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Zusammenfassung

In dieser Arbeit untersuchen wir eine Operatorfunktion T in einem Krein-
raum, welche formal geschrieben werden kann als

T (λ) = λ − A + B+(D − λ)−1B,

wobei anstelle des letzten Terms auf der rechten Seite eine bezüglich A re-
lativ formkompakte Störung ähnlicher Gestalt steht. Die Operatorfunktion
−T−1 kann dann mittels der Resolvente eines in einem Kreinraum selbstad-
jungierten Operators M, der eine relativ formkompakte Störung von A × D
ist, dargestellt werden. Wir beschreiben die Beziehungen zwischen der Op-
eratorfunktion T und dem Operator M, insbesondere untersuchen wir das
Spektrum, das Punktspektrum und das Spektrum positiven bzw. negativen
Typs.

Unter bestimmten Voraussetzungen an die Operatoren A, B und D ist M
ein definisierbarer Operator und −T−1 eine definisierbare Operatorfunktion.
In diesem Fall beschreiben wir die Beziehungen zwischen dem Spektrum po-
sitiven bzw. negativen Typs, einschließlich der entsprechenden Vielfachheiten,
von M und −T−1.

Die dabei gewonnenen Ergebnisse werden auf ein Sturm–Liouville–Problem
angewandt, bei dem die Koeffizienten rational vom Eigenwertparameter ab-
hängen. In diesem Fall entspricht die Operatorfunktion T dem Differen-
tialausdruck

py′′ + λy +
n+∑
j=1

q+
j

u+
j − λ

y +
n−∑
j=1

q−j
u−

j − λ
y

auf dem Interval I := [−1, 1]. Dabei ist λ eine komplexe Zahl, p ein einfaches
indefinites Gewicht, und q±j , u±

j sind reellwertige meßbare Funktionen, die
bestimmten Voraussetzungen genügen. Weiterhin betrachten wir den Fall,
daß der obige Differentialausdruck auf der Halbachse I = [0,∞) mit p ≡ 1
erklärt ist.
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Introduction

Let H and K be Krein spaces, let A and D be selfadjoint operators in H
and K, respectively, with nonempty resolvent sets and let B be a bounded
operator in L(H,K). For all λ in the resolvent set ρ(D) we define an operator
function

T (λ) = λ − A + B+(D − λ)−1B,(0.1)

where B+ denotes the Krein space adjoint of B. Then for all λ ∈ ρ(D), for
which 0 ∈ ρ(T (λ)), the operator function −T−1 can be represented in the
form

−T (λ)−1 = P1(M− λ)−1I1(0.2)

where M is given by the operator matrix

M =
[

A B+

B D

]
(0.3)

in H ×K, I1 is the embedding of H in H ×K and P1 the projection on the
first component in H×K.

In this thesis we consider operator functions T which can formally be writ-
ten as in (0.1). We relax the boundedness condition on B. The last term
on the right of (0.1) is replaced by a term of a similar form which is a rela-
tively compact perturbation in form sense with respect to A. This compact-
ness assumption includes the case when A has a compact resolvent and B is
bounded.

Analogously to the case of a bounded operator B, the operator function
−T−1 can then be represented as in (0.2) where the operator M arises from(

A 0
0 D

)
by a relatively compact perturbation in form sense.

In this thesis we express relatively compact perturbations in form sense
with the help of operators in riggings. In Chapter 1 we review some facts on
riggings in Krein spaces. We also give a brief introduction to the theory of
definitizable and locally definitizable selfadjoint operators in Krein spaces. In
particular we discuss relatively form–compact perturbations of definitizable



8 Introduction

selfadjoint operators and compact perturbations of fundamentally reducible
operators in Krein spaces.

Our main objective is to describe relations between spectral properties of
the holomorphic operator function T and the operator M. In Section 2.1 we
introduce the notions of resolvent set, spectrum, point spectrum and Jordan
chains of the operator function T . Then (cf. Section 2.3) a point λ where
the function T is holomorphic, that is λ ∈ ρ(D), belongs to the resolvent set
of T if and only if λ belongs to the resolvent set of the operator M. The
same equivalence holds for the point spectrum. Special attention is given to
the spectrum of positive and negative type of T , resp. M. As the domain
of the operator T (λ) may depend on λ, we define the sign types of spectral
points of T (i.e. spectral points of positive or negative type of T ) via some
rational function f(T (λ)) of T (λ) which has values in L(H). This definition
generalizes the usual one for L(H)-valued functions (see [LMaM2]). It turns
out that the sign types of spectral points of T can be characterized by the
sign types of an extension of T to an operator of the space of positive norm to
the space of negative norm of some rigging which has a domain independent
of λ. It then follows that they coincide with the sign types with respect to
M (Sections 2.1–2.3).

In Sections 2.4 and 2.5 we assume that A and D are definitizable selfad-
joint operators and fulfil some further conditions such that by a perturbation
result from [J3] the operator M is definitizable. The sign types of spectral
points of T , first defined only for points λ of holomorphy of T , that is for
λ ∈ ρ(D) ∩ IR, can be extended to arbitrary real λ by making use of the
(boundary behaviour near IR of the) function −T−1, which is a so–called
definitizable operator function ([J4]). For points outside of ρ(D) ∩ IR the
so defined sign type coincides with that of M if M satisfies some minimal-
ity condition (Proposition 2.18). Lemma 2.19 provides a simple criterion for
this minimality. Similar relations hold if the sign types are replaced by the
so–called intervals of type π+ and type π− (Proposition 2.18, Theorem 2.22).

Making an additional assumption on A and D and using a minimal rep-
resenting operator for an Nκ–function we determine a minimal representing
operator for −T−1 such that this operator is unitarily equivalent to M, if
M is minimal (Theorem 2.17, Proposition 2.18). Here unitary equivalence
is understood with respect to the inner products of the Krein spaces. For
non–minimal M there is a local variant of this fact (Theorem 2.20).

Connections between T and M in the case where H and −K are Hilbert
spaces have been studied in the articles [LMeM], [FM], [AL], [MS]. In these
articles, in the Krein space setting, it is always assumed that σ(A)∩ σ(D) is
empty or a finite set and, on the other hand, that either the resolvent of A is
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compact or B is, in some sense, small with respect to A and D. In the pub-
lications mentioned above also completeness problems for the eigenfunctions
and associated functions of T were investigated. In the present thesis we do
not deal with completeness questions for T .

In [LMeM] T (λ) is the operator in L2([0, 1]) corresponding to the differen-
tial expression

y′′ + λy +
q

u − λ
y,(0.4)

and the boundary conditions

y(0) = y(1) = 0.(0.5)

Here q and u belong to L∞([0, 1]) and ess sup q < 0. Then

M :=
[

− d2

dx2 −√−q√−q u

]
in G := L2([0, 1]) × L2([0, 1]) is of the form (0.3) and satisfies (0.2) (here G
is considered as a Krein space with fundamental symmetry J =

(
1 0
0 −1

)
). In

[LMeM] it is proved that M is a definitizable selfadjoint operator and that,
if u is a step function, the eigenvectors and associated vectors of M form a
Riesz basis.

In Chapter 3 we apply the results of Chapter 2 to Sturm–Liouville ope-
rators which are similar to (0.4). In Chapter 3 the relations between the sign
types of T and M considered in Chapter 2 play an essential role.

In Section 3.1 we consider the case that T (λ) is the operator in L2([−1, 1])
corresponding to the differential expression

py′′ + λy +
n+∑
j=1

q+
j

u+
j − λ

y +
n−∑
j=1

q−j
u−

j − λ
y,(0.6)

with λ ∈ C , on the interval I := [−1, 1] with boundary conditions

y(−1) = y(1) = 0.(0.7)

The function p is identically equal to 1 or a simple indefinite weight. The
functions q±j , u±

j are real valued measurable functions, q+
j ≥ 0, j = 1, . . . , n+,

q−j ≤ 0, j = 1, . . . , n−, a.e. such that q±j (1 + |u±
j |)−1 ∈ L1(I), j = 1, . . . , n±.

Let D be the diagonal matrix multiplication operator

D = diag(u+
1 , . . . , u+

n+
, u−

1 , . . . , u−
n−),
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in K := L2(I)n+ × L2(I)n− , where K is considered as a Krein space with
fundamental symmetry J =

(
1 0
0 −1

)
. Then the operator M arises from

(−p d2

dx2 ) × D by a relatively compact perturbation in form sense and sat-
isfies (0.2)(for a definition of M see page 59). It is a consequence of Section
2.3 that a point λ ∈ ρ(D) belongs to the resolvent set (point spectrum, spec-
trum of positive type, spectrum of negative type) of T if and only if it belongs
to the resolvent set (point spectrum, spectrum of positive type, spectrum of
negative type) of M.

Under some additional assumptions on the functions u±
j , j = 1, . . . , n±

(which, in essence, imply that D is a definitizable selfadjoint operator in K
such that D has no finite critical points), it follows that M is a definitiz-
able selfadjoint operator and T (λ)−1 is a definitizable operator function. In
addition we prove a simple criterion for the minimality of M with respect
to −T−1 (cf. Theorem 3.3). If M is minimal with respect to −T−1, then,
by the considerations of Section 2.5, an open subset of IR is of positive type
(negative type, type π+, type π−) with respect to M if and only if it is of the
same type with respect to −T−1. Finally, if we assume that all the functions
u±

j , j = 1, . . . , n±, are step functions, we can show that there exists a Riesz
basis consisting of eigenvectors and associated vectors of M.

In Section 3.2 T (λ) is again the operator corresponding to the expression
(0.6). Now we assume that p ≡ 1 and I = [0,∞). Instead of (0.7) we consider
the boundary condition

y(0) = 0.

In this case we obtain the same relations between the various kinds of spectra
of T and M as in Section 3.1. Moreover, under some additional assumptions
on the functions u±

j , j = 1, . . . , n±, the operator M is a definitizable operator
and, again, T (λ)−1 is a definitizable operator function. In Proposition 3.7
we give an example for a situation where results on the absence of positive
eigenvalues for Sturm–Liouville operators can be used, in combination with
the relations between the spectra of T and M, to exclude critical points of
M on the positive half–axis.

In Section 3.3 T (λ)y is given by (0.4) on the interval I = [−1, 1] with the
boundary condition (0.7). In contrast to [LMeM], we allow q to change its
sign. For simplicity, we assume that q is a real valued piecewise continuous
function and that u is a real valued measurable function. Now, roughly
speaking, q(u−λ)−1 can be considered as a sum of two quotients q+(u+−λ)−1

and q−(u− − λ)−1, where the first one is defined on Δ+ := {x ∈ I : q(x) >
0}, the second one on Δ− := {x ∈ I : q(x) < 0}, and q± and u± are
the restrictions of q and u to Δ±. Then M arises from (− d2

dx2 ) × u+ × u−
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by a compact perturbation (in the resolvent sense). It follows that M is
definitizable over the set

C \ (({∞} ∪ σe(u+)) ∩ σe(u−)).

If the functions q and u belong to C1(I) such that u′ > 0 and q has finitely
many zeros, we are able to prove that M is a definitizable operator in the
space L2(I) × L2(Δ+) × L2(Δ−).

Finally, we consider the case of the half–axis, where T (λ) is given by (0.4)
with boundary condition y(0) = 0 (cf. Section 3.4). Then the operator M is
definitizable over C \ {([0,∞]∪ σe(u+))∩ σe(u−)} and, if q and u fulfil some
further conditions, M is a definitizable operator. Moreover, the absence of
eigenvalues of T can be used to locate the position of critical points of M.





1. Riggings and Perturbations of Selfadjoint Operators
in Krein Spaces

1.1. The Scale of Spaces Associated with a Selfadjoint Operator
in a Hilbert Space

We recall some well-known facts on the scale of spaces associated with a self-
adjoint operator H in a Hilbert space (H, (., .)). We equip Hs(H) := D(|H |s),
s ∈ [0,∞), with the Hilbert space scalar product

(x, y)s := ((1 + H2)
s
2 x, (1 + H2)

s
2 y), x, y ∈ Hs(H).(1.1)

Put ‖x‖s := (x, x)
1
2
s , x ∈ Hs(H). By H−s(H), s ∈ [0,∞), we denote the

completion of H with respect to the quadratic norm ‖ . ‖−s defined by

‖x‖−s = ‖(1 + H2)−
s
2 x‖, x ∈ H.

Evidently,
‖x‖−s = sup{|(x, y)| : y ∈ Hs(H), ‖y‖s ≤ 1}.

The extension by continuity of the form (., .) to Hs(H) × H−s(H), s ∈ IR,
is also denoted by (., .). The mapping x �→ gx, x ∈ H−s(H), gx ∈ Hs(H),
s ∈ [0,∞), defined by

(y, x) = (y, gx)s, y ∈ Hs(H),

is an isometry of H−s(H) onto Hs(H). For arbitrary z ∈ C the operator H−z
can be extended by continuity to a continuous linear operator (H − z)∼ from
H 1

2
(H) into H− 1

2
(H). (H − z)∼ is an isomorphism of H 1

2
(H) onto H− 1

2
(H)

if and only if z ∈ ρ(H). In this case we have ((H − z)∼)−1 = R̃(z, H)
where R̃(z, H) is the extension by continuity of R(z, H) := (H − z)−1 to
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a continuous linear operator of H− 1
2
(H) onto H 1

2
(H). The operator H̃ is

(., .)-symmetric, i. e.

(H̃x, y) = (x, H̃y), x, y ∈ H 1
2
(H).

1.2. The Scale of Spaces Associated with a Selfadjoint Operator
in a Krein Space

Assume now that (H, [., .]) is a Krein space and J is a fundamental sym-
metry of H, (x, y) := [Jx, y], x, y ∈ H. Let A be a selfadjoint operator in the
Krein space H with ρ(A) = ∅. We consider the selfadjoint operators

H := JA, K := AJ

in (H, (., .)). By the relation HJ = JK the operator J maps Hs(H) (Hs(K))
isometrically onto Hs(K) (Hs(H), resp.), s ∈ [0,∞). Therefore, J can be
extended by continuity to an isometric operator of H−s(H) (H−s(K)) onto
H−s(K) (H−s(H), resp.), s ∈ [0,∞). Both of these extensions will be de-
noted by J̃ . We set

[x, y] := (Jx, y) = (x, J̃y), [y, x] = [x, y], x ∈ Hs(H), y ∈ H−s(K).

We define a scale of Hilbert spaces by

Hs(A, J) := Hs(H), H−s(A, J) := H−s(K), s ∈ [0,∞).

It is easy to see that the spaces Hs(A, J), s ∈ IR, regarded as (Hilbertable) lin-
ear topological spaces, and the duality [., .] between Hs(A, J) and H−s(A, J)
do not depend on the choice of J . For simplicity of notation we write Hs or
Hs(A) instead of Hs(A, J) when no confusion can arise.

The operator A may be extended by continuity to a continuous operator Ã
from H 1

2
(H) to H− 1

2
(K). We have Ã = J̃H̃ (see Section 1.1). It will cause

no confusion if we denote the adjoint with respect to the [., .]-duality in the
same way as the usual Krein space adjoint, by “+”. We have (Ã)+ = Ã, i.e.
Ã is [., .]-symmetric,

[Ãx, y] = [x, Ãy], x, y ∈ H 1
2
(A, J).

From ρ(A) = ∅ we conclude that

A = Ã | {x ∈ H 1
2
(A, J) : Ãx ∈ H}.(1.2)
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The identity on H 1
2
(A, J) regarded as an operator into H− 1

2
(A, J) will be

denoted by E.

Lemma 1.1. The range R(A − z) of A − z, z ∈ C , is closed if and only
if R(Ã − zE) is closed. If this holds, then A − z and Ã − zE have the same
nullity and deficiency:

nul(A − z) = nul(Ã − zE), def(A − z) = def(Ã − zE).(1.3)

In particular, we have z ∈ ρ(A) if and only if Ã − zE is an isomorphism.

Proof. 1. We first prove the last assertion. If z ∈ ρ(A) then z ∈ ρ(A) and
A− z considered as operator from H1(A, J) into H is an isomorphism. Then
the same is true for its adjoint (A − z)+ ∈ L(H,H−1(A, J)) with respect to
the [., .]-duality. (A − z)+ is an extension by continuity of A − z. Hence, by
interpolation, Ã− zE is an isomorphism. If Ã− zE is an isomorphism, then
evidently z ∈ ρ(A).
2. Assume that R(Ã− zE) is closed. Let (xn) be a sequence from D(A) such
that ((A− z)xn) converges in H to some y ∈ H. Then (Ã− zE)xn converges
in H− 1

2
(A, J) to y. Hence there exists an x ∈ H 1

2
(A, J) with (Ã− zE)x = y.

Then, by (1.2), x ∈ D(A) and (A − z)x = y. R(A − z) is closed.
3. Assume now that R(A−z) is closed. Let (x′

n) be a sequence from H 1
2
(A, J)

such that limn→∞(Ã − zE)x′
n =: y exists in H− 1

2
(A, J). For λ ∈ ρ(A),

(Ã − λE)−1 is an isomorphism and we have

lim
n→∞(Ã − λE)−1(Ã − zE)x′

n = lim
n→∞(A − z)(A − λ)−1x′

n = (Ã − λE)−1y.

Hence (Ã−λE)−1y ∈ R(A−z), i.e. there exists an x′ ∈ D(A) with (A−z)x′ =
(Ã − λE)−1y. It follows that

(Ã − zE)(A − z)x′ = (Ã − zE)(Ã− λE)−1y =

= y + (λ − z)(Ã − λE)−1y = y + (λ − z)(A − z)x′

and, hence, y ∈ R(Ã − zE).
4. The first relation of (1.3) is a consequence of (1.2). The second relation of
(1.3) follows from the first by duality. �

We remark that if z ∈ ρ(A) then (Ã − zE)−1 ∈ L(H− 1
2
(A, J),H 1

2
(A, J))

coincides with the extension R̃(z; A) by continuity of R(z; A) := (A − z)−1.
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For brevity we set L(A) := L(H 1
2
(A, J),H− 1

2
(A, J)). If H′ and H′′ are Hilbert

spaces, S∞(H′,H′′) denotes the linear space of compact operators of H′ in
H′′. We set S∞ := S∞(H,H) and S

(A)
∞ := S∞(H 1

2
(A, J),H− 1

2
(A, J)). The

following lemma will be needed below.

Lemma 1.2. Let ρ(A) = ∅. The following assertions are equivalent:

(1) (A − z)−1 is compact for some (and hence for all) z ∈ ρ(A).

(2) (H − z)−1 is compact for some (and hence for all) z ∈ ρ(H).

(3) The natural embedding of H1(H) = H1(A, J) into H is compact.

(4) For every s1, s2 ∈ [0,∞) with s1 > s2 the natural embedding of
Hs1(A, J) into Hs2(A, J) is compact.

(5) For every s1, s2 ∈ [0,∞) with s1 > s2 the natural embedding of
H−s2(A, J) into H−s1(A, J) is compact.

Proof. For z ∈ ρ(A) ∩ ρ(JA) we have

(A − z)−1 − (JA − z)−1 = (A − z)−1(1 − J)JA(JA − z)−1 =
= (JA − z)−1(J − 1)A(A − z)−1.

Hence the assertions (1) and (2) are equivalent. For non–real z, the nat-
ural embedding of H1(H) into H is the composition of H − z regarded as
an operator from H1(H) into H, which is an isomorphism, and (H − z)−1

regarded as an operator in H. Therefore, the statements (2) and (3) are
equivalent. Similarly, (3) is equivalent to (1 + H2)−

1
2 ∈ S∞. This is equiv-

alent to (1 + H2)−
s
2 ∈ S∞ for all s > 0. Similarly to the reasoning above,

one shows that (1 + H2)−
s
2 ∈ S∞ for all s > 0 is equivalent to (4). That (4)

and (5) are equivalent is a consequence of the duality of the scales. �

In the rest of Section 1.2 we recall the definition of sign types of spectral
points of selfadjoint operators in Krein spaces (see [LMaM1]). With the help
of the scale considered above we give a characterization of the sign types
which will be needed in Chapter 2. First we recall that a point λ0 ∈ C
is said to belong to the approximative point spectrum of a densely defined
closed operator C, λ0 ∈ σap(C), if there exists a sequence (xn) ⊂ D(C) with
‖xn‖ = 1, n = 1, 2, . . . , and ‖(C − λ0)xn‖ → 0 if n → ∞.

Definition 1.3. For a selfadjoint operator C in a Krein space H with
ρ(C) = ∅, a point λ0 ∈ σ(C) is called a spectral point of positive (negative)
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type of C if λ0 ∈ σap(C) and for each sequence (xn) ⊂ D(C) with ‖xn‖ = 1
and ‖(C − λ0)xn‖ → 0 for n → ∞ we have

lim inf
n→∞ [xn, xn] > 0 (resp. lim sup

n→∞
[xn, xn] < 0).

We denote the set of all spectral points of positive (negative) type of C by
σ++(C) (resp. σ−−(C)). We shall say that an open subset Δ of IR is of
positive type (negative type) with respect to C if Δ \ {∞} ⊂ ρ(C) ∪ σ++(C)
(resp. Δ \ {∞} ⊂ ρ(C) ∪ σ−−(C)). An open set Δ of IR is called of definite
type if Δ is of positive or negative type with respect to C.

The sets σ++(C) and σ−−(C) are contained in IR. Indeed, for λ ∈ σ++(C)
and for (xn) as above we have −(Im λ)[xn, xn] = Im [(C − λ)xn, xn] → 0 for
n → ∞.

For operators which are, in a sense, subordinated to a scale as above (see
Section 1.3 below) the spectra of positive and negative type can be charac-
terized as follows.

Lemma 1.4. Let H, J, A be as above and let C be a selfadjoint operator
in H, ρ(C) = ∅, with D(C) ⊂ H 1

2
(A, J) such that C can be extended by

continuity to a mapping Ĉ ∈ L(H 1
2
(A, J),H− 1

2
(A, J)) and, for some z ∈ C ,

Ĉ−zE is an isomorphism. If ‖ . ‖ 1
2

and ‖ . ‖− 1
2

denote the norms of H 1
2
(A, J)

and H− 1
2
(A, J), the following assertions are equivalent.

(1) λ0 ∈ σ++(C) (λ0 ∈ σ−−(C)).

(2) λ0 ∈ σap(C) and for each sequence (xn) ⊂ H 1
2
(A, J) with ‖xn‖ 1

2
= 1

and ‖(Ĉ − λ0E)xn‖− 1
2
→ 0 for n → ∞, we have

lim inf
n→∞ [xn, xn] > 0 (resp. lim sup

n→∞
[xn, xn] < 0).

Proof. For x ∈ D(C) we have ‖(Ĉ − λ0E)x‖− 1
2

≤ ‖(Ĉ − λ0E)x‖ and
‖x‖ ≤ ‖x‖ 1

2
. Hence assertion (2) implies assertion (1).

Assume that (1) holds. Let (xn) ⊂ H 1
2
(A, J) be a sequence with

‖xn‖ 1
2

= 1, ‖(Ĉ − λ0E)xn‖− 1
2
→ 0 for n → ∞.(1.4)

Evidently, we have z ∈ ρ(C). Let yn := −(z − λ0)(C − z)−1xn. Then

lim
n→∞ ‖xn − yn‖ 1

2
= lim

n→∞ ‖(Ĉ − zE)−1(Ĉ − λ0E)xn‖ 1
2

= 0.
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Hence, by (1.4),

lim
n→∞ ‖yn‖ 1

2
= 1, lim

n→∞ ‖(Ĉ − λ0E)yn‖− 1
2

= 0.

Then, making use of the fact that (Ĉ − zE)−1 is an isomorphism we obtain

1 = lim
n→∞ ‖yn‖ 1

2
= |z − λ0| lim

n→∞ ‖(C − z)−1xn‖ 1
2
≤

≤ M lim inf
n→∞ ‖xn‖− 1

2
= M lim inf

n→∞ ‖yn‖− 1
2
≤ M lim inf

n→∞ ‖yn‖.

for some constant M , and

lim
n→∞ ‖(C − λ0)yn‖ = |z − λ0| lim

n→∞ ‖(C − λ0)(C − z)−1xn‖ =

= |z − λ0| lim
n→∞ ‖(Ĉ − zE)−1(Ĉ − λ0E)xn‖ = 0.

Therefore, by condition (1)

0 < lim inf
n→∞ [yn, yn] = lim inf

n→∞ [xn, xn].

Hence (2) holds and the lemma is proved. �

1.3. A Class of Perturbations of Selfadjoint Operators in Krein
Spaces

Let H, J , A, be as in Section 1.2. We consider the following class of
perturbations of A (see e.g. [JL2], [J3]). These perturbations can also be
defined with the help of sesquilinear forms.

Definition 1.5. Assume that the operator Z ∈ L(A) can be written as a
sum Z = Z1 + Z2, Z1, Z2 ∈ L(A) such that the following holds:

(i) There exists a z0 ∈ C such that Ã − z0E + Z1 is an isomorphism of
H 1

2
(A, J) onto H− 1

2
(A, J).

(ii) The range R(Z2) of Z2 is contained in H and Z2 can be extended by
continuity to a bounded operator in H.

Then the restriction of Ã + Z to

D(A+
�Z) := {x ∈ H 1

2
(A, J) : (Ã + Z)x ∈ H}
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regarded as an operator in H is denoted by A+
�Z (cf. [KY]).

Evidently, A+
�Z1 is densely defined and closed, and we have z0 ∈ ρ(A+

�Z1).
Therefore, A+

�Z is a densely defined closed operator. If for some z ∈ C the
operator Ã + Z − zE is an isomorphism, then we have z ∈ ρ(A+

�Z). If
Z = Z+ and for some z ∈ C the operator Ã + Z − zE is an isomorphism,
then A+

�Z is a selfadjoint operator with nonempty resolvent set.

Lemma 1.6. ([J3]) Let V ∈ S
(A)
∞ . Then A+

�V is defined. If, additionally,
V = V +, then A+

�V is selfadjoint.

Lemma 1.7. Let V ∈ S
(A)
∞ and assume that ρ(A) ∩ ρ(A+

�V ) = ∅. Then

R(λ) − R(λ; A+
�V ) ∈ S∞, λ ∈ ρ(A) ∩ ρ(A+

�V ).(1.5)

For any z ∈ C the range R(A+
�V −z) is closed if and only if R(Ã+V −zE)

is closed. In this case

nul(A+
�V − z) = nul(Ã + V − zE), def(A+

�V − z) = def(Ã + V − zE).

In particular, we have z ∈ ρ(A+
�V ) if and only if Ã + V − zE is an isomor-

phism.

Proof. Relation (1.5) was proved in [J3]. Assume that R(Ã + V − zE) is
closed. Then the closedness of R(A+

�V − z) can be proved as in part 2 of
the proof of Lemma 1.1.

To prove the converse we first claim that for λ ∈ ρ(A) ∩ ρ(A+
�V ) the

operator Ã+V −λE is an isomorphism. Indeed, by Lemma 1.1, Ã−λE is an
isomorphism and, since V ∈ S

(A)
∞ , Ã+V −λE is a Fredholm operator of index

zero. Thus, by λ ∈ ρ(A+
�V ), the operator Ã + V −λE is an isomorphism. If

R(A+
�V − z) is closed then by a reasoning similar to part 3 of the proof of

Lemma 1.1 we find that R(Ã + V − zE) is closed.
The remaining assertions of Lemma 1.7 are proved as in Lemma 1.1. �

We define the essential spectrum σess(C) of a densely defined closed oper-
ator C to be the complement of its Fredholm domain.

If then A and V fulfil the assumptions of Lemma 1.7 it follows from (1.5)
that

σess(A) = σess(A+
�V ).(1.6)
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1.4. Definitizable Operators

For any subspace H′ of the Krein space (H, [., .]) the supremum (≤ ∞) of
the dimensions of the subspaces L of H′ such that [., .] is positive (negative)
definite on L is denoted by κ+(H′) (resp. κ−(H′)).

Let A be a definitizable selfadjoint operator in H, i.e. ρ(A) = ∅ and
there exists a rational function p = 0 having poles only in ρ(A) such that
[p(A)x, x] ≥ 0 for all x ∈ H. Then the spectrum of A is real or its non–
real part consists of a finite number of points. Moreover, A has a spectral
function E(. ; A) defined on the ring generated by all connected subsets of IR
whose endpoints do not coincide with the points of some finite set which is
contained in {t ∈ IR : p(t) = 0} ∪ {∞} (see [L3]).

In the remainder of Section 1.4 we assume, unless otherwise stated, that A
is the direct orthogonal sum of two definitizable operators A1 and A2 in H1

and H2, respectively, H = H1[
.
+]H2. This situation will occur in Chapter 2

below. Let E(. ) denote the direct sum of the spectral functions of A1 and
A2. We do not exclude the case H2 = {0}.

The classification of spectral points in Definition 1.3 was originally intro-
duced with the help of the spectral function. For the convenience of the
reader, we will give a proof for the known equivalence of these two descrip-
tions of sign types under our assumptions on A.

Lemma 1.8. A point λ ∈ σ(A) ∩ IR belongs to σ++(A) (σ−−(A)) if and
only if there exists an open interval δ of IR, λ ∈ δ, for which E(δ) is defined,
with κ−(E(δ)H) = 0 (resp. κ+(E(δ)H) = 0).

Proof. It is sufficient to prove the lemma for σ++(A). A similar reasoning
applies for σ−−(A).

Let λ ∈ σ(A) ∩ IR and let Δ be a bounded open interval, λ ∈ Δ, such
that E(Δ) is nonnegative. If (xn) is a sequence in D(A) with ‖xn‖ = 1, n =
1, 2, . . ., and ‖(A− λ)xn‖ → 0 for n → ∞, then ‖(A−λ)(1−E(Δ))xn‖ → 0.
This implies ‖(1−E(Δ))xn‖ → 0 and, hence, limn→∞ ‖E(Δ)xn‖ = 1. Since
(E(Δ)H, [., .]) is a Hilbert space we obtain

lim inf
n→∞ [xn, xn] = lim inf

n→∞ [E(Δ)xn, E(Δ)xn] > 0.

Assume now that there does not exist an open subset δ with the properties
mentioned in the lemma. Let Δ0 be a bounded open interval, λ ∈ Δ0, such
that E(Δ0) is defined, and let A0 := A|E(Δ0)H. E(Δ0) is not nonnegative.
Then by [L2] there exists a maximal nonpositive A0-invariant subspace M−
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of E(Δ0)H. It is easy to see that σ(A0|M−) ⊂ Δ0. We claim that

λ ∈ σ(A0|M−).(1.7)

If (1.7) holds, let (yn) be a sequence in M− with ‖yn‖ = 1, n = 1, 2, . . . , and
limn→∞ ‖(A0 − λ)yn‖ = 0. We have [yn, yn] ≤ 0 and lim infn→∞[yn, yn] ≤ 0.

It remains to prove (1.7). Suppose λ /∈ σ(A0|M−). Let Δ be an open inter-
val such that E(Δ) is defined, with λ ∈ Δ ⊂ Δ0 and Δ∩σ(A0|M−) = ∅. We
have E(Δ)M− ⊂ M− and E(Δ)M− ⊂ E(Δ)H. Then σ(A0|E(Δ)M−) ⊂
σ(A0|M−) and σ(A0|E(Δ)M−) ⊂ σ(A0|E(Δ)H) ⊂ Δ. This shows that
E(Δ)M− = {0}. Since E(Δ)M− is a maximal nonpositive subspace of
E(Δ)H, E(Δ) is nonnegative, a contradiction to our assumption on λ. Hence
(1.7) holds, which completes the proof. �

Hence, by Lemma 1.8, an open subset Δ of IR is of positive type (negative
type) with respect to A if and only if κ−(E(δ)H) = 0 (resp. κ+(E(δ)H) = 0)
for every (in IR) connected subset δ of Δ with δ ⊂ Δ.

We shall say that an open subset Δ of IR is of type π+ (type π−) with
respect to A if κ−(E(δ)H) < ∞ (resp. κ+(E(δ)H) < ∞) for every (in IR)
connected subset δ of Δ with δ ⊂ Δ such that E(δ) is defined. The open set
Δ is called of type π if Δ is of type π+ or type π− with respect to A. We
remark that for an interval (a, b), a, b ∈ ρ(A), of type π the space E((a, b))H
is a Pontryagin space.

Let σe(A) be the extended spectrum of A, i.e. σe(A) = σ(A) if A is bounded
and σe(A) = σ(A) ∪ {∞} otherwise, let ρe(A) = C \ σe(A). We denote
by σ̃e,+(A) (σ̃e,−(A)) the set of all λ ∈ σe(A) ∩ IR such that for every
open connected subset δ of IR, λ ∈ δ, for which E(δ) is defined, we have
κ+(E(δ)H) = ∞ (resp. κ−(E(δ)H) = ∞). The sets σ̃e,+(A) and σ̃e,−(A) are
closed in IR.

A point t ∈ IR is called a critical point (an essential critical point) of A if
there is no open subset Δ of definite type (resp. type π) with t ∈ Δ. The set
of critical (essential critical) points of A is denoted by c(A) (resp. c∞(A)).
We have

(1.8)
c(A) \ {∞} = σ(A) \ (σ++(A) ∪ σ−−(A)),

c∞(A) = σ̃e,+(A) ∩ σ̃e,−(A).

In Chapter 2 and Chapter 3 we will make use of the fact that a critical
point which is not an essential critical point is an eigenvalue. A critical point
t is called regular if there exists an open deleted neighbourhood δ0 of t such
that the set of the projections E(δ) where δ runs through all intervals δ
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with δ ⊂ δ0 is bounded. The set of regular critical points of A is denoted
by cr(A). The elements of cs(A) := c(A) \ cr(A) are called singular critical
points. The spectral function E can be extended by continuity to all intervals
whose endpoints do not belong to cs(A).

We assume now, in addition, that E(IR)H is not a Pontryagin space (i.e.
κ+(E(IR)H) = κ−(E(IR)H) = ∞) and either c∞(A) = ∅ or c∞(A) = {∞}
holds, and that there exist intervals of the form (μ+,∞) and (−∞, μ−) of
definite type with respect to A. In the following lemma we shall make use
of the system of all those open connected components I of IR \ (σ̃e,+(A) ∪
σ̃e,−(A)) such that if both endpoints of I are finite then one of them belongs
to σ̃e,+(A) and the other to σ̃e,−(A). By the second relation of (1.8) and our
additional assumption c∞(A) ⊂ {∞} this system is finite. We shall denote
it by

(a1, b1), (a2, b2), . . . , (al, bl), l ≥ 1,

with
b1 ≤ a2 < b2 ≤ a3 < · · · < bl−1 ≤ al if l > 1.

By definition the spectrum of A is discrete in each interval (aj , bj), j =
1, . . . , l.

Lemma 1.9. Assume that E(IR)H is not a Pontryagin space and either
c∞(A) = ∅ or c∞(A) = {∞} holds. Then A is definitizable if and only if
there exist intervals of the form (μ+,∞) and (−∞, μ−) of definite type with
respect to A.

Moreover, if such points μ+, μ− exist, and if sj ∈ ρ(A) ∩ (aj , bj), j =
1, . . . , l, then the following holds.

(1) We have

sup
ν∈(−∞,s1)

{κ+(E((ν, s1))H)} < ∞ or sup
ν∈(−∞,s1)

{κ−(E((ν, s1))H)} < ∞.

(2) We have

sup
ν∈(sl,∞)

{κ+(E((sl, ν))H)} < ∞ or sup
ν∈(sl,∞)

{κ−(E((sl, ν))H)} < ∞.

(3) If l > 1 then E((sj−1, sj))H, j = 2, . . . , l, are Pontryagin spaces.

(4) If ∞ /∈ cs(A) then E((−∞, s1))H and E((sl,∞))H are Pontryagin
spaces.
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Proof. It is well known that if A is definitizable then μ+ and μ− as in the
lemma exist.

Assume now that μ+ and μ− with the above properties exist. The spectrum
of the restriction A0 := A|(1−E(IR))H consists of a finite set of poles of the
resolvent. It is easy to see that there is a rational function q0 which has no
zeros in IR such that q(A0) = 0 for q(z) := q0(z)q0(z). If we find a definitizing
rational function r for A|E(IR)H, then rq is definitizing for A. Therefore to
prove that A is definitizable we may restrict ourselves to the case σ(A) ⊂ IR.
Since H is not a Pontryagin space, we have σ̃e,+(A) = ∅ and σ̃e,−(A) = ∅.
We will prove next that A satisfies (1)–(4).

Suppose the two suprema in (1) are equal to infinity and (−∞, μ−) is of
positive type with respect to A. If (−∞, μ−) is of negative type a similar
reasoning applies. We have κ−(E(δ)H) = 0 for each compact subset δ of
(−∞, μ−). We choose an ε > 0 such that κ−(E((μ− − ε, s1)))H) = ∞ holds.
This implies σ̃e,−(A)∩[μ−−ε, s1] = ∅ and, hence, that min σ̃e,−(A) is the right
endpoint of one of the intervals (ai, bi) which contradicts the choice of s1. A
similar proof holds for (2). Assertions (3) and (4) are simple consequences
from the definition of sj , j = 1, . . . , l, and (1) and (2).

Now, we choose a rational function r having poles only in ρ(A) \ IR with
the following properties.

(1) r(∞) = 0, r has real zeros only in s1, . . . , sl.

(2) If l > 1, r is positive (negative) on (sj−1, sj), j = 2, . . . , l, if (sj−1, sj)
is of type π+ (resp. not of type π+) with respect to A.

(3) The function r is positive on the interval (−∞, s1) if we have that
supν∈(−∞,s1){κ−(E((ν, s1))H)} < ∞ and negative otherwise. Similarly
for (−∞, s1) replaced by (sl,∞).

With the help of the spectral function it is easy to see that [r(A)., .] is positive
semidefinite or has a finite number of negative squares. Then by [L3] A is
definitizable. �

1.5. Perturbations of Definitizable Operators

Now we consider perturbations of definitizable operators. The following
lemma shows, in particular, that for a definitizable operator A and (a not
necessarily symmetric) V ∈ S

(A)
∞ the assumption ρ(A) ∩ ρ(A+

�V ) = ∅ of
Lemma 1.7 is fulfilled.
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Here and in the following we denote, for a closed and densely defined op-
erator A, by σp,norm(A) the set of all λ ∈ C which are isolated points of
σ(A) and normal eigenvalues of A, that is, the corresponding Riesz-Dunford
projection is of finite rank.

Lemma 1.10. Let A be a definitizable selfadjoint operator in H and let
V ∈ S

(A)
∞ . Then there exists an η0 > 0 such that iη ∈ ρ(A+

�V ) for |η| ≥ η0.
Further, we have

(1.9)
σ(A) \ σp,norm(A) =

= σess(A) = σess(A+
�V ) = σ(A+

�V ) \ σp,norm(A+
�V ).

Proof. The first assertion of Lemma 1.10 is a consequence of [J3, Propo-
sition 3.1]. By (1.6) we have to prove only the first and the last equality of
(1.9). As A is definitizable, ρ(A) is dense in C , hence, for λ /∈ σess(A) =
σess(A+

�V ), the index of the operator A − λ is zero, and, by Lemmas 1.1
and 1.7 the same holds for A replaced by A+

�V . As the open set C \σess(A)
(= C \σess(A+

�V )) consists of at most two connected open components each
of which contains points of ρ(A) and of ρ(A+

�V ), it follows that C \σess(A) ⊂
ρ(A)∪σp,norm(A) and C \σess(A+

�V ) ⊂ ρ(A+
�V )∪σp,norm(A+

�V ) hold and
(1.9) is proved. �

In the proof of Theorem 1.12 below we will use the subsequent theorem
which is a special case of [J3, Theorem 3.6]. We remark that in the Theorems
3.6 and 3.10 of [J3] in all places where unbounded intervals of type π+ (π−)
occur, it has to be added that κ−(E(Δ)H) (resp. κ+(E(Δ)H)) is zero for all
compact subintervals Δ in some neighbourhood of ∞.

Theorem 1.11. Let A be a definitizable selfadjoint operator in H such
that σ(A) \ IR ⊂ σp,norm(A). Let V = V + ∈ S

(A)
∞ . Further, assume that

there exist points t1, t2 ∈ IR, t1 < t2, t1, t2 ∈ ρ(A) ∩ ρ(A+
�V ) such that

sup
ν∈(−∞,t1)

{κ+(E((ν, t1))H)} < ∞ and sup
ν∈(t2,∞)

{κ−(E((t2, ν))H)} < ∞,

where E denotes the spectral function of A.
Then no point of IR \ (t1, t2) is an accumulation point of the non–real spec-

trum of A+
�V . Further, if P ′ is the Riesz–Dunford–Taylor projection corre-

sponding to IR \ (t1, t2) and A+
�V , A+

�V |P ′H is a definitizable selfadjoint
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operator with

sup
ν∈(−∞,t1)

{κ+(E′((ν, t1))H)} < ∞ and sup
ν∈(t2,∞)

{κ−(E′((t2, ν))H)} < ∞,

where E′ denotes the spectral function of A+
�V |P ′H. Moreover, ∞ ∈ cs(A)

if and only if ∞ ∈ cs(A+
�V ).

A similar theorem holds with κ+ and κ− interchanged.

Theorem 1.12. Let A be a definitizable selfadjoint operator in H such
that c∞(A) = ∅ or c∞(A) = {∞} and assume that σ(A) \ IR ⊂ σp,norm(A).
Let V = V + ∈ S

(A)
∞ . Then A+

�V is a definitizable selfadjoint operator in
H such that c∞(A+

�V ) = ∅ or c∞(A+
�V ) = {∞}; in particular, all finite

critical points of A+
�V belong to σp(A+

�V ). Moreover, the following holds.

(i) σ(A+
�V ) \ IR ⊂ σp,norm(A+

�V ).

(ii) σ̃e,+(A) = σ̃e,+(A+
�V ), σ̃e,−(A) = σ̃e,−(A+

�V ). Hence any open inter-
val is of type π+ (π−) with respect to A if and only if it is of type π+

(π−, resp.) with respect to A+
�V .

(iii) If, for some m ∈ IR, (m,∞) is of positive (negative) type with respect
to A, then there exists an m′ ∈ (m,∞) such that (m′,∞) is of positive
(resp. negative) type with respect to A+

�V . A similar statement holds
for intervals of the form (−∞, m).

(iv) ∞ /∈ cs(A) if and only if ∞ /∈ cs(A+
�V ).

Proof. 1. Relation (i) is a consequence of Lemma 1.10. Let E be the spec-
tral function of A. If E(IR)H is a Pontryagin space then, by the assumption
σ(A) \ IR ⊂ σp,norm(A), H is a Pontryagin space and all assertions of the
theorem are valid. Assume for the rest of the proof that E(IR)H is not a
Pontryagin space.
2. We shall assume that the system {(aj , bj) : j = 1, . . . , l} considered in
Lemma 1.9 consists of at least two intervals. If that system consists of only
one interval, a similar reasoning applies but some of the following consider-
ations are irrelevant in this case. By the definition of the intervals (aj , bj)
and Lemma 1.10 we may choose some points sj ∈ (aj , bj)∩ ρ(A)∩ ρ(A+

�V ),
j = 1, . . . , l. Let Gj be the open disc with center on IR such that sj , sj+1 ∈
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∂Gj , j = 1, . . . , l−1, and let G0 be the open disc with center on IR such that
s1, sl ∈ ∂G0. It is no restriction to assume that

∂G0 ∪ ∂G1 ∪ . . . ∪ ∂Gl−1 ⊂ ρ(A) ∩ ρ(A+
�V ).

Let Ej (E′
j), j = 0, 1, . . . , l−1, be the Riesz-Dunford projection corresponding

to Gj and A (resp. A+
�V ). Then Lemma 1.7 implies

E′
j − Ej ∈ S∞, j = 0, 1, . . . , l − 1.

As Ej , j = 0, 1, . . . , l−1, is a selfadjoint projection in H there exists a funda-
mental symmetry of H which commutes with Ej . On account of [J1, Theorem
3.1], we have σ̃e,+(Ej) = σ̃e,+(E′

j), σ̃e,−(Ej) = σ̃e,−(E′
j), j = 1, . . . , l − 1.

Consequently, since EjH is a Pontryagin space (see Lemma 1.9 (3)), also
E′

jH is a Pontryagin space and κ+(EjH) < ∞ (κ−(EjH) < ∞) if and only
if κ+(E′

jH) < ∞ (resp. κ−(E′
jH) < ∞). Since for a selfadjoint operator B

in a Pontryagin space with finite negative (positive) index, σ̃e,+(B) (resp.
σ̃e,−(B)) coincides with σe(B) \ σp,norm(B), we have

σ̃e,±(A) ∩ Gj = σ̃e,±(A+
�V ) ∩ Gj , j = 1, . . . , l − 1.(1.10)

3. Assume that (1 − E0)H is a Pontryagin space. Then by E ′
0 − E0 ∈ S∞,

(1 − E′
0)H is a Pontryagin space as well. Hence A+

�V is the direct sum of
selfadjoint operators in Pontryagin space with pairwise disjoint spectra such
that at most one of the operators is unbounded. Therefore, by a reasoning
similar to that in the proof of Lemma 1.9, A+

�V is definitizable. Again as
above we find

σ̃e,±(A) ∩ (IR \ G0) = σ̃e,±(A+
�V ) ∩ (IR \ G0),

which along with (1.10) implies (ii). In this case the assertions (iii) and (iv)
are evident.
4. Assume now that (1 − E0)H is not a Pontryagin space. This implies, in
view of

(1 − E0)E(IR)H = closp {(1 − E0)E((−n, n))x : n ∈ IN, x ∈ H}

and Lemma 1.9, (1) and (2), that ∞ is an accumulation point of σ(A)∩(0,∞)
and of σ(A) ∩ (−∞, 0) and, on the other hand, that either

sup
ν∈(−∞,s1)

{κ+(E((ν, s1))H)} < ∞ and sup
ν∈(sl,∞)

{κ−(E((sl, ν))H)} < ∞.(1.11)
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or similar relation with κ+ and κ− interchanged hold. It follows that ∞ is a
critical point. We assume that (1.11) holds. This is no restriction.

Then, as a consequence of Theorem 1.11, A+
�V |P ′H, where P ′ is as in The-

orem 1.11, is a definitizable selfadjoint operator. As the non–real spectrum
of A+

�V consists only of finitely many points belonging to σp,norm(A+
�V )

(Lemma 1.10, Theorem 1.11 and relation (i)), also A+
�V |(I − E′

0)H is a
definitizable selfadjoint operator. This implies, as above, that A+

�V is defini-
tizable. Assertions (iii) and (iv) are consequences of Theorem 1.11.

In order to prove (ii) observe that for sufficiently large ν the projections
E((sl, ν)) and E((sl, ν); A+

�V ) are defined and their ranges are Pontryagin
spaces. Therefore, by the same reasoning as in the proof of (1.10),

σ̃e,+(A) ∩ (sl, ν) = σ̃e,+(A+
�V ) ∩ (sl, ν).(1.12)

Similarly, for sufficiently small ν,

σ̃e,−(A) ∩ (ν, s1) = σ̃e,−(A+
�V ) ∩ (ν, s1).(1.13)

These relations along with (1.10) imply the assertion (ii) and Theorem 1.12
is proved. �

1.6. Locally Definitizable Operators

By C+ we denote the open upper half plane and by C− the open lower
half plane.

Let A0 be a selfadjoint operator in the Krein space (H, [., .]) and let Δ be
an open subset of IR such that no point of Δ is an accumulation point of the
non–real spectrum σ(A0) \ IR of A0. We shall say that A0 belongs to the
class S∞(Δ), if for every closed subset Δ′ of Δ there exists m ≥ 1, M > 0
and an open neighbourhood U of Δ′ in C such that

‖(A0 − λ)−1‖ ≤ M(|λ| + 1)2m−2|Imλ|−m

holds for all λ ∈ U \ IR.

Definition 1.13. Let Ω be a domain in C which is symmetric with respect
to IR such that Ω∩ IR = ∅ and Ω∩C + and Ω∩C− are simply connected. Let
A0 be a selfadjoint operator in the Krein space (H, [., .]) such that σ(A0)∩(Ω\
IR) consists of isolated points which are poles of the resolvent of A0, and no
point of Ω∩ IR is an accumulation point of the non–real spectrum σ(A0) \ IR
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of A0. The operator A0 is called definitizable over Ω, if A0 ∈ S∞(Ω∩ IR) and
every point λ ∈ Ω ∩ IR has an open connected neighbourhood Iλ in IR such
that both components of I \ {λ} are of definite type (cf. Definition 1.3) with
respect to A0.

We remark that A0 is definitizable (cf. Section 1.4) if and only if A0 is defini-
tizable over C ([J6]).

In the following we will introduce for an operator which is definitizable over
Ω the notions of critical points and open sets of type π in a way similar to
Section 1.4.

Assume that A0 is definitizable over Ω. A point t ∈ Ω∩IR is called a critical
point of A0 if there is no open subset Δ of Ω∩ IR of definite type with t ∈ Δ.
The set of critical points of A0 is denoted by c(A0). For the properties of
the spectral function E(. ; A0) of A0 we refer to [J6] and [J1]. We mention
only that for every connected subset δ, δ ⊂ Ω ∩ IR, whose endpoints are not
critical points of A0, E(δ; A0) is defined and this projection is selfadjoint in
(H, [., .]).

Furthermore, by [J6, Theorem 2.13], an open subset Δ of Ω∩IR is of positive
type (negative type) with respect to A0 if and only if κ−(E(δ; A0)H) = 0
(resp. κ+(E(δ; A0)H) = 0) for every (in IR) connected subset δ of Δ with
δ ⊂ Δ.

We shall say that an open subset Δ of Ω ∩ IR is of type π+ (type π−) with
respect to A0 if κ−(E(δ; A0)H) < ∞ (resp. κ+(E(δ; A0)H) < ∞) for every
(in IR) connected subset δ of Δ with δ ⊂ Δ such that E(δ; A0) is defined.
The open set Δ ⊂ Ω∩ IR is called of type π with respect to A0, if Δ is of type
π+ or of type π− with respect to A0.

1.7. Perturbations of Fundamentally Reducible Operators

Let A0 be a selfadjoint operator in the Krein space (H, [., .]) with ρ(A0) = ∅.
The operator A0 is called fundamentally reducible if there exists a funda-
mental symmetry J of H which commutes with the resolvent of A0, i.e.
(A0−λ)−1J = J(A0−λ)−1 for some λ ∈ ρ(A0). In this case A0 is a selfadjoint
operator in the Hilbert space (H, [J ., .]). We set P± := 1

2 (I ± J) and H± :=
P±H. Then we have P±D(A0) = (A0−i)−1H± ⊂ D(A0). Denote by A0,± the
operators in H± defined by A0,±x := A0x for x ∈ P±D(A0) =: D(A0,±). It is
easy to see that A0,+ is a selfadjoint operator in the Hilbert space (H+, [., .])
and A0,− is a selfadjoint operator in the Hilbert space (H−,−[., .]). Further,

σ(A0) = σ(A0,+) ∪ σ(A0,−)
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holds. For a densely defined closed operator C we denote by σe,ess(C) the
extended essential spectrum, i.e. σe,ess(C) = σess(C) (see Section 1.3) if C
is bounded and σe,ess(C) = σess(C) ∪ {∞} otherwise. It is easy to see that
the following lemma holds. We omit the simple proof.

Lemma 1.14. Let A0 be a fundamentally reducible operator in the Krein
space (H, [., .]). Then

σ++(A0) = σ(A0,+) \ σ(A0,−) and σ−−(A0) = σ(A0,−) \ σ(A0,+)(1.14)

hold and the operator A0 is definitizable over

C \ {σe,ess(A0,+) ∩ σe,ess(A0,−)}.
An open connected set Δ of IR\{σe,ess(A0,+)∩σe,ess(A0,−)} is of type π+ (π−)
with respect to A0 if and only if Δ ⊂ IR \σe,ess(A0,−) (Δ ⊂ IR \σe,ess(A0,+),
resp.) holds.

If, in particular, σe(A0,+) ∩ σe(A0,−) consists of at most finitely many
points, then A0 is a definitizable operator in (H, [., .]) and c∞(A0) =
σe,ess(A0,+) ∩ σe,ess(A0,−) and cs(A0) = {∅} hold.

With the help of (1.14) it is easily seen that σ(A0,+) and σ(A0,−) do not
depend on the choice of the fundamental symmetry J , which commutes with
the resolvent of A0.

Let H and K be Hilbert spaces. In the sequel we denote by Sp(H,K), p ∈
[1,∞), the linear space of all operators T ∈ S∞(H,K) such that

∑∞
j=1 sp

j <

∞, where sj , j = 1, 2, . . ., are the eigenvalues of
√

T ∗T (taking multiplicities
into account). We set Sp := Sp(H,H).

In [J1] perturbations of fundamentally reducible definitizable operators are
considered. In the following theorem we consider perturbations of funda-
mentally reducible operators, in particular we do not assume that the unper-
turbed operator is definitizable. For the case that the unperturbed operator
is a bounded fundamentally reducible operator similar results are obtained
in [L1] and [LMaM1]. For the convenience of the reader we will give a proof
of the following theorem although parts of the proof are similar to [J1, proof
of Theorem 3.1].

Theorem 1.15. Let Aj , j = 0, 1, be a selfadjoint operator in (H, [., .])
with i ∈ ρ(Aj). Assume, further, that A0 is fundamentally reducible and that
there exists p ∈ [1,∞) such that

(A0 + i)−1 − (A1 + i)−1 ∈ Sp.



30 1. Riggings and Perturbations of Selfadjoint Operators in Krein Spaces

Then the following holds.

(1) The operator A1 is definitizable over C \ {σe,ess(A0,+)∩ σe,ess(A0,−)}.
(2) An open connected subset Δ of IR, Δ ⊂ IR\{σe,ess(A0,+)∩σe,ess(A0,−)},

is of type π+ (π−) with respect to A0 if and only if it is of type π+ (π−,
resp.) with respect to A1

Proof. 1. We set D := {z ∈ C : |z| < 1}, Dc := C \D and T := {z ∈ C :
|z| = 1}.

Let J be a fundamental symmetry of H commuting with the resolvent of
A0. By ψ we denote the linear fractional transformation defined by

ψ(z) = −z − i

z + i
.

If Uj , j = 0, 1, denotes the Cayley transform ψ(Aj) of Aj , then

(I ± J)U1(I ± J) = (I ± J)U0(I ± J) + (I ± J)(U1 − U0)(I ± J).

From this it follows that

P+U1P− ∈ S∞, P−U1P+ ∈ S∞,(1.15)
P+U1P+ − P+U0P+ ∈ S∞, P−U1P− − P−U0P− ∈ S∞,(1.16)

where P± = 1
2 (I ± J). This implies σ(U1) \ T ⊂ σp,norm(U1) (see e.g. [K2,

Theorem 12]). By a well–known result ([K2, Theorem 13], [B, Theorem
VIII.3.1]) there exists an U1–invariant maximal nonnegative (nonpositive)
subspace M+ (resp. M−) of H such that σ(U1|M+) \T = σ(U1)∩D (resp.
σ(U1|M−)\T = σ(U1)∩Dc) and all root spaces corresponding to eigenvalues
of U1 in D (resp. in Dc) are contained in M+ (M−, resp.).

2. We will prove σess(U1|M+) = σess(U0|P+H). Let K+ ∈ L(P+H, P−H)
be the angular operator (see [K2]) corresponding to M+, M+ = {x : x =
x+ + K+x+, x+ ∈ P+H}. We consider the following extended angular oper-
ator

K̃+ :=
[

0 0
K+ 0

]
with respect to the decomposition H = P+H + P−H. Let x+ ∈ P+H. Then
(I + K+)x+ ∈ M+ and (U1 − λ)(I + K+)x+ ∈ M+ for λ ∈ C . We have

(U1 − λ)(I + K+)x+ =
= (P+U1P+ + P+U1P−K+ − λP+)x+ +
+(P−U1P+ + P−U1P−K+ − λP−K+)x+ =
= (I + K+)(P+U1P+ + P+U1P−K+ − λP+)x+.
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The operator I + K+ considered as an operator acting from P+H onto M+

is an isomorphism, therefore it follows

σess(U1|M+) = σess(P+U1P+ + P+U1P−K̃+|P+H).

In view of (1.15) and (1.16) we have

(1.17)
σess(U1|M+) = σess(P+U1P+|P+H) =
= σess(P+U1P+) \ {0} = σess(P+U0P+) \ {0} = σess(U0|P+H).

By a similar reasoning the following holds

σess(U1|M−) = σess(U0|P−H).(1.18)

3. Let Δ be a connected open subset of IR such that Δ ⊂ IR\{σe,ess(A0,+)∩
σe,ess(A0,−)}. Let t1 and t2 be the endpoints of Δ (in IR). Assume that t1
is an accumulation point of σ(A1) \ IR. Then there exists sequences (λ+

n ) ⊂
C+∩σ(A1) and (λ−

n ) ⊂ C−∩σ(A1) such that λ±
n → t1 for n → ∞. Therefore

ψ(λ+
n ) ∈ σ(U1|M+) and ψ(λ−

n ) ∈ σ(U1|M−), n ∈ IN,

and relations (1.17) and (1.18) imply

ψ(t1) ∈ σess(U1|M+) ∩ σess(U1|M−) =
= σess(U0|P+H) ∩ σess(U0|P−H) = ψ(σe,ess(A0,+)) ∩ ψ(σe,ess(A0,−)).

But this is a contradiction to t1 ∈ Δ, hence t1 and t2 are no accumulation
points of σ(A1)\ IR. As a consequence of [J2] assertions (1) and (2) hold and
Theorem 1.15 is proved. �





2. A Class of Analytic Operator Functions and Their
Linearizations

2.1. Definition of a Class of Analytic Operator Functions T . Jor-
dan Chains of T

Let again (H, [., .]) be a Krein space and JH a fundamental symmetry of H.
Throughout Chapter 2 we assume that A is a definitizable selfadjoint operator
in H. For the scale corresponding to A we simply write Hs := Hs(A, JH).
The case that (H, [., .]) is a Hilbert space, i.e. JH = 1, and A is an arbitrary
selfadjoint operator in this Hilbert space is not excluded.

We first define a class of holomorphic operator functions the values of which
may be unbounded operators in H with domains depending on the variable.
Let G be a locally holomorphic operator function with values in S

(A)
∞ on

an open set O ⊂ C symmetric with respect to the real axis. Moreover, we
assume that

G(λ) = G(λ)+, λ ∈ O.

Then the operator function

T (λ) := λ − (A+
�G(λ)), λ ∈ O,(2.1)

is defined (see Lemma 1.6). For every λ ∈ O, T (λ) is a densely defined closed
operator in the Krein space H. By definition we have

D(T (λ)) = {x ∈ H 1
2

: T̃ (λ)x ∈ H},(2.2)

where
T̃ (λ) := λE − Ã − G(λ), λ ∈ O,(2.3)

and
T (λ) = T̃ (λ) | D(T (λ)).
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The domain of T (λ) may depend on λ. From the relation T̃ (λ)+ = T̃ (λ),
λ ∈ O, we easily conclude that

T (λ)+ = T (λ), λ ∈ O.

The following simple lemma shows that the function T is holomorphic on O
in the sense of [Ka, Theorem VII.1.3].

Lemma 2.1. For every λ0 ∈ O there exists a z0 ∈ C , λ0+z0 ∈ ρ(A), and a
neighbourhood U(λ0) of λ0 in O such that the following equivalent assertions
are true.

(i) For every λ ∈ U(λ0) the operator T̃ (λ) − z0E is an isomorphism.

(ii) For every λ ∈ U(λ0), T (λ)− z0 has a bounded inverse (T (λ)− z0)−1 ∈
L(H).

If (i) or (ii) holds for some z0 ∈ C and some neighbourhood U(λ0) of λ0,
then the L(H)-valued function λ �→ (T (λ) − z0)−1 is holomorphic in U(λ0).

Proof. The selfadjoint operator Reλ0 − A is definitizable in H. Then, by
Lemma 1.10, for sufficiently large η > 0, we have

−iη − i Im λ0 ∈ ρ((Reλ0 − A)+
�(−G(λ0))) ∩ ρ(Reλ0 − A).

Hence the assumptions of Lemma 1.7 are fulfilled, and by that lemma

(iη + λ0)E − Ã − G(λ0) = T̃ (λ0) + iηE

is an isomorphism. Then there exists a neighbourhood U(λ0) of λ0 such that
(i) holds with z0 = −iη.

That (i) and (ii) are equivalent is a consequence of Lemma 1.7. The holo-
morphy assertion follows from the holomorphy of T̃ in O. �

Remark 2.2. To establish Lemma 2.1 we made use of the assumption
that A is definitizable. We mention that Lemma 2.1 and all other results of
Sections 2.1–2.3 remain valid if A is the orthogonal direct sum of a definitiz-
able selfadjoint operator and a bounded selfadjoint operator. For simplicity
we restrict ourselves to the case of a definitizable selfadjoint operator A.

We define the resolvent set ρ(T ) of T to be the set of all λ ∈ O such that
0 ∈ ρ(T (λ)). The spectrum of T is by definition

σ(T ) := O \ ρ(T ).
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It may happen that ρ(T ) is empty. The set ρ(T ) coincides with the set of
all λ ∈ O such that T̃ (λ) is an isomorphism. If ρ(T ) = ∅, the functions
λ �→ T (λ)−1 and λ �→ T̃ (λ)−1 are locally holomorphic in ρ(T ). A point
λ ∈ O is called an eigenvalue of T if there exists a nonzero x ∈ D(T (λ)) such
that T (λ)x = 0. Then x is called an eigenelement of T corresponding to λ.
The set of all eigenvalues of T is denoted by σp(T ). If for some x ∈ H 1

2
we

have T̃ (λ)x = 0 then, by definition of T , x ∈ D(T (λ)) and T (λ)x = 0. If
λ0 ∈ σp(T ), then x0, . . . , xm−1 ∈ H is called a Jordan chain of T at λ0 if,
for some z0 ∈ C , z0 = 0, and some neighbourhood U(λ0) of λ0 such that
statement (i) or (ii) of Lemma 2.1 holds, x0, . . . , xm−1 ∈ H is a Jordan chain
of the operator function λ �→ (T (λ)−z0)−1 +z−1

0 at λ0, which is holomorphic
in U(λ0). Recall that for an L(H)-valued function S holomorphic in some
domain U ⊂ C the vectors x0, . . . , xm−1 ∈ H, x0 = 0, are called a Jordan
chain of S at λ0 ∈ σp(S) if

∑j
k=0(k!)−1S(k)(λ0)xj−k = 0, j = 0, 1, . . . , m− 1,

holds.
If z1 has the same properties as z0, we find

(2.4)
(T (λ0) − z1)−1 + z−1

1 =
= z0z

−1
1 (1 − (z0 − z1)(T (λ0) − z1)−1)((T (λ0) − z0)−1 + z−1

0 ).

Hence the above definition does not depend on the choice of z0.

Lemma 2.3. The elements x0, . . . , xm−1 ∈ H are a Jordan chain of T at
λ0 ∈ σp(T ) if and only if x0, . . . , xm−1 ∈ H 1

2
, x0 = 0, and

j∑
k=0

1
k!

T̃ (k)(λ0)xj−k = 0, j = 0, 1, . . . , m − 1, T̃ (0) := T̃ .(2.5)

Proof. For all λ in a neighbourhood of the point λ0, we define Q(λ) :=
(T (λ) − z0)−1. Let x0, . . . , xm−1 ∈ H be a Jordan chain of T at λ0. Then
we have

∑j
k=0

1
k!Q

(k)(λ0)xj−k = −z−1
0 xj , j = 0, . . . , m − 1, and, since Q(λ)

is a restriction of Q̃(λ) := (T̃ (λ) − z0E)−1 ∈ L(H− 1
2
,H 1

2
), the same relation

holds with Q replaced by Q̃. Hence x0, . . . , xm−1 ∈ H 1
2
.

Let now x0, . . . , xm−1 be arbitrary elements of H 1
2

and set x(λ) := x0 +
(λ − λ0)x1 + . . . + (λ − λ0)m−1xm−1. Evidently, (T (λ) − z0)−1 + z−1

0 =
Q(λ) + z−1

0 maps H 1
2

into itself and its restriction to H 1
2

coincides with

z−1
0 (T̃ (λ) − z0E)−1T̃ (λ). Then λ �→ (Q(λ) + z−1

0 )x(λ) has a zero of order m

at λ0 if and only if λ �→ z−1
0 (T̃ (λ) − z0E)−1T̃ (λ)x(λ) has a zero of order m
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at λ0 which is equivalent to the fact that T̃ (λ)x(λ) has a zero of order m at
λ0. The latter is true if and only if (2.5) holds, which proves Lemma 2.3. �

2.2. Spectral Points of Positive and Negative Type of T

Let T be defined as in (2.1), let λ0 ∈ O and let z0, z0 = 0, be chosen
as in Lemma 2.1. We recall that a point λ0 ∈ O is said to belong to the
approximative point spectrum of T , λ0 ∈ σap(T ), if there exists a sequence
(xn) ⊂ D(T (λ0)) with ‖xn‖ = 1, n = 1, 2, . . . , and ‖T (λ0)xn‖ → 0 if n → ∞.

It is easy to see that we have λ0 ∈ σap(T ) if and only if λ0 ∈ σap(F0), i.e.
0 ∈ σap(F0(λ0)), where

F0(λ) := −z2
0((T (λ) − z0)−1 + z−1

0 ) = −z0T (λ)(T (λ) − z0)−1.

Definition 2.4. A point λ0 ∈ σ(T ) ∩ IR is said to be a spectral point of
positive (negative) type of T , and we write λ0 ∈ σ++(T ) (resp. λ0 ∈ σ−−(T )),
if λ0 ∈ σap(T ) and for each sequence (xn) ⊂ H with ‖xn‖ = 1, and
‖F0(λ0)xn‖ → 0 for n → ∞ we have

lim inf
n→∞ Re [F ′

0(λ0)xn, xn] > 0 (resp. lim sup
n→∞

Re [F ′
0(λ0)xn, xn] < 0).

We remark that if λ0, (xn) are as in Definition 2.4 then Im [F ′
0(λ0)xn, xn]

tends to zero for n → ∞.
Definition 2.4 does not depend on the choice of z0. Indeed, let z1 ∈ C,

z1 = 0, satisfy the same conditions as z0 (see Lemma 2.1). We set F1(λ) :=
−z2

1((T (λ) − z1)−1 + z−1
1 ). Relation (2.4) holds and we have

F ′
1(λ)

(
1 − z0 − z1

z0z1
F0(λ)

)
=
(

1 +
z0 − z1

z0z1
F1(λ)

)
F ′

0(λ).

Let (xn) and λ0 be as in Definition 2.4. It follows that

[F ′
1(λ0)xn, xn] − z0 − z1

z0z1
[F ′

1(λ0)F0(λ0)xn, xn] =

= [F ′
0(λ0)xn, xn] +

z0 − z1

z0z1
[F ′

0(λ0)xn,−z2
1((T (λ0) − z1)−1 + z−1

1 )xn].

As ‖F0(λ0)xn‖ → 0 and, by (2.4), ‖ − z2
1((T (λ0) − z1)−1 + z−1

1 )xn‖ → 0
the second terms on both sides of the preceding relation converge to zero if
n → ∞. This shows that Definition 2.4 does not depend on the choice of z0.
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In the case of operator functions with values in L(H) this definition of
spectral points of positive (negative) type coincides with the usual one (cf.
[LMaM2]). This is a consequence of the following Proposition 2.5.

Proposition 2.5. Let λ0 ∈ σap(T ) ∩ IR. The following assertions are
equivalent:

(1) λ0 ∈ σ++(T ) (λ0 ∈ σ−−(T )).

(2) For each sequence (xn) ⊂ H 1
2

with ‖xn‖ 1
2

= 1 and ‖T̃ (λ0)xn‖− 1
2
→ 0

for n → ∞ we have

lim inf
n→∞ [T̃ ′(λ0)xn, xn] > 0 (resp. lim sup

n→∞
[T̃ ′(λ0)xn, xn] < 0).

(3) For each sequence (xn) ⊂ D(T (λ0)) with ‖xn‖ = 1 and ‖T (λ0)xn‖ → 0
for n → ∞ we have

lim inf
n→∞ [T̃ ′(λ0)xn, xn] > 0 (resp. lim sup

n→∞
[T̃ ′(λ0)xn, xn] < 0).

Proof. For x ∈ H 1
2

we have

[F ′
0(λ0)x, x] = [z0T̃

′(λ0)(T (λ0) − z0)−1x, z0(T (λ0) − z0)−1x].(2.6)

We consider only the case of a spectral point of positive type. For a spectral
point of negative type a similar reasoning applies. Assume that (1) holds.
Let (xn) ⊂ H 1

2
be a sequence with ‖xn‖ 1

2
= 1 and ‖T̃ (λ0)xn‖− 1

2
→ 0 for

n → ∞. The operator T̃ (λ0) − z0E is an isomorphism, therefore it follows
lim infn→∞ ‖(T̃ (λ0)−z0E)xn‖− 1

2
> 0. Hence, we have lim infn→∞ ‖xn‖− 1

2
>

0, which implies lim infn→∞ ‖xn‖ > 0. Further, we have

(2.7)

‖F0(λ0)xn‖ ≤ ‖z2
0((T (λ0) − z0)−1 + z−1

0 )xn‖ 1
2

=

= ‖z0(T̃ (λ0) − z0E)−1T̃ (λ0)xn‖ 1
2
≤

≤ |z0|‖(T̃ (λ0) − z0E)−1‖‖T̃ (λ0)xn‖− 1
2
.

Therefore, ‖F0(λ0)xn‖ tends to zero for n → ∞. By the second inequality in
(2.7) and a similar inequality for z0 replaced by z0 we find

lim
n→∞ ‖z0(T (λ0)− z0)−1xn + xn‖ 1

2
= lim

n→∞ ‖z0(T (λ0)− z0)−1xn + xn‖ 1
2

= 0.
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Then (1) and (2.6) imply

0 < lim inf
n→∞ Re [F ′

0(λ0)xn, xn] =

= lim inf
n→∞ Re [T̃ ′(λ0)xn, xn] = lim inf

n→∞ [T̃ ′(λ0)xn, xn],

hence (2) holds.
It is easy to see that (2) implies (3). Assume that (3) holds. Let (xn) ⊂ H

be a sequence with ‖xn‖ = 1 and ‖F0(λ0)xn‖ → 0 for n → ∞. We will
prove that lim infn→∞ Re [F ′

0(λ0)xn, xn] > 0 holds. For this we set yn :=
−z0(T (λ0) − z0)−1xn. Then

lim
n→∞ ‖xn − yn‖ = lim

n→∞ |z−1
0 |‖F0(λ0)xn‖ = 0.(2.8)

Hence, we have

lim
n→∞ ‖yn‖ = 1, lim

n→∞ ‖T (λ0)yn‖ = lim
n→∞ ‖F0(λ0)xn‖ = 0(2.9)

and, by (3),
lim inf
n→∞ [T̃ ′(λ0)yn, yn] > 0.(2.10)

We have

‖z−1
0 yn + (T (λ0) − z0)−1yn‖ 1

2
=

= |z0|−1‖(T (λ0) − z0)−1(T (λ0) − z0 + z0)yn‖ 1
2
≤

≤ |z0|−1‖(T̃ (λ0) − z0E)−1‖‖(T (λ0)yn‖− 1
2

and a similar relation with z0 replaced by z0. Then making use of the second
relation in (2.9) we find

lim
n→∞ ‖z−1

0 yn+(T (λ0)−z0)−1yn‖ 1
2

= lim
n→∞ ‖z−1

0 yn+(T (λ0)−z0)−1yn‖ 1
2

= 0.

Then by (2.10) and (2.8)

0 < lim inf
n→∞ Re [T̃ ′(λ0)z0(T (λ0) − z0)−1yn, z0(T (λ0) − z0)−1yn] =

= lim inf
n→∞ Re [F ′

0(λ0)yn, yn] = lim inf
n→∞ Re [F ′

0(λ0)xn, xn],

and (1) holds. �

Remark 2.6. Every real eigenvalue λ0 of T belonging to σ++(T )∪σ−−(T )
is semisimple, that is, all Jordan chains of T at λ0 consist of one element only.
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Indeed, assume x0, x1 is a Jordan chain of T at λ0. Then we have, by (2.5),

T̃ (λ0)x0 = 0, T̃ ′(λ0)x0 + T̃ (λ0)x1 = 0.

Hence
0 = [T̃ ′(λ0)x0, x0] + [T̃ (λ0)x1, x0] = [T̃ ′(λ0)x0, x0],

which contradicts λ0 ∈ σ++(T ) ∪ σ−−(T ).

2.3. An Operator Matrix M Connected with T . Relations be-
tween the Spectra of T and M.

We assume now, in addition, that the operator function G has a special
form. Let K be one more Krein space. We denote its inner product in
the same way as the inner product of H by [., .]. Let JK be a fundamental
symmetry of (K, [., .]). In the following D denotes a selfadjoint operator in
K with ρ(D) = ∅. For the scale Ks(D, JK) we simply write Ks. Let, further,
B be a compact operator of H 1

2
in K− 1

2
. Then B+ is a compact operator of

K 1
2

in H− 1
2
:

B ∈ S∞(H 1
2
,K− 1

2
), B+ ∈ S∞(K 1

2
,H− 1

2
).(b)

In the special case of an operator A with compact resolvent and a bounded
operator B from H to K, the restriction of B to H 1

2
regarded as an operator

into K− 1
2

is compact (Lemma 1.2), i.e. (b) holds.
We set

G(λ) := −B+(D̃ − λE)−1B, λ ∈ ρ(D).

This operator function G satisfies the conditions of Section 2.1 and we define
T and T̃ as in (2.1), (2.3), i.e.

(2.11)
T (λ) = λ − {A+

�(−B+(D̃ − λE)−1B)},
T̃ (λ) = λE − Ã + B+(D̃ − λE)−1B, λ ∈ ρ(D).

Let G denote the Krein space H × K. We consider on G the fundamental
symmetry JH×JK. The operator L := A×D is selfadjoint in G and we have
ρ(L) = ∅. The scale Gs := Gs(L, JH × JK) corresponding to L is Hs × Ks.
We define an operator B ∈ L(G 1

2
,G− 1

2
) by

B :=
[

0 B+

B 0

]
(2.12)
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with respect to the decompositions G 1
2

= H 1
2
×K 1

2
and G− 1

2
= H− 1

2
×K− 1

2
.

By the assumptions on B, B ∈ S
(L)
∞ (cf. Section 1.2). We set

M̃ := L̃ + B =

[
Ã B+

B D̃

]
and M := L+

�B =
[

A 0
0 D

]
+
�

[
0 B+

B 0

]
with respect to the same decompositions.

Let λ ∈ ρ(D). We apply the Frobenius-Schur factorization to M̃− λE:

(2.13)

M̃ − λE =
[

1 F̃ (λ)
0 1

] [ −T̃ (λ) 0
0 D̃ − λE

][
1 0

(F̃ (λ))+ 1

]
=

= U(λ)

[
−T̃ (λ) 0

0 D̃ − λE

]
U(λ)+, λ ∈ ρ(D),

where

F̃ (λ) := B+(D̃ − λE)−1, U(λ) :=
[

1 F̃ (λ)
0 1

]
.

This relation and Lemma 1.7 imply (2.14) below.

Proposition 2.7. We have

ρ(T ) = ρ(M) ∩ ρ(D).(2.14)

Moreover, for λ ∈ ρ(T ) we have

(2.15)

(M̃− λE)−1 =

=

[
−T̃ (λ)−1 T̃ (λ)−1F̃ (λ)

F̃ (λ)+T̃ (λ)−1 −F̃ (λ)+T̃ (λ)−1F̃ (λ) + (D̃ − λE)−1

]

and
D(M) = (M̃− λE)−1G.

Denote by I1 the embedding of H in G:

I1 : H � x �→
(

x

0

)
∈ G

and by P1 the orthogonal projection on H in G regarded as an operator of G in
H. We have I+

1 = P1. Then by Proposition 2.7, for λ ∈ ρ(T ) = ρ(M)∩ρ(D),
we have

−T (λ)−1 = P1(M− λ)−1I1.(2.16)
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The following proposition on the point spectra of the operator function T
and the operator M (compare [LMeM, Proposition 1.2], [AL, Lemma 3.2])
can be verified by a simple calculation.

Proposition 2.8. We have

σp(T ) = σp(M) ∩ ρ(D).

Moreover, the following holds.

(1) If x0, . . . , xm−1 ∈ H 1
2

is a Jordan chain of T corresponding to a point
λ0 ∈ σp(T ), then the elements

(2.17)

x0 =
(

x0

−(D̃ − λ0E)−1Bx0

)
, . . . ,

xm−1 =
(

xm−1

−∑m−1
j=0 (D̃ − λ0E)−j−1Bxm−1−j

)
form a Jordan chain of M corresponding to λ0. Conversely, if
x0, . . . ,xm−1 is a Jordan chain of M corresponding to a point λ0 ∈
σp(M)∩ρ(D), then this Jordan chain is of the form (2.17) and the first
components of the vectors in (2.17) form a Jordan chain of T corre-
sponding to λ0.

(2) If x0 and x0 are as in (1) then [T̃ ′(λ0)x0, x0] = [x0,x0] holds.

The following theorem shows that, for every λ ∈ ρ(D) ∩ IR, the sign types
of λ with respect to T and M coincide.

Theorem 2.9. Assume that ρ(M) = ∅ holds. Then

σap(T ) ∩ IR = σap(M) ∩ ρ(D) ∩ IR,(2.18)

and we have

σ++(T ) = σ++(M) ∩ ρ(D), σ−−(T ) = σ−−(M) ∩ ρ(D).(2.19)

Proof. Let λ0 ∈ σap(T ) ∩ IR. We recall that T is only defined on ρ(D),
hence λ0 ∈ ρ(D). According to Proposition 2.7 λ0 belongs to σ(M)∩IR. The
selfadjointness of M implies λ0 ∈ σap(M). Conversely, let λ0 ∈ σap(M) ∩
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ρ(D)∩ IR. Then Proposition 2.7 implies λ0 ∈ σ(T )∩ IR. The operator T (λ0)
is selfadjoint, therefore λ0 belongs to σap(T ) ∩ IR and (2.18) is proved.

Let λ0 ∈ σ++(T ). Relation (2.18) implies λ0 ∈ σap(M) ∩ ρ(D) ∩ IR. Let
(xn) = (

(
xn

yn

)
) ⊂ G 1

2
, xn ∈ H 1

2
, yn ∈ K 1

2
, be a sequence with ‖xn‖G 1

2
= 1

and ‖(M̃ − λ0E)xn‖G− 1
2
→ 0 for n → ∞. From (2.13) and the fact that

U(λ0) ∈ L(G− 1
2
) is invertible we deduce

‖(T̃ (λ0)xn‖H− 1
2
→ 0 and ‖Bxn + (D̃ − λ0E)yn‖K− 1

2
→ 0(2.20)

for n → ∞. We claim that lim infn→∞ ‖xn‖H 1
2

> 0 holds. Suppose that

there exists a subsequence (xnk
) of (xn) which tends to zero in H 1

2
. Then

Bxnk
tends to zero in K− 1

2
and relation (2.20) implies (D̃−λ0E)ynk

→ 0 for

k → ∞ in K− 1
2
. Since, by Lemma 1.1, D̃ − λ0E is an isomorphism we find

‖ynk
‖K 1

2
→ 0 and ‖xnk

‖G 1
2
→ 0 for k → ∞, a contradiction.

Proposition 2.5 now leads to

0 < lim inf
n→∞ [T̃ ′(λ0)xn, xn] =

= lim inf
n→∞ ([xn, xn] + [(D̃ − λ0E)−1Bxn, (D̃ − λ0E)−1Bxn]).

From (2.20) it follows that (D̃−λ0E)−1Bxn + yn tends to zero in K 1
2
, hence

0 < lim inf
n→∞ [T̃ ′(λ0)xn, xn] = lim inf

n→∞ ([xn, xn] + [yn, yn]) = lim inf
n→∞ [xn,xn].

By Lemma 1.4 λ0 belongs to σ++(M). Similarly, for λ ∈ σ−−(T ).
Conversely, let λ0 ∈ σ++(M) ∩ ρ(D). By (2.18) we have λ0 ∈ σap(T ) ∩ IR.

Let (xn) ⊂ H 1
2

be a sequence with ‖xn‖H 1
2

= 1 and ‖T̃ (λ0)xn‖H− 1
2
→ 0 for

n → ∞. Set yn := −(D̃ − λ0E)−1Bxn. Then yn belongs to K 1
2

and for xn,
xn :=

(
xn

yn

) ∈ G 1
2
, we have

‖xn‖G 1
2
≥ 1 and ‖(M̃− λ0E)xn‖G− 1

2
= ‖T̃ (λ0)xn‖H− 1

2
→ 0.

for n → ∞. Lemma 1.4 implies

0 < lim inf
n→∞ [xn,xn] = lim inf

n→∞ ([xn, xn] + [yn, yn]) =

= lim inf
n→∞ ([xn, xn] + [(D̃ − λ0E)−1Bxn, (D̃ − λ0E)−1Bxn]) =

= lim inf
n→∞ [T̃ ′(λ0)xn, xn].
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Hence, by Proposition 2.5, λ0 ∈ σ++(T ). Similarly, for λ0 ∈ σ−−(M)∩ρ(D).
�

Observe that Theorem 2.9 implies, in the case ρ(M) = ∅, that for

λ0 ∈ σ++(T ) ∩ σp(T ) = σ++(M) ∩ σp(M) ∩ ρ(D)
(λ0 ∈ σ−−(T ) ∩ σp(T ) = σ−−(M) ∩ σp(M) ∩ ρ(D))

and for each eigenelement x0 of T corresponding to λ0 and each eigenvector
x0 of M corresponding to λ0 we have [T̃ ′(λ0)x0, x0] > 0 and [x0,x0] > 0 (resp.
[T̃ ′(λ0)x0, x0] < 0 and [x0,x0] < 0). Further, λ0 is a semisimple eigenvalue
of T and M (see Remark 2.6).

Now we shortly consider some special assumptions on the operator B and
their consequences.

Lemma 2.10. Assume that the following condition (β) is fulfilled.

(β): Relation (b) holds, and B can be extended by continuity to an operator
belonging to L(H,K− 1

2
).

Then, for λ ∈ ρ(D), D(T (λ)) = D(A) holds and
(
x
y

)
belongs to D(M) if and

only if x ∈ D(A) and, for some λ ∈ ρ(T ), (D̃ − λE)−1Bx + y ∈ D(D) holds.
Furthermore, all Jordan chains of T corresponding to points λ ∈ ρ(D) belong
to D(T (λ)).

Proof. For λ ∈ ρ(D) the range of B+(D̃ − λE)−1B is contained in H and
this operator can be extended by continuity to an operator belonging to L(H),
hence D(T (λ)) = D(A). The description of D(M) is an easy consequence of
(2.15) and the fact that B+ can be considered as an operator belonging to
L(K 1

2
,H). The last assertion follows from (2.5). �

Remark 2.11. The case that M arises from L by an L–compact pertur-
bation of the special form (2.12) is contained in our general setting. Indeed,

let B̂ =
[

0 B1

B2 0

]
be a symmetric operator in the Krein space G and as-

sume that B1 is a D–compact operator from K into H, and that B2 is an
A–compact operator from H into K, in particular, we have D(L) ⊂ D(B̂) and
B̂ is L–compact. The restrictions B1|K1 and B2|H1 belong to S∞(K1,H)
and S∞(H1,K) respectively (cf. [Ka, Remark IV.1.12]). By the symmetry
of B̂, (B1|K1)+ is an extension of B2|H1.
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Let B denote the interpolated operator corresponding to the middle point
of the scale between B2|H1 and (B1|K1)+. Then B satisfies condition (b).

In this case we have

D(T (λ)) = D(A), T (λ) = λ − A + (B1|K1)(D − λ)−1(B2|H1), λ ∈ ρ(D).

Indeed, since by assumption (B1|K1)(D − λ)−1(B2|H1) ∈ S∞(H1,H), λ ∈
ρ(D), the operator S(λ) := λ − A + (B1|K1)(D − λ)−1(B2|H1), D(S(λ)) =
D(A), is closed. Evidently, T (λ) is an extension of S(λ) or equal to S(λ).
For fixed λ ∈ ρ(D) there exists an M > 0 such that |Im μ| ≥ M implies
μ ∈ ρ(JHS(λ)) (see e.g. [Ka, V.4.3]). This implies T (λ) = S(λ). Similarly,
we find D(M) = D(A) ×D(D) and

M =
[

A 0
0 D

]
+
[

0 B1|K1

B2|H1 0

]
In this case all Jordan chains of T belong to D(T (λ)) = D(A).

2.4. The Case of a Definitizable Operator Matrix M

In this section we assume, in addition to the preceding section, that the
following condition (ad) is fulfilled.

(ad) A and D are definitizable selfadjoint operators and the following holds.

(a1) c∞(A) = ∅ or c∞(A) = {∞}, (a2) σ(A) \ IR ⊂ σp,norm(A),
(d1) c∞(D) = ∅ or c∞(D) = {∞}, (d2) σ(D)\IR ⊂ σp,norm(D).

(ad1) The intersections σ̃e,+(A) ∩ σ̃e,−(D) and σ̃e,−(A) ∩ σ̃e,+(D) are
empty or equal to the one point set {∞}.

(ad2) There exists a real interval of the form (b+,∞) which is of positive
type with respect to A and D or of negative type with respect to A
and D. The same is true for some interval of the form (−∞, b−).

Theorem 2.12. Assume that the definitizable selfadjoint operators A and
D and the operator B fulfil conditions (ad) and (b). Then L and M are
definitizable selfadjoint operators in G,

σ(L) \ IR ⊂ σp,norm(L), σ(M) \ IR ⊂ σp,norm(M),(2.21)

and L and M have no finite essential critical points. Moreover, the state-
ments (ii) - (iv) of Theorem 1.12 hold with A and A+

�V replaced by L and
M, respectively.
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Proof. If G is a Pontryagin space, it is easy to see that the theorem is
true. Assume that G is not a Pontryagin space. The first relation of (2.21)
is a direct consequence of (a2) and (d2). Let E denote the product of the
spectral functions of A and D. By σ(L) \ IR ⊂ σp,norm(L), E(IR)G is not
a Pontryagin space. It follows from (a1), (d1) and (ad1) that c∞(L) = ∅ or
c∞(L) = {∞}. Then by (ad2) and by Lemma 1.9 L is definitizable. The rest
of the theorem is a consequence of Theorem 1.12. �

Since by Theorem 2.9 the sign types of spectral points of T and M coincide
and, on the other hand, by Proposition 2.8 the point spectra in ρ(D) of T
and M coincide, the definitizability of M and the fact that M has no finite
essential critical point have immediate consequences for T .

Corollary 2.13. Assume that (ad) and (b) are fulfilled. Then the following
holds.

(i) All points of σ(T ) ∩ IR with the possible exception of a finite number
of points belong to σ++(T ) ∪ σ−−(T ). Every real eigenvalue λ of T
belonging to σ++(T ) ∪ σ−−(T ) is semisimple (see Remark 2.6).

The points of (σ(T )∩ IR) \ (σ++(T )∪σ−−(T )) are eigenvalues of T . If
λ ∈ (σ(T )∩ IR)\ (σ++(T )∪σ−−(T )) the kernel of T (λ) has finite defect
in the linear space spanned by all Jordan chains of T corresponding to
λ.

(ii) Every point λ ∈ σ(T ) ∩ IR belonging to an open interval of type π+

(π−) with respect to A or, equivalently, with respect to M such that
λ /∈ σ++(T ) (resp. λ /∈ σ−−(T )) is an eigenvalue of T . If Nλ is the
kernel of T (λ), then κ−(Nλ) < ∞ (resp. κ+(Nλ) < ∞).

In the rest of this section we consider the operator function T −1 defined in
ρ(T ) (⊂ ρ(D)) with values in L(H), which is connected with the definitizable
operator M by (2.15). The function T−1 is meromorphic on C \ IR and
IR–symmetric

(T (λ)−1)+ = T (λ)−1, λ ∈ ρ(T ).(2.22)

We shall consider T (λ)−1 not only for λ ∈ ρ(T ) but also for all points λ0 ∈ C
such that T (λ)−1 has a unique analytic continuation to some neighbourhood
of λ0. The set of these points λ0 will be denoted by ρe(T ). Evidently,
ρe(M) ⊂ ρe(T ). We set σe(T ) := C \ ρe(T ).

Some aspects of IR-symmetric meromorphic operator functions on C \ IR
were studied in [J4]. In [J4] the IR–symmetry was understood with respect to
a Hilbert scalar product; but it can be replaced in all definitions and results of
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that paper by the IR–symmetry with respect to a Krein space inner product
(see [J4, Introduction]). In this thesis we consider IR–symmetric operator
functions with respect to a Krein space adjoint as, for example, (2.22).

We recall that, if H is a Krein space, an IR-symmetric L(H)–valued func-
tion N meromorphic on C \ IR is said to belong to the Krein–Langer class
Nκ(L(H)) if for arbitrary n ∈ IN, elements x1, . . . , xn ∈ H and points
λ1, . . . , λn of holomorphy of N the n × n matrix([

N(λi) − N(λj)
λi − λj

xi, xj

])n

i,j=1

has at most κ negative eigenvalues and for at least one choice of n, x1, . . . , xn

and λ1, . . . , λn it has exactly κ negative eigenvalues. N0 is the class of Nevan-
linna functions, i.e. the class N0 coincides with the class of all IR–symmetric
L(H)–valued functions N holomorphic in C \ IR such that for every λ with
Im λ > 0 and every x ∈ H, Im [N(λ)x, x] ≥ 0 holds.

An IR–symmetric L(H)-valued function G meromorphic on C \ IR is called
definitizable ([J4, Definition 3.1]) if there exists a scalar rational function r,
r(λ) = r(λ), a Nevanlinna function N and an L(H)–valued meromorphic
function n in C the poles of which are points of holomorphy of G such that

r(λ)G(λ) = N(λ) + n(λ)

for all points λ ∈ C \ IR of holomorphy of rG.
In [J4] there were introduced the so-called intervals of positive and negative

type (see also [J6]), and of type π+ and type π− with respect to a definitizable
operator function. In Theorem 2.14, (ii), below we will use the notations of
[J4].

In Theorem 2.14, (iii), and in Section 2.5 we will make use of decompositions
of the spectrum of M similar to those considered in Lemma 1.9 and Theorem
1.12. Assume, additionally, as in Theorem 2.14, (iii), below, that G is not
a Pontryagin space and that ∞ /∈ cs(A) ∪ cs(D). Then, by Theorem 2.12
(Theorem 1.12), ∞ /∈ cs(M). Let aj , bj , sj , j = 1, . . . , l, l ≥ 1, be defined as
in Lemma 1.9 with A replaced by M, in particular, sj ∈ (aj , bj)∩ ρ(M), and
consider the intervals

(−∞, s1), (s1, s2), . . . , (sl,∞).(2.23)

Put s0 := −∞, sl+1 := ∞. We define
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(2.24)
Δ+ :=

⋃
{(sj−1, sj) : κ−(E((sj−1, sj);M)G) < ∞, 1 ≤ j ≤ l + 1},

Δ− :=
⋃

{(sj−1, sj) : κ−(E((sj−1, sj);M)G) = ∞, 1 ≤ j ≤ l + 1}.

Then κ−(E(Δ+;M)G) < ∞ and κ+(E(Δ−;M)G) < ∞. The system of
intervals (2.23) will be denoted by Σ.

Theorem 2.14. Assume that (ad) and (b) are fulfilled. Then −T−1 is a
definitizable operator function. Moreover, the following holds.

(i) If q is a scalar rational function, q(λ) = q(λ), the poles of which are
contained in ρe(M) such that the form [q(M) ., .] on G has κ negative
squares, then −qT−1 can be written in the form

−q(λ)T (λ)−1 = N(λ) + n(λ),

where N ∈ Nκ′(L(H)), 0 ≤ κ′ ≤ κ, and n is a meromorphic operator
function in C which is holomorphic at all points where q is holomorphic,

(ii) If an open subset Δ of IR (not necessarily contained in ρ(D)∩ IR) is of
positive type (negative type, type π+, type π−) with respect to M, then
it is of positive type (resp. negative type, type π+, type π−) with respect
to −T−1 (see [J4, §3.1]).

(iii) Assume, in addition, that G is not a Pontryagin space and that ∞ /∈
cs(A) ∪ cs(D), then for every system Σ (see (2.23) and (2.24)) −T−1

can be written in the form

−T (λ)−1 = S0(λ) + S1(λ) − S2(λ).

Here S0 is a finitely meromorphic operator function in C , S0(λ) =
S0(λ)+, whose (finitely many) poles belong to C \ IR. The operator
functions S1 and S2 belong to the Krein-Langer classes Nκ1(L(H)) and
Nκ2(L(H)), respectively, for some nonnegative κ1, κ2. The functions
S1 and S2 are holomorphic in C \ IR, S1 is locally holomorphic on Δ−
and S2 is locally holomorphic on Δ+ (closures in IR). Moreover, it
holds w–limη→∞ η−1Sj(iη) = 0, j = 1, 2.

By the properties mentioned above each of the functions S0, S1 and S2

is uniquely determined up to addition of a selfadjoint operator.

Proof. 1. Let q be as in the theorem. Set g(z, λ) := (q(z)−q(λ))(z−λ)−1.
Then the operator function λ �→ g(M, λ) is holomorphic in every point of
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holomorphy of q. We have, for λ ∈ ρ(M) ∩ ρ(D),

−q(λ)T (λ)−1 = P1q(λ)(M− λ)−1I1 = P1q(M)(M− λ)−1I1 − P1g(M, λ)I1,

(see (2.16)). Making use of the above definition of the Krein-Langer classes
Nκ(L(H)) we easily verify that the fact that [q(M) ., .] has κ negative squares
implies that the function P1q(M)(M−λ)−1I1 belongs to Nκ′(L(H)) for some
κ′ ≤ κ. This proves (i). If we choose q so that [q(M)x, x] ≥ 0 for all x ∈ G,
then P1q(M)(M − λ)−1I1 is a Nevanlinna function. Therefore the function
−T−1 is definitizable.
2. For every c > 0, cA, cB, and cD satisfy the conditions (ad) and (b), and the
operator function corresponding to these operators is cT (c−1λ). Therefore,
it is no restriction to assume that

i ∈ ρ(D) ∩ ρ(M) = ρ(T ).

If we do this, then

(2.25)

−T (λ)−1 = P1(M− λ)−1I1 = P1(M + i)−1M(M− i)−1I1 +
+P1(M + i)−1{λ + (λ2 + 1)(M− λ)−1}(M− i)−1I1 =

=
1
2
(T (i)−1 + (T (i)−1)+) +

+P1(M + i)−1{λ + (λ2 + 1)(M− λ)−1}(M− i)−1I1,

and (ii) follows from (2.25) and [J4].
3. Let the assumptions of (iii) be fulfilled. If E0 is the Riesz-Dunford projec-
tion corresponding to the non–real spectrum of the operator M, then S0(λ) :=
P1E0(M − λ)−1I1 has the required properties. We have ∞ /∈ cs(L) and, by
Theorem 2.12, ∞ /∈ cs(M). If E is the spectral function of M, then the func-
tions S1(λ) := P1E(Δ+)(M − λ)−1I1 and S2(λ) := −P1E(Δ−)(M− λ)−1I1

(see 2.24) have the required properties. It is easy to verify the uniqueness
statement. �

2.5. Minimality Properties of M and Their Consequences

In this section we assume as in Section 2.4 that conditions (ad) and (b) are
fulfilled. In addition, we assume that G is not a Pontryagin space and that
∞ /∈ cs(A) ∪ cs(D). Let, moreover, i,−i ∈ ρ(D) ∩ ρ(M) = ρ(T ). This is no
restriction, see part 2 of the proof of Theorem 2.14.

For a bounded operator U in a Krein space we denote the operator 1
2 (U +

U+) briefly by Re+U .
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Let F be an IR-symmetric meromorphic function in C \ IR with values
in L(H). Assume that i and −i are points of holomorphy of F . If H̃ is a
Krein space, M̃ a selfadjoint operator in H̃ with i,−i ∈ ρ(M̃) whose non–real
spectrum consists of poles of the resolvent, if Γ ∈ L(H, H̃) and

F (λ) = Re+F (i) + Γ+(λ + (λ2 + 1)(M̃ − λ)−1)Γ, λ ∈ ρ(M̃),(2.26)

holds, M̃ is called a representing operator for F . The operator M consid-
ered above is a representing operator for −T−1 with Γ = (M − i)−1I1, see
(2.25). We recall the definition of minimality and local minimality of repre-
senting operators. In the definition we restrict ourselves to the special class
of operators M̃ which will be considered in this section.

Definition 2.15. Assume that (2.26) holds with a definitizable selfadjoint
operator M̃ in H̃ and let ∞ /∈ cs(M̃). Then the representing operator M̃ is
called minimal (with respect to F ) if

closp {(M̃ − z)−1Γx : z ∈ ρ(M̃), x ∈ H} = H̃.

If Ω is an open subset of C symmetric with respect to IR, Ω ∩ IR = ∅,
and E0,Ω is the Riesz-Dunford projection corresponding to M̃ and the set
(σ(M̃) \ IR) ∩ Ω, then M̃ is called minimal in Ω (with respect to F ) if

closp {(M̃ − z)−1(E(Δ; M̃) + E0,Ω)Γx : z ∈ ρ(M̃), Δ ⊂ Ω ∩ IR, x ∈ H} =

= closp {E(Δ; M̃)H̃ : Δ ⊂ Ω ∩ IR} + E0,ΩH̃.

Here Δ runs through all closed connected subsets of Ω∩IR for which E(Δ; M̃)
is defined.

Remark 2.16. Let F and M̃ be as in Definition 2.15 and let s be a closed
subset of IR such that s has no more than a finite number of accumulation
points and that s ∩ σp(M̃) = ∅. Then the minimality of M̃ in Ω := C \ s

implies the minimality of M̃ . This follows from the fact that there exists a
sequence of closed subsets δn, n = 1, 2, . . ., of IR with δn ⊂ C \ s such that⋃∞

n=1 E(δn)H̃ = E(IR; M̃)H̃.

We recall that if S is an L(H)-valued function belonging to some class
Nκ(L(H)) and the weak limit w− limη→∞ η−1S(iη) is zero, then with the
help of the well-known ε-method one can construct a Pontryagin space ΠS
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with κ−(ΠS) = κ and a minimal representing operator MS for S in ΠS ([KL]).
For functions S′, S′′ ∈ Nκ(L(H)) which differ only by a selfadjoint operator
we have MS′ = MS′′ . In essence, ΠS is a space of vector-valued functions
and MS is the operator of multiplication by the independent variable in this
space. Every minimal representing operator for S is unitarily equivalent to
MS with respect to the indefinite inner products.

In the following theorem we find, with the help of Theorem 2.14, a minimal
representing operator for −T−1. If H′ = (H′, [., .]) is a Krein space we denote
by −H′ the Krein space (H′,−[., .]).

Theorem 2.17. If Σ and S0, S1, S2 are as in Theorem 2.14, the selfadjoint
operator

MΣ := MS0 × MS1 × MS2

in ΠΣ := ΠS0 ×ΠS1 × (−ΠS2) is definitizable, c∞(MΣ) ⊂ {∞}, ∞ /∈ cs(MΣ),
and MΣ is a minimal representing operator for −T−1. We have σe(MΣ) =
σe(T ) (see Section 2.4 for the definition).

Moreover, every minimal representing operator M̃ for −T−1 for which ∞ /∈
cs(M̃) holds is unitarily equivalent to MΣ with respect to the Krein space
inner products.

Proof. By the definition of the operators MSj
the following minimal rep-

resentations hold:

Sj(λ) = Re+Sj(i) + Γ+
j (λ + (λ2 + 1)(MSj − λ)−1)Γj , j = 0, 1, 2,

If we set Γ = (Γ0 Γ1 Γ′
2)T, where Γ′

2 is the operator Γ2 considered as an
operator belonging to L(H, (−ΠS2)), then

−T (λ)−1 = −Re+T (i)−1 + Γ+(λ + (λ2 + 1)(MΣ − λ)−1)Γ.(2.27)

By the definition of Sj a point λ belongs to ρe(T ) if and only if λ is a point
of holomorphy of each of the functions Sj , j = 0, 1, 2. This is equivalent
to λ ∈ ρe(MSj

), j = 0, 1, 2, since the set of all points of holomorphy of
an Nκ–function coincides with the extended resolvent set of every minimal
representing operator (see [KL, Satz 4.4]). Hence σe(MΣ) = σe(T ). It is easy
to see that c∞(MΣ) = c∞((MS0 ×MS1)×MS2) ⊂ {∞}. Then it follows from
Lemma 1.9 that MΣ is definitizable. Since ∞ cannot be a singular critical
point of a selfadjoint operator in a Pontryagin space, we have ∞ /∈ cs(MΣ).

It remains to prove that the representation (2.27) is minimal. Let E1 and
E2 denote the spectral functions of MS1 and MS2 , respectively. Let yj ∈ ΠSj

,
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j = 1, 2. Then

lim
m→∞ ‖Ej([−m, m])yj − yj‖ΠSj

= 0, j = 1, 2.

Therefore, in order to prove the minimality of MΣ, it is sufficient to verify
that for every sufficiently large m > 0 every vector

y′ := (y′
0, y

′
1, y

′
2)

T ∈ ΠS0 × E1([−m, m])ΠS1 × E2([−m, m])ΠS2

can be approximated by linear combinations of elements having the form
(MΣ − λ)−1Γx, x ∈ H. Furthermore, by the minimality of MS0 , MS1 and
MS2 it remains to prove that every vector y′′ := (y′′

0 , y′′
1 , y′′

2 )T belonging to
ΠS0 × E1([−m, m])ΠS1 × E2([−m, m])ΠS2 with

y′′
0 :=

n∑
k=1

(MS0 − λ0,k)−1Γ0x0,k,

y′′
j :=

n∑
k=1

(MSj
− λj,k)−1Ej([−m, m])Γjxj,k, j = 1, 2,

where n ∈ IN, xj,k ∈ H, λj,k ∈ ρ(MΣ), j = 0, 1, 2, can be approximated by
linear combinations of elements of the form (MΣ − λ)−1Γx. We have

y′′ =
2∑

j=0

n∑
k=1

(MΣ − λj,k)−1FjΓxj,k,

where F0 is the Riesz-Dunford projection corresponding to the operator MΣ

and σ(MΣ) \ IR,

F1 =

⎛⎝ 0 0 0
0 E1(Δ+ ∩ [−m, m]) 0
0 0 0

⎞⎠, F2 =

⎛⎝ 0 0 0
0 0 0
0 0 E2(Δ− ∩ [−m, m])

⎞⎠.

Since F1 (F2) is the spectral projection corresponding to MΣ and the set
Δ+ ∩ [−m, m] (resp. Δ− ∩ [−m, m]) F1 and F2 can be written as strong
limits of linear combinations of resolvents of MΣ. The same holds for F0.
This proves the minimality of MΣ. The last assertion is a consequence of [J4,
Section 2]. �

The representation of −T (λ)−1 by M,

−T (λ)−1 = −Re+ T (i)−1 +P1(M+ i)−1(λ+(λ2 +1)(M−λ)−1)(M− i)−1I1,
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(see (2.25)) may not satisfy the minimality condition. If minimality holds
one can always obtain a non-minimal representing operator by replacing the
operator D by a direct product of D with another suitably chosen operator.

For minimal M results from [J4] (cf. Theorem 2.14, (ii)) imply the following
proposition.

Proposition 2.18. Let M be a minimal representing operator for −T−1.
Then M is unitarily equivalent to MΣ with respect to the Krein space inner
products. An open subset Δ of IR is of positive type (negative type, type π+,
type π−) with respect to M if and only if it is of the same type with respect
to −T−1.

It turns out that the minimality of M with respect to −T−1 is equivalent
to the “minimality of D with respect to T”:

Lemma 2.19. M is a minimal representing operator for −T−1 if and only
if

closp {(D̃ − zE)−1R(B) : z ∈ ρ(D)} = K.(2.28)

Proof. Since ρ(M) is dense in C , in (2.28) ρ(D) can be replaced by ρ(M)∩
ρ(D). If (2.28) does not hold, then by (2.15) the set

(2.29)

{(M− λ)−1I1H : λ ∈ ρ(M) ∩ ρ(D)} =

=

{(
−T̃ (λ)−1x

(D̃ − λE)−1BT̃ (λ)−1x

)
: x ∈ H, λ ∈ ρ(M) ∩ ρ(D)

}

cannot be total in G, and M is not minimal.
Assume that (2.28) holds. In view of

−iηT (iη)−1 = P1iη(M − iη)−1I1, η > 0,

and the fact that ∞ /∈ cs(M) we have

s−lim
η→∞−iηT (iη)−1 = −1.(2.30)

We claim that, for every x ∈ H,

lim
η→∞ ‖iη(D̃ − iηE)−1BT̃ (iη)−1x‖ = 0.(2.31)

If (2.31) holds, we have, by (2.29) and (2.30),

H× {0} ⊆ closp {(M− λ)−1I1x : λ ∈ ρ(M), x ∈ H},
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and this relation along with (2.28) implies

closp {(M− λ)−1I1x : λ ∈ ρ(M), x ∈ H} = G,

and M is minimal.
It remains to prove (2.31). From ∞ /∈ cs(D) it follows that, for every

x ∈ K− 1
2
, we have

lim
η→∞ ‖(D̃ − iηE)−1x‖K 1

2
= 0.

In view of B ∈ S∞(H 1
2
,K− 1

2
) we obtain

lim
η→∞ ‖(D̃ − iηE)−1B‖L(H 1

2
,K 1

2
) = 0.(2.32)

Similarly,
lim

η→∞ ‖(iηE − Ã)−1B+‖L(K 1
2

,H 1
2
) = 0.(2.33)

By (2.32) and (2.33), for x ∈ H and sufficiently large η > 0,

η
1
2 T (iη)−1x =

(
1 + (iηE − Ã)−1B+(D̃ − iηE)−1B

)−1

η
1
2 (iηE − Ã)−1x,

and the first inverse on the right hand side of this relation is uniformly
bounded for iη in some neighbourhood of ∞. From ∞ /∈ cs(A) it follows
that

lim
η→∞ ‖η 1

2 (iη − A)−1x‖H 1
2

= 0, x ∈ H,

and we obtain
lim

η→∞ ‖η 1
2 T (iη)−1x‖H 1

2
= 0, x ∈ H.(2.34)

By ∞ /∈ cs(D),

lim sup
η→∞

‖η 1
2 (D̃ − iηE)−1‖L(K− 1

2
,K) < ∞.(2.35)

Then (2.34) and (2.35) imply (2.31), and Lemma 2.19 is proved. �

The following theorem shows that we always have local minimality of M
in ρe(D) and that the operator MΣ (see Theorem 2.17) can locally be used
as a model for M.

Theorem 2.20. The representing operator M (for −T−1) is minimal in
ρe(D). If Σ is as in Theorem 2.17 and Δ is a connected subset of IR∩ ρe(D)
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such that E(Δ; MΣ) is defined, then E(Δ;M) is defined and M|E(Δ;M)G
is unitarily equivalent to MΣ|E(Δ; MΣ)ΠΣ.

Proof. Let E0 be the Riesz-Dunford projection corresponding to M and
σ(M) \ (IR ∪ σe(D)). In order to prove that M is minimal in ρe(D) it is
sufficient to prove that for any bounded closed interval [a, b] contained in
ρe(D) ∩ IR and any y ∈ G

(E([a, b];M) + E0)y(2.36)

can be approximated by elements of the form

∑
i

αi(M− λi)−1(E([a, b];M) + E0)
(

x′
1

0

)
, x′

1 ∈ H, αi ∈ C , λi ∈ ρ(M),

where the sum is finite.
Assume first that a and b are no eigenvalues of M. Let C(a, b; ε), ε > 0,

be the oriented curve consisting of the straight line connecting b + iε and
a + iε oriented in the direction of decreasing real part and the straight line
connecting a − iε and b − iε oriented in the direction of increasing real part.
Let G be a smooth bounded domain whose closure is contained in the open
upper half plane such that G ⊂ ρe(D) and (σ(M) \ IR) ∩ ρe(D) is contained
in G ∪ G∗, G∗ := {z : z ∈ G}. Then the element (2.36) can be written as

− 1
2πi

lim
ε↓0

∫
C(a,b;ε)

(M− λ)−1y dλ − 1
2πi

∫
C
(M− λ)−1y dλ,(2.37)

where C denotes the boundary of G. If y =
(
x1
x2

)
, x1 ∈ H, x2 ∈ K, we have,

by Proposition 2.7,

(2.38)

(M− λ)−1y =(
−T̃ (λ)−1(x1 − B+(D − λ)−1x2)

(D̃ − λE)−1BT̃ (λ)−1(x1 − B+(D − λ)−1x2)

)
+
(

0
(D − λ)−1x2

)
.

If we substitute (2.38) into (2.37) the last term in (2.38) gives no contribution.
Hence approximating the integrals in (2.37) by Riemann sums we see that
(2.37) is the limit of elements of the form

∑
i

αi

(
−T̃ (λi)−1(x1 − B+(D − λi)−1x2)

(D̃ − λiE)−1BT̃ (λi)−1(x1 − B+(D − λi)−1x2)

)
,
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where the sum is finite and αi ∈ C, λi ∈ ρ(M). Since every element x1 −
B+(D − λi)−1x2 is the limit in H− 1

2
of elements of H, we may approximate

(2.37) by elements of the form

(E([a, b];M) + E0)
∑

i

αi(M− λi)−1

(
x′

1

0

)
.

If a or b is an eigenvalue of M, one has to replace a and b in (2.37) by
a − 1

n and b + 1
n , respectively. Then (2.36) coincides with the limit of that

expression for n → ∞ and the same reasoning applies. This proves the first
assertion. The second assertion is a consequence of [J5]. �

Remark 2.21. If σe(D) has only a finite number of accumulation points
and σ(D) ∩ σp(M) = ∅ then, in view of Remark 2.16, M is minimal and,
hence, the conclusions of Proposition 2.18 hold.

In the following theorem we summarize the relations of sign properties of
open subsets of IR ∩ ρe(D) with respect to T , −T−1 and M.

Theorem 2.22. Let Δ be an open connected subset of IR ∩ ρe(D). Then
the following assertions are equivalent.

(i) Δ ⊆ σ++(T ) ∪ ρ(T ) (Δ ⊆ σ−−(T ) ∪ ρ(T )).

(ii) Δ is of positive (resp. negative) type with respect to −T−1.

(iii) Δ is of positive (resp. negative) type with respect to M.

Moreover, the following assertions are equivalent.

(ii′) Δ is of type π+ (type π−) with respect to −T−1.

(iii′) Δ is of type π+ (resp. type π−) with respect to M.

(iv′) Δ is of type π+ (resp. type π−) with respect to A.

Proof. The equivalence of (i) and (iii) was proved in Theorem 2.9. The
equivalences of (ii) and (iii), and of (ii′) and (iii′) follow from Theorem 2.20
and a result of [J5].
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Δ is of type π+ (type π−) with respect to A if and only if it is of type
π+ (resp. type π−) with respect to L. By Theorem 2.12 this is equivalent to
(iii′). �

Remark 2.23. The equivalence of (ii′) and (iv′) can be viewed as an
operator function variant of Theorem 1.12, (ii). Indeed, if, in T (λ), we replace
the term −B+(D̃ − λE)−1B ∈ S

(A)
∞ by an operator V = V + ∈ S

(A)
∞ we get

λ − (A+
�V ). For that case the equivalence mentioned above was proved in

1.12, (ii).



3. A Sturm-Liouville Equation Depending Rationally
upon the Eigenvalue Parameter

3.1. The Case of a Bounded Interval

In this section we will apply the results of Chapter 2 to an eigenvalue
problem of the form

(signx)δy′′(x) + λy(x) +
n+∑
j=1

q+
j (x)

u+
j (x) − λ

y(x) +
n−∑
j=1

q−j (x)

u−
j (x) − λ

y(x) = 0,(3.1)

δ = 0, 1, λ ∈ C , on the interval I := [−1, 1] with boundary conditions

y(−1) = y(1) = 0,(3.2)

and its connections to an eigenvalue problem for some systems of differential
equations. Here the functions q±j , u±

j are real valued measurable functions,
q+
j (x) ≥ 0, j = 1, . . . , n+, q−j (x) ≤ 0, j = 1, . . . , n−, for almost all x ∈ I and

satisfy the condition (I) below. We do not exclude that one of the sums in
(3.1) is missing. In this case we set n+ = 0 or n− = 0, respectively. It is
always assumed that n+ +n− ≥ 1. Let in Section 3.1 the following condition
be fulfilled:

(I)
q±j

1 + |u±
j |

∈ L1(I), j = 1, . . . , n±.

The functions q±j , u±
j are not assumed to be integrable. To simplify notation

we will use the same letter for the functions q±j , u±
j and the operators of

multiplication by these functions in L2(I).
Now we write the left hand side of (3.1) with the help of an operator

function of the form (2.11). Let H = L2(I) and let D denote the set of all
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absolutely continuous functions y ∈ H which have an absolutely continuous
derivative y′ with (y′)′ ∈ H, and which satisfy the boundary conditions (3.2).
If δ = 0 we set

(Ay)(x) := −y′′(x), y ∈ D.(3.3)

A is a uniformly positive selfadjoint operator in H.
For δ = 1 we introduce in H an indefinite inner product [., .]H,

[f, g]H :=
∫

I

(signx)f(x)g(x)dx.

Then (H, [., .]H) is a Krein space and the operator of multiplication by signx
in H, denoted by JH, is a fundamental symmetry of (H, [., .]H). In this case
let A be the positive selfadjoint operator in (H, [., .]H) defined by

(Ay)(x) := −(sign x) y′′(x), y ∈ D.

We have c(A) = c∞(A) = {∞} and σ(A) ⊂ IR\{0}. It is well known (see e.g.
[CL]) that ∞ /∈ cs(A) and A is similar to a selfadjoint operator in a Hilbert
space.

In both cases δ = 0 and δ = 1 the conditions on A of Chapter 2 are fulfilled.
For the scales Hs(A) (δ = 0, cf. Section 1.1) and Hs(A, JH) (δ = 1, cf. Section
1.2) we simply write Hs. It is well known that H 1

2
coincides (up to equivalent

scalar products) with the Sobolev space H1
0 (I) of all absolutely continuous

functions f on I with f(−1) = f(1) = 0 such that f ′ ∈ L2(I) ([K1, §6, 90]).
We introduce the Hilbert space

K := (L2(I))n+ × (L2(I))n− .(3.4)

Then the operator D,

D := diag (u+
1 , . . . , u+

n+
, u−

1 , . . . , u−
n−),(3.5)

defined on the set D(D) := D(u+
1 ) × · · · × D(u−

n−) is selfadjoint in K.
In the following we consider on K the indefinite inner product [., .]K defined

by [(
f1

f2

)
,

(
g1

g2

)]
K

:= (f1, g1)(L2(I))n+ − (f2, g2)(L2(I))n−(3.6)

for f1, g1 ∈ (L2(I))n+ , f2, g2 ∈ (L2(I))n− . Then (K, [., .]K) is a Krein space
and JK :=

(
1 0
0 −1

)
is the corresponding fundamental symmetry. As D com-

mutes with JK, D is a selfadjoint operator in (K, [., .]K). For the scale
Ks(D, JK) we simply write Ks (cf. Section 1.2).
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Let q, u be any of the pairs q+
j , u+

j or q−j , u−
j . Since the embedding of

H 1
2

= H1
0 (I) into C(I) is compact (see e.g. [A, VI.6.2]) and (I) holds, the

operator of multiplication by |q 1
2 |(1 + |u|)− 1

2 regarded as an operator from
H1

0 (I) into L2(I) is compact. Therefore,

B :=
[
(q+

1 )
1
2 , . . . , (q+

n+
)

1
2 , |q−1 | 12 , . . . , |q−n− |

1
2

]T

∈ S∞(H 1
2
,K− 1

2
).

and B+ ∈ S∞(K 1
2
,H− 1

2
).

In the Krein space
G := H×K(3.7)

we consider the operator L := A×D which is selfadjoint in G. Gs = Hs ×Ks

is the scale corresponding to L. Then B,

B :=
[

0 B+

B 0

]
,(3.8)

belongs to S∞(G 1
2
,G− 1

2
). We define T, T̃ ,M, M̃ as in Section 2.3. Then the

expression on the left hand side of (3.1) defined for all those y ∈ H 1
0 (I) (in

distribution sense) for which this expression belongs to L2(I), coincides with
T (λ)y. Then Lemmas 2.1, 2.3, Propositions 2.5, 2.7, 2.8 and Remark 2.6
hold, in particular we have

ρ(T ) = ρ(M) ∩ ρ(D) and σp(T ) = σp(M) ∩ ρ(D).

By Proposition 2.8, for λ ∈ ρ(D), a function y ∈ H 1
2

is a solution of the
equation (3.1) if and only if y := (y, y+

1 , . . . , y+
n+

, y−
1 , . . . , y−

n−)T, for some
y+

j , y−
k ∈ L2(I), j = 1, . . . , n+, k = 1, . . . , n−, is a solution of

(M− λ)y =

⎡⎢⎢⎢⎢⎣
−(signx)δ d2

dx2 − λ (q+
1 )

1
2 · · · −|q−n− |

1
2

(q+
1 )

1
2 u+

1 − λ
...

. . .
|q−n− |

1
2 u−

n− − λ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

y

y+
1
...

y−
n−

⎤⎥⎥⎥⎥⎦ = 0.

Lemma 3.1. Assume that condition (I) is fulfilled. Then ρ(M) = ∅.
Moreover, we have

σess(M) = σ(M) \ σp,norm(M) = σ(D).(3.9)
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Proof. The operators A and D are similar to selfadjoint operators in
Hilbert space. This implies as in the proof of Lemma 2.19 (see (2.32), (2.33)
and the following relation) that for sufficiently large η > 0 we have iη ∈ ρ(T ).
Then, by Proposition 2.7, ρ(M) = ∅.

We have σess(M) = σess(L) (see (1.6)). As A has a compact resol-
vent, σess(L) = σess(D). Since D is the direct product of the operators
of multiplication by the functions u±

j , we have σess(D) = σ(D). Therefore,
σess(M) = σ(D).

As ρ(M) = ∅ each λ ∈ C \ IR ⊂ ρ(D) = C \ σess(M) belongs to ρ(M) ∪
σp,norm(M). Hence σ(M) \ σp,norm(M) and σess(M) are subsets of the real
axis and ρ(M) is dense in C . Therefore each real point t belongs to the
Fredholm domain of M if and only if t ∈ ρ(M) ∪ σp,norm(M). This proves
Lemma 3.1. �

From ρ(M) = ∅ it follows that Theorem 2.9 holds, in particular we have

σ++(T ) = σ++(M) ∩ ρ(D) and σ−−(T ) = σ−−(M) ∩ ρ(D).

We mention that if one replaces in (I) L1(I) by L∞(I) then condition (β)
in Lemma 2.10 is fulfilled.

More information about the spectrum of M is given by the following lemma.
In the proof we shall rely on the proof of [LMeM, Lemma 1.3]. In the case
n+ + n− = 1 Lemma 3.2 is contained in [LMeM, Lemma 1.3]. Let μ denote
the Lebesgue measure on IR. Let f be a function defined on I and let λ ∈ C.
We set

f (−1)(λ) := {ξ ∈ I : f(ξ) = λ}.

Lemma 3.2. Assume that condition (I) is fulfilled and that q±j (t) = 0,
1 ≤ j ≤ n±, for almost all t ∈ I. Let λ be an isolated eigenvalue of D. Then
the following holds.

(1) If, for all functions v1, v2, v1 = v2, v1, v2 ∈ {u+
j , u−

k : 1 ≤ j ≤ n+, 1 ≤
k ≤ n−} we have μ(v(−1)

1 (λ) ∩ v
(−1)
2 (λ)) = 0, then λ is no eigenvalue

of M, λ /∈ σp(M).

(2) If there exist at least two functions v1, v2, v1 = v2, v1, v2 ∈ {u+
j , u−

k :

1 ≤ j ≤ n+, 1 ≤ k ≤ n−} such that μ(v(−1)
1 (λ) ∩ v

(−1)
2 (λ)) > 0 holds,

then λ ∈ σp(M) and λ has infinite geometric multiplicity. Moreover
every eigenvector h of M corresponding to λ has the form

h =
(
0, h+

1 , . . . , h+
n+

, h−
1 , . . . , h−

n−

)T

(3.10)
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where h+
j (t) = 0, 1 ≤ j ≤ n+, for almost all t ∈ I \ (u+

j )(−1)(λ) and
h−

j (t) = 0, 1 ≤ j ≤ n−, for almost all t ∈ I \(u−
j )(−1)(λ). In particular,

if λ ∈ ρ(u−
j ) for all j = 1, . . . , n−, then h is a positive vector and if

λ ∈ ρ(u+
j ) for all j = 1, . . . , n+, then h is a negative vector in the Krein

space G.

Proof. We set

Ω(λ) :=
n+⋃
j=1

(u+
j )(−1)(λ) ∪

n−⋃
j=1

(u−
j )(−1)(λ).

By assumption the point λ is an isolated eigenvalue of at least one u+
j or u−

j ,
hence Ω(λ) has positive measure. Let V be the set of those ξ ∈ (−1, 1) for
which there is an εξ > 0 such that

μ(Ω(λ) ∩ (ξ − εξ, ξ + εξ)) = 0.

From Lindelöf’s covering theorem we infer that μ(Ω(λ) ∩ V ) = 0. Thus, by
changing the values of u±

j , j = 1, . . . , n±, on the set Ω(λ)∩V , we may assume
that Ω(λ)∩ V = ∅, which implies μ(Ω(λ)∩ (ξ − ε, ξ + ε)) > 0 for all ξ ∈ Ω(λ)
and ε > 0. Now we consider an element h ∈ D(M),

h =
(
f, g+

1 , . . . , g+
n+

, g−1 , . . . , g−n−

)T

,

such that (M − λ)h = 0 or, equivalently, (M̃ − λE)h = 0. By the definition
of A, B and D the latter relation holds if and only if

(Ã − λ)f +
n+∑
j=1

(q+
j )

1
2 g+

j −
n−∑
j=1

|q−j | 12 g−j = 0,(3.11)

(q+
j )

1
2 f + (u+

j − λ)g+
j = 0 for 1 ≤ j ≤ n+,(3.12)

|q−j | 12 f + (u−
j − λ)g−j = 0 for 1 ≤ j ≤ n−.(3.13)

The multiplication operators in these relations are regarded as the corre-
sponding extended operators considered above. For each j, 1 ≤ j ≤ n±, equa-
tions (3.12) and (3.13) imply f(ξ) = 0 a.e. on Ω(λ). Thus for every ξ0 ∈ Ω(λ)
and every ε > 0 there are infinitely many points ξ in Ω(λ) ∩ (ξ0 − ε, ξ0 + ε)
for which f(ξ) = 0 holds. Equation (3.11), the fact that h belongs to
G 1

2
= H 1

2
×K 1

2
and assumption (I) imply f ′′ ∈ L1(I), hence f ′ is continuous

and f(ξ0) = f ′(ξ0) = 0 holds. By the continuity of f and f ′ we obtain that
f(ξ) = 0 and f ′(ξ) = 0 for all ξ ∈ Ω(λ).
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We claim that f ≡ 0 on I. Indeed, let I1 be a component of (−1, 1) \Ω(λ).
Since Ω(λ) has positive measure, at least one boundary point ξ1 of I1 belongs
to Ω(λ). Hence f(ξ1) = f ′(ξ1) = 0, and on the interval I1 the function f
satisfies the differential equation

(signx)δf ′′ + λf +

⎛⎝ n+∑
j=1

q+
j

u+
j − λ

+
n−∑
j=1

q−j
u−

j − λ

⎞⎠ f = 0.

By the assumption that λ is an isolated eigenvalue of D, the coefficients of
this equation belong to L1(I1). Then the uniqueness theorem yields f ≡ 0
on I1, hence f ≡ 0 on I. From equation (3.12) we deduce g+

j (t) = 0, 1 ≤ j ≤
n+, for almost all t ∈ I \ (u+

j )(−1)(λ) and from equation (3.13) we deduce
g−j (t) = 0, 1 ≤ j ≤ n−, for almost all t ∈ I \ (u−

j )(−1)(λ). This proves that
each eigenvector h of M in λ has the form (3.10). If the assumption of (2)
holds, it is easy to find an infinite system of linearly independent eigenvectors
corresponding to λ of the form (3.10). The rest of assertion (2) is evident.

Let the assumption of (1) be fulfilled. Suppose that λ is an eigenvalue of M.
Then there exists a nonzero eigenvector of the form (3.10). The component
h+

1 of h is zero for almost all t ∈ I \ (u+
1 )(−1)(λ). If the component h+

2 of h
were not zero on (u+

1 )(−1)(λ) we would have μ((u+
1 )(−1)(λ)∩(u+

2 )(−1)(λ)) = 0,
a contradiction. Hence all components of h different from h+

1 are zero a.e.
on (u+

1 )(−1)(λ). Then (3.11) gives h+
1 (t) = 0 for almost all t ∈ I. In a

similar way we find that all components of h are zero, i.e. h = 0. This proves
assertion (1). �

Now we impose, in addition, the following assumption.

(II) The set
⋃n+

j=1 σ(u+
j ) is bounded from below, the set

⋃n−
j=1 σ(u−

j ) is
bounded from above and these two sets are disjoint.

Conditions (I) and (II) imply that the operators A, B and D fulfil conditions
(ad) and (b) from Chapter 2, hence, by Theorem 2.12, the operators L and
M are definitizable selfadjoint operators in G and the statements of Theorem
2.12 and Corollary 2.13 hold. Further, T−1 is a definitizable operator function
(cf. Theorem 2.14). As mentioned above, we have ∞ /∈ cs(A). Since D is
fundamentally reducible (cf. Section 1.7), ∞ /∈ cs(D) and, therefore, ∞ /∈
cs(L). Then Theorem 1.12 gives

∞ /∈ cs(M).

Hence, also the third part of Theorem 2.14 holds.
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By Theorem 2.20 the operator M is minimal in ρe(D) with respect to −T−1

and Theorem 2.22 holds. For the minimality of M with respect to −T −1 (cf.
Section 2.5) we obtain the following characterization.

Theorem 3.3. Assume that the conditions (I) and (II) are fulfilled. The
operator M is minimal with respect to −T−1 if and only if the following two
conditions hold.

(1) For 1 ≤ j ≤ n+, 1 ≤ k ≤ n− and almost all t ∈ I we have q+
j (t) = 0

and q−k (t) = 0.

(2) For 1 ≤ j < k ≤ n+ we have u+
j (t) = u+

k (t) and for 1 ≤ j < k ≤ n−
we have u−

j (t) = u−
k (t) for almost all t ∈ I.

Proof. 1. Let F be the spectral function of D and let F ( . ; u+
j ), j =

1, . . . , n+, (F ( . ; u−
k ), k = 1, . . . , n−) be the spectral function of u+

j (resp.
u−

k ). Assume that (1) and (2) hold. We first show that if for some y :=
(y+

1 , . . . , y+
n+

, y−
1 , . . . , y−

n−)T ∈ K we have B+F (Δ)y = 0 for all bounded in-
tervals Δ, then y = 0. Observe that by condition (I) R(B+) is contained in
L1(I) regarded as a linear subspace of H− 1

2
.

Let Mn be the measurable set of all x ∈ I such that for every pair
v1, v2 ∈ {u+

1 , . . . , u+
n+

, u−
1 , . . . , u−

n−}, v1 = v2, the relation |v1(x)−v2(x)| ≥ 1
n ,

n ∈ IN, holds. By assumption μ(Mn) → μ(I) = 2 for n → ∞. Let Nn

be a measurable subset of I such that μ(I \ Nn) ≤ 1
n and all functions

u+
1 , . . . , u+

n+
, u−

1 , . . . , u−
n− are continuous on Nn. Evidently we have

μ(Mn ∩ Nn) → μ(I) for n → ∞.(3.14)

Let x ∈ Mn ∩ Nn and Δx,n := (u+
1 (x) − 1

2n , u+
1 (x) + 1

2n ). Then there exists
an interval δx,n = (x − ηx,n, x + ηx,n) such that

{u+
1 (t) : t ∈ δx,n ∩ Mn ∩ Nn} ⊂ Δx,n

and, if v is one of the functions u+
2 , . . . , u+

n+
, u−

1 , . . . , u−
n− ,

{v(t) : t ∈ δx,n ∩ Mn ∩ Nn} ∩ Δx,n = ∅.
Then F (Δx,n; u+

1 ) is the operator of multiplication by an indicator function
which is equal to one in all points of δx,n ∩Mn ∩Nn. F (Δx,n; v) (v as above)
is the operator of multiplication by an indicator function which is equal to
zero in all points of δx,n ∩Mn∩Nn. Then, since F (Δ) is a diagonal operator,

F (Δx,n) = diag {F (Δx,n; u+
1 ), F (Δx,n; u+

2 ), . . . , F (Δx,n; u−
n−)},
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in view of B+F (Δx,n)y = 0, we find q+
1 (x)y+

1 (x) = 0 for all x ∈ Mn∩Nn. By
(3.14) we obtain q+

1 (x)y+
1 (x) = 0 for almost all x ∈ I. By the assumptions on

the functions q+
1 , . . . , q+

n+
, q−1 , . . . , q−n− we find y+

1 (x) = 0 for almost all x ∈ I,
and in a similar way y = 0.
2. Assume now that for some y ∈ K we have B+(D − z)−1y = 0 for all
non–real z. Let Δ be a bounded interval. As F (Δ)y = (D − z0)−1F (Δ)x
holds for some x ∈ K and some z0 ∈ ρ(D) it is easy to see that F (Δ)y can be
written as the limit in K1 of sums of the form

∑n
i=1 αi(D − zi)−1y, zi = zi,

αi ∈ C. We obtain B+F (Δ)y = 0 for all bounded intervals. By the first
part of the proof it follows y = 0. Thus we have shown that if conditions (1)
and (2) hold then B+(D − z)−1y = 0 for all non–real z implies y = 0. It
follows from Lemma 2.19 that M is minimal with respect to −T−1.
3. For the converse assume first that there exists a measurable set Δ, Δ ⊂ I,
μ(Δ) > 0, and a j0, 1 ≤ j0 ≤ n+, such that q+

j0
(t) = 0 for all t ∈ Δ.

Denote by y+
j0

the function which equals 1 on Δ and 0 elsewhere. Then for
y := (0, . . . , 0, y+

j0
, 0, . . . , 0)T ∈ K, for all x ∈ H 1

2
and z ∈ ρ(D), we have

[y, (D̃ − zE)−1Bx] = 0,

hence, by Lemma 2.19, M is not minimal with respect to −T−1. Now assume
that there exists a measurable set Δ, Δ ⊂ I, μ(Δ) > 0, such that u+

1 (t) =
u+

2 (t) for all t ∈ Δ. Then there is a measurable set Δ0, Δ0 ⊂ Δ, μ(Δ0) > 0
such that q+

1 and q+
2 are bounded functions on Δ0. Let g be the indicator

function of Δ0. Then for y := ((q+
2 )

1
2 g,−(q+

1 )
1
2 g, 0, . . . , 0)T ∈ K, for all x ∈ H

and z ∈ ρ(D), we have

[y, (D̃ − zE)−1Bx] = 0,

hence, by Lemma 2.19, M is not minimal with respect to −T−1. Similarly,
for u+

1 , u+
2 replaced by any other pair of the functions u+

1 , . . . , u+
n+

or of the
functions u−

1 , . . . , u−
n− . �

Let the conditions (I) and (II) be fulfilled and assume, moreover, that (1)
and (2) in Theorem 3.3 hold. Then, by Lemma 3.2, an isolated eigenvalue of
D does not belong to σp(M). Observe that under the same assumptions the
operator M is unitarily equivalent to the operator MΣ defined in Theorem
2.17 (with respect to the Krein space inner products) and Proposition 2.18
holds.

Next, we consider the case of simple functions u±
j and assume that the

following holds.
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(III) The spectrum of u±
j , 1 ≤ j ≤ n±, has no finite accumulation points,

and q±j (x) = 0 for almost all x ∈ I, 1 ≤ j ≤ n±.

If, e.g. for each u±
j , 1 ≤ j ≤ n±, there exists a finite decomposition of I

into measurable sets such that u±
j is constant a.e. on each of these sets, then

condition (III) is fulfilled.
Then with the help of Lemma 3.2, which holds now for every λ ∈ σ(D), we

get the following proposition. For the notion of Riesz basis, see [GK].

Proposition 3.4. Assume that conditions (I)-(III) are fulfilled. Then there
exists a Riesz basis of G consisting of eigenvectors and associated vectors of
M.

Proof. By Lemma 3.1 σ(M) is discrete with the possible exception of the
points of σ(D). Let λ ∈ σ(D) = σess(M). Assume that λ ∈ ∪n+

j=1σ(u+
j ).

Then, in view of condition (II), λ /∈ ∪n−
j=1σ(u−

j ), and λ is contained in some
open interval Δ of type π+ with respect to L. Then by Theorem 2.12 Δ
is of type π+ with respect to M. Hence, if λ is no eigenvalue of M, then
λ ∈ σ++(M). If λ is an eigenvalue of M, then, by Lemma 3.2, all eigenvectors
of M corresponding to λ are positive. It is a well known fact that this implies
λ ∈ σ++(M). A similar reasoning applies for ∪n+

j=1σ(u+
j ) and ∪n−

j=1σ(u−
j )

interchanged. Therefore, all finite accumulation points of σ(M) are no critical
points. Moreover, we have ∞ /∈ cs(M). Then it is easy to find a Riesz basis
of G with the required properties. �

3.2. The Case of the Semiaxis

In this section we will consider the equation

y′′(x) + λy(x) +
n+∑
j=1

q+
j (x)

u+
j (x) − λ

y(x) +
n−∑
j=1

q−j (x)

u−
j (x) − λ

y(x) = 0(3.15)

on the interval I := [0,∞) with boundary condition

y(0) = 0.(3.16)

Again, the functions q±j , u±
j are real valued measurable functions, q+

j (x) ≥ 0,
j = 1, . . . , n+, q−j (x) ≤ 0, j = 1, . . . , n−, for almost all x ∈ I and satisfy the
condition (I) from Section 3.1. As above, we do not exclude that one of the
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sums in (3.15) is missing. In this case we set n+ = 0 or n− = 0, respectively.
It is always assumed that n+ + n− ≥ 1.

Now we write the left hand side of (3.15) with the help of an operator
function of the form (2.11). Let H = L2(I) and let A be the usual selfad-
joint operator associated with − d2

dx2 and the boundary condition (3.16). As
in Section 3.1 we introduce the spaces K and G (see (3.4) and (3.7)), the in-
definite inner product [., .]K (cf. (3.6)) and the operators D and B (see (3.5)
and (3.8)). Again, D is a selfadjoint operator in (K, [., .]K). In this case H 1

2

coincides (up to equivalent scalar products) with the Sobolev space H 1
0 (I) of

all locally absolutely continuous functions f ∈ L2(I) with f(0) = 0 such that
f ′ ∈ L2(I).

In the following lemma we use, as before, the same symbol h for a function
h ∈ L2(I) and the operator of multiplication by h in L2(I).

Lemma 3.5. Let h ∈ L2(I). Then the operator h(1 + A2)−
1
4 is Hilbert–

Schmidt. In particular, B ∈ S2(H 1
2
,K− 1

2
).

Proof. Denote by F the Fourier transform acting from L2(IR) onto L2(IR).
Further, we denote by I0 the embedding operator acting from L2(IR) into
L2(I),

I0f := f |I, f ∈ L2(IR).

Set g(ξ) := (1 + |ξ|)−1. Then for f ∈ L2(IR) and x ∈ I we have

(hI0F−1)(gf)(x) =
1√
2π

∫
IR

k(x, ξ)f(ξ)dξ,

where k(x, ξ) = h(x)eixξ(1 + |ξ|)−1. The function k belongs to L2(I × IR).
Therefore the operator hI0F−1g is a Hilbert–Schmidt operator acting from
L2(IR) into L2(I).

The operator (1 + A2)−
1
4 is a bounded operator acting from L2(I) onto

H 1
2
. Then I∗

0 (1+ A2)−
1
4 maps L2(I) continuously into H1(IR), i.e. the space

of all locally absolutely continuous functions f ∈ L2(IR) with f ′ ∈ L2(IR).
Hence, the operator g−1FI∗0 (1 + A2)−

1
4 is a bounded operator from L2(I)

into L2(IR) and, finally, it follows that

h(1 + A2)−
1
4 = hI0F−1gg−1FI∗0 (1 + A2)−

1
4

is a Hilbert–Schmidt operator.
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To prove the second assertion it is sufficient to prove that the operator
(1 + D2)−

1
4 B(1 + A2)−

1
4 belongs to S2(H,K). This is equivalent to(

(q±j )2

1 + (u±
j )2

) 1
4

(1 + A2)−
1
4 ∈ S2 for 1 ≤ j ≤ n±.

Condition (I) implies
(

(q±
j )2

1+(u±
j )2

) 1
4

∈ L2(I), 1 ≤ j ≤ n±, hence, by the first

part of Lemma 3.5, B ∈ S2(H 1
2
,K− 1

2
). �

As a consequence of Lemma 3.5 the operator B belongs to S2(G 1
2
,G− 1

2
),

that is, condition (b) of Section 2.3 is fulfilled.
We define T, T̃ ,M, M̃ as in Section 2.3. Then T (λ)y coincides with the left

hand side of (3.15) defined for all y ∈ H1
0 (I) for which it belongs to L2(I).

Again Lemmas 2.1, 2.3, Propositions 2.5, 2.7, 2.8 and Remark 2.6 hold, in
particular we have

ρ(T ) = ρ(M) ∩ ρ(D) and σp(T ) = σp(M) ∩ ρ(D).

Since 0 ∈ ρ(T (iη)) for sufficiently large η > 0, we have ρ(M) = ∅ and
Theorem 2.9 holds.

Assume, in addition, that the following condition (II′) is fulfilled.

(II′) The set
⋃n+

j=1 σ(u+
j ) is bounded from below, the set

⋃n−
j=1 σ(u−

j ) is a
subset of (−∞, 0) and these two sets are disjoint.

Conditions (I) and (II′) imply that the operators A and D satisfy condition
(ad) from Section 2.4, hence M is a definitizable selfadjoint operator in G
and the statements of Theorem 2.12 and Corollary 2.13 hold. Therefore, as
∞ /∈ cs(A)∪ cs(D), we have ∞ /∈ cs(M) and σess(M) = σess(A)∪σess(D) =
[0,∞)∪σ(D) (see (1.6)). Further, T−1 is a definitizable operator function and
Theorem 2.14 holds. By Theorem 2.20 the operator M is minimal in ρe(D)
with respect to −T−1 and Theorem 2.22 holds. Lemma 3.2 and Theorem 3.3
remain valid for I = [0,∞), without difficulty the proofs can be extended to
this case.

In the following theorem we recall some results on the absence of posi-
tive (nonnegative) eigenvalues for Sturm-Liouville operators (e.g. [Kn1] and
[Kn2]). These results and the relation between the spectra of T and M can
be used to exclude critical points of M on the positive (resp. nonnegative)
half-axis. For the convenience of the reader we will give a proof of the first
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part of the following theorem although it is a special case of [Kn1, Theorem
3.2].

Theorem 3.6. Let V be a real valued function belonging to L1(I) and let
D denote the set of all functions f in H1

0 (I) such that −f ′′ + V f belongs to
L2(I). Then, for λ > 0, the equation

−y′′ + (V − λ)y = 0(3.17)

has no nontrivial solution y ∈ D.
Assume, in addition, that there exists x0 > 0 such that |V (x)| ≤ 3

4x2 for all
x ∈ (x0,∞). Then the equation

−y′′ + V y = 0

has no nontrivial solution y ∈ D.

Proof. Assume that there exists a nontrivial solution y ∈ D of (3.17).
Then y is another solution of (3.17). Therefore, we assume y to be a real
valued solution of (3.17). We define

E(x) := (y′(x))2 + λy(x)2, x ∈ I.

Then E ∈ L1(I) and the uniqueness theorem implies E(x) > 0 for x ∈ I. It
follows that ∣∣∣∣E′(x)

E(x)

∣∣∣∣ ≤ |V (x)|√
λ

for almost all x ∈ I.

Hence, by integrating from 0 to some t > 0, we conclude

E(t) ≥ E(0)e−λ− 1
2 ‖V ‖L1(I) > 0.

This is a contradiction to E ∈ L1(I). The second assertion is a consequence
of [Kn2, Corollary 3.3]. �

Proposition 3.7. Assume that the conditions (I), (II′), (III) and condition
(2) from Theorem 3.3 are satisfied. Then

σp(M) ∩ ((0,∞) ∪ σ(D)) = ∅
and

c(M) ⊂ ((−∞, 0) ∩ σp,norm(M)) ∪ {0,∞}.
Assume, in addition, that one of the following conditions is satisfied.
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(i) The point 0 belongs to σ(D).

(ii) 0 ∈ ρ(D) and there exist an x0 > 0 such that

n+∑
j=1

∣∣∣∣∣ q
+
j (x)

u+
j (x)

∣∣∣∣∣+
n−∑
j=1

∣∣∣∣∣ q
−
j (x)

u−
j (x)

∣∣∣∣∣ ≤ 3
4x2

for all x ∈ (x0,∞).

Then

σp(M) ∩ ([0,∞) ∪ σ(D)) = ∅, c(M) ⊂ ((−∞, 0) ∩ σp,norm(M)) ∪ {∞},

and M is a spectral operator in the sense of Dunford.

Proof. By Lemma 3.2 (1) we have σp(M) ∩ σ(D) = ∅. Let λ0 ∈ (0,∞) \
σ(D). Then λ0 − T (λ0) is the operator defined by the differential expression

− d2

dx2
+

n+∑
j=1

q+
j (x)

λ0 − u+
j (x)

+
n−∑
j=1

q−j (x)

λ0 − u−
j (x)

(3.18)

restricted to all those functions from H1
0 (I) which are mapped by (3.18) into

L2(I). Let q := q+
j , u := u+

j for some j ∈ {1, . . . n+} (resp. q := q−j , u := u−
j

for some j ∈ {1, . . . n−}). Then we have d := ess inf(|λ0 − u|) > 0. For x ∈ I
it follows

(3.19)

∣∣∣∣ q(x)
λ0 − u(x)

∣∣∣∣ ≤ 1 + λ0 + |u(x)|
|λ0 − u(x)|

|q(x)|
1 + λ0 + |u(x)| ≤

≤ (1 + 3λ0) max{d−1, λ−1
0 } |q(x)|

1 + λ0 + |u(x)| ,

i.e. q
λ0−u ∈ L1(I). By Theorem 3.6 λ0 − T (λ0) has no positive eigenvalue.

Hence λ0 /∈ σp(λ0 − T (λ0)), that is λ0 /∈ σp(T ) and, by Proposition 2.8,
λ0 /∈ σp(M). It follows that σp(M) ∩ (0,∞) = ∅. As M has no finite
essential critical points (cf. Theorem 2.12), each finite critical point t0 of M
belongs to σp(M); hence, if t0 = 0, we have t0 ∈ (−∞, 0) \ σ(D). Moreover,
by the same reasoning as in the proof of Lemma 3.1, we have σess(M) =
σ(M)\σp,norm(M) and, by relation (1.6), it follows t0 ∈ (−∞, 0)\σess(M) =
(−∞, 0) ∩ σp,norm(M).

The additional assumption of the second part of Proposition 3.7 implies
that λ0 − T (λ0) has no eigenvalue in [0,∞) (see Theorem 3.6). Then the
second part of Proposition 3.7 follows as above. �



70 3. A Equation Depending Rationally upon the Eigenvalue Parameter

3.2. A Case where the Numerator Coefficient of the Floating Sin-
gularity Changes Sign

In this section we consider an eigenvalue problem of the form

y′′(x) + λy(x) +
q(x)

u(x) − λ
y(x) = 0(3.20)

on the interval I := [−1, 1] with boundary conditions

y(−1) = y(1) = 0.(3.21)

We now assume that the function q is a real valued piecewise continuous
function on the interval I, i.e. there exist finitely many closed intervals [aj , bj ],
j = 1, . . . , N , N > 0, such that ∪N

j=1[aj , bj ] = I, q is continuous on each
open interval (aj , bj), j = 1, . . . , N , and the one–sided limits limx↓aj

q(x)
and limx↑bj q(x), j = 1, . . . , N , exist. We assume that the function u is real
valued and measurable. Then the functions q and u satisfy condition (I) from
Section 3.1.

We set

Δ+ := {x ∈ I : q(x) > 0}, Δ− := {x ∈ I : q(x) < 0}(3.22)

and
K := L2(Δ+) × L2(Δ−).

Moreover, we assume that μ(Δ+) > 0 and μ(Δ−) > 0 hold. The case
μ(Δ+) = 0 (resp. μ(Δ−) = 0) is contained in the considerations of Section
3.1.

We will write the left hand side of (3.20) with the help of an operator
function of the form (2.11). Let H = L2(I) and let A be the operator defined
by (3.3). In the following we consider the embedding operators I+ and I−
acting from H into L2(Δ+) and L2(Δ−), respectively,

I+f := f |Δ+, I−f := f |Δ−, f ∈ H.

We introduce the following abbreviations

u+ := u|Δ+, u− := u|Δ−,
q+ := q|Δ+, q− := q|Δ−.

Then the operator D [
u+ 0
0 u−

]
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defined on the set D(D) := D(u+) ×D(u−) is selfadjoint in K. We consider
on K the indefinite inner product [., .]K defined by[(

f1

f2

)
,

(
g1

g2

)]
K

:= (f1, g1)L2(Δ+) − (f2, g2)L2(Δ−),

where f1, g1 ∈ L2(Δ+) and f2, g2 ∈ L2(Δ−). Then (K, [., .]K) is a Krein
space and JK :=

(
1 0
0 −1

)
is the corresponding fundamental symmetry. D is a

selfadjoint operator in (K, [., .]K).
The operator B from H into K, defined by

B :=

[
q

1
2
+I+

|q−| 12 I−

]
,

is a bounded operator. Then condition (b) from Section 2.3 holds. Again,
we denote by Hs and Ks the scales Hs(A) and Ks(D, JK) (cf. Sections 1.1
and 1.2).

We define the Krein space G, the operator L, the scales Gs and the operator
B as in Section 3.1 (cf. (3.7) and (3.8)).

We define T, T̃ ,M, M̃ as in Section 2.3. Then, by the boundedness of the
operator B, for λ ∈ ρ(D) it follows

D(T (λ)) = D(A) and D(M) = D(L) = D(A) ×D(D).

The expression on the left hand side of (3.20), defined for all y ∈ D(A),
coincides with T (λ)y. Then Lemmas 2.1, 2.3 and Propositions 2.5, 2.7, 2.8
and Remark 2.6 hold, in particular we have

ρ(T ) = ρ(M) ∩ ρ(D) and σp(T ) = σp(M) ∩ ρ(D).

By Proposition 2.8, for λ ∈ ρ(D) a function y ∈ D(A) is a solution of
equation (3.20) if and only if y := (y, y+, y−)T, for some y+ ∈ D(u+), y− ∈
D(u−) is a solution of

(M− λ)y =

⎡⎢⎣ − d2

dx2 − λ I∗+q
1
2
+ −I∗−|q−|

1
2

q
1
2
+I+ u+ − λ 0

|q−| 12 I− 0 u− − λ

⎤⎥⎦
⎡⎣ y

y+

y−

⎤⎦ = 0.

Using the same reasoning as in the proof of Lemma 3.1 it is easily seen that
ρ(M) = ∅ and

σess(M) = σ(M) \ σp,norm(M) = σ(D).
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hold. It follows that Theorem 2.9 holds, that is, in particular,

σ++(T ) = σ++(M) ∩ ρ(D) and σ−−(T ) = σ−−(M) ∩ ρ(D).

Theorem 3.8. The operator M is definitizable over

C \ (({∞} ∪ σe(u+)) ∩ σe(u−)) .

Let Δ be an open connected subset of IR \ (({∞} ∪ σe(u+)) ∩ σe(u−)). Then
the following assertions are equivalent.

(i) Δ is of type π+ (type π−) with respect to M.

(ii) Δ is of type π+ (resp. type π−) with respect to L.

(iii) Δ ⊂ IR \ σe(u−) (resp. Δ ⊂ IR \ σ(u+)).

Proof. In G = L2(I) × L2(Δ+) × L2(Δ−) we consider the operator

J =

⎡⎣ 1 0 0
0 1 0
0 0 −1

⎤⎦ .

Then J is a fundamental symmetry in the Krein space G which commutes
with the resolvent of L, i.e. L is fundamentally reducible (cf. Section 1.7). Set
P± := 1

2 (I±J) and denote by L± the operator in P±G defined by L±x := Lx
for x ∈ P±D(L). Then we have

σe,ess(L+) = {∞} ∪ σe(u+) and σe,ess(L−) = σe(u−).

By Lemma 1.14, L is definitizable over C \ (({∞} ∪ σe(u+)) ∩ σe(u−)) and
assertions (ii) and (iii) are equivalent.

For λ ∈ ρ(L)∩ ρ(M) we have (A− λ)−1 ∈ S1, where S1 denotes the trace
class (cf. Section 1.7). By Proposition 2.7, λ belongs to the resolvent set of
T and it follows

T (λ)−1 = (−I + (A − λ)−1B+(D − λ)−1B)−1(A − λ)−1 ∈ S1.

Relation (2.15) implies

(L− λ)−1 − (M− λ)−1 ∈ S1.

Then, as a consequence of Theorem 1.15, (i) and (ii) are equivalent. �

The following lemma can be proved by a reasoning similar to the proof of
Lemma 3.2.
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Lemma 3.9. Assume that q(t) = 0 for almost all t ∈ I. Let λ be an
isolated eigenvalue of D. Then the following holds.

(1) If μ(u(−1)
+ (λ) ∩ u

(−1)
− (λ)) = 0, then λ /∈ σp(M).

(2) If μ(u(−1)
+ (λ) ∩ u

(−1)
− (λ)) > 0, then λ ∈ σp(M) and λ has infinite

geometric multiplicity.

Assume, in addition, that the following condition (A) is fulfilled.

(A) The functions q and u belong to C1(I), u′(x) > 0 for all x ∈ I and the
function q has at most finitely many zeros in the interval I.

From condition (A) it follows that the set σ(u+) ∩ σ(u−) consists of at
most finitely many points, i.e. σ(u+) ∩ σ(u−) = {u(ξ1), . . . , u(ξn)} for some
ξ1, . . . , ξn ∈ I, n ∈ IN, and each ξj , j = 1, . . . , n, is a zero of the function
q. We mention that u(ξ), ξ ∈ I, belongs to σ(u+) ∩ σ(u−) if and only if
ξ ∈ (−1, 1), q(ξ) = 0 and q changes its sign in ξ. Then by Theorem 3.8,
M is definitizable over C \ {u(ξ1), . . . , u(ξn)}. This will be improved by the
following theorem.

Theorem 3.10. Assume that condition (A) is fulfilled. Then the operator
M is definitizable and we have c∞(M) = {u(ξ1), . . . , u(ξn)}.

Proof. Let ξ ∈ {ξ1, . . . , ξn}. We will show that M is definitizable over an
open neighbourhood of ξ and that u(ξ) ∈ c∞(M).

1. Condition (A) implies

0 < M := max
x∈I

∣∣∣∣ q(x)
u(x) − u(ξ)

∣∣∣∣ ≤ max
x∈I

∣∣∣∣ q′(x)
u′(x)

∣∣∣∣ < ∞.

Denote by P the orthogonal projection in H onto the linear span of the
eigenvectors of A corresponding to the eigenvalues λ with λ < M +u(1). We
define for λ ∈ ρ(D)

A0 := (I − P )A + (M + u(1))P, T0(λ) := λ − A0 + B+(D − λ)−1B,

L0 :=
[

A0 0
0 D

]
and M0 :=

[
A0 B+

B D

]
(3.23)

with D(A0) = D(T0(λ)) = D(A) and D(L0) = D(M0) = D(A) × K. Then
A0 ≥ M +u(1) and A−A0 is of finite rank. Moreover, u(ξ) /∈ σp(L0)∪σp(D)
and the operators (L0−u(ξ))−1 and (D−u(ξ))−1 are selfadjoint operators in
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G and K, respectively. We denote by K′
s and G′

s the scales Ks((D − u(ξ))−1)
and Gs((L0 − u(ξ))−1), respectively (see Section 1.1). The real number u(ξ)
belongs to ρ(A0), therefore we have G ′

s = H×K′
s.

The operator (D−u(ξ))−1 ((L0−u(ξ))−1) can be extended to a continuous
linear operator ((D−u(ξ))∼)−1 (resp. ((L0−u(ξ))∼)−1) acting from K′

1
2

into
K′

− 1
2

(resp. from G′
1
2

into G′
− 1

2
). Then, by condition (A), the operator B is

a bounded operator from H into K′
1
2

and the operator B+((D − u(ξ))∼)−1B

is a bounded operator in H, ‖B+((D − u(ξ))∼)−1B‖ ≤ M , therefore we can
define

T0(u(ξ)) := u(ξ) − A0 + B+((D − u(ξ))∼)−1B

with D(T0(u(ξ))) = D(A). It follows from A0 ≥ M+u(1) that T0(u(ξ)) << 0,
hence T0(u(ξ)) is boundedly invertible.

2. As a consequence of

T0(u(ξ))−1 = −(I−(A0−u(ξ))−1B+((D−u(ξ))∼)−1B)−1(A0−u(ξ))−1 ∈ S1,

it follows that the operator V :=[
−T0(u(ξ))−1 − (A0 − u(ξ))−1 T0(u(ξ))−1B+R̃(u(ξ), D)

R̃(u(ξ), D)BT0(u(ξ))−1 −R̃(u(ξ), D)BT0(u(ξ))−1B+R̃(u(ξ), D)

]
,

where R̃(u(ξ), D) = ((D − u(ξ))∼)−1, belongs to S1(G′
1
2
,G′

− 1
2
).

3. We claim that u(ξ) /∈ σp(M0). Assume that there exists y ∈ D(M0),
y = 0, y = (y, y+, y−)T with y ∈ D(A), y+ ∈ L2(Δ+) and y− ∈ L2(Δ−) such
that (M0 − u(ξ))y = 0 holds, i.e.

(A0 − u(ξ))y + I∗
+q

1
2
+y+ − I∗−|q−|

1
2 y− = 0,(3.24)

q
1
2
+I+y + (u+ − u(ξ))y+ = 0,(3.25)

|q−| 12 I−y + (u− − u(ξ))y− = 0.(3.26)

Then by condition (A) it follows y = 0. Moreover, by equation (3.25), we

have q+
u+−u(ξ)I+y = −q

1
2
+y+ and, by equation (3.26), |q−|

u−−u(ξ)I−y = −|q−| 12 y−.
Then equation (3.24) implies T0(u(ξ))y = 0, which contradicts the invertibil-
ity of T0(u(ξ)).

4. The operator (M0 − u(ξ))−1 is a selfadjoint operator in G and we have
D((M0 − u(ξ))−1) = R((M0 − u(ξ))) ⊂ G′

1
2
. Let y = (M0 − u(ξ))x for some

x ∈ D(M0). A straightforward calculation gives

(((L0 − u(ξ))∼)−1 + V )y = x,
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that is,
(M0 − u(ξ))−1 ⊂ (L0 − u(ξ))−1 +

�V.

The operators (M0−u(ξ))−1 and (L0−u(ξ))−1 +
�V are selfadjoint (cf. Lemma

1.6), hence, we have

(M0 − u(ξ))−1 = (L0 − u(ξ))−1 +
�V.

Condition (A) and Lemma 1.14 imply that the operator (L0 − u(ξ))−1 is
definitizable. As a consequence of [J3, Theorem 3.10] there exist real points
t1, t2, t1 < t2, such that (M0 −u(ξ))−1 is definitizable over a neighbourhood
of (t2,∞) ∪ {∞} ∪ (−∞, t1). Hence, there exists an open interval δ with
u(ξ) ∈ δ such that M0 is definitizable over a neighbourhood of δ.

The reasoning above holds for each ξj , j = 1, . . . , n, hence, the operator
M0 is definitizable over C , i.e. M0 is a definitizable operator (cf. [J6]).

5. We will show that c∞(M0) = {u(ξ1), . . . , u(ξn)}. Condition (A) and
Lemma 1.14 imply that ∞ is a regular critical point of (L0−u(ξ))−1 belonging
to c∞((L0 − u(ξ))−1). Then, as a consequence of [J3], ∞ is a regular critical
point of (M0−u(ξ))−1 belonging to c∞((M0−u(ξ))−1). Using this argument
for each ξj , j = 1, . . . , n, we conclude that each u(ξj), j = 1, . . . , n, is a regular
critical point of M0 and we have {u(x1), . . . , u(ξn)} ⊂ c∞(M0). Theorem 3.8
implies

{u(ξ1), . . . , u(ξn)} = c∞(M0).

6. From the definition of M0 it follows that M − M0 is of finite rank.
Then, by [JL1], the operator M is definitizable and c∞(M) = c∞(M0) =
{u(ξ1), . . . , u(ξn)} holds, which completes the proof. �

Corollary 3.11. Assume that condition (A) is satisfied and that

u(1) + max
x∈I

∣∣∣∣ q′(x)
u′(x)

∣∣∣∣ ≤ π2

4
.

Then the operator M is definitizable, c∞(M) = {u(ξ1), . . . , u(ξn)} and each
u(ξj), j = 1, . . . , n, is a regular critical point of M with u(ξj) /∈ σp(M).

Proof. By Theorem 3.10 it remains to show {u(ξ1), . . . , u(ξn)}∩cs(M) = ∅.
This follows from the fact that σ(A) ⊂ [ π2

4 ,∞), hence M = M0 (where M0

is defined as in (3.23)). �

Remark 3.12. Assume that q, u ∈ C1(I), u′(x) > 0 for all x ∈ I and
that q has infinitely many zeros. Denote by Ξ the set of all ξ ∈ I with
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u(ξ) ∈ σ(u+)∩σ(u−) such that u(ξ) is not an isolated point in σ(u+)∩σ(u−).
Then, by a reasoning similar to the proof of Theorem 3.10, the operator M
is definitizable over C \ Ξ.

3.4. Sign Changes of the Numerator Coefficient in the Semiaxis
Case

In this section we consider equation (3.20) on the interval I := [0,∞) with
the boundary condition

y(0) = 0.

Again we assume that the function u is real valued and measurable and that
the function q is a real valued piecewise continuous function on the interval
I, i.e. for each interval [0, l], l > 0, there exist finitely many closed intervals
[aj , bj ], j = 1, . . . , N , N > 0, such that ∪N

j=1[aj , bj ] = [0, l], q is continuous on
each open interval (aj , bj), j = 1, . . . , N , and the one–sided limits limx↓aj

q(x)
and limx↑bj

q(x), j = 1, . . . , N , exist. We assume that the functions q and u
satisfy condition (I) from Section 3.1 and that μ(Δ+) > 0 and μ(Δ−) > 0
hold, where Δ+ and Δ− are defined as in Section 3.3. The case μ(Δ+) = 0
(resp. μ(Δ−) = 0) is contained in the considerations in Section 3.2.

We define H, A as in Section 3.2 and I±, u±, q±, (K, [., .]K), D and the
scales Hs, Ks as in Section 3.3. Further, we define the Krein space G, the
operator L and the scales Gs as in Section 3.3. The operator B,

B :=

[
q

1
2
+I+

|q−| 12 I−

]
,

is a bounded operator from H 1
2

into K− 1
2
. It follows from Lemma 3.5 and

condition (I) that the operator I∗
±(1+u2

±)−
1
4 |q±| 12 I±(1+A2)−

1
4 is an element

of S2, hence B ∈ S2(H 1
2
,K− 1

2
). Therefore the operator B, where B is

defined as in (3.8), belongs to S2(G 1
2
,G− 1

2
), that is condition (b) of Section

2.3 is fulfilled. We define T, T̃ ,M, M̃ as in Section 2.3.
Then T (λ)y coincides with the expression on the left hand side of (3.20)

defined for all y ∈ H1
0 (I) for which it belongs to L2(I). Then Lemmas 2.1,

2.3 and Propositions 2.5, 2.7, 2.8 and Remark 2.6 hold, in particular we have

ρ(T ) = ρ(M) ∩ ρ(D) and σp(T ) = σp(M) ∩ ρ(D).

Since 0 ∈ ρ(T (iη)) for sufficiently large η > 0 we have ρ(M) = ∅ and
Theorem 2.9 holds.
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For all λ ∈ ρ(M) ∩ ρ(L) we have (cf. [J3, Lemma 2.3])

(L− λ)−1 − (M− λ)−1 ∈ S2.

The operator L is fundamentally reducible (cf. proof of Theorem 3.8) and,
as a consequence of Lemma 1.14 and Theorem 1.15, the following theorem
holds.

Theorem 3.13. The operator M is definitizable over

C \ (([0,∞] ∪ σe(u+)) ∩ σe(u−)).

Let Δ be an open connected subset of IR \ (([0,∞]∪σe(u+))∩σe(u−)). Then
the following assertions are equivalent.

(i) Δ is of type π+ (type π−) with respect to M.

(ii) Δ is of type π+ (resp. type π−) with respect to L.

(iii) Δ ⊂ IR \ σe(u−) (resp. Δ ⊂ IR \ ([0,∞) ∪ σ(u+))).

Lemma 3.9 remains valid for I = [0,∞), without difficulty the proof can
be extended to this case.

Proposition 3.14. Let λ0 ∈ (0,∞) \ σ(D). Then λ0 /∈ σp(M), i.e.

σp(M) ⊂ (−∞, 0] ∪ σ(D).

Assume, in addition, that 0 ∈ ρ(D) and that there exist an x0 > 0 such that
|q(x)u(x)−1| ≤ 3

4x2 for all x ∈ (x0,∞) hold. Then

σp(M) ⊂ (−∞, 0) ∪ σ(D).

Proof. Let λ0 ∈ (0,∞) \ σ(D). Then λ0 − T (λ0) is the operator defined
by the differential expression

− d2

dx2
+

q(x)
λ0 − u(x)

(3.27)

restricted to all those functions from H1
0 (I) which are mapped by (3.27) into

L2(I). The function q
λ0−u belongs to L1(I) (cf. (3.19)). By Theorem 3.6

λ0−T (λ0) has no positive eigenvalue. Hence λ0 /∈ σp(T ) and, by Proposition
2.8, λ0 /∈ σp(M).

The additional assumption of the second part of Proposition 3.14 implies
that 0 /∈ σp(T ) (see Theorem 3.6) and, by Proposition 2.8, 0 /∈ σp(M). �

Assume, in addition, that the following condition (A′) is fulfilled.
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(A′) The functions q and u belong to C1(I), u′(x) > 0 for all x ∈ I and the
function q has at most finitely many zeros in the interval I. Moreover,
q and u are bounded functions on the interval I and there exists a real
number γ < 0 such that u(x) ≤ γ for all x ∈ I.

From conditions (I) and (A′) it follows that q belongs to L1(I) and that
the operator B is a bounded operator from H into K. Then, for λ ∈ ρ(D),
we have

D(T (λ)) = D(A) and D(M) = D(L) = D(A) ×K.

Moreover, the set σ(u+)∩σ(u−) consists of at most finitely many points, i.e.
σ(u+)∩σ(u−) = {u(ξ1), . . . , u(ξn)} for some ξ1, . . . , ξn ∈ I, n ∈ IN, and each
ξj , j = 1, . . . , n, is a zero of the function q. From Theorem 3.13 it follows
that M is definitizable over

C \ {u(ξ1), . . . , u(ξn)}.
This will improved by the following theorem.

Theorem 3.15. Assume that condition (A′) is fulfilled. Then the operator
M is definitizable and we have c∞(M) = {u(ξ1), . . . , u(ξn)}. Furthermore,
we have

σp(M) ∩ (0,∞) = ∅ and c(M) \ c∞(M) ⊂ σp(M) ∩ (−∞, 0].

Assume, in addition, that there exist x0 > 0 such that
∣∣∣ q(x)
u(x)

∣∣∣ ≤ 3
4x2 for all

x ∈ (x0,∞). Then

σp(M) ∩ [0,∞) = ∅ and c(M) \ c∞(M) ⊂ σp(M) ∩ (−∞, 0).

Proof. 1. Set I1 := [0, ξn + 1]. Let D1 denote the set of all absolutely con-
tinuous functions y ∈ L2(I1) which have an absolutely continuous derivative
y′ with (y′)′ ∈ L2(I1), and which satisfy y(0) = y(ξn + 1) = 0. For y ∈ D1

we define
A1y := −y′′.

We set

Δ+,1 := {x ∈ I1 : q(x) > 0}, Δ−,1 := {x ∈ I1 : q(x) < 0}
and we introduce the following abbreviations

u+,1 := u|Δ+,1, u−,1 := u|Δ−,1,
q+,1 := q|Δ+,1, q−,1 := q|Δ−,1.
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We denote by I+,1 (I−,1) the embedding operator acting from L2(I1) into
L2(Δ+,1) (L2(Δ−,1), respectively), i.e.

I+,1f := f |Δ+,1, I−,1f := f |Δ−,1, f ∈ L2(I1).

On G1 := L2(I1) × L2(Δ+,1) × L2(Δ−,1) we consider the indefinite inner
product [., .]G1 defined by⎡⎣⎛⎝ f1

f2

f3

⎞⎠ ,

⎛⎝ g1

g2

g3

⎞⎠⎤⎦
G1

:= (f1, g1)L2(I1) + (f2, g2)L2(Δ+,1) − (f3, g3)L2(Δ−,1),

where f1, g1 ∈ L2(I1), f2, g2 ∈ L2(Δ+,1) and f3, g3 ∈ L2(Δ−,1). Then
(G1, [., .]G1) is a Krein space.

We define an operator M1 with domain D(M1) := D1 × L2(Δ+,1) ×
L2(Δ−,1) by

M1y =

⎡⎢⎣ A1 I∗+,1q
1
2
+,1 −I∗−,1|q−,1| 12

q
1
2
+,1I+,1 u+,1 0

|q−,1| 12 I−,1 0 u−,1

⎤⎥⎦y, y ∈ D(M1).

If we replace the interval I in Section 3.3 by I1 and the boundary condition
(3.21) by y(0) = y(ξn +1) = 0 then we can repeat the reasoning from Section
3.3 for the operator M1. Hence, Theorem 3.8 and Theorem 3.10 are valid for
M1, i.e. M1 is a definitizable operator with c∞(M1) = {u(ξ1), . . . , u(ξn)}.

2. Assume that q(x) < 0 for all x ∈ [ξn+1,∞). We set I2 := [ξn+1,∞) and
let D2 denote the set of all locally absolutely continuous functions y ∈ L2(I2)
which have a locally absolutely continuous derivative y′ with (y′)′ ∈ L2(I2),
and which satisfy y(ξn + 1) = 0. For y ∈ D2 we define

A2y := −y′′.

We consider on G2 := L2(I2) × L2(I2) the indefinite inner product [., .]G2

defined by [(
f1

f2

)
,

(
g1

g2

)]
G2

:= (f1, g1)L2(I2) − (f2, g2)L2(I2),

where f1, g1, f2, g2 ∈ L2(I2). Then (G2, [., .]G2) is a Krein space. We define
an operator M2 with domain D(M2) := D2 × L2(I2) by

M2y =

[
A2 − |q|I2|

1
2

|q|I2| 12 u|I2

]
y, y ∈ D(M2).
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If we replace the interval I in Lemma 3.5 by I2 then it is easy to see that
|q|I2| 12 (1 + A2

2)
− 1

4 is a compact operator in L2(I2), i.e. |q|I2| 12 satisfies con-
dition (b) from Section 2.3. Thus, by Theorem 2.12, it follows that M2 is a
definitizable operator with c∞(M2) = ∅.

From q(x) < 0 for x ∈ I2 it follows that we have Δ+ = Δ+,1 and Δ− =
Δ−,1 ∪ I2 (see (3.22)). Therefore, the operator U defined by

U(f1, f2, f3)T := (f1|I1, f2, f3|Δ−,1, f1|I2, f3|I2)T,

for f1 ∈ L2(I), f2 ∈ L2(Δ+), f3 ∈ L2(Δ−) is a unitary operator mapping
G onto G1 × G2. Denote by D0 the set of all locally absolutely continuous
functions y ∈ L2(I) which have a locally absolutely continuous derivative y′

with (y′)′ ∈ L2(I), and which satisfy y(0) = y(ξn + 1) = 0. Then D0 ×
L2(Δ+) × L2(Δ−) is a subset of D(M) and for y ∈ D0 × L2(Δ+) × L2(Δ−)
it follows

My = U−1

[
M1 0
0 M2

]
Uy.(3.28)

3. We choose an element (h, 0, 0)T from D(M) such that h(ξn +1) = 1 holds.
Then it follows

D(M) = (D0 × L2(Δ+) × L2(Δ−))
.
+ sp {(h, 0, 0)T}.

Let y ∈ G and λ ∈ ρ(M) ∩ ρ(M1) ∩ ρ(M2). Then we have for some x ∈
D0 × L2(Δ+) × L2(Δ−) and some α ∈ C

y = (M− λ)x + α(M− λ)(h, 0, 0)T.

Therefore, by relation (3.28), we have

(M− λ)−1y − U−1

[
M1 − λ 0

0 M2 − λ

]−1

Uy =

=

(
(M− λ)−1 −U−1

[
M1 − λ 0

0 M2 − λ

]−1

U

)
α(M− λ)

⎛⎝ h
0
0

⎞⎠ ,

i.e. the difference of the resolvents of M and U−1(M1 × M2)U has a one–
dimensional range. Moreover, σess(M1)∩ σess(M2) = {u(ξn + 1)} holds and
there exists an open interval δ ⊂ IR, u(ξn + 1) ∈ δ, such that δ is of type
π− with respect to M1 (cf. Theorem 3.8) and of the same type with respect
to M2 (cf. Theorem 2.12). In addition, there exists an open connected set
δ′ ⊂ IR, ∞ ∈ δ′, such that δ′ is of positive type with respect to M1 (cf.
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Theorem 3.8) and of positive type with respect to M2 (cf. Theorem 2.12).
Thus the operator M1 × M2 is a definitizable operator in G1 × G2 and, by
[JL1, Theorem 1], M is a definitizable operator with

c∞(M) = c∞(M1 ×M2) = {u(ξ1), . . . , u(ξn)}.
Assume that q(x) > 0 for all x ∈ I2. Then a similar reasoning applies.

4. As each finite critical point of M belongs to σp(M) ∪ c∞(M), the re-
maining assertions of Theorem 3.15 follows from Proposition 3.14. �

Theorem 3.16. Assume that condition (A′) is fulfilled. For some ξj ∈
{ξ1, . . . , ξn}, 1 ≤ j ≤ n, assume that there exists α < 0 with

u(ξj) +
q(x)

u(x) − u(ξj)
≤ α(3.29)

for all x ∈ I. Then u(ξj) is a regular critical point of M with u(ξj) /∈ σp(M).

Proof. Condition (A′) implies σp(L) = ∅. We denote by K′
s and G′

s the
scales Ks((D−u(ξj))−1) and Gs((L−u(ξj))−1), respectively (see Section 1.1).

The operator (D−u(ξj))−1 ((L−u(ξj))−1) can be extended to a continuous
linear operator ((D−u(ξj))∼)−1 (resp. ((L−u(ξj))∼)−1) acting from K′

1
2

into
K′

− 1
2

(resp. from G′
1
2

into G′
− 1

2
). Then the operator B is a bounded operator

from H into K′
1
2

and the operator B+((D−u(ξj))∼)−1B is a bounded operator
in H. Therefore we can define

T (u(ξj)) := u(ξj) − A + B+((D − u(ξj))∼)−1B

with D(T (u(ξj))) = D(A). Relation (3.29) implies T (u(ξj)) ≤ α, hence
T (u(ξj)) is boundedly invertible. We set

K := (A − u(ξj))−1B+((D − u(ξj))∼)−1B.

Then I − K = −(A − u(ξj))−1T (u(ξj)) is boundedly invertible and we have

(3.30)
−T (u(ξj))−1 − (A − u(ξj))−1 =
= ((A − u(ξj))(I − K))−1 − (A − u(ξj))−1 =
= ((I − K)−1 − I)(A − u(ξj))−1 = (I − K)−1K(A − u(ξj))−1.

Moreover, condition (A′) and Lemma 3.5 imply

I∗±

(
q2
± +

q2±
(u± − u(ξj))2

) 1
4

I±(1 + A2)−
1
4 ∈ S2,
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hence B belongs to S2(H 1
2
,K′

1
2
). Then, by (3.30), it follows that the differ-

ence −T (u(ξj))−1 − (A − u(ξj))−1 belongs to S2. By a reasoning similar to
the proof of Theorem 3.10 one can show that u(ξj) /∈ σp(M) and that there
exists an operator V ∈ S2(G′

1
2
,G′

− 1
2
) such that

(M− u(ξj))−1 = (L− u(ξj))−1 +
�V.

holds. Condition (A′) and Lemma 1.14 imply that the operator (L−u(ξj))−1

is definitizable and that the point ∞ is a regular critical point of (L−u(ξj))−1.
As a consequence of [J3, Theorem 3.10] the point ∞ is a regular critical point
of (M− u(ξj))−1 and Theorem 3.16 is proved. �

Remark 3.17. Assume that condition (A′) is fulfilled and that

sup
x∈I

u(x) + sup
x∈I

q′(x)
u′(x)

≤ 0.

Then for each ξj , 1 ≤ j ≤ n, relation (3.29) is fulfilled, hence each u(ξj),
1 ≤ j ≤ n, is a regular critical point of M with u(ξj) /∈ σp(M).
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Symbols

IN the natural numbers
IR the real numbers
C the complex numbers
μ the Lebesgue measure

For a linear operator A we denote by

ρ(A) the resolvent set,
σ(A) the spectrum,
σp(A) the point spectrum,
R(A) the range,
def(A) the codimension of R(A),
nul(A) the dimension of the kernel of A.

Hs(A) 13 Ã 13
((A − z)∼)−1 13 R̃(z, A) 13
Hs(A, J) 14 L(A) 16
S∞ 16 S

(A)
∞ 16

σ++(A), σ−−(A) 16 (Definition 1.3) σap(A) 16
+
� 18 σess(A) 19
κ+, κ− 20 σe(A) 21
type π+, type π− 21 σ̃e,+(A), σ̃e,−(A) 21
c(A) 21 c∞(A) 21
σp,norm(A) 24 C +, C− 27
S∞(Δ) 27 σe,ess(A) 29
Sp(H,K) 29 Sp 29
ρ(T ) 34 σ(T ) 34
σp(T ) 35 σ++(T ), σ−−(T ) 36
σap(T ) 36 ρe(T ) 45
σe(T ) 45 Nκ(L(H)) 46
Re+ 48 H1

0 (I) 58, 66
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[L2] Langer, H.: Invariante Teilräume definisierbarer J–selbstadjungierter Opera-
toren, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 475 (1971), 1–23

[L3] Langer, H.: Spectral Functions of Definitizable Operators in Krein Spaces,
Functional Analysis Proceedings of a conference held at Dubrovnik, Yugoslavia,
November 2–14, 1981, Lecture Notes in Mathematics, 948, Springer–Verlag,
Berlin–Heidelberg–New York, 1982, 1–46

[LMeM] Langer, H., Mennicken, R., and Möller, M.: A Second Order Differen-
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