosphorylation at a distant site alters domain orientation and triggers the dissociation of Syk tyrosine kinase from the membrane B cell receptor (BCR). Syk associates with the BCR ITAM region via a bi-functional, highaffinity binding of Syk's two tandem SH2 domains to two phosphotyrosine residues of ITAM. Tyrosine phosphorylation in the linker region joining the two SH2 domains releases Syk from the BCR, even though the linker region is far from the binding sites. NMR relaxation and RDCs were used to explore conformation of the tandem SH2 domains of Syk and its phosphorylated forms. We also exploited chemical shift perturbation to individually characterize binding of each SH2 domain. Together, the data support a mechanism for regulating Syk-BCR association that involves a decrease in conformational order of the linker but is not a transition to a fully disordered state. A key feature of the model is loose coupling, as opposed to complete decoupling, of the tandem SH2 domains, so that the domain-domain orientation prevents bi-functional binding and a switch to lower affinity binding. This mechanism would provide a quick response to cellular phosphorylation by imposing a fast offrate of the receptor. Kinetic control with a fast off-rate would enable a prompt response given that phosphorylation occurs while Syk is engaged at the membrane BCR. The results demonstrate the power of NMR to characterize the dynamic nature of domain organization in modular proteins.

ARALLEL Session Lectures

^{1.} Kalodimos CG, Folkers GE, Boelens R, Kaptein R, Chem Rev 104, 3567-3586 (2004)

^{2.} Romanuka J, Folkers GE, Biris N, Tischenko E, Wienk H, Bonvin AM, Kaptein R, Boelens R, J Mol Biol 390, 478-489 (2009)

^{3.} Boelens R, Gualerzi CO, Curr Prot Pept Sci 3, 107-119 (2002)

^{4.} Milon P, Tischenko E, Tomsic J, Caserta E, Folkers GE, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO, PNAS 103, 13962-13967 (2006)

^{5.} Huang A, Hibbert RG, de Jong RN, Das D, Sixma TK, Boelens R, J Mol Biol 410, 424-435 (2011)

^{6.} Hibbert RG, Huang A, Boelens R, Sixma TK, PNAS 108, 5590-5595 (2011)

Molecular Recognition Kinetics within Inaccessible Time Window

¹David Ban, ¹Michael Funk, ²Rudolf Gulich, ²Dalia Egger, ¹T. Michael Sabo, ¹Korvin F.A. Walter, ³R. Bryn Fenwick, ¹Karin Giller, ⁴Fabio Pichierri, ⁵Bert L. de Groot, ^{5,6}Oliver F. Lange, ⁵Helmut Grubmüller, ^{3,7}Xavier Salvatella, ²Martin Wolf, ²Alois Loidl, ⁸Reiner Kree, ¹Stefan Becker, ¹Nils-Alexander Lakomek, ¹Donghan Lee, ²Peter Lunkenheimer, ¹Christian Griesinger

¹Dept. for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany; ²University of Augsburg, Experimental Physics V, D-86135 Augsburg, Germany; ³Institute for Research in Biomedicine Barcelona, Spain; ⁴G-COE Laboratory, Dept. of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; ⁵Dept. for Theoretical Biophysics, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany; ⁶Dept. of Biochemistry, University of Washington, Seattle, Washington, USA; ⁷ICREA, Barcelona, Spain; ⁸University of Göttingen, Institute for Theoretical Physics, D-37077 Göttingen, Germany, email: dole@nmr.mpibpc.mpg.de.

Molecular recognition is a fundamental aspect in biological processes. As a mechanism for molecular recognition, conformational sampling in the ns to ms time-scale has been proposed for ubiquitin.¹ However, the possible lifetime of these conformations spans four orders of magnitude, ranging from 4 ns to 50 ms and its kinetics was inaccessible due to the limitation of current methodology. Through a novel combination of methods, we have specified this lifetime to values between 2 and 20 ms at 298 K. Furthermore, we discuss how this lifetime of conformational interconversion is connected to the kinetics of complex formation. Consequences on fundamental mechanisms of molecular recognition will be discussed.

REFERENCES:

1. Lange, O. F. et al. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. *Science* 320, 1471-1475 (2008)

Ps115

Towards A Robust Description of Intrinsic Protein Disorder from NMR

Guillaume Communie, Jie-rong Huang, Malene Ringkjøbing Jensen, Yao Mingxi, Luca Mollica, Valéry Ozenne, Loïc Salmon, Robert Schneider and Martin Blackledge

Protein Dynamics and Flexibility by NMR, Institute de Biologie Structurale Jean-Pierre Ebel, CNRS; CEA; UJF; UMR 5075, 41 rue Jules Horowitz, F-38027 Grenoble, Cedex, France. <u>martin.blackledge@ibs.fr</u>.

The development of meaningful descriptions of the behaviour of intrinsically disordered proteins (IDPs) is a key challenge for contemporary structural biology, due to their inherent conformational disorder. Explicit molecular ensembles representing a dynamic equilibrium of rapidly interconverting conformers are gradually becoming established as appropriate descriptors to determine protein conformational disorder. ¹ Due to the increase in available degrees of freedom compared to a static picture, the identification of accurate protein conformational ensembles requires the development of robust approaches to determine the significance and uniqueness of any proposed equilibrium.² We will present novel approaches to determine local and long-range structural behaviour in IDPs from NMR and small angle scattering data. We will describe the development of new techniques to determine the level of intrinsic structure in IDPs and apply this to describe the pre-recognition state of active sites of viral proteins.^{3,4} The development of these tools allow us to study the conformational behaviour of these proteins in their physiological context, resulting in the first description of measles virus nucleocapsid including the disordered domain that mediates the initial steps of transcription and replication.⁵

^{1.} Nodet G, Salmon L, Ozenne V, Meier S, Jensen MR, Blackledge M.. J.Am. Chem. Soc. 131, 17908-17918, (2009).

^{2.} Jensen MR, Salmon L, Nodet G, Blackledge M. J.Am. Chem. Soc. 132, 1270-1272, (2010).

^{3.} Jensen MR, Houben K, Lescop E, Blanchard L, Ruigrok RW, Blackledge M. J.Am.Chem.Soc. 130, 8055-8061 (2008).

^{4.} Salmon L, Nodet G, Ozenne V, Yin G, Jensen MR, Zweckstetter M, Blackledge M J.Am.Chem.Soc. 132, 8407-8418, (2010).

^{5.} Jensen MR, Communie G, Ribeiro EA Jr, Martinez N, Desfosses A, Salmon L, Mollica L, Gabel F, Jamin M, Longhi S, Ruigrok RW, Blackledge M. Proc Natl Acad Sci. 108, 9839-9844, (2011).

Dynamic Nuclear Polarization at High Magnetic Fields

Robert G. Griffin

Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, USA; rgg@mit.edu.

Over the last few years we have developed gyrotron microwave sources that operate at frequencies of 140, 250, 330 and 460 GHz that permit DNP enhanced NMR (DNP/NMR) experiments in magnetic fields of 5-16.4 T (1H NMR frequencies of 211, 380, 500, and 700 MHz, respectively). We review the instrumentation used for these experiments, which include new probe designs and tunable gyrotron sources including results from our initial experiments at 700 MHz/460 GHz. In addition, we discuss two mechanisms that are currently used for DNP experiments in solids at high fields – the solid effect and cross effect -- and the polarizing agents appropriate for each. These include new water soluble mono- and biradicals, the latter with TEMPO moieties locked in orientations for efficient cross effect DNP. In addition, we discuss applications of DNP/NMR that illustrate its utility in enhancing signalto-noise in MAS NMR spectra of a variety of biological systems such as amyloid proteins whose structures are of considerable scientific interest. Presently, enhancements range from 40-250 depending on experimental variables such as temperature, magnetic field, microwave B1, polarizing agent, etc. Finally, we show that 90 K spectra of cryoprotected protein samples permit observation of many resonances not observed at higher temperatures due to the interference of motion with the 1H decoupling fields. Thus, in addition to higher sensitivity there are other significant advantages to performing low temperature DNP experiments.

REFERENCES:

Ps117

Surface Enhanced NMR by DNP: Analysis of the Sensitivity Enhancement and Application to a New Class of Porous Materials

Moreno Lelli,¹ Aaron Rossini,¹ Alexandre Zagdoun,¹ David Gajan,² Melanie Rosay,³ Werner Maas,³ Jérôme Canivet,⁴ David Farusseng,⁴ Christophe Copéret,² Anne Lesage,¹ Lyndon Emsley¹

¹Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France; ²Department of Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland; ³Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA ⁴Université Lyon 1, IRCELYON, Institut de Recherches sur la Catalyse et l'Environnement de Lyon, UMR CNRS 5256, avenue Albert Einstein 2, 69626 Villeurbanne, France Moreno.Lelli@ens-lyon.fr.

Dynamic nuclear polarization (DNP) is attracting considerable attention as a general method to enhance the sensitivity of solution and solid-state biomolecular NMR experiments.¹ We recently demonstrated the use of DNP in MAS solid-state NMR at ~100 K to study the surfaces of porous materials, by introducing a radical species by incipient wetting impregnation with aqueous solutions.^{2,3} The DNP enhancement involving first the ¹H nuclei can be transferred to the surface heteronuclei by cross-polarization, with enhancement factors of the order of 20-40 in the detection of ¹³C, ¹⁵N, or ²⁹Si nuclei. Here we will report results obtained from surface DNP NMR on mesoporous hybrid materials, analyzing both DNP enhancement (ɛ) and the effective sensitivity enhancement per unit of time compared to NMR experiments performed without DNP on the dry material (Σ) at room and at low temperature, as a function of the radical concentration. The contributions to Σ due to the shortening of the ${}^{1}H T_{1}$, as well as the partial "quenching" of the surface related to presence of paramagnetic centers will be also discussed. In addition, we will show that the CPMG acquisition protocol can further improve the sensitivity of DNP ²⁹Si SSNMR experiments. Preliminary results from the application of surface DNP NMR to characterize metal-organic framework (MOF) materials are also presented.

^{1.} R. Narkowicz, D. Suter, and I. Niemeyer, Rev. Sc. Instr. 79, 084702 (2008). 2. A. Banholzer et al., Nanotechnology 22, 295713 (2011).

Hyperpolarized NMR of Polypeptides

Mukundan Ragavan,¹ Hsueh-Ying Chen,² Giridhar Sekar,¹ Sean Bowen,² Christian Hilty²

¹Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; ²Department of Chemistry, Texas A&M University, College Station, TX 77843, USA. chilty@chem.tamu.edu

Dynamic nuclear polarization (DNP) provides a substantial signal enhancement in NMR. When coupled to high-resolution spectroscopy, solid-to-liquid state DNP not only allows the measurement of samples at low concentration, but more importantly in single scans with previously unattainable time resolution.¹ DNP-NMR in these modalities has up to now been most successfully used with small molecules, which exhibit long spin-lattice relaxation times and are soluble to high concentrations. Here, we present initial results showing that folded and unfolded proteins are equally amenable to solid-to-liquid state DNP polarization. Substantial enhancements on the order of $10^2 - 10^3$ are readily obtained.² Proteins are easy to label uniformly or selectively, by biosynthetic incorporation

of ¹³C, ¹⁵N, ²H or ¹H isotopes. DNP-NMR of these samples presents itself as a new tool for the analysis of dynamic processes involving polypeptides. With an accessible sub second to second time scale, this technique enables real-time NMR study of protein folding.

REFERENCES: 1. Bowen, S., Hilty, C. Angew. Chem. Int. Ed. 47 (28): 5235-5237 (2008), 2. Ragavan, M., Chen, H.-Y., Sekar, G., Hilty, C. (Anal. Chem., pending revision)

Ps119

Dissolution Dynamic Nuclear Polarization – Advances in Theory and Experimental Implementation

<u>Walter Köckenberger^{1*}</u>, Anniek van der Drift¹, Ilya Kuprov², James Leggett¹, Peter Roberts¹, Sebastian Kemper¹, Alexander Karabanov¹

¹Sir Peter Magnetic Resonance Centre, School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom ²e-Research Centre, University of Oxford, OXI 3QG, United Kingdom * walter.kockenberger@nottingham.ac.uk

Low temperature dynamic nuclear polarisation in conjunction with a fast melting or dissolution step can be combined to generate liquid state samples with substantially increased spin polarisation¹ that can be used in novel NMR and MRI applications. To understand the physical processes taking place during solid state DNP at low temperature, it is important to develop models and spin dynamics simulations that can provide insight into the complexity of the polarisation build-up process. The simulations can help to understand the parameter dependence and to identify possible improvements that can be made in sample preparation and in the design of the radicals to speed up the polarisation build-up and achive even higher levels of nuclear spin polarisation. An important hurdle to overcome is the exponentially growing dimensionality of the arising quantum mechanical problem with the number of spins included in the model spin system². We have made progress in understanding how the number of interacting spins can be maximised by working with reduced basis sets in DNP simulations. This strategy will be explained in detail and example calculations will be presented.

¹ Ardenkjaer-Larson J.-H. et al., Proc. Natl. Acad. Science USA, 100(18) 10158-10163 (2003)

² Hovav Y. et al., J. Magn. Reson. 207, 176-189 (2010)

FD FT THz EPR on High Spin Transition Metal Ion Clusters

Alexander Schnegg

Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Germany, alexander.schnegg@helmholtz-berlin.de

In transition metal ions (TMIs) complexes with multiple unpaired electrons and high electron spins (S > 1/2), spin-orbit and spin-spin interactions among the unpaired electrons can lead to zero-field splitting (ZFS) of the magnetic sublevels. ZFS may be employed as a sensitive diagnostic to probe the electronic structure of function determining TMIs in metalloproteins or inorganic catalysts and determines the magnetic properties of single molecule magnets (SMMs). The ideal technique to extract this valuable parameter is electron paramagnetic resonance (EPR). However, difficulties in extracting spin coupling parameters for high spin systems by single frequency EPR arise from the fact that the spin transition energies are oftentimes distributed over a very wide energy range, exceeding the microwave energy of conventional EPR spectrometers. In order to overcome this limitation, we recently set-up a broad-band frequency-domain Fourier-transform (FD FT) THz EPR spectrometer operating from 200 GHz to 1.5 THz and +10 T to -10 T, which exploits coherent synchrotron radiation in the THz range [1]. Here FD FT THz EPR is presented as a powerful tool to ascertain the spin transition energies in high spin systems exhibiting large ZFS. A description of the FD FT THz EPR set-up is given together with measurements on catalytic TMI clusters and novel SMMs [2, 3].

- Schnegg, A.; Behrends, J.; Lips, K.; Bittl, R.; Holldack, K.: Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation. PCCP 11 (2009), p. 6820
- [2] Dreiser, J.; Schnegg, A.; Holldack, K.; Pedersen, K.S.; Schau-Magnussen, M.; Nehrkorn, J; Tregenna-Piggott, P.; Mutka, H.; Weihe, H.; Bendix, j.; Waldmann, O.: Frequency-Domain Fourier-Transform Terahertz Spectroscopy of the Single-Molecule Magnet (NEt(4))[Mn(2) (5-Brsalen)(2) (MeOH)(2) Cr(CN)(6)], Chemistry - An European Journal, 17 (2011), p. 7492
- [3] Pedersen, K.S.; Dreiser, J.; Nehrkorn, J.; Gysler, M.; Schau-Magnussen, M.; Schnegg, A.; Holldack, K.; Bittl, R.; Piligkos, S.; Weihe, H.; Tregenna-Piggott, P.; Waldmann, O.; Bendix, J.: A linear single-molecule magnet based on [RuIII(CN)6]³⁻. Chem. Com., 47 (2011), p. 6918

Ps121

High Sensitivity Pulsed Electron Spin Resonance Spectroscopy with Induction Detection

Ygal Twig, Ekaterina Dikarov, and Aharon Blank

Schulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa, 32000, Israel, e-mail: ab359@tx.technion.ac.il

All commercial electron spin resonance (ESR) spectroscopy and imaging systems make use of the so-called "induction" or "Faraday" detection method, which is based on a radio frequency (RF) coil or a microwave (MW) resonator. This detection method is very robust and enables one to acquire complex spectra as well as efficient acquisition of images of inhomogeneous samples. Induction detection, however, suffers from sensitivity problems; its state-of-the-art capabilities do not exceed $\sim 3 \times 10^8$ spins/ $\sqrt{\text{Hz}}$. Here we show that through the use of a new type of surface loop-gap microresonators (with typical inner dimensions of 20 μ m), operating at cryogenic temperatures in a field of ~ 0.5 T, one can improve upon this sensitivity barrier by more than two orders of magnitude and reach spin sensitivities of $\sim 1.5 \times 10^6$ spins/ $\sqrt{\text{Hz}}$ or $\sim 2.5 \times 10^4$ spins for a reasonable averaging time of one hour. The experimental results conform well to theoretical assessments, which also predict that one can approach single electron spin sensitivity at an increased magnetic field using an even smaller resonator size made of materials with higher conductivity. The applications of this new methodological capability range from the observation of paramagnetic doped fixed biological samples to the inspection of defects in semiconductors, and it may possibly be used as an efficient detection tool for an array of spins used in a future quantum computer.

Mn²⁺ - nitroxide W-band DEER as tool to measure nm scale distances in RNA and protein RNA complexes.

<u>Ilia Kaminker</u>,^{1*} Anastasiya Sushenko,¹ Kristmann Gislason,² Snorri T. Sigurdsson² and Daniella Goldfarb.¹

¹Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.²University of Iceland, Science Institute Dunhaga 3, 107 Reykjavik, Iceland. *e-mail: ilia.kaminker@weizmann.ac.il

The pulse DEER (Double Electron-Electron Resonance) technique is frequently applied for nanometer scale distances measurements in biomolecules. It's most common application is to measure distances between two nitroxide spin labels attached at specific positions in the macromolecules of interest. Nevertheless, the DEER experiment is not limited to distance measurements between nitroxide spin labels and it has been successfully applied for distance measurements between other types of paramagnetic centers, such as pairs of organic radicals, Cu^{2+} and Gd^{3+} ions and metal ion-nitroxide pairs.

In this work we demonstrate, high field, W-band (95GHz) DEER distance measurements between nitroxide spin-labeled RNA and Mn^{2+} that binds either to the same RNA molecule, or to the RNA helicase DbpA. In the latter it substitutes for the Mg^{2+} in the ATPase active site of the enzyme. Optimal experimental parameters such as the selection of the pump and observer spins, microwave (MW) power, pulse length and frequency separation between the two MW channels are discussed and evaluated.

In many biological systems paramagnetic Mn^{2+} occurs naturally or it can be introduced artificially as a substitute for the diamagnetic Mg^{2+} . Thus our results pave the way for many new applications of DEER in the systems where nitroxide spin labeling is problematic or where introduction of the additional, orthogonal, paramagnetic probe may provide additional information.

Ps123

EPR with Small Resonators and Small Numbers of Spins

Dieter Suter^{1*}, Ryszard Narkowicz¹, Anja Banholzer², Jürgen Lindner² and Michael Farle²

¹Department of Physics, Technical University of Dortmund, ²Department of Physics, University of Duisburg-Essen; *Dieter.Suter@tu-dortmund.de.

Traditional cavity resonators for microwaves are well suited for ESR studies of large samples. However, for mass-limited samples, these resonators do not provide optimal sensitivity. To improve this situation, we have designed and tested sub-wavelength resonators that concentrate the microwave field in two-dimensional surface coils with diameters of the order of a few micrometers. The reduction of the resonator size results in a corresponding increase in the conversion efficiency of microwave power to microwave field, as well as a large increase in the detection sensitivity. Scaling the resonator size to 50 μ m reduces the required microwave power to ~10 mW for pulsed excitation and ~10 μ W for cw experiments. The detection sensitivity scales almost linearly with the inverse diameter of the resonator. Since they are open structures, these microresonators can be well combined with other techniques, such as scanning probes or optical detection schemes. Spatial separation of the magnetic and electrical fields provides good compatibility with conducting samples. As a specific application, we measured spin-waves in nanostructured ferromagnetic samples with volumes of (100 nm)³. Uniform as well as non-uniform volume modes of the spin wave excitation spectrum are identified and found to be in excellent agreement with the results of micromagnetic simulations. This allows the visualization of the spatial distribution of these modes in the magnetic nanostructures.

^{1.} R. Narkowicz, D. Suter, and I. Niemeyer, Rev. Sc. Instr. 79, 084702 (2008).

^{2.} A. Banholzer et al., Nanotechnology 22, 295713 (2011).

Magnetic Resonance Studies on Magnetotactic Bacteria

Andreas U. Gehring¹, Jessica Kind¹, Michalis Charilaou¹ and <u>Inés García-Rubio²</u>

¹Institute of Geophysics, ETH Zurich, Zurich, Switzerland; ²Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland. (email:<u>garciarubio@phys.chem.ethz.ch</u>)

Magnetotactic bacteria benefit from their ability to form cellular magnetic dipoles that they use as a compass. Single-domain ferromagnetic particles encapsulated in membranes (magnetosomes) are formed in the cells and assembled in one-dimensional arrays that are stabilized by cytoskeletal protein filaments. The alignment of magnetosomes, usually with their easy-axes along the filament, generates a magnetic dipole.

EPR, or rather, Ferromagnetic Resonance, can be used to obtain information about the state of the magnetite particles with respect to the presence of magnetic domains, the size of magnetosomes and also to provide information about the assembly of magnetosomes through the measurement of the magnetic anisotropy.

Our approach, combining measurements at different microwave frequencies and temperatures with spectral simulations provides separate information about magnetocrystalline and shape anisotropy. In this contribution we present how magnetic resonance has been successfully applied to 1) study the process of magnetosome and cellular dipole formation¹, 2) detect magnetofossils in geological sediments² and 3) detect oxidation of magnetosomes.

2. Gehring A. U., Kind J., Charilaou M., Garcia-Rubio I., Earth Planet. Sci. Lett., in press (2011)

Ps125

In-cell Pulsed EPR on Nucleic Acids

<u>Ivan Krstić¹</u>, Robert Hänsel², Olga Romainczyk³, Joachim W. Engels³, Volker Dötsch², Thomas F. Prisner¹

¹Institute of Physical and Theoretical Chemistry and BMRZ, Goethe University Frankfurt, Germany; ²Institute of Biophysical Chemistry and BMRZ, Goethe University Frankfurt, Germany; ³Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Germany.

Structure and dynamics of nucleic acids (NAs) depend on environmental factors, such as concentration of ions and small molecules, molecular crowding, viscosity and interactions with proteins. Therefore, it is important to investigate if the *in vitro* determined NA structure reflects the intracellular (*in vivo*) conformation. In the present study we used PELDOR spectroscopy [1] on a double spin-labeled 12-base pair DNA duplex, the 14-mer cUUCGg tetraloop hairpin RNA and the 27-mer neomycin-sensing riboswitch to obtain long-range distance constraints on such systems in *Xenopus laevis* oocyte cells [2] and to compare them with *in vitro* measurements [3]. The reduced lifetime of nitroxide radicals under *in vivo* conditions is a major obstacle for such measurements. Our results show that in comparison to free nitroxide, the in-cell reduction kinetic for the spin labels covalently attached to NAs is significantly slower.

We report the first application of pulsed EPR spectroscopy to map the global structure of nucleic acids inside intact cells. No alterations in the measured distances between *in vitro* and in-cell experiments imply the existence of stable overall conformations of the 14-mer hairpin RNA and the 27-mer neomycin-sensing riboswitch, whereas the 12-bp duplex DNA experiences stacking in-cell but retaining the secondary structure.

^{1.} Faivre D., Fisher A., Garcia-Rubio I., Mastrogiacomo G., Gehring A. U., Biophys. J., 99, (2010)

^{1.} Milov A. D., Ponomarev A. B., Tsvetkov Y. D., Chem. Phys. Lett. 110, 67-72 (1984)

^{2.} Krstić I., Hänsel R., Romainczyk O., Engels J. W., Dötsch V., Prisner T. F., Angew. Chem. Int. Ed. 50, 5070-5074 (2011)

An Unexpected Zinc-Binding Motif Embedded in a dsRBD Revealed a New Class of Regulatory Domain Mediating Nuclear Localization of Dicer

<u>Pierre Barraud</u>¹, Stephan Emmerth², Yukiko Shimada², Hans-Rudolf Hotz², Marc Bühler² & Frédéric H.-T. Allain¹

¹Institute of Molecular Biology and Biophysic, ETH Zurich, CH-8093 Zürich, Switzerland; ²Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66,CH-4058 Basel, Switzerland. Email: pierre.barraud@mol.biol.ethz.ch

RNAse III ribonucleases function in RNA interference pathways by generating short RNAs that act at both post-transcriptional and transcriptional levels¹. In contrast to human Dicer, *Schizosaccharomyces pombe* Dicer (Dcr1) localizes in the nucleus² where it generates siRNA required for heterochromatin formation. Its C-terminal domain, which consist of a predicted double-stranded RNA binding domain fold (dsRBD) followed by a 33 amino-acid motif (refers to as C33), plays a pivotal role in regulating the subcellular localization of Dcr1².

We have determined the solution structure of the C-terminal domain of Dcr1. The structure revealed an extended dsRBD fold embedding a unexpected zinc-binding motif that is formed jointly by dsRBD and C33. This unconventional zinc-binding motif is highly conserved among dicers in yeasts. The extension to the canonical dsRBD fold generates a conserved surface for protein-protein interaction that mediates the subcellular localization of Dcr1. Strikingly, although the extended dsRBD of Dcr1 binds to both dsRNA and dsDNA, this property is dispensable for proper functioning of Dcr1 in the RNAi pathway. In contrast, disruption of zinc coordination or mutation in the conserved surface render Dcr1 mainly cytoplasmic and are accompanied by remarkable changes in gene expression and failure to assemble heterochromatin. This raise the attractive possibility that this new class of extended dsRBD might generally function in nucleo-cytoplasmic traffiking and not substrate binding.

REFERENCES: ¹ Moazed, D. Nature 457, 413-420 (2009); ² Emmerth, S., et al. Dev. Cell 18, 102-113 (2010).

Ps127

Protein recognition and functional mechanisms of non-coding RNAs

Bernd Simon,¹ John Kirkpatrick,¹ Ramesh Pillai,² Irene Amata,¹ Melanie Falb,¹ Teresa Carlomagno¹

¹ European Molecular Biology Laboratory, D-69117 Heidelberg, Germany; ² European Molecular Biology Laboratory, Grenoble, France

Piwi proteins are germline-specific Argonautes that associate with small RNAs called the Piwi-interacting RNAs (piRNAs), and together they are implicated in transposon silencing. The PAZ domain of Argonautes recognizes the small RNA 3'-end, which in piRNAs is invariably carrying a 2'-O-methyl mark. Structures of PAZ domains in isolation or in complex with RNA/DNA substrates have been solved for eukaryotic Ago PAZ domains or as part of full-length Argonautes from prokaryotic thermophilic organisms. Here, we present the solution structure of the PAZ domain from the mouse Piwi protein, Miwi, in complex with an 8-mer piRNA mimic. Our structure is similar to that of Ago-PAZ, but subtle differences illustrate how the PAZ domain has evolved to accommodate distinct 3'-ends from a variety of RNA substrates and to provide specificity towards the different cognate RNA.

In the second part of the talk we will show the structure of a catalytic RNA forming a lariat product. This 2'-5'branch forming ribozyme undergoes a transterification reaction that shows striking similarity to the first step of both pre-mRNA and group II introns splicing. Thus, understanding the structure-activity relationship of this small ribozyme can help to understand the mechanism of spliceosomal catalysis. Here we present the structure of the ground state of the ribozyme, which shows peculiar dynamic properties. With the help of this information and of an extensive mutational analysis, we propose a structure for the activated, catalytic state of the ribozyme.

46

Is there a sensible approach to the inverse problem of many conformations providing only few average parameters?

Giacomo Parigi

Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy. Email: parigi@cerm.unifi.it

The presence of conformational heterogeneity in multidomain proteins allowing interdomain mobility can be monitored through the observation of pseudocontact shifts (pcs) and self-orientation residual dipolar couplings (rdc) arising from the presence of a paramagnetic ion in one protein domain. The measured pcs and rdc are in fact the average of the pcs and rdc values on the ensemble of the conformations experienced by the protein in a ms time scale or shorter. In the presence of motion, the range of the observed rdc values is reduced, and they collapse to zero in the limit of overall isotropic reorientation. From the averaged pcs and rdc it is impossible to recover the conformations actually experienced by the system. The concept of maximum occurrence for a conformation has thus been introduced as the maximum weight that this conformation can have in any conformational ensemble, and thus whatever the real ensemble of conformations sampled by the protein is. The approach is based on the knowledge of the position, orientation and anisotropy of the magnetic susceptibility tensor from the pcs and rdc values measured for the metal containing domain; the pcs and rdc values measured for the other domain are used to determine the maximum occurrence of a representative pool of protein conformations. Further restraints, like SAXS or PRE data, can be added to the analysis. The different protein conformations can then be ranked according to their maximum occurrence.

REFERENCES:

1. Bertini I., Gupta Y.K., Luchinat C., Parigi G., Peana M., Sgheri L., Yuan J., J. Am. Chem. Soc. 129, 12786-12794 (2007)

2. Bertini I., Giachetti A., Luchinat C., Parigi G., Pierattelli R., Ravera E., Petoukhov M.V., Svergun D.I., J. Am. Chem. Soc. 132, 13553-13558 (2010)

Ps129

High Field Dynamic Nuclear Polarization with High-Spin Transition Metal Ions

Björn Corzilius^{a*}, Albert A. Smith^a, Claudio Luchinat^b, Ivano Bertini^b, Robert G. Griffin^a

^aFrancis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; ^{*}bcor@mit.edu Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy

In various biochemical applications dynamic nuclear polarization (DNP) has proven to be able to enhance nuclear polarization in magic-angle-spinning nuclear magnetic resonance (MAS NMR) by factors of ~40 to ~300 even at high magnetic field, therefore allowing NMR experiments which would not be feasible with conventional MAS NMR.

To date almost exclusively organic-radical based polarizing agents are used to provide the high electron spin polarization subsequently transferred to nuclear spins via DNP. However, endogenous electron spins (e.g. Mn(II)-centers) open the possibility of site-specific DNP without need of attaching spin-labels and therefore altering the sample structure (e.g. protein folding). The investigation of this site-specific polarization could yield important information which can be used as additional constraints in structure determination.

In this paper we introduce high-spin transition metal and rare earth (Mn(II) and Gd(III)) complexes as novel sources of polarization for solid effect DNP. At 5 T and temperatures close to LN₂ enhancements of ~ 16 can be obtained under MAS conditions using a Gd(III) complex (Gd-DOTA).¹ By effectively increasing the microwave field strength in a microwave resonator, enhancements of >100 are feasible under static NMR conditions at 80 K. We discuss the influence of zero-field splitting, hyperfine coupling to the metal ion, microwave field strength, sample temperature and ¹H-¹H spin-diffusion on DNP parameters.

Fast Fold Determination of the 153-residue protein Superoxide Dismutase by High-Resolution Proton-detected Solid-state MAS NMR

<u>Michael J. Knight</u>¹, Paul Guerry¹, Amy Webber¹, Andrew Pell¹, Jozef Lewandowski¹, Ivano Bertini², Isabella C. Felli², Leonardo Gonnelli², Roberta Pierattelli², Lyndon Emsley¹, Anne Lesage¹, Torsten Herrmann¹, Guido Pintacuda¹

¹CRMN, ENS-Lyon, Lyon, France. ²CERM, University of Florence, Email michael.knight@ens-lyon.fr

A continuing obstacle to structural studies of solid-state proteins is the difficulty in recording highresolution proton spectra. The use of perdeuterated proteins with partial amide back-protonation has helped to overcome the problem by diluting the proton dipolar network(1). Using moderate MAS speeds, very good proton resolution can be accomplished using 10-40% back-exchanged amide sites (2,3). We show here that the use of high magnetic fields and ultra-fast MAS (> 50 kHz) lifts the requirement of using partial back-exchange of amide sites for the efficient detection of proton resonances in perdeuterated samples of medium-sized proteins. We have applied proton-detected solid-state NMR to the 153-residue (16 kDa) protein Superoxide dismutase, fully [2H,13C,15N]labelled and 100% protonated at the exchangeable sites. At1 GHz field and 60 kHz MAS, it is possible to obtain sensitive, high-resolution proton-detected experiments, which facilitate extensive resonance assignment. In the present study, 140 backbone amide resonances were assigned, out of 148 nonproline residues. This notably allows the acquisition of high-sensitivity 1H-1H correlation experiments. Then, using automated signal identification and cross peak assignment as implemented in the ATNOS/CANDID modules of the UNIO solution and solid-state NMR data analysis software suite, we have calculated the fold of SOD using only backbone amide 1H-1H restraints.

1. Reif, B. et al, J. Mag. Res. 151, 320-327 (2001), 2. Akbey, U. et al, J. Biomol. NMR, 46, 67-73, (2010), 3. Huber, M. et al, ChemPhysChem, 12, 915-918, (2011)

Ps131

Field-dependent paramagnetic relaxation enhancement in solutions of Ni(II): what happens above the proton frequency of 1 GHz?

<u>Jozef Kowalewski¹</u>, Pascal H. Fries², Danuta Kruk³, Steffen Krämer⁴, Holger Stork⁴, Mladen Horvatić⁴, Claude Berthier⁴

¹Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, e-mail: <u>jozef.kowalewski@mmk.su.se</u>, ²SCIB (UMR_E 3 CEA UJF), INAC, CEA-Grenoble, F-38054 Grenoble, ³Institute of Physics, Jagiellonian University, PL-30059 Krakow, ⁴CNRS, LNCMI, F-38042 Grenoble 9.

The aqueous solutions of Ni(II) salts are a classical object of measurements of field-dependent paramagnetic relaxation enhancement (PRE) of solvent protons. Recently, we reported ¹H spin-lattice relaxation time (T_1) measurements on solutions of Ni(II) salt in water and water-glycerol mixtures [1] at magnetic fields up to 21 Tesla. One of the conclusions from that work was that adding glycerol not only changed the solution viscosity, but also resulted in formation of species with effective symmetry lower than octahedral.

Here, we extend that work in two ways. First, we report measurements of proton T_1 at very high magnetic fields, up to 32.9 Tesla. The experiments were performed at the "Laboratoire National des Champs Magnétiques Intenses" (LNCMI) in Grenoble. At these very high fields we observe an increase of the measured T_1 with increasing field, predicted by theory, but not observed in earlier studies. Second, we employ a new protocol for analysis of the data, including both intra- and intermolecular dipolar interactions between the protons and the electron spin in the fitting process [2].

Supported by EuroMagNET, FP 7 EU contract no. 228043 and Polish MNiSZW N N202 105936.

^{1.} Kowalewski, J., Egorov, A., Kruk, D., Laaksonen, A., Nikkhou Aski, S., Parigi, G. and Westlund, P.O., J.Magn.Reson, 195, 103-111 (2008).

² Kruk, D., and Kowalewski, J., J. Chem. Phys., 130, 174104 (2009).

What EPR reveals about the origin of life

Didier Gourier

Ecole Nationale Supérieure de Chimie de Paris, Paris, France. Didier-gourier@chimie-paristech.fr.

It is generally agreed that life emerged relatively rapidly on Earth in a window between $\sim 4-3.5$ billion years (Byr) ago, very soon after the solar system formation (4.6 Byr). Also, early Mars experienced Earth-type conditions at that epoch, so that primitive life could also have appeared on this planet. This hypothesis is further supported by the fact that Earth and Mars were heavily bombarded by comets and meteorites during their first 500 million years. A fraction of these meteorites contain up to 4% of organic carbon, including molecules such as amino-acids, amino bases etc...at the ppm level. Organic-rich objects have thus undouptedly rained upon surfaces of both planets at the same time. The insoluble organic matter (IOM) of carbonaceous meteorites -among the most ancient objects of the solar system- offers a unique record of the formation of organic matter in the early solar system. One important question concerns the origin of this IOM, which can be interstellar or synthesized in the protoplanetary disk, or a combination of both. The most ancient traces of life on Earth are found in the form of IOM microstructures fossilized in sedimentary rocks. However their origin, biogenic or abiogenic, is still among the most debated questions. Also, this IOM may sometimes originate from a late contamination by endolithic bacteria that fossilized in the rock. Two important issues are thus to assess the biogenic origin of the carbonaceous matter, and its syngeneity with the host rock. All these IOMs, terrestrial or extraterrestrial, contain paramagnetic defects which can be used as local probes. By using a combination of EPR methods, important information can be obtained about the origin of the organic matter in the solar system, and about the biogenicity and the syngeneity of the carbonaceous matter in the most ancient rocks. These paramagnetic markers can thus be used for the search of extinct life in martian rock samples.

Ps133

Quantum Coherence in Molecular Nanomagnets

Joris van Slageren,¹ Christoph Schlegel,² María Dörfel¹

¹Institut für Physikalische Chemie, Universität Stuttgart, Stuttgart, Germany; ²1. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany; slageren@ipc.uni-stuttgart.de

Molecular Nanomagnets (MNMs) are molecular clusters of (transition) metal ions that are bridged by simple ligands that efficiently transmit magnetic interactions. They are encapsulated in an organic ligand shell that shields them from each other and from the environment. Depending on composition and geometry, MNMs can possess high- or low-spin ground states and large or small anisotropies. MNMs have been proposed for data storage (high-spin, high-anisotropy), quantum computing (lowspin), and magnetic cooling (high-spin, low-anisotropy) applications. They are extremely well-suited to the study of quantum mechanical properties of mesoscopic systems, bridging the gap between the quantum and classical worlds.

We have studied quantum coherence in MNMs by pulse EPR and ENDOR. We have shown that quantum coherence times can reach the microsecond regime and are limited by the hyperfine interaction between the electron spin and the nuclear spins of the MNM and its surroundings. We have also been able to quantify the hyperfine interaction, and determine its origin. We will present recent results on lanthanide systems.

Pulsed EPR characterization of encapsulated atomic hydrogen in octasilsesquioxane cages

George Mitrikas and George Kordas

Institute of Materials Science, NCSR Demokritos, GR-15310, Athens, Greece, e-mail: mitrikas@ims.demokritos.gr

Hydrogen atoms encapsulated in molecular cages are potential candidates for quantum computing applications. They provide the simplest two-spin system where the 1s electron spin, S=1/2, is hyperfine-coupled to the proton nuclear spin, I=1/2, with a large isotropic hyperfine coupling (A =1420.406 MHz for a free atom). It has been found that atomic hydrogen is exceptionally stable in octasilsesquioxane cages even at room temperature [Sasamori et al., Science, 1994, 256, 1691].

Here we present a detailed spin-lattice and spin-spin relaxation study of atomic hydrogen encapsulated in Si₈O₁₂(OSiMe₂H)₈ using X-band pulsed EPR spectroscopy. The spin-lattice relaxation times T_1 range between 1.2 s at 20 K and 41.8 µs at room temperature. The temperature dependence of the relaxation rate shows that for T < 60 K the spin-lattice relaxation is best described by a Raman process with a Debye temperature of $\theta_D = 134$ K, whereas for T > 100 K a thermally activated process with activation energy $E_a = 754$ K (524 cm⁻¹) prevails.

The phase memory time $T_{\rm M} = 13.9 \,\mu \text{s}$ remains constant between 200 and 300 K and is determined by nuclear spin diffusion; below 200 K, $T_{\rm M}$ decreases by an order of magnitude and is attributed to dynamic processes like rotation of the methyl groups of the cage organic substituents. The hyperfine couplings of the encapsulated proton and the cage ²⁹Si nuclei are obtained through numerical simulations of field-swept FID-detected EPR spectra and HYSCORE experiments, respectively. The results are discussed in terms of existing phenomenological models based on the spherical harmonic oscillator and compared to those of endohedral fullerenes.

Ps135

EPR Spectroscopy on Serum Albumin

Dariush Hinderberger

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; dariush.hinderberger@mpip-mainz.mpg.de

Serum albumin is a versatile transport protein for various endogenous compounds, e.g. for fatty acids, and drugs in humans (human serum albumin, HSA) and many animals. Albumin is a standard test protein in the life sciences. While mainly extensive crystallographic data on HSA–fatty acid binding exist, relatively few studies since the 1970s have dealt with CW EPR spectroscopy on a simple self-assembled system of albumin with spin-labeled stearic acids (5- and 16-doxyl stearic acid, DSA).

We have recently started a new spectroscopic approach to gain information on the functional structure of (in particular) HSA in solution. Using 5- and 16-DSA as ligands and applying double electron–electron resonance spectroscopy (DEER), the functional protein structure could directly be accessed from the *ligands' point of view* [1]. It was surprisingly found that the distribution of the anchor groups for fatty acids is mainly consistent with the crystallographic data, while the entry points of the fatty acid binding pockets are distributed much more homogeneously and symmetrically on the protein surface than suggested by the crystal structure.

During our studies we found that albumin is a well suited "guinea pig" protein for CW EPR and DEER, which allows studying DEER on metal ion-nitroxide [2] and multispin effects [3]. Furthermore, it is a model protein for studying protein-solvent interactions and their effect on protein solution structure [4] as well as protein-protein interactions.

^{1.} Junk M. J. N., Spiess H. W., Hinderberger D., Angew. Chem. Int. Ed. 49, 8755-8759 (2010)

^{2.} Junk M. J. N., Spiess H. W., Hinderberger D., Biophys. J., 100, 2293-2301 (2011)

^{3.} Junk M. J. N., Spiess H. W., Hinderberger D., J. Magn. Reson., 210, 210-217 (2011)

^{4.} Akdogan Y., Junk M. J. N., Hinderberger D., Biomacromolecules, 12, 1072-1079 (2011)

Enamine and Brønsted Acid Catalysis- Intermediates Trapped by NMR

Ruth M. Gschwind

Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany. e-mail: ruth.gschwind@chemie.uni-regensburg.de

In the rapidly expanding field of asymmetric organocatalysis, mechanistic studies and structural investigations on intermediates are scarce compared to new synthetic applications. Thus, e.g. in proline-catalyzed aldol reactions, both origin and prototype for asymmetric aminocatalysis, the central enamine intermediate has never been detected experimentally for years. Similarly, in Brǿnsted acid catalysts, the understanding of the catalyst-substrate complexes in solution is rather limited despite the crucial role of hydrogen-bonding interactions and proton transfer in organo¬catalysis.

Here, our recent NMR studies about the detection, formation pathway and stabilization trends of enamines in proline-catalyzed aldol reactions will be presented [1]. Also the erosion of aldol selectivity due to proline-catalyzed aldehyde self condensation will be discussed [2]. Furthermore, we could reveal distinct trends for the formation and stability of prolinol and prolinol ether enamines [3] and found surprisingly strong conformational preferences for these enamines [4]. In addition, in the field of Brǿnsted acid catalysis, recent results about hydrogen bonding versus ion pairing in imine activation are discussed, which reveal the hydrogen bonded systems to be the active species [5].

Long Lived Coherent Response Signal Imaging

Boyang Zhang¹, Jae-Seung Lee¹, Anatoly Khitrin², <u>Alexej Jerschow¹</u>

¹Chemistry Department, New York University, New York, NY, USA; ²Department of Chemistry, Kent State University Kent, OH, USA). alexej.jerschow@nyu.edu

The Long Lived coherent Response (LLR) signal has been previously reported for information storage with liquid crystal and solid sample imaging.^{1,2} This signal can be produced by applying a long weak pulse to the thermal equilibrium state. It is believed that this long-lived response originates from the nonlinear combination of a network of spin-spin couplings, molecular motions, and spin-lattice relaxation. The higher spatial resolution provided by its long-living feature and its insensitivity to a static field inhomogeneity makes LLR an ideal tool for bone imaging.

Comparison between LLR and conventional bone image.

We demonstrate here the feasibility of LLR sequence for bone imaging. This long lived signal provides high resolution images and its successful application in rigid tissue systems shows its potential for in vivo imaging bone tissues, tendons, ligaments, and other related tissues, which may contribute to the diagnostics of musculoskeletal disorders.

¹ Schmid M. B., Zeitler K., Gschwind R. M., Angew. Chem. Int. Ed., 49, 4997-5003. (2010)

² Schmid M. B., Zeitler K., Gschwind R. M., J. Org. Chem., 76, 3005–3015. (2011)

³ Schmid M. B., Zeitler K., Gschwind R. M., J. Am. Chem. Soc., 133, 7065–7074. (2011)

⁴ Schmid M. B., Zeitler K., Gschwind R. M., *Chemical Science*, DOI: 10.1039/C1SC00274K. (2011) 5 Eleischware M. Detteren D. Suriera F. Purring M. Cachwind P. M. Array, Chem. Int. Ed. 50, 6264

⁵ Fleischmann M., Drettwan D., Sugiono E., Rueping M., Gschwind R. M., Angew. Chem. Int. Ed., 50, 6364-6369. (2011)

Ps137

^{1.} Kim, M. J.; Khitrin, A. K. Magn. Reson. Imaging 23, 865 (2005)

^{2.} Khitrin, A. K.; Ermakov, V. L.; Fung, B. M. Chem. Phys. Lett. 360, 161 (2002).

The heart of photosynthesis illuminated by joining photo-CIDNP and quantum chemistry

Geertje J. Janssen, Bela E. Bode, Jörg Matysik, A. Alia

Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands. bodebe@chem.leidenuniv.nl

In this contribution we investigate the primary charge separation in the two light-driven electron pumps photosystems I and II. The light-induced electron transfer in these proteins lays the foundation of natural carbon-fixation, the global food chain and the natural conversion of sunlight into chemical energy. Despite decades of intense research, the molecular basis of the high efficiency of the initial charge separation is still sought after.

Here we utilize uniformly ¹⁵N labeled isolated reaction centers¹ and demonstrate that photo chemically induced (photo-CIDNP)² magic angle spinning (MAS) NMR is a unique tool for studying these systems. A 10,000-fold signal enhancement allows studying the active cofactors at atomic resolution. The chemical shift information refers to the electronic structure in the ground state, whereas the signal amplitude reports on the charge transfer state. Both effects can be simulated based on parameters obtained from thoroughly validated quantum chemistry performed on high-resolution X-ray coordinates.

As a result, we find that the joined forces of both methods identify the electronic structure of the ground and primary charge transfer state at atomic resolution. An outlook regarding selective isotope labeling and measurements of reaction centers in higher organizational units will be presented.

REFERENCES:

1. (a) Diller A., et al., *Photosynth. Res.*, 84, 303-308 (**2005**) (b) Diller A., et al., *PNAS*, 104, 12767-12771 (**2007**) 2. Jeschke G., Matysik J., *J. Chem. Phys.*, 294, 239-255 (**2003**)

Ps139

Dynamic Interactions of Proteins and DNA Related to Pathogenicity

Tiago N. Cordeiro¹, Jesús García¹, Oscar Millet², Miquel Pons^{1,3}

¹Structural and Computational Biology Program, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona, Spain; ² Structural Biology Unit, CICbioGUNE, Bilbao, Spain; ³Departament de Química Orgànica, Universitat de Barcelona (UB), Barcelona, Spain. e_mail: mpons@ub.edu

Bacterial nucleoid associated proteins act as global regulators of gene expression facilitating the colonization of hosts. As a consequence, understanding their function will help in the control of pathogenicity. Ler is the master regulator of the LEE pathogenicity island in virulent strains of *Escherichia coli*. We shall present the solution NMR structure of the first complex between the DNA binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove. This indirect readout mechanism is also present in the abundant repressor H-NS. This mechanism explains the capacity to regulate a large number of genes by H-NS and the higher specificity of Ler.

Proteins of the Hha/YmoA family bind to H-NS in enterobacteria and enable the selective regulation of genes linked to pathogenicity. Using NMR relaxation dispersion experiments we have shown that the formation of H-NS complexes is controlled by the internal dynamics of YmoA and is preceded by the formation of electrostatically driven encounter complexes. We suggest that this mechanism explains the decoupling of the regulation of pathogenicity-associated from core genes, thus improving the capacity of enterobacteria to incorporate new horizontally acquired genes.

^{1.} Baños, RC et al. PLoS Genet. 5: e1000513. doi: 10.1371/journal.pgen.1000513 (2009)

^{2.} Cordeiro TN et al. "Indirect DNA Readout by an H-NS Related Protein. Structure of the DNA Complex of the C-Terminal Domain of Ler" submitted (2011).

^{3.} Cordeiro TN et al. "Protein dynamics-based decoupling of chemical equilibria underlying independent gene regulation" submitted (2011)

^{4.} García et al. Biochem. J. 388, 755 (2005).

Biophysical Insight into Structure and Function of Proteorhodopsin by Solid-state NMR

Clemens Glaubitz

Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/M. glaubitz@em.uni-frankfurt.de

The proteorhodopsin (PR) family consists of hundreds of integral membrane proteins, which occur almost ubiquitously in bacteria near the ocean's surface and show a high level of adaptation to their local environment, especially in terms of light absorption. Proteorhodopsins could fulfill a whole range of potential functions but light-driven proton pumping has been shown to be of particular importance for the green absorbing species. Here, an extensive high-field solid-state NMR study on the active site of green PR, the formation of an H-bond within PR's unusual His-Asp cluster and general structural and dynamic characterization of PR within lipid bilayers will be presented. The data will be complemented by biochemical studies, site-directed mutagenesis and cwDNP experiments. PR also serves as a suitable system to demonstrate new technical developments due to its favorable biochemical properties. Here, recent approaches for faster data acquisition based on selective excitation and paramagnetic relaxation enhancement will be presented. Furthermore, the perspective for cwDNP enhanced MAS-NMR on membrane proteins will be discussed.

Ps141

Supramolecular Assemblies Studied by Solid-State NMR: The Structure of the Type Three Secretion System Needle

<u>Antoine Loquet</u>¹, Guohua Lv¹, Jean-Philippe Demers¹, Karin Giller¹, Christian Griesinger¹, Arturo Zychlinsky², Michael Kolbe², Stefan Becker¹, Adam Lange¹

¹ Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; ² Max-Planck-Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany; ³ Email: anlo@nmr.mpibpc.mpg.de

Supramolecular assemblies such as biological nanomachines and amyloid fibrils are often challenging for solution NMR or X-ray crystallography due to their molecular weights/insolubility/non-crystallinity. We present new solid-state NMR methods to tackle the structure determination problem of supramolecular assemblies: I) A strategy for simplified and complete NMR assignment based on ¹³C spin dilution resulting in excellent spectroscopic features (1). The strategy is demonstrated with the assignment of the *S. Typhimurium* Type Three Secretion System Needle. II) A method to study supramolecular interfaces with ¹³C-¹³C spectroscopy (2), first illustrated with the determination of the supramolecular arrangement of alpha-synuclein amyloid fibrils.

We applied these methods to study the *Salmonella typhimurium* Type Three Secretion System Needle, a complex nanomachine that allows bacteria to inject virulence factors into host cells (3). Using our ¹³C spin dilution approach, solid-state NMR spectra of unprecedented quality can be recorded, allowing for the collection of numerous distance restraints as well as to determine the supramolecular assembly of the Needle. Our results combined with cryo-EM data pave the way to a complete atomic-resolution structure of the Type Three Secretion System Needle.

3. Poyraz O., Schmidt H., Seidel K., Delissen F., Ader C., Tenenboim H., Goosmann C., Laube B., Thunemann A.F., Zychlinsky A., Baldus M., Lange A., Griesinger C., Kolbe M. Nat. Struct. Mol. Biol., 17, 788-794 (2010)

^{1.} Loquet A., Lv G., Giller K., Becker S., Lange A., J. Am. Chem. Soc., 133, 4722-4725 (2011)

^{2.} Loquet A., Giller K., Becker S., Lange A., J. Am. Chem. Soc., 132, 15164-15166 (2010)

Insight into apoptotic events in intact mitochondria by solid state NMR

M. Wallgren¹, M. Lidman¹, D. Pham¹, L. Beranova², M. Hof², A. Pedersen³, B. G. Karlsson³, M.-A. Sani^{1,4}, <u>G. Gröbner¹</u>

¹Department of Chemistry, Umeå University, Umeå, Sweden; ² J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences, Prague, Czech Republic; ³Swedish NMR Centre, University of Gothenburg, Sweden; ⁴ Bio21 Institute, University of Melbourne, Australia;

Mitochondrion functions not only as the cells' powerhouse but is also involved in their suicide via apoptosis. However, is still a mystery how tumour cells escape their fate in cancer therapies. Normally, these treatments interfere with the mitochondrial apoptotic pathway; a major regulator in mammalian cells death, where pro- and anti-apoptotic Bcl-2 proteins meet at the mitochondrial membrane and tightly regulate the fate of a cell. But treatment resistant tumor cells often possess mitochondria which are not only enriched in overexpressed pro-survival Bcl-2 membrane protein but also have lipid compositions quite different from the ones found in mitochondria originating from healthy cells. How the molecular activities of the Bcl-2 protein and its interplay with the mitochondrial membrane system are being transferred as physiological consequences at the organelle (mitochondrion) and cellular level is still mysterious. Therefore, we use a biophysical, solid state NMR based approach to obtain insight into the mechanism of Bcl-2 mediated prevention of programmed cell death in mitochondria on a molecular and cellular level. We will provide a molecular, structural description of the Bcl-2 mechanism of action and its interplay with mitochondrial membranes, with focus on oxidized lipids and cardiolipin. By combining this NMR information with HR MAS NMR profiling of Bcl-2 overexpressing tumor cell derived intact mitochondria upon apoptotic stress, we will generate knowledge about the relationship between the protein's conformational activity at the mitochondrial membrane level and the physiological consequences at the mitochondrion level.

REFERENCES: 1. M. Sani... G.Gröbner, FASEB Journal 23 (2009) 2872 2878. 2. A. Petersson..G.Gröbner, Protein Expression Purif. (2011) 220 - 223.

Ps143

Prion structures: a single architecture?

<u>Anja Böckmann¹</u>, Beat H. Meier², Birgit Habenstein¹, Nina Luckgei¹, Anne Schütz², Christian Wasmer², Antoine Loquet¹, Luc Bousset³, Yannick Sourigues³, Ronald Melki³

¹ IBCP, CNRS, 7 passage du Vercors, 69367 Lyon, France ² ETH Zürich, Physical Chemistry, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland ³ LEBS, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France E-mail: a.bockmann@ibcp.fr

A subset of neurodegenerative diseases is infectious and related to prions. Solid-state NMR is a promising approach to reveal structural details of prion oligomers at the atomic level, but still needs to overcome lack of resolution and sensitivity. Increase in sensitivity has been achieved during the last years mainly by going to higher fields, by the development of efficient polarization transfer schemes, and by increasing the amount of sample in the rotor. Resolution has equally improved by the use of high fields, but also through optimized sample preparation. These advances allow today to address larger and larger proteins, and it will be demonstrated that the spectral resolution in full-length prion fibrils is indeed sufficient to assign the resonances and to promise atomic-resolution structure determination. Details of the approaches and the resulting spectra of prion proteins ranging from 289 to 685 residues will be discussed, and features and limitations of the applied methods will be highlighted. We also demonstrate that a homogenous picture of prion fibril architecture is not consistent with structural information from NMR, which reveals that the folds of the different domains do differ largely for the three fungal prions studied here, HET-s^[1], Ure2p^[2] and Sup35^[3].

- a) C. Wasmer, A. Schütz, A. Loquet, C. Buhtz, J. Greenwald, R. Riek, A. Böckmann, B. H. Meier, J. Mol. Biol. 2009, 394, 119; b) A. Schuetz, C. Wasmer, B. Habenstein, R. Verel, J. Greenwald, R. Riek, A. Böckmann, B. H. Meier, ChemBioChem 2010, 11, 1543.
- a)A. Loquet, L. Bousset, C. Gardiennet, Y. Sourigues, C. Wasmer, B. Habenstein, A. Schutz, B. H. Meier, R. Melki, A. Bockmann, J. Mol. Biol. 2009, 394, 108; b)B. Habenstein, C. Wasmer, L. Bousset, Y. Sourigues, A. Schuetz, A. Loquet, B. H. Meier, R. Melki, A. Böckmann, 2010 in press.
- 3. B. Habenstein, C. Wasmer, Y. Sourigues, A. Schuetz, N. Luckgei, L. Bousset, A. Böckmann, R. Melki, B. H. Meier, submitted.

NMR of Quasicrystals and Complex Metallic Alloys

Janez Dolinšek

J. Stefan Institute, Solid State Physics department, University of Ljubljana, Jamova 39, SI-1000 Ljubljana, Slovenia e-mail: jani.dolinsek@ijs.si

The term "complex metallic alloys" (CMAs) denotes exceptional intermetallic phases with giant unit cells that contain some hundreds up to several thousand atoms. Examples are cubic NaCd₂ with 1152 atoms/unit cell, cubic β -Al₃Mg₂ (1168 atoms/u.c.) and the heavy-fermion compound YbCu_{4.5}, comprising as many as 7448 atoms in the supercell. CMAs are periodic crystals on the scale of many nanometers, whereas on the atomic scale, they resemble quasicrystals (QCs) that are characterized by crystallographically forbidden symmetries such as 5-, 8-, 10- and 12-fold rotation axes. QCs and CMAs show interesting physical properties, like a "smart" combination of metallic electrical resistivity with insulating thermal conductivity and a change of sign of the thermoelectric power and the Hall coefficient from positive hole-like to negative electron-like with crystallographic direction. Polytetrahedral atomic order found in QCs is also at the origin of an enhanced hydrogen-storage capability. NMR spectroscopy of QCs and CMAs is difficult due to the extreme width of the inhomogeneously broadened spectra that extend over many tens of MHz. We applied the field-sweep and frequency-sweep NMR spectroscopy to the investigations of many QCs and CMAs [1]. The orientation-dependent quadrupole-perturbed ²⁷Al NMR spectra of Al-rich icosahedral and decagonal QCs reveal forbidden symmetries of a 5-fold and 10-fold rotation axis. The ²⁷Al Knight shifts were used to determine the electronic density of states (DOS) at the Fermi energy E_F, which is in QCs and CMAs many times depleted due to the existence of a pseudogap in the DOS at $E_{\rm F}$. Slow migration of atoms due to QC-specific atomic diffusion was studied by the NMR relaxation and the self-diffusion.

REFERENCES:

1. Dolinšek J., Smontara A., in Complex Metallic Alloys: Fundamentals and Applications (WILEY-VCH, Weinheim, 2011), p. 117-152

Ps145

Towards Quantum Chemical NMR Chemical Shifts of Proteins

Andrea Frank, Ionut Onila, Heiko M. Möller, and Thomas E. Exner

Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany, Thomas. Exner@uni-konstanz.de

Calculations of accurate NMR chemical shifts of proteins, protein-protein and protein-ligand complexes are highly valuable in many applications like NMR structure evaluation and complex-structure predictions. We will present calculations using our fragment-based quantum chemical method: the adjustable density matrix assembler (ADMA)^[1,2]. In such calculations the target system is subdivided into small fragments, for which separate quantum chemical calculations are performed and which are then combined to get an approximation of the macromolecule.

The presented results will show that ¹³C chemical shifts of reasonable accuracy can be obtained that already provide a powerful measure for structure validation^[3]. ¹H and even more ¹⁵C chemical shifts deviate more strongly from experiment due to the insufficient treatment of solvent effects and conformational averaging. Approaches to overcome these limitations will be outlined.

55

^{1.} Exner T. E., Mezey P. G., J. Comp. Chem., 24, 1980-1986 (2003)

^{2.} Exner T. E., Mezey P. G., J. Phys. Chem. A, 108, 4301-4309 (2004)

^{3.} Frank A., Onila I., Möller H. M., Exner T. E., Proteins, DOI: 10.1002/prot.23041 (2011)

Measuring Long-Range Distances and Exchange Couplings in DNA Using Saturation-Recovery EPR

Donald J. Hirsh, Joselle M. McCracken, and Ryan Biczo (Department of Chemistry, The College of New Jersey, Ewing, USA, hirsh@tcnj.edu)

In the last decade, efforts to measure nanometer-scale distances between paramagnetic moieties have focused on pulsed dipolar EPR experiments such as DEER. These experiments measure the effect of a fluctuating dipolar field on the electron spin echo. While considerable progress has been made with this approach, it remains difficult to measure distances when one of the paramagnetic moieties is a metal ion with significant magnetic anisotropy. This is unfortunate, from the biophysicist's perspective, because the endogenous metal centers of many proteins fall into this category. We report here on distance measurements between a nitroxide radical and the magnetically anisotropic dysprosium ion, S = 5/2, using saturation-recovery EPR. DNA duplexes, identical except for the distance between EDTA-bound Dy(III) and a spin-label attached via a flexible linker, were prepared in buffered cryoprotectant solution.¹ Low temperature measurements of spin-lattice relaxation enhancement in the nitroxide radical were used in conjunction with molecular modeling and trilateration² to arrive at set of structures with a narrow range of Dy(III) - radical distances. The saturation-recovery transients are best fit using the B-term of the dipolar Hamiltonian with antiferromagnetic exchange coupling between Dy(III) and the nitroxide radical. The data are consistent with dipole-dipole and scalar exchange couplings at distances as great as ~5.6 nm.

REFERENCES:

1. Biczo R. & Hirsh D. J., Journal of Inorganic Biochemistry, 103, 362-372, (2009)

2. Mustafi, D., et al., *Journal of Magnetic Resonance*, 91, 497-504, (**1991**); <u>http://en.wikipedia.org/wiki/Trilateration</u>, accessed 20 October 2010

Ps147

Determination of the Structure of the Mo(V) Center of Sulfite Oxidase by Variable Frequency Pulsed EPR Spectroscopy, ³³S and ¹⁷O Labeling, and DFT Calculations

John H. Enemark,¹ Eric L. Klein,¹ Andrei V. Astashkin,² Kayunta. Johnson-Winters,¹ Asha Rajapakshe,¹ Arnold M. Raitsimring,¹ Heather L. Wilson,² K.V. Rajagopalan,² Daniella Goldfarb,³ Alexei Potapov³

¹Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona USA; ²Department of Biochemistry, Duke University Medical Center, Durham, North Carolina USA; ³Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel jenemark@email.arizona.edu

Reduction of human sulfite oxidase (hSO) by ³³S-labeled sulfite at low pH produces a sulfurcontaining ligand that was initially proposed to be coordinated sulfate (product). However, the large ³³S quadrupole coupling constant (~36 MHz) could indicate coordinated sulfite (reactant). Additionally, reduction with ¹⁷O-labeled sulfite in H₂¹⁷O produces signals from weakly and strongly coupled ¹⁷O atoms, which have been investigated at ~29 and 95 GHz to extract their respective hyperfine and nuclear quadrupole interactions. Density Functional Theory (DFT) calculations for models of the Mo(V) center (> 250 atoms) unambiguously show that the ³³S data require bound sulfite. The weakly coupled ¹⁷O signal is due to remote O atoms of the sulfite ligand, and the strongly coupled ¹⁷O to the coordinated O atom of the sulfite. The distinctive ¹⁷O parameters for different types of ligands should be generally useful for determining the structures of other paramagnetic metal-oxygen systems.

Structural organization of bacteriophage head-to-tail connection, as characterized by EM, NMR and bioinformatics

Benjamin Chagot¹, Isabelle Auzat², Anne Lopes¹, Bernard Gilquin¹, Isabelle Petitpas², Yuriy L. Chaban³, Elena V. Orlova³, Raphaël Guérois¹, Paulo Tavares² & <u>Sophie Zinn-Justin¹</u>

¹Laboratoire de Biologie Structurale et Radiobiologie, CEA Saclay and CNRS URA2096, Gif-sur-Yvette, France; ²Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472 and INRA UMR 1157, Gif-sur-Yvette, France; ³Department of Crystallography, Birkbeck College, London, UK

Building of phage particles requires a complex sequential program of protein-protein and protein-DNA interactions whose complete molecular description is yet to be established. *Caudovirales* phages are composed of a capsid enclosing a double-stranded DNA molecule and a tail. We here focus on the assembly and structural organization of the proteins located at the interface between the capsid and the tail, essential for capsid closing after DNA packaging and opening during infection. Subcomplexes of these proteins were characterized by cryo-EM. Solution structures of the individual proteins were determined by NMR. Their oligomerisation properties and internal dynamics were studied in parallel to functional studies. Docking of the NMR structures into the EM maps pointed to residues involved in protein oligomerisation or participating in connector assembly, and highlighted conformational changes essential for opening of the connector pore at the beginning of viral infection. Despite the great sequence variability of phage proteins, bioinformatics profile-profile comparison methods were efficient in identifying similar mechanisms in several phage subfamilies, in classifying the *Caudovirales* head-to-tail structures and in suggesting new proteins essential for head-to-tail assembly.

REFERENCES:

- Lhuillier S, Gallopin M, Gilquin G, Brasilès S, Lancelot N, Letellier G, Gilles M, Dethan G, Orlova EV, Couprie J, Tavares P & Zinn-Justin S (2009) Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. PNAS 106(21):8507-12.
- 2. Chagot B,Auzat I, Gallopin M, Petitpas I, Gilquin B, Tavares P & Zinn-Justin S (2011) Solution structure of gp17 from the *Siphoviridae* bacteriophage SPP1: insights into its role in virion assembly (*submitted*).

Ps149

Spin Gymnastics with Deuterated Proteins: Solid-State NMR & DNP

<u>Ümit Akbey</u>, Hartmut Oschkinat

NMR Supported Structural Biology, Leibniz Institut für Molekulare Pharmakologie, Berlin, German akbey@fmp-berlin.de

We present solid-state NMR experiments to be used for high sensitivity/resolution spectroscopy of perdeuterated proteins. Protein deuteration has been proven to be very useful to achieve solution-state-like resolution in the solid-state, ^{1,2} and experiments based on proton detection have been implemented in the solid-state. Despite the progress in the proton detected experiments, there has been a lack of demonstrations for the heteronucleus-detected experiments. As a result, achieving spin-diffusion between heteronuclei and sufficient initial polarization in deuterated systems is a major issue.

Here, we explain our tool-package which we have recently shown to be very successful to be used on perdeuterated proteins, to achieve superior initial magnetization and to sufficiently distribute magnetization between heteronuclei. First, the *double nucleus enhanced recoupling* (DONER) method will be demonstrated,^{3,4} which re-introduces the nearly-collapsed spin-diffusion process by the use of both proton and deuterium spins. Second, we will show the quantitative demonstration of the nature of spin-diffusion process by using DONER experiments with theoretical insight. Third, we will present new methods for increasing overall sensitivity by utilizing protons and deuterons, such as; *triple crosspolarization* (TCP).⁵ optimal-control based schemes to increase performance,⁶ and ¹H/²H NMR spectroscopy at ultra-fast MAS. Finally, DNP experiments on deuterated systems will be shown.⁷

^{1.} Chevelkov V., Rehbein K., Diehl A., Reif B. Angew. Chem. Int. Ed. 45, 3878, 2006.

^{2.} Akbey U., Lange S., Franks W. T., Linser R., Rehbein K., Diehl A., van Rossum B. J., Reif B., Oschkinat H. J. Bio. NMR 46 67, 2010.

^{3.} Akbey U., Oschkinat H., van Rossum B. J. J. Am. Chem Soc. 131, 17054, 2009.

^{4.} Leskes M., Akbey U., Oschkinat H., van-Rossum B. J., Vega S. J. Magn Reson. 209, 207, 2011.

^{5.} Akbey U., Camponeschi F., van Rossum B. J., Oschkinat H. ChemPhysChem. In Press.

^{6.} Wei D., Akbey U., Paaske B., Oschkinat H., Reif B., Bjerring M., Nielsen N. C. J. Phys. Chem. Lett. 2, 1289, 2011.

^{7.} Akbey U., Franks W. T., Linden A., Lange S., Griffin R. G., van Rossum B. J., Oschkinat H. Angew. Chem. Int. Ed. 49, 7803, 2010.

Structural basis for dimethyl-arginine recognition by Tudor domains

Konstantinos Tripsianes^{1,2}, Tobias Madl^{1,2}, Dimitrios Fessas³ and Michael Sattler^{1,2}

¹Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; ²Munich Center for Integrated Protein Science at Chair of Biomolecular NMR, Technische Universität München, 85747 Garching, Germany; ³Dipartimento di Tecnologie Alimentari e Microbiologiche, Università di Milano, 20133 Milano, Italy. E-mail: kostas.tripsianes@tum.de

Arginine methylation has long been observed in RNA binding proteins and histones, and has recently been implicated in gene regulation and other cellular processes. Here, we describe the NMR structures of two prototype Tudor domains (from SMN and SPF30) in complex with symmetric (sDMA) and asymmetric (aDMA) dimethylated arginine. Isotope-filtered NOE experiments and temperature-dependence of NMR data, combined with DFT calculations, were used to characterize the conformation and dynamics of the DMA ligand in the free and bound forms. The structures reveal that the Tudor aromatic cage accommodates the dimethylated guanidino group by a combination of van der Waals contacts and cation- π interactions. ITC data complement the structural findings and provide insight into enthalpic and entropic contributions to achieve low micromolar affinities. Mutational analysis confirms the structural findings on DMA recognition and allows the prediction of bona fide dimethyl-arginine readers from a large pool of Tudor domains. Based on the structural analysis we were able to rationally design and modulate the binding affinities of SMN and SPF30 Tudor domains. NMR and ITC data demonstrate that the hydrogen bonding of a tyrosine hydroxyl group potentiates the cation- π interactions, consistent with the observed difference in binding affinities between SMN and SPF30. Our observations on Tudor/DMA interactions have substantial implications for a mechanistic understanding of the assembly of ribonucleoprotein complexes in pre-mRNA splicing, where dimethylated arginine-rich target proteins play a central role.

Ps151

Mannose-binding lectins - Cyanovirin and beyond

Angela M. Gronenborn

Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, amg100@pitt.edu

Homologs of the potent HIV-inactivating protein CV-N have been identified in other organisms and we determined solution NMR and X-ray structures for several additional members of this family of lectins. All proteins of the type I family exhibit the same fold and the overall structures resemble that of the founding member of the family, CV-N, albeit with noteworthy differences in loop conformation and detailed local structure. We recently also solved the NMR solution structure of a type III family member in which a LysM domain is inserted between individual repeats of a single CVNH domain. The structure revealed that intact and functionally competent CVNH and LysM domains are present. Carbohydrate specificities for both domains were determined by NMR and it was found that each domain behaves as an isolated unit without any inter-domain communication. Furthermore, live-cell imaging revealed a predominant localization of the protein within the appressorium, the specialized fungal cell for gaining entry into rice tissue. A very different structure was formed for *Oscillatoria Agardhii* Agglutinin (OAA). It binds both Man 9 and α 3, α 6-mannopentaose tightly and specifically at two binding sites. These structures provide atomic details about the specific protein-sugar contacts in the recognition loops.

Our combined NMR and crystallographic results provide structural insights into the mechanism by which these anti-HIV proteins specifically recognize Man-9. Our results highlight the versatility in lectincarbohydrate recognition, and may aid in the development of protein-based vaccines or diagnostic and pharmacological reagents in the quest to combat HIV transmission.

^{1.} Matei E, Louis J, Jee J, Gronenborn A, Proteins 79:1538-1549 (2011)

^{2.} Koharudin L, Furey W, Gronenborn A, J Biol Chem 286:1588-1897 (2011)

^{3.} Koharudin L, Viscomi A, Montanini B, Kershaw M, Talbot N, Ottonello S, Gronenborn A, Structure 19:662-674 (2011)

Theoretical EPR Spectroscopy of Open-Shell Transition Metal Complexes with Strong Spin Orbit Coupling

FRANK NEESE, MICHAEL ATANASOV, MICHAEL RÖMELT, KANTHEN SIVALINGAM, DMITRY GANYSUHIN

Max-Planck Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, neese@mpi-muelheim-mpg.de.

The majority of molecules have orbitally nondegenerate ground states. The molecular electric and magnetic properties are well described by standard models of electronic structure theory, e.g. perturbation or linear response theory. These methods have found very widespread use in the community of quantum chemistry users. The ORCA program developed in our group features many such methods for the calculation of optical and magnetic properties of transition metal complexes. There is, however, a significant class of molecules with orbitally (nearly) degenerate ground states where the established methods do not work. Here, a more careful treatment of the leading relativistic effects is necessary in order to correctly predict their spectroscopic properties and obtain molecular level electronic structure insight. This is not possible on the basis of density functional theory (DFT). Recently efficient methods based on multireference wavefunction theory have been implemented into ORCA that allow such calculations on large molecules. Their use will be demonstrated by a recent study [1] that deals with the electronic structure of the only low-molecular weight catalyst known to be capable of reducing dinitrogen to ammonia.

1. McNaughton, R.; Römelt, M.; Chin, J.; Schrock, R.; Neese, F.; Hoffman, B. J. Am. Chem. Soc., 2010, 132, 8645

2. Atanasov, M.; Ganyushin, D.; Sivalingam, K.; Neese, F. Inorg. Chem., 2011, ASAP doi: 10.1021/ic200196k

Ps153

Optimal Rf Pulse, Cross-Polarization, and Multiple-Dimensional Sampling Package for Solid-State on Perdeuterated Proteins

Daxiu Wei,^{1,2} Umit Akbey,³ Berit Paaske,¹ Hartmut Oschkinat,³ Bernd Reif,³ Morten Bjerring,¹ and

Niels Chr. Nielsen

¹Center for Insoluble Protein Structures (inSPIN), iNANO, Aarhus University, Aarhus, Denmark; ²Shanghai Key Lab Magnetic Resonance, East China Normal University, Shanghai, China; ³Leibniz-Institut fur Molekulare Pharmakologie (FMP), Berlin, Germany). ncn@inano.dk.

Recently it has become very popular to exploit extensive deuteration as a supplement to uniform ¹⁵N and ¹⁵C labeling of proteins in biological solid-state NMR. The motivation is to a) dilute the ¹H spin systems to provide proton-based assignment and distance measurements, b) use ²H as a source of high resolution, e.g., through the use of double-quantum ²H evolution, or c) use ²H as a probe to molecular motion. In all cases it may be of great interest to be able to handle ¹H as well as ²H spins through rf irradiation to ensure optimal use of polarization and establishment of structure/dynamics information.

In this presentation, we address three central issues in relation to ²H MAS NMR of proteins, including RESPIRATION (Rotor-Echo Short Pulse IRrAdiaTION) ²H rf pulses, efficient ²H -> ¹³C cross-polarization schemes, and efficient sampling of multiple-dimensional spectra involving polarization from ¹H and ²H spins. The pulse sequences, developed using combinations of average Hamiltonian theory and optimal control, essentially solves the finite rf pulse problems in ²H MAS NMR with fast spinning frequencies and thereby facilitates implementation of advanced pulse sequences involving ²H spins and provides overall sensitivity gains by up to an order of magnitude.¹ A variety of different pulse sequences are demonstrated on differently labelled protein samples. 1. Wei, D., Akbey, U., Paaske, B., Oschkinat, H., Reif, B., Bjerring, M., and Nielsen, N.C., J. Phys. Chem. Lett. 2, 1289-1294 (2011)

Unprecedented ²⁷AI MAS NMR resolution on zeolite single crystals.

E.R.H. van Eck¹, F. Vasconcelos², G.A. de Wijs², J.A. van Bokhoven³, A.P.M. Kentgens¹.

¹Solid State NMR, ² Electronic Structure of Materials, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands, ³Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Paulistrasse 10, 8093 Zurich, Switzerland. E-mail: erhve@science.ru.nl.

The distribution of aluminium atoms within the zeolite silicate lattice is important as it determines the performance of the zeolites as a catalyst. For a microcrystalline powder it can be possible to resolve the various T-sites present in a zeolite with ²⁹Si NMR. For aluminium however, this has remained a challenge as the resonances are intrinsically broadened by the quadrupolar interaction and often overlap strongly. Here we represent experiments on zeolite single crystals would greatly enhance resolution. Due to the size of available single crystals standard probeheads are usually not sensitive enough. To overcome this limitation we have been developing microcoil probe heads in our group for studying nano-liter volume solid samples by matching the coil to sample dimensions.

Initial experiments on a single crystal of natural zeolites mesolite and ferrierite show unprecedented resolution in the aluminium NMR spectrum. Ferrierite has 5 different crystallographic positions where aluminium could be located. Compared to the NMR spectrum of the powder the single crystal spectrum has a much higher resolution. Still, not all of the five sites are resolved and therefore 2D Multiple Quantum Magic Angle Spinning (MQMAS) experiments were performed at multiple fields. DFT calculations of the chemical shift and the quadrupole tensors were done with VASP, based on the known single crystal structure. This allows assignment of the T-sites and hence the distribution of aluminium over them to be determined directly for the first time. Further experiments are underway, aiming to exploit the intrinsic high resolution of single crystal NMR and its application to zeolite type materials.

Ps155

NMR studies of Novel Strongly Correlated Electron Systems

Georgios Papavassiliou, Nikos Panopoulos, Dimitris Koumoulis, Michael Fardis, and Michael Pissas.

Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi, Athens, GREECE

The study of strong electron correlations in transition metal oxides (TMOs) unveiled a complex world of interweaving properties, concerning their electron spin, charge, and crystal structure. Predominant examples are high temperature superconducting cuprates and hole doped manganites. Competition among different interactions in these systems generates spectacular phenomena, such as the formation of charge and spin stripes, mesoscopic phase separation, and the colossal magnetoresistance (CMR) effect. Despite the intensive research in this field there are still a lot of important open questions. In this lecture we will show how NMR can be used in order to acquire important information about the local structural and magnetic environment and its dynamics in characteristic TMO systems [1-3].

^{1.} Papavassiliou G., et al, Phys. Rev. Letters, 91, 147205 (2006).

^{2.} Koumoulis D., et al, Phys. Rev. Letters 104, 077204 (2010).

^{3.} N. Panopoulos at al, Phys Rev. B 82, 235102 (2010) (editors suggestion).

Strategies for Site-Directed Spin Labeling of Nucleic Acids

Snorri Th. Sigurdsson

Department of Chemistry, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland. snorrisi@hi.is.

Studies of nucleic acids by Electron Paramagnetic Resonance (EPR) spectroscopy require spinlabeled oligomers. Several different site-directed spin labeling (SDSL) methods have been developed for nucleic acids over the years for incorporation of nitroxides at specific sites. These methods have utilized either of two approaches, incorporation of the spin label during chemical synthesis of the nucleic acid or post-synthetic modification with a spin-labeling reagent. Both of these strategies require incorporation of the spin label through chemical reactions. Some of the potential drawbacks associated with these chemical modifications include a labor-intensive preparation of the spin label, incomplete labeling, side-reactions and purification of the labeled oligomer.

To avoid labor-intensive and costly chemical modifications of the biopolymer, we have developed a noncovalent and site-directed spin labeling (NC-SDSL) approach for nucleic acids.¹ The strategy utilizes a spin label that binds site-specifically and noncovalently to abasic sites in nucleic acids. Thus, spin-labeled samples can be prepared by simply mixing the spin-labeling reagent with a solution of the nucleic acid, prepared from commercially available phosphoramidites.

REFERENCES:

1. Shelke SA, Sigurdsson ST, Angew. Chem. Int. Ed., 49, 7984-6 (2010)

Ps157

Dynamic Disorder Evidenced by SDSL- EPR in a Multienzyme Complex Involved in CO₂ Assimilation by Microalgae

Magali Lorenzi¹, Elisabetta Mileo², Carine Courcelle¹, Régine Lebrun¹, Valérie Roubaud², Paul Tordo², Marlène Martinho¹, Sylvain R.A. Marque², Brigitte Gontero¹, Valérie Belle¹ & Bruno Guigliarelli^{1*}.

¹Unité de Bioénergétique et Ingénierie des Protéines, BIP-IMM-UPR9036, and ²Laboratoire Chimie Provence, LCP-UMR6264, CNRS and Aix-Marseille University, Marseille, FRANCE guigliar@ifr88.cnrs-mrs.fr

CP12 is a small chloroplastic protein that is well known to interact with GAPDH, an essential enzyme involved in CO₂ assimilation by microalgae, and regulates its activity. In the green alga *Chlamydomonas reinhardtii*, CP12 is mainly unstructured, showing properties of Intrinsically Disordered Proteins, and contains four cysteine residues involved in two disulfide bridges (1). In order to analyze the structural transitions associated with the CP12-GAPDH recognition, we have undertaken a site-directed spin-labeling (SDSL) EPR study (2). To overcome the difficulties related to the presence of the functional cysteines, we present new strategies which are based: i) on the design of new spin probes able to be grafted on non-cysteine residues (3) and ii) on a combination of cysteine mutagenesis, SDSL with maleimido-proxyl, EPR spectroscopy, CD and mass spectrometry. Our study shows clearly that although the spin-label keeps a high mobility upon the CP12-GAPDH complex formation, its solvent accessibility is strongly impaired. Taken together, our results demonstrate that CP12 remains highly flexible in the enzyme complex, indicating that this dynamic structural disorder is of physiological significance in the regulation mechanism of an essential environmental process.

Parallel Session Lectures

^{1.} Graciet, E., P. Gans, N. Wedel, S. Lebreton, J.M. Camadro, and B. Gontero, Biochemistry, 2003, 42, 8163-70.

^{2.} Erales J., Lorenzi M., Lebrun R., Fournel A., Etienne E., Courcelle C., Guigliarelli B., Gontero B., Belle V., Biochemistry 2009, 48, 6034-40.

^{3.} Lorenzi, M., Puppo, C., Lebrun, R., Lignon, S., Roubaud, V., Martinho, M., Mileo, E, et al., *submitted*.

Saturation factor of nitroxide radicals in liquid DNP by pulsed ELDOR experiments at 0.34 T and 3.4 T

Maria-Teresa Türke and Marina Bennati

Research Group Electron Paramagnetic Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, mtuerke@gwdg.de

Dynamic nuclear polarization (DNP) in aqueous solution is a major topic of current efforts to enhance the sensitivity of high resolution NMR and magnetic resonance imaging.¹

In recent studies, nitroxide radicals have been favoured as polarizing agents for DNP since they are soluble in water, non-toxic and have been found to account for large DNP enhancements up to 9 T. However, the determination of the saturation factor for this class of polarizers has emerged as one of the major difficulties in rationalizing the observed enhancements in terms of the Overhauser equation since the NMR signal enhancement depends on the saturation level of all EPR lines of the polarizer.

Therefore, the theory for saturation transfer between the hyperfine states of nitroxides has been reexamined.² We exemplarily show at 0.34 T and 3.4 T that the effective saturation factor in Overhauser DNP can be directly determined in a pulsed electron-double-resonance (ELDOR) experiment, which measures the intensity of a hyperfine line when pumping a coupled line.³ The obtained values for ¹⁵N-²H-TEMPONE and ¹⁵N-Fremy's Salt at different concentrations are rationalized in terms of spin relaxation and are shown to fulfil the Overhauser theory.

A comparison of the two widely used radicals at 0.3 T yields similar maximum DNP enhancements but clearly different power dependence of their saturation behaviour.

1. Special Issue in *Phys. Chem. Chem. Phys.*, 2010, **12**, 5725-5928

2. S. Hyde, J. C. W. Chen and J. H. Freed, J. Chem. Phys., 1968, 48, 4211-4226.

3. M.-T. Türke, M. Bennati, Phys. Chem. Chem. Phys., 2011, 13, 3630-3633

Ps159

Lipid sensing and transmembrane signaling studied by site-directed spin labeling EPR

Heinz-Jürgen Steinhoff

Department of Physics, University of Osnabrück, Osnabrück, Germany. Email: hsteinho@uos.de

Electron paramagnetic resonance (EPR) spectroscopy, site-directed spin labeling (SDSL), and molecular dynamic simulations were combined to study the structure and conformational dynamics of membrane protein complexes. Analysis of the spin label side chain mobility, its solvent accessibility, the polarity of the spin label micro-environment and interspin distances determined by DEER provide information for restraint modeling of protein domains or protein - protein interaction sites and their conformational changes. The presentation reviews our recent results on vinculin tail conformational changes upon binding to actin filaments and lipid membranes. Furthermore, light induced conformational changes of the spin labeled halobacterial phototaxis receptor sensory rhodopsin (pSRII) in complex with the receptor specific transducer (pHtrII) are shown (i) to be uncoupled from the deprotonation of the Schiffbase, and (ii) shift the thermodynamic equilibrium between two states of the first HAMP domain of pHtrII (1-3). EPR analysis of spin labeled pSRII-pHtrII complexes reconstituted into nano-lipoprotein particles or membrane sheets reveals functional clustering of the protein complexes in the membrane sheets.

Bordignon, E., Klare, J., Holterhues, J., Martell, S., Krasnaberski, A., Engelhard, M., Steinhoff, H.-J. *Photochem. Photobiol.* 83, 263–272 (2007)
Döbber, M. A., Bordignon, E., Klare, J., Holterhues, J., Martell, S., Mennes, N., Li, L., Engelhard, M., Steinhoff, H.-J. *J. Biol. Chem.* 283: 28691-

²⁸⁷⁰¹ **(2008)**

^{3.} Holterhues J., Bordignon E., Klose D., Rickert C., Klare J.P., Martell S., Li L., Engelhard M., Steinhoff H.-J. Biophys J, 100, 2275-2282 (2011)

Exploring protein energy landscapes by NMR

Jochen Balbach

Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Germany; jochen.balbach@physik.uni-halle.de

The energy landscape of a protein predetermines its folding reaction and its function. NMR provides several tools to explore these landscapes at equilibrium and during kinetic experiments at high molecular resolution. (A) The cold shock protein CspB shows a smooth energy landscape, which we could explore with residue resolution in a complete pressure – temperature phase diagram between -13 to 57 °C and 1 to 2200 bar including complete heat and cold denaturation using a ceramic high pressure NMR cell. (B) For the gene-3-protein at the tip of fd phage, we could characterize the infectious state by 2D real time and H/D exchange competition NMR, which is a local minimum at the energy landscape of the protein [2,4]. The global minimum is not infectious. (C) In the case of ankyrin repeat proteins controlling the human cell cycle, the cell uses their ragged protein folding landscape to control their inhibitory function [1]. By employing the concept of conformational selection, a high energy intermediate state becomes accessible upon phosphorylation, which can be characterized at residue resolution. (D) A low-energy folding intermediate of RNase T1 is the target of the chaperone and PPIase SlyD [3], where we could characterize the Michaelis-Menten complex by 2D and 3D real time NMR [5] using the BEST approach for fast data acquisition.

REFERENCES:

2. Weininger, U., Jakob, R.P., Eckert, B., Schweimer, K., Schmid, F.X., Balbach, J., PNAS, 106, 12335-12340 (2009)

3. Löw, C., Neumann, P., Tidow, H., Weininger, U., Haupt, C., Friedrich-Epler, B., Scholz, C., Stubbs, M.T., Balbach, J., J. Mol. Biol., 398, 375-90 (2010)

- 4. Lorenz, S.H., Jakob, R.P., Weininger, U., Balbach, J., Dobbek, H., Schmid, F.X., J. Mol. Biol., 405, 989-1003 (2011).
- 5. Haupt, C., Patzschke, R., Weininger, U., Gröger, S., Kovermann, M., Balbach, J., JACS, under revision (2011)

Ps161

Ultra High Resolution NMR: Sustained Induction Decays of Long-Lived Coherences

Aurélien Bornet¹, <u>Sami Jannin¹</u>, J. A. (Ton) Konter², Patrick Hautle², Ben van den Brandt², and Geoffrey Bodenhausen^{1,3,4,5}

¹Institut des Sciences et Ingénierie Chimiques. Ecole Polytechnique Fédérale de Lausanne (EPFL). Batochime, 1015 Lausanne, Switzerland / ²Paul Scherrer Institute, CH-5232 Villigen, Switzerland / ³Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231, Paris Cedex 05, France / ⁴Université Pierre-et-Marie Curie, Paris, France / ⁵CNRS, UMR 7203, Paris, France

Long-lived coherences (LLC's)[1] in homonuclear pairs of chemically inequivalent spins can be excited and sustained during protracted radio-frequency irradiation periods that alternate with brief windows for signal observation[2]. Fourier transformation of the Sustained Induction Decays (SID's) recorded in a single scan yields NMR spectra with line-widths in the range $10 < \Delta v < 100$ mHz, even in moderately inhomogeneous magnetic fields. The resulting doublets, which are reminiscent of *J*-spectra, allow one to determine the sum of scalar and residual dipolar interactions in partly oriented media. The signal intensity can be boosted by several orders of magnitude by 'dissolution' dynamic nuclear polarization (DNP).

^{2.} A. Bornet, S. Jannin, T. Konter, P. Hautle, B. van den Brandt, and G. Bodenhausen, *submitted manuscript*

^{1.} Löw, C., Homeyer, N. Weininger, U., Sticht, H., Balbach, J., ACS Chem. Biol., 4, 53-63.(2009)

^{1.} R. Sarkar, P. Ahuja, P. R. Vasos, and G. Bodenhausen, Phys. Rev. Lett. 104, 053001 (2010).

Longtime storage of hyperpolarization via singlet states in high field

<u>Giuseppe Pileio</u>¹, Christoffer Laustsen^{2,3}, Lynda J. Brown¹, Jiri Bocan¹, Michael C. D. Tayler¹, Richard C. D. Brown¹, Jan H. Ardenkjaer-Larsen^{2,4} and Malcolm H. Levitt¹.

¹School of Chemistry, University of Southampton, Southampton, GB; ²The Technical University of Denmark, Department of Electrical Engineering, Lyngby, DK. ³The MR Research Centre, Aarhus University Hospital, Asrhus, DK; Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Hvidovre, DK; Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Aarhus, DK. ⁴GE Healthcare, Park Alle 295, 2605 Broendby, G.Pileio@soton.ac.uk

Current nuclear spin hyperpolarization techniques are able to enhance the otherwise poor sensitivity of NMR by greatly increasing spin polarization. These techniques, however, are unable to store the hyperpolarized spin order beyond the limits imposed by the longitudinal magnetization decay constant, T_1 . Recently, it was shown that the thermal nuclear polarization can be stored for longer than T_1 via the use of long-lived nuclear spin states. No need to explain how great the outcomes from the combination of these two techniques will be for many NMR and MRI applications - *in-vivo*, particularly. To accommodate these interests, successful attempts to demonstrate the feasibility of this combination have already been made and examples of hyperpolarized long-lived states have been published. However, these examples may result impractical in many situations - e.g. *in-vivo* MRI.

In this contribution we show a neat methodology able to create hyperpolarized spin states that live longer than T_1 even in high magnetic fields like, for example, that of a commercial MRI scanner. To achieve this goal and to make the long-term storage of hyperpolarization practical, the use of near-equivalence spin pairs and the ability to access long-lived spin order in those pairs was fundamental. For this purpose, a new technique based on J-coupling-synchronized trains of 180° pulses was developed together with a nontrivial way to perform continuos monitoring of the long-term stored spin order.

Ps163

Robust and Cooperative Control of Spins

Steffen J. Glaser

Department of Chemistry, TU München, Garching, Germany, glaser@tum.de

Typical NMR and EPR magnetic resonance experiments consist of a series of pulses with well defined tasks. However, due to experimental constrains (e.g. maximum B_1 amplitudes) and imperfections (e.g. B_1 field inhomogeneity) the performance of the individual pulses and of the entire pulse sequence is suboptimal in many applications. A number of new approaches have recently been developed for pulse sequence design based on powerful optimal control methods: individual point-to-point (PP) and universal rotation (UR) pulses can be optimized. Recent applications include both standard experiments (for which a general set of robust "*plug and play*" pulses has been developed) and experiments in toroid probes with highly inhomogeneous B_1 fields¹. Further improvements can be realized by allowing different pulses of a complex pulse sequence to compensate each other's imperfections in a *cooperative* way². Novel broadband and selective heteronuclear decoupling and saturation sequences³ are currently also being developed based on optimal control methods.

^{1.} T. E. Skinner, M. Braun, K. Woelk, N. I. Gershenzon, S. J. Glaser, J. Magn. Reson, 209, 282-290 (2011)

^{2.} M. Braun, S. J. Glaser, J. Magn. Reson., 207, 114-123 (2010).

^{3.} Y. Zhang, M. Lapert, D. Sugny, M. Braun, S. J. Glaser, J. Chem. Phys. 134, 054103 (2011).

Solid-State NMR investigations of aggregates formed by perdeuterated Alzheimer's disease Aβ peptides

Juan-Miguel Lopez del Amo,^{1,2,3} Rasmus Linser,^{3,4} Muralidhar Dasari,^{1,2,3} Uwe Fink,³ Sam Asami,^{1,2,3} Vipin Agarwal,³ Matthias Schmidt,⁵ Marcus Fändrich,⁵ Erich Wanker,⁶ Jan Bieschke,⁶ <u>Bernd Reif</u>^{1,2,3}

¹ Technische Universität München (TUM), Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany; ² Helmholtz-Zentrum München (HMGU), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; ³ Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; ⁴ University of New South Wales (UNSW), Chemical Sciences Building, NSW 2052, Australia; ⁵ Max-Delbrück Centrum für Molekulare Medizin (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; ⁶ Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung, Martin-Luther Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany

Perdeuteration and back-substitution of exchangeable protons in microcrystalline proteins in combination with recrystallization from D₂O containing buffers reduces ¹H, ¹H dipolar interactions such that amide proton line widths on the order of 20 Hz are obtained (2). Aliphatic protons are either accessible via specifically protonated precursors or by using low amounts of H₂O in the bacterial growth medium (1). This labeling scheme is applied to amyloid aggregates like fibrils formed by the Alzheimer's disease β -amyloid peptide (A β) (3). Observation and assignment of side chain exchangeable groups like hydroxyl and imidazole protons yields valuable restraints to refine the fibril quarternary structure. In addition, solid-state NMR studies on the structure of drug induced A β aggregates are presented, focussing on the interactions between A β and the polyphenolic green tea compound epigallocatechin-gallate (EGCG).

REFERENCES:

Ps165

A Method for Revealing the Local Packing Organization in Conjugated Semi-Crystalline Polymers

Michael Ryan Hansen, Dmytro Dudenko, Hans Wolfgang Spiess

Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany mrh@mpip-mainz.mpg.de

Low band gap polymers belong to a new class of technologically important materials widely used as semiconductors in organic-based electronics. Common for many of these polymers is their lack of long-range order due their inherent semi-crystalline nature, preventing the access to the local organization on the molecular level from X-ray scattering experiments. In this contribution, a method utilizing solid-state NMR methods and quantum-chemical calculations is presented that provides a route to this kind of information. The method relies on chemical shift information from 1H and 13C and 1H-1H dipolar couplings combined with Nucleus Independent Chemical Shift (NICS) calculations.[1,2] From this combination, it is possible to validate different structural models by constructing these in silico, employing the experimental chemical shifts and 1H-1H dipolar couplings as finger prints. The potential of the approach is demonstrated by two recent examples, namely poly(3-hexylthiophene) (P3HT) and a new donor-acceptor polymer with excellent field-effect properties.[3-5]

^{1.} Asami S., Schmieder P. & Reif B., J Am Chem Soc 132, 15133–15135 (2010).

^{2.} Chevelkov V., Rehbein K., Diehl A. & Reif B., Angew Chem Int Ed 45, 3878-3881 (2006).

Linser R., Dasari M., Hiller M., Higman V., Fink U., Lopez del Amo J.M., Handel L., Kessler B., Schmieder P., Oesterhelt D., Oschkinat H., Reif B., Angew Chem Int Ed 50: 4508-4512 (2011).

REFERENCES:

^{1.} Chen Z., Wannere C. S., Corminboeuf C., Puchta R., and Schleyer P. V. R., Chem. Rev. 105, 3842-3888, (2005).

^{2.} Sebastiani D., ChemPhysChem 7 164-175, (2006)

^{3.} Dudenko, D., Pisula, W., Sebastiani, D., Spiess, H. W., and Hansen M. R., (in preparation).

^{4.} Bohle A., Dudenko D., Sebastiani D., Koenen N., Allard S., Scherf U., Spiess H. W., Hansen M. R. (in preparation).

^{5.} Tsao H.N., Cho D. M., Park I., Hansen M. R., Mavrinskiy A., Yoon D. Y., Graf R., Pisula W., Spiess H. W., and Müllen K., J. Am. Chem. Soc. 133,

Interplay of Order, Disorder, and Dynamics in Polymer–Fullerene Blends for Photovoltaic Applications

Matthias J. N. Junk,¹ Michael Ryan Hansen,² Justin P. Jahnke,¹ Nicole Cates Miller,³ Sean Sweetnam,³ Michael D. McGehee,³ Bradley F. Chmelka¹

¹Department of Chemical Engineering, University of California, Santa Barbara, USA; ²Max Planck Institute for Polymer Research, Mainz, Germany; ³Department of Materials Science and Engineering, Stanford University, Stanford, USA; email: mjunk@engineering.ucsb.edu.

Understanding and controlling the nanoscopic morphology, organization, and interfaces of photovoltaic composite materials are keys toward improving the efficiencies of organic solar cells. Two-dimensional solid-state NMR spectroscopy provides new molecular-level insights on the local structures and dynamics of composite materials, such as the electron donor poly(2,5-bis(3-alkylthiophen-2-yl)thion[3,2-b]thiophene) (pBTTT) with the fullerene electron acceptor phenyl-C71-butyric acid methyl ester (PC₇₁BM). The pristine conjugated polymer pBTTT assembles into large crystalline domains, promoted by π - π interactions of the polymer backbone in one direction and by an interdigitation of the pendant alkyl chains in a second direction.^{1 1}H{¹H} double-quantum and ¹³C{¹H} heteronuclear correlation NMR experiments unambiguously establish co-assembly of pBTTT with the fullerene derivative into a bimolecular crystalline solid, as suggested by recent studies.² Such composites, however, exhibit complicated molecular order, disorder, and dynamics, in particular with respect to the aliphatic polymer side chains and the π - π network of the polymer, as elucidated by ¹³C{¹H} REREDOR and REPT-HDOR experiments. The resulting molecular insights provide new understanding of the structure-function relationships of these technologically promising composite photovoltaic materials.

1. Kline R.J., DeLongchamp D.M., Fischer D.A. et al., Macromolecules, 40, 7960–7965 (2007)

2. Mayer A.C., Toney, M.F., Scully S.R. et al., Adv. Funct. Mater., 19, 1173-1179 (2009)

Ps167

Protein misfolding, membrane interactions and paramagnetism studied by solid state NMR spectroscopy

Santhosh Ayalur-Karunakaran,^{1,2} Quynh Hoa Do,^{1,2} Markus Knipp³, Bernd W. Koenig,^{1,2} Henrik Müller,^{1,2} Sabu Varghese,^{1,2} and <u>Henrike Heise^{1,2}</u>

¹Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf. ²ICS-6 Forschungszentrum Jülich, D-52425 Jülich. email: h.heise@fz-juelich.de ³Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr

Amyloid fibrils or proteinaceous aggregates are not easily accessible to high-resolution structure determination, as they are neither crystalline nor soluble. In the recent decade, solid-state NMR spectroscopy has developed into a powerful tool to study even larger complex biological systems (1). Here, we report studies on different amyloidogenic proteins obtained under different fibrillization or seeding conditions. Initial results obtained for the prion protein PrP are compared to different existing structural models.

Secondly, we study the interaction of HIV-1 viral protein (VpU) with a fragment (comprising the transmembrane and cytoplasmic domains) of human the T-cell receptor CD4 (2,3). Individual proteins reconstituted in liposomes have a rigid transmembrane domain and flexible cytoplasmic domains.

Finally, we present results obtained on the paramagnetic heme protein NP7 (4), which can be stabilized in three different electron spin states. Although this protein does not yield resolved liquid-state NMR spectra, it can be studied by MAS NMR spectroscopy either attached to liposomes, or in solution, stabilized in glycerol or sedimented at the rotor walls (5).

^{1.} Heise, H. ChemBioChem 9, 179-189 (2008).

^{2.} Wittlich, M., Koenig, B. W., Stoldt, M., Schmidt, H. & Willbold, D. (2009). FEBS Journal 276, 6560-6575 (2009).

^{3.} Wittlich, M., Thiagarajan, P., Koenig, B. W., Hartmann, R. & Willbold, D. Biochim. Biophys. Acta 1798, 122-127 (2010)

^{4.} Knipp, M., Yang, F., Berry, R. E., Zhang, H., Shokhirev, M. N. & Walker, F. A. Biochemistry 46, 13254-13268 (2007).

^{5.} Mainz, A., Jehle, S., van Rossum, B. J., Oschkinat, H. & Reif, B. (2009). J. Am. Chem. Soc. 131, 15968 (2009).

X- and W-Band PELDOR: Conformational States of Model Systems and the Ion Channel MscS

Olav Schiemann¹, Gunnar W. Rigardsson¹, Richard Ward¹, Christos Pliotas¹, Emma Branigan¹, Snorri T. Sigurdsson², Graham M. Smith³

¹Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK, os11@st-andrews.ac.uk; ²Science Institute, University of Iceland, Reikiavik, Iceland; ³Scholl of Physics and Astronomy, University of St Andrews, St Andrews, UK.

Pulsed Electron Electron Double Resonance (PELDOR) is an established EPR method for measuring distances in the range of 1.4 to 8nm.¹ We apply this method to ion channels with the aim to unravel their gating mechanisms. Choosing the right sample conditions, we were able to resolve modulations in the PELDOR time traces of the ion channel of small conductans (MscS) in detergent and membranes. This enabled us to resolve conformational states of MscS that can be matched with X-ray structures of the open and closed form. Interestingly, for those mutants that did not show modulations at X-band, we could obtain modulated PELDOR time traces using the W-band HIPER-System.² In order to analyse these data, we use a simulation program similar to the one published by the Prisner lab.³ On organic model systems it will be shown that our program works and that multifrequency PELDOR yields more precise information.

Ps169

Biomimetic Hydrogen Production: Multifrequency EPR and DFT Study of **Cobaloxime Catalyst**

Oleg G. Poluektov¹, Jens Niklas¹, Lisa M. Utschig¹, Karen L. Mulfort¹, David M. Tiede¹, Rakhim R. Rakhimov²⁾, Kristy L. Mardis³⁾

¹⁾Division of Chemical Sciences and Engineering, Argonne National Laboratory, Argonne, IL 60439, USA; ²⁾ Norfolk State University, Norfolk, VA 23463, USA; ³⁾ Chicago State University, Chicago, IL 60628, USA; E-mail: Oleg@anl.gov

Solar fuels research aims to mimic photosynthesis and devise integrated systems that can capture, convert, and store solar energy in high-energy molecular bonds. Currently, we are designing both synthetic supramolecular photocatalytic systems as well as Photosystem I - catalyst biohybrids that photochemically produce hydrogen. Further development and improvement of these systems relies on understanding the inherent, fundamental mechanisms for coupling captured photons to fuel generation. To this end, we are applying advanced spectroscopic techniques such as multifrequency pulsed EPR to elucidate important structure-function relationships in our artificial and biochemical complexes. The catalysts of choice for our research are cobaloxime derivatives. The catalytic properties of cobaloximes depend on the local surrounding and on the direct ligands to the central metal ion. The knowledge of the electronic properties is essential for understanding the catalytic activity of the compound. EPR is an excellent tool to achieve this goal. In this work, difluoroboryl cobaloxime $Co(dmgBF_2)_2$ has been investigated in a variety of solvents with multi-frequency EPR spectroscopy at X-band (9 GHz), Qband (34 GHz), and D-band (130 GHz) microwave frequencies. DFT modeling of the experimental data allows us to distinguish between different stable conformers and validate the structure of the axial ligand(s)-Co(dmgBF₂)₂ complexes. This work was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357.

REFERENCES:

^{1.} Reginsson G.W., Schiemann O., Biochemical Journal, 434, 353-363 (2011)

Cruickshank P.A.S., Bolton D.R., Robertson D.A., Hunter R.I., Wylde R.J., Smith G.M., *Rev. Sci. Instrum*, 80, 103102 (2010).
Margraf D., Bode B.E., Marko A., Schiemann O., Prisner T.F., *Mol. Phys.*, 105, 2153-2160 (2007)

EPR Analysis of Chromium-Sugar Interactions

Sabine Van Doorslaer¹, Juan C. González^{1,2}, María I. Frascaroli², Dmitry Zverev³, Henk Vrielinck³, Luis F. Sala¹

¹Department of Physics, University of Antwerp, Antwerp, Belgium; ²Department of Physical Chemistry, National University of Rosario, Rosario, Argentina; ³Department of Solid State Sciences, Ghent University, Ghent, Belgium. Sabine.vandoorslaer@ua.ac.be.

Chromium, widely used in various forms of industry, has been shown to have toxic and carcinogenic effects in humans and animals. Specifically, the reactive Cr(V) and Cr(IV) intermediates formed during reduction of Cr(VI) to Cr(III) are harmful in many ways, oxidizing biomolecules such as DNA, inducing the formation of reactive oxygen species and disrupting several enzymatic reactions. Although EPR has been extensively used to study the complexation of Cr(V) with different biologically relevant molecules, the vast majority of these experiments consist of room-temperature X-band CW-EPR experiments, where the limited information provided by this technique (*i.e.* isotropic g value, and, in the best case, some resolved isotropic ¹H and ⁵³Cr hyperfine couplings) is then used to derive quite complex models of the formed oxo-Cr(V) complexes. It is clear that in many cases, the available data is over-interpreted.

In this work, we study the oxo-Cr(V) complexes formed by reaction of Cr(IV), gluthatione and a number of sugar-type molecules, such as sorbitol and galacturonic acid. A combination of low-temperature X-/Q-band CW-EPR, X-band HYSCORE and pulsed ENDOR experiments are performed and confronted with DFT experiments on different models. These results are then confronted with some of the earlier 'room-temperature EPR'-based models.

Ps171

ESR Studies of Dynamics and Structure of Proteins and Membranes at ACERT

Jack H. Freed

Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology (ACERT), Cornell University, Ithaca, NY 14853, USA. jhf@ccmr.cornell.edu

Currently the study of protein structures by pulse dipolar ESR methods is becoming widely utilized. The most useful methods for such studies will be reviewed and instrumental developments at ACERT to enhance pulse dipolar ESR will be discussed. The state-of-the-art at ACERT will be illustrated with the example of a large protein complex consisting of an assembly of six proteins important in signal transduction in bacterial chemotaxis.

Since proteins at physiological temperatures are engaged in complex dynamical processes, it is valuable to develop ESR methodologies for their study. Instrumentation and methodologies at ACERT for multi-frequency 1 and 2D studies of protein and membrane dynamics over the range of 9 to 240 GHz will be described. Their application will be illustrated with an extensive study, covering 9, 95, 170, and 240 GHz, of the dynamics of spin-labeled T4-Lysozyme in aqueous solution, and 2D-ELDOR studies on membranes.

Molecular bases of gene regulation by FUSE Binding Proteins

Cyprian D. Cukier¹, Giuseppe Nicastro¹, David Hollingworth¹, Geoff Kelly², MariaFlor Garcia-Mayoral¹, Irene Diaz-Moreno^{1,3}, Stephen R. Martin⁴, Roberto Gherzi⁵ and <u>Andres Ramos¹</u>

¹Molecular Structure Division, MRC National Institute for Medical Research, London, UK; ²MRC Biomedical NMR Centre, London, UK; ³Instituto de Bioquimica Vegetal y Fotosintesis, Sevilla, Spain; ⁴Physical Biochemistry Division, MRC National Institute for Medical Research, London, UK; ⁵Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy

FUSE Binding Proteins (FBPs) are a family of multi-domain proteins that regulate gene expression at multiple levels. For example FBPs regulate both the synthesis¹ and stability of the *c-myc* mRNA² as well as the biogenesis of miRNA effectors³.

We have examined the molecular interplay between the three members of the FBP family and their protein and Nucleic Acid partners^{4,5} and dissected the structural bases of macromolecular recognition. Our results indicate that multiple synergistic interactions are necessary for recognition and have identified key contacts defining specificity. We discuss this work in the functional context of FBP(s)-mediated regulation and we compare it with other findings on multi-domain nucleic acid binding proteins.

REFERENCES:

- 1. Duncan R, Bazar L, Michelotti G, Tomonaga T, Krutzsch H, Avigan M, Levens D., Genes Dev, 8, 465-480 (1994)
- 2. Gherzi R, Lee KY, Briata P, Wegmüller D, Moroni C, Karin M, Chen CY., Mol Cell, 14, 571-583 (2004)

4. Díaz-Moreno I, Hollingworth D, Kelly G, Martin S, García-Mayoral M, Briata P, Gherzi R, Ramos A., Nucleic Acid Res, 38, 5193-5205 (2008)

5. Cukier CD, Hollingworth D, Martin SR, Kelly G, Díaz-Moreno I, Ramos A., Nat Struct Mol Biol, 17, 1058-1064 (2010)

Ps173

Protein Conformational Dynamics and Weak Complex Formation

Salmon L.¹, Markwick P.², Roldan J.L.³, von Nuland N.³, Jensen M.R.¹, Blackledge M.¹

¹Protein Dynamics and Flexibility, Institut de Biologie Structurale, CNRS/CEA/UJF, Grenoble, France . ²UCSD, La Jolla, CA, USA. ³Departamento de Química Física, Universidad de Granada, Granada, Spain. loic.salmon@ibs.fr

Nuclear magnetic resonance (NMR) spectroscopy is a unique tool to probe protein flexibility at atomic level and at physiologically important timescales, through the analysis of spin relaxation or residual dipolar couplings (RDCs).

Analytical approaches to describe the dynamics of folded proteins using RDCs were developed. The approaches, that allow the quantitative determination of molecular motions, were applied to Ubiquitin and the third CD2AP SH3 domain (SH3C) and compared to accelerated molecular dynamics simulations, leading to a unified description of protein dynamics, both in terms of motional modes and amplitudes and free-energy weighted statistical mechanical ensembles.

Then the ultra-weak complex formed between Ubiquitin and SH3C was studied using spin relaxation, by developing a general approach for the study of the structure, dynamics and kinetics of those complexes, which are very difficult to study using standard techniques.

All those studies provide insights about molecular recognition mechanisms and how conformational flexibility can influence those processes.

Salmon L., Ortega-Roldan J.L., Lescop E., Van Nuland N., Jensen M., Blackledge M. Angew. Chem. Int. Ed., 50, 3755-3759 (2011)

Salmon L, Bouvignies G., Markwick P., Blackledge M., Biochemistry, 50, 2735-2747 (2011)

^{3.} Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, Gherzi R, Rosenfeld MG._References, Nature, 459, 1010-1014 (2009)

Salmon L., Bouvignies G., Markwick P., Lakomek N., Showalter S., Li D.W., Walter K., Griesinger C., Bruschweiler R., Blackledge M. Angew. Chem. Int. Ed., 48, 4154-4157 (2009)

Markwick P., Bouvignies G., Salmon L., McCammon J.A., Nilges M., Blackledge M., J. Am. Chem. Soc., 131, 16968-16975 (2009)

Detecting the 'Afterglow' of ¹³C NMR in Proteins Using Multiple Receivers

Ēriks Kupče¹, Lewis E. Kay², and Ray Freeman³

¹Agilent Technologies, 6 Mead Rd., Yarnton, Oxford, OX5 1QU, UK; ²Departments of Molecular Genetics, Biochemisty and Chemistry, University of Toronto, Toronto, Ontario ,M5S 1A8, Canada; ³Jesus College, Cambridge University, Cambridge, CB5 8BL, UK.

We show that the weak signal that remains after C-13 detected experiments (the ¹³C 'afterglow') can still be measured with high sensitivity by proton detection. This is illustrated by the incorporation of two experiments, 2D (HA)CACO and 3D (HA)CA(CO)NNH, into a single pulse sequence that makes use of two receivers in parallel. The measurement time can be further substantially reduced with projection-reconstruction techniques. For instance, both 2D and 3D spectra were recorded on the 54 residue protein GB1 in one single measurement lasting only 15 minutes. High quality data sets for the 143 residue nuclease A inhibitor at 2°C, (correlation time 17.5 ns) were recorded in 3 hours, illustrating the utility of the method in studies of moderately sized proteins.

Ps175

The functional dynamics of synthetic riboswitches

Elke Duchardt-Ferner^{a,b}, Sina R. Schmidtke^{a,b}, Amir H. Nasiri^{a,b}, Julia E. Weigand^a, Oliver Ohlenschläger^c, Peter Trojanowski^d, Juliane Schwarz^a, Josef Wachtveitl^d, Beatrix Suess^a and <u>Jens</u> <u>Wöhnert^{a,b}</u>

^aInstitute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, ^bCenter of Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, ^bBiomolecular NMR Spectroscopy, Leibniz-Institute for Age Research (Fritz-Lipmann-Institute), Beutenbergstrasse 11, 7740 Jena, Germany, ^dInstitute for Physical and Theoretical Chemistry, Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 7, 60438 Frankfurt/Main, Germany,

Riboswitches are novel regulatory RNA-elements which change their conformation upon binding of a small-molecule ligand and thereby regulate gene expression. Thus, structural dynamics is a mandatory prerequisite for their regulatory function. We investigated the functional dynamics of two synthetic riboswitches – one regulated by the aminoglycoside neomycin (1) and the other by tetracycline – using NMR-spectroscopy in solution. Interestingly, both riboswitches show a very different dynamic behavior. The neomycin riboswitch binds its ligands by a conformational selection mechanism which can be directly visualized by NMR. In contrast, the tetracycline riboswitch shows an Mg²⁺-dependent highly structured ground-state with extensive preorganization of tertiary structure elements. The utilization of different ligand recognition strategies by the synthetic riboswitches resembles related findings for their naturally occurring counterparts.

References:

¹ Weigand, J. E.; Sanchez, M.; Gunnesch, E. B.; Zeiher, S.; Schroeder, R.; Suess, B. RNA, 14, 89-97 (2008)

² Duchardt-Ferner, E.; Weigand, J. E.; Ohlenschläger, O.; Schmidtke, S. R.; Suess, B.; Wöhnert, J. Angew. Chem. Int. Ed. Engl., 49, 1-5 (2010)

Alternatives in the Rapid Acquisition of Multidimensional NMR and MRI Data

Y. Shrot, A. Tal, K. Donovan, N. Ben-Eliezer, M. Gal, P. Smith, G. Olsen, L. Frydman

Department of Chemical Physics, Weizmann Institute, Rehovot, Israel

We will describe a series of complementary schemes enabling the rapid acquisition of arbitrary multidimensional NMR spectra and/or images (MRI). These methodology can be implemented using conventional NMR/MRI hardware, and have in common the melding of concepts familiar to the NMR spectroscopy and the MRI physics communities –but arguably not to both of them. A number of different protocols will be discussed based on temporal, spatial, Hadamard, multidimensional RF pulsing and compressed-sensing, and their performance will be exemplified and compared for a number of prototypical NMR and MRI acquisitions on chemical, biochemical and clinical systems. The incorporation into these experiments of nuclear hyperpolarization procedures capable of increasing the single-scan sensitivity of liquid state NMR by factors ranging from 10³-10⁶, will also be assessed.

Ps177

Hyperpolarization of spin I > 1/2 noble gasses beyond 10% spin polarization for biomedical MR applications.

Joseph S. Six, Theodore Hughes-Riley, Karl F. Stupic, Galina E. Pavlovskaya, David M.L. Lilburn, Mathieu Baudin, and <u>Thomas Meersmann</u>

Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom (Thomas.Meersmann@Nottingham.ac.uk)

Hyperpolarized (hp) ³He and hp ¹²⁹Xe (both spin I = 1/2) have enabled a wide range of novel MR spectroscopy and magnetic resonance imaging (MRI) applications in chemistry, chemical physics, materials science, and pulmonary diagnostics. The recent development of hp ⁸³Kr MR provides a new pulmonary biomarker that utilizes the nuclear electric quadrupole moment of ⁸³Kr (spin I = 9/2) as a probe for surfaces [1, 2, 3]. Spin exchange optical pumping (SEOP) has recently produced hp ⁸³Kr with 4.4% spin polarization [3] and a 2.2% spin polarization was obtained with the spin I = 3/2 isotope ¹³¹Xe [4].

Biomedical MRI applications with these quadrupolar noble gasses would benefit from further increased spin polarization. SEOP typically leads to high spin polarization when dilute concentrations

of xenon or krypton in nitrogen and helium are used. However, until now, no method is reported that would allow for concentrating the hp quadrupolar noble gasses without detrimental depolarization during the separation process. We have now solved this conundrum and developed a method that maintains the high level of hyperpolarization generated in our experiments.

 $=\frac{|\gamma|hB_0}{3k_BT}(I+1)$

Eq. 1: Spin polarization *P* for a general nuclear spin $I \ge 1/2$ at high temperature thermal equilibrium (see ref (4)).

Cleveland Z.I. et al., J. Am. Chem. Soc. 129, (2007), 1784-1792;
Stupic K. F. et al., J. Magn. Reson. 208, 58-69 (2011).

^{1.} Pavlovskaya G. E. et al., *Proc. Nat. Acad. Sci.*, **102**, 18275 – 9; 3. Stupic K.F. et al., Phys. Med. Biol. 56 (2011) 3731-3748;

High-Pressure *in situ* ¹²⁹Xe NMR spectroscopy of breathing transitions in Metal-Organic Framework (MOF) compounds

Herbert Hoffmann, Bassem Assfour, Fanny Epperlein, Silvia Paasch, Nicole Klein, Irena Senkovska, Stefan Kaskel, Gotthard Seifert, <u>Eike Brunner</u>

TU Dresden, Fachrichtung Chemie und Lebensmittelchemie, 01062 Dresden, Germany. eike.brunner@tu-dresden.de.

¹²⁹Xe NMR has found numerous applications in biological and surface NMR spectroscopy. Here, we describe the use of high-pressure in situ ¹²⁹Xe NMR spectroscopy to study the so-called gatepressure effect in Metal-Organic Framework compounds. The novel paramagnetic MOF compound $Ni_2(2,6-ndc)_2(dabco) = DUT-8(Ni)$ {2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane} exhibits interesting adsorption properties [1]. Sorption of molecules such as nitrogen or xenon results in the opening of the pore system, *i.e.*, a pronounced gate-pressure effect accompanied by a large change of the structure and specific volume. To study this effect, we have developed a special apparatus which allows the *in situ* application of high and defined xenon pressures at controlled temperatures to the sample which is located in a pressure-resistant sapphire tube inside apparatus allows the NMR spectroscopic measurement of xenon the magnet. This adsorption/desorption isotherms and isobars in order to characterize the gate-pressure effect [2]. Deeper insight into the interactions between the host DUT-8(Ni) and the guest atom xenon is gained from ab initio Molecular Dynamics (MD) simulations. The use of DFT-vdW turned out to be crucial to correctly describe the breathing behavior of DUT-8(Ni), in particular the closed structure.

REFERENCES:

Klein, N., Herzog, C., Sabo, M., Senkovska, I., Getzschmann, J., Paasch, S., Lohe, M.R., Brunner, E., Kaskel, S. *PCCP* 12, 11778-11784 (2010)
Hoffmann, H.C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., Kaskel, S., Seifert, G., Brunner, E. *JACS*, in press (DOI: 10.1021/ja201951t)

Ps179

Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization

Anne Lesage

Centre de RMN à Très Hauts Champs, University of Lyon (CNRS/ENS Lyon/UCB Lyon 1), 5, rue de la Doua, 69100 Villeurbanne, France. Anne.Lesage@ens-lyon.fr.

Solid-state NMR is a powerful technique for the characterization of inorganic and hybrid materials, offering the possibility to directly investigate both the bulk, and the surface functionalities. However the concentration of the NMR active nuclei often remains relatively low, which strongly limits the characterization power of solid-state NMR in surface chemistry. We have recently shown how high-field Dynamic Nuclear Polarization (DNP) could be implemented to yield a remarkable increase in the NMR sensitivity of surface organic functionalities in hybrid nanoporous materials (1). The gain in time provided by carbon-13 or silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the fast acquisition of 2D correlation spectra and therefore the detailed structural characterization of surface bonding patterns and local conformations (2). The latest developments in this field will be presented. In particular, we have recently investigated the feasibility of using organic, non-aqueous solvents for DNP NMR spectroscopy. These new solvents are demonstrated with the first DNP SENS characterization of a water sensitive organometallic complex supported on a hydrophobic surface, as well as with preliminary investigations on other classes of porous materials.

^{1.} Lesage et al, J. Am. Chem. Soc., 132, 15459 (2010)

^{2.} Lelli et al, J. Am. Chem. Soc., 133, 2104 (2011)

Bringing the NMR paradigm to EPR

<u>Graham</u> Smith¹, Paul Cruickshank¹, Robert Hunter¹, David Bolton¹, Duncan Robertson¹, Hassane El Mkami¹, R.Wylde², G. Reginsson³, Olav Schiemann³, Richard Ward³, David Norman⁴, David Keeble⁵

¹Department of Physics and Astronomy, University of St Andrews, Scotland; ²Thomas Keating Ltd, Station Mills, Billingshurst, UK.³School of Biology, University of St Andrews, Scotland, ⁴School of Life Sciences and ⁵School of Electrical Engineering, Dundee University, Scotland, E-mail gms@st-and.ac.uk.

NMR has seen the rapid evolution of complex pulse techniques at ever-increasing fields and frequencies, often with FID detection. EPR has been much slower to follow this lead, largely because of technical reasons associated with the much faster relaxation times relative to NMR, and the very large, often field dependent, inhomogeneous linewidths relative to optimum microwave cavity bandwidths. Nevertheless, modern applications of pulse EPR are proving very persuasive scientifically and there is a strong impetus to improve performance particularly at high frequencies.

This talk will describe the HIPER project, whose aim was to design a frequency scalable, high power, pulsed EPR system operating at 94 GHz. This offers a combination of very high concentration sensitivity, large instantaneous bandwidth (GHz), high spectral resolution, relatively easy sample handling, together with very low (ns) deadtime. It also offers considerable flexibility in specifying pulse sequences with sub-ns time resolution, fast frequency switching with up to 16 different available phases.

Examples will be given showing the advantages of such a system including PELDOR measurements at concentration levels of less than 1 micro-molar and where it is possible to advantageously extract quantitative information associated with the relative orientation and distance and distribution of pairs of (site-directed) spin labels. Demonstrations showing state-of-the art deadtime, DNP applications, and examples where composite pulses can be usefully used will also be shown.

Ps181

Helpful tools for SDSL EPR on membrane proteins: DNP water accessibility, His-tag labeling and high power Q band

Enrica Bordignon

Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland email:enrica.bordignon@phys.chem.ethz.ch

Application of site directed spin labeling EPR to membrane proteins is often difficult due to limitations imposed by fast T2 relaxation and by the amount of protein available.

Short interspin distance can be precisely measured by conventional X-band DEER down to 20 μ M spin concentration, as demonstrated with peptides bound to the human transporter associated with antigen processing [1]. Reliable extraction of long distances (6 nm range) from DEER traces on membrane proteins require S/N ratios which can be routinely achieved in 12 hours using a high power Q-band spectrometer. Examples of the DEER performance on the home-made Q-band spectrometer with non selective excitation pulses are shown on the proapoptotic protein Bax and on the ABC transporter MsbA. The possibility to measure directly the nitroxide accessibility towards water molecules via DNP at room temperature on a limited amount of sample is presented as a valuable tool to complement the study of conformational changes of the vitamin B12 importer BtuCD-F [2].

Overcoming invasive spin labeling strategies has immense potential in studying membrane proteins under physiological conditions. A new spin-labeled chemical recognition unit for switchable and concomitantly high affine binding to His-tagged proteins is presented. The spin-labeled unit allows the extraction of structural constraints within the ABC maltose transporter.

^[1] Herget et al., Proc Natl Acad Sci USA, 108 1349-1354 (2011)

^[2] Joseph B, Jeschke G., Goetz B.A., Locher K.P., Bordignon E., submitted, (2011)
Ps182

Understanding the hydrogen-converting cluster of [FeFe] hydrogenase

Alexey Silakov¹, Eduard J. Reijerse¹, Thomas B. Rauchfuss², Wolfgang Lubitz¹.

¹Max-Planck-Institut für Bioanorganische Chemie, Mülheim, Germany; ²Department of Chemistry, University of Illinois, Urbana, USA. silakov@mpi-muelheim.mpg.de.

The general function of hydrogenases is to catalyze the reversible splitting of molecular hydrogen. The active site of [FeFe] hydrogenases (the so called H-cluster) has been examined in several EPR active states using advanced pulse EPR techniques. It was found that the electronic structure of the H-cluster is characterized by a rather strong $[2Fe]_{H^-}$ [4Fe4S]_H exchange interaction, which induces strong singlet triplet mixing in the [4Fe4S]_H subcluster, leading to large ⁵⁷Fe HF couplings in the 'cubane'. Moreover, the unpaired spin density in the $[2Fe]_{H}$ subcluster was found to be largely delocalized.^[1,2] One of the most important results of this study, is the identification of a nitrogen in the dithiol bridgehead, which was not resolved in earlier X-ray crystallographic studies.^[3] The obtained data from the native system

was compared with results of EPR studies of {2Fe2S} and {2Fe3S} model compounds, closely related to the structure of the bi-nuclear subcluster in active as well as the CO inhibited state.^[4] The absence of the [4Fe4S] subcluster and variations in the second coordination sphere of the models have a significant effect on the unpaired spin density distribution over the 2Fe core as compared to that of the H-cluster.

1. A. Silakov, et al. J. Am. Chem. Soc. 129, 11447-11458 (2007)

A. Silakov, et al. J. Biol. Inorg. Chem. 14, 301-313 (2009)
 A. Silakov, et al. Phys. Chem. Chem. Phys, 11, 6592–6599 (2009)

4. A. Silakov, et al. J. Am. Chem. Soc. 132, 17578-17587 (2010)

4. IX. Shakov, et al. 5. Im. Chem. 50c. 152, 17570-17507 (2010

Ps183

Conformational Changes During Primary Photosynthesis as Studied by Orientation Resolving Pulse Dipolar EPR Spectroscopy

Klaus Möbius^{1, 2}, Anton Savitsky², Alexander Dubinskii³, Marco Flores^{2, 4}, Wolfgang Lubitz² ¹Department of Physics, Free University Berlin, 14195 Berlin, Germany; ²Max Planck Institute for Bioinorganic Chemistry, 45470 Mülheim (Ruhr), Germany; ³Semenov Institute of Chemical Physics, 117977 Moscow, Russia; ⁴Department of Chemistry, Arizona State University, Tempe, AZ 85287, USA. Email: moebius@physik.fu-berlin.de

To understand the efficiency of light-induced electron transfer in photosynthesis the electronic and spatial structures of the initial, intermediate and final cofactor states of the reaction center (RC) protein are of particular concern. In bacterial photosynthesis of *Rb. sphaeroides* the primary donor is a dimeric bacteriochlorophyll (P), the primary acceptor a ubiquinone (Q_A). Subtle cofactor-protein interactions provide an essential "fine-tuning" of the electronic structure of the intermediate states to secure high quantum yield. It involves transient *intra*-molecular conformational changes of the redox cofactors and/or modifications of weak *inter*-molecular interactions with the "solvent" matrix. From pulsed 95 GHz high-field EPR, ESE and PELDOR as well as 35 GHz ENDOR experiments on frozensolution RCs at 90 K we were able to characterize in detail potential conformational changes under light-induced charge separation. In contrast to earlier predictions, our PELDOR and ENDOR data analysis consistently reveal that neither the distance nor the relative orientation of P^{+•} and Q_A^{-•} change significantly under charge separation [1]. A substantial energetic contribution to stabilizing the primary charge-separated radical-pair state, P^{+•}Q_A^{-•}, may be expected from nearby unbound water molecules or weakly hydrogen-bonded water interacting with the RC, as is implied by recent X-ray crystallographic data.

1. Flores M., Savitsky A., Paddock M. L., Abresch E. C., Dubinskii A. A., Okamura M. Y., Lubitz W., Möbius K., J. Phys. Chem. B 114, 16894-16901 (2010). This work was supported by several DFG programs (SPP 1051, SFB 498, MO 132/19-2).

Posters

Poster	а Торіс	Poster Number
Bs	Biosolids	Bs200 – Bs215
Cs	CATALYSIS AND SURFACES	Cs216 – Cs222
Ст	Computation and Theory	Ст223 – Ст243
Hs	Hyperfine Spectroscopy	Hs244 – Hs247
Ім	Imaging	Ім248 – Ім263
Cv	IN CELL AND IN VIVO STUDIES	Cv264 – Cv282
Ls	LIQUID STATE NMR METHODS	Ls283 – Ls341
Мр	Materials and Polymers	Mp342 - Mp390
ME	Membrane Proteins	ME391 – ME435
Мв	Metabolomics	Мв436 – Мв445
Md	Methodological Developments in EPR	Md446 - Md458
Мі	Molecular Magnets and Inorganic Materials	M1459 - M1464
NA	NUCLEIC ACIDS	Na465 - Na494
Ps	Paramagnetic Systems	Ps495 – Ps516
Rc	RADICAL CHEMISTRY	Rc517 – Rc524
Rd	RELAXATION AND DYNAMICS	RD525 - RD561
Se	Sensitivity Enhancement	Se562 - Se576
Sм	Small Molecules	Sм577 – Sм618
Ss	Solid State NMR Methods	Ss619 - Ss649
Sp	Solid State Physics	Sp650 - Sp658
So	Soluble Proteins	So659 - So730
Td	TRANSPORT AND DIFFUSION	Td731 - Td746
От	Other Topics	От747 – От782

Atomic resolution structural features of the Ure2 prion by solid-state NMR

Birgit Habenstein¹, Christian Wasmer², Luc Bousset³, Ronald Melki³, Beat Meier², Anja Böckmann¹

¹IBCP CNRS, Lyon, France (birgit.habenstein@ibcp.fr)²ETH, Zürich, Switzerland ³LEBS CNRS, Gif-sur-Yvette, Switzerland

The yeast prion Ure2 is a two-domain protein composed of a globular functional C-terminal domain (94-354) and a N-terminal domain, essential for prion induction and propagation. We initiated solid-state NMR studies of this protein, and also of fragments thereof, in view of revealing its assembly mode into fibrils.

Ure2 prion fibrils show highly resolved NMR spectra with narrow lines,¹ demonstrating that the proteins have a mostly well-ordered atomic structure. While the spectra of the isolated globular domain show a similar resolution, spectra of the isolated N-terminal domain show mostly broad and featureless lines.

Preliminary studies already indicated that the structure of the globular C-terminal is highly conserved in the protein fibrils when compared to the isolated domain.¹ We recently achieved the *de novo* sequential assignment of the isolated 33 kDa C-terminal domain using an optimized set 3D spectra,² which allowed us, considering the few small chemical shift changes (< 0.6 ppm), to confirm on a residue-per-residue basis its structural conservation. Remarkably, the C-terminal domain displays a higher order in the full-length protein fibrils than in the C-terminal crystals. The extensive assignment of the C-terminal domain allows now the assignment of the around fifty sharp resonance signals present exclusively in the full-length protein fibril spectra to the N-terminal domain, with the exciting perspective of their sequential assignment, which should yield first insights at atomic resolution into the structure of the N-terminal prion domain in its natural context.

1. Loquet, A.; Bousset, L.; Gardiennet, C.; Sourigues, Y.; Wasmer, C.; Habenstein, B.; Schütz, A.; Meier, B. H.; Melki, R.; Böckmann, A. J. Mol. Biol., 394, 108-18. (2009)

- 2. Schuetz, A.; Wasmer, C.; Habenstein, B.; Verel, R.; Greenwald, J.; Riek, R.; Bockmann, A.; Meier, B. H. ChemBioChem, 11, 1543-51 (2010)
- 3. Habenstein, B.; Wasmer, C.; Bousset, L.; Sourigues, Y.; Schütz, A.; Loquet, A.; Meier, B. H.; Melki, R.; Böckmann, A. submitted

Bs201

Investigation of Zn^{2+} -binding sites and its effect on the molecular structure of A β_{42} amyloid aggregates using Solid-State NMR.

Venus S. Mithu[†], Bidyut Sarkar[†], Muralidharan Chandrakesan^{†‡}, Sudipta Maiti[†], Perunthiruthy K. Madhu[†]

[†]Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India. [‡]Department of Biochemistry, Seth G. S. Medical College and KEM Hospital, A. D. Marg, Parel, Mumbai-400012, India. Email venussingh@tifr.res.in

Amyloid beta (A β) is a 39-43 residue long peptide whose progression from a relatively unstructured monomer to a hairpin structured fibrillar aggregate is associated with the onset of events that lead to Alzheimer's disease. Zn²⁺ is considered to be a major neurochemical factor associated with A β aggregation and Alzheimer's disease (AD). Zn²⁺ at low concentrations (<10 μ M) reduces A β toxicity by destabilizing the highly toxic intermediate species which are formed during aggregation process, and/or by binding to membrane associated A β . On the other hand, at higher concentrations (100's of μ M) it appears to abet the cytotoxic effects of A β . A β aggregates are primarily fibrillar in nature, however Zn²⁺ can interact with A β on a millisecond time-scale, causing rapid aggregation into non-fibrillar species. These observed morphological differences and the modulations of toxicity are likely due to structural differences at the molecular level. Previous studies on A β 40 and its truncated fragments have characterized various zinc binding sites in A β monomers, but not much is known about the molecular structure of Zn²⁺ containing aggregation and toxicity are yet to be fully understood. In this work, we have used solid-state NMR to identify the Zn²⁺ binding sites and to characterize the critical structural changes induced by Zn²⁺ binding to the pathologically relevant A β_{42} aggregates.

Water Dependent Interaction Study of Collagen Protein and Mineral Interface in Bone by Solid – State NMR Spectroscopy

Ratan Kumar Rai and Neeraj Sinha

Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road Lucknow - 226014 INDIA

Bones are amorphous material comprising of inorganic hydroxyapatite, organic proteins and water molecules. Among organic components, collagen is most abundant protein in bone matrix and is responsible for mechanical properties of bone¹⁻². Study of interactions among different components of bone is important in order to understand mechanism responsible for bone formation, biomineralization and for its unique mechanical properties. In this presentation, we present first direct method to study interaction of protein collagen and inorganic surface through water molecules in intact mammalian bones by high resolution solid state NMR (SSNMR) spectroscopy. We performed ${}^{13}C {}^{31}P$ Rotational Echo Double Resonance³ (REDOR) SSNMR experiments to measure accurate distances between collagen and phosphorus of inorganic surface. Role of water in this interaction were estimated by measuring the distance between collagen and inorganic phosphorus after removing water molecules from bone matrix and also by reducing the strength of hydrogen bonding network by exchange of water protons with deuterium. Other SSNMR experiments like T₂ measurement of ¹³C resonances of collagen and ¹H chemical shift measurement of collagen gives structural changes in bone matrix. We find that as water molecules from bone matrix are removed, interaction strength of collagen with inorganic surface increases. The study explains the role of water in stabilizing the structural properties of amorphous material like bone⁴.

- 1. Weiner S, W. H. Annu. ReV. Mater. Sci. 1998 28, 271-298.
- 2. Stayton, P. S.; Drobny, G. P.; Shaw, W. J.; Long, J. R.; Gilbert, M. Crit Rev Oral Biol Med 2003, 14, 370-6.
- 3. Gullion, T.; Schaefer, J. Journal of Magnetic Resonance (1969) 1989, 81, 196-200.
- 4. Nyman, J. S.; Ni, Q.; Nicolella, D. P.; Wang, X. Bone 2008, 42, 193-9.

Bs203

C-terminal domain of human Centrin 2 complex. Crystallinity, structure and local dynamics by solid state NMR.

José-Enrique Herbert-Pucheta^{a,b}, Monique Chan-Huot^{a,b}, Luminita Duma^{a,b}, Piotr Tekely^{a,b}, Daniel Abergel^{a,b}, Markus Weingarth^{a,b,d} and Geoffrey Bodenhausen^{a,b,c}.

^aCNRS, UMR 7203. Département de Chimie. École Normale Supérieure. 24 Rue Lhomond, 75005 Paris, France; ^bUniversité Pierre et Marie Curie. Place Jussieu, 75005 Paris, France; ^cInstitut des Sciences et Ingénierie Chimiques. École Polythechnique Fédérale de Laussane. 1015, Laussane, Switzerland; ^dBijovet Center for Biomolecular Research. Utrecht University. Bloembergen gebouw, Padualaan 8, 3584 CH Utrecht, The Netherlands. Author's email: jose-enrique.herbert-pucheta@ens.fr

The C-terminal domain of a complex of human centrin 2 (C-ter HsCen2/P17-XPC), which is involved in the Nuclear Excision Repair (NER) pathway,¹ was studied by solid-state NMR. Crystallogenesis leads to different μ -crystal motifs, spherulites and plates. The latter present reasonably well-resolved ¹³C and ¹⁵N CPMAS spectra at moderate spinning frequencies. CP-MAS spectra and 2D dipolar through-space correlation experiments have been carried out to assign the spectra, which are compatible with the presence of a dimer in the lattice.² Relaxation studies to detect dynamics in a range from ns to ms are under way in order to obtain a better understanding of how centrin 2 recognizes damaged DNA in the NER pathway.

^{1.} Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J. J.Biol. Chem, 276, 18665-18672 (2001).

^{2.} Charbonnier, J.B., Renaud, E., Miron, S., Le Du, M.H., Blouquit, Y., Duchambon, P., Christova, P., Shosheva, A., Rose, T., Angulo, J.F., Craescu, C., J.Mol.Biol, 373, 1032-1046 (2007).

Solid-State NMR of A β Protofibrils Implies a β -Sheet Remodelling upon Maturation into Terminal Amyloid Fibrils

Holger A. Scheidt,¹ Isabel Morgado,² Marcus Fändrich,² Daniel Huster¹

11nstitute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; 2 Max-Planck Research Unit for Enzymology of Protein Folding Halle, Germany; daniel.huster@medizin.uni-leipzig.de

 $A\beta(1-40)$ is the major fibril-forming peptide from Alzheimer's disease. Monomeric A β is unstructured but adopts a highly ordered β -sheet conformation upon aggregation into amyloid fibrils. These fibrils are the products of a complex formation mechanism that is not well understood. We use solidstate NMR to elucidate the structure of A^β protofibrils. This analysis is possible because binding of the antibody B10AP prevents the conversion of these metastable intermediates into mature fibrils. A set of 8 peptides with varying labeling schemes was obtained from chemical synthesis. The labels cover 30 residues distributed over the peptide sequence. ¹³C CP MAS spectra and 2D correlation experiments were recorded for assignment. From the conformation dependent chemical shifts we could identify peptide segments of stable secondary structure and evaluated the backbone structure using TALOS. Based on this data, A β protofibrils encompass residues 16-22 and 30-36 in β -sheet conformation. Three structural regions of the protofibrils present random coil-like chemical shifts. One encompasses residues 23-26 and forms an intermediate segment in between the adjacent β -strands. The other regions occur at the termini. Information about peptide dynamics is provided by order parameter measurement derived from of dipolar couplings. We find that protofibrils show high order parameters (>0.8) within the β -strand regions, while the measured S values are below 0.8 at the termini. We never observed S values below 0.4 that would have indicated very high mobility. Thus, significant structural order exists also within those sequence segments that have chemical shift values corresponding to a random coil.

H.A. Scheidt et al. Angew. Chemie Int. Ed. 50 (2011) 2837-2840

Bs205

μ MRI and NMR study of regenerated extracellular matrix in bone defects

<u>Anja Penk¹</u>, Yvonne Förster², Holger A. Scheidt¹, Michael Hacker³, Michaela Schulz-Siegmund³, Stefan Rammelt², Daniel Huster¹

¹Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; ²Department of Trauma and Reconstructive Surgery, University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany; ³Institute of Pharmacy, University of Leipzig, Leipzig, Germany

Since bone substitutes are increasingly used in orthopaedic interventions a high interest in optimization of the required materials exists. Using a tibial head defect of Wistar rats we investigate the influence of the porosity of biodegradable poly(lactic-co-glycolic acid) (PLGA) scaffolds which provide a macro-porous three-dimensional carrier and thus should support cell migration.

Cylindrical scaffolds with pore sizes of 100-300, 300-500 or 500-710 μ m and a diameter of 2.5 mm were implanted. Two or four weeks after implantation, the regenerated extracellular matrix (ECM) was *ex vivo* qualitative and quantitative monitored by μ MRI and solid state NMR.

Using μ MRI, the implanted PLGA scaffolds are clearly visible and a homogeneous generation of ECM was obvious in the presence of the scaffolds. The regeneration of the collagen moiety was followed by ¹³C MAS NMR and depended on the pore size of the scaffolds at all time points. The inorganic moiety was investigated by ³¹P MAS NMR and exhibited this dependence not earlier than four weeks due to the known biomineralization delay. Thus, the amount of hydroxyapatite increases significantly during the last implantation interval and larger amino acid order parameters are indicative of progressed biomineralization. However, a pore size of 300 to 500 μ m is most effective as carrier and results in *de novo* regenerated ECM quality close to the native, healthy bone.

Hence untreated PLGA scaffolds support ECM formation in early stages of regeneration and result in a more homogeneous healing process indicating that PLGA scaffolds in combination with multifunctional coatings are a promising "multifunctional construction kit" for bone substitute.

Elucidating metal ion-A β interaction at a molecular level using solid-state nuclear magnetic resonance studies

P. K. Madhu

Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India, madhu@tifr:res.in

A β continues to be an interesting model for investigating different aspects of amyloid aggregation. Fine structural models currently are available for this system. Whilst it is known that metal ions binding to A β does play a significant role in the toxicity, morphology, and aggregation kinetics, the nature of this binding or its influence on the molecular structure of $A\beta$ is not clearly established. It is also necessary to investigate the role of various residues in the formation of turns, β -sheets, and saltbridge in A β . We here report on certain aspects of these, one with designed peptides that form shorter fragments of A β , with which we have monitored essential interactions giving rise to the basic β -hairpin type structural model. The metal ion-A β interaction has been investigated with Zn²⁺ ions bound to aggregated forms of A β_{42} . We have used solid-state NMR to identify the Zn²⁺ binding sites and to characterise the critical structural changes induced by Zn^{2+} binding to the pathologically relevant A β_{42} aggregates. We found that A β_{42} adopts a β -hairpin structure when aggregated either in presence, or in absence of Zn²⁺ ions, with significant structural changes in the N-terminal and the loop region connecting the two β -sheets. Zn²⁺ ions bring more order to the side-chains of His13 and His14 present on N-terminal. In the loop region, presence of Zn²⁺ ions breaks an important Asp23-Lys28 salt-bridge by driving these residues to unique, but non salt-bridge forming structural conformations. Despite these significant changes, the β -hairpin structure of A β_{42} is retained.

Bs207

Acidic residues in β_2 -microglobulin are involved in the binding of fibril stabilizer serum amyloid-P component

Garrick F. Taylor¹, Steve P. Wood², Joern M. Werner¹ and Philip T.F. Williamson¹

¹School of Biological Sciences, University of Southampton, Southampton, United Kingdom; ²Centre for Amyloidosis & Acute Phase Proteins, Royal Free Campus, Rowland Hill Street, London. E.mail: P.T.Williamson@soton.ac.uk.

Serum amyloid-P component is a ubiquitous component of amyloid deposits and plays an important role in a broad spectrum of amyloid diseases stabilizing the fibrillar structures and preventing the host's defenses from clearing these deposits. Despite this little is known about the motifs present on the surface of the fibrillar structures present in amyloid deposits that are recognized by serum amyloid-P component. Here we report on solid-state magic angle spinning NMR studies of serum amyloid-P component bound to the fibrillar structures composed of β_2 -microglobulin, the protein deposited in patients suffering from dialysis related amyloidosis

To facilitate the assignment 2D homo- and hetero-nuclear correlation spectra have been obtained at 850 MHz from uniformly and selectively and extensively labeled β_2 -microglobulin fibrils both at neutral pH in the absence of denaturants and under acidic conditions. The spectra are of sufficient resolution to permit the sequence specific assignment of many of the resonances arising from the β_2 microglobulin fibrils. Comparable spectra have also been obtained for β_2 -microglobulin fibrils in the presence of serum amyloid-P component. A detailed comparison of the spectra reveals significant perturbations to chemical shifts assigned to the sidechains of acidic amino acid residues in β_2 microglobulin. These studies corroborate biochemical studies that have highlighted the importance of acidic amino acids in the recognition of amyloid fibrils by serum amyloid-P component.

Structure and Dynamics of The Bacterial Cell Wall by Solid-State NMR

Sabine Hediger¹, Axel Gansmüller², Mathilde Giffard¹, Thomas Kern², Catherine Bougault², Waldemar Vollmer³, Bernard Joris⁴, Jean-Pierre Simorre²

¹Institut Nanosciences et Cryogénie, CEA-Grenoble, Grenoble, France; ²Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France; ³Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK; ⁴Centre d'ingénierie des protéines, Université de Liège, Liège, Belgium. Email: sabine.hediger@cea.fr.

The cell wall is essential for the survival of bacteria. It gives the bacterial cell its shape and protects it against osmotic pressure, while allowing cell growth and division. It is made up of peptidoglycan (PG), a biopolymer forming a multi-gigadalton bag-like structure, and additionally in Gram-positive bacteria, of covalently linked anionic polymers called wall teichoic acids (WTA). TAs are thought to play important roles in ion trafficking, host-cell adhesion, inflammation and immune activation.

In this contribution, we compare the flexibility and the organization of PG from different Grampositive bacteria using solid-state NMR under magic-angle sample spinning (MAS). Flexibility of the PG network is found to mainly correlate with its reticulation rate. A wide range of dynamics is present in the different polymers of the cell wall. A proper choice of the solid-state NMR sequence using either CP-based or INEPT-based elements can be used to filter rigid or mobile parts of the system. The dynamic range detected using these different filters is discussed on the base of residual dipolar coupling measurements. We also show that ³¹P solid-state NMR is particularly well adapted to characterize WTAs on isolated cell walls as well as on intact cells. Complexation of the cell wall with divalent ions (Mg²⁺ and Mn²⁺) was investigated, allowing us to propose a new model for the interaction of divalent ions with both WTAs and carboxyl groups of peptidoglycan¹.

1. Kern T., Giffard M., Hediger S., Amoroso A., Giustini C., Bui N.K., Joris B., Bougault C., Vollmer W., Simorre J.-P., J. Am. Chem. Soc., 132, 10911-10919 (2010).

Bs209

Solid-state NMR on the large membrane protein BamA at critical sensitivity and resolution

<u>Tessa Sinnige</u>¹, Marie Renault¹, Markus Weingarth¹, Eline Koers^{1,3}, Shane Pawsey³, Melanie Rosay³, Werner Maas³, Jan Tommassen², Marc Baldus¹

¹ Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; ² Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherland and ³Bruker Biospin, Billerica MA 01821, USA; e-mail <u>t.sinnige1@uu.nl</u>

Studying structure and dynamics of large membrane proteins by solid-state NMR (ssNMR) is challenging both in terms of spectroscopic sensitivity and resolution. Here we report on recent progress to address such issues on the integral multi-domain membrane protein BamA, which constitutes the core component of the β -barrel assembly machinery (BAM) in the outer membrane of gram-negative bacteria (see, e.g., Ref.¹).

We succeeded in reconstituting the 790 residue full-length BamA in lipid bilayers at a high protein-to-lipid ratio, allowing high-resolution ssNMR experiments in a functional environment. To reduce spectral crowding, we furthermore employed specific amino acid labeling. Finally, initial results show the beneficial effect of dynamic nuclear polarization (DNP) and the utility of high levels of protein deuteration. Taken together, these approaches significantly enhance the prospects for analyzing biological macromolecules such as membrane-embedded BamA on the amino-acid specific level.

^{1.} Renault M. et al., J. Am. Chem. Soc., 133 (12), 4175-4177 (2011)

Eumelanin and pheomelanin: a comparative analysis through solid-state NMR

G. Mollica,¹ F. Ziarelli,² P. J. Farmer,³ R. W. Martin,⁴ S. Viel,¹ A. Thévand¹ and P. Thureau¹

¹Laboratoire Chimie Provence, Universités Aix-Marseille I, II et III – CNRS, UMR 6264, 13397 Marseille, France; ²Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille, France; ³Department of Chemistry and Biochemistry, Baylor University, 76706 (TX) USA; ⁴Department of Chemistry, Natural Science 1, University of California Irvine, 92697 (CA) USA. E-mail: giulia.mollica@univ-provence.fr

Melanins are a class of pigments ubiquitously found in the animal and plant kingdoms [1]. They are associated with a variety of biological functions, including the pigmentation of skin, eyes and hair. The biological functions of melanins are often attributed to their unique chemical properties [2]. However, the exact molecular and supramolecular structure of eumelanin and pheomelanin remains, at present, not completely understood. Solid-state NMR spectroscopy represents a powerful method of investigation, especially for solid samples lacking long-range translational symmetry. Here, we present the results of the investigation of natural samples of black and red melanin extracted from human hair by means of 1D and 2D solid-state NMR techniques. A significantly different degree of local order and mobility between the two samples was revealed by ¹H and ¹³C data obtained at both 400 MHz and 1 GHz. In particular, an investigation of the dynamic properties of the two samples is supported by the quantitative analysis of the ¹H lineshape extracted from 2D WISE spectra [3], while a discussion of the structural features relies on ¹³C data.

1. Prota G., Melanins and Melanogenesis. Academic Press, San Diego, CA, 1992.

2. D'Ischia M, Napolitano A., Pezzella A., Meredith P., and Sarna T., Angew. Chem. Int. Ed., 48, 3914-3921 (2009).

3. Hediger S., Lesage A., and Emsley L., Macromolecules, 35, 5078-5084 (2002).

G. M. gratefully thanks the European Commission for funding (Marie Curie IEF-FP7-PEOPLE-2008-237339). Financial support from the TGIR RMN THC Fr3050 for conducting part of the research is also kindly acknowledged.

Bs211

Influence of fibrillization conditions on the structural heterogeneity and polymorphism exhibited by Alpha-Synuclein fibrils

Santhosh Ayalur-Karunakaran^{1,2}, Hamed Shaykhalishah¹, Wolfgang Hoyer¹, Henrike Heise^{1,2}

¹Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany ²Institute of Complex System (ICS-6), Research Center Jülich GmbH, 52425 Jülich, Germany, Email: s.ayalur-karunakaran@fz-juelich.de

 α -Synuclein (AS) fibrils are found in Lewy bodies that are the pathological signature of neurodegenerative diseases such as Parkinson's disease. The aggregation of AS fibrils into amyloid fibrils from monomers is considered the disease-causing toxic mechanism¹. This protein has been shown to form a variety of polymorphs²⁻⁵ as well as structural heterogeneity.

The morphology of *in-vitro* fibrillized AS is dependent on the fibrillization conditions such as the pH, salt concentration etc⁶. It therefore becomes imperative to understand the driving forces resulting in the polymorphism and the structural transitions exhibited by AS fibrils. In this study, using solid-state NMR, a technique now widely used to investigate fibrillar and other insoluble proteins, we have investigated the spectral and conformational features of AS fibrils fibrillized at different solution conditions. The spectral features indicate a strong dependence of the morphology on the solution conditions confirming the previous study, in addition to the existence of a form that is not known so far.

^{1.} Winner B., et al, , Proc. Natl. Acad. Sci. USA, 108, 4194-4199 (2008).

^{2.} Kloepper K.D., Woods W. S., Winter K. A., George J. M., Rienstra C. M., Protein Expression Purif. 48, 112–117 (2006).

^{3.} Heise H., Hoyer W., Becker S., Andronesi O.C., Riedel D., Baldus M., Proc. Natl Acad. Sci. USA, 102, 15871–15876 (2005).

^{4.} Vilar M., et al, Proc. Natl. Acad. Sci. USA, 105, 8637-8642 (2008).

^{5.} Comellas, G., et al, J. Mol. Biol., doi:10.1016/j.jmb.2011.06.026 (2011).

^{6.} Hoyer, W., Antony, T., Cherny, D., Heim, G., Jovin, T. M. & Subramaniam, V., J. Mol. Biology, 322, 383–393 (2002).

Segmental Isotope labeling of amyloid fibrils

Tobias Schubeis and Christiane Ritter

Department of Structural Biology, Macromolecular Interactions, Helmholtz Centre for Infection Research, Braunschweig Germany tobias.schubeis@helmholtz-hzi.de

Solid State NMR Spectroscopy (ssNMR) involving magic angle spinning (MAS) is capable of delivering high resolution structural information of weakly soluble complex biomolecules including amyloid fibrils and membrane Proteins. With increasing size or proteins containing a highly repetitive hydrophobic amino acid sequence, commonly found in amyloids, spectra of uniformly ¹³C¹⁵N labeled samples suffer from high spectral overlap. Several isotope labeling strategies including selective amino acid labeling or position specific labeling using partially isotope enriched carbon sources (2-glycerol, *1*-glucose) have been implemented. Nevertheless resolving of highly overlapped spectra and collecting of unambiguously intramolecular distance restrains remains challenging. Segmental isotope labeling by protein-*trans*-splicing has great potential to become an indispensable tool to overcome these problems as well as to analyze domains of large proteins. Exclusively intramolecular distance restrains can be elucidated. This labeling technique is accurately described for soluble proteins though not yet demonstrated for ssNMR. Here we show ssNMR investigations of segmental labeled Het-s (218-289) amyloid fibrils. Het-s molecules consist out of four β Sheets forming a left handed β solenoid. Split Intein fusion proteins containing each two β sheets have been generated and segmental labeled Het-s has been produced by in vitro *trans*- splicing. Chemical shifts obtained from BMRB can directly be assigned to the resonances in 2D¹³C-¹³C spectra.

REFERENCES:

- 1. Renault M., Angew Chem Int Ed, 49, 8346-57 (2010)
- Volkmann G and Iwai H, *Mol Biosyst*, 6, 2110-21 (2010)
 Wasmer C., *Science*, 319, 1523-6 (2008)

Bs213

Influences of the NSAID sulindac sulfide on the fibrillization properties of the Alzheimer's peptide amyloid-beta 40.

<u>Elke Prade</u>^{1,2}, Juan-Miguel Lopez del Amo^{1,3}, Uwe Fink³, Luise Richter⁴, Gerd Multhaup⁴, Bernd Reif^{1,2,3}.

 ¹ Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
 ² Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany;
 ³ Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany;
 ⁴ Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.

The Alzheimer peptides amyloid-beta 40 and 42 ($A\beta40/A\beta42$) are the main constituents of amyloid plaques, which cause neurodegeneration in Alzheimer's disease. They are derived from the amyloid precursor protein (APP) by cleavage involving the β - and γ -secretases. It has recently been shown that the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide decreases $A\beta42$ production, and that it binds directly to $A\beta42$ (1). Furthermore, it has been reported that sulindac sulfide inhibits the formation of fibrillar $A\beta$, prevents fibril elongation, and destabilizes pre-formed fibrils (2). The focus of this project is to describe the interactions of $A\beta40$ with the NSAID sulindac sulfide and to elucidate its influence on the fibrillization behaviour of $A\beta40$. In the presence of sulindac sulfide, aggregation of $A\beta40$ is enhanced. Solution-state NMR spectroscopy was employed to follow the $A\beta$ aggregation kinetics and interaction dynamics. The structures of the insoluble $A\beta40$ aggregates containing sulindac sulfide were investigated using MAS solid-state NMR. We find that sulindac sulfide induced aggregates yield well-dispersed spectra and are amenable for a structural analysis with solid-state NMR.

1. Richter et al, Proc Natl Acad Sci US A, 107, 14597-602 (2010).

^{2.} Hirohata et al, Neuropharmacology, 49, 1088-1099 (2005).

Conformational analysis of steroid hormone molecules in the lipid environment – A solid-state NMR approach

Ping-Chen Shih¹, Guo-Chian Li², Kai-Jay Yang¹, Wen-lung Chen² and Der-Lii M. Tzou^{1*}

¹Institute of Chemistry, Academia Sinica, 128, Academia Sinica, Sec. 2, Nankang Taipei 11529, Taiwan, ROC ²Department of Applied Chemistry, National Chia-Yi University, Chia-Yi,Taiwan, ROC (Email: Tzougate@gate.sinica.edu.tw)

Solid-state ¹H/¹³C cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy has been applied to two steroid compounds: dehydroepiandrosterone (DHEA) and spironolactone (SPI), to analyze their conformations at the atomic level.¹ In the absence of lipid, the high-resolution ¹³C CP/MAS NMR signals of DHEA and SPI in a powder form reveal multiple patterns, with splittings of 30–160 Hz, indicating the existence of multiple conformations.² In the mimic lipid environment formed by mixing 1,2-dimyristoyl-*sn*-glycero-3-phosphocholine (DMPC) and 1,2-diheptanoyl-*sn*-glycero-3-phosphocholine (DHPC) in a molar ratio 3:1, the resulting DHEA and SPI spectra revealed mostly *singlet* patterns, suggesting that these steroids undergo a conformational change leading to a specific conformation in the lipid environment. Evidences from chemical shift isotropy and anisotropy analysis indicate that DHEA might adopt conformations subtly different from that seen in solution and in the powder form. In conclusion, we demonstrate by solid-state NMR that the structures of DHEA and SPI may adopt slightly different conformations in different chemical environments.

REFERENCES:

1. Shih P.-C., Li G.-C., Yang K.-J., Chen W., and Tzou, D.-L. M., Steroids, 76, 558 (2011)

2. Yang J.-H., Ho Y., Tzou, D.-L. M., Magn. Reson. Chem., 46, 718 (2008)

ACKNOWLEDGMENTS: National Science Council of Taiwan and Academia Sinica

Bs215

SOLID STATE NMR OF PROTEINS SEDIMENTED BY ULTRACENTRIFUGATION

Ivano Bertini[‡], Claudio Luchinat[‡], Giacomo Parigi[‡], <u>Enrico Ravera</u>[‡], Bernd Reif[†], Camilla Rosa[‡], Paola Turano[‡]

‡ Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy † Technische Universitaet Muenchen, Dept. Chemie, Lichtenbergstrasse 4, D85747 Garching, Germany. E-mail: ravera@cerm.unifi.it

We demonstrate that solid-state (SS) NMR rotors behave as ultracentrifuges, creating a field of force of up a few million g and that, under MAS, a relatively large protein in solution sediments at the rotor walls, and its NMR signals are observable as if the protein were in the solid state.

The proof of principle of this new way of performing NMR spectroscopy is provided, showing examples based on ferritin, a 24-mer of 480 kDa molecular weight in the apo form. Because of the line broadening due to its size, it could be studied in solution only in the perdeuterated form. Apoferritin can be obtained in the microcrystalline state and provides high quality SS NMR spectra (1).

A ferritin solution was sealed in a 4 mm rotor without further manipulation and was spun at different rates: CP signals of immobilized molecules appear from 3 kHz (2). When spinning is stopped, the sample reverts to solution and the SS NMR signal is lost. Sedimented solutes NMR can overcome the size limitations of solution NMR without the need for sample manipulation required by solid state NMR. Large complexes and soluble prefibrillar states are attractive targets for this technique.

REFERENCES:

1. Turano P., Lalli D., Felli I.C., Theil E.C., Bertini I., Proc. Natl. Acad. Sci. USA, 107, 545-550 (2010)

^{1.} Bertini I., Luchinat C., Parigi G., Ravera E., Reif B., Turano P., Proc. Natl. Acad. Sci. USA, 108 10396-10399 (2011)

Adsorption of Phosphines and Phosphine Oxides on Silica Surfaces

Casie R. Hilliard¹, Yuan Yang², and Janet Blümel^{*1}

¹Department of Chemistry, Texas A&M University, College Station, TX, USA; chilliard@chem.tamu.edu ²Department of Chemistry, Heidelberg University, Heidelberg, Germany

Understanding the adsorption characteristics of phosphines and phosphine oxides on silica has great importance in many fields of chemistry, including reaction product purification,¹ surface acidity analysis of oxide supports,² and characterization of immobilized catalyst systems.³ Knowing more about the surface/adsorbate interactions and the mobilities of the compounds on the silica surface is of fundamental interest.

To gain deeper insight into these surface interactions, the adsorption of phosphines and phosphine oxides has been extensively studied by ³¹P solid-state NMR spectroscopy. Significant changes in the chemical shift anisotropy (CSA), the chemical shift, and the residual linewidth provide valuable information regarding the different behavior of the functional groups on the silica support.

Compounds containing multiple phosphine groups, with one being prevented mechanically from interacting with the surface and in this way serving as an intramolecular standard, are employed. They help to attribute the notable reduction of the CSA, when adsorbing phosphines on surfaces, to either partial quaternization of the phosphorus center or to the mobility of the compound on silica.

Here, we will present surprising new insights regarding the strength of the adsorption of phosphines and phosphine oxides on various silicas and their diverse modes of mobility.

REFERENCES:

1. Boutagy J., Thomas R., Chem. Rev., 74, 87-99 (1974).; O'Brien C. J., Chass G. A., et al., Angew. Chem. Int. Ed., 48, 6836-6839 (2009).; 2. Hayashi S., Chem. Lett., 38, 960-961 (2009).; 3. Blümel J., Coord. Chem. Rev., 252, 2410-2423 (2008).

Cs217

Evaluation of heterogeneous hydrogenation reaction mechanism and NMR imaging of catalytic hydrogenation by using parahydrogen

Kirill V. Kovtunov, Vladimir V. Zhivonitko, Igor V. Koptyug

International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk 630090, Russia (kovtunov@tomo.nsc.ru)

Parahydrogen-induced polarization (PHIP) phenomenon has become one of the very important tools for the investigation of homogeneous hydrogenation or hydrogen activation reactions mechanisms. The polarization providing by the using of parahydrogen in the catalytic hydrogenation reaction is orders of magnitude higher than thermal one, therefore due to the significant signal enhancement it is possible to study the fast reactions and identify intermediates of the catalytic reaction even that presented in the low concentration. Obviously, heterogeneous catalysts are much easier to separate from a reaction mixture than the homogeneous ones. Therefore, combination of PHIP with heterogeneous hydrogenation processes appears to be a promising route toward novel approaches for the production of hyperpolarized catalyst-free liquids and gases.¹ Furthermore, PHIP has a potential of becoming a useful tool for studying industrially important heterogeneous catalytic processes such as hydrogenation. PHIP may be observed in an aqueous phase heterogeneous hydrogenation of unsaturated amides and ethers using supported metal catalysts as well as for gas phase or organic-liquid phase hydrogenations. Therefore, the observation of PHIP produced with supported metal catalysts is very important for MRI applications and for the verification of reaction mechanisms of heterogeneous catalytic reactions.

This work was supported by the RAS (5.1.1), RFBR (11-03-93995-CSIC_a, 11-03-00248-a), SB RAS (67, 88), (NSh-7643.2010.3), Russian Ministry of Science and Education (02.740.11.0262), and the Council on Grants of the President of the Russian Federation (MK-1284.2010.3).

1. L.-S. Bouchard, S. R. Burt, M. S. Anwar, K. V. Kovtunov, I. V. Koptyug, A. Pines, Science, 319, 442-445, (2008)

³¹P Solid State NMR of the immobilized homogenous catalysts

Anna Grünberg, Xu Yeping, Hergen Breitzke and Gerd Buntkowsky

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstr. 20, D-64287 Darmstadt, Germany gruenberg@chemie.tu-darmstadt.de

The Wilkinson's catalyst RhCl(PPh₃)₃ and ruthenium complex RuCl₂(PPh₃)₃ were immobilized on the surface of functionalized silica materials. The structure of the modified silica surface and the immobilized catalysts complex is determined by a combination of different Solid State NMR methods. The successful modification of the silica surface is confirmed by ²⁹Si CP-MAS NMR experiments, which present the way of binding the organic groups to the surface of the mesopores. ³¹P-³¹P Jresolved 2-D MAS NMR experiments are conducted in order to characterize the binding of the immobilized catalyst to the amine groups of the linkers attached to the silica surface. The pure catalyst exhibits a considerable ³¹P-³¹P J-coupling, well resolvable in 2-D MAS NMR experiments. This Jcoupling is utilized to determine the binding mode of the catalysts to the linkers on the silica surface and the number of triphenylphosphine ligands which are replaced by coordination bonds to the amine groups. From the absence of any resolvable ³¹P-³¹P J-coupling in off magic angle spinning experiments, as well as slow spinning MAS experiments, it is concluded, that two triphenylphosphine ligands are replaced and that the catalyst is bonded to the silica surface via two linker molecules(1).

1. Gruenberg A., Xu Y., Breitzke H., Buntkowsky G., Chemistry Eur.J., 16, 6993-6998(2010),

Cs219

Radioliticaly generated paramagnetic centers in molecular sieves with adsorbed carbon monoxide.

Marcin Sterniczuk, Jacek Michalik, Jarosław Sadło, Grażyna Strzelczak

Institute of Nuclear Chemistry and Technology, Warsaw, Poland, e-mail: m.sterniczuk@ichtj.waw.pl

Free radicals are very often important intermediates in many processes of heterogeneous catalysis^[1,2]. However, in real catalytic system they are very reactive and short-lived, thus difficult to study. We generated free radicals in zeolites exposed earlier to small molecular adsorbates by γ -irradiation at liquid nitrogen temperature.

The combination of EPR measurements with quantum chemical computation has been applied in order to identify the radical species and define their geometry and reactivity. The EPR spectrum of H-ZSM-5/¹³CO sample γ -irradiated at 77 K and recorded at 300K shows two signals: anisotropic doublet **A**: with g_x=2.0005, g_y=2.0007, g_z=1.9991, A_x=30,4 mT, A_y=27,5 mT, A_z=25,9 mT and isotropic doublet **B**: with g_{iso}=2.0002, A_{iso}=21,3 mT. DFT calculations showed couple of stabilization sites for ^{*+}CO radical cation in ZSM-5 framework. It turned out that calculated values of hyperfine splittings for **A** doublet are close to the experimental value equal 27,7 mT for two different radical centers: [=Si-O-Al=][•]CO and [=Si-O-Si=]^{*+}CO. The second doublet **B** (A_{iso}= 21,3 mT) had not been observed earlier. The preliminiary DFT calculations showed that this signal could be assigned to the [=Si-O]⁺⁺CO center. We observed the EPR spectra of ^{+*}CO radicals also in other zeolites like X, LTA and MOR. The analysis of experimental results and DFT calculations is in progress.

References:

REFERENCES:

^{1.} Garcia H.,Roth H.D., Chem. Rev., 102, 3947-4007 (2002)

^{2.} Kiricsi I., Forster H., Tasi G., Nagy J.B., Chem. Rev., 99, 2085-2114 (1999)

Alons Lends, Edvards Liepinsh

Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia, alons@osi.lv

Carbonic anhydrases (CA) are proteins that are well-suited to serve as models in many types of studies in biophysics, bioanalysis, the physical-organic chemistry of inhibitor design, and medical chemistry. In vivo, these enzymes catalyze the hydration of CO_2 and dehydration of bicarbonate.

Sulfonamides are well known inhibitors of CA. In our studies we used NMR and molecular modelling approaches to investigate the reason for the differences in the inhibition activities of compound 1 to CAI (0.63 μ M) and CAII (83.4 μ M).

The t1p experiments show specific binding of 1 only to CAI. Molecular modelling methods revealed different coordination types of the C=O group in compound 1 to the enzyme Zn^{2+} in CAI and CAII which explain different inhibitor properties.

ACKNOWLEDGMENTS:

This work was supported bu the ESF project No. 2009/0197/1DP/1.1.1.2.0/09/APIA/VIAA/014

Cs221

Studies on Precatalytic Systems of Copper-Catalyzed 1,4-Addition Reactions of Trialkylaluminum Reagents

Felicitas von Rekowski, Katrin Schober, Ruth M. Gschwind

Department of Organic Chemistry, University of Regensburg, Regensburg, Germany, Felicitas. Von-Rekowski@chemie.uni-regensburg.de

The progress in chemical industry and research was enhanced by the highly efficient synthesis of enantiopure compounds using non-chiral substances and cheap but selective reagents. For the C-C bond formation while creating a new chiral carbon atom the enantioselective catalytic 1,4-addition to α , β -unsaturated systems is one of the most attractive methods.^[1-2] The usage of a catalytic system consisting of copper(I) salts and chiral phosphoramidite ligands offers a lot of advantages, like excellent enantioselectivity, high chemo- and regioselectivity and low costs compared to many other applied catalytic systems.

For the elucidation of the low temperature structures and the temperature dependency of those Cu(I) complexes, we performed NMR experiments with different copper(I) salts and phosphoramidite ligands. Recently we were able to identify a precatalytic structure with a mixed trigonal/tetrahedral coordination on the copper atom.^[3] This complex structure provides also a free coordination site which is necessary for the assumed transmetallation reaction with R_2/R_3M (M=Mg, Zn, Al) species.

Catalytic oxidation of benzene on Cu-supported ZSM-5 and Y zeolites. Spin trapping of the transient radical species.

Alexander Kromer, Emil Roduner

Institute of Physical Chemistry, University of Stuttgart, Germany. A.Kromer@ipc.uni-stuttgart.de

The formation of the transient radical species during the liquid phase adsorption of benzene on Cusupported H,Na-ZSM-5 and H,Na-Y zeolites was investigated by EPR spectroscopy using the spin trap method. The liquid phase adsorption of benzene on Cu-containing ZSM-5 and Y zeolites leads to the formation of various transient radical species which play a crucial role in the oxidation of benzene to phenol with molecular oxygen. We have investigated the dependence of the various types and

activation methods of the catalyst and the influence of oxygen on the formation of the transient radicals as well. $\cdot OOC_6H_5$ radicals were formed mainly when the acid and sodium form of Cu/ZSM-5 catalyst calcined in O₂ were used.

The initiation of bubbling oxygen to the benzene/catalyst suspension leads to the formation of other radical intermediates: $\cdot OC_6H_5$, $\cdot C_6H_5$ and di-tert-butyl-nitroxide derivatives that can form by oxidation of DMPO. No radical components could be detected after benzene adsorption on Cu/HY and Cu/NaY zeolites.

 Ene A.B., Bauer M., Archipov T., Roduner E., *Phys. Chem. Chem. Phys.*, 12, 6520-6531 (2010)

Fig.1. EPR experimental and simulated spectra of DMPO radical adduct following benzene adsorption on Cu/HZSM-5 in cyclohexane.

Ст223

Similarity between NMR spectra: from binary trees to structure prediction

Andrés M. Castillo¹, Lalita Shaki¹, Luc Patiny² and Julien Wist³

¹Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia; ²Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³Department of Chemistry, Universidad del Valle, Cali, Colombia. amcastillor@unal.edu.co

Today NMR techniques are good candidates for high-throughput applications such as profiling of metabolic pathways, quality control, screening, etc. We present a method to estimate the similarity between NMR spectra based on binary trees and use this former to predict a vector of structural descriptors.

Nuclear spins are exquisitely sensitive to subtle modifications of their environments that reflect in the position of their NMR signals. Standard distance measurements fail to recognize those shifts and thus underestimate the real similarity. To address this issue, Pretsch and coworkers¹ introduced a comparison based on subsequent division or the spectrum into bins. Here we present a solution based on binary trees build from the position and intensity of the signals. Trees are more suitable for the analysis of multidimensional data, since they focus only on the regions of the spectra that contain signals, thus describing the data in a very compact form.

The accuracy of the described method allows its use to predict structural descriptors, such as aromatic rings, double bonds, etc. Therefore, the trees of 296 representative molecules were paired with their corresponding vector of structural descriptors and a joint-kernel² was calculated that correlates features of the spectra with features of the structure. This joint-kernel allows to predict the descriptors corresponding to any unknown tree. The predictions were found promising and represent a step toward structural elucidation.

^{1.} Konte M., Wilson K., Chechik V., *Rev. Sci. Instrum*, 81, 104102-1 (2010)

^{1.} Bodis, L., Ross, A and Pretsch, E., Chemometrics and Intelligent Laboratory Systems, 85, 1-8 (2007)

^{2.} Hofmann, T., Schölkopf, B. and Smola, A.J., The Annals of Statistics, 36, 1171-1220 (2008)

Using new computer approaches for biomedical researches.

Armen Kirakosyan, Anahit Grigoryan

State Engineering University of Armenia, Department of Chemical Technology and Environmental Engineering, Yerevan, Armneia. kirakosyan armen@yahoo.com

We suggested using as novel statistical insights a computer program for modeling different diseases. The important link in the biomedicine is an analytical processing of experimental results. By connecting fields such as medicine and biochemistry with mathematical simulation use MatLab computation program. Many attempts have been made to better characterize therapeutic properties of drug plant extracts for using in future by diseases. One of the stronger sites of suggesting computer program is repeated using of special program, getting up as M-files. Then by help MatLab-function's plot we has obtained the graphical view of study biological processes at its development. The approximations of that kinetic curve allow us to make interpolation by polynomial-function with necessary power. Then we obtain a coefficient and roots of polynomials exactness and other statistical insights. At the same time testable and predictive models of pathways influense plant extracts on lipid peroxidation which are useful for efficient experimental design and bioengineering and the network-based design of drugs and therapies. The using of MatLab by analytical processing of experimental results to allow us with once program file to get the results, which is a basic at the same time evaluation a lot of kinetic parameters for studying processing in whole. That is methods for the modeling of living systems to applications in biotechnology and medicine.

Ст225

Multiple quantum NMR dynamics of systems of equivalent spins: theory and computer simulations

Serge I. Doronin, Edward B. Fel'dman, Alexander I. Zenchuk

Theoretical Department of Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russia; efeldman@icp.ac.ru

We consider the multiple quantum (MQ) NMR dynamics of a system of equivalent spins (s=1/2). A gas of spin-carrying molecules (atoms) in nanocavities can be considered as an example of such a system [1]. Since the averaged non-secular two-spin/two-quantum Hamiltonian describing MQ NMR dynamics of such systems depends on only one coupling constant, this Hamiltonian commutes with the square of the total spin angular momentum I^2 . We use the basis of common eigenstates of I^2 and the projection of I on the external magnetic field for an investigation of MQ NMR dynamics [1].

The developed approach allows us to find the dependencies of intensities of MQ coherences on their orders (the profiles of MQ NMR coherences) in systems consisting of 600 spins and even more. It is shown with computer simulations that the stationary MQ NMR profile in the considered system is an exponential one [1]. We investigate also the effect of the second order correction of the average Hamiltonian theory on the profile of MQ NMR coherences [2].

We study the decay of MQ NMR coherences due to dipole-dipole interactions on the evolution period of the MQ NMR experiment in systems consisting of 200-600 equivalent spins. It is shown that the relaxation time decreases with the increase in MQ coherence order and in the number of spins [3].

^{1.}Doronin S.I., Fedorova A.V., Fel'dman E.B., Zenchuk A.I., Journal of Chem.Phys., Multiple quantum NMR dynamics of spin-1/2 carrying molecules of a gas in nanopores, vol.131, pp.104109-1 – 104109-7 (2009)

^{2.} Doronin S.I., Fedorova A.V., Fel'dman E.B., Zenchuk A.I., *Physical Chemistry Chemical Physics, Multiple quantum NMR of spin- carrying molecules in nanopores: high order corrections to the two-spin/two-quantum Hamiltonian, vol.12, pp.13273-13279 (2010)*

^{3.} Doronin S.I., Fel'dman E.B., Zenchuk A.I, Journal of Chem.Phys., Numerical analysis of relaxation times of multiple quantum coherences in the system with a large number of spins, vol.134, pp.034102-1 – 034102-7 (2011)

Protein Structure Analysis via Chemical Shifts from a Side-Chain Perspective

<u>Aleksandr B. Sahakyan</u>,¹ Wim F. Vranken,² Andrea Cavalli,¹ Michele Vendruscolo¹

¹Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; ²Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium; aleksahak@cantab.net

In contrast to the ever-growing use of protein backbone chemical shifts for biomolecular structure determination, there have been a few studies concerned with chemical shifts for side-chains. It would be highly desirable to extend such studies, since side-chains, naturally incorporated in proteins, are excellent probes of biomolecular structure, dynamics and recognition. In particular, proteins are rich of side-chain methyls and conjugated rings, many of which, owing to their hydrophobic nature, are more frequently placed at the inner core and protein-protein interfaces. This work presents the development and the use of the structure-based predictors for methyl and aromatic side-chain chemical shifts by incorporating terms convenient for the introduction of restraining forces in molecular dynamics simulations. The predictors are tested for their usefulness in validation of protein structures and dynamical ensembles and are of great importance for exploring protein-protein and protein-ligand assembly and interactions. Web server and stand-alone implementations are created to facilitate the usage of the developed tools. Their performance is demonstrated to already provide an opportunity for their immediate implementation in restrained simulations to refine protein structure and dynamics from the side-chain perspective.

Ст227

A Tabu Search Approach for the NMR Protein Structure-Based Assignment Problem

Gizem Çavuşlar¹, Bülent Çatay¹ and <u>Mehmet Serkan Apaydın^{1,2}</u>

¹ Sabanci University, Faculty of Engineering and Natural Sciences, Tuzla 34956 İstanbul, Turkey ²İstanbul Şehir University, Üsküdar 34662 İstanbul Turkey. E-mail: apaydin@sehir.edu.tr

The key bottleneck of NMR studies is to map the NMR peaks to corresponding nuclei, also known as the assignment problem. Structure Based Assignment (SBA) is an approach to solve this computationally challenging problem by using prior information about the protein obtained from a homologous structure. Apaydin et al. (2010) formulated SBA as a linear assignment problem with additional Nuclear Overhauser Effect (NOE) constraints, which can be solved within Nuclear Vector Replacement's (NVR) (Langmead et al., 2003) framework. This approach (NVR-BIP) used NVR's scoring function and data types, and also gave the option of using CH and NH RDCs, instead of NH RDCs which NVR requires. In this paper, we prove that this problem is NP-hard and propose a tabu search algorithm (NVR-TS) equipped with a dynamic tabu list structure and guided perturbation mechanism to efficiently solve it. NVR-TS uses a quadratic penalty relaxation of NVR-BIP where the violations in the NOE constraints are penalized in the objective function. We also implemented a memory structure that reports k best solutions. Experimental results indicate that our algorithm finds the optimal solution on NVR-BIP's data set which consists of 7 proteins with 24 templates (31 to 126 residues). Furthermore, it achieves high assignment accuracies on two additional large proteins, MBP and EIN (348 and 243 residues, respectively), which NVR-BIP failed to solve.

REFERENCES:

3. Çavuşlar G., Çatay B., Apaydın M.S. Sabanci University Technical Report SU_FENS_2011/0001 (2011)

^{1.} Apaydın M. S., Çatay B., Patrick N., Donald B.R. The Computer Journal, 54 (5), 708-716 (2011)

^{2.} Langmead C.J., Donald B.R. J. Biomolecular NMR, 29(2), 111-138 (2004)

Robust Refocussing Pulses Which Facilitate Heteronuclear J-Evolution

Sebastian Ehni, Tony Reinsperger, Burkhard Luy.

Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Email: Tony.Reinsperger@student.kit.edu, Burkhard.Luy@kit.edu

Coherence transfer elements like the INEPT-step are indispensible building blocks for multidimensional NMR spectroscopy as they efficiently transfer magnetization via heteronuclear J-couplings.

Two effects affect the performance of INEPT-transfer steps: on the one hand, pulse imperfections will lead to phase distortions and decreased signal-to-noise; on the other hand, relaxation causes magnetization losses during the transfer step that should be avoided by keeping the overall experiment time to a minimum.

A method is presented to numerically derive broadband 180° shaped pulses (e.g. for ¹H and ¹³C), which compensate offset and B₁-inhomogeneity effects and at the same time allow heteronuclear coupling evolution during the pulse. Having the same effect as moving a part of the adjacent delay times into the shaped pulse, the overall length of the pulse sequence is decreased and corresponding losses due to relaxation are minimized.

Ст229

NMR-Guided Protein-Ligand Docking

Oliver Korb, Heiko M. Möller, and Thomas E. Exner

Department of Chemistry and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany, Thomas.Exner@uni-konstanz.de

State-of-the-art docking approaches used for the prediction of protein-ligand complexes in the drug development process are still only able to predict 60 to 80 % of the complexes correctly. This can be attributed to the severe approximations of the scoring functions due to efficiency reasons. As one possibility to overcome these deficiencies we will demonstrate that the combination of our docking tool PLANTS^[1,2] with experimental data obtained from NMR experiments can highly increase the reliability of the predicted docking poses. For the complex of the antibody SM3 with its epitope, the ChemPLP scoring function^[2] complemented with trNOE and STD distance constraints is able to predict the complex structure very close to the crystallographic one as the best-ranked docking pose^[3]. The advantage of the new approach is that the used experimental data is relatively easy to obtain (compared to a full structure determination of the complexes by NMR or X-ray) since the experiments do not require isotope-labeled samples and have no size limitation for the receptor protein.

2. Korb O., Stützle T., Exner T. E., J. Chem. Inf. Model., 49, 84-96 (2009)

^{1.} Korb O., Stützle T., Exner T. E., Swarm Intell., 1, 115-134 (2007)

^{3.} Korb O., Möller H. M., Exner T. E., ChemMedChem, 5, 1001-1006 (2010)

Analytical Error Estimates for the Measurement of Scalar and Residual Dipolar Couplings in HCH-Type Spinsystems

Alexander R. Hoyer, Burkhard Luy

Institut für Organische Chemie, Karlsruhe Institut für Technologie, Fritz-Haber-Weg 6, 76131 Karlsruhe; alexander.hoyer@student.kit.edu

Scalar and residual dipolar couplings (RDC) of spin ½ nuclei are frequently used to determine conformation, configuration and constitution of organic molecules [1,2]. For ABX like spin systems like HCH and CH₂ groups, which are often seen in sugars, peptides and small molecules, the strong coupling derogates the possibility to easily evaluate the coupling by measuring the corresponding signal splitting. With the analytical solution of the ABX spin system [3-5], derived for a number of different operators active in various standard ¹H,¹³C-NMR experiments, it is possible to gain a closed expression for the experimental error. With this expression, an attempt is made to correct the error and gain the true underlying couplings.

REFERENCES

- 1. Kummerlowe G., Luy B, TRAC, 28, 483-493 (2009), Kummerlowe G., Luy B, Annu. Rep. NMR Spectrosc, 68, 193-232 (2009)
- 2. Kummerlowe G., Crone B., Kretschmer M., Kirsch S., Luy B., Angewandte Chemie Int. Ed., 50, 2643-2645 (2011)
- 3. Edgar M., Emsley J. W., Furby M. I. C., J. Mag. Res., 128, 105-113 (1997)
- 4. Pople J. A., Schneider W. G., Bernstein H. J., High-resolution Nuclear Magnetic Resonance., McGraw-Hill, (1959)
- 5. Slichter C. P., Principles of Magnetic Resonance, 3rd. Ed., Springer (1996)

Ст231

Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

Jakob T. Nielsen¹, Hamid R. Eghbalnia and Niels Chr. Nielsen¹

¹Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, A arhus University, DK-8000 Aarhus C, Denmark. Email: jtn@chem.au.dk. ^bDepartment of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert B. Sabin Way, Cincinnati, OH 45267-0576.

The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structurechemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.

DFT Analysis of 3D Structure and NMR Parameters in Sulfated Oligosaccharides.

Miloš Hricovíni

Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia hricovini@savba.sk

Theoretical calculations were aimed at analysis of 3D structure of sulfated oligosaccharides and the effect of counter-ions upon their structures using density functional theory. Both B3LYP/6–311++G** and M05-2X/6–311++G** methods have been used for geometry optimization evaluating explicit solvent molecules. Optimized geometries showed considerable influences of counterions (Na⁺ and Ca²⁺) upon pyranose rings and the glycosidic linkage conformation. Solvent had only a limited influence upon magnitudes of proton-proton spin-spin coupling constants. Interatomic distances, bond and torsion angles indicated that the structure of the 2-O-sulfated iduronic acid residue influenced geometry of the N,6-sulfated glucosamine residue. Three-bond proton-proton spin-spin coupling constants agreed well with experimental data for both Na⁺ and Ca²⁺ counterions. Analysis also showed that the Fermi contact term was not always dominant and that paramagnetic and diamagnetic contributions considerably influenced magnitudes of proton-proton spin-spin coupling constants.¹

REFERENCES 1. Hricovíni M., J. Phys. Chem. B 115, 1503-1511 (2011)

Ст233

EPR and DFT Study of Gamma Irradiated 2,6–di-tert-butyl-4-methylphenol Single Crystal

Ercan Türkkan^{1*}, Ömer Dereli¹, Ülkü Sayin², Recep Tapramaz³

¹Department of Physics Education, University of Selçuk, Konya, Turkey; ²Department Physics, University of Selçuk, Konya, Turkey; ²Department Physics, University of Ondokuz Mayıs, Samsun, Turkey; *Corresponding author. E-mail address: eturkkan@selcuk.edu.tr (Ercan Türkkan).

Postei

Single crystal of gamma irradiated 2,6–di-tert-butyl-4-methylphenol was investigated using an electron paramagnetic resonance (EPR) technique at different orientations in the magnetic field at room temperatures. Taking into consideration the chemical structure and the experimental spectra of the irradiated single crystal of 2,6–di-tert-butyl-4-methylphenol, we assumed that one phenoxyl type paramagnetic species was produced having an unpaired electron localized at the methyl fragment side of the phenyl ring. Depending on this assumption, one possible radical was modeled using the B3LYP/6-311+G(d) level of density-functional theory (DFT). EPR parameters were calculated for these modeled radical using the B3LYP/TZVP and B3LYP/EPR-III level. The averaged value of isotropic hydrogen hyperfine coupling constants of a rapidly rotating methyl functional group of phenoxyl radical is calculated for the first time. Theoretically calculated values of the modeled radical are in reasonably good agreement with the experimental data determined from the spectra (differences in averaged coupling constant values smaller than 5 %, and differences in isotropic g values fall into 1 ppt).

Objective Identification of Residue Ranges for the Superposition of Protein Structures

Donata K. Kirchner^{1,2,†}, Peter Güntert^{1,2,3}.

¹Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany; ²Frankfurt Institute for Advanced Studies, Goethe-University, Frankfurt, Germany; ³Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan [†]kirchner@bpc.uni-frankfurt.de

We present an automated and objective method for finding residue ranges for the superposition and analysis of structure bundles resulting from NMR structure calculations. The method is implemented in an algorithm, CYRANGE¹, that yields appropriate residue ranges in most commonly occurring situations, including low-precision structure bundles, multi-domain proteins, and protein complexes. Residue ranges are chosen to comprise as many residues of a protein domain that increasing their number would lead to a steep rise in the RMSD value. The ranges are determined by first clustering residues into domains, and then refining for each domain the initial choice of residues. A penalty for the opening of gaps favours contiguous residue ranges in order to obtain a result that is as simple as possible, but not simpler.

CYRANGE correctly identifies ordered regions, and global structure superpositions based on the CYRANGE residue ranges allow a clear presentation of the structure. In the majority of cases, the residue ranges from CYRANGE contain fewer gaps and cover considerably larger parts of the sequence than those from other methods, without significantly increasing the RMSD values. CYRANGE thus provides an objective and automatic method for standardizing the choice of residue ranges for the superposition of protein structures.

At http://www.bpc.uni-frankfurt.de/cyrange.html CYRANGE is freely available as a web service and as a stand-alone program.

1. Kirchner D. K. and Güntert P., BMC Bioinformatics, 12, 170 (2011)

Ст235

Optimal Control of Spins in the Presence of Relaxation and Radiation Damping: Applications in NMR Spectroscopy and Imaging

<u>Yun Zhang</u>¹, Michael Braun¹, Franz Schilling¹, Martin Janich¹, Steffen J. Glaser¹ Marc Lapert², Elie Assémat², Bernard Bonnard², Dominique Sugny²

¹Department of Chemistry, Technische Universitaet Muenchen, Garching, Germany; ²Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Bourgogne, Dijon Cedex, France. yun.zhang@mytum.de

In NMR, one important problem is how to steer a magnetization vector from a given initial state in minimum time or with minimum rf energy to a desired target state in the presence of relaxation and experimental bounds on the maximum rf amplitude. Here we present the solution of this problem based on recently developed analytical techniques of optimal control theory¹. The analysis not only provides a thorough understanding of the design problems and of the structure of the optimal solutions, but also yields significantly improved pulse sequences for practical applications. The extensions of this work include radiation damping effects² and the simultaneous control of more than one spins³. The analysis of the optimal control of more than one spins can be applied to robust control problems and to maximize the contrast between spins with different transverse and longitudinal relaxation rates in magnetic resonance imaging. In addition, a comparison between the geometrical method and the numerical GRAPE algorithm⁴ is presented.

REFERENCES:

^{1.} Lapert M., Zhang Y., Braun M., Glaser S. J., Sugny D., Phys. Rev. Lett., 104, 083001-083004 (2010)

^{2.} Zhang Y., Lapert M., Sugny D., Braun M., Glaser S. J., J. Chem. Phys., 134, 054103-054108 (2011)

^{3.} Assémat E., Lapert M., Zhang Y., Braun M., Glaser S. J., Sugny D., Phys. Rev. A, 82, 013415-013420 (2010)

^{4.} Lapert M., Zhang Y., Braun M., Glaser S. J., Sugny D., Phys. Rev. A, 82, 063418-063424 (2011)

SIMPSON: Explore the limits of numerical simulations

Zdeněk Tošner,^{1,2} Rasmus Andersen,² Thomas Vosegaard,² and Niels Christian Nielsen²

¹NMR laboratory, Faculty of Science, Charles University in Prague, Czech Republic; ²Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Denmark.

Over the years from the first release in 2000, the open-source SIMPSON simulation program for solid-state NMR spectroscopy^{1,2} has attracted a significant attention in the community for its versatility and simplicity. Although other programs has been released (e.g. SPINEVOLUTION³), still a very high fraction of the solid-state NMR papers concerned with method developments or interpretation of data from simple to advanced experimental protocols is accompanied with simulations obtained using SIMPSON. Governed by development of increasingly powerful computer systems, simulation software packages, and efficient numerical algorithms, the area of applications of solid-state NMR simulations is steadily increasing. We wish to follow the recent trends and present here substantially speed-enhanced version of SIMPSON, really enabling to explore the limits of numerical simulations for rotating solids with time varying Hamiltonians. Through optimization of underlying matrix operations, internal data structures and exploitations of modern multiple cores computers as well as large-scale high-performance computing facilities (such as clusters and grids) it is now possible to simulate, as a selected example, proton driven spin diffusion experiment with 15 spins (2 carbons and 13 protons) in full detail of Hilbert space. SIMPSON remains an open-source program with all previous functionality (including optimal control tools²) and can be implemented on virtually every computer platform.

REFERENCES:

- 1. Bak M., Rasmussen J. T., and Nielsen N. C., J. Magn. Reson. 147, 296-330 (2000).
- 2. Tosner Z., Vosegaard T., Kehlet C. T., Khaneja N., Glaser S. J., and Nielsen N. C., J.Magn. Reson. 197, 120-134 (2009),
- 3. Vestorth M., and Griffin R. G., J. Magn. Reson. 178, 248-282 (2006).

Ст237

Protein structure validation by multiple linear regression RMSD prediction

Anurag Bagaria¹, Victor Jaravine¹, Yuanpeng J. Huang², Gaetano T. Montelione², and Peter Güntert^{1,3}

¹Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ²Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA; ³Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan. Presenting author email: anurag.bagaria@bpc.uni-frankfurt.de.

Large-scale initiatives to obtain spatial protein structures by experimental or computational means have accentuated the need for the critical assessment of protein structure prediction methods. These include blind test projects like the Critical Assessment of protein Structure Prediction (CASP) and the Critical Assessment of protein Structure Determination by NMR (CASD-NMR). An important aim is to establish structure validation criteria that can reliably assess the accuracy of a new protein structure. A universal structural quality assessment method should combine multiple individual scores in a meaningful way, which is challenging because of their different measurement units. We present a method based on multiple linear regression (MLR) that combines diverse protein structure quality scores into a single quantity with intuitive meaning, namely the predicted coordinate RMSD value between the present structure and the (unavailable) "true" structure (MLR-RMSD). The correlation coefficients between actual (model vs. reference from PDB) and predicted (model vs. "true") RMSDs were 0.78 and 0.77, for two datasets from CASD-NMR and CASP, respectively, which is considerably higher than those for the individual scores (-0.24–0.64). The MLR-RMSD can thus predict the accuracy of protein structures more reliably than individual coordinate-based quality scores.

1. Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HRA, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AMJJ, Nature Methods 6:625-626. (2009) 2. Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A., Proteins 77:1-4. (2009)

^{3.} Bhattacharya A, Tejero R, Montelione GT., Proteins 66:778-795. (2007)

Automated protein structure calculation from solid-state NMR data using the program CYANA

Lena Buchner^{1,2,†}, Clemens Glaubitz¹, Peter Güntert^{1,2,3}

¹Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany;²Frankfurt Institute for Advanced Studies, Goethe-University, Frankfurt am Main, Germany;³Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan

[†]buchner@bpc.uni-frankfurt.de

It has been shown in several cases that protein structure calculation from solid-state NMR data is possible.¹⁻³ However, the majority of these calculations have been performed on microcrystalline model proteins of known structure and essential upper distance limits for the structure calculation were obtained by manual assignment of cross peaks. Due to broad lines and significant overlap, the manual assignment of cross peaks without using structural information is time consuming and prone to errors. First approaches to automation have been shown by Fossi *et al.*⁴ and Van Melckebeke *et al.*⁵

We recorded a set of 2D solid-state NMR spectra of the microcrystalline model protein GB1 to investigate automated distance restraint assignment and structure calculation using the program CYANA, which is well established in solution NMR. As a consequence of broad lines, overlap and, so far, the limitation to two spectral dimensions, high assignment ambiguities make it challenging to obtain accurate structures. Several attempts to increase the reliability and accuracy of automated protein structure determination on the basis of solid state NMR data are presented.

- 1. Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K. & Oschkinat, H., Nature, 420,98-102 (2002)
- 2. Manolikas, T., Herrmann, T. & Meier, B. H., J. Am. Chem. Soc., 130, 3959–3966(2008)
- 3. Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A. B., Riek, R. & Meier, B. H., Science, 319, 1523 (2008)
- 4. Fossi, M., Castellani, T., Nilges, M., Oschkinat, H. & van Rossum, B. J., Angew. Chem. Int. Ed., 44, 6151-6154 (2005)
- 5. Van Melckebeke, H., Wasmer, C., Lange, A., Eiso, A. B., Loquet, A., Böckmann, A. & Meier, B. H., J. Am. Chem. Soc., 132, 13765-13775 (2010)

Ст239

Automated Assignment of NMR Spectra

<u>Elena Schmidt</u>¹, Peter Güntert^{1,2}

¹Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Frankfurt Institute for Advanced Studies, Goethe-University, Frankfurt am Main, Germany; ²Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan Email: schmidt@bpc.uni-frankfurt.de

Fully automated structure determination by NMR¹ requires accurate algorithms for the chemical shift assignment. These algorithms have to solve the problem of finding the correct chemical shift for the atoms of a protein using peak lists from a set of several multi-dimensional spectra.

Mapping a network of expected peaks, predicted on the basis of the protein sequence to appear in a spectrum according to its magnetisation transfer pathways, to the measured peaks in these spectra leads to an assignment of the measured frequencies to the atoms. This approach was first implemented in the software GARANT² (General Algorithm for Resonance Assignment) that gives reasonable solutions for good quality data and can in principle be used for every combination of spectra. The algorithm improves a randomly created starting generation by using a genetic and a local optimisation procedure iteratively.

To make the approach more applicable for common use we have reimplemented it as part of the CYANA³ software and improved its reliability and efficiency. We enhanced the optimisation routine and introduced a new scoring scheme with the aim of improving the accuracy of the assignment. The algorithm is able to find the correct assignments of the atoms on the basis of manually or automatically prepared experimental peak lists for any combination of through-bond and through-space spectra. The reliability of the assignments depends on the extent and quality of the input data.

^{1.} López-Méndez B. & Güntert P., J. Am. Chem. Soc, 128, 13112-13122 (2006)

^{2.} Bartels, C., Güntert, P., Billeter, M. & Wüthrich, K., J Comput. Chem., 18, 139-149 (1997)

^{3.} Güntert, P., Mumenthaler, C. & Wüthrich, K., J. Mol. Biol., 273, 283-298 (1997)

MagRO-Assign: a tool for automated sequence specific assignment of chemical shifts for NMR signals of protein backbone

<u>Naohiro Kobayashi¹</u>, Ayako Furukawa², Soichiro Kitazawa³, Takashi Nagata⁴, Ryo Kitahara³, Masato Katahira² and Toshimichi Fujiwara¹.

¹Institute for Protein Research, Osaka University,3-2 Yamadaoka, Suita 565-0871, Japan, ²Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan, ³College of Pharmaceutical Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu 525-8577, Japan, ⁴Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan naohiro@protein.osaka-u.ac.jp

The recent targets for biomolecular NMR spectroscopy tend to be complicated, such as protein oligomer, protein-ligand complex and multi-domain proteins. NMR signals from the polypeptide backbone are used to analyze basic properties of proteins such as folding/unfolding, protein-protein interaction and protein-ligand interaction. However, it would be very usual to encounter problems related to missing and duplication of NMR signals. These problems can be mainly caused by a chemical exchange phenomenon between a few conformational states such as *cis/trans* isomerization of proline, open/closed conformations and fold/unfold of proteins. In these cases, conventional automated assignment protocols require the number of conformational states *a priori*.

MagRO-Assign package includes programs for automated sequence specific assignments based on segment extension and simulated annealing using assignment matrix, which provides multiple sets of signal assignments corresponding to major and minor conformations without information of the number of conformational states. We have demonstrated the feasibility of our method for backbone assignments of two proteins: asymmetric dimer protein (124 amino acid residues) and 159 residue protein which are in slow exchange between two conformational states. We will show the detail of the program package and report present achievements in the poster presentation.

Ст241

NMR structure calculation of protein symmetric aggregates

Benjamin Bardiaux¹, Barth J. van Rossum¹, Michael Nilges² and Hartmut Oschkinat¹.

¹ NMR-supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany² Unité de Bioinformatique Structurale, Institut Pasteur, Paris, France. (bardiaux@fmp-berlin.de)

Dealing with symmetric oligomeric structures is an important issue in the context of NMR for structural proteomics: it is estimated that about 60% of the proteins in every genome are homooligomers^{1,2}. However, structure determination of symmetric aggregates by NMR is severely hampered by the difficulty to differentiate inter-monomeric and intra-monomeric correlations. Algorithmic support for assignment seems therefore particularly important for symmetric oligomers.

Several methods have been proposed but they generally rely on the knowledge of the monomer structure, which is unrealistic for *de novo* structure determination by NMR. A classical approach based on Ambiguous Distance Restraints³ proved to be efficient for structure determination of symmetric homo-dimers from unassigned NOEs or solid-state NMR data. Still, this strategy has limited convergence properties and is somewhat difficult to apply for higher symmetry.

Here, we present a general method, based on strict symmetry relations, for structure calculation of high-order symmetric aggregates investigated by NMR⁴. The approach is not limited in terms of symmetry group and thus finds direct applications in both solution- and solid-state NMR for elucidation of oligomer, membrane protein or fibril structures.

^{1.} Goodsell, D. S., & Olson, A. J., Annual Review of Biophysics and Biomolecular Structure, 29, 105-153 (2000)

^{2.} Levy, E. D. et al., PLoS Computational Biology, 2, e155 (2006)

^{3.} Nilges, M., Proteins: Structure, Function, and Bioinformatics, 17, 297-309 (1993)

^{4.} Nilges, M., Malliavin, T. E., & Bardiaux, B., Encyclopedia of Magnetic Resonance (2010)

Comparative DEER- & FRET distance determination in simulation & experiment

Daniel Klose^{1,2}, Dina Grohmann², Johann P. Klare¹, Finn Werner²,

Christopher W.M. Kay², Heinz-Jürgen Steinhoff¹

¹Department of Physics, University of Osnabrück, Osnabrück, Germany; ²Institute of Structural and Molecular Biology, UCL, London, UK.

Since experimental inter label distances for structural elucidation of macromolecular complexes from DEER and or FRET cannot directly be translated to constraints in a structural model, different simulation techniques are used to provide orientation distributions of labeled side chains.

Here we present results on a model system, the subunits F and E from the archaeal RNA polymerase¹, which form a stable heterodimer (F/E).² We focus on a comparative evaluation of experimental and simulated distance distributions for DEER and FRET. Cysteine mutants within F/E were labeled for DEER- or FRET experiments. Accordingly, simulated orientation distributions of the labeled side chains are calculated using conformational sampling³ by molecular dynamics- (MD) as well as by Monte Carlo (MC) simulations and, for the spin labels, by a rotamer library based approach⁴. This versatile approach allows not only for comparison of experimentally determined interlabel distances (or distributions) to the simulated orientation distributions for both EPR- & FRET labels, but additionally, it allows for cross validation of the different simulation techniques and protocols. For spin labels the comparison shows reasonable agreement, especially in terms of mean distances, while for FRET labels simulations prove to be possible yet more challenging.

References:

[1] Werner F., Trends Microbiol. 16, 247-250 (2008). [2] Todone F., Brick P., Werner F., Weinzierl R.O., Onesti S., Mol. Cell 8, 1137-1143 (2001). [3] Beier C., Steinhoff H.-J., Biophys J. 91, 2647-2664 (2006). [4] Polyhach Y., Bordignon E., Jeschke G., Phys. Chem. Chem. Phys. 13, 2356-2366 (2011).

Ст243

Promising new modules for data processing via the AUREMOL-SSA/ICA and protein quality control

<u>Tobias Harsch</u>¹, Harald Donaubauer¹, Wilhelm Malloni¹, Silvia de Sanctis¹, Klaus-Peter Neidig² and Hans Robert Kalbitzer¹

¹Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany; ²Bruker Biospin, Rheinstetten, Germany

AUREMOL[1] is a software tool for protein structure determination from NMR data, which speeds up and automates the whole process. It is based on a new approach called "top down" where all given structural parameters (statistical databases, homology modeling, known torsions angles, known chemical shifts, etc.) provide a "starting structure" of the investigated protein. AUREMOL will then use experimental data to refine this structure and to calculate the assignment in an iterative process. The benefit of this approach is that the whole sequential assignment is not needed anymore.

The new tools AUREMOL-SSA/ALS [2, 3] and AUREMOL-ICA have been developed in order to automatically detect hidden resonances by the solvent. These fully automated procedures include the managing of digitally filtered, zero-filled data, the linear spline interpolation of the frequency domain base points and the phase correction consistent with respect to the group delay time shift due to the digital filtering. Once they have been applied the AUREMOL-QTA module allows comparing a set of spectra with the aim to quantify where and how much a molecule differs with respect to a target one, both in the spectra and in the three-dimensional structure.

^{1.} Gronwald W. and Kalbitzer H. R., Progress in Nuclear Magnetic Resonance Spectroscopy, 44, 33-96 (2004)

^{2.} Malloni W.M., Journal of Biomolecular NMR, 47, 101-111 (2010)

^{3.} De Sanctis S., Journal of Magnetic Resonance, 210, 177-183 (2011)

Hs244

A combined high-field ENDOR/DFT approach for proton-coupled electron transfer investigation in *E.coli* ribonucleotide reductase

Tomislav Argirević¹, Christoph Riplinger², JoAnne Stubbe³, Frank Neese² and Marina Bennati¹

¹EPR research group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, ²Department of Physical and Theoretical Chemistry, University Bonn, Bonn, Germany, ³Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, <u>targire@gwdg.de</u>

E.coli class I ribonucleotide reductase (RNR) is to date one of the most extensive studied enzymes in the field of EPR spectroscopy and quantum chemistry. Although many mechanistic aspects have been investigated, very less is known about the proposed proton-coupled electron transfer (PCET) process which occurs over > 35Å. The concomitant motions of electron and proton between the two homodimeric subunits $\alpha 2$ and $\beta 2$ involve three conserved tyrosines: $\beta 2$ -Y₃₅₆, $\alpha 2$ -Y₇₃₀ and $\alpha 2$ -Y₇₃₁. We incorporated the radical spin probe NH₂Y at position 730 and characterized it through multifrequency EPR spectroscopy, a precondition for the observation of a hydrogen-bonding network through ENDOR spectroscopy near $\alpha 2$ -NH₂Y₇₃₀ [1] [2]. Our high-field ENDOR experiments at 94 GHz and protein-like DFT cluster calculations support the model of a hydrogen atom transfer (HAT) mechanism to occur between the essential residues Y₇₃₁, NH₂Y₇₃₀ (Y₇₃₀) and C₄₃₉ with a nearby water molecule at the NH₂Y₇₃₀ (Y₇₃₀) side which is potentially controlling the HAT transfer rates during nucleotide turnover.

1. Seyedsayamdost M.R., Argirević T., Minnihan E.C., Stubbe J., Bennati M., JACS, 131, 15729-15738 (2009)

2. Seyedsayamdost M.R., Xie J., Chan C.T.Y., Schultz P., Stubbe J., *JACS*, 129, 15060-15071 (2007)

Hs245

The proton environment of the high-stability menasemiquinone intermediate in *E. coli* nitrate reductase A as resolved by pulsed EPR

<u>Stéphane Grimaldi</u>¹, Rodrigo Arias-Cartin², Sevdalina Lyubenova³, Pierre Ceccaldi^{1,2}, Pascal Lanciano¹, Burkhard Endeward³, Thomas F. Prisner³, Axel Magalon², Bruno Guigliarelli¹

¹Bioenergetics & Protein Engineering, CNRS & Aix-Marseille University, Marseille, France; ²Laboratory of Bacterial Chemistry, CNRS & Aix-Marseille University, Marseille, France; ³Institute for Physical & Theoretical Chemistry, J.-W. Goethe University, Frankfurt am Main, Germany E-mail to: grimaldi@ifr88.cnrs-nns.fr

E. coli nitrate reductase A (NarGHI) is a suitable bacterial model enzyme for studying the reactivity of respiratory complexes towards membrane quinols. While no quinol is resolved in the available crystallographic structures of NarGHI, an EPR-detectable semiquinone intermediate (SQ_D) is very highly stabilized at the quinol oxidation site (Q_D) of the enzyme (1). HYSCORE spectroscopy at 3 and 9 GHz was used to show that the catalytic intermediate magnetically interacts with a ¹⁴N nucleus assigned to the heme b_D axial ligand His66 of NarGHI (2,3). Recently, we showed that a cardiolipin molecule is tightly associated to the enzyme and is essential for quinol substrate fixation at the Q_D site (4). Herein, the radical proton environment is probed by ¹H-HYSCORE spectroscopy. Direct evidence for H-bonding to the radical is provided by combining H₂O/D₂O exchange experiments with 35 GHz Mims ENDOR experiments. Analysis of the spectroscopic data reveals an original binding mode of the radical at the Q_D site that might explain its peculiar properties.

^{1.} Lanciano P. et al., Biochemistry, 46, 5323-5329 (2007)

^{2.} Grimaldi S. et al., J. Biol. Chem., 285, 179-187 (2010)

^{3.} Arias-Cartin R. et al., J. Am. Chem. Soc., 132, 5942-5943 (2010)

^{4.} Arias-Cartin R. et al., Proc. Nat. Acad. Sci. USA, 108, 7781-7786 (2011)

Hs246

Pulsed EPR investigations of model complexes of the [FeFe] hydrogenase active site: bulky bridges vs bulky ligands

<u>Edward Reijerse¹,</u> Özlen Ferruh Erdem¹, Lennart Schwartz², Matthias Stein³, Alexey Silakov¹, Michael Singleton⁴, Sascha Ott², Marcetta Y. Darensbourg⁴, Wolfgang Lubitz¹

¹Max Planck Institute for Bioinorganic Chemistry, Mülheim a. d. Ruhr, Germany. ²Department of Photochemistry and Molecular Science, Uppsala University, Sweden. ³Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany ⁴Texas A&M University, College Station, TX 77840 USA. Email: reijerse@mpi-muelheim.mpg.de

We present a detailed pulse EPR investigation on two compounds structurally resembling the H_{ox} state of the H-cluster in [FeFe] hydrogenases. Me₃Pw These enzymes catalyze the reversible oxidation of molecular hydrogen. In addition, we studied a

mimic of the CO inhibited state (H_{ox} -CO). This complex contains an *azadithiolate*-bridging ligand which is believed to be present also in the native system. EPR, ENDOR and HYSCORE experiments as well as DFT calculations show that both H_{ox} -like complexes have similar spin density

C IMes

 \cap

distributions over the 2-iron core which differs drastically from that of the H_{ox} -CO like complex. The magnetic coupling parameters of the amino nitrogen in the azadithiolate bridge are quite similar to those observed for the native system in the H_{ox} state [1,2]. The confirmation of this amino function in the bridge is of great relevance to the proposed mechanism of [FeFe] hydrogenases since it may act as proton donor/acceptor.

Silakov, A.; Wenk, B.; Reijerse, E.; Lubitz, W. Phys. Chem. Chem. Phys, 11, 6592 (2009)
 Erdem, Ö.F., Schwartz, L.; Stein, M.; Silakov, A.; Kaur-Ghumaan, S.; Huang, P.; Ott, S.; Reijerse E.; Lubitz, W. Angew. Chem. Int. Ed., 123, 1475 (2011)

Hs247

Hydrogen-Bridged Nitroxide Spin Probe Model

Udo Kielmann, Inés Garcia Rubio, Gunnar Jeschke

Laboratory of Physical Chemistry – Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland (e-mail: udo.kielmann(at)phys.chem.ethz.ch)

In EPR spectroscopy nitroxide molecules play an important role to probe structure and dynamics of nano scale systems in biology and material science. The basis for using the nitroxides as probes is that the spin density distribution in the molecule encoded in the g- and hyperfine-tensors reflect properties like proticity and polarity of the environment. Also the study of more specific interactions of the nitroxide molecule with other nearby molecules is of interest as they can affect the conformation and mobility of the probe. In this context, the possibilities of performing theoretical computations to find out the geometry and spin density distribution of nitroxides and the influence of the environment on them is very attractive, but it has to be carefully checked against experimental results.

In this contribution we present the theoretical and experimental result of geometry and spin distribution of di-tert-butyl-nitroxide (DTBN) in methanol. This simple system was chosen to focus on the most significant g- and hyperfine-tensors. The DTBN model was calculated with a hydrogen bridge in different geometries to the nitroxide by the ORCA software package, using an HF/MP2 approach and the COSMO solvation model. Multifrequency cw EPR measurements were done at high and low temperatures. ESEEM pulse techniques were done in X- and Q-band on DTBN in protonated and deuterated solvents to obtain the g-tensor, the intramolecular A-tensors of ¹³C, ¹⁴N and ¹H and the hydrogen bridged ¹H. The A- and Q-tensors of the ¹H and ²H of the solvent reveal the geometry and length of the hydrogen bridge.

CPMG echo amplitudes with arbitrary refocusing angle: explicit expressions, asymptotic behaviour, approximations

Nikita N. Lukzen¹, Alexander B. Doktorov², Marina V. Petrova¹

¹International Tomography Center SB RAS, Novosibirsk, Russia, ²Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia. petrovamv@tomo.nsc.ru

Carr-Purcell-Meiboom-Gill pulse sequence with arbitrary excitation and refocusing angles and resonance offset of RF pulses is considered. Exact explicit analytical formula for echo magnetization amplitudes was obtained. The echo-amplitudes are expressed in terms of Legendre polynomials. The dependence of asymptotic behavior of echoes on RF pulse refocusing angle was studied, analytical approximation for echoes was also obtained. It was shown that at refocusing angle $\alpha \neq \pi$ the echo amplitudes decay is defined not only by spin-spin relaxation time T_2 as usually but also spin-lattice relaxation time T_1 and the refocusing angle. Accuracy of asymptotics and approximations were tested by comparison with exactly calculated echo amplitudes.

Ім249

Correlation of "Trumpet shaped" dilated cerebral aqueduct and cerebrospinal fluid (CSF) flow profiles in patients with highly elevated CSF flow

Mark R. McCoy¹, Jürgen Steinbacher¹

¹ Institute of Radiology and MRT, Paracelsus Medical University Salzburg, Austria j.steinbacher@salk.at

Hydrocephalus is an abnormal buildup of CSF in the ventricles of the brain. The fluid is often under increased pressure which can damage the brain. The aim of our study was to explore the relationship between aqueductal flow measurements of cerebrospinal fluid (CSF) and changes of the anatomical configuration of the cerebral aqueduct (AC) in patients with communicating hydrocehphalus.

We were interested in the cause of the dilatation of the AC so we analyzed 3D velocity plots of CSF measured at the AC over a heart cycle. We could demonstrate that there is a significant correlation between highly elevated absolute stroke volume of CSF and dilated, sometimes even "trumpet shaped" AC conformation. We could demonstrate that there is a significant difference in CSF velocity plots of normal and dilated AC. In cases of dilates AC we found differences in CSF forward and CSF backward flow velocity profiles.

Characterizing Hydrogel Microcapsules by NMR Microscopy

Stefan Henning¹, Sabine Leick², Daniel Edelhoff¹, Marvin Heil¹, Heinz Rehage² and Dieter Suter¹

¹Department of Experimental Physics III, TU Dortmund University, 44227 Dortmund, Germany, <u>Stefan.Henning@tu-dortmund.de</u>; ²Department of Physical Chemistry II, TU Dortmund University, 44227 Dortmund, Germany

Microcapsules consisting of natural polysaccharide hydrogels such as alginates or pectinates have a large potential as carriers for liquid drugs. If a controlled and site specific release of the encapsulated drugs is desired, they must be stored sufficiently long under alternating environmental conditions. We optimize the capsules with respect to the retention time of the encapsulated drugs and the chemical stability under gastrointestinal conditions. To achieve this, we modify the capsules by applying external coatings or additives to the hydrogel membrane.

We use NMR microscopy for the characterization of these microcapsules. With this technique, we can visualize differences in the structure of the capsules depending on their preparation and environment. The structure of the capsules is analyzed on a microscopic scale by obtaining two- or three-dimensional NMR images of the capsules, which allows measuring the thickness of the capsule membranes, the size of the capsules, the mechanical composition, etc. Parameter mapping of relaxation times as well as studies of diffusional processes also allows analyzing nanoscopic structure and dynamics. We can show that the hydrogels of the capsules have porous structures with poresizes of some nanometers, which vary with different preparations, modifications and environments.

A comparison of NMR imaging experiments with spectroscopic drug-release measurements shows how the structure influences the permeability and that pectinate capsules with a thin coating of shellac provide an excellent entrapment of cancer preventive anthocyanins, which were used as a model drug.

Leick et al., Physical chemistry chemical physics, 13, 2765-2773, (2011)

Ім251

Biophysics of articular cartilage: What we can learn from spin relaxation?

R. Mark Wellard¹, Sabrina Barheine¹, Alf Pawlik¹, Jean-Philippe Ravasio², Gary Cowin³, Chris Bell¹, James M. Pope¹ and Konstantin I. Momot¹

¹Faculty of Science and Technology, Queensland University of Technology, Brisbane, Australia; ²Faculté de médecine, Université Henri Poincaré, Nancy, France; ³Centre for Magnetic Resonance, University of Queensland, Brisbane, Australia. Address for correspondence: <u>k.momot@qut.edu.au</u>

Articular cartilage (AC) is a connective tissue covering the articulating surfaces of long bones. Its structural basis is a biopolymeric extracellular matrix (ECM) based on collagen and proteoglycans. MRI provides a range of techniques for characterisation of the cartilage ECM and shows great promise for clinical diagnosis of osteoarthritis. Our research aims to develop MRI methodologies for studying the link between the ECM organisation and load carriage in cartilage.

Diffusion-Tensor Imaging enables direct measurement of the predominant collagen alignment in AC, as well as reorganisation of collagen fibres under mechanical load.^{1,2} An alternative and potentially faster approach to mapping the collagen architecture is based on the anisotropy of the water ¹H transverse relaxation rate (R_2). R_2 depends on the predominant orientation of collagen fibres relative to **B**₀ and usually exhibits the "magic-angle" dependence:³ $R_2 = A + B(1 - 3\cos^2\theta)^2$. An added advantage of R_2 is its capacity to characterise compression-induced changes in the water content in different zones of cartilage. We discuss the use of R_2 mapping for studying load carriage in articular cartilage. Initial results show that the transitional and the radial collagen alignment zones participate in load processing in different ways: transitional zone absorbs much of the applied load at low loads (1-2 bar); while the radial zone significantly contributes to load processing at loads >3 bar.

^{1.} de Visser S. K., Crawford R. W. and Pope J. M, Osteoarthr. Cartilage, 16, 83-89 (2008)

^{2.} Pierce D. M. et al, Ann. Biomed. Eng., 38, 2447-63 (2010)

^{3.} Momot K. I., Pope J. M. and Wellard R. M., NMR Biomed., 23, 313-324 (2010)

Magnetic resonance imaging study of the influence of incorporated drug on xanthan gel thickness

<u>Urša Mikac¹</u>, Saša Baumgartner², Ana Sepe¹, and Julijana Kristl²

¹Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia; ²Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; e-mail: urska.mikac@ijs.si

Hydrophilic matrix tablets are widely used for controlled delivery of drugs. On contact with water or body fluids the outer surface of these tablets hydrate and swells, forming a hydrogel coat around the dry central core. The gel layer regulates the penetration of body fluids into the tablet and therefore limits the dissolution and diffusion of the incorporated drug. The drug release from such tablets is a very complex process and is to a great deal influenced by the gel layer structures [1,2].

Xanthan is an anionic poly-electrolyte that forms different complex structures depending on environmental conditions. A combination of different magnetic resonance methods [3] was used to study the influence of incorporated drug on xanthan swelling dynamics in media differing in pH and ionic strength. The drug has no effect on medium penetration into the tablet and on the position of swelling front (the interface between the glassy and rubbery states). The position of the erosion front (the interface between the swollen tablet and the bulk medium), on the other hand, is strongly dependent on the amount of the incorporated drug. The xanthan tablets containing higher amount of the incorporated drug forming the thinner gel layer.

REFERENCES:

Ім253

Specificity of Magnetization Transfer Parameters in Alzheimer Disease

Claus Kiefer, Roland Wiest

Institute of Diagnostic and Interventional Neuroradiology, University of Berne, Berne, Switzerland, claus.kiefer@insel.ch.

The protons in biological systems can be described as existing in two pools: the free (f) and the restricted (r) protons. It has been shown (1), that the restricted pool can be adequately described by modified Bloch equations. Patients with Alzheimer disease and Mild Cognitive Impairment (MCI) and healthy controls were compared with respect to model based magnetization transfer parameters (2) F (fractional part of the restricted pool), T2_r (T2 restricted pool) and exchange parameters k_r and k_f and the relaxation parameters of the free pool (T1,T2). MT-Simulations and MT-spectra were used to investigate the specificity of the MT-parameters depending on the tissue compartmentalization. The comparisons of the simulations and experiments show that already small changes of the tissue compartmentalization resp. the presence of specific macromolecules have specifiable effects on the MT-parameters (F,T2_r,k_f,k_r)! This means that far from using the MT-technique for the presaturation of stationary tissue in angiography or in terms of the MT-ratio, the model based MT parameters are potentially able to classify healthy and pathological brain tissue. Further investigations will clarify to which degree model based MT can be used as a predictor for neurodegeneration.

^{1.} Baumgartner S., Lahajnar G., Sepe A., and Kristl J., Eur. J. Phar. Biopharm., 59, 299-306 (2005)

^{2.} Fukuda M., Peppas N. A., and McGinity J. W., Int. J. Pharm., 310, 90-100 (2006)

^{3.} Mikac U., Sepe A., Kristl J, and Baumgartner S., J. Control Release, 145, 247-256 (2010)

^{1.}Sled J.G., Pike G.B.. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn. Reson. Med. 46 (5), 923–931, 2001

^{2.} Kiefer C, Brockhaus L, Cattapan-Ludewig K, Ballinari P, Burren Y, Schroth G, Wiest R: Multi-parametric classification of Alzheimer's disease and mild cognitive impairment: The impact of quantitative magnetization transfer MR imagingNeuroImage 48: 657–667, 2009.

Assessment of Caries Lesions by ADC Mapping and T1-w MRI

Igor Serša¹, Jernej Vidmar^{1,2}, Ksenija Cankar², Lidija Nemeth³

¹Jožef Stefan Institute, Laboratory for Magnetic Resonance Imaging, Ljubljana, Slovenia (<u>igor.sersa@ijs.si</u>). ²Institute of Physiology, Medical Faculty, University of Ljubljana, Slovenia ³Department of Dental Diseases, University Medical Centre Ljubljana, Slovenia

MRI provides excellent contrast between different soft tissues and is therefore an appropriate tool for assessment of various lesions including caries [1]. In this study feasibility of high-resolution MRI to assess caries lesions was tested.

The study was performed on 26 extracted human teeth of different dentine-pulp complex responses according to ICDAS scores. The teeth were imaged by 3D T1-weighted spin-echo and by diffusion weighted (DW) high-resolution MRI sequences. T1-weighted images were used to visualize the pulp chamber anatomy, to locate caries lesion and to determine the distance between the lesion and the pulp, while DW images were used to calculate the corresponding apparent diffusion coefficient (ADC) maps, which were then used to quantify responses of dental-pulp complexes. Measured ADC values of the responses were then compared with the corresponding ICDAS scores of the teeth [2].

Results of the study showed that average ADC values of the responses correlate with the corresponding ICDAS scores. ADC mapping, which is an instrumental method, may be an interesting and more precise alternative to ICDAS scoring, which lacks accuracy due to subjectivity of the observes. We found that ADC of $1.0 \cdot 10^{-9}$ m²/s may represent a reasonable threshold value of the dentin-pulp complex below which stomatological treatment of caries is needed.

REFERENCES:

- 1. Kress B, Buhl Y, Anders L, Stippich C, Palm F, Bahren W, Sartor K. Dentomaxillofac Radiol 2004;33(4):241-244.
- 2. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB. Community Dent Oral Epidemiol 2007;35(3):170-178.

Ім255

Study of pulmonary emboli by diffusion spectroscopy MRI

Nina Bizjak^a, Franci Bajd^a, Jernej Vidmar^b, Igor Serša^a

^a Condensed matter department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia (nina.bizjak@ijs.si) ^bInstitute of physiology, Medical faculty, University of Ljubljana, Slovenia

Diffusion spectroscopy MRI can be used to non-invasively obtain quantitative structural information of a biological tissue, which depends on its micro-structural properties. A promising method for studying diffusion properties of matter is diffusion-weighted imaging (DWI) based on the use of oscillating gradient spin-echo (OGSE) method [1-3]. Contrary to the well-established pulsed gradient spin-echo (PGSE) method, that is used primarily to determine the long time scale (zero frequency) apparent diffusion coefficient (ADC), the OGSE method enables studies of diffusion in much wider time scales of molecular motions, i.e., in a broader frequency range, and is therefore a convenient method for studying structural properties of heterogeneous samples.

In this study OGSE DWI was employed to study structural properties of pulmonary emboli. The emboli were imaged by OGSE DWI in a range of frequencies of oscillating gradients from 30-350 Hz. The corresponding high-resolution MR images had a frequency dependent signal attenuation that was varying quite substantially between different structural regions of the emboli. The differences were increasing with an increasing frequency of oscillating gradients.

Characterization of pulmonary emboli structural properties may be important in both clinical and research applications. Diffusion spectroscopy MRI can also help assessing a susceptibility of different blood clot regions to thrombolysis, which has an important clinical relevance.

- 2. Schachter M., Does M. D., Anderson A. W., Gore J. C., Journal of Magnetic Resonance, 147, 232-237 (2000)
- 3. Parsons E. C., Does. M. D., Gore J. C., *Magnetic Resonance Imaging*, 21, 279-285 (2003)

^{1.} Parsons E. C. Jr., Does M. D., Gore J. C., Magnetic Resonance in medicine, 55, 75-84 (2006)

Redox Imaging of Lung Using Overhauser-MRI System and its Application to Lung Metastasis Model Mice

<u>Hyodo F.¹</u>, Arimura N.², Nakaji T.¹, Sokei A.¹, Ichikawa K.¹, Yasukawa K.^{1,2}, Naganuma T³, , Yamada K.², Utsumi H.¹

1)Innovation center for medical redox navigation Kyushu University, Fukuoka, 812-8582, Japan, 2)Faculty of Pharmaceutical Sciences, Kyushu University. Fukuoka, 812-8582, JAPAN, 3)Japan redox Ltd Fukuoka, 812-0044 Japan. hvodof@redoxnavi.med.kvushu-u.ac.ip

Overhauser-enhanced MRI (OMRI) is a double resonance technique that uses the presence of paramagnetic agents such as nitroxyl radical to enhance the signal intensity from nuclear spins by means of a process known as dynamic nuclear polarization (DNP) or Overhauser effect. Recently many paper suggested that pulmonary disease such as COPD (chronic obstructive pulmonary disease), pneumonitis and lung cancer is related in breakdown of redox status in vitro study. In general, lung is one of the difficult organs to visualize by MRI due to low proton density by structure of alveoli. In contrast, our previous study suggested it has a possibility to obtain enhanced image by Overhauser enhancement using OMRI and nitorxyl radicals. In this study, we tested that possibility of lung imaging using OMRI and nitroxyl radicals and it application to lung metastasis model mice. Using newly developed surface coil for high sensitive detection of lung area, Overhauser-enhanced image was obtained. It was determined that image intensity of upper abdomen area by OMRI was derived from lung determined by imaging of isolated lung. In addition, redox status of the lung in mice 10 days after intravenously administration of B16F10 cell was clearly changed and lung metastasis was observed by histological observations.

Ім257

Dynamics and Stability of Hydrogel Microcapsules

Daniel Edelhoff¹, Stefan Henning¹ and Dieter Suter¹

¹Department of Experimental Physics, TU Dortmund University, 44227 Dortmund, Germany, <u>Daniel@e3.physik.tu-dortmund.de</u>

Microcapsules consisting of natural polysaccharides like pectinates or alginates have a large potential for controlled delivery and release of liquid drugs in the intestine. The functionality of these capsules depends crucially on their stability in different environments. They have to be stable in the acidic stomach and must dissolve in the basic intestine for releasing the encapsulated drugs. To achieve this, we chemically modify the capsules by applying external coatings or additives to the hydrogel membrane.

NMR microscopy gives us the opportunity to characterize the geometry and the chemical stability of the microcapsules. By taking NMR images of capsules in media representing gastrointestinal conditions, we can show that shellac-coated pectinate capsules are stable under gastric conditions for many hours, but they disintegrate within a few minutes in the intestine. The stability of the capsules in different environments is correlated to their microscopic structure. Diffusion tensor images provide additional information about the structure of the polysaccharide hydrogels.

REFERENCES: Leick et al., Phys. Chem. Chem. Phys, 13, 2765-2773, (2011)

Assessment of blood clot retraction by magnetization transfer MRI

Franci Bajd^a, Nina Bizjak^a, Jernej Vidmar^b, Igor Serša^a

^a Condensed matter department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia (franci.bajd@ijs.si) ^bInstitute of physiology, Medical faculty, University of Ljubljana, Slovenia

Magnetization transfer MRI (MT-MRI) can be used to obtain quantitative structural information of a biological tissue. As T_2 relaxation processes of the less mobile protons associated with macromolecules and membranes are too short to be directly seen by MRI ($T_2 < 1$ ms), the coupling between the macromolecular protons and the mobile protons associated with liquid water allows to measure the MR relaxation properties of the macromolecular pool through exchange processes. This can be done using offset RF irradiation prior to the imaging part of a MRI sequence [1]. MT-MRI provides a unique MRI contrast that can be therefore used to characterize tissue properties in a variety of clinical applications [2].

In this study MT-MRI was employed to study structural properties of model blood clots and of pulmonary emboli. The clots and emboli were irradiated by a sinc-like RF pulse with duration of 250 ms and with various offset frequencies in a range from 10 Hz to 100 kHz. This was followed by the fast single-shot RARE imaging sequence. Corresponding images, in which signal attenuation substantially increased with a decreasing offset frequency due to the exchange processes as well as due to the direct saturation of magnetization, were analyzed for contrast differences between the regions containing macromolecular and mobile protons as well as for their relaxation parameters.

As MT-MRI enhances discrimination of structural changes in biological tissues, this imaging technique may be clinically important for optimizing blood clot dissolution protocols.

REFERENCES:

- 1. Henkelman R. M., Stanisz G. J., Graham S. J., Magnetization transfer in MRI: a review, *NMR in Biomedicine*, 14, 57-64 (2001)
- 2. Wolff S. D., Balaban R. S., Magnetization transfer imaging: practical aspects and clinical applications, *Radiology*, 192, 593-599 (1994)

Ім259

MRI of Hyperpolarized Protons Against a Large ¹H Background

Lisandro Buljubasich¹, Jan F. Dechent^{1,2}, Laura M. Schreiber², Hans W. Spiess¹ and Kerstin Münnemann¹

¹ Max Planck Institute for Polymer Research, Mainz, Germany. ² Johannes Gutemberg Medical Center, Section of Medical Physics, Johannes Gutemberg University, Mainz, Germany. buljubasich@mpip-mainz.mpg.de

A major challenge in molecular imaging is the detection of tiny amounts of interesting molecules. In magnetic resonance imaging (MRI) their signals are usually concealed by the large background signal of the body. Hyperpolarization can overcome this issue by increasing the nuclear magnetic resonance (NMR) signals few orders of magnitude. For the most widely used NMR and MRI nucleus ¹H, however, this strategy is limited. The enormous number of thermally polarized protons in the body screens the small amount of hyperpolarized ones. In this work we present a simple approach dealing with parahydrogenated molecules (i.e., molecules generated in a reaction with Parahydrogen^{1,2}), leading to a ¹H NMR/MRI contrast. It makes use of different temporal evolution of the antiphase signal of hyperpolarized ¹H generated with PHIP^{3,4} compared to that of the thermal signal of the background. By choosing an optimal delay time for detection of the PHIP antiphase signals this new contrast can be simply implemented in any MRI pulse sequence.

^{1.} Bowers, C.R. and Weitekamp, D.P. J. Am. Chem Soc., 109, 5541-5542 (1987).

^{2.} Pravica, M.G. and Weitekamp, D.P. Chemical Physics Letter, 145, 255-258 (1988).

^{3.} Natterer, J. and Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. 31, 293-315 (1997)

^{4.} Aime, S., Gobatto, R., Reineri, F. and Canet, D. J. Chem. Phys., 119, 8890-8896 (2003).

Redox mapping using Overhauser-enhanced MRI in colons of mice with DSS-induced colitis

<u>Keiji Yasukawa^{1,2}</u>, Hiroto Tokuda¹, Kazunori Yamada¹, Hideo Utsumi²

¹Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; ²Innovation Center for Redox Navigation Institute, Kyushu University, Fukuoka, Japan. E-mail: yasukawa@pch.phar.kyushu-u.ac.jp

Ulcerative colitis is an inflammatory bowel disease characterized by acute inflammation, ulceration, and bleeding of the colonic mucosa, although its cause remains unknown. ROS are reportedly implicated as mediators of mucosal injury, and we reported direct evidences of *in vivo* ROS generation in living body using *in vivo* ESR/spin probe technique¹. Overhauser-enhanced MRI (OMRI) that can get the images of nitroxyl spin probe with different isotopes, ¹⁴N and ¹⁵N, was newly established². In this study, we applied an OMRI/spin probe technique to DSS–induced colitis model and investigated the relation of the ROS generation and mucosal injury.

Colitis was induced in male ICR mice by giving their drinking water with 5% DSS for 7 days. When ¹⁴N-MC-PROXYL, a high membrane-permeable probe, was administered into the rectum of the DSS-treated mice, the intensity decay rate was increased in the distal colon of day 3, and the enhancement was increased in the overall colon of day 7. On the other hand, ¹⁵N-carboxy-PROXYL, a membrane-impermeable probe, caused the enhancement of intensity decay on day 7. The simultaneous administration of DMSO suppressed the enhanced signal decay of ¹⁴N-MC-PROXYL. These findings suggest that the ROS generation occurred in of epithelial cells of distal colon and the ROS producing area was expanding to both in and out of epithelium of overall colon as colonic damage was developed.

REFERENCES:

Yasukawa K., Miyakawa R., Yao T. Tsuneyoshi M. Utsumi H., Free Radic. Res., 43, 505-513 (2009)
 Utsumi H., Yamada K., Ichikawa K., Sakai K., Kinoshita Y., Matsumoto S., Nagai M., Proc. Natl. Aca. Sci. USA, 103,1463-1468 (2006)

Iм261

High field OMRI scanner for imaging in vivo redox status

Kazuhiro Ichikawa¹, Tatsuya Naganuma² and Hideo Utsumi¹

¹Innovation center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan; ²R&D section, Japan Redox Ltd., Fukuoka, Japan). (ichikawa.kazuhiro.684@m.kyushu-u.ac.jp).

Overhauser enhanced MRI (OMRI) is a technique for imaging free radicals in animals based on the Overhauser effect. Under physiological condition, the half-life of intrinsic free radical is too short to be directly measured and reporter molecule, "spin probe" is used to observe in vivo functional information. The spin probe itself has unpaired electron and can be measured with OMRI. We have developed molecular imaging and simultaneous assessment of redox processes by using OMRI with ¹⁴N- and ¹⁵N- labeled aminoxyl probes with different distribution properties. We developed a prototype of OMRI scanner with transport-system, in which the sample object was transported between ESR to MR magnets, to achieve field cycling. The OMRI scanner consisted of two kind of resistive magnets, which were operated at 1.5 T and 20 mT for MR detection and ESR excitation, respectively. The physical resolution of the OMRI image for the phantom object was less than 0.2 mm, indicating that the OMRI with transport-system would have a significant advantage for imaging in vivo functional information.

^{1.} Lurie D. J., Bussell D. M., Bell L. H., Mallard J. R., J Magn Reson 76, 366-370 (1988)

^{2.} Utsumi H., Yamada K., Ichikawa K., Sakai K., Kinoshita Y., Matsumoto S., Nagai M., Proc. Natl. Acad. Sci. USA 103, 1463-1466 (2006)

In vivo monitoring of absorption kinetics in human skin by single-sided NMR

Maxime Van Landeghem^{a,b,c}, <u>Ernesto Danieli</u>^a, Juan Perlo^d, Bernhard Blümich^a, and Federico Casanova^{a,d}

a) Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany. (edanieli@mc.rwth-aachen.de)

b) ESPCI - PPMD, UMR 7615 CNRS UPMC, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France.
 c) Saint-Gobain Recherche, 39 quai Lucien Lefranc, BP 135, 93303 Aubervilliers cedex, France.

d) Aachen Center for Technology (ACT), Pauwelsstr. 19, D-52074, Aachen, Germany.

a) nachen Center jor Teennology (1101), 1 daweissin: 19, D 5207 (, 11denen, German

This work reports the continuous monitoring of the ingress of water and beauty cream into human skin. The measurements were performed with a single-sided NMR sensor generating a reduced but highly uniform static gradient, which allows recording in vivo skin profiles of up to two millimetres depth in experimental times of 30 s with up to 25 micrometers spatial resolution. With this performance absorption kinetics of water and cream in the skin tissue were measured. Characteristic times for the absorption of each skin layers are determined, and also changes in the thickness of the different layers during the exposition period can be quantified. As in the presence of a low gradient the relaxation time T_2 can be measured without strong diffusion contamination, it was also possible to spatially resolve both T_2 and diffusion coefficients along the depth direction. Then, by acquiring a CPMG echo train and combining a Fourier Transformation (FT) along the echo acquisition time with an Inverse Laplace Transform (ILT) along the echo decay time, the relaxation time and diffusion coefficients distribution at the different layers of skin were resolved.

Ім263

CSI and Velocimetry of Enclosed Flames Using Hyperpolarized ¹²⁹Xe

<u>J. Peter Mustonen</u>^a, Hyun Doug Shin^a, Dominic Graziani^{a,b}, Thomas Theis^a, Xin Zhou^{a,c}, Vikram S. Bajaj^a, and Alexander Pines^a

^aMaterials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, CA, USA (<u>ipmustonen@berkeley.edu</u>); ^bCurrent address: GE Global Research, Niskayuna, NY, USA; ^cCurrent address: State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China

There is considerable interest in new methods to probe the chemistry and thermodynamics of enclosed combustion processes. Hyperpolarized (HP) ¹²⁹Xe gas MRI enables sensitive and noninvasive analysis of chemical composition and velocity¹ within opaque samples. By taking advantage of the both the temperature sensitivity of the chemical shift² as well as the inertness of ¹²⁹Xe, temperature and velocity distribution images of an enclosed flame can be acquired. Previous attempts to analyze high-temperature combustion reactions using NMR employed 2D-EXSY² of HP ¹²⁹Xe and SPRITE³ proton imaging. In the present study, a homebuilt, water-cooled probe was fabricated, including electronics that are able to withstand high temperatures (> 2000 K). HP xenon is premixed with a combustible gas and meets with pure oxygen at an enclosed diffusion flame centered within a 15 (ID) × 25 (H) mm insulated saddle coil. A spin-echo pulse sequence with velocity and acceleration compensated phase encodes, is used to generate temperature-weighted, 3D chemical shift images (CSI) as well as 3D velocity maps of the flame region. This technique can be applied to studying confined combustion processes such as microturbine engines on MEMS devices.

REFERENCES:

2. Anala, S., Pavlovskaya, G. E., Pichumani, P., Dieken, T. J., Olsen, M. D., Meersmann, T. J., J. Am. Chem. Soc., 125, 13298-13302 (2003)

3. Glover, P. M., Newling, B., Poirier, C., Balcom, B. J., J. Magn. Reson., 176, 79-86 (2005)

ACKNOWLEDGEMENT: This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

^{1.} Han, S., Pierce, K. L., Pines, A., Phys. Rev. E, 74, 016302 (2006)

Cv264

Functional EPR and Proton-Electron Double-Resonance Imaging: In Vivo Application in Animal Model of Breast Cancer

Andrey A. Bobko, Timothy D. Eubank, Alexandre Samouilov and Valery V. Khramtsov

Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; e-mail address: Valery.Khramtsov@osumc.edu

L-band electron paramagnetic resonance (EPR) approach for in vivo real-time assessment of tumor tissue extracellular pH (pH_e), redox and intracellular glutathione (GSH) based on the application of specially designed paramagnetic probes was developed. In addition to spectroscopic measurements, pH_e mapping was performed using recently proposed functional proton-electron double-resonance imaging (PEDRI)^{1,2} and extracellular-targeted nitroxide pH probe allowing for MRI high quality spatial resolution and short acquisition time (≈ 10 s). The tissue parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF). It was observed that tumor pHe is about 0.4 pH units lower than in normal mammary gland tissue. Treatment with GM-CSF decreased the value of pH_e by 0.2 - 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and GSH were elevated compared with normal mammary gland tissue. GM-CSF treatment resulted in a decrease of the tumor tissue reducing capacity and GSH content. The PEDRI pH mapping supports probe localization in mammary gland/tumor tissues, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pH_e values in tumor and normal mammary gland. In summary, the developed multifunctional magnetic resonance-based approaches allow for *in vivo*, noninvasive tissue pH_e, redox and GSH content monitoring during investigation of various therapeutic strategies for solid tumors. This work was partly supported by NIH grants CA132068 and EB03519.

1. Khramtsov V., Caia G., Shet K., Kesselring E., Petryakov S., Zweier J., Samouilov A. J Magn Reson, 202, 267-273 (2010).

2. Efimova O., Sun Z., Petryakov S., Kesselring E., Caia G., Johnson D., Zweier J., Khramtsov V., Samouilov A. J Magn Reson, 209, 227-232 (2011).

Cv265

NMR in Global Change Research

Stina Harrysson-Drotz², Ina Ehlers¹, Angela Augusti¹, Tatiana R. Betson¹, Mats Nilsson², Mats Öquist², <u>Jürgen Schleucher</u>¹

¹Medical Biochemistry & Biophysics, Umeå U, Umeå, Sweden; ²Forest Ecology & Management, SLU, Umeå, Sweden.

jurgen.schleucher@chem.umu.se

Many burning questions in environmental sciences require input of molecular information. We show how NMR can make unique contributions, by bridging from lab studies to studies of natural ecosystems, or by linking short-term experiments to long-term responses.

The land biosphere currently absorbs a significant fraction of human CO_2 emissions, dampening Climate Change. However, this net CO_2 sink is a small difference of large fluxes of C uptake and release. We use solids and liquids NMR at natural abundance and with isotope labels to study C turnover in soils. We show that residual liquid water in frozen soils determines biological activity during the winter season, which so far could not be modeled¹. Contrary to previous conclusions, microbial metabolism under frozen conditions is very similar to unfrozen conditions².

Besides defining current biogeochemical fluxes, forecasting them on time scales of centuries relevant for Climate Change is a key challenge. This challenge can be met by NMR in retrospective studies, exploiting NMR's unique ability to measure intramolecular isotope distributions. Lab experiments allow interpreting these distributions in terms of metabolic regulation³. Applied to historic or ancient plant samples, isotope distributions can track metabolic changes on otherwise inaccessible time scales. Examples include acclimation to increasing CO_2 or changing climate⁴.

^{1.} Öquist M.G. et al., Global Change Biology 15, 2715-2722 (2009)

^{2.} Harrysson-Drotz S. et al., PNAS, 107, 21046-21051 (2010)

^{3.} Augusti, A. et al., *New Phytologist* 172, 490-499 (2006).

^{4.} Augusti A. et al., Chemical Geology, 252, 1-8 (2008)

Cv266

Evaluation of Spin Labels for In-Cell EPR

Mykhailo Azarkh, Oliver Okle, Philipp Eyring, Daniel R. Dietrich, Malte Drescher.

Departments of Chemistry and Biology, and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany mykhailo.azarkh@uni-konstanz.de

Spin-label electron paramagnetic resonance spectroscopy has become a powerful and useful tool for studying structure and dynamics of biomacromolecules. However, utilizing these methods for incell studies is hampered by reduction of the nitroxide spin labels and thus short half-lives in the cellular environment. Consequently, reduction kinetics of two structurally different nitroxides was investigated in cell extracts of *Xenopus laevis* oocytes using rapid-scan cw-experiments at X-band. The data indicate an enzymatic origin of the reduction process and were analyzed according to the Michaelis-Menten model. The five member heterocyclic ring nitroxide PCA (3-carboxy-2,2,5,5-tetramethylpyrrolidinyl-1-oxy) under investigation features much higher stability against intracellular reduction than the six member ring analogue TOAC (2,2,6,6-tetramethylppiperidine-N-oxyl-4-amino-4-carboxilic acid) and is therefore a suitable spin-label type for *in-cell* EPR¹⁻³.

REFERENCES:

1. Igarashi R., Sakai T., Hara H., Tenno T., Tanaka T., Nochio H., Shirakawa M., J. Am. Chem. Soc., 132, 8228-8229 (2010)

2. Krstie I., Hänsel R., Romaiczyk O., Engels J. W., Dötsch V., Prisner T. F., Angew. Chem. Int. Ed., 50, 5070-5074 (2011)

3. Azarkh M., Okle O., Seemann I., Singh V., Hartig J.S., Dietrich D.R., Drescher M. ChemBioChem, accepted (2011)

Cv267

In situ NMR analysis of complex incubation media of *Bacillus* sp 3B6 on different saccharides.

S. Husarova¹, <u>M. Matulova¹</u>, P. Capek¹, M. Sancelme², A.M. Delort²

¹Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia, (Slavomira.Husarova@savba.sk) ²Laboratoire de SEESIB, UMR 6504, Université Blaise Pascal - CNRS, 63 177 Aubiere, France

Recent research has shown that microorganisms are present in atmospheric waters and they participate on degradation process of organic compounds present there as biocatalysts. To understand better a role of bacteria in atmospheric chemistry the knowledge about their metabolism is indispensable. Metabolism of *Bacillus* sp. 3B6, isolated from cloud water collected in free troposphere of Puy de Dôme, France, was incubated on different sugars. Our previous study has shown that on sucrose *Bacillus* sp. 3B6 is producing fructans: levan polysaccharide and FOSs oligosaccharides of levan and inulin type¹. Cellobionic acid was produced by *Bacillus* sp. 3B6 incubated on cellobiose². Here we present results of *"in situ"* NMR analyses of complex incubation media (IM) obtained during incubations of this bacterium on different saccharides with a special attention devoted to glucose substrate. Comparison of IM spectral patterns and obtained NMR data enabled an identification of more low and high molecular mass components in mixtures. Glycoprotein and polyhydroxybutyrate (PHB) were identified as high molecular mass exopolymeric substances produced by this bacterium.

REFERENCES:

1. M. Matulova, S. Husarova, P. Capek, M. Sancelme, A.M. Delort; Carbohydr. Res. 346, 501-507, 2011.

2. S.Husarova, M.Vaïtilingom, M.Sancelme, M.Matulova, A-M.Delort; EUROCARB XV, 19. – 24. july 2009, Wien, Austria.

ACKNOWLEDMENTS:

This project was supported by the French scholarship (for S. Husárová), VEGA No. 2/0116/10, Slovak state program 2003SP200280203, Stefanik N° 17947UE (SK-FR-0009-07), Research & Development Operational Program funded by the ERDF for Centre of excellence for white-green biotechnology, ITMS: 26220120054.
Unusual variety of fructans produced by *Bacillus* sp. 3B6, a bacterium isolated from cloud water.

<u>S. Husarova¹</u>, M. Matulova¹, P. Capek¹, M. Sancelme², A.M. Delort²

¹Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia, (Slavomira.Husarova@savba.sk) ²Laboratoire de SEESIB, UMR 6504, Université Blaise Pascal - CNRS, 63 177 Aubiere, France

Bacillus sp. 3B6, isolated from cloud water collected in free troposphere of Puy de Dôme, France, was incubated on sucrose for exopolysaccharide production. Dialysis of obtained mixture afforded dialyzate (DIM) and retentate (RIM). Both were separated by size exclusion chromatography and analysed by NMR spectroscopy. RIM afforded eight fractions: levan exopolysaccharide (EPS), fructooligosaccharides (FOSs) of levan and inulin types with different degree of polymerization (dp 3-6). Difructose anhydride DFA IV was present in a disaccharide fraction. In higher molecular mass DIM fractions 1–kestose, 6–kestose and neokestose, nystose and FOSs of levan type (2,6- β Fruf) were identified. Identification of levan 2,6– β Fruf and inulin 1,2– β Fruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in *Bacillus* sp. 3B6.

Identification of levan 2,6– β Fruf and inulin 1,2– β Fruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in *Bacillus* sp. 3B6.

REFERENCES:

1. M. Matulova, S. Husarova, P. Capek, M. Sancelme, A.M. Delort; Carbohydr. Res. 346, 501-507, 2011.

ACKNOWLEDMENTS:

This project was supported by the French scholarship (for S. Husárová), VEGA No. 2/0116/10, Slovak state program 2003SP200280203, Stefanik N° 17947UE (SK-FR-0009-07), Research & Development Operational Program funded by the ERDF for Centre of excellence for white-green biotechnology, ITMS: 26220120054.

Cv269

Endotoxin-induced alterations in renal oxygen consumption: an ESR oximetry study

Caroline Quoilin¹, Angeliki Grammenos¹, Bernard Gallez², Maryse Hoebeke¹

¹Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liège, Liège, Belgium; ²Laboratory of Biomedical Magnetic Resonance, Louvain Drug Research Institute, Catholic University of Louvain, Brussels, Belgium.

The kidney, one of the most injured organs in critically ill patients, is faced with unique challenges for molecular oxygen regulation. Recent research activities in the pathophysiological mechanism of acute renal injury (ARI) emphasize the central role of hemodynamic and inflammatory events in septic shock¹. More particularly, two mechanisms have been postulated to explain the inability of the injured kidney to extract oxygen: tissue hypoxia and cellular energetic metabolism dysfunction².

The present investigation was carried out to characterize the effects of bacterial endotoxin on the oxygen consumption of human tubular proximal cell line (PTC) by using the very sensitive electron spin resonance oximetry method³. Oxygen consumption was shown to decrease quite markedly in cells treated with lipopolysaccharide (LPS) from 16.52 ± 2.51 (n=6) in the control group to: 12.94 ± 2.62 (n=3) in the short incubation time group (6h) and 10.86 ± 2.20 (n=3) in the long incubation time group (18h).

This decrease in oxygen consumption in renal cells after LPS challenge may be in relation with a metabolic down-regulation. Renal energetic are deranged in sepsis not just because O_2 delivery is impaired but perhaps also because the ability of cells to utilize available O_2 is compromised.

^{1.} Schrier R.W., Zolty E. and Wang W., Yearbook of Intensive Care and Emergency Medicine, 17, 673-679 (2006)

^{2.} Rudiger A., Stotz M. and Singer M., Swiss Medical weekly, 138, 629-634 (2006)

^{3.} Diepart C. at al., Analytical Biochemistry, 396, 250-256 (2010)

MOUSE meets HOG – Online-Investigation on a hog's small intestine with the *Profile* NMR-MOUSE[®]

<u>Silke Reuter</u>¹, Bernhard Blümich¹, Johannes Kalder².

¹Department of Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany; ²Department of Vascular Surgery, University Hospital Aachen, Aachen, Germany.

During a posed aorta surgery on a test animal (hog), we tested the use of the *Profile* NMR-MOUSE[®] in an operating room. We observed a changing diffusion coefficient during the surgery time, which is attended by the degeneration of the small intestine. This result is encouraging and represents a significant step towards qualifying mobile NMR systems for medical applications. During surgery on the abdominal or descending thoracic aorta the use of a heart-lung machine is unavoidable. For the cardiovascular system as well as for the various organs, this exposure is critical and needs to be as short as possible. The microcirculation in the small intestine is a parameter which can be observed with mobile NMR by measuring the diffusion coefficient in a defined layer of the tissue. Non-invasive online monitoring would allow giving a more precise prediction of the point-in-time for the switch back to the heart-lung machine. The three regions of intestinal villi (mucosa), the musculature, and the connective tissue can be discerned by a profile measurement taken with the *Profile* NMR MOUSE[®]. T_2 and diffusion measurements were performed as well as profiles on living and dead tissue of a hog's small intestine. We obtained significant results for the dead and the living hog, as well as for the online-monitoring of the diffusion coefficient.

Cv271

Towards High-Resolution in ¹H-NMR Spectroscopy of Glioma Cells

Paul Ramm^{1,2}, Arabel Vollmann-Zwerenz², Petra Leukel², Birgit Jachnik², Peter Hau², Ulrich Bogdahn², Hans Robert Kalbitzer¹

¹Department of Biophysics, University of Regensburg, Regensburg, Germany; ²Department of Neurology, University of Regensburg, Regensburg, Germany; paul.ramm@biologie.uni-regensburg.de

High-resolution ¹H-NMR spectroscopy of whole cells constitutes the missing link between pure *in vitro* NMR spectroscopy of cell extracts and *in vivo* MR spectroscopy of animal models and, at clinical MRI scanners, of humans. Taking advantage of both methods, purified and cultured cells, e.g. glioblastoma cells or neural stem cells, can be investigated under *in vitro* conditions regarding magnetic field strength and sensitivity of cryo probes, and additionally, structural and dynamic subcellular information is maintained and ultimatively, can be transferred to *in vivo*.

However, NMR spectroscopy of whole cells faces the spectroscopist with substantial challenges. In this contribution, we present findings regarding cell immobilization, shimming artifacts, cell density-dependent line broadenings, intra- and extracellular compartments, NMR-visible intracellular macromolecules, temperature effects, and long-term stability. Regarding the latter, we describe a perfusion setup that enables a continuous supply of cells with oxygenated cell culture medium during the measurement within the 800 MHz Bruker Avance NMR spectrometer.

Based on our former investigations of stem cell-specific biomarkers in NMR spectra of neural stem cells [1] and of brain tumor-initiating cells [2], a metabolic and structural profiling (biomarker screening) *in vitro* will lead to both a better understanding of the fundamentals of stem/tumor cell metabolism and to a possible detection of neurogenesis and tumorigenesis non-invasively in humans.

^{1.} Ramm P et al., Stem Cells, 27, 420-423 (2009)

^{2.} Ramm P et al., Stem Cells Dev, [Epub ahead of print], (2011)

In-cell NMR spectroscopy of nucleic acids inside Xenopus laevis oocytes

<u>Robert Hänsel¹</u>, Silvie Foldynová-Trantírková², Frank Löhr¹, Janina Buck³, Anna Wacker³, Ernst Bamberg⁴, Harald Schwalbe³, Volker Dötsch¹ and Lukáš Trantírek⁵

¹ Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, Email presenting author: rhaensel.bpc@googlemail.com, ² Biology Centre, v.v.i., AS CR, Branisovska 31, 37005 Ceske Budejovice, Czech Republic, ³ Institute for Organic Chemistry and Chemical Biology and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 7, 60438 Frankfurt/Main, Germany, ⁴ Max-Planck-Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt/Main, Germany and ⁵ Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

In-cell NMR spectroscopy of proteins in different cellular environments is a well-established technique that, however, has not been applied to nucleic acids (NA) so far. Here, we show that isotopically labeled DNA and RNA can be observed inside the eukaryotic environment of *Xenopus laevis* oocytes by in-cell NMR spectroscopy (1). One limiting factor for the observation of nucleic acids in *Xenopus* oocytes is their reduced stability. We demonstrate that chemical modification of DNA and RNA can protect them from degradation and can significantly enhance their lifetime. Finally, we show that the imino region of the NMR spectrum is devoid of any oocyte background signals enabling the detection even of isotopically nonlabeled molecules. As a first application, we are investigating human telomeric repeat sequences to address the biologically relevant conformation(s) in vivo. In addition, a 22 kDa engineered 2'-deoxy-Guanine Riboswitch was characterized upon its binding behavior under cellular conditions.

References:

1.

Hänsel, R., Foldynova-Trantirkova, S., Löhr, F., Buck, J., Bongartz, E., Bamberg, E., Schwalbe, H., Dötsch, V. and Trantirek, L. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. *J Am Chem Soc*, **131**, 15761-15768, (2009).

Cv273

In vivo high pressure ¹H NMR studies on oocytes of Xenopus laevis

Joerg Koehler, Sebastian Dietz, Werner Kremer, Hans Robert Kalbitzer

Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany E-mail: joerg.koehler@biologie.uni-regensburg.de

Oocytes of the African Clawed Frog Xenopus laevis are an excellent candidate for in vivo high pressure NMR studies. This is due to their relative good resistance against mechanical stress compared to other living cells and on the other hand their quite large cell size.

We studied the oocytes in the pressure range from ambient pressure to 180 MPa by ¹H NMR spectroscopy. The strongest signals come from the lipids contained in the oocytes. The signals of the lipids decrease with increasing pressure where the signals assigned to different groups behave differently. Signals due to protons in unsaturated fatty acids show a smaller pressure effect than signal arising from saturated fatty acids. The T₂-values measured by a Carr-Purcell sequence are only weakly dependent on pressure. The data can be explained by a pressure dependent phase transition in the lipid droplets. The pressure induced effects observed by NMR spectroscopy are completely reversible up to a pressure of 150 MPa, which agrees well with the vitality measurements on pressure treated cells by patch-clamp experiments on the membrane.

References

^{1.} S.-C. Lee: Subcellular In Vivo 1H MR Spectroscopy of Xenopus laevis Oocytes,

Biophysical Journal, 2006, 90, 1797 – 1803

^{2.} S. Dietz: Hochdruck-NMR-Spektroskopie an menschlichen Stammzellen und Oozyten von Xenopus laevis, Bachelor-thesis University of Regensburg, 2010

Cellular Oxidative Stress and alpha-Synuclein Aggregation

Silvia Verzini¹, Francois X. Theillet¹, Maliha Shah², Rudi Lurz³, Jan Bieschke², Philipp Selenko¹

 ¹ In-cell NMR Group, Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany;
 ² Delbrueck Group for Age-Related Protein Misfolding, Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany;
 ³ Microscopy Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany. <u>verzini@fmp-berlin.de</u>

Aggregation of human alpha-Synuclein (AS) into amyloid fibrils has been linked to Parkinson's disease (PD). Under isolated *in vitro* conditions, AS forms fibrils via a nucleation-dependent mechanism that includes an initial association of AS monomers into toxic oligomeric species ("on-pathway" aggregates). In cellular environments, with many other components present, a number of additional routes to aggregation are possible, several of which involve "off-pathway" species that do not form "classical" amyloid fibrils (1).

Here, we employ a set of biophysical tools, including high-resolution NMR spectroscopy, to characterize Cytochrome c (Cyt c)-mediated high-molecular weight (HMW) aggregates of AS that form under conditions of cellular oxidative stress (2). Our data indicate that these aggregates inhibit amyloid formation and possess neuroprotective properties. The possible physiological roles of these HMW species during AS-mediated neurodegeneration will be discussed.

REFERENCES:

1. Kim H.Y., J. Am. Chem. Soc., 47, 17482-9 (2009)

2. Ruf R.A., Biochemistry, 47, 13604-9 (2008)

Cv275

EPR study of cross-talk between superoxide anion and nitric oxide in vasculature.

Irina Lobysheva, Elvira León-Gómez, Chantal Dessy and Jean-Luc Balligand

Institute of Clinical and Experimental Research (ICER), Unit of Pharmacology and Therapeutic, Université catholique de Louvain, 52 Avenue E. Mounier, UCL-FATH 5349, B-1200 Brussels, Belgium <u>Irina.Lobysheva@uclouvain.be</u>

Endothelial dysfunction (ED) is developed under metabolic diseases such as atherosclerosis, diabetes and aging as a disbalance between vessel vasodilation and vasoconstriction. This is tightly regulated by nitric oxide bioavailability. Potential reaction between endothelial nitric oxide and superoxide anions, generated by NOS, NOX enzymes and mitochondria, with formation of peroxynitrite is often discussed as an important source of ED. Cyclic hydroxylamine, 1-Hydroxy-3methoxycarbomyl-2,2,5,5-tertramethylpyrrolidine (CM-H), was reported to penetrate into tissue, and can be oxidized by superoxide or peroxynitrite anions to form paramagnetic nitroxide ($A_N = 16.1$ G) reflecting redox status of environment. CM-H as redox active spin probe was used in numerous biological studies, but selectivity was not deeply analyzed in tissues. We studied effects of modulation by SOD and NO in vitro and in situ, using aortic rings, isolated from C57Bl/6 mice (12-14 weeks old). 1. We observed that in oxygenated solution spontaneous CM-H oxidation was increased and partly SOD-sensitive. 2. Added NO-donor (up to 0.5 µmol/L/min) did not change auto-oxidation; 3. Additional radical formation in aortic rings in situ at 37°C was significantly decreased by preincubation with free superoxide dismutase (SOD, 100U/mL) or L-NAME, 2 mM, (to 16+/-16%, N=10, and 72+/-12%, N=6, respectively, P<0.05), indicating superoxide anion and discrete peroxynitrite formation. This method can add useful information about site and mechanism of radical formation, and a good basis for evaluation of ED model in situ, but needs careful analysis of the data.

In-cell NMR spectroscopy: proof of principle towards general applicability

Ivan Corbeski, Laura Luh, Robert Hänsel, Frank Löhr and Volker Dötsch

Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, Email presenting author: corbeski@stud.uni-frankfurt.de

Different in-cell NMR applications have successfully demonstrated the feasibility of the method, with proteins like NmerA, GB1 or intrinsically unfolded proteins that show fast tumbling even in the crowded environment of a cell (1,2). For these proteins detection of 15N labelled backbone resonances is the method of choice. However, the majority of cytosolic proteins act in larger molecular complexes, which leads to significant signal broadening or even disappearance caused by the increase of the rotational correlation time. An alternative labelling scheme with 13C on methyl groups in a prokaryotic and eukaryotic approach has been established and allows the investigation of molecular complexes and proteins that tumble slow. Specifically labelled methyl groups of methonines, alanin and delta-methyl groups of isoleucine turned out to be a successful strategy. The investigation of proteins in even larger macromolecular complexes by in-cell NMR is up to now impossible. We will present a mutational concept to reduce nonspecific binding events of intracellular proteins to the protein under study indicating an auspicious tool within liquid-state in-cell NMR experiments. References:

1.

Serber, Z., Corsini, L., Durst, F. and Dötsch, V. In-cell NMR spectroscopy. Methods in enzymology, **394**, 17-41, (2005) Serber, Z., Selenko, P., Hänsel, R., Reckel, S., Löhr, F., Ferrell, J.E., Jr., Wagner, G. and Dötsch, V. Investigating macromolecules inside 2. cultured and injected cells by in-cell NMR spectroscopy. Nature protocols, 1, 2701-2709, (2006)

Cv277

NMR Detection of Cellular PTMs at Physiological Substrate Concentrations

François-Xavier Theillet, Honor May Rose, Beata Bekei, Rossukon Thongwichian, Andres Binolfi, Stamatis Liokatis, Philipp Selenko

Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute for Molecular Pharmacology (FMP Berlin), Berlin, Germany. theillet@fmp-berlin.de

In order to measure different post-translational protein modifications (PTMs) at low cellular substrate concentrations, we developed a series of NMR protocols that take advantage of the joint application of fast NMR pulse sequences and the use of paramagnetic T1 relaxation enhancement (PRE) agents in protonand carbon-detected NMR experiments.

We demonstrate how this combination of advanced sampling conditions enables NMR recordings of cellular PTM events at ultra-low substrate concentrations. This opens the road to in-cell NMR measurements of biological processes at physiological protein concentrations.

Direct ¹³C Detection Methods for In-Cell NMR

Andrés Binolfi¹, François X. Theillet¹, Silvia Verzini¹ and Philipp Selenko¹

¹Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany, binolfi@fmp-berlin.de

We use ¹³C detection methods to study the structural properties of the Intrinsically Disordered Protein (IDP) Alpha-Synuclein (AS), whose aggregation into amyloid fibrils has been strongly linked to the etiology of Parkinson's Disease (PD). Direct ¹³C detection is particularly useful for IDPs where the lack of well-defined structures results in narrow ¹H chemical shift dispersions and unfavorable chemical exchange properties under conditions of macromolecular crowding and at physiological temperatures and pH. Employing 2D ¹H(start) CON and CACO NMR experiments (1) we analyzed what kind of effects different solution environments (crowding and temperature) and various post-translational protein modifications (phosphorylation and oxidation) exerted on the structural features of AS. These factors are known to modulate the aggregation behavior of AS and are thought to be involved in the onset of PD (2, 3).

Here, we present benchmark data for direct ¹³C-detected *in vitro* NMR experiments on AS under different solution conditions and provide an outlook for in-cell NMR applications in different eukaryotic cell types.

2. Paleologou , K. E. et al. J. Biol. Chem., 283, 16895-16905 (2008).

3. Fink A. L. Acc. Chem. Res., 39, 628-634, (2006).

Cv279

Characterizing Cancer Kinase Networks by NMR

Honor M. Rose, Jonas Kosten, Rossukon Thongwichian, Francois-Xaviar Theillet, Philipp Selenko.

Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute for Molecular Pharmacology (FMP Berlin), Berlin, Germany. rose@fmp-berlin.de

Eukaryotic signaling pathways rely on protein kinases and protein phosphatases to reversibly regulate site-specific phosphorylation events on target proteins. Thereby, these enzymes relay divers cellular messages and function in decision-making processes. Defects in cellular signaling pathways are associated with several diseases, most notably cancer. In cancer, aberrant kinase activities may be the result of mutations (e.g. tyrosine kinases EGFR, Src, Abl), or of oncogenic signaling cascades (e.g. serine kinase MAPK activities downstream of oncogenic Ras). As such, it is important to characterize both specific cancer-associated kinase mutations and the resulting changes in cellular kinase activity profiles.

Using peptide-based Kinase Activity Reporters (KARs) and NMR readouts we observe multiple site-specific phosphorylation events in real time. Being able to monitor multiple KARs within the same NMR experiment enables us to delineate several kinase activities simultaneously.

Here we demonstrate the application of KARs to characterize different kinase activities in human cancer cell lines and describe the recent expansion of our KAR library to also include Tyrosine Kinase Reporters. We discuss potential applications of this NMR technique to develop novel kinase inhibitors.

^{1.} Bermel, W. J. et al. J. Am. Chem. Soc., 131, 15339-15345 (2009).

In-cell NMR Spectroscopy in Mammalian Cells

Beata Bekei, Honor May Rose, Francois Theillet, Philipp Selenko

Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute for Molecular Pharmacology (FMP Berlin), Berlin, Germany . bekei@fmp-berlin.de

Recent advances in high-resolution in-cell NMR spectroscopy include methods to directly analyze proteins inside mammalian cells (1,2). To this end, two different protocols for the intracellular delivery of isotope-labeled proteins have been reported.

Here, we compare both delivery schemes with yet another protocol for intracellular protein deposition: Protein transduction via mammalian cell electroporation. Our data indicate that protein electroporation outperforms the above delivery schemes in terms of cell viability, transduction efficiency, linearity of intracellular sample deposition, reproducibility, general applicability and ease of use. Following a detailed comparison of the three delivery methods, we present a selection of in-cell NMR spectra of proteins inside live mammalian cells.

REFERENCES: 1. Inomata. K., *Nature*, 458, 106-110 (2009) 2. Ogino. S., *JACS*, 131, 10834-5 (2009)

Cv281

Cellular Kinase Activity Profiling by NMR

Rossukon Thongwichian¹, Sylvain Tourel¹, Alexander Dose², Dirk Schwarzer² and Philipp Selenko¹

Departments of NMR-assisted Structural Biology¹ and Chemical Biology², Leibniz Institute for Molecular Pharmacology (FMP Berlin), Berlin, Germany thongwichian@fmp-berlin.de

Protein kinases orchestrate cellular processes that range from cell-cell communication to proliferation-, differentiation-, and programmed cell death. Aberrant kinase activities, in turn, are implicated in a number of human diseases including most prominently, cancer. It is hence not surprising that quantitative methods for annotating cellular kinase activities are heavily sought after.

Here, we introduce the concept of cellular kinase activity profiling by NMR spectroscopy. Using peptide-based Kinase Activity Reporters (KARs), multiplexed experimental setups and time-resolved NMR readouts, we directly monitor multiple cellular kinase activities in parallel. This approach is especially useful to qualitatively assign active kinases in complex environments such as cell extracts and whole live cells, to quantitatively compare cellular kinase activities in terms of specific enzymatic units (U) and to evaluate kinase inhibitor specificities under native cellular conditions.

NMR Analysis of Phosphorylation Cross-Talk on Histone H3

Stamatis Liokatis¹, Rebecca Klingberg², Dirk Schwarzer², Philipp Selenko¹.

Departments of NMR-assisted Structural Biology¹ and Chemical Biology², Leibniz Institute for Molecular Pharmacology (FMP Berlin), Berlin, Germany liokatis@fmp-berlin.de

N-terminal histone tails are heavily post-translationally modified (PTM). Phosphorylation in particular controls a variety of cellular processes that range from general transcription to DNA repair and chromosome condensation. Many of these modifications influence one another and thereby establish well-defined PTM states of dynamic regulatory crosstalk.

Using time-resolved NMR detection of protein phosphorylation (1), we demonstrate that Ser10 modification of histone H3 abolishes the ability of PKC and Chk1 to phosphorylate their respective substrate sites at Thr6 and Thr11, respectively. We further delineate that both kinases exhibit cross-reactivity at Ser10 and thereby establish auto-inhibitory feedback states on individual H3 substrate molecules. In contrast, phosphorylation of Thr6 and Thr11 does not affect modification of Ser10 by either Msk1, or AurB, which defines a mechanistic hierarchy for H3 phosphorylation events and may suggest a revised paradigm for copy-specific histone modifications on single nucleosomes.

1. Selenko P., Frue D.P., Elsaesser S.J., Haas W., Gygi S.P., Wagner G. Nature Structural & Molecular Biology, 15, 321-329 (2008)

Ls283

Some Recent Developments in COSY-type NMR Experiments applied to quadrupolar nuclei.

<u>Pierre Kempgens</u>^{a,*} and Jacky Rosé^b

^a Department of Chemistry, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

^b Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, F-67070, Strasbourg Cédex, France

Two steps in the phase cycle are necessary in the COSY NMR experiment to achieve phase modulation of the signal during t_1 and eight steps in the phase cycle are needed in the DQF-COSY NMR experiment to achieve double quantum filtration and phase modulation of the signal during t_1 . This means that one needs to make the calculation ten times if one wants to simulate the COSY and DQF-COSY NMR spectra of any spin system by using either the density matrix or the product operator formalism. By using the density matrix, it will be shown in this presentation that one needs to calculate only one set of coefficients to simulate both the COSY and the DQF-COSY NMR spectra of an AX system of any spins. This contributes to a significant simplification of the calculations compare to a full density matrix treatment. The expressions found in the case of an AX system of any spins are also valid for an AMX system of three spins I=7/2. Some theoretical simulations for such a system in the case of slow, intermediate and fast relaxing quadrupolar nuclei will be presented to illustrate the theory. Finally, a practical case involving the determination of ${}^{1}J({}^{59}Co-{}^{59}Co)$ scalar coupling constants in HFeCo₃(CO)₁₀(PCyH₂)(PPh₂[CH₂C(O)Ph]) from the simulation of the DQF-COSY NMR spectrum will be presented.

NMR chromatography using microemulsion systems

Chava Pemberton,¹ Roy E. Hoffman,¹ Abraham Aserin¹ and Nissim Garti²*

¹Institute of Chemistry, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; ²The Ratner Family Chair of Chemistry, Casali Institute of Applied Chemistry, Institute of Chemistry, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel. Email: royh63@gmail.com

NMR spectroscopy is an excellent tool for structural analysis of pure compounds. However, for mixtures it performs poorly because of overlapping signals. Diffusion ordered NMR spectroscopy (DOSY) can be used to separate the spectra of compounds with widely differing molecular weights, but the separation is usually insufficient. NMR 'chromatographic' methods have been developed to increase the diffusion separation but these usually introduced solids into the NMR sample that reduce resolution.

Using nanostructured dispersed media, such as microemulsions, eliminates the need for suspensions of solids and brings NMR chromatography into the mainstream of NMR analytical techniques. DOSY was used in this study to resolve spectra of mixtures with no increase in line-width as compared to regular solutions. Components of a mixture are differentially dissolved into the separate phases of the microemulsions. Several examples of previously reported microemulsions and those specifically developed for this purpose were used here. These include a fully dilutable microemulsion, a fluorinated microemulsion and a fully deuterated microemulsion.

Log (diffusion) difference enhancements of up to 1.7 orders of magnitude were observed for compounds that have similar diffusion rates in conventional solvents. Examples of commercial pharmaceutical drugs were also analyzed by this new technique and the spectra of up to six components were resolved from one sample.

Ls285

Sharpening your NOEs: NOESY with pure shift in both dimensions.

Adam A. Colbourne, Juan Aguilar, Mathias Nilsson, Gareth Morris.

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. adam.colbourne-2@postgrad.manchester.ac.uk

The complexity of NMR spectra has a variety of sources of which homonuclear multiplet structure is arguably the most important. Suppressing the multiplet structure, by refocusing ${}^{1}\text{H}{}^{-1}\text{H}$ scalar couplings, gives a decoupled (or pure shift) spectrum with an increase in resolution of almost an order of magnitude^{1,2}. The principle can be extended to multidimensional NMR as demonstrated in the F₂ decoupled pure shift TOCSY experiment. Furthermore covariance processing can carry over the resolution gain in F₂ to F₁, giving a doubly pure shifted 2D spectrum³. Here we apply the same principle to 2D NOESY, demonstrating that pure shift NMR combined with covariance processing is

- 1. Zangger K., Sterk H., J. Magn. Reson., 124, 486-489 (1997)
- 2. Nilsson M., Morris G. A., *Chem. Comm.*, 9, 933-935 (2007)
- 3. Morris G. A., Aguilar J. A., Evans R., Haiber S., Nilsson M., J. Am. Chem. Soc., 132, 12770–12772 (2010)

an excellent method of gaining resolution for through space correlations.

Suppression of sparse sampling artefacts in multidimensional NMR spectra

Jan Stanek¹, Rafał Augustyniak², Wiktor Koźmiński¹

¹Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; janstanek@chem.uw.edu.pl² Ecole Normale Supérieure, Département de Chimie, 24 rue Lhomond, 75231 Paris Cedex 05, France

Multidimensional NMR experiments play a crucial role in research on structure and dynamics of complex biomolecules. According to the *sampling theorem*, indirectly detected dimensions have to be sampled with a fixed interval Δt =sw⁻¹. Consequently, max. evolution times are severely limited already for 3D experiments, resulting in broad spectral lines. Poor resolution of conventionally recorded 4D spectra makes them impractical to use unless extensive folding is applied.

Spectral resolution and dimensionality can be increased by use of *non-uniform sampling* of evolution time space, which in turn requires the appropriate processing methods.

Here we present the efficient algorithm for removal of artifacts in randomly sampled 3D and 4D spectra. The algorithm [1] follows the concepts behind CLEAN algorithm, which was previously adapted to NMR by other authors [2,3]. It was shown that it preserves relative peak intensities [1,4], and is therefore suitable even for spectra containing resonances of various amplitude.

The experimental examples include 4D HCCH-TOCSY or 4D C,N-edited NOESY for both wellfolded and partially disordered proteins. We show how (i) high dimensionality, (ii) high-resolution and (iii) high redundancy of information in 4D HCCH-TOCSY can be utilized to overcome spectral crowding and unambiguously identify a spin system of particular a.a. residues.

REFERENCES:

- 1. Stanek J., Koźmiński W., J Biomol NMR, 47, 65 77 (2010)
- 2. Kazimierczuk K., Zawadzka A., Koźmiński W., Zhukov I., J Magn Reson, 188, 344 356 (2007)
- 3. Coggins B.E., Zhou P., *J Biomol NMR*, 42, 225-239 (2008)
- 4. Werner-Allen J.W., Coggins B.E., Zhou P., J Magn Reson, 204, 173-178 (2010)

Ls287

Heteronuclear Detection of STD-NMR Spectra

Christoph Räuber, Stefan Berger

Universität Leipzig, Institut für Analytische Chemie, Leipzig, Germany

Saturation Transfer Difference (STD) NMR is a powerful tool to investigate protein-substrate interactions. STD-NMR has the same limitations standard proton NMR has: signal overlap or a strong solvent (e.g. water) signal can cause problems. With biological samples water suppression is required. To overcome those problems choosing heteronuclear detection is one possible method.

For the detection of STD NMR in the heteronuclear channel saturation has to be accomplished in the proton channel. After the saturation transfer magnetization is transferred to the non-hydrogen channel employing a transfer step (e.g. INEPT). So far we have been able to demonstrate the transfer of the STD-NMR signals to carbon^[1]. First results indicate that it is also possible to use other nuclei (e.g. ³¹P). Here the INEPT transfer has to be replaced by other methods.

^{1.} C. Räuber, S. Berger, Magn. Res. Chem., 48, 91-93 (2010)

NMR Structural Insights into the Plasmodium Falciparum P2 Protein

Pushpa Mishra¹, Sudipta Das³, Lata Panikar², M.V. Hosur², Shobhona Sharma³ and R.V. Hosur¹

¹Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India; ²Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India; ³Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India. pushpam@tifr.res.in.

Plasmodium falciparum P2 protein is a part of the eukaryotic ribosomal stalk. Eukaryotic ribosomal stalk function in translation mechanism is still not clearly understood. The Ribosomal P proteins from plasmodium falciparum have been thought to play an important role in protein synthesis. Thus it becomes important to understand its structural and dynamics features to get insights into mechanistic aspects of protein-protein interactions. From various biophysical methods (NMR, CD and DLS), we found that P2 is a mostly alpha helical protein and its C-terminal is a highly unstructured random coil. P2 protein tends to form aggregates. Removal of the last 40 residues from the C-terminal did not reduce aggregation unlike what was observed in human P2. Multidimensional NMR investigations have been carried out on full length P2 (FL). HSQC of FL shows only 43 peaks instead of expected 137. After assigning these 43 peaks we found that they belong to residues from the C-terminal. This clearly indicates that the C-terminal is exposed and flexible while the N-terminal is buried inside the core. CSI of this domain shows some helical propensities in solution. Various experimental conditions were tried without success to obtain monomeric P2 in solution. Hexafluoroisopropanol (HFIP) caused dissociation but exchange broadening resulted vanishing of many peaks in the HSQC spectrum. Urea denaturation dissociates the aggregate and all the expected peaks are observed. This paves the way for step-wise investigation of folding and self-association of this protein.

Ls289

Quality Control Mapping of Olive Oil by ¹H NMR and ¹H Diffusion Ordered-Spectroscopy (DOSY) NMR

Salim Ok

Institut für Chemie, Barbarastr. 7, Universität Osnabrück, 49069 Osnabrück, Germany, E-mail: sok@uos.de

Olive oil, a natural fruit juice, has gained popularity due to potential health benefits [1]. The characterization of geographical origin of olive oil, which is to be marketed under a protected designation of origin (PDI) label according to European Union (EU) regulations, becomes more important [2]. In addition, classification of different grades of olive oil for instance as virgin, extra virgin, refined or pure is also essential [1].

In the current study, our goal is to characterize olive oils from countries such as Turkey, Jordan and Palestine whose olive oils are not well studied with respect to Spanish and Italian olive oils. We employ NMR spectroscopy, a useful technique to distinguish among different grades and geographical origins of olive oils [1]. ¹H NMR has been used in determining both major and minor components of olive oils such as triglycerides and squalene [2]. ¹H DOSY NMR is based on the fact that higher molecular weight compounds diffuse more slowly [3].

Quantitative ¹H NMR analysis distinguishes the contents of olive oils (fractions of saturated and non-saturated acids) from different cities in Turkey, and to differentiate Turkish olive oils from the samples of Jordan and Palestine. ¹H DOSY NMR results revealed the existence of minor components in some olive oils whose geographical origins are different. This is also very useful in determining geographical origins of olive oils.

^[1] Zamora, R. et al. J. of American Oil Chemical Society, 78 (1): 89, (2001).

^[2] Alonso-Salces, R.M. et al., Food Chemistry 118: 956, (2010).

^[3] Socha, A.M. et al., Energy Fuels 24: 4518, (2010).

¹H and ¹³C NMR Characterization of Pyrazole Carboxamide Derivatives

Salim Ok ^a, Elvan Şen ^b, Rahmi Kasımoğulları ^b

a) Institut für Chemie, Barbarastr. 7, Universität Osnabrück, 49069 Osnabrück, Germany, E-mail: <u>sok@uos.de</u>
 b) Department of Chemistry, Art and Science Faculty, Dumlupinar University, 43100 Kütahya, Turkey

There is a recent interest in pyrazole derivatives, well-known nitrogen containing heterocyclic compounds, because antimicrobial and antidepressant type biological activities [1]. In the current study, our aim is to characterize 4-benzoyl-1-(3-nitrophenyl)-5-phenyl-N-(4-sulfamoylphenyl)-1H-pyrazole-3-carboxamide (E1) and its derivatives by solution ¹H and ¹³C NMR spectroscopy.

NMR spectroscopy is utilized to elucidate chemical structures, to detect hydrogen bonding interactions of **E5-E7** that play important role in the properties of chemicals [2], and to differentiate between possible tautomeric structures of pyrazole carboxamide derivatives.

The corresponding structure elucidation of the derivatives from the NMR spectra is done referring to our previous work [3]. Hydrogen bonding established via N-H····O was observed as downfield shift of isotropical chemical shifts in the ¹H and ¹³C NMR spectra. The difference between the possible tautomeric structures is clarified by ¹H NMR spectra. It was also possible to distinguish the ¹³C resonances of nitrogen-containing heterocyclic structures from the rest of the resonances in the ¹³C NMR spectra [4].

REFERENCES

Ls291

Interaction of procaryotic reggie-like Proteins with structurally refined Nfed-homologues

Andreas Prestel, Heiko M. Möller

Department of Chemistry, University of Konstanz

Proteins containing the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain are found in a diverse multitude of species from prokaryotes to eukaryotes. Reggie/Flotillin belongs to the SPFH protein family and like the other family members it is found to be enriched in so called 'lipid raft' membrane microdomains, in diverse subcellular localizations. Despite their widespread occurrence and their importance in several processes (ion channel regulation, vesicle and protein trafficking, membrane–cytoskeletal coupling) only little is known about the exact function at the molecular level. Prokaryotic SPFH proteins are often co-expressed with an NfeD-like protein and there are several hints for an interaction of the two proteins.

In this work we refined the NMR structures of NfeD domains of three homologueous proteins (YuaF, YuaF-Bst and YqiJ) to support the hypothesis that they all share a common OB-fold structure. Therefore, residual dipolar couplings (RDCs) in different alignment media were measured in order to arrive at high-quality cross-validated 3D structures. Furthermore, initial interaction studies between the NfeD protein YuaF and its Reggie-like partner protein YuaG will be presented.

^[1] Abdel-Hafez, E.M.N. et al., Bioorganic and Medicinal Chemistry 17, 3829-3837, (2009).

^[2] Kim, H.; Ishida, H. Macromolecules 36: 8320, (2003).

^[3] Kasımoğulları, R. et al., European J. of Medicinal Chemistry 45, 4769-4773, (2010).

^[4] Roder, J.C. et al., Eur. J. Org. Chem. 23: 4479-4487, (2001).

Alignment of small and medium sized molecules induced by strong magnetic fields.

<u>Alla K. Shestakova¹</u>, Viacheslav A. Chertkov²

¹State Scientific Centre of RF "GNIIChTEOS", Moscow, Russia, e-mail: alshestakova@yandex.ru. ²Department of Chemistry, Moscow State University, Moscow, Russia.

Molecules with anisotropy of magnetic susceptibility exhibit small partial orientation in strong magnetic fields. The resulting macroscopic anisotropy may become manifest anisotropic nuclear dipolar and quadruple coupling [1]. This very tiny effect can provide information on the spatial structure of molecules. New procedure ALIGN was suggested for quantitative simultaneous analysis of a series of strongly coupled high resolution NMR spectra recorded on spectrometers with different magnetic field strength [2]. This technique allows accurate separation of the field-independent spin-spin and field-dependent dipole-dipole coupling constants. It gives also estimates for anisotropy and rhombicity of magnetic susceptibility tensor, which independently can be calculated quntummechanically with CSGT technique [3]. We performed detailed experimental and theoretical (Gaussian-09 program suit) studies for a series of bicyclic carbo- and heterocycles. The results supported applicability of the method for structure applications.

Support: AvH and RFBR.

REFERENCES:

2. Shestakova A.K., Makarkina A.V., Smirnova O.V., Shtern M.M., Chertkov V.A., Russ. Chem.Bull., 55, 1359-1362 (2006).

3. Keith T.A., Bader R.F.W., Chem. Phys. Lett., 194, 1-8 (1992).

Ls293

Broadband Platinum NMR Spectroscopy

Benjamin Görling, Linus Reichenbach, Thierry Muller, Stefan Bräse, Burkhard Luy.

Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, Germany, benjamin.goerling@kit.edu.

Platinum possesses an NMR-active nuclear spin $\frac{1}{2}$ species, ¹⁹⁵Pt, which is well-suited for the characterization of Pt-complexes. Having a similar gyromagnetic ratio as ¹³C but roughly 30 times the natural abundance, ¹⁹⁵Pt spectra can be obtained in reasonable time. However, the huge chemical shift range of nearly 14,000 ppm makes it impossible to acquire a full ¹⁹⁵Pt spectrum with conventional pulses. A new class pulses, so-called xy-BEBOP pulses of optimized using optimal control algorithms, allows now to acquire bandwidths of 3800 ppm and even higher in a single experiment.

Examples are shown for ¹⁹⁵Pt 1D and specifically designed ¹H,¹⁹⁵Pt-HMBC 2D experiments (*Fig. 1*).

Figure 1: Example spectra for (COD)PtCl₂ with impurities; **A:** 1D-spectrum, 256 scans, 9 min 32 sec acquisition time, S/N = 1.86; **B:** 1D-spectrum, 1024 scans, 37 min 52 sec acquisition time, S/N = 7.13; **C:** ¹H,¹⁹⁵Pt-HMBC, 2 scans, 128 increments, 10 min 38 sec acquisition time, S/N = 102.05; **D:** slice of the 2D-spectrum at 7.20 ppm.

^{1.} Bastiaan E.W., Bulthuis J., MacLean C., Org. Magn. Reson., 24, 723-728 (1986).

Pulse Trains with Variable Nutation Angles for Homonuclear Decoupling

<u>Takuya F. Segawa</u>¹, Pascal Miéville¹, Diego Carnevale¹, Bikash Baishya^{1,2}, and Geoffrey Bodenhausen^{1,3}

¹ Laboratoire de Résonance Magnétique Biomoléculaire, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ²Present Address: Chemical Physics Department, Weizmann Institute, Rehovot, Israel. ³Département de Chimie, Ecole Normale Supérieure, Paris, France. takuya.segawa@epfl.ch

The challenge of measuring transverse relaxation rates R_2 in homonuclear *J*-coupled systems lies in the presence of echo modulations. Recently, Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences using moderate radiofrequency (*rf*) amplitudes $\omega_1 \ge \Omega_S$ relative to the off-resonance chemical shift Ω_S , were used to obtain modulation-free R_2 decays in homonuclear coupled systems.¹⁻³ The only pitfalls are 'recoupling conditions' at certain inter-pulse delays, where the *J*-modulations are reintroduced.

Experiments on protons in Cyclosporin A were performed with nutation angles of 360° instead of the classic 180°. The new sequence led not only to comparable R_2 's but also did not show any recoupling conditions. In order to understand these observations, simple ¹H spin-systems in organic molecules were studied with a focus on the nutation angles. Experimental and simulated maps of signal intensities as a function of the angle and the inter-pulse delay showed many favorable conditions with arbitrary angles and were confirmed by consistent measurements of R_2 's.

Where all these experiments are two-dimensional, a one-dimensional experiment could generate a homonuclear decoupled spectrum, as long as the chemical shift is not refocused. Window-acquired short tickling pulses with angles $\theta < 1^\circ$ achieved this for selected spin systems.

- 2. Segawa T. F., Aeby N., Bodenhausen G., Phys. Chem. Chem. Phys., 12, 9772-9776 (2010)
- 3. Segawa T. F., Baishya B., Bodenhausen G., ChemPhysChem, 11, 3343-3354 (2010)

Ls295

³⁵Cl/³⁷Cl isotope effects in ¹⁹⁵Pt and ¹⁰³Rh NMR: a fundamentally new tool for unambiguous speciation of the deceptively simple Pt^{IV} and Rh^{III} complex anions, in chloride-rich process solutions.

Klaus R. Koch, Theo Geswindt and Wilhelmus J. Gerber.

Department of Chemistry and Polymer Science, Stellenbosch University, P Bag X1, Matieland, 7602. South Africa. Email: krk@sun.ac.za

High-resolution ¹⁹⁵Pt and ¹⁰³Rh NMR is a unique tool for the unambiguous spectroscopic speciation of the deceptively simple $[PtCl_n(H_2O)_{6-n}]^{4-n}$ (n = 1-5)¹, as well as on the basis of the ³⁵Cl/³⁷Cl isotope-induced shifts observed for each complex anion in solution, as relevant to the refining industry.² For the first time, the corresponding $[RhCl_n(H_2O)_{6-n}]^{3-n}$ complexes (n = 1 - 3) in acidic solution at 293 K have been have been identified by this means. A direct species distribution diagram for $[RhCl_n(H_2O)_{6-n}]^{3-n}$ anions has been constructed as a function of chloride-ion concentration in acidic solution. Detailed analysis of the ¹⁹⁵Pt and ¹⁰³Rh resonances at 128.8 and 19.11 MHz respectively shows that

Detailed analysis of the ¹⁹⁵Pt and ¹⁰³Rh resonances at 128.8 and 19.11 MHz respectively shows that well-resolved ³⁵Cl/³⁷Cl isotope-induced shifts for each complex anion, results in unique ¹⁹⁵Pt and ¹⁰³Rh NMR line-shapes under carefully controlled conditions, due to the individual *isotopologue* and *isotopomer* distributions observable for each of the complex species; the latter serve as a unambiguous 'fingerprints' for the assignment of all complexes in solution, notably also for the *stereoisomers* of the kinetically inert octahedral $[MCl_{6-n}(H_2O)_n]^{2/3-n}$ anions (M=Pt^{IV}, Rh^{III}) present at minor concentrations in these solutions at a given chloride concentration.

^{1.} Baishya B., Segawa T. F., Bodenhausen G., J. Am. Chem. Soc., 131, 17538-17539 (2009)

^{1.} Kramer J. and Koch K. R., Inorg. Chem. 45, 7843, 2006; Inorg. Chem., 46, 7466, 2007.

^{2.} Gerber W. J. Murray P. and Koch, K. R., *Dalton Trans.*,4113, 2008; Geswindt T., Gerber W. J. and Koch K. R., *Anal. Chim. Acta*, (submitted), 2011

Quantitative metabolic profiling of body fluids by nonlinear sampling and forward maximum entropy reconstruction of 2D ¹H-¹³C HSQC

Ratan Kumar Rai and Neeraj Sinha.

Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road Lucknow - 226014 INDIA

Two-dimensional (2D) NMR methods have shown to be an excellent tool for the identification and characterization of statistically relevant changes in low-abundance metabolites¹ in body fluid. Although 2D NMR data provides minimized ambiguities in peak assignment, aided in metabolite identifications and comprehensive metabolic profiling but it takes more time to collect the data, which make it inappropriate for metabolic profiling.

In this presentation, we report the application of two – dimensional ¹H-¹³C HSQC NMR spectroscopy for the quntitative metabolic profiling² with reduction in the experimental time. Maximum Entropy Reconstruction and Non linear sampling techniques³ have been investigated for the quntitataive metabolic profiling. Experimental results on the standard samples of mixture of metabolites and body fluid will be presented

REFERENCES

- 1. Que N et al. Journal of Proteome Research 2008, 7, 630-639.
- 2. Ratan et al. Analytical Chemistry, 2009, 10232–10238
- 3. Hyberts SG, et al. J Am Chem Soc. 2007, 129, 5108-16.

Ls297

A Plug 'N' Play Set of Optimal Control Pulses for Enhancing NMR performance

Manoj Nimbalkar¹, Burkhard Luy^{1,2}, Thomas E. Skinner³, Naum I. Gershenzon³, Kyryl Kobzar⁴, Wolfgang Bermel⁴ & Steffen J. Glaser¹

¹Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany; ²Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; ³Department of Physics, Wright State University, Dayton, OH 45435, USA; ⁴Bruker BioSpin GmbH, Silberstreifen 4, Rheinstetten, Germany;

The steady increase in the magnetic field strength of NMR spectrometers improves the sensitivity and resolution of the resulting NMR spectra. However, hard pulses, the commonly used workhorses of most NMR pulse sequences, cannot always excite spins effectively over this increased bandwidth. This is especially problematic for nuclei with large chemical shift ranges such as ¹³C, ¹⁵N ¹⁹F, and ³¹P. Additionally, hard pulses do not compensate for B₁-field inhomogeneity/miscalibration. In this poster, a first topic will be the design and experimental implementation of numerically optimized RF pulses for robust broadband excitation, inversion and universal rotation pulses based on optimal control theory [1-4] in multi-dimensional experiments such as 2D HSQC. These optimized pulses compensate for the B₁-field inhomogeneity/miscalibration and excite spins effectively over large chemical shift ranges hence enhance on average the S/N ratio compared to conventional 2D HSQC. Since these pulses designed for ¹H and ¹³C nuclei are all of identical duration, they can be used directly as replacements for corresponding hard pulses in existing pulse sequences.

^{1.} Skinner T. E., Reiss T. O., Luy B., Khaneja N., Glaser S. J., J. Magn. Reson., 163, 8-15 (2003).

^{2.} Kobzar K., Skinner T. E., Khaneja N., Glaser S. J., Luy B., J. Magn. Reson., 170, 236-243 (2004).

^{3.} Luy B., Kobzar K., Skinner T. E., Khaneja N., Glaser S. J., J. Magn. Reson., 176, 179-186 (2005).

^{4.} Gershenzon N. I., Skinner T. E., Brutscher B., Khaneja N., Nimbalkar M., Luy B., Glaser S. J., J. Magn. Reson., 192, 235-243 (2008).

Intrinsic Disorder in Measles Virus Nucleocapsids

Malene Ringkjøbing Jensen¹, Guillaume Communie^{1,2}, Euripedes A. Ribeiro^{1,2}, Nicolas Martinez², Ambroise Desfosses², Loïc Salmon¹, Luca Mollica¹, Frank Gabel¹, Marc Jamin², Sonia Longhi³, Rob W. H. Ruigrok², Martin Blackledge¹

¹Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France; ²Unit for Virus Host Cell Interactions, CNRS-UJF-EMBL, Grenoble, France; ³Architecture et Fonction des Macromolécules Biologiques, CNRS, Marseille, France (malene.ringkjobing-jensen@ibs.fr)

The genome of measles virus is encapsidated by multiple copies of the nucleoprotein (N), forming helical nucleocapsids of molecular mass approaching 150 Megadalton. The intrinsically disordered C-terminal domain of N (N_{TAIL}) is essential for transcription and replication of the virus via interaction with the phosphoprotein P of the viral polymerase complex. The molecular recognition element (MoRE) of N_{TAIL} that binds P is situated 90 amino acids from the folded RNA-binding domain (N_{CORE}) of N, raising questions about the functional role of this disordered chain. Here, we report the first in situ structural characterization of N_{TAIL} in the context of the entire N-RNA capsid. Using solution NMR spectroscopy, small angle scattering, and electron microscopy, we demonstrate that N_{TAIL} is highly flexible in intact nucleocapsids and that the MoRE is in transient interaction with N_{CORE}. We present a model in which the first 50 disordered amino acids of N_{TAIL} are conformationally restricted as the chain escapes to the outside of the nucleocapsid via the interstitial space between successive N_{CORE} helical turns. The model provides a structural framework for understanding the role of N_{TAIL} in the initiation of viral transcription and replication, placing the flexible MoRE close to the viral RNA and, thus, positioning the polymerase complex in its functional environment.

REFERENCES:

- Jensen M.R. et al., J. Am. Chem. Soc., 132, 1270-1272 (2010).
 Jensen M.R. et al., Structure, 17, 1169-1185 (2009).
- 4. Jensen M.R. et al., *J. Am. Chem. Soc.*, 130, 8055-8061 (**2008**).

Ls299

Vibration effects in NMR spectroscopy for studies of ultra fast conformational dynamics

<u>Vyacheslav A. Chertkov</u>¹, Alexey V. Chertkov¹, Dmitriy A. Cheshkov^{1,2}, Tatyana A. Ganina¹, Albina A. Pushkareva¹, Alla K. Shestakova²

¹Department of Chemistry, Moscow State University, Moscow, Russia; ²State Scientific Centre of RF GNIIChTEOS, Moscow, Russia. E-mail: chertkov@org.chem.msu.ru.

Dynamic behavior of molecular systems is regularly associated with some sort of chemical reactions. There are still numerous examples of extremely rapid dynamics, which can't be sufficiently evaluated in terms of classical kinetic parameters. Accurate structure studies of open-chain compounds and saturated four- and five-membered cycles imply solving specific problem of quantitative description of dynamic processes with very low barriers. We developed a practical method for evaluation of the parameters of conformational dynamics in terms of vibrations with large amplitude. The method based on: (*i*) complete analysis of high resolution NMR spectra, (*ii*) ab'initio calculations of a reaction path and surfaces of spin-spin coupling constants, (*iii*) a numerical solution of vibration problem and (*iv*) refinement for the parameters of the potentials based on the best fit of experimental and calculated spin-spin couplings (see e.g. [1-2]). Advantages of the technique demonstrated on studies of pseudorotation in four- and five-membered cycles and internal rotation in acyclic systems: natural endogenic hormone adrenaline, styrene and substituted azobenzenes.

^{1.} Jensen M.R. et al., Proc. Natl. Acad. Sci. U.S.A., In press (2011).

^{1.} Zubkov S. V., Golotvin S. S., Chertkov V. A., Russ. Chem. Bull., 51, 1222-1230 (2002).

^{2.} Chertkov A. V., Pokrovsky O. I., Shestakova A. K., Chertkov V. A., Chem. Heterocycl. Comp., 44, 782-784 (2008).

Rapid Backbone Assignment protocol based on 2D projections of HNN and HN(C)N suite of experiments

<u>Dinesh Kumar</u>¹ and Ramakrishna V. Hosur²

¹Center of Biomedical Magnetic Resonance, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raibareli Road, Lucknow-226014 Uttar Pradesh, India (dinesh@cbmr.res.in); ²Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road-1, Colaba, Mumbai-400005, India.

Backbone assignment is the very first and key step in protein NMR research. Getting this information fast is crucial for structural and functional proteomics projects, especially dealing with unstable proteins. In this context, an efficient high-throughput protocol for assigning backbone resonances in ${}^{13}C/{}^{15}N$ -labeled proteins has been designed. The protocol uses (i) protein primary sequence, (ii) sequential amide correlations from 2D-hNcocanH [1] and 2D-hNcanH spectra, (iii) self and sequential ¹³C correlations from 2D-hnCOcanH [2] and 2D-hncoCAnH [2] spectra, and finally (iv) a few check points (glycines, alanines, serines/threonines, and the residues following them in the sequence) derived from variants of 2D-(HN)NH [3] and 2D-hncNH [1]. The protocol has successfully been used for assigning the backbone (¹HN, ¹⁵N, ${}^{13}C^{\alpha}$ and ${}^{13}C'$) resonances in three small globular proteins: ubiquitin (76 aa), Calbindin-d9k (75 aa) and Mcrystallin (85 aa). In each case, the whole exercise including experimentation and analysis was accomplished in less than a day. The protocol would be of immense value for high-throughput structural proteomics of small well-folded proteins. Additionally, the approach is most amenable for re-establishing sequential assignments lost by the complex formation with various ligands (proteins/metal ions/drug molecules) while investigating protein structure-activity relations. Further, the protocol will also be well suited for studying mutated proteins where the whole assignment can be re-established without recording the various 3D NMR experiments.

1. D. Kumar, R.V. Hosur, Current Science: Research Communications 99 (2010) 1581-1589.

D. Kumar, J.G. Reddy, R.V. Hosur, J. Magn Reson. 206 (2010) 134-138.
 D. Kumar, S. Paul, R.V. Hosur, J. Magn Reson 204 (2010) 111-117.

Ls301

Spectral simplification by collapsing J-multiplet structures: an improved technique for dilute samples

Ard J. Kolkman, Jurjen Draaisma, Sybren S. Wijmenga and Marco Tessari

Radboud University Nijmegen, Institute of Molecules and Materials, Department of Biophysical Chemistry, The Netherlands; a.kolkman@nmr.ru.nl

1D proton NMR spectra of small molecules in solution often suffer from complex multiplet structures due to a dense network of homonuclear scalar coupling interactions. The complexity and signal overlap resulting from such scalar couplings can seriously hamper spectral analysis. Several methods have been proposed previously to record simplified $1D^{-1}H$ NMR spectra in which the multiplets collapse into single lines^{1,2}. However, due to their intrinsic low sensitivity, these methods can be applied mainly to samples with relatively high concentration (> mM). Here we present an optimized approach to record proton NMR spectra free from homonuclear J-couplings with much higher sensitivity compared to previous methods. By using our approach the acquisition of *pure-shift*¹ spectra can be extended to samples at more critical concentrations (sub-mM range).

REFERENCES

1. Aguilar J.A., Angew. Chem. Int. Ed., 49, 3901-3903 (2010)

^{2.} Pell, A.J., J. Magn. Res., 189, 293-299 (2007)

Three-Field NMR to Preserve Hyperpolarized Proton Magnetization as Long-lived States in Moderate Magnetic Fields

Aurélien Bornet¹, Sami Jannin¹, Geoffrey Bodenhausen^{1,2,3,4}

¹Institut des Sciences et Ingénierie Chimiques. Ecole Polytechnique Fédérale de Lausanne (EPFL). Batochime, 1015 Lausanne, / ²Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231, Paris Cedex 05, France / ³Université Pierre-et-Marie Curie, Paris, France / ⁴CNRS, UMR 7203, Paris, France

Proton hyperpolarization by dissolution Dynamic Nuclear Polarization (DNP) can in principle provide enhancement factors up to $\varepsilon_{DNP} = 17000$ [1]. ¹H dissolution DNP is more attractive than ¹³C because it has higher sensitivity ($\gamma H = 4\gamma C$) and does not require any isotopic labeling. However, the price to pay is the rapid return of the population differences to the Boltzmann equilibrium due to a faster longitudinal relaxation rates R₁. Long-lived States (LLS) offer a way to overcome this disadvantage by preserving magnetization for longer times T_{LLS} >> T₁[2,3].

We developed a three-field experiment where inequivalent scalar-coupled pairs of spins are hyperpolarized at $B_0 = 3.35$ T and 1.25 K, rapidly transferred to high field ($B_0 = 7$ T) to prepare a suitable initial condition $I_z - S_z$ that is converted adiabatically into LLS by shuttling the sample to a moderate magnetic field (2 mT < $B_0 < 7$ T). The polarization is preserved in the moderate field, where it slowly decays with $T_{LLS} >> T_1$. The sample is finally shuttled back to high field ($B_0 = 7$ T) for observation.

We were able to preserve the enhanced polarization of protons ($\epsilon_{DNP} = 1700$, $T_{LLS} > 60$ s) at moderate fields ($B_0 < 0.1$ T).

REFERENCES:

1. Ardenkjaer-Larsen, J. H., et al., PNAS, 100, 10158-10163 (2003)

2. Carravetta M., Levitt M. H., J. Chem. Phys., 122, 214505 (2005)

3. Ahuja P., Sarkar R., Jannin S., Vasos P.R., Bodenhausen G., Chem. Commun., 46, 8192-8194 (2010)

Ls303

Observing ipso-contacts at dimer interfaces with the novel diagonal-free 3D [H]C,CH-NOESY experiment

B. López Méndez, T. Diercks, O. Millet

CiC bioGUNE, Parque Tecnologico de Bizkaia, Ed. 800, 48160 Derio, TDiercks@cicbiogune.es

NOESY spectra are the most important source of data for structure determination by NMR. Yet, critical NOE cross signals may be biased or concealed by the intense, redundant diagonal signals through direct spectral overlap, induced baseline distortion (from phase errors) and derived artefacts (e.g., decoupling sidebands, t_1 noise, truncation wiggles). Thus, diagonal signal suppression is of paramount importance for maximal data coverage and accuracy in NOESY spectra. In homoisotopic NOESY experiments, it may be achieved by applying *orthogonal spin state selection* (oS³) across the NOE mixing time, exploiting the fact that ¹H spins can be magnetically distinguished by the spin state of a coupled spin-½ heteronucleus X (e.g., ¹³C, ¹⁵N). This principle has so far been applied only to ¹⁵N-bound protons, ranging from 2D homonuclear NOESY ¹ to maximum resolution 3D heteronuclear [H]N,NH-NOESY-TROSY ². Yet, the cited problems caused by diagonal signals are most pronounced in the crowded ¹³C-edited NOESY, where further complications may arise from the heterogeneity of CH_n multiplicities and ¹J_{CH} couplings.

We here present the novel 3D [H]C,CH-NOESY experiment with diagonal signal suppression, and apply it to the homodimeric bacterial transcription repressor CopG (2×16 kDa). Thus, we were able to unambiguously detect various new NOE contacts close to, and even at the exact position of, the suppressed diagonal. Such degenerate NOE signals indicate *ipso*-contacts between identical residues in both monomers of a head-to-head dimer, providing a critical definition of the dimer interface.

^{1.} Meissner, A.; Sorensen, O. W. J. Magn. Reson. 1999, 140, 499; Zhu, G.; Xia, Y.; Sze, K. H.; Yan, X. J. Biomol. NMR 1999, 14, 377

^{2.} Diercks, T.; Truffault, V.; Coles, M.; Millet, O. J Am Chem Soc 2010, 132, 2138.

Measurements of transverse relaxation rates in scalar coupled spin systems

Pierre Thureau, Caroline Barrère and Stéphane Viel.

Laboratoire Chimie Provence, Universités Aix-Marseille I, II et III-CNRS, 13397 Marseille, France. Email: pierre.thureau@univ-provence.fr

This work investigates the advantages provided by multiple quantum-filtered experiments for transverse relaxation rate measurements in homonuclear scalar coupled spin systems.

Recently, a solid-state NMR method based on a combination multiple quantum-filtered experiments, has been introduced for estimating small homonuclear dipole–dipole couplings.¹

Here, we show that combination of multiple quantum-filtered experiments can also be used in solution-state NMR to suppress echo modulations coming from homonuclear scalar couplings. As a result, accurate relaxation rate measurements can be achieved in both weakly and strongly coupled spin systems.²

The scheme proposed here was explored theoretically and experimentally. The numerical simulations, assisted by the *SpinDynamica* code developed by M. H. Levitt,³ investigated different motional and coupling regimes. Experimentally, we demonstrated that the methodology proposed here provides more accurate results than the conventional CPMG method without requiring any experimental optimization.

REFERENCES:

- 1. Thureau P., Sauerwein A. C., Concistre M., Levitt M. H., Phys. Chem. Chem. Phys., 13, 93-96 (2011)
- Barrere C., Thureau P., Thevand A., Viel S., Submitted (2011)
 available at www.SpinDynamica.soton.ac.uk

Ls305

Efficient Indirect Quadrature Detection by Multiplex Phase Cycling

Judith Schlagnitweit¹, Michaela Horničáková¹, Gerhard Zuckerstätter², Norbert Müller¹

¹Institute of Organic Chemistry, Johannes Kepler University, Linz, Austria; (judith.schlagnitweit@jku.at); ²Kompetenzzentrum Holz GmbH, Linz, Austria

Application of multiplex phase cycling⁽¹⁾ to multi-dimensional heteronuclear NMR significantly reduces the number of acquisitions required to achieve the desired resolution in the indirect dimensions.

In conventional *N*-dimensional pulse sequences the minimum number of one-dimensional FIDs required to obtain a phase-sensitive spectrum is determined by the basic phase cycle and the method for quadrature detection (e.g. States, TPPI, echo-/anti-echo). With multiplex quadrature detection (MQD) the tasks of coherence selection and quadrature separation are merged. The minimum total number of scans, which are combined per data point, is decreased by a factor $(3/4)^{N-1}$. This is especially interesting for three- and higher dimensional experiments since spectra with the same resolution in the indirect dimension can be obtained in less time (i.e. ca. 75%, 56%, 42%, 32% for 2D, 3D, 4D, 5D experiments, respectively) without introducing artefacts. Furthermore this approach can be straightforwardly combined with other time saving methods (e.g. sparse sampling techniques⁽²⁻⁴⁾).

As an example we could obtain MQD 3D triple resonance spectra of the photosynthetic protein PsbQ⁽⁵⁾ with the same resolution and the same per-scan signal-to-noise ratio as in the standard experiment in only 56% of the usual time. The time saved could also be invested into additional resolution.

^{1.} Ivchenko N., Hughes C.E., Levitt M.H., J. Magn. Reson., 60, 52-58 (2003)

^{2.} Szyperski T., Wider G., Bushweller J.H., Wüthrich K., J. Am. Chem. Soc., 115, 9307-9308 (1993)

^{3.} Kupče E., Freeman R., J. Am. Chem. Soc., 125, 13958-13959 (2003)

^{4.} Barna J.C.J., Laue E.D., J. Magn. Reson., 75, 384-389 (1987)

^{5.} Horničáková M., Kohoutová J., Schlagnitweit J., Wohlschlager C., Ettrich R., Fiala R., Schoefberger W., Müller N., *Biomol. NMR Assign.* (2011) published online DOI 10.1007/s12104

Design of Entry Inhibitors against Human Noroviruses

Brigitte Fiege¹, Julie Guiard², Christoph Rademacher^{1,3}, Pavel I. Kitov², Kevin P. Dalton⁴, Francisco Parra⁴, David R. Bundle², Thomas Peters¹

¹Institute of Chemistry, University of Luebeck, Luebeck, Germany; ²Department of Chemistry, University of Alberta, Edmonton, Canada; ³present address: Department of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, USA. ⁴Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain. E-mail: brigitte.fiege@chemie.uni-luebeck.de.

Noroviruses from the family of *Caliciviridae* are the main cause of acute non-bacterial gastroenteritis worldwide. No direct treatment or vaccination strategy is yet available. Noroviruses bind to oligosaccharide structures found on the surface of human host cells, so called Histo-blood group antigens (HBGAs). Sequence alignment of a large number of norovirus strains of the currently dominating genogroup from the past 20 years^[1] had shown a strict conservation of residues recognizing a fucose moiety. Utilizing STD and trNOESY NMR with VLPs and synthetic HBGAs we could elucidate the natural receptor binding pattern of a human norovirus at atomic detail and confirm a strong preference for fucosylated oligosaccharides. This structural information served as the basis for the synthesis of specific inhibitors. Further derivatization was done by covalent linkage with hits from small molecule and virtual library screening. Finally, synthesis of multivalent compounds yielded prototype inhibitors with affinities several orders of magnitudes higher than the monovalent interaction.^[2] Binding affinities and HBGA competition were evaluated by direct and competitive titration with NMR and SPR as well as hemagglutination assays.

These are invaluable steps towards development of so-called entry inhibitors against this important group of human pathogenic viruses.

1. Lindesmith, L. C. et al., PLoS Med, 5(2), e31 (2008)

2. Rademacher, C. et al., Chemistry, in press (2011)

Ls307

Dissecting the potential of solvent PREs for structural analysis of large proteins and their complexes using sparse data

<u>Tobias Madl¹</u>, Christoph Hartlmüller¹, Christophe Schmitz¹, Alexandre Bonvin¹, Michael Sattler², Oliver Lange², Rolf Boelens¹

¹ Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands ²Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Deptartment Chemie, TU München, Garching, Germany. Presenting author e-mail addres: t.madl@uu.nl

Determining structure and architecture of proteins and their complexes faces challenges when only sparse restraint sets are available. Here we present our efficient approaches for structural analysis of proteins and large protein complexes using paramagnetic relaxation enhancements (PREs) from a soluble paramagnetic agent^{1,2}. We are showing highlights for the use of solvent PRE data in combination with sparse data in i) a scoring procedure and ii) direct refinement which significantly improves accuracy and convergence of structure calculation approaches (i.e. docking programs, CS-ROSETTA). The strength of solvent PRE methodology is that it is readily implemented (i.e. no covalent modifications needed), and that (transient) interactions and local structure can be efficiently detected and refined. We applied our protocol to the challenging ternary 150 kDa nuclear export complex^{3,4} (docking) and a benchmark of ~50 medium- to large-size proteins (CS-ROSETTA). We show that solvent PREs are an excellent indicator of the quality of structural models and thus resolve ambiguities; direct refinement against solvent PRE data improves structural accuracy and precision. We show that solvent PREs provide a new class of restraints that are easily accessible and applicable to proteins and large protein complexes. In particular for challenging systems, our approach promises significant time-savings and significantly improved quality of structure calculations

REFERENCES: 1. Madl T., Bermel W., Zangger K., Angewandte Chemie, 48, 8259-8262 (2009); 2. Pintacuda G., and Otting G., Journal of the American Chemical Society, 124, 372-373 (2002); 3. Madl T., Güttler T., Görlich D., Sattler M., AngewandteChemie, 50, 3993-3997 (2011); 4. Güttler T., Madl T. (shared first author), Neumann P., Deichsel D., Corsini L., Monecke T., Ficner R., Sattler M., Görlich D., Nature Structural and Molecular Biology, 17, 1367-1376 (2010)

Characterizing Aggregation of Murine PrP by Time-resolved NMR

Kai Schlepckow & Harald Schwalbe

Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany, <u>schlepckow@nmr.uni-frankfurt.de</u>

In this work, we address the aggregation behavior of the prion protein by NMR spectroscopy. We follow the fibril formation of wildtype mPrP(121-232) by time-resolved NMR. Site-resolved kinetic data for more than 50 residues can be characterized providing probes well distributed throughout the amino acid sequence. Aggregation of the monomeric protein as evidenced by losses in peak intensity is most pronounced for residues in the region of the disulfide bond encompassing many single-point mutations which are implicated in human prion diseases. Strikingly, peaks of the very C-terminal residues (residues 225-232) appear to increase in intensity. In addition, both Y225 and G228 show peak doubling indicating conformational heterogeneity which is in good agreement with recent fibrillization studies on hPrP(90-230) performed in our group (1).

In order to gain more insight into the peculiar behavior of the C-terminus, we synthesized a decapeptide corresponding to residues 223-232 of mPrP. As evident from ¹⁵N HSQC, ¹³C HSQC and TOCSY data, residues 223-228 show pronounced structural rearrangements whereas the remainder of the peptide is not affected. Based on these observations, we suggest that the decapeptide undergoes self-assembly via its N terminus building up the aggregate core while the C-terminal residues protrude into solution and remain flexible. This interpretation is supported by several algorithms allowing for the prediction of aggregation properties.

REFERENCES: 1. Kumar J. et al., *ChemBioChem*, 11, 1208-1213 (**2010**)

Ls309

A robust, sensitive, and versatile HMBC experiment for rapid structure elucidation by NMR: IMPACT-HMBC

Julien Furrer

Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland. Contact: julien.furrer@dcb.unibe.ch

In this communication, we describe a robust, sensitive, and versatile HMBC experiment for structure elucidation. The proposed IMPACT-HMBC experiment eliminates the weaknesses of the basic HMBC experiment and the overall performance of the pulse sequence is improved significantly. The IMPACT-HMBC is able to provide optimal ${}^{1}J_{CH}$ suppression, very good signal to noise ratio using minimum experimental time, and able to provide very high resolution in the ${}^{13}C$ dimension. Furthermore, the experiment allows the user to take advantage of the Ernst angle effect, which can significantly improve the sensitivity. Finally, the experiment can be recorded with very short recovery delays, without any detrimental effects. The technique may find application in routine analysis by NMR as well as in the structure elucidation of complex organic systems, and especially when the intention that the proposed HMBC experiment can be used as it starts from standard parameters set by inexperienced users as well as under automated conditions.

Furrer, J. Chem. Commun. 46, 3396-3398 (2010).

Accordion-optimized DEPT experiments

Julien Furrer

Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland. Contact: julien.furrer@dcb.unibe.ch

In this contribution, a pulse sequence is described for recording accordion-optimized DEPT experiments. The aim of the ACCORDEPT experiment is to afford data with improvement of the signal-to-noise ratio (SNR) for responses exhibiting significantly different couplings from the optimization of the static experiment. For this purpose, we first focus on the sampling technique of the accordion delay. This delay can be varied on the basis of equal steps in time or on the basis of equal steps in frequency (hertz). The nonlinear sampling of the desired coupling range is a result of equal *time* between decrementation steps, but not equal in frequency, while the decrementation technique on the basis of equal steps in hertz uniforms at best the polarization transfer efficiencies.

As a proof of concept, this strategy has been applied to a mesogen containing a large range of onebond ${}^{1}J_{CH}$ coupling constants associated with the various structural elements. The ACCORDEPT experiment afforded significant enhancements for the resonances with the larger ${}^{1}J_{CH}$ couplings, similar SNR for aromatic resonances, but reduced SNR for aliphatic resonances as compared with the standard DEPT experiment. In addition, the ACCORDEPT is straightforward to implement, does not require any supplementary calibration procedures and can be used under automated conditions without difficulty by inexperienced users

Furrer, J., Guerra, S., Deschenaux, R. Magn. Reson. Chem. 49, 16-22 (2011).

Ls311

Novel Dimerization Mode of a Sterile Alpha Motif

Pallavi Thiagarajan¹, Karen Hänel¹, Luitgard Nagel-Steger², Gunnar Schröder¹, Victor Pacheco¹, Matthias Stoldt², Sandra Beer-Hammer³, Bernd W. Koenig¹, Dieter Willbold^{1,2}

Institute for Complex Systems (ICS-6): Structural Biochemistry, Forschungzentrum Jülich, Germany; 2Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Germany; 3Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard-Karls-University Tübingen, Germany; Presenting author e-mail address: P.thiagarajan@fz-juelich.de

SH3 containing lymphocyte protein 1 (SLY1) is a 380-residues protein exclusively expressed in T and B lymphocytes [1]. It plays an important role in adaptive immunity. SLY1 comprises of three domains, namely, SH3, nuclear localization signal, and SAM domain. The SAM domain is a common protein interaction module, found in highly diverse organisms scaling from bacteria to human. It consists of ~70 amino acids and is observed to participate in numerous biological processes including signal transduction and RNA binding. Homo-SAM- and hetero-SAM-domain oligomerization has been reported and may be crucial for the role of SAM domains in protein interactions. Here, we report the three-dimensional solution structure of the SAM domain of SLY1 using NMR spectroscopy. We found, that this SAM domain forms a symmetric and stable homodimer. Self association properties of SLY1 SAM were analyzed by dynamic light scattering, analytical ultracentrifugation, diffusion ordered spectroscopy (DOSY), NMR chemical shift perturbation analysis and thermophoresis. The fold of each SAM monomer consists of five well-defined helices packed into a compact globular structure. The relative orientation of the two monomers and the amino acid residues lining the SAM-SAM interface were determined based on filter-NOESY experiments. Formation and stabilization of the SAM dimer appears to arise from burial of hydrophobic residues in combination with electrostatic interactions.

REFERENCES: [1] Scheikl.T, Molecular Immunology 46 (2009) 969–977 (2009)

Solving Problems in Natural Product Chemistry by NMR

M. Iqbal Choudhary, Atta-ur-Rahman and Atia-tul-Wahab

International Center for Chemical and Biological Sciences (H. E. J. Research Institute of Chemistry and Dr. Panjwani Center for Molecular Medicine and Drug Research), University of Karachi, Karachi-75270, Pakistan, Email: <u>iqbal.choudhary@iccs.edu</u>

Natural products are highly evolved, specific, and effective gene products. Their diverse structural and stereochemical characteristics make them valuable templates. Nature has been the first source of medicines for diseases and discomforts which have led to the foundation of many empirical therapeutic interventions. Globally, there is a revival of interest in the use of natural products for the treatment of various ailments. This is mainly due to increased awareness of the limited horizon of synthetic pharmaceutical products to control major diseases, high cost of available synthetic medicines, adverse side-effects of modern medicines and perceived gentleness of natural medicines. Despite the tremendous potential of natural products, they have certain problems including availability in very low quantities, novel structures, complex stereochemistry, isolation from complex mixture, and unstable nature.

NMR spectroscopy has been extensively applied to solve above cited problems in the field of natural products and drug discovery. For example cryoprobe and inverse NMR spectroscopic techniques have been deployed to solve the problems associated with lower sensitivity due to limited quantities or lower abundance of nuclei. A number of NMR techniques have been developed to solve the structure of novel natural products. Overhauser effects and other relaxation techniques have been developed to determine the complex stereochemistry of natural products. DOSY has now been extensively used to analyze the mixture of natural products. Low temperature NMR can be used to handle unstable natural products. We have been using these technique for structure determination of small organic molecules, for monitoring ligand-receptor binding, to analyze mixtures using LC-NMR, in quality control, and rational drug designing. Results of these studies, along with an overview of new approaches and emerging technologies in natural product-based drug development, will be presented during this lecture.

Ls313

Sparse sampling and fast pulsing methods for unfolded proteins

Dominique Marion

Biomolecular NMR Group, Institut de Biologie Structurale Jean- Pierre Ebel, UMR5075 CNRS-CEA-UJF 41, Rue Jules Horowitz, 38027 Grenoble Cedex, France – e-mail: Dominique.Marion@ibs.fr

POSTER

Resonance assignment of intrinsically disordered proteins is made difficult by the extensive spectral overlaps. High-resolution 3D and 4D spectra are thus essential for this purpose and made possible by relatively narrow line width of each resonance due to fast conformational averaging. We have adapted the series of 3D BEST experiments proposed by Lescop *et al* [1] to the case of unfolded proteins. As compared to standard triple-resonance experiments, a relaxation delay between transients as short as 0.2 sec can be employed. The BEST-approach is fully compatible with sparse random sampling techniques in the indirect dimensions [2]: improved digital resolution along these dimensions can be obtained by sampling longer time increments by means of semi-constant time evolution. Using 2D Maximum Entropy reconstruction [3] for the indirect dimensions, the artifact intensity due to sparse sampling can be reduced to a level similar to or below the standard noise (thermal and t_1 noise). If no cross-correlation effects would be present, these pulse sequences could even be more simplified by eliminating all refocusing pulses and removing the J-splittings by spectral deconvolution during the reconstruction. The reduction of the sampled increments and the shorter duration of individual transients make it possible to record a 4D experiment with reasonable resolution in less than 60 hours.

^{1.} Lescop E., Schanda P., Brutscher B., J. Magn. Reson. 187, 163-9 (2007)

^{2.} Marion, D J. Magn. Reson. 206, 81-87 (2010)

^{3.} Mobli M., Maciejewski M.W., Gryk M.R., Hoch J.C., J. Biomol. NMR 39, 133-139 (2007)

High performance NMR analysis of enantiomeric purity and absolute configuration of chiral alcohols and amines on a microgram scale

Nikolay V. Orlov, Valentine P. Ananikov

NMR Department, Zelinsky Institute of Organic Chemistry RAS, Leninsky prosp. 47, 119991, Moscow, Russia. E-mail: onv@ioc.ac.ru

Use of chiral derivatizing agents (CDAs), which transform enantiomers into magnetically nonequivalent diastereomers, has made NMR spectroscopy a powerful tool for analysis of chiral

compounds. Though great number of various CDAs has been introduced over last years the derivatization procedure remaines time- and reagent consuming operation which limits it's use as a routine tool for rapid analysis in asymmetric synthesis and catalysis.

Recently we have developed new derivatization procedure for analysis of chiral alcohols and amines

which can be performed directly in NMR tube . No preliminary purification of diastereomers formed is required to obtain various NMR spectra (both 1D and 2D) of high quality which allows determination of enantiomeric purity of various chiral alcohols and amines with high accuracy within several minutes including sample preparation time. 5-10 mg of chiral samples is enough for standard analysis in various deuterated solvents though even 0.01 mg of chiral sample can be successfully analyzed using standard NMR hardware. The "in tube" method developed is applicable to

determination of absolute configuration using both double and single derivatization techniques³. **Acknowledgments:** The work was supported by the Research Grant MK-1434.2010.3.

- a) Seco J. M., Quinoa E., Riguera R., Chem Rev., 104, 17-117 (2004); b) Wenzel T. J., Chisholm C. D., Prog. Nucl. Magn. Reson. Spectrosc., 59,1-63 (2011).
- a) Orlov N.V., Ananikov V.P., Chem. Commun., 46, 3212-3214 (2010); b) Orlov N.V., Ananikov V.P., Green Chem., 13, in press, DOI: 10.1039/CIGC15191F (2011).
- 3. Seco J. M., Quinoa E., Riguera R., Tetrahedron: Asymmetry, 12, 2915-2925 (2001).

Ls315

High resolution characterization of intrinsic disorder in proteins: expanding the suite of ¹³C direct detection NMR experiments

Wolfgang Bermel¹, Ivano Bertini², <u>Isabella C. Felli</u>², Rainer Kümmerle³, M.V. Vasantha Kumar², Roberta Pierattelli²

¹ Bruker Biospin GmbH, Rheinstetten, Germany, ² CERM, Polo Scientifico, Università di Firenze, Italy, ³ Bruker Biospin Ag, Fällanden, Switzerland, felli@cerm.unifi.it

Intrinsic disorder and flexibility have been recognized as important functional features in proteins and add a new dimension to the structure/function paradigm. Among the available methods to characterize protein intrinsic disorder at atomic resolution, NMR plays a key role thanks to the wide variety of observables that can be determined for providing structural and dynamic information. A set of experiments based on ¹³C detection that only exploit heteronuclear chemical shifts in all detected dimensions (so-called *exclusively heteronuclear* NMR experiments) has recently been developed and provides a useful tool to study intrinsically disordered proteins (IDPs)^{1;2} all the way to in-cell³. We present here a set of new experiments that enable the determination of key observables (solvent exchange and heteronuclear NOEs)⁴ and/or provide additional tools to characterize intrinsically disordered proteins (experiments with improved chemical shift dispersion, aminoacid type selection, C^{α} direct detection).

- 1. Bermel, W., Felli, I. C., Kümmerle, R., Pierattelli, R. Concepts Magn.Reson. 32A, 183-200, 2008.
- 2. Bermel, W., Bertini, I., Felli, I. C., Pierattelli, R. *J.Am.Chem.Soc.* 131, 15339-15345, **2009.**
- 3. Bertini, I.; Felli, I. C.; Gonnelli, L.; Vasantha Kumar, M. V.; Pierattelli, R. Angew. Chem. Int. Ed. 50, 1-4, 2011.
- 4. Bertini, I.; Felli, I. C.; Gonnelli, L.; Vasantha Kumar, M. V.; and Pierattelli, R; submitted

<u>Dionysios Vourtsis</u>^a, Petros V. Gkazonis^a, Georgios A. Dalkas^a, Christos T. Chasapis^a, Detlef Bentrop^b, Georgios A. Spyroulias^a

^a Department of Pharmacy, University of Patras, GR-26504, Patras, Greece) (<u>grppdennis@yahoo.gr</u>) ^b Institute of Physiology II, University of Freiburg, D-79104 Freiburg, Germany,

Anthrax Lethal Factor (LF) is Zn-dependent highly specific metalloprotease that plays a vital role in the anthrax disease[1] and shows proteolytic specificity against vital cellular signal transducers, the family of mitogen-activated protein kinase kinases (MAPKKs)[2]. Its structure has already been analysed through X-Ray crystallography[1]. Here, we report the expression and structural analysis of a C-terminal part of LF (LF₆₇₂₋₇₇₆) that harbors the enzyme's core protease domain, using solution NMR spectroscopy. The biophysical characterization and backbone assignments (¹H, ¹³C, ¹⁵N) of the polypeptide in its apo-form revealed a stable structure over a wide range of temperature (through CD measurements), a flexible N- and a robust C-terminal segments. The NMR structure of the catalytic core polypeptide has been determined exhibiting a compact fold and great similarities with the crystal structures of the corresponding polypeptide, despite the absence of the metal cofactor [3]. Also, a series of single amino acid mutants of the LF₆₇₂₋₇₇₆ was produced and further characterized through NMR to gain additional insights of the conformational and functional properties of LF's catalytic core.

REFERENCES:

- 1. Pannifer, A.D. et al.. Nature, 414, 229 (2001).
- 2. Duesbery, N.S. et al. Science, 280, 734-737 (1998).
- 3. Gkazonis, P. Dalkas G.A., Chassapis C., Vlamis-Gardikas A., Bentrop D., Spyroulias G.A., BBRC May 7, (2010)

Ls317

Spectral Analysis Using Nonnegative Matrix Factorization for Peak Decomposition

Suhas Tikole¹, Victor Zharavin¹, Peter Güntert^{1,2}

¹Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Frankfurt Institute for Advanced Studies, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; ² Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan. E-mail: suhastikole@bpc.uni-frankfurt.de

Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for multiple peak clusters. For example, NOESY-type spectra show considerable overlap leading to peak-picking intensity errors of twice or more, which can result in wrong structural restraints. Precise frequencies are critical for spectral assignment. To alleviate this problem, a more sophisticated peak decomposition algorithm, based on Nonnegative Matrix Factorization (NMF), was developed. Its performance is compared for several types of regularizations and divergences in the context of multidimensional decomposition (MDD). Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach also allows to apply constraints if some information about the components is known a priori, e.g. the number of peaks or positions in some dimensions.

- 1. Berry et al., Comp. Stat. & Data Analysis, 52, 155-173 (2007)
- 2. Jaravine et al., J. Am. Chem. Soc, 130, 3927-3936 (2008)
- 3. Jaravine et al., J. Am. Chem. Soc, 128, 13421-13426 (2006)
- 4. Lee et al., Nature, 401, 788-791 (1999)

PHIPing styrene and biomolecules

Sonja Dillenberger¹, Tomasz Ratajzcyk¹, Torsten Gutmann², Yeping Xu¹, Marco Tischler¹, Natascha Schäfer¹, Daniel Tietze¹, Gerd Buntkowsky¹

¹Technichal University Darmstadt, Germany, dillenberger@chemie.tu-darmstadt.de, ² Laboratoire de Chimie de Coordination, Toulouse, France

The para-hydrogen induced polarization (PHIP)^[1] also known under the acronym PASADENA was discovered by Bowers and Weitekamp in the late 80s.^[2] Shortly after this discovery, a related PHIP phenomenon called ALTADENA was investigated.^[3]

With this method it is possible to observe enhanced NMR signals from samples with low amount and intermediates of reaction mechanisms as for example of the olefin isomerization.^[4]

An important application of this effect is found in the sensitivity enhancement in Magnetic Resonance Imaging (MRI)^[5]. Therefore research for special biomolecules which can be used as contrast agents is required. Here we present biomolecules which have a functional group like a triple or double bond. These molecules are hydrogenated with *para*–enriched hydrogen and show the PHIP effect. Such biomolecules can be attached to small peptides and therefore also to other molecules like enzymes which can pass through the blood-brain barrier.

Further we present the standard model styrene as substrate in several hydrogenation reactions employing *para*-enriched H_2 with homogeneous and heterogeneous catalysts like nanoparticles which can be separated easily from the product solution.

- 1. Eisenschmid, T. C., Kirss, R. U., Deutsch, P. P. Hommeltoft, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L., J. Am. Chem. Soc., 109, 8089-8091 (1987)
- 2. a) Bowers, C. R., Weitekamp, D. P., Physical Review Letters, 57, 2645-2648 (1986) b) Bowers, C. R., Weitekamp, D. P., J. Am. Chem. Soc., 109, 5541-5542 (1987)
- 3. Pravica, M. G., Weitekamp, D. P., Chemical Physics Letters, 145, 255-258 (1988)
- 4. Viale, A., Santelia, D., Napolitano, R., Gobetto, R., Dastrù, W., Aime, S., European Journal of Inorganic Chemistry, 4348-4351 (2008)
- 5. Golman, K., Olsson, L. E., Axelsson, O., Mansson, S., Karlsson, M., Petersson, J. S., Br. J. Radiol., 76, S118-S127 (2003)

Ls319

Mimicking the Ideal Frequency Sweep

Martin R. M. Koos¹, Sebastian Ehni¹, Philippe Pelupessy², Burkhard Luy¹

¹Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany; ²Département de Chimie, Ecole Normale Supérieure, Paris, France. Email: martin.koos@kit.edu.

Using optimal control methods^[1,2,3], robust broadband inversion pulses creating a defined second order phase shift can be designed. This phase shift corresponds to an offset-dependent effective evolution time with respect to chemical shift and couplings, thus recreating the effect of an ideal linear frequency sweep.

In combination with a magnetic field gradient, spatially different evolution times can be prepared and this novel class of pulses can replace non-ideal adiabatic frequency sweeps wherever this phase behavior is desired. Applications include single scan 2D-experiments^[4] and z-filter-elements^[5].

- 1. Skinner T. E., Reiss T. O., Luy B., Khaneja N., Glaser S. J., J. Magn. Reson, 163, 8-15 (2003).
- 2. Kobzar K., Skinner T. E., Khaneja N., Glaser S. J., Luy B., J. Magn. Reson, 170, 236-243 (2004).
- 3. Kobzar K., Skinner T. E., Khaneja N., Glaser S. J., Luy B., J. Magn. Reson, 194, 58-66 (2008).
- 4. Pelupessy P., J. Am. Chem. Soc, 125, 12345-12350 (2003).
- 5. Thrippleton M. J., Keeler J., Angew. Chem. Int. Ed., 42, 3938-3941 (2003).

Fast High Resolution 2D-Spectra for RDC-Measurements by Spectral Folding

Markus Leutzsch¹, Stefan Berger¹

¹Institut für Analytische Chemie, Universität Leipzig, Leipzig, Germany

To determine the residual dipolar couplings (RDCs) in the indirect dimension of F1 coupled HSQC spectra a high number of t_1 increments are necessary. This is very time consuming. Previous works of our group show, that one can reach highly resolved HSQC spectra in a short time employing spectral folding and post processing with a MATLAP-routine¹.

The acquisition of several folded HSQC spectra and the post processing reduces the measuring time by a factor of ten in contrast to a conventionally acquired spectrum with the same digital resolution. Compared to other methods for determination of RDCs, such as gated decoupled ¹³C spectra, we have the advantage of edited spectra , well separated peaks and the sensitivity gain from the INEPT transfer.

We will demonstrate our method using a standard organic sample (50mg strychnine & swollen polystyrene stick in $CDCl_3)^2$.

REFERENCES:

2. Luy, B.; Kobzar, K. ; Knoer, S.; Furrer, J.; Heckmann D.; Kessler, H., J. Am. Chem. Soc., 127, 6459 - 6465 (2005)

Ls321

Poly isocyanides as alignment media to measure RDCs for small organic molecules

Murali Dama and Stefan Berger

Institute of Analytical Chemistry, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany

Poster

Residual Dipolar Coupling (RDC) is the magnetically induced dipolar coupling of spin active nuclei. RDC can be observed by NMR when molecules are anisotropically oriented in a solution. Liquid Crystals, bicells, and filamentous viruses have been developed as anisotropic media to enhance the magnetic orientation of bio molecules, but these methods are not well suited for small organic molecules due to the requirement of water as a solvent. Liquid crystals and stretched gels are being used as anisotropic medium to measure RDCs for organic molecules. But these are not well developed methods. Strong alignment by using liquid crystals and time consuming by using stretched gels are problems. So we are investigating new alignment medium like poly isocyanides.

Poly isocyanides are helical polymers; these can form liquid crystals in concentrated solutions of chloroform, tetra hydro furan (THF) and dichloromethane. We aligned these liquid crystals in magnetic fields and we measured deuterium quadruple NMR to find the alignment. Then we introduced a guest molecule (Strychnine) into this chiral solvent, then it transferred this alignment to the guest molecule and we measured RDCs for a guest molecule.

^{1.} Baskyr, I.; Brand T.; Findeisen, M.; Berger, S., Angew. Chem., 118, 7985 - 7988 (2006)

^{1.} C. M. Thiele, Org. Lett, 5, 705 -708 (2003)

^{2.} Kento Okoshi, Macromolecules, 41, 7752 -7754 (2008)

Automated platform for backbone assignment of globular and disordered proteins

Maxim Mayzel, Vladislav Orekhov, Linnéa Isaksson, Maria Saline, Ángeles Aroca, Antonio Díaz-Quintana, Miguel A. De la Rosa, Irene Díaz-Moreno

¹Swedish NMR Centre at University of Gothenburg, Gothenburg, Sweden; ²Instituto de Bioquímica Vegetal y Fotosíntesis, Sevilla Spain

The platform targets the two major bottlenecks in the traditional procedure of protein signal assignment: the lengthy data collection and manual peak identification in series of 3D spectra. Our approach starts with rapid recording of high-resolution spectra using incremental non-uniform sampling (iNUS) in the process called targeted acquisition [1]. The spectra are co-processed [2] with multidimensional decomposition (MDD) [3]. Clean automated peak identification is performed in one-dimensional MDD shapes. The peak lists and automated assignment are validated directly versus gradually accumulating volume of experimental data. The method has been successfully used for de novo assignments of four 12-15 kDa globular proteins from BioNMR (EU FP7, www.bio-nmr.net) and AEROPATH (EU FP7, www.aeropath.eu) target lists, and for several intrinsically disordered cytoplasmic domains of T-cell and B-cell receptor complexes (fig. 1).

protein systems. Slope of the curves is defined mainly by the S/N in the spectra. Level of the final plateau depends on the spectra intensity range and presence of weak or missing spin systems

REFERENCES:

1. Jaravine, V.A. and V.Y. Orekhov, J. Am. Chem. Soc., 128, 13421-13426 (2006).

Jaravine, V.A., A.V. Zhuravleva, P. Permi, I. Ibraghimov, and V.Y. Orekhov, *J. Am. Chem. Soc.*, 130, 3927-3936 (2008).
 Orekhov, V.Y., I. Ibraghimov, and M. Billeter, *J. Biomol. NMR*, 27, 165-173 (2003).

Ls323

NMR studies of the extracellular domain of a prokaryotic Ligand-Gated Ion Channel (LGIC)

Christos T. Chasapis^a, Aikaterini Argyriou^a, Detlef Bentrop^b, Pierre-jean Corringer^c, <u>Georgios A.</u> **Spyroulias**^a

^a Department of Pharmacy, University of Patras, GR-26504, Patras, Greece) (G.A.Spyroulias@upatras.gr)^b Institute of Physiology II, University of Freiburg, D-79104 Freiburg, Germany, e Pasteur Institute, G5 Group of Channel-Receptor, CNRS URA 2182.

Pentameric ligand-gated ion channels of the Cys-loop family are of special importance for the rapid chemo-electrical signal transduction at synapses [1-3], but the mechanisms of ion permeation and gating of these membrane proteins remain elusive. Recently the X-ray structures of two prokaryotic homologues of the nicotinic acetylcholine receptor (nAChR), the best studied member of the LGIC family, have been determined: 1) the bacterial *Gloeobacter violaceus* pentameric ligand-gated ion channel homologue 4 (GLIC; 2.9 Å) in an open conformation [2] and 2) a homologue from the bacterium Erwinia chrysanthemi (ELIC; 3.3 Å) in a closed conformation [3].

The 200-residue extracellular domain of GLIC, which is found to be a monomer in solution, was cloned and expressed in high yields in E. coli and studied through multi nuclear and multidimensional NMR. Assignment efforts achieved the identification of the 80% of the backbone ¹³C/¹⁵N nuclei. Additionally, the dynamics of GLIC was studied through ¹⁵N relaxation experiments and provide valuable insights about GLIC mobility (Chasapis C.T. et al. to be submitted).

Corringer, PJ & Changeux, JP Scholarpedia, 3, 3468 (2008). 1.

Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, Delarue M, Corringer PJ. Nature, 457, 111-4 (2009). 2.

Hilf RJ, Dutzler R. Nature 457, 115-8 (2009). 3.

Arkadia's RING Finger NMR structure and its interaction with E2 partner

Ariadni Loutsidou^a, <u>Maria-Polytimi Vlachou^a</u>, Christos T. Chasapis^a, Detlef Bentrop^b, Vasso Episkopou^c, <u>Georgios A. Spyroulias^a</u>

^a Department of Pharmacy, University of Patras, GR-26504, Patras, Greece) (<u>maritime_20f@hotmail.com</u>) ^b Institute of Physiology II, University of Freiburg, D-79104 Freiburg, Germany, ^c Imperial School of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom

E3 ubiquitin ligases play a key role in the recognition of target proteins by catalyzing the covalent attachment of the ubiquitin and degradation by 26S proteasome [1]. Many known tumor suppressors or oncoproteins are RING type E3 ubiquitin ligases and among them the best studied are various RING finger domains. Arkadia is a relatively new E3 ubiquitin ligase and possibly the first example of an E3 ligase that positively regulates TGF- β family signaling, by inducing the ubiquitin-dependent degradation of TGF- β signaling negative regulators, through its C-terminal RING finger domain [2]. Arkadia RING finger, was cloned and expressed in its zinc-loaded form, and studied through NMR (BMRB acces.no. 15948) [3]. Additionally, the 3D NMR solution structure of Arkadia RING finger was determined (PDB 2KIZ) and its interaction with the E2 UbcH5B enzyme was studies through titration experiments monitored by NMR. The RING-E2 complex structure was also constructed through an NMR-driven docking protocol (using HADDOCK). Finally, various Arkadia forms are prepared bearing amino acid substitution inspired either by the atypical RING fingers sequences or driven by identified cancer-related mutations observed in human tumors.

REFERENCES:

- 1. Hershko A. and Ciechanover A., Annu Rev Biochem 67, 425–479 (1998).
- 2. Mavrakis K.J., Andrew R.L., Lee K..L, Petropoulou C., Dixon J.E., Navaratnam N., Norris D.P., Episkopou V., PLoS Biol 5, e67 (2007).
- 3. Kandias NG, Chasapis CT, Bentrop D, Episkopou V, Spyroulias GA. *BBRC*, 378, 498-502, (2009).

Ls325

High resolution 1D and 2D NMR spectroscopy in native ionic liquids systems

Vadim V. Kachala^{1,2}, Elena A. Khokhlova¹ and Valentine P. Ananikov¹

¹N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russia. ²Bruker Ltd., Moscow, Russia. kachala@bruker.ru

Native state NMR spectroscopy in ionic liquids is a rapidly emerging field with several breakthrough findings reported recently^[1,2]. High resolution NMR spectra became possible to acquire directly in ionic liquid after overcoming the difficulties associated with high viscosity, conductive ionic character of the medium, and adsorption of radiofrequency.

We have focused our attention on conversion of various carbohydrates into 5hydroxymethylfurfural (5-HMF) – a single renewable biomass-derived building block, which can be obtained in high selectivity in ionic liquids (IL) media. The goal of our research was to develop reliable NMR approach for direct spectral investigation of 5-HMF production in IL in order to design efficient promoters and carry out a mechanistic study with characterization of intermediate species.

We have developed special NMR approach to record high resolution NMR spectra directly in IL/carbohydrate systems and to monitor formation of 5-HMF. Not only 1D, but also 2D (HMBC, HSQC, COSY) spectra were successfully acquired and utilized for line assignment of the NMR signals. The anomeric composition of the carbohydrates in IL was measured for the first time, with surprising difference compared to water solutions.

^{1.} V.P. Ananikov, Chem. Rev., 111, 418-454 (2011)

W.R. Carper, *Molten salts*, in Encyclopedia of Magnetic resonance, Online, John Wiley & Sons, Ltd. doi=10.1002/9780470034590.emrstm0316.pub2 (2011)

NMR-investigation of interactions and binding constants between antimicrobial actives and emulsifiers

<u>Nicole Tschierske¹</u>, Detlef Emeis², Stefan S. Biel³

¹Department of Food Chemistry, University of Dresden and Prototyping Leave on / Deo, Beiersdorf AG, Hamburg, Germany; ²Structure Analytics, Beiersdorf AG, Hamburg, Germany; ³Prototyping Leave on / Deo, Beiersdorf AG, Hamburg, Germany

The efficacy of antimicrobial actives in emulsions depends strongly on the ingredients used in the formula. It is well known, that only the amount of active located in the water phase works against microbes. According to the literature, the amount of oil and emulsifier modifies the concentration of active in the water phase as well as the oil-water-partitioning coefficient and the binding constant of active and emulsifier.

In the study presented, the binding constants *C* of benzethonium chloride to glyceryl isostearate and polyethylene glycol isocetyl ether were determined, according to the relation between the binding constant and the chemical shifts δ or diffusion coefficients *D* and the concentration of emulsifier in micelles S_{mic} : $C = (\delta_{\text{obs}} - \delta_{\text{free}})/((\delta_{\text{bound}} - \delta_{\text{obs}})[S_{\text{mic}}])$ or $C = (D_{\text{obs}} - D_{\text{free}})/((D_{\text{bound}} - D_{\text{obs}})[S_{\text{mic}}])$.¹

The chemical shifts were determined by ¹H-NMR spectroscopy, the diffusion coefficients by pulsed-field gradient NMR spectroscopy. δ_{free} and δ_{bound} as well as D_{free} and D_{bound} were determined in pure solutions of the active or the emulsifiers as a function of concentration below and above the CMC. δ_{obs} and D_{obs} were measured in solutions of active and emulsifier where the concentration of the active was constant and the concentration of the emulsifiers varied.

Benzethonium chloride interacts differently with the two emulsifiers. Differences were also observed between the hydrophilic and hydrophobic site of the molecule leading to the conclusion that benzethonium chloride is located at the interface. 1. Orfi, L. *et al.*, *Anal. Chem.*, 70, 1339-1345 (**1998**)

Ls327

Optimization of Sampling and Analysis of NMR Spectra for Automated Chemical Shift Assignment and Interaction Studies of Proteins

<u>Suhas Tikole</u>¹, Victor Zharavin¹, Vladimir V. Rogov^{1,2}, Alexis Rozenknop^{1,3}, Natalia Rogova¹, Frank Löhr¹, Ivan Dikic^{3,4,5}, Volker Dötsch¹, Peter Güntert^{1,6}

¹ Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance and Frankfurt Institute for Advanced Studies, Goethe University, Maxvon-Laue-Str. 9, 60438 Frankfurt am Main, Germany; ² Institute of Protein Research, 142290 Puschino, Russia; ³ Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; ⁴ Mediterranean Institute for Life Sciences, Mestrovicevo setaliste bb, 21000 Split, Croatia; ⁵ School of Medicine, University of Split, Soltanska 2, Split, 21000, Croatia; ⁶ Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.

E-mail: suhastikole@bpc.uni-frankfurt.de

Protein structure and interaction studies are complicated by spectral overlap. This frequently results in the incomplete assignment of backbone and especially side-chain atoms. Non-uniform sampling (NUS) and hyperdimensional (HD) methods can give high resolution spectra. We used these methods for a fused protein system that is designed to characterize a range of protein targets including partially folded peptides. We optimized the assignment for a set of 10-30% NUS experiments. Backbone and side-chain assignments were calculated fully automatically using the FLYA algorithm. In a first optimization we varied the total number of experiments from 2 to 12. A gradual increase in the number of assignments was observed. Second, an improvement of the assignment was observed as a result of simultaneous (HD) processing compared to treating the NUS spectra individually. A third optimization was performed by varying peak picking parameters. The optimum was found when the number of picked peaks was 80% of the peaks expected from the amino acid sequence which also gave the best S/N ratios for the peak lists. This occurred because of a flexible loop between fusion peptide and target protein was not observed. Overall, this approach is designed for the fast characterization of short-lived proteins, which requires fast NMR spectroscopy (1-2 days).

Method for measuring of gas concentrations in solutions by qNMR

Mario Baseda Krüger, Carmen Selle, Detlef Heller, Wolfgang Baumann

Leibniz Institute for Catalysis, Rostock, Germany. wolfgang.baumann@catalysis.de

Quantification using quantitative NMR (qNMR) is becoming more popular, as qNMR is a relative primary method, because the signal is in direct proportionality with the number of nuclei contributing to the resonance line. On the other hand, data sets of gas solubilities in solvents are sparsely¹, because the measurements generally need great effort. As you can find in the most publications, the currently methods base upon the changes of pressure or volume, that means these methods are indirect and a quantification of gases (e.g. hydrogen) in reaction solutions during a reaction seems to be impossible.

Therefore, the aim of this work was to develop a method by using the advantages of the NMR technology and to simplify the measuring of gas solubilities in solvents/solutions, with which it is possible to quantify gases in reaction solutions in-situ.

This method is based on the determination of absolute signal intensities (principle of reciprocity) as described by Gerhard Wider and Lars Dreier² as PULCON. But, reaction solutions contains a multitude of substances, the used solvents are normally undeuterated, and the signal you expect from your dissolved gas will be weak with the risk of distorting by effects like radiation damping, so it is hardly to get a reliable quantification. The solution is a combination of soft pulses, which are selective for the dissolved gas signal, with the PULCON method. Thus, you have a powerful tool to measure gas concentrations even in different undeuterated solutions, with accuracy about 3% (95% confidence level).

REFERENCES:

1. Young C. L., IUPAC Solubility Series, 5/6, Hydrogen and Deuterium, Pergamon Press: Oxford, U.K. (1981)

2. Wider G., Dreier L., J. Am. Chem. Soc., 128, 2571-2576 (2006)

Ls329

¹³C Enrichment Degree of Organic Compounds Measured by NMR.

Valentina M. Nosova, Alexander V. Kisin, Alexander R. Elman

Spectroscopic Laboratory, SSC GNIIChTEOS, Moscow, Russian Federation, kiso@nmrcenter.ru

Determination of isotopic enrichment of ${}^{13}C$ enriched organic compounds, important for medicine diagnostics, was performed by ${}^{1}H$ or ${}^{13}C$ NMR spectroscopy. Measurment of isotopic enrichment is to determine the ratio of isotopomers containing the isotopes ${}^{13}C$ (**A**) and ${}^{12}C$ (**B**).

¹H NMR spectroscopy may be used successfully when a compound studied contains protonated carbon atom. The signal of protons attached to enriched carbon in isotopomer **A** is split to doublet due to direct coupling ¹J(C-H) while the appropriate proton signal in **B** is singlet. The intensity ratio of these components characterizes ¹³C enrichment degree. This way have been used in the case of (methyl-¹³C)thymidine, (¹³C-methoxy)metacetine and 1-¹³C-D-glucose.

If the enriched carbon atoms had no attached protons, measurement of isotopic enrichment was performed by ${}^{13}C{}^{1}H$ NMR spectroscopy using the carbon signal of the atom adjacent to the enriched one and their direct ${}^{1}J(C-C)$. The signal of this carbon atom in isotopomer **A** is doublet, while in isotopomer **B** the appropriate carbon atom shows singlet signal. The intensity ratio of these signals gives the enrichment value. This procedure allowed us to determine the isotopic enrichment in $1-{}^{13}C-$ octanoic acid, 1,2,3-*tris*- $(1'-{}^{13}C-$ octanoyloxy)propane, $({}^{13}C_2$ -carboxy)dimethylphthalate and 4-*tert*-butyl(${}^{13}C_2$ -carboxy)dimethylphthalate.

The method requires a long term acquisition, careful selection of the solvent, a high degree of chemical purity of the substance studied.

Karla E. Ramírez-Gualito,¹ Stefan Berger.¹

¹ Institute for Analytical Chemistry, University of Leipzig, Germany.

probeta02@yahoo.com.mx.

Protein phosphorylation is a fundamental mechanism for numerous important aspects of eukaryote physiology such as cell division, metabolism, migration, transcription, etc. It becomes a target to favor or avoid those biological phenomena, as well as human health and disease^{1,2} Almost all these phosphoproteins are modified on multiple serines, threonines and tyrosines. In order to achieve a contribution to the knowledge of the phosphatase reaction mechanism it is necessary to determine the recognition site of phosphatases through NMR. Saturation Transfer-Difference (STD) spectroscopy is one of the most useful methods to characterize binding in tightly bound ligand-receptor complex. This methodology has been employed to analyze the binding kinetics of protein-ligand complex formation.^{3,4}

1. Alonso, A.; Sain, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Cell,, 117, 699-711, (2004).

2. Hunter, T. Harvey Lect., 94, 81-119, (1998).

3. Keller, R. M.; Wüthrich, K. Biochim.Biophys . Acta, 533, 195-208, (1978).

4. Meyer, B.; Peters, T. Angew.Chem. Int. Ed., 42, 864-890, (2003).

Ls331

Protein-protein interaction between a homodimeric dynein light chain and a highly mobile myosin fragment

ANDREA BODOR¹, ANDRÁS LÁNG¹, KATALIN KÖVÉR², ANDRÁS PERCZEL¹

¹ Institute of Chemistry, Eötvös University, Budapest, Hungary; ²Department of Chemistry, Debrecen University, Debrecen, Hungary abodor@chem.elte.hu

The homodimeric, highly conservative dynein light chain (DYNLL2) is an essential hub protein which is responsible for various functions beyond being a tail-associated subunit of dynein and also of the myosin Va motor proteins. The binding grooves of the DYNLL surface interact with linear sequences, almost all of which are part of a disordered domain in the partner protein. Investigation of binding for a myosin M7 fragment showed that the 27 residue long region can be considered highly dynamic in free form, and becomes partly structured upon binding to DYNLL2. Binding positions on the M7 side were determined by chemical shift mapping. T₁, T₂ relaxation time and heteronuclear ¹H-¹⁵N NOE measurements help us characterize the dynamics of the myosin fragment in free form and in the protein complex by reduced spectral density mapping analysis. Saturation transfer difference experiments probing ¹⁵N group selective STD, ¹⁵N-HSQC STD and ¹³C-HSQC STD methods led to the conclusion that the hydrophobic interactions at the myosin terminal parts help in the positioning and steering of the binding partner.

Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field

Jakob T. Nielsen, Hamid R. Eghbalnia, Niels C. Nielsen

Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark, jtn@chem.au.dk.

The exquisite sensitivity of chemical shifts as reporters of structural information, and the ability to measure them routinely and accurately, gives great import to formulations that elucidate the structurechemical-shift relationship. Here we present a new and highly accurate, precise, and robust formulation for the prediction of NMR chemical shifts from protein structures. Our approach, shAIC (shift prediction guided by Akaikes Information Criterion), capitalizes on mathematical ideas and an information-theoretic principle, to represent the functional form of the relationship between structure and chemical shift as a parsimonious sum of smooth analytical potentials which optimally takes into account short-, medium-, and long-range parameters in a nuclei-specific manner to capture potential chemical shift perturbations caused by distant nuclei. shAIC outperforms the state-of-the-art methods that use analytical formulations. Moreover, for structures derived by NMR or structures with novel folds, shAIC delivers better overall results; even when it is compared to sophisticated machine learning approaches. shAIC provides for a computationally lightweight implementation that is unimpeded by molecular size, making it an ideal for use as a force field.

Ls333

Experiments to determine coupling constants in sugars of labeled RNA

Daniel Mathieu, Senada Nozinovic, Anna Wacker, Christian Richter, Henry Jonker and Harald Schwalbe

Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany. mathieu@nmr.uni-frankfurt.de

We present here a new J-modulated¹ experiment to measure H2'C2' coupling constants without the need of assigning the H2' and C2' resonances. The measurement of a large number of coupling constants in RNA molecules is usually difficult due to considerable signal overlap and the lack of protons within the bases. The sugar moieties contain a rather large number of protons but do still suffer from poor signal dispersion. However, the C1'H1' region of larger RNAs can be assigned when using selectively labeled samples. The presented pulse sequence measures H2'C2' coupling constants detecting on H1'C1' resonances.

Since the ¹J coupling constants themselves report on multiple aspects of the present sugar conformation in RNA molecules², this method can directly provide structural information even more accurate when combined with other measurements, e.g. the H1'C1' coupling constant.

We demonstrate the application to a larger RNA³ (70 nucleotides). We could show that the described experiment is capable of providing coupling constants for such a large system with high precision and accuracy in a reasonable amount of experimental time.

^{1.} Billeter M., Neri D., Otting G., Qian Y. Q., Wüthrich K., J. Biomol NMR, 2, 257 (1992)

^{2.} Nozinovic S., Gupta P., Fürtig B., Richter C., Tüllmann S., Ferner-Duchardt E., Holthausen M., Schwalbe H.,

Angew. Chem. Intl. Ed. Engl., 50, 5397-5340 (2011)

^{3.} Wacker A., Buck J., Mathieu D., Richter C., Wöhnert J., Schwalbe H., Nucleic Acids Res., in press

³¹P-NMR studies of $[P_9]^+$, an $A_2A_2^-BC_2C_2^-$ spin system.

Tobias Köchner, Tobias A. Engesser, Harald Scherer and Ingo Krossing*.

Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Germany; tobias.engesser@ac.uni-freiburg.de

The search for homopolyatomic cations of phosphorus was a big challenge in inorganic chemistry in the past. The combination of a suitable oxidant $([NO]^+)$ and a very weakly coordinating anion ([Al(OC(CF₃)₃)₄]⁻) was synthesize the homopolyatomic necessarv to phosphorus cation $[P_9]^+$ – earlier only known from mass spectrometry [1]- for the first time in condensed ³¹P-NMR phase. spectroscopy provided the unambiguous proof for the existence and structure of this cluster cation in CH_2Cl_2 solution [2]. The $A_2A_2'BC_2C_2'$ spin system expected for the predicted minimum structure (D_{2d} symmetry [3]) was identified and fully solved. Quantum chemical calculations of the coupling constants allowed a simulation of the NMR spectrum that was appropriate as a starting point for a successful iteration by the program $PERCH^{\mathbb{C}}$ [4].

POSTER

Figure 1 ³¹P spectrum (161.99 MHz) of $P_9[Al(OC(CF_3)_3)_4]$ in CH₂Cl₂/CD₂Cl₂ at 298K (20000 scans, standard: aqua. H₃PO₄ (85%)). In the lower trace the experimental spectrum is shown. The boxes enlarge the individual signals of $[P_9]^+$ (lower trace: experimental spectrum, upper trace: calculated spectrum).

REFERENCES:

1. T. P. Martin, Z. Phys., D 3, 211 (1986).

2. T. Köchner, T. A. Engesser, H. Scherer, I. Krossing, to be published.

3. M. D. Chen, R. B. Huang, L. S. Zheng, Q. E. Zhang, C. T. Au, Chemical Physics Letters, 325, 22 (2000).

4. PERCH NMR SOFTWARE, PERCH Solutions Ltd., Kuopio, Finland, www.perchsolutions.com.

Ls335

Using NMR for Direct Determination of K_{M} and V_{max} of Enzymes from Progress Curves Analysis utilizing the Lambert W Function

Franziska Exnowitz, Bernd Meyer and Thomas Hackl

Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany; hackl@chemie.uni-hamburg.de

For the determination of kinetic parameters of enzymes, $K_{\rm M}$ and $V_{\rm max}$, many spectroscopic methods are applied frequently. NMR spectroscopy, by which substrates and products can directly be quantified, is however rarely used. NMR requires no labeling of the substrate(s)/product(s) and often allows a direct analysis of the stereochemistry of the initial reactions products.

¹H NMR spectroscopy was used to follow hydrolization of sucrose by invertase. The Michaelis Menten parameters were determined from progress curves at only one concentration. Furthermore, the reaction progress was monitored at various initial concentrations of 3.5 to 41.8 mM to apply an initial rate analysis. Using the Lambert W solution of the Michaelis Menten equation, $K_{\rm M}$ and $V_{\rm max}$ were fitted to obtain the experimental progress curves at each concentration.^{1,2} The result was compared to the initial rate analysis and gave the same data, $K_{\rm M}$ = 28 mM and $V_{\rm max}$ = 13 µM/s, in much less time.

Progress curve analysis of enzyme reactions has the advantage that the reaction progress is monitored over the full reaction time, providing information about the dependence of reaction rates on substrate and product concentrations. Product inhibition is easily detected by recording progress curves at two initial concentrations. This approach can also be used for direct characterization of enzyme inhibition by NMR spectroscopy.

^{1.} Schnell, S. and Mendoza, C., J. theor. Biol., 187. 207-212 (1997)

^{2.} Goudar C. T. et al., J. of Microbiol. Meth., 59, 317–326 (2004)

PCS NMR of DOTA-M8 tagged human Carbonic Anhydrase II

Kaspar Zimmermann, Elisa S. Nogueira, Heiko Gsellinger and Daniel Häußinger

Department of Chemistry, University of Basel, Basel, Switzerland; daniel.haeussinger@unibas.ch.

Synthetic lanthanide chelating tags (lct) that are site-specifically attached to a protein induce pseudo-contact shifts (pcs) in the nuclei of the protein. This long-range effect can be used to determine structure and dynamics of proteins and their complexes [1]. We have recently developed [2] an unusually rigid, high affinity chelating tag, DOTA-M8. Here we present applications of this tag to the monomeric 261 residue protein human carbonic anhydrase (hCA II). Host guest transition metal complexes bound to hCA II [3] have successfully been applied as synthetic metalloenzymes in homogeneous catalysis. The PCS NMR experiments aim at a structural characterization of these protein - ligand complexes in order to understand the outstanding catalytic properties of this complex system.

REFERENCES:

1. Keizers, P.H.J., Ubbink, M., Prog. Nuc. Magn. Res. Spect. 42, 1-9, (2011).

2. Häussinger, D., Huang, J.-R., Grzesiek, S., J. Am. Chem. Soc., 131, 14761-14767, (2009).

3. Monnard, F.W., Heinisch, T., Nogueira, E.S., Schirmer, T., Ward, T.S., Chem. Commun., 47, 8238-8240, (2011).

Ls337

Photocaged puromycin for time-resolved experiments on nascent polypeptide chain release

Florian Buhr¹, Jörg Kohl-Landgraf², Josef Wachtveitl², Harald Schwalbe¹

¹Goethe University, Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology Max von Laue Strasse 7, 60438 Frankfurt am Main ²Goethe-University, Institute of Biophysics and Institute of Physical and Theoretical Chemistry, Max-von-Laue-Strasse 1, 60438 Frankfurt (Germany)

To study translation-arrested ribosome-nascent chain complexes (RNCs) and post-translational folding events, we have developed a trigger mechanism to facilitate a rapid, concerted release of nascent polypeptide chains from the ribosomal complex. By mimicking a tyrosyl-tRNA at the ribosomal A-site, the antibiotic agent puromycin acts as a covalent, codon-unspecific nascent chain acceptor and facilitates the release of nascent polypeptides from the ribosome. We have protected the nascent chain accepting amino functionality of puromycin by means of a widely used photocage to initiate nascent chain release by laser excitation at 350 nm inside an NMR sample tube.

We are currently applying the compound to investigate nascent chain release kinetics of two model systems: Venus YFP and firefly luciferase. Immediately after the laser-induced photorelease of puromycin, the folding degree of the released polypeptide chains is monitored directly by fluorescence spectroscopy and a chemiluminescence assay, respectively.

As proof of concept, we have prepared isotope-labeled RNCs of Venus YFP and are characterizing the folding state of the nascent chain by NMR spectroscopy using fast acquisition time-resolved NMR experiments. Furthermore, we are comparing the amount of native Venus backbone structure before and after the optically triggered uncaging of puromycin, which is embedded into the pulse sequence of the NMR-experiment.

Enantiomeric discrimination using desktop NMR spectroscopy

Ernesto Danieli^a, Martin Koos^b, Juan Perlo^c, Bernhard Blümich^a, Burkhard Luy^b, and Federico Casanova^{a,c}

a) Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany. (edanieli@mc.rwth-aachen.de) b) Institut für Organische Chemie, Karlsruher Institut für Technologie (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany.

c) Aachen Center for Technology (ACT), Pauwelsstr. 19, D-52074, Aachen, Germany.

In this work we present NMR spectroscopy measurements of alanine in gelatine samples measured with a mobile 1 T magnet. The sensor, built from permanent magnets, is based on a recently proposed geometry¹ that achieves high homogeneity thanks to the implementation of a powerful mechanical shimming approach². To improve its performance, the system was temperature stabilized. Samples of pure L-Ala and a mixture of L-Ala/D-Ala in 1:1 ratio were added to gelatine, which works as a chiral orienting medium³. Gelatine and solute were introduced into a flexible perfluorinated elastomer tube⁴, which by a simple stretching action allows for a rapid and free scaling of the alignment to a desired degree. 1D and 2D spectra were measured for different extensions. The stability and homogeneity of the sensor made it possible to quantify the values of the homonuclear couplings ${}^{3}T_{ab}=D_{ab}+{}^{3}J_{ab}$ between alpha and beta protons. The induced anisotropy in stretched samples leads to different values of ${}^{3}T_{ab}$ for each enantiomer because of the presence of residual dipolar couplings. The possibility to obtain this information under simple experimental conditions and using a desktop NMR system is of great potential for the pharmaceutical industry.

1. E. Danieli, J.Perlo, B. Blümich, and F. Casanova, Angew. Chem. Int. Ed., 49, 4133-4135 (2010).

2. J. Perlo, F. Casanova, and B. Blümich, Science, 315, 1110-1112 (2007).

3. K. Kobzar, H. Kessler, and B. Luy, Angew. Chem. Int. Ed., 44, 3145-3147 (2005).

4. G. Kummerlçwe, E.F. McCord, S.F. Cheatham, S. Niss, R.W. Schnell, and B. Luy, Chem. Eur. J., 16, 7087-7089 (2010).

Ls339

High-resolution spectroscopy with a desktop NMR system

Juan Perlo^a, Ernesto Danieli^b, Bernhard Blümich^b, and Federico Casanova^{a,b}

a) Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany. (juan.perlo@act-aachen.com) b) Aachen Center for Technology (ACT), Pauwelsstr. 19, D-52074, Aachen, Germany.

During the last decade several magnet designs based on a Halbach arrays has been proposed for desktop NMR instruments. However, due to variations of the polarization of the magnet pieces used in the assembly, the magnetic field generated by real magnets is strongly inhomogeneous. The field variation is such that only a small fraction of the bore can be excited. To shim this type of magnets we have recently presented a robust method useful to correct strong field inhomogeneities of the order of several thousands of ppm. The first implementation of the method was to generate a spot of highly homogeneous field (fraction of ppm) outside the magnet for single-sided 1H spectroscopy. Later, the method was extended to correct the field inhomogeneities of a Halbach magnet for MRI. In that case, a second Halbach array made of movable pieces was placed in the bore of an existing Halbach to efficiently generate first and second order shim terms. Finally, the method was refined by incorporating the movable pieces into the main magnet design and extending the correcting shim terms to higher orders. Here we present the performance of our last magnet generation working at a field strength of 1 Tesla. To offer the highest performance the magnet is temperature stabilized and furnished with shim coils generating up to second terms. Moreover a lock system is used to correct magnetic field drifts.
Microfluidic Remote Detection of a Xenon-Based Molecular Sensor

Hattie L. Ring^{a,b}, Monica A. Smith^{c,d}, Daniel J. Kennedy^{b,c}, Sonny C. Hsiao^{a,b}, Gary J. Tong^{a,b}, Vikram S. Bajaj^{a,b}, Matthew B. Francis^{a,b}, David E. Wemmer^{a,c,d}, Alexander Pines^{a,b}

^a Department of Chemistry, University of California, Berkeley, 94720, Berkeley, USA (hziegler@berkeley.edu); ^b Materials Sciences Division, Lawrence Berkeley, National Laboratory, Berkeley, 94720, Berkeley, USA, C Biophysics Graduate Group, University of California, Berkeley, 94720, Berkeley, USA; ^d Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, Berkeley, USA

Xenon-based molecular sensors (biosensors) have been developed to sensitively report on their chemical environment. In combination with lab-on-a-chip technology, these biosensors could be implemented in microfluidic-based chemical and biological assays. The sensitivity of hyperpolarized xenon (hp-Xe) to its local environment has been shown to distinguish high concentrations of ss- versus ds-DNA by a change in chemical shift¹. Here detection of the biosensor on a microfluidic chip is demonstrated with chemical exchange saturation transfer of hp-Xe (Hyper-CEST)² and remote detection methods³.

A microfluidic chip with a well was fabricated and affixed with ssDNA twenty basepairs long⁴. The complimentary strand of ssDNA was attached to a cryptophane cage. During detection, the MR signal was depleted by pulsing on the biosensor-associated ¹²⁹Xe resonance frequency. Immediately after the pulse, the xenon solution peak was stroboscopically detected with the resulting dip in the travelcurve showing the presence of the biosensor.

REFERENCES:

- 3. Granwehr J., Harel H., Han S., Garcia S., Pines, A., Phys. Rev. Lett. 95, 1-4 (2005).
- 4. Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R., Francis, M. B., Angew. Chem., Int. Ed., 45, 896 901 (2006).

Ls341

Modeling and Inhibitor Studies of Gamma-Butyrobetaine Hydroxylase (GBBH) and Trimethyllysine Dioxygenase (TMLD)

Diana Zelencova, Edvards Liepinsh.

Latvian Institute of Organic Synthesis, Aizkraukles 21 Riga, LV-1006, Latvia, zelencova@osi.lv.

GBBH and TMLD are enzymes that belong to the separate family. They participate in the biosynthetic pathway of L-carnitine and catalyze the formation of L-carnitine from gammabutyrobetaine [1]. Gamma-butyrobetaine hydroxylase has the X-ray structure [2] which was used in calculations. TMLD does not have X-ray structure yet, so it was modeled using GBBH crystal structure as a template due to satisfying similarity. The possible steric strain in obtained TMLD structure was released by 2ns molecular dynamic calculations. The modeled structure was used for ligand docking by InducedFit docking program [3].

The GBBH enzyme interaction with potential inhibitors was also studied by NMR techniques. Several mixtures of corresponding ligands were prepared and NMR ST1D and $T_1\rho$ experiments were performed. The spectra obtained were analyzed and compared with computed data and known activity (IC_{50}) values.

REFERENCES:

ACKNOWLEDGMENTS: This work was supported by the grant Nr. VPP-3-6

^{1.} Roy V. et. al., ChemPhysChem, 8, 2082 - 2085 (2007)

^{2.} Schroder, L., Lowery, T. J., Hilty C., Wemmer, D. E., Pines, A., Science, 314, 446 - 449 (2006).

^{1.} Vaz F. M., van Gool S., Ofman R., Ijlst L., Wanders R. J. A., Biochem. Biophys. Res. Commun., 250, 506-510, (1998).

^{2.} Tars K., Rumnieks J., Zeltins A., Kazaks A., Kotelovica S., Leonciks A., Sharipo J., Viksna A., Kuka J., Liepinsh E., Dambrova, M.

Biochem.Biophys.Res.Commun, 398, 634-639 (2010).

^{3.} Schrödinger Suite 2011 Induced Fit Docking protocol; Glide version 5.7, Schrödinger, LLC, New York, NY, 2011; Prime version 3.0, Schrödinger, LLC, New York, NY, 2011.

Structure - dynamics heterogeneity in amorphous polymers via the molecular vs. atomic probes: *cis-1,4-Poly(isoprene)*

Josef Bartoš¹, Helena Švajdlenková¹, Günter Dlubek²

¹Department of Structure and physical properties, Polymer Institute of SAS, SK - 845 41 Bratislava, Slovak Republic; 2 ITA Institute for Innovative Technologies, Köthen/Halle, Wiesenring 4, D - 06120 Lieskau, Germany) Presenting author e-mail address: Jozef.Bartos@savba.sk

The continuing problem in physics of condensed matter is to understand the structure and dynamic evolution in disordered materials on going from their normal liquid state through the supercooled liquid one towards the glass. One way to characterize microscopically the structural and dynamic heterogeneity of glass-formers is to use special external probe techniques such as the atomic ortho-positronium (o-Ps) via positron annihilation lifetime spectroscopy (PALS) [1] and stable free radicals, the so-called spin probe by using electron spin resonance (ESR) [2]. In our contribution we report on a joint ESR and PALS investigation of the structural - dynamic state in a typical amorphous polymer of diene type: *cis-1,4-poly(isoprene)* (*cis-1,4-PIP*) via the above-mentioned molecular and atomic probes. By comparison of the ESR and PALS responses over wide temperatures ranges, a number of the mutual correlations between the annihilation parameters, being related to free volume, and the dynamic ones of both the external probes have been revealed and discussed in the structure - dynamic terms in detail.

REFERENCES:

1. Dlubek G. in *Enclopedia of Polymer Science and Technology*, ed. A. Seidel, John Wiley & Sons, Hoboken (2008) 2. Veksli Z., Andreis M., Rakvin B., *Progr. Polym.Sci.* 25, 949-986 (2000)

Mp343

Nuclear Magnetic Resonance Study of Inorganic NanoMaterials

Alexander M. Panich

Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, Be'er Sheva 84105, Israel pan@bgu.ac.il

Nuclear Magnetic Resonance (NMR) is an excellent tool in studying nanomaterials at the atomic level. I will report on a NMR study of the local crystal structure, electronic structure, nature of chemical bond and defects in boron nitride nanotubes, tungsten and molybdenum sulfide fullerenelike nanoparticles, dithallium selenide nanorods, and vanadium oxide nanotubes. The properties of the corresponding bulk samples vary from wide gap semiconductors to semimetals. The data obtained on the nanosized compounds will be compared with those of the bulk ones. Our research elucidates when the properties of nanomaterials differ significantly from those of bulk samples, and when this difference is small or nearly absent.

Our studies also show that some nanoparticles reveal core-shell structure, while the others do not. This problem will also be discussed in the presentation.

MP344

Diamond Nanoparticles with Functionalized Surface – a NMR Study

Alexander M. Panich

Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, Be'er Sheva 84105, Israel, pan@bgu.ac.il

On-purpose functionalization of the nanodiamond (ND) surface with targeted species allows preparation of NDs with specified chemical, physical and electronic properties. Here we review our recent NMR studies of structure, chemical bonding and defects in fluorinated (F-ND), hydroxylated (OH-ND) NDs and those with surface decorated by transition metal ions (Cu-ND and Co-ND).

In F-ND, we obtained formation of different fluorocarbon groups on the nanodiamond surface, which substitute for hydrocarbon and hydroxyl groups. Our data provide detailed information about the structure and bonding in both diamond core and surface of the F-ND particle. F-ND sample has a significant number of paramagnetic defects, resulting in fast ¹⁹F and ¹³C nuclear spin-lattice relaxation.

OH-ND reveals signals from the diamond core, surface CH_x , C-OH groups and adsorbed moisture. Its surface is greatly enriched with the OH-groups. To distinguish between contributions from ND particle and surface moisture, pumped samples were measured.

¹H, ¹³C and ¹⁹F spin-lattice relaxation is mainly dominated by the interaction of nuclear spins with the paramagnetic centers, represented by broken dangling bonds with unpaired electrons.

NMR studies of Cu-ND and Co-ND show the increase in the ¹H and ¹³C spin-lattice relaxation rates with increasing transition metal amount, revealing appearance of paramagnetic Cu^{2+} and Co^{2+} complexes at the ND surface and their interaction with the hydrogen and carbon nuclear spins.

The magnetic resonance findings are well supported by EPR, FTIR, XPS and Raman studies.

MP345

Iron Phosphate Glass Modified Jute/PP Composite as Shielding Material

Kamol Dey¹ Ruhul A. Khan²

¹Department of Applied Chemistry & Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Bangladesh Email: kamolacct@gmail.com ²Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh.

Shielding design for spectrometers is relatively straightforward depending upon the type of radiation (gamma, neutron, alpha, beta). In this work, we have explored a pathway of fabricating composite material toward the design of magnetic resonance-compatible gamma shields. Jute fabrics (hessian cloth) reinforced polypropylene (PP)-based composites (30% by weight) were prepared by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of the composites were found to be 28 MPa, 280 MPa, 31 MPa, 440 MPa and 18 kJ/m², respectively. Iron phosphate glass (IPG) (compositions: Na₂O-CaO-MgO-Fe₂O₃-P₂O₅) powder was incorporated onto jute fabrics by hand lay-up technique for shielding purposes and then PP-based composites were fabricated. The mechanical properties of both composites (jute-PP and jute-IPG-PP) were compared. It was found that the values of TS, BS, TM, BM, and IS of jute-IPG-PP composite improved significantly than those of jute-PP composite. Jute-IPG-PP composite was found 85% increase in TS, 148% increase in BS over those of jute-PP composite. It was also found that TM, BM, and IS increased to 157, 172, and 94%, respectively. Water uptake and degradation tests of the composites were also performed. Mechanical and thermal properties of the composite shows that such composite materials can under some conditions reach very high shielding efficiencies while being easily moulded to any shape or dimension.

Reference:

^{1.} Khan, M. A. Khan, R.A. Haydaruzzaman, Ghoshal, S. and Saha, M. Polymer-Plastics Technology and Engineering, 48: 542–548 (2009).

^{2.} Kafi, A. A. Abedin, M. Z. Beg, M. D. H. Pickering, L. and Khan, M. A. Journal of Reinforced Plastics and Composites, Vol. 25, 525-537. (2006).

POSTER

Solid-State NMR Studies of Deuterated CMPs

Andrea Laybourn,¹ Joshua D. Elliott, Dave J. Adams, Yaroslav Z. Khimyak, Andrew I. Cooper

¹Department of Chemistry, University of Liverpool, Liverpool, UK. E-mail: A.Laybourn@liv.ac.uk

Conjugated microporous polymers (CMPs)¹ are a type of polyyne network that have advantageous properties, such as tuneable micropore size and surface area, and the ability to swell. Changes in porosity can be achieved by varying the aryleneethynylene strut lengths,² which may allow the networks to be used as gas storage materials.³ Owing to limited solubility and the amorphous nature of these materials, little information is known about their structure and characterisation is dominated by NMR. In addition to previous structure elucidation by ¹H-¹³C CP/MAS NMR,^{2,3} we have used ²H NMR to investigate these materials. This technique is sensitive to detailed molecular mobility and can reveal structural information and origins of porosity. We have observed immobile and mobile components of the network even at room temperature. For a partially deuterated CMP-1 network, the

intensity of phenyl ring flipping has been shown to change with varying temperature (Figure). We will discuss swelling experiments for CMP-1 with benzene- d_6 to investigate changes in porosity for swollen and non-swollen networks. All of the information collected is complimented by molecular modelling. This data can be used give an overall picture of the origins of flexibility and physical properties for CMP networks, ultimately leading to the design of such materials.

REFERENCES:

- 1. Jiang, J-X.; Cooper, A.I.; Topics Curr. Chem., 293, 1-33 (2010)
- 2. Jiang J.X., et. al.; Angew. Chem. Int. Ed., 46, 8547-8578 (2007)
- 3. Jiang J.X., et. al.; J. Am. Chem. Soc., 130, 7710-7722 (2008)

Figure: ²H VT NMR and structure (inset) of deuterated CMP-1.

MP347

EPR and luminescence of photoexcited states in NH₄BPh₄, KBPh₄

Olga Antonova

Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia, antonovaov1987@yandex.ru

Nowadays, the search for novel materials has a great importance, especially those of them whose properties could be easily changed by external influences. Such materials are potentially applied in the rapid developing areas of nanoelectronics and spintronics. Tetraphenylborate (TPhB) is a tetrahedral type of organoboron compounds, which are widely used as materials for optical and electronic applications. Meanwhile the luminescence effect of the complexes has not been properly studied. We revealed^[11] for NH₄BPh₄, KBPh₄ at T=77 K a self-excitation luminescence with wavelength max at λ =460 nm and long relaxation times: t₁=0.33 s and t₂=0.053 s. Further investigation of the phenomenon has showed that photoexcitation at 77 K resulted in a set of levels appearing in the forbidden band, which are responsible for the appearance of intensive luminescence. Experiments showed that UV irradiation leads to the capture of the excited electrons on phenyl rings of neighboring molecules, thereby forming electron-hole pairs with different distance between an electron and a hole. For practical applications electron-hole pairs with large distance between an electron and a hole must be remove, therefore we used mesoporous frameworks to limit the sample size. Solutions studies of TPhBA, TPhBK have showed that UV irradiation at 77 lead to formation of phenyl radical, but for bulk samples it not observed in connection with the so-called "cage effect".

In this work we consider a question of O_2^- sorption on surface of mesoporous structures, and examine electron-hole recombination for all samples. Stable excited triplet states in TPhBA at low temperatures could provide a means of creating high-density recording optical memory elements.

1. O. V. Antonova, V. A. Nadolinny, E. A. Il'inchik, M. K. Kovalev, A. P. Yelisseyev, Appl. Magn. Reson, (2011), in press

The Influence of impurity transition metal ions on the luminescent propirties of Li₂Zn₂(MoO₄)₃ crystals

Alexey Ryadun

Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia, Dosca@yandex.ru

Extensive application of scintillation crystals in medicine, nuclear research and space programmes stimulates the search for new scintillation materials with higher light output, light emission in a definite wavelength range and shorter afterglow times. In recent years there have appeared publications on growing and studying properties of $ZnMoO_4$ crystals and $Li_2Zn_2(MoO_4)_3$ double molybdate crystals. This compounds began to attract research interest, in particular, due to the fact that they can solve the problem of registration of the neutrinoless double β -decay. In our work, the right conditions of $L_{12}Z_{n_2}(MOO_4)_3$ crystal growth were selected on the basis of corrected phase diagram and large optically homogeneous and virtually stoichiometric undoped and activated by transition metal ions (Cu, Cr, Fe, Ti) crystals were grown. Charge state and structural position of transition metal ions were established by EPR method. Investigation of luminescence shown that the luminescence with $\lambda = 388$ nm is observed for undoped crystals at room temperature. The luminescence lifetime is very short and described by two exponential components, with relaxation times $\tau_1 = 2$ ns μ $\tau_2 = 6$ ns. The luminescence with λ = 560 nm and lifetime τ = 100 nm is observed as for undoped, so as for activated by transition metal ions crystals at 77K. Besides, the luminescence intensity with $\lambda = 560$ nm depends on nature and concentration of transition metal ions. It is supposed, that cation vacancies, which ensure for charge compensation of the impurity transition metal ions, are responsible for the low-temperature luminescence.

M_P349

NMR Investigations of Coil-Globule Phase Transition in Aqueous Solutions of Thermoresponsive Polymers

Jiří Spěváček¹ and Lenka Hanyková²

¹Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic; ²Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; E-mail: spevacek@imc.cas.cz

It is well known that thermoresponsive polymers show in aqueous solution a coil-globule transition followed by aggregation and formation of so-called mesoglobules. Their thermosensitivity makes these polymers interesting for miscellaneous biomedical and technological applications, e.g., as drug release polymers. NMR spectroscopy can play an important role in investigations of these systems [1].

Formation of globular structures results in a marked line broadening of a major part of polymer segments in NMR spectra. The fraction of units with significantly reduced mobility can be determined from integrated intensities in high-resolution NMR spectra. Application of this procedure on D_2O solutions of poly(*N*isopropylmethacrylamide (IPMAm)-*co*-acrylamide (AAm)) random copolymers indicates that in respective mesoglobules there are domains where both hydrophilic AAm sequences (units) and surrounding IPMAm sequences are hydrated and therefore mobile.

The behaviour of water during the phase transition we mainly studied on poly(vinyl methyl ether) (PVME)/D₂O solutions. ¹H spin-spin relaxation measurements show that in semidilute solutions a portion of HDO is bound in mesoglobules with fast (ms) exchange between bound and free sites. In contrast, a 3 order of magnitude slower exchange in comparison with semidilute solutions was found in highly concentrated PVME/D₂O solutions (c = 20-60 wt%) using 1D NOE NMR experiment. These results can be explained by diffusion of water molecules through mesoglobules and by different size of mesoglobules in both cases as determined by optical microscopy.

Acknowledgment::Support by the Czech Science Foundation (Project 202/09/1281) is gratefully acknowledged.

^{1.} Spěváček J., Curr. Opin. Colloid Interface Sci. 14, 184-191 (2009)

Phase Composition and Molecular Mobility in Polyamide Films in Relation to Oxygen Permeability

Victor M. Litvinov

DSM Resolve, P.O. Box 18, 6160 MD Geleen, Victor.Litvinov@DSM.com

The effect of phase composition and molecular mobility on oxygen permeability is studied for stretched films prepared from polyamide 6 (PA6) and a blend of PA6 with semi-aromatic amorphous polyamide (aPA) - PA6/aPa. Changes of these parameters upon strain of films are determined by ¹H NMR relaxometry. Molecular mobility in the amorphous phase of stretched films is largely restricted upon increasing strain. At temperatures well above $T_{\rm g}$, the amorphous phase consists of two fractions: one behaves like glassy polyamides and the other one, a semi-rigid fraction, reveals largely hindered chain mobility. The amount of the glassy-like fraction increases proportionally to the strain. In addition, molecular mobility in the semi-rigid fraction decreases with increasing strain. It is shown that the immobilization of the amorphous phase has a large influence on the permeability of the films. It appears that oxygen permeability correlates well with a parameter describing strain-induced decrease in molecular mobility in the amorphous phase. This parameter is the reciprocal product of the amount of the semi-rigid fraction at temperatures well above T_g and molecular mobility in this fraction as determined by NMR T_2 relaxation time. It is suggested that the semi-rigid fraction of the amorphous phase could be considered as "channels" for diffusion of oxygen molecules. Despite lower oxygen solubility in PA6 films, as shown by low-temperature proton NMR T_1 relaxation data, the permeability of all PA6/aPA films under humid conditions is significantly lower than that of PA6 films. It is suggested that the lower permeability of PA6/aPA films is due to complex formation between oxygen molecules and aromatic rings of aPA, which slows down oxygen diffusion.

Mp351

A Solid-state NMR Study of Boric Acid Doped in Poly(vinyl alcohol)

<u>Kazuhiko Yamada</u>¹, Kenzo Deguchi², Tadashi Shimizu², Shinji Ando¹, Hideki Kamada³ and Toshiaki Kobayashi³

¹Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan; ²National Institute for Materials Science, Tsukuba city, Ibaraki, Japan; ³KURARAY Co., Ltd., Kurashiki city, Okayama, Japan). Presenting author e-mail address: kyamada@polymer.titech.ac.jp

A multinuclear solid-state NMR study of boric acid doped in poly(vinyl alcohol) (PVA) will be presented. Usually a small amount of a boric acid is added to modify the physical properties of PVA films, such as mechanical strength and water resistance. It is believed that the doped boric acid plays an important role in crosslinking. Thus far, various schematic representations for the crosslinked structures have been proposed, most of which are known as the di-diol model. In this model, a boron site involved in the formation of crosslinks has a coordination number of four.

Nevertheless, the detailed structure for the boric acid crosslink is not understood completely probably because it is difficult to obtain the molecular structure of a crosslinker in a polymer that contains both crystalline and non-crystalline regions. In the present study, the experiments used for PVA films include ¹H windowed Phase-Modulated Lee-Goldburg (wPMLG), and ¹¹B Magic-Angle Spinning (MAS), ¹¹B stationary NMR, ¹¹B Multiple-Quantum MAS, and ¹H-¹¹B CP and HETCOR at 14.1 and/or 21.6 T. The spectral simulations using density matrix calculations are carried out for obtaining ¹H and ¹¹B NMR parameters, and accurate quantitative information on boron sites in the PVA films. The present analysis strongly suggests the possibility that the boric acid serves as a crosslinker with a coordination number of three for the first time, contrary to expectations from the previously proposed di-diol model.

Structural, Dynamical and Morphological Studies of PE Pipes due to the Storage under Hydrostatic Pressure and at Elevated Temperatures

Ning Sun¹, Mirko Wenzel², Bernhard Blümich¹, and Alina Adams¹

¹ITMC, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany; ²SKZ, Friedrich-Bergius-Ring 22, 97076 Würzburg, Germany. Email: sun@itmc-rwth-aachen.de

Since many decades polyethylene (PE) plays an important role in our daily life. One of its main applications is for pipes to transport water, gas, and sewer. The standardized life time of this material is supposed to be 50~100 years under normal operation conditions. However, the actual service time of the pipe system depends on the local service conditions. In order to predict the remaining service time of the pipe systems and to search for ways of extending this time, the understanding of the material's aging mechanisms is necessarily.

In the present study, PE pipes aged for various times under hydrostatic pressure and at elevated temperature were investigated by a combination of ¹H and ¹³C solid state NMR methods performed under static and MAS conditions. Based on the NMR data three different phases were observed based on differences in the chain dynamics: a rigid phase, an intermediate one, and a soft amorphous phase. It could be shown that not only the amounts of the three phases are changing with the aging time but also their chain dynamics. The most pronounced change was detected in the rigid phase whose amount and domain size are increasing with the aging time. This can be attributed to two aspects: (1) the intermediate and soft amorphous phases harden due to the creep of the chain segments caused by chain elongation under the pressure; (2) the elevated temperature gives rise to an annealing process which perfects the crystalline structure. As a consequence, the chain segments become more restricted with the aging time, as is also observed by relaxation measurements, which is the main reason of the embrittlement of the pipes eventually followed by complete failure.

MP353

EPR investigation of the evaporation-induced self-assembly of ordered mesoporous carbon

Marc Florent, Daniella Goldfarb

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel

Posters

A family of ordered mesoporous carbon prepared by a soft-templating approach similar to the synthesis of silica materials, has been reported by Zhao's group.^{1,2} These materials were synthesised using poly(ethylene oxide)-poly(propylene oxide)- poly(ethylene oxide) (PEO-PPO-PEO) pluronic block copolymer as structure directing agent and resol as carbon precursor. They could be produced following a solvent evaporation induced self-assembly (EISA) process or in aqueous media. Using a polyurethane support to produce the material as a monolith,³ we could investigate the EISA route at a molecular level, using in-situ X-band electron paramagnetic resonance (EPR), in combination with electron spin echo enveloppe modulation (ESEEM) and double electron-electron resonance (DEER) pulse experiments. Two spin probes derived from pluronics with PEO and PPO chains of different lenghts were used to probe different regions of the system. Experimental evidences were obtained, which demonstrate interactions between resol molecules and the PEO and the PPO blocks. The composite resol-pluronic self-organizes upon removal of the solvent in a different way as compare to pluronic alone. Upon thermopolymerization of the resol, the resol is driven out of the PPO part, and polymerizes around the PEO chains, similarly to what has been reported in the synthesis of pluronic templated ordered silica material.

REFERENCES:

^{1.} Meng Y., Gu D., Zhang F.Q., Shi Y.F., Cheng L., Feng D., Wu Z.X., Chen Z.X., Wan Y., Stein A., and Zhao D.Y., *Chemistry of Materials*, 18, 4447-4464 (2006)

^{2.} Zhang F.Q., Meng Y., Gu D., Yan Y., Chen Z.X., Tu B., and Zhao D.Y., Chemistry of Materials, 18, 5279-5288 (2006)

^{3.} Xue C.F., Tu B., and Zhao D.Y., Nano Research, 2(3), 242-253, (2009)

Evidence for the co-existence of distorted tetrahedral and trigonal bipyramidal aluminium sites in SrAl₁₂O₁₉ from ²⁷Al NMR studies

K. Harindranath¹, Bindhu Baby¹, K. Anusree Viswanath¹, Vinod Chandran², Thomas Brauninger², P.K. Madhu³, P.A. Joy⁴ and T. G. Ajithkumar¹

¹Central NMR Facility, National Chemical Laboratory, Pune 411008, India; ²MPI for Solid State Research, 70569 Stuttgart, Germany; ³Tata Institute of Fundamental Research, Mumbai 400005, India; ⁴Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008, India; E-mail: tg.ajithkumar@ncl.res.in

 $SrAl_{12}O_{19}$ is a ceramic material having the magnetoplumbite-type structure, similar to that of the well known hexagonal strontium ferrite used for permanent magnetic applications, with multiple Al coordination environments and finds applications in the field of photoluminescent materials. The aim of this study was to synthesize single phase SrAl₁₂O₁₉ and understand the coordination behavior of Al using ²⁷Al solid- state NMR techniques. An earlier ²⁷Al solid-state NMR study had reported that five different Al sites are present in this system: one AlO₄, one AlO₅, and three AlO₆ sites¹. However, in a recent study, it has been argued that the AlO5 site is not really a five coordinated site but a distorted AlO4 with a very high quadrupolar coupling constant (~20MHz)². This has been explained using the "split atom model" for that particular Aluminium site. Our aim was to resolve the issue on the coordination environment of the AlO5 site and find out the exact number of Al sites in this system and their coordination behavior using MAS and 3QMAS NMR experiments. Single phase SrAl₁₂O₁₉, as evidenced from detailed powder XRD studies, was synthesized by a citric acid precursor method and by heating the calcined precursor at 1200°C. We have been able resolve five distinct Al sites clearly: one AlO4 and three AlO6 and the AlO5 site unambiguously from the 3QMAS NMR experiments at a field of 7.05T. In addition, we have found evidence for the presence of a distorted AlO4 site from the studies at high fields (16.4T and 17.6T), showing that both the distorted tetrahedral and trigonal bipyramidal aluminium sites are simultaneously present in this system³.

1. Jansen, S. R.; Hintzen, H. T.; Metselaar, R.; de Haan, J. W.; van de Ven, L. J. M.; Kentgens, A. P. M.; and Nachtegaal, G. H. J. Phys. Chem. B., 102 (1998), 5969.

2. Lin-Shu Du and Stebbins, J. F. J. Phys. Chem. B. 108 (2004), 3681.

3. Harindranath, K.; Viswanath, A.; Vinod Chandran, C; Bräuniger, T.; Madhu, P.K.; Ajithkumar, T.G.; Joy, P.A.; Solid State Communications 150 (2010), 262.

MP355

Probing the Time-Scale of Local Chain Dynamics in Poly(ethylene) Crystallites by Simple Low-Field NMR Investigations

Kerstin Schäler^{1*}, Ruth Bärenwald¹, Anurag Pandey², Sanjay Rastogi², Kay Saalwächter¹

¹Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany; ²Department of Materials, Loughborough University, Loughborough,UK ^{*}kerstin.schaeler@physik.uni-halle.de

Helical jumps of poly(ethylene) (PE) chains in the crystallites based on 180° chain flip motions are a well-known phenomenom^[1,2]. To directly measure a correlation time of this jump motion is difficult as most NMR interactions do not change under the 180° flip process. Early yet non-quantitative investigations revealed an effect of the flips on the ¹H line width^[2], while recent advanced ¹³C-based studies^[1] were very time consuming. In our approach we detect changes of the dipolar coupling between protons of a flipping chain and protons of neighboring chains based on simple and fast lowfield ¹H NMR methods. For this purpose we use FID component decomposition and magic-sandwich echo experiments to measure the relaxation behavior of the crystalline signal contribution of PE, possibly enabling quantitative results on flipping rates. Using this technique we compare the chain-flip motion in a variety of PE samples, differing with regard to morphology. According to our results the speed-up of long-range chain diffusion between crystalline and amorphous regions in adjacent-reentrylike morphologies is not correlated to faster dynamics of the elementary jump process as no essential difference is detectable in the time-scale of the chain flip process for adjacent-reentry and switchboardmodel-like morphology. Results for a nanoparticle sample however hint at higher jump rates as compared to the other sample systems in combination with differences in lattice expansion.

REFERENCES:

W.-G. Hu, C. Boeffel, K. Schmidt-Rohr, *Macromolecules*, 32, 1611-1619 (1999)
 H. G. Olf, A. Peterlin, *J. Polym. Sci. A-2 Polym. Phys.*, 8, 771-789 (1970)

MP356

Self-Diffusion Coefficients of Small Penetrants in Semicrystalline Polymers using Single-Sided NMR

Rance Kwamen, Bernhard Blümich, and Alina Adams

ITMC, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany; E-mail: Kwamen@itmc.rwth-aachen.de

The estimation of self-diffusion coefficients of small penetrants in semicrystalline polymer materials is of great importance in obtaining information about their interaction with the polymer matrix. However, few studies about such measurements by NMR are reported to date mainly due to the low values of these coefficients and therefore to the difficulty to estimate them using standard NMR setups. Here we show that such problems can be overcome by taking advantage of the strong and uniform gradient of a single-sided NMR sensor. The approach is demonstrated on polyethylene samples with different degrees of crystallinity which are fully saturated with n-hexane and toluene. The self-diffusion coefficients are estimated using a constant gradient stimulated echo (SGSTE) pulse sequence appended with a Carr–Purcell–Meiboom–Gill (CPMG) echo-train during the detection period. The obtained values are in good agreement with published results on similar samples.

Furthermore, it is also shown that one-dimensional profiles of the self-diffusion coefficients across the thickness of the polymer material can be obtained in a reasonable amount of time with demonstration on various polyethylene samples fully saturated with n-hexane. In such way, important information about the heterogeneity of the polymer can be gained.

M_P357

Changes in microstructure of wood caused by thermal modification: PGSTE NMR, remote detection MRI and NMR cryoporometry studies

Ville-Veikko Telkki, Päivi Kekkonen, Jani Saunavaara, and Jukka Jokisaari

NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Finland (ville-veikko.telkki@oulu.fi)

Thermal modification is an environmentally friendly method for increasing the lifetime and properties of timber products. In this work, we investigate the changes in microstructure of *Pinus Sylvestris* pine wood caused by thermal modification using sophisticated NMR techniques.

The changes in the tracheid cell dimensions are studied by PGSTE NMR of a fluid absorbed in the cells [1]. The experiments show that thermal modification decreases the cell dimensions in all the three orthogonal dimensions. In addition, the results imply that the wood cell wall structure begins to be destroyed above a critical modification temperature [2].

Fluid flow paths in wood are investigated by remote detection MRI. Adjacent tracheid cells are connected by tiny pits, allowing water and nutrients to travel between the cells. Time-of-flight images of hyperpolarized xenon gas flowing through wood samples reveal that a large amount of the pits are closed in thermal modification [3].

Wood cell walls contain small pores in between microfibrils, whose size is on the order of nanometers. We investigate the size distribution and amount of the nanopores by NMR cryoporometry. Results imply that a major part of the nanopores are closed in thermal modification, preventing the swelling of wood when exposed to moisture.

REFERENCES:

^{1.} Kekkonen P., Telkki V.-V., Jokisaari J., J. Phys. Chem. B, 113, 1080-1084 (2009)

^{2.} Kekkonen P., Telkki V.-V., Jokisaari J., J. Phys. Chem. C, 114, 18693-18697 (2010)

^{3.} Telkki V.-V., Saunavaara J., Jokisaari J., J. Magn. Reson., 202, 78-84 (2010)

Flemming H. Larsen¹, Inge Byg^{2,3,4}, Jerome Diaz⁵, Iben Damager³, Søren B. Engelsen¹, Peter Ulvskov²

¹Department of Food Science, University of Copenhagen, Frederiksberg, Denmark; ²Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg, Denmark; ³Novozymes A/S, Bagsværd, Denmark; ⁴CP Kelco, Lille Skensved, Denmark; ⁵Biotechnology Group, University of Aarhus, Frederiksberg, Denmark..E-mail: fhl@life.ku.dk

Hydration of polysaccharides is an important aspect in a range of processes taking place in the biological processes in plants and also in relation to enzymatic processing as enzymes require water in order to function. Presently, rhamnogalacturonan-I (RG-I) ($M_w \sim 1.5$ MDa) from the main cell wall in potatoes was analyzed at various hydration levels (using D₂O) by solid-state ²H and ¹³C MAS NMR spectroscopy. In order to further elucidate the hydration mechanisms enzymatically modified versions of RG-I were explored by the same approach.

During the hydration process ²H single-pulse (SP) MAS, ¹³C SP/MAS and ¹³C cross-polarization (CP) MAS spectra were recorded at each hydration level. This facilitated observation of the structural impact on the deuterium sites in HDO/D₂O as well as on carbon sites in the polysaccharides. Furthermore differences between the ¹³C SP/MAS and ¹³C CP/MAS spectra allowed for identification of more or less mobile carbon sites, since only the immobile sites were observed in the CP/MAS spectra, while all carbon sites were observed quantitatively by the SP/MAS experiments.

By this approach it was demonstrated that the arabinan side chains were easier to hydrate than the galactan side chains in native RG-I. Results from the modified RG-I's furthermore suggested that the hydration properties depended on the length and character of the side chains.¹

REFERENCE:

1. Larsen, F. H., Byg, I., Diaz, J., Damager, I., Engelsen, S. B., Ulvskov, P., Biomacromolecules, 12, 1844-1850 (2011).

Mp359

Polymers under mechanical stress

Ute Böhme, Ulrich Scheler

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden Germany

The effect of mechanical stress on polymers has been investigated. Uniaxial stress on solid polymers has been studied in low field NMR using a Halbach magnet. Stretching of elastomers results in an instantaneous shortening of T_2 resulting from partial orientation of the polymer chains, which is seen in residual dipolar coupling measured in double quantum experiments. After releasing the stress both values return to their initial value on a time scale of minutes. For the time-dependent studies relaxation experiments are more suitable, because they maybe performed significantly faster. Stress on semi crystalline polymers results in a time-dependent behavior because the polymer chains will rearrange to release the stress and even creep through crystallites. Especially after the initial formation of a neck at constant extension the time dependences shows a return of both the shortened T_2 and the enhanced dipolar couplings to their initial values on a time scale of hours.

For the investigation of polymer melts a dedicated probehead for high-temperature rheo NMR has been developed. The polymer melt is sheared in the gap of a Couette cell. Temperature effects are excluded from the he strong temperature dependence of T_1 . Residual dipolar couplings vanish upon melting of the polymer simultaneously with a prolongation of T_2 . Shearing the polymer melt does not result in measurable residual dipolar couplings, while T_2 increases [2]. This implies, that no significant shear-induced orientation of the polymer chains is present, on the other hand shear results in a loss of entanglements and thus more flexible polymer chain segments.

REFERENCES:

^{1.} Böhme, U. Gelfert, K. Scheler, U. AIP conference proceedings, 1330, 109-112 (2011)

^{2.} Böhme, U. Scheler, U. submitted

Assessing the Solution Shape and Size of Charged Dendronized **Polymers Using Double Electron-Electron Resonance**

Dennis Kurzbach¹, Daniel R. Kattnig¹, Baozhong Zhang², A. Dieter Schlüter², Dariush Hinderberger¹

¹Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz; ²Department of Materials, Institute of Polymers, ETH Zurich, Wolfgang-Pauli-Str. 10, Zurich 8093, Switzerland, Corresponding Author E-Mail Address: kurzbach@mpip-mainz.mpg.de

In this report, we present double electron-electron resonance (DEER) data that suggest that highly branched dendronized polymers (denpols) in solution are macromolecules with persistent shape, a well-defined envelope, and a size independent of their environment. Macromolecules exhibiting such properties can be considered as 'molecular objects' (1) By determining the distance distribution of self-assembled dianionic spin probes (Fremy's salt dianion) on the surface of the cylindrically shaped and cationic denpols, we show that the measured solution radii are in excellent agreement with the solid state radii of the neutral denpol analogues (Figure). An analytic distance distribution of particles on the lateral surface of cylinders is developed for this purpose and fitted to DEER time traces. Such, DEER in combination with site-directed spin probing provides an indirect and simple method to determine the solution shape and size of macromolecules on the nanometer scale. It furthermore shows that at least generation 4 and 3 denpols in solution may already be described as molecular objects(2), while so far only the generation 5 denpol was explicitly mentioned in this context.(3)

Mp361

Assessment of the Specific Surface Area of fat crystal networks by **Diffusion NMR**

Gert-Jan W. Goudappel, Jaap Nijsse

Advanced Measurements & Data Modelling, Unilever R&D, Vlaardingen, The Netherlands, Gert-Jan.Goudappel@unilever.com.

The Specific Surface Area (SSA) is widely used to predict and control physical properties of structuring agents in product formulations. Different measurement methods are in use, but the application scope varies with matrix and underlying physical models used for interpretation of the data.

Two different model systems having a coarse and fine fat crystal network were made by dispersion of solid fat in water and oil respectively using different shear forces. D-NMR was used to assess the surface-to-volume ratio of the fat crystal network for short diffusion times from which the SSA was calculated. The latter was compared with indicative values obtained with XRD analysis for the fine fat crystal network model system dispersed in oil. The ratio solid fat versus liquid phase for the model systems were chosen such that both short and long diffusion time behaviour effects were observed within the diffusion range of the D-NMR experiments.

Results for the fine fat crystal network dispersed in oil showed that the calculated self diffusion coefficient of oil for short diffusion times did not match with the theoretical value. The obvious reason is non-elastic collision between the liquid oil and the solid fat surface. It is assumed that this does not influence the calculated SSA, which was comparable with XRD analysis results.

For the coarse fat crystal network dispersed in water results showed that the calculated self diffusion coefficient of water did compare with the theoretical value, meaning elastic collision between the water and the solid fat surface. The calculated SSA was lower than for the oil continuous fine fat crystal network due to the lower applied shear force and confirmed by SEM.

^{1.}

S. I. Stupp, S. Son, L. S. Li, H. C. Lin, M. Keser, J. Am. Chem. Soc. 117, 5212 (1995).
 D. Kurzbach, D. Kattnig, B. Zhang, A. D. Schlüter, D. Hinderberger, J. Phys. Chem. Lett. 2, 1583-1587 (2011). 2

^{3.} B. Zhang et al., Angew. Chem. Int. Ed. 50, 737 (2011).

Solid-State NMR studies of structure, dynamics, and host-guest interactions of Metal-Organic-Framework compounds (MOFs)

Silvia Paasch, Herbert Hoffmann, Nicole Klein, Irena Senkovska, Stefan Kaskel, Eike Brunner

TU Dresden, Fachrichtung Chemie und Lebensmittelchemie, 01062 Dresden, Germany. silvia.paasch@chemie.tu-dresden

Solid-State NMR spectroscopy is an excellent tool for the characterization of structure, dynamics, and host-guest interactions of Metal-Organic Frameworks such as DUT-8(Ni) or UMCM-1. The novel

Fig. 1¹³C CP MAS NMR spectra of DUT-8 (Ni)

flexible MOF Ni₂(2,6-ndc)₂(dabco) (DUT-8(Ni)) exhibits a pronounced gate pressure effect during adsorption/desorption of different molecules, i.e., a reversible structural transition from a narrow pore system ("closed") to a wide pore state ("open") [1, 2]. This behavior is accompanied by significant changes of the electronic structure and magnetic properties as detected by ¹H and ¹³C MAS NMR spectroscopy. The ¹³C CP MAS spectrum of the "closed" compound is well resolved and shows narrow signals in contrast to broadened lines in the "closed" state (Fig. 1). This well-resolved spectrum

allows the application of the full arsenal of 1D and 2D NMR techniques in order to study structure and dynamics.

- 1. Klein, N., Herzog, C., Sabo, M., Senkovska, I., Getzschmann, J., Paasch, S., Lohe, M. R., Brunner E., Kaskel, S., *Phys. Chem. Chem. Phys.* 12, 11778-11784 (2010)
- Hoffmann, H., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., Kaskel, S., Seifert, G., Brunner; E., J. Am. Chem. Soc., 133 8681–8690 (2011)

Mp363

CW and Pulsed 180GHz HF-EPR Study of Carbon Nanomaterials

<u>Y. Deligiannakis^{a*}</u>, P.Neugebauer^b, P. Stathi^a, V.Denysenkov^b, M. Louloudi^c, A. Bourlinos^d and T. Prisner^b

^aDepartment of Environmental Natural Resources Management, University of Ioannina, Greece ^bInstitute of Theoretical Chemistry Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt. ^cDepartment of Chemistry, University of Ioannina, Greece, ^dDepartment of Physics, University of Ioannina, Greece; *email: <u>ideligia@cc.uoi.gr</u>

Carbon nanomatrices have been reported to show magnetic-correlation behavior, localized paramagnetic moments or spin exchange phenomena. The magnetic properties of Carbon nanomaterials are determined by the configuration of the solid matrix. Local symmetry $[sp^2, sp^3]$, localised *pi*-networks, and metal-like energy band formation are the underlying physical mechanisms determining electrical and magnetic properties. We have used 180GHz HF-EPR spectroscopy to study the electronic configuration and lattice dynamics of three

types of carbon-nanomaterials: [i] Amorphous and Nanofoam carbon [ii] Layered carbonaceous nanosheets [iii] Crystralline nanodiamonds. Using HF-EPR the *g*-values were resolved and T_1 and T_M values were recorded in the temperature range 4-300K. The HF-EPR data reveal that the principal *g*-values of the stable radicals have significant *g*-anisotropy. In these Carbon centered radicals *g*-anisotropy originated from sp^3 configurations of the unpaired electron in the solid matrix. In layered materials a perfectly flat geometry would correspond to 100% sp^2 configurations. Thus an important conclusion by the present data is that at the radical centers in the layered nanosheets are localized on sites which deviate significantly from planarity. The temperature dependence of T_1 reveals significant differences between the three types of carbon matrices.

Acknowledgments: This work has been supported by the Greece-German IKYDA-2010 program for the promotion of the exchange and scientific cooperation [Project Contract #150].

Study of molecular packing and dynamics of luminescent phenylenevinylene/aliphatic multiblock copolymers by Solid State NMR

Oigres D. Bernardinelli¹, Sandra M. Cassemiro², Leni Akcelrud², Luiz A. O. Nunes¹, Eduardo R. deAzevedo¹

¹ Instituto de Física de São Carlos, Universidade de São Paulo, Brazil;²Instituto de Química Universidade Federal do Paraná, <u>azevedo@ifsc.usp.br</u>

Optoelectronic devices with polymer films as active layers have become an important topic in science and technology of today's electronic engineering. Chemical modifications to confine the degree of the polymer conjugation to well defined values opens the possibility of engineering materials with tunable gaps to control the color of the devices emission. One way of achieving that is preparing multiblock conjugated/non-conjugated copolymers where the non-conjugated units are aliphatic spacers. However, the insertion of aliphatic chains may change the chain aggregation, which may influence the polymer emission. Thus, we present a spectroscopy study of copolymers built by conjugated pphenylene type units (PV) of variable length and an aliphatic spacers, namely, poly[1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene]. Solid-state NMR, Fluorescence Spectroscopy, Wide angle X-ray and Raman scattering were used to characterize the composition, molecular dynamics and packing of copolymers with increasing PPV units. The results show that the distribution of PPV chain lengths together with the formation of molecular aggregates produces pathways for exciton migration, which induces strong red shift in the photoluminescence. Besides, the molecular dynamics of the aliphatic spacers in the neighborhood of the PV units favors the appearance of non-radiative paths and phonon modes, which decrease and broaden the polymer luminescence.

Mp365

Radical Photoinitiators with β-phenylogous cleavage

Markus Griesser,¹ Arnulf Rosspeintner,¹ Claudia Dworak,² Sigrid Jauk,² Robert Liska,² Georg Gescheidt,¹

¹Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria ²Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria markus.griesser@tugraz.at

Poster

Photoinitiators are key compounds in light curable polymerization systems as they generate the reactive (radical) species and thereby have a great impact on the resulting polymer properties. Typical photoinitiator systems are bimolecular systems consisting of benzophenone and tertiary amines. However those systems have back draws because of reaction kinetics and other limitations stemming from the bimolecularity. To overcome this problem the two units have been covalently bound together¹ to from form initiators like **1** which show high reactivity and a similar reaction mechanism² as previously investigated compound **2**.³

We present results to substantiate the proposed cleavage mechanism and to discern the different products and intermediates, which lead to the high efficiency of the initiator. To that effect, the photoinduced reactivity of **1** and **2** was investigated using time resolved EPR (TR-EPR) and Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP) spectroscopy.

3. Yamaji M., Inomata S., Nakajima S., Akiyama K., Tobita S., Marciniak B., J Phys Chem A, 109, 3843-3848 (2005)

^{1.} Jauk S., Liska R., Macromol Rapid Commun, 26, 1687-1692 (2005)

^{2.} Jauk S., Liska R., J Macromol Sci Part A: Pure and Appl Chem, 45, 804-810 (2008)

Structure Study on an Aluminum Phosphonated Framework Using Solid-State NMR

Jie Shu, Robert Graf

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany. Email: shu@mpip-mainz.mpg.de

Metal organic frameworks [1] (MOF) have gained increasing interest due to their potential applications as sorbents, ion exchangers, ionic conductors and catalysts. The various ordered MOF structures can meet different target demands. Therefore, study on MOF structures plays a key role in its application development.

In this work, an aluminum phosphate hybrid, prepared from aluminum nitrate and 1,3,5-tris(pphosphonatophenyl)benzene (TPB)[2], was investigated by using solid-state NMR techniques. From 1D ¹H, ¹³C and ³¹P spectra as well as ¹³C CP dynamics studies, it was revealed that a new, well ordered crystalline material (named Al-4) was formed after the complexation of TPB with Al³⁺-ions. The molecular dynamics at different sites of TPB and Al-4 was quantitatively analyzed using ¹³C{¹H}REPT-HDOR sideband patterns, which confirmed the crystalline structure of Al-4. To further elucidate the structure of aluminum sites in Al-4, ²⁷Al MQMAS spectrum has been acquired .Combined with the previous X-Ray work[2], a structural model of Al-4 was proposed, where each oxygen is coordinated to two aluminum ions, forming an octahedral aluminum columns connecting organic TBP layers. To support this model and to refine the x-ray distance information, the ³¹P DQ build up curve has been recorded using an improved Back-to-Back sequence [3].

REFERENCES:

1. Rowsell L.C.J., Yaghi M.O., Microporous and Mesoporous Materials, 73, 3-14 (2004);

2. Jiménez-García L., Enkelmann V., Shu J., Graf R., Klapper M. and Müllen K., preparing;

3. Saalwächter K., Lange F., Matyjaszewskix K., Huang C.F., Graf R., J. Magn. Reson. (2011), in press.

MP367

Electron Magnetic Resonance Studies of Magnetic Nanoparticles encapsulated in Novel Multifunctional Microcontainers

A. Chatzipavlidis^{1, 2}, P. Bilalis², <u>G. Mitrikas²</u>, N. Boukos² and G. Kordas²

School of Chemical Engineering, National Technical University of Athens, GR-15780, Athens, Greece
 Institute of Materials Science, NCSR Demokritos, GR-15310, Athens, Greece
 e-mail: mitrikas@ims.demokritos.gr

Recently, significant progress has been made in the field of microcontainers responsive to a variety of stimuli. Due to their unique features, such as size, shape, morphology, and reliable response to various external or internal stimuli, they are utilized in a wide range of biomedical applications.¹ Temperature and pH responsive hollow microspheres (microcontainers) were prepared using the distillation precipitation polymerization method with magnetic nanoparticles (Fe₃O₄) encapsulated either in the shell or in the core.² Here we study the superparamagnetic properties of the encapsulated nanoparticles by electron magnetic resonance (EMR) methods at X-band (9.5 GHz) in the temperature range 100-400 K. The temperature dependence of some characteristic EMR parameters like peak-to-peak linewidth (Δ H_{PP}) and resonance field are in line with recently developed theoretical models for superparamagnetic nanoparticles.³

Acknowledgement: We thank the European Research Council (ERC) for financial support of this work under the "IDEAS" project called "A Novel Nano-container drug carrier for targeted treatment of prostate cancer" with the acronym NANOTHERAPY and the reference number 232959.

¹ Minko S. et al, Nature Materials 9, 101-113 (2010).

² Chatzipavlidis A. et al, Langmuir 27, 8478–84851 (2011).

³ Kliava J., in *Magnetic Nanoparticles*, ed. S. P. Gubin, Wiley-VCH Verlag, Weinheim, 2009, p. 255.

Naturally Occurring Alignment media for Biomacromolecules

Silke S. D. Büchler, Burkhard Luy

Department of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany

In high-resolution NMR spectroscopy, anisotropic parameters like RDCs or RCSA play an important role for structure determination. For macromolecules a weak alignment is necessary to avoid extensive line-broadening. Naturally occurring polymers like gelatin and gellan gum form gels at relatively low polymer concentration. Gelatin is a well studied alignment medium for small organic molecules.¹ Another polymer gellan gum that polymerizes at much lower concentration than other common gelating agents. The alignment can be tuned depending on gellan gum concentration and composition.² We will introduce the alignment media and show first examples for their application to proteins.

1. Kobzar K., Kessler H., Luy B., Angew. Chem., 117, 3205-3207 (2005)

2. Büchler S. S. D., Kummerlöwe G., Luy B., Int. J. Artif. Organs, 34, 134-138 (2011).

Mp369

PEO as an Alignment Medium for Measuring Residual Dipolar Couplings in Small Molecules

Christian Merle¹, Grit Kummerlöwe¹, J. Christoph Freudenberger², Felix Halbach³, and Burkhard Luy¹

¹ Department of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany

² Currenta GmbH & Co. OHG, CHEMPARK Leverkusen, 51368 Leverkusen, Germany

³ Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

For measuring complex molecular structures residual dipolar couplings are a useful tool to define and/or verify conformation and configuration. For obtaining RDCs it is necessary to partially orient the molecules via a so-called alignment medium. A number of gel-based alignment media like polydimethylsiloxane¹ (PDMS), polyacrylnitrile² (PAN) or poly(methmethylacrylate)³ (PMMA) have been developed during recent years. All these alignment media are suitable for a relatively small range of NMR solvents.

In contrast to these alignment media, PEO forms gels with a large variety of solvents ranging from apolar over polar organic solvents to water. Furthermore, PEO is applicable for a wide range of molecules like sugars, peptides, and other small molecules.

^{1.} Freudenberger J. C., Spiteller P., Bauer R., Kessler H., Luy B., J. Am. Chem. Soc., 126, 14690–14691 2004

^{2.} Kummerlöwe G., Auernheimer J., Lendlein A., Luy B., J. Am. Chem. Soc., 129, 6080-6081 2007

^{3.} Gil R. R., Gayathri C., Tsarevsky N. V., Matyjaszewski K., J. Org. Chem., 840-848 2008

Molecular rulers for the spectroscopic rulers DEER and FRET

Adelheid Godt,* Muhammad Sajid,* Dhanajaya Sahoo,* Ralph Brune,**

Markus Sauer, *** Gunnar Jeschke****

* Universität Bielefeld, Fak. f. Chemie, Bielefeld, Germany, godt@uni-bielefeld.de, ** Universität Bielefeld, Fak. f. Physik, Bielefeld, Germany, *** Universität Würzburg, Biozentrum, Würzburg, Germany, **** ETH-Zürich, Zürich, Switzerland

Double electron-electron resonance (DEER) and Förster resonance energy transfer (FRET) have proven to be powerful tools to obtain structural data of (supra)molecules in the amorphous state. With DEER we determined the end to end distance distributions of rod-like molecules and thus the flexibility of these compounds.^{1,2} The technique was also applied to gain insight into the co-conformation of catenanes. ³ With our present work we intend to compare the two spectroscopic rulers DEER and FRET using the well-characterised rod-like molecules, either spin labeled or chromophore labeled, as molecular rulers.

- G. Jeschke, M. Sajid, M. Schulte, N. Ramezanian, A. Volkov, H. Zimmermann, A. Godt, "Flexibility of shape-persistent molecular building blocks composed of *p*-phenylene and ethynylene units", *J. Am. Chem. Soc.* 132, 10107-10117 (2010).
- M. Sajid, G. Jeschke, M. Wiebcke, A. Godt, "Conformationally Unambiguous Spin Labeling for Distance Measurements", *Chem. Eur. J.* 15, 12960-12962 (2009).
- 3. G. Jeschke, A. Godt, "Co-Conformational Distribution of Nanosized [2]Catenanes Determined by Puls EPR Measurements", *ChemPhysChem* 4, 1328-1334 (2003).

M_P371

Electron Paramagnetic Resonance studies of copper (II) sorption by methafilcon A from single and multi-ions solution

<u>Alina Zalewska</u>, Ryszard Krzyminiewski, Justyna Mrozińska, Bernadeta Dobosz, Zdzisław Kruczyński

Medical Physic Division, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland, ar@amu.edu.pl

Methafilcon A is a copolymer which is used to production of the hydrogel contact lenses. By the presence of methacrylic acid in its structure, it is ionic material. In an aqueous environment, due to the negatively charged surface, is a good sorbent for metal cations.

The aim of this study was to investigate the sorption of copper ions from aqueous solution by methafilcon A using EPR spectroscopy. This method allows to identify the local structure of paramagnetic ions. EPR spectra exhibits axial pattern with $g_{II}>g_{\perp}$ ($g_{II}=2,357$ g $_{\perp}=2,073$) and $A_{II}=130G$. In this study investigated effect of concentration of the solution single-ion (Cu^{2+}) and the competitiveness of other metals (Cr^{3+} , Mn^{2+}) in solution multi-ions on the intensity of the EPR signal of Cu(II)-methafilcon A complexes. There examined also the stability of Cu(II) in the matrix of copolymer in aqueous solution.

POSTEDS

Solid State NMR for Structural Analysis and Understanding of Adsorbate-Adsorbent Interaction of Metal Organic Frameworks

<u>Farhana Gul-E-Noor¹</u>, Marko Bertmer¹, Bettina Jee¹, Andreas Pöppl¹, Martin Hartmann² and Dieter Himsl²

¹Institute of Experimental Physics II, Leipzig University, Leipzig, Germany; ²Erlangen Catalysis Resource Centre, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. E-mail: gul-e-noor@physik.uni-leipzig.de

Metal-organic frameworks (MOFs) are porous crystalline materials designed from organic linkers and inorganic connectors having 3-D network structure and high surface area.^[1] $Cu_3(btc)_2$,^[2] is one of the well investigated materials of this family in terms of crystal structure and surface area, and has already shown its enormous applicability in gas storage, separation, catalysis etc.

Here we present the application of solid-state NMR (SSNMR) to study $Cu_3(btc)_2$ as well as mixed metal $Cu_{3-x}Zn_x(btc)_2$. ¹H and ¹³C SSNMR are performed, even though the presence of paramagnetic Cu^{2+} makes the NMR characterization complicated. Likewise, adsorption of small molecules, e. g., CO, CO₂ and H₂O, their interaction with the MOF framework, and the dynamics of the adsorbed molecules and the adsorption sites are investigated. It is observed that the presence of water leads the structural decomposition and the stability depends on different water contents.^[3] The adsorption process of CO and CO₂, is followed over a large temperature range and multiple processes happen in this process such as increased adsorption, phase transition, and changes to the magnetic state of the MOF.

The authors thank the German research foundation (DFG) for financial support within the priority program 'porous metal-organic frameworks (MOFs)' (SPP1362).

REFERENCES:

1.Kitagawa S., Kitaura R, Noro S. Angew. Chem. Int. Ed., 43, 2334-75 (2004). 2.Chui S. S.-Y., Lo S. M.-F., Charmant J.P.H., Orpen A.G., Williams I., Science, 283, 1148-50 (1999). 3.Gul-E-Noor F., Jee B., Pöppl A., Hartmann M., Himsl D., Bertmer M. Phys. Chem. Chem. Phys., 13, 7783-88 (2011).

Mp373

NMR-Investigations on Local Ion Coordination Motifs in Polymer Electrolytes

Nadine Voigt, Leo van Wüllen

Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany n_voig02@uni-muenster.de

Poster

The ever increasing demand for battery systems for mobile electronics and the automotive industry (electric vehicles) has triggered a wealth of studies aiming at the development of a solid electrolyte meeting the complete property profile for an application as electrolyte in Li battery systems, which includes a high ionic conductivity, a large electrochemical window, chemical inertness as well as environmental compatibility and safety ^[1,2]. Especially polymer based solid electrolytes have evolved as rather promising materials, especially due to their low weight, mechanical flexibility and enormous compositional flexibility. Despite intensive research efforts during the last two decades, however, the optimization of the key property, the ionic conductivity, has not succeeded to date. Consisting of a polymer, e.g. polyethylene oxide or polyacrylonitrile, a lithium salt and variable additives, in polymer electrolytes the ionic conductivities are governed by a delicate interplay of the various electrostatic interactions between the constituents, i.e. polymer – Li-salt, polymer – additive, additive – Li salt. A specific fine tuning of these interaction may pave the way to a new generation of polymer electrolytes with optimized property profile. In our approach, these interactions are analyzed for a variety of different polymer electrolyte systems employing a range of advanced dipolar based solid state NMR methods including ¹³C-{¹H}-CPMAS-{⁷Li}-REDOR, ⁷Li-{¹H/²H}-CPMAS and ⁷Li-{¹H}-CPMAS-REDOR.

REFERENCES:

^{1.} Tarascon J.M., Armand M., Nature, 414, 359-367 (2001), 2. Goodenough J.B., Kim Y., Chem. Mater., 22, 587-603 (2010)

<u>Bettina Jee¹</u>, Dieter Himsl², Kathrin Koch¹, Farhana Gul-E-Noor¹, Marko Bertmer¹, Martin Hartmann², Andreas Pöppl¹.

¹Department of Physics and Geosciences, University of Leipzig, Leipzig, Germany; ²Erlangen Catalysis Research Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. E-mail: jee@physik.uni-leipzig.

Metal organic framework (MOF) compounds are 3D porous coordination networks consisting of metal ions or clusters connected by multifunctional organic molecules as linkers.¹

HKUST-1 is one of the first MOF built from Cu^{2+} ions, which are linked by 1,3,5-benzenetricarboxylate (*btc*) molecules forming so called binuclear paddle wheel units.² With the substitution of 1 % of the Cu^{2+} ions by Zn^{2+} ions we have successfully synthesized $Cu_{2.97}Zn_{0.03}(btc)_2$. Besides the antiferromagnetically coupled Cu^{...}Cu pairs the structure also consists of mixed Cu^{...}Zn pairs with paramagnetic Cu(II) centers (d⁹, S = $\frac{1}{2}$).³ The Cu(II) centers are an excellent sensor for studying the interactions between adsorbed molecules like ²H₂, ¹³CO and CH₃OH. We used *cw* and pulsed ESR techniques like FS ESE, pulsed ENDOR and HYSCORE experiments

We used *cw* and pulsed ESR techniques like FS ESE, pulsed ENDOR and HYSCORE experiments to determine the isotropic and dipolar ¹H, ²H and ¹³C hyperfine coupling parameters of the framework nuclei as well as of the adsorbed molecules. We found ²H₂, ¹³CO and CH₃OH weakly coordinated to the Cu²⁺ ions On the basis of these data we propose structural models of the adsorption complexes.

REFERENCES:

1. Kurmoo, M., Chem. Soc. Rev. 38, 1353-79 (2009). 2. Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., Williams, I. D., Science, 283, 1148-1150 (1999). 3. Jee, B., Eisinger, K., Gul-E-Noor, F., Bertmer, M., Hartmann, M., Himsl, D., Pöppl, A., J. Phys. Chem. C, 114, 16630-39 (2010).

M_P375

Microstructure determination of Brominated Butyl Rubbers

Irina I. Smolentseva, Vasily I. Mashukov, Irina V. Mastushkina, Denis A. Maksimov

CORPORATE R&D CENTER OF SIBUR, 634067, Tomsk, Kuzovlevski trakt 2, build. 270, NIOST LLC, Tel.: (3822) 70-22-22, sii@niost.ru .

Brominated butyl rubbers (BIIR) are the most commercially important derivatives of butyl rubber. They possess higher adhesion characteristics and vulcanization rate, compared to original butyl rubber.

Variations in the type and content of unsaturated functionalities can have profound effects on vulcanization process and properties of the resultant crosslinked polymer networks. Therefore, accurate knowledge of the amount and types of unsaturation in BIIR is important. Several methods have been developed to quantitate these functionalities, but most of these procedures are too time-consuming and complex. Besides, these techniques measure total unsaturation, and are not capable of distinguishing among several types of unsaturation present in bromobutyl rubbers.

We propose a rapid procedure for simultaneous determination of total unsaturation, mole fraction of exomethylene allylic bromide structure and residual unsaturation (mole fraction of non-halogenated isoprenyl units) in one ¹H NMR experiment. Solidphase brominated butyl rubbers were chosen as targets of research, by addition to standard bromobutyl rubbers, previously investigated by the other researchers in detail^[1].

NMR spectra of BIIR in CDCl₃ were obtained with Bruker Avance III spectrometer operating at 400 MHz. The abovementioned parameters can be determined by utilizing the olefinic (3.6-6.0 ppm) and aliphatic (0.5-2 ppm) regions of the NMR spectrum. We proposed formulas which allow calculation of unsaturation in of BIIR samples. Besides, this method makes it possible to estimate the important characteristics of BIIR even in the presence of significant amount of carbon black as a filler.

Lysozyme sorption in hydrogel contact lenses: a study using electron paramagnetic resonance spectroscopy

Justyna Mrozińska, Ryszard Krzyminiewski, Alina Zalewska,

Bernadeta Dobosz, Zdzisław Kruczyński

Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland, jw@amu.edu.pl

The interactions of proteins with hydrophilic materials is of importance in the contact lens industry due to their implication in allergic and inflammatory reactions. Lysozyme is one of the major protein components of the human tear fluid and the most prevalent protein adsorbed onto hydrogel contact lenses. Lysozyme is constituted of 129 amino acids, which results in a molecular weight of 14.5 kDa. Electrostatic interaction between the negatively charged hydrogel and the overall positive charge of lysozyme is thought to be the cause of lysozyme uptake by hydrogels.

The aim of this study was to investigate the practical role of electron paramagnetic resonance spectroscopy (EPR) in the lysozyme sorption in hydrogel contact lenses. We investigated hydrogel etafilcon A at soaked in lysozyme solution and UV exposure. The solution lysozyme was prepared at a concentration of 0,1mg/ml, 0,5mg/ml, 1mg/ml, 2mg/ml, 3mg/ml and doped the lenses for 24 hours. Dried samples were irradiated during the time of 1 hour. Were observed the changes in the characteristics of the EPR spectrum with increasing concentration lysozyme solution.

M_P377

Investigation of the structural phase transition of MIL-53(Al_{0.98}Cr_{0.02}) during adsorption of CO₂ with Electron Paramagnetic Resonance

Matthias Mendt,^{*1} Martin Hartmann,² Dieter Himsl,² Lutz Moschkowitz,¹ Andreas Pöppl¹

¹ Fakultät für Physik und Geowissenschaften, Universität Leipzig, Leipzig, Germany; ²Erlangen Catalysis Resource Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany; *Corresponding author. Email: matthias.mendt@uni-leipzig.de

MIL-53(Al/Cr), a Metal Organic Framework (MOF) build up from chains of Al_{1-x}Cr_x O₆ – octahedra (x = 0.02), which are connected with BDC (*benzendicarboylat*)-ions, was investigated by Electron Paramagnetic Resonance (EPR) at X-band (f = 9.6 GHz) after adsorption of CO₂ at pressures ranging from 0 to 2.5 bar. It is known from this material, that it changes its structure from an empty large pore phase (LP) to a filled narrow pore phase (NP) during the adsorption process at low pressure.¹ Indeed, in this work it was possible to identify the LP- and NP-phase using their characteristic EPR-Signals of the paramagnetic Cr³⁺ centres having electron spin S = 3/2. The spin Hamiltonian parameters of these centres were determined. At low CO₂ pressures (between 200 mbar and 400 mbar) the expected change from the LP-signal to the NP-signal was observed. Furthermore it was possible to distinguish NP-phases by EPR due to different loadings of CO₂ (i. e. different pressures of CO₂). Hence in this work it was shown, that EPR can be a highly sensitive approach for the investigation of the structural transition of MIL-53 during the adsorption of guest-molecules such as CO₂. Therefore this method may be extended to investigate the behaviour of MIL-53 during the adsorption of other guest-molecules. Such projects are in progress in our group.

1. Serre C. et. al., Advanced Materials, 19, 2246-2251 (2007)

Ryszard Krzyminiewski, <u>Bernadeta Dobosz</u>, Zdzisław Kruczynski, Pawel Saneluta, Alina Zalewska, Justyna Mrozinska

Medical Physics Division, Fculty of Physics, Adam Mickiewicz University, Poznan, Poland, benia@amu.edu.pl

The materials which contact lenses are made can be sensitive and degradated by UV irradiation. In this paper hydrogel contact lenses were investigated using electron spin resonance (ESR) method to find the types and concentration of free radicals generated by UV irradiation and to check the degradation process due to UV radiation.

To increace the resolution of ESR spectra the computer resolution enhancement method (CREM) was used and Gaussian program for quantum-chemical calculations to confirm the obtained types of free radicals. It was stated that in some materials of contact lenses based on HEMA UV-radiation generates different types of free radicals. Two types of free radicals have been identified, one resulting from a scission of main chain polymer C-C; the second is due to attachment the hydrogen atom to the carbonyl group >C=O of the polymer.

The dynamics of free radicals in contact lenses was also investigated. It was found that total recombination of free radicals in contact lenses occurred during 24 hours after radiation. Such dynamics of free radicals suggests their potentially high biological activity and requires further study.

Mp379

¹H and ¹³C Solid State NMR Investigations of Zn/Co Heteronuclear MOFs

Anusree V. Kuttatheyil^a, M. Bertmer^a, D. Lässig^b, J. Lincke^b, J.Haase^a, H. Krautscheid^b

^aInstitute of Experimental Physics II, University of Leipzig, Linnéstr.5, D-04103 Leipzig, Germany (<u>kuttatheyil@physik.uni-leipzig.de</u>) ^bInstitute of Inorganic Chemistry, Faculty for Chemistry and Mineralogy, Johannisallee 29, D-04103 Leipzig, Germany

Metal Organic Frameworks represent a new class of porous materials with potential applications¹ in, e. g., hydrogen storage, catalysis, and gas separation. Apart from the commonly studied polyfunctional carboxylate ligands, we are interested on Cd, Zn and Co MOFs based on various substituted triazole linkers^{2,3}. ¹H and ¹³C chemical shifts for a series of Zn MOFs are reported and compared to their corresponding free ligands. Unlike the ligand spectrum, the ¹³C NMR spectrum of the MOF is more complicated showing a doubling of certain resonances which indicates different relative orientation of ligand units around the metal ion. Additionally, we investigated a series of Zn MOFs partially substituted with paramagnetic Co^{2+} . ¹H spin-lattice relaxation studies on such heteronuclear systems indicate the uniform distribution of Co²⁺ in the Zn lattice.

- 2. Lässig, D., Lincke, J., Krautscheid, H., Tetrahedron Letters, 51, 653 (2010).
- 3. Lässig, D., Lincke, J. r., Griebel, J., Kirmse, R., Krautscheid, H., Inorganic Chemistry, 50, 213 (2010).

^{1.} Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastre, J., Journal of Materials Chemistry, 16, 626 (2006).

Spin-Probing Room Temperature Ionic Liquids: Supramolecular Structures in Aqueous Solution

Daniel R. Kattnig, Yasar Akdogan, and Dariush Hinderberger

Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz.

Room temperature ionic liquids (RTIL) have emerged as intriguing reaction media in chemical engineering, in particular in the context of green chemistry.¹ Here, we report on the structure of aqueous solutions of 1-buthyl-3-methyl imidazolium tetrafluoroborate. On dilution with water, this particular RTIL forms meso-structures assembled from micelle-like aggregates of solvent cations. The spin probe methodology is used to study this process by means of EPR spectroscopy. Neutral, anionic, and cationic nitroxides, some of which resemble the imidazolium cation, are used as probes. cw-EPR spectroscopy makes assessable the micro-viscosity and polarity.² A marked thermal hysteresis and memory effects are found using temperature dependent studies. High-field pulsed EPR spectroscopy at W-band frequencies is employed to determine hyperfine interaction tensors and g-matrices. Polarityproticity plots (gxx vs. Azz) reveal the interaction of the nitroxide moiety with apolar and ionic nanodomains, depending on the probe structure.³ A more detailed picture of the structure of the RTIL in the immediate surroundings of the probe is obtained by means of high-field, pulse (Mims- and Davies-type) ENDOR spectroscopy and three-pulse ESEEM/HYSCORE spectroscopy. Accessibility studies are conducted on the basis of the modulation depth observed in ESSEM spectra of RTIL/D₂O mixtures. Using ¹⁵N-Fremy's salt as probe, all major isotopes (^{1,2}H, ¹⁴N, ^{10,11}B, ¹⁹F) associated with the solvent system can be studied as a function of dilution with D_2O .

- 1. Plechkova, N. V.; Seddon, K. R.; Chem. Soc. Rev. 2008, 37, 123-150.
- 2. Mladenova B.Y.; Kattnig D.R.; Grampp G.; J. Phys. Chem. B 2011 115, 8183-8198.
- 3. Akdogan, Y., Heller, J., Zimmermann, H.; Hinderberger D.; PCCP 2010, 12, 7874–7882.

Mp381

Structural Characterization of Lithium Silicides using Solid State NMR

¹Sven Dupke, ²Thorsten Langer, ²Rainer Pöttgen and ¹Hellmut Eckert.

¹Institute of Physical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Muenster, Germany. ²Institute of Inorganic and Analytical Chemistry, University of Muenster, Corrensstrasse 28/30, 48149 Muenster. Presenting author: sven.dupke@uni-muenster.de

Local environments and lithium ion dynamics in binary lithium silicides [1] have been studied using variable temperature static and MAS NMR experiments, showing Li site averaging on the kHz timescale at temperatures higher than 200 K, as well as phase transitions in Li_7Si_3 and $Li_{13}Si_4$. The observed shift ranges from -20 to 50 ppm indicate significant amounts of charge stored at Li as well as diamagnetic shifts induced by the Si building blocks. In the case of $Li_{12}Si_7$ the presence of the fivemembered ring suggests the possibility of aromatic ring currents in this structural element, whereas for $Li_{15}Si_4$ the theoretically calculated difference in charge at the two Li sites [2] is found to have a severe influence on the shift as well. The ²⁹Si MAS spectra and 2D experiments such as JRESolved, INADEQUATE, RFDR and CP-HETCOR can be utilized to differentiate the Si sites within the framework. The static temperature dependent spectra reveal the onset of strong motional narrowing effects, illustrating high ionic mobilities. However, $Li_{15}Si_4$ seems to be geometrically restricted, which may result in a significant impediment for the use of Si as anode material.

REFERENCES:

^{1.} Nesper, R., Prog. Solid State Chem., 20, 1- (1990)

^{2.} Chevrier, V.L., Zwanziger, J.W., Dahn, J.R., J. Alloys Compd., 496, 25-36 (2010)

Elucidation of the Chemical and Morphological Structure of Double Network (DN) Hydrogels by HRMAS NMR

Pavletta S. Shestakova^{1,2}, Rudolph Willem¹, Elena Vassileva³

¹Vrije Universiteit Brussel, High Resolution NMR Centre (HNMR), Department of Materials and Chemistry (MACH), Pleinlaan 2, B-1050 Brussel, Belgium, ²NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences; Acad. G. Bontchev Str., Bl.9, 1113 Sofia, Bulgaria, ³Faculty of Chemistry, Sofia University, 1 James Bourchier Blvd., Sofia 1164, Bulgaria; e-mail:psd@orgchm.bas.bg

¹H HRMAS NMR spectroscopy is applied to gain insight into the structure of double-network (DN) hydrogels, prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and poly(acrylamide) (PAAm), using N,N'-methylene *bis*(acrylamide) (MBAA) as a cross-linker.

Diffusion filtered HRMAS spectra, HSQC and ROESY were used to address both structure and dynamic properties of the DNs. The results confirm the formation of covalent bonds between the two polymer networks through the non-reacted double bonds of the cross-linker MBAA. Evidence to the existence of strong hydrogen bond networks based on the N-H group of the PAMPS as a hydrogen bond donor and the C=O group of the PAAm as a hydrogen acceptor is provided. The findings contribute to clarify the origin of the toughening mechanism of DN gels and their unusual mechanical properties.

Figure: schematic illustration of the proposed hydrogen bonds formation between side chain fragments in the PAMPS/PAAm DN hydrogel. The polymer chain of PAMPS is presented with a black solid curved line, the PAAm polymer chain is given with a dash curved line.¹

REFERENCES: 1. Huang, M.; Furukawa, H.; Tanaka, Y.; Nakajima, T.; Osada, Y.; Gong, J. P. *Macromolecules*, 40, 6658–6664 (**2007**). ACKNOWLEDGEMENTS: National Science Fund of Bulgaria, grant RNF 02/13; BAS/FWO bilateral project, grant VS.016.10N; EAST-NMR Project.

Mp383

Host-guest Interactions in Poly(N-isopropylacrylamide) Hydrogel Seen by One- and Two-dimensional ¹H CRAMPS Solid State NMR Spectroscopy

Attila Domján^a, Krisztina László^b

^aInstitute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1025 Budapest, Pusztaszeri út 59-67, Hungary ^bDepartment of Physical Chemistry and Materials Science, Budapest University of Technology and Economics Hungary, H-1521 Budapest, Hungary

The most attractive property of poly(N-isopropylacrylamide) (PNIPAAm) is its lower critical solution temperature (LCST) at 32-33 °C in pure water. Under different physical and chemical effects, small molecules can modify this temperature. In general, phenols decrease the LCST of the swollen hydrogel, but dopamine, a catecholamine, increases the LCST. In this work we compare the influence of chatechol and dopamine. The results from one- and two-dimensional ¹H CRAMPS spectroscopy studies suggest that chathecol acts very similarly to phenol¹. It is attached to the acrylamide side-chains by second-order bonds. Distances were calculated from the two-dimensional correlation spectra by rate matrix analysis approach. Although dopamine forms strong H-bonds, as revealed by a highly shifted (8.5 ppm) signal, two-dimensional correlation ¹H spectra show that this signal does not arise from dopamine – polymer interactions, i.e., no direct relationship was found between dopamine molecules and the polymer network. It was found that the structure of dopamine in the PNIPAAm matrix differs from that either in the dry state or in aqueous solution.

Acknowledgments: Support from the Hungarian project GVOP-3.2.1.-2004-04-0210/3.0 and OTKA grant No. K75182 is acknowledged.

^{1.} Domján A., Geissler E., László K., Soft Matter, 6, 247-249 (2010)

Elucidation of Host-Guest Interactions in Functionalized MIL-53 MOFs by High-Resolution Solid-State NMR Spectroscopy

Julia Wack¹, Reneé Siegel², Tim Ahnfeldt³, Norbert Stock³, Luís Mafra², Jürgen Senker¹

1Department of Inorganic Chemistry III, University of Bayreuth, Bayreuth, Germany, julia.wack@uni-bayreuth.de ² Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal ³ Department of Inorganic Chemistry, University of Kiel, Kiel, Germany

Metal-organic frameworks (MOFs) offer a huge potential for different applications like drug delivery, gas separation or gas storage and sensing. All these applications rely crucially on the interaction between the framework and the incorporated guest molecules. To obtain a better understanding of such interactions, we performed a case study on a series of functionalized MIL53 topologies. Beside MIL53, also MIL53NH₂ and MIL53NHCHO¹, with anchor groups providing different hydrogen bond donor acceptor pattern, were investigated. Acetone was chosen as guest molecule because of its ability to act solely as hydrogen bonding acceptor.

Both the structural aspects of the host-guest systems as well as the dynamical properties of the guests within the pores were studied based on solid-state NMR spectroscopy. For the structural studies, we make use of high-resolution ¹H solid-state NMR techniques at high magnetic fields, taking advantage of CRAMPS (combining rotation and multiple pulse sequences) decoupling schemes for improved ¹H resolution. High-resolution 2D ¹H-¹³C HETCOR spectra recorded with a selective PRESTO transfer was employed to, unambiguously, assign the observed ¹³C resonances. The protons which are not bound to Carbon atoms where assigned with the help of ¹H-²⁷Al und ¹H-¹⁴N D-HMQC. To probe nuclear proximities between the protons of the different host-guest system, 2D ¹H-¹H DQ CRAMPS² and 2D ¹H-¹H proton-driven spin-diffusion spectra were recorded.

1. Ahnfeldt T., Gunzelmann D., Loiseau T., Hirsemann D., Senker J., Ferey G., N. Stock, Inorg. Chem, 3057-3064., 2009.

2. Mafra L., Siegel R., Fernandez C., Schneider D., Aussenac F., Rocha J., J. Magn. Reson., 111-11., 2009.

Mp385

NMR and HPLC as complementary methods to characterize the structure and composition of surfactants

Axel Kretschmer, Veronique Verhelst, Sophie Huez

Dow Corning Belgium, Rue J.Bordet, B-7180 Seneffe, Belgium. A.kretschmer@dowcorning.com.

Ethoxylated and propoxylated fatty alcohols are known to be used as surfactants in emulsions. The impact of the surfactant structure on the stability and the properties of emulsions makes it necessary to characterize this class of chemicals consisting of hydrophilic and hydrophobic parts. The surfactant structure can be complex, due to the fact that different hydrophilic structures can be included (ethylene oxide ("EO") and propylene oxide ("PO") as two of the most applied examples), its chain length varies, the hydrophobic aliphatic part can be linear or branched or a mixture of both, and overall, the surfactant can be a blend of several single surfactants. For these reasons, separation (by HPLC) and structure analysis (by NMR) are very valuable tools for surfactant characterization.

By HPLC, the molecules can be separated on the basis of either its hydrophobic part (alkyl chain lengths) or hydrophilic part (the number of ethoxylated/propoxylated groups). Since ethoxylated/propoxylated alcohols do not contain UV-absorbing groups, they can only be detected by bulk property detectors, like evaporative light scattering detector (ELSD).

Using ¹³C NMR the average chain length of the hydrophilic EO/PO part can be determined as well as the chain length and the branching level of the aliphatic part. The ratio of end groups of the EO/PO part versus the aliphatic part can be used to calculate the content of free EO/PO and to compare that with the complementary information from HPLC.

REFERENCES:

H. Pasch, B. Trathnigg – HPLC of Polymers – Springer-Verlag Berlin Heidelberg 1998

T.M.Schmitt - Analysis of Surfactants - CRC Press 2001

NMR investigation of the state of aggregation of water in 1-butyl-3-methylimidazolium acetate

Fabián Vaca Chávez¹, Pedro J. Sebastião^{1,2}, João. A. Coutinho³, M. Isabel Cabaço^{2,4} and M. Besnard⁵

¹Centro de Física da Matéria Condensada, University of Lisbon, Lisbon, Portugal
 ²Departamento da Física, Instituto Superior Técnico, UTL, Lisbon, Portugal
 ³CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
 ⁴Centro de Física Atómica, University of Lisbon, Lisbon, Portugal
 ⁵GSM Institut des Sciences Moléculaires, CNRS (UMR 5255), Université Bordeaux I, Talence Cedex, France.

Ionic liquids (IL) are generally hygroscopic and the presence of traces of water which possibly influences their thermodynamical and physical chemical properties is a matter of concern. The characterization of the state of water is therefore of relevance not only from the viewpoint of fundamental researches but has also has incidence in engineering applications.

However, only a few systems have been studied so far and as a matter of fact investigations in this domain are scarce. These studies have been mostly performed using Raman scattering and ATR infrared and mainly addressed this subject on Imidazolium based IL in which the anion was of inorganic type such as BF_4^- and PF_6^- . We have therefore undertaken an investigation of the state of water using ¹H and ¹³C NMR spectroscopy on 1-butyl-3-methyl-imidazolium acetate, ionic liquid in which the anion is a moderate base. We have studied the evolution of the chemical shift of the resonances lines upon adding water to this IL at increasing content ranging from the dried IL up to 99% molar fraction. We found that the evolution of the chemical shifts is governed by the competition between two mechanisms namely hydrogen bonding and stacking of the rings.

Mp387

Rheo-NMR investigations on polymer melts

Ute Böhme, Ulrich Scheler

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, boehme-ute@ipfdd.de

Polymer processing occurs mostly in the molten state. Mechanical shear influences polymer dynamic and chain order in the melt and thus materials properties. The flow behaviour of polymer melt is essential for polymer processing and end-use properties.

We apply high-temperature rheo- NMR for in-situ investigations of polymer melts under shear. For the high-temperature rheo NMR experiments a dedicated probe head operating at 220°C with an integrated Couette cell has been developed. The influence of temperature and mechanical shear on chain mobility and ordering is investigated by relaxation measurements and double quantum experiments. Imaging and velocity profiles, derived from a combination of NMR imaging with PFG NMR, have been used to control the shear.

Both T_1 and T_2 relaxation show a strong temperature dependence. Increased mobility in the melt is reflected in reduced dipolar couplings and longer relaxation times. The double quantum intensity diminishes upon melting, no significant double quantum signal has been observed under shear. Shearing the polymer results in longer transverse relaxation time, indicating enhanced polymer mobility. The heating effect from shearing is excluded because there is no change of T_1 under shear.

Ionic liquids for the analysis of sparingly soluble cellulose acetates by solution-state NMR spectroscopy

Hewa O. Ghareeb, Frank Malz

German Institute of Polymers (DKI), Schlossgartenstrasse 6, 64289 Darmstadt, Germany, fmalz@dki.tu-darmstadt.de

Cellulose acetate has widespread application, but to date the characterization of their microstructures is not possible. Until now there is a lack of analytical techniques to characterize the substitution pattern of cellulose acetates which in turn limits to establish proper structure \leftrightarrow property relationships. Solution-state NMR spectroscopy is an important method in polymer analysis to determine the average chemical composition, the microstructure and the topology of polymers. However, the sparse solubility of cellulose acetates with a low degree of substitution (DS < 2.0) in common NMR solvents prevented so far the access with the NMR spectroscopy.

On the other hand ionic liquids (IL) are well known solvents with excellent properties (low melting point, non volatile, stable towards air and hydrolysis). They aroused an enormous interest in a broad variety of industrial applications in the last two decades. Due to their solvation properties IL are often used in cases where commonly familiar organic liquids fail to dissolve polymers.

The first results that have been achieved by using 1-ethyl-3-methylimidazolium acetate (EMIM acetate) as NMR solvent for the characterization of cellulose acetates will be presented. The dissolving power of EMIM acetate was compared with that of common solvents and the resolution of the ¹³C-NMR spectra will be discussed. Furthermore the characterization regarding both the DS and the distribution of acetate substituents will be shown.

Mp389

NMR Crystallography on Semi-Crystalline Poly(triazine imide)

D. Gunzelmann (1), E. Wirnhier (2), W. Schnick (2), J. Senker (1)

(1) Inorganic Chemistry 3, University of Bayreuth, D-95447 Bayreuth, Germany; (2) Dep. Chemistry & Biochemistry, Ludwig-Maximilians-University Munich, D-81337, Germany. daniel.gunzelmann@uni-bayreuth.de

POSTER

Carbon nitride materials have spurred marked interest within the material science community due to their wide range of properties and applications, e.g as catalysts or electronical and optical sensors. As the inherent low crystallinity of carbon nitrides limits the use of standard X-ray diffraction structure analysis, we apply a combined analytical approach called NMR crystallography. Combining information gained from X-ray diffraction, solid-state NMR, TEM and quantum chemical calculations allows for the buildup of refined structure models. Here, we discuss the structure elucidation of semi-crystalline Poly(triazine imide) as investigated via the NMR crystallographic method. A first structure model is com-posed of electron and X-ray diffraction data[1]. Standard 1H, 7Li, 13C, 15N spectra are recorded and signal assignment confirmed by common NMR techniques (e.g. CPPI or Connectivity in-formation, specific crystallographic site occupancy and distance HETCOR). constraints between selected nuclei are probed for further structure refinement. 1H-DQ experiments are used to measure 1H-1H proximities, while REAPDOR experiments help approximate 1H-7Li, and 15N-7Li distances. Furthermore, LGCP build-up curves allow for the extraction of 1H-15N distances. Lastly, refined structure models are then evaluated by quantum chemical calculations via CASTEP. The obtained calculated parameters (e.g. isotropic shifts, CSA and CQ values) are then compared to experimental data.

REFERENCES: 1. Wirnhier E., Döblinger M., Gunzelmann D., Senker J., Lotsch B.V., Schnick W., Chem. Eur. J., 17, 3213-3221 (2011).

Multifrequency EPR and Raman: Unique tools to address the role of conjugated bridges in biradicals

<u>Veronica Mugnaini</u>^a, Yevhen Polyhach^b, Vega Lloveras^a, Juan J. Novoa^c, Juan Casado^d, Juan T. López-Navarrete^d, Concepciò Rovira^a, Jaume Veciana^a and Gunnar Jeschke^b

^aInstitute of Materials Science (ICMAB-CSIC) and CIBER-BBN, Campus de la UAB, 08193, Bellaterra, Spain; ^bLaboratory of Physical Chemistry, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland; ^cDepartment of Chemical Physics of the UB and Research Center in Theoretical Chemistry (CeRQT), Parc Cientific de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; ^dDepartment of Physical Chemistry, University of Malaga, Campus de Teatinos, 29071, Malaga, Spain

By changing the length of a phenylene-vinylene bridge (n=1,3,5) a series of polychlorotriphenylmethyl (PTM) biradicals (Fig. 1) has been prepared in order to study the role of

diamagnetic conjugated bridges on the intramolecular spin delocalization and hence on the final magnetic properties of these stable and persistent biradicals. Herein we present a multifrequency continuous wave EPR study carried out to determine the extent of the electron conjugation of the two PTM radical sites as well as the preliminary results of the performed

simulations. Interestingly, a strong dependence on solvent, attributable to conformational changes, has been observed making us suggest that both the length of the bridge as well as its conformation play a fundamental role on the spin delocalization. Raman studies on the same system are discussed for comparison.¹

1. V. Lloveras, J. Am. Chem. Soc., 33 (15), pp 5818-5833, (2011).

ME391

Structural characterization of HAMP domain-membrane interaction

Sofia Unnerståle¹, Lena Mäler¹ and Roger R Draheim^{1,2}.

¹Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden; ²Institute of Biochemistry, Biocentre, Goethe University Frankfurt, D-60438 Frankfurt, Germany; sofia.unnerstale@dbb.su.se

The environment is constantly changing and hence prokaryotes need to adapt their gene expression profiles and their regulation of gene product activity to match current circumstances. The main system used by bacteria for this task is the two-component signal transduction system. Within more than 5500 different proteins in these systems a domain called the HAMP domain is found. The HAMP domain consists of two amphipathic segments (AS1 and AS2), and a control cable, connecting the two segments. HAMP domains are responsible for converting extracellular sensory input into an intracellular signaling response in predominately membrane spanning signal transduction proteins. Since the membrane has been suggested to take an active part in HAMP domain signaling, we wanted to study the influence of membrane model systems on peptides containing either AS1 or AS2 from different well characterized HAMP domains. Far-UV CD and NMR spectroscopy were used to monitor the induction of secondary structure upon association with neutral or acidic LUVs and bicelles. Upon association, we observed significant increases in α -helicity within AS1 from NarX_{Ec} and Tar_{Ec} . The association with a neutral membrane mimetic was of a hydrophobic character while an electrostatic interaction enabled stronger interaction with acidic membrane mimetics. The solution structure of AS1 from Tar_{Ec} associated with acidic bicelles was determined. AS1 formed an amphipathic a-helix while the control cable remained unstructured. Two positively charged amino acids are flanking the hydrophobic part of the amphipathic helix and are thought to account for the electrostatic interactions. Our results conclude that the membrane is very likely to take an active part in the signal transduction of a subgroup of HAMP domains.

Spin labeled WALP - A ruler for peptide immersion depth in membranes for ESEEM spectroscopy

Erez Matalon¹, Ilia Kaminker¹, Herbert Zimmermann², Yechiel Shai³ and Daniella Goldfarb¹

¹Departments of Chemical Physics, and ³Biological Chemistry. The Weizmann Institute of Science, Rehovot, Israel 76100. ²Max-Planck Institute for Medical Research, Heidelberg, Germany. Email address: erez.matalon@weizmann.ac.il

Obtaining information regarding peptides orientation and immersion depth in membranes is important for understanding the mode of action of membrane active peptides. Pulse EPR techniques, particularly ESEEM (electron spin-echo envelope modulation) methods, can be used to probe the position and orientation of peptides within membranes. These are based on the measurement of weak dipolar interactions between nitroxide spin labels attached to the peptide and deuterium atoms on isotopically enriched lipids that constitute the membrane and in water molecules (D₂O). Here we explore whether the well-known, α -helix transmembrane peptide, WALP, already used as a ruler for EPR measurements based on relaxation times and exposure to paramagnetic quenchers, can be used as a ruler for ESEEM as well. WALP was labeled using standard site directed spin labeling technique at positions 9, 12, 14, 17 and 20. The measurements were performed on a model membrane of DPPC/PG (7:3 w/w) in H₂O solutions with deuterated methyl groups of the choline segments of DPPC $((CD_3)_3NCH_2CH_2)$. We developed a quantitative method that enables a direct fitting of ESEEM time domain trace yielding the depth of the spin label with respect to the membrane surface and the density of the deuterons around it. In addition, the trans-membrane water profile was obtained from samples with natural abundance lipids and D_2O . We found that it is more reliable to determine the penetration depth for from deuterated lipids than for D₂O samples.

ME393

Towards a structural and dynamic characterization of the HIV viral coat protein gp41

Nils-Alexander Lakomek¹, Joshua D. Kaufman², Steven J. Stahl², Paul T. Wingfield² and Ad Bax¹

¹Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, and ²Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA

Postei

A homotrimeric construct encompassing residues 1-194 of the HIV viral coat protein gp41 is being investigated with TROSY-based NMR methods. Backbone assignment could be achieved for the fusion peptide, first N-terminal residues of the HR1 ectodomain region, the immunodominant loop region, parts of the adjacent ectodomain regions and the C-terminal part of the HR2 ectodomain region close to the MPER region. NMR-relaxation methods have been adapted and optimized for the dynamic characterization of these regions. Different detergents and small bicelle systems are tested to optimize the quality of NMR spectra under as close as possible membrane-like conditions. Methods for the measurement of RDCs in membrane proteins are being optimized and extended. RDCs will provide essential orientational information as well as dynamic insight, with the aim of generating a detailed structural model of gp41 including the fusion peptide and the ectodomain region. The current state of research will be presented.

Characterization of Membrane Anchored GABARAP in Nanodiscs

Peixiang Ma^{1,2}, Melanie Schwarten^{1,2}, Matthias Stoldt^{1,2}, Jeannine Mohrlüder¹, Sameer K. Singh^{1,2}, Rudolf Hartmann¹, Victor Pacheco¹, Oliver H. Weiergräber¹, Dieter Willbold^{1,2,*}

¹ICS-6 (Structural Biochemistry), Forschungzentrum Jülich, 52425 Jülich, ²Institute of Physical Biology and BMFZ, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany. Email: p.ma@fz-juelich.de

Autophagy is a degradation mechanism, which sequesters retired organelles and bulky proteins by a double membrane vesicle, termed autophagosome. Formation of the autophagosome requires a number of membrane-anchored proteins. A comprehensive understanding of autophagy requires structural information of these proteins in their membrane-attached state. While conventional membrane protein solubilization methods like detergent micelles or bicelles can be employed in solution NMR, they may destabilize the native structure and thus affect protein activity. Here we applied a new membrane system, termed nanodiscs, to solubilize one of the key lipidated-proteins, γ aminobutyric acid type A receptor-associated protein (GABARAP), which is recruited to the autophagosome membrane. In this case, ubiquitin-like conjugation of the GABARAP C-terminus to a membrane lipid was replaced by conventional thiol-maleimid chemistry. An essential component of the nanodisc system is an apolipoprotein A-I derivative, which scaffolds the lipid bilayer and the lipidated-protein to form a flat discoidal structure. Despite the molecular weight of about 160 kDa for the whole nanodisc complex, the ¹H line widths of the rigid GABARAP residues are below 50 Hz in our study, making them amenable to solution NMR. ¹H¹⁵N-HSQC based structural comparison indicates that lipidation only affects the residues close to the C-terminus but not the hydrophobic pockets implicated in protein-protein interactions. Accordingly, functional studies revealed that the hydrophobic pockets are still able to selectively bind to established ligands. Our data demonstrate the superior properties of nanodiscs for investigations of membrane-anchored proteins by solution NMR.

ME395

Heptahelical membrane proteins and non-conventional membrane mimeticks

Manuel Etzkorn, Thomas Raschle, Franz Hagn, Vladimir Gelev and Gerhard Wagner

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA, Email: manuel_etzkorn@hms.harvard.edu

The choice of an adequate membrane-mimicking environment is of central importance for structural and functional characterization of specific membrane proteins. However, it has been shown that the most commonly used detergent micelles are often not optimal for stability and activity of the system of interest (1).

Here we report on recent progress in studying heptahelical membrane proteins in different soluble environments using NMR. Our approach is based on the combination of cell-free protein expression (2) and the use of non-micellar environments such as lipid bilayer nanodiscs and Amphipols (3,4). Although the overall molecular weight increases by about 70% as compared to a detergent micelle, we show that high-resolution NMR studies of heptahelical membrane proteins are still well feasible in these environments. Our data also indicate that for the tested proteins the non-micellar systems are able to provide a more stable environment than the micelle. Besides to their stabilizing effect, the biggest advantage of the amphipols is their superior refolding property, whereas our experimental data suggest that the protein functional state is most stable in the lipid bilayer environment.

^{1.} Tate, C.G. Practical considerations of membrane protein instability during purification and crystallisation. *Methods Mol Biol* 601, 187-203 (2010).

Schwarz, D. et al. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. *Nat Protoc* 2, 2945-57 (2007).

^{3.} Popot, J.L. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. *Annu Rev Biochem* 79, 737-75 (**2010**).

^{4.} Raschle, T., Hiller, S., Etzkorn, M. & Wagner, G. Nonmicellar systems for solution NMR spectroscopy of membrane proteins. *Curr Opin Struct Biol* 20, 471-9 (2010).

Structure and topology of a membrane-bound Shaker B inactivating peptide obtained by combining solid state NMR and MD simulations

Markus Weingarth¹, Christian Ader¹, Adrien Melquiond¹, Deepak Nand¹, Olaf Pongs², Stefan Becker³, Alexandre M.J.J. Bonvin¹, and Marc Baldus¹

 1 Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 2 Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie der Universität Hamburg, 20246 Hamburg, Germany; ³Department of NMR-based Structural Biology, Max-Planck Institut for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany Author's email: m.h.weingarth@uu.nl

Solid state NMR provides a powerful tool to study membrane peptides and proteins in their native environment¹⁻². Still, these systems remain notoriously challenging to study by experiments alone. In particular, information about the system topology, i.e., the orientation to the membrane or the insertion depth, not to mention lipid-protein or lipid-peptide interaction, is often sparse if not elusive. Here, we demonstrate on the membrane-bound inactivating peptide of the potassium channel Shaker B how a joint approach of solid state NMR (ssNMR) experiments and atomistic Molecular Dynamics (MD) simulations allows obtaining high resolution structure and topology of the membrane-bound peptide and how to cross validate ssNMR and MD results. In particular, by back-calculating the peptide's water accessibility³ over the simulated trajectory, we present a new method for establishing the topology of membrane-bound peptides and proteins.

REFERENCES:

1. Etzkorn M., Matell S., Andronesi O. C., Seidel K., Engelhard M., Baldus M., Angew. Chem.-Int. Edit. 46, 459-462 (2007).

2. Ader C., Schneider R., Hornig S., Velisetty P., Wilson E. M., Lange A., Giller K., Ohmert I., Martin-Eauclaire M.-F., Trauner D., Becker S., Pongs O.,

Baldus M., Nat. Struct. Mol. Biol. 15, 605-12 (2008).

3. Ader C. Schneider R. Seidel K., Etzkorn M., Becker S., Baldus M., J. Amer. Chem. Soc. 131, 170-176 (2009).

ME397

A 3D structural view of ion channel inactivation in lipid bilayers from solid-state NMR

Deepak Nand.^a, Christian Ader^a, Abhishek Cukkemane^a, Stefan Becker^b, Olaf Pongs^c & Marc Baldus^{a a}

a. Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. b. Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. c. University-Hospital Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.

(deepak@nmr.chem.uu.nl)

X-ray crystallography has made rapid progress in the determination of membrane protein structures. However, the role of the surrounding lipid bilayer for protein structure and function has largely remained elusive. We present a solid-state NMR-based hybrid strategy that allowed us to determine 3D structures of a membrane-embedded potassium channel in two different functional states. For this purpose, we produced uniformly labeled [¹³C,¹⁵N] and fractional deuterated [²H,¹³C,¹⁵N] variants of the tetrameric KcsA-Kv1.3 channel for which ssNMR resonance assignments have been reported^{1,2}. Structurally relevant constraints of intra and intermolecular nature were obtained using high-resolution CHHC³ and CC correlation experiments. Unlike to crystallographic work on the parent KcsA channel, we find distinct structural changes in the pore loop region that connects transmembrane helices 1 and 2 via the selectivity filter⁴. Further ssNMR work and electrophysiological studies identifies this channel segment as a critical protein unit that controls channel architecture and mediates functional coupling.

REFERENCES:

^{1.} A. Lange, K. Giller, S. Hornig, M.-F. Martin-Eauclaire, O. Pongs, S. Becker, and M. Baldus, Nature 440, 959-962 (2006).

^{2.} R. Schneider, C. Ader, A. Lange, K. Giller, S. Hornig, O. Pongs, S. Becker, and M. Baldus, Journal of the American Chemical Society 130, 7427-7435 (2008).

^{3.} A. Lange, K. Seidel, L. Verdier, S. Luca, and M. Baldus, Journal of the American Chemical Society 125, 12640-8 (2003).

^{4.} C. Ader, R. Schneider, S. Hornig, P. Velisetty, V. Vardanyan, K. Giller, I. Ohmert, S. Becker, O. Pongs, and M. Baldus, Embo Journal 28, 2825-2834 (2009).

Investigation of Structural Changes upon Ligand Binding of the Methylated Neuropeptide Y Receptor Type 2

Sandra Berndt¹, Peter Schmidt¹, Christian Berger¹, Annette G. Beck-Sickinger², Daniel Huster¹

¹Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany (Sandra.Berndt@medizin.uni-leipzig.de) ²Institute of Biochemistry, University of Leipzig, Leipzig, Germany

G protein-coupled receptors (GPCRs) represent very important drug targets. For any pharmacological interference, detailed knowledge about the structure and dynamics of the molecules are essential.

We are able to produce large amounts of the receptor in a prokaryotic expression system as inclusion bodies. Subsequently, the receptor was refolded into its functional state tested by phosphorylation. Our aim is to investigate ligand-specific conformational changes of the receptor by NMR spectroscopy. Therefore, we used the reductive methylation of lysine residues to introduce ¹³C-methyl groups. Due to their favorable relaxation properties, these methyl groups allow for sensitive NMR-measurements. We detected ¹H-¹³C HSQC NMR spectra, which provide some resolved NMR signals of the respective methyl groups. Chemical shift changes of some signals are observable, which are induced by ligand binding. These changes could be related to alterations of salt bridges or ring current effects. A very astonishing side effect is that the functional methylated receptor shows a dramatic increase in the stability.

ME399

Interphase Kinetics of an Integral Membrane Kinase by Time-Resolved Solid-State NMR

Sandra J. Ullrich, Ute A. Hellmich, Clemens Glaubitz

Institute for Biophysical Chemistry, BMRZ, Goethe University Frankfurt, Frankfurt a.M. ullrich@em.uni-frankfurt.de

The integral membrane protein Diacylglycerol Kinase (DGK) from *E.coli* is a lipid regulator and as such in focus of structure-function studies in its native environment, the lipid bilayer, by solid-state NMR. DGK catalyses the transfer of the γ -phosphate of Mg*ATP to diacylglycerol (DAG) to generate phosphatidic acid (PA) at the interface membrane-cytoplasm.

The label-free direct and simultaneous observation of interdependent reactions both within the aqueous and the lipid phase catalyzed by membrane bound enzymes is still a challenging task. A possible solution is offered by a time-resolved MAS-NMR approach which allows probing enzymatic reactions at interfaces. This technique is of particular relevance for and applicable to all types of proteins whose reactions take place in the lipid bilayer itself or at the membrane interface [1]. Based on these novel results, a model of DGK's mechanism is presented in context with the available 3D structure [2].

References

[2] Van Horn, W.D., Kim, H-J., Ellis, C.D., Hadziselimovic, A., Sulistijo, E.S., Karra, M.D., Tian, C., Sönnichsen, F.D., Sanders, C.R., Science, 324, 1726-1729 (2009)

^[1] Ullrich, S.J., Hellmich, U.A., Ullrich, S., Glaubitz, C., Nature Chem. Biol., 7, 263-270 (2011)

Extensive conformational and dynamic changes throughout the ATP hydrolysis cycle of the ABC multidrug transporter LmrA

<u>Ute A. Hellmich¹</u>, Sevdalina Lyubenova², Elke Duchardt-Ferner³, Jens Wöhnert³, Thomas F. Prisner², Clemens Glaubitz¹

<u>hellmich@chemie.uni-frankfurt.de</u>,¹Department of Biophysical Chemistry, Goethe-University, Frankfurt, Germany; ²Department of Theoretical and Physical Chemistry, Goethe-University, Frankfurt, Germany; ³Department of Molecular Biosciences, Goethe-University, Frankfurt, Germany

Members of the integral membrane protein ATP binding cassette (ABC) transporter superfamily translocate their respective substrates across the membrane at the expense of ATP hydrolysis. To this end, the transporter passes through a number of conformational states. These states have not yet been characterized structurally and a dynamic picture throughout the catalytic cycle is still amiss. LmrA is a homodimeric multidrug ABC transporter from L. lactis and shares the typical ABC architecture with six transmembrane α -helices forming the transmembrane domain and a nucleotide binding domain (NBD). It has been strongly debated whether the power stroke for substrate translocation stems from the event of ATP binding or hydrolysis. Using solid-state NMR as well as site directed spin labeling for pulsed EPR, we were able to obtain detailed structural data on full-length LmrA throughout the ATP hydrolysis cycle: The apo state protein is highly flexible with large amplitude fluctuations of both NBD and TMD. The nucleotide-dependent transformation to the nucleotide-bound state requires large domain movements. Upon nucleotide binding the transporter progresses to a structurally more defined state where the large fluctuations are strongly restricted in both domains. Studies on the isolated soluble nucleotide binding domain with solution NMR reveal an intricate inter- and intra-domain interaction network dependent on the nucleotide bound status of the nucleotide binding domain.

ME401

α-Synuclein on vesicles: horseshoe or extended? It depends ...

Marta Robotta^c, Patrick Braun^c, Bart D. van Rooijen^b, Gertjan Veldhuis^b, Sergey. Milikisyants^a, Vinod Subramaniam^b, Malte Drescher^c, <u>Martina Huber</u>^a

Department of Molecular Physics, Leiden University, Postbox 9504, 2300 RA Leiden, The Netherlands <u>huber@physics.leidenuniv.nl</u> ^bNanobiophysics, MESA+University of Twente (The Netherlands) ^cDepartment of Chemistry, University of Konstanz (Germany)

POSTER

Electron paramagnetic resonance (EPR) is rapidly gaining ground for structure determination in biological systems [1]. For intrinsically disordered proteins, structure determination is a particular challenge, because they adapt to their environment, can interact with many different proteins, and require flexibility for their function. Pulsed double electron-electron spin resonance (DEER or PELDOR) on spin labelled variants of such proteins presents an outcome. We demonstrate this for α -Synuclein (α S)[2-5], a protein implicated in Parkinson's disease and suggested to interact with the membranes of synaptic vesicles. On vesicles, the protein can bend into a horseshoe shape [2]. On small unilamellar vesicles, its interaction with the membrane seems to be so strong that it can partially break up the membrane, and, under these conditions, the protein forms well defined aggregates, in which two horseshoes come together in an entangled form [4]. On larger vesicles, the horseshoe and the extended forms occur side by side [5]. We speculate that the coexsistence of the two forms derives from the energetic proximity of these conformations and that it is a subtle function of the environment.

REFERENCES

^[1] see for example: Hilger, D et al. Biophysical Journal 2007, 93, 3675, Bhatnagar, J et al. Two-Component Signaling Systems, Pt B 2007, 423, 117.

^[2] Drescher, M.; et al. J.Am. Chem. Soc. 2008, 130, 7796-779

^[3]Drescher, M.; et al. Chembiochem 2008, 9, 2411-24

^[4] Drescher, M.; et al. J.Am.Chem.Soc. 2010, 132, 4080-4081.

^[5]Robotta, M.; et al. ChemPhysChem 2011, 12, 267-269.

Analysis of orientation and dynamics of transmembrane peptides using solid state ²H- and ¹⁵N-NMR

Erik Strandberg¹, Stephan L. Grage¹, Santi Esteban-Martín², Jesús Salgado², Anne S. Ulrich^{1,3}

¹Inst. Biological Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; ²Inst. Ciencia Molecular, Universitat de València, Paterna (Valencia), Spain; ³Inst. Organic Chemistry and Center for Functional Nanotechnology, KIT, Karlsruhe, Germany. Email: erik.strandberg@kit.edu

Membrane-bound peptides can have important biological functions, like fusion peptides or host defence peptides, or therapeutic potential like cell-penetrating peptides. To understand the function, the orientation and dynamics of such peptides in membranes can give important clues, and this can be studied in detail using solid state NMR. We have studied transmembrane (TM) model peptides similar to the WALP family using both ²H-NMR in the GALA (geometric analysis of labeled alanines) and ¹⁵N-NMR in the PISA (PISA wheel analysis of PISEMA-type 2D spectra) methods and compared the influence of dynamics on the analysis (1, 2).

From a re-analysis of ²H-NMR data of several peptides in up to four different lipid systems, a total of 31 peptide-lipid systems were used to get a good picture of hydrophobic mismatch-dependent tilt of TM peptides. We show that by including dynamics in the analysis in the form of distributions of orientational angles, a clear mismatch dependence is seen for WALP peptides, as expected from simple theory. However, when dynamics is ignored this mismatch response is missing. PISA analysis can give additional understanding, especially by better distinguishing between different dynamics models. We present a comparison of GALA and PISA analysis for two systems, WLP23/DMPC and GWALP23/DLPC. When dynamics is included, both methods gives almost identical results.

REFERENCES: 1. Strandberg, E., Esteban-Martín, S., Salgado, J., Ulrich, A.S. Biophys. J., 96, 3223-3232 (2009). 2. Esteban-Martín, S., Strandberg, E., Fuertes, G., Ulrich, A.S., Salgado, J. *Biophys. J.*, 96, 3233-3241 (2009).

ME403

Detection of water binding to Photosystem II, a multifrequency ${}^{1}\text{H}/{}^{2}\text{H}/{}^{15}\text{N}/{}^{17}\text{O-ENDOR study; experimental determination of the protonation of the S₂ state$

Leonid Rapatskiy¹, <u>Nicholas Cox¹</u>*, William Ames¹, Anton Savitsky¹, Julia Sander², Marc Nowacyzk², Matthias Rögner², Alain Boussac³, Frank Neese¹, Johannes Messinger⁴ and Wolfgang Lubitz¹.

¹Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; ²Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany; ³iBiTec-S, URA CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France; ⁴Department of Chemistry, Umeå University, S-90187 Umeå, Sweden. cox@mpi-muelheim.mpg.de.

The first definitive assignment of an exchangeable substrate water of the S₂ of the OEC in Photosystem II (PS II) is reported. PS II samples were suspended in H₂¹⁷O and D₂O. Hyperfine couplings of more than one coordinating ¹⁷O (I = 5/2) nucleus were detected using Mims and Davies-ENDOR at 94 GHz. Three classes of nuclei are tentatively assigned: i) μ -oxo bridge(s), ii) terminal Mn-⁻OH/H₂O ligand(s); and iii) second shell OH/H₂O ligand(s). The assignments are based on comparison to model complex data performed in tandem with measurements on Photosystem II and the comparison to the recent high resolution crystal structure reported by Umena et al.¹ The model complex data used includes the bent, bis- μ -oxo, μ -carboxylato bridged Mn^{III}Mn^{IV} (DTNE) complex. Universal ¹⁴N/¹⁵N (I = 1, 1/2) labeling of the PS II excludes the possibility that these signals are attributable to a nitrogen nucleus. ¹H/²H (I = 1/2, 1) ESEEM/ENDOR data of the S₂ state performed at X-, Q- and W-band complement the above findings. These measurements are fully consistent with the current electronic model of the S₂ state; the tetramer model, derived from ⁵⁵Mn-ENDOR studies, where all Mn ion contribute approximately equally to the ground electronic state.

Umena Y., Kawakami K., Shen J., Kamiya, N. Nature 473, 55-60, (2011) http://www.nature.com/nature/journal/v473/n7345/abs/nature09913.html - a2

Explaining colour tuning in Green Proteorhodoposin

Johanna Becker-Baldus, Sarah-Anna Fiedler, Sandra J. Ullrich, Michaela Blum, Clemens Glaubitz

Institute of Biophysical Chemistry, Goethe-Universtät Frankfurt, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany. j.baldus@em.uni-frankfurt.de

Green Proteorhodopsin (PR) is a bacterial retinal protein which upon light activation is able to transport protons. Naturally, the amino acids close to the chromophor retinal influence the colour of the protein. However, recently it has been discovered that a single mutation (A178R) in the EF loop causes a redshift of the absorption maximum by 20 nm¹. This study aims to elucidate how a change in a loop far away from the chromophor can cause a colour change of the protein.

³C¹⁵N PR A187R and ¹³C¹⁵N PR wild type were expressed in E.coli and reconstituted into lipid membranes. PDSD spectra recorded on these samples show that some parts of the protein differ in those two samples while others overlay very well. Using the published assignment² several amino acids could be identified which are sensitive to the mutation. Indeed, the mutation affects amino acids near the chromophor. Thus the conformational change caused in the loop by the mutation is transmitted into the centre of the protein by rigid body movements. This is in line with recent results which show that the EF loop is not flexible³. There have been hints that PR not only serves as a proton pump but also as a sensor⁴. The EF loop could play a role in activating a potential signalling pathway as in related G-protein Coupled Receptors. This leads to the question whether a change in the chromophore influences also the EF loop structure. Retinal cis-trans isomerisation is caused by illumination of PR. Thus wild type PR was studied in the dark and with illumination, respectively.

1. Yoshitsugu M, Shibata M, Ikeda D, Furutani Y, Kandori H, Angewandte Chemie-International Edition, 47, 3923-3926 (2008)

2. Shi L, Lake EMR, Ahmed MAM, Brown LS, Ladizhansky V, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1788, 2563 - 2574 (2009)

3. Yang J, Aslimovska L, Glaubitz C, Journal of the American Chemical Society, 133, 4874-4881 (2011)

4. Hempelmann F, Glaubitz C et al., Journal of the American Chemical Society, 133, 4645-4654 (2011)

ME405

Structural Basis for Tail-Anchored Membrane Protein Biogenesis by the **Get3-Receptor Complex**

Susanne Stefer¹, Simon Reitz², Christopher Hein¹, Fei Wang³, Klemens Wild², Daniel Schwarz⁴, Frank Löhr¹, Frank Bernhard¹, Vlad Denic³ & Irmgard Sinning² & Volker Dötsch¹

¹Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt / Main, Germany Heidelberg University Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany ³Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA

⁴Merck KGaA, Merck Serono, Molecular Interactions and Biophysics, Darmstadt, Germany

Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation and apoptosis. They contain a C-terminal membrane anchor and are post-translationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 ATPase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states. NMR titration experiments together with biochemical data show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 creating a force, which is directly transferred to the TMDs of the receptor and thereby could contribute to TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated targeting and receptor-assisted insertion of TA proteins (1). In future experiments it will be important to dissect the precise proceedings within the receptor's transmembrane parts.

1. Stefer S., Science, in press (2011)

178

Polymerisation mechanism at the outer membrane usher of Type 1 pili from *E.coli* investigated by SDSL-EPR

<u>Katharina F. Pirker¹</u>, William J. Allen², Micha B. A. Kunze¹, Gabriel Waksman^{1,2} and Christopher W. M. Kay¹

¹Institute of Structural & Molecular Biology, University College London, London, UK; ²Institute of Structural & Molecular Biology, Birkbeck College, London, UK: k.pirker@ucl.ac.uk

Bacterial infection by uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections in Europe and North America. There is an increase in resistance to antibiotics by these bacteria and studies of the onset of bacterial infection are gaining importance. The surface fiber type 1 pili are important attachment devices that target UPEC to the bladder epithelium. These pili are assembled by the chaperone-usher pathway, involving a periplasmic chaperone (FimC) and an outermembrane assembly platform, the usher (FimD). We are using site-directed spin labelling (SDSL) in combination with continuous wave (cw) and pulsed electron paramagnetic resonance (EPR) spectroscopy to investigate the polymerisation mechanism at the usher. Starting with the usherchaperone-subunit complex FimD:FimC:FimH, the next chaperone-subunit FimC:FimG is added. Spin labels are positioned on the C-terminal domain (CTD) of the usher FimD and the chaperone FimC of FimC:FimG. By measuring distances between spin labels, we could show by EPR that after polymerisation, the subunit FimG binds to the CTD.¹ This result is comparable to the recently solved crystal structure of FimD:FimC:FimH where the previous subunit FimH is bound to the CTD of the usher. The involvement of the N-terminal domain (NTD) in the recruitment of the subunits is still not understood. Results on the intermediate state of the FimD:FimC:FimH:FimG complex, right after the addition of the subunit FimG and before it binds to the previous subunit FimH, will be presented.

1. Phan et al., Nature, 474, 49-53 (2011).

ME407

Solution structure of proteorhodopsin

<u>Sina Reckel</u>^{a,c}, Daniel Gottstein^{a,c}, Jochen Stehle^{b,c}, Frank Löhr^{a,c}, Mirka-Kristin Verhoefen^d, Mitsuhiro Takeda^f, Robert Silvers^{b,c}, Masatsune Kainosho^{e,f}, Clemens Glaubitz^{a,c}, Josef Wachtveitl^d, Frank Bernhard^{a,c}, Harald Schwalbe^{b,c}, Peter Güntert^{a,c,e}, Volker Dötsch^{a,c}

^aInstitute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany. ^bInstitute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany. ^cCenter for Biomolecular Magnetic Resonance, Max-von-Laue Str. 9, 60438 Frankfurt am Main, Germany. dInstitute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany. ^cCenter for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan. ^fGraduate School of Science, Structural Biology Research Center, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Japan. Email: reckel@pc.uni-frankfurt.de

Green-absorbing proteorhodopsin (PR), a light-driven proton pump, shows a strong dependence of its function on the pH. The primary proton acceptor D97 has an unusually high pKa value around 7.5 and its protonation state affects the absorption characteristics of the retinal cofactor. Furthermore, the direction of proton pumping switches in response to pH between an outward directed transport at alkaline pH and an inward directed transport at acidic pH. The potential function of this pH-dependency including the changing vectoriality is, however, still debated and a possible regulatory activity cannot be excluded. For a further insight into the structure-function relationship, we have solved the solution NMR structure of detergent-solubilized PR at acidic pH. NOE data was obtained with the help of stereo-array isotope labeling (SAIL) as well as selective labeling and complemented with a large number of distance restraints derived from paramagnetic relaxation enhancement (PRE). Additionally, restraints from residual dipolar couplings (RDCs) served to improve the structural accuracy of this seven-helix-bundle. The three-dimensional structure of PR reveals differences from its homologues such as the absence of the extended β -sheet in the B-C loop and enables insight into the mechanisms of color-tuning and proton transport.

Combinatorial triple-selective labeling as a tool to assist backbone resonance assignment in membrane proteins

<u>Frank Löhr</u>,¹ Sina Reckel,¹ Mikhail Karbyshev,¹ Zehan Abdul-Manan,² Jonathan Moore,² and Volker Dötsch.¹

¹Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany; ²Vertex Pharmaceuticals, Cambridge, USA. murph@bpc.uni-frankfurt.de

Backbone resonance assignment of detergent-solubilized membrane proteins usually employs deuterated samples to overcome difficulties due to slow tumbling. Disadvantages of deuteration are high costs, decreased protein stability and partial back-exchange of α/β -deuterons in H₂O-based cell-free expression media which deteriorates relaxation properties and spectral resolution. For proteins of moderate size 3D HNCA/HN(CO)CA spectra of reasonable quality can often be obtained without deuteration. Due to ¹³C^{α} chemical shift degeneracy, however, the information obtained is by no means sufficient for complete backbone assignment. Combinatorial dual-selective 1-¹³C/¹⁵N labeling in conjunction with cell-free expression has been proposed to provide anchor points for sequential assignment via the C^{α} pathway. It features both combinatorial selective ¹⁵N labeling for efficient amino acid type identification and dual amino acid-selective 1-¹³C and ¹⁵N labeling to obtain sequence-specific information and involves recording of [¹⁵N, ¹H]⁻HSQC and 2D HN(CO) spectra.

We present an extended protocol, combinatorial triple-selective labeling, which employs fully ${}^{13}C/{}^{15}N$ labeled amino acids together with 1- ${}^{13}C$ and ${}^{15}N$ labeled ones. Additional 2D HN(CA), HN(COCA), and DQ-HN(CA) experiments allow differentiation of the fully labeled amino acid type from both 1- ${}^{13}C$ and ${}^{15}N$ amino acids due to the presence of a label at the C^{α} position. As a consequence, for a given number of samples more residue types and sequential pairs can be identified. The method is demonstrated with two helical membrane proteins, KvAP voltage sensor domain and proteorhodopsin.

ME409

Dynamics of VPU Protein in Absence and Presence of Human CD4 Peptide by solid state NMR Spectroscopy

Hoa Quynh Do^{1,2}, Marc Wittlich^{1,2}, Bernd W. König^{1,2}, Dieter Willbold^{1,2}, Henrike Heise^{1,2}

¹Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany ²Institute of Complex System (ICS-6), Research Center Jülich GmbH, 52425 Jülich, Germany, Email: q.h.do@fz-juelich.de

It's well known that the viral protein VPU of HIV-1 directly interacts with the human T-cell coreceptor CD4 and subsequently induces the degradation of this protein in the endoplasmic reticulum^{1,2,3}. Towards the study of this interaction on a residue-specific level, shorter constructs of these proteins comprising the cytoplasmic domains with and without the transmembrane part have been expressed and studied^{4,5}. To get closer to the picture of the interaction between VPU and CD4 in the membrane of the endoplasmic reticulum, a full-length VPU protein was reconstituted into POPC lipid bilayers in absence or presence of the CD4 peptide⁴. In addition, VPU dynamics were probed using solid state MAS NMR spectroscopy. Our results suggest that in absence of the CD4 peptide, the VPU transmembrane domain is rather rigid whereas the cytoplasmic domain is flexible. However, in presence of the CD4 peptide, the dynamic behavior of the VPU is altered, particularly in its cytoplasmic domain.

In this contribution, we report on changes of NMR parameters of VPU amino acid residues observed after addition of the CD4 peptide and discuss effects of the CD4 on the dynamic behavior of the VPU in both its transmembrane and cytoplasmic domains.

3. Bour S., Schubert U., and Strebel K., Journal of Virology, 66, 1510-1520 (1995)

^{1.} Willey R.L., Maldarelli F., Martin M.A. and Strebel K., Journal of Virology, 66, 7193-7200 (1992)

^{2.} Chen M.Y., Maldarelli F., Karczewski M.K., Willey R.L. and Strebel K., Journal of Virology, 67, 3877-3884 (1993)

^{4.} Wittlich M., Koenig B. W., Hoffmann S., and Willbold D., Biochimica et Biophysica Acta, 1768, 2949-2960 (2007)

^{5.} Wittlich M., Thiagarajan P., Koenig B. W., Hartmann R. and Willbold D., Biochimica et Biophysica Acta-Biomembranes, 1798, 122-127 (2010)

Site-directed EPR Studies Reveal Cholesterol Dependent Conformational Equilibrium of M2 Protein from Influenza A

Kei Saotome, Patrick E. Hartnett, Mary A. Upshur and Kathleen P. Howard

Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore PA 19081 USA. khoward1@swarthmore.edu

ABSTRACT. M2 is a homotetrameric membrane protein from influenza A that plays multiple roles in viral replication (1-2). Structural studies have shown that the conformation of the M2 protein is dependent on the hydrophobic environment (3). Using side directed spin-labeling EPR, we have studied the conformation of a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension in a range of different lipid bilayers. We have previously shown using EPR that the C-terminal region of the M2 peptide forms a membrane surface helix. (4) More recently we have collected both CW and pulsed EPR spectra which demonstrate evidence that M2 adopts multiple conformational states in bilayers, and that the cholesterol content of the membrane lipid bilayers dictates the relative populations of the states.

REFERENCES:

- Rossman, J. et al. J. Virology. 84, 5078-5088. (2010)
 Duong-Ly, K. et al. Protein Science, 14, 856-861. (2005)
- 4. Nguyen, P.A. et al. Biochemistry, 47, 9934-9936. (2010)

ME411

Solution structure of MscS determined by PELDOR spectroscopy

<u>Richard J. Ward</u>¹, Christos Pliotas¹, Emma Branigan¹, Gregor Hagelueken¹, Akiko Rasmussen²,

Ian R. Booth², James Naismith¹ and Olav Schiemann¹.

¹Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST.

²Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK

Cells are protected from the life threatening risks of hypo-osmotic shock by a family of membrane spanning mechanosensitive ion channels, including MscS, MscM and MscL. These proteins act like pressure-release valves, but the mechanism by which they "sense" the change in pressure is still unclear. MscS, a homoheptameric inner membrane protein, has been crystallised in two different conformational states [1,2], but their relevance has been questioned by chemical cross-linking, CW EPR and molecular modelling studies [3]. Our aim is to use site-directed spin labelling and PELDOR spectroscopy to elucidate the solution state(s) of MscS and clarify the mechanism by which it gates, i.e. opens its valve.

We have prepared single-cysteine mutants at different positions within each of the transmembrane helices and at some of these positions PELDOR time traces with clear dipolar oscillations were observed, from which reliable distance distribution data could be extracted. These distance distributions have been used to evaluate which of the structural models (X-ray or molecular dynamic simulations) of MscS most resembles the detergent-solubilised solution state of MscS.

We wish to acknowledge the BBSRC for funding this research project.

[1] Bass RB, et al. Science. 2002; 298(5598): 1582-7. [2] Wang W, et al. Science. 2008; 321(5893): 1179-83.[3] Anishkin A, et al. Biophysical Journal. 2008; 94(4):1252-1266.

^{1.} Pinto, L.H and Lamb, R.A., J.Biol.Chem., 281, 8997-9000. (2006)
Optimization of amino acid type-specific ¹³C and ¹⁵N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm

<u>Frederik Hefke^{1, 2}</u>, Anurag Bagaria^{1, 2}, Sina Reckel¹, Sandra Johanna Ullrich¹, Volker Dötsch¹, Clemens Glaubitz¹ and Peter Güntert^{1, 2, 3}

¹Institute of Biophysical Chemistry, Goethe-University, Frankfurt, Germany; ²Frankfurt Institute for Advanced Studies, Goethe-University, Frankfurt, Germany; ³Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan

We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with ¹³C or/and ¹⁵N such that cross peaks between ¹³CO(*i* – 1) and ¹⁵NH(*i*) result only for pairs of sequentially adjacent amino acids. Unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. Our algorithm UPLABEL maximizes the number of unique pair assignments with a minimal number of differently labeled protein samples for a given sequence. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The software is available as a part of the CYANA package (Güntert, Methods Mol Biol. 2004; 278:353-78), as a standalone program and through a webportal: http://www.bpc.uni-frankfurt.de/guentert/wiki/index.php/UPLABEL.

ME413

Membrane protein investigations in native lipid environment by DNP Solid-State NMR.

Tomas Jacso^{1,2,3}, Trent Franks³, Honor-May Rose³, Jana Broecker⁴, Sandro Keller⁴, Bernd Reif^{1,2,3}.

¹ Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, German; ² Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany; ³ Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany; ⁴ University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.

Membrane proteins are a large and diverse class of proteins that are vital for numerous cell functions. Prokaryotic and eukaryotic genome searches show that roughly 30% of all encoded proteins are membrane proteins and more than 50% of all administrated drugs are targeted to these proteins. Though their importance is great, it has proven to be difficult to obtain high-resolution structural data, only 1.7% of all deposited protein structures in the RSCB databank are membrane proteins. The preparation of samples with suitable qualities for structural biology studies is a tedious task and is a bottleneck that has not yet been circumvented. Secondly, *in-vitro* prepared systems does not contain all endogenously needed components for protein stability and function. Here, we present an alternative sample preparation with a low initial threshold for high-resolution categorization of integral membrane proteins in native environment. For this study, native membranes from *E. coli* containing an over-expressed membrane protein could be assessed by biochemical assays and by DNP Solid-State NMR within a week of the inception.

Protein-membrane interactions of Alpha-Synuclein monitored by spin-label-EPR and FCS

Marta Robotta¹, Christian Hintze¹, Niels Zijlstra², Vinod Subramanian², Malte Drescher¹

¹Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany (marta.robotta@unikonstanz.de, christian.hintze@uni-konstanz.de); ²Biophysical Engineering, MESA+ Institute for Nanotechnology & MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands

A key feature in Parkinson's disease is the deposition of Lewy bodies. The major protein component of these intracellular deposits is the 140 amino acid protein α -Synuclein (α S) that is widely distributed throughout the brain. Although not yet fully understood, the physiological function of α S is likely to involve a role in modulating synaptic plasticity, presynaptic vesicle pool size, and neurotransmitter release, as well as vesicle recycling.

Many of the proposed physiological functions of α S are related to its ability to interact with phospholipids. To better understand the membrane binding and the conformational changes of monomeric α S, we performed EPR (Electron Paramagnetic Resonance) and FCS (Fluorescence Correlation Spectroscopy) of spin and fluorescently labelled α S derivatives with different lipid membranes.

ME415

Solid-state NMR studies on substrate-EmrE interactions watched from the ligand side

Andrea Lakatos¹, Yean Sin Ong¹, Klaas Martinus Pos² and Clemens Glaubitz¹

¹Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany, ²Institute of Biochemistry, Goethe University, Frankfurt am Main, Germany. E-mail: a.lakatos@em.uni-frankfurt.de

EmrE is a secondary small multidrug efflux pump from *E. coli*. It consists of four transmembrane helices and functions as a dimer. A highly conserved Glu14 residue is essential for substrate binding and transport. During the transport cycle the protein adopts an occluded state [1]. We used solid state NMR to directly monitor protein-substrate interaction in membrane embedded protein samples. In the past we have studied EmrE complexed with ethidium by ¹³C CP MAS NMR [2].

Here we report novel data on the high affinity ligand tetraphenylphosphonium (TPP) and its structural analogue methyl-triphenylphosphonium (MTP). We have chosen these substrates since both contain a phosphorus atom and can be easily studied by ³¹P NMR. Two signals of the substrate could be detected in the presence of the protein for both TPP and MTP; which were assigned on the basis of their chemical shifts and CP build-up data as free and protein-bound populations. The K_d determined from the NMR data for TPP is in the nanomolar range (34 nM) indicating TPP bound to dimeric EmrE. Competitive titrations indicate that these substrates share the same binding pocket. Relaxation data measured on the free and bound substrate will be presented as well. Measurements on ¹³C labeled TPP suggest a fast rotation of the structurally symmetric substrate in the binding pocket of the protein.

^{1.} D. Basting, M. Lorch, I. Lehner, C. Glaubitz, FASEB J., 22, 365-373 (2008).

^{2.} I. Lehner, D. Basting, B. Meyer, W. Haase, T. Manolikas, C. Kaiser, M. Karas, C. Glaubitz, J. Biol. Chem., 283, 3281-3288 (2008).

Importance of Conformational Restraints from Paramagnetic Relaxation Enhancement for Membrane Protein Structure Determination by NMR

Daniel Gottstein^{1,2†}, Sina Reckel¹, Volker Dötsch¹, Peter Güntert^{1,2,3}

¹Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany; ²Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany; ³Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan [†]gottstein@bpc.uni-frankfurt.de

Paramagnetic relaxation enhancement (PRE) has long been recognized as an approach for obtaining conformational restraints that can complement NOE restraints, which are limited to distances of up to 5 Å.¹ Paramagnetic nitroxide spin labels that can be attached to a target protein produce distance-dependent line-broadening in the resulting NMR spectra that can be translated into distance restraints for the structure calculation. The paramagnetic influence ranges up to 25-35 Å.² PRE restraints are of particular interest for the structure determination of membrane proteins, for which the large effective size of the protein-micelle system often precludes the collection of long-range NOE distance restraints. We present a study to evaluate the impact of PRE-derived distance restraints on structure calculations with limited or no available long-range NOEs. The evaluation was done using simulated structural restraints derived from the crystal structures of three membrane proteins: the protein GlpG, halorhodopsin, a member of the rhodopsin family, and DsbB, a 4-transmembrane-helix protein.

Gillespie, J. R. & Shortle, D., J. Mol. Biol., 268, 158–169 (1997)
 Battiste, J. L. & Wagner, G., Biochemistry, 39, 5355–5365 (2000)

ME417

Throughput strategies for the optimization of membrane protein samples by cell-free expression

Lei Kai¹, Volker Dötsch¹, Frank Bernhard¹

¹Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany Corresponding email: kai@bpc.uni-frankfurt.de

The open nature of cell-free expression systems enables throughput screening approaches as a rational strategy for protein expression and protocol development. Quality and production of membrane proteins could thus be optimized by extensive modification of their direct expression environment.

We established a throughput platform for the linear as well as for the correlated screening of compounds supplied into cell-free expression reactions. In linear screens, the concentrations of compounds are evaluated in one dimension. However, the concentration optima of different compounds can often correlate with each other. Such interfering compounds can be optimized in correlated screens using both dimensions of the microplates. Reaction condition could later be scaled up to at least 1 ml volumes without losses in yields.

This throughput sample production will provide a fast and convenient method for NMR study, especially, for special labeling strategy, i.e., transmembrane segment enhanced labeling or combinatorial selective labeling.

^{1.} Kai, L., Roos, C., Haberstock, S., et al. Methods Mol. Biol, in press

^{2.} Reckel, S., Sobhanifar, S., Schneider, B., et al. Proc. Natl. Acad. Sci. 8262-8267 (2008)

Membrane microcompartmentalization can enhance a "weak" dimerization of RTK transmembrane domains: structural and kinetic insight into self-association process of the ErbB4 transmembrane domain

Eduard V. Bocharov, Konstantin S. Mineev, Vladimir V. Chupin, Dmitry M. Lesovoy, Marina V. Goncharuk, <u>Olga V. Bocharova</u>, Alexander S. Arseniev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia; bon@nmr.ru, obon@nmr.ru

Specific helix-helix interactions of single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure-function relationship as well as rational drug design requires precise structural-dynamic information about this class of biologically significant bitopic membrane proteins. ErbB4 is a ubiquitously expressed member of the HER/ErbB family of growth factor receptor tyrosine kinases that is essential for normal development of different adult and fetal human tissues and plays a role in pathobiology of organism. Spatial structure of dimeric ErbB4 transmembrane domain embedded into lipid bicelle was obtained by solution NMR and revealed a right-handed parallel packing of the membrane-spanning α -helices (651-678)₂ through the N-terminal double GG4-like motif A⁶⁵⁵GxxGG⁶⁶⁰ in a fashion believed to allow proper kinase domain activation. The helix association undergoes through a structural "tuning" of the dimer subunits with the formation of the net of intermonomeric polar contacts. The quantitative analysis of observed monomer-dimer equilibrium gives an insight into kinetics and thermodynamics of folding processes of helical transmembrane domain in model environment and perhaps in cellular membranes. It suggests that the lipid bicelles singly occupied by ErbB4 transmembrane domain behave as an ideal solvent while multiply occupied ones resemble microdomains of cellular membrane providing seemingly substantial kinetic enhancement of the weak helix-helix interactions that can be critical for membrane protein functioning.

ME419

Relaxation time dependent separation of EPR signals of the membrane-bound [NiFe] hydrogenase from *Ralstonia eutropha*

<u>J. Löwenstein</u>¹, C. Teutloff¹, J. Fritsch², B. Friedrich², P. Hildebrandt³, O. Lenz², I. Zebger³, F. Lendzian³, R. Bittl¹

¹Fachbereich Physik, Freie Universität Berlin, Berlin, Germany; ²Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany; ³Max-Volmer-Laboratorium, Technische Universität Berlin, Berlin, Germany; julia.loewenstein@fu-berlin.de

Understanding the unusual robustness of certain [NiFe] hydrogenases towards oxygen is of high importance given their potential future application as catalysts for H_2 production. [NiFe] hydrogenases mainly consist of a large subunit with the [NiFe] active site and its ligands and a small one containing [FeS] clusters as part of the electron-transfer chain. While standard hydrogenases are inactivated by traces of O_2 there are exemplars sustaining high activity even under ambient oxygen levels.

Since many redox states of the named cofactors are paramagnetic, EPR spectroscopy is well suited to characterise them and their surroundings. Here we focus on the oxygen-tolerant membrane-bound hydrogenase from *Ralstonia eutropha*. The enzyme exhibits in its (resting) Ni_r-B state a magnetic coupling between the [NiFe] centre and two paramagnetic species, a distinct feature not found in standard hydrogenases. Previous research revealed high similarity of the [NiFe] site in both standard and O₂-tolerant hydrogenases [1], leaving the [FeS] region as possible origin of the O₂ tolerance.

Overlapping of characteristic signals of diverse paramagnetic species often complicates EPR spectra. However, in several cases these species show different relaxation behaviour. Therefore, by using 2D-REFINE spectroscopy [2], we aim to distinguish between crossing features of the [NiFe] site, the [FeS] region and the yet unknown paramagnetic center.

^{1.} Saggu, M. et al., Phys. Chem. Chem. Phys., 12, 2139-2148 (2010)

^{2.} Cernescu, A. et al., J. Magn. Reson., 192, 78-84 (2008); Lupulescu, A. et al., J. Am. Chem. Soc., 125, 3376-3383 (2003)

Membranes or micelles cause structural changes on GCAP-2

<u>Stephan Theisgen</u>,^a Lars Thomas,^a Thomas Schröder,^b Christian Lange,^b Michael Kovermann,^c Jochen Balbach,^c and Daniel Huster^a

^aInstitute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; ^bInstitute of Biochemistry, MLU Halle-Wittenberg, Halle (Saale), Germany; ^cBiophysics Research Group, MLU Halle-Wittenberg, Halle (Saale), Germany. stephan.theisgen@medizin.uni-leipzig.de

GCAPs are neuronal calcium sensor proteins (NCS) located at the membrane of the outer segments of the photoreceptor cells, where they regulate, in a Ca²⁺-dependend manner, the transmembrane retinal guanylate cyclase (RetGC), and therefore play a central role in light adaptation of the visual process. GCAPs are posttranslationally modified by N-terminal myristoylation, and the specific role of this myristoyl moiety is still unclear. For some NCS, the Ca²⁺ binding leads to an extrusion of the myristoyl chain and this direct the protein to the membrane (Ca²⁺-myristoyl-switch) (1). Typically, lipid modifications serve as membrane anchors, but the published crystal structure of GCAP-1 shows the myristoyl moiety buried inside the hydrophobic core; therefore a protein structure stabilizing function was suggested (2). Furthermore, non-myristoylated GCAP-2 also binds to membranes. In our studies we investigate the Ca²⁺-dependent localization and the dynamics of GCAP-2's myristoyl moiety in the presence of membranes (POPC liposomes) and micelles (DPC, CHAPS) by solid-state and solution NMR; additionally we address structural changes in the N-terminal region of GCAP-2 caused by an increasing amount of DPC or CHAPS. Our results indicate that membrane binding causes the release of the myristoyl moiety from the protein and its insertion into the lipid bilayer (3).

1. Palczewski K., Polans A. S., Baehr W., Ames J. B., BioEssays, 23, 337-350 (2000)

2. Stephen R., Palczewski K., Sousa M. C., J Mol Biol, 359, 266-275 (2006)

3. Theisgen S., Thomas L., Schröder T., Lange C., Kovermann M., Balbach J., Huster D., Eur Biophys J, 40(4), 565-576 (2011)

ME421

Structural and Dynamics Studies of Amyloid Precursor Protein's Transmembrane Domain

Kirill D. Nadezhdin, Olga V. Bocharova, Eduard V. Bocharov, Alexander A. Arseniev

Department of Structural Biology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, e-mail: <u>verne@nmr.ru</u>

For appropriate therapy of Alzheimer's disease which affects people all over the world regardless of nation and social status it is essential to determine the molecular basis of the pathogenesis. Amyloid β -peptide which forms amyloid plaques in brain during Alzheimer's disease is the product of sequential cleavage of a single-span membrane amyloid precursor protein (APP). More than half of mutations of APP found to be associated with familial forms of Alzheimer's disease are located in its transmembrane domain. The pathogenic mutations presumably affect structural-dynamic properties of the APP transmembrane domain, changing its conformational stability and/or lateral dimerization. In the present work was studied the structure and dynamics of recombinant peptide, corresponding to APP fragment Gln686-Lys726 including the APP transmembrane domain with adjacent N-terminal juxtamembrane sequence. The peptide's investigations were performed for its dimeric form in membrane mimetic environment composed of detergent micelles using NMR spectroscopy methods. It was found that the structure slightly alters from monomeric state. Major changes could be found in the juxtamembrane region with its melting to disordered form which maybe pH induced. The transmembrane domain lacks its bending as reported for monomer.

REFERENCES:

2. Bocharov E.V, J. Biol. Chem., 283, 6950-6956 (2008)

^{1.} Beel A. J, *Biochemistry*, 47, 9428-9446 (2008)

Production of transmembrane segments of receptor tyrosine kinases for NMR structural studies

<u>Marina V. Goncharuk</u>^{1,2}, Sergey A. Goncharuk^{1,2}, Yaroslav S. Ermolyuk¹, Alexey A. Schulga¹, Elena N. Tkach¹, Yulia E. Pustovalova³, Konstantin S. Mineev³, Maxim L. Mayzel³, Dmitriy M. Lesovoi³, Eduard V. Bocharov³, Alexander S. Arseniev³, Mikhail P. Kirpichnikov^{1,2}

¹Bioengineering department, Shemyakin and Ovchinnikov Institute of bioorganic chemistry, Russian academy of sciences, Moscow, Russia; ²Department of bioengineering, biological department, Lomonosov Moscow state university, Moscow, Russia; ³Department of structural biology, Shemyakin and Ovchinnikov Institute of bioorganic chemistry, Russian academy of sciences, Moscow, Russia (E-mail: ms.goncharuk@gmail.com).

Malfunctions of epidermal growth factor receptors (ErbB1-ErbB4), Eph receptors (EphA1, EphA2) and fibroblast growth factor receptor 3 (FGFR3 in norma and with G380R or A391E point mutations), including dysfunction of their transmembrane (TM) region, lead to variety of human diseases. Relatively small size of complexes of TM peptides (TMPs) of these receptors with detergents/lipids allows one to study their detailed spatial structure using heteronuclear 3D NMR spectroscopy. An effective protocol for preparative-scale production of TMPs (including ¹⁵N- and ¹⁵N-/¹³C- labeled) for structural and functional studies were developed. The recombinant TMPs were produced in *Escherichia coli* BL21(DE3)pLysS as C-terminal extensions of thioredoxin A. The fusion proteins cleavage was accomplished with the light subunit of human enterokinase. Up to 10-30 milligrams of purified TMPs were isolated with the use of immobilized metal affinity and ion-exchange chromatographies, reconstituted in lipid/detergent micelles and characterized using dynamic light scattering, CD and NMR spectroscopy. Data obtained indicate the suitability of the purified TMPs for NMR studies. Acknowledgments: supported by FTPs "Scientific and scientific-pedagogical personnel of the innovative Russia in 2009-2013" (P1276 and 16.740.11.0195).

ME423

Expression, purification and refolding of bacteriorhodopsin for NMR application

Sergey A. Goncharuk^{1,2}, Marina V. Goncharuk^{1,2}, Maxim A. Dubinny², Oksana V. Nekrasova², Alexander S. Arseniev², Mikhail P. Kirpichnikov¹.

¹Department of bioengineering, biological department, Lomonosov Moscow state university, Moscow, Russia; ²Department of structural biology, Shemyakin and Ovchinnikov Institute of bioorganic chemistry, Russian academy of sciences, Moscow, Russia (E-mail: ms.goncharuk@gmail.com)

Unique biochemical and biophysical properties and GPCR-like structure of bacteriorhodopsin (BR) make it an attractive sample protein for NMR structural study of GPCRs. An effective system for preparative-scale production of functionally active BR for NMR structural study was developed. The BR was expressed in *Escherichia coli* as C-terminal extension of Mistic and purified by immobilized metal-affinity chromatography. Thrombin was used to cleave BR from the fusion partner moiety. Pure target protein was refolded in DMPC/CHAPS mixed micelles. The yield of functionally active BR (including isotope-labeled derivatives) was not less than 15 mg/L of M9 minimal salt medium. After incorporation into different lipid/detergent micelles, the BR samples were studied by NMR spectroscopy. We found that the DMPC/DHPC appeared to be optimal for solubilization of BR for further investigations. Number of cross peaks in glycine region, good signal dispersion and width, reasonable line shape, and number of signals observed in the [1H-15N]-HSQC NMR spectrum of DMPC/DHPC/BR complexes are consistent with that expected from the theoretical data, indicated that the BR is stable, homogeneously folded in the DMPC/DHPC micelles and suitable for NMR structure-dynamic studies. Acknowledgments: supported by FTPs "Scientific and scientific-pedagogical personnel of the innovative Russia in 2009-2013" (16.740.11.0195 and P1276).

Cell-Free Expression of GPCRs: an approach for NMR structural investigation

Davide Proverbio, Friederike Junge, Volker Dötsch, Frank Bernhard.

Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany. Proverbio@bpc.uni-frankfurt.de

G-protein-coupled receptors (GPCRs) are cell-surface membrane proteins that mediate various signal transduction processes through G-protein activation. The human endothelin receptor type A (ETA) and B (ETB) are prototypic GPCRs distributed among multiple endothelial cell types as well as in smooth muscle cells. The ubiquitous distribution of these receptors implicates their involvement in a wide variety of physiological and pathological processes In our laboratory we have established protocols for high-level production of ETA, ETB and other GPCRs in an individual Continuous Exchange Cell-Free System (CECF). This expression system, based on Escherichia coli cell extracts, has been demonstrated to provide a highly promising tool for structural investigation and in particular for NMR studies. The possibility to obtain selective labeling of certain amino acid types without metabolic scrambling can enable an efficient backbone assignment. Direct solubilization of membrane proteins in mild detergents, avoiding cell-disruption or time-consuming unfolding and refolding procedures, is an additional advantage over cellular based expression systems.

In this work we demonstrate that different cell-free expression modes (P-CF, D-CF and L-CF) can be successfully used for the production of ligand-binding competent ETA and ETB receptors in quantities sufficient for structural approaches. In order to obtain functional receptor an extensive detergents screening has been performed and sample quality has been evaluated by protein homogeneity, stability and ligand binding competence.

ME425

Study of interaction between rhodopsin and arrestin by solution NMR

Deep Chatterjee, Jochen Stehle, Christian Richter and Harald Schwalbe

Institute for Organic Chemistry and Chemical Biology, BMRZ, Goethe-Universität, Frankfurt am Main, Germany. (chatterjee@nmr.uni-frankfurt.de)

Arrestin upon binding to photoactivated phosphorylated rhodopsin inactivates the phototransduction cascade in photoreceptor cells. We used solution NMR to study the receptor-bound arrestin peptide Arr (170-182) in order to characterize the molecular interaction between rhodopsin and arrestin. Two main aim of this study is to find out the effect of binding of peptides to meta II state of rhodopsin and also to find out the transient structure of peptides upon binding.

We investigate the changes in structure of free form peptides upon binding to both dark state and photoactivated rhodopsin by comparing their 2D NOESY spectra. We will also investigate the formation of extra meta II induced by tritration of rhodopsin with Arr (170-182) peptide in order to study the kinetics of meta II state of Rhodopsin. In future we will study the interaction of full length arrestin with rhodopsin by studying the changes in dynamics of the C-terminus of rhodopsin.

References

^{1.} Sophie E. Feuerstein, Alexander Pulvermuller, Rudolf Hartmann, Joachim Granzin, Matthias Stoldt, Peter Henklein, Oliver P. Ernst, Martin Heck, Dieter Willbold, and Bernd W. Koenig. "Helix Formation in Arrestin Accompanies Recognition of Photoactivated Rhodopsin". Biochemistry 2009, 48, 10733–10742.

Investigation of the POTRA Domains from Cyanobacterial Omp85 by PELDOR Spectroscopy

<u>Reza Dastvan¹</u>, Eva Brouwer², Sevdalina Lyubenova¹, Oliver Mirus², Maik S. Sommer², Enrico Schleiff², Thomas F. Prisner¹

¹Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, ²Department of Biosciences and Center of Membrane Proteomics and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt am Main, Germany. (dastvan@prisner.de)

Omp85 proteins contain a C-terminal transmembrane β -barrel and a soluble N terminus with a varying number of <u>polypeptide-tr</u>ansport-<u>a</u>ssociated (POTRA) domains.¹ N-terminal POTRA domains (P1 and P2) of Omp85 from the cyanobacterium *Anabaena sp.* PCC 7120 might have functions in substrate recognition and heterooligomerization.² P3 is implied in regulation of protein transport by its L1-loop. Molecular dynamics (MD) simulations predicted that P2 and P3 are fixed in orientation, consistent with a short connection and a large interface between both domains, and that there is a hinge between P1 and P2.² The flexibility between P1 and P2 is matching the observation of the smaller interface combined with a longer linker, compared with P2-P3. In this study we used site-directed spin labeling (SDSL) to investigate the conformational flexibility between POTRA domains by PELDOR (pulsed electron-electron double resonance) spectroscopy.³⁻⁵ The experimental results will be compared with the MD calculations and X-ray structures.² Further studies of the interaction of POTRA domains with chaperones and substrates are underway.

REFERENCES:

- 1. Clantin B. et al., Science, 317, 957-961 (2007).
- 2. Koenig P. et al., J. Biol. Chem., 285, 18016-18024 (2010).
- 3. Jeschke G., Polyhach Y., Phys. Chem. Chem. Phys., 9, 1895-1910 (2007).
- 4. Schiemann O., Prisner T. F., *Quart. Rev. Biophys.*, 40, 1-53 (2007).
- 5. Ward R. et al., Structure, 17, 1187-1194 (2009).

ME427

Lipid interactions of the malaria antigen MSP2 revealed by NMR

Marie Ø. Pedersen¹, Christopher A. MacRaild¹, Robin F. Anders², and Raymond S. Norton¹

¹ Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia (marie.pedersen@monash.edu) ²Department of Biochemistry, La Trobe University, Melbourne, Australia

With more than half the world's population living at risk of malaria infection, there is a strong demand for the development of an effective malaria vaccine, however this has proven elusive [1]. One promising vaccine candidate is merozoite surface protein 2 (MSP2), which is among the most abundant antigens of the blood stage of the parasite [2]. To ensure an efficient immunogenic response when applying MSP2 in a vaccine formulation, knowledge of the native state of the protein is extremely important. In solution, MSP2 appears to be intrinsically unstructured, whereas cross-linking studies suggest it forms homo-oligomers on the surface of the parasite [3]. Furthermore, MSP2 is prone to form amyloid fibrils, and this fibril-propensity is linked to the presence of a highly conserved N-terminal domain in an otherwise mainly variable and highly polymorphic protein [4].

Initial NMR studies from our group have shown that MSP2 interacts with lipid micelles through the conserved N-terminal domain [4]. We have continued these studies by investigating how different lipid environments (micelles, bicelles and bilayers) affect the protein structure. In summary, all tested lipid preparations perturbed only the N-terminal part of MSP2, which in DPC micelles adopts an α -helical structure. Moreover, some lipids were able to induce oligomer formation, consistent with the N-terminal domain having an important function in maintaining the native organization of MSP2 on the parasite surface.

1. Casares, S., et al., Current Opinion in Immunology, 21, 321-330. (2009)

^{2.} Anders, R.F., et al., *Hum Vaccin*, 6, p. 39-53. (2010)

^{3.} Adda, C.G., et al., *Molecular and Biochemical Parasitology*, 166, p. 159-171. (2009) 4. Zhang, X., et al., *J Mol Biol*, 379, p. 105-21. (2008)

Easy method for signal enhancement and progress in the structure determination of the helical human membrane protein Hv1

Monika Bayrhuber¹, Beat Vögeli¹, Christian Klammt², Innokentiy Maslennikov², Senyon Choe², Roland Riek^{1,2}.

¹Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093, Zürich, Switzerland (<u>monika.bayrhuber@phys.chem.ethz.ch</u>), ²Structural Biology Laboratory, Salk Institute, 10010 North Torrey Pines Rd., 92037, La Jolla, CA, USA

Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins, protein complexes or membrane proteins. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA¹ which makes use of a ¹⁵N-¹H-TROSY element and a ¹³C'-¹³CA CRINEPT step combined with a multiple quantum coherence during the ¹³CA evolution period. Because of the introduction of these relaxation-optimized elements and ten less pulses required, when compared with the conventional TROSY-HN(CO)CA experiment an average signal enhancement of a factor of 1.8 was observed for the membrane protein-detergent complex KcsA with a rotational correlation time τ_c of around 60 ns. In addition to that this sequence was used to investigate a helical human membrane protein, the human voltage gated proton channel (Hv1² or VSDO³). Hv1 plays an important role in the human innate immune system. Its predicted structure differs considerably from other cation channels. The goal is to understand the voltage-sensing and the proton permeation pathway of this unique channel.

1. Bayrhuber, M., Riek, R., Journal of Magnetic Resonance, 209, 310-314 (2011)

2. Ramsey I. S., Ruchti E., Kaczmarek J.S. and Clapham D.E., Nature, 440, 1213-1216 (2006)

3. Sasaki M., Takagi M. and Okamura Y., Science, 312, 589-592 (2006)

ME429

Substrate-dependent binding of MalE to the ABC transporter MalFGK₂

Simon Böhm¹, Anke Licht², Gunnar Jeschke¹, Erwin Schneider², Enrica Bordignon¹

¹Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland; ²Department of Biology, Humboldt University of Berlin, Berlin, Germany; email: simon.boehm@phys.chem.ethz.ch

The ubiquitous ABC-transporter family is involved in the ATP-dependent uptake or export of a large variety of substrates. In the case of importers, a specific substrate-binding protein (SBP) exists, which captures the substrate in the periplasm and delivers it to the importer.

The ABC type I maltose import system of *E.coli* is structurally and biochemically well characterized and recently several new crystal structures of the transporter were published [1]. The aim of this study is to characterize the formation of the complex between the SBP MalE and the transporter MalFGK₂ during the nucleotide cycle in the presence and absence of maltose, to complement the available structural data and to obtain new insights into the role of the substrate in the mechanism of import.

Our method of choice is site directed spin labeling (SDSL) in combination with double electron electron resonance (DEER) to obtain precise distance information between selectively labeled sites. Our results clearly show that MalE interacts with the transporter independently of the presence of maltose. However, the interaction in the apo state in the absence of maltose seems to mostly take place via the N-lobe of MalE and the P2-loop of the transporter, whereas in the presence of maltose we have evidences that the interaction involves both N- and C-lobe of MalE. In contrast, the conformation of the MalFGK₂-E complex in the ATP-state is only driven by binding of ATP, regardless of the presence or absence of maltose. The EPR results are confirmed by cross linking data and by comparison to the available crystal structures. A more complete model of the substrate import cycle of the type I ABC importer is presented.

^{1.} Oldham M. L. Chen J., Science, 332, 1202-1205 (2011)

Structural and dynamical model of transmembrane domain of fibroblast growth factor receptor 3

<u>Dmitry M. Lesovoy</u>¹, Eduard V. Bocharov¹, Maxim L. Mayzel¹, Sergey A. Goncharuk², Mariya V. Goncharuk², Pavel E. Volynsky¹, Roman G. Efremov¹, Aleksander S. Arseniev¹

¹Division of Structural Biology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Mikluho-Maklaya str., 16/10, 117997, Moscow, Russian Federation (<u>dima_l@nmr.ru</u>); ²Biological Department of Lomonosov Moscow State University, Leninskie Gory, 1/12, 119991, Moscow, Russian Federation

Homodimerization and dynamic properties of the transmembrane segment of fibroblast growth factor receptor 3, participating in signal transduction through the cell membrane, were characterized by heteronuclear NMR spectroscopy in the membrane-mimicking environment. The helix-helix dimerization heptad motif $(YA^{374}X_2L^{377}X_2G^{380}X_2FF^{384}X_2IL^{388}X_2A^{391}X_2TL^{395})$ is employed for a left-handed parallel packing with crossing angle of ~20° and helix-helix distance of ~9 Å. The central region of the dimer is characterized by relatively tight packing stabilized by intra- and intermolecular stacking interactions of aromatic rings $(Y^{379}-FF^{384}-F^{386})$, whereas N-terminal part of transmembrane helix is stabilized upon dimer formation that can be related with the receptor activation. The pathogenic mutations Y373C, G380R and A391E are located precisely in the in the helix-helix interface assuming that the obtained dimer conformation is important for receptor functioning. The NMR results combined with molecular modeling data providing detailed analysis of conformational space as well as influence of mutations on structure, stability and dynamic properties of the dimer.

ME431

LT-MAS NMR measurements on multi drug transporter EmrE

Karsten Mörs, Volker Dötsch, Frank Bernhard, Clemens Glaubitz

Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str 9, D-60438 Frankfurt, Germany;

With multidrug resistance (MDR) being an increasing challenge for modern medicine it is vital to understand its mechanisms. One important aspect is the efflux of drugs via membrane proteins. We are studying the "Small multi drug resistance" protein EmrE (UniProt P23895) by low temperature solid-state NMR. Low temperature measurements become more important in the context of dynamic nuclear polarization and freeze-quenching experiments. The temperature range down to 100 K is reliably accessible in long-term experiments with commercial equipment.

EmrE is a secondary transporter that uses the proton gradient across the cell membrane to export drugs from the cell. Typical substrates are aromatic, cationic compounds like TPP⁺ or ethidium. It consists of 110 amino acids with a highly conserved glutamate as the only charged residue residing inside the membrane with a proposed pk_a of 7.5. Understanding its protonation behavior is critical for understanding the transport mechanism of EmrE. In order to minimize scrambling we have used cell free expression to label a single glutamate mutant of EmrE with ¹³C. Solid state NMR analysis of the cell free produced protein-precipitate shows high alpha helical content. The protonation state of EmrE has been assessed by ¹³C-DQF experiments conducted at 100K and at different pH values indicating a protonation dependent shift of the C_{δ} signal below pH 6.

A Solid-state NMR Study of the isotope labelled Multidrug Efflux Pump EmrE in Complex with Substrates

Yean S. Ong¹, Andrea Lakatos¹, Nhu N. Do², Martin Pos^{2,3}, Clemens Glaubitz^{1,3}

¹Institute for Biophysical Chemistry & Centre for Biomol. Magnetic Resonance, Goethe University Frankfurt ²Institute for Biochemistry, Goethe University Frankfurt ³Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt

Multidrug transporters (MDTs) are responsible for the removal of a wide range of drugs from the cytoplasm of cells hence contributing to the rise of multidrug resistant bacteria. A prototype of such MDTs is EmrE (*Escherichia coli* multidrug resistance transport), which belongs to the family of Small Multidrug Resistance (SMR) transporters. Here, we investigate the interaction of this membrane protein with its substrates in its lipid environment using MAS solid state NMR(ssNMR). Two-dimensional ¹³C-¹³C PDSD correlation experiments of selective-extensively labelled EmrE in its apo state and in complex with its substrates tetraphenylphosphonium (TPP), methyltriphenylphosphonium (MTP) and ethidium are compared. Although in all cases, significant line broadening is observed, probably arising from intermediate timescale domain movements, differences in cross-peak volumes at different mixing times for different substrates are observed. This indicates that substrate binding triggers changes in dynamics and structure of EmrE. For example, the intraresidual cross peak pattern involving Cd1 of isoleucines (Ile) showed significant reduction in signal intensities in either TPP- or MTP-bound ¹³C-EmrE . This observation is likely to be due to a change in dynamics (and probably orientation) of the side chains of Ile within the protein helices upon substrate addition. Direct protein ligand interactions using 13C-TPP in complex with SE-13C-EmrE have been probed at low temperature using cwDNP enhanced MAS-NMR. These preliminary data indicate that DNP may be the method of choice for specific interaction studies within membrane protein-substrate complexes.

ME433

NMR studies of porin A

Johan Enberg*, Anders B. Pedersen, B. Göran Karlsson

Swedish NMR Center, University of Gothenburg, Göteborg, Sweden. *johan.enberg@nmr.gu.se

Posters

We have investigated the ß-barrel membrane protein porin A that is involved in the pathogenesis of the meningitis causing bacteria *Nesseria meningitidis*. The protein has been over-expressed as inclusion bodies in *E. coli* and successfully refolded in several detergents. To overcome problems with broad and overlapping signals in the 2D 15N HSQC spectrum, cell-free protein synthesis (CFPS) was evaluated as an alternative expression system. In order to generate a sample using CFPS several different lipids and detergents, as well as nanodiscs, were screened to find an expression condition that produced levels of protein suitable for NMR purposes.

NMR studies of the interaction between porin A and domains 1-2 from Complement Protein 4B and the binding between porin A and chitobiose were initiated

Mechanosensation at a molecular level studied by EPR spectroscopy

Anna I. Dimitrova, Duygu Yilmaz, Armagan Kocer

Department of Membrane Enzymology, University of Groningen, Nijenborgh 4, 9747AG Groningen, Netherlands; e-mail: A.I.Dimitrova@rug.nl

Mechanosensitive (MS) channels have a major role in cellular homeostasis and in maintaining the physical integrity of bacterial cells. One of the best characterized MS is MechanoSensitive Channel of Large conductance. The channel functions as a safety valve to protect bacterial cell against osmotic shock. If cell faces sudden hypoosmotic stress, the bacterial membrane stretches resulting in opening of nonselective pore in the protein. It is still unknown how this channel works. To understand the mechanism of channel opening a strategy is needed that will allow us to understand the helical movements of the protein, since it converts the mechanical force directly into helical movement.

Our strategy combines the power of EPR spectroscopy with a biochemical approach to activate the channel in a controlled way without applying a membrane tension.

The method, based on Site Directed Spin Labeling (SDSL) technique, allows us to introduce artificially a nitroxide radical to desired position of the protein. The EPR of the attached nitroxide provides information about the mobility and polarity of the local environment and allows distance measurements between two or three paramagnetic centers. It is known from the crystal structure that the channel is a homopentamer with two transmembrane helices per subunit: inner and outer (TM1, TM2) and the narrowest part (where the gate starts formation) is about 3Å in a close state. By labeling all five Cys residues in this region the strong dipolar interaction between unpaired electrons cannot be avoided. To overcome this problem we develop method in which we can control the number of Cys residues per pentamer. We also optimized the SDSL procedure and perform EPR studies.

Acknowledgements: This project is financially supported by NWO-VIDI and ERC-Starting Grants

ME435

Helix-bundle structure of sodium/proline symporter PutP revealed by Double Electron-Electron Resonance (DEER) in conjunction with a modelling approach

Kamila Lipiszko^a, Yevhen Polyhach^a, Daniel Hilger^b, Heinrich Jung^b and Gunnar Jeschke^a

^a Laboratory of Physical Chemistry, ETH Zurich, Switzerland, ^b Department Biologie, Ludwig-Maximilians Universität München, Munich, Germany kamila.lipiszko@phys.chem.ethz.ch

Relative arrangement of 13 transmembrane helices – a helix bundle – of Na⁺/proline symporter PutP, whose structure is currently unknown, was determined by means of coarse-grained modelling constrained by experimentally derived distance information. For that nitroxide spin labelling (with MTS spin labels) along with distance measurements by pulse EPR was utilised. Double Electron-Electron Resonance (DEER) experiments were performed at X- and Q-band and mean interspin distances obtained from the experiment were used as constraints during modelling. Spin labels were placed such that the distances between helix ends within the periplasmic as well as the cytoplasmic side of the protein, complemented by additional transmembrane distances, were available. Spin label conformations were predicted by the rotamer library approach¹. The number of available experimental distances (about 70) was found to be not sufficient to fully constrain the problem, therefore additional internal protein restraints as well as those generated from the template structure (crystal structures of vSGLT^{2,3}) were used together with the experimental constraints. A fitting algorithm based on matrix geometry approach⁴ provides an ensemble of possible helix bundle arrangements.

¹ Ye. Polyhach, E. Bordignon, G. Jeschke, *Phys. Chem. Chem. Phys.*, Vol 13, 2356-2366 (2011)

² S. Faham, A. Watanabe, G. M. Besserer, D. Cascio, A. Specht, B. A. Hirayama. E. M. Wright, J. Abramson, *Science*, Vol. 321, 810-814 (2008)

³ A. Watanabe, S. Choe, V. Chaptel, J. M. Rosenberg, E. M. Wright, M. Grabe, J. Abramson, *Nature*, Vol. 468, 988-991 (2010)

⁴ G. M. Crippen, T. F. Havel, *Research Studies Press Ltd.*, Taunton (1988)

Selective Excitation of Metabolite Signals for in vivo ¹H MRS

Mirjam A. Holbach¹, Jörg Lambert², Dieter Suter¹

¹Department of Experimental Physics III, TU Dortmund University, 44227 Dortmund, Germany, Mirjam.Holbach@tu-dortmund.de; ²Leibniz-Institute for Analytical Science – ISAS, 44139 Dortmund, Germany.

Selective excitation of metabolite signals in *in vivo* MRS is important for the correct and robust quantification of the content of some key metabolites. This is of special importance under conditions of low field strength in common clinical MRI scanners, where considerable signal overlap combined with low signal intensities impedes quantification of in vivo MRS signals.

Here we develop pulse sequences which improve sensitivity and selectivity in *in vivo* MRS. With the use of optimal control theory we calculate pulse shapes which allow for a robust selective excitation in the presence of experimental imperfections such as RF- and static field inhomogeniety. For the optimization we use the Krotov approach and perform simulations and experimental tests of the resulting pulses. The aim is to develop spectral editing techniques for the selective excitation of individual metabolites in the human brain, that perform better compared to standard selective excitation methods.

As a model system we examine the metabolites lactate and alanine combined with lipid which have overlapping signals in human tissue.

REFERENCES: 1. Maximov I. I., Journal of Chemical Physics, 132, 084107 (2010)

Мв437

NMR Analyses of Milk Metabolites Allow Disease Prediction for Dairy Cows

Matthias S. Klein¹, Nina Buttchereit², Wolfgang Junge², Georg Thaller², Peter J. Oefner¹, Wolfram Gronwald¹

¹Institute of Functional Genomics, University of Regensburg, Germany; ²Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany. E-mail: matthias.klein@klinik.uni-r.de

Postei

Milk is an easy-to-collect target for metabolic analyses and NMR has been previously successfully applied on cow's milk¹. Metabolic diseases in dairy cows have become more and more wide-spread during the last decades, leading to animal suffering and economic loss, with ketosis being one of the most common metabolic diseases. Although biomarkers for ketosis are known, for example acetone and beta-hydroxybutyric acid (BHBA) levels in blood or milk, disease prediction is still a hard task. In this contribution we show that using a combination of different milk metabolites measured by NMR allows the reliable prediction of disease risk. The advantages of this method include that it is not dependent on acute disease status, such as acetone or BHBA based methods, and that it allows an early prognosis for the disease risk of an animal. The method may also be used for the selection of metabolically stable cows for breeding purposes.

^{1.} Klein, M S; Almstetter, M F; Schlamberger, G; Nürnberger, N; Dettmer, K; Oefner, P J; Meyer, H H D; Wiedemann, S; Gronwald, W, Journal of Dairy Science, 93, 1539-1550 (2010)

Of Mice and Men – NMR-based metabonomics from Animal Systems to Clinical Science

Horst Joachim Schirra¹, Shaffinaz Abd Rahman², Gary M. Leong^{2,3}, Michael J. Waters²

¹ The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, 4072, Queensland, Australia, email: <u>h.schirra@uq.edu.au</u>;
²The University of Queensland, Institute for Molecular Bioscience, Brisbane, 4072, Queensland, Australia; ³Department of Pediatric Endocrinology and Diabetes, Mater Children's Hospital, South Brisbane, 4010, Queensland, Australia.

We use NMR-based metabonomics to study how disease, genetics and environment influence metabolic profiles in animals and humans. **Mice:** Growth hormone (GH) is the key factor regulating postnatal growth and an important regulator of metabolism. As a model system for obesity we have analysed the metabolic profiles of transgenic mice with truncations in the intracellular GH receptor domain. These mice develop late-onset obesity. NMR profiling identified metabolites, including taurine, trimethylamine, creatine/creatinine and branched-chain amino acids. These metabolites were correlated with genetic data from microarray profiling and indicate significant changes in choline and lipid metabolism leading to the observed phenotype. They support a potentially important role for taurine in developing obesity. **Men:** We have analysed the stability of human urine samples at room temperature. We show that the standard method of sample preservation with 0.06% NaN₃ does not prevent sample degradation over 24h. This can be a source of error in human clinical studies if subjects fail to store samples at 4°C before delivery to the clinic. We solve this problem by preserving urine samples in >100 mM sodium borate upon collection. Following this newly established standard procedure, samples will remain stable and an accurate metabolic fingerprint can be recorded.

These results highlight the versatility of metabonomics in studying complex biological problems.

REFERENCES: 1. Schirra H. J., Anderson C. G., Wilson W. J., et al. *PLoS ONE*, 3, e2764 (2008)

Мв439

Altered Fatty Acid Metabolism in Long Duration Road Transport: An NMRbased Metabolomics Study in Sheep

<u>Horst Joachim Schirra¹</u>, Juan Li^{2,3}, Gene Wijffels², Yihua Yu³, Dominic O. Niemeyer⁴, Andrew D. Fisher^{4,5}, Drewe M. Ferguson⁴

¹The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Qld 4072, Australia, email: <u>h.schirra@uq.edu.au</u>; ²CSIRO Livestock Industries, 306 Carmody Road, St Lucia, Qld 4067, Australia; ³Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China; ⁴F.M. McMaster Laboratory, CSIRO Livestock Industries, Armidale, NSW 2350, Australia; ⁵current address: Faculty of Veterinary Science, The University of Melbourne, Parkville, Vic 3052, Australia.

Ruminants experience metabolic/endocrine changes during and after road transport due to a combination of food/water deprivation with stress. The recovery time and how to improve recovery are of interest to livestock industries. However, traditional clinical indicators are relatively insensitive to subtle metabolic changes. We investigated the metabolic responses of merino ewes allocated to 12 and 48 h road transport under standard industry conditions with NMR-based metabolomics. Analysis of NMR spectra from urine and serum collected at pre-transport, on arrival, and up to 72 h post-transport revealed changes in several metabolites between treatment groups and time points. The metabolic responses involved metabolites associated with several metabolic pathways, especially carbohydrate, and lipid metabolism. The animals also experienced alterations in gut metabolism, protein catabolism and possibly a renal response. The longer transport duration caused an amplified and different perturbation of both serum and urinary profiles. During the recovery period, the metabolism of the animals returned to a new stable state. Intriguingly, excretion of acyl glycines and a dicarboxylic acid was observed after transport and during recovery, implicating peroxisomal fatty acid oxidation as metabolic response to transport-induced stress.

State-of-the art data normalization methods improve NMR-based metabolomic analysis¹

Stefanie M. Kohl, Matthias S. Klein, Peter J. Oefner, Rainer Spang and Wolfram Gronwald.

Institute of Functional Genomics, University of Regensburg, Josef-Engert-Strasse 9, 93053 Regensburg, Germany, email: wolfram.gronwald@klinik.uni-regensburg.de

Extracting biological and medical information from NMR derived metabolomic datasets by multivariate data analysis is of substantial complexity. Common challenges include for example screening for differential metabolites, estimation of fold changes, and sample classification. Prior to these analyses, it is important to minimize contributions from unwanted biases and experimental variance. This is the intention of data preprocessing. Here, two different types of data normalization methods were compared systematically. The first type of algorithms aims to remove unwanted sample-to-sample variation, while the second type is aimed at adjusting the variance of the different metabolites. The latter approaches include variable scaling methods and variance stabilizing transformations. The effect of the various methods on sample classification was evaluated on urinary NMR data obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was analyzed on a dataset following a Latin-square design, where varying amounts of 8 different metabolites were spiked into a human urine matrix. In conclusion, preprocessing methods originally developed for DNA microarray analysis performed best in reducing bias, accurately detecting fold changes, and classifying samples.

REFERENCES:

1. Kohl, S.M., Klein, M.S., Oefner, P.J., Spang, R. & Gronwald, W. State-of-the Art Data Normalization Methods Improve NMR-Based Metabolomic Analysis. Submitted (2011)

Мв441

Metabolic profiling and antiradical activity of honeys and herbal honeys studied by NMR and EPR spectroscopy

Marta K. Jamróz, Katerina Makarova, Milena Kwiatkowska, Katarzyna Paradowska

Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland marta.jamroz@wum.edu.pl

Poster

Since a special emphasis is put on finding suitable methods for the detection of geographical and botanical origin of honeys, twenty-seven samples of honeys and herbal honeys from Poland have been studied by means of ¹H and ¹³C NMR. Multivariate statistical techniques used to investigate metabolic profiles of food and plant extract have been shown to be useful tools for the investigation of their botanical source¹, as well as of aging processes that can alter the composition of the studied sample. Therefore principal component analysis (PCA) was used to analyze the NMR spectra of the honeys of different botanical origin. In order to detect both sugars, which represent the main components of honey, and constituents from plant extracts, which are also of importance in case of herbal honeys, analysis in two different solvents: D_2O and DMSO was performed. In addition, samples of two chosen honeys after storing in accelerated aging conditions were studied in order to establish whether the NMR/PCA method can be applied for tracking aging changes.

Antiradical activity of honeys was studied by EPR spectroscopy to establish if the substances from plant extracts enhance the radical scavenging properties of the samples. It was also of interest to check whether the accelerated aging conditions influence in any way the antiradical activity of honeys.

REFERENCES: 1. Consonni R, Cagliani L. R., J. Agric. Food Chem, 56, 6873–6880 (2008)

Insight into neural cell metabolism by NMR – employing UDP-GlcNAc as a metabolic marker

Mailin Doepkens^{1#}, Anika Gallinger^{1#}, Thorsten Biet¹, Luc Pellerin², Thomas Peters¹

¹Institute of Chemistry, University of Luebeck, 23562 Luebeck, Germany; ²Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; [#]both authors contributed equally; mailin.doepkens@chemie.uni-luebeck.de

UDP-N-acetylglucosamine (UDP-GlcNAc) is an activated sugar nucleotide produced during hexosamine biosynthetic pathway (HBP) [1]. This activated sugar is the key substrate for posttranslational glycosylation and O-GlcNAcylation of proteins [2,3]. Other activated sugars (e.g. UDP-GalNAc, UDP-Glc, UDP-Gal and CMP-NeuNAc) are being produced in salvage pathways of the HBP [4]. Changes in flux through the HBP either increase or decrease UDP-GlcNAc levels, affecting glycosylation and O-GlcNAcylation of many proteins. These modifications not only play important roles in many fundamental cellular processes, but also their dysregulation can lead to human diseases such as diabetes, Alzheimer's disease and cancer [5,6,7,8]. Alterations of UDP-GlcNAc an ideal metabolic marker.

Perchloric acid (PCA) is widely used for extraction of water-soluble metabolites. We found that PCA extraction is not suitable for detection of activated sugar nucleotides in cell extracts, since most of these sugars are being decomposed. However, methanol/chloroform extraction is well suitable for quantitative detection of these metabolites, as shown by nuclear magnetic resonance (NMR).

REFERENCES: [1] McClain D., *Diabetes*, 45(8), 1003-1009 (1996). [2] Furukawa K., *Curr. Opin. Biotechnol.*, 3(5), 554-559 (1992). [3] Hart G. W., *Nature*, 446, 1017-1022 (2007). [4] Varki A., *Essentials of Glycobiology*, 2nd Edn., Cold Spring Harbor Laboratory Press (2009). [5] Dias W. B., *Mol. BioSyst.*, 3, 766-772 (2007). [6] Khidekel N., *PNAS*, 101(36), 13132-13137 (2004). [7] Buse M. G., *Am. J. Physiol. Endocrinol. Metab.*, 290(1), E1-E8 (2006). [8] Liu F., *Brain*, 132(7), 1820-1832 (2009).

Мв443

Painless T₂ filtration.

Juan A. Aguilar, Mathias Nilsson and Gareth A. Morris

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Email: juan.aguilarmalavia@manchester.ac.uk

 T_2 filtration is used in fields such as metabolomics where broad signals need to be suppressed in order to see underlying sharp resonances.¹ It typically employs a high duty cycle Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence to quench J-evolution. The high average RF power needed creates problems with hardware and with sample heating, causing lines to shift and broaden. Here a novel variant of the CPMG pulse sequence is presented that efficiently refocuses J-evolution, allowing clean T_2 filtration with minimal heating. The method uses a quadrature 90° pulse every two echoes to refocus J modulation, as in the "perfect echo" sequence of Takegoshi et al.². The perfect echo

was originally reported to be restricted to AX spin systems, but has been used to reduce modulation in larger systems.³ Here it is shown that the effect is in fact general for refocusing intervals short compared to J.

1. Nicholson, J. K.; Foxall, J. K.; Spraul, M.; Farrant, R. D.; Lindon, J. C. Anal. Chem. 1995, 67, 793

^{2.} Takegoshi, K.; Ogura, K.; Hikichi, K. J Magn Reson 1989, 84, 611.

^{3.} van Zijl, P. C. M.; Moonen, C. T. W.; Vonkienlin, M. J Magn Reson 1990, 89, 28.

Metabolomic studies on *Isatis tinctoria* – Comparison of different origins, harvesting dates, and the effect of repeated harvesting

Niels Guldbrandsen¹, <u>Melanie Quitschau</u>¹, Sarantos Kostidis², Emmanuel Mikros², Alexios-Leandros Skaltsounis², Matthias Hamburger¹

¹Institute of Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland (<u>melanie.quitschau@unibas.ch</u>); ²Department of Pharmacognosy, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou 15571, Greece

Isatis tinctoria (Brassicaceae) is an ancient dye and medicinal plant with potent anti-inflammatory and anti-allergic properties.^{1, 2} We investigated metabolic differences of plants grown on experimental plots at the Agricultural Field Station of Thuringia under identical conditions. Comparisons were carried out for plants of different geographic origins, different harvesting dates, and between once and repeatedly harvested plants. Leaf samples were shock-frozen with liquid nitrogen immediately after harvest, freeze-dried, and cryomilled prior to extraction. Extracts were prepared by Accelerated Solvent Extraction (ASE) with EtOAc and CH₃OH.

EtOAc extracts were dissolved in CDCl₃/CD₃OD (7:3) with TMS as internal standard for NMR measurements, and spectra analyzed by multivariate analysis. The score plots produced by Principal Component Analysis (PCA) revealed differences in the metabolic profile between the origins and harvesting dates. Partial Least Square Discriminant Analysis (PLS-DA) plots exhibited differences between the once and repeatedly harvested plants, if the harvesting dates were plotted separately. Its loading plots showed mainly the aliphatic region to be responsible for these differences. Additionally, a part of the samples showed higher quantity of indoles. Assignement of signals in the interesting regions is ongoing.

Hamburger M., *Phytochemistry Reviews*, 1, 333-344 (2002).
 Mohn T., Plitzko I., Hamburger M., *Phytochemistry*, 70, 924-934 (2009).

Мв445

¹H NMR-based Metabonomics for Drug Testing

Elena Voronina¹, Maria K. Parr², Nils E. Schlörer¹.

¹Department of Chemistry, University of Cologne, 50939 Cologne, Germany (elena.voronina@uni-koeln.de); ² Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, 50933 Cologne, Germany.

Poster

During the last decade, metabonomics became a very attractive field of research and has been studied by means of various analytical techniques. More recently, the advent of metabonomics by NMR led to a growing number of applications in medicine.¹ ¹H NMR spectra of biological materials are advantageous to quickly detect a large range of low MW metabolites in a single experiment as opposed to other biophysical techniques and changes in the biochemical composition of body liquids caused by exposition to drugs can be evaluated.² This may serve to supplement conventional targeted detection techniques e.g. for steroids in doping control³ in a non-targeted design.⁴ Metabonomics studies of biofluids, such as urine, also represent a complex problem for NMR spectroscopy. Detection is hampered e.g. by the presence of water (main component of any biological fluid), whose dominating signal needs to be eliminated to detect the several orders of magnitude weaker signals of dissolved metabolites. Different pulse sequences were tested for the solvent suppression. ¹H NMR spectra of a range of metabolites were obtained using signal suppression under the same conditions as test spectra from urine samples to create the basis for urinary NMR profiling.

^{1.} Eisner R. et al., *Metabolomics*, 7, 25-34 (2011)

^{2.} a) Spraul M. et al., J.C.J. Pharm. Biomed. Anal., 12,1215-1225 (1994); b) Lenz E.M. et al., J. Proteome Res., 6, 443-458 (2007)

^{3.} Mareck U. et al., J. Mass Spectrom., 43, 877-891 (2008)

^{4.} a) Pozo O.J. et al., Anal. Chem., 80,1709-1720 (2008); b) Wolf S. et al., Toxicol. Lett., 199, 410-415 (2010)

MD446

A Dual-mode Microwave Resonator for Double Electron-Electron Resonance in W-band

Igor Tkach, Maria-Teresa Türke, Giuseppe Sicoli, Soraya Pornsuwan and Marina Bennati

Research Group Electron Paramagnetic Resonance, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany. Igor.Tkach@mpibpc.mpg.de.

High-frequency PELDOR is an important technique to deliver information about the relative orientation of paramagnetic species, which is essential to study conformational changes of labelled biomolecules [1]. Furthermore, dual frequency experiments can be performed to determine the effective saturation factors of polarizers utilized for dynamic nuclear polarization (DNP) [2]. However, the execution of such experiments at high fields is usually aggravated by a narrow bandwidth of available single mode resonators. One way to overcome this limit is to employ a dual mode resonator.

We present a resonator that operates at W-band microwave frequencies and supports two microwave modes with the same field polarization at the sample position [3]. The resonator was designed for dual-frequency experiments with a variable separation of probe and excitation frequencies up to several hundreds MHz. It has been applied for orientation-selective PELDOR on the labelled RNA and peptide molecules. Furthermore, it was used in W-band dual frequency experiments to study the saturation behavior of polarizers for DNP in liquids.

The resonator design, its numerical analysis as well as some experimental aspects of its applications will be discussed.

1. V. P. Denysenkov, T. F. Prisner, J. Stubbe, and M. Bennati, PNAS, 103(36),13386-13390 (2006).

2. M.-T. Türke and M. Bennati, PCCP, 13, 3630-3633 (2011).

3. I. Tkach, G. Sicoli, C. Hoebartner and M. Bennati, J. Magn. Reson., 209, 341-346 (2011).

Md447

Orientation analysis of rigid nitroxide spin-labels in RNA duplex by highfield pulsed electron-electron double resonance

Soraya Pornsuwan, Giuseppe Sicoli, Igor Tkach, and Marina Bennati

Max-Planck Research Group Electron Paramagnetic Resonance, Max-Planck Institute for Biophysical Chemistry Am Faßberg 11, Göttingen, Germany. soraya.pornsuwan@mpibpc.mpg.de

Recently pulsed electron-electron double resonance (PELDOR) spectroscopy at high magnetic fields has been successfully employed not only for distance measurements but also for the mutual orientation between two tyrosyl radicals [1, 2]. For the applications of distance measurement in biological macromolecules, however, the nitroxide spin-label is widely used as a paramagnetic center. The method to acquire the orientation between the two nitroxide labels is more challenging due to the flexibility of the nitroxide side-chain. Thus, we present in this work the analysis of PELDOR data to determine the orientation of double nitroxide spin-labels in an RNA duplex. Two rigid nitroxides were incorporated in the RNA duplex with approximately 3.1 nm apart. Two sets of PELDOR experiments were performed at 94 GHz with a commercial high-Q resonator and a home-built dual mode resonator [3]. The analysis was implemented to fit with both data sets. The orientation of the radicals is reported in Euler angles of the nitroxide coordinates with respect to the dipolar vector. The details of the data analysis with the model will be discussed as well.

^{1.} Denysenkov V. P., Biglino D., Lubitz W., Prisner T. F., Bennati M., Angew. Chem. Int. Ed., 47, 1224-1227 (2008)

^{2.} Sicoli G., Argirević T., Stubbe J., Tkach I., Bennati M., Appl. Magn. Reson., 37, 539-548 (2010)

^{3.} Tkach I., Sicoli G., Hoebartner C., Bennati M., J. Magn. Reson., 209, 341-346 (2011)

Md448

μ -Freeze quench technique combined with EPR spectroscopy: a powerful tool to investigate enzymatic reactions

<u>Roberta Pievo</u>,¹ Alistair J. Fielding,¹ Brigitta Angerstein,¹ Christian Koch,³ Ivo Feussner³ and Marina Bennati^{1,2}

¹Max Planck Research Group Electron Paramagnetic Resonance - Max Planck Institute for Biophysical Chemistry - Am Faßberg 11, D-37077 Göttingen, Germany (<u>roberta.pievo@mpibpc.mpg.de</u>;)²Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, D-37077 Göttingen, Germany; ³Georg-August-University Göttingen, Albrecht-von-Haller-Institute for Plant Sciences, Ernst-Caspari-Building, Dept. of Plant Biochemistry, Justus-von-Liebig-Weg 11 D-37077 Göttingen, Germany

Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to the study of many enzymatic processes since the substrate conversion often involves electron transfer reactions, via radical intermediates formation and/or via changes on the oxidation states of transition metal cofactors.

During catalysis the half-life $(t_{1/2})$ of these transient species lies typically in the millisecond time scale, making their EPR characterization in the steady state not feasible.

Mechanistic and kinetic studies can be achieved by coupling EPR with Rapid Freeze Quench (RFQ) techniques,¹ a suitable method to trap these meta-stable reaction intermediates.

Here we report a description of our setup on the μ -RFQ apparatus optimized to be coupled with (X-, Q- and W-band) EPR and its application on the study of PpoA enzyme, in which the transient behavior of three paramagnetic centers (two hemes and a tyrosyl radical) is observed.²

REFERENCES:

Bray R. C., *Biochem. J.*, 81, 189-193 (1961); Bray R. C. and Petterson R., *Biochem. J.*, 81, 194-195 (1961); Bray R. C., *Biochem. J.*, 81, 196 (1961)
 Fielding A. J., Brodhun F., Koch C., Pievo R., Denysenkov V. P., Feussner I. and Bennati M., *J. Am. Chem. Soc.*, (2011) DOI: 10.1021/ja202207t

M_D449

Non-Canonical DNA Structures Studied by Spin-Label EPR

Mykhailo Azarkh, Oliver Okle, Vijay Singh, Jörg S. Hartig, Daniel R. Dietrich, and Malte Drescher

Departments of Chemistry and Biology, Konstanz Research School Chemical Biology (KoRS-CB), and Zukunftskolleg, University of Konstanz, 78457 Konstanz (Germany), Malte.Drescher@uni-konstanz.de

In contrast to simple and predictable duplex structures, non-canonical DNA shows a high degree of polymorphism with respect to topological features, such as the orientation of individual strands and the connectivity of the loops. Therefore, the high-resolution methods are not always able to decipher the exact nature of these structures since they require the presence of single species. We have introduced EPR distance measurements for the investigation of highly polymorphic DNA structures.

For example, the human telomeric repeat adopts drastically different conformations depending on parameters such as the type of monovalent ions coordinated by the quadruplex and the slight changes in the nucleotide sequence. Double electron-electron resonance (DEER or PELDOR) spectroscopy is ideally suited to distinguish between the different conformations.

DNA three-way junctions can be used for the design of nanoscale assemblies because of their conformational versatility. In our case, an external stimulus, the addition of a small molecule, triggers a conformational change which can be monitored by spin-label EPR.

^{1.} Singh, V., Azarkh, M., Exner, T., Hartig, J., Drescher, M., Angewandte Chemie Int. Ed., 48, 9728-9730 (2009)

^{2.} Seemann, I., Singh, V., Azarkh, M., Drescher, M., Hartig, J. S., Angewandte Chemie Int. Ed., 133, 4706-4709 (2011)

MD451

Distances between paramagnetic metal centers and spin labels in proteins by pulsed EPR: The RIDME method as a new tool

Sergey Milikisyants^a, Francesco Scarpelli^a, Michelina Finiguerra^{a,b}, Marcellus Ubbink^b <u>Martina</u> <u>Huber</u>^a

^aDepartment of Molecular Physics, and Leiden Institute of Chemistry ^b Leiden University, Postbox 9504, 2300 RA Leiden, The Netherlands <u>huber@physics.leidenuniv.nl</u>

Structure determination in biological systems by electron paramagnetic resonance (EPR) is becoming increasingly popular. Distances in the nm range between spin labels in proteins yield structure restraints¹. Transition metal-ion centers abound in proteins, but their potential as markers for distance determination is limited by their large g-anisotropies and fast relaxation times. For many of these centers, the known pulse sequences for e.g. DEER or PELDOR cannot be applied because of excitation bandwidth limitations. The RIDME method² circumvents this problem by making use of the spin-lattice relaxation (T_1)-induced spin-flip of the transition-metal ion. Designed to measure distance between such a fast relaxing metal center and a radical, it suffers from a dead time problem. This disadvantage can be avoided by the five-pulse RIDME (5p-RIDME) sequence. An Fe(III)-spin label distance in ths protein cytochrome *f* is determined.³

REFERENCES

1. Hilger, D et al. Biophysical Journal 2007, 93, 3675-36831, Bhatnagar, J et al. Two-Component Signaling Systems, Pt B 2007, 423, 117-133.

2. L.V.Kulik, et al. J. Magn. Res. 2002, 157, 61-68

3. S. Milikisyants J. Magn. Res. 2009, 201, 48-56.

MD452

Structure and Dynamics of Nanotubular Lipid Bilayers by Spin-labeling EPR

Antonin Marek, Saritha Nellutla, Maxim A. Voinov, Christina Scheid, Alex I. Smirnov

Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA; Alex_Smirnov@ncsu.edu

Lipid nanotube arrays represent a new type of substrate-supported lipid bilayers (SSB) that are formed by self-assembling phospholipids into tubular structures inside ordered nanochannels of anodic aluminum oxide (AAO). These structures exhibit several important advantages over conventional SSB formed on planar substrates. Among those are very high surface area, long-term stability of aligned lipid assemblies under exceptionally wide range of temperatures, pH, and salt concentration, high hydration level of lipid bilayers, and protection from surface contaminations. Here we employed an arsenal of spin-labeling and high field EPR as well as other magnetic resonance methods to study structure, dynamics, and local interfacial polarity of nanotubular lipid assemblies formed in nanochannels with well-defined diameters of 21.0±3.2, 37.0.0±3.0, and 58.3.0±3.5 nm fabricated at NCSU. Specifically, synthetic phospholipids with pH-reporting nitroxides covalently tethered to the lipid polar head were used for evaluating surface potentials of lipid nanotubes when confined to AAO nanopores. Alternatively, alumina surface has been modified with pH-sensitive nitroxides to report on interfacial electrostatics. Spin-labeling continuous wave EPR was used to access membrane insertion and assembly of transmembrane peptides. Finally, DEER measurements have been performed to determine the distance constraints of peptide assemblies formed in lipid nanotubes.

Supported by US BES DOE contract DE-FG02-02ER15354 to AIS.

M_D453

High-Field EPR Methods to Probe Electrostatics and Hydrogen Bonding in **Protein Systems.**

Tatyana I. Smirnova¹, Oleg G. Poluektov², Alex I. Smirnov¹

1 Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC, 27695 USA. E-mail: tismirno@ncsu.edu; ²Argonne National Laboratory, Bldg. 200, 9700 South Cass Ave., Argonne, IL 60439 USA

Nitroxide spin-labeling in combination with EPR spectroscopy has found many applications in studying structure and dynamics of proteins and biological membranes. Recently, there has been a substantial interest in utilizing High Field and pulse EPR to characterize local effects of polarity and hydrogen bonding in proteins and biological membrane systems. Here we report on employing an arsenal of advanced spin-labeling EPR methods to address two questions: 1) to characterize binding of lipids by Sec14 protein and 2) to profile heterogeneous dielectric and hydrogen bonding environment along the α - helical chain of an alanine-rich WALP peptide that is anchored in a lipid bilayer in a transmembrane orientation. The measurements of local polarity and hydrogen bonding from characteristic changes in EPR spectra were enhanced by use of perdeuterated and ¹⁵N-substituted nitroxides and high field EPR at 130 GHz (D-band). Formation of hydrogen bonds between the nitroxides and membrane-penetrating water molecules was observed directly in HYSCORE X-band experiments. Such measurements allowed us to derive experimental profiles of hydrogen bonding environment along a typical transmembrane α - helix.

Supported by: NSF-0843632 to TIS and NIH 1R01GM072897 to AIS.

MD454

Spin-dependent transport in μ c-Si:H silicon thin-film solar cells

<u>Christoph Meier</u>¹, Jan Behrends¹, Christian Teutloff¹, Matthias Fehr², Alexander Schnegg², Klaus Lips², Robert Bittl¹

¹Fachbereich Physik, Freie Universität Berlin, Berlin, Germany; ²Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany. (meier@physik.fu-berlin.de)

Microcrystalline silicon (μ c-Si:H) is a promising material for thin-film solar cells¹. It is characterized by a mainly disordered structure with embedded silicon crystallites. Defects in the bulk and at interfaces as well as localized states in the near of the energy bands give rise to charge carrier loss and hopping processes influencing the device efficiency. In order to elucidate the correlation between morphological structure and the electrical properties, charge carrier transport channels and the EPR fingerprints of contributing defect centres were analyzed by electrically detected magnetic resonance (EDMR). This technique detects changes in sample conductivity induced by spin manipulation rather than absorption of microwave resulting in significantly enhanced sensitivity. EDMR was applied to µc-Si:H fully processed thin-film solar cells to analyse the charge transport and recombination processes and the nature of the contributing states in the device. Furthermore an a-Si:H/c-Si interface was studied serving as a model system of crystallites in the amorphous silicon (a-Si:H) matrix revealing partly similar EDMR structures.

^{1.} Rech B., Roschek T., Repmann T., Müller J., Schmitz R., Appenzeller W., Thin Solid Films, 427, 157-165 (2003)

MD455

Distance, Orientation and Structure Determination using a divalent spin label on fully deuterated histone Chaperone Vps75

Andrew Bowman¹, Hassane El-Mkami², Richard Ward¹, Tom Owen-Hughes¹, Graham M. Smith², <u>David G. Norman¹</u>

> ¹College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK. ²School of Physics and Astronomy, University of St Andrews, St. Andrews, FE2 4KM UK

d.g.norman@dundee.ac.uk

Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes, regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation and DNA repair. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone¹. We recently turned our attention to the examination of the Vps75 chaperone and demonstrate that the protein undergoes a transition from dimer to tetramer on going from high to low salt conditions. We have used a divalent MTSSL like spin label to label and crosslink at the dimeric dyad axis of fully deuterated² Vps75. PELDOR spectroscopy demonstrated a distance of almost 80Å between 2 spin labels defining the tetrameric ring form at physiological salt concentration. Due to the restricted motion of the spin labels used we have been able to demonstrate and measure significant label orientation using W-band measurements³.

Bowman, A., Ward, R., Wiechens, N., Singh, V., El-Mkami, H., Norman, D.G. & Owen-Hughes, T. (2011). *Molecular Cell* 41, 398-408.
 Richard, W., Bowman, A., Sozudogru, E., El-Mkami, H., Owen-Hughes, T. & Norman, D.G. J.Mag.Res. 207, 164-167. (2010).

3. Cruickshank, P.A.S., Bolton, D.R., Robertson, D.A., Hunter, R.I., Wylde, R.J. & Smith, G.M. Review of Scientific Instruments 80, (2009).

MD456

PELDOR Data Base

Andriy Marko and Thomas F. Prisner

Institute of Theoretical and Physical Chemistry, J. W. Goethe University, Frankfurt, Germany

Pulsed Electron-electron Double Resonance (PELDOR) is a method frequently used to determine distances between paramagnetic centers in bio-macromolecule on nanometer scale [1, 2]. A standard algorithm for determination of distances from the experimental data assumes that all possible mutual orientations of spin labels are equally probable. However, in many applications mobility of spin labels attached to large molecules can be significantly restricted [3]. In order to determine the total PELDOR signal in this case, individual contributions of each rigid biradical should be explicitly calculated for given frequencies of probe and pump pulses. Solution of the inverse problem or determination of ensemble of molecular structures that fit experimental PELDOR data acquired at multiple mw-frequencies and magnetic fields has proven to be an non trivial task, especially, when no information about molecular structure under study is available.

In this work we present a fitting algorithm that reconstruct experimental data by searching for an optimal combination of presimulated PELDOR time traces for nitroxide biradicals with all relative orientations and with inter-spin distances in the experimentally accessible range. The generated library of PELDOR time traces has been employed to excellently fit experimental data containing orientation selection effects gathered on model biradical systems and rigidly labeled DNA molecules.

^{1.} Milov A., Ponomarev A. and Tsvetkov Yu., Chem. Phys. Lett, 110, 67 - 72 (1984)

^{2.} Schiemann O. and Prisner T., Quart. Rev. Biophys., 40, 1-53 (2007)

^{3.} Marko A., Margraf D., Yu H., Mu Y., Stock G., and Prisner T., J. Chem. Phys, 130, 064102 - 9 (2008)

M_D457

Design and Implementation of Optimal Control Based Broadband Excitation Pulses for EPR Spectroscopy

<u>Philipp E. Spindler¹</u>, <u>Yun Zhang²</u>, Burkhard Endeward¹, Naum Gershernzon³,

Thomas Skinner³, Steffen J. Glaser², Thomas F. Prisner¹

¹Department of Physical and Theoretical Chemistry, Goethe Universität, Frankfurt am Main, Germany; ²Department Chemie, Technische Universität München, Garching, Germany; Physics Department, Wright State University, Dayton, Ohio, USA

Shaped pulses can significantly improve the performance of classical rectangular pulses to steer a spin from a given initial state to a desired target state, as demonstrated in NMR. In EPR spectroscopy, the creation of arbitrary shaped pulses is more difficult since the EPR timescale is about three orders of magnitudes faster than the NMR timescale. Our setup consists of a Bruker Elexsys pulsed X-band EPR spectrometer where we added an arbitrary waveform generator to be able to shape microwave pulses. Our waveform generator provides two independent programmable channels with 1GHz DAC's, which makes it possible to generate waveforms with arbitrary amplitude and phase on a 1ns timescale. For excitation bandwidths on the order of the bandwidth of the electronics and the resonator, transient effects play an important role, resulting in systematic distortions of the pulse shape experienced by the electron spins, compared to the ideal pulse shape. These effects can be characterized using a protocol to measure the experimental impulse response of the probe with a pickup coil. Based on the measured impulse response, the transient effects can be taken into account in the optimal control based GRAPE optimization algorithm, resulting in significantly improved experimental performance of broadband pulses. We present the application of broadband (200 MHz) excitation pulses to a quasi isolated spin ½ and an isotropically coupled spin ½ system.

Md458

Numerical Analysis of DEER in Gd³⁺-Nitroxide Spin Pairs

Maxim Yulikov, Petra Lueders and Gunnar Jeschke

Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland e-mail: gunnar.jeschke@phys.chem.ethz.ch

In last few years Gd³⁺ centers have attracted attention as possible probes for DEER-based distance determination, especially suitable for high field experiments^{1,2}. In particular, DEER in Gd³⁺-nitroxide spin pairs has been recently tested in our group and it shows surprisingly good performance down to X-band frequencies. No deviation of detected distances from the expectations has been observed so far even for Gd³⁺ complexes with moderately strong zero field splittings.

In this work we analyse the transitions excited and observed in the Gd^{3+} -nitroxide DEER experiment with the particular pulse settings used in our work². We aim to see how much the distortion of the observed dipolar frequencies is reduced for this particular setup compared to the general case.

In addition to the dipolar frequency analysis, we perform spin-dynamics simulations for this type of pulse sequence in order to understand the experimentally observed echo reduction phenomena. The detected signal is usually dominated by the coherences on $|-1/2\rangle \leftrightarrow |1/2\rangle$ transitions of Gd³⁺ centers. The DEER echo reduction seems to occur when the pump pulse excites transitions that have a level in common with the $|-1/2\rangle \leftrightarrow |1/2\rangle$ transition of Gd³⁺ centers. This effect strongly influences sensitivity of the distance measurements with Gd³⁺-based spin labels.

^{1.} Raitsimring A. M., Gunanathan C., Potapov A., et. al., JACS, 129, 14138-14139 (2007)

^{2.} Lueders P., Jeschke G., Yulikov M., J. Phys. Chem. Lett., 2, 604-609 (2011)

M1459

Spin Relaxation in Trinuclear Clusters Comprising Half Integer Spin Ions

Yiannis Sanakis

Institute of Materials Science, Demokritos National Center for Scientific Researc, Ag. Paraskevi, Attiki, Greece. sanakis@ims.demokritos.gr

The spin relaxation properties of Polynuclear Transition Metal Clusters (PTMCs) constitute a major field in Molecular Magnetism, especially in relation to Single Molecule Magnets (SMMs). The spin relaxation behavior of such systems is often assessed by Alternating Current (AC) magnetic susceptibility measurements while critical parameters affecting the relaxation mechanisms are determined by Electron Paramagnetic Resonance spectroscopy (EPR). Since the early nineties the combination of these two techniques has been established as a standard methodology for the study of SMMs. However, such combined studies on PTMCs that do not exhibit SMM behavior are rather scarce in the literature. In the present work we apply this methodology to the two trinuclear clusters $[Bu_4N]_2[Cu_3(\mu_3-Cl)_2(\mu-pz)_3Cl_3]$ (pz = pyrazolato anion) (1) and $[Fe_3(O_2CPh)_6(H_2O)_3]ClO_4\cdot py$ (2). We demonstrate that the relaxation properties of both clusters may be monitored by AC susceptibility measurements in the presence of moderate external magnetic fields. It is found that the relaxation follows a thermally activated process for both clusters.^{1,2} In 1, ferromagnetic interactions lead to an S=3/2 ground state. EPR reveals an almost axial zero field splitting tensor for this state with D ~ +0.1 cm⁻¹. In 2 the interactions are antiferromagnetic resulting in an S = 1/2 ground state. EPR indicates the presence of antisymmetric exchange $[\mathbf{d}_{ij} \bullet (\mathbf{S}_i \times \mathbf{S}_j)]$. In SMMs, generally, the thermally activated relaxation is related to transitions within the same (ground state) spin manifold. For both 1 and 2 the analysis of the relaxation data indicates the involvement of different spin manifolds sets.

1. Sanakis Y., Pissas, M., Krzystek, J., Telser, J., Raptis, R.G., Chem. Phys. Lett., 493, 185-190 (2010)

2. Georgopoulou A., Sanakis Y., Boudalis, A.K., Dalton Trans., In press (DOI: 10.1039/C1DT10323G)

M₁460

Correlation of the EPR properties of polychlorotriphenylmethyl radicals and their efficiencies as DNP polarizer

Debamalya Banerjee^a, Juan Carlos Paniagua^b, Veronica Mugnaini^c, Jaume Veciana^c, Akiva Feintuch^a, Miquel Pons^{b,d}, Daniella Goldfarb^a

^aDepartment of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel;

^b Universitat de Barcelona. Martí i Franquès 1-11 08028 Barcelona, Spain.

^c Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, Spain and Networking Research Center on Bioengineering, Biomaterials, and NanoMedicine (CIBER-BBN), Bellaterra, Spain.

^d Institute for Research in Biomedicine, Parc Científic de Barcelona, Baldiri Reixac, 10-12 08028-Barcelona, Spain .

Recently, water soluble polychlorotriphenylmethy (PTM) radicals have been introduced as polarizers for ¹³C nuclei in dynamic nuclear polarization (DNP) measurements^{1, 2}. A mechanism has been proposed where the polarization transfer between the electron spins and the bulk ¹³C nuclei takes place via the chlorine atoms of the PTM radicals. In this work we have investigated the EPR properties at W-band (~95 GHz, ~3.5 T) of two PTM radical derivatives, substituted with three and six carboxylate groups. Analysis of the EPR lineshape showed that although the solid effect mechanism in DNP is operational, contributions from EPR forbidden transitions involving Cl nuclear flips are likely. This point is further substantiated by ELDOR (electron-electron double resonance) detected NMR, time dependent ELDOR measurements and theoretical analysis of the Cl nuclear polarization based on the spin Hamiltonian parameters. All of the above studies provided support for the unique Cl assisted polarization transfer mechanism in these radicals.

1. Paniagua, J. C. et al., Physical Chemistry Chemical Physics 12, 5824-5829 (2010)

2. Gabellieri, C. et al., Angewandte Chemie-International Edition 49, 3360-3362 (2010)

M₁461

A paramagnetic DPPH crystal deposited on the crystal of single molecular magnet; EPR evidence on the proximty effect

B. Rakvin¹, D. Žilić¹ and N. S. Dalal²

¹ Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; ²Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA

Single molecule magnets (SMM) are candidates for many applications, such as quantum computation, high-density magnetic data storage and magnetoelectronics¹. In order to develop these applications, it is important to investigate when they are in contact with other dissimilar materials because it is expected that their wave functions and/or magnetic fields extend considerably outside the physical structure². This also implies to improve detection of magnetic field on their surface *i. e.* magnetic field generated by the crystal in the vicinity of its surface. Thus, at the surface of the SMM crystal one expects time dependent as well as magnetic field depended distribution of magnetic fields. EPR spectroscopy accompanied with a local paramagnetic probe will be employed as an alternative simple detection method. Detection of such local fields on surface at very short time interval (~0.1 ns), as well as linewidth anisotropy of the probe, as function of orientation of SMM crystal in the external magnetic field are in the focus of this presentation. The broadening and splitting properties of the DPPH linewidth are considerably changed because of proximity with a molecular magnet. It is suggested that proximity effect on DPPH linewidth is produced by modulation of the zero field splitting of excited triplet state in DPPH crystal due to presence of local fields at the surface of molecular magnet.

REFERENCES:

Leuenberger, M. N.; Loss, D. *Nature*, *410*, 789-793 (2001)
 Eisenmenger, J.; Schuller, I. K. *Nat Mater*, *2*, 437-438 (2003)

M1462

Light-Induced Spin State Switching and Relaxation in Copper-Nitroxide based Molecular Magnets Studied by EPR

Matvey V. Fedin¹, Sergey L. Veber¹, Ksenia Yu. Maryunina¹, Hideto Matsuoka², Seigo Yamauchi², Victor I. Ovcharenko¹, Elena G. Bagryanskaya¹

¹International Tomography Center SB RAS, Novosibirsk, Russia, email: mfedin@tomo.nsc.ru; ²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan

Exchange-coupled spin triads nitroxide-copper(II)-nitroxide are the key building blocks of polymer-chain molecular magnets $Cu(hfac)_2L^R$ exhibiting unusual magnetic switching similar to a spin crossover. EPR allows one to study this spin state switching induced by temperature or light [1]. The observed photoswitching is analogous to a well-known light-induced excited spin state trapping (LIESST) in spin-crossover complexes of iron(II), the promising effect for potential applications in light-operated magnetic nanodevices. In this report we discuss general trends, characteristics and mechanism of light-induced spin state switching in molecular magnets Cu(hfac)₂L^R and following relaxation to the ground state using continuous wave X/Q-band and time-resolved (TR) W-band EPR. The formation of metastable light-induced state occurs on a nanosecond timescale and can be studied by TR EPR. Then this state slowly relaxes back to the ground spin state on a timescale of hours. This long relaxation occurs mainly in the tunneling regime with the thermally-activated region at elevated temperatures. Remarkably, the observed relaxation shows pronounced self-decelerating character for all studied compounds. This trend can be described assuming the distribution of activation energies due to unusual structural and magnetic characteristics of these 1D materials. LIESST-like phenomena in Cu(hfac)₂L^R is an interesting topic for future research in field of molecular magnetism. This work was supported by RFBR (№ 11-03-00158), RF president grant (MK-4268.2010.3) and FAE (P 1144).

1. Fedin M., Ovcharenko V., Sagdeev R., Reijerse E., Lubitz W., Bagryanskaya E., Angew. Chem. Int. Ed. 47, 6897-6899 (2008) and references therein.

M1463

HF-EPR study of Tetrairon(III) Single-Molecule Magnets

<u>Anne-Laure Barra</u>¹, Andrea Cornia², Petr Neugebauer¹, Maria-Jesus Rodriguez-Douton², Roberta Sessoli³, Lorenzo Sorace³

¹Laboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble, France; ²Department of Chemistry, University of Modena, Italy); ³Department of Chemistry, University of Florence, Florence, Italy. anne-laure.barra@lncmi.cnrs.fr

Molecules showing slow relaxation of the magnetization at low temperature, known as Single-Molecule Magnets (SMM), are attracting continuing interest in molecular magnetism. Slow relaxation results from a large spin ground state S associated to an Ising type magnetic anisotropy, leading to the presence of a barrier to the reversal of the magnetization. Axial anisotropy terms govern the height of the barrier whereas transverse magnetic anisotropy terms influence the quantum tunneling of the magnetization. HF-EPR spectroscopy has demonstrated to be a key tool to provide precise information on the magnetic anisotropy of SMM and thus to understand the dynamics of their magnetization.

Tetrairon(iii) complexes with a propeller-like structure, of formula $[Fe_4(L)_2(dpm)_6]$, are providing an important class of SMM displaying synthetic flexibility and ease of functionalization (Hdpm = 2,2,6,6-tetramethyl-heptane-3,5-dione), where L stands for the tripodal bridging ligand. HF-EPR spectra at low temperature have been collected on polycrystalline samples of several complexes in order to determine the zero-field splitting (zfs) parameters in the ground S = 5 spin state. In all these compounds, a remarkable correlation is found between the axial zfs parameter D and the pitch γ of the propeller-like structure. We report on our latest results obtained on new derivatives.

NA465

Structural and dynamic characteristics of an A→I edited RNA duplex as revealed by site-specific labeling and NMR spectroscopy

Andre Dallmann^{1,2}, Alex Beribisky^{1,2}, Felix Gnerlich³, Thomas Carell³, Michael Sattler^{1,2}

¹Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany

²*Center for Integrated Protein Science Munich (CiPS^M), Department Chemie, TU München, Garching, Germany* ³*Center for Integrated Protein Science Munich (CiPS^M), Department Chemie, LMU München, Germany*

Adenosine (A) deaminases acting on RNA (ADARs) are responsible for the hydrolytic deamination of A to Inosine (I). As shown in the figure, a stable I:C base pair can form in a Watson-Crick geometry, while the I:U base pair can only occur as a wobble base pair. As a result it is interpreted by cellular machineries as G and Thus $A \rightarrow I$ editing can alter codon identity which may result in the alteration of various downstream regulatory events such as regulation of gene expression and RNA interference.

ribose $N = \begin{pmatrix} I \\ H \end{pmatrix}$ ribose Surprisingly, this wobble pair has a highly destabilizing effect in the interior of the duplex as compared to other wobble base pairs like G:U. However, structural data explaining this phenomenon is lacking yet.

We employ NMR spectroscopy to analyze the structure and dynamics of an RNA duplex containing multiple I:U base pairs. For the NMR studies, a site-specifically isotope-labeled inosine phosphoramidite building block was synthesized and incorporated into the sequence. Thereby the inosines can be unambiguously assigned. Surprisingly, the central IIUI of the sequence is found to be highly dynamic and partly unstructured. This is corroborated by base pair lifetime measurements of the edited sequence in comparison with the native Watson-Crick duplex. A severe destabilization of the central part of the sequence is observed and the destabilization quantified base-pair-specifically.

Telomeric DNA coexists in two distinct G-quadruplex conformations

<u>Robert Hänsel¹</u>, Ivan Krstic², Frank Löhr¹, Silvie Foldynová-Trantírková³, Ernst Bamberg⁴, Thomas F. Prisner², Lukáš Trantírek⁵ and Volker Dötsch¹

¹ Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, Email presenting author: rhaensel.bpc@googlemail.com,² Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 7, 60438 Frankfurt/Main, Germany,³ Biology Centre, v.v.i., AS CR, Branisovska 31, 37005 Ceske Budejovice, Czech Republic,⁴ Max-Planck-Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt/Main, Germany and ⁵ Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

In vertebrates, telomeric DNA consist of tandem repeats of the hexanucleotide $d(TTAGGG)_n$. Structural investigations have shown that these sequences form G-quadruplexes with various folding topologies under *in vitro* conditions. So far, experiments on telomeric sequences capable to form intramolecular monomeric G-quadruplexes have demonstrated four different structures in dilute solution including two hybrid parallel-antiparallel (3+1), one 2- and one 3-tetrad antiparallel folds (1). In addition, studies simulating molecular crowding and crystallographic data (2) suggest that the parallel G-quadruplex structure is the physiological relevant conformation *in vivo*.

We have investigated various telomeric sequences capable of forming monomeric, dimeric and trimeric intramolecular G-quadruplexes by means of CD, NMR and EPR spectroscopy and native PAGE under physiological relevant conditions. Data will be presented showing that telomeric DNA coexists in two distinct conformations.

References:

1. Phan, A.T., FEBS J, Human telomeric G-quadruplex: structures of DNA and RNA sequences., 277, 1107-1117, (2010).

2. Parkinson, G.N., Lee, M.P. and Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 417, 876-880, (2002).

NA467

Characterization of hydrogen bond networks in nucleic acid and their ligand complexes by direct determination of XH - O=P and XH - - N type hydrogen bonds

Elke Duchardt-Ferner¹, Jan Ferner², Jens Wöhnert¹

¹Institute of Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe University, Frankfurt, Germany; ²Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe University, Frankfurt, Germany). e-mail: duchardt@bio.uni-frankfurt.de

OSTER

Hydrogen bonds are of fundamental importance for the formation of functional nucleic acid structures. Functional RNA molecules such as tRNAs, self-splicing introns, ribozymes, riboswitches and ribosomal RNAs adopt intricate three dimensional folds held together by non-canonical hydrogen bonds involving the Hoogsteen- and sugar-edges of the nucleobases, the ribose 2'-OH and the oxygen of the phosphate backbone. In their ligand complexes, hydrogen bonds are often formed between the ligand functional groups and free acceptor and donor groups of the RNA. Although the presence of these hydrogen bonding interactions is often indirectly inferred from the distance and geometry of the involved atoms, both intra-RNA and RNA-ligand hydrogen bonding interactions by virtue of the through bond scalar coupling correlating the donor hydrogen to the acceptor group (${}^{2h}J_{HX}$). Thus, we could verify the NH - O=P imino-backbone and a 2'-OH - - N interaction in the U-turn motif, NH₂ - O=P amino-backbone hydrogen bond in the YNMG tetraloop family and a 2'-OH - - O=P interactions in a looped-out base motif by application of long-range ¹H, ${}^{31}P/{}^{15}N$ HSQC. In addition, interactions between OH – and NH₃⁺- functionalities of an aminoglycoside ligand and the RNA phosphodiester backbone or nitrogen nuclei in the base moieties could also be detected. The size of the through-bond hydrogen bonds was quantified by 1D ¹H { ${}^{31}P$ }- and 1D ${}^{31}P$ { ${}^{1}H$ } spin-echo difference spectra.

Long-lived water molecules found within a G-quadruplex structure

Peter Podbevsek¹, Jaka Zavasnik¹, and Janez Plavec^{1,2,3}

¹Slovenian NMR Center, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; ²Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; ³EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia; email: peter.podbevsek@ki.si

G-rich oligonucleotides containing cytosine residues can form Gquadruplexes where G- quartets are flanked by G·C Watson-Crick base pairs. Solution state NMR was used to study the folding of $d(G_3CT_4G_3C)$ oligonucleotide into a G-quadruplex upon addition of ¹⁵NH₄⁺ ions. The topology is equivalent to the solution state structure of the same oligonucleotide in the presence of Na⁺ and K⁺ ions^{1,2}. A single ammonium ion binding site was identified between adjacent G-quartets although three sites were expected. The remaining potential cation binding sites between G-quartets and G·C base pairs are occupied by water molecules. To the best of our knowledge this is the first observation of long-lived water molecules within a G-quadruplex structure³. The flanking G·C base pairs adopt a coplanar arrangement and apparently do not require cations to neutralize unfavorable electrostatic interactions amongst proximal carbonyl groups. A relatively fast movement of ammonium ions from the inner binding site to bulk with the rate constants of 21 s⁻¹ was attributed to the lack of hydrogen bonds between adjacent G·C base pairs and the flexibility of the T₄ loops.

REFERENCES:

1. Kettani, A., Bouaziz, S., Gorin, A., Zhao, H., Jones, R.A. and Patel, D.J., J. Mol. Biol., 282, 619-636 (1998).

2. Bouaziz, S., Kettani, A. and Patel, D.J., J. Mol. Biol., 282, 637-652 (1998).

3. Zavasnik J., Podbevsek P. and Plavec J. Biochemistry, 50, 4155-4161 (2011).

NA469

The Hunt for the demon: Is there a general mechanism of RNA chaperones ?

Boris Fürtig, Martina Doetsch, Thomas Gstrein and Renée Schroeder

Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna, Austria; boris.fuertig@univie.ac.at

The obtainment of a defined functional structure at a distinct temporal and spatial position is essential for proper function of RNA molecules. Unfortunately, the conversion between off-pathway structures and the native correctly folded ones is a critical and slow step in RNA folding. But proteins have evolved that facilitate the folding of RNA molecules: RNA chaperones. These proteins have by any mechanism to elevate the free-energy of the RNA in such a way that the RNA is able to enter successfully the folding pathway that leads to its functional conformation. The C-terminal domain of the E. coli RNA chaperone StpA (CTD-StpA) displays both RNA annealing and strand displacement activities. Using NMR approaches we defined the sources of energy needed for the structural destabilization of the RNA. Contrary to computational predictions, CTD-StpA is a well folded but dynamic protein. Its structural fold is similar to that of its homolog protein H-NS presenting a positively charged surface of high plasticity, which interacts with the RNA. Although CTD-StpA interacts only transiently with the RNA, cross-links showed that the RNA is completely coated by peptides. Complex formation occurs via electrostatic interactions with the RNA backbone and can be modulated by ions. In presence of RNA the protein becomes structurally less flexible. In contrast, the RNA gains conformational entropy enhancing the ability to refold properly. We intend to discuss the results obtained for StpA with results for other RNA chaperone proteins and try to derive a general mechanism of RNA chaperoning by proteins.

The structure of SRSF1 pseudo-RRM in complex with RNA revealed an unexpected mode of recognition

<u>Cléry A.¹</u>, Sinha R.², Strotz von Moos D.¹, Moursy A.¹, Daubner G.¹, Krainer A.² and Allain F. H.-T.¹ ¹Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland; ² Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. Email address: aclery@mol.biol.ethz.ch

Among RNA recognition motifs, three different classes have been reported, namely the canonical RRMs¹, the quasi-RRMs² and the pseudo-RRMs. Using NMR, we solved the first structure of a pseudo-RRM in complex with RNA. This domain is found in SR (Ser-Arg rich) proteins, one of the most important families of factors that control gene expression in metazoans by regulating splicing events. In this study, we focus on the pseudo-RRM of SRSF1, which is the prototypical SR protein in humans.

Using 40 intermolecular NOEs, we solved with a high precision the solution structure of this domain in complex with a purine-rich RNA sequence. Instead of interacting with the β -sheet surface or loops as previously shown for RRMs¹ and quasi-RRMs², respectively, SRSF1 pseudo-RRM uses a completely different interaction surface centered on the negatively charged α 1-helix. Three conserved residues (one serine and two aspartates) are directly involved in the specific recognition of a 5'-GGA-3' motif. The importance of these residues for binding RNA is further validated by affinity measurements and *in vivo* splicing assays. Importantly, we found a NMR signature characteristic of this interaction and could test RNA binding with seven pseudo-RRMs (SR protein homologs in fly and yeast and the remaining human SR proteins). Remarkably, all the tested pseudo-RRMs bind GGA-containing RNAs using the same binding surface.

Altogether, these structural data reveal a very unexpected mode of RNA recognition for one pseudo-RRM that can be extended to the whole family.

1. Clery, A., Blatter M. & Allain, F.H., Curr. Opin. Struct. Biol., 18, 290-8 (2008)

2. Dominguez, C., Fisette, J.F., Chabot, B. & Allain, F.H., Nat. Struct. Mol. Biol., 17, 853-61 (2010)

NA471

NMR analysis of HAR1F RNA models

Mirko Cevec, Melanie Koschinat, Christian Richter and Harald Schwalbe

Institute of Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany cevec@nmr.uni-frankfurt.de

Poster

Human accelerated regions (HARs) are parts of human genome which display a significantly accelerated nucleotide substitution rate (1). The majority of these regions are transcribed into noncoding RNAs. HAR1 encodes for 118-nt RNA and has 18 substitutions instead of the expected 0.27 substitutions since our last common ancestor with chimpanzees. HAR1F RNA is involved in brain development. Something caused our brains to evolve to be much larger and have more function than the brains of other mammals. The function of HAR1F RNA in development of human consciousness is unknown. Two different cloverleaf-like secondary structure models have been offered for the human HAR1F RNA. We used NMR spectroscopy techniques to determine secondary and 3D solution structures.

Different RNA models were prepared for human and chimpanzee HAR1F RNA sequences. Resonance assignment was performed using ¹⁵N-HSQC, HNN-COSY and NOESY spectra. The NOE imino proton resonance patterns of the 37-nt RNAs were comparable to the patterns of the whole length human and chimpanzee HAR1F RNAs, respectively. We studied the dynamic properties of the 37-nt RNA constructs with the help of ¹³C- and ¹⁵N-relaxation NMR measurements and estimated the fast internal motions in the 37-nt RNA constructs by the measurement of longitudinal and transverse relaxation rates, along with heteronuclear NOEs. We were able the assign almost all aromatic and sugar proton resonances which allowed us to perform a complete NOE sequential walk. Calculated 3D structures show interesting structural features..

The bacterial second messenger c-di-GMP: slow kinetics of oligomer dissociation and monomeric state at physiological conditions

Martin Gentner,¹ Martin G. Allan,^{1,2} Franziska Zähringer,¹ Tilman Schirmer,¹ and Stephan Grzesiek¹

¹Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; ²current address: Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA, Martin.Gentner@unibas.ch

Cyclic di-guanosine-monophosphate (c-di-GMP) is a bacterial intracellular signaling molecule that triggers the switch from motile to sessile lifestyles. C-di-GMP signaling is of considerable pharmaceutical interest, since it is related to bacterial virulence, biofilm formation and persistence of infection. Previously, c-di-GMP has been reported to display a rich polymorphism at millimolar concentrations, involving various oligomeric forms, due to base stacking and G-quartet formation. Here, we have analyzed the equilibrium exchange kinetics between the various forms of c-di-GMP by NMR spectroscopy. At low micromolar concentration and in a buffer that mimics cytosolic conditions c-di-GMP is predominantly in its monomeric state. This finding is important for the understanding of c-di-GMP recognition by protein receptors. On the chemical shift timescale, the c-di-GMP monomer is in fast equilibrium with a dimeric form, with a relatively large dissociation constant of about 1 mM. Above a concentration of 100 µM tetramers and octamers are present and octamers dominate above about 0.5 mM. In contrast to the monomer/dimer equilibrium, formation and dissociation of both tetramers and octamers occurs on a timescale of several hours to days, as revealed by 1D NMR spectroscopy after equilibrium perturbation. Kinetic parameters have been determined by fitting a kinetic model to the time course of the NMR peak intensities. After dilution from millimolar concentrations, the UV absorbance of c-di-GMP increases slowly at 253 and 277 nm and decreases at 300 nm over the time course of several hours, presumably caused by the destacking of bases during dissociation of the c-di-GMP oligomers. The extremely slow kinetics of oligomer formation/dissociation can generate severe artifacts for enzymatic characterizations, depending on the cation type and concentration of the reaction buffer. A protocol is proposed to minimize the problem of artifacts caused by oligomers.

NA473

Strategy to improve therapeutic siRNA by fragment-based screening and structural biology

<u>Marcel J.J. Blommers¹</u>, Jean-Michèl Rondeau¹, César Fernández¹, Alvar Gossert¹, Paulette Greenidge², Andrew Patterson^{2§}, Heather Burks^{2§}, John P. Priestle², Nicole-Claudia Meisner-Kober³, François Natt³, Chandra Vargeese^{3§}, David Morrissey^{3§} and Juerg Hunziker³

¹Structural Biology Platform, ²Global Discovery Chemistry and ³Biologics, Novartis Institutes for BioMedical Research, Basel, Switzerland and [§]Boston, USA <u>marcel_ji.blommers@novartis.com</u>

A therapeutic siRNA is a duplex of a 21-nucleotide RNA oligonucleotide that mediates gene silencing of its target mRNA by association of one RNA strand with the Argonaute-2 protein (Ago2) in the siRNA silencing complex (RISC). The ends of the guide strand are recognized by distinct domains of Ago2: the 5'-end binds in the MID domain, whereas the 3'-terminal two nucleotides are associated in a pocket of the PAZ domain. In order to improve the siRNA stability as well as their immune stimulatory properties, we addressed the possibility to substitute the 3'-dinucleotide overhang by a mimetic that still interacts with the PAZ domain. To this end, the crystal structure of human Ago2 PAZ domain was obtained, a fragment library was designed by in-silico screening using this structure, and these fragments were screened for binding to the PAZ domain by NMR spectroscopy. Novel ligands for the PAZ domain were identified in this way. For these hits, building blocks for oligonucleotide synthesis were derived and the corresponding conjugates were synthesized. The best conjugates derived using this approach, have enhanced chemical stability, without losing the binding properties of the modified siRNA to the PAZ domain. This results in novel fully active siRNA molecules as demonstrated by in vitro and in vivo model systems.

Pre-organization and ligand-induced folding in the *mfl*-2'-deoxyguanosine aptamer and a GC-mutant aptamer by solution NMR spectroscopy

A. Wacker¹), J. Buck¹), D. Mathieu¹), C. Richter¹), J. Woehnert²) and H. Schwalbe¹)

¹⁾ Institute for Organic Chemistry / Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany ²⁾ Institute for Molecular Biosciences / Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Germany

ABSTRACT The 2'-deoxyguanosine riboswitch from *Mesoplasma florum* (*mfl*) belongs to the class of purine-sensing riboswitches¹). We characterized the influence of Mg^{2+} on structural aspects of folding and complex formation for the *mfl*-aptamer and a stabilizing mutant (*mfl*GC) by NMR spectroscopy. Mg^{2+} titrations of the free native *mfl*-aptamer reveal a supporting role of Mg^{2+} in terms of structural motif stabilities. Stabilization of the peripheral long-range interaction by a conservative double

ipheral long-range interaction by a conservative double mutation (A59G/U66C) results in a significantly weaker Mg^{2+} -dependence of tertiary structure pre-formation for the free *mfl*GC aptamer. The majority of the free aptamer conformational ensemble consists of pre-organized species even without any Mg^{2+} , whereas the native mfl-aptamer requires moderate Mg^{2+} concentrations to establish the loop-loop interaction. Interestingly, neither Mg^{2+} nor the stabilization of the loop-loop interaction affect the binding pocket which remains unstructured in the absence of 2'-dG.

REFERENCES: 1. Kim J. N., *PNAS USA*, 104, 16092-16097 (**2007**)

NA475

Sequence-specific local stability and dynamics of DNA double-helix studied by hydrogen NMR

Václav Římal¹, Helena Štěpánková¹, Josef Štěpánek²

¹Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague 8, Czech Republic; ²Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague 2, Czech Republic; e-mail: vaclav.rimal@mff.cuni.cz

We have found an analytical solution of Bloch-McConnell equations describing general two-site chemical exchange for free induction decay, which has never been fully done before. The result gives us spectral lineshape with no presumptions made to T_2 's or the ratio of magnetizations of the two sites. The explicit formula allows experimental spectra to be fitted by this function with no further numerical calculations. In this way, reliable values of relative populations and exchange rates can be obtained. [1]

This approach was applied to study the flexibility of various DNA duplexes. Base-pair breaking and corruption of regular geometry at particular location of DNA chain is accompanied by chemical exchange influencing the NMR lineshapes. Analysis of aromatic regions of ¹H spectra acquired in a broad temperature range covering the duplex melting yielded thermodynamic description of the base-pair breaking independently for each spectral line. Differences from the common course present a sensitive indicator of a local deviation from the overall duplex geometry and flexibility, which plays a major role in immune response in vertebrates caused by CpG containing oligodeoxynucleotides [2].

This work is a part of the research plan financed by the Ministry of Education of the Czech Republic no. MS0021620835 and is supported by the Grant Agency of Charles University (project no. 430011/2011) and the grant SVV-2011-263305.

^{1.} Římal, V., Štěpánková, H., and Štěpánek, J., Concept Magn. Reson. A, 38A, 117-217 (2011)

^{2.} Derreumaux, S. et al., Nucleic Acids Res., 29, 2314 - 2326 (2001)

Questioning the molecular crowding effect on structure and stability of human telomeric G-repeat sequences

<u>Robert Hänsel¹</u>, Frank Löhr¹, Silvie Foldynová-Trantírková², Ernst Bamberg³, Lukáš Trantírek⁴ and Volker Dötsch¹

¹ Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, Email presenting author: rhaensel.bpc@googlemail.com,² Biology Centre, v.v.i., AS CR, Branisovska 31, 37005 Ceske Budejovice, Czech Republic, ³ Max-Planck-Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt/Main, Germany and ⁴ Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

We have investigated G-quadruplex topologies of telomeric repeat sequences from vertebrates in the presence of molecular crowding mimetics, namely PEG 200, Ficoll 70 as well as *Xenopus laevis* egg extract by CD and NMR spectroscopy and native PAGE. Data will be presented showing that the conformational behaviour of the telomeric repeats in *X. laevis* egg extract or in Ficoll is notably different from that observed in the presence of PEG. While the behaviour of the telomeric repeat in *X. laevis* egg extract or in Ficoll resembles results obtained under dilute conditions, PEG promotes the formation of high-order parallel topologies. Our data suggest that PEG should not be used as a molecular crowding mimetic and that the parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions (1).

References:

1. Hänsel, R., Löhr, F., Foldynova-Trantirkova, S., Bamberg, E., Trantirek, L. and Dötsch, V. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. *Nucleic Acids Res,* (2011).

NA477

Pushing the size-limitation of NMR of RNA.

Jochen Schmidt, Christian Richter, Anke Reining, Harald Schwalbe

Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany. jo.schmidt@nmr.uni-frankfurt.de

RNA structure analysis by NMR suffers from the drawback of small ¹H-chemical shift dispersion. This problem is enhanced by the fact that RNA consists of only four different nucleotides. An alternative to proton detection is the use of heteronuclei with larger chemical shift dispersion than ¹H. We synthesized ²H, ¹³C, ¹⁵N labeled RNA by incorporating isotopically labeled nucleotides using *in vitro* transcription.

Taking advantage of higher sensitivity by using cryogenically cooled probeheads we performed predominantly ¹³C-direct detected NMR experiments and developed new assignment strategies for RNA. It turned out, that the use of deuterium improved the relaxation properties and simplified the spectra remarkably. In future we want to benefit from these advantages in solution NMR as well as solid state NMR studies of RNA.

POSTER

A combined X-ray and NMR study of the loop-loop mutant of the guanine riboswitch

<u>Julia Wirmer-Bartoschek1</u>, Anna Wacker¹, Janina Buck¹, Eberhart Warkentin², Jens Wöhnert¹ and Harald Schwalbe¹

¹Goethe University, Center for Biomolecular Magnetic Resonance (BMRZ), Frankfurt am Main, Germany ²Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany. E-mail: wirmer@nmr.uni-frankfurt.de

One method of gene regulation is the specific binding of small metabolite molecules to riboswitch RNA elements. Riboswitches are located in the 5' untranslated regions of messenger RNA and consist of an aptamer domain responsible for ligand binding and an expression platform. The guanine riboswitch binds guanine and related compounds with high specificity. The aptamer domain consists of a three-helix junction which is stabilized by long-range base pair interactions between two loops. Previously, using NMR-spectroscopy, we have found that the long range interactions are already present in the free RNA and that magnesium-ions are not required for ligand binding and structure formation but stabilize the tertiary structure (1,2). Mutating one of the essential long range base pair in the loop-loop region we found, that the long range interactions are disrupted in the free form and that ligand binding and structure formation depend on the presence of Mg^{2+} . Here, we present the X-ray structure of this loop-loop mutant and discuss the influence of the loop-loop interactions on the three-dimensional structure.

1. Noeske, J., Buck, J., Fürtig, B., Nasiri, H.R., Schwalbe, H., Wöhnert, J., Nucleic Acids Res., 35, 572 (2007).

2. Buck, J., Noeske, J., Wöhnert, J., Schwalbe, H. (2010) Nucleic Acids Res., 38, 4143 (2010).

NA479

NMR-based structural investigations of a minimalistic neomycin sensing riboswitch in complex with different aminoglycosids

Sina R. Schmidtke^{a,b}, Elke Duchardt-Ferner^{a,b}, Julia E. Weigand^a, Oliver Ohlenschläger^c, Juliane Schwarz^a, Beatrix Suess^a and Jens Wöhnert^{a,b}

^aInstitute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, e-mail: Schmidtke@bio.uni-frankfurt.de, ^bCenter of Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, ^cBiomolecular NMR Spectroscopy, Leibniz-Institute for Age Research (Fritz-Lipmann-Institute), Beutenbergstrasse 11, 7740 Jena, Germany.

The 27nt engineered neomycin riboswitch (N1) is the smallest known riboswitch.¹ N1 represses gene expression upon binding of the aminoglycosides neomycin B and ribostamycin. In contrast, the closely related paromomycin, which differs from ribostamycin in only one OH-group, also binds N1 but does not inhibit gene expression.

NMR-structures have been solved for the N1-ribostamycin-and the N1paromomycin complex². To identify the structural and dynamical basis for their different regulatory activities, we meticulously examined their structural and dynamic differences. Our detailed NMR-investigations allow an understanding of the relation between ligand binding and regulatory activity in vivo.

References:

2 Duchardt-Ferner, E.; Weigand, J. E.; Ohlenschläger, O.; Schmidtke, S. R.; Suess, B.; Wöhnert, J. Angew. Chem. Int. Ed. Engl., 49, 1-5 (2010)

¹ Weigand, J. E.; Sanchez, M.; Gunnesch, E. B.; Zeiher, S.; Schroeder, R.; Suess, B. RNA, 14, 89-97 (2008)

Time-resolved NMR-studies of competitive DNA i-motif formation

Anna Lena Lieblein, Janina Buck, Kai Schlepckow, Boris Fürtig & Harald Schwalbe

Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany, lieblein@nmr.uni-frankfurt.de

Beside the well known double helix conformation DNA is able to build structures stabilized by non-Watson-Crick base pairs like G-quadruplexes^[1] and i-motifs.^[2] Those structures can be formed by guanosine- and cytidine-rich strands, respectively. In nature these sequences are found e.g. in telomeres, the ends of eukaryotic chromosomes.^[3] They present a good target to address them e.g. concerning cancer therapy. Quarduplex structures are also found in the field of nanodevice applications.^[4] The cytidine-rich strand forms its intercalated structure in slightly acid environment.^[2] In the so-called i-motif two parallel-stranded duplexes with hemiprotonated $C^{+}C^{+}$ base pairs are fully intercalated.

We investigate structural changes and the kinetics of pH-induced folding of an i-motif at atomic resolution. For this, we used a rapid-mixing device which allows us to mix two solutions at a defined time directly inside of the NMR-spectrometer.^[5] We could show that after induction of the folding with acid, first two competitive i-motif structures with different intercalation topology are formed. In a second slower step refolding of the less stable conformation to the thermodynamically more stable conformation occurs.

1. M. Gellert, M. N. Lipsett, D. R. Davies, Proc Natl Acad Sci USA, 48, 2013-2018 (1962)

- 2. K. Gehring, J. L. Leroy, M. Gueron, Nature, 363, 561-565 (1993)
- 3. Y. Peng, X. Li, J. Ren, X. Qu, Chem Commun (Camb), 5176-5178 (2007) 4. S. Surana, J. M. Bhat, S. P. Koushika, Y. Krishnan, Nat Commun, 2, 340 (2011)
- 5. K. H. Mok, T. Nagashima, I. J. Day, J. A. Jones, C. J. Jones, C. M. Dobson, P. J. Hore, J Am Chem Soc, 125, 12484-12492 (2003)

NA481

Divide and Conquor: Structural studies of HAR1F RNA by NMR Spectroscopy

Melanie Koschinat, Mirko Cevec, Christian Richter and Harald Schwalbe

Center for Bimolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt am Main, Germany, koschinat@nmr.uni-frankfurt.de

The human accelerated regions (HARs) are a group of 49 segments in the human genome, which are ranked by their underlying fast mutation rate compared to homologous chimpanzee segments.^[1] The 118bp HAR1 region has with 18 substitutions the highest mutation rate in the homo sapiens genome. HAR1F is coexpressed with Reelin in Cajal-Retzius cells which is a regulator in human cortical development. HAR1F RNA is involved in Huntington's disease.^[2] A clear structure-function relation has not been identified yet. Secondary structure models of human and chimpanzee sequence of HAR1F are developed by DMS treatment^[1], chemical and enzymatical probing^[3], which differ to each other.

Here, we investigated a secondary structure elucidation of human and chimpanzee HAR1F RNA using CD and NMR spectroscopy. With this sizable 118-nt RNA, NMR spectroscopic assignment is challenging due to considerable spectral overlap. To overcome incomplete sequential connectivities we pursued a "divide-and-conquer" strategy by utilizing model hairpins that mimic structural elements of the full length RNA. We investigate the structures of model hairpins c37, c47, c54, h37 and h47 by NMR spectroscopy. We derived from our NMR data that model hairpins c37, c47 and h37 RNA are folded like the corresponding structural elements in the full length secondary structures by Beniaminov et al. and are able to disprove the chimpanzee structure model which was published by Pollard et al.

^{1.} Pollard, K. S., et al., Nature, 443, 167-172 (2006)

^{2.} Johnson, R., Richter, N., Jauch, R., Gaughwin, P. M., Zuccato, C., Cattaneo, E., Stanton, L. W., Physiol. Genomics, 41, 269-274 (2010)

^{3.} Beniaminov, A., Westhof, E., Krol, A., RNA, 14, 1270-1275 (2008)

Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution

Jörg Rinnenthal, Birgit Klinkert, Franz Narberhaus, Harald Schwalbe

¹Department of Organic Chemistry and Chemical Biology, Goethe-University, Frankfurt am Main, Germany; ²Department of Microbial Biology, Ruhr-University, Bochum, Germany). E-Mail: rinnenthal@nmr.uni-frankfurt.de

Many microorganisms change their gene expression pattern upon changes of the environmental conditions like metabolite concentration or temperature. FourU RNA thermometers are capable of sensing temperature. They repress translation initiation by blocking the Shine Dalgarno (SD) sequence at low temperatures.

In the present study the thermodynamic stability of the temperature labile hairpin 2 of the *Salmonella* fourU RNA thermometer was investigated at base-pair resolution [1]. Free energy, enthalpy and entropy values for the base-pair opening of individual nucleobases were determined from the temperature dependence of imino proton exchange rates measured by NMR spectroscopy. Nucleobase stabilities were mapped for the wildtype sequence and the temperature stable A8C mutant. Enthalpy and entropy values for base-pair opening are correlated linearly in both RNAs. However, the slopes of these correlations are different and coincide with the respective melting point determined by CD spectroscopy for both RNAs. Hence, RNA unfolding in both RNAs occurs at temperatures where all nucleobases have equal thermodynamic stabilities. Temperature-dependent *in vivo* gene expression analysis performed on three different fourU RNA thermometer constructs significantly differing in thermal stability (wt, A8C mutant, G14A-C25U mutant) confirmed the correlation of base pair stabilities, global thermal stability and *in vivo* gene expression levels.

REFERENCES

1. Rinnenthal, J., Klinkert, B., Narberhaus, F., Schwalbe, Nucleic Acid Research, 38(11), 3834-3847 (2010)

NA483

NMR structural investigations on the functional primase domain of an archaeal replication machinery

Julien Boudet¹, Georg LIPPS² and Frédéric H-.T ALLAIN¹

¹Institute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland; ²University of Applied Sciences of Northwestern Switzerland (FHWN), School of Life Sciences, Institute of Biochemistry and Bioanalytics, CH-4132 Muttenz, Switzerland. <u>boudetj@mol.biol.ethz.ch</u>.

Primases are single-stranded DNA dependant RNA polymerases that synthesize RNA during DNA replication. A primase, a DNA polymerase and an helicase compose the replication machinery of the archaeal plasmid pRN1¹. The structure of the archaeal functional primase domain has been solved recently by X-ray crystallography^{2,3} and it revealed an heterodimeric structure with a catalytic prim/pol domain and a novel helix bundle domain.

We investigated the NMR structure of the functional pRN1 primase domain in complex with a single-stranded DNA template containing the GTG motif⁴. On this 38 kDa enzyme, we localized the interaction site and we showed that 2 α -helices of the helix bundle domain are involved in DNA binding. Intermolecular contacts detected exclusively between the helix bundle domain and the DNA template led us to isolate specifically this structurally independent protein. We solved the solution structure of the helix-bundle-domain in complex with the single-stranded DNA template and we performed affinity measurements to confirm the importance of residues located in the helices 10 and 12 for the interaction with the GTG motif.

In association with functional assays, this novel transient structure will allow us to decipher the series of reactions required for replication initiation.

3. Beck K., Vannini A., Cramer P. & Lipps G., Nucleic Acids Res., 38, 6707-18, (2010)

^{1.} Lipps G., Röther S., Hart C. & Krauss G., EMBO J, 22, 2516-25 (2003)

^{2.} Lipps G., Weinzierl A.O., von Scheven G., Buchen C. & Cramer P., Nat. Struct. Mol. Biol., 11, 157-62, (2004)

^{4.} Beck K. & Lipps G., Nucleic Acids Res., 35, 5635-45 (2007)

Co-transcriptional folding studies of the guanine-sensing riboswitch by use of time-resolved NMR spectroscopy

Sebastian B. Stiller, Anna Wacker, Boris Fürtig, Harald Schwalbe

¹Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany, stiller@nmr.uni-frankfurt.de

Co-transcriptional binding of guanine to the guanine-sensing riboswitch causes premature transcription termination of the mRNA under control. The ligand binding state of the 5' located aptamer domain of the riboswitch RNA decides whether the adjoining expression platform folds co-transcriptionally into a terminator or an antiterminator conformation. The latter conformation allows the polymerase to transcribe beyond the riboswitch element, thereby leading to the expression of downstream located enzymes. Static and dynamic NMR studies suggest that regulation by the guanine-sensing riboswitch RNA is under kinetic control, meaning that the riboswitch aptamer does not reach its equilibrium before the genetic decision has been made. However, if *in vitro*-transcribed guanine-sensing riboswitch RNA is purified and refolded into a single conformation in the absence of ligand, we always obtain the thermodynamically more stable terminator hairpin conformation. In the present study, NMR spectroscopy is employed to analyze the guanine-sensing riboswitch RNA molecules for their conformation(s) *in situ*, without subjecting the *in vitro* transcribed riboswitch to any refolding step or buffer exchange.

- 1. Gilbert S. D., Stoddard C. D., Wise S. J., Batey R. T., J. Mol. Biol., 359, 754-768 (2006)
- 2. Greenleaf W. J., Frieda K. L., Foster D. A., Woodside M. T., Block S. M. (2008) Science, 319, 630-633 (2008)
- 3. Kim J. N. & Breaker R. R., Biol. Cell, 100, 1-11 (2008)
- 4. Wickiser J. K., Winkler S. C., Breaker R. R., Crothers D. M., Mol. Cell, 18, 49-60 (2005b)

NA485

Mechanism of ligand recognition in the tetracycline-riboswitch

<u>Amir H. Nasiri^{a,b}</u>, Elke Duchardt-Ferner^{a,b}, Sina R. Schmidtke^{a,b}, Jan P. Wurm^{a,b}, Julia E. Weigand^a, Peter Trojanowski^c, Josef Wachtveitl^c, Beatrix Suess^a and Jens Wöhnert^{a,b}

^aInstitute for Molecular Biosciences, Johann-Wolfgang-Goethe-University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, e-mail: Nasiri@bio.uni-frankfurt.de, ^bCenter of Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/Main, Germany, ^cInstitute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Riboswitches are highly structured non-coding RNAs that are involved in gene regulation. Here gene regulation is mediated by a structural rearrangement in the riboswitch architecture, which is induced on ligand binding. The tetracycline-riboswitch is an *in vitro* selected aptamer with the highest known affinity of an artificial RNA for a small molecule. In addition, it is one of only few *in vitro* selected RNAs capable of acting as engineered riboswitches¹. The X-ray-structure of the aptamer in complex with tetracycline reveals an intricate three-helix junction architecture that is more complex than those of most aptamers and is reminiscent of natural riboswitches².

We investigated the role of Mg^{2+} -ions dependency for the structuring and stability in the ligandinduced folding of the tetracycline Riboswitch using high-resolution NMR and fluorescence spectroscopy in solution. Our data reveal that Mg^{2+} -ions induce long-range base pairing interactions and a variety of non-canonical structural elements in the core region of the ligand free RNA and preorganize its global fold. Furthermore, we found that upon ligand binding only certain regions of the aptamer were folded and stabilized by tetracycline which resulted in the thermodynamically stable, regulatory active conformation. References:

¹ Suess, B.; Hanson, S.; Berens, C.; Fink, B.; Schroeder, R.; Hillen, W. Nucleic Acids Research, 31, 1853-1858 (2003)

² Xiao, H.; Edwards, T. E.; Ferré-D'Amaré, A. R. Chem Biol., 15, 1125-1137 (2008)
NA486

DNA Condensation With Spermine Dendrimers: Interactions in Solution, Charge Inversion, and Morphology Control

Dennis Kurzbach*, Caroline Velte*, Philipp Arnold[#], Dariush Hinderberger*

*Max-Planck Institute for Polymer Research, Mainz, Germany; [#]Johannes Gutenberg-Universität Mainz, Institute for Zoology, Mainz, Germany. Presenting author: cvelte@mpip-mainz.mpg.de

Positively charged condensation agents are able to neutralize > 90% of the DNA phosphate charge and cause DNA condensation into tightly packed structures [1]. In this study we characterize the formation of compact complexes of 884 base pair, double stranded DNA and spin-labeled, second generation dendrons (SL-G2, 27 positive charges per molecule) using continuous wave electron paramagnetic resonance spectroscopy (CW EPR) and transmission electron microscopy (TEM) [2].

TEM shows that at a charge ratio of 2.3 of positive charges of the dendrimers to negative charges of the DNA strands the condensates form rod-like structures. Adding small concentrations of monovalent salt resulted in aggregation of the rod-like condensates and partial transformation to toroids. By adding manganese(II) salts charge inversion of DNA could be observed by CW EPR at the specific charge ratio of 2.3. At a charge ratio of 2.3 the Mn(II) ions are expelled from the formed DNA dendriplexes, which indicates an inverted charge of the DNA. Also, the observation of the Mn(II) signal is indicative for the rod-like shape in the condensate. At varying charge ratios the Mn(II) ions are bound to the DNA. With increasing temperature the Mn(II) signal becomes stronger but vanishes completely at monovalent salt concentrations above 35 mM. CW EPR observation of the rotational dynamics of SL-G2, shows that the condensation agent sticks tightly to DNA regardless of ionic strength concentration or temperature. Thus all obtained effects under varying conditions can be correlated with the interaction between dendriplexes of DNA and dendrons.

1. Arscott P., Biopolymers, 36(3):345-364 (1995)

2. Kurzbach D., Velte C., Arnold P., Kizilsavas G., Hinderberger D., Soft Matter, 7, 6695-6704 (2011)

NA487

New Insight Into The Structure of the Free State Of The Aptamer Domain Of The Adenin Binding Riboswitch

Senada Nozinovic¹, Jonas Noeske², Anke Reining¹, Jens Wöhnert³ and Harald Schwalbe¹

¹Institute for Organic Chemistry and Chemical Biology, Frankfurt University, Germany, ²University of California Berkeley, San Francisco CA, US, ³Institute for Molecular Biosciences, Frankfurt University, Germany

Riboswitches are part of mRNAs that regulate gene expression upon specific binding of a small metabolite (vitamin cofactors, nucleobases, amino acids or even metal ions).¹ Conformational changes upon ligand binding transmit the ON or OFF signal for further transcription or translation. Binding region, so called *aptamer domain*, is adopting a sophisticated 3D structure able to bind the ligand with high specificity and affinity (K_D = nM - mM). After analysis by NMR-spectroscopy, mutation studies and successful crystallization of numerous complexes ligand binding mode is well understood.² Latest biophysical studies aim to solve the structure of the free aptamer domain and to elucidate the complex folding paths by identifying intermediate states. ³ In this work free state of the aptamer domain of the adenin binding riboswitch (*pbuE*) is investigated. By NMR-spectroscopy structures of two constructs with different lengths of the P1-helix are characterized. Results show that the elongation of the P1-helix has an unexpected effect on the structure of the free aptamer domain. By analyzing the structural differences and further comparing kinetic and thermodynamic data new insight into the relationship between structure and function is revealed.⁴

REFERENCES:

^{1.} Winkler, W.C. and R.R. Breaker, ChemBioChem, 4, 1024-1032 (2003)

^{2.} Schwalbe, H., et al., Angewandte Chemie International Edition, 46, 1212-1219 (2007)

^{3.} Greenleaf, W.J., et al., Science, 319, 630-633 (2008)

^{4.} Wickiser, J.K., et al., Biochemistry, 44, 13404-13414 (2005)

NA488

Spectroscopic and molecular modeling studies on the interaction modes between natural alkaloids of potential pharmaceutical interest and telomeric G-quadruplex DNA

Irene Bessi,^{1,2,3} Carla Bazzicalupi,⁴ Christian Richter,³ Henry Jonker,³ Krishna Saxena,³ Claudia Sissi,⁵ M. Chioccioli,^{1,2} A.R. Bilia,¹ Harald Schwalbe,³ Paola Gratteri^{1,2}

¹ Department of Pharmaceutical Sciences, University of Firenze, Firenze, Italy; ² Laboratory of Molecular Modeling Cheminformatics & QSAR, Department of Pharmaceutical Sciences, University of Firenze, Firenze, Italy; ³ Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Frankfurt/Main, Germany; ⁴ Department of Chemistry "Ugo Schiff", University of Firenze, Firenze, Italy; ⁵ Department of Pharmaceutical Sciences, University of Padova, Padova, Italy. (bessi@nmr.uni-frankfurt.de)

During the past decade, interest toward the telomeric DNA and its quadruplex structures has significantly grown and many efforts have been recently devoted in the investigation of G-quadruplex stabilizing molecules as potential anticancer drugs.^{1,2} However, the structural information reported till now is very little, thus impairing a comprehensive description of the ligand-quadruplex binding modes.

Among the potential G-quadruplex binders, we have studied the binding ability of sanguinarine and berberine, belonging to the alkaloids' family, an important class of natural products used by humankind as medicine since millennia.^{3,4,5}

Spectroscopic (NMR, CD and fluorescence), calorimetric and computational approaches have been used to understand quadruplex–ligand interaction.

- 1. Balasubramanian, S. and Neidle, S., Curr. Opin. Chem. Biol., 13, 345-353 (2009).
- 2. Arora, A., Kumar, N., Agarwal, T. and Maiti, S., *Febs J.*, 277, 1345, (2010).
- 3. Maiti, M. and Kumar, G.S., Journal of Nucleic Acids, Volume 2010, (2010), doi:10.4061/2010/593408.
- 4. Franceschin, M., Rossetti, L., D'Ambrosio, A., Schirripa, S., Bianco, A., Ortaggi, G., Savino, M., Schultes, C., Neidle, S., *Bioorg. Med. Chem. Lett.*, 16, 1707-1711, (2006).
- 5. Arora, A., Balasubramanian, C., Kumar, N., Agrawal, S., Ojha, R.P. and Maiti, S., *Febs J.*, 275, 3971-3983, (2008).

NA489

Bifunctional Ligands Targetting RNA Identified and Optimized by NMR Spectroscopy and X-Ray Crystallography

Yong-Boum Kim¹, Sebastian Stark¹, Bettina Ackermann¹, Mirco Zeiger², Julia Wirmer-Bartoschek¹, Jan Ferner¹, Michael Göbel², and Harald Schwalbe¹

¹Center for Biomolecular Magnetic Resonance (BMRZ) and ²Institutes for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt/M.

The essential role of ribonucleic acid-ligand interactions in the regulation of the retroviral life cycle, as in HIV, makes RNA an attractive drug target. Therefore, we use a FRET-assay to identify small molecules that interact specifically with the HIV TAR RNA and characterize these interactions by NMR spectroscopy and x-ray crystallography. Due to the unusual binding properties of RNA rational drug design was only modestly successful in identifying new RNA-specific ligands. The negatively-charged phosphate backbone indeed provides strong but unselective coulomb interactions with positively charged groups, such as amine or guanidinium groups. To increase selectivity and maintain binding strength, small molecules targetting different regions in one RNA will be connected and investigated. NMR spectroscopy helps to map the binding sites on the RNA of the individual ligands, to determine the binding stoichiometry and to clarify possible sites of modification to connect and optimize ligands. These bifunctional ligands should provide high selectivity and strong binding characteristics. The RNA-ligand complexes will be further investigated by X-Ray crystallography.

REFERENCES:

1. Ferner, J., Suhartono, M., Breitung, S., Jonker, H.R., Hennig, M., Wöhnert, J., Göbel, M., and Schwalbe, H. ChemBioChem, 10, 1490-1494 (2009)

Structural studies on tertiary folded DNA molecules

<u>Claudia M. Grytz</u>^a, Burkhard Endeward^a, Andriy Marko^a, Sina Kazemi^b, Sevdalina Lyubenova^a, Pavol Cekan^c, Peter Güntert^b, Snorri Th. Sigurdsson^c and Thomas F. Prisner^a

^aInstitute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany; ^bInstitute of biophysical chemistry, Goethe University, Frankfurt, Germany; ^cScience Institute, University of Iceland, Reykjavík, Iceland; e-mail: grytz@prisner.de

<u>Pulsed Electron-Electron Double Resonance (PELDOR) is a well-established method to gain</u> structural and dynamic information of biomolecules on a nanometer scale. The dipolar coupling between two spins used in PELDOR gives rise to distance determinations in the range of 1.5 to 8 nm. Moreover, the magnetic tensor orientation can be unraveled in the case of rigid spinlabels.¹ The aim of this work is to understand the structure and conformational dynamics of double-stranded bulge DNAs. Such bent DNAs can serve as a model of complex nucleic acids, containing bulges, loops, junctions and kinks, and their interaction with proteins. Here we analyze three bulge DNA motives, in which the rigid Cytidin-analogue (\mathbf{C}) was incorporated into chosen positions of DNA. This allows studying the dynamics of the biopolymer directly due to the rigid nature of \mathbf{C} .² In order to gain information regarding the distances and the relative orientations of the paramagnetic centers we perform orientation selective measurements at X-, Q- and G-Band. The experimental PELDOR data are analyzed quantitatively by a home-written program using a simple geometric model, as well as molecular dynamic trajectories. Comparison of our results with NMR structures³ and a combination of both constraints are under development and will be discussed.

1. a. Jeschke G., Polyhacj Y., Phys. Chem. Chem. Phys., 9, 1895-1910 (2007); b. Schiemann O., Prisner T. F., Quart. Rev. of Biophys., 40, 1-53 (2007)

a. Barhate N. et al., Nucleic Acids Research, 36, 5946-5954 (2008);
 b. Barhate N. et al., Angew. Chem. Int. Ed., 119, 2709 –2712 (2007);
 c. Marko A. et al., J. Am. Chem. Soc., accepted, (2011);
 d. Schiemann O. et al., Angew. Chem. Int. Ed., 48, 3292 –3295 (2009)

3. a. Dornberger U. et al., Biochemistry, 38, 12860-12868 (1999); b. Gollmick F. A. et al., Nucleic Acids Reasearch, 30, 2669-2677 (2002)

NA491

Structural and Kinetic Investigation of the full - length adenine - sensing riboswitch RNA by NMR - spectroscopy

Anke Reining¹, Boris Fürtig¹ and Harald Schwalbe¹

¹Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany, reining@nmr.uni-frankfurt.de

Riboswitches are recently describes RNA-elements which are located in the 5'-UTR of bacteria, fungi and plants. Due to specific ligand binding to the aptamer domain structural changes occur in the expression platform, which results in gene regulation [1, 2]. The gene expression is reported to be affected either at the level of transcription or translation[3].

As there is a lack of knowledge concerning full length riboswitches and the characterization of the folding pathways, this work focuses on the full length adenine-sensing riboswitch of *V. Vulnificus*. First we assigned the imino protons of the 112nt construct using the divide-and-conquer strategy.

With NMR spectroscopy we characterized the binding mode of the ligand to the RNA. Our data support the assumption of an induced-fit binding mode[4].

We now investigate the ligand-induced folding kinetics in atomic resolution with real-time NMR using a mixing device [5], in order to understand, whether the adenine full-length constructs follow a similar kinetic and structural mechanism of folding as the aptamer domain.

^{1.} Mandal, M., et al.,. Cell, 113(5), 577-86(2003).

^{2.} Sudarsan, N., J.E. Barrick, and R.R. Breaker, Rna, 9(6), 644-7 (2003)

^{3.} Winkler, W.C. and R.R. Breaker, Annu Rev Microbiol, 59, 487-517(2005)

^{4.} Noeske, J., et al., *Nucleic Acids Res*, 35(2), 572-83(2007)

^{5.} Buck, J., et al., Proc Natl Acad Sci USA, 104(40), 15699-704(2007)

NA492

Individual Base Pair Stability of DNA and RNA studied by NMR-detected Solvent Exchange

Hannah S. Steinert, Jörg Rinnenthal & Harald Schwalbe

Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany

Base-pair opening of nucleic acids is of fundamental importance during transcription or translation. Previously, we have characterized base-pair opening from NMR analysis of the temperature dependence of imino proton exchange rates (1).

Here, we study the thermodynamics of base-pair opening in DNA and RNA duplexes, deduced from the temperature-dependence of imino proton exchange rates monitored by NMR spectroscopy with individual base-pair resolution (2). We find that base pairs in RNA are more stable than in DNA, in general, and that enthalpy and entropy values of base-pair dissociation are correlated linearly. In case of RNA, the slope of the correlation coincides with the melting temperature as determined by CD spectroscopy, duplex unfolding occurs at the temperature at which all base pairs are equally stable. For the DNA duplex, these temperatures differ significantly. Increase of the deuteration level of the solvent stabilizes base pairs in DNA and RNA. By contrast, solute-solvent interactions are not influenced by the deuteration level as deduced from enthalpy-entropy correlation. Solute intrinsic interactions are enhanced in DNA with increasing protium/deuterium ratio. The impact of protium-deuterium exchange of the imino hydrogen on free energy of RNA base-pair opening is investigated. In the RNA duplex, two types of A·U base pairs can be distinguished based on fractionation factor analysis.

REFERENCES:

1. Rinnenthal J., Klinkert, B., Narberhaus, F. and Schwalbe H., Nucleic Acids Res, 38, 3834-3847 (2011)

2. Steinert H. S., Rinnenthal J., Schwalbe H., Biophys J, in revision

NA493

Tetramolecular G-quadruplexes in solution: new insights

Primož Šket^{1,2}, Janez Plavec^{1,2,3}

¹Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia, ²EN-FIST Centre of Excellence, Dunajska 156, SI-1001, Ljubljana, Slovenia, ³Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva cesta 5, SI-1000 Ljubljana, Slovenia primoz.sket@ki.si.

G-quadruplexes are higher order secondary structures formed by guanine-rich nucleic acid streches in the presence of cations. G-rich segments are found in biologically significant regions of the genome such as telomeres, immunoglobulin switch regions and promoter regions of eukaryotic cells. NMR is superior tool to ascertain the nature of Hoogsten hydrogen bonds within G-quartets and for 3D structure determination of the G-quadruplex structures. Sequence details and the nature of metal ions play a major role in formation and stabilization as well as structural diversity of G-quadruplexes. Oligonucleotides containing only a single run of guanines form G-quadruplex structures where four strands come together. Early NMR spectroscopic studies, which were performed almost twenty years ago revealed that $d(TG_4T)$ in the presence of Na⁺ ions forms a tetramolecular G-quadruplex consisting of four G-quartets with all guanine residues in anti conformation.^{1,2} We herein report on undescribed minor form, which is in slow exchange with the known topology.³ An additional aspect of the study involves the evaluation of dynamics of cation movement in tetramolecular quadruplexes.

REFERENCES:

^{1.} Aboulela, F.; Murchie, A. I. H.; Lilley, D. M. J.: Nature 360, 280-282 (1992)

^{2.} Aboulela, F.; Murchie, A. I. H.; Norman, D. G.; Lilley, D. M. J.: J. Mol. Biol. 243, 458-471 (1994)

^{3.} Sket, P.; Plavec, J.: J. Am. Chem. Soc. 132, 12724-12732 (2010)

NA494

Elucidating RNA dynamics with residual dipolar coupling restrained molecular dynamics simulations

Aditi N. Borkar, Michele Vendruscolo

Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK

NMR spectroscopy can provide information about the structure and dynamics of nucleic acids over a wide range of biologically relevant timescales. Experimental data like Residual dipolar couplings (RDC) calculated by NMR are being widely used in determination and refinement of structure of proteins and nucleic acids. We discuss an approach to describe conformational fluctuations in RNA by incorporating RDCs as structural restraints in molecular dynamics simulations. This strategy has been demonstrated for proteins, but so far applications to nucleic acids have been limited. Here we perform molecular dynamics simulations with restraints derived from RDCs on different RNA molecules to characterise their dynamical properties by generating conformational ensembles representing the range of structures that they populate. The RNA molecules that we consider cover various aspects of RNA behaviour, including RNA-protein interactions, RNA-DNA interactions and RNA catalysis, and help understand the role of dynamics in these processes.

Keywords: RNA dynamics; Residual dipolar couplings; Molecular dynamics simulations

Ps495

An EPR and ENDOR Study of the Frozen Ammoniated Electron at Low Alkali-Metal Concentrations

Andreas Meyer and Maurice van Gastel

Rheinische Frierich-Wilhelms-Universität Bonn, Institut für Physikalische und Theoretische Chemie, Wegelerstrasse 12, D-53115 Bonn, Germany. E-mail: vgastel@pc.uni-bonn.de

POSTER

Ammoniated electrons in dilute frozen solutions are examined using EPR spectroscopy under conditions where the formation of metallic nanoparticles is avoided. Two signals from two different species have been observed. One signal is metastable and decays irreversibly upon annealing. The metastable species saturates at a spin concentration of 10 nM. The annealing temperature for this species amounts to 60 K for frozen solutions of sodium in neat ammonia and is raised upon addition of metal iodide. The observed g value is smaller than the free electron g value and is compatible with a cluster-anion radical rather than with a cavity electron. The wave function of the unpaired electron contains about 6 % - 10 % of 2p character at nitrogen. The observed g shift is fully compatible with previously reported theoretical calculations.¹ The second signal cannot be annealed in the frozen state. The lineshape is homogeneous and its width depends on the identity of the metal and at large metal concentration itself. Upon increasing alkali metal concentration above 0.15 MPM, the lineshape changes from Lorentzian to Dysonian, indicating the presence of metal nanoparticles. A new ENDOR pulse sequence is introduced to investigate the presence of weakly coupled nuclear spins for homogeneous EPR lines.

1. Shkrob, I. A., J. Phys. Chem A, 3967-3976 (2006)

Ps496

Multifrequency Electron Paramagnetic Resonance Characterization of PpoA, a CYP450 Fusion Protein that Catalyses Fatty Acid Dioxygenation

<u>Alistair J. Fielding</u>,¹ Florian Brodhun,² Christian Koch,² Roberta Pievo,¹ Vasyl Denysenkov,³ Ivo Feussner² and Marina Bennati^{1,4}

¹ Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany. ² Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University, Göttingen, Germany. ³ Institute for Physical and Theoretical Chemistry, J. W. Goethe University, Frankfurt, Germany. ⁴Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany. E-mail: afieldi@gwdg.de

PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of *Aspergillus nidulans*. It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme peroxidase domain, linoleic acid is oxidized to (8*R*)-hyderoperoxyoctadecadienoic acid [(8*R*)-HPODE]; in the second reaction step (8*R*)-HPODE is isomerized within a P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid.¹ We observe EPR resonances of two distinct heme centres with *g*-values typical for Fe(III) S = 5/2 high-spin and Fe(III) $S = \frac{1}{2}$ low-spin hemes. ¹⁴N ENDOR spectroscopy on the S = 5/2 signal reveals resonances consistent with an axial histidine ligation. Reaction of PpoA with the substrate leads to the formation of an amino acid radical on the early ms time scale concomitant to a substantial reduction of the S = 5/2 heme signal. High-frequency EPR (95-and 180-GHz) unambiguously identifies the new radical as a tyrosyl, based on *g*-values and hyperfine couplings from spectral simulations. Further, EPR distance measurements revealed that the radical is distributed among the monomeric subunits of the tetrameric enzyme at a distance of approx. 5 nm.

REFERENCES: 1. Brodhun, F., Gobel, C., Hornung, E., Feussner, I. J. Biol. Chem., 284, 11792-11805 (2009).

Ps497

DISCRIMINATION BETWEEN IRRADIATED and UN-IRRADIATED COFFEE MATE POWDER BY ESR SPECTROSCOPY

Fulya Özsayın and Mustafa Polat

Hacettepe University, Engineering Faculty, Physics Engineering Department, 06800 Beytepe, Ankara, Turkey

Un-irradiated coffee mate (CM) powder (Nestlé Company) do not exhibit any ESR signal. A large ESR signal with unresolved shoulders was observed for the samples exposed to γ -irradiation by a ⁶⁰Co γ -cell having a dose rate of 1.0 kGy/h. The signal intensity variations versus to the exposure time (0-1.0 h) and radiation doses (0.1-5.0 kGy) were constructed for the UV and γ -irradiated samples, respectively. The dose-response curves of the CM samples exposed to UV and γ -radiations were found to be described well by an exponential and a linear function, respectively. The results of the present work show that, the discrimination between un-irradiated and irradiated CM samples can be done just comparing their ESR spectra. However, determination of the radiation dose received by the sample cannot be possible because of the fast decay of signal intensity at room temperature.

Keywords: ESR; coffee mate; irradiation

Why H₂O is a Good Hydrogen Atom Donor in Radical-Based Epoxide Opening Catalyzed by Titanocene

Asli Cangönül¹, Maike Behlendorf², Andreas Gansäuer^{2*} and Maurice van Gastel^{1*}

1 Institut für Physikalische und Theoretische Chemie der Universität Bonn, Bonn, Germany; 2 Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Bonn, Germany cangoenuel@pc.uni-bonn.de

Abstract: The binding of H_2O , D_2O , CH_3OH , CD_3OD , CH_3OD and CD_3OH to Cp_2TiCl is studied on the electronic level by EPR spectroscopy and quantum chemical calculations in order to obtain structural insight pertinent to radical based epoxide opening. The wave function of the unpaired electron is found to be insensitive to the binding of small molecules and is characterized by a $d_{z^2}^1$ ground state at Ti^{III}. In addition, the hyperfine resolving ENDOR and ESEEM spectra indicate that a hydrogen bond to chloride is formed by H_2O , D_2O , and methanol at low concentration. At larger concentrations, complexation occurs concomitant with dissociation of the chloride. The visible absorption responsible for the color of the respective complexes is ascribed to a changed ligand-tometal charge transfer transition of the dimeric catalyst. The observations provide new insight into the mechanism of the recently described hydrogen atom transfer from these reagent mixtures to alkyl radicals and opens perspectives for the design of more efficient reagents.

Ps499

Electron Paramagnetic Resonance and Magnetism of Small Platinum Clusters in Zeolites

Emil Roduner,¹ Christopher Jensen,¹ Joris van Slageren¹ and Rüdiger A. Eichel²

¹Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany ²Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany e.roduner@ipc.uni-stuttgart.de

Poste

In its bulk metallic form platinum is not magnetic. However, in the pores of zeolites 13-atom clusters can be prepared quantitatively, and they show unusual and interesting magnetic behaviour that includes a fraction of diamagnetic Pt_{13} , a second fraction of high-spin paramagnetic and a small fraction of EPR active spin- $\frac{1}{2}$ clusters, all with essentially the same near-icosahedral structure with 12 atoms coordinating one that sits in the center [1-3]. Structural characterization was performed with EXAFS [2], magnetic measurements using XMCD [3] and SQUID magnetometry [2]. At room temperature, super-diamagnetism dominates over paramagnetism. Hydrogen desorption, readsorption and exchange are monitored using EPR spectroscopy [1]. More than 30 H atoms per 13-atom Pt cluster are found, and paramagnetism oscillates with hydrogen coverage. After desorption and readsorption one observes two types of surface-adsorbed H.

2. X. Liu, M. Bauer, J. van Slageren, H. Bertagnolli, E. Roduner, Phys. Rev. Lett. 97 (2006) 253401.

^{1.} X. Liu, H. Dilger, R. A. Eichel, J. Kunstmann, E. Roduner, J. Phys. Chem. B. 110 (2006) 2013-2023.

^{3.} J. Bartolomé, F. Bartolomé, L. M. García, E. Roduner, Y. Akdogan, F. Wilhelm, A. Rogalev, Phys. Rev. B. 80 (2009) 014404-1 - 014404-10.

Ps500

Huge Isotopically Induced Nuclear-Nuclear Interactions in Solids

<u>Frédéric Mentink-Vigier^{1*}</u>, Laurent Binet¹, Didier Gourier¹, Hervé Vezin²

¹Laboratoire de Chimie de la Matière Condensée (LCMCP, UMR-7574), École Nationale Supérieure de Chimie Paris, Paris, France; ²Laboratoire de Spectrochimie Infrarouge et Raman (LASIR, UMR-8516), Université Lille, Villeneuve d'Ascq, France; *frederic-mentink@etu.chimie-paristech.fr

Dipolar nuclear-nuclear interactions in solids are generally too weak (<10 kHz) to be easily observed in EPR or ENDOR spectroscopy. Nevertheless this kind of interaction can be enhanced by one order of magnitude when it is mediated by an electron spin. In the special case of two nuclei linked by an inversion center, this so-called pseudo-dipolar interaction can be further enhanced by another order of magnitude. In this work we extensively investigated the effect of this interaction in a linear cluster of $Ga-Ti^{3+}-Ga$ present in titanium doped gallium oxide β -Ga₂O₃ in which the electron spin is equally delocalized over the neighboring nuclei¹. The ENDOR spectra of the three isotopic configurations ⁶⁹Ga-Ti-⁷¹Ga, ⁶⁹Ga-Ti-⁶⁹Ga and ⁷¹Ga-Ti-⁷¹Ga were analyzed in details focusing on the isotopic effect. The effect of this interaction on the ENDOR spectra is drastically different between symmetrical (⁶⁹Ga-Ti-⁶⁹Ga and ⁷¹Ga-Ti-⁷¹Ga) and asymmetrical clusters (⁶⁹Ga-Ti-⁷¹Ga). The interaction is one order of magnitude larger (1 MHz) for the symmetrical clusters than for the asymmetrical one $(<0.1 \text{ MHz})^2$. These symmetrical clusters thus combine a resolved nuclear-nuclear spin interaction, a nuclear spin monitoring by an unpaired electron, and a large nuclear spin quantum register, which make them attractive for quantum information processing whereby nuclear qubits can be monitored by electronic spin and controlled by short selective radio-frequency pulses. In this prospect, we performed electron and nuclear Rabi oscillations both on symmetrical and asymmetrical systems.

¹. Mentink-Vigier F., Binet L., Vignoles G., Gourier D. and Vezin H., Phys. Rev. B, 82, 184414-1 184414-8, **(2010)** ². Mentink-Vigier F., Binet L., Gourier D., Phys. Rev. B, in press **(2011)**

Ps501

The ID card of a nitronylnitroxide monoradical

<u>Alberto Collauto¹</u>, Antonio Barbon¹, and Marina Brustolon¹

¹Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova I-35131, Italy alberto.collauto@studenti.unipd.it

The synthesis of nitronylnitroxide radicals was first described in 1968 by J. H. Osiecki and E. F. Ullman¹; a thorough characterization of these molecules was subsequently reported in 1972 in a paper whose title is "Studies of Stable Free Radicals. X. Nitronylnitroxide Monoradicals and Biradicals as Possible Small Molecule Spin Labels"². Since then nitronylnitroxides have been mainly used as building blocks for molecular magnets³ or radical scavengers against nitric oxide⁴, yet to our knowledge their use as spin labels – despite being suggested in the title of reference 2 – is rather uncommon, albeit reported in the literature⁵.

Within this context we try to outline a sort of «ID card» of nitronylnitroxide monoradicals with the aim to show that these molecules are well-suited to be applied as spin labels along with the commonly used nitroxide radicals; in this respect we will report a CW-EPR, pulsed EPR and CW-ENDOR characterization of Nit-Ph-CH₂-SAc. It will be shown that even though the more complicated spin system of nitronylnitroxides with respect to nitroxides could in principle discourage from the use of the former ones, still nitronylnitroxides are appealing spin probes especially when techniques requiring long spin relaxation times – such as pulsed EPR and CW-ENDOR – are considered.

REFERENCES:

^{1.} Osiecki J. H., Ullman E. F., J. Am. Chem. Soc., 90, 1078-1079 (1968)

^{2.} Ullman E. F., Osiecki J. H., Boocock D. G. B., Darcy R., J. Am. Chem. Soc., 94, 7049-7059 (1972)

^{3.} Crayston J. A., Devine J. N., Walton J. C., Tetrahedron, 56, 7829-7857 (2000)

^{4.} Woldman Y. Y., Khramtsov, V. V., Grigorev I. A., Kiriljuk I. A., Utepbergenov, D. I., Biochem. Biophys. Res. Commun., 202, 195-203 (1994)

^{5.} Dragutan I., Dragutan V., Caragheorgheopol A., Zarkadis A. K., Fischer H., Hoffmann H., Colloids Surf., A, 183-185, 767-776 (2001)

Fitting the puzzle pieces together: the cage complexes with encapsulated cobalt(II) ion as new paramagnetic labels

Valentin V. Novikov, Yan Z. Voloshin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia, novikov84@ineos.ac.ru

Macrobicyclic tris-dioximate complexes with an encapsulated cobalt(II) ion are perspective paramagnetic labels owing to the complete isolation of the metal ion [1]; hence the stability of the complex and its magnetic characteristics do not depend on the environment. The functionalization of such complexes by six ribbed and two apical substituents gives a room for fine tuning the characteristics of an encapsulated ion to achieve the desired features. In particular, the molecular design allowed obtaining macrobicyclic complexes with a high affinity to proteins (for example, T7 RNA polymerase). At the same time, the choice of dioximate ribbed groups affects tremendously the magnetic properties of an encapsulated ion, enabling the spin transition in these complexes. The pseudocontact interactions with the cobalt(II) ion leads to the paramagnetic shift of distant (>2.5 nm) nuclei signals in NMR spectra, paving the way for the use of the cobalt(II) cage complexes as non-covalent paramagnetic tags.

The study was supported by Russian Foundation for Basic Research (10-03-00837) and Council of the President of the Russian Federation for young scientists (MK-3161.2010.3).

REFERENCES

1. Voloshin, Y. Z., Varzatskii, O. A., Vorontsov, I. I., Antipin, M. Y., Angew. Chem., Int. Ed., 44, 3400-3402 (2005)

Ps503

CO₂ Fixation: Why Nature Chose Oxazoline and Thiazole Rings.

Nina Dovalil,^a Björn Seibold,^a Prabha Vadivelu,^a Peter Comba,^a Gebhard Haberhauer,^b Lawrence R. Gahan,^c Christopher J. Noble,^d and Graeme R. Hanson,^d

^a Anorganisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany, ^b Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstra0e 5, 45117 Essen, Germany, ^c School of Chemistry and Molecular Biosciences, ^d Centre for Advanced Imaging The University of Queensland, Queensland 4072, Australia

Lissoclinum patella is a colonial ascidian found on the Great Barrier Reef and lives in a symbiotic relationship with prochlorin, a cyanobacterium which is known to produce the cyclic octa-peptides patellamide D and ascidiacyclamide which incorporate oxazoline and thiazole rings. These ascidians also accumulate high concentrations of copper(II) from the seawater. Utilizing multifrequency EPR spectroscopy, circular dichroism (CD), UV-vis, mass spectrometry (ESI-MS) and X-ray crystallography we have shown that these cyclic peptides can form mono- and di-nuclear Cu(II) complexes, with the latter being able to fix CO₂ from the atmosphere.¹ Subsequently, we have undertaken systematic studies^{2,3} of a series of synthetic analogues to examine the importance of stereochemistry, ring choice, and steric bulk in influencing the Cu(II) coordination chemistry and the ability of the dinuclear Cu(II) complexes to fix CO_2 from the atmosphere. The spectroscopic and computational chemistry results of the Cu(II) coordination chemistry indicate that the oxazoline and thiazole rings and backbone stereochemistry introduce greater conformational flexibility enabling CO₂ fixation to occur in the native systems. The biological implications of these observations will also be discussed.

^{1. (}a) Van den Brenk, A.L. Fairlie, D.P. Hanson, G.R. Gahan, L.R. Hawkins, C.J. Jones, A. Inorg. Chem., 33, 2280-2289, 1994. (b) Van den Brenk, A.L. Byriel, K.A. Fairlie, D.P. Gahan, L.R. Hanson, G.R. Hawkins, C.J. Jones, A. Kennard, C.H.L. Moubaraki, B. Murray, K.S. Inorg. Chem., 33, 3549-3547, 1994.

^{2.} Comba, P.; Dovalil, N.; Hanson, G.R.; Linti, G, Inorg. Chem., DOI: 10.1021/ic2004694, 2011.

^{3.} Comba, P. Dovalil, N. Gahan, L.R. Haberhauer, G. Hanson, G.R. Noble, C.J. Seibold, B. Vadivelu, P., Submitted, 2011.

Ps504

Identification of the Active Eu²⁺ Centres in CsBr Storage Phosphors for Medical X-ray Radiography

Henk Vrielinck,^{1*} Paul Leblans,² Jean-Pierre Tahon,² Paul Matthys¹ and Freddy Callens¹

¹Department of Solid State Sciences, Ghent University, Krijgslaan 281 – S1, B-9000 Gent, Beligum. ²Agfa Healthcare NV, Septestraat 27, B-2640 Mortsel, Belgium. *Postdoctoral Fellow of the Flemish Research Foundation (FWO). E-mail : <u>henk.vrielinck@ugent.be</u>.

Classical film-screen X-ray radiography is gradually being replaced by technologies that provide the X-ray image in digital form. Computer radiography presents by far the cheapest solution : traditional photographic films, which require a wet development step, are replaced by image plates (IPs) and a scanner, while the same X-ray table can still be used. At the heart of the IP is a storage phosphor layer. X-ray irradiation creates stable defects in this phosphor, which recombine in the scanout process after photo-stimulation in the (infra)red, resulting in green-blue photo-stimulated luminescence (PSL). In order to solve resolution problems of the first-generation IPs, Agfa Healthcare developed CsBr:Eu needle IPs with sensitivities comparable to those of BaFBr:Eu. This in itself is quite remarkable, as large Eu²⁺ doped CsBr single crystals grown from the melt exhibit only poor PSL. Our EPR and ENDOR study of CsBr:Eu IPs and crystals has been directed towards explaining the differences between these systems and concentrated on the structure of the active Eu²⁺ PSL centres.

In contrast with large single crystals, CsBr:Eu needle IPs do exhibit an intense room temperature stable Eu^{2+} related EPR spectrum. This undergoes dramatic changes when cooling the sample from 300 to 4 K. The ENDOR spectra not only reveal interactions with the central ^{151/153}Eu and matrix ¹³³Cs and ^{79/81}Br nuclei, but also with protons. A model in which Eu^{2+} replaces a Cs⁺ ion, with a H₂O molecule and a Cs⁺ vacancy in nearest neighbour cation positions explains all these findings. The EPR and ENDOR study explicitly makes use of the partially ordered needle structure of the specimens, rendering single crystal like spectra for specific plate orientations.

Ps505

Gd(III) Chelates as NMR Probes of Protein-Protein Interactions

Rui M. Almeida¹, Carlos F. G. C. Geraldes², José J. G. Moura¹ and <u>Sofia R. Pauleta¹</u>

¹REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; ²Department of Life Sciences, Faculty of Science and Technology, and Centre of Neurosciences and Cell Biology, University of Coimbra, 3001-401 Coimbra, Portugal

Two cyclen-derived Gd probes, $[Gd-DOTAM]^{3+}$ and $[Gd-DOTP]^{5-}$, were assessed as paramagnetic relaxation enhancement (PRE)-inducing probes for characterization of protein-protein interactions. Two proteins isolated from *Desulfovibrio gigas* rubredoxin and cytochrome c_3 , were used as model partners¹. $[Gd-DOTAM]^{3+}$ caused PREs on a well-defined patch near the metal center of rubredoxin (especially the patch constituted by residues D19 to G23 and W37 to S45, which broaden beyond detection). This effect was partially reversed for some resonances (C6 to Y111, in particular) when cytochrome c_3 near heme IV, also causing pronounced PREs, characterized by line width broadenings of its heme methyl resonances at ratios as low as 0.50. A K_d of $23 \pm 1 \mu$ M was calculated based on chemical shift perturbation of selected heme methyl resonances belonging to three different heme groups, caused by allosteric effects upon [Gd-DOTP]⁵⁻ binding at a stoichiometry of 2:1. Both probes were successful in causing reversible PREs at the partner binding site, thus showing to be good probes to identify partners' binding sites, and since the interaction was reversible, to structurally characterize protein complexes².

REFERENCES:

2. Almeida RM., Inorg. Chem., submitted (2011)

^{1.} Almeida RM., J. Inorg. Biochem., 103, 1245-53 (2009)

Ackowledgments: The authors thank Fundação para a Ciência e Tecnologia for the Ph.D. scholarship granted to R.M.A. (SFRH/BD/25342/2005) and C.F.G.C.G. for project PTDC/QUI/70063/2006. We acknowledge to LabRMN at FCT-UNL and Rede Nacional de RMN for access to the facilities, which is supported with funds from FCT (Portugal) "Projecto de Re-Equipamento Científico".

Ps506

Lisett Valentin, Stefan Berger

Department of Analytical Chemistry, University of Leipzig, Leipzig, Germany.

Lanthanide Ions are attractive tools in NMR analysis of large biomolecules. Most of these ions are paramagnetic, thereby generating different effects in the spectra. Residual dipolar couplings (RDCs) result from partial alignment of the molecule with respect to the magnetic field. The incorporation of a lanthanide ion can be realized either by natural ion binding sites or by attaching an ion binding tag to the sample molecule.¹

While RDCs are arising to expanded application for large molecules, especially proteins, they are fairly less utilized for small organic molecules due to the fact that many existing alignment media are not suitable to organic solvents.

The aim of our project is to design lanthanide binding tags that are soluble in organic media and to check the possibilities of measuring RDCs of small organic molecules.

There are several molecules with ion binding properties that could serve as promising templates for new lanthanide tags (Figure 1) Already several decades ago DPM was used as lanthanide shift reagent to separate overlying signals but RDCs were never observed. Closer investigation and derivatisation at one side chain have to be performed to evaluate the opportunities to design a tag based on DPM. Dipicolinic acid is already well established as tag for the investigation of RDCs in biomolecules.² By esterification it can be transformed in derivatives which are soluble in organic media and functionalization in 4-position gives room for introduction of linkers or sample molecules.

1. Su X.; Huber T.; Dixon N.E.; Otting G., ChemBioChem, 7, 1599-1604 (2006)

2. Su X.; Man B.; Beeren S.; Liang H.; Simonsen S.; Schmitz C.; Huber T.; Messerle B.A.; Otting G., JACS, 130, 10486-10487 (2008)

Ps507

EPR and DFT Study of Gamma Irradiated 2,6–di-tert-butyl-4-methylphenol Single Crystal

Ercan Türkkan^{1*}, Ömer Dereli¹, Ülkü Sayın², Recep Tapramaz³

¹Department of Physics Education, University of Selçuk, Konya, Turkey; ²Department Physics, University of Selçuk, Konya, Turkey; ²Department Physics, University of Ondokuz Mayıs, Samsun, Turkey; *Corresponding author. E-mail address: eturkkan@selcuk.edu.tr (Ercan Türkkan).

Poste

Single crystal of gamma irradiated 2,6–di-tert-butyl-4-methylphenol was investigated using an electron paramagnetic resonance (EPR) technique at different orientations in the magnetic field at room temperatures. Taking into consideration the chemical structure and the experimental spectra of the irradiated single crystal of 2,6–di-tert-butyl-4-methylphenol, we assumed that one phenoxyl type paramagnetic species was produced having an unpaired electron localized at the methyl fragment side of the phenyl ring. Depending on this assumption, one possible radical was modeled using the B3LYP/6-311+G(d) level of density-functional theory (DFT). EPR parameters were calculated for these modeled radical using the B3LYP/TZVP and B3LYP/EPR-III level. The averaged value of isotropic hydrogen hyperfine coupling constants of a rapidly rotating methyl functional group of phenoxyl radical is calculated for the first time. Theoretically calculated values of the modeled radical are in reasonably good agreement with the experimental data determined from the spectra (differences in averaged coupling constant values smaller than 5 %, and differences in isotropic g values fall into 1 ppt).

EPR study of unstable Eu²⁺ centres in CsBr

Dmitry G. Zverev^{1,2}, Henk Vrielinck¹, Paul Matthys¹ and Freddy Callens¹

¹Department of Solid State Sciences, Ghent University, Gent, Belgium; ²Max Planck Institute for Polymer Research, Mainz, Germany. zverev@mpip-mainz.mpg.de

In contrast with physical vapour deposited CsBr:Eu image plate (IP) X-ray storage phosphors, melt-grown Eu²⁺-doped CsBr single crystals do not exhibit a room temperature stable Eu²⁺-related electron paramagnetic resonance (EPR) spectrum (Eu²⁺: ${}^{8}S_{7/2}$ ground state). However, after heating CsBr:Eu crystals in vacuum above 800K and rapid quenching to 77K or 273K, a spectrum exhibiting hyperfine structure typical for a natural abundant mixture of ${}^{151}Eu/{}^{153}Eu$ is produced. In a previous investigation, the intensity decay of this spectrum was interpreted as aggregation of Eu²⁺-V_{Cs} (V_{Cs} - cesium vacancy) dipoles with trimer formation as an initial step [1]. However, the spin Hamiltonian analysis and consequences for the centre's model (Eu²⁺-V_{Cs} orientation) remained unrevealed in this study. From the angular dependence of the EPR spectra, we determine that the dominant Eu²⁺ centre produced after quenching has cubic symmetry, which indicates a nonlocal charge compensation of the Eu²⁺ ion substituting for Cs⁺. The broadening of certain EPR transitions is indicative of a random distribution of lattice imperfections near the Eu²⁺ ion. Both the thermal stability and angular dependence of this EPR spectrum are completely different from those of the Eu²⁺ centres stable in as grown IPs. Nonetheless an EPR spectrum with the same characteristics as in CsBr crystals can be produced in IPs by subjecting them to the same annealing and quenching procedure in vacuum.

REFERENCE:

1. Savelev, V.P., et al., Fiz. Tverd. Tela+, 16(4), 1090-1093 (1974)

Ps509

Transferred RDCs, Induced by designed Lanthanide Binding Peptides

Martin J. Hähnke, Harald Schwalbe

Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Frankfurt, Germany

A lanthanide-binding peptide tag with nanomolar affinity to trivalent lanthanide ions is attached to a short peptide that binds to ubiquitin. The alignment induced by the anisotropic magnetic susceptibility of the bound lanthanide ion when exposed to a strong external magnetic field arises residual dipolar couplings not only in the peptide but also in the coordinated protein and may therefore be used to investigate protein-ligand complexes. Utilizing the UIM1 sequence from hepatocyte growth facor-regulated tyrosine kinase substrate and loaded with one equivalent of Terbium (III) we were able to measure residual dipolar couplings as well as paramagnetic relaxation enhancement and paramagnetic pseudocontact shifts on ubiquitin.

- [2] Jens Wöhnert, Katherine J. Franz, Mark Nitz, Barbara Imperiali and Harald Schwalbe, J. Am. Chem. Soc. 2003, 125, 13338-13339
- [3] Alexander Shekhtman, David Cowburn, Biochem Biophys Res Commun, 2002, 296, 1222-1227

 ^[1] Langdon J. Martin, Martin J. Hähnke, Mark Nitz, Jens Wöhnert, Nicholas R. Silvaggi, Karen N. Allen, Harald Schwalbe, and Barbara Imperiali, J. Am. Chem. Soc., 2007, 129, 7106–7113

^[4] Robert D. Fisher, Bin Wang, Steven L. Alam, Daniel S. Higginson, Howard Robinson, Wesley I. Sundquist and Christopher P. Hill, Journal of Biological Chemistry, 2003, 278, 28976-28984

Ps510

Influence of the axial ligand on agostic interactions in paramagnetic Nickel complexes

Maria A. Ezhevskaya¹, Eva Reyheller², Hans-Jörg Krüger², Dariush Hinderberger¹

¹Max-Planck Institute for Polymer Research, Mainz, Germany; ²Department of Chemistry, TU Kaiserslautern, Germany ezhevska@mpip-mainz.mpg.de.

The impact of agostic interactions (3-center–2-electron M-H-C bonds) on the geometry of Nicenter catalysts is under investigation¹. In case of an agostic interaction, the C-H bond tilts to close proximity with the metal center. Through this unusual interaction the metal center activates inert C-H bond, which is in potential interest for organometallic catalytic reactions. The synthesized Nicomplexes in our study carry three different axial ligands (Pyridine, DMF and Chloride) which can influence the agostic interaction.

In this work, we use low temperature CW and pulsed EPR experiments to study the electronic and geometric structure of the Ni-centers with different axial ligands. To this end, the carbon and hydrogen atoms participating in the agostic interaction were isotope-labeled with ²H and ¹³C. 4-pulse standard and matched and 6-pulse HYSCORE measurements have been performed². The EPR parameters were compared to DFT calculations (ORCA) for modeled Ni-complexes³. The distances between the Ni-center and the atoms in C-H bond were predicted using equation for the anisotropic hyperfine interaction as described in Koh and Miller, 1985⁴.

References:

- 1. Brookhart M., Green M.L.H., Parkin G., PNAS, 104, 17, 6908-6914 (2007)
- Kasumaj B., Stoll S., JMR, 190, 233-247 (2008)
 Neese F., J.Phys.Chem., 105, 4290-4299, (2001)
- 4. Koh A.K., Miller D.J., Atomic data and nuclear data tables, 33, 2, 235-253 (1985)

Ps511

Anionic effects observed in complexes of trivalent lanthanides with partitioning relevant N-donor ligands

Christian Adam, Andreas Geist, Petra J. Panak, Melissa A. Denecke, Peter Kaden

Karlsruhe Institute for Technology (KIT), Institute for Nuclear Waste Disposal (INE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Email: peter.kaden@kit.edu

Posters

World-wide efforts are being made to optimize separation technologies for removing trivalent actinides (An) from their chemically similar lanthanides (Ln) from nuclear waste streams. This is a key step in the partitioning and transmutation (P&T) strategy for reducing the long term radiotoxicity of spent nuclear fuel. Separation of An from Ln in nitric acid solution can be performed by liquid-liquid extraction using selective N-donor agents, e.g., alkylated bis-triazinyl-pyridines (BTP) in organic solvents. In efforts to optimize such separations, comparative investigations of An and Ln interaction with different extracting agents, solvents and solution components are performed.

Previous studies show that An- and Ln-BTP complex interaction with different charge compensating anions varies. To elucidate the nature of the interaction of (application relevant) nitrate anions, a number of BTP complexes with different anions are studied using NMR techniques. From the beginning of the '90s, anions are known to interact with electron poor aromatic systems. Associated changes in electron density on the aromatic ring are expected to affect changes in the chemical shift of nuclei in direct proximity. By separating the anionic effect from other parameters influencing chemical shifts of selected ligand nuclei using comparative NMR data on "reference complexes" with a non-coordinating anions, we are able to differentiate modes of interaction; chloride anions coordinate directly and nitrate anions insert between ligands in the complexes.

This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract numbers 02NUK012A and 02NUK012D.

A comparative NMR study of complexes of trivalent actinides and lanthanides with partitioning relevant N-donor ligands

Christian Adam, Andreas Geist, Petra J. Panak, Melissa A. Denecke, Peter Kaden

Karlsruhe Institute for Technology (KIT), Institute for Nuclear Waste Disposal (INE), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Email: christian.adam@kit.edu

Partitioning and transmutation (P&T) is a strategy of reducing the long term radiotoxicity of spent nuclear fuel, thereby minimizing the required storage time. P&T involves separating actinides and fissioning them into shorter-lived fission products. In this context the separation of trivalent actinides from the chemically similar lanthanides is a key step. This separation can be performed by liquid-liquid extraction using selective N-donor extracting agents, e.g., alkylated bis-triazinyl-pyridines (BTP). These have high separation factors (>100) for trivalent americium over europium. However, little is known of the origin of their selectivity.

Previous studies have shown that actinide and lanthanide complexes of BTP are isostructural. Therefore a comparative study of the different binding modes of actinides and lanthanides is possible, as every observable effect on the electron density of the ligand may be attributed to a change in the central metal ion of the complex. NMR spectroscopy, as a tool to study such effects on the electron density around the observed nuclei, is ideally suited to address this question. By separating different contributions to the overall chemical shift, especially separating and monitoring the dipolar and Fermicontact part of the paramagnetic chemical shift on selected ligand nuclei, it is possible to elucidate the ratio and nature of interactions between the ligands and the chelated trivalent actinide or lanthanide. A comparison of complexes with different *f*-element metal ions is revealing different degrees of covalency in the interaction between metal ions and BTP.

This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract numbers 02NUK012A and 02NUK012D.

Ps513

Structural characterization of the NS2B-NS3 dengue virus protease in the presence of an inhibitor using pseudocontact shifts

Laura de la Cruz, Thi Hoang Duong Nguyen, Thomas Huber and Gottfried Otting

Research School of Chemistry, The Australian National University, 20 Science Road, 0200 ANU, ACT, Australia

The two-component dengue virus NS2B-NS3 protease (DENp) is an established drug target but inhibitor design is hampered by the fact that no three-dimensional structure of the protease has been determined in the presence of an inhibitor. In contrast to the highly homologous West Nile virus protease (WNVp), the functionally important C-terminal segment of the dengue virus NS2B is dissociated from the NS3 in the absence of inhibitor (open conformation)¹. A large structural change to a closed conformation is necessary for enzymatic activity.

In this work, paramagnetic tags were introduced at different positions in DENp to assess the fold in solution with a bound inhibitor. Pseudocontact shifts (PCSs) observed for the NS2B co-factor are in apparent agreement with a closed conformation modeled on the crystal structures of WNVp with different inhibitors. Therefore, the homology model based on the closed conformation of WNVp may be a better template for rational drug design than the open conformation of the available crystal structures.

On a technical note, PCSs from paramagnetic tags at different sites allowed the assignment of well-resolved NMR cross-peaks that could not be unambiguously identified through conventional 3D experiments. This presents a novel way of NM resonance assignments for difficult proteins.

Su X.-C. et al. NMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease. *PLOS Negl. Trop. Dis.* **2009**, 3(12), 1-9.

Ps514

Dynamics of loop-Lanthanide-Binding-Tags in Interleukin-1ß

Katja Barthelmes, Hendrik Jonker, Harald Schwalbe

Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Resonance, J.W. Goethe University of Frankfurt Max-von-Laue-Str.7, 60438 Frankfurt am Main, Barthelmes@nmr.uni-frankfurt.de

Lanthanide-binding-tags (LBTs) are valuable tools for investigation of protein structure, function and dynamics. Their versatile use in NMR spectroscopy, X-ray crystallography and luminescence studies could be demonstrated for several proteins attached as fusion tags to the termini of proteins or chemically attached to cysteine residues.¹⁻³ Our new strategy involves the incorporation of encodable LBTs into loop regions of proteins. We could previously demonstrate the feasibility of this approach using a small library of Interleukin-1 β constructs (loop-IL1 β), which were designed to bear LBTs of varying length at different loop positions. Incorporation of the LBT neither impairs the binding affinity of Ln³⁺ to the LBT nor the overall fold of the protein. Moreover, we were able to measure paramagnetic effects such as residual dipolar couplings (RDCs) or pseudo-contact shifts (PCSs).⁴ However, the magnitude of these effects differs with respect to the choice of the loop for LBTinsertion. Intrinsic motions of the protein backbone reduce the size of the measurable parameters. Here, we investigate the dynamic properties of three different loop positions (denoted L2, R2 and S2) of the loop-IL1 β and compare it to the wildtype IL1 β . The calculated generalized order parameter S² from {¹H}-¹⁵N HetNOE, ¹⁵N longitudinal relaxation rates (R₁) and ¹⁵N transversal relaxation rates (R₂) will provide insights into the loop-LBT dynamics and the best loop architecture.

REFERENCES:

Wöhnert, J.; Franz, K. J.; Nitz, M.; Imperiali, B.; Schwalbe, H. J. Am. Chem. Soc. 2003, 125, 13338. (2) Silvaggi, N. R.; Martin, L. J.; Schwalbe, H.; Imperiali, B.; Allen, K. N. J. Am. Chem. Soc. 2007, 129, 7114. (3) Su, X.-C.; Otting, G. J. Biomol. NMR 2010, 46.
 (4) Barthelmes, K.; Reynolds, A. M.; Peisach, E.; Jonker, H. R. A.; DeNunzio, N. J.; Allen, K. N.; Imperiali, B.; Schwalbe, H. J. Am. Chem. Soc. 2010, 133, 808.

Ps515

Trityl: A New Spin Label for Nanometer Distance Measurements

Gunnar W. Reginsson^{1,2}, Nitin Chhaban Kunjir², Snorri Th. Sigurdsson², Olav Schiemann¹

¹Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK; ²Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland. gwr4@st-andrews.ac.uk

We have used pulsed electron double resonance (PELDOR) and double quantum coherence (DQC) for nanometer distance measurements on novel trityl-trityl and trityl-nitroxide biradicals. The advantage of the trityl radical is its narrow linewidth of 2G, its large intensity and its slow relaxation at elevated temperatures, making it a promising candidate as a new spin-label for such measurements.

We performed PELDOR measurements on the trityl-nitroxide biradical with the inversion pulse set on the trityl spectrum and detection on the nitroxide which results in orientation selective time traces with a modulation depth of up to 100%. DQC measurements on the same biradical, using a commercial X-band spectrometer, gave a time trace with a very strong, well-defined modulation and yields the same distance distribution as the PELDOR experiment. On the trityl-trityl biradical the PELDOR experiment is not the prefered option but the DQC experiment can be easily performed on a commercial X-band spectrometer. These measurements show that trityl radicals have some advantages over the commonly used nitroxides, at least with respect to distance measurements.

Ps516

Potentialities of EPR in the characterization of the petroleum residues

O.Delpoux¹, J.Barbier¹, M.Digne¹, H.Vezin²

¹IFP Energies nouvelles, Rond-point de l'échangeur de Solaize BP3, 69360 Solaize, France ²CNRS, Université des Sciences et Technologies de Lille, Laboratoire de Spectrochimie Infrarouge et Raman, UMR-CNRS 8516, 59655 Villeneuve d'Ascq, France. <u>olivier.delpoux@ifpen.fr</u>

The petroleum residues are a complex mixture of high molecular weight compounds which contain pollutants as sulfur or metallic ions which must be removed by hydrodesulfuration and hydrodemetallation. The most abundant paramagnetic ion is vanadium (IV) which is mainly present in the asphaltenes. This corresponds to the petroleum residue fraction which precipitates in paraffinic solvent¹. The chemical structures of the metallic compounds are not well known and understood yet² because of the complexity of the matrix and the investigation of the structure of the metallic complexes in asphaltenes is still an active domain of research. Indeed, it will permit to improve process and catalysts of petroleum residue conversion into valuable cuts which becomes of major importance considering the world increasing energy needs.

We will show that the continuous wave and pulsed EPR characterizations of the asphaltenes of several feeds and hydrotreated effluents reveal that the electron is a very sensitive probe of the vanadium and even the radicals which are naturally stable in the asphaltenes. Indeed, regarding the radicals, it permits to correlate the hydrodesulfuration depth with the g factor and enhance the different structures according to their geographic origin. Furthermore, regarding the vanadium, this technique turns out to be a powerful tool to characterize the environnement of the first coordination sphere (porphyrinic or non porphyrinic) which considerably evolves during hydrodemetallation. Thus, EPR allows giving crucial information on the structures which are the more resistant to the hydrotreatment.

REFERENCES:

1. Yen T.F., The role of trace metals in petroleum, Ann Arbor Science, Michigan, (1975)

2. Dechaine G.P. and Gray M.R., *Energy and Fuels*, 24, 2795-2808, (2010)

Rc517

Investigation of free radical activity of Artemisia absinthium for clinical using

Astghik Sukiasyan¹, Armen Hanbardzummyan², George Safaryan²,

Fridrix Grigoryan², Marina Yesayan².

¹UNESCO Chair - Life Sciences International Educational Center, Department of biotechnology, Yerevan, Armneia, ²State Engineering University of Armenia, Department of Chemical Technology and Environmental Engineering, Yerevan, Armneia.

sukiasyan astghik@yahoo.com

It is known that free radicals play an important role in a number of biological processes, some of which are necessary for life. In our experimental works we try to understand why not thermal treatment extract (NTTE) Artemisia Absinthium has is pro-oxidant in free radical processes, but after heat treatment of extracts (TTE) that activity became as antioxidant. In the first experiment we investigated the influence plant extract depended of kind of preparation on lipid peroxidation (LPO) using lipid contained biological target. The obtained results show that NTTE decreasing the concentration of both product of LPO- diene conjugate and malone dialdehyde. Then we investigated the level of luminescence of extracts. The NTTE had spontan chemiluminescence level at 5000 impulse/10sec, and TTE had only 75 impulse/10sec (the background of chemiluminescence was 30 impulse/10sec). For understanding the mechanism of influence plant extracts of free radical processes we used electron spin resonance (ESR) technique that gave some quality changes of a spectrum consistent, which indicate parameter of microviscousity of biological target after adding of plant extracts. We also used ESR to detect and identify free radical metabolites of drug extract to unravel the molecular mechanisms that lead to oxidative stress. ESR spectrum of drug plant extract pointed on displacement of maximum meaning of spectrum when we change concentration of plant. Our result can be help by preparation of drug for clinical using. Supported by ANSEF Grant1440-NS-biochem.

Rc518

Evidence of the formation of free-radical species in color degradation of hydrocracked streams

Luciano Montanari, Lucia Bonoldi, Cristina Flego, Elena Rebesco, Riccardo Rausa, Giuseppe Bellussi

eni s.p.a - r&m division, SDM Research Center, Via F. Maritano, 26, I-20097 San Donato Milanese (Milan), Italy luciano.montanari@eni.com

Under some conditions, the hydrocracking gasoil streams has been observed to change color from a clear transparent hue to yellow until the formation of brown sediment at longer times.

The change of color occurs usually in the presence of air and light [1]. Different oxidation mechanisms have been proposed to explain the fuel instability involving the formation of free-radical hydroperoxide, the electron-transfer and the formation of soluble macromolecules.

In this study the free-radical oxidation mechanism was observed experimentally by *in-situ* irradiation of hydrocracked stream with a Xenon lamp (1000 Watt) in an EPR resonant cavity. Two main radical species were observed: peroxides and aromatic/alkoxides. The two radical species show different time evolution. The peroxide radicals appear immediately after light irradiation and tend to decrease at longer time; the concentration of the aromatic/alkoxide radicals increases more slowly until a plateau is reached under illumination and decreases only when the light is turned off. On the basis of this study a mechanism for the formation of color and deposit is proposed consisting in an early formation of peroxide radicals, followed by a propagation step in which aromatic/alkoxide radicals are produced. Subsequently, the products of oxidation can combine with aromatic compounds in the hydrocracking streams to form sediment. The increase in aromatic size and the formation of oxygen groups are confirmed by synchronous fluorescence and IR spectroscopies. The amounts of radical species and deposit seem to be related to the polyaromatic content.

REFERENCES: 1. Bergeron I, et al., *Energy & Fuels*, 13, 686-693 (1999)

Rc519

Origin of Light-induced Spin-Correlated Radical Pairs in Cryptochromes

<u>Till Biskup^{1§}</u>, Erik Schleicher¹, Anthony R. Marino², Asako Okafuji¹, Kenichi Hitomi³, Elizabeth D. Getzoff³, James R. Norris², and Stefan Weber¹

¹Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany; ²Department of Chemistry, University of Chicago, Chicago, IL, U.S.A.; ³Skaggs Institute of Chemical Biology, Scripps Research Institute, La Jolla, CA, U.S.A.; [§]Present address: Physical and Theoretical Chemistry, University of Oxford, Oxford, UK. till.biskup@chem.ox.ac.uk.

POSTER

Blue-light excitation of cryptochromes (Crys) and homologs uniformly triggers electron transfer (ET) from the protein surface to a flavin-adenine dinucleotide (FAD) cofactor [1]. A cascade of three con-served tryptophan (Trp) residues has been considered to be critically involved in this photoreaction. Starting from fully oxidized FAD, light-induced ET via the Trp triad generates a series of short-lived spin-correlated radical pairs (RPs) comprising of an FAD and a Trp. Coupled doubletpair species of this type have been proposed as the basis, e.g., of a biological magnetic compass in migratory birds, and were found critical for some Cry functions in vivo (see, e.g., [2]). In this contribution, we examined a Cry from Xenopus laevis as paradigm system. Light-generated FAD ... Trp' RP states have been characterized in detail by time-resolved EPR (TREPR) at various microwave frequencies. Different RP precursor states – singlet versus triplet – have been considered in spectral simulations of the experimental spin-polarized TREPR signals. Conclusively, we present evidence for a singlet-state precursor of FAD ... Trp' RP generation because at the different magnetic fields, where the RPs have been studied, net-zero spin polarization was observed. Neither a spin-polarized triplet precursor nor a triplet at thermal equilibrium can explain such a polarization pattern. It turns out that a multi-frequency TREPR approach is essential to draw conclusions on the nature of the precursor electronic states in light-induced spin-correlated RP formations [3].

^{1.} T. Biskup et al., Angew. Chem. Int. Ed. 48, 404-407 (2009)

^{2.} C.T. Rodgers, P.J. Hore, Proc. Natl. Acad. Sci. U. S. A. 106, 353-360 (2009)

^{2.} S. Weber, T. Biskup, et al., J. Phys. Chem. B 114, 14745-14754 (2010)

EPR Study of Gamma Irradiated Single Crystal Cholesteryl Heptanoate

<u>Ulku Sayin¹</u>, Ercan Turkkan², Omer Dereli² ¹Department of Physics, University of Selcuk, Konya, Turkey ²Department of Physics Education, University of Selcuk, Konya, Turkey <u>uakpinar@selcuk.edu.tr</u>

Cholesterol take part significantly in many biological mechanisms and an important component for manufacture of bile acids, steroid hormones, and several fat-soluble vitamins. To determine magnetic properties of cholesteryl heptanoate ($C_{34}H_{58}O_2$) which is an important cholesteryl ester in human life and new technology; the single crystals of cholesteryl heptanoate were grown by slow evaporation of concentrated ethyl asetat solution and the grown single crystals were irradiated at room temperature with ⁶⁰Co- γ ray. The radical produced by gamma irradiation has been investigated in the range of temperatures 123–330 K for different orientations of the crystal in a magnetic field by EPR. Radiation damage center was attributed to radical $\dot{C}H_{\alpha}CH_{2\beta}$. The g factor and hyperfine coupling constants have slight dependency on temperature and evident dependency on the orientation of the magnetic field. Determined g factor and hyperfine coupling constants for the radical $\dot{C}H_{\alpha}CH_{2\beta}$ were found to be anisotropic with the average values $g_{av}=2.00361$, $a_{CH\alpha}=14.52$ G, $a_{CH2\beta}=25.78$ G. The EPR parameters which were compared and found to agree with the values given in the literature are given, the angular variations of the hyperfine interaction tensor, $A(\theta)$ and spectroscopic splitting factor tensor, $g(\theta)$ for the radical $\dot{C}H_{\alpha}CH_{2\beta}$ produced in cholesteryl heptanoate are shown in the presentation.

REFERENCES:

- 1. Çaliskan, B. et al., Rad. Eff. Def. , 159, 1-5 (2004)
- 2. Krzyminiewski, R. et al., J. Mol. Struct., 240, 133-140 (1990)
- 3. Rexroad, H.N. and Gordy, W., Proc. Nat. Acad. Sci., U.S.A 45, 256-269 (1959)
- 4. Sevilla, C.L. et al., *J. Phys. Chem.*, 90(13), 2963-2968 (**1986**)
- Smaller, B. and Matheson, M.S., J.Chem. Phys., 28, 1169-1179 (1958)
 Szyczewski A. et al., Acta Phys. Pol. A, 108(1), 119-126 (2005)

Rc521

ESR Investigation of Stable Organic Radicals in Soils

<u>Olga N. Aleksandrova¹</u>; Heinz-Juergen Steinhoff²; Joerg Klasmeier¹; Michael Matthies¹

¹Institute of Environmental Systems Research, University of Osnabrueck, Osnabrueck, Germany; ²Department of Physics, University of Osnabrueck, Osnabrueck, Germany. E-mail aleks_olga_upi@inbox.ru.

ABSTRACT. The role of stable radicals on the sorption and irreversible binding of organic chemicals (OC) to soil [1] were investigated by ESR spectroscopy. Analyzing ESR spectra of two soils, a luvisol (ME) and a cambisol (KA), at X- and W- bands, we observed a complex signal [2] of organic radicals (OR) (g_{Ph} =2.0039; g_{Ar} =2.0025 ÷ 2.0035) as well as of those of paramagnetic defects in the mineral phase, such as E'1 and E'2 paramagnetic centers (gz=2.002) that can influence the binding of OC to soils. Soil moisture between 5 and 30% and treatment with oxygen and argon had no significant influence on the OR concentration whereas the shape of the signal changed in dependence on the previous drying of sample. Samples dried in a furnace at 105° C after moistening showed a significant sharpening of the complex signal whereas the drying of soil samples at 200° C resulted in an insensibility to moistening and the identity of the signals from ME and KA. To investigate the molecular mechanism and kinetics of sorption and irreversible binding of OC to soils, we applied a method of paramagnetic probes, i.e. nitroxide spin labels (SL) with different substitutes, to the soils, and found a substantial decrease in the radical concentration of Amino Tempo, Tempo and Hydroxy Tempo SL during the first two days of incubation with both soils, an enhanced appearance and quenching of OR of soil ME (during 1 - 2 days) and KA (during some first minutes) by interacting with Amino Tempo, and Hydroxy Tempo partitioned in sites of different polarity.

- 1. Förster M. et al. Environ. Sci. Technol. 43: 1824-1830 (2009)
- 2. Skrzypczak-Bonduelle A. et al. Appl. Magn. Reson 33: 371-397 (2008)

POSTER

Electron Paramagnetic Resonance of free radicals in atherosclerosis and abdominal aortic aneurysm in patients treated surgically

<u>Ryszard Krzyminiewski¹</u>, Zdzisław Kruczynski¹, Marek Nowak², Bernadeta Dobosz¹, Wacław Majewski²

¹Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland² Department of General and Vascular Surgery University of Medical Science, Poznan, Poland, <u>rku@amu.edu.pl</u>

The project aims to examine the type and concentration of free radicals and iron ion complexes using electron paramagnetic resonance in blood in patients with atherosclerotic arterial obstruction in aorto-iliac segment, and femoro-popliteal segment treated surgically.

Increasing levels of free radicals is the main cause of complications occurring in the ischemia and reperfusion. So far, studies suggest that some deaths due to multi-organ failure may be related to damage arising from reperfusion after temporary clamping of the aorta during vascular reconstructive procedures.

The measurements of blood samples were performed using EPR spectrometer from Bruker working at 9.4 GHz frequency. All samples were investigated at 170 K temperature.

The samples from 25 patients treated at the Department of General and Vascular Surgery, Medical University of Poznan, both with femoro-popliteal occlusion and occlusion of the arteries in the aortoiliac segment were examined. Blood test for free radicals were taken before surgery, 30 minutes after restoration of blood flow (reperfusion) and 24 hours after surgery. The results show increasing of free radicals concentration after surgery depending on time and type of medical treatment. This work is supported by the Polish Ministry of Science and Higher Education as the research project NN 403 587738

This work is supported by the Polish Ministry of Science and Higher Education as the research project NN 403 54

Rc523

Combination of spin trapping ESR and ESR oximetry to study the effect of plant extracts on Fenton reaction

Katerina Makarova^{1,2}, Ekaterina V. Rokhina², Elena V. Golovina²

¹Department of Physical Chemistry, Faculty of Pharmacy, Warsaw Medical University, Zwirki i Wigury 61, 02-091 Warsaw, Poland, kmakarova@wum.edu.pl; ² Laboratory of Biophysics and Wageningen NMR Centre, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands

POSTER

The anti-oxidant properties of various compounds could be shown by their influence on the formation of free radicals in Fenton reaction. The formation of free radicals during the Fenton reaction is usually studied by the ESR spin trapping technique. Spin trapping utilizes the reaction of unstable free radicals with nitrone or nitroso spin traps, resulting in the production of spin adducts that can be detected by ESR spectroscopy. However, several possible pathways proposed for the Fenton reaction complicate the direct interpretation of the anti-oxidant properties of the studied compounds. Therefore, in addition to spin trapping the information about variation of oxygen concentration during the Fenton reaction is used. One of the methods, which enable these measurements is ESR oximetry.

In this work the anti-oxidant properties of glucose and extracts from typha pollen and onion seeds are shown by their influence on the kinetics of 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) adducts formation. Additionally, the ESR linewidth of perdeuterated 2,2,6,6-tetramethylpiperidine-N-oxyl(PD-TEMPONE) spin probe is analyzed in order to monitor changes in oxygen concentration. Our results indicate that the addition of various plant extracts and glucose dissolved in water influence the Fenton reaction in different ways. This experiment reveals the possible application of this method to study antioxidant activity of plant extracts.

Rc524

Radical cations and diradical dications of trimethylene and dimethylated-trimethylene mono-bridged bis-*p*-phenylenediamines

Michal Zalibera¹, Georg Gescheidt¹, Almaz S. Jalilov², Stephen F. Nelsen² and Qin Wu³

¹Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria; ²Department of Chemistry, University of Wisconsin, Madison, Wisconsin; ³Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York. Email: zalibera.m@gmail.com

Hole transfer between p-phenylenediamine units plays a decisive role for the conductivity in polyanilines. Our systematic investigation of specifically connected p-phenylenediamines provides the intrinsic factors of charge delocalization connected with the relative orientation between these moieties.

The radical cations and dications of singly bridged bis-*p*-phenylenediamines N,N'-Di-(n-dimethylaminophenyl)-1,3-propanediamine (HMPD) and N,N'-Di-(p,p'-dimethylaminophenyl)-3,3'-dimethyl-2,4-propanediamine(OMPD) (the PD dimers bound by a flexible linker) were investigated by EPR and UV-Vis spectroscopy.

The delocalization of the charge and the interaction between the electron spins in the dications were found to be exceptionally temperature sensitive, depending on the change of an extended conformation (doublet-doublet state) predominant at room temperature and a π -stacked conformation (singlet state) being populated when the temperature is lowered. This process is also dependent on the flexibility and the shape of the interconnecting alkyl chain. Moreover ion-pairing phenomena influence the amount of charge delocalization.

REFERENCES:

1. Nelsen S. F., Li G., Schultz K. P., Guzei I. A., Tran H. Q., Evans D. A., J. Am. Chem. Soc., 130, 11620-11622 (2008)

2. Jalilov A. S., Li G., Nelsen S. F., Guzei I., Wu Q., J. Am. Chem. Soc., 132, 6176-6182 (2010)

3. Rosspeinter A., Griesser M., Matsumoto I., Teki Y., Li G., Nelsen S. F., Gescheidt G. D., J. Phys. Chem. A, 114, 6487-6492 (2010)

Rd525

Nuclear spin-lattice relaxation in carbon nanostructures

Alexander M. Panich,¹ Nikolaj A. Sergeev²

¹ Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, Be'er Sheva 84105, Israel, pan@bgu.ac.il; ²Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland

Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electronnuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation. However, it is usually not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes $C_{60}(MF_6)_2$ (M = As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spinlattice relaxation data taking into account both these contributions, as well as our NMR relaxation measurements of $C_{60}(MF_6)_2$. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

A theoretical and experimental study of NMR contrasting properties of nanocomposites based on ferric oxides stabilized by arabinogalactan matrix

<u>Marina V. Petrova¹</u>, Alexey S. Kiryutin^{1,2}, Andrey A. Savelov¹, Nikita N. Lukzen¹, Hans-Martin Vieth², Alexandra V. Yurkovskaya^{1,2}, Artem S. Bogomyakov¹, Galina P. Alexandrova³, Boris G. Sukhov³, Boris A. Trofimov³, Viktor I. Ovcharenko¹

¹International Tomography Center SB RAS, Novosibirsk, Russia, ²Institute of Experimental Physics, Free University of Berlin, Berlin, Germany, 3Irkutsk Institute of Chemistry SB RAS, Irkutsk, Russia. petrovamv@tomo.nsc.ru

NMR relaxational properties of aqueous solution containing nanocomposites based on magnetite and maghemite nanoparticles stabilized by arabinogalactan obtained from Baikal larch (Larix sibirica) wood matrix were investigated. The relaxational properties of the solutions, namely viscosity dependences of T_1 and T_2 and magnetic field dependence of T_1 , were studied experimentally. Two models of the nanocomposite granular structure corresponding to two limiting cases of ferromagnetic material distribution over the arabinogalactan matrix were considered. The first one assumes a homogeneous distribution of magnetite and maghemite nanoparticles over the spherical arabinogalactan matrix, while the second one considers a single hard ferromagnetic core at the centre of the spherical arabinogalactan matrix. Theoretical fitting of the experimental results within these models was performed.

Rd527

Correlated motions in biomolecules by HDR methods

Nicola Salvi¹, Simone Ulzega¹, Fabien Ferrage², Geoffrey Bodenhausen^{1,2}

¹Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland (nicola.salvi@epfl.ch);²Départment de Chimie, Ecole Normale Supérieure, Université Pierre et Marie Curie, CNRS UMR 7203, Paris, France.

In numerous biological processes that constitute the base of living organisms, protein function is fundamentally related to internal dynamics occurring on µs-ms timescales, that can give rise to chemical exchange contributions to relaxation. In a heteronuclear two-spin system (e.g., ¹H^N-¹⁵N), correlated motions of the two nuclei induce cross-relaxation between multiple-quantum coherences that can be quantified using new Heteronuclear Double Resonance (HDR) techniques [1,2]. An analytical model describes the effect of an applied rf field on the relaxation rate of interest in the presence of fast exchange [3], providing accurate information on the kinetics of correlated processes. We show that motions on similar timescales are present in the two different bonding surfaces in human ubiquitin and in the linker between them (Phe45), suggesting the presence of a possible global motion. Additional applications of HDR give insights into the dynamics undergoing in the KID-binding domain (KIX) of the CREB-binding protein. We identified the presence of exchange processes, faster than the one reported in [4], outside the main helices of KIX. These fast motions are most likely the sign of conformational disorder within the native state, which may promote the transition to the unfolded ensemble.

- 1. Verde M., Ulzega S., Ferrage F., Bodenhausen., G., J. Chem. Phys., 130, 074506 (2009)
- 2. Ulzega S., Verde M., Ferrage F., Bodenhausen., G., J. Chem. Phys., 131, 224503 (2009)
- 3. Ulzega S., Salvi N., Segawa T.F., Ferrage F., Bodenhausen., G., ChemPhysChem, 12, 333-341 (2011)

^{4.} Tollinger M., Kloiber K., Agoston B., Dorigoni C., Lichtenecke R., Schmid W., Konrat R., Biochemistry, 45, 8885-8893 (2006)

Novel "order-disorder-order" mechanism for protein conformational change

Ulrika Olsson^{1,2} & <u>Magnus Wolf-Watz¹</u>.

¹Department of Chemistry, Umeå University, Umeå, Sweden. ²Present address: Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden. Email: magnus.wolf-watz@chem.umu.se.

Conformational changes are intimately coupled to the biological activity of many proteins. It is a challenge to unravel molecular mechanisms of conformational change since intermediate states are short-lived and usually not observable by spectroscopy. Adenylate kinase (adk) is an enzyme that undergoes a large conformational rearrangement in response to ATP binding. Thus, it is an excellent model to study the interplay between structure, dynamics and activity.

To study the mechanism of adk conformational change we have combined protein engineering with solution state NMR and other biophysical techniques. We have identified a novel mechanism involving local unfolding/refolding of a segment in the ATP binding subdomain in an otherwise folded enzyme. Thus, the mechanism can be denoted as an "order-disorder-order" transition. Only "order-disorder" transitions have been observed experimentally for other proteins previously.

Apparently, in the case of adk, the functional and folding energy landscapes clearly overlap. An appealing hypothesis based on our results is that Nature has made use of cooperative unfolding/refolding reactions to add functional properties (such as conformational plasticity) to proteins.

REFERENCES: 1. Olsson, U. & Wolf-Watz M, Nature Communications, doi:10.10138/ncomms1106, (2010)

R_D529

The effect of matrix disorder on electron spin relaxation: EPR study of solid ethanol

¹Marina Kveder, ¹Dalibor Merunka, ²Milan Jokić, ²Janja Makarević, and ¹Boris Rakvin

¹Division of Physical Chemistry, ²Division of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Zagreb, Croatia. kveder@irb.hr

Amorphous solids in comparison with crystals exhibit anomalous dynamics at low temperatures. However, the microscopic nature of processes governing molecular dynamics at temperatures well below the glass transition is still in the focus of the research interest [1]. In this context the application of pulsed electron paramagnetic resonance (EPR) spectroscopy offers the advantage of studying local properties in the vicinity of paramagnetic center. Since solid ethanol can be prepared in phases characterized by different types of disorder [2], it has been used as a very convenient model system for studying low-molecular weight solids by EPR upon incorporation of paramagnetic nitroxyl radicals [3]. In this study ethanol host was doped with TEMPO while electron spin-lattice and phase-memory relaxation times, measured in the temperature interval between 5 and 80 K, were compared for crystalline and glassy states of solid ethanol. In order to delineate the impact of matrix protons on electron spin relaxation the comparison was made between the data acquired with protonated and deuterated host. The largest difference between spin-lattice relaxation rates was detected at lowest temperatures studied and discussed in terms of two level system/boson peak excitations [4].

REFERENCES:

^{1.} Naumov A. V., Vainer Yu. G., and Kador L., Phys. Rev. Lett., 98, 145501 (2007)

^{2.} Ramos. M. A., Rodríguez-Mora V., and Jiménez-Riobóo R. J., J. Phys.: Condens. Matter, 19, 205135 (2007)

^{3.} Kveder M., Merunka D., Jokić M., Makarević J., and Rakvin B., Phys. Rev. B, 80, 052201 (2009)

^{4.} Kveder M., Merunka D., Jokić M., and Rakvin B., J. Chem. Phys., 134, 044531 (2011)

Modeling of Microstructure of Ion Hydration Shells on the Basis of NMR Data and Quantum-Chemical Calculations

Vladimir I. Chizhik, Maria S. Pavlova, and Mikhail A. Vovk

Department of Physics, Saint-Petersburg University, Saint Petersburg, Russia; chizhik@nmr.phys.spbu.ru

Investigations of the magnetic relaxation processes of nuclei belonging to solvent molecules and ions give information about the microstructure in different substructures in solutions. On the basis of the developed NMR-relaxation method it was possible to determine the coordination numbers of about 30 ions and to estimate the reorientation times of water molecules near ions [1]. Spin-lattice relaxation rates of ¹H, ²H, ⁷Li, ²³Na, ³⁵Cl, ⁸¹Br and ¹²⁷I nuclei in salt and acid solutions

Spin-lattice relaxation rates of ¹H, ²H, ⁷Li, ²⁵Na, ³⁵Cl, ⁸¹Br and ¹²⁷I nuclei in salt and acid solutions were measured in a wide temperature range using the home-built relaxometer, Bruker SXP 4-100 and AVANCE 500 spectrometers.

In order to conciliate the data obtained from proton and deuteron resonances the electric field gradients and the QCC of deuterons from different molecular complexes were estimated on the basis of quantumchemical calculations. Quantum-chemical calculations of different ionic-water clusters were carried out to study peculiarities of hydration shell structure in aqueous solutions using Gaussian 98 and Gaussian 03 program suites. The DFT method with hybrid functional B3LYP was chosen to take into consideration a non-local electronic correlation. The basis set 6-31++G** augmented by diffuse functions was chosen to outline hydrogen bonds structure after the additional investigation of the influence of a basis-set choice on calculation results. In particular, the coordination number of COO⁻ group was obtained and compared with experimental NMR results.

The work is supported by the grant of RFBR (10-03-01043)

1. Chizhik V. I., Mol. Phys., 90, 653-659 (1997)

R_D531

NMR Relaxation: a Key to Domain Mechanics in Proteins

Yury E. Shapiro, Eva Meirovitch

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel

Knowledge of protein dynamics in the multi-domain enzymes is essential for understanding biocatalysis. Domain/loop motions might be responsible for substrate recognition, positioning, binding, and product release. Here we demonstrate the capabilities of the ¹⁵N spin relaxation and ¹⁵N relaxation dispersion to study catalysis-related domain motions and conformational exchange with the aid of adenylate kinase from *E. coli* (AKeco) and its complex with the two-substrate inhibitor AP₅A, which was shown to be a transition state mimic. In the course of the phosphorylation reaction domains AMPbd and LID of AKeco execute collective *ns* motions with the activation energy E_a in the range of 53–64 kJ/mol. The helix α_3 (AMPbd) and strands β_5 , β_6 and β_8 (LID) are associated with $E_a = 80-100$ kJ/mol, typical of the AKeco chemical reaction, which was estimated by biochemical methods to be on the order of 90 kJ/mol. At the same time, domains AMPbd and LID experience site-specific *ms* motions may provide the respective limiting stages of the enzymatic reaction. These domain motions affect the activation energy of global tumbling. For AKeco and the two-domain Ca²⁺-calmodulin, this activation energy is 3.3 and 2.8 kJ/mol less than for their substrate complexes. This indicates that domain motions facilitate protein tumbling that may affect the transmission factor.

The chemical exchange associated with the active site, consisting of collectively exchanging residues H-bonded to the inhibitor, was detected within AKeco*AP₅A. This process may coordinate the two spatially separated reaction centers. Specific residues are implicated tentatively in substrate capturing and positioning, cleavage of the P_2 – P_3 ATP bond and phosphorylation of AMP, yielding the ADP product.

High Speed Sample Transportation Apparatus Applying on Field Dependent Relaxation Study – Design and Experimental Results

Ching-Yu Chou^{1,4}, Ming-Lee Chu², Alfred Redfield³, Tai-huang Huang^{1,4}

¹Physics department of National Taiwan Normal University, Taipei, Taiwan, R.O.C. ²Institute of Physics, Academia Sinica, Taipei, Taiwan, R.O.C. ³Genomic Research Center, Taipei, Taiwan, R.O.C., ⁴Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C. Presenter E-mail: <u>cychou@gate.sinica.edu.tw</u>

In order to investigate molecular motions and biomolecular structural information, a high speed sample transportation apparatus in a high field superconducting magnet (NMR 600MHz, 14.1T) has been built. The magnetic field gradient along the vertical axis of the magnet allows NMR parameters to be determined at 0-14 T magnetic field strength in high resolution from heteronuclear multidimensional NMR spectra. In order to achieve this field dependent measurement, our designed apparatus, named "field cycler", is driven by a high power servo motor and shuttles the sample stably center of the magnet at 14.1T to the top of fringe field at 0.01T in 100 ms which permit us to determine NMR dynamics parameters up to the order of 10⁻¹s in a routine basis. This opens up many experiments which could not be done previously, thus extends the capability of NMR on determining macromolecular dynamics. Some promising preliminary experimental data will be discussed.

RD533

Magnetic Cellulose Microbeads as effective relaxation agent for MRI contrast Enhancement

<u>Ya. Yu. Marchenko^a</u>, B. P. Nikolaev^a, L. Yu.Yakovleva^a, A.V.Dobrodumov^b, I.N.Voevodina^a, Yu. V. Bogachev^c, Yu. S. Chernenko^c

^aState Research Institute of Highly Pure Biopreparations, 7 Pudozhskaya str., St. Petersburg, 197110, Russia, http://www.hpb-spb.com, E-mail: 046_slava@mail.ru. ^bInstitute of Macromolecular Compounds,31 Bolshoy Prosp., St. Petersburg 199004, Russia,: http://www.macro.ru. ^cDepartment of Physics, St-Petersburg Electrotechnical University, 5, ul. prof. Popova, St. Petersburg, 197376, Russia.

Porous cellulose micronized particles are the convenient matrix for incorporation of superparamagnetic ferumoxide for MRI. Magnetic Cellulose Microbeads were synthesized by alkaline coprecipitation of magnetite in cellulose pores from Fe(2) and Fe(3) salt solutions after preliminary diffusion saturation of microporous beads. The deposited particles contained the magnetic material at concentration 64 mM/l. Magnetic relaxation of water protons was strongly disturbed by magnetic cores due to intensive diffusion in nonhomogeneous magnetic field. T₂ was measured by spin-echo and T₁ by inversion-recovery method at 7,1 T. The cellulose magnetic particles displayed the high rates of magnetic relaxation per mmol of Fe which was more higher than in suspensions of ferumoxides stabilized by low-molecular dextran at comparable concentrations. The line of proton resonance of cellulose preparation had the form of wide nonlorenzian curve. The analysis of relaxation behavior and line form points to the static dephasing mechanism in averaged magnetic field. MR images of fantom 2% agar-agar gel and mouse stomach with magnetic micronized cellulose were made by «Avance II 500» (Bruker)

Fig. MR images: sample vial with micronized cellulose(100-200 nm, 3mg/ml) with ferrumoxide (64 mM/l) dispersed in agar-agar 2% - (1), mouse stomach before and after peroral administration of 75 mg micronized cellulose (D=30-10 μ g) (gefi orto, sagittal) – (2, 3), (MGE TE=3 ms, axial) – (4,5).

Korvin F. A. Walter¹, Donghan Lee¹, Robert B. Fenwick², Thomas M. Sabo¹, Santiago Esteban-Martin², Nils-Alexander Lakomek³, Stefan Becker¹, Xavier Salvatella², and Christian Griesinger¹

> ¹Dept. for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; ²Laboratory of Molecular Biophysics, ICREA and Institute for Research in Biomedicine, Barcelona, Spain; ³Laboratory of Chemical Physics, NIH, NIDDK, Bethesda, USA.

The internal motion of biomolecules is essential for biological functionality like enzyme catalysis or molecular recognition. Recently it has become possible on the basis of residual dipolar couplings (RDCs) to create conformational ensembles of the protein ubiquitin. These ensembles reflect ubiquitins's protein dynamics up to the millisecond time scale. In addition to residue specific motion, these conformational ensembles suggest a high degree of correlated motions. Correlated motions between distinct sites in biomolecules have been proposed to play a major role in important processes like allostery and signal transduction. They are particularly important for a protein like ubiquitin which has to be able to assume multiple conformations in order to interact with many different proteins. However, the experimental validation of these predicted correlations is difficult. Since, cross-correlated relaxation (CCR) rates are highly sensitive to the angle between two involved dipoles; the measurement of CCR rates can be a useful probe for correlated motions.

CCR rates of scalar coupled nuclei pairs can be obtained in a straight forward manner. Of special interest are CCR rate measurements of nuclei pairs in parts of the protein like β -strands, which are proximal in space to each other, but are not scalar coupled. Here a newly developed NMR experiment is presented based on two relaxation-allowed coherence transfer (RACT) steps for the measurement of CCR rates between the CaHa groups of residues in separated β -strands.

RD535

Towards a Comprehensive Elucidation of Motion in Proteins by Ensemble-based Structure Calculation Using Exact NOEs

<u>Beat Vögeli^{1*}</u>, Peter Güntert² & Roland Riek¹

¹ Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland; ² Institut für Biophysikalische Chemie, BMRZ, J.W. Goethe-Universität, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; *email:beat.voegeli@phys.chem.ethz.ch

POSTER

Standard NMR structure determination of biomolecules is mainly based on the collection of many nuclear Overhauser enhancements (NOEs) that are translated semi-quantitatively into upper limit distances. This practice dates back to the 1980s when it proved difficult to determine NOE rates quantitatively and convert them into exact distances. We recently demonstrated that ${}^{1}H^{N} - {}^{1}H^{N}$ NOE rates distances up to 5 Å obtained from both ubiquitin and GB3 have an experimental random error of < 0.1 Å which is smaller than deviations between high-resolution NMR or X-ray structures¹². Extension of this approach to aliphatic protons yielded the collection of 850 eNOEs for GB3. Upon translation of eNOEs into exact distances standard structure calculation by CYANA yields a well defined NMR structure with an rms deviation of 0.54 Å (bb 0.08 Å) to a RDC-refined X-ray structure. However, many experimental restraints are violated due to the nature of the NOE being an ensemble-averaged probe. Thus, we developed a novel CYANA structure calculation protocol which enables an ensemble calculation that takes into account several simultaneously present structural states of the protein. The structure calculation of GB3 shows that at least 3 structural states are required to fulfill the experimental restraints. Analysis of the 3-states ensemble shows the presence of correlated dynamics of the beta sheet and of multiple rotamers in the side chains.

REFERENCES:

^{1.} Vögeli, B.; Segawa, T.F.; Leitz, D.; Sobol, A.; Choutko, A.; Trzesniak, D.; van Gunsteren, W.; Riek, R., J. Am. Chem. Soc., 131, 17215-17225 (2009)

^{2.} Vögeli, B.; Friedmann, M.; Leitz, D.; Sobol, A.; Riek, R., J. Magn. Reson., 204, 290-302 (2010)

Cold-Hot Unfolding and Dynamics of a Higly Stable Antifungal Protein

<u>Gyula Batta¹</u>, Teréz Barna², Ádám Fizil¹, Zoltán Gáspári³, Katalin E. Kövér¹, Mónika Nyitrai¹, Valéria Tomori², Éva Leiter², István Pócsi² and Florentine Marx⁴

¹Department of Chemistry, University of Debrecen, Debrecen, Hungary; ²Department of Biology, University of Debrecen, Debrecen, Hungary; ³Department of Chemistry, Eötvös L. University, Budapest, Hungary; ⁴Division of Molecular Biology, Innsbruck Medical University, Austria. batta@unideb.hu.

Many water soluble proteins exist at thermal equilibrium as mixture of folded and unfolded conformers. While the highly populated folded conformation can be observed and characterized by NMR, the less populated conformers often coexist as hidden exchange partners. In order to disclose which form is important for the biological effect, we studied the dynamic behavior of the antifungal protein PAF, that is stabilized by three disulfide bonds. Single cysteine mutations of PAF resulted in unfolded structures, though they preserved some activity. Mutation of critical lysines caused loss of function, though the fold was kept. Conventional and relaxation interference data were interpreted using the model-free and reduced spectral density methods. Possibility of putative disulfide bond rearrangement was checked. Temperature induced reversible unfolding/folding of PAF was evaluated in the $-10 \dots +80^{\circ}$ C range using ¹⁵N-¹H HSQCs. Enthalpy, heat capacity, low and high temperature melting points of unfolding were determined residue by residue, using either two or three-state models (one intermediate state). It turned out that cold denaturation happens in a concerted way in contrast to heat-shock, and "hot-spots" were found in the non-conserved loop regions of the sequence. The oligomeric state of heat-denatured (inactive) PAF was also investigated.

1. G. Batta, T. Barna, Z. Gáspári, S. Sándor, K. E. Kövér, U. Binder, B. Sarg, L. Kaiserer, A. Kumar-Chhillar, A. Eigentler, É.Leiter, N.Hegedüs, I. Pócsi, H.Lindner and F.Marx: *FEBS Journal*, 276, Volume, 2875-2890 (2009)

RD537

Capturing multiple scale dynamics in proteins through NMR relaxation analyzed by a fractional Brownian dynamics approach

Paolo Calligari^{1,2}, Vania Calandrini^{3,4}, Gerald Kneller^{3,4,5}, Philippe Pelupessy^{1,2}, Gilmar Salgado^{1,2}, Geoffrey Bodenhausen^{1,2,6} and <u>Daniel Abergel^{1,2}</u>

¹Département de Chimie, Ecole Normale Superieure, 75005 Paris, France; ²CNRS-UMR 7203 and UPMC, France; ³Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans, France; ⁴Synchrotron Soleil, L'Orme de Merisiers, B.P. 48, 91192 Gif-sur-Yvette, France; ⁵Université d'Orléans, Chateau de la Source-Av. du Parc Floral, 45067, Orléans, France; ⁶Institut des Sciences et Ingénierie Chimiques, EPFL, 1015 Lausanne, Switzerland; e-mail: <u>daniel.abergel@ens.fr</u>

Internal dynamics represents a crucial ingredient of molecular function at the biological level. This has been the impulse to many methodological developments of spin relaxation measurements. Interpretation of experimental data in terms of dynamics is based on assumptions about the underlying physics. One of the difficulties is to provide a motional model that is both physically sound and in statistical agreement with experimental data. Our approach uses a Fractional Brownian dynamics (FBD) model of internal motions in proteins, which is a simple way to introduce *multiple scale dynamics*^{1,2}. Therefore, based on general physical considerations about stochastic motions we propose to model internal correlation functions of bond vectors by Mittag-Leffler functions, which arise in a natural way in the theory of fractional diffusion. We used MD simulations to demonstrate the capacity of FBD to correctly model various correlation functions and the superiority of Mittag-Leffler functions over the usual multi-exponential models¹. We then used relaxation rates predicted by MD simulations to develop a strategy to analyze NMR relaxation data². The methods will be illustrated by applications to experimental measurements on the protein 6PGL at 14.1 and 21.1 T³. REFERENCES:

^{1.} Calandrini V. Abergel D. Kneller G., J Chem. Phys. 128, 145102 (2008); Calandrini V. Abergel D. Kneller G., J Chem. Phys. 133, 145101 (2010)

^{2.} Paolo Calligari, Vania Calandrini, Gerald Kneller and Daniel Abergel (in preparation)

^{3.} Paolo Calligari, Philippe Pelupessy, Gilmar Salgado, Geoffrey Bodenhausen Gerald Kneller and Daniel Abergel (in preparation)

Binding of a viral protein to a PDZ Domain studied by NMR and ITC underlines the role of domain flanking sequences

J. Ramirez¹, Y. Nominé¹, Robert A. Atkinson², G. Travé¹, <u>B. Kieffer²</u>

¹ Equipe Oncoprotéines, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Université de Strasbourg, CNRS UMR 7242, Illkirch France ² Département de Biologie et de Génomique Structurales, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U964, Illkirch, France kieffer@igbmc.fr

Carcinogenesis mediated by the human papillomavirus oncoprotein E6 involves its binding to a subset of PDZ domains. In order to understand the molecular basis of the recognition between these PDZ domains and the E6 binding motif, a biophysical study was undertaken using NMR and ITC. While only limited structural changes of the PDZ domain were observed upon viral motif binding, major changes of backbone dynamics in the C-terminal flanking region of the PDZ domain was revealed by ¹⁵N relaxation measurements¹. This dynamical transition correlates with a significant change of the heat capacity between the free and bound PDZ domain as revealed by ITC experiments. Mutations of the C-terminal region of the domain, which is disordered in the apo state, were shown to affect the binding process, highlighting its role in the molecular recognition process. Our study provides original insights on the complexity of protein-protein interactions mediated by PDZ domains and illustrate the valuable complementarity between thermodynamics and dynamics information provided by ITC and NMR studies.

REFERENCES: 1. Charbonnier S. et al. J. F., *J Mol Biol*, 406, 745-763 (2011)

RD539

Microstructure of complex solutions with organic molecules

Alexey V. Donets and Sevastyan O. Rabdano

Department of Physics, Saint-Petersburg State University, Saint Petersburg, Russia; aldonets@mail.ru

Approach developed in the Department of Quantum Magnetic Phenomena (SPbSU) is based on two independent and complementary research methods: NMR-relaxation and quantum chemical calculation. This approach allows us to get the solvation and hydration properties of the organic molecules in salt solutions.

It was found, that the ions can be used as probes in the study of complex solutions. Researches of the NMR ion nuclei are useful for studying the hydration environment of organic molecules. The investigation of the aqueous solutions of salts, containing the Na+, Cl-, surfactants (SDS) and different organic compounds, has been carried out in a wide range of concentration and temperature.

Hydrophobic properties of surface of some amino-acids were studied. Comparison of spin-lattice and spin-spin relaxation gives information on the mechanisms of exchange in solution and the protein surface. The results of NMR investigation suggest that there are two classes of chlorine-binding sites on BSA molecules: a small number of strong binding sites and weak binding sites.

The experimental results have been compared with the data obtained by quantum-chemical calculations. The combination of two methods, one of which is experimental and another is theoretical, offers obvious advantages.

This work is supported by the grant of RFBR (N_{0} 10-03-01043-a) and the Government of Saint Petersburg (grant N_{0} 27.05/234/29). The authors acknowledge Saint-Petersburg State University for a research grant.

Rd540

Natural porous media investigated with low-field NMR

Agnes Haber^a, Sabina Haber-Pohlmeier^a and Bernhard Blümich^a

^a Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; ahaber@mc.rwth-aachne.de

Mobile NMR has its origin in well-logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of matter is obtained, and new opportunities are provided for geo-physical investigations.¹ In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time $t_{\rm m}$.²

Relaxation-relaxation exchange experiments were performed with saturated ³ and un-saturated soil samples at low field with a simple, homemade, portable Halbach-Magnet. By executing such exchange experiments for several mixing times and inverting the results to 2D T_2 distributions (reminiscent of joint probability densities of transverse relaxation times T_2) with the help of the inverse 2D Laplace Transformation (ILT), we observed characteristic exchange processes: The results from fully saturated samples are compared to exchange at different saturation levels.

REFERENCES:

Recent Improvements in Production and Transport HP 129-Xe

Maricel T. Repetto^{1,2}, Peter Blümler¹, Mathis Düwel², Werner Heil¹, Kerstin Münnemann², Hans Wolfgang Spiess²

¹Department of Physics, University of Mainz, Mainz, Germany; ²Max Planck Institute for Polymer Research, Mainz, Germany. repetto@uni-mainz.de

Hyperpolarized (HP) ¹²⁹Xe is applied successfully as a contrast agent in MRI with clear advantages over ³He, like low price, high availability and solubility in some liquids (e.g. blood) [1]. Also, HP ¹²⁹Xe is used in fundamental physics research [2]. Typically, these experiments require polarization levels higher than 20% and long relaxation times (T₁) for storage and transport. To improve the first, a freezing/thaw system was developed based in the ideas of Ruset *et al* [3]. This system minimizes polarization losses due to diffusion in inhomogeneous fields and lingering in liquid phase for too long. A signal improvement of about six was achieved with this system over previous procedures with reproducibility around 80%. To increase the T₁ times, different storing vessels, environments and gas mixtures will be tested. Therefore, a low field NMR spectrometer was build which allows T₁ measurements at the transport conditions (~25G) and to avoid magnetizing ferromagnetic impurities inside the glass walls. The main disadvantage of working at such low fields is the low signal to noise ratio. An improved aluminum shield and some strategies for noise reduction are described. Finally, HP ¹²⁹Xe T₁ measurements in different storage vessels are presented together with some considerations for achieving longer T₁ times.

REFERENCES:

¹ B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F Casanova, Petroleum Science 6 (2009) 1-7

^{2. .}K. Washburn, P.T. Callaghan, Physical Review Letters 97 (2006) 175502.

^{3.} A. Haber, S. Haber-Pohlmeier, F. Casanova, B. Blümich, Vandose Zone Journal 9 (2010) 1-5.

^[1] Möller H. E., Jour. of Magn. Res. in Med. 41, 1058-1064 (1999).

^[2] Gemmel C., Phys. Rev. D 82, 111901(R) (2010).

^[3] Ruset I. C., Phys. Rev. Lett. 96, 053002 (2006).

Frequency Dependent NMR Relaxation of Oil Molecules Confined Inside Polymeric Micro-Capsules for Drug Delivery

Ioan Ardelean¹, Ruben Nechifor¹, Carlos Mattea² and Siegfried Stapf²

¹ Technical University of Cluj-Napoca, Department of Physics, 400114, Cluj-Napoca, Romania (e-mail: ioan.ardelean@phys.utcluj.ro); ² Ilmenau University of Technology, Department of Technical Physics II/Polymer Physics, D98684 Ilmenau, Germany

Polymeric micro- and nanocapsules are often used as drug delivery systems [1]. Their main benefit is that various active substances such as drugs or even proteins can be transported directly to the diseased tissue, completely bypassing the healthy ones. Understanding the surface effects on the dynamics of molecules confined inside polymeric capsules is important both for obtaining of theoretical scientific knowledge and for designing of new capsules to be used in controlled drug delivery. In order to extract information on molecular dynamics in a wide range of characteristic times the Fast Field Cycling (FFC) nuclear magnetic resonance relaxometry [2] has proven to be a valuable tool. In our work frequency dependent nuclear magnetic resonance (NMR) relaxation studies have been carried out on Miglyol molecules confined inside core shell polymeric capsules to obtain a correlation between capsules dimension, relaxation time and diffusion coefficient. The polymeric capsules were prepared using an interfacial polymerization technique for three different concentrations of Miglyol. It was shown that the variation of Miglyol concentration influences the capsules dimension. The relaxation dispersion curves were obtained at room temperature by a combined use of a fast field cycling instrument and a high field instrument. The frequency dependence of relaxation rate shows a transition from a diffusion-limited to a surface-limited relaxation regime [3].

Financial support by the Alexander von Humboldt foundation and the European Social Fund (POSDRU/6/1.5/S/5) is gratefully acknowledged. References

1. Kumar M.N.V.R., J. Pharm. Pharmaceut. Sci., 3, 234-258(2000)

2. Kimmich R., Anoardo E., Prog. NMR Spectrosc., 44, 257-320(2004).

3. Godefroy S., Korb J. P., Fleury M., Bryant R. G., Phys. Rev. E64, 021605-18(2001).

R_D543

A Mean field Brownian Dynamics simulation to explore intermolecular nuclear spin relaxation mechanisms in solution

Pär Håkansson¹ and Giuseppe Pileio²

¹School of Engineering Science, University of Southampton, Southampton, UK; ²School of Chemistry, University of Southampton, Southampton, UK. g.pileio@soton.ac.uk.

The study of solvent effects on nuclear spin relaxation have a long history and have been explored, mainly, with analytical models and numerical solution of Smoluchowski equation to compute spectral densities (1). For instance, the effects of translational motions have been studied using either force free diffusion models or radial mean field potential approaches. The effects of spins that are eccentric in molecules have been accounted for in these calculations but only in an approximate way (2).

We introduce a mean field Brownian dynamics simulation method significantly cheaper, in computational cost, than atomistic molecular dynamics simulations. This simulation technique allows us to explore spin eccentricity and rotational diffusion in an exact form and under different dynamical regimes. The method is flexible in allowing for higher dimensions and therefore a wider range of relaxation effects become accessible. So far, we have exploited these potentialities exploring nuclear spin relaxation, out of the spherical molecule approximation and using mean field results from atomistic molecular dynamics.

REFERENCES:

^{1.} Hwang L-P and Freed J.H., J. Chem. Phys., 63, 4017-4025 (1975)

^{2.} Fries P.H. and Patey G.N., J. Chem. Phys., 80, 6253-6266 (1984)

Rd544

POSTER

NMR Study on Thermal Phase Behaviors of Ionic Liquid 1-Butyl-3-methylimidazolium

Hexafluorophosphate

Hiroki Murata¹⁾, Takatsugu Endo¹⁾, Mamoru Imanari²⁾, Hiroko Seki²⁾, Keiko Nishikawa¹⁾

1) Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan, 2) Chemical Analysis Center, Chiba University, Chiba 263-8522, Japan

¹H- T_1 , T_2 of 1-butyl-3-methylimidazolium hexafluorophosphate [C₄mim]PF₆ were measured as a function of temperature in the range from 173 to 413 K. There was no discontinuous change in ¹H- T_1 , T_2 traces in the cooling process. In the heating process, the¹H- T_1 , T_2 traces changed discontinuously at 233 and 253 K. The first discontinuous change of ¹H- T_1 , T_2 values at 233 K is due to the crystallization and the second change of ¹H- T_1 , T_2 is a phase transition between crystalline phases. Furthermore, the third phase is obtained after the sample in the crystalline state is cooled in a freezer for 24 hours. These three crystal phases correspond to gauche-trans (GT), trans-trans (TT) and gauche'-trans (G'T) conformations of the butyl group in the cation, respectively, which was shown in the previous report¹¹. These three phases have different ¹H- T_1 traces. Second moment calculations indicated that there were different segmental motions in every phase.

1.T.Endo, T. Kato, K. Tozaki, K. Nishikawa, J. Phys. Chem. B , 114, 407-411(2010).

RD545

NMR Study on Thermal Phase Behaviors of 1-Alky-3-methylimidazoliums Bromides

Depending on Alkyl Chain Length

<u>Noriko Mizushima¹</u>, Yuki Hidaka², Eiji Usami¹, Masato Mori¹, Mamoru Imanari², Keiko Nishiakawa³, Hiroko Seki²

 Laboratory of Clinical Pharmacy, Yokohama College of Pharmacy, Kanagawa 245-0066, Japan, 2) Chemical Analysis Center, Chiba University, Chiba 263-8522, Japan, 3) Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan

In previous work, we investigated the thermal phase behaviors of ionic liquids 1-alkyl-3-methylimidazolium bromides $[C_nmim]Br$ where n is 2, 3 or 4 by 1H - T_1 , T_2 measurements. $[C_2mim]Br$ crystallized at 290 K in the cooling process. $[C_3mim]Br$ does not crystallize in the both cooling and heating processes. On the other hand, $[C_4mim]Br$ does not crystallize in the cooling process but crystallized at 273 K in the heating process¹). Its crystallization speed was extremely slow that is it took about 1 hour for 0.5 ml sample. In this study, 1H - T_1 , T_2 of $[C_5mim]Br$ and $[C_6mim]Br$ in the wide temperature range were also investigated. $[C_5mim]Br$ showed the cold crystallization in the same monner as $[C_4mim]Br$. The crystallization speed was very slow and almost similar to that of $[C_4mim]Br$. The phase behaviors of $[C_6mim]Br$ was the same as that of $[C_3mim]Br$, namely, it did not crystallize in the both cooling and heating processes.

1) M. Imanari, K. Uchida, K. Miyano, H. Seki, K. Nishikawa, Phys. Chem. Chem. Phys., 2010, 12, 2765-3056.

Influences of Ceramides on POPC Membrane Dynamics from ps to ms Timescales: A Solid-State NMR and MD Study

Bercem Dutagaci¹, Johanna Baldus¹, José D. Faraldo-Gómez², Clemens Glaubitz¹

¹ Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance Goethe University, Max-von-Laue Str 9, D-60438 Frankfurt am Main, Germany, ² Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Str 3, D-60438 Frankfurt am Main, Germany

Ceramides are one of the important membrane component that play a crucial role in many physiological processes like cell growth, apoptosis and signalling. However, the mechanism of these processes is not known. Thus, It is of interest to understand the effects of ceramide on membranes.

The aim of this study was to monitor the complete dynamic profile of membranes in the presence of ceramide from ps to ms by solid-state NMR techniques and molecular dynamics simulations. NMR experiments were performed on a pure POPC bilayer, and on POPC-cer-4 and POPC-cer-12 systems to obtain order parameters, rotating and laboratory spin-lattice relaxation times for 13C and 1H atoms. MD simulations were performed of a pure POPC bilayer and a set of POPC bilayers that contain different amounts of cer-4 and cer-12, ranging from 5 % to 20 % in number. The collected data from SS-NMR and MD simulations methods reveals how ceramide effects the dynamics of membranes. **References**

Dvinskikh SV et al., Phys. Chem. Chem. Phys., 2005, 7, 607-613, Lindahl E, et al. Mol. Mod., 7 (2001), 306-317, Schuettelkopf AW et al., Acta Crystallographica D60, 2004, 1355-1363

R_D547

²³Na NMR study of intelligent hydrogels

<u>Markus Raue^{1,2}</u>, Markus Küppers¹, Siegfried Stapf³, Thomas Mang², Bernhard Blümich¹ ¹Institute for Technical and Macromolecular Chemistry, RWTH-Aachen University, Worringerweg 1, 52074 Aachen, Germany ²Institute for Applied Polymer Science, Aachen University for Applied Science, Heinrich-Mußmann-Str. 1, 52428 Jülich, Germany ³Department of Technical Physics II, Technical University Ilmenau, PO Box 100 565, 98684 Ilmenau, Germany

raue@fh-aachen.de

Hydrogels are three-dimensional polymer networks which have the ability to absorb high amounts of water. Due to this property they are used as diapers, contact lenses, sealing materials, ameliorates, drug delivery systems, sensor and actuators. In response to an external stimulus such as pH, ion concentration, or temperature, hydrogels can reversibly change their shape. Depending on their chemistry, they may swell or shrink upon external stimulation.

Different kinds of hydrogels are presented based on acrylic acid and maleic acid for a high charge density and on vinylphosphonic acid for a high ionic strength. The particular chemical composition also influences the mechanical properties and the swelling behaviour. The new types of hydrogels could be employed as sensors, actuators, and switchable porous media. The mobility of sodium ions is investigated by NMR interns of the ²³Na self-diffusion coefficient and the relaxation times T_1 and T_2 for a better understanding of the swelling and the switching processes.

Furthermore the ion dynamics of thermo sensitive copolymers on N-isopropylacrylamide and sodium acrylate were investigated by ²³Na relaxometry as a function of temperature.

Characterisation of the dynamics in the bound state of the I-domain of LFA-1 with lovastatin using computational docking and RDC-restrained molecular dynamics

Hoi Tik Alvin Leung, Francesco Bemporad, Rinaldo W. Montalvao, Alfonso De Simone, Michele Vendruscolo

Department of Chemistry, University of Cambridge, Cambridge, UK e-mail:htal2@cam.ac.uk

We have recently developed an approach to determine ensembles of structures representing the conformational equilibrium dynamics of proteins by exploiting the information provided by residual dipolar couplings (RDCs). In this approach, RDCs are calculated from the shape and charge of individual structures, and employed as ensemble-averaged restraints in molecular dynamics simulations. Since the RDCs of the individual conformations making up a heterogeneous state of a protein can differ very significantly, this approach enables to achieve an accurate description of the statistical weights of the different conformers that are populated during the dynamics. Here we use this approach to explore the idea that conformations populated during the equilibrium dynamics of a protein could be used in the search for novel pockets for ligand docking. The inclusion of the protein flexibility during protein-ligand docking is a crucial problem in rational drug design, and it represents one of the great challenges for the structural biology community. The combination of in silico techniques with experimental NMR data is a promising alternative to X-ray crystallography screening of ligand fragments. To illustrate our approach we present our preliminary results of a study of the dynamics of Lymphocyte Function Associated Antigen-1 (LFA-1) Inserted domain (I-domain) and its interaction with lovastatin.

R_D549

Characterization of Nonnative States by NMR: Hen and Human Lysozyme

<u>Friederike Sziegat¹</u>, Robert Silvers¹, Martin Hähnke¹, Julia Wirmer-Bartoschek¹, Martin Blackledge² and Harald Schwalbe¹

¹Institute of Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance(BMRZ), Goethe Universit, Frankfurt am Main, Germany, heinicke@nmr.uni-frankfurt.de; ²Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR 5075, 41 Rue Jule Horowitz, Grenoble 38027.

Unfolded and partially folded states of proteins play a crucial role in human neurodegenerative diseases. Single point mutations are linked to these diseases but the structural code for the onset is still unclear. One protein known to form amyloids are mutants of the extremely stable human lysozyme, whereas this is not known to date for the highly homologous hen lysozyme. Here, nonnative states of hen^[2, 3] and human lysozyme^[1] and single-point mutants of both proteins have been investigated using NMR spectroscopy. Secondary structure propensities, relaxation data, RDCs and R_h were compared. All proteins exhibit α -helical propensities, higher in hLys and its mutants than in hen lysozyme and its mutants. Most significantly dynamics and aggregation propensities vary between the proteins: High aggregation propensities and restricted dynamics are found in amyloidogenic mutants of human lysozyme, while W to G mutants in hen lysozyme disrupt dynamic restrictions.

^[1] F. Sziegat, J. Wirmer-Bartoschek, H. Schwalbe, Angew Chem Int Ed Engl, 5628-32 (2011)

H. Schwalbe, K. M. Fiebig, M. Buck, J. A. Jones, S. B. Grimshaw, A. Spencer, S. J. Glaser, L. J. Smith, C. M. Dobson, *Biochemistry*, 36, 8977-91 (1997)

^[3] J. Wirmer, C. Schlörb, J. Klein-Seetharaman, R. Hirano, T. Ueda, T. Imoto, H. Schwalbe, Angew Chem Int Ed Engl, 43, 5780-5 (2004)

Dynamics in the Catalytic Cycle of a β -Phosphoglucomutase

Hugh R. W. Dannatt¹, Joanna L. Griffin¹, Nicola J. Baxter¹, Matthew J. Cliff¹, Maya J. Pandya², Andrea M. Hounslow¹, G. Michael Blackburn¹, and Jonathan P. Waltho^{1,3}.

¹Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, UK; ²Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds, UK; ³Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK. h.dannatt@sheffield.ac.uk

Of all the reactions that occur in biology, phosphate monoester hydrolysis is among the slowest to proceed without a catalyst. The enzymes which catalyse these reactions are able to achieve rate enhancements on the order of 10^{21} , the highest acceleration factor currently identified^[1]. Trifluoromagnesate (MgF₃) ions are both isosteric and isoelectric with a transferring phosphate ion and therefore make excellent transition state analogues for these reactions^[2].

 β -Phosphoglucomutase (β PGM) catalyses the interchange between β -Glucose-1-Phosphate and β -Glucose-6-Phosphate (β G6P). In the presence of β G6P and both Mg²⁺ & F⁻ ions, a β PGM-MgF₃⁻βG6P transition state analogue complex spontaneously forms, allowing probing of an active conformation. Study by either ¹⁵N Relaxation Dispersion or ¹⁹F Selective Exchange SpectroscopY (SEXSY) reveals the presence of 2 conformations which interchange at the same rate as catalysis, suggesting the minor conformer is of catalytic importance

R_D551

ENDOR study of Jahn-Teller effect in irradiated L-alanine crystal probed by Second stable radical

N. Maltar-Strmečki¹, B. Rakvin¹, A. Pavić²

¹Department of Physical Chemistry, Institute Rudjer Boskovic, Zagreb, Croatia, nstrm@irb.hr; ²Department of Physics, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia

L-alanine has been widely studied as basic biological molecular system as well as due to the application in dosimetry. Until now extensive investigations of L-alanine crystal have been undertaken, pointing out very interesting physical properties^{1,2}. Despite the fact that x-ray and neutron singlecrystal diffraction measurements support the same crystal structure at low (20 K) and at room temperature, there are several other experimental evidences³ for lattice instability at around 220 K such as birefringence, light depolarization measurements and ¹H NMR relaxation measurements around the same temperature.

In this study dynamical properties of the second stable L-alanine radical ($NH_3^+C^{\bullet}(CH_3)COO^-$),

R2, induced by γ -irradiation have been investigated by the electron nuclear double resonance technique (ENDOR). The study focuses on the properties of three amino protons of R2 radical in the temperature range from 120-300 K. The motional dynamics of the amino group is impotrant due to its involments in intermolecular interactions through the hydrogen bond network in the crystal lattice. The results of the temperature dependence of the ENDOR linewiths show phase transition around 220 K for all three amino protons and additionally confirm the strong dynamic Jahn-Teller effect in the L-alanine lattice and support evidence for properties related to lattice instability at around 220 K.

REFERENCES:

^{1.} Lad C., Williams N. H., and Wolfenden R., Proc Natl Acad Sci USA, 100, 5607-5610 (2003)

^{2.} Baxter N. J., Olguin L. F., Golicnik M., Feng G., Hounslow A. M., Bermel W., Blackburn G. M., Hollfelder F., Waltho J. P., and Williams N. H., Proc Natl Acad Sci USA, 103, 14732-14737 (2006)

REFERENCES:

^{1.} Barthes, M.; Bordallo, H. N.; Denoyer, F.; Lorenzo, J. E.; Zaccaro, J.; Robert, A.; Zontone, F. Eur Phys J B 37 (3), 375-382 (2004)

^{2.} de Souza, J. M.; Freire, P. T. C.; Argyriou, D. N.; Stride, J. A.; Barthes, M.; Kalceff, W.; Bordallo, H. N. Chemphyschem 10 (18), 3337-3343 (2009) 3. Rakvin, B.; Maltar-Strmecki, N.; Kattnig, D.; Grampp, G. J Phys Chem A 114 (28), 7500-7505 (2010).

Relaxation Dispersion of Multiple Quantum Coherences

¹³David Schulze Sünninghausen, ¹²Burkhard Luy, ³Jochen Balbach

¹Institut für Organische Chemie, Karlsruher Institut für Technologie, 76131-Karlsruhe, Germany, david.suenninghausen@kit.edu; ²Institut für Biologische Grenzflächen II, Karlsruher Institut für Technologie, 76344-Eggenstein-Leopoldshafen, Germany, ³Institut für Physik, Fachgruppe Biophysik, Martin-Luther-Universität Halle-Wittenberg, 06120-Halle (Saale), Germany.

Measuring the dispersion of the R_2 -rate represents a powerful method to examine exchange processes in proteins, which lie in the time domain range of μ s to ms. The underlying experiments are based on Carr-Purcell-Meiboom-Gill (CPMG)-sequences of constant duration, and can be performed using single- or multiple-quantum coherences.

Here we present pulse sequences to determine R_2 -dispersions with the help of zero- and double quantum transitions (based on previously published experiments by Lewis Kay [1]). With the experiments, the folding and unfolding rates of the Cold Shock Protein of *Bacillus subtilis* could be determined. To counteract the high transverse relaxation rates of multiple quantum coherences, a partially deuterated protein was used for the experiments.

REFERENCES: [1] Orekhov, V.Y., Korzhnev, D.M., Kay, L.E., J. Am. Chem. Soc, 126, 886 (2004)

R_D553

Solvent Dynamic Effects Studied by High Pressure ESR Spectroscopy

Kenneth Rasmussen¹, Tajamal Hussain², Guenter Grampp¹

¹Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, Austria; ²Institute of Chemistry, University of the Punjab, Lahore, Pakistan

Solvent dynamic effects are of interest since they provide information about the role of the solvent during an electron transfer reaction [1]. Such effects have been observed in many self-exchange systems, whose kinetics is often studied by ESR line broadening experiments [2]. The obtained results are treated within the framework of the Marcus Theory, yielding valuable information on the reaction, such as the activation parameters, and on the influence of the solvent [3].

When using self-exchange reactions involving an uncharged species, the volume of activation is determined by two separate contributions. One is owing to the reorganization of solvent molecules during the reaction, in analogy to the reorganization energy of Marcus (λ_0), while the other involves the solvent dynamic effects:

$$\Delta^{\ddagger} V = -RT \left(\frac{\partial \ln k_{ex}}{\partial P} \right)_{T} = \Delta^{\ddagger} V_{o} + \Delta^{\ddagger} V_{SD}$$

Experimental volumes of activation have been obtained for a number of combinations of solvents and exchange systems and subsequently been compared with the predicted ones. Additionally, we have been able to reinvestigate the solvent dynamic effect and make a comparison with results obtained using more traditional methods.

1. M. J. Weaver, Chem. Rev., 92, 463-480 (1992)

^{2.} G. Grampp and K. Rasmussen, Phys. Chem. Chem. Phys., 4, 5546-49 (2002)

^{3.} T. Swaddle in: *High Pressure Chemistry, Synthetic, Mechanistic and Supercritical Applications*, eds. R. van Eldik, F.-G. Klärner, Wiley-VCH, Weinheim (2002).

Investigation of Ionic Liquids with Spin Probes Bearing Neutral or Ionic Substituents

Veronika Strehmel¹, Peter Strauch², Stefan Berdzinski¹, Hans Rexhausen²

¹Department of Chemistry, Organic Chemistry and Institute for Coatings and Surface Chemistry, Hochschule Niederrhein University of Applied Sciences, Krefeld, Germany; ²Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany. e-mail: veronika.strehmel@hsnr.de

Spin probes have received increased attention as tools to probe the mobility in materials on a molecular level. Among various materials, ionic liquids have gained increasing interest because of their nonvolatility and temperature stability in many cases. Ionic liquids are composed of cations and anions interacting via Coulomb forces, hydrogen bonding, and van der Waals forces. Therefore, the spin probes used for investigation of ionic liquids should bear substituents that can undergo similar interactions with the individual ions of the ionic liquids. The spin probes give information about microviscosity of ionic liquids and about their micropolarity if the mobility of the spin probes is sufficient in the ionic liquids.

2,2,6,6-Tetramethylpiperidine-1-yloxyl and substituted derivatives of this spin probe bearing a hydroxy group or an ionic substituent in the 4-position were selected to investigate imidazolium and pyrrolidinium based ionic liquids. Significant differences were found in the mobility of these spin probes in the ionic liquids that are caused by the additional interactions of the substituent in the 4-position of the spin probe with the individual ions of the ionic liquids. Furthermore, viscosity of the ionic liquid also influences the mobility of the spin probes. The viscosity differs as result of modifying the structure of the ionic liquid cation on the one hand and by temperature variation on the other hand.

R_D5555

Recoupling non-secular part of the magnetic dipole interaction

Chahan M. Kropf and Boris V. Fine

Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany ; c.kropf@thphys.uni-heidelberg.de

NMR spin-spin relaxation in solids in strong static fields is normally described only with the help of the secular part of the full spin-spin interaction Hamiltonian. This truncation procedure is associated with the averaging of the spin-spin interaction over the fast Larmor precession. Here we report a set of conditions when the above averaging procedure continuously and selectively preserves some of the non-secular terms entering the full Hamiltonian. These conditions relate the value of the static magnetic field with the frequency and the amplitude of the radio-frequency field. When the above conditions are satisfied, the effective recoupled spin-spin interaction Hamiltonians have an unconventional form with tunable parameters. These tunable Hamiltonians offer interesting possibilities to manipulate nuclear spins in solids and can help the progress of the fundamental studies of the nuclear spin-spin relaxation phenomenon.

Comparison of X- and Q-band stimulated electron spin echo data on molecular motions of spin labels

Isaev N.P., Dzuba S.A.

Institute of Chemical Kinetics and Combustion, Institutskaya-3, 630090 Novosibirsk, Russia, and Novosibirsk State University, Pirogova-2, Novosibirsk, Russia, 630090 e-mail: isaev@kinetics.nsc.ru

A few years ago new method of investigation of molecular motion was proposed [1], which is based on analyzing transverse relaxation in stimulated electron spin echo experiment ($\pi/2-\tau-\pi/2-T-\pi/2-\tau-\tau/2-\tau-\pi$

Q-band (35 GHz) seems to be more convenient for these studies, because here EPR spectrum possesses a low-field narrow hyperfine component that is almost isotropic, which facilitates extraction of the relaxation anisotropy. In this work, comparative X- and Q-band stimulated echo investigations of molecular motions of spin-labeled lipids in model membranes are performed. It is shown that at Q-band the motions manifest themselves more pronouncedly. The models of motions used previously [1–4] may fit fairly well experimental results at both bands. Additionally, the distinct advantages of Q-band studies are much higher sensitivity and absence of the proton ESEEM.

[1] Isaev NP and Dzuba SA, J. Phys. Chem. B, 2008, 112, 13285-13291

[2] Isaev NP, Kulik LV, Kirilyuk IA, et al., J. Non-Cryst. Solids 2010, 356, 1037-1042

[3] Isaev NP, Syryamina VN, Dzuba SA, J. Phys. Chem. B, 2010, 114, 9510-9515

[4] Syryamina VN, Isaev NP, Peggion C, et at., J. Phys. Chem. B, 2010, 114, 12277-12283

RD557

Influence of paramagnetic impurities in porous media on the NMR relaxation signal

Markus Duschl^{1,2}, Andreas Pohlmeier¹, Harry Vereecken¹

¹Agrosphere Institute (IGB-3), FZ Jülich, Jülich, Germany; ²m.duschl@fz-juelich.de

In porous media, different processes contribute to the transverse relaxation rate. Besides pore size these are diffusional motion in internal gradients caused by magnetic susceptibility differences between solid and fluid [1], and presence of paramagnetic impurities [2].

Aim of the present study is the investigation of the relative contributions of internal gradients due to susceptibility differences and the contributions of paramagnetic impurities. We performed CPMG-measurements of quartz sand and goethite (FeOOH) coated quartz sand samples with known paramagnetic content at high and low magnetic field strength with different echo-spacings (T_E). The analysis showed multiple relaxation processes which are accelerated by the presence of iron oxides at the surface of the quartz particles while iron ions in the core of the particles have negligible influence on the relaxation behavior.

Summarizing, we observed that, besides the pore size, the iron content has the major influence on the transverse relaxation of the investigated porous media whereas the effect of the magnetic field strength is smaller. The dependence of all relaxation rates of the pure and the coated sands on T_E^2 is approximately linear as expected. However, internal gradient strengths obtained from these slopes are in the same order of magnitude for both types of porous media.

^{1.} Stingaciu L. R. et al., Water Resources Research, 45, W08412 (2009)

^{2.} Bryar T. R., Daughney C. J., Knight R. J., Journal of magnetic resonance, 85, 74 - 85 (2000)
RD558

Crystal Structure and Proton Dynamics of (ImH₂)₂SeO₄·2H₂O

Adam Rachocki, Katarzyna Pogorzelec-Glaser, Jadwiga Tritt-Goc

Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland, radam@ifmpan.poznan.pl

Fuel cells are promising electrochemical devices for electrical power generation because their high efficiencies and low pollutions. Interest in *hydrogen fuel cells* as energy conversion systems stimulates the search for appropriate *proton exchange membranes* which perform the function of *solid electrolytes* for proton transport as well as separators for hydrogen and/or oxygen. Among the different kinds of *proton conductors*, the materials based on the *nitrogen-containing heterocycle molecules* (e.g., *imidazole rings*) have a promising future as the proton exchange membranes for fuel cell applications.

In the present work, we have studied (i) the crystal structure, (ii) proton conductivity and (iii) molecular dynamics in *Imidazolium Selenate Dihydrate*: $(ImH_2)_2SeO_4\cdot 2H_2O$. (i) The crystal synthesized contains eight imidazole molecules in the unit cell (Z = 4). Imidazole nitrogen atoms form strong and linear N-H···O hydrogen bonds to the selenate ions and water molecules. The selenate ions have tetrahedral symmetry and the crystalline water is present in the form of H_3O^+ . (ii) The bulk *dc* conductivity of $(ImH_2)_2SeO_4\cdot 2H_2O$ was measured as a function of temperature. The process observed is thermally activated and fulfils the Arrhenius law ($E_a = 1.16 \text{ eV}$). At 60 °C the value of the electric conductivity equals ca. 10^{-1} S/m . (iii) ^{13}C MAS NMR spectra proved that all imidazole rings are dynamically equivalent and they undergo a reorientation around C₂ axis at room tempetarure. ¹H NMR spin-lattice relaxation measurements evidenced that two dynamically different types of protons: mobile and rigid, exist in $(ImH_2)_2SeO_4\cdot 2H_2O$. Mobile protons play a crucial role in the proton transport.

ACKNOWLEDGEMENTS: This work was supported by founds for science in years 2010-2012 as research project No N202 203738.

RD559

Unfolded State Dynamics of Single Disulfide Mutants of Hen Egg Whithe Lysozyme

<u>Robert Silvers¹</u>, Hideki Tachibana², Shin-ichi Segawa³, Friederike Sziegat¹, Sara Whittaker⁴, Ulrich Günther⁴, Martin Blackledge⁵, Julia Wirmer-Bartoschek¹, Harald Schwalbe¹

¹Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany; ²Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan; ³School of Science and Technology, Department of Physics, Kwansei Gakuin University, Nishinomiya, Japan; ⁴Institute of Cancer Studies, Biomolecular NMR facility, University of Birmingham, Birmingham, UK; ⁵Institut de Biologie Structurale Jean Pierre Ebel, CNRS-IBS, Grenoble, France; Email: silvers@nmr.uni-frankfurt.de

Hen egg white lysozyme (HEWL) contains eight cysteine residues forming four disulfide bonds in its native structure at positions [6-127], [30-115], [64-80] and [76-94]. During oxidative folding of HEWL, the four disulfide bonds form consecutively in a cooperative manner from 0SS-HEWL – where no disulfide bonds is present - over 1SS-, 2SS- and 3SS- to 4SS-HEWL - where all disulfide bonds are formed correctly. Up to now, there is only scarce data on the conformational dynamics of these intermediates and how the formation of disulfide bonds governs the folding process towards the correct folded form. Recent studies on 0SS-HEWL and several tryptophan mutants show that hydrophobic residues in the unfolded state of 0SS-HEWL modulate long-range interactions and that these hydrophobic patches influence disulfide bond formation during HEWL folding. The modulation of these dynamics, however, is influenced by the formation of disulfide bonds. In order to unravel the changes in dynamics upon disulfide bond formation, the characteristics of the unfolded polypeptides with only one disulfide bond are investigated. Therefore, the four 1SS mutants with native disulfides (1SS[6-127], 1SS[30-115], 1SS[64-80] and 1SS[76-94]) have been studied by NMR in detail by the use of R₂, R₁, R_{1ρ} and hetNOE as well as RDC and DOSY data.

RD560

The Influence of Polymer-Solid Contacts on Chain Order and Local Dynamics Studied by Using Static ¹³C-NMR Spectroscopy

Cornelius Friedrichs, Robert Graf, Hans-Wolfgang Spiess

Polymer Spectroscopy, Max-Planck-Institute for Polymer Research, Mainz, Germany

Many macroscopic properties of polymeric materials are determined by structure and dynamics of the polymer chains on the nano scale. Surfaces and interfaces are supposed to have a strong influence on both, local structure and local molecular dynamics.

In this work the impact of spherical silica surfaces on the dynamics of grafted poly(ethyl methacrylate) (PEMA) was studied by using ¹³C NMR spectroscopy. Simulation of static CSA tensor orientations of the ¹³C carbonyl site in PEMA is well suited for the analysis of motions and local ordering on the nano scale. By carrying out static variable temperature ¹³C NMR experiments the dynamics in various regions were monitored and could be compared to the bulk polymer. Four systems were investigated, all isotopically enriched at different regions of the PEMA chains, i.e. directly at the surface (system 1), in the middle (system 2), and at the chain ends (system 3). System 4 was a mixture of unlabelled particles with labelled bulk polymer. While system 1 showed no difference in dynamics compared to the bulk polymer, the molecular dynamics of the other systems were shifted to higher temperatures indicating an impact of the surface on the local ordering. The fact that system 4 showed similar behavior a chemical bonding effect can be excluded.

RD561

NMR Investigations on Fluoride conducting Electrolytes

Raiker Witter^{1,2}, M. Anji Reddy¹, Susanne Büschel¹, Dechao Wang¹, Horst Hahn¹, Maximilian Fichtner¹

¹Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany; ²Technomedicum, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia; raiker.witter@kit.edu

Recently, there is an increasing interest towards solid state batteries based on fluoride ion transfer. These electrochemical cells offer high energy density and have a wide range of operating temperature: up to 500 °C [1]. Conventional solid state fluoride batteries consist of a metal anode, a fluoride conducting electrolyte and a metal fluoride cathode [2]. The aim of the present study is the investigation of the intrinsic fluoride mobility of solid state electrolytes such as $La_{1-x}Ba_xF_{3-x}$ ($x \le 0.15$) by temperature dependent relaxation NMR spectroscopy. The fitted NMR ionic conductivity is compared to values compiled by electrochemical impedance spectroscopy.

REFERENCES

^{1.} A. Potanin et al., European Patent, EP 1873850 A1 (2008)

^{2.} J. H. Kennedy and J. C. Hunter, J. Electrochem. Soc., 123(1), 10 (1976)

^{3.} N. I. Sorokin and B. P. Sobolev, Crystallography reports, 52, 842 (2007)

Investigations on Polarization Enhancement

Maik Icker, Stefan Berger

Universität Leipzig, Institut für Analytische Chemie, Leipzig, Germany maik.icker@uni-leipzig.de

The inherently low sensitivity of NMR experiments is still a limiting factor in solving complex problems by NMR spectroscopy. Due to this fact there exist several methods to achieve an increase in signal intensity by hyperpolarization, i.e. to enlarge the difference in population far away from Boltzmann distribution at thermal equilibrium. One possible approach to realize a so called dynamic polarization was discovered by *Haupt*^[1] in 1972. He applied a sudden change in temperature from 8 K to 30 K and observed a 100-fold signal enhancement for the ¹H-resonances of gamma-picoline. A fundamental condition for substances showing the so called Haupt effect is the presence of molecular groups with a low rotational barrier, e.g. methyl groups referred to as quantum rotors. ^[2] At low temperatures the system can tunnel through the rotational barrier which enhances the number rotational states. A fast change in temperatur leads to relaxation effects where a coupling between rotational and nuclear spin states of the free rotating group can proceed leading to hyperpolarized spins. Till now there are only a few compounds known that show the effect. ^[3,4] Our aim is to identify more such substances and to transfer magnetisation from hyperpolarized compounds to other analytes dissolved in that matrix.

Furthermore some experiments using para-hydrogen-induced polarization (PHIP) are performed investigating possibilities of magnetisation transfer.

1. J. Haupt, Phys. Lett. A, 38,389-390 (1972)

2. C. Ludwig, M. Saunders, I. Marin-Montesinos, U. L. Günther, Proc. Natl. Acad. Sci. U.S.A., 107, 10799-10803 (2010)

3. E. Crits, G. L. Van, S. Emid, *Physica B*, 150, 329–336, (1988)

4. M. Murphy, D. White, J. Chem. Phys., 91, 4504-4514, (1989)

Se563

Double Electron-Nuclear Magnetization Transfer Application in Low-Field MRI

Yu. Bogachev^a, Yu. Chernenko^a, V. Drapkin^a, M. Knyazev^a, Ya.Marchenko^a, V. Frolov^b

^aDepartment of Physics, Saint-Petersburg Electrotechnical University, 5, ul. prof. Popova, Saint-Petersburg, 197376, Russia. ^bState of Physics, Saint-Petersburg State University, 1, ul. Ulyanovskaya, St.Petersburg, 198504, Russia. E-mail: spin_ltd@mail.ru

POSTER

A new method for low-field MRI sensitivity enhancement and contrast improvement is developed. This technique combines 3 methods: magnetization transfer (MT), dynamic nuclear polarization (DNP) and spin probes method. A pulsed DNP has been chosen for the electron magnetization transfer. For nuclear MT we used an off-resonance pulse technique, where multiple, short duration, high intensity RF pulses irradiate a sample at a frequency offset on several kHz from the free water resonance. This causes saturation of the bound pool biomacromolecules protons while leaving the free pool protons unaffected. This saturation effect is transferred subsequently (by dipolar or chemical exchange interactions) to protons in free water, and is proportional to the relative sizes of the pool, individual proton relaxation rate, and cross-relaxation rate. MT imaging has been quantitatively investigated and computer-simulated as a function of the number, amplitude, offset and duration of the off-resonance pulses using a special computer simulated program. Off-resonance saturation method has been investigated to improve contrast sensitivity by using of superparamagnetic iron oxide (SPIO) nanoparticles in low field MRI too.

In our DNP-MT studies we used simple phantoms as a model biopolymer-water systems, containing some spin probes. All experiments have been performed on home-built low-field MRI scanner in a magnetic field of 7 mT.

High sensitivity and flexibility of DEER experiment on a nitroxide radical pair at Q-band frequency

Yevhen Polyhach, Enrica Bordignon, René Tschaggelar and Gunnar Jeschke¹

¹Laboratory of Physical Chemistry, ETH Zurich, Switzerland. yevhen.polyhach@phys.chem.ethz.ch

Quality of distance information obtained by pulse EPR methods plays a crucial role in studying conformational dynamics of proteins. One of the most commonly techniques used to this end - the Double Electron Resonance (DEER) experiment – under common (standard) conditions (Xband frequencies of ~9.5 GHz, commercial hardware) provides distance information in a range of 2..5-6 nm, whereby at the longer distance edge often only *mean* interspin distances can be extracted with confidence. When precise knowledge on the shape of the distance distribution is required, an effective distance limit may drop down to even 4-4.5 nm, in particular for membrane proteins.

Here we report on significant improvements of the DEER experiment on nitroxide spin pair when performed at Q-band frequencies (~34.5 GHz). Using a home-built spectrometer together with a custom probe head for oversized samples we were able to achieve a 3-7 fold sensitivity increase with respect to standard operation at X-band thus providing access to longer distances, increased quality of data as well as significantly reduced measurement time. In addition, by varying excitation bandwidth of the microwave pulses we were able to switch on the same very sample between orientationally selective and non-selective operation, allowing for either probing geometry of the spin pair or getting precise and undistorted distance information from the pair even at a high degree of geometrical correlation.

SE565

NMR Microcoils for reaction conditions screening in single flow experiments.

Antonio M. Rodriguez,¹ Antonio de la Hoz,¹ Andrés Moreno,¹ Aldrik Velders,² Raluca Fratila,² M. Victoria Gómez.¹

¹Instituto Regional de Investigación Científica Aplicada. (IRICA) University of Castilla La Mancha. Ciudad Real. Spain. ²Faculty of Science and Technology. MIRA –Institute for Biomedical and Technical Medicine. University of Twente. Enschede. The Netherlands. MariaVictoria.Gomez@uclm.es

Herewith we present the use of an NMR-chip (rf-planar microcoil integrated on top of a glass substrate) for rapid reaction optimization of continuous-flow microwave-assisted chemical processes. Monitoring reactions under microwave irradiation with the aim of optimizing the reaction conditions is a complex task. Traditional methods are not adequate because they require stopping the reaction and the time required for analysis is longer than the reaction time. The methodology developed within our group is focused on the optimization of microwave-assisted reactions in short times and with low cost. This methodology implies the use of NMR-chips (detection volume 6 nL) hyphenated to a continuous-flow microwave reactor (reaction volume in the microliter range) for on-line monitoring and rapid optimization of the reaction conditions. Firstly with the monitoring of Diels-Alder reactions to prove the concept, and secondly, extending the scope of the system with the preparation of a small library of heterocycles¹ compounds with significant biological activity. This is the first time that a microwave reactor has been coupled to an NMR-probe.² The NMR-chip, as a consequence of having a smaller active volume than the reaction volume, provides several data points just from a single constant-flow experiment what accelerates the optimization process. The applicability of the NMR-chip has been further illustrated with the study of supramolecular interactions by ¹H- and ¹⁹F-NMR spectroscopy.³

1. C. J. Smith, N. Nikbin, S. V Ley, H. Lange, I. R. Baxendale. Org. Biomol. Chem. 9, 1938-1947, 2011.

Gomez, M. V., Verputten, H. H. J., Diaz-Ortiz, A., Moreno, A., de la Hoz, A., Velders, A. H., *Chem. Commun.*, 46, 4514-16, 2010.
Gomez, M. V., Reinhoudt, D. N., Velders, A. H., *Small*, 4, 1293-95, 2008

Se566

Microfluidic gas-flow reactor imaging utilizing parahydrogen-induced polarization and remote-detection NMR

Vladimir V. Zhivonitko,¹ Ville-Veikko Telkki,² Kirill V. Kovtunov,¹ Igor V. Koptyug¹

¹International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk 630090, Russia; ²NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014, Finland (v_zhivonitko@tomo.nsc.ru)

Microfluidic devices provide control over a process with capabilities that exceed those for conventional macroscopic systems. NMR imaging is one of the rare candidates for *in situ* monitoring of physico-chemical processes, since it has versatile and rich toolkit for mass transport visualization. However, conventional NMR imaging techniques suffer from low sensitivity, which makes studies of microfluidic reactors practically impossible. Substantial sensitivity boost can be achieved by combining remote-detection (RD) NMR and parahydrogen-induced polarization (PHIP) as has been demonstrated recently for microfluidic gas flow [1]. In the current study, we used this technique for imaging of mass transport and progress of gas-phase hydrogenation reaction inside cylindrical microscale packed-bed reactors of 150-800 µm in diameter. At the same time, we introduce the concept of microfluidic PHIP polarizer as a methodology for continuous production of hyperpolarized substances. We show that the combined PHIP-RD technique can provide information about reaction product distribution, mass transport and adsorption effects in the model micro-scale reactors during their *in situ* operation.

This work was supported by the RAS (5.1.1), RFBR (11-03-93995-CSIC_a, 11-03-00248-a), SB RAS (67, 88), (NSh-7643.2010.3), Russian Ministry of Science and Education (02.740.11.0262), the Council on Grants of the President of the Russian Federation (MK-1284.2010.3), and the Academy of Finland (123847 and 139839).

1. Telkki V. V., Zhivonitko V. V., Ahola S., Kovtunov K. V., Jokisaari J., Koptyug I. V., Angew. Chem. Int. Ed., 49, 8363-8366 (2010)

SE567

Liquid State Dynamic Nuclear Polarization for MRI applications: An In-bore Approach

Jan G. Krummenacker^{ab*}, Vasyl P. Denysenkov^a, Maxim Terekhov^b, Laura M. Schreiber^b and Thomas F. Prisner^a

^a Institiute of Physical and Theoretical Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt aM., Germany ^bJohannes Gutenberg University Medical Center Mainz, *email: krummenacker@prisner.de

Contrast and scan time being key issues in Magnetic Resonance Imaging (MRI), several approaches can be taken to improve the Contrast-to-Noise Ratio (CNR) of MRI images. Among those, hyperpolarization techniques are very promising, one of which is Dynamic Nuclear Polarization (DNP).

In DNP, hyperpolarization of nuclei is achieved by microwave irradiation of electron spins ("radicals") transferring their larger Boltzmann polarization to the nuclei – in this study via the Overhauser 2500 Effect.

We present a liquid state DNP polarizer operating in flow through mode at a magnetic field strength of 1.5 T (42 GHz microwave frequency), compatible with a standard 1.5 T medical imaging magnet. Compared to other approaches, where the polarization of the sample takes place in a separate magnet placed outside the imager bore, there are major technical differences. Liquid state polarization buildup time is in the range of seconds, allowing for a flow through design providing a constant flow of polarized sample. Additionally, the shuttling distance is minimized and

shuttling through a magnetic field profile is avoided. The work presented outlines the design of the DNP system, comprising of the flow-through resonator and an appropriate microwave source, and demonstrates its performance in enhancing MRI signal.

Solid-state NMR and Dynamic Nuclear Polarisation on Membrane Proteins

Lenica Reggie¹, Jakob J. Lopez¹, Vasyl Denysenkov², Soraya Hölper¹, Jörn Plackmeyer², Thomas Prisner², Mark Lorch³ and Clemens Glaubitz¹

1) Institute for Biophysical Chemistry, Goethe University, Frankfurt/M. 2)Institute for Theoretical and Physical Chemistry, Goethe University, Frankfurt/M. 3)University of Hull, U.K.

We describe cwDNP enhanced MAS-NMR experiments on two different membrane proteins reconstituted into lipid bilayers. The experiments were carried out using a non-commercial DNP setup consisting of a high power 258 GHz gyrotron (Gycom, Nizhny Novgorod, Russia) and a specially modified Bruker 3.2mm cryo-MAS probehead operating at 100 K at a 393 MHz Bruker Avance II spectrometer.

Proteorhodopsin: we show cwDNP enhanced double-quantum filtered experiments on ¹³C labeled retinal in proteorhodopsin and TEDOR experiments on His75 and Asp97 selectively labeled samples.

SecYEG: The bacterial protein translocation complex SecYEG contains three subunits and has a total size of 72 kDa. This complex forms the core of a conserved machinery, which transports proteins across or into membranes. We have performed first cwDNP MAS NMR experiments on SecYEG reconstituted into lipid bilayers with the ¹³C-labeled signal peptide LamB. The natural abundance background from the SEC-YEG necessitates the use of double quantum filtered experiments to observe signals from the peptide. Conventional NMR experiments are not feasible, as they would require over 3 weeks for a simple 2D spectrum, but only 20 hours when using DNP.

Our first data on two very different membrane proteins show the great potential of cwDNP-MAS. NMR to obtain very specific data from large membrane protein complexes.

Se569

Mobile DNP polarizer for continuous flow applications

Sandro Ebert^{1#}, Andrea Amar¹, Christian Bauer¹, Michael Kölzer¹, Peter Blümler², Dariush Hinderberger¹, Hans W. Spiess¹, Kerstin Münnemann¹

1: Max Planck Institute for polymer research, Mainz, Germany 2: Institute of physics, Johannes Gutenberg University, Mainz, Germany # ebert@mpip-mainz.mpg.de

Despite its wide applicability in natural science, NMR still suffers from its inherently low sensitivity. This could be overcome by hyperpolarization of molecules via dynamic nuclear polarization (DNP). Here, we introduce a mobile DNP polarizer, based on an inexpensive Halbach magnet operating at 0.35 T. It shows an almost vanishing magnetic flux at its outer side and is not disturbing other instruments. We will show that it can be placed directly next to a superconducting magnet, thus limiting the transport time of the hyperpolarized sample. Moreover, it will be demonstrated, that the Halbach magnet has the same DNP performance like an electromagnet. However, two problems for DNP applications remain: Firstly radicals are needed, which are mostly toxic. This problem becomes crucial with regard to medical applications. Secondly, the sample must be transported from the polarization magnet to the place of detection like a MRI scanner and polarization losses due to T1 occur. We implemented a flow system into the mobile DNP polarizer, which overcomes both obstacles. The radicals are immobilized in a gel matrix and the hyperpolarized radical free fluid is pumped subsequently directly in the MRI scanner.^{2,3} It will be shown, that even at flow conditions the NMR signal is enhanced in the Halbach magnet as well as in the MRI scanner (4.7 T) in 1.4 m distance. Acquired images will demonstrate the use of enhanced and, due to dipolar coupling, inverted NMR signals which provides even for small enhancements an excellent MRI contrast. REFERENCES:

3. Lingwood, M.D.; Siaw, T.,A.; Sailasuta, N.; Ross, B.D.; Bhattacharya, P. and Han, S., J. Magn. Reson., 205, 247 – 254 (2010)

Hausser, K. and Stehlik, D. Adv. Magn. Reson., 3, 79-139 (1968) 1.

McCarney, E.R.; Armstrong, B.D.; Lingwood, M.D. and Han, S., Proc. Natl. Acad. Sci., 104, 1754 - 1759 (2007) 2.

Overhauser DNP of ¹⁹F and ¹³C using a mobile X-Band polarizer

<u>Oliver Neudert</u>¹, P. Blümler², Hans W. Spiess¹, Kerstin Münnemann¹

¹Max Planck Institute for Polymer Research, Mainz, Germany; ²Institute of Physics, University of Mainz, Mainz, Germany; presenting author: oliver.neudert@mpip-mainz.mpg.de

Direct NMR signal enhancements of ¹⁹F and ¹³C obtained by Overhauser DNP in a mobile X-Band DNP polarizer [1] are presented. The setup is based on a Halbach arrangement of permanent magnets which is creating an adjustable magnetic field [2] with a field strength corresponding to 14.7MHz ¹H Larmor frequency and leading to a spectral line width (FWHM) of approx. 400ppm in a cylindrical sample of 4mm in height and 1mm in diameter.

Samples were made of solutions of nitroxide radicals in hexafluorobenzene (for ¹⁹F measurements) and in an aqueous solution of ¹³C-enriched urea (for ¹³C measurements), respectively. A systematic study of the DNP enhancement with different radical concentrations and varying microwave power was performed. The highest enhancements achieved were -68 for ¹⁹F (190mmol/1 TEMPO concentration, 11 Watt microwave power) and -987 for ¹³C (100mmol/1 4-Hydroxy-TEMPO concentration, 3.8 Watt microwave power)

For further evaluation of the results, experimental influences like heating of the sample and the microwave cavity as well as the effects of varying sample height and position were investigated. EPR spectra are compared to DNP signal intensities at varying magnetic field strength to demonstrate power broadening effects.

Münnemann K., Bauer C., Schmiedeskamp J., Spiess H. W., Schreiber W. G., Hinderberger D., Appl. Magn. Reson. 34, 321-330 (2008).
Barroso V. C., Raich H., Blümler P., Wilhelm M., J. Phys. Conf. Ser., 149, 012102 (2009)

SE571

Observation of signal enhancement via PHIP in a symmetric molecule. Experiments and a preliminary model.

María Belén Franzoni, Lisandro Buljubasich, Hans W. Spiess and Kerstin Münnemann.

Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany (franzoni@mpip-mainz.mpg.de.).

Two parahydrogen protons inserted in a molecule with symmetric structure occupy magnetically equivalent positions and, consequently, should remain in a singlet state, an NMR silent state. Surprisingly, this is not always the case and hyperpolarized signals from symmetric molecules can be observed¹. Particularly, we have observed significant NMR signal enhancement during the parahydrogenation of acetylene dicarboxylic acid dimethylester, even though it is a symmetrical molecule and the same remains true for its product after a hydrogenation reaction. In this work we present new experiments where the behavior of this symmetric molecule in presence of different magnetic fields and for different evolution periods is studied. In this way, we were able to monitor the spin system evolving as a weak or as a strongly coupled one. By means of these experiments we obtained some important hints to model in a simple way the dominant relaxation mechanisms in the molecule^{2,3} in order to explain the unexpected observations.

References:

^{1.} Haacke M., Barkemeyer J. and Bargon J., J. Phys. Chem., 99, 17539 - 17543 (1995)

^{2.} Carravettta M. and Levitt M.H., J. Chem. Phys., 122, 214505 (2005)

^{3.} Canet D., Bouguet-Bonnet S., Aroulanda C. and Reineri F., J. Am. Chem. Soc., 129, 1445 - 1449 (2007)

Para Hydrogen Induced Polarization in fluorous/organic phases

¹<u>Tomasz Ratajczyk</u>, ¹Sonja Dillenberger, ¹Nader Amadeu de Sousa, ²Torsten Gutmann, ¹Hergen Breitzke, ¹Gerd Buntkowsky

¹Technichal University Darmstadt, Germany, tratajczykicho@gmail.com, ²Laboratoire de Chimie de Coordination, Toulouse, France

Since the discovery of the Para Hydrogen Induced Polarization (PHIP) method [1-3] a lot of efforts have been put to develop this technique for practical and commercial applications in the medicine and the industry [4,5]. However, there are still some problems which hamper the PHIP utilization. For example, the problem of fast product/catalyst separation is one of special concern [6,7].

In this presentation this problem is addressed. We demonstrate that the PHIP effect can be observed in different fluorous solvents. Further, we present that the PHIP signal can be observed in fluorous/organic systems. These systems are homogenous at high temperature and biphasic at low temperature. This temperature behavior of fluorous/organic phases can be of crucial importance for product/catalyst separation in PHIP.

1. Bowers, C. R., Weitekamp, D. P., Phys. Rev. Lett., 57, 2645-2648 (1986).

- 2. Eisenschmid, T. C., Kirss, R. U., Deutsch, P. P. Hommeltoff, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L., J. Am. Chem. Soc., 109, 8089 (1987).
- 3. Bowers, C. R., Weitekamp, D. P., J. Am. Chem. Soc., 109, 5541-5542 (1987).
- 4. Terreno, E., Castelli, D.D., Viale, A., Aime, S., Chem. Rev., 110, 3019-3042 (2010).
- 5. Lysova, A.A.; Koptyug, I.V. Chem. Soc. Rev., 39, 4585-4601 (2010).
- 6. Kovtunov, K.V., Zhivonitko, V,V,, Kiwi-Minsker, L., Koptyug, I,V,, Chem. Commun., 46, 5764-5766 (2010).

7. Gutmann, T., Sellin, M., Breitzke, H., Stark, A., Buntkowsky, G., Phys. Chem. Chem. Phys. 11, 9170-9175 (2009).

Acknowledgments: Tomasz Ratajczyk wishes to thank for The Marie-Curie Intra European Fellowship within the 7th European Community Framework Programme (No 253065)

SE573

Quantum Rotor Induced Hyperpolarization

Christian Ludwig¹, Martin Saunders¹, Ildefonso Marin-Montesinos² and Ulrich L. Günther¹

¹ School of Cancer Sciences, University of Birmingham, Birmingham, UK, ² Institute for Research in Biomedicine - IRB Barcelona, Barcelona, Spain e-mail: C.Ludwig@bham.ac.uk

Polarization techniques attract significant interest in NMR spectroscopy spurred by the promise of enormously enhanced sensitivities. Hyperpolarization is commonly generated by polarization transfer from electrons or by utilizing parahydrogen in chemical interactions. A less well-known method of generating hyperpolarization is the Haupt effect^{1,2}, previously known for γ -piccoline, which generates polarization from quantum tunneling systems. Mechanistically the mechanism can be seen as the C₃ symmetry equivalent to triplet-singlet transitions.

We have recently shown that quantum rotor polarization (QRP) is not limited to γ -picccoline but can be observed for a range of molecules at low temperatures. The pure QR effect was observed for many molecules with methyl-groups and arises in absence of any radical or MW irradiation³. Time courses of the signal recorded after leaving substances for varied periods of time in the polarizer allowed us to calculate the rates of the build-up relative to the relaxation rates³. Using substances like pentanol with a methyl group on only one end of the molecule it could be shown that polarization is transferred entirely via protons by a fast spin diffusion mechanism³. Polarization transfer is also possible between protons of different molecules in glassy samples³, the essential component of any polarization technique. These findings show that QRP can serve as an alternative method to obtain NMR hyperpolarization.

^{1.} Haupt, J. Physics Letters A A 38, 389 (1972)

^{2.} Horsewill, A.J. Progress in Nuclear Magnetic Resonance Spectroscopy 35, 359 (1999)

^{3.} Ludwig, C., Saunders, M., Marin-Montesinos, I. & Günther, U.L. Proc Natl Acad Sci USA 107, 10799 (2010)

Fabry-Perot Resonators for Liquid-State DNP at 9.2 Tesla

Vasyl Denysenkov, Thomas Prisner

Institute for Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max von Laue Str 7, 60438 Frankfurt am Main, Germany. E-mail: vasyl@prisner.de

In-situ DNP experiments on physiological aqueous solutions of biomolecules at ambient temperatures are a challenging task due to high microwave losses in water causing excessive sample heating. To avoid heating a typical sample volume can be reduced to keep it in a position away from electrical component of the microwave field.

We showed with a helical double resonance structure [1] that indeed, substantial DNP enhancements can be achieved at high magnetic fields in liquid water solutions. On the other hand the sample size in the helical resonance structure is restricted to very small volume

below 3 nl. Together with poor spectral resolution it results in small signal amplitudes causing observation of NMR on biomolecules problematic.

Recently we developed a new type of the double resonance structure employing Fabry-Perot resonators, that allowed to improve spectral resolution and increase aqueous sample volumes up to 30-fold reaching 100 nl. Design, MW and RF performance, and first DNP applications at 9.2 Tesla will be presented.

1. V. P. Denysenkov, M. J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, and T. F. Prisner, Liquid state DNP using a 260 GHz high power gyrotron, *Phys. Chem. Chem. Phys.* (2010), **12**, 5786–5790.

ε_{int}= **-79**

-3 -4 -5

δ (ppm)

SE575

Water

2

400 MHz High Field Liquid State Dynamic Nuclear Polarization

Petr Neugebauer^{a*}, Jan G. Krummenacker^{ab}, Vasyl P. Denysenkov^a and Thomas F. Prisner^a

^a Institute of Physical and Theoretical Chemistry, University of Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt aM., Germany ^bJohannes Gutenberg University Medical Center Mainz, *email: neugebauer@prisner.de

POSTERS

ntensity (arb.u.)

predicted to become very inefficient at high magnetic fields. However, recently ample signal enhancements up to -80 in aqueous solution with ¹⁴N-TEMPOL radical have been observed in our homebuilt 392 MHz ¹H-DNP spectrometer operating at 9.4 T which uses a highly powered 260 GHz gyrotron microwave source for continuous wave sample irradiation.

In order to properly understand and model these findings, we investigate the DNP effect in aqueous solutions at this field, probing its dependences on temperature, radical concentration and saturation of the electron's transition.

Shuttle DNP Spectrometer with a Two-Center Magnet

<u>Philip Lottmann</u>³, Alexander Krahn¹, Thorsten Marquardsen¹, Andreas Tavernier¹, Maria-Teresa Türke², Marcel Reese³, Andrei Leonov³, Marina Bennati², Peter Hoefer¹, Frank Engelke¹, Christian Griesinger³

¹Bruker BioSpin, Rheinstetten, Germany; ²Electron Paramagnetic Resonance, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; ³NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, pilo@nmr.mpibpc.mpg.de

A DNP setup is described where a liquid sample is hyperpolarized by the electron-nucleus Overhauser effect¹ in a field of 0.34 T and transferred to a field of 14.09 T for NMR detection. A ferroshim system was inserted into the bore of a 14.09 T shielded cryomagnet to provide a homogeneous low-field region in the stray field 47 cm above the magnetic center. A dedicated EPR cavity was used for low-field polarization. The ferroshim system and the EPR cavity were cooled to 290 K. In this way sample heating caused by microwave irradiation could be reduced to 5 to 10 K and a higher reproducibility was achieved. Afterwards the sample is transferred to the high-field magnetic center within 40 ms by a pneumatic shuttle system. In our setup a standard high-resolution inverse ¹H/¹³C selective probe was used for NMR detection and experimental data are presented on various samples². We observed a maximum proton Overhauser enhancement of up to $\varepsilon_{HF} = -4.2$ in the high field position for a 10 mM 4-Oxo-TEMPO-D,¹⁵N (TEMPONE)/D₂O sample. In addition we can demonstrate for the first time Overhauser enhanced high resolution proton spectra of glucose and 2,2-dimethyl-2-silapentane-5-sulfonic acid sodium salt (DSS) in D₂O, where the high resolution spectrum was acquired in the high-field position after polarizing the sample in the low-field. Further results on even larger biomolecules will be presented.

REFERENCES: 1. Hausser K. H. and Stehlik D., Adv. Magn. Reson., 3, 79-139 (1968).

2. Krahn A. et al., Phys. Chem. Chem. Phys., 12, 5830-5840 (2010).

Sм577

Quantitative "long ultrafast" NMR as a valuable alternative to conventional 2D NMR

M.Pathan, S. Akoka, I. Tea, B. Charrier and P. Giraudeau

CEISAM, UMR 6230 CNRS-Université de Nantes. Faculté des Sciences et Techniques, BP. 92208, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France e-mail: meerakhan.pathan@univ-nantes.fr

Ultrafast (UF) 2D NMR¹ is a very promising methodology enabling the acquisition of 2D spectra in a single scan. The analytical performances of UF 2D NMR have been highly increased in the last few years, and the potentialities of ultrafast 2D NMR for precise and accurate quantitative analysis have been demonstrated.^{2,3} However little is known about the sensitivity of ultrafast experiments versus conventional 2D NMR. A fair and relevant comparison has to consider the Signal-to-Noise Ratio (SNR) per unit of time, in order to answer the following question: for a given experiment time, should we run a conventional 2D experiment or is it preferable to accumulate ultrafast acquisitions? To answer this question, we perform a systematic comparison between accumulated ultrafast experiments and conventional ones, for different experiment durations. Sensitivity issues and other analytical aspects are discussed in the context of quantitative analysis. The comparison is performance of the "long-ultrafast" approach versus conventional 2D NMR acquisitions. This result is mainly attributed to the absence of t_1 noise in spatially-encoded experiments.

Acknowledgments: This work was supported by the Agence Nationale de la Recherche (Grant 2010-JCJC-0804-01)

^{1.} Frydman L., Scherf, T., Lupulescu, A., Proc. Natl. Acad. Sci. USA, 99, 15858 - 15863 (2002)

^{2.} Giraudeau P., Remaud G.S., Akoka S., Anal. Chem., 81, 479-484 (2009)

^{3.} Giraudeau P., Massou S., Robin Y., Cahoreau E., Portais J.-C., Akoka S., Anal. Chem. in press (2011) doi : 10.1021/ac200007p

Simultaneous enhancement of chemical shift dispersion and diffusion resolution in mixture analysis by diffusion-ordered NMR spectroscopy

Alexandria K. Rogerson, Juan A. Aguilar, Mathias Nilsson and Gareth A. Morris

The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Email: Alexandria.Rogerson@postgrad.manchester.ac.uk

NMR spectroscopy is a powerful tool for the elucidation of molecular structure, but is relatively little used for mixture analysis. High resolution diffusion-ordered spectroscopy (HR-DOSY)¹ allows the separation of signals from different species, but for the best results requires both that the mixture components have different diffusion coefficients, and that their signals do not overlap. The two requirements can be addressed simultaneously using lanthanide shift reagents² (LSRs): the chemically-selective binding of solutes to an LSR both increases chemical shift dispersion, reducing signal overlap, and changes the diffusion coefficients seen for the different species. The latter effect is an example of matrix-assisted DOSY^{3,4}, in which the relative diffusion coefficients of different mixture components are manipulated by changing the matrix in which they diffuse.

- (1)
- Johnson, C. S. Prog. Nucl. Mag. Res. Sp., 34, 203-256 (1999). Sanders, J. K. M., Williams, D. H. Nature, 240, 385-390 (1972). (2)
- Evans, R., Haiber, S., Nilsson, M., Morris, G. A. Anal. Chem., 81, 4548-4550 (2009). (3)
- (4)Tormena, C. F., Evans, R., Haiber, S., Nilsson, M., Morris, G. A. Magn. Reson. Chem., 48, 550-553 (2010).

Sм579

Analysis of small molecule mixtures by Chromatographic- and MaxQ-NMR

G.N. Manjunatha Reddy¹*, Jérôme Lacour², Rafael Ballesteros², Yun Zhang³, Steffen Glaser³, Martial Piotto⁴ and Stefano Caldarelli¹

1Aix-Marseille Université, France, ²Université de Genéve, Switzerland, ³TU Munich, Germany, ⁴Bruker BioSpin, France, gnrmanju@etu.univ-cezanne,fr

Chromatographic and MaxQ NMR are recent additions for the analysis of mixtures of small molecules, producing a simple 2D NMR layout in which the second dimension serves to separate the 1D spectrum of the mixture components. We illustrate examples of these techniques, their benefits and limitations. Chromatographic NMR merges chromatography inspired separation and NMR structural analysis.^[1] We apply it to diastereomers of Fe²⁺ ion pairs in slow exchange, eluding chromatographic separation.^[2] MaxQ **NMR** simplifies ¹H-spectra by a correlation with the highest MQ order, as demonstrated on PAHs and phenolics in a standard set and in extra virgin olive oil.^[3] Improvement of the experiment through

Chromatographic NMR on F²⁺ pairs (left), MaxQ on 16 PAHs (right).

optimal control pulse sequence design^[4] and non-uniform sampling will be demonstrated.

[1] Viel, S.et al. PNAS, U S A 2003, 100, 9696. [2] Lacour J.et al. Chem Comm ,1998, 1733-1734. [3] Reddy, G. N. M.; et al. Anal. Chem., 2010, 82, 3266-3269; Chem. Comm., **2011**, 41, 4297-4299. [4] Khaneja, N. et al., J. Magn. Reson., **2005**, 173, 116-124. We thank ANR-08-BLAN-273-01 & PACA (APO-G-2009) for financial support.

The smaller the better in an optimization process

<u>A. Juan</u>,¹ A. Moreno,¹ A. de la Hoz,¹ R. Fratila,² A. Velders,² M. V. Gomez¹

¹Instituto Regional de Investigación Científica Aplicada. University of Castilla La Mancha. Avd. Camilo José Cela, s/n. 13071. Ciudad Real, Spain ² Faculty of Science and Technology. MIRA - Institute for Biomedical and Technical Medicine. University of Twente. Enschede. The Netherlands, <u>Alberto.Juan@uclm.es</u>.

From a few years to now the mass and volume limited samples analysis by NMR spectroscopy has been possible and perfectly demonstrated by the miniaturization of coils, knowing different microcoil geometries (microsolenoids, planar spiral microcoils, striplines, and microslot waveguides).¹ The reduced size of these microcoils allows to achieve detection volumes in the range of nanoliter and the detection of picomole amount of materials.²

In line with, the best approximation to analyze mass and volume limited samples are the flow techniques. Microcoils can be integrated on lab-on-a-chip devices and hyphenated to others techniques when the whole system works on continuous-flow. In this sense, we previously reported the hyphenation of a radiofrequency planar microcoil integrated on a glass substrate (NMR-chip) with a microwave microreactor for on-line monitoring and rapid optimization of a cycloaddition reaction.³

In this presentation we will report a new different methodologies of monitoring reactions by the called NMR-chip, taking advantage of the fact that the detection volume has been chosen lower than the reaction volume providing different data points, corresponding to different reaction times, within a single on-flow NMR experiment. The setup has been optimized with the lower reaction volume and lower interface volume as possible for an optimization of the reaction conditions with low cost and with the lower interface volume as possible for detection of reaction intermediates respectively.

1. 1. Fratila, R. M., Velders, A. H., Annual Review of Analytical Chemistry, 2011, in press.

2. 2. Gomez, M. V., Reinhoudt, D. N., Velders, A. H., Small, 4, 1293-95, 2008.

3. 3. Gomez, M. V., Verputten, H. H. J., Diaz-Ortiz, A., Moreno, A., de la Hoz, A., Velders, A. H., Chem. Commun., 46, 4514-16, 2010.

Sм581

"Through space" J-coupling between hydrogen nuclei

Martin Dračínský, Petr Jansa, Petr Bouř

Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo n. 2, 166 10 Prague, Czech Republic, e-mail: dracinsky@uochb.cas.cz

The indirect spin-spin NMR band splitting (*J*-coupling), known to be mostly mediated by covalent bonds, is an indispensable probe of fine molecular structure. However, some of the magnetic interaction may not be dependent on the covalent pattern, which should be taken into account in

accurate conformational studies. This coupling contribution was quantitatively investigated on newly synthesized model molecules consisting of rigidly and loosely connected aromatic rings. The measured coupling constants clearly indicate that the rigid and flexible systems differ in the magnitude of the through-space coupling components. The trend was in agreement with the values calculated by quantum-chemical methods.

The calculated carbon and hydrogen coupling maps and perturbed electronic densities suggest that the aromatic system is responsible for a part of the non-covalent contribution.

ACKNOWLEDGEMENT:

Financial support from the Grant Agency of the Academy of Sciences of the Czech Republic through Project KJB400550903 is acknowledged.

Computer-assisted complete assignment of ¹H and ¹³C NMR data for a poorly functionalized kaurane diterpene.

<u>Vladimir C. G. Heleno</u>¹, Eder H. da Silva¹, Ana Carolina F. Soares¹, Priscilla M. Matos¹, Rodrigo C. S. Veneziani¹, Sérgio R. Ambrósio¹ and Antonio G. Ferreira²

¹Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil; ²Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, São Carlos, Brazil. heleno.vcg@unifran.br

Diterpenes (DT) are an important class of biologically active natural products.¹ Regarding this, DT are also the target in several phytochemical, pharmaceutical and biological studies. The unequivocal assignment of the diterpene structures is an important step for studies on structure-activity relationships of such class of compounds. One can find in the literature some ¹H and ¹³C NMR data

n class of compounds. One can find in the literature some ¹H and ¹³C NMR data complete assignments for polifunctionalized DT, but for poorly functionalized structures, the ¹³C NMR structural determination is fairly common. In this work, we have performed a detailed NMR data study of methyl kauranoate (1) by ¹H NMR, ¹³C{¹H} NMR, gCOSY, gHMQC, gHMBC experiments. NMR spectra were recorded on a Bruker Avance DRX400 spectrometer, 5 mm probehead (BBI 1H-BB). Samples were 20-25 mg mL⁻¹ in CDCl₃ with TMS. Signals were simulated in SimEsp NMR program² to verify their distortions and to turn

possible J values determination. All hydrogen signals were assigned separated from their geminal hydrogen in each case, and some new signal multiplicities were also determined. In comparison to previous works,³ here is presented eighteen new assignments and seven new signal multiplicity were determined. This is an essential contribution to the literature, especially for structure-activity studies.

REFERENCES: 1. a) De Carvalho, M.G. et al. Phytochemistry, 49, 1101-1105 (1997); b) Lopes-Olguín, J. et al. Phytochemistry, 50, 749-753(1998). 2. <u>http://artemis.ffclrp.usp.br/NMR.htm</u>:accessed in 05/24/2011. 3. Nascimento, A.M. and Oliveira, D.C.R. J. Braz. Chem. Soc., 12, 552-555 (2001).

Sм583

Complete structural assignment of ¹H and ¹³C NMR data for two prepared furanoheliangolides and their products obtained with Stryker's reagent.

<u>Vladimir C. G. Heleno</u>¹, Daiane C. Sass², Aline N. Silva¹, Ana Carolina F. Soares¹, Gustavo O. Morais¹, João Luis C. Lopes³ and Mauricio G. Constantino²

¹Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil; ²Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; ³Departamento de Física e Química, Faculdade Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil: heleno.vcg@unifran.br

Sesquiterpene lactones (SL) are a class of Natural Products with structural variety and several known biological activities.¹ During our synthetic research with SL,² we have obtained substances **3** to **6** by reduction of **1** and **2** with Stryker's reagent, as shown on figure 1. We now present firstly, the ¹H and

¹³C detailed NMR data assignment for all the substances on figure 1. Compounds **1** to **4**, as well as the previously unpublished substances **5** and **6** were all submitted to the experiments: ¹H NMR, ¹³C{¹H } NMR, gCOSY, gHMQC, gHMBC, *J-res* and NOESY. NMR spectra were recorded on a Bruker Avance DRX500 spectrometer, 5 mm probehead (BBI 1H-BB). Samples were 20-25 mg mL⁻¹ in CDCl₃ with TMS. ¹H and ¹³C NMR signals were fully and unequivocally assigned; all hydrogen homonuclear coupling constants were measured,

with all ¹H signals multiplicities clarified. NOE was also verified, and all signal intensities are in agreement with the presented structures. These results are an important contribution as they can be considered an useful data base to be available in the literature and help future assignments.

REFERENCES: 1. Vichnewski W. et al., Phytochemistry, 28, 1441-1451 (1989); 2. Sass, D.C. et al., Tetrahedron Lett., 49, 3877-3880, (2008)

Combined use of filtered and edited ¹H NMR spectroscopy to detect ¹³C enriched compounds in complex mixtures

AUTHOR NAMES: <u>Peter W. A. Howe</u>, Zsuzsanna Ament[†], Katherine Knowles, Julian L. Griffin[†], Jayne Wright.

AUTHOR ADDRESSES: Syngenta, Jealott's Hill Research Centre, Bracknell. RG42 6EY UK. E-mail: <u>peter.howe@syngenta.com</u>. † Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK

ABSTRACT: In conventional metabolism and pharmacokinetic studies, radioactive isotopes are used to identify and quantify the breakdown products of xenobiotics. However, synthesising the radiolabelled xenobiotics needed for such studies is extremely expensive, and careful safety precautions are required when using them. The stable isotope ¹³C provides an alternative method of tracing xenobiotic metabolism. Because it is non-radioactive, ¹³C enriched xenobiotics are cheaper to synthesise and using them requires no special precautions. Metabolites of the enriched xenobiotic can then be traced, quantified and identified by ¹³C filtered NMR spectroscopy.

One obstacle in using ¹³C is its high natural abundance (1.1%). This produces a background signal in ¹³C filtered NMR spectra of crude biological extracts. This background makes it difficult to distinguish resonances from ¹³C enriched xenobiotics from endogenous metabolites unrelated to the xenobiotic.

This poster demonstrates that ¹³C filtered and edited NMR spectra can be combined to separate the 13C background from the resonances of ¹³C enriched xenobiotics. The theory underlying the approach is described, and the method is demonstrated in a study of the metabolism of ¹³C -enriched Phenacetin in hepatocyte microsomes.

Sм585

Towards a better understanding of the selectivity of an organocatalyst

Andreas Kolmer¹, Christina M. Thiele¹

¹ Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany. akolmer@thielelab.de

The tetrapeptide **1** is used as organocatalyst for the enantioselective monoacylation of *trans*-cyclohexane-1,2-diol, yielding exceptionally high selectivities.^[1] To understand the observed selectivity, quantum chemical calculations have been used,^[1,2] but so far no experimental evidence towards the existence

of the proposed intermediate nor towards the solution structure of 1 itself is available. Thus we started to investigate the solution structure of 1 by NMR spectroscopy. Since calculations suggest conformational flexibility for the organocatalyst, it is difficult to determine the structure with routine procedures.

We started using a combination of NOE and $RDC^{[3]}$ data to describe the structure in solution. As orienting media to measure RDC, the homopolypeptide poly- γ -benzyl-D-glutamate^[4] is used.

Our investigations so far show that the structure of the tetrapeptide in solution does not match one of the proposed quantum chemical structures and show strong signs of conformational flexibility. It is thus very unlikely that the structure in solution can be described by one single conformer. We are currently trying to generate a conformer or an ensemble of conformers that is in agreement with the experimental data.

REFERENCES:

^{1.} Müller C. E., Wanka L., Jewell K., Schreiner P. R., Angew. Chem., 120, 6275-6278 (2008)

^{2.} Shinisha C. B., Sunoj R. B., Org. Lett, 11, 3242-3245 (2009)

^{3.} Reviews: Thiele C. M., Concepts Magn. Reson., 30A, 65-80 (2007), Thiele C. M., Eur. J. Org. Chem., 5673-5685 (2008)

^{4.} Marx A., Thiele C. M., Chem. Eur. J., 15, 254–260 (2009)

Analysis of Fatty Acids in Chiral Oriented Systems by NAD 2D-NMR: Optimisation of Enantiodiscrimining conditions and First Experimental Application of the "Non-Uniform Sampling/Covariance" Approach

Philippe Lesot¹, Olivier Lafon² and Jean-Paul Amoureux²

¹RMN en milieu Orienté, ICMMO UMR 8182, Université de Paris-Sud 11, F-91405 Orsay cedex, France; ²ENSCL, Unité de Catalyse et de Chimie du Solide, UMR-CNRS 8181, Cité Scientifique, Bât. C7, University of Lille-Nord de France, F-59652 Villeneuve d'Ascq cedex, France. Presenting author e-mail address : philippe.lesot@u-psud.fr

Natural abundance deuterium 2D-NMR (NAD 2D-NMR) in chiral liquid crystals (CLC), made of organic solutions of polypeptide (PBLG, PCBLL) is an original and powerful approach for analyzing (pro)chiral molecules or investigating the (D/H) isotopic fractionation in biointerest molecules. In this work, we describe the recent experimental and methodological advances of NAD 2D-NMR dedicated to the investigation of (un)saturated C-18 fatty acids such as stearic, linoleic or vernoleic The first achievement concerns the optimisation of enantiodiscrimination conditions of all acid. deuterium inequivalent sites in fatty acids in order to extract all possible information relative to the (D/H) ratios. The second one reports the possibility to reduce significantly the experimental time of acquisition of NAD NMR data in CLC by processing non-uniform sampling (NUS) of data sets with covariance transform (Cov). The combination NUS of and Cov methods allow a decrease in measurement time by a factor of 2 compared to Cov applied to unifor mly-sampled (US) data and a factor of 4 compared to FT applied to US data.

REFERENCES:

1 Lesot, P.; Baillif, V.; Billault, I. Anal. Chem., 80, 2963-2972 (2008).

2 Lesot, P.; Serhan, Z.; Billault, I. Anal. Bioanal. Chem., 399, 1187-1200 (2011).

3 Lafon., P.; Hu, B.; Amoureux, J.-P.; Lesot, P. Chem. Eur. J., 17, 6716-6724 (2011).

Sм587

RDC-based Determination of the Relative Configuration of the Fungicidal Cyclopentenone "Hygrophorone A"

<u>Volker Schmidts</u>¹, Maic Fredersdorf¹, Tilo Lübken², Andrea Porzel², Ludger Wessjohann² and Christina M. Thiele¹

¹Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany. ²Leibnitz-Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany. eMail: vschmidts@thielelab.de

Posters

After their isolation from fungi of the *Hygrophorus* family, the Hygrophorones **1** have been subject of intense study due to their structural similarity with the antibiotic pentenomycin and antifungal activity.^[1] The relative configuration of C4 and C5 was established by comparison of the ${}^{3}J_{H3-H4}$ and ${}^{4}J_{H2-H4}$ coupling constants with the known (epi-)pentenomycin structure and NOESY measurements. However the relative configuration of C6 remained unknown and also the proposed 4,5*trans* configuration has not yet been determined unambiguously.

We used RDCs^[2] to determine the relative configuration of all three stereogenic centers at once. By aligning about 2 mg of hygrophorone A in a liquid crystalline phase of high-molecular-weight PBLG in $CD_2Cl_2^{[3]}$ we were able to measure eight one-bond and long-range C-H RDCs. We studied possible conformational flexibility in the five membered ring and along the C5-C6 bond by conventional force-field and DFT methods. Fitting these calculated structure models with our RDC module in the software hotFCHT,^[4] we found only a single relative configuration reproducing the experimental data.

REFERENCES:

^[1] T. Lübken, J. Schmidt, A. Porzel, N. Arnold, L. Wessjohann, Phytochem., 65, 1061-1071 (2004).

^[2] Reviews: C. M. Thiele, Conc. Magn. Reson. A., 30A, 65-80 (2007). C. M. Thiele, Eur. J. Org. Chem., 2008, 5673-5685 (2008).

^[3] A. Marx, V. Schmidts, and C. M. Thiele, Magn. Reson. Chem., 47, 734-740 (2009).

^[4] R. Berger, C. Fischer, and M. Klessinger, J. Chem. Phys. A, 102, 7151-7167 (1998).

THE ROLE OF SOLVENT IN SUGAR-BASED ORGANOGELS

Jadwiga Tritt-Goc and Michał Bielejewski

Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland, e-mail: jtg@ifmpan.poznan.pl

The organogels composed by the sugar-based organogelators: methyl-4,6-O-(p-nitrobenzylidene)- α -D-glucopyranoside and 1,2-O-(1-ethylpropylidene)- α -D-glucofuranose with a variety of solvents were the subject of our studies. We focused our attention on the role of solvent on the gel formation, the thermal stabilities of the gels, the microstructure of 3D fibrillar network formed by the gelator molecules in the gel and in particular, on the interaction of the solvent molecules with gelator aggregates.²⁻⁴ Different solvent parameters, such as dielectric constant, the one-component solubility parameter, the polarity parameter and the Kamlet-Taft parameters were considered to quantify solvent effects on the gelator. Thanks to the ¹H FFC relaxometry we were able to evidence the interaction between the solvent and gelator aggregates.⁴

REFERNCES

1.Weiss, R. G.; Terech, P. Molecular Gels, Materials with Self-Assembled Fibrillar Network; Springer: Dordrecht, The Netherlands, 2006.

2. Tritt-Goc, J.; Bielejewski, M.; Luboradzki, R.; Łapinski, A. Langmuir, 24, 534-540 (2008)

3. Bielejewski, M.; Łapiński, A;.; Luboradzki, R.; Tritt-Goc, J. Langmuir, 25, 8274-8279 (2009)

4. Bielejewski, M.; Tritt-Goc, J. Langmuir, 26, 17459-17464 (2010)

ACKNOWLEDGMENTS

This work has been supported by funds from the National Centre for Science as research project N N202 1961 40

Sм589

Separation of natural product epimer signals by chiral matrix-assisted diffusion-ordered NMR spectroscopy

Ralph W. Adams,¹ Juan A. Aguilar,¹ Julia Cassani,² Gareth A. Morris¹ and Mathias Nilsson¹

¹School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Email: ralph.adams@manchester.ac.uk ²Dept. de Sistemas Biológicos, Universidad Autónoma Met. Unidad, Xochimilco, Calz. del Hueso No. 1100, Col. Villa Quietud, CP 04960, D. F., México

High resolution diffusion-ordered NMR spectroscopy¹ allows the separation of signals from different species based on their diffusion coefficients. In general this requires that the NMR spectra of the components do not have overlapping signals and that the diffusion coefficients are significantly

different. Modifying the solvent matrix in which a sample is dissolved can change the diffusion coefficients observed, allowing resolution ("matrix-assisted DOSY").² Some matrices can change both diffusion coefficients and chemical shifts. We show that dissolving the two naturally-occurring epimers of naringin,³ the component of grapefruit juice responsible for its bitterness, in an aqueous solution of β -cyclodextrin causes both shift and diffusion changes, allowing the signals of epimers to be distinguished. Chiral matrix-assisted DOSY has the potential to allow simple resolution and assignment of the spectra of epimers and enantiomers, without the need for derivatisation or for titration with a shift reagent.

1. Johnson, C. S. Prog. Nucl. Magn. Reson. Spectrosc., 34, 203-256 (1999).

3. Colquhoun, I. J., Goodfellow, B. J. J. Chem. Soc., Perkin Trans. 2 1803-1807 (1994).

^{2.} Sanders, J. K. M., Williams, D. H. Nature, 240, 385-390 (1972).

ENANTIO DISCRIMINATION AND CONFIGURATIONAL ASSIGNMENT OF CARBOXYLIC ACIDS BY ⁷⁷Se NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Simone M.C. Gonçalves and Jeiely G. Ferreira

Departamento de Química Fundamental, UFPE, 50.670-901, Recife, Pernambuco, Brasil.

In this work, we show results that point to the efficiency of chiral β -arylselanyl alcohols, when employed as chiral derivatizing agents (CDA), in the enantiodiscrimination of α -, β -, γ -substituted chiral carboxylic acids through ⁷⁷Se NMR. We also propose an empirical model for the assignment of the absolute configuration of α -substituted carboxylic acids by ⁷⁷Se NMR. The experiment described here was performed in the NMR tube, by mixing and shaking the commercially obtained carboxylic acids in the presence of the chiral selenium auxiliary β -arylselanylalcohols, synthesized in our laboratory. As a consequence, diastereomeric esters were obtained as products. Finally, ⁷⁷Se NMR spectra were acquired. Large anisocronies of the two selenium signals were observed, revealing a capability of this procedure to usefully distinguish between alkyl substituents, up to seven bonds of distance to the selenium nucleus. In order to assign the absolute configuration to the carboxylic acids, we used a methodology similar to the one described above. However, this time, the ⁷⁷Se NMR spectra acquisitions were registered for both enantiomers, (R)- and (S)-, one at a time, for several α substituted carboxylic acids. Based on the ⁷⁷Se NMR spectra of the resulting diastereomeric esters, we were able to successfully propose an empirical model for the determination of the absolute configuration of these compounds, by taking into consideration the shielding/unshielding effect over the selenium nucleus and the association based on the conformational equilibria led by steric interactions and/or electronic effects.

Financial Support : FACEPE, CNPQ, PRONEX/FACEPE (Brazilian Agencies)

Sм591

Discovery and Characterization of Small-Molecule Inhibitors of PDZmediated Protein-protein Interactions

Nestor Kamdem, Annette Diehl, Jörn Saupe, Gerd Krause, Hartmut Oschkinat

NMR-Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125 Berlin, Germany kamdem@fmp-berlin.de

Protein-ligand interactions are investigated by a variety of NMR techniques. ¹H- ¹⁵N Heteronuclear Single Quantum Correlation (¹H-¹⁵N-HSQC) is widely used due to its importance in the mapping of the binding site of the ligand by observation of CSP (Chemical Shift Perturbations). This approach is applied to study interactions between PDZ (<u>Post-synaptic density-95</u>, <u>D</u>rosophila discs large, <u>Z</u>onula occludens -1) domains and the small molecules that bind to it.

PDZ domains are protein-protein recognition modules that play a central role in organizing diverse cell signaling assemblies. PDZ binding specificity involves the recognition of the C-terminus of protein, belonging to receptor and ion channel families. Antagonizing PDZ-mediated interactions may allow for the treatment of several human disorders such as neuropathic pain, congenital diseases, psychiatric disorders, and cancers. In our study, the PDZ domain's of interest are DVLPDZ and AF6PDZ.

1-Schultz . J., et al. Nature Struct Biol. 1998, 5, 19-24

²⁻Joshi. M., et al. Angew Chem Int Ed. 2006, 45, 3790-3795

³⁻Bourry. D.; et al. Magn.Reson.Chem. 2011, 49, 9-11

⁴⁻Saupe. J; Kamdem.N; et al. ChemMedChem (2011) accepted

⁵⁻Vargas. C.; Kamdem. N.; et al. in press

Combining ¹H high-resolution solid-state NMR methods and *in silico* approaches to study Pharmaceuticals

Luís Mafra^{1,2}, Sérgio M. Santos¹ and Renée Siegel¹ and Dmytro Dudenko²

¹CICECO, Chemistry Dep. University of Aveiro, Campus de Santiago, P-3810-193 Aveiro, Portugal ²Max-Planck-Institut fur Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany. <u>Imafra@ua.pt</u>

Understanding the effect of water on the transformation of drug hydrates to anhydrates, and exploring the correlations between the water environment in the crystal lattice and the hydration/dehydration behavior, are non-trivial matters of particular concern in the study of such multiple-component crystals and a field of great importance where some research efforts have been employed [1].

Here, we present an experimental and computational study of distinct fluorinated pharmaceutical crystalline forms with Z'=1 and =3. Multinuclear (1 H, 19 F, 13 C) 2D high-resolution NMR and various computational approaches were used to investigate these pharmaceutical systems. Combining a toolbox of advanced 2D ¹H CRAMPS-based [2] NMR experiments at high fields and fast MAS rates, aided by GIPAW and NICS calculations, we have achieved in some cases, the full assignment of 51 and 54, 13 C and ¹H resonances respectively, and the quantification of the packing interactions by means of a stepwise *in silico* dismantlement of the 3D crystal packing [3]. we also discuss how the presence/absence of water in two hydrates affects the packing interactions by computing NMR chemical shifts in hydrated and *in silico*-dehydrated crystal structures.

REFERENCES: 1. Vogt et al. *CG & Design*, 6, 2333-2354 (**2006**); 2. Mafra, L. et al., *JMR.*, 199, 111-114 (**2009**); 3. Mafra, L., et al., *JACS.*, Submited (**2011**)

Sм593

Study of Stannanes by NMR Spectroscopy and Quantum Calculations

Ivani Malvestiti, Lívia N. Cavalcanti, José B. da Cruz, Ricardo L. Longo and Fernando Hallwass

¹Department of Fundamental Chemistry, University of Pernambuco, Recife, Brazil. ivani@ufpe.br

Discussions concerning the synthesis of functionalized homoallylic alcohols promoted by tin have to deal with the stereo and regioseletivity of the products. For instance, the allylic halide γ -substituted system, such as crotyl bromide, reacts with aldehyde producing α - and γ -adducts [1]. However, the diastereoseletivity control depends upon the reaction conditions. Most likely, these reactions involve organometallic species and the investigation of organostannanes preformed is crucial to understand which species actually takes part in the addition reaction.

In this communication we described an example where NMR techniques, namely J-Resolved, ¹H-¹³C HMQC and HMBC, and ¹H-¹¹⁹Sn HMQC were employed to elucidate all isomers produced in the reaction by crotyl bromide with tin in basic media. By ¹H NMR we were unable to assign the species formed. In contrast, by ¹¹⁹Sn NMR we have observed five crotyl stannanes species. In addition, 2D experiments were necessary to assign these five different isomers. The experimental data were supported by quantum chemical calculations that include relativistic effects (scalar and spin-orbit). The calculated NMR parameters with the calculated isomer structures correlated quite well with the observed ones, and such a combination provides a useful tool for structural determination of organotin.

Acknowledge: Brazilian agencies CNPq, PRONEX-FACEPE-CNPq (APQ-0859-1.06/08; APQ 0788-1.06/08), CAPES, FINEP, inctINAMI.

REFERENCES:

^{1.} Guimarães R.L., Lima D.J.P., Barros M.E.S.B., Cavalvanti L.N., Hallwass F., Bieber L.W. Malvestiti I., Molecules, 12, 2089-2105 (2007)

How reliable is the configurational assignment of complex natural products by NMR spectroscopy?

Matthias Köck

Alfred-Wegener-Institute for Marine and Polar Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany

The configurational assignment of natural products (relative and absolute configuration) is essential to understand their biological activity on a molecular level and to allow their procurement through total synthesis. The structural elucidation of amorphous molecules with several unknown stereogenic centers would benefit greatly from a method that could simultaneously analyze all configurations. The so-called fc-rDG/DDD method¹ was successfully applied in 2007 to the palau'amine congener tetrabromostyloguanidine² leading to a revision of the relative configuration of palau'amine and its congeners³. The reassignment of the relative configuration was finally proven by the total synthesis of palau'amine.⁴ The application of the fc-rDG/DDD method to four further examples are discussed. Three of the compounds (axinellamine A⁵, 3,7-*epi* massadine⁵, and donnazole C⁶) are pyrrole-imidazole alkaloids with 8 stereogenic centers as the palau'amine congeners. The fourth compound is an intermediate in the total synthesis of palau'amine azide.⁷ Application of the fc-rDG/DDD method to fnatural products could prevent future misassignments.

1. Scheek R. M., van Gunsteren W. F., Kaptein R., Methods Enzymol., 177, 204-218 (1989).

2. Grube A., Köck M., Angew. Chem. Int. Ed., 46, 2320–2324 (2007).

3. Kinnel R. B., Gehrken H. P., Scheuer P. J., J. Am. Chem. Soc., 115, 3376-3377 (1993).

4. Seiple I. B., Su S., Young I. S., Lewis C. A., Yamaguchi J., Baran P. S, Angew. Chem. Int. Ed., 49, 1095-1098 (2010).

5. Köck M., Schmidt G., Seiple I. B., Baran P. S, J. Nat. Prod., submitted.

6. Munoz J., Al-Mourabit A., Cychon C., Köck M., manuscript for Angew. Chem. Int. Ed. in preparation.

7. Seiple I. B., Young I. S., Su S., Nakamura A., Yamaguchi J., Jörgensen L., Rodriguez R. A., O'Malley D. P., Gaich T., Köck M., Baran P. S, J. Am. Chem. Soc., submitted.

Sм595

NMR reveals the origin of environmental contaminants

<u>Ina Ehlers</u>¹, Wolfgang Armbruster², Tatiana R. Betson¹, Thomas Kapp², Katja Lehnert², Walter Vetter², Jürgen Schleucher¹

¹Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå, Sweden; email: ina.ehlers@medchem.umu.se. ²Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany.

Pollutants have severe toxic effects on the environment and pose risks to all living organisms. Understanding their fate in the environment and tracing them back to their sources is important, but difficult. NMR can address these challenges by analysis of heavy stable isotopes. The abundances of these isotopes are not constant, but are influenced by synthesis, transport and transformation processes. These processes leave a fingerprint, in the form of the isotope abundance for each intramolecular position of a compound. NMR is the most powerful technique to measure intramolecular isotope abundances; here we show how NMR can explain sources and transformation processes of pollutants.

First, we analyzed whether bromophenoles and –anisoles used in brominated flame retardants have a common source. These compounds showed distinct isotope patterns in the structurally common parts, ruling out a common source^[1]. Second, we studied the infamous chloropesticide DDT and its congener DDD. The deuterium abundance of these compounds differed only in a structurally different C-H group. This difference was traced to the technical DDT synthesis, as opposed to biodegradation in the environment^[2]. Thus, NMR yields unique mechanistic information to determine transformations of persistent pollutants and to distinguish natural and anthropogenic sources.

REFERENCES:

2. Ehlers et al., in preparation

^{1.} Vetter W., Armbruster W., Betson T. R., Schleucher J., Kapp T., Lehnert K., Anal. Chim. Acta, 577, 250-256 (2006)

Speciation of Organic Phosphorus in P-immobilizing soils: A ³¹P NMR study

Johan Vestergren¹, Andrea Vincent², Per Persson¹, Mats Jansson², Ulrik Ilstedt³, Reiner Giesler^{2, 4}, Gerhard Gröbner¹, Jürgen Schleucher⁵

¹Dept. of Chemistry, Umeå University, S-901 87, Umeå, Sweden, ²Dept. of Ecology and Environmental Sciences, Umeå University, S-901 87, Umeå, Sweden, ³Swedish Agriculture University, Umeå, Sweden, ⁴Climate Impacts Research Centre, Dept. of Ecology and Environmental Sciences, Umeå U., S-981 07, Abisko, Sweden, ⁵Medical Biophysics and Biochemistry Dept., Umeå U., S-901 87, Umeå, Sweden. Johan.vestergren@chem.umu.se

Phosphorus (P) limits plant growth in many parts of the world, and it has been predicted that agriculture will run out of P fertilizer with dire consequences for food production¹. Most soil P occurs as organic P species, but there is a severe lack of knowledge about the molecular processes controlling the reactivity of organic P species and their resulting bioavailability. Our aim is to develop solution and solid state ³¹P NMR techniques to identify P species in soils; information ideal for correlating different organic P species to plant and soil processes². Unfortunately, NMR studies on soil P are compromised by the line broadening caused by paramagnetic ions in soils. For liquid-state NMR, soil P is commonly extracted with NaOH-EDTA, leading to co-extraction of heavy metals. We reasoned that to improve resolution in ³¹P NMR and allow the application of 2D ¹H, ³¹P NMR, paramagnetic impurities must be completely removed from these extracts. We find that sulfide precipitation removes Fe and Mn ions without affecting the P-composition, and dramatically improves the line widths from over 100 Hz down to 2 Hz (to be submitted). This resolves the crowded monoester region for quantification. In the first practical use of 2D ¹H, ³¹P correlations on soil science, we show how organic P species can be identified by the combination of P and H chemical shifts and coupling constants.

REFERENCES: 1. Gilbert N. Nature 461 716-718 (2009) 2. Vincent AG., Schleucher J., Gröbner G., Vestergren J., Persson P., Jansson M., Giesler R., Biogeochemistry, 10.1007/s10533-011-9612-0 (2011).

Sм597

Crosslinked helically chiral poly-(γ-benzyl-∟-glutamate) as alignment medium

Tobias Montag^a and Christina M. Thiele^a

^aTechnische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Petersenstr. 22, 64287 Darmstadt, Germany (<u>tmontag@thielelab.de</u>)

The development of new alignment media – for the structure determination of small molecules by RDCs¹ – is of great interest. For the alignment of organic compounds mainly liquid crystals like homopolypetides² or polymer gels like crosslinked polystyrene³ are used. Polymer gels have several advantages.⁴ Unfortunately most organic solvent based gels are achiral.⁵ However homopolypeptide based media do have the benefit of a helically chiral structure, which allows enantiodiscrimination.^{2, 6}

Therefore we studied the syntheses of polymer gels based on crosslinked helically chiral poly-(γ -benzyl-L-glutamate) (PBLG)⁷ which swell in many common organic solvents (CHCl₃, DCM, THF, dioxane, toluene, benzene). We analyzed the alignment properties with the help of (+)- and (-)-isopinocampheol and see first indications of enantiodifferentiation for the two enantiomers.

REFERENCES:

Acknowledgments: We thank B. Luy and G. Kummerlöwe for helpful advice concerning the drying of gels and the DFG (FOR 934) for funding.

^{1.} C. M. Thiele, Eur. J. Org. Chem., 5673 (2008) and references therein.

^{2.} I. Canet, J. Courtieu, A. Loewenstein, A. Meddour, J. M. Pechine, J. Am. Chem. Soc., 117, 6520 (1995)

^{3.} B. Luy, K. Kobzar, H. Kessler, Angew. Chem. Int. Ed., 43, 1092 (2004)

^{4.} G. Kummerlöwe, B. Luy, Trends Anal. Chem., 28, 483 (2009)

^{5.} exception (crosslinked gelatine in DMSO): G. Kummerlöwe, M. Udaya Kiran, B. Luy, Chem. Eur. J.; 15: 12192 (2009)

^{6.} A. Marx, V. Schmidts, C. M. Thiele, Magn. Reson. Chem., 47, 734 (2009)

^{7.} R. Kishi, M. Sisido, S. Tazuke, Macromolecules, 23, 3779 (1990)

Matrix-assisted diffusion-ordered NMR spectroscopy of flavonoid mixtures

Julia Cassani,^{1,2} Gareth A. Morris,¹ Mathias Nilsson¹

¹School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom; ²Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico, D.F. CP 04960, D. F., México. email: cassani@correo.xoc.uam.mx

Flavonoids are an important group of natural products, but often their characterization in mixtures is complicated by their structural similarity.¹ Diffusion–ordered spectroscopy (DOSY) is a family of NMR spectroscopic experiments that facilitates mixture analysis by separating signals of species with different diffusion coefficients.² However, DOSY struggles to resolve mixtures when there is signal overlap and/or the diffusion coefficients of the species involved are very similar. To overcome these limitations, we use a matrix-assisted DOSY (MAD) approach that exploits differential interactions with sodium dodecyl sulphate (SDS) micelles to resolve flavonoid mixtures.³

The analysis of mixtures of fisetin, flavone, catechin and quercetin using MAD experiments is presented, and we demonstrate for the first time that MAD experiments are compatible with the use of mixed solvents to enhance the solubility of flavonoids.

REFERENCES

1. Pietta, P.-G., Flavonoids as Antioxidants. J. Nat. Prod. 63, (7), 1035-1042 (2000)

2. Stejskal, E. O.; Tanner, J. E., J. Chem. Phys. 42, (1), 288-292 (1965).

3. Evans, R.; Haiber, S.; Nilsson, M.; Morris, G. A. Anal. Chem. 81, (11), 4548-4550 (2009)

Sм599

Pure shift 2D NMR: simplifying structural analysis and improving resolution

Juan A. Aguilar, Mathias Nilsson, Gareth A. Morris

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Email: juan.aguilarmalavia@manchester.ac.uk

Homonuclear couplings are fundamental to 2D correlation methods such as COSY and TOCSY, but the multiplet structure they cause increases signal overlap and degrades resolution. Multiplet structure can be informative but is usually just a nuisance, especially in through-space experiments such as NOESY or ROESY. 2D correlation spectra can be greatly simplified, and resolution improved, by collapsing all multiplets to singlets. A simple and general way to do this is to use a constant time (CT) evolution period t_1 , and then perform covariance processing². This produces a correlation map in which cross-peaks both diagonal and are fully homodecoupled. from CT COSY-Results nQF,TOCSY, NOESY and ROESY experiments will be presented.

1. Bax, A.; Mehlkopf, A. F.; Smidt, J., Journal of Magnetic Resonance, 1979, 35, 167.

2. Brüschweiler, R.; Zhang, F. L. J. Chem. Phys. 2004, 120, 5253.

A DOSY experiment without exchange effects, with improved sensitivity, and with convection compensation

Juan A. Aguilar,¹ Julia Cassani,² Mathias Nilsson,¹ Gareth A. Morris¹

¹School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Email: juan.aguilarmalavia@manchester.ac.uk ²Dept. de Sistemas Biológicos, Universidad Autónoma Met. Unidad, Xochimilco, Calz. del Hueso No. 1100, Col. Villa Quietud, CP 04960, D. F., México

Diffusion-Ordered SpectroscopY $(DOSY)^1$ is a family of experiments used in mixture analysis that allows signals belonging to the same species to be correlated through their diffusion coefficients. Most pulse sequences use the stimulated echo (STE) or double stimulated echo (DSTE) rather than the spin echo

(SE). The STE sacrifices at least half of the available signal compared to the SE, the DSTE three quarters. Moreover, in STE and DSTE experiments, chemical exchange commonly causes confusing results, as exchange during the diffusion delay can mix the signals of species with different diffusion coefficients (as with the OH signals highlighted above). Such problems could be avoided by using SE-based sequences, but J modulation normally prevents this. Here a new DOSY pulse sequence PROJECTED, based on a train of J-refocused double spin echoes, is presented. It suppresses the confusing effects of chemical exchange, suppresses J-evolution, is convection compensated, and (for small molecules with long T_2 s) is more sensitive than STE sequences.

1. C. S., Johnson, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 203

Sм601

Sialic acid fingerprints of viral cell attachment proteins

Bärbel S. Blaum¹, Ursula Neu¹, Kerstin Reiß¹, Dirk Reiter¹, Thomas Peters² and Thilo Stehle^{1,3}

¹Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany, ²Institute of Chemistry, University of Lübeck, Lübeck, Germany, ³Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Sialic acid (Neu5Ac) is an essential component of many glycoproteins and glycolipids, and different viruses have evolved to use sialylated carbohydrates as host cells receptors. The exact chemical environment of Neu5Ac rules these interactions on a molecular level, leading to an astonishing fine-tuning in receptor preference. In extension, this specificity determines which organism and cell type can be infected by individual viral strains. We characterized the carbohydrate receptor binding sites of several Polyoma- and Reovirus capsid proteins by X-Ray crystallography and saturation transfer difference (STD-)NMR. We also demonstrate how a single amino acid mutation can re-target a Polyomavirus to a different Neu5Ac receptor. A large variety of orientations and interactions of Neu5Ac and neighboring carbohydrate rings is observed in our crystallographic models. This diversity is reflected well in STD-NMR spectra, leading to a scenario in which viral proteins can be identified through characteristic magnetization "fingerprints" on their carbohydrate ligands. While hydrogen bonds and salt bridges are readily identified by crystallography, STD-NMR can be used to map non-polar interactions, screen potential carbohydrate receptors, rank affinities and discard models biased by crystal contacts. Our study underlines how both techniques complement each other in the field of carbohydrate-protein interactions.

Characterization of low molecular – weight gelator methyl-4,6-O-(pnitrobenzelidene)- α -D-glucopyranoside in toluene and diphenyl ether gels

Joanna Kowalczuk, Joanna Kaszyńska, Jadwiga Tritt-Goc

Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznan, Poland

The presented work focuses on the thermal properties, the microstructure, and the molecular dynamics of toluene and diphenyl ether in the gels (1.5, 2, and 2.5% [g mL⁻¹]) formed by sugar-based low molecular-weight gelator methyl-4,6-O-(p-nitrobenzylidene)- α -D-glucopyranoside. The diffusion coefficients of solutions molecules inside the gel network were detected by PGSE ¹H NMR method for different diffusion time Δ (30–250 ms) and temperatures (230 – 300 K). For larger Δ values, so-called restricted diffusions are observed

and manifested in the linear decreases of the diffusion coefficient with diffusing time Δ .

In a room temperature for a small value of Δ the toluene diffusion (in 2% gel) is almost free and characterized by the diffusion coefficient in the range from 1.86 ×10⁻⁹ to 1.96×10⁻⁹ m² s⁻¹ for studied gels. The situation is much different in the case of diphenyl ether. Thus the diffusion coefficient of solution molecules in the gel is almost 20% smaller in the gel than in a bulk state.

Optical Polarization Microscopy investigation (OPM) was performed with a JENAPOL microscope operating in different contrast and polarization mode. The microstructure of the 1.5% [g mL⁻¹] gel shows a characteristic fibril structure of the gel network with individual gel fibers, the junction points of thicker fibers, and pores occupied by solution.

Sм603

NMR-Study of uptake-release processes in the {Mo₁₃₂} cluster

Olga A. Petina¹, Erhard T.K. Haupt¹, Christian Schäffer², Ana Maria Todea², Hartmut Bögge², Achim Müller².

¹Department of Chemistry, University of Hamburg, Hamburg, Germany; ²Department of Chemistry, University of Bielefeld, Bielefeld, Germany

The present study considers porous inorganic molecular capsules of the $\{(Mo^{VI})Mo^{VI}{}_5O_{21}(H_2O)_6\}_{12}\{Mo^{V}{}_2O_4(ligand)\}_{30}$ type, which contain organic anions (acetates, propionates, butyrates and valerates) as ligands. An investigation of these $\{Mo_{132}\}$ clusters by NMR spectroscopy provides important information about structure, stability and host-guest interactions.

EXSY/ROESY NMR spectra demonstrate that, in the abovementioned system, exchange equilibrium occurs between the "free" anions in the solutions and the internal ligands. This occurrence is dependent on temperature, pH value and anion size¹⁻³. As a carboxyl group of organic ligands is coordinated to an {Mo₂}-linker, the alkyl tails of the ligands form a hydrophobic cavity, which was expected to show a strong tendency for uptake of hydrophobic species (e.g. long-chain alcohols) from an aqueous solution via the flexible pores³. Guest molecules demonstrate positive ROE peaks both along the carbon chain and with the alkyl tails of ligands and are in good accordance with results from ¹³C-chemical-shift-mapping; these peaks indicate the close packing of the molecule in the capsule interior. Moreover, the DOSY spectra permit the identification of the captured molecule and ligands with the same diffusion coefficient; these spectra correlate with the X-ray data.

^[1] Schäffer C., Bögge H., Merca A., Weinstock I.A., Rehder D., Haupt E.T.K., Müller A., *Angew. Chem. Int. Ed.*, 8151-8156 (2009); [2] Petina O., Rehder D., Haupt E. T. K., Grego A., Weinstock, I. A., Merca, A., Boegge, H., Szakacs, J., Mueller, A., *Angew. Chem. Int. Ed.*, 410-414 (2011); [3] Schäffer C., Todea A.M., Bögge H., Petina O.A., Rehder D., Haupt E.T.K., Müller A., *Chem. Eur. J.*, in press (2011)

Conformational analysis of menthol by elucidation of high resolution ¹H NMR multiplet structure and FPT DFT calculations

Dmitry A. Cheshkov^{1,3}, Dmitry O. Sinitsyn², Vyacheslav A. Chertkov³

¹State Scientific Centre of RF GNIIChTEOS, Moscow, Russia; ²Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia; ³Department of Chemistry, Moscow State University, Moscow, Russia. *E-mail: dcheshkov@gmail.com.*

Natural (-)-menthol is widely-used in NMR spectroscopy as a standard reference compound for testing new experiments due to relatively simple almost first-order ¹H NMR spectrum. Most of those studies were devoted to assignment of ¹H and ¹³C NMR signals (see e.g. [1-2]). However, exact values of ¹H-¹H spin-spin couplings have not been published in the literature yet. For this reason, here we report results of lineshape analysis of high resolution ¹H NMR multiplets in menthol, which provide accurate values of these couplings. Relative signs of couplings were experimentally determined by COSY-45 and multiplet-selective 2D-COSY with soft-pulse excitation [3]. Simultaneously we performed FPT DFT (B3LYP/6-311++G(d,p)) calculations of spin-spin coupling constants for all reasonable conformers of menthol. Comparison of experimental and calculated couplings allowed us to establish the preferable orientation of isopropyl and hydroxyl substituents relatively to a cyclohexane moiety.

REFERENCES:

- 1. B. Reif, M. Kock, R. Kerssebaum, H. Kang, W. Fenical, C. Griesinger, J. Magn. Reson., series (A), 118, 282-285 (1996).
- 2. E. Kupce, R. Freeman, J. Magn. Reson., 206, 147-153 (2010).
- 3. R. Freeman, "Spin Choreography: Basic Steps in High Resolution NMR", Oxford (2004).

Sм605

Dynamics of internal rotation in styrene through analysis of high resolution ¹H NMR multiplet structure and dynamic FPT DFT calculations

Dmitry A. Cheshkov^{1,2}, Tatiana A. Ganina², Dmitry O. Sinitsyn³, Vyacheslav A. Chertkov²

¹State Scientific Centre of RF GNIIChTEOS, Moscow, Russia; ²Department of Chemistry, Moscow State University, Moscow, Russia; ³Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia; *E-mail: dcheshkov@gmail.com.*

Styrene is a classical system with hindered internal rotation of vinyl group around C_1-Ci bond. Previously attempted studies of this dynamics problem gave inconsistent results (see discussion in [1]). Here we report results based on a detailed analysis of ¹H NMR spectra and a series of quantum mechanics calculations for dynamic systems vibrating with a large amplitude. ¹H NMR spectral analysis for styrene was performed with total lineshape iteration program VALISA [2]. For determitation of relative signs of ¹H-¹H couplings between aromatic and olefinic protons we calculated spin systems with all possible combinations of these couplings. Simultaneously we performed dynamic FPT DFT (B3LYP/aug-cc-pVTZ) calculations of the couplings. Dynamics of internal rotation was evaluated by a numerical solution of the vibrational problem. Calculated spin-spin coupling constants were obtained by averaging of corresponding conformational dependencies with vibrational distribution function. Experimental and calculated spin-spin coupling constants are in a reasonable agreement with each other. The best-fit potential has a minimum for skewed conformation with dihedral angle 30°. The "plane" and "orthogonal" forms have energies of 0.66 and 2.64 kcal/mol.

REFERENCES:

2. S.V. Zubkov, S.S. Golotvin, V.A. Chertkov, Russ. Chem. Bull., 51, 1222-1230 (2002).

^{1.} J. C. Cochran, K. Hagen, G. Paulen, Q. Shen, S. Tom, M. Traetteberg, C. Wells, J. of Molecular Stucture, 413-414, 313-326 (1997).

Stereochemistry of 2-fluoro-ribose-derivatives -NMR, Molecular Modeling and Outcome

Inken Plitzko, Josef Schneider, Markus Bürkler, Caroline Wyss Gramberg, Bernd Kuhn, André M. Alker, Bruno Lohri

F. Hoffmann-La Roche AG, Basel, Switzerland, Inken.Plitzko@roche.com

In ongoing studies on the synthesis of the Hepatitis C Virus (HCV) NS5B RNA polymerase inhibitor RG7128 (1) the stereochemistry of the intermediate 3,5-dibenzoyl-1-bromo-2-deoxy-2-fluoro-2-C-methyl-D-ribose (2) was to be assigned by NMR.^[1] ¹H, ¹H-NOESY-NMR as well as ¹H, ¹⁹F- HOESY-NMR spectra did not provide unambiguous results. Therefore molecular modeling techniques [PERCH MMS and Quantum Mechanic calculations using Jaguar]^[2,3] were applied to several related molecules and expected NMR coupling constants and NOE constraints were calculated. Based on the X-ray diffraction data of a deprotected intermediate related to its ³J-¹H-¹⁹F-coupling constants in NMR, the stereochemistry assignment of the particular representatives of this structural class could be done. Moreover the quality of both molecular modelling approaches was assessed by means of these examples.

REFERENCES:

1. Sofia, M., J. Furman, P. A., Symonds, W. T., RSC Drug Discovery Series, 4, 238-266, (2011).

2. MMS, Perch Solutions (www.perchsolutions.com).

3. Jaguar, v.7.7, Schrödinger, LLC, New York, NY, 2010 (http://www.schrodinger.com)

Sм607

1,4-DHP CATIONIC LIPIDS STUDIED BY NMR

Marina Petrova, Ruslan Muhamadejev, Edvards Liepinsh

Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia, marina@osi.lv

Cationic lipids synthesized on the base of 1,4-dihydropyridine (1,4-DHP) are capable to selfassociation and formation of nanoparticles in solutions. These compounds are promising gene delivery agents *in vivo* [1]. The structural organization and stability of sonicated aqueous dispersions of cationic lipids (1,4-DHP-derivatives) were characterized by combined use of NMR, DLS, AFM and molecular dynamics techniques. It was found that NMR signal intensities reflect the size and degree of aggregation of the obtained vesicles. Sharp signals were observed for the small vesicles with high surface curvatures that undergo fast rotational motion and the effects of lateral diffusion became important averaging out chemical shift anisotropies and dipolar interactions.

1,4-DHP nanoaggregates behave differently as compared with phospholipids and their mixtures subjected to the same sonication. Starting from certain sonication cycles aggregates formed by cationic lipids reach a relatively small size and remain unchangeable.

DNA is absorbed on the surface of 1,4-DHP cationic lipid aggregates by electrostatic binding. Broad signals of DNA:DHP lipoplexes can be registered and controlled in ¹H NMR spectra along with the signals of 1,4-DHP vesicles. Relatively slight structural modifications of 1,4-DHP aggregates significantly affect the DNA complexation ability of the compounds

[1]1.Z.Hyvönen, A.Plotniece, et al, Biochim. Biophys. Acta, 2000, 1509, 451

ACKNOWLEDGMENTS: This work was supported by the PZP grants Nr 09.1591

Molecular Fragments inhibiting Human Blood Group B Galactosyltransferase

Lena L. Grimm¹, Rene Jørgensen², Monica M. Palcic², Thomas Peters¹

¹University of Luebeck, Institute of Chemistry, Razeburger Allee 160, 23538 Luebeck, Germany ²Carlsberg Laboratory, Gammle Carlsberg Vej 10, 2500 Valby, Copenhagen, Denmark grimm@chemie.uni-luebeck.de

Glycosyltransferases (GTs) are an important family of enzymes. They are involved in the biosynthesis of oligosaccharides, polysaccharides and glycoconjugates. They catalyze the transfer of a monosaccharide from a donor substrate to other carbohydrates, lipids, proteins or DNA, that serve as acceptors. Since GTs are related to different pathological pathways and could serve for the directed design of glycosylation patterns of recombinant glycoproteins, developing specific inhibitors is of great interest. A previous ligand-based NMR screening identified acceptor site ligands for the human blood group B galactosyltransferase (GTB) from a fragment library¹. A combination of STD NMR, spin-lock filtered ¹H spectra, surface plasmon resonance (SPR) and activity assays was used.

Here, for further investigations of the top hits, we used STD NMR for epitope mapping and SPR for the determination of binding constants. These studies and enzymological inhibitor studies for the best hit with GTB, human blood group A N-acetyl galactosaminyltransferase (GTA) and a GTA/GTB chimeric enzyme show highly specific binding to GTB. The crystal structure of GTB and the chimeric enzyme show a new inhibition mode for the top compound and therefore represents a first prototype for the development of a specific GT inhibitor.

1. Rademacher, C. et al. NMR-based exploration of the acceptor binding site of human blood group B galactosyltransferase with molecular fragments. *Glycoconj J*, 27, 349-358 (**2010**).

Sм609

Stereochemistry of tropane *N*-oxide derivatives studied by experimental and theoretical NMR

Radek Pohl, Martin Dračínský, Lenka Slavětínská and Miloš Buděšínský

Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic. E-mail. pohl@uochb.cas.cz

The calculation of the NMR parameters (shielding and coupling constants) has nowadays found application in various areas of chemistry including stereochemical problems e.g. conformation¹ or configuration.² This poster presents the usefulness of the computation/experiment comparison approach³ for determination of N-O center configuration in selected tropane derivatives.

Tropane derivatives (tropane, tropinone, pseudopelletierine and cocaine) were oxidized *in situ* in an NMR tube by MCPBA to protonized isomeric *N*-oxides. For comparison, the authentic *N*-oxide samples were prepared by oxidation of the corresponding amines by hydrogen peroxide in ethanol. All ¹H and ¹³C resonances were assigned using standard 1D and 2D (COSY, HSQC, HMBC, ROESY) experiments. The NMR parameters were then calculated on the optimized geometries using DFT GIAO (OPBE/6-31G** and 6-311++G**) methods and the calculated chemical shifts were compared with observed values. It was found that the calculated data correlate well with the experiment and the approach can be successfully used for the prediction of *N*-oxide configuration.

REFERENCES:

^{1.} Alkorta I., Elguero J.: Mag. Reson. Chem. 42, 955-961 (2004).

^{2.} Smith S., Goodman J.: J. Am. Chem. Soc. 132, 12946-12959 (2010).

^{3.} Dračínský M., Pohl R., Slavětínská L., Buděšínský M.: *Magn. Reson. Chem.*, 48, 718-726 (2010); Pohl R., Dračínský M., Slavětínská L., Buděšínský M.: *Magn. Reson. Chem.*, 49, 320-327 (2011); Dračínský M., Pohl R., Slavětínská L., Janků J., Buděšínský M.: *Tetrahedron:Asymmetry*, 22, 356-366 (2011).

Determination of sulfoxide configuration in five-membered rings using NMR spectroscopy and DFT calculations

Martin Dračínský, Radek Pohl, Hubert Hřebabecký, Lenka Slavětínská and Miloš Buděšínský

Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic. E-mail: budesinsky@uochb.cas.cz

Recently, we have shown that computation/experiment comparison of the chemical shifts can be used for determination of configuration at S or N atom in sulfoxides and N-oxides.¹ This poster presents our study of sulfoxides and sulfones with five-membered ring (thia-norbornane derivatives, 1,6-anhydro-1-thio- β -D-hexopyranoses and cyclodipeptides containing thia-proline). The sulfoxides and sulfones were prepared by a stepwise *in situ* oxidation of corresponding sulfides with *meta*-chloroperbenzoic acid in an NMR tube. The oxidation was followed by NMR spectra. All ¹H and ¹³C resonances were assigned using standard 1D and 2D (COSY, HSQC, HMBC, ROESY) experiments. The geometries of all compounds were optimized using the DFT B3LYP/6-31G** method and chemical shifts were calculated for geometry-optimized structures with the DFT B3LYP/6-31++G** method. The calculated ¹³C chemical shifts induced by oxidation ($\Delta\delta$ values) show good agreement with the experimental data and can be used to determine the oxidation state of the sulfur atom (S, SO, SO₂). The characteristic differences of the oxidation induced chemical shifts of carbon atoms in the α - and β -position to sulfur were successfully used for distinguishing the diastereoisomeric sulfoxides.

REFERENCES:

1. Dračínský M., Pohl R., Slavětínská L., Buděšínský M.: *Magn. Reson. Chem.*, 48, 718-726 (**2010**); Pohl R., Dračínský M., Slavětínská L., Buděšínský M.: *Magn. Reson. Chem.*, 49, 320-327 (**2011**); Dračínský M., Pohl R., Slavětínská L., Janků J., Buděšínský M.: *Tetrahedron:Asymmetry*, 22, 356-366 (**2011**).

Acknowledgements: Financial support from Czech Science Foundation (project 203/09/1919) is aknowledged.

Sм611

NMR studies of organometallic chalcogenides and similar compounds

<u>A. Lyčka¹</u>, L. Dostál², R. Jambor², A. Růžička²

¹ Research Institute for Organic Syntheses (VUOS), Rybitví 296, CZ-533 54 Rybitví, Czech Republic, Antonin.Lycka@vuos.com; ² Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, CZ-532 10 Pardubice, Czech Republic

So-called N,C,N chelating ligands (NCN = $-(2,6-di(Me_2NCH_2)_2C_6H_3)$) stabilize low valence metals (Sb, Bi, Se, Te, Sn) bound in position 1. These compounds can react with many reactants to give rather unusual structures [1-4]. X-ray data proved the new structures undoubtedly. Multinuclear NMR was used to study the constitutions in solution. The ¹H, ¹³C, ³¹P, ⁷⁷Se, ¹²⁵Te and ¹¹⁹Sn NMR spectra were used for such a purpose. In some cases, the different constitution or dynamic behaviour was observed comparing the situation in the solid state and in solution. The examples will be shown.

Acknowledgement

The authors thank the Czech Science Foundation for financial support (Grant No. P207/10/0130).

^{1.} Svoboda T., Dostál L., Jambor R., Růžička A., Jirásko R., Lyčka A.: Inorg. Chem., 50, 6411-6413 (2011).

^{2.} Bouška M., Dostál L., de Proft F., Růžička A., Lyčka A., Jambor R.: Chem. Eur. J., 17, 455-459 (2011).

^{3.} Mairychová B., Dostál L., Růžička A., Fulem M., Růžička K., Lyčka A., Jambor R., submitted.

^{4.} Svoboda T., Jambor R., Růžička A., Jirásko R., Lyčka A., Dostál L., submitted.

Synthesis and Spectroscopic Investigations of Acylguanidine Derivatives

Nils Sorgenfrei¹, Roland Kleinmaier², Ruth M. Gschwind¹

¹Department of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany; ²Department of Chemistry, University of Gothenburg, Kemigården 4, SE-412 96 Göteborg, Sweden; nils.sorgenfrei@chemie.uni-regensburg.de

Acylguanidines, which can be considered as less basic isosters of guanidines, have numerous applications in the field of organic and medicinal chemistry. Due to their ability to form strong fork-like hydrogen bonds, they are able to take part in various molecular recognition processes. Despite the crucial role of H-bonding networks in ligand recognition, enzymatic reactions and organocatalysis, the detailed understanding of H-bonding in solution is rather limited. Recently we have been able to detect the first scalar couplings across hydrogen bonds in artificial, high affinity arginine receptor systems. ^[1, 2] These investigations allowed for the first time insights into the H-bonding networks and the binding geometry of these pharmacologically important arginine derivatives. Moreover the conformational preferences of acylguanidines in solution were studied by NMR in order to validate the driving forces for the formation of the distinct interaction pattern and the binding geometry between the acylguanidines and their receptors. ^[3] However, in contrast to the detailed NMR-investigations of these complexes, so far nothing is known about the binding constants of the investigated acylguanidine complexes. Due to the fact that the binding constants of the complexes are far too high to be determined via NMR titration, fluorescence labelled acylguanidines were synthesized, in order to determine the binding constants via fluorescence titrations experiments.

REFERENCES:

1. Gschwind, R. M., Ambrüster M., Zubrzycki, I., Journal of the American Chemical Society, 126, 10228-10299 (2004)

2. Federwisch, G., Kleinmaier R., Drettwan D., Gschwind R.M., Journal of the American Chemical Society, 130, 16846-16847 (2008)

3. Kleinmaier R., Keller M., Igel P., Buschauer A., Gschwind R. M., Journal of the American Chemical Society, 132, 11223–11233 (2010),

Sм613

Complete Determination of Absolute Configuration and Conformation of a Homodimeric Alkaloid using Residual Dipolar Couplings and Circular Dichroism

<u>Armando Navarro-Vázquez</u>,¹ Carlos Pérez-Balado,¹ Han Sun,² Christian Griesinger,² Angel R. de Lera.¹

¹Department of Organic Chemistry, University of Vigo, Vigo, Spain; ²NMR Structural Biology Department, Max Planck Institut for Biophysical Chemistry, Göttingen, Germany. armando.navarro@uvigo.es.

NMR-based stereochemical analysis of dimeric structures¹ is a difficult problem in NMR due to ambiguities in NOE correlations. To assess the utility of RDC-enhanced NMR in this context, the relative configuration and conformation of a homodimeric bispyrrolinoindoline alkaloid has been determined by the only use of ${}^{1}D_{CH}$ residual dipolar couplings. Conformational ensembles were obtained by molecular mechanics molecular modelling for the four possible diastereoisomers. RDCs were obtained by alignment in a CDCl₃ swollen polydimethylsiloxane gel and recording of CLIP-HSQC experiments. Single-shot RDC analysis of these ensembles proved the configuration of the homodimer and indicated the dominance of an *anti* disposition around the C–C bond connecting monomer units. Further RDC multitensor analysis allowed quantification of the conformational distribution. Based on the so obtained structural information, circular dichroism spectrum was computed using TD-DFT and, by comparison with the experimentally obtained one, the absolute configuration of the homodimer was unequivocally determined.

REFERENCES:

1. Voloshchuk, T.; Farina, N. S.; Wauchope, O. R.; Kiprowska, M.; aberfield, P.; Greer, A. J. Nat. Prod., 67, 1141-1146 (2004)

Investigation of the Interaction between two Intrinsically Disordered Proteins. The Cytoplasmic Tail of Stabilin-2

Ágnes Tantos¹, Beáta Szabó¹, András Láng², András Perczel^{2,3,4} and Péter Tompa¹

¹Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary ²Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary ³Protein Modeling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary ⁴Open Laboratory of Protein Science, Budapest, Hungary langax@chem.elte.hu

Thymosin- β 4 is a short intracellular intrinsically disordered protein that is crucial in the organization of the cytoskeleton and provides a link between the cytoplasmic tail of stabilin-2 and actin. A physiological relevance of this interaction is to regulate endocytosis of certain ligands (e.g. LDL). Stabilin-2, a multifunctional scavenger receptor, has a major role in the process at the membrane bilayer, whereas thymosin- β 4 provides not only a physical link but also a signal toward downstream events. The interaction of these two proteins was invoked in an earlier study and mapped to the residues 2504-2514 at the cytoplasmic tail of stabilin-2¹.

Based on these observations, we have used biochemical and spectroscopic approaches in order to further characterize the interaction between these two IDPs. The study is an early stage effort to examine this interaction.

References: 1. Lee S. J., So I. S., Park S. Y., Kim I. S., *FEBS Letters* 582, 2161-2166 (**2008**)

Sм615

Exotic helical foldamers structures driven by a novel turn inducer

<u>Cheng Deng</u>¹, Baptiste Legrand¹, Christophe André², Claude Didierjean³, Guillaume Pickaert¹, Jean Martinez², Muriel Amblard², Monique Calmes² and Marie-Christine Averlant-Petit¹

¹Laboratoire de Chimie-Physique Macromoléculaire, UMR 7568 CNRS-INPL, Nancy Université, Nancy, France; ²Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Université de Montpellier 1 et 2, Faculté de pharmacie, Montpellier, France, ³Laboratoire de Cristallographie, Résonance Magnétique et Modélisation, UMR 7036 CNRS-UHP, Nancy Université, Vandoeuvre-Lès-Nancy, France. cheng.deng@ensic.nancy-inpl.fr.

Poster

Foldamers are oligomers which adopt well-defined secondary structures (1). Numerous pseudopeptides have been designed such as β -peptides, m-phenyleneethylenes, oligoureas, etc (2-3). Small conformational constraints motives able to induce secondary structures are particularly interesting since they are essential building blocks to provide unique structures. In this context, we present helical foldamers structures containing an original bicyclic β -amino acid: the (*S*)-ABOC ((*S*)-aminobicyclo[2.2.2]octane-2-carboxylic acid) (4). Various sequences have been synthesized and the pseudopeptides conformations have been characterized by CD, X-ray crystallography, infrared spectroscopy and NMR. ¹H, ¹³C and ¹⁵N complete resonances have been assigned in methanol using ¹³C and ¹⁵N natural abundance and ROESY spectra have numerous (i, i+2) and (i, i+3) characteristic NOE correlations which allow us to solve good quality solution structures. A typical strong H-bond pattern is described for each foldamer and CD spectroscopy at variable temperature points out very stable conformations.

- 1. Gellman S.H., Acc. Chem. Res, 31(4), 173-180 (1998)
- 2. Hill D.J., Mio M.J., Prince R.B., Hughes T.S., Moore J.S., Chem. Rev., 101(12), 3893-4012 (2001)
- 3. Huc I., Hecht S., Weinheim: Wiley-VCH (2007)

^{4.} Songis O., Didierjean C., Laurent C., Martinez J., Calmes, M., Eur. J. Org. Chem., 19, 3166-3172 (2007)

NMR elucidation of molecular structure of the appetite receptor from Hoodia Gordonii.

<u>Alla K. Shestakova¹</u>, Yurii A. Kolesnik², Elena V. Titova², Vladimir P. Tikhonov², Dmitrii A. Shmatkov², Vyacheslav A. Chertkov³

¹State Scientific Centre of RF GNIIChTEOS, Moscow, Russia, ²Diod Co. 1, Moscow, Russia, ³Department of Chemistry, Moscow State University, Moscow, Russia. E-mail: alshestakova@yandex.ru.

A plant Hoodia Gordonii is nowadays regarded as a source of biologically active compounds of natural origin with appetite-suppressant effect [1]. Interdependency of the biological activity of the extracts with the presence of a steroid-based compound of the pregnene series was postulated, and structure of few compounds was elucidated by a variety of techniques [2, 3]. Here we present results of detailed NMR study of major component of the alcohol extracts from Hoodia Gordonii. The structure was elucidated using the whole set of appropriate 1D and 2D NMR techniques: $(3\beta,20S)-20-\{[6-O-(6-O-D-glycero-hexopyranosyl-\beta-D-glycero-hexopyranosyl]-\beta-D-gly-cero-hexopyranosyl]oxy\}-14-hydroxypregn-5-en-3-yl 2,6-dideoxy-4-O-{6-deoxy-2-O-methyl-4-O-[(2E)-2-methyl-2-butenoyl]-\beta-L-erythro-hexopyranoside.$

It differs from previously reported in [2].

REFERENCES:

- 2. Van Heerden R. F., Horak R.M., Maharaj M.J., Vleggaar R., Senabe J.V., Dunning P.J., Phytochemistry, 68: 2545-2553 (2007).
- 3. Pawar R. S., Shukla Y.J., Khan I.A., Steroids, 72, 881-891 (2007).

Sм617

Dimerization of N-methylindole

Maria K. Kwasiborska,¹ Tomasz Ratajczyk,² Maria Rospenk³ and Jacek Wójcik¹

¹Institute of Biochemistry and Biophysics, PAS, Laboratory of Biological NMR, Warszawa, Poland, ²Institute of Physical Chemistry, Warszawa, Poland; ³Department of Chemistry, University of Wrocław, Wrocław, Poland.

It has been shown that structures of many biological systems are stabilized not only by strong hydrogen bonds with nitrogen and/or oxygen atoms playing the role of the donor (N-H or O-H groups) but also by much weaker hydrogen bonds in which carbon atoms act as donors (C-H groups). Among hydrogen bonds of that type those with π -electron acceptors (C-H··· π)are the weakest but strong enough to assemble the secondary structures. C-H^{\dots} π interactions stabilizing structures of very short peptides seem to belong to the most interesting and important. It has been found that side chain - side chain interactions of aromatic amino acids (Phe, Tyr, Trp) are of great importance in the formation of β -hairpins. Therefore, a deep insight into aromatic ring contribution in the energetic balance and geometry of such interactions observed in biological systems is of great importance. It may become possible by studying simple models. For this purpose we have chosen N-methylindole as a model compound mimicking a tryptophan ring. NMR studies of N-methylindole have shown that some of its proton and carbon chemical shifts are significantly concentration dependent. Also the diminution of dipole moment has been observed for this compound with the increase of its concentration. These findings have been accompanied with the blue shift of the C-H stretching vibrations observed in the IR spectra. These observations suggest the presence of a reversible self-association process in which unsymmetrical dimers are formed. Ab initio calculations have confirmed the possibility of the existence of the stable unsymmetrical dimer of N-methylindole.

^{1.} Saklani A., Kutty S. K., Drug Discovery Today, 13, 161-171 (2008).

HydroNMR Applied to Ethanol Cluster Size Investigation

Mária Šoltésová¹, Ladislav Benda¹, Jiří Czernek², Jan Lang¹

¹Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, CZ-180 00 Prague 8, Czech Republic (maria.soltesova@gmail.com) ²Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský square 2, CZ-161 37 Prague 6, Czech Republic

Molecules of simple alcohols as well as water form hydrogen bonded clusters that are subject to fast reorganization in liquid state. The properties such as the cluster size, structure, lifetime, the free energy of its formation are necessary for explanation of often non-ideal macroscopic thermodynamic characteristics of the respective liquids.

Approach combining NMR translational diffusion measurements, DFT quantum chemical calculations and hydrodynamic simulations was used to investigate the properties of hydrogen bonding of ethanol in non-polar solvent (hexane). Hydrodynamic calculations were conducted by HydroNMR [1], a computer program intended for the calculation of hydrodynamic quantities of small, quasirigid macromolecules. NMR diffusion measurements of tetramethylsilane (TMS) and hexamethylenetetramine (HMTA) dissolved in hexane and D20/DMSO, respectively, were carried out at wide temperature range in order to find optimal settings for small molecule calculation.

The mean size of ethanol hydrogen bonded clusters present under different conditions was determined. The clusters consisting of several units are present at decreased temperatures. The pure monomer was found at temperatures above 315 K in 0.16 mM ethanol solution. Its hydrodynamic radius was correctly predicted by the calculations.

REFERENCES:

1. García de la Torre J., Huertas M. L., Carrasco B., J. Magn. Reson., 147, 138-146. (2000)

Ss619

NMR investigation of novel hydroxides MO(OH)₂ (M = Ti, Zr, Hf)

Yana V. Baklanova, Tatiana A. Denisova, Lidia G. Maksimova

Russian Academy of Sciences, Ural Branch, Institute of Solid State Chemistry, Ekaterinburg, Russia, e-mail: <u>baklanovay@ihim.uran.ru</u>

The most extensively studied crystalline oxyhydrates of IV-group elements are hydrated dioxides $MO_2 \cdot H_2O$ (M=Ti, Zr, Sn), widely used as selective sorbents possessing high chemical resistance and showing high sorption activity in relation to rare earths elements However, the lack of sorbents based on hydrated dioxide is that synthesis conditions and spontaneous aging process affect composition, morphology and particle size [1]. Previously, we reported synthesis and crystalline features of a new group of hydroxides $MO(OH)_2$ (M = Ti, Zr) exhibiting a high sorption activity to f-elements [2, 3].

This purpose of this study is to estimate the acid-base characteristics of oxyhydroxides Ti, Zr, Hf by spectroscopic methods.

IR, Raman and NMR ¹H (MAS) spectra allow establishing differences in the states of structural protons in hydroxides. The chemical shifts values correlate with the positions of absorption bands of O- H stretching vibration in the oxyhydroxides $MO(OH)_2$ (M = Ti, Zr, Hf) and reflect the changing nature of hydrogen bonds and acid-basic properties of the compounds. In TiO(OH)₂ the structural protons form strong hydrogen bonds resulting in total chemical shift value is 11.2 ppm., and are able to ion exchange for Li⁺ in salt water solutions. Lower chemical shift value and the absorption bands position of O-H stretching vibrations for oxyhydroxides Zr and Hf indicate a more basic nature of the OH-groups.

The work has been supported by the UB RAS grants (nr. M-10-E, nr. 09-C-3-1006).

3. N.V. Tarakina, R.B. Neder, T.A. Denisova, L.G. Maksimova, Ya.V. Baklanova et al., Dalton Transactions, V. 39, P. 8168–8176 (2010)

^{1.} Nikkanen J.-P., Kanerva T., Mäntylä T., Journal of Crystal Growth, V. 304, P. 179 – 183 (2007)

^{2.} Denisova T.A., Maksimova L.G., Polyakov E.V. et al., Russian Journal of Inorganic Chemistry, V. 51, No. 5, P. 691–699 (2006)

Chemical shift powder spectra obtained by using ROtor-Directed Exchange of Orientations Cross-Polarization (RODEO-CP)¹

Jésus Raya, Barbara Perrone, Burkhard Bechinger, Jérôme Hirschinger

Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, BP 296, 67008 Strasbourg Cedex, e-mail address : hirschinger@unistra.fr"

We present a new simple and robust cross-polarization (CP) scheme, called ROtor-Directed Exchange of Orientations CP (RODEO-CP), which permits to obtain undistorted chemical shift powder spectra with short contact times, i.e., when a (quasi-)equilibrium state polarization is not reached. RODEO-CP uses slow magic-angle spinning to suppress lineshape distortions caused by the orientation dependence of CP. The reliability of the method is demonstrated on a powder sample of ferrocene and RODEO-CP is shown to remove the « magic-angle hole » that distorts CP spectra of non-oriented membrane-associated peptides undergoing fast rotational diffusion around the bilayer normal.

References: 1. Raya J., Perrone B., Bechinger B., Hirschinger J., Chemical Physics Letters, 508, 155-164 (2011)

Ss621

Membrane protein structure information by solid state NMR

Dharmesh K. Patel¹, Ann M. Dixon¹ and Steven Brown².

Department of ¹Chemistry and ²Physics, University of Warwick, Coventry, CV4 7AL, U.K. Dharmesh.K.Patel@warwick.ac.uk

We have been working on the preparation and analysis of membrane proteins reconstituted into lipid vesicles by magic angle spinning (MAS) solid state NMR. Although a powerful technique; solid state NMR when applied to studying small transmembrane proteins is disadvantaged when compared to traditional techniques by the lack of established sample preparation protocols and quite often the requirement to use elaborate labelling schemes due to spectral crowding caused by inherently broad line widths. Using the well characterised protein Glycophorin A (GpA) as a model transmembrane protein, we set out to identify simple reliable and reproducible methods for reconstitution of small transmembrane proteins into lipid vesicles for study by solid state NMR. Having shown that we can use 2D ¹³C-¹³C DARR experiments to observe interactions between two uniformly labelled amino acids at the GpA dimer interface, we can now show that the same correlations can be also observed when combining differing peptides with amino acids labelled at single positions within the homo dimer interface. In addition we have also been measuring the effect of membrane lipid composition on the resolution of NMR spectra obtained for samples prepared using this method. We now hope to apply these sample preparation and experimental methods to other similar small transmembrane proteins in order to gain new structural information.

Numerically exact REDOR calculations of infinite spin systems

Vinicius Ribeiro Celinski, Johannes Weber, Jörn Schmedt auf der Günne*

Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Germany. Email: vrich@cup.uni-muenchen.de

In solid-state NMR under MAS conditions REDOR is one of the most prominent pulse sequences to recouple heteronuclear dipolar interactions. Comparison of experimental and simulated data provide distance information. Density-matrix based programs impose a limit on the number of accounted spins, due to their exponential behavior. Therefore, often only information about the effective dipolar interaction can be gained. In this work, a program that can efficiently calculate numerically exact REDOR curves of large

spin systems for the entire time-period was developed.^{1,2} It shows a linear scaling behavior with respect to the number of spins and fast convergence behavior. We show for the first time a perfect agreement between experimental and theoretical data for spin systems in crystalline materials with "infinite" spin-systems. Our approach is based on an improved C-REDOR sequence.^{3,4} We present data for ³¹P-¹H,

¹⁹F-³¹P and ¹³C-¹H spin systems.⁴ Such calculations of REDOR curves can be used to localize NMR-active nuclei in nanoparticles.^{5,6} Since the heteronuclear dipolar interactions relate to the crystal structure, our approach might be an interesting add-on to NMR crystallography.

6. Y. S. Avadhut, J. Weber, E. Hammarberg, C. Feldmann, I. Schellenberg, R. Pöttgen, and J. Schmedt auf der Günne, *Chem. Mater.*, 23, 1526-1538 (2011)

Ss623

Measurement of ¹⁵N-¹³C heteronuclear dipolar couplings for high resolution solid state NMR spectroscopy of aligned proteins

Ratan K. Rai, Rudra N. Purusottam, Kanchan Sonkar and Neeraj Sinha

Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road Lucknow - 226014 INDIA

High resolution NMR spectrum of membrane proteins can be obtained by orienting them in suitable environment. Structural dependent orientation constraints can be measured by Seperated Local Field (SLF) experiments. Most of these experiments have been developed to measure ${}^{1}\text{H} - {}^{15}\text{N}$ dipolar couplings and ${}^{15}\text{N}$ chemical shifts in uniformly ${}^{15}\text{N}$ labeled oriented proteins ${}^{1-3}$. The technique suffers from poor resolution for protein of larger size. We present here a new class of solid state NMR (ssNMR) experiments to measure ${}^{15}\text{N} - {}^{13}\text{CO}$ and ${}^{15}\text{N} - {}^{13}\text{C}_{\alpha}$ dipolar couplings in oriented proteins. The experiments are based on separating the hetronuclear dipolar couplings in second dimensions with ${}^{13}\text{C}$ chemical shifts. The experiments are developed for the uniformly ${}^{15}\text{N}$ labeled oriented proteins. Experiments are demonstrated on ${}^{15}\text{N}$ labeled N-Acetyl Valine crystals and ${}^{15}\text{N}$ labeled bactereophage Pf1. These measured dipolar couplings will provide extra constraints for high resolution structure determination of oriented proteins. Experimental results and numerical simulations carried out by SIMPSON and SIMMOL will be presented.

References:

3. Neeraj Sinha, Christopher V. Grant, Sang Ho Park, Jonathan Miles Brown, Stanley J. Opella, J. Magn. Reson, 186, 1, 2007, Pages 51-64

^{1.} E. B. Brouwer, R. D. M. Gougeon, J. Hirschinger, K. A. Udachin, R. K. Harris, J. A. Ripmeester, Phys. Chem. Chem. Phys., 1, 4043-4050 (1999).

^{2.} V. Ribeiro Celinski, Master Thesis (2010).

^{3.} J. C. C. Chan, Chem. Phys. Lett., 335, 289-297 (2001).

^{4.} V. Ribeiro Celinski, J. Weber, J. Schmedt auf der Günne, *in preparation*.

^{5.} M. Roming, K. Feldmann, Y. S. Avadhut, J. Schmedt auf der Günne, Chem. Mater., 20, 5787-5795 (2008).

^{1.} C.H. Wu, A. Ramamoorthy, S.J. Opella, J. Magn. Reson.Ser. A 109 (1994) 270–272.

^{2.} Alexander A Nevzorov, Stanley J Opella, J. Magn. Reson, 164, 1, 2003, 182-186.

Molecular Dynamics of F8BT Polymer Film: Correlation with Opto-Electronic Properties

Gregório C. Faria^{1,2}, Roberto M. Faria¹, Heinz von Seggern² and Eduardo R. deAzevêdo¹

¹Instituto de Física de São Carlos, Universidade de São Paulo, SP, Brazil; ²Technischen Universität Darmstadt, Darmstadt, Germany.

Poly(9,9 '-dioctylfluorene-co-benzothiadiazole) (F8BT) is currently one of the most promising material for use as active layers in polymeric electronic devices, such as polymer light-emitting diodes (PLEDs) and polymer field effect transistor (P-FET). It is well known that both polymer structure and dynamics affects either the luminescence or transport properties in thin films, making worthwhile to investigate them. Dynamical aspects of F8BT were first investigated by Dynamical Mechanical Thermal Analysis (DMTA), Differential Scanning Calorimetry (DSC) and ¹H Nuclear Magnetic Resonance (NMR). The results revealed the presence of two main relaxation process, which occurs at about 225 K (β -relaxation) and 370 K (α -relaxation). The molecular processes responsible by such relaxations were investigated by specific NMR experiments, such as Dipolar Chemical Shift correlation (DIPSHIT) and Centerband Only Detection of Exchange (CODEX). The results showed that, in the temperature range of 220 to 373 K, the lateral chain execute molecular rotations with average correlation times ranging from $10^{-4} - 10^{-7}$ seconds. On the other hand, from 300 to 350K the backbone carbons execute slow libration motions with reorientation angles that increase as a function of temperature. Those results could be correlated with the Current-Voltage characteristics of thick ITO/F8BT/Al devices carried out a several temperature (70 until 490 K). The drift charge mobility in the device was studied as a function o temperature by Time of Flight techniques (TOF), showing relatively abrupt change on the activation energy near both relaxations (β and α). Based on these results, a model that explains the behavior of the charge transport as a function of temperature based on the occurrence of the molecular relaxation was proposed.

Ss625

Amplifying the effects of molecular motion in DIPSHIFT-like experiments

Márcio F. Cobo¹; Eduardo R. deAzevedo¹; Anja Achilles²; Detlef Reichert²; Kay Saalwachter²

¹ Instituto de Física de São Carlos, Universidade de São Paulo, Brazil; ²Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany). <u>marciofcobo@gmail.com</u>

Dipolar Chemical Shift Correlation (DIPSHIFT)¹ is frequently used to study molecular motions by probing the reorientations through the modulation introduced in the dipolar CH coupling and T_2 .² In systems where the coupling is weak or the reorientation angle is small, a variant of the DIPSHIFT experiment, where the effective dipolar coupling is amplified by a REDOR π - pulses train, is applied. However, the previously described experiment is not sensitive to the T₂ modulation introduced by the motion,³ which avoid the observation of motions with rates ranging from hundreds of Hz to few kHz. We present a DIPSHIFT implementation which amplifies the dipolar couplings and is sensitive to T₂ effects. Spin dynamics simulations, analytical calculations and experiments demonstrate the sensitivity of the technique to molecular motions and the best experimental conditions to avoid imperfections. Furthermore, an in-depth analysis of the DIPSHIFT experiments was done, which allowed explaining the physical origin of many artifacts found in the literature data. We also show that in DIPSHIFT-like experiments, simple Lee-Goldburg homonuclear decoupling may perform as good as, or even better than, its more intricate variants, such as Frequency Switched and Phase Modulated Lee-Goldburg. To demonstrate the use of the technique, we show recent applications to membrane lipids

REFERENCES

^{1.} Munowitz M., Griffin R. et al, Journal of the American Chemical Society, 103, 2529-2533 (1981)

^{2.} deAzevedo E.R.; Saalwächter K. et al, Journal of Chemical Physics., 128, 104505 (2008)

^{3.} Hong M.; Gross J. D. et al, J. Mag. Res., 129, 85-92 (1997)

<u>Thomas Wiegand¹</u>, Hellmut Eckert¹, Olga Ekkert², Gerald Kehr², Roland Fröhlich², Gerhard Erker², Stefan Grimme²

¹Institut für Physikalische Chemie/NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität, Münster, Germany ²Institut für Organische Chemie, Westfälische Wilhelms-Universität, Münster, Germany t wieg02@uni-muenster.de

In this contribution we present detailed Solid State NMR investigations of intramolecular phosphine borane adducts^[1] that are of high interest in the field of Frustrated Lewis Pair (FLP) chemistry due to their capability of activating small molecules such as dihydrogen^[2,3]. Solid State NMR is well-suited for the structural characterization because of the large number of NMR active nuclei present in these compounds (as ¹H, ¹³C, ¹⁹F, ¹¹B and ³¹P). By exploiting double resonance techniques such as Rotational Echo DOuble Resonance (REDOR)^[4], the interaction between Lewis acid and Lewis base is analyzed with the general aim of obtaining a deeper understanding of the mechanism of the dihydrogen activation.

A main focus of this work lies especially on the detection of ¹¹B...³¹P internuclear distances and weak B-P covalent interactions through modification of NMR parameters such as quadrupolar coupling constants, isotropic chemical shifts and indirect spin-spin-couplings. DFT calculations of NMR parameters allow a more profound understanding of their correlations to structural characteristics and therefore help to establish Solid State NMR as an extremely sensitive spectroscopic method for providing useful information on a local level.

REFERENCES:

O. Ekkert, G. Kehr, R. Fröhlich, G. Erker, J. Am. Chem. Soc., 2011, 133, 4610.
G. K. Welch, D. W. Stephan, J. Am. Chem. Soc., 2007, 129, 1880.
D. W. Stephan, G. Erker, Angew. Chem. Int. Ed., 2010, 49, 46.
T. Gullion, J. Schäfer, J. Magn. Reson., 1989, 81, 196.

Ss627

High-Resolution Solid State NMR Analysis of Surfaces and Interfaces in **Aluminum Doped ZnO Nanoparticles**

<u>Yamini S. Avadhut</u>¹, Johannes Weber¹, Elin Hammarberg², Claus Feldmann² Jörn Schmedt auf der Günne^{*1}

¹ Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Germany. ²Institut für Anorganische Chemie, Karlsruhe Institute of Email: yamini.avadhut@cup.uni-muenchen.de Technology (KIT), Germany.

Aluminum doped ZnO nanoparticles (ZnO:Al) are precursors for Transparent Conducting Oxide (TCO) materials used in many electronic devices. Here, we study ZnO:Al nanoparticles, which are prepared via a microwave-assisted polyol process. Solid-state NMR offers tools to study the local structure of the dopant in the host material and the surface coverage of particles e.g. by solvent molecules using ¹³C, ¹H, ²⁷Al NMR, qNMR^[1] and quantitative REDOR experiments. These techniques have proven to be useful in earlier investigations of nanoparticles.^[2,3] The doping concentration and the defect distribution of ZnO:Al as well as its effect on conductivity is studied by ²⁷Al MQMAS and ²⁷Al semi-quantitative NMR analyses. Information about the neighborhood of different Al-dopant sites is obtained by HETCOR, REDOR and PRESTO experiments. Based on experimental results and quantum chemical calculations^[4], we discuss different models which explain the increase in conductivity of different defect models of ZnO:Al.

^[1] Y. S. Avadhut, D. Schneider, and J. Schmedt auf der Günn, J. Magn. Reson., 201, 1-6 (2009).

^[2] Y. S. Avadhut, J. Weber, E. Hammarberg, C. Feldmann, I. Schellenberg, R. Pöttgen, and J. Schmedt auf der Günne, Chem. Mater., 23, 1526, (2011).

 ^[4] J. Neming, C. Feldmann, Y. Avadhut, and J. Schmedt auf der Günne, *Chem. Mater.*, 20, 5787-5795 (2008).
[4] J. Weber and J. Schmedt auf der Günne, *Phys. Chem. Chem. Phys.*, 12, 583-603, (2010)

^[5] Y. S. Avadhut, J. Weber, E. Hammarberg, C. Feldmann, and J. Schmedt auf der Günne, in preparation

Composite pulses for efficient excitation of the central transition of half-integer quadrupolar nuclei

Diego Carnevale¹ and Geoffrey Bodenhausen^{1,2,3,4}

¹Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, BCH, 1015, Lausanne, Suisse (diego.carnevale@epfl.ch); ²Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231, Paris Cedex 05; ³Université Pierre-et-Marie Curie, Paris, France; ⁴CNRS, UMR 7203, Paris, France.

We present a new scheme using composite pulses for the excitation of the central transition of half-integer quadrupolar nuclei. Previous methods achieved signal enhancement via inversion^{1,2} or saturation³ of the satellite transitions in order to enhance the population difference across the central transition. In contrast, our method is based on a more efficient conversion of the population difference across the central transition into single-quantum coherences that avoids spurious excitation of higher coherence orders. All crystallite orientations are uniformly excited and no distortion of the lineshape is observed. Numerical simulations agree remarkably well with experimental results. Enhancement factors of 1.35 can be obtained. The implementation of the experiment is extremely simple and depends only on the

optimization of a single parameter. The method has been tested on samples containing ²³Na (I = 3/2), ²⁷Al (I = 5/2) and ⁴⁵Sc (I = 7/2).

REFERENCES:

- 1. Haase J., Conradi M. S., Chem. Phys. Lett., 209, 287-291, (1993)
- 2. Siegel R., Nakashima T. T., Wasylishen R. E., Chem. Phys. Lett., 388, 441-445, (2004)
- 3. Yao Z., Kwak H., Sakellariou D., Emsley L., Grandinetti P. J., Chem. Phys. Lett., 327, 85-90, (2000)

Ss629

Solid state NMR at cryogenic temperatures

<u>Maria Concistrè</u>¹, Riddhiman Sarkar¹, Ole G. Johannessen¹, Mark Denning¹, Peter Beckett¹, Maitham al-Mosawi², Marina Carravetta¹, Carlo Beduz², Yifeng Yang² and Malcolm H. Levitt¹.

¹School of Chemistry, University of Southampton, Southampton, GB; ²School of Engineering Science, University of Southampton, Southampton, GB. mariac@soton.ac.uk

Solid state NMR at cryogenic temperatures offers an increase in signal, a reduction in noise, and the opportunity to study a wide range of interesting and technologically important physical phenomena. Examples include superconductivity, quantum tunnelling and quantum molecular rotation. On the biological side, cryogenic NMR has a major potential in the study of protein assembly or membrane proteins. Furthermore, cryogenic NMR coupled to DNP is expected to give rise to an enormous sensitivity gain with an even stronger impact in those applications.

We have constructed cryogenic NMR systems working at a magnetic field of 14.1 T and able to perform both static and magic-angle-spinning solid state NMR experiments at very low temperature. Our static cryoprobe is able to perform solid state NMR (without sample rotation) at temperatures down to 1.8 K. Our cryogenic MAS probe can spin a 2mm zirconia rotor at 15 kHz while keeping the real sample temperature at 13K. The sample temperature and spinning frequency may be adjusted independently, since the bearing, turbine and sample cooling lines are well separated. The cooling is done using He gas produced in a custom-made boiler by evaporating liquid He in the supercritical regime. In this contribution we will show the first results obtained with this setup run at the most extreme working conditions. We use the longitudinal relaxation constant of ¹²⁷I in cesium iodide as a convenient NMR thermometer for temperatures down to about 15K.
Direct Estimation of Spin-Diffusion Coefficients and Homonuclear Coupling by a Cross-Polarization Based Method

Matthias Roos*, Günter Hempel

Martin-Luther Universität Halle-Wittenberg, Institut für Physik – NMR Betty-Heimann-Sr. 7, 06120 Halle/Saale, Germany * matthias.roos@student.uni-halle.de

Spin diffusion appears as an omnipresent effect in solid-state NMR whose efficiency depends on structural and dynamic properties of the sample. Therefore, this phenomenon can be used to characterize heterogeneities^[1]. However, knowledge of the spin-diffusion coefficient of each investigated domain is always a prerequisite for data evaluation. In this context, we present a cross-polarization (CP) based method by which spatially well-defined proton "magnetization holes" can be created. (An alternative procedure is based on REDOR^[2].) By following the re-equilibration of such locally inverted magnetization, direct observation of spin diffusion is enabled.

As a second effect, for very narrow initial holes produced by Lee-Goldburg CP it is possible to obtain magnetization exchange pattern between close-by nuclei. In case of no powder averaging as given in oriented liquid crystals, this can results in long-lasting oscillations giving a quantitative spectrum of the local homonuclear dipolar couplings.

REFERENCES:

1. Clauss J., Schmidt-Rohr K., Spiess H.W., Acta Polymerica, 44, 1-17 (1993)

2. Chen Q., Schmidt-Rohr K, Solid State NMR, 29, 142-152 (2006)

Ss631

Switched angle spinning solid-state NMR as a tool for internuclear distance determination

<u>Andrea C. Sauerwein¹</u>, Maria Concistrè¹, Malcolm H. Levitt¹

¹Department of Chemistry, University of Southampton, Southampton, UK. a.sauerwein@soton.ac.uk

Dipolar couplings are a valuable source of structural information in solid-state NMR. However, most applications require the use of MAS which averages anisotropic interactions, such as dipolar couplings, and thereby loses the distance information contained therein. Commonly, dipolar couplings are selectively reintroduced by a sequence of rf-pulses that suspend the averaging effects. A much simpler approach to prevent complete averaging is off-magic angle spinning (off-MAS) whose potential for distance estimations in multiple-spin systems has been demonstrated, recently.

Off-MAS is typically accompanied by a loss in spectral resolution especially at large magic-angle deviations as they are necessary to determine structurally interesting long internuclear distances >4 Å. Here we present an experiment that combines a frequency-selective spin-echo — applied off-MAS —with data acquisition on the magic-angle. The frequency-selective pulses therein can be calibrated to isolate any desired internuclear distance. Subsequently, the experiment is carried out at several spin-echo evolution times, which yields characteristic build-up curves for each selected component of the NMR signal. This build-up is sensitive to the dipole-dipole coupling strength; a phenomenon that is demonstrated to determine reliable internuclear distances in multiple-spin systems and a protein sample of rhodopsin.

Jörn Schmedt auf der Günne^{*1}, Robert Siemering¹, Johannes Weber¹,

¹ Department of Chemistry, Ludwig-Maximilians-Universität München (LMU), Germany. Email: gunnej@cup.uni-muenchen.de

Homonuclear 2D correlation NMR spectroscopy is a routine tool for the analysis of solid disordered materials. Examples can be found for double-quantum and triple-quantum [1] filtered ¹H, ¹³C, ²⁹Si, ³¹P NMR on various materials: inorganic polymers [1], glasses or disordered nano-scale [2,3] materials.

Here we present the theory [4] to extract lineshape parameters and correlation factors by fitting experimental spectra with analytical functions. These functions have been derived from normalized 2D and 3D probability density functions. Projections of these functions for 1D spectra, for 2D doublequantum single-quantum and triple-quantum single-quantum correlation spectra have be calculated. A fitting tool has been implemented in a program which can read in 2D spectra generated from standard spectrometer software. We demonstrate our approach on 2D ³¹P NMR spectra of a series of phosphate glasses including ultraphosphate compositions, which have been obtained by pulse-transient optimized multi-quantum symmetry-based pulse-sequences [5,6]. The advantage of this approach is that partially overlapping peaks can be deconvoluted and we hope to generate parameters which can finally be correlated with structure.

[1] J. Schmedt auf der Günne, J. Beck, W. Hoffbauer, and P. Krieger-Beck Chem. - Eur. J., 11, 4429-4440, (2005).

[2] Y. S. Avadhut, J. Weber, E. Hammarberg, C. Feldmann, I. Schellenberg, R. Pöttgen, and J. Schmedt auf der Günne, *Chem. Mater.*, 23, 1526-1538, (2011).

[3] M. Roming, C. Feldmann, Y. Avadhut, and J. Schmedt auf der Günne, Chem. Mater., 20, 5787-5795 (2008).

[4] R. Siemering, J. Weber, and J. Schmedt auf der Günne, in preparation.

[5] J. Weber, M. Seemann and J. Schmedt auf der Günne, in preparation.[6] M.H. Levitt, *Encyclopedia of NMR*, 9, 165-196, (2002).

Ss633

Dipolar Recoupling Involving Quadrupolar Nulcei in Magic-Angle-Spinning NMR

Andreas Brinkmann¹*, Mattias Edén².

¹Steacie Institute for Molecular Sciences, National Research Council, Ottawa, Canada. ²Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden. *Andreas.Brinkmann@nrc-cnrc.gc.ca

Firstly, we demonstrate the estimation of homonuclear dipolar couplings, and thereby internuclear diastances, between half-integer spin quadrupolar nuclei by central-transition (CT) double-quantum (2Q) sideband magic-angle-spinning (MAS) NMR spectroscopy [1]. The rotor-encoded sideband amplitudes from CT 2Q coherences are sensitive probes of the magnitude of the homonulcear dipolar coupling, but significantly less affected by other NMR parameters such as the magnitudes and orientations of the electric field gradient tensors.

Secondly, we demonstrate high-resolution proton-detected solid-state NMR multi-quantum (MQ) correlation spectroscopy, in which the indirect dimension corresponds to the high-resolution dimension of a split-t₁ 3QMAS experiment. The figure shows an example for ¹⁷O-L-tyrosine obtained at 21.1 T external field and 62.5 kHz MAS frequency. Other examples will be shown for ⁸⁷Rb and ²⁷Al. Inversely (proton) detected MQMAS spectroscopy possesses great potential, especially for insensitive nuclei.

^{1.} Brinkmann A., Edén M., Can. J. Chem., special issue honoring Roderick E. Wasylishen, in press (2011).

Exploiting Paramagnetic Effects in Solid State NMR Using a Membrane **Binding Heme Protein Nitrophorin 7**

Sabu Varghese^{a,b}, Chunmao He^c, Markus Knipp^c, and Henrike Heise^{a,b}

^a Institute of Physical Biology, Heinrich – Heine University Düsseldorf, Universitätsstr.1, 40225 Düsseldorf, Germany ^b Institute of Complex Systems (ICS-6), Research Center Jülich GmbH, 52425 Jülich, Germany (s. varghese@fz-juelich.de) Max Planck Institute for Bioinorganic Chemistry, 45470 Mülheim an der Ruhr, Stiftstrasse 34-36, Germany

Nitrophorins represent a group of ferriheme b proteins designated NP1-4, which were found in the blood-sucking insect *Rhodnius prolixus*¹. Recently, a novel form NP7, which is able to attach to negatively charged phospholipid membranes, was established by recombinant protein expression^{2, 3}.

In contrast to its homologues, liquid state NMR studies of NP7 did not yield well-resolved resonances probably due to the low molecular tumbling of the transient aggregates formed in solution³. A viable alternative was therefore the study of NP7 by means of solid-state NMR spectroscopy.

Here, we report an initial solid state NMR studies of NP7 in the Fe^{III} low-spin state ($S = \frac{1}{2}$) and the diamagnetic (S = 0) NO bound form. Our results show that SSNMR has sufficient sensitivity and resolution and can be successfully applied to gain structural insights of relatively large heme proteins (21 kDa), including spin states that typically create difficulties for NMR spectroscopy.

REFERENCES:

3. Knipp M., Yang F., Berry R. E., Zhang H., Shokhirev M. N., and Walker F. A., *Biochemistry*, 46, 13254–13268 (2007)

Ss635

Internuclear Distance Measurements Between Half-Integer Quadrupolar Nuclei

Dinu Iuga¹ Frédéric Blanc², Ray Dupree¹, Oleg Antzutkin¹, Steven Brown¹

¹Department of Physics, University of Warwick, Coventry UK; ²Department of Chemistry, University of Cambridge, Cambridge UK; d.iuga@warwick.ac.uk

A new methodology to extract internuclear distances between half integer quadrupolar nuclei from REDOR (REAPDOR or TRAPDOR) dephasing curves is introduced. From the universal REDOR dephasing curve for two I=1/2 spins, the effect of offset irradiation on one of the I=1/2 spin is investigated numerically and approximated with a sinc-type function weighting the universal REDOR curve.

The dephasing is drawn in a threedimensional map function of dephasing time and function of the offset irradiation. When one of the spins is quadrupolar the effect of the quadrupolar interaction is numerically compared with the effect of an offset irradiation for the case when both spins

have I=1/2. Different orientations in a powder feel different quadrupolar interactions and therefore an empirical formula that sums over the different orientations/offsets is introduced and compared with experimental results and numerical simulations. The advantage of our empirical formula is that it contains factors that take into account the size of the quadrupolar interaction and/or the adiabaticiy parameter. Results obtained on ¹⁵N-¹⁷O enriched Glycine; ²⁷AÎ-¹⁷O LaAlO₃ and ⁷¹Ga-¹⁷O LaGaO₃ are presented and analyzed.

Walker F. A., J Inorg Biochem, 99, 216–236 (2005)
 Knipp M., Zhang H., Berry R. E., and Walker F. A., Protein Expression Purif, 54,183–191(2007)

Andrew J Edwards, Simon A Watson, Tran N Pham

Structural Chemistry, Structural Chemistry and Analysis, Product Development. GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, United Kingdom

Andrew.J.Edwards@GSK.com

Understanding and control of solid state form is vital to the development of drug products in the pharmaceutical industry. In this context, it is imperative that the nature of solid state impurities such as undesired polymorphs and solvates are characterised and ultimately controlled. Solid state NMR (ssNMR) is not only sensitive to changes in crystal packing (*i.e.* can differentiate polymorphs), but is also inherently quantitative. The ssNMR spectra of these solid state impurities need to be understood to allow quantitative methods to be developed and potentially validated.

This poster describes the use of solid state ¹⁹F NMR to characterise and quantify a polymorphic impurity in the active pharmaceutical ingredient (API); a discussion of method validation is also presented.

In a second example, solid state ²H NMR was used to characterise a labelled solvate and discriminate free *vs*. bound solvent. In tandem with solution state ¹H NMR, it was possible to quantify the solvate as a solid state impurity in API.

Ss637

Solid-state ³¹P NMR strategies for self-assembled polymers based on $[(\eta^5 - (PhCH_2)_5C_5)Fe(\eta^5 - P_5)]$ and $[\{(\eta^5 - Me_5C_5)Mo\}_2(\mu - \eta^6 - P_6)]$ building blocks

Ester Lüken¹, Fabian Dielmann², Manfred Scheer² and Hellmut Eckert¹

¹ Institute of Physical Chemistry, University of Münster, Münster, Germany. E-mail: ester.lueken@uni-muenster.de; ² Institute of Inorganic Chemistry, University of Regensburg, Regensburg, Germany

The self-assembly of smaller components into extended structures is a fascinating and rewarding field of contemporary chemistry. Metal atoms and ions have proven to be particularly interesting building blocks [1]. In this contribution, we report our investigations of the coordination polymers formed by reacting the pentaphosphaferrocene [$(\eta^5 - (PhCH_2)_5C_5)Fe(\eta^5 - P_5)$] ("cyclo-P₅ compounds") [2] the triple-decker hexaphosphabenzene complex $[{(\eta^5-Me_5C_5)Mo}_2(\mu-\eta^6:\eta^6-P_6)]$ ("cyclo-P₆ or compounds") [3] with various transition metals. To distinguish the different crystallographic phosphorus sites, solid-state ³¹P MAS NMR spectra were examined; in addition, the suitability of various two-dimensional techniques for providing connectivity information and site assignments was explored, in an effort to develop a comprehensive spectroscopic strategy for similar materials without availability of crystallographic information. The title compounds are particularly challenging candidates for 2-D NMR studies, owing to very short spin-spin relaxation times and long spin-lattice relaxation times. For the rigid $cyclo-P_5$ materials, preliminary results were obtained using radiofrequency-driven dipolar recoupling (RFDR). In contrast, the spectra of cyclo-P₆ compounds are generally affected by fast molecular motion on the NMR timescale, which was studied further by variable-temperature MAS NMR and spin-lattice relaxation time measurements.

^{1.} Alexeev, Yu. E., Kharisov, B. I., Hernández García, T. C., Garnovskii, A. D., Coordination Chemistry Reviews, 254, 794-831 (2010)

^{2.} Dielmann, F., Merkle, R., Heinl, S., Scheer, M., Zeitschrift für Naturforschung, 64b, 3-10 (2009)

^{3.} Scherer, O. J., Sitzmann, H., Wolmershäuser, G., Angewandte Chemie International Edition in English, 24, 358-359 (1985)

Phosphorus-31 and Vanadium-51 Solid-State NMR Spectroscopy of β-Vanadyl Phosphate: Homo- and Heteronuclear Spin-Spin, Electrostatic and Paramagnetic Interactions

Klaus Eichele¹ and Arnd-Rüdiger Grimmer²

¹Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; ²Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany. klaus.eichele@uni-tuebingen.de

Vanadium phosphorus oxide catalysts have received widespread industrial attention due to their highly active and selective catalytic behaviour in the oxidation of paraffins. Depending on precursors and synthetic route chosen, a variety of different materials have been obtained. The characterization of these materials and their precursors by means of NMR spectroscopy presents a challenge to the NMR spectroscopist. The present study investigates the various nuclear spin interactions that contribute to the linewidths of ³¹P and ⁵¹V solid-state NMR spectra of the title compound, a prototypal diamagnetic vanadyl phosphate.¹

REFERENCES: 1. Eichele K., Grimmer A.-R., Can. J. Chem., 89, in press (2011)

Ss639

Speeding up ssNMR on Membrane Proteins – Paramagnetic Doping of Proteorhodopsin

Sandra J. Ullrich, Soraya Hölper, Clemens Glaubitz

Institute for Biophysical Chemistry, BMRZ, Goethe University Frankfurt, Frankfurt a.M. ullrich@em.uni-frankfurt.de

Poster

Solid-state NMR is an established method for hypothesis-driven biophysical studies on membrane proteins and an emerging technique for structural biology. Its major strength is the possibility to investigate membrane proteins directly within the lipid bilayer. However, many protein systems of interest, like GPCRs, pose a great experimental challenge because of the low sensitivity of ssNMR. Therefore, large amount of the protein sample and/or long data collection time is needed to overcome this bottleneck. One possible route for improvements is the enhancement of the signal-to-noise ratio per unit time. Most of the experimental time is required for the ¹H spin system to return to equilibrium (¹H T₁) in between each scan, i.e. 2-5s or 95% of the experimental time. Mechanisms for reducing this time would result in a better S/N ratio per unit time and are searched for other studies, e.g. faster data acquisition schemes in time-resolved ssNMR, as well. In a comprehensive study the 7TM light-driven proton pump proteorhodopsin, reconstituted into lipid vesicles, is doped with Cu-EDTA and a Cu-Tag aiming at the reduction of ¹H T₁. Furthermore, a promising approach with a Gadolinium complex as a paramagnetic relaxation agent is presented. Our data reveal that in principle paramagnetic relaxation enhancement is applicable to membrane proteins, but large differences exist between the paramagnetic agents used in this study.

Solid state NMR investigation on phase separation, crystallization and structural changes in disilicate glasses and ceramics

Cornelia Schröder¹, Hellmut Eckert¹, Wolfram Höland²

¹Institut für Physikallische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany ²Ivoclar Vivadent AG, Schaan, Principality of Liechtenstein E-mail address: c schr21@uni-muenster.de

Disordered materials having a wide range of application are often phase separated on the micro- or nanoscale. One representative for this are lithium disilicate glass-ceramics which are of interest in restorative dentistry. As the degree and type of crystallization influences the chemical and physical properties of glass-ceramics it is essential to have a controlled process of crystallization.¹ To get a deeper insight into the structural and chemical aspects of the process of crystallization on different length scales solid state NMR spectroscopy is a useful tool.²

The local structure of several binary silicate glasses and ceramics has been investigated by solid state NMR spectroscopy. The investigated systems have a composition near or of lithium disilicate. During the process of quenching and additional heat treatment the formation of lithium metasilicate and lithium disilicate can occur.³ Characterization of the initial stages of crystallization by standard X-ray diffraction and solid state NMR techniques is often hindered by the low concentration of the crystalline species formed. The present contribution introduces ²⁹Si{⁷Li} cross polarization magic angle spinning NMR (CP-MAS) as a new approach for detection incipient crystallization processes in these ceramics.

REFERENCES:

- 1. Zanotto E. D., *American Ceramic Society Bulletin*, 89, 18-27 (2010)
- 2. Bischoff C., Eckert H., Apel E., Rheinberger V. M., Höland W., Phys. Chem. Chem. Phys., 13, 45450-4551 (2011)
- 3. Levin E. M., Robbins C. R., McMurdie H. F., Phase Diagrams for Ceramists, The American Ceramic Society (1964)

Ss641

Recoupling of Native Homonuclear Dipolar Couplings in Magic-Angle-Spinning Solid-State NMR by the Double-Oscillation Field Technique

Lasse A. Straasø and Niels Chr. Nielsen.

Center of Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark. lassea@inano.dk.

A double-oscillating field technique¹ (DUO) that produces an effective Hamiltonian proportional to the native high-field homonuclear dipole-dipole coupling under magic-angle spinning (MAS) conditions is presented. Basically, DUO uses one part of the radio frequency (rf) field to recouple the dipole-dipole coupling interaction. This part of the rf field does also modulate the chemical shift interactions, thereby eliminating offsets effects over the aliphatic region on a 700 MHz (Larmor frequency of ¹H) spectrometer. The other part of the rf field averages all non-secular terms and in addition ensures stability towards rf inhomogeneity and rf miscalibration. Experiments on a two spin system confirm the theoretical results.

We have compared the capability to transfer polarization through longitudinal mixing of the DUO sequence to that of finite pulse rf driven recoupling (fpRFDR) with π pulses lasting one third of a rotor period and to that of dipolar-assisted rotational resonance (DARR) with a short mixing time (10 ms). For most of the one-bond transfers, DUO gives more intense cross-peaks. 2D recoupling experiments were conducted on antiparallel amyloid fibrils of the decapeptide SNNFGAILSS with the FGAIL part uniformly labeled with ¹³C and ¹⁵N. With its high stability towards rf inhomogeneity and good one-bond transfers, we anticipate that DUO will find applications within the field of biological ssNMR spectroscopy, e.g. as an assignment experiment.

Resolution Enhancement of Solid-State NMR Correlation Spectra by Optimal Control Based Dipolar-Driven Spin-State Selective Filtering

Joachim M. Vinther and Niels Chr. Nielsen

Center of Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark. joachimv@inano.dk

In solid-state magic-angle spinning (MAS) NMR spectra, an increase in the linewidths in the direct dimension due to unresolved J-couplings is observed. This results in poorer resolution, overlapping peaks and ambiguous resonance assignments. Here a new method to out-compensate the linebroadening effect of the J_{CC} -couplings on the carbonyl resonances is presented. Pre-acquisition preparation of single quantum coherence spin-states is achieved using dipolar-driven magnetization transfers.

By use of optimal control, spin-state selective sequences for biological solid-state NMR have been designed. The optimal control based development has facilitated the use of the strong dipolar couplings among neighboring carbon nuclei to achieve spin-state selective coherences, which previously only have been accessible through J-based transfers. The use of the dipolar couplings for spin-state manipulation shortens the pulse sequence and decreases demands for very intense proton decoupling as compared to previous J_{CC} -based methods.

For spin-state selective coherence transfer¹, a doubling of the resolution in the detection dimension is achieved for the carbonyl region of homonuclear correlation spectra.

REFERENCES: 1. C. Kehlet et al., J. Phys. Chem. Lett., 2, 543-547 (2011)

Ss643

Random deuteration of proteins studied by ssNMR spectroscopy

Sam Asami¹, Kathrin Szekely², Paul Schanda³, Beat Meier², Bernd Reif^{1,4,5}

¹Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany, asami@fmp-berlin.de; ²Eidgenössische Technische Hochschule Zürich (ETH Zürich), Zürich, Switzerland; ; ³Biomolecular NMR group, Structural Biology Institute Grenoble, Grenoble, France; Munich Center for Integrated Protein Science at Department Chemie (CIPS-M) at Technische Universität München (TUM), Department of Chemistry, Munich, Germany; Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany

Posters

Biological solid-state nuclear magnetic resonance (ssNMR) spectroscopy emerged as an important tool for structural biology. However, experiments, which rely on carbon or nitrogen detection, suffer from low sensitivity. To achieve high spectral quality and sensitivity, we introduced the RAP (Reduced Adjoining Protonation) labeling scheme [1], which yields randomly protonated samples in a deuterated matrix. Deuteration reduces the dipolar ¹H, ¹H network and facilitates ¹H-detected high-resolution ssNMR spectroscopy of aliphatic resonances. Further characterization of RAP samples displays their utilizability for various issues, as retrieving of dynamical parameters, determination of tertiary structure information and resonance assignments, as presented here.

REFERENCES: 1. Asami., J Am Chem Soc, 132, 15133-15135 (2010)

NMR Analysis of Trace Elements in Speleothems

Dalibor Paar¹, Hans-Joachim Grafe²

¹Department of Physics, Faculty of Science, University of Zagreb, P. O. Box 331, HR 10002 Zagreb, Croatia, dpaar@phy.hr; ²IFW Dresden, Institute for Solid State Research, P.O. Box 270116, D-01171 Dresden, Germany

Speleothems can grow for thousands of years. During that time they encode palaeoclimatic information in their geometry and geochemistry. A great work has been done over the past decade with a variety of techniques that have been used to investigate trace elements included in the structure of speleothems (CaCO₃) or isolated within the crystal lattice¹. Solid state NMR can bring new information for high resolution palaeoclimate and palaeoenvironmental reconstruction. Until now, MAS NMR was used to investigate ³¹P in speleothems², with conclusion that calcite speleothems can contain phosphate in several forms, including phosphate defects in calcite and several types of coexisting crystalline phosphate inclusions. The aim of our work is to determine the possibility of investigating other trace elements in the structure of speleothems such as ²³Na and ²⁷Al using solid state NMR in order to contribute to the understanding of the conditions of their formation. Samples in the study are taken from various locations in Croatian karst that is characterized by complex speleogenesis influenced by different climatic, geological, hydrological and geomorphological environmets.³

This presentation is supported by European project FP7-REGPOT-2008-1 SOLeNeMaR.

REFERENCES:

- 1. Fairchild, I.J. et al., Quaternary Science Reviews 28, 449-468 (2009).
- 2. Mason, H.E., et.al., Earth and Planetary Science Letters 254, 313–322 (2007).
- 3. Paar, D., et al., Acta carsologica. 37, 2-3; 273-278 (2008).

Ss645

27AI NMR investigation of V phase AI-Cu-Mg intermetallic

<u>S. Jazbec¹</u>, M. Klanjšek¹, J. Dolinšek¹

¹Institut Jožef Stefan, Jamova c. 39, 1000 Ljubljana, Slovenia

The V phase $Al_5Cu_6Mg_2$ single crystalline sample is a cubic phase (*Pm3*) and has 39 atoms per unit cell with the cell edge of 8.3 Å. The long dimension of our sample was oriented along [100] axis and the perpendicular edge was along [110] direction. The unit cell contains three nonequivalent Al (Al-1, Al-2, Al-3) crystallographic positions, where the number of atoms at a given crystallographic site is 1, 6, 8 respectively.

The sample was placed in the magnetic field with the [100] axis perpendicular to the field. We measured the temperature dependence of the T₁ relaxation time by using the inversion-recovery pulse sequence with the 90-degree pulse length D1 = 2.4 μ s and the irradiation frequency was set to v₀ = 104.295 MHz. The measured signal exhibited two peaks at any temperature. We integrated each peak separately at a given temperature to produce the magnetization-recovery curves. We fitted the curves by using the formula for spin I = 5/2 central line irradiation.

For the measurement of angular dependence of the spectra, we have constructed an epoxy and fiberglass coil holder that enabled us to fix the sample in the exact orientation – rotation around the [100] axis. We used frequency sweep from 102.4 MHz to 106.2 MHz at the temperature of T = 80 K. The spectrum was recorded every 3 degrees of orientation ranging from 0 to 180 degrees. A two pulse sequence (solid echo) with two 90-degree pulses of 2.4 μ s was used.

We analyzed the spectra by simulating the angular dependence of the central lines and the sattelites. Due to three crystallographicall nonequivalent Al positions in the unit cell, there are three EFG and three anisotropic Knight shift tensors, which were extracted from the spectral analysis.

Multiple-acquisition method exploiting polarization transfer from ¹H and ²H in solid state NMR spectroscopy

Berit Paaske¹, Morten Bjerring¹, Hartmut Oschkinat², Ümit Akbey² and Niels C. Nielsen¹.

¹Center for insoluble Protein Structures (inSPIN), interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus C, Denmark,² NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany. Email: beritp@chem.au.dk.

In solid state NMR spectroscopy an increasing interest for extensive ²H labeled samples, as a means to dilute proton spins, is observed. This labeling scheme places a huge amount of information on the deuteriums and optimal ways of achieving this knowledge, while still obtaining the proton based information, is therefore of interest.

We present a novel interleaved sampling strategy to simultaneously acquire pairs of one- or multiple dimensional spectra utilizing polarization from both ¹H and ²H spins, which results in improved spectral information content or sensitivity. This so-called RAPID (Relaxation-optimized Acquisition of Proton Interleaved with Deuterium) ¹H-¹³C/²H-¹³C CP/MAS multiple-acquisition method is exploiting, that the relaxation time for deuterium is orders of magnitudes faster than the relaxation time for protons and during the repetition delay for a standard proton CP experiment a second experiment utilizing polarization-transfer from deuteriums¹ can be acquired. The experiments can be chosen to fulfill different needs, resulting in spectra that provides additional information about the chemical shifts of ²H, the molecular dynamics provided from the ²H quadrupolar coupling size, as well as which ¹³C spin is in proximity of ¹H or ²H. If the spectra are simply added together, this will provide a significant sensitivity gain.

REFERENCES:

1. Wei, D., Akbey, U., Paaske, B., Oschkinat, H., Bjerring, M., Nielsen, N. C., J. Phys. Chem. Lett., 2, 1289–1294 (2011)

Ss647

Sensitivity enhancement using STMAS and its application to characterization of trace amounts of boron in coal

Takafumi Takahashi¹, Koji Kanehashi¹

¹Advanced Technology Research Laboratories, Nippon Steel Corporation takahashi.takafumi@nsc.co.jp

MQMAS and STMAS spectra for calcium aluminosilicate glass and kaolin have been compared in sensitivity and resolution.¹ STMAS implemented with double quantum filtered soft-pulse-added mixing (DQF-SPAM) pulse sequence² provides the most enhanced sensitivity without impairing spectral resolution.

Based on these results, ¹¹B DQF-SPAM STMAS experiment has been applied to characterization of trace amounts of boron (0.001-0.01*mass*%) in coal.³ As seen in Fig. 1, on the ¹¹B-STMAS NMR spectrum of coal (carbon content of 70-90 *mass*%), nonequivalent four-coordinated boron (^[4]B) sites

with small quadrupolar coupling constants (≤ 0.9 MHz) are clearly distinguished. Two of the ^[4]B sites in down field are considered organoborons with aromatic ligands, and the other in the most upper field is assigned to inorganic tetragonal boron (BO₄).² The assignment of organoborons has been confirmed by ¹¹B{¹H} CPMAS experiments. Furthermore the ¹¹B STMAS spectrum of coal ash demonstrates that a part of organoborons is converted to trigonal species (BO₃) during the combustion process.

REFERENCES

Fig. 1. ^{11}B STMAS NMR spectrum of coal acquired with 1.6 ms acquisition time for F_1 dimension, spinning rate of 20kHz, and

^{1.} Takahashi, T. et al., J. Magn Reson. 198, 228-235 (2009).

^{2.} H.T. Kwak, Z. Gan, J. Magn. Reson. 164, 369-372 (2003).

^{3.} Takahashi, T. et al., Environ. Sci. Technol. 45, 890-895 (2011).

<u>Dmytro Dudenko¹</u>, Daniel Sebastiani², Michael Ryan Hansen¹, and Hans Wolfgang Spiess¹</u>

¹ Max Planck Institute for Polymer Research, Ackermannweg 10, DE-55128 Mainz, Germany; ² Freie Universität Berlin, Arnimallee 14, DE-14195 Berlin, Germany. E-mail: dmytro.dudenko@mpip-mainz.mpg.de

In the emerging field of organic-based electronics the application of functional materials such as low band gap polymers and molecular stacks has become one of the central goals of current research activities. The perspective of using self-assembling, self-healing supramolecular assemblies appears to be extremely promising for photovoltaic nano-scale devices. Combining ab initio Car-Parrinello Molecular Dynamics (CPMD) [1,2] with subsequent sampling of trajectories by linear response magnetic property calculations gives an excellent tool to learn about NMR spectroscopic signatures of molecular packing, especially in cases where long-range crystalline order is absent. To get knowledge about the local packing motifs and interactions we combine solid-state NMR measurements with in silico packing models. We also demonstrate the potential of this combination by using Nuclear Independent Chemical Shifts (NICS) [3] calculations together with liquid-state ¹H NMR measurements for obtaining a molecular picture of local packing that is consistent with solid-state NMR experiments [4]. Furthermore, via dispersion corrected DFT method (DC-DFT) we show that is possible to investigate the competition between van der Waals forces and hydrogen bonding forces in molecular packing.

REFERENCES:

- [1] Car R., Parrinello M., Phys. Rev. Lett., 55, 2471-2474 (1985)
- [2] Hutter J., Curioni A., *ChemPhysChem*, **6**, 1788–1793 (2005)
- [3] Sebastiani D., *ChemPhysChem*, 7, 164–175 (2006)
 [4] Fritzsche M. et. al., *Angew. Chemie Intl. Ed.*, 50, 3030-3033 (2011)

Ss649

Constant Time REDOR NMR Spectroscopy

<u>Thomas Echelmeyer¹</u>, Sebastian Wegner², Leo van Wüllen¹

¹ Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany; ² Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany. thomas.echelmeyer@uni-muenster.de

Among the various pulse sequences available for the investigation of heteronuclear couplings the Rotational Echo Double Resonance (REDOR) experiment has evolved as today's standard method. In the archetypical REDOR approach, introduced by Schaefer and Gullion [1], the dipolar coupling is reintroduced during an increasing evolution time. However in case of strong dipolar interactions, especially in multiple spin systems, severe problems in the data analysis are encountered. Here the Constant Time (CT) approach can be applied as an alternative [2,3]. In the CT-REDOR experiment the evolution time is kept at a constant value and the dipolar interaction is only partially reintroduced by varying either the position of the dephasing π -pulses over the entire rotor period or their pulse length. Furthermore a combination of both approaches may be used. The applicability of the CT-REDOR method is validated with different reference substances, including isolated two spin systems as well as multiple spin systems.

As demonstrated with these model compounds accurate values for the second moments can be obtained without the need to consider the detailed spin geometry, what is of special interest in case of unknown multiple spin systems.

- 1. Gullion T., Schaefer J., Journal of Magnetic Resonance, 81, 196-200 (1989)
- 2. Echelmeyer T., van Wüllen L., Wegner S., Solid State Nuclear Magnetic Resonance, 34, 14-19 (2008)
- 3. Echelmeyer T., Wegner S., van Wüllen L., Annual Reports on NMR Spectroscopy, submitted, (2011)

Sp650

Investigation of the ESR in Pnictide and Boride of Europium

<u>Yuriy Goryunov</u>¹, Anna Levchenko², Alexander Nateprov³

¹ Kazan Physical-Technical Institute of the Russian Academy of Science, 420029, Kazan, Russia
 ² Institute of the Material Science Problem of the NASU, 03680, Kiev, Ukraine
 ³ Institute of Applied Physics, Academy of Sciences of Moldova, 2028, Kishinev, Moldova

The ESR spectrum of conducting magnets contains a wealth of information not only about the resonance ions, but also the magnetoresistance, magnetic phase transitions, skin layer. The present study is an attempt to understanding all this information as a whole. The ESR measurements of the EuZn₂As₂ (powder) and EuB_{6-x}C_x (single crystal) were performed on frequency 9.3 GHz in TE₁₀₂ rectangular cavity in the temperature range from 4.2 to 300 K. EuZn₂As₂ (space group **P-3m1**) is anti-ferromagnetic (AFM) with $\theta_p \sim - T_N = -16.5$ K and its resistance is semiconductor-like [1]. EuB_{6-x}C_x (space gr. **Pm-3m**) is semi-metal, FM or AFM ($\theta_p \sim \pm 16$ K) depending on content x of carbon. The observed resonance lines of the Eu²⁺ ions best fit by a Lorentzian lineshape with linewidths ~700 Oe at temperatures above 150 K. Surprising, but it is quite explainable that the paramagnetic temperatures θ_p , obtained for EuZn₂As₂ from ESR data, have positive sign. For EuB_{5.98}C_{0.02} θ_p is ~ +8 K in case of a magnetic field along [111] axis, and $\theta_p \sim -7$ K for the field along [100] axis. Large deviation ($\Delta g \sim 0.03$) of the g-factor relative free Eu²⁺ ion indicates on the strong hybridization of the f-states Eu with the p- s-states of the band electrons and possible formation of Kondo-like bound states. The obtained data are interpreted in terms of indirect exchange interaction between localized magnetic moments of Eu²⁺ by means electrons of a valence band (Bloembergen-Rowland's modified RKKY interaction [2]).

[1] A. Nateprov et al., Abstracts book of Intern. Conference ICM-2009 (26-31.07.09, Karlsruhe), 342 (2009)

[2] N. Bloembergen, T.J. Rowland, Phys. Rev. 97, 1679 (1955)

This work was supported by Grants of RFBR and Presidium of the RAS.

SP651

Electronic structure of the nitrogen donors in quasi-cubic positions in 6H SiC studied by General TRIPLE ENDOR method

Dariya V. Savchenko¹, Ekaterina N. Kalabukhova¹, Bela D. Shanina², Andreas Pöppl³

¹Department of Semiconductor Heterostructres, V.E. Lashkaryov Institute of Semiconductor Physics NASU, Kiev, Ukraine; ²Department of Semiconductor Optics, V.E. Lashkaryov Institute of Semiconductor Physics NASU, Kiev, Ukraine; ³Fakulty of Physics und Geosciences, University of Leipzig, Leipzig, Germany. E-mail: darias@gala.net

Despite of considerable efforts undertaken in the study of the nitrogen (N) superhyperfine (shf) structure some of the fundamental questions related to the spatial distribution of the electronic wave function (EWF) of the isolated N donor residing two quasi-cubic ('k1', 'k2') sites in 6H SiC lattice are not well understood yet. This is related to the fact that the shf lines with large coupling constants observed in pulsed EPR and ENDOR spectra [1] were not assigned to the specific ¹³C and ²⁹Si atoms located around N_{k1}, N_{k2} in 6H SiC as well as the relative sign of their shf coupling constants were not determined. In this work the relative sign of the shf coupling constants and spatial distribution of EWF for N_{k1}, N_{k2} in 6H SiC was obtained by General TRIPLE ENDOR. It was found that the N_{k1} and N_{k2} in 6H SiC with very close values of the hyperfine constants ($a_{k1} = 33.564$ MHz, $a_{k2} = 33.221$ MHz, [1]) reside at two different atom sites in 6H SiC lattice. Si atoms are located in the nearest neighborhood (nn) of N_{k1} while in case of N_{k2} C atoms are found in the nn of N. This result is consistent with the fact that there are two positions for N within the 6H SiC unit cell with the same distance to the nearest three C (Si) planes which become nonequivalent if N resides at C and Si sites in the lattice.

^{1.} Savchenko D. V., Kalabukhova E.N., Kiselev V.S., Hoentsch J., Pöppl A. Phys. Status Solidi B, 246, 1908-1914 (2009)

Localization effects induced by decoherence in superpositions of manyspin quantum states

Gonzalo A. Alvarez*, and Dieter Suter

Fakultaet Physik, Technische Universitaet Dortmund, Dortmund, Germany. *galvarez@e3.physik.uni-dortmund.de

The spurious interaction of quantum systems with their environment known as decoherence leads, as a function of time, to a decay of coherence of superposition states. Since the interactions between system and environment are local, they also cause a loss of spatial coherence: correlations between spatially distant parts of the system are lost and the equilibrium states are localized. This effect, which has not been studied in detail so far, limits the distance over which quantum information can be transmitted, e.g., along a spin chain. We investigate this issue in a nuclear magnetic resonance quantum simulator, where it is possible to monitor the spreading of quantum information in a three dimensional network: states that are initially localized on individual spins (qubits) spread under the influence of a suitable Hamiltonian apparently without limits. If we add a perturbation to this Hamiltonian, the spreading stops and the system reaches a limiting size, which becomes smaller as the strength of the perturbation increases. This limiting size appears to represent a dynamical equilibrium.

REFERENCES:

1. G.A. Alvarez, and D. Suter, Phys. Rev. Lett. 104, 230403 (2010).

2. G.A. Alvarez, and D. Suter. Submitted (2011). arXiv:1103.4546.

SP653

Ferroelectric nanosized materials charachterization by EPR

Alla Artemenko, Catherine Elissalde and Mario Maglione

Department of Ferroelectric materials, ceramics and composites, Institute of Condenced Matter Chemistry of Bordeaux (ICMCB), University of Bordeaux, F-33608, France. <u>artemenko@icmcb-bordeaux.cnrs.fr</u>

Inhomogeneous charged defects distribution within particles leads to a strong difference between local and average properties, which are strongly size dependent. In composites based on nanomaterials interfaces are known to concentrate charged defects what results in dramatic changes in the properties as compared to the ones of the parent materials. A detailed knowledge of the nature of such defects as well as their correlation with the materials composition, preparation conditions and properties is thus of key importance for prospecting the macroscopic properties expected by industry. We are reporting on nanosized ferroelectrics and composites characterization using Electron Paramagnetic Resonance method. With examples of barium titanate based materials the questions of charged defects location, stabilization and mobility/dynamics linked to their influence on properties are discussed. In particular, the nature of the conduction mechanism within BT grains [1] and of the charge accumulation at the grains boundaries [2], nanoparticles' surface [3] or composites interfaces is proposed.

REFERENCES: (Word Style "5_References")

^{1.} A.Artemenko et al. Appl.Phys.Lett. 97, 132901 (2010)

^{2.} V.Laguta, A.Slipenyuk, et al. J. Appl. Phys., 97, 073707 (2005).

^{3.} A.Slipenyuk et al. Phys.Stat.Solidy c. 4, 1297-1300 (2007)

SP654

²⁷AI NMR Investigation of γ- Mg₁₇AI₁₂ Intermetallic

Peter Jeglič¹, <u>Stanislav Vrtnik</u>¹, Anže Korelec², Martin Klanjšek¹ and Janez Dolinšek^{1,2}

¹Condensed Matter Physics Department, J. Stefan Institute, Ljubljana, Slovenia ²Department of Physics, University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, Slovenia (E-mail address: stane.vrtnik@ijs.si)

 γ -Mg₁₇Al₁₂ phase plays an important role in Al-Mg alloys and it has been studied in numerous investigations. According to structure analysis **Ref. 1**, γ -Mg₁₇Al₁₂ has space group *I*-43*m* with lattice constant *a* = 1.05438 nm and contains 58 atoms in the unit cell. Atoms are distributed over three Mg and one Al crystallographically inequivalent sites that are fully occupied. In order to obtain NMR parameters (EFG tensor and isotropic magnetic shift) for Al we measured rotation patterns of the ²⁷Al (*I* = 5/2) NMR spectra of monocrystalline sample around [100] and [011] crystallographic directions. The NMR spectra are inhomogeneously broadened by the electric quadrupole interaction and the line shapes are featureless and powderlike but still exhibit significant orientation-dependent variation of the intensity in the magnetic field. We were able to theoretically reproduce rotation patterns and determine EFG tensor ($\eta = 0.40$; $v_Q = 0.100$ MHz) and the isotropic magnetic shift ($S_{iso} = 1072$ ppm). The EFG tensor elements are Gaussian distributed with standard deviations as large as the values themselves. This indicates that either the sample contains many defects or there are many different Al sites in the unit cell, suggesting larger unit cell of the investigated compound.

REFERENCES:

1. Schobinger-Papamantellos P. and Fisher P., Naturwissenschaften, 57, 128-129 (1970)

ACKNOWLEDGMENT:

The authors would like to thank prof. dr. Michael Feuerbacher (FZJ, Jülich, Germany) for sample preparation.

SP655

Static ssNMR and NQR investigation of hexanuclear metallic clusters

Marko Bosiočić¹, Berislav Perić², Miroslav Požek¹, Mihael S. Grbić¹, Pavica Planinić², Regis Gautier³

¹Department of Physics, Faculty of Science, University of Zagreb, Croatia, ²Division of Material Chemistry, Ruder Bošković Institute, Zagreb, Croatia, ³Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes, France. E-mail: bosicic@phy.hr

Hexanuclear metallic clusters $[(M_6L_{12}^i)L_6^a]^{n+}$ (n = 2, 3, 4) are worth studying due to their interesting physical properties which depend on oxidation states n as well as on dimensionality of structures they form. They consist of six metallic atoms M (Nb or Ta), twelve inner ligands L^i (usually Cl or Br) and six apical ligands L^a (H₂O, OH, CH₃OH, Cl...). Especially interesting are paramagnetic clusters with n=3 which have one unpaired electron delocalised over whole cluster unit [1].

Here we present both theoretical NMR/NQR calculations and experimental results on two diamagnetic clusters $[Nb_6Br_{12}(H_2O)_6][HgBr_4] \cdot 12H_2O$, $Nb_6Cl_{12}(H_2O)_4(OH)_2 \cdot 4H_2O$ and paramagnetic one $[Et_4N][Ta_6Br_{12}(H_2O)_6]Br_4 \cdot 4H_2O$ whose structures were previously determined [2]. Static ⁹³Nb and ³⁵Cl NMR spectra were obtained in 12 T field. Zero field NQR measurements on ⁹³Nb, ⁷⁹Br and ⁸¹Br were performed in order to fix EFG parameters for simulation of NMR spectra [3]. Independent GIPAW-DFT calculations of NMR/NQR parameters using CASTEP [4] are in good agreement with experimental results.

This presentation is enabled by the European commission through FP7 project #229390 SOLeNeMaR.

3. T. F. Kemp, M. E. Smith, SSNMR 35, 243-252 (2009)

^{1.} B. Perić et al., Chem. Eur. J., 17, 6263-6271, (2011)

^{2.} M. Vojnović et al., Z. Anorg. Allg. Chem. 623, 1247-1254 (1997), N. Brničević et al., J. Chem. Soc., Dalton Trans.

^{1995, 1441–1446 (1995),} B. Perić et al., J. Solid State Chem., 182, 2443–2450, (2009)

^{4.} S. J. Clark et al., Z. Kristallogr. 5-6, 567-570, (2005)

P_b like paramagnetic center at a-Si:H/c-Si interface detected by EDMR

Benjamin M. George¹, Jan Behrends², Tim F. Schulze¹, Matthias Fehr¹, Lars Korte¹, Manfred Schmidt¹, Alexander Schnegg¹, Klaus Lips¹, Bernd Rech¹

¹Institut für Silizium Photovoltaik, Helmholtz Zentrum Berlin für Materialien und Energie, Kekuléstr. 5, 12489 Berlin, Germany; ²Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany. benjamin.george@helmholtz-berlin.de

Hydrogenized amorphous silicon (a-Si:H)/crystalline silicon (c-Si) hetero-junction solar-cells reach the highest efficiency of silicon solar-cells in mass production. Due to the high quality of the silicon wafer material and the low thickness of a-Si:H used, the passivation quality of interface defects is the process that ultimately determines device efficiency. Furthermore state-of-the-art hydrogenized microcrystalline silicon (μ cSi:H) solar-cells intrinsically possess a high number of a-Si:H/c-Si interfaces at the grain boundaries, and an a-Si:H/c-Si heterojunction can be regarded as an appropriate model system for μ cSi:H. In this study the spectroscopic properties of paramagnetic defects at the a-Si:H/c-Si interface are investigated by low temperature electrically detected magnetic resonance (EDMR). This technique is best suited due to its high sensitivity and the ability to study fully processed solar-cells [1]. Spin-dependent recombination between conduction band tail states in the a-Si:H bulk and a-Si:H/c-Si interface dangling bonds is detected. By taking a rotation pattern it could be shown that the signal originates from the a-Si:H/c-Si interface. The g-tensor of this site on the [111] oriented silicon wafer resembles the values of the well-known P_b center [2] at the SiO₂/Si interface. By way of sample preparation it can be excluded that natural SiO₂ is present at the interface.

REFERENCES:

[1] J. Behrends, A. Schnegg, M. Fehr, A. Lambertz, S. Haas, F. Finger, B. Rech, and K. Lips, Philosophical Magazine 89, 2655-2676 (2009).

[2] A. Stesmans and V. V. Afanas'ev, Journal Of Applied Physics 83, 2449 (1998).

SP657

EPR on TM ions-doped hydrothermally-grown TiO₂ Nanoparticles

Maria Nicoleta Grecu, Daniela Ghica, Doina Tărăbășanu-Mihăilă and Raluca Damian

LASDAM Department, National Institute of Materials Physics, Bucharest-Măgurele, Romania; mgrecu@infim.ro, ghica@infim.ro

Transition-metal (TM) ions-doped semiconducting oxides, such as TiO₂, ZnO, and SnO₂, have received considerable attention in the last years [1], due to many reports of room-temperature ferromagnetism (RTFM). However, their magnetic properties still remain a controversial issue, since the observed magnetic behaviour appears to be strongly dependent on the preparation methods.

In this work we report structural investigations on TiO₂ nanoparticles prepared by a hydrothermal route, with different doping content of transition-metal Fe, Mn, and Co at low concentration (0.1 - 2% at.). X-ray diffraction and transmission electron microscopy revealed the formation of pure anatase TiO₂ phase devoid of elemental TM clusters in all doped samples. Mean crystallite sizes of almost all TiO₂ grains were in the range of 13 - 23 nm. Electron paramagnetic resonance (EPR) was used to investigate the impurity sites, their local environments and interactions between TM ions. The spectra were recorded at different temperatures (100 - 550 K) in X- and Q-band, on as-prepared and annealed doped samples. Each EPR spectrum of Fe³⁺, Mn²⁺, and Co²⁺ is complex and consists of an overlap of spectra, either due to some intrinsic paramagnetic defects (initially existing in the undoped TiO₂ samples) and the incorporated TM ions (interstitially and substitutionally), and/or to the ferromagnetic properties in TiO₂ samples, as revealed by the temperature dependence of EPR spectra [2], is consistent with the bound magnetic polaron (BMP) model of RTFM. It is strongly related to the paramagnetic defects (oxygen vacancies) formed during the preparation of doped TiO₂ nanoparticles.

^{1.} Sundaresan A, Rao C. N. R., Nano Today, 4, 96-106 (2009)

^{2.} Grecu M. N. et al., Phys. Status. Solidi B, 1-5, DOI 10.1002/pssb.201147124 (2011)

Sp658

Phase transition and conductivity mechanism in the ionic conductor Cu₂Hgl₄

Damjan Pelc, Igor Marković, Miroslav Požek

Department of Physics, University of Zagreb, Bijenička 32, HR-10000 Zagreb, Croatia. E-mail: mpozek@phy.hr

The first multinuclear, frequency-dependent NMR investigation of the ionic conductor Cu₂HgI₄ is presented, giving new insights into the ion dynamics in this compound. At 344 K it undergoes a transition from insulator to ionic conductor, which we were able to follow in detail. Pretransitional fluctuations are observed in copper NMR, with a mean-field theory providing an adequate description. Spin-lattice relaxation measurements provide information about defect motion below the transition, with discernible effects from both copper and mercury. At the transition temperature the copper sublattice is disordered, line broadening is observed and the relaxation time drops abruptly for a factor of 50. In contradistinction, the mercury line shows a substantial narrowing in the conductive phase, indicating that Hg^{2+} ions are the main contributors to conduction. This is in disagreement with the consensus view that conduction is dominated by copper ions [1], so we performed constant field gradient diffusion measurements to confirm mercury motion. In the extreme narrowing regime (above ~380 K) the signal decay exactly follows the prediction for diffusing spins [2], providing unambiguous evidence of mercury diffusion. We discuss the role of dynamic correlations in enabling the motion of the large and heavy mercury ions.

This work is enabled by the European Commission through FP7 project #229390 SOLeNeMaR.

- 1. Hull S., Keen D. A., J. Phys.: Cond. Mat. 12, 3751-3765 (2000)
- 2. Hahn E. L., *Phys. Rev.* 80, 580 (1950)

So659

Backbone assignments and structural analysis of the second catalytic cysteine half-domain (SCCH) of mouse ubiquitin-activating enzyme E1

Emilia A. Lubecka¹, Krystian Stodus², Igor Zhukov^{2,3,4} and Jerzy Ciarkowski¹

¹Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland; ²Intitute of Biochemistry and Biophysics PAS, Warsaw, Poland, ³Slovenian NMR Centre, National Institute of Chemistry, Ljublljana, Slovenia, ⁴EN-FIST Center of Excellence, Ljubljana, Slovenia. <u>emilial@chem.univ.gda.pl</u>

Proteins degradation by ubiquitin-proteosome pathway requires jointed action of three enzymes responsible for ubiquitin-activation (E1), conjugation (E2) and ligation (E3). Second catalytic cysteine half-domain (SCCH) is a 276 amino acid residues long fragment of the mouse ubiquitin-activating E1 enzyme contained catalytic cysteine. As demonstrated previously, SCCH is folded autonomously and formed stable 3D structure which was solved by an X-ray and available in pdb databank (1Z7L) [1].

In spite of existence structural data the initial stages of ubiquitin activation process are still not understood in details. In presented work we perform structural analysis of SCCH sub-domain in solution in regard of possibility to obtain complex with ubiquitin in future. The sequence-specific assignments were achieved on a sample of ²H,¹³C,¹⁵N-triple labeled recombinant SCCH using standard heteronuclear HNCA, HN(CO)CA, HNCACB and CB(CO)NH NMR experiments. All data sets were acquired at 298 K on Varian VNMRS 800 NMR spectrometer equipped with cryogenic probe head. At the moment, backbone resonances for 213 residues are successfully assigned. Further structural analysis is performed by TALOS+ and CS23D programs and will be presented on a poster.

Acknowledgements: This work is financially supported by the grant from Polish Ministry of Higher Education N N301 318539 and European FP7 EastNMR project (contract no. 228461) inside of transnational access program. EL has financial support from European Erasmus exchange program. REFERENCES: 1. Szczepanowski R. H., Filipek R. and Bochtler M., *J. Biol. Chem.*, 280, 22006-22011 (2005)

Structural basis of cyclic nucleotide-activated ion channel gating

Sven Schünke^{1,2}, Matthias Stoldt^{1,2}, Justin Lecher^{1,2}, U. Benjamin Kaupp³, Dieter Willbold^{1,2}

¹ Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany; ² Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; ³ Center of Advanced European Studies and Research, Molecular Sensory Systems, 53175 Bonn, Germany; Email: s.schuenke@fz-juelich.de.

Cyclic nucleotide-activated ion channels, known as HCN and CNG channels, play an important role in signal amplification pathways. To elucidate the structural basis of the underlying gating mechanism, high resolution structures of the cyclic nucleotide-binding domain (CNBD) in the apo and holo state are required. Until recently, however, only crystal structures of CNBDs from HCN2 and the prokaryotic CNG channel MloK1 have been known. In the case of HCN2, the apo and holo state did not reveal substantial differences^{1,2}. For MloK1, structural information for the apo state has only been gained from a non-functional mutant CNBD³. In the present study, we describe the solution structures of the apo and holo wild-type CNBD of MloK1^{4,5}. A comparison of these structures reveals large conformational rearrangements upon ligand binding. These structures provide important insights into conformational events that accompany channel gating within the ligand-binding site.

REFERENCES:

- 1. Zagotta W.N., et al., Nature, 425, 200-205 (2003)
- 2. Taraska J.W., et al., Nat. Methods, 6, 532-537 (2009)
- 3. Clayton G.M., et al., Cell, 119, 615-627 (2004)
- 4. Schünke S., et al., EMBO Rep., 10, 729-735 (2009)
- 5. Schünke S., et al., Proc. Natl. Acad. Sci. USA, 108, 6121-6126 (2011)

So661

Structural and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its bio-active analogue

Donal P. O'Flynn¹, Anusha P. Subasinghage¹, J. Michael Conlon², Chandralal M. Hewage¹

¹UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway institute, University College Dublin, Belfield, Dublin 4, Ireland. donal-o.flynn@ucdconnect.ie; ²Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates

Cationic antimicrobial peptides (AMP's) are of particular interest as potential antibiotics due to their broad spectrum of activity [1]. The selectivity of AMP's is a combination of charge, hydrophobicity, secondary structure and target membrane composition, and as a result it is difficult for microbes to acquire resistant to the peptides. The biggest limitation of these peptides is their cytotoxic activity [2]. The aim of this study is to investigate the structure and conformation of the AMP alyteserin-1c and its analogue [E4K]alyteserin-1c in anionic and zwitterionic membrane mimetic media, to represent the bacterial and mammalian cell membranes respectively, in an attempt to gain insight into the activity of the peptides.

The structures of alyteserin-1c and its analogue [E4K]alyteserin-1c were investigated by proton NMR spectroscopy and molecular modelling. The solution structures are characterized by an extended alpha helix in membrane mimicking environments for both peptides. Positional studies indicate that the C-terminal residues do not interact with the micelles while the N-terminal and central residues reside within the micelle and parallel with the polar head groups.

References:

^{1.} Reddy, K. V. R., R. D. Yedery & C. Aranha., International Journal of Antimicrobial Agents, 24(6), 536-547 (2004)

^{2.} Matsuzaki, K., Biochimica et Biophysica Acta (BBA) – Biomembranes, 1788(8), 1687-1692 (2009)

Mechanism of Non-specific Inhibitors of Amyloid Assembly: Interactions of Lacmoid with the Amyloid β peptide

Axel Abelein¹, Benedetta Bolognesi², Christopher M. Dobson², Astrid Gräslund¹, Christofer Lendel³

¹Department of Biochemistry and Biophysics, Stockholm University, Sweden; ²Department of Chemistry, University of Cambridge, UK; ³Department of Molecular Biology, SLU, Uppsala, Sweden. Email: axel@dbb.su.se

Increasing evidence shows a strong link between the self-assembly of the amyloid β peptide (A β) and the pathogenesis of Alzheimer's disease. Soluble oligomeric A β assemblies are thought to be the toxic species causing synaptic and neuronal injury in the patient's brain. Many inhibitors for the oligomerization and/or fibrillation process of neurodegenerative diseases have been reported, yet only little is known about the mechanistic details of these compounds. The present studies concern the interaction of one such inhibitor, Lacmoid (Lac). We investigated this interaction by a broad biophysical approach revealing similar binding characteristics to A β as has been reported for detergents. Furthermore, we show that Lac has the ability to inhibit both oligomeric assembly and fibrillation of A β . Nuclear magnetic resonance experiments show an overall signal decrease upon addition of Lac while the chemical shifts only display small changes. High Lac concentration causes a loss of the major part of NMR signals including ¹H-¹⁵N-HSQC, ¹H-¹⁵N-TROSY and ¹H-¹³C-HSQC cross-peaks. Circular Dichroism spectroscopy was applied to monitor the kinetic aggregation process of A β in presence of Lac. Low Lac concentrations slow down the conversion towards a β -sheet state while at high concentration Lac completely prohibits secondary structure changes.

Taken together, these findings provide the basis for a simple model which could explain how nonspecific interactions with small molecules may interfere with amyloid formation. Understanding the mechanistic details is potentially helpful for future drug design of small molecule therapeutics targeting amyloid disorders, such as Alzheimer's disease.

So663

Insights in domain interactions within type VII collagen studied by NMR

Sarah Leineweber, Sarah Schoenig, Karsten Seeger

Institute of Chemistry, University of Luebeck, Luebeck, Germany

Type VII collagen (Col7) is the major component of the anchoring fibrils of the skin. These fibrils link different skin layers together and contribute essential to skin stability. Mutations within Col7 lead to a heritable skin blistering disease. In addition, an autoimmune disease exists that is characterized by autoantibodies against Col7. Despite the biological importance of Col7 no detailed structural information has been available so far. Col7 has a central collagenous domain that is flanked by two non-collagenous domains with subdomains homolog to fibronectin III (FNIII) and the A3 domain of the von-Willebrand-factor.

Here, we report the cloning, expression and purification of the von-Willebrand-factor-A-like domain 2 of murine Col7 (mvWFA2). Resonance assignment of the domain was performed. Secondary structure prediction by TALOS+ is in agreement with a homology model of mvWFA2 domain. We further analyzed the interaction of mvWFA2 with the neighboring FNIII-like domain 9 (FNIII-9). Chemical shift mapping identified the binding site for FNIII-9 at the N- and C-terminal part of mvWFA2 enabling a first structural insight into the domain architecture of Col7. The interaction site is opposite to potential collagen I binding sites. It might be of more importance in the native molecule due to the direct linkage of the two domains. In addition, this interaction might be influenced by binding of extracellular matrix components.

Our results provide the basis for further structural and functional studies of Col7 and will lead to a better understanding of the pathogenesis of related skin blistering diseases.

POSTER

Characterisation of the Interactions between Integrin α1β1 and Collagens

<u>Yanni Chin</u>¹, Paul A. McEwan², Stephen Headey¹, Jonas Emsley², Terry Mulhern³, Jamie Simpson¹, Martin J. Scanlon¹

¹ Department of Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia; ² Division of Medicinal Chemistry & Structural Biology, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG72RD, UK; ³ Dept Biochem & Mol Biol Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Parkville, Vic 3010 Australia. E-mail: ka-yan.chin@monash.edu

Integrins comprise of a large family of heterodimeric cell surface receptors consisting of an α and a β subunit. They are responsible for mediating cell-extracellular matrix (ECM) and cell-cell interactions, as well as transmitting bi-directional signals across the plasma membrane. Four members of the family are categorized as collagen-binding integrins and are characterized by their ligand specificity for different collagens. These receptors contain an inserted domain (I-domain) in their α -subunit, which is the primary binding site of the receptor for extracellular ligands. Studying the I-domain and its interaction with collagen allows understanding of the nature of the essential structural changes that govern the collagen-binding and signal transmission of the receptor. (1)

The aim of this project is to investigate the interaction between the $\alpha 1\beta 1$ and collagen by studying the specific collagen recognition by the $\alpha 1$ I-domain. The study employed a range of biophysical techniques including surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) that provided kinetic and thermodynamic information of the binding, gel filtration chromatography and SAXS that revealed unexpected stoichiometry of the binding and NMR experiments that provided detailed information on the collagen binding-induced structural changes of the protein. Combining the information generated from all these techniques in conjunction with some mutagenesis studies provided a detailed insight into the interaction. These results are valuable for understanding the biological roles and the regulation of the receptor.

1. Hynes R., Cell, 110, 673-87 (2002)

So665

Solution NMR and biophysical analysis of the cataract-associated R76S mutant of human ©D-crystallin

Fangling Ji, Jinwon Jung, and Angela M. Gronenborn

Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3/1046, Pittsburgh, PA 15260, faj3@pitt.edu

Although a number of ©D-crystallin mutations have been associated with cataract formation, there is no clear understanding of the molecular mechanism(s) that lead to cataracts. As part of our ongoing studies, we investigated the recently discovered Arg76 to Ser (R76S) mutation that is correlated with childhood cataract in an Indian family. We expressed R76S yD-crystallin protein in E. coli and characterized it by CD and fluorescence spectroscopy, as well as determined its thermodynamic stability with respect to thermal and chemical denaturation. No significant biochemical/biophysical differences were observed between the wild type protein and the R76S variant. As expected, replacement of the positively charged arginine side chain by the neutral serine lowered the pI of the protein, and the experimentally determined value was 6.8 compared to the wild-type value of 7.3. We also characterized the solution structure of R76S ©D-crystallin by NMR. Using residual dipolar couplings (RDCs) we showed that overall structure of the mutant is very similar to the wild type structure. Likewise, the protein's dynamics are also unaffected by the mutation: 15N relaxation data, in particular R₂ values are essentially the same as in wild-type ©D-crystallin. Overall, our results suggest that neither structural nor stability changes in the protein are responsible for the R76S ©D-crystallin mutant's association with cataract. Further studies will be necessary to evaluate the functional relevance of the R76S yD-crystallin mutation.

Structure and dynamics of the UNR-SxI-msI-2-mRNA complex in Drosophila dosage compensation

Janosch Hennig^{1,2}, Iren Wang^{1,2}, Fatima Gebauer³, Michael Sattler^{1,2}

¹ Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany, ²Center for Integrated Protein Science Munich (CIPSM), Department Chemie, Technische Universität München, 85747 Garching, Germany, ³Centre de Regulació Genòmica (CRG), Gene Regulation Programme, 08003 Barcelona, Spain.

The protein Upstream to N-Ras (UNR) is the key to understand regulation of gene expression on the translational level. UNR has been implicated in the regulation of mRNA translation in humans, and as such has a direct link to viral diseases and cancer. In Drosophila, its role in dosage compensation is well characterized. Sex-lethal (Sxl), only present in females, binds to msl-2 mRNA and UNR cooperatively, represses translation of msl-2 mRNA and thus expression of X linked genes. In order to understand the molecular mechanism of this process, it is important to understand the structural basis for the cooperative assembly of the Sxl-UNR-msl-2-mRNA complex. UNR consists of five cold-shock domains, and it has been shown that only the first of these domains (CSD1) is needed for the interaction with msl-2 mRNA and Sxl. The region of the mRNA interacting with the proteins has been mapped to involve 18 nucleotides. Importantly, chemical shift titrations revealed that both protein subunits interact in the complex with each other and contact to msl-2 mRNA. Based on chemical shift perturbations, a HADDOCK model has been calculated in order to rationally design cysteine mutation sites for spin labeling. PREs derived from these spin labels together with intermolecular NOEs, RDCs and solvent PREs will be used to determine the high resolution structure of this complex. Static light scattering revealed a 1:1:1 binding stochiometry for the protein-RNA complex, with RNA binding affinity in the nanomolar range. The results of our NMR and structural studies will be presented.

So667

Finding active ligands to kRAS using solution state NMR

[&]<u>Till Maurer</u>, [&]Borlan Pan, [&]Angela Oh, [&]Krista Bowman, [&]Yvonne Franke, [&]Weiru Wang, [&]David Stokoe, ^{\$}Nicholas Skelton, ^{\$}Vicky Tsui, [#]Ben Fauber, [#]Olivier René, [#]Joachim Rudolph, [@]Tony Giannetti, [@]Keith Pitts, [@]Shiva Malek, [@]Ivana Yen, ⁺Hong Li, ⁺Jiansheng Wu, ⁼Lindsay Garrenton, ⁼Guowei Fang

Departments of [&]Structural Biology, [%]Discovery Oncology, [§]Computational Chemistry & Cheminformatics, [#]Discovery Chemistry, [@]Biochemical Pharmacology, ⁺Protein Chemistry and ⁼Cell Regulation, Genentech Inc. 1 DNA Way, South San Francisco 94080 CA, USA

RAS has been the classical oncology target for many years and yet to date; no small molecule drug has been described that targets this protein directly. RAS mutations are drivers for a number of cancers (1) and kRAS (2) is mutated in the majority of pancreatic cancers. We have used a fragment based lead discovery (FBLD) workflow (3) to identify and biophysically characterize binders to kRAS from a library of diverse fragments. Solution state ligand-detected NMR methods were used to identify fragments that bind to the protein. The binders were validated using isotope-labeled protein and amide proton and nitrogen chemical shift perturbations. Ligands were identified that bind to a pocket on a functionally relevant face of kRAS. This region is involved in the interaction of the GTPase activating protein (GAP), the GTP exchange factor (SOS) and the effector (PI3K). The ligand-based screen of 3300 compounds produced 786 primary hits; a cascade of follow-up measurements validated 83. Of those, 25 compounds showed similar chemical shift perturbations indicating one preferred binding site. High-resolution RAS/ligand complex structures were determined by crystallography. Guided by the complex structures, we have identified a small molecule ligand that shows activity in a biochemical assay, underlining the functional relevance of the binding site.

Structure and Molecular Interactions of the RRMs of the splicing factor TIA-1

Iren Wang^{1, 2}, Juan Valcárcel³ and Michael Sattler^{1, 2}

¹ Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; ² Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie, Technische Universität München, Garching, Germany; ³ Centre de Regulació Genòmica, Barcelona, Spain.

Recognition of the short RNA regions for alternative splicing by cognate splicing regulators is important, but many of the versatile interactions remain poorly understood. T-cell intracellular antigen 1 (TIA-1), also known as an apoptosis-promoting factor, can regulate alternative pre-mRNA splicing by binding uridine-rich RNAs and thereby facilitate 5' splice site recognition by U1 small nuclear ribonucleoprotein (snRNP). TIA-1 promotes the inclusion of exon 6 during splicing of human FAS, which encodes a transmembrane protein that triggers programmed cell death. Alternative splicing with skipping of Fas exon 6 results in a soluble anti-apoptotic form that is linked to autoimmune responses. TIA-1 is composed of three RNA recognition motifs (RRM1, RRM2 and RRM3) with a C-terminal glutamine-rich domain. Here, we employ solution state NMR and segmental isotope labelling methods towards understanding the molecular basis of TIA-1 mediated alternative splicing. NMR relaxation data and chemical shift comparisons indicate that the three RRMs of TIA-1 are largely independent structural modules in the absence of RNA. However, a tandem RRM23 construct of TIA-1 shows different tumbling rates for RRM2 and RRM3 in the absence of RNA while a uniform tumbling correlation time is found when bound to a pre-mRNA ligand. We report our NMR structural analysis towards describing the multi-domain arrangement of free and RNA bound TIA-1 and its role in TIA-1-mediated regulation of Fas alternative splicing.

So669

Architecture of the chromatin factor HMGN2-nucleosome complex as revealed by methyl-TROSY NMR

Hugo van Ingen^{1,4*}, Hidenori Kato^{2*}, Bing-Rui Zhou^{2*}, Hanqiao Feng², Michael Bustin³, Lewis E. Kay¹, Yawen Bai²

¹Department of Molecular Genetics, University of Toronto, Toronto, Canada; ²Laboratory of Biochemistry, Center for Cancer Research, NIC, NIH, Bethesda, US;. ³Laboratory of Metabolism, NIC, NIH, Bethesda, USA.; 4present address: NMR Spectroscopy Research Group, Utrecht University, Utrecht, The Netherlands. * These authors contributed equally. E-mail: hugo.van.ingen@gmail.com

Chromatin structure and function are regulated by numerous proteins through specific binding to nucleosomes. The structural basis of many of these interactions is unknown, as in the case of the high mobility group nucleosomal protein family (HMGNs) that regulates various chromatin functions, including transcription. We report the architecture of the HMGN2-nucleosome complex determined by a combination of methyl-TROSY nuclear magnetic resonance spectroscopy and mutational analysis.1

NMR methyl-TROSY spectra of nucleosome (200 kDa) are of excellent quality and allowed us to assign nearly all histone isoleucine, leucine and valine methyl groups. Using these methyl groups as 'reporters' we studied the interaction with HMGN2. We found that HMGN2 binds to both the acidic patch in the H2A-H2B dimer and to nucleosomal DNA near the entry/exit point, thereby "stapling" the histone core and the DNA.

Our results provide insight into how HMGNs regulate chromatin structure through interfering with the binding of linker histone H1 to the nucleosome as well as a structural basis of how phosphorylation induces dissociation of HMGNs from chromatin during mitosis. Importantly, our approach is generally applicable to the study of nucleosome-binding interactions in chromatin and holds great promise for study of nucleosome dynamics.

^{1.} Kato H, van Ingen H, Zhou. B.-R. et al., submitted (2011)

Molecular basis of viral pathogenicity: interaction of the Rabies virus glycoprotein with host neuronal proteins.

Elouan Terrien¹, Florence Cordier¹, Mireille Lafage², Christophe Préhaud², Henri Buc³, Monique Lafon², Muriel Delepierre¹, and <u>Nicolas Wolff¹</u>

1 Unité de RMN des Biomolécules, Institut Pasteur, CNRS URA 2185, Paris France. 2 Unité de Neuroimmunologie Virale, Institut Pasteur, CNRS URA 3015, Paris France. 3 Institut Pasteur, Paris France

Rabies virus hijacks survival regulation of infected neurons to favor its propagation. Virulent strains have optimized the C-terminal sequence of their G protein, encompassing a binding site for PDZ domain (PDZ-BS), to interact with the PDZ domain of the human MAST2 kinase (MAST2-PDZ) triggering neuronal survival. Upon viral infection, we showed that the G protein could disrupt the complex between MAST2 and PTEN, a partner of the kinase and an inhibitor of neuronal survival. We characterized here the unusual binding mode of the MAST2-PDZ/PTEN-C_{TER} and MAST2-PDZ/G-C_{TER} for which structures were solved by NMR. Our structural analyses revealed that viral PDZ-BS binding mimics the mode of interaction of the endogenous ligand PTEN to MAST2-PDZ with the conservation of a large surface of interaction and an original mode of interaction involving two anchorage points. Combining *in vitro* and *in cellulo* results, we concluded that survival phenotype in infected cells is a consequence of the dissociation of MAST2-PDZ/PTEN-C_{TER} complex by the viral G protein that excludes nuclear PTEN.

REFERENCES:

- Préhaud, C., Wolff, N., Terrien, E. et al. (2010), Science Signaling 3, ra5.
- Terrien E et al. (2009) Biomol NMR Assign. Jun;3(1):45-8.

So671

Interaction of Na⁺-translocating NADH:quinone oxidoreductase with quinones characterized by NMR spectroscopy

<u>Ruslan Nedielkov</u>¹, Julia Steuber², Heiko M. Möller¹

¹Department of Chemistry, University of Konstanz, Konstanz, Germany; ²Institute of Microbiology, University of Hohenheim, Stuttgart, Germany e-mail: ruslan.nedielkov@uni-konstanz.de

Poster

The sodium ion-translocating NADH:quinone oxidoreductase (Na⁺-NQR) from *Vibrio cholerae* is a respiratory membrane protein complex that couples the oxidation of NADH and the reduction of membrane-bound quinone to the transport of Na⁺ across the bacterial membrane. The Na⁺-NQR is composed of the six subunits NqrA-F and contains at least five cofactors. The entire mechanism of sodium translocating is still enigmatic and constitutes the major objectives of this project¹.

Here, we present results obtained with the soluble NqrA subdomain of Na⁺-NQR. Protocols for expression and purification of unlabeled, as well as ¹⁵N-labeled NqrA were developed and improved. By saturation transfer difference NMR spectroscopy we could show that ubiquinone Q1 and the inhibitor HQNO bind to the NqrA with the quinone head group and the terminal methyl groups having closest contact to the protein. Surface plasmon resonance and fluoroscence titration experiments indicate that NqrA harbours two sites for quinone binding. This will be investigated further by NMR interaction studies with isotope-labeled NqrA. An initial, promising ¹H-¹⁵N TROSY NMR spectrum has been obtained from fully protonated ¹⁵N-NqrA. Using a perdeuterated NqrA and optimized NMR methods it should be possible to identify the quinone binding pockets of NqrA and to characterize changes of protein structure and dynamics upon ligand binding.

REFERENCES:

^{1.} Bogachev A.V. et al, J. Biol. Chem., 284, 5533-5538 (2009)

POSTER

Structure Determination of Neurolin Ig Domains

Żarko Kulić[#], Claudia A.O. Stürmer*, Günter Fritz^{\$} and Heiko M. Möller[#]

Department of [#]Chemistry/*Biology, University of Konstanz, D-78457 Konstanz, eMail: zarko.kulic@uni-konstanz.de ^{\$}Neuropathology Center, Uniklinik Freiburg, D-79106 Freiburg

The neuronal receptor neurolin is a member of the superfamily of immunoglobulin like receptors. Like it's human homologues ALCAM/RAGE, it plays a central role during neuronal development in the model organism goldfish. Intraocular application of antigen binding fragments and domain-specific antibodies against the first three immunoglobulin domains cause severe pathfinding and fasciculation errors of growing axons in the retina. Especially, the second immunoglobulin domain of neurolin seems to be of great importance for axon pathfinding. However, the molecular mechanisms of these processes are still unclear. Our working hypothesis is that the protein interacts with molecular guiding cues, which lead the growing axons through specific routes to their targets in the tectum opticum. Up to now, neither a structure

of the protein is known, nor have interaction partners been identified.¹

The goal of the present study is to approach both problems using NMR spectroscopy. Protocols for high level expression and purification of different neurolin domains have been developed including a cleavable N-terminal SUMO-tag, serving as an expression and solubility enhancement. High quality NMR spectra could be obtained for the second Ig domain. The resonance and NOE assignment is currently in progress. Further work will aim at the structure determination using NMR based constraints including RDC based refinement. In addition, ligand capture experiments will be performed, in order to identify a potential molecular axon guiding cue. Using methods like *STD NMR*, *Transfered Cross Saturation* or *chemical shift perturbation mapping*, it should be possible to determine the binding mode between the two interaction partners.

REFERENCES: 1. Drees C. et al., Protein Expr. Purif., 59, 47-54 (2008)

So673

Direct NMR Evidence for Non-native Interactions in the Denatured State of an Ultrafast-folding Mini-protein

Per A. Rogne¹, Przemyslaw Ozdowy¹, C. Richter², K. Saxena², H. Schwalbe², Lars T. Kuhn¹

¹European Neuroscience Institute (ENI), Grisebachstrasse 5, 37077 Göttingen, Germany; ²Institute for Org. Chem. and Chem. Biology, Goethe-University Frankfurt, N160-304, 60438, Frankfurt/Main, Germany; P. Rogne@eni-g.de

Deciphering the process of how nascent polypeptide chains attain a native fold only within a few tenths of a second in the crowded environment of a living cell has recently been acknowledged as a key element for better understanding how the formation of pathogenous protein aggregates occurs *in vivo*. Residue-specific spectroscopic information on unfolded protein states, however, remains sparse due to their intrinsic conformational heterogeneity and dynamic nature.

Here, we present NMR data on the 6 M urea-denatured state of the ultrafast folding TC5b molecule, a small peptide exhibiting natively a globular fold and long-range interactions. By combining 2D NMR spectroscopy together with ¹⁵N relaxation experiments on the unfolded state of TC5b and a structurally optimized point mutant, we are able to highlight the importance of both native *and* non-native interactions for ultrafast and productive refolding. Among other things, NOE contacts between Trp and aliphatic amino acids exhibiting both native *and* non-native character were identified. Moreover, a mutationally induced enhancement of the nucleation site's hydrophobicity led to the detection of not only additional non-random interactions but also a concomitant acceleration of refolding rates. The results are complemented with ¹⁵N $R_{1,2}$ and het. NOE measurements thus providing distance-independent sources of structural information.

Hence, our data productively contribute to the ongoing discussion of how only a few sequence determinants can direct the entire folding pathway of globular proteins starting from the very early stages of structure formation.

Structural basis of galectin-1 dependant pre-BCR activation

Elantak L¹, Bonned A², Bornet O¹, Breton C², Roche P¹, Schiff C² and Guerlesquin F¹.

¹Laboratoire Interactions et Modulateurs de Réponses, CNRS/IMM, Marseille, France. ²Centre d'immunologie de Marseille-Luminy, Marseille, France.

During B cell differentiation in the bone marrow, pre-B cells express a pre-B cell receptor (pre-BCR) composed of an immunoglobulin heavy chain (Igµ) and a surrogate light chain made of the $\lambda 5$ and VpreB proteins. Expression and activation of this receptor constitutes a crucial checkpoint for B cell development. Pre-BCR interacts, via the unique region of $\lambda 5$ (UR- $\lambda 5$), with the β -galactoside binding protein, galectin-1 (GAL1) (1). This interaction is associated to the formation of a synapse between pre-B cell and stromal cell leading to pre-BCR relocalization and activation. First, the structure we solved by NMR revealed that UR- $\lambda 5$ interacts with GAL1 via a stable previously undescribed α -helix which lies on a mostly hydrophobic patch at the surface of GAL1. Second, we have investigated Gal-1/oligosaccharide specificities using an NMR/molecular dynamics combined approach (2-3). Finally, we are planning lectin microarrays experiments to investigate the glycosylation state of pre-B cell and stromal cell, with the aim to determine the galectin-1 specificity involved in cell/cell recognition necessary for synapse formation.

REFERENCE

- (1) Gauthier L, Rossi B, Roux F, Termine E, & Schiff C. Proc Natl Acad Sci USA 99(20):13014-13019. (2002)
- (2) Meynier, C., Guerlesquin, F. and Roche, R. J. Biomol. Struct. Dynamics 27, 49-58. (2009)
- (3) Meynier, C., Feracci, F., Espeli, M., Chaspoul, F., Gallice, P., Schiff, C., Guerlesquin, F., and Roche, P. Biophysical J. 97, 3168-3177. (2009)

So675

Protein dynamics modulate function in case of cellular retinol-binding proteins

Christian Lücke¹, Ulrich L. Günther², Davide Cavazzini³, Gian Luigi Rossi³ and Lorella Franzoni⁴

¹Max Planck Research Unit for Enzymology of Protein Folding, Halle (Saale), Germany, e-mail: luecke@enzyme-halle.mpg.de; ²CR UK Institute for Cancer Studies, University of Birmingham, UK; ³Department of Biochemistry and Molecular Biology, University of Parma, Italy; ⁴Department of Experimental Medicine, Section of Chemistry and Structural Biochemistry, University of Parma, Italy

Vitamin A trafficking and metabolism are regulated inside the cell primarily by specific highaffinity carriers called cellular retinol-binding proteins types I and II (CRBP-I, CRBP-II). They belong to a large family of ubiquitous intracellular lipid-binding proteins (i-LBPs) that feature a β -barrel structure with an internal water-filled cavity where the hydrophobic ligand is bound. Expression patterns, affinities for retinoids, as well as interactions with enzymes and membranes are unique to each CRBP. Although both homologs exhibit the same structural topology and identical retinolbinding motifs, the K_d values for example differ by two orders of magnitude. The goal of our research is to elucidate the molecular basis of the dramatic discrepancies between CRBP-I and CRBP-II.

Based on ¹⁵N relaxation dispersion, line-shape analysis as well as H/D exchange, we recently have demonstrated major differences in the backbone dynamics of these two CRBP types, which indicated diverging mechanisms of ligand entry into the binding cavity^{1,2}. Here we continue to investigate retinol uptake and release in the presence of membrane mimetics by examining the effects of lipid bilayers on CRBP structure and dynamics.

^{1.} Mittag T., Franzoni L., Cavazzini D., Schaffhausen B., Rossi G.L. and Günther U.L., J. Am. Chem. Soc., 128, 9844-9848 (2006)

^{2.} Franzoni L., Cavazzini D., Rossi G.L. and Lücke C., J. Lipid Res., 51, 1332-1343 (2010)

Structural insights into a class of fibril-forming fungal proteins

Vanessa K. Morris, Ann H. Kwan, Joel P. Mackay and Margie Sunde

School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia

Hydrophobins are small fungal proteins that self-assemble into amphipathic monolayers at hydrophobic:hydrophilic interfaces. Hydrophobins are secreted by all filamentous fungi and play diverse roles in their development and reproduction. There are two classes of hydrophobins that are characterised by different monolayer morphologies and stabilities. Class I hydrophobin monolayers are formed by the lateral assembly of amyloid-like fibrils called rodlets. These hydrophobins are stable and monomeric in solution, but at interfaces they undergo a conformational change which allows formation of the rodlet monolayer, however, structural information about this process is lacking. We have solved the monomeric solution structure of a class I hydrophobin, DewA from *Aspergillus nidulans*, using solution NMR spectroscopy. There is only one other class I hydrophobin, EAS from *Neurospora crassa*, for which the structure has been elucidated. These two proteins have been found to form monolayers with the same morphology, and are known to fulfill similar roles *in vivo*; however, their sequences and structures are very different. We are now studying the assembled forms of these proteins using magic-angle spinning solid-state NMR in order to understand the structural conversions that take place in this family of unique proteins.

So677

'Prepared orientation' of tandem domains in HMGB2 revealed by DIORITE

Shin-ichi Tate¹, Jun-ichi Uewaki¹ and Naoko Utsunomiya-Tate²

¹Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan; ²Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan. tate@hiroshima-u.ac.jp

HMGB2 protein consists of tandem HMG-boxes that function as DNA binding domains. These two domains are linked by a short linker. We found the inter-domain linker has specific contact to the N-terminal HMG-box *via* CH- π interactions. Although the inter-domain linker is essentially flexible as characterized by low ¹⁵N {¹H}NOEs, we found through the NMR analyses on weakly-aligned samples that the CH- π interactions define a preferential relative domain orientation of the tandem boxes as a dynamic average. The tandem domains linked by the short linker, therefore, should have '*prepared orientation*'; in the *prepared* domain orientation, the DNA binding surfaces of the HMG-boxes face to the same side to prompt their cooperative DNA binding.

The mutant losing the CH- π interactions has shown the different domain orientation relative to the wild-type, in which the DNA binding surfaces of the boxes face differently to each other. The DNA bending activity of the mutant, which was assayed by the DNA circularization, significantly reduced from that of the wild-type. Overall, present work has revealed that the inter-domain linker in HMGB2 has a role to make *'functionally prepared domain orientation'*, even though the orientation is not defined in static but in a dynamic averaging.

As a technical aspect of this work, because of the highly anisotropic shape of HMGB2, our devised DIORITE¹ (Determination of the Induced ORIentation by Trosy Experiments) was essential in determining the relative domain orientation. This will be also described in the presentation.

Ras Homolog Enriched in Brain (Rheb) Enhances Apoptotic Signaling

Sascha Karassek¹, Carsten Berghaus², Melanie Schwarten², Christoph G. Goemans¹, Nadine Ohse³, Gerd Kock², Katharina Jockers², Sebastian Neumann¹, Sebastian Gottfried¹, Christian Herrmann³, Rolf Heumann¹, and Raphael Stoll²

From the Departments of ¹Molecular Neurobiochemistry, ²Biomolecular NMR, and ³Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany, E-mail: raphael.stoll@rub.de.

Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, $TNF\alpha$, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced byUV light orTNF α but did not prevent Rheb-mediated apoptosis. We have determined the structure of Rheb-GDP by NMR spectroscopy. The complex adopts the typical canonical fold of Ras GTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR spectroscopy revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV orTNF α -induced apoptosis and suppressed enhancement by Rheb overexpression. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.

REFERENCES:

1. Karassek, S., Berghaus, C. et al., The Journal of Biological Chemistry, 285, 33979-33991 (2010)

So679

Different DNA Polymerase Conformations When Encountering Matched, Mismatched, and Abasic Template Sites

Bastian Holzberger, M. Gabriele Pszolla, Andreas Marx & Heiko M. Möller

Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, D 78457 Konstanz, Germany Heiko.Moeller@uni-konstanz.de

The intrinsic accuracy of DNA polymerases is key to maintaining correct genome replication. Discrimination between correct and incorrect nucleotides is believed to be based on a series of conformational alterations leading from a conformation with an open, solvent exposed active site to a closed conformation triggered upon nucleotide binding. To investigate conformational changes of the KlenTaq DNA polymerase we introduced 13 spin probes using [methyl-¹³C]methionine. Following the chemical shift changes of these labels allowed us to monitor primer/template complex and nucleoside triphosphate binding as clearly distinguishable events. Mismatched complexes were found to adopt unique conformations for incorrect base pair formation that are clearly distinct from the match case and are rather related to the binary,

open complex. Similar results were obtained when we investigated incorporation opposite an abasic site template. Our observations suggest that in non-canonical cases the transition from an open complex into a closed, productive complex is hampered explaining the significantly reduced catalytic efficiencies for catalyzing non-canonical nucleobase pairs.

Mechanism of Multivalent Carbohydrate-Protein Interactions Studied by EPR Spectroscopy

Patrick Braun, Bettina Nägele, Valentin Wittmann, and Malte Drescher

Department of Chemistry, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany; E-Mail: Patrick.Braun@uni-konstanz.de

The inhibition of carbohydrate-protein interactions by tailored divalent ligands is a powerful strategy for the treatment of many human diseases.

A series of spin labeled divalent N-Acetylglucosamine (GlcNAc) derivatives were synthesized and the interaction with plant lectin wheat germ agglutinin (WGA) ^[1] was studied with cw- and pulsed two-frequency EPR-spectroscopy.

Chelating binding of the divalent ligand bridging adjacent binding sites can be directly distinguished from monovalent binding of other ligands with a linker too short to bridge binding sites. In addition, analysis of intermolecular spin interactions between different ligands bound to the same multivalent protein provides hints which of the eight proposed carbohydrate binding sites are preferentially occupied.

In summary, experimental data show a detailed picture of the molecular binding mechanism of these mono- and divalent ligands to WGA and for the first time structural evidence of multivalent protein-ligand interaction in solution can be observed.^[2]

REFERENCES:

1. Schwefel D., Maierhofer C., Beck J., Seeberger S., Diederichs K., Möller H. M., Welte W., Wittmann V., J. Am. Chem. Soc., 132, 8704-8719 (2010) 2. Braun P., Nägele B., Wittmann V., Drescher M., Angew. Chem., Int. Ed., accepted

So681

NMR characterization of hPEBP bindin with locostatin and analogs

Laurette Tavel¹, Yannis Karsisiotis¹, Sylvain Routier², Alexis Bouet², Laurence Jouvensal³, Françoise Schoentgen⁴, Guillaume Gabant³, Martine Cadene³, Christian Damblon¹

¹Department of Chemistry, University of Liège, Liège, Belgium ;²ICOA, University of Orléans, Orléans, France; ³ CBM, CNRS, Orléans, France; ⁴IMPMC, University Pierre & Marie Curie (P6), Paris, France; Itavel@ulg.ac.be

The Phosphatidyl Ethanolamine Binding Protein (PEBP) family of proteins is widely distributed, from bacteria to mammals. In mammals, PEBPs have been described to modulate important cell mechanisms, such as the control of heterotrimeric G-proteins, the inhibition of Mitogen-actived protein-kinase . Human PEBP affects various cellular processes and is implicated in metastasis formation and Alzheimer's disease.

Locostatin is the only known ligand of PEBP with an effect on its activity. Locostatin was found in a chemical genetics screen in a cell migration assay, and PEBP identified as the relevant cellular target.

Locostatin is a michael acceptor for which the nuclophilic reactant on the protein is unknown.

We have used 13C labelled locostatin and the combination of HCCH tocsy and 13C HSQC to identify the different locostatin addition products.15N labelled protein has been used to identify the locostatin and locostatin analogs binding sites.

Conformational consequences of binding of aggregation inhibitors to monomeric tau

Mariusz Jaremko^{1,2}, Stefan Bibow¹, Ozenne Valerie⁵, Łukasz Jaremko^{1,3}, Jacek Biernat⁴, Martin Blackledge⁵, Eckhard Mandelkow⁴, Markus Zweckstetter¹

¹ Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; ² Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; ³ Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093, Warsaw, Poland; ⁴ Max Planck Unit for Structural Molecular Biology, Hamburg, Germany; ⁵ Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF UMR 5075, 41 Rue Jules Horowitz, Grenoble 38027, France a weil: arthropart@matar@matardomail.com

e-mail: antypater@gmail.com

In many neurodegenerative disorders wrongly folded species form abnormal deposits in the brain. In this study we focus on the intrinsically disordered protein Tau (1), that is one of the main agents associated with Alzheimer disease. The physiological role of Tau is the stabilization and regulation of microtubules and the support of the outgrowth of axons (2,3). In Alzheimer disease an extensively phosphorylated Tau no longer binds to microtubules and aggregates into intracellular neurofibrially tangles. There is great interest to find small molecules that can inhibit tau aggregation and to understand their mechanism of action. Here we probed the impact of a selected Tau aggregation inhibitor on the conformational sampling of the Tau backbone using residual dipolar couplings. Quantitative analysis of N-H^N, C α -H α , CO-C α , CO-H^N RDCs provided first insights into its mechanism of action.

REFERENCES:

Schweers O, Schonbrunnhanebeck E, Marx A, Mandelkow E., J Biol Chem. 269, 24290–24297 (**1994**). Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. Proc Natl Acad Sci U S A. 72, 1858–1862 (**1975**). Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. Int Rev Cytol. 210, 163–226 (**2001**).

So683

Searching for low molecular weight ligands stabilizing membrane proteins fold – aid in structural biology studies by means of NMR

Łukasz Jaremko^{1,3}, Mariusz Jaremko^{1,2}, Andrei Leonov¹, Stefan Becker¹, Markus Zweckstetter¹

¹ Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; ² Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; ³ Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093, Warsaw, Poland

e-mail: jaremko@gmail.com

Structure determination of membrane proteins using X-ray crystallography and NMR is often complicated by the intrinsic dynamics of membrane proteins. At the same time, high-affinity ligands might stabilize the membrane protein fold upon binding and thus allow structure determination of the resulting complex. A biologically highly important membrane protein, for which the high-resolution structure is not yet known due to its dynamic nature, is the mitochondrial 18 kDa translocator protein (1,2). Here we demonstrate that the tertiary fold of the translocator protein might be stabilized by selected natural and synthetic ligands such as cholesterol, etifoxin and PK11195 (1) as monitored by solution-state NMR. On the basis of 2D [¹H,¹⁵N] HSQC spectra of ¹⁵N-labelled translocator protein in the presence of ligands we estimate theirs suitability for structural studies by means of solution NMR techniques.

REFERENCES:

Murail S, Robert JC, Coïc YM, Neumann JM, Ostuni MA, Yao ZX, Papadopoulos V, Jamin N, Lacapère JJ., Biochim Biophys Acta. 1778(6), 1375-1381 (2008).

Korkhov VM, Sachse C, Short JM, Tate CG, Structure. 18(6), 677-687 (2010).

NMR-compartible expression tag provides new perspectives in the study of proteins and their interactions.

<u>Vladimir V. Rogov</u>^{1,2}, Alexis Rozenknop^{1,3}, Natalia Yu. Rogova¹, Frank Löhr¹, Victor Zharavin¹, Suhas Tikole¹, Peter Güntert¹, Ivan Dikic^{3,4,5} and Volker Dötsch¹.

¹Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany (e-mail: rogov@bpc.uni-frankfurt.de); ²Institute of Protein Research, Puschino, Russia; ³Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany; ⁴Mediterranean Institute for Life Sciences, Split, Croatia; ⁵School of Medicine, University of Split, Split, Croatia

Expression, isolation and purification of the peptides and proteins are the crucial initial steps in the studies of their structural and functional organization. In the last years many reports showed the progress in efficient expression and isolation of peptides and proteins using fusion technology with various expression and solubility tags - GST, NusA, SUMO, ubiquitin, GB, etc. However, most biophysical applications require to remove the tag and to operate with the highly purified target peptides and proteins. Therefore, benefits of the well expressed authentic polypeptides within fusion construct could be lost after the rigorous procedures of its purification. Especially it is a main concern in the case of short peptides. In order to overcome this unfavorable situation, we have engineered an expression vector, possessing an N-terminal modified Ub tag for effective expression of fused peptides and proteins, an internal His(6) tag, and the TEV cleavage site. Using the new vector, we have expressed in *E.coli* more than 10 different targets (peptides and proteins) with an increased yield and used them later in our NMR, CD and ITC studies with and without TEV protease cleavage and following isolation of the target polypeptides. We have found that the fusion constructs are in all cases identical in biophysical properties to the isolated and purified original peptides and proteins. This observation opens an avenue for the complete, fast and efficient characterization of peptides/proteins structures, intermolecular interactions and functional features.

So685

Investigation of HSA binding to skin sensitisers by STD-NMR

José R. Ascenso, Alexandra M. M. Antunes, Maria M. Marques, Joana Ferreira

Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal; jose.ascenso@ist.utl.pt

Human Serum Albumin (HSA) is used as a tool to investigate protein haptenation mechanisms, particularly by skin allergens¹, since approximately 40% of extravascular HSA is located in the skin. Aldehydes react reversibly with nitrogen bionucleophiles (e.g. lysines) yielding a Schiff base covalent adduct² which can be at the genesis of adverse allergenic reactions promoted by this class of compounds. In this work we report the determination of dissociation constants of two very weak skin sensitisers: benzaldehyde (I) and vanillin (II), and of two moderate skin sensitisers: cinnamaldehyde (III) and phenylacetaldehyde (IV) with HSA protein using the STD method³. STD titration with the two food flavouring aldehydes (I) and (II) yielded $K_D 21870\mu$ M and $K_D 9512\mu$ M. Similarly, for aldehydes (III) and (IV) we got $K_D 7826\mu$ M and $K_D 76256\mu$ M, respectively. Our results indicated that STD spectroscopy can be applied to the measurement of Schiff base and Michael addition aldehyde dissociation constants with HSA and that a clear relationship between the protein reactivity pkD, the aldehyde hydrophilicity logP(octanol/water) and the allergenic potency of each aldehyde log1/EC3 can be drawn.

1. Divkovic M., Pease C.K., Gerberick G.F., Basketter, Contact Dermatitis, 53, 189-200(2005).

We thank Portuguese National NMR Network for providing us the NMR facility.

^{2.} Törnqvist M., Fred C., Haglund J., Helleberg H., Paulsson B.; Rydberg P., J. Chromatogr. B, 778, 279–308(2002).

^{3.} Mayer M., Meyer, B., J. Am. Chem. Soc., 123, 6108-6117(2001).

NMR Structure of Protein NP_888769.1, a Phage-Related Protein in the Bordetella bronchiseptica Genome

<u>Atia-tul-Wahab^{1,2}</u>, Pedro Serrano², Michael Geralt², Kurt Wüthrich²

¹Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, ²Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, Email: <u>atiatul.wahab@iccs.edu</u>

The NP_888769.1 is hypothetical phage-related protein, isolated from Gram-negative bacterium *Bordetella bronchoseptica*. As a result of our work, the complete three-dimensional dynamic structure of the first member of this novel protein family PF13554 of unknown structures was determined by using automated NMR protocol, which include APSY-NMR experiments and the software UNIO for the backbone and side chain assignments. CYANA was used for the structure calculation of NP_888769.1. The protein showed a well-structured core comprising a five-stranded, antiparallel β -sheet packed on one side against two α -helices and a short β -hairpin with three flexibly disordered loops extending from the central β -sheet. The protein was functionally annotated as Mg⁺⁺ binding protein using NMR experiments. The homolog of Np_888769.1, identified by software DALI with Z-scores > 8, was found to be oligomerized with the 40 mM Mg⁺⁺, while No_888769.1 did not show oligomerization even at 200 mM Mg⁺⁺. A sequence-homology analysis confirmed that NP_888769.1 represents the first three-dimensional structural representative of a new protein family, which includes so far about 20 prophage proteins encoded in bacterial genomes.

REFERENCES:

- 1. Hiller S., Fiorito F., Wüthrich K., Wider G. Proc. Natl. Acad. Sci. USA 102, 10876–10881 (1993).
- 2. Volk J., Herrmann T., Wüthrich K. J. Biomol. NMR 41, 127–138 (2008).
- 3. Holm L., Sander C. J. Mol. Biol. 233, 123–138 (1993).

So687

The oxidative protein folding pathway in mitochondria by NMR

¹Lucia Bancia, ¹Ivano Bertini, ¹Vito Calderone, ¹Chiara Cefaro, ¹Simone Ciofi-Baffoni, ¹<u>Angelo Gallo</u>, ²Emmanouela Kallergi, ²Eirini Lionaki, ²Charalambos Pozidis, and ²Kostas Tokatlidis

¹Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; ²Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, 71110 Crete. gallo@cerm.unifi.it

The oxidative protein folding in the mitochondrial intermembrane space requires the transfer of a disulfide from MIA40 to the substrate. During this process MIA40¹ is reduced and regenerated to a functional state following interaction with the flavin-dependent sulfhydryl oxidase ALR. We describe, for the first time at the molecular level, the folding process of a MIA40-substrate, COX17, starting from its unfolded state through all of the intermediate steps². We found that COX17 is largely unfolded in the cytoplasm and that MIA40 in the IMS induces a conformational transition in a specific targeting region of the protein, from an unstructured to an α -helical state, upon the formation of an intermolecular disulphide bonded COX17-MIA40 complex.

The molecular basis of ALR-MIA40 interaction that regenerates MIA40 in its functional state has been characterized at atomic resolution by biochemical and structural analyses of the mitochondrial ALR isoform and its covalent mixed disulfide intermediate with MIA40³.

We found that the hydrophobicity-driven binding in both cases ensures precise protein-protein recognition needed for an efficient electron transfer process.

^{1.} Banci L., Bertini I., Cefaro C., Ciofi-Baffoni S., Gallo A., Martinelli M., Sideris D.P., Katrakili N., Tokatlidis K., *Nat Struct Mol Biol* 16,198-206 (2009)

Banci L., Bertini I., Cefaro C., Cenacchi L., Ciofi-Baffoni S., Felli I. C., Gallo A., Gonnelli L., Luchinat E., Sideris D.P., Tokatlidis K., *PNAS* 107(47), 20190-20195 (2010)
 Banci L., Bartini L., Cafaro C., Ciofi Baffoni S., Gallo A., Kallergi F., Lionaki F., Bartidis C., Takatlidis K., *PNAS* 108, 4811 4816

^{3.} Banci L., Bertini I., Calderone V., Cefaro C., Ciofi-Baffoni S., Gallo A., Kallergi E., Lionaki E, Pozidis C., Tokatlidis K., PNAS 108, 4811-4816 (2010)

The DNA binding RecQL4 N-terminal domain

Oliver Ohlenschläger, Sebastian Haumann, Peter Bellstedt, Annerose Schneider, Frank Grosse, Ramadurai Ramachandran, Helmut Pospiech & Matthias Görlach

¹Biomolecular NMR Spectroscopy and ²Biochemistry, Leibniz Institute for Age Research / Fritz Lipmann Institute (FLI), D-07745 Jena, Germany.

RecQ helicases (BLM, WRN, RecQL4) are essential for the maintenance of genomic integrity and their dysfunction in DNA replication results in defined syndromes such as cancer predisposition and premature ageing. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, the RAPADILINO and the Baller-Gerold syndromes¹. Moreover, it was reported that RecQL4 is involved in prostate carcinogenesis². Recently, we have determined and refined the solution structure of a functional part of the N-terminal domain of RecQL4 in *E. coli* (PDB code: 2KMU, r.m.s.d. 0.68 Å), which is essential for viability in mouse models. Despite low sequence homology it exhibits a surprising structural similarity to homeodomain proteins but lacks their archetypical minor groove binding N-terminal extension. Our NMR and binding data indicate a non–sequence specific DNA–binding similar to homeodomains with a major contribution of helix α 3. We also observe a higher affinity and involvement of a subset of Arg residues in binding of Y-shaped DNA as compared to regular dsDNA.

REFERENCES:

2. Su Y., Meador J.A., Calaf G.M., Proietti De-Santis L., Zhao Y., Bohr V.A., Balajee A.S., Cancer Res. 70, 9207-9217 (2010)

So689

NMR Analysis on the Interactions between a Mitochondrial Oxidative Translocator Tim40/Mia40 and a FAD-Linked Sulfhydryl Oxidase Erv1

Takahiro Anzai, Shin Kawano, Ikuya Wakamori, Kayoko Terao and Toshiya Endo

Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan anzai@biochem.chem.nagoya-u.ac.jp

An oxidative folding system has been recently discovered in the mitochondrial inter membrane space (IMS). Most mitochondrial IMS proteins are synthesized in the cytosol as a precursor protein and imported into mitochondria. Tim40/Mia40 introduces a disulfide bond into these precursor proteins as a substrate by forming a mixed disulfide-bond intermediate, which allows their oxidative folding. Erv1 is a FAD-linked sulfhydryl oxidase and specifically oxidizes reduced Tim40. We have succeed in determination of the crystal structure of the "Tim40-substrate complex" as a Tim40 fusion protein with a substrate peptide at N-terminus (MSP1-Tim40). Although high-resolution structures of Tim40¹⁻³ and Erv1⁴ are available, little is known about the recognition and interactions between Tim40 and Erv1. Here we report the interaction analysis for Tim40 and Erv1 using PRE-NMR.

We prepared spin-labeled Erv1 (Erv1-MTSL ((1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)-methanesulfonate)) and analyzed its interactions with Tim40 and MSP1-Tim40. When we added Erv1-MTSL to ¹⁵N-labeled Tim40, its HSQC spectra with or without ascorbic acid were only slightly affected. In contrast, when we added Erv1-MTSL to ¹⁵N MSP1-Tim40, we observed significant changes in its HSQC spectra with or without ascorbic acid. In particular, signals from MSP1 and its nearby region of Tim40 were affected by Erv1-MTSL. These results suggest that Erv1 binds to the substrate and/or substrate-binding region of Tim40 and the substrate bound to Tim40 may enhance the interaction between Erv1 and Tim40.

^{1.} Kellermayer R., Genet. Med., 8, 213-216 (2006)

Banci L et al., Nat. Struct. Mol. Biol, 106, 198-206 (2009)
 Vitu E et al., J. Mol. Biol., 362, 89-101 (2006)

Metal chaperons and their metal binding sites

<u>Beate Bersch</u>¹, Adrien Favier¹, Catherine Bougault¹, Bernhard Brutscher¹

Biomolecular NMR group, Institut de Biologie Structurale – J.-P. Ebel, CEA-CNRS-UJF, Grenoble, France. email: beate.bersch@ibs.fr

ABSTRACT NMR is a powerful technique for the study of molecular complexes. We are interested in metal proteins and the chosen examples will illustrate identification of Cu^+ , Ag^+ , and Zn^{2+} binding sites in metal chaperons using mainly NMR data. In addition, other spectroscopic techniques

as for example X-ray absorption or Electron Paramagnetic Resonance spectroscopy can provide geometric information on the ligand sphere that complete distance information from NMR experiments. We will also report on the conformational changes proteins undergo upon metal binding.

REFERENCES:

Bersch, B., Derfoufi, K.-M., De Angelis, F., Auquier, V., Ngonlong Ekendé,
 E., Mergeay, M., Ruysschaert, J.-M., Vandenbussche, G. *Biochemistry*, 50, 2194-2204 (2011)

2. Sarret G., Favier A., Covès J., Hazemann J.-L., Mergeay M., Bersch B. J. Am. Chem. Soc., 132, 3770-3777 (2010)

So691

From Proteins To Cancer: Structure and Interaction of the HPV Oncoprotein E6

André Mischo, Thomas Seiboth, Angelika Heller, Ramadurai Ramachandran, Jörg Leppert, Oliver Ohlenschläger and Matthias Görlach

amischo@fli-leibniz.de; Biomolecular NMR Spectroscopy, Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany

High-Risk Human Papilloma Virus (HR HPV) infections of basal epithelial cells of the cervix cause cervical cancer. The oncoproteins E6 and E7 are responsible for inducing and maintaining the malignant phenotype by reprogramming host cells through interaction with a variety of key regulatory cellular proteins.

Here, we present the solution structure of the C-terminal domain of the HR HPV51 E6 (RMSD 0.55 Å). Also, we have addressed the interaction of E6 with hDlg/SAP-97. This interaction is thought to induce E6 mediated degradation of hDlg, which in turn contributes to progression from G0/G1 to S phase and to subversion of cell polarity, thereby possibly promoting metastasis.

A method for the production of ¹³C- and /or ¹⁵N-labelled peptides without undesired residues was developed and exploited for the generation of an E6-derived peptide. A full structural analysis of a complex consisting of that peptide bound to hDlg PDZ domain 2 is ongoing. It already became clear that more E6 residues than anticipated contribute to complex formation and significantly enhance the affinity of the E6-hDlg PDZ2 interaction.

Structural organisation of the box C/D s(no)RNP complex in solution

<u>Audronė Lapinaitė¹</u>, Magdalena Rakwalska-Bange¹, Bernd Simon¹, Frank Gabel², Lars Skjaerven¹ and Teresa Carlomagno¹

1. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg, Germany; e-mail:audrone.lapinaite@embl.de;

2. Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS), Grenoble, France

Post-transcriptional RNA modifications in eukaryots are carried by RNA-protein complexes, where the specificity is ensured by small guide RNAs.

Our research is focused on the 2'-OH methylation of RNA which is mediated by the box C/D sRNP complex. The archaeal sRNP complex is constituted by three different proteins – L7Ae, which recognizes the box C/D RNA motif, Nop5 and Fibrillarin, which is a SAM-dependent methyltransferase. Proteins assemble around the methylation guide RNA containing two similar conserved motifs: box C/D and box C'/D'. The guide RNA in sRNP forms base pairs with complementary target RNAs and selects the methylation site.

In the past year two groups presented two different structures-models of the box C/D sRNP complex. In the classical mono-RNP model, the catalytically active complex is constituted by two copies of each protein assembled around one molecule of guide RNA ($\sim 200 \text{ kDa}$) [1], whereas in the di-RNP model the complex is constituted by four copies of each protein and two copies of guide RNA ($\sim 400 \text{ kDa}$) [2].

We aim at solving the structure and the mechanism of the box C/D sRNP complex **in solution** by using a combination of solution state NMR, SANS and molecular modeling.

REFERENCES: (Word Style "5_References") 1. Lin J. et al. *Nature* 469, 559-563 (2011). 2. Xue S. et al. *Mol Cell* 39, 939-949 (2010).

So693

Influence of endogenic post-translational S-nitrosylation on human S100A1 protein structure under physiological conditions

Martina Lenarčič Živković^{1*}, Monika Zaręba-Kozioł², Liliya Zhukova², Jaroslaw Poznanski², Igor Zhukov^{1,2,3} and Aleksandra Wyslouch-Cieszyńska²

¹National Institute of Chemistry, Slovenian NMR Centre. Hajdrihova 19, 1001 Ljubljana, Slovenia, ²Institute of Biochemistry and Biophysics, Polish Academy of Sciences. Pawińskiego 5a, 02-106 Warsaw, Poland, ³EN-FIST Center of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia, *e-mail address: martina.lenarcic@ki.si

S100A1 is a small EF-hand containing Ca^{2+} -binding protein belonging to S100 protein family. It exists as a homodimer. The molecular basis of S100A1 protein regulation is not fully understood. *In vitro* experiments on Ca^{2+} binding show a significant decrease in binding affinity in buffers with close to physiological ionic strength in comparison to low ionic strength buffers. Previous studies demonstrate that post-translational modifications of unique Cys85 result in increase of Ca^{2+} affinity and notable structural changes of S100A1 protein¹⁻³. Estimation of changes induced by *S*-nitrosylation, predominant modification of conserved cysteine, is thus important for understanding the mode of cellular signal transduction mediated by nitric oxide. Therefore, we determined the 3D structure of human *apo*-S100A1 protein with C-terminal *S*-nitroso Cys85 (*apo*-S100A1-*NO*) and compared this structure to that of *apo*-S100A1 protein at the same conditions. *S*-nitrosylation provided structural differences which could explain higher Ca^{2+} affinity. Also, we have noticed some features which imply that *S*-nitrosylation can stimulate Ca^{2+} -independent interactions with target proteins as well. The obtained results suggest that *S*-nitrosylation can regulate the activity of an important subclass of S100 proteins including S100A1.

321

^{1.} Zhukova L., Biochim. Biophys. Acta, 1742, 191-201 (2004)

Zhukov I., *Biochemistry*, 47, 640-650 (2008)
 Goch G., *FEBS J.*, 272, 2557-2565 (2005)

Structure of an ACP domain and insights into the molecular basis for interaction specificity with the cognate halogenase

<u>Alena E. L. Busche¹</u>, Daniel Gottstein¹, Christopher Hein¹, Nina Ripin¹, Irina Pader¹, Frank Löhr¹, David H. Sherman², Peter Güntert¹, Volker Dötsch¹

¹ Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany, Email presenting author: <u>busche@bpc.uni-frankfurt.de</u>, ² Life Sciences Institute and Departments of Chemistry, Medicinal Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109;

Polyketide (PK)- and non-ribosomal peptide (NRP)- synthetases are large multidomain proteins present in microorganisms that produce bioactive compounds. Curacin A is such a bioactive compound with anti- proliverative activity. In this work we investigate a triplett ACP $T_{I,II,III}$ present at the C-terminus of CurA. We show that the ACPs are independent of each other even upon dimerization and report the high resolution nuclear magnetic resonance (NMR) structure of the isolated TI ACP loaded with the unlabelled substrate 3-hydroxy-3-methylglutaryl (HMG). Recently, the role, timing and structure of the curacin halogenase (Cur Hal) could be established in the biosynthesis of curacin $A^{1,2}$. We identified the interaction surface important for ACP recognition by the halogenase Hal using mutational analysis. These investigations give a new insight into the molecular basis modulating and regulating the specificity of the interaction between two domains of this important mega- synthase.

So695

NMR-spectroscopic Investigations of Protein Phosphorylation

Thomas Richter, Stefan Berger

Institute of Analytical Chemistry, Universität Leipzig, Leipzig, Germany

Phosphorylation of biomolecules is one of the most important reactions within living cells. Nearly all biochemical pathways are more or less affected by alterations of protein structure and activity due to site-specific phosphorylation of proteins. Therefore, ³¹P-NMR is an interesting tool to investigate reaction rate constants of kinases and phosphatases, since there is no need for isotopic labeling. Unfortunately, one-dimensional ³¹P-NMR is not able to identify phosphorylation sites and suffers from signal overlap if several phosphorylation sites appear.

To overcome these disadvantages, a new ${}^{1}H$, ${}^{-13}C$ -detected 2D triple resonance NMR pulse program was developed, which is able to discriminate phosphorylated and non-phosphorylated amino acids.¹ The aim of our work is to show the applicability of this pulse program to ${}^{13}C$ -labeled proteins in order to reduce singal overlap and allow kinetic investigations of protein phosphorylation. Several promising model system candidates, like Calmodulin or the peptidylprolyl *cis/trans* isomerase Pin1, are under investigation.

^{1.} Raeck C., Berger S., Anal. Bioanal. Chem., 389, 2161-2165 (2007)

Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1

Alexis Rozenknop^{1,2}, Vladimir Rogov^{1,3}, Natalia Rogova¹, Frank Löhr¹, Peter Güntert^{1,4}, Ivan Dikic^{2,5},

Volker Dötsch

¹Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt, Germany, ²Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany, ³Institute of Protein Research, 142290 Pushchino, Russia, ⁴Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt, Germany, ⁵Frankfurt Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt, Germany.

Selective autophagy requires the specific segregation of targeted proteins into autophagosomes. The selectivity is mediated by autophagy receptors, such as p62 and NBR1, which can bind to autophagic effector proteins (Atg8 in yeast, MAP1LC3 protein family in mammals) anchored in the membrane of autophagosomes. Recognition of autophagy receptors by autophagy effectors takes place through an LC3 interaction region (LIR). The canonical LIR motif consists of a WXXL sequence, N-terminally preceded by negatively charged residues. The LIR motif of NBR1 presents differences to this classical LIR motif with a tyrosine residue and an isoleucine residue substituting the tryptophan residue and the leucine residue, respectively. We have determined the structure of the GABARAPL-1/NBR1-LIR complex and studied the influence of the different residues belonging to the LIR motif for the interaction with several mammalian autophagy modifiers (LC3B and GABARAPL-1). Our results indicate that the presence of a tryptophan residue in the LIR motif increases the binding affinity. Substitution by other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation. This indicates that different LIRs can interact with autophagy modifiers with unique binding properties.

REFERENCES: (Word Style "5_References") 1. Smith J. F., Journal Title, Volume, initial page-final page (Year)

So697

Structural Analysis of phosphorylated Complex of Cardiac Troponin C-Troponin I by Double Quantum Coherence-EPR

Jun Abe¹, Shoji Ueki², Toshiaki Arata³, Seigo Yamauchi¹ and Yasunori Ohba¹

¹ Institute of Multidisciplinary Research for advanced Materials, Tohoku University, Sendai, Japan; ² Kagawa School of Pharmaceutical Science, Tokushima Bunri University, Kagawa, Japan; ³ Department of Biological Science, Graduate School of Science, Osaka University, Osaka, Japan; Email: janbe@mail.tagen.tohoku.ac.jp

The contraction and relaxation of cardiac muscle is regulated by a response of intracellular Ca²⁺ ion concentration and phosphorylation. The switch between muscle contraction and relaxation occurs with a structural change in cardiac troponin (cTn). The details changes in a molecular level have not been made clear to understand the regulatory mechanism. cTn consists of three subunits; cTnC, cTnI and cTnT. We chose the cardiac TnC-TnI (cTnC-TnI) complex and used double quantum coherence (DQC)-EPR technique to measure the difference of distances between N and C-terminal domains of cTnC in non-phosphorylated and phosphorylated cTnC-TnI complexes.

In this paper, the distance between two nitroxide labels in the cTnC-TnI complex was measured by using a Ku-band (17.5 GHz) pulsed EPR spectrometer. We evaluate the mean distance between spin labels and its distribution by using the Tikhonov Regularization method. We found that the structural change of cTnC with Ca^{2+} binding in the phosphorylated complex is slightly smaller than that in non-phosphorylated. It is known that phosphorylation reduces the Ca^{2+} binding affinity in the N-terminal domain of cTnC with disassociation of the N-terminal region of cTnI from the N-terminal domain of cTnC[1]. Our results show that the structural change of cTnC is regulated by binding between the N-terminal region of cTnI and the N-terminal domain of cTnC. We will discuss the details of these structural changes of the cTnC-TnI complexes. REFERENCES:

[1]. D. G. Ward et al, JBC, 277, 41795-41801 (2002)

Aprataxin: a recovery enzyme for single strand break repair

Peter Bellstedt, Erik Borchert, Ramadurai Ramachandran, Oliver Ohlenschläger and Matthias Görlach

Biomolecular NMR Spectroscopy, Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany. pbell@fli-leibniz.de

Genetic defects in the repair of DNA damage are implicated in a number of diseases, which include neurological dysfunction and cancer. Single strand breaks (SSBs) are the most frequent type of damage [1] (>10.000 per cell and day). Inefficient repair of SSBs in postmitotic cells such as neurons may lead to neurodegenerative diseases, e.g. ataxia oculomotor apraxia (AOA1). AOA1 is linked to mutations in aprataxin (APTX), which functions in concert with PARP, XRCC1 and PNKP during SSB repair by removing obstructive adenylate 5'-ends [2]. APTX comprises two structural domains: an N-terminal XRCC1–binding FHA domain and a C-terminal catalytically active HIT domain including a Zn–finger. We established recombinant expression, purification for both domains and the *in vitro* production of the natural substrate (rAppDNA). The HIT domain alone is sufficient for multi-turnover deadenylation catalysis, indicating that the structure of this domain will be of functional significance. We will present the current status of the ongoing solution state NMR-based structure determination using reverse labelling as well as perdeuteration.

1. Caldecott K.W., Nature Reviews Genetics, 9, 619-631 (2008)

2. Ahel et al, Nature, 443, 713-716 (2006)

So699

The HPV E4 protein: characterisation of an aggregating protein

Christoph Wiedemann, Ramadurai Ramachandran and Matthias Görlach.

Biomolecular NMR Spectroscopy, Leibniz Institute for Age Research – Fritz Lipmann Institute, Jena Germany. E-mail: cwiede@fli-leibniz.de.

Human papilomavirus (HPV) infect stratified epithelia and cause lesions that range in severity from benign warts to invasive carcinomas. HPV E4 is an abundant, predominantly cytoplasmic protein, that accumulates to very high levels in upper epithelial layers [1]. It is suggested that E4 accumulation plays an important role in the HPV life cycle by supporting virus release via inducing cytoskeletal changes and degradation. A common hallmark of E4 from different HPV types is that it forms supramolecular aggregates in infected cells. Aggregation appears to be intimately linked to the cytoskeleton compromising activity of E4. To form higher order complexes the C-terminal part of E4 is required. However, there seem to be significant differences in the morphology of such aggregates depending upon the HPV type. E.g., E4 from HPV-16 is reported to form amyloid fibre-like aggregates [2] whereas E4 derived from HPV-1a appears to form more globular assemblies [3]. To assess the structural properties of E4, several mutants were generated, purified and characterised by CD spectroscopy, electronmicroscopy and NMR. The oligomeric high molecular weight nature of HPV-1a E4 protein in solution allowed only for the assignment of some N-terminal flexible residues by liquid-state NMR. Hence, solid-state NMR analysis appears necessary and initial spectra indicate a good signal/noise for E4 oligomeric preparations, which, however, require further efforts to optimise conditions.

^{1.} Doorbar J., Clin Sci (Lond), 110(5), 525-541 (2006)

^{2.} McIntosh et al, J Virol, 82(16), 8196-8203 (2008)

^{3.} Doorbar et al, Virology, 218(1), 114-126 (1996)

Effect of Mg²⁺ Binding on the Receiver Domain of the CKI1 Sensory Histidine Kinase from *Arabidopsis thaliana*

<u>Séverine Jansen</u>, Olga Třísková, Blanka Pekárová, Tomáš Klumpler, Jakub Horák, Radka Dopitová, Jiří Nováček, Jaromír Marek, Jan Hejátko, Lubomír Janda, Lukáš Žídek, Vladimír Sklenář

Faculty of Science and CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic, e-mail address: <u>severine@chemi.muni.cz</u>

In *Arabidopsis thaliana*, cytokinin signal transduction is mediated by a two-component phosphorelay system, which consists of a phosphate transfer from a sensor histidine-kinase, to a histidine-phosphotransfer protein, and then to a response regulator.

The sensory histidine kinase consists of a sensory extracellular domain which binds the ligand and leads to autophosphorylation of the intracellular histidine kinase (HK) domain. The phosphate is then transfered to the active site aspartate in the receiver domain.

We studied the effect of magnesium, a cofactor for HK-mediated phosphorelay, on the function of the receiver domain by NMR. Assignment of the receiver domain was obtained for 91 % of the residues [1]. The missing assignment corresponds to the loop L3, following the aspartic acid in the active site. Upon addition of magnesium, new peaks appear that could be assigned to loop L3, stabilized upon addition of Mg²⁺, using amino-acid selective isotope labeling.

REFERENCES:

1. Pekárová B., Klumpler T., Třísková O., Horák J., Jansen S., Dopitová R., Borkovcová P., Papoušková V., Nejedlá E., Sklenář V., Marek J., Zídek L., Hejátko J., Janda L. Structure and binding specificity of the receiver domain of sensor histidine kinase CKII from *Arabidopsis thaliana*, *Plant J*, in press, DOI: 10.1111/j.1365-313X.2011.04637.x (**201**)

So701

Modulation of the activity of the hybrid antibiotic peptide Cecropin A -Melittin [CA(1-7)M(2-9)] by residue modification

<u>M. Dolores Díaz¹</u>, Beatriz G. de la Torre², María Fernández-Reyes¹, Luis Rivas¹, David Andreu², Jesús Jiménez-Barbero¹

¹Departamento de Biología Físico-Química, Centro de Investigaciones Biológicas, CSIC,Ramiro de Maeztu 9, E-28040, Madrid, Spain; ²Proteomics Unit, Pompeu Fabra University, Dr. Aiguader 80, 08003 Barcelona, Spain

The manifest increase of bacterial resistance against traditional antibiotics has stimulated the design of novel antimicrobials acting on non-conventional targets. Thus, antimicrobial peptides (AMPs) of eukaryotic origin represent a promising alternative.¹ Moreover, hybrid peptides consisting of fragments of natural AMPs as cecropin A (CA) and melittin (M) exhibit substantial improvement in their antibacterial, antiparasitic and antifungal activities compared with their parent structures.²

Herein, a NMR based structural study of several linear pentadecapeptides derived from the cecropin A- melittin antimicrobial peptide CA(1-7)M(2-9) [KWKLFKKIGAVLKVL-NH₂] is presented. These analogues are modified by either ϵ -NH₂ trimethylation of lysines or acylation with saturated linear fatty acids at the N-terminus and showed variation in both antimicrobial and cytotoxic activities. We employed membrane mimetic media for the NMR experiments and paramagnetic probes to explore the mode of interaction of the peptides with prokaryotic membranes.

^{1. (}a) Andreu D., Rivas, L. Biopol., 47, 415-433 (1998) (b) Zasloff M. Nature, 415, 2389-395 (2002).

^{2. (}a) Oh H., M. Hedberg M., WadeD., Edlund Ch. Antimicrob. Agents Chemother. 68-73 (2000). (b) Oh D., Shin S.Y., Kang, J.H., Hahm K.-S., KimK.L., Kim Y. J. Peptide Res., 44(1), 578-589, (1999) (c) Fernández I., Ubach J., Fuxreiter M., Andreu J.M., Andreu D., Pons M. Chem. Eur. J, 53 (15), 838-846 (1996) (d) Fernández-Reyes M., Díaz M., de la Torre B.G., Cabrales-Rico A., Vallés-Miret M., Jiménez-Barbero J., Andreu D., Rivas L. J. Med. Chem. 5587-5596 (2010) (e) Chicharro C., Granata C., Lozano R., Andreu D., Rivas L. Antimicrob. Agents Chemother, 45(9), 2441-2449 (2001)
The alpha-defensin HNP2 specifically binds N-acetyl-neuraminic acid containing oligosaccharides - an NMR, SPR and molecular docking study Thomas Eckert^{1,2}, Monika Burg-Roderfeld¹, Rainer Wechselberger³, Jens M. Schröder⁴, Martin Billeter⁵, Roland Schauer⁶, <u>Hans-Christian Siebert^{1,7} (*info@ri-b-nt.de*)</u>

¹Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany. ²Klinik für Geburtshilfe, Gynäkologie und Andrologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 106, 35392 Gießen, Germany. ³Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands. ⁴Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstr. 7, D-24105 Kiel, Germany. ⁵Biophysics Group, Department of Chemistry, University of Gothenburg, Box 462, 405 30 Göteborg, Sweden. ⁶Biochemisches Institut, Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany. ⁷RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, D-24118 Kiel, Germany.

In this study we have analyzed the carbohydrate specificity of the alpha-defensin HNP2 and related peptides with Nuclear Magnetic Resonance (NMR), Surface Plasmon Resonance (SPR) and molecular modeling methods in order to correlate the defensin structure with its ability to bind certain carbohydrate moieties. In addition to the HNP2 wild-type, a synthesized HNP2 mutant in which residues Tyr2 and Tyr20 are replaced by alanine was tested. Furthermore, the carbohydrate binding behavior of a mixture of HNP2 and the structurally similar defensins HNP1 and HNP3 from a clinical source was analyzed with SPR methods. The results clearly identify which functional groups of N-acetylmuramic and N-acetylneuraminic acid are necessary to establish specific interactions with essential amino acids in the carbohydrate binding pocket of the HNP-defensins under study (Ref. 1 - 3).

REFERENCES: 1. Siebert H.-C. et al. Carbohydr. Res., 344, 1515-1525, 2009.
2. Bhunia A. et al. J. Am. Chem. Soc., 132, 96-105, 2010.
3. Wu A. M. et al. Adv. Exp. Med. Biol., 705, 117-141, 2011.

So703

Molecular organization of different collagen hydrolysates and collagen fragments as revealed by a combination of Atomic Force Microscopy (AFM) and Diffusion Ordered NMR Spectroscopy (DOSY)

Sabine Stötzel¹, Thomas Eckert^{1,2}, Monika Burg-Roderfeld¹, Marloes Schurink³, Hans Wienk³, Rainer Wechselberger³ Judith Sewing⁴, Steffen Oesser⁵, Rolf Boelens³, <u>Hans-Christian Siebert</u>^{1,6} (<u>info@ri-b-nt.de</u>)

¹Institut für Biochemie und Endokrinologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany. ²Klinik für Geburtshilfe, Gynäkologie und Andrologie, Veterinärmedizinische Fakultät, Justus-Liebig-Universität Gießen, Frankfurter Str. 106, 35392 Gießen, Germany. ³Utrecht Facility for High-resolution NMR, Bijvoetcenter for Biomolecular Research Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands. ⁴Coastal Research & Management, Tiessenkai 12, D-24159 Kiel-Holtenau, Germany. ⁵Collagen Research Institute, Schauenburgerstr. 116, D-24118 Kiel, Germany. ⁶RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, D-24118 Kiel, Germany.

ABSTRACT: Collagen hydrolysates are heterogeneous mixtures of collagen-like proteins or peptides with a high potential as nutrition supplement and agents for ointments with therapeutic relevance in wound healing. Since the precise composition of collagen hydrolysates is generally unknown it is of interest to analyze such samples with appropriate biophysical methods. Any product optimization without this knowledge is nearly impossible. It turned out that a combination of AFM methods with NMR techniques is extremely suited to scrutinize the size-range and the aggregation behavior of collagen hydrolysates from fish, jellyfish, chicken, pig and bovine origin. Such information is an essential prerequisite for a detailed study concerning the molecular basis of the biomedical effectiveness of collagen hydrolysates as well as certain collagen fragments of defined mass. References please find in: http://geb.uni-giessen.de/geb/volltexte/2011/8119/

Structural Basics of Interleukin-10 – Glycosaminoglycan Interactions

Georg Künze & Daniel Huster

Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany Georg.Kuenze@medizin.uni-leipzig.de

The protein Interleukin (IL)-10 is a key regulator of the innate and adaptive immune system, which prevents an overwhelming immune reaction and tissue damage. IL-10 inhibits the synthesis of pro-inflammatory cytokines and of cell surface molecules. Thereby, cellular immune responses mediated by macrophages and T cells are inactivated¹.

There exists strong evidence that IL-10 acts over short distances *in vivo*². Glycosaminoglycans (GAGs) of the extracellular matrix have been suggested as possible binding partners that restrict IL-10 to the vicinity of the secreting cell. GAGs are a class of highly sulfated carbohydrate molecules that are known to bind and regulate a number of distinct proteins³. Sequence similarity to other GAG interacting proteins and molecular docking calculations strongly predict a specific GAG binding site within IL-10, in particular a cluster of basic amino acid residues in helix D and the DE loop.

A His-tagged version of mouse IL-10 was recombinantly expressed in *E.coli* and was purified and refolded from inclusion bodies. One dimensional ¹H NMR and CD spectroscopy demonstrated that the protein is well-folded and has a significant α -helix content of 66%. Future studies will include the full isotopic labelling of IL-10 for resonance assignment and GAG titration experiments, which will help to unravel the GAG binding site in IL-10 and the structural basics of that interaction.

REFERENCES:

1. Sabat, R. et al., Cytokine & Growth Factor Reviews, 21(5), 331-344 (2010)

2. Roers, A. & Müller, W., Current Immunology Reviews, 4, 37-42 (2008)

3. Gandhi, N.S. et al., Chemical Biology & Drug Design, 72(6), 455-482 (2008)

So705

Structure-Function relationship of the Sterol Carrier Protein from the yeast *Yarrowia lipolytica* (YLSCP2)

Noelia I. Burgardt^{1,2,3}, Federico J. Pérez De Berti^{1,2}, Raúl G. Ferreyra^{1,2}, Christian Lücke³, Betina Córsico^{2,4}, Mario R. Ermácora^{1,2}, Marcelo R. Ceolín^{2,5}

¹Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, R. S. Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina; ²Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; ³Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120, Halle (Saale), Germany; ⁴INIBIOLP, Universidad de La Plata, 60 y 120, 1900, La Plata, Buenos Aires, Argentina; ⁵NIFTA, Universidad de La Plata-CONICET, 113 y 64,1900, La Plata, Argentina. E-mail: noeliaburgardt@yahoo.com.ar

The sterol carrier proteins (SCP2) are small soluble intracellular proteins highly conserved in all biological kingdoms. The SCP2 spectrum of ligands is broad, including fatty acids, acyl-CoAs, sterols and phospholipids. The L-shaped ligand binding site shows a high conformational plasticity, which could be related to the binding mechanism ¹. Our aim is to study the structure-function relationship of YLSCP2, a yeast member of the sterol carrier protein family ².

The effect of ligand binding on the structure and stability of the protein was evaluated by several techniques (CD, fluorescence, SAXS, and thermal unfolding). The stability of YLSCP2 decreases after *cis*-parinaric acid and ANS binding. The secondary structure content of YSCP2 decreases with palmitic acid and cholesterol binding. The intrinsic fluorescence decreases with palmitoyl-CoA.

The differential effects of ligand binding on YLSCP2 structure and stability could be correlated with the conformational plasticity of the binding site. To elucidate the ligand binding mechanism we are planning to perform NMR experiments, in order to identify the residues that define the binding site for each ligand.

^{1.} Filipp F. V., Sattler M., Biochemistry, 46, 7980-91 (2007)

^{2.} Ferreyra R. G., et al, Arch. Biochem. Biophys., 453, 197-206 (2006)

Molecular Mimicry-Based Repositioning of Nutlin-3 to Anti-Apoptotic Bcl-2 Family Proteins

¹Ji-Hyang Ha, ¹Eun-Young Won, ¹Jae-Sun Shin, ¹Mi Jang, ²Kyoung-Seok Ryu, ¹Kwang-Hee Bae, ¹Sung Goo Park, ¹Byoung Chul Park, ³Ho Sup Yoon, and ¹Seung-wook Chi

¹Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea; ²Korea Basic Science Institute Ochang Campus, Chungcheongbuk-Do, Republic of Korea; ³Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore. E-mail: swchi@kribb.re.kr

Drug repositioning has been an emerging strategy in drug discovery as understanding of novel usages for existing drugs could provide insightful information into molecular mechanism of drugs and safety of drugs¹. The identification of off-target binding of drugs is a key to repositioning drugs to new therapeutic categories. Here we show the universal interactions of the p53 transactivation domain (p53TAD) with various anti-apoptotic Bcl-2 family proteins via a mouse double minute 2 (MDM2) binding motif, which play an important role in transcription-independent apoptotic pathways of p53. Interestingly, our structural studies reveal that the anti-apoptotic Bcl-2 family proteins and MDM2 share a similar mode of interaction with the p53TAD. On the basis of this close molecular mimicry, our NMR results demonstrate that the potent MDM2 antagonist Nutlin-3² bind to the anti-apoptotic Bcl-2 family proteins in a manner analogous to that with the p53TAD.

1. Karl B. Thor., Drug repositioning: identifying and developing new uses for existing drugs, 3, 673-383 (2004)

2. Lyubomir T. Vassilev., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, 303, 844-848 (2004)

So707

Characterization of the assocation of the FATC domain of TOR with membrane-mimetic systems

Lisa A. M. Sommer^{1*}, Sonja A. Dames¹

¹Department of Chemistry, Technische Universität München, Garching, Germany, *E-mail: lisa.sommer@tum.de.

Today, many studies focus on the kinase target of rapamycin (TOR) as a therapeutic target for diseases such as cancer, autoimmunity, and metabolic disorders. TOR is a structurally and functionally conserved serine/threonine kinase that plays a key role in a signaling network for the control of cell growth and proliferation in yeast and higher eukaryotes. The highly conserved C-terminal FATC domain contains 33 amino acids and was shown to be essential for the regulation of TOR function. The solution NMR structure of the FATC domain of yeast TOR1 (y1fatc) features an α -helix and a disulfide-bonded loop. Furthermore, a mutagenesis study in yeast cells illustrated that the cellular stability of TOR is depending on the redox state of the disulfide bond of the FATC domain (1). A solution NMR spectroscopy study that probed the association of y1fatc with membrane-mimetics delineated a lipid binding motif consisting of a hydrophobic bulb that has a rim of charged residues. Whereas the aromatic and aliphatic residues of the membrane anchor can interact with the fatty acid moieties of DPC, the polar residues can interact with the charged head groups (2).

Using oriented circular dichroism spectroscopy the orientation of y1fatc in small unilamellar vesicles could be characterized more precisely. In order to elucidate the association of y1fatc with membrane-mimetic systems a set of mutations was generated and investigated by solution NMR and circular dichroism.

REFERENCES: 1. S. A. Dames et al., J. Biol. Chem., 280(21): 20558-20564, (2005); 2. S. A. Dames., J. Biol. Chem., 285(10): 7766-7775, (2010)

Regulation of the bacterial phosphotransferase system by MIc and glucokinase

D. J. Witte^a, W. Boos^b, H. M. Möller^a

^a Department of Chemistry,^b Department of Biology, University of Konstanz, Konstanz, Germany

The global repressor Mlc is involved in the regulation of several metabolism processes like the regulation of maltose, mannose and glucose metabolism. In contrast to other repressors the activity of Mlc is controlled by the activity of the phosphotransferase system (PtsG).

While the PtsG is actively transporting glucose Mlc remains bound to the dephosphorylated IIB^{Glc}domain and thus becomes inactive. The mechanism of inactivation and whether a conformational change occurs upon binding is still largely unkown. The comparison of the crystal structure of the repressor Mlc and the glucokinase Glk reveals great similarities. Overexpressed Glk binds to dephosphorylated IIB^{Glc}-domain and thus releases Mlc into the cytoplasm.

The goal of this project is to characterize the binding of Mlc and Glk to the IIB^{Glc}-domain of PtsG by different biophysical methods. Glk is a homodimer forming 35 kDa protein from E. coli. Protocols for the expression and purification of isotope labelled Glk and IIB^{Glc} in minimal medium were established and samples with sufficient concentration for NMR-experiments were obtained. First HSQC and TROSY-HSQC experiments revealed that both proteins are folded and well suited for NMR spectroscopy. Chemical shift pertubation experiments and NMR titrations with spin labelled Glk indicated a transient interaction between the IIB^{Glc}-domain and the glucokinase.

In order to disclose the nature of the binding of Mlc and Glk to IIB^{Glc} surface plasmon resonance (SPR) and isothermal calorimetry (ITC) experiments were performed. These experiments revealed that tetrameric Mlc binds with high affinity to IIB^{Glc} in a multivalent fashion whereas Glk showed only weak binding to immobilized IIB^{Glc}.

So709

Structure of Spal: The protein conferring autoimmunity against the lantibiotic subtilin in *Bacillus subtilis*

<u>Nina A. Christ</u>^{1,3}, Sophie Bochmann¹, Daniel Gottstein^{2,3}, Elke Duchardt-Ferner^{1,3}, Stefanie Düsterhus¹, Peter Kötter¹, Peter Güntert^{2,3}, Karl-Dieter Entian^{1,4} and Jens Wöhnert^{1,3,4}

¹Institute for Molecular Bioscience, ²Institute of Biophysical Chemistry,³Center of Biomolecular Magnetic Resonance, ⁴Cluster of Excellence "Macromolecular Complexes", Goethe University, Frankfurt am Main, Germany, e-mail: n.christ@bio.uni-frankfurt.de

The careless use of many antibiotics in the past lead to an emerging resistance even against 'last resort' drugs such as vancomycin. Thus, there is an urgent need for structurally novel antimicrobial agents. Lantibiotics are small ribosomally synthesized peptide antibiotics with posttranslational modified amino acids resulting in the characteristic lanthionine and methyllanthionine bridges.

Bacillus subtilis ATCC 6633 produces the lantibiotic subtilin which damages the cell wall of grampositive bacteria. SpaI is a 16.8 kDa lipoprotein which is part of the self-protection system of *B. subtilis* against subtilin. It is attached to the outside of the cytoplasmic membrane via a covalent diacylglycerol anchor. Together with the ABC-transporter SpaFEG SpaI protects the membrane from subtilin insertion and presumably it interacts directly with subtilin.

Here we present the solution NMR structure of a 15 kDa biologically active fragment of SpaI. Our data show that SpaI has a mainly β -strand structure with seven β -strands and two α -helices¹. ¹⁵N{¹H} heteronuclear NOE and H/D exchange data suggest a flexible loop between strands β 3 β 4 which might insert into the membrane. So far no structural information for any LanI (<u>lan</u>thionine <u>i</u>mmunity) protein of lantibiotic producing strains is available and a search in the DALI database showed no homologues structures to our structure indicating a new fold for SpaI.

REFERENCES: Christ N.A., Duchardt-Ferner E., Düsterhus S., Kötter P, Entian K.D. and Wöhnert J., *Biomol. NMR Assign.*, Jun 5. [Epub ahead of print], (2011)

Expression and characterisation of the fibronectin-III-like-domain-9 of type VII collagen

Sarah Schönig, Karsten Seeger

Sarah Schönig, Department of Chemistry, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany

Dermis and basal lamina of the skin are connected through anchoring fibrils with type VII collagen (Col7) as major component. In the autoimmune disease epidermolysis bullosa acquisita IgG antibodies bind to Col7 that is no longer able to retain its function. Contact and friction lead to blistering of the skin. FNIII-9 is one of nine fibronectin-like domains in the 145 kDa non-collagenous part of collagen VII. Previous experiments showed an interaction of FNIII-9 and its neighbouring domain, the von-Willebrand-factor-A-like domain 2.^[1]

To obtain insight into the quaternary structure of Col7 FNIII-9 was expressed and purified following the IMPACT-TWIN protocol. 3D NMR spectra were obtained and the backbone resonance assignment is to 97 % complete. Additional heteronuclear NOE experiments were performed. Secondary structure prediction was done with TALOS+. A structural model was built with Rosetta showing a β -sheet containing structure.^[2]

With the assigned FNIII-9 domain further information about the interaction with the von-Willebrand-factor-A-like domain 2 can be attained thus providing the basis for detailed insight into the organisation of the skin.

REFERENCES:

2. Bonvin, A.M.J.J., Rosato, A., Wassenaar, T.A., J. Struct. Funct. Genomics, 11, 1-8 (2010)

So711

NMR Investigation of Isoform specific differences in the binding of Tau to Microtubules

<u>Harindranath Kadavath¹</u>, Stefan Bibow¹, Subash Chinnathambi², Jacek Biernat², Eckhard Mandelkow² and Markus Zweckstetter¹.

¹Department of NMR based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany (<u>haka@nmr.mpibpc.mpg.de</u>) ²Max-Planck-Unit for Structural Molecular Biology c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany

The microtubule associated protein Tau has six different isoforms, which are expressed in neurons of the central nervous system and are responsible for the promotion of microtubule (MT) formation and stabilization¹. Binding of Tau to microtubules is mediated by the C-terminal microtubule binding domain^{1, 2}. Here we present an NMR-based characterization of the interaction between two different isoforms of the Tau protein, htau40 and htau23 which have either 3 or 4 pseudo-repeats, and MTs stabilized by taxol. As variation in the signal intensities and change in chemical shifts of the particular amino acid residues in the heteronuclear ¹H-¹⁵N correlation spectra of Tau proteins in complex with MTs is due to the direct interaction of the specific residues with the MT binding site, we could accurately define the MT-interacting regions of Tau. The nature of interaction was studied by varying the stoichiometric ratios between Tau and MTs.

^{1.} Leineweber, S., Schönig, S., Seeger, K., FEBS Letters, 585, 1748-1752 (2011)

^{1.} Lee, G., Cowan, N., and Kirschner, M. Science, 239, 285-288 (1988)

^{2.} Cleveland, D. W., Hwo, S.-Y., and Kirschner, M. W. J. Mol. Biol., 116, 227-247 (1977)

Michael Spoerner,¹ Ina Rosnizeck,¹ Sandra Kreitner,¹ Daniel Filchtinski,² Christian Herrmann,² Hans Robert Kalbitzer¹

¹Department of Biophysics, University of Regensburg, Germany, ²Department of Physical Chemistry I, Ruhr-University Bochum, Germany. michael1.spoerner@biologie.uni-r.de.

Ras protein is an essential component of signal transduction pathways within the cell, controlling proliferation, differentiation and apoptosis. It acts as molecular switch by cycling between a GDP-bound "off" and a GTP-bound "on" state. Only in the latter one Ras is able to bind effector molecules like Raf-kinase via its switch I region with high affinity. ³¹P NMR spectroscopy reveals the existence of a dynamic equilibrium between at least two distinct conformational states of active Ras with different physiological properties. One of these states, namely state 1(T) shows a drastically reduced affinity to effector molecules [1,2]. Previously we identified Zn²⁺-cyclen as a compound, which distinguishes between these two states [3]. It binds selectively to state 1(T) leading to a complete shift of the dynamic equilibrium towards this weak effector-binding state at higher concentrations. Thus it represents an attractive lead compound for the inhibition of aberrant Ras signalling, which is found to be intensively involved in human malignancies. The binding site of the ligand could be identified [4]. Here we report on perturbation of the association between Ras and its major downstream target Raf-kinase modulating intrinsic conformational equilibria by suitable small compounds.

REFERENCES: 1. Spoerner M. et al., FEBS J., 274, 1419-1433 (2007). 2. Spoerner M. et al., J. Biol. Chem. 285, 39768-39778 (2010). 3. Spoerner M. et al., Biochem. Biophys. Res. Commun. 334: 709-713 (2005). 4. Rosnizeck I.C. et al., Angew. Chem. Int. Ed. 49: 3830-3833 (2010).

So713

Structural analysis of N-terminal PIN domain from Rrp44 protein based on multidimensional NMR data sets

Maszota M.¹, Stodus, K.², Ciarkowski, J.¹, Dziembowski, A.², <u>Zhukov, I.^{2,3,4}</u>

¹ Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland; ² Intitute of Biochemistry and Biophysics PAS, Warsaw, Poland, ³ Slovenian NMR Centre, National Institute of Chemistry, Ljublljana, Slovenia, ⁴ EN-FIST Center of Excellence, Ljubljana, Slovenia. igor.zhukov@ki.si

The exosome complex is multi-protein major eukaryotic exonuclease complex capable of degrading various types of RNA molecules. The Rrp44 protein is the associated subunit of the exosome which contain two major domain: catalytic RNB domain responsible for the activity of hydrolytic RNase II/R family members and highly conserved N-terminal PIN domain. Our recent results shows that PIN domain is responsible also for endoribonucleolytic activity of the yeast exosome [1]. Therefore Rrp44 is a unique example of a RNase in which endoribonucleolytic and exoribonucleolytic catalytic sites exists in a single protein.

204 amino acid residues long fragment of PIN domain was expressed in *E.coli* and purified in both 2 H, 13 C, 15 N-triple and 13 C, 15 N-double labeled forms. Acquired heteronuclear NMR data sets provide to assignments of H, C, and N backbone resonances for 151 residues which were confirmed later by analysis of 4D HNCACO spectrum. Now we perform assignment procedure of H, C resonances in side chains on base 4D HCCH-TOCSY and C, N NOESY-HSQC spectra. Obtained data were used as input for TALOS+ and CS23D programs to extract information about 3D structure of PIN domain.

Acknowledgments This work is financially supported by the grant from Polish Ministry of Higher Education N N301 251336 and European FP7 EastNMR (contract no. 228461) and BioNMR (contract no. 261863) projects. MM is recipient of European Erasmus exchange program.

1. Lebreton, A., Tomecki, R., Dziembowski, A., Seraphin, B., Nature, 456, 993-996 (2008)

Gerd Nielsen and Harald Schwalbe

Institute of Organic Chemistry and Chemical Biology, Goethe University, BMRZ, Frankfurt am Main, Germany (nielsen@nmr.uni-frankfurt.de)

Protein kinases function as molecular switches that due to their conformational plasticity are capable of switching between catalytically inactive and active structures depending on their phosphorylation status. Upon activation they are able to bind ATP and catalyze the transfer of the γ -phosphate of ATP to a down-stream target. Proper regulation of these biological switches is of crucial importance in eukaryotic organisms and misregulation is known to cause a wide variety of diseases such as cancer, rheumatoid arthritis, asthma and psoriasis as well as cardiovascular and neurological disorders. p38 α is a mitogen activated protein kinase (MAPK), a serine/threonine kinase that is expressed in most cell types and appears in several signal pathways. It has been intimately linked with inflammation and p38 α inhibitors are known to block the production of inflammatory cytokines e.g. tumour necrosis factor α (TNF- α) and inter-leukin-1(IL-1). p38 α is activated by double phosphorylation of T180 and Y182 in the activation loop by upstream members MKK3 or MKK6 of the MAPK cascade. In this work activation is achieved by dual expression of p38 α and MKK6 in *E.coli*. We present in-vitro studies of the activated p38 α kinase analysed by high-field, liquid-state NMR spectroscopy and the differences derived from the assignments of both activated and inactivated p38 α , revealing changes throughout the kinase in both structure and dynamics upon activation.

So715

Characterisation of Conopeptides by NMR

<u>Henry G. Hocking</u>, Hans Wienk, Marloes Schurink, Rolf Boelens Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, <u>h.g.hocking@uu.nl</u>

Venom peptides present enormous opportunities in the discovery of novel therapeutics. Their efficient bioactivity on a wide range of ion channels has already led to the clinical development of new drugs in treatment of severe pain. The CONCO project focuses on therapeutically relevant peptides from venomous cone snails, particularly of the species *Conus consors*. These conopeptides are constrained by well-conserved cysteine frameworks (1–5 disulfide bridges). Sequence variations in the inter-cysteine loops and post-translational modifications confer structural and functional diversity. Structure elucidation using NMR combined with bioactivity assays will lead to a better understanding of their structure-function relationship. CONCO, the cone snail genome project for health, is funded by the European Commission: LIFESCIHEALTH-6 Integrated Project LSHB-CT-2007-037592 www.conco.eu

Azurin in reversed micelles - Micelle size and protein-solvent interactions

Diana Bernin^{1*}, Helen Jansson^{2,3}, Cecilia Persson³, Magnus Nydén¹, B. Göran Karlsson³

¹Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden; ²Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden; ³Swedish NMR Center, University of Gothenburg, Göteborg, Sweden. *diana.bernin@chalmers.se.

The impact of different solvents (hexane, octane and decane), water content and micelle size on azurin-containing reversed micelles composed of AOT was studied by NMR. Pulsed field gradient spin-echo (PFG-SE) NMR was used for determining the micelle diffusion constant and 2D ¹⁵N HSQC for characterizing the protein with respect to water content, size of the micelles and the solvent used.

The fastest diffusion was obtained for hexane after disposing almost 75% of initial water. In contrast, decane resulted in two times lower diffusion constant. Independent on solvent, the protein structure was not affected by freezing or the amount of water in the micelle. However, the results indicated different protein-AOT-solvent interactions depending on the solvent used.

So717

A new approach to study dynamics of structural rearrangements upon ligand binding to a protein

<u>Sebastian Peuker</u>¹, Wolfgang Bönigk¹, Manfred Klasing¹, Simon de Vries², Peter G. Schultz³, Wayne L. Hubbell⁴, Reinhard Seifert¹ and U. Benjamin Kaupp¹

¹Department of Molecular Sensory Systems, caesar Research Center, Bonn, Germany;²Department of Biotechnology, Delft University of Technology, Delft, The Netherlands, ³Department of Chemistry, The Scripps Research Institute, La Jolla, USA;⁴Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, USA. sebastian.peuker@caesar.de

The understanding of protein function is still dominated by the static pictures that are provided by NMR and X-ray spectroscopy. However, it is clear that the function of a protein is ultimately governed by its dynamic character. Addressing this aspect experimentally is challenging because available techniques are either limited to steady-state observations or rather suited for very particular systems¹. Here, I show how to study the dynamics of ligand-gated proteins.

As a model system I have chosen a cyclic nucleotide binding domain (CNBD). Cyclic nucleotides control a multitude of cellular responses via several distinct targets, i. e. protein kinases or ion channels. A common feature shared by these proteins is a CNBD that hosts the ligand and relays the binding event to an activated state of the protein².

To study the kinetics of the conformational rearrangements that lead from the open, ligand-free state to the closed, ligand-bound state of a CNBD protein we want to use the double electron-electron resonance (DEER) technique. If combined with rapid mixing and hyper-freeze quenching techniques³, we will be able to derive a time-resolved picture of the structural transition upon ligand binding.

- 1. Henzler-Wildman K.A. and Kern D, Nature, 450, 964-972 (2007)
- 2. Cukkemane A. et al., Trends Biochem. Sci., 36, 55-64 (2010)
- 3. Cherepanov A.V. and de Vries S., Biochimica et Biophysica Acta, 1656, 1-31 (2004)

STAT6 - NCoA1 PAS-B domain interaction: understanding the structural and dynamic behavior of the complex by NMR

Luigi Russo¹, Karin Giller¹, Edith Pfitzner², Christian Griesinger¹ and Stefan Becker¹

¹Department for NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. ²Friedrich-Schiller-University Jena, Institute of Biochemistry and Biophysics (CMB), Hans-Knöll-Str. 2, 07743 Jena, Germany. (e-mail: luru@nmr.mpibpc.mpg.de)

Signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 (IL-4) by direct interaction with coactivators, an event which plays a crucial role in several biologically important processes¹. The CREB-binding protein and the nuclear coactivator 1 (NCoA1) bind independently to specific regions of STAT6 and act as coactivators. STAT6-NCoA1 interaction is mediated by a short region of the STAT6 transactivation domain that includes the motif LXXLL². The crystal structure of STAT6⁷⁹⁴⁻⁸¹⁴ in complex with NCoA1 PAS-B domain²⁵⁷⁻³⁸⁵ revealed that the leucine side-chains of the motif are deeply embedded in the hydrophobic groove of the NCoA1 surface³. Recently, it has been demonstrated by a fluorescence polarization binding assay that additional residues, flanking the LXXLL motif in STAT6, may play an important role in stabilizing the protein binding to NCoA1⁴. In the current study, we have undertaken the structural and dynamic characterization by NMR of STAT6⁷⁸³⁻⁸¹⁴-NCoA1 PAS-B domain complex to address the mechanism of coactivator recognition in a more detailed level. Upon completion of structural calculation, analysis of the three dimensional structure of the complex will shed further light on the structural rearrangements that characterize this protein-protein interaction.

1. Bruns H.A. and Kaplan M.H., Crit. Rev. Oncol. Hematol., 57, 245-253 (2006). 2. Litterst C.M. and Pfitzner E., J.Biol.Chem., 277, 36052-36060 (2002). 3. Razeto A., Ramakrishnan V., Litterst C.M., Giller K., Griesinger C., Carlomagno T., Lakomek N., Heimburg T., Lodrini M., Pfitzner E. and Becker S., J.Mol.Biol., 336, 319-329 (2004). 4. Seitz M., Maillard L.T., Obrecht D. and Robinson J.A., ChemBioChem, 9, 1318-1322 (2008)

So719

Effect of zinc binding on beta amyloid structure and dynamics: Implications for beta amyloid aggregation

Nasrollah Rezaei-Ghaleh¹, Karin Giller¹, Stefan Becker¹, Markus Zweckstetter^{1,2}

¹Department for NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ²DFG research center for the molecular physiology of the brain (CMPB), Göttingen, Germany. (e-mail: nare@nmr.mpibpc.mpg.de)

Poster

Assembly of beta amyloid ($A\beta$) peptide into toxic oligomers is widely believed to initiate Alzheimer's disease (AD) pathogenesis. Under in vitro physiological conditions, zinc (Zn(II)) can bind to $A\beta$ and redirect its assembly from amyloid fibrillar toward less toxic amorphous aggregation. Propensity of $A\beta$ to go toward a specific form of aggregate state is determined by structural and dynamical properties of the initial monomeric as well as the aggregate state. Here we probe the structural and dynamical impact of binding of Zn(II) to monomeric $A\beta40$ using NMR spectroscopy. To obtain further support for the importance of intrinsic dynamics in the aggregation-prone variant of $A\beta$. The combined data suggest that, upon Zn(II)-binding to the N-terminus of $A\beta40$, a relatively rigid turn-like structure is induced at residues Val24-Lys28 while the residues flanking this region become more mobile on the ps-ns time scale. This is in contrast to the increased rigidity of $A\beta42$ at the C-terminus, and proposed to be linked to the higher propensity of Zn(II)-bound peptide to form "amorphous" aggregates with less entropic penalties than their fibrillar counterparts.

DC-SIGNR: the protein traitor which aids viral invaders.

Fay Probert¹, Ann M. Dixon¹, Dan Mitchell².

¹MOAC DTC, Department of Chemistry, University of Warwick, Coventry, West Midlands, UK; ²Warwick Medical School, University of Warwick, Coventry, West Midland, UK. <u>F.PROBERT@WARWICK.AC.UK</u>

The C-type lectin DC-SIGNR (dendritic cell specific ICAM3 grabbing non-integrin related) has been shown to interact with a range of deadly diseases via specific glycosylation patterns on the surface of pathogenic glycoproteins.^{1,2} The ability of DC-SIGNR to increase the rate of infection of viruses such as human immunodeficiency virus (HIV)³ and hepatitis C virus (HCV)⁴ make the study of DC-SIGNR/oligosaccharide interactions very attractive. This research aims to utilise solution state heteronuclear nuclear magnetic resonance (NMR) spectroscopy in order to obtain a detailed understanding of the DC-SIGNR binding domain structure along with information on binding affinities, the residues involved in binding, dynamics, and kinetics. It is hoped that an extensive knowledge of DC-SIGNR/oligosaccharide interactions will drive the development of novel antiviral drugs. This poster summarises progress in the assignment of the NMR spectra.

REFERENCES:

- 1. Mitchell, D.A., et al., J Bio Chem, 276(31), 28939-28945 (2001)
- 2. Feinberg, H., et al., Science, 294, 2163-2166 (2001)
- Bashirova, A.A., et al., *J Exp Med*, 193(6), 671-678 (2001)
 Pöhlmann, S., et al., *J Virol*, 77(7), 4070-4080 (2003)
- Fonniani, S., et al., *S virol*, 77(7), 4070-4080 (2003)
 Guo, Y., et al., *Nat Struct Mol Biol*, 11(7), 591-598 (2004)
- **5.** Gub, 1., et al., *Nut Sit uct Mot Biol*, 11(7), 591-598 (**200**-

So721

Structure and backbone dynamics of human *apo*-S100A1 protein and its two mutants, C85M and E32Q

Monika Budzinska¹, Katarzyna Ruszczynska-Bartnik¹, Michal Nowakowski¹, Konrad Zdanowski^{1,2}, Lukasz Jaremko^{1,3}, Mariusz Jaremko¹, Igor Zhukov^{1,4}, Agnieszka Belczyk¹, Andrzej Bierzynski¹, Andrzej Ejchart¹

¹Institute of Biochemistry and Biophysic, Polish Academy of Science, Warsaw, Poland, ²Institute of Chemistry, University of Natural Sciences and Humanities, Siedlce, Poland, ³ Faculty of Chemistry, University of Warsaw, Warsaw, Poland, ⁴Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia

S100A1 is a homodimeric calcium binding protein of 93 residues per subunit. It is stabilized by noncovalent interactions at its dimer interface with each subunit containing two EF-hand motifs linked by a flexible linker. Chemical modification of Cys 85 residue in the C-terminal part of S100A1 protein by disulfide bond formation with small thiols leads to the conformational changes of the protein. It is caused, most probably, by an interaction of a thiol molecule attached to Cys 85 with aromatic rings of Phe 88 and Phe 89 promoting α -helical conformation in the 85-89 segment of the protein.

Two mutants of human S100A1 protein in the *apo* state, S100A1(C85M) and S100A1(E32Q), have been studied and their NMR-derived structures compared with that obtained recently for the wild type protein. The rationale for choosing C85M mutant is introducing more bulky side chain at residue 85, whereas in the E32Q mutant only one of two EF-had motifs can bind calcium ions. Both mutants display small but distinct structural changes localized in the vicinity of the mutations. Structural studies were complemented by ¹⁵N nuclear magnetic relaxation data at multiple magnetic fields.

This work was supported by a grant N301 031234 from the Polish Ministry of Science and Higher Education.

Changes in structure and dynamics of human *apo*-S100 protein induced by calcium binding and Cys 85 modification

<u>Michal Nowakowski¹</u>, Monika Budzinska¹, Katarzyna Ruszczynska-Bartnik¹, Konrad Zdanowski^{1,2}, Lukasz Jaremko^{1,3}, Mariusz Jaremko¹, Igor Zhukov^{1,4}, Agnieszka Belczyk¹, Andrzej Bierzynski¹, Andrzej Ejchart¹

¹Institute of Biochemistry and Biophysic, Polish Academy of Science, Warsaw, Poland, ²Institute of Chemistry, University of Natural Sciences and Humanities, Siedlce, Poland, ³ Faculty of Chemistry, University of Warsaw, Warsaw, Poland, ⁴Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia

S100 is a multigenic family of calcium-modulated mostly homodimeric proteins of the EF-hand superfamily implicated in intracellular and extracellular regulatory activities.

Goal of our present study is to discuss structural differences between human S100A1 protein in the *apo-* and *holo* states with structure of human S100A1 modified with homocysteine in calcium bound form, and to study how protein backbone dynamics is affected by calcium binding.

For *holo*-S100A1 protein we observe typical for S100 proteins reorientation of helix III by almost 90°, exposing large hydrophobic cleft. Modification of the protein unique cysteine with homocysteine introduces only minor but possibly important structural change.

For the *apo*- and *holo*- forms of human S100A1 protein ¹⁵N nuclear magnetic relaxation were obtained and their backbone dynamics elucidated. The *apo* form displays significantly increased mobility of both binding loops and linker joining two binding EF-hand domains in comparison with helices mobility. In the *holo* form mobility of the loops is partially restricted but the linker, on the other hand, displays greater mobility than in the *apo* form.

This work was supported by a grants N301 031234 and N301 122438 from the Polish Ministry of Science and Higher Education.

So723

Domain organization of YtvA studied by EPR

Christopher Engelhard, Sarah Raffelberg, Yifen Tang, Zhen Cao, Wolfgang Gärtner, Robert Bittl

Fachbereich Physik, Freie Universität Berlin, Berlin, Deutschland, Max-Planck-Institut für Bioanorganische Chemie, Mülheim, Deutschland christopher.engelhard@fu-berlin.de

The arrangement of the blue-light sensitive LOV and the STAS effector domain of the blue-light activated YtvA protein from B. subtilis was studied by EPR techniques using site-directed spin labeling with MTSL. MMM simulations were employed for data analysis [1].

Pulsed ELDOR on singly labeled protein showed a specific dimerization of YtvA in solution. Differences in the spin label mobility at various postions of the proein deduced from *cw*-EPR yield a binding model for LOV-STAS involving the LOV \Box sheets in contact with STAS T179. The distance observed by pulsed ELDOR between the LOV domains of the YtvA dimer results with this LOV-STAS arrangement in a LOV-LOV dimerization of YtvA, markedly different from previously published results [2][3].

^{1.:} Polyhach Y., Bordignon E., Jeschke G., PCCP 13(6) 2356-2366 (2010)

^{2.:} Jurk M., Dorn M., Kikhney A., Svergun D., Gärtner W., Schmieder P., J Mol Biol, 403(1), 78-87 (2010)

^{3.:} Avila-Perez M., Vreede J., Tang Y., Bende O., Losi A., Gärtner W., Hellingwerf K., J Biol Chem, 284(37), 24958-64 (2009)

Anders Bach¹, Bettina H. Clausen², Magda Moeller¹, Bente Vestergaard¹, Celestine N. Chi³, Adam Round⁴, Pernille L. Soerensen¹, Per Jemth³, <u>Patrik Lundström</u>⁵, Kate L. Lambertsen² and Kristian Stroemgaard¹

¹Department of Medicinal Chemistry, University of Copenhagen, Copenhagen, Denmark, ²Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark, ³Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, ⁴European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, France, ⁵Department of Physics, Chemistry and Biology, Division of Molecular Biotechnology, Linköping University, Linköping, Sweden

Inhibition of the ternary protein complex of nNOS, PSD-95 and the NMDA receptor is a potential strategy for treating ischemic brain damage but high affinity inhibitors have so far not been described. Here we report that a novel dimeric inhibitor, Tat-NPEG4(IETDV)₂ (Tat-N-dimer) binds the synaptic scaffolding protein PSD-95 with an affinity that is three order of magnitude higher than monomeric peptides ($K_d = 4.6$ nM). Tat-N-dimer reduces infarct volume in mice by 40% and restores motor function following ischemic brain damage. Hence, Tat-N-dimer is a highly efficient neuroprotective molecule with therapeutic potential in stroke.

The structures of free and ligand bound PSD-95 have been characterized by x-ray crystallography, small angle x-ray scattering and NMR spectroscopy. By NMR experiments we show that the Tat-N-dimer binds the first two domains of PSD-95 and that the stoichiometric ratio is 1:1. Furthermore we show that Tat-N-dimer binds the consensus binding pocket of both domains and adopts an extended conformation upon binding. Relaxation experiments interestingly demonstrate that interdomain motions of PSD-95 increase upon binding of dimeric peptide.

1. Wang W., J. Am. Chem. Soc., 131,787-796 (2009)

So725

NMR solution structure of the Protein Tyrosin Phosphatase A of *M. tuberculosis* (MptpA)

Tanja Stehle, Henry Jonker, Frank Löhr, Christian Richter, Krishna Saxena, Harald Schwalbe

Goethe University, Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology Frankfurt am Main, Germany, e-mail: machnik@nmr.uni-frankfurt.de

Tuberculosis (TB) remains one of the most infectious diseases today. The World Health Organization estimates that about one third of the world's population is currently infected with *Mycobacterium. tuberculosis* (*Mt*) and that about 2 million people die of TB every year ^[1]. Knockout strains of *Mt* show that MptpA is essential for long-term infection ^[2]. MptpA clearly qualifies as a potential target for inhibitors, but essential knowledge which could lead to the development of anti-TB drugs targeting MptpA is missing. Here we present the NMR solution structure of MptpA based on the nearly complete resonance assignment (93%). Automated NOESY assignment was achieved using the program CYANA 3.0 ^[3]. Additionally relaxation data (R₁, R₂, HetNOE) and residual dipolar couplings (RDC) were used for structure validation and refinement. Recently the MptpA complementary protein tyrosine kinase A (PtkA) was determined. We revealed the interaction site between MptpA and the complementary kinase PtkA by means of ¹H, ¹⁵N-HSQC NMR titration experiments. In further studies we will proceed our investigations of this complex using NMR techniques, in order to gain substantially more insight into the regulatory mechanism of MptpA.

^{1.} WHO, Global Tuberculosis Control Report. 2010.

^{2.} Bach, H., et al., Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell host & microbe, 2008. 3(5): p. 316-22.

^{3.} Lopez-Mendez, B. and P. Guntert, *Automated protein structure determination from NMR spectra*. Journal of the American Chemical Society, 2006. **128**(40): p. 13112-22.

Structural studies of the fibronectin III - immunoglobulin A67-A68 A-band domain tandem from the giant muscle protein Titin

Andras Czaljik, Gary S. Thompson, <u>Arnout P. Kalverda</u>, Ghulam N. Khan, Steve W. Homans & John Trinick.

Institute for Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom. A.Kalverda@leeds.ac.uk.

Titin is the largest known polypeptide (3.5 Mda) and the third most abundant protein present in vertebrate striated muscle after myosin and actin. The titin molecule spans between the M- and Z-lines in the sarcomere and is mostly folded as a string of ~300 immunoglobulin and fibronectin domains. In the A-band titin is integral with thick filaments and interacts with myosin. C-protein and other filament components. Through much of the A-band the domains are arranged in patterns of eleven, Ig-Fn-Fn-Ig-Fn-Fn-Ig-Fn-Fn, giving rise to a super-repeat that is itself repeated 11 times, making up nearly half the titin molecule. In order to determine the supra-molecular structure of this region we are looking at the structures and inter domain flexibility in domain tandems from this super-repeat. For the 215 residue A67-A68 domain tandem, initially structural models of the domains were obtained using CS-rosetta and the inter-domain orientation is established using residual dipolar couplings and paramagnetic relaxation enhancement. Side chain assignments of the methyl groups have been obtained by producing the protein in D2O using protonated glucose. Full structure calculations are underway combining the inter domain restraints with amide-amide, methyl-amide and methyl-methyl NOE restraints. Indications are that the linker in this domain tandem is rigidly oriented and there is very little inter-domain flexibility. How general this feature is in this repeat awaits the elucidation of more tandem domain structures.

So727

PELDOR Spectroscopy on a Protein/RNA-Complex: the RNA-Methyltransferase Nep1 Bound to its Target RNA

Burkhard Endeward¹, Philip Wurm², Sevdalina Lyubenova⁴, Britta Meyer², Olga Romainczyk⁵, Joachim W. Engels⁵, Karl-Dieter Entian², Jens Wöhnert^{2,3}, Thomas F. Prisner¹

¹Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; ²Institute of Molecular Biosciences and ³BMRZ, Goethe University, Frankfurt, Germany; ⁴Bruker BioSpin, Rheinstetten, Germany; ⁵Institute of Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany. e-mail: endeward@prisner.de

PELDOR¹ spectroscopy is frequently used to measure distances and distance distributions in proteines² and nucleic acid molecules³. Here we show first PELDOR results on short RNA molecules bound to the dimeric Nep1 protein. Nep1 (Nucleolar Essential Protein 1) is a highly conserved eukaryotic protein essential in ribosome biogenesis. Its X-ray structure was recently published⁴ and it was shown to act as a sequence specific pseudouridine N1-methyltransferase involved in the biosynthesis of a hypermodified nucleotide in helix 35 of 18S rRNA⁵. Furthermore, short single-stranded high affinity substrates of Nep1 have been identified⁵. Several spin labeled mutants of Nep1 as well as spin labeled RNA molecules have been used to determine the structure of dimeric Nep1 bound to two copies of its target RNAs. We will show our first PELDOR results on measured protein-protein, protein-RNA and RNA-RNA distances within this complex

4. Taylor A.B., Meyer B., Leal B.Z., Kötter P., Schirf V., Demeler B., Hart P.J., Entian K.-D., Wöhnert J., Nucleic Acids Res, 36, 1542-1554 (2008).

^{1.} Milov A., Salikov K., Shirov M., Fiz. Tverd. Tela. 23, 975-982 (1981).

^{2.} Endeward B., Buterwick J.A., MacKinnon R., Prisner T.F., J.Am. Chem. Soc., 131, 15246-15250 (2009).

^{3.} Krstić I., Frolow O., Sezer D., Endeward B., Weigand J.E., Suess B., Engels J.W., Prisner T.F., J. Am. Chem. Soc. 132, 1454-1455 (2010)

^{5.} Wurm J. P., Meyer B., Bahr U., Held, M., Frolow O., Kötter P., Engels, J.W., Heckel A., Karas M., Entian K.D., Wöhnert J., Nucleic Acids Res., 38, 2387-2398 (2010).

Melanie Schwarten^{1,2,3}, Matthias Stoldt^{2,3}, Peixiang Ma^{2,3}, Jeannine Mohrlüder² and Dieter Willbold^{1,2,3}

¹Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF, 38027 Grenoble, France; ²Institute of Complex Systems (ICS-6), Research Centre Jülich, 52425 Jülich, Germany; ³Department of Physical Biology and BMFZ; Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany melanie.schwarten@ibs.fr

Autophagy, a pathway primarily relevant for cell survival, and apoptosis, a process leading to cell death, are the two main mechanisms of self-destruction at cellular and subcellular levels. Currently, a potential crosstalk between apoptosis and autophagy is intensively discussed, the respective protein-protein interaction network, however, remains to be elucidated in detail.

The γ -aminobutyric acid type A (GABA_A) receptor-associated protein GABARAP belongs to a family of proteins implicated in intracellular transport events and autophagy¹.

We identified two new interaction partners of GABARAP, namely the pro-apoptotic nip-like protein x $(Nix)^2$ and Bcl-2 (B-cell lymphoma 2)³, which is one of the most prominent anti-apoptotic regulators. The interactions of GABARAP with Nix and Bcl-2 form new molecular links between autophagy and apoptosis. Using solution NMR, we further characterized the structural basis underlying the interactions of GABARAP with Nix, an intrinsically disordered protein, as well as with Bcl-2. The binding modes of these proteins allow competitive as well as non-competitive interactions between those proteins, thus providing new possibilities for the regulation of autophagy and apoptosis.

REFERENCES:

2. Schwarten M, Mohrlüder J, Ma P, Stoldt M, Stangler T. Hersch N, Hoffmann B, Merkel R and Willbold D, Autophagy, 5, 690-698 (2009)

3. Ma P, Schwarten M, Mohrlüder J, Stoldt M, Strodel B, Methner A, Weiergräber OH and Willbold D, in revision

So729

Structural study of sulfiredoxin Srx from Saccharomyces cerevisiae

Baptiste Legrand¹, Chrystel Beaufils¹, Alexandre Kriznik², Samia Boukhenouna², Guy Branlant², Sophie Rahuel-Clermont², and Marie-Christine Averlant-Petit¹

¹Laboratoire de Chimie-Physique Macromoléculaire, UMR 7568 CNRS-INPL, Nancy Université, Nancy, France; ²Laboratoire AREMS, équipe Enzymologie Moléculaire et Structurale, UMR 7214 CNRS-UHP, Nancy Université, Vandoeuvre-lès-Nancy, France. baptiste.legrand@ensic.nancy-inpl.fr.

 H_2O_2 -dependent post-translational overoxidation of the catalytic Cys of eukaryotic typical two cysteine peroxiredoxins (Prxs) to the sulfinic state (PrxSO₂) has been hypothesized as a switch between the peroxidase/redox relay/chaperone functions of Prx, allowing cellular adaptation to the dual toxic and beneficial effects of H_2O_2 through the control of H_2O_2 fluxes. The reversibility of this process depends on Sulfiredoxin (Srx), which catalyzes the ATP-dependent reduction of overoxidized PrxSO₂. Human sulfiredoxin hSrx structures alone or in complex with Prx have been previously solved, shedding light on the structural basis of the peroxidase activity restoration (1). Recently, the catalytic mechanism of the scSrx from *S. cerevisiae* has been deciphered, showing distinct features from the human one, particularly the formation of an oxidized scSrx intermediate with a disulfide bridge between the catalytic Cys84 and the resolving Cys48 (2-3). In comparison to hSrx, scSrx possesses a large flexible loop (17 residues) containing Cys48, which destabilizes the overall structure and speeds up the transversal relaxation. To gain insight into the molecular basis of the Prx reduction by the scSrx, we have determined the NMR solution structure of the reduced and oxidized scSrx. We present here the preliminary NMR solution structure of the reduced scSrx.

3. Roussel X, Béchade G, Kriznik A, Van Dorsselaer A, Sanglier-Cianferani S, Branlant G, Rahuel-Clermont S, J. Biol. Chem., 283(33) (2007)

^{1.} Mohrlüder J, Schwarten M and Willbold D, FEBS J, 276, 4989-5005 (2009)

^{1.} Jönsson TJ, Johnson L.C, Lowther WT, Nature, 451(7174), 98-101 (2008)

^{2.} Roussel X, Kriznik A, Richard C, Rahuel-Clermont S, Branlant G, J. Biol. Chem., 284(48), 33048-55 (2009)

NMR studies of the ribosomal translation initiation factor IF2

Ramachandra Dongre^a, Hans Wienk^a, Gert Folkers^a, Claudio Gualerzi^b, and Rolf Boelens^a.

^aBijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Utrecht University, 3584 CH Utrecht, The Netherlands; ^bLaboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy.

The translation initiation factor IF2 plays an essential role in the protein biosynthesis of bacteria. IF2 in complex with cofactors like GTP, fMet-tRNA, and with other initiation factors (IF1, IF3) and 30S ribosome stimulates the 70S complex formation. This event is followed by GTP hydrolysis and release of all other initiation factors.

The bacterial IF2 have been biochemically well characterized. IF2 has a fMet-tRNA binding C-domain and a nucleotide binding G-domain, which undergoes conformational changes upon ligand binding. Major conformational changes in response to cellular GTP, GDP and ppGpp levels could regulate the cell functioning. Although the NMR structures for individual IF2 domains are available, the effect of fMet-tRNA, GTP, GDP and 30S binding on the domain rearrangements and it's mechanism are still unclear.

Using NMR spectroscopy and other complementary techniques we are studying the regulatory role of the large G-domain of IF2. For this we have purified and partially assigned the G3 and G2G3 subdomains of IF2. In addition to the assignments we have performed titration experiments of IF2G23 domain against 30S ribosome and have been able to identify the 30S binding interface for IF2. These findings represent our initial attempts in a complete assignment and structure determination of the protein with its different ligand bound states and interaction partners.

TD731

A Powerful New Tool for Mixture Analysis: Local Covariance Order Diffusion-Ordered Spectroscopy (LOCODOSY)

Adam A. Colbourne, Gareth Morris, Mathias Nilsson

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. adam.colbourne-2@postgrad.manchester.ac.uk

Diffusion-ordered spectroscopy (DOSY) is a useful, widespread tool for analyzing mixtures. In general, one aims to separate out the NMR spectra of individual mixture components, gaining information on the physical and chemical properties of the analytes: namely hydrodynamic radii, diffusion coefficients and intermolecular interactions. The two most common data processing approaches are univariate (e.g. HR-DOSY¹) and multivariate methods (e.g. SCORE² and DECRA³). The former of these breaks down where peaks from different components overlap and the latter struggles with increasing number of components (2-4 is a practical limit). A hybrid approach has been developed⁴ combining the strengths of both, the principle of which is to break the spectrum into regions for independent multivariate analysis before rebuilding the dataset from the processing results. The total number of components resolvable rises dramatically, as fewer components will be present in each spectral window. LOCODOSY allows the clean resolution of significantly more chemical components than previously possible.

- 2. Nilsson M., Morris G. A., Anal. Chem., 80, 3777-3782. (2008)
- 3. Windig W., Antalek B., Chemom. Intell. Lab. Syst., 37, 241-254. (1997)
- 4. Colbourne A., Morris G. A., Nilsson M., J. Am. Chem. Soc., in press.

^{1.} Barjat, H., Morris G. A., Smart, S., Swanson, A. G., Williams, S. C. R., J. Magn. Reson., 108, 170-172. (1995)

NMR on Emulsions: Examination of complex structures

Richard Bernewitz^{1,2}, Gisela Guthausen¹, Karsten Köhler², Heike P. Schuchmann²

²Institute of Process Engineering in Life Sciences, Food Process Engineering, ¹SRG10-2, Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Emulsions are of high interest in industry and research. With progress in emulsion technology, more complex structures are realized and require adequate measuring techniques. Double emulsions are an example for complex emulsion system. Determining the droplet size distribution (DSD) of the encapsulated droplets is a challenge for common optical measuring techniques. PFG-NMR, which is well known in quality control of single emulsions, fulfills the requirements for gaining information about the encapsulated droplets.

Commonly known PFG-NMR techniques can be applied to the study of diffusion processes in double emulsions [1]. Methodological and analytical developments are presented with special emphasis on double emulsions. For example, the modality of the distribution is investigated. PFG-NMR results on DSD determination of encapsulated droplets [1] are compared with statistical image processing of Confocal Laser Scanning Microscopy (CLSM) images. It is shown that already with a bench-top NMR double emulsions can be analyzed with respect to the inner emulsion's DSD. Apart from the proof of concept and reproducibility, a new approach on basis of a combined CPMG PFG-NMR sequence for S/N improvement has been investigated on the 20 MHz device, limiting factors are discussed.

1. X. Z. Guan, K. Hailu, G. Guthausen, F. Wolf, R. Bernewitz, and H. P. Schuchmann, European Journal of Lipid Science and Technology 112 (8), 828-837 (2010)

TD733

Effective Calculation of the Echo decay in the SGP-limit

Matias Nordin¹, Martin Nilsson Jacobi² and Magnus Nydén¹

¹Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; ²Complex Systems Group, Department of Energy and Environment, Chalmers University of Technology, 412 96 Gothenburg, Sweden

We have recently developed a novel perturbation method to calculate quick and effective estimates of the echo decay in diffusion NMR [1,2]. More precisely the method calculates an estimate of the diffusion propagator, using a mixed basis formulation, from where the echo decay in the short gradient pulse limit is formed using few computational steps. The mixed basis method has been validated using Neumann boundary conditions defining the material and periodic boundary conditions are used on the computational cell. The mixed basis method is easily implemented and proposes a general tool to investigate diffusion in large structures and geometry dependence on the echo decay, due to the fact that several eigenvalues and eigenvectors of the diffusion propagator are retrieved. Since the method is entirely formulated on the boundaries it may complement other efficient techniques for solving diffusion problems such as boundary element methods, Trefftz methods and fast multi pole techniques.

REFERENCES:

2. Nordin, M., Nydén, M., & Nilsson Jacobi, M. A mixed basis approach in the SGP-limit. Submitted

^{1.} Nordin, M., Nydén, M., & Nilsson Jacobi, M. *A mixed basis perturbation approach to approximate the spectrum of Laplace operator*. Proceedings of ITP-09 2009 Interdisciplinary Transport Phenomena VI, Volterra, Italy, October 4-9, (**2009**). [arXiv:0909.0935v1]

Molecular weight determination and component quantification of block copolymer samples using diffusion NMR

Caroline Barrère, Pierre Thureau, André Thévand, Laurence Charles, Stéphane Viel

Aix-Marseille University, Laboratoire Chimie Provence (UMR CNRS 6264), Equipe SACS, , Marseille, France. s.viel@univ-cezanne.fr

Block copolymers constitute a fascinating class of polymeric materials used in a large range of applications, from advanced nanomaterials to biocompatible drug delivery systems.¹ The performance of these materials is highly coupled to the chemical composition and molecular weight distribution of the constituting block copolymers. Traditionally, the molecular weight of block copolymers is obtained by SEC. However, wrong estimates may be achieved when analyzing amphiphilic copolymers, for instance due to undesirable interactions with the stationary phase. In this context, diffusion NMR² is shown to be a faster technique for estimating the weight average molecular weight of a series of amphiphilic poly(ethylene oxide)-*b*-polystyrene (PEO-*b*-PS) block copolymer samples, obtained by controlled free-radical nitroxide mediated polymerization.³ Moreover, alternatively to the quantitative DECRA method introduced by Antalek,⁴ an analytical strategy is proposed to quantitatively analyze block copolymer mixtures by diffusion NMR. While being generalizable, this strategy is here illustrated by quantifying the amount of the functionalized PEO macroinitiator in a mixture with the PEO-*b*-PS copolymer sample.

REFERENCES

1. Hamley I. W., The physics of block copolymers. Oxford University Press (1998)

2. Price W. S., NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press (2009)

3 Barrère C., Mazarin M, Giordanengo R, Phan T., Thévand A., Viel S., Charles L., Anal. Chem. 81, 8054-8060 (2009)

4. Antalek B., Concepts Magn. Reson. A, 30, 219-235 (2007)

TD735

Predicting Diffusion Coefficients for Small Molecules

<u>Rob Evans</u>¹, Zhaoxia Deng¹, Mathias Nilsson¹, Gareth A. Morris¹

School of Chemistry, University of Manchester, Oxford Road, Manchester, M139PL. Presenting author email: Robert.evans@manchester.ac.uk

Diffusion-ordered NMR spectroscopy (DOSY) has found increasing use as an analytical tool, capable of identifying components in a mixture¹. However, DOSY has limited use in quantitative measurement because there is a poor understanding of the relationships between the diffusion coefficient of a molecule in solution and its size and shape. Diffusion coefficients are often predicted using the most basic relationship, the Stokes-Einstein equation², which balances the kinetic energy of the system against the friction acting on the molecules. Unfortunately this is a very poor approximation for small molecules. Various refinements of the original equation have been suggested^{3, 4, 5, 6, 7} but none have been fully satisfactory.

Here a new model is proposed for predicting the diffusion coefficients of small molecules. It has a simple physical basis, uses only one adjustable parameter, and is shown to allow diffusion coefficients to be predicted to an accuracy of around 10%.

^{1.} Johnson, C. S., Prog. Nucl. Magn. Reson. Spectrosc, 34, 203-256 (1999)

^{2.} Einstein A., Ann. Phys, 17, 549-560 (1905)

^{3.} Edward, J. T., J. Chem. Educ, 47, 261-270 (1970)

^{4.} Gierer A., Wirtz K. Z., Naturforsch, 8, 522-532 (1953)

^{5.} Chen H. C., Chen S. H., J. Phys. Chem, 88, 5118-5121 (1984)

^{6.} Macchioni A. et al., Chem. Soc. Rev, 37, 479-489 (2008)

^{7.} Auge S. et al., J. Phys. Chem, 113, 1914-1918 (2009)

Dendrimers as globular charged molcules and the formation of complexes

Ute Böhme, Brigitte Hänel, Ulrich Scheler

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden Germany

PAMAM dendrimers as well-defined globular molecules contain only a few building blocks. Primary and tertiary amino groups are the only charged groups. Their large fractal dimension shows, that they are rather compact molecules [1]. Therefore they are used as a model system for charged globular molecules. Depending on pH the effective charge increases from the natural pH of the PAMAM down to pH 3. The nominal charge is determined from the degree of protonation of the amino groups inferred from the proton chemical shift of the adjacent CH_2 groups [2]. The effective charge is determined from a combination of diffusion and electrophoresis NMR [3, 4]. It is limited by the condensation of counterions on the macromolecule.

In contact with a strong polyanion like poly(styrenesulfonate) PAMAM dendriemrs form complexes depdending on their charge, which is understood as a model for the binding of ligands to globular molecules like proteins. Short polyelectrolytes bin to the dendrimer compensating the charge eventually leading to precipitation. Longer polyelectrolyte chains become more compact upon formation of the complex with the dendrimers.

REFERENCES:

- 2. Böhme, U.; Klenge, A.; Hänel, B.; Scheler, U., Polymers [Open Access] 3 812-819, (2011)
- 3. Böhme, U.; Scheler, U. Advances in Colloid and Interfaces Science 158 63-67 (2010)
- 4. Grass, K.; Böhme, U.; Scheler, U.; Cottet, H.; Holm, C. Physical Review Letters 100 096104-096108 (2008)

TD737

Dendrimers as globular charged molcules and the formation of complexes

Ute Böhme, Brigitte Hänel, Ulrich Scheler

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden Germany

PAMAM dendrimers as well-defined globular molecules contain only a few building blocks. Primary and tertiary amino groups are the only charged groups. Their large fractal dimension shows, that they are rather compact molecules [1]. Therefore they are used as a model system for charged globular molecules. Depending on pH the effective charge increases from the natural pH of the PAMAM down to pH 3. The nominal charge is determined from the degree of protonation of the amino groups inferred from the proton chemical shift of the adjacent CH_2 groups [2]. The effective charge is determined from a combination of diffusion and electrophoresis NMR [3, 4]. It is limited by the condensation of counterions on the macromolecule.

In contact with a strong polyanion like poly(styrenesulfonate) PAMAM dendriemrs form complexes depdending on their charge, which is understood as a model for the binding of ligands to globular molecules like proteins. Short polyelectrolytes bin to the dendrimer compensating the charge eventually leading to precipitation. Longer polyelectrolyte chains become more compact upon formation of the complex with the dendrimers.

REFERENCES:

2. Böhme, U.; Klenge, A.; Hänel, B.; Scheler, U., Polymers [Open Access] 3 812-819, (2011)

^{1.} Fritzinger, B.; Scheler, U. Macromolecular Chemistry and Physics 206 1288-1291 (2005)

^{1.} Fritzinger, B.; Scheler, U. Macromolecular Chemistry and Physics 206 1288-1291 (2005)

^{3.} Böhme, U.; Scheler, U. Advances in Colloid and Interfaces Science 158 63-67 (2010)

^{4.} Grass, K.; Böhme, U.; Scheler, U.; Cottet, H.; Holm, C. Physical Review Letters 100 096104-096108 (2008)

NMR Studies on the C39-like domain of HIyB reveal distinct interaction with the haemotoxin HIyA

Justin Lecher^{2,3}, Christian K. Schwarz¹, Matthias Stoldt^{2,3}, Sander HJ Smits¹, Lutz Schmitt¹ and Dieter Willbold^{2,3}

¹Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, ²Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, ³Institute of Structural Biochemistry (ICS-6), Research Centre Jülich GmbH, Jülich, Germany j.lecher@fz-juelich.de

ABC transporter accomplish the translocation of substrates over biological membranes under consumption of ATP. Their substrates reach from ions to proteins of several hundred kDa. Our research is focused on the type 1 secretion system of the toxin HlyA in *E. coli*. As its central machine it contains the ABC transporter HlyB, which assembles the secretion complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. By this a continuous connection between the cytosol and the exterior is formed, promoting the one-step translocation of HlyA without any periplasmic intermediate. The general setup of an ABC transporter is composed of four modules, two nucleotide binding domains and two transmembrane domains. HlyB, as a bacteriocin transport, exhibits two additional domains, which are classified as C39 peptidase. These thiol-proteases are thought to cleave the transport substrate after a conserved GG-motif. However, in HlyB the catalytic key cysteine is exchanged by a tyrosine residue rendering the domain proteolytic inactive, nevertheless the domain was proven to be essential for the transport.

We will present the solution structure of the isolated C39-like domain of HlyB and the details of the rearrangement in the triad. Furthermore, we will reveal novel insights in the interaction of HlyA with C39-like and its importance during the transport process.

TD739

Flow of Non-Newtonian Fluids in Porous Media with Transverse Permeability Discontinuity.

Galina E Pavlovskaya and Thomas Meersmann.

School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, United Kingdom.

Flow of non-Newtonian fluids in inhomogeneous porous media is of particular interest not only from the applied point of view but also from the fundamental perspective. In the presence of a permeability discontinuity in a porous medium volume averaged flow equations and corresponding boundary conditions require redefinition. Analytical flow description in these systems has been attempted before but the lack of experimental data makes it difficult to choose a proper theoretical model. We report for the first time experimental flow fields of non-Newtonian fluids in an open channel bound to a saturated porous medium measured by MRI velocimetry methods. Axial velocity profiles exhibit non-zero velocities at the interface with the porous medium for all flow regimes studied. Rheology of the fluids confirming their shear thinning behavior is also reported. Fundamentally, the obtained data can be used in refining present theoretical models whilst practical aspect can be related to oil recovery and biological flow in various porous media for example blood flow in vessels. Moreover MRI velocimetry methods are shown to be unique in tackling this fundamentally and practically important problem while other conventional velocimetry methods (optical, ultrasound and labeling) seem to fail.

^{1.} Di Federico V., Stoch Environ Res Risk Assess, 24, 1067-1076 (2010)

^{2.} Morais, A.F., *PRL*, 103, 194502 (**2009**)

^{3.} Chen, Y., J. Non-Newtonian Fluid Mech, 159, 130-136, (2009)

To740

Permeability of polyelectrolyte multilayer capsules: A PFG-NMR diffusion- exchange study

Nora Sporenberg¹, Vladislav Krzyzanek², Jessica Guddorf¹, Ulrike Keller², Rudolf Reichelt², <u>Monika</u> <u>Schönhoff¹</u>

¹Institute of Physical Chemistry, University of Münster, Münster, Germany; ²Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany. E-mail: schoenho@uni-muenster.de

For colloidal carrier systems to be applied in drug delivery or other controlled delivery applications, the distribution of active molecules and their exchange dynamics is of major interest.

We employ here poly(ethyleneoxide) chains as guest molecules in dilute dispersions of hollow polymeric capsules consisting of polyelectrolyte multilayers as the wall material and an aqueous interior allowing molecular encapsulation. ¹H PFG- NMR can differentiate between encapsulated and free chains by their respective diffusion coefficients. Upon variation of the observation time, a transition from fast exchange to slow exchange is observed. Employing a two-site model to echo decay data sets obtained at different observation times, exchange rates of the chains through the capsule walls can be extracted.

Exchange rates determined in this way are not consistent with a chain permeation through a dense material, but rather through larger nanopores. Electron microscopy proves the existence of nanopores with sizes of about 16 nm.¹ It is shown that the nanopores develop during the process of capsule formation by core removal. The combination of PFG-NMR diffusion-exchange analysis and electron microscopy provides a powerful tool to correlate permeation rates and pore sizes, such that the effect of different post-preparative treatments of the capsules can be understood.

1. V. Krzyzanek, N. Sporenberg, U. Keller, J. Guddorf, R. Reichelt, M. Schönhoff, Soft Matter, accepted (2011)

To741

Rehydration behaviour of freeze-dried vegetables assessed by NMR and MRI

A. Voda^a, F. Vergeldt^b, G. van Dalen^a, A. Duijster^c, R. van der Sman^b, L. van Vliet^c, H. Van As^b, <u>J.</u> <u>van Duynhoven^{a,b}</u>

^aUnilever Discover, Vlaardingen, The Netherlands, ^bWageningen University, Wageningen, The Netherlands, ^cQuantitative Imaging Group, Delft University of Technology, Delft, The Netherlands, <u>john-van.duynhoven#@unilever.com</u>

Consumers have a high appreciation of healthy meals rich in fruits and vegetables. Lack of convenience in preparing meals rich in fruits and vegetables is impeding consumers to reach their recommended daily intake of fibers and nutrients. This is addressed by developing food products consisting of dried fruits and vegetables that are rehydrated shortly before consumption. A main challenge is to develop products which deliver health benefits and authentic sensory properties without compromising the convenience of fast cooking. We adopted a microstructure-driven research strategy to investigate the structural impact upon freeze-drying of vegetables and to model their rehydration behaviour. Dried and rehydrated microstructures were assessed in a multi-scale manner (nm-mm) by means of complementary imaging techniques like SEM, μ CT and MRI. Quantitative image analysis revealed the pore space topology in the dry state and NMR diffusometry and imaging allowed us to determine cell wall behaviour upon wetting. These features were used to construct a microstructure-based model for rehydration. Water kinetics during rehydration was assessed in real-time and in situ by means of RARE imaging¹ thus enabling model verification².

1. T.W.J. Scheenen, D.v. Dusschoten, P.A. de Jager, H. Van As, J. Magn Reson., 142, 207-215 (YEAR).

2. Voda, A., Homan, N., Witek, N., Duijster, A., van Dalen, G., van der Sman, R., Nijsse, J., van Vliet, L., Van As, h., van Duynhoven, J., in preparation

Poster

¹H-DOSY NMR Aggregation Studies on Flavins

Christian Feldmeier¹, Jitka Dad'ová², Ruth M. Gschwind¹

¹Department of Organic Chemistry, University of Regensburg, Regensburg, Germany; Christian.Feldmeier@chemie.uni-regensburg.de; ²Department of Organic Chemistry, Institute of Chemical Technology, Prague, Czech Republic.

Lately flavins have attracted much attention as catalysts for chemical reactions. After irradiation with visible light flavin becomes strongly oxidising and can convert benzyl alcohols into the corresponding aldehydes. The reduced flavin is instantly reoxidised by aerial oxygen. Although it was investigated and optimized for homogeneous reaction in acetonitrile the reaction turned out to be much more efficient in aqueous solution.^{1,2} This could be explained by self-aggregation studies on riboflavin tetraacetate and association studies on riboflavin tetraacetate and p-methoxybenzyl alcohol. These studies were conducted by ¹H-DOSY NMR experiments by measuring diffusion coefficients of the analytes at different conditions and comparing them. Riboflavin tetraacetate turned out to form dimers in acetonitrile, whereas in water it appears as a monomer.

Motivated by these observations new sterically demanding flavins were synthesized with the aim to make them aggregate less and thus increase their photocatalytic activity. The aggregation behaviour of these new flavins was studied again with ¹H-DOSY NMR experiments by measuring diffusion coefficients, calculating the hydrodynamic volumes of the new flavins from the diffusion coefficients and comparing them to theoretical expected values. The new flavins showed less aggregation than riboflavin tetraacetate and were thus tested as catalysts for the photooxidation of benzyl alcohols.

REFERENCES:

1. Schmaderer H., Hilgers P., Lechner R., König B., Adv. Synth. Catal., 352, 163-174 (2009)

2. Svoboda J., Schmaderer H., König B., Chem. Eur. J., 14, 1854-1865 (2008)

To743

Water permeability through lipid membrane of salmonid intestine studied by ¹⁷O NMR

DIANA BERNIN¹, <u>ALEXANDER IDSTRÖM^{1*}</u>, MARIA CLAESSON¹, HENRIK SUNDH², KRISTINA SUNDELL², MARTIN ANDERSSON¹ AND MAGNUS NYDÉN¹

¹Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden; ²Department of Zoology/Zoophysiology, University of Göteborg, Göteborg, Sweden).^{*}idstrom@chalmers.se

The enhancement of ¹⁷O relaxation rates by paramagnetic ions e.g. Mn²⁺, has been employed to distinguish between intestinal water exchange of Salmon smolt in fresh and sea water. Lipids of anterior and posterior intestine were obtained by mucosal scrapings and combined with cholesterol in sodium chloride buffer to form vesicles by ultrasonication. After extrusion, vesicle size and unilamellarity have been determined by dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM).

The mean life time of water molecules within the vesicles were measured by taking advantage of the impermeability of the lipid membrane to paramagnetic ions. External vesicle water relaxes rapidly while internal water is unaffected. The mean life times were obtained from the ¹⁷O line widths and when combined with the vesicle size from DLS the permeability through the membrane could be calculated.

We observed a clear difference in permeability for posterior intestine compared to the anterior intestine.

To744

POSTER

Anomalous diffusion in gelatin gelation

Damjan Pelc, Miroslav Požek

Department of Physics, University of Zagreb, Bijenička 32, HR-10000 Zagreb, Croatia

We present a study of the gelation of water solutions of collagen-derived gelatin using pulsed field gradient NMR. For the first time, the complete dynamic structure factor is obtained in dependence on temperature for several gelatin concentrations. This enables us to follow the gelation process with great precision, on length and time scales relevant for self-organization.

We found that the material is homogeneous above $\sim 10 \ \mu\text{m}$, with well-defined effective diffusion coefficients mostly following activation temperature dependence. A decrease of those coefficients at the overlap concentration of $\sim 35 \ \text{g/L}$ [1] is clearly observed, and an anomaly appears close to the solgel transition. At smaller scales anomalous diffusion sets in [2], and power-law tails are observed in the dynamic structure factor. Their nature changes abruptly at the transition. While fractal diffusion seems to provide a good description in the sol state, it is not applicable in gel; to explain this we suggest that correlated motion plays an important role, in analogy with systems such as glass-forming materials [3] and colloidal gels [4]. It is known that during gelation helical segments form on the polypeptide chains, thus forming interchain bonds [1]; we discuss the significance of hydrophobic interactions between these segments in mediating correlations at micron scales.

This work is enabled by the European Commission through FP7 project #229390 SOLeNeMaR.

Parsaeian A., Castillo H. E., *Phys. Rev. E* 78, 060105 (2008)
 Duri A., Cipelletti L., *Europhys. Lett.* 76(5), 972-978 (2006)

To745

Dynamics and Hydration of PAMAM_G5 dendrimers as PGSE NMR sees

István Bányai, Mónika Kéri, Zoltán Nagy, Márta Berka

Department of Colloid and Environmental Chemistry, University of Debrecen, Debrecen Hungary, e-.mail: banyai.istvan@science.unideb.hu.

NMR spectroscopy has a high potential to study self-diffusion. Self-diffusion plays important role in characterization of colloid (nano) systems. The dendrimer concentration dependences of apparent self-diffusion coefficients for either the PAMAM (polyamido(amine))_G5(5th generation)_X (amino or carboxylate termini) in dilute aqueous solution or for the solvent have been determined. By application the basic theory of dynamics of colloid systems¹ we have shown that the hydrodynamic radius corresponds to the "effective" hard sphere radius, that is these branched organic polymers (30-40 kDa) in hydrated form behave as hard sphere colloids.

The concentration dependence of the self diffusion of water molecules in the presence of dendrimer decreased with the increase of the dendrimer concentration. Application of the cell model² of liquids we determined the number of water molecules moving with dendrimers but exchanging fast with bulk. ³¹P NMR diffusiometry and relaxometry allowed us to characterize the interaction between PAMAM G5 NH₂ dendrimers and analytically and biologically important phosphate ions.

These studies may give important information for drug delivery behavior of dendrimers and may serve a good model for the hydration of biological macromolecules, taking into account the large number of peptide bonds in them.

^{1.} Guo L., Colby R. H., Lusignan C. P., Howe A., Macromolecules 36, 10009-10020 (2003)

^{2.} Ren S. Z., Shi W., Zhand W. B., Sorensen C. M., *Phys. Rev. A* 45, 2416 (1992)

Europhys. Lett. 70(5), 572-578 (20)

^{1.} Jönsson, B.; Wennerström, H.; Nillson, P. G.; Linse, P. Colloid and Polymer Sciences 264, 77-88 (1986).

^{2.} Dhont, J. K. G., An Introduction to the Dynamics of Colloids. Vol. II Elsevier, Amsterdam, (1996);

Permeation of polymer chains through nanopores – timescales and mechanismen

Sara M. Hellenkamp¹, Agnes Wycisk², Dirk Kuckling², Andreas Heuer¹, Monika Schönhoff¹

¹Institute of Physical Chemistry, University of Muenster, Muenster, Germany; ²Institute of Organic Chemistry, University of Paderborn, Paderborn, Germany

We investigate the permeation of polymers through the nanoporous wall of hollow capsules, in particular the correlation between polymer molecular weight and exchange time τ , by using Pulsed Field Gradient (PFG) NMR diffusion. With this method it is possible to distinguish polymers in different environments by their respective diffusion coefficients, here the free and the encapsulated chains. This exchange system can be described by the two-site model. In a previously analysed system¹ consisting of polyelectrolyte multilayer capsules and poly(ethylene glycol) as probe molecules, the chain permeation was described by a scaling law $\tau \propto N^b$.

In the present study, we combine experiments of chain permeation by diffusion time dependent PFG-NMR diffusion studies with Monte Carlo Simulation of a polymer chain threaded through a nanopore. On the one hand we analyse the chain permeation by diffusion experiments for poly(ethylene glycol) and poly(N-isopropylacrylamide) in aqueous solution. On the other hand we investigate the correlation between the exchange time and several parameters, in particularly the chain length and the wall thickness by simulations. This is a first step to understand the whole mechanism of polymer permeation through a nanopore. The final goal of this study is to identify general laws governing chain permeation.

1. Choudhury R., Galvosas P., Schönhoff M., J. Phys. Chem., 112, 13245, (2008)

От747

Globally Phase-encoded, Echo-based FT- EPR imaging for High Resolution and Quantitative in vivo Oximetry

Sankaran Subramanian, Shingo Matsumoto, Nallathamby Devasahayam & Murali C. Krishna

Radiation Biology Branch, Center for Cancer research, National Cancer Institute, NIH, Bethesda, MD 20892, USA

Low frequency in vivo EPR imaging is an emerging field of non-invasive functional imaging in probing oxygen distribution in tumor tissue, pharmacokinetics of free-radical probes, peripheral vasculature, etc. Oxygen mapping is based on Heisenberg exchange broadening of free radical resonances by oxygen in vivo. Oximetry is carried out by T₂ or T₂* dependent contrast. The three methods in vogue are (a) FID based filtered back-projection where one can impart T2*-dependent contrast by varying the acquisition delay. Resonator size and gradient magnitude dependent calibration is necessary for oximetry and resolution is affected by susceptibility artifacts. Large dead time and magnitude mode processing limit resolution. (b) One can perform 90-7-180 echo sequence and construct T_2 -weighted images as a function of τ . Oximetry here is reliable and reproducible, but the resolution of image resolution is still governed by T₂* and susceptibility artifacts. (c) One can perform Single Point or Constant Time imaging (SPI) with pure phase encoding in all dimensions leading to very high resolution images, but the oximetry is based on T_2^* is a problem. Here we combine the high resolution of the SPI mode with the T_2 -weighted oximetry capability of the echo strategy to obtain high resolution in vivo EPR images with quantitative oximetry. We believe that such an approach holds promise to reliable anatomical and functional physiological imaging that can be co-registered with MRI / CT and will aid in cancer treatment by radiation and chemotherapy.

REFERENCES:

⁽¹⁾ E. D. Barth et al. Magn. Reson. Med. 2003. 49(4): p. 682-691. (2) K. Matsumoto Magn. Reson. Med. 55 (5): 1157-1163 (2006)

⁽³⁾ S. Subramanian et al. In Vivo Tissue Oxygen Imaging Via Cooperative ESE/ESPI - US Patent app. # 61/200,579.

OT748

Intermolecular self-assembly of $[Pt^{II}(phen)(L-S,O)]^{+}$ through cation- π interactions, studied by high resolution ¹H NMR and DOSY Spectroscopy

Izak A. Kotzé, Wilhelmus J. Gerber, & Klaus R. Koch.

¹Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa; ikotze@sun.ac.za

Non-covalent cation- π interaction have been the subject of extensive interest in the last decade in view of their well established role in biological systems, supra-molecular chemistry and molecular recognition phenomena.^[1] In contrast the non-covalent self-assembly of planar complex cations such as $[Pt^{II}(dimine)(L-S, O)]^+$ (where dimine is 2,2'-bipyridine or 1,10-phenanthroline and HL-*S*, *O* represents various chelating *N*-acyl-*N*,*N*'-dialkylthioureas) have received comparatively little attention in the literature.^[2] On varying the concentration of the $[Pt^{II}(phen)(L-S, O)]^{CI}$ complex significant changes in the ¹H NMR chemical shift were observed (see figure) which suggests that a self-

association/aggregation processes occur as we have demonstrated for related complexes.^[2]

We here show that in water/acetonitrile solvent systems $[Pt^{II}(phen)(L-S, O)]^+$ self-assemble to form super-'structures' from presumably higher order aggregates. Above a certain critical concentration of $[Pt^{II}(phen)(L-S, O)]^+$ (critical aggregation concentration) a type of micelle formation takes place in solution, leading

to the formation of nano-sized aggregates as demonstrated by ¹H DOSY NMR and TEM images.

REFERENCES:

1. Cusumano K. R. M., Di Pietro M. L., Giannetto A., J Inorganic Chemistry 45 230-235 (2006)

2. Kotze I. A., Gerber W. J., Mckenzie J. M., Koch K. R., European J. Inorganic Chemistry, 12, 1626-1633 (2009)

От749

CHELATE PHOSPHINE LINKERS WITH LONG ALKYL CHAINS FOR IMMOBILIZING CATALYSTS ON OXIDE SUPPORTS

Johannes Guenther and Janet Blümel*

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842, jguenther@chem.tamu.edu

A new class of tridentate phosphine ligands with the general formula $[MeP{(CH_2)_xPPh_2}_3]^+\Gamma$ (x = 4, 7, 11), and $[MeP(CH_2PPh_2)_3]^+OTF$, have been synthesized and fully characterized.¹ The linkers have been immobilized on silica with their phosphonium moieties via electrostatic interactions, and their mobility and leaching was studied by solid-state HRMAS (high-resolution MAS) NMR. Immobilized Wilkinson-type Rh catalysts have been obtained by ligand exchange with the surface-bound linkers.

Their activities and lifetimes have been tested for the hydrogenation of 1-dodecene. Their selectivity was investigated by ¹H NMR. The Rh catalyst surface-bound by the linker [MeP{(CH₂)₇PPh₂}₃]⁺ Γ led to the highest activity and lifetime, as it could be recycled for a record 30 times. For all catalysts the formation of Rh nanoparticles with narrow size distributions around 4 nm has been proven.

REFERENCE: 1. Guenther, J, Reibenspies, J, Blümel, J, Adv. Synth. Catal. 353, 443-460 (2011)

CARBON-13 NMR STUDIES OF PROTEASES INHIBITED BY SPECIFIC GLYOXAL INHIBITORS

J. Paul G. Malthouse, Nicole Howe, Mariangela Ceruso, Teodolinda Petrillo & Catrina O'Donohoe.

University College Dublin, UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. email: j.paul.g.malthouse@ucd.ie.

The rate limiting step in catalysis by proteases involves formation or breakdown of a tetrahedral intermediate [1]. In the serine [1,3,5,6] and cysteine proteases [2] an enzyme nucleophile reacts with the peptide carbonyl carbon to form a tetrahedral intermediate while with the aspartyl and metalloproteases water reacts with the peptide carbonyl to form the tetrahedral intermediate [4]. Therefore transition state analogues that mimic these tetrahedral intermediates are expected to be potent protease inhibitors.

We will show how we have used ¹³C NMR to show that the glyoxal group (RCOCHO) is a versatile inhibitor warhead, which by adjusting its hydration state can mimic tetrahedral intermediates formed by different classes of proteases [1,2,3,4,5,6].

References

[2] Lowther, J., Djurdjevic-Pahl, A., Hewage, C. and Malthouse, J.P.G. Biochem. J., 366, 983-987, (2002).

[3] Spink E., Cosgrove S., Rogers L., Hewage C., Malthouse J.P.G, J. Biol. Chem., 282, 7852-7861, (2007).

[4] Cosgrove, S., Rogers, L., Hewage, C.M. and Malthouse, J.P.G., Biochemistry, 46,11205-15, (2007).

[5] Spink, E., Hewage, C.M. and Malthouse, J.P.G., Biochemistry, 46, 1268-12874(2007).

[6] Howe, N., Rogers, L., Hewage, C. and Malthouse, J.P.G., Biochimica et Biophysica Acta, 1794, 1251-125, (2009).

Acknowledgements

This work was funded by PRTLI-4, IRCSET and Science Foundation Ireland (SFI).

От751

A high-frequency (210) GHz EPR study of Mn3+ in a MnMo6Se8 single crystal at low temperature (10 K): Jahn-Teller effect

Sushil K. Misra and Benjamin Regler

Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8, Canada

Posters

A high-frequency (208-GHz) EPR-study on Mn^{3+} ($3d^4$, S = 2) ions imbedded in a MnMo₆Se₈ single crystal at 10 K has been performed. The experimental spectra indicate an overlap of EPR lines from three magnetically inequivalent Mn^{3+} ions, whose magnetic axes are oriented along the three edges of the crystal in the form of a rectangular parallelepiped. The spin-coupling parameters were determined by the method of least-squares, fitting all the observed line positions simultaneously to the spin-Hamiltonian model. The symmetry of the spin Hamiltonian at the sites of the Mn^{3+} ions has been deduced from the parameters as determined from the EPR spectra. The differences in the values and signs of the zero-field splitting parameters for the three sites have been explained in terms of the Jahn-Teller distortions experienced by the Mn^{3+} ions in the MnMo₆Se₈ crystal.

^[1] Malthouse, J.P.G. Biochem. Soc. Trans., 35, 566-570, (2007).

Using NMR to study how aqueous solutions of Carbon-13 enriched bicarbonate react and/or interact with an azacryptand scaffold

Aljoscha A. C. Wild¹, Chandralal Hewage, Grace Morgan¹, Kevin Fennell¹ and J. Paul G.Malthouse¹*

¹Conway Institute of Biomolecular and Biomedical Research, UCD SEC Strategic RES Cluster, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, email =Aljoscha.Wild@ucdconnect.ie

Earlier crystallographic studies have shown that in crystals the azacryptand scaffold binds a carbonate molecule between two zinc atoms. Each of the two zinc atoms is coordinated to 3 secondary nitrogen atoms of the azacryptand scaffold [1].

We dissolved the azacryptand scaffold in an aqueous solution at pH 10 containing 50% (v/v) DMSO and Carbon-13 enriched bicarbonate.Carbon-13 NMR has been used to observe the species formed in the presence and absence of zinc. The effect of the concentrations of bicarbonate and zinc on the stoichiometry of the species formed has been determined. HOESY has been used to determine how the Carbon-13 enriched carbon atom interacts with the protons of the scaffold and NOESY has been used to determine how the structure of the azacryptand scaffold is affected by added bicarbonate.

1.Dussard Y.; Harding C.;Dalgaard P.;Mckenzie. C.;Kardirvelraj R.; McKee V. & Nelson, J. Dalton Trans, 8,1704-1713 (2002)

От753

Investigations of Flow in Quantitative NMR

Franz Dalitz¹, <u>Gisela Guthausen</u>¹, Michael Maiwald²

1: Institute of Mechanical Process Engineering and Mechanics, SRG10-2, KIT, 76131 Karlsruhe, Germany 2: BAM Bundesanstalt für Materialforschung und –prüfung, Fachgruppe 1.4 Prozessanalytik, 12489 Berlin, Germany

NMR as a non-invasive method provides qualitative and quantitative information from complex reacting multi-component mixtures for equilibrium or reaction kinetic studies [1–2]. Quantitative online NMR spectroscopy equipped with a flow probe allows the investigation of reaction progress almost in real time and under process conditions, in a wide range of temperatures and pressures. The delay time caused by the bypass realization in on-line NMR is an important issue. The non-ideal flow (transfer and spreading) of the sample from the reactor to the active region of the NMR probe is described by the residence time distribution (RTD) function [3]. It can be obtained from pulse tracer or step tracer experiments, where either a concentration pulse or a concentration step is produced in the reactor and the NMR-signal is monitored. The flow within the active region of the NMR cell should be characterized to assure that there are no stationary fractions of the sample remaining in the NMR sensitive region. This can be examined *in-situ* by MRI either in time-of-flight or in velocity imaging.

The contribution describes the residence time distribution and its consequences for a typical online NMR set-up. Pulse tracer experiments as well as tomographic flow studies are presented. The results provide detailed insight into flow properties and allow an optimization of the sample cell, which may be of general interest for other analytical on-line techniques using a sample cell within a bypass.

^{1.} Albert, K. et al., J. Chromatogr. A, 856, 199-211 (1999).

^{2.} Dorn, H.C., in: Encyclopedia of Nuclear Magnetic Resonance, Wiley, Chichester, NY, 2026–2037 (1996)

^{3.} Maiwald, M. et al., J. Magn. Reson., 166, 135–146 (2004)

Progress in SEC-medium resolution NMR

Markus Cudaj^{1,4}, Gisela Guthausen², Andreas Kamlowski³, Diether Maier³, Thorsten Hofe⁴, Manfred Wilhelm¹

Institute for Chemical Technology and Polymer Chemistry, KIT, Engesserstraße 18, 76128 Karlsruhe, Germany
 Institute of Mechanical Process Engineering and Mechanics, SRG10-2, KIT, Adenauerring 20b, 76131 Karlsruhe, Germany
 Bruker BioSpin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
 4: PSS Polymer Standards Service GmbH, In der Dalheimer Wiese 5, 55120 Mainz, Germany

A bench-top medium resolution prototype MR-NMR spectrometer has been adapted for online coupling with Size Exclusion Chromatography (SEC). Its sensitivity and selectivity are appropriate for polymer characterization. A great challenge of this online coupling is solvent suppression as polymers are investigated in solution using protonated solvents. T_1 relaxation differences can be exploited additionally to mathematical data treatment.

A dedicated steady state pulse sequence in combination with pre-experimental solvent degassing allows the measurement of the polymer with sufficient S/N under SEC-conditions (flow rate and concentrations), thus avoiding highly expensive deuterated solvents.

Chromatograms and the corresponding NMR spectra are measured online. On the one hand polymers could be separated from each other by a single preparative column and characterized chemically. On the other hand current limits are exploited: Sensitivity in NMR spectra and resolution in chromatograms.

1. Cudaj, M. et al., Macromolecular Rapid Communications, 32, 665-670 (2011).

От755

Long coherence lifetimes for Zeeman and hyperfine transitions in Nd³⁺:Y₂SiO₅ measured by pulsed EPR

Robert Marino^{1,2}, R. E. George³, J. J. L. Morton^{3,4}, A. Ferrier², P. Goldner², H. Vezin¹

¹Laboratoire de Spectroscopie Infrarouge et Raman, UMR 8516, Université des Sciences et Technologie de Lille, Bâtiment C5, 59655 Villeneuve D'Ascq Cedex; ²Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, Chimie ParisTech, 11 rue Pierre et Marie Curie F-75231 Paris Cedex, France; ³CAESR, Clarendon Laboratory, Department of Physics, Oxford University, Oxford OX1 3PU, UK; ⁴Department of Materials, Oxford University, Oxford OX1 3PH, UK <u>robert-marino@chimie-paristech.fr</u>

Rare earth ions in inorganic crystals are promising candidates in the areas of quantum computing and quantum state storage. For example, storage of entangled photons has been recently demonstrated in $Nd^{3+}:Y_2SiO_3$ [1]. In these experiments, the upper Zeeman level was used as a shelving state for spectral tailoring, although it could be interesting to take advantage of the coherence properties of the Zeeman or hyperfine transitions. Indeed, the former could be efficiently used as a quantum bit [2].

We performed pulsed EPR experiments to measure the coherence lifetimes of a 30 ppm doped Nd³⁺:Y₂SiO₃. For Zeeman transitions, results show strong angular dependence and T₂ up to 30 μ s at 5 K. Pulsed ENDOR experiments allowed transferring the coherence from the electronic spin to the nuclear spin [3] with a hyperfine T₂ of 330 μ s, which is promising for quantum storage. Last, a study on the sources of spectral diffusion in the material has been carried out.

^[1] C. Clausen *et al.*, Nature, **469**, 508, (2011)

^[2] S. Bertaina et al., Nature Nanotechnology, 2, 1, 39-42, (2007)

^[3] J. L. Morton et al., Nature, 455, 1085, (2008)

Investigation of kinetik and dosimetric potential of gamma-irradiated calcium ascorbate

Hasan Tuner

Department of Physics, University of Balikesir, Balikesir, Turkey. htuner@balikesir.edu.tr

In the present work, radiosensitivity and dosimetric potential of solid calcium ascorbate dihydrate (CaAs) were explored through a detailed electron spin resonance (ESR) study performed at various temperatures. Irradiated CaAs was observed to exhibit an ESR spectrum consisting of two main strong lines spread over a magnetic field range of 5 mT and centered at g = 2.0052. An evaluation technique based on the variations of the characteristic resonance line intensities and the spectrum area under different experimental conditions was adopted, to determine the spectroscopic, kinetic and dosimetric features of radical species responsible for the observed experimental ESR spectrum. Radicals exhibiting similar ESR characteristics to those reported in the literature for irradiated ascorbic acid and its sodium salt (1, 2) were shown to be also produced in gamma-irradiated CaAs.

REFERENCES:

1. Tuner H. and Korkmaz M., J. Radioanal. Nucl. Chem., 273(3) 609-614, (2007)

2. Tuner H. and Korkmaz M., Radiat. Eff. Defects Solids, 163(2), 95-105, (2008)

ACKNOWLEDGEMENTS: This work was supported by the Turkish Research Council (TUBITAK), grant no: 110T825

От757

Environmental response on seed germination potential by low frequency of electromagnetic field (ELF) and ELF modulated millimeter waves

Astghik Sukiasyan, Narine Mnatsakanian, Yerazik Mikayelyan, Sinerik Ayrapetyan

UNESCO CHAIR IN LIFE SCIENCES INTERNATIONAL POSTGRADUATE EDUCATIONAL CENTER (LSIPEC), Yerevan, Armenia Avan - Acharian 31, Yerevan 0040, Republic of Armenia sukiasyan.astghik@gmail.com

Our research work focuses on a comparative study of extremely low frequencies of electromagnetic field (EMF) and ELF-modulated millimeter waves (MMW) effects on winter-wheat seed germination potential. Different frequencies were used in the experiment, particularly 14, 15, 16 Hz, with the exposition lasting 15 minutes. The seeds are incubated in aqua medium having composition NaCl-4,680g; KCl-0,298g; CaCl2-0.777g; MgCl2-5,66g; C6H12O6-1,860g; pH -8,8-8,9 in 1000 ml distilled water for 72 hours. The mechanism of observable and changing effects modulations caused by structural changes of the processed water by LF EMF and ELF-modulated MMW are discussing.

The data obtained helped observe ELF EMF and modulated MMW has a frequency-dependent character of producing effect. On the other hand, it was observed that modulated MMW has significantly higher effect than ELF EMF, compared to the control group. The results obtained during of the experiments may give some of clarifications of the activation effect mechanisms of 15 Hz EMF on seeds germination, plants growth, which will show the efficiency of this method, in the field of food safety and environmental conservation.

EPR in the Structure Analysis of Human Serum Albumin

Yasar Akdogan¹, Matthias J. N. Junk², Dariush Hinderberger¹

¹Max Planck Institute for Polymer Research, Mainz, Germany; ²current address: Department of Chemical Engineering, University of California, Santa Barbara, USA. akdogan@mpip-mainz.mpg.de

Human serum albumin (HSA) is the most abundant protein in human blood plasma which serves as a carrier of fatty acids (FAs) and a diverse range of metabolites from the blood stream to target cells. Using spin-labeled FAs, 5- and 16-doxylstearic acid (DSA), the uptake of the FAs by the protein and their spatial distribution in the protein can be monitored by CW EPR, and nanoscale distance measurements can be obtained with DEER spectroscopy. The FA distribution provides an indirect yet effective way to characterize the structure of the protein in solution. While the distribution of 5-DSA is mainly consistent with the crystallographic data, 16-DSA is distributed much more homogeneously on the protein surface than suggested by the crystal structure [1]. Furthermore, the effect of several ionic liquids (ILs) on the solution structure of HSA is revealed by EPR. Addition of imidazolium-based ILs to an aqueous solution of HSA/FA conjugates is accompanied by significant destabilization and unfolding of the protein's tertiary structure. In contrast, HSA maintains its tertiary structure when choline dhp is added. The comparison of FA distance distributions in HSA with and without choline dhp surprisingly revealed that with this IL, the FA anchoring units are in better agreement with the crystallographic data. These results indicate that choline dhp as a cosolvent may selectively stabilize HSA conformations closer to the crystal structure out of the overall conformational ensemble [2].

REFERENCES:

1. Junk, M. J. N., Spiess, H. W., Hinderberger, D., Angew. Chem. Int. Ed., 49, 8755-8759 (2010)

2. Akdogan, Y., Junk, M. J. N., Hinderberger, D., Biomacromolecules, 12, 1072-1079 (2011)

От759

NMR characterization of the interaction of TOR regulatory domains with membrane-mimetic systems

Sonja A. Dames^{1*}, Lisa A. M. Sommer¹, D. C. Rodriguez-Camargo¹, N. L. Link²

¹Department of Chemistry, Technische Universität München, Garching, Germany, ²Biozentrum, University of Basel, Basel, Switzerland. *E-mail: sonja.dames@tum.de.

Poster

The target of rapamycin (TOR) is a highly conserved multidomain ser/thr kinase that regulates eukaryotic cell growth and survival in response to nutrient availability and environmental factors. TOR forms two functionally distinct complexes and has been localized at different cellular membranes and in the nucleus. However, the atomic details of TOR membrane-association and its dependence on the composition of each TOR-complex as well as on stimuli known to regulate TOR function are not known. The N-terminal HEAT repeats and presumably also the following FAT domain were suggested to mediate interactions with membrane and other cellular proteins. The FRB domain between the FAT and the catalytic domain provides the binding site for the TOR-specific inhibitor complex rapamycin-FKBP12 and was suggested to interact with the negatively charged phospholipid phosphatidic acid (PA). The C-terminal FATC domain plays an important role for the regulation of TOR function. Based on the NMR structure of the oxidized form and *in vivo* mutagenesis data, the cellular stability of TOR depends on the redox state of two conserved cysteines in the FATC domain (1). In order to better understand how TOR can associate with different cellular membranes and whether this is influenced by the presence of PA in cellular membranes or by redox-sensitive stimuli, the membrane-binding properties of the yeast TOR1 FATC domain (y1fatc) (2) and of the human TOR FRB domain (hFRB) have been characterized by solution NMR spectroscopy and additional biophysical methods.

REFERENCES: 1. S. A. Dames et al., J. Biol. Chem, 280(21): 20558-20564, 2005; 2. S. A. Dames., J. Biol. Chem, 285(10): 7766-7775, 2010 1.

Structure, lipid-binding, and cellular loczalization of the putative GTPasebinding domain of the formin family protein ForC

Sonja A. Dames^{1*}, Alexander Junemann², André Schönichen³, Barbara Stopschinski³, Jan Faix², Matthias Geyer³

¹Department of Chemistry, Technische Universität München, Garching, Germany, ²Hannover Medical School, Hannover, Germany, ³Max-Planck Institut für molekulare Physiologie, Dortmund, Germany. *E-mail: sonja.dames@tum.de

Formins are widely expressed proteins that govern cell shape, adhesion, cytokinesis, and morphogenesis by remodeling the actin and microtuble cytoskeleton. Dictyostelium discoideum ForC lacks a canonical formin homology 1 (FH1) domain and has been shown to mediate cell movement during the multicellar stages of this social amoeba. Here, we present the structural and functional characterization of the N-terminal putative GTPase-binding domain (GBD) of ForC. Similar to the GBD of the human Formin FHOD, this domain shows an ubiqitin-like fold with an unusually long loop between the first two beta-strands. The positively charged surface area is considerably larger than that of other GBDs. Based on NMR- and CD-detected lipid-binding studies, the ForC GBD undergoes large structural changes if immersed in dodecylphosphocholine micelles, which occur at lower micelle concentrations if negatively charged phosphoinositides are present. However, differently composed bicelles and micelles composed of short-shain Diacylphosphocholines have not such an effect. This suggests that the ForC GBD may be sensitive to membrane patches with specific curvatures and compositions. Additional binding studies evaluated the role of the long loop for DPC micelle-induced structural changes. Based on live cell imaging, both the GBD and the subsequent Formin homology 3 (FH3) domain are required for subcellular targeting to cell-cell contact sites and actin-rich crown-like structures representing the precursors of phagocytic cups and macropinosomes.

OT**761**

Local Structure and Dynamics of silica/polyol hydrogels: A solid-state NMR study

Paul V. Wiper and Yaroslav Z. Khimyak

Department of Chemistry, Crown Street, Liverpool, L69 7ZD, United Kingdom p.v.wiper@liv.ac.uk

Organic-inorganic materials obtained by sol-gel processing are widely used in chemical, physical and mechanical applications. Such materials include siloxane polymers, periodic mesoporous organosilicas, organically functionalised porous silicas, silicon polyoxolates and silica hydrogels.¹⁻⁵ These materials are

structurally and dynamically heterogeneous and show a lack of long range ordering, which precludes the use of standard diffraction techniques. Solid-state NMR is an ideal technique to probe amorphous hybrids on the molecular level

We have used solid-state NMR to investigate the organisation of silica/polyol hydrogels and correlate molecular structural information with temperature induced structural changes. Variable temperature ¹H and ¹³C MAS NMR were used to monitor changes in local structure whilst T_1 and $T_{1\rho}^{H}$ relaxation times provided an insight into dynamics and the presence of domains. ¹H-¹³C HECTORs gave a unique insight into the organic-inorganic spatial proximity. ²³Na MQMAS experiments tracked the change in sodium coordination upon formation of crystalline layered silicates, precluding application of such hydrogels.

NMR spectra of a silica/ethylene glycol hydrogel.

^{1.} Microporous and Mesoporous Mat. 2007 106 236-245

^{2.} Angew. Chem. Int. Ed. 2006, 45, 3216 - 3251

^{3.} Russ. Chem. Bull., Int. Ed. 2010 1 59

^{4.} Chem. Mater. 2009, 21, 5792-5800

^{5.} Chem. Mater. 2008, 20, 3385–3397

The complex of Nitrite Reductase and Cytochrome c₅₅₁: a W-band EPR study of a single crystal.

<u>Silvia Sottini¹</u>, Peter Gast¹, Hiroyasu Koteishi², Masaki Nojiri², Edgar J.J. Groenen¹.

¹Department of Physics, Leiden University, Leiden, The Netherlands; ²Department of Chemistry, Osaka University, Osaka, Japan. sottini@physics.leidenuniv.nl

Copper Nitrite Reductases (CuNiR) are enzymes active in the catalysis of nitrite to nitrogen monoxide. In general, CuNiR folds in a structure that consists of three monomers, and each unit contains two distinct copper sites: a type1 site (T1Cu), where the oxidation of a redox-partner protein takes place, and a type 2 site (T2Cu), where the reduction of the nitrite takes place. The CuNiRs are further classified in two subgroups (blue and green), based on the spectroscopic properties of the T1Cu site, an indication that structurally similar sites may show profound differences in their electronic structure. In order to deepen our understanding of the biological activity of CuNiR, we have studied the complex of the blue CuNiR from Achromobacter xylosoxidans with its redox-partner Cytochrome c_{551} , which carries a heme as the active site¹. Here we report on the first EPR study of a single-crystal of such a complex. At W band the T1Cu and T2Cu spectra overlap, so the copper in the T2Cu site of the CuNiR was substituted by zinc. The g matrix of the T1Cu was determined, both the principal values and the direction of the principal axes, which is most informative as regards the electronic structure. The heme- g_z transition is found to be shifted towards higher fields in the complex, which might well be related to the fact that a methionine residue of the CuNiR provides the sixth ligand for the heme-iron. The direction of the heme- g_z principal axis was determined. The mutual orientation of the g axes of the redox-partners provides insight into the change of their electronic structure upon complex formation.

REFERENCES: 1. Nojiri M., Koteishi H., Nakagami T., Kobayashi K., Inoue T., Yamaguchi K., Suzuki S., Nature, 462, 117-120 (2009)

OT763

Light-induced EPR study of charge transfer in polymer/oligomer blends for organic photovoltaics

Ling Yun¹, Nissy Nevil¹, Sarah Van Mierloo², Dirk Vanderzande², <u>Etienne Goovaerts</u>¹, Sabine Van Doorslaer¹

¹Department of Physics, University of Antwerp, 2610 Antwerp, Belgium, <u>Etienne.Goovaerts@ua.ac.be</u> ²Institute for Materials Research (IMO), Hasselt University, B-3590 Diepenbeek Belgium

Organic conjugated compounds are promising for the realization of low-cost, large-area electronic products such as organic solar cells. The 3D bulk heterojunction (BHJ) concept for solar cells starts from an intimate blend of donor ('p-type') and acceptor ('n-type') compounds. While a large number of p-type compounds is now available, reports about n-type organic oligomers are still scarce.

We present a light-induced electron paramagnetic resonance (EPR) investigation of a series of hexyl-substituted bisthiophene compounds (D1-D4) containing a thiazolothiazole(5,4-*d*) unit [1]. Compounds D1-D4 were blended in different ratios with the standard p-type polymer MDMO-PPV (poly[2-methoxy-5-(3,7-dimethyloctyloxy)]-1,4-phenylenevinylene) to investigate electron transfer under illumination, an essential step in the photovoltaic process. X-band (9.44 GHz) EPR of these polymer/oligomer blends were measured before and after illumination (argon ion laser, $\lambda = 488$ nm). This is compared with the results in pure compounds D1-D4 and in MDMO-PPV and related to photoluminescence quenching experiments. The acceptor capacity as observed in the light-induced experiments in the blends is anti-correlated with the efficiency of iodine doping of the pure oligomers.

[1] Van Mierloo, S., et al. Magn. Reson. Chem., 48, 362-369 (2010)

Quantitative Online NMR Spectroscopy for Reaction Monitoring in Chemical Engineering

Eléonore Kibrik¹, Sebastian Hoch¹, Erik von Harbou¹, Klaus Albert², Werner Thiel³, Hans Hasse¹

¹Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany; ²Institute of Organic Chemistry, Eberhard-Karls University of Tübingen, Tübingen, Germany; ³Laboratory of Inorganic Chemistry, University of Kaiserslautern, Kaiserslautern, Germany.

Online NMR spectroscopy facilitates monitoring processes under industrially relevant conditions in measurements that are non-invasive (no change of temperature, pressure or sample composition). A typical setup is an external reactor directly coupled to an NMR spectrometer equipped with a flow cell. Without any sample preparation the reaction mixture is pumped through the NMR flow cell, spectra are recorded and the mixture flows back to the reactor. This set up is ideal for studies of reactions with half-times down to several minutes [1].

For monitoring faster reactions a static micro-mixer is directly mounted below the NMR magnet; syringe pumps provide a pulse free continuous flow of the reactants through the NMR flow cell. This new development allows monitoring reaction kinetics with half-times of less than one minute.

A new design of a fully liquid-thermostated NMR flow probe head is presented that contains a micro-mixer coupled with a capillary NMR probe. The combination of a solenoidal micro-coil flow probe with a micro-mixer within the probe head allows monitoring very fast reactions. The design and the manufacturing of the new probe head were carried out in a co-operation with the Institute of Micro Mechanics (IMM), Mainz. It is shown that this new probe head is suited for obtaining reliable quantitative data on complex reacting mixtures with reaction times of the order of seconds.

REFERENCES:

1. Maiwald M., Steinhof O., Sleigh C., Bernstein M., Hasse H., Quantitative High-resolution Online NMR Spectroscopy in Pharmaceutical Process Monitoring; in: Wawer I., Diehl B., Holzgrabe G. (Eds.), *NMR Spectroscopy in Pharmaceutical Analysis*, Elsevier Science, Amsterdam, Netherlands, 471-490 (**2008**), ISBN 13-978-0444531735

От765

α-Lactalbumin, engineered to be non-native and inactive, kills tumor cells when in complex with oleic acid: A new biological function resulting from partial unfolding

Jenny Pettersson-Kastberg¹, Ann-Kristin Mossberg¹, Maria Trulsson¹, Yeon Joong Yong^{1,2}, Soyoung Min², Yoongho Lim³, John E. O'Brien², Catharina Svanborg¹, <u>K. Hun Mok^{1,2}</u>

¹Dept of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden; ²School of Biochemistry and Immunology / School of Chemistry, Trinity College Dublin, Dublin, Ireland; ³Dept of Bioscience and Biotechnology, Konkuk University, Seoul, Korea; E-mail: mok1@tcd.ie

HAMLET (<u>h</u>uman <u>alpha-lactalbumin made <u>lethal</u> to <u>t</u>umor cells</u>) is a biomolecular assembly consisting of partially unfolded protein and fatty acid and has been demonstrated to be tumoricidal in > 40 cancer cell lines while leaving healthy, differentiated cells intact. Because native α -lactalbumin itself cannot trigger cell death, HAMLET's remarkable tumor-selective cytotoxicity has been correlated with the partially unfolded nature of the protein, but whether a recovery to the native state is required upon entering the tumor cell is yet unclear. Here we utilize pulsed-field diffusion NMR techniques to estimate the hydrodynamic properties of a recombinant variant of human α -lactalbumin (rHLA^{all-Ala}) that renders the protein non-native and biologically inactive under all conditions. While this analogue protein-fatty acid complex (rHLA^{all-Ala}_OA) exhibited tumoricidal activity equivalent to HAMLET, the fatty acid-free rHLA^{all-Ala} protein lacked any cytotoxic activity. Structurally, NMR experiments show that rHLA^{all-Ala}-OA showed significant differences to HAMLET, devoid of any tertiary packing. The results identify α -lactalbumin as a protein with strikingly different functions in the native and partially unfolded states. We posit that partial unfolding offers another significant route of functional diversification for proteins within the cell.

1. Mossberg A-K, Mok KH, Morozova-Roche LA, Svanborg C, *FEBS J* 277:4614-25 (**2010**). / 2. Pettersson-Kastberg J et al, *Annals Med* 41:162-76 (**2009**). / 3. Pettersson-Kastberg J, Mossberg A-K, Trulsson M, Yong YJ, Min S, Lim Y, Svanborg C, Mok KH, *J Mol Biol* 394:994-1010 (**2009**).

Karl F. Stupic¹, Galina E. Pavlovskaya, Thomas Meersmann

Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom. (Karl.Stupic@Nottingham.ac.uk)

Noble gas isotopes have received increased attention for their use in exploring materials, surfaces, and as a biomarker for lung magnetic resonance imaging (MRI). Of the noble gas isotopes that are available, three isotopes (²¹Ne, ⁸³Kr, ¹³¹Xe) are quadrupolar (spin I > $\frac{1}{2}$) and therefore are sensitive to changes of the surrounding environment, particularly the surfaces the gases briefly adsorb onto. During these brief adsorption periods, changes in surface chemistry, temperature, surface-to-volume ratio, and the presence of co-adsorbing species influence the quadrupolar behavior of these isotopes. In the case of ¹³¹Xe, these changes can be observed in the nuclear magnetic resonance (NMR) spectrum directly as a quadrupolar splitting $(2v_0)$. This splitting is study here, utilizing hyperpolarized ¹³¹Xe, to understand the effects of the surface on the quadrupolar splitting and to study the use of surface sensitive probes for material and biomedical diagnosis.

REFERENCES:

1. Stupic K. F. et al., J. Magn. Reson. 208, 58-69 (2011)

5. Raftery D., Ann. Rep. NMR Spec. 57, 208-270 (2006)

Fig. 1. NMR spectra of hp ¹³¹Xe at different pressures on a glass surface. The quadrupolar splitting of the ¹³¹Xe decreases as the pressure of xenon gas increase. This decrease is attributed to changes in the gas phase contribution of the $2v_0$ given that the surface is unchanging between experiments.

2. Meersmann T., Haake M., Phys. Rev. Lett 81, 1211-1214 (1998) 3. Stupic K. F. et al., Solid State Nucl. Magn. Reson. 29, 79-84 (2006) 4. Cleveland Z. et al., J. Amer. Chem. Soc. 129, 1784-1792 (2007)

От767

EPR CHARACTERIZATION OF [HEME-IMID-PYR] MODEL COMPOUNDS

Montserrat Pérez-Navarro, Jesús I. Martínez, Pablo J. Alonso

Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Spain.

Hemeproteins are ubiquitous in living organisms and act in many biological processes as charge carriers, catalysts and other. Heme model compounds are useful for understanding the relationship between heme center structure and biological functions of hemeproteins. Heme model compounds can be characterized by different EPR techniques, including CW-EPR and advanced EPR methods as ESEEM and ENDOR.

Many different heme centers with bis-imidazole derivatives and bis-pyridine derivatives have been characterized¹. In this work, we present the EPR characterization of a heme model compound with one imidazole and one pyridine as axial ligands. This is a model for the structure of natural existing hemeproteins, as the nicotinate-ligated leghemeglobin². The synthesis of this model compound depends on the affinities of imidazole and pyridine, and on the solvents. The different chemical affinities of the ligands, both as first and second ligand, were evaluated by means of quantitative EPR measurements, and a CW-EPR spectrum corresponding to the heteroligated compound was obtained and analyzed. From this study, parameters characterizing the ligand environment and the electronic structure of iron within the heme center were obtained. Also pulsed EPR measurements were performed. The analysis of the results gave insights on the hyperfine couplings of the unpaired electron with nearest nuclei.

^{1.} Walker F. A., Coordination Chemistry Reviews, Volume 185-186, 471-534 (1999)

^{2.} Patel N., European Journal of Biochemistry, Volume 267, 2581-2587 (2000)

Electronic structure of Mn bound to modified bacterial reaction centers

Marco Flores, Tien L. Olson, JoAnn C. Williams, James P. Allen

Department of Chemistry and Biochemistry, Arizona State University, Tempe, USA. mafloresr@asu.edu

The properties of Mn bound to highly oxidizing reaction centers of *Rhodobacter sphaeroides* were studied in a mutant modified to possess a metal binding site at a location comparable to the Mn cluster of Photosystem II. The modified highly oxidizing reaction center, identified as the M8 mutant, has a binding site with two carboxylates (Glu M168 and Glu M192) and two histidine residues (M173 and M193). In addition, the binding site contains Tyr M164, which is located in a similar position to Y_z in photosystem II,^{1,2} Gly M288 and Asp M292. Steady state light-minus-dark optical spectra demonstrate the binding of Mn²⁺ ions to the M8 mutant. The dissociation constant, K_D, was found to be pH independent above pH 8.2 (at ~1.5 µM) and below pH 8.2 increases with decreasing pH, to a value of 85 μ M at pH 7.6. This Mn-binding mutant shows a Mn²⁺ electron paramagnetic resonance (EPR) signal in the dark with no EPR signal from the manganese after illumination while mutants with only the binding site or only a highly oxidizing donor showed no difference upon illumination. The EPR spectrum of the bound metal has a distinctive spin 5/2 signal that can be fitted as arising from multiple "allowed" and "forbidden" electronic transitions. Electron spin echo envelope modulation (ESEEM) spectra showed the involvement of two different histidine nitrogen ligands (N_{ϵ} and N_{δ}) in the binding. Together, the data demonstrate the tight binding of MnCl₂ to the reaction center with the metal being redox active and serving as a secondary electron donor.

Narváez A. J., LoBrutto R., Allen J. P., Williams, J. C., *Biochemistry*, 43, 14379–14384 (2004)
 Kálmán L., Narváez, A. J., LoBrutto, R., Williams, J. C., Allen, J. P., *Biochemistry*, 43, 12905–12912 (2004)

От769

Rapid measurement of methyl pseudo-contact shifts in paramagnetic proteins

Kandala V. R. Chary, Ashok K. Rout and Ravi P. Barnwal

Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India. Fax: (+) 91-22-2280-4610chary@tifr:res.in

Pseudocontact shifts (PCSs) are important structural constraints in the calculation, refinement and validation of high-resolution 3D structures of metalloproteins. In an attempt to assign the PCSs of ¹H and ¹³C spins belonging to various methyl groups present in the core of paramagnetic proteins, we propose a reduced-dimensionality based methodology denoted as the (3, 2)D CT-H<u>CC</u>H-COSY¹ experiment. This enables rapid data collection and assignment of the PCSs of CH₃ groups of Ala, Ile, Leu, Met, Thr and Val residues in paramagnetic proteins. This methodology is based on the spectral editing the individual ¹³C-¹H signatures of all the methyl resonances of Ala, Ile, Leu, Met, Thr and Val residues in both uniformly and fractionally (10%) ¹³C-labelled protein. By using this methodology the inherent problem of resonance overlap, a major problem in this spectral region, which is further aggravated due to the presence of peaks both from diamagnetic and paramagnetic species, could be overcome. We will demonstrate the utility of this experiment on the protein calbindin ([Ca²⁺][Yb³⁺]Cb).

REFERENCES:

1. Barnwal R.P, Atreya H.S and Chary K.V.R., J Biomol NMR, 42, 149-54 (2008).

Compact rheo-TD-NMR System for Online Monitoring of Polymerization

Edme H. Hardy^{1,a}, H. Herold¹, Karl-Heinz Wassmer², Nikolaus Nestle²

¹IMVM, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; ² BASF SE, Polymer Research, Ludwigshafen, Germany. ^aedme.hardy@kit.edu.

Significant macroscopic and microscopic information regarding the progress of a polymerization process is gained form the flow curve and transverse relaxation, respectively. The presented work aims at the development of a reliable system suited for process analytics in an industrial environment.

Whereas measurements at several flow rates and iterative corrections are required for conventional capillary rheometry, NMR-based capillary rheometry yields the flow curve at a single flow rate. This requires the measurement of the velocity profile, of its Abel transform, or of the velocity probability density function (VPDF) [1].

Decay of transverse magnetization as measured by a CPMG sequence on a liquid flowing through an inhomogeneous rf field is enhanced compared to the result in the case of a static fluid and homogeneous field. A correction is presented based on the rf profile and the VPDF.

In order to achieve a velocity-independent polarization, a pre-polarization pipe consisting of Halbach arrays was realized. A flow cell with an inductively coupled rf coil for pressures up to 2 MPa at 423 K was developed. The permanent-magnet system provided by Bruker, Rheinstetten is equipped with a three-axis gradient system.

A characterization of the system and first results are presented.

REFERENCES:

1. E. H. Hardy, D. Mertens, B. Hochstein, H. Nirschl. Kompaktes, NMR-gestütztes Kapillarrheometer. Nachrichten aus der Chemie, 58, 155 (2010).

От771

Oil Demulsification Investigation: D-T₂ Low Field NMR Mapping Analysis

Renzo C. Silva^{a,b}, Giovanna F. Carneiro^a, Lúcio L. Barbosa^a, André Souza^c, <u>Valdemar Lacerda Jr.</u>^a*, Eustáquio V. R. de Castro^a

^aResearch and Methodology Development Laboratory for Crude Oil Analysis – LabPetro, Department of Chemistry, Federal University of Espírito Santo, Brazil.*corresponding author: <u>vljuniorqui@gmail.com</u>^bMolecular and Environmental Organic Geochemistry Laboratory – LAGOA/LADETEC, Institute of Chemistry, UFRJ, Rio de Janeiro, Brazil. ^cSchlumberger Brazil Research and Geoengineering Center, Rio de Janeiro, Brazil

The aim of this work was to use low field NMR^{1,2} in demulsification studies through D-T₂ mapping. Emulsions

were prepared using a crude oil (°API 28.9) and a 50 ppm MnCl₂ aqueous solution, using 20 wt.% of the solution. A 3 minutes of stirring, in 6.500 rpm, with a Ultra-Turrax homogeneizer methodology was applied. The D-T₂ mapping was made for three differrent situations: a) the pure emulsion; b) the emulsion with the demulsifier A and c) the emulsion with the demulsifier B. In each case, the sample was monitored for 14.5 hours, resulting in 25 maps spaced by 35 minutes. Commercially available demulsifiers were used at ~400 ppm. Reference experiment shows an undefined shape distinguishing oil and water signals since the beginning (Fig. 1a). The slightly difference comes from the T₂ distribution axis, but the addition of demulsifier (Fig. 1b and 1c) avoided this behaviour by

reducing T_2 from water hydrogens. Demulsifier A breaks the emulsion, giving similar maps for subsequent experiments. Smoother demulsification happens when using demulsifier B (Figure 1c). Clearly, demulsifier B performance was overcomed by the demulsifier A, considering their demulsification rates. This effect could be easily noticed by D-T₂ maps, and these results highlighted its potential in such studies.

^{1.}Rondón, M.; Bouriat P.; Lachaise, J.; Salager, J.-L. Energy Fuel. 20, 1600-1604, 2006.

^{2.}Balinov, B.; Urdah, O.; Soderman, O.; Sjoblom, J. Colloids Surf., A 82, 173-181, 1994

Acknowledgments: The authors appreciate Schlumberger collaboration, namely Lukasz Zielinski and Andre Souza. Petrobras, ANP, FINEP and CNPq.

Characterization of the Ribosomal Binding Site for Thiostrepton

<u>Henry Jonker</u>^a, <u>Fabian Hiller</u>^a, Sascha Baumann^b, Antje Wolf^c, Sebastian Schoof^b, Kathrin Schulte^b, Karl Kirschner^c, Hans-Dieter Arndt^b and Harald Schwalbe^a

^a Goethe University, Center for Biomolecular Magnetic Resonance, Inst. for Organic Chemistry and Chemical Biology, Frankfurt am Main, Germany
 ^b Dortmund University of Technology, Faculty of Chemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
 ^c Fraunhofer Institute for Scientific Computing, Departments of Bioinformatics and Simulation Engineering, Sankt Augustin, Germany
 e-mail: h.jonker@nmr.uni-frankfurt.de, hiller@nmr.uni-frankfurt.de

The thiazole-containing antibiotic thiostrepton prominently inhibits protein biosynthesis by tightly binding to the ribosomal GTPase-associated region (GAR). The conformation and dynamics of the ternary GAR RNA - L11 protein - thiostrepton complex was studied before by NMR, explaining how

the elongation factor function gets disrupted ¹. To investigate the molecular scaffold in more detail, the bioactivity of thiostrepton and several derivatives with selected molecular changes were determined at the ribosomal binding site ². The compounds were obtained by semisynthesis and characterized using NMR structure determination, docking and biological evaluation studies. The combination of these techniques revealed important conformational and structural features for molecular recognition within the embedded pharmocophore of the target and facilitates future compound optimization.

1. "L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy", Jonker HRA, Ilin S, Grimm SK, Wöhnert J and Schwalbe H, Nucleic Acids Research, 35, 441-454 (2007)

2. "NMR structures of thiostrepton derivatives for characterization of the ribosomal binding site", Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H and Arndt H-D, *Angewandte Chemie International Edition*, 50, 3308-3312 (**2011**)

От773

A tunable general purpose Q-band Resonator for CW and pulsed EPR/ENDOR experiments for large samples and optical excitation.

Edward Reijerse¹, Friedhelm Lendzian², Roger Isaacson³, and Wolfgang Lubitz¹

¹Max Planck Institute for Bioinorganic Chemistry, Mülheim an der Ruhr, Germany; ²Max Volmer Laboratory, Technical University, Berlin, Germany ³Department of Physics, University of California, San Diego, USA; reyerse@mpi-muelheim.mpg.de

We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulsed Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) experiments [1]. The (self supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. The coil is very robust and electrically well shielded in order to enable CW ENDOR experiments with high RF power (500W). The top plunger of the cavity is movable to allow a frequency tunability of ± 2 GHz. Microwave matching to the resonator is accomplished through an iris in the cylinder wall and a sliding short in the coupling waveguide. Optical excitation is enabled through slits in the cavity wall (transmission ~60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. It is demonstrated that, due to the relatively large active sample volume (20-30 µl), the described resonator has superior concentration sensitivity over commercial pulse Q-band resonators. The quality factor (Q_L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over coupling). Shortest achieved π -pulse durations are 40 ns for microwave (3W) and 20 µs for radio frequency (ENDOR) pulses (¹H, 300W), respectively, allowing for excellent performance both for pulse EPR and ENDOR spectroscopy.

[1] Reijerse E., Lendzian F., Isaacson R., Lubitz, W. In preparation (2011)
POSTER

Kinetics and activation parameters of the reaction of pentavalent organic arsenic compounds with glutathione

Jerome Kretzschmar, Erica Brendler, Anne-Christine Schmidt

Institute of Analytical Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, D-09599 Freiberg, Germany Jerome.Kretzschmar@mailserver.tu-freiberg.de

The investigation of the interaction of inorganic and organic arsenic compounds with biomolecules such as glutathione (GSH) is still of high interest. Structures of the conjugates formed in the reaction of GSH with several phenylarsonic acids were elucidated by routine 2D-NMR methods, revealing remarkable spectra due to diastereotopicity. After the NMR assignment we have investigated the systems' reaction kinetics.

The reaction consists of two steps: the reduction of pentavalent arsenic compounds to their trivalent analogues and the subsequent formation of the conjugate with GSH. Interestingly, in all cases the redox reaction is the rate determining step whereas the conjugation step is remarkably fast.

Former investigations dealt with the reaction order and the half life values, showing that phenylated arsenicals react faster with GSH than methylated compounds. These results are maybe due to steric or electronic reasons. The ranking of the reaction rates, which is at least within the aromatic compounds correlating with their toxicities, is now investigated concerning the activation parameters of the reactions. Therefore the temperature dependence of the reactions was monitored online by ¹H-NMR. The obtained data were evaluated according to Arrhenius and Eyring theory, with focus on the activation energy, activation enthalpy and entropy. With the help of these results we tried to gain new insight into the mechanism of the reaction of arsenic compounds with GSH.

От775

NMR "Crystallography" of Enzyme Models

Marco Tischler, Daniel Tietze, Stephan Voigt, Hergen Breitzke and Gerd Buntkowsky¹

¹Department of Physical Chemistry, Technische Universität Darmstadt, Petersenstr. 20, 64287 Darmstadt, Germany Email: m.tischler@chemie.tu-darmstadt.de

Structural studies of enzymes and enzyme models are often restricted to the use of crystalline samples. Unfortunately, sometimes it may not be possible to crystallize a certain compound. Or, the crystalline structure of a compound differs from its native form in meanings of conformation and dynamics, respectively. In contrast, the REDOR (Rotational Echo Double Resonance) NMR experiment is a robust method to study samples in solid state that do not need to be crystalline at all.⁽¹⁾

The aim of our work presented here is to investigate the structure of nickel superoxide dismutase (NiSOD). With respect to the active site of this enzyme, appropriate and functional peptide-based model compounds are synthesized and studied.

Because of the unique role of Proline in biochemistry, e.g. in peptide folding and function of biochemical processes, its influence on the active site is of particular interest.⁽²⁾ Proline's most distinct property is the unusual distribution of *cis-/trans*-isomers in amide bonds, that is, next to other reasons, dependent on crystallization conditions.⁽³⁾ To get informations about the actual role of Proline in the active site of NiSOD, triazole-based *cis*-Prolyl mimetics are inserted into the peptide sequence and investigated for their effects on conformation and activity.⁽⁴⁾

References:

^{1.} Gullion T., Schaefer J., J. Mag. Res., 81, 196-200 (1989)

^{2.} Dugave C., Demange L., cis-trans Isomerization in Biochemistry, Wiley-VCH, 171-193 (2006)

^{3.} Reimer U., Fischer G., Biophys. Chem., 96 203-212 (2002)

^{4.} Tam A., Arnold U., Soellner M. B., Raines R. T., J. Am. Chem. Soc., 129, 12670-12671 (2007)

Parahydrogen signal enhancement for zero-field NMR: NMR without magnets.

Thomas Theis(1,2), Paul Ganssle(1,2), Huyn D. Shin(2), John W. Blanchard(1,2), Gwendal Kervern(1,2), Mark C. Butler (1,2), Micah P. Ledbetter(3), Dmitri Budker(3,4), Alexander Pines(1,2).

> (1) Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (2) Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, USA

> (3) Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA

(4) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Now that the gigahertz (23.5T) barrier for protons has been broken in the quest for higher-field NMR, several groups have presented alternative approaches, where NMR information is obtained in fields as low as the earth field, or even in the absence of any magnetic field at all [1-5]. These approaches show advantages such as high resolution and potential portability, however, when thermal polarization is used, they all suffer from low sensitivity. We address this shortcoming by adapting the hyperpolarization techniques based on parahydrogen [6] to zero-field NMR with detection based on an atomic magnetometer[7]. We show that it is possible to get high sensitivity either with hydrogenative (similar to ALTADENA) or non-hydrogenative (SABRE [8]) processes. Chemical fingerprinting is achieved by measuring zero-field J-coupling parameters. The result is NMR without any magnets.

REFERENCES:

- [2] Callaghan, P. T.; Eccles, C. D.; Haskell, T. G; Langhorne, P. J.; Seymour, J. D., Journal of Magnetic Resonance, 133, 148-154 (1998)
- [3] Zax, D. B.; Bielecki, A.; Zilm, K. W.; Pines, A., Chemical Physics Letters, 106, 550-553 (1984)
- [4] Kelso, N.; Lee, S. K.; Bouchard, L. S.; Demas, V.; Mueck, M.; Pines, A.; Clarke, J., Journal of Magnetic Resonance, 200, 285–290 (2009)

[6] Ledbetter, M. P.; Crawford, C. W.; Pines, A.; Wemmer, D. E.; Knappe, S.; Kitching, J.; Butker, D. Journal of Magnetic Resonance, 199, 25–29 (2009) [6] Bowers, C. R.; Weitekamp, D. P., Journal of the American Chemical Society, 109, 5541–5542 (1987)

[7] http://www.nature.com/nphys/journal/v7/n7/full/nphys1986.html - auth-8 Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.: Pines, A.,

От777

From chemical shift data through prediction to assignment and NMR LIMS - multiple functionalities of nmrshiftdb2

Stefan Kuhn¹, Nils E. Schlörer², Heinz Kolshorn³, Raphael Stoll⁴.

¹ Aureliusstr. 45, 52067 Aachen, Germany (stefhk3@web.de); ²Department of Chemistry, University of Cologne, 50939 Cologne, Germany; ³Institut für Organische Chemie, Johannes-Gutenberg-Universität, 55128 Mainz, Germany;⁴Biochemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany.

Nmrshiftdb2 has been available as a community-based NMR database since 2002. During that time a continuously growing set of currently more than 40000 structures with 48600 spectra could be established. These data are freely available (*nmrshiftdb.org*) and cannot only be searched but can also be downloaded and used for scientific investigations. Supplementary to the database, supplementary software was developed including an NMR lab administration system.

Recently, there were some changes in the team and we had a rebranding to *nmrshiftdb2*. Now, we would be very interested to enter discussion about the project and its future perspectives by receiving feedback from former, current and potential users of different areas. We will discuss the state of this project, e.g. software functions, data collection, and use for research.

An important new feature is the laboratory information management system (LIMS) which has been developed with the intention to better integrate the database functionality into an academic NMR laboratory environment. Nmrshiftdb2 now allows NMR laboratories at the same time to administer and account for their users, instruments and measurements and use the known database functions from the same surface.

REFERENCES

^[1] Appelt, S.; Kuehn, H.; Haesing, F. W.; Bluemich, B., Nature Physics, 2, 105-109 (2006)

^{1.} Steinbeck C., Kuhn S., Phytochemistry, 65, 2711-2717 (2004)

^{2.} Steinbeck C., Krause S., Kuhn S., J. Chem. Inf. Comput. Sci., 43, 1733-1739 (2003)

Hyperpolarization of noble gases via spin-exchange optical pumping using line-narrowed laser sources to achieve high levels of spin polarization

Theodore Hughes-Riley, Joseph S. Six, Mathieu Baudin, Karl F. Stupic, and Thomas Meersmann

Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK (msxtwbh@nottingham.ac.uk, msxjs@nottingham.ac.uk)

The use of hyperpolarized gases such as 129 Xe (spin I = 1/2) and 83 Kr (spin I = 9/2) allow for enhanced signal in a number of NMR and MRI applications. There has been significant interest in recent years for using these gases to investigate pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and asthma¹.

Spin-exchange optical pumping (SEOP) can be used to generate hyperpolarization in these gases. It is desirable to optimize this process so that the greatest hyperpolarization, and therefore signal strength, can be achieved. This work investigated the SEOP process using a line-narrowed laser source under various conditions. Previous works have reported ⁸³Kr polarizations of up to $4.4\%^2$. Optimized SEOP parameters based on physical effects investigated during this study have allowed polarizations exceeding 10% to be achieved.

 T_1 weighted quadrupolar relaxation had previous been reported for ⁸³Kr making it a sensitive surface probe³. This work has observed that T_2 measurements in model systems for ⁸³Kr are surprisingly long, making it favourable for MRI studies.

REFERENCES:

1. Goodson B., Journal of Magnetic Resonance, 155, 157-216 (2002)

2. Cleveland Z. I. et al, Journal of Magnetic Resonance, 195, 232-237 (2008)

3. Stupic K. F. et al, Solid State Nuclear Magnetic Resonance, 29, 79-84 (2006)

От779

Slim-line logging NMR tool to measure soil humidity in situ

Josefina Perlo, Ernesto Danieli, Juan Perlo, Bernhard Blümich, and Federico Casanova

Institut für Makromolekulare Chemie, RWTH Aachen University, Worringerweg 1, D-52062 Aachen, Germay

Soils are an important factor for the food production and for the balance in many ecosystems. In areas where water is scarce, the need to improve its usage has sparked the research of flow in soils. Nowadays, as the demand for reliable on-field characterization of soils grows, the realization of heterogeneity in the soil features has fuelled the development of experimental techniques and theoretical models, which can help elucidating the inherent character of the soil under research.

The measurement of soil moisture via NMR was among the first applications of ex-situ instruments [1]. In the last years the first prototype of a slim-line NMR logging tool has been reported to measure the soil water content in the vadose zone [2]. Following a procedure similar to the one developed for well-logging NMR, a cylindrical sensor is lowered into the ground through permanently installed plastic pipes. The sensor reported here differs from commercial oil-well logging sensors in its much smaller diameter and the fact that the measurement is conducted in an environment naturally unshielded from electromagnetic noise.

In this work we report the optimization of a large rf coil designed to provide large penetration depth at high sensitivity. Considering that the outer diameter (50 mm) of the sensor is fixed the diameter of the magnet was optimized taking into account the trade off between the field strength (increases with the diameter of the magnet) and the effect of the coupling between the rf coil and the shielding covering the magnet. As the size of the magnet increases the coupling also does, lowering the efficiency of the rf coil. The sensitivity improvement achieved by increasing the size of the rf coil to excite a larger volume allowed us to set the measurement depth at 20 mm into the soil. At this position the effect of the perforation and pipe instalation on the soil structure is expected to be negligible.

^[1] Matzkanin G. A. and Paetzold R. F., ASAE Winter Mtg., Paper 82-2619, Chicago, Illinois (1982).

^[2] Oscar Sucre, "A Low-Field NMR Tool for Soil Moisture", PhD Thesis, RWTH Aachen University (2011).

От780

Study of the structure activity relationship of an enzyme model with YASARA

Stephan Voigt, Marco Tischler, Daniel Tietze, Gerd Buntkowsky

Technical University Darmstadt, Eduard-Zint-Institut für Anorganische und Physikalische Chemie, Petersenstraße 20, D-64287 Darmstadt, e-mail: voigt@chemie.tu-darmstadt.de

The enzyme model studied is based on 7 residues of the nickel-superoxide-dismutase (NiSOD). This SOD-class enzyme (EC 1.15.1.1) was discovered in 1996.^[1] The active site is formed by the first 6-12 N-terminal amino acids.^[2] This fact enabled the development of biologically active enzyme models, based on these residues.^[3] The interaction between one of these models and the substrate was studied in our group by inserting cyanide as inhibitor.^[4] The resulting complex was studied by several spectroscopic methods, in particular REDOR-NMR.^[5]

This solid state NMR technique allows calculating distances between adjacent spins via determining the strength of dipolar coupling between these spins.^[6] The resulting distances are used to determine the exact position of the substrate analogue in the active site. The enzyme-substrate-adduct was studied with YASARA^[7] to shed new light on the mode of action of NiSOD. YASARA (Yet Another Scientific Artificial Reality Application) is a program designed for MD-simulations, energy minimizations and visualization of several properties of proteins and small molecules.

REFERENCES:

- 1. Youn H., *Biochemistry*, 318, 889-896, (1996)
- 2. Barondeau D. P., Biochemistry, 43, 8038-8047, (2004)
- 3. Shearer J., *Inorganic Chemistry*, 45, 2358-2360, (2006)
- Tietze D., Chemistry European Journal, 15, 517-523, (2009)
 Tietze D., Angewandte Chemie, 123, 3002–3006, (2011)
- Tietze D., Angewandte Chemie, 123, 3002–3006, (2011)
 Gullion T., Journal of Magnetic Resonance, 81, 196-200, (1989)
- 7. Krieger E., *Proteins*, 47, 393-402, (2002)

От781

Domain-selective and amino acid-specific labeling of multi-domain proteins for NMR studies

Erich Michel, Lenka van Sint Feet, Kurt Wüthrich, Frédéric H.-T. Allain

Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland. michel@mol.biol.ethz.ch

Besides enhanced spin relaxation rates, structural studies of large proteins by NMR are often complicated by significant overlap of signals in the NMR spectra. Segmental labeling offers an avenue to reduce spectral overlap by providing domain-specific isotope labeling¹. However, overlap can still prevail in proteins possessing extended segments of α -helical or non-regular secondary structure. Here we present a strategy which combines amino acid-specific labeling achieved using cell-free expression with domain-specific labeling obtained by expressed protein ligation, which yields multi-domain proteins with selective amino acid-type labeling of a single one of these domain. We have optimized our cell-free expression strategy to obtain milligram amounts of ligation-competent proteins containing isotope labels on one or several amino acid types. These are then ligated with unlabelled domains produced either in cells or by cell-free expression. To test our protocol, we have applied the strategy to the RRM domains 3 and 4 of the human polypyrimidine tract binding protein and to two helix-turn-helix domains from human glutamyl-prolyl tRNA synthetase. The results are documented with NMR spectra.

1. Skrisovska L., Schubert M., Allain F. H.-T., J. Biomol. NMR, 46, 51-65 (2009)

От782

Study of provenance of river sediments: Applications of ESR and TLCIs

Aiko Shimada

Application Support Team, JEOL RESONANCE Inc., Japan (ashimada@jeol.co.jp)

Quartz is one of the most abundant minerals on the surface of the earth. ESR dating of quartz, therefore, has been applied to a wide variety of samples, such as fault gouge, volcanic tephra, sediments, and flint artifacts.¹ Another direction of studies is to utilize the ESR signals as a marker of the samples like isotope analysis. The intensity of the E₁' center in quartz is shown to be a useful parameter to investigate the provenance of Aeolian dust as well as of sediments.² As the intensity correlates with the age of the host granite in the range 10 Ma to 1 Ga, it is possible to distinguish quartz grains of Tertiary origin from those of Cretaceous. The Al, Ti-Li and E₁' center signal intensity of natural quartz grains were irradiated with 2.5kGy gamma doses, as a means of estimating sediment provenance.³ Various samples were prepared from the host rocks and the sediments of Tertiary and Quaternary around Kizu River and Saho River in Japan. In this study, it will be discussed to estimate those sediments provenance. If this technique is established, it will be useful to elucidate the provenance of river basin and the encroachment of mountain.

REFERENCES:

2. Toyoda, S. and Naruse, T, Transactions, Japanese Geomorphological union, 23-5, 811-820 (2002)

^{1.} Ikeya, M., Miki, T. and Tanaka K., Science, 215, 1392-1293 (1983)

^{3.} Shimada, A. and Takada, M., Annual Reports of Graduate School of Humanities and Sciences, 23, 187-195 (2007)

Α		Ames, W.	ME403
Abd Rahman, S.	Мв438	Ananikov, V. P.	Ls314, Ls325
Abdul-Manan, Z.	ME408	Anders, R. F.	ME427
Abe, J.	So697	Andersen, R.	Ст236
Abelein, A.	So662	Andersson, M.	Td743
Abergel, D.	Bs203, Rd537	Ando, S.	Mp351
Achilles, A.	Ss625	André, A.	Sм615
Ackermann, B.	NA489	Andreu, D.	So701
Adam, C.	Ps511, Ps512	Angerstein, B.	MD448
Adams, A.	Mp352, Mp356	Antonova, O. V.	Mp347
Adams, D. J.	Mp346	Antunes, A. M. M.	So685
Adams, R. W.	Sм589	Antzutkin, O.	Ss635
Ader, A.	ME396, ME397	Anzai, T.	So689
Agarwal, V.	Ps164	Apaydin, M. S.	Ст227
Aguilar, J. A.	Мв443, Sм578, Sм589,	Appelt, S.	Ps105
	Sм599, Sм600	Arata, T.	So697
Ahnfeldt, T.	Mp384	Ardelean, I.	RD542
Aime, S.	Ps107	Ardenkjaer-Larsen, J. H.	Ps162
Ajithkumar, T. G.	Mp354	Argirevic, T.	Hs244
Akbey, U.	Ps149, Ps153, Ss646	Argyriou, A.	Ls323
Akcelrud, L.	Mp364	Arias-Cartin, R.	Hs245
Akdogan, Y.	Mp380, Ot758	Arimura, N.	Ім256
Akoka, S.	Sм577	Armbruster, W.	Sм595
Albert, K.	От764	Arndt, HD.	От772
Aleksandrova, O. N.	Rc521	Arnold, P.	NA486
Alexandrova, G. P.	Rd526	Aroca, A.	Ls322
Alia, A.	Ps138	Arseniev, A. S.	ME418, ME421, ME422,
Alker, A. M.	Sм606		Me423, Me430
Allain, F. HT.	Ps126, Na470, Na483,	Artemenko, A.	Sp653
	OT/81	Asami, S.	Ps164, Ss643
Allan, M. G.	NA472	Ascenso, J. R.	So685
Allen, J. P.	OT/68	Aserin, A.	Ls284
Allen, W. J.	ME406	Assémat, E.	Ст235
Almeida, R. M.	Ps505	Assfour, B.	Ps178
al-Mosawı, M.	Ss629	Astashkin, A. V.	Ps147
Alonso, P. J.	От767	Atanasov, M.	Ps152
Altenbach, C.	PL08	Atkinson, R. A.	RD538
Alvarez, G. A.	Sp652	Augusti, A.	Cv265
Amadeu de Sousa, N.	SE572	Augustyniak, R.	Ls286
Amar, A.	SE569	Auzat, I.	Ps148
Amata, I.	Ps127	Avadhut, Y. S.	Ss627
Amblard, M.	Ѕм615	Averlant-Petit, MC.	Sм615, So729
Ambrósio, S. R.	Sм582	Ayalur-Karunakaran, S.	Ps167, Bs211
Ament, Z.	Sм584	Ayrapetyan, S.	От757

Azarkh, M.	Cv266, Md449	Baumann, S.	От772
Azevedo, E. R.	Mp364	Baumann, W.	Ls328
Azhari, H.	Ps106	Baumgartner, S.	Ім252
В		Bax, A.	ME393
Baby, B.	Mp354	Baxter, N. J.	Rd550
Bach. A.	So724	Bayrhuber, M.	ME428
Bae, KH.	So706	Bazzicalupi, C.	NA488
Bagaria, A.	Ст237. МЕ412	Beaufils, C.	So729
Bagrvanskava, E. G.	M1462	Bechinger, B.	Ss620
Bai. Y.	S0669	Becker, S.	Ps114, Me396, Me397,
Baishya, B.	Ls294		RD534, S0683, S0718,
Bajaj, V. S.	Ім263, Ls340	Becker-Baldus I	5071) Ме404
Bajd, F.	Ім255, Ім258	Beckett P	Sc620
Baklanova, Y. V.	Ss619	Beck-Sickinger A G	ME308
Balbach, J.	Ps160, Me420, Rd552	Beduz C	ME578
Baldus, J.	Rd546	Beer-Hammer S	53029 L s311
Baldus, M.	Bs209, Me396, Me397	Behlendorf M	Ps498
Ballesteros, R.	Sм579	Behrends I	Mp454 Sp656
Balligand, JL.	Cv275	Bekei B	$C_{\rm V}277$ $C_{\rm V}280$
Bamberg, E.	Cv272, Na466, Na476	Belczyk A	So721 So722
Ban, D.	Ps114	Bell C	ыларана Балара Баларана Баларана Баларана Балара Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Балара Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Баларана Балара Баларана Сас Баларана Сас Баларана Сас Баларана Сас Сас Балара Сас Сас Сас Сас Сас Сас Сас Сас Сас Са
Bancia, L.	So687	Belle, V.	Ps157
Banerjee, D.	M1460	Bellstedt, P.	S0688, S0698
Banholzer, A	Ps123	Bellussi, G.	Rc518
Bányai, I.	Td745	Bemporad, B.	RD548
Barbier, J	Ps516	Benda, L.	Ѕмб18
Barbon, A.	Ps501	Ben-Eliezer, N.	Ps176
Barbosa, L. L.	От771	Bennati, M.	Ps158, Hs244, MD446,
Bardiaux, B.	Ст241		MD447, MD448, Ps496,
Bärenwald, R.	Mp355		SE576
Barheine, S.	Ім251	Bentrop, D.	Ls316, Ls323, Ls324
Barna, T.	Rd536	Beranova, L.	Ps142
Barnwal, R. P.	От769	Berdzinski, S.	RD554
Barra, A. L.	M1463	Berger, C.	ME398
Barraud, P.	Ps126	Berger, S.	Ls287, Ls320, Ls321, Ls330, Ps506, Se562
Barrere, C	Ls304, Td734		L3550, 13500, 51502, So695
Barskiy, D. A.	Ps104	Berghaus, C.	So678
Barthelmes, K.	Ps514	Beribisky, A.	NA465
Bartos, J.	Mp342	Berka, M.	TD745
Baseda Krüger, M.	Ls328	Bermel, W.	Ls297, Ls315
Batta, G.	Rd536	Bernardinelli, O. D.	Мр364
Baudin, M.	Ps177, От778	Berndt, S.	ME398
Bauer, C.	Se569	Bernewitz, R.	Td732

Bernhard, F.	ME405, ME407, ME417, ME424, ME431	Bobko, A. A.	Cv264
Bernin, D.	So716, Tp743	Bocan, J. Bocharov, F. V.	PS102 ME418 ME421 ME422
Bersch, B.	So690	Docharov, E. V.	ME410, ME421, ME422, ME430
Berthier, C.	Ps131	Bocharova, O. V.	ME418, ME421
Bertini, I.	Pt14 Ps129 Ps130	Bochmann, S.	So709
	Bs215, Ls315, So687	Böckmann, A.	Pr 17 Ps 143 Bs 200
Bertmer, M.	Mp372, Mp374, Mp379	Bode, B. E.	Ps138
Besnard, M.	Mp386	Bodenhausen, G.	Pr 04 Ps161 Bs203
Bessi, I.	NA488	Douoiniauson, C.	Ls294, Ls302, Rd527,
Betson, T. R.	Сv265, Sм595		RD537,Ss628
Bhate, M.	PL07	Bodor, A.	Ls331
Bibow, S.	So682, So711	Boelens, R.	Ps112, Ls307, So703,
Biczo, R.	Ps146		So/15, So/30
Biel, S. S.	Ls326	Bogachev, Y. V.	RD533, SE563
Bielejewski, M.	Sм588	Bogdann, U.	Cv2/1
Biernat, J.	So682, So711	Bogge, B.	SM603
Bierzynski, A.	So721, So722	Bogomyakov, A. S.	RD526
Bieschke, J.	Ps164, Cv274	Böhm, S.	ME429
Biet, T.	Мв442	Böhme, U.	Mp359, Mp387, TD736, TD737
Bilalis, P.	Mp367	Bolognesi B	S0662
Bilia, A. R.	NA488	Bolton D	Ps180
Billeter, M.	So702	Bönigk W	So717
Binet, L.	Ps500	Bonnard B	Ст235
Binolfi, A.	Cv277, Cv278	Bonned A	So674
Biskup, T.	Rc519	Bonoldi L	Rc518
Bittl, R.	Pl16, Me419, Md454,	Bonvin A M I I	L \$307 ME396
	So723	Boos W	E3507, ME590
Bizjak, N.	Ім255, Ім258	Booth I R	MF411
Bjerring, M.	Ps153, Ss646	Borchert F	So698
Blackburn, G. M.	Rd550	Bordignon F	Ps181 ME429 SE564
Blackledge, M.	Ps115, Ps173, Ls298, Rp549, Rp559, So682	Borkar, A. N.	Na494
Blanc F	KD349, KD339, S0082	Bornet, A.	Ps161, Ls302
Diane, r. Dianahard I W	0 ₇₇₇₆	Bornet, O.	So674
Dianonard, J. W.	D1/70	Bosiocic, M.	Sp655
Blaum B S	1 5121 Sw601	Boudet, J.	Na483
Blommers M I I	NA473	Bouet, A.	So681
Blum M	ME404	Bougault, C.	Bs208, So690
Blümel I	$C_{s}216 \ \Omega_{T}749$	Boukhenouna, S.	So729
Blümich B	C_{3210}, O_{174}	Boukos, N.	Mp367
Diumen, D.	Ls338, Ls339, Mp352,	Bour, P.	Sм581
	Mp356, Rd540, Rd547,	Bourlinos, A.	Mp363
	От779	Boussac, A.	ME403
Blümler, P.	Rd541, Se569, Se570	Bousset, L.	Pl17, Ps143, Bs200

Bowen, A. M.	Ps109	Busche, A. E. L.	So694
Bowen, S.	Ps118	Büschel, S.	Rd561
Bowman, A.	MD455	Bustin, M.	So669
Bowman, K.	So667	Butler, M. C.	От776
Branigan, E.	Ps168, Me411	Buttchereit, N.	Мв437
Branlant, G.	So729	Byg, I.	Mp358
Bräse, S.	Ls293	C	
Braun, M.	Ст235	Cabaco M I	Mp386
Braun, P.	Me401, So680	Cadene M	So681
Brauniger, T	Mp354	Calandrini V	RD537
Breitzke, H.	Cs218, Se572, Ot775	Caldarelli S	Sm579
Brendler, E.	От774	Calderone V	So687
Breton, C.	So674	Callaghan P T	Pt 02
Bridges, M. D.	PL08	Callens F	Ps504 Ps508
Brinkmann, A.	Ss633	Calligari P	RD537
Brodhun, F.	Ps496	Calmes M	Sm615
Broecker, J.	ME413	Cangönül A	Ps498
Brouwer, E.	ME426	Canivet I	Ps117
Brown, L. J.	Ps162	Cankar K	Тэлтү Тм254
Brown, R. C. D.	Ps162	Cao Z	So723
Brown, S.	Ss621, Ss635	Canek P	Cv267 Cv268
Brune, R.	Mp370	Carell T	N₄465
Brunner, E. B.	Ps178, Mp362	Carlomagno T	Ps127 So692
Brustolon, M.	Ps501	Carneiro G C	От771
Brutscher, B.	Ps102, So690	Carnevale D	Ls294 Ss628
Buc, H.	So670	Carravetta M	L525 1, 55620 Ss629
Büchler, S. S. D.	Mp368	Casado I	Mp390
Buchner, J.	PL12	Casanova F	Im262 I \$338 I \$339
Buchner, L.	Ст238	Cusuno vu, 1.	От779
Buck, J.	Cv272, Na474, Na478,	Cassani, J.	Sм589, Sм598, Sм600
	NA480	Cassemiro, S. M.	Mp364
Budesínský, M.	Sм609, Sм610	Castillo, A. M.	Ст223
Budker, D.	От776	Catay, B.	Ст227
Budzinska, M.	So721, So722	Cates Miller, N.	Ps166
Bühler, M.	Ps126	Cavalcanti, L. N.	Sм593
Buhr, F.	Ls337	Cavalli, A.	Ps101, Ст226
Buljubasich, L.	Im259, Se571	Cavazzini, D.	So675
Bundle, D. R.	Ls306	Cavuslar. G.	Ст227
Buntkowsky, G.	Cs218, Ls318, Se572,	Ceccaldi, P.	Hs245
	OT/75, OT/80	Cefaro, C.	So687
Burgardt, N. B.	So705	Cekan, P.	NA490
Burg-Roderfeld, M.	So702, So703	Ceolín, M. R.	So705
Bürkler, M.	Sм606	Ceruso. M.	От750
Burks, H.	NA473	Cevec. M.	NA471, NA481

	D 140		D 501
Chaban, Y. L.	P\$148	Collauto, A.	P\$501
Chagot, B.	P\$148	Comba, P.	PS503
Chandrakesan, M.	Bs201	Communie, G.	PS115, LS298
Chandran, V.	MP354	Concistre, M.	SS629, SS631
Chan-Hout, M.	Bs203	Conlon, J. M.	S0661
Charilaou, M.	Ps124	Constantino, M. G.	Sm583
Charles, L.	TD734	Cooper, A. I.	Mp346
Charrier, B.	Sм577	Copéret, C.	Ps117
Chary, K. V. R	От769	Corbeski, I.	Cv276
Chasapis, C. T.	Ls316, Ls323, Ls324	Cordeiro, T. N.	Ps139
Chasteen, N. D.	Ps110	Cordier, F.	So670
Chatterjee, D.	ME425	Cornia, A.	MI463
Chatzipavlidis, A.	Mp367	Corringer, PJ.	Ls323
Chen, CH.	Ps113	Córsico, B.	So705
Chen, HY.	Ps118	Corzilius, B.	Ps129
Chernenko, Y. S.	Rd533, Se563	Courcelle, C.	Ps157
Chertkov, A. V.	Ls299	Coutinho, J. A.	Mp386
Chertkov, V. A.	Ls292, Ls299, Sm604,	Cowin, G.	Ім251
	Sm605, Sm616	Cox, N.	ME403
Cheshkov, D. A.	Ls299, Sm604, Sm605	Cruickshank, P.	Ps180
Chi, C. N.	So724	Cudaj, M.	От754
Chi, SW.	So706	Cukier, C. D.	Ps172
Chin, Y.	So664	Cukkemane, A.	ME397
Chinnathambi, S.	So711	Cutuil, T.	Ps102
Chioccioli, M.	Na488	Czaljick, A.	So726
Chizhik, V. I.	RD530	Czernek, J.	Sм618
Chmelka, B. F.	Ps166	D	
Choe, S.	ME428	da Cruz I B	Sw593
Chou, CY.	RD532	da Silva E H	SM595
Choudhary, M. I.	Ls312	Dabrowski M	Ps105
Christ, N. A.	So709	Dadova I	$T_{D}742$
Christen, B.	PL06	Dalol N S	1D/42 Mr461
Christodoulou, J.	Ps103	Dalai, N. S.	WII401 Om752
Chu, ML.	RD532	Dalliz, F.	U1755
Chupin, V. V.	ME418	Dalkas, G. A.	LS316
Ciarkowski, J.	So659, So713	Dalimann, A.	NA465
Ciofi-Baffoni, S.	So687	Dalton, K. P.	L\$306
Claausen, B. H.	So724	Dama, M.	L\$321
Claesson, M.	Тр743	Damager, I.	MP358
Clery, A.	NA470	Damberger, F. F	PL06
Cliff, M. J.	Rd550	Damblon, C.	S0681
Cobo, M. F	Ss625	Dames, S. A.	OT/59, OT760, So707
Colbourne, A. A.	Ls285. TD731	Damian, R.	Sp657
Colell, J	Ps105	Danieli, E.	IM262, Ls338, Ls339,
	15105		01//9

Dannatt, H. R. W.	Rd550	Dielmann, F.	Ss637
Darensbourg, M. Y.	Hs246	Diercks, T.	Ls303
Das, S.	Ls288	Dietrich, D. R.	Cv266, Md449
Dasari, M.	Ps164	Dietz, S.	Cv273
Dastvan, R.	ME426	Digne, M.	Ps516
Daubner, G.	NA470	Dikarov, E.	Ps121
de Azevedo, E. R.	Ss624, Ss625	Dikic, I.	Ls327, So684, So696
de Castro, E. V. R.	От771	Dillenberger, S.	Ls318, Se572
de Groot, B. L.	Ps114	Dilworth, J. R.	Ps109
de la Cruz, L.	Ps513	Dimitrova, A.	ME434
de la Hoz, A.	Se565, Sm580	Dinu, I.	Ss635
De la Rosa, M. Á.	Ls322	Dixon, A. M.	Ss621, So720
de la Torre, B. G.	So701	Dlubek, G.	Mp342
de Lera, A. R.	Sм613	Do, H. Q.	Me409
de Sanctis, S.	Ст243	Do, N. N.	ME432
De Simone, A.	Rd548	Do, Q. H.	Ps167
de Vries, S.	So717	Dobosz, B.	Mp371, Mp376, Mp378,
de Wijs, G. A.	Ps154	,	Rc522
Dechent, J. F.	Ім259	Dobrodumov, A. V.	RD533
Deguchi, K.	Mp351	Dobson, C. M.	So662
Delepierre, M.	So670	Doepkens, M.	Мв442
Deligiannakis, Y.	Mp363	Doetsch, M.	Na469
Delort, A. M.	Cv267, Cv268	Doktorov, A. B.	Ім248
Delpoux, O.	Ps516	Dolinsek, J.	Ps144, Sp654, Ss645
Demers, JP.	Ps141	Domján, A.	Mp383
Denecke, M. A.	Ps511, Ps512	Donaubauer, H.	Ст243
Deng, C.	Sм615	Donets, A. V.	Rd539
Deng, Z.	Td735	Dongre, R.	Ps112, So730
Denic, V.	ME405	Donovan, K.	Ps176
Denisova, T. A.	Ss619	Dopitová, R.	So700
Denning, M.	Ss629	Dörfel, M.	Ps133
Denysenkov, V.	Mp363, Ps496, Se567,	Doronin, S. I.	Ст225
	SE568, SE574, SE575	Dose, A.	Cv281
Dereli, Ö.	Ст233, Ps507, Rc520	Dostal, L.	Ѕм611
Desfosses, A.	Ls298	Dötsch, V.	Ps125, Cv272, Cv276,
Dessy, C.	Cv275		Ls327, Me405, Me407, Me408, Me412, Me416
Devasahayam, N.	От747		ME408, ME412, ME410, ME417, ME417, ME424, ME431,
Dey, K.	Mp345		Na466, Na476, So684,
Diaz, J.	Mp358		S0694, S0696
Diaz, M. D.	So701	Dovalil, N.	Ps503
Diaz-Moreno, I.	Ps172, Ls322	Draaisma, J.	Ls301
Diaz-Quintana, A.	Ls322	Dracinsky, M.	Sm581, Sm609
Didierjean, C.	Ѕм615	Draèínský, M.	Sм610
Diehl, A.	Sм591	Draheim, R. R.	ME391
		1	

Drapkin, V.	Se563	Emmerth, S.	Ps126
Drescher, M.	Cv266, Me401, Me414,	Emondts, M.	Ps105
	MD449, So680	Emsley, J.	So664
Dubinny, M. A.	ME423	Emsley, L.	Ps117, Ps130
Dubinskii, A.	Ps183	Enberg, J.	ME433
Duchardt-Ferner, E.	Ps175, Me400, Na467, Na479, Na485, So709	Endeward, B.	Hs245, Md457, Na490, So727
Dudenko, D.	Ps165, Sm592, Rd648	Endo, T.	Rd544, So689
Duijster, A.	Td741	Enemark, J. H.	Ps147
Duma, L.	Bs203	Engelhard, C.	So723
Dupke, S.	Mp381	Engelke, F.	SE576
Dupree, R.	Ss635	Engels, J. W.	Ps125, So727
Duschl, M.	Rd557	Engelsen, S. B.	Mp358
Düsterhus, S.	So709	Engesser, T. A.	Ls334
Dutagaci, B.	Rd546	Entian, K. D.	So709, So727
Düwel, M.	Rd541	Episkopou, V.	Ls324
Dworak, C.	Mp365	Epperlein, F.	Ps178
Dziembowski, A.	So713	Erdem, Ö. F.	Hs246
Dzuba, S. A.	Rd556	Erker, G.	Ss626
Е		Ermácora, M. R.	So705
Ebert, S.	SE269	Ermolyuk, Y. S.	Me422
Echelmever, T.	Ss649	Ernst, M.	Pl17
Eckert, H.	Mp381, Ss626, Ss637,	Esteban-Martin, S.	ME402
	Ss640	Etzkorn, M.	ME395
Eckert, T.	So702, So703	Eubank, T. D.	Cv264
Edelhoff, D.	Ім250, Ім257	Evans, R.	Td735
Edén, M.	Ss633	Exner, T. E.	Рѕ145, Ст229
Edwards, A. J.	Ss636	Exnowitz, F.	Ls335
Efremov, R. G.	ME430	Eyring, P.	Cv266
Egger, D.	Ps114	Ezhevskaya, M. A.	Ps510
Eghbalnia, H. R.	Ст231, Ls332	F	
Ehlers, I.	Сv265, Sм595	Faix I	Οτ760
Ehni, S.	Ст228, Ls319	Falb M	Ps127
Eichel, R. A.	Ps499	Fändrich M	Ps164 Bs204
Eichele, K.	Ss638	Fang G	So667
Ejchart, A.	So721, So722	Faraldo-Gomez D I	BD546
Ekkert, O.	Ss626	Fardis M	Ps155
El Mkami, H.	Ps180	Faria G C	Ss624
Elantak, L.	So674	Faria R M	So624
Elissalde, C.	Sp653	Farla M	D _s 122
Elliott, J. D.	Mp346	Farmer D I	Ps123
Elman, A. R.	Ls329	Familier, F. J.	DS210
El-Mkami, H.	MD455	Failusseing, D.	
Emeis, D.	Ls326	Fauber, B.	D-102 C-600
		ravier, A.	P\$102, S0690

Fedin, M. V.	M1462	Franzoni, L.	So675
Fehr, M.	Md454, Sp656	Franzoni, M. B.	Se571
Feintuch, A.	MI460	Frascaroli, M. I	Ps170
Feldman, E. B.	Ст225	Fratila, R	Se565, Sm580
Feldmann, C.	Ss627	Fredersdorf, M.	Sм587
Feldmeier, C.	Td742	Freed, J. H.	Ps171
Felli, I. C.	Ps130, Ls315	Freeman, R.	Ps174
Feng, H.	So669	Freudenberger, J. C.	Mp369
Fennell, K.	От752	Friedrich, B.	ME419
Fenwick, R. B.	Ps114, Rd534	Friedrichs, C.	Rd560
Ferguson, D. M.	Мв439	Fries, P. H.	Ps131
Fernández, C.	NA473	Fritsch, J.	ME419
Fernández-Reyes, M.	So701	Fritz, G	So672
Ferner, J.	NA467, NA489	Fröhlich, R.	RD626
Ferrage, F.	Rd527	Frolov, V.	Se563
Ferreira, A. G.	Sм582	Frydman, L.	Ps176
Ferreira, J.	So685	Fujiwara, T.	Ст240
Ferreira, J. G.	Sм590	Funk, M.	Ps114
Ferreyra, R. G.	So705	Furrer, J.	Ls309, Ls310
Ferrier, A.	От755	Fürtig, B.	NA469, NA480, NA484,
Fessas, D.	Ps150		NA491
Feuerstein, S.	Ps102	Furukawa, A.	Ст240
Feussner, I.	MD448, Ps496	G	
Fichtner, M.	Rd561	Gabant, G.	So681
Fiedler, SA.	ME404	Gabel, F.	Ls298, So692
Fiege, B.	Ls306	Gahan, L. R.	Ps503
Fielding, A. J.	MD448, Ps496	Gajan, D.	Ps117
Filchtinski, D.	So712	Gal, M.	Ps176
Fine, B. V.	Rd555	Gallez, B.	Cv269
Finiguerra, M.	MD451	Gallinger, A.	Мв442
Fink, U.	Ps164, Bs213	Gallo, A.	So687
Fisher, A. D.	Мв439	Ganina, T. A.	Ls299, Sм605
Fizil, A.	Rd536	Gansäuer, A.	Ps498
Flego, C.	Rc518	Gansmuller, A.	Bs208
Fleissner, M. R.	PL08	Ganssle, P.	От776
Florent, M.	Mp353	Ganysuhin, D.	Ps152
Flores, M.	Ps183, От768	Garcia Rubio, I.	Hs247
Foldynová-Trantírková, S.	Cv272, Na466, Na476	García, J.	Ps139
Folkers, G. E.	Ps112, So730	Garcia-Mayoral, MF.	Ps172
Förster, Y.	Bs205	Garcia-Rubio, I.	Ps124
Francis, M. B.	Ls340	Garrenton, L.	So667
Frank, A.	Ps145	Garti, N.	Ls284
Franke, Y.	So667	Gärtner, W.	So723
Franks, T.	ME413	Gaspari, Z.	Rd536
		I	

Gast, P.	Ps110, От762	Golovina, E. V.	Rc523
Gath, J.	PL17	Gomez, M. V.	Se565, Sm580
Gautier, R.	Sp655	Gonçalves, S.	Sм590
Gebauer, F.	S0666	Goncharuk, M. V.	Me418, Me422, Me423,
Gehring, A. U.	Ps124		ME430
Geist, A.	Ps511, Ps512	Goncharuk, S. A.	ME422, ME423, ME430
Gelev, V.	ME395	Gonnelli, L.	Ps130
Gentner, M.	Na472	Gontero, B.	Ps157
George, B. M.	Sp656	González, J. C.	Ps170
George, R. E.	От755	Goovaerts, E.	От763
Geraldes, C. F. G. C.	Ps505	Gorenstein, N.	Ps113
Geralt, M.	Pl06, So686	Görlach, M.	So688, So691, So698,
Gerber, W. J.	Ls295, Ot748	Carling D	50099 L 202
Gershenzon, N. I.	Ls297, Md457	Gorning, B.	LS293
Gescheidt, G.	Mp365, Rc524	Goryunov, Y.	SP030
Geswindt, T.	Ls295	Gossert, A.	NA4/3
Getzoff, E. D.	Rc519	Gottiried, S.	S0078
Geyer, M.	От760	Gottstein, D.	ME407, ME416, S0694, So709
Ghareeb, H. O.	Mp388	Goudappel, G. J. W.	Mp361
Gherzi, R.	Ps172	Gourier. D.	Ps132, Ps500
Ghica, D.	Sp657	Graf. R.	Mp366, RD560
Giannetti, T.	S0667	Grafe, HJ.	Ss644
Giesler, R.	Sм596	Grage S L	MF402
Giffard, M.	Bs208	Grammenos A	Cv269
Giller, K.	Ps114, Ps141, So718,	Grampp, G.	RD553
	So719	Gräslund. A.	So662
Gilquin, B.	Ps148	Gratteri. P.	NA488
Giraudeau, P.	Sм577	Graziani. D.	Ім263
Gislason, K.	Ps122	Grbic, M. S.	SP655
Gkazonis, P. V.	Ls316	Green M N	SP657
Glaser, S. J.	Ps163, Ст235, Ls297,	Greenidge P	NA473
	Md457, Sm579	Griesinger C	Ps114 Ps141 Rp534
Glaubitz, C.	Ps140, Ct238, Me399, Me400, Me404, Me407	Griesinger, C.	SE576, SM613, So718
	ME412, ME415, ME431,	Griesser, M.	Mp365
	ME432, RD546, Ss639,	Griffin, J. L.	Rd550, Sm584
	Se568	Griffin, R. G.	Ps116, Ps129
Gloeggler, S.	Ps105	Grigoryan, A.	Ст224
Gnerlich, F.	NA465	Grigoryan, F.	Rc517
Göbel, M.	NA489	Grimaldi, S.	Hs245
Godt, A.	Mp370	Grimm, L. L.	S м608
Goemans, C. G.	So678	Grimme, S.	Ss626
Goldfarb, D.	Ps111, Ps122, Ps147,	Grimmer, AR.	Ss638
Coldnor D	MIP333, MIE392	Gröbner, G.	Рѕ142, Ѕм596
Goldner, P.	UT/35	Groenen E I I	Ру110 От762
			15110, 01702

Grohmann, D.	Ст242	Hahn, H.	Rd561
Grommek, A.	PL17	Hähnke, M.	Rd549
Gronenborn, A. M.	Ps151, So665	Håkansson, P.	Rd543
Gronwald, W.	Мв437, Мв440	Halbach, F.	Mp369
Grosse, F.	S0688	Hallwass, F.	Sм593
Grubmueller, H.	Ps114	Hamburger, M.	Мв444
Grünberg, A.	Cs218	Hammarberg, E.	Ss627
Grytz, C. M.	Na490	Hanbardzummyan, A.	Rc517
Grzesiek, S.	Na472	Hänel, B.	Td736, Td737
Gschwind, R. M.	Ps136, Cs221, Sм612,	Hänel, K.	Ls311
	TD742	Hänsel, R.	Ps125, Cv272, Cv276,
Gsellinger, H.	Ls336		NA466, NA476
Gstrein, T.	NA469	Hansen, M. R.	Ps165, Ps166, Ss648
Gualerzi, C.	Ps112, So730	Hanson, G. R.	Ps503
Guddorf, J.	Td740	Hanykova, L.	Mp349
Guenther, J. S.	От749	Hardy, E. H.	От770
Guerlesquin, F.	So674	Harindranath, K.	Mp354
Guérois, R.	Ps148	Harmer, J.	Ps109
Guerry, P.	Ps130	Harrysson-Drotz, S.	Cv265
Guiard, J.	Ls306	Harsch, T.	Ст243
Guigliarelli, B.	Ps157, Hs245	Hartig, J. S.	MD449
Guldbrandsen, N.	MB444	Hartlmüller, C.	Ls307
Gul-E-Noor, F.	Mp372, Mp374	Hartmann, M.	Mp372, Mp374, Mp377
Gulich, R.	Ps114	Hartmann, R.	ME394
Güntert, P.	Ст234, Ст237, Ст238,	Hartnett, P. E.	ME410
	CT239, Ls317, Ls327, ME407 ME412 ME416	Hasse, H.	От764
	NA490, RD535, So684,	Hau, P.	Cv271
	So694, So696, So709	Haumann, S.	So688
Günther, U. L.	Rd559, Se573, So675	Haupt, E. T.	Sм603
Gunzelmann, D. J.	Mp389	Häußinger, D.	Ls336
Guthausen, G.	Тр732, От753, От754	Hautle, P.	Ps161
Gutmann, T.	Ls318, Se572	He, C.	Ss634
Н		Headey, S.	So664
На, ЈН.	So706	Hediger, S.	Bs208
Haase, J.	PL11	Hefke, F. H.	ME412
Habenstein, B.	PL17, Ps143, Bs200	Heil, M.	Ім250
Haber, A.	Rd540	Heil, W.	Rd541
Haberhauer, G.	Ps503	Hein, C.	ME405, So694
Haber-Pohlmeier, S.	Rd540	Heise, H.	Ps167, Bs211, Me409,
Hacker, M.	Bs205		Ss634
Hackl, T.	Ls335	Hejátko, J.	So700
Haehnke, M. J.	Ps509	Heleno, V. C .G.	Sm582, Sm583
Hagelueken, G.	ME411	Hellenkamp, S. M.	Td746
Hagn, F.	Pl12, Me395	Heller, A.	So691
— ·	,		

Heller, D.	Ls328	Horák, J.	So700
Hellmich, U. A.	ME399, ME400	Hornicakova, M.	Ls305
Hempel, G.	Ss630	Horst, R.	Pl06
Hennig, J.	S0666	Horvatic, M.	Ps131
Henning, S.	Ім250, Ім257	Hosur, M. V.	Ls288
Herbert-Pucheta, JE.	Bs203	Hosur, R. V.	Ls288, Ls300
Herold, H.	От770	Hotz, HR.	Ps126
Herrmann, C.	So678, So712	Hounslow, A. M.	Rd550
Herrmann, T.	Ps130	Howard, K. P.	ME410
Hertzberg, Y.	Ps106	Howe, N.	От750
Heuer, A.	Td746	Howe, P. W. A.	Sм584
Heumann, R.	So678	Hoyer, A. H.	Ст230
Hewage, C. M.	So661, Ot752	Hoyer, W.	Bs211
Hibbert, R.	Ps112	Hricovíni, M.	Ст232
Hidaka, Y.	RD545	Hsiao, S. C.	Ls340
Hildebrandt, P.	ME419	Huang, A.	Ps112
Hilger, D.	ME435	Huang, J R.	Ps115
Hiller, F.	От772	Huang, KY.	PL07
Hilliard, C. R.	Cs216	Huang, TH.	Rd532
Hilty, C.	Ps118	Huang, Y. J.	Ст237
Himsl, D.	Mp372, Mp374, Mp377	Hubbell, W. L.	Pl08, So717
Hinderberger, D.	Ps135, Mp360, Mp380,	Huber, M.	Me401, Md451
	NA486, Ps510, Se569,	Huber, M.	PL17
Hinter C	UT/58	Huber, T.	Ps513
Hintze, C.	MIE414	Huez, S.	Mp385
Hirschinger, J.	Ss620	Hugeri, M.	Ps106
Hirsh, D. J.	P\$146	Hughes-Riley, T.	Ps177, От778
Hitomi, K.	RC519	Hunter, M. W.	PL02
Hoch, S.	OT/64	Hunter, R. I.	Ps180
Hocking, H. G.	So/15	Hunziker, J.	NA473
Høebabecky, H.	SM610	Husarova, S.	Cv267, Cv268
Hoebeke, M.	Cv269	Hussain, T.	Rd553
Hoefer, P.	SE3 /6	Huster, D.	Bs204, Bs205, ME398,
Hof, M.	PS142		Me420, So704
Hofe, T.	OT/54	Hyodo, F.	Ім256
Hoffman, R. E.	Ls284	I	
Hoffmann, H. C.	PS1/8, MP362	Ichikawa, K.	Ім256, Ім261
Holand, W.	Ss640	Icker, M.	Se562
Holbach, M. A.	MB436	Idström, A.	Td743
Hollingworth, D.	Ps172	Ilstedt, U.	Sм596
Hölper, S.	Se568, Ss639	Imanari, M.	Rd544, Rd545
Holzberger, B.	So679	Isaacson, R.	От773
Homans, S. W.	So726	Isaev, N. P.	RD556
Hong, M.	PL05	Isaksson, L.	Ls322
		l í	

J		Joy, P. A.	Mp354
Jachnik, B.	Cv271	Juan, A.	Sм580
Jacso, T.	ME413	Junemann, A.	От760
Jahnke, J. P.	Ps166	Jung, H.	ME435
Jalilov, A. S.	Rc524	Jung, J.	S0665
Jambor, R.	Ѕм611	Junge, F.	ME424
Jamin, M.	Ls298	Junge, W.	Мв437
Jamróz, M. K.	Мв441	Junk, M. J. N.	Ps166, Ot758
Janda, L.	So700	К	
Jang, M.	So706	Kachala, V. V.	Ls325
Janich, M.	Ст235	Kadavath. H.	So711
Jannin, S.	Ps161, Ls302	Kaden, P.	Ps511, Ps512
Jansa, P.	Sм581	Kai. L.	ME417
Jansen, S.	So700	Kainosho, M.	ME407
Janssen, G. J.	Ps138	Kalabukhova, E. N.	Sp651
Jansson, H.	So716	Kalbitzer, H. R.	Ст243. Сv271. Сv273.
Jansson, M.	Sм596		So712
Jaravine, V.	Ст237	Kalder, J.	Cv270
Jaremko, L.	So682, So683, So721,	Kallergi, E.	So687
	So722	Kalverda, A. P.	So726
Jaremko, M.	So682, So683, So721,	Kamada, H.	Mp351
Joulz S	50722 Mp265	Kamdem, N.	Sм591
Jauk, S. Jazheo, S	NIP303	Kaminker, I.	Ps122, Me392
Jazuet, S.	58043 Mp272 Mp274	Kamlowski, A.	От754
Jee, D.	$\frac{1}{1}$	Kanchan, S.	Ss623
Jennun, F.	50/24 Dc400	Kanehashi, K.	Ss647
Jensen, M. P.	Ps172 Ls208	Kapp, T.	Sм595
Jensen, M. K.	$P_{S173}, LS290$	Karabanov, A.	Ps119
Jersehlva G	F_{5137} Dr 12 Uc 247 Mp270	Karassek, S.	So678
Jeschke, U.	Mp390, ME429, ME435,	Karbyshev, M.	ME408
	MD458, SE564	Karlsson, B. G.	Ps142, Me433, So716
Ji, F.	S0665	Karsisiotis, Y.	So681
Jiménez-Barbero, J.	So701	Kasimogullari, R.	Ls290
Jockers, K.	So678	Kaskel, S.	Ps178, Mp362
Johannessen, O. J.	Ss629	Kaszynska, J.	Sм602
Johnson-Winters, K.	Ps147	Katahira, M.	Ст240
Jokic, M.	Rd529	Kato, H.	So669
Jokisaari, J.	Mp357	Kattnig, D. R.	Mp360, Mp380
Jones, M. W.	Ps109	Kaufman, J. D.	ME393
Jonker, H.	Ls333, NA488, Ps514,	Kaupp, U. B.	So660, So717
	So725, Ot772	Kawano, S.	So689
Jørgensen, R.	Sм608	Kay, C. W.M.	Ст242, МЕ406
Joris, B.	Bs208	Kay, L. E.	Ps101, Ps174, So669
Jouvensal, L.	So681	Kazemi, S.	Na490
		the second second second second second second second second second second second second second second second se	

Keehle D	Ps180	Klingherg R	Cv282
Kehr G	Ss626	Klinkert B	NA482
Kekkonen P	Mp357	Klose, D.	Ст242
Keller II	Тл 740	Klumpler, T.	So700
Kelly G	Ps172	Kneller G	Rp537
Kemper S	Ps119	Knight, M. J.	Ps130
Kempers P	Ls283	Knipp, M.	Ps167 Ss634
Kennedy D J	Ls340	Knowles K	SM584
Kentgens, A. P. M.	Ps154	Knyazev, M.	SE263
Kéri, M.	Тр745	Kobayashi, N.	Ст240
Kern. T.	Bs208	Kobayashi, T.	Mp351
Kervern, G.	От776	Kobzar, K.	Ls297
Kessler. H.	PL12	Kocer, A.	ME434
Khan, G. N.	So726	Koch, C.	MD448, Ps496
Khan, R. A.	Mp345	Koch, K.	Mp374
Khimvak, Y. Z.	Mp346, OT761	Koch, K. R.	Ls295, Ot748
Khitrin, A.	Ps137	Köchner, T.	Ls334
Khokhlova, E. A.	Ls325	Kock, G.	So678
Khramtsov, V. V.	Cv264	Köck, M.	Sм594
Kibrik, E.	От764	Kockenberger, W.	Ps119
Kiefer, C.	Ім253	Koehler, J.	Cv273
Kieffer, B.	Rd538	Koenig, B. W.	Ps167, Ls311, Me409
Kielmann, U.	Hs247	Koers, E.	Bs209
Kim, YB.	Na489	Kohl, S. M.	Мв440
Kind, J.	Ps124	Köhler, K.	Тр732
Kirakosyan, A.	Ст224	Kohl-Landgraf, J.	Ls337
Kirchner, D. K.	Ст234	Kolbe, M.	Ps141
Kirkpatrick, J.	Ps127	Kolesnik, Y. A.	Sм616
Kirpichnikov, M. P.	ME422, ME423	Kolkman, A. J.	Ls301
Kirschner, K. N.	От772	Kolmer, A.	Sм585
Kiryutin, A. S.	Rd526	Kolshorn, H.	От777
Kisin, A. V.	Ls329	Kölzer, M.	Se569
Kitahara, R.	Ст240	Konter, J. A.	Ps161
Kitazawa, S.	Ст240	Koos, M. R. M.	Ls319, Ls338
Kitov, P. I.	Ls306	Koptyug, I. V.	Ps104, Cs217, Se566
Klammt, C.	ME428	Korb, O.	Ст229
Klanjsek, M.	Ss645, Sp654	Kordas, G.	Ps134, Mp367
Klare, J. P.	Ст242	Korelec, A.	Sp654
Klasing, M.	So717	Korte, L.	Sp656
Klasmeier, J.	Rc521	Koschinat, M.	NA471, NA481
Klein, E. L.	Ps147	Kosten, J.	Cv279
Klein, M. S.	Мв437, Мв440	Kostidis, S.	MB444
Klein, N.	Ps178, Mp362	Koteishi, H.	От762
Kleinmaier, R.	Ѕм612	Kötter, P.	So709

Koumoulis, D. Ps155 Kupee, E. Ps174 Köver, K. E. LS331, Rb536 Kuppers, M. Rb547 Kovermunn, M. Mr420 Kuprov, I. Ps119 Kovalczuk, J. Ps104, CS217, Sa566 Kurtathcyil, A. Mr379 Kovalezuk, J. Ps104, CS217, Sa566 Kurtathcyil, A. Mr379 Kovalezuk, J. Ps131 Kveder, M. Rb529 Kozininski, W. Ls286 Kwamen, R. Mr355 Krainer, A. NA470 Kwasiborska, M. Sa617 Krainer, S. Ps131 Kwiatkowska, M. Sa617 Krause, G. SM9131 Kwiatkowska, M. Sa679 Krause, G. SM144 Lacerda Jr., V. Or7711 Krea, R. PS144 Lacerda Jr., V. Or7712 Krause, G. Or774 Lacerda Jr., V. Or7712 Kreater, M. CV323 Lafage, M. So670 Krause, G. Or774 Lagleder, S. Ps112 Kristi, J. IM252 Lakatos, A. Me415, Mr432 <th>Kotzé, I. A.</th> <th>От748</th> <th>Kunze, M. B. A.</th> <th>ME406</th>	Kotzé, I. A.	От748	Kunze, M. B. A.	ME406
Kövér, K. E. Ls331, Rb536 Küppers, M. Rb547 Kovernann, M. Mi-400 Kuprov, I. Ps119 Kovunov, K. V. Ps104, Cs217, Sc566 Kutrabeyil, A. Me360, Na486 Kowalczuk, J. Su602 Kutatheyil, A. Me360, Na486 Kovalczuk, J. Su602 Kutatheyil, A. Me359 Kozaininski, W. Ls286 Kwanen, R. Me356 Krahn, A. Sc576 Kwan, A. H. So676 Krainer, A. Me379 Kwaitkowska, M. Me441 Krause, G. Su391 L Lacour, J. Su477 Kreauscheid, H. Me379 Lafage, M. So670 Lafage, M. So670 Kreetschmar, J. Or774 Lakatos, A. Me415, Me432 Kaomek, NA. Ps114, Me393, Rb534 Kroper, C. M. Rc5222 Lambertsen, K. L. So724 Lakatos, A. Me415, Me432 Krishn, M. C. Or747 Lakatos, A. Me415, Me432 Lambertsen, K. L. So734 Krishn, M. C. Mr371, Me376, Mr378, Rc522 Lambe	Koumoulis, D.	Ps155	Kupce, E.	Ps174
Kovermann, M. Me420 Kuprov, I. Ps119 Kovtnov, K. V. Ps104, Cs217, Sc560 Kurzbach, D. Me360, Na486 Kowalewski, J. Ps131 Kveder, M. Rrs529 Koziminski, W. Ls286 Kwamen, R. Mr356 Krahn, A. Sc576 Kwan, A. H. Sc676 Krainer, A. Na470 Kwasiborska, M. Sm611 Krainer, S. Ps131 Kwasiborska, M. Sm612 Krause, G. Sm591 L Lacerda Jr., V. Or7711 Kree, R. Ps114 Lacour, J. Sm507 Lafage, M. So670 Kreiner, S. Or747 Lakatos, A. Mr414 Mr420 Kristi, J. Lacour, J. Su586 Kretzschmar, J. Or747 Lakatos, A. Mr415, Me432 Lagleer, S. Ps114, Me393, Rb534 Krostin, L. D Su555 Lamotreux, JP. Su586 Lambert, J. Mr436 Krustin, J. Im325 Lamotreux, JP. Su586 Larciano, P. Hs245 Kret	Kövér, K. E.	Ls331, Rd536	Küppers, M.	RD547
Kovunov, K. V. Ps104, Cs217, Se566 Kurzbach, D. Me360, N486 Kowalczuk, J. SM02 Kutathcyil, A. Me379 Kowalewski, J. Ps131 Kveder, M. Ro529 Koziminski, W. Ls286 Kwamen, R. Me356 Krahn, A. Se576 Kwan, A. H. So676 Krainer, A. N4470 Kwaishorska, M. So471 Krainer, S. Ps131 Kwiatkowska, M. Me411 Krause, G. So711 Lacerda Jr., V. Or7771 Kreiter, S. So712 Lafege, M. So670 Kreiter, A. Me385 Lafon, O. SM486 Kreitzschmar, J. Or774 Lafon, O. SM486 Kriznik, A. SO729 Lakotos, A. Me415, Me432 Kristh, J. Me325 Lawore, NA. Ps114, Me393, Ro534 Kriznik, A. SO729 Lambertsen, K. L. SO724 Kristh, J. Me325, Na466 Lancy, J. P. SM586 Krizny, A. Ps125, Na466 Lang, A. La334 </td <td>Kovermann, M.</td> <td>ME420</td> <td>Kuprov, I.</td> <td>Ps119</td>	Kovermann, M.	ME420	Kuprov, I.	Ps119
Kowalczuk, J. SM602 Kutatheyil, A. Me379 Kowalcwski, J. P8131 Kveder, M. Rb529 Koziminski, W. L2286 Kwanen, R. Me356 Krahn, A. Se576 Kwan, A. H. So676 Krainer, A. N4470 Kwasiborska, M. Sm617 Krämer, S. P8131 Kwiatkowska, M. Me441 Krause, G. SM591 L Lacour, J. Sm579 Kreitner, S. S0712 Lafage, M. So670 Lafage, M. So670 Kreitner, A. Me385 Lafon, O. Su5886 Kretzschmar, J. Or747 Lafage, M. So670 Kristni, J. IM222 Lakatos, A. Me415, Me432 Lafon, O. Su586 Krizznik, A. SO724 Lafon, O. Su586 Lagleder, S. P112 Kristni, M. C. Or747 Lakatos, A. Me413, Me436 Kriznik, A. SO729 Lawbertsen, K. L. So724 Lambert, J. Mi436 Krosing, I. La334	Kovtunov, K. V.	Ps104, Cs217, Se566	Kurzbach, D.	Mp360, NA486
Kovalewski, J. Ps131 Kveder, M. Pn529 Kozininski, W. Ls286 Kwamen, R. Mv5356 Krahn, A. Se576 Kwan, A. H. So676 Krainer, A. NA470 Kwaisborska, M. So4617 Krainer, S. Ps131 Kwiatkowska, M. Me441 Krause, G. Sm591 L L Kree, R. Ps114 Lacerda Jr., V. Or7771 Kree, R. Sto172 Lafage, M. So670 Kretner, S. So712 Lafage, M. So670 Kretner, M. Cv273 Lafon, O. Sm586 Kretzschmer, A. Mr985 Lafon, O. Sm586 Kretzschmar, J. Or747 Lakots, A. Me415, Me432 Kristl, J. Lu252 Lakonek, NA. Ps114, Me393, R0534 Kreiger, HJ. Ps125, Na466 Lamoureux, JP. Sm586 Kruegr, HJ. Ps125, Na466 Lange, C. Me433 Kruegr, HJ. Ps131 Lage, C. Me430 Kruegr, HJ.	Kowalczuk, J.	Sм602	Kuttatheyil, A.	Mp379
Koziminski, W. Ls286 Kwamen, R. MP356 Krahn, A. St576 Kwan, A. H. So676 Krainer, A. NA470 Kwasiborska, M. SM617 Krainer, S. Ps131 Kwiatkowska, M. MB441 Krause, G. Ss691 L L Krause, G. Ss671 Lacerda Jr., V. Or771 Kree, R. Ps114 Lacour, J. Ss670 Kreiter, S. So712 Lafage, M. So670 Kretschmer, A. MP385 Lafor, O. Sw586 Kretzschmar, J. Or774 Lagleder, S. Ps112 Krishna, M. C. Or747 Lakatos, A. MF415, MF432 Kristl, J. Lu222 Lakomek, NA. Ps114, ME393, Ro534 Kriznik, A. So724 Lambert, J. MB436 Kroner, A. CS222 Lamoureux, J-P. Su566 Krostig, I. Ps125, NA66 Lange, A. Las31, Su614 Kruzger, HJ. Ps131 Krage, A. Lange, A. Ps1414	Kowalewski, J.	Ps131	Kveder, M.	Rd529
Krahn, A. SE576 Kwan, A. H. Sof66 Krainer, A. NA470 Kwasiborska, M. Sw1617 Krainer, S. Ps113 Kwatkowska, M. Me441 Krause, G. Sw591 L Kacroda Jr., V. Or771 Kree, R. Ps114 Lacerda Jr., V. Or771 Lacerda Jr., V. Or771 Kree, R. Ps114 Lacurd, J. Sw559 Lafage, M. So670 Kretschmar, J. Or774 Lagleder, S. Ps112 Lakatos, A. Me415, Me432 Krishna, M. C. Or747 Lakatos, A. Me415, Me432 Lakorek, NA. Ps114, Me393, Ro534 Krisht, J. Ik222 Lakomek, NA. Ps114, Me393, Ro534 Lanoterus, J.P. Sw586 Krossing, I. La334 Lanoterus, J.P. Sw586 Lanotano, P. Hs245 Kruer, HJ. Ps150 Kafage, O. Lang, J. Sw618 Kruer, HJ. Ps131 Lange, C. Me420 Lange, O. Lang7 Kruer, HJ. Sv567, Se57, Lange, O	Koziminski, W.	Ls286	Kwamen, R.	Mp356
Krainer, A. NA470 Kwaiborska, M. SM617 Kräiner, S. Ps131 Kwiatkowska, M. MB441 Krautscheid, H. MP379 Lacord, Jr., V. O7771 Kree, R. Ps114 Lacour, J. SM579 Kreither, S. SO712 Lafage, M. So670 Kretschmer, A. MP385 Lafon, M. So670 Kretschmer, A. MP385 Lafon, O. SM586 Kretzschmar, J. O7747 Lakatos, A. ME415, ME432 Kristl, J. M252 Lakomek, NA. PS114, ME393, Rb534 Kristl, J. M252 Lakomek, NA. PS114, ME393, Rb534 Krossing, I. Las34 Lambert, J. MF456 Kruscynski, Z. MP371, MP376, MP378, Rc522 Lanciano, P. H15245 Kruster, D. Ps131 Lange, C. ME420 Krusting, D. Ste567, Sc575 Langer, C. ME307 Krusting, D. To746 Langer, C. ME420 Krusting, D. Ste567, Sc575 Langer, C. Me	Krahn, A.	SE576	Kwan, A. H.	So676
Krämer, S. Ps131 Kwiatkowska, M. Me441 Krause, G. SM591 L Krautscheid, H. Mr379 Lacerda Jr., V. OT771 Kree, R. Ps114 Lacour, J. SM579 Kremer, W. CV273 Lafon, M. So670 Kretschmer, A. Mr385 Lafon, O. SM586 Kretschmar, J. OT744 Lakons, A. Me415, Me432 Krishna, M. C. OT747 Lakomek, NA. Ps114, Me393, Ro534 Krishna, M. C. OT747 Lakomek, NA. Ps114, Me393, Ro534 Krishna, M. C. Ro522 Lambertsen, K. L. So724 Kromer, A. Ro525 Lamoureux, JP. SM586 Kruzymski, Z. Mr371, Mr376, Mr378, Ro522 Lang, A. Las31, Sm614 Kruzyminewski, R. Mr371, Mr376, Mr378, Ro522 Lange, O. Las307 Krzyminiewski, R. Mr371, Mr376, Mr378	Krainer, A.	NA470	Kwasiborska, M.	Sм617
Krause, G.SM591LKrautscheid, H.MP379Lacerda Jr, V. 07771 Kree, R.Ps114Lacour, J.SM579Kreiner, S.S0712Lafage, M.S0670Kretschmer, A.MP385Lafon, M.S0670Kretschmar, J. 07774 Lafon, O.SM586Kretzschmar, J. 07774 Lakous, A.ME415, ME432Kristh, J.IN252Lakomek, NA.Ps114, ME393, Rb534Kristr, J.Krist, So729Lambert, J.Me436Kropf, C. M.Rb555Lamoureux, JP.SM586Krozsing, I.Ls334Lamoureux, JP.SM586Kruczynski, Z.MP371, MP376, MP378, RC420Lange, A.Ps114Kruk, D.Ps131Lange, C.ME420Kruk, D.Se567, Se575Lange, O.Lange, T.MP381Krzyzminiewski, R.MP371, MP376, MP378, RC522Lager, T.MP381Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP378Kuhn, S.Or777László, K.MP378Kuhn, S.Or777 <t< td=""><td>Krämer, S.</td><td>Ps131</td><td>Kwiatkowska, M.</td><td>Мв441</td></t<>	Krämer, S.	Ps131	Kwiatkowska, M.	Мв441
Krautscheid, H.Mr379Lacerda Jr., V.Or771Kree, R.Ps114Lacerda Jr., V.Or7771Kree, R.Ps114Lacour, J.SM579Kreitner, S.SO712Lafage, M.So670Kretschmer, A.Mp385Lafon, M.So670Kretschmar, J.Or774Lagleder, S.Pt12Krishl, J.IM252Lakomek, NA.Ps114, Me393, Rb534Kristl, J.IM252Lakomek, NA.Ps114, Me393, Rb534Kristrik, A.So729Lambert, J.Me436Kromer, A.CS222Lambert, J.Me436Kroger, C. M.Rb555Lamoureux, JP.SM586Kruczynski, Z.Mr371, Mr376, Mr378, Rc522Lang, A.Ls331, SM614Kruger, HJ.Ps115, NA466Lange, O.Ls307Kruger, HJ.Ps101Lange, O.Ls307Kruger, HJ.Ps101Lange, O.Ls307Kruger, J. G.SE567, SE757Lange, O.Ls307Krzyminiewski, R.Mr371, Mr376, Mr378, Rc522Lange, O.Ls307Kuckling, D.Tb746Lapert, M.Cr235Kuch, B.Sm606Larsen, F. H.Mr379Kuhn, L. T.So673Lassig, D.Mr379Kuhn, S.Or777László, K.Mr383Kuhn, S.Or777László, K.Mr383Kuhn, S.Or777László, K.Mr383Kuhn, S.Or777László, K.Mr383Kuhn, S.Or777László, K.Mr383Ku	Krause, G.	Sм591	L	
Kree, R. Ps114 Laccur, J. SM579 Kreitner, S. So712 Lafage, M. So670 Kremer, W. CV273 Lafon, M. So670 Kretzschmar, J. Or744 Lagleder, S. P112 Kristh, J. M252 Lakomek, NA. PS114, ME393, Rb534 Kriznik, A. S0729 Lakomek, NA. PS114, ME393, Rb534 Kriznik, A. S0729 Lakomek, NA. PS114, ME393, Rb534 Kriznik, A. S0729 Lakomek, NA. PS114, ME393, Rb534 Kromer, A. C8222 Lawbert, J. Me436 Kroner, A. C8222 Lamoureux, JP. SM586 Krosig, I. L334 Lamoureux, JP. SM586 Kruczynski, Z. MP371, MP376, MP378, Lange, A. Ls331, SM614 Kruger, HJ. PS101 Large, O. Lange, O. Ls307 Kruger, HJ. PS101 Large, O. Lange, O. Ls307 Krzyminiewski, R. MP371, MP376, MP378, Lange, O. Ls307 Krzyminiewski	Krautscheid, H.	Mp379	Lacerda Ir. V	Οτ771
Kreitner, S.So712Lactar, R.So712Kreitner, S.So712Lafag, M.So670Kremer, W.Cv273Lafon, M.So670Kretschmar, J.Or774Lafon, M.So670Krisha, M. C.Or747Lafon, O.SM586Kristi, J.IM252Lakons, A.Me415, Me432Krisha, M. C.Or747Lakots, A.Me415, Me432Kristi, J.IM252Lakomek, NA.Ps114, Me393, Ro534Kriznik, A.So729Lamberts, K. L.So724Kropf, C. M.Rb555Lanciano, P.Hs245Krstic, I.Ps125, Na466Lanciano, P.Hs245Kruczynski, Z.Mp371, Mp376, Mp378, Rc522Lange, A.Ps141Lange, C.Me420Lange, O.Las307Kruwnenacker, J. G.Se567, Se575Lange, O.Las072Kuckling, D.Tb740Lapert, M.Cr235Kuckling, D.Tb746Larsen, F. H.Mp388Kuhn, B.Sm606Larsen, F. H.Mp388Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps104Kummerlöwe, G.Mp369Lee, D.So660, Tb738Kunjir, N. C.Ps151Ledbetter, M. P.Or776Kungr, G.So551Ledbetter, M. P.Or776	Kree, R.	Ps114	Lacour I	Sm579
Kremer, W. CV273 Lafon, M. S0670 Kretschmar, A. MP385 Lafon, M. S0670 Kretschmar, J. Or774 Lafon, M. S0670 Kretschmar, J. Or774 Lafon, M. S0670 Krishna, M. C. Or744 Lafon, O. SM586 Kriznik, A. Or744 Lakots, A. Me415, Me432 Kriznik, A. S0729 Lakomek, NA. Ps114, Me393, Rb534 Kromer, A. Cs222 Lakomek, NA. Ps114, Me393, Rb534 Kropf, C. M. Rb555 Lamoureux, JP. SM586 Krossing, I. Ls334 Lang, A. Ls331, SM614 Kruczynski, Z. Mp371, Mp376, Mp378, Lange, A. Ps141 Krus, D. Ps131 Lange, C. Me420 Krusyminiewski, R. Mp371, Mp376, Mp378, Lange, O. Las307 Krzyzanek, V. Tb740 Lager, T. Mp381 Krzyzanek, V. Tb746 Laginaite, A. S0692 Kuhn, B. Sm606 Larsen, F. H. Mp383	Kreitner, S.	So712	Latage M	So670
Kretschmer, A. MP385 Lafon, O. SM586 Kretzschmar, J. OT774 Lagleder, S. PL12 Krishna, M. C. OT747 Lakatos, A. ME415, ME432 Kristl, J. IM252 Lakomek, NA. Ps114, ME393, Rb534 Kriznik, A. S0729 Lakomek, NA. Ps114, ME393, Rb534 Kromer, A. CS222 Lamberts, J. MB436 Krossing, I. Las34 Lamoureux, JP. SM586 Kruczynski, Z. MP371, MP376, MP378, Rc522 Lang, A. Ls331, SM614 Kruger, HJ. Ps101 Kruger, A. SE567, St575 Lange, O. Ls307 Krzyminiewski, R. MP371, MP376, MP378, Rc522 Lange, O. Lange, O. Ls307 Krzyminiewski, R. MP371, MP376, MP378, Rc522 Lange, O. Lange, O. Lange, O. Krzyzanek, V. Tb740 Lange, O. Lange, O. Lange, O. Lange, O. Kuckling, D. Tb746 Lapert, M. Cr235 Kuckling, D. MP371 Kuuckling, D. Tb746 Lapert, M. MP378 So692 Kuunk, S. OT777	Kremer, W.	Cv273	Lafon M	S0670
Kretzschmar, J. OT774 Lakton, A. Binon, C. Distort Krishna, M. C. OT747 Lagleder, S. PL12 Kristh, J. IM252 Lakomek, NA. Ps114, Me393, Rb534 Kriznik, A. So729 Lakomek, NA. Ps114, Me393, Rb534 Kromer, A. Cs222 Lambert, J. Mb436 Krossing, I. Las334 Lambertsen, K. L. So724 Krock, I. Ps125, NA466 Larciano, P. Hs245 Kruczynski, Z. Mp371, Mp376, Mp378, Rc522 Lange, A. Lange, A. Ps141 Kruw, D. Ps131 Lange, C. Me420 Lange, O. Las307 Krzyminiewski, R. Mp371, Mp376, Mp378, Rc522 Langer, T. Mp381 Krzyzanek, V. TD740 Lapert, M. Cr235 Kuckling, D. TD746 Lapinaite, A. So692 Kuhn, B. SM606 Larsen, F. H. Mp378 Kuhn, S. OT7777 László, K. Mp383 Kulic, Z. So673 Lässig, D. Mp379 Kuhn, S. OT7771 László, K. Mp383 <t< td=""><td>Kretschmer, A.</td><td>Mp385</td><td>Lafon O</td><td>SM586</td></t<>	Kretschmer, A.	Mp385	Lafon O	SM586
Krishna, M. C. Or747 Lakatos, M. In12 Kristl, J. IM252 Lakatos, A. ME415, ME432 Kriznik, A. So729 Lakomek, NA. PS114, ME393, Rb534 Kromer, A. Cs222 Lambert, J. Mb436 Kropf, C. M. Rb555 Lambertsen, K. L. So724 Krossing, I. Ls334 Lamoureux, JP. SM586 Kruczynski, Z. Mp371, Mp376, Mp378, Rc522 Lange, A. Ls331, SM614 Kruger, HJ. PS100 Lange, C. Me420 Kruyminiewski, R. Mp371, Mp376, Mp378, Rc522 Lange, O. Ls307 Krzyzanek, V. Tb740 Lapert, M. Cr235 Kuckling, D. Tb746 Lapinaite, A. So692 Kuhn, B. Sm606 Larsen, F. H. Mp383 Kulic, Z. So673 Lässig, D. Mp379 Kuhn, S. Or777 László, K. Mp383 Kulic, Z. So672 Laustsen, C. Ps162 Kumar, D. Ls300 Laybourn, A. Mp348 Kumar, D. Ls300 Laybourn, A. Mp346 <	Kretzschmar, J.	От774	Lagleder S	Pr 12
Kristl, J.IM252Lakons, RIM103, M103Kriznik, A.So729Lakomek, NA.Ps114, Me393, Ro534Kromer, A.Cs222Lakomek, NA.Ps114, Me393, Ro534Kropf, C. M.Ro555Lambert, J.Mb436Krossing, I.Ls334Lambert, S.So724Kruczynski, Z.Mp371, Mp376, Mp378, Rc522Lanciano, P.Hs245Kruger, HJ.Ps125, Na466Lange, A.Las331, Sm614Kruzynski, Z.Mp371, Mp376, Mp378, Rc522Lange, C.Me420Kruger, HJ.Ps131Lange, O.Las307Kruger, HJ.Sr567, Sr575Lange, O.Las307Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapert, M.Cr235Kuch, B.Sm606Larsen, F. H.Mp358Kuhn, S.Or777László, K.Mp378Kuin, Z.So672Lausteen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, D.Ls315Leblans, P.Ps504Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.Mp369Lecher, J.So660, Tp738Kunji, N. C.Ps515Ledbetter, M. P.Or776Kürnerlöwe, G.Mp369Lecher, J.So660, Tp788Kunjir, N. C.Ps515Ledbetter, M. P.Or776	Krishna, M. C.	От747	Lakatos A	MF415 MF432
Kriznik, A. So729 Lambert, J. For 1, Marsh, Mark Kroner, A. Cs222 Lambert, J. Mb436 Kropf, C. M. Ro555 Lambert, J. So729 Krossing, I. Ls334 Lamoureux, JP. SM586 Krozynski, Z. Mp371, Mp376, Mp378, Rc522 Lang, J. Lang, J. Lange, A. Kruger, HJ. Ps101 Lange, C. Me420 Krummenacker, J. G. SE567, SE575 Langer, O. Ls307 Krzyzanek, V. TD740 Lapert, M. Cr235 Kuching, D. TD746 Lapinaite, A. Mp378 Kuhn, B. Sm606 Larsen, F. H. Mp378 Kulic, Z. So77 Lászig, D. Mp379 Kuhn, S. Or7777 László, K. Mp379 Kumar, D. La300 Lapourn, A. Mp369 Kumar, D. La301 Leblans, P. Ps504 Kummerle, R. Ls315 Leblans, P. Ps504 Kumerle, R. Ls315 Leblans, P. Or776 Kumar, D. So6607 Mp369 Lecher, J. So6607,	Kristl, J.	Ім252	Lakomek N-A	Ps114 ME393 RD534
Kromer, A.Cs222Lambersen, K. L.So724Kropf, C. M.Ro555Lambersen, K. L.So724Krossing, I.Ls334Lambersen, K. L.So724Krstic, I.Ps125, NA466Lamoureux, JP.Sm586Kruzynski, Z.Mp371, Mp376, Mp378, Rc522Lanciano, P.Hs245Kruger, HJ.Ps510Lange, A.Lange, A.Kruw, D.Ps131Lange, C.Me420Krummenacker, J. G.Se567, Se575Lange, O. F.Ps114Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.Sm606Larsen, F. H.Mp378Kuhn, S.Or777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerlöwe, G.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Küng, R. G.Mp369Lecher, J.So660, Tb738	Kriznik, A.	So729	Lambert, J.	Мв436
Kropf, C. M.RD555Lamoureux, JP.SM586Krossing, I.Ls334Lamoureux, JP.SM586Krstic, I.Ps125, NA466Lanciano, P.Hs245Kruczynski, Z.Mp371, Mp376, Mp378, Rc522Láng, A.Ls331, SM614Kruger, HJ.Ps510Lange, A.Ps141Krummenacker, J. G.SE567, SE575Lange, O.Ls307Krzyminiewski, R.Mp371, Mp376, Mp378, Rc522Lange, O. F.Ps114Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.Mp378Kuhn, S.Or777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerlöwe, G.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künzer G.Sp515Ledbetter, M. P.Or776	Kromer, A.	Cs222	Lambertsen, K. L.	So724
Krossing, I.Ls334Lanciano, P.Hs245Krstic, I.Ps125, NA466Láng, A.Ls331, SM614Kruczynski, Z.MP371, MP376, MP378, Rc522Lang, A.Ls331, SM614Kruger, HJ.Ps510Lange, A.Ps141Kruk, D.Ps131Lange, C.Me420Krummenacker, J. G.SE567, SE575Lange, O.Ls307Krzyminiewski, R.MP371, MP376, MP378, Rc522Lange, O.Ls307Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP378Kuhn, S.Or777László, K.MP379Kuhn, S.Or7777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, G.So704Lee, D.Ps114, Rp534	Kropf, C. M.	Rd555	Lamoureux I-P	SM586
Krstic, I.Ps125, NA466Later (M)Kruczynski, Z.Mp371, Mp376, Mp378, Rc522Láng, A.Ls331, SM614Kruger, HJ.Ps510Lang, J.SM618Kruk, D.Ps131Lange, A.Ps141Kruymenacker, J. G.SE567, SE575Lange, O.Ls307Krzyminiewski, R.Mp371, Mp376, Mp378, Rc522Lange, O. F.Ps114Krzyzanek, V.Tb740Lapert, M.Cr235Kuching, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.Mp378Kuhn, S.Or777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kumnerlöwe, G.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, G.So704Lee, D.Ps114, Rb534	Krossing, I.	Ls334	Lanciano, P.	Hs245
Kruczynski, Z.Mp371, Mp376, Mp378, Rc522Lang, J.SM618Kruger, HJ.Ps510Lange, A.Ps141Kruk, D.Ps131Lange, C.Me420Krummenacker, J. G.SE567, SE575Lange, O. F.Ps114Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.Mp378Kulic, Z.So673Lässig, D.Mp379Kumar, D.LasonLaybourn, A.Mp374Kuir, Z.So672Laustsen, C.Ps162Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, GSo704Lee, D.Ps114, Rb534	Krstic, I.	Ps125, NA466	Láng, A.	Ls331, Sm614
Rc522Lange, N.DifferenceKruger, HJ.Ps510Lange, A.Ps141Kruk, D.Ps131Lange, A.Ps141Krummenacker, J. G.SE567, SE575Lange, O.Ls307Krzyminiewski, R.MP371, MP376, MP378, Rc522Lange, O. F.Ps114Krzyzanek, V.Tb740Lapert, M.CT235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP378Kuhn, S.Or777László, K.MP379Kuhn, S.Or777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps504Kunnerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, G.So704Lee, D.Ps114, Rb534	Kruczynski, Z.	Mp371, Mp376, Mp378,	Lang, J.	Sm618
Kruger, HJ.Ps510Lange, C.Me420Kruk, D.Ps131Lange, C.Lange, O.Ls307Krummenacker, J. G.SE567, SE575Lange, O. F.Ps114Rc522Langer, T.Mp381Krzyzanek, V.TD740Lapert, M.CT235Kuckling, D.TD746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.Mp379Kuhn, S.OT777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kummerle, R.Ls315Lebrun, R.Ps504Kümmerlöwe, G.Mp369Lecher, J.So660, TD738Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze, GSo704Lee, D.Ps114, Rb534		Rc522	Lange, A.	Ps141
Kruk, D.Ps131Lange, O.Lange, O.Krummenacker, J. G.SE567, SE575Lange, O.Ls307Krzyminiewski, R.Mp371, Mp376, Mp378, Rc522Lange, O. F.Ps114Krzyzanek, V.TD740Lapert, M.CT235Kuckling, D.TD746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.Mp378Kuhn, S.OT777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.So660, TD738Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze, GSo704Lee, D.Ps114, Rb534	Kruger, HJ.	Ps510	Lange, C.	ME420
Krummenacker, J. G.SE567, SE575Lange, O. F.Ps114Krzyminiewski, R.Mp371, Mp376, Mp378, Rc522Langer, T.Mp381Krzyzanek, V.Tb740Lapert, M.Cr235Kuckling, D.Tb746Lapinaite, A.So692Kuhn, B.Sm606Larsen, F. H.Mp378Kuhn, S.Or777László, K.Mp383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.Mp346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, GSo704Lee, D.Ps114, Rb534	Kruk, D.	Ps131	Lange, O.	Ls307
Krzyminiewski, R.MP371, MP376, MP378, Rc522Langer, T.MP381Krzyzanek, V.TD740Lapert, M.CT235Kuckling, D.TD746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP378Kuhn, L. T.So673Lässig, D.MP379Kuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, TD738Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze, G.So704Lee, D.Ps114, Rb534	Krummenacker, J. G.	Se567, Se575	Lange, O. F.	Ps114
Krzyzanek, V.TD740Lapert, M.CT235Kuckling, D.TD746Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP358Kuhn, L. T.So673Lässig, D.MP379Kuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kumarlöwe, G.MP369Lecher, J.So660, TD738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze GSo704Lee, D.Ps114, Rb534	Krzyminiewski, R.	Mp371, Mp376, Mp378,	Langer, T.	Mp381
K12y2alek, V.TD740FP99 PKuckling, D. T_D746 Lapinaite, A.So692Kuhn, B.SM606Larsen, F. H.MP358Kuhn, L. T.So673Lässig, D.MP379Kuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze, G.So704Lee, D.Ps114, Rb534	Vrzyzonak V	Тр740	Lapert, M.	Ст235
Kuckling, D. $1D/40$ 1 $MP358$ Kuhn, B.Sm606Larsen, F. H.MP358Kuhn, L. T.So673Lässig, D.MP379Kuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, G.So704Lee, D.Ps114, Rb534	Kizyzanck, v.	TD740 Tp746	Lapinaite, A.	So692
Kuhn, D.SomoodLässig, D.MP379Kuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Ot776Künze, G.So704Lee, D.Ps114, Rb534	Kucking, D.	Т <i>Б</i> 740 Sм606	Larsen, F. H.	Mp358
Kuhn, E. H.BOOTSEKuhn, S.OT777László, K.MP383Kulic, Z.So672Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Ot776Künze, G.So704Lee, D.Ps114, Rb534	Kulin, D. Kulin I. T	S0673	Lässig, D.	Mp379
Kulin, S.Sof77Laustsen, C.Ps162Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Or776Künze, G.So704Lee, D.Ps114, Rb534	Kuhn S	OT777	László, K.	Mp383
Kumar, D.Ls300Laybourn, A.MP346Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Ot776Künze, G.So704Lee, D.Ps114, Rb534	Kulic 7	So672	Laustsen, C.	Ps162
Kumar, M. V. V.Ls315Leblans, P.Ps504Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.Mp369Lecher, J.So660, Tb738Kunjir, N. C.Ps515Ledbetter, M. P.Ot776Künze, G.So704Lee, D.Ps114, Rb534	Kumar D	Ls300	Laybourn, A.	Mp346
Kümmerle, R.Ls315Lebrun, R.Ps157Kummerlöwe, G.MP369Lecher, J.So660, Tp738Kunjir, N. C.Ps515Ledbetter, M. P.Ot776Künze, G.So704Lee, D.Ps114, Rp534	Kumar M V V	Ls315	Leblans, P.	Ps504
Kummerlöwe, G.MP369Lecher, J.So660, TD738Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze, G.So704Lee, D.Ps114, RD534	Kümmerle R	L3315	Lebrun, R.	Ps157
Kunjir, N. C.Ps515Ledbetter, M. P.OT776Künze G S_{0704} Lee, D.Ps114, Rp534	Kummerlöwe G	Mp369	Lecher, J.	S0660, TD738
Künze G S_{0704} Lee, D. Ps114, Rp534	Kuniir. N C	Ps515	Ledbetter, M. P.	От776
	Künze, G.	So704	Lee, D.	Ps114, Rd534

Lee, J. S.	Ps137	Lipps, G.	NA483
Leggett, J.	Ps119	Lips, K.	MD454, Sp656
Legrand, B.	Sм615, So729	Liska, R.	Mp365
Lehnert, K.	Sм595	Litvinov, V. M.	Mp350
Leick, S.	Ім250	Lloveras, V.	Mp390
Leineweber, S.	S0663	Lobysheva, I.	Cv275
Leiter, E.	Rd536	Löhr, F.	Cv272, Cv276, Ls327,
Lelli, M.	Ps117		ME405, ME407, ME408,
Lenarcic Zivkovic, M.	So693		So694, So696, So725
Lendel, C.	S0662	Lohri, B.	Sм606
Lends, A.	Cs220	Loidl, A.	Ps114
Lendzian, F.	Ме419, От773	Longhi, S.	Ls298
Lenz, O.	ME419	Longo, R. L.	Sм593
Leong, G. M.	Мв438	Lopes, A.	Ps148
León-Gómez, E.	Cv275	Lopes, J. L. C.	Sм583
Leonov, A.	Se576, So683	Lopez del Amo, J. M.	Ps164, Bs213
Leppert, J.	So691	López Méndez, B.	Ls303
Lerch, M. T.	PL08	Lopez, C. J.	PL08
Lesage, A.	Ps117, Ps130, Ps179	Lopez, J. J.	Se568
Lesot, P.	Sм586	López-Navarrete, J. T.	Mp390
Lesovoy, D. M.	Me418, Me422, Me430	Loquet, A.	Ps141, Ps143
Leukel, P.	Cv271	Lorch, M.	SE568
Leung, H. T. A.	Rd548	Lorenzi, M.	Ps157
Leutzsch, M.	Ls320	Lottmann, P.	Se576
Levchenko, A.	Sp650	Louloudi, M.	Mp363
Levitt, M. H.	Ps162, Ss629, Ss631	Loutsidou, A.	Ls324
Lewandowski, J.	Ps130	Lovett, J. E.	Ps109
Li, GC.	Bs214	Löwenstein, J.	ME419
Li, H.	S0667	Lubecka, E. A.	So659
Li, J.	Мв439	Lubitz, W.	Ps108, Ps182, Ps183,
Li, W.	Pl07		Hs246, Me403, От773
Licht, A.	ME429	Lübken, T.	Sм587
Lidman, M.	Ps142	Luchinat, C.	Ps129, Bs215
Lieblein, A. L.	NA480	Lücke, C.	So675, So705
Liepinsh, E.	Сѕ220, Lѕ341, Sм607	Luckgei, N.	Ps143
Lilburn, D. M. L.	Ps177	Ludwig, C.	Se573
Lim, Y.	От765	Lueders, P.	MD458
Lincke, J.	Mp379	Luh, L.	Cv276
Lindner, J	Ps123	Lüken, E.	Ss637
Link, N. L.	От759	Lukenheimer, P.	Ps114
Linser, R.	Ps164	Lukzen, N. N.	Im248, Rd526
Liokatis, S.	Cv277, Cv282	Lundström, P.	Ps101, So724
Lionaki, E.	So687	Lurz, R.	Cv274
Lipiszko, K.	ME435		

Luy, B.	Ст228, Ст230, Ls293,	Marko, A.	MD456, NA490
	Ls297, Ls319, Ls338,	Markovic, I.	Sp658
I.v. C	MP308, MP309, KD332	Markwick, P.	Ps173
LV, G.	PS141	Marquardsen, T.	Se576
Lycka, A.	SM011 Dc104	Marque, S. R. A.	Ps157
Lysova, A. A.	PS104	Marques, M. M.	So685
Lyudenova, S.	NA490, So727	Martin, R. W.	Bs210
М	,	Martin, S. R.	Ps172
Ma P	ME304 SO728	Martinez, J.	Ѕм615
Maas W	$P_{\rm S} = 117 P_{\rm S} = 200$	Martínez, J. I.	От767
Mackay I P	So676	Martinez, N.	Ls298
MacRay, J. F.	S0070 Mr.427	Martinho, M.	Ps157
Machallu, C. A.	ME427	Marx, A.	So679
Madl T	DS201, DS200, MP334	Marx, F.	Rd536
Madi, I.	PS150, LS507	Maryunina, K. Y.	MI462
Maira, L.	MP384, SM592	Mashukov, V. I.	Mp375
Magalon, A.	Hs245	Maslennikov, I.	ME428
Maglione, M.	SP653	Mason, A. B.	Ps110
Maier, D.	OT/54	Mason, R. P.	PL03
Maiti, S.	Bs201	Mastushkina, I. V.	Mp375
Maiwald, M.	От753	Maszota, M.	So713
Majewski, W.	Rc522	Matalon, E.	Me392
Makarevic, J.	Rd529	Mathies, G.	Ps110
Makarova, K.	MB441, Rc523	Mathieu, D.	Ls333, Na474
Maksimov, D. A.	Mp375	Matos, P. M.	Sm582
Maksimova, L. G.	Ss619	Matsumoto, S.	От747
Malek, S.	So667	Matsuoka, H.	MI462
Mäler, L.	ME391	Mattea C	Rp542
Malloni, W.	Ст243	Matthies M	Rc521
Maltar-Strmecki, N.	Rd551	Matthys P	Ps504 Ps508
Malthouse, J. P. G.	От750, От752	Matulova M	Cv267 Cv268
Malvestiti, I.	Sм593	Matusik I	Ps138
Malz, F.	Mp388	Maurer T	So667
Mandelkow, E.	So682, So711	Maurel M I	L \$322 ME422 ME430
Mang, T.	Rd547	Mayzer, M. L.	L_{5522} , $WIE+22$, $WIE+30$
Manjunatha Reddy, G. N.	Sм579	McCoy M P	1 L00
Marchenko, Y.	Rd533, Se563	McCoy, M. K.	IM249
Mardis, K. L.	Ps169	McClackell, J. WI.	1 5140 Dr 07
Marek, A.	MD452	McDermon, A.	FL07
Marek, J.	So700	McLwail, F. A.	Do166
Marin-Montesinos, I.	Se573	Medenee, M. D.	$D_{c1}77 = T_{c}720 = O_{c}766$
Marino, A. R.	Rc519	wieersmann, 1.	гят//, тр/39, ОТ/66, От778
Marino, R.	От755	Meier, B. H.	PL17 Ps143 Rs200
Marion, D.	Ls313		Ss643
·			

Meier, C.	MD454	Montalvao, R. W.	Rd548
Meirovitch, E.	RD531	Montanari, L.	Rc518
Meisner-Kober, NC.	Na473	Montelione, G. T.	Ст237
Melki, R.	Pl17, Ps143, Bs200	Moore, J.	ME408
Melquiond, A.	ME396	Morais, G. O.	Sм583
Mendt, M.	Mp377	Moreno, A	Se565, Sm580
Mentink-Vigier, F.	Ps500	Morgado, I.	Bs204
Merle, C.	Mp369	Morgan, G.	От752
Messinger, J.	ME403	Mori, M.	RD545
Meyer, A.	Ps495	Morris, G. A.	Pl01, Ls285, Mb443,
Meyer, B.	Ls335, So727		SM578, SM589, SM598,
Michalik, J.	Cs219		5м599, 5м600, 1D/31, Тр735
Michel, E.	От781	Morris, V. K.	So676
Miéville, P.	Ls294	Morrissey, D.	NA473
Mikac, U.	Ім252	Mörs. K.	ME431
Mikayelyan, Y.	От757	Morton, J. J. L.	От755
Mikros, E.	MB444	Moschkowitz, L.	Mp377
Mileo, E.	Ps157	Mossberg, AK.	От765
Milikisyants, S.	ME401, MD451	Moura, J. J. G.	Ps505
Millet, O.	Ps139, Ls303	Moursy, A	NA470
Min, S.	От765	Mrozinska, J.	Mp371, Mp376, Mp378
Mineev, K. S.	ME418, ME422	Mueller. R.	Ps105
Mingxi, Y.	Ps115	Mugnaini, V.	Mp390, Mi460
Mirus, O.	ME426	Muhamadeiev. R.	5м607
Mischo, A.	So691	Mulfort, K. L.	Ps169
Mishra, P.	Ls288	Mulhern, T.	So664
Misra, S. K.	От751	Müller, A.	Sм603
Mitchell, D.	So720	Müller, H.	Ps167
Mithu, V. S.	Bs201	Müller. N.	Ls305
Mitrikas, G.	Ps134, Mp367	Muller. T.	Ls293
Mizushima, N.	RD545	Multhaup, G.	Bs213
Mnatsakanian, N.	От757	Münnemann, K.	IM259, RD541, SE569,
Moebius, K.	Ps183		SE570, SE571
Moeller, M.	So724	Murata, H.	RD544
Mohanty, B.	Pl06	Mustonen, J. P.	Ім263
Mohrlüder, J.	ME394, So728	N	
Mok, K. H.	От765	Nadezhdin K D	MF421
Möller, H. M.	Ps145, Ст229, Ls291,	Naganuma T	Ім256 Ім261
	So671, So672, So679,	Nagata, T.	Ст240
Mallian C	S0/08	Nägele, B.	S0680
Mollica, G.	B 117 L 200	Nagel-Steger L	Ls311
Monte K. I	PS115, Ls298	Nagy, Z.	Tp745
Monte T	IM251	Naismith I	MF411
wontag, 1.	SM597		

Nakaji, T.	Ім256	Noble, C. J.	Ps503
Nand, D.	ME396, ME397	Noeske, J.	NA487
Narberhaus, F.	NA482	Nogueira, E. S.	Ls336
Narkowicz, R	Ps123	Nojiri, M.	От762
Nasiri, A. H.	Ps175, NA485	Nominé, Y.	Rd538
Nateprov, A.	Sp650	Nordin, M.	Td733
Natt, F.	Na473	Norman, D. G.	Ps180, Md455
Navarro-Vázquez, A.	Sм613	Norris, J. R.	Rc519
Navon, G.	Ps106	Norton, R. S.	ME427
Nechifor, R.	RD542	Nosova, V. M.	Ls329
Nedielkov, R.	So671	Novácek, J.	So700
Neeraj, S.	Bs202, Ls296, Ss623	Novikov, V. V.	Ps502
Neese, F.	Ps152, Hs244, Me403	Novoa, J. J.	Mp390
Neidig, KP.	Ст243	Nowacyzk, M.	ME403
Nekrasova, O. V.	ME423	Nowak, M.	Rc522
Nellutla, S.	MD452	Nowakowski, M.	So721, So722
Nelsen, S. F.	Rc524	Nozinovic, S.	Ls333, NA487
Nemeth, L.	Ім254	Nunes, L. A. O.	Mp364
Nestle, N.	От770	Nydén, M.	So716, Td733, Td743
Neu, U.	S м601	Nyitrai, M.	Rd536
Neudecker, P.	Ps101	0	
Neudert, O.	Se570	$\frac{O}{O'Donohoe}$	От750
Neugebauer, P.	Mp363, M1463, Se575	Oefner P I	MB437 MB440
Neumann, S.	So678	Oesser S	So703
Nevil, N.	От763	O'Flynn D P	So661
Nguyen, T. H. D.	Ps513	Oh A	S0667
Nicastro, G.	Ps172	Ohba Y	So697
Nielsen, A.	PL17	Ohlenschläger O	Ps175 Na479 So688
Nielsen, G.	So714	o mensennager, e.	So691, So698
Nielsen, J. T.	Ст231, Ls332	Ohse, N.	So678
Nielsen, N. C.	Ps153, Ст231, Ст236,	Ok, S.	Ls289, Ls290
	Ls332, Ss641, Ss642,	Okafuji, A.	Rc519
N. DO	SS646	Okle, O.	Cv266, Md449
Niemeyer, D. O.	MB439	Olsen, G.	Ps176
Nijsse, J.	MP361	Olson, T. L.	От768
Niklas, J.	Ps169	Olsson, U.	Rd528
Nikolaev, B. P.	RD533	Ong, Y. S.	ME415, ME432
Nilges, M.	Ст241	Onila, I.	Ps145
Nilsson Jacobi, M.	TD/33	Öquist, M.	Cv265
Nilsson, M.	Cv265, Ls285, Mb443, Sm578, Sm589, Sm598	Orekhov, V.	Ls322
	SM599, SM600, TD731,	Orlov, N. V.	Ls314
	Тр735	Orlova, E. V.	Ps148
Nimbalkar, M.	Ls297	Oschkinat, H.	Ps149, Ps153, Ст241,
Nishikawa, K.	Rd544, Rd545		Sм591, Ss646
		1	

Ott, S.	Hs246	Pell, A.	Ps130
Otting, G.	Ps513	Pellerin, L.	Мв442
Ovcharenko, V. I.	MI462, RD526	Pelupessy, P.	Ls319, Rd537
Owen-Hughes, T.	MD455	Pemberton, C.	Ls284
Ozdowy, P.	So673	Penk, A.	Bs205
Ozenne, V.	Ps115, So682	Perczel, A.	Ls331, Sм614
Ozsayin, F.	Ps497	Pérez De Berti, F. J.	So705
Р		Pérez-Balado, C.	Sм613
Paar. D.	Ss644	Perez-Navarro, M.	От767
Paasch, S.	Ps178. Mp362	Peric, B.	Sp655
Paaske, B.	Ps153, Ss646	Perlo, J.	IM262, Ls338, Ls339,
Pacheco, V.	Ls311, Me394		От779
Pader, I.	So694	Perrone, B.	Ss620
Palcic, M. M.	S м608	Persson, C.	So/16
Pan, B.	So667	Persson, P.	SM596
Panak, P. J.	Ps511, Ps512	Peter, J.	SP654
Pandey, A.	Mp355	Peters, T.	Ls306, Mb442, Sm601, Sm608
Pandya, M. J.	Rd550	Petina, O. A.	Sм603
Paniagua, J. C.	M1460	Petitpas, I.	Ps148
Panich, A. M.	Mp343, Mp344, Rd525	Petrillo, P.	От750
Panikar, L.	Ls288	Petrova, M.	Sм607
Panopoulos, N.	Ps155	Petrova, M. V.	Im248, Rd526
Papavassiliou, G.	Ps155	Pettersson-Kastberg, J.	От765
Paradowska, K.	Мв441	Peuker, S. P.	So717
Parigi, G.	Ps128, Bs215	Pfitzner, E.	So718
Park, B. C.	So706	Pham, D.	Ps142
Park, S. G.	So706	Pham, T. N.	Ss636
Parr, M. K.	Мв445	Pichierri, F.	Ps114
Parra, F.	Ls306	Pickaert, G.	Sм615
Patel, D. K.	Ss621	Pierattelli, R.	Ps130, Ls315
Pathan, M.	Sм577	Pievo, R.	MD448, Ps496
Patiny, L.	Ст223	Pileio, G.	Ps162, Rd543
Patterson, A.	NA473	Pillai, R.	Ps127
Pauleta, S. R.	Ps505	Pines, A.	Ім263, Ls340, От776
Pavic, A.	Rd551	Pintacuda, G.	Ps130
Pavlova, M. S.	Rd530	Piotto, M.	Sм579
Pavlovskaya, G. E.	Ps177, Td739, Ot766	Pirker, K. F.	ME406
Pawlik, A.	Ім251	Pissas, M.	Ps155
Pawsey, S.	Bs209	Pitts, K.	So667
Pedersen, A. B.	Ps142, Me433	Plackmeyer, J.	Se568
Pedersen, M. Ø.	ME427	Planinic, P.	Sp655
Pekárová, B.	So700	Plavec, J.	NA468, NA493
Pelc, D.	Sp658, Td744	Pliotas, C.	Ps168, Me411

Plitzko, I.	S м606	R	
Pocsi, I.	Rd536	Rabdano, S. O.	Rd539
Podbevsek, P.	Na468	Rachocki, A.	Rd558
Pogorzelec-Glaser, K.	Rd558	Rademacher, C.	Ls306
Pohl, R.	Sм609, Sм610	Raffelberg, S.	So723
Pohlmeier, A.	Rd557	Ragavan, M.	Ps118
Polat, M.	Ps497	Rahman, A.	Ls312
Poluektov, O. G.	Ps169, Md453	Rahuel-Clermont, S.	So729
Polyhach, Y.	Mp390, Me435, Se564	Raitsimring, A. M.	Ps147
Pongs, O.	ME396, ME397	Rajagopalan, K. V.	Ps147
Pons, M.	Ps139, M1460	Rajapakshe, A.	Ps147
Pope, J. M.	Ім251	Rakhimov, R. R.	Ps169
Pöppl, A.	Mp372, Mp374, Mp377,	Rakvin, B.	Mi461, Rd529, Rd551
	Sp651	Rakwalska-Bange, M.	So692
Pornsuwan, S.	MD446, MD447	Ramachandran, R.	So688, So691, So698,
Porzel, A.	Sм587		S0699
Pos, K. M.	ME415, ME432	Ramirez, J.	RD538
Pospiech, H.	S0688	Ramírez-Gualito, K. E.	Ls330
Post, C. B.	Ps113	Ramm, P.	Cv271
Potapov, A.	Ps147	Rammelt, S.	Bs205
Pöttgen, R.	Mp381	Ramos, A.	Ps172
Pozek, M.	Sp655, Sp658, Td744	Rapatskiy, L.	ME403
Pozidis, C.	So687	Raschle, T.	ME395
Poznanski, J.	So693	Rasmussen, A.	ME411
Prade, E.	Bs213	Rasmussen, K.	Rd553
Préhaud, C.	So670	Rastogi, S.	Mp355
Prestel, A.	Ls291	Ratajczyk, T.	Ls318, Se572, Sm617
Priestle, J. P.	NA473	Ratan Kumar, R.	Bs202, Ls296, Ss623
Prisner, T. F.	Ps125, Hs245, Mp363,	Räuber, C.	Ls287
	Me400, Me426, Md456, Md457 Na466 Na490	Rauchfuss, T. B.	Ps182
	Se567, Se568, Se574,	Raue, M.	Rd547
	SE575, S0727	Rausa, R.	Rc518
Probert, F.	So720	Ravasio, JP.	Ім251
Proverbio, D.	ME424	Ravera, E.	Bs215
Pruessmann, K. P.	PL10	Ravotti, F.	PL17
Pszolla, M. G.	So679	Raya, J.	Ss620
Pushkareva, A. A.	Ls299	Rebesco, E.	Rc518
Pustovalova, Y. E.	ME422	Rech, B.	Sp656
Q		Reckel, S.	ME407, ME408, ME412, ME416
Quinn, C.	PL07	Reddy, M. A.	RD561
Quitschau, M.	MB444	Redfield, A.	RD532
Quoilin, C.	Cv269	Reese, M.	SE576
		Reggie, L.	SE568

Reginsson, G. W.	Ps180, Ps515	Rodriguez, A. M.	Se565
Regler, B.	От751	Rodriguez-Camargo, D. C.	От759
Rehage, H.	Ім250	Rodriguez-Douton, M. J.	M1463
Reichelt, R.	Тр740	Roduner, E.	Cs222, Ps499
Reichenbach, L.	Ls293	Rogerson, A. K	Sм578
Reichert, D.	Ss625	Rogne, P.	So673
Reif, B.	Ps153, Ps164, Bs213,	Rögner, M.	ME403
	Bs215, ME413, Ss643	Rogov, V. V.	Ls327, So684, So696
Reijerse, E. J.	Ps182, Hs246, Ot773	Rogova, N.	Ls327, So684, So696
Reining, A.	NA477, NA487, NA491	Rokhina, E. V.	Rc523
Reinsperger, T.	Ст228	Riek, R.	Rd535
Reiss, K.	Sм601	Roldan, J. L.	Ps173
Reiter, D.	Sм601	Romainczyk, O.	Ps125, So727
Reitz, S.	ME405	Römelt, M.	Ps152
Renault, M.	Bs209	Rondeau, JM.	Na473
René, O.	So667	Roos, M.	Ss630
Rennella, E.	Ps102	Rosa, C.	Bs215
Repetto, M.	Rd541	Rosay, M.	Ps117, Bs209
Reuter, S.	Cv270	Rose, H. M.	Cv277, Cv279, Cv280,
Rexhausen, H.	Rd554		ME413
Reyheller, E.	Ps510	Rose, J.	Ls283
Rezaei-Ghaleh, N.	So719	Rosnizeck, I.	So712
Ribeiro Celinski, V.	Ss622	Rospenk, M.	Sм617
Ribeiro, E. A.	Ls298	Rossi, G. L.	So675
Richter, C.	Ls333, Me425, Na471,	Rossini, A.	Ps117
	NA474, NA477, NA481,	Rosspeintner, A.	Mp365
Dichtor I	NA400, 50075, 50725	Roubaud, V.	Ps157
Richter, L.	BS213	Round, A.	So724
Richter, I.	50695 D-17 M-428	Rout, A. K.	От769
Riek, R.	PL17, ME428	Routier, S.	So681
Rigardsson, G. W.	P\$168	Rovira, C.	Mp390
Rimal, V.	NA475	Rozenknop, A.	Ls327, So684, So696
Ring, H. L.	Ls340	Rudolph, J.	So667
Ringkjøbing Jensen, M.	Ps115	Rudra, N. P.	Ss623
Rinnenthal, J.	NA482, NA492	Ruigrok, R. W. H.	Ls298
Ripin, N.	S0694	Russo, L.	So718
Riplinger, C.	Hs244	Ruszczynska-Bartnik, K.	So721, So722
Ritter, C.	Bs212	Ruzicka, A.	Sм611
Rivas, L.	So701	Ryadun, A. A.	Mp348
Roberts, P.	Ps119	Ryu, KS.	So706
Robertson, D.	Ps180	s	
Robotta, M.	ME401, ME414	Saalwächter K	Mp255 Sa625
Robustelli, P.	Ps101	Salarwaunur, K.	Dolla Do224
Roche, P.	So674	Sadu, I. M.	PS114, KD534
		Sadio, J.	Cs219

Safaryan, G.	Rc517	Scheid, C.	MD452
Sahakyan, A. B.	Ст226	Scheidt, H. A.	Bs204, Bs205
Sahoo, D.	Mp370	Scheler, U.	Mp359, Mp387, Td736,
Sajid, M.	Mp370		Td737
Sala, L. F.	Ps170	Scherer, H.	Ls334
Salgado, G.	RD537	Schiemann, O.	Ps168, Ps180, Me411, Ps515
Salgado, J.	ME402	Schiff C	So674
Saline, M.	Ls322	Schilling F	Ст235
Salmon, L.	Ps115, Ps173, Ls298	Schirmer T	NA472
Salvatella, X.	Ps114, Rd534	Schirra H I	Mp/38 Mp/39
Salvi, N.	RD527	Schlagnitweit I	INIB+30, INIB+39
Samouilov, A.	Cv264	Schlagal C	LS303
Sanakis, Y.	M1459	Schleichen E	P8155
Sancelme, M.	Cv267, Cv268	Schleiff E	KC319
Sander, J.	ME403	Schlensleere V	IVIE420
Saneluta, P.	Mp378	Schlepckow, K.	L\$308, NA480
Sani, MA.	Ps142	Schleucher, J.	Cv265, SM595, SM596
Santiago, EM.	Rd534	Schlichting, I.	PL09
Santos, S. M.	Sм592	Schlörer, N. E.	MB445, OT////
Saotome, K.	ME410	Schlüter, A. D.	Mp360
Sarkar, B.	Bs201	Schmedt auf der Günne, J.	Ss622, Ss627, Ss632
Sarkar, R.	Ss629	Schmidt, AC.	От774
Sass. D. C.	Sm583	Schmidt, E.	Ст239
Sattler, M.	Ps150, Ls307, Na465,	Schmidt, J.	NA477
	S0666, S0668	Schmidt, M.	Ps164
Sauer, M.	Mp370	Schmidt, M.	Sp656
Sauerwein, A. C.	Ss631	Schmidt, P.	ME398
Saunavaara, J.	Mp357	Schmidtke, S. R.	Ps175, Na479, Na485
Saunders, M.	Se573	Schmidts, V.	Sм587
Saupe, J.	Sм591	Schmitt, L.	TD738
Savchenko, D. V.	Sp651	Schmitz, C.	Ls307
Savelov, A. A.	Rd526	Schnegg, A.	Ps120, Md454, Sp656
Savitsky, A.	Ps183, Me403	Schneider, A.	S0688
Saxena, K.	NA488, S0673, S0725	Schneider, E.	ME429
Sayin, Ü.	Ст233, Ps507, Rc520	Schneider, J.	S м606
Scanlon, M. J.	So664	Schneider, R.	Ps115
Scarpelli, F.	MD451	Schnick, W.	Mp389
Schäfer, N.	Ls318	Schober, K.	Cs221
Schäffer, C.	S м603	Schoentgen, F.	So681
Schäler, K.	Mp355	Schönhoff, M.	Тр740, Тр746
Schanda, P.	Pl17, Ss643	Schönichen, A.	От760
Schauer, R.	So702	Schönig, S.	So663, So710
Scheer, M.	Ss637	Schoof, S.	От772
Scheibel. T.	PL12	Schreiber, L. M.	Im259, Se567
,			

Schröder, G. Ls311 Senker, J. Mr384, Mr389 Schröder, T. Mr420 Senkovska, I. Ps178, Mr362 Schröder, J. M. So702 Sepe, A. Mr322 Schröder, R. NA469 Sergeev, N. A. Rb252 Schubeis, T. Bs212 Serrano, P. Pt06, So666 Schulz, A. A. Mr422 Sessoli, R. Mr435 Schulz, F. G. So717 Sewing, J. So703 Schulz, Süminghausen, D. Ro552 Shaki, L. Cr223 Schulz, Sigmund, M. Bs205 Shaki, L. Cr223 Schulz, Sigmund, M. So703 Subair, Y. E. Ro561 Schurk, S. So660 Shanina, B. D. Sen513 Schurk, M. So715 Shapiro, Y. E. Ro561 Schurk, M. So703, So715 Shapiro, Y. E. So733 Schurk, M. So703, So715 Shapiro, Y. E. So734 Schurk, M. So703, So715 Shapiro, Y. E. So734 Schurk, M. So704, So725, O772 Sinseaha, A.	Schröder, C.	Ss640	Sen, E.	Ls290
Schröder, T. Ms420 Senkovska, I. Ps178, Mr362 Schröder, T. Sof02 Sepe, A. Ma252 Schroeder, J. M. So702 Sergeev, N. A. R0525 Schubeis, T. Bs212 Sersan, I. Pu66, So666 Schuchmann, H. P. Tp732 Sersan, I. Iw254, Iw255, Iw258 Schulz, A. A. Mr422 Sessoli, R. Mr463 Schulz, R. W. Or772 Serwing, J. So703 Schulze, T. F. So565 Shai, Y. Me322 Schulz, S. So6660 Shainina, B. D. Sof513 Schurink, M. So703, So715 Shapiro, Y. E. R0531 Schurink, M. So703, So715 Shapiro, Y. E. R0531 Schurink, M. So703, So715 Shapkalishah, H. Bs211 NA471, Na479, Na477, Na460, N4481, Na489, Na491, Na489, Na491, Na478, Na480, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na489, Na491, Na479, Na477, Na479, Na477, Na479, Na477, Na479, Na477, Na479, Na477, Na479, Na477, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479, Na479,	Schröder, G.	Ls311	Senker, J.	Mp384, Mp389
Schroeder, R. Sor702 Sepe, A. IM252 Schroeder, R. NA469 Sergeev, N. A. Rb252 Schubeis, T. Bs212 Serrano, P. Pt06, So686 Schulga, A. A. Mt422 Sessoli, R. Mt463 Schulg, A. A. Mt422 Sessoli, R. Mt463 Schultz, P. G. So717 Sewing, J. So703 Schulze, T. F. Sp656 Shai, M. CV274 Schulze, S. So600 Sharina, B. D. Sp532 Schürke, S. So6600 Sharina, B. D. Sp651 Schürk, M. S0703, S0715 Shayhalishah, H. B5211 Schürk, M. S0703, S0715 Shaykhalishah, H. B5211 Schwaibe, H. CV272, L308, L333, Na471, Na474, Na477, Na480, NA481, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA488, NA498, NA491, NA488, NA498, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, NA489, NA491, NA482, N4491, NA482, NA481, NA482, N448,	Schröder, T.	ME420	Senkovska, I.	Ps178, Mp362
Schroeder, R. NA469 Sergev, N.A. RD525 Schubeis, T. Bs212 Serran, P. PL06, S0686 Schuhmann, H. P. To732 Sersa, I. IM254, M255, M258 Schultz, K. W. Or772 Seuring, C. PL17 Schultz, P. G. So717 Sewing, J. So703 Schulze, Stegmund, M. B5205 Shah, M. CV272 Schulze, Stegmund, M. B5205 Shai, Y. M1392 Schulze, Stegmund, M. B5005 Shair, Y. M1392 Schulze, Stegmund, M. B5073 Sharran, S. L5288 Schulze, Stegmund, M. B5073 Sharran, S. L5288 Schulz, A. Pu17, Ps143 Sharran, S. L5288 Schwalbe, H. CV272, L5308, L5333 Sharpe, S. Ps101 NA471, NA474, NA477, NA478, NA489, NA491, NA479, NA5749 Shestakova, A. K. <td>Schroeder, J. M.</td> <td>So702</td> <td>Sepe, A.</td> <td>Ім252</td>	Schroeder, J. M.	So702	Sepe, A.	Ім252
Schubeis, T. Bs212 Serrano, P. PL06, So686 Schuchmann, H. P. Tb732 Sersa, I. Iw254, Iw255, Iw258 Schulga, A. A. ME422 Sessoli, R. Mu403 Schultz, P. G. So717 Sewing, J. So703 Schultz, P. G. So717 Sewing, J. So703 Schultz, T. F. So666 Shah, M. CV274 Schulz, A. Pt 17, Ps143 Sharina, B. D. Sor651 Schurink, M. S0703, So715 Shaykalishah, H. Sor04531 Schütz, A. Pt 17, Ps143 Sharpe, S. Ps101 Schwalbe, H. CV272, Ls308, Ls333, Narge, S. Sharykalishah, H. Bs211 MA78, NA480, NA481, NA487, NA474,	Schroeder, R.	NA469	Sergeev, N. A.	Rd525
Schuchmann, H. P. Tp 732 Sersa, I. Iw254, Iw255, Iw258 Schulga, A. A. Mt422 Sessoli, R. Mt463 Schulte, K. W. Or772 Seuring, C. Pt.17 Schultze Sünninghausen, D. Rp552 Shah, M. CV274 Schulze-Siegmund, M. B205 Shaki, L. C7223 Schulze, S. Sof060 Shanin, B. D. Spe613 Schuitz, A. Pt.17, Ps143 Sharma, S. Ls288 Schurink, M. S0703, So715 Shapiro, Y. E. Rp531 Schuitz, A. Pt.17, Ps143 Sharma, S. Ls288 Schwalbe, H. CV272, Ls308, Ls333, Ls337, Mt470, Mt425, NA471, NA474, NA477, NA478, NA480, NA481, NA478, NA489, NA481, NA478, NA489, NA481, NA478, NA489, NA481, NA482, NA489, NA481, NA482, NA489, NA481, NA492, Ro559, Ps514, Na494, Ro559, So712 Sherman, D. H. So694 Schwarten, M. ME394, So678, So728 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Mr331 Schwarz, D. Mr547, So726, Or772 Shimada, A. Or782 Schwarz, L. Ps175, NA79 Shin, JS. So706 <td>Schubeis, T.</td> <td>Bs212</td> <td>Serrano, P.</td> <td>Pl06, So686</td>	Schubeis, T.	Bs212	Serrano, P.	Pl06, So686
Schulga, A. A. ME422 Sessoli, R. Mi463 Schulte, K. W. Or772 Seuring, C. P.17 Schultz, P. G. S0717 Sewing, J. S0703 Schulze Sünninghausen, D. Rb552 Shah, M. CV274 Schulz-Siegmund, M. Bs205 Shaki, L. CT223 Schünke, S. So660 Shanina, B. D. Sre51 Schütz, A. PL17, Ps143 Sharma, S. Ls288 Schwalbe, H. CV272, Ls308, Ls333, N4471, N474, N477, N478, N4480, N481, N4484, N4481, N4484, N4481, 	Schuchmann, H. P.	Td732	Sersa, I.	Ім254, Ім255, Ім258
Schulte, K. W. OT722 Seuring, C. PL17 Schultz, P. G. S0717 Sewing, J. S0703 Schulze Sünninghausen, D. R5522 Shah, M. CV274 Schulze, T. F. Se666 Shaik, I. CT223 Schürke, S. S0660 Shanina, B. D. Sr651 Schuirs, M. S0703, S0715 Shapiro, Y. E. R0531 Schütz, A. PL17, PL43 Sharma, S. Ls288 Schuzhe, H. CV272, LS08, Ls333, Shapre, S. Shaykhalishah, H. B2211 Shaykhalishah, H. B2211 Shaykhalishah, H. B2211 NA478, NA480, NA481, NA480, NA481, NA480, NA481, NA480, NA481, NA480, NA481, NA480, NA481, NA482, NA484, NA487, NA482, NA484, NA487, NA482, NA484, NA487, NA482, NA484, NA487, Shestakova, P. S. Mr382 Schwarten, M. M549, S0559, Sof73, So728 Shimada, Y. P5126 Schwartz, L. Hs246 Shim, PC. Bs211 Schwarz, D. Ms493, So78, So728 Shimada, Y. P5126 Schwarz, D. CV281, CV282 Shrot, Y. So706 Schwarz, J. P5175, NA479 <	Schulga, A. A.	ME422	Sessoli, R.	MI463
Schultz, P. G. Sor17 Sewing, J. Sor03 Schulze Sunninghausen, D. Rb552 Shah, M. Cv274 Schulze, T. F. Sr656 Shai, Y. ME392 Schulze, S. Sor660 Shanin, B. D. Sv551 Schurk, M. Sor03, Sor15 Shapiro, Y. E. Rb531 Schütz, A. PL17, Ps143 Sharma, S. Ls288 Schwalbe, H. Cv272, Ls308, Ls333, Ls337, Mc407, Mv435, Na471, Na474, Na477, Na478, Na480, Na481, Na488, Na489, Na481, Na488, Na488, Na487, Na488, Na488, Na487, Na488, Na488, Na487, Na488, Na488, Na487, Na488, Na488, Na481, Na482, Na488, Na487, Sor14, Sor25, Sor73, Sor14, Sor25, Sor73, Schwartz, L. Sharma, D. H. Soe94 Schwarten, M. Me394, Sor38, Sor28 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Mr351 Schwarz, D. Cv281, Cv281 Shimada, Y. Ps126 Schwarz, D. Me494 Shin, JS. Sor706 Schwarz, D. Me495 Shin, JS. Sor706 Schwarz, D. Cv281, Cv282 Shin, JS. Sor706 Schwarz, D. Sof663, Sor710 Silvert, H. C. <td>Schulte, K. W.</td> <td>От772</td> <td>Seuring, C.</td> <td>PL17</td>	Schulte, K. W.	От772	Seuring, C.	PL17
Schulze Sünninghausen, D. RD 552 Shah, M. CV274 Schulze, T. F. Sr656 Shai, Y. ME392 Schulz-Siegmund, M. Bs205 Shaki, L. C7223 Schurk, S. So703, So715 Shapiro, Y. E. RD531 Schura, M. So703, So715 Shapiro, Y. E. RD531 Schura, M. So703, So715 Shapiro, Y. E. RD531 Schura, A. P117, Ps143 Sharma, S. Ls288 Schwalbe, H. CV272, Ls308, Ls333, Sharpe, S. Ps101 Shaykhalishah, H. Bs211 Na478, NA480, NA481, NA487, NA474, NA477, NA478, NA480, NA481, NA489, NA491, NA482, Ps509, Ps514, Shestakova, A. K. Ls292, Ls299, SM616 Schwarten, M. Me394, So678, So728 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Me351 Schwarz, D. Me394, So678, So728 Shim, H. D. Iw263, Or776 Schwarz, D. Me394 So714, So727, CV28 Shim, J. S. So706 Schwarz, D. CV281, CV282 Shrot, Y. Ps176 Sebastian, D. Ss663, So710	Schultz, P. G.	So717	Sewing, J.	So703
Schulze, T. F. Sp656 Shai, Y. ME392 Schulz-Siegmund, M. Bs205 Shaki, L. Cr223 Schürke, S. So660 Shanina, B. D. Sp651 Schurnk, M. So703, So715 Shapiro, Y. E. Rb331 Schütz, A. PL17, Ps143 Sharma, S. Ls288 Schwalbe, H. Cv272, Ls308, Ls333, Mr407, Mr425, Nr447, Nr448, Nr448, Nr448, Nr441, Sor14, Sor25, Or772 Shestakova, A. K. Ls2929, Ls299, Su604 Schwarten, M. Me394, So678, Sor28 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Mr351 Schwarz, D. Mr405 Shin, H. D. Is0670 Schwarz, J. Ps175, Nr479 Shmatkov, D. A. Sm616 Schwarz, D. Mr4936 Sicol, G. Mr464, Mo447 Segawa, S. Ro559 Sicol, G. Mr464, Mo447 Segawa, T. F. Ls294 Siegel, R. Mr384, Sm592 Segawa, T. F. <td>Schulze Sünninghausen, D.</td> <td>Rd552</td> <td>Shah, M.</td> <td>Cv274</td>	Schulze Sünninghausen, D.	Rd552	Shah, M.	Cv274
Schulz-Siegmund, M. Bs205 Shaki, L. CT223 Schünke, S. So660 Shanina, B. D. Sr651 Schurink, M. So703, So715 Shapiro, Y. E. Ro531 Schütz, A. PL17, Ps143 Sharma, S. Ls383 Schwalbe, H. Cv272, Ls308, Ls333, Sharpe, S. Ps101 Ls337, ME407, ME425, NA471, NA474, NA477, NA4744, N4474,	Schulze, T. F.	Sp656	Shai, Y.	ME392
Schünke, S. So660 Shanina, B. D. Sr651 Schurink, M. So703, So715 Shapiro, Y. E. Ro531 Schütz, A. Pt.17, Ps143 Sharma, S. Ls288 Schwalbe, H. Cv272, Ls308, Ls333, Shaykalishah, H. Bs211 Ls337, Mr407, Mr425, NA471, NA474, NA477, NA478, NA480, NA481, Sherman, D. H. So694 NA482, NA484, NA487, NA488, NA489, NA481, Shestakova, A. K. Ls292, Ls299, SM616 Schwarten, M. Me394, So678, So728 Shimada, A. Or782 Schwarten, M. Me394, So678, So728 Shimada, Y. Ps126 Schwarz, L. Hs246 Shimizu, T. Mr351 Schwarz, D. Mte405 Shin, JS. So706 Schwarz, D. Cv281, Cv282 Shrot, Y. Ps176 Schwarz, D.	Schulz-Siegmund, M.	Bs205	Shaki, L.	Ст223
Schurink, M.So703, So715Shapiro, Y. E.Ro531Schütz, A. P_{L17} , Ps143Sharma, S.Ls328Schwalbe, H.Cv272, Ls308, Ls333, Ls337, Me407, Me425, NA471, NA474, NA477, NA478, NA480, NA481, NA478, NA480, NA481, NA478, NA480, NA481, NA482, Na480, NA481, NA492, Ps509, Ps514, Ro549, Ro559, So733, So714, So725, Or772Shestakova, A. K.Ls292, Ls299, Su616Schwarten, M.Me394, So678, So728Shimiada, A.Or782Schwarten, M.Me394, So678, So728Shimada, A.Or782Schwartz, L.Hs246Shimizu, T.Me351Schwarz, D.Me405Shin, JS.So706Schwarz, D.Cv281, Cv282Shrot, Y.Ps176Sebastiani, D.Ss648Shu, J.Mp366Scobastia, P.J.Mp786Sicoli, G.Mp446, Mo447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.Rn559Siegel, R.Mp384, Sm592Seibold, B.Pp503Sigurdsson, S. T.Ps122, Ps156, Ps168, Sielert, G.Schirt, R.So717Silakov, A.Sm583Seibolt, T.So6717Silva, A.Sm583Seibolt, T.So717Silva, A.Sm583Seibolt, T.So717Silva, A.Sm583Seibolt, T.So717Silva, A.Sm583Seibert, R.So717Silva, A.Sm583Seibert, R.So717Silva, R. C.Or771Sekir, G.Ps178Silvar, R.Me407, Rp549, Rp559Selenko, P.Cv27	Schünke, S.	So660	Shanina, B. D.	Sp651
Schütz, A. P_{L17} , Ps143 Sharma, S. Ls288 Schwalbe, H. $Cv272$, Ls308, Ls333, NA471, NA474, NA474, NA474, NA478, NA480, NA481, NA478, NA480, NA481, NA478, NA480, NA481, NA482, NA480, NA481, NA482, NA480, NA481, NA482, Na482, Na487, Schwarten, M. Shiris J. H. Schwarz, S. MF382 Schwarten, M. ME394, So678, So728 Shimizal, T. MF351 Schwartz, L. H1246 Shimizal, T. MF351 Schwarz, D. ME405 Shini, JS. So706 Schwarzer, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastião, P. J. MF386 Sicoli, G. MD446, Mo447 Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. RD559 Siegel, R. MF384, Sw592 Seibold, B. Ps178, Silakov, A. Ps122, Ps156, Ps168, Silakov, A. Seibold, T. So6671 <td>Schurink, M.</td> <td>So703, So715</td> <td>Shapiro, Y. E.</td> <td>Rd531</td>	Schurink, M.	So703, So715	Shapiro, Y. E.	Rd531
Schwalbe, H. Cv272, Ls308, Ls333, Ls337, Me407, Me425, Na471, Na474, Na477, Na478, Na480, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na484, Na481, Na482, Na59, Ro573, Sof14, So725, Or772 Shestakova, A. K. Ls292, Ls299, Su616 Schwarten, M. Mc549, Ro559, So673, So714, So725, Or772 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Me391 Schwarz, C. K. Tb738 Shin, H. D. Im263, Or776 Schwarz, D. Me405 Shin, JS. So706 Schwarz, D. Cv281, Cv282 Shrot, Y. Ps176 Schwarz, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastiani, D. Ss6648 Shu, J. Mr366 Sclobartz, F. So663, So710 Siebert, H. C. So702, So703 Segawa, S. Rb559 Siegel, R. Mr348, SM592 Seiboth, T. So661 Silakov, A. Ps182, Ps126, Ps168, So717 Silkov, A. Ps182, Hs246 Sierert, R. So717 Seiboth, T. So7617 Silva, A. N. Sm583 Seifert, G. <t< td=""><td>Schütz, A.</td><td>Pl17, Ps143</td><td>Sharma, S.</td><td>Ls288</td></t<>	Schütz, A.	Pl17, Ps143	Sharma, S.	Ls288
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Schwalbe, H.	Cv272, Ls308, Ls333,	Sharpe, S.	Ps101
NA4 11, NA4 14, NA4 17, NA4 14, NA4 17, NA4 14, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 17, NA4 18, NA480, NA481, NA482, NA482, NA482, NA481, Shestakova, A. K. Lso292, Lso299, SM616 NA4 88, NA489, NA481, NA487, NA480, NA481, NA488, NA489, NA491, NA482, Ps509, Ps514, Ro549, Rb559, So673, So728 Shestakova, P. S. Mp382 Schwarten, M. Me394, So678, So728 Shimada, A. Or782 Schwarten, M. Me394, So678, So728 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. Mp351 Schwarz, D. Me405 Shin, JS. So706 Schwarz, J. Ps175, NA479 Shmatkov, D. A. SM616 Schwarzer, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastiañ, D. Ss648 Shu, J. Mp366 Seclustia, P. J. Mp386 Sicoli, G. Mb446, Mb447 Seegawa, S. So663, So710 Siebert, H. C. So702, So703 Segawa, S. Rb559 Siegel, R. Mp384, Su592 Seiboth, T. So691 Silakov, A. Ps182, Hs246 Seifert, G. Ps178 Silakov, A. <td< td=""><td></td><td>Ls337, Me407, Me425,</td><td>Shaykhalishah, H.</td><td>Bs211</td></td<>		Ls337, Me407, Me425,	Shaykhalishah, H.	Bs211
NA482, NA484, NA487, NA488, NA489, NA491, NA492, Ps509, Ps514, RD549, RD559, So673, So714, So725, OT772 Shestakova, A. K. Ls292, Ls299, Sm616 Schwarten, M. Me394, So673, So728 Shimada, A. OT782 Schwarten, M. Me394, So678, So728 Shimada, A. OT782 Schwartz, L. Hs246 Shimizu, T. Mp351 Schwarz, D. Me405 Shin, H. D. IM263, OT776 Schwarz, J. Ps175, Na479 Shmatkov, D. A. Sm616 Schwarzer, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastiaño, P. J. Mr386 Sicoli, G. Mp446, Mo447 Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. RD559 Siegel, R. Mr384, Sm592 Segawa, T. F. Ls294 Siemering, R. Ss632 Sieboth, T. So691 NA490, Ps515		NA471, NA474, NA477, NA478, NA480, NA481,	Sherman, D. H.	So694
NA488, NA489, NA491, NA492, Ps509, Ps514, RD549, RD559, Sof73, So714, So725, Or772Shestakova, P. S.Mp382 Shih, PC.Schwarten, M.Me394, So678, So728Shimada, A.Or782Schwartz, L.Hs246Shimizu, T.Mp351Schwarz, C. K.TD738Shin, H. D.IM263, Or776Schwarz, D.Me405Shin, JS.So706Schwarz, D.Cv281, Cv282Shrot, Y.Ps176Sebastian, D.Ss648Shu, J.Mp366Sebastian, D.Ss648Shu, J.Mp366Sebastian, P. J.Mp386Sicoli, G.MD446, Mb447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.RD559Siegel, R.Mp384, SM592Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168, Siebert, T.Seifert, G.Ps178Silakov, A.Sm583Sekar, G.Ps118Silva, A. N.Sm583Sekar, G.Ps118Silva, R. C.Or771Seki, H.Rb544, Rb545Silvers, R.Me407, Rb549, Rb559Selenko, P.Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282Simon, B.Ps127, So692Selle, C.Ls328Simpson, J.So664Selle, C.Ls328Simpson, J.So664		Na482, Na484, Na487,	Shestakova, A. K.	Ls292, Ls299, Sm616
NA492, PS509, PS514, RD549, RD559, So673, So714, So725, Or772 Shih, PC. Bs214 Schwarten, M. ME394, So678, So728 Shimada, A. Or782 Schwartz, L. Hs246 Shimizu, T. MP351 Schwartz, L. Hs246 Shim, H. D. IM263, Or776 Schwarz, C. K. Tb738 Shin, H. D. IM263, Or776 Schwarz, D. ME405 Shin, JS. So706 Schwarz, J. Ps175, NA479 Shmatkov, D. A. SM616 Schwarz, D. CV281, Cv282 Shrot, Y. Ps176 Sebastian, D. Ss648 Shu, J. MP366 Sechwarz, S. So663, So710 Siebert, H. C. So702, So703 Segawa, S. RD559 Siegel, R. MP384, SM592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seiboth, T. So691 NA490, Ps515 Silva, A. Seifert, G. Ps178 Silkov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C.<		NA488, NA489, NA491,	Shestakova, P. S.	Mp382
So714, So725, OT772Shimada, A.OT782Schwarten, M.Me394, So678, So728Shimada, Y.Ps126Schwartz, L.Hs246Shimizu, T.Mp351Schwarz, C. K.Tb738Shin, H. D.I $M263$, OT776Schwarz, D.Me405Shin, JS.So706Schwarz, J.Ps175, NA479Shmatkov, D. A.SM616Schwarzer, D.Cv281, Cv282Shrot, Y.Ps176Sebastiani, D.Ss648Shu, J.Mp366Sebastiao, P. J.Mp386Sicoli, G.Mb446, Mb447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.Rb559Siegel, R.Mp384, SM592Segawa, T. F.Ls294Siemering, R.Ss632Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168,Seiboth, T.So691NA490, Ps515Silva, A. N.Seifert, G.Ps1178Silkov, A.Ps182, Hs246Seifert, R.So717Silva, A. N.Sm583Sekar, G.Ps118Silva, R. C.Ot771Seki, H.Rb544, Rb545Silvers, R.Me407, Rb549, Rb559Selenko, P.Cv274, Cv277, Cv278, Cv278, Cv278, Cv278, Cv278, Cv284Simorre, JP.Bs208Cv282Simpson, J.So664Selle, C.Ls328Simpson, J.So664Selle, C.Ls328Simpson, J.So664		NA492, P\$509, P\$514, RD549, RD559, So673,	Shih, PC.	Bs214
Schwarten, M. ME394, So678, So728 Shimada, Y. Ps126 Schwartz, L. Hs246 Shimizu, T. MF351 Schwarz, C. K. Tb738 Shin, H. D. IM263, Or776 Schwarz, D. ME405 Shin, JS. So706 Schwarz, J. Ps175, NA479 Shmatkov, D. A. Sm616 Schwarzer, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastian, D. Ss648 Shu, J. MP366 Sebastião, P. J. MP386 Sicoli, G. MD446, MD447 Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. Rb559 Siegel, R. MP384, SM592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm533 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. Rb544, Rb545 Silvers, R. ME407, Rb549, Rb559 Selenko, P. Cv274, Cv		So714, So725, OT772	Shimada, A.	От782
Schwartz, L.Hs246Shimizu, T.MF351Schwarz, C. K.TD738Shin, H. D.IM263, OT776Schwarz, D.ME405Shin, JS.So706Schwarzer, D.Cv281, Cv282Shrot, Y.Ps176Sebastiani, D.Ss648Shu, J.MF366Sebastião, P. J.Mr386Sicoli, G.MD446, MD447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.Rb559Siegel, R.MP384, SM592Segawa, T. F.Ls294Siemering, R.Ss632Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168, NA490, Ps515Seifert, G.Ps178Silakov, A.Ps182, Hs246Seifert, R.So717Silva, A. N.Sm583Sekar, G.Ps118Silva, R. C.OT771Seki, H.Rb544, Rb545Silvers, R.ME407, Rb549, Rb559Selenko, P.Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv279, Cv280, Cv281Simorre, J-P.Bs208Seiler, C.Ls328Simpson, J.So664Selle, C.Ls328Simpson, J.So664	Schwarten, M.	Me394, So678, So728	Shimada, Y.	Ps126
Schwarz, C. K.TD738Shin, H. D.IM263, Or776Schwarz, D.ME405Shin, JS.So706Schwarz, J.Ps175, NA479Shmatkov, D. A.SM616Schwarzer, D.Cv281, Cv282Shrot, Y.Ps176Sebastiani, D.Ss648Shu, J.MP366Sebastião, P. J.MP386Sicoli, G.MD446, MD447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.Rb559Siegel, R.MP384, SM592Segawa, T. F.Ls294Siemering, R.Ss632Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168, NA490, Ps515Seifert, G.Ps178Silakov, A.Ps182, Hs246Seifert, R.So717Silva, A. N.Sm583Sekar, G.Ps118Silvar, R. C.Or7711Seki, H.Rb544, Rb545Silvers, R.ME407, Rb549, Rb599Selenko, P.Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282Simpson, J.So664Seile, C.Ls328Simpson, J.So664	Schwartz, L.	Hs246	Shimizu, T.	Mp351
Schwarz, D.ME405Shin, JS.So706Schwarz, J.PS175, NA479Shmatkov, D. A.SM616Schwarzer, D.Cv281, Cv282Shrot, Y.PS176Sebastian, D.Ss648Shu, J.MP366Sebastião, P. J.MP386Sicoli, G.MD446, MD447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.RD559Siegel, R.MP384, SM592Segawa, T. F.Ls294Siemering, R.Ss632Seiboth, T.So6691NA490, PS155Seifert, G.PS178Silakov, A.Ps182, HS246Seifert, R.So717Silva, A. N.SM583Sekar, G.PS118Silva, R. C.Or7711Seki, H.RD544, RD545Silvers, R.ME407, RD549, RD559Selenko, P.Cv274, Cv277, Cv278, Cv278, Cv279, Cv280, Cv281, Cv282Simorne, JP.Bs208Seile, C.Ls328Simpson, J.So664	Schwarz, C. K.	Td738	Shin, H. D.	Ім263, От776
Schwarz, J. Ps175, NA479 Shmatkov, D. A. SM616 Schwarzer, D. Cv281, Cv282 Shrot, Y. Ps176 Sebastian, D. Ss648 Shu, J. MP366 Sebastião, P. J. MP386 Sicoli, G. MD446, MD447 Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. RD559 Siegel, R. MP384, Sм592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Ot771 Seki, H. RD544, RD545 Silvers, R. ME407, RD549, RD559 Selenko, P. Cv274, Cv277, Cv278, Cv284, Cv284 Simorre, JP. Bs208 Cv282 Simpson, J. So664 Seinet, S. Sinet, S.	Schwarz, D.	ME405	Shin, JS.	So706
Schwarzer, D. $Cv281, Cv282$ Shrot, Y. $Ps176$ Sebastiani, D.Ss648Shu, J.MP366Sebastião, P. J.MP386Sicoli, G.MD446, MD447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.RD559Siegel, R.MP384, Sm592Segawa, T. F.Ls294Siemering, R.Ss632Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168,Seiboth, T.So691NA490, Ps515Seifert, G.Ps178Silakov, A.Ps182, Hs246Seifert, R.So717Silva, A. N.Sm583Sekar, G.Ps118Silva, R. C.OT771Seki, H.RD544, RD545Silvers, R.ME407, RD549, RD559Selenko, P.Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282Simon, B.Ps127, So692Simpson, J.So664Simpson, J.So664Selle, C.Ls328Sinch SMr204	Schwarz, J.	Ps175, NA479	Shmatkov, D. A.	Ѕм616
Sebastiani, D.Ss648Shu, J.MP366Sebastião, P. J.MP386Sicoli, G.MD446, MD447Seeger, K.So663, So710Siebert, H. C.So702, So703Segawa, S.RD559Siegel, R.MP384, SM592Segawa, T. F.Ls294Siemering, R.Ss632Seibold, B.Ps503Sigurdsson, S. T.Ps122, Ps156, Ps168,Seiboth, T.So691NA490, Ps515Seifert, G.Ps178Silakov, A.Ps182, Hs246Seifert, R.So717Silva, A. N.SM583Sekar, G.Ps118Silva, R. C.OT771Seki, H.RD544, RD545Silvers, R.ME407, RD549, RD559Selenko, P.Cv274, Cv277, Cv278, Cv278, Cv279, Cv280, Cv281, Cv282Simon, B.Ps127, So692Simpson, J.So664Sinpson, J.So664Selle, C.Ls328Sinch SSinpson, J.So644	Schwarzer, D.	Cv281, Cv282	Shrot, Y.	Ps176
Sebastião, P. J. MP386 Sicoli, G. MD446, MD447 Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. RD559 Siegel, R. MP384, SM592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, S6691 Seiboth, T. So6691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. RD544, RD545 Silvers, R. ME407, RD549, RD559 Selenko, P. Cv274, Cv277, Cv278, Cv281, Cv284 Simorne, JP. Bs208 Simpson, J. So664 Simpson, J. So664	Sebastiani, D.	Ss648	Shu, J.	Mp366
Seeger, K. So663, So710 Siebert, H. C. So702, So703 Segawa, S. Rb559 Siegel, R. MF384, SM592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seiboth, T. So691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. Rb544, Rb545 Silvers, R. ME407, Rb549, Rb59 Selenko, P. Cv274, Cv277, Cv278, Cv278, Cv280, Cv281, Cv284 Simorre, JP. Bs208 Simpson, J. So664 Seingen, S. Sm5204 Sm5204	Sebastião, P. J.	Mp386	Sicoli, G.	MD446, MD447
Segawa, S. RD559 Siegel, R. MP384, SM592 Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seiboth, T. So691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. OT771 Seki, H. Rp544, Rp545 Silvers, R. ME407, Rp549, Rp559 Selenko, P. Cv274, Cv277, Cv278, Cv281, Cv281, Cv282 Simorre, JP. Bs208 Selle, C. Ls328 Singson, J. So664	Seeger, K.	So663, So710	Siebert, H. C.	So702, So703
Segawa, T. F. Ls294 Siemering, R. Ss632 Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seiboth, T. So691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. Rp544, Rp545 Silvers, R. ME407, Rp549, Rp559 Selenko, P. Cv274, Cv277, Cv278, Cv280, Cv281, Cv281, Cv282 Simorre, JP. Bs208 Selle, C. Ls328 Singh S Singh S	Segawa, S.	Rd559	Siegel, R.	Мр384, Sм592
Seibold, B. Ps503 Sigurdsson, S. T. Ps122, Ps156, Ps168, NA490, Ps515 Seiboth, T. So691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. OT771 Seki, H. Rp544, Rp545 Silvers, R. ME407, Rp549, Rp559 Selenko, P. Cv274, Cv277, Cv278, Cv280, Cv281, Cv281, Cv282 Simorre, JP. Bs208 Selle, C. Ls328 Sinch S Sm504	Segawa, T. F.	Ls294	Siemering, R.	Ss632
Seiboth, T. So691 NA490, Ps515 Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. Rp544, Rp545 Silvers, R. ME407, Rp549, Rp559 Selenko, P. Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282 Simorre, JP. Bs208 Selle, C. Ls328 Sinch S Sm504, S	Seibold, B.	Ps503	Sigurdsson, S. T.	Ps122, Ps156, Ps168,
Seifert, G. Ps178 Silakov, A. Ps182, Hs246 Seifert, R. So717 Silva, A. N. Sm583 Sekar, G. Ps118 Silva, R. C. Or771 Seki, H. Rp544, Rp545 Silvers, R. ME407, Rp549, Rp559 Selenko, P. Cv274, Cv277, Cv278, Cv280, Cv281, Cv280, Cv281, Cv282 Simorre, JP. Bs208 Selle, C. Ls328 Sinch S Sinch S Mr204	Seiboth, T.	So691		NA490, Ps515
Seifert, R. So717 Silva, A. N. SM583 Sekar, G. Ps118 Silva, R. C. OT771 Seki, H. RD544, RD545 Silvers, R. ME407, RD549, RD559 Selenko, P. Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282 Simon, B. Ps127, So692 Selle, C. Ls328 Singson, J. So664	Seifert, G.	Ps178	Silakov, A.	Ps182, Hs246
Sekar, G. Ps118 Silva, R. C. OT771 Seki, H. RD544, RD545 Silvers, R. ME407, RD549, RD559 Selenko, P. Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282 Simon, B. Ps127, So692 Selle, C. Ls328 Simpson, J. So664	Seifert, R.	So717	Silva, A. N.	Sм583
Seki, H. RD544, RD545 Silvers, R. ME407, RD549, RD559 Selenko, P. Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282 Simon, B. Ps127, So692 Selle, C. Ls328 Simpson, J. So664	Sekar, G.	Ps118	Silva, R. C.	От771
Selenko, P. Cv274, Cv277, Cv278, Cv279, Cv280, Cv281, Cv282 Simon, B. Ps127, So692 Simorre, JP. Bs208 Selle, C. Ls328 Simpson, J. Sinch S Sinch S Nr204	Seki, H.	Rd544, Rd545	Silvers, R.	Me407, Rd549, Rd559
Cv279, Cv280, Cv281, Simorre, JP. Bs208 Cv282 Simpson, J. So664 Selle, C. Ls328 Sinch S Mr204	Selenko, P.	Cv274, Cv277, Cv278,	Simon, B.	Ps127, So692
CV262Simpson, J.So664Selle, C.Ls328Simple S		Cv279, Cv280, Cv281,	Simorre, JP.	Bs208
LSD20 Sinch C	Salla C	UV282	Simpson, J.	So664
Singii, S. ME394	SCIIC, U.	L8328	Singh, S.	ME394

Singh, V.	MD449	Spurio, R.	Ps112
Singleton, M.	Hs246	Spyroulias, G. A.	Ls316, Ls323, Ls324
Sinha, R.	Na470	Stahl, S. J.	ME393
Sinitsyn, D. O.	Sм604, Sм605	Stanczak, P.	Pl06
Sinnige, T.	Bs209	Stanek, J.	Ls286
Sinning, I	ME405	Stapf, I.	Rd547
Sissi, C.	Na488	Stapf, S.	Rd542
Sivalingam, K.	Ps152	Stark, S.	NA489
Six, J. S.	Ps177, От778	Stathi, P.	Mp363
Sixma, T.	Ps112	Steere, A. N.	Ps110
Skaltsounis, AL.	MB444	Stefer, S.	Me405
Skelton, N.	So667	Stehle, J.	ME407, ME425
Sket, P.	Na493	Stehle, T.	Sм601, So725
Skinner, T. E.	Ls297, Md457	Stein, M.	Hs246
Skjaerven, L.	So692	Steinbacher, J.	Ім249
Sklenár, V.	So700	Steinert, H. S.	Na492
Skovpin, I. V.	Ps104	Steinhoff, HJ.	Ps159, Ст242, Rc521
Slavìtínská, L.	Sм609, Sм610	Stepánek, J.	NA475
Smirnov, A. I.	MD452, MD453	Stepánková, H.	NA475
Smirnova, T. I.	MD453	Sterniczuk, M.	Cs219
Smith, A. A.	Ps129	Steuber, J.	So671
Smith, G. M.	Ps168, Ps180, Md455	Stiller, S. B.	NA484
Smith, M. A.	Ls340	Stock, N.	Mp384
Smith, P.	Ps176	Stodus, K.	So659, So713
Smits, S. H. J.	Td738	Stoetzel, S.	So703
Smolentseva, I. I.	Mp375	Stokoe, D.	So667
Soares, A. C. F.	Sм582, Sм583	Stoldt, M.	Ls311, Me394, So660,
Soerensen, P. L.	So724		So728, Td738
Sokei, A.	Ім256	Stoll, R.	So678, Ot777
Soltesova, M.	Sм618	Stopschinski, B.	От760
Sommer, L. A. M.	So707, Ot759	Stork, H.	Ps131
Sommer, M. S.	ME426	Straasoe, L. A.	Ss641
Sorace, L.	M1463	Strandberg, E.	ME402
Sorgenfrei, N.	Ѕм612	Strauch, P.	RD554
Sottini, S.	От762	Strehmel, V.	RD554
Sourigues, Y.	Ps143	Stroemgaard, K.	So724
Spang, R.	Мв440	Strotz von Moos, D.	NA470
Spevacek, J.	Mp349	Strzelczak, G.	Cs219
Spiess, H. W.	Ps165, Im259, Rd541,	Stubbe, J.	Hs244
	RD560, SE569, SE570,	Stuermer, CAO	So672
Spindler D E	SEJ / 1, SSO48 Mp/57	Stupic, K. F.	Ps177, Ot766, Ot778
Spillulei, F. E.	WID43 /	Subasinghage, A. P.	So661
Spottiller, IVI.	50/12 Tp740	Subramanian, S.	От747
sporenoerg, N.	1D/40	Subramanian, V.	ME414

Suess, B.	Ps175, Na479, Na485	Theillet, FX.	Cv274, Cv277, Cv278,
Sugny, D.	Ст235		Cv279, Cv280
Sukhov, B. G.	Rd526	Theis, I.	IM263, UT//6
Sukiasyan, A. R.	Rc517, Ot757	Theisgen, S.	ME420
Sun, H.	Ѕм613	Thevand, A.	Bs210, TD734
Sun, N.	Mp352	Thiagarajan, P.	Ls311
Sunde, M.	So676	Thiel, W.	От764
Sundell, K. S.	TD743	Thiele, C. M.	Sm585, Sm587, Sm597
Sundh, H.	TD743	Thomas, L.	ME420
Sushenko, A.	Ps122	Thompson, G. S.	So726
Suter, D.	Ps123, Im250, Im257, Mb436, Sp652	Thongwichian, R. Thureau, P.	Cv277, Cv279, Cv281 Bs210, Ls304, Td734
Svajdlenkova, H.	Mp342	Tiede, D. M.	Ps169
Svanborg, C.	От765	Tietze, D.	Ls318, Ot775, Ot780
Sweetnam, S.	Ps166	Tikhonov, V. P.	Ѕм616
Szabo, B.	Sм614	Tikole, S.	Ls317, Ls327, So684
Szekely, K.	Pl17, Ss643	Timmel, C. R.	Ps109
Sziegat, F.	RD549, RD559	Tischenko, E.	Ps112
Т		Tischler, M.	Ls318, Ot775, Ot780
Tachibana, H.	RD559	Titova, E. V.	Sм616
Tahon, J. P.	Ps504	Tkach, E. N.	ME422
Takahashi. T.	Ss647	Tkach, I.	MD446, MD447
Takeda, M.	ME407	Todea, A. M.	Sм603
Tal. A.	Ps176	Tokatlidis, K.	So687
Tang. Y.	So723	Tokuda, H.	Ім260
Tantos, A.	Sм614	Tomaselli, S.	Ps112
Tapramaz. R.	Ст233, Рѕ507	Tommassen, J.	Bs209
Tarabasanu-Mihaila. D.	Sp657	Tomori, V.	Rd536
Tate. S.	So677	Tompa, P.	Sм614
Tavares, P.	Ps148	Tong, G. J.	Ls340
Tavel, L.	So681	Tordo, P.	Ps157
Tavernier, A.	Se576	Tosner, Z.	Ст236
Tayler, M. C. D.	Ps162	Tourel, S.	Cv281
Taylor, G. F.	Bs207	Trantírek, L.	Cv272, Na466, Na476
Tea, I.	Sм577	Travé, G.	Rd538
Tekely, P.	Bs203	Trinick, J.	So726
Telkki, VV.	Mp357, Se566	Tripsianes, K.	Ps150
Terao, K.	So689	Trísková, O.	So700
Terekhov, M.	Se567	Tritt-Goc, J.	Rd558, Sm588, Sm602
Terrien, E.	So670	Trofimov, B. A.	Rd526
Tessari, M.	Ls301	Trojanowski, P.	Ps175, NA485
Teutloff, C.	ME419. MD454	Trulsson, M.	От765
Thaller, G.	Мв437	Tschaggelar, R.	Se564
	1111 137	Tschierske, N.	Ls326

Tsui, V.	S0667	van Slageren, J.	Ps133, Ps499
Tuner, H.	От756	van Vliet, L.	TD741
Turano, P.	Bs215	van Wüllen, L.	Mp373, Ss649
Türke, MT.	Ps158, Md446, Se576	Vanderzande, D.	От763
Türkkan, E.	Ст233, Ps507, Rc520	Vargeese, C.	Na473
Twig, Y.	Ps121	Varghese, S.	Ps167, Ss634
Tzou, DL. M.	Bs214	Vasconcelos, F.	Ps154
U		Vassileva, E.	Mp382
Ubbink M	Mp451	Veber, S.cL.	MI462
Ueki, S.	So697	Veciana, J.	Mp390, Mi460
Uewaki. J.	So677	Vega, S.	PL15
Ullrich, S. J.	ME399 ME404 ME412	Velders, A.	Se565, Sm580
,	Ss639	Veldhuis, G.	ME401
Ulrich, A. S.	ME402	Velte, C.	Na486
Ulvskov, P.	Mp358	Vendruscolo, M.	Ps101, Ct226, Na494,
Ulzega, S.	Rd527	Veneziani R C S	KD548 Sm582
Unnerståle, S.	ME391	Vereecken H	BM302 Bp557
Upshur, M. A.	ME410	Vergeldt F	T _D 741
Usami, E.	RD545	Verhelst V	Mp385
Utschig, L. M.	Ps169	Verhoefen M-K	MF385
Utsumi, H.	Ім256, Ім260, Ім261	Verzini S	$C_{\rm V}274$ $C_{\rm V}278$
Utsunomiya-Tate, N.	So677	Vestergaard B	So724
X 7		vestergaard, D.	50721
V		Vestergren E	SM596
V Vaca Chavez, F.	Mp386	Vestergren, E. Vetter W	Sм596 Sм595
V Vaca Chavez, F. Vadivelu, P.	Мр386 Ps503	Vestergren, E. Vetter, W. Vezin H	Sм596 Sм595 Ps500 Ps516 От755
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J.	Mp386 Ps503 So668	Vestergren, E. Vetter, W. Vezin, H. Vidmar, I	Sm596 Sm595 Ps500, Ps516, От755 Im254 Im255 Im258
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L.	Mp386 Ps503 So668 Ps506	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S.	Sм596 Sм595 Ps500, Ps516, От755 Iм254, Iм255, Iм258 Bs210, L s304, Tp734
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H.	М _Р 386 Ps503 So668 Ps506 Td741	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, H-M	Sm596 Sm595 Ps500, Ps516, От755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. van Bokhoven, J. A.	Mp386 Ps503 So668 Ps506 Td741 Ps154	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent A	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. van Bokhoven, J. A. van Dalen, G.	М _Р 386 Ps503 So668 Ps506 Td741 Ps154 Td741	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V.	Sm596 Sm595 Ps500, Ps516, От755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Mf401
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. van Bokhoven, J. A. van Dalen, G. van den Brandt, B.	М _Р 386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M.	Sm596 Sm595 Ps500, Ps516, От755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van As, H. van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A.	Mp386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps119	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath K. A	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354
Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R.	М _Р 386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps161 Ps119 Td741	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, M -P	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 L s324
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S.	Мр386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps119 Td741 Ps170, Ot763	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J.	Мр386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps161 Ps119 Td741 Ps170, Ot763 Td741	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, L. N.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H.	М _Р 386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps119 Td741 Ps170, Ot763 Td741 Ps154	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M.	Мр386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps161 Ps119 Td741 Ps170, Ot763 Td741 Ps154 Ps495, Ps498	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H.	М _Р 386 Ps503 So668 Ps506 TD741 Ps154 TD741 Ps161 Ps119 TD741 Ps170, OT763 TD741 Ps154 Ps154 Ps495, Ps498 So669	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775 Ot780
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H. Van Landeghem, M.	Мр386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps119 Td741 Ps170, Ot763 Td741 Ps154 Ps495, Ps498 So669 Im262	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S. Voinov, M. A.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775, Ot780 Md452
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H. Van Landeghem, M. Van Mierloo, S.	Мр386 Ps503 So668 Ps506 TD741 Ps154 TD741 Ps161 Ps119 TD741 Ps170, Oт763 TD741 Ps154 Ps495, Ps498 So669 IM262 Oт763	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S. Voinov, M. A. Vollmann-Zwerenz, A.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775, Ot780 Md452 Cv271
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van den Brandt, B. van den Brandt, B. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H. Van Landeghem, M. Van Mierloo, S. van Rooijen, B. D.	Мр386 Ps503 So668 Ps506 Td741 Ps154 Td741 Ps161 Ps119 Td741 Ps170, Ot763 Td741 Ps154 Ps495, Ps498 So669 Im262 Ot763 Me401	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S. Voinov, M. A. Vollmann-Zwerenz, A. Vollmer, W.	Sm596 Sm595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775, Ot780 Md452 Cv271 Rs208
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H. Van Landeghem, M. Van Mierloo, S. van Rooijen, B. D. van Rossum, B. J.	Мр386 Ps503 So668 Ps506 TD741 Ps154 TD741 Ps154 TD741 Ps161 Ps119 TD741 Ps170, OT763 TD741 Ps154 Ps495, Ps498 So669 IM262 OT763 ME401 CT241	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S. Voinov, M. A. Vollmann-Zwerenz, A. Vollmer, W.	SM596 SM595 Ps500, Ps516, Ot755 IM254, IM255, IM258 Bs210, Ls304, Td734 Rd526 SM596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775, Ot780 Md452 Cv271 Bs208 Ps502
V Vaca Chavez, F. Vadivelu, P. Valcárcel, J. Valentin, L. Van As, H. Van Bokhoven, J. A. Van Bokhoven, J. A. van Dalen, G. van den Brandt, B. van der Drift, A. van der Drift, A. van der Sman, R. Van Doorslaer, S. van Duynhoven, J. van Eck, E. R. H. van Gastel, M. van Ingen, H. Van Landeghem, M. Van Mierloo, S. van Rooijen, B. D. van Rossum, B. J. van Sint Feet, L.	Мр386 Ps503 So668 Ps506 TD741 Ps154 TD741 Ps154 TD741 Ps161 Ps119 TD741 Ps170, OT763 TD741 Ps154 Ps495, Ps498 So669 IM262 OT763 ME401 CT241 OT781	Vestergren, E. Vetter, W. Vezin, H. Vidmar, J. Viel, S. Vieth, HM. Vincent, A. Vinod Subramaniam, V. Vinther, J. M. Vishwanath, K. A. Vlachou, MP. Voda, A. Voevodina, I. N. Vögeli, B. Voigt, N. Voigt, S. Voinov, M. A. Vollmann-Zwerenz, A. Vollmer, W. Voloshin, Y. Z. Volynsky, P. E.	Sм596 Sм595 Ps500, Ps516, Ot755 Im254, Im255, Im258 Bs210, Ls304, Td734 Rd526 Sm596 Me401 Ss642 Mp354 Ls324 Td741 Rd533 Me428, Rd535 Mp373 Ot775, Ot780 Md452 Cv271 Bs208 Ps502 Me430

von Harbou, E.	От764	Weigand, J. E.	Ps175, Na479, Na485
von Nuland, N.	Ps173	Weingarth, M. H.	Bs203, Bs209, Me396
von Rekowski, F.	Cs221	Wellard, R. M.	Ім251
von Seggern, H.	Ss624	Wemmer, D. E.	Ls340
Voronina, E.	Мв445	Wen-lung Chen, WL.	Bs214
Vosegaard, T.	Ст236	Wenzel, M.	Mp352
Vourtsis, D.	Ls316	Werner, F.	Ст242
Vovk, M. A.	Rd530	Werner, J. M.	Bs207
Vranken, W. F.	Ст226	Wessjohann, L.	Sм587
Vrielinck, H.	Ps170, Ps504, Ps508	Whittaker, S.	Rd559
Vrtnik, S.	Sp654	Wiedemann, C.	So699
W		Wiegand, T.	Ss626
Wachtveitl, J.	Ps175, Ls337, Me407, Na485	Wienk, H.	Ps112, So703, So715, So730
Wack, J.	Mp384	Wiest, R.	Ім253
Wacker, A.	Cv272, Ls333, NA474,	Wijffels, G.	Мв439
,	NA478, NA484	Wijmenga, S. S.	Ls301
Wagner, G.	ME395	Wild, A. A. C.	От752
Wahab, A. T.	Ls312, So686	Wild, K.	ME405
Wakamori, I.	So689	Wilhelm, M.	От754
Waksman, G.	ME406	Willbold, D.	Ls311, Me394, Me409,
Wallgren, M.	Ps142		So660, So728,
Walsh, P.	Ps101	Willem, R.	Mp382
Walter, K. F. A.	Ps114, Rd534	Williams, J. C.	От768
Waltho, J. P.	Rd550	Williamson, P. T. F.	Bs207
Wang, D.	Rd561	Wilson, H. L.	Ps147
Wang, F.	ME405	Wingfield, P. T.	ME393
Wang, I.	S0666, S0668	Wiper, P. V.	От761
Wang, W.	S0667	Wirmer-Bartoschek, J.	NA478, NA489, RD549,
Wanker, E.	Ps164	W' 1' D	KD559
Ward, R. J.	Ps168, Ps180, Me411,	Wirnhier, E.	MP389
	MD455	Wist, J.	CT223
Warkentin, E.	NA478	Witte, D. J.	So708
Wasmer, C.	Ps143, Bs200	Witter, R.	RD561
Wassmer, KH.	От770	Wittlich, M.	ME409
Waters, M. J.	Мв438	Wittmann, W.	S0680
Watson, S. A.	Ss636	Wöhnert, J.	PS175, ME400, NA467, NA478 NA479 NA485
Webber, A.	Ps130		Na487, So709, So727
Weber, J.	Ss622, Ss627, Ss632	Wójcik, J.	Sм617
Weber, S.	Rc519	Wolf, A.	От772
Wechselberger, R.	So702	Wolf, M.	Ps114
Wegner, S.	Ss649	Wolff, N.	So670
Wei, D.	Ps153	Wolf-Watz, M.	Rd528
Weiergräber, O. H.	ME394	Won, EY.	So706

Wood, S.	Bs207	Zenchuk, A. I.	Ст225
Wright, J.	Sм584	Zhang, B.	Ps137, Mp360
Wright, P. E.	Ps100	Zhang, Y.	Ps113
Wu, J.	So667	Zhang, Y.	Ст235, МD457, Sм579
Wu, Q.	Rc524	Zharavin, V.	Ls317, Ls327, So684
Wurm, J. P.	NA485, S0727	Zhivonitko, V. V.	Ps104, Cs217, Se566
Wüthrich, K.	Pl06, So686, Ot781	Zhou, BR.	So669
Wycisk, A.	Td746	Zhou, X.	Ім263
Wylde, R.	Ps180	Zhukov, I.	So659, So693, So713,
Wylie, B.	PL07		So721, So722
Wyslouch-Cieszynska, A.	So693	Zhukova, L.	So693
Wyss Gramberg, C.	Sм606	Ziarelli, F.	Bs210
x		Zidek, L.	So700
	Cs218 Ls318	Zijlstra, N.	ME414
	05210, 25510	Zilic, D.	M1461
Y	D. 500	Zimmermann, H.	ME392
Yakovleva, L. Y.	RD533	Zimmermann, K.	Ls336
Yamada, K.	IM256, IM260, MP351	Zinn-Justin, S.	Ps148
Yamauchi, S.	Mi462, So697	Zuckerstätter, G.	Ls305
Yang, KJ.	Bs214	Zverev, D. G.	Ps170, Ps508
Yang, Y.	Ss629	Zweckstetter, M.	So682, So683, So711,
Yang, Y.	Cs216	7 A	S0/19
Yasukawa, K.	Ім256, Ім260	Zychlińsky, A.	P\$141
Yen, I.	So667		
Yesayan, M.	Rc517		
Yilmaz, D.	ME434		
Yong, Y. J.	От765		
Yoon, H. S.	So706		
Yu, Y.	Мв439		
Yulikov, M.	MD458		
Yun, L.	От763		
Yurkovskaya, A. V.	RD526		
Ζ			
Zagdoun, A.	Ps117		
Zähringer, F.	Na472		
Zalewska, A.	Mp371, Mp376, Mp378		
Zalibera, M.	Rc524		
Zareba-Koziol, M.	So693		
Zarrine-Afsar, A.	Ps101		
Zavasnik, J.	NA468		
Zdanowski, K.	So721, So722		
Zebger, I.	ME419		
Zeiger, M.	NA489		
Zelencova, D.	Ls341		

AB, EISO · ZoBio · Leiden · The Netherlands · eab@zobio.com

ABE, JUN · Tohoku University · Sendai · Japan · janbe@mail.tagen.tohoku.ac.jp

ABELEIN, AXEL · University Stockholm · Stockholm · Sweden · axel@dbb.su.se

ABERGEL, DANIEL · Ecole Normale Supérieure · Paris · France · daniel.abergel@ens.fr

ADAM, CHRISTIAN • Karlsruher Institut für Technologie • Eggenstein-Leopoldshafen • Germany • christian.adam@kit.edu

ADAMS, RALPH · University of Manchester · Manchester · Great Britain · ralph.adams@manchester.ac.uk

AGUILAR, JUAN · University of Manchester · Manchester · Great Britain · juan.aguilarmalavia@ manchester.ac.uk

AIME, SILVIO · University of Torino · Torino · Italy · silvio.aime@unito.it

AKBEY, UMIT · Leibniz Institut für Molekulare Pharmakologie · Berlin · Germany · umitakbey@gmail.com AKDOGAN, YASAR · Max Planck Institute for Polymer Research · Mainz · Germany · akdogan@mpip-mainz.mpg.de

ALEKSANDROVA, OLGA · Institute of Environmental Systems Research (USF) · Osnabrueck · Germany · aleks_olga_upi@inbox.ru

ALEXANDER, IDSTRÖM · Chalmers University of Technology · Göteborg · Sweden · idstrom@chalmers.se

ALVAREZ, GONZALO AGUSTIN · Fakultaet Physik, Technische Universitaet Dortmund · Dortmund · Germany · galvarez@e3.physik.unidortmund.de

AMAR, ANDREA · Max-Planck-Institut für Polymerforschung · Mainz · Germany · amar@mpip-mainz.mpg.de

ANDERS, UWE · Roche Diagnostics GmbH · Mannheim · Germany · uwe.anders@roche.com

ANTONOVA, OLGA · Nikolaev Institute of Inorganic Chemistry · Novosibirsk · Russia · antonovaov1987@yandex.ru

ANWAR, M SABIEH · School of Science and Engineering · Lahore · Pakistan · sabieh@lums.edu.pk

ANZAI, TAKAHIRO · Nagoya University · Nagoya · Japan · anzai@biochem.chem. nagoya-u.ac.jp APAYDIN, MEHMET SERKAN · Istanbul Sehir University · Istanbul · Turkey · apaydin@sehir.edu.tr

APPEL, MATTHIAS · Shell E&P Technology Company · Houston · USA · matthias.appel@shell.com

ARDELEAN, IOAN · Technical University of Cluj-Napoca · Cluj-Napoca · Romania · ioan.ardelean@phys.utcluj.ro

ARGIREVIC, TOMISLAV · Göttingen · Germany · targire@gwdg.de

ASAMI, SAM · FMP · Berlin · Germany · asami@fmp-berlin.de

ASCENSO, JOSE · Instituto Superior Técnico · Lisbon · Portugal · Jose.ascenso@ist.utl.pt

AVADHUT, YAMINI · University of Munich (LMU) · Munich · Germany · yamini.avadhut@cup.unimuenchen.de

AVERLANT-PETIT, MARIE-CHRISTINE · Laboratoire de chimie physique macromoléculaire · Nancy · France · marie-christine.petit@ensic. inpl-nancy.fr AYALUR-KARUNAKARAN,

SANTHOSH · Forschungszentrum Jülich GmbH · Juelich · Germany · santhosh.ayalur@gmail.com AZARKH, MYKHAILO · University of Konstanz · Konstanz · Germany · mykhailo.azarkh@uni-konstanz.de

AZEVEDO, EDUARDO · Instituto de Física de São Carlos/ USP · São Carlos - SP · Brazil · azevedo@ifsc.usp.br

BAGARIA, ANURAG · AK Prof. Peter Guentert · Frankfurt am Main · Germany · anurag.bagaria@bpc.unifrankfurt.de

BAJD, FRANCI · ijs · Ljubljana · Slovakian Republic · franci.bajd@ijs.si

BAKHAREV, OLEG · Chemistry Department · Aarhus · Denmark · olegb@chem.au.dk

BAKLANOVA, YANA · Institute of Solid State, UB RAS · Ekaterinburg · Russia · baklanovay@gmail.com

BALÁZS, BARBARA · SERVIER Research Institute · Budapest · Hungary · barbara.balazs@hu.netgrs.com

BALBACH, JOCHEN · Universität Halle-Wittenberg · Halle · Germany · jochen.balbach@physik.unihalle.de

BALL, LINDA · Berlin · Germany · ball@fmp-berlin.de **BANCI, LUCIA** · CERM · Sesto Fiorentino · Italy · banci@cerm.unifi.it

BANERJEE, DEBAMALYA · Weizmann Institute of Science · Rehovot · Israel · da.debu@gmail.com

BÁNYAI, ISTVÁN · Debrecen · Hungary · banyai.istvan@science. unideb.hu

BARDIAUX, BENJAMIN · Leibniz-Institut für Molekulare Pharmakologie · Berlin · Germany · bardiaux@fmp-berlin.de

BARRA, ANNE LAURE · CNRS · Grenoble · France · anne-laure.barra@lncmi.cnrs.fr

BARRAUD, PIERRE · ETH Zurich · Zürich · Switzerland · pierre.barraud@mol.biol.ethz.ch

BARTHELMES, KATJA · University Frankfurt · Frankfurt · Germany · Barthelmes@nmr.uni-frankfurt.de

BARTOS, JOSEF · Polymer Institute of SAS · Bratislava · Slovenia · jozef.bartos@savba.sk

BASEDA KRÜGER, MARIO · Leibniz-Institut für Katalyse e. V. · Rostock · Germany · mario.baseda@catalysis.de **BATTA, GYULA** · University of Debrecen · Debrecen · Hungary · batta@unideb.hu

BAUDIN, MATHIEU · University of Nottingham · Nottingham · Great Britain · baudin.mathieu@gmail.com

BAUMANN, WOLFGANG · Leibniz-Institut für Katalyse e.V. · Rostock · Germany · wolfgang.baumann@catalysis.de

BAYRHUBER, MONIKA • ETH Zürich • Zürich • Switzerland • monika.bayrhuber@phys.chem. ethz.ch

BECKER, EDWIN (TED) · National Institutes of Health · Bethesda, Maryland · USA · tbecker@helix.nih.gov

BECKER-BALDUS, JOHANNA · Goethe Universtät · Frankfurt · Germany · j.baldus@em.uni-frankfurt.de

BEKEI, BEATA · Berlin · Germany · bekei@fmp-berlin.de

BELLSTEDT, PETER · Fritz-Lipmann-Institut · Jena · Germany · pbell@fli-leibniz.de

BENNATI, MARINA · Max-Planck-Institut für Biophysical Chemistry · Göttingen · Germany · bennati@mpibpc.mpg.de **BERGER, STEFAN** · Universität Leipzig · Leipzig · Germany · stberger@rz.uni-leipzig.de

BERNDT, SANDRA · University of Leipzig · Leipzig · Germany · Sandra.Berndt@medizin.unileipzig.de

BERNEWITZ, RICHARD · Food Process Engineering, KIT · Karlsruhe · Germany · richard.bernewitz@kit.edu

BERNHARD, FRANK · Frankfurt · Germany · fbern@bpc.uni-frankfurt.de

BERNIN, DIANA · Göteborg · Sweden · dianab@chalmers.se

BERSCH, BEATE · Institut de Biologie Structurale · Grenoble · France · beate.bersch@ibs.fr

BERTINI, IVANO · University of Florence · Sesto Fiorentino · Italy · bertini@cerm.unifi.it

BESSI, IRENE · Johann Wolfgang Goethe-Universität · Frankfurt am Main · Germany · bessi@nmr.uni-frankfurt.de

BILBILLE, YANN · CortecNet · Voisins le Bretonneux · France · ybilbille@cortecnet.com

BILJAN, TOMISLAV · Pliva Croatia Ltd. · Zagreb · Croatia · tomislav.biljan@pliva.com

BINOLFI, ANDRES · FMP Berlin · Berlin · Germany · binolfi@fmp-berlin.de

BISKUP, TILL · University of Oxford · Oxford · Great Britain · till.biskup@fu-berlin.de

BITTL, ROBERT · Freie Universität Berlin · Berlin · Germany · robert.bittl@fu-berlin.de

BIZJAK, NINA · Jožef Stefan Institut · Ljubljana · Slovakian Republic · nina.bizjak@ijs.si

BLANK, AHARON · Technion - Israel Institute of Technology · Haifa · Israel · ab359@tx.technion.ac.il

BLAUM, BÄRBEL · Interfaculty Institute for Biochemistry · Tübingen · Germany · baerbel.blaum@uni-tuebingen.de

BLINC, ROBERT · J. Stefan Institute · Ljubljana · Slovakian Republic · robert.blinc@ijs.si

BLOMMERS, MARCEL · Novartis Institutes for BioMedial Research · Basel · Switzerland · marcel_jj.blommers@novartis.com **BLUEMLER, PETER** · University of Mainz · Mainz · Germany · bluemler@uni-mainz.de

BLUM, WITALI · Technische Universität Darmstadt · Darmstadt · Germany · wblum@thielelab.de

BOCHAROV, EDUARD · Institute of Bioorganic Chemistry RAS · Moscow · Russia · bon@nmr.ru

BÖCKMANN, ANJA · CNRS/ Université de Lyon · Lyon · France · a.bockmann@ibcp.fr

BODE, BELA · Leiden Institute of Chemistry · Leiden · The Netherlands · bodebe@chem.leidenuniv.nl

BODENHAUSEN, GEOFFREY EPFL SB ISIC LRMB · Lausanne · Switzerland · geoffrey.bodenhausen@epfl.ch

BODOR, ANDREA · Eötvös University · Budapest · Hungary · abodor@chem.elte.hu

BOELENS, ROLF · Utrecht University · Utrecht · The Netherlands · r.boelens@uu.nl

BÖHM, SIMON · ETH Zürich · Zürich · Switzerland · simon.boehm@phys.chem. ethz.ch
BÖHME, UTE · IPF Dresden · Dresden · Germany · boehme-ute@ipfdd.de

BORDIGNON, ENRICA · ETH Zurich · Zurich · Switzerland · enrica.bordignon@phys. chem.ethz.ch

BÖRGER, CLAUDIA · Forschungszentrum Jülich · Jülich · Germany · c.boerger@fz-juelich.de

BORKAR, ADITI · University of Cambridge · Cambridge · Great Britain · anb39@cam.ac.uk

BÖRNER, CHARLOTTE · Goethe-Universität · Frankfurt · Germany · boerner@prisner.de

BORNET, AURELIEN · EPFL SB ISIC LRMB · Lausanne · Switzerland · aurelien.bornet@epfl.ch

BÖSING, CHRISTINA · Heinrich-Heine Universität Düsseldorf · Düsseldorf · Germany · c.boesing@fz-juelich.de

BOSIOCIC, MARKO · Faculty of Science Zagreb · Zagreb · Croatia · bosiocic@phy.hr

BOUDET, JULIEN · Institute of Molecular Biology and Biophysics · Zürich · Switzerland · boudetj@mol.biol.ethz.ch **BOUTAMINE, SULTANA** · Usthb Faculty of Chemistry · Algiers · Algeria · sultanadz@yahoo.fr

BOWEN, ALICE · Centre for Advance Electron Spin Resonance · Oxford · Great Britain · alice.bowen@chem.ox.ac.uk

BOWYER, PAUL · Agilent Technologies UK Ltd. · Oxford · Great Britain · paul.bowyer@agilent.com

BRAUN, PATRICK · Chemistry Department · Konstanz · Germany · patrick.braun@uni-konstanz.de

BRENDLER, ERICA · TU Bergakademie Freiberg · Freiberg · Germany · erica.brendler@chemie.tufreiberg.de

BRENNAN, LORRAINE · UCD Conway Institute · Dublin · Ireland · lorraine.brennan@ucd.ie

BRUNNER, EIKE · Technische Universität Dresden · Dresden · Germany · eike.brunner@tu-dresden.de

BRUSTOLON, MARINA · Dept of Chemical Sciences, University of Padova · Padova · Italy · marinarosa.brustolon@unipd.it

BRUTSCHER, BERNHARD · Institut de Biologie Structurale · Grenoble · France · bernhard.brutscher@ibs.fr **BÜCHLER, S.** · Karlsruher Institut für Technologie · Karlsruhe · Germany · silke.buechler@kit.edu

BUCHNER, LENA · Universität Frankfurt · Frankfurt · Germany · buchner@bpc.uni-frankfurt.de

BUDESINSKY, MILOS · Institute of Organic Chemistry and Biochemistry · Prague · Czech Republic · budesinsky@uochb.cas.cz

BUDZINSKA, MONIKA · Institute of Biochemistry and Biophysics, PAS · Warsaw · Poland · budzik@ibb.waw.pl

BUHR, FLORIAN · Institute of Organic Chemistry · Frankfurt am Main · Germany · buhr@nmr.uni-frankfurt.de

BULJUBASICH GENTILETTI, LISANDRO

Max-Planck-Institut für Polymerforschung · Mainz · Germany · buljubasich@mpip-mainz.mpg.de
BUND, TIMO · Max Planck-Institute for Polymer Research · Mainz · Germany · bund@mpip-mainz.mpg.de

BURGARDT, NOELIA · Max Planck Research Unit for Enzymology of Protein · Halle · Germany · noeliaburgardt@yahoo.com.ar

BUSCHE, ALENA · Biophysikalische Chemie · Frankfurt · Germany · busche@bpc.uni-frankfurt.de

PARTICIPANTS LIST

CALLAGHAN, PAUL · MacDiarmid Institute · Wellington · New Zealand · paul.callaghan@vuw.ac.nz

CANGOENUEL, ASLI · University of Bonn · Bonn · Germany · cangoenuel@pc.uni-bonn.de

CARLOMAGNO, TERESA · EMBL · Heidelberg · Germany · carlomag@embl.de

CARLOS, PACHECO · Princeton University · Princeton · USA · cpacheco@Princeton.edu

CARNEVALE, DIEGO · EPFL · Lausanne · Switzerland · diego.carnevale@epfl.ch

CASAGRANDE, FABIO · F. Hoffmann-La Roche AG · Basel · Switzerland · fabio.casagrande@roche.com

CASSANI, JULIA · University of Manchester · Manchester · Great Britain · j.cassani@manchester.ac.uk

CEVEC, MIRKO · Institute of Organic Chemistry and Chemical Biolog · Frankfurt am Main · Germany · cevec@nmr.uni-frankfurt.de

CHATTERJEE, DEEP · Institut für Organische Chemie · Frankfurt am Main · Germany · chatterjee@nmr.uni-frankfurt.de **CHERNENKO, YULIA** · SPb Electrotechnical University · Saint Petersburg · Germany · julia_chernenco@mail.ru

CHERTKOV, VYACHESLAV • Department of Chemistry Moscow State University • Moscow • Russia • chertkov@org.chem.msu.ru

CHESHKOV, DMITRY · SSC GNIICHTEOS · Moscow · Russia · cheshkov_d@mail.ru

CHI, SEUNG-WOOK · KRIBB · Daejeon · South Korea · swchi@kribb.re.kr

CHIN, YANNI · Monash Institute of Pharmaceutical Sciences · Parkville · Australia · ka-yan.chin@monash.edu

CHIZHIK, VLADIMIR · Saint-Petersburg State University · Saint Petersburg · Russia · chizhik@nmr.phys.spbu.ru

CHOU, CHING-YU · Taipei · Taiwan · cychou@gate.sinica.edu.tw

CHRIST, NINA ALEXANDRA · Institute for Molecular Bioscience · Frankfurt am Main · Germany · n.christ@bio.uni-frankfurt.de

CHRISTODOULOU, JOHN · London · Great Britain · j.christodoulou@ucl.ac.uk **CLAASEN, BIRGIT** · Universität Stuttgart · Stuttgart · Germany · birgit.claasen@oc.uni-stuttgart.de

CLERY, ANTOINE · Zurich · Switzerland · aclery@mol.biol.ethz.ch

COBO, MÁRCIO · IFSC/ Universidade de São Paulo · São Carlos - SP · Brazil · marciofcobo@gmail.com

COLBOURNE, ADAM · University of Manchester · Manchester · Great Britain · adam.colbourne-2 @postgrad.manchester.ac.uk

COLE, JONATHAN · Cryogenic Ltd · London · Great Britain · claudia@cryogenic.co.uk

COLLAUTO, ALBERTO · Università degli Studi di Padova · Padova · Italy · alberto.collauto@studenti. unipd.it

CONCISTRE, MARIA · University of Southampton · Southampton · Great Britain · mariac@soton.ac.uk

CORBESKI, IVAN · Institute of Biophysical Chemistry · Frankfurt/Main · Germany · corbeski@stud.uni-frankfurt.de

CORZILIUS, BJÖRN · Massachusetts Institute of Technology · Cambridge · USA · bcor@mit.edu COUTINHO, ISABEL B. · FCT-UNL · Caparica · Portugal · ibc@dq.fct.unl.pt

COX, NICHOLAS · Max Planck Insitute · Muelheim an der Ruhr · Germany · cox@mpi-muelheim.mpg.de

COY, ANDREW · Magritek Limited \cdot Wellington \cdot New Zealand \cdot andrew@magritek.com

CRUMP, MATTHEW · School of Chemistry · Bristol · Great Britain · matt.crump@bristol.ac.uk

CUDAJ, MARKUS · KIT, Institute of Polymer Chemistry · Karlsruhe · Germany · markus.cudaj@kit.edu

DALLMANN, ANDRE · TU München · Garching bei München · Germany · andre.dallmann@helmholtz. muenchen.de

DAMA, MURALI · Institute of Analytical Chemistry · Leipzig · Germany · murali.dama@gmail.com

DAMBLON, CHRISTIAN · Department of Chemistry · Liège \cdot Belgium \cdot c.damblon@ulg.ac.be

DAMES, SONJA ALEXANDRA · Technischne Universitaet Muenchen · Garching · Germany · sonja.dames@tum.de

DANIELI, ERNESTO · RWTH-Aachen University · Aachen · Germany · edanieli@mc.rwth-aachen.de

DANNATT, HUGH · Dept. of Molecular Biology & Biotechnology · Sheffield · Great Britain · h.dannatt@sheffield.ac.uk

DASTVAN, REZA · Goethe-University Frankfurt · Frankfurt am Main \cdot Germany \cdot dastvan@prisner.de

DE LA CRUZ, LAURA · Research School of Chemistry · ACTON, ACT · Australia · lauradelacruz@gmail.com

DEHMEL, LARS · Humboldt-Universität zu Berlin · Berlin · Germany · lars.dehmel@chemie.hu-berlin.de

DELEANU, CALIN · Centre of Organic Chemistry · Bucharest · Romania · calin.deleanu@yahoo.com

DELEPIERRE, MURIEL · Institut Pasteur · Paris · France · muriel.delepierre@pasteur.fr

DELPOUX, OLIVIER · IFP Energies nouvelles · Solaize · France · olivier.delpoux@ifpen.fr

DENG, CHENG · Laboratoire de chimie physique macromoléculaire · Nancy · France · Cheng.Deng@ensic. inpl-nancy.fr

DENYSENKOV, VASYL · Goethe University · Frankfurt am Main · Germany · vasyl@prisner.de

DESLAURIERS, ROXANNE National Research Council Canada · Winnipeg · Canada · Roxanne.Deslauriers@nrc-cnrc. gc.ca

DEUTSCH, GREGOR · Goethe University · Frankfurt am Main · Germany · g.deutsch@bpc.uni-frankfurt.de

DEVILLE, JEAN-POL · GlaxoSmithKline Biological · Rixensart · Belgium · jean-pol.deville@gskbio.com

DÍAZ, DOLORES · Centro Investigacioens Biológicas (CSIC) · Madrid · Spain · díazm@cib.csic.es

DIERCKS, TAMMO · CIC bioGUNE · Derio · Spain · tdiercks@cicbiogune.es

DILLENBERGER, SONJA \cdot TU Darmstadt \cdot Darmstadt \cdot Germany · dillenberger@chemie.tudarmstadt.de

DINSE, KLAUS-PETER · FU Berlin · Berlin · Germany · dinse@physik.fu-berlin.de

DO, HOA QUYNH · Heinrich-Heine University Düsseldorf · Duesseldorf · Germany · Quynh.Do@uni-duesseldorf.de

DO, NHU-NGUYEN · Langen · Germany · NEKO87@gmx.de

DOBOSZ, BERNADETA · Poznan · Poland · benia@amu.edu.pl

DOLINSEK, JANEZ · Jozef Stefan Institute · Ljubljana · Slovakian Republic · jani.dolinsek@ijs.si

DOMINGO KÖHLER, SILVIA

Universität Konstanz · Konstanz
 Germany ·
 Silvia.Domingo-Koehler@uni-konstanz.de

DOMJÁN, ATTILA · Institute of Structural Chemistry, HAS · Budapest · Hungary · domjan@chemres.hu

DONETS, ALEXEY · Saint-Petersburg State University · St. Petersburg · Russia · aldonets@gmail.com

DONGRE, RAMACHANDRA · Utrecht University · Utrecht · The Netherlands · maladongre@yahoo.com

DÖPKENS, MAILIN · Universität zu Lübeck · Lübeck · Germany · mailin.doepkens@chemie.uniluebeck.de

DRACINSKY, MARTIN · Institute of Organic Chemistry and Biochemistry · Prague · Czech Republic · dracinsky@uochb.cas.cz **DUCHARDT-FERNER, ELKE** · Johann-Wolfgang-Goethe-University · Frankfurt · Germany · duchardt@bio.uni-frankfurt.de

DUDENKO, DMYTRO · Max Planck Institute for Polymer Research · Mainz · Germany · dmytro.dudenko@mpip-mainz. mpg.de

DUPKE, SVEN · Physikalische Chemie · Münster · Germany · s_dupk02@uni-muenster.de

DUSCHL, MARKUS · Institut Agrosphäre (IBG-3) · Jülich · Germany · m.duschl@fz-juelich.de

DUSZCZYK, MALGORZATA • ETH Institute of Molecular Biology and Biophysics • Zurich • Switzerland • malgosia@mol.biol.ethz.ch

DUTAGACI, BERCEM · Frankfurt am Main · Germany · dutagaci@em.uni-frankfurt.de

EBERT, SANDRO · MPI Polymer Research · Mainz · Germany · ebert@mpip-mainz.mpg.de

ECHELMEYER, THOMAS · Westfälische Wilhelms-Universität Münster · Münster · Germany · thomas.echelmeyer@unimuenster.de

EDELHOFF, DANIEL · Dortmund · Germany · Daniel@e3.physik.tu-dortmund.de **EDWARDS, ANDY** · GSK · Stevenage · Great Britain · andrew.j.edwards@gsk.com

EHNI, SEBASTIAN · Karlsruhe · Germany · sebastian.ehni@kit.edu

EICHELE, KLAUS · Institut für Anorganische Chemie · Tübingen · Germany · klaus.eichele@uni-tuebingen.de

EJCHART, ANDRZEJ · Institute of Biochemistry and Biophysics, Polish A · Warszawa · Poland · aejchart@ibb.waw.pl

ELSHORST, BETTINA · Universität Frankfurt · Frankfurt am Main · Germany · elshorst@nmr.uni-frankfurt.de

EMBREY, KEVIN · AstraZeneca · Macclesfield · Great Britain · kevin.embrey@astrazeneca.com

EMEIS, DETLEF · Beiersdorf AG · Hamburg · Germany · detlef.emeis@beiersdorf.com

ENBERG, JOHAN · Swedish NMR Centre · Gothenburg · Sweden · johan.enberg@nmr.gu.se

ENDEWARD, BURKHARD · Universität Frankfurt · Frankfurt · Germany · endeward@prisner.de **ENEMARK, JOHN** · University of Arizona · Tucson · USA · jenemark@email.arizona.edu

ENGELHARD, CHRISTOPHER · Institut für Experimentalphysik · Berlin · Germany · christopher.engelhard@fu-berlin.de

ENGESSER, TOBIAS · Albert-Ludwigs-Universität Freiburg · Freiburg · Germany · tobias.engesser@ac.uni-freiburg.de

ERKELENS, CORNELIS · Universiteit Leiden · Leiden · The Netherlands · erkelens@chem.leidenuniv.nl

ERNST, LUDGER · TU Braunschweig · Braunschweig · Germany · l.ernst@tu-bs.de

ETZKORN, MANUEL · Harvard Medical School · Boston, MA · USA · manuel_etzkorn@ hms.harvard.edu

EVANS, ROB · University of Manchester · Manchester · Great Britain · robert.evans@manchester.ac.uk

EXNER, THOMAS E. · Department of Chemistry · Konstanz · Germany · thomas.exner@uni-konstanz.de

EZHEVSKAYA, MARIA · MPIP · Mainz · Germany · ezhevska@mpip-mainz.mpg.de FARIA, GREGÓRIO COUTO · Instituto de Física de São Carlos · São Carlos · Brazil · gcfaria@gmail.com

FEDIN, MATVEY · International Tomography Center SB RAS · Novosibirsk · Russia · mfedin@tomo.nsc.ru

FEHER, KRISZTINA · INFAI GmbH · Köln · Germany · feher_krisztina@yahoo.com

FELDMAN, EDUARD · Institute of Problems of Chemical Physics · Chernogolovka · Russia · efeldman@icp.ac.ru

FELDMEIER, CHRISTIAN · Regensburg · Germany · Christian.Feldmeier@chemie. uni-regensburg.de

FELLI, ISABELLA CATERINA · CERM, University of Florence · Sesto Fiorentino · Italy · felli@cerm.unifi.it

FERNANDEZ, CESAR · Novartis Pharma AG · Basel · Switzerland · cesar.fernandez@novartis.com

FERNER, JAN-PETER · Center for Biomolecular Magnetic Resonance (BMRZ) · Frankfurt · Germany · ferner@nmr.uni-frankfurt.de

FIEGE, BRIGITTE · Institute of Chemistry · Lübeck · Germany · brigitte.fiege@chemie. uni-luebeck.de **FIELDING, ALISTAIR** · Maxplanck Insitute for Biophysical Chemistry · Göttingen · Germany · afieldi@gwdg.de

FLORENT, MARC · Weizmann Institute of Science · Rehovot · Israel · marc.florent@weizmann.ac.il

FLORES, MARCO · Department of Chemistry and Biochemistry · Tempe · USA · mafloresr@asu.edu

FOGL, CLAUDIA · University of Birmingham · Birmingham · Great Britain · FoglCLF@bham.ac.uk

FORLER, NINA · Max-Planck-Institut für Polymerforschung (mpip) · Mainz · Germany · forler@mpip-mainz-mpg.de

FRANK, ANDREA · Konstanz · Germany · andrea.frank@uni-konstanz.de

FRANZONI, MARIA BELEN · Max-Planck-Institut für Polymerforschung · Mainz · Germany · franzoni@mpip-mainz.mpg.de

FREDERSDORF, MAIC · Sanofi-Aventis Deutschland GmbH · Frankfurt · Germany · maic.fredersdorf@sanofiaventis.com

FREED, JACK H. · Cornell University · Ithaca, New York · USA · jhf3@cornell.edu **FRIEDRICHS, CORNELIUS** · MPI for Polymer Research · Mainz · Germany · friedrc@mpip-mainz.mpg.de

FRYDMAN, LUCIO · Weizmann Institute · Rehovot · Israel · lucio.frydman@weizmann.ac.il

FURRER, JULIEN · Departement für Chemie und Biochemie · Bern · Switzerland · julien.furrer@dcb.unibe.ch

FÜRTIG, BORIS · Vienna · Austria · boris.fuertig@univie.ac.at

GALLO, ANGELO · CERM-University of Florence · Sesto Fiorentino · Italy · gallo@cerm.unifi.it

GARCIA RUBIO, INES · ETH Zurich · Zurich · Switzerland · garciarubio@phys.chem. ethz.ch

GAST, PETER · Leiden University · Leiden · The Netherlands · gast@physics.leidenuniv.nl

GAUS, KATHARINA · Syngenta Crop Protection Münchwilen AG · Stein / AG · Switzerland · katharina.gaus@syngenta.com

GEENEVASEN, JAN · Universiteit van Amsterdam · Amsterdam · The Netherlands · J.A.J.Geenevasen@uva.nl GENTNER, MARTIN · Biozentrum · Basel · Switzerland · Martin.Gentner@unibas.ch

GHICA, DANIELA · National Institute of Materials Physics · Magurele · Romania · ghica@infim.ro

GLASER, STEFEN · TU München · Garching · Germany · glaser@tum.de

GLAUBITZ, CLEMENS · Goethe Universität Frankfurt · Frankfurt · Germany · glaubitz@em.uni-frankfurt.de

GLÖGGLER, STEFAN · RWTH Aachen University · Aachen · Germany · stgloeggler@gmx.de

GOBA, INGUNA · Latvian Institute of Organic Synthesis · Riga · Latvia · inguna@osi.lv

GODT, ADELHEID · Universität Bielefeld · Bielefeld · Germany · godt@uni-bielefeld.de

GOLDFARB, DANIELLA · Weizmann Institute of Science · Rehovot · Israel · Daniella.goldfarb@weizmann. ac.il

GOMEZ, M. VICTORIA · University of Castilla-La Mancha · Ciudad Real · Spain · MariaVictoria.gomez@uclm.es GONÇALVES, SIMONE MARIA · UFPE · Recife · Brazil · simone.ufpe.br@gmail.com

GONCHARUK, MARINA · Moscow State University, Biological Department · Moscow · Russia · goncharuki@gmail.com

GONCHARUK, SERGEY · Moscow State University, Biological Department · Moscow · Russia · ms.goncharuk@gmail.com

GOOVAERTS, ETIENNE • University of Antwerp • Antwerpen • Belgium • Etienne.Goovaerts@ua.ac.be

GÖRLACH, MATTHIAS · Leibniz Institut für Altersforschung · Jena · Germany · mago@fli-leibniz.de

GÖRLING, BENJAMIN · Karlsruhe Institute of Technology (KIT) · Karlsruhe · Germany · benjamin.goerling@kit.edu

GOTTSTEIN, DANIEL · Inst. f Biophysical Chemistry / BMRZ · Frankfurt · Germany · Gottstein@bpc.uni-frankfurt.de

GOUDAPPEL, GERT-JAN · Unilever R&D · Vlaardingen · The Netherlands · gert-jan.goudappel@unilever.com

GOURIER, DIDIER · Chimie-ParisTech · Paris · France · didier-gourier@chimie-paristech.fr **GRAF, JÜRGEN** · Universität Heidelberg · Heidelberg · Germany · graf@oci.uni-heidelberg.de

GRÄSLUND, ASTRID · Stockholm University · Stockholm · Sweden · astrid@dbb.su.se

GRIESINGER, CHRISTIAN · Max Planck Institute · Göttingen · Germany · cigr@nmr.mpibpc.mpg.de

GRIESSER, MARKUS · Graz University of Technology · Graz · Austria · markus.griesser@tugraz.at

GRIFFIN, ROBERT G. · Massachusetts Institute of Technology · Cambridge · USA · rgg@mit.edu

GRIMALDI, STEPHANE · CNRS & Aix-Marseille University · Marseille · France · grimaldi@ifr88.cnrs-mrs.fr

GRIMM, LENA LISBETH · Institut für Chemie · Lübeck · Germany · grimm@chemie.uni-luebeck.de

GROEBNER, GERHARD · Department of Chemistry · Umeå · Sweden · gerhard.grobner@chem.umu.se

GROENEN, EDGAR · Leiden University · Leiden · Germany · groenen@physics.leidenuniv.nl **GRONENBORN, ANGELA** • University of Pittsburgh • Pittsburgh • USA • amg100@pitt.edu

GRONWALD, WOLFRAM · Institute of Functional Genomics · Regensburg · Germany · wolfram.gronwald@klinik.uniregensburg.de

GRÜNBERG, ANNA · TU Darmstadt · Darmstadt · Germany · gruenberg@chemie.tu-darmstadt.de

GRYTZ, CLAUDIA · Goethe Universität · Dietzenbach · Germany · ClaudiaGrytz@hotmail.de

GSCHWIND, RUTH · Institute of Organic Chemistry · Regensburg · Germany · ruth.gschwind@chemie.uniregensburg.de

GSELLINGER, HEIKO · Universität Basel · Basel · Switzerland · Heiko.Gsellinger@unibas.ch

GUERLESQUIN, FRANÇOISE · IMR · Marseille · France · guerlesq@ibsm.cnrs-mrs.fr

GUIGLIARELLI, BRUNO · Bioénergétique et Ingénierie des Protéines · Marseille · France · guigliar@ifr88.cnrs-mrs.fr

GUL-E-NOOR, FARHANA · Universität Leipzig · Leipzig · Germany · gul-e-noor@physik.uni-leipzig.de GÜNTERT, PETER · Institute of Biophysical Chemistry · Frankfurt am Main · Germany · guentert@em.uni-frankfurt.de

GUNZELMANN, DANIEL · Universität Bayreuth · Bayreuth · Germany · daniel.gunzelmann@unibayreuth.de

GUTHAUSEN, GISELA · KIT, Institute of Mechanical Engineering, SRG10-2 · Karlsruhe · Germany · gisela.guthausen@kit.edu

HAASE, JÜRGEN · Universität Leipzig · Leipzig · Germany · j.haase@physik.uni-leipzig.de

HABENSTEIN, BIRGIT · IBCP CNRS · Lyon · France · birgit.habenstein@gmail.com

HABER, AGNES · ITMC RWTH Aachen University · Aachen · Germany · ahaber@mc.rwth-aachen.de

HACKL, THOMAS · University of Hamburg · Hamburg · Germany · hackl@chemie.uni-hamburg.de

HÄHNKE, MARTIN · BMRZ · Frankfurt · Germany · mhaehnke@nmr.uni-frankfurt.de

HALL, RENNY · Cryogenic Ltd · London · Great Britain · claudia@cryogenic.co.uk HALLWASS, FERNANDO · Federal University of Pernambuco · Recife · Brazil · hallwass@ufpe.br

HANK, ZAKIA · USTHB Faculty of Chemistry · Algiers · Algeria · zhank@usthb.dz

HÄNSEL, ROBERT · Institute of Biophysical Chemistry · Frankfurt/Main · Germany · rhaensel.bpc@googlemail.com

HANSEN, MICHAEL RYAN · Max Planck Institute for Polymer Research · Mainz · Germany · mrh@mpip-mainz.mpg.de

HANSON, GRAEME · Centre for Advanced Imaging · Brisbane, Queensland · Australia · Graeme.Hanson@cai.uq.edu.au

HARDY, EDME HORST · KIT · Karlsruhe · Germany · edme.hardy@kit.edu

HARSCH, TOBIAS · Institut für Biophysik und physikalische Biochemie · Regensburg · Germany · Tobias.Harsch@biologie.uniregensburg.de

HASAN, TUNER · Balikesir U. · Balikesir · Turkey · htuner@balikesir.edu.tr

HAUPT, ERHARD · Fachbereich Chemie · Hamburg · Germany · erhard.haupt@uni-hamburg.de HÄUSSINGER, DANIEL · Departement Chemie · Basel · Switzerland · daniel.haeussinger@unibas.ch

HEDIGER, SABINE · Laboratoire de Résonances Magnétiques · Grenoble · France · sabine.hediger@cea.fr

HEFKE, FREDERIK · Frankfurt · Germany · hefke@bpc.uni-frankfurt.de

HEIN, CHRISTOPHER · Frankfurt · Germany · Hein@bpc.uni-frankfurt.de

HEISE, HENRIKE · Heinrich-Heine Universität Düsseldorf · Düsseldorf · Germany · henrike.heise@uni-duesseldorf.de

HEISS, ARTHUR · Bruker BioSpin Corp. · Billerica, MA · USA · ah@bruker.com

HELENO, VLADIMIR · Universidade de Franca · Franca - SP · Brazil · vheleno_05@yahoo.com.br

HELLENKAMP, SARA MARLEEN · Institute of Physical Chemistry · Münster · Germany · s hell07@uni-muenster.de

HELLMICH, UTE · Institute of Biophysical Chemistry · Frankfurt · Germany · hellmich@chemie.uni-frankfurt.de **HEMPEL, GÜNTER** · Martin-Luther-Universitaet · Halle/Saale · Germany · guenter.hempel@physik.unihalle.de

HENDRICKX, PIETER · European Bioinformatics Institute · Hinxton · Great Britain · pieter@ebi.ac.uk

HENNIG, JANOSCH · Institute of Structural Biology · München · Germany · janosch.hennig@helmholtzmuenchen.de

HENNING, STEFAN · TU Dortmund · Dortmund · Germany · stefan.henning@tu-dortmund.de

HERBERT-PUCHETA, JOSE-ENRIQUE · CNRS UMR 7203 · Paris · France · jose-enrique.herbert-pucheta@ ens.fr

HERTZBERG, YONI · Tel Aviv University · Ben Shemen Moshav · Israel · yeho7@tau.ac.il

HEWAGE, CHANDRALAL · Dublin · Ireland chandralal.hewage@ucd.ie

HILLER, FABIAN · Universität Frankfurt · Frankfurt am Main · Germany · hiller@nmr.uni-frankfurt.de

HILLIARD, CASIE · Texas A&M University · College Station, TX · USA · chilliard@chem.tamu.edu HILTY, CHRISTIAN · Texas A&M University · College Station · USA · chilty@chem.tamu.edu

HINDERBERGER, DARIUSH • Max-Planck-Institut für Polymerforschung • Mainz • Germany • hinderberger@mpip-mainz.mpg.de

HINTZE, CHRISTIAN · Universität Konstanz · Konstanz · Germany · christian.hintze@uni-konstanz.de

HIRSCHINGER, JÉRÔME · Institut de Chimie · Strasbourg · France · hirschinger@unistra.fr

HIRSH, DONALD · The College of New Jersey · Ewing · USA · hirsh@tcnj.edu

HOCKING, HENRY · Bijvoet Center for Biomolecular Research · Utrecht · The Netherlands · h.g.hocking@uu.nl

HOLBACH, MIRJAM · TU Dortmund · Dortmund · Germany · mirjamholbach@gmail.com

HONG, MEI · Iowa State University · Ames · USA · mhong@iastate.edu

HOWARD, KATHLEEN

Swarthmore College
 Swarthmore
 USA
 khoward1@swarthmore.edu

HOWE, PETER · Syngenta Ltd · Bracknell · Great Britain · peter.howe@syngenta.com

HOYER, ALEXANDER · Stuttgart · Germany · hoyer.alexander@gmx.de

HRICOVINI, MILOS · Institute of Chemistry, Slovak Academy of Sciences · Bratislava · Slovenia · hricovini@savba.sk

HUBBELL, WAYNE · Jules Stein Eye Institute · Los Angeles, CA · USA · hubbellw@jsei.ucla.edu

HUBER, MARTINA · Leiden University · Leiden · The Netherlands · mhuber@molphys. leidenuniv.nl

HUDÁKY, PÉTER · sanofiaventis/Chinoin · Budapest · Hungary · peter.hudaky@sanofi-aventis.com

HUGHES-RILEY, THEODORE · University of Nottingham · Nottingham · Great Britain · msxtwbh@nottingham.ac.uk

HUNTER, MARK · SCPS · Wellington · New Zealand · mark.hunter@vuw.ac.nz

HUSAROVA, SLAVOMIRA • Institute of Chemistry, Slovak Academy of Sciences • Bratislava • Slovenia • slavomira.husarova@savba.sk HUSTER, DANIEL · Institute of Medical Physics and Biophysics · Leipzig · Germany · daniel.huster@medizin.unileipzig.de HYODO, FUMINORI · Innovation Center for Medical Radox Navigation · Fukuoka · Japan · hyodof@redoxnavi.med. kyushu-u.ac.jp **IBROM, KERSTIN** · Technische Universität Braunschweig · Braunschweig · Germany ·

k.ibrom@tu-bs.de

ICHIKAWA, KAZUHIRO · Kyushu University · Fukuoka · Japan · ichikawa.kazuhiro.684@m. kyushu-u.ac.jp

ICKER, MAIK · Universität Leipzig · Leipzig · Germany · maik.icker@uni-leipzig.de

IGOR, COLESNIC · Inst. of Chem., Academy of Sciences of Moldova · Chisinau · Republic Moldawia · Igor.Colesnic@gmail.com

ILAKOVAC KVEDER, MARINA · Rudjer Boskovic Institute · Zagreb · Croatia · kveder@irb.hr

IMANARI, MAMORU · Chiba university · Chiba · Japan · ezu11604@nifty.com

ISAEV, NIKOLAY · Institute of Chemical Kinetics and Combustion · Novosibirsk · Russia · isaev@kinetics.nsc.ru

PARTICIPANTS LIST

IUGA, DINU · University of Warwick · Coventry · Great Britain · d.iuga@warwick.ac.uk

JACQUES, THOMAS · GSK Biologicals · Rixensart · Belgium · thomas.jacques@gskbio.com

JACSO, TOMAS · Technische Universität München (TUM) · Garching · Germany · jacso@fmp-berlin.de

JAHNKE, WOLFGANG · Novartis International AG · Basel · Switzerland · wolfgang.jahnke@novartis.com

JAMRÓZ, MARTA · Warsaw Medical University · Warsaw · Poland · marta.jamroz@wum.edu.pl

JANNIN, SAMI · EPFL SB ISIC LRMB · Lausanne · Switzerland · sami.jannin@epfl.ch

JANSEN, SEVERINE · Masaryk university · Brno · Czech Republic · severine@chemi.muni.cz

JANSSEN, JOHANNES · Deutsche Forschungsgemeinschaft · Bonn · Germany · johannes.janssen@dfg.de

JARAVINE, VICTOR · Center for Biomolecular Magnetic Resonance · Frankfurt am Main · Germany · zharavin@em.uni-frankfurt.de JAREMKO, LUKASZ · Faculty of Chemistry, University of Warsaw · Warsaw · Poland · jaremko@gmail.com

JAREMKO, MARIUSZ · Institute of Biochemistry and Biophysics PAS · Warsaw · Poland · antypater@gmail.com

JAWORSKA, BEATA · National Medicines Institute · Warsaw · Poland · beata.jaworska@autograf.pl

JAZBEC, SIMON · "Jožef Stefan" Institute · Ljubljana · Slovakian Republic · simon.jazbec@ijs.si

JENSEN, MALENE RINGKJØBING · Institut de Biologie Structurale · Grenoble · France · malene.ringkjobing-jensen@ibs.fr

JESCHKE, GUNNAR · ETH Zürich · Zürich · Switzerland · gjeschke@ethz.ch

JOHANNES, GUENTHER · Texas A&M University · College Station · USA · jguenther@chem.tamu.edu

JONKER, HENRY · Goethe University Frankfurt · Frankfurt am Main · Germany · h.jonker@nmr.uni-frankfurt.de

JUAN RUIZ DEL VALLE, ALBERTO · IRICA/UCLM · Ciudad Real · Spain · Alberto.Juan@uclm.es JUNK, MATTHIAS · University of California, Santa Barbara · Santa Barbara · USA · mjunk@engineering.ucsb.edu

JUPIN, MARC · Institute for Molecules and Materials · Nijmegen · The Netherlands · m.jupin@nmr.ru.nl

KACHALA, VADIM · Moscow • Russia · kachala@bruker.ru

KADAVATH, HARINDRANATH · Department of NMR Based

Structural Biology · Goettingen · Germany · haka@nmr.mpibpc.mpg.de **KADEN, PETER** · Karlsruher Institut für Technologie · Eggenstein-Leopoldshafen · Germany ·

Peter.Kaden@kit.edu

KALBITZER, HANS ROBERT

Universität Regensburg ·
 Regensburg · Germany ·
 hans-robert.kalbitzer
 @biologie.uni-regensburg.de

KALVERDA, ARNOUT · University of Leeds · Leeds · Great Britain · a.kalverda@leeds.ac.uk

KAMDEM, NESTOR · Leibniz-Institut für Molekulare Pharmakologie · Berlin · Germany · kamdem@fmp-berlin.de

KAMINKER, ILIA · Weizmann Institute of Science · Rehovot · Israel · ilia.kaminker@weizmann.ac.il KÄMMERER, SIGRID · Goethe Universität Frankfurt · Frankfurt · Germany · kaemmerer@chemie.unifrankfurt.de

KAPTEIN, ROB · Utrecht University · Culemborg · The Netherlands · r.kaptein@uu.nl

KARLSSON, GÖRAN · University of Gothenburg · Göteborg · Sweden · goran.karlsson@nmr.gu.se

KASZYNSKA, JOANNA · Institute of Molecular Physics PAS · Poznan · Poland · bje@ifmpan.poznan.pl

KATTNIG, DANIEL · Max-Planck-Institut für Polymerforschung · Mainz · Germany · kattnig@mpip-mainz.mpg.de

KAZEMI, SINA · Güntert Group · Frankfurt · Germany · kazemi@bpc.uni-frankfurt.de

KEELER, JAMES · Department of Chemistry · Cambridge · Great Britain · jhk10@cam.ac.uk

KELLER, HEIKO · Goethe Universität Frankfurt · Frankfurt · Germany · keller@bio.uni-frankfurt.de

KEMPGENS, PIERRE · Department of Chemistry Rhodes University · Grahamstown · South Africa · p.kempgens@yahoo.fr KÉRI, MÓNIKA · University of Debrecen · Debrecen · Hungary · kerimonika@gmail.com

KERN, THOMAS · Institute of Structural Biology · Neuherberg · Germany · thomas.kern@helmholtzmuenchen.de

KERVERN, GWENDAL · Université Henri Poincaré · Vandœuvre-lès-Nancy CEDEX · France · gwendal.kervern@crm2.uhpnancy.fr KHABIBULIN, DZHALIL ·

Boreskov Institute of catalysis · Novosibirsk · Russia · jalil@catalysis.ru

KHIMYAK, YAROSLAV • Department of Chemistry • Liverpool • Great Britain • khimyak@liv.ac.uk

KHRAMTSOV, VALERY · The Ohio State University · Columbus · USA · Valery.Khramtsov@osumc.edu

KIBRIK, ELÉONORE · TU Kaiserslautern · Kaiserslautern · Germany · eleonore.kibrik@mv.uni-kl.de

KIEFFER, BRUNO · IGBMC · Illkirch · France · kieffer@igbmc.fr

KIELMANN, UDO · Laboratory of Physical Chemisty · Zurich · Switzerland · udo.kielmann@phys.chem.ethz.ch KIM, YONG-BOUM · AK-Schwalbe BMRZ · Frankfurt am Main · Germany · yongboum@gmail.com

KIM, YONGAE · Hankuk University of Foreign Studies · Yong-In · South Korea · yakim@hufs.ac.kr

KIRCHNER, DONATA · Guentert Group · Frankfurt · Germany · kirchner@bpc.uni-frankfurt.de

KISIN, ALEXANDER · SSC GNIIChTEOS · Moscow · Russia · kiskiskis@yandex.ru

KLEIN, MATTHIAS S. · University of Regensburg · Regensburg · Germany · matthias.klein@klinik.uniregensburg.de

KLOSE, DANIEL · University of Osnabrück · Osnabrück · Germany · dklose@uos.de

KNIGHT, MICHAEL · CRMN · Lyon · France · michael.knight@ens-lyon.fr

KOBAYASHI, NAOHIRO · Institute for Protein Research Laboratory · Suita · Japan · naohiro@protein.osaka-u.ac.jp

KOBYLKA, SIMONE · Goethe Universität · Frankfurt am Main · Germany · kobylka@chemie.uni-frankfurt.de KOCH, KLAUS R · Stellenbosch University · Stellenbosch · South Africa · krk@sun.ac.za

KOCKENBERGER, WALTER • Sir Peter Mansfield MR Centre • Nottingham • Great Britain • walter.kockenberger@ nottingham.ac.uk

KOEHLER, JOERG · Institute of Biophysics and Physical Biochemistry · Regensburg · Germany · joerg.koehler@biologie.uniregensburg.de KOGLER, HERBERT · sanofiaventis · Frankfurt am Main · Germany · herbert.kogler@sanofi-aventis.com

KOLKMAN, ARD · Radboud University Nijmegen · Nijmegen · The Netherlands · a.kolkman@nmr.ru.nl

KOLMER, ANDREAS · Clemens-Schöpf-Institut · Darmstadt · Germany · akolmer@thielelab.de

KÖNIG, BERND · Forschungszentrum Jülich · Jülich · Germany · b.koenig@fz-juelich.de

KOOS, MARTIN · Karlsruhe Institute of Technology · Karlsruhe · Germany · martin.koos@kit.edu

KOPTYUG, IGOR · International Tomography Center, SB RAS · Novosibirsk · Russia · koptyug@tomo.nsc.ru KOSTEN, JONAS · Berlin · Germany · kosten@fmp-berlin.de

KOTZÉ, IZAK · Stellenbosch · South Africa · ikotze@sun.ac.za

KOVTUNOV, KIRILL · International Tomography Center SB RAS · Novosibirsk · Russia · kovtunov@tomo.nsc.ru

KOWALCZUK, JOANNA · Institute of Molecular Physics PAS · Poznan · Poland · jak@ifmpan.poznan.pl

KOWALEWSKI, JOZEF · Stockholm University · Stockholm · Sweden · jozef.kowalewski@mmk.su.se

KOZMINSKI, WIKTOR · University of Warsaw, Chemistry Department · Warsaw · Poland · kozmin@chem.uw.edu.pl

KRAHN, ALEXANDER · Bruker BioSpin · Rheinstetten · Germany · alexander.krahn@bruker.de

KRETSCHMER, AXEL · Dow Corning Belgium · Seneffe · Belgium · a.kretschmer@dowcorning.com

KRETZSCHMAR, JÉRÔME • TU Bergakademie Freiberg • Freiberg • Germany • Jerome.Kretzschmar@student. tu-freiberg.de **KROMER, ALEXANDER** · Institute of Physical Chemistry · Stuttgart · Germany · a.kromer@ipc.uni-stuttgart.de

KROPF, CHAHAN · Uni Heidelberg · Heidelberg · Germany · c.kropf@thphys.uni-heidelberg

KRSTIC, BISERA · Goethe University Frankfurt · Frankfurt am Main · Germany · bisera@prisner.de

KRSTIC, IVAN · Goethe University Frankfurt · Frankfurt am Main · Germany · krstic_ivan@prisner.de

KRUMMENACKER, JAN · Institut für Physikalische und Theoretische Chemie · Frankfurt am Main · Germany · krummenacker@prisner.de

KRZYMINIEWSKI, RYSZARD · Poznan · Poland · rku@amu.edu.pl

KUHN, LARS · European Neuroscience Institute Göttingen · Göttingen · Germany · lars.kuhn@gwdg.de

KULIC, ZARKO · Universitaet Konstanz · Konstanz · Germany · zarko.kulic@uni-konstanz.de

KÜNZE, GEORG · Universität Leipzig · Leipzig · Germany · Georg.Kuenze@medizin.unileipzig.de **KUPCE, ERIKS** · Oxford · Great Britain · eriks.kupce@agilent.com

KURZ, MICHAEL · Sanofi-Aventis Deutschland GmbH · Frankfurt · Germany · michael.kurz@sanofi-aventis.com

KURZBACH, DENNIS · Max Planck Institute for Polymer Researc · Mainz · Germany · kurzbach@mpip-mainz.mpg.de

KUTTATHEYIL, ANUSREE VISWANATH · Universität Leipzig · Leipzig · Germany · kuttatheyil@physik.uni-leipzig.de

KWASIBORSKA, MARIA KORNELIA · Warsaw · Poland · nabla@ibb.waw.pl

LACERDA JR., VALDEMAR · Chemistry Department-UFES · Vtória-ES · Brazil · vljuniorqui@gmail.com

LAGUERRE, AISHA · Institute of Biophysical Chemistry · Frankfurt · Germany · laguerre@bpc.uni-frankfurt.de

LAKATOS, ANDREA · Goethe University · Frankfurt am Main · Germany · a.lakatos@em.uni-frankfurt.de

LAKOMEK, NILS-ALEXANDER · NIH · Bethesda · USA · lakomekn@niddk.nih.gov LANG, ANDRAS · Institute of Chemistry/Eotvos University · Budapest · Hungary · langax@chem.elte.hu

LANGE, FRANK · Martin-Luther-Universität Halle-Wittenberg · Halle · Germany · frank.lange2@student.uni-halle.de

LAPINAITE, AUDRONE · EMBL · Heidelberg · Germany · audrone.lapinaite@embl.de

LARSEN, FLEMMING HOFMANN · Department of Food Science · Frederiksberg · Denmark · fhl@life.ku.dk

LAYBOURN, ANDREA · University of Liverpool · Liverpool · Great Britain · A.Laybourn@liv.ac.uk

LECHER, JUSTIN · Structural Biochemistry · Juelich · Germany · j.lecher@fz-juelich.de

LECOCQ, LAURIANE · Institut de Biologie Structurale · Grenoble · France · lauriane.lecoq@ibs.fr

LEE, DONGHAN · Max Planck Institute for Biophysical Chemistry · Goettingen · Germany · dole@nmr.mpibpc.mpg.de

LEGRAND, BAPTISTE · Laboratoire de chimie physique macromoléculaire · Nancy · France · baptiste.legrand@ensic.inplnancy.fr LEINEWEBER, SARAH · Universität zu Lübeck · Lübeck · Germany · sarah.leineweber@chemie.uniluebeck.de

LELLI, MORENO · CRMN (CNRS/ENS Lyon) · Villeurbanne · France · moreno.lelli@ens-lyon.fr

LENARCIC ZIVKOVIC, MARTINA · National Institute of Chemistry · Ljubljana · Slovakian Republic · martina.lenarcic@ki.si

LENDS, ALONS · Latvian Institute of Organic Synthesis · Riga · Latvia · alons@osi.lv

LESAGE, ANNE · University of Lyon · Villeurbanne · France · anne.lesage@ens-lyon.fr

LESOT, PHILIPPE · RMN en Milieu Orienté ICMMO, UMR-CNRS 8182 · Orsay · France · philippe.lesot@u-psud.fr

LESOVOY, DMITRY · Institute of Bioorganic Chemistry RAS · Moscow · Russia · dima_1@nmr.ru

LEUNG, HOI TIK ALVIN LEUNG · Department of Chemistry · Cambridge · Great Britain · htal2@,cam.ac.uk

LEUTZSCH, MARKUS · Institut für Analytische Chemie · Leipzig · Germany · markus.leutzsch@googlemail.com LEVITT, MALCOLM · Southampton University · Southampton · Great Britain · mhl@soton.ac.uk

LIEBLEIN, ANNA LENA · BMRZ · Frankfurt · Germany · lieblein@nmr.uni-frankfurt.de

LIEPINSH, EDVARDS · Latvian Institute of Organic Synthesis · Riga · Latvia · edv@osi.lv

LIERMANN, JOHANNES · Johannes Gutenberg-Universität Mainz · Mainz · Germany · liermann@uni-mainz.de

LILBURN, DAVID · Sir Peter Mansfield Magnetic Resonance Centre · Nottingham · Great Britain · msxdl@nottingham.ac.uk

LIOKATIS, STAMATIOS · Berlin · Germany · liokatis@fmp-berlin.de

LIPISZKO, KAMILA · ETH Zurich · Zurich · Switzerland · kamila.lipiszko@phys.chem. ethz.ch

LOBYSHEVA, IRINA · University of Louvain Medical School UCL · Brussels · Belgium · Irina.Lobysheva@uclouvain.be

LÖHR, FRANK · Institute of Biophysical Chemistry · Frankfurt · Germany · murph@bpc.uni-frankfurt.de LOPEZ, JAKOB J. · Institute for Biophysical Chemistry · Frankfurt · Germany · lopez@chemie.uni-frankfurt.de

LOPEZ, BLANCA · CIC BIOGUNE · Derio · Spain · blopez@cicbiogune.es

LOQUET, ANTOINE · Max Planck Institut · Göttingen · Germany · antoine.loquet@gmail.com

LOTTMANN, PHILIP · Max Planck Institute · Göttingen · Germany · pilo@nmr.mpibpc.mpg.de

LOUIS-JOSEPH, ALAIN · CNRS-ICSN · Palaiseau · France · alain.louis-joseph@ polytechnique.fr

LÖWENSTEIN, JULIA · Fachbereich Physik · Berlin · Germany · julia.loewenstein@fu-berlin.de

LUBECKA, EMILIA · University of Gdansk · Gdansk · Poland · emilial@chem.univ.gda.pl

LUBITZ, WOLFGANG · Max-Planck-Institut für Bioanorganische Chemie · Mülheim an der Ruhr · Germany · wolfgang.lubitz@mpi-mail.mpg.de

LUCHINAT, CLAUDIO · CERM, University of Florence · Sesto Fiorentino(FI) · Italy · luchinat@cerm.unifi.it LÜCKE, CHRISTIAN · Max Planck Research Unit for Enzymology · Halle · Germany · luecke@enzyme-halle.mpg.de

LUDWIG, CHRISTIAN · School of Cancer Sciences · Birmingham · Great Britain · C.Ludwig@bham.ac.uk

LUH, LAURA · Goethe University Frankfurt · Frankfurt · Germany · lauraluh@bpc.uni-frankfurt.de

LÜKEN, ESTER · Physikalische Chemie · Münster · Germany · ester.lueken@uni-muenster.de

LUNDSTRÖM, PATRIK · Linköping University · Linköping · Sweden · patlu@ifm.liu.se

LUY, BURKHARD · Karlsruhe Institute of Technology (KIT) · Karlsruhe · Germany · Burkhard.Luy@kit.edu

LUZ, ZEEV · Weizmann Institute of Science · Rehovot · Israel · zeev.luz@weizmann.ac.il

LYCKA, ANTONIN · Research Institute for Organic Syntheses · Pardubice-Rybitvi · Czech Republic · antonin.lycka@vuos.com

MA, PEIXIANG · Research Center Jülich · Jülich · Germany · p.ma@fz-juelich.de

PARTICIPANTS LIST

MACPAUL, AMBROSE OBOIRA · Worthy International Ltd · Ibadan · Nigeria · nigltd@yahoo.co.uk

MADHU, PERUNTHIRUTHY • DCS • Mumbai • India • madhu@tifr.res.in

MAKAROVA, KATERINA · Medical University of Warsaw · Warsaw · Poland · katerina.makarova@gmail.com

MALTAR STRMECKI, NADICA · Rudjer Boskovic Institute, Division of Physical Ch · Zagreb · Croatia · nstrm@irb.hr

MALTHOUSE, JONATHAN · University College Dublin · Dublin · Ireland · J.Paul.G.Malthouse@ucd.ie

MALVESTITI, IVANI · Universidade Federal de Pernambuco · Recife, PE · Brazil · ivani@ufpe.br

MALZ, FRANK · Deutsches Kunststoff-Institut · Darmstadt · Germany · fmalz@dki.tu-darmstadt.de

MANJUNATHA REDDY, G N · Aix-Marseille Univeirsity · Marseille · France · gnrmanju@etu.univ-cezanne.fr

MANRAO, SURAJ · Isotec · Miamisburg · USA · surajmanra@aol.com MARGRAF, DOMINIK · University Frankfurt · Frankfurt · Germany · DominikMargraf@aol.com

MARINO, ROBERT · LASIR · Villeneuve d'Ascq Cedex · France · robert.marino@ed.univ-lille1

MARION, DOMINIQUE · Institut de Biologie Structurale · Grenoble · France · dominique.marion@ibs.fr

MARKO, ANDRIY · University Frankfurt · Frankfurt · Germany · marko@prisner.de

MARQUARDSEN, THORSTEN · Bruker BioSpin GmbH · Rheinstetten · Germany · thorsten.marquardsen@ bruker.de

MARTINEZ, JESÚS IGNACIO · Instituto de Ciencia de Materiales · Zaragoza · Spain · jimartin@unizar.es

MARX, ANDREAS · Merck KGaA · Darmstadt · Germany · anika.schreck@merck.de

MASON, RONALD · NIEHS/ NIH · Research Triangle Park · USA · mason4@niehs.nih.gov

MATALON, EREZ · Rehovot · Israel · erez.matalon@weizmann.ac.il

MATHIES, JENNIFER · Department of Molecular Physics · Leiden · The Netherlands · mathies@physics.leidenuniv.nl

MATHIEU, DANIEL · BMRZ · Frankfurt · Germany · mathieu@nmr.uni-frankfurt.de

MATULOVA, MARIA · Institute of Chemistry SAS · Bratislava · Slovenia · maria.matulova@savba.sk

MATZAPETAKIS, MANOLIS · ITQB · Oeiras · Portugal · matzman@itqb.unl.pt

MAURER, MARCUS · Universität Frankfurt · Frankfurt am Main · Germany · m.maurer@nmr.uni-frankfurt.de

MAURER, TILL · Genentech · South San Francisco · USA · maurer.till@gene.com

MAYZEL, MAXIM · Swedish NMR Centre at the University of Gothenburg · Gothenburg · Sweden · maxim.mayzel@nmr.gu.se

MEADOWS, PETER · JEOL (UK) Ltd · Welwyn Garden City · Great Britain · Peter.Meadows@jeoluk.com

MEERSMANN, THOMAS · University of Nottingham · Nottingham · Germany · Thomas.Meersmann@ Nottingham.ac.uk **MEIER, CHRISTOPH** · Freie Universität Berlin · Berlin · Germany · meier@physik.fu-berlin.de

MEILOF, FLORIS · Buchem BV · Apeldoorn · The Netherlands · floris@buchem.com

MENDT, MATTHIAS · Fakultät für Physik und Geowissenschaften · Leipzig · Germany · matthias.mendt@uni-leipzig.de

MENEGAZZO, ILEANA · Dipartimento di Scienze Chimiche · Padova · Italy · ileana.menegazzo@unipd.it

MENTINK, FREDERIC · Chimie-Paristech · Paris · France · frederic-mentink@etu.chimieparistech.fr

MERLE, CHRISTIAN · Institut für Technologie · Karlsruhe · Germany · christian.merle@kit.edu

MEYER, ANDREAS · University of Bonn · Bonn · Germany · meyer@pc.uni-bonn.de

MICHEL, ERICH · ETH Zürich · Zurich · Switzerland · michel@mol.biol.ethz.ch

MICHLOVA, VERONIKA · Janssen PMP · Beerse · Belgium · vmichlo1@its.jnj.com MICKE, PETER · Martin-Luther-Universität · Halle · Germany · peter.micke@student.uni-halle.de

MILLET, OSCAR · CIC BIOGUNE · Derio · Spain · omillet@cicbiogune.es

MIRANDA, MAYRA · Odessa · USA · mayra_miranda@sbcglobal.net

MISCHO, ANDRE · Jena · Germany · amischo@fli-leibniz.de

MISHRA, PUSHPA · Tata Institute of Fundamental Research · Mumbai · India · pushpa.iitd@gmail.com

MISRA, SUSHIL · Physics Department · Montreal (Quebecc) · Canada · skmisra@alcor.concordia.ca

MITHU, VENUS · Department of Chemical Sciences · Mumbai · India · venussingh@tifr.res.in

MITRIKAS, GEORGE · NCSR Demokritos · Athens · Greece · mitrikas@ims.demokritos.gr

MIZUSHIMA, NORIKO · Yokohama College of Pharmacy · Yokohama · Japan · n.mizushima@hamayaku.ac.jp MOEBIUS, KLAUS · Dept. Physics, Free University Berlin · Berlin · Germany · moebius@physik.fu-berlin.de

MOEGLE-HOFACKER, FRANZESKA · Institut für Technische Chemie, Uni Stuttgart · Schwäbisch Gmünd · Germany · franzeska.moegle-hofacker@itc. uni-stuttgart.de

MÖLLER, HEIKO · Universität Konstanz · Konstanz · Germany · heiko.moeller@uni-konstanz.de

MOLLICA, GIULIA · Universite' de Provence · Marseille · France · giulia.mollica@univ-provence.fr

MOMOT, KONSTANTIN · Queensland University of Technology · Brisbane · Australia · k.momot@qut.edu.au

MONDESHKI, MIHAIL · Johannes Gutenberg Universität-Mainz · Mainz · Germany · mondeshk@uni-mainz.de

MONTAG, TOBIAS · TU-Darmstadt · Darmstadt · Germany · tmontag@thielelab.de

MONTANARI, LUCIANO · ENI · San Donato Milanese · Italy · luciano.montanari@eni.com

MORRIS, VANESSA · School of Molecular Bioscience · Sydney · Australia · vanessa.morris@sydney.edu.au **MORRIS, GARETH** · School of Chemistry · Manchester · Great Britain · g.a.morris@manchester.ac.uk

MÖRS, KARSTEN · Institute for Biophysical Chemistry · Frankfurt · Germany · moers@em.uni-frankfurt.de

MROZINSKA, JUSTYNA · Department of Physics, Adam Mickiewicz Uniwersity · Poznan · Poland · jw@amu.edu.pl

MUENNEMANN, KERSTIN · Max Planck Institute for polymer research · Mainz · Germany · muenne@mpip-mainz.mpg.de

MUGNAINI, VERONICA · Institute of Materials Science of Barcelona · Bellaterra · Spain · vmugnaini@icmab.es

MUHLE-GOLL, CLAUDIA · Karlsruhe Institute of Technology · Karlsruhe · Germany · claudia.muhle@kit.edu

MURATA, HIROKI · Chiba · Japan · h_murata@graduate.chiba-u.jp

MUSTONEN, PETE · Pines Lab - UC Berkeley · Berkeley, CA · USA · jpmustonen@berkeley.edu

NADEZHDIN, KIRILL · Shemyakin-Ovchinnikov Institute of Bioorganic Chem · Moscow · Russia · verne@nmr.ru NAKAJI, TOMOKO · Innovation Center for Medical Radox Navigation, Ky · Fukuoka · Japan · tmko386@redoxnavi.med. kyushu-u.ac.jp NAKAO, MOTONAO · Fukuoka · Japan · nao.jp1@gmail.com

NAND, DEEPAK · NMR Spectroscopy Research Group · Utrecht · The Netherlands · deepak@nmr.chem.uu.nl

NASIRI, AMIR · FB 15 / Institut f. Molekulare Biowissenschaften · Frankfurt am Main · Germany · Nasiri@bio.uni-frankfurt.de

NAUMCZUK, BEATA · PAS Institute of Organic Chemistry · Warsaw · Poland · b_naum@wp.pl

NEDIELKOV, RUSLAN · Universitaet Konstanz · Konstanz · Germany · ruslan.nedielkov@uni-konstanz.de

NEESE, FRANK · University of Bonn · Bonn · Germany · theochem@thch.uni-bonn.de

NESTLE, NIKOLAUS · BASF SE GKC/R · Ludwigshafen · Germany · nikolaus.nestle@basf.com

NEUDECKER, PHILIPP · Forschungszentrum Jülich · Jülich · Germany · p.neudecker@fz-juelich.de NEUDERT, OLIVER · Max Planck Institute for Polymer Research · Mainz · Germany · oliver.neudert@mpip-mainz. mpg.de

NEUGEBAUER, PETR · J.W. Goethe-Universität Frankfurt · Frankfurt am Main · Germany · neugebauer@prisner.de

NICK, THOMAS · MPI -bpc Göttingen · Göttingen · Germany · thomas.nick@stud.unigoettingen.de

NICOLESCU, ALINA · Institute of Macromolecular Chemistry · Iasi · Romania · alina220382@yahoo.com

NIELSEN, GERD · Goethe Universität Frankfurt · Frankfurt am Main · Germany · nielsen@nmr.uni-frankfurt.de

NIELSEN, JAKOB · University of Aarhus · Aarhus · Denmark · jtn@chem.au.dk

NIELSEN, NIELS CHR. · Aarhus University · Aarhus C · Denmark · ncn@inano.dk

NIMBALKAR, MANOJ · Department Chemie · Garching, München · Germany · nimbalkarm@gmail.com

NORDIN, MATIAS · Gothenburg · Sweden · matias@chalmers.se NORMAN, DAVID · School of Life Sciences · Dundee · Great Britain · d.g.norman@dundee.ac.uk

NOVACEK, JIRI · Masaryk University · Brno · Czech Republic · novej@ncbr.chemi.muni.cz

NOVIKOV, VALENTIN · INEOS RAS · Moscow · Russia · novikov84@ineos.ac.ru

NOWAKOWSKI, MICHAL · Institute of Biochemistry and Biophysics, PAS · Warsaw · Poland · lyam@ibb.waw.pl

NOZINOVIC, SENADA · Uni Frankfurt · Frankfurt am Main · Germany · nozinovic@nmr.uni-frankfurt.de

O'FLYNN, DONAL · UCD School of Biomolecular and Biomedical Science · Dublin 4 · Ireland · d.oflynn2@gmail.com

OHLENSCHLAEGER, OLIVER · Leibniz-Institut fuer Altersforschung · Jena · Germany · oliver@fli-leibniz.de

OK, SALIM · Dhahran · Saudi Arabia · salimok@kfupm.edu.sa

latnofngltd@yahoo.com

OMOKOR, AYAH SAMSON · Latnof Nigeria Limited · Idimu, Lagos · Nigeria · **ONG, YEAN SIN** · Goethe-Universität Frankfurt Am Main · Frankfurt am Main · Germany · ong@em.uni-frankfurt.de

ORLOV, NIKOLAY · Zelinsky Institute of Organic Chemistry RAS · Moscow · Russia · onv@ioc.ac.ru

ÖZSAYIN, FULYA · Hacettepe University · Ankara · Turkey · fulyaozsayin@hacettepe.edu.tr

PAAR, DALIBOR · University of Zagreb · Zagreb · Croatia · dpaar@phy.hr

PAASCH, SILVIA · Technische Universität Dresden · Dresden · Germany · silvia.paasch@chemie.tu-dresden.de

PAASKE, BERIT · Department of Chemistry, Aarhus University · Aarhus C · Denmark · beritp@chem.au.dk

PAPAVASSILIOU, GEORGIOS · Institute of Materials Science, NCSR Demokritos · Aghia Paraskevi · Greece · gpapav@ims.demokritos.gr

PARIGI, GIACOMO · University of Florence · Sesto Fiorentino · Italy · parigi@cerm.unifi.it

PARKINSON, MATT · Borealis Polyolefine GmbH · Linz · Austria · matt.parkinson@borealisgroup.com PATEL, DHARMESH · University of Warwick · Coventry · Great Britain · Dharmesh.K.Patel@warwick.ac.uk

PATHAN, MEERAKHAN · CEISAM · Nantes Cedex 03 · France · meerakhan.pathan@unive-nantes.fr

PAULETA, SOFIA · REQUIMTE-CQFB · Caparica · Portugal · srp@dq.fct.unl.pt

PAVLOVSKAYA, GALINA · University of Nottingham · Nottingham · Great Britain · galina.pavlovskaya@nottingham. ac.uk

PEDERSEN, MARIE · Monash Institute of Pharmaceutical Sciences · Parkville · Australia · marie.pedersen@monash.edu

PEDERSEN, ANDERS · University of Gothenburg · Gothenburg · Sweden · anders.pedersen@nmr.gu.se

PELC, DAMJAN · University of Zagreb · Zagreb · Croatia · dpelc@dominis.phy.hr

PENK, ANJA · Uni Leipzig · Leipzig · Germany · anja.penk@medizin.uni-leipzig.de

PEREZ-NAVARRO, MONTSERRAT · Universidad de Zaragoza · Zaragoza · Spain · mperezna@gmail.com **PERLO, JOSEFINA** · ITMC · Aachen · Germany · joperlo@itmc.rwth-aachen.de

PERLO, JUAN · ACT · Aachen · Germany · juan.perlo@act-aachen.com

PERSSON, CECILIA · University of Gothenburg · Gothenburg · Germany · cecilia.persson@nmr.gu.se

PETINA, OLGA · Universität Hamburg · Hamburg · Germany · petina@chemie.uni-hamburg.de

PETROVA, MARINA · Latvian Institute of Organic Synthesis · Riga · Latvia · marina@osi.lv

PETROVA, MARINA · International Tomography Center SB RAS · Novosibirsk · Russia · petrovamv@tomo.nsc.ru

PEUKER, SEBASTIAN · Köln · Germany · sebastian.peuker@caesar.de

PIEVO, ROBERTA · Max Planck Institute for Biophysical Chemistry · Göttingen · Germany · roberta.pievo@mpibpc.mpg.de

PILEIO, GIUSEPPE · University of Southampton · Southampton · Great Britain · g.pileio@soton.ac.uk **PINTACUDA, GUIDO** · CNRS - ENS Lyon · Villeurbanne · France · guido.pintacuda@ens-lyon.fr

PIRKER, KATHARINA · University College London · London · Great Britain · k.pirker@ucl.ac.uk

PLACKMEYER, JÖRN · Goethe University Frankfurt · Frankfurt am Main · Germany · jp@prisner.de

PLAVEC, JANEZ · National Institute of Chemistry · Ljubljana · Slovakian Republic · janez.plavec@ki.si

PLITZKO, INKEN · F. Hoffmann-La Roche · Basel · Switzerland · inken.plitzko@roche.com

PODBEVSEK, PETER · National Institute of Chemistry · Ljubljana · Slovakian Republic · peter.podbevsek@ki.si

POHL, RADEK · Prague · Czech Republic · pohl@uochb.cas.cz

POLUEKTOV, OLEG · Argonne National Laboratory · Argonne, IL · USA · Oleg@anl.gov

POLYHACH, YEVHEN · ETH Zurich · Zurich · Switzerland · yevhen.polyhach@phys. chem.ethz.ch **PONS, MIQUEL** · Insitute for Research in Biomedicine · Barcelona · Spain · mpons@ub.edu

PÖPPL, ANDREAS · Universität Leipzig · Leipzig · Germany · poeppl@physik.uni-leipzig.de

PORNSUWAN, SORAYA · Max-Planck Institute for biophysical chemistry · Göttingen · Germany · soraya04@yahoo.com

PORZEL, ANDREA · Leibniz-Institut für Pflanzenbiochemie · Halle (Saale) · Germany · aporzel@ipb-halle.de

POST, CAROL · Purdue University · West Lafayette, IN · USA · cbp@purdue.edu

POZEK, MIROSLAV · University of Zagreb · Zagreb · Croatia · mpozek@phy.hr

PRADE, ELKE · Strukturbiologie · Garching · Germany · elke.prade@tum.de

PRESTEL, ANDREAS · Universität Konstanz · Konstanz · Germany · andreas.2.prestel@uni-konstanz.de

PRISNER, THOMAS · Goethe University Frankfurt · Frankfurt am Main · Germany · Prisner@Chemie.Uni-Frankfurt.de **PROBERT, FAY** · Warwick University · Coventry · Great Britain · f.probert@warwick.ac.uk

PRÜßMANN, KLAAS · ETH Zürich · Zürich · Switzerland · pruessmann@biomed.ee.ethz.ch

QUITSCHAU, MELANIE · Institute of Pharmaceutical Biology · Basel · Switzerland · melanie.quitschau@unibas.ch

QUOILIN, CAROLINE · Université de Liège · Liège · Belgium · cquoilin@ulg.ac.be

RACHOCKI, ADAM · Institute of Molecular Physics PAS · Poznan · Poland · radam@ifmpan.poznan.pl

RAKVIN, BORIS · Rudjer Boskovic Institute · Zagreb · Croatia · rakvin@irb.hr

RAMÍREZ GUALITO, KARLA ELIZABETH · Universität Leipzig · Leipzig · Germany · karamirezg@prodigy.net.mx

RAMM, PAUL · University of Regensburg · Regensburg · Germany · paul.ramm@biologie.uniregensburg.de

RAMOS, ANDRES · MRC National Institute for Medical Research · London · Great Britain · aramos@nimr.mrc.ac.uk RANI, RAJ · Forschungszentrum Juelich GmbH · Jülich · Germany · r.rani@fz-juelich.de

RASHEED, ALAKA SAKIRUHEED · Worthy International Enterprises · Ibadan · Nigeria · nigltd@yahoo.co.uk

RASMUSSEN, KENNETH · Graz University of Technology · Graz · Austria · kenneth.rasmussen@tugraz.at

RATAJCZYK, TOMASZ · Technische Universität Darmstadt · Darmstadt · Germany · tratajczykicho@gmail.com

RATAN KUMAR, RAI · Centre of Biomedical Magnetic Resonance · Lucknow · India · ratancbmr@gmail.com

RÄUBER, CHRISTOPH · Universität Leipzig · Leipzig · Germany · raeuber@rz.uni-leipzig.de

RAUE, MARKUS · IAP, FH-Aachen · Aachen · Germany · raue@fh-aachen.de

RAVERA, ENRICO · CERM - University of Florence · Sesto Fiorentino · Italy · ravera@cerm.unifi.it

RECKEL, SINA · University of Frankfurt · Frankfurt am Main · Germany · reckel@bpc.uni-frankfurt.de **REGGIE, LENICA** · Goethe Universität Frankfurt · Frankfurt am Main · Germany · lenicareggie@googlemail.com

REGINSSON, GUNNAR · University of St-Andrews · St Andrews · Great Britain · gwr4@st-andrews.ac.uk

REIJERSE, EDWARD • Max Planck Institut für Bioanorganische Chemie • Mülheim an der Ruhr • Germany • reijerse@mpi-muelheim.mpg.de

REINING, ANKE · Uni Frankfurt · Frankfurt am Main · Germany · reining@nmr.uni-frankfurt.de

REINSPERGER, TONY · Karlsruhe · Germany · tony.reinsperger@student.kit.edu

RENTSCHLER, EVA · University Mainz · Mainz · Germany · rentschl@uni-mainz.de

REZAEI-GHALEH, NASROLLAH · Max Planck Institute for Biophysical Chemistry · Göttingen · Germany · nare@nmr.mpibpc.mpg.de

RIBEIRO CELINSKI, VINICIUS · Ludwig-Maximilians-Universität München · Munich · Germany · vrich@cup.uni-muenchen.de

RICHTER, CHRISTIAN · Center for Biomolecular Magnetic Resonance (BMRZ) · Frankfurt · Germany · ric@nmr.uni-frankfurt.de RICHTER, THOMAS · Universität Leipzig · Leipzig · Germany · T.Richter@aszm.de

RÍMAL, V. · Faculty of Mathematics and Physics · Prague 8 · Czech Republic · vaclav.rimal@mff.cuni.cz

RING, HATTIE · Pines Lab -UC Berkeley · Berkeley, CA · USA · hziegler@berkeley.edu

RINNENTHAL, JÖRG · Frankfurt am Main · Germany · rinnenthal@nmr.uni-frankfurt.de

ROBOTTA, MARTA · Universität Konstanz · Konstanz · Germany · marta.robotta@uni-konstanz.de

RODEWALD, MATTHIAS · Jeol (Germany) GmbH · Eching · Germany · rodewald@jeol.de

RODUNER, EMIL · Universität Stuttgart · Stuttgart · Germany · e.roduner@ipc.uni-stuttgart.de

ROELOFS, NICOLAS · Agilent Technologies · Santa Clara · USA · nick_roelofs@agilent.com

ROGERSON, ALEXANDRIA

• University of Manchester • Manchester • Great Britain • alexandria.rogerson@postgrad. manchester.ac.uk **ROGNE, PER** · European Neuroscience Institute-Göttingen · Göttingen · Germany · p.rogne@eni-g.de

ROGOV, VLADIMIR · Institute of Biophysical Chemistry · Frankfurt-am-Main · Germany · rogov@bpc.uni-frankfurt.de

ROGOVA, NATALIA · Institute of Biophysical Chemistry · Frankfurt-am-Main · Germany · Rogova@bpc.uni-frankfurt.de

ROOS, MATTHIAS · Martin-Luther-Universität Halle-Wittenberg · Halle/Saale · Germany · matthias.roos@student.uni-halle.de

ROSE, HONOR MAY · Berlin · Germany · rose@fmp-berlin.de

ROZENKNOP, ALEXIS • Institute of Biophysical Chemistry • Frankfurt am Main • Germany • rozenknop@bpc.uni-frankfurt.de

RUSSO, LUIGI · Max Planck Institute for Biophysical Chemistry · Göttingen · Germany · luru@nmr.mpibpc.mpg.de

RYADUN, ALEXEY · Nikolaev Institute of Inorganic Chemistry · Novosibirsk · Russia · dosca@yandex.ru

RYBKA, KARIN · Goethe Universtität Frankfurt am Main · Frankfurt am Main · Germany · rybka@nmr.uni-frankfurt.de SAALWÄCHTER, KAY · Universität Halle-Wittenberg · Halle · Germany · kay.saalwaechter@physik.unihalle.de

SABBA, NASSILA · USTHB Faculty of Chemistry · Algiers · Algeria · nassilasabba@yahoo.fr

SAHAKYAN, ALEKSANDR · Chemistry Department · Cambridge · Great Britain · as952@cam.ac.uk

SAKHAII, PEYMAN · Sanofi-Aventis Deutschland GmbH · Frankfurt · Germany ·

SAKURAI, SATOSHI · JEOL RESONANCE Inc. · Tokyo · Japan · sasakura@jeol.co.jp

SALMON, LOIC · IBS · Grenoble · France · loic.salmon@ibs.fr

SALVI, NICOLA · Ecole Polytechnique Fédérale de Lausanne (EPFL) · Lausanne · Switzerland · nicola.salvi@epfl.ch

SANAKIS, YIANNIS · Institute of Materials Science, NCSR Demokritos · Athens · Greece · sanakis@ims.demokritos.gr

SASAKAWA, HIROAKI · JEOL UK Ltd. · WelwynGarden City · Great Britain · hiroaki.sasakawa@jeoluk.com SAUERWEIN, ANDREA CHRISTINE · Deparment of Chemistry · Southampton · Great Britain · acs2v07@soton.ac.uk

SAVCHENKO, DARIIA · Institute of Semiconductor Physics, NASU · Kiev · Ukraine · darias@gala.net

SCHÄLER, KERSTIN · Martin-Luther-Universität Halle-Wittenberg · Halle/Saale · Germany · kerstin.schaeler@physik.uni-halle.de

SCHELER, ULRICH · Leibniz-Institut für Polymerforschung Dresden e.V. · Dresden · Germany · scheler@ipfdd.de

SCHERER, HARALD · Albert-Ludwigs-Universität Freiburg · Freiburg · Germany · harald.scherer@ac.uni-freiburg.de

SCHIEBORR, ULRICH · Universität Frankfurt · Frankfurt am Main · Germany · schieborr@nmr.uni-frankfurt.de

SCHIEMANN, OLAV · St Andrews · Great Britain · os11@st-andrews.ac.uk

SCHIRRA, HORST JOACHIM • The University of Queensland • Brisbane • Australia • h.schirra@uq.edu.au

SCHLAGNITWEIT, JUDITH · Johannes Kepler University · Linz · Austria · judith.schlagnitweit@gmail.com **SCHLEICHER, ERIK** · Institut für Physikalische Chemie · Freiburg · Germany · erik.schleicher@physchem.unifreiburg.de

SCHLEPCKOW, KAI · Institute for Organic Chemistry and Chem. Biology · Frankfurt · Germany · schlepckow@nmr.uni-frankfurt.de

SCHLOERER, NILS · Universitaet zu Koeln · Koeln · Germany · nils.schloerer@uni-koeln.de

SCHMIDT, ELENA · Güntert Group · Frankfurt am Main · Germany · schmidt@bpc.uni-frankfurt.de

SCHMIDT, JOCHEN · Inst. für Org. Chem. und Chem. Biol. (AK Schwalbe) · Frankfurt am Main · Germany · Jo.Schmidt@nmr.uni-frankfurt.de

SCHMIDTKE, SINA · Inst f. Molekulare Biowissenschaften · Frankfurt · Germany · Schmidtke@bio.uni-frankfurt.de

SCHMIDTS, VOLKER · Darmstadt · Germany · vschmidts@thielelab.de

SCHMITT, PETER · Bayer Pharma AG · Wuppertal · Germany · Peter.Schmitt@bayer.com

SCHNEGG, ALEXANDER · Helmholtz-Zentrum Berlin für Materialien und Energie · Berlin · Germany · alexander.schnegg@helmholtzberlin.de SCHÖNHOFF, MONIKA · Universität Münster · Münster · Germany · schoenho@uni-muenster.de

SCHÖNIG, SARAH · Universität zu Lübeck · Lübeck · Germany · sarah.schoenig@chemie.uniluebeck.de

SCHRÖDER, CORNELIA · Institut für Physikalische Chemie WWU Münster · Münster · Germany · c_schr21@uni-muenster.de

SCHUBEIS, TOBIAS · Helmholtz Centre for Infection Research · Braunschweig · Germany · tobias.schubeis@helmholtz-hzi.de

SCHUCK-HAHN, REGINA · Agilent Technologies · Santa Clara · USA · regina.schuck@agilent.com

SCHUETZ, DENISE · Insitute for Physical and Theoretical Chemistry · Frankfurt · Germany · denise@prisner.de

SCHULZE SÜNNINGHAUSEN, DAVID · Karlsruher Institut für Technologie · Karlsruhe · Germany · david.schulze-suenninghausen @gmx.de

SCHÜNKE, SVEN · Research Center Jülich · Jülich · Germany · s.schuenke@fz-juelich.de

SCHWALBE, HARALD · Goethe-Universität Frankfurt · Frankfurt am Main · Germany · schwalbe@nmr.uni-frankfurt.de SCHWARTEN, MELANIE · Institut de Biologie Structurale J.P. Ebel · GRENOBLE Cedex 1 · Germany · melanie.schwarten@ibs.fr

SCHWIEDER, MARCO · Jeol (Germany) GmbH · Eching · Germany · schwieder@jeol.de

SEEGER, KARSTEN · University of Lübeck · Lübeck · Germany · karsten.seeger@chemie.uniluebeck.de

SEGAWA, TAKUYA · EPFL · Lausanne · Switzerland · takuya.segawa@epfl.ch

SEKI, HIROKO · Chiba University · Chiba · Japan · seki@faculty.chiba-u.jp

SERSA, IGOR · Jozef Stefan Institute · Ljubljana · Slovakian Republic · igor.sersa@ijs.si

SHAPIRO, YURY E. · Bar-Ilan University · Ramat-Gan · Israel · shapiro@nmrsgi4.ls.biu.ac.il

SHESTAKOVA, PAVLETTA · Institute of Organic Chemistry, BAS · Sofia · Bulgaria · psd@orgchm.bas.bg

SHESTAKOVA, ALLA · State Scientific Center RF GNIIChTEOS · Moscow · Russia · alshestakova@yandex.ru SHIMADA, AIKO · JEOL RESONANCE · Tokyo · Japan · ashimada@jeol.co.jp

SHIMOIKEDA, YUICHI · JEOL RESONANCE Inc. · Akisima · Japan · yshimoik@jeol.co.jp

SHU, JIE · Mainz · Germany · shu@mpip-mainz.mpg.de

SIEBERT, HANS-CHRISTIAN · Research Institute of Bioinf. & Nanotechnol. · Kiel · Germany · info@ri-b-nt.de

SIGURDSSON, SNORRI · University of Iceland · Reykjavik · Iceland · snorrisi@hi.is

SILAKOV, ALEXEY · Max-Planck-Institut für Bioanorganische Chemie · Mülheim an der Ruhr · Germany · silakov@mpi-muelheim.mpg.de

SILVERS, ROBERT · Frankfurt am Main · Germany · silvers@nmr.uni-frankfurt.de

SIMOVA, SVETLANA · Inst Org Chem Centre Phytochem · Sofia · Bulgaria · sds@orgchm.bas.bg

SINNIGE, TESSA · Utrecht University · Utrecht · The Netherlands · t.sinnige1@uu.nl SIX, JOSEPH · University of Nottingham · Nottingham · Great Britain · msxjs@nottingham.ac.uk

SKET, PRIMOZ · National Institute of Chemistry · Ljubljana · Slovakian Republic · primoz.sket@ki.si

SKLENAR, VLADIMIR · Masaryk University · Brno · Czech Republic · sklenar@chemi.muni.cz

SKORA, LUKASZ · Biozentrum, University of Basel · Basel · Switzerland · lukasz.skora@unibas.ch

SMINOVA, TATYANA · North Carolina State University · Raleigh · USA · Tatyana_Smirnova@ncsu.edu

SMIRNOV, ALEX · North Carolina State University · Raleigh, North Carolina · USA · Alex Smirnov@ncsu.edu

SMOLENTSEVA, IRINA · LLC "NIOST" · Tomsk · Russia · sii@niost.ru

SMRECKI, VILKO · Rudjer Boskovic Institute · Zagreb · Croatia · smrecki@irb.hr

SOKEI, AKIKO · Innovation Center for Medical Radox Navigation · Fukuoka · Japan · sokeiaki@redoxnavi.med. kyushu-u.ac.jp **SOKOLOWSKI, TOBIAS** · tesa SE · Hamburg · Germany · tobias.sokolowski@tesa.com

SOLTESOVA, MARIA · Department of Low Temperature Physics · Prague · Czech Republic · maria.soltesova@gmail.com

SOMMER, LISA · Technische Universität München · Garching · Germany · lisa.sommer@tum.de

SORGENFREI, NILS · University of Regensburg · Regensburg · Germany · nils.sorgenfrei@chemie.uniregensburg.de

SOTTINI, SILVIA · Leiden University, LION · Leiden · The Netherlands · sottini@physics.leidenuniv.nl

SPEHR, JOHANNES · Helmholtz Zentrum für Infektionsforschung · Braunschweig · Germany · johannes.spehr@helmholtz-hzi.de

SPEVACEK, JIRI · Institute of Macromol. Chemistry AS CR, v.v.i. · Prague · Czech Republic · spevacek@imc.cas.cz

SPIESS, HANS WOLFGANG · Max-Planck-Institut fuer Polymerforschung · Mainz · Germany · spiess@mpip-mainz.mpg.de

SPINDLER, PHILIPP · Universität Frankfurt · Frankfurt am Main · Germany · philipp@prisner.de SPITZFADEN, CLAUS · GlaxoSmithKline · Stevenage · Great Britain · Claus.Spitzfaden@gsk.com

SPÖRNER, MICHAEL • Lehrstuhl für Biophysik, Universität Regensburg • Regensburg • Germany • michael1.spoerner@biologie.uni-r.de

SPRONK, CHRIS · Spronk NMR Consultancy · Vilnius · Lithuania · chris@spronknmr.eu

SPROULES, STEPHEN · School of Chemistry · Manchester · Great Britain · stephenworldwide@gmail.com

SREERAMULU, SRIDHAR · J. W. Goethe-University Frankfurt am Main · Frankfurt am Main · Germany · sridhar@nmr.uni-frankfurt.de

STANEK, JAN · Faculty of Chemistry · Warsaw · Poland · janstanek@chem.uw.edu.pl

STEFER, SUSANNE · Institute of Biophysical Chemistry · Frankfurt/Main · Germany · susanne.stefer@bpc.uni-frankfurt.de

STEHLE, JOCHEN · Frankfurt · Germany · stehle@nmr.uni-frankfurt.de

STEHLE, TANJA · Institute for Organic Chemistry and Chemical Biolo · Frankfurt am Main · Germany · machnik@nmr.uni-frankfurt **STEINBACHER, JÜRGEN** · Christian Doppler Klinik · Salzburg · Austria · j.steinbacher@salk.at

STEINERT, HANNAH · BMRZ · Frankfurt · Germany · steinert@nmr.uni-frankfurt.de

STEINHOFF, HEINZ-JÜRGEN · Universität Osnabrück · Osnabrück · Germany · hsteinho@uos.de

STERNICZUK, MARCIN · Institute of Nuclear Chemistry and Technology · Warsaw · Poland · m.sterniczuk@ichtj.waw.pl

STIEFVATER-THOMAS, BENJAMIN · Pilkington · Lathom · Great Britain · ben.thomas@pilkington.com

STILLER, SEBASTIAN · BMRZ · Frankfurt am Main · Germany · Stiller@nmr.uni-frankfurt.de

STOLDT, MATTHIAS · Forschungszentrum Jülich · Jülich · Germany · m.stoldt@fz-juelich.de

STOLL, RAPHAEL · Ruhr University of Bochum · Bochum · Germany · raphael.stoll@ruhr-uni-bochum.de

STRAASOE, LASSE ARNT · Aarhus University · Aarhus C · Denmark · lassea@inano.dk **STRANDBERG, ERIK** · Karlsruhe Institute of Technology · Karlsruhe · Germany · erik.strandberg@kit.edu

STREHMEL, VERONIKA · Hochschule Niederrhein · Krefeld · Germany · veronika.strehmel@hsniederrhein.de

STUPIC, KARL · University of Nottingham · Nottingham · Great Britain · Karl.Stupic@nottingham.ac.uk

SUBRAMANIAN, SANKARAN · National Institutes of Health · Bethesda · USA · subu@helix.nih.gov

SUN, NING · ITMC, RWTH-Aachen University · Aachen · Germany · sun@itmc.rwth-aachen.de

SUTER, DIETER · TU Dortmund · Dortmund · Germany · Dieter.Suter@tu-dortmund.de

SWADA, MASAHISA · fukuoka · Japan · msawada@jeol.co.jp

SZIEGAT, FRIEDERIKE · BMRZ · Frankfurt am Main · Germany · heinicke@nmr.uni-frankfurt.de

SZYDEL, DIANE · Isotec · Miamisburg · USA · diane.szydel@sial.com **TÄHTINEN, PETRI** · University of Turku · Turku · Finnland · peppe@utu.fi

TAKAFUMI, TAKAHASHI · Nippon Steel Corporation · Chiba · Japan · takahashi.takafumi@nsc.co.jp

TANKOUA KWAMEN, D. RANCE · Macromolecular chemistry RWTH Aachen · Aachen · Germany · Kwamen@itmc.rwth-aachen.de

TATE, SHIN-ICHI · Hiroshima University · Hiroshima · Japan · tate@hiroshima-u.acjp

TAVEL, LAURETTE · Department of Chemistry · Liège · Belgium · ltavel@ulg.ac.be

TAYLOR, NICK · John Wiley & Sons Ltd · Chichester · Great Britain · ntaylor@wiley.com

TELKKI, VILLE-VEIKKO · University of Oulu · University of Oulu · Finnland · ville-veikko.telkki@oulu.fi

TESSARI, MARCO · Radboud University Nijmegen · Nijmegen · The Netherlands · m.tessari@science.ru.nl

THEILLET, FRANÇOIS-XAVIER · Berlin · Germany · theillet@fmp-berlin.de THEISGEN, STEPHAN · Universität Leipzig · Leipzig · Germany · stephan.theisgen@medizin.unileipzig.de

THIAGARAJAN, PALLAVI · Institute for Complex Systems 6 · Jülich · Germany · p.thiagarajan@fz-juelich.de

THIELE, CHRISTINA M. · Technische Universität Darmstadt · Darmstadt · Germany · cthiele@thielelab.de

THOMAS, DONALD · Mark Wainwright Analytical Centre · Kensington · Australia · donald.thomas@unsw.edu.au

THOMAS, RISSE · Freie Universität Berlin · Berlin · Germany · risse@chemie.fu-berlin.de

THONGWICHIAN, ROSSUKON · Berlin · Germany · Thongwichian@fmp-berlin.de

THUREAU, PIERRE · Marseille · France · pierre.thureau@univ-provence.fr

TIKOLE, SUHAS · AK Prof. Dr. Güntert · Frankfurt am Main · Germany · suhastikole@bpc.uni-frankfurt.de

TISCHLER, MARCO · Darmstadt · Germany · m.tischler@chemie.tu-darmstadt.de **TKACH, IGOR** · Research Group Electron Paramagnetic Resonance · Göttingen · Germany · Igor.Tkach@mpibpc.mpg.de

TOSNER, ZDENEK · Charles University in Prague · Prague · Czech Republic · tosner@natur.cuni.cz

TRIPSIANES, KONSTANTINOS · Helmholtz Zentrum Muenchen · Garching · Germany · kostas.tripsianes@tum.de

TRISKOVA, OLGA · Masaryk University · Brno · Czech Republic · 175607@mail.muni.cz

TRITT-GOC, JADWIGA · Institute of Molecular Physics PAS · Poznan · Poland · jtg@ifmpan.poznan.pl

TSCHIERSKE, NICOLE · Beiersdorf AG · Hamburg · Germany · Nicole.Tschierske@Beiersdorf.com

TUFAR, PETER · Uni Frankfurt · Frankfurt · Germany · peter.tufar@bpc.uni-frankfurt.de

TÜRKE, MARIA-TERESA · Max Planck Institute for Biophysical Chemistry · Göttingen · Germany · mtuerke@gwdg.de

TÜRKKAN, ERCAN · Selcuk University · Konya · Turkey · eturkkan@selcuk.edu.tr **TZOU, DER-LII** · Institute of Chemistry, Academia Sinica · Nankang, Taipei · Taiwan · tzougate@gate.sinica.edu.tw

ULLRICH, SANDRA JOHANNA · Goethe University Frankfurt · Frankfurt a.M. · Germany · ullrich@em.uni-frankfurt.de

UNNERSTÅLE, SOFIA · Stockholm University · Stockholm · Sweden · sofia.unnerstale@dbb.su.se

VABULAS, MARTIN · Inst.f.biophysikalische Chemie · Frankfurt · Germany · vabulas@em.uni-frankfurt.de

VACA CHAVEZ, FABIAN · University of Lisbon · Lisbon · Portugal · fvchavez@cii.fc.ul.pt

VALENTIN, LISETT · Universität Leipzig Institut für Analytische Chemi · Leipzig · Germany · valentin@chemie.uni-leipzig.de

VAN BEELEN, NICO · Akzo Nobel Car Refinishes BV · Sassenheim · The Netherlands · Nico.VanBeelen@akzonobel.com

VAN DOORSLAER, SABINE · University of Antwerp · Antwerp · Belgium · sabine.vandoorslaer@ua.ac.be

VAN DUYNHOVEN, JOHN · Unilever R&D · Vlaardingen · The Netherlands · john-van.duynhoven @unilever.com VAN ECK, ERNST · Institute for Molecules and Materials · Nijmegen · The Netherlands · erhve@science.ru.nl

VAN GASTEL, MAURICE · Universität Bonn · Bonn · Germany · vgastel@pc.uni-bonn.de

VAN INGEN, HUGO · Utrecht University · Utrecht · The Netherlands · hugo.van.ingen@gmail.com

VAN SLAGEREN, JORIS · Universitaet Stuttgart · Stuttgart · Germany · slageren@ipc.uni-stuttgart.de

VAN SON, MARTIN · Leiden · The Netherlands · son@physics.leidenuniv.nl

VARGHESE, SABU · Juelich · Germany · sabuvarghesem@gmail.com

VASSILEV, NIKOLAY · Institute of Organic Chemistry · Sofia · Bulgaria · niki@orgchm.bas.bg

VEGA, SHIMON · Weizmann Institute of Science · Rehovot · Israel · shimon.vega@weizmann.ac.il

VELTE, CAROLINE · Max-Planck-Institut für Polymerforschung · Mainz · Germany · velte@mpip-mainz.mpg.de VENKATA RAMANA CHARY, KANDALA · TIFR · Mumbai · India · chary@tifr.res.in

VERZINI, SILVIA · Berlin · Germany · verzini@fmp-berlin.de

VIEL, STÉPHANE · Aix Marseille University · Marseille · France · s.viel@univ-cezanne.fr

VINTHER, JOACHIM M. · Aarhus University · Aarhus · Denmark · joachimv@inano.dk

VÖGELI, BEAT · Laboratory of Physical Chemistry · Zürich · Switzerland · beat.voegeli@phys.chem.ethz.ch

VOGTHERR, MARTIN · Merck KGaA · Darmstadt · Germany · martin.vogtherr@merck.de

VOIGT, NADINE · Institut für Physikalische Chemie WWU Münster · Münster · Germany · n voig02@uni-muenster.de

VOIGT, STEPHAN · Darmstadt · Germany · voigt@chemie.tu-darmstadt.de

VON REKOWSKI, FELICITAS · Universität Regensburg · Regensburg · Germany · f.vonrekowski@online.de **VORONINA, ELENA** · Universitaet zu Koeln · Koeln · Germany · elena.voronina@uni-koeln.de

VRIELINCK, HENK · Ghent University Dept. Solid State Sciences · Gent · Belgium · Henk.Vrielinck@ugent.be

VRTNIK, STANISLAV · J. Stefan Institute · Ljubljana · Slovakian Republic · stane.vrtnik@ijs.si

WACK, JULIA · Universität Bayreuth · Bayreuth · Germany · julia.wack@uni-bayreuth.de

WACKER, ANNA · Goethe-Universität Frankfurt · Frankfurt · Germany · froehlich@nmr.uni-frankfurt.de

WAGNER, GERHARD · Harvard Medical School · Boston · USA · gerhard_wagner@hms.harvard. edu

WALTER, KORVIN · MPI for biophysical chemistry · Göttingen · Germany · kowa@nmr.mpibpc.mpg.de

WANG, IREN · Institute of Structural Biology · Neuherberg · Germany · iren.wang@helmholtz-muenchen.de

WANG, XIAOLIN · University College London · London · Great Britain · xiaolin.wang@ucl.ac.uk WARD, RICHARD · University of St Andrews · St Andrews · Great Britain · rw60@st-andrews.ac.uk

WEBER, JULIA · Weinbach · Germany · Julia.weber1@gmx.de

WEINGARTH, MARKUS · De Bilt · The Netherlands · m.h.weingarth@uu.nl

WERNER, MAYKE · TU Darmstadt · Darmstadt · Germany · werner@tu-darmstadt.de

WIEDEMANN, CHRISTOPH · Fritz-Lipmann-Institute · Jena · Germany · cwiede@fli-leibniz.de

WIEGAND, THOMAS · Institut für Physikalische Chemie · Münster · Germany · t wieg02@uni-muenster.de

WIENK, HANS · NMR Spectroscopy · Utrecht · The Netherlands · hans@nmr.chem.uu.nl

WIKTOR, MACIEJ · Biozentrum, University of Basel · Basel · Switzerland · maciej.wiktor@unibas.ch

WILD, ALJOSCHA · Dublin · Ireland · wild85@gmx.de WILLBOLD, DIETER · Forschungszentrum Jülich GmbH · Jülich · Germany · d.willbold@fz-juelich.de

WIPER, PAUL · University of Liverpool · Liverpool · Great Britain · ttp223@liv.ac.uk

WIRMER-BARTOSCHEK, JULIA · BMRZ · Frankfurt · Germany · wirmer@nmr.uni-frankfurt.de

WITTE, DAVID · Universität Konstanz · Konstanz · Germany · david.witte@uni-konstanz.de

WITTER, RAIKER · Tallinn · Estonia · witter@kit.edu

WÖHNERT, JENS · Institute of Molecular Biosciences · Frankfurt · Germany · woehnert@bio.uni-frankfurt.de

WOLFF, CHRISTIANE · AK Thiele · Darmstadt · Germany · cwolff@thielelab.de

WOLFF, NICOLAS · Institut Pasteur · Paris · France · nicolas.wolff@pasteur.fr

WOLF-WATZ, MAGNUS · Umeå University · Umeå · Sweden ·

magnus.wolf-watz@

chem.umu.se

WRIGHT, PETER · The Scripps Research Institute · La Jolla, California · USA · wright@scripps.edu

WURM, PHILIP · Offenbach · Germany · wurm@bio.uni-frankfurt.de

WÜTHRICH, KURT · The Scripps Research Institute · La Jolla · USA · wuthrich@scripps.edu

YAMADA, KAZUHIKO · Tokyo Institute of Technology · Tokyo · Japan · kyamada@polymer.titech.ac.jp

YE, WEIHUA · Stockholm University · Stockholm · Sweden · yewh@dbb.su.se

YIN, GUOWEI · Max Planck-Institute for Biophysical Chemistry · Goettingen · Germany · gyin@gwdg.de

ZALEWSKA, ALINA · Department of Physics, Adam Mickiewicz University · Poznañ · Poland · ar@amu.edu.pl

ZALIBERA, MICHAL · Graz University of Technology · Graz · Austria · zalibera.m@gmail.com

ZDANOWSKI, KONRAD · Warsaw · Poland · zdanowski@ibb.waw.pl ZELENCOVA, DIANA · Latvian Institute of Organic Synthesis · Riga · Latvia · zelencova@osi.lv

ZHANG, YUN · Institute of Structural Biology · Neuherberg · Germany · yun.zhang@helmholtz-muenchen.de

ZHIVONITKO, VLADIMIR · International Tomography Center SB RAS · Novosibirsk · Russia · v_zhivonitko@tomo.nsc.ru

ZHUKOV, IGOR · National Institute of Chemistry · Ljubljana · Slovakian Republic · igor.zhukov@ki.si

ZVEREV, DMITRY · Max Planck Institute · Mainz · Germany · zverev@mpip-mainz.mpg.de

Notes

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. 1. Aufl. - Göttingen : Cuvillier, 2011

978-3-86955-845-5

© CUVILLIER VERLAG, Göttingen 2011 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2011 Gedruckt auf säurefreiem Papier

978-3-86955-845-5