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Abstract 

As in ordinary fluids, the understanding of the dynamic processes is important to understand 

the equilibrium properties of complex fluids. As model system, the so-called L3 phase was 

studied by using different relaxation techniques. Temperature jump relaxation and a newly 

developed isothermal shear apparatus with different detection methods were applied. The 

influence of structure parameters, i.e. the bilayer thickness and the interbilayer distance, on 

the dynamics of the L3 phase were examined in detail. For that purpose, ternary mixtures of 

water (A), n-alkane (B) and a nonionic surfactant CiEj (n-alkylpolyoxyethylenoxide, C) were 

chosen allowing to change the surfactant / (surfactant + oil) volume ratio as well as the bilayer 

volume fraction. Minor changes in the sample’s composition resulted in enormous changes of 

the relaxation time covering a range of many orders of magnitude from microseconds to 

minutes. A strong dependence of the relaxation time constants on the bilayer volume fraction 

was observed for a constant bilayer thickness. On the other hand, for a given bilayer volume 

fraction the relaxation time constant passes through a minimum in dependence of the 

surfactant / (surfactant + oil) volume  ratio. A geometric model, which was tested and 

confirmed by SANS measurements, was defined to explain the influence of the structure 

parameters on the dynamics of the L3 phase quantitatively. An interpretation of the 

experimental results was discussed towards a generalized description of the dynamics of the 

L3 phase. 



 

Kurzzusammenfassung 

Genau wie bei normalen Flüssigkeiten ist für die Betrachtung von 

Gleichgewichtseigenschaften Komplexer Fluide ein Verständnis der dynamischen Prozesse 

unabdingbar. Als Modellsystem wurde die sogenannte L3-Phase mit Hilfe verschiedener 

Relaxationsmethoden untersucht. Neben einer traditionellen Störungsmethode, dem 

Temperatursprung, wurde eine Neuentwickelung, die isotherme Scherung, wobei jeweils 

unterschiedliche Detektionsmethoden Anwendung finden. Um den Einfluß von 

Strukturparametern, wie die Dicke der geschwollenen Tensiddoppelschicht und der Abstand 

zwischen den Bilayern, auf die Dynamik der L3-Phase detailliert untersuchen zu können, 

wurden ternäre Mischungen des Typs Wasser (A) — n-Alkan (B) — nichtionisches Tensid 

CiEj (n-Alkylpolyoxyethylenoxid, (C)) betrachtet. An diesen Systemen wurden der Tensid / 

(Öl + Tensid) Volumenbruch und der Membranvolumenbruch systematisch variiert. Geringe 

Änderungen in der Probenzusammensetzung führten zu Änderungen in den gefundenen 

Relaxationszeiten über mehrere Größenordnungen, von Mikrosekunden bis hin zum 

Minutenbereich. Es wurde eine starke Abhängigkeit der Relaxationszeitkonstanten vom 

Membranvolumenbruch bei konstanter Membrandicke gefunden. Gleichzeitig durchlaufen die 

experimentellen Relaxationszeitkonstanten als Funktion des Tensid / (Öl + Tensid) 

Volumenbruchs bei konstantem Membranvolumenbruch ein Minimum. Ein durch SANS 

Messungen verifiziertes geometrisches Model dient zur quantitativen Beschreibung des 

Einflusses der strukturellen Eigenschaften auf die beobachtete Dynamik der L3-Phase. Die 

Diskussion der experimentellen Ergebnisse wird in Richtung einer universellen Beschreibung 

der Stabilität, Struktur und Dyamik der L3-Phasen geführt. 
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Abbreviations and symbols 

Abbreviations and symbols 

a structure prefactor (depending on the model used) 

aC  surfactant headgroup area 

a water-rich phase 

A/V specific internal area 

A water component 

A prefactor of low φB+C relaxation regime  

b oil-rich phase 

B oil component 

B prefactor of high φB+C relaxation regime 

c surfactant-rich phase 

C surfactant component 

C capacity 

c0 spontaneous curvature 

c1, c2 principle curvatures 

CiEj n-alkylpolyoxyethylenoxide 

d midplane distance of the Lα and L3 phase 

D diffusion coefficient  

DLS dynamic light scattering 

EA activation energy 

dE bending energy 

g genus of a randomly oriented structure, i.e. number of ‘handles’ 

H mean curvature 

IS scattered light intensity (T-jump) 

I0 scattered light intensity before the T-jump 

Δ IS / I0 T-jump amplitude 

I (q) scattering intensity as a function of the scattering vector 

kB BOLTZMANN constant 

K GAUSS’ian curvature 

lB thickness of the oil layer in a surfactant bilayer 

lC length of a surfactant molecule 

Lα lamellar phase 

L3 sponge phase 

L1, L2 micellar phases 



Abbreviations and symbols 

NMR nuclear magnetic resonance 

p pressure 

q scattering vector 

r1, r2 principle curvature radii 

Rcell resistance in the sample cell of the T-jump apparatus 

SLS static light scattering 

SANS  small-angle neutron scattering 

SAXS small-angle X-ray scattering 

t time 

t0 starting time of T-jump  

T temperature 

T
~

 temperature of the fish tail point at α = 0.5 

T  temperature of the fish tail point at any α  

Tl lower critical temperature of the three-phase body 

Tu upper critical temperature of the three-phase body 

3L
lT  lower phase boundary temperature of the L3 phase 

3L
uT  upper phase boundary temperature of the L3 phase 

Tc critical temperature 

Tspin spinodal temperature 

TEM transmission electron microscopy 

Ucap charging voltage of the capacitor 

vC volume of the surfactant molecule 

X coordinates of the fish tail point ( γ ,T
~

) 

α mass fraction oil / (water + oil) 

2ε surfactant bilayer thickness  

γ mass fraction surfactant / (water + oil + surfactant) 

η viscosity 

φ volume fraction oil / (water + oil) 

φB+C membrane volume fraction oil + surfactant / (water + oil + surfactant) 

φC surfactant volume fraction surfactant / (water + oil + surfactant) 

κ bending elastic parameter, bending rigidity modulus 

κ  bending elastic parameter, saddle-splay modulus 

κS conductivity of the isothermal shear experiment 



Abbreviations and symbols 

ΔκS amplitude of the isothermal shear experiment  

λ wavelength 

ρ scattering length density 

ρ25 densities at 25 °C 

τ relaxation time of L3 phase dynamics 

τC cooling time of the T-jump 

τH heating time of the T-jump 

ϑ scattering angle 

ωb surfactant / (oil + surfactant) volume fraction 

ξ characteristic length scale of microemulsions 

ξκ persistence length 

κξ  topological persistence length 

ζ wandering exponent 

1 one-phase microemulsion 

2  two-phase (microemulsion in lower phase) 

2  two-phase (microemulsion in upper phase) 

3 three-phase (microemulsion in middle phase) 
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1 Introduction 

1.1 The L3 phase 

Among the rich variety of structures and phases that are formed when surfactant molecules 

self-assemble in solution, a special phase, the L3 [1] or sponge [2, 3, 4] phase, is found. This 

phase is described as being an anomalous isotropic phase, showing a couple of remarkable 

phenomena. It was first reported some 25 years ago by EKWALL et al. [5] for several ionic 

microemulsions. Some time later, similar observations were made by HARUSAWA et al. [6] 

and LANG and MORGAN [7], amongst others, for a number of amphiphilic systems ranging 

from binary nonionic surfactant solutions to more complex systems with three and more 

components. The prominent features of the L3 phase are its optical isotropy, birefringence 

under shear, only moderate viscosity, the fact that it scatters light strongly and becomes 

increasingly more opalescent at high dilution. The L3 phase is always found in vicinity of a 

dilute lamellar liquid crystalline phase Lα with smectic order. It is stable over a narrow range 

of temperature only, but can be diluted up to a very high water content [1]. Since the 

appearance of the L3 phase is always correlated with the presence of the lamellar phase this 

indicates a similarity in their local structure. Both phases consist of fluid bilayers but each 

with a different large-scale arrangement [8]. However, since the crucial technologies, 

scattering techniques and electron microscopy, to distinguish such structures were not 

available in the required precision, it took some more effort and years until the structural 

geometries of this remarkable phase could be fully understood [9].  

 

There are two ways of deducing the structure of the L3 phase from geometric and energetic 

considerations. On the one hand it can be explained via a theory for multicomponent 

microemulsions, on the other hand by way of self-organization in simple binary systems of 

surfactant and water. Eventually both ways lead to the same answer. 

 

Microemulsions are macroscopically homogeneous mixtures of water, oil, and surfactant. On 

a microscopic level, though, these solutions are characterized by domains of water and oil 

with surfactant monolayers at the interface [10, 11]. Depending on the relative amounts of 

water and oil in the mixture, there are manifold ways to divide space into domains of different 

polarity. If there is a lot more of one than the other in the mixture, droplet structures of water 

in oil or oil in water will be formed. However, if the amounts of water and oil in the 

microemulsion are similar, the amphiphilic monolayers energetically prefer a two-
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dimensional arrangement in form of infinite films without edges and seams [12]. There are 

only three ways of arranging flexible interfaces like that with no edges in space. One is by 

packing flat sheets into stacks of infinite lamellae, the second is a phase of micelles, the main 

difference in these structures being the mean curvature <H> of the film, which is <H> = 0 for 

the flat lamellae, and <H> ≠ 0 for the globules. The third is that of a phase of multiply 

connected random films, which divide space into two bicontinuous subphases and although 

this film is locally curved, the mean curvature <H> of the latter structure is zero, as for the flat 

lamellae. 

 

a) b) c) 

 

Fig. 1.1: Potential three-dimensional arrangement of infinite films a) stacks of lamellae b) globules c) 
random continuous configuration [2] 

The third arrangement is realized in bicontinuous microemulsions, with equal volume 

fractions of water on one and oil on the other side of the multiply connected random interface. 

Freeze fracture electron microscopy (FFEM) images by JAHN and STREY [13] reveal a 

sponge-like structure with a zero mean curvature of the interfacial film. Returning now to the 

L3 bilayer structure. It is straightforward to say that the same arguments that can be applied to 

a monolayer hold for a bilayer. The difference being the fact that the monolayer separates two 

different, whereas the bilayer separates two equivalent subphases. Therefore the L3 phase 

should be a sponge-like structure of multiply connected bilayers without edges and seams, 

separating to equivalent subphases. This in fact has been shown by STREY et al. [14] by 

FFEM and supported by small angle neutron scattering (SANS) experiments [8]. 

 

The other way of explaining the L3 structure is, to start from the Lα phase, with its quasi-long-

range smectic order, and introduce the formation of connections between two adjoining 

bilayers by fusion as a result of fluctuations. This causes an elementary change in the local 

topology, which spreads spontaneously over the whole bilayer and leads to the destruction of 

the long-range order of the Lα phase. The result is the formation of a structure, which, like the 
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Lα phase, shows zero mean curvature, but this being a result of principle curvatures of 

opposite signs. Although the L3 phase is an isotropic phase with no long-range positional 

order, scattering experiments show a well-defined peak, corresponding to the structural length 

of the passages in the L3 phase [9, 15]. Fig. 2 shows a schematic representation of the L3 

phase structure as it was deduced from FFEM and SANS as analogous to a bicontinuous 

microemulsion [16], and from structural considerations as a transition from an Lα phase. 

 

 

 

Fig. 1.2: Schematic representation of an L3 sponge phase. 

The wide interest in the microstructure of sponge phases certainly reflects that the disordered 

multiconnected bilayer of the L3 phase is the most intriguing large-scale structure ever 

observed in surfactant solutions. However, the static picture of the microstructure does not 

reveal the highly dynamic nature of these phases. For a thorough understanding of the 

equilibrium properties of these self-aggregating structures the dynamic processes are of 

crucial importance, but there still is a lack of systematic investigations. While there are 

several studies concerning micelle kinetics [17, 18] and vesicle formation [19, 20], there is 

hardly any information about the dynamics of L3 phases. Experiments on the dynamics of L3 

phases performed so far involved electric birefringence and temperature-jump measurements. 

MILLER at al. [21] performed electric birefringence experiments on the L3 phase in a system 

composed of a zwitterionic surfactant, a long-chain alcohol as cosurfactant, and water. They 

provided a theoretical explanation of the resulting relaxation times based on the orientational 

relaxation of disc-like aggregates.  

 

It is important to note that the sponge-like structure was still under investigation at that time. 

Based on general invariance arguments PORTE et al. [22] predicted that the relaxation time of 

the electric birefringence in the L3 phase should depend on φ3, with φ being the volume 
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fraction of bilayer in the sample. The respective measurements were performed on a betain 

system with pentanol and water, and the relaxation time of the KERR effect goes according to 

prediction. In contrast to MILLER, PORTE [23] interpreted his results as the relaxation of a 

distortion of a sponge-like structure. WATON and PORTE [24] claimed to be able to at least 

qualitatively explain experimental evidence for three different relaxation times in temperature 

jump experiments on the system cetylpyridiniumchloride-hexanol-brine. They tried to 

attribute them to a diffusion time of concentration fluctuations, a relaxation time for the 

breaking of the symmetry of the structure, and a relaxation time for the reestablishment of the 

connectivity of the bilayer. Altogether these studies seem to raise more questions then 

answers to the problem, which sums up to the fact that a general understanding of the kinetics 

of L3 phases is still missing. 

1.2 Motivation and Objectives  

A group of researchers from Lund, Sweden, developed a free energy model for the 

thermodynamics of a non-ionic sponge phase based on light scattering data. This model tries 

to explain the mechanisms governing the narrow stability range of the L3 phase [25]. To test 

the model the light scattering measurements were extended from the one-phase region into the 

two-phase region by employing our temperature jump apparatus. The experiments were 

conducted in cooperation with the Institute of Physical Chemistry of Cologne University and 

a first report can be viewed in T.D. LE, PhD thesis [26]. The main objective of that work was 

to determine the binodal and spinodal curves of the L3 phase from combined phase 

equilibrium and temperature jump data and to further support the above-mentioned free 

energy model. 

 

In the course of these experiments, so to say as an interesting ‘by-product’ it was found that 

the dynamics of this sponge structure extend over time scales of more than ten orders of 

magnitude depending on the bilayer concentration [27]. Since the L3 phase dynamics 

investigations that were conducted to this day never yielded time scales that extended over 

more than three to four orders of magnitude, this was a highly remarkable result. Naturally 

this gives rise to a whole new approach for L3 phase kinetic studies. The first question that 

comes to mind is concerned with the system used; here brine – n-decane – C12E5. Is the 

above-mentioned result a general property of sponge phase dynamics, or limited to the oil 

swollen bilayer system of a C12E5 surfactant? A first answer to this was found by SCHWARZ et 

al. [28], who examined the pseudo-binary system brine – C10E4 – decanol by applying 
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temperature jump and pressure jump relaxation measurements. Similarly high dependencies 

of the sponge phase relaxation times from the bilayer concentrations were found for the non-

swollen bilayer, likewise for two different perturbation methods. Therefore, the extraordinary 

extensions of time scales over many orders of magnitude in dependence of the concentration 

seem to be a more general attribute of the L3 phase dynamics, irrespective of the degree of 

swelling of the bilayer. If this is true, these findings could be of crucial importance for those 

sectors of industrial application of surfactant solutions that deal with wetting and spreading 

issues. Because then, a reduction in the surfactant concentration to reduce the costs for certain 

processes, could lead to a disproportionately high increase in the reaction time or process’ 

duration. It should be noted that particularly rapid spreading is observed when the surfactant 

solution contains a bilayer structure [29, 30, 31, 32]. 

 

If L3 phases of different systems behave similarly it should be possible to find a general 

description for the dynamics in sponge phases. It could help to clarify these kinds of issues if 

a model system is studied and thoroughly understood. The main objective of this work is to 

provide such experimental data on a model system and possibly initiate the search for a 

general description for the dynamics of L3 phases.  

 

In the examples given above the bilayer volume fraction was varied, however any information 

about the influence of the bilayer thickness is missing completely. As a basis for a more 

detailed investigation, a suitable model system had to be selected. The system water – n-

octane – C10E4 is a good candidate for the following reasons. The binary system water – C10E4 

is the first in the hydrophobic-hydrophilic series of alkyl polyglycol ethers, after C8E3, where 

an L3 phase can be found at all, which turns it into the most basic system in this series as far 

as the sponge phase, is concerned. Another reason for choosing this ternary system is the fact 

that the structure of the L3 phase can be varied by either swelling the bilayer with oil and/or 

changing the interbilayer distance by increasing its volume fraction. The last reason is a 

practical one. The phase inversion temperature (PIT) [33] for this system is very close to 

room temperature [34], thus creating an applicable temperature range for all measurements, 

even if the sample’s oil content is very low [35]. This is an especially important argument 

when considering how narrow the L3 phase stability range is.  

 

For a systematic investigation of the dynamics, at first a detailed study of the phase behavior 

of the system was to be carried out. A thorough understanding of the phase characteristics of 
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the L3 phase in dependence of the different parameters, like interbilayer distance and bilayer 

thickness is the basis for all following experiments and for a theoretical description. As to the 

latter a suitable geometric model for the microstructure as a function of the bilayer 

concentration and thickness was to be established. To this end SANS measurements were to 

be conducted. When both the phase behavior and the microstructure could be clarified, the 

interpretation of relaxation experiments on the dynamics in the sponge phase should be 

feasible. 



2 Phase behavior 7 

2 Phase behavior 

A basic requirement for experiments with L3 phases is a detailed knowledge of their phase 

behavior. As the L3 phases dealt with in the present study consist of water, oil and surfactant, 

the following chapter will supply the basic facts for a thorough understanding of the phase 

behavior of such ternary systems. This will be in form of schematic phase diagrams. 

Beginning with the well-known phase behavior of ternary microemulsions this chapter will 

lead to a detailed description of the L3 phase, its behavior and position in the phase prism. The 

principal compounds for the following descriptions are water, an n-alkane as oil, and a non-

ionic surfactant from the family of n-alkylpolyoxyethylenoxide (H – (CH2)i – (OCH2CH2)j – 

OH) denoted as CiEj. 

2.1 Basics 

The phase behavior of ternary mixtures of water (A), oil (B) and non-ionic surfactant (C) has 

been extensively studied by SHINODA and KUNIEDA et al. [36] and KAHLWEIT, STREY and 

coworkers [37, 38, 39, 40]. It is determined by the interactions of the three binary side 

systems: water – surfactant, oil – surfactant and water – oil. The phase behavior of such a 

ternary mixture is commonly presented in a phase prism with the temperature T as the 

ordinate and the Gibbs triangle A – B – C as the base. The compositions of the ternary 

mixtures are usually given in terms of the oil / (water + oil) mass fraction α and the total 

surfactant concentration, i.e. the surfactant mass fraction γ:  

 

)()(

)(

BmAm

Bm

+
=α  (2.1) 

 

)()()(

)(

CmBmAm

Cm

++
=γ  (2.2) 

 

The most important features of the phase behavior are observed by performing vertical 

sections through the phase prism at either constant oil / (water + oil) mass fraction α, usually 

at α = 0.5, or at constant surfactant concentration γ, as can be seen in Fig. 2.1.  
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Fig. 2.1: Schematic phase prism showing the two vertical sections at either constant values of the oil / 
(water + oil) mass fraction α, or constant surfactant concentration γ. 

For the characteristic section at constant α, the coexistence curves in the phase diagram form 

the shape of a “fish”, shown in Fig. 2.2. For an explanation of this phase diagram it is 

important to mention that non-ionic surfactants are more soluble in water at low, and more 

soluble in oil at high temperatures. Therefore, at low temperatures a surfactant-rich water 

phase coexists with an oil phase, denoted by 2 , whereas at high temperatures a surfactant-

rich oil phase coexists with a water phase, denoted as 2 . At low surfactant concentrations γ 

the phase sequence 2  → 3 → 2  is formed as a function of temperature. The notation 3 

indicates that both oil-rich and water-rich phases are in equilibrium with a surfactant-rich 

middle phase [41]. The microstructure of the surfactant-rich phases is such that oil-in-water 

microemulsions are formed at low, water-in-oil microemulsions at high, and so-called 

bicontinuous microemulsions are formed at intermediate temperatures. The corresponding 

temperature interval where the bicontinuous microemulsion coexists with both water and oil 

is defined as ΔT = Tu – Tl, while the mean temperature is T = (Tu – Tl) / 2. With increasing 

surfactant concentration more oil and water can be solubilized in the middle phase leading to 

the formation of a one-phase region, denoted as 1. The phase boundaries between the upper 

and lower two phase regions and the one-phase region form the so-called “fish tail”. The point 

of contact between the one- and three-phase regions marks the characteristic “fish tail point” 

X
~

, which is unambiguously defined by the surfactant concentration γ~  at the temperature T
~

. 

This point is a measure for the efficiency of the surfactant, since γ~  ( X
~

) is the minimum 

concentration of surfactant that is necessary to completely solubilize equal amounts of water 
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and oil. Towards the low γ region of the diagram the surfactant concentration γ0 is marking 

the amount of surfactant that is monomerically dissolved in the excess water and oil phases. 

Not until γ > γ0 microstructures can be formed. At very high surfactant concentrations γ, there 

might be a formation of a lamellar Lα phase, surrounded by a coexistence region of a 

bicontinuous microemulsion and an Lα phase. 
 

 

 

α = 0.5 

Fig. 2.2: Schematic representation of a vertical γ-T section through a phase prism at constant oil / 
(water + oil) mass fraction α = 0.5. γ0 represents the surfactant volume fraction of monomerically 
dissolved surfactant, whereas γ~  is the surfactant volume fraction that just completely solubilizes 

equal amounts of oil and water. At high surfactant concentrations a lamellar phase Lα appears in the 
one-phase region which is surrounded by a coexistence region of bicontinuous microemulsion + Lα.  

For a more detailed insight into the phase behavior of ternary mixtures, especially at higher 

surfactant concentrations, another section through the phase prism, the so-called “SHINODA 

cut” [42], can be performed. This is done by cutting vertically through the phase prism 

parallel to the water-oil-T side at a constant surfactant concentration γ that is higher than γ~  

(see Fig. 2.1). The resulting schematic phase diagram cuts through the “fish tail” and lies on a 

plane perpendicular to the one of the “fish” diagram discussed before. The phase diagram in 

Fig. 2.3 shows a one-phase microemulsion channel extending from the water-rich to the oil-

rich side of the phase diagram, i.e. over the full range of α. This channel is surrounded by the 

two-phase regions 2  and 2 . In addition to microemulsion phases discussed so far it features 



10 2 Phase behavior 

isotropic liquid L3 and liquid crystalline Lα phases. Like the one-phase microemulsion 

channel these phases progress from the water-rich to the oil-rich side of the phase diagram, 

thereby showing a temperature dependence reverse to the one of the microemulsion channel. 
 

 

Fig. 2.3: Schematic diagram of a “SHINODA cut” at a constant surfactant concentration higher than γ~ . 

The one-phase microemulsion channel (1) extends from the water to the oil side. The two 
disconnected L3 phases, one water-rich and the other oil-rich, are both adjacent to Lα phases [41].  

The two very narrow channels of L3 phases, one on the water-rich, the other on the oil-rich 

side of the diagram, both open out onto the broader microemulsion channel. The water-rich L3 

phase starts out at high temperatures on the binary water - surfactant side of the phase 

diagram. With a rising amount of oil in the mixture, the L3 channel progresses towards lower 

temperatures and grows increasingly narrow, until it seems to disappear into the one-phase 

channel at a temperature close to T . At a sufficiently high oil concentration another L3 phase 

appears, apparently out of the microemulsion channel, to progress with increasing oil content 

towards lower temperatures and a broadened temperature range. Both L3 phases are adjacent 

to lamellar phases. The water-rich Lα phase exists in a temperature range below that of the L3, 

while the opposite is true on the oil side. For the temperature T  both Lα phases extend far 

into the middle of the phase diagram [35, 41, 43].  
 

In addition to the above mentioned sections through the phase prism, the evolution of the L3 

and the Lα phase as a function of the surfactant concentration γ and the temperature T are of 
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interest [44, 45]. From Fig. 2.3 it was deduced that the L3 phase occurs only for very high 

water or oil contents respectively. Consequently the evolution of the L3 phase as a function of 

the surfactant concentration γ and the temperature T can only be discussed at very high or 

very low values of the oil / (water + oil) mass fraction α. For simplicity, the water – surfactant 

– temperature side of the phase prism, which is tantamount to α = 0, is chosen (Fig. 2.4).  
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Fig. 2.4: Schematic phase diagram of the binary system water – non-ionic surfactant. The isotropic 
liquid L3 phase is found in the low, whereas the dilute liquid crystalline Lα  phase is found in the 
intermediate to high concentration range respectively. There is always a two-phase region separating 
two one-phase regions from each other, as well as two two-phase regions are always separated by a 
three-phase line [14, 46]. 

At temperatures below TC the phase diagram shows the following features. For low surfactant 

concentrations the surfactant molecules are monomerically dissolved in the water phase. If the 

surfactant concentration γ is increased, a certain characteristic value will be reached, the 

critical micelle concentration or cmc. The surfactant molecules self-organize into micelles for 

concentrations γ ≥ γcmc which leads to the micellar phase L1. At high surfactant concentrations 

a lamellar phase Lα is formed. Note that a wide variety of different liquid crystalline phases 

exist. For the sake of simplicity only the Lα phase is drawn schematically in Fig. 2.4. Finally a 

phase of reverse micelles, L2, is found, close to the pure surfactant. A significantly different 

phase behavior can be observed for higher temperatures over the full range of γ. Returning to 

low surfactant concentrations and increasing the temperature above the lower critical 
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temperature TC (cloud point) leads to a phase separation of L1 into two liquid phases, one poor 

(L1’) and the other rich (L1”) in surfactant. At a certain higher temperature the surfactant-rich 

aqueous phase L1” separates into two phases L3 + L1”. Between these two-phase regions there 

is a triple line L1’ + L3 + L1”. The existence of the two-phase region L3 + L1” clearly rules out 

that the dilute lamellar phase is in direct contact with the dilute aqueous phase L1’ [45]. With 

another slight increase in temperature another triple line is encountered, L3 + Lα + L1”, which 

is followed by an L3 + Lα coexistence with further increased temperature. A similar 

complexity is found where the L3 and Lα terminate. The maximum temperatures of L3 and Lα 

are close to each other. However, the L3 phase extends to a slightly higher temperature than 

Lα. Consequently the Lα terminates at a triple line L3 + Lα + L2, while the L3 phase ends at the 

triple line L3 + Lα + L1’ at slightly higher temperatures. This is followed by the two-phase 

region L1’ + L2. In between these four three-phase lines the L3 and the dilute Lα phase are 

found. The L3 one-phase region is always shifted parallel towards lower concentrations in 

relation to the dilute Lα phase for a given temperature and has a narrow stability range of just 

a few Kelvin. This narrow stability range gives the L3 phase the appearance of a channel. In 

contrast, the dilute Lα phase has a wide stability range, extending to high surfactant 

concentrations and very low temperatures.  

 

As mentioned before, the just described binary phase diagram actually represents the water – 

CiEj – T side of the phase prism of a ternary system water – oil – non-ionic surfactant (see 

Fig. 2.1). One of the most important issues in regard to the aim of this work is the way the L3 

phase develops when oil is added to the binary system water – surfactant. With such a ternary 

system both the amount of the bilayer as well as its properties can be varied. Since this work 

deals mostly with ternary systems water – oil – surfactant, the expression “bilayer” in the 

context of ternary systems always denotes an oil-swollen bilayer. Whereas for binary systems 

water – surfactant the term “non-swollen bilayer” will be used from now on. Suitable 

parameters to describe the dependencies in ternary systems are found in Eq. (2.3) and Eq. 

(2.4). The surfactant / (oil + surfactant) volume ratio ωb and the bilayer concentration φB+C 

can be expressed as: 
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The corresponding parameters are schematically presented in the phase prism seen in Fig. 2.5: 

 

Fig. 2.5: Sections through the phase prism for constant ωb’s. After a suggestion by PORTE [47] this 
phase prism can be imagined as being a book, with the water corner as the spine, the water – oil – T 
side as the front and the water – surfactant – T side as the back of the book. Then every section at 
constant ωb represents one page in this book. 

For a better understanding the phase prism in Fig. 2.5 can be regarded as a book. The water 

corner is representing the spine, the water – oil – T side the front page, and the water – 

surfactant – T side the back of the book. In this scenario each section through the phase prism 

from the water corner towards the oil – surfactant side, i.e. each cut through the prism at 

constant surfactant / (oil + surfactant) volume fraction ωb, represents a page in this book.  

Taking into account the definition given in Eq. (2.3), the book cover stands for ωb = 0, and 

thus representing the binary water – oil – T side of the phase prism. Since water and oil are 

immiscible, the miscibility gap extends over the whole temperature range and therefore plays 

no role for the evolution of the water-rich L3 phase. Unlike the front page, the back of the 

book, i.e. ωb = 1, is very important since it represents the binary water – surfactant phase 

diagram discussed in Fig. 2.4. When oil is added to this binary system, the book is leafed 

through from the back. Pages further towards the middle of the book will be opened. In a 

book with 100 pages, page 50 will look like the phase diagram depicted in Fig. 2.6.  
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Fig. 2.6: Page 50 in the phase prism seen as a book. Schematic φB+C – T section through a phase prism 
for the system water – oil – CiEj for ωb = 0.5. Shown are the L3, Lα and L1 phases [11, 26]. 

Comparing Fig. 2.4 and Fig. 2.6 it becomes evident that the phase behavior of the ternary 

system is analogous to the one for the binary system water - CiEj if ωb is kept constant. The 

general appearance of the L3 phase region has not changed. It still forms a narrow band as a 

function of the temperature T, yet compared to the binary system this narrow channel extends 

to much higher bilayer concentrations φB+C, in fact it opens out to the L2 phase region for very 

high φB+C. Furthermore, the L3 phase channel has shifted towards lower temperatures and its 

width has decreased. This is in agreement with the L3 phase channel observed in the phase 

diagram shown in Fig. 2.3, where the water-rich L3 phase disappears with increasing φ. Also 

the Lα phase extends its stability range with decreasing ωb, thus reaching further into the 

water corner. As a consequence the L3 channel looses its tilted appearance and becomes 

increasingly flatter.  

2.2 Phase diagrams 

It was shown in chapter 2.1 that for descriptions of the phase behavior it has proven useful to 

perform different vertical sections through the phase prism of a ternary mixture. Different 

binary or pseudo binary phase diagrams are obtained. The general features of these simpler 

phase diagrams are analogous to those of the more complicated systems, thus providing the 
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elementary understandings to start from. This is the reason why studies involving the phase 

behavior of surfactants always start with the simplest system, usually the binary system water 

– surfactant.  

 

For this project ternary mixtures of water / NaCl, n-octane and the nonionic surfactant C10E4 

(n-decyltetraoxyethylenoxide) were chosen to study the properties of this systems L3 phases. 

In all ternary phase diagrams shown here water was substituted by 0.1m NaCl to support the 

subsequent measurement and detection techniques (see chapter 8). Only for the binary phase 

diagram pure water was used. The choice of the system water – n-octane – C10E4 serves two 

purposes. One is the opportunity to vary the bilayer concentration φB+C of the L3 phase as well 

as the surfactant / (oil + surfactant) volume fraction ωb, and the other is to provide a 

convenient temperature range for experimentation. In addition, the binary system water – 

C10E4 is the first in the homologous series of water – n-alkylpolyoxyethylenoxides (CiEj) 

systems featuring an L3 phase, thus providing the most basic system to start with.The phase 

behavior of the binary system water – C10E4 was examined in detail. The resulting phase 

diagram is depicted in Fig. 2.7.  
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Fig. 2.7: γ – T diagram for the binary system water – C10E4 [46]. 

This phase diagram shows the expected typical phase sequence as a function of surfactant 

concentration γ and temperature T (see Fig. 2.4). To depict the true proportions of the 

different phase regions in the phase diagram the concentration axis is drawn on a linear scale. 

As a result the critical micelle concentration cannot be pictured in this diagram but is found 

experimentally to be γcmc ≈ 0.0003 at T = 20°C. The micellar L1 phase extends up to the cloud 

point curve. The coordinates of the lower critical point (black dot), i.e. where the L1 phase 

separates into two phases, L1’ and L1”, are Tc = 19.8°C and γc = 0.026. The L1’ + L1” 

coexistence region reaches up to about 45°C. For higher temperatures up to about 59°C the L3 

phase appears in the phase diagram as a narrow band, never wider than 4K. It extends over a 

large concentration range from γ = 0.03 to γ = 0.2. The L3 phase is easily identified by being 

an optically isotropic fluid of low viscosity, which scatters light strongly and exhibits 

birefringence under shear. Shifted towards higher surfactant concentrations γ in the same 

temperature range, the dilute Lα phase can be observed. It extends far into the high 

concentration region of the phase diagram, reaching down to very low temperatures. In the 
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high concentration region (γ > 0.5) the Lα phase separates the micellar L1 from its inverse 

counterpart, the L2 phase. A point worth mentioning is the fact that at high concentrations the 

phase boundary between the L2 and the Lα phase is indented at temperatures around 55°C. 

This is a first hint for the observation that the pseudo-binary system water – C10E4 / C10E5 

forms two separated Lα phases [48]. In other words this ‘dent’ can be interpreted as a 

tendency to create two separated Lα phases, one in the low and the other in the high 

concentration range of the phase diagram. Two separated Lα phases were first observed by 

WAGNER and STREY [30] for the binary system water – trimethylsilane surfactant. Therefore 

this is not a special feature of CiEj surfactants but could be a general feature of surfactants, 

depending on the balance between their hydrophobic and hydrophilic parts. 

 

Since it is the aim of this work to investigate the properties of the L3 phase by varying the 

bilayer concentration φB+C and surfactant / (oil + surfactant) volume fraction ωb, what follows 

will focus on the phase behavior of the L3 phase only.  

 

Adding oil to the binary system water – C10E4 leads to a continuous shift of the L3 phase 

channels towards lower temperatures and to decreasing widths of the L3 phase channels as 

discussed in chapter 2.1. It has to be kept in mind that the extension of the L3 phase channel is 

itself a function of the bilayer concentration φB+C. This behavior was explained above for the 

“phase prism book” in Fig. 2.5 and Fig. 2.6. Note that an increasing amount of oil in the 

mixture shows in declining ωb’s, i.e. page numbers. Given that it is difficult to picture more 

than one ωb section through the phase prism at one time, an illustration (see Fig. 2.8) is used 

where all the L3 channels measured for the different surfactant / (oil + surfactant) volume 

fractions ωb are projected onto the last page of the book, page 100 for ωb = 1. Since this last 

page represents the binary water – C10E4 phase diagram, the binary L3 phase can be observed 

at the highest temperature, with the L3 projections for the decreasing ωb values “stacked” 

towards lower temperatures.  
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Fig. 2.8: Projection of L3 phase channels measured as a function of bilayer concentration φB+C and 
temperature T onto the binary water – C10E4 phase diagram revealing the monotonic shift towards 
lower temperatures, the decreasing width and reduced slopes of the L3 phase channels under addition 
of oil (decreasing ωb).  

Fig. 2.8 shows the shift of the L3 bands towards lower temperatures with decreasing surfactant 

/ (oil + surfactant) volume ratio ωb. In addition to this, the width of the L3 temperature range 

is reduced, from about 4K for the binary L3 phase down to ∼ 0.3K for ωb = 0.37. This value of 

ωb corresponds closely to the oil / (water + oil) volume fraction φ where the L3 phase 

disappears into the one phase microemulsion region for a given surfactant concentration (see 

Fig. 2.3). Also the shape of the L3 stability region changes considerably with addition of oil. 

For ωb = 1 it shows a tilted appearance, leaning towards the lamellar Lα phase that comes 

about at higher surfactant concentrations. For the lowest ωb values it lies almost flat perched 

on top the Lα phase. This can be seen as a consequence of the extension of the Lα phase 

further towards the water corner of the phase prism. Considering the influence of the bilayer 

concentration φB+C it can be seen that the L3 channel width increases as a function of φB+C. 
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Each L3 phase channel can be diluted down to very low bilayer concentrations φB+C, until the 

phase channels close at bilayer concentrations φB+C of about 0.03.  

 

All subsequent measurements will take place at either constant ωb with a varying bilayer 

concentration φB+C (see Fig. 2.8) or with varying surfactant / (oil + surfactant) volume ratios 

ωb at a constant φB+C. To illustrate the latter φB+C–dependence the phase behavior of the L3 

phase at constant φB+C and varying ωb is needed. This phase diagram can simply be extracted 

from the data presented in Fig. 2.8. Exemplarily the L3 phase is shown as a function of ωb and 

T, for a constant bilayer concentration φB+C = 0.15. 
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Fig. 2.9: L3 phase diagram as a function of the surfactant / (oil + surfactant) volume ratio ωb and 
temperature T, for a constant bilayer concentration of φB+C = 0.15. 
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3 Theoretical approach 

For the formation and stability of the L3 phase the properties of surfactant films are essential. 

This film could be (a) a mono- or bilayer, (b) located at the water-air or the water-oil 

interface, (c) curved or plane, to mention just a few possible appearances. 

For the theoretical description of surfactant films a successful model was introduced by 

HELFRICH [49] with a mathematical expression for the bending energies of phospholipid 

membranes. This so-called flexible surface model has been applied for surfactant bilayers or 

monolayers alike. In the following the model will be explained by means of surfactant 

monolayers. Then the description will be extended to surfactant bilayers and consequently a 

model for the surface free energy of the L3 phase will be obtained (for a more detailed 

treatment of these theoretical ideas see [50, 51, 52, 53]). In a second part an approach to the 

theoretical analysis of the L3 phase dynamics will be given, which is different to the theories 

developed by PORTE [9]. This analysis is motivated by the dramatic dependence of the 

relaxation time constants on the bilayer volume fraction that was first observed by 

UHRMEISTER [27] in temperature jump experiments and studied in detail in this work. It was 

developed in collaboration with DR. HENRIQUE LEITAO from the University of Lisbon, who 

started theoretical calculations to clarify this phenomenon. The project leading to this 

collaboration was funded by the DAAD. 

3.1 Flexible surface model 

The great variety of structures formed in self-assembled systems like spherical and cylindrical 

micelles, cylinder-networks, lamellae and bicontinuous structures, is believed to be a 

consequence of the variation of the curvature of the amphiphilic interfacial films due to the 

minimization of the interfacial energy. Prior to discussing formation and stabilization of these 

structures, the properties of the underlying amphiphilic films have to be characterized. These 

structural properties are defined by the curvature of the surfactant monolayers. However, in 

the context of L3 phases they also have to be discussed for surfactant bilayers. 

3.1.1 Monolayers 

The mean curvature at any position of a two-dimensional isotropic film can be described with 

two principle curvatures c1 and c2. These are expressed in form of their principle curvature 

radii 
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where the principle curvatures c1 and c2 can be of opposite sign. By convention the curvatures 

around the oil are defined as positive and curvatures around the water as negative. In Fig. 3.1 

the radii r1 and r2 are illustrated for a saddle-like surface.  

 

 

Fig. 3.1: Curvature radii for a surface with a saddle-point structure. Any point on this three-
dimensional surface can be described by two radii with opposite signs. For clarity this illustration 
shows the radii r1 and r2 for two different points with curvatures of opposite sign.  

The mean curvature H of any given point on a surface is defined by 
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while for the GAUSSian curvature K the following applies: 
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The temperature dependence of many properties of self-assembled surfactant systems, like 

phase behavior [54], microstructure [10, 55] or interfacial tension [56, 57, 58], can be 

explained by a variation of the mean curvature H of the amphiphilic film. The temperature 

dependence of H is shown in Fig. 3.2 for a system water – n-alkane – non-ionic surfactant 

(CiEj). 
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Fig. 3.2: Temperature dependence of the two principle curvatures c1 and c2, as well as the resulting 
mean curvature <H> for a non-ionic surfactant system [10, see also 27].  

It was shown by STREY [10] that the mean curvature H is linearly dependent on the 

temperature, resulting in 

 

H = c ⋅ (T  – T), (3.5) 

 

where c is the temperature coefficient of the curvature and T  the mean temperature of the 

three-phase body as shown in Fig. 2.2. Since H is the sum of c1 and c2 (Eq. (3.3)) it has been 

assumed by STREY that the principle curvatures c1 and c2 also show a linear dependence on 

the temperature, so that  

 

c1 = c (Tu –T)   and   c2 = c (Tl – T), (3.6, 3.7) 

 

where Tl and Tu are the lower and upper boundary temperatures of the three-phase body (Fig. 

2.2).  

Considering the different structures found in self-assembled surfactant systems, it follows 

from Eq. (3.3) and Eq. (3.4) that for a spherical micelle <H> = 1 / r and K = 1 / r2 with c1 ≈ c2. 

Cylindrical structures where one of the principal curvatures is unequal zero, whereas the other 

is zero, so that <H> = 1 / 2 r and K = 0, can be found at Tl and Tu. Special cases are the 

lamellar structure and the bicontinuous microemulsion with its saddle-point structure, which 

appear at temperatures close to T . For both structures H ≈ 0, but for the first c1 ≈ c2 ≈ 0 with 

K = 0, while for the latter c1 ≈ – c2 and thus K < 0. 
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In order to "create" these different structures the surfactant film has to be bent. The most 

general expression for the elastic energy of a flexible surface was derived by HELFRICH [49] 

to be 
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or 

 

dE = [ ]KcH κ+−κ 2
0 )(2  dA, (3.9) 

 

with dA being an area element. Therefore three quantities are required to describe the 

elasticity of the amphiphilic film: c0, κ and κ . c0 is the spontaneous curvature of the 

surfactant film and represents the curvature the film would adopt without restrictions. 

Furthermore, κ and κ  are the elastic bending moduli. The so-called rigidity modulus κ (≥ 0) 

is a measure for the bending rigidity of the amphiphilic film and κ  is the so-called saddle 

splay modulus, whose magnitude represents the preferred topology of the curved surface. 

In order to determine the structure and phase behavior of these systems various 

approximations have been used. All the arguments above ignore the thermal fluctuations of 

the membranes. In [59, 60] the role of membrane fluctuations was emphasized, using the 

scale-dependent reduction of the elastic moduli  [61].  
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with the microscopic length scale a = vC / aC that can be related to the effective length of the 

surfactant molecule in the interface, and 3=ακ  and .310=ακ  The characteristic structural 

length ξ is inversely proportional to the surfactant volume fraction φC by φC ~ a / ξ  (see Eq. 
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(5.4)). Taking this into account, the two “topological persistence lengths” ξκ [62] and κξ  [63, 

64], are defined as the length scales for which ( ) 0=ξκ κ  or ( ) 0=ξκ κ , i.e., 
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Up to this point the properties of surfactant monolayers were considered. In view of the L3 

phase membrane structure studied in this work and the theoretical work by MORSE [63], 

GOLUBOVIC [64] and GOMPPER [65], who always refer to the lamellar-to-L3 transition in 

binary systems water – surfactant, the structural properties of bilayers structures will be 

discussed below. 

3.1.2 Bilayers 

The static picture of a bilayer or membrane structure is that of two identical monolayers fixed 

opposite to each other. As these two monolayers have an identical solvent on either side the 

resulting bilayers are locally symmetrical with respect to their midsurface [66]. If both 

individual monolayers of such a bilayer have zero mean curvature (Hmono = 0), a planar 

bilayer is formed. At the level of the midsurface for the bilayers in these lamellar structures, 

both principal curvatures are zero c1 ≈ c2 ≈ 0 and therefore the mean curvature of the bilayer 

Hbil = 0 and the GAUSSian curvature of the bilayer Kbil = 0. However, the individual 

monolayers forming the L3 phase bilayer have a mean curvature towards water with 

Hmono < 0. This is a consequence of the smaller area of the bilayer surface at the surfactant 

headgroup position compared to the bilayer midplane. When fixed to each other in a planar 

bilayer each monolayer will feel frustrated [67]. The frustration of the monolayers can be 

partially relieved by forming the distorted three-dimensional saddle-shaped structure that has 

been established for the L3 phase [14]. For the bilayers in a dilute L3 phase the principle 

curvatures at the midsurface are then small but non-zero and have opposite signs with  

c1 ≈ – c2. Consequently they still add up to a mean curvature Hbil = 0, but in contrast to the Lα 

phase, have a negative GAUSSian curvature Kbil < 0.  
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Since L3 as well as Lα bilayers are locally symmetrical in respect to their midsurface, the 

energy spend for bending must therefore be invariant upon changing the signs of both 

principle curvatures c1 and c2, i.e. the spontaneous curvature of the bilayer c0,bil ought to be 

zero. Eq. (3.8) reduces to  
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resulting in the elastic bending energy of symmetric bilayers. This expression can be written 

in an alternative form [58] 
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where 2/κ+κ=κ+ , and 2/κ−=κ− . The lamellar phase is energetically stable only for 

0>κ+ and 0>κ− . For 0<κ− , the flat phase is unstable to the formation of infinite minimal 

surfaces, i.e. sponge phases [65], with 21 cc −≈ . While on the other hand for 0<κ+ , there is 

instability towards creating a vesicle phase, with 21 cc ≈ . Including the effects of thermal 

fluctuations results in the renormalization of the elastic constants expressed by [68].  
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with 3=ακ  and .310=ακ  This equation is equivalent to Eq. (3.10) and (3.11). 

 

Before addressing the dynamics of the L3 phase it is worth reviewing some theoretical results 

regarding the stability of the Lα phase. 

3.1.3 Lamellar-to-sponge transition 

In first studies about the lamellar phases, their membranes were characterized by a persistence 

length, pξ , defined as the length for which the normal orientations of the membrane become 

uncorrelated. It can be shown that this persistence length is identical to ξκ, that is, 

( )Tka Bp κκ απκ=ξ≡ξ 4exp  (Eq. (3.12)). Essential for understanding the stability of the 
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lamellar phase are membrane fluctuations. This is provided by the entropic interaction, as 

explained in a well-known argument by HELFRICH [69].  

To describe the lamellar-to-sponge transition, DEGENNES [62] argued that this transition 

occurs when the interbilayer distance d is of the order of the persistence length, κξ≈d . 

Recent studies, however, have shown that this transition is preempted by a transition governed 

by κ  [64, 63]. Melting to a sponge-like phase happens when κκ ξ<<ξ≈d , and the number of 

passages between membranes increases dramatically. With Eq. (3.13) and a / κξ  ≈ φC / φ0, the 

lamellar-to-sponge transition is predicted [63] to happen when 
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and κ bil < 0, where φ0 is a constant of order unity (dashed line in Fig. 3.3 (left)). GOMPPER et 

al. [65] confirmed this picture. They found a similar dependence of the lamellar-to-sponge 

transition on κ  for a systematic Monte Carlo simulation study of the phase behavior of fluid 

membranes of fluctuating topology in which the fluctuations are controlled by the curvature 

energy. In Fig. 3.3 (left) the simulated lamellar(Lα)-to-sponge(L3) and L3 to L1’ + L3 

transition data are shown as a function of φC and κ  for κ / kBT = 1.7 (filled symbols + solid 

line). Their data were compared to the lamellar-to-sponge phase boundary with the prediction 

(Eq. (3.17)) for the stability limit of the Lα phase. Rewriting Eq. (3.11) for constant κ  = -1 

and varying T yields a phase diagram in the conventional form T = ƒ (φC), Fig. 3.3 (right) 

[70]. The general features and relative positions of Lα and emulsification failure in Fig. 3.3 

(left) is similar to those found in experimental phase diagrams.  
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Fig. 3.3 (left): Phase diagram for κ / kBT = 1.7. The upper data set shows the location of the sponge-to-
lamellar transition from MC-simulation and the lower data set shows the location of the emulsification 
failure. The approximation for the sponge-to-lamellar transition from Eq. (3.17) with φ0 = 7.0 is shown 
as a dashed line [redrawn from [65]. Fig. 3.3 (right): Phase diagram T = ƒ (φC) for κ  = -1 calculated 
from Eq. (3.11) [70]. 

An alternative view (but with a similar outcome) of the Lα-to-L3 transition was proposed by 

PORTE [9] who emphasized the difference in topology between the Lα phase and L3 phase 

while also regarding κ  as the main control parameter. The GAUSS-BONNET theorem [51] 

states that the integral over the GAUSSian curvature distribution,  

 

∫ ⋅Ad K = 4π (1 – g) (3.18) 

 

is directly related to the topological genus g, which is proportional to the number of ‘handles’ 

of the surface under analysis [71, 63]. The left part of Eq. (3.18) multiplied with a negative 

value of κ  is the energy cost for the formation of handles. Consequently the parameter κ  in 

Eq. (3.14) can be seen as the chemical potential for the formation of handles. PORTE argued 

that strongly negative values of κ  favor the formation of many disconnected pieces with no 

seams, because the GAUSSian term in the HELFRICH equation is negative so that the formation 

of handles costs a lot of energy. For more positive values of κ  the energy cost decreases and 

becomes zero for κ  = 0. Thus the formation of one large aggregate with a multiconnected 

structure is favored. Therefore κ  plays a role every time a structural transformation involves 

a topological change of the membranes, whereas the bending rigidity κ determines the 

energies of topology-preserving deformations of the bilayers, like curvature fluctuations [9]. 
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PORTE derived the bending elastic properties of the bilayer from those of the monolayers, as 

seen in Eq. (3.8). As long as the surfaces of the monolayers remain at a constant distance ε 

from the midplane (see Fig. 3.4), it follows that 

 

c0,bil = 0 (3.19) 

 

κbil = 2 ⋅ κmono (3.20) 

 

κ bil = 2 ⋅ κ mono – 4 ⋅ ε ⋅ c0,mono ⋅ κmono (3.21) 

 

where 2ε is the thickness of the bilayer. This means that for the dilute Lα phase with c0,mono = 

0, Eq. (3.21) will turn into κ bil = 2 ⋅ κ mono, where κ mono < 0. In those parts of the phase 

diagram where c0 is already negative, an increasingly negative c0,mono brings a positive 

contribution to κ bil making the formation of a saddle easier. Eventually κ bil approaches zero 

and the GAUSSian term in Eq. (3.14) drives the transition from Lα to L3. An increase of κ bil 

beyond zero results in a constant gain in the elastic bending energy due to a constant growth 

of the connectivity of the bilayer. This would result in an L3 phase with smaller and smaller 

length scales and consequently to the collapse of the L3 phase. Following PORTE, this collapse 

is prevented by entropic fluctuations [9]. When comparing this earlier model by PORTE [9] to 

the results from more recent Monte Carlo simulations by GOMPPER et al. [65] it can be argued 

that both studies reach equivalent results. In both models the lamellar-to-sponge transition is 

considered a result of increasingly positive values of κ . 
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Fig. 3.4: Structural organization of the surfactant bilayer from two identical monolayers. The 
monolayers are at a distance ε from the midsurface Σ [66]. 

3.2 Theoretical analysis of the dynamics of L3 phases 

To understand the dependence of the relaxation times τ on the concentration variable φB+C in 

temperature jump experiments [27] it is necessary to understand what happens in the L3 

phase. The basic argument is as follows [72]: The sudden variation in temperature induced by 

the T-jump, abruptly changes the spontaneous curvature of the amphiphilic monolayers. The 

frustration induced in the bilayer will be released via the creation of passages between 

adjacent bilayers. Passage formation [73] is a two-step process: Adjacent membranes have to 

meet (or collide) and after this, a passage has to be formed. This means that the apparent 

experimental relaxation rate is a product of two terms: 

 

⎟
⎠
⎞⎜

⎝
⎛−⋅τ=τ −−

RT

EAexp11
exp  (3.22) 

 

The first term, 1−τ , is the probability for two membranes to meet. It is essentially controlled 

by the membrane rigidity, κ, and it will be strongly dependent on the interbilayer distance, d, 

as will be shown below. The second term, ⎟
⎠
⎞⎜

⎝
⎛−

RT

EAexp , is the probability to form a passage 

between two membranes that are touching each other. On general grounds, it is expected that 

this term depends on the properties of the bilayer, namely, on the bilayer thickness 2ε as well 

as on the monolayer parameters, κmono, κ mono and c0,mono. An estimation of the above-

described terms will be given in the following. 
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3.2.1 Lamellar structure 

In the case of the lamellar phase the calculation for the probability of collision between two 

membranes is straightforward. One uses a MONGE representation [52] for the amphiphilic 

membrane, which is the standard approach for membranes of the Lα phase, but which 

corresponds only to a rough approximation when used for an L3 phase. In this representation 

it is assumed that the reference state is flat and only smooth deviations are allowed. The 

MONGE representation considers the x-y plane as the reference plane. Each point within the 

membrane is localized by an internal coordinate, s ≡ (x, y), and its elevation from the x-y 

plane is z = h (x, y). Then the HELFRICH bending energy is given by:  

 

∫ ∇κ= sdhE 222 )(
2

 (3.23) 

 

where κ is the bending constant. It was also assumed that the topology of the membrane 

remains invariant, and thus the GAUSSian term [49, 51] can be neglected. This can be assumed 

since only the probability of collisions between membranes is considered, and not what 

happens afterwards. A FOURIER transform of Eq. (3.23) with hq = ∫ ⋅ )(2 shqed siq yields: 
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The equipartition theorem ascribes to the average of each mode an energy of kBT / 2 and 

hence gives: 
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The fluctuations of a membrane of finite size L (or area L2) are to be inspected. Eq. (3.25) is 

integrated to get an estimate of the fluctuation amplitude. The contributions of all the modes 

consistent with the finite size of the membrane are summed.  
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In this expression, the finite size imposes a low-q cutoff at π / L. The integration yields the 

important result 

 

22 ~ Lh
L

, (3.27) 

 

which means that in a free membrane the squared amplitude of the fluctuations increases like 

L2. That is, a membrane portion of linear size L will have transversal fluctuations, i.e. 

fluctuations normal to the surface, of the same order. With keeping this in mind the Lα phase 

can be considered as a stack of membranes separated from each other by an average distance 

d. Two of these membranes will touch when, on average, the size of their transversal 

fluctuations is identical to the inter-membrane spacing d. The size of the transversal 

fluctuations is, via Eq. (3.27), determined by the linear size L of the membrane. Therefore, the 

specific membrane size L
~

, which has fluctuations equal to the membrane spacing d, can be 

calculated to be 

 

2
~

2 ~ dh
L

, (3.28) 

 

which, according to Eq. (3.27) means that L
~

 ~ d. It follows that there will be one collision 

between the Lα membranes in each elementary volume of the dimension L
~

 × L
~

 × d, that is, 

in each elementary volume of size d3. Since the relaxation time τ is proportional to this 

volume, it follows that 3~ dτ . This is a well-known result for interactions due to entropic 

fluctuations between membranes [69]. Using the fact that the average domain size obeys d ~ 

φC
-1 with φC being the surfactant volume fraction, it becomes 

 

τ−1 ~ φC
 3. (3.29) 

 

Evidently, regarding the fluctuations of an Lα phase structure on a local scale is not sufficient 

to explain the high powers of the bilayer volume fraction φB+C that have been observed in T-

jump experiments on the L3 phase. Consequently, a careful analysis of how the L3 phase 

structure influences the membrane fluctuations is required. 
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3.2.2 L3 phase structure 

It can be expected that Eq. (3.24) has to be modified for the L3 phase, since the transversal 

membrane fluctuations are inhibited by the randomly oriented bilayers of the continuous 

three-dimensional structure. On a local scale the L3 phase membrane resembles the one of the 

Lα phase, in that the local mean curvature H is zero in both cases. Probed on a local scale, it is 

to be expected that the L3 phase exhibits a similar response to that of an Lα phase. However, 

when probing the L3 phase membranes on larger scales the existence of passages will have the 

effect of inhibiting fluctuations that take place on scales of the order of d. Due to the 

structural nature of the L3 phase the bending constants of such membranes will show a 

dependence on low-q values of the type 

 

α−κ qq ~)(  (3.30) 

 

which will affect the FOURIER transformed bending energy E in Eq. (3.24). The calculation of 

the probability for two membranes to touch is done analogously including this q-dependence 

of κ and the bending energy in Eq. (3.24) takes on the form of 

 

∑ α−∝
q

qhqE .
~ 24  (3.31) 

 

The exponent α is related to ζ, the so-called wandering exponent [52] by ζ = (2 – α) / 2. 

Whereby ζ can take on values between ζ = 0, for a system purely controlled by interfacial 

tension, and ζ = 1, for a system that shows free membrane behavior, i.e. is controlled by the 

bending energy only, as for the Lα in Eq. (3.24). Following along the same lines Eq. (3.27) 

changes into Eq. (3.32) for a membrane controlled by contribution from bending energy and 

interfacial tension: 

 

.~ 22 ζLh
L

 (3.32) 

 

This means that in the L3 phase a membrane portion of linear size L|| will have transversal 

fluctuations of the size L⊥ which follow the relation L⊥ ~ Lζ||. As before for the Lα phase, the 

probability for two membranes to meet is calculated. Therefore the specific membrane size 
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L
~

, which has fluctuations equal to the average distance d between the L3 phase membranes, 

can be calculated to be 

 

2
~

2 ~ dh
L

 ⇒ L
~ 2ζ ~ d2, (3.33) 

 

which is, L
~

 ~ d1 / ζ. On average there will be a collision between membranes on each 

elementary volume of dimension L
~ × L

~ × d or with Eq. (3.32) in each elementary volume of 

size d(2 / ζ)+1. Since the relaxation time τ is proportional to this volume it follows that 
1

2

~
+

ζτ d . 

Using the approximation d ~ φB+C
-1 leads to 

 

1
2

1 ~ +
ζ+

− φτ CB  (3.34) 

 

It is now obvious that exponents higher than φ3 can be obtained. Fig. 3.5 shows the exponents 

to be expected for the φB+C dependence of the relaxation times τ as a function of the 

wandering exponent ζ. In sum, it was shown that large exponents in the τ-1 versus φB+C 

dependence of the L3 phase can be obtained due to the topological configuration of this phase. 
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Fig. 3.5: Model calculation for the influence of the wandering exponent ζ on the φB+C dependence of 
the relaxation times τ. 

It should be mentioned at this point that chapter 3.2 was derived by DR. HENRIQUE LEITAO 

from the University of Lisbon. This theoretical approach was triggered by the first 

observations of the striking phenomena regarding the dynamics of L3 phases by LE and 

coworkers [25], SCHWARZ [28] and UHRMEISTER [27]. It was the basis for a collaboration 

between our group and DR. LEITAO, funded by the DAAD, and resulting in the detailed 

experimental data that provided further inspiration for the ongoing theoretical discussions 

about the structure, stability and dynamics of L3 phases.  
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4 Investigations of the dynamics 

The difference between a complex fluid and an ordinary fluid is the fact that the former is 

structured on a microscopic scale. Examples for these complex fluids [74] are 

microemulsions, micelles, liquid crystals and the L3 phase amongst others. Their 

microstructure has been extensively studied with well-established scattering methods like 

dynamic light scattering (DLS) [75], static light scattering (SLS), small-angle neutron 

scattering (SANS) [16, 76, 77, 78], small-angle X-ray scattering (SAXS) [79, 80] and other 

techniques such as nuclear magnetic resonance (NMR) [81, 82, 83, 84] or transmission 

electron microscopy (TEM) [13, 85, 86], to name just a few.  

Based on these experiments a relatively clear idea of the microstructure of complex fluids 

could be established. It is important to realize that the picture of the microstructure is a static 

one, ignoring the highly dynamic nature of such a fluid. However, it is above all the 

dynamics, i.e. the time-dependent properties that are of interest in a lot of applications. 

Typical examples include the fusion and fission of membranes, changes of the overall 

structural topology and vesicle formation. 

4.1 Basics 

In order to study the dynamics of self-organized surfactant systems in solution, relaxation 

techniques are used. The principle of relaxation techniques [87, 88, 89], such as temperature 

[90] and pressure jump methods [28, 91], Kerr effect measurements [28, 92], stopped flow 

techniques and ultrasonic absorption, can be briefly described. A system at equilibrium is 

perturbed by creating a rapid but very small change of one of the external parameters that 

determines the system’s equilibrium state. This results in a shift of the system to a new 

equilibrium determined by the final value of the parameter that was changed. As the system 

relaxes from the old to the new equilibrium condition, its evolution can be characterized by 

one or more time constants, the so-called relaxation time constants. Consequently, the 

relaxation time reflects the ability of a system to follow the perturbation and hence, they are 

dependent on the dynamic processes being studied. This means that different perturbation 

techniques, depending if they induce thermodynamical, mechanical, electric or chemical 

perturbations result in different relaxation processes and therefore in different relaxation 

times. A small perturbation ensures that the system remains close to equilibrium and that the 

dynamics of the relaxation to the new equilibrium takes on a rather simple mathematical form 

[93]. 
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Investigations of the dynamics of self-assembled systems started foremost with micellar 

solutions. There has been a lot of interest for many years in micelle kinetics. Many micellar 

systems have been examined by stopped flow, pressure jump, temperature jump and 

ultrasonic relaxation measurements [94, 95, 96, 97]. These measurements frequently identify 

two well-separated relaxation times, a rapid relaxation which occurs on a time scale of 

microseconds and a slower process, which requires milliseconds to seconds [17, 18]. 

ANIANSSON and WALL [17] assigned the fast process to an association-dissociation process 

involving the exchange of individual surfactant molecules between the micelles and the water 

phase and attributed the slower process to a more inherent rearrangement of the system 

involving the creation and destruction of micelles. While the kinetics of micelles are fairly 

well understood today, the dynamics of vesicles, i.e. globular structures with bilayer 

membranes, remained elusive in spite of their obvious importance in a wide range of 

applications [20, 98]. In a study by YATCILLA and coworkers [99] a surfactant of opposite 

charge is added to a micellar solution of an ionic surfactant and vesicles are formed from 

spherical micelles. The composition of the bilayer and the partitioning of surfactant molecules 

between the inner and outer monolayers of the vesicles play an important role in setting the 

equilibrium bilayer curvature. A likely mode of adjusting these monolayer compositions is via 

a so-called surfactant flip-flop through the bilayers, which occurs on time scales up to days. 

These time scales are much longer than typical exchange rates of surfactant monomers 

between the aqueous and aggregated states, which is the only mass transfer mode necessary 

for micelles to equilibrate. ZANA [100] studied the rate constants for the exchange of 

solubilized compounds between formed vesicles. They were found to be at least four 

magnitudes faster than the ones measured for micellar systems. For the first time FRIBERG et 

al. [19] observed the formation of vesicles directly from a molecular dispersion by diluting a 

solution of vesicle forming surfactants with water using a stopped flow technique. They found 

a relaxation time for the formation of vesicles varying from microseconds to several seconds 

depending on the concentration of the vesicle forming surfactant and being at least five orders 

of magnitude slower than that for micelles. Nevertheless, all these studies involve the kinetics 

of vesicle formation or the exchange rates of solubilized compounds between vesicles rather 

than the actual time dependent properties of stable vesicle phases. This is unlike studies 

concerned with the actual dynamics of stable micellar [18] or L3 phases [28]. 
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For matters concerning the dynamics of L3 phases there are still many open questions. A brief 

“state of the art” review of L3 phase dynamics was given in the chapter 1 for works by 

MILLER [21], PORTE [22] and WATON [24]. Some aspects will be presented in more detail. 

From electric birefringence measurements it was found that the relaxation time constants τ−1 

depend on the surfactant volume fraction φ like τ-1 ∝ φ3. This was attributed to an 

orientational relaxation of disk-like aggregates in the case of MILLER [21] for the zwitterionic 

system water – C14DMAO – n-hexanol. PORTE [22] also found this φ3 dependence, using the 

system water – betain – n-pentanol. However, he attributed this dependence to a distortion of 

a sponge-like L3 structure that relaxes. These structural discrepancies stem from a time before 

the L3 structure had been unambiguously proven as a sponge-like structure by SANS and 

FFEM. This was accomplished in 1990 by FFEM [14] and supported by SANS in 1992 by 

STREY et al. [8]. Later PORTE and WATON [24] theoretically predicted the existence of three 

different relaxation processes, and therefore three different relaxation times. These three 

relaxation times are supposed to originate from a diffusion time of concentration fluctuations, 

a relaxation time for the breaking of the structure’s symmetry, and a relaxation time for the 

reestablishment of the connectivity of the bilayer. In the same study a corresponding set of 

experiments was presented. They followed the temperature jump relaxation by detection of 

the scattered light for the pseudo-binary ionic system brine – cetylpyridiniumchloride –  

n-hexanol and claim to have found experimental evidence for three different time constants. 

These φ dependencies of the three different τ were checked on two samples respectively and 

found to scale as φ-3 and φ-4. Although the experimentally obtained relaxation time constants 

might qualitatively explain, or at least be associated with, the predicted time constants one has 

to be aware that only a very limited number of data were presented. 

Recently, some very promising studies were carried out by SCHWARZ et al. [28]. Here the 

dynamics of L3 phases for the non-ionic system H2O – C10E4 – n-decanol were studied. 

Temperature jump relaxation, pressure jump relaxation, time-resolved electric birefringence, 

and dynamic light scattering experiments were performed. Different experimental time 

constants and dependencies on the surfactant volume fraction φC were expected since the 

different techniques used, probe different processes. Instantaneous temperature or pressure 

changes alter the spontaneous curvature of the monolayers constituting the bilayer of the L3 

phase and may lead to the formation of new passages. Temperature jump and pressure jump 

experiments are therefore expected to yield information on the dynamics of passage 

formation, which is equal to a topology change in the L3 phase structure. In time-resolved 

Kerr effect measurements the applied electric field may induce a distortion of the sponge 
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structure without a change in the actual topology of the L3 phase. Differently to these 

perturbation methods dynamic light scattering experiments (DLS) show spontaneous 

fluctuations in the L3 phase. The observed relaxations were all found to be single 

exponentials. The time constants τ-1 obtained by the different methods vary over several 

orders of magnitude and reveal strong dependencies on surfactant volume fraction φC 

resulting in scaling laws of τ-1 ∝ φn, with n = 9 for temperature and pressure jump relaxation, 

n = 3 for the electric birefringence measurements and n = 1 for the dynamic light scattering 

experiments.  

 

In this work an attempt for a better understanding of the actual processes following an 

instantaneous perturbation is made to eventually find a general description for the dynamics 

of L3 phases. In the examples given above all experiments were performed as a function of the 

concentration of the non-swollen bilayer. Any information about the influence of the bilayer 

thickness, i.e. swelling the bilayer with oil, is missing. Since the bilayer thickness is as 

fundamental for the L3 phase structure as the bilayer concentration, relaxation processes as a 

function of the bilayer thickness should yield some important information concerning the 

dynamics of L3 phases. As a basis for a detailed investigation the system water – n-octane – 

C10E4 was chosen because the structure of the L3 phase can be varied by either swelling the 

bilayer with oil, i.e. changing the surfactant / (oil + surfactant) volume fraction ωb or by 

varying the bilayer volume fraction φB+C. First of all, temperature jump experiments were 

performed. However, in order to have excess to a much wider time range a second 

perturbation method, called isothermal shear, was developed. These two methods, which 

complement each other perfectly, will be presented in detail in the following. The results 

obtained by these two methods will then be presented and discussed. 

These investigations, though unspoken, always refer to the water-rich L3 phase as described in 

the phase diagram in Fig. 2.3. The existence of an oil-rich L3 phase was also taken into 

account in this work. As the experimentally accessible L3 phase on the oil-rich side is 

restricted to a small concentration range, extensive measurements as a function of the 

surfactant / (water + surfactant) volume fraction ωa and the bilayer volume fraction φA+C could 

not be performed. Consequently, no additional information was gained from the T-jump 

experiments on the oil-rich L3 phase. In order not to disturb the train of thoughts the 

corresponding experiments and results are discussed separately in chapter 9. 
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4.2 Temperature jump 

The temperature jump apparatus consists of a high-voltage discharge unit containing the 

thermostatted cell and the optical unit for monitoring the change in the intensity of the 

scattered light [101]. The principle behind this setup is to rapidly heat the cell, i.e. disturb the 

equilibrium state of a given sample, located between platinum electrodes, by means of 

discharging the high-voltage capacitor through the sample. The height of the generated T-

jump as a function of the voltage charge of the capacitor can be calculated using the relation 

ΔT = bUcap
2, with b being an empirical constant. A value of b = 7.1 (± 0.5) × 10-3 K (kV)-2 

was obtained from calibration measurements (see chapter 8 for details). Therefore charging 

voltages between 2.5 and 11 kV yield temperature jumps of 0.04 to 0.86 K. The heating time 

τH = Rcell ⋅ C / 2, where Rcell is the resistance of the sample in the cell and C the capacitance 

(10 nF) of the capacitor, is dependent on the electrolyte concentration and the sample’s 

composition. The heating time was found to be τH = 2 (± 1) μs with typical sample resistances 

of 100 – 1000 Ω. Because of heat exchange with the surrounding cell the temperature inside 

the sample decreases again until it reaches the initial temperature T0. The corresponding time 

to this process is called the cooling time τC. From fitting the long time based measurements 

(see chapter 8) τC was determined to be almost constant with τC = 18 (± 2) s while its exact 

value is of minor relevance for the determination of relaxation times of less than seconds. It 

follows that reliable relaxation times τ can only be observed for τ << τC and τ >> τH. The time 

window in which dynamic processes can be investigated by this method is therefore limited to 

10-4 s < τ < 1.5 s. 

4.2.1 Results 

To resolve the dynamics of L3 phases as a function of their structure, temperature jump 

experiments are performed for different bilayer volume fractions φB+C and varying surfactant / 

(oil + surfactant) volume fractions ωb. A schematic representation of the samples’ 

compositions is given in Fig. 4.1. 
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Fig. 4.1: Schematic representation of the composition of the samples for the different bilayer volume 
fractions φB+C and surfactant / (oil + surfactant) volume fractions ωb. 

All experiments are carried out inside the temperature range of the stable L3 phase. 

Temperature jumps are always performed from a temperature within the stable L3 phase 

region towards the upper L3 phase boundary temperature 3L
uT  (see Fig. 2.8), this choice of 

temperature will be explained in detail later. For each temperature jump the scattered light 

intensity is monitored simultaneously for five different angles ϑ. Fig. 4.2 shows a typical 

temperature jump experiment. In the upper diagram the instantaneous temperature jump from 

the initial temperature T0 to the new equilibrium temperature 3L
uT  can be seen. The 

corresponding relaxation curve of the scattered light intensity as a function of time is 

illustrated in the central picture. The relaxation of the scattered light intensity was found to be 

single exponential for all examined samples. Taking this into account and considering the fact 

that the cooling time τC is correlated to the return time back to T0, the relaxation process as 

seen in the central diagram can be quantitatively described by 
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with I0 being the intensity of the scattered light before the jump, and IS the time-dependent 

scattered light intensity. The amplitude ΔIS / I0 ⋅ 1 / (1 – τ / τC) is determined by the intensity 
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increase associated with the temperature jump ΔT. For all presented experiments, however,  

τC >> τ consequently the second term of the amplitude, 1 / (1 – τ / τC), can be neglected. The 

values for I0 can be determined from the experimental data. A fixed value of τC = 17.7 s is 

used, which is known from calibration measurements (see chapter 8). The relaxation time τ is 

the time that passes until a new equilibrium situation corresponding to the increased 

temperature is reached. For the example in Fig. 4.2 the fit function (Eq. (4.1)) yields the 

amplitude ΔIS / I0 = 0.305 and the relaxation time τ = 0.385 s. The residual plot at the bottom 

of Fig. 4.2 documents the quality of the fit. It shows some background noise, but no 

systematic deviations between the measured data points and the fitted curve obtained by non-

linear regression.  
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Fig. 4.2: A typical analysis of a T-jump from T0 = 24.79 °C to T = 25.43 °C (top) for a sample with 
φB+C = 0.1045 and ωb = 0.69 observed at ϑ = 90°. This experiment can be entirely described by Eq. 
(4.1). With given values for I0, t and τc the amplitude ΔIS / I0 and the relaxation time τ can be obtained 
from nonlinear regression (middle). The residual plot shows no systematic deviations between the 
measured data points and the fitted curve (bottom).  

For using the intensity of the scattered light as detection method for the temperature jump 

experiment, a correlation between the scattered light intensity and the temperature has to be 

guaranteed. This correlation is illustrated in Fig. 4.3: 

 



α

4 Investigations of the dynamics 43 

T / °C

27.0 27.5 28.0 28.5 29.0

I S 
/ I

0

1.00

1.25

1.50

1.75

T0

L1' + L3L3 + Lα L3

(metastable)

3L
lT 3L

uT

 

Fig. 4.3: Intensity of the scattered light IS / I0 as a function of temperature T for a sample with ωb = 

0.58 and φB+C = 0.1528. The lower and upper L3 phase boundary temperatures are determined to 3L
lT  = 

27.36°C and 3L
uT  = 28.32°C (dashed lines). For temperatures higher than 3L

uT the L3 phase stays in a 

metastable state. Phase separation does not take place due to kinetic hindrance. 

With increasing temperature the light scattering intensity IS increases monotonically, i.e. 

every temperature jump is inevitably followed by an increase in the scattering intensity. 

Therefore a temperature jump perturbation causes an amplitude ΔIS, a change in the intensity 

of the scattered light. Note that the amplitudes ΔIS / I0 change with the temperature difference 

between the initial and the final state. In other words: Whereas every absolute value of IS / I0 

is defined by a certain T, the amplitude ΔIS / I0 is depending on the applied T-jump and is not 

a function of the L3 phase dynamics.  

The time that is needed to reach the final intensity determines the relaxation time τ of the 

process, which was induced by the instantaneous temperature rise. In contrast to the light 

scattering amplitudes, these relaxation times τ are equal for T-jumps performed up to a fixed 

temperature irrespective of the initial temperature. Therefore every T-jump with a defined 

final temperature T is characterized by a distinct relaxation time τ, which is illustrated in Fig. 

4.4: 
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Fig. 4.4: Relaxation times τ as a function of temperature T for a sample with ωb = 0.58 and φB+C = 

0.1528. The lower and upper L3 phase boundary temperatures are determined to 3L
lT  = 27.36°C and 

3L
uT  = 28.32°C (dashed lines), T0 is the initial temperature before the jump. For temperatures higher 

than 3L
uT the L3 phase stays in a metastable state.  

From experiments it becomes clear that the relaxation times do not depend on the initial 

temperature T0 from were the T-jump is performed as long as the jumps are carried out onto 

the same final temperature. This final temperature should be characteristic for all samples to 

serve as a common reference. Since the binodal temperature or 3L
uT  is such a feature, it is used 

as a reference temperature in T-jump experiments when comparing samples with varying 

compositions, i.e. different temperatures 3L
uT .  

Fig. 4.4 also shows the possibility to determine the temperature dependence of the relaxation 

times, since starting from the same initial temperature T0 and jumping onto different final 

temperatures, yields different relaxation times. This will be explained in detail in the 

following. 
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Temperature dependence of the relaxation time 

The temperature dependence of the relaxation time was examined for varying bilayer volume 

fractions φB+C as well as surfactant / (oil + surfactant) volume fractions ωb. This was done by 

temperature jump experiments onto various temperatures T in the stable L3 phase region. This 

means that several T-jumps from a fixed temperature T0 with rising jump amplitudes ΔT onto 

different final temperatures were performed. In contrast the concentration dependencies of the 

relaxation times were establish by jumps onto one reference temperature, the binodal or upper 

phase boundary temperature 3L
uT  (see Fig. 4.4). Fig. 4.5 shows three exemplary jumps for 

rising ΔT starting from T0 = 28.54 °C. The relaxation process becomes faster with increasing 

height of the temperature jump, i.e. when the binodal line is approached.  
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Fig. 4.5: Relaxation curves for three different T-jumps of a sample with the bilayer volume fraction 
φB+C = 0.2035 and a surfactant / (oil + surfactant) volume fraction ωb = 0.58. T-jumps are performed 
for rising ΔT starting from a constant temperature T0 = 28.54 °C for ϑ = 90°. The resulting relaxation 
times τ become shorter with increasing ΔT. 

Scattering angle dependence of the relaxation time 

Temperature jump experiments for each sample were carried out for detection angles of ϑ = 

40°, 60°, 90°, 120° and 140°. The resulting relaxation times τ are, apart from the experimental 

error, independent of the angle of detection of the scattered light, as can be seen in Fig. 4.6. 
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Fig. 4.6: Relaxation curves with a single relaxation time τ (taking into account the experimental error) 
for T-jumps 24.79°C → 25.43°C for a sample φB+C = 0.1045 and ωb = 0.47 at detection angles of ϑ = 
40°, 90° and 140°. 

Fig. 4.6 emphasizes the independence of the relaxation times of the scattering angle. All 

following relaxation curves will be presented for scattering angles ϑ = 90° only, if not stated 

otherwise. Furthermore Fig. 4.6 shows that even when the relaxation times are the same for 

one single jump under different scattering angles, the amplitudes ΔIS / I0 are not, i.e. the 

relaxation times are not dependent on the amplitudes. Since the relaxation times and the 

amplitudes ΔIS / I0 are not directly related to each other the amplitudes will not be discussed 

further.  
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Dependence of the relaxation time on the bilayer volume fraction φB+C 

For samples at constant values of ωb the bilayer volume fractions φB+C were varied between 

0.1 and 0.3 in steps of 0.05, if applicable. In Fig. 4.7 an exemplary comparison of temperature 

jumps onto the binodal temperature for three samples with different compositions (φB+C ≈ 

0.15, 0.20, 0.25) for a constant ωb = 0.69 is shown. For the lowest concentration the relaxation 

time is about two tenth of a second, for the medium concentration it is two hundredth of a 

second, while for the highest it is around two thousandth of a second. The resulting picture is 

one where the relaxation curve spans the whole time range of 1 s for low, is greatly reduced in 

its expanse for medium, and hardly recognizable as a curve for the high bilayer volume 

fraction φB+C. To emphasize that the curves of medium and high φB+C are of the same shape as 

the one for low φB+C the curves are shown again in inlets, just on different time scales. This 

comparison demonstrates evidently that the relaxation time τ of the L3 phase shows very 

strong concentration dependence. Increases of 0.05 in the bilayer volume fraction φB+C result 

in decreases of the relaxation time τ by one order of magnitude. 
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Fig. 4.7: Comparison of the relaxation curves for three samples of different composition at constant ωb 
for T-jumps onto the binodal temperature for ϑ = 90°. The relaxation process becomes increasingly 
faster with rising bilayer volume fractions φB+C. For an increase in bilayer concentration of 10% the 
relaxation time shortens by two orders of magnitude. The inlets show the relaxation curves on time 
scales of one tenth or one hundredth respectively. 

Variations of the bilayer volume fraction φB+C were performed for six different surfactant / 

(oil + surfactant) volume fractions ωb in the range of 0.9 to 0.37. All φB+C variations for these 

different ωb‘s exhibit qualitatively the same relaxation behavior, i.e. they all show a 

pronounced dependence of the relaxation time on the bilayer volume fraction φB+C. 
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Dependence of the relaxation time on the surfactant / (oil + surfactant) volume fraction 

ωb 

Since the variations of the bilayer volume fraction φB+C were performed for six different 

surfactant / (oil + surfactant) volume fractions ωb, the relaxation behavior of the L3 structure 

can also be looked upon as a function of ωb. Comparing the relaxation curves for three 

different surfactant / (oil + surfactant) volume fractions ωb at constant φB+C = 0.2 leads to the 

diagram shown in Fig. 4.8. Starting from high ωb, shown in the upper plot, the relaxation time 

increases at first when oil is added to the system (middle plot), i.e. the relaxation process for 

these samples becomes slower. If even more oil is added, i.e. ωb is further reduced, the 

relaxation process becomes faster again, as pictured in the lower diagram. This shows that the 

relaxation time of L3 phases is not only dependent on the bilayer volume fraction φB+C at 

constant ωb but is also a function of the surfactant / (oil + surfactant) volume fractions ωb at 

constant φB+C. The difference is that with increasing φB+C the relaxation process becomes 

monotonically faster, while for varying ωb the relaxation time τ runs through a maximum for 

intermediary values of ωb. 
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Fig. 4.8: Comparison of the relaxation curves for three samples of different surfactant / (oil + 
surfactant) volume fractions ωb of constant φB+C for T-jumps onto the binodal temperature for ϑ = 90°. 
The resulting relaxation times run through a maximum for intermediary values of ωb. 

4.2.2 Discussion 

In this discussion first of all the temperature dependencies of the relaxation time constants for 

different samples will be presented in an ARRHENIUS-like plot, associating these dependencies 

to effective activation energies. Then the consequences resulting from the q2-independence of 

the relaxation times for a single sample will be discussed. At last the resulting relaxation time 

constants of the above mentioned variations for the bilayer volume fraction φB+C and the 

surfactant / (oil + surfactant) volume fraction ωb will be presented in such a way that the 

fundamental relationships between these dependencies will be revealed. It is common practice 
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for all studies concerned with the examination of dynamical processes to consider reciprocal 

relaxation times τ corresponding to rates or time constants τ-1. This principle therefore will be 

taken up in the following discussions. 

Temperature dependence of the relaxation time constants 

The temperature dependence of the relaxation time constants τ-1 can be presented as an 

ARRHENIUS-like plot. For this the relaxation time constants are plotted logarithmically against 

the inverse final temperature T. At one constant ωb this plot yields a set of parallel straight 

lines each for a different bilayer volume fraction φB+C, as can be seen in Fig. 4.9. 
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Fig. 4.9: Temperature dependence of the relaxation time constants in an ARRHENIUS-like plot for three 
different bilayer volume fractions φB+C = 0.20, 0.15 and 0.10 for a constant value ωb = 0.58.  

According to  
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the slope of these plots can be associated with an effective “activation energy” Ea. For the 

representative example given in Fig. 4.9 a numerical value of Ea = 492 ± 3 kJ / mol is found. 

The parallel lines for the different bilayer volume fractions φB+C indicate that the temperature 

dependence of the relaxation times is independent of φB+C. This might indicate that the 

mechanism of relaxation is the same irrespective of the bilayer volume fraction.  

On the other hand a clear dependence on ωb was observed. ARRHENIUS-like plots for different 

constant values of ωb have been evaluated. The values for the activation energies Ea taken 

from these plots are presented in Fig. 4.10 as a function of the surfactant / (oil + surfactant) 

volume fraction ωb.  
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Fig. 4.10: Dependence of the “activation energy” Ea on the surfactant / (oil + surfactant) volume 
fraction ωb. The error bars indicate the variations in the slopes for changing bilayer volume fractions 
φB+C in the individual ARRHENIUS-like plots. 

While the same relaxation process can be assumed for a variation in the bilayer volume 

fractions φB+C at constant ωb, this is not the case for a variation of the surfactant / (oil + 

surfactant) volume fraction ωb. A strong variation in the “activation energy” can be observed, 
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running through a maximum at ωb = 0.58. Furthermore, a change in the sign of Ea from 

positive to negative with an increasing amount of oil indicates a dramatic change in the 

mechanism of relaxation of the L3 phase when the surfactant / (oil + surfactant) volume 

fraction ωb is decreased. 

q2-independence of the relaxation time constants  

The observation of a single relaxation time τ for different detection angles, as shown for three 

relaxation curves in Fig. 4.6, can be best elucidated in comparison with time constants τDLS
-1 

determined by dynamic light scattering. The dynamic light scattering experiments were 

performed using a commercial ALV goniometer which is described in detail elsewhere [46, 

28]. An angular range of 30° to 150° is routinely covered to explore the q-dependence of the 

time constants of the samples bilayer fluctuations. The wave vector q is defined as 

 

2
sin4

ϑ
λ

π= Dn
q  (4.3) 

 

with λ the wavelength of the laser, nD the refractive index of the medium at λ and the 

scattering angle ϑ. The result of each dynamic light scattering experiment is an intensity – 

intensity autocorrelation function. The data points of this function are fitted with CONTIN 

[102] and yield the q2-dependent time constants Γ: 
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with D being the mutual diffusion coefficient. 

 

Fig. 4.11 shows linear plots of the time constants τ-1 from a temperature jump experiment and 

τDLS
-1 from dynamic light scattering as a function of q2 for a sample with ωb = 0.47 and φB+C = 

0.204.  
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Fig. 4.11: q2-dependence of the time constants from dynamic light scattering τ -1 (DLS) (triangles) at  
T = 26.2 °C and from T-jump (26.13°C → 26.53°C) τ-1 (T-jump) (circles) for a sample with ωb = 0.47 
and φB+C = 0.204. 

While the time constants from dynamic light scattering τDLS
-1 change with the scattering 

vector q, i.e. show q2-dependence, the relaxation time constants from the T-jump experiment 

remain constant with changing q. This q-independent relaxation time constant τ−1 comes as no 

surprising result in these kinds of experiments. SCHWARZ et al. [28] made the observation of a 

single time constant describing both pressure and temperature jump relaxation of the same 

sample. As the relaxation process after the pressure jump is detected via the conductivity of 

the sample, equal relaxation time constants for the p- and the T-jump can only be obtained if 

τ−1 does not depend on the detection angle ϑ in the T-jump experiment. To understand the 

relevance of the q2-independence of the relaxation time constants it is important to understand 

the meaning of the q2-dependence of τ -1 (DLS). Following the LANDAU-PLACZEK argument, 

see Eq. (4.4), a q2-dependence is characteristic for diffusive fluctuation processes. 

Consequently the q2-independence clearly defines a relaxation process, which is not based on 

diffusive fluctuations. It rather is an indication for the detection of structural changes inside a 



56 4 Investigations of the dynamics 

phase as it was described by PAKUSCH and STREY [103, 104] for the related subject of micelle 

kinetics. 

Since no q2-dependencies can be detected in the T-jump experiments it can be deduced that 

the relaxation processes observed in this work can be discussed in terms of structure 

variations only. 

Dependence of the relaxation time constants on the bilayer volume fraction φB+C 

According to Fig. 4.12 a double logarithmic plot of the relaxation time constants τ-1 as a 

function of φB+C for different ωb reveals a strikingly strong φB+C-dependence of τ-1. 

φB+C

0.1

τ-1
 / 

s-1

10-1

100

101

102

103

104

105

0.20.05 0.3

ωb = 0.90

ωb = 0.81

ωb = 0.69

 

Fig. 4.12: Double logarithmic plot of the relaxation time constants τ-1 as a function of the bilayer 
volume fraction φB+C for different surfactant / (oil + surfactant) volume fractions ωb = 0.90, 0.81 and 
0.69.  

Plotting the data for each constant value of ωb results in a set of straight lines. The chosen 

representation illustrates the strong φB+C-dependence of τ-1, which can be expressed in terms 

of an effective power law: 

 

τ-1 ∝ n
CB+φ  (4.5) 
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with n = 4.7, 6.2 and 8.6 for ωb = 0.90, 0.81 and 0.69 respectively. The most pronounced 

dependence is observed for ωb = 0.69 where a change in the bilayer volume fraction φB+C by a 

factor of 3, from φB+C = 0.1 to 0.3, causes an enormous reduction of the relaxation time τ from 

1 s to less than 400 μs, i.e. a change of four orders of magnitude. For the higher values of ωb 

this effect is less prominent, but still results in very high reductions of the relaxation times as 

a function of φB+C. These results seem to indicate that for a further decrease of ωb, which 

equals more oil in the mixture, the power law factor n for the strong φB+C-dependence of τ-1 is 

increasing. However, the opposite is observed with decreasing ωb, the following diagram, Fig. 

4.13 can be deduced from experimental data. 
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Fig. 4.13: Double logarithmic plot of the relaxation time constants τ-1 as a function of the bilayer 
volume fraction φB+C for different surfactant / (oil + surfactant) volume fractions ωb = 0.69, 0.58, 0.47 
and 0.37.  

Again, all of the plots in Fig. 4.13 show strong dependencies of τ-1 on φB+C, with n = 8.6, 8.0, 

6.7 and 4.3 (see Eq. (4.4)) for ωb = 0.69, 0.58, 0.47 and 0.37 respectively. However, it is 

noteworthy that still the plot for constant ωb = 0.69 shows the strongest φB+C-dependence of  

τ-1. This means that the φB+C-dependence of τ-1 runs through a minimum for varying values of 

ωb.  
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These enormously strong dependencies did not come as a complete surprise since they were 

seen before by SCHWARZ et al. [28] for the pseudo-binary system water – C10E4 – C10E0 and 

by UHRMEISTER [27] for the system water – n-decane – C12E5. What certainly came as a 

surprise was the fact that the φn-dependencies of τ-1 changed so considerably with ωb. 

However, even for the highest and lowest experimentally accessible values of ωb, where the 

φn-dependencies of τ-1 are less pronounced, the literature predictions for non-swollen bilayers 

with n = 3 – 4 [22, 24] were not reached. On the other hand, in view of the presented results, 

for ωb = 1, i.e. the non-swollen bilayer system, it might be reasonable to estimate a  

φ3-dependence of the relaxation time constants. 

Dependence of the relaxation time constants on the surfactant / (oil + surfactant) volume 

fraction ωb 

According to the information gathered from the φB+C-dependence of τ-1, a plot of the 

relaxation time constants τ-1 as a function of ωb at constant bilayer volume fraction φB+C 

seems useful to elucidate the above mentioned relationships between the relaxation times and 

the surfactant / (oil + surfactant) volume fractions. The ωb-dependence of τ-1 is represented in 

Fig. 4.14. 
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Fig. 4.14: Double logarithmic plot of the relaxation time constants τ-1 as a function of the surfactant / 
(oil + surfactant) volume fraction ωb for different bilayer volume fractions φB+C = 0.25, 0.20, and 0.15.  

The curves of the relaxation time constants τ-1 as a function of the surfactant / (oil + 

surfactant) volume fraction ωb show a minimum for all values of constant φB+C. This 

minimum is to be found around the value of ωb = 0.69 for each curve. In relation to each 

other, the curve for the lowest constant value of φB+C shows the most distinct minimum in the 

relaxation time constants τ-1, i.e. here the slowest relaxation processes can be observed. So, 

obviously the variation of the surfactant / (oil + surfactant) volume fraction ωb has a more 

dramatic influence on the relaxation times in the L3 phase for lower values of φB+C. For the 

higher values of φB+C the curves still show a minimum in ωb = 0.69, however this becomes 

less pronounced with increased values of the bilayer volume fraction. 

4.3 Isothermal shear 

When describing the temperature jump method above the so-called cooling time τC was 

defined as the time it takes for the sample to reach the initial temperature T0 again after a 

temperature jump. This process is due to heat exchange with the surrounding cell. The 

corresponding time to this process was mentioned to be almost constant with τC = 18 (± 2) s. 
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For the determination of relaxation times of less than seconds the exact value of the cooling 

time τC is of minor importance. However, for processes governed by relaxation times of more 

than seconds, this cooling time τC reaches major importance. Since now a cooling process 

reducing the intensity of the scattered light is superimposing the slowly rising signal induced 

by the temperature jump. An exact definition of the desired τ becomes unachievable for 

relaxation times of τ > 1 – 2s. Given that the cooling time τC is constant due to the setup of 

the temperature jump apparatus, it sets the upper limit of relaxation times τ to obtain with this 

particular perturbation method to 1 – 2 seconds. However, considering the strong φB+C-

dependence of the relaxation time constants τ-1 (see Fig. 4.12 and Fig. 4.13), relaxation times 

of more then seconds are expected for bilayer volume fractions φB+C of less then 0.1. 

Consequently to be able to measure relaxation times of more then seconds, another 

perturbation method has to be applied. 

 

There was no method available taking into account the unique experimental limits dictated by 

the phase behavior of the L3 phase on the one hand, and on the other hand providing a chance 

to measure relaxation times τ longer than 2 seconds.  

In the end a new, yet simple, setup was employed, which was inspired by the L3 phase’s 

unique feature of showing birefringence under shear. The L3 phase shows very distinctive 

shear birefringence when viewed in a thermostatted test tube under crossed polarizers for any 

bilayer volume fraction. For higher φB+C this birefringence disappears immediately when the 

stirrer is stopped. However, at very low φB+C a slow vanishing of the birefringence can be 

observed, given rise to the assumption that the process observed here is actually a structure 

relaxation after a perturbation by shear. To measure the time of this process the obvious 

would be to employ an optical detection method. Unfortunately no optical methods like 

dynamic light scattering or UV-VIS spectrometry were available to apply shear to the sample 

in question. Therefore another detection method that has proven successful, e.g. for pressure 

jump perturbation techniques [28], has been applied. The conductivity in a thermostatted 

sample cell (see chapter 8) is measured as a function of time after shear was applied to the 

sample. Thus the reestablishment of the disrupted microstructure is monitored, yielding the 

structural relaxation time τ of the sample.  

Unlike the temperature jump technique, which is a perturbation method changing an intensive 

thermodynamical parameter of the sample rapidly, this technique works at a certain well 

controlled temperature and achieves the change of the sample’s equilibrium by mechanical 

perturbation. Accordingly this new technique was named ‘isothermal shear’. 
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4.3.1 Results 

To extend the knowledge already gathered about the dynamics of L3 phases by temperature 

jump measurements, isothermal shear experiments are performed for very low bilayer volume 

fractions φB+C at different constant surfactant / (oil + surfactant) volume fractions ωb. Again 

all experiments are carried out inside the temperature range of the stable L3 phase, but in 

contrast to the T-jump where 3L
uT serves as the reference temperature for all samples the 

common reference now is the mean L3 temperature, which is defined by ( 3L
uT  - 3L

lT ) / 2 for 

the given φB+C. The perturbation is induced through shear applied by stirring at constant 

frequency. The reequilibration of the microstructure after shear can be observed by 

monitoring the conductivity κS in the sample cell. A single exponential decay function is 

sufficient to characterize the change in conductivity by  
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with κS(t0) being the conductivity at t0, i.e. the moment the stirring stops and the measurement 

begins, and τ the relaxation time of the L3 phase. The value of κS(t0) is the very first value of 

conductivity measured immediately after the shear was stopped (t0) and therefore does not 

carry any information concerning the relaxation process but simply serves as a fit parameter 

marking the start of the measurement. This is in contrast to the value of I0 in the T-jump 

experiments, which is indeed the light scattering intensity of the sample before any 

perturbation occurred, and the value the system returns to after the cooling time period. Fig. 

4.15 shows a typical relaxation curve obtained in an isothermal shear experiment. 
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Fig. 4.15: A typical analysis of an isothermal shear experiment for a sample with φB+C = 0.04 and ωb = 
0.69. With given values for κS(t0) and t0 the amplitude ΔκS and the relaxation time τ can be obtained 
from nonlinear regression (Eq. (4.6)). 

The relaxation process for the isothermal shear method is characterized by the relaxation time 

τ and the amplitude ΔκS. This is in agreement with T-jump experiments where the relaxation 

process also shows two characterizing variables, the relaxation time τ and the amplitude  

ΔIS / I0. For this method ΔκS is rather a function of the shear rate (see below) than of the L3 

phase dynamics. This is in close analogy to the T-jump method where ΔIS / I0 is a function of 

ΔT and not of the kinetics of the L3 phase. ΔκS will therefore not be discussed further in 

matters concerning the dynamics. However, the amplitudes are a limitation to this method 

because they decrease considerably with increasing dilution, i.e. at very low bilayer volume 

fractions φB+C. One possible reason for this may be the shear-induced sponge-to-lamellar 

transition of highly diluted lyotropic systems [105]. Shearing of the L3 phase results in a 

reversible phase separation to L3 + Lα. According to CATES and MILNER [106] the critical 

shear rate for this transition is 
c

γ�  ∝ 1 / d3 where d equals the interbilayer distance. 

Therefore a very high dilution (see chapter 5) or a prolonged shear period will promote the 

sponge-to-lamellar transition. In order to prevent phase separation in the case of very low 
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φB+C, i.e. high dilution, the shear period has to be reduced, which accordingly results in a very 

small amplitude ΔκS (see bottom Fig. 4.17).  

For experiments with higher values of φB+C, i.e. at bilayer concentrations less susceptible to 

shear transition, a shear period of two times the relaxation time proved to be most successful. 

To illustrate the influence of the shear period on the relaxation curves an example for an 

experiment in the higher bilayer concentration range but for a too prolonged shear period can 

be seen in Fig. 4.16. Since shear is applied before the measurement actually starts a probable 

sponge-to-lamellar transition cannot be measured actively. The assumption is that what 

actually is observed is the reverse transition from the L3 + Lα, which shows much lower 

conductivities κS, back to the L3 phase. 
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Fig. 4.16: A typical curve for an isothermal shear experiment for a sample exposed to shear for more 
then two times its relaxation time τ. The very steep increase in the conductivity κS at the start of the 
measurement indicates the reverse phase transition from the Lα phase to the L3 phase.  

Practically, there is no time limit towards long relaxation times τ for this method. Here, the 

limiting factor is given by the samples. They show a too narrow temperature stability range 

for this technique at very low concentrations. However, towards higher bilayer volume 
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fractions φB+C and therefore shorter relaxation times τ there is a time limit caused by the 

motion of the sample solution in the sample cell even after the stirrer was stopped. As long as 

the solution surrounding the conductivity electrode is not completely stationary, no defined 

relaxation times can be determined. The period of motion after the stirrer was stopped was 

found to be about 25 s, thus defining the lower relaxation time limit of this isothermal shear 

method. 

Dependence of the relaxation time obtained from isothermal shear on the bilayer volume 

fraction φB+C 

For samples at constant values of ωb the bilayer volume fractions φB+C were varied between 

0.07 and 0.03 in steps of 0.01. In Fig. 4.17 an exemplary comparison of isothermal shear 

experiments at constant temperature of three different compositions (φB+C = 0.06, 0.04, 0.03) 

for a constant ωb = 0.69 is shown.  
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Fig. 4.17: Comparison of the relaxation curves of three different compositions (φB+C = 0.06, 0.04, 0.03) 
at constant ωb = 0.69. Isothermal shear experiments were performed at constant L3 phase mean 

temperatures ( 3L
uT  - 3L

lT ) / 2. The relaxation process becomes slower with decreasing bilayer volume 

fractions φB+C, but not to the same extent as observed for the high φB+C in Fig. 4.7. 

For the highest volume fraction the relaxation time is about 55s, for the medium 183s and 

almost twice that (306s) for the lowest value of the bilayer volume fraction φB+C. Comparing 

these results to the ones shown in Fig. 4.7 for much higher φB+C but the same constant ωb = 

0.69, it becomes clear that the φB+C-dependence of the relaxation time τ seems to be less 

strong for these low values of the bilayer volume fraction φB+C. In the bottom diagram it can 

be seen that the amplitude ΔκS of this shear experiment is greatly reduced in comparison to 

the curves in the upper two plots. It was explained above (see also Fig. 4.16) that the 
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amplitudes present a limiting factor to this method when the temperature stability range of the 

L3 phase becomes increasingly narrow at very low φB+C. 

4.3.2 Discussion 

In Fig. 4.18 the resulting relaxation times for very low bilayer volume fractions φB+C at two 

different surfactant / (oil + surfactant) volume fractions ωb are shown. The results from 

isothermal shear experiments are presented as an addition to the ones shown in the diagram in 

Fig. 4.13 for the temperature jump relaxation measurements.  

 

φB+C

0.1

τ-1
 / s

-1

10-3

10-2

10-1

100

101

102

103

104

105

ωb = 0.58 T-jump

ωb = 0.69 T-jump

ωb = 0.69 isothermal shear

ωb = 0.58 isothermal shear

0.20.05 0.3

 

Fig. 4.18: Double logarithmic plot of the relaxation time constants τ-1 as a function of the bilayer 
volume fraction φB+C for surfactant / (oil + surfactant) volume fractions ωb = 0.69 and 0.58.  

The assumption that τ-1 depends on φB+C according to the power law τ-1 ∝ n
CB+φ  with  

n = const. does not hold for low bilayer volume fractions of φB+C. Instead of straight lines in a 

double logarithmic plot, curves with non-linear dependencies emerge. In addition, 

experiments were performed for surfactant / (oil + surfactant) volume fractions ωb = 0.81 and 

0.47 with very low φB+C, but no relaxation times τ could be determined. 
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Similar results were obtained by WILKE [107], using a temperature jump setup suitable for 

slow relaxation times. For the system investigated in this study a deviation from the straight 

lines observed in the “fast” T-jump was found at very low φB+C. This is further confirmation 

to the fact that relaxation times do not depend on the perturbation method used. 

As described in chapter 4.3.1 there is no effective upper time limit restricting this isothermal 

shear method towards very long relaxation times. However, the lower time limit was 

determined to be 25 s with the consequence that relaxation times of less than 25 s cannot be 

measured. Thus it is reasonable to assume that the associated relaxation times are less then  

25 s. Relaxation times of less than 25 s are also in agreement with the observation that τ-1 

does not simply depend on φB+C according to the power law τ-1 ∝ n
CB+φ . If that were the case 

the relaxation times would have been accessible by isothermal shear. This leads to the 

conclusion that the relaxation times of those ωb at very low φB+C that are not experimentally 

accessible by isothermal shear should also diverge from linear dependencies. A suitable 

method to fill this gap of about 25 s has still to be found.  

4.4 Summary 

Measurements of relaxation times τ with the T-jump method, which has an experimental time 

window of 10-4 s to 1.5 s, at higher membrane concentrations φB+C yielded apparently linear 

dependencies in a double logarithmic plot, i.e. τ-1 ∝ n
CB+φ , where n is a function of ωb and 

takes on values of 4<n<9. However extending the experiment’s time frame to slower 

relaxation times at high dilution with the isothermal shear method revealed a behavior where 

the power law factor n is not a constant anymore for constant ωb (Fig. 4.18). This behavior 

could be measured for two of the seven different surfactant / (oil + surfactant) volume 

fractions ωb (ωb = 0.58, 0.69). For ωb > 0.69 and ωb < 0.58 relaxation times larger than those 

accessible with the T-jump could not be measured. However, this result does not exclude an 

equally non-linear dependence of τ-1 on n
CB+φ , i.e. a variable n. On the contrary the same 

general behavior is expected (indicated by the black dotted line in Fig. 4.19 for ωb = 0.81) 

with relaxation times between 1.5 s and 25 s, a time window, which is not accessible so far.  
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Fig. 4.19: Double logarithmic plot of the relaxation time constants τ-1 as a function of the bilayer 
volume fraction φB+C for surfactant / (oil + surfactant) volume fractions ωb = 0.90, 0.81 and 0.69.  

The dynamics of the L3 phase have been investigated as a function of the temperature T, as 

well as the bilayer volume fraction φB+C and the surfactant / (oil + surfactant) volume fraction 

ωb. The question is in what way these parameters determine the mechanism of relaxation. It 

was mentioned above that the relaxation times of the T-jump experiments must refer to 

structure relaxations on the basis of their q2-independence. Furthermore the relaxation times 

of the isothermal shear experiments are certainly structure related, corresponding to the 

reestablishment of the microstructure after disruption by shear. In order to find a way to 

explain the dynamics of the L3 phase generally, the parameters determining the dynamics of 

the L3 phase have to be related to its structure. In the next chapter it will be shown how the 

bilayer volume fraction φB+C and the surfactant / (oil + surfactant) volume fraction ωb 

influence the microstructure of the L3 phase and what conclusions can be drawn from this 

towards a description of the L3 phase dynamics. 
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5 Investigations of the microstructure by SANS 

In the previous chapter the dynamics of L3 phases could be determined quantitatively. It was 

found that the relaxation times of the L3 phase structures are crucially dependent on the their 

composition. The relaxation time constants τ-1 vary over four orders of magnitude for only 

minor increases in the bilayer volume fraction φB+C at constant surfactant / (oil + surfactant) 

volume fraction ωb. In addition, with varying ωb the relaxation time constants run through a 

minimum if the bilayer volume fraction φB+C is kept constant.  

 

If indeed the relaxation process is conducted mainly by passage formation, as proposed in 

chapter 3, the underlying microstructure is of critical importance for the L3 phase dynamics. It 

is known that the composition of the L3 phase determines its microstructure. Thus it should be 

possible to deduce a quantitative correlation between the bilayer volume fraction φB+C and the 

surfactant / (oil + surfactant) volume fraction ωb on the one hand and the characteristic 

lengths of the microstructure on the other hand. Experimentally, the characteristic length 

scales of the L3 phase microstructure can be measured by small-angle neutron scattering 

(SANS). In the following a short review of SANS studies on L3 phases will be given. Along 

with this the basic understandings of neutron scattering experiments will be explained before 

the actual scattering function and results for the L3 phase structures will be focused on in 

detail. The relationship between the measured characteristic lengths and the composition will 

be discussed. 

5.1 Basics 

The microstructure of the L3 phase was found to be that of a multiply connected randomly 

oriented bilayer that divides space into two equivalent water-continuous subvolumes. STREY, 

WINKLER and MAGID investigated the non-swollen L3 phase of the binary system water – 

C12E5 by small-angle neutron scattering [16]. They found that the scattering is characteristic 

of a locally flat structure with a diffuse interface, which arises from the penetration of solvent 

molecules. From the scattering curves they obtained the thickness of the bilayers and the 

effective areas occupied by the surfactant molecules. In a different study, STREY and co-

workers [8] investigated the non-swollen L3 phase bilayers of the system water / NaCl – AOT. 

It was found that the most frequently occurring film – film distance d is approximately the 

tubular diameter of a passage in the L3 phase structure and scales as d  ∝ φC
-1 with φC being 

the surfactant volume fraction. The results were confirmed by SKOURI et al. [108, 9]. In 
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addition, they found that the scattering patterns of one given phase at different surfactant 

concentrations along a dilution line will remain identical when plotted as a function of the 

reduced wave vector Q = q ⋅ d . This basically means that the dilution acts as a simple 

dilation on the structure of a given L3 phase. Hence any characteristic length scales are simply 

proportional to the inverse surfactant volume fraction, i.e. d  ∝ φC
-1. 

The SANS studies mentioned above dealt with the microstructure of L3 phases of either non-

ionic or ionic surfactant systems. They all had in common that the investigated L3 phases 

were those of binary systems, i.e. L3 phases with a non-swollen bilayer structure. There is 

only one characteristic length scale varying with the composition, i.e. the surfactant volume 

fraction, namely the averaged film – film distance or the tubular diameter d  of the L3 phase 

passages. For the ternary system water – n-octane – C10E4 studied in this work the oil 

penetrates into the surfactant bilayer, causing it to swell. Consequently, there is a new 

characteristic length scale to be considered, the thickness of the oil-swollen L3 phase bilayer.  

 

 

Fig. 5.1: Schematic illustration of the characteristic length scales of the L3 phase structure with the 
midplane distance d and the bilayer thickness 2ε.  

The two characteristic length scales determining the L3 phase microstructure of ternary 

systems are shown schematically in Fig. 5.1. The first is the distance between the respective 

midplanes of two bilayers, the so-called midplane distance d. Qualitatively the midplane 

distance d ought to be proportional to the inverse surfactant volume fraction φC, i.e. d ∝ φC
-1 

[9, 108, 8] as long as the surfactant / (oil + surfactant) volume fraction ωb is kept constant. 

The second is the bilayer thickness 2ε, comprising the surfactant hydrocarbon-tails and the 

apolar solvent swelling the bilayer. Under the assumption that all the oil penetrates into the 

bilayer, the bilayer thickness 2ε ought to be directly proportional to the oil content, i.e. being 

inversely proportional to the surfactant / (oil + surfactant) volume fraction ωb, or 2ε ∝ ωb
-1.  

d

�2
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5.2 Small-angle neutron scattering (SANS) 

Light and neutron scattering are well-established methods to investigate the structure of 

complex fluids [76, 10, 16]. The required contrast is given by the differences in the refractive 

index or the scattering length densities ρ, respectively. Scattering occurs when the length 

scales of the studied structures are similar to the applied wavelength λ. As the structures of 

self-assembled surfactant systems like micelles, bicontinuous microemulsions or Lα and L3 

phases are noticeably smaller then the wavelength of light, they scatter visible light weakly. In 

contrast to this, with neutrons very small structures can be investigated as the wavelength of 

neutrons is λ = 6 Å. In order to extend the range of measurable length scales, neutron 

scattering experiments are performed at small scattering angles θ, such that the range of the 

scattering vector q is usually 0.001 < q < 1 Å-1, where  
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and θ is the scattering angle. The BRAGG relation λ = 2d sin (θ / 2) and Eq. (5.1) combine to  

q = 2 π / d. Consequently particles or structures with a length scale of 6 < d < 6000 Å can be 

determined by SANS. 

 

The scattering intensity I in SANS experiments is measured as a function of the scattering 

vector q, where I ∝ < Δρ >2. The scattering length density ρ of a component can be calculated 

by means of the characteristic scattering lengths b of the atoms to be: 
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with AVOGADRO’s number NA, and Mw the molecular weight and ρm the macroscopic density 

of the component. One of the most useful features of the small-angle neutron scattering lies in 

the diverse scattering behavior of various isotopes, which have different scattering length 

densities ρ. This effect is especially pronounced in the case of protons (H) and deuterons (D). 

It forms the basis for a range of experiments where different protonated and deuterated 

substances can be used to generate different contrasts, so-called contrast variation 

experiments. The appropriate contrast variations to investigate the structure of the L3 phase 
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are bulk contrast for the determination of the midplane distance d, and the film contrast to 

measure the thickness of the bilayer 2ε of the L3 phase microstructure. 

 

Fig. 5.2 shows the scattering length density profiles for the bulk contrast, above, and the film 

contrast, below. For the bulk contrast just one of the solvent components is deuterated. The 

difference between the scattering length densities of the two solvents provides for the 

scattering intensity, i.e. the periodicity of the surfactant bilayers is measured, which is called 

the midplane distance d. For the film contrast deuterated water as well as deuterated oil is 

used. Similar scattering length densities for the solvent subphases are therefore measured. 

Hence the periodicity of the surfactant monolayers, which have different scattering length 

densities ρ from those of the solvents, is detected. As a result the bilayer thickness 2ε and the 

midplane distance d can be determined by film contrast. 
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Fig. 5.2: Scattering length density profiles of the bulk (top) and the film contrast (bottom). In the bulk 
contrast just one (D2O), in the film contrast both solvents (D2O and d-alkane) are deuterated. 
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5.2.1 Scattering function for swollen bilayers in film contrast 

In order to describe the scattering curves measured for the swollen bilayers, a scattering 

function based on that for diffuse interfaces for non-swollen bilayers is used. The model is 

extended to include the distance ε of one of the bilayer forming monolayers from the bilayer 

midplane. The effect of the polydispersity σ in ε is described by a GAUSSian distribution, 

while the diffuseness of each monolayer, described by the variance t of the GAUSSian density 

profile, is kept constant. This scattering density profile ρ (z) varies quite smoothly as 

indicated in Fig. 5.2. As pointed out by POROD [109], due to the planar symmetry of a locally 

flat structure, the three-dimensional FOURIER transform of the scattering length density profile 

is reduced to a one-dimensional cosine transform which gives 
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where Δρ is the scattering length density difference, Iincoh is the incoherent background, f is a 

factor accounting for errors in the absolute calibration and σ / ε is the polydispersity [110].  

5.2.2 Results 

All in the following described results from SANS experiments were obtained with the D22 

spectrometer at the Institute Laue Langevin (ILL) in Grenoble, France and kindly measured 

by Dr. T. Sottmann, B. Jakobs and P. Uhrmeister. To examine the influence of the L3 phase 

composition on the microstructure sets of samples were measured with either bulk contrast or 

film contrast. For the bulk contrast H2O in the samples is substituted for D2O, while the oil 

component, here n-octane, remains protonated. Therefore the scattering length densities ρ of 

the continuous water subphases and the oil-swollen bilayer are different and the small-angle 

neutron scattering detects the periodicity d of the bilayers. For the film contrast deuterated 

water as well as oil, i.e. d-octane, is used. Thus the scattering length densities for the 

continuous water subphases and the continuous oil subvolume inside the bilayer are similar so 

that the periodicity 2ε of the surfactant monolayers is detected in addition to d. Note that Δρ 

between the oil-swollen bilayer and water is higher in bulk than in film contrast experiments, 

so that d is usually measured in bulk contrast. In the spectra q (d) can be taken from the 

position of the maximum, while q (2ε) has to be fitted with the scattering function introduced 

in chapter 5.2.1.  



74 5 Investigations of the microstructure by SANS 

On the one hand, samples were prepared with varying surfactant volume fractions φC at 

constant ωb to investigate the periodicity of the bilayers in the L3 structure, i.e. the midplane 

distances d. While on the other hand, samples with an ωb variation at constant φC were 

prepared to examine the bilayer thickness 2ε. All samples were characterized in respect to 

their phase behavior prior to the experiments to establish the stable L3 phase temperature 

range. SANS measurements took place at the mean temperature of the stable L3 phase 

temperature range for each sample, i.e. at about ( 3L
uT  – 3L

lT ) / 2. Additionally the temperature 

dependence of the microstructure was investigated. A sample with an adequate L3 phase 

channel width was chosen to perform SANS measurements at different temperatures inside 

the stable L3 phase region. 

Dependence of the characteristic length scales on the L3 phase composition 

(a) Variation of φC at constant ωb 

Scattering experiments in bulk contrast were performed for the system D2O – n-C8H18 – C10E4 

with four different surfactant volume fractions varying between φC = 0.080 and 0.306 at 

constant ωb = 0.69. Fig. 5.3 shows the neutron scattering curves obtained from these 

experiments. The individual curves are multiplied by factors of ten to shift them in respect to 

each other for transparency. What can be observed is that the position of the maximum, the 

so-called BRAGG peak, in the low q region of these curves shifts towards higher q values with 

increasing surfactant volume fractions φC. As this q value is a measure for the average 

distance d between the midplanes of two neighboring bilayers the latter can be calculated 

according to d = 2 π / q when the q value of the BRAGG peak’s maximum is known. The fact 

that the position of the maximum shifts to higher q values, i.e. to smaller length scales, with 

increasing φC, is in agreement with the observations of d ∝ φC
-1 made by STREY and PORTE [8, 

9] amongst others. With q values changing between 0.0125 Å-1 and 0.0549 Å-1 for the 

variation in the surfactant volume fraction φC, midplane distances d between 502 Å and 114 Å 

were obtained from the neutron scattering curves (see chapter 5.2.3 for details). 

 



ω

×

×

×

5 Investigations of the microstructure by SANS 75 

q / Å-1

0.001 0.01 0.1 1

I  
(q

) 
/ a

.u
.

10-1

100

101

102

103

104

105

106

107

ωb = 0.69

× 101

× 102

× 103

φC = 0.080

φC = 0.100

φC = 0.156

φC = 0.306

 

Fig. 5.3: Neutron scattering curves in bulk contrast of the system D2O – n-C8H18 – C10E4 at varying 
surfactant volume fraction φC and a constant surfactant / (oil + surfactant) volume fraction ωb = 0.69. 

In Fig. 5.4 neutron scattering curves in film contrast can be seen of the system D2O – d-C8D18 

– C10E4 for seven different surfactant volume fractions φC varying between φC = 0.080 and 

0.306 at a constant ωb = 0.69. Again the curves are multiplied by factors of ten for clarity. The 

compositional variations in the L3 phase are the same as the ones seen in Fig. 5.3 in the bulk 

contrast. Therefore the positions of BRAGG peaks in the scattering curves in the low q region 

show the same trend and provide the same quantitative values of d in both contrasts. However 

for the film contrast there is an additional peak in the high q region, representing the 

periodicity of the surfactant monolayers and with this the bilayer thickness 2ε of the oil-

swollen bilayer. As this peak neither changes its appearance nor its position it represents a 

constant bilayer thickness 2ε, which could be fitted with the scattering function derived in 

chapter 5.2.1 to be at a q value of 0.2685 Å-1 corresponding to a bilayer thickness 2ε of  

23.4 Å. 
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Fig. 5.4: Neutron scattering curves in film contrast of the system D2O – d-C8D18 – C10E4 at varying 
surfactant volume fraction φC and a constant surfactant / (oil + surfactant) volume fraction ωb = 0.69. 
The solid lines in the high q region illustrate the fit according to the scattering function derived in 
chapter 5.2.1. 

(b) Variation of ωb at constant φC 

Fig. 5.5 shows the neutron scattering curves for the film contrast of the system D2O – n-C8D18 

– C10E4 for six surfactant / (oil + surfactant) volume fractions  ωb varying between  ωb = 1.00 

and 0.47 and a constant surfactant volume fraction φC = 0.1. In accordance with the two 

previous figures, the curves are shifted by factors of ten to pronounce the variations in the 

single curves in respect to each other. In contrast to Fig. 5.3 and Fig. 5.4 the BRAGG peak in 

the low q region of these scattering curves does not change its position, i.e. the midplane 

distance d is constant. The peaks maximum is positioned at a q value of 0.0167 Å-1 relating to 

a midplane distance d of 376 Å. In the high q region of these curves the scattering peak 

denoting the bilayer thickness 2ε shifts towards higher q values with increasing surfactant / 

(oil + surfactant) volume fractions  ωb. By applying the scattering function introduced in 
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chapter 5.2.1 the peaks in the high q regions of the scattering curves are fitted which is 

illustrated by the solid lines. Hence, the peak maximum moves from a q value of 0.1518 Å-1 

for ωb = 0.47 to q = 0.5712 Å-1 for ωb = 1.00. Thus the bilayer thickness is reduced from 2ε = 

41.4 Å for ωb = 0.47 to 2ε = 11.0 Å for ωb = 1.00. It has to be kept in mind that ωb = 1.00 

represents the binary system D2O – C10E4, and therefore a non-swollen L3 phase bilayer. 

Therefore, 2ε for ωb = 1.00 represents the length of two surfactant tails of the surfactant 

C10E4. 
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Fig. 5.5: Neutron scattering curves in film contrast of the system D2O – n-C8D18 – C10E4 at varying 
surfactant / (oil + surfactant) volume fractions ωb and constant surfactant volume fraction φC = 0.1. 
The solid lines in the high q region illustrate the fit according to the scattering function derived in 
chapter 5.2.1. 

Temperature dependence of the microstructure 

To investigate the influence the temperature has on the microstructure, i.e. on the 

characteristic length scales of the L3 phase, a film contrast sample of the system D2O – d-

C8D18 – C10E4 with surfactant volume fraction φC = 0.306 and a surfactant / (oil + surfactant) 

volume fraction ωb = 0.69 was chosen. The stable L3 phase region for this sample extends 
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from 3L
lT  = 38.68 °C to 3L

uT  = 41.25 °C. Neutron scattering curves where recorded for five 

different temperatures inside this temperature interval. The resulting curves are presented in 

Fig. 5.6. For better comparison the curves are multiplied by factors of three, while the inlet 

shows the curves in their original form. In the high q region of the curves the peak depicting 

the periodicity of the surfactant monolayers, i.e. the bilayer thickness can be observed. It does 

not change its appearance or position with increasing temperature, i.e. the thickness of the 

bilayer 2ε is not dependent on the temperature of the system. The same holds for the position 

of the maximum of the curves in the low q region, i.e. the midplane distance d on average 

does not change with the temperature. In contrast to this, however, the scattering intensity 

increases with temperature for very low q values (see inlet of Fig. 5.6), indicating the 

appearance of structures with greater length scales as a function of temperature. Since the 

integral over the area beneath the scattering curves is constant for samples of the same 

composition, the increase in the scattering intensity for very low q values is associated with a 

decrease of I (q) in the area of the BRAGG peak. In addition the peaks increase in width with 

increasing temperature. This broadening of the scattering peak for low to medium q values is 

equal to an increase in the polydispersity of the L3 microstructure with temperature.  
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Fig. 5.6: Neutron scattering curves in film contrast of the system D2O – n-C8D18 – C10E4 at constant 
surfactant volume fraction φC = 0.306 and constant surfactant / (oil + surfactant) volume fraction ωb = 
0.69. The curves were measured for five different temperatures inside the stable L3 phase region from 

3L
lT  = 38.68 °C to 3L

uT  = 41.25 °C. The inlet shows the original scattering curves, while in the main 

diagram the scattering intensity is shifted by factors of three for transparency. 

5.2.3 Discussion 

In the following discussion the characteristic L3 phase length scales determined by SANS 

experiments in bulk and film contrast will be presented in dependence of the composition of 

these L3 phases. The midplane distance d was measured as a function of the surfactant volume 

fraction φC in both bulk and film contrast (Fig. 5.7) for a constant ωb. The bilayer thickness 

2ε, however, was examined with varying surfactant / (oil + surfactant) volume fraction ωb in 

film contrast (Fig. 5.8) at constant φC. To establish the quantitative relationship between the 

characteristic L3 length scales and its composition geometrical models were developed to fit 

the measured data. At the end the temperature dependence of the microstructure will be 

discussed. 
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Fig. 5.7: Midplane distance d as a function of the surfactant volume fraction φC measured by SANS in 
film (circles) and bulk (squares) contrast. The solid line represents data calculated according to the 
geometric model. 

Fig. 5.7 shows that upon addition of surfactant the midplane distance d is indeed declining, 

i.e. it follows the simple law d ∝ φC
-1 on geometrical grounds. The exact dependence of d on 

the surfactant bilayer volume fraction φC goes back to a model proposed by TALMON and 

PRAGER [111]. This was later simplified by DE GENNES and TAUPIN [62] who predicted the 

characteristic length scale ξ of bicontinuous microemulsions  
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to be set by the specific internal area (A / V) = φC ⋅ aC / vC, with aC being the area and vC being 

the volume per surfactant molecule, respectively. φ is the oil / (water + oil) volume fraction, 

or more generalized the fraction of the solvents on both sides of the surfactant film, and a is a 

prefactor depending on the model used. 
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Going from a bicontinuous microemulsion with interfacial monolayers to the L3 phase bilayer 

structure, the specific internal area (A / V) turns into  
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Furthermore, since the fraction of water is equal on both sides of the surfactant film,  

φ = 0.5. With Eq. (5.4) and φ = 0.5 the characteristic length scale ξ of the periodicity of the 

bilayers in the L3 phase, i.e. the midplane distance d, can be calculated to be 
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With values of aC = 52.9 Å2 and vC = 57.9 Å3 for the surfactant C10E4 and a prefactor a = 7.16 

determined by SANS measurements [55], the data presented as a solid line in Fig. 5.7 were 

calculated. The data derived from the geometrical model and the experimentally measured 

data are in very good agreement. 
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Fig. 5.8: Bilayer thickness 2ε as a function of the surfactant / (oil + surfactant) volume fraction φB+C 
for SANS experiments in bulk contrast. The solid line represents data calculated according to the 
geometric model. 

Fig. 5.8 presents the values for the bilayer thickness 2ε, i.e. the periodicity of the monolayers 

assembling the L3 bilayers, as a function of the surfactant / (oil + surfactant) volume fraction 

ωb as measured by SANS in film contrast. The bilayer thickness 2ε is inversely proportional 

to ωb, i.e. the bilayer becomes thicker with a higher oil fraction in the system. The quantitative 

dependence of 2ε on the surfactant / (oil + surfactant) volume fraction ωb can be explained by 

purely geometrical considerations. A schematic illustration of the geometrical proportions of 

an L3 bilayer is shown in Fig. 5.9. 
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Fig. 5.9: Schematic illustration of the geometrical proportions of an L3 phase bilayer, with lB being the 
oil layer thickness and lC the total length of a surfactant molecule.  

The thickness of the oil layer lB between the two surfactant monolayers can be calculated to 

be  
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with VB the volume of oil and (A / V) the specific internal area of the bilayer as defined in Eq. 

(5.4). Substituting (A / V) by Eq. (5.5) yields 
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which for φB = φB+C ⋅ (1 – ωb) and φC = φB+C ⋅ ωb turns into 
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Taking into account that 2ε = lB + lC with the assumption that lC,head = lC,tail in lC = lC,head + lC,tail 

then the bilayer thickness is defined by 
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With values of aC = 52.9 Å2, vC = 57.9 Å3 and lC = vC / aC for the surfactant C10E4 the data 

presented as a solid line in Fig. 5.8 were calculated. The data derived from the geometrical 

model and the experimentally measured data are in good agreement at low ωb. The measured 

data show slightly higher bilayer thickness compared to the calculated ones. An explanation 

for this small deviation could not be found, yet. 

 

To sum up this chapter it can be said that the dependence of the characteristic length scales d 

and 2ε on the composition of the model L3 phase system H2O – n-octane – C10E4 could be 

quantified by SANS measurements. Additionally, a geometrical model could be established 

for the quantitative description of the characteristic length scales in dependence of the 

surfactant volume fraction φC and the surfactant / (oil + surfactant) volume fraction ωb. The 

nearly quantitative match with the SANS data makes the geometrical model valuable as time-

consuming and cost-intensive SANS measurements can be reduced. 

 

The last point that should be discussed is the temperature dependence of the microstructure at 

fixed composition. It was found that while the composition and hence the midplane distance d 

remains constant on average, the polydispersity of d increases with temperature. 

Consequently, the number and scale diversity of the passages of the L3 structure varies with 

temperature. This is a very important result for the understanding of the relaxation times τ 

from T-jump experiments, since it is the first experimental evidence to support the assumption 

that passage formation takes place during a T-jump experiment. Therefore this result will be 

the basis for the final discussion following in chapter 6. 
 



6 Discussion 85 

6 Discussion 

Extensive data material on many properties of L3 phases, like phase behavior, microstructure 

and dynamics, has been collected during this work. What is left to do for this chapter is to 

combine these experimental results to a complete picture of the L3 phase and compare them to 

theoretical ideas about the existence and stability of the L3 phase as known in the literature. 

The applicability of the theoretical approach introduced in chapter 3 will be discussed taking 

into account the static as well as the dynamic behavior of the L3 phase. 

6.1 Structure and stability of the L3 phase 

As mentioned in chapter 3.1 it was suggested previously that the lamellar-to-sponge transition 

occurs when the persistence length κξ  becomes of the order of the interbilayer distance d 

[62]. GOLUBOVIC and MORSE [64, 63] have recently argued that not ξκ but the topological 

persistence length κξ  has to be in the order of d. Thus, melting to a sponge-like phase 

happens when κκ ξ<<ξ≈d , and the number of passages between membranes increases 

dramatically. It was stated by MORSE [63] that “experiments to examine the effects of various 

control parameters upon both κ  and the structural length ξ of either the L3 or bicontinuous 

microemulsion phase would provide the best way of further testing these ideas”. The 

experimental results of this work allow a critical test of the theoretical description, and, as will 

be seen, a confirmation. 

First it has to be established that κκ ξ<<ξ . As shown in chapter 3.1  
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where a is a molecular length which is set to the bilayer thickness 2ε. For this system the 

value of κbil = 2κmono = 1.96 kBT [112, 55]. bilκ  is calculated following the relation between 

the saddle-splay modulus of a monolayer and bilayer which has been derived by Porte [9] to 

be 

 

monomonomonobil c κ⋅ε−κ=κ ,042 , (6.3) 
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where the subscript bil refers to the bilayer, and mono to the monolayer quantities, 

respectively and c0 is the spontaneous curvature of the monolayer.  

 

All quantities to calculate bilκ  are known from experiments. The bilayer thickness 2ε is 

determined by SANS measurements on the L3 phase in film contrast (see chapter 5). The 

value of monoκ  = – 0.37 kBT was also taken from [55]. The spontaneous curvature of the L3 

phase monolayers varies linearly with temperature so that c0,mono = <H> = c (T  – T) (see 

chapter 3), with the temperature coefficient c = 0.0014 (1/ Å K) [55], and the mean 

temperature of the three-phase body T = 24.74 °C for the system water – n-octane – C10E4;  

T = 3L
lT , the lower L3 phase boundary temperature. In Fig. 6.1 the values for bilκ  calculated 

from Eq. (6.3) are illustrated as a function of ωb for a constant φC = 0.10.  
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Fig. 6.1: bilκ  as a function of the surfactant / (oil + surfactant) volume fraction ωb. The values of bilκ  

are decreasing with decreasing ωb and become negative for values of ωb < 0.8.  

As one can see the saddle-splay modulus of the bilayer, bilκ  calculated from Eq. (6.3), is 

decreasing with decreasing ωb and becomes negative for values of ωb < 0.8. Having 
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determined bilκ , now the values for κξ  and κξ  can be calculated, see Table 6.1. To check the 

stability condition of the L3 phase κκ ξ<<ξ  and d ≈ κξ , in Fig. 6.2 the ratios of κκ ξξ /  and  

d/ κξ  are plotted versus the surfactant / (oil + surfactant) volume fraction ωb, with d 

determined experimentally by SANS (chapter 5). The two ratios decrease with decreasing ωb 

but show a pronounced difference in their average values with κκ ξξ /  being more than two 

orders of magnitude larger than d/ κξ .  
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Fig. 6.2: Ratio of the length scales κξ  / κξ  and d / κξ  as a function of the surfactant / (oil + 

surfactant) volume fraction ωb. κξ  / κξ  is considerably larger than d / κξ . 
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Table 6.1: Surfactant / (oil + surfactant) volume fraction ωb, lower L3 phase boundary temperature 
3L

lT  [°C], the spontaneous curvature of the monolayers c0 [Å
 -1], bilayer thickness 2ε [Å], saddle-splay 

modulus bilκ  [kBT], the persistence length ξκ [Å] and the topological persistence length κξ  [Å]. 

Values are calculated with κbil = 1.96 kBT, monoκ  = -0.37 kBT and a = 2ε, at φC = 0.1 ⇒ d = 405 Å. 

ωb 3L
lT  / °C c0 / Å

-1 2ε / Å bilκ  / kBT ξκ / Å κξ  / Å 

1.0000 51.5300 -0.375 11.00 0.0686 40451.6317 8.4924 

0.9000 47.8900 -0.324 14.60 0.1874 53690.3475 7.2021 

0.8100 40.2700 -0.217 17.60 0.0100 64722.6107 16.9481 

0.6900 31.3200 -0.091 23.40 -0.3175 86051.6528 77.4534 

0.5800 27.4500 -0.038 31.50 -0.5058 115838.7634 212.0109 

0.4700 25.5200 -0.011 41.40 -0.6514 152245.2319 482.4840 

 

This is the first experimental test of the theoretical ideas by MORSE and GOLUBOVIC. It is 

indeed true that κκ ξ<<ξ≈d  for the sponge-to-lamellar transition.  

 

Furthermore by calculating the values of bilκ  as a function of the volume fraction of 

surfactant φC, the predicted lamellar-to-sponge transition [63]  
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can be checked, where φ0 is a constant of order unity. Fig. 6.3 is obtained by plotting the 

natural logarithm of the surfactant volume fraction φC as a function of the saddle-splay 

modulus bilκ  for different surfactant / (oil + surfactant) volume fractions ωb. Fig. 6.3 is the 

experimentally determined counterpart to Fig. 3.3 (left), which shows the theoretical lamellar-

to-sponge transition obtained by Monte Carlo simulations and the MORSE expression [65, 63]. 

The diagrams are in good qualitative and quantitative agreement. The slopes of the transition 

lines all show values close to the theoretically predicted value of 6π/5, as is illustrated by the 

solid line in Fig. 6.3. This is the first time the lamellar-to-sponge transition line was calculated 

from experimental data and compared to data obtained from theoretical descriptions or 

Monte Carlo simulations. With increasing ωb the lamellar-to-sponge transition lines shift to 

less negative values of bilκ . 
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Fig. 6.3: bilκ  as a function of the surfactant volume fraction φC predicting the lamellar-to-sponge 

transition at different surfactant / (oil + surfactant) volume fractions ωb. An illustration of the predicted 
slope of 6 π/5 is given by the solid line. 

Above, bilκ  was determined as a function of the surfactant volume fraction φC. To find, now, 

κξ  as a function of φC for constant values of ωb, Eq. (6.3) is employed again. The results are 

plotted together with the midplane distance d (as measured by SANS) in dependence of the 

surfactant volume fraction φC. Fig. 6.4 shows diagrams for four different values of ωb to 

illustrate the relative magnitudes of κξ  and d. All diagrams have in common that they show 

two almost parallel straight lines for d and κξ  as a function of φC. However for the highest 

values of ωb = 0.69 these parallel lines are far apart with the midplane distance d larger than 

the topological persistence length κξ . For decreasing values of ωb these lines approach each 

other until at ωb = 0.47 they meet and for ωb = 0.37 the line of the topological persistence 

length κξ  is even at higher values than the midplane distance d. Crudely speaking, the 

structure and stability is more fluctuation-dominated for ωb > 0.58 and dominated by strong 

curvatures for ωb < 0.58. 
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Fig. 6.4: Topological persistence length κξ  (hollow circles) and midplane distance d (filled circles) as 

a function of φC for constant value of ωb.  

6.2 Dynamics of the L3 phase 

After discussing the structure and stability of the L3 phase, now the dynamic behavior will be 

elucidated. As mentioned before, only a couple of papers about the dynamic behavior exist. 

The first theoretical analysis of the dynamical behavior of the L3 phase was provided by 

MILNER, CATES and ROUX [113]. They suggested the existence of two relevant time scales: 

ψτ , the leakage time of the solvent across the bilayer, if pores exist in the membrane 

(with ∞=τψ  for microemulsions); and hτ  the relaxation time for the topology, associated with 

the creation and destruction of passages between the membranes. Furthermore, they pointed 

out that hτ  should obey an ARRHENIUS-type law ( )TkE Bh /exp0τ≈τ , where E denotes the 
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energy necessary to activate the process. MILLER at al. [21] performed electric birefringence 

measurements in the L3 phase of a system composed of water, a zwitterionic surfactant and a 

long-chain alcohol as cosurfactant. They measured relaxation times to go as 31 φ≈τ− , where 

φ  is the volume fraction of the bilayer. They also provided a rough theoretical explanation of 

these results, based on the orientational relaxation of disk-like aggregates that led to 31 φ≈τ− . 

It is, however, difficult to accept that this theoretical description, based on the rotation of 

undeformable bodies in a viscous medium can be the correct explanation of the observed 

phenomena. Based on the dilatation invariance argument PORTE et al. [22] predicted that in an 

L3 phase the relaxation time of the electric birefringence should go as 31 φ≈τ−
R . They 

performed electric birefringence measurements in a betain system, and measured the 

relaxation times of the Kerr effect to go according to their prediction. Again following 

MILNER, CATES and ROUX [113], it was observed that while Rτ  should correspond to 

structural changes keeping the topology constant, for longer times it is plausible to assume 

that topological changes occur. WATON and PORTE [24] claimed to have found experimental 

evidence for three distinct relaxation times in temperature-jump experiments performed in the 

system brine – cetylpyridiniumchloride – n-hexanol. On theoretical grounds, and following a 

line of reasoning similar to MILNER et al. they predicted the existence of different relaxation 

processes and therefore different relaxation times: The φ dependencies of the three different τ 

were checked on two samples respectively and found to scale as φ-3 and φ-4. Although the 

experimentally obtained relaxation time constants might qualitatively explain, or at least be 

associated with the predicted time constants one has to be aware that only a very limited 

number of data were presented. 

Recently, SCHWARZ et al. [28] studied the dynamics of L3 phases for the non-ionic system 

H2O – C10E4 – n-decanol. Temperature jump relaxation, pressure jump relaxation, time-

resolved electric birefringence, and dynamic light scattering experiments were performed. 

The observed relaxations were all found to be single exponentials. The time constants τ-1 

obtained by the different methods vary over several orders of magnitude and reveal strong 

dependencies on surfactant volume fraction φC resulting in scaling laws of τ-1 ∝ φn, with n = 9 

for temperature and pressure jump relaxation, n = 3 for the electric birefringence 

measurements and n = 1 for the dynamic light scattering experiments. They associate the 

three observed relaxation time dependencies with processes of passage formation, elastic 

deformation and concentration fluctuations. 
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In the present work the dynamics of L3 phases have been established experimentally by T-

jump and isothermal shear relaxation (see chapter 4). Relaxation times were measured as a 

function of the membrane volume fraction φB+C, corresponding to a varying midplane distance 

d, and as a function of the surfactant / (oil + surfactant) volume fraction ωb, determining the 

bilayer thickness 2ε. Following these experiments two different tendencies can be observed. 

On the one hand, an enormous increase of the relaxation time constants τ-1 with the bilayer 

volume fraction φB+C at a given surfactant / (oil + surfactant) volume fraction ωb. On the other 

hand, swelling the bilayer at constant bilayer volume fraction φB+C results in relaxation time 

constants that run through a minimum with varying ωb (see Fig. 4.14).  

6.2.1 Phenomenological description 

ωb-dependence 

Phenomenologically, a correlation of the minimum in the τ-1 vs. ωb curves and the extension 

of the stability of the Lα phase is obvious. The consideration of the Lα phase in search for 

explanations for the minimum in the τ-1 versus ωb curves is motivated by the similarities 

between the Lα and the L3 phase. They both consist of bilayers and can be diluted with water 

or brine up to 95%, while the change in the repeat distance is qualitatively the same [8]. In 

Fig. 6.5 the extension of the Lα phase in a ternary phase diagram of the system water – n-

octane – C10E5 is shown. This system behaves qualitatively very similar to the system used in 

this study. The illustrated Lα phase is stable down to high dilutions with both water and oil. 

The widest extension of the Lα into the water corner of the phase diagram at a surfactant / (oil 

+ surfactant) volume fraction of ωb = 0.69 corresponds to the minimum in the τ-1 versus ωb 

curves for a given φB+C. Consequently the slowest relaxation processes in the L3 phase are 

observed where the Lα is most stable. 

This almost quantitative correlation between the extension of the Lα phase and the minimum 

in the τ-1 versus ωb plots is striking. A possible theoretical link of the two behaviors will be 

discussed below. 
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Fig. 6.5: Extension of the Lα phase in a ternary phase diagram of the system H2O – n-octane – C10E5 
[114]. The extension of the Lα is maximal around  ωb = 0.7. For this value the highest φB+C-
dependence of the relaxation time constants was found, i.e. this value relates to the slowest process for 
a given φB+C (see inlet). 

φB+C-dependence 

Enormously high dependencies of the relaxation time constants τ-1 on the bilayer volume 

fraction φB+C were found from T-jump experiments (Fig. 4.12 and Fig. 4.13). In a double 

logarithmic plot this results in linear dependencies, which are expressed by effective power 

laws n
CB+

− φ∝τ 1  with 3 < n < 9. However, matters were further complicated by the 

observation of deviations from the linear behavior with the setup of the isothermal shear 

perturbation allowing to measure slower relaxation times than those accessible with T-jump. 

With dilution, increasingly non-linear behavior is revealed, for which presently no theoretical 

model exists. 

A way to explain this non-linearity is by assuming two different relaxation regimes with 

different dependencies on the composition, one for lower and the other for higher bilayer 

volume fractions φB+C. In Fig. 6.6 the relaxation time constants in dependence of the 

membrane volume fraction φB+C are shown for surfactant / (oil + surfactant) bilayer fractions 

between ωb = 0.81 and ωb = 0.37. The data are fitted for both regimes, the low φB+C with 

31
CB +

− φ∝τ  weighted with a prefactor A and the high φB+C with 8.81
CB+

− φ∝τ  with a prefactor B, 

i.e. 

 

τ-1 = A ⋅ φB+C
3 + B ⋅ φB+C

8.8. (6.5) 

1��

b
�
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As one can see in Fig. 6.6, all data can be fitted with this function. The prefactor A for the low 

φB+C regime changes considerably with the surfactant / (oil + surfactant) volume fractions ωb 

while the absolute value of the prefactor B for the high φB+C regime can be considered as 

being almost constant. 
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Fig. 6.6: Fits of the data for the dependence of the relaxation time constants τ-1 on the bilayer volume 
fraction φB+C for different surfactant / (oil + surfactant) volume fractions ωb. Two linear regimes are 
added to each other and weighted with different prefactors A and B for each ωb.  

The observation of two different regimes in the dynamic behavior of L3 phases as a function 

of the membrane volume fraction φB+C suggests different relaxation mechanisms for very high 

and very low dilution. A hint towards these two different regimes was already given above, 

regarding the stability of the L3 phase. There, the values for the topological persistence length 

κξ  and the interbilayer distance d vary in their relative positions as a function of ωb. It applies 

that the structure and stability is more fluctuation-dominated for ωb > 0.58 and more 

topology-controlled for ωb < 0.58. 
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Furthermore, these two regimes also explain why previous workers measured a dependence of 

φC
3 on the relaxation time constants τ-1 for highly diluted L3 phases [24]: They measured in 

the regime of the small φC–dependence only.  

6.2.2 Theoretical description 

ωb-dependence 

The minimum in the experimental results of the τ-1 vs. ωb curves, which was discussed 

phenomenologically in 6.2.1, can be understood in the following way. Upon swelling the 

bilayer (at constant φC, that is at constant mid-plane distance d) there are two competing 

tendencies. The decrease in τ-1 (relaxation slowing down) can be explained [72] by  

 

1
2

1 1
~ +

ζ+
− φ

κ
τ CB

bil

. (6.6) 

 

and the fact that p
bil ε≈κ 2 , where 32 ≤≤ p  [115, 116]. This means, that swelling the bilayer 

will increase the bilayer rigidity κbil. This will lead to fewer collisions between membranes, 

and consequently, to slower relaxation times. At the same time a tendency to faster processes 

is present, which will eventually dominate the regime controlled by the rigidity at low ωb, i.e. 

large swelling of the bilayer. This can be understood in the following way. KABALNOV and 

WENNERSTRÖM [117, 118] have shown that the spontaneous curvature strongly affects the 

energy Ep necessary to create a passage, with a very pronounced decrease in pE  when 

00 →c . Since the L3 phase is the manifestation of the spontaneous curvature of the 

monolayers [1] the phase diagram, more precisely the Lα + L3 → L3 transition temperature, 

allows determining the spontaneous curvature. In Fig. 6.7 the values (by convention a 

spontaneous curvature around the water is calculated as negative) of the spontaneous 

curvature of the L3 phase monolayers are plotted against the surfactant / (oil + surfactant) 

volume fraction ωb.  

 



96 6 Discussion 

ωb

0.40.50.60.70.80.91.0

c 0 
/ Å

-1

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

 

Fig. 6.7: Spontaneous curvature c0 of the monolayers as a function of the surfactant / (oil + surfactant) 
ωb for a constant surfactant volume fraction φC = 0.1.  

It can be seen from Fig. 6.7, that the spontaneous curvature increases (i.e. becomes less 

negative) with decreasing ωb, as the L3 phase approaches T , where c0 becomes zero. Hence, 

the energy to form a passage Ep decreases [117, 118] so that passages are easier formed and 

the relaxation times as a function of ωb will become faster again with decreasing ωb. The 

increase of κbil and the decrease in the energy to form a passage with decreasing ωb 

presumably are responsible for the pronounced variation in the “activation energies” which 

run through a maximum (see Fig. 4.10). 

φB+C-dependence 

In the phenomenological discussion of the φB+C-dependence of τ-1 two different relaxation 

regimes were found. To correlate these to the plots of the topological persistence length κξ  

and the midplane distance d against φC, the relaxation time constants also have to be pictured 

as a function of φC.  

For plotting τ-1 versus φC in Fig. 6.8, two different relaxation regimes appear to be discernible. 

At high dilution the dependence of the relaxation time constants on the surfactant volume 
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fraction is small, whereas at high φC the dependence is large. The points of intersection of the 

two regimes shift towards lower φC and higher τ-1 with decreasing ωb. In accordance with Fig. 

6.4 this shift can be explained by the existence of two different regimes. For small values of 

ωb the system is more topology-controlled, while for higher values of ωb it is rather 

fluctuation-dominated. 
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Fig. 6.8: Relaxation time constants τ-1 as a function of the surfactant volume fraction φC for different 
surfactant / (oil + surfactant) volume fractions ωb. 

A possible explanation for these two regimes is the following: At low φC the system is so 

dilute that the influence of d is larger than that of κξ  and the dynamics are controlled by d3. 

Thus the fluctuations can be pictured, in a first approximation, as insensitive to the topology, 

and τ-1 ~ φC
3. Such behavior is similar to that of the lamellar phase [69, 22], and indeed is 

observed. For higher values of φC, however, the topological configuration of the L3 phase 

greatly affects the fluctuations. As mentioned in chapter 3.2, the peculiar topological structure 

of the L3 phase will hinder the fluctuations and high powers in the τ-1 versus φC relation are to 

be expected. The experimental results show a clear crossover between the two situations. 

The results of this discussion provide useful information on the stability and structure of L3 

phases, which presents the chance to theoretically describe the experimental findings of the 
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dynamics of these phases. A complete theoretical description would require, however, a 

quantitative description of the topology of the L3 phase and the calculation of the energy to 

form a passage in the L3 phase. 
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7 Summary 

This work was triggered by the striking observation of L3 phase dynamics ranging over as 

much as ten orders of magnitude in time constants when only moderately changing the 

composition, while at the same time a theoretical description for the dynamics of L3 phases 

was lacking. In order to find a remedy for this unsatisfactory situation, the actual parameters 

influencing the L3 phase dynamics were to be found and quantitatively described. 

 

The L3 phase comprises a multiply connected randomly oriented bilayer that divides space 

into two equivalent water subvolumes. A schematic illustration of this structure can be seen in 

Fig. 1.2. An L3 phase is always to be found in the vicinity of an Lα phase. It is stable over a 

wide range of bilayer volume fraction while it exhibits only small temperature stability, 

giving it the appearance of a narrow phase channel that shifts to higher temperatures for 

increasing bilayer volume fractions. The L3 phase is existent in binary systems water – 

surfactant, but the bilayers can also be swelled with oil resulting in a ternary system with a 

variable bilayer thickness 2ε, expressed by a varying surfactant / (oil + surfactant) volume 

fraction ωb. A change in the bilayer volume fraction φB+C will change the distance d between 

two adjacent bilayers at constant thickness. 

 

To accomplish the aim of this work ternary mixtures of H2O / NaCl, n-octane, and C10E4 were 

chosen as an L3 phase model system. The advantage of this pseudo-ternary system is the 

possibility to change the structural parameters of the L3 phase by varying the interbilayer 

distance d and the bilayer thickness 2ε of the L3 phase. Furthermore, the binary system H2O - 

C10E4 is the first in the series of n-alkylpolyethylenoxide surfactants that, with increasing 

hydrocarbon chain length, exhibits an L3 phase, making this the most basic L3 phase system in 

this series. Additionally, this system provides suitable experimental conditions, i.e. the 

position of the L3 phase on the temperature scale for the binary as well as the ternary system 

are closer to room temperature than for higher homologues of this series.  

 

As a basis for the investigation of the dynamics the phase behavior of this model L3 phase 

system needed to be thoroughly understood. For the binary system H2O - C10E4 the stable L3 

phase region appears as a narrow band of 3 – 4 K width at temperatures around 50°C. With 

the addition of n-octane, i.e. decreasing surfactant / (oil + surfactant) volume fractions ωb, the 

L3 phase channels shift towards lower temperatures, become increasingly narrower and 
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appear to become less dependent on the bilayer volume fraction φB+C, which is illustrated in 

Fig. 2.8. 

 

The dynamics of this model L3 phase were quantified by using different relaxation techniques. 

Temperature jump experiments were performed from temperatures inside the stable L3 region 

onto the binodal temperature, yielding relaxation times τ, which covered a time window from 

10-4s to 1s. The relaxation time constants τ-1 vary over many orders of magnitude in 

dependence of the bilayer volume fraction φB+C for constant surfactant / (oil + surfactant) 

volume fractions ωb. Presented in a double logarithmic plot steep effective power law 

dependencies τ-1 on n
CB+φ  (3<n<9) can be observed for higher bilayer volume fractions φB+C, 

where n is a function of the surfactant / (oil + surfactant) volume fraction ωb, as illustrated in 

Fig. 4.12 and Fig. 4.13. To extend the experimental window to longer relaxation times τ than 

those experimentally accessible by T-jump, and thus for higher dilution of the L3 phase, a 

newly developed technique, the isothermal shear, was applied. This method comprises shear 

perturbation and conductivity detection, covering a relaxation time frame of 25 s to 103 s. 

Relaxation times at low bilayer volume fractions φB+C could be measured for two of the eight 

different surfactant / (oil + surfactant) volume fractions ωb (ωb = 0.58, 0.69), see Fig. 4.18. In 

contrast to the higher bilayer volume fractions (Fig. 4.12 and 4.13) this double logarithmic 

plot reveals non-linear behavior. For ωb > 0.69 and ωb < 0.58 relaxation times larger than 

those accessible with the T-jump could not be measured. However, this result does not 

exclude an equally non-linear dependence of τ-1 on φB+C for ωb > 0.69 and ωb < 0.58. On the 

contrary, the same general behavior is expected (see Fig. 4.19) with relaxation times between 

1.5 s and 25 s, a time window, which was not accessible so far. In dependence of the 

surfactant / (oil + surfactant) volume fraction ωb the relaxation time constants for T-jump 

experiments run through a minimum for constant bilayer volume fractions φB+C, where the 

position of the minimum can always be observed for ωb = 0.69, as can be seen in Fig. 4.14. 

 

To support a theoretical description for the dynamics of L3 phases, a suitable geometrical 

model had to be found to relate the characteristic length scales of the L3 phase to its 

composition. SANS measurements were conducted to establish a quantitative description of 

the L3 phase microstructure as a function of bilayer volume fraction and thickness. The 

interbilayer distance d and the bilayer thickness 2ε could be extracted from the neutron 

scattering curves, see Fig. 5.7 and 5.8, revealing the exact numerical dependencies of the 
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bilayer volume fraction φB+C on d and of the surfactant / (oil + surfactant) volume fraction ωb 

on 2ε. 

 

The theoretical interpretation of the dynamics of L3 phases was based on the assumption that 

the relaxation process in L3 phases is one of passage formation. This assumption could be 

confirmed by SANS measurements, illustrated in Fig. 5.5 and 5.6. A first theoretical approach 

took into account thermal fluctuations of the bilayers and calculated the probability of a 

collision between two adjacent undulating membranes as being proportional to the relaxation 

time τ. This could qualitatively explain the high exponents of the φB+C dependence on τ-1, but 

was not feasible for the minimum in the ωb dependence on τ-1 and especially could not clarify 

the non-linear behavior of the relaxation time constants for low bilayer volume fractions. This 

first approach is certainly a part of the puzzle but is has to be combined with considerations of 

the free energy situation that actually leads to the formation of a passage after two membranes 

have collided. 

 

The highlights of this work are the exact SANS results elucidating the bilayer structures of the 

L3 phase, correlating the characteristic length scales d and 2ε of the L3 phase to its 

composition by way of a geometrical model. Including the measured phase behavior to 

determine the spontaneous curvature c0 of the monolayers, the model for the lamellar-to-

sponge transition by MORSE [63] and GOMPPER [65] could be confirmed (Fig. 6.3). 

Furthermore, could the experimentally determined length scale d be associated with the 

persistence lengths ξκ and κξ , while it was shown for the first time that d ≈ κξ  << ξκ (Fig. 

6.2) for the melting of lamellae into sponges. Qualitative explanations could be found for the 

high powers of the L3 phase relaxation times on the bilayer volume fraction. Two relaxation 

regimes could be determined in dependence of the bilayer volume fraction, one for low φB+C 

controlled by fluctuations only, the other, at high φB+C controlled by the bending energy (Fig. 

6.6). The two regimes can be correlated with an L3 phase structure where the influence of the 

midplane distance d is larger then that of the topological persistence length κξ  and one where 

the opposite is true (Fig 6.4). The minimum in the τ-1 vs. ωb curves can be explained by two 

competing tendencies. With increasing bilayer thickness 2ε the bilayer rigidity κbil will 

increase, leading to fewer collisions and consequently slower relaxation times. On the other 

hand, c0 approaches zero with decreasing ωb (Fig. 6.7), thereby reducing the energy to form a 

passage [117, 118] and presenting a tendency to faster processes. 
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7.1 Zusammenfassung 

Die Haupttriebkraft dieser Arbeit ist der bemerkenswerte Befund, daß bei der Untersuchung 

der Dynamik der L3-Schwammphase eine Variation der gefundenen Relaxationszeitkonstante 

über fast 10 zeitliche Größenordnungen bei geringfügiger Änderung der Probenzusammen-

setzung gefunden wurde. Mit den bisher vorhanden Ansätzen ist eine theoretische 

Beschreibung dieser Dynamik nicht möglich. Im Rahmen dieser Arbeit wird versucht, ein 

phänomenologisches Model zu entwickeln, das eine quantitative Beschreibung ermöglicht.  

 

Die L3-Phase besteht aus vielfach miteinander verbundenen, zufällig orientierten 

Tensiddoppelschichten, die den Raum in zwei gleichwertige Subvolumina unterteilen. Fig. 

1.2 zeigt eine schematische Darstellung dieser Struktur. Die L3-Phase wird immer in der Nähe 

einer lamellaren Lα-Phase gefunden. Sie zeigt Stabilität über einen großen 

Konzentrationsbereich bis zu sehr hohen Verdünnungen, breitet sich allerdings nur über einen 

geringen Temperaturbereich aus. Dies führt zu einem schmalen Phasenkanal, der sich mit 

zunehmendem Membranvolumenbruch zu höheren Temperaturen verschiebt. Man findet die 

L3-Phase bereits im binären System Wasser – Tensid beim Einsatz hinreichend effizienter 

Tenside. Die Tensiddoppelschichten können durch Öleinlagerung angeschwollen werden. 

Beim ternären System wird die Membrandicke 2ε durch den Tensid / (Öl + Tensid) 

Volumenbruch ωb bestimmt. Eine Änderung des Membranvolumenbruchs φB+C, führt zu einer 

Änderung des Abstandes d zwischen zwei benachbarten Membranen.  

 

Die genannten strukturellen Parameter lassen sich beim Modellsystem H2O / NaCl – n-Oktan 

– C10E4 in einem experimentell gut handhabbaren Temperaturbereich variieren. Beim binären 

System H2O – C10E4 handelt es sich um das erste einer homologen Reihe von n-

Alkylpolyethylenoxid Tensiden mit ausreichender Effizienz zur Bildung der L3-Phase, 

welches somit das elementarste System dieser Reihe darstellt.  

 

Als Grundlage für die Untersuchung der Dynamik mußte das Phasenverhalten der L3-Phase 

eingehend bestimmt werden. Für das binäre System H2O – C10E4 befindet sich der stabile 

Bereich der L3-Phase in einem schmalen Band von 3 – 4 K Breite in einem 

Temperaturbereich von ca. 50 °C. Mit der Zugabe von n-Oktan, d.h. mit abnehmendem 

Tensid / (Öl + Tensid) Volumenbruch ωb, verschiebt sich der L3-Phasenkanal zu niedrigeren 

Temperaturen und wird zunehmend schmaler. Gleichzeitig wird die Temperaturabhängigkeit 
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der Phasengrenzen weniger abhängig vom Membranvolumenbruch φB+C (Fig. 2.8), d.h. die 

L3-Phasenkanäle werden zunehmend flacher.  

 

Für die Ermittlung experimenteller Daten zur quantitativen Beschreibung der Dynamik der 

L3-Phase wurden verschiedene Relaxationsmethoden angewendet. Aus Temperatursprung-

experimenten, ausgehend von Temperaturen innerhalb des stabilen L3 Phasengebietes in 

Richtung der oberen Phasengrenze, d.h. der Binodaltemperatur, wurden Relaxationszeiten in 

einem zeitlichen Rahmen von 10-4 s bis 1 s gefunden. Die Relaxationszeitkonstanten τ-1 

variieren über einen Bereich mehrerer Größenordnungen in Abhängigkeit des 

Membranvolumenbruchs φB+C bei konstantem Tensid / (Öl + Tensid) Volumenbruch ωb. In 

doppeltlogarithmischer Auftragung kann die starke Abhängigkeit des Geschwindig-

keitsgesetzes für τ-1 von n
CB+φ  (3 < n < 9) für hohe Membranvolumenbrüche gezeigt werden, 

wobei n eine Funktion des Tensid / (Öl + Tensid) Volumenbruches ωb ist (Fig. 4.12 und Fig. 

4.13). Zur erforderlichen Erweiterung des experimentellen Zeitfensters zu langsameren Zeiten 

(τ ≥ 25 s) bei niedrigeren Membranvolumenbrüchen φB+C wurde eine neuentwickelte 

Methode, die isotherme Scherung, angewendet. Diese Methode erfaßt die Änderung der 

Leitfähigkeit nach einer Störung, die durch Scherung hervorgerufen wird, wobei sie die 

Beobachtung der Relaxationszeit über einen Bereich von 25 s bis 103 s ermöglicht. Für zwei 

der sieben untersuchten Tensid / (Öl + Tensid) Volumenbrüche, ωb = 0.58 und ωb = 0.69 

wurde bei niedrigen Membranvolumenbrüchen φB+C die Relaxationszeit bestimmt (Fig. 4.18). 

Im Gegensatz zu den hohen Membranvolumenbrüchen φB+C (Fig. 4.12 und Fig. 4.13) zeigt 

diese in doppeltlogarithmischer Darstellung keinen linearen Zusammenhang. Für ωb > 0.69 

und ωb < 0.58 konnten keine längeren Relaxationszeiten, als mit dem Temperatursprung 

zugänglich sind, gemessen werden. Trotzdem schließt dieses Ergebnis ein gleichsam 

nichtlineares Verhalten für τ-1 in Abhängigkeit von φB+C für ωb > 0.69 und ωb < 0.58 nicht 

aus. Eher im Gegenteil kann gleiches Verhalten für Relaxationszeiten zwischen 1.5 s und 25 s 

erwartet werden (Fig. 4.19), wobei dieses ein Zeitfenster ist, das mit den bisher beschriebenen 

Methoden nicht zugänglich war. In Abhängigkeit vom Tensid / (Öl + Tensid) Volumenbruch 

ωb bei konstantem Membranvolumenbruch φB+C laufen die Relaxationszeitkonstanten für 

Temperatursprungexperimente durch ein Minimum, wobei das Minimum immer bei ωb = 0.69 

gefunden wird (Fig. 4.14). 
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Zur phänomenologischen Beschreibung der Dynamik von L3-Phasen ist ein sinnvolles 

geometrisches Modell erforderlich, das eine Übertragung der eingewogenen 

Probenkomponenten in charakteristische Längenskalen ermöglicht. SANS Messungen wurden 

zur Aufklärung der Mikrostruktur und Verifikation dieses Modells durchgeführt. Aus den 

Neutronenstreukurven (Fig. 5.7 und 5.8) konnten der Abstand zwischen den 

Tensiddoppelschichten d und die Bilayerdicke 2ε  ermittelt werden, wodurch die exakten 

Abhängigkeiten vom Membranvolumenbruch φB+C auf d und des Tensid / (Öl + Tensid) 

Volumenbruch ωb auf 2ε bestimmt wurden. 

 

Der bisherige theoretische Ansatz für die Erklärung der Dynamik von L3-Phasen beruhte auf 

der Annahme, daß der Relaxationsprozess bei Temperatursprungexperimenten durch 

Passagenbildung vonstatten geht. Diese Annahme konnte durch temperaturabhängige SANS 

Messungen bestätigt werden (Fig. 5.5 und 5.6). Ein erster theoretischer Ansatz diskutiert die 

thermischen Fluktuationen der Membranen sowie die Wahrscheinlichkeit einer 

Doppelschicht-Doppelschicht-Berührung als proportionale Einflussgröße auf die 

Relaxationszeit τ. Damit wurde zwar qualitativ die hohe Abhängigkeit der Relaxationszeit-

konstante τ-1 von φB+C erklärbar, aber weder die Existenz des Minimums in der Abhängigkeit 

von τ-1 von ωb, noch das nichtlineare Verhalten der Relaxationszeitkonstanten für niedrige 

Membranvolumenbrüche konnte damit erklärt werden. Dieser erste theoretische Ansatz ist 

sicherlich ein Baustein des Ganzen, muß allerdings kombiniert werden mit Überlegungen 

bezüglich der freien Energie, die zur Passagebildung führt, nachdem zwei benachbarte 

Membranen miteinander kollidiert sind. 

 

Die Highlights dieser Arbeit sind die Ergebnisse aus SANS Messungen, die zur genauen 

Aufklärung der Bilayerstruktur der L3-Phase beigetragen haben und dazu führten, daß die 

charakteristischen Längen d und 2ε unter Entwicklung eines geometrischen Modells mit der 

Zusammensetzung der L3-Phase korreliert werden konnten. Das von MORSE [63] und 

GOMPPER [65] entwickelte Modell für den Übergang von Lα-nach-L3 konnte mit Hilfe des 

experimentell bestimmten Phasenverhaltens, welches zur Berechnung der spontanen 

Krümmung c0 des Monolayers diente, bestätigt werden (Fig. 6.3). Des weiteren konnte die 

experimentell ermittelte Längenskala d mit den Persistenzlängen ξκ und κξ  in Verbindung 

gebracht werden und es konnte erstmals gezeigt werden, daß für das ‚Melting’ von lamellaren 

zu Schwammphasen d ≈ κξ  << ξκ (Fig. 6.2) gilt. Außerdem wurden qualitative Erklärungen 
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für die starke Abhängigkeit der Relaxationszeit der L3-Phasen vom Bilayervolumenbruch 

gefunden. Dabei wurden zwei Relaxationszeitregime in Abhängigkeit des 

Bilayervolumenbruchs bestimmt. Ein Regime für niedrige φB+C, welches durch Fluktuationen 

bestimmt ist, und ein anderes nur durch Biegeenergien bestimmtes Regime für hohe φB+C 

(Fig. 6.6). Dieser Übergang zwischen zwei Regimes kann mit der L3-Phasenstruktur korreliert 

werden. Hierbei ist in Abhängigkeit des Tensidvolumenbruchs bei der einen Struktur der 

Einfluß des Intermembranabstand d größer als der der topologischen Persistenzlänge κξ , bei 

der anderen Struktur trifft der umgekehrte Fall zu (Fig. 6.4). Weiterhin konnte das Minimum 

in den τ-1-gegen-ωb Kurven durch zwei gegenläufige Tendenzen beschrieben werden. Mit 

zunehmender Bilayerdicke 2ε erhöht sich die Biegesteifigkeit des Bilayers, und damit κbil. 

Dies führt zu einer Abnahme der Zusammenstösse zwischen den Membranen und folglich zu 

langsameren Relaxationszeiten. Andererseits nähert sich der Wert der spontanen Krümmung 

mit abnehmendem ωb gegen null (Fig. 6.7). Hierdurch reduziert sich die Energie, die zur 

Bildung von Passagen benötigt wird [117, 118] und führt damit zu schnelleren 

Relaxationszeiten. 
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8 Experimentals 

This chapter deals with the experimental methods and the equipment used to determine the 

phase behavior, the dynamics and the structure of the L3 phase. It divides into materials, 

sample preparation and characterization, descriptions of the T-jump apparatus and its 

calibration, the isothermal shear method, and SANS experiments. 

8.1 Materials 

The nonionic surfactant n-decyltetraoxyethylenoxide (C10E4) was purchased from Bachem 

Biochemica GmbH, Heidelberg, Germany with a purity > 98 %. The purity of C10E4 can be 

judged from the critical point of the binary system water - C10E4. The value known from 

literature [119, 120] for the purified surfactant is Tc = 20.5 °C at a mass fraction of γ = 0.026. 

The critical point for the purchased surfactant without further purification was determined to 

Tc = 20.3 °C at γ = 0.026. Since this is sufficiently close to the literature value it can be 

deduced that the surfactant contains only minor impurities and can be used as purchased. N-

octane was obtained from Sigma, Germany with a purity > 99%. H2O was ultra pure 

Millipore water, type Milli-Q RG with a resistance of several MΩ ⋅ cm. The 0.1 M NaCl 

solution is prepared from a TITRISOL ® standard solution purchased from Merck, Darmstadt, 

Germany. The 1 mM NaCl solution required for the isothermal shear experiments was 

prepared by dilution from the 0.1 M NaCl stock solution.  

The D2O and d-octane needed for the SANS experiments were obtained from Cambridge 

Isotope Laboratories, Cambridge, MA, USA and used as purchased with a purity > 99%.  

Table 8.1: Densities ρ25 at T = 25 °C and molecular weights Mw of the used chemicals 

chemicals 3

25

cmg −⋅
ρ

 1
w

molg −⋅
M

 

H2O / NaCl 0.998 18.02 

D2O 1.105 20.03 

n-Octane 0.703 114.23 

d-Octane 0.815 132.38 

C10E4 (n-Decyltetraoxyethylenoxide) 0.959 334.49 
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8.2 Sample preparation and characterization 

For T-jump experiments the samples were prepared by diluting stock solutions of n-octane – 

C10E4 at different surfactant / (oil + surfactant) volume fractions ωb with 0.1 M H2O / NaCl 

solution to reach the desired bilayer concentration φB+C. All compounds were weighted in for 

accuracy. The same procedure was applied to prepare samples for isothermal shear 

measurements with the exception that 1 mM H2O / NaCl solution was used instead.  

All samples were filled into capped test tubes (volume 20 mL) equipped with Teflon coated 

stirring bars. The sample tubes were thoroughly mixed and transferred into a thermostatic 

water bath, which is mounted on a magnetic stirrer [112]. The tubes are supposed to be 

completely submerged to allow sufficient heat transport. The Lα + L3 → L3 ( 3L
lT ) and L3 → 

L1’ + L3 ( 3L
uT ) phase boundaries were determined by changing the water bath temperature in 

increments of ±0.02 K, thus reaching a precision of the phase transition temperatures of  

± 0.05 K. The transition from a one-phase region to a two-phase region is kinetically hindered 

thus causing incorrect boundary temperatures when measured in that direction. Therefore 

phase boundaries were always determined by going from a two-phase to a one-phase region. 

Additionally crossed polarizers were used to detect the birefringence in the Lα + L3 → L3 

phase transition, since the Lα phase shows birefringence permanently, the L3 phase just under 

shear.  

8.3 Temperature jump 

The temperature jump apparatus consists of three main elements: A high voltage discharge 

unit to introduce the temperature jump, a thermostatted sample cell, and an optical unit to 

detect the intensity of the scattered light [101]. 

High voltage discharge unit 

Fig. 8.1 shows the schematic setup of the high voltage discharge unit of the temperature jump 

apparatus. The accumulation of the electric energy generated by the high voltage source (HV) 

is conducted by the capacitor C, which has a capacity C = 10 nF. The temperature jump ΔT 

and hence the amplitude ΔIS / I0 can be varied by changing the capacitor’s charging voltage U. 

With voltages U between 2.5 kV and 11 kV temperature jumps between approx. 0.05 K and 

0.85 K can be achieved. However, the exact dependence between U and ΔT has to be 

specified by calibration, since sample properties like heat capacity, concentration and 
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conductivity have to be taken into account (see Calibration of the amplitudes ΔT of the T-

jump).  
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Fig. 8.1: Schematic setup of the temperature jump apparatus, explaining the high voltage discharge 
unit. By reducing the distance between the electrodes, the capacitor C discharges the energy stored 
through the sample (S) in the cell [27]. 

When the capacitor is fully charged, the connection between the high voltage source and the 

capacitor is intercepted by switch 1 (S1). Switch 2 (S2) is operated by an external pneumatic 

trigger impulse. By indirectly operating S2 the distance between the electrodes is reduced and 

thus the energy stored in the capacitor is released into the sample (S) in the cell.  

 

The temperature inside the sample cell can be determined via a thermistor, which is integrated 

into the upper electrode. Temperature measurements are conducted by matching the resistance 

of the thermistor with a WHEATSTONE bridge. By means of a known calibration function the 

temperature in the cell can be determined to a precision of ± 0.01 K. 

Fig. 8.2 shows a section through one of the electrodes used in the setup. To prevent heat 

transfer between the electrodes and the sample in the cell the electrode wiring is supplied with 

a special jacketing. This is especially important since the measured L3 phase samples with 

their narrow temperature range can phase separate for even small temperature deviations. 
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Fig. 8.2: Setup of the electrodes of the T-jump apparatus. Distances are in mm [27]. 

 

Since the trigger pulse generated by the capacitor is too short (< 10 μs) to be registered by the 

12bit-AD-card in use, a pulse generator has to be introduced. This pulse generator releases a 1 

ms signal with a positive edge, which then can be registered as a trigger signal by the AD 

card. This pulse defines the exact starting time t0 of the T-jump. 

Sample cell 

Fig. 8.3 shows a vertical section through the measuring block. The sample solution is 

introduced into the cell by the sample inlet. The volume around the electrodes is considered 

completely filled once some of the solution has passed the sample outlet. The lower electrode 

is connected to the capacitor, the upper electrode to the grounding. The hollow spaces 

arranged around the electrodes are taken up by the thermostat fluid.  
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Fig. 8.3: Setup profile of the T-jump apparatus’ measuring block [27]. 

The temperature control is subject to an elaborate combination of heating and cooling cycles. 

Fig. 8.4 shows a schematic illustration of this thermostatting system. It allows to keep the 

temperature inside the sample cell constant to a precision of ± 0.01 K. 
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Fig. 8.4: Thermostat circuits of the measuring block (schematic) [121]. The inner and outer circuits 
run with transformer oil, for the hood a water / diethylenglycol mixture is used. 

The temperature in the T-jump apparatus is controlled by two separate thermostat circuits. 

The measuring block itself is temperature controlled by transformer oil circulating through an 

inner (1a→1b→1c→1d) and outer (2a→2b→2c) circuit. An insulation hood surrounds the 

measuring block. The space underneath the hood is temperature controlled by the second 

thermostat (3a→3b), which circulates a water / diethylenglycol mixture. Due to these 

measures the temperature in the T-jump apparatus can be adjusted to the above-mentioned 

precision. This precision is noteworthy for the following reason. The capacitor is connected to 

the lower electrode by a copper cable of 10 mm diameter (see Fig. 8.3), which conducts the 

heat readily and seeks to equilibrate its temperature with that of the surroundings. Since the 

cable is at room temperature and the measuring cell tends to be mostly at higher temperatures 
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for the investigated L3 phase systems, this poses a problem. Without an adequate temperature 

control and insulation for the electrode (see Fig. 8.2), the temperature in the cell could deviate 

towards lower temperatures and cause an irreversible phase separation of the sample from L3 

→ L3 + Lα.  

 

The sample has to be introduced into the sample cell at a temperature in its stable L3 phase 

region. To ensure that no phase separation takes place, not only the measuring block has to be 

of the exact temperature but a temperature-controlled syringe has to be used for transferring 

the sample in its one-phase state. 

 

Another important issue that needs to be taken into account is the characteristic heating time 

of the sample inside the cell τH which is defined by 

 

2

CRcell
H

⋅
=τ . (8.1) 

 

The relaxation times τ of the investigated systems can be in the range between some hundred 

microseconds and seconds. The heating time τH should always be one order of magnitude 

lower then the relaxation time τ, i.e. τH ⋅ 10 ≤ τ. Otherwise the relaxation time can not be 

determined unambiguously. According to Eq. (8.1), at a fixed capacity C = 10 nF, the 

resistance measured in the sample cell, should not exceed a value of Rcell = 2 kΩ to keep the 

heating time at its required low value. This implies that the conductivity of the sample 

solution always has to be sufficiently high, why water is substituted for a 0.1 M NaCl solution 

in all samples. 

 

The cooling time τC of the cell can be determined easily by using Eq. (4.1), if the relaxation 

times of the fast structural relaxation are smaller by orders of magnitude than the cooling time 

τC, i.e. τC >> τ. In that case the second term of Eq. (4.1) is negligible and the cooling time can 

be fitted with an exponential decay function 
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Fig. 8.5 shows an exemplary cooling curve of the examined system H2O / NaCl – n-octane – 

C10E4 in the stable temperature range of the L3 phase. This curve shows a complete 

temperature jump perturbation and relaxation. The intensity of the scattered light IS increases 

after the T-jump from I0 by an amplitude ΔIS and returns to its initial intensity after a few 

seconds. 
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Fig. 8.5: Experimental determination of the cooling time τC of the temperature jump apparatus. The 
intensity of the scattered light IS returns after the T-jump to the initial intensity I0. The solid line shows 
the fit calculated from a single exponential decay function for a sample with φB+C = 0.1 and ωb = 0.47 

and a T-jump from 24.79°C → 25.19°C. 

Using Eq. (8.2), the cooling time τC is always found to be about 20 ± 2 s independently of the 

sample’s composition or jump amplitudes ΔT. In comparison to the enormous dependence of 

the structural relaxation times τ on the bilayer concentration φB+C this means that the cooling 

time τC is almost a constant and its exact value is of subordinate importance for determining 

relaxation times of less then seconds. 
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Optical unit 

The optical unit of the temperature jump apparatus is illustrated in Fig. 8.6.  
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Fig. 8.6: Setup of the T-jump apparatus, illustrating the optical layout [27]. 

The operating light source for this setup is a “Millennia II” laser, produced by Spectra-Physics 

GmbH, Darmstadt, Germany. It is a continuous wave diode laser, emitting visible green light 

of the wavelength λ = 532 nm with a power output of 0.2 – 2 W, variable in steps of 0.01 W. 

For the experiments the power output is kept constant at 0.2 W. 

 

The emitted laser beam can be attenuated by a neutral filter (NF) with an optical density OD = 

3 for situations requiring a reduced laser intensity like sample introduction. By means of the 

attenuated transmitted light it can be observed whether phase separation has taken place 

during the introduction of the sample or if any bubbles remained in the cell. After that the 

emitted laser beam meets a beam splitter (BS). Part of the light is diffracted and monitored by 

a photodiode (D1), determining the intensity Iref of the incident beam to detect potential 

deviations in the laser intensity. The other part has to pass a focusing unit, consisting of two 

pinholes (PH) and a focusing lens (FL) before entering the sample cell. Five photomultipliers 

(D2) are placed at different angles with respect to the incident laser, and another photodiode 

(D3) measures the turbidity of the sample, i.e. the transmitted light. 

 

The change of the intensity of the scattered light can be measured as a function of time under 

five different detection angles. Simultaneously, the intensity of the transmitted light is 

measured. A rack is arranged halfway around the measuring block to keep the optical fibers in 

place at the different measuring angles, as can be seen in Fig. 8.7. 
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Fig. 8.7: Arrangement of optical fibers at different angles around the sample cell. 

The scattered light is transferred to D2 (see Fig. 8.6) by optical fibers. D2 consists of two 

photomultipliers and three photodiodes (2 DIA-PMF, serial no. 0042 and 0049 from Dialog, 

Düsseldorf, 3 H5784-01, from Hamamatsu, Herrsching). The different photomultipliers are 

assigned to the different angles as follows: 

Table 8.2: Assignment of the detection angles to the different photomultipliers 

detector angle ϑ 

Dialog 42 40 

Dialog 49 90 

Hamamatsu PM1 120 

Hamamatsu PM2 140 

Hamamatsu PM3 60 

 

The pneumatically actuated high voltage discharge indirectly generates a trigger impulse, 

which starts the monitoring of the intensity of the incident beam (Iref) with the photodiode in 

D1, the transmitted light (Itrans) with the photodiode in D3 and the scattered light under the 

different detection angles (IS) with the five photomultipliers in D2, shortly before and after the 

T-jump. The change of the light intensity with time is recorded with a customary 12bit-AD-

card (BMC PC-20 from Conrad, Hirschau, Germany), which converts the analog voltage 

signal into digital information and assigns a time scale to the measured data, which are saved 
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as ASCI-files. The voltage range of the card is +10 V to – 10 V with a maximum resolution of 

20 μs. 

For the determination of I0, the intensity of the scattered light before the T-jump perturbation, 

a pre-trigger period of usually 25 % is defined in which I0 is monitored prior to the jump. 

Calibration of the amplitudes ΔT of the T-jump 

The amplitude of a T-jump, ΔT, is proportional to the voltage charge U applied to the 

capacitor. To find the exact dependence between ΔT and U a calibration curve has to be 

recorded. 

A calibration for this T-jump apparatus was performed by UHRMEISTER [27] for the system 

water / NaCl – 2,6-Dimethylpyridin. This system contains a closed miscibility gap with a 

known critical point at Tc = 30.62°C and γc = 0.064. Close to the critical point, i.e. near the 

temperature of phase separation Tc, the system shows a very strong, temperature-related 

increase in the intensity of the scattered light, which is governed by 
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with the critical exponent γ = 1.23. Since the temperature can be measured exactly by means 

of the thermistor in the upper electrode it is possible to assign single light scattering intensities 

of the system to certain temperatures. Measuring the scattering intensity for any number of 

temperatures yields an IS-over-T-curve (see Fig. 4.3) that serves as a basis for the calibration. 

T-jumps are then performed from a fixed know temperature T with a constant laser power and 

amplifying rate of the photomultipliers (dynodes) but with different charging voltages U. 

Each applied charging voltage Ucap results in a jump with a different value of the maximally 

reached light scattering intensity. These maximum intensities can then be assigned to a certain 

end temperature by means of the IS-over-T-plot. From the difference between the fixed 

starting temperature and the end temperature the amplitude ΔT can be unambiguously 

assigned to a certain charging voltage U. 
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It was found that the amplitude of the T-jump ΔT [K] is quadratically dependent on the 

capacitor’s charging voltage Ucap [kV] [121]. Thus the following applies: 

 

2

,

2

2 cap
effip

cap Ua
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⋅⋅ρ⋅
⋅

=Δ  (8.4) 

 

with  C  capacity 

 Ucap  voltage charge of the capacitor 

 ρ  density of the sample 

 Cp,i  intrinsic, isobar heat capacity 

 Veff  effective cell volume 

 a  specific constant of the T-jump apparatus 

 

In Fig. 8.8 the determined jump amplitudes are plotted against the charging voltage Ucap of the 

capacitor: 
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Fig. 8.8: Dependence of the determined ΔT on the charging voltage Ucap of the capacitor. The jump 
amplitude increases quadratically with the capacitor’s voltage [27]. 

The error bars take into account that the brine – dimethylpyridin samples used for the 

calibration have not the same heat capacities Cp,i and densities ρ as the samples investigated. 
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From a second order regression one obtains for the specific constant of the apparatus a value 

of a = 7.1 ± 10-3 [K / kV2], i.e. 

 

ΔT = a ⋅Ucap
2 = (7.1 ± 10-3)

2kV

K ⋅Ucap
2 (8.5) 

 

In order to use Eq. (8.5) as a calibration curve for the present work the heat capacities and 

densities of the L3 phase samples have to be comparable to those of the calibration system. To 

check this an L3 phase sample was examined with the same calibration procedure. The 

difference is that the L3 phase samples have a non-critical composition. As in this case the 

increase of the scattered light intensity is governed by the approach of the spinodal 

temperature Tspin Eq. (8.3) changes into: 
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The calibration was performed for an L3 phase sample with φB+C = 0.2959 at ωb = 0.47. The 

resulting dependence of ΔT on Ucap and the comparison with the critical system water – 

dimethylpyridin is illustrated in Fig. 8.9. 
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Fig. 8.9: Dependence of the determined ΔT on the charging voltage Ucap of the capacitor for an L3 
phase sample (triangles) and the sample with critical composition (circles). The jump amplitude 
increases quadratically with the capacitor’s voltage. 

The diagram in Fig. 8.9 proves that the heat capacities and the densities for the system brine / 

dimethylpyridin and the investigated systems are comparable. Thus it can be assumed that for 

slightly different compositions of the L3 phase, i.e. different φB+C and ωb, the heat capacities 

and densities of the samples will not change noteworthy. Any differences are accounted for in 

the margins of error. Table 8.3 shows the results of the calibration with the L3 phase sample at 

φB+C = 0.2959 and ωb = 0.47.  
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Table 8.3: Results of the calibration with the L3 phase sample at φB+C = 0.2959 and ωb = 0.47. With 
Ucap being the charging voltage of the capacitor, ΔT the resulting jump amplitude and δΔT the error 
taking into account differences in the heat capacity and density due to changes in the composition 

Ucap / kV ΔT / K δΔT / K 

2.50 0.03 0.01 

3.50 0.07 0.01 

4.00 0.11 0.01 

4.50 0.15 0.01 

5.00 0.17 0.01 

5.50 0.24 0.02 

6.00 0.22 0.02 

6.50 0.33 0.03 

7.00 0.31 0.03 

7.50 0.41 0.03 

8.00 0.43 0.04 

8.50 0.53 0.04 

9.00 0.55 0.05 

9.50 0.65 0.05 

10.00 0.72 0.06 

10.50 0.78 0.07 

11.00 0.81 0.07 

 

8.4 Isothermal shear 

In comparison to the T-jump experiment, the isothermal shear experiment also consists of 

three main elements. A magnetic stirrer providing the perturbation unit. A conductivity cell as 

the sample unit, and a conductivity electrode in combination with a conductivity bridge as the 

detection unit. The conductivity cell is mounted on a magnetic stirrer, thus providing 

perturbation by shear. The setup of these elements is illustrated schematically in Fig. 8.10. 
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Fig. 8.10: Schematic illustration of the conductivity cell of the isothermal shear experiment.  

The conductivity cell of the isothermal shear experiment consists of a custom-made jacketed 

test tube with a flat bottom of 15 mm diameter and a volume of about 12 mL. The jacket of 

the tube is connected to a customary thermostat circulating a water / diethylenglycol mixture 

to provide means of temperature control. The temperature is measured to a precision of  

±0.02 K by a thermocouple reaching directly into the thermostat fluid in the jacketing. For 

conductivity measurements a custom-made electrode is used which reaches into the test tube 

almost to the bottom. The electrode consists of two parallel metal plates perpendicular to the 

direction of flow as induced by shear. These metal plates are partially glass-coated to prevent 

corrosion.  

The jacketed test tube is mounted on a customary magnetic stirrer MR 2000 from Heidolph, 

Kelheim. A 10 mm long Teflon® coated stirring bar is located at the bottom of the 

conductivity cell to apply shear by setting the stirring bar in motion using the magnetic stirrer. 

The magnetic stirrer is infinitely variable between 0 – 1250 rpm however for all 

measurements a fixed frequency of 1000 rpm was applied.  

Measurements of the conductivity and data acquisition are performed by an automatic 

precision bridge B 905 from Wayne Kerr Inc., West Sussex, England in connection with a PC 

equipped with a 12bit-AD-card of the type BMC PC-20 from Conrad, Hirschau, Germany. A 

measuring program was developed to set the stirrer in motion for the given time period, as 

well as starting the conductivity measurement after the shear period was completed. The 

change in the conductivity is monitored after shear and the resulting relaxation curves of κS as 
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a function of the time t are plotted. Fig. 8.11 shows an illustration of the complete setup of the 

isothermal shear method. 
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cell

 

Fig. 8.11: Setup of the isothermal shear experiment. 

8.5 Small-angle neutron scattering (SANS) 

Small-angle neutron scattering experiments were performed at the Institute Laue Langevin 

(ILL) in Grenoble, France. The D22 spectrometer was used for these measurements. A 

schematic picture of a representative SANS setup is illustrated in Fig. 8.12. 

 

Neutrons

Velocity selector Collimator Sample Multidetektor
(128 x 128)

Detector
(L = 20 m, ∅ = 2.5 m)

 

Fig. 8.12: Schematic setup of a typical SANS instrument [122]. 

The neutron source is produced in a nuclear reactor by fission of 235U. By way of heavy water 

D2O and liquid D2 the wavelength of the neutrons is moderated to a range of 3 < λ < 40 Å. 

Subsequently a mechanical velocity selector provides a monochromatic radiation source of 

0.08 < Δλ / λ < 0.20 for the experiments. The neutron beam runs through a collimator to be 

adjusted in diameter and divergence to directly meet the sample. In general the scattered 

neutron intensity is recorded by a two-dimensional sensitive area (128 × 128 pixel) detector. 
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The measurements for the L3 phase samples were performed with a mean neutron wavelength 

of λmean = 6.0 Å with Δλ / λ = 0.10. The q ranged from 0.0584 Å –1 to 0.4698 Å –1. The 

collimation was adjusted in order not to limit the resolution. Two sample-to-detector distances 

(17.56 m and 1.96 m) were measured with the detector 0.4 m of axis to provide data over a 

large q range.  

Samples were equilibrated at temperatures inside the stable L3 phase region in a separate 

water bath, and were then rapidly transferred to the cell holder. A custom-made cell holder 

was used, which could be thermally equilibrated to a precision of ±0.02 K. In this, the 

samples could be mixed and homogenized at the desired temperature after mounting [112]. 

The samples were measured in Hellma quartz cells of 0.2mm path length to minimize 

multiple scattering.  

 

The raw data from the two-dimensional detectors were masked, normalized and radially 

averaged according to the standard procedures provided by the neutron facility. Each data set 

was put on absolute scale by measuring the incoherent scattering of H2O. Data sets from the 

different distances overlapped without scale adjustment. 
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9 Appendix 

9.1 T-jump experiments on the oil-rich L3 phase 

From the phase diagram in Fig. 2.3 it could be deduced that the L3 phase occurs only for very 

high water or oil contents respectively. Consequently the evolution of the L3 phase as a 

function of the surfactant concentration γ and the temperature T can be discussed at very high 

or very low values of the oil / (water + oil) mass fraction α only, i.e. either on the water-rich 

or oil-rich side of the phase diagram. Any mentioning of the L3 phase in this work always 

refers to the water-rich L3 phase as illustrated on the water-side of the phase diagram in Fig. 

2.3. To complete the picture of the dynamics of the L3 phases, the dynamics of oil-rich L3 

phases was also studied by T-jump relaxation. Unfortunately the experimental conditions, 

concerning the phase behavior as well as the T-jump experiments, were not as suitable as for 

the water-rich L3 phases. These experimental circumstances will be described below along 

with the observed results. 

9.1.1 Phase behavior 

The oil-rich L3 phase structure is inverse to that of the water-rich one. The expression 

“bilayer” now denotes a water-swollen bilayer dividing two equivalent oil subvolumes. 

Suitable parameters to describe the dependencies in these water-rich systems are found in Eq. 

(9.1) and Eq. (9.2). The surfactant / (water + surfactant) volume ratio ωa and the bilayer 

volume fraction φA+C can be expressed by: 
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In Eq. (9.1) and Eq. (9.2) ωa is equivalent to the surfactant / (oil + surfactant) volume ratio ωb 

for the water-rich L3 phase, while the bilayer concentration φA+C is related to the bilayer 

concentration φB+C, the difference is that oil is substituted by water. The phase behavior of the 

oil-rich L3 phases was investigated and illustrated following Fig. 2.8. For the water-rich L3 
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phase different ωb represent pages in a phase prism book with the water corner of the phase 

prism being the spine of the book (see Fig. 2.5). Correspondingly, for the oil-rich L3 phase the 

oil corner is the spine of the book, with ωa representing different pages. In Fig. 9.1 the 

projection of the oil-rich L3 channels onto one page of the inverse phase prism book are 

shown for three different surfactant / (water + surfactant) volume ratio ωa with varying bilayer 

volume fractions φA+C.  
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Fig. 9.1: Projection of the oil-rich L3 phase channels measured as a function of bilayer concentration 
φA+C and temperature T onto one page of the phase prism at constant ωa, revealing the monotonic shift 
towards higher temperatures, the decreasing width and reduced slopes of the L3 phase channels under 
addition of water (decreasing ωa).  

Fig. 9.1 shows the shift of the L3 bands towards higher temperatures with decreasing 

surfactant / (water + surfactant) volume ratio ωa. In addition to this, the width of the oil-rich 

L3 temperature range is reduced, from about 1.5 K for the L3 phase at ωa = 0.58 down to ∼ 0.3 

K for ωa = 0.42. This projection of the oil-rich phase channels is already an indication for 

experimental difficulties. In contrast to the water-rich L3 phases the width of the L3 band 

decreases considerably with only small decreases in the surfactant / (water + surfactant) 

volume ratio ωa. For any ωa smaller than ωa = 0.42 the L3 channel is so narrow that T-jump 
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experiments become impossible due to the experimental setup (see chapter 8 for details). 

Additionally, the one-phase L3 channel at ωa = 0.58 is stable only at very low temperatures. 

Since the T-jump apparatus can only be operated at temperatures higher than 15 °C, no 

measurements are possible for ωa = 0.58. This leaves only a very restricted variation of 

surfactant / (water + surfactant) volume ratios ωa for investigations of the dynamics of oil-rich 

L3 phases. 

9.1.2 T-jump relaxation 

T-jump experiments were performed for ωa = 0.47 and ωa = 0.42 at varying bilayer volume 

fractions φA+C. A typical example of these T-jumps for a sample with φA+C = 0.25 at ωa = 0.47 

is illustrated in Fig. 9.2. The corresponding relaxation curve of the scattered light intensity as 

a function of time is illustrated in the central picture. In contrast to the scattering curves from 

T-jumps on the water-rich L3 phase, shown in chapter 4, the scattering intensity for the oil-

rich L3 phase is decreasing with increasing temperature. This observation is in agreement with 

the fact that the binodal line of the oil-rich L3 phase corresponds to the L3 + L2 phase 

boundary (see Fig. 2.3) whereas for the water-rich L3 phase the binodal line is the L1’ + L3 

phase boundary (see chapter 5). While for the water-rich L3 phase a T-jump is going towards 

the binodal line, the opposite is true for the oil-rich L3 phase, hence the light scattering 

intensity is decreasing with temperature (for details see chapter 8, Eq. 8.6). A jump towards 

the binodal line is not possible with the T-jump apparatus, therefore the upper phase boundary 

of 
33 LLLT +→ α
 is used as a reference temperature for the experiments. Taking into account the 

fact that the cooling time τC is correlated to the return time back to T0, the initial temperature, 

the relaxation process as seen in the central diagram can be quantitatively described by  
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 (9.3) 

 

with I0 being the intensity of the scattered light before the jump, and IS the time-dependent 

scattered light intensity. The amplitude ΔIS / I0 is determined by the intensity decrease 

associated with the temperature jump ΔT. The values for I0 can be determined from the 

experimental data. A fixed value of τC = 17.7 s is used, which is known from calibration 

measurements (see chapter 8). For the example in Fig. 9.2 the fit function (Eq. (9.3)) yields 
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the amplitude ΔIS / I0 = 0.102 and the relaxation time τ = 0.041 s. The residual plot at the 

bottom of Fig. 9.2 shows some background noise, but no systematic deviations between the 

measured data points and the fitted curve obtained by non-linear regression, therefore this 

method is applicable likewise to the water-rich and the oil-rich L3 phase.  
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Fig. 9.2: A typical analysis of a T-jump from T0 = 19.58 °C to T = 20.16 °C (top) for a sample with 
φA+C = 0.25 and ωa = 0.47 observed at ϑ = 90°. This experiment can be entirely described by Eq. (9.3). 
With given values for I0, t and τc the amplitude ΔIS / I0 and the relaxation time τ can be obtained from 
non-linear regression (middle). The residual plot shows no systematic deviations between the 
measured data points and the fitted curve (bottom). 

One of the experimental problems encountered with this method on the oil-rich side is the fact 

that due to the smaller brine content, the conductivity of the sample in the cell is greatly 
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reduced. The heating time τH = Rcell ⋅ C / 2, with Rcell being the resistance of the sample in the 

cell and C the capacitance (10 nF) of the capacitor, is dependent on the sample’s composition. 

With a greatly increased resistances of 3000 – 7000 Ω, in comparison to 100 – 1000 Ω in the 

water-rich L3 sample, heating times between τH = 15 �μs and τH = 35 �μs were found. This 

means on the one hand, that the T-jump is not quasi-instantaneous anymore and on the other 

hand, more importantly, that non-uniform heat transfer through the sample can cause field-

effects. An example of this is illustrated in Fig. 9.3. 
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Fig. 9.3: Demonstration of a field-effect for a T-jump from T0 = 21.02 °C to T = 21.23 °C (top) for a 
sample with φA+C = 0.15 and ωa = 0.47 observed at ϑ = 90°.  

This field effect can either be expressed by an overshoot towards higher scattering intensities, 

as illustrated in Fig. 9.3, or more problematic, in a time-dependent overshoot towards lower 

light scattering intensities, resulting in a scattering curve that can not be described by a single 

exponential anymore.  

Another problem is the height of the generated T-jump as a function of the voltage charge of 

the capacitor. For the water-rich L3 phase this can be calculated using the relation ΔT = b ⋅ 

Ucap
2, with the empirical constant b having a value of b = 7.1 (± 0.5) × 10-3 K⋅(kV)-2, which 
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was obtained from calibration measurements (see chapter 8 for details). Unfortunately 

calibration measurements on the oil-rich L3 phase produced no conclusive results as to the 

value of b. However, the heights of the T-jumps are not crucial for the determination of the 

relaxation time constants, as long as the jumps are performed onto a fixed reference 

temperature. The actual height of the T-jumps can be roughly evaluated by means of the 

calibration used for the water-rich L3 phase. 

Those relaxation time constants that can be measured under these restricted conditions are 

plotted in Fig. 9.4 as a function of the bilayer volume fraction φA+C for two surfactant / (water 

+ surfactant) volume fractions ωa. 
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Fig. 9.4: Relaxation time constants τ-1 in dependence of the oil-rich L3 phase bilayer volume fraction 
φA+C for the system H2O / NaCl – n-octane – C10E4 for two different surfactant / (water + surfactant) 
volume fractions ωa. 

In the double-logarithmic plot (Fig. 9.4) the relaxation time constants can be fitted linearly, 

resulting in effective power law dependencies of τ-1 ~ n
CA+φ  with n being 4.2 and 5.5 

respectively. These results are similar to those in Fig. 4.12 and Fig. 4.13 for high bilayer 
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volume fractions φB+C. It has to be taken into account though that including very low φB+C into 

the curves resulted in non-linear dependencies (Fig. 4.19). The same could potentially be true 

for the oil-rich L3 phase systems. However, due to the phase behavior of these systems (see 

Fig. 9.1) only a very limited number of data could be produced for bilayer volume fractions 

φA+C higher than φA+C ≥ 0.2; lower φA+C were not accessible by T-jump. As a result of this, as 

well as due to the problems arising from field effects and T-jump height calibration, these 

results were not generally included into the discussion of this work. 

9.2 Tables 

9.2.1 T-jump experiments 

Tables 9.1: Bilayer volume fractions φB+C, compositions O/NaClH 2
m , octanenm − , and 

410ECm  of the L3 

phase samples for T-jump experiments in [g] and the phase boundary temperatures 
3�3 LLLT →+ and 

313 L'LLT +→ of the respective L3 phase coexistence regions in [°C] for different surfactant / (oil + 

surfactant) volume fractions ωb. 

(a) ωb = 1.00 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.0346 13.5526 - 0.4661 43.2600 46.1500 

0.0500 13.2740 - 0.6713 43.2100 49.5200 

0.0700 12.9970 - 0.9401 48.1000 51.7700 

 

(b) ωb = 0.90 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.0400 13.4161 0.0394 0.4834 43.2500 44.6000 

0.0501 12.3254 0.0461 0.5618 44.5500 46.0600 

0.0751 11.8730 0.0676 0.8335 46.7000 48.5900 

0.1000 12.5155 0.0975 1.2023 47.5400 49.5500 

0.1497 10.9218 0.1349 1.6643 49.3300 51.4400 

0.1999 10.6979 0.1876 2.3134 50.9600 53.3000 

0.2498 9.6384 0.2252 2.7769 52.1900 54.7800 
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(c) ωb = 0.81 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.0751 12.1819 0.1351 0.7653 39.4300 40.8500 

0.1000 12.3487 0.1876 1.0629 39.8400 41.3700 

0.1501 11.8160 0.2852 1.6159 41.3100 43.0800 

0.2000 10.9757 0.3752 2.1259 42.7000 44.6800 

0.2500 9.8775 0.4501 2.5507 44.0800 46.4400 

 

(d) ωb = 0.69 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.1219 12.2910 0.3758 1.1273 31.8600 33.0800 

0.1524 11.8768 0.4703 1.4109 32.5000 33.8100 

0.2029 11.1829 0.6268 1.8804 33.3400 34.9300 

0.2534 10.4858 0.7834 2.3502 34.4100 36.2600 

0.3038 9.7798 0.9396 2.8187 35.5600 37.6400 

 

(e) ωb = 0.58 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.1020 12.5757 0.4261 0.7914 26.6400 27.4800 

0.1528 11.8762 0.6390 1.1867 27.5000 28.4200 

0.2035 11.1776 0.8522 1.5825 28.6800 29.4000 

0.2541 10.4820 1.0651 1.9780 29.1800 30.1000 

0.3045 9.7835 1.2787 2.3731 29.9700 31.3500 

 

(f) ωb = 0.47 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.0750 12.9246 0.3898 0.4756 23.9900 24.7200 

0.1045 12.5134 0.5428 0.6634 24.5000 25.1900 

0.1549 11.8090 0.8036 0.9822 25.1800 25.8800 

0.2044 11.1180 1.0609 1.2967 25.8300 26.5300 

0.2512 10.4682 1.3037 1.5905 26.5000 27.2300 

0.2978 9.8133 1.5240 1.8898 27.1000 27.9100 
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(g) ωb = 0.37 

 

CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.0750 13.0938 0.4679 0.3828 22.9500 23.4500 

0.1000 13.4973 0.6598 0.5399 23.3300 23.7600 

0.1563 13.4927 1.1002 0.9002 24.0300 24.3800 

0.2001 11.4941 1.2658 1.0356 24.5100 24.8100 

0.2500 10.4926 1.5401 1.2600 24.9900 25.2300 

0.2999 9.6219 1.8149 1.4849 25.4400 25.7200 

 

Tables 9.2: Bilayer volume fraction φB+C-dependence of the relaxation times τ in [s] and the relaxation 
time constants τ-1 [s-1] for T-jump experiments for different surfactant / (oil + surfactant) volume 
fractions ωb 

(a) ωb = 0.90 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.0400 0.3588 2.7868 

0.0500 0.1480 6.7552 

0.0751 0.0107 93.7500 

0.1000 4.3687e-3 228.8990 

0.1497 734.10e-6 1362.2122 

0.1999 166.01e-6 6023.5521 

0.2498 79.004e-6 12657.5336 

 

(b) ωb = 0.81 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.0751 1.0870 0.9200 

0.1000 0.2577 3.8800 

0.1501 0.0258 38.7600 

0.2000 3.1863e-3 313.8400 

0.2500 664.28e-6 1505.4000 
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(c) ωb = 0.69 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.1219 0.9077 1.1017 

0.1524 0.1897 5.2709 

0.2029 0.0165 60.6061 

0.2534 2.0966e-3 476.9551 

0.3038 369.48e-6 2706.4820 

 

(d) ωb = 0.58 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.1020 1.8252 0.5479 

0.1528 0.0810 12.3406 

0.2035 7.5367e-3 132.6837 

0.2541 1.3616e-3 734.4166 

0.3045 284.24e-6 3518.1330 

 

(e) ωb = 0.47 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.0750 2.1368 0.4680 

0.1045 0.3713 2.6932 

0.1549 0.0290 34.4828 

0.2044 3.7243e-3 268.5068 

0.2512 676.08e-6 1479.1061 

0.2978 240.10e-6 4165.0000 

 

(f) ωb = 0.37 

CB+φ  
s

τ
 

1

1

s−

−τ
 

0.0750 0.1200 8.3333 

0.1000 0.0297 33.6927 

0.1563 7.4769e-3 133.7447 

0.2001 1.6646e-3 600.7295 

0.2500 597.98e-6 1672.3107 

0.2999 297.62e-6 3359.9758 
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Table 9.3: Surfactant / (oil + surfactant) volume fractions ωb, bilayer volume fractions φB+C, and 

compositions ( O/NaClH 2
m , octanenm − , and 

410ECm ) in [g] of the L3 phase samples for the ARRHENIUS-

like plots. 

bω  CB +φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 

0.8059 0.1000 11.1326 0.1692 0.9582 

0.8045 0.1504 10.6376 0.2594 1.4561 

0.8060 0.2000 9.8783 0.3374 1.9125 

0.6885 0.1226 13.1946 0.4044 1.2192 

0.6870 0.1525 12.6888 0.5034 1.5072 

0.6878 0.2027 11.9361 0.6675 2.0058 

0.5756 0.1023 11.3254 0.3858 0.7138 

0.5763 0.1528 10.6941 0.5761 1.0690 

0.5769 0.2032 10.0607 0.7647 1.4221 

0.4731 0.1046 11.2722 0.4885 0.5983 

0.4699 0.1531 10.8442 0.7320 0.8853 

0.4722 0.2046 10.0088 0.9572 1.1682 

0.4217 0.1002 11.0837 0.5027 0.5000 

0.4230 0.1500 10.4637 0.7504 0.7505 

0.4231 0.1999 9.8449 0.9996 1.0000 

0.4230 0.2501 9.2270 1.2508 1.2507 

0.3749 0.0998 12.1772 0.5941 0.4861 

0.3750 0.1560 12.1799 0.9914 0.8116 

0.3742 0.2004 10.3447 1.1428 0.9322 
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Tables 9.4: The initial temperatures T0 in [°C] and final jump temperatures T in [°C] of T-jumps 
determined for the ARRHENIUS-like plots, the resulting relaxation times τ in [s], the inverse final 

temperatures T-1 in [10-3 ⋅ K-1] and the logarithm of the relaxation time constants ln τ-1 for different 
surfactant / (oil + surfactant) volume fractions ωb with three (0.10, 0.15 and 0.20) bilayer volume 
fractions φB+C each. 

(a1) ωb = 0.81 and φB+C = 0.1000 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

40.2800 40.3900 0.2630 3.1894 1.3356 

40.2800 40.4200 0.3231 3.1891 1.1299 

40.2800 40.4600 0.3319 3.1887 1.1029 

40.2800 40.4900 0.3266 3.1884 1.1191 

40.2800 40.5400 0.3280 3.1879 1.1147 

40.3100 40.6100 0.3123 3.1871 1.1637 

40.3100 40.6600 0.3085 3.1866 1.1759 

40.3100 40.7100 0.3247 3.1861 1.1249 

40.3100 40.7600 0.3250 3.1856 1.1239 

40.3100 40.8200 0.3133 3.1850 1.1605 

40.3100 40.8900 0.3183 3.1843 1.1448 

40.3100 40.9500 0.3188 3.1837 1.1431 

40.3100 41.0200 0.3030 3.1830 1.1941 

40.3100 41.0900 0.3047 3.1823 1.1884 

40.3100 41.1700 0.3134 3.1815 1.1602 

40.3100 41.2500 0.2856 3.1807 1.2533 

40.3100 41.3300 0.3116 3.1799 1.1659 

40.3100 41.4200 0.3158 3.1789 1.1525 

40.3100 41.5100 0.3018 3.1780 1.1979 
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(a2) ωb = 0.81 and φB+C = 0.1504 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

41.6200 41.6800 0.0331 3.1763 3.4072 

41.6200 41.7100 0.0417 3.1760 3.1773 

41.6200 41.7300 0.0331 3.1758 3.4082 

41.6200 41.7600 0.0305 3.1755 3.4900 

41.6200 41.8000 0.0308 3.1751 3.4802 

41.6200 41.8300 0.0311 3.1748 3.4695 

41.6200 41.8800 0.0332 3.1743 3.4042 

41.6200 41.9200 0.0310 3.1739 3.4748 

41.6200 41.9700 0.0322 3.1734 3.4358 

41.6200 42.0200 0.0325 3.1729 3.4265 

41.6200 42.0700 0.0323 3.1724 3.4327 

41.6200 42.1300 0.0313 3.1718 3.4641 

41.6200 42.2000 0.0310 3.1711 3.4738 

41.6200 42.2600 0.0308 3.1705 3.4792 

41.6200 42.3300 0.0309 3.1698 3.4781 

41.6200 42.4000 0.0300 3.1691 3.5077 

41.6200 42.4800 0.0307 3.1683 3.4846 

41.6200 42.5600 0.0297 3.1675 3.5166 

41.6200 42.6400 0.0300 3.1667 3.5077 

41.6200 42.7300 0.0289 3.1658 3.5451 

41.6200 42.8200 0.0291 3.1649 3.5382 

41.6200 42.9100 0.0287 3.1640 3.5520 

41.6200 43.0100 0.0283 3.1630 3.5661 
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(a3) ωb = 0.81 and φB+C = 0.2000 

 

C

T

°
0  

C

T

°
 

s10 3 ⋅
τ
−  

13

1

K10 −−

−

⋅
T

 ln τ-1 

43.2900 43.3500 6.4052 3.1596 5.0506 

43.2900 43.3800 6.9986 3.1593 4.9620 

43.2900 43.4000 4.2706 3.1591 5.4560 

43.2900 43.4300 6.1322 3.1588 5.0942 

43.2900 43.4700 5.6578 3.1584 5.1747 

43.2900 43.5000 5.7909 3.1581 5.1515 

43.2900 43.5500 4.7180 3.1576 5.3564 

43.2900 43.5900 5.2787 3.1572 5.2441 

43.2900 43.6400 4.8605 3.1567 5.3266 

43.2900 43.6900 5.3283 3.1562 5.2347 

43.2900 43.7400 5.1965 3.1557 5.2598 

43.2900 43.8000 5.1588 3.1551 5.2670 

43.2900 43.8700 4.8959 3.1544 5.3194 

43.2900 43.9300 4.9955 3.1538 5.2992 

43.2900 44.0000 4.8431 3.1531 5.3302 

43.2900 44.0700 4.9388 3.1524 5.3106 

43.2900 44.1500 4.8934 3.1516 5.3199 

43.2900 44.2300 4.7515 3.1508 5.3493 

43.2900 44.3100 4.7436 3.1500 5.3510 

43.2900 44.4000 4.7159 3.1491 5.3568 

43.2900 44.4900 4.6366 3.1482 5.3738 

43.2900 44.5800 4.5869 3.1473 5.3846 

43.2900 44.6800 4.6469 3.1463 5.3716 
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(b1) ωb = 0.69 and φB+C = 0.1226 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

32.5200 32.8200 0.2473 3.2683 1.3970 

32.5200 32.8700 0.2372 3.2678 1.4389 

32.5200 32.9200 0.2313 3.2672 1.4639 

32.5200 32.9700 0.2290 3.2667 1.4742 

32.5200 33.0300 0.2236 3.2661 1.4979 

32.5200 33.1000 0.2158 3.2653 1.5332 

32.5200 33.1600 0.2114 3.2647 1.5538 

32.5300 33.2400 0.2051 3.2638 1.5841 

32.5300 33.3100 0.1937 3.2631 1.6414 

32.5300 33.3900 0.1930 3.2622 1.6449 

32.5300 33.4700 0.1881 3.2614 1.6710 

32.5300 33.5500 0.1822 3.2605 1.7025 

32.5300 33.6400 0.1728 3.2596 1.7554 

 

(b2) ωb = 0.69 and φB+C = 0.1525 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

33.5200 33.8700 0.0319 3.2571 3.4462 

33.5200 33.9200 0.0316 3.2566 3.4557 

33.5200 33.9700 0.0303 3.2561 3.4977 

33.5200 34.0300 0.0291 3.2554 3.5359 

33.5200 34.1000 0.0281 3.2547 3.5732 

33.5200 34.1600 0.0261 3.2540 3.6458 

33.5200 34.2300 0.0264 3.2533 3.6331 

33.5200 34.3000 0.0264 3.2526 3.6331 

33.5200 34.3800 0.0255 3.2517 3.6691 

33.5200 34.4600 0.0245 3.2509 3.7077 

33.5200 34.5400 0.0235 3.2500 3.7522 

33.5200 34.6300 0.0231 3.2491 3.7665 

33.5200 34.7200 0.0221 3.2481 3.8107 
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(b3) ωb = 0.69 and φB+C = 0.2027 

 

C

T

°
0  

C

T

°
 

s10 3 ⋅
τ
−  

13

1

K10 −−

−

⋅
T

 ln τ-1 

35.1200 35.6300 3.2986 3.2386 5.7143 

35.1200 35.7000 3.1911 3.2378 5.7474 

35.1200 35.7600 3.1778 3.2372 5.7516 

35.1200 35.8300 2.9127 3.2365 5.8387 

35.1200 35.9000 2.8707 3.2357 5.8532 

35.1200 35.9800 2.9582 3.2349 5.8232 

35.1200 36.0600 2.8982 3.2340 5.8437 

35.1200 36.1400 2.7712 3.2332 5.8885 

35.1200 36.2300 2.6793 3.2323 5.9222 

35.1200 36.3200 2.5929 3.2313 5.9550 

35.1200 36.4100 2.5554 3.2304 5.9696 

35.1200 36.5100 2.5152 3.2293 5.9854 

 

(c1) ωb = 0.58 and φB+C = 0.1023 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

26.5100 26.5700 3.4553 3.3364 -1.2399 

26.5100 26.6000 3.6518 3.3361 -1.2952 

26.5100 26.6200 3.1379 3.3359 -1.1436 

26.5100 26.6500 2.5740 3.3356 -0.9455 

26.5100 26.6900 2.3708 3.3351 -0.8632 

26.5100 26.7200 2.1511 3.3348 -0.7660 

26.5100 26.7700 2.1836 3.3342 -0.7810 

26.5100 26.8100 2.0240 3.3338 -0.7051 

26.5100 26.8600 2.0204 3.3332 -0.7033 

26.5100 26.9100 2.0347 3.3327 -0.7104 

26.5100 26.9600 1.9930 3.3321 -0.6896 

26.5100 27.0200 2.0315 3.3314 -0.7088 

26.5100 27.0900 1.9554 3.3307 -0.6706 

26.5100 27.1500 1.9024 3.3300 -0.6431 

26.5100 27.2200 1.8832 3.3292 -0.6330 

26.5100 27.2900 1.7969 3.3285 -0.5861 

26.5100 27.3700 1.6977 3.3276 -0.5293 

26.5100 27.4500 1.6809 3.3267 -0.5193 

26.5100 27.5300 1.6181 3.3258 -0.4813 
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(c2) ωb = 0.58 and φB+C = 0.1528 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

27.6100 27.6700 0.1261 3.3242 2.0707 

27.6100 27.7000 0.1401 3.3239 1.9654 

27.6100 27.7200 0.1341 3.3237 2.0094 

27.6100 27.7500 0.1303 3.3234 2.0382 

27.6100 27.7900 0.1254 3.3229 2.0762 

27.6100 27.8200 0.1182 3.3226 2.1354 

27.6100 27.8700 0.1213 3.3220 2.1095 

27.6100 27.9100 0.1177 3.3216 2.1399 

27.6100 27.9600 0.1120 3.3210 2.1893 

27.6100 28.0100 0.1054 3.3205 2.2497 

27.6100 28.0600 0.1031 3.3199 2.2721 

27.6100 28.1200 0.1030 3.3193 2.2727 

27.6100 28.1900 0.0977 3.3185 2.3262 

27.6100 28.2500 0.0924 3.3179 2.3820 

27.6100 28.3200 0.0882 3.3171 2.4285 

27.6100 28.3900 0.0839 3.3163 2.4781 

27.6100 28.4700 0.0810 3.3154 2.5129 

27.6100 28.5500 0.0766 3.3146 2.5692 

27.6100 28.6300 0.0726 3.3137 2.6228 

27.6100 28.7200 0.0675 3.3127 2.6951 

27.6100 28.8100 0.0639 3.3117 2.7510 
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(c3) ωb = 0.58 and φB+C = 0.2032 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

28.5400 28.6000 0.0136 3.3140 4.2952 

28.5400 28.6300 0.0146 3.3137 4.2290 

28.5400 28.6500 0.0141 3.3135 4.2639 

28.5400 28.6800 0.0135 3.3131 4.3026 

28.5400 28.7200 0.0141 3.3127 4.2639 

28.5400 28.7500 0.0143 3.3124 4.2498 

28.5400 28.8000 0.0138 3.3118 4.2831 

28.5400 28.8400 0.0124 3.3114 4.3928 

28.5400 28.8900 0.0117 3.3108 4.4510 

28.5400 28.9400 0.0116 3.3103 4.4539 

28.5400 28.9900 0.0113 3.3097 4.4830 

28.5400 29.0500 0.0104 3.3091 4.5659 

28.5400 29.1200 0.0101 3.3083 4.5966 

28.5400 29.1800 9.7803e-3 3.3076 4.6274 

28.5400 29.2500 9.2868e-3 3.3069 4.6792 

28.5400 29.3200 8.8481e-3 3.3061 4.7276 

28.5400 29.4000 8.6235e-3 3.3052 4.7533 

28.5400 29.4800 8.2441e-3 3.3044 4.7983 

28.5400 29.5600 7.8990e-3 3.3035 4.8410 

28.5400 29.6500 7.4682e-3 3.3025 4.8971 

28.5400 29.7400 7.2253e-3 3.3015 4.9302 
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(d1) ωb = 0.47 and φB+C = 0.1046 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

24.5800 24.6400 0.3230 3.3581 1.1302 

24.5800 24.6700 0.2871 3.3577 1.2480 

24.5800 24.6900 0.3091 3.3575 1.1740 

24.5800 24.7200 0.3057 3.3572 1.1850 

24.5800 24.7600 0.2995 3.3567 1.2058 

24.5800 24.7900 0.2900 3.3564 1.2378 

24.5800 24.8400 0.3011 3.3558 1.2003 

24.5800 24.8800 0.2964 3.3554 1.2160 

24.5800 24.9300 0.2960 3.3548 1.2173 

24.5800 24.9800 0.2932 3.3542 1.2270 

24.5800 25.0300 0.2940 3.3537 1.2241 

24.5800 25.0900 0.2956 3.3530 1.2189 

24.5800 25.1600 0.2903 3.3522 1.2367 

24.5800 25.2200 0.2874 3.3515 1.2470 

24.5800 25.2900 0.2877 3.3508 1.2457 

24.5800 25.3600 0.2833 3.3500 1.2612 

24.5800 25.4400 0.2799 3.3491 1.2734 

24.5800 25.5200 0.2751 3.3482 1.2906 

24.5800 25.6000 0.2523 3.3473 1.3770 

24.5800 24.6400 0.3230 3.3581 1.1302 

24.5800 24.6700 0.2871 3.3577 1.2480 
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(d2) ωb = 0.47 and φB+C = 0.1531 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

25.3600 25.4200 0.0562 3.3493 2.8794 

25.3600 25.4500 0.0563 3.3490 2.8765 

25.3600 25.4700 0.0583 3.3487 2.8422 

25.3600 25.5000 0.0498 3.3484 2.9991 

25.3600 25.5400 0.0538 3.3480 2.9231 

25.3600 25.5700 0.0523 3.3476 2.9514 

25.3600 25.6200 0.0495 3.3471 3.0051 

25.3600 25.6600 0.0501 3.3466 2.9944 

25.3600 25.7100 0.0497 3.3460 3.0018 

25.3600 25.7600 0.0467 3.3455 3.0633 

25.3600 25.8100 0.0459 3.3449 3.0820 

25.3600 25.8700 0.0447 3.3443 3.1085 

25.3600 25.9400 0.0429 3.3435 3.1497 

25.3600 26.0000 0.0423 3.3428 3.1630 

25.3600 26.0700 0.0403 3.3420 3.2106 

25.3600 26.1400 0.0383 3.3412 3.2623 

25.3600 25.4200 0.0562 3.3493 2.8794 

25.3600 25.4500 0.0563 3.3490 2.8765 

25.3600 25.4700 0.0583 3.3487 2.8422 

25.3600 25.5000 0.0498 3.3484 2.9991 

25.3600 25.5400 0.0538 3.3480 2.9231 
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(d3) ωb = 0.47 and φB+C = 0.2046 

 

C

T

°
0  

C

T

°
 

s10 3 ⋅
τ
−  

13

1

K10 −−

−

⋅
T

 ln τ-1 

25.8400 25.9000 3.8582 3.3439 5.5576 

25.8400 25.9300 5.4114 3.3436 5.2192 

25.8400 25.9500 4.8668 3.3434 5.3253 

25.8400 25.9800 5.2290 3.3430 5.2535 

25.8400 26.0200 4.8692 3.3426 5.3248 

25.8400 26.0500 4.1497 3.3422 5.4847 

25.8400 26.1000 4.5565 3.3417 5.3912 

25.8400 26.1400 4.1733 3.3412 5.4791 

25.8400 26.1900 4.3168 3.3407 5.4452 

25.8400 26.2400 4.0257 3.3401 5.5151 

25.8400 26.2900 4.1313 3.3396 5.4892 

25.8400 26.3500 3.8886 3.3389 5.5497 

25.8400 26.4200 3.8047 3.3381 5.5715 

25.8400 26.4800 3.5856 3.3374 5.6308 

25.8400 26.5500 3.5003 3.3367 5.6549 

25.8400 26.6200 3.3481 3.3359 5.6994 

25.8400 26.7000 3.3750 3.3350 5.6914 

25.8400 26.7800 3.1221 3.3341 5.7692 

25.8400 26.8600 3.2010 3.3332 5.7443 

25.8400 25.9000 3.8582 3.3439 5.5576 

25.8400 25.9300 5.4114 3.3436 5.2192 

 

(e1) ωb = 0.37 and φB+C = 0.0998 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

23.3300 23.4400 0.0257 3.3717 3.6613 

23.3300 23.4700 0.0310 3.3713 3.4738 

23.3300 23.5100 0.0268 3.3709 3.6181 

23.3300 23.5400 0.0310 3.3705 3.4748 

23.3300 23.5900 0.0293 3.3700 3.5302 

23.3300 23.6300 0.0335 3.3695 3.3972 

23.3300 23.6800 0.0338 3.3689 3.3863 

23.3300 23.7300 0.0358 3.3684 3.3298 

23.3300 23.7800 0.0360 3.3678 3.3252 

23.3300 23.8400 0.0392 3.3671 3.2382 

23.3300 23.9100 0.0405 3.3663 3.2073 

23.3300 23.9700 0.0447 3.3656 3.1078 

23.3300 24.0500 0.0460 3.3647 3.0791 
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(e2) ωb = 0.37 and φB+C = 0.1560 

 

C

T

°
0  

C

T

°
 

s10 3 ⋅
τ
−  

13

1

K10 −−

−

⋅
T

 ln τ-1 

24.0900 24.1500 4.5911 3.3636 5.3836 

24.0900 24.1800 5.8541 3.3633 5.1406 

24.0900 24.2000 6.4325 3.3630 5.0464 

24.0900 24.2300 6.4175 3.3627 5.0487 

24.0900 24.2700 5.4884 3.3622 5.2051 

24.0900 24.3000 5.5711 3.3619 5.1902 

24.0900 24.3500 6.0021 3.3613 5.1157 

24.0900 24.3900 6.5640 3.3609 5.0262 

24.0900 24.4400 6.5636 3.3603 5.0262 

24.0900 24.4900 6.6709 3.3598 5.0100 

24.0900 24.5400 6.9535 3.3592 4.9685 

24.0900 24.6000 6.8434 3.3585 4.9845 

24.0900 24.6700 7.1780 3.3577 4.9367 

24.0900 24.7300 7.4072 3.3571 4.9053 

24.0900 24.8000 7.5808 3.3563 4.8821 

24.0900 24.8700 7.7863 3.3555 4.8554 

 

(e3) ωb = 0.37 and φB+C = 0.2004 

 

C

T

°
0  

C

T

°
 

s10 3 ⋅
τ
−  

13

1

K10 −−

−

⋅
T

 ln τ-1 

24.5400 24.6500 1.1020 3.3580 6.8106 

24.5400 24.6800 1.1198 3.3576 6.7946 

24.5400 24.7200 1.1030 3.3572 6.8097 

24.5400 24.7500 1.2937 3.3568 6.6503 

24.5400 24.8000 1.3245 3.3563 6.6267 

24.5400 24.8400 1.3006 3.3558 6.6449 

24.5400 24.8900 1.3655 3.3553 6.5962 

24.5400 24.9400 1.3612 3.3547 6.5994 

24.5400 24.9900 1.5234 3.3541 6.4868 

24.5400 25.0500 1.5327 3.3535 6.4807 

24.5400 25.1200 1.6506 3.3527 6.4066 

24.5400 25.1800 1.8001 3.3520 6.3199 
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(f1) ωb = 0.42 and φB+C = 0.1002 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

23.8700 23.9300 0.0863 3.3661 2.4499 

23.8700 23.9600 0.0818 3.3658 2.5035 

23.8700 23.9800 0.0852 3.3655 2.4631 

23.8700 24.0100 0.0944 3.3652 2.3606 

23.8700 24.0500 0.0892 3.3647 2.4172 

23.8700 24.0800 0.0907 3.3644 2.4002 

23.8700 24.1300 0.0946 3.3638 2.3585 

23.8700 24.1700 0.0934 3.3634 2.3712 

23.8700 24.2200 0.0976 3.3628 2.3272 

23.8700 24.2700 0.0984 3.3622 2.3187 

23.8700 24.3200 0.1031 3.3617 2.2724 

23.8700 24.3800 0.1061 3.3610 2.2431 

23.8700 24.4500 0.1076 3.3602 2.2296 

23.8700 24.5100 0.1108 3.3595 2.2003 

23.8700 24.5800 0.1122 3.3587 2.1872 

23.8700 24.6500 0.1139 3.3580 2.1721 

23.8700 24.7300 0.1176 3.3571 2.1402 

 

(f2) ωb = 0.42 and φB+C = 0.1500 

 

C

T

°
0  

C

T

°
 

s

τ
 

13

1

K10 −−

−

⋅
T

 ln τ-1 

24.5700 24.6300 0.0158 3.3582 4.1499 

24.5700 24.6600 0.0146 3.3578 4.2245 

24.5700 24.6800 0.0149 3.3576 4.2064 

24.5700 24.7100 0.0142 3.3573 4.2522 

24.5700 24.7500 0.0140 3.3568 4.2663 

24.5700 24.7800 0.0162 3.3565 4.1207 

24.5700 24.8300 0.0153 3.3559 4.1777 

24.5700 24.8700 0.0150 3.3555 4.1997 

24.5700 24.9200 0.0143 3.3549 4.2475 

24.5700 24.9700 0.0146 3.3544 4.2245 

24.5700 25.0200 0.0145 3.3538 4.2359 

24.5700 25.0800 0.0145 3.3531 4.2313 

24.5700 25.1500 0.0148 3.3523 4.2131 

24.5700 25.2100 0.0147 3.3517 4.2199 

24.5700 25.2800 0.0144 3.3509 4.2382 

 



9 Appendix 147 

(f3) ωb = 0.42 and φB+C = 0.1999 
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T

°
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T

°
 

s10 3 ⋅
τ

−  
13

1

K10 −−

−

⋅
T

 ln τ-1 

25.2000 25.2600 3.6011 3.3511 5.6265 

25.2000 25.2900 2.6195 3.3508 5.9448 

25.2000 25.3100 3.1096 3.3505 5.7733 

25.2000 25.3400 2.7032 3.3502 5.9133 

25.2000 25.3800 2.3805 3.3497 6.0404 

25.2000 25.4100 2.4966 3.3494 5.9928 

25.2000 25.4600 2.5810 3.3488 5.9596 

25.2000 25.5000 2.5417 3.3484 5.9749 

25.2000 25.5500 2.6388 3.3478 5.9374 

25.2000 25.6000 2.6335 3.3473 5.9394 

25.2000 25.6500 2.6641 3.3467 5.9279 

25.2000 25.7100 2.4895 3.3460 5.9957 

25.2000 25.7800 2.5007 3.3453 5.9912 

25.2000 25.8400 2.4799 3.3446 5.9996 

25.2000 25.9100 2.5035 3.3438 5.9901 

25.2000 25.9800 2.5960 3.3430 5.9538 

 

(f4) ωb = 0.42 and φB+C = 0.2501 

 

C

T

°
0  

C

T

°
 

s10 6 ⋅
τ

−  
13

1

K10 −−

−

⋅
T

 ln τ-1 

25.7700 25.8300 552.76 3.3447 7.5006 

25.7700 25.8600 492.26 3.3444 7.6165 

25.7700 25.8800 508.00 3.3441 7.5850 

25.7700 25.9100 523.38 3.3438 7.5552 

25.7700 25.9500 620.99 3.3434 7.3842 

25.7700 25.9800 540.94 3.3430 7.5222 

25.7700 26.0300 533.70 3.3425 7.5357 

25.7700 26.0700 515.00 3.3420 7.5713 

25.7700 26.1200 577.44 3.3415 7.4569 

25.7700 26.1700 566.73 3.3409 7.4756 

25.7700 26.2200 565.21 3.3403 7.4783 

25.7700 26.2800 595.40 3.3397 7.4263 

25.7700 26.3500 610.70 3.3389 7.4009 

25.7700 26.4100 634.25 3.3382 7.3631 

25.7700 26.4800 662.39 3.3374 7.3197 
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Table 9.5: Surfactant / (oil + surfactant) volume fraction ωb dependence of the activation energies Ea 
in [kJ / mol] and the standard error ΔEa in [kJ / mol]. 

bω  
1molkJ −⋅

aE
 

1molkJ −⋅
Δ aE

 

0.81 72.6667 12.7410 

0.69 297.0000 48.6621 

0.58 491.6667 2.5166 

0.47 297.3333 169.2375 

0.42 -125.5000 177.8511 

0.37 -580.0000 121.2436 

 

9.2.2 Isothermal shear experiments 

Table 9.6: Surfactant / (oil + surfactant) volume fractions ωb, bilayer volume fractions φB+C, 

compositions ( O/NaClH 2
m , octanenm − , and 

410ECm ) in [g] of the L3 phase samples for isothermal shear 

experiments and the phase boundary temperatures 
3�3 LLLT →+ and 

313 L'LLT +→ of the respective L3 phase 

coexistence regions in [°C]. 

bω  CB+φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.6874 0.0300 9.6861 0.0660 0.1978 30.3500 30.8800 

0.6874 0.0400 12.6944 0.1165 0.3494 30.4500 31.0500 

0.6875 0.0500 9.4848 0.1100 0.3301 30.6800 31.1400 

0.6874 0.0600 9.3815 0.1319 0.3957 30.7000 31.4500 

0.6874 0.0700 9.2841 0.1538 0.4616 30.8300 31.6800 

0.6874 0.0801 9.1891 0.1763 0.5288 31.0400 31.9400 

0.5765 0.0300 9.6850 0.0894 0.1659 25.4500 26.0000 

0.5765 0.0400 9.5826 0.1191 0.2211 25.5900 26.2600 

0.5765 0.0500 9.4847 0.1489 0.2766 25.8000 26.5200 

0.5765 0.0600 9.3871 0.1787 0.3319 25.9600 26.8000 
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Table 9.7: Bilayer volume fraction φB+C dependence of the relaxation times τ in [s] and relaxation time 
constants τ-1 in [s-1] for isothermal shear experiments for two surfactant / (oil + surfactant) volume 
fractions ωb. 

bω  CB+φ  
s

τ
 

1

1

s−

−τ
 

0.6874 0.0300 306.0725 3.2672e-3 

0.6874 0.0400 183.7425 5.4424e-3 

0.6875 0.0500 121.4506 8.2338e-3 

0.6874 0.0600 54.9551 0.0182 

0.6874 0.0700 28.0899 0.0356 

0.5765 0.0300 174.1341 5.7427e-3 

0.5765 0.0400 106.6246 9.3787e-3 

0.5765 0.0500 50.5050 0.0198 

0.5765 0.0600 26.8817 0.0372 

 

9.2.3 SANS experiments 

Table 9.8: Surfactant / (oil + surfactant) volume fractions ωb, surfactant volume fractions φC, 

compositions O/NaClH 2
m , octanenm − , and 

410ECm  in [g] of the L3 phase samples for SANS experiments 

in film contrast and the phase boundary temperatures 
3�3 LLLT →+ and 

313 L'LLT +→ of the respective L3 

phase coexistence region in [°C]. 

bω  Cφ  
g

OD2
m

 
g
octanedm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.6876 0.0802 1.9595 0.0596 0.1544 31.11 32.17 

0.6875 0.0997 1.8958 0.0741 0.1919 31.32 32.39 

0.6874 0.1250 1.8139 0.0929 0.2405 32.46 33.47 

0.6873 0.1562 1.7135 0.1162 0.3007 33.60 34.58 

0.6874 0.1954 1.5865 0.1452 0.3759 35.22 36.46 

0.6874 0.2444 1.4279 0.1815 0.4699 36.85 38.47 

0.6875 0.3057 1.2300 0.2268 0.5875 38.68 41.25 

0.6875 0.0247 2.1390 0.0183 0.0475 28.95 >30.50 

0.3749 0.0997 1.6268 0.2716 0.1918 24.73 24.78 

0.4726 0.0997 1.7491 0.1818 0.1918 25.52 26.06 

0.5765 0.0997 1.8338 0.1197 0.1918 27.45 28.06 

0.6875 0.0997 1.8960 0.0741 0.1919 31.32 32.38 

0.8061 0.0997 1.9434 0.0392 0.1918 40.27 41.40 

0.9001 0.0997 1.9721 0.0181 0.1919 47.89 49.26 

1.0000 0.0996 1.9969 0.0000 0.1918 51.53 53.62 
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Table 9.9: Surfactant / (oil + surfactant) volume fractions ωb, surfactant volume fractions φC, 

compositions O/NaClH 2
m , octanenm − , and 

410ECm  in [g] of the L3 phase samples for SANS experiments 

in bulk contrast and the phase boundary temperatures 
3�3 LLLT →+ and 

313 L'LLT +→ of the respective L3 

phase coexistence regions in [°C]. 

bω  Cφ  
g

OD2
m

 
g
octanenm −  

g
410 ECm

 
C°

→+ 3�3 LLLT
 

C°
+→ 313 L'LLT

 

0.6873 0.0800 1.9598 0.0513 0.1540 30.86 31.69 

0.6874 0.0997 1.8961 0.0638 0.1918 31.60 32.40 

0.6874 0.1563 1.7126 0.1000 0.3007 33.29 34.38 

0.6874 0.3055 1.2308 0.1955 0.5874 38.74 40.94 

0.4726 0.0997 1.7494 0.1567 0.1918 25.17 25.69 

0.6874 0.0997 1.8961 0.0638 0.1918 31.60 32.40 

1.0000 0.0997 1.9972 0.0000 0.1919 51.46 53.57 

 

Table 9.10: Surfactant volume fractions φC, scattering length qd in [Å] for the midplane distance d in 
film and bulk contrast, and the associated midplane distances d in [Å] in film and bulk contrast. 

Cφ  
1Å −

− filmqd  
1Å −

− bulkqd  
Å
filmd −

 
Å
bulkd −

 

0.0802 0.0125 0.0125 502.656 502.656 

0.0997 0.0167 0.0155 376.240 405.368 

0.1250 0.0197 - 318.944 - 

0.1562 0.0268 0.0268 234.448 234.448 

0.1954 0.0310 - 202.684 - 

0.2444 0.0435 - 144.441 - 

0.3057 0.0549 0.0549 114.448 114.448 

 

Table 9.11: Surfactant / (oil + surfactant) volume fractions ωb, fudge factor f, variance t [Å] of the 
diffuseness of the monolayer, the incoherent background Iincoh [cm-1], the polydispersity σ [Å] of the 
bilayer, distance between the bilayer midplane and one of the monolayers ε in [Å] and the associated 
bilayer thickness 2ε in [Å] in film contrast for φC = 0.1. 

bω  f 
Å
t

 
1cm−

IncohI
 

Å
σ

 
Å
ε

 
Å
�2

 

0.4726 0.850 5.20 0.132 6.15 20.70 41.40 

0.5765 0.875 5.30 0.142 3.95 15.75 31.50 

0.6875 0.890 5.25 0.134 2.58 11.70 23.40 

0.8061 0.930 5.30 0.130 1.90 8.80 17.60 

0.9001 0.930 5.30 0.127 1.85 7.30 14.60 
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Table 9.12: Surfactant volume fractions φC, fudge factor f, variance t [Å] of the diffuseness of the 
monolayer, the incoherent background Iincoh [cm-1], the polydispersity σ [Å] of the bilayer, distance 
between the bilayer midplane and one of the monolayers ε in [Å] and the associated bilayer thickness 
2ε in [Å] in film contrast for ωb, = 0.69. 

Cφ  f 
Å
t

 1cm−
IncohI

 
Å
σ

 
Å
ε

 
Å
�2

 

0.0802 0.950 5.50 0.120 2.55 11.70 23.40 

0.0997 0.890 5.25 0.134 2.58 11.70 23.40 

0.1250 0.900 5.30 0.165 2.60 11.70 23.40 

0.1562 0.900 5.25 0.185 2.63 11.60 23.20 

0.1954 0.620 5.15 0.260 2.60 11.80 23.60 

0.2444 0.880 5.25 0.280 2.65 11.45 22.90 

0.3057 0.850 5.50 0.348 2.65 11.45 22.90 

 

Table 9.13: Surfactant volume fraction φC, lower L3 phase boundary temperature 3L
lT  [°C], the 

spontaneous curvature of the monolayers c0 [Å
 -1], interbilayer distance d [Å], saddle-splay modulus 

bilκ  [kBT], and the topological persistence length κξ  [Å]. Values are calculated with κbil = 1.96 kBT, 

monoκ  = -0.37 kBT and a = 2ε,  

at ωb = 0.69 ⇒ 2ε = 23.4 Å 

φC 3L
lT  / °C c0 / Å

-1 d / Å 
bilκ  / kBT κξ  / Å 

0.0802 31.1100 -8.9180e-3 502.656 -0.3310 81.4924 
0.0997 31.3200 -9.2120e-3 376.240 -0.3175 77.4534 

0.1250 32.4600 -0.0108 318.944 -0.2443 58.7755 

0.1562 33.6000 -0.0124 234.448 -0.1711 44.6018 

0.1954 35.2200 -0.0147 202.684 -0.0671 30.1334 

0.2444 36.8500 -0.0170 144.441 0.0376 20.3091 

0.3057 38.6800 -0.0195 114.448 0.1551 13.0410 

 

at ωb = 0.58 ⇒ 2ε = 31.5 Å 

φC 3L
lT  / °C c0 / Å

-1 d / Å 
bilκ  / kBT κξ  / Å 

0.0588 26.6400 -2.6600e-3 663.639 -0.5758 276.0492 
0.0881 27.5000 -3.8640e-3 444.764 -0.5014 208.5846 

0.1173 28.6800 -5.5160e-3 334.047 -0.3994 142.0015 

0.1465 29.1800 -6.2160e-3 267.466 -0.3562 120.6521 

0.1755 29.9700 -7.3220e-3 223.269 -0.2879 93.2689 
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at ωb = 0.47⇒ 2ε = 41.4 Å 

φC 3L
lT  / °C c0 / Å

-1 d / Å 
bilκ  / kBT κξ  / Å 

0.0354 23.9900 1.0500e-4 1106.8854 -0.8252 929.0780 
0.0494 24.5000 3.3600e-4 793.1932 -0.7673 746.7853 

0.0732 25.1800 -6.1600e-4 535.2970 -0.6900 558.1109 

0.0966 25.8300 -1.5260e-3 405.6288 -0.6162 422.4984 

0.1184 26.5000 -2.4640e-3 330.9438 -0.5401 317.1099 

0.1406 27.1000 -3.3040e-3 278.6895 -0.4719 245.2528 

 

at ωb = 0.37⇒ 2ε = 48.0 Å 

φC 3L
lT  / °C c0 / Å

-1 d / Å 
bilκ  / kBT κξ  / Å 

0.0281 22.9500 2.5060e-4 1394.4392 -0.9759 1901.7041 
0.0375 23.3300 1.9740e-4 1044.8998 -0.9258 1574.5775 

0.0586 24.0300 9.9400e-4 668.6646 -0.8336 1112.1166 

0.0750 24.5100 3.2200e-4 522.4499 -0.7703 876.1895 

0.0937 24.9900 -3.5000e-4 418.1830 -0.7071 690.3125 

0.1124 25.4400 -9.8000e-4 348.6098 -0.6478 552.0336 

 

9.2.4 T-jump experiments on the oil-rich L3 phase 

Table 9.14: Surfactant / (water + surfactant) volume fractions ωa, bilayer volume fractions φA+C, 

compositions ( O/NaClH 2
m , octanenm − , and 

410ECm ) in [g] of the L3 phase samples for experiments on the 

oil-rich side and the phase boundary temperatures 
323 LLLT →+ and 

33 LLLT +→ α
of the respective L3 phase 

coexistence regions in [°C]. 

aω  CA+φ  
g
O/NaClH 2

m
 

g
octanenm −  

g
410 ECm

 
C°

→+ 323 LLLT
 

C°
+→ α 33 LLLT

 

0.4723 0.1501 1.0286 7.7728 0.8845 21.9100 22.5000 

0.4726 0.2004 1.3713 7.3104 1.1810 20.6300 21.3600 

0.4723 0.2501 1.7120 6.8534 1.4722 19.4200 20.3100 

0.4731 0.3007 2.0780 6.4602 1.7931 18.1400 19.2700 

0.4726 0.3502 2.3982 5.9440 2.0649 16.9800 18.3100 

0.4230 0.1502 1.1234 7.7607 0.7915 23.0800 23.2900 

0.4224 0.1993 1.5612 7.6510 1.0972 22.0400 22.4500 

0.4227 0.2502 1.9236 7.0330 1.3532 21.3000 21.8600 

0.4225 0.3005 2.2351 6.3463 1.5710 20.1500 20.8400 

0.4228 0.3499 2.6216 5.9442 1.8456 19.1800 20.0300 
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Table 9.15: Bilayer volume fraction φA+C dependence of the relaxation times τ in [s] and relaxation 
time constants τ-1 in [s-1] for T-jump experiments on the oil-rich L3 phase for two surfactant / (water + 
surfactant) volume fractions ωa. 

aω  CA+φ  
s

τ
 

1

1

s−

−τ
 

0.4726 0.2004 0.1268 7.8864 

0.4723 0.2501 0.0433 23.0946 

0.4731 0.3007 0.0137 72.9927 

0.4224 0.1993 0.0105 94.9367 

0.4227 0.2502 0.0045 221.5453 

0.4225 0.3005 0.0017 574.5035 

0.4228 0.3499 0.0011 931.5323 
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