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Zusammenfassung

In dieser Arbeit wird anhand von drei Beispielen gezeigt, wie die seismische Ge-

fährdungsabschätzung erdbebengefährdeter Gebiete verbessert werden kann. Das

Wellenfeld der Erdbeben wird dazu mit der Methode der Finiten Differenzen (FD)

berechnet, die für die aktuellen seismologischen Fragestellungen weiterentwickelt,

verbessert und angepasst wurde.

Die seismische Gefährdungsabschätzung hat sich in den letzten Jahren auf inter-

nationalem Gebiet zu einem bedeutsamen Forschungsbereich entwickelt. Die viel-

fältigen Fragestellungen verbinden jedoch nicht nur Wissenschaftler verschiedener

Länder, sondern führen auch zu einer fruchtbaren interdisziplinären Zusammenar-

beit und zum Austausch zwischen Geowissenschaftlern, Ingenieuren und Politikern.

Einleitung

Die Modellierung des Wellenfeldes von Erdbeben mit der FD-Methode hat in den

letzten Jahren eine weite Verbreitung gefunden [52, 71, 88, 111, 118]. Hierbei wird

die Wellenausbreitung in einem räumlich begrenzten Volumen V berechnet, in das

die Quelle eingeschlossen ist. Dieses Volumen wird räumlich diskretisiert, indem

man es mit einem nummerischen Gitter überzieht. An jedem Gitterpunkt wird die

Wellengleichung gelöst. Deren partielle Ableitungen werden in der nummerischen

Methode durch endliche (finite) Differenzen ersetzt.

In den frühen 80-er Jahren des 20. Jahrhunderts ermöglichten die Rechenkapazitäten

die Berechnung des Wellenfeldes nur im zweidimensionalen Raum [134, 135]. Die

rasante Entwicklung der Computertechnologie gestattete es, Anfang der 90-er Jahre

Wellenausbreitung in kleinen dreidimensionalen Modellen zu berechnen [103]. Der

Spektralgehalt der Seismogramme war dabei für typische Epizentraldistanzen von

etwa 30 – 50 Kilometern auf Frequenzen unterhalb von 0,5 Hertz beschränkt, da

die Maximalfrequenz des berechneten Signals umgekehrt proportional zum Abstand

zwischen zwei Gitterpunkten ist (vgl. Kapitel 1). Moderne Parallelrechner bieten
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II ZUSAMMENFASSUNG

mittlerweile die Möglichkeit, auch höherfrequente Signale (z.B. bis zu 1 – 1,5 Hertz

[49, 88]) oder Wellenausbreitung in größeren Modellen zu simulieren. Die Anwendun-

gen der FD-Modellierung erstrecken sich heute über mehrere Größenordnungen: Sie

beinhalten lokale Untersuchungen wie z.B. Wellenausbreitung in schmalen Bruch-

zonen [63, 66, 124] oder vulkanischen Strukturen [92]. Eine typische Anwendung

für die Untersuchung regionaler Effekte stellt die Berechnung von Erdbebenwellen

in Grabenstrukturen [49, 104, 106, 118] oder die Simulation großer historischer

[89, 93, 111] oder hypothetischer [59, 105] Beben dar. Im großen Maßstab konn-

te seismische Wellenausbreitung erfolgreich für die Unterkruste [73], den oberen

Mantel [132] und in komplexen globalen Erdmodellen [64, 65] simuliert werden.

Die in dieser Arbeit vorgestellten Anwendungen enstammen dem Bereich der seis-

mischen Gefährdungsabschätzung. Die Quantifizierung der seismischen Gefährdung

einer Region schafft die notwendigen Vorbedingungen für die Erstellung von Bau-

vorschriften, die Gebäude, Brücken und Infrastruktur bei zukünftigen Erdbeben

vor dem Zusammenbruch bewahren sollen. Sie hilft somit, Menschenleben zu ret-

ten, die Zahl der Verletzten zu reduzieren und die Versorgung der Überlebenden

zu gewährleisten. Es ist deshalb nicht verwunderlich, dass sowohl öffentliches als

auch wissenschaftliches Interesse an diesem Thema in den letzten Jahren deutlich

angestiegen sind und auf dem Gebiet der seismischen Gefährdungsabschätzung sehr

gute Fortschritte erzielt wurden. Diese Tatsache spiegelt sich in einer Vielzahl von

Veröffentlichungen zu den Methoden der seismischen Gefährdungsabschätzung wider

[15, 18, 20, 25, 34, 35, 39, 53, 90, 110, 139]. Grundsätzlich lassen sich zwei Ansätze

unterscheiden: Bei der deterministischen Gefährdungsabschätzung wird die Boden-

bewegung des größten Bebens, das in der Region aufgetreten ist, als Grundlage für

Bauvorschriften herangezogen. Da die Bodenbewegung nicht an jedem Ort bekannt

ist, wird eine vom Epizentrum radial abklingende Maximalamplitude angenommen,

die sich mit empirisch bestimmten Abklingkurven [3, 6, 21, 22, 68, 117] berech-

nen lässt. Eine weitere Möglichkeit, mit dem deterministischen Ansatz die Bo-

denbewegung flächendeckend zu bestimmen, bietet die Methode der Finiten Dif-

ferenzen. Die probabilistische Gefährdungsabschätzung bedient sich eines anderen

Ansatzes. Hier wird die Wahrscheinlichkeit berechnet, mit der die Bodenbewe-

gung einer bestimmten Stärke in einem gewissen Zeitraum eintritt. Die Ergebnisse

der Gefährdungsabschätzung werden in regionalen und globalen Gefährdungskarten

[40, 91, 125, 126] zusammengestellt.

Trotz der eindrucksvollen Entwicklung des Forschungsgebiets gibt es jedoch auch

Defizite und Probleme, die bisher nicht behoben werden konnten. Ein Haupt-
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kritikpunkt bei der Abschätzung der seismischen Gefährdung einer Region ist die

Tatsache, dass die Dynamik der Erdbebenquelle bisher nicht in die Berechnun-

gen mit einfließt. Hierzu zählt sowohl die oben angesprochene Bruchdynamik bei

der Simulation synthetischer Seismogramme mit der Methode der Finiten Differen-

zen, als auch die Tatsache, dass der Bebenherd bei der Interpolation der Bo-

denbewegung mit Abklingkurven rechnerisch durch eine Punktquelle angenähert

wird. Auch die lokalen Untergrundstrukturen werden bei der Berechnung der seis-

mischen Gefährdung häufig nicht berücksichtigt. Lokale Beckenstrukturen oder

eine oberflächennahe Gesteinsschichtung können die Amplitude der Bodenbewegung

durch Fokussierungs- oder Resonanzeffekte deutlich erhöhen. Zonen erniedrigter

seismischer Geschwindigkeit können als Wellenleiter wirken und seismische Energie

in Gebiete transportieren, die weit vom Epizentrum entfernt liegen. Das Ziel der

vorliegenden Arbeit ist es, diese Effekte zu quantifizieren, um so die Methoden der

seismischen Gefährdungsabschätzung zu verbessern.

Berechnung des Wellenfeldes

Die allgemeine Form der elastischen Bewegungsgleichung [4, 75] ergibt sich aus

dem Kräftegleichgewicht zwischen der Trägheitskraft, die von der Dichte des Medi-

ums ρ und von der zweiten zeitlichen Ableitung der Bewegung ui abhängt, den

Oberfächenkräften ∂σij

∂xj
und den Volumenkräften fi. Es gilt:

ρüi =
∂σij

∂xj
+ fi. (1)

Die Komponenten des Spannungstensors σij werden über eine empirische Beziehung,

das Hookesche Gesetz, mit denen des Deformationstensors des Mediums εij ver-

knüpft. Im isotropen Fall reichen zur Beschreibung zwei unabhängige Größen, die

Laméschen Parameter λ und μ, und es gilt:

σij = λεkkδij + 2μεij. (2)

δij steht hier für das Kronecker-Symbol. Die Voraussetzung der Homogenität des

Mediums muss in diesem Fall nicht gegeben sein, d.h. λ und μ können ortsabhängig

sein.

Sind die betrachteten Deformationen εij klein, so lassen sich diese durch die Ver-

schiebungen u ausdrücken:
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εij =
1

2
(
∂ui

∂xj
+

∂uj

∂xi
). (3)

Das Einsetzen von Gleichungen 2 und 3 in Gleichung 1 führt zu einem komplexen

Gleichungssystem (vgl. Kapitel 1, Gleichungen 1.5 - 1.13), das mit der Finiten-

Differenzen-Methode nummerisch gelöst wird. Die Berechnung wird für viele auf-

einander folgende Zeitpunkte durchgeführt. Auf diese Weise erhält man an jedem

Gitterpunkt ein Seismogramm.

Für die Implementierung der Quelle in das FD-Gitter gibt es zwei grundsätzlich un-

terschiedliche Ansätze. Zum einen kann man den Bruchverlauf durch die Definition

einer Verschiebungsrate an jedem Punkt der Bruchfläche vorgeben. Diese Art der

Implementierung empfiehlt sich für kleine Erdbeben, die als Punktquellen realisiert

werden (vgl. Kapitel 2), für Erdbeben, deren Bruchfläche mit einem Winkel von

90o einfällt (vgl. Kapitel 3), und für Bruchflächen, die tief in der Erde liegen (vgl.

Kapitel 4). Soll das Beben auf einer schräg liegenden Bruchfläche stattfinden, die

nah an die Erdoberfläche reicht oder bei der die Oberfläche sogar bricht, so ist es

empfehlenswert eine dynamische Quelle in das FD-Gitter einzubauen. Bei dieser

Art der Implementierung ist der Bruchverlauf nicht vorgegeben, sondern kann sich

während der Berechnung frei entwickeln. Diese Implementierung ist zwar mit einem

deutlich größeren Rechenaufwand verbunden, die Seismogramme beinhalten aber

auch dynamische Effekte, die zum Beispiel durch die Interaktion der Normalspan-

nungen mit der freien Oberfläche entstehen. In Kapitel 4 werden diese dynamischen

Effekte genauer untersucht.

Fallstudie I: Erdbeben im Rheingraben

Die erste Fallstudie beschäftigt sich mit der Frage, wie genau ein elastisches Unter-

grundmodell bekannt sein muss, um die berechnete Wellenausbreitung für hochfre-

quente (1 – 8 Hertz) seismische Gefährdungsabschätzung verwenden zu können.

Dieser Frequenzbereich ist speziell in Mitteleuropa interessant für die Bestimmung

der seismischen Gefährdung, da Eigenfrequenzen ein- bis zweistöckiger Gebäude in

diesem Bereich liegen. Der Frequenzgehalt von 3D FD-Simulationen ist momentan

auf Frequenzen unterhalb von etwa 1 – 1,5 Hertz beschränkt. Hierfür gibt es zwei

Gründe. Zum einen begrenzt die Rechenkapazität selbst moderner Computer die

Anzahl der Gitterpunkte im Modell und somit indirekt die Maximalfrequenz des

Wellenpakets. Der zweite Grund liegt in der unzureichenden Kenntnis der geolo-

gischen Untergrundmodelle. Selbst wenn uns die sich ständig weiterentwickelnde
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Computertechnologie sicher bald in die Lage versetzen wird Wellenausbreitung für

Frequenzen bis 8 Hertz auch in drei Dimensionen zu berechnen, bleibt das Problem,

dass die geologischen Modelle auf der Skala einer Wellenlänge (z.B. 250 m bei 8

Hertz und einer minimalen S-Wellengeschwindigkeit von 2 km/s) in den wenigsten

Fällen bekannt sind. Dies aber wäre die Voraussetzung für die Rekonstruktion de-

tailgetreuer Wellenformen. Für die Abschätzung der seismischen Gefährdung ist

eine Simulation der exakten Wellenformen jedoch im Allgemeinen nicht notwendig.

Bei der Bestimmung der seismischen Gefährdung spielen z.B. nur die Maximalwer-

te der Bodenschwinggeschwindigkeit und die spektrale Beschleunigungsantwort eine

Rolle. Wenn sich diese Parameter mit einem heute bekannten Geschwindigkeitsmo-

dell rekonstruieren lassen, kann es für die Bestimmung der seismischen Gefährdung

verwendet werden. In Kapitel 2 wird das Wellenfeld dreier Beben mit Lokalmagni-

tuden ML 3,5 – 3,6 im Frequenzbereich von 1 – 8 Hertz in einer 2D FD-Rechnung

simuliert. Die in dieser Arbeit vorgestellten Berechnungen verwenden Quellpara-

meter von Erdbeben, die in den Jahren 1996 und 1997 im Rheingraben stattge-

funden haben [12, 13]. Gerade im Rheingraben spielt die Verwendung der FD-

Methode für die Bestimmung der seismischen Gefährdung eine besondere Rolle,

da für das letzte große Beben (ML = 6.5), das im Jahre 1356 in der Nähe von

Basel (Schweiz) stattgefunden hat [77], keine instrumentellen Aufzeichnungen ex-

istieren. Dies ist eine typische Situation für seismische Regionen in dem Inneren

tektonischer Platten. Hier liegt das Wiederkehrintervall von Großereignissen bei

bis zu mehreren tausend Jahren [25]. Auch für den Rheingraben ist es also durch-

aus denkbar, dass ein Beben dieser Stärke wieder auftritt. Um eine Aussage über

die Güte der simulierten Seismogramme machen zu können, werden die synthetisch

erzeugten Seismogramme mit registrierten Seismogrammen von 5 Stationen ver-

glichen. Drei dieser Einkomponenten-Stationen (LIBD, FBB, BBS) liegen auf dem

Sedimentgestein des Rheingrabens, während die Station FBB in der Nähe des Gipfels

des Feldbergs im Schwarzwald steht. Eine weitere Station (MOF) gehört zum

französischen Netzwerk ReNaSS (Réseau National de Surveillance Sismique) und

befindet sich in den Vogesen. Bei dem Vergleich werden verschiedene Parameter

untersucht: Ein erster Test überprüft das elastische Modell durch einen Vergleich

der Ankunftszeiten der ersten Phase (Kompressionswelle) in den synthetischen und

aufgezeichneten Seismogrammen. Hier zeigen sich ganz unterschiedliche Ergebnisse:

An den drei Stationen im Rheingraben konnten die Ankunftszeiten der Wellen des

Bebens vom 24. August 1996, dessen Epizentrum in Dessenheim (Frankreich) lag,

mit einer Genauigkeit von ± 0,1 Sekunden simuliert werden. Dies ist die beste
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Übereinstimmung, die im gesamten Datensatz gefunden wurde. Die größte Abwei-

chung trat für das Beben vom 17. November 1997 mit Epizentrum in der Nähe von

Weil am Rhein (Deutschland) aufgezeichnet an der Station FELD im Schwarzwald

auf. Hier betrug die Differenz zwischen den Ankunftszeiten des synthetischen und

des registrierten Seismogramms 1,2 Sekunden. Der zweite Parameter, der in Kapitel

2 verglichen wird, ist der Maximalwert der Bodenschwinggeschwindigkeit. Dieser

Parameter spielt bei der Bestimmung der seismischen Gefährdung eine entschei-

dende Rolle, da er aussagt, welcher Maximalbelastung ein Gebäude während eines

Erdbebens standhalten muss. Die Maximalwerte in den synthetischen Seismogram-

men liegen in einigen Fällen über den Werten der Realdaten, in anderen Fällen sind

sie niedriger. Die Abweichungen betragen in den meisten Fällen nicht mehr als einen

Faktor 2 – 3. In diesen Fällen könnten die Simulationen für die Abschätzung der seis-

mischen Gefährdung verwendet werden. Der Fehler, der durch eine ungenaue Magni-

tudenbestimmung historischer Beben auftritt, liegt in der gleichen Größenordnung.

In einigen Fällen zeigten sich beim Vergleich der Maximalgeschwindigkeiten jedoch

auch Diskrepanzen bis zu einem Faktor 10. Diese Abweichung ist zu groß um

die simulierten Seismogramme für die Gefährdungsabschätzung einzusetzen. Ein

ähnlicher Schluss muss für die Vergleiche der anderen Parameter gezogen werden.

Sowohl die Erschütterungsdauer, die definiert ist als die Zeit, in der zwischen 5% und

75% der kumulierten quadrierten Bodenbeschleunigung aufgezeichnet werden [130],

als auch die Amplituden der spektralen Antwortwerte können in den meisten Fällen

mit einer maximalen Abweichung von einem Faktor 2 – 3 simuliert werden. Für den

Zweck der seismischen Gefährdungsabschätzung wäre dieser Fehler zu tolerieren.

In einigen Fällen weichen die Werte der simulierten Seismogramme jedoch so stark

von denen der aufgezeichneten Daten ab, dass die Ergebnisse für eine zuverlässige

Gefährdungsabschätzung nicht zu verwenden sind. In Kapitel 2 werden mögliche

Erklärungen für diese Abweichungen diskutiert: Um auszuschließen, dass der lokale

Stationsuntergrund für die Diskrepanzen verantwortlich ist, wird das Verhältnis von

P/S-Amplituden verglichen. Die Gesteinszusammensetzung in den oberen Dutzend

Metern kann die Wellenformen durch Resonanzen stark verändern. Dieser Effekt

ist in den FD-Simulationen nicht berücksichtigt. Geht man davon aus, dass der

Effekt die Amplituden von P- und S-Wellen in gleichem Maße beinflusst, so sollten

die Amplitudenverhältnisse von P- zu S-Wellen frei sein von Einflüssen des lokalen

Stationsuntergrunds und die Verhältnisse der simulierten und der aufgezeichneten

Seismogramme sollten übereinstimmen. Das ist jedoch nicht der Fall. Eine weite-

re mögliche Erklärung für die Unterschiede der Seismogramme könnte darin liegen,
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dass Materialdämpfung bei der Berechnung der Seismogramme mit der FD- Methode

aus Gründen der Rechenzeit nicht berücksichtigt wurde. Eine ähnliche Studie [46]

zeigte, dass die Maximalamplitude von Scherwellen für Epizentraldistanzen zwischen

40 und 60 Kilometern um etwa 22% reduziert wird, wenn Dämpfung (QP = 1500 and

QS = 1000) mit berücksichtigt wird. In einigen Fällen würde die Übereinstimmung

somit verbessert werden, in anderen Fällen würde sie sich verschlechtern. Auch die

Topografie des Geländes wurde in die FD-Berechnungen nicht mit einbezogen. Ge-

rade für die Station FELD, die auf einer Höhe von knapp 1500 Metern liegt, sind

hier Änderungen zu erwarten. Die Berücksichtigung der Topografie wirkt sich durch

den längeren Laufweg sowohl auf die Einsatzzeiten der Wellen in den Seismogram-

men als auch auf die Amplituden aus, da diese durch geometrische Streuung weiter

gedämpft würden. Als eine weitere mögliche Ursache für die Unterschiede wird

eine ungenaue Bestimmung der Herdparameter in Betracht gezogen. Der Herdpa-

rameter mit der größten Ungewissheit ist die Herdtiefe [131]. Die Herdtiefen, die

durch das Landesamt für Geologie, Rohstoffe und Bergbau in Baden-Württemberg

bestimmt wurden, haben Fehlergrenzen von bis zu 5 Kilometern bei Herdtiefen zwi-

schen 7 und 17 Kilometern. In einer Vorstudie zu dieser Arbeit [47] konnte gezeigt

werden, dass die Bodenbewegung um den Faktor 2 ansteigt, wenn die Tiefe des

Hypozentrum von 15 auf 10 Kilometer angehoben wird. Die bisher diskutierten

Fehlerquellen erklären alle nur einen kleinen Teil der Unterschiede zwischen re-

gistrierten und simulierten Seismogrammen. Als wahrscheinlichste Erklärung für

den Unterschied zwischen gemessenen und synthetischen Daten erscheint die Unge-

nauigkeit und die geringe Auflösung des elastischen Modells. Hochauflösende aktive

seismische Experimente sind erforderlich um das Untergrundmodell zu verbessern,

so dass es für die Abschätzung der seismischen Gefährdung der Region verwendet

werden kann. Außerdem wäre eine flächendeckende und dauerhafte Installation von

modernen Dreikomponenten-Seismometern zu wünschen um die Datenqualität zu

verbessern.

Fallstudie II: Jericho-Erdbeben

Die Auswirkungen der Bruchdynamik und der Einfluss eines Sedimentbeckens auf

die Amplituden der Bodenbewegung werden in einer zweiten Fallstudie in Kapitel 3

anhand des Jericho-Bebens untersucht. Beide Effekte sind in radialsymmetrischen

Abklingkurven, wie sie für die Amplitudeninterpolation bei der seismischen Gefähr-

dungsabschätzung verwendet werden, nicht enthalten [3, 6, 21, 22, 68, 117]. Die



VIII ZUSAMMENFASSUNG

Berechnungen in Kapitel 3 quantifizieren den Einfluss der Bruchdynamik und der

großflächigen Untergrundstrukturen. Sie zeigen durch die Simulation des Wellen-

feldes eines Bebens mit Lokalmagnitude ML = 6,2 in einem einfachen Graben-

modell [5, 37], dass für große Beben und für heterogene Modelle beide Parameter

einen entscheidenden Einfluss auf die Amplituden der Bodenbewegung haben. Die

Berechnungen stellen ein historisches Beben nach, das am 11. Juli 1927 in der

Nähe der Stadt Jericho am nördlichen Ende des Toten-Meer-Beckens stattgefun-

den hat. Dieses Ereignis ist das jüngste in der über 4000 Jahre alten Geschichte

großer (ML > 6.0) Beben, die alle entlang der Verwerfungszone des Toten Meers

aufgetreten sind. Es ist das Einzige dieser Beben, für das präzise Informationen

über die Lage der Quelle und die Schadensverteilung zur Verfügung stehen [96, 123,

127]. Die makroseismische Intensitätsverteilung zeigt eine ungewöhnlich deutliche

Ausprägung großer Intensitätswerte in Richtung Norden. Weiterhin ungewöhnlich

ist die Lage des Intensitätsmaximums (Intensität X), das etwa 50 Kilometer nördlich

vom Epizentrum entfernt zu finden ist. Zwei weitere Gebiete hoher Intensität (VIII

– IX) liegen etwa 100 Kilometer nördlich des Epizentrums. Die hier gefundene Ab-

weichung von einer radial abklingenden Bodenbewegung wurde auch bei anderen

Ereignissen in der Region beobachtet [127, 141]. Eine mögliche Erklärung des

Phänomens könnte in der Untergrundstruktur des Beckens liegen, von dem vermutet

wird, dass es mit seiner langen Ausdehnung wie ein Wellenleiter wirkt [140]. Die

FD-Berechnungen in Kapitel 3 bestätigen diese Annahme und weisen außerdem auf

die Bedeutung des Einflusses der Bruchdynamik auf die Amplituden der Bodenbe-

wegung hin. Die Untersuchungen beinhalten die Analyse des Wellenfeldes anhand

der flächenhaften Amplitudenverteilung an der Oberfläche zu verschiedenen Zeit-

punkten. Weiterhin werden Seismogramme an ausgewählten Stationen im Becken

und auf dem anstehenden Gestein untersucht. Es werden Maximalwerte der Bo-

denschwinggeschwindigkeit sowie spektrale Beschleunigungen (YFD1) bei einer Fre-

quenz von einem Hertz berechnet. Um den Untergrundeffekt zu eliminieren werden

die spektralen Beschleunigungen des Beckenmodells mit spektralen Beschleunigun-

gen verglichen, die in einem elastischen Halbraum mit der FD-Methode berech-

net wurden (YFD2). Ein zweiter Vergleich wird mit spektralen Beschleunigungen

durchgeführt, die mit einer Abklingrelation (YAR) berechnet wurden. Durch die

Berechnung der Verhältnisse RFD = YFD1/YFD2 und RAR = YFD1/YAR lassen sich

die Ursachen für die Abweichung von einer radialen Verteilung der Bodenbewegung

separieren und erklären. Wenn RFD große Werte annimmt, deutet das auf eine

Verstärkung der Amplituden durch die Untergrundstruktur hin, da alle anderen



ZUSAMMENFASSUNG IX

Parameter in den beiden FD-Berechnungen übereinstimmen. Im Gegensatz dazu

weisen hohe Werte von RAR auf den Einfluss der Bruchdynamik hin, da er in der

Berechnung der spektralen Beschleunigungen mittels Abklingkurven nicht enthalten

ist. RAR kann auch dann hohe Werte annehmen, wenn die Amplituden der Seismo-

gramme aus der FD-Berechnung durch Reflexionen erhöht worden sind. Solche

Reflexionen können zum Beispiel am Rande des Beckens auftreten. Kleine Werte

von RAR (Verstärkungen deutlich kleiner als ein Faktor 2) finden sich südlich des

Epizentrums. Sie steigen in Richtung Norden langsam an. Das größte Verhältnis

tritt am Rande des Beckens auf (RAR = 5,1) und rührt von Reflexionen her, die in

die Berechnung von YAR nicht mit einfließen. In der Nähe des Epizentrums nimmt

RAR Werte von 2,0 – 2,5 an, die durch die Bruchdynamik erklärt werden können.

Der Einfluss des Untergrundes wiegt schwerer: Das Verhältnis RFD beträgt auf

dem Sedimentgestein etwa einen Faktor 4. Die Amplitudenverstärkung durch die

Reflexionen lässt sich auch hier beobachten, da die Schichtgrenze, an der die Re-

flexionen auftreten, im Halbraum nicht vorhanden sind. Auch hier findet sich eine

Verstärkung um den Faktor 5,1. Die Ergebnisse aus Kapitel 3 zeigen somit (a) den

bedeutenden Einfluss der Untergrundstruktur, die in die Berechnung der seismischen

Gefährdung Israels bisher nicht eingeht, und (b), dass dieser Einfluss für ein Beben

der Magnitude 6,2 sogar größer ist als der der Bruchdynamik. Für stärkere Beben

und die damit verbundenen größeren Bruchflächen [138] kann sich diese Reihenfolge

herumdrehen.

Fallstudie III: Erdbeben auf schräg liegenden Bruchflächen

Die Bodenbewegung von Erdbeben mit schräg liegenden Bruchflächen wird in Kapi-

tel 4 untersucht. Im Nahfeld eines Erdbebens ist die Verteilung der Bodenbewegung

von Beben mit Fallwinkeln θ �= 90o häufig asymmetrisch. Im Hangenden treten

deutlich größere Bodenschwinggeschwindigkeiten auf als im Liegenden. Dieser Ef-

fekt kann dadurch erklärt werden, dass die Normalspannungen auf der Bruchfläche

durch die freie Oberfläche noch während des Bruchvorgangs beeinflusst werden, was

sich auf die Fortsetzung des Bruchs auswirkt. Dieses Zusammenspiel wird als dy-

namische Interaktion bezeichnet und ist noch nicht vollständig verstanden. Am

auffälligsten ist es bei flach liegenden Bruchflächen. Die Ausprägung der Asym-

metrie der Bodenbewegung hängt weiterhin vom Fallwinkel ab. Die in der seismi-

schen Gefährdungsabschätzung beliebte Berechnung von hypothetischen Erdbeben

mit herkömmlichen FD-Methoden beinhaltet diese dynamische Interaktion im All-
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gemeinen nicht. Bei der Berechnung von Beben, die durch eine Punktquelle oder

durch eine senkrecht liegende Bruchfläche charakterisiert werden (z.B. in Kapitel 2

und 3), tritt der Effekt nicht auf. Hier empfehlen sich FD-Methoden, die die dy-

namische Interaktion nicht berücksichtigen, da sie deutlich weniger rechenintensiv

sind. Bei der Simulation von Beben auf schräg liegenden Bruchflächen, besonders

wenn diese in die Nähe der Oberfläche reichen, ist die Berücksichtigung des Effekts

dynamischer Interaktion jedoch notwendig. Es ist nicht sehr wahrscheinlich, dass

dies routinemässig in naher Zukunft geschehen wird, da zum einen die Implemen-

tierung der Bruchdynamik in vorhandene FD-Programme sehr zeitaufwändig ist und

die FD-Rechnungen einen grösseren virtuellen Speicher als auch eine deutlich längere

Rechenzeit brauchen. In Kapitel 4 werden verschiedene Szenarien von Beben auf

schräg liegenden Verwerfungen mit Fallwinkeln von 30o, 45o und 60o in einem homo-

genen Halbraum berechnet. Die Oberkanten der Verwerfungen liegen zwischen null

Kilometern (Bruch reicht bis an die Oberfläche) und 5 Kilometern Tiefe. Die Seis-

mogramme werden sowohl mit als auch ohne dynamische Interaktion berechnet. So

kann zum Einen ein Schwellenwert für die Tiefenlage der Oberkante der Bruchfläche

bestimmt werden, unterhalb der die dynamische Interaktion zu vernachlässigen ist,

und zum Zweiten kann der Effekt der dynamischen Interaktion für geringe Tiefen

quantifiziert werden. Diese Korrekturen können dann bei zukünftigen Berechnungen

hypothetischer Beben, die die dynamische Interaktion nicht berücksichtigt haben,

auf die Amplituden der Bodenbewegung aufaddiert werden. In Kapitel 4 werden

zunächst die Bodenbewegungen an der Oberfläche und in Vertikalschnitten sowie

die Spannungsverteilung auf der Bruchfläche visualisiert. Vorgehende Untersuchun-

gen [2, 24, 28, 30, 54, 67, 82, 97] verifizierend wird gezeigt, dass die ungleich-

mässige Verteilung der Bodenbewegung auf die Interaktion der Normalspannun-

gen mit der freien Oberfläche zurückzuführen ist. Die Untersuchung zeigt, dass

die stärksten dynamischen Effekte für Bruchflächen auftreten, die bis zu einem

Kilometer an die Oberfläche herankommen. Amplitudenverstärkungen der Boden-

schwinggeschwindigkeit bis zu einem Faktor 3 werden durch Bruchgeschwindigkeiten

verursacht, die oberhalb der Scherwellengeschwindigkeiten liegen. Am deutlichsten

sind diese Effekte an der Oberfläche in einem Bereich von etwa 3 Kilometern (für

einen Fallwinkel von 30o) bis zu 13 Kilometern (für einen Fallwinkel von 60o) um die

Bruchfläche herum zu beobachten. Auch das seismische Moment, in dessen Berech-

nung die durchschnittliche Verschiebung auf der Bruchfläche mit eingeht, ändert

sich unter Berücksichtigung der Bruchdynamik in den FD-Simulationen. Reicht der

Bruch bis an die Oberfläche, so steigt das seismische Moment um bis zu 71% an.
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Dieser stärkste Anstieg wurde für einen Fallwinkel von 60o und für ein dynamisches

Modell gefunden, bei dem nur die dynamische Abschwächung der Verschiebung be-

rücksichtigt wird. Verwendet man ein realistischeres Modell, das auch noch die

Abschwächung der Verschiebungsrate mit einbezieht, so ändern sich die Ergebnisse

für die Maximalwerte der Bodenschwinggeschwindigkeit nicht. Das seismische Mo-

ment wird aber um einen Faktor von etwa 13% reduziert. Bei einer weiteren Un-

tersuchung in Kapitel 4 wurden zuerst eine und dann zwei Schichten erniedrigter

seismischer Geschwindigkeiten in das elastische Modell eingebaut. Der Effekt der dy-

namischen Interaktion der Normalspannungen mit der freien Oberfläche wird durch

die Einfügung von Schichten mit erniedrigten Geschwindigkeiten verstärkt. Hier

wird auf einer Bruchfläche mit einem Fallwinkel von 45o sogar die neunfache Boden-

schwinggeschwindigkeit erreicht. Dieser größte Wert wird nicht, wie erwartet, im

Modell mit zwei Schichten erniedrigter Geschwindigkeit erreicht, sondern tritt im

Modell auf, bei dem der Halbraum nur mit einer Schicht bedeckt ist. Er kommt

durch ein Zusammenspiel zweier Faktoren zustande: die Verstärkung durch die Dy-

namik wird zusätzlich durch Resonanzeffekte in der obersten Schicht beeinflusst, was

zu einer zusätzlichen Amplitudenverstärkung führt. Das seismische Moment steigt

für die Berechnungen in den geschichteten Modellen um 72% (eine Schicht über

einem Halbraum) bzw. 82% (zwei Schichten über einem Halbraum). Die Ergeb-

nisse in Kapitel 4 zeigen somit, dass die dynamische Interaktion einen deutlichen

Einfluss auf die Amplituden der Bodenschwinggeschwindigkeit hat und dass diese

Effekte bei der Bestimmung der seismischen Gefährdung an flachen, schräg liegenden

Bruchflächen berücksichtigt werden müssen.
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t - Time

u - Vector of ground displacement

UBC - Uniform building code

UHS - Uniform halfspace

USA - United States of America

UT - Universal time

v - Vector of ground velocity

V - Modeling volume

va - Regression coefficient used in chapter 3, equation 3.1

vmax - Maximum wave velocity

vmin - Minimum wave velocity

vp - Compressional wave velocity

vR - Rupture velocity

vs - Shear wave velocity

vs30 - Shear wave velocity in upper 30 meters

Vc - Slip rate weakening distance

W - West

x - Coordinates of a grid point

Y - Averaged horizontal spectral acceleration

YFD1 - Y computed using the FD method for the DSB model

YFD2 - Y computed using the FD method for a homogeneous model

YAR - Y computed using an attenuation relation

δij - Kronecker delta function

εij - Elements of the strain tensor

θ - Dip angle

λ - First Lamé parameter

Λ - Rake angle

μ - Second Lamé parameter, shear modulus



14 LIST OF ABBREVIATIONS AND SYMBOLS

μd - Dynamic friction coefficient

μs - Static friction coefficient

φ - Strike angle

ρ - Density of a medium

σ - Standard deviation

σ0 - Scalar initial stress

σe - Scalar elastic stress

σij - Element of the stress tensor

σn - Stress component normal to the fault plane

σy - Scalar yield stress

τr - Rise time



Introduction

In recent years Finite Difference (FD) methods have become a powerful tool for

forward modeling the seismic wavefield of earthquakes (e.g. [52, 71, 88, 103, 134].

Applications include a large range of scales. Effects of local extend are treated in

the modeling of wave-propagation in narrow fault zones [63, 66, 124] or in volcanic

structures [92]. Regional effects are studied when investigating basin structures

[49, 104, 106, 118], simulating large past events [89, 93, 111] or scenario earthquakes

[59, 105]. Large-scale wave-propagation could be successfully modeled in the lower

crust [73], the upper mantle [132] and in global earth models [64, 65]. In these

above mentioned studies, the simulation of seismic waves has been used to answer a

variety of different questions: Seismic wave-propagation is modeled in order to better

understand effects the seismic source process, focusing and defocussing or seismic

scattering, to evaluate existing subsurface models, or to illuminate the process of

wave-propagation in complex earth models. For frequencies below 1-1.5 Hz, the

FD method allows the prediction of ground motion with very good accuracy if the

geological model is accurate to this scale.

A promising application for FD simulations is the field of seismic hazard assessment.

When the seismic hazard of an earthquake-prone region is quantified, buildings

can be constructed accordingly, and the number of casualities and fatalities can

be greatly reduced in future large earthquakes. The increased public and scientific

interest in the estimation of seismic hazard paved the way for a rapid development

of the field. This is reflected in a growing number of publications (e.g. [15, 18,

20, 25, 34, 35, 39, 53, 90, 110, 139]). Generally, the efforts can be divided into two

approaches: Applying the deterministic approach, strong ground motion is predicted

for every point of the surface based on ground motion measurements from recent

events. Interpolation of ground motion amplitudes is provided by radial attenuation

laws [3, 6, 21, 22, 68, 117]. Using the deterministic approach, the areal ground motion

distribution can also be computed using wave-simulation techniques such as the FD

method. The probabilistic approach computes the probability of exceedance of a

15
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certain ground motion intensity level at a given site in a given period of time. The

results of this method are compiled in hazard maps for many regions of the world

[40, 91, 125, 126].

However, there are still shortcomings in the procedure of hazard estimation. One of

the main problems is that source physics is not taken into account when the seis-

mic hazard of a region is estimated. The extension and the orientation of a fault,

as well as the dynamics of the rupture process lead to a large variability of earth-

quake ground motion close to the fault [45] and to significant deviations from radial

ground motion attenuation relations. Another important factor affecting ground

motion amplitudes generally not included in seismic hazard assessment is the local

subsurface geological structure. Any deviation from homogeneous distributions of

elastic subsurface parameters can enhance ground motion amplitudes due to focus-

ing of seismic waves [49, 104, 106, 118] or trapping of seismic energy in wave-guides

[63, 66, 92, 124, 140].

The purpose of this work is to quantify the above mentioned effects in order to

include the insights in future seismic hazard estimations. This goal is addressed by

2D and 3D ground motion modeling using a fourth-order staggered-grid FD method

[103, 109]. Different aspects of the issue are illuminated by three case studies in

chapters 2 – 4.

The first case study (chapter 2) investigates the usefulness of a current first-order

geological subsurface model for high-frequency (1 Hz ≤ f ≤ 8 Hz) simulations. This

is done by 2D modeling wave-propagation for three magnitude ML = 3.5 – 3.6 earth-

quakes that occured in the Rhinegraben (Germany) in 1996 and 1997. A comparison

between data and synthetics for the three events shows that basic features of the

wavefield can be simulated in many but not all cases, thus leading to the conclusion

that a refinement of the geological model is necessary before reliable high-frequency

predictions can be made for the Rhinegraben.

Wave-propagation of a magnitude ML = 6.2 earthquake is simulated in chapter 3.

The earthquake occured in 1927 at the edge of the Dead Sea Basin close to the

city of Jericho, Israel. Wave-propagation towards the north is anomalously efficient

for earthquakes being located close to the Basin. Up to now the building code of

Israel does not include this deviation from radially decaying amplitudes which goes

along with an underestimation of the seismic hazard of the region. The simulations

in chapter 3 point out possible explanations for the large wave amplitudes in the

north of the Dead Sea Basin including both, source physics and particularly the

basin substructure. The results show that the geological subsurface structure of the
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Dead Sea Basin plays a crucial role for ground motion amplitudes and has to be

considered when the hazard of the region is estimated.

Ground motion from earthquakes on dipping faults is investigated in chapter 4.

Faults dipping at angles θ �= 90◦ show increased values of ground motion on the hang-

ing wall relative to the median for this distance range. The modeling in chapter 4

gives insight into the ground motion at the surface, in vertical cross-sections through

the model, and into stress distributions on the fault plane. The increased ground

motion on the hanging wall can be explained by the interaction of normal-stresses

with the free-surface. These effects are only included in dynamic FD simulations.

In chapter 4 differences in ground motion from dynamic and prescribed ruptures are

discussed so that the results can be included in conventional (prescribed) ground

motion estimates for hazard assessment.

The three case studies are preceded by a short introduction to the concepts of

Finite Difference modeling (chapter 1). Starting from the three-dimensional wave-

equation, the basics of FD modeling are derived. Terms commonly used in the

context of FD modeling are explained, and difficulties and possible problems that

might occur in FD schemes are pointed out. A major part of the chapter is devoted

to the numerical insertion of the earthquake source into the Finite Difference scheme.

Following the structure of this thesis the insertion of a kinematic source is explained

first, moving from a simple point source (as used in the simulations in chapter 2)

to the implementation of an extended vertical fault plane (used in chapter 3). The

chapter is completed by a presentation of the concept of dynamic ruptures (made

use of in chapter 4) and its numerical implementation into the FD scheme.

The appendix deals with the problem of the free-surface location in a staggered-

grid scheme. There are two possible locations for the free surface, one being co-

located with the normal stresses, and the other one half a grid point apart vertically.

By comparsion of seismograms to a reflectivity solution, the accuracy of the two

implementations is studied. This result is of great interest for the development of

Finite-Difference methods in general due to the fact that staggered grid schemes

with both implementations are commonly and equally used. In the appendix it is

shown that the implementation located half a grid points apart vertically from the

normal stresses gives more accurate results. For all simulations in this thesis, the

free surface is therefore implemented at this location.
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Chapter 1

Concepts of Finite Difference

Modeling

The most fundamental equation underlying the theory of seismology is the equa-

tion of motion which describes the propagation of waves radiated from earthquakes

sources and relates forces in the medium to measurable ground motion [4, 75]. In its

most general form and for an inhomogeneous anisotropic medium it can be written

as

ρüi =
∂σij

∂xj
+ fi, (1.1)

where ρ is the density of the material, üi denotes the second derivative of the three

elements of the ground displacement vector u with respect to time, σij is the ijth

component of the stress tensor and fi denote the components of the body forces.

The indices i and j stand for the spatial directions.

In an earthquake almost all Earth materials show a linear proportionality between

stress σij and strain εkl. For a linear elastic medium, the empirical relationship

between stress and strain is known as Hooke’s law. In case of general isotropy

only two elastic moduli are needed to describe the proportionality. A common

representation is done using Lamé parameters λ and μ which are material dependent

and may vary with location:

σij = λεkkδij + 2μεij. (1.2)

δij indicates the Kronecker delta function, and the indices i, j, and k stand for the

three spatial directions.

19
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Using this simplified formulation of Hooke’s law, and a relationship between strain

and displacement

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(1.3)

valid for infinitesimal strain,

Combinig equations 1.1 – 1.3 yields the wave-equation for an inhomogeneous isotropic

medium:

ρüi = (λ + μ)uj,ij + μui,jj + λ,iuj,j + μ,j(ui,j + uj,i) + fi (1.4)

This equation can be rewritten as a system of second order partial differential equa-

tions. A common representation for Finite Difference applications is the velocity-

stress formulation [78, 134, 135] which is also used by the Finite Difference method

throughout this thesis. There are several advantages of this formulation over the for-

mulation expressed in displacements (e.g. [74]). The scheme is stable for all values

of Poisson’s ratio, grid dispersion and grid anisotropy are small, both, surface and

buried sources can easily be implemented, and the free-surface boundary condition

is easily satisfied [76]. The equations of motions are given by

ρ
∂vx

∂t
=

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ fx, (1.5)

ρ
∂vy

∂t
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ fy, (1.6)

ρ
∂vz

∂t
=

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ fz, (1.7)

where vx, vy, and vz denote the particle velocity components, σxx, σyy, and σzz are

the normal stresses, and σxy, σxy, and σyz are the shear stresses. The constitutive

laws are then expressed as

∂σxx

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vx

∂x
, (1.8)

∂σyy

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vy

∂y
, (1.9)

∂σzz

∂t
= λ

(
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+ 2μ

∂vz

∂z
, (1.10)
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∂σxy

∂t
= μ

(
∂vy

∂x
+

∂vx

∂y

)
, (1.11)

∂σxz

∂t
= μ

(
∂vz

∂x
+

∂vx

∂z

)
, (1.12)

∂σyz

∂t
= μ

(
∂vz

∂y
+

∂vy

∂z

)
. (1.13)

In order to solve the equations numerically, in a Finite Difference scheme the mod-

eling volume V is discretized into nx · ny · nz grid points with distance dx to

the neighboring grid point. Given a continuous solution of the wave-equation in

the volume V the solution at those discrete points can be obtained by indirectly

approximating the continuous solution. This is achieved by the approximation of

derivatives. Traditionally, Taylor series expansions of the solution in the neighbor-

hood of point xi are used. Another possibility for obtaining the approximation is by

the computation of the tangent line to the function [72, 128]. The discretized form

of equations 1.5 – 1.13 can be found in [76].

1.1 Stability of a System

A crucial issue for explicit Finite Difference numerical methods is stability. Stability

of a system is in practical terms connected to an energy limit and reflects the fact

that the total energy in a physical system should not change.

Mathematically this is achieved when the Courant-Friedrichs-Lewy (CFL) stability

criterion

dt · vmax
dx

≤ c (1.14)

is met (e.g. [103]), where vmax is the maximum (compressional wave) velocity in

the modeling volume V , dx is the grid spacing, dt the sampling interval in time, and

c some constant number which has to be determined empirically. In this study, for c

a value of 0.45 is used [103]. This is a conservative estimate. Other authors suggest

to use a slightly larger value of 0.5 (e.g. [71, 119]).
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1.2 Numerical Dispersion

In a Finite Difference scheme, special attention has to be given to avoid numeri-

cal dispersion. Dispersion occurs when the synthetics contain frequencies above a

certain frequency limit, fmax which is defined as

fmax =
vmin
g · dx

, (1.15)

with vmin the minimum (shear wave) velocity in the modeling volume V , the grid

spacing dx, and a constant g which stands for the number of points per wavelength

that will be computed. For 3D simulations the computation of 5 points per wave-

length is sufficient in order to avoid numerical dispersion [76] for distances generally

considered in Finite Difference simulations.

When the velocity model is kept constant, equation 1.15 displays a proportionality

between the maximum frequency included in the simulation fmax and the grid in-

terval dx. Thus, for 3D simulations, an increase of fmax by a factor of 2 requires the

computation of the wave-equation at 23 as many grid points as before. Additionally,

in order to keep the system stable, the number of time steps has to be doubled (see

equation 1.14). For that reason, and the limitation of computational power, the

frequency content of synthetic seismograms computed with 3D FD methods has so

far been restricted to frequencies below 1 – 1.5 Hz, depending on the size of the

modeling volume.

1.3 Staggered Grids and Accuracy of the System

A common way of arranging Finite Difference schemes is to compute the wavefield

components on a staggered grid in both, space and time. This is done in order to

increase the accuracy of the computation without increasing the number of points

at which equations 1.5 – 1.13 have to be solved [33]. In a spatially staggered grid,

some of the components of the velocity and stresses are computed in between the

grid nodes. In the Finite Difference scheme used in this thesis, the particle velocities

vx are defined on the grid nodes, while vy and vz are defined half a grid point apart

in both, x-direction and y- and z-direction, respectively. The normal stresses σxx,

σyy, and σzz are located at the level of the grid points in vertical and x-direction and

are shifted for half a grid point in y-direction. The shear stresses σxy are defined

half a grid point apart in y-direction, σxz half a grid point apart vertically, and

σyz are located in the center of a cell (see figure 1.1). Temporal staggering of the
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wavefield parameters is done similarly [78]. For an accuracy of second order in time

and fourth order in space the wavefield parameters half a grid point and 3/2 grid

points apart from the pivot point are needed for an update [76].

FS2

FS1

vx
vy
vz

�xx
�xz
�xy
�yz

Particle Velocities Stresses

Figure 1.1: Staggering of the wavefield parameters.

1.4 Lateral and Bottom Boundaries

A further difficulty arises in Finite Difference simulations when the waves reach the

boundaries of the modeling volume V since the boundaries act as reflectors. In order

to suppress these unwanted reflections, at the lateral and bottom edges an explicit

boundary-condition is applied [27]. In the boundary region, the wave-equation is

replaced by a one-way wave-equation which does not permit energy to propagate

from the boundaries back into the numerical grid. This approach is successful for

events that impinge on the boundaries at steep angles. Its effectiveness, however,

degrades for waves with shallow incidence angles. To further limit reflections from

the boundaries, the interior grid is surrounded with another, larger grid, that consists

of attenuative material (figure 1.2) [26]. The attenuation in this region has to be

chosen carefully, since a value too low attenuates the amplitude too little while very

strong attenuation might produce reflections at the boundary between the interior

to the exterior grid.
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exterior grid with absorbing material

interior gridexplicit
boundary
condition

Figure 1.2: Prevention of artificial reflections by an exterior grid and an explicit boundary-

condition.

1.5 Free-Surface Boundary-Condition

The numerical treatment of the free surface in Finite Difference methods has received

considerable attention in the literature. The majority of these publications are

concerned with the treatment of irregular free surfaces, in order to simulate the

effects of topographic scattering [60, 100, 105, 113]. For those so called vacuum

methods a layer where all elastic parameters are equal to zero is introduced. This

method is used in chapter 4 where ground motion from earthquakes on dipping

faults is simulated. While this method allows the flexibility of computing models

with dipping faults or including mountain topography, it also generally requires a

relative dense sampling of the wavefield, e.g. 25 points per wavelength for stable

and accurate results [100]. In the cases where effects of surface relief are expected to

be negligible, e.g. for long-period waves propagating in areas of smooth topography,

it is possible to formulate an explicit boundary-condition valid for a planar surface

[51, 76]. This explicit free-surface boundary-condition is used for the simulations in

chapters 2, 3, and in the appendix. The advantage of this formulation is generally

that it requires less points per wavelengths (e.g. 5 points per wavelength [76])

compared with the formulation for irregular free surfaces. Clearly, the explicit free-

surface condition should be considered for numerical reasons in situations where

applicable.

There are two different possibilities for the implementation of the explicit free-surface

boundary-condition in the staggered grid, half a grid point apart vertically. Both
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are discussed in the appendix. In this study the free-surface boundary-condition is

co-located with the shear stresses σxz and σyz which was found to be superior to the

co-location with the normal stresses σxx, σyy, and σzz, and the shear stress σxy [42].

1.6 Implementation of the Source

While rupture propagation is based on the same principle in every Finite Difference

scheme, for the implementation of the source two fundamentally different approaches

exist. Most Finite Difference schemes compute the ground shaking on the basis of

a kinematic definition of the source [47, 48, 49, 52, 71, 103, 136]. In those cases

the rupture is prescribed and can not develop dynamically. This approach is useful

for point sources where the interaction of rupture and structure is negligible, and

for both, vertical dipping faults, or faults buried 5 kilometers or deeper, since in

those cases the dynamic interaction of stresses on the fault with the free surface

is marginal [43]. The implementation of kinematic ruptures is described in section

1.6.1. Section 1.6.2 is devoted to the implementation of dynamic ruptures.

1.6.1 Kinematic Ruptures

The kinematic (prescribed) source is implemented in the Finite Difference grid by

adding

−dt · Ṁij

dx3
(1.16)

to σij(t), where dt is the time sampling interval, Ṁij is the ijth component of the

moment rate tensor for the earthquake, dx3 is the cell volume, and σij(t) is the ijth

component of the stress tensor on the fault at time t.

The components of the moment tensor are computed from the shear modulus μ, the

area of a cell dx3, the elements of the normal to the plane ni and nj , and the elements

of the slip vector D which in the following equation is expressed by the absolute slip

value |D| = D averaged over one cell and the unit vectors in the direction of the

slip, di and dj. The moment tensor on the fault plane is given by

Mij = μ · dx2 · D (dinj + djni). (1.17)

The normal to the fault plane is expressed by the strike angle with respect to north,

φ, and the dip angle of the fault plane, θ, which is measured from the horizontal.
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The slip on the fault plane is given by the rake angle Λ measured from the strike

direction. The slip vector computes then to

D = D cos Λ

⎛
⎜⎜⎝

cos φ

sin φ

0

⎞
⎟⎟⎠− D sin Λ

⎛
⎜⎜⎝

− sin φ cos θ

cos φ cos θ

sin θ

⎞
⎟⎟⎠ , (1.18)

where the slip is a function of time t. The function is constrained by the rise time

τr after which the peak slip value is reached. The rise time is computed by a scaling

relation from the magnitude of the event [58]. The shape of the sliprate function

has also to be predefined. Typical sliprates are gaussian shaped, triangular, or

half-cosines.

In 3D simulations (chapters 3 – 4 and appendix) the implementation of the source is

straightforward since the possible orientations of the fault plane and thus the values

taken by the angles φ, θ and Λ can easily be mapped onto the three-dimensional

grid. The three-dimensional seismic moment tensor contains nine elements Mij

with i,j = x,y,z. In 2D simulations as carried out in chapter 2, the moment tensor

contains only four elements with i,j = x,z. In order to simulate the horizontal

(radial) component correctly, the strike angle φ given by the fault plane solution has

to be considered with respect to the orientation of the profile on which the seismic

waves are simulated. The approximated double-couple point sources translate in

2D simulations to line sources. Therefore, the seismograms need to be corrected

for this effect after the simulations. The synthetic line source seismograms Sl are

transformed into point source velocity seismograms Sp by the following equation:

Sp(t) =
1√
R

d

dt

(
1√
t
∗ Sl(t)

)
, (1.19)

where R is the distance from the source to the receiver, t is the time, and ∗ denotes

a convolution in time [133]. This correction is applied to all of the 2D synthetics

shown in chapter 2.

Point Source

The size of the rupture area scales with the magnitude of an event. A large number

of scaling relations are available for different source mechanisms and earthquake

regions [19, 70, 114, 115, 120, 121, 122, 137, 138]. It is in accordance with all those

authors, that for small earthquakes (i.e. ML < 4.0) the rupture planes are small

enough (e.g. a few hundred meters) that rupture dynamic effects are not resolvable
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at the frequencies considered in the simulations. In those cases, the grid spacing

interval dx can be chosen in a way that the squared interval dx2 is in the order of the

size of the fault plane. Those earthquakes are therefore modeled as point sources

and the source is added to one grid point only.

For the simulation of the Rhinegraben earthquakes (ML = 3.5 – 3.6) in chapter 2

this is the case. The grid spacing interval in those simulations amounts to 50 m.

The accuracy study described in the appendix also uses point sources for the 3D

simulations in order to keep the model as simple as possible. That way, differences

in ground motion between the two implementations of the free-surface conditions

are not affected by rupture dynamics but are only due to the different locations of

the free surface.

Extended Source

For moderate and large events (i.e. ML ≥ 4.0), rupture dynamics plays a crucial role

within the frequency range considered in the simulations. Thus, the finite size of

the fault plane has to be taken into account. This is done by defining a rupture area

of nxr · nyr grid points. The rupture is initiated at the hypocenter (nxs,nys), one of

the grid points of the rupture plane, from where it propagates with variable rupture

velocity vr to each of the grid points on the fault area that break successively. In

this case, the sliprate function Ḋ(t) needs to be defined at every grid point on the

rupture area [88]. Examples of ground motion from earthquakes with finite rupture

are shown in chapter 3 and 4. For the Jericho earthquake (ML = 6.2) analyzed in

chapter 3, a constant sliprate function was used at every grid point. The kinematic

ruptures simulated in chapter 4 use a variable sliprate that is equivalent to the

sliprate computed from dynamic simulations for a fault buried 5 km deep.

Extended rupture planes that lie vertically within the modeling volume (correspond-

ing to a dip of 90◦) are straightforward to implement since the fault plane coincides

with the grid points (e.g. in chapter 3). Further considerations have to be taken

into account for faults with dipping angles θ �= 90◦. The simulations in chapter 4

are computed on faults with dip angles θ = 30◦, θ = 45◦, and θ = 60◦. In order

to avoid numerical errors due to averaging procedures, the numerical grid is kept

parallel to the fault plane (figure 1.3). The free surface is then rotated for an angle

π/2 − θ with respect to the numerical grid. Above the free surface a vacuum-layer

is introduced. As explained above (section 1.5), due to the step-like free surface and

in order to keep the system stable, the grid sampling needs to be finer than for flat

free surfaces where an explicit free-surface boundary-condition can be applied.
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traction free surface
by the vacuum method

absorbing boundaries

geological layering

fa
ult

Figure 1.3: Location of a dipping fault in a geological model (left) and mapping of dipping

faults onto the numerical grid (after [93]). In the right image, the fault plane is indicated

as a fat line. The dark grey squares represent the area above the free surface. The light

grey shading displays the area covered by the absorbing boundaries.

1.6.2 Dynamic Ruptures

In reality, the process of rupture is not predefined but develops due to the complex

interaction of stresses, traction and slip on the fault plane. The assumption, that

traction and slip are related by a friction law across the fault zone is used by dynamic

rupture models. Dynamic rupture simulation has become increasingly popular for

the simulation of earthquakes on dipping faults [83, 93, 107, 111] and considerable

differences are found between kinematic and dynamic rupture simulations for dip

angles θ �= 90◦ [43]. In chapter 4, ground motion from dynamic ruptures is com-

puted and analyzed in comparison to kinematic rupture models. For the dynamic

implementation, an algorithm inspired by Madariaga et al. [80] and further devel-

oped by Nielsen and Olsen [93] is used. Both friction and dislocation are co-located

on the same grid points, exactly on the fault surface [93]. Using Betti’s Theorem

[4], the total stress σ(x, t) on the fault can be written as a function of the local slip

velocity Ḋ, the long range elastic stress σe and two material properties μ and vs.

The dynamic condition on the fault plane can then be expressed as

σ(x, t) =
μ

2vs

Ḋ(x, t) + σe(x, t) + σ0(x, t0), (1.20)

where μ and vs denote the shear modulus and the shear wave velocity, and σ0 is the

initial stress distribution on the fault at the time t0 the fracture starts [94]. The

long range stress σe combines all non local contributions to the stress that results
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from slip occuring at any segment of the fault at time t. No analytical form of σe

is known for an inhomogeneous medium, and in the method this term is computed

numerically by the Finite Difference scheme and then substituted into expression

(1.20). In the static case, when no slip occurs at any part of the fault, equation 1.20

reduces to

σ(x) = σ0(x, t0). (1.21)

Rupture starts when σ exceeds the yield stress σy and the contribution of static fric-

tion expressed by the static friction coefficient μs and the stress component normal

to the fault plane σn:

σ(x, t) ≥ σy(x) + μsσn(x, t). (1.22)

It heals when the shear traction on the fault becomes larger than the radiated stress

(σ > σe in equation 1.20).

When the fault is slipping the classical Coulombian model where the friction drops

suddenly when the rupture starts and the stress σ on the fault is expressed by a

dynamic friction coefficient μd as

σ(x, t) = μdσn(x, t) (1.23)

leads for seismological applications to an impasse because of infinite stress singu-

larities and other physical problems [83]. Experience tells that near the rupture

front the finite energy release rate needs to be defined by introducing a length scale.

Today, two different approaches of friction laws are in use. A simple slip weaken-

ing law was proposed by Ohnaka and Shen [101, 102] which makes use of the slip

weakening distance Dc. Laboratory studies [31, 32, 116] proposed a rate- and state-

dependent friction law which was introduced in dynamic rupture modeling for plane

2D ruptures [10, 11, 62] and for 3D fault models [29]. For the dynamic simulations

computed in chapter 4, the second approach is applied. When slipping occurs the

stress on the fault can be expressed by

σ(x, t) = μdσn + (σy + μsσn) Max

[
1

1 + Ḋ/Dc

,
1

1 + Ḋ/Vc

]
, (1.24)

where σy, σn, Dc and Vc represent the yield stress (in the absence of normal stress

perturbations), the stress normal to the fault (in excess of the lithostatic stress), the

slip weakening distance, and the rate weakening distance, respectively. When either
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the slip weakening distance Dc or the rate weakening distance Vc become very small,

the corresponding expression in the square brackets goes to zero, and the rupture is

dominated by the remaining parameter, Vc or Dc, respectively. In case that both,

slip and rate weakening distance become infinitely small, equation 1.24 reduces to

the static case (equation 1.21). For the simulations in chapter 4, the static and the

dynamic friction coefficients take the values μs = 0.7 and μd = 0.3, respectively

[93, 97].

The computations presented in this thesis have been carried out on an SGI Origin

3200 (Geophysical Institute, Karlsruhe University) using 6 processors. The Finite

Difference method used throughout this thesis is based on the work by K.B. Olsen

[103, 109].



Chapter 2

Case Study I: Modeling

Earthquakes in the Rhinegraben

2.1 Motivation

The Rhinegraben belongs to the seismically most active regions in Germany. Today

the seismicity is characterized by small to moderate crustal events. Larger events

occured in the past (e.g. in the year 1356 close to the city of Basel, Switzerland)

and are likely to happen again [25]. The Upper Rhinegraben, situated close to the

border with France and Switzerland hosts significant traffic routes. The fact that

the river Rhine is a major waterway in Europe has led to the development of a highly

industrialized region which has on average a population density of more than 300

inhabitants per km2 (for comparison: USA: 15, California: 73.5, Western Europe:

102). The high vulnerability of the region in combination with the moderate seismic

activity leads to a seismic risk which is not negligible.

A common way to study seismic hazard is to analyze seismograms for the largest

possible event in the region. This analysis is generally done in the time- and in the

frequency-domain and comprises for example the estimation of peak ground motion

or the computation of response spectral values from the data. The method requires

digital seismogram recordings of the largest event.

In interplate seismic regions (e.g. at the North Anatolian Fault (Turkey) or at the

San Andreas Fault, USA) the recurrence interval of large earthquakes is generally

shorter than in intraplate regimes as in the Rhinegraben where it can amount up to

several thousand years. In the latter, digital data of the largest event is therefore of-

ten not available. Finite Difference methods provide a powerful tool for the synthetic

computation of the wavefield for those large events. So far, the computational power

31
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and the limited knowledge of the subsurface structures has restricted the simulations

to frequencies below 1 – 1.5 Hz, depending on the size of the modeling volume and

the constraints on the model of elastic parameters. For hazard assessment in the

Rhinegraben the wavefield needs to be known up to frequencies around 8 Hz, because

the frequency range from 1 – 8 Hz covers the eigenfrequencies of most buildings in

the region. While the drawback of limited computational power will presumably be

solved in the near future it would require expensive high-resolution experiments to

resolve the 3D geological structures precisely enough in order to simulate correct

waveforms up to 8 Hz. The exact wiggle-by-wiggle simulation of time-histories in-

cluding these frequencies requires subsurface models containing all features down

to the scale of one wavelength (e.g. 250 m in the simulations in this study). How-

ever, when assessing the seismic hazard of a region, it is sufficient to know peak

amplitudes of the ground motion or response values at certain frequencies while the

knwoledge of the exact waveforms is not necessary.

The purpose of this study is to find out how well peak amplitudes of ground motion,

P/S amplitude ratios, arrival times, the duration of shaking, and spectral values of

displacement, velocity, and acceleration can be reproduced in the frequency band

from 1 to 8 Hz with a first-order velocity and density model available for the Rhine-

graben. This is done by the 2D simulation of three ML 3.5 – 3.6 earthquakes that

occured in the Rhinegraben in 1996 and 1997, followed by a comparison of the

synthetic time-histories to data recorded at five stations within the Graben, in the

Vosges mountains, and the Black Forest. In order to account for differences in am-

plitudes between simulations in 2D and 3D, an amplitude correction is applied after

the simulation [133]. The results will provide guidance for future high-frequency 3D

simulations facilitated by massively parallel computers.

2.2 Upper Rhinegraben

2.2.1 Tectonics and Geology

The Rhinegraben comprises the central and most prominent part of the European

Cenozoic Rift System, one of the major tectonic features in western Europe. Its

southern part extends almost 300 km from Basel to Frankfurt and is, on average,

30 – 40 km wide. Subsidence of the Rhinegraben began in the Upper Eocene in

the southern part of the graben and was interrupted by a broad uplift in the Mid-

Miocene [55] due to mass movements in the Alpine region. Today, subsidence is only
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found in the northern part of the Rhinegraben. On its eastern and western side the

Upper Rhinegraben is flanked by the Black Forest and the Vosges Mountains.

2.2.2 Seismicity

Today the seismicity in the area is characterized by small to moderate crustal ac-

tivity. The largest event that is known to have taken place in the Rhinegraben was

the Basel earthquake in 1356 which caused a large amount of damage in the town

and the surroundings [86]. The maximum intensity of this event is determined to

X corresponding to magnitude ML=6.5 [77]. Paleoseismological investigations have

shown several examples of earthquakes of comparable magnitude in the past [87].

2.2.3 Three Rhinegraben Earthquakes (ML 3.5 – 3.6)

In this section I show data from three events that took place in the Upper Rhine-

graben during 1996 and 1997 with local magnitudes ML between 3.5 and 3.6. The

data have been recorded by the seismological network of the State Geological Sur-

vey (Landesamt für Geologie, Rohstoffe und Bergbau, Baden-Württemberg, stations

LIBD, FBB and FELD), by one station of the french network ReNaSS (Réseau Na-

tional de Surveillance Sismique, station MOF), and by one station of the Swiss

Seismological Service (station BBS). Stations BBS, FELD, and LIBD are equipped

with S-13 velocity transducers, and station FBB consists of a LED-3D, both with a

response flat with respect to ground velocity between 1 Hz and 12 Hz. At station

MOF the data are recorded with a SS-1 instrument. The data have been bandpass-

filtered between 1 and 8 Hz and, except for the data recorded at station FBB,

corrected for the transfer function of the corresponding instrument within this fre-

quency band. At station FBB the transfer function is not well known. It is deployed

as a strong motion station since it is located in an urban area and is mainly used for

demonstration purposes (S. Stange, pers. comm., 1999). Therefore, at station FBB

the amplitude is displayed in counts instead of ground velocity. This station can

not be used to compare peak velocities of recorded data and synthetics. However,

the usefulness of the model for hazard assessment can be verified by a comparison

of amplitude ratios between compressional and shear waves, by checking the P-wave

arrival times, and by a comparison of the signal duration.

The distance from the hypocenters to the stations ranged between 20 to 60 km.

Epicenter and station locations are depicted in figure 2.1, and listed in tables 2.1

and 2.2, respectively [12, 13, 131].
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Figure 2.1: Map of the Upper Rhinegraben showing station (+) and epicenter (◦) locations

for the three events analyzed in this study.

August 24, 1996, ML=3.5

This event took place close to the village of Dessenheim (France) in the Alsace

region. It was the main event of a series of 8 small earthquakes of which the first

one occured in July of the same year with a local magnitude of 1.7. The series

ended with a magnitude 1.9 event in January 1997. On August 24, two magnitude

2.2 events preceded the main shock. The main event was felt with MSK intensity

IV at Müllheim (Germany). Figure 2.2 (left) shows the vertical component of the

velocity-seismograms recorded at the five stations.

February 1, 1997, ML= 3.6

On February 1, 1997, a magnitude 3.6 event occured close to the French village

Sierentz, Alsace. This region is known as the source area for an event with local

magnitude 4.7 that took place in 1980. The recent event had a MSK intensity of IV,

and was felt in Basel, Switzerland and several villages on the German side of the

border all the way to the city of Freiburg. The data recorded at the five stations is

shown in figure 2.2 (middle).
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Event 1 2 3

Date 24 Aug 96 01 Feb 97 17 Nov 97

Origin time (UT) 23:39:00,7 14:01:58,7 17:09:22,6

Magnitude ML 3.5 3.6 3.5

Longitude (◦ E) 7.50 7.48 7.62

Latitude (◦ N) 47.96 47.67 47.64

Hypocentral depth (km) 7 ± 5 10 ± 3 17 ± 2

Strike (◦) 116 28 147

Dip (◦) 46 63 38

Rake (◦) 246 353 257

Table 2.1: Source parameters for the three events used in this study.

Station Longitude Latitude

LIBD 7.60 ◦ E 48.15 ◦ N

MOF 7.13 ◦ E 47.85 ◦ N

FELD 8.00 ◦ E 47.88 ◦ N

BBS 7.51 ◦ E 47.65 ◦ N

FBB 7.85 ◦ E 48.00 ◦ N

Table 2.2: Locations for five seismic stations in the Rhinegraben, the Vosges mountains,

and the Black Forest.

November 17, 1997, ML= 3.5

A magnitude 3.5 earthquake occured on November 17, 1997 close to Weil am Rhein

(Germany) just a few kilometers from the city of Basel. It was clearly felt up to

epicentral distances of 40 km. Individual observations arrived from places more

than 100 km away. The source mechanism was determined by the State Geological

Survey as a thrust event. Figure 2.2 (right) displays the seismograms for this event.

2.3 Modeling Parameters

2.3.1 Elastic Model and Geometry

Numerous seismic refraction and reflection profiles through the graben and its ad-

jacent areas such as the Black Forest offer a picture of the geological structure and

provide constraints on the P- and S- wave velocities. The 3D compressional wave
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Figure 2.2: Vertical component velocity seismograms recorded at five stations in the Rhine-

graben, the Vosges mountains, and in the Black Forest. From left to right: Seismograms

for event 1 on August 24, 1996, seismograms for event 2 on February 1, 1997, and seismo-

grams for event 3 on November 17, 1997. For stations LIBD, MOF, FELD, and BBS the

amplitudes are displayed in m/s while the amplitude at station FBB is shown in counts.

Time equal to zero seconds corresponds to the origin time of the earthquakes.

model (figure 2.3) used for the simulations has been constructed compiling 2D cross-

sections derived from those experiments: One profile is located almost perpendicular

to the strike of the graben at the northern part of the map displayed in figure 2.1, a

second profile runs parallel to the strike of the graben through the Black Forest. A

third profile crosses profile 2 in the southern part of the Black Forest at an angle of

approximately 45 ◦ from southwest to northeast [61]. Further information provided

a 2D velocity model on a line crossing the graben close to Strassbourg [112]. In ad-

dition, the 3D model was constrained by two more cross-sections, the first running

perpendicular to the strike of the graben, close to the city of Freiburg and a second

one parallel to it from north to south [143]. Additionally, maps displaying the depth

of the sediment filling, and information on the depth of the Moho [55, 142] have

been added to compile the 3D model. The shear wave model has been computed

assuming a constant Poisson’s ratio of ν = 0.25. The density has been chosen ac-

cording to the geological interpretation in the above mentioned papers. Minimum

and maximum elastic parameters are compiled in table 2.3. The values of the min-

imum wave velocities indicate that the resolution of the seismic experiments was

not able to resolve the velocity structure of the upper few hundred meters. Thus,

the simulations can not include scattering of waves in shallow layers which might be

responsible for long and high-frequent codas in the data (see figure 2.2).
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Figure 2.3: Top: 3D compressional wave model used for the simulations. The model has

been compiled using constraints from numerous seismic refraction and reflection profiles,

borehole and geological data. Bottom: Two cross-sections through the center of the P-

wave model.

Highest P-wave velocity (km/s) 8.20

Lowest P-wave velocity (km/s) 3.54

Highest S-wave velocity (km/s) 4.73

Lowest S-wave velocity (km/s) 2.04

Highest density (kg/m3) 2.2

Lowest density (kg/m3) 3.5

Table 2.3: Minimum and maximum P-wave velocity, S-wave velocity and density values

in the 3D model.

2.3.2 Computational Parameters

From the 3D model 2D cross-sections are extracted each connecting two stations

with an epicenter. Event 1 from August 24, 1996 is simulated on two profiles. One

profile crosses the graben and connects the epicenter with station MOF and station

FBB. The second profile runs along the graben from station LIBD in the north via

the epicenter to station BBS in the south. Event 2 is simulated on a profile close to

the latter one, including station LIBD and station BBS. The third event is simulated

on two profiles, of which the first one connects the epicenter with station FBB and

station BBS. The second of those profiles extends from station FELD in the Black

Forest via the epicenter to station BBS in Switzerland. Further information on the
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profiles are compiled in table 2.4.

On each profile 30 seconds of 8 Hz wave-propagation are simulated. A Kostrov

source-time function with a rise time of 0.02 seconds [58] was inserted in the 2D

models. The seismic moment of 1 ·1014 Nm for the ML = 3.5 events and 2.8·1014

Nm for the ML = 3.6 event was computed by the scaling relation [69] assuming

that the local magnitudes scale as the moment magnitude [6]. Additional modeling

parameters can be found in table 2.5. An amplitude correction (see chapter 1) is

applied to the time-histories in order to account for differences between simulations

in 2D and 3D [133].

Event Stations Length (km)

Profile 1 24 Aug 96 MOF-FBB 56.85

Profile 2 24 Aug 96 LIBD-BBS 82.25

Profile 3 01 Feb 97 LIBD-BBS 81.80

Profile 4 17 Nov 97 FBB-BBS 69.75

Profile 5 17 Nov 97 FELD-BBS 64.95

Table 2.4: Profiles on which 2D wave-propagation simulations have been carried out.

Spatial discretization (m) 50

Temporal discretization (s) 0.002

Number of timesteps 15000

Simulation time (s) 30

Table 2.5: Geometrical modeling parameters used in the Rhinegraben earthquake simula-

tions.

2.4 Numerical Results

The synthetic velocity seismograms along profile 1 connecting site FBB and site

MOF are shown in figure 2.4. In the top subplot the horizontal transverse compo-

nent, and at the bottom subplot the vertical component are displayed. The scaling

of the time-histories is not distant-dependent but constant along the profile. The

plot shows distinct P-waves in the vertical component close to the source while the

shear wave energy dominates the time-histories on the horizontal component.
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Figure 2.4: True amplitude representation of the horizontal in-plane (top) and vertical

(bottom) component velocity seismograms computed along profile 1 connecting station

FBB in the Rhinegraben (top line of the plot) with station MOF in the Vosges mountains

(bottom line of the seismograms).

From the synthetics, the traces corresponding to the Rhinegraben stations are ex-

tracted and compared to the data (figures 2.5 – 2.7). In the further analysis I show

the comparison of arrival times of P-waves, peak velocities, amplitude ratios be-

tween P- and S-waves within different frequency bands, the duration of shaking,

and response spectra at selected stations.

2.4.1 Arrival Times of P-Waves

A first test of the elastic subsurface model is carried out by checking the P-wave

arrival times of the synthetics. Exact arrival times are obtained if the model is right

on average while small-scale features do not necessarily have to comply with reality.

The arrival times of the first arrivals can be modeled within an accuracy of ± 0.1

seconds for stations LIBD, BBS and FBB and event 1. At station MOF the synthetic

P-wave arrives approximately 0.5 seconds before the recorded P-wave for this event.

Larger differences occur for event 2: At both stations, LIBD and BBS, the synthetics

arrive approximately one second too late. A similar result is found for event 3. The

first onset in the data appears earlier than modeled by the synthetics at all three

stations (FBB, FELD, and BBS). The largest overall difference happens to appear
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Figure 2.5: Data and synthetics for a ML = 3.5 earthquake on August 24, 1996 recorded

and computed at station MOF (top left), FBB (top right), LIBD (bottom left) and BBS

(bottom right). Note that the data at station FBB is displayed in counts while all other

seismograms are shown in m/s.

at station FELD and amounts to 1.2 seconds. Arrival times of the data are indicated

as dashed lines in figures 2.5 – 2.7.

2.4.2 Peak Ground Velocities

Peak ground velocities for compressional and shear waves (tables 2.6 and 2.7) are

determined for all stations. Note that for station FBB the amplitude could only be

determined in counts. Peak ground velocities are a good measure for seismic hazard

assessment as they correlate with the damage pattern. For the determination of the

peak values the maximum amplitude in the wave-train is taken into account.

In some cases, the peak amplitudes of the synthetics match those of the data well.

In other cases, however, the agreement between data and synthetics is rather poor:
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Figure 2.6: Data and synthetics for a ML = 3.6 earthquake on February 1, 1997 recorded

and computed at station LIBD (left) and BBS (right).

LIBD FBB MOF FELD BBS

Event 1, Data 1.0 · 10−4 8.5 counts 2.9 · 10−4 not mod. 0.5 · 10−4

Event 1, Synt. 1.0 · 10−4 4.0 · 10−4 2.0 · 10−4 not mod. 0.2 · 10−4

Event 2, Data 1.2 · 10−4 not mod. not mod. not mod. 7.0 · 10−4

Event 2, Synt. 0.2 · 10−4 not mod. not mod. not mod. 0.8 · 10−4

Event 3, Data not mod. 22 counts not mod. 5.0 · 10−4 4.0 · 10−4

Event 3, Synt. not mod. 1.1 · 10−4 not mod. 0.5 · 10−4 4.0 · 10−4

Table 2.6: Peak ground velocities (m/s) for compressional waves. The values for station

FBB are displayed in counts. Only selected event-station pairs have been modeled in this

study.

For event 1 (figure 2.5) the maximum variation amounts to a factor of 2.5 (station

BBS) for compressional waves and 3.75 (station LIBD) for shear waves. While the

discrepancy in the peak values of the compressional waves at station BBS replicates

in the shear waves and could thus be due to a local site effect, the synthetic peak

value of the compressional wave at station LIBD matches the peak value of the

data precisely. At station MOF the velocities for the compressional waves are un-

derestimated while the peak velocities of the shear waves are overestimated. Both

differences are below 50%. The synthetics for event 2 (figure 2.6) generally underes-

timate the peak values of the data by more than a factor of 4 to a factor of 13. This

largest discrepancy occurs at station BBS for the shear wave. Event 3 is simulated at

three stations (figure 2.7). A perfect match of the peak values is obtained at station

BBS for the compressional wave. The shear wave shows a difference of below 17%



42 CHAPTER 2. CASE STUDY I: RHINEGRABEN-EARTHQUAKES

Figure 2.7: Data and synthetics for a ML

= 3.5 earthquake on November 17, 1997

recorded and computed at station FBB

(top left), BBS (top right) and FELD

(bottom left). Note that the data at sta-

tion FBB is displayed in counts while all

other seismograms are shown in m/s.

at this station. At station FELD the compressional wave is underestimated by a

factor of 10 by the synthetics while the peak velocities of the shear wave is matched

precisely.

I also tested the comparison of peak velocities after the application of different

bandpass filters from 1 – 2 Hz, 2 – 4 Hz, and 4 – 8 Hz. The fits could not be

improved significantly.

2.4.3 Amplitude Ratios

A low degree of agreement in peak ground velocities of data and synthetics could be

caused by the fact that local site conditions are missing in the elastic model. In order

to test this hypothesis I compare amplitude ratios of P-waves to S-waves. Under the

assumption that the site effect is similar for both wave types, P/S amplitude ratios

of data and synthetics for the same station and event should give the same values.

The amplitude ratios (table 2.8) computed from data and synthetics vary over a

wide range and include both, values below 0.1 and values larger than 1. In the

latter case the amplitudes of the shear wave are smaller than those of the P-wave.
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LIBD FBB MOF FELD BBS

Event 1, Data 0.3 · 10−3 18.5 counts 0.7 · 10−3 not mod. 0.5 · 10−3

Event 1, Synt. 1.2 · 10−3 4.8 · 10−3 0.8 · 10−3 not mod. 0.2 · 10−3

Event 2, Data 3.0 · 10−4 not mod. not mod. not mod. 1.0 · 10−3

Event 2, Synt. 0.7 · 10−4 not mod. not mod. not mod. 7.5 · 10−5

Event 3, Data not mod. 37 counts not mod. 7.5 · 10−4 1.0 · 10−3

Event 3, Synt. not mod. 3.0 · 10−4 not mod. 7.5 · 10−4 1.2 · 10−3

Table 2.7: Peak ground velocities (m/s) for shear waves. The values for station FBB are

displayed in counts. Several event-station pairs have not been modeled in this study.

LIBD FBB MOF FELD BBS

Event 1, Data 0.31 0.46 0.27 not mod. 0.10

Event 1, Synt. 0.08 0.08 0.22 not mod. 0.10

Event 2, Data 0.40 not mod. not mod. not mod. 0.70

Event 2, Synt. 0.29 not mod. not mod. not mod. 1.07

Event 3, Data not mod. 0.59 not mod. 0.67 0.40

Event 3, Synt. not mod. 0.37 not mod. 0.67 0.33

Table 2.8: Same as table 2.7, but for shear waves.

The best fits are obtained at station FELD for event 3 and at station BBS for event

1.

If the site effect at a certain station played a significant role, the ratios of data and

synthetics should be similar for all events. At station FELD this hypothesis can not

be checked since event 3 was the only one simulated at this station. Station BBS

shows a significant difference of 35% for event 2, and a better fit (17.5% difference)

for event 3. It is remarkable that the large P/S amplitude ratio of 0.7 which has been

found in the data for event 2 finds equivalence in the synthetics with a ratio larger

than 1. This large value could be due to the radiation pattern of the earthquake

(see table 2.1). Poor results are found at station LIBD and station FBB for event 1

where the synthetics have extremely small P/S amplitude ratios with values below

0.1. A better fit with 27.5% and 37.3% difference is found at those stations for event

2 (station LIBD) and event 3 (station FBB). The amplitude ratio at station MOF

differs by 19% for event 1, the only one modeled at this station. A comparison of

amplitude ratios carried out after the application of different bandpass filters (1 – 2

Hz, 2 – 4 Hz, 4 – 8 Hz) shows no improvement of the fit.
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2.4.4 Duration of Shaking

The duration of a seismic signal is a crucial parameter for seismic hazard evaluation.

Prolonged exposure to shaking can lead to fatigue of material and, subsequently,

failure. Duration is defined as the time between 5 % and 75 % of the cumulative

squared ground acceleration [130]. It is influenced by the site condition, and can

also vary due to resonances in shallow layers. For recordings in the vicinity of large

earthquakes, the duration of shaking is dependent on rupture directivity. In the

simulations of this study rupture directivity does not play a role since the three

earthquakes are modeled as point sources. The durations for the events analyzed

are compiled in table 2.9. The accelerations have been computed from the 1 – 8 Hz

band-pass filtered velocity seismograms.

The durations for the three events in the Rhinegraben vary between 1.89 seconds

(event 1 at station LIBD) and 9.41 seconds (event 3 at station FELD). The durations

computed for the synthetics show an even larger variability. In some cases (e.g. event

3 at station FBB) the durations calculated for both, data and synthetics, are similar.

In this case the duration of the synthetics amounts to 96.2 % of the duration of the

recorded seismogram. For event 1 modeled at the same station, this value amounts

only to 5.2 % which is the overall poorest agreement.

LIBD FBB MOF FELD BBS

Event 1, Data 1.89 4.02 7.52 not mod. 5.92

Event 1, Synt. 0.60 0.21 0.48 not mod. 7.14

Event 2, Data 6.66 not mod. not mod. not mod. 8.22

Event 2, Synt. 9.24 not mod. not mod. not mod. 4.59

Event 3, Data not mod. 7.30 not mod. 9.41 4.91

Event 3, Synt. not mod. 7.02 not mod. 0.69 3.75

Table 2.9: Duration of shaking for data and synthetics in seconds. Duration is defined as

the time between 5 % and 75% of the cumulative squared acceleration.

2.4.5 Response Spectra

A common method in the determination of seismic hazard is the computation of

seismic response spectra. For each frequency, the spectral values are defined as the

maximum response of an oscillator with a given eigenfrequency taking the seismic

acceleration signal as external force. The amplification is dependent on the subsur-
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face structure, the site conditions, and the frequency content of the seismic signal.

Buildings having eigenfrequencies like the frequencies that show large amplifications

in the spectra are most likely to be affected by the event. Response spectra are com-

puted for spectral accelerations, velocities, and displacements. Only one example

per event is shown.

Figure 2.8 (left) displays response spectra for event 1 recorded at station BBS.

Response spectra for data and synthetics are depicted by the solid and dashed lines,

respectively. The top plot shows the spectra for spectral displacements. Up to

frequencies of 4 Hz the two spectra fit very well (misfit below 20 %). For larger

frequencies the synthetics overestimate the values of the data by approximately a

factor of 2. A similar situation is found for the spectral velocities which are shown

in the second subplot. Up to 4 Hz the spectrum computed with the FD simulations

matches the data within the scope of hazard assessment quite well with deviations

below 25 % while the simulations predict larger values for higher frequencies. The

spectral accelerations are underestimated significantly by the simulations (factor of

approximately 50 %) for frequencies below 4 Hz and overestimated by the same

dimension for frequencies above 4 Hz.

Event 2 for which response spectra are shown for station LIBD in figure 2.8 (middle)

shows similar results. However, the response spectra computed for the modeling

results underestimate those of the data for frequencies below 4 Hz for all three,

displacements, velocities, and accelerations. Peaks that appear in the spectral ac-

celeration of the data around 1 and 1.6 Hz could not be modeled.

Figure 2.8 (right) shows the results for event 3 recorded and computed at station

FELD. Here, the discrepancy between data and synthetics is most obvious. The

spectral accelerations are underestimated by a factor of up to 10 for certain fre-

quencies below 3 Hz (e.g. 0.9 Hz, 2 Hz) which has significant impacts on the deter-

mination of seismic hazard. Only 30% of the amplitude of spectral velocities and

displacements can be explained by the FD model.

2.5 Discussion

Key paramemeters for seismic hazard assessment are peak ground acceleration, du-

ration of shaking, and spectral response values in the frequency band of the eigen-

frequencies of most buildings. As a rule of thumb, an eigenfrequency f in Hz of a

building can be computed as
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Figure 2.8: Response spectra for three

Rhinegraben earthquakes. Upper left:

Spectra for event 1 at station BBS. Upper

right: Spectral displacement, velocity, and

acceleration for event 2 at station LIBD.

Lower left: Spectra for event 3 at station

FELD. The solid line shows the spectra of

the data, and the dashed line represents

the spectra computed from the synthetics.



2.5. DISCUSSION 47

f =
10

n
, (2.1)

where n is the number of stories in the building. Accordingly, a house with two

stories has an eigenfrequency of 5 Hz, and smaller buildings have higher eigenfre-

quencies. Low eigenfrequencies around 1 Hz can not only be observed for houses with

many stories but are also found for large bridges. Since the architectural landscape

in southern Germany, Switzerland and northeastern France is mainly determined by

houses not exceeding a few stories, the frequency range between 1 and 8 Hz seems

most important for hazard assessment of the Rhinegraben. In this section I will,

exemplified by the peak velocities, discuss the differences between data and synthet-

ics and give several possible explanations for the discrepancies before I address the

issue of the usefulness of the results for hazard assessment purposes.

Peak velocities of the vertical component (PVV’s) and averaged peak velocities of the

horizontal components (PHV’s) correlate with the damage pattern of an earthquake.

Of those two, peak velocities of the horizontal components play a larger role for the

determination of the seismic hazard since they (a) show generally larger values and

(b) hit buildings in a direction where they are most vulnerable. In this study only

peak values of the vertical component could be checked since the five stations are

deployed with 1-component sensors only. This, however, gives already an estimate

of the usefulness of the elastic model and shows to which extend the data can be

approximated by the FD-simulations.

For local distances, peak amplitudes in the time-histories are usually part of the

shear wave train. As shown above, both, over- and underestimation of the data

by the simulations is found. The largest differences occur at station BBS for event

2 where both, compressional wave and shear wave amplitudes of the data exceed

those of the synthetics by approximately a factor of 10. The same event shows large

offsets for station LIBD. In most of the other cases the ratios are in the order of

amplification factors of 2 – 3.

Several explanations are possible for the differences between data and synthetics:

The fact that for frequencies below 4 Hz the spectral responses of the synthetics are

smaller than those of the data and that the contrary is found for frequencies above

4 Hz could be an indication that the error results from the neglection of material

attenuation. A pilot study for the Rhinegraben with basin velocities of vp = 4.5 km/s

and vs = 2.6 km/s, and elastic quality factors of QP = 1500 and QS = 1000 showed

that the P-wave amplitudes would be affected by less than 5 % for distances below

60 km and frequencies below 5 Hz when material attenuation was included while the
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S-wave amplitudes suffer more from the neglection of material attenuation and are

decreased by about 17.8 % for distances below 20 km, 20.0 % for distances below 40

km, and 22.2 % for distances below 60 km [46]. On cristalline rock (vp = 6 km/s,

vs = 3.5 km/s) the shear wave amplitudes are decreased only 10 % for distances

above 65 km. Thus if material attenuation was included, the simulated peak values

would also be decreased. In some cases this would lead to a better estimate. In

other cases, however, where the synthetics underestimate the data the fit would get

worse by including attenuation.

The consideration of topography could influence the results as well. A longer travel-

path leads to decreased amplitudes due to geometrical spreading. The effect should

be largest for station FELD situated in the Black Forest at an altitude of approx-

imately 1500 m. At this station, however, the peak compressional wave amplitude

of the synthetics is already a factor 10 smaller than the peak value of the data,

while the maximum shear wave amplitude fits the amplitude of the data very well.

When topography is included, not only the amplitudes but also the arrival times of

the synthetics would be affected. The waves would arrive later due to the increased

distance. At station FELD the waves do already arrive more than one second too

late compared to the data. The neglection of topography seems therefore a lower-

order effect and not the appropriate explanation for the differences between data

and synthetics.

Another explanation for incorrect amplitude values could be the inaccurate determi-

nation of the hypocentral depth of an event [131]. Peak particle accelerations depend

strongly on the hypocentral depth [47]. In the vicinity of the source (distances closer

than 20 km), peak accelerations are higher for the shallow source. Away from the

epicenter, increasing hypocentral depth tends to generate increased peak accelera-

tions. An increase of 100% can be observed when the hypocenter is moved from

a depth of 15 km to a depth of 10 km. Qualitatively the observation is valid for

velocities as well. For the three events studied the epicentral distances exceed 20

km at all stations. If the explanation was satisfactory, for one event the synthetics

should either be too large or too small at all stations. The fact that a clear pattern

can not be seen makes it less likely that the depth is determined incorrectly.

An explanation which seems most likely is the inaccuracy of the velocity- and

density- model. Here again, several sources for the discrepancies can be accounted

for: The elastic model could be erroneous on a large scale. An average increase

of the compressional waves of approximately 1 km/s could explain the 1.2 seconds

late arrival of the P-wave at station LIBD for event 3. Even though this increase
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seems rather large, it is to emphasize that the later arrival of a phase has no im-

mediate impact on the seismic hazard of the Rhinegraben. Small-scale features

which are not included in the elastic model could also enhance the fit between data

and synthetics. Possible meachanisms that could change waveforms and augment

amplitudes are seismic scattering, focusing/defocusing effects, or resonances in shal-

low layers. Finally, the soil where the seismometer is located has an impact on the

wave-amplitudes. In the simulation all stations are located on hard rock with S-wave

velocities between 2.04 km/s and 2.2 km/s whereas in reality some stations might

have different site conditions. Under the assumption that the site effect is constant

for compressional and shear waves, the P/S peak amplitude ratio for both, data

and synthetics, should show the same values. As mentioned above and summarized

in table 2.8, for some instances this is the case whereas for some other examples

the P/S peak amplitude ratio is very different between data and synthetics. Large

site-effects in the data might also influence the duration of shaking. The duration

of the synthetics would be expected either too long, too short or well reproduced for

all events at one site which is not the case. For the peak values in the three events

analyzed in this study both, over- and underestimation is found. The spectral re-

sponses show synthetic values smaller than those of the data for frequencies below

4 Hz and larger for frequencies above 4 Hz.

In most cases, the differences between data and synthetics amount to a factor of 2

or 3. Here, the synthetics are regarded as still being valuable for hazard assessment

since the uncertainty in magnitude determination of historic events has the same

dimension. When the seismic hazard of an area is assessed the magnitude of the

maximum earthquake which is likely to occur in that region has to be taken into

consideration. Since large earthquakes in intraplate regions occur irregulary, and

the last devasting event in the Rhinegraben dates back more than 600 years, mag-

nitude estimation is full of uncertainties. The ground velocities computed in the

simulations for a point source would be a factor of 2 larger if the seismic moment

was increased by this factor and all other parameters were kept constant and when

material attenuation is neglected. An increase of the seismic moment of a factor

of 2 increases the moment magnitude by 0.2. A difference in magnitude of 0.2 lies

within the limits of accuracy of the magnitude determination. A difference in peak

velocities of a factor of 10, however, as found in the case of event 2 at station BBS

requires a difference in magnitude of almost 0.7. Even for historic events magnitude

determination can be done more precisely than this value. Discrepancies of this

dimension have also been found for the spectral accelerations. At station FELD for
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event 3 this overestimation is as large as a factor of 10 for 0.9 and 2 Hz.

For seismic hazard estimation it is necessary that all values can be predicted within

reasonable limits. Therefore I conclude that the model of elastic parameters, espe-

cially the sedimentary structure in the upper few hundred meters has to be known

to a better extent and on a smaller scale if it shall in future be used for prediction of

peak velocities and spectral values. A refinement of the subsurface model requires

high-resolution experiments to resolve the 3D geological structures at least down to

the scale of several hundred meters. Furthermore, for a more realistic comparison

I consider it to be necessary to record the seismic events in the Rhinegraben by

three-component stations.



Chapter 3

Case Study II: Modeling the 1927

Jericho Earthquake in the Dead

Sea Basin

3.1 Motivation

The Dead Sea Rift (DSR) transform fault is a site of major historical seismic ac-

tivity. Earthquakes in the DSR occur irregularly but with maximum magnitudes

between 6.5 and 7.0. The Dead Sea Basin (DSB), a sediment-filled pull-apart basin,

is situated at the center of the Dead Sea Rift. Despite of the large magnitudes, the

level of ground motion is generally low south of the Dead Sea Basin, while large

ground motion amplitudes have been observed to the north of the basin [127, 141].

The elongated structure of the basin with its deep (more than 10 km) sedimentary

fill [41] suggests that it acts as a wave-guide, contributing to an anisotropic radia-

tion pattern of seismic energy [140]. Recent 3D modeling of ground motion in deep

basins [48, 103, 104, 118] clearly shows that focusing and defocussing effects can be

significant.

The objective of this study is (a) to assess potential 3D variations in ground motion

caused by the Dead Sea Basin substructure and (b) to consider its implications for

seismic hazard assessment purposes. This issue is addressed by 3D modeling of 75

seconds of 1.5 Hz wave-propagation of the 1927 Jericho Earthquake (ML = 6.2)

for which reasonably precise information on location, magnitude, and damage is

available [96, 123, 127]. From the time histories peak ground velocities (< 1.5 Hz)

and spectral acceleration responses at 1 Hz are computed in a 3D model including

the Dead Sea Basin substructure. The accelerations are then compared to values

51
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computed (a) for a halfspace model with elastic parameters as in the bedrock of

the Dead Sea Basin model, and (b) using an attenuation relation similar to the one

integrated in the building code 413 of Israel.

3.2 Dead Sea Rift Transform Fault

3.2.1 Tectonics and Geology

In the mid-Cenozoic, the Arabian plate broke away from the African plate, forming

the Dead Sea Rift transform at the boundary between the Arabian and an appendage

of the African plate, the Sinai sub-plate. The transform is some 1000 km long

and joins the divergent plate boundary along the Red Sea in the south with the

converging orogenic belt in Turkey (figure 3.1). The Dead Sea Basin, being one

of the largest pull-apart basins in the world, formed along the left-lateral DSR

transform fault. Subsidence of the basin occured in large parts about 15 Ma or

earlier with the site of fastest subsidence having shifted northward. By the end of

the Miocene about half of the present length was reached [37]. Note that the Dead

Sea Basin is located further north than the Dead Sea with which it overlaps only in

the southern part of the basin.

3.2.2 Seismicity

The DSR transform is well known as a source region for earthquakes with magnitudes

between 6.5 and 7.5. Since the region has been settled for many centuries, first

reports of earthquakes date back to more than 4000 years. Several catalogues are

available for major events [7, 8, 9, 16, 17, 127]. The largest of those are compiled in

table 3.1.

3.2.3 The 1927 Jericho Earthquake

On July 11, 1927, a ML = 6.2 earthquake occured under the town of Jericho where

it destroyed several buildings and caused ground fissures. In many cities and villages

in Judea, Samaria and Galilee the earthquake had even worse effects: More than 340

people were killed and almost 1000 were injured due to the collapse of buildings. The

flow of the river Jordan stopped for 22 hours due to landslides. Shaking has been

reported from regions 900 km away from the epicenter. The event could be recorded

at several seismic stations then available in Europe, South-Africa, North-America,
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Figure 3.1: Map of the Dead

Sea Rift transform and the

Dead Sea Basin (after [17]).

Plate boundaries are indi-

cated as dashed lines. The

location of the Dead Sea and

the Lake Galilee are sketched.

The approximate location of

the modeling area is indicated

as a black dashed rectangle.

and even Australia, thus extending the microseismic coverage to more than 14000

km [96, 127].

Figure 3.2 shows the distribution of the macroseismic intensity for this event. The

intensity pattern shows a distinct extension to the north: The area where the largest

damage is found (intensity = X) is situated approximately 50 km north of the

epicenter on the eastern side of the Ephraim mountains and is embedded in a kidney-

shaped elongated zone of intensity > VIII. Even further to the north, in a distance

of approximately 100 km from the epicenter, two patches with intensity level VIII

– IX are situated. The deviation from a more radially-shaped intensity distribution

has been reported for several other events [127] and is suggested to be related to the

elongated structure of the Dead Sea Basin which acts like a wave-guide [141].
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Year ML (est.) Details

2100 BC 6.8 Upheaval in southern Dead Sea, destruction of

Jericho.

759 BC 7.3 King Solomon’s temple in Jerusalem damaged.

746 AD 7.3 Destruction of the Omayad Hesham palace.

near Jericho.

1170 AD 7.5 King herod’s obelisk at Ceasaria thrown down.

1202 AD 7.5 Great damage and many victims in Baalbek and

Tiberias. Felt in a distance of 1200 km.

1546 AD 7.0 Seiches in the Dead Sea. Waters of river

Jordan cut for 2 days.

1759 AD 7.4 Destruction in Baalbek. Parts of Damaskus

destroyed.

1837 AD 6.7 Destruction of Safed and Tiberias, 3000 victims.

1927 AD 6.2 Epicenter in Jericho. First event instrumentally

recorded.

Table 3.1: Large historic earthquakes connected to the Dead Sea Rift transform fault. ML

(est.) stands for the estimated local magnitude.

3.3 Modeling Parameters

3.3.1 Elastic Model and Geometry

A simplified 3D elastic model as proposed for the DSB area [5, 37] is used for the

simulation (figure 3.3). It consists of a basin, 15 · 100 km2 in size, with three layers

that are embedded in crystalline bedrock (vp = 5.5 km/s, vs = 3.2 km/s, ρ = 2.7

g/cm3). The upper layer with vp = 4 km/s, vs = 2.3 km/s and ρ = 2.1 g/cm3

corresponding to shales and clastics extends to a maximum depth of 5 km. The

two underlying layers extend in the center of the basin to a depth of 9 km and are

composed of salt and quartzrose sandstones (vp = 4.5 – 5 km/s, vs = 2.6 – 2.9 km/s

and ρ = 2.4 – 2.6 g/cm3). Small-scale features in the geometry of the basin have

been deliberately ignored in order to keep the model as simple as possible. The

relatively low frequencies (< 1.5 Hz) correspond to a minimum wavelength for shear

waves of 1.5 to 2.0 km. Thus, model features below this scale are considered as

unimportant. Changes in the model of this scale size would not affect the results

significantly. For the same reason no mountain topography has been included in

the model. The simulations comprise no material attenuation since the effect is not
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Figure 3.2: Distribution

of macroseismic inten-

sity for the 1927 Jericho

earthquake (after [127]).

The maximum intensity

amounts to X and is found

approximately 50 km

north of the epicenter.

Two further patches with

large (IX) intensities are

found to the east and to

the west of Lake Galilee.

The approximate loca-

tions of the epicenter and

the outline of the basin

are indicated by a star

and a dashed rectangle,

respectively.

important at the frequencies and distances considered.

The observed ground motion in and outside the basin will be influenced by both

the basin structure and the site effects in the valley. However, I only address the

first effect so that variations in ground motion distribution will be aggravated if site

effects are included.

3.3.2 Computational Parameters

A triangular-shaped slip rate with a rise time of 0.48 seconds [58] was used. The

seismic moment M0 was computed by a scaling relation [57, 69], assuming the local

magnitude ML = 6.2 to scale like the moment magnitude MW [6]. Empirical relations

for strike-slip events [138] were used to compute the size of the rupture area (12 ·
12 km2). The hypocenter is located at a depth of 7 km at the southern edge of the

fault. The rupture front propagates with 70% of the local basin shear wave speed

[38]. Further modeling parameters are compiled in table 3.2.
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Figure 3.3: Two cross-sections of the model of elastic parameters used for the simulation

of the Jericho earthquake. Note that the vertical axis is exaggerated by a factor of 4. The

square fault plane is thus indicated as black dashed rectangle (left) and black line (right).

The hypocenter, located at a depth of 7 km at the southern end of the fault, is displayed

as a black cross.

3.4 Numerical Results

In this section snapshots of ground velocity at the surface, seismograms, peak ground

velocities, and the averaged horizontal spectral acceleration response (1 Hz) are

shown, and 75 seconds of 1.5 Hz elastic wave-propagation in the DSB model are

analyzed. Accelerations have further been computed (a) for a model that contains

constant elastic parameters equivalent to the bedrock parameters of the DSB model

(hereafter called homogeneous model), and (b) using an attenuation relation [22]

that is similar to the one integrated in the building code 413 of Israel, but allows

additionally frequency-dependent analysis. Those will be compared to the spectral

accelerations computed for the DSB model.

3.4.1 Snapshots of the Wavefield

Snapshots of ground-velocity are shown in figure 3.4. The figure displays the horizon-

tal component parallel to the strike of the fault. Large positive values are indicated

by dark colors. After approximately 2 seconds the waves reach the surface. Five

seconds after the initiation of the rupture, due to rupture directivity, north of the

fault wave amplitudes are larger than south of it. A superposition of reflections from

the eastern edge with later arrivals causes large amplitudes due to positive interfer-

ence 10 seconds after the first breaking of the fault. On this horizontal component,
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Spatial discretization (m) 200

Temporal discretization (s) 0.015

Number of timesteps 5000

Simulation time (s) 75

Number of E-W grid points 1000

Number of N-S grid points 275

Number of vertical grid points 87

Hypocentral depth (km) 7

Width of fault along dip (km) 12

Length of fault along strike (km) 12

Strike (◦) 0

Dip (◦) 90

Rake (◦) 0

Table 3.2: Geometrical modeling parameters used for the simulation of the Jericho earth-

quake.

due to the location of the rupture and the geometry of the basin, a large amount of

seismic energy leaves the basin at its northeastern corner. This effect is reversed on

the horizontal component perpendicular to the strike of the fault leading to overall

larger wave-amplitudes at the corners of the basin than in between.

3.4.2 Seismograms

Three-component seismograms from six locations are shown in figure 3.5. Three

sites are located 60 km north of the epicenter (D – F) and three others (A – C) 60

km south. Site B is located within the basin while the other five sites are based on

bedrock. Generally, as an effect of rupture directivity, south of the epicenter (sites

A – C) the duration of shaking is larger than north of it (sites D – F). For the

same reason amplitudes on the stations north of the epicenter are larger than the

amplitudes to the south. This amplification reaches a factor of approximately 35 for

the horizontal component perpendicular to the strike of the fault on the westernmost

stations (A, D). The horizontal components perpendicular to the strike of the fault

show larger amplitudes than those parallel to the fault. This effect can be seen in

forward as well as backward rupture directions [130]. Further, two to three times

larger amplitudes at the station located within the basin (B) are found compared

to the stations to the east (C) and west (A).
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Figure 3.4: Snapshots of the wavefield at the surface (horizontal component parallel to

the fault). Large positive values are depicted by dark colors, and large negative values by

bright colors. The basin outline is indicated by a black rectangle. South is at the left, and

north at the right side of each image.

3.4.3 Peak Ground Velocities

The spatial distribution of peak ground velocities is shown in figure 3.6. The hori-

zontal component parallel to the fault shows the largest values. The maximum value

(black) of 8.06 m/s is found within the basin close to the southern end of the rupture

on this component, 300 m northeast of the epicenter. Along the rupture, radiation

takes place mainly within the basin causing the peak values within the basin to be

more than three times as large as symmetrically outside of it. The displacement

amplitude of a seismic point source scales with the inverse third power of the shear

wave velocity. Thus, an event produces higher ground motion if the source is located

in a low-velocity medium. Reflections from the northern basin edge produce large

amplitudes just south of the northern edge of the basin and at its eastern edge. Two

lobes of large amplitudes that are also reflected in the intensity pattern (compare

figure 3.2) are visible north of the basin. They develop within the basin due to

positive interference of the reflected waves with later arrivals. Those waves leave

the basin at its corners leading to large amplitudes northeast and northwest of the

basin.
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Figure 3.5: Top: Location of

sites A – F and division of

the surface into five regions

(compare to figure 3.7). Epi-

center and rupture are indi-

cated by a star and a fat solid

line. Below: Velocity seismo-

grams calculated at the sur-

face. Sites A – C are lo-

cated 60 km south of the epi-

center, and sites D – F lie

60 km to the north. The

three columns show seismo-

grams of the vertical compo-

nent, and the two Horizontals

perpendicular and parallel to

the strike of the fault.

3.4.4 Spectral Accelerations

The distribution of ground motion is influenced by different effects which can be

divided into two groups. The first group contains effects due to rupture propagation,

includes directivity effects, and effects due to the radiation pattern. The second

type of effects has to do with the subsurface distribution of elastic parameters. It

comprises amplification of ground motion that is caused by reflection and focusing,

and includes local site effects related to the low velocities of the sediments.

Computing spectral accelerations with the attenuation relation that does not include

directivity effects can isolate the first group of effects. The computation is carried

out for an average of the two horizontal components and consequently excludes the

differences that are due to the radiation pattern.

The averaged horizontal spectral accelerations Y are computed by the following

equation for each single source point, and added accordingly to the rupture velocity

and the distance to the hypocenter:

ln Y = b1 + b2(MW − 6) + b3(MW − 6)2 + b4 ln r + b5 ln
vs30

va
. (3.1)
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Figure 3.6: Spatial distribu-

tion of vertical and horizontal

components of peak ground

velocities. The outline of the

basin is indicated by a black

rectangle. South is at the left,

and north at the right side

of each image. The largest

value of ground motion (8.06

m/s) is found on the horizon-

tal component parallel to the

fault. The locations of the

cities Jerusalem and Jericho

are indicated by dots. The

epicenter is displayed as a

white cross and marked by the

letters EC.

The coefficients b1 to b5 and va were determined for shallow earthquakes in west-

ern North-America by regression analysis in dependence on frequencies and source

mechanisms [22]. It is similar to the attenuation relation used in the building code

413 of Israel [21], but allows frequency-dependent analysis. Here, I use the values

for f = 1 Hz and strike-slip mechanism. MW denotes the moment magnitude of the

event, r is a distance dependent parameter, and vs30 stands for the average shear

wave velocity of the top 30 m.

Since both FD-simulations use the same rupture parameters, a comparison between

accelerations from both simulations isolates the effects caused by the second group,

namely the elastic parameters of the DSB substructure model.

A comparison of 1-Hz spectral acceleration response can be found in figure 3.7. The

figure displays accelerations along N-S lines for five different regions (see figure 1).

Within these regions the values have been averaged by adding the accelerations with

the same N-S extension and dividing the value by the number of summands. The

solid line represents the results for the values computed in the DSB model (YFD1),
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Figure 3.7: Averaged spectral

acceleration response. The

solid line depicts the values

for the DSB model. The

results for the homogeneous

model are indicated by the

dotted line. The dashed line

shows the results for the com-

putation using the attenua-

tion relation utilized in Is-

rael’s building code. The av-

erage is computed for five re-

gions (see figure 3.5).

the dashed and dotted lines show accelerations predicted by the homogeneous model

(YFD2) and the attenuation relation (YAR), respectively. For a better comparison, I

compute the ratios RFD = YFD1/YFD2 and RAR = YFD1/YAR.

RAR is on average small south of the epicenter (with values below 2) and gradually

increases from the northern basin edge towards north up to a value of just below 5.

The acceleration of the computed data exceeds the 84% percentile of the attenuation

relation estimate by a factor of 2. The largest ratio can be found just south of the

northern end of the basin (region 3, km 17.5). At this point the amplification caused

by reflections at the edge of the basin reaches 5.1. Remarkable differences can also

be observed close to the source (region 2). The area from the epicenter (km 0) to

the end of the basin (km 20) is characterized by average ratios of 2.0 to 2.5. As

possible explanation I consider rupture dynamics. Adding one σ can explain more

than 80% of the FD result.

RFD is generally smaller than RAR. North of the basin, the ratio is on average on

the order of 2 – 2.5. At the northern end of the basin an amplification factor of 5.1

is found. In its southern and northern part the RFD values are similar, being larger
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in regions comprising the basin (region 2 – 4, RFD on average 4), and smaller in the

two remaining ones (RFD 1.5 – 2).

3.5 Discussion

Using a simplified large-scale model of the Dead Sea Basin substructure, the FD-

simulation can explain the increased amplitudes north of the basin. Two possible

causes are discussed: Rupture dynamics causes the amplitudes north of the epicen-

ter to be larger than south of it. Additional contributions the heterogeneous ground

motion distribution are due to the geological structure of the DSB which contributes

more to ground motion amplification potential than the rupture propagation. Con-

sequently, the effect of the sedimentary structure of the DSB should be accounted

for while assessing the seismic hazard of the region.

The pattern of increased intensities can however only partly be reconstructed with

the modeling. A comparison of the intensity map (figure 3.2 to the areal plot of

peak ground velocities (figure 3.6) shows that the modeling predicts the largest

peak ground velocities (8.06 m/s) in the vicinity of the epicenter, a region with

intensity VII. Approximately 50 km northwest of the epicenter where the maximum

intensity was observed, peak ground velocities are in fact larger than south of the

epicenter, but still considerably smaller than around the epicenter. Here, the peak

ground velocity amounts to only 0.2 m/s on the horizontal component parallel to

the strike of the fault. This value is rather small compared to the maximum peak

ground velocity computed in the vicinity of the epicenter. However, it seems not too

small to be responsible for the damage observed. The large value of peak ground

velocity computed near the epicenter though, is unrealistically high compared to

observations. This might be due to the fact that the area containing peak ground

velocities > 5 m/s is limited to epicentral distances of less than 1 kilometer within

the basin. For the bedrock the maximum value computed amounts to 2.5 km/s and

is located just 200 meters from the epicenter. The isoline for a peak ground velocity

of 1 m/s is located in a maximum epicentral distance of five kilometers within the

basin and one kilometer on the bedrock. Observations for small epicentral distances

are very rare, and it is not clear from the reports by Sieberg how many near-source

observations he included in the compilation of his intensity map.

A change in the rupture velocity of the Finite Difference model can increase the

agreement between the intensity map and the distribution of peak ground velocities

[50]. In a second simulation, the rupture velocity amounts to 90% of the local shear
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wave speed. All other parameters are kept constant. Figure 3.8 shows the averaged

horizontal component of the peak ground velocity for this scenario. Here, extremly

large values of peak ground velocities as observed for the first simulation are missing.

The maximum value amounts to 1.78 m/s and is found 1 km north of the epicenter

and 400 meters east of the fault within the basin on the horizontal component parallel

to the strike of the fault. In the area where the maximum intensities were observed,

the peak ground velocity on the horizontal component perpendicular to the fault

takes a value of 0.1 m/s. Just north of the basin, peak ground velocities of 0.4 m/s

and 0.5 m/s are computed on the horizontal component parallel and perpendicular

to the strike of the fault, respectively. This corresponds to an increase of factors of

15.5 and 8.6 compared to the location symmetrically south of the epicenter.
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Figure 3.8: Spatial distri-

bution of the averaged ho-

rizontal component of peak

ground velocities for a simu-

lation where the rupture ve-

locity vr amounts to 90% of

the local shear wave speed vs.

The outline of the basin is in-

dicated by a black rectangle.

South is at the left, and north

at the right side of each image.

Even though qualitatively the fit could be observed with the second simulation,

in both simulations the maximum peak ground motions are located in the epicen-

tral region while the maximum intensity has been reported from approximately 50

kilometers northwest of the epicenter. The consideration of local site conditions

could influence the results significantly. This might play a crucial role for the area

where Sieberg found the maximum intensity, which is located just to the east of the

Ephraim mountains.
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Chapter 4

Case Study III: Modeling Ground

Motion on Dipping Faults

4.1 Motivation

Near-source ground motion caused by dipping faults is independently of the radiation

pattern significantly asymmetric [82]. This fact has been observed in seismic data

recorded during recent large events as for example the 1994 Northridge (USA) or the

1999 Chi-Chi earthquake (Taiwan) [28]. The asymmetry could be verified from field

evidence [24] and modeled by 2D and 3D simulations of ground motion [2, 14, 97].

In some cases, the near-field ground motion on the hanging wall can be increased

by a factor of 3 due to normal-stress interaction effects [1]. Larger ground motion

on the hanging wall is caused by time-dependent normal-stress interaction between

the fault and the free surface (figure 4.1)[98]. Significant effects on the ground

motion, including the asymmetry between the foot- and hanging walls, is caused by

break-out phases and trapping of seismic energy between the fault and free surface

[99]. This could also be seen in a dynamic model of the Northridge earthquake,

where negligible free-surface effects on the rupture propagation for the fault buried

5 km were found [93]. The presence of a low-velocity zone can significantly affect

the rupture velocities, slip-velocity functions and normal stress on the fault. These

effects include slowing or increases in rupture velocity, in some cases transitions to

super-shear velocities [36, 56].

Recently, analytical solutions for the 2D ground motion for a dip-slip fault in a

halfspace could be derived [81]. The different waves generated when the fault breaks

the surface could be identified. In a halfspace, the strongest ground motions are

caused by a Rayleigh wave radiated in the forward direction. The rupture front wave

65
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fault

direction
of rupture
propagation

.

.

Figure 4.1: Illustration of the time-dependent normal-stress effects. The dashed arrows

indicate the direction of normal-stress interaction. Waves radiated from the fault that

are reflected at the free surface take different travel paths before arriving at different

parts of the fault. The normal stresses that are affected by the free-surface thus lead

to varying normal-stress values on the fault. This effect is time-dependent: The dynamic

rupture front propagates with an unconstrained rupture velocity determined by local stress

and friction conditions. Such an interaction is not present when the rupture is inserted

kinematically by a predetermined slip distribution.

is cancelled by the stopping phase [81] and therefore disappears in the footwall.

Scenario earthquake simulations, generally using kinematic (prescribed) rupture pa-

rameters are becoming increasingly popular and attain an important role in hazard

analysis [49, 59, 88, 89, 108]. However, the results discussed above suggest that these

prescribed ruptures generally do not include near-surface effects from normal-stress

interactions. While dynamics already has been included in the fault descriptions

of the scenario simulations instead of the kinematic descriptions [107, 111], a wide-

spread use of spontaneous rupture description is likely not going to be the case in

the near future due to numerical and computational difficulties.

It is therefore imperative to quantify and include any lessons learned from dynamic

rupture simulations that may lead to more accurate kinematic rupture implementa-

tions, which typically do not include the bias caused by normal-stress interactions

between the fault and the free surface. In this study, dynamic normal-stress interac-

tions on the near-field ground motions will be quantified. This is done by comparing

the ground motion from dynamic simulations to that from kinematic ruptures with

prescribed rupture parameters at different depths of the burial of the fault (0 – 5

km). An important incentive of this analysis is to estimate a threshold depth for

the top of the fault above which the normal-stress effects leave considerable signa-

ture in the ground motion. Such estimate may be used as guidance to improve the

ground motions in simulations of scenario earthquakes on dipping faults, typically

carried out using prescribed ruptures where normal-stress effects are not included.

The physics of the rupture propagation leading to the differences will be analyzed.
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Finally the influence of shallow low-velocity layers on the normal-stress effects will

be examined.

4.2 Modeling Parameters

4.2.1 Elastic Model and Geometry

The model dimensions and geometry are inspired by the 1994 MW 6.7 Northridge

earthquake which occurred on a blind thrust fault below the San Fernando Valley.

A planar, 20 km by 20 km fault plane, with the top at 0 km, 0.5 km, 1 km, 3

km, and 5 km below the surface is used. The latter represents the situation for the

Northridge earthquake, and the remaining scenarios depict the cases had the fault

ruptured to shallower depths.

Most of the simulations are carried out in a uniform halfspace model (UHS) in

order to isolate the dynamic normal-stress effects. However, the halfspace model is

later replaced by a model with including one (1LOH) and two (2LOH) layers over

the same halfspace. The values for the elastic parameters for all three models are

compiled in table 4.1. The synthetics contain frequencies up to 1 Hz.

UHS 1LOH 2LOH

vp (km/s) 5.0 2.0 5.0 1.5 2.0 5.0

vs (km/s) 3.2 1.0 3.2 0.5 1.0 3.2

ρ (g/cm3) 2.7 2.1 2.7 1.8 2.1 2.7

Depth (km) 0.0 0.0 1.0 0.0 0.4 1.0

Table 4.1: Model of elastic parameters used for the simulation of ground motion from

dipping faults.

Figure 4.2 shows the modeling area with the projection of the fault and the loca-

tion of two profiles along which synthetic seismograms for kinematic and dynamic

simulations will be compared. The location of the profiles were chosen in order

to highlight some of the largest differences between the two sets of simulations.

Geometrical modeling parameters are summarized in table 4.2.

4.2.2 Dynamic Computational Parameters

In the dynamic simulations of the study mixed boundary condition and friction pa-

rameters were used. The method which is in more detail explained in section 1.6.1
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Figure 4.2: Surface projection

of model geometry. The fat

solid line represents the pro-

jection of the fault tip (sur-

face break for faults that come

up to the top). The rectangle

depicts the projection of the

fault plane. The epicenter is

indicated by a star. Dashed

lines show the location of the

profiles in figures 4.7 and 4.13

to 4.16.

was successfully applied to dynamically model the 1994 Northridge earthquake and

generated synthetics with a good fit to selected strong motion records in the San

Fernando Valley [93]. While the previously mentioned investigation used a hetero-

geneous initial stress field computed from slip inversion results, here a homogeneous

initial stress field is used in order to isolate the effects of the normal-stress interac-

tion in the presence of the free surface. Moreover, all dynamic simulations in this

study use values of the parameters Dc, Vc, and the yield stress which are constant

across the fault. These values are selected as those for the preferred model of the

above mentioned study [93], listed in table 4.3. The heterogeneity generated in the

dynamic rupture is therefore due to normal-stress interactions between the fault and

the free surface or near the unbreakable boundaries of the fault for the halfspace

model, or the geological stratification in the uppermost part of layered models.

Figure 4.3 shows the slip distributions obtained for the fault buried to a depth of

5 km, using only slip weakening (left) and with a combination of slip and sliprate

weakening (right). The slip distributions are scaled with a constant so that the left

image corresponds to the magnitude of the MW 6.7 Northridge earthquake.
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Spatial discretization (m) 200

Temporal discretization (s) 0.0015

Number of timesteps 2000

Simulation time (s) 30

Number grid points perpendicular to strike 200

Number of grid points parallel to strike 300

Number of vertical grid points 400

Width of fault along dip (km) 20

Length of fault along strike (km) 20

Hypocentral depth (km from top of fault plane) 14.14

Strike (◦) 0

Table 4.2: Geometrical modeling parameters used for the simulations of ground motion

on dipping faults.

Slip weakening distance Dc (m) 0.15

Rate weakening distance Vc (m/s) 0.092

Yield stress (MPa) 24

Initial stress on fault (MPa) 17.5

Table 4.3: Dynamic modeling parameters.

4.2.3 Kinematic Computational Parameters

Prescribed rupture propagation is simulated by kinematically adding the sliprate

that has been computed on the fault from the dynamic simulation for a fault burial

of 5 km. This procedure is explained in section 1.6.1. It assumes that the dynamic

free-surface effects are negligible at this depth, which has been verified. Variations

in rupture velocity arising from dynamic rupture propagation from the nucleation

towards the free surface are present in both dynamic and kinematic ruptures and

affect the ground motion equally. Thus, the results reflect the time-dependent dy-

namic (normal-stress) interaction with the free surface/geological layering for various

depths of burial of the fault.
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Figure 4.3: Final slip distribution for a 45o dipping fault buried at 5 km using (a) only

slip-weakening and (b) a combination of slip- and sliprate- weakening. The image displays

the fault plane.

4.3 Numerical Results

4.3.1 Uniform Halfspace (UHS) Model

In the following I will compare the dynamic and prescribed ruptures as well as the

resulting ground motion in the UHS model. It is possible to compare the two sets of

simulations scaled to a certain magnitude or moment for a specific depth of burial

of the fault. Such scaling is often done for scenario simulations [104]. Another

possibility is to scale the series of dynamic ruptures by a constant to match the

moment of the prescribed rupture at depth, i.e. where the effects of the normal-

stress effects from the free-surface are negligible for the frequencies considered. This

scaling retains the normal-stress effects in the rupture propagation and therefore

increases the moment additionally. Here, the latter scaling is chosen to isolate the

normal-stress effects while the increase in moment caused by the normal-stress effects

is listed in tables 4.4 and 4.5. The main analysis is carried out for a 45o-dipping

fault, compared to results from 30o- and 60o-dipping fault scenarios, to examine the

influence of dynamic effects at the free surface by the dip of the fault plane.

A key parameter for the comparisons is the ratio of dynamic and kinematic peak

ground displacements and velocities above and surrounding the surface projection of

the fault. Spatially-variable root-mean-square (rms) ratios of dynamic and kinematic
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Dip Angle 45o 30o 60o 45o

Dc (cm) 15 15 15 15

Vc (cm/s) 0 0 0 9.2

Depth (km)

0 1.57 1.57 1.71 1.36

1 1.13 1.12 1.21 1.11

3 1.04 1.03 1.04 1.04

5 1.00 1.00 1.00 1.00

Table 4.4: Seismic dynamic/prescribed moment ratios in a halfspace model.

1LOH, uniform prestress 1.72

2LOH, uniform prestress 1.82

UHS, square-root tapered prestress 1.44

UHS, prestress = 0 in upper 2 km 1.28

UHS, heterogeneous prestress in upper 1 km 1.55

Table 4.5: Seismic dynamic/prescribed moment ratios for 45o-dipping fault: Effects of

near-surface layers and near-surface stress. 1LOH and 2LOH stand for one and two layers

over a halfspace (see section 4.3.2), respectively, and UHS stands for uniform halfspace.

For the models with varying prestress see section 4.3.3.

peak displacement (RD) and velocity (RV) are computed as

RD =
PDdyn(x, y)RMS

PDkin(x, y)RMS
and RV =

PVdyn(x, y)RMS

PVkin(x, y)RMS
, (4.1)

where PD(x, y)RMS and PV (x, y)RMS denote rms-values of the peak displacements

and velocities, and dyn and kin stand for dynamic and kinematic (prescribed) rup-

ture implementation.

45o Dipping Thrust Fault

Snapshots of the velocity wavefield on a plane vertical to the rupture plane and

the surface are shown in figure 4.4 for a 45o-dipping thrust fault. The fault is

located in the UHS model and intersects the free surface. The comparison shows

that (a) ground velocities on the vertical component and the strike-perpendicular

component are 1 – 2 orders of magnitude larger than those on the strike-parallel

component, and (b) illustrates the difference between kinematic (columns 1, 3, and
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5) and dynamic (columns 2, 4, and 6) rupture simulations. The time-dependent

normal-stress interference of the waves with the free surface causes the amplitudes

in the dynamic simulations to be larger, especially for times larger than 6 seconds.

Figures 4.5 (including both slip- and sliprate-weakening friction) and 4.6 (no sliprate

weakening friction) show RD (top) and RV (bottom) ratios above and surrounding

the surface projection of the fault. As expected from the pure thrust rupture mech-

anism, the vertical and strike-perpendicular components show the largest ratios.

Figure 4.5 also depicts ratios for ruptures breaking the surface and buried 1 and 3

km. Note the increase in peak motions around the fault trace for the fault breaking

the surface. The largest displacement ratio (3.4) is obtained within a band around

the fault tip for the fault with surface rupture, outlined by the contour line for a

ratio of 2.5. For faults buried deeper than 1 km the ratios are close to 1, indicating

negligible time-dependent free-surface effects.

The discrepancies between prescribed and dynamic rupture are further illustrated

by comparisons of the radiated waves. Figure 4.7 shows time-histories for pre-

scribed (thin line) and dynamic simulations (thick line) along the profiles shown in

figure 4.2 for a rupture breaking the surface and including slip-weakening but no

rate-weakening friction. The dynamic simulation generally generates slightly larger

amplitudes. The differences become most obvious on the strike-parallel profile on all

traces and components for times larger than 10 seconds, and above the fault (second

trace in down-dip profile).

When a small amount of rate-weakening friction (9.2 cm/s) is added, the seismic

moments of simulations for all depths decrease (table 3), but the overall pattern of

peak displacement ratios and peak velocity ratios show little change as seen from a

comparison between figure 4.5 (no rate-weakening friction) and figure 4.6 (includ-

ing rate-weakening friction). The maximum peak velocity and displacement ratios

amount to 1.5 and 3.1, respectively, for the simulation including rate weakening,

compared to 1.7 and 3.4, respectively, for the simulation without rate-weakening

friction. This change, however, affects only a small area close to the fault edges and

does not change the overall pattern significantly. In the following I will therefore

only discuss the scenario including slip-weakening friction, but not rate-weakening

friction.

Figure 4.8 shows snapshots of the normal stress on the fault plane for a 45o-degree

dipping thrust fault rupturing the surface (a,b), and buried 1 (c) and 3 km (d)

in the UHS model. Simulation (a) has been carried out for a prescribed rupture,

simulations (b – d) for a dynamic rupture. Note that for faults buried 1 km and
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Figure 4.4: Snapshots of the wavefield vertical to the strike and the free surface for a 45o-

dipping thrust fault with surface rupture in the UHS model. Columns from left to right:

Vertical component of kinematic simulation, vertical component of dynamic simulation,

strike parallel component of kinematic simulation, strike parallel component of dynamic

simulation, strike perpendicular component of kinematic simulation, strike perpendicular

component of dynamic simulation. The dipping black line indicates the free surface. The

vertical black line displays the fault. Large positive and negative values are denoted by

dark and bright colors, respectively. The scaling of the ground motion amplitudes is done

independently for the three components of the wavefield.
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Figure 4.5: Ratios between peak displacements (top) and peak velocities (bottom) for

dynamic and kinematic rupture simulations on a 45o-dipping fault with surface rupture,

and buried 1 and 3 km. Due to symmetry reasons only the upper half of the area (figure 4.2)

is shown. The computations include slip- and sliprate-weakening friction. The projection

of the fault onto the surface is shown by the dashed line. Large (small) ratios are depicted

by dark (light) colors.

deeper the stress values approach the surface with constant velocity. Reflected

normal stresses do not interfere significantly with the normal stresses on the rupture

plane because the faults are buried too deep in the UHS model. For simulations (a)

and (b) which both rupture the surface, the reflections of the normal stresses can be

seen on the rupture plane. However, significant changes to the circular distribution of

normal stresses are only found for the dynamic simulation of the fault rupturing the

surface where the reflected normal stresses interfere with the ongoing rupture. The

two points moving from the center to the sides are the free surface manifestations

of the normal-stress reflections, although in a realistic simulation with variation of

the initial stress, these would likely be much less significant.

Figure 4.9 shows the sliprate for dynamic simulations, rupturing the surface (a)

and buried 0.5 (b) and 1 km (c). Note the break-out phase for (a) and (b), which

disappears for faults buried 1 km and deeper. This phase consists of a transition to

super-shear rupture velocity due to decreased rupture resistance in the presence of

the free surface. It causes a significant increase in ground motion above the fault

[97, 98, 99].
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Figure 4.6: Same as figure 4.5, except the dynamic simulations include only slip-weakening

friction.

30o and 60o Dipping Thrust Faults

Figures 4.10 and 4.11 depict peak displacement and peak velocity ratios for 30o- and

60o-dipping thrust faults, respectively. As for the 45o-degree dipping fault plane, the

peak ratios are increased around the fault trace. The ratio reaches factors of 3.3

and 4.7 for the 30o- and 60o-dipping faults. The influence of the different dip angles

is further illustrated in figure 4.12 (left) which shows the sliprate on the fault for

three dynamic simulations, with a dip angle of 45o, 30o, and 60o. For a 30o-dipping

fault the interaction with the free surface occurs earlier and for the 60o dip later

than for the 45o simulation. The average final slip value and therefore the moments

are similar for the 30o- and 45o-dipping faults (table 4.4). For depths less than 5

km, the final slip is on average larger for the 60o-dipping fault which is reflected in

increased seismic moments compared to those on the 45o-dipping thrust fault (table

4.4).

4.3.2 Layered Model, 45o Dipping Thrust Fault

Figure 4.12 (right) shows the sliprate for a 45o-dipping dynamic fault model with

surface rupture and one (1LOH) and two (2LOH) near-surface layers added to the

UHS model described above (see table 4.1). Note how the layers promote an earlier

transition to super-shear rupture, which causes an additional increase in peak motion

compared to the equivalent kinematic case.

A comparison of time-histories from dynamic and prescribed ruptures along the



76 CHAPTER 4. CASE STUDY III: EARTHQUAKES ON DIPPING FAULTS

0 10 20 30
−45

−40

−35

−30

−25

−20

−15

−10

−5

D
is

ta
nc

e 
(k

m
)

Profile along Strike

0 10 20 30
−40

−35

−30

−25

−20

−15

−10
Profile along Downdip

V
er

tic
al

0 10 20 30
−45

−40

−35

−30

−25

−20

−15

−10

−5

D
is

ta
nc

e 
(k

m
)

0 10 20 30
−40

−35

−30

−25

−20

−15

−10

S
tri

ke
−P

ar
al

le
l

0 10 20 30
−45

−40

−35

−30

−25

−20

−15

−10

−5

Time (s)

D
is

ta
nc

e 
(k

m
)

0 10 20 30
−40

−35

−30

−25

−20

−15

−10

Time (s)

S
tri

ke
−P

er
pe

nd
ic

ul
ar

Figure 4.7: Velocity

seismograms for a

45o-dipping thrust fault

with surface rupture in

the UHS model along

profiles P – P’ and Q

– Q’ (figure 4.2). The

thick and thin traces

depict synthetics from

dynamic and kinematic

simulations, respec-

tively. Note the large

differences for times

larger than 10 seconds,

in particular on the

profile along strike (P –

P’ in figure 4.2)

profiles P – P’ and Q – Q’ in figure 4.2 is shown in figures 4.13 to 4.16 for models

1LOH and 2LOH, respectively. Between 20 and 30 seconds, the strike-perpendicular

component of the dynamic simulations generate peak motions 2 – 3 times larger than

those for the prescribed rupture along the strike-parallel profile for the 1LOH model.

This is likely caused by reverberations of the waves in the 1-km thick surface layer

with a resonance period of 4 seconds, in agreement with the predominant period

of the waves in the records, enhanced significantly by dynamic normal-stress effects

between the free surface/layer interfaces and the fault plane. Note also the factor

of 9 and 5 increase of the vertical-component peak motion for the 1LOH and 2LOH

models, respectively, at the fault tip along the down-dip profile (-21 km). For the

UHS, 1LOH and 2LOH models (figure 4.7) the peak kinematic velocity reaches 80%,

22% and 12% of the dynamic peak value.
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Figure 4.8: Snapshots of normal stress on the fault plane for a 45o-degree dipping thrust

fault with surface rupture (column a and b), and buried 1 and 3 km in the UHS model
(column c and d). Simulation a is obtained from a prescribed rupture, simulations b –
d from dynamic simulations. Note the significant disruption of the circular distribution
of normal stresses for prescribed rupture a compared to that for dynamic rupture b. For
faults buried 1 km or deeper the free surface has negligible effect on the distribution of
normal stresses for the frequencies considered in this simulation.
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Figure 4.9: Snapshots of the

sliprate on a 45o-dipping fault

with surface rupture in the UHS

model (left column), buried 0.5

(middle column) and 1 km (right

column). Note the break-out

phase which first appears at 5.63

seconds after the rupture initia-

tion in the simulation where the

fault breaks the surface (left col-

umn). Here, the rupture jumps

to the surface. The fault plane

is then ruptured from the sur-

face downwards. The break-out

phase is less significant on a rup-

ture plane buried 0.5 km deep

and disappears when the fault is

buried at least 1 km for the fre-

quency content considered.

Figures 4.15 and 4.16 show similar comparisons between time-histories from dynamic

and prescribed ruptures for the UHS, 1LOH (left) and 2LOH (right) models. The

peak displacement and velocity ratios are considerably larger in the layered models

(figure 4.17). As for the UHS model, the largest ratios are observed close to the fault

tip. Here, the maximum displacements and velocities reach 5.6 and 9.7, respectively,

in the two-layer model and 4.3 and 10.3, respectively, in the three-layer model, on the

strike-perpendicular and vertical components. The increased peak displacement and

peak velocity ratios are additionally observed by the increase of the seismic moment

(table 4.5). The time-dependent normal-stress interaction generates an increase in

slip on the fault and seismic moments exceeding that of the equivalent simulation

in the UHS model by 10% (1LOH) and 16% (2LOH).
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Figure 4.10: Same as figure 4.6, except the dip of the fault is 30o.

Distance from Epicenter (DfE) [km]

D
fE

 [k
m

]

0 km

CL=2.5

−10 −5 0 5 10

5

10

15

20

Distance from Epicenter (DfE) [km]

1 km

−10 −5 0 5

5

10

15

20

Distance from Epicenter (DfE) [km]

3 km

1 1.5 3

−10 −5 0 5

5

10

15

20

Distance from Epicenter (DfE) [km]

D
fE

 [k
m

]

0 km

CL=1.6

−10 −5 0 5 10

5

10

15

20

Distance from Epicenter (DfE) [km]

1 km

−10 −5 0 5

5

10

15

20

Distance from Epicenter (DfE) [km]

3 km

1 1.5 2

−10 −5 0 5

5

10

15

20

Figure 4.11: Same as figure 4.6, except the dip of the fault is 60o.

4.3.3 Variation of Initial Stress Distribution

As seen above, dynamically computed ground motion from dipping faults rupturing

the surface shows remarkable differences to ground motion computed for prescribed

ruptures. The differences get smaller for faults buried one kilometer and deeper. In

the following I will investigate which part of the rupture plane of the surface rupture

is responsible for the increase in peak motion in the dynamic case.

Three different stress distributions are implemented on a 45o dipping thrust fault

that breaks the surface. Figure 4.18 (a) shows the initial stress distribution on the

fault for the first scenario. In contrast to the previous computations where the initial

stress was constant at 17.5 MPa on the fault, here the stress values are tapered to
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Figure 4.12: Left: Snapshots of the sliprate in the UHS model on faults with surface

rupture and dips of 45o (left column), 30o (middle column) and 60o (right column). Note

the earlier normal-stress effects for the shallower compared to those for the deeper fault

plane. Right: Snapshots of the sliprate on a 45o-dipping fault with surface rupture in the

UHS (left column), 1LOH (middle column) and the 2LOH (right column) models. Note

that the break-out phase is initiated earlier in the 1LOH and 2LOH models compared to

the UHS model.
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Figure 4.13: Velocity seismograms along profiles P – P’ and Q – Q’ (figure 4.2) for a 45o-

dipping thrust fault with surface rupture in the 1LOH model. The thick and thin traces

depict dynamic and prescribed rupture results, respectively. The largest differences occur

for times larger than 20 seconds on the profile along strike along profile P – P’ (figure 4.2).
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Figure 4.14: Same as figure 4.13, except that the seismograms are computed for the 2LOH

model.
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Figure 4.15: Same as figure 4.13, except the thin line depicts the results from dynamic

simulation in the UHS model. Note the lack of significant reverberations for times larger

than 20 sec in the UHS model.
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Figure 4.16: Same as figure 4.14, except the thin line depicts the results from dynamic

simulation in the UHS model.
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Figure 4.17: Ratios between peak displacements (top) and peak velocities (bottom) from

dynamic and prescribed rupture on a 45o-dipping fault with surface rupture for the 1LOH

(left column) and 2LOH models (right column). Due to symmetry reasons only the upper

half of the area in figure 4.2 is shown. The dynamic simulations include no velocity-

weakening friction. The projection of the fault onto the surface is indicated by the dashed

line.

zero with a square-root law in the outer two kilometers of the fault on all four sides.

This results in an average prestress value of 15.4 MPa or almost 88 % of the constant

stress model. For the second test, the stress values are tapered on the sides and the

bottom of the fault, but set constantly to zero in the upper two kilometers of the

fault plane (figure 4.18 (b)). Like that the average initial stress on the fault plane

amounts to 14.3 MPa or 81.5% of the constant stress model. The third test (figure

4.18 (c)) shows a checker-board pattern in the upper kilometer where 1 km long

patches with initial stress equals zero alternate with patches with constant stress of

17.5 MPa as on the rest of the fault. This pattern results in an average initial stress

on the fault of 17.1 MPa or 97.6 % of the constant stress model.

The seismic moments obtained from dynamic simulations for these scenarios amount

to 4.88 ·1019 Nm for scenario (a), 4.35 ·1019 Nm for scenario (b) and 5.24 ·1019 Nm

for (c) (see also table 4.5). With only 81.8 % of the seismic moment of the constant

stress model described above (M0 = 5.32 · 1019 Nm), scenario (b) shows the largest

decrease of the seismic moment. This decrease is however of the same order as the

decrease in the initial stress. Scenario (a) where the areas of decreased stress are

equally distributed on all sides of the rupture plane results in a moment of 91.7 %

and thus a larger moment as expected with an average prestress of only less than

88 %. For the checker-board model the seismic moment amounts to 98.5 % of the
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Figure 4.18: Initial stress distributions on the fault for a simulation (a) where the prestress

is tapered to zero in the outer two kilometers of the fault, (b) same as (a) but where the

prestress in the upper two kilometers is zero, and (c) with a checker-board distribution of

the prestress in the upper kilometer.

moment from the model with the constant initial stress. Here, as in model (b) the

main changes have been applied on the upper edge of the rupture plane. I therefore

conclude that the stress distribution in the uppermost 1 or 2 kilometers has the

largest effect on the dynamics, and that heterogeneous stress distributions in deeper

parts of the fault would not change the results significantly.

4.3.4 Deeper Versus Shallower Events

Recently, a systematic difference in the level of earthquake ground motions for three

MW 7.2 – 7.6 earthquakes with large surface ruptures, and three MW 6.7 – 7.0

earthquakes on buried faults was found [129]. Acceleration spectra of the smaller

events were in those cases much larger than the 1994 Uniform Building Code (UBC)

spectrum for soil site conditions in the intermediate period range of 0.5 – 2.5 seconds,

but similar to the UCB code spectrum at longer periods. This is in contrast to

all current models of earthquake source and ground motion spectral scaling with

magnitude. I use the dynamic results for different depths to test the results.

Figure 4.19 shows acceleration response spectra for three sites along profile R – R’ in

figure 4.2. I compare a 45o-dipping 5 km buried thrust fault (dashed lines) to a 30o-

dipping fault that breaks the surface (solid lines). The seismic moments of the two

dynamic simulations amount to 3.4·1019 Nm in the first, and 5.3·1019 Nm in the latter

case. The increased seismic moment in the latter case is due to the interaction of the

wavefield with the free surface as mentioned above, and is reflected in an increased

moment magnitude from MW 7.0 for the buried fault to MW 7.1 in the fault with

the surface rupture. The spectra show larger amplitudes for all periods between

0.33 and 5 seconds for the rupture breaking the surface (solid line) in comparison

to the buried rupture (dashed line). Thus, the dynamic simulations can not confirm
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the observations. The increased spectral accelerations [129] are not a first-order

dynamic effect from the depth of burial of the fault. Instead, the effect may be

caused by a shift in frequency content for the two scenarios, with a larger amount of

long-period energy generated from the larger Chi-Chi earthquake. A contributing

cause could be the change of rake angle during the Chi-Chi earthquake, deviating

from the pure thrust mechanism used here. Finally, variation in crustal structure

for the two events, e.g., the presence of the San Fernando Valley sedimentary basin

above the Northridge earthquake, may have generated some of the discrepancies.
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Figure 4.19: Acceleration

response spectra for a MW

7.0 event on a 45o-dipping

fault buried at 5 km depth

(dashed line) and for a MW

7.1 event on a 30o fault

with surface rupture (solid

line) at 3 sites (see figure

4.2)

4.4 Discussion

A primary incentive to outline the first-order effects of dynamic time-dependent

normal-stress effects on ground motions is to define possible recommendations to

improve ground motion computed from prescribed rupture simulations. This issue is
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addressed using halfspace and layered models with simple initial stress distributions

and friction laws uniform across the fault plane. The results indicate that such

effects almost entirely originate in the 1 – 2 km of the fault plane closest to the

surface. However, the frictional and stress conditions in this region are probably

more uncertain than in any other region of the fault. For example, it is possible that

the slip/sliprate weakening friction assumed in this study may really be frictional

strengthening in the near-surface region of the fault. Unfortunately, practically no

evidence exists to support any specific alternative frictional model. Future research

should focus on estimating the nature of the friction and stress conditions in the

near-surface low-impedance material.

A potentially important practical application of this study is the inclusion of the

results in conventional ground motion estimates for hazard assessment. For example,

although dynamic simulations may be more physically correct, it is always possible

to implement a prescribed rupture generating similar ground motion. A viable

method would be to include a parametric model of the normal-stress effects on the

ground motions in attenuation relations. For example, such an improvement of

existing attenuation relations was proposed for including rupture directivity effect

[130]. Before such a model can be generated, the results need to be verified against

observational data. However, few historical thrust earthquakes on dipping faults

with surface rupture have provided a distribution of seismic data with a quality and

density around the tip of the fault sufficient for such a validation. Probably the best

candidate for such a test is the 1999 MW 7.6 Chi-Chi, Taiwan, earthquake. Future

work should use this kind of data to verify the results obtained in this study.



Summary

In this thesis, three approaches for a better estimation of the seismic hazard imposed

by earthquakes are presented. Seismic hazard estimation is a very promising field

of research and gained increasing public and scientific interest in recent years. The

quantification of seismic hazard is a necessity for defining building codes and a first

and most essential step for saving lifes during future large earthquakes. The three

approaches in this thesis are presented as case studies, all making use of a Finite

Difference (FD) method, a tool very popular and widely used for forward modeling

the seismic wavefield (e.g. [44, 49, 52, 66, 73, 84, 103, 132, 134, 135]).

The first case study, presented in chapter 2, examines the usability of a first-order

subsurface model of elastic parameters for high-frequency (1 Hz ≤ f ≤ 8 Hz) hazard

assessment investigations for the Rhinegraben (Germany). The frequency range

from 1–8 Hz is considered to be most significant for the estimation of the seismic

hazard of south-west Germany as most buildings in this region have eigenfrequencies

in this range. So far, 3D FD simulations have been restricted to frequencies below 1–

1.5 Hz due to both, the limited knowledge of the subsurface geological structure and

computational drawbacks. While the latter will presumably be solved in the near

future, the refinement of existing geological models is considered to be a long-term

process. For an exact simulation of the seismic wavefield, the subsurface structure

needs to be known down to the scale of at least one wavelength. In an isotropic

medium, FD methods require the knowledge of two elastic moduli (e.g. the two

Lamé constants μ and λ or the seismic velocities vp and vs) and the rock density

ρ at every point of the computational grid in order to solve the wave-equation

numerically. Presuming a minimum shear wave velocity of 2 km/s as proposed for the

Rhinegraben by recent refraction and reflection studies [61, 112, 143], the minimum

wavelength included in the simulation amounts to 250 meters. From borehole and

surface measurements [55, 142] even lower shear wave velocities are reported for

the upper several hundred meters. The model of elastic parameters available for

the Rhinegraben is not accurate enough to resolve such small-scale features. For

89
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seismic hazard assessment, however, a wiggle-by-wiggle simulation of the wavefield

is not needed. Instead, it is considered to be sufficient when peak amplitudes of

ground motions or response spectral values are simulated as they are responsible for

a major part of the destruction. The investigation in chapter 2 tests whether these

parameters can be simulated within reasonable limits in order to be used for the

estimation of the seismic hazard of the Rhinegraben. This is done by a comparison

of ground-motion derived from 2D simulations of three ML 3.5–3.6 Rhinegraben

earthquakes and data recorded at three seismic stations in the Rhinegraben (stations

FBB, LIBD, and BBS), one station in the Vosges mountains (MOF), and one station

in the Black Forest (FBB). Five comparisons are performed: First, the arrival times

of the compressional waves are compared in order to get a general idea about the

quality of the elastic model for the purpose of hazard assessment. The comparsions

show a large variability of the results, from only ± 0.1 seconds deviation at three

stations (LIBD, BBS and FBB) for event 1, a ML 3.5 earthquake originating from

Dessenheim (France) on August 24, 1996, to a maximum difference of 1.2 seconds

at station FELD for event 3, a ML 3.5 event that occured close to Weil am Rhein

(Germany) on November 17, 1997. Furthermore, a comparison of peak ground

velocities (PGV’s) is performed. PGV’s are a crucial parameter for seismic hazard

assessment as they give an estimate of the maximum load during an earthquake.

Both, over- and underestimation of the data by the synthetics is found. In most

cases, the deviations amount to not more than a factor of 2–3. In these cases the

simulations are considered to be usable for hazard assessment. The precision of

magnitude estimations for historic earthquakes that enter hazard computations as

well leads to ground motion uncertainties in the same order of magnitude. Some of

the seismograms analyzed in chapter 2, however, show differences of a factor of 10

between peak velocities of data and synthetics. This discrepancy is too large and

signifies that it is critical to use the time-histories computed by the FD method

for hazard assessment of the area. The same observation is made for the other

comparisons carried out in chapter 2. Both, the duration of shaking during an

earthquake, defined as the time between 5 % and 75 % of the cumulative squared

ground acceleration [130], and the amplitudes of spectral responses can be simulated

in most cases within a factor of 2–3, a value still acceptable for seismic hazard

assessment. The exceedance of this factor in several other examples however, leads

to errors too large for a reliable estimation of seismic hazard. Possible explanations

for the deviations between data and synthetics are then discussed in chapter 2: In

order to test the influence of local site effects on the ground motion amplitudes,
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P/S wave amplitude ratios are compared. The local ground composition at the

five seismometer sites which in many conditions affects compressional and shear

wave amplitudes in the same way is not taken into account in the elastic model

used for the FD simulations. A comparison of compressional wave to shear wave

amplitudes for data and synthetics should give the same values if the site conditions

were similar for both wave types and if they were responsible for the differences in

ground motion amplitudes. This is not the case. Another possible explanation could

be the neglection of material attenuation in the FD simulations. In a similar study

[46] for epicentral distances between 40 and 60 kilometers material attenuation could

account for a maximum decrease of 22% of the amplitudes. In some cases this would

lead to a better estimate, in other cases, where the amplitudes of the synthetics

take values below those of the data, the fits would get worse. The disregarding

of topography in the FD simulations can not explain the poor fit in some of the

simulations either. Both, arrival times and wave amplitudes would be affected when

topography is taken into account. Another possibility for the discrepancies could

be an inaccurate determination of source parameters of the three earthquakes. The

source parameter with the smallest fidelity [131] is the hypocentral depth. The

values determined by the Federal Geological Survey have error margins of up to 5

kilometers. Ground motion amplitudes from earthquakes with hypocenters at 10

and 15 kilometers differed by a factor of 2 in a pilot study [47]. While all those

possibilities can only account for a small portion of the misfit, the most satisfactory

explanation seems to be that the model of elastic parameters is not precise enough

to simulate ground motion amplitudes with the accuracy required for the purpose

of hazard assessment. It is therefore suggested to conduct high-resolution seismic

experiments in the area in order to refine the elastic model, and to deploy three-

component permanent seismometers in the Rhinegraben for better data quality.

Effects of rupture physics and the influence of a sedimentary basin structure on

ground motion amplitudes are studied in a second case study, shown in chapter

3. Both these two effects are not taken into account in simple radial attenuation

laws [3, 6, 21, 22, 68, 117] as generally used for the prediction of ground motion

for seismic hazard estimations. The simulations in chapter 3 quantify both effects

and show that for large earthquakes (e.g. ML > 6.0) and for heterogeneous subsur-

face structures the two effects play a crucial role for the distribution ground motion

amplitudes. The issue is addressed by simulating ground motion for a ML 6.2 earth-

quake in a simple basin model [5, 37]. The simulations reconstruct a historic event

that happened on July 11, 1927, close to the city of Jericho (Israel) at the northern
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edge of the Dead Sea Basin. This event is the youngest in a history of large (ML >

6.0) earthquakes connected to the seismicity of the Dead Sea Rift that dates back

more than 4000 years, and the only one for which precise information on source

parameters and damage distribution are available [96, 123, 127]. The macroseismic

intensity map for this event shows a distinct extension of large intensities to the

north with the largest intensity (X) observed approximately 50 kilometers north of

the epicenter [127]. Two further areas with intensity level VIII–IX are located about

100 kilometers north of the epicenter. This deviation from a radial shaped damage

ground motion distribution has also been reported for several other events in the

area [127, 141]. As a possible explanation for this distribution it has been suggested

that the Dead Sea Basin substructure might act as a wave-guide [140]. The simu-

lations in chapter 3 verify this assumption but additionally point out the influence

of rupture physics on the ground motion amplitudes. The investigation includes

the analysis of snapshots of the wavefield at the surface, velocity seismograms at

selected sites situated in the basin and on bedrock, the computation of peak ground

velocities as well as 1-Hz pseudo-accelerations (YFD1). The latter are compared

to pseudo-accelerations computed in an elastic halfspace model (YFD2), and from

an attenuation relation (YAR) similar to the one that is integrated in the building

code 413 of Israel, respectively. The analysis of the ratios RFD = YFD1/YFD2 and

RAR = YFD1/YAR explains the divergence from radially distributed ground motion

amplitudes and divides the causes into two groups: RFD isolates ground motion

amplification due to the subsurface model as the model of elastic parameters is the

only difference between the two FD simulations. All other rupture parameters are

kept constant. In contrast, the computation of RAR provides indications for ground

motion amplification due to the rupture process. In the computation of YAR rupture

physics is not taken into account. The values of RAR can also be increased by re-

flections from the basin edges since the computation of reflections is not taken into

consideration in the attenuation relation. RAR is generally small south of the epi-

center (with amplifications below a factor of 2) and gradually increases towards the

north. The largest ratio which is due to reflected waves that increase the amplitudes

in the FD simulations are found at the edge of the basin (RAR = 5.1). Rupture dy-

namics is considered as explanation for the increase of RAR taking values of 2.0–2.5

in the area close to the source. Increased values of RFD are found in areas compris-

ing the basin where the amplification is on the order of 4. The largest amplification

with RFD = 5.1 is again due to reflected waves and can be found at the northern

end of the basin. The simulations in chapter 3 show (a) the significant influence
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of the basin substructure on the distribution of ground motions and (b) that this

effect is larger than the effect due to source physics. This pattern, however, might

be reversed when earthquakes with larger magnitudes and thus larger rupture areas

[138] are taken into consideration.

Ground motion from earthquakes on dipping faults is analyzed in chapter 4 in a

third case study. In the near-field of the earthquake, the ground motion distribution

from faults dipping at angles �= 90o is often found to be asymmetric, with larger

values on the hanging wall, and smaller values on the footwall. This effect is due

to the dynamic interaction of the stresses on the fault with the free surface and is

not yet fully understood. It is most prominent for shallow faults, and depends on

the dipping angle. Scenario earthquake simulations which are becoming more and

more popular for seismic hazard assessment, generally do not include these dynamic

effects but make use of a prescribed source implementation where the sliprate on

the fault is defined a priori and can not develop during the rupture process due to

dynamic interactions. For numerical and computational difficulties it is not very

likely that a majority of FD simulations will make use of dynamic ruptures in the

near future. It is therefore very instructive to investigate the dynamic effects for

faults buried at different depths and dipping with different angles in order to find

a threshold depth after which the dynamic effects become negligible. In chapter

4, ground motion from faults buried 0.5 km, 1 km, 3 km and 5 km deep in a

halfspace model, and from a rupture breaking the surface is computed. Additional

computations have been carried out in a model with one and two layers over the same

halfspace. Ground motions and stress distributions at the surface and in vertical

cross-sections of the model are visualized. As a verification of previous studies

[2, 24, 28, 30, 54, 67, 82, 97] it is shown, that the heterogeneous distribution of

ground motion amplitudes is due to dynamic interaction of the normal stresses with

the free surface. The case study in chapter 4 shows that the most significant dynamic

effects are found for faults rupturing within about 1 km of the free surface, including

earlier arrival times caused by super-shear rupture velocities and an increase of peak

horizontal motions by about a factor of three. The effects are most prominent in

a band around the tip of the fault. The width of this band varies from about

3 km to about 13 km for fault dips from 30o to 60o, respectively. For the peak

velocities, this pattern includes a 1–3 km wide nodal zone along the fault tip as well

as larger values above the deeper part of the fault. When surface rupture occurs, the

normal-stress effects generate an increase of seismic moment of up to 71%, largest for

the most steeply-dipping fault investigated (60o). These results are obtained using
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dynamic rupture in a simple slip-weakening friction model. When sliprate-weakening

friction is included the peak motions are consistent, while increase of seismic moment

is reduced by about 13%. The results also imply that time-dependent normal-

stress effects cause larger ground motions for earthquakes on faults with surface

rupture compared to those from buried events. The time-dependent normal-stress

effects are enhanced in the presence of shallow low-velocity layers, which generate

peak motions up to 9 times larger than that from the prescribed rupture on a 45o-

degree dipping fault. The effect is largest for a model consisting of a single layer

over a halfspace, where the reverberations are amplified by resonance. Moreover,

the near-surface low-velocity layers tend to increase the rupture time as well as

promote earlier transitions to super-shear velocities. The results suggest that time-

dependent dynamic interaction significantly affects the ground motion for dipping

thrust faults. Therefore I strongly recommend that the effects be incorporated into

future kinematic rupture simulations or attenuation relations.



Appendix A

Free-Surface Boundary-Condition

In this appendix the accuracy of two implementations of the explicit free-surface

boundary-condition for the 3D fourth-order velocity-stress staggered-grid Finite Dif-

ference scheme is computed. This is done by a comparison of time-histories com-

puted with two different implementations to a reflectivity solution [23]. The accuracy

of the implementations is estimated using the misfit between the seismograms from

the Finite Difference solutions and those computed by the reflectivity method for a

uniform halfspace model.

The two different possibilities for the implementation of the explicit free-surface

boundary-condition in the staggered grid lie half a grid point apart vertically (see

also figure 1.1). The implementation co-located with the normal stress positions

(σxx, σyy,σzz) [51], is hereafter denoted FS1. The other possibility is to implement

the free surface co-located with the xz and yz stresses, offset half a grid vertically

from the FS1 implementation and will hereafter be denoted FS2.

The total misfit for all three components of the wavefield is generally found to be

larger for the free surface co-located with the normal stresses, compared to that

for the free surface co-located with the xz and yz stresses. However, this trend

is reversed when compared to the reflectivity solution exactly at the free surface

(the misfit encountered in staggered-grid modeling). When the wavefield is aver-

aged across the free surface, thereby centering the staggered wavefield exactly on

the free surface, the free-surface condition co-located with the xz and yz stresses

generates the smallest total misfit for increasing epicentral distance. For an epi-

central distance/hypocentral depth of 10 the total misfit of this condition is about

15% smaller than that for the condition co-located with the normal stresses, mainly

controlled by the misfit on the Rayleigh wave.
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A.1 Explicit Free-Surface Boundary-Condition

At a free surface with normal vector (0,0,1), the following equation must be satisfied:

σzz = σxz = σyz = 0. (A.1)

For implementation FS1, the horizontal velocities vx and vy are located exactly at

the free surface, while the vertical velocity vz is located half a grid point below. For

implementation FS2, the horizontal velocities vx and vy are positioned half a grid

point below the free surface, while the vertical velocity vz is located exactly at the

surface. The coordinate system is right-handed, with the z axis positive downward.

A.1.1 Free-Surface Boundary-Condition FS1

Implementation FS1 is summarized in the following. Let the free surface be located

at vertical index k. σzz is located at the surface and is explicitly set to zero:

σk
zz = 0. (A.2)

σzz, σxz and σyz above the free surface are obtained using anti-symmetry:

σk−1
zz = −σk+1

zz , (A.3)

σ
k− 1

2
xz = −σ

k+ 1
2

xz and σ
k− 3

2
xz = −σ

k+ 3
2

xz , (A.4)

σ
k− 1

2
yz = −σ

k+ 1
2

yz and σ
k− 3

2
yz = −σ

k+ 3
2

yz . (A.5)

σxx, σyy and σxy are not used above the free surface. Using equations A.2 to A.5

the following difference equations for the velocity at and above the free surface can

be derived:

Dzv
k
z =

−λ

λ + 2μ
[Dxv

k
x + Dyv

k
y ], (A.6)

[Dzvx + Dxvz]
k− 1

2 = −[Dzvx + Dxvz]
k+ 1

2 , (A.7)

[Dzvy + Dyvz]
k− 1

2 = −[Dzvy + Dyvz]
k+ 1

2 , (A.8)
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where Dn
l represents a centered, 2nd-order Finite Difference approximation to the

differential operator ∂
∂l

in direction l at vertical level n.

For implementation FS1 special attention must be given to the computation of the

horizontal normal stresses (σxx and σyy) at the surface, since they involve the vertical

velocity at three half grid points above the surface. This value is usually not solved

by the above second-order difference equations [51]. The most obvious choice is

to use second-order accuracy in the computation of the vertical derivatives of the

horizontal normal stresses at the free surface for FS1 which is the implementation

that will be discussed in the following. I also tested the accuracy of using fourth-

order accuracy and simply setting vz = 0 at three half grid points above the surface.

However, the accuracy of the latter implementation was worse than the former

everywhere.

A.1.2 Free-Surface Boundary-Condition FS2

Implementation FS2 is defined by locating the surface at k− 1
2
, i.e., half a grid point

vertically apart from implementation FS1:

σ
k− 1

2
xz = σ

k− 1
2

yz = 0. (A.9)

σzz, σxz and σyz above the free surface are obtained using anti-symmetry:

σk−1
zz = −σk

zz, (A.10)
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Again, σxx, σyy and σxy are not used above the free surface. Using equations A.9 to

A.12 the following difference equations for the velocity at and above the free surface

can be derived:

(λ+2μ)[Dzvz]
k−1+λ[Dyvy+Dxvx]

k−1 = −(λ+2μ)[Dzvz]
k+λ[Dyvy+Dxvx]

k, (A.13)
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A.2 Source and Receiver Configuration and Model

Description
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Figure A.1: Source time function for the accuracy test.

A double-couple point source with a rise time of 0.1 seconds is inserted at (0 m,

0 m, 2000 m) in a uniform halfspace model, with a compressional wave velocity of

6.0 km/s, a shear wave velocity of 3.464 km/s, and a density of 2.7 g/m3. The

only non-zero moment tensor component is Mxy (equal to Myx), which has the value

M0 = 1018 Nm. The moment M(t) and moment rate Ṁ(t) time histories are

M(t) = M0 · (1 − (1 +
t

τr
) · e− t

τr ) (A.16)

and

Ṁ(t) = M0 · ( t

τ 2
r

) · e− t
τr , (A.17)

respectively, where t is time and τr is the rise time. For FS1, the source is naturally

located at 2 km depth, while for FS2 the source is approximated by the average

between (0,0,2050 m) and (0,0,1950 m). The synthetic velocity time histories are

computed at the surface point (i·600 m, i·800 m, 0 m), i=1,..,20, i.e., the receivers are

located along a line oriented at angle 53.13o (i.e., tan−1(4
3
)) to the x axis. The source-

time function (figure A.1) is then deconvolved from the ground motion time histories

and convolved with a Gaussian-shaped function corresponding to approximately six
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points per shear wavelength with vs = 3.464 km/s and dx = 100 m. No attenuation

is included in the simulations. The modeling parameters are summarized in table

A.1.

Spatial discretization (m) 100

Temporal discretization (s) 0.0075

Number of E-W grid points 750

Number of N-S grid points 750

Number of vertical grid points 297

Number of timesteps 1112

Simulation time (s) 8.34

Table A.1: Geometrical modeling parameters for the accuracy test.

A.3 Numerical Results

A.3.1 Comparison Between FS1 and FS2

Two sets of comparisons are of relevance in order to measure the accuracy of the

FD free-surface boundary-conditions. The first is to address the ”true misfit” of the

conditions, where the FD solutions are compared to reflectivity solutions computed

at the positions of the staggered wavefield components. These positions are half a

grid point below the actual free surface for some components because of the stag-

gered grid. The other is to measure the ”actual misfit”, where the FD solutions

are always compared to the reflectivity solutions at the free-surface position. The

”actual misfit” is what is generally encountered in reality and includes the ”true

misfit” and the misfit introduced by the fact that some parameters are located half

a grid point below the surface.

Figure A.2 shows the misfit for the two FD free-surface boundary-conditions com-

pared to the reflectivity solution. The misfit is measured as

√∑
t (S(t)REFL − S(t)FD)2√∑

t S(t)REFL
2

(A.18)

for the radial, transverse, and vertical components, and for the three components

combined. The ”true misfit” is shown in the left column of figure A.2. The misfit
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Figure A.2: Accuracy of the two implementations of the free-surface boundary-condition.

Misfit for (left column) reflectivity solution at staggered positions (“True Misfit”, see

section A.3.1), (middle column) reflectivity solution at the free surface (“Actual Misfit”,

see section A.3.1), and (right column) reflectivity solution at the free surface and averaged

FD results (“Modified Actual Misfit”, see section A.3.2). Solid and dashed lines depict

the misfit for FS1 and FS2, respectively (see text).

is similar and small for the transverse component (below 0.03 at an epicentral dis-

tance divided by the hypocentral depth (EDHD) of 10), while the appearance of the

Rayleigh wave causes that for the radial (32%) and vertical (20%) components as

well as the total misfit (22%) here to be about smaller for FS2 compared to that for

FS1.

The ”actual misfit” is shown in the middle column of figure A.2. At 10 EDHD

FS1 (misfit below 0.15) is superior to FS2 (misfit below 0.1) for the horizontal

components (located at the surface for FS1, half a grid point below for FS2), while

FS2 (misfit 0.093) is more accurate than FS1 (misfit 0.12) for the vertical component

(positioned at the surface for FS2, half a grid point below for FS1). The misfit for

FS2 is much larger than that for FS1 close to the epicenter. FS1 is generally more
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accurate than FS2 when all components are considered. The computation of the

”modified actual misfit” will be described in section A.3.2.

Figure A.3 shows comparisons of the reflectivity solution to the FD solutions and

the misfit for the two implementations of the free-surface boundary-condition. The

residuals are enhanced by a factor of 5 for site 1 for clarity, while the actual residuals

are displayed for site 20. The largest (actual) misfit at site 1 (below 0.1, see figure

A.2) appears on the horizontal components for FS2. Figure A.3 reveals that this

misfit is mainly due to a slightly early arrival of the P and S waves. This timing misfit

is in part due to the necessity of averaging the source across grid lines between 1950

m and 2050 m, which transfers energy toward earlier (and later) times. However, the

fact that the horizontal components here are positioned half a grid point below the

surface is by far the largest reason for the slightly early arrival for the FS2 horizontal

motions at site 1. The vertical component for FS2 is positioned at the free surface

and shows much smaller misfit. At site 20, by far the largest part of the total misfit

is due to the Rayleigh wave (about 0.27 “actual misfit” for FS2). The largest misfit

is indeed expected to be related to the surface waves, which are generated at and

propagating close to the free surface. While FS2 is overall more accurate than FS1

(0.18 versus 0.24 “true misfit”) the staggered positions increase the “actual misfit”

for FS2 at site 20.

As mentioned above, FS1 requires the use of second-order accuracy in the computa-

tion of the vertical derivatives of the horizontal normal stresses at the free surface.

Here, no significant improvement in the error is found, whether 2nd-order or 4th-

order accuracy is used for the horizontal derivatives of these parameters.

A.3.2 Refinement of FS1 and FS2

Finally, I attempt to improve the accuracy of the two boundary-conditions compared

to the “actual misfit”. The obvious suggestion is to average the components which

are positioned half a grid point below the free surface with those located half a grid

point above the free surface. However, the validity of this procedure is not clear,

as it involves non-physical parameters positioned virtually above the surface. On

the other hand, the conditions for FS1 and FS2 imply symmetry of the particle

velocities across the free surface. The misfit of the averaged parameters is shown in

the right column of figure A.2 (“modified actual misfit”).

The misfit obtained is up to three times smaller for the averaged seismograms com-

pared to that at locations half a grid point below the surface. When averaged, the
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Figure A.3: Comparison of surface velocity time-histories for the two implementations

of the FD free-surface condition discussed in this appendix (FS1 and FS2, long-dashed

traces) to the reflectivity solution (solid traces, ”actual misfit”). The short-dashed line

shows the difference between the reflectivity and FD solutions. The difference is multiplied

by 5 for site 1, while the actual difference is shown for site 20.
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Figure A.4: Same as figure A.3, but averaged seismograms are shown when applicable.

total misfit is similar (below 0.07) for FS1 and FS2 less than 3 EDHD, while the

total misfit at 10 EDHD is about 15% smaller for FS2 than that for FS1. This is

mainly due to a more accurately modeled Rayleigh wave for FS2 than for FS1 (see

below).

Figure A.4 shows comparisons of the reflectivity solution to the FD averaged (where

applicable) solutions and the differences between the two different free-surface boundary-

conditions at sites 1 (0.5 EDHD) and 20 (10 EDHD). The averaged seismograms

clearly show an improved fit compared to the reflectivity solution.
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