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Abstract

The subject of this work is the development of a mathematical model for intracellu-

lar protein folding and the implementation of this model in the form of a simulation

software. During the elaboration of the model special attention was given to the

factors that may be determinant for physiological folding pathways. Thus, findings

from biochemistry and molecular biology indicate that protein folding in a cell starts

cotranslationally from certain initial conformations. Besides, the interaction with

the surrounding solvent is crucial for the acquisition of the final structure.

A general expression connecting interatomic distances and dihedral angles is de-

rived, which has allowed the formulation of the model in the space of molecular

torsion angles. Twisting forces are computed analytically and utilized for the im-

provement of computational efficiency during energy minimization in the space of

torsion angles. Besides, equations for dynamics in the space of torsion angles are

derived and a conclusion related to folding pathways is drawn.

Algorithms are developed, which permit the generation of appropriate initial atomic

coordinates for amino acids. Care is taken about the correct chirality of amino

acids. During the simulation, the polypeptide chain is folded subsequently, as when

it emerges from a ribosome during the protein synthesis. Transitions with an energy

increase are allowed only to a limited extent. An attachment of a new residue is

performed in a way that the formed peptide group is disposed in the trans confor-

mation, which prevails significantly in native proteins.

Beside the electrostatic and van der Waals interactions, the proposed model incor-

porates hydrogen and disulfide bonding, solvation effects, and dielectric screening at

the protein surface. The hydration is modeled without inclusion of water molecules

into the simulation. Instead, the number of water molecules that can directly con-

tact each atom is estimated with the help of a solvation grid on the atom surface.

This information is used for evaluation of solvation energies, as well as for the mod-

eling of the electrostatic screening. Solvation grids rotate randomly before each

energy evaluation, giving raise to stochastic contributions from the side of the sol-

vent.

The developed software, named SiViProF, apart from its simulation functions,

also performs visualization of different kinds and contains tools for the exploration

of energy surfaces for protein fragments.
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Preface

Outline of the work

Protein structure prediction is a fundamental problem of biochemistry and one of

the main challenges in bioinformatics. This research topic is highly interdisciplinary,

since beside biochemical background it may require knowledge of physical chemistry,

cell and molecular biology, computer science, various areas of physics, including but

not limited to thermodynamics, statistical mechanics, and electrostatics. It can

take advantage of solution methods from different fields of mathematics, starting

with optimization and combinatorics, and extending to stiff partial or stochastic

differential equations.

The modeling approach proposed in this work is dictated by a sincere wish to bypass

weaknesses of classical methods for protein structure prediction, observed from the

viewpoint of molecular biology and biochemistry, and at the same time to facilitate

the problem solution using specific knowledge from cell biology, physical chemistry,

informatics and particularly mathematics.

The first two chapters are generally devoted to a literature review. In Chapter 1, the

background material from chemistry and physics, as well as from cell and molecular

biology, which is necessary for understanding, rationalization and implementation

of the proposed modeling approach, is collected. However, the contribution of the

author in this chapter should not be reduced to concise formulation of known facts,

also including recently discovered ones: the review is supplemented by computations

and illustrations resulting from this work, in places where it was required for a better

explanation of the described material or considered appropriate in the context of

this chapter.

For example, the relation between the acid dissociation constants and the prob-

abilities of amino acid residues to be ionized, as well as the connection between

the probabilities and the Gibbs free energies of ionization, were mentioned in [1]

(p. 123) without a proof. Other available sources didn’t contain the proofs or refer-

ences to the proofs either. Since this information is quite essential for determination

of structure and charges of amino acid residues, these relations were also derived

independently in this thesis and described in Section 1.4.
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Similarly, the proofs in Subsection 1.7.2 related to the interaction of charged groups

with solvent are independent contributions, although speculations similar to some

of those described in that subsection could have been published in earlier physical

chemistry works not considered here.

Further, the maps of energy surfaces, depicted in Figures 1.28-1.30, are generated

by SiViProF, the software developed in course of this work. The idea of such

maps, together with some related conclusions, is described in [1] and accompanied

by similar illustrations, but in a schematic form.

Besides, all the other pictures, including but not limited to molecular images, were

created solely for this thesis and not adopted from other sources. To produce

Figure 1.38 (a-f), which depicts ribosomes and ribosomal cuts, a special module for

SiViProF was developed, which enables creation of large non-protein molecules

and molecular complexes based on atomic coordinates from RCSB Protein Data

Bank records. Additionally, in order to find the intraribosomal tunnel, SiViProF

was supplemented by a view manager that supports precise control of the viewpoint

and of the section plane position, as well as an elimination of the macromolecular

parts that are cut away by the plane from the sight. Adjustable black fog was

added to increase the 3D effect. The module for visualization of atomic orbitals

(see Figures 1.8-1.13) was intended for future visualizations of quantum mechanical

computations.

Apart from the outline of the problem and its principal background, Chapter 1

brings the following two messages, which are crucial for selection and development

of the solution method for this work. First, protein folding in a cell begins from a cer-

tain initial conformation, which may be essential for the acquisition of the functional

final structure. Besides, the folding starts already during the protein synthesis, and

it is likely that the ribosome contributes to this process. The native form does not

have to be the global minimum of energy, but must be sufficiently stable and almost

surely achievable within a normal folding time at physiological conditions. Second,

the folding is largely driven by the interaction with the surrounding solvent. Thus,

the charged atom groups tend to stay in contact with water, where they have lower

energy, while the hydrophobic residues abandon the protein surface. Nearly the

opposite effect could be observed in vacuum, where charges of opposite signs are

attracted to each other stronger. These facts are rather well known in molecular

biology. However, often they are partially or completely neglected when it comes

to solving protein folding problem.

An overview of generally known approaches for protein structure prediction is given

in Chapter 2. Some drawbacks and disputable questions associated with these

approaches are also described there. Thus, molecular dynamics and global min-

imization methods applied for solution of this problem are usually based on the

assumption that a protein can fold into its native form starting from any conforma-

tion. Apart from that, the global minimization approach requires that the native
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structure corresponds to the global minimum of energy. Besides, often the interac-

tion with surrounding solvent is not taken into account to a sufficient extent. On

the other hand, the developments of ab initio methods, and particularly the related

model parameters, were of great importance for this work. Additionally, the infor-

mation extracted by knowledge-based methods can be useful for understanding of

the amino acid properties and for further model improvement.

Molecular mechanics force fields, also briefly described in Chapter 2, have consti-

tuted the basis for the proposed model. The procedure for computation of atomic

partial charges, which is discussed in Subsection 2.2.3, was utilized in SiViProF.

The specific mathematical notations, used in Chapter 2 and later on, are largely

non-conventional. Although the notations found in the literature may look more

simple, they are often subject to incompleteness or inconsistency. Therefore, new

notations were introduced in this work, and for the sake of integrity and uniformity

some of them are described and utilized already in this chapter.

The last two chapters are solely devoted to the results of the current work. The mod-

eling approach and the theory developed in relation to it are described in Chapter 3.

A general outline of the implementation, simulation results and their discussion are

presented in Chapter 4.

At the beginning of Chapter 3, some analysis of the relations between the inter-

atomic distances and the dihedral angles along the chain is performed. Started

with particular examples, it is completely generalized and apparently constitutes

by itself a new theoretical result. Apart from that, it has permitted the formulation

of the reduced force field for folding in the space of dihedral angles (see Section 3.3),

with exclusion of the geometry constraints contained in the classical force fields. In-

stead, the new model is supplemented by the terms aimed to capture other effects

that may be important for successful protein structure predictions.

In order to reproduce the interaction with the solvent, an implicit hydration model

was developed in the course of this work. The details of this model are described

in Section 3.4. The underlying idea is to estimate the number of water molecules

that can directly contact each atom. The suggested strategy is to generate a grid

consisting of twelve uniformly distributed points on the surface of each atom. The

grid is randomly rotated before each energy evaluation, and the points are checked

with regard to their exposure to water. The obtained atomic hydration degrees are

used for the evaluation of atomic solvation energies, as well as for the modeling of

the electrostatic screening effect.

As described above and more detailed in Chapter 1, findings from molecular biol-

ogy suggest that protein folding proceeds cotranslationally, starting from a certain

initial conformation, which may be important for achievement of the final result.

Therefore, the strategy adopted in this work is to generate atomic coordinates for

all necessary amino acids, and then to synthesize the desired polypeptide chain in

a way maximally resembling the natural one (with presumingly reasonable simpli-
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fications). Thus, amino acids are appended one by one, obtaining certain config-

urations, and each chain elongation step is followed by energy minimization. To

prevent the twisting of the nascent polypeptide around the current elongation cen-

ter, the force field is supplemented by a special term intended to favor folding in a

given half-space.

The coordinate transformations necessary for the implementation of the desired pro-

cess are described together with the related analysis in Section 3.5. It is probably

needless to mention that all the transformational analysis, with exception of the

definition of rotation about a vector (where an example source was cited), is per-

formed independently in this work, although the basic derivations can be probably

found in an equivalent or an alternative form elsewhere, given their applicability in

many different areas.

A significant improvement in efficiency can be achieved via analytical calculation of

energy derivatives, particularly if their computation during simulations is coupled

with energy evaluations. Besides, the visualization of forces significantly facilitates

the understanding of the interplay between different interactions. A discussion

concerning this issue can be found in Section 3.6. The atomic forces arising from

bending and stretching, as well as the energy derivatives with respect to dihedral

angles, were derived in course of this work. The subsequent exploration of the

literature using corresponding keywords have revealed that some of the described

relations can be found in a similar form elsewhere. This fact is not surprising,

given the importance of their application. Thus, references [2–4] contain similar

expressions. Despite that, the matter of this section is essentially different from the

content of the mentioned papers.

Section 3.7 is focused on dynamics of the molecule in dihedral angle space. In

this section, equations of motion were derived for constrained dynamics and sup-

plemented by a term that accounts for friction. A brief analysis of the motion

equations suggests that a certain scaling for the energy gradient can help to obtain

a minimization path resembling a natural folding pathway.

The first section in Chapter 4 describes the developed simulation software. Sec-

tion 4.2 proceeds with the implementation of the proposed model. It describes the

algorithms for determination of the bond weights and for creation of the list of

rotatable bonds, as well as for generation of initial atomic coordinates for amino

acids. The algorithms rely on the operations for coordinate transformations and

the related specific notations, introduced in the preceeding chapter. This section

ends with descriptions of the algorithms for chirality correction, discussion of the

overall model implementation, and a suggestion for enhancement of computational

efficiency. According to the latter, the atoms are grouped with respect to the

residue number, and the computations are reduced if the residues are separated by

a significant distance.

Simulation results are briefly discussed in Section 4.3. The contributions of differ-
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ent interactions and the discrepancies arising from various permittivity models are

elucidated in Subsection 4.3.1. Energy minimization issues are described in Sub-

section 4.3.2. Simulations have shown that minimization efficiency is significantly

improved when minimization is performed in the space of dihedral angles with uti-

lization of the proposed model. By contrast, minimization of the energy given by the

force field of the classical type, described in Section 2.2, tends to resolve high-energy

configurations largely at the cost of angle bending.

On the other hand, simple minimization that allows only decrease in energy seems

to be inappropriate for simulation of protein folding. Therefore, the acceptance

criterion for a successful step in the direction of twisting forces was modified to

allow certain energy increase. The form of the acceptance criterion was inspired by

thermodynamical considerations described in Chapter 1.

The last section is devoted to the concluding remarks and the outlook for further

research.

Remarks about notations

To make reading this text more convenient, certain notational rules were used

throughout all chapters. For example, different types of alphabets and font shapes

are used to denote matrices (M), vectors (�v) and their components∗ (v[k]), an-

gles† (α), sets (G), etc. Upper indices, which refer to vector components or specify

some other characteristics‡ , are placed in squire brackets, in order to make them

clearly distinguishable from the operation of raising to a certain degree. Lower in-

dices are reserved for ordinal numbering or similar object specification§. The usage

of upper and lower indexes is demonstrated in the following example:

‖�ri‖ =

√
(r

[1]
i )2 + (r

[2]
i )2 + (r

[3]
i )2.

The notational principles used in the text, even those not mentioned here, should

be rather intuitive and easy to figure out.

Specific mathematical notations are explained only when they are introduced for the

first time. Additionally, the summary of all such notations is given in Appendix C.

General notations, which are assumed to be self-evident, are not defined explicitely

in the text. However, they are also listed in Appendix C. An example of such

notation is the one used for a scalar product of two vectors.

∗For the sake of clarity, customary notations x, y, and z were used for Cartesian coordinates in

Subsection 1.5.1, related to quantum mechanics.
†Additionally, following conventional notations, some other values can be denoted by lowercase

Greek letters, such as, for example, electrical permittivity ε or electronegativity χ.
‡Like in case of angle bending and bond stretching parameters k

[a]
i and k

[b]
ij , related to certain

atoms Ai and Aj .
§For example, �rN is to be interpreted as the position of the nitrogen atom in a specific residue

determined by the context.
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Figures, tables and equations are numbered separately, always independently in

each chapter. For definitions, lemmas, propositions, theorems and algorithms the

same counter is used, since it significantly facilitates orientation in the text. In any

case, a label for an object is constructed from the chapter number together with

the internal counter value for this class of objects inside the chapter, separated by

a dot. Equation labels are additionally supplemented by parentheses, all other by

the object qualifier preceeding the number. An equation is numbered only if it is

necessary for a reference.
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Chapter 1

Biological, Chemical, and

Physical Background

1.1 Introduction

Proteins are essential components of any living cell. They have very diverse func-

tions: catalyze chemical reactions and control gene expression, constitute a cy-

toskeleton and perform muscle contraction, transport electrons, ions and uncharged

molecules, enable recognition of cellular signals or alien invasion. The properties of

a protein molecule are determined by its spatial structure (see Fig. 1.1) and loca-

tion of charged atom groups, which often have to be very specific for a protein to

perform a certain function.

The spatial structure of a protein depends on its chemical composition. A protein

consists of one or more associated polypeptide chains, which are built of consequently

(a) (b)

Fig. 1.1: Space-filling representations∗ of two native protein structures determined by nu-

clear magnetic resonance spectroscopy†. (a) Glucocorticoid receptor DNA-binding domain.

(b) Bovine pancreatic ribonuclease A.

∗Molecular images here and further in the text are generated by the program SiViProF, devel-

oped in course of this work. For an explanation of the color notations see Table A.1 in Appendix A.
†Atomic coordinates are obtained from RCSB Protein Data Bank (see Section 1.10 for details),

from records 1GDC by Baumann et al. [6] and 2AAS by Santoro et al. [7].
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connected amino acid residues (see Section 1.2 for details). The number of residues

can vary from about fifty to many thousands, depending on protein functions.

Shorter sequences are usually referred as peptides∗ and often do not have any fixed

spatial arrangement in solution.

The sequence of residues is unique for each protein and believed to predetermine

the result of folding of the synthesized chain into its native state in a proper en-

vironment. The latter statement is named Anfinsen’s dogma after the Nobel prize

laureate Christian B. Anfinsen, who has shown in 1961 that ribonuclease (see Figures

1.1 (b) and 1.2 (a, b)) with reduced disulfide bonds and disrupted tertiary structure

was able to restore its enzymatic activity upon removal of the denaturating agent

[8]. Later it was proven that also many other small proteins are able to refold in

vitro† into their functional form. These results motivated numerous attempts to

compute native three-dimensional structure of proteins based on given amino acid

sequences.

Protein structure prediction is a subject of intense research, given the importance of

its academic and medical applications. A large number of known protein sequences

is already available, and the amount of this data grows rapidly. By contrast, an

experimental determination of protein three-dimensional structures by means of

X-ray crystallography or nuclear magnetic resonance spectroscopy is relatively ex-

pensive and time consuming (see Subsections 1.9.1 and 1.9.2). Computation of

native protein structures from their amino acid sequences could contribute to the

understanding of the organization of living organisms on the molecular level and

give a clue to treatment of many diseases. It would also enable more rational drug

design, helping to lower the costs and the amount of time required to introduce new

medications.

(a) (b)

Fig. 1.2: Some more insight into the structure of bovine pancreatic ribonuclease A‡: (a) the

ball-and-stick model visualizing all atoms and bonds between them, (b) the ribbon model

showing the fold of the main chain. A discussion about different models for protein visual-

ization follows further in the text, see Subsections 1.5.4 and 1.6.2.

∗Peptides consisting of two, three, or a few amino acid residues are called dipeptides, tripeptides

or oligopeptides respectively.
†Outside a living organism, literally, in glass (Latin).
‡Atomic coordinates are the same as in Figure 1.1 (b).
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Fig. 1.3: General structure of amino acids in a nonionized and an ionized form. R stands for

a side chain. The red box outlines a non-terminal residue after inclusion into a polypeptide.

1.2 Chemical structure of proteins

There are 20 different amino acids that are used by cells as building blocks in protein

synthesis. They are listed in Tables 1.1-1.3. All of them, with exception of proline,

have a common part, containing an amino (−NH2) and a carboxyl (−COOH) group

(Fig. 1.3). The carbon atom of the carboxyl group is conventionally marked as C
′

in order to distinguish it from the α-carbon bonded to the amino group. The

distinctive part of an amino acid is called the side chain. Its non-hydrogen atoms

are labeled using subsequent Greek letters, starting from the atom linked to Cα.

In case of branching, letters are additionally supplied by indexes (see Table A.2 in

Appendix A for details).

In course of protein synthesis the common fragments of amino acids are joined

together by peptide bonds, thereby constituting the main chain, or the protein back-

bone (Fig. 1.4). As a result of peptide bond formation, the hydroxyl group (−OH)

at C
′

and a hydrogen from the amino group of the next amino acid are removed.

Although the structure of proline is somewhat different, it allows its molecules to

be incorporated into a chain in a similar way (see Subsection 1.6.1).

The residues are appended to the carboxyl end in a certain order, prescribed by the

corresponding genetic code. This procedure is termed translation. The details of

the protein synthesis that are relevant for initial arrangement of atoms in a nascent

protein are discussed in Section 1.8. After completion of translation, some chemical

alternations of standard amino acids can be performed as a part of a controlled

process, termed posttranslational modification.

The sequence of residues in a protein is called its primary structure. It is written

using conventional one- or three-letter abbreviations (see Table A.2 in Appendix A),

starting from the amino end. The reverse order of residues corresponds to another

protein.

H N
+

H

H

Cα

H

R1

C
′

O

· · · N

H

Cα

H

Ri

C
′

O

N

H

Cα

H

Ri+1

C
′

O

· · · N

H

Cα

H

Rn

C
′

O

O
−��

����

i-th residueamino end carboxyl end

Fig. 1.4: A polypeptide chain. Peptide bonds connect C
′

and N atoms.
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Once or even before the polypeptide chain is completely synthesized, it adopts a

certain conformation, which is responsible for the protein functions. The folding

pathway and the resulting structure are largely determined by the properties of the

constituent amino acid residues. For example, if folding happens in cytosol, which

represents mainly a mixture of water with salts, nonpolar side chains seek to avoid

Table 1.1: Amino acids with hydrophilic ionizable side chains.

Name Chemical formula∗ Molecular structure†

Aspartic acid +H3N C

COO−

H

CH2 COO−

Glutamic acid +H3N C

COO−

H

CH2 CH2 COO−

Cysteine +H3N C

COO−

H

CH2 SH

Tyrosine +H3N C

COO−

H

CH2 �
�

�
�

�
�

�
�

�� ��
OH

Histidine +H3N C

COO−

H

CH2

�� ����
HN NH+

Lysine +H3N C

COO−

H

(CH2)4 NH+
3

Arginine +H3N C

COO−

H

(CH2)3 NH C

NH2

NH+
2

∗The presented form considerably prevails in physiological conditions, except for histidine: only

about one fourth of histidine side chains is protonated in cytosol (see Section 1.4).
†In the last column the histidine side chain is depicted in the more probable non-protonated form.

Single and double bonds in conjugated systems are treated as bonds having partial double character.
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Table 1.2: Amino acids with hydrophobic side chains.

Name Chemical formula Molecular structure

Proline

����

+H2N

COO−

Glycine +H3N C

COO−

H

H

Alanine +H3N C

COO−

H

CH3

Valine +H3N C

COO−

H

CH

CH3

CH3

Leucine +H3N C

COO−

H

CH2 CH

CH3

CH3

Isoleucine +H3N C

COO−

H

CH

CH3

CH2 CH3

Methionine +H3N C

COO−

H

CH2 CH2 S CH3

Phenylalanine +H3N C

COO−

H

CH2 �
�

�
�

�
�

�
�

�� ��

Tryptophan +H3N C

COO−

H

CH2

����N

��

�� ��

��

��

��



6 Chapter 1. Biological, Chemical, and Physical Background

Table 1.3: Amino acids with hydrophilic non-ionizable side chains.

Name Chemical formula Molecular structure

Serine +H3N C

COO−

H

CH2 OH

Threonine +H3N C

COO−

H

CH

CH3

OH

Asparagine +H3N C

COO−

H

CH2 C

O

NH2

��

����

Glutamine +H3N C

COO−

H

CH2 CH2 C

O

NH2

��

����

contact with surrounding solvent. This causes a collapse of a nascent polypeptide

into a molten globule with its subsequent compactization. Polar groups stabilize the

conformation by building hydrogen and disulfide bonds. They are also responsible

for specific binding to other molecules. On the other hand, in absence of hydrophilic

residues, which tend to stay in contact with water, an adhesion to neighboring

protein molecules would be inevitable, much like oil collects in drops being mixed

with water.

The division of the side chains into groups of hydrophobic and hydrophilic is not

strict. Some residues have intermediate properties. For example, tyrosine is some-

times classified as hydrophobic, since its aromatic ring favors aggregation with non-

polar molecules. The side chains of glycine and alanine are relatively small and

therefore fit into both hydrophobic and hydrophilic environment.

1.3 Chirality of amino acids

All standard amino acids, with exception of glycine, can occur in form of at least

two optical∗ isomers, which differ like left and right hands (Fig. 1.5). In the L-form,

the nitrogen, the carboxyl carbon, and the side chain appear in the clockwise order,

∗The term optical activity refers to the property of chiral compounds to rotate the plane of

polarized light.
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(a) (b)

� 	

Fig. 1.5: L-alanine (a) and D-alanine (b). The chiral center at the α-carbon is pointed by

a red arrow.

when viewed along the bond from the hydrogen to α-carbon. In D-isomers they

show up in the counterclockwise order. For glycine these two forms are equivalent,

since its side chain consists of only one hydrogen atom.

Proteins are composed of only L-amino acids. D-alanine and D-glutamic acid are

usual components of peptidoglican cell walls of bacteria, blue-green algae and some

viruses. The presence of D-isomers makes a shell resistant to decomposition by most

peptidases. D-residues are also found in short peptides isolated from amphibian

skin, snail ganlia and venom of a number of exotic species [9–11]. These inclusions,

however, are not translated in the usual way, but either integrated into the chain by

certain enzymes or derived posttranslationally from corresponding L-isomers [9, 12].

Transitions between L- and D-forms almost do not occur spontaneously: the rate of

such conversion is so slow that it can be used for dating of biological fossil objects,

in combination with other techniques.

Any atom with four different substitutes, i.e. groups attached to it, may be an origin

of optical activity. It is called chiral center and often referred by a more broad term

stereocenter. Apart from the described center of optical activity at Cα, molecules

of isoleucine and threonine have another such center at β-carbon. The side chains

of these amino acids can occur in the S- or R-form, named following another, more

common, nomenclature, which is based on the Cahn Ingold Prelog priority rules.

According to this nomenclature, certain priorities are assigned to the atom groups,

bound to chiral center. First, the atoms directly attached to the stereocenter are

compared. Atoms with higher atomic numbers obtain higher priorities. For the

groups, having the same element bound to the chiral center, further atoms in the

chains are considered, until different atoms are found. When the priorities are

assigned, the S- or R-form are distinguished by the order of substitutes, viewed

from the group with the lowest priority to the chiral center. In the S-form, groups

appear in the clockwise order from the higher to the lower priority.

Normally only the L-isoleucine and L-threonine with the side chains in the S- and

R-configuration respectively (Fig. 1.6(a, d)) participate in protein synthesis.
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(a) (b) (c) (d)



�



�

�

� 	

���
���

���

Fig. 1.6: Amino acids with two chiral centers. L-isoleucine with the side chain in the S- (a)

and R-configuration (b). L-threonine with the side chain in the S- (c) and R-configuration

(d). The chiral centers at the α-carbons and the chiral centers of the side chains are pointed

by red and blue arrows respectively.

1.4 Ionization of amino acid residues

To estimate the probability of ionizable atom groups to be in one or the other state

at physiological conditions, we first consider dissociation of a simple monoprotic

acid HA:

HA
k1

�
k2

H+ + A−, (1.1)

where k1 and k2 denote specific reaction rates. According to the law of mass action,

first formulated by Waage and Guldberg in 1864 [13], the reaction rate is propor-

tional to the product of the reactant masses raised in degrees of their stoichiometric

coefficients∗. In case of a non-dilute solution one has to take into consideration ionic

activities, but we can think of an ideal solution.

Hence the change of the anion concentration can be described by the differential

equation
d [A−]

dt
= k1[HA] − k2[H

+][A−]. (1.2)

In equilibrium there is no concentration change, therefore we set d [A−]
dt = 0 in

equation (1.2) and obtain:

[H+][A−]

[HA]
=

k1

k2
=: Ka. (1.3)

The stated in equation (1.3) consequence of the mass action law is often termed as

∗For example, in a reaction involving n molecules of A and m molecules of B,

nA + mB −→ AnBm ,

the rate of product formation is
d [AnBm]

dt
= k[A]n[B]m

with a positive constant k. The members in square brackets denote concentrations of corresponding

substances.
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the law of mass action itself. Acid dissociation constant∗ Ka can be also utilized to

characterize the protonation of a base B through the dissociation of the conjugate

acid BH+:

Ka =
[H+][B]

[BH+]
.

Often pKa := − lg Ka is used for convenience instead of Ka, as pH = − lg[H+] is

adopted for measurement of the solution acidity†. pKa, as well as pH, depend on

temperature. One can see that pKa is equal to pH at which the concentrations

of the protonated and non-protonated form of the substance are equal, i.e. the

considered atom group is ionized in 50% of molecules.

Therefore, the probabilities of the charged and uncharged state relate for an acidic

group as
[A−]

[HA]
=

Ka

[H+]
= 10pH−pKa (1.4)

and for a basic group as

[BH+]

[B]
=

[H+]

Ka
= 10pKa−pH. (1.5)

It is natural to assume that folding occurs at a constant pressure, and that the

system exchanges heat with its environment. We shall recall that a steady state

under isotherm-isobaric conditions is achieved when the Gibbs energy is minimized.

The Gibbs free energy G is a thermodynamic potential given by

G := E + pV − TS, (1.6)
also written as

G := H − TS. (1.7)

Here E denotes the internal energy of the system, p – the pressure, V – the volume,

T – the absolute temperature, and S – the entropy. H := E + pV is the enthalpy.

The entropy S is a measure of randomness of the molecular ordering in the system.

Different definitions of entropy are possible (see, for example, [1, 14, 15]). For our

purposes we shall define it as follows: the entropy of a certain state of the system

is given by

S = kB ln W, (1.8)

where kB is the Boltzmann’s constant, and W is the number of ways in which the

given configuration of the system can be achieved. In application to protein folding,

one usually talks not about a single particle or molecule, but about a mole of such

objects, and the related energies are measured in kcal/mol. The corresponding

molar entropy is given by

S = R̄ ln W,

∗For non-dilute solutions Ka defined by equation (1.3) is concentration-dependent and sometimes

called apparent acid dissociation constant.
†pH = 7.0 in clean water at 25◦ C. Acidic solutions have smaller pH values, basic – larger values.
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where

R̄ := kBNA

is the gas constant, and NA is the Avogadro’s number.

A related notion is the Helmholtz free energy, which is defined as

F := E − TS.

Since the value pV , and thus the difference between G and F , is negligible for

the considered systems [1], we shall often use the term free energy without further

specifications.

To evaluate the contribution of the ionization to the molar Gibbs free energy of a

molecule, let us now look at the free energy of the mixture of ionized and nonionized

groups of the same type:

G = giνi + gnνn − TSmix.

Here gi and gn denote the molar free energy of an ionized and a nonionized group

respectively, νi and νn are the molar amounts of groups in the corresponding forms,

T is the absolute temperature and Smix is the entropy of mixing.

The latter can be computed by substituting for W in (1.8) the number of different

ways to select νiNA groups among (νi + νn)NA groups for ionization. Thus,

Smix = kB ln

(
((νi + νn)NA)!

(νiNA)!(νnNA)!

)
.

Using the Stirling’s approximation,

ln n! ≈ n ln n − n +
1

2
ln(2πn), n > 10, (1.9)

we obtain:

Smix ≈ kB

(
NA(νi + νn) ln(NA(νi + νn)) − NA(νi + νn) +

1

2
ln(2πNA(νi + νn))−

− NAνi ln(NAνi) + NAνi − 1

2
ln(2πNAνi)−

− NAνn ln(NAνn) + NAνn − 1

2
ln(2πNAνn)

)
=

= R̄

(
νi ln

(
νi + νn

νi

)
+ νn ln

(
νi + νn

νn

))
.

In fact, the error introduced by the Stirling’s approximation (1.9) can become ar-

bitrary small with growing n (see, for example, [16], p. 511). We assume that the

system includes a sufficiently large number of groups from each category, so that

the approximation error can be neglected. Hence follows that

G = giνi + gnνn + R̄T (νi ln νi + νn ln νn − (νi + νn) ln(νi + νn)) .
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The free energy change upon ionization of Δν mole of nonionized groups is

ΔG = giΔν − gnΔν + R̄T ((νi + Δν) ln(νi + Δν)−
−νi ln νi + (νn − Δν) ln(νn − Δν) − νn ln νn) .

For both positive and negative Δν (Δν << νf ) holds:

lim
Δν→0

(νf + Δν) ln(νf + Δν) − νf ln νf

Δν
=

d(νf ln νf )

dνf
= ln νf + 1,

where f stands for both the ionized and nonionized form. Therefore follows:

lim
Δν→0

ΔG

Δν
= gi − gn + R̄T ln

(
νi

νn

)
. (1.10)

In equilibrium, the right hand side of equation (1.10) is zero, hence

gi − gn + R̄T ln

(
νi

νn

)
= 0.

Using equations (1.4) and (1.5) we obtain the following expressions for evaluation

of the molar free energy of ionization:

gi − gn = −R̄T ln
Ka

[H+]
= R̄T ln 10 (pH − pKa) (1.11)

for an acidic group and

gi − gn = −R̄T ln
[H+]

Ka
= R̄T ln 10 (pKa − pH) (1.12)

for a basic group.

Ionizable groups that can be found in proteins are listed in Table 1.4 together

with intervals for their pKa values, estimated probabilities to be ionized in normal

conditions, and the corresponding ionization free energies. Apparently, the most

groups preferably stay in one particular state, which is shown in Table 1.2. Histidine,

cysteine, and the terminal amino group have pKa values close to the pH of cytosol,

therefore appear in adequate amounts in the both forms. Histidine is often used in

active centers of enzymes due to its sensitivity to local environmental changes [1]. A

couple of cysteine residues can build a disulfide bridge (-S-S-), which stabilizes the

structure of the protein molecule. Ionization of the thiol groups (-SH) of cysteine

is an important step in disulfide bond formation and exchange. However, disulfide

bridges are usually unstable in cytosol and mostly occur in secretory proteins.

One should bear in mind that the ionization behavior is affected by electric permit-

tivity and ionic strength of the ambience. During the folding process the ionizable

groups can get surrounded by nonpolar side chains or come into a neighborhood of a

number of charged groups. As a result, actual values can in some cases significantly

deviate from the ones given in the table.
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Table 1.4: The pKa values of ionizable groups at 25◦ C, the corresponding probabilities

P± of the charged states at neutral pH, and the free energy change ΔGi upon ionization.

Atom group∗ Residue pKa
† P±‡ ΔGi

§

(kcal/mol)

−C
′
OOH ↔−C

′
OO− carboxyl end [3.4, 3.8] (0.9993, 0.9998) (−5.0,−4.3)

−CγOOH ↔−CγOO− aspartic acid [3.9, 4.0] (0.9990, 0.9993) (−4.3,−4.0)

−CδOOH ↔−CδOO− glutamic acid [4.4, 4.5] (0.9968, 0.9975) (−3.6,−3.4)

�N ↔�NH+ histidine [6.3, 6.6] (0.1663, 0.2848) (0.5, 1.0)

−NH2 ↔−NH+
3 amino end [7.4, 7.5] (0.7152, 0.7598) (−0.7,−0.5)

−SH ↔−S− cysteine [7.5, 9.5] (0.0031, 0.2403) (0.6, 3.5)

−OζH ↔−Oζ
− tyrosine [9.6, 10.0] (0.0009, 0.0026) (3.5, 4.1)

−NζH2 ↔−NζH
+
3 lysine [10.0, 10.4] (0.9990, 0.9997) (−4.7,−4.0)

=NH ↔=NH+
2 arginine > 12.5 > 0.999996 < −7.4

1.5 Intramolecular interactions

To build a reasonable model for protein structure prediction, it is important to

consider the types of atomic interactions that are encountered in proteins and may

have a substantial influence on protein structure. We shall start our discussion with

covalent bonds, which are typically the strongest interaction type, then consider

electrostatic interactions between atoms that are not bound to each other. After

that we shall discuss van der Waals interactions, which prevent excessive conver-

gence of non-bound atoms, even with opposite charges, but result in a relatively

weak attractive force when the atoms are separated by a sufficient distance. Fi-

nally, we discuss less abundant hydrogen bonds, which represent another type of

non-covalent interactions playing an important role in stabilization of a protein

structure.

The properties of chemical elements, among which are the number of formed bonds

and the values of bond angles, are determined by features of atomic electron shells.

These and some other properties can be explained by means of quantum mechanics.

∗The Greek letters are used to eliminate the ambiguity in the atom group indication. The details

of the atom numeration can be found in the Appendix A.
†The pKa values are taken from [17]
‡The probabilities P± are calculated according to the formula

P± =
P±/0

1 + P±/0
,

where P±/0 is the probability ratio computed from equation (1.4) or (1.5) for an acidic and a basic

group respectively.
§The molar free energy changes upon ionization, ΔGi := gi − gn, are evaluated using equations

(1.11) and (1.12).
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1.5.1 Principles of quantum mechanics and atomic orbitals

The movement of a particle of the mass m in a time-independent force field is

described by the time-independent Schrödinger equation:

− �2

2m
ΔΨ + UΨ = EΨ. (1.13)

Here Ψ : R3 → C is the wavefunction of the particle with a constant total energy

E ∈ R, U : R3 → R is the potential energy of the particle, and � is the reduced

Planck’s constant.

According to the Born interpretation of the wavefunction, if Ψ is normalized such

that the integral of ΨΨ over all space is equal to one, the product ΨΨ = |Ψ|2
represents the probability density of the particle to be found in a certain position.

Thus, physically acceptable wavefunctions must not be equal to zero everywhere,

must be square-integrable, continuous and have a continuous slope.

The general form of the Schrödinger equation describes the evolution of a system

that includes N particles:

ĤΨ = i�
∂Ψ

∂t
, (1.14)

where Ĥ is the Hamiltonian operator of the system, and Ψ is now a function of 3N

space coordinates and time.

For such a system, the expression

|Ψ(x1, y1, z1, . . . , xN , yN , zN , t)|2dx1 dy1 dz1 . . . dxN dyN dzN (1.15)

gives the probability at time t to find simultaneously the first particle in the in-

finitesimal volume at the point (x1, y1, z1)
T, the second one at (x2, y2, z2)

T, and so

on for the other particles∗. In this case, the normalization condition for Ψ takes the

form: ∞∫
−∞

∞∫
−∞

∞∫
−∞

. . .

∞∫
−∞

∞∫
−∞

∞∫
−∞

|Ψ|2dx1 dy1 dz1 . . . dxN dyN dzN = 1

We are interested in a steady state solution, therefore equation (1.14) reduces to

the following:

ĤΨ = EΨ. (1.16)

For a system consisting of one particle,

Ĥ = − �2

2m
Δ + U, (1.17)

in accordance with equation (1.13).

∗Here the positions in Cartesian coordinates are implied.
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One can readily see that (1.16) is an eigenvalue equation, and the wavefunctions are

the eigenfunctions of the total energy E. The latter can take only discrete values,

which are eigenvalues of (1.16) under the restrictions on acceptable solutions along

with particular boundary conditions. In other words, the energy is quantized, and

different wavefunctions correspond to certain energy levels∗.

The Hamiltonian operator Ĥ was named so by analogy with the Hamiltonian func-

tion H from classical mechanics. We shall recall that for a system consisting of a

single particle,

H(�p,�r) =
1

2m
�p · �p + U(�r), (1.18)

where �p is the linear momentum, �r is the position, and U is the potential energy of

the particle. The first term on the right-hand side of equation (1.18) is the kinetic

energy, and respectively the Hamiltonian function gives the total energy.

Similarly, the Hamiltonian operator Ĥ corresponds to the total energy E. More-

over, according to a fundamental postulate of quantum mechanics, for every physical

property in classical mechanics there is a quantum-mechanical operator. In partic-

ular, the operators

p̂x =
�
i

∂

∂x
,

p̂y =
�
i

∂

∂y
,

p̂z =
�
i

∂

∂z

correspond to the Cartesian components of the particle’s linear momentum, and

ÊK =
1

2m

(
p̂2

x + p̂2
y + p̂2

z

)
=

=
1

2m

((
�
i

)2 ∂2

∂x2
+

(
�
i

)2 ∂2

∂y2
+

(
�
i

)2 ∂2

∂z2

)
=

= − �2

2m
Δ

is the operator corresponding to the kinetic energy of the particle, in a striking

analogy with classical mechanics.

A hydrogen atom is a system consisting of a nucleus with the positive charge of 1 |e−|
and an electron moving around it. In fact, the nucleus moves also, although much

more slowly than the electron. The wavefunction of the system depends now on the

positions of the electron, (xe, ye, ze)
T, and nucleus, (xn, yn, zn)T. The Hamiltonian

operator for the described system is:

Ĥ = − �2

2me

(
∂2

∂x2
e

+
∂2

∂y2
e

+
∂2

∂z2
e

)
− �2

2mn

(
∂2

∂x2
n

+
∂2

∂y2
n

+
∂2

∂z2
n

)
− q2

e

4πε0r
, (1.19)

∗Although, certain conditions may allow a continuous energy spectrum.
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where me and mn are respectively the masses of the electron and nucleus, qe is the

elementary charge∗, ε0 is the vacuum permittivity, and r is the distance between the

two particles. The first and second term at the right-hand side of equation (1.19)

are the operators for the kinetic energies of the electron and nucleus, and the last

term represents the potential energy of the Coulomb interaction between them.

As discussed below, the Schrödinger equation for this system can be solved analyt-

ically. For many-electron atoms additional complications arise due to interaction

between electrons, and in such cases one is forced to search for approximate so-

lutions. A certain insight into the features of electron shells can be gained if one

ignores interelectronic interactions and as an initial approximation considers a model

atom with a single electron moving about a nucleus with the charge Zqe. For the

latter problem setup, the potential energy term in (1.19) takes the form:

U(r) = − Zq2
e

4πε0r
. (1.20)

One can show that the Schrödinger equation for the given system of two particles can

be subdivided into two parts, one of which can be roughly interpreted as describing

the movement of the electron relative to the nucleus, and the other one gives the

translational motion of the whole atom in space [14]. In a more precise formulation,

each of the two equations obtained after separation concerns one of two fictitious

particles, first of which has the mass

m =
memn

me + mn
(1.21)

and moves in the central force field with the potential energy given by (1.20), while

the other one with the mass

m = me + mn (1.22)

is not subjected to any forces (see, for example, [18] for more details).

Taking me ≈ 5.4858×10−4 Da, for a hydrogen atom with the nucleus mass mn ≈
1.0073 Da we obtain m ≈ 5.4828×10−4 Da, which is about 99.95 % of the electron

mass. For heavier nuclei the so-called reduced mass m approaches me even closer,

thereby fortifying the basis for the above given interpretation.

Thus, to explore the movement of the electron relative to the nucleus, we shall solve

equation (1.13) with m = m and U given by (1.20).

Due to the spherical symmetry of the problem, it is natural to use spherical coor-

dinates (r, ϕ, ϑ), which are conventionally defined as shown in Figure 1.7.

∗Despite the fact that for quantum mechanical computations it is convenient to introduce a unit

system, in which qe becomes a unit charge (i.e., using 1 |e−| as a charge unit),we have to use a unit-

independent notation for the elementary charge to keep track of correct dimensions in mathematical

expressions.
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x

y

z

ϕ

ϑ
r

Fig. 1.7: Relation of the spherical coordinates (r, ϕ, ϑ) to the Cartesian (x, y, z).

To be more specific, we set:

r =
√

x2 + y2 + z2, (1.23)

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 , if x = 0 , y = 0 ,
π
2 , if x = 0 , y > 0 ,

−π
2 , if x = 0 , y < 0 ,

arctan y
x , if x > 0 ,

π + arctan y
x , if x < 0 .

(1.24)

ϑ =

⎧⎨⎩0 , if x2 + y2 + z2 = 0 ,

arccos z√
x2+y2+z2

otherwise.
(1.25)

For simplicity we shall keep the same notation for the wavefunctions expressed in

spherical coordinates, Ψ = Ψ(r, ϕ, ϑ).

The Laplace-Operator in spherical coordinates (1.23)-(1.25) is given by:

ΔΨ =
∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂ϑ2
+

cos ϑ

r2 sinϑ

∂Ψ

∂ϑ
+

1

r2 sin2 ϑ

∂2Ψ

∂ϕ2
,

therefore we obtain:

∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂ϑ2
+

cos ϑ

r2 sin ϑ

∂Ψ

∂ϑ
+

1

r2 sin2 ϑ

∂2Ψ

∂ϕ2
+

2m

�2

(
E +

Zq2
e

4πε0r

)
Ψ = 0.

With the ansatz

Ψ(r, ϕ, ϑ) = R(r)Φ(ϕ)Θ(ϑ)

and subsequent separation of variables we arrive to the equations:

r2 R′′(r)
R(r)

+ 2r
R′(r)
R(r)

+
2mr

�2

(
Er +

Zq2
e

4πε0

)
= λ1, (1.26)

sin2 ϑ
Θ′′(ϑ)

Θ(ϑ)
+ sin ϑ cos ϑ

Θ′(ϑ)

Θ(ϑ)
+ λ1 sin2 ϑ = λ2, (1.27)

Φ′′(ϕ) + λ2Φ(ϕ) = 0, (1.28)
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where λ1, λ2 ∈ C are certain constants, which appear due to separation of variables.

Equation (1.28) is readily solved with the standard ansatz for linear ordinary dif-

ferential equations with constant coefficients:

Φ(ϕ) = ceλϕ, c, λ ∈ C. (1.29)

Substitution of (1.29) into (1.28) yields λ = ±√−λ2. Thus, for λ2 �= 0, the two-

dimensional solution space of (1.28) is formed by all linear combinations of two

obtained linearly independent solutions:

Φ(ϕ) = c1e
√−λ2ϕ + c2e

−√−λ2ϕ, c1, c2 ∈ C.

In case of λ2 = 0, the general solution of (1.28) is given by

Φ(ϕ) = c1 + c2x, c1, c2 ∈ C.

However, not all solutions of (1.28) are acceptable because of the requirement of

2π-periodicity. With the boundary conditions Φ(0) = Φ(2π) and Φ′(0) = Φ′(2π),

non-trivial solutions exist only for λ2 = m2,m ∈ N0, and they are given by linear

combinations of eimφ and e−imφ.

In quantum mechanics it is customary to let m ∈ Z at this point and to express the

solutions as linear combinations of

Φm(ϕ) = eimφ, m = ±
√

λ2.

m, which is referred as the magnetic quantum number, is subject to additional

restrictions, as discussed below.

Equation (1.27) after the substitutions

x := cosϑ, y(x) := Θ(ϑ), λ2 = m2

transforms into the general Legendre differential equation:

(x2 − 1)y′′ + 2xy′ +
(

m2

1 − x2
− λ1

)
y = 0, (1.30)

which can be solved using another handy substitution,

y(x) = (1 − x2)|m|/2z(x),

with a subsequent power series ansatz, as discussed in detail in [18]. One can show

that well-behaved eigenfunctions exist only if

λ1 = �(� + 1), � ∈ N0, and |m| ≤ � (1.31)

(see, for example, [18] and references therein), whereas � is referred as the azimuthal
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Table 1.5: Some spherical harmonics (from [14], p. 302).

� m Y�,m(ϕ, ϑ)

0 0

(
1

4π

)1/2

1 0

(
3

4π

)1/2

cos ϑ

1 ±1 ∓
(

3

8π

)1/2

sinϑ e±iφ

2 0

(
5

16π

)1/2 (
3 cos2 ϑ − 1

)
2 ±1 ∓

(
15

8π

)1/2

cos ϑ sinϑ e±iφ

2 ±2

(
15

32π

)1/2

sin2 ϑ e±2iφ

quantum number. The solutions of equation (1.30) under conditions given by (1.31)

are associated Legendre polynomials. Therefore, the multiples of

Θ�,m(ϑ) =
(−1)m

2��!
(1 − cos2 ϑ)m/2 d�+m(cos2 ϑ − 1)�

(d cos ϑ)�+m
(1.32)

are the only acceptable solutions of (1.27).

The normalized products of Φm(ϕ) and Θ�,m(ϑ) are called spherical harmonics:

Y�,m(ϕ, ϑ) :=

√
2� + 1

4π

(� − m)!

(� + m)!
Φm(ϕ)Θ�,m.

Some important examples of spherical harmonics are listed in Table 1.5.

The radial equation (1.26) with a substitution

a :=
4πε0�2

mq2
e

,

after multiplication by R(r)/r2 and replacement of λ1 by �(� + 1) becomes:

R′′(r) +
2

r
R′(r) +

(
2mE

�2
+

2Z

ar
− �(� + 1)

r2

)
R(r) = 0. (1.33)

The solutions of equation (1.33) are obtained by examination of their asymptotic

behavior combined with a power series ansatz. A detailed discussion on this topic
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Table 1.6: Some radial wavefunctions of a hydrogen-like atom (from [14], p. 324).

Orbital n l Rn,l(r)

1s 1 0 2

(
Z

a

)3/2

e−Zr/na

2s 2 0
1√
2

(
Z

a

)3/2(
1 − Zr

na

)
e−Zr/na

2p 2 1
1√
6

(
Z

a

)5/2 r

n
e−Zr/na

3s 3 0
1

9
√

3

(
Z

a

)3/2
(

6 − 6Zr

na
+

(
Zr

na

)2
)

e−Zr/na

3p 3 1
1

9
√

6

(
Z

a

)5/2(
4 − Zr

na

)
2r

n
e−Zr/na

3d 3 2
1

9
√

30

(
Z

a

)7/2(2r

n

)2

e−Zr/na

can be found, for example, in [18]. The normalized acceptable solutions, sometimes

called radial wavefunctions, are given by

Rn,�(r) =

√(
2Z

na

)3 (n − � − 1)!

2n(n + �)!

(
2Zr

na

)�

e−Zr/na Ln−�−1,2�+1

(
2Zr

na

)
, (1.34)

where

n ∈ N, n > �,

is the principal quantum number, and Ln,k are associated Laguerre polynomials,

which can be defined, for example, as follows:

Ln,k(x) =
n∑

i=0

(−1)i
(n + k)!

(n − i)!(k + i)!

xi

i!
. (1.35)

Some important radial wavefunctions are listed in Table 1.6.

The only acceptable energy levels are:

En = − Z2mq4
e

32(πε0�n)2
.

Thus, they depend on n and not on the other quantum numbers. The ground state

corresponds to n = 1. As n increases, the separation of energy levels becomes

smaller, approaching continuous energy spectrum typical for unbound electrons.
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(a) (b) (c)

Fig. 1.8: 1s-orbital (a, b) and the corresponding electron density (c) for the nuclear charge

1 |e−|. The green shading of the 10%-opacity outlines the van der Waals sphere (see Sub-

section 1.5.4) of a hydrogen atom, centered in the nucleus. The opacity of the red and black

shading in each depicted layer corresponds respectively to the value of the wavefunction

and the electron density. (a) shows a slice through the atom center, (b) and (c) show seven

layers with a 0.2-Å separation, such that the central layer passes through the nucleus.

One-electron wavefunctions that correspond to energy level En are linear combina-

tions of

Ψn,�,m = Rn,�(r)Y�,m(ϕ, ϑ), � = 0, n − 1, m = −�, � (1.36)

for the given n ∈ N. They are called atomic orbitals.

There are, in principle, infinitely many normalized linear combinations of the ba-

sis wavefunctions. However, it is customary to distinguish some standard atomic

orbitals, a few of which are described below. Many other normalized linear com-

binations correspond to the same solutions rotated in space. Important exceptions

are discussed later in this subsection.

To determine the state of an electron, one has to specify, along with the occupied

orbital, the electron’s spin, which is the intrinsic angular momentum of the electron.

A spin of an electron is characterized by its spin magnetic quantum number, which

can take only two values, 1/2 and −1/2. The corresponding states are often referred

as up (also ↑ or α) and down (also ↓ or β) spin respectively.

According to the Pauli exclusion principle, one orbital can be occupied by at max-

imum two electrons. Moreover, a double occupation of an orbital is only possible

if the two electrons have paired (↑↓) spins. This statement, often encountered in

chemical literature in either this or a similar form, in fact implies that the occupied

orbitals must be orthogonal. Therefore, the number of orbitals that can be filled for

each energy level is given by the number of basis functions spanning the solution

space for this energy.

For the lowest energy level E1, the solution space is one-dimensional, with a basis

given by Ψ1,0,0. All other normalized solutions give raise to the same electron
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(a) (b) (c)

Fig. 1.9: Slices through the atom center, showing the 2s-orbital (a), the corresponding

electron density (b) for the nuclear charge 6 |e−|, and the 3s-orbital for the nuclear charge

11 |e−|(c). Areas with the red and blue shading correspond to the regions where the wave

function has positive and negative values respectively. The black shading outlines the

electron density. The opacity of the shading corresponds to the absolute value of the

visualized function in the depicted slice. For size comparison, a van der Waals sphere of a

hydrogen atom, centered in the nucleus, is shaded by green of the 10%-opacity.

density. The wavefunction Ψ1,0,0 is called the 1s-orbital and also denoted Ψ1s further

in the text. It is shown together with the corresponding electron density |Ψ1s|2 in

Figure 1.8. For a size reference, a van der Waals sphere of a hydrogen atom is

shaded by light green.

Four standard orbitals that constitute a real orthonormal basis for the next energy

level, E2, are:

Ψ2s := Ψ2,0,0 = R2,0(r)
1

2
√

π
=

1

2
√

2π

(
Z

a

)3/2(
1 − Zr

na

)
e−Zr/na,

Ψ2px :=
1√
2

(Ψ2,1,−1 − Ψ2,1,1) = R2,1(r)

√
3

4π

x

r
=

1

2
√

2π

(
Z

a

)5/2 x

n
e−Zr/na,

Ψ2py :=
i√
2

(Ψ2,1,−1 + Ψ2,1,1) = R2,1(r)

√
3

4π

y

r
=

1

2
√

2π

(
Z

a

)5/2 y

n
e−Zr/na,

Ψ2pz := Ψ2,1,0 = R2,1(r)

√
3

4π

z

r
=

1

2
√

2π

(
Z

a

)5/2 z

n
e−Zr/na.

Central slices of the 2s-orbital and corresponding electron density for the nuclear

charge 6 |e−| are shown in Figure 1.9, together with a van der Waals sphere of

hydrogen, which is shaded by light green. Slices of the 2p-orbitals for the nuclear

charges 1 |e−|, 6 |e−|, and 16 |e−| are depicted in Figure 1.10 (a-c). Again, the light

green shading outlines a van der Waals sphere of hydrogen, given for a size reference.

One can see that for the hydrogenic nucleus charge the orbital is very diffuse and

has a noticeable density extended over distances exceeding the van der Waals radius

of hydrogen. This orbital is normally not occupied in a hydrogen atom. However,

with increase of the nucleus charge, the orbital becomes more dense and compact.
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(a) (b) (c)

(d) (e) (f)

Fig. 1.10: Slices (a-c) through the atom center and 3D-reconstructions (d-f) by means of

seven splices, showing real 2p-orbitals. For comparison of 2p-orbitals in cases of the nuclear

charge 1 |e−|(a), 6 |e−|(b), and 16 |e−|(c), a van der Waals sphere of a hydrogen atom,

centered in the nucleus, is shaded by green of the 10%-opacity. As before, areas with the

red and blue shading correspond to the regions where the wave function has positive and

negative values respectively. (d) 2px-orbital, (e) 2py-orbital, (f) 2pz-orbital.

Figure 1.10 (d-f) shows the orientations of the standard 2p-orbitals in the Carte-

sian coordinates. The real orbitals 2px and 2py are obtained by means of linear

combinations of the complex-conjugated Ψ2,1,−1 and Ψ2,1,1. The same approach is

used for construction of real bases for higher energy levels. Complex wavefunctions

give raise to the real electron density, but they imply that the particle has a net

momentum. For example, Ψ2,1,−1 and Ψ2,1,1 describe motions around the z axis

(see, for example, [19] for details). Real orbitals correspond to standing waves with

no net motion.

One distinguishes the following standard orbitals constituting a real orthonormal

basis for E3:

Ψ3s := Ψ3,0,0 =
1

18
√

3π

(
Z

a

)3/2
(

6 − 6Zr

na
+

(
Zr

na

)2
)

e−Zr/na,

Ψ3px :=
1√
2

(Ψ3,1,−1 − Ψ3,1,1) =
1

9
√

2π

(
Z

a

)5/2(
4 − Zr

na

)
x

n
e−Zr/na,

Ψ3py :=
i√
2

(Ψ3,1,−1 + Ψ3,1,1) =
1

9
√

2π

(
Z

a

)5/2(
4 − Zr

na

)
y

n
e−Zr/na,
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Ψ3pz := Ψ3,1,0 =
1

9
√

2π

(
Z

a

)5/2(
4 − Zr

na

)
z

n
e−Zr/na,

Ψ3dz2 := Ψ3,2,0 =
1

9
√

6π

(
Z

a

)7/2 2z2 − x2 − y2

n2
e−Zr/na,

Ψ3dxy :=
i√
2

(Ψ3,2,−2 − Ψ3,2,2) =
1

9

√
2

π

(
Z

a

)7/2 xy

n2
e−Zr/na,

Ψ3dxz :=
1√
2

(Ψ3,2,−1 − Ψ3,2,1) =
1

9

√
2

π

(
Z

a

)7/2 xz

n2
e−Zr/na,

Ψ3dyz :=
i√
2

(Ψ3,2,−1 + Ψ3,2,1) =
1

9

√
2

π

(
Z

a

)7/2 yz

n2
e−Zr/na,

Ψ3dx2−y2 :=
1√
2

(Ψ3,2,−2 + Ψ3,2,2) =
1

9
√

2π

(
Z

a

)7/2 x2 − y2

n2
e−Zr/na.

Central slices of the 3s-, 3p-, and 3d-orbitals are depicted in Figures 1.9 (c), 1.11 (a),

and 1.11 (b,c) respectively. Figures 1.11 (d-i) show the distribution and orientation

of the 3pz- and described standard 3d-orbitals in space.

The orbitals related to the same principal quantum number n are said to constitute a

single shell of the atom, while the orbitals associated with different azimuthal quan-

tum numbers � belong to different subshells, which are referred by letters s, p, d,

and f for � equal to 0, 1, 2, and 3 respectively.

Easy to see that the described standard np-orbitals for a given n have the same

shape, but different symmetry axes, which coincide with the x, y, and z axis of

the Cartesian coordinates respectively. Any normalized wavefunction obtained by

a real linear combination of those p-orbitals has again the same shape rotated in

space. For example, let

Ψnp := N(aΨnpx + bΨnpy + cΨnpz), (1.37)

where a, b, c ∈ R, and N is the normalization constant. Since Ψnpx, Ψnpy , and

Ψnpz are normalized and orthogonal, we obtain:

N =
1√

a2 + b2 + c2
.

Equation (1.37) after substitution of the appropriate spherical harmonics can be

rearranged as:

Ψnp = Rn,1

√
3

4π

N(ax + by + cz)

r
.

Thus, the new orbital has the same structure with the symmetry axis given by the

unit vector N(a, b, c)T.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1.11: Slices through the atom center (a-c) and 3D-reconstructions by means of seven

splices (d-i), showing real 3p- (a,d) and 3d-orbitals. The green shading of the 10%-opacity

in (a-c) outlines the van der Waals sphere of a hydrogen atom, centered in the nucleus.

(a,d) the 3pz-orbital for the nuclear charge 16 |e−|; (b,e) the 3dz2-orbital for the nuclear

charge 21 |e−|; (c) the other 3d-orbitals for the nuclear charge 21 |e−|; (f) the 3dx2−y2-

orbital; (g) the 3dxy-orbital; (h) the 3dxz-orbital; (i) the 3dyz-orbital.

If we combine the s- and p-orbitals of the same shell, we obtain hybrid orbitals

(see Figure 1.12). In these cases the interplay of the constructive and destructive

interference of waves can give raise to new shapes (see also Figure 1.13), depending

on the proportion of the s- and p-orbitals. That is, various combinations with the

same proportion of the s-orbital give an identical shape with different orientations

in space.

Eligible linear combinations may also include d-orbitals, but by reasons explained

later they are of no direct relevance for protein modeling, therefore we shall omit

them in our discussion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1.12: Slices through the atom center (a-c) and 3D-reconstructions by means of seven

splices (d-l), showing hybridized 2sp3- (a,d-g), 2sp2- (b,h-j) and 2sp-orbitals (c,k,l) for the

nuclear charge 6 |e−|. The green shading of the 10%-opacity as before outlines the van der

Waals sphere of a hydrogen atom, centered in the nucleus.
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(a)

+

(b)

→

(c)

Fig. 1.13: Formation of a hybridized 2sp-orbital by interference of a 2s- and 2p-orbital.

(a) a central slice of a 2s-orbital scaled by 1/
√

2. Red and blue shading denote the regions

where the wavefunction has a positive or a negative value respectively. (b) a central slice of

a 2p-orbital scaled by 1/
√

2. The regions of positive or negative values of the wavefunction

are shaded by yellow and cyan respectively. (c) the interference of the orbitals depicted in

(a) and (b). The scaling factor 1/
√

2 is the normalization constant for an sp-hybrid. Red

and yellow areas correspond to the regions where the resulting wavefunction has a positive

value, while blue and cyan colors relate to the regions of a negative value. Neutral gray and

black colors correspond to the regions where the wavefunctions cancel each other through

the destructive interference (see also Figure 1.12 (c)).

In general, we are interested in orthonormal orbital sets, in a view of the Pauli

exclusion principle. One set, typically discussed in the context of valence bond

theory, in an explanation of the tetrahedral shape of methane, consists of four sp3

hybrid orbitals, to which the s- and p-orbitals contribute in a ratio 1:3:

Ψ
[1]
nsp3 :=

1

2

(
Ψns + Ψnpx + Ψnpy + Ψnpz

)
,

Ψ
[2]
nsp3 :=

1

2

(
Ψns − Ψnpx − Ψnpy + Ψnpz

)
,

Ψ
[3]
nsp3 :=

1

2

(
Ψns − Ψnpx + Ψnpy − Ψnpz

)
,

Ψ
[4]
nsp3 :=

1

2

(
Ψns + Ψnpx − Ψnpy − Ψnpz

)
.

Their major lobes point to the directions of corners of a regular tetrahedron (see

Figure 1.12 (d-g)). Two other sets that we shall note are three sp2-hybrids,

Ψ
[1]
nsp2 :=

1√
3

(
Ψns +

√
2Ψnpy

)
,

Ψ
[2]
nsp2 :=

1√
3

(
Ψns +

√
3

2
Ψnpx − 1√

2
Ψnpy

)
,

Ψ
[3]
nsp2 :=

1√
3

(
Ψns −

√
3

2
Ψnpx − 1√

2
Ψnpy

)
,
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combined with the standard npz-orbital, and two sp-hybrids,

Ψ[1]
nsp =

1√
2

(Ψns + Ψnpz) ,

Ψ[2]
nsp =

1√
2

(Ψns − Ψnpz) ,

combined with the remaining standard np-orbitals, Ψnpx and Ψnpy . The major

lobes of the described sp2-hybrids point to the directions at 120◦ to each other (see

Figure 1.12 (h-j)), in the plane orthogonal to the symmetry axis of the remaining

p-orbital. The major lobes of the two sp-hybrids point to the opposite directions

(see Figure 1.12 (k,l)), which are orthogonal to the symmetry axes of the remaining

p-orbitals in the set. Unlimited number of equivalent sets can be obtained from

other linear combinations, yielding the same structures rotated in space. We shall

return to them in discussion of covalent bonding.

In principle, one can obtain other hybrids with different percentage of s-character,

which would be also eligible orbitals for a hydrogen-like atom. However, in systems

with many electrons (and possibly in presence of other nuclei), the interactions of

the latter come into play, which perturb the described solutions, giving a favor to

one or another arrangement.

The probability to find an electron occupying a certain orbital Ψn,�,m in a layer of

thickness Δr, separated by a distance r from the nucleus, is given by

r+Δr∫
r

π∫
0

2π∫
0

R2
n,�(r̃)|Y�,m(ϕ, ϑ)|2r̃2 sinϑ dϕdϑ dr̃ =

r+Δr∫
r

R2
n,�(r̃)r̃

2 dr̃.

Thus,

Pn,�(r) := r2R2
n,�(r)

is the probability density to observe an electron at a certain distance from the

nucleus.

If we compare radial distribution functions of s and p orbitals, we see that an electron

occupying an s-orbital is likely to be found closer to the nucleus than a p-electron

in the same shell, while a d-electron is less tightly bound to the nucleus. Therefore,

in many-electron atoms s-electrons experience less shielding by the electrons of the

inner shells, and p-electrons, in turn, are less shielded from the nucleus then d-

electrons. Hence, the energies of the subshells in a single shell are, in fact, not

equal in atoms with many electrons. This can be observed in atomic spectra, which

also reflect energy differences arising from spin correlation effects and spin-orbit

coupling, not discussed here.

Existing analytical approximations for orbitals in many-electron atoms give orbital

shapes similar to those of the described standard orbitals in hydrogen-like atoms.
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Table 1.7: Ground-state configurations of atoms encountered in proteins.

Atom type Nuclear charge Ground-state configuration

H 1 1s

C 6 1s22s22p2

N 7 1s22s22p3

O 8 1s22s22p4

S 16 1s22s22p63s23p4

Only the hydrogenic orbital exponents have to be adjusted to account for the shield-

ing effect [20]. Moreover, images obtained by high-resolution scanning tunneling mi-

croscopy resemble atomic orbitals derived analytically for hydrogen-like atoms [21].

In accordance with the building-up principle (often referred as the Aufbau principle),

the ground state configuration of an atom with the nuclear charge Z is predicted

as follows: Z electrons are placed subsequently into the orbitals 1s, 2s, 2p, 3s, 3p,

4s, 3d, and so on, up to two electrons with paired spins per an orbital, and taking

into account the degeneracy of each subshell. One shall note that the 3d-subshell

is usually filled after the 4s-subshell. This can be explained by a stronger repulsion

between electrons in a d-subshell [14].

The ground states of atoms that are encountered in proteins are given in Table 1.7.

1.5.2 Covalent bonding

The ability of an atom to form chemical bonds depends on the number of its valence

electrons, i.e. the electrons in the outermost shell of the atom in its ground state.

When the outer shell is filled by the maximal number of electrons, atoms tend to be

chemically inert. By contrast, atoms with electron vacancies in the outer shell can

initiate spin coupling with electrons of other atoms and thereby form joint orbitals

with shared electron pairs. This results in covalent bonding of the participating

atoms.

According to valence-bond theory, a σ-bond originates from an overlap of orbitals,

the symmetry axes of which coincide with the axis of the bond. It is implied that

s-orbitals among others are capable of forming σ-bonds, since for s-orbitals any axis

through the nucleus center is a symmetry axis.

π-bonds, which are weaker than σ-bonds, may be formed additionally from ap-

proaching p-orbitals with the symmetry axes orthogonal to the line connecting atom

centers. Thus, π-bonding manifests itself in double and triple bonds between atoms.

The only orbital occupied in a ground state of a hydrogen atom is the 1s-orbital,

therefore hydrogen is only capable of σ-bonding. The ground-state configuration

of a carbon atom assumes that electrons on its 2s-orbital have paired spins, there-
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(a) (b) (c)
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Fig. 1.14: Approximate structure of methane, ammonia and water molecules. Arrows

designate lone pairs.

fore carbon should be capable of forming only two bonds, via spin pairing of the

remaining two valence electrons occupying different 2p-orbitals (see Table 1.7). To

explain the tetravalence of carbon, valence bond theory suggests that one of the

electrons from the 2s-subshell is excited to the vacant 2p-orbital, with a subsequent

formation of four sp3-orbitals, each occupied by a valent electron capable of spin

pairing.

Thus, according to this interpretation, four σ-bonds, pointing to the vertices of a

regular tetrahedron, are formed by an sp3-hybridized carbon (see Figure 1.14 (a)).

If, however, the number of reactive atoms is not sufficient for forming four σ-bonds,

an sp2 configuration of the valence shell may be preferable. In this case, the p-

orbital that does not participate in hybridization and formation of σ-bonds can be

involved in π-bonding. As a result, the axes of the σ-bonds in an sp2-hybridized

carbon point to the vertices of a regular triangle centered at the nucleus, while the

orbital of the π-bond is located at the two sides of the triangle plane.

The ground-state configuration of a nitrogen atom (see Table 1.7) suggests that its

two valence electrons in the 2s-subshell have paired spins, while three electrons in

the 2p-subshell occupy three different p-orbitals. Therefore, nitrogen in its ground

state is capable of forming three covalent bonds. Nevertheless, its valence shell

also adopts nearly an sp3 configuration when only single bonds are formed (see

Figure 1.14 (b)) and an sp2-like arrangement, if the atom is involved in π-bonding.

A pair of valence electrons that does not participate in covalent bonding is called a

lone pair .

Likewise, oxygen and sulfur atoms have only two valence electrons with unpaired

spins, accommodated in the 2p- and 3p- subshell respectively, while the other four

valence electrons share in couples two other orbitals of the outer shell. Thus, oxygen

and sulfur form only two covalent bonds. Again, in a case of only single bonds all

orbitals of their valence shells hybridize (see Figure 1.14 (c)), while if a double bond

is formed, one of the p-orbitals is involved in π-bonding, and the remaining ones

hybridize.
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The presence of a lone pair in an atom may decrease angles between bonds, owing to

stronger repulsion of the shared electrons by the lone pair. For example, the angle

between bonds in water is about 104.5◦, instead of the predicted angle of 109.5◦

between sp3-hybridized orbitals. Some authors relate it to an unequal proportion

of the s-character in the formed hybrid orbitals. Formally, non-standard hybrids

are also eligible hydrogenic orbitals, which can be preferred if there is no complete

symmetry to rationalize an equivalent proportion. However, the formed bonds are

not simple overlaps of standard atomic orbitals with spin coupling, as was initially

stated by valence-bond theory. According to the more modern molecular orbital

theory, each bond is a new orbital equally occupied by two electrons with paired

spins. Therefore, exact quantification of the s- and p-proportion in a configuration

that gave raise to the new orbitals is of no direct importance, and we shall adopt

a simple terminology, distinguishing only between the discrete hybridization states

described above.

Since the symmetry axes of p-orbitals involved in π-bonding must lay in one plane,

twisting about such bonds is prohibited. Another important issue is that π-bonds

tend to give raise to resonance effects, characterized by delocalization of electrons.

This has an impact on bond lengths and may result in hindrance of twisting about

some formally single bonds. For instance, the nitrogen in amide groups adopts

an sp2-like arrangement, because its lone pair is attracted by the carbon to an

orbital resembling a π-bond, while the actual π-bond between the carbon and the

oxygen is, in turn, shifted to the latter more electronegative∗ element. This has a

direct consequence for a protein structure, see Subsection 1.6.1. Similar electron

delocalization happens in carboxyl ions and in the side chain of arginine. Aromatic

rings, present in amino acid side chains, are well-known examples of resonance

structures. Besides, a lone pair of oxygen in the side chain of a tyrosine molecule is

partially involved into the π-system of the aromatic ring. Therefore, the hydroxyl

group of the tyrosine side chain is likely to be found in the same plane with the ring

atoms.

1.5.3 Electrostatic interactions

When a covalent bond is formed by two atoms of different types, the electron density

related to shared electrons is not distributed evenly between the two nuclei. De-

pending on the properties of the atomic electron shells and on the nuclear charges,

it is energetically favorable for the shared electron pair to spend more time near one

or another nucleus. The neighborhood or, in particular, bonds with other atoms

can result in a shift of the electron density even in covalent bonds between nuclei

of the same type.

Redistribution of the electron density in a molecule results in accumulation of neg-

ative partial charges at certain atoms, while the other atoms obtain corresponding

positive partial charges (see Figure 1.15). All partial charges add up to zero in a

∗For a discussion of the electronegativity see the next section.
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Fig. 1.15: Putative∗ distribution of partial charges in a molecule of arginine. Red and

blue tincture denote respectively positive and negative charge. Full intensity of red or blue

would imply a charge with an absolute value of 1 |e−|.

neutral molecule. However, an uneven spatial distribution of charges has an effect

that many molecules may posses an electric dipole moment , which can be detected

experimentally.

If the charge is distributed in the volume Ω ⊂ R3, the electric dipole moment is

defined as

�μ(�r0) :=

∫
Ω

q(�r)(�r −�r0)d�r (1.38)

where q(�r) is the charge density in �r ∈ Ω, and �r0 is the observation point. For a set

of N point charges, their density can be expressed using Dirac delta functions, and

equation (1.38) transforms into

�μ(�r0) =
N∑

i=1

qi(�ri −�r0), (1.39)

where qi is the charge located in the point �ri, i = 1, N .

The energy G
[e]
ij of the interaction between two point charges qi and qj (i �= j) is

described by Coulomb’s law with a correction for the dielectric screening:

G
[e]
ij =

qiqj

4πε0εrr
, (1.40)

where εr is the relative permittivity of the medium and r is the distance between

charges. The vacuum permittivity ε0 was already employed in Subsection 1.5.1.

Strictly speaking, G
[e]
ij is a free energy† [1], since it involves entropy changes in the

medium and depends on temperature.

The relative permittivity εr accounts for polarization of the medium. Being equal

to 1 in vacuum, it raises to values between 2 and 4 in a protein core, and achieves

80 in water [1]. Presence of small ions abundant in cytosol further increases the

screening effect.

∗Charges are computed by SiViProF using the procedure described in Subsection 2.2.3.
†Unless the interaction occurs in vacuum.
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Equation (1.40) implies a homogeneous medium. However, charged atoms are usu-

ally located at the protein surface∗, apart from those in peptide groups, which are

also inevitably present in the protein core. The effective εr for the interaction of

protein charges is variable and depends not only on their immediate surrounding.

In the most typical cases, an appropriate εr for the evaluation of the interaction

between two surface charges is probably 40, although it can achieve about 200, if

the charges are located at the opposite sites of a protein globule [1]. The screening

effect is substantial even at distances when no water molecules can be placed be-

tween interacting charges. However, at such distances quantum mechanical effects

dominate.

The ability of an atom to attract an electron pair in a covalent bond is often evalu-

ated in terms of electronegativity . This concept was first introduced by L.Pauling,

who proposed an electronegativity scale based on bond dissociation energies (see,

for example, [14], p. 379). An alternative definition of electronegativity, which be-

came widely known, was suggested by R.Mulliken [22]. It is expressed through the

ionization energy I and the electron affinity E of an atom:

χ :=
1

2
(I + E).

This definition was further elaborated by J.Hinze [23–25], who suggested that elec-

tronegativity should be a characteristic of a specific orbital in a certain valence

state. According to this definition, electronegativity χ[n] of the n-th orbital is given

by

χ[n] :=
1

2
(I [n] + E[n]), (1.41)

where I [n] is the corresponding ionization potential and E[n] is the electron affinity

of this orbital.

Based on the latter definition, J.Gasteiger and M. Marsili [26, 27] developed a pro-

cedure for rapid computation of partial charges, which is utilized in this work and

discussed in details in Subsection 2.2.3 of the next chapter.

1.5.4 Van der Waals forces

When two non-bonded atoms come too close, electron shells start to repel each other

in accordance to the Pauli exclusion principle. However, at larger distances even

neutral atoms exert mutual attraction. Since the electrons in an atom constantly

move, they produce an instantaneous dipole moment, which induces an antiparallel

dipole moment in another atom. The correlated change of dipole moments results

in attractive force. The energy of this interaction decays proportionally to the

sixth degree of the separation between atom centers. Both repulsive and attractive

interactions of this kind are termed collectively as van der Waals interactions.

∗Strictly speaking, all atoms in the protein have certain partial charges. However, most of them

are insignificant compared to those in polar or ionized amino acid side chains.
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(a) (b)

Fig. 1.16: Models of a water molecule: (a) ball-and-stick model, where van der Waals

spheres of atoms are outlined by dots, (b) a space-filling model, where atoms are shown as

van der Waals spheres.

Although the electron clouds do not have to be spherical, it is convenient to model

atoms as hard spheres, assuming that potential energy rises abruptly when the

separation between sphere centers becomes smaller than the sum of their radii,

often referred as van der Waals radii. These radii are conventionally assumed to be

a characteristic related to the type of the atom, but not to the atomic state. Spheres

with van der Waals radii are sometimes briefly called the van der Waals spheres

of atoms (see Figure 1.16). The filled union of the van der Waals spheres that are

positioned in the atom centers constitutes the molecular volume. The surface of

this union is called the van der Waals envelope, or surface, of the molecule.

The energy of the van der Waals interaction, which depends on the separation r

between atom centers, is approximately described by the Lennard-Jones potential

(Fig. 1.17):
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Fig. 1.17: Lennard-Jones potential of van der Waals interaction between an oxygen and a

hydrogen atom.
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U(r) = E0

((r0

r

)12 − 2
(r0

r

)6)
. (1.42)

Here E0 is the absolute value of the minimal energy and r0 is the distance at which

the minimum is achieved.

The first term in the parenthesis is responsible for a drastic increase in energy when

the separation between atom centers becomes smaller then r0. The second term

dominates at distances larger than r0/
6
√

2. It stands for the attractive part of the

interaction, and its r−6-order decay can be derived from quantum mechanics [5].

The form of the repulsive term is chosen mainly for convenience of computation.

It describes the behavior only qualitatively by preventing excessive convergence of

atoms.

Since the absolute value of the interaction energy decays very fast with increasing

distance, it is usual to use a certain cutoff for evaluation of the van der Waals energy

in computations involving a large number of atoms. That is, if the distance between

two atoms exceeds the cutoff value, their interaction energy is not computed.

1.5.5 Hydrogen bonding

Along with disulfide bridges and van der Waals interactions, which were discussed

in previous sections, an important factor stabilizing protein structure is hydrogen

bonding (see Figure 1.18). Unlike disulfide bridges, which mostly occur in secretory

proteins, hydrogen bonds are numerous in almost any native protein.

S − S

H · · ·O

Fig. 1.18: The solution structure of the scorpion peptide P01, deduced by nuclear magnetic

resonance. Atomic coordinates are obtained from RCSB Protein Data Bank, record 1ACW

by E. Blanc et al. [28]. Disulfide (S − S) and hydrogen (i. e. H · · ·O) bonds, holding chain

fragments together, are reconstructed by SiViProF.
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Having the electrostatic nature, hydrogen bonding is significantly weaker then cova-

lent, but stronger then an attractive van der Waals interaction. Water is liquid due

to polarity of its molecules and the resulting hydrogen bonding, which determine

some peculiar effects, discussed further in Subsections 1.7.1-1.7.2. Hydrogen sulfide

(H2S) has a similar composition, only the oxygen atom is replaced by a heavier

sulfur atom. Nevertheless, H2S is gaseous, because sulfur is less electronegative

and less capable of forming hydrogen bonds. Typical energy of a hydrogen bond in

water can be estimated to about 5 kcal [1].

The electron shell of a hydrogen atom consists of only one electron. When a co-

valent bond with a strongly electronegative atom, such as oxygen or nitrogen, is

formed, the electron density is shifted to that atom, leaving the hydrogen nucleus

largely uncovered. Such a pair is a potential donor of a hydrogen bond. If another

electronegative atom with a lone or π-bonding pair of electrons, being a potential

acceptor of the hydrogen bond, approaches from the other side, it interacts with the

hydrogen nucleus and pushes the electron density from the hydrogen even further

away. As a result, the acceptor of the hydrogen bond can come as close to the elec-

tronegative atom of the donor group, as if there were no hydrogen between them

(see Figure 1.19 (a)).

Hydrogen bonds are rather sensitive to the orientation of the covalent bond from

the donor group. The latter has to be directed at the acceptor, and deviations

usually do not exceed twenty to thirty degrees [1]. A donor group can donate

only one hydrogen bond, while the maximal number of accepted hydrogen bonds

is determined by the number of the unshared or π-bonding electron pairs in the

acceptor. In most favorable configurations, the direction of the covalent bond in

the donor group coincides with the supposed axis either of a lone pair, or of the

π-bond, if the acceptor has no non-bonding electron pairs [29]. Thus, in a water

molecule, the sp3-hybridized oxygen has two covalent bonds with hydrogens, which

are capable of donating altogether two hydrogen bonds. Besides, it has two unshared

�

�

(a)

	............
..........
..........
.................. < 30◦

(b)

Fig. 1.19: Geometric features of hydrogen bonds. Donor group is on the left-hand side,

acceptor – on the right. (a) Electron density is shifted from the hydrogen atom to the

electronegative atom of the donor group, therefore the electronegative acceptor can approach

the hydrogen nucleus. (b) Hydrogen bonds are sensitive to the direction of the covalent bond

from the donor group.



36 Chapter 1. Biological, Chemical, and Physical Background

electron pairs and therefore is able to accept two other hydrogen bonds at the angle

about 109◦ to each other.

1.6 Three-dimensional structure of proteins

Bond lengths and angles between any two bonds of the same atom, termed bond

angles, are determined by properties of electron shells and almost do not change

during the process of protein folding. In fact, bonds vibrate with very high frequency

[14], but appear rigid at the folding time scale. Quantum mechanical computations

show that bonds vibrating with the lowest possible energy are characterized by the

largest probability to be found with zero deviation from their equilibrium length

[14]. At the same time, bond vibrations can not be excited to higher levels at

physiological conditions. Bond angles also oscillate and, compared to bond lengths,

appear less rigid, since their vibrational frequency can change at normal temperature

[1]. Nevertheless, analysis of native protein structures indicates that bond angles

make only minor contributions to the protein flexibility [1]. Standard deviations less

then 0.2 Å for bond lengths and approximately 2◦ for bond angles were reported

for biological macromolecular structures (see the review [5] and references therein).

Thus, typical bond lengths appear fixed roughly between 1 and 2 Å, while bond

angles usually remain about either 109◦ or 120◦, depending on the atom hybridiza-

tion state. However, nascent protein chain remains flexible, because twisting about

single bonds with displacement of atom groups relative to each other is allowed. Ne-

glecting the fluctuations in bond angles and lengths, one can prescribe the polypep-

tide conformation by giving the degree of twisting around each bond connecting

non-hydrogen atoms. For this purpose dihedral, or torsion, angles are used.

1.6.1 Dihedral angles

Let Ai, Aj , Ak, Al be the centers of four consequently connected atoms, and

pijk, pjkl be the planes through the points Ai, Aj , Ak and Aj , Ak, Al respectively.

ζAi

Aj

Ak

Al
�rij

�rjk
�rk l

Fig. 1.20: Dihedral angle ζ = ∠(Ai−Aj−Ak−Al).
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In application to molecules, the dihedral angle ∠(Ai−Aj−Ak−Al) ∈ (−π, π] is the

angle between the planes pijk and pjkl that is measured as shown in Figure 1.20.

Let �rij , �rjk, �rkl be vectors pointing from Ai to Aj , from Aj to Ak, and from Ak to

Al respectively, such that �rij ∦ �rjk and �rjk ∦ �rkl. Let �nijk, �njkl be normals of planes

pijk and pjkl, directed in a way that the vectors �rij , �rjk, �nijk and �rjk, �rkl, �njkl

build right-handed triples. Then the dihedral angle ∠(Ai−Aj −Ak −Al) can be

computed as an angle between the normals �nijk and �njkl by means of equations∗

(1.44)-(1.46):

�nijk = �rij ×�rjk, (1.44)

�njkl = �rjk ×�rkl, (1.45)

∠(Ai−Aj−Ak−Al) = sign(�njkl ·�rij) arccos
�nijk · �njkl

||�nijk|| ||�njkl|| . (1.46)

The dihedral angles of a polypeptide main chain are conventionally referred as

φi := ∠(C′
i−1−Ni−(Cα)i−C′

i), ψi := ∠(Ni−(Cα)i−C′
i−Ni+1),

and ωi := ∠((Cα)i−C′
i−Ni+1−(Cα)i+1),

where the index i denotes the residue number and sometimes can be omitted. The

dihedral angles corresponding to the bonds of the side chains are labeled conse-

quently as χ1
i , χ2

i etc., starting from the bond to Cα (Fig. 1.21).

φ

ψ

ω

χ1

Fig. 1.21: Alanine tripeptide with peptide bonds colored in light green. Arrows at φ and

ψ show the direction of rotation of the carboxyl end, which is on the right, with increment

of dihedral angles. Values of side chain dihedral angles increase when the corresponding

bonds are rotated clockwise, viewed from the main chain. ω is fixed at the value π in the

most cases.

∗Here and further in the work the sign function is defined as follows:

sign(x) :=

(
1, if x ≥ 0

−1, if x < 0.
(1.43)

Note that its value at zero is important for the correct determination of dihedral angles equal to π.
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Fig. 1.22: Schematic representation of cis and trans conformations of peptide groups. The

bonds of Cα and Cγ to the side chains and to hydrogen atoms are not shown. Cis (a) and

trans (b) conformation of a peptide group when the second∗ involved residue is not proline.

(c) and (d) show the same for a peptide group formed by any residue followed by proline.

Peptide bond has a partially double character owing to the resonance between two

forms:

Cα C
′

O

N

X

Cα � Cα C
′

O
−

N
+

X

Cα

Here X stays for Cγ in proline and for H in any other residue. Due to delocalization

of π-electrons, four atoms of the peptide group (−C(= O)NH−) and two α-carbons

always stay in one plane, either in cis ( ω = 0) or trans ( ω = π) conformation

(Fig. 1.22, 1.23).

The most of peptide groups in native proteins occur in the trans conformation. If

the second residue involved in the peptide bond is not proline, the probability of the

cis arrangement is only about 10−3. Such peptide groups are found, for example, in

ser 197 – tyr 198, pro 205 – tyr 206 and arg 272 – asn 273 of carboxypeptidase A [17].

By contrast, peptide groups involving proline in the second position appear in cis

form in 0.05 − 0.3 of cases [17, 30]. This effect is sometimes explained in literature

by the fact that the cis form in Figure 1.22(a) is energetically disadvantageous

because of prohibitive proximity of the α-carbons. However, if the second residue

is proline, carbons come close in both conformations (see Figure 1.22(c, d)). This

justification can be disputed, because the van der Waals energy difference can be

more than compensated† by the electrostatic interaction between an oxygen and a

hydrogen atom, which come close in the cis form depicted in Figure 1.22 (a).

An alternative explanation could be that the trans arrangement is forced in the

reaction of peptide bond formation. Cis-trans isomerization is relatively slow com-

pared to the folding time of a protein. Once the protein is folded, the isomerization

is hindered, since in the most cases it would require disruption of a stable structure.

∗The residues are considered in the order as they are appended in protein synthesis, i. e. starting

from amino end.
†According to the computations performed on SiViProF for the structures depicted in Fig-

ure 1.22 (a, b) with the permittivity of the protein hydrophobic core and Gasteiger [26, 27] partial

charges.
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(a) (b)

(c) (d)

Fig. 1.23: Cis (a, c) and trans (b, d) conformations of peptide groups in serine-glycine (a, b)

and alanine-proline (c, d) dipeptides.

The partial double bond character of x – pro peptide bonds, where x denotes any

residue, is somewhat less expressed, since Cγ is more electronegative than a hydro-

gen atom. Therefore, the transition of the trans to the cis form in these cases may

happen more often. Apart from that, there are enzymes that catalyze isomerization

of x – pro peptide groups and facilitate folding [17].

The dihedral angles φ and ψ are relatively free to change. Therefore, the confor-

mation of the protein backbone is mainly given by the values of these angles in

each amino acid residue. However, there are some restrictions on twisting about

the related bonds due to mutual repulsion of approaching atoms.

In a proline residue, the dihedral angle φ is fixed to certain values, and only ψ is

variable (see Figure 1.24). In fact, we shall make a note that proline is also a special

case in some other sense. Its ring is not aromatic and therefore not constrained to
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(a)

ψ

(b)

ψ

Fig. 1.24: Proline residues with flanking peptide groups. The only variable dihedral angle

ψ is marked by a red arrow: (a) up puckering, (b) down puckering.

lay in one plane. Instead, there are two different puckerings possible. The up

puckering (Figure 1.24(a)) is characterized by negative values of χ1 and χ3 (i.e.

dihedral angles ∠(N−Cα−Cβ−Cγ)) and ∠(Cβ−Cγ−Cδ−N) and positive values

of χ2 and χ4 (i.e. dihedral angles ∠(Cα−Cβ−Cγ−Cδ) and ∠(Cγ−Cδ−N−Cα)),

while for the down puckering (Figure 1.24(b)) the opposite holds. The both states

are equally populated in proteins [30].

The puckering enforces corresponding values for φ angles in proline, or vice versa.

According to a study of L.Vitagliano et al. [30], the average values of φ in pro-

line residues encountered in native protein structures amount to −58.7◦ for the up

puckering and to −69.8◦ for the down puckering.

For a peptide fragment containing only a proline residue with flanking naturally

rigid peptide groups, as in Figure 1.24 (a,b), the dihedral angle ψ is the only degree

of freedom, provided that the bond angles and lengths are fixed at their equilibrium

values, and their high frequency fluctuations are neglected. If we let ψ to change

from −π to π and record the resulting van der Waals energy for this fragment, we

obtain∗ a curve similar to those shown in Figure 1.25 (a,b). Peak values become

lower, if we allow some rearrangements with minor changes of bond angles and

lengths, or even flipping between the two puckerings.

The first peak arises when the hydrogen of a peptide group approaches a hydrogen

at the β-carbon. This peak is present in the energy curves for the both puckerings,

but in the up arrangement these atoms come closer. A neighboring small peak in

the second energy curve corresponds to the interaction of the same amide hydrogen

with a hydrogen at the γ-carbon, which is more remote in the up puckering. The

last peak appears from the interaction of the amide hydrogen with the carboxyl

carbon of the next peptide group. The strength of this interaction depends on the

φ value in the central residue.

∗Computations were performed by SiViProF with parameters listed in Appendix D.
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Fig. 1.25: van der Waals energy of the peptide fragments depicted in Figure 1.24: (a) with

the up puckering, (b) with the down puckering.
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φ
ψ

(a)

φ
ψ

(b)

Fig. 1.26: Typical peptide fragments for exploration of the energy surface. Dihedral angles

φ and ψ marked by red arrows can change. Other geometry features are considered to be

essentially fixed at physiological conditions. (a) A peptide fragment typical for the most

residues except glycine and proline. The side chain is reduced to the β-carbon. (b) The

central fragment of a glycine-tripeptide.

In order to understand, to which extent the observed energy barriers restrict the

twisting about the CαC′-bond (i.e. the variation of ψ) in a proline residue, we shall

note that according to the course of lectures by A. V. Finkelstein and O.B. Ptitsyn

[1], the typical range of thermal energy fluctuations is kBT , or R̄T for a mole of

substance, and any effect resulting in energy difference below this value can be

disregarded. The R̄T value amounts to about 0.60 kcal/mol for T = 300 K.

The equipartition theorem of classical mechanics (see, for example, [14], p.31) states

that the average value of each quadratic contribution to the energy (such as transla-

tional and rotational), associated with one degree of freedom, at a given temperature

remains the same and equal to 1
2kBT (or 1

2 R̄T for a mole of substance).

On the other hand, according to one of the formulations of the Arrhenius law, the

mean frequency of transition over the energy barrier ΔE from one local minimum

to another is given by:

ν =
kBT

h
e−ΔE/kBT

where h is the Planck’s constant (see [5] and references therein for more information

about this relation and its limitations). This implies that the energy barrier kBT

(or R̄T for molar energies) can be overcome in average within 4.35×10−13 s for

T = 300K, while the barrier of 10kBT – within 7.08×10−8 s.

These predictions appear to disagree with the statement of A. V.Finkelstein and

O.B. Ptitsyn, saying that the typical difference of free energy in a native and a

denaturated form of a protein is about 10 kcal/mol, and any effect resulting in

larger energy difference can be considered as destructive (see [1], p. 58).
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(a)

(b)

Fig. 1.27: van der Waals energy surface of the peptide fragment shown in Figure 1.26 (a):

(a) clipped at 5.96 kcal/mol (10 R̄T ) above the global minimum; (b) clipped at 11.92

kcal/mol (20 R̄T ) above the global minimum. φ value changes from −180◦ at the left

to 180◦ at the right, ψ value changes from −180◦ at the front to 180◦ at the back side. The

computed energy values in the depicted parts of the surface fall between −0.41 and 5.55

kcal/mol for (a), and between −0.41 and 11.51 kcal/mol for (b). Scratch-like irregularities

on the surface appear due to the cutoff equal to 4 Å and rounding errors.
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φ,◦

ψ,◦

Energy, kcal/mol

(a)

φ,◦

ψ,◦

Energy, kcal/mol

(b)

Fig. 1.28: van der Waals energy surfaces of peptide fragments, shown in Figure 1.26 (a) and

(b) respectively. Pictures are generated by SiViProF with a specified cutoff for maximal

energy value. Black color indicates high energy values. An approximate value of the dihedral

angle φ in proline residues is marked in (a) by a red line.
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Fig. 1.29: Some conformations of a peptide fragment and the corresponding points on the

van der Waals energy surface. Major distance violations are marked by short thick arrows.

In any case, it is known that transitions in proteins are cooperative, and the confor-

mations of other residues in the chain can play crucial role in this process. In other

words, implications that follow solely from consideration of the energy landscape

of a separate residue are not sufficient to exclude that certain transition is likely

to happen systematically within the folding time. Nevertheless, we shall see later

that exploration of energy landscapes of typical protein fragments may be helpful

for understanding why certain conformations of residues are more probable, while

some others are hardly observed in native structures.

As mentioned before, the conformations of other residues depend on at least two

dihedral angles, φ and ψ (see Figure 1.26). Besides, most of the non-proline residues

have flexible side chains with additional degrees of freedom. The exception is

glycine, the side chain of which consists of only a hydrogen atom.
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φ,◦

ψ,◦

Energy, kcal/mol

Fig. 1.30: Ramachandran map of the solution structure of the potassium channel inhibitor

agitoxin 2 [31] with the van der Waals energy surface of the triglycine central fragment

on the background. The conformation of each residue is marked by a red dot. Terminal

residues are not shown.

If we let φ and ψ in the typical protein fragment, which is depicted in Figure 1.26 (a),

to change from −π to π and record the corresponding van der Waals energy, we

obtain the surface shown in Figure 1.27. The same surface, also clipped at a certain

energy value above the minimum, is shown as a color-coded projection in Fig-

ure 1.28 (a). A similar projection of the van der Waals energy surface obtained for

a glycine residue with flanking peptide groups (Figure 1.26 (b)) is shown in Fig-

ure 1.28 (b). We see that certain residue conformations correspond to high energies,

resulting from excessive proximity of some atoms. The region corresponding to pos-

itive values of φ is less accessible for non-glycine residues, because it corresponds to

a clash of the β-carbon with the oxygen atom of the preceeding residue. Figure 1.29

gives some more detailed explanation for the appearance of peaks in the surface

depicted in Figures 1.27 and 1.28 (a).

Inclusion of electrostatic energy does not change the picture significantly. In partic-

ular, it does not enable major violations of minimal separations, dictated by the van

der Waals interaction, but introduces further restrictions for energetically favorable

conformations. A more detailed discussion on this topic is given in Chapter 4.

If we consider a known protein structure and mark the conformation of each residue

on the plot, we shall see that most points fall into favorable regions (see Figure 1.30).

Such diagrams, mapping the protein structure to a set of points with coordinates
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(a) (b)

(c)

(d) (e)

Fig. 1.31: The α-helical arrangement of deca-alanine. Thin light blue tubes denote hydro-

gen bonds. (a) The all-atom ball-and-stick representation. (b) The ball-and-stick model,

where only the main chain atoms are shown. (c) A view from the amino end at the space-

filling model. (d) The configuration of the main chain. (e) The ribbon model of the same

structure.

(φ,ψ) that reflect the conformation of each residue, are called Ramachandran plots∗.
Typically they do not have an energy surface on the background, but rather a very

rough sketch outlining preferable and forbidden regions (see [1]).

1.6.2 Elements of secondary structure

As already mentioned in Section 1.2, the primary structure of a protein is given by

the amino acid sequences of its constituting chains. When a polypeptide chain starts

folding, clusters of amino acid residues organize themselves into regular structures,

stabilized by their characteristic hydrogen bonding patterns (see Figures 1.31-1.34).

Such elements adopt a certain main chain conformation, which determines the local

secondary structure of the chain.

There are two major types of a regular secondary structure, which are abundant

in proteins: α-helices (Figure 1.31) and β-sheets (Figure 1.32). In an α-helix, the

oxygen of the i-th peptide group forms a hydrogen bond with the hydrogen of

the (i + 3)-th peptide group (see Figure 1.31 (a, b)). In other words, a hydrogen

bond is formed between i-th and (i + 4)-th residue, since the hydrogen atom of

the same peptide group belongs to the next residue. The thereby created loop

contains 13 atoms. Therefore, according to the customary nomenclature, an α-

helix is a 413-helix. Native α-helices are right-handed, i.e. they approach the viewer

by twisting counterclockwise (see Figure 1.31 (d)). The dihedral angles φ and ψ,

typical for this structure, are respectively about −60◦ and −45◦. Certain variations

∗Also Ramachandran maps or Ramachandran diagrams.
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(a) (b)

Fig. 1.32: The antiparallel β-sheet structure of the antimicrobial protein tachyplesin I,

deduced by means of nuclear magnetic resonance spectroscopy. Atomic coordinates are

obtained from RCSB Protein Data Bank, record 1WO1 by M. Mizuguchi et al. [32]. (a) A

ball-and-stick model, where the only main chain atoms are shown. (b) The ribbon model.

of these values are possible. The most preferable of them are such that the sum

of φ and ψ is approximately −105◦. Points that correspond to such conformations

on a Ramachandran map fall into the most favorable region, even if the energy

of hydrogen bonding is not counted (see Figure 1.33). We shall note that the

background energy surface in Figure 1.33 is computed for a fragment consisting

of one isolated residue with the flanking peptide groups. The results of similar

computations performed with SiViProF (see Chapter 4) for a periodic structure

and for fragments including more residues show that the character of the landscape

does not change, only the minima may become significantly deeper due to hydrogen

bonding.

A left-handed 413 helix is also possible, for example, with φ and ψ values around

60◦ and 45◦ respectively. However, this kind of helix is not encountered in native

proteins. As far as one can judge based on Figure 1.33, this conformation is not so

readily achievable.

Other types of helices exist, but most of them only hypothetically. They are dis-

cussed, for example, in [1] and [33]. In native folds one can find short fragments of

right-handed 310-helices, which fall near the region of an α-helix on a Ramachan-

dran plot (see Table 1.8 and Figure 1.33), but close to an edge of the favorable

region.

Table 1.8: Regular secondary structures typical for native folds∗.

Structure Hydrogen bonding φ ψ

right-handed α-helix (αR) (−C − O)i · · · (H − N−)i+4 −60◦ −45◦

right-handed 310-helix ((310)R) (−C − O)i · · · (H − N−)i+3 −50◦ −25◦

antiparallel β-sheet (β � ) between antiparallel strands −135◦ 150◦

parallel β-sheet (β ⇒ ) between parallel strands −120◦ 135◦

poly(pro)II-helix — −80◦ 155◦

∗The values of φ and ψ are taken from [1].
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φ,◦

ψ,◦

Energy, kcal/mol

α
310

β ⇒

β �

Fig. 1.33: Conformations typical for different secondary structure fragments with the van

der Waals energy surface of a tripeptide central fragment including β-carbon (Fig. 1.26(a)).

An approximate value of the dihedral angle φ in proline residues is marked by a red line.

The value of φ in proline residues is appropriate for their incorporation into an α-

helix. However, on the place of the amide hydrogen, which would form a hydrogen

bond with the nearby oxygen and stabilize the helix, it has a heavy carbon, giving

raise to a strong steric repulsion of the next helical turn. Therefore, proline residues

are destabilizing elements for an α-helical structure and can rather be found at its

N-terminal [1]. Nevertheless, proline residues are capable to form regular arrange-

ments without hydrogen bonding, such as poly(pro)I-helix (with cis conformation

of peptide groups) and poly(pro)II-helix, realized in collagen.

In a β-sheet, hydrogen bonds are formed between different strands of an extended

chain (Figure 1.32). β-sheets can be roughly subdivided into parallel and antipar-

allel, depending on whether the direction of neighboring strands is rather the same

or the opposite. Mixed β-sheets are also possible. Examples of antiparallel and

parallel β-sheets are visualized in Figure 1.34, (a) and (b) respectively.

Different side chains have unequal propensities to be found either in an α-helix or in

a β-sheet. For example, polyalanine is known to readily form an α-helical structure.

Tyrosine has an expressed tendency to be a part of a β-sheet and is unlikely to be

found in a helix. Proline and negatively charged aspartic and glutamic acid residues

are often located at the N-terminal of a helix, while positively charged histidine,

lysine and arginine residues prefer helical C-terminals (see [1, 36], as well as Table 2.1

in the next chapter). Nevertheless, interactions with other residues and with the

surrounding solvent are usually crucial for the final conformation.
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(a) (b)

Fig. 1.34: The crystal structures of an aspartate decarboxylase subunit with antiparallel

β-sheets (a) and of pectate lyase with parallel β-sheets (b), visualized in the form of ribbon

models. Atomic coordinates are obtained from RCSB Protein Data Bank, records 1UHE

by B. E. Lee et al. [34] and 3KRG by A. Seyedarabi et al. [35] respectively.

Irregular secondary structure is in general referred as a coil . However, one can

segregate short standard fragments, such as β-turns or β-bulges.

1.6.3 Tertiary and quaternary structure of proteins

The tertiary structure of a protein is the final spatial arrangement of its folded

chain. The tertiary structure is given by the atomic coordinates. One or another

type of the secondary structure may prevail in the final fold, but usually it is a

mixture of α-helices and β-sheets, intervened by coil fragments.

Fig. 1.35: The ball-and-stick model of the structure shown in Figure 1.34 (b), slightly

rotated about the view direction.
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Fig. 1.36: The quaternary structure of human deoxyhaemoglobin, visualized in the form of

a ribbon model. Atomic coordinates are obtained from RCSB Protein Data Bank, record

2HHB by G. Fermi et al. [37].

Analysis of the protein structure is greatly facilitated by ribbon models, in which

α-helices are represented by winding ribbons (see Figure 1.31 (e)), and β-strands

are depicted using ribbons in the form of arrows showing the direction of the chain

growth (see Figure 1.32 (b)). It can be well understood, if one compares Figure 1.34

(b) with Figure 1.35, depicting the same structure.

The quaternary structure is the organization of several chains or subunits into a

functional complex. For example, haemoglobin is a heterotetramer consisting of

two α and two β subunits∗, which are hold together by salt bridges, hydrogen

bonds and hydrophobic interactions (see Figure 1.36).

1.7 Influence of environment

Since the folding of a protein chain occurs not in vacuum, external factors play, be-

side intramolecular interactions, a crucial role in determination of the final structure.

One of such factors is the interaction with the surrounding solvent. As discussed

in Section 1.2, amino acid residues have different properties with respect to their

behavior in an aqueous environment. Some of them are capable to form hydrogen

bonds with water molecules or even ionize, others have relatively non-polar hydro-

carbon side chains with properties resembling those of petrol. Peptide fragments

consisting of such residues are poorly mixable with water and have a tendency to

collect together, giving raise to the hydrophobic effect .

∗Here α and β are customary subunit names, not related to their secondary structure.



52 Chapter 1. Biological, Chemical, and Physical Background

1.7.1 The hydrophobic effect

The hydrophobic effect is the major driving force in the process of protein folding.

One can show by means of thermodynamical experiments, that at the room tem-

perature its nature is mainly entropic [1]. We shall recall from Subsection 1.5.5

that hydrogen bonds have significant energy, and each water molecule is capable of

forming up two four hydrogen bonds. Non-polar molecules disrupt the very flex-

ible but almost saturated hydrogen-bonding network of water and thereby force

its rearrangement, such that the number of hydrogen bonds can be still preserved.

An ice-like layer with hydrogen bonds tangential to the surface of the non-polar

compound is formed, resulting in entropy loss. Free energy increases with decreas-

ing entropy (see equation (1.7)), therefore the adjustments minimizing the contact

surface between water and non-polar molecules are favored.

In principle, the solubility of side chains in water can be measured in partition

experiments that explore the equilibrium distribution of related chemical species∗

in two or three phases, one of which is a non-polar liquid and another one is water.

The free energy of transfer of one mole of a compound from a non-polar solvent to

water is given by

ΔG[n→w] = −RT ln

(
c[w]

c[n]

)
, (1.47)

where c[n] and c[w] are respectively the concentrations of the dissolved substance

in the two mentioned phases. However, it is not easy to perform such experiments

[1], because purely non-polar compounds hardly dissolve in water, while charged

molecules avoid the hydrophobic phase. Therefore, in place of one or another phase,

an amphiphilic substance is typically used. Presumably, this yields transfer energies

with too small absolute values, particularly for ionizable amino acids. Besides, the

results obtained with different solvents show substantial discrepancy.

As stated in a review by K. M.Biswas et al. [38], the first major amino acid hy-

drophobicity scale, which became one of the most cited, was proposed by Y.Nozaki

and C.Tanford [39]. They used ethanol and dioxane to imitate the protein inte-

rior. However, the set of the amino acids, included in this study, was not complete.

J.-L. Fauchère and V.Plǐska were among the first researchers who used amino acid

derivatives and introduced a hydrophobicity scale for the full amino acid set. Amino

acids were represented by their N-acetyl amides. In place of a hydrophobic solvent

octanol was used, which has a relatively long hydrocarbon chain and a hydroxyl

group capable of hydrogen bonding. The transfer energies given by this scale, as

reproduced in [40], are summarized in the second column of Table 1.9.

A number of other scales was proposed since then. E.Q. Lawson et al. [41] suggested

that N-cyclohexyl-2-pyrrolidone is a better candidate to mimic the protein core, as

∗Generally, instead of native amino acids, always containing ionizable amino and carboxyl groups,

chemicals representing only the residues, or their side chains, are used.
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Table 1.9: Free energies of amino acid side chain transfer from apolar solvent to water.

Residue
ΔG[C8H17OH→H2O],

kcal/mol∗
ΔG[chp→H2O],

kcal/mol†

alanine 0.42 −0.48 ± 0.06

arginine −1.37 −0.06 ± 0.08

asparagine −0.82 −0.87 ± 0.06

aspartic acid −1.05 −0.75 ± 0.09

cysteine 1.34‡ (2.10) −0.32 ± 0.07

glutamic acid −0.87 −0.71 ± 0.07

glutamine −0.30 −0.32 ± 0.06

glycine 0.00 0.00

histidine 0.18 −0.51 ± 0.06

isoleucine 2.46 0.81 ± 0.07

leucine 2.32 1.02 ± 0.09

lysine −1.35 −0.09 ± 0.06

methionine 1.68 0.81 ± 0.06

phenylalanine 2.44 1.03 ± 0.06

proline 0.98 2.03 ± 0.06

serine −0.05 0.05 ± 0.04

threonine 0.35 −0.35 ± 0.07

tryptophan 3.07 0.66 ± 0.06

tyrosine 1.31 1.24 ± 0.08

valine 1.66 0.56 ± 0.08

it contains a fragment resembling a peptide group. Besides, the physical properties

of this solvent, such as the dielectric constant, viscosity, and a few others, are similar

to those of a protein interior. The experiments involved amino acids in their free

and hydrochloride forms. The values obtained in this study are listed in the third

column of Table 1.9. The transfer energy of glycine is subtracted from all values,

in order to elucidate only the contributions of side chains.

According to common observations, not only related to the hydration energies of the

amino acid side chains, the hydrophobic effect increases roughly proportionally to

the surface area of non-polar compounds. As proposed by B. Lee and F. M.Richards

∗Determined by J.-L. Fauchère and V.Plǐska free energies of transfer of amino acid side chains

from octanol to water, as reproduced in [40].
†Free energies of side chain transfer from N-cyclohexyl-2-pyrrolidone to water, obtained by

E.Q. Lawson et al. [41].
‡According to [17], this value is related to a half of cystine. The value for cysteine is given in

brackets.
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Fig. 1.37: Determination of solvent accessible surface (red). Black circles outline the van

der Waals spheres of atoms. Blue circle denotes a probe sphere.

[42], and adopted by many other researchers, a solvent accessible surface is defined

as the locus of the center of a probe sphere of the radius of 1.4 Å, approximating

a water molecule, rolled over the van der Waals envelope of the solute (Fig. 1.37).

The area of this locus is referred as the solvent-accessible surface area (SASA). The

hydrophobic free energy is estimated to be approximately between 0.02 and 0.025

kcal per mole and Å2 of non-polar SASA [1, 40].

1.7.2 Interaction of charged groups with solvent

Since water molecules are electric dipoles, they line up along charged surfaces, so

that the entropy may decrease even more than in cases of nonpolar solutes. However,

this generally does not result in aggregation of dissolved objects, as it happens with

hydrophobic species. The reason for that is, apart from repulsion forces between

univalent charges, a lower free energy of charges∗ in water surrounding.

A rough explanation of this effect can be given using classical electrostatics (see also

[1] and [17]). The electrical free energy of a sphere with the radius R and charge q,

suspended in a medium with the relative permittivity εr, is:

Gs =
q2

8πε0εrR
. (1.48)

Therefore, to transfer this charge from a solvent-exposed surface to a protein core,

one has to spend the energy

ΔG[s→p]
s =

q2

8πε0R

(
1

εp
− 1

εs

)
, (1.49)

where εp and εs are the relative permittivities of the medium in the protein core

and at the surface respectively. If we take R = 1.52 Å, which is the typically used

∗We assume that the considered charges are sufficiently large to provide at least local water

polarization.



1.7. Influence of environment 55

van der Waals radius of oxygen (see Table D.1 in Appendix D), εp = 3 and εs = 40

(see Subsection 1.5.3 or [1]), we obtain ΔG
[s→p]
s ≈ 5.6×10−23 kcal for a unit charge,

or 33.7 kcal for one mole of such charges. This is a significant energy, compared to

contributions of other effects. However, the transfer energies rapidly diminish with

decreasing charge magnitude. For a partial charge about 0.2 |e−| with the same

radius we obtain ΔG
[s→p]
s ≈ 2.2×10−24 kcal, or 1.3 kcal/mol.

The following speculation suggests that even a transfer of a pair of two opposite

charges with absolute values q+ and q− into a protein core is not favorable, although

they interact more intensively in a hydrophobic environment. Their interaction

energy is given by

G
[s]
± = − q+q−

4πε0εsr

at a water-protein interface, and by

G
[p]
± = − q+q−

4πε0εpr

in a protein core, implying the difference

ΔG
[s→p]
± = − q+q−

4πε0r

(
1

εp
− 1

εs

)
.

Even in a case of immediate proximity of charges, i.e. when r = R+ + R−, where

R+ and R− are the van der Waals radii of the spherical charges q+ and q−, the

solvation energy difference ΔG
[s→p]
s exceeds the absolute value of ΔG

[s→p]
± by more

then 100%:

|ΔG
[s→p]
± |

ΔG
[s→p]
s

=

q+q−
4πε0r

(
1
εp

− 1
εs

)
1

8πε0

(
q2
+

R+
+

q2
−

R−

)(
1
εp

− 1
εs

) =

q+q−
R++R−

1
2

(
q2
+

R+
+

q2
−

R−

) ≤ 1

2
. (1.50)

The last inequality in 1.50 is proven in the described below Proposition 1.2, which

utilizes the following lemma:

Lemma 1.1

For any x, y ∈ R (x2 + y2 �= 0) holds:

xy

x2 + y2
≤ 1

2
. (1.51)

Proof. Multiplying both sides of (1.51) by 2(x2 +y2) and collecting all terms yields:

(x − y)2 ≥ 0.

The latter holds ∀x, y ∈ R. �

Proposition 1.2

For any R+, R− ∈ R+ \ {0} and for any q+, q− ∈ R the following inequality is valid:
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q+q−
R++R−(
q2
+

R+
+

q2
−

R−

) ≤ 1

4
. (1.52)

Proof. The left-hand side of 1.52 can be rewritten as:

q+q−√
R+R−

√
R+R−

R++R−(
q2
+

R+
+

q2
−

R−

) .

We note that both
q+q−√
R+R−(

q2
+

R+
+

q2
−

R−

) (1.53)

and √
R+R−

R+ + R−
(1.54)

have the form of the left-hand side in (1.51), where x = q+√
R+

and y = q−√
R−

, or

x =
√

R+ and y =
√

R− respectively. Applying Lemma 1.1 to expressions (1.53)

and (1.54) immediately yields (1.52). �

Since

|ΔG
[s→p]
± | = |G[p]

± |
(

1 − εp

εs

)
,

from 1.50 follows that

|G[p]
± | ≤ ΔG

[s→p]
s

2
(
1 − εp

εs

) .
In particular, |G[p]

± | < ΔG
[s→p]
s for εp < 2 εs. This treatment implies that also for a

case when charges virtually do not interact at the protein surface and come close

only in a protein core, their solvation is more favorable.

As a result, when a protein chain starts folding in an aqueous environment, it

typically collapses into a globule, hiding hydrophobic residues and leaving ionizable

and highly polar groups at the surface. Ionized groups are practically absent in a

protein core [1]. A glance at Table 1.4 makes clear that it is more advantageous

to uncharge an ionizable group before burying it into the protein interior, if such a

transfer is necessary at all. This destabilizing process is generally avoided, with the

exception of cases when it is necessary for protein functions.

1.7.3 Chaperones and assisted protein folding

Although the validity of the Anfinsen’s dogma (see Section 1.1) is often accepted

in a general sense without specification of folding conditions, the former has some

important limitations. First of all, there are evidences that protein folding in vivo∗

∗In a living organism, literally, in life (Latin).
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often occurs cotranslationally [43–45], which implies that sequential folding starting

from the amino end, as well as a specific initial conformation, may be necessary for

correct folding of some proteins. Refolding in vitro is often significantly more slow

compared to intracellular folding, if possible at all [46–49]. Besides, the conforma-

tions of denaturated proteins that are capable to refold do not have to be completely

random. A protein is considered to be denaturated if its structure is sufficiently dif-

ferent from its native form to impede its functions. Fragments of secondary or

tertiary structure that are essential for correct folding may be preserved.

Second, certain factors, such as higher temperature, changed pH, or presence of

some other molecules, may result in misfolding or denaturation of proteins. When

a cell is subjected to such kind of stress, it responds by expressing increased amounts

of heat shock proteins, which identify incorrectly folded proteins and mediate their

refolding.

Heat shock proteins are a subgroup of molecular chaperones, which are proteins

assisting in folding and assembly of some macromolecules or molecular complexes.

Most chaperones are not substrate-specific and do not convey any steric information,

although exceptions from this rule exist [50]. Some molecular chaperones bind to

hydrophobic fragments on a protein surface and protect them from aggregation

with other molecules. Another group, chaperonins, is characterized by a double-

ring structure with a central cage inside. Their function is to capture misfolded

proteins, stretch them and provide an environment for refolding [51].

Although many proteins are able to fold spontaneously, a significant number requires

presence of chaperones. Apart from that, some enzymes are involved in protein

folding, such as protein disulfide isomerase, assisting in formation of disulfide bonds,

and peptidyl-prolyl cis-trans isomerase, accelerating isomerization of x – pro peptide

groups.

1.7.4 Prions

Prions are proteins that, in addition to their native cellular structure PrPC, pos-

sess at least one more stable conformation, called scrapie∗ form, PrPSc, which is

characterized by capability to promote refolding of PrPC into the PrPSc form.

The conversion to PrPSc involves a drastic change from an α-helical structure to

an arrangement with a high β-sheet content [52, 53]. There are evidences that this

transformation can be facilitated by chaperones in the presence of PrPSc. The

scrapie molecules are less solvable and tend to aggregate. Their amount grows

exponentially, causing an accumulation of the unsolvable mass and cell destruction.

Diseases caused by prions include, among others, bovine spongiform encephalopathy

(BSE), known as mad cow disease, scrapie in sheep, and Creutzfeldt-Jakob disease

(CJD) in humans. All of them affect neural tissues and have a fatal outcome.

∗Named after scrapie, a transmissible degenerative neural disease occurring among sheep and

goats. One of its symptoms is compulsive scraping of infected animals against surrounding objects.
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The scrapie isoform is remarkably stable. It is only partially hydrolyzed by pro-

teases, whereas PrPC is completely degraded under the same conditions [53]. It has

been shown that CJD scrapie agents are exceptionally resistant to thermal treat-

ment, with no significant changes after one hour of exposure to the temperature

132◦ C (see [53] and references therein). These facts suggest that the popular as-

sumption relating the native structure to the global energy minimum, achievable

from any random initial configuration, can be disputed.

1.8 Protein synthesis

The information about the amino acid sequences of proteins that can be synthe-

sized by a cell is encrypted in the genetic code by means of nucleotide triplets, called

codons. Each codon corresponds to at most one amino acid, but the majority of

the amino acids can be coded by a few different triplets (see Table 1.10). Some

nucleotide triplets have no relation to any amino acid. They are stop codons, sig-

nalizing the end of the coding sequence and resulting in release of the synthesized

protein.

Table 1.10: Rules for decoding genetic messages [54]. Capital letters denote conventional

abbreviations for nucleotide names: A – adenine, C – cytosine, G – guanine, U – uracil∗.

Lower case abbreviations stand for three-letter codes of amino acids†, specified in TableA.2.

Second letter of codon

U C A G

F
ir

st
le

tt
er

of
co

d
on

U

UUU phe UCU ser UAU tyr UGU cys

UUC phe UCC ser UAC tyr UGC cys

UUA leu UCA ser UAA stop UGA stop

UUG leu UCG ser UAG stop UGG trp

C

CUU leu CCU pro CAU his CGU arg

CUC leu CCC pro CAC his CGC arg

CUA leu CCA pro CAA gln CGA arg

CUG leu CCG pro CAG gln CGG arg

A

AUU ile ACU thr AAU asn AGU ser

AUC ile ACC thr AAC asn AGC ser

AUA ile ACA thr AAA lys AGA arg

AUG met ACG thr AAG lys AGG arg

G

GUU val GCU ala GAU asp GGU gly

GUC val GCC ala GAC asp GGC gly

GUA val GCA ala GAA glu GGA gly

GUG val GCG ala GAG glu GGG gly

∗In DNA uracil is replaced by thymine (T).
†Except ”stop“ denoting stop codons.
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The genetic material of a cell is stored in the form of deoxyribonucleic acids (DNA).∗

In prokaryotic cells, such as bacteria and archaea, DNA is usually suspended in

cytosol in complex with regulatory proteins, forming irregular nucleoid†. In eukary-

otic cells DNA is closely packed in chromatin together with proteins and ribonucleic

acids (RNA), and surrounded by a double membrane, forming a nucleus.

When a protein is to be synthesized, the part of the DNA, containing the coding

nucleotide sequence, is copied, or transcribed , into a messenger RNA (mRNA). In

eukaryotes, the newly synthesized mRNA is subjected to certain processing and

transported to cytosol, where the genetic message is decoded.

1.8.1 Ribosomes

The translation of a genetic code into a polypeptide chain is performed on ribosomes,

cellular organelles of a size about 200 − 300 Å, which are composed of RNA and

proteins. Each ribosome consists of a large and a small subunit (see Figure 1.38),

which associate together to start protein synthesis and go apart when it finishes.

Prokaryotic and eukaryotic ribosomes are functionally very similar, although the

latter are somewhat larger. Their sedimentation coefficients‡, customary used for

characterization of ribosomes and their parts, amount to 70S and 80S respectively.

The sedimentation coefficients of prokaryotic large and small subunits are 50S and

30S, whereas the corresponding eukaryotic values are 60S and 40S.

The function of the small subunit is to ensure correct reading of the genetic code.

The large subunit catalyzes peptide bond formation, protein release, and hydrolysis

of guanosine triphosphate (GTP), which provides energy for acceleration of confor-

mational changes§. The translocation of a ribosome to the next codon is performed

by two subunits in cooperation [55].

Another feature of the large subunit is a tunnel that spans from the catalytic site,

peptidyl transferase center (PTC), near the interface between subunits and opens at

the opposite side (see Figure 1.38(e, f)). The opening of the tunnel corresponds to

the site where nascent β-galactosidase emerges from ribosomes [56, 57]. Moreover, it

has been shown that eukaryotic translocons, which help to transfer nascent proteins

into the lumen of the endoplasmic reticulum (ER), align with the tunnel exit [58, 59]

(see Subsection 1.8.4 for details). A number of antibiotics can block the tunnel

entrance, thereby prohibiting synthesis of some proteins [60]. Besides, there are

evidences that the narrowest part of the tunnel may act as a gate causing sequence-

specific nascent chain elongation arrest in respond to cellular needs [55, 61–63].

∗The genome of the most viruses is stored in RNA.
†The nucleoid of phylum Planctomycetes of the domain bacteria is enclosed into a single or double

membrane, resembling an eukaryotic nucleus.
‡The values of sedimentation coefficients, measured in Svedberg (S) units, do not add up when

particles bind together, since sedimentation rates are influenced by the surface area of particles.
§The translation is an exergonic process, which can proceed spontaneously without GTP con-

sumption, however, relatively slowly [43].
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.38: The space-filling model of an eukaryotic ribosome from Saccharomyces cerevisiae.

The atomic coordinates are deduced by C. M. Spahn et al. [64] through docking molecular

models of RNA and protein components into a 11.7 Å cryo-EM∗ map. The structure

is obtained from RCSB Protein Data Bank† records 1S1H and 1S1I, and visualized‡ using

SiViProF. The small 40S subunit is depicted in orange and the large 60S subunit is colored

in light green. (a–d) Views from different sides along the interface between two subunits.

(e) A view from the side of the large subunit with an opening of the protein exit tunnel in

the center. (f) A cross-section through the ribosomal catalytic center and the protein exit

tunnel§. Letters A, P and E denote respectively the locations of aminoacyl, peptidyl and

exit sites. Yellow dot line marks the exit tunnel for nascent proteins.

∗Cryo-EM is a form of electron microscopy working with frozen samples at low temperatures.
†See Section 1.10 for information about RCSB Protein Data Bank (PDB).
‡The PDB record does not contain positions of hydrogen atoms, therefore they are not shown.
§A view from the other side and upside down relative to the subfigure (a).
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Most researches seem to share the view that all nascent chains pass through this

tunnel. However, some experimental results appear not to support it. For example,

synthesis of polyphenylalanine is not inhibited by erythromycin and streptogramin

B, which block the ribosomal tunnel and thereby interrupt elongation of chains con-

taining basic amino acids [60, 65]. L. A. Ryabova et al. [66] have shown that short

amino terminal fragments of the phage coat protein, synthesized in absence of tyro-

sine, lysine, cysteine and methionine, can be accessible to antibodies near the groove

along the interface between two subunits. A fluorescence study by W. D. Picking

et al. [65] has indicated that polyphenylalanine and polylysine apparently do not

enter the tunnel but rather escape to cytosol near the PTC∗. It has been suggested

that peptides may exit the ribosome by different routes, depending on amino acid

markers at the amino end of the nascent chain [55].

1.8.2 Mechanism of translation

The amino acids are delivered to the ribosome by transfer RNA (tRNA), relatively

small RNA molecules folded similar to the one depicted in Figure 1.39. Each tRNA

has a three-nucleotide region, called anticodon, responsible for pairing with mRNA

codons. Another site of a tRNA molecule can be linked by an ester bond to a

carboxyl group of a specific amino acid. This reaction is catalyzed by special en-

zymes, aminoacyl-tRNA synthetases, which take care that the tRNA with a certain

anticodon is loaded, or charged, by the corresponding amino acid.

Ribosomes have three tRNA-binding sites, which are located on the interface be-

tween two subunits (see Figures 1.38(f) and 1.40): the aminoacyl site (A site),

the peptidyl site (P site), and the exit site (E site). The small subunit directs

the mRNA through a narrow groove to the decoding sites on the subunit contact

interface, where mRNA codons can be matched through the complementary base

pairing with tRNA anticodons.

The translation is initiated when the small subunit binds to mRNA in a way that

the P site is occupied by the start codon. The role of the initiating codon is played

by AUG, which is the only codon corresponding to methionine. In prokaryotes,

the mRNA is positioned on the small subunit with the aid of the Shine-Dalgarno

sequence, which is located upstream to the start codon. In this case, only a specific

initiating tRNA, charged by N-formylmethionine, can bind to the start codon. In eu-

karyotes, the small subunit, accompanied by some protein factors, binds to a special

tag at the 5’-end of mRNA and slides until the first AUG codon is found. The initiat-

ing tRNA from cytosol of eukaryotes is charged by methionine, although this tRNA

is different from the methionine-specific tRNA used for peptide chain elongation.

Therefore, all proteins synthesized in eukaryotic cytosol start with this amino acid,

unless it is clipped in course of posttranslational modifications. However, polypep-

tides synthesized by mitochondria and chloroplasts start with N-formylmethionine.

∗However, fluorophores at the amino end of a nascent peptide may affect its movement through

the ribosome [67].
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]
— amino acid attachment site

]
— anticodon

Fig. 1.39: The structure of the phenylalanine-specific tRNA from Saccharomyces cerevisiae,

determined by E. Westhof et al. [68] by means of X-ray crystallography. Atomic coordinates

are obtained from the RCSB Protein Data Bank record 4TRA. This record does not contain

positions of hydrogen atoms, therefore they are not shown. The molecule is visualized using

SiViProF.

At the initial stage, the A and E sites are blocked by initiation factors, which also

prevent preliminary association of ribosomal subunits. Besides, the conformation

of the mRNA at the E site in an initiation complex does not allow base paring.

Therefore, only the P site with the start codon is available for binding a tRNA.

After subunit association, the initiation factors are released and the A site accom-

modates a charged tRNA with the corresponding anticodon. The binding is assisted

by an elongation factor. The accuracy of the base-pairing is checked by the decoding

element on the A-site of the small subunit. A correct codon-anticodon match causes

a cascade of conformational rearrangements, which distribute from the small to the

large subunit. As a result, the carboxyl group of the amino acid that was bound to

the tRNA at the P site is transferred by the catalytic site of the large subunit to the

amino group of the amino acid that is linked to the tRNA at the adjacent A site,

with formation of a new peptide bond. This reaction is termed transpeptidation.

After that, the ribosome moves to the next codon, to accept a new tRNA with

a corresponding amino acid. The tRNA holding the carboxyl end of the growing

peptide chain is now situated at the P site. The deacylated tRNA is ejected from

the E site upon accommodation of a new tRNA on the A site (see Fig. 1.40) The

amino end of the nascent chain presumingly passes through the tunnel in the large

subunit (Fig. 1.38(e,f)) as the peptide grows.

The process of peptide elongation is repeated until the ribosome reaches a stop

codon, signaling the termination of synthesis. The stop codons are recognized by

release factors, which catalyze the hydrolysis of the ester bond between the tRNA

and the nascent peptide. This event is followed by release of the mRNA, the tRNAs

and dissociation of the ribosome into subunits.
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Fig. 1.40: A schematic representation of a translation process. Green, blue and dark red

arrows show the directions of transpeptidation, tRNA exchange and relative movements of

the mRNA or the ribosome respectively. To the moment, most of diagrams found in liter-

ature either depict only A and P sites, or show the E site without base pairing on mRNA.

However, recent results of crystallographical and microbiological investigations approve the

existence of the codon-anticodon interaction at the E site [69, 70] and its importance for

prevention of reading frame shifting∗ [71].

1.8.3 Cotranslational protein folding

The specificity and the accuracy of rearrangements aimed for correct positioning

of substrates in PTC assume that the amino acids are forced to acquire certain

standard conformations before and after transpeptidation.

As already mentioned in Subsection 1.6.1, the dihedral angle φ of proline residues is

fixed at values about −60◦. The corresponding favorable values for ψ approximately

lay in the ranges from −100◦ to 0◦ and from 100◦ to 180◦ (see Fig. 1.33). The former

range includes the region of an α-helical structure, while the latter is more typical

for turns or for the structure that is adopted in collagen. Presumably, one of this

configurations is adopted universely by all residues at PTC, providing the initial

conformation for subsequent folding.

V. I. Lim and A. S. Spirin [43, 72] have analyzed the stereochemistry of ribosomal

transpeptidation and came to the conclusion that the residue directly attached to

the tRNA at the P site must have φ and ψ dihedral angles equal to −60◦, and

∗Since there is no separation signs between codons, unintentional shifting the reading frame by

one or two nucleotides results in incorrect interpretation of all subsequent code.
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that the transpeptidation reaction yields the same dihedral angles for the appended

residue. Such dihedral angle values are close to those in an α-helical conformation∗,
which, in principle, can be adopted by any amino acid. Therefore, it has been

suggested [43, 72] that the nascent peptide is passed into the ribosomal tunnel in

the form of an α-helix. This conformation should be suitable for pushing through

the tunnel, since it is more rigid and less adhesive to hydrophilic tunnel walls (due

to its self-saturation with hydrogen bonds) than an extended one. Moreover, it

would be favored by space limitations in the tunnel and by fixation of the carboxyl

end in the same configuration. After emerging from the ribosomal tunnel, the helix

could be destabilized and subsequently rearranged into the unique three-dimensional

structure of the native form.

Based on exploration of later elicited ribosomal crystal structures, A. Bashan et al.

[73, 74] have proposed a model for peptide bond formation machinery. The authors

concluded, in contrast to the findings of V. I. Lim and A. S. Spirin, that a rotatory

motion of the amino acid attachment segment of the tRNA at the A site, resulting

in peptide bond formation, would ensure that peptides are directed to the ribosomal

tunnel in an extended β-like conformation [75].

C. DasGupta et al. [76–78] have shown that 50S ribosomal subunits of Escherichia

coli are able to refold a large number of various denaturated proteins. In experi-

ments with rhodanese by W. Kudlicki et al. [79] (partially reviewed in [49]), about

10 % of the denaturated enzyme could refold spontaneously under used conditions,

while in presence of 50S ribosomal subunits this value increased to nearly 70 %, and

reached 97 % when chaperones were additionally supplied. Renaturation achieved

almost 100 % when rhodanese was incubated with the elongation factor EF-G and

GTP in addition to ribosomes. Moreover, it has been observed that ribosome-

assisted folding of cytoplasmic malate dehydrogenase is distinctly different from

independent renaturation of this enzyme [80]. The folding function has been traced

to the domain V of the 23S rRNA, which constitutes the PTC. Two segments of

the domain V act consequently: one binds the protein and alters its conformation,

and the other one aids its release. The large rRNA of plants and animals exhibits

the same activity. This function could be inherited from the catalytic structural

features. However, it has been shown that certain nucleotides of the PTC interact

with specific amino acids† during refolding [78]. It was presumed that some pro-

teins may start folding at the PTC, modulated by its activity, and then leave the

ribosome via the interface between the two subunits.

What is the conformation enforced at the PTC exit, and whether it is universal or

sequence dependent, remains to be clarified. It is also possible that the dynamic

∗
SiViProF simulations show that if this conformation remains unchanged upon appending fur-

ther amino acids, the resulting periodic structure is an unstable right-handed helix, which readily

rearranges into an α-helix.
†Most interactions were detected for asparagine, but some were also observed for lysine, glu-

tamine, leucine, and glycine. No interactions were found for negatively charged amino acids.
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tunnel makes selective contributions to the folding. In any case, it is very likely

that proteins start folding into their native form not from a random arrangement,

but rather from a certain configuration facilitating fast and correct folding.

This hypothesis is supported by the fact that folding of nascent proteins in vivo is

noticeably faster than refolding in vitro from a denaturated quasi-random structure

[46–49]. In fact, the latter process is often too slow to be utilized in a cell. The ob-

served time of protein folding in vivo is of order 10−1–103 seconds [5]. Renaturation

of a simple monomeric enzyme ribonuclease under optimal conditions of dilution,

pH and temperature takes about 20 minutes, while multidomain proteins may re-

quire several hours [48]. The half-lives of eukaryotic proteins vary from about 30

seconds to many days [54], depending on protein functions. Intracellular enzymes

involved in metabolic pathways have short lifetimes, enabling finer regulation of

metabolism according to cell needs. Proteins that fail to fold sufficiently fast are

marked for rapid degradation.

Moreover, the rate of protein synthesis suggests that nascent chains can begin to

acquire their native configuration cotranslationally, starting from the amino end.

The prokaryotic translation rate in a substrate-rich medium at 37◦ C is about 15

to 20 amino acids per second. In a poorer medium or in a cell-free translation

system, the rate of only about 10 codons per second is achieved. The average time

of the elongation cycle is about 3 times longer at 25◦ C [43]. The translation rate in

eukaryotes can achieve 10 amino acids per second at 37◦ C, but usually it is lower

and can vary significantly due to presence of control mechanisms that can pause

translation. A typical duration of an eukaryotic elongation cycle is in the range

from 0.1 to 0.5 seconds [43].

Thus, the average time of the elongation cycle in both prokaryotes and eukaryotes

normally exceeds 0.05 seconds, implying that at least 5 to 25 seconds are required

to synthesize a typical globular monomeric protein consisting of 100–500 residues.

The synthesis of such a protein in eukaryotes can take more than 10 times longer.

The dimensions of the tunnel do not leave much freedom to form a tertiary structure.

However, formation of a helix or its unfolding into an extended form inside the tunnel

could be possible. The amino end emerging from the tunnel can immediately start

more complex conformational rearrangements, while the carboxyl end is fixed at

the PTC.

Already since the sixties it has been known that about 30 to 40 C-proximal amino

acid residues remain protected from proteinases in crude ribosome preparations

[43, 81–83]. As mentioned in the above given references, this number of residues

would span around 50 Å if the protected fragments were in the α-helical conforma-

tion, or more than 100 Å in a completely extended one. The length of the tunnel

is approximately 100 Å. This fact could imply that the protected chains were in

extended conformations, as concluded by many researchers. However, in the dis-

cussed experiments, described in [81, 82], the ribosomes with labeled peptides were
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centrifuged before or during the proteolysis, and this could result in stretching of

possibly initially helical chains inside the ribosomal tunnels.

In addition to that, a number of experiments have shown that much shorter frag-

ments can be accessible to digestion (see [43], p. 372, and references therein). These

results, in addition to those described in Subsection 1.8.1, could indicate that not

all polypeptides enter the ribosomal tunnel.

T. Tsalkova et al. [84] (also reviewed in [49]) examined the interaction of anti-

coumarin antibodies with coumarin that was incorporated in the amino terminus

of bovine rhodanese, bacterial chloramphenicol acetyltransferase (CAT), and MS2

coat protein. The results demonstrated that short peptides were unreactive. The

accessible for antibodies longer chains were of different size and contained different

number of residues, suggesting that peptides may acquire different conformations

inside the tunnel. For example, accessible CAT peptides achieved about 8.5 kDa,

or 72 amino acid residues, which should extend to 108 Å being in an α-helical

conformation. MS2 coat protein fragments were recognized by antibodies when

they achieved a size of about 4.5 kDa, containing 44 residues. Analysis of crystal

structures of CAT and MS2 coat protein revealed that the former primarily contains

helices, while the latter tends to form β-sheets [49]. Earlier, similar studies of

W.D. Picking et al. (reviewed in [49, 84]) have shown that polyalanine peptides,

which have high propensity to form α-helices, became accessible to antibodies and

their antigen binding fragments when the nascent chains achieved 60 or 50 residues

respectively.

C.A. Woolhead et al. [85] (also reviewed in [83]) used fluorescence resonance energy

transfer (FRET) to measure the distance between two fluorescent dyes incorporated

in a nascent chain with a separation of 24 residues. The obtained results suggest that

the conformations of a transmembrane sequence (TMS) and fragment belonging to

a soluble secretory protein are drastically different inside the tunnel. The latter

fragment apparently moves through the tunnel in an extended conformation, while

the TMS acquires a more compact structure with the coefficient of energy transfer

similar to the one of an α-helix. This structure is observed immediately in the

vicinity of the PTC and remains essentially constant until the TMS reaches a ER

membrane (see Subsection 1.8.4 for information about targeting of transmembrane

and secretory proteins). However, this helical structure unfolds upon entering the

cytosol in the absence of translocation agents. Moreover, it was observed that some

ribosomal proteins are likely to interact with the TMS, but not with the secretory

protein. The authors concluded that the folding of the TMS is induced by the

ribosome on a sequence-selective basis and that the resulting compact conformation

of the TMS is not stable by itself in an aqueous solution, but rather stabilized in

the membrane hydrophobic environment.

Yet, another possible explanation for the described effects could be that the ele-

ments of the secondary structure start forming according to energetic preferences of
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the given amino acid sequence immediately upon its entering from the PTC to the

tunnel, possibly favored by the local ionic environment of the latter, with one or

another initial conformation preset at PTC. The observed interactions with riboso-

mal proteins inside the tunnel may be a consequence of the formed structure, and

not necessary its determinant. Destabilization of helical structures with exposed

hydrophobic patches in cytoplasm could be due to interaction with chaperones (see

Subsection 1.7.3).

Numerous examples show that proteins can acquire their functional tertiary struc-

ture cotranslationally, while their carboxyl end is still fixed at the PTC (see, for

example, reviews in [43, 49]), and even associate with free protein subunits to form

an active quaternary structure (reviewed in [43]). Although protein synthesis in

prokaryotic cells usually proceeds at higher rates, there are evidences that cotrans-

lational folding occurs in both eukaryotes and prokaryotes (reviewed in [49]).

Taking all together, many facts speak in favor of the consideration that ribosomes

and the organization of protein synthesis contribute to a certain folding pathway,

and these details may be important for successful modeling and simulation of protein

folding.

1.8.4 Posttranslational modifications

Emerging polypeptide chains can be subjected to further chemical processing. It

includes cleavage of polypeptide fragments, attachment of certain chemical groups,

and formation of disulfide bonds between cysteine residues. In particular, many

transmembrane and secretory proteins require glycosylation.

Although proteins are synthesized in cytosol (with exception of some mitochondrial

proteins), most of the posttranslational modifications occur in the ER, possibly

with subsequent transformations in the Golgi apparatus. Proteins, targeted to the

ER, contain leading signal sequences, usually consisting of 25±11 amino acids [86].

When a signal sequence emerges out of the ribosomal tunnel, a signal recognition

particle suspended in cytosol arrests the elongation of the polypeptide chain until

the ribosome binds to a membrane translocation channel, also called translocon,

of the ER. Then the synthesis is resumed, and the polypeptide passes to the ER

lumen or stays anchored in the membrane (in case of a transmembrane protein). A

signal peptidase, located near the translocation pore, cleaves the signal sequences

of secretory and some transmembrane proteins.

Additionally, some proteins require cleavage of other parts to become biologically

active. For example, to produce mature insulin, a central fragment of proinsulin is

removed by specific proteases in the Golgi apparatus, while the terminal parts of

the initial polypeptide remain connected by two disulfide bridges.

In eukaryotic cells, disulfide bonds are mainly formed in the ER lumen, favored

by its oxidative environment. They are typical for secretory, lysosomal, and some
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membrane proteins. Formation and breakage of disulfide bonds is catalyzed by

protein disulfide isomerase, which thereby assists in protein folding. In the reducing

environment of cytosol disulfide bonds are generally unstable.

In the ER lumen, where proteins are present in high concentrations, a polypeptide

has to be protected by chaperones from the aggregation with other folding chains,

until it acquires a proper three-dimensional structure (see also Subsection 1.7.3).

Certain types of glycosylation are essential for correct folding and start cotransla-

tionally as the polypeptide is passed into the ER lumen [48]. When the protein

is modified and folded as necessary, it is transported to the Golgi apparatus for

further processing, sorting, and delivery to final destinations. Misfolded proteins

are identified in the ER, marked, and retranslocated to cytosol for degradation by

proteasomes.

1.9 Experimental protein structure determination

Experimentally determined native structures are a valuable source of information

that can be used for evaluation of computational structure prediction, as well as

for analysis of native structural features and respective model improvement. It

also serves as a foundation for knowledge-based structure prediction approaches.

However, utilizing experimental results, it is important to take into account the

quality of the data and to be aware of limitations of each particular method of

experimental structure determination.

1.9.1 X-ray crystallography
∗

The resolving power of a microscope is limited by the wavelength of the visible light,

which is in the range from 380 to 750 nm. Objects smaller than half the wavelength

can not be seen. X-rays have a wavelength from 0.7 to 1.5 Å, and can resolve a

molecular structure, being scattered by electrons and captured by a photographic

film or detector device. However, a reconstruction of the macromolecular configura-

tion from the diffraction pattern is a complex problem. The number of atoms in a

repeating unit of protein crystals achieves thousands or even hundreds of thousands,

and each of them makes contribution to the whole diffraction pattern, not to a sin-

gle spot on it. More precisely, the reflection image is related to the electron density

via Fourier transform, but the information about phase angles is lost and only the

reflection intensity is recorded. Besides, compared to crystals of small molecules,

protein crystals contain unusually large amount of solvent, which often results in

less order and gives a blurred image.

The process of an X-ray structural analysis includes the following steps. First, a

protein must be purified and crystallized in a way that its structure still maximally

resembles its native form. Obtaining a proper crystal of a sufficient size, which

∗See, for example, [87] (or [54]) for more information.
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should be typically at least 0.2 − 0.3 mm in each dimension [87], can be a difficult

task. Native structures of many proteins are not yet explored by this reason.

Then the crystal is placed in an X-ray beam, in order to obtain its diffraction

patterns. Data have to be collected as quickly as possible, since biomolecules de-

teriorate in the intense radiation. Analysis of measurements includes correction of

known systematic errors and determination of the accuracy by averaging reflections

that should be identical due to symmetry, with a subsequent evaluation of the data

consistency.

The phase angles, necessary for determination of the electron-density map, are not

known. An initial estimate for phase angles is made, for example, by comparison

with a known similar structure or by supplementing the crystal with electron-dense

metal atoms and observing consequent changes in scattering. The estimated phase

angles together with the available diffraction patterns are used for computation

of an approximate electron-density map. If the resolution and the initial guess for

phases are sufficiently good, one can recognize fragments of secondary structure and

roughly classify the amino acid side chains by size. A molecular model is built to fit

the obtained electron density. The corresponding diffraction pattern and possible

attenuation of scattering, caused by thermal motion, are evaluated and used for

model refinement. The process is repeated until the investigator is convinced that

there is no evidence of a significant inconsistency and no further improvement is

expected.

The vast majority of experimental data about native structures is obtained by X-

ray crystallography. Although the environment of the protein in a crystal is differ-

ent from physiological, a comparison with structures determined by other methods

shows that conformation in a crystal generally represents the native form of the

protein [54], apart from conformations of the side chains on the protein surface, in-

fluenced by packing in the crystal. Sometimes naturally unstable chains may appear

more ordered due to interaction with surrounding groups. The electron density of

hydrogen atoms is relatively week and often can not be restored. Therefore, records

of determined structures usually do not contain hydrogen positions. Sometimes the

positions that were used in model refinement are published.

1.9.2 Nuclear magnetic resonance (NMR) spectroscopy
∗

This technique for protein structure determination has become available in the

middle eighties, about thirty years later than the X-ray crystallography [87]. A

big advantage of the NMR spectroscopy is that it is not restricted to crystallizable

macromolecules. It permits investigation of proteins in a natural environment and

even observation of their dynamics [54].

Certain atoms have a nuclear spin that can be detected by NMR spectroscopy.

Among those are 1H, naturally abundant in proteins, as well as rare isotopes 13C

∗A more detailed description can be found in [87].
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and 15N, which can be embedded instead of common 12C and 14N with a purpose of

investigation. When a strong static magnetic field is applied, magnetic dipoles pro-

duced by nuclear spins align themselves either parallel or antiparallel to the external

field. The former orientation corresponds to a state of a low energy, and the latter

is a high energy state. Then a short pulse of radio waves in a resonance frequency

range is given in a perpendicular direction, which makes some nuclei to absorb en-

ergy and transit to a higher energy state. The separation of these energy states is

very small compared to those of electronic, translational and rotational states [87].

The signals are subtle, therefore the results of numerous such experiments are av-

eraged to increase signal-to-noise ratio. The thereby obtained absorption spectrum

contains information about the nuclei and their immediate surrounding.

A disposition of electronegative atoms or delocalized electrons in the neighborhood

results in a shift of the resonance frequency. Besides, nuclear spins of nearby atoms

or protons bound to covalently bonded atoms interact in certain detectable ways.

These effects provide information about interatomic distances and connectivity, al-

though an extraction of this data may require an a priori knowledge of the molecular

structure and give ambiguous results due to spectral overlaps. One of the main diffi-

culties of spectra interpretation is the identification of atoms giving each particular

signal.

The large amount of hydrogen atoms in proteins makes one-dimensional 1H NMR

spectra too complicated. Even the analysis of two-dimensional spectra, obtained

by later developed techniques, is a complex process, including a construction of a

molecular model and its subsequent refinement. Spectral analysis can be facilitated

by heteronuclear NMR experiments, when rare isotopes 13C and 15N are feeded

for protein synthesis. For some experiments proteins are dissolved in 2H2O, since

otherwise the response of solvent can strongly dominate.

A number of optimized three-dimensional structures, consistent with distance con-

strains from NMR spectroscopy, is generated utilizing the knowledge about amino

acid sequence, chirality, atomic van der Waals radii, bond lengths and angles.

Strictly speaking, the real native structure does not have to be among the ob-

tained models, since the conformational space is not sampled completely [87]. Usu-

ally the whole ensemble of the computed structures is published (see Figure 1.41).

Due to averaging of multiple spectra, rigid chains give stronger signals, resulting

in more constrains and respectively less ambiguity. Therefore, when the images of

the obtained models are superimposed, these parts of the molecule tend to coin-

cide, whereas some other fragments show more variance in conformations, giving

insight into chain flexibility and its thermal motion. However, discrepancies can

arise from experimental uncertainties of another kind, such as overlapping reso-

nance frequencies. Since some interactions of nuclear spins decay with the growing

distance, obtained molecular models may be biased in an unpredictable way towards

structures with less separation of such nuclei [87].
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Fig. 1.41: The main chain conformations for seven models of the chlorotoxin solution

structure determined by G. Lippens et al. [88] by means of NMR spectroscopy (RCSB

Protein Data Bank record 1CHL) and visualized by SiViProF.

1.10 Structure databases

One of the most important resources providing information about known protein

structures is the RCSB Protein Data Bank (PDB), which can be accessed via Inter-

net under the address http://www.rcsb.org or http://www.pdb.org. PDB is a part

of the Worldwide Protein Data Bank (wwPDB), a union of organizations for depo-

sition, processing, and distribution of structural data for biological macromolecules,

their fragments and complexes.

PDB contains more than fifty thousand records, and their number grows with an

increasing speed. PDB records contain experimentally determined atomic coordi-

nates, as well as information about the method of structure determination and its

accuracy. It also provides some tools for visualization of molecular structures and

data analysis. Besides, the structural information can be downloaded and processed

using the available PDB file format description.





Chapter 2

Approaches for Protein

Structure Prediction

2.1 From ab initio to knowledge-based approaches

There is an immense number of literature sources related to various methods for

molecular modeling and protein structure prediction. The volume of probably any

book written on this subject exceeds the number of pages that can be devoted to

the literature review in this thesis. Therefore, we shall only have a quick glance

at the approximate research directions, popular in this area, and then focus on the

issues particularly related to this work.

The methods for protein structure prediction can be roughly subdivided into groups

related to ab initio and knowledge-based approaches, which can be also combined

with each other. However, due to the complexity of the problem, up to date neither

one of them, nor their combination, has proven to give in general reliable predictions

based only on amino acid sequence. Ab initio methods are usually very demanding

computationally or contain prohibitive simplifications. Thus, the potential of such

approaches grows with the raising computational power of computers. The defi-

ciencies of knowledge-based predictions, on the other hand, are typically ascribed

to the shortage of known structures. Therefore, further substantial improvement is

expected with an accelerating increase in the number of experimentally determined

folds. The prediction techniques are evaluated each two years in a community-

wide competition, called CASP∗, where preliminary unknown target structures are

determined by X-ray crystallography or NMR spectroscopy, after submission of

predictions by currently more than 150 research groups [89].

2.1.1 Ab initio protein folding

Ab initio methods make their predictions based on physical laws. Quantum mechan-

ical computations are not feasible for large molecules or molecular ensembles. For

treatment of such systems, empirical force fields were introduced, which describe

∗
CASP stands for “Critical Assessment of techniques for protein Structure Prediction”.
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either the potential energy of the system or the potential of mean force acting at the

considered protein molecule (both further referred as the potential U) as a function

of positions of interacting atoms. Depending on the system features and application

area, these models can differ in complexity. However, many of them have common

terms, discussed later in this chapter.

Among ab initio approaches are molecular dynamics methods, which aim to describe

successive configurations of the system using equations of motion. Besides, there

are various ways of minimizing the potential, which look only for stable states.

Molecular dynamics methods are diverse, and their usage is not restricted to the

protein folding problem. They are based on statistical thermodynamics and oper-

ate by concepts like canonical ensembles. A canonical ensemble, also referred as

NV T , can be understood as a closed system of a specified composition (N parti-

cles), volume V , and temperature T , replicated a large number of times [14]. In

a microcanonical ensemble (NV E), the number of particles N , the volume V , and

the energy E are specified. Other ensembles can be designed in a similar way.

A common problem of the classical molecular dynamics is that it requires time

steps of the order about 10−15 s. This results in fast accumulation of integration

errors with respect to the time scales of interest. Therefore, special methods must

be designed to minimize this drawback. Besides, for a closed system, simple inte-

gration of motion equations represents sampling from a microcanonical ensemble,

where the energy is preserved. This produces artifacts like artificial heating of sol-

vent molecules, which accompanies a decrease of the protein energy. To reproduce

the experimental conditions, it is usually desired to sample from NTP , and not

from NV E. Therefore, the development of methods designed for sampling from

ensembles different from the microcanonical have obtained much attention [90, 91].

As already discussed in Subsections 1.7.1 and 1.7.2, it is important to take the in-

teractions with the solvent into account. However, all-atom continuous molecular

dynamics with explicit inclusion of water molecules requires an immense compu-

tational effort. The simulation box must be chosen large enough to eliminate the

artifacts related to the boundary conditions∗. This implies a significant increase

in the number of atoms participating in simulations. Even on a supercomputer,

a simulation of only early stages of protein folding takes months. Probably the

longest simulations of this kind were done in the project Folding@Home, involving

world wide distributed computing. These simulations still stay at maximum in a

millisecond range [92], whereas a real folding process may take several minutes.

This problem is sometimes partially circumvented by using implicit solvent models.

In this case, the equations of motion are supplemented by a friction term and a

stochastic term† aiming to reproduce random forces that arise due to collisions with

∗Normally it is desired to implement periodic boundary conditions for better representation of

the bulk solvent.
†A more detailed discussion of this approach can be found in the review by A.Neumaier [5].
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solvent atoms. However, this description is rather simplified and not devoid of

drawbacks. For example, the matrix of friction coefficients is modeled as a scalar

multiple of the mass matrix, despite the fact that not all atoms are in contact with

the solvent.

Another approach based on statistical thermodynamics is the Metropolis Monte

Carlo method. It can be used separately or combined with molecular dynamics

to obtain hybrid methods [91]. The idea of the Metropolis method is to generate

a sequence of random configurations, such that the transition to each new state

satisfies the following conditions. A new state is accepted if it corresponds to a lower

energy, but rejected with a certain probability if the energy raises. Thus, a random

number between 0 and 1 is generated and compared with the Boltzmann factor fB

for the difference ΔG between the energies of the new and current configuration:

fB = e−ΔG/kBT . (2.1)

If the random number is larger than the computed Boltzmann factor, the transition

is rejected [20]. As explained in the first chapter, for molar energies the gas constant

R̄ should be used instead of the Boltzmann’s constant kB. The deficiency of the

classical Metropolis Monte Carlo method is that there is no control for existence of a

low energy transition path between each two subsequent states. Hence, a transition

to a lower energy state would be always accepted, even if the configurations are

virtually separated by a high energy barrier. Combination with other methods may

help to eliminate this drawback.

Both Monte Carlo and molecular dynamics simulations may stick for a long time in

a low energy valley, if the probability to escape is sufficiently low. To speed up the

sampling of the diverse regions in the conformational or phase space, the simulated

annealing∗ is used. This technique consists in heating up the system, followed by

slow cooling. Often this is done with the purpose to find the global energy minimum,

which is assumed to correspond to the native state. Some weakness of this strategy

can be seen in the fact that in nature heating normally causes denaturation. Thus,

starting with a near-native state one can arrive to a completely incidental structure.

Apart from the simulated annealing, various other approaches aiming to find the

global minimum of energy have been proposed†. Among them are smoothing tech-

niques, which blur out numerous local minima in the original potential function

by an artificial diffusion. Alternatively, they start with a simplified model and

introduce subsequently more details for the energy computations. Besides, some

genetic methods are used, which imitate evolutional crossing over and mutations

for generation of new low-energy candidates. Branch and bound methods are used

for an exhaustive search over discretized conformational spaces. A similar strat-

egy is sometimes applied for simple lattice models, in which the chain of amino

∗See, for example, the reviews in [5, 20] for more information.
†A more detailed review of these methods is given in [5].
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acid residues is represented by a sequence of hydrophobic and hydrophilic beads,

restricted to adopt only discrete lattice positions.

The basis for all global minimization methods is the assumption that the native

fold of a protein represents the conformation corresponding to the global minimum

of energy. This can be seen as a possible critique point for these approaches. As

already discussed in Subsections 1.7.3-1.7.4 and pointed out by A. Neumaier in the

earlier review [5], the hypothesis of the global minimum can be disputed. Thus, for

a long polypeptide chain, a wide variety of conformations is possible. Among them

may exist metastable states, separated by so large energy barriers that a transition

between those conformations is rather improbable within the protein turn-over time

at physiological temperature. Therefore, for biological tasks it may be sufficient to

preset during the protein translation an initial conformation favoring fast correct

folding of the protein into its native form.

Besides, a search for the global minimum on a rough energy surface with a large

amount of local minima is a computationally demanding process with a questionable

quality of results, owing to the inaccuracy of energy estimations.

2.1.2 Knowledge-based structure prediction

Knowledge-based approaches use the information about already known structures

to predict a likely native arrangement of a new sequence. In this category are

statistical and machine learning methods for secondary structure prediction, which

focus mainly on the dihedral angles of the main chain and usually do not take into

account the interaction of remote sequence fragments. Besides, there are tertiary

structure prediction techniques, such as homology modeling and threading, which

use known folds as templates to reconstruct the structure of a new sequence.

Among the first knowledge-based methods were those proposed by P.Y. Chou and

G.D. Fasman [36], as well as by J. Garnier, D. J. Osguthorpe, and B. Robson

[93]. The Chou-Fasman method makes secondary structure predictions based on

the α-helical and β-sheet propensities of the individual amino acid residues (see

Table 2.1). These propensities were estimated from statistical analysis of 15 proteins

with known structures and yielded 77 % accuracy in prediction, whether the residue

belongs to a helix, β-sheet, or coil, for the other tested 19 proteins [36]. The

idea of the method is to search among six-residue segments for the α-helix and β-

sheet nucleation regions, such that certain conditions, involving the conformational

parameters Pα and Pβ , as well as the α-helical or β-sheet assignments from Table 2.1,

are fulfilled. After that, the α-helices and β-sheets are extended in both directions

until one of the specified termination criteria is satisfied.

Some other authors brought out the opinion that the rules stated in the Chou-

Fasman method are “open to interpretation” and “have not always yielded such

promising results in the hands of other workers” [93]. In any case, the values

in Table 2.1 certainly convey useful information: the observed tendencies are not
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Table 2.1: The assignment of the amino acid secondary structure propensities based on

the Pα and Pβ conformational parameters, adopted from [36]∗.

Helical assignments β-sheet assignments

Residues Pα Assignment Residues P β Assignment

glutamic acid 1.53 Hα methionine 1.67 Hβ

alanine 1.45 Hα valine 1.65 Hβ

leucine 1.34 Hα isoleucine 1.60 Hβ

histidine 1.24 hα cysteine 1.30 hβ

methionine 1.20 hα tyrosine 1.29 hβ

glutamine 1.17 hα phenylalanine 1.28 hβ

tryptophan 1.14 hα glutamine 1.23 hβ

valine 1.14 hα leucine 1.22 hβ

phenylalanine 1.12 hα threonine 1.20 hβ

lysine 1.07 Iα tryptophan 1.19 hβ

isoleucine 1.00 Iα alanine 0.97 Iβ

aspartic acid 0.98 iα arginine 0.90 iβ

threonine 0.82 iα glycine 0.81 iβ

serine 0.79 iα aspartic acid 0.80 iβ

arginine 0.79 iα lysine 0.74 bβ

cysteine 0.77 iα serine 0.72 bβ

asparagine 0.73 bα histidine 0.71 bβ

tyrosine 0.61 bα asparagine 0.65 bβ

proline 0.59 Bα proline 0.62 bβ

glycine 0.53 Bα glutamic acid 0.26 Bβ

completely accidental but result from the amino acid properties. At least some of

these propensities can be readily explained, as discussed in [1].

In the basic, or directional, version of the Garnier-Osguthorpe-Robson (GOR)

method, the amino acid structural propensities are treated as conditional, depend-

ing on the next 16 neighbors (i.e. eight preceeding and eight following the considered

residue) in the chain. The authors of the GOR method have specified four matrices

of the size 20 × 17, one for each of the following conformational types: an α-helix,

an extended conformation like a β-sheet, turns, and a coil. Each row in the matrix

∗Hα – strong α-helix former, hα – α-helix former, Iα – weak α-helix former, iα – α-helix-

indifferent, bα – α-helix breaker, Bα – strong α-helix breaker, Hβ – strong β-sheet former, hβ

– β-sheet former, Iβ – weak β-sheet former, iβ – β-sheet-indifferent, bβ – β-sheet breaker, Bβ

– strong β-sheet breaker. Despite the assignments given in the table, proline and aspartic acid

residues are placed to the Iα-category when they are near the helical N-terminal, while tryptophan

residues are treated as bβ, when they are near the C-terminal of a β-sheet.
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corresponds to a certain type of amino acid residues, and each column stands for a

position in the chain from j − 8 to j + 8, where j is the number of the residue, for

which the conformation is to be defined.

The value m
[s]
ik (s = 1, 4, i = 1, 20, k = 1, 17) in a matrix M[s] represents a

measure of the likelihood∗ of the central, i.e. j-th, residue to be found in a specific

conformation s under the condition that the residue of the type corresponding to

the i-th row is on the position j − 9 + k, which is related to the k-th column. The

central column contains the unconditional propensities of residues for the considered

conformation. The likelihood I [s] of each conformational type s for the j-th residue

is estimated as the sum of 17 directional information measures selected from the

matrix M[s] according to the amino acid sequence of the surrounding segment of

17 residues, starting at the (j − 8)-th residue. Finally, the conformation s with

the highest likelihood value I [s] is chosen. To improve the prediction results, a

decision constant specific for each conformation type can be subtracted from I [s]

before comparison.

In the single-residue information version of the GOR method, only the information

for each residue about its own propensity for the given conformation is consid-

ered. However, also the average propensity of the local chain segment including

this residue is taken into account. The segment is not necessarily centered about

the considered residue, but has to be shifted in a way that the maximal average

propensity is obtained. The length of the segment is given by the run constant ns,

which can have a different value for each particular type of the secondary structure.

Optimal values for ns were found to be 6 for a helix, 5 for an extended conformation,

4 for a reverse turn, and 3 for a coil, in agreement with the rules for the nucleation

and termination of α-helices and β-sheets in the Chou-Fasman method.

Both versions of the GOR method could predict correctly about 48-49 % of residue

conformations (considered on the described four-state basis) in a test with 26 pro-

teins [93].

Homology modeling is based on the fact that proteins having a common ancestor,

and therefore certain sequence similarity, often adopt similar folds. In the simplest

cases of the protein design, when a point mutation is introduced with a purpose of

potential stabilization of an enzyme, one can use the atomic coordinates from the

known structure of the original enzyme, replace the side chain of the amino acid

that was changed, and compare the energies of the two structures, to see whether

the replacement was favorable. Undoubtedly, the utilization of this scenario is not

limited by a single substitution. Moreover, it has been shown that the fold may

remain the same even when the proteins share only 30 % of the sequence identity

[40]. Typically, in homologous proteins the fragments having a regular secondary

structure are better conserved, while replacements, insertions, and deletions mostly

∗Both, “measure” and “likelihood” are used here as abstract concepts, and not in the sense of

homonymous mathematical notions.
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occur in the loop and coil regions [40], where they have less impact on the overall

structure. Replacements are usually more easy to treat than the other modifica-

tions, in particular, if the amino acid is substituted by another one having similar

properties. The side chain similarity is reflected in a related sequence match score.

However, due to insertions and deletions, comparison of sequences involves a com-

plex fragment alignment process, which is still not always performed in an optimal

way.

Threading methods are used when no sufficiently close homologue with a known

structure can be found. They appeared due to observations that even proteins hav-

ing no statistically significant sequence similarity may have the same fold type and

that the number of possible folds appears limited, governed by certain rules. Con-

sequently, the idea of threading is to verify whether the given amino acid sequence

is likely to adopt any of the fold types from a library of fold templates. The scoring

strategies to evaluate a match can be very different. Some of them are based on

amino acid properties or involve prediction of the secondary structure.

To the moment, the most successful approaches for protein structure prediction use

a combination of very different methods, starting from a search for a homologous

protein with a known structure, then, particularly if no good template homologue is

found, make a model of the secondary structure and use it for selection of compatible

fold templates in threading. Finally, energy minimization and molecular dynamics

methods are utilized to get rid of chain clashes, to model the sequence insertions,

and to distinguish good candidates from obviously non-native folds. Force fields

including solvation energy terms have been shown to be particularly useful for the

latter selection process [40].

2.2 Empirical force fields

In order to formalize the mathematical description of the problem and to set a basis

for its further mathematical treatment, let us introduce a new system of notations.

Let a unique number be assigned to each atom, and let N be the set of atom

numbers for a given molecule. Let N := cardN denote the number of atoms. In

consistence with notations introduced in Section 1.6.1, let us refer to the atom with

the number i as Ai, denote by �ri ∈ R3 the vector pointing from the coordinate

origin to the center of atom Ai, and set �rij := �rj − �ri, i, j ∈ N . Further, let us

denote by ∠(�a, �b) the angle between any vectors �a and �b, and refer to the dihedral

angle ∠(Ai−Aj−Ak−Al) as ∠(�rij ,�rjk,�rkl), in order to emphasize its dependence

on instant atomic coordinates.

Let the expression i � j signify that the atoms Ai and Aj are joined by a covalent

bond, and i � j denote that Ai and Aj are bonded neither directly nor to a common

neighbor. The both relations imply that i �= j. Besides, let us utilize the expression

i � j to indicate that atoms Ai and Aj are connected by a double or a partially
double bond. Note that i � j implies i � j, but not vice versa.
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Most of the popular models for molecular simulations are based on an estimation of

the potential energy arising from the electrostatic and van der Waals interactions

between atoms and, apart from that, contain terms introducing energy punishments

for deviations of bond lengths, bond angles, and some torsion angles from their

equilibrium states (see, e.g., [94–98] or the reviews in [20, 99, 100]). Additionally,

they may include energy punishments for the out-of-plane bending of atoms bound

to aromatic rings.

Using the introduced notations, we can write a classical version of a model from the

described above category as follows:

U(�r12,�r13, . . . ,�rN−1 N ) =
∑
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k
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on the type and hybridization of the atoms with the corresponding numbers, ε0 is

the vacuum permittivity, and qi denotes the partial charge of atom Ai. The meaning

of separate terms in equation (2.2) is discussed in the following subsections.

The last term can be scaled to take into account the polarization of the medium.

However, not all force field developers do that. Consideration of the screening effect

is particularly important in cases of implicit solvent representation.

Some models include a term to describe hydrogen bonding, which can be modeled

in various ways. A few of them are discussed in Subsection 2.2.4. Besides, other

terms can be added to account for the hydrophobic effect and electric free energy

of solvation, as discussed in Section 2.3.

2.2.1 Harmonic approximation for bond lengths and angles

The first two terms in equation (2.2) introduce energy punishments for deviations

of bond lengths and bond angles from their equilibrium states. lij and αijk denote

respectively the most favorable bond length and angle for the corresponding atoms.

Minimization of a potential function containing only these two terms is sufficient for

reconstruction of the shape of some simple molecules, such as methane or benzene

(Fig. 2.1), starting from random atomic positions.
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(a) (b)

Fig. 2.1: Molecules of methane (a) and benzene (b).

The given harmonic approximation can be improved by introducing higher order

and cross terms or even replacing it by a Morse potential (see, e.g., the reviews in

[5, 20]), in order to obtain better prediction of vibrational frequencies. However,

as already mentioned in Section 1.6, the conformation of a polypeptide is mainly

described by torsion along the chain, whereas the constrains for bond lengths and

angles are needed rather for the purpose of fixing their values close to the optimal

ones. Therefore, in the following we shall not consider such kind of extensions.

2.2.2 Torsion angles and out-of-plane bending

Quantum mechanical computations suggest the existence of energy barriers for ro-

tation of chemical bonds. For example, the energy of the ethane molecule is max-

imized in the eclipsed (Fig. 2.2 (a)) and minimized in the staggered (Fig. 2.2 (b))

conformation. To capture this effect, many force fields contain terms of the form

U
[d]
ijkl =

M∑
m=0

k
[d]
ijklm(1 + cos(m∠(�rij ,�rjk,�rkl) − ζijklm)) (2.3)

or

U
[d]
ijkl =

M∑
m=0

k
[d]
ijklm cos(∠(�rij ,�rjk,�rkl))

m. (2.4)

The multiplicity m in equation (2.3) gives the number of minima, and ζijklm is the

phase factor , which determines their location. For example, the potential due to

rotation of a double bond, where the related dihedral angle is restricted to the values

about 0 and π, can be represented by a single term with m = 2 and ζijklm = π.

In some cases inclusion of terms describing the van der Waals interactions may be

sufficient to model the repulsion of atoms at the opposite ends of a dihedral angle.

Nevertheless, torsional terms are necessary for the modeling of non-rotatable double

and partially double bonds, if the values of the corresponding dihedral angles are

not constrained in some other way.
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(a) (b)

Fig. 2.2: Molecules of ethane in the eclipsed (a) and staggered (b) conformation.

A punishment term U [o] for the out-of-plane bending may be necessary for compu-

tation of some ring structures. For example, consider the imidazole ring depicted

in Figure 2.3. The reference values for the bond angles in sp2-hybridized nitrogen

and carbon atoms would cause the hydrogens to deviate from the plane, whereas it

is known that π-bonding results in a coplanar arrangement.

Sometimes the out-of-plane bending is represented in terms of improper torsion

angles, i.e. angles ∠(Ai−Aj−Ak−Al) where the atoms Ai, Aj , Ak and Al are not

connected consequently, but instead, atom Ai, for example, is bound to the other

three. The potential term to enforce an improper torsion angle ζ to take values

about 0 or π is then given by

U [o](ζ) = k[o](1 − cos(2ζ)).

However, usually U [o] is specified in one of the following forms:

U [o](h) = k[o]h2 (2.5)

or

U [o](θ) = k[o]θ2, (2.6)
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(b)

Fig. 2.3: The out-of-plane bending in the imidazole ring. (a) h is the distance between

the center of the considered out-of-plane atom and the plane of the ring. (b) θ is the

angle between the direction of the related bond and the ring plane. Note that according to

quantum mechanics all atoms in this structure should lay in one plane.
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where h or θ are defined as shown in Figure 2.3, k[o] is a constant depending on

atom types. Using the introduced notations, we can write the contribution of all

out-of-plane bending terms of the form (2.5) as

∑
i,j,k,l∈N

i�j, i	k, i	l, k<l

k
[o]
i (�rij · (�rik ×�ril))

2

‖�rik ×�ril‖2
,

and of the form (2.6) as: ∑
i,j,k,l∈N

i�j, i	k, i	l, k<l

k
[o]
i arcsin2

(
�rij · (�rik ×�ril)

‖�rij‖‖�rik ×�ril‖
)

.

Clearly, the second form is computationally more demanding.

2.2.3 Non-bonded interactions and assignment of atom charges

The last two terms in equation (2.2) stand for the van der Waals and electrostatic

interactions. Alternative treatments of non-bonded interactions also exist. For

example, in the intermolecular force field proposed by D. E. Williams [101], the

energy U
[n]
ij arising from these interactions between any two atoms Ai and Aj from

different molecules is described as follows∗:

U
[n]
ij = aije

−bij‖rij‖ − cij‖�rij‖−6 +
qiqj

4πε0‖�rij‖ ,

where aij, bij, and cij are given by

aij =
√

aiaj , bij = 0.5(bi + bj), and cij =
√

cicj

for specified parameters ai, bi, and ci (i ∈ N ) depending on atom types and classes

of functional groups, to which these atoms belong.

In the general purpose Tripos 5.2 force field [94], the Lennard-Jones potential of the

form (cf. (1.42))

U
[w]
ij =

√
E

[w]
i E

[w]
j

⎛⎝(R
[w]
i + R

[w]
j

‖�rij‖

)12
− 2

(
R

[w]
i + R

[w]
j

‖�rij‖

)6⎞⎠ (2.7)

is used for the modeling of the van der Waals interactions. Here E
[w]
i and R

[w]
i

(∀i ∈ N ) are respectively a specified energy constant and the atomic van der Waals

radius, both depending on the atom type. The same term is adopted to describe van

der Waals interactions in this work, together with the associated and some other

parameters of the Tripos 5.2 force field.

∗In the original version, the factor 1/4πε0 is absent, apparently indicating the usage of different

energy units.
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The term for the electrostatic energy in the Tripos 5.2 force field involves a constant

or distance dependent dielectric function. Besides, for distances smaller than 0.5 Å

a linear extrapolation is used for prevention of a numerical overflow. The evaluation

of electrostatic interactions, however, was omitted by the authors of the Tripos 5.2

force field during its testing. The reasons for that were ambiguities in the definition

of partial charges and dielectric functions.

Indeed, the discrepancy in values of charges computed by different methods can

be of an order of magnitude for some atoms, and even the sign of charges can

change [20, 27, 102]. Point partial charges are an approximation, which is aimed to

reproduce electrostatic properties of atom nuclei with surrounding electron clouds.

Clearly, any kind of a point approximation for the electron density would inevitably

fail at sufficiently short distances. However, apart from this limitation there is a

problem related to determination of the best point charge model and criteria for its

evaluation.

The effect of an electron density shift towards certain nuclei is detectable experi-

mentally, for example, through the resulting electric dipole moments (see Subsec-

tion 1.5.3). The latter can be used as a criterion for the evaluation of the quality

of a partial charge distribution and may also permit unambiguous assignment of

partial charges in the simplest cases. For instance, a molecule of HF with the bond

length of 0.917 Å has the dipole moment of 1.82 D, which can be obtained with the

opposite charges of ±0.413 |e−| placed at the two nuclei [20]. However, already for

somewhat larger molecules there is often more than one possible charge distribution

that can yield the given dipole moment. Besides, for molecules with a non-fixed

geometry, the measured dipole moment represents the average for the forms that

are present in the experimental sample. This poses an additional problem not only

for determination of partial charges, but also for their assessment based on experi-

mental values of the dipole moments.

One way to assign partial charges is to determine from quantum mechanical com-

putations the electron density and to partition it between atom nuclei by one of the

known methods, such as Mulliken or Löwdin population analysis (see [20] and refer-

ences therein). Another approach is to compute from the obtained electron density

the electrostatic potential in different points around the molecule and choose the

charge values that reproduce it in the best way. However, the computed electron

density depends on the chosen basis set for molecular orbitals and conformation of

the molecule. Besides, the results for different point sets may differ significantly.

Moreover, placing charges aside atom centers can give a considerably better fit (see,

for example, the review in [20]).

A relatively fast procedure for assignment of partial charges, which is adopted in

this work, was proposed by J.Gasteiger and M. Marsili [26, 27]. The idea of the

method is to shift a certain amount of negative charge from atoms with lower elec-

tronegativity values to more electronegative atoms. The authors of the procedure
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adopted the definition of the orbital electronegativity, which was introduced by

J.Hinze [23–25] as given by equation (1.41). However, their interpretation of this

concept is somewhat different, since they do not distinguish between σ-bonding

and π-bonding orbitals during charge computations (see Algorithm 2.1). Rather,

the electronegativity is treated as a characteristic of an atom in a certain valence

state.

Despite that disagreement, J.Gasteiger and M.Marsili speculate that the elec-

tronegativity of each atomic orbital must depend on the total charge of the atom

and approximate this dependence by a three-term truncation of a Maclaurin series:

χ
[k]
i (qi) = a

[k]
i + b

[k]
i qi + c

[k]
i q2

i . (2.8)

Here i and k are the atomic and the orbital number respectively, a
[k]
i , b

[k]
i , and c

[k]
i

are the corresponding parameters, and qi is the total charge of the atom.

Using the electronegativity definition given by equation (1.41), J.Gasteiger and

M.Marsili have obtained the coefficients a
[k]
i from the published by J. Hinze and

H.H. Jaffé [23] values of the ionization potential 0I
[k]
i and electron affinity 0E

[k]
i ,

related to the orbitals of atoms in the uncharged state:

a
[k]
i = χ

[k]
i (0) =

1

2
(0I

[k]
i + 0E

[k]
i ).

Likewise, they utilized the published in [25] values of the ionization potential +I
[k]
i

and electron affinity +E
[k]
i , related to atoms in cationic states with a unit charge:

a
[k]
i + b

[k]
i + c

[k]
i = χ

[k]
i (1) =

1

2
(+I

[k]
i + +E

[k]
i ).

Finally, they set the ionization potentials, related to negative ions, equal to the

electron affinities of atoms in the uncharged states and assumed that the electron

affinity of orbitals of a negative ion is zero. This yielded

a
[k]
i − b

[k]
i + c

[k]
i = χ

[k]
i (−1) =

1

2
0E

[k]
i

and finally defined the coefficients. However, no separate coefficients for different

orbitals were reported in [27], but one for each of the typical valence states of the

considered atoms.

The Partial Equalization of Orbital Electronegativity (PEOE) procedure can be

summarized in the form of Algorithm 2.1. The procedure is started with formal

charges, which are typically all zero for uncharged species. The authors of the

method report fast convergence and therefore recommend to stop the procedure

after 5-6 iterations. Step 2.1 must be performed for all atoms before proceeding to

the next step.
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Algorithm 2.1 (J.Gasteiger and M.Marsili [26, 27])

1) Using the provided parameters compute cationic electronegativities for all

atoms:

χi(1) = ai + bi + ci, ∀i ∈ N ,

2) repeat the following steps for 5-6 iterations:

2.1) determine the electronegativity for each atom at the n-th iteration:

(χi)n = ai + bi(qi)n−1 + ci

(
q2
i

)
n−1

, ∀i ∈ N ,

2.2) compute the charge that each atom should obtain after n-th iteration:

(Δqi)n =
1

2n

⎛⎜⎜⎝ ∑
j∈N, j �i

(χi)n<(χj)n

(χj)n − (χi)n
χi(1)

+
∑

k∈N, k�i
(χi)n>(χk)n

(χk)n − (χi)n
χk(1)

⎞⎟⎟⎠ , ∀i ∈ N ,

(2.9)

2.3) update the total charge for each atom:

(qi)n = (qi)n−1 + (Δqi)n, ∀i ∈ N .

According to equation (2.9), the amount of charge transferred between each two

bonded atoms is proportional to the difference in their electronegativities, which

depend on the atom valence states and the charges obtained after the previous

iteration. The electronegativity difference is scaled by the cation electronegativity

of the less electronegative atom, in order to obtain a dimensionless quantity, which

is interpreted as a portion of the unit charge.

The authors of the method insist, however, that full equalization of the electroneg-

ativity is unreasonable, since all atoms of the same type and valence state (for in-

stance, all hydrogens in acetic acid) would obtain the same partial charge. Further,

the authors speculate that the electrostatic field generated upon charge transfer

must have an additional damping effect, which should hinder further electronega-

tivity equalization. Therefore, they introduce a heuristic factor 1/2n that reduces

charge transfer and decreases with each iteration.

The argumentation used for justification of the method can be disputed, since the

gradual electronegativity equalization by itself has an effect of damping further

charge transfer. Besides, the proposed choice of the damping strategy has no sound

physical basis.

However, the authors of the procedure found an excellent correlation between the

computed charges and the C-1s binding energies obtained from ESCA∗ experiments,

while a poor correlation was obtained with the charges from Mulliken population

∗ESCA stands for the Electron Spectroscopy for Chemical Analysis
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analysis [27]. Besides, J.Gasteiger and M. Marsili report a very good correlation of

the PEOE hydrogen charges with 1H NMR chemical shifts. Further, the authors

observed a good linear correlation between the PEOE charges and the pKa values

of different compounds, ranging from an acidic HF to weak alkanes.

Simulations by SiViProF, performed in course of this work, show that the PEOE

charges do not always reproduce experimentally determined dipole moments. A

good fit is obtained for formaldehyde: the computed dipole moment is 2.30 D, while

the experimental values collected from different sources and published in [103] vary

from 2.17±0.02 D to 2.339±0.013 D. One of the references mentioned there gives the

value 2.29 D. The computed values for formic acid change from about 1.29 D to 2.50

D, depending on the molecule conformation, while the published experimental values

fall between 1.35 ± 0.02 D and 2.09 D. Computations for methanol give the dipole

moment about 1.54 D, which is not very far from the minimal published values. The

latter are in the range between 1.61 D and 3.10 D. For acetic acid the values about

1.61-1.67 D are predicted, while measurements give the dipole moments between

0.74± 0.2 D to 2.17 D. The computed dipole moment of methylamine is about 0.71

D, which is somewhat too small compared to the experimental values between 1.00 D

and 1.47 D. Moreover, tests show that more complete electronegativity equalization

yields apparently better dipole moments for σ-bonded systems (for instance, 2.12 D

for methanol and 1.25 D for methylamine). However, the experimental values fall

too much apart for a good reference.

It is interesting to note that if the PEOE charges would be, for instance, about

1.5 times smaller than the “correct” ones, possibly due to excessive damping of the

electronegativity equalization, they would still yield a linear correlation with the

C-1s binding energies, 1H NMR chemical shifts, and pKa values.

Despite the described objections, the PEOE procedure enjoys popularity due to its

rapidness and hence good applicability to large molecules, as well as because other

methods are also not free from drawbacks.

2.2.4 Models for hydrogen bonding

In the most force fields it is assumed that the electrostatic and van der Waals

interaction terms are sufficient to reproduce hydrogen bonding, therefore no explicit

hydrogen bonding terms are included.

However, as discussed in Subsection 1.5.5, hydrogen bonds have a feature that the

electronegative atom of the donor group is likely to approach the acceptor as close

as if there would be no hydrogen atom between them. In other words, there is no

typical van der Waals interaction between the hydrogen atom and the acceptor of

the hydrogen bond at short distances. For this reason, in the general purpose Tripos

5.2 force field [94] hydrogen atoms attached to potential donors of hydrogen bonds

obtain zero van der Waals radius for their interactions with potential acceptors of

hydrogen bonds.
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Some other force fields include a term with distance-dependent energy contribution

[104, 105] of the form:

U
[H]
ha =

cha

‖�rha‖12
− dha

‖�rha‖10
,

where cha and dha are specific coefficients, and ‖�rha‖ is the distance between the

hydrogen atom and the acceptor of the hydrogen bond.

Sometimes, terms that take into account directionality of hydrogen bonding are

incorporated [20]. For example, the MM3 force field includes a term of the form:

G
[H]
ha =

k
[H]
ha

ε

(
184000 e−12‖rha‖/rha − 2.25 cos ∠(�rdh,�rda)

‖�rhd‖
�hd

(
rha

‖�rha‖
)6
)

,

which describes directional hydrogen bonding [106, 107]. Here h, a, and d are the

numbers related to the hydrogen atom, the acceptor, and the electronegative atom

in the donor group, k
[H]
ha is a specific parameter, ε is the dielectric constant, and rha

is the optimal distance for the considered hydrogen bond.

2.3 Solvation models

We have discussed in the first chapter that an important factor, essentially deter-

mining the native structure of a protein, is the interaction with the surrounding

solvent. Hydrophobic effect, in particular, is regarded by biochemists as a key

player on early stages of protein globule formation. At the same time, charged

groups, which interact with water dipoles, tend to stay on the surface.

Explicit inclusion of water molecules is a very demanding task from the computa-

tional point of view. A number of researches proposed implicit solvation models,

based on estimation of the solvent exposed area or excluded volume [42, 108–114].

Usually it is assumed that the solvation energy for each atom is proportional to its

instantaneous SASA, which is defined as described in Subsection 1.7.1:

ΔG
[s]
i = k

[s]
i a

[s]
i (�r12,�r13, . . . ,�rN−1 N ), i ∈ N .

Here k
[s]
i are atomic solvation parameters, and a

[s]
i (�r12,�r13, . . . ,�rN−1 N ) are the

atomic areas exposed to the solvent. The evaluation of the latter, however, can

be also computationally demanding.

2.3.1 Estimation of solvent-exposed area

Lee and Richards [42] estimated the static accessibility of atoms by sectioning the

molecule structure by a set of parallel planes and summation of the approximate

areas of segments confined between planes. Surface areas of segments they calcu-

lated based on the arc lengths of atom sections after elimination of the intersecting

parts.
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Shrake and Rupley [108] used a set of 92 fixed test points that were nearly uniformly

distributed over each solvated atom sphere, in order to determine the atom exposure.

The points were checked for an occlusion by test atoms through the comparison of

the ratios of the solvated sphere radii of the test atoms to the distances from the

centers of those atoms to the check point.

Connolly [109] utilized the definition of the molecular surface, introduced by Richards

[115] as a part of the van der Waals surface accessible to a probe sphere, and

presented a computer algorithm for analytical computation of the surface area by

subdividing the surface into a set of pieces of spheres and tori.

Richmond [110] proposed an analytical approach for exact calculation of the SASA,

by providing an expression for the surface area exterior to an arbitrary number of

overlapping spheres.

Futamura et al. [111] presented a Monte Carlo algorithm for computing the SASA

and corresponding error bounds. The authors also suggested sequential algorithms

with parallelizations, in order to reduce the computational time for spherical inter-

section checking. These algorithms can be also used with other methods for SASA

computation.

All those methods were implemented in different software packages and successfully

used for SASA calculations, but their application for protein simulations is compu-

tationally very demanding due to a large number of atoms to be processed. More

efficient numerical algorithms are normally less accurate.

Wodak and Janin [112] proposed a probabilistic analytical expression for fast ap-

proximation of the SASA and its partial derivatives relative to the distances between

atoms. This approach is based on the assumption of randomly distributed atoms

that are not allowed to penetrate each other. However, this condition does not hold

for covalently bound atoms. Hasel et al. [113] and further Cavallo et al. [114]

introduced some modifications of this method, which imply separate treatment of

covalently bound and not bound atoms. These procedures involve some adjustable

parameters optimized on a set of specifically chosen molecules. Although the pre-

dictions of SASAs given by the probabilistic approach were reported to be in a rea-

sonably good agreement with the SASAs calculated using geometrical algorithms,

it seems to be questionable whether one can expect reliable results in folding simu-

lations of complex proteins.

2.3.2 Poisson-Boltzmann equation

Another significant effect to be considered in the protein modeling is the dielec-

tric screening. Water has much higher electrical permittivity than the one of the

hydrophobic core of proteins [1, 5, 17, 40] (see also Subsection 1.7.2). Hence, for

realistic estimation of the electrostatic interactions in cases of an implicit solvent

representation it is essential to take into account whether the charges are located on
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the surface of the protein globule or in the interior. However, in the most force fields

either a constant electrical permittivity is used, or a distance dependent dielectric

function is introduced, which does not describe this effect adequately.

A more accurate way to evaluate the electrostatic component of the solvation free

energy and to account for the screening effect is to solve the Poisson-Boltzmann

equation in Ω ∈ R3 [20]∗:

∇ · (ε(�r)∇ϕe(�r)) − NAq2
eI

500ε0kBT
sinh(ϕe(�r)) = −ρ(�r)

ε0
, (2.10)

where ϕe : Ω → R is the Coulomb potential, I is the ionic strength of the solvent

(measured in mol/l) and ρ : Ω → R is the charge density. Other notations are as

described before.

The molar electric free energy of a charge qi positioned in �ri is then given by

G
[e]
i = NAqi ϕe(�ri).

Unfortunately, solving equation (2.10) on every energy evaluation step requires sev-

eral hundred times more computational time [116]. Besides, the energy arising from

the hydrophobic effect is not taken into account.

∗In the original version the equation is written implying different units, which result in the factor

4π instead of 1/ε0.



Chapter 3

Modeling Intracellular

Protein Folding

3.1 The general idea of the new approach

As discussed already in Section 1.6, the process of protein folding consists mainly

in twisting about single bonds, which is driven by electrostatic and van der Waals

interactions (arising both between protein atoms and due to presence of solvent

molecules around), as well as by the hydrophobic effect. However, the most terms

in equation (2.2) specify geometry constrains, which are not strict but rather stiff

for physiologically meaningful energy levels. Therefore, the function of these terms

is mainly to reconstruct and sustain a reasonable geometry for small molecules,

while for the protein modeling the corresponding energy contributions introduce

additional complications by shading the driving effects. Besides, common molecular

mechanics models do not take chirality into account.

The idea of the new approach is, on one hand, to reduce the classical molecular

mechanics model by eliminating the geometry-constraining terms with the corre-

sponding degrees of freedom and, on the other hand, to complement it by terms

that can help to reproduce better the effects possibly determinant for protein folding

pathways in living cells. The factors that are particularly important in this aspect

were discussed in Chapter 1.

In the following, we shall describe the potential of mean force as a function of

only the minimal number of non-fixed dihedral angles in a polypeptide chain. The

molecule is thereby naturally constrained to preserve other geometry features. We

can then generate reasonable amino acid geometries, such that all bond lengths,

bond angles, and dihedral angles obtain their optimal values, and so that the other

requirements, including chirality, are fulfilled. Besides, each amino acid shall be

considered in an appropriate ionization state.

The amino acids shall be appended consequently in a way that the formed peptide

group is disposed in the trans conformation, and each chain elongation step is to be

followed by minimization of energy for the emerging protein fragment. To prevent
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the folding of the nascent chain around the carboxyl terminal before the synthesis

is completed, the potential shall include a plane restriction term, which enforces

folding in a given half-space.

To account for the interaction with water, we shall introduce an implicit solvation

model that gives an estimate for the hydrophobic effect and electric free energy of

hydration. Additionally, we shall take into account the polarization of the medium

and the resulting dielectric screening, which is different for charges in the protein

core and for those in contact with water. Furthermore, in cases of hydrogen bond-

ing, the Lennard-Jones potential for the van der Waals interaction between the

electronegative acceptor and the hydrogen of the donor group should be modified

to allow a closer contact. Finally, we shall add terms aimed to describe formation

of disulfide bridges.

Later on, we shall discuss twisting forces and the peculiarities arising from dynamics

in the space of dihedral angles.

3.2 Interatomic distances versus dihedral angles

By reasons described above, let bond angles and lengths be fixed at their optimal

values, i.e.

‖�rij‖ = lij , ∀i, j ∈ N : i � j, (3.1)

and

∠(�rij ,�rik) = αi ∈ (0, π), ∀i, j, k ∈ N : (i � j) ∧ (i � k). (3.2)

We would like to explore, how the distance between atoms depends on torsion angles

along the chain.

Definition 3.1

Let the atoms bound to each other by a common bond be referred as 0–order-

connected, atoms bonded to the same atom be called 1-order-connected and so on,

with the connection order ℵij equal to the minimal number of consequently bonded

atoms standing between two given atoms Ai and Aj in the chain.

Definition 3.2

Let the dihedral angles that are customary used and sufficient for unambiguous

specification of a polypeptide conformation be called the primary dihedral angles

(for example, dihedral angles between 2-order-connected nitrogen or carbon atoms

in a main chain, such as φ,ψ and ω dihedral angles, see Subsection 1.6.1), and let

the corresponding atom sequence be referred as a primary chain. The secondary

dihedral angles, which appear in cases of branching, such as the angles between

nitrogen and oxygen atoms of the same residue in a main chain, can be derived

from the primary dihedrals and bond angles.

In the following, we shall interpret the sign “
.
=” as “must be equal”.
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Proposition 3.3

Let Ai, Aj , Ak, Al be the centers of four consequently bonded atoms as shown in

Figure 1.20, and let

ζil
jk := ∠(�rij ,�rjk,�rkl) and �emn :=

�rmn

‖�rmn‖ , ∀m,n ∈ N

here and further in the text. Then, for given �eij ,�ejk, and fixed bond angles, the

direction �ekl can be expressed in a related orthonormal basis, such as

�ejk, �eijk :=
�eij × �ejk

‖�eij × �ejk‖ , �e⊥(i)jk := �ejk × �eijk, (3.3)

or

�eij , �eijk, �e⊥ij(k) := �eij × �eijk, (3.4)

as a function of the dihedral angle ζil
jk, namely:

�ekl = �eijk sin αk sin ζil
jk − �e⊥(i)jk sin αk cos ζil

jk − �ejk cos αk, (3.5)

or

�ekl = �eijk sin αk sin ζil
jk + �e⊥ij(k)(sin αj cos αk + cos αj sin αk cos ζil

jk)+

+ �eij(cos αj cos αk − sin αj sinαk cos ζil
jk) (3.6)

respectively.

Proof. First of all, note that

∠(�eji,�ejk) = αj ,

therefore

∠(�eij,�ejk) = π − αj and �eij · �ejk = cos(π − αj) = − cos αj. (3.7)

Besides, we have:

�eijk =
�eij × �ejk

sin(π − αj)
=

�eij × �ejk

sinαj
, and �e⊥(i)jk =

�ejk × (�eij × �ejk)

sin αj
.

Since

�ejk × (�eij × �ejk) = �eij(�ejk · �ejk) − �ejk(�ejk · �eij) = �eij + �ejk cos αj ,

it follows that

�e⊥(i)jk =
�eij + �ejk cos αj

sinαj
. (3.8)

Reciprocally

�e⊥ij(k) =
�eij × (�eij × �ejk)

sin αj
=

�eij(�eij · �ejk) − �ejk(�eij · �eij)

sinαj
=

−�eij cos αj − �ejk

sinαj
. (3.9)
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Let

�ekl = a�eijk + b�e⊥(i)jk + c�ejk (3.10)

be a possible representation of �ekl in the basis (3.3). This decomposition is expected

to satisfy the equalities

∠(�ejk,�ekl)
.
= π − αk, (3.11)

and

∠(�eij,�ejk,�ekl)
.
= ζil

jk. (3.12)

Therefore, it should hold:

�ejk · �ekl
.
= − cos αk (3.13)

and

sign((�ejk × �ekl) · �eij) arccos
�eijk · (�ejk × �ekl)

sin αk

.
= ζil

jk, (3.14)

see (1.44)-(1.46).

Substitution of (3.10) into (3.13) yields:

�ejk · (a�eijk + b�e⊥(i)jk + c�ejk) = c
.
= − cos αk. (3.15)

Utilizing (3.8) and (3.10) we deduce:

�ejk × �ekl = a�ejk × �eijk + b�ejk × �e⊥(i)jk = a�e⊥(i)jk + b�ejk ×
�eij + �ejk cos αj

sin αj
=

= a�e⊥(i)jk + b
�ejk × �eij

sin αj
= a�e⊥(i)jk − b�eijk. (3.16)

Substitution of (3.16) into (3.14) results in:

sign(a�e⊥(i)jk · �eij) arccos

( −b

sin αk

)
.
= ζil

jk,

therefore

b
.
= − sin αk cos ζil

jk (3.17)

and

sign(a�e⊥(i)jk · �eij)
.
= sign ζil

jk. (3.18)

The latter equation yields after substitution of (3.8):

sign

(
a(�eij + �ejk cos αj) · �eij

sin αj

)
= sign

(
a(1 − cos2 αj)

sin αj

)
=

= sign(a sin αj)
.
= sign ζil

jk,

meaning that

sign(a)
.
= sign ζil

jk, (3.19)

since αj ∈ (0, π).
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Besides, �ekl must be a unit vector, therefore using (3.15) and (3.17) we obtain:

|a| =
√

1 − b2 − c2 =
√

1 − sin2 αk cos2 ζil
jk − cos2 αk =

=
√

sin2 αk sin2 ζil
jk = | sin αk sin ζil

jk|. (3.20)

Since ζil
jk ∈ (−π, π] and αk ∈ (0, π), equations (3.19) and (3.20) imply that

a = sin αk sin ζil
jk. (3.21)

It is obvious from the given derivation that the representation (3.5) in the basis

(3.3) is unique, and therefore there exists only one unit vector with the properties

(3.11) and (3.12).

Now we show that (3.6) provides the representation of �ekl given by (3.5) in the basis

(3.4). Since (3.3) and (3.4) are orthonormal bases, the following relation holds:

�ekl = �eijk(�eijk · �ekl) + �e⊥ij(k)(�e
⊥
ij(k) · �ekl) + �eij(�eij · �ekl), (3.22)

and from (3.5) immediately follows:

�eijk · �ekl = sin αk sin ζil
jk. (3.23)

Using (3.8) and (3.9) we obtain:

�eij · �e⊥(i)jk =
�eij · (�eij + �ejk cos αj)

sin αj
=

1 − cos2 αj

sin αj
= sin αj ,

�e⊥ij(k) · �ejk =
(−�eij cos αj − �ejk) · �ejk

sin αj
=

cos2 αj − 1

sin αj
= − sinαj , (3.24)

�e⊥ij(k) · �e⊥(i)jk =
�e⊥ij(k) · (�eij + �ejk cos αj)

sinαj
= �e⊥ij(k) · �ejk

cos αj

sinαj
= − cos αj .

Consequently,

�e⊥ij(k) · �ekl = �e⊥ij(k) · �e⊥(i)jk(− sin αk cos ζil
jk) − �e⊥ij(k) · �ejk cos αk =

= cos αj sin αk cos ζil
jk + sinαj cos αk (3.25)

and

�eij · �ekl = �eij · �e⊥(i)jk(− sin αk cos ζil
jk) − �eij · �ejk cos αk =

= − sin αj sin αk cos ζil
jk + cos αj cos αk. (3.26)

Substitution of (3.23), (3.25), and (3.26) into (3.22) gives (3.6). �

Remark 3.4

Note that according to (3.9), the representation of �ejk in the basis (3.4) is:

�ejk = − cos αj�eij − sin αj�e
⊥
ij(k). (3.27)
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Proposition 3.5

Under the conditions of Proposition 3.3 the distance between the centers of atoms

Ai and Al is given by

‖�ril‖ =
√

l2ij + l2jk + l2kl − 2lij ljk cos αj − 2ljklkl cos αk+

+2lij lkl(cos αj cos αk − sin αj sinαk cos ζil
jk). (3.28)

Proof.

‖�ril‖ =
√

(�rij +�rjk +�rkl) · (�rij +�rjk +�rkl) =

=
√

�rij ·�rij +�rjk ·�rjk +�rkl ·�rkl + 2�rij ·�rjk + 2�rjk ·�rkl + 2�rij ·�rkl. (3.29)

With (3.7), (3.13), and (3.26), from (3.29) follows (3.28). �

Lemma 3.6

Let �ea and �eb be two non-collinear vectors, and let ∠(�ea,�eb) =: γ. Then there exist

at maximum two different unit vectors �eci (i = 1, 2), such that

∠(�ea,�eci) = α and ∠(�eb,�eci) = β.

There is only one solution �ec1 , if vectors �ea,�eb and �ec1 are linearly dependent.

Otherwise vectors �ec1 and �ec2 lay at the different sides∗ of the plane Pab spanned

by �ea and �eb.

Proof. Let �ec be a possible solution, i.e.

‖�ec‖ = 1, ∠(�ea,�ec) = α and ∠(�eb,�ec) = β,

let

�e⊥ab :=
�ea × �eb

‖�ea × �eb‖ ,

and let

�ec = a�ea + b�eb + c�e⊥ab (3.30)

be the decomposition of �ec in the basis �ea,�eb,�e
⊥
ab. Then we have:

�ec · �ea = a + b cos γ
.
= cos α, (3.31)

�ec · �eb = a cos γ + b
.
= cos β. (3.32)

We see that ∣∣∣∣∣ 1 cos γ

cos γ 1

∣∣∣∣∣ = sin2 γ �= 0,

∗Here vectors are considered relative to the same origin.
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Ak
Al′

Al

Aj

Ai

ζ ll′

jk

ζ il
jk

�rij
�rjk

�rkl

�rkl′

Fig. 3.1: The relation of dihedral angles in case of branching.

since �ea and �eb are non-collinear. Therefore system (3.31),(3.32) has a unique

solution (a, b). Using the condition of the unit length, we can determine c:

c = ±
√

1 − a2 − b2.

If c �= 0, there are exactly two solutions:

�ec1 = a�ea + b�eb +
√

1 − a2 − b2 �e⊥ab end �ec2 = a�ea + b�eb −
√

1 − a2 − b2 �e⊥ab.

They lay at the different sides of the plane Pab, since �ec1 ·�e⊥ab > 0 and �ec2 ·�e⊥ab < 0.

If c = 0, there is only one solution. It is clear from (3.30) that c = 0 iff �ea,�eb and

�ec are linearly dependent. �

Proposition 3.7

Let Ai, Aj , Ak, Al be the centers of four consequently connected atoms of a primary

chain, αk ∈ (0, 2π
3 ], and let atom Al′ be also bonded to Ak (Fig. 3.1). Then, for given

�eij,�ejk, and fixed bond angles, the direction �ekl′ can be expressed as the following

function of the primary dihedral angle ζil
jk:

�ekl′ = �eijk sinαk sin(ζil
jk + ζ ll′

jk) − �e⊥(i)jk sin αk cos(ζil
jk + ζ ll′

jk) − �ejk cos αk, (3.33)

with �eijk and �e⊥(i)jk specified in (3.3) and ζ ll′

jk given by:

ζ ll′

jk = ± arccos

(
cos αk

1 + cos αk

)
. (3.34)

The sign of ζ ll′

jk depends on chiral configuration of the molecule and remains constant

when the primary dihedral angle is changed. More precisely,

sign(ζ ll′

jk) = sign((�rjk ×�rkl) ·�rkl′), (3.35)

with the sign function defined in (1.43).
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Proof. Obviously, for �ekl′ given by (3.33) holds:

∠(�ejk,�ekl′) = π − αk, (3.36)

since αk ∈ (0, π) and

�ejk · �ekl′ = − cos αk.

We show that

∠(�ekl,�ekl′) = αk. (3.37)

Utilizing (3.5) and (3.33) we deduce:

�ekl · �ekl′ = sin2 αk sin ζil
jk sin(ζil

jk + ζ ll′

jk) + sin2 αk cos ζil
jk cos(ζil

jk + ζ ll′

jk) + cos2 αk.

Further, using an addition theorem, we transform

sin ζil
jk sin(ζil

jk + ζ ll′

jk) + cos ζil
jk cos(ζil

jk + ζ ll′

jk)

into

cos(ζil
jk + ζ ll′

jk − ζil
jk) = cos ζ ll′

jk,

and with (3.34) we obtain:

�ekl · �ekl′ = sin2 αk cos ζ ll′

jk + cos2 αk = sin2 αk
cos αk

1 + cos αk
+ cos2 αk =

=
sin2 αk cos αk + cos2 αk(1 + cos αk)

1 + cos αk
=

cos αk + cos2 αk

1 + cos αk
= cos αk,

which implies validity of (3.37), since αk ∈ (0, π).

To verify (3.35), we compute (�rjk ×�rkl) ·�rkl′ using (3.16), (3.17), (3.21), (3.33) and

an addition theorem:

(�rjk ×�rkl) ·�rkl′ = − sin2 αk sin ζil
jk cos(ζil

jk + ζ ll′

jk) + sin2 αk cos ζil
jk sin(ζil

jk + ζ ll′

jk) =

= sin2 αk sin ζ ll′

jk.

Therefore, for |ζ ll′

jk| ∈ (0, π) holds:

(�rjk ×�rkl) ·�rkl′ < 0 if ζ ll′

jk < 0, and (�rjk ×�rkl) ·�rkl′ > 0 if ζ ll′

jk > 0.

Thus, for |ζ ll′

jk| ∈ (0, π), (3.33) equipped with (3.34) gives two solutions at the both

sides∗ of plane Pjkl spanned by vectors �ejk and �ekl.

If |ζ ll′

jk| = π, then (�rjk × �rkl) · �rkl′ = 0, i.e. vector �ekl′ lays in plane Pjkl. Solution

vectors for ζ ll′

jk = π and ζ ll′

jk = −π are identical. The corresponding αk = 2π
3 .

Consequently, by Lemma 3.6, there are no solutions, other then (3.33), that fulfill

the conditions (3.36) and (3.37). �

∗Relative to Ak as an origin.
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Definition 3.8

Let Θ : R → (−π, π] denote a surjection, such that

Θ(θ) := ((θ − π) mod 2π) + π.

Remark 3.9

By convention, dihedral angles are defined in the interval (−π, π]. Some operations,

such as angle addition, may cause violations of the boundaries of the interval, still

giving a physically meaningful answer. The function of Θ is to map an angle to a

formally equivalent one in the desired interval.

Corollary 3.10

Under the conditions of Proposition 3.7, the dihedral angle ∠(�rij ,�rjk,�rkl′) can be

expressed as a sum of the corresponding primary dihedral angle and a supplement

with a constant magnitude depending only on a related bond angle:

ζil′

jk = Θ(ζil
jk + ζ ll′

jk), (3.38)

where ζ ll′

jk is given by:

ζ ll′

jk = sign((�rjk ×�rkl) ·�rkl′) arccos

(
cos αk

1 + cos αk

)
(3.39)

with the sign function defined in (1.43).

Proof. Follows from Propositions 3.3 and 3.7. �

Corollary 3.11

Let Ai, Aj , Ak, Al be the centers of four consequently connected atoms of a primary

chain, and let atoms Ai′ and Al′ be bonded to Aj and Ak respectively. Then the

dihedral angles ∠(�ri′j ,�rjk,�rkl) and ∠(�ri′j ,�rjk,�rkl′)) are given by:

ζi′l
jk = Θ(ζil

jk + ζii′

jk ) (3.40)

and

ζi′l′

jk = Θ(ζil
jk + ζii′

jk + ζ ll′

jk), (3.41)

with

ζii′

jk = sign((�rij ×�rjk) ·�ri′j) arccos

(
cos αj

1 + cos αj

)
(3.42)

and ζ ll′

jk defined in (3.39).

Proof. First of all, note that

ζ li
kj = ζil

jk.
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�rij

Ai

�rjk

Aj

Al

Am

Ak

�rkl

�rlm

ζ il
jk

ζ
jm
kl

Fig. 3.2: Centers Ai, Aj , Ak, Al, Am of five consequently bonded atoms, and the related

dihedral angles.

Indeed,

ζ li
kj = sign((�rkj ×�rji) ·�rlk) arccos

(
(�rlk ×�rkj) · (�rkj ×�rji)

‖�rlk ×�rkj‖‖�rkj ×�rji‖
)

=

= sign(((−�rjk)× (−�rij)) · (−�rkl)) arccos

(
((−�rkl) × (−�rjk)) · ((−�rjk) × (−�rij))

‖(−�rkl) × (−�rjk)‖‖(−�rjk) × (−�rij)‖
)

=

= sign((−�rij ×�rjk) · (−�rkl)) arccos

(
(−�rjk ×�rkl) · (−�rij ×�rjk)

‖�rjk ×�rkl‖‖�rij ×�rjk‖
)

=

= sign((�rjk ×�rkl) ·�rij) arccos

(
(�rjk ×�rkl) · (�rij ×�rjk)

‖�rjk ×�rkl‖‖�rij ×�rjk‖
)

= ζil
jk. (3.43)

Similarly,

ζi′l
jk = ζ li′

kj , (3.44)

and with Corollary 3.10 follows:

ζ li′

kj = Θ

(
ζ li
kj + sign((�rkj ×�rji) ·�rji′) arccos

(
cos αj

1 + cos αj

))
=

= Θ

(
ζil
jk + sign((−(−�rij) × (−�rjk)) · (−�ri′j)) arccos

(
cos αj

1 + cos αj

))
=

= Θ

(
ζil
jk + sign((�rij ×�rjk) ·�ri′j) arccos

(
cos αj

1 + cos αj

))
. (3.45)

From (3.44) and (3.45) we immediately obtain (3.40).

Additionally, we see that

ζi′l′

jk = Θ(ζi′l
jk + ζ ll′

jk),

hence with (3.40) follows (3.41). �

Proposition 3.12

Let Ai, Aj , Ak, Al and Am be the centers of five consequently bonded atoms
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(Fig. 3.2). Then the distance between Ai and Al is given by:

‖�rim‖ =

√
‖�ril‖2 + l2lm− 2lklllmcos αl + 2ljkllm(cos αk cos αl − sin αk sin αl cos ζjm

kl )+

+2lij llm(sin αk(sin αj cos αl cos ζil
jk + cos αj sin αl cos ζjm

kl )+

+ sinαj sin αl(sin ζil
jk sin ζjm

kl + cos αk cos ζil
jk cos ζjm

kl ) − cos αj cos αk cos αl). (3.46)

Proof. First of all, we note that

‖�rim‖ =
√

(�ril +�rlm) · (�ril +�rlm) =
√

‖�ril‖2 + l2lm + 2(�rij +�rjk +�rkl) ·�rlm =

=
√

‖�ril‖2 + l2lm + 2lij llm�eij · �elm + 2ljkllm�ejk · �elm + 2lklllm�ekl · �elm. (3.47)

To compute �eij · �elm, we express �eij and �elm in the basis

�ejk, �ejkl :=
�ejk × �ekl

‖�ejk × �ekl‖ , �e⊥jk(l) := �ejk × �ejkl. (3.48)

Exchanging the roles of indexes i, j, k, l in (3.5) in such a way, that they are con-

sidered in the opposite order, we obtain:

�eji = �elkj sin αj sin ζ li
kj − �e⊥(l)kj sin αj cos ζ li

kj − �ekj cos αj.

We note that

�eji = −�eij, �elkj =
�elk × �ekj

sin αk
=

(−�ekl) × (−�ejk)

sin αk
= −�ejk × �ekl

sin αk
= −�ejkl,

�e⊥(l)kj = �ekj × �elkj = (−�ejk) × (−�ejkl) = �e⊥jk(l), �ekj = −�ejk, ζ li
kj = ζil

jk,

hence

�eij = �ejkl sin αj sin ζil
jk + �e⊥jk(l) sin αj cos ζil

jk − �ejk cos αj. (3.49)

Similarly we can express �elm in the basis (3.48) using (3.6):

�elm = �ejkl sin αl sin ζjm
kl + �e⊥jk(l)(sin αk cos αl + cos αk sin αl cos ζjm

kl )+

+ �ejk(cos αk cos αl − sin αk sin αl cos ζjm
kl ). (3.50)

From (3.49) and (3.50) we deduce:

�eij · �elm = sin αk(sin αj cos αl cos ζil
jk + cos αj sinαl cos ζjm

kl )+

+ sinαj sin αl(sin ζil
jk sin ζjm

kl + cos αk cos ζil
jk cos ζjm

kl )−
− cos αj cos αk cos αl. (3.51)

Shifting indexes in (3.26) gives:

�ejk · �elm = cos αk cos αl − sin αk sinαl cos ζjm
kl , (3.52)

and similar to (3.7) holds:

�ekl · �elm = − cos αl. (3.53)

Substitution of (3.51), (3.52), and (3.53) into (3.47) gives (3.46). �
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Definition 3.13

Let ΞB : R3 → R3 denote a linear map such that

ΞB(�v) :=

⎛⎜⎝�aT

�bT

�cT

⎞⎟⎠�v, ∀ �v ∈ R3,

where B := {�a, �b, �c} is an ordered orthonormal basis.

Lemma 3.14

ΞB associates a vector �v ∈ R3 with its coordinate representation in the basis B, i.e.

for B =: {�a, �b, �c} and ⎛⎜⎝w[1]

w[2]

w[3]

⎞⎟⎠ := �w := ΞB(�v)

holds:

w[1]�a + w[2]�b + w[3]�c = �v. (3.54)

Proof. Let

�v = a�a + b �b + c�c.

Then we have:

ΞB(�v) =

⎛⎜⎝�aT

�bT

�cT

⎞⎟⎠ (a�a + b �b + c�c) =

⎛⎜⎝�a · (a�a + b �b + c�c)
�b · (a�a + b �b + c�c)

�c · (a�a + b �b + c�c)

⎞⎟⎠ =

⎛⎜⎝a

b

c

⎞⎟⎠ . �

Remark 3.15

If Ba := {�e a
1 , �e a

2 , �e a
3 } and Bb := {�e b

1 , �e b
2 , �e b

3} are two ordered orthonormal bases in

R3, �v ∈ R3, and �b := ΞBb
(�v), then ΞBa ◦Ξ−1

Bb
(�b) maps the coordinate representation

of �v in Bb into its coordinate representation in Ba, and the following holds:

ΞBa ◦ Ξ−1
Bb

(�b) =

⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠
⎛⎜⎝(�e b

1 )T

(�e b
2 )T

(�e b
3 )T

⎞⎟⎠
−1

�b =

⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠
⎛⎜⎝(�e b

1 )T

(�e b
2 )T

(�e b
3 )T

⎞⎟⎠
T

�b =

=

⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠(�e b
1 �e b

2 �e b
1

)
�b =

⎛⎜⎝�e a
1 · �e b

1 �e a
1 · �e b

2 �e a
1 · �e b

3

�e a
2 · �e b

1 �e a
2 · �e b

2 �e a
2 · �e b

3

�e a
3 · �e b

1 �e a
3 · �e b

2 �e a
3 · �e b

3

⎞⎟⎠ �b.
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Besides, if �w ∈ R3 and �a := ΞBa(�w), then

�w · �v = Ξ−1
Ba

(�a) · Ξ−1
Bb

(�b) =

⎛⎜⎜⎝
⎛⎜⎝(�e a

1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠
−1

�a

⎞⎟⎟⎠
T⎛⎜⎝(�e b

1 )T

(�e b
2 )T

(�e b
3 )T

⎞⎟⎠
−1

�b =

= �aT

⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠
⎛⎜⎝(�e b

1 )T

(�e b
2 )T

(�e b
3 )T

⎞⎟⎠
−1

�b = �aT ΞBa ◦ Ξ−1
Bb

(�b).

Lemma 3.16

Let Ai, Aj, Ak and Al be the centers of four consequently bonded atoms, and let

Bijk and Bjkl refer to the bases (3.4) and (3.48) respectively. Then the mapping

ΞBijk
◦ Ξ−1

Bjkl
is given by

ΞBijk
◦ Ξ−1

Bjkl
(�v) = Ail

jk�v, ∀ �v ∈ R3,

where

Ail
jk =

⎛⎜⎝− cos αj sin αj sin ζil
jk sinαj cos ζil

jk

0 cos ζil
jk − sin ζil

jk

− sin αj − cos αj sin ζil
jk − cos αj cos ζil

jk

⎞⎟⎠ . (3.55)

Proof. From Remark 3.15 follows that

Ail
jk =

⎛⎜⎜⎝
�eij · �ejk �eij · �ejkl �eij · �e⊥jk(l)

�eijk · �ejk �eijk · �ejkl �eijk · �e⊥jk(l)

�e⊥ij(k) · �ejk �e⊥ij(k) · �ejkl �e⊥ij(k) · �e⊥jk(l)

⎞⎟⎟⎠ (3.56)

In accordance with (1.46), we have:

�eijk · �ejkl = cos ζil
jk, (3.57)

hence

�eij · �e⊥jk(l) = �eij · (�ejk × �ejkl) = (�eij × �ejk) · �ejkl =

= sin αj�eijk · �ejkl = sin αj cos ζil
jk, (3.58)

and with (3.23) follows:

�eij · �ejkl =
�eij · (�ejk × �ekl)

sinαk
=

(�eij × �ejk) · �ekl

sin αk
=

=
sin αj �eijk · �ekl

sin αk
= sinαj sin ζil

jk. (3.59)
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Using Lagrange’s identity from vector calculus, (3.7), (3.57), (3.23), and (3.59) we

deduce:

�e⊥ij(k) · �e⊥jk(l) = (�eij × �eijk) · (�ejk × �ejkl) =

= (�eij · �ejk)(�eijk · �ejkl) − (�eijk · �ejk)(�eij · �ejkl) = − cos αj cos ζil
jk, (3.60)

�e⊥ij(k) · �ejkl = (�eij × �eijk) ·
�ejk × �ekl

sin αk
=

=
1

sinαk
((�eij · �ejk)(�eijk · �ekl) − (�eij · �ekl)(�eijk · �ejk)) = − cos αj sin ζil

jk, (3.61)

�eijk · �e⊥jk(l) =
�eij × �ejk

sin αj
· (�ejk × �ejkl) =

=
1

sinαj
((�eij · �ejk)(�ejk · �ejkl) − (�eij · �ejkl)(�ejk · �ejk)) = − sin ζil

jk. (3.62)

Finally, substituting (3.7), (3.24), and (3.57)-(3.62) into (3.56) we obtain (3.55). �

Theorem 3.17

Let Ai, Ai+1, . . . , Ai+n be the centers of consequently bonded atoms. Then the

distance between Ai and Ai+n is given by:

‖�ri i+n‖ =

√√√√√ i+n∑
j=i+1

l2j−1 j + 2

i+n−1∑
j=i+1

i+n−1∑
k=j

lj−1 jlk k+1

⎛⎝ k∏
m=j

Am−1 m+2
m m+1

⎞⎠
11

=

=

√√√√ i+n∑
j=i+1

l2j−1 j + 2

i+n−1∑
j=i+1

i+n−1∑
k=j

lj−1 j lk k+1

3∑
ij=1

3∑
ij+1=1

. . .

3∑
ik−2=1

3∑
ik−1=1

(Aj−1 j+2
j j+1 )1ij

(Aj j+3
j+1 j+2)ij ij+1 . . . (Ak−2 k+1

k−1 k )ik−2ik−1
(Ak−1 k+2

k k+1 )ik−11, (3.63)

where

Am−1 m+2
m m+1 =

⎛⎜⎝− cos αm sin αm sin ζm−1 m+2
m m+1 sin αm cos ζm−1 m+2

m m+1

0 cos ζm−1 m+2
m m+1 − sin ζm−1 m+2

m m+1

− sin αm − cos αm sin ζm−1 m+2
m m+1 − cos αm cos ζm−1 m+2

m m+1

⎞⎟⎠ (3.64)

for

m = i + 1, i + n − 2,

and

Ai+n−2 i+n+1
i+n−1 i+n

∗ =

⎛⎜⎝− cos αi+n−1 0 0

0 0 0

− sinαi+n−1 0 0

⎞⎟⎠ . (3.65)

∗The second and the third column of Ai+n−2 i+n+1
i+n−1 i+n is of no relevance, therefore atom Ai+n+1, as

well as the dihedral angle ζi+n−2 i+n+1
i+n−1 i+n , does not have to exist.
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Proof. First of all, note that

‖�ri i+n‖ =

√√√√(

i+n∑
j=i+1

�rj−1 j)(

i+n∑
j=i+1

�rj−1 j) =

=

√√√√ i+n∑
j=i+1

l2j−1 j + 2

i+n−1∑
j=i+1

i+n−1∑
k=j

lj−1 jlk k+1�ej−1 j · �ek k+1. (3.66)

Using Remark 3.15 and Lemma 3.16, we deduce by induction:

�ej−1 j · �ek k+1 =
(
1 0 0

)
A

j−1 j+2
j j+1 A

j j+3
j+1 j+2 . . .Ak−1k+2

k k+1

⎛⎜⎝1

0

0

⎞⎟⎠ =

=

⎛⎝ k∏
m=j

Am−1 m+2
m m+1

⎞⎠
11

=

3∑
ij=1

3∑
ij+1=1

· · ·
3∑

ik−2=1

3∑
ik−1=1

(Aj−1 j+2
j j+1 )1ij (A

j j+3
j+1 j+2)ij ij+1 . . .

. . . (Ak−2 k+1
k−1 k )ik−2ik−1

(Ak−1 k+2
k k+1 )ik−11, (3.67)

where Ai i+3
i+1 i+2, . . . ,A

i+n−2 i+n+1
i+n−1 i+n are given by (3.55) with respectively changed in-

dex notations (cf. (3.64)-(3.65)). Substitution of (3.67) into (3.66) gives (3.63). �

Corollary 3.18

In a chain of consequently bonded atoms Ai, Ai+1, . . . , Ai+n the distance between

Ai and Ai+n is given by:

‖�ri i+n‖ =

√√√√‖�ri i+n−1‖2 + l2i+n−1 i+n + 2li+n−1 i+n

i+n−1∑
j=i+1

lj−1 j

3∑
kj=1

3∑
kj+1=1

. . .

. . .

3∑
ki+n−3=1

3∑
ki+n−2=1

(Aj−1 j+2
j j+1 )1kj

(Aj j+3
j+1 j+2)kjkj+1

. . .

. . . (Ai+n−3 i+n
i+n−2 i+n−1)ki+n−3ki+n−2

(Ai+n−2 i+n+1
i+n−1 i+n )ki+n−21, (3.68)

where Ai i+3
i+1 i+2, . . . ,A

i+n−2 i+n+1
i+n−1 i+n are defined as in Theorem 3.17.

Certain regularities in protein structure permit further simplifications. As justified

in Subsection 1.5.2, sp2-hybridized atoms, such as N and Cα, which participate in

peptide bond formation, have the equilibrium bond angle 2π
3 . Using the well known

relations

cos
π

3
=

1

2
and sin

π

3
=

√
3

2
,

we easily deduce:

cos
2π

3
= cos

(
π − π

3

)
= −1

2
and sin

2π

3
= sin
(
π − π

3

)
=

√
3

2
. (3.69)
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B

O′
a a

b

b

b

a
2

H
CA

(a)

A
b

α

θt

α

a

O′

O

D

(b)

Fig. 3.3: (a) A face of a regular tetrahedron. AB = BC = AC =: a, AO′ = BO′ =

CO′ =: b, ∠AO′B = ∠BO′C = ∠AO′C = 2π
3 . (b) A cross-section through two vertices, A

and D, and the center O of the tetrahedron. AD = a, AO′ = b, ∠ODA = ∠OAD =: α,

ϑt := ∠AOD.

The values of sine and cosine of the equilibrium angle of sp3-hybridized atoms, for

example α-carbons and the most of the side chain non-hydrogenic atoms, are given

by the following lemma.

Lemma 3.19

Let ϑt be the angular distance between two vertices of a regular tetrahedron relative

to its center. Then holds:

sin ϑt =
2
√

2

3
and cos ϑt = −1

3
. (3.70)

Proof. Let O′ be the projection of the tetrahedron center O on one of the faces

with vertices A, B and C (Fig. 3.3(a)). Altitude O′H of the triangle AO′C is

simultaneously a bisector, hence holds:

a

2b
= sin

π

3
. (3.71)

In Figure 3.3(b) we see that

θt := π − 2α

and note that

sin α =
b

a
. (3.72)

Since

sin
π

3
=

√
3

2
,
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from (3.71) and (3.72) follows that

sin α =
1√
3
, cos α =

√
1 − sin2 α =

√
2

3
,

therefore

sin θt = sin(π − 2α) = sin(2α) = 2 sin α cos α =
2
√

2

3

and

cos θt = −
√

1 − sin2 θt = −1

3
. �

We know that peptide groups are mostly fixed in the trans conformation, i.e., the

related primary dihedral angles are equal to π (see Subsection 1.6.1). Thus, we con-

sider the distance lα between α-carbons of two consequently connected residues to

be fixed and equal for all residue pairs. The following theorem permits an evaluation

of the distance between two remote α-carbons.

Theorem 3.20

Let ACi
α
, A

Ci+1
α

, . . . , A
Ci+n

α
be centers of α-carbons in consequently connected

residues numbered i, i + 1, . . . , i + n, and let N j, (C ′)j denote the numbers of the

nitrogen and carboxyl carbon of the main chain in the j-th residue (j = i, i + n)

respectively. Then the distance between ACi
α

and A
Ci+n

α
is given by:

∥∥∥�rCi
αCi+n

α

∥∥∥ =

√√√√√∥∥∥�rCi
αCi+n−1

α

∥∥∥2 + l2α + 2�cT

⎛⎝i+n−1∑
j=i+1

i+n−1∏
m=j

R
[Cα]
m

⎞⎠�c, (3.73)

where

�c :=

⎛⎜⎝lCi
α(C′)i + 1

3 l(C′)iNi+1 + l
Ni+1C

i+1
α

0

−
√

3
2 l(C′)iNi+1

⎞⎟⎠
T

, (3.74)

and

R[Cα]
m :=

⎛⎜⎜⎜⎝
1
3

2
√

2
3 sin ψ 2

√
2

3 cos ψ

−2
√

2
3 sin φ − cos φ cos ψ + 1

3 sinφ sin ψ cos φ sin ψ + 1
3 sin φ cos ψ

2
√

2
3 cos φ − sinφ cos ψ − 1

3 cos φ sin ψ sin φ sin ψ − 1
3 cos φ cos ψ

⎞⎟⎟⎟⎠
(3.75)

with

φ = φm, ψ = ψm, m = i + 1, i + n − 1.

Proof. Similarly to (3.66) we have:

∥∥∥�rCi
αCi+n

α

∥∥∥ =

√√√√∥∥∥�rCi
αCi+n−1

α

∥∥∥2 + l2α + 2
i+n−2∑

j=i

�r
C

j
αC

j+1
α

·�r
Ci+n−1

α Ci+n
α

, (3.76)
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Let B
C

j
α

denote the basis �e
C

j
α(C′)j

, �e
C

j
α(C′)jNj+1 , �e⊥

C
j
α(C′)j (Nj+1)

, ∀j = i, i + n − 1.

Note that

�r
C

j
αC

j+1
α

= �r
C

j
α(C′)j

+�r(C′)jNj+1 +�r
Nj+1C

j+1
α

, ∀j = i, i + n − 1.

Substitution of values 2π
3 for α(C′)j and αNj+1 , as well as π for the dihedral angle

into (3.6) shows that �r
C

j
α(C′)j

� �r
Nj+1C

j+1
α

. Utilizing additionally equation (3.27),

we obtain representation of �r
C

j
αC

j+1
α

in the basis B
C

j
α

(cf. (3.4)):

�r
C

j
αC

j+1
α

= l
C

j
α(C′)j

�e
C

j
α(C′)j

+ l(C′)jNj+1

(
1

3
�e

C
j
α(C′)j

−
√

3

2
�e⊥

C
j
α(C′)j(Nj+1)

)
+

+ l
Nj+1C

j+1
α

�e
C

j
α(C′)j

=

=

(
l
C

j
α(C′)j

+
1

3
l(C′)jNj+1 + l

Nj+1C
j+1
α

)
�e

C
j
α(C′)j

−
√

3

2
l(C′)jNj+1 �e⊥

C
j
α(C′)j(Nj+1)

. (3.77)

Therefore,

ΞB
C

j
α

(�r
C

j
αC

j+1
α

) =

⎛⎜⎝l
C

j
α(C′)j

+ 1
3 l(C′)jNj+1 + l

Nj+1C
j+1
α

0

−
√

3
2 l(C′)jNj+1

⎞⎟⎠= �c∗, ∀j = i, i + n − 1.

(3.78)

Hence, according to Remark 3.15 and equation 3.76 holds:

∥∥∥�rCi
αCi+n

α

∥∥∥ =

√√√√∥∥∥�rCi
αCi+n−1

α

∥∥∥2 + l2α + 2

i+n−2∑
j=i

�cT ΞB
C

j
α

◦ Ξ−1
B

Ci+n−1
α

(�c). (3.79)

By induction we deduce:

�cT ΞB
C

j
α

◦ Ξ−1
B

Ci+n−1
α

(�c) =

= �cT A
Cj

α Cj+1
α

C′(trans)j Nj+1A
C′(trans)j C′(trans)j+1

Nj+1 Cj+1
α

ANj+1 Nj+2

Cj+1
α C′(trans)j+1 . . .

. . . ACi+n−2
α Ci+n−1

α

C′(trans)i+n−2 N i+n−1A
C′(trans)i+n−2 C′(trans)i+n−1

N i+n−1 Ci+n−1
α

AN i+n−1N i+n

Ci+n−1
α C′(trans)i+n−1�c =

= �cT R
[Cα]
j+1 · · ·R[Cα]

i+n−1�c,

where

R[Cα]
m := A

Cm−1
α Cm

α

C′(trans)m−1 NmA
C′(trans)m−1 C′(trans)m

Nm Cm
α

ANm Nm+1

Cm
α C′(trans)m ,

∀m = j + 1, i + n − 1.

∗The bond lengthes l
C

j
α(C′)j

, l(C′)j Nj+1 , and l
Nj+1C

j+1
α

are the same for all j = i, i + n − 1.
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Substituting the above discussed values for fixed dihedral and bond angles, and

utilizing conventional notations for variable dihedral angles of the main chain, we

obtain:

A
C′(trans)m−1 C′(trans)m

Nm Cm
α

=

⎛⎜⎝
1
2

√
3

2 sin φm

√
3

2 cos φm

0 cos φm − sinφm

−
√

3
2

1
2 sin φm

1
2 cos φm

⎞⎟⎠ , (3.80)

ANm Nm+1

Cm
α C′(trans)m =

⎛⎜⎝
1
3

2
√

2
3 sin ψm

2
√

2
3 cos ψm

0 cos ψm − sinψm

−2
√

2
3

1
3 sin ψm

1
3 cos ψm

⎞⎟⎠ , (3.81)

A
Cm

α Cm+1
α

C′(trans)m Nm+1 =

⎛⎜⎝
1
2 0 −

√
3

2

0 −1 0

−
√

3
2 0 −1

2

⎞⎟⎠ , (3.82)

A
Cm

α Cm+1
α

C′(cis)m Nm+1 =

⎛⎜⎝
1
2 0

√
3

2

0 1 0

−
√

3
2 0 1

2

⎞⎟⎠ . (3.83)

From (3.79)-(3.83) follows (3.73) with (3.75). �

3.3 Energy as a function of torsion angles

Let the molecule be represented by a bidirectional weighted connected graph (see

Figure 3.4). The vertices of the graph correspond to atoms, and the edges — to

bonds. A covalent bond, e.g., between atoms Ai and Aj , is reproduced two times:

as bond bij of atom Ai to atom Aj, and as bond bji of atom Aj to Ai. Let us

consider bond bij to be directed towards Aj and call bji complementary to bij .

9

1

9 1

9

1 9 1 9 1 9

19 1

3

7

6

4

Fig. 3.4: A graph of a molecule with assigned bond weights. Red arrows stand for the

bonds in the direction of flow from the bond with the weight six. Red circles denote the

atoms that belong to the branch, originated by that bond.



110 Chapter 3. Modeling Intracellular Protein Folding

Definition 3.21

Assume there exist a sequence S = (i1, . . . , in) of atom numbers, such that i1 � in
and ij � ij+1 for j = 1, n − 1. Let the corresponding set

R := {Ak | k ∈ S} ∪ {bij | (i, j ∈ S) ∧ (i � j)}

be termed as a ring , and let R̂ij denote the union of all rings containing bij. A single

ring includes exactly two bonds of any atom that belongs to it. A double ring is a

union of two single rings that contain exactly one pair of mutually complementary

bonds in common. Other types of rings are not represented in amino acids.

Definition 3.22

Let Fij denote a set, such that

a) bij ∈ Fij ,

b) if bkl ∈ Fij, then blm ∈ Fij, ∀k, l, m ∈ N , such that (k � l) ∧ (l � m),

unless (bml ∈ Fij) ∧ (R̂lm = ∅),
and let it be referred as bonds in the direction of flow from bij (see Figure 3.4).

Definition 3.23

Let Dij := {Ak | blk ∈ Fij , ∀k, l ∈ N} be termed as the branch, originated by

bij , Ai be referred as the origin of branch Dij , and let branches Dij, Dji be called

complementary. Besides, let us denote Njk := {n ∈ N | An ∈ Djk}.

A twisting of a chain at the covalent bond between atoms Ai and Aj can be achieved

by means of rotation of either branch Dij or branch Dji. However, it is more efficient

to rotate the branch that contains less atoms. Therefore, a bond weight wij is

assigned to each bond bij :

wij =

{
0, if R̂ij �= ∅,
cardDij − 1 otherwise.

(3.84)

Now, let

Z := {(i, j) ∈ N 2 | (i � j) ∧ (wij �= 1) ∧ (wji �= 1)},
Y := {(i, j) ∈ Z | (i � j) ∨ (R̂ij �= ∅)},

X := Z \ Y, and M :=
1

2
cardX . (3.85)

Further, let

M := {1, 2, . . . ,M},
and let κ : X → M be a surjection, such that

κ(i, j) = κ(j, i), and κ(i, j) �= κ(k, l) unless (i, j) = (k, l) or (i, j) = (l, k).

Thus, κ can be understood as a numbering for degrees of freedom.
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Besides, let

C := {(i, j) ∈ N 2 | (i � j) ∧ (i < j)}, (3.86)

and let �I : C → NN be a map, such that

I [1](i, j) = i,

I [k]
� I [k+1], ∀k = 1,ℵij + 1,

I [k] = j, ∀k = ℵij + 2, N.

Hence, for any ordered couple of atom indexes, such that i � j, I is a vector

containing the sequence of atom numbers that corresponds to the shortest connected

path from Ai to Aj . The path is not always uniquely defined due to the presence

of rings.

To model the dependence of the free energy on the variable torsion angles in a

molecule, we define a map Ũ : (−π, π]M → R as:

Ũ(�ζ) = Ũ [w](�ζ) + G̃[e](�ζ) + G̃[s](�ζ), (3.87)

where

Ũ [w](�ζ) :=
∑

(i,j)∈C
dij(ζ)<C[w]

√
E

[w]
i E

[w]
j

⎛⎝(R
[w]
i + R

[w]
j

dij(�ζ)

)12
− 2

(
R

[w]
i + R

[w]
j

dij(�ζ)

)6⎞⎠ (3.88)

is the potential energy of intramolecular van der Waals interactions (cf. (2.7)),

which is to be modified in case of hydrogen bonding, C [w] is the cutoff used for

computations of these interactions,

G̃[e](�ζ) :=
1

4πε0

∑
(i,j)∈C

qiqj

εij(�ζ)dij(�ζ)
(3.89)

is the free energy of electrostatic interactions between protein atoms, εij(�ζ) and

G̃[s](�ζ) are respectively the screening functions and the free energy of solvation,

both described in Section 3.4, and dij : (−π, π]M → R+ are distances between

atoms Ai and Aj ((i, j) ∈ C):

dij(�ζ) :=

√√√√ℵij+2∑
k=2

l2
I [k−1](i,j) I [k](i,j)

+

+2

ℵij+1∑
k=2

ℵij+1∑
n=k

lI [k−1](i,j) I [k](i,j) lI [n](i,j) I [n+1](i,j)

(
n∏

m=k

A
I [m−1](i,j)I [m+2](i,j)

I [m](i,j)I [m+1](i,j)

)
11

. (3.90)

Here A
I [m−1](i,j)I [m+2](i,j)

I [m](i,j)I [m+1](i,j)
given by (3.64) for m = 2,ℵij , and by (3.65) for m = ℵij+1.
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A
I [m−1](i,j)I [m+2](i,j)

I [m](i,j)I [m+1](i,j)
is a constant matrix, if m = ℵij+1 or (I [m](i, j), I [m+1](i, j))∈Y,

and a function of ζ [κ(I [m](i,j),I [m+1](i,j))] otherwise. In the latter case

ζ
I [m−1](i,j)I [m+2](i,j)

I [m](i,j)I [m+1](i,j)
= ζ [κ(I [m](i,j),I [m+1](i,j))]+

+ ζs(I
[m−1](i, j), I [m](i, j), I [m+1](i, j), I [m+2](i, j)),

where ζs(I
[m−1](i, j), I [m](i, j), I [m+1](i, j), I [m+2](i, j)) ∈ (−π, π) is a constant sup-

plement that depends on the choice of the primary chain and the chiral configura-

tions of the centers AI [m](i,j) and AI [m+1](i,j).

Remark 3.24

Note that dij(�ζ) = dji(�ζ), ∀ i, j ∈ N . The condition of number ordering in (3.86) is

introduced to avoid double inclusion of energies related to each atom pair into the

estimated potential of mean force Ũ(�ζ)∗.

3.4 Modeling hydration

The implicit solvation models, described in Chapter 2, are based of the observation

of the linear correlation between hydrophobic effect and SASA. However, since the

number of water molecules that can directly contact an atom is discrete, it can be of

advantage to estimate this number instead of more exact computation or estimation

of the solvent-exposed surface area. Thus, it is not unreasonable to assume that

the effect of the interaction of one water molecule with a cavity on solute surface

remains the same after doubling the cavity SASA, if the size of the cavity is still

not sufficient to accommodate more molecules. The idea to estimate the number of

contacted water molecules for each atom is set as a basis for the below described

method.

For this purpose, a grid consisting of twelve uniformly distributed points is generated

on the surface of each atom (Fig. 3.5(a)). These points describe potential locations

of water molecules closely packed around an isolated atom. The point positions

are updated periodically through a random rotation of the grid around the atom

center†. To estimate the hydration degree hi of atom Ai, each grid point is checked

with regard to its accessibility by water, and the corresponding hydration status

is assigned to it (Fig. 3.5(b)). The number of accessible points n
[a]
i is used for

evaluation of the solvation energy G
[s]
i of atom Ai:

G
[s]
i = E

[s]
i n

[a]
i . (3.91)

Here E
[s]
i is an estimated solvation energy per one contacted water molecule, de-

pending on the atom type and charge. The hydration degree hi is then n
[a]
i /12.

∗ eU(�ζ) has free energy components, but by itself is not a free energy, since it does not take into

account the entropy of the chain.
†In fact, for more computational efficiency the surrounding coordinate space is rotated instead

of the surface grid, as described below.
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(a)

AjAi
�rij

γij

(b)

Fig. 3.5: (a) An isolated atom with its solvation grid. (b) Two atoms with overlapping

hydration spheres (red). Grid points that lay in the intersection cone are marked as in-

accessible (light orange). Initially all points are considered to be accessible (blue). The

points on hydration spheres describe potential locations of water molecules, and the points

on the van der Waals surface are utilized for visualization of surface accessibility (see also

Figure 3.10). The both related points correspond to the same grid point position, described

by its surface coordinates.

To account for the screening effect, the relative permittivity εij = 40 is used for

evaluation of electrostatic interactions, if at least one of the two interacting atoms

Ai and Aj is hydrated. Otherwise, εij = 3 is taken, largely in accordance with

justifications given in [1]∗.

3.4.1 Rationale

One can place around a sphere S of the radius R at maximum 12 spheres of the

same radius. This problem has a long history, being already a subject of discus-

sion between Isaac Newton and David Gregory in Cambridge [117]. However, the

first proof that is accepted nowadays was given only in 1953 by Schütte and van

der Waerden [118]. Since there is no need for a rigorous estimate in case of our

approximation, we shall restrict ourselves with the examination described below.

Let us explore a regular icosahedron (Fig. 3.6(a)), inscribed in a sphere with the

radius 2R around the center of the sphere S.

∗Hereby we make simplifying assumptions that any non-hydrated charges are closer to each other

then to the protein surface and that the charges at the opposite sides of the protein surface are

separated by a sufficient distance to be essentially invisible to each other even at εij = 40.
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(a)

z

y

x

(b)

Fig. 3.6: (a) An opaque icosahedron. (b) Orientation of an icosahedron in the coordinate

system used for generation of initial surface grid coordinates. The faces situated over the

xy-plane are outlined by red color, and those under xy-plane — by blue.

Lemma 3.25

Let a be the length of the ridge of a regular icosahedron, and R̂ be the radius of

the circumscribed sphere. Then holds:

a = 2R̂

√
5 −√

5

10
≈ 1.05R̂. (3.92)

Proof. Consider a section through five icosahedron vertices (see Figure 3.7 (a) and

notations therein). Note that

α =
2π

5
, β =

1

2
(π − α) =

3π

10
, and γ =

π

2
− β =

π

5
.

By Ptolemy’s theorem [119], which says that the product of diagonals of a cyclic

quadrilateral is equal to the sum of the products of the opposite sides, it follows

that a and b are in golden ratio:

AD · CE = AE · CD + DE · AC ⇒ b2 = a2 + ab ⇒ b

a
=

1 +
√

5

2
.

From the other side, we can see in triangle BCF that

cos γ =
b

2a
,

hence

cos
π

5
=

1 +
√

5

4
and sin

π

5
=

√
1 − cos2

π

5
=

1

2

√
5 −√

5

2
. (3.93)
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a

aa

a′

b

α
β

γ

O

HA

B

C

D

E

a

F

(a)

AO

O′

δ
I

a

R̂

a′

R̂

G

(b)

Fig. 3.7: (a) A cross-section through five icosahedron vertices laying in one plane. AB =

BC = CD = DE = AE =: a, AO = BO = CO = DO = EO =: a′, AC = CE = AD =: b

(i.a.), ∠AOB = ∠BOC = ∠COD = ∠DOE = ∠AOE =: α, ∠OBC = ∠BCO =: β

(i.a.), ∠BCF =: γ (i.a.). (b) A cross-section through two vertices and the center O′ of the

icosahedron. AG = a, AO = a′, O′A = O′G = R̂, ∠AGO′ = ∠GAO′ =: δ.

Altitude OH of triangle AOE is simultaneously a bisector, therefore holds:

a

2a′
= sin

π

5
,

and using (3.93) we obtain:

a′

a
=

√
5 +

√
5

10
. (3.94)

Now consider a cross-section through two vertices and the center of the icosahedron

(Fig. 3.7 (b)). We see from OGA that

sin δ =
a′

a
, (3.95)

and from O′GI

cos δ =
a

2R̂
. (3.96)

Note that according to (3.94) and (3.95)

cos δ =

√
1 −
(

a′

a

)2

=

√
5 −√

5

10
, (3.97)

and with (3.96) immediately follows (3.92). �
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(a)

A

B

O
R

S

(b)

Fig. 3.8: (a) Placement of twelve blue spheres in icosahedron vertices about one black

sphere in the center. (b) A cross section through the center of the sphere S of radius R and

two vertices A and B of the discussed icosahedron.

We see that the length of the ridge of the given icosahedron is approximately 1.05

times larger than the distance from a vertex to the icosahedron center, equal to 2R,

which means that spheres of radius R placed at the vertices connected by a ridge

almost touch each other (Fig. 3.8(a,b)).

The conventional probe radius Rp roughly corresponds to an average van der Waals

radius of atoms constituting typical organic molecules, in particular, proteins. There-

fore, taking into account an approximate nature of the definition of solvent accessible

surface, we assume that about 12 water molecules can be placed around an isolated

atom, neglecting for simplicity the difference of van der Waals radii.

Let R
[w]
i be the van der Waals radius of atom Ai, and let us denote the sphere

of radius R
[h]
i := R

[w]
i + Rp around the atom center as a hydration sphere of the

atom. To determine, which of 12 potential positions of water molecules are in fact

accessible, a grid of 12 uniformly distributed points is generated on the surface

of the atom hydration sphere. The location of each grid point is described by its

surface coordinates (ϕ, ϑ) defined as in Figure 3.9.

3.4.2 Grid generation

Using the fact that the grid points correspond to the vertices of the inscribed icosa-

hedron (Fig. 3.5(a)), we initialize the grid on the stage of creation by the following

coordinates (see Figure 3.6(b)):

(0, 0), (0, ϑI),
(

2π
5 , ϑI

)
,
(−2π

5 , ϑI

)
,
(

4π
5 , ϑI

)
,
(−4π

5 , ϑI

)
, (3.98)(

π
5 , π− ϑI

)
,
(−π

5 , π− ϑI

)
,
(

3π
5 , π− ϑI

)
,
(−3π

5 , π− ϑI

)
, (π, π− ϑI), (0, π), (3.99)
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r[1]

r[2]

r[3]

ϕ

ϑ
P

Fig. 3.9: Surface coordinates (ϕ, ϑ) of location of the point P on the surface of the atom

sphere and their relation to the Cartesian coordinates.

where ϑI is given by the following lemma.

Lemma 3.26

For the angular distance ϑI between two vertices of a regular icosahedron relative

to its center holds:

ϑI = arctan 2. (3.100)

Proof. From Figure 3.7(b) we see that

sin
ϑI

2
= cos δ.

Therefore

cos ϑI = 1 − 2 cos2 δ,

and with (3.97) we obtain

cos ϑI =
1√
5
.

Since for any α holds

1 + tan2 α =
1

cos2 α
,

immediately follows (3.100). �

In order to obtain an arbitrary oriented grid, at the beginning of each energy min-

imization step a new rotation matrix

Mi =

⎛⎜⎝ cos ψ cos ϕ − cos ϑ sinψ sin ϕ sin ψ cos ϕ + cos ϑ cos ψ sinϕ sin ϑ sin ϕ

− cos ψ sin ϕ − cos ϑ sin ψ cos ϕ − sinψ sin ϕ + cos ϑ cos ψ cos ϕ sin ϑ cos ϕ

sin ϑ sin ψ − sin ϑ cos ψ cos ϑ

⎞⎟⎠
is computed for each atom Ai from a triple (ϑ,ψ, ϕ) ∈ [0, π) × [0, π) × [0, 2π) of

randomly generated Euler angles [120] and stored in the atom class. This matrix
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Fig. 3.10: Cysteine-alanine-serine tripeptide with its solvation grid. Hydrated points are

colored in light blue, and the grid points laying in cavities are colored in orange.

can be used for rotation of the surface grid, as shown in Figure 3.10. However, it is

more efficient to rotate the surrounding coordinate space, i.e. compute the vectors

Mi�rij and Mj�rji for each pair of atoms Ai and Aj with intersecting hydration

spheres, and store only one set of initial grid coordinates, given by (3.98)-(3.99), for

all atoms.

3.4.3 Accessibility check

Definition 3.27

Let Υ : R×(−π, π]×[0, π] → R3 be a mapping of spherical to Cartesian coordinates,

defined as

Υ(r, ϕ, ϑ) :=

⎛⎜⎝r sin ϑ cos ϕ

r sin ϑ sin ϕ

r cos ϑ

⎞⎟⎠ . (3.101)

Let the inverse mapping Υ−1(�r) be defined as specified in (1.23)-(1.25), and let

Υ−1
[ϕ,ϑ] : R3 → (−π, π] × [0, π] denote the projection of Cartesian onto surface coor-

dinates (ϕ, ϑ), given by (1.24)-(1.25).

Definition 3.28

Let

Γi :=
{
�p ∈ R3

∣∣ ‖�p −�ri‖ = R
[h]
i

}
and γij := ∠(�g −�ri,�rij), �g ∈ Γi ∩ Γj. (3.102)

We say that a grid point (ϕk, ϑk) is inside the intersection of hydration spheres of

atoms Ai and Aj if and only if holds:(
�ri + Υ(R

[h]
i , ϕk, ϑk)

)
∈ Λij := {�p ∈ Γi | ∠(�p−�ri,�rij) < γij}. (3.103)



3.4. Modeling hydration 119

Proposition 3.29

γij defined in (3.102) is given by

γij = arccos

(
(R

[h]
i )2 − (R

[h]
j )2 + ‖�rij‖2

2R
[h]
i ‖�rij‖

)
. (3.104)

Proof. Let �g ∈ Γi ∩ Γj, so that holds:

(�g −�rl) · (�g −�rl) = R
[h]
l , l ∈ {i, j}. (3.105)

We have:

cos γij = cos ∠(�g −�ri,�rij) = cos

(
(�g −�ri) ·�rij

‖�g −�ri‖‖�rij‖
)

= cos

(
(�g −�ri) ·�rij

R
[h]
i ‖�rij‖

)
, (3.106)

and using (3.105) we obtain:

(�g −�ri) ·�rij = (�g −�ri) · (�rj −�ri) = (�g −�ri) · (�rj − �g + �g −�ri) =

= (�g −�ri) · (�rj − �g) + (R
[h]
i )2 = (�g −�rj +�rj −�ri) · (�rj − �g) + (R

[h]
i )2 =

= −(R
[h]
j )2 +�rij · (�rj − �g) + (R

[h]
i )2 =

= −(R
[h]
j )2 +�rij · (�rj −�ri +�ri − �g) + (R

[h]
i )2 =

= −(R
[h]
j )2 + ‖�rij‖2 −�rij · (�g −�ri) + (R

[h]
i )2.

Hence

(�g −�ri) ·�rij =
1

2

(
(R

[h]
i )2 − (R

[h]
j )2 + ‖�rij‖2

)
, (3.107)

and a substitution of (3.107) into (3.106) gives (3.104). �

Proposition 3.30

A surface grid point Pk := (ϕk, ϑk) of atom Ai is inside the intersection of hydration

spheres of atoms Ai and Aj if and only if the following inequality holds:

sin ϑk sin ϑij cos(ϕk − ϕij) + cos ϑk cos ϑij > cos γij , (3.108)

where (ϕij , ϑij) = Υ−1
[ϕ,ϑ](�rij).

Proof. The angle between vector �rij and the unit vector �vk pointing from the atom

center Ai towards Pk is given by:

∠(�vk,�rij) = arccos

(
�vk ·�rij

‖�rij‖
)

= arccos (Υ(1, ϕk, ϑk) · Υ(1, ϕij , ϑij))

= arccos(sin ϑk cos ϕk sinϑij cos ϕij+

+ sin ϑk sin ϕk sin ϑij sin ϕij + cos ϑk cos ϑij) =

= arccos(sin ϑk sin ϑij cos(ϕk − ϕij) + cos ϑk cos ϑij).
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Since ∠(�vk,�rij), γij ∈ [0, π], the condition ∠(�vk,�rij) < γij holds if and only if

cos ∠(�vk,�rij) > cos γij . �

Initially each grid point obtains the status “accessible”, i.e. considered to be exposed

to solvent. Then for each pair of atoms Ai and Aj , such that

‖�rij‖ ≤ R
[h]
i + R

[h]
j ,

the surface coordinates

(ϕij , ϑij) = Υ−1
[ϕ,ϑ](Mi�rij)

of the rotated vector �rij are computed∗, and for each accessible grid point (ϕk, ϑk)

of atom Ai the test (3.108) is performed. If the point lays inside the intersection,

its status is set to “unaccessible”. The same is repeated with the roles Ai and Aj

exchanged.

3.5 Modeling cotranslational folding

The potential Ũ(�ζ) requires a specification of an appropriate initial configuration.

As already mentioned in Section 3.1, the strategy consists in generation of optimal

coordinates for all constituting amino acids and imitation (with certain simplifica-

tions) of protein synthesis as it happens in ribosomes. That is, each new residue is

appended in a way that the formed peptide group acquires the trans arrangement,

and the other dihedral angles obtain suitable† initial values.

Since the carboxyl terminal of the growing chain is fixed at PTC and partially

remains inside the ribosomal tunnel, at leat some terminal residues can not partici-

pate in folding during the synthesis. To imitate this effect, we freeze the last eight‡

residues and supplement the potential by an additional term:

U [r] =
K−8∑
k=1

∑
i∈Nk

k[r] min(0,�ric · �vc)
2, (3.109)

which is intended to favor folding at one side of the plane orthogonal to the central

axis of the frozen helical fragment and passing through �rc (see Figure 3.11). Here

K is the current number of residues, Nk are the numbers of all atoms in the k-th

residue, k[r] is a sufficiently large constant, �rc is given by

�rc =
1

4

K−4∑
k=K−7

�r(Cα)k
,

∗Here the external coordinate space is rotated instead of the initial surface grid. If Ai has no

accessible grid points, this computation is omitted.
†For a discussion concerning this issue see Subsections 1.6.1, 1.6.2, and 1.8.3.
‡The fragment hidden in the ribosomal tunnel is apparently longer (see Section 1.8), but this

number is convenient for determination of an imaginary tunnel axis, both in case of a helical and

an extended initial conformation of appended residues. At the same time, this length is sufficient

to reproduce the desired effect.
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Fig. 3.11: Simulation of cotranslational folding with SiViProF. The half-space available

for folding is spread at the left-hand side of the blue semitransparent plane. The small pink

arrow depicts the normalized �vc pointing from �rc, while the orange three-dimensional arrow

at the carboxyl end shows the direction of the peptide chain elongation.

and the direction of the putative tunnel axis is given by

�vc =
1

4

K∑
k=K−3

�r(Cα)k
−�rc.

As usually, we imply that �ric := �rc − �ri and �r(Cα)k
is the position of the α-carbon

belonging to the k-th residue.

Remark 3.31

It is more efficient to compute �rs := �rc · �vc one time for a given configuration, and

then obtain �ric · �vc as �rs −�ri · �vc.

Remark 3.32

U [r] can be also written as a function of dihedral angles �ζ. Indeed, all atomic

positions can be expressed relative to any atom instead of the coordinate origin,

and the conformation of the molecule is uniquely defined by the primary dihedral

angles.

For generation of initial atomic coordinates and for their subsequent transforma-

tions we shall use the operations described in the following subsections. All related

algorithms are discussed in Chapter 4.
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3.5.1 Operations for coordinate transformations

In the following derivations we assume that all vectors point from the coordinate

origin.

Definition 3.33

Let �a

�

α denote an operation that produces a vector �a ′, such that ∠(�a ′, �a) = α and

‖�a ′‖ = ‖�a‖. This operation shall be referred as deflection of vector �a to the angle

α. Herewith, however, it is implied that vector �a itself is not changed, but a new

vector is created as the result of this operation.

Definition 3.34

Let �a

��bα denote the result of deflection of vector �a to the angle α in the plane

spanned by non-collinear vectors �a and �b, such that the vector is rotated clockwise

when viewed along the vector �a × �b (Fig. 3.12(a)). Let such operation be also

referred as deflection to the angle α in the direction of vector �b.

Definition 3.35

Let �a α
∨
�b symbolize the result of deflection of vector �a in the direction of vector �b,

such that the angle between the new vector and vector �b is equal to α (Fig. 3.12

(b)).

Lemma 3.36

Let �a and �b be non-collinear vectors. The vector �a⊥ given by

�a⊥ := �b− �a (�a · �b)

�a · �a (3.110)

is orthogonal to �a.

Proof.

�a · �a⊥ = �a · �b− (�a · �a)(�a · �b)

�a · �a = 0. �

α
�a

�a ′

�b

(a)

�a

�b

α

�a ′′

(b)

Fig. 3.12: Deflection of the vector �a in the direction of the vector �b. (a) �a ′ = �a

��bα.

(b) �a ′′ = �a α
∨
�b.
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Proposition 3.37

Under the conditions of Lemma 3.36 the deflected vector �a ′ := �a

��bα can be com-

puted using the following expression:

�a ′ = �a cos α +
�a⊥‖�a‖ sin α

‖�a⊥‖ .

Proof. First, we show that �a ′ is a result of rotation of vector �a to the angle α:

‖�a ′‖ =
√

�a ′ · �a ′ =

√
�a · �a cos2 α +

2�a · �a⊥‖�a‖ sin α cos α

‖�a⊥‖ +
�a⊥ · �a⊥‖�a‖2 sin2 α

‖�a⊥‖2
=

=

√
‖�a‖2 cos2 α + ‖�a‖2 sin2 α = ‖�a‖,

∠(�a, �a ′) = arccos

(
�a · �a ′

‖�a‖‖�a ′‖
)

= arccos

(
1

‖�a‖2

(
�a · �a cos α +

�a · �a⊥‖�a‖ sin α

‖�a⊥‖
))

= α.

As a linear combination of vectors �a and �b, vector �a ′ lays in the same plane, and,

moreover,

�a × �a ′ = �a × �a cos α + �a ×
(

�b− �a (�a · �b)

�a · �a

)
‖�a‖ sin α

‖�a⊥‖ =
�a × �b ‖�a‖ sin α

‖�a⊥‖ ,

which implies that for α < π vector �a ′ belongs to the same half-plane as vector �b

relative to the axis though vector �a.

Corollary 3.38

The vector �a ′′ := �aα
∨
�b is given by

�a ′′ =
‖�a‖
‖�b‖

�b

��aα =

(
�b cos α

‖�b‖
+

�b⊥ sinα

‖�b⊥‖

)
‖�a‖, (3.111)

where �b⊥ is defined according to equation (3.110) with �a and �b exchanged.

Remark 3.39

�aα
∨
�b can be also computed as �a

��b(∠(�a, �b) − α), but it is more efficient to use the

expression (3.111), unless the angle between vectors �a and �b is already determined.

Remark 3.40

�a

�

α can be computed as �a

��bα with a random vector �b, non-collinear to �a.

Definition 3.41

Let M�v(α) denote the matrix given by

M�v(α) := �v�vT + (E − �v�vT) cos α + S sin α, (3.112)

where �v = (v[1], v[2], v[3])T is a unit vector, E ∈ R3×3 is a unit matrix and

S :=

⎛⎜⎝ 0 −v[3] v[2]

v[3] 0 −v[1]

−v[2] v[1] 0

⎞⎟⎠ .



124 Chapter 3. Modeling Intracellular Protein Folding

�a

�a ′

�v

α

(a)

�a
�v

�b
�a ′′

(b)

Fig. 3.13: Rotation about vector �v. (a) �a ′ = M�v(α)�a, �v points from the viewer. (b) �a ′′ =

M�a
�b
�a, �v is between �a and �b.

A multiplication of this matrix with a vector �a results in rotation∗ of �a to the angle

α about vector �v [121]. The rotation is clockwise, when viewed along vector �v (see

Figure 3.13 (a)).

Definition 3.42

Let M�a
�b

denote a rotation matrix, such that the vector M�a
�b
�a is directed as vector

�b. We will say that multiplication of this matrix with vector �a results in matching

the direction of vector �a with vector �b.

Remark 3.43

The matrix for direction matching, which satisfies Definition 3.42, is not uniquely de-

fined, since a subsequent rotation about vector �b keeps the vector M�a
�b
�a unchanged.

One of possible realizations of this operation is to rotate vector �a to the angle π

about the unit vector

�v =

⎛⎜⎝v[1]

v[2]

v[3]

⎞⎟⎠ =

a
‖a‖ +

b

‖b‖∥∥∥ a
‖a‖ +

b

‖b‖

∥∥∥ ,
see Figure 3.13 (b).

Substitution of α = π into equation (3.112) gives:

M�a
�b

=

⎛⎜⎝2(v[1])2 − 1 2v[1]v[2] 2v[1]v[3]

2v[1]v[2] 2(v[2])2 − 1 2v[2]v[3]

2v[1]v[3] 2v[2]v[3] 2(v[3])2 − 1

⎞⎟⎠ .

Remark 3.44

Direction matching is utilized not for transforming the vector �a, which could be

simply achieved by scaling the vector �b, but for rotating related objects.

∗Again, it is implied that the original vector is not changed, but a new vector is created as a

result of the operation.
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Vl

Vm

ϕt

Aj

�e t
2

Vk

�e t
3

Vi �e t
1

ϑt

rt

�rt

Fig. 3.14: A tetrahedron with related coordinate systems.

For generation of atomic coordinates by algorithms described in the next chapter,

we need to solve the task of reconstructing the directions of two vertices of a regular

tetrahedron relative to its center, when the center Aj and the directions �rjk and

�rjl of two other vertices Vk, Vl are given. For this purpose we introduce a new

local Cartesian coordinate system with the center in Aj and the orthonormal basis

{�e t
1, �e t

2, �e t
3}, related to the tetrahedron so that

�e t
3 =:

⎛⎜⎝t
[1]
3

t
[2]
3

t
[3]
3

⎞⎟⎠ :=
�rjk

‖�rjk‖ , (3.113)

�e t
2 =:

⎛⎜⎝t
[1]
2

t
[2]
2

t
[3]
2

⎞⎟⎠ :=
�rjk ×�rjl

‖�rjk ×�rjl‖ , (3.114)

�e t
1 =:

⎛⎜⎝t
[1]
1

t
[2]
1

t
[3]
1

⎞⎟⎠ := �e t
2 × �e t

3. (3.115)

Knowing that the angle between vertex directions in a regular tetrahedron is equal

to arccos(−1/3) (see Lemma 3.19), we can specify the positions of the left and the

right vertex, Vi and Vm (see Figure 3.14), in the associated spherical coordinate

system as (r,−120◦, 109.4712◦) and (r, 120◦, 109.4712◦), where r is the distance
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from any vertex to the center. Since we need only the directions, we set r = 1. The

corresponding coordinates in the local Cartesian coordinate system can be then

computed from spherical coordinates using the mapping given by Definition 3.27.

Thus, we define:

�vl := Υ(1,−120◦, 109.4712◦) and �vr := Υ(1, 120◦, 109.4712◦). (3.116)

The positions of vertices Vi and Vm in the original global Cartesian coordinate

system can be reconstructed using �vl and �vr according to the following proposition.

For another r vectors �vl and �vr can be scaled as appropriate.

Proposition 3.45

Let �rt be the position of a point in the local Cartesian coordinate system with the

basis {�e t
1, �e t

2, �e t
3} given by (3.113)-(3.115) and centered at the global position �rj .

Then the global position �r of the considered point is given by

�r = �rj + T
�rjk
�rjl

�rt,

where

T
�rjk
�rjl

:=
(
�e t

1 �e t
2 �e t

3

)
:=

⎛⎜⎝t
[1]
1 t

[1]
2 t

[1]
3

t
[2]
1 t

[2]
2 t

[2]
3

t
[3]
1 t

[3]
2 t

[3]
3

⎞⎟⎠ . (3.117)

Proof. For any position �r in the global coordinate system holds:

�r = �rj+r
[1]
t �e t

1+r
[2]
t �e t

2+r
[3]
t �e t

3 = �rj+

⎛⎜⎝r
[1]
t t

[1]
1 + r

[2]
t t

[1]
2 + r

[3]
t t

[1]
3

r
[1]
t t

[2]
1 + r

[2]
t t

[2]
2 + r

[3]
t t

[2]
3

r
[1]
t t

[3]
1 + r

[2]
t t

[3]
2 + r

[3]
t t

[3]
3

⎞⎟⎠ = �rj+T
�rjk
�rjl

⎛⎜⎝r
[1]
t

r
[2]
t

r
[3]
t

⎞⎟⎠. �

3.5.2 Appending a new amino acid residue

Assume that amino acids with optimized atomic coordinates are available. Before

we proceed, we shall take care that each amino group participating in peptide bond

formation is transferred into the non-ionized form and, moreover, acquires an sp2-

like arrangement, typical for peptide groups.

Let P and A be three-dimensional Euclidian spaces equipped with Cartesian coor-

dinate systems, and let �pX ∈ P and �aX ∈ A denote the vectors pointing from the

chosen coordinate origin to the position of the object X, located in P or A respec-

tively. Let the points H, N and C a
α represent respectively one of the hydrogens of

the amino group, the nitrogen and the α-carbon of the amino acid common part,

and C ′, O, C p
α be the centers of C′, one of the oxygen atoms of the carboxyl group

and the α-carbon of the protein current terminal residue. Naturally, we designate

�pXY := �pY − �pX and �aXY := �aY − �aX.
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Fig. 3.15: Appending a new amino acid. Vectors �e p
2 and �e a

2 are directed to the viewer. X

stays for Cγ in proline and for H in any other residue. Some bonds of Cα and Cγ are not

shown.

Further, we introduce two auxiliary orthonormal bases �e a
1 , �e a

2 , �e a
3 and �e p

1 , �e p
2 , �e p

3 ,

defined by equations (3.118)-(3.123).

�e a
1 =

⎛⎜⎝a
[1]
1

a
[2]
1

a
[3]
1

⎞⎟⎠ :=
�aHN

‖�aHN‖ , (3.118)

�e a
2 =

⎛⎜⎝a
[1]
2

a
[2]
2

a
[3]
2

⎞⎟⎠ :=
�aHN × �aNC a

α

‖�aHN × �aNC a
α
‖ , (3.119)

�e a
3 =

⎛⎜⎝a
[1]
3

a
[2]
3

a
[3]
3

⎞⎟⎠ := �e a
1 × �e a

2 , (3.120)

�e p
1 =

⎛⎜⎝p
[1]
1

p
[2]
1

p
[3]
1

⎞⎟⎠ :=
�pC′O

‖�pC′O‖
, (3.121)

�e p
2 =

⎛⎜⎝p
[1]
2

p
[2]
2

p
[3]
2

⎞⎟⎠ :=
�pC′O × �pC

p
α C′

‖�pC′O × �pC
p
α C′‖ , (3.122)

�e p
3 =

⎛⎜⎝p
[1]
3

p
[2]
3

p
[3]
3

⎞⎟⎠ := �e p
1 × �e p

2 . (3.123)

Then the coordinate transformation, given in the following theorem, can be used for

computation of new coordinates for the atoms of the appended amino acid residue.

Theorem 3.46

Let lp denote the reference length of the peptide bond and let f : A → P be an

affine map such that

f(�a) = PAT(�a − �aN) + �pC′ + lp
�pC′O

‖�pC′O‖
, ∀�a ∈ A,
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where A and P are two matrices with columns representing the introduced auxiliary

basis vectors:

A :=
(
�e a

1 �e a
2 �e a

3

)
:=

⎛⎜⎝a
[1]
1 a

[1]
2 a

[1]
3

a
[2]
1 a

[2]
2 a

[2]
3

a
[3]
1 a

[3]
2 a

[3]
3

⎞⎟⎠ ,

P :=
(
�e p

1 �e p
2 �e p

3

)
:=

⎛⎜⎝p
[1]
1 p

[1]
2 p

[1]
3

p
[2]
1 p

[2]
2 p

[2]
3

p
[3]
1 p

[3]
2 p

[3]
3

⎞⎟⎠ .

If the new position �p of each attached atom is computed from the old position �a

as �p = f(�a), then the amino acid is appended in a trans conformation with all

interatomic distances and chirality preserved, and the length of the peptide bond

equal to lp.

Proof. At first we show that the geometry of the appended amino acid is retained.

detAT =

∣∣∣∣∣∣∣
(�e a

1 )T

(�e a
2 )T

(�e a
3 )T

∣∣∣∣∣∣∣ = (�e a
1 × �e a

2 ) · �e a
3 = �e a

3 · �e a
3 = 1.

Reciprocally we obtain:

detP = detPT = 1, det(PAT) = detPdetAT = 1.

Hence PAT is a rotation matrix. Consequently, the mapping f , as a superposition

of rotation and translation, preserves distances and chirality.

The bond angles of the atoms C′ and N are also maintained, since the directions of

the vectors �pC′O, �pC′N and �pHN coincide:

�pC′N = f(�aN) − �pC′ = PAT(�aN − �aN) + �pC′ + lp
�pC′O

‖�pC′O‖
− �pC′ = lp

�pC′O

‖�pC′O‖
,

�pHN = f(�aN) − f(�aH) = −PAT(�aH − �aN) = PAT�aHN = PAT�e a
1 ‖�aHN‖ =

=
(
�e p

1 �e p
2 �e p

3

)⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠�e a
1 ‖�aHN‖ =

(
�e p

1 �e p
2 �e p

3

)⎛⎜⎝1

0

0

⎞⎟⎠ ‖�aHN‖ =

= �e p
1 ‖�aHN‖ =

�pC′O

‖�pC′O‖
‖�aHN‖.

The length of the formed peptide bond is

‖�pC′N‖ =

∥∥∥∥lp �pC′O

‖�pC′O‖
∥∥∥∥ = lp.
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Now we prove that centers of the atoms Cp
α, C′, N and Ca

α related to the created

peptide group lay in one plane. �e p
2 is orthogonal to �pC

p
αC′ and �pC′N . Since the latter

two vectors are non-collinear, it is enough to show that

�e p
2 · �pNCa

α
= �e p

2 · (PAT�aNCa
α
) = (�e p

2 )T
(
�e p

1 �e p
2 �e p

3

)⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠�aNCa
α

=

=
(
0 1 0

)⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠�aNCa
α

= (�e a
2 )T�aNCa

α
= �e a

2 · �aNCa
α

= 0.

Let P⊥ be the plane that passes through the centers of atoms C′ and N perpendicular

to the plane of the peptide group, and let α, β ∈ (0, π) be the angles confined

between vectors �pC′O, �pC
p
αC′ and �aHN , �aNCa

α
respectively∗. On construction, �e p

3 is

a normal to P⊥. We demonstrate that the atoms Cp
α and Ca

α will be situated on

different sides of P⊥:

�pC′C
p
α
· �e p

3 = �pC′C
p
α
· (�e p

1 × �e p
2 ) = �pC′C

p
α
·
(

�e p
1 × (�pC′O × �pC

p
α C′)

‖�pC′O × �pC
p
α C′‖
)

=

= − �pC
p
αC′

‖�pC′O × �pC
p
α C′‖ · (�e p

1 × (�pC′O × �pC
p
α C′)
)

=

= − �pC
p
αC′

‖�pC′O × �pC
p
α C′‖ · (�pC′O(�e p

1 · �pC
p
αC′) − �pC

p
αC′(�e p

1 · �pC′O)
)

=

= − 1

‖�pC′O‖‖�pC
p
α C′‖ sin α

(‖�pC
p
αC′‖2‖�pC′O‖ cos2 α − ‖�pC

p
α C′‖2‖�pC′O‖

)
=

= ‖�pC
p
α C′‖ sin α > 0,

�pNCa
α
· �e p

3 = �e p
3 · (PAT�aNCa

α
) = (�e p

3 )T
(
�e p

1 �e p
2 �e p

3

)⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠�aNCa
α

=

=
(
0 0 1

)⎛⎜⎝(�e a
1 )T

(�e a
2 )T

(�e a
3 )T

⎞⎟⎠�aNCa
α

= �e a
3 · �aNCa

α
=

=
�aNCa

α

‖�aHN × �aNC a
α
‖ · (�e a

1 × (�aHN × �aNC a
α
)
)

=

=
�aNCa

α

‖�aHN × �aNC a
α
‖ · (�aHN(�e a

1 · �aNC a
α
) − �aNC a

α
(�e a

1 · �aHN)
)

=

=
1

‖�aHN‖‖�aNC a
α
‖ sin β

(‖�aNC a
α
‖2‖�aHN‖ cos2 β − ‖�aNC a

α
‖2‖�aHN‖

)
=

= −‖�aNC a
α
‖ sin β < 0.

∗Using reference bond angles one can show that α ≈ β ≈
π

3
.
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Hence the created peptide group will be in trans conformation. �

Corollary 3.47

We get the cis conformation with preserved chirality if we change the directions of

�e a
2 and �e a

3 , or �e p
2 and �e p

3 , to the opposite.

3.6 Twisting forces

Before proceeding to the discussion of twisting forces related to each degree of

freedom, we shall consider forces acting on single atoms.

Definition 3.48

Let the vector of partial derivatives of a function f(�r1, . . . ,�rN ) with respect to the

coordinates of an atom position �ri be denoted as ∂f/∂�ri:

∂f

∂�ri
:=

(
∂f

∂r
[1]
i

,
∂f

∂r
[2]
i

,
∂f

∂r
[3]
i

)T

.

Remark 3.49

Note that for a given energy function U(�r1, . . . ,�rN ), the derivative ∂U/∂�ri taken

with the opposite sign corresponds to the force acting on atom Ai.

For computation of forces arising from different interactions we shall need the fol-

lowing lemma.

Lemma 3.50

For any i, j ∈ N holds:

∂‖�rij‖
∂�ri

= �eji.

Proof. For l = 1, 3 we have:

∂‖�rij‖
∂r

[l]
i

=

∂

√
3∑

k=1

(
r
[k]
j − r

[k]
i

)2
∂r

[l]
i

=
r
[l]
i − r

[l]
j√

3∑
k=1

(
r
[k]
j − r

[k]
i

)2 = e
[l]
ji . �

Lemma 3.50 can be used, for example, for computation of forces arising from bond

stretching. Assume that we want to allow formation of disulfide bridges when two

thiol groups approach each other. Although the bond lengths and angles are fixed

in the suggested model, it can make sense to supplement the force field by terms

describing bond stretching and angle bending related to formed disulfide bonds, to

enable their breakage at certain conditions and new formation.
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Let for two sulfur atoms Ai and Aj participating in formation of a disulfide bridge,

the bond stretching energy term be given by

Uij = k
[b]
SS(‖�rij‖ − lSS)2, (3.124)

where k
[b]
SS and lSS are appropriate parameters, and let the angle bending term

related to all bond angles in any sulfur atom Aj participating in disulfide bonding

be given by

U
[a]
j =
∑

i,k∈N
i�j �k

k
[a]
S (∠(�rji,�rjk) − αS)2, (3.125)

with parameters k
[a]
S and αS (cf. the first and the second term on the right-hand

side of (2.2)). Since sulfur has only two bonds, the latter sum reduces to only one

term.

Let NSS be the set of atom numbers corresponding to sulfur atoms currently

participating in disulfide bonding. Then the bond stretching force �f
[b]
i acting on

Ai (i ∈ NSS) is given by

�f
[b]
i = −∂U

[b]
ij

∂�ri
= −2k

[b]
SS (‖�rij‖ − lSS)�eji, (j ∈ NSS) ∧ (j � i),

according to Remark 3.49 and Lemma 3.50.

Besides holds:

∂(�rji ·�rjk)

∂�ri
= �rjk,

∂(�rji ·�rjk)

∂�rj
= �rij +�rkj ,

since for all l = 1, 3 we have:

∂(�rji ·�rjk)

∂r
[l]
i

=

∂

(
3∑

n=1
(r

[n]
i − r

[n]
j )r

[n]
jk

)
∂r

[l]
i

= r
[l]
jk,

∂(�rji ·�rjk)

∂r
[l]
j

=

∂

(
3∑

n=1
(r

[n]
i − r

[n]
j )(r

[n]
k − r

[n]
j )

)
∂r

[l]
j

= −r
[l]
i − r

[l]
k + 2r

[l]
j = r

[l]
ij + r

[l]
kj.

Therefore, the angle bending force �f
[a]
i acting on atom Ai is given for i ∈ NSS by

�f
[a]
i = −

∂
(
U

[a]
i + U

[a]
j

)
∂�ri

, (j ∈ NSS) ∧ (j � i),

and for i ∈ {n ∈ N \ NSS | (n � m) ∧ (m ∈ NSS)} by

�f
[a]
i = −∂U

[a]
j

∂�ri
, (j ∈ NSS) ∧ (j � i),
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where

∂U
[a]
i

∂�ri
= 2k

[a]
S

(
arccos

(
�rij ·�rik

‖�rij‖‖�rik‖
)
− αS

)
×

×
−1√

1 −
(

rij ·rik

‖rij‖‖rik‖
)2 (�rij ·�rik)(�rij +�rik) −�rij −�rik

‖�rij‖‖�rik‖ , (k ∈ N\NSS)∧(j � i � k),

and

∂U
[a]
j

∂�ri
= 2k

[a]
S

(
arccos

(
�rji ·�rjk

‖�rji‖‖�rjk‖
)
− αS

)
×

×
−1√

1 −
(

rji·rjk

‖rji‖‖rjk‖
)2 �rjk − (�rji ·�rjk)�rji

‖�rji‖‖�rjk‖ , (k ∈ N ) ∧ (i � j � k).

Other forces typically can be computed in the same way. However, the hydration

model described in Section 3.4 does not permit computation of solvation forces.

Instead, the forces arising due to interaction with water can be implemented as

semi-random forces acting from the side of solvent-accessible points on the atomic

solvation grid (or in the direction of the exposed points, depending on the desired

effect). Thus, if a hydration of a certain atom is unfavorable, forces must push it

away from the surface. Otherwise, attractive forces from the side of water should

dominate.

Consider now Ũ [w](�ζ) and G̃[e](�ζ) given by equations (3.88) and (3.89). First of all,

we have:

Ũ [w](�ζ) =
∑

(i,j)∈C
dij(ζ)<C[w]

(
U

[w]
ij ◦ dij

)
(�ζ)

with

U
[w]
ij (dij) =

√
E

[w]
i E

[w]
j

⎛⎝(R
[w]
i + R

[w]
j

dij

)12
− 2

(
R

[w]
i + R

[w]
j

dij

)6⎞⎠ , ∀(i, j) ∈ C.

Hence,

∂Ũ [w](�ζ)

∂ζ [k]
=
∑

(i,j)∈C
dij(ζ)<C[w]

(
U

[w]
ij

)′
(dij)

∂dij(�ζ)

∂ζ [k]
,

where

(
U

[w]
ij

)′
(dij) = − 12

dij

√
E

[w]
i E

[w]
j

⎛⎝(R
[w]
i + R

[w]
j

dij

)12
−
(

R
[w]
i + R

[w]
j

dij

)6⎞⎠ .
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However, instead of differentiating (3.90), it is more simple to do the following

computations:

∂dij(�ζ)

∂ζ [k]
=

3∑
l=1

(
∂dij

∂ r
[l]
i

∂ r
[l]
i

∂ζ [k]
+

∂dij

∂ r
[l]
j

∂ r
[l]
j

∂ζ [k]

)
=

∂dij(�ζ)

∂�ri
· ∂�ri

∂ζ [k]
+

∂dij(�ζ)

∂�rj
· ∂�rj

∂ζ [k]
, (3.126)

noting that dij = ‖�rij‖. By Lemma 3.50,

∂dij

∂�ri
= �eji (3.127)

and, in fact,

−
(
U

[w]
ij

)′
(dij)�eji =

(
U

[w]
ij

)′
(dij)�eij

is the force acting on atom Ai due to the van der Waals interaction between atoms

Ai and Aj (see Remark 3.49).

As for G̃[e](�ζ), there is an additional complication arising from the dependence

of the screening functions on dihedral angles. However, if we assume that εij,

∀(i, j) ∈ C, mostly remain constant for small changes of distances between atoms,

we can similarly deduce that

−
(
G

[e]
ij

)′
(dij)�eji

is the electrostatic force acting on atom Ai due to the interaction with atom Aj ,

where (
G

[e]
ij

)′
(dij) ≈ − qiqj

4πε0εijd
2
ij

.

The computation of ∂�ri/∂ζ [k] can be done according to Proposition 3.51. A more

general discussion about twisting forces follows in Proposition 3.52.

Proposition 3.51

Let �ζ be a vector of primary dihedral angles completely determining the conforma-

tion of the molecule, and let any change in dihedral angle ζ [i], i ∈ M, be always

achieved by rotation of the shortest (if applicable) branch Djk, such that i = κ(j, k).

To be more specific, let

X1/2 = {(i, j) ∈ X | (wij < wji) ∨ ((wij = wji) ∧ (i < j))}

(cf. 3.85), and let ι : M → X1/2 be the map that relates the indices of degrees of

freedom with indices of the corresponding branches.

Let i ∈ M, (j, k) = ι(i), and m ∈ N . Then holds:

∂�rm

∂ζ [i]
=

{
�ejk ×�rkm, for m ∈ Njk,

0 otherwise.
(3.128)
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Proof. When dihedral angle ζ [i] is increased by value Δζ, the position of atom Am

is changed according to (3.129)∗, if m ∈ Njk:

�rm(ζ [1], . . . , ζ [i−1], ζ [i] + Δζ, ζ [i+1], . . . , ζ [M ]) = �rk(�ζ) + M�ejk
(Δζ)
(
�rm(�ζ) −�rk(�ζ)

)
,

(3.129)

and does not change if m ∈ Nkj.

Hence, for m ∈ Njk holds:

∂�rm

∂ζ [i]
= lim

Δζ→0

�rk(�ζ) + M�ejk
(Δζ)
(
�rm(�ζ) −�rk(�ζ)

)
−�rm(�ζ)

Δζ
=

= lim
Δζ→0

M�ejk
(Δζ) − E

Δζ

(
�rm(�ζ) −�rk(�ζ)

)
= M′

�ejk
(0)�rkm(�ζ), (3.130)

and for m ∈ Nkj we have:
∂�rm

∂ζ [i]
= 0. (3.131)

From (3.112) we obtain:

M′
�ejk

(0) =

⎛⎜⎜⎜⎝
0 −e

[3]
jk e

[2]
jk

e
[3]
jk 0 −e

[1]
jk

−e
[2]
jk e

[1]
jk 0

⎞⎟⎟⎟⎠ ,

and note that

M′
�ejk

(0)�r = �ejk ×�r, �r ∈ R3. � (3.132)

Substitution of (3.132) into (3.130) together with 3.131 yields 3.128. �

Proposition 3.52

Let

N�m := {n ∈ N | n � m},
and let �fm be the sum of all forces† acting on atom Am:

�fm := −
∑

n∈N�m

∂Ũ

∂dnm
�enm.

Under the conditions of Proposition 3.51 holds:

∂Ũ(�ζ)

∂ζ [i]
= −
∑

m∈Njk

�fm · (�ejk ×�rkm(�ζ)). (3.133)

∗The rotation matrix M�ejk
(Δζ) is given by (3.112) with appropriate substitutions.

†van der Waals forces for distances above the cutoff are considered to be negligible.
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Proof. According to (3.87), (3.126), and (3.127) we have:

∂Ũ(�ζ)

∂ζ [i]
=
∑

(m,n)∈C

∂Ũ

∂dmn

(
∂dmn

∂�rm
· ∂�rm

∂ζ [i]
+

∂dmn

∂�rn
· ∂�rn

∂ζ [i]

)
=

=
∑

m∈N

∑
n∈N�m

∂Ũ

∂dnm

∂dnm

∂�rm
· ∂�rm

∂ζ [i]
=

=
∑

m∈N

∑
n∈N�m

∂Ũ

∂dnm
�enm · ∂�rm

∂ζ [i]
= −
∑
m∈N

�fm · ∂�rm

∂ζ [i]
. (3.134)

Substitution of (3.128) into (3.134) gives (3.133). �

Remark 3.53

If m,n ∈ Njk, then

∂Ũ

∂dmn

(
�enm · ∂�rm

∂ζ [i]
+ �emn · ∂�rn

∂ζ [i]

)
=

=
∂Ũ

∂dmn
�enm · ∂�rnm

∂ζ [i]
=

∂Ũ

∂dmn
�enm · (�ejk ×�rnm) = 0,

therefore, it is sufficient to compute forces only between atoms of mutually comple-

mentary branches. Let

Gjk := {(m,n) ∈ N 2 | (m ∈ Njk) ∧ (n ∈ Nkj)}.

Then
∂Ũ(�ζ)

∂ζ [i]
= −
∑

(m,n)∈Gjk

�fnm · (�ejk ×�rkm(�ζ)),

where

�fnm := − ∂Ũ

∂dnm
�enm

is the force acting on atom Am due to interaction with atom An.

However, for computation of the complete energy gradient, it is technically more

efficient to use (3.133) with preliminary computation of the sum of all forces acting

on any atom.

From (3.133) we see that forces acting on atoms near a tip of a long branch can∗

make larger contribution to the energy gradient then those near the branch origin,

by analogy to the principle of lever functioning. Therefore, the energy minimiza-

tion problem becomes very stiff for sufficiently long chains. Thus, if the steepest

descent in dihedral angle space is used for energy minimization, the rotations of

∗Depending on the angles between the vectors in (3.133).
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(a) (b)

Fig. 3.16: Intramolecular atomic and twisting forces acting on a dissolved isoleucine

molecule (a result of simulation by SiViProF, see Chapter 4): (a) a high-energy configura-

tion showing strong van der Waals repulsion, (b) rotation of branches (depicted by motion

blur) according to steepest descent dictated by twisting forces. See further explanation in

the text.

long branches are very likely to dominate. However, it is natural to expect that

in reality short branches rotate more easily. A more detailed discussion concerning

this issue can be found in the next section.

We shall refer to ∂Ũ(�ζ)/∂ζ [i] as the twisting force acting on the bond between

atoms Aj and Ak (such that κ(j, k) = i). Figure 3.16 shows computed atomic van

der Waals and electrostatic forces together with the corresponding twisting forces

acting to rotate branches.

In this figure and further, straight red and yellow arrows denote respectively the

electrostatic and van der Waals forces acting on atoms. The absolute value of a force

is shown by the arrow length∗ for forces up to 1 kcal×(mol×Å)−1. The magnitudes

of forces exceeding 1 kcal×(mol×Å)−1 are depicted by respectively increased arrow

width (see Figure 3.16 (a)). Curved arrows denote twisting forces. These arrows

are shifted to one or another end of a bond, in order to show, which of the related

branches is to be rotated. The absolute value of a twisting force up to 10 kcal/mol

(subject to settings) is shown by the arrow width. In this case, the color of the arrow

is dark red or blue, depending on whether the related primary dihedral angle must

be increased or decreased (see Figure 3.16 (b)). If the absolute value of a twisting

force exceeds the maximal value that can be indicated by the arrow width, the

difference between the two mentioned magnitudes, up to a certain value (here also

10 kcal/mol, subject to an additional setting), is coded by the intensity of green,

which is mixed into the original arrow color (as in Figure 3.16 (a)). The maximal

green intensity is used for all values above the prescribed limit.

∗The length is counted starting from the depicted atom surface.
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3.7 Dynamics in dihedral angle space

The Lagrange function (see, for example, [122]) for an isolated system of N point

masses, m1, . . . ,mN , with M degrees of freedom, ζ [1], . . . , ζ [M ], is given by

L(ζ [1], . . . , ζ [M ], ζ̇ [1], . . . , ζ̇ [M ]) =
1

2

N∑
k=1

mk‖�̇rk‖2 − U(�r1, . . . ,�rN ), (3.135)

where

�rk = �rk(ζ
[1], . . . , ζ [M ]), k = 1, N

are the positions of the point masses and

U(�r1, . . . ,�rN ) = Ũ(ζ [1], . . . , ζ [M ])

is the potential energy of the system.

We shall use it to describe the constrained dynamics of atoms Ak with masses

mk (k = 1, N) in vacuum. Then we supplement the obtained system of Lagrange

equations,
d

dt

∂L

∂ζ̇ [i]
− ∂L

∂ζ [i]
= 0, i = 1,M, (3.136)

to account for drag forces due to interaction with the solvent.

First of all, we have:

�̇rk =
M∑

j=1

∂�rk

∂ζ [j]
ζ̇ [j], (3.137)

and hence

∂(�̇rk · �̇rk)

∂ζ̇ [i]
= 2�̇rk · ∂�̇rk

∂ζ̇ [i]
= 2

⎛⎝ M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]

⎞⎠ · ∂�rk

∂ζ [i]
. (3.138)

Consequently,

d

dt

∂L

∂ζ̇ [i]
=

N∑
k=1

mk

⎛⎝⎛⎝ M∑
j=1

M∑
l=1

∂2�rk

∂ζ [j]∂ζ [l]
ζ̇ [j]ζ̇ [l] +

M∑
j=1

∂�rk

∂ζ [j]
ζ̈ [j]

⎞⎠ · ∂�rk

∂ζ [i]
+

+

⎛⎝ M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]

⎞⎠ ·
⎛⎝ M∑

j=1

∂2�rk

∂ζ [i]∂ζ [j]
ζ̇ [j]

⎞⎠⎞⎠ . (3.139)

Besides,

∂(�̇rk · �̇rk)

∂ζ [i]
= 2�̇rk · ∂�̇rk

∂ζ [i]
= 2

⎛⎝ M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]

⎞⎠ ·
⎛⎝ M∑

j=1

∂2�rk

∂ζ [j]∂ζ [i]
ζ̇ [j]

⎞⎠ , (3.140)
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and

∂Ũ

∂ζ [i]
=

N∑
k=1

∂U

∂�rk
· ∂�rk

∂ζ [i]
. (3.141)

Substitution of (3.139)-(3.141) into (3.136) gives:

N∑
k=1

⎛⎝mk

⎛⎝ M∑
j=1

M∑
l=1

∂2�rk

∂ζ [j]∂ζ [l]
ζ̇ [j]ζ̇ [l] +

M∑
j=1

∂�rk

∂ζ [j]
ζ̈ [j]

⎞⎠+
∂U

∂�rk

⎞⎠ · ∂�rk

∂ζ [i]
= 0. (3.142)

Here − ∂U
∂rk

is the intramolecular force acting on atom Ak. Since the system, in fact,

is not isolated, there is an additional force �gk acting on Ak, if the atom is in contact∗

with surrounding media, such as water or cytosol. As before, we shall denote by
�fk := − ∂U

∂rk
+�gk the sum of the intramolecular and hydration forces acting on atom

Ak. Beside that, if atom Ak is exposed to solvent and moves, it is subjected to a

drag force �dk.

For an isolated atom, the drag force predicted according to the Stokes’ law is given

by
�dk = −6πμR

[w]
k �̇rk,

where μ is the dynamic viscosity of the solvent. Since any protein atom is at

maximum only partially hydrated, we scale the drag force by the atom’s hydration

degree hk and, additionally utilizing (3.137), obtain:

�dk = −6πμhkR
[w]
k

M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]. (3.143)

Supplementing (3.142) by forces, arising due to interaction with surrounding solvent,

we obtain:

N∑
k=1

⎛⎝mk

⎛⎝ M∑
j=1

M∑
l=1

∂2�rk

∂ζ [j]∂ζ [l]
ζ̇ [j]ζ̇ [l] +

M∑
j=1

∂�rk

∂ζ [j]
ζ̈ [j]

⎞⎠−

−�fk + 6πμhkR
[w]
k

M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]

⎞⎠ · ∂�rk

∂ζ [i]
= 0, ∀ i = 1,M. (3.144)

To see how the values of different terms in (3.144) relate to each other, we shall recall

the relation (3.128). Now, however, in general the both complementary branches

Di◦ i• and Di• i◦ ((i◦, i•) = ι(i)) can move, rather than only the branch containing

less atoms, as assumed in Proposition 3.51.

Let us assume that the carboxyl end of the polypeptide is still attached to the

ribosome, and that all bonds complementary to those in the direction of flow from

∗In the most cases, non-hydrated atoms are separated from solvent accessible surface by at least

one layer of atoms, so that the distance to water molecules is above the introduced van der Waals

cutoff. The interaction of small charges with water is assumed to cancel at this separation.
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the fixed bond obtained an infinite weight. Then the conditions of Proposition 3.51

are acceptable, and we shall assume for simplicity that they are fulfilled.

Now consider the second derivatives. Let (i◦, i•) = ι(i) and (j◦, j•) = ι(j). If

Ak �∈ Di◦ i• ∩ Dj◦ j• , then
∂2�rk

∂ζi∂ζj
= 0. (3.145)

Otherwise, either

Dj◦ j• ⊆ Di◦ i• (3.146)

or

Di◦ i• ⊂ Dj◦ j• (3.147)

holds.

If (3.146) is valid, then Ai◦ and Ai• do not move with rotation of branch Dj◦ j• ,

therefore

∂2�rk

∂ζi∂ζj
= �ei◦ i• ×

∂�ri• k

∂ζj
= �ei◦ i• ×

∂�rk

∂ζj
= �ei◦ i• × (�ej◦ j• ×�rj• k). (3.148)

In the case of (3.147) we have:

∂2�rk

∂ζi∂ζj
= �ej◦ j• × (�ei◦ i• ×�ri• k) (3.149)

in accordance with equality of continuous mixed derivatives.

Let

�ei�k :=

∂rk

∂ζ[i]∥∥∥ ∂rk

∂ζ[i]

∥∥∥ .
Then rearrangement and reduction of (3.144) yields:

N∑
k=1

⎛⎝mk

⎛⎝ M∑
j=1

M∑
l=1

∂2�rk

∂ζ [j]∂ζ [l]
ζ̇ [j]ζ̇ [l]+

M∑
j=1

∂�rk

∂ζ [j]
ζ̈ [j]

⎞⎠+ 6πμhkR
[w]
k

M∑
j=1

∂�rk

∂ζ [j]
ζ̇ [j]

⎞⎠ · �ei�k =

=

N∑
k=1

�fk · �ei�k, ∀ i = 1,M. (3.150)

From (3.128), (3.145), (3.148), and (3.149) follows that∥∥∥∥ ∂�rk

∂ζ [i]

∥∥∥∥ ≤ ‖�ri• k‖ ≤ Dp and

∥∥∥∥ ∂2�rk

∂ζi∂ζj

∥∥∥∥ ≤ max(‖�ri• k‖, ‖�rj• k‖) ≤ Dp, (3.151)

where Dp is the diameter of the protein molecule.

The dynamic viscosity of water at 298 K is 8.91×10−4 kg×(m×s)−1 [14], which equals

to 5.3659×1013 Da×(Å×s)−1. In Figure 3.16 we see that atomic forces are typically of
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the order about 1 kcal×(mol×Å)−1, which translates into 4.1869×1026 Da×Å×s−2.

Therefore, it is natural to expect ζ̇ [i] and ζ̈ [i] of the orders around 1012 s−1 and

1024 s−2 respectively, if the terms in equation (3.150) have comparable magnitudes.

Besides, if the folding would follow a pathway close to the one obtained by the

steepest descent in the dihedral angle space, it would imply that

ζ̇ [i] ∝
∑

k∈Ni◦i•

�fk · ∂�rk

∂ζ [i]
=

N∑
k=1

�fk · �ei�k

∥∥∥∥ ∂�rk

∂ζ [i]

∥∥∥∥ ,
see Proposition 3.52. However, equation (3.150) suggests that any non-zero portion

of the force projections to the directions of rotations (see the right-hand side), which

is related to an angular velocity ζ̇ [j], is, on the contrary, scaled by 1/‖ ∂rk

∂ζ[j]‖.
Therefore, a more handy scaling for the components of the energy gradient may

help not only to avoid stiffness problems during energy minimization, but also to

obtain a transformation path closer resembling a natural folding pathway.



Chapter 4

SiViProF Software

4.1 SiViProF – a new simulation software

On the basis of the model proposed in Chapter 3, a simulation and visualiza-

tion cross-platform software SiViProF
∗ is developed. It is written in C++ us-

ing OpenGL API for 3D visualization and QT library for graphical user interface.

Figure 4.1 shows a screenshot of the program.

Fig. 4.1: A screenshot of SiViProF with the results of folding ITWM-tetrapeptide (without

solvation) using the steepest descent without energy oscillations. The 1D plot shows how

the energy changes during minimization (versus the maximal bond rotation in degrees).

The highlighted subwindow depicts the folding path on a Ramachandran map.

∗
SiViProF stands for “Simulation and Visualization of Protein Folding”.
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Taking a sequence of amino acids coded by their conventional one-letter symbols

(see Table A.2 in Appendix A) as an input, the program generates the corresponding

polypeptide chain. Energy minimization is executed either upon appending each

amino acid residue, or when the creation of the whole molecule is finished. The

coordinates of the amino acids are generated immediately before or loaded from

files with earlier computed structures. An attachment of a new residue is carried

out so that a formed peptide group is disposed in the trans conformation (see

Subsection 3.5.2). Visualization can be performed either as an animation of the

minimization process, or only at the end, in order to save computational resources.

Initial atomic coordinates for amino acids are derived on the base of geometrical

considerations motivated by known findings from quantum mechanics (see Subsec-

tions 1.5.1 and 1.5.2 for the theory, and Subsection 4.2.2 for a description of the

algorithms for coordinate generation, suggested and used in this work). Special

attention is paid to the correct chirality of amino acids. Structures containing

pentagonal rings and variable dihedral angles are subsequently optimized. Such

coordinate generation is considerably faster and provides better results than an

optimization of a random coordinate set.

Energy minimization can be performed by different methods, some of which are

described in Subsection 4.3.2. Conclusions about their performance and limitations

are also given there. Computed protein structures can be saved in the format,

specific for SiViProF, and loaded again for further processing. The list of the

dihedral angles can be saved into a separate file and analyzed.

Experimentally determined structures from PDB (see Section 1.10) can be loaded

by the program∗ (see Figure 4.2) for comparison with predicted structures and for

refinement of the model parameters. PDB records often contain only coordinates of

heavy atoms, since the signals from hydrogen atoms are too week to be detected by

X-ray crystallography [87]. Apart from that, there is some discrepancy in naming

hydrogen atoms, which generally prohibits loading related coordinates, if they are

provided. Therefore, the positions of hydrogens are reconstructed by the program

according to the Algorithm 4.4 described in Subsection 4.2.2.

Molecules of other chemicals can be also generated by the program, provided that

their formulas are given in the appropriate format, described in Section A.3. This

enables a comparison of dipole moments or verification of solvation energies on

the base of experimental data. In particular, dipole moments can be utilized for

evaluation of the quality of the computed partial charges used in simulations.

The following molecular visualization modes are implemented: space-filling models

with representation of atoms as van der Waals spheres (Fig. 4.2(a)), also including

atomic solvation grids (Fig. 4.3(b)), ball and stick models with reproduction of

∗There is still a number of limitations that can be eliminated in future. Thus, the structures

containing posttranslationally modified residues or multiple polypeptide chains can not be loaded

completely. Associated water molecules and ions are ignored.
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(a) (b)

(c) (d)

Fig. 4.2: The native structure of ubiquitin, visualized by SiViProF. An interpretation of

colors is given in Table A.1. Atomic coordinates are obtained from RCSB Protein Data

Bank, record 1UBQ by S. Vijay-Kumar et al. [123]. The positions of hydrogen atoms are

reconstructed by SiViProF. (a) The space-filling model. (b) The all-atom ball-and-stick

model. (c) The ball-and-stick model showing only the configuration of the main chain.

(d) The ribbon model depicting the secondary structure (see Subsection 1.6.2 for details).

atoms and bonds in a form of spheres and cylinders (Fig. 4.2(b)), also with dotted

van der Waals spheres (Fig. 4.3(a)), stick and ribbon models, depicting only the

main chain conformation in one or several colors (Fig. 4.2(c, d)). There is also an

option to show all main chain atoms with bonds and to hide side chains, in order

to facilitate an exploration of the secondary structure. Besides, there are different

modes depicting atomic and twisting forces (Fig. 4.3(c)), interatomic interaction

energies (Fig. 4.3(d)), atomic partial charges (Fig. 4.3(e)), or hydration (Fig. 4.3(e)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.3: A tryptophan molecule constructed and visualized by SiViProF. (a) The ball-

and-stick model, where the atomic van der Waals spheres are outlined by dots. (b) The

space-filling model, additionally showing atomic solvation grids. (c) The ball-and-stick

model with depicted electrostatic and van der Waals forces (straight red and yellow arrows

respectively), as well as twisting forces (bended arrows around bonds). (d) The ball-and-

stick model showing electrostatic and van der Waals interactions between atoms. Each line

corresponds to 0.1 kcal/mol. Red and blue lines correspond to the repulsive and attractive

electrostatic interactions respectively. Yellow and green lines - to the repulsive and attractive

van der Waals interactions. (e) The space-filling model depicting atomic partial charges.

The explanation for colors is given on p. 31. (f) The space-filling model showing favorable

and unfavorable hydration approximated as described in Section 3.4. Red color denotes

hydrated hydrophobic atoms, yellow – non-hydrated hydrophobic atoms, blue – hydrated

hydrophilic atoms, and orange is reserved for non-hydrated hydrophilic atoms.
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The radii of atom spheres are either equal to van der Waals radii, used in computa-

tions, or amount to the one third of those, if the bonds are also depicted. Colors and

bond radii, as well as radii of solvation grid points, can be prescribed by the user.

Additionally, one can activate the fog or change the opacity of objects. Rotation

and zooming the three-dimensional molecule image is possible.

In the modes with visualization of forces or interactions, arrows and lines are always

depicted in a way that allows them to be better visible to the viewer. This is done by

taking into account the position of the camera. There are three different options for

visualization of interactions: the first two imply that the quantitative information

about the interaction intensity is given by the number of lines (at maximum ten).

Each line corresponds to either 0.1 kcal/mole (see Figure 4.3(d)) or R̄T , depending

on the choice. The last option permits the output of the numerical information

about each interaction.

Beside the simulation and visualization functions, some procedures for exploration of

protein free energy landscapes and analysis of the contributions of different forces

were developed. One can deactivate certain atoms, change the geometry of the

molecule and observe the resulting energy changes. Energy profiles and surfaces

can be plotted for selected dihedral angles (see Figures 1.25, 1.27-1.30, and 4.7-4.8).

Apart from that, SiViProF includes procedures for visualization of standard atomic

orbitals (see Figures in Subsection 1.5.1) and large molecular complexes, which can

be cut and and shown in slices (see Figures in Subsection 1.8.1).

4.2 Implementation of the model

In this section we shall discuss the implementation of the model described in the

previous chapter. In particular, the algorithms needed for generation of initial

coordinates, as well as some other algorithms necessary but not directly related to

energy minimization, which were developed and implemented in course of this work,

shall be discussed. The algorithms, introduced here and in the following sections,

are simplified versions of the implemented functions. Technical details, such as

allocation and release of memory or declaration and initialization of variables, are

omitted. Minimization of energy is a subject of a separate discussion elucidated in

Subsection 4.3.2 together with simulation results.

4.2.1 Listing degrees of freedom

For some of the implemented minimization algorithms it is necessary to acquire a

list of bonds that can be rotated together with originated branches (see definitions

given in Section 3.3). Since the same change in a dihedral angle can be achieved

by rotating any of two complementary branches, only the one which contains less

atoms should be included in the list. There is no sense to rotate a branch consisting

of only one atom or a branch complementary to it. Double or partially double
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bonds, as well as bonds inside a ring, should not be considered either, since the

corresponding dihedral angles are fixed.

Algorithm 4.1 assigns to each bond bij a weight wij (according to the definition given

by equation (3.84)), which expresses the number of atoms that must be moved, if

the branch originated by bij is dislocated∗. Bonds that belong to a ring obtain zero

weight. Initially the weight −1 is assigned to each bond, except for the bonds to

hydrogen atoms or to the dummy atom, which represents the temporary carboxyl

end of the protein during the synthesis. The latter bonds get a weight equal to one.

The weight of the bond is considered to be permanent, if it does not change upon

appending a new amino acid.

The algorithm is performed recursively for each bond bij in the direction of flow

from the first considered bond or for the bond complementary to it. The latter may

happen, if bij belongs to a ring. The considered bond bij is given by atoms Ai and Aj ,

introduced as input parameters. The procedure is first called from Algorithm 4.2,

which preliminary sets the branch origin Ao and some other external variables. N

denotes the current number of atoms in the molecule, and Nm is the instant number

of atoms that have to be moved when the branch originated by the considered bond

is displaced. Nl and Nb account for the numbers of loop closures and of atoms in

out-of-loop branches.

Algorithm 4.1 (Determination of bond weights)

For given atoms Ai and Aj do the following:

1) if Aj = Ao, increase Nl by one, set Nb = 0, and go to the Step 8,

2) note the current Nm value: Ni = Nm,

3) increase Nm by one,

4) if Nl > 0 increase Nb by one,

5) mark atom Aj ,

6) for each atom Ak (k �= i) that is bonded to Aj do the following:

if Ak is marked, block the bond bkj, set Nb = wjk = wkj = 0,

and increase Nl by one,

otherwise, if the bond bjk is blocked, unblock it and decrease Nl by one,

otherwise, if wjk < 1, call the whole procedure

with Aj as Ai and Ak as Aj ,

otherwise, increase Nm by wjk,

7) erase the mark from atom Aj ,

∗Since dislocation is not restricted to branch rotation, the atom Aj is also counted in the weight

of bond bij .
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8) if Nl > 0, choose one of the following options:

if Nb = 0, set wij = wji = 0,

otherwise decrease Nb by one,

9) if wij �= 0, set wij = Nm −Ni, wji = N −wij and raise permanent weight flag

for the bond bij .

Step 1 in Algorithm 4.1 is necessary for cases, when Ao belong to a ring. If the

numeration of atoms assures that the bond weight search does not start inside a

ring, this step can be omitted.

Algorithm 4.2 uses the bond weights, assigned by Algorithm 4.1, to build list B of

the bonds that are relevant for energy minimization in dihedral angle space. The

determination of the bond weights together with the bond list formation should

be performed before generation of initial atomic coordinates, since the zero bond

weight is utilized for identification of ring atoms in the localization procedure (see

Section 4.2.2). The algorithm is called with a single parameter Np representing

the number of atoms during the previous bond list formation, if it was already

performed. Np is set to zero if the bond list is to be generated for the first time.

Algorithm 4.2 (Building the list of relevant bonds)

1) note the current number of bonds in list B for use in other algorithms,

2) clear list B,

3) if Np > 0, for each atom Ai that is not hydrogen and such that

i < Np, (4.1)

find all the bonds wij with permanent weight and set wji = N − wij ,

4) set Nm = Nl = Nb = 0, let Ao be the last∗ atom and perform Algorithm 4.1

starting with Ao as Ai and an atom, bonded to it, as Aj , in order to determine

all bond weights,

5) for each atom Ai that is not a hydrogen or the dummy atom, consider each

bonded atom Aj , such that

wij > 1, wji > 1, (4.2)

j < i, (4.3)

and excluding j � i,

determine the bond status (φ,ψ or other) basing on the roles† of the bonded

atoms, and add the bond

bij, if wij < wji,

bji, otherwise,

∗In case of an incomplete molecule it has to be the dummy atom.
†A dihedral angle φ is related to a bond between a nitrogen of a peptide group and an α-carbon,

and a dihedral angle ψ corresponds to a bond connecting Cα and C
′

, see Section 1.6.1.
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together with its status and its residue number to list B.

If the minimization is performed before the polypeptide is completely synthesized,

the list of relevant bonds has to be rebuilt, and the weights that are changed have to

be reassigned. This is done in Step 3 of Algorithm 4.2. Since for any two connected

atoms Ai and Aj the equality

wij + wji = N

holds, permanent weights can be used for reconstruction of other weights in the

earlier synthesized part of the molecule. Atoms are numbered consequently, starting

from zero. Therefore, Condition 4.1 eliminates excessive consideration of the atoms

from the new part.

The determination of the bond weights for the newly created part is performed in

Step 4. In the current implementation, the dummy atom is always the last one,

and it temporary has only one bond. Therefore the bonds in direction of flow

from the bond of the dummy atom get permanent weight, when Algorithm 4.1

is called starting with the last atom as a branch origin. Herewith, the already

determined weights are used for computation of the remaining ones without repeated

examination of the explored part of the molecule.

Conditions (4.2) in Step 5 exclude registration of the bonds that belong to a ring

or originate a branch consisting of only one atom. Condition (4.3) assures that the

bond is not included to the list two times. Step 5 of Algorithm 4.2 can be performed

as a part of Step 9 in Algorithm 4.1, but this would result in an inconvenient

sequence of bonds in B.

4.2.2 Generation of initial coordinates

As already mentioned in Section 4.1, PDB records may not provide information

about locations of hydrogen atoms. Algorithm 4.4 can be used for reconstruction

of hydrogen atom positions, when the coordinates of other atoms are known. It is

also used in combination with other algorithms for overall coordinate generation.

Definition 4.3

In the following, we shall refer to an atom as located, if its position is already

specified. Otherwise we shall call it unlocated. By saying that we would like to locate

an atom, we shall imply that we are going to specify its position with fulfillment of

the following criteria:

a) the bonds to other located atoms obtain the corresponding equilibrium bond

lengths,

b) the bond angles that are determined by this process acquire their equilibrium

values,

c) atom groups that must remain in one plane are located respectively.
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Besides, we shall take care of chirality where necessary. As discussed in Subsec-

tion 1.3, there are not many chiral centers in amino acids. The correct chirality

can be set immediately on Step 3.3 of Algorithm 4.4 or later only for selected chiral

centers, as described in Subsection 4.2.3.

Algorithm 4.4 (Location of hydrogen atoms)

For a designated unlocated atom Ai:

1) find a located atom Aj , connected to Ai,

2) determine the sets L and U of the numbers of located and unlocated atoms

bound to Aj ,

3) depending on the cardinalities of L and U , choose one of the following options∗:

3.1) cardL = 1:

if j � k, k ∈ L, then try to find any located atom Am (m �= j) bonded

to Ak and, in case of success, set

�ri = �rj +
lij

‖�rkj‖
�rkj

�

�rkm(αj − π),

otherwise, set

�ri = �rj +
lij

‖�rkj‖
�rkj

�
(π − αj), k ∈ L, (4.4)

3.2) cardU = 1 ∧ cardL �= 1: set

�ri = �rj + lij
∑
k∈L

�rkj

‖�rkj‖ ,

3.3) cardL = card U = 2 (without loss of generality, let l, k ∈L and i,m∈U):

set

�ri = �rj + lijT
�rjk
�rjl

�vl

and

�rm = �rj + ljmT
�rjk
�rjl

�vr,

if the atoms Ai, Al, and Am are to appear in counterclockwise order

when viewed from Ak in the direction of Aj . Otherwise the roles of i

and m have to be exchanged. T
�rjk
�rjl

, �vl, and �vr are defined by equations

(3.116) and (3.117).

∗If only the locations of the hydrogen atoms in a protein are to be determined, Aj is necessarily

bound to at least one located atom. In case of general coordinate generation the fulfillment of the

latter condition has to be ensured by the atom selection sequence, see Algorithm 4.5. Since the

elements that constitute proteins form at maximum four bonds, the proposed choice is comprehen-

sive.
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Thus, Algorithm 4.4 assumes that equilibrium bond angles correspond to those ex-

pected for standard hybridization states (see Subsection 1.5.1). Therefore, if the

directions of two or three bonds of an atom are known, the directions of the re-

maining bonds are deduced automatically, with no request for the equilibrium bond

angle parameter αj . Since sp3-hybridized nitrogen atoms are usually protonated

in solution (see Section 1.4), they can be naturally treated as having four covalent

bonds due to delocalization of electrons.

The following algorithm is used in SiViProF as a framework for generation of

atomic coordinates for amino acids and some other small molecules. It makes use

of the below described Algorithms 4.7-4.6 to locate ring atoms and calls the above

described Algorithm 4.4 to determine the positions of other atoms.

Algorithm 4.5 (Overall coordinate generation)

1) Set the first atom A0 into the coordinate origin,

2) choose another atom Ab, bonded to A0, and set �rb = (l01, 0, 0)
T ,

3) perform the following steps consequently for all atoms as long as there are

unlocated atoms left:

3.1) if the considered atom Ai is unlocated, try to locate it according to the

Algorithm 4.4; in case of failure on Step 1 of the Algorithm 4.4 proceed

to the next atom,

3.2) for any atom Aj bound to Ai: if wij �= 0, and Aj is unlocated, locate it

using Algorithm 4.4,

3.3) if Ai belongs to a ring, locate ring atoms according to the Algorithm 4.6

starting with Ai.

The next Algorithm is used in SiViProF for generation of coordinates for ring

atoms. It assumes that the bond weights are already assigned by Algorithm 4.1 and

that the atom numbering does not start inside the ring. That is, if Algorithm 4.6

is called from Algorithm 4.5 for a specified atom Ar, the set of located atoms

connected to Ar is not empty. Otherwise the direction of the ring center could be

chosen randomly or parallel to one of the coordinate axes.

Algorithm 4.6 (Location of ring atoms)

For a specified located ring atom Ar find a connected atom Au that is unlocated

and belongs to a ring (i.e., wru = 0), and perform the following steps:

1) set wu = 1,

2) perform Algorithm 4.7 starting with Ar as Ai and Au as Aj , to find a single

ring and to determine the loop weights of ring atoms,

3) establish the set O = {o1, . . . , oNr
} of the ring atom numbers as following: set

oNr
= r, and subsequently decreasing i from Nr − 1 to 1 choose the atom Aoi

connected to Aoi+1 , so that woi = i,
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Fig. 4.4: Location of ring atoms (see Algorithm 4.6): (a) determination of the center

position for cardL = 1, (b) computation of positions for unlocated ring atoms in case when

Ao5 is located (as well as Ar).

4) find the location of the loop center as

�rc = �rr +
lr
∑

l∈L�rlr

2‖∑l∈L�rlr‖ sin π
Nr

,

where lr is the average bond length in the ring, and L is the set of num-

bers of located atoms connected to Ar, that do not belong to this ring (see

Figure 4.4 (a)),

5) define the vector �rd giving the direction for deflection (see Figure 4.4 (b)):

�rd =

⎧⎪⎨⎪⎩
sign(Nr

2 − k)�rcok
, if exists a located atom Aok

, ok ∈ O \ {oNr
},

such that �rcr ∦ �rcok
,

�rcr

�( 2π
Nr

)
, otherwise,

6) determine the position of each unlocated atom Aon , on ∈ O, as

�ron = �rc +�rcr

�

�rd

(
2πn
Nr

)
.

The first option in Step 5 is necessary, for example, in cases when the other part of a

double ring is already located. The structure of a proline ring has to be subsequently

optimized or generated by another method, if specific puckering is desired.

The idea of Algorithm 4.7 is to find the shortest loop in rings, starting from a given

atom Ar in the direction of the second specified atom. The algorithm represents

a recursive function, which is called with three parameters. Two of them refer

respectively to the previously and to the currently considered atom Ai and Aj ,

while the last one – to the loop origin Ar. In course of the function execution, a

loop weight wj , equal to the number of atoms between Ar and Aj (inclusive Aj), is

assigned to atom Aj. Respectively, wr is set equal to zero.
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Fig. 4.5: Determination of the shortest loop. • marks the loop origin, simple numbers

designate the loop weights of the atoms, and numbers in circles show the order of bond

selection for passage. � denotes the call return. (a) Identification of the shortcut. (b) Re-

assignment of the number of ring atoms. (c) No reassignment is performed if the shortest

way was found first.

Algorithm 4.7 (Loop exploration)

For specified atoms Ai and Aj do the following:

1) if Aj = Ar, set the final number of atoms in the ring Nr = wj and

return to the call place,

otherwise proceed to the next steps,

2) mark atom Aj ,

3) if one of the connected atoms Ak is marked and has the loop weight wk <

wj − 1, set wj = wk + 1,

4) for any connected atom Am (m �= i) which is not marked and belongs to a

ring, i.e. wjm = 0, set wm = wj + 1 and call the steps 1-5 for Ai = Aj and

Aj = Am,

5) erase the mark from the atom Aj .

Marking in Step 2 prevents returning to the passed atoms, and erasing the marks

is necessary for further processing. Step 5 is performed when all calls from Step 4

are returned. Step 3 is necessary for double rings to detect the shortest loop.

If after branching the longer way was chosen, the shortcut can be identified at

this step (Fig. 4.5(a)), unless the loop origin Ar is encountered before this check

was performed. The latter can happen when Ar is shared between two rings (Fig.

4.5(b)). The origin is not marked, since it would prevent its consideration on Step 4,

therefore the shortcut check is not performed for it. Nevertheless the shortcut is

recognized when the fulfillment of Step 4 is continued at the branching point, since

the rings have only one shared bond. In this case the condition of Step 1 is fulfilled

second time and the correct value is assigned to Nr. Only after that the call is

returned. The return prevents the reassignment of the value of Nr if the shortest

way was found first (Fig. 4.5(c)).



4.2. Implementation of the model 153

4.2.3 Chirality correction

The chirality can be examined as follows. Assume that atom Aj is the considered

chiral center, and atoms Ai, Ak and Am must appear in the clockwise order when

viewed from atom Al to Aj (i � j � k, m � j � l). Then Ai and Am must be

at different sides of the plane passing through Ak, Aj and Al, and, moreover, must

hold:

(�rjk ×�rjl) ·�rjm > 0 and (�rjk ×�rjl) ·�rji < 0.

It is sufficient to check only one of these conditions, if the bond directions at least

approximately resemble those expected for an sp3-like configuration.

Algorithm 4.8 describes an implementation of a chirality correction on the example

of an α-carbon chiral center∗. It can be used also for other chiral centers when atom

identifiers are replaced appropriately. It assumes that the bond angles have to be

corrected also, otherwise a simple reflection may be sufficient, if there is no other

chiral center in the molecule.

The idea of the algorithm is, at first, to move the shortest of the two main chain

branches in order to fit the bond angle N − Cα − C′, and then to reconstruct the

positions of the hydrogen and of the β-carbon. The latter is used for an appropriate

dislocation of the whole side chain brach. For branch dislocations Algorithm 4.10

is used. In the following, 	Cα denotes the reference bond angle for the α-carbon.

Algorithm 4.8 (Chirality correction)

For a specified Cα find the connected C′, N, H and Cβ and do the following:

1) if wCαC′ > wCαN , determine the new direction �d = �rCαN
�Cα
∨ �rCαC′

and move branch DCαN using rotation matrix M
�rCαN
�d

,

otherwise, set �d = �rCαC′
�Cα
∨ �rCαN

and move branch DCαC′ using rotation matrix M
�r

CαC′

�d
,

2) set �rH = �rCα + lCαHT
�r

CαC′

�rCαN
�vr,

3) set �d = T
�r

CαC′

�rCαN
�vl,

4) move branch DCαCβ
using rotation matrix M

�rCαCβ
�d

.

Lemma 4.9

Let Ao be the branch origin and M be a matrix of rotation relative to Ao. Then

the new position �ri
′ of a branch atom Ai is given by

�ri
′ = (E − M)�ro + M�ri,

where E ∈ R3×3 denotes a unit matrix.

∗See Section 1.3 for a discussion of chirality in amino acids.
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Fig. 4.6: Branch dislocation.

Proof:

�ri
′ = �ro + M�roi = �ro + M(�ri −�ro) = (E − M)�ro + M�ri,

see Figure 4.6. �

The purpose of Algorithm 4.10 is to rotate branch Dod for given atoms Ao and Ad.

The algorithm uses atomic transition numbers ni, n ∈ Nod to mark atoms that have

been already moved. This algorithm can be used both for chirality corrections and

for branch rotations during energy minimization.

Algorithm 4.10 (Branch dislocation)

For specified atoms Ao, Ad and rotation matrix M do the following:

1) determine the translation vector �v = �ro − M�ro,

2) increase the global transition number Nt by one,

3) set no = Nt,

4) perform recursively the steps 4.1-4.2 starting with Ad as Ai:

4.1) set ni = Nt

4.2) for each atom Aj bonded to Ai, such that nj �= Nt, determine the new

position �rj
′ as

�rj
′ = �v + M�rj (4.5)

and call the procedure 4.1-4.2 for Aj as Ai

5) if Ad should be moved∗, determine its new coordinates using (4.5).

∗If the branch is rotated about vector �rod, there is no need to recompute the coordinates of Ad,

since they do not change.
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4.2.4 Overall organization

Two force fields were implemented in SiViProF. The one given by equation (3.87)

with the associated definitions, additionally supplemented by the terms modeling ri-

bosomal restriction (specified in (3.109)) and distortions related to disulfide bridges

(described by (3.124) and (3.125)), together with the related forces, and another

one of the type (2.2), supplemented by the same terms, for energy minimization in

the space of Cartesian coordinates.

The latter force field differs from the classical form (2.2) in a number of details,

apart from the mentioned additional terms. In particular, the electrostatic poten-

tial involves screening functions, as in (3.87). The difference in the angle bending

term is that the constants k
[a]
i and αi mostly depend only on the central atom Ai.

This minor simplification is justified by quantum mechanical speculations given in

Section 1.5 and through comparison of parameters used in other force fields∗. The

torsional term takes into consideration only double and partially bonds that do

not belong to any ring. This term is aimed to prohibit twisting about such bonds.

Twisting about single bonds is possible, and the desired shape of the associated

energy profile is achieved due to the repulsive contribution of the van der Waals

interactions of the neighboring bonded atoms. Out-of-plane bending is hindered

through the utilization of appropriate bond-angle reference values for atoms in five-

member aromatic rings, therefore no extra terms for potential due to out-of-plane

bending are necessary.

In the both implemented force fields, the particular form of the Lennard-Jones

potential together with the associated parameters is adopted from [94]. A cutoff of

4 Å is used for evaluation of the van der Waals interactions. This condition assumes

that only the atoms that are immediately in contact are involved into interaction.

Besides the reduction of computational costs, it facilitates an estimation of the van

der Waals interaction with surrounding solvent without explicit consideration of its

molecules, using available information about solvent-exposed surface area from the

hydration model, proposed in this work (see Section 3.4). Computations show that

the error introduced by this cutoff is sufficiently small.

In the current implementation, a disulfide bridge is formed when two sulfur atoms

approach each other to a distance equal or smaller than the sum of their van der

Waals radii, and breaks when the energy of the related geometry distortions (bond

stretching and angle bending) exceeds the mean enthalpy of disulfide bonds (64.05

kcal/mol [14]). Although this is a simplified picture, this realization is helpful for a

more appropriate reproduction of protein structures.

Hydrogen bonds are implemented similar to the Tripos 5.2 force field [94] (see

Subsection 2.2.4). Thus, no van der Waals interaction is computed between the

hydrogens in donor groups and potential hydrogen bond acceptors.

∗The values of the utilized parameters are listed in Appendix D.
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As suggested in Subsection 3.5.2, a collection of the amino acids that are neces-

sary for synthesis is created preliminary. If the protein structure is to be loaded

from a file, the amino acids are produced without specification of atomic positions.

Otherwise the coordinates are generated according to the description given in Sub-

section 4.2.2, or loaded from files with precomputed amino acid structures. These

coordinates are used for calculation of the new atom positions after inclusion of the

corresponding residue into the protein.

Before a non-leading amino acidis appended, its amino group is converted into the

non-ionized form. One of the oxygen atoms at the carboxyl end of the growing chain

is deleted, and its bond to C′ is replaced by a peptide bond, connecting the carbon

with the nitrogen of the amino group of the attaching residue. The coordinate

transformation for the new residue is performed as described in Subsection 3.5.2.

When the assignment (4.4) is performed in Algorithm 4.4, the obtained bond di-

rection has a random contribution and, in general, requires optimization, when the

whole structure is generated. In particular, if Algorithm 4.4 is used for determina-

tion of positions for only the hydrogen atoms (in the case when other coordinates

are loaded from PDB), the bond bkj between the two previously located atoms

(i.e. not the bond bji to the unlocated atom, cf. (4.4)) can be added to the list of

bonds relevant for energy minimization. Thus, the hydrogen positions that are not

uniquely defined can be efficiently optimized, while other atoms remain fixed at the

specified positions.

In order to download the coordinates of non-hydrogenic atoms from PDB, the appro-

priate atom labels must be assigned. They consist of a two-character right-justified

atom name followed by an alphabetic symbol and the branch number. The alpha-

betic symbol is essentially the same as the conventional identifier of the given atom

(see Table A.2 in Appendix A), except that the Greek letter is replaced by the

corresponding capital Latin letter. While the naming for the common main-chain

part is relatively simple to implement (N, Cα, C′, and O obtain respectively the

labels ” N “, ” CA “, ” C “, and ” O “), labeling the remaining atoms requires

an additional discussion.

Algorithm 4.11 is used in SiViProF for generation of PDB atom labels for all amino

acids with exception of glycine.

Algorithm 4.11 (Assignment of PDB atom labels)

1) add the number of the β-carbon∗ to an empty list O of atom numbers,

2) set the label of the β-carbon equal to ” CB “ and the alphabetic index to ”G“,

3) repeat the steps 3.1-3.5 while the current list O is not empty,

∗According to the numeration used in the current implementation, β-carbon has number 9 for all

amino acids.
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3.1) read the current branch number from the last position in the label of

atom Ao1 , where o1 is the first number in list O (space assumes the

branch number one),

3.2) for each atom Aok
, ok ∈ O, consider consequently all directly connected

atoms that are not yet named and not hydrogens, and perform the

steps 3.2.1-3.2.3 for them:

3.2.1) set the branch number equal to the maximum between the current

value and the branch number of Aok
,

3.2.2) name the atom by the string constituted consequently from the fol-

lowing symbols: a space character∗, the atom type, the alphabetic

index and the branch number,

3.2.3) increase the branch number counter,

3.3) increase the alphabetic index as appropriate,

3.4) if there is only one atom in list O, and its branch number is one, rewrite

the corresponding position in the label by a space character,

3.5) assign list N to list O.

For a few amino acids, such as histidine, isoleucine, asparagine, glutamine, threonine

and tryptophan, the sequence of consideration of the bonded atoms is important

(see Table A.2 in Appendix A). In the current implementation it is ensured by the

order of bonds in the list of each atom, determined by the sequence of connections

specified in the formula record file (see Table A.3 in Appendix A).

4.2.5 Enhancement of computational efficiency

If the system includes a very large number of atoms, even with a cutoff for evalu-

ation of van der Waals interactions, the computation of distances and electrostatic

forces between each two atoms Ai and Aj (i � j) can become computationally de-

manding. Therefore a computational mode is implemented, in which the distances

and interactions between atoms belonging to distant residues are not considered.

Definition 4.12

Let N [m]
i be the set of numbers of the main chain atoms belonging to the i-th

residue and N [s]
i = Ni \N [m]

i . For proline residues we construct N [m]
i by taking into

consideration only atoms typical for the main chain fragments of other residues. Let

R
[p]
i := max

j∈N [m]
i

(∥∥∥�rCi
αj

∥∥∥+
1

2
C [w]

)
be called primary residue radius, which is the same for non-terminal non-proline

residues, and let

R
[s]
i := max

j∈Ni

(∥∥∥�rCi
αj

∥∥∥+
1

2
C [w]

)
be referred as secondary residue radius.

∗In PDB format this position is also reserved for atom names
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The primary residue radius is permanent, while the secondary residue radius can be

reevaluated each time when the residue conformation has changed. As before, Ni

contains the numbers of all atoms in i-th residue, and C [w] denotes the introduced

van der Waals cutoff.

In the averaging mode, at first the interactions inside each residue are completely

evaluated and the secondary residue radius is determined. The computation of

interactions between each two different residues proceeds according to the following

rules: if ‖�r(Cα)k(Cα)m‖ > k̃(R
[s]
k + R

[s]
m ) (where k,m are residue numbers and k̃ ≥ 1

is a coefficient), then only the electrostatic interaction between the total residue

charges positioned at α-carbons is computed; otherwise the interactions between the

side chains are evaluated atomwise. Besides, in the latter case, if ‖�r(Cα)k(Cα)m‖ ≤
k̃(R

[s]
k + R

[p]
m ), then the interaction of the k-th side chain with the main chain

fragment belonging to the m-th residue is evaluated completely, otherwise only

the electrostatic interaction of the total charges is computed. Similar procedure

is performed for the combination of the main chain fragment of the k-th residue

and the m-th side chain. Finally, if ‖�r(Cα)k(Cα)m‖ ≤ k̃(R
[p]
k + R

[p]
m ), the interaction

between the main chain fragments is evaluated atomwise, and it is averaged in the

other case. The interaction of the total charges can be replaced by interaction of

dipoles, and the scaling constant k̃ can be different for hydrated and non-hydrated

residues.

In principle, the strength of electrostatic interactions between hydrated charges

decays rather fast with increasing distance (see Subsection 4.3.1). The interaction

of the same charges in a protein core is about thirteen times stronger. However,

charges tend to stay in contact with water, unless they are sufficiently small to be

practically ignored.

4.3 Simulations

SiViProF was designed not only as a protein folding software, but also as a tool for

exploration of related phenomena, with an aim of better understanding the folding

process and possible model improvement. For example, it may be possible that

contributions of some forces are negligible under certain circumstances, or some

interactions that are often ignored may be important for correct folding. In the

following subsection we shall briefly focus our discussion on these issues and then

proceed to energy minimization. Some SiViProF simulation results can be also

observed on figures in the preceeding sections.

4.3.1 Contributions of different interaction types

As discussed in Subsection 1.6.1, van der Waals energy landscapes of main chain

fragments help to understand why certain values of dihedral angles prevail in protein

structures. A natural question arises: what is the contribution of the electrostatic

energy?
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φ,◦

ψ,◦

(a)

φ,◦

ψ,◦

Energy, kcal/mol

(b)

Fig. 4.7: Clipped van der Waals and electrostatic energy surfaces of the peptide fragment

shown in Figure 1.26 (a). Black color indicates high energy values. (a) Low values of the van

der Waals and electrostatic energy at ε = 40 are depicted in green and red respectively. The

surfaces are clipped above 0. The minimal value corresponds to −1.76 kcal/mol. (b) The

electrostatic energy surface at ε = 3. The surface is clipped below 1 kcal/mol.
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φ,◦

ψ,◦

Energy, kcal/mol

(a)

φ,◦

ψ,◦

Energy, kcal/mol

(b)

Fig. 4.8: Clipped total energy surfaces of the peptide fragment shown in Figure 1.26 (a).

As before, black color indicates high energy values. (a) ε = 40. (b) ε = 3.
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Fig. 4.9: A typical main chain fragment complementary to the one depicted in Fig-

ure 1.26 (a).

Figure 4.7 shows color-coded projections of clipped van der Waals and electrostatic

energy landscapes, which were obtained for the previously considered typical peptide

fragment (see Figure 1.26(a)) with constant electric permittivities. The electrostatic

energy depicted in the red color channel in Figure 4.7(a) is computed with ε = 40.

The minimum in the center appears due to convergence of an oxygen and a hydrogen

atom. The valley becomes even better expressed for ε = 3 (see Figure 4.7(b)).

However, the repulsive van der Waals interaction dominates, therefore the landscape

corresponding to the total energy looks similar to the surface considered before (see

Figure 4.8). Note, however, that the minimum of the total energy for ε = 3 is

shifted in the direction of the positive ψ values. The horizontal lines in Figure 4.8

appeared due to solvation energy contributions, which are of no importance for the

considered fragment, because some atoms around were removed.

Another question that can be raised in discussion of energy landscapes concerns the

interaction of neighboring residues. A fragment that can be regarded as comple-

mentary to the one considered above is shown in Figure 4.9. The van der Waals

energy landscape for this fragment gives no interesting information, since the bonds

(Cα)i − (C′)i and (N)i+1 − (Cα)i+1 are parallel and the groups of atoms bound to

(Cα)i and (Cα)i+1 do not show significant van der Waals interaction. Even the

electrostatic interaction between them for ε = 40 is negligible.

However, for ε = 3 the interaction between (N)i and (C′)i+1 is quite strong (about

−1.9 kcal/mol) and must favor a helical conformation over an extended one, in

which these atoms have the largest separation. This effect is opposed to the one

described above for the total energy in Figure 4.8.

Figure 4.10 (a) shows an exemplary distribution of charges in a tetrapeptide con-

taining hydrophobic and ionized residues. These partial charges are obtained using

the method of J.Gasteiger and M. Marsili [26, 27], which is described in Subsec-

tion 2.2.3. The other subfigures nearby visualize the resulting forces computed

with different electric permittivities. One can see that typical electrostatic forces in

vacuum are very strong, while for ε = 40 or ε = 80 most of them become negligible.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.10: The distribution of charges (a) in the LIKE-tetrapeptide, and the resulting forces

computed with different permittivity models (b-f): (b) ε = 1, (c) ε = 3, (d) the introduced

permittivity model, see p. 113, (e) ε = 40, (f) ε = 80. Black arrows denote total atomic

forces. The explanation of other related visualization details is given on p. 31 and on p. 136.
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4.3.2 Minimization of energy

As already discussed, we shall expect that the native form of a protein corresponds to

a sufficiently deep local minimum of energy. The popular assumption that this min-

imum should be global and achievable from any initial conformation is not adopted

in this work, by the reasons described in Subsections 1.7.3 and 1.7.4. Here, the

initial conformation is assumed to be predetermined to some extent by transpep-

tidation reactions in the active center of a ribosome and possibly even enforced in

the ribosomal tunnel. The biochemical basis for this assumption is described in

Section 1.8.

However, some tolerance to variations in initial conformations of the side chains, as

well as to stochastic collisions with atoms of surrounding solvent at physiological

conditions, are presumed. Hence, there is a hope that the system is sufficiently

robust to allow predictions even though the natural folding path is not followed

exactly, and the model contains significant simplifications. Nevertheless, this spec-

ulation suggests that we shall avoid transition paths with unphysiologically high

energy barriers. Naturally, this condition is most surely fulfilled if the conforma-

tional changes proceed roughly in the direction of twisting forces. Therefore, the

choice has been made in favor of the steepest descent and its modifications.

The idea of the steepest descent is to move in the direction of the greatest change

downhill on the energy landscape, i.e. opposite to the direction of the gradient.

However, since the gradient direction in general changes with the current position,

in practice this principle is followed only to a certain extent. Therefore, different

realizations of the steepest descent are possible, depending on how far one proceeds

in the chosen direction before it will be revised.

One approach consists in performing a line search, in order to locate the next

minimum point along the chosen direction, and then update the gradient value to

determine a new direction of movement. The procedure is repeated until a minimum

is found or a certain stop criterion is fulfilled.

Another way, which is particularly more efficient if energy evaluation is coupled with

the computation of the gradient on an analytical basis, is to move from a current

point �ζk using an adaptive step size εk, which is increased by some factor (e.g. by

1.2), if the new position,

�ζk+1 := �ζk − εk

‖∇Ũ(�ζk)‖
∇Ũ(�ζk)

fulfills a certain criterion. Otherwise the move is rejected, and another attempt is

made from the point �ζk with a reduced step size (e.g., by the factor 0.5 [20]). A

typical requirement for a successful step is a decrease in energy Ũ .

Although, strictly speaking, this strategy does not exclude the possibility to miss
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Fig. 4.11: Minimization in Cartesian coordinates compared to minimization in the dihedral

angle space. (a) The initial configuration with an intentional distance violation ( Ũ =

1.4×104 kcal/mol). (b) The configuration after minimization in the space of Cartesian

coordinates (Ũ = −1.168 kcal/mol). (c) The configuration after a subsequent minimization

in the space of dihedral angles (Ũ = −3.59 kcal/mol).

the “right” minimum by choosing too large steps, practically we can avoid∗ it by

setting a reasonable initial value and an appropriate upper bound for the step size.

The steepest descent with an adaptive step size, both in the space of Cartesian

coordinates and in the dihedral angle space, in a number of its variations was im-

plemented in SiViProF. Simulations with folding in the space of dihedral angles

have shown a significant improvement compared to minimization in Cartesian co-

ordinates, both in efficiency and the quality of the obtained minima.

Figure 4.11 shows the result of minimization in Cartesian coordinates, which was

followed by minimization in the dihedral angle space. Minimizations were performed

with the same tolerance. However, in the first case the gradient has vanished before

the desired precision was achieved†. By contrast, if the order of the two minimization

types is exchanged, the energy typically does not change so drastically‡ after the

first minimization, and the structural changes are even less noticeable.

The requirement of energy decrease for a successful step the in dihedral angle space

works well to resolve distance violations in peptides consisting of several residues

(see, for example, Figure 4.1). However, in this case, with exception of very short

fragments, minimization finishes in a local minimum often quite close to the ini-

tial conformation. That is, the same fragment may accept an α-helical or β-sheet

∗It can be done by taking into account physically meaningful space resolution with respect to the

atom size and acceptable fluctuations of energy at the given temperature.
†In fact, the gradient has vanished several times during minimization, but the algorithm had

some resistance to this event.
‡Of course, one can construct examples that would behave differently. However, the minimization

in dihedral angle space usually ends with low-energy structures, and subsequent minimization in

Cartesian coordinates makes only minor atomic shifts that locally balance the remaining forces by

small molecular distortions.
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Fig. 4.12: A screenshot of SiViProF with results of cotranslational folding simulated using

steepest descent allowing energy oscillations (see description in the text).

structure, depending on whether the setup was rather extended or close to heli-

cal. Besides, for longer chains the problem becomes stiff, and minimization ends up

with high oscillations related to large branches. In these cases even simple bondwise

minimization can proceed more successfully.

The described problems are partially resolved by allowing a certain energy increase

for a successful transition step. Figure 4.12 shows the result of energy minimization

with the following criterion for step acceptance:

Ũ(�ζk+1) − Ũ(�ζk) < R̄TM, if k ≤ ñ, (4.6)

or

Ũ(�ζk+1) − Ũ(�ζk) ≤ R̄T max(0,M − (k − ñ)), if k > ñ. (4.7)

Here k and M are, as before, the step number and the number of degrees of freedom,

and ñ is the number of agitated steps, after which the energy decrease is stepwise

enforced. In the described simulation, ñ was set equal to M . The form of the

acceptance criterion was inspired by thermodynamical considerations described on

p. 42. By contrast, the utilization of the Metropolis Monte Carlo criterion with eval-

uation of the Boltzmann Factor (see (2.1)) have immediately resulted in complete

unfolding and highly non-natural final structures.

The initial conformation for the main chain was preset as suggested by V. I. Lim

and A. S. Spirin according to their stereochemistry analysis [43, 72] (see also Sub-

section 1.8.3 for a more detailed discussion), i.e. both φ and ψ were set to −60◦ in
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each residue. This results in a high-energy structure, which nevertheless resembles

an α-helix. The side chains initially were in an extended conformation. The same

fragment of the chain had tendency to unfold in tests with permutations in the

sequence, confirming that structural and physical features of residues contribute to

the stability of one or another secondary structure.

Simulations with long chains have demonstrated, however, that the described step

acceptance criterion, given by conditions (4.6) and (4.7), and the utilized model

parameters still require further tuning based on experimental data.

A number of modifications of the gradient direction, which were aimed to decrease

stiffness, have been tested in SiViProF, but none of them have shown significantly

better performance so far. Some further investigations in this direction remain to

be done.

4.4 Conclusions and outlook

This work was focused on development of a mathematical model for intracellular

protein folding (see Chapter 3) and on implementation of the model in the form

of SiViProF software for simulation and visualization (described in the current

chapter). During the elaboration of the model special attention was given to the

factors that may be determinant for physiological folding pathways.

The number of possible conformations of a protein chain is enormous. However,

a nascent protein folds in the most cases quickly and reliably into its active form.

If a mistake nevertheless occurs, the misfolded protein usually can not refold by

itself and requires an intervention of chaperones (see Subsection 1.7.3). Moreover,

the probability of failure increases under higher temperature. Besides, an indication

that the native form of the protein is not a unique stable state is given by existence of

prions (see Subsection 1.7.4). The latter represent a class of proteins that possess, in

addition to their native form, another stable structure, which is infectious due to its

ability to promote other chains with the same sequence to adopt such a pathogenic

fold. Among the diseases caused by prions is the well-known bovine spongiform

encephalopathy, often called the mad cow disease. A remarkable feature of the

pathogenic form is its exceptional resistance to digestion by enzymes and thermal

treatment, challenging the hypothesis about the global minimum of the potential

energy, related to native folds.

Therefore, in distinction to other ab initio protein folding approaches, which typ-

ically suggest that a protein chain can achieve its native state from any initial

conformation, a methodology was developed that is aimed to imitate native fold-

ing conditions. It assumes that an appropriate initial conformation, favoring certain

folding pathways, is enforced on the ribosome and may be necessary for correct fold-

ing. The findings from molecular biology that became the basis for this assumption

are described in Section 1.8.
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To imitate the protein synthesis in silico∗, the algorithms for appropriate coordi-

nate transformations were developed (see Subsection 4.2.2 for generation of initial

coordinates, Subsections 1.5.1 and 1.5.2 for the physical basis, and Subsection 3.5.1

for a description of related mathematical operations). The atomic coordinates for

amino acids are generated preliminary and then used for subsequent elongation of

the desired polypeptide chain. Care is taken about the correct chirality and appro-

priate ionization states of amino acids (see Sections 1.3 and 1.4 for the background

in biochemistry and physical chemistry, and Subsections 4.2.2 and 4.2.3 for the re-

lated algorithms). The attachment of a new residue is performed in a way that

the formed peptide group is disposed in the trans conformation, which prevails

significantly in native proteins (see Subsection 1.6.1 for the biochemical basis and

Subsection 3.5.2 for the related coordinate transformation). During simulations,

the chain is folded subsequently, as when it emerges from a ribosome during protein

synthesis. No transitions assuming unphysiological high-energy intermediate states

are intentionally allowed (see Subsection 4.3.2). To prevent folding of the nascent

chain about the region of the chain elongation, a special energy term is incorporated

that enforces the preference to a desired half-space (see Section 3.5).

The force field was formulated in the space of dihedral angles (see Section 3.3) to en-

able more efficient energy minimization. For this purpose, some analysis of relations

between the interatomic distances and intramolecular dihedral angles was performed

(see Section 3.2). A further improvement of efficiency was achieved by computation

of analytical derivatives, which are related to atomic and twisting forces (see Sec-

tion 3.6). In particular, the forces arising from the van der Waals and electrostatic

interactions (see Subsections 1.5.3 and 1.5.4 for the physical background), as well

as from bond stretching and angle bending in disulfide bridges (see Sections 1.2,

1.4, and Subsection 1.8.4 for the biochemical background), were discussed in this

context.

Beside the effects described above, the interaction with the surrounding solvent is

crucial in determination of the final protein structure (see Subsections 1.7.1 and

1.7.2). In particular, the hydrophobic effect, which has largely entropic nature

under physiological conditions, is regarded by biochemists as the major driving

force in the process of protein folding. Since explicit inclusion of water molecules

into simulations is very expensive from the computational point of view, an implicit

solvation model was developed with an aim to reproduce the desired effects (see

Section 3.4). The dynamics of protein atoms in solution was analyzed in Section 3.7.

The conclusion was made, that an appropriate scaling of the gradient may help to

obtain a transformation path better describing a natural folding pathway.

By reasons motivating the character of the model, the energy minimization methods

were selected with attention to the nature of the described processes. On the other

hand, the computational efficiency is an important issue particularly for this prob-

∗I.e., via computer simulations.
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lem. Although full-time molecular dynamics involving solvent atoms (and possibly

with consideration of quantum effects) would be the most appropriate to reconstruct

the folding process in all details, it is not feasible in the most cases, and reasonable

simplifications are necessary.

The steepest descent in the space of dihedral angles appeared to be a natural choice

for the proposed model. This method performs significantly better than different

energy minimization methods carried out in Cartesian coordinates. The latter,

namely, tend to resolve high energy configurations mainly by angle bending. How-

ever, for long chains, the steepest descent in the dihedral angle space ends up with

high oscillations. Besides, the requirement of energy decrease for successive con-

formational transitions may be unphysical, since naturally happening stochastic

collisions with solvent atoms are known to be the driving force in many conforma-

tional transitions and chemical reactions. Therefore, the step acceptance criterion

for this method was modified to allow certain increase in energy. Other methods

have been tested also, but none of them have yielded better results.

Determination of the optimal parameter sets by comparison of simulation predic-

tions with native structures, as well as the related refinement of the model still re-

mains to be done. Particularly the solvation parameters require verification, which

is difficult in the light of the large discrepancy in experimental values. Further work

shall be directed to the revision of the energy minimization method with involve-

ment of statistical thermodynamics. The evaluation of the electrostatic interactions

can be possibly improved by introducing the electrical permittivity depending on

the distance from the solvent exposed surface. Models reconstructing the ionization

behavior and disulfide bond reshuffling, as well as cis-trans isomerization of peptide

groups with proline residues can be included into simulations.

Since some new biochemical findings suggest that ribosomes may enforce differ-

ent initial conformations for specific sequences (see Subsection 1.8.3), it may be

worth trying to imitate this effect by using secondary structure predictions from

knowledge-based methods for selective setup of the initial main chain configuration

in simulations with cotranslational folding. The possible impact of initial side chain

conformations shall be explored also. The tools necessary for the latter investiga-

tions are already implemented in SiViProF.
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Implementation Details

A.1 Visual representation of molecular elements

Table A.1: Representation of atoms and bonds on molecular images and the correspond-

ing symbols used for program input.

Representation Symbols Object

C Carbon atom

H Hydrogen atom

N Nitrogen atom

O Oxygen atom

S Sulfur atom

− Single bond

= Double bond

+ Peptide bond

∗ Aromatic or partially double
non-peptide bond

Hydrogen bond
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A.2 Atom numeration in amino acids

H
0 +

N
2

H
1

H
3

C
4

α

H
5

R

C6

′ −

O
7

O
8��

��

Fig. A.1: The numeration of atoms in the common part of amino acids. Atom charges

given here and in the following table are formal. They are assigned as initial charges for

the net charge computation.

Table A.2: Common abbreviations for standard amino acids, atom numbering used in

SiViProF (red indices) and conventional atomic identifiers (blue labels).

One-letter

code

Three-letter

code
Name Side chain numbering

A ala alanine C
9

β

H
10

H
12

H
11

C cys cysteine C
9

β

H
10

H
11

S
12

γ H
13

D asp aspartic acid C
9

β

H
10

H
11

C
12

γ−

O
13

δ1

O
14

δ2

��

��

E glu glutamic acid C
9

β

H
10

H
11

C
12

γ

H
13

H
14

C
15

δ−

O
16

ε1

O
17

ε2

��

��

F phe phenylalanine C
9

β

H
11

H
10

C12
γ C

17

ζ

C
21

δ2
C

19

ε2

C
13

δ1
C15

ε1

H
22

H
20

H
14

H
16

��

��

��

��
H

18

G gly glycine H
9

continued on the next page
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Table A.2 (continued)

One-letter

code

Three-letter

code
Name Side chain numbering

H his histidine C
9

β

H
10

����Nε2

15 C
16
ε1

Nδ1

18

C
13

δ2

C
12

γ
��H

19

��H
17��H

14

H
11

I ile isoleucine C
9

β

C
11

γ2
H

14

H
13

H
12

H
10

C
15

γ1

H
16

H
17�� ��

C
18

δ

H
19

H
21

H
20

K lys lysine C
9

β

H
10

H
11

C
12

γ

H
13

H
14

C
15

δ

H
16

H
17

C
18

ε

H
19

H
20

+
N

21

ζ

H
22

H
24

H
23

L leu leucine C
9

β

H
10

H
11�� ��

C
12

γ

C
14

δ1
H

17

H
16

H
15

H
13

C
18

δ2

H
19

H
20�� ��
H

21

M met methionine C
9

β

H
10

H
11

C
12

γ

H
13

H
14

S
15

δ C
16

ε

H
17

H
19

H
18

N asn asparagine C
9

β

H
10

H
11

C
12

γ

O
13

δ1

N
14

δ2
H

15

H
16

��

��

P pro proline

����N
2
+

C
4
α

C
9

β

C
15
δ

C
12

γ

H
11

H
14

''
H

1��
H

0

��H
5

��C
6 ′ −��O

8

��O
7

��H
10

��H
13

��H
3
��H
16

continued on the next page
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Table A.2 (continued)

One-letter

code

Three-letter

code
Name Side chain numbering

Q gln glutamine C
9

β

H
10

H
11

C
12

γ

H
13

H
14

C
15

δ

O
16

ε1

N
17

ε2
H

18

H
19

��

��

R arg arginine C
9

β

H
10

H
11

C
12

γ

H
13

H
14

C
15

δ

H
16

H
17

N
18

ε

H
19

C
20

ζ+

N
21

η1
H

23

H
22

H
26

H
25

N
24

η2

S ser serine C
9

β

H
10

H
11

O
12

γ H
13

T thr threonine C
9

β

C
13

γ2
H

16

H
15

H
14

H
10

O
11

γ1
H

12

V val valine C
9

β

C
11

γ1
H

14

H
13

H
12

H
10

C
15

γ2

H
16

H
17�� ��
H

18

W trp tryptophan C
9

β

H
10

����N
15

ε1

H
16

C
17

ε2

C
26

δ2

C
13

δ1

C
12

γ

��C
24

ε3

H
25

��C
18

ζ2

��H
14 C

20
η

C
22

ζ3

H
19

��

��

H
21��

H
23

��

H
11

Y tyr tyrosine C
9

β

H
11

H
10

C12
γ C

17

ζ

C
22

δ2
C

20

ε2

C
13

δ1
C15

ε1

H
23

H
21

H
14

H
16

��

��

��

��
O

18

η H
19
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A.3 SiViProF input format

SiViProF can create molecules of various chemicals by name, if the description

of the corresponding chemical structure is available in one of the considered input

files. There are two input files, one for amino acids, and the other one for the rest

of chemicals. Each file consists of line records, containing the name, the internal

format formula and the bonding hint for a certain chemical, which are separated by

tabulation. Records for amino acids describe only side chains and include one- and

tree-letter codes as well. A record for the common part is given separately.

The internal format formula contains consequently merged atom records consisting

of the type of the element, the number of bonds and the formal charge, if it differs

from zero. Specification of the number of bonds is used for convenience in allocation

of memory. Bonding hint is build of a sequence of bond records, separated by comma

and space. Each bond record consists of a couple of atom numbers, separated by a

bond sign (see Table A.1).

Only creation of molecules, containing chemical elements in hybridization states

that are represented in amino acids, is currently implemented. No support of struc-

tures other then non-cyclic and containing single or double rings is guaranteed.

Table A.3: Formulas of amino acids in SiViProF input format.

Name SiViProF formula and bonding hint

Common part H1H1+N4H1C4H1-C3O1O1
0-2, 1-2, 2-3, 2-4, 4-5, 4-6, 6*7, 6*8

Alanine C4H1H1H1
9-10, 9-11, 9-12

Arginine C4H1H1C4H1H1C4H1H1N3H1+C3N3H1H1N3H1H1
9-10, 9-11, 9-12, 12-13, 12-14, 12-15, 15-16, 15-17, 15-18, 18-19,

18-20, 20*21, 21-22, 21-23, 20*24, 24-25, 24-26

Asparagine C4H1H1C3O1N3H1H1
9-10, 9-11, 9-12, 12*13, 12*14, 15-14, 14-16

Aspartic acid C4H1H1-C3O1O1
9-10, 9-11, 9-12, 12*13, 12*14

Cysteine C4H1H1S2H1
9-10, 9-11, 9-12, 12-13

Glutamic acid C4H1H1C4H1H1-C3O1O1
9-10, 9-11, 9-12, 12-13, 12-14, 12-15, 15*16, 15*17

Glutamine C4H1H1C4H1H1C3O1N3H1H1
9-10, 9-11, 9-12, 12-13, 12-14, 12-15, 15*16, 15*17, 17-18, 17-19

continued on the next page
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Table A.3 (continued)

Name SiViProF formula and bonding hint

Glycine H1

Histidine C4H1H1C3C3H1N2C3H1N3H1
9-10, 9-11, 9-12, 12*18, 12*13, 13-14, 13*15, 15*16, 16-17, 16*18,

18-19

Isoleucine C4H1C4H1H1H1C4H1H1C4H1H1H1
9-15, 9-10, 9-11, 11-12, 11-13, 11-14, 15-16, 15-17, 15-18, 18-19,

18-20, 18-21

Leucine C4H1H1C4H1C4H1H1H1C4H1H1H1
9-10, 9-11, 9-12, 12-13, 12-14, 12-18, 14-15, 14-16, 14-17, 18-19,

18-20, 18-21

Lysine C4H1H1C4H1H1C4H1H1C4H1H1+N4H1H1H1
9-10, 9-11, 9-12, 12-13, 12-14, 12-15, 15-16, 15-17, 15-18, 18-19,

18-20, 18-21, 21-22, 21-23, 21-24

Methionine C4H1H1C4H1H1S2C4H1H1H1
9-10, 9-11, 9-12, 12-13, 12-14, 12-15, 15-16, 16-17, 16-18, 16-19

Phenylalanine C4H1H1C3C3H1C3H1C3H1C3H1C3H1
9-10, 9-11, 9-12, 12*13, 13-14, 15*13, 15-16, 15*17, 17-18, 19*17,

19-20, 19*21, 21-22, 21*12

Proline H1H1+N4H1C4H1-C3O1O1C4H1H1C4H1H1C4H1
0-2, 1-2, 2-4, 2-15, 4-5, 4-6, 4-9, 9-10, 9-11, 9-12, 12-13, 12-14,

12-15, 15-16, 15-3, 6*7, 6*8

Threonine C4H1O2H1C4H1H1H1
9-10, 9-11, 11-12, 9-13, 13-14, 13-15, 13-16

Tryptophan C4H1H1C3C3H1N3H1C3C3H1C3H1C3H1C3H1C3
9-10, 9-11, 9-12, 12*13, 13-14, 13*15, 15*17, 16-15, 18*17, 18-19,

18*20, 20-21, 22*20, 22-23, 22*24, 24-25, 26*17, 26*24, 26*12

Tyrosine C4H1H1C3C3H1C3H1C3O2H1C3H1C3H1
9-10, 9-11, 9-12, 12*13, 13-14, 15*13, 15-16, 15*17, 17*18, 18-19,

20*17, 21-20, 20*22, 23-22, 22*12

Serine C4H1H1O2H1
9-10, 9-11, 9-12, 12-13

Valine C4H1C4H1H1H1C4H1H1H1
9-10, 9-11, 9-15, 11-12, 11-13, 11-14, 15-16, 15-17, 15-18
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Physical Quantities,

Constants and Units

Table B.1: The base SI units [14], p. 960.

Name Symbol Physical quantity

ampere A electric current

candela cd luminous intensity

kelvin K thermodynamic temperature

kilogram kg mass

meter m length

mole mol amount of substance

second s time

Table B.2: Units used in this work and related physical quantities.

Name Symbol Conversion to base SI units Physical quantity

ångström Å 10−10 m length

elementary charge |e−| 1.6022×10−19 A×s electric charge

debye D 3.3356×10−30 A×s×m dipole moment

kilocalorie kcal 4.1868×103 kg×m2
×s−2 energy

dalton Da 1.6605×10−27 kg mass
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Table B.3: Relevant physical constants.

Name Symbol Value

Avogadro’s number NA 6.0221×1023 mol−1

vacuum permittivity ε0 1.4441×1020 |e−|2 ×(Å×kcal)−1

Boltzmann’s constant kB 3.2975×10−27 kcal×K−1

gas constant R̄ 1.9859×10−3 kcal×(K×mol)−1

Planck’s constant h 1.5826×10−37 kcal×s

reduced Planck’s constant � 2.5188×10−38 kcal×s



Appendix C

Mathematical Notations

C.1 General notations

i = 1, n i ∈ {1, 2, . . . , n}
Ψ complex conjugate of Ψ

∧ logical AND

∨ logical OR

∇ gradient

Δ Laplace operator, Δ := ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Δx increment of x

‖�v‖ Euclidean norm of �v

�a · �b scalar product of �a and �b

�a × �b vector product of �a and �b

× multiplication sign, e.g. utilized between numbers or units

◦ function composition

∠(�a, �b) angle between �a and �b

AT transpose of A

cardL cardinality of L
A ∩ B set intersection

A ∪ B set union

A \ B set difference

C.2 General expressions

∀ “for all”

� “does not exist”
.
= “must be equal”

�a ∦ �b “�a and �b are non-collinear”



178 Appendix C. Mathematical Notations

C.3 Problem-specific notations

N set of atom numbers

N cardN
Ai i-th atom

R
[w]
i van der Waals radius of Ai

qi partial charge of Ai

�ri position of Ai

�rij �rj −�ri

ζil
jk dihedral angle ∠(Ai−Aj−Ak−Al), also: ∠(�rij ,�rjk,�rkl)

i � j Ai and Aj are covalently bound

i � j Ai and Aj are not covalently bound, and �k ∈ N : i � k � j

i � j Ai and Aj are joined by a double or partially double bond

bij directional bond of Ai to Aj , see p. 109

wij weight of bij, see p. 110

R̂ij union of all rings containing bij , see p. 110

Dij branch originated by bij, see p. 110

Njk {n ∈ N | An ∈ Djk}
dij distance between Ai and Aj as a function of torsion angles, p. 111

lij optimal length of bij

αij optimal bond angle in Ai

�ζ vector of variable primary dihedral angles (list of degrees of freedom)

M indices of degrees of freedom

M cardM
κ(i, j) index of bij in the list of degrees of freedom, see p. 110

ι(i) bond/branch indices related to i-th degree of freedom, see p. 133

ℵij minimal number of consequently bonded atoms between Ai and Aj

More notations are introduced locally.

C.4 Introduced operations

�a

�

α deflection of vector �a to angle α

�a

��bα deflection of vector �a to angle α in the direction of vector �b

�a α
∨
�b deflection of vector �a in the direction of vector �b to match angle α

M�v(α)�a rotation of vector �a to angle α about vector �v

M�a
�b
�a matching the direction of vector �a with vector �b

T�a
�b
�c specific coordinate transformation, see the description on p. 126

ΞB(�v) coordinate representation of �v in basis B
Υ(r, ϕ, ϑ) mapping spherical to Cartesian coordinates
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C.5 Conventional notations

φi ∠(C′
i−1−Ni−(Cα)i−C′

i)

ψi ∠(Ni−(Cα)i−C′
i−Ni+1)

ωi ∠((Cα)i−C′
i−Ni+1−(Cα)i+1)

χ1
i , χ2

i , . . . side chain dihedral angles, starting from the bond to Cα
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Parameters

Table D.1: van der Waals radii R[w] and Lennard-Jones potential parameters K [w],

adopted from [124] and [94] respectively∗.

Chemical element R[w], Å K [w], kcal/mol

C 1.70 0.107

H 1.20 0.042

N 1.55 0.095

O 1.52 0.116

S 1.80 0.314

Table D.2: Parameters for computation of Gasteiger partial charges, inferred from [27].

Ai

element and specification
ai bi ci

C, sp3 7.98 9.18 1.88

C, sp2 8.79 9.32 1.51

N, sp2 12.87 11.15 0.85

N, cationic 11.54 10.82 1.36

O, sp3 14.18 12.92 1.39

O, sp2 17.07 13.79 0.47

H 7.17 6.24 −0.56

S, sp3 10.14 9.13 1.38

Atoms with partially double bonds are treated as sp2-hybridized.

∗The van der Waals radii specified in [94] coincide with the ones from [124] for protein atoms.
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Table D.3: Bond stretching parameters, adopted from [94].

Ai

element and specification
Aj

element and specification
Bond∗ lij , Å k

[b]
ij , kcal

mol× Å
2

C, sp3 C, sp3 − 1.54 633.6

C, sp3 C, aromatic − 1.525 640

C, sp2 C, sp3 − 1.501 639

C, sp2 C, sp2 = 1.335 1340

C, sp2 C, aromatic − 1.51 1340

C, aromatic C, aromatic ∗ 1.395 1400

C, sp3 H − 1.1 622.4

C, sp2 H − 1.089 692

C, aromatic H − 1.084 692

C, sp3 N, cationic − 1.47 760

C, sp2 N, cationic − 1.33 1300

C, sp3 N, in peptide group − 1.45 677.6

C, sp2 N, sp2 − 1.444 1300

C, sp2 N, sp2 = 1.27 1305.94

C, sp2 N, in peptide group + 1.345 870.1

C, sp2 N, planar† − 1.3 1200

C, aromatic N, planar† − 1.35 1306

C, sp3 O, sp3 = 1.43 618.9

C, sp2 O, sp3 = 1.33 699.84

C, sp2 O, sp2 = 1.22 1555.2

C, in carboxyl group O, in carboxyl group ∗ 1.24 699.84

C, aromatic O, sp3 − 1.39 700

C, sp3 S, sp3 − 1.817 381.6

H N, cationic − 1.08 692

H N, in peptide group − 1 700

H N, planar† − 1.03 692

H O, sp3 − 0.95 1700.5

H S, sp3 − 1.008 700

∗See Table A.1 for bond type notations.
†Nitrogen, that has no double bonds, but sp2-hybridized due to delocalization of electrons.
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Table D.4: Reference bond angles and angle bending parameters, inferred from [94] .

Ai

element and specification
αi,

◦ k
[a]
i , kcal

mol× (◦)2

C, sp3 109.5 0.02

C, sp2 120 0.024

C, aromatic 120 0.024

N, sp2 120 0.04

N, planar 120 0.04

N, in peptide group 120 0.02

N, cationic 109.5 0.01

O, sp3 109.5 0.02

S, sp3 97 0.02

Solvation parameters are computed in accordance with the information summarized

in Subsections 1.7.1 and 1.7.2. Atoms with the partial charges less then 0.2 |e−|
are currently treated as hydrophobic. However, this requires further experimental

verification.
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