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Chapter 1 General Introduction

1. General Introduction

1.1. Background

In the 21" century, the world population is increasing at a high rate. The population is
faced with a crisis that defines human development and links today and tomorrow.
This crisis is climate change. Sub-Saharan African (SSA) countries, which are more
prominent in increasing human population, are more vulnerable to climate change.
This is because, they are located in the hot tropical regions, and they highly depend on
climate-sensitive sectors such as agriculture, forestry and tourism. In addition, SSA
countries not only have high poverty rates, but also limited financial, institutional and

human capacity to adapt to climate change (Thomas and Twyman, 2005).

Agriculture is the backbone of most countries in Africa. More than eighty percent of
agriculture in SSA is rain-fed. The sector contributes about 30 percent of the Gross
Domestic Product (GDP) and 30 percent of the total export value. Ninety five percent
of the population depends on agriculture for its livelihood (Kaushik, 2008). In the past
years, many African countries have experienced erratic droughts and declines in water
supply. These have aggravated food shortages on the continent. Some countries like
Kenya have declared food shortage a national disaster. Recent prediction estimates
that, by the year 2050, at least one in every 4 people is likely to live in a water-

deficient area (UNFPA, 1999; FAO, 2004).

Water-stress occurs ubiquitously during the growing season of many plants, and has
intense negative impacts on agricultural productivity. For example, in maize a mild
drought of 4 days at the flowering and silking phase of development can result in up
to a 50% decrease in grain yield (Wang et al., 2005). In order to take the right turn
towards a more sustainable food security situation in Africa, dramatic yield increases
in the large regions susceptible to drought need to be ensured (Figure 1.1). Genetic
enhancement of crops for drought tolerance appears to represent the best and most
cost-effective route for ensuring sustainable and increased crop yields in the harsh
SSA climate, where timing and amount of rain is often unreliable. Such genetic
enhancement can be achieved by applying plant breeding techniques together with

biotechnology methods. To utilize such techniques fully, there is a need to
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understand the molecular and physiological basis of drought tolerance and

susceptibility.

In order to improve the understanding of drought tolerance mechanisms in cassava
(Manihot esculenta Crantz), one of the most important drought-tolerant crops, a
multi-disciplinary project, funded by the Generation Challenge Program (GCP) and
the German Federal Ministry for Economic Cooperation and Development (BMZ),
“‘Identifying the physiological and genetic traits that make cassava one of the most
drought tolerant crops’’ was initiated. The project was implemented by several
research institutions in collaboration with universities (Figure 1.2). The research

presented here has been undertaken within this project.

B o crisically affected countries

Crigically afpcied countries

Figure 1.1.  Countries affected by drought in Africa.
Source: Moustafa et al. (2002)
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Evaluation of 500 Brazilian cassava
germplasm accessions and selection of
drought-tolerant and  drought-susceptible
lines, based on moisture stress, dry matter
content, mite resistance, root yield and
cyanogenic potential.

Field and greenhouse evaluation of the
selected 40 diverse germplasm accessions in

CIAT & Embrapa
4 semiarid regions of Brazil and development
of mapping population.

IITA &
GAUG

Greenhouse and  field Field evaluation of Multiplication and genotyping of
evaluaton of mapping CIAT mapping CIAT and Embrapa mapping

populations and laboratory  population. population; field evaluation of

quantification of starch and African  clonal genotypes and

sugars. laboratory quantification of starch
and sugars.

Figure 1.2.  Research institutions and universities involved in the Generation
Challenge Program (GCP) and the German Federal Ministry for
Economic Cooperation and Development (BMZ) funded project
‘‘Identifying the physiological and genetic traits that make cassava one
of the most drought tolerant crops” and their roles. Brazilian
Agricultural Research Corporation (Embrapa); International Center for
Tropical Agriculture (CIAT); International Institute of Tropical
Agriculture (IITA); Georg-August-University Goettingen (GAUG);
Cornell University (Cornell).

In Africa, cassava is one of the most important staple foods in the human diet, and it
is cultivated in areas considered marginal for other crops. Thus, the objective of the
present research, as part of the GCP/BMZ project was to improve understanding on

the molecular and physiological basis of drought tolerance in cassava.

1.2. Importance of cassava

Cassava is the fourth most important food source of carbohydrates after rice,
sugarcane and maize for over 700 million people in developing countries of the

tropics and sub-tropics (Balagopalan, 2002; Fregene and Puonti-Kaerlas, 2002; El-
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Sharkawy, 2003). It plays an important role in food security because it can be used in
diverse ways. In Africa, the leaves are consumed as a green vegetable, and provide
protein and vitamins A, B and C. About 38% of the sweet cassava cultivars produced
are peeled and eaten raw or boiled (Table 1.1). These cultivars have low cyanogenic
glycoside content. Those that have high cyanogenic glycoside content are processed
and cooked before consumption (Balagopalan, 2002). Another 51% is processed and
used in diverse ways. The flour is used in partial substitution for wheat flour
(Almazan, 1990), as a base in canned foods, ice cream, wafers, biscuits, chips, cakes,
doughnuts, breads and confectionary (Balagopalan, 2002). The leaves, stems and
roots are fed to animals. The high energy value of cassava makes it a good source of
carbohydrate in animal diets (Omole and Eshiet, 1992). In Asia and parts of Latin
America, cassava is used commercially for the production of animal feed. Cassava
starch is utilized both in food and non-food applications such as baby formulas,
pharmaceuticals, paper manufacturing and textile industries (Fregene et al., 1997;
Balagopalan, 2002). Other industrial uses of the tuber are in the production of
alcohols and manufacture of adhesives. Cassava has been reported to have anticancer
properties. Genes isolated from the plant have been exploited to eradicate brain

tumours in laboratory rats (Cortés et al., 2002).

Table 1.1. World utilization patterns of cassava. Figures are in percentage of total
production (Cock, 1985).

Human food Animal
Region Fresh  Processed feed Starch Export  Waste Stock
World 31 34 11 5 7 10 1
Africa 38 51 1 <1 <1 9 <1
America 18 24 33 10 <1 14 <1
Asia 34 22 3 9 23 6 4
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1.3.  Cassava: Origin, distribution and production

Vavilov (1951) placed the origin of cassava in the Brazilian-Bolivian region. He
proposed that the centers of diversity were the places of origin of cultivated plants.
The crop was probably domesticated in the southern rim of the Amazon basin in
Brazil from wild M. esculenta populations (Cock, 1985; Olsen and Schaal, 2001). The
process of cassava domestication involved selection for root size, growth habit,
number of stems, and the ability to clonally propagate through stem cuttings (Kizito,

2006).

The first mention of cassava cultivation in Africa was in 1558. Cassava was
introduced into Africa and Asia by Portuguese travelers in the 15th century. The
crop’s introduction to East Africa has been postulated between 1760 and 1861
(Théberge, 1985; Carter et al., 1992; 1993). Today, cassava is grown in all African
countries south of the Sahara and North of river Limpopo (Hillocks et al., 2002).
Although cassava is native to the Americas, Africa produces substantially more
cassava than the rest of the world combined (FAO, 1997). Nweke et al. (2002)
revealed that, between 1961 and 1999, total cassava production in Africa nearly
tripled from 33 million tonnes per year between 1961 and 1965 to 87 million tonnes
per year between 1995 and 1999, in contrast to the more moderate increases in Asia
and Latin America. A survey conducted by Collaborative Study of Cassava in Africa
(COSCA) concluded that the main reason for this increase in cultivation was a
response to famine, hunger and drought. This confirms the value of cassava as a

security crop (Hillocks et al., 2002).

1.4. Biology of cassava

Cassava belongs to the genus Manihot in the family Euphorbiaceae, subfamily
Crotonoideae and tribe Manihotae. It is the only cultivated species in this genus
producing tuberous roots (Chiwona-Karltun, 2001). Rogers and Appan (1973)
recognized 98 Manihot species of herbs, trees and shrubs. Cassava is a perennial
woody shrub with the mature plant height ranging from 1-4 m depending on
genotypes and environment (Osiru et al., 1996). Onwueme (1978) and IITA (1990)

have reported some dwarf varieties that attained less than 1 m height.
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Cassava has simple-lobed leaves. The lobes range from 3 to 11 and they have
palmated veins. The crop is monoecious, i.e. having the male (pistillate) and female
(staminate) flowers located on the same plant. The female flowers open 10-14 days
before the male ones. This enhances cross pollination and the seeds produced are
genetically heterozygous (Ng and Ng, 2002). Self fertilization has been reported in
instances where the male and female flowers on different branches of the same
genotype open at the same time (Mahungu and Kanju, 1997; Alves, 2002; Jennings
and Iglesias, 2002). The fruit is round and winged with three seeds. The fruit naturally
splits explosively, 70-95 days after pollination, ejecting the seeds at some distance
(Onwueme, 1978; Osiru et al., 1996). The seeds are ovoid and they germinate about

16 days after release (Alves, 2002).

Cassava is generally propagated from stem cuttings. The stem is woody, cylindrical
with alternating nodes and internodes. In breeding experiments and under natural
conditions, seed propagation is common (Alves, 2002; Halsey et al., 2008). Cassava
forms adventitious roots from the basal cut surface of the stock in one week. These
roots develop to form a fibrous root system in 30-60 days. Between 5 and 20 of the
fibrous roots swell due to cambium activity and starch accumulation to produce
storage roots. The fully developed cassava storage root has a periderm (bark), a cortex
(peel) and a parenchyma, the latter being the edible part. It contains starch, which
makes up about 85% of the total root mass (Wheatley and Chuzel, 1995). The other

fibrous roots remain thin and continue to help in water and nutrients absorption.

Cassava has a diploid genome with a chromosome number of 2n = 36. Some triploid
(3n = 54) and tetraploid (4n = 72) genotypes have also been reported. Triploids have
been shown to grow and yield better than tetraploid and diploid plants (Hahn et al.,
1990).

1.5. Cassava ecology and physiology

Cassava is grown in Africa, Asia and Latin America between latitudes 30°N and 30°S.
The crop requires a mean temperature greater than 18°C, although some varieties have
been reported to grow in areas with annual mean temperatures below 16°C, albeit it
does not put up with freezing conditions. Cassava tolerates a soil pH range from 4 to 9

(Howeler, 1978; 2002). It is usually cultivated in areas considered marginal for other
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crops with soils of low fertility and annual rainfall of less than 600 mm as in the
semiarid tropics (De Tafur et al., 1997) to more than 1000 mm in the sub-humid and
humid tropics (Pellet and El-Sharkawy, 2001). In many of these regions, rainfall
distribution is not homogeneous, and there are prolonged periods of drought during
the crop cycle. Because of its inherent tolerance to stressful environments, it is
considered a contributor to food security against famine, requiring minimal inputs.
This makes it an essential crop for drought-prone areas of the tropical and sub-tropical

Africa, Asia and Latin America.

In cassava, many traits have been associated with drought tolerance, such as leaf
gaseous exchange, leaf retention, osmotic adjustment, accumulation of specific low
molecular weight proteins, abscisic acid (ABA), and accumulation and utilization of
non-structural carbohydrates. But, it is also known that genotypic variation in drought
tolerance exists. For example, in 1992, cassava accessions in Petrolina (northeast
Brazil) suffered from a more severe drought than normal, with total annual rainfall of
less than 200 mm and, despite this harsh environment, a large number of accessions
persisted and produced from 13 to 18 t ha' fresh roots, while some failed (El-

Sharkawy, 2007).

1.5.1. Sensitivity of cassava stomata

Stomata have an inherent ability to respond to changes in the water status of the plant
and the atmosphere (Alves, 2002). Cassava maintains a high stomata conductance and
keeps internal CO, concentration high when water is available. The stomata remain
partly closed when water becomes limiting with no changes in leaf water potential.
This prevents the leaves from desiccation (El-Sharkawy, 2003). In addition, cassava
stomata are located mainly on the lower surface of the leaf (abaxial) except in 2% of
the 1500 germplasm accessions studied that had stomata on their adaxial surface (El-

Sharkawy et al., 1985; El-Sharkawy and Cock, 1987b).

1.5.2. Leaf retention (stay-green) and changes in leaf expansion rates

Prolonged retention of cassava leaves has been recognized as a key trait to increasing
both root yield root quality. Cassava leaves remain photosynthetically active under
stressed conditions. The leaves are also capable of partially recovering, once water

becomes available. This represents an important mechanism of saving the biomass
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invested in leaf formation (El-Sharkawy, 2003). In addition, when there is low air
humidity, the cassava leaf area is reduced due to decreasing cell proliferation and
modifications of photosynthetic pathway to maintain high photosynthetic activity.
This is rapidly reversed following the recovery from stress (Alves and Setter, 2004).
This “stay-green’’ characteristic allows subsistence farmers to continuously harvest

the leaves and is also instrumental for increasing root yield.

1.5.3. Osmotic adjustment

Osmotic adjustment is recognized as an effective component of drought resistance in
many crops (Kramer and Boyer, 1995). It involves the accumulation of osmotically
active solutes in a cell in response to a fall in water potential of the cell’s
environment. This helps in maintaining turgor and its dependent processes during
water-limiting episodes. As a consequence, the stomata remain partially open for CO,
assimilation to take place. This results in cell enlargement and plant growth at high

water stress conditions (Alves, 2002).

1.5.4. Accumulation of specific low molecular weight proteins

The amount of proteins that accumulate during plant cell dehydration cannot be
underestimated. Many of these known families of such proteins are LEA proteins,
named after their initial observation as ‘Late Embryogenesis Abundant’ during cotton
embryo development (Close et al., 1993; Dure III, 1993). Their accumulation confers

osmoprotection to cellular membrane and protein systems.

1.5.5. Abscisic acid (ABA) accumulation

Environmental stress has been shown to stimulate the biosynthesis and release of the
phytohormone ABA in plants. This hormone regulates essential physiological and
developmental processes in plants as well as imposed adaptive responses to
environmental stress (Zeevaart and Creelman, 1988). In addition to controlling the
opening and closing of the stomata, ABA promotes distinctive developmental changes
that assist plants cope with water deficit (Alves and Setter, 2000). These include
restriction of shoot growth and leaf area expansion (Lecoeur et al., 1995), stimulation
of root extension (Sharp et al., 1994), and accumulation of osmotically active solutes
(LaRosa et al., 1987). In response to water deficit, cassava leaves rapidly accumulate

ABA and, correspondingly, halt leaf expansion growth (Alves and Setter, 2000).
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1.5.6. Accumulation and utilization of non-structural carbohydrate reserves

Research in cassava and other crops demonstrated that, when water is limited, plants
close their stomata and limit photosynthesis. Starch is the most important form of
carbon reserve in plants (Martin and Smith, 1995). Therefore, an important coping
mechanism for plants is the ability to mobilize stored carbohydrates to provide a
source of substrate for metabolism and osmolyte synthesis (Blum, 1998). Cassava,
with its thick woody tissues, amasses abundant starch reserves in its stem, leaves and

roots that are mobilized during stress, and this contributes to drought tolerance.

1.6. Mechanisms of drought tolerance in plants

Plant growth, productivity and distribution are affected by both abiotic and biotic
factors. The abiotic factors include drought, freezing, poor soils and salinity; the
former being the most prevalent. Plants have developed varied adaptive strategies to
cope with these stresses. Drought tolerance in wild species is usually defined in terms
of survival, while in cultivated crops, it is in terms of productivity (Passioura, 1983).
Tolerance is the variation in yield between stress and non-stress environments
(Rosielle and Hamblin, 1981) or the relative yield of an accession as compared to
other accessions subjected to the same drought stress (Hall, 1993; Gebeyehu, 2006).
Fischer and Maurer (1978) have defined tolerance as the reduction of the decline in
yield caused by stress compared to yield under non-stress environment. Although the
mechanisms of maintaining plant growth and development in water-stressed
environments are complex, plants generally use three strategies to survive drought
environments. These are drought escape, dehydration avoidance and dehydration
tolerance (Blum, 1998; 2005). Dehydration tolerance and dehydration avoidance have
been noted as the two major mechanisms of drought resistance in higher plants (Babu
et al., 1999). Although, in cassava, various genotypes use different or, a combination
of physiological mechanisms to deal with drought. These are escape (by early bulking
and maturity), avoidance (by deep fibrous root system and stomatal closure) and
tolerance (plasticity in vegetative growth, remobilization of substrates for growth and

abscisic acid accumulation) (Ekayanake, 1998; Okogbenin et al., 2003).
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1.6.1. Drought escape

Drought escape is associated with short cycle crops, which flower early or have short
growth duration. This type of drought survival mechanism is advantageous especially
in environments with terminal and predictable drought and where physical or
chemical barriers inhibit the growth of roots (Blum, 1998). Nevertheless, late
flowering in plants can be beneficial in escaping early-season drought especially
where drought is followed by rains (Ludlow and Muchow, 1990; Ludlow, 1992). In
general, this mechanism allows plants to grow and complete their life cycle before

soil moisture becomes limiting.

1.6.2. Dehydration avoidance

Dehydration avoidance is the ability of a plant to retain reasonably high amounts of
water under soil or atmospheric water-stress, either through reduction of water loss
and/or maintaining proper water uptake (Blum, 1998). Jones and Zur (1984)
recognized two types of dehydration avoiders. These are ‘water savers’ or plants that
avoid dehydration through reduced transpiration, and ‘water spenders’ or plants that
use means other than transpiration to conserve water. Features that enable plants to
avoid dehydration include a vigorous, deep and extensive root system, mucilaginous,
narrow and hairy leaves, osmotic adjustment to lower the osmotic potential, and/or
modified and limited number of stomata to reduce water loss (Hsiao et al., 1973;
1976; Acevedo et al., 1979). These mechanisms allow plants to maintain a positive

tissue-water relation even under limited soil moisture conditions.

1.6.3. Dehydration tolerance

Dehydration tolerance is the ability of a plant to continue with its metabolic processes
and maintain growth at a low water potential. This happens when tissues are no longer
protected by avoidance mechanisms during high dehydration levels. Stem reserve
mobilization is one of the dehydration tolerance processes in plants as it tends to
proceed at levels of water deficit sufficient to inhibit photosynthesis. For example, in
cereals, it has been shown that grain growth is partially supported by translocated
plant reserves stored mainly in the stem during pre-anthesis growth stages (Santiveri

et al., 2004). These reserves provide a source for grain filling when water-stress
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occurs. The mechanisms of drought tolerance function at the tissue or cellular level to

stabilize and protect the cellular and metabolic integrity (Tuinstra et al., 1997).

1.7. Cassava breeding and biotechnology

Plant breeding is the art and science of manipulating the genetics of plants, followed
by selection of resulting plants that most closely approach the desired combination of
characters, for the economic and social utility to man. It is one of the most ancient
forms of agricultural activities where, although the early plant domesticators (hunters
and gatherers) had no concept of genes or their manipulation, they selected superior
plants with improved productivity suited for their environmental conditions. Breeding
methods are grouped into four distinct categories according to the reproduction type
of the resulting cultivars: lineal cultivars with self fertilization, population cultivars
with cross fertilization, hybrid cultivars with controlled crossing between the parents,
and clonal cultivars with vegetative propagation (Schnell, 1982; Bond and Poulsen,
1983; Pochard et al., 1992 as cited by Ghaouti, 2007). Plant breeding is an important

approach needed to sustain food production for the long-term future.

Cassava is a clonal crop and, despite it being a major food crop, its scientific breeding
began only around 1937 (Kizito, 2006). After formation of the International Institute
of Tropical Agriculture (IITA) in Nigeria and the International Center for Tropical
Agriculture (CIAT) in Colombia in the early 1970’s, significant progress has been
made. These two international centers collaborate with National Research Systems
(NARS) to study the crop in depth. The objectives are centered on yield increase,
improving root quality, and multiple pest and disease resistance. Despite the progress
achieved, the breeding process has been slow and inefficient as compared to other
crops. This is because of the long breeding cycle (9-18 months), low seed yield per
pollination (a maximum of three seeds per cross), and the heterozygous nature of the
parents and progenies evaluated (CIAT, 2003; Ceballos et al., 2004). The
heterozygous nature allows a considerable genetic load of deleterious or undesirable
alleles to persist in populations, masks allelic differences in segregating populations,
and also, it creates difficulties in transferring desirable traits from one genotype to
another (Ceballos et al., 2004; Setter and Fregene, 2007). This makes the breeding
process lengthy with no assurance of release and adoption of a new variety. Given the

difficulties of conventional breeding in cassava, molecular DNA markers, could be a
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boost for breeders. These markers can accelerate the process of crop improvement
through selection and transfer of traits of interest, especially, those that are difficult to

phenotype in large scale trials (Crouch and Serraj, 2002; Setter and Fregene, 2007).

Molecular markers both biochemical and DNA are sequence variants that can readily
be detected and whose inheritance can be monitored (Farooq and Azam, 2002; Kumar
et al., 2009). They are detectable in all tissues and not affected by environmental
conditions. Different marker systems have been developed in the last two decades,
however, simple sequence repeats (SSR’s), also known as microsatellites, are most
effective in detecting polymophisms in cassava (Weising et al., 2005). SSR’s are
hyper-variable tandem repeats of DNA motifs 2-5 bases long, common in eukaryotic
and prokaryotic genomes (Zhu et al., 2001). They are widely distributed in higher
plants. The variation comes from differences in the number of repeat units originating
from errors in copying of DNA during replication. SSR’s are preferable because they
are simple to implement in most laboratories, easy to analyse and fast to obtain
results, amenable for high throughput marker genotyping, polymorphic, and they are
co-dominant markers, which allows to identify heterozygotes through them (Senior

and Heun, 1993; Akkaya et al., 1995; Lelley et al., 2000).

The availability of molecular DNA markers represent the most significant advance in
breeding and have greatly contributed to cassava improvement and genetics in the
development of genetic maps, identification of quantitative trait loci (QTL) for some
important traits (Fregene et al., 1997; Cortés et al., 2002; Okogbenin and Fregene,
2003), in the assessment of genetic diversity, taxonomical studies and confirmation of

ploidy levels (Fregene et al., 2001; Fregene et al., 2003; Mkumbira et al., 2003).

1.8. Rationale of the study

Cassava is a major staple in the tropics of Africa. It is cultivated in areas considered
marginal for many other crops. These areas are characterized by low soil fertility and
low annual rainfall. It is the cheapest source of food calories providing a major source
of energy for nearly two out of every five Africans (Nweke, 2004). Cassava appeals to
low-income households because it can be “banked” in the soil as a food reserve
source from 8 to 36 months following planting. Therefore, it serves as a buffer against

uncertainties of small farm life. The HIV/AIDS epidemic has also weakened the labor
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force in many rural areas in Africa where agriculture is dominated by women
(Bryson, 1981; Barany et al., 2001). Cassava is popular with these women farmers
because of its flexible requirements in terms of planting, weeding, and harvesting
(Nweke et al., 2002). In Africa, yields are only 8-10 tones per hectare, on average,
approximately half of those achieved in Asia and Latin America (FAO, 2003).
Drought is an important constraint to production in semi-arid regions of southern and

eastern Africa and in the marginal areas bordering the Sahel (Moustafa et al., 2002).

Currently, there is limited information on the physiological and molecular
mechanisms that make some cassava accessions more drought-tolerant than others
(El-Sharkawy, 2007). This is probably due to the fact that breeders and scientists are
unsure of the key physiological traits to measure, in addition to yield characteristics,
for drought-tolerance evaluation (Jenks et al., 2007). In addition, cassava is a complex
crop to breed using conventional methods. It is traditionally a vegetatively propagated
crop through stem cuttings, and seed production is extremely low (Iglesias et al.,
2008). This is a serious limitation to plant breeding, which relies on recombination
during crossing in order to achieve any progress. In addition, its phenology is highly
influenced by the environment, affecting time to flowering (Whyte, 1987; Halsey et
al., 2008). Cassava suffers quickly from inbreeding depression and has a high degree
of heterozygosity (Gonzalez et al., 1998; Lopez et al., 2005). For these reasons, it is
extremely difficult, time-consuming and expensive to combine an array of preferred
characteristics, both agronomic and organoleptic. Biotechnology tools can play a
major role in increasing the accuracy and efficiency of cassava breeding through
marker-assisted breeding (MAB). This calls for the need to understand the

physiological and molecular drought tolerance mechanisms in cassava.

1.9. Objectives of the study

The ultimate goal of the project was to identify the physiological and genetic traits
that make cassava one of the most drought-tolerant crops. The present study was
conducted within the framework of the Generation Challenge Program (GCP) and the
German Federal Ministry for Economic Co-operation and Development (BMZ)

funded project with the specific objectives:
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® to develop a protocol for hardening and rapid micro-propagation of cassava
plantlets under local conditions;

e to identify some of the main physiological and metabolic attributes that
contribute to drought tolerance in cassava;

¢ to identify drought-tolerant and drought-susceptible cassava germplasm from
Africa;

e to evaluate the CIAT and Embrapa mapping populations using molecular
markers;

e to perform linkage analysis to determine the map distance of molecular

markers.

1.10. Thesis outline

This introductory chapter will be followed by chapter 2 describing a successful
protocol that has been developed to acclimatize and rapidly micro-propagate tissue
culture cassava plantlets under local conditions. An attempt is made to describe the
step by step procedure from when the plantlets were received until they were ready to
go to the field. Chapter 3 deals with the agronomic and morphological evaluation of
contrasting African cassava germplasm accessions under water-stressed and well-
watered conditions in Kiboko, Kenya. Chapter 4 focuses on laboratory results of
carbohydrate, protein and phytohormone quantification of the African cassava
germplasm. In chapter 5, genomic and expressed sequence tag (EST) derived SSR
markers (ESSR) are utilized for the genotyping and linkage mapping of the CIAT
mapping population. In chapter 6, the main findings of the study are highlighted and

summarized.
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2. Hardening of Cassava In Vitro Plantlets and Rapid Micro-
propagation of Cassava Plants Through Nodal Cuttings

Abstract

Cassava has become suitable for food security and economic development in
unfavoured areas of the tropics. Lack of good quality planting material, in
larger quantities and at the right time is one of the most important constraints
limiting expansion of cassava production in Africa. Plant tissue culture
technology has been successfully used to propagate cassava and other plant
species like sugarcane, bananas and sweet potato. This has facilitated
international exchange of clean clones, conservation of germplasm, and it has
also helped alleviate cassava’s multiplication constraints at farm level in
developed countries. However, in Africa hardening of cassava in vitro
plantlets and production of massive plants is a major drawback because this
technology is capital-, labor- and energy-intensive. This study describes a
successful protocol for hardening and rapid micro-propagation of cassava
plantlets under local Kenyan conditions using nodal cuttings, vermiculite,
sterile soil and improvised humidity chambers. A total of 1173 plants from 31
putative drought-tolerant and drought-susceptible germplasm accessions were
acclimatized using the developed protocol as compared to 722 plants obtained
with the use of sub-culturing technique. Overall increase after 210 days with a
rate of 13.8 for direct and 8.5 for in-direct micro-propagation were observed.
The protocol was also cheaper in terms of consumables as compared to the

tissue culture/in-direct method of micro-propagation.

Key words: Cassava; direct micro-propagation; hardening; in-direct micro-
propagation; in-vitro; Kenya; Manihot esculenta; nodal cuttings; tissue
culture
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2.1. Introduction

Cassava (Manihot esculenta Crantz) is one of the most important staple food crops in
Africa. In Democratic Republic of Congo (DRC), Ghana, Mozambique, Nigeria,
Tanzania and Uganda, it is the number one staple crop (Nweke et al., 2002). Its
importance as a food crop in Africa becomes obvious when its annual per-capita
consumption is compared to the rest of the world. Whereas the world average annual
cassava consumption was 17 kg/capita in 2001, Africa’s annual consumption was
above 80 kg/capita. Latin America’s consumption decreased by half over the past 30
years to slightly more than 20 kg/capita in 2002 (Aerni, 2006). Its productivity,
drought and acid soil tolerance, and its ability to grow on marginal soils with
minimum inputs makes it a vitally important crop to some of the world’s low-income
food-deficient countries and a significant famine reserve crop (Cock, 1985; Xia et al.,

2005).

Cassava has a high yield potential. According to FAO, 172 million tonnes of cassava
were produced worldwide in 2000, of which Africa produced 54%, Asia 28%, while
Latin America and the Caribbean produced 19% (Manyong et al., 2004). In Africa,
average yields are only 8-10 tons per hectare compared to potential yields of over 80
tonnes under ideal conditions (Taylor and Fauquet, 1997). The gap between the actual
and potential yields on farmers fields is around 8-fold. This is a clear indication that
the highest potential of cassava production is far from being reached, although when
compared to maize, sorghum and rice in environments with no production constraints,
cassava can match or exceed the energy production per hectare of these crops (Vries

et al., 1967).

Cassava roots are the major portion of economic product in Africa, which are
consumed as human food after varying degrees of processing. In addition, they are
increasingly being used as a potential substitute for maize in feed concentrates and for
wheat in bakery goods. The variety of cassava starch cannot be under-estimated in
addition to its role in the production of glue, paper and biodegradable plastics. The
roots also serve as a source of cash income for small-holder farmers (Bottema and
Henry, 1990; Escobar et al., 2006). Cassava storage roots do not function as

propagules like other tuberous roots. The roots serve as a repository of photosynthate
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and, thus, they help the plant to recover from defoliation after drought episodes (Han

et al., 2001).

Cassava plants are conventionally propagated through stem cuttings. Although this
system is commonly used, diseases often accumulate in the propagules resulting in
infected stands and reduced yields. Other challenges include high perishability, as
cuttings dry up within a few days, high handling and transport costs, low propagation
rates compared to grain crops, and inconvenient weight and bulk of the material
(Escobar et al., 2006). A collaborative research conducted in 2003 by IITA, the Swiss
Federal Institute of Technology (ETH Zurich), the Donald Danforth Plant Science
Center (DDPSC, USA), CIAT, the Brazilian Agricultural Research Corporation
(Embrapa, Brazil), representatives from local universities, farmer organizations, and
multinational companies sponsored by the Swiss Center for International Agriculture
(ZIL) revealed that lack of clean planting stakes was the most important constraint

facing subsistence farmers in Africa (Figure 2.1).

Tissue culture has been effectively used to eliminate viruses and other systemic
diseases from elite cassava vegetative materials (Jorge et al., 2000). This has allowed
exchange and conservation of rejuvenated propagation materials, which have higher
yields than the same varieties propagated for successive years in the field (Kassianof,
1992). However, one of the major limitations for a wider adoption of this technique in
developing countries is the unavailability of a procedure for hardening and
multiplication of the tissue culture plantlets before final transplanting in the
production sites. Although reports are available on in vitro hardening of cassava in the
developed world, the protocols are difficult and expensive to implement in developing

countries since the technology is capital-, labor- and energy-intensive (IAEA, 2004).

Even though labor is cheap in developing countries, the resources of trained personnel
and equipment are often not readily available. In addition, electricity and clean water
are costly especially with the plight of climate change and global warming. It is,
therefore, necessary to have a low-cost technique for acclimatization and rapid micro-

propagation of tissue culture plantlets suited for developing countries.

The present study was conducted within the framework of the project "Identifying the

physiological and genetic traits that make cassava one of the most drought-tolerant
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crops" implemented since 2005 by the Brazilian Agricultural Research Corporation
(Embrapa); the International Center for Tropical Agriculture (CIAT); the International
Institute of Tropical Agriculture (IITA); Cornell University, USA and University of

Goettingen, Germany.

The main objective of the present study was:
e to develop a protocol for hardening and rapid micro-propagation of cassava

plantlets under local, low-cost conditions.
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Figure 2.1.  Average ratings of the importance of problems in cassava subsistence
agriculture in Africa, as assessed in 2003 by researchers from
International Institute of Tropical Agriculture (IITA, Nigeria), the
Swiss Federal Institute of Technology (ETH, Switzerland), the Donald
Danforth Plant Science Center (DDPSC, USA), International Centre
for Tropical Agriculture (CIAT, Colombia), the Brazilian Agricultural
Research Corporation (Embrapa, Brazil), representatives from local
universities, farmer organizations, and multinational companies, on a
scale from 1 (not important) to 5 (very important) (Adopted from
Aerni, 2006).
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2.2. Materials and methods

In vitro plants of 31 putative drought-tolerant and drought-susceptible African cassava
germplasm accessions were obtained from IITA, Nigeria (Table 2.1). The plantlets
were delivered in polystyrene boxes at Kenya Agricultural Research Institute (KARI,
Nairobi). Upon arrival, the plantlets were removed from the boxes (Figure 2.2a). They
were counted, genotypes confirmed and kept in the growth room for three days to
recover since they had spent one week in the dark during transportation and clearance.
On the fourth day, the individuals of every genotype were divided into two, the ones
to be sub-cultured to act as a backup (in-direct micro-propagation), and also to
compare the multiplication rate with the rapid micro-propagation, and the ones to be

hardened and multiplied without sub-culturing (direct micro-propagation) (Table 2.1).
2.2.1. Sub-culturing (in-direct micro-propagation)

The plastic tape that had sealed the bottles was removed. The bottle neck with the
plantlets was passed over an open flame and opened aseptically. The plantlet was
picked from the culture jar and placed on a Petri-dish with the aid of a sterile forceps.
The leaves were chopped off and the stem was cut into small pieces of about 3-4 cm
each having at least two nodes. The nodal explants were placed in Kilner jars
containing 50 ml basic semisolid culture medium (Murashige and Skoog, 1962) with
2% sucrose and solidified with 2.5% phytagel at pH 5.8 before autoclaving at 121°C
for 20 min. at 15 psi. The bottles were capped with tops and plastic tape. The cultures
were kept in the tissue growth room at 27°C in a 16-h photoperiod. The plantlets were
sub-cultured after 2 months. In the 4" month, the plantlets were acclimatized in the

green-house.

2.2.2. Transplanting and hardening (direct micro-propagation)

Perforated plastic pots (3" x 4" gauge 100) were filled with sterile, medium-grade
vermiculite to three quarters their volume. Vermiculite is cheap and locally available
and it promotes maximum root growth since it is well aerated and retains moisture
and nutrients. Soil was not used since it gets compact after watering and, hence,
damages the absorbent hairs, root cap and roots. The plastic pots containing
vermiculite were placed in plastic trays. Plastic tape and bottle caps were removed

from the bottles. A spatula was used to disturb the semisolid media taking care not to
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damage the roots. The bottles were tapped gently at the bottom in an inclined position
so as to extract the plant. Forceps and tweezers were not used so as not to damage the
stem. The plantlets were pulled out of the bottle and thoroughly but carefully washed
with running tap water to remove adhering medium completely. The plantlets were
placed in the perforated pots with vermiculite and labeled (Figure 2.2b). The roots and
the stem were handled carefully to prevent physical or physiological damage. The
pots were placed on a trough with 1 cm level water. To conserve moisture and
maintain a high humidity, each plant was covered with a transparent polythene bag
(9" x 13" gauge 300) after pre-spraying with 0.2% Diethane M45 (Mancozeb, 80%:;
Manganese, 16%; Zinc, 2%; Ethylene bisdithiocarbamate, 62%) fungicide solution
and tied with a rubber band at the base (Figure 2.2c). The pots containing the plantlets
were not moved during the first month. Watering was done every week through the
base of the trough. The temperature in the green-house was maintained between 25°C
and 30°C throughout the acclimatization period. On the 21* day, one corner of the
transparent bag was cut open to enable the plantlets adapt to the micro-environment of
the green-house. The other corner was cut on the 24" day. The whole polythene paper
was completely removed on the 28" day (Figure 2.2d). During this step, the plantlets
were protected from strong dehydrating winds by restricting entrance to the green-
house. Between day 30 and 40, the plantlets were transplanted into plastic bags (5" x
8" gauge 100) containing sterile soil (forest soil: sand: humus 45:30:25), since they
required more nutrients and space for growth and development (Figure 2.2e and f). A
water soluble foliar feed (NPK, 19:19:19) was applied every week up to 90 days at a
rate of 1% (1 g 1" of water).

2.2.3. Rapid micro-propagation

After 3 months, each plant of the hardened plants was cut with a sterilised surgical
blade in a slanting position into small pieces containing at least two nodes. The
cuttings were planted in polythene bags (5" x 8") containing sterile soil and were well
labelled (Figure 2.2g). The plant parts were well watered and then covered with a
humidified transparent polythene bag (9" x 13") and tied with rubber bands (Figure
2.2h). They were kept in the green-house under high humidity at temperature between
25°C and 30°C. On the 7™ day, one corner of the polythene bag was chopped off to
enable the plants to adapt to the micro-environment of the greenhouse. On the 10™

day, the other corner of the covering polythene bag was also chopped off and plants
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were maintained that way for 7 more days. On the 14™ day, the polythene bag was
removed completely. The materials were allowed to grow in the green-house for 1
month and the rapid micro-propagation procedure was repeated again (Figure 2.21).

The plantlets were taken to the field for establishment after 90 days (Figure 2.2i, 2.2j).
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2.3. Results and discussion

All 31 putative drought-tolerant and drought-susceptible cassava germplasm
accessions evaluated in this study responded well to both hardening and rapid micro-
propagation. The number of explants obtained varied among the accessions due to the
variation in the number and quality of the starting materials (Table 2.1), however, the
increase rates did not vary accordingly (Figure 2.3, Table 2.1). The plantlets formed
using both the direct and in-direct methods of micro-propagation were generally
strong and healthy. The number of plantlets obtained via direct micro-propagation
were higher than that of the in-direct method of micro-propagation. However, no clear

genotype relationship could be observed.

Losses up to 13.7% and 10.6% were observed in direct and in-direct hardening,
respectively. Direct hardening had higher losses, which was due to the feeble stems
and roots of the imported materials and the fact that they had stayed in the dark for
one week during shipping and clearance. The plantlets that were sub-cultured first
were stronger, and also the bottles used were large and, hence, more nutrients were
available as compared to materials micro-propagated directly from IITA. This lead to

a low percentage of plants being lost.
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Figure 2.3. Direct and in-direct micro-propagation increase rates of putative
drought-tolerant and drought-susceptible African cassava germplasm
accessions micro-propagated at Kenya Agricultural Research Institute
(KARI), Nairobi.
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Table 2.1. Putative drought-tolerant and drought-susceptible African cassava
germplasm accessions obtained from the International Institute of
Tropical Agriculture (IITA), Nigeria and the total number (no.) of
explants obtained through in-direct micro-propagation (sub-culturing)
and direct micro-propagation techniques and the respective
multiplication rates (= final no. of plants / initial no. of plants); (CBSD,
cassava brown streak disease).

Accession ~ Known Indirect micro-propagation Direct micro-propagation
identifier characteristic Day 0 Day 210 Rate Day 0 Day 210 Rate
TME 4 CBSD resistant 2 21 10.5 2 30 15.0
96/1089A CBSD resistant 3 22 7.3 3 33 11.0
TME 117 CBSD resistant 3 27 9.0 3 42 14.0
96/1569 CBSD resistant 3 21 7.0 3 48 16.0
192/0057 Mild drought-resistant 3 24 8.0 3 40 13.3
TME 7 Mild drought-resistant 3 33 11.0 3 48 16.0
92B/00061  Drought resistant 3 29 9.7 3 51 17.0
192/0326 Drought resistant 2 12 6.0 2 34 17.0
195/0104 Drought susceptible 3 16 5.3 3 26 8.7
130572 Drought susceptible 3 24 8.0 3 40 13.3
14(2)1425  Drought susceptible 3 25 8.3 3 39 13.0
97/4779 Drought susceptible 3 21 7.0 3 39 13.0
94/0026 Stay green 2 16 8.0 2 31 15.5
95/0166 Stay green 3 19 6.3 3 41 13.7
95/0289 Stay green 3 26 8.7 3 37 12.3
96/0160 Stay green 3 30 10.0 3 40 13.3
96/0596 Stay green 1 6 6.0 1 13 13.0
96/1087 Stay green 5 43 8.6 5 71 14.2
96/1708 Stay green 3 30 10.0 3 40 13.3
97/2205 Stay green 3 24 8.0 3 48 16.0
97/3200 Stay green 3 23 7.7 3 42 14.0
98/0581 Stay green 2 15 7.5 2 29 14.5
99/0204 Stay green 3 27 9.0 3 30 10.0
191/02312 Stay green 3 25 8.3 3 42 14.0
191/02327  Stay green 2 21 10.5 2 24 12.0
191/1934 Stay green 3 33 11.0 3 49 16.3
M98/0068  Stay green 2 20 10.0 2 27 13.5
94/0020 Stay green 3 24 8.0 3 34 11.3
01/0090 Stay green 3 32 10.7 3 43 14.3
I191B/00462 Stay green 2 12 6.0 2 30 15.0
01/0014 Stay green 2 21 10.5 2 32 16.0

Total 85 722 85 1,173

Mean 2.7 23.3 8.5 2.7 37.8 13.8

In vitro propagation via nodal cuttings has the potential to produce thousands of

plants and cuttings within a year. Using conventional micro-propagation technique, a

mature cassava plant will give between 10-30 normal-sized stem cuttings for planting

after one year (Smith et al., 1986). We observed that, a propagation system based on
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two-node cuttings (direct method) was a practical and effective method of
propagation in a developing country with limited technical expertise and facilities as
compared to the use of media. Propagation through sub-culturing (in-direct method)
was more than 3 times as expensive as through nodal cuttings in terms of
consumables (Table 2.2) and time, which could not be quantified in this study.
Directly sub-cultured plantlets required daily care to ensure that there was no
contamination. Although the cost of Kilner jars, which accounted for 47% of the total
expenditure, could be reduced by substituting them with jam jars, whose use resulted
in a lot of contamination because the caps were slightly loose, and they also could not

withstand autoclaving.

Nevertheless, propagation through nodal cuttings (direct method) reduced the time
frames for propagation and, by containing multiplication where phytosanitary
conditions are better, the development and dissemination of disease-free clones
should be enhanced. Also, because the system is green-house based, environmental
conditions can be controlled and, hence, the optimum time of planting may perhaps be

controlled. Plant establishment was successful upon transfer to soil.

2.4. Conclusions

Tissue culture techniques are indispensable as tools for biotechnology transfer and for
germplasm conservation. Micro-propagation through tissue culture (in-direct) in
standard conditions is the most widely used, although the frequent transfer makes the
technique costly and increases the risks of contamination. Besides, positive selection
during sub-culturing could be a source of morphological, cytological and genotypic
variation (Rout et al., 1998). Rapid micro-propagation through nodal cuttings (direct)
offers an alternative to enhanced rates of multiplication over more conventional
methods like the use of stem cuttings. Conventional methods are slow and as interest
in cassava research grows, it becomes increasingly more important to develop
techniques for the rapid multiplication and distribution of new cultivars, or disease-
free material of established cultivars. Breeding programmes would also benefit from
this method for rapidly multiplying new lines for field trials and evaluation, thereby

shortening the time required for the release of a new cultivar.
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Table 2.2. Cost comparison of direct and in-direct methods of micro-propagating
putative drought-tolerant and drought-susceptible cassava germplasm
accessions at Kenya Agricultural Research Institute (KARI), Nairobi,
Kenya. The costs are for 1000 plantlets each.

Item description Quantity Cost (US$)

Direct micro-propagation

Plastic bags (3" x 4") G100 10 pkts 30
Plastic bags (5" x 8") G100 10 pkts 36
Humidifier (9" x 13") G300 10 pkts 50
Vermiculite 5 sacks 50
Rubber bands 1000 12
Labels 1000 14
Polythene sheeting 10 m 43
Sterile soil 50 kilos 36
Trays 100 50
Casual labor 1 person 170
Total direct micro-propagation 491
In-direct micro-propagation
Jik and Teepol 1 vial 3
Cassava tissue culture media 25 litres 420
1000 ml beaker 1 50
Erlenmeyer flasks set 1 40
Surgical blades and forceps 1 set 70
pH meter buffer solution 1 set 40
Kilner jar containers 100 720
Distilled water 25 litres 10
Casual labor 1 person 170
Total in-direct micro-propagation 1,523
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(a) Plantlets removed from box and kept (b) Plantlets put in vermiculite before
in the growth room covering with humidity bags

(c) Trays and plastic bags acting as (d) Transplanted plants after the humidity
humidity chambers bags were completely removed

Figure 2.2. A step by step protocol for hardening and rapid micro-propagation of
cassava germplasm accessions through nodal cuttings. Photos a to j.
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Figure 2.2.  continued

(e) Plantlets freshly transplanted from (f) Established plants in pots before rapid
vermiculite to bigger pots with soil micro-propagation

(g) Nodal explants for rapid micro- (h) Nodal explants covered with
propagation humidity bags

(i) Established plantlets in the greenhouse (j) An established field at KARI, Kiboko

ready for transfer to the field Research Station in Makindu, Eastern
Kenya with hardened and rapidly micro-
propagated plants
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3. Agronomic and Morphological Evaluation of Contrasting Cassava
Germplasm Accessions under Drought Stress at Kiboko, Kenya

Abstract

Cassava is the most important root crop in the tropics and sub-tropics
especially in sub-Saharan Africa. It is a rustic crop and can produce under
conditions of erratic rainfall and impoverished soils, where few other crops
survive. To improve the understanding on agro-morphological attributes that
contribute to cassava drought tolerance, a study was conducted with 31
putative drought-tolerant and drought-susceptible African germplasm
accessions at Kiboko Research Station, eastern Kenya. The site was at the
Ministry of Agriculture, characterized by Acri-orthic Ferralsol soil.
Accessions were evaluated for eight agro-morphological traits at different
stress phases (120, 150, 180 and 210 days after planting),, and six yield
parameters at final harvest (210 days after planting) under both well-watered
and water-stressed conditions to determine their response to moisture stress.
Analysis of variance was carried out for all agronomic and morphological
traits and broad sense heritability estimated. ANOVA results showed
genotypic differences in all traits assessed except harvest index. Variation was
observed between treatments at different stress phases for almost all traits.
Genotype and genotype by environment interaction had different levels of
influence on trait expression. There was low to intermediate broad sense
heritabilities of most traits assessed except harvest index and dry matter
content which had almost no genetic effects. It is important that field trials be
conducted in several locations for at least two seasons. Considering the
relationship between traits, yield parameters were positively correlated with
morphological traits. For instance, genotypic ability for leaf retention, which
is an important trait related to cassava performance, was highly correlated
with root fresh weight, number of storage roots, above-ground fresh biomass

and dry matter content across genotypes.

Keywords: agro-morphological; cassava; drought; evaluation; Kenya; Manihot

esculenta; stress
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3.1. Introduction

Cassava (Manihot esculenta Crantz) is widely cultivated in Africa, Asia and Latin
America. It is grown from sea level up to altitudes of 2000 m asl. near the equator in a
wide range of environments. The crop is highly productive in favorable conditions,
but also produces reasonably well in marginal areas (Cock, 1985; El-Sharkawy and
Cock, 1987a). It ranks sixth among crops as a source of calories in the human diet
worldwide (Setter and Fregene, 2007). It is a major source of carbohydrates in the
tropics and neotropics, providing a cheap source of dietary starch for over 700 million
people in these regions. These areas have many subsistence farmers who lack the
resources to purchase and apply agro-chemicals on a regular basis and, hence, utilize
low-fertility and stress-prone soils (Taylor et al., 2004). An estimated 70 million
people in the tropics obtain more than 500 cal/day from cassava, whereas more than
500 million obtain more than 100 cal/day from this crop (Cock, 1985; Kawano, 2003;
Ojulong et al., 2008). The metabolizable energy of dry cassava (3500 to 4000 kcal g™

compares well to that of maize flour (Kawano, 2003).

Despite cassava being native to the Amazon region, Africa produces more than the
rest of the world combined. In Africa, the production has increased more than
threefold between 1980 and 2005 (Nhassico et al., 2008). This has been attributed to a
70% increase in the area of land cultivated as opposed to an increase in yield per
hectare. In addition, the population in African countries has more than doubled within
this time frame as compared to a 1.5 increase worldwide. Also, the adult HIV
prevalence has increased to 6.1% in Africa as compared to 1.0% worldwide
(UNAIDS, 2006), leaving a weakened labor force. These households under stress
from HIV/AIDS have switched from high-input to low-input farming systems that
involve cassava (FAO, 2008). Although there has been a 33% increase in total
production of cassava in Africa, the yield per hectare has declined (from 1.2% to

0.6%) over the last two decades (IITA, 1997; Hillocks, 2002).

In Africa, cassava yields are approximately 10 tons fresh roots per hectare. This is
half of those obtained in Asia and Latin America and 6 times less than the maximum

yields obtained in experimental fields in a 12 month growing season (Hershey, 1987).
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Nevertheless, since in Africa, cassava is grown with minimal or no external inputs,

these yields compare favourably with other basic energy crops.

Cassava production in Africa is constrained by a number of biotic and abiotic factors,
the former being pests and diseases. These include both indigenous pests and severe
exotic ones, introduced due to the crop’s intensified cultivation; the most devastating
ones in recent years are cassava mosaic disease (CMD) and cassava brown streak
disease (CBSD). Due to the crop’s vegetative nature of propagation, small-scale
farmers acquire planting materials from their neighbors, during travel, or as volunteer
plants left in fallow (Mkumbira et al., 2003). This leads to pest and disease
accumulation and dissemination. Main abiotic factors are problematic soils, freezing
and drought (Ludlow and Muchow, 1990). Among these, drought is the most
prevalent environmental factor limiting the crop’s productivity, growth and survival
(Saini and Westgate, 1999; Prasad and Staggenborg, 2008). Although precise crop
losses due to drought are difficult to estimate, complete crop failure has been reported

(Bohnert and Jensen, 1996).

Cassava is better adapted to water-limiting environments than other crops. This has
been shown by its ability to produce a yield even under adverse edaphic and
atmospheric conditions. It is commonly cultivated in areas receiving less than 800
mm of rainfall per year with a dry season of 4-6 months (Alves and Setter, 2004).
This attribute is of great importance as the demand for food and fresh water supplies
increases due to world population growth and climate change (Khush, 1999; Gleick,

2003).

Drought stress can occur at any stage during a crop’s life cycle. Tolerance to drought
is the phenotypic expression of a number of agronomic, morphological and
physiological characteristics that act together to bring about a concerted response to
drought in plants resulting in improved yield (crops), or survival and production of
offspring. Within cassava germplasm maintained in several generations, a wide
variation for tolerance to prolonged drought has been identified (CIAT and Embrapa,
1996; 1999; El-Sharkawy, 2007). In Africa, some cassava accessions have been
recognized as having tolerance to water stress, although there is limited, if any,
systematic data available relating to this germplasm. This is mainly due to the fact

that breeders are unsure of the traits to assess for cassava drought tolerance
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evaluation. This stems from a fundamental lack of knowledge concerning the

mechanisms that contribute to drought tolerance in cassava.

In cassava, major agro-morphological traits have frequently been studied with the aim
of understanding various aspects of its productivity. These include plant height,
harvest index, dry matter content, storage roots per plant, root characteristics and
weight, shoot weight and leaf retention (Lenis et al., 2006; Ssemakula and Dixon,
2007; Eke-Okoro et al., 2008; Subere et al., 2009). Nevertheless, no systematic
evaluation has been performed in Kenya for these traits in putative drought-tolerant
and drought-susceptible African cassava germplasm accessions. Therefore, there is a
need to evaluate African accessions to determine the agronomic and morphological
characteristics that make certain accessions drought-tolerant, as water increasingly
becomes a rare commodity and cassava cultivation continues to expand into non-

traditional areas such as the semi-arid tropics.

The present study was conducted within the framework of the project "Identifying the
physiological and genetic traits that make cassava one of the most drought-tolerant
crops" implemented since 2005 by the Brazilian Agricultural Research Corporation
(Embrapa); the International Center for Tropical Agriculture (CIAT); the International
Institute of Tropical Agriculture (IITA); Cornell University, USA and University of

Goettingen, Germany.

Main objectives of the present study were:

® to determine the most important agronomic and morphological attributes that

are related to drought tolerance in cassava;
¢ to identify drought-tolerant and drought-susceptible cassava germplasm from a

selection of African germplasm accessions.
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3.2. Materials and methods

3.2.1. Study site

Agronomic and morphological evaluations were conducted at the experimental field
of Kenya Agricultural Research Institute (KARI), Kiboko Research Station in
Makindu, Eastern Kenya. The site is located at latitude 2°15’ S, longitude 37° 75" E,
and an elevation of 975 m asl. The experimental field is characterized by a Acri-orthic
Ferralsol soil. Texturally, the soil belongs to sandy clay loam overlying sandy clay
(Table 3.1). This soil has good physical properties; primarily, an excellent structure,
which allowed water to enter the soil freely. Despite this, it has reduced weatherable
minerals and a low Cation Exchange Capacity (CEC). The low CEC reduces its
capacity to retain cation nutrients like potassium, calcium and magnesium. Ferralsol
are rich in sesquioxides, especially iron III oxide, which form insoluble precipitates

with the orthophosphate ions, leading to fixation of nutrients.

Table 3.1. Physical soil characteristics (%) of Kiboko Research Station, Makindu,

Kenya.
Depth (cm) Sand Silt Clay Depth (cm)  Sand Silt Clay
0-19 74 5 21 35-72 54 5 41
19-35 70 5 25 72-110 54 7 39

Source: Kenya Soil Survey, unpublished data

3.2.2. Climate

Kiboko is characterized by a bimodal type of rainfall with the main season occurring
from late February to mid May and the minor season from late October to mid
December. The total amount of rainfall per annum is about 530 mm, although in the
last 10 years, it has been very erratic. Relative humidity and temperature have been
fairly constant from 1998 to 2008. Mean maximum and minimum temperatures are
35.1°C and 14.3°C, respectively. During the experimental period, the mean annual
rainfall was 585 mm with mean temperature of 24.4°C and mean relative humidity of
79.0% (Figure 3.1).After very high rains in March, the dry season was one month

longer than in the long term mean.
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3.2.3. Germplasm and field planting

A total of 31 putative drought-tolerant and drought-susceptible cassava germplasm
accessions were considered in this study. Accessions consisted of breeding materials
from IITA. The materials were obtained from IITA as aseptically cultured in vitro
micro-propagules. The plantlets were hardened and multiplied (Table 2.1, Chapter 2).
They were presumed to be either drought-tolerant, drought-susceptible or disease-
resistant, although no detailed supportive data was available. Accessions were
classified into five groups according to available information (Table 3.2). The
experiment was laid out in a randomized block design with 2 treatments, well-watered
and water-stressed, and 4 replicates per treatment. Cassava stakes were hand-planted
in single row plots, consisting of 5 plants each, on April 7" 2008. The stakes were
planted at a spacing of 1 m between them in each row, and rows were also spaced 1 m
apart. An interblock distance of 7 m was planted with cassava guard plants to separate
the treatments. No herbicides, fertilizers or plant protection measures were applied.
The plantlets were watered twice a week, up to the first week of July (90 days after
planting, DAP) to ensure a homogeneous establishment. Then, irrigation was withheld
from the water-stressed treatment until plants were harvested in November (210
DAP). Plants in the well-watered blocks were irrigated to field capacity twice a week

throughout the growing period.
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Figure 3.1.

Elements of climate at Kiboko Research Station, Makindu, Kenya; (a)
mean monthly rainfall, temperature and relative humidity in 2008; (b)
mean monthly rainfall, temperature and relative humidity between
1998 and 2008; and (c¢) mean annual rainfall, temperature and relative
humidity between 1998 and 2008. (Source: Kiboko Research Station)

35



Chapter 3 Cassava agronomy and morphology

Table 3.2. Putative drought-tolerant and drought-susceptible African cassava
germplasm accessions utilized for field evaluation at Kiboko Research
Station, Makindu, Kenya (CBSD, Cassava Brown Streak Disease
resistance).
Accession  Accession Known Accession Accession Known
No ID Characteristic No. ID Characteristic
Gl TME 4 CBSD resistant Gl1 97/3200 Stay green
G2 196/1089A  CBSD resistant Gl12 94/0020 Stay green
G6 TME 117 CBSD resistant GI13 96/1087 Stay green
G24 96/1569 CBSD resistant Gl4 I191B/00462  Stay green
GI10 192/0057 Mild drought resistant ~ G16 97/2205 Stay green
GI19 TME 7 Mild drought resistant ~ G18 95/0289 Stay green
G5 92B/00061  Drought resistant G20 99/0204 Stay green
G26 192/0326 Drought resistant G21 01/0090 Stay green
G7 130572 Drought susceptible G22 191/1934 Stay green
GI15 195/0104 Drought susceptible G25 M98/0068 Stay green
G17 14(2)1425 Drought susceptible G27 96/0160 Stay green
G23 97/4779 Drought susceptible G28 96/0596 Stay green
G3 191/02312 Stay green G29 96/1708 Stay green
G4 95/0166 Stay green G30 191/02327 Stay green
G8 98/0581 Stay green G31 94/0026 Stay green
G9 01/0014 Stay green GI5 195/0104
3.2.4. Traits

A range of ordinal, interval and binomial data was recorded on different
morphological and agronomic traits at varying periods of treatment imposition (Table
3.3). The morphological measurements were carried out on the two middle plants per
plot for each accession after tagging since the traits were all non-destructive until
harvest time. Assessments were carried out at 90, 120, 150, 180 and 210 DAP. Traits
were selected based on the IPGRI and Portuguese-translated Embrapa descriptor list

(Morag Ferguson, personal communication).

Yield traits were all destructive and were recorded at harvest (210 DAP). Estimation
of dry matter content (DM) was based on the principle of a close relationship between
specific gravity with DM according to Kawano et al. (1987). To determine the
specific gravity, root samples of between 2- 3.5 kg were wiped free of soil and other
debris and weighed in air (Wa) using a weighing balance (Scout® Pro-balance
SP6000, d = 1 g; Ohaus Corporation, USA). The weight of the same roots fully
immersed in water was determined (Ww). A sisal basket with perforations, whose

own weight was negligible, was used to determine the two weights. This allowed soil
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and debris to fall through. A sturdy wire was used to support the basket firmly to the
weighing balance. The specific gravity and DM were computed from the two readings

as follows (Kawano et al., 1987).

Specific gravity (X) = Wa/(Wa-Ww) (Equation 3.1)

Percentage DM = 158.3X-142 (Equation 3.2)

To determine harvest index (HI), the first 3 plants, per plot, per accession were
uprooted. The roots and the above-ground biomass (stems, branches and leaves) were
weighed separately. HI was computed only on fresh weight basis as described by

Kawano (1990).

HI = fresh weight of roots / (fresh weight of roots + fresh weight of above-ground biomass)

(Equation 3.3)

3.2.5. Statistical analysis

Analysis of variance (ANOVA) was carried out for all agronomic and morphological

traits using PLABSTAT (Utz, 1997). A linear model:
Yijkl = u+ Gi + T_] + Pl +R (GT)I_]k + GITJ + GiPl + TjPl+ GiTjPI +RGTPijk1 (Equation 34)

was used, where, Yjjq was the observed phenotypic value of the i genotype, in the k™
replication, of the jth treatment and in the 1™ stress phase; u was the overall population
mean of the trait, G; is the genotype effect (i=1, 2, 3...31), Tjis the treatment effect
(=1, 2), Py is the stress phase effect (=1, 2, 3, 4), R (GT);j is the replication within
the treatment x genotype interaction effect (k=1, 2, 3, 4), G{T; is the treatment x
genotype effect, GiP; is the genotype x stress phase interaction effect, T;P; is the effect
associated with treatment and stress phase effect, G;T;P; is the genotype by treatment
by stress phase interaction effect and RGTP;j is the experimental error associated

with each observation.
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Broad sense heritability (h%) of traits was estimated based on the analysis of variance.

It was computed as:

h’= 662/ {662+ (Gart) + [0 5 (tD)]} (Equation 3.5)

where Gg 2 was the genotypic variance, Ogr 2 genotypic X treatment variance, G g 2

was the residual variance, and r and t the number of replicates and treatment

respectively Bernier et al. (2007).

Spearman’s rank coefficient of correlation was calculated to determine relationships

between traits.
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Table 3.3. Agronomic and morphological traits studied when evaluating putative
drought-tolerant and drought-susceptible cassava germplasm accessions
at Kiboko Research Station, Makindu, Kenya. All agro-morphological
traits were assessed five-fold, at 90, 120, 150, 180 and 210 days after

planting (DAP).
Trait Abbreviation Unit Remark/state
Agro-morphological traits
Number of primary stems NPS No. Side branches were not recorded
Number of branching levels NBL No. Side branches were not recorded
Height of primary stem HPS cm  Recorded to one decimal place
If many, highest was measured
Height of secondary stem HSS cm  Recorded to one decimal place
If many, one was measured
Leaf retention LR % Recorded as either 100, 75, 50, 25
based on visual estimation
Height of leafless stem HLS cm  Measured from ground level to where
canopy started. In presence of branches,
measured vertically to first leaf
Length of expanded leaf LL cm  Central leaf lobe was measured from
point of interception to end of lobe
Width of expanded leaf LW cm  Widest part of one lobe measured
Harvest traits
Above-ground biomass AGB kg  Determined from 3 plants combined
Storage root fresh weight SRFW kg Determined from 3 plants combined
Harvest index Relation of SRFW to AGB
determined from 3 plants combined
Stem diameter SD cm  Measured 10 cm from the ground
Number of storage roots NSR No. Counted from 3 plants at harvest
Dry matter content DM % Determined by root specific gravity
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3.3. Results

From the agronomic and morphological evaluation of cassava germplasm accessions
conducted at Kiboko, Kenya, there were significant differences between the two water
stress treatments for most of the traits assessed. Only number of primary stems and

harvest index were not affected by moisture stress (Table 3.4, 3.6).

Table 3.4. Responses to water stress of 31 cassava accessions at harvest (210 days
after planting, DAP) evaluated at Kiboko Research Station, Makindu,
Kenya (h? = heritability).

Trait Treatments
Water-stressed Well-watered h?
Agro-morphological traits Mean Mean
Number of primary stems 1.46 1.44 0.45
Number of branching levels 1.02 1.24 0.58
Height of primary stem 55.69 68.42 0.56
Height of secondary stem 17.22 28.79 0.64
Leaf retention 51.69 65.24 0.62
Height of leafless stem 21.22 22.38 0.32
Length of expanded leaf 9.33 10.31 0.38
Width of expanded leaf 2.90 3.14 0.53
Harvest traits
Above-ground biomass 1.17 2.64 0.32
Storage root fresh weight 1.07 2.97 0.50
Harvest Index 0.46 0.53 -0.06
Stem diameter 2.88 3.43 0.42
Number of storage roots 4.92 10.33 0.54
Dry matter content 31.20 34.36 0.02

3.3.1. Plant height

Before imposing the stress, mean accession height of primary and secondary stem did
not vary in relation to treatments. Significant differences were observed after one
month of treatment imposition (Figure 3.2). At harvest, the mean height of plants in
the well-watered treatment was 143.5 cm, whereas that of the water-stressed treatment
was 98.7 cm (Table 3.5). In relation to accessions, significant differences were also
observed after one month of stress imposition and throughout the crop cycle. Among

the 31 accessions evaluated in the two treatments, G4, G10, G13, G24 and G28 had
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outstanding height of more than 145 cm under water-stressed conditions. The same
genotypes attained a mean height of >145 cm under well-watered conditions except
G4 with 130 cm. At harvest (210 DAP), heights of accessions under well-watered
conditions ranged from 85.4 to 210.8 cm, whereas those under water-stressed

conditions were between 10.7 and 160.3 cm (Table 3.5).

70
120 60 -
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g 80 1 T T ?40 1 T [
ED 60 - %30 T
= 40 20
20 A 10 4
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90 120 150 180 210 90 120 150 180 210
a Days after planting b Days after planting

Figure 3.2. Mean plant heights of 31 cassava accessions at different stress phases
(early, 90-120; mid season, 120-180; terminal 180-210 days after
planting, DAP) evaluated at Kiboko Research Station, Makindu,
Kenya; (a) primary (HPS) and (b) secondary (HSS) stems (H well-
watered; @ water-stressed; vertical bars =+s.e).

3.3.2. Leaf retention

The ANOVA of estimated leaf retention revealed significant differences among
accession means in well-watered or water-stressed treatments after 1 month of stress
imposition (Table 3.4, Figure 3.3). At 150 DAP, when the plants were experiencing
mid-season stress, two thirds of the stems of most water-stressed accessions had lost
their leaves. At 180 DAP, accessions in both treatments started loosing their leaves at
a higher rate (Figure 3.3). Among the 31 accessions evaluated, G11, G13, G20, G22
and G26 had less than 2.5% difference in leaf retention under well-watered or water-
stressed conditions (Figure 3.4). Accession Gl1 had even slightly higher leaf

retention in the water-stressed treatment than in the well-watered environment.
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Figure 3.3.  Estimated mean percentage leaf retention of 31 cassava accessions at
different stress phases (early, 90-120; mid season, 120-180; terminal
180-210 days after planting, DAP) evaluated at Kiboko Research
Station, Makindu, Kenya (Il well-watered; water-stressed; vertical
bars =#s.e.).
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Figure 3.4.  Estimated percentage leaf retention of 31 cassava accessions at harvest,

210 days after planting, evaluated at Kiboko Research Station,
Makindu, Kenya (Il well-watered; @ water-stressed), only accessions
with more than 55% leaf retention in water-stressed treatment were
labeled.
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Table 3.5.

Mean plant height of 31 cassava germplasm accessions evaluated at
Kiboko Research Station, Makindu, Kenya during different stress
phases (WS, water-stressed; WW, well-watered; early stress, 90-120;
mid season, 120-180; terminal, 150-210 days after planting, DAP).

Accession
No.

WS Ww WS Ww WS WwW WS Ww WS WwW

90 DAP 120 DAP 150 DAP 180 DAP 210 DAP

Gl

G2

G6

G24
G10
G19
G5

G26
G15
G7

G17
G23
Gl1
Gl12
G13
Gl4
Gl6
G18
G20
G21
G22
G25
G27
G28
G29
G30
G31
G3

G4

G8

G9

27.0 45.9 47.8 68.8 58.6 92.4 75.1 119.2  79.6 145.2
23.6 31.0 40.1 55.8 43.9 69.7 47.3 77.6 51.3 85.4
38.1 39.3 52.3 69.0 60.9 85.2 80.3 105.7  90.8 122.2
46.1 62.8 89.3 98.0 108.5 121.5 120.6 15477 1505 173.6
44.7 49.3 81.0 87.0 108.5 119.6 144.1 1551 1585 1784
37.3 50.0 59.9 76.9 62.8 96.7 73.4 1099 784 125.6
25.9 39.2 43.8 69.8 53.2 86.2 59.6 110.1 66.7 123.3
40.4 37.7 57.6 61.3 73.7 92.0 92.5 1164 109.7  150.5
39.0 32.8 9.3 82.0 9.7 98.0 10.0 132.4 10.7 1471
29.3 30.4 42.2 47.8 46.6 61.1 52.9 90.3 58.7 88.3
27.3 30.8 37.3 53.3 49.1 83.8 64.1 116.0 733 131.1
29.0 65.7 34.7 114.3 46.3 160.1 60.4 174.5 65.6 197.3
44.4 374 61.3 55.8 88.6 80.1 98.2 99.1 1029  110.7
35.0 54.1 51.8 96.8 68.1 133.0 942 168.1 110.2  188.2
47.4 79.5 103.5 1095 1244 131.0 149.1 1577 1603  170.9
34.0 333 48.8 73.3 58.5 87.4 77.8 111.6 85.7 138.7
42.8 30.4 69.0 66.0 74.2 98.0 85.7 122.1 93.4 134.5
34.0 31.6 55.5 68.5 70.9 98.8 81.3 129.8 88.2 139.1
43.7 46.4 62.3 62.0 71.3 85.0 95.2 102.3 1164 119.0
29.9 335 40.4 49.5 46.6 72.7 54.4 87.0 56.5 106.0
39.5 46.1 64.6 68.3 77.9 93.1 93.0 1145 108.7  130.7
52.1 40.2 73.3 70.8 82.5 92.3 91.2 120.1 99.5 135.5
16.0 36.7 31.3 53.0 333 70.1 42.1 86.3 45.2 103.7
53.1 61.3 92.9 86.3 110.8 1203 1319 147.8 1459 1639
36.8 30.9 49.3 50.0 69.0 84.5 91.4 125.5 97.5 172.0
49.8 37.2 82.0 86.8 85.4 105.0 109.0 151.0 1155 160.9
54.3 60.7 76.7 131.8 104.7 1559 1339 1903 1429 2108
32.1 29.3 42.3 54.6 56.2 70.8 75.6 102.7 85.1 121.2
47.5 34.2 93.0 64.0 104.5 86.5 1283 1174 1488 130.8
47.8 66.9 76.8 86.8 98.7 124.1 1203 1447 1243 1704
52.2 43.5 71.0 86.3 103.1 1133 1325 156.5 1404 1754

Mean
% CV
SE

38.7 43.5 59.4 74.3 72.6 99.0 89.2 1257 98.7 143.5
373 45.6 47.0 39.7 46.8 355 44.1 31.7 43.9 30.0
2.6 3.6 5.0 5.3 6.1 6.3 7.1 7.1 7.8 7.7
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Table 3.6. Analysis of variance of 31 cassava accessions evaluated at Kiboko
Research Station, Makindu, Kenya (** significant at P<0.01; *
significant at P<0.05; T, treatment; A, accession; D, days after planting,
TxA, treatment by accession; TxD, treatment by days after planting,
AxD, accession by days after planting; ND, not determined).

Trait Variance components

T A D TxA TxD AxD
Agro-morphological traits
Number of primary stems 1.00 21.07** 10.73*%*  8.40*%*  4.00 120.00
Number of branching levels ~ 56.07** 11.49%*%  587.95%* 3.45%*  4.00 2.36%*
Height of primary stem 234.84**  29.11**% 325.67** 8.54**  21.89*%* 120.00
Height of secondary stem 265.94%*  19.68** 383.89%* 4.65%*  17.76%* 1.57%*
Leaf retention 311.26%*  20.34** 83.92**  5.16%* 18.18** 120.00
Height of leafless stem 5.31% 9.34%%  253.87*%* 5.03%*%  5.10%*  1.34%
Length of expanded leaf 78.24%* 9.64%%  217.773%* 4.63%*  35.08%*% 1.86%*
Width of expanded leaf 40.52%* 9.10%*  307.32%* 3.17%*%  2221%*% 1.47%%*
Harvest traits
Above-ground biomass 3477.12%% 19.65%* ND 10.43** ND ND
Storage root fresh weight 3997.47%*% 24.97*%* ND 8.64**  ND ND
Harvest Index 0.00 0.00 ND 0.00 ND ND
Stem diameter 333.63%*  19.00%* ND 7.97%%  ND ND
Number of storage roots 1855.69%* 23.82%* ND 7.51%*%  ND ND
Dry matter content 387.93*%*  16.87** ND 16.20%* ND ND

3.3.3. Number of branching levels

Significant differences between the two treatments were observed after 150 DAP
(Table 3.4, 3.6). The well-watered plants had a slightly higher number of branching
levels after one month of stress imposition. After three months of stress exposure,
accessions in both treatments reached a peak value (Figure 3.5). Results also showed

genotypic differences at various stress phases (Table 3.6).

3.3.4. Leaf length and width

The two treatments also caused significant differences for leaf size traits (Table 3.4).
It was interesting to note that water-stressed plants had slightly more expanded leaves
after one month of stress imposition. After two months of stress exposure, the water-
stressed accessions had significantly smaller leaves than the well-watered plants. This

showed that mid-season stress had implications on leaf expansion. Results also
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showed genotypic differences at different stress phases. It was noted that at 180 DAP,

there was a sharp decrease in the leaf length and width in both treatments in all

accessions (Figure 3.6).
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Figure 3.5. Mean number of branching levels of 31 cassava accessions at different
stress phases (early, 90-120; mid season, 120-180; terminal 180-210
days after planting DAP) evaluated at Kiboko Research Station,
Makindu, Kenya (Il well-watered; @ water-stressed).
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Figure 3.6. Mean leaf size of 31 cassava accessions at different stress phases

(early, 90-120; mid season, 120-180; terminal 180-210 days after
planting DAP) evaluated at Kiboko Research Station, Makindu,
Kenya; (a) leaf length and (b) width; (H well-watered,; water-
stressed).
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3.3.5. Harvest traits

In general, there were highly significant differences between the treatments for all
yield components except harvest index (HI). All observed yield parameters were
higher in well-watered than in the water-stressed treatment (Table 3.4). The largest
differences between the two treatments were found in storage roots fresh weight
(Figure 3.7). Differences among accessions were apparent. Accessions G26, G11, G8
and G31 produced the highest storage root FW of 36.7, 33.3, 23.3 and 21.7 kg/m?,
respectively, under water-stressed conditions. These accessions had outstanding
above-ground biomass and number of roots (Table 3.7, Figure 3.7). It was interesting
to note that two of the best genotypes for yield under stress (G11 and G26) were small
dwarfed above-ground. They had good yields due to their ability to retain a high HI
under stress. This indicates that above-ground appearance alone cannot be used as a
guide to the best genotypes. G15 which had been classified as drought-susceptible
produced the lowest FW root yield.

3.3.6. Relationship between traits

The degree of relationship between traits assessed by Spearman’s rank correlation
coefficient varied considerably. The highly significant correlations between leaf
retention and all yield traits except harvest index showed that leaf retention was a
good character to be assessed. The number of storage roots was highly correlated with
above-ground biomass FW and storage roots FW (r=0.71** and 0.61** respectively).
Dry matter content was highly correlated with number of storage roots and harvest
index (r=0.61** and 0.44*, respectively). Also, storage roots FW was correlated with
HI at r=0.63** (Table 3.8). In figure 3.7a, there appears to be some genotype by
environment effects for HI in that some genotypes hold their HI high even under
stress, while in others it gets drastically diminished. Accessions that showed the stay
green characteristic were also tall as reflected in high correlation coefficients of the
height of primary and secondary stems with leaf retention (r=0.54** and 0.48*%*,
respectively) (Table 3.8). It was interesting to note that correlation coefficient for
individual treatments varied in their level of significance. For example, the correlation
coefficient for storage roots FW was significant at P < 0.05 in the water-stress
treatment whereas in the well-watered conditions, the differences were not significant

(Table 3.9).
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3.3.7. Heritability

The ANOVA results of this study revealed intermediate broad sense heritability
estimates for most agro-morphological and harvest traits evaluated, however, dry

matter content and harvest index showed very weak genotypic effect (Table 3.4).
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Figure 3.7. Mean yield parameters of 31 cassava accessions evaluated at Kiboko
Research Station, Makindu, Kenya; (a) harvest index; (b) storage roots
fresh weight; (c) percentage dry matter content; and (d) above-ground
fresh biomass at harvest (Il well-watered; water-stressed); only
accessions outstanding in water stressed environment for all four traits
were labeled.
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Table 3.7. Means of yield traits at harvest of 31 cassava germplasm accessions
evaluated at Kiboko Research Station, Makindu, Kenya under well-
watered (WW) and water-stressed (WS) treatments.

Above-ground
Storage root biomass FW Dry matter Number of
FW (kg/mz) (kg/mz) Harvest Index content (%)  storage roots

Accession WS WW WS WW WS WW WS WW WS WW

Gl 133 383 100 367 057 051 344 349 50 103
G2 167 350 167 275 050 056 297 325 50 93
G6 100 400 142 233 041 063 317 345 35 88
G24 153 350 125 317 055 053 293 347 43 88
G10 142 383 142 433 050 047 346 350 48 98
G19 67 383 142 383 032 050 332 326 25 128
G5 11.7 483 167 350 041 058 317 357 48 108
G26 367 467 300 417 055 053 327 332 98 135
Gl15 33 350 83 333 029 051 160 357 00 65
G7 92 367 145 300 039 055 304 336 25 90
G17 1.7 383 133 333 047 053 284 331 43 98
G23 1.7 283 150 317 044 047 296 345 53 128
Gll 333 500 283 387 054 056 339 360 83 85
GI12 133 467 142 483 048 049 318 368 53 138
Gl13 133 333 175 350 043 049 296 334 48 103
Gl4 133 317 158 400 046 044 315 342 58 115
G16 67 403 133 292 033 058 295 343 28 7.0
Gl18 125 467 133 367 048 056 308 341 48 113
G20 100 417 150 300 040 058 329 352 45 105
G21 133 433 125 333 052 057 339 326 50 88
G22 150 333 133 258 053 056 306 335 55 103
G25 11.7 358 100 367 054 049 291 330 30 93
G27 167 433 158 342 051 056 310 348 45 103
G28 133 433 158 350 046 055 313 341 53 140
G29 150 367 167 317 047 054 294 350 58 90
G30 11.7 400 108 367 052 052 330 343 35 75
G31 217 533 175 433 055 055 359 354 90 133
G3 133 283 142 333 048 046 329 341 58 118
G4 100 367 175 350 036 051 317 350 45 90
G8 233 483 200 450 054 052 359  36.1 80 105
G9 133 383 208 383 039 050 325 345 53 123
Mean 142 397 155 352 046 053 313 344 49 103
% CV 468 154 288 156 1720 1130 109 3.1 388 188
SE 120 1.10 080 099 001 001 061 019 03 03
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3.4. Discussion

During the trial period, temperature and relative humidity at Kiboko were within the
optimum requirements for cassava and were relatively uniform (Figure 3.1). This
indicates that the performance of accessions was little affected by variation in these
two parameters. There was hardly any rainfall during treatment imposition, so that the
two treatments differed in the amount of artificial water supplied. Water at field
capacity probably contributed to higher plant heights in the well-watered treatment.
Onwueme (1978) and IITA (1990) showned that cassava height is affected by
environmental conditions. Results also indicate that genotypes responded differently
to different stress conditions (e.g., Figures 3.4 and 3.7). This may be due to genotype

by environment interaction in addition to genetic variation.

Aina et al. (2007) demonstrated that germplasm introduction provides a unique source
of variability to broaden the genetic base for drought tolerance in cassava. Selecting
drought-tolerant cassava plants that have the ability to grow tall is advantageous since
cassava is a vegetatively propagated crop. Cassava multiplication in farmers’ fields is
commonly through stem cuttings. The number of nodes per stake is of prime
importance since these are regions for shoot development. Selection should be geared
towards drought-tolerant tall plants with close inter-node spacing since more cuttings

can be obtained and, hence, a higher multiplication rate.

The International Plant Genetic Resources Institute (IBPGR, 1982, cited in Gulick et
al., 1983), while defining traits useful for cassava characterization, identified the
branching habit as a stable morphological trait. This trait has been shown to be of
adaptive, agronomic and market importance (Gulick et al., 1983). Cassava forms one
or more axillary buds on the stem upon sprouting. These buds develop and
sequentially form nodal units consisting of a node, a bud, a palmate leaf blade
subtended by a long petiole, and an inter-node whose length and mass depend on
genotype, age of the plant and environment (El-Sharkawy, 2003). The shoot shows
apical dominance and indeterminate growth habit. This leads to formation of new
leaves sequentially, in a spiral manner on the main stem depending on genotype and
environmental conditions. Once apical dominance ceases and the apex becomes

reproductive, 1-6 axillary buds develop and produce a branching characteristic in
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cassava. In this study, most accessions in the water-stressed treatment had
significantly reduced number of branching levels (Table 3.4, 3.6). Well-watered
plants had higher branching levels, which resulted from increased numbers of axillary
buds. Genotypic variation observed agrees with the findings by CIAT (1979) and
Cock (1987), who found differences in timing and number of branching levels in

cassava accessions.

Leaf retention/stay green trait has been identified as one of the most desirable
characteristics in achieving high yields in crops (Borrell et al., 2000; Lenis et al.,
20006). This is a drought tolerance mechanism that confers forbearance to plants under
severe soil moisture stress. Cereals like maize, sorghum, millet, wheat and rice have
vegetative and reproductive stages (phasic) of crop development, which are separated
in time. The vegetative phase takes about 70 to 75% of the growth cycle during when
the leaves, stems and inflorescences develop. This is followed by a shorter
reproductive stage of between 25 to 30% of the growth cycle during which grain
filling with carbohydrate occurs (El-Sharkawy and Cock, 1987a). In this pattern of
crop growth and development, no competition exists for partitioning the
photosynthetic assimilates between the source (leaves) and sink (grain) development.
Unlike these cereal crops, cassava experiences simultaneous growth and development
of the economic plant part (roots) and the photosynthetic sites (leaves). Lenis et al.
(2006) reported that cassava accessions with greater leaf longevity can produce more
total fresh biomass and a 33% higher root DM compared to drought-susceptible
cultivars. Accessions with this characteristic are potentially drought-tolerant, which is

an important trait in the complex sub-Saharan drought-hit regions.

In this study, the leaf retention in some accessions was almost equal in both the well-
watered and water-stressed treatment (Figure 3.4). This suggests that this condition
may be an inherent physiological characteristic of individual accessions and not only
a response to stress. The genotypic ability for leaf retention was positively correlated
with storage root FW and above-ground biomass (Table 3.8). Thus it may be
advantageous to breed and select for longer leaf life and, hence, better leaf retention

when developing varieties adapted to dry areas.

After 180 DAP, however, a significant decrease in leaf retention was observed,

irrespective of the water regime. These results concur with the findings by El-
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Sharkawy and Cadavid (2002) who observed a decrease in leaf formation after 6
months of cassava growth. This is mainly due to the dynamics of cassava
development that control and favor partitioning of photosynthetic assimilates after 6
months towards the most important economic plant part (roots) as compared to leaf
formation. In addition after 6 months, lower canopy leaves senescence and abscise
due to aging and are, therefore, shed at accelerating rates (Pellet and El-Sharkawy,
2001). Despite our observations on leaf retention, there is need to refine and
standardize the technique of quantifying leaf retention since the method used in this

study was based on visual observation, which can be biased.

Water deficit is one of the most important environmental factors affecting leaf area
development in cassava. Although the crop experiences simultaneous growth and
development of the source and sink (El-Sharkawy and Cock, 1987a), El-Sharkawy
(2003) has reported that the formation of leaves in cassava has preference for
available assimilates over storage roots in the first 3 months of growth, after which
more competition exists for partitioning the photosynthetic assimilates between the
source and sink. In this study, results revealed a decline in leaf length and width
between 90 to 120 DAP in both water regimes may-be due to the increased

competition among different plant tissues.

Connor and Cock (1981) observed that in regions with high temperatures, cassava
leaves are fully expanded in two weeks and the size increases with plant age up to
about four months and then declines. During the mid season stress, the water-stressed
plants had significant reduction in leaf length and width. This is in agreement with
Porto (1983) who found that leaves produced under prolonged water stress are small,
maybe to conserve carbohydrate reserves (El-Sharkawy and Cadavid, 2002). The
observation that leaf length and width in well-watered plants reached a peak value at
180 DAP after which there was a sharp decrease in all accessions, agrees with
findings by Pellet and El-Sharkawy (2001) on fertilized and unfertilized cassava,

which is mainly due to the intrinsic dynamics of crop development.

Research has shown that cassava can be highly productive under favorable
environments. In the absence of production constraints, it compares well with major
staple food crops in the tropics, and it has been ranked as the second greatest energy

producer after sugarcane (El-Sharkawy, 1993). Despite this, yield stability, which is
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more important from the farmer’s point of view, requires genotypes that also produce
well under prolonged stress conditions. This is even more important as water

continues to become a rare commodity especially in the semi- arid tropics.

Cock et al. (1979), using a computer-based simulation model, reported that an ideal
cassava plant should produce about 90 kg/m2 of fresh roots under optimal growth
conditions. In this study, the maximum root yield observed under well-watered
conditions was 53.3 kg/m”, which was high considering that Kiboko is characterized
by an Acri-orthic Ferralsol soil. Studies by El-Sharkawy (1993) showed that cassava
yields of 8-16 t ha' of fresh roots are normally attained with local, traditional
varieties on marginal soils without application of agrochemicals. Of the 31 accessions
evaluated in this study, 4 showed outstanding performance under water-stressed
conditions in that they attained fresh root yields of >21 kg/m? suggesting that they
maybe drought-tolerant (Table 3.7). Also Bakayoko et al. (2009) observed

outstanding performance in one of these 4 accessions (G11).

Harvest index, which is the ability to convert biomass to yield in crops, is a valuable
trait in cassava breeding in that, selections based on this trait are stable across
evaluation stages. El-Sharkawy and Cadavid (2002) observed that under prolonged
water stress, cassava produces less total biomass but an increased harvest index,
implying that nutrient use efficiency for root production is greater in stressful
environments than in favorable ones. Although there were no significant differences
observed between the two water regimes for this parameter, HI was higher for most
genotypes under well-watered conditions. There were some exceptional genotypes
that had high HI under stress (Figure 3.7a). Studies by Okogbenin et al. (2003), on the
adaptation responses of cassava to drought stress in Nigeria, found considerable
variation for HI amongst varieties and no significant differences in the mean HI
amongst the water table sections. This indicates that the primary effect of the HI
differences amongst the varieties may-be attributed to genetic effects and that,

perhaps, it is an important trait to phenotype under limiting water conditions.

Dry matter content is a major component of cassava yield. Cassava roots have mean
DM of about 35 percent, which is high compared to most roots and tubers. Starch and
sugar comprise about 90 percent of this DM. Westby (2002) has shown that DM in

cassava can vary from 20 to 45 percent depending on variety, growing conditions
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(especially temperature and soil moisture), and health of the plant. In this study, soil
moisture seems to have significantly influenced root DM in that well-watered plants
had a slightly higher percentage than those in water stressed conditions (Figure 3.7c¢).

This might also be due to foliage growth and photosynthate partitioning.

Determination of phenotypic variation resulting from genetic effects provides useful
information to plant breeders to formulate effective breeding strategies. Low to high
broad sense heritabilities for most cassava traits have been reported, e.g. 80-92% for
DM; 55% for leaf retention (Kawano et al., 1987; Lenis et al., 2006), 91% for plant
height, 83% for branching levels, 80% for leaf length, 90% for leaf width and 27% for
length of stems. 87% for harvest index, 71% for fresh shoot weight, 50% for fresh
root yield and 36%for number of storage roots (Okogbenin and Fregene, 2003).
Although intermediate heritability values were observed in this experiment for most
traits, their use is for comparison of traits in this study and not between our data and
others given that this was a single year, single location study. In addition, there is
need to do a multi-location study so as to determine the interaction between the

accessions and environment.

3.5. Conclusion

In general, there were differences between treatments and accessions for several of
the traits assessed. The relationship between most traits was strong. The results from
this study suggest that the leaf retention trait combined with drought tolerance
mechanisms commonly found in cassava, is advantageous in terms of total biomass
and yield production under prolonged drought conditions. Length and width of leaves,
branching level, leaf retention and harvest parameters could be important traits to

phenotype African cassava germplasm under favorable and water stress conditions.

Four accessions G26, G11, G8 and G31 were more tolerant than the rest of the
genotypes evaluated, calling for further research and their involvement in agricultural
experimentation under drought-prone conditions. This information on phenotypic
plasticity although, it is environment-dependent, will be important in breeding for

climatic uncertainty and extreme environments.
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4. Metabolites Analysis in African Cassava Germplasm Accessions
Evaluated at Kiboko Research Station, Makindu, Kenya

Abstract
Thirty one African cassava germplasm accessions, consisting of diverse
breeding materials from the International Institute of Tropical Agriculture
(IITA) were analyzed for 7 metabolic traits under well-watered and water-
stressed conditions, each at 3 time points (120, 150 and 180 days after
planting), and in different tissues. The objective of the study was to identify
secondary traits that could be used for phenotyping breeding materials for
drought tolerance and to determine the concentrations of metabolites in
different tissues. The ANOVA results showed that for all the traits, except
protein and amylose contents, the population had genotypic differences as
indicated by the highly significant probabilities. Variation was also observed
between treatments. However, no significant differences were observed at
different stress phases. The abscisic acid (ABA), sucrose and glucose contents
decreased under water-stress, which, on the other hand, did not lead to a
marked change in fructose concentration. The decrease in ABA was not
consistent with reports on other cassava accessions and other species,
probably, because of differences in stress intensity. Starch content per g dry
weight was significantly higher in water-stressed accessions due to increased
synthesis. The relationship between traits varied considerably. From the
results of this study, the relative contribution of the traits to drought-tolerance
cannot be determined. Further work will be required to identify and quantify
the concentrations of the traits in relation to water-use efficiency of these

varieties under limited available soil water.

Keywords: accession; cassava; drought; evaluation; genetic diversity; Kenya;

Manihot esculenta; metabolic
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4.1. Introduction

Cassava (Manihot esculenta Crantz) is a major staple food for nearly a billion people
in 105 developing countries, where the roots provide a third of their daily calories
(Onwueme, 2002; FAO, 2008). Since 1970, world cassava production has risen by
2.2% per annum (FAO, 1997). In Africa, the increase has been by 2.9%, which is
roughly the same as the population growth rate (Westby, 2002). This growth, much of
which occurred after the severe drought of 1982-83, has been attributed to the
expansion in area under cultivation rather than to rising productivity (Hillocks et al.,
2002; Nweke et al., 2002). Seventy percent of the global production (which is
estimated to be over 128 million metric tons of dry roots annually) is used for human
consumption either directly after cooking or in processed forms; the remaining 30% is
used for animal feed and other industrial products (El-Sharkawy, 2003; FAO, 2008).
Cassava is the cheapest known source of starch, and is used in more than 300

industrial products including ethanol as a possible source for biofuel (FAO, 2008).

Cassava is usually grown in monoculture; although, mixed cropping with tree crops,
annual legumes and cereals is also common (Leihner, 1983; El-Sharkawy and Cock,
1987a). It is widely grown in tropical Africa, Asia and Latin America, mainly by
resource-limited small-scale farmers over a range of environments. This is because of
its remarkable tolerance to abiotic stresses and adverse environments, as compared to
the capital-intensive and input-demanding Green Revolution cereal crops such as
wheat, rice and maize (El-Sharkawy, 2003). For instance, unlike most other staple
crops, cassava almost never fails due to drought (Burrell, 2003; Ceballos et al., 2004).
This is perhaps due to its indeterminate growth habit, which may give it the ability to
resume growth after an extended drought, or continue to develop a deeper fine root
system to access water out of reach by other crops (seed/cereal), which are
determinate. In addition, it is replacing yam in the humid zone, maize in the non-
humid environment and other food crops in the sub-humid zone (IITA, 1997).
Because of its undemanding nature in terms of soil fertility and inputs, together with
its versatility in production and processing systems, it is an appropriate target for
meeting goals of food security, equity, poverty alleviation, and environmental

protection in the escalating African population.
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Starch is the key storage reserve of carbohydrates in plants. Cassava has a remarkable
sink capacity to store food reserves. It ranks very high among crops that convert the
greatest amount of solar energy into soluble carbohydrates per unit ground area
(Raheem, 2006; Adeniyi et al., 2007). Amongst the starchy staples, cassava amasses
carbohydrate, which is about 40% higher than rice and 25% more than maize
(Nyerhovwo, 2004; Lacerda et al., 2008). This makes cassava the cheapest source of

calories for both human nutrition and as animal feed.

Drought is the most common environmental factor limiting crop productivity, growth
and survival in the agricultural rain-fed areas (Bohnert and Jensen, 1996; Saxena et
al., 2002). It affects more than 43% of the world population engaged in agriculture
since it poses a threat to food security and sustainability of production systems to the
people living in drought-prone areas (Saxena et al., 2002). It will continue to be a
serious problem in agriculture because water is becoming scarcer due to increased use
by the escalating population, declining and erratic precipitation, and less potable
water availability. In response to drought, plants have developed various
physiological, biochemical and genetic systems to tolerate, avoid or escape drought
stress. These coping systems determine the survivability and persistence of plants in
water-limited environments (Wu et al., 2006). Cassava is tolerant to drought and

many other stresses.

It is often referred to as a “scavenger crop” because of its ability to efficiently absorb
nutrients from low-nutrient soils (Howeler, 2002). In addition, it grows well on soils
that are acidic and in drought conditions. Traits that contribute to cassava’s
productivity in unfavorable environments include a response of the plant hormone
abscisic acid (ABA) and accumulation and utilization of non-structural carbohydrates.
The phytohormone is involved in root to shoot signaling, particularly, through
regulation of stomata behavior, leaf growth and senescence, seed development,
germination, defense against pathogens, and synthesis of storage proteins and lipids
(Davies, 2004; Schwartz and Zeevaart, 2004; Wu et al., 2006). Sugars, the products of
photosynthesis, are known to play a role in controlling a number of vital processes,
including development, photosynthesis, germination and growth (Humby and
Durnford, 2006). ABA is involved in plant response to drought stress by serving as a

signal molecule and a key mediator for regulating specific pathways (Wu et al., 2006).
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Cassava responds to water deficit with a stress avoidance syndrome, although, there is
a wide variation within the cassava germplasm for response to prolonged drought (El-
Sharkawy and Cock, 1987a; Setter and Fregene, 2007). This involves the highly
sensitive stomatal closure, leaf drooping, leaf loss and halt of leaf growth, all of which
influence the amount and concentration of the phytohormone ABA and sugars (Setter
and Fregene, 2007). On the other hand, studies on such changes of the phytohormone
and sugars, for detecting differences among African cassava germplasm accessions

have not yet been done.

The present study was conducted within the framework of the project “Identifying the
physiological and genetic traits that make cassava one of the most drought-tolerant
crops” implemented since 2005 by the Brazilian Agricultural Research Corporation,
(Embrapa); the International Center for Tropical Agriculture, (CIAT); the
International Institute of Tropical Agriculture (IITA); Cornell University, USA, and

the University of Goettingen, Germany.

Main objectives of the present study was to identify secondary traits that could be
used for phenotyping breeding materials for drought tolerance and to determine the

concentrations of metabolites in different tissues.
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4.2. Materials and methods

4.2.1. Plant materials and sample preparation

Thirty one putative drought-tolerant and drought-susceptible African cassava
germplasm accessions were considered in this study. These accessions, consisting of
breeding materials from IITA were presumed to be either drought-tolerant or drought-
susceptible. They represent a range of tolerances, including intermediate behavior,
although, there is no firm knowledge available of the tolerance for each genotype
(Table 3.2). The plants were grown under well-watered and water-stressed conditions
at the experimental field of Kenya Agricultural Research Institute (KARI), Kiboko
Research Station in Makindu, Eastern Kenya (Chapter 3, 3.2.1). For sugars, starch,
ABA and protein contents, leaf disks, petioles and stem discs were sampled at 120,
150 and 180 days after planting (DAP) and immersed in 1 ml ice-cold 80% methanol.
Three leaf disks, 0.3 cm in diameter each, were sampled from the mid fully expanded
leaves using a leaf punch. For the petioles, approximately three 0.3 cm thick slices
were sampled using a scalpel blade. One 0.3 cm disc per accession was sampled from
the stem using a cork borer. Samples were transported in cooler boxes to IITA-
Biosciences for eastern and central Africa (BecA) laboratories in Nairobi (Kenya), a
journey that took about 3 hr. They were stored at -20°C for 3 days to exodiffuse
sugars and ABA. They were then dried at 45°C for 1 week and transported to Cornell
University, New York, USA in 96-well plates for various analyses. For both well-
watered and water-stressed treatments, one root was sampled from each of the 3
plants at harvest. Following washing, approximately 10 mg slice was taken from the
middle section of the tuber and transported to IITA-BecA for starch extraction. The
starch was packed in C/7 envelopes and transported to University of the Free State,

Bloemfontein, South Africa for analysis.

4.2.2. Chromatography separation, abscisic acid extraction and quantification

Abscisic acid was extracted from the leaf disks, petioles and stem discs in 600 ul of
80% (v/v) methanol. Two hundred microlitres of the supernatant were pipetted and
dried overnight at 45°C using a non-vacuum drying incubator fitted with a turbulent
fan. Dried samples were re-suspended in 100 pl of 30% (v/v) methanol and 20 pl of

0.04% bromecresol green (tracer) and homogenized for 15 min. using a shaker to re-
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dissolve. ABA was separated with C;3 chromatography on Supelco columns (DSC-18
SPE-96, J.T. Baker Chemicals, Phillipsburg, New Jersey) built on a 96-well vacuum
manifold apparatus and packed with 25 mg of 40 um diameter C;g silica material
using the procedure described by Setter et al. (2001). Bromecresol green indicated
more than 90% recovery of ABA. ABA fractions were dried at 45°C overnight using

a non-vacuum incubator.

The ABA fractions from C;3 chromatography were re-dissolved in 150 ul azide water
(0.02% wl/v, NaN3). They were then assayed for ABA by indirect enzyme-linked
immunosorbant assay (ELISA) using the method described by Setter et al. (1991)
with the following minor modifications. Round-bottom 96-well microtiter plates
(Costar High Binding #3366, Corning Inc., Corning, New York) were coated
overnight at 5°C with 1.4 ug of ABA-bovine serum albumin (BSA) conjugate in 200
ul of 50 mM NaHCOs;, pH 9.6 and 0.02% NaNj as an antimicrobial agent. Plates
were washed 4 times with Tris-buffered saline-Tween detergent (TBST) solution,
which contained Tris-buffered saline (TBS; 10 mM Tris-hydroxymethyl amino
methane, pH 7.5, 1 mM MgCl,, 100 mM NaCl and 0.02% NaN3) to which 0.1%
Tween-20 (P-7949, Sigma Chemical Co., St. Louis) was added.

Samples were then incubated with primary antibody with the following in each well:
60 ul 3-N-morpholino propane-sulfonic acid (MOPS) solution, which contained
MOPS-buffered saline MBS (MBSA; 50 mM MOPS, 1 mM MgCl,, 100 mM NacCl,
0.02% NaNs, pH 7.5, with 0.1% BSA) (A-8022, Sigma Chemical Co., St. Louis), 40
pul of Cig eluate and 100 ul of MBS containing 1 pg of anti-ABA monoclonal
antibody (clone 15-1-C15, FEBS Lett 160:269, 1983). On each plate, a set of positive
ABA standards (Sigma Chemical Co., St. Louis) containing a 1:2 dilution series of 12
values from 2 to 0.01 pmol per well served as a calibration curve. The antibody was
added last to all wells on the plates using a 12-channel pipette with rapid, turbulent
outflow so that solutions could swirl together and mix immediately. Plates were
sealed fully using a cling film to prevent evaporative loss and incubated at 5°C
overnight. On the following day, plates were washed 4 times with TBST solution and
200 pl of secondary antibody solution containing 20 pl of anti-mouse IgG-alkaline
phosphatase conjugate (A-3562, Sigma Chemical Co., St. Louis) in MBSA was added

into each well. After incubating overnight at 5°C, plates were washed 4 times with
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TBST and 200 ul para-nitrophenyl phosphate (PNPP) reagent mixed with
diethanolamine (DEA) buffer (0.9 M DEA, 3 mM MgCl,, pH 9.8, 1 mg/ml PNPP)
was added into each well. Samples were incubated at room temperature for 2 hr. and
the absorbance was read at 405 nm with a plate reader spectrophotometer (model 750,
Cambridge Technology, Watertown, MA). ABA content in samples was determined
by calculations based on positive ABA calibration standards and a fit logit-

transformation of data.

4.2.3. Determination of sugar content

Sugar analysis was performed on aliquots from the same leaf, petiole and stem
extracts (80% methanol) used for ABA analysis. Glucose concentration was
determined before and after the enzymatic hydrolysis of sucrose and fructose was
assessed subsequent to the determination of glucose. The concentrations of glucose
were determined using an assay based on enzyme-coupled reaction of
peroxidase/glucose oxidase (PGO) (Trinder, 1969), where D-glucose reacts with O,
catalyzed by glucose oxidase, to transfer electrons from glucose to O, and form
gluconic acid and H,0O,. The H,O, immediately reacts in a coupled reaction catalyzed
by peroxidase to accept electrons from para-hydroxybenzoic acid, a colorless electron
donor, to create a pink quinone-imine dye complex with 4-amino-antipyrine. The
reaction is highly specific for a-D-glucose (Lott and Turner, 1975). One hundred and
fifty ul of PGO (100 mM KH,PO,, pH 7.0, 9 mg/ml para-hydroxybenzoic acid, 0.3
mg/ml 4-aminoanti pyrene, 0.1% BSA, 0.01% NaN3, 0.33 ul/ml glucose oxidase and
2 ul/ml peroxidase) was added to each of the supernatants (100 ul leaves, 75 ul
petioles and 40 pl stems). Concurrently, a duplicate set of glucose standards
containing a series from 3 to 32 ug per well were added to each plate to serve as a
calibration curve. Plates were incubated at room temperature for 2 hr. and the
absorbance was read at 490 nm with a plate reader spectrophotometer (model 750,
Cambridge Technology, Watertown, MA). For the sucrose assay, enzymatic inversion
technique was used where; 50 ul of invertase solution (B-fructosidase) (250 mM
acetate buffer, pH 4.5, 2 ul/ml invertase and 0.1% NaN3) was added to the sucrose
standards, glucose calibration standards and samples on the plate. Plates were
incubated at room temperature for 4 hr. after which 200 ul of PGO reagent was added.

After about 1 hr., plates were read at 490 in a plate reader spectrophotometer.
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The sucrose concentration was calculated from the difference of the glucose
concentration before and after enzymatic inversion. All enzymes were from Sigma

Chemical Co., St. Louis.
4.2.4. Determination of protein content

The stems, leaves and petioles were ground using the Genogrinder (Bridgewater, NJ,
USA). The to and fro high speed of the Genogrinder, which was run for 10 min.
allowed the metallic balls (2 balls per sample, per well) to hit the wall of the well in
between and during which the samples crushed. The resulting powder was centrifuged
at 1000 rpm for 5 min. Two hundred and fifty pl of 0.01% NaN3; was added to the
samples. Forty ul of the supernatant was aliquoted for protein assay. Protein
concentration in this supernatant was estimated by the method of Bradford (1976)
using BSA as a standard and Coomassie Plus Protein Assay Reagent (Rockford,
Illinois, USA). Absorbance was read at 590 nm after 30 min. incubation at room

temperature.
4.2.5. Determination of starch content

Starch analysis was performed on the insoluble debris from the same leaf, petiole and
stem used for protein analysis. Starch was gelatinized by heating at 80°C for 2 hr. in
an oven. After cooling, starch was completely hydrolyzed to glucose with 200, 400
and 600 ul of amyloglucosidase solution (250 mM acetate buffer, pH 4.5, 0.15 mg/ml
amyloglucosidase, 0.15 mg/ml a-amylase, 0.1% NaNj3 and 0.1% BSA) in leaves,
petioles and stems, respectively. Samples were incubated at 40°C for 36 hr. with
agitation. The amount of glucose released from starch hydrolysis was analyzed using

the same procedure described above for sugar in extracts.
4.2.6. Determination of amylose content in roots

Native cassava starch was extracted using the method described by Benesi et al.
(2004) with a few modifications. Approximately 2 g of fresh tuberous roots were
washed, peeled, washed again and chopped to about 0.5 cm® cubes. After adding 250
ml of water, the chopped tuberous roots were pulverized in a blender (Phillips

domestic blender, Model: HR1720/50) for 5 min. The pulp was suspended in 10x its
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volume water, stirred for 2 min. and filtered using a double cheese cloth (muslin). The
filtrate was allowed to stand for 2 hr. to facilitate starch sedimentation and the top
liquid was decanted and discarded. The sediment was broken, water added as in the
first step, and the whole process was repeated. The sediment was washed and then air-
dried for three days. Amylose content was determined by first removing amylopectin
as an aggregate with concanavalin A (Con A) by precipitation followed by amylose
assay as above using an amylose/amylopectin assay kit (Megazyme International

Ireland Ltd., Bray, Ireland) according to the manufacturer’s protocol
4.2.7. Generation of derived variables

For total non-structural carbohydrates (TNC), total sugars and starch values were

added. The sucrose to starch ratio was also calculated.
4.2.8. Statistical analysis

Abscisic acid, sugars, protein and starch in different tissues were expressed on an
estimated tissue area basis. Analysis of variance (ANOVA) was carried out for the

metabolic traits using PLABSTAT (Utz, 1997). A linear model:
Yijl =u+ Gi + Tj + P] + GiTj + GiPI + TjP] + GTPijl (Equation 41)

was used, where, Yj; was the observed phenotypic value of the i™ genotype, of the "

treatment and in the 1™

stress phase; u was the overall population mean of the trait, G;
is the genotype effect (i=1, 2, 3...31), Tjis the treatment effect (j=1, 2), P; is the stress
phase effect (1=1, 2, 3,), G{T; is the treatment x genotype effect, G;P; is the genotype x
stress phase interaction effect, T;P; is the effect associated with treatment and stress

phase effect, GiT;P; is the genotype by treatment by stress phase interaction effect.

To determine the differences between treatments, accessions and tissues (leaf, petiole

or stem), the linear model:

Yijl =u+ Gi + Tj + R] + GiTj + GiRl + TjR] + GTRijl (Equation 42)
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was used, where, Yj; was the observed phenotypic value of the i™ genotype, of the "™
treatment and in the 1" tissue; R; was the tissue effect (I=1, 2, 3,), and the other

symbols being as defined in equation 4.1.

Spearman’s rank correlation coefficients were calculated to determine the

relationships between variables.
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4.3. Results

Metabolic evaluation of African cassava germplasm accessions was carried out in
three tissues (leaf, petiole, and stem) for both well-watered and water-stressed
treatments. Amylose content was determined only in the roots. In general, there were
significant differences between the treatments for the traits evaluated except protein
and amylose content (Table 4.1). Due to genotypic differences of the cassava
germplasm evaluated and the interaction between accessions and environments, the
performance in individuals was variable. Insignificant differences were observed

between the different stress phases.
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Figure 4.1.  Abscisic acid concentration in 31 cassava germplasm accessions
evaluated at Kiboko Research Station, Makindu, Kenya; (a) mean
ABA concentration in different accessions across 3 samplings (120,
150, 180 days after planting) and across 3 tissues; (b) mean ABA in
different cassava tissues (leaf, petiole, stem) (H well-watered;
water-stressed).

4.3.1. Abscisic acid in cassava tissues

The ANOVA of the ABA content revealed significant differences between the two
treatments and among the accessions evaluated (Table 4.1). It was surprising to note
that, the well-watered accessions accumulated more ABA than their water-stressed
counterparts except in G16 (Figure 4.1a). However, there was not a consistent ranking
of genotypes according to ABA concentration in the leaves, petioles and stems.
Relative to the corresponding well-watered treatment, water-stress reduced ABA

concentration by ca. 2-fold in most genotypes (Figure 4.1a). In general, ABA content
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decreased from stem to leaf, and the petioles had the least amounts in both treatments

(Figure 4.1b).

Table 4.1. Analysis of variance of 31 cassava germplasm accessions evaluated at
Kiboko Research Station, Makindu, Kenya (TxA, accession by
treatment interaction; **, *_ significant at P<0.01 and 0.05 respectively).

Variance components

Treatment (T) Accession (A) TxA
Trait
Abscisic acid  109.47%** 5.34%* 30.00
Total sugars 19.44%* 3.13%%* 2.21%%*
Glucose 18.56** 4.50%* 2.38%*
Sucrose 13.34%* 2.44%* 1.71*
Protein 1.00 30.00 30.00
Starch 7.74%* 20.02%** 30.00
Amylose 1.00 30.00 30.00
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Figure 4.2. Glucose concentration in 31 cassava germplasm accessions evaluated at
Kiboko Research Station, Makindu, Kenya (a) mean glucose
concentration in different accessions across 3 samplings (120, 150, 180
days after planting) and across 3 tissues; (b) mean glucose in different
cassava tissues (leaf, petiole, stem) (Il well-watered; @ water-stressed).
** The differences between well-watered and water-stressed treatments
are significant at 1% level of probability (only the 4 accessions that had
higher yields in water-stressed condition were labeled).

4.3.2. Assimilates content in cassava tissue

Drought stress decreased all total sugars in the cassava accessions evaluated
(Appendix 4.1). Concentrations of total sugars, glucose and sucrose were significantly

higher in the petioles of the well-watered accessions. On the other hand, the sugars
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remained somewhat similar in the stems and the leaves (Figure 4.2, 4.3). The
interaction of cassava accessions and water treatment (TxA) was significant only for
sugars, indicating that water stress influenced these parameters, but differently

according to the accessions (Table 4.1).

Protein content of the genotypes was not only meager in quantity in the accessions
evaluated, but also showed no significant variation between the two treatments (Table

4.1). Among the tissues, the stems had an insignificant low amount of protein.

The water-stressed accessions accumulated more starch than their well-watered
counterparts (Figure 4.4a). Leaf and petiole had markedly lower amounts of starch in
both treatments (Figure 4.4b). Total non-structural carbohydrate (total sugars + starch)
was higher in the water-stressed treatment (Figure 4.5 a). Relative to the well-watered
accessions, the sucrose to starch ratio decreased under drought stress (Figure 4.5 b).

Imposition of water stress did not significantly affect the amounts of amylose (Table
4.1).
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Figure 4.3. Sucrose concentration in 31 cassava germplasm accessions evaluated at
Kiboko Research Station, Makindu, Kenya (a) mean sucrose
concentration in different accessions across 3 samplings (120, 150, 180
days after planting) and across 3 tissues; (b) mean sucrose in different
cassava tissues (leaf, petiole, stem) (Il well-watered; @ water-stressed).
** The differences between well-watered and water-stressed treatments
are significant at 1% level of probability (only the 4 accessions that had
higher yields in water-stressed condition were labeled).
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Figure 4.4. Starch concentration in 31 cassava germplasm accessions evaluated at
Kiboko Research Station, Makindu, Kenya (a) mean starch
concentration in different accessions across 3 samplings (120, 150, 180
days after planting) and across 3 tissues; (b) mean starch in different
cassava tissues (leaf, petiole, stem) (Il well-watered; @ water-stressed).
** The differences between well-watered and water-stressed treatments
are significant at 1% level of probability (only the 4 accessions that had
higher yields in water-stressed condition were labeled).
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Figure 4.5. The effect of drought stress imposed on 31 cassava germplasm
accessions evaluated at Kiboko Research Station, Makindu, Kenya; on
(a) total non-structural carbohydrate (TNC) (total sugars + starch); and
(b) sucrose to starch ratio (Il well-watered; @ water-stressed). ** The
differences between well-watered and water-stressed treatments are
significant at 1% level of probability.
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4.3.3. Relationship between traits

Spearman’s rank correlation analysis was used to investigate the inter-relationships

amongst the various traits. In general, relationships between traits varied considerably

(Table 4.2). Abscisic acid was positively correlated with sucrose and starch content (P

< 0.01), while it was inversely correlated with total sugar (P < 0.05) and glucose (P <

0.01). Sugars were also significantly correlated among each other (Table 4.2). For

example, total sugar was positively correlated with glucose (P < 0.01) and sucrose (P

< 0.05).

Table 4.2. Spearman’s rank correlation coefficient for various metabolic traits
evaluated for 31 cassava accessions across 3 samplings (120, 150, 180
days after planting) and 3 tissues (leaf, petiole and stem) at Kiboko
Research Station, Makindu, Kenya.

Abscisic Total

Trait acid sugar Glucose  Sucrose Protein Starch

Total sugar  -0.424*

Glucose -0.603** 0.965*%*

Sucrose 0.510%%* 0.398*  0.145

Protein -0.176 -0.14 -0.02 -0.456%*

Starch 0.857**  -0.379* -0.574*%*  0.581*%* -0.414*

Amylose -0.164 -0.09 -0.036 -0.212 0.013 -0.025
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4.4. Discussion

Although the role of the phytohormone ABA in stress physiology has received much
attention, efforts to correlate ABA production and drought tolerance in plants have
yielded conflicting results (Chen et al., 1997). In this study, the well-watered
accessions accumulated more ABA than their water-stressed counterparts. This
drought-induced decrease in ABA concentration of water-stressed plants is
inconsistent with previous reports on the accumulation of the plant hormone in young
expanding leaves of water-stressed cassava plants under controlled green-house
conditions after 6 days of water-stress (Alves and Setter, 2000; 2004). Our finding
also disagreed with the observations on castorbean (Ricinus communis L.) (Zeevaart,
1977) and moleplant (Euphorbia lathyris L.) (Sivakumaran and Hall, 1978), which,
like cassava, are members of the family Euphorbiaceae. Despite these observations,
studies by Hsiao (1973) have shown that only mild to moderate stress is able to
induce an ABA increase. Reports by Hiron and Wright (1973) have indicated that
ABA accumulates most readily in wheat leaves if the loss in fresh weight does not
exceed 9%; and in sugar cane leaves, before wilting appears (Most, 1971). Mizrani
(1970) has shown that 1 day of wilting in Nicotiana species increased ABA content in
the leaves. In this study, since sampling for phytohormone analysis was done from
120 DAP onwards, the stress might have been too intense and the period quite long to
cause a significant increase in ABA, or to stimulate its biosynthesis. In addition, the
stressed plants might have had a lower capacity to catabolize ABA. Regardless of
these probable reasons, our finding needs substantiation, particularly with more data

on the phase and degree of water stress.

In this study, accessions differed in ABA concentration during water-stress and well-
watered conditions (Figure 4.1a). This may be because, since these accessions
consisted of breeding materials from IITA, they varied in their “known
characteristics” (Table 3.2, chapter 3), and their regions of origin have distinctly
different climatic ecosystems that vary in relation to drought pressure. Another
possibility is that when the tissues were sampled, the stressed tissues were senescing
and so had lower levels of ABA due to their half-dead condition. In addition, maybe
the tissues from stressed plants represented a less advanced development stage (due to
stress arresting development) such that they had low ABA concentrations due to their

"younger" stage of development.
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ABA content varied in the 3 tissues evaluated. This is a common phenomenon and
has been reported in numerous studies and for various crops such as maize (Pekic and
Quarrie, 1987; Ribaut and Pilet, 1991), soybean (Liu et al., 2003) and chick pea
(Nayyar et al., 2005). Variation in ABA might have occurred due to a lower capacity
to metabolize (break down) and translocate ABA to different plant parts leading to

higher net ABA accumulation (Jaschke et al., 1997).

Soluble sugars (glucose, sucrose and fructose) not only supply a significant source of
calories in the diets of many people but also they make food more palatable. Sucrose
is the major sugar used by most plants to translocate photoassimilates from the leaves
(source tissue) to non-photosynthetic tissues (sink tissues), possibly because of its
high solubility, low reactivity and energy storage capacity (Sawkins et al., 2006). Data
from this experiment demonstrated that there was a significant reduction in the
concentration of sucrose during drought-stress, and that this was coupled with a
decrease in glucose (Figure 4.2 and 4.3). This is in accordance with previous reports
on the accumulation of sugars in cassava plants subjected to 6 days of water-stress
(Alves and Setter, 2004). Zinselmeier et al. (1999) also showed that photosynthetic
activity is severely reduced under water-stress conditions, which affect the availability
of sucrose. In addition, sucrose might have been diverted to the vacuole and further
hydrolysed into fructose (Epron and Dreyer, 1996). David et al. (1998) also found a
lower glucose concentration in Lupinus albus under controlled drought conditions.
The decline in sugar concentration under water-stressed conditions may be attributed
to a decrease in carbon assimilation (Gebeyehu, 2006). Although the changes in sugar
concentration may have a role in the drought tolerance of these accessions, the
relative contribution of sugars to drought stress cannot be determined from the
available data. Further work will be required to identify and quantify sugar
concentrations in relation to osmotic adjustment and, hence, their exact contribution

to water stress.

There was no marked difference in soluble protein concentration between well-
watered and water-stressed plants. Unfortunately, because of logistical limitations, we
did not determine the accumulation of drought responsive proteins in this study,

which are thought to confer osmoprotective function during water stress Thus, within
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the scope of this study, the effect of water-stress on protein accumulation cannot be

determined.

Starch is one of the major end products of carbon assimilation, and a principal storage
carbohydrate in most plants. It is found in stems, seeds and underground storage
organs such as roots and tubers. In this study, it was surprising to note that the water-
stressed accessions accumulated more starch than their well-watered counterparts.
This increase in starch concentration due to water-stress is inconsistent with findings
for cassava by Duque and Setter, (unpublished) and grapevines (Patakas and
Noitsakis, 2001) under controlled conditions. It might be that in this scenario, starch
synthesis was highly promoted in water-stressed accessions after restriction of sucrose
synthesis, since starch serves as a transient sink to accommodate excess photosynthate
that cannot be converted to sucrose (Paul and Foyer, 2001; Gebeyehu, 2006). Stitt and
Quick (1989) showed that a decreased demand for sucrose leads to either an increase
in starch synthesis or to a restricted rate of photosynthesis. In addition, during the
timeframe of our study we could have expected a decline in starch if the water-
stressed plants were utilizing stem and petiole starch (via remobilization to various
plant organs) to sustain a small amount of growth and respiration during a time of
zero net photosynthetic carbon assimilation, but in this case they did not make use of
it. The stems had markedly large amounts of starch, most probably for sustaining
tissue metabolism under stress conditions. In addition, starch accumulates early
during stem elongation and maturation than in other plant parts. Our data shows
almost no starch in the petioles. This corroborates findings by Duque and Setter
(unpublished) that petiole starch is usually depleted first than in the stem. There were
no significant differences observed between the relative concentrations of the two

starch polymers, amylose and amylopectin.

The increased total non-structural carbohydrate (TNC) in water-stressed plants was
due to a significantly high amount of starch in the water-stressed accessions.
Increased ratio of sucrose to starch has been implicated as one of the adaptive features
to different types of stresses including drought (Silva and Arrabaga, 2004). In this
study, we observed a reduced sucrose to starch ratio in favor of starch, which might
be probably due to down-regulation of the enzymes sucrose synthase and sucrose

phosphate synthase (Geigenberger et al., 1999). In addition, it may be due to reduced
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starch hydrolysis in water-stressed accessions (Jones et al., 1980) and/or a changes in

the partitioning between starch and sucrose synthesis (Vassey and Sharkey, 1989).

The effect of water-stress is composite in its mode of action and highly erratic in
response as a result of interacting factors (Ramirez-Vallejo and Kelly, 1998). Results
from this study did not differentiate the well-watered and water-stressed treatments
well. In addition, ABA was reverse the expected published effects. Maybe the well-
watered plants were experiencing an incipient stress due to low humidity, warming
from direct sun, or due to slight soil moisture depletion which were not ascertained in
this study. Despite these probable reasons, interpretation of ABA data can be tricky to
the extent that treatment effects and genotypic differences can depend on delicate
timing of tissue sampling, with respect to oscillations in cycles of induction and
attenuation of ABA accumulation. This calls for further research in both controlled
and field conditions to determine the time course of ABA accumulation as a cassava
plant goes from its young stage to aging. This information on contrasting water-
limited conditions would be helpful so as to know the stage at which ABA data are
most informative. In addition, more research is required on these breeding materials to

identify secondary traits that could be used for phenotyping for drought tolerance.
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Chapter 5 Linkage mapping

5. Genetic Mapping in Cassava (Manihot esculenta Crantz) using
SSR’s and EST-derived SSR’s
Abstract

Cassava is an important crop in sub-Saharan Africa, due to its efficient
production of food energy, flexible harvest date and tolerance to abiotic
stresses. In a first step to identifying quantitative trait loci (QTL) associated
with drought tolerance in cassava, a genetic linkage map was constructed
from an F; population of 228 individuals derived from a cross between COL
1734  (drought-tolerant) and BRA 1149 (drought-susceptible) at the
International Center for Tropical Agriculture (CIAT) in Colombia. A set of
307 simple sequence repeat (SSR) primers and 70 expressed sequence tag
(EST) derived SSRs (ESSR’s) were screened for polymorphism between the
two parents. The segregating progenies were used to generate two genetic
linkage maps using 110 polymorphic markers. The female map (COL 1734)
has 56 markers spanning 519.2 cM, assembled over 14 linkage groups,
whereas the male map (BRA 1149) spans 468.3 ¢cM distributed on 13 linkage
groups. The mean distance between markers is 9.3 cM in the female map and
8.2 ¢M in the male map. Homology between the two maps was established
between seven linkage groups using 27 allelic bridges. Although the two maps
are not saturated, they will form the basis for identifying QTLs associated with
drought tolerance. In addition they provide map locations for 46 new and
previously unmapped SSR’s and ESSR’,s which can be incorporated into other
cassava genetic linkage maps to build a consensus map for use in genetic

analysis of Manihot esculenta.

Keywords: Cassava; ESSR; linkage map; Manihot esculenta; marker; SSR;
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5.1. Introduction

Tropical root and tuber crops such as cassava (Manihot esculenta Crantz), cocoyams
(Colocasia and Xanthosoma spp.), potato (Solanum tuberosum L.), sweet potato
[[pomoea batatas (L.) Lam] and yams (Dioscorea spp.) play an important role in the
world's food supply. They are consumed by a third of the world's population, mainly
comprising the lower socio-economic groups (Chandra, 1994). In the face of rapid
population growth and climate change, African countries have continued to heavily
depend on these crops. They act as food security crops at both household and national
levels by providing a cheap source of carbohydrates and, hence, are often referred to
as ‘insurance crops’ (Onwueme and Charles, 1994). Among these, cassava is the

dominant root crop (Dapaah, 1994).

Cassava is one of the leading staples in sub-Saharan Africa, owing to its efficient
production of food energy, year round availability and tolerance to extreme abiotic
stresses. It is a valuable crop in regions where annual rainfall is low, seasonal, and
often highly variable. The crop can withstand prolonged periods of drought in which
most other food crops fail. An estimated 500 million people obtain more than 60% of
their daily calorie intake from cassava roots, which constitutes one of the world’s

largest staple crops for starch (Wenham, 1995).

Between 1991 and 1999, more than 1000 Brazilian accessions were evaluated for
drought tolerance in four representative ecosystems of Brazil’s semi-arid northeast,
which have homologous counterparts in sub-Saharan Africa (Figure 5.1). Results
from this project revealed extraordinary ability of certain accessions to withstand
prolonged drought. The selection criteria for these drought-tolerant accessions was
based on sprouting percentage, tolerance to moisture stress, resistance to mites (the
main pests of the region), dry matter content, root yield and cyanogenic potential.
These accessions were officially released to farmers in the Semi-arid region of North
East Brazil (Fukuda and Saad, 2001), although the genetic traits that make these

genotypes more drought-tolerant have not been documented.

Although agriculture has realized exponential gains in productivity in the recent past,
cassava has traditionally received less attention from researchers working on

temperate crops, leaving fundamental questions about its genetics unanswered (Cock,
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1985; Okogbenin et al., 2008). This may, in part, be due to the biological
characteristics of cassava, making it a difficult crop to breed by conventional
methods. It is traditionally a vegetatively propagated crop through stem cuttings, and
seed production is low. This is a serious limitation to genetic improvement, which
relies on recombination during crossing for progress. In addition, the crop’s
phenology is highly influenced by the environment, affecting time to flowering. It has
a long growth cycle, and breeding of a new variety can take between 8-12 years with
no guarantee for the release and adoption of an improved variety. Cassava has a
heterozygous genetic background and quickly suffers from inbreeding depression.
Although this heterozygosity makes it difficult to consolidate genetic gain in the
breeding process due to inherent instability of the heterozygous status, it is
advantageous in that it creates variation within the crop and facilitates a directional
selection of additive genes towards desirable traits (Hahn et al., 1990). For these
reasons, it is extremely difficult, time-consuming and expensive to combine an array
of preferred characteristics both agronomic and organoleptic. In addition, since
precise measurements are required for the expression of traits, field environments
might not offer an ideal condition for selection of complex traits, which is a major
objective in many plant breeding programs today. Biotechnology tools, which enable
trait selection with cost effectiveness, can play a major role in increasing the accuracy
and efficiency of cassava genetic improvement through molecular marker technology

(Kizito, 20006).

The use of biochemical and DNA markers for genetic analysis and manipulation of
important agronomic traits has become an increasingly important tool in plant genetic
improvement. Molecular markers have enhanced the operation of genetic
improvement programs through a number of ways. These include fingerprinting of
genetic stocks; assessment of genetic relationships; confirmation of ploidy levels;
gene cloning; whole genome scanning; increasing the efficiency of selection for
difficult traits; and making environment-neutral selection possible (Ejeta et al., 2000;
Fregene and Puonti-Kaerlas, 2002; Fregene et al., 2003; Zhang et al., 2004). The
greatest potential of these markers appear to be in the construction of genetic maps,
which is the first step towards locating genes or quantitative trait loci (QTL) that

condition economically important traits (Zhang et al., 2004; Semagn et al., 2006).
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Most DNA-based marker systems employ either the Polymerase Chain Reaction
(PCR) technique (Mullis, 1990) or the DNA-DNA hybridization gel technique
(Botstein et al., 1980). Both techniques are able to detect single and/or multiple locus
differences in addition to being inherited in either a dominant or co-dominant fashion.
These markers include amplified fragment length polymorphisms (AFLP), cleaved
amplified polymorphic sequence (CAPS), diversity arrays technology (DArT),
expressed sequence tags (EST’s), inter simple sequence repeat (ISSR), random
amplified polymorphic DNA (RAPD), restriction fragment length polymorphisms
(RFLPs), single nucleotide polymorphisms (SNP’s), and simple sequence repeats
(SSR’s). Among these, SSR’s or microsatellites remain a standard for linkage
mapping. This is because they provide high information content, have a co-dominant
mode of inheritance, are reproducible, locus-specific, highly transferable across
laboratories, and have ease for automation for high-throughput -capillary

electrophoresis (CE) (Semagn et al., 2006).

Most Manihot species studied have 36 somatic chromosomes. Cassava is generally
considered a diploid, with a haploid number of n=18; although an allopolyploid with
basic chromosome number x=9 and segmental allotetraploidy have been postulated
(Hahn et al., 1990). It has a DNA content of 1.67 pg per cell nucleus (Awoleye et al.,
1994). This value corresponds to 772 mega base pairs in the haploid genome and puts
cassava’s genome size at the lower end of the range of higher plants (Bennett and
Smith, 1991). The relatively small size of the cassava genome favors the development
of a saturated genetic map that would contribute to an understanding of the
inheritance of important agronomic traits despite the crop’s heterozygous nature

(Fregene et al., 1997).

The first genetic linkage map for cassava, constructed predominantly with RFLP
markers, was drawn from an F; progeny segregating for early root bulking, disease
resistance and root quality (Fregene et al., 1997). Although an SSR-based map is also
available for these traits (Okogbenin et al., 2006), the cassava genetic map needs to be
saturated with SSR molecular markers especially those derived from EST’s,
henceforth referred to as expressed simple sequence repeats (ESSR’s). This is
because, if an ESSR marker is found to be genetically associated with a trait of

interest, it is possible that the mapped gene directly affects the trait. These markers are
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also very useful in comparative mapping across different species in that they have a
high degree of sequence conservation and are more likely to be transportable across a
pedigree and species than the non-ESSR markers. ESSR’s can be used as a basis for
genetic mapping in other species if their DNA sequence information is lacking
(Semagn et al., 2006). Thus, linkage mapping in a crop like cassava using ESSR
markers would enable a more rapid transfer of genetic information between species
(Cato et al., 2001). A densely populated cassava map will make genetic improvement
more effective and fast in that it will provide molecular breeding approaches with
more variety in the quality and type of markers and additional probability of

polymorphic markers in an important chromosome interval (Somers et al., 2004).

The present study was conducted within the framework of the project "Identifying the
physiological and genetic traits that make cassava one of the most drought tolerant
crops" implemented since 2005 by the Brazilian Agricultural Research Corporation,
(Embrapa); the International Center for Tropical Agriculture, (CIAT); the
International Institute of Tropical Agriculture (IITA); Cornell University, USA, and
the University of Goettingen.
Main objectives of the present study were:

® to screen parents from two mapping populations for marker polymorphism and

genotype the mapping populations using genomic SSR’s and ESSR markers;
e to perform linkage analysis so as to place markers on a molecular genetic

framework based on their segregation in the mapping populations.
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5.2. Materials and methods

5.2.1. Mapping populations

5.2.1.1. Selection of contrasting parental accessions

Twenty eight drought-tolerant and 12 drought-susceptible cassava germplasm
accessions with contrasting characteristics for drought tolerance were selected by
Embrapa and CIAT. The selection of these accessions was based on sprouting
percentage, tolerance to moisture stress, resistance to mites, dry matter content, root
yield and cyanogenic potential (Appendix 5.1). The accessions were multiplied and
evaluated in 4 representative ecosystems of Brazil’s semi-arid Northeast in the field
and in the greenhouse under stressed and irrigated conditions (Figure 5.1). Based on
this evaluation, four best divergent parental combinations were selected to form a
base population for developing a mapping population. These were accessions BRA

255 and COL 1734 and BRA 1149 and COL 1468 (Appendix 5.1).

5.2.1.2. Generation of crosses between contrasting parents

Cassava stakes from the four contrasting parents were planted at CIAT headquarters
in Colombia. During flowering, which started after 6 weeks, crosses were made by
hand between the male and the female parents (Table 5.1) (IITA, 1990). Mature
pollen grains (when anthers changed from green to yellow) were collected in the
morning, and mature unopened female flowers were bagged with a white paper to
prevent honey bees or other insects from pollinating opened female flowers.
Pollination was performed in the afternoon by rubbing the male flower on the stigma
of the female flowers. After pollination, the pollinated flowers were bagged to prevent
unwanted pollen grains landing on the stigma. The mature unopened female flowers
were also pollinated through emasculation by removing the perianth. The plants were
uncovered 5-6 days after pollination, and mature seed were obtained from 70 to 90

days.
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® Quixada (a)

® Araripina (b)
O Petrolina (¢)
@ Itaberaba (d)

Figure 5.1. Location of four representative locations of Brazil’s semi-arid
Northeast (indicated in white on the map) where field evaluations of 28
drought-tolerant and 12 drought-susceptible cassava germplasm
accessions under stressed and irrigated conditions were performed (a,
Quixad4; b, Araripina; c, Petrolina; and d, Itaberaba).

Source: (CIAT and Embrapa, 1996)

Table 5.1. Population name, cross name and status of cassava germplasm
accessions used in the generation of segregating populations
(accessions marked with * were considered drought-tolerant).

Population name  Cross name Female Male Number of individuals
A CTSI1A COL 1734* BRA 1149 228
B CTS2A MCOL 1468 BRA 255% 23
B CTS2B BRA 255%* MCOL 1468 33
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5.2.1.3. Segregating populations

At CIAT in Colombia, mature seeds were treated with concentrated sulphuric acid for
50 min. (CIAT, 2003). They were thoroughly washed with water and soaked for 30
min. The seeds were surface-sterilized by immersion in 70% alcohol for 5 min. They
were then immersed in 5% sodium hypochlorite and Tween-20 for 20 min., before
they were rinsed three times with sterile water. Under aseptic conditions, they were
split along the longitudinal axis and the embryos were removed using a sterile forcep
and scapel. Excised embryos were placed in 17N medium (growth medium) with their
radicles down. The embryo cultures were incubated in darkness for three days to
promote radicle growth and then transferred to growth chambers with a 12 hr
photoperiod. Plantlets remained in the growth chamber for 6 weeks before being
shipped to Kenya for molecular analysis. In Kenya, the accessions were acclimatized
as described in section 2.2.2 (Chapter 2) for furnishing young leaves for DNA

extraction.
5.2.2. Marker analysis

Molecular work was carried out at the International Institute of Tropical Agriculture
(ITTA), Biosciences for eastern and central Africa (BecA) laboratory, Nairobi-Kenya

Campus.
5.2.2.1. DNA isolation

The progenies used for map construction consisted of 228 individuals produced from
population A (Table 5.1). Population B was eliminated from further analysis due to
inadequate number of individuals. From each full-sib F; progeny, approximately 0.5 g
of young leaf tissue from green-house acclimatized plants was collected in a 1.5 ml
96-well round bottomed extraction plate containing one 4 mm stainless steel bead.
The plates were sealed with mats and immediately frozen in dry ice. In the BecA
laboratory, the samples were stored at -80°C. Genomic DNA was extracted from the
frozen leaf samples of each individual of the F; population and from the parents after
grinding the samples at 1500 strokes for 10 min. using a Geno/Grinder (Grinder Spex
CertiPrep , USA). A modified protocol by Dellaporta et al. (1983) was followed. The

DNA was purified two times using chloroform: isoamylalcohol (24:1v/v) mixture.
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Following precipitation of the DNA with cold isopropanol, samples were washed
twice with 70% ethanol, air-dried before re-suspending in TE buffer (10 mM Tris-
HCI pH 8.0, 1 mM EDTA). Samples were incubated at 65°C in a shaking water bath
for 1 hr. to ensure good re-suspension. DNA concentrations were measured using a
NanoDrop =~ ND-1000 Spectrophotometer (Thermo Fisher Scientific, USA). DNA
quality was assessed on 0.8% agarose gels prepared with TBE buffer (45 mM Tris
base, 45 mM boric acid, | mM EDTA pH 8.0). The gels were run for 1 hr. at 100
volts. Samples were finally diluted to a standard concentration of 50 ng/ul with TE

buffer.
5.2.2.2. Optimization of primers and labeling of ESSR’s

A set of 307 locus-specific SSR primers from the cassava genomic library
(unpublished data, M. Fregene et al., 2002) and 70 ESSR’s were employed in this
study (Appendix 5.2).

Primer pairs for each marker were synthesized by Eurofins MWG Operon, Ebersberg,
Germany. They were reconstituted with TE buffer (1 mM EDTA, 10 mM Tris—HCI,
pH 8.0) to make a stock solution of 100 pmols/ul. Primer aliquots of 1 pmols/ul for
each forward (F) and reverse (R) marker were prepared. Amplification reactions for
annealing temperature optimization were carried out using 0.4 pmols/ul F and R
primers and 1 DNA sample. The 10 pl reaction mixture contained 9 ul of
amplification mix [1 x PCR buffer, 2 mM MgCl,, 0.2 mM dNTP’s, 0.375 Tag DNA-
polymerase (New England Biolabs)] and 1 ul of the diluted DNA as template. The
PCR amplification was performed using a Techne TC-512 Thermal Cycler (Global
Medical Instrumentation, GMI, USA). The thermo cycler was set through a gradient
program from 52°C to 62°C. The temperature/time profile of the cycles was a hot start
at 95°C/120 sec. for denaturing the DNA, and then 30 cycles of 95°C/30 sec.
denaturing, 52-62°C/60 sec. annealing, and 72°C/30 sec. extension. A final step of 30
min. extension and incubation was carried out at 72°C. The PCR products were
separated on 2% agarose gels stained with ethidium bromide. The optimal annealing
temperature was determined by visual inspection as the sharpest amplification of the
marker. For the optimization of primer, MgCl, and dNTP’s, the protocol developed
by IITA, BecA laboratory was used (Table 5.2). The amount and concentration of
DNA and Tag DNA-polymerase were kept constant.
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Fragments for analysis in capillary electrophoresis (CE) need to be fluorescently
labeled with a suitable dye for detection on the Applied Biosystems (ABI) 3730
analysis platform. The SSR’s used in this study were synthesized with an added 5’
labeled tail on the F primer by Eurofins MWG Operon, Ebersberg, Germany. The
ESSR’s were labeled with either FAM (Blue), VIC (Green), NED (Yellow) or PET
(Red) (Applied Biosystems, dye set G5) fluorescent dyes. A universal unlabelled ‘tail’
(" GCTACAGAGCATCTGGCTCACTGG *) that had been raised against an octopus
was added to the 5° end of the F primer and a complementary labelled oligo (Table
5.3), which was incorporated into the product during amplification was added to the
PCR mix. The decision on which dye to add to which ESSR marker was such that loci
with overlapping or close allele ranges were differently labeled, so that up to 4 marker
loci could be co-loaded on the ABI. The amplification reactions were carried out

using the optimized conditions for each marker and 0.175 pmoles/ul of the tail.

Table 5.2. Polymerase Chain Reaction (PCR) optimization conditions developed
by the International Institute of Tropical Agriculture (IITA), at
Biosciences for eastern and central Africa (BecA) Laboratory for
cassava genotyping (IITA, unpublished). The primers, magnesium
chloride (MgCl,) and deoxynucleotide triphosphates (ANTPs) varied
for conditions A, B and C.

Component Condition A Condition B Condition C
Primer F and R 0.4 pmols/ul 0.8 pmols/ul 1.2 pmols/ul
Mg (mM) 1.5 mM 2 mM 2.5 mM
dNTP (mM) 0.15 mM 0.2 mM 0.25 mM

5.2.2.3. Polymorphism screening and high throughput genotyping

Amplification reactions were set using the optimized conditions for each marker and
the diluted parental DNA samples in 96 PCR plates to identify the polymorphic
markers. One pl each of fluorescence-labeled PCR products (i.e. 4 ul total product for
4 PCR products) were combined in one new plate. The products were briefly vortexed
and centrifuged at 3500 rpm for 30 sec. Nine pl formamide-standard mix (0.11 pl
GS500 LIZ and 8.89 ul Hi-Di Formamide, Applied Biosystems) was added into each

well of a new, empty plate. The standard, which allows the alignment of peaks for
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analysis, is labeled with an orange dye (LIZ) (dye set "G5", Applied Biosystems).
One pl of the PCR product mixture was added to 9 ul formamide-standard mix. The
pooled plate was vortexed and centrifuged at 3500 rpm for 60 sec. It was denatured at
95°C for 5 min., placed on ice for 5 min., centrifuged, and then loaded into the ABI
3730. Capillary electrophoresis separates DNA fragments based on their size-
dependant mobility when passing through a sieving matrix. Following separation,
DNA fragments were analyzed for fluorescent signal as well as fragment size to check
for polymorphisms. The SSR and ESSR genotyping in the F; progeny of the cassava
mapping populations was performed using the polymorphic markers. An auto-Lid
Dual 384-Well GeneAmp® PCR System 9700 (Applied Biosystems) was used.

Marker panels comprised of SSR’s and ESSR’s with non-overlapping allele sizes.

Table 5.3. Properties of dyes used for fluorescent labeling of ESSR markers

Dye Color  Sequence

FAM blue TTTCCCAGTCACGACGTTG

VIC green GCGGATAACAATTTCACACAGG
NED yellow TAAAACGACGGCCAGTGC

PET red GCTTACAGAGCTGGCTCACTGG

5.2.2.4. Data scoring and linkage analysis

Polymorphic alleles were scored using the GeneMapper software (version 3.7,
Applied Biosystems). Peaks common to both parents were discarded from the analysis
(Figure 5.2). Polymorphic markers with non-specific amplifications and/or which fell
below the range of ABI-automated allele sizing of 1000 relative fluorescent units (rfu)
were eliminated from the final population assay. Ambiguous genotypes were treated
as missing data for map construction. Linkage analysis was carried out using the two-
way pseudo-testcross method as described by Grattapaglia and Sederoff (1994) for
markers segregating in the 1:1 ratio. Markers that segregated in the 3:1 and 1:1:1:1
ratios were treated according to Maliepaard et al. (1997). Two data sets, one
segregating in the gametes of the female parent (COL 1734) and the other for the
male parent (BRA 1149) were obtained. Linkage maps were constructed using the
JoinMap® 3.0 software package, which permits linkage analysis in outbred progenies
involving markers with different segregation types (Stam and Van Ooijen, 1995; Van
Ooijen and Voorrips, 2001). The cross-pollinated (CP) population type was used.
Markers were considered linked at a logarithm of odds (LOD) value of >3.0. A LOD

89



Chapter 5 Linkage mapping

threshold of 2.0 was used to classify the linkage phase of each locus. The jump
threshold value in the goodness-of-fit was set at 3.0. This represented the difference in
goodness of fit chi-square value before and after adding a locus to the map, and was
used to make the decision, whether or not a locus should remain on the map during
the first and second rounds in the process of map construction. Reasonable values for
the jump threshold are usually in the range of 3.0 to 5.0, while a higher jump
represents a poor fit of the added marker and may justify its elimination from the map

(Van Ooijen and Voorrips, 2001; Cavalcanti and Wilkinson, 2007).

Recombination frequency (REC) threshold was set at 0.45. REC were converted to
map distances (cM) using the Kosambi mapping function (Kosambi, 1944). Adding a
locus may influence the best possible map order and, to avert it from becoming
ensnared in a local optimum of the goodness-of-fit, a ripple 2 function was performed
so as to define the best map order. During this step, all permutations of three
neighboring markers were considered for every map order, corresponding goodness-
of-fit calculated, and the best order was chosen. Tests of similarity among loci and
individuals were performed using a threshold value of 0.95 and a suspect linkage test
was performed for each linkage group in each map using a REC threshold of 0.6 (Van
Ooijen and Voorrips, 2001).
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Figure 5.2.  Category of polymorphic markers observed during the parental screen

and used to identify unique alleles in cassava germplasm accessions for
the construction of male and female linkage maps, and to determine the
segregation ratio of each locus in the mapping population. Markers
class (6) and (8) were not used to screen the segregating population.

91



Chapter 5 Linkage mapping

5.3. Results

5.3.1. Labeling of ESSR’s, polymorphism screening and marker segregation

In this study, the ESSR allele sizes were overlapping (between 165-218 bp). These
markers had a maximum of 53 bp differences, which could not allow good co-
separation (Appendix 5.2). Therefore, there were no ESSR markers with the same dye

that were multiplexed.

Out of the 377 SSR and ESSR markers screened, 144 SSR and 11 ESSR loci revealed
a unique allele in at least one of the parents and were used to screen the mapping
population A. Thirty five percent of the markers showed a unique allele for both
parents, whereas 29 markers had monomorphic double bands. The markers showed
the same level of heterozygosity for both female and male parents in that the number
of alleles observed ranged from 2 to 4. The size of the amplified fragments ranged

from 80 to 391 bp.

The markers showed different segregation types, the ones considered in this study
being (a) the Im x II, where most fragments segregated according to Mendelian
expectation 1:1 as a result of heterozygosity in the female parent and homozygosity in
the male (maternally informative); (b) nn x np, where segregation ratio was 1:1 as a
result of heterozygosity in the male and homozygosity in the female (paternally
informative); (¢) ef x eg, in which fragments were present in both parents as a result
of heterozygosity on both sides segregating 3:1 in the progeny; and (d) ab x cd, in
which four alleles segregated at one locus resulting in a 1:1:1:1 segregation (fully
informative) (Table 5.4). Seventy one percent of the markers evaluated segregated
according to 1:1, 1:1:1:1 and 3:1 ratios. Thirty seven markers (24%) showed
significant deviation from Mendelian segregation patterns and were eliminated from
the mapping assay. These markers were found in 12 linkage groups (LG’s) and the
number varied from 1-3 per LG. The extreme example of segregation distortion was
found with marker SSRY99 where 2 out of 228 plants were "Im" heterozygotes. Eight

markers (5%) had ambiguous, failed or weak amplification.
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Table 5.4. Segregation types of markers mapped in the progeny of accessions
COL 1734 x BRA 1149 and the number of polymorphic markers of
fluorescent-labeled SSR’s and ESSR’s observed in the parents of the
segregating population (a to g and 1 to p stand for different alleles).

(a) (b) (c) (d) Total
Segregation type Im x 11 nn x np ef x eg abxcd
Number of markers 57 43 42 13 155

5.3.2. Map construction

Two maps, one for each parent, were generated according to the inheritance patterns
of the markers and ordering of loci within a linkage group. The number of linkage
groups in the two maps did not correspond to the haploid number of chromosomes of
cassava (n=18). One hundred and ten markers were employed in the linkage analysis.
Among these, 74 and 65 % were used for the female and male map, respectively. Of
the 81 markers used for female map construction, 56 of them could be assigned to 14
linkage groups (LG1 — LG 14). The length of the linkage groups ranged from 0.5 cM
(LG14) to 65.6 cM (LG1), and the number of markers varied from 2 to 8 per group
(Figure 5.3). The male framework map consisted of 57 markers, which could be
assigned to 13 linkage groups (LG1 — LG 13), also with 2 to 8 markers, and a linkage
group length varying from 1.4 cM (LG13) to 83.4 cM (LG1) (Figure 5.4). Twenty two
markers remained unlinked in both the female and male map. Both the tests of
similarity among loci and individuals detected 13 loci showing strong similarity
(0.99). Suspect linkage was only identified in the male map in which one linkage
(SSRY8 and SSRY53) was observed exhibiting recombination frequencies of 0.75.
Inclusion of these markers in the map caused discrepancy in the resultant map and so

these markers were eliminated.
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Figure 5.3.

2% 3 4% 5 6* T*

9 10* 11 12 13 14

Female genetic map of cassava derived from a cross between a
drought-tolerant (COL 1734) and a drought-susceptible (BRA 1149)
accession. The map shows linear order and interval distance of markers
in cM. Linkage groups are numbered sequentially from the longest to
the shortest (*Homologous linkage groups).
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1 2 3 4% 5 6*

T* 8 O* 10* 11 12 13

Figure 5.4. Male genetic map of cassava derived from a cross between a drought-
tolerant (COL 1734) and a drought-susceptible (BRA 1149) accession.
The map shows linear order and interval distance of markers in cM.
Linkage groups are numbered sequentially from the longest to the
shortest (*Homologous linkage groups).

5.3.3. Female and male map comparison

The distance between markers in both maps varied greatly across the different linkage
groups. In total, the female map spanned 519.2 cM with a mean distance between
adjacent markers of 9.3 cM. The total length of the male map was 468.3 cM with a
mean distance of 8.2 ¢cM between markers (Table 5.6). The intervals between loci
were 0.3-32.5 cM and 0.1-47.8 cM in the female and male map, respectively. In
general, there were 27 common markers present in both female and male map in the
population, which allowed identification of homologous linkage groups. Homologies
were identified between 7 linkage groups in the female and male map. Homology

between linkage group 4 in the female and 1 in the male map showed the highest
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number of allelic bridges (markers that are heterozygous in the gametes of both the
male and female parents and share a common allele). In all except one incident,
intervals between the male and the female homologous loci were larger in the male
than in the female map. In some instances, there were differences in the estimated
marker order in the common markers between the individual parental maps (Figures

5.3 and 5.4).

Table 5.5. Details of the cassava female (COL 1734) and male (BRA 1149)

genetic maps.

Detail Map
Female Male
Number of linkage groups 14 13
Number of markers 56 57
Total map size (cM) 519.2 468.3
Mean distance between markers (cM) 9.3 8.2
Number of unlinked markers 22 22
Range of marker number per group 2-8 2-12
Interval between loci (cM) 0.3-32.5 0.1-47.8

Table 5.6. Number of allelic bridges identified between the male and female
genetic maps of cassava derived from a cross between a drought-
tolerant (COL 1734) and a drought-susceptible (BRA 1149) accession.

Female map Male map Number of allelic bridges
LG 1 LG2 5
LG2 LG4 4
LG4 LG 1 6
LG 6 LG 6 2
LG7 LG7 2
LG8 LG 10 3
LG 10 LG9 5
Total 27
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5.4. Discussion

5.4.1. Labeling of ESSR’s, polymorphism screening and marker segregation

Traditional plant breeding methods with or without using biotechnology tools are the
two options for improving crops in water-limiting environments. Although both ways
aim at identifying traits that confer relative advantages under drought conditions, their
approaches are different. Traditional plant breeders use multi-locational testing
techniques to identify lines with economic traits. Physiologists and biotechnologists
hypothesize field traits that might be of importance, look for variation and then try to
link them to genes at molecular level. In a long-cycle crop like cassava, biotechnology
tools like marker-assisted selection can complement traditional plant breeding
methods through speeding up genetic gain by effectively increasing heritability and
also reducing the population sizes. Although the probable value of genetic markers
and linkage maps in plant breeding has been known for over 8 decades, it is only in
recent times that progress in automated technology has presented the accuracy,
expediency, rapidity, and level of throughput that can finally offer relevance to
modern plant breeding programs (Crouch and Serraj, 2002). For instance, Mansfield
et al. (1995) reported that fluorescence-based SSR detection and allele sizing through
laser excitation on an automated DNA fragment analyzer is one of the fastest and
most accurate methods for genotyping. Hayden et al. (2008) showed that the use of
dyes that fluoresce at certain wavelengths and intensities enables PCR multiplexing
and, hence, markers can be separated simultaneously in a single capillary or gel lane

as long as the fragment sizes do not overlap.

In this study, the ESSR allele sizes were overlapping (between 165-218 bp). Co-
separation was achieved by labeling the ESSR’s with spectrally resolvable fluorescent
dyes that had different emission wavelengths. This permitted the analysis of multiple
loci in the same capillary injection, on the basis of color and size, and also prevented
analysis complication caused by spectral overlap. The use of LIZ-labeled size
standard in the loading buffer allowed the alignment of peaks. Fluorescence-labeling
methods are advantageous in that the fluorophores have a longer shelf life, are safe
and their disposal issues are not demanding. Scoring of alleles is also automated and

more accurate than autoradiography and silver-staining techniques.
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Linkage maps are usually constructed using different types and sizes of mapping
populations (Ferreira et al., 2006). Mapping populations are advantageous in that they
allow dis-association of many characteristics that normally occur together in cultivars,
thus allowing a clearer evaluation of the value of individual loci (Lafitte et al., 2002).
Although specific studies relating to the ideal number of individuals in a segregating
population required to construct accurate linkage maps have been inconclusive,
simulation studies have shown that 200 individuals are required to construct a
reasonable and accurate genetic map (Semagn et al., 2006). Studies by Ferreira et al.
(2006) showed that, using between 50-1000 individuals, the low number of
individuals provided several fragmented linkage groups, inaccurate locus order and
imprecise maps. It was on this basis that population B was eliminated from this study
since the total number of individuals was 23 only and that of the reciprocal cross 33.
The use of large mapping populations is a critical factor in mapping as it facilitates

the analysis of quantitative traits such as drought tolerance.

SSR and ESSR markers are powerful tools for genetic analysis because they are co-
dominant, multi-allelic, easily assayed, and have wide transportability across different
mapping populations (Gupta et al., 1999). They have become the marker class of
choice for linkage mapping in many crop species (Roa et al., 2000; Okogbenin et al.,
2006). They provide a much more efficient marker system than the dominant type of
markers for mapping diploid cassava as well as other polyploids. SSR’s, especially
EST-derived SSR’s are attractive for molecular mapping, since EST’s represent the
coding regions of the genome. This means that, if ESSR’s are found to be associated
with a trait of interest, it might be possible that the mapped gene directly affects the

drought trait.

The high level of polymorphism (41%) of SSR and ESSR markers that we observed
in the reference population is comparable to the results of other crop species and the
same as the 40% polymorphism detected with RFLP’s in cassava (Okogbenin et al.,
2006). Eight percent of the markers revealed monomorphic double bands indicating the

possibility of duplicated loci for such genomic regions.

Marker segregation type provides information about the unordered genotypes of the
parents in a cross. They also determine the phenotypes that may occur in the offspring

(Maliepaard et al., 1997). In this study, apart from segregation types ab x cd and ef x
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eg, the other segregation types gave rise to less than four possible offspring
genotypes. Segregation types Im x 1l and nn x np had only two offspring genotypes
and were completely un-informative with regard to the meiosis of the second and the

first parent respectively.

Segregation deviations of molecular markers from Mendelian ratios have been
reported in many studies. A high percentage of markers showing distorted segregation
is frequent in out-crossing species (Gan et al., 2006; Okogbenin et al., 2006). In this
study, we observed a 24% segregation distortion, which is within the range of
distortions found in other studies. For example, a deviation of 31% has been reported
in soybean (Prabhu and Gresshoff, 1994) and 27% in cassava (Okogbenin et al.,
2006). Segregation distortion may be due to various processes amongst which can be
the partial lethal factors, i.e. elimination of gametes or zygotes controlled by a partial
lethal factor located in the region neighbouring the marker (Cheng et al., 1998), an
evolutionary force of an organism, as explained by Lyttle (1991). Xu et al. (1997)
suggested that segregation distortion may be ascribed to either contamination of the
genomic DNA with chloroplast DNA or some degree of preferential pairing or linked
deleterious mutations. Chromosome loss, genetic isolating mechanisms, genetic load
(Bradshaw and Stettler, 1994), genetic drive, chromosomal re-arrangements between
the parents, locus duplication, and technical problems like genotyping and scoring

errors may also cause segregation distortions (Cavalcanti and Wilkinson, 2007)

Cassava is an out-crossing species with high genetic load and suffers from severe
inbreeding depression (Okogbenin et al., 2006). In this study, a strict criterion was
applied for the selection of markers to be included in the mapping analysis on the
basis of scoring, peak height, ambiguity, and on segregation ratios approximating to
Mendelian expectations, and that is why the 5% markers that had ambiguous or weak
amplification were eliminated from the mapping assay. Therefore, deviations from
Mendelian segregation in this study may rather be related to the highly heterozygous

structure of the crop.
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5.4.2. Map construction

Genetic mapping in a full-sib family derived from heterozygous parents involves
linkage analysis of markers segregating independently in the female and male
gametes, and this leads to two autonomous maps (Maliepaard et al., 1997). This
permits the estimation of recombination frequencies for each parent separately, which
is not possible in a classical F,-mapping population. This means that mating types are
re-defined at a locus level rather than at all loci in parents. Homologous groups can
then be identified amongst the female- and male-derived linkage groups through

allelic bridges.

In this study, male and female PCR marker-based genetic linkage maps of cassava
were constructed with SSR and ESSR markers. The use of LOD 3.0 was the most
appropriate with this data and resolved 14 linkage groups in the female and 13 in the
male map. This represents a close approximation to the expected number of 18
linkage groups for a comprehensive linkage map of cassava (2n=36) although,
additional markers need to be incorporated into these maps to saturate them. The
differences in the number of linkage groups and map length observed may be due to
variation in the number of recombination events and mapped loci. Results by Wu et
al. (2002) showed that different map distances can also be caused by differences in
DNA sequence, DNA content and chromosomal re-arrangements. In addition to low
map saturation, marker distribution along the linkage groups was random as evident
by the mixture of tightly linked loci and regions with low density in the constructed
map. This is an indication that either recombination events or mapped loci were not
evenly distributed throughout the genome. The low density of markers in some of the
linkage groups could also correspond to regions that are highly homozygous and,
hence, show higher recombination frequency events (Castiglioni et al., 1999;

Okogbenin et al., 2006).

The mean map size per linkage group was 37.1 cM for COL 1734 and 36.0 cM for
BRA 1149 (Table 5.5), which is considerably smaller than the 100-150 cM commonly
found in agricultural crops (Maliepaard et al., 1997). This is because, as indicated,
some linkage groups were missing, and there was a limited number of mapped
markers in the maps. The mean map distance between markers is one of the important

components in linkage mapping and for the detection of quantitative loci associated
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with traits of interest. In this study, the mean separation between markers was 9.3 cM
in the female compared with 8.2 ¢cM in the male map. Although these maps were
incomplete in terms of map saturation and the number of linkage groups, when
compared with other studies, these means represent good marker coverage. For
example, researchers have found means of 6.0 and 10.7 cM in European pears
(Yamamoto et al., 2002); 6.7 and 10.8 cM in eucalyptus (Myburg et al., 2003); 8.7
and 9.0 cM in European chestnut (Casasoli et al., 2001); and 7.8 and 8.0 cM in willow
(Hanley et al., 2002). A few clusters of markers were evident in both linkage maps.
This is a common occurrence and has been reported in many linkage maps
irrespective of the organism or technique used to assay DNA polymorphisms. This
may be due to suppressed genetic recombination as described by Tanksley et al.

(1992).

5.4.3. Comparison with other maps

The F; cassava genetic maps by Fregene et al. (1997) and Mba et al. (2001) differed
from our maps with respect to marker number, type and density; genome coverage;
and number of linkage groups. The former, also the first genetic linkage map for
cassava was constructed with predominantly RFLP markers and only 3 SSR markers.
The map consisted of 168 markers distributed in 20 linkage groups, spanning 931.6
cM and a mean marker density of 1 per 7.9 cM. In the latter, 36 SSR markers were
placed on the former RFLP framework map of cassava to saturate it, and this resulted
in a reduction of 2 linkage groups. The F; female parent-derived map generated from
this study spans 519.2 ¢cM with 56 markers compared to the male map with 468.3 cM
and 57 SSR markers. The mean marker density is 1 per 8.7 cM. Of the SSR’s mapped
in this study, 23 markers are common to both our F; female map and the one
generated by Fregene et al. (2001), whereas in the male map, 22 allelic bridges where
identified. However, some variations were observed. Differences in the order were
evident for some markers in LG G (SSRY 135, NS 928, NS 97, SSRY 226 and SSRY
38) and LG 3 (SSRY 226, SSRY 153, SSRY 135, SSRY 165, NS 97, NS 928, NS
189, and SSRY 38) in the map generated from this study. In addition, NS 189 had
been mapped in LG G of the male map, whereas in this study, it was mapped in LG 3
in the female map. These may probably be due to the different statistical software and

the parameters used. The variation in the mean and lengths of the linkage groups
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observed may-be due to the disparity in the number of markers utilized. Twenty five
common markers showed colinearity between the maps generated from this study and
the F, map by Okogbenin et al. (2006) indicating the reliability of both maps. In
addition, the map distance of 46 microsatellite markers was determined, which had

not been mapped before.

5.4.4. Female and male map comparison

The female and male maps were compared to identify analogous linkage groups based
on common markers segregating in both parents. Homologies/locus bridges were
identified between 27 markers based on 7 linkage groups. This is advantageous in
that, these markers can act as anchor points for more mapping work, and also
identification of QTLs after further saturation since they have known sequences. In

addition, these markers are easily transferable between laboratories.

In this study, the female genomic map length was higher than the male. This is a
common phenomenon and has been well documented. For instance, Graner et al.
(1991) reported that, in flowering plants, the females appear to have a higher genomic
map length than the males due to variation in the rate of meiotic recombination,
whereas in gymnosperms, greater meiotic recombinations occur in male than in
female gametes (Groover et al., 1995). A few analogous markers were not uniformly
distributed over the maps. In some instances, there were minor differences in the
estimated marker order between the two parental maps due to differences in
recombination frequencies or the presence of chromosomal re-arrangements of one
parental genotype relative to the other in the group. Despite this observation, with a
number of common co-dominant markers of the same order present in chromosomes
of both parents, with more work, it will be possible to combine the information of
markers from different individuals and the available map so as to assemble a
comprehensive cassava consensus map. Ideally, a linkage map should contain at least
a backbone of co-dominant markers, such as SSR’s or ESSR’s, which are
reproducible and can be transported to another progeny to saturate the more
interesting regions of the genome (Maliepaard et al., 1998). Although the present
maps fulfills these requirements, they are not ideal to form a core map for cassava
drought research due to the limited number of co-dominant markers, but they form an

important platform for QTL’s associated with drought tolerance in cassava.
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Therefore, there is need to develop a saturated cassava consensus map that
incorporate SSR’s and ESSR markers since it will provide researchers with a greater

arsenal of tools for identifying genes associated with economically important traits.
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Chapter 6 Summary

6. Summary

Drought is one of the most important factors limiting crop production in sub-Saharan
Africa. This has detrimental effects to the people living in this region, and whose
population is increasing more rapidly than their domestic food production.
Noticeably, pressure on agricultural land has continued to intensify. Cassava is one of
the staple crops with remarkable tolerance to drought. It is adapted to diverse and
poor soil conditions, in addition to its flexibility in planting and harvesting times.
Understanding its physiological and molecular basis of drought tolerance may help to
target the key traits that limit crop yield under drought conditions. To improve our
understanding on drought tolerance mechanisms in cassava, the project "Identifying
the physiological and genetic traits that make cassava one of the most drought-tolerant
crops" was initiated in 2005 by the Brazilian Agricultural Research Corporation
(Embrapa) in collaboration with the International Center for Tropical Agriculture
(CIAT); the International Institute of Tropical Agriculture (IITA); Cornell University
and University of Goettingen. The ultimate goal of the project was to identify
morphological, physiological and molecular traits related to drought tolerance
mechanisms in cassava for further progress, and for their application in cassava and

other crop breeding programs.

The present study was conducted within the framework of this project with 31 African
cassava germplasm accessions from IITA and a mapping population developed at
CIAT. The objectives of this study were,
1) To develop a protocol for hardening and rapid micro-propagation of cassava
plantlets under local, low-cost conditions;
2) To identify agro-morphological attributes that are related to drought tolerance
in cassava,
3) To identify drought-tolerant and drought-susceptible cassava germplasm from
a selection of African accessions;
4) To identify secondary traits that could be used for phenotyping breeding
materials for drought tolerance;
5) To screen the CIAT mapping population with simple sequence repeats (SSR)

and expressed simple sequence repeat (ESSR) markers for linkage analysis.
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Thirty one putative drought-tolerant and drought-susceptible African cassava
germplasm accessions from IITA were micro-propagated using direct and in-direct
techniques, at Kenya Agricultural Research Institute (KARI), Nairobi, Kenya. In
direct micro-propagation, plantlets were hardened using vermiculite and multiplied
through nodal cuttings. In in-direct micro-propagation, plantlets were first multiplied
through sub-culturing and later hardened. The direct micro-propagation method had a
higher multiplication rate. The number of plantlets obtained in 7 months using the
direct method were 1173 as compared to 722 attained using the in-direct micro-
propagation. Rapid micro-propagation through nodal cuttings was cheaper in terms of
consumables and an effective alternative to enhance rates of multiplication, over the

in-direct method and the more conventional technique like the use of stem cuttings.

Agronomic and morphological evaluation of contrasting African cassava germplasm
accessions was carried out in water-stressed and well-watered environments at 5 time
points. The trial was conducted at the experimental field of KARI, Kiboko Research
Station in Makindu, Eastern Kenya, a site characterized by Acri-orthic Ferralsol soil.
Analysis of variance was performed using the agronomic and morphological data, and

broad sense heritability was estimated.

In general, significant differences were observed among the accessions, suggesting a
strong genetic basis for the phenotypic variation observed. Variation was also notable
in water-stressed and well-watered environments for a majority of traits evaluated.
This was due to the artificial water applied since, during the trial period, there was

hardly any rainfall.

At harvest, leaf length and width of certain accessions at the water-stressed site
approached that of the well-watered treatment. On average, the estimated mean
percentage leaf retention was high in the well-watered treatment. However, leaf
retention in some of the accessions assessed was almost the same in both treatments.
These accessions tended to produce higher yields. Thus, it may be desirable to select
for higher leaf retention when developing varieties adapted to dry areas. The range of
yields under stress was from 3.3 to 36.7 kg/mz, whereas, under the well-watered
treatment, it was smaller: 28.3 to 53.3 kg/m”. Differences among accessions in yield
and overall above-ground fresh biomass showed that these are important primary

traits to phenotype germplasm under favorable and water-stress conditions. In
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addition, 4 accessions G26, G11, G8 and G31 were more tolerant than the rest of the
genotypes evaluated, calling for further research and their involvement in agricultural

experimentation under drought-prone conditions.

Considering relationships between traits, genotype ability for both accumulation of
above-ground fresh biomass and to partition carbon into roots (harvest index) were
among the traits most correlated with root yield. However, accessions, environment
and the interaction of both influenced the traits strongly. Thus, it is important that
agro-morphological field trials be conducted in several locations for several seasons
for effective evaluation of their influences on traits that might be relevant for

phenotypically assessing drought tolerance.

Unlike for agro-morphological traits, where a drought-tolerant accession could be
identified from the yield, which is of primary concern, selection of an outstanding
accession in a water-limited environment using metabolic traits was not achieved in
this study. Maybe the well-watered plants experienced an incipient stress due to low
humidity, symptomless diseases or nutrient deficiency, which was not ascertained in
this study. Despite this, significant differences were observed between the water-
stressed and well-watered treatments for the traits evaluated, except protein and
amylose content. Performance in individuals was variable, although insignificant

differences were observed between the different stress phases.

Changes in sugar concentration have a role in the drought-tolerance of the accessions
evaluated, although, their relative contribution to drought stress could not be
determined from the available data. Further work is imperative to identify and
quantify sugar concentrations in relation to osmotic adjustment in these accessions. In
addition, further research to determine the time course of ABA accumulation, as a
cassava plant goes from its young stage to aging, is required so as to know the stage at

which ABA data are most informative.

Two genetic linkage maps were constructed using a South American mapping
population of 228 individuals derived from a cross between a drought-tolerant and a
drought-susceptible parent. A set of 377 simple sequence repeats (SSR) and expressed
simple sequence repeats (ESSR’s) were utilized for the initial polymorphism

screening. Differences in map size, interval, number and mean distance between
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markers were apparent between the two maps. The female map had 14 linkage groups
as compared to 13 in the male map. Twenty seven allelic bridges were noticeable
between the two maps. In addition, 25 markers showed collineality with other
available cassava maps. Forty six markers, whose map distances had not been
determined previously, were mapped in this study. These maps form an important
platform upon which to characterize the genetic basis of drought tolerance in cassava.
Continued addition of more markers in these maps will refine the utility of the

resource for future cassava breeding efforts.

In conclusion, four African cassava accessions apparently have the ability to
withstand severe drought. However, a majority of the accessions evaluated gave poor
response in adaptability to water-limited conditions. This suggests that further agro-
ecologically based research is required on these materials, since they represent diverse
improved accessions from IITA breeding activities. This, coupled with marker-
assisted genetic analysis, would be an appropriate approach for the identification of

drought-tolerant accessions.
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