

Cuvillier Verlag Göttingen Internationaler wissenschaftlicher Fachverlag

 \bigtriangledown

Totalsynthese von Spinosynanaloga

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Totalsynthese von Spinosynanaloga

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

"Doctor rerum naturalium"

der Georg-August-Universität Göttingen

vorgelegt von

Nina Schützenmeister

aus Reinbek

Göttingen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2012

Zugl.: Göttingen, Univ., Diss., 2012

978-3-95404-128-2

D7

Referent:	Prof. Dr. Dr. h. c. Lutz F. Tietze
Koreferent:	Prof. Dr. U. Diederichsen

Tag der mündlichen Prüfung: 25.01.2012

© CUVILLIER VERLAG, Göttingen 2012 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2012

Gedruckt auf säurefreiem Papier

978-3-95404-128-2

Die vorliegende Arbeit wurde in der Zeit von Dezember 2006 bis Dezember 2011 unter der Leitung von Herrn Prof. Dr. Dr. h. c. Lutz F. Tietze am Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen angefertigt.

Großer Dank gilt Herrn Prof. Dr. Dr. h. c. Lutz F. Tietze für die interessante Themenstellung, die Schaffung herausragender Arbeitsbedingungen sowie für sein Vertrauen, seine Unterstützung und sein Interesse am Fortgang dieser Arbeit.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Q

A Inhaltsverzeichnis

А	Inhaltsverzeichnis1
В	Einleitung4
С	Theoretische Grundlagen5
1	Der moderne Pflanzenschutz5
1.1	Pflanzenschutzmittel5
1.2	Naturstoffe und deren Analoga als Pflanzenschutzmittel
1.3	Naturstoffklasse der Spinosyne14
1.4	Naturstoffderivatisierung 20
1.5	Biosynthese
1.6	Totalsynthesen von Spinosyn A26
2	Die Heck-Reaktion
2.1	Mechanismus der Heck-Reaktion31
2.2	Regioselektive Heck-Reaktionen37
D	Zielsetzung und Planung der Arbeit48
3	Planung der Arbeit
4	Retrosynthese
E	Ergebnisse und Diskussion52
5	Synthese des aromatischen Vinyliodids 154 52
5.1	Synthese des Glycosylakzeptors 167 52
5.2	Synthese des Vinyliodids 15452
6	Synthese des Pyridin-Bausteins 16458
6.1	Synthese des Vinyliodids 16458
7	Synthese <i>cis</i> -verknüpfter Cyclopentene
7.1	Stereochemische Aspekte der Heck-Reaktion61
7.2	Synthese des Lactons <i>rac</i> -19462
7.3	Synthese des Aldehyds <i>rac</i> -20164
7.4	Synthese der Aldehyde 218 und 21966
7.5	Synthese der Diole 213 und 21270
7.6	Synthese der Aldehyde 218 und 21971
8	Synthese des C-6-Fragments 229
9	Grignard-Reaktion

2 | Inhaltsverzeichnis

9.1	Synthese der Alkohole 230 und 231	78
9.2	Synthese der Alkohole 233 und 234	79
10	Synthese der Lev- und Fmoc-geschützten Derivate	80
10.1	Synthese der Lev-geschützten Derivate	80
10.2	Synthese der Fmoc-geschützten Derivate	
11	Synthese des enantiomerenreinen Cyclopentens 255	
12	Synthese diverser Tricyclen	92
12.1	Doppelte Heck-Reaktion	92
12.2	Doppelte Heck-Reaktion mit dem Carbamat 210	92
12.3	Doppelte Heck-Reaktion mit dem Alkohol 211	
12.4	Zweifache Heck-Reaktion mit dem Grignard-Produkt 231	100
12.5	Heck-Reaktion mit den Glycosiden 271 und 272	102
12.6	Intermolekulare Heck-Reaktion mit dem Macrolacton 248	104
12.7	Synthese der Tricyclen 280 und 282	105
13	Synthese des Alkohols 301	
13.1	Synthese des Glycosylakzeptors 289	
13.2	Synthese des Alkohols 301	112
14	Glycosidierung des Spinosyn-Analogons 305	114
14.1	Synthese der Spinosyn-Analoga 306 und 307	114
14.2	Diskussion der spektroskopischen Daten des β-Glycosids 306	115
F	Zusammenfassung	119
15	Synthese von Spinosynanaloga	
15.1	Synthese der Vinyliodide 154 und 164	120
15.2	2 Synthese der Cyclopenten-Derivate	
15.3	Zweifache Heck-Reaktion	
15.4	Untersuchungen zur Einführung des Forosamins	126
G	Experimenteller Teil	
16	Allgemeines	
16.1	Instrumentelle Analytik und verwendete Geräte	128
16.2	2 Chromatographische Methoden	130
17	Verwendung und Herstellung von Reagenzien	132
17.1	Palladiumkatalysatoren	
17.2	Silylierungsreagenzien	
17.3	B Dess-Martin-Periodinan	
4.0	Even arite antalla Marsahriftan	122

Inhaltsverzeichnis 3

 $\langle \! \rangle$

18.1		Synthese des Benzaldehydderivates 167	133
18.2		Synthese des Glycosyldonors 168	
18.3		Synthese des Vinyliodids 154	
18.4		Synthese des Pyridinderivates 164	141
18.5		Synthese des Cyclopentenbausteins	147
18.6		Synthese des C-3-Fragmentes	155
18.7		Synthese der Aldehyde 218 und 219	156
18.8		Synthese des C-6-Fragments	
18.9		Grignard-Reaktionen	
18.1	0	Synthese der Lävulinyl-geschützten Derivate	
18.1	1	Synthese der Fmoc-geschützten Derivate	
19	Syr	nthese des enantiomerenreinen Cyclopentenbausteins 289	
19.2		Synthese diverser Tricyclen mittels Heck-Reaktionen	201
19.3		Heck-Reaktion mit dem enantiomerenreinen Cyclopenten 289	210
20	Syr	nthese des Alkohols 284	217
21	Gly	cosylierung mit D-Forosamin-Derivaten	227
22	Ga	schromatogramme des Acetats 255	230
23	Ab	kürzungsverzeichnis	232
24	Lite	eraturverzeichnis	234
н	Dan	ksagung	243

B Einleitung

In Deutschland wurde im Jahr 2011 ca. 6 Millionen Tonnen Raps produziert. Die stete Steigerung der Produktion ist auf die Verwertung des Rapsöls als Biodiesel zurückzuführen. ¾ der Rapsölproduktion wurde einzig zur Produktion des benötigten Biodiesels verwendet^[1].

Der Welthungerindex WHI zeigt die jährliche Entwicklung der Ernährungssituation der Weltbevölkerung. 14% der Weltbevölkerung sind chronisch oder akut unterernährt. Jedes Jahr sterben 5.5 Million Kinder an den Folgen ihrer Unterernährung^[2].

Somit ist eine Ertragssteigerung in der modernen Landwirtschaft von essentieller Bedeutung. Um dies zu erreichen, werden immer neue Pflanzenschutzmittel benötigt, weil immer mehr Schadorganismen Resistenzen gegenüber Pflanzenschutzmitteln entwickeln. So stellen Pilze, Unkräuter und Insekten neben den Wettereinflüssen die größte Bedrohung für die Ernteerträge dar.

Nicht selten dienen Naturstoffe, welche aus Mikroorganismen, Pflanzen und Pilzen isoliert werden, als Leitstrukturen in der Arzneimittelentwicklung oder dem Pflanzenschutz. Wegen der zumeist nur geringen Verfügbarkeit an isoliertem Material ist die organische Synthese ein unumgängliches Werkzeug für die Bereitstellung von Naturstoffen. Von besonders großem Interesse ist bei der Entwicklung neuer Methoden die Effizienz, Ökonomie und Ökologie. Einen wichtigen Beitrag dazu liefert die moderne Katalysechemie, insbesondere die Palladium-katalysierten C-C-Bindungsknüpfungen. Die Heck-Reaktion ist nur eine der vielen nützlichen Palladiumkatalysierten Reaktionen.

Die vorliegende Arbeit beschäftigt sich mit der Totalsynthese von Spinosyn-Analoga, einer Naturstoffklasse, welche sich durch ihre selektive insektizide Wirkung auszeichnet. Besondere Schwerpunkte liegen auf der Untersuchung der Heck-Reaktion im Rahmen dieser Totalsynthese.

C Theoretische Grundlagen

1 Der moderne Pflanzenschutz

1.1 Pflanzenschutzmittel^[3]

Die bis heute erreichte Leistungsfähigkeit der Agrarindustrie ist maßgeblich auf den Einsatz von Pflanzenschutzmittel zurückzuführen.

Die Anforderungen an ein modernes Pflanzenschutzmittel sind vielfältig. So sollte es idealerweise eine selektive Wirkung auf Schadorganismen, keine Toxizität gegenüber Nutzorganismen und eine exzellente Umweltverträglichkeit aufweisen. Zur Vermeidung von Kreuzresistenzen sollte sich ferner der Wirkmechanismus von dem anderer Pflanzenschutzmittel unterscheiden. Außerdem muss die Bereitstellung des Wirkstoffes wirtschaftlich sein. Die wahrscheinlich größten Probleme im modernen Pflanzenschutz sind heute die Bienentoxizität und die Entwicklung von Resistenzen.

Ertragsausfälle können, neben rein wirtschaftlichen Schäden, im schlimmsten Fall existenzbedrohende Ausmaße annehmen. Um eine Schädigung der Kulturpflanze und ihrer Früchte zu verhindern, sind Pflanzenschutzmittel bis heute, trotz der Entwicklung neuer, leistungsfähiger Kulturpflanzen, unbestritten alternativlos. Neben den Witterungsbedingungen stellen Pilze, Unkraut und Insekten die größte Gefahr für den Ernteertrag dar.

Die ersten eingesetzten Pflanzenschutzmittel waren anorganischen Ursprungs und wegen ihrer unselektiven Wirkung auch für den Mensch und Nutzinsekten potenziell schädlich. Der moderne Pflanzenschutz sieht im Idealfall eine Anwendung von Pestiziden im Rahmen des integrierten Pflanzenschutzes vor. In diesem Konzept werden ökonomische und ökologische Aspekte des Pflanzenschutzes verknüpft und können bei einer Maximierung der biologischen und mechanischen Schutzmechanismen gleichzeitig eine Minimierung der chemischen Pestizide beinhalten^[4]. Ab 1. Januar 2014 wird innerhalb der EU die Anwendung des integrierten Pflanzenschutzes Pflicht^[5].

\bigtriangledown

6 Der moderne Pflanzenschutz

Die Pflanzenschutzmittel unterteilen sich ihren Zielorganismen nach in drei Sparten: Fungizide, Herbizide und Insektizide. Allein in Deutschland wurde im Jahr 2010 eine Wirkstoffmenge von 40844 t abgesetzt. Hierbei liefern die Herbizide mit ca. 40% den größten Anteil an den ausgebrachten Spritzmitteln^[6].

1.1.1 Fungizide^[7]

Fungizide sind chemische Verbindungen, die Pilzerkrankungen der Pflanze, z. B. den Mehltau, bekämpfen.

Der Einsatz von Fungiziden reicht bis in die Mitte des 19. Jahrhunderts, als Schwefelkalk, eine Mischung aus Calciumpolysulfiden, zur Bekämpfung von Mehltau eingesetzt wurde. Ebenfalls anorganischem Ursprungs war auch die sogenannte Bordeaux-Brühe, eine Suspension von CuSO₄ in Kalkmilch, welche hervorragende Wirkeigenschaften gegen den falschen Mehltau *Plasmopara viticola* besitzt, jedoch aufgrund ihrer starken Basizität schwere Verätzungen verursacht und bei Überdosierung auch die Pflanze schädigt. Schwefelkalk wurde hingegen 2011 wieder für eine Anwendung im Pflanzenschutz zugelassen^[8].

Anfang des 20. Jahrhunderts etablierten sich die ersten organischen Fungizide. Diese Organo-Quecksilber-Verbindungen hatten trotz ihrer ausgezeichneten fungiziden Wirkung den Nachteil, dass sich giftiges Quecksilber in der Nahrungskette anreicherte. Die ersten Fungizide mit einer spezifischen Wirkungsweise waren die Carboxamide, Benzimidazole und die Sterol-Biosynthese-Inhibitoren.

Theoretische Grundlagen 7

Abbildung 1: Beispiele für moderne Fungizide

Strukturell sind die Fungizide sehr vielfältig (Abbildung 1). Oftmals werden heterocyclische Systeme verwendet. So finden sich Di- und Triazole (z. B. Flumetsulam **4** oder Epoxiconazol **5**) und einfache Heterocyclen wie die hochsubstituierten Pyridin-Derivate Dithiopyr **2** und Thiazopyr **3** unter den gebräuchlichsten Fungiziden. Ferner hat auch die Einführung von Fluor-Substituenten zumeist einen positiven Einfluss auf die fungizide Wirkung.

Jedoch können auch Verbindungen ohne Heterocyclus eine gute biologische Aktivität aufweisen. Ein Bespiel dafür liefert das Strobilurin A **1**, welches eine ausgezeichnete fungizide Wirkung besitzt. Es ist die Leitstruktur für eine äußerst potente Wirkstoffklasse: die Strobilurine.

Eine wichtige Eigenschaft, welche ein Fungizid erfüllen sollte, ist neben einer guten Umweltverträglichkeit, eine gute Penetration des Gewebes der Pflanze. Dies stellt in der Entwicklung der Fungizide eine große Herausforderung dar. Innerhalb des Gewebes bildet sich so idealerweise ein Wirkstoffdepot, welches über einen längeren Zeitraum Wirkstoff an die Pflanze abgibt. Dies hat den Vorteil, dass das Fungizid nicht allzu häufig auf das Feld aufgetragen werden muss und ferner noch Wirkstoff eingespart werden kann, da er nicht durch Regen ausgewaschen wird. Bis heute sind jedoch die Strobilurine die einzigen Fungizide, die dieses Kriterium erfüllen.

1.1.2 Herbizide^[9]

Herbizide zeichnen sich durch ihre Wirkung gegen Unkräuter und Ungräser aus. Der Einsatz dieser Substanzen ist zur Maximierung des Ernteertrages unerlässlich, da die "unerwünschte Begleitflora" mit den Kulturpflanzen um die im Boden vorhandenen Nährstoffe konkurriert.

Abbildung 2: Beispiele für Herbizide und Safener

Die Bekämpfung der Unkräuter kann manuell oder chemisch erfolgen. Da die manuelle Entfernung des Unkrautes nicht sehr effizient ist, werden Herbizide eingesetzt. Eine selektive Wirkung des Herbizides kann nur dann gewährleistet werden, wenn die Kulturpflanze den Wirkstoff schnell abbaut und so nicht geschädigt wird. Zumeist müssen den Herbiziden sogenannte "Safener" (z. B. Cyometrinil **9**) zugesetzt werden, da viele Wirkstoffe auch das Wachstum der Kulturpflanze hemmen. Diese "Safener" induzieren die entsprechenden Abbauprozesse in der Kulturpflanze und werden zumeist dem Saatgut oder auch dem Herbizid direkt beigefügt.

Herbizide werden anhand ihres Wirkmechanismus klassifiziert. Es gibt etwa 19 wirtschaftlich interessante molekulare Targets, welche sich zumeist in den Chloroplasten der Pflanzenzellen befinden. So wird zum Beispiel die Photosynthese oder die Zellteilung gehemmt und lässt das Unkraut so absterben. Zu den Inhibitoren des Photosystem I gehören z. B. Paraquat 6 und Diquat 7. Zu den kommerziell erfolgreichsten Pflanzenschutzmitteln zählt heute das Glyphosat 8, welches den Shikimisäureweg und somit die Synthese aromatischer Aminosäuren inhibiert (Abbildung 2).

R

1.1.3 Insektizide^[10]

Die dritte Klasse der Pflanzenschutzmittel sind die Insektizide. Diese Wirkstoffe zeichnen sich durch ihre abtötende Wirkung gegenüber Schadinsekten aus.

Abbildung 3: Beispiele für Insektizide

Viele der früher eingesetzten Insektizide gehören heute zu den POPs (Persistent Organic Pollutants; langlebige organische Schadstoffe) und sind nach der Stockholmer Konvention seit 2001 verboten. Das wahrscheinlich prominenteste Beispiel für ein POP ist das DDT (Dichlordiphenlytrichlorethan) **14**. Dieses bis in die 70er Jahre gebräuchliche Insektizid reichert sich in der Nahrungskette an, indem es sich im Fettgewebe einlagert. Da es in Verdacht steht kanzerogen^[11] zu sein, wurde es, wie auch Lindan **15**, auf die Liste der POPs gesetzt (Abbildung 3).

Inhibition der Acetylcholin- EsteraseCarbamateAleEsteraseOrganophosphateParAgonisten bzw. ModulatorenNicotin/Neonicotinoide(S)-(-1)	Idicarb 10 Irathion 11
Esterase Organophosphate Par Agonisten bzw. Modulatoren Nicotin/Neonicotinoide (S)-(-	rathion 11
OrganophosphateParAgonisten bzw. ModulatorenNicotin/Neonicotinoide(S)-(-	rathion 11
Agonisten bzw. Modulatoren Nicotin/Neonicotinoide (S)-(-	-)-Nicotin 1 7
	, Nicolin 12 ,
der Acetylcholin-Rezeptoren Imid	dacloprid 13
Spinosyne S	Spinosad
Natriumkanal-Modulatoren Pyrethroide Cype	ermethrin 16
Semicarbazone Meta	aflumizon 19
Chloridkanal-Modulatoren Phenylpyrazole F	Fipronil
Avermectine Aba	amectin 23 ,
lver	rmectin 25
Inhibition der mitochondrialen Akarizide Py	yrimidifen
Atmungskette und der (Komplex I Inhibitoren)	
oxidativen Phosphorylierung	
Pyrrole Chl	lorfenapyr
(mitochondriale Entkoppler)	
Thioharnstoffe Dia	afenthiuron
(Inhibitoren ATP-Synthase)	
Juvenilhormon Mimetikum Bisacylhydrazine Tek	bufenozid,
Inhibition der Chitin Synthese Benzoylphenyl-Harnstoffe Chlo	orfluazuron,
Tri	riflumuron

Die Klassifizierung der Insektizide erfolgt nach ihrem Wirkmechanismus (Tabelle 1). Etwa 80% der Insektizide sind Neurotoxine und nur etwa 20% beeinflussen die Entwicklung des Schadorganismus.

1.2 Naturstoffe und deren Analoga als Pflanzenschutzmittel

Einige der Wirkstoffe, die heute im modernen, integrierten Pflanzenschutz angewendet werden, sind natürlichem Ursprungs. Folglich handelt es sich um Metabolite von Bakterien, Pilzen oder Pflanzen. Im Gegensatz zu den synthetischen Pestiziden, besitzen die meisten Naturstoffe sehr komplexe Strukturen (Abbildung 4) mit vielen Stereozentren, so dass diese durch Fermentation oder Extraktion gewonnen werden müssen (Tabelle 2).

Abbildung 4: Pflanzenschutzmittel natürlichen Ursprungs

Nicht selten dienen diese Naturstoffe als Templat für Derivate, die ebenfalls im Pflanzenschutz angewendet werden und ein verbessertes Wirkprofil aufweisen. Dazu gehören zum Beispiel die Ester der Chrysanthemsäure **20**, welche zum Teil natürlichen Ursprungs sind und unter der Bezeichnung Pyrethroide zusammengefasst werden. Pyrethroide sind starke Kontaktgifte und werden als Insektizide eingesetzt^[12]. Jedoch gibt es erhebliche Probleme mit Resistenzentwicklungen^[13].

Eine weitere wichtige Naturstoffklasse sind die bereits erwähnten Strobilurine (vgl. Kap. 1.1.1). Strobilurin A **1**, welches aus dem Kiefernzapfenrübling *Strobilurus tenacellus* isoliert wurde^[14], neigt aufgrund des Triensystems zu schnellem Abbau unter *in vivo* Bedingungen. Der Naturstoff wurde hingegen als Vorlage für die Synthese von Analoga benutzt. Pyraclostrobin (F 500), welches unter dem Namen

12 Der moderne Pflanzenschutz

Signum[®] vertrieben wird, ist heute eines der kommerziell erfolgreichsten Fungizide^[15].

Abamectin	Fermentation von Streptomyces avermitilis	Insektizid
Bilanafos	Fermentation von Streptomyces hagroscopius	Herbizid
Blasticidin-S	Fermentation von Streptomyces grisechromogenes	Fungizid
Kasugamycin	Fermentation von Streptomyces kasugaensis	Fungizid
Mildiomycin	Fermentation von Streptoverticillium rimofaciens	Fungizid
Pyrethrum	Extraktion von Chrysanthemum-Blüten	Insektizid
Rotenon	Extraktion von Derris Wurzeln	Insektizid
Spinosad	Fermentation von Saccharopolyspora spinosa	Insektizid

Weitaus komplexere Wirkstoffe sind die Avermectine. Das durch Fermentation gewonnene Abamectin, eine 80:20 Mischung von Avermectin B_{1a} **21** und Avermectin B_{1b} **22**, wird von Syngenta unter dem Handelsnamen Agri-Mek[®] vertrieben. Es zeichnet sich durch seine Wirkung gegenüber Milben und saugenden Insekten aus und kann nahezu auf jeder Kulturpflanze angewendet werden. Wegen seiner extrem hohen Bienentoxizität darf es jedoch nicht während der Blütezeit auf das Feld aufgebracht werden.

Theoretische Grundlagen 13

Abbildung 5: Derivate des Abamectins 21 + 22: Emamectin 23 und Ivermectin 24

Ferner dient das Abamectin als Substrat für die Herstellung von Ivermectin **24** und Emamectin **23** (Abbildung 5). Ivermectin **24** wird mittels selektiver Hydrierung in Gegenwart des Wilkinson-Katalysators [Rh(PPh₃)₃Cl] am Dihydropyranring in einer Stufe hergestellt. Emamectin **23** wird durch Modifikation an der endständigen L-Oleandrose dargestellt. In einer 4-6 stufigen Synthesesequenz wird die L-Oleandrose in ihr 4-*epi*-(Methylamino)-isomer überführt^[16].

Ebenfalls zu den natürlichen Pestiziden mit komplexen Strukturen zählen die Spinosyne, welche im folgenden Abschnitt detailiert behandelt werden sollen.

1.3 Naturstoffklasse der Spinosyne^[17]

1.3.1 Strukturmerkmale der Naturstoffklasse der Spinosyne

Spinosyne sind Metaboliten des Actinomyceten *Saccharopolyspora spinosa*, welcher aus einer, auf dem Gelände einer stillgelegten Rumdestille entnommenen, Bodenprobe isoliert wurde^[18]. Durch Fermentation konnten aus diesem Stamm die Metaboliten Spinosyn A **17** und D **18** (Abbildung 6) in einem Verhältnis von 85:15 gewonnen werden.

Abbildung 6: Natürliche Spinosyne: Spinosyn A 17 und D 18

Spinosyne besitzen ein tetracyclisches Grundgerüst, welches zumeist mit zwei Sacchariden, der 2,3,4-tri-*O*-methylierten L-Rhamnose und dem D-Forosamin, verknüpft ist. Das Grundgerüst lässt sich in ein 12-gliedriges Macrolacton und in eine anellierte *cis-anti-trans*-verknüpfte Octahydro-*as*-indaceneinheit unterteilen. Das Spinosyn A **17** weist insgesamt 17 Stereozentren auf. Neun Stereozentren finden sich allein im tetracyclischen Grundgerüst.

Das sogenannte Spinosad, einer Wortschöpfung aus Spinosyn A **17** und D **18**, spielt heute im integrierten Pflanzenschutz eine bedeutende Rolle. Seit 1997 ist Spinosad unter verschiedenen Markennamen wie zum Beispiel Conserve[®], GF-120[®] NF Naturalyte[®] und Entrust[®] erhältlich. Seit 2011 ist Spinosad auch in Natroba[™], einem Mittel gegen Kopfläuse, in den USA zugelassen. Ferner sicherte sich Eli Lilly 2010 die Patentrechte an der Verwendung von Spinosad zur Verbesserung der Wundheilung^[19].

Bis heute sind mehr als 20 unterschiedliche Spinosyne aus *Saccharopolyspora spinosa* isoliert worden, welche sich hauptsächlich in dem Substitutionsmuster, speziell der

O- und *N*-Methylierung, an den beiden Saccharid-einheiten unterscheiden. Dem Spinosyn B fehlt zum Beispiel die Verknüpfung zu dem D-Forosamin, während bei dem Spinosyn G das D-Forosamin durch das L-Ossamin ersetzt ist. Einen Überblick über die wichtigsten Vertreter der Spinosyne und deren Substitutionsmuster liefert Tabelle 3.

Tabelle 3: Substitutionsmuster verschiedener isolierter Spinosyne

A 17	Me	Me	Н	Me	Me	Me
В	-	-	Н	Me	Me	Me
D 18	Me	Me	Me	Me	Me	Me
Н	Me	Me	Η	Н	Me	Me
J	Me	Me	Н	Me	Н	Me
К	Me	Me	Н	Me	Me	Н
L	Me	Me	Me	Me	Н	Me

Ferner wurden mehr als 30 weitere Spinosyne aus dem Stamm *Saccharopol*yspora *pogona* gewonnen, die als Pogonine bezeichnet werden. Diese tragen zumeist an der C-21-Position, statt der im Spinosyn vorhandenden Ethylgruppe, eine Butenylgruppe^[20].

16 Der moderne Pflanzenschutz

1.3.2 Eigenschaften

Spinosad eignet sich aufgrund seiner selektiven Wirkung auf Schadinsekten und der guten Umweltverträglichkeit zur Anwendung im integrierten Pflanzenschutz. So zeigen verschiedene Studien, dass Spinosad schnell durch Photolyse abgebaut wird. Eine Untersuchung zur Photolyse von Spinosyn A **17** und D **18** ergab eine Halbwertszeit von 1.1 bzw. 1.0 h in Flusswasser und in demineralisiertem Wasser von 2.2 bzw. 2.0 h bei einer Einstrahlung von 300 nm. Die Photolyse ist ebenfalls vom pH-Wert des Mediums abhängig. Im sauren Medium (pH = 6.0) beträgt die Halbwertszeit im Phosphatpuffer $t_{1/2} = 2.32$ h, während sie unter gleichen Bedingungen bei pH = 8.0 nur noch $t_{1/2} = 0.71$ h beträgt²¹. Die schlechte Wasserlöslichkeit des Spinosads sorgt außerdem dafür, dass das Insektizid in den oberen Bodenschichten verbleibt, wo es zusätzlich schnell durch Bodenorganismen abgebaut wird. Die Kontamination des Grundwassers und somit auch der Eintrag in die Flüsse sind deshalb gering.

1.3.3 Toxizität^[22]

Spinosyne unterscheiden sich aufgrund ihrer selektiven Wirkung auf Zielorganismen (Tabelle 4) erheblich von bisher bekannten Insektiziden. Ferner sind die Ausbringungsmengen im Vergleich zu anderen Insektiziden geringer.

Baumwollkapselbohrer	Heliocoverpa zea	
Kohlmotte	Plutella xylostella	
Maiszünsler	Ostrinia nubilalis	
Tomatanschwärmar	Manduca	
Tomaterischwarmen	quinquemaculata	
Amerikanische Tabakeule	Heliothis virescens	

Tabelle 4: Beispiele für Schadinsekten und deren lat. Bezeichnung

Während die Mortalität der Schadinsekten wie zum Beispiel dem Maiszünsler, dem Tomatenschwärmer und andern bei 100% liegt, ist Spinosad für Säugetiere, Fische, Vögel nur gering toxisch oder sogar untoxisch (Tabelle 5).

Ratte männl. (weibl.)	oral	LD ₅₀ = 3738 mg/kg (>5000 mg/kg)	Nicht toxisch
Ratte	nneumonal	IDro >5 mg/l Luft	Nicht toxisch
natte	priedmonal		
Kaninchen	dermal	LD ₅₀ >5000 mg/kg	Nicht toxisch
Kunnenen	ucrinui	Körpergewicht	
	innerhalb 96 h akut		
Karpfen	letale Konzentration	5.0 mg/L Wasser	Mäßig toxisch
	(im Wasser)		
Charlingto		LD ₅₀ >2000 mg/kg	Nighttoyicab
Slockente	UIdI	Körpergewicht	MICHT LOXISCH

 Tabelle 5: Toxizitäten von Spinosad gegenüber ausgewählten Lebewesen

Ebenfalls von essentieller Bedeutung ist bei Insektiziden die Toxizität der Verbindung gegenüber Nutzinsekten. Die Bienentoxizität spielt bei der Anwendung von Pflanzenschutzmitteln eine erhebliche Rolle, weil mit der Biene und auch der Hummel ein bestäubender Nützling wegfällt. Nachgewiesen ist heute, dass die Neonicotinoide für das als Colony Collapse Disorder (CCD) bekannt gewordene Phänomen des Bienensterbens verantwortlich sind^[24]. Die Einteilung der Bienentoxizität wird in vier Kategorien eingeteilt: B4 (nicht bienengefährlich), B3 (nicht bienengefährlich aufgrund von Auflagen in Bezug auf die Anwendung), B2 (bienengefährlich; aber Anwendung nach dem Ende des täglichen Bienenflugs (23.00 Uhr) möglich) und B1 (bienengefährlich)^[25]. Spinosad ist unter Laborbedingungen akut toxisch für Bienen. Feldstudien zeigten jedoch, dass Spinosad bei sachgemäßen Gebrauch eine sehr geringe Bedrohung für die Bienen darstellt^[26].

1.3.4 Wirkmechanismus

Spinosyne zeichnen sich durch einen neuartigen Wirkmechanismus aus. Bei Kontamination des Insektes kommt es zum Tremor, unkontrollierten Muskelkontraktionen, Hyperventillation bis hin zur vollständigen und irreversiblen Lähmung des Insektes.

18 Der moderne Pflanzenschutz

Die bekannten Bindungsstellen für Insektizide sind der Na⁺-Kanal, die Acetylcholinesterase, der NACh- und der GABA-Rezeptor (Tabelle 6). Ursprünglich wurde angenommen, dass das Spinosyn mit dem GABA (γ-Aminobuttersäure)-Rezeptor und dem NACh (<u>Nicotinacetylcholin</u>)-Rezeptor wechselwirkt^[27]. Neueste Studien zeigen jedoch, dass keine Wechselwirkungen mit den bekannten insektiziden Bindungsstellen vorliegen.

NACh-	[³ Η]α-	M domestica	kein signifikanter		
Pozontor	рст	D amoricana	Austausch	100 µм (–)-Nicotin	
Rezeptor	BGI	P. umericunu	Austausch		
	^{гз} нли	M domostica	kein signifikanter	100 uM (_)-Nicotin	
	ן יוןוועוו	Wi. domestica	Austausch		
	³ 11111	M. domestica	kein signifikanter	$100 \mu M(.) Nicotio$	
		P. americana	Austausch	100 μm (=)-Nicotin	
	[³ L]EDI	D amoricana	kein signifikanter	10 µM	
	ן חובדו	P. umericana	Austausch	(+)-Epibatidin	
MACh-		[³ H]QNB <i>M. domestica</i>	kein signifikanter	10 µм Atropin	
Rezeptor			Austausch		
GABA-	[³ H]EBO	M. domostica	kein signifikanter	10 ···· · ········	
Rezeptor	В	IVI. domestica	Austausch	$10 \ \mu M \ picotoxirin$	
Glutamat-	³ ارارار	M domostica	kein signifikanter	1 una Avermentin	
Rezeptor	ן הויזיאו	w. aomestica	Austausch	I µM Avermettin	
Spannungs-			70 ± 25%	10	
geöffneter	[³ H]VPM	M. domestica	/U I 25%		
Ca ²⁺ -Kanal			Austausch	Methoxyverapamil	

Tabelle 6: Studien zur Bindungsstelle von Spinosad

Untersucht wurden in dieser Studie von Crouse *et al.*^[27] eine mögliche Wechselwirkung zwischen dem Nicotinacetylcholin-Rezeptor, dem Muscarinacetylcholin (MACh)-Re-zeptor, dem GABA-Rezeptor, dem Glutamat-Rezeptor und dem Spannungs-abhängigen Calcium Kanal durch Tritium-basierte Austauschexperimente. Außer mit dem Spannungs-abhängigen Calcium Kanal ergab sich bei keinem der Experimente eine Wechselwirkung der bekannten insektiziden Bindungsstellen mit dem Spinosad (Tabelle 6).

Diese Ergebnisse werden durch das Ausbleiben einer Wirkung von Spinosad gegenüber einem *Dα6* knockout Stamm von *Drosophila melanogaster* gestützt. Auch die Bindungsstelle von Imidacloprid oder von den Avermectinen wird durch Spinosyn A nicht adressiert. Das Fehlen dieser Interaktionen unterstützt die Hypothese, dass es sich wirklich um einen neuartigen Wirkmechanismus handelt. Es besteht ferner noch die Möglichkeit, dass der GABA- und der NACh-Rezeptor durch Spinosyne moduliert werden^[28]. Aufgrund der Aktivierung der *nicotinic currents*, liegt die Schlussfolgerung nahe, dass es sich bei der Bindungsstelle von Spinosad um einen bisher noch unbekannten Subtyp des NACh-Rezeptors handeln muss^[29, 30].

1.4 Naturstoffderivatisierung

1.4.1 Semisynthetische Derivate und Struktur-Aktivitäts-Untersuchungen

Seit 1998 werden im Labor^[31] und schließlich seit 1999 auch in Feldstudien Resistenzen gegenüber Spinosad beobachtet^[32]. Aus diesem Grund ist eine Derivatisierung des Wirkstoffes bzw. die Synthese von Analoga sehr wichtig. So gab es bereits, zumeist aus dem Umfeld der industriellen Forschung, zahlreiche Bemühungen, durch semisynthetische Derivatisierung alternative Wirkstoffe dieser Naturstoffklasse zu generieren. Aufgrund des unbekannten Bindungsmechanismus müssen Studien zu Struktur-Aktivitäts-Beziehung (SAR = structure activity relationship) durchgeführt werden.

Semisynthetische Derivate von Spinosyn A **17** und D **18** zeigten, dass für die insektizide Wirkung die L-Rhamnose und das D-Forosamin essentiell sind, da deren Abspaltung zum vollständigen Verlust der Aktivität führt^[33]. Durch die Modifikation des Substitutionsmusters an der L-Rhamnose-Einheit konnte hingegen eine Steigerung der Aktivität beobachtet werden^[34]. Ferner kann auch die D-Forosaminyl-Einheit gegen gewisse andere stickstoffhaltige Saccharide und sogar Substituenten, die nicht zu den Kohlenhydraten zählen, ausgetauscht werden^[35].

Abbildung 7: Durchgeführte Derivatisierungen im Rahmen von SAR-Untersuchungen

Modifikationen an dem tetracyclischen Grundgerüst beinhalteten die selektive Hydrierung und Epoxidierung der Doppelbindungen (5,6 und 13,14)^[35,36].

Die Einführung einer weiteren Doppelbindung zwischen dem A- und dem B-Ring hatte nur einen geringen Wirkungsverlust zur Folge, obwohl hierdurch stereogene Zentren verloren gehen. Die Verbindungen **25** ($LC_{50} = 0.6$) und **26** ($LC_{50} = 0.2$) erreichen ähnliche bzw. bessere LC_{50} -Werte als Spinosyn D **18**. Bei dem Indenylderivat **27** ($LC_{50} > 64$) konnte hingegen der komplette Verlust der biologischen Aktivität beobachtet werden.

Abbildung 8: Spinosyn D Derivate mit zusätzlichen Doppelbindungen

Das legt den Schluss nahe, dass die stereogenen Zentren an C-4 und C-12 essentiell für die biologische Aktivität sind, während die stereogenen Zentren an C-7 und C-11 auf die Aktivität keinen größeren Einfluss haben. Einige interessante Ergebnisse sind in Tabelle 7 dargestellt^[37].

Spinosyn A	А	0.3	4´´-Keto	А	3.4
Spinosyn D	D	0.5	5,6-β-Ероху	D	10
Aglykon	А	> 64	5,6-Dihydro	А	0.5
2´,3´,4´-Tri- <i>O</i> -Et	А	0.02	5-OH	D	> 64
13,14-α-Dihydro	А	4.7	2-Methyl	А	4.5
13,14-β-Dihydro	А	20	7,8-Dihydro 25	D	0.6
13,14-Epoxy	А	1.4	7,11-Dihydro 26	D	0.2
13-NHOH	А	5.6	Indenyl 27	D	> 64

Tabelle7:InsektizideAktivitätvonSpinosynenundSpinosoidengegenüberderamerikanischen Tabakeule (Heliothis virescens)

Das bis dato einzige Pflanzenschutzmittel, welches auf der Grundlage von Spinosad entwickelt wurde, ist das Spinetoram. Hierbei handelt es sich um an der 3'-OH-Gruppe methylierten L-Rhamnoside **30** und **31**, welche sich lediglich in einer fehlenden Doppelbindung unterscheiden (Abbildung 9).

Abbildung 9: 3'-O-Ethyl-spinosyn A 30 und 3'-O-Ethyl-5,6-dihydro-spinosyn A 31 (Spinetoram)

Spinetoram hat im Vergleich zum Spinosad eine verbesserte Photostabilität und eine höhere Wirksamkeit^[34,38]. Auch die Toxizität gegenüber Hummeln ist geringer im Vergleich zum Spinosad^[39].

Eine weitere, neuere Unterklasse sind die Butenyl-Spinosyne, welche aus dem Stamm *Saccharopolyspora pogona* gewonnen werden. Dieser Stamm besitzt ein weiteres Polyketidsynthase-Modul und baut so statt der Ethyl-Kette an C-21 eine Buten-1-yl-Kette in das Molekül ein^[40].

Abbildung 10: Struktur des Butenyl-Spinosyns 32

Erste Testungen der Butenyl-Derivate von Spinosyn J **32** führten zu einer leichten Verbesserung der insektiziden Wirkung, jedoch nicht in dem Maße, dass von einer signifikanten Verbesserung gesprochen werden könnte^[41]. Die Beschaffenheit der C21-Seitenkette scheint folglich auf die biologische Aktivität keinen großen Einfluss zu haben.

24 Der moderne Pflanzenschutz

1.5 Biosynthese^[40-44]

In den letzten Jahren gab es zahlreiche Veröffentlichungen zur Biosynthese der Spinosyne. Vier Gene im Spinosyn A Gencluster von *Saccharopolyspora spinosa*, sind wahrscheinlich für die Umsetzung zum Aglycon **36** verantwortlich. Anfängliche Studien zeigten, dass das Aglycon von Spinosyn A aus neun Acetat- und zwei Propionateinheiten durch eine Typ I Poleketid Synthase (PKS) generiert wird. Der nachfolgende Schritt, die Überführung des Produktes der PKS in das Aglycon erfolgt in mehreren Schritten, welche in zahlreichen Veröffentlichungen divers diskutiert werden.

Der erste Schritt wird durch SpnJ, eine Flavin-abhängige Dehydrogenase, katalysiert. Dabei handelt es sich um die selektive Oxidation des C15-Alkohols in Gegenwart der ebenfalls sekundären Alkohole an C9 und C17 zu dem Keto-Intermediat **34**.^[42] Der intramolekulare Schritt der Cyclisierung erfolgt unter Beteiligung des Enzyms, welches durch das Gen SpnF codiert wird. Es handelt sich hierbei um eine Diels-Alderase und liefert das Cyclisierungsprodukt **35**.^[43] Nachfolgende, durch die L-Rhamnosyltransferase Spn G katalysierte, Glycosidierung mit der L-Rhamnose liefert das Glycosid **36**.^[44] Im nächsten Schritt, der SpnL-katalysierten Cyclisierung zum Tetracyclus, wird von Liu *et al.* spekuliert, dass es sich um eine vinyloge Morita-Baylis-Hillman-Reaktion, einer sogenannten Rauhut-Currier-Reaktion, handelt, in welche ein Thiol als Nukleophil involviert ist und damit Aglycon **37** liefert.^[45]

Theoretische Grundlagen 25

Abbildung 11: Vorgeschlagener Biosyntheseweg von Spinosyn A nach Liu et al.

Die nächsten Schritte, die Methylierung der L-Rhamnose und die Glycosidierung wurden ebenfalls von Liu *et al.* Diskutiert.^[44] An der Permethylierung sind die drei Gene SpnH, SpnI, SpnK für die Expression der Enzyme verantwortlich. Sie zeigen eine große Ähnlichkeit zu den Enzymen, welche für die Encodierung der *S*-Adenosyl-L-methionin-abhängigen Methyltransferasen verantwortlich sind. Die Glycosidierung mit dem D-Forosamin wird hingegen durch das Glycosyltransferasegen SpnP gesteuert.^[46] Die Aufklärung des Biosyntheseweges kann die Möglichkeit zur Entwicklung neuer, potenter Spinosyn-Analoga eröffnen.

1.6 Totalsynthesen von Spinosyn A

Bis heute gibt es drei bekannte Totalsynthesen von Spinosyn A. Die erste wurde 1993 von Evans *et al.* publiziert (Abbildung 12).^[47]

Abbildung 12: Schlüsselschritte der Totalsynthese von (+)-Spinosyn A 43 nach Evans

Die Schlüsselschritte dieser Totalsynthese sind die intermolekulare Stille-Kupplung zu Verbindung **40**, gefolgt von einer intramolekularen Diels-Alder-Reaktion, welche zum Macrolacton **41** führt. Die weiteren Transformationen, unter anderem eine Aldolkondensation lieferten schließlich das nicht natürliche Isomer (+)-Spinosyn A **43**. Da 1993 die Stereochemie der Spinosyne noch nicht bekannt war, lieferte diese Totalsynthese einen wertvollen Beitrag zu deren Strukturaufklärung.

Die erste Totalsynthese des korrekten Enantiomers (–)-Spinosyn A **17** wurde 1998 von Paquette *et al.* publiziert (Abbildung 13).^[48]

Abbildung 13: Spinosyn A 17 Totalsynthese nach Paquette et al.

Zum Aufbau der zentralen Indaceneinheit diente eine anionische Oxa-Cope-Umlagerung, ausgehend von dem enantiomerenreinen Cyclopentenderivat **44** unter basischen Bedingungen in 77% Ausbeute mit KH als Base zu Verbindung **45**. An dieser Stelle der Synthese haben die Stereozentren zwischen dem A- und dem B-Ring die inverse absolute Konfiguration. Diese wird im Laufe der Synthese in die des Naturstoffes überführt. Auch in dieser Totalsynthese findet sich eine Stille-Kreuzkupplung als Schlüsselschritt zur Verknüpfung der Indacen-Einheit **46** mit dem Säurechlorid **47** unter Bildung des Intermediats **48**, welches schließlich zum Macrocyclus führt. Weitere acht lineare Schritte lieferten schließlich das (–)-Spinosyn A **17**.

Abbildung 14: Spinosyn A 17 Synthese nach Roush

Diese Synthese sah zuerst einen Aufbau eines acyclischen Vorläufers **51** vor. Dieser wurde in einer durch Ba(OH)₂ aktivierten Additionsreaktion aus den Substraten **49** und **50** erhalten. Anschließende Suzuki-Reaktion und Oxidation lieferte das Substrat für die *Domino* Wittig-Horner-transannulare Diels-Alder-Reaktion. Nachfolgende vinyloge Morita-Baylis-Hillman-Reaktion führte schließlich zur Bildung des Tetracyclus **53** (Abbildung 14). Die Synthese nach Roush *et al.* ähnelt dem später nachgewiesenen Biosyntheseweg des Spinosyn A **17**.^[50]

2 Die Heck-Reaktion

Die Heck-Reaktion^[51] oder auch Mizoroki-Heck-Reaktion, welche gleichzeitig von Heck^[52] und Mizoroki^[53] entdeckt wurde, gehört zu den wichtigsten Reaktionen in der organischen Synthesechemie. Es handelt sich hierbei um eine Palladium-katalysierte C-C-Bindungsknüpfung zwischen Olefinen und Aryl- bzw. Vinylhalogeniden. 2010 wurden Richard F. Heck, Ei-ichi Negishi und Akira Suzuki für die von ihnen entwickelten Palladium-katalysierten Kreuzkupplungen in der organischen Synthese mit dem Nobelpreis für Chemie ausgezeichnet^[54].

Die Reaktion, welche die Basis für die spätere Heck-Reaktion lieferte, war die Umsetzung von Phenylquecksilberacetat **55** mit stöchiometrischen Mengen Lithiumtetrachloropalladat zu der Phenylpalladium-spezies **56**, welche mit Ethen **57** zu einer Mischung aus Styrol **58** (80%) und Stilben **59** (10%) reagierte (Abbildung 15).^[55]

Abbildung 15: Die erste Heck-Reaktion (1968)

Bei der Reaktion kann aufgrund des stöchiometrischen Einsatzes eines Palladiumsalzes schwerlich von Katalyse gesprochen werden. Heck veröffentlichte in der gleichen Ausgabe des *Journal of the American Chemical Society* sieben aufeinanderfolgende Artikel zur Kupplung von Palladium-arylen. Schließlich publizierte Heck 1972 die Palladium-katalysierte Umsetzung von Iodbenzol **60** mit Styrol **58** in Gegenwart katalytischer Mengen von Palladium(II)acetat.^[56].

Abbildung 17: Allgemeines Schema der Heck-Reaktion

Die Heck-Reaktion zeichnet sich durch ihre hohe Toleranz gegenüber funktionellen Gruppen aus. So können auch komplexe Moleküle in dieser Reaktion eingesetzt werden, weshalb die Heck-Reaktion heute eine häufig in der Naturstoffsynthese verwendete Reaktion ist. In vielen Fällen ist es möglich, die Heck-Reaktion chemound regioselektiv oder sogar enantioselektiv durchzuführen^[57]. Dies lässt sich auf die Entwicklung immer neuer Katalysatorsysteme zurückführen^[58].

2.1 Mechanismus der Heck-Reaktion^[51]

Trotz vielfältiger Bemühungen zur Aufklärung ist der detaillierte Mechanismus der Heck-Reaktion bis heute noch nicht vollständig verstanden. Ein allgemein akzeptierter Mechanismus ist in Abbildung 18 dargestellt und beruht auf experimentellen Befunden.^[51]

Der Eintritt in den Katalysecyclus beginnt mit der reduktiven Bildung der katalytisch aktiven 14-Elektronen-Pd⁰-Spezies **63**. Diese wird entweder durch die Abspaltung zweier Liganden mit schwachen Donoreigenschaften (z. B. ausgehend von Pd(PPh₃)₄) oder durch die Reduktion von Pd^{II}-Salzen (z. B. Pd(OAc)₂) durch die Zugabe von Phosphanliganden, des Alkens oder einer zugesetzten Aminbase *in situ* generiert.^[59]

Abbildung 18: Postulierter Katalysecyclus der Heck-Reaktion

Der eigentliche Katalysecyclus lässt sich in sechs Teilschritte unterteilen, welche in den folgenden Abschnitten im Detail diskutiert werden sollen.

2.1.1 Die oxidative Addition

Der erste Schritt nach der Bildung der katalytisch aktiven Pd-Spezies **63** ist die oxidative Addition des Aryl- bzw. Alkenylhalogenids oder -triflats R¹-X **60** an den Pd⁰-Katalysator **63**. Hierbei wird die entsprechende δ -Aryl- bzw. Alkenyl-Pd^{II}-Spezies **63** gebildet. Ein mechanistischer Vorschlag basiert auf einem konzertierten Reaktionsverlauf (Abbildung 19). Diesem konzertierten Mechanismus folgend kommt es unter Aufbau einer 2-Elektronen-3-Zentren-Bindung **63** gleichzeitig zu dem C-X-Bindungsbruch und der Ausbildung der Pd-X- und der Pd-C-Bindung. Es handelt sich folglich um eine Insertionsreaktion unter Retention der Stereochemie. Schließlich kommt es zu einer *cis/trans*-Isomerisierung der Liganden am Zentralatom von **64** unter Bildung des thermodynamisch stabileren Komplexes **65**.^[51a]

Abbildung 19: Konzertierter Mechanismus für die oxidative Addition

Die oxidative Addition ist häufig der geschwindigkeitsbestimmende Schritt des Cyclus. Die Abgangsgruppe spielt hierbei eine große Rolle. Je schwächer die C-X-Bindung ist, desto leichter kann das niedervalente, elektronenreiche Palladium in die Bindung insertieren. Die Reaktivität nimmt in der Reihenfolge Cl < Br < OTf < I zu. Obwohl die Substitution des ungesättigten Systems weniger bedeutsam ist als die Wahl der Abgangsgruppe, kann eine Beschleunigung der Reaktionsgeschwindigkeit beobachtet werden, wenn das ungesättigte System elektronenziehende Substituenten trägt. Ferner spielt auch die Wahl des Liganden eine entscheidende Rolle. Phosphan-Liganden sind zum Beispiel besonders gute σ -Donoren und erhöhen somit die Elektronendichte am Zentralatom. Folglich wird dadurch die Nucleophilie der Pd⁰-Spezies verstärkt und die Reaktionsgeschwindigkeit erhöht.^[51a]

Q

2.1.2 Koordination des Alkens

Nach der Bildung des Palladiumkomplexes **65** folgt im zweiten Schritt die Koordination des Alkens **61**. Dafür muss am Metallzentrum ein Ligand abgespalten werden, da es sich bei Palladium(II) um eine d⁸-Spezies handelt, welche bevorzugt eine quadratisch-planare Geometrie aufweist. Für diesen Vorgang gibt es grundsätzlich zwei mögliche Reaktionspfade, den unpolaren und den kationischen Weg. Der unpolare Weg beginnt mit einer Abspaltung eines neutralen Liganden (L) vom Zentralatom und setzt dadurch eine Koordinationsstelle (S) frei (**66**), an die das Alken **61** angelagert werden kann (**67**).

Beim kationischen Weg wird ein anionischer Ligand (X) von **64** abgespalten, weshalb es zu einer Ausbildung des kationischen Komplexes **68** kommt. Analog zum neutralen Pfad erfolgt die Koordination des Alkens **61**. Allgemein hängt die Wahl des bevorzugten Reaktionspfades von der Stärke der Pd-L-Bindung im Vergleich zur Stärke der Pd-X-Bindung ab. Somit wird der neutrale Reaktionsweg hauptsächlich ausgehend von Alkenyl- oder Arylbromiden bzw. –iodiden beschritten, da hier die Pd-X-Bindung besonders stabil ist. Da die Pd-O-Bindung deutlich schwächer als beispielsweise die Pd-Phosphan-Bindung ist, wird angenommen, dass der kationische Reaktionsweg von Alkenyl- und Aryltriflaten beschritten wird (Abbildung 20).^[60]

Welche der beiden Routen schließlich beschritten wird, hängt jedoch auch von den Liganden ab. Während mit einzähnigen Phosphan-Liganden beide Routen möglich sind, führen mehrzähnige Phosphan-Liganden aufgrund des Chelat-Effektes eher zu dem kationischen Weg (Abbildung 20).

Abbildung 20: Reaktionspfade für den Koordinationsschritt

Der sich bildende Metall- π -Komplex kann dabei durch die δ -Donor-Hinbindung und die π -Rückbindung beschrieben werden. Dabei ergibt sich eine Überlappung des besetzten π -Orbitals des Olefins mit dem unbesetzten dsp²-Hybridorbital des Metalls. Dadurch wird die Elektronendichte am Metall erhöht und das besetzte d-Orbital des Metalls überlappt wiederum mit dem unbesetzten, antibindenden π^* -Orbital (vgl. Abbildung 21)^[61].

Abbildung 21: Bindungstheorie der δ -Hin- und π -Rückbindung

Eine starke π -Rückbindung sorgt für besonders stabile Komplexe. Das zuvor planare Alken verändert durch den zusätzlichen Eintrag von Elektronen in sein antibindendes Orbital seine Geometrie und die zuvor sp²-hybridisierten Kohlenstoffatome tendieren eher zu einer sp³-Hybridisierung. Die Stärke der geometrischen Verzerrung ist dabei ein Maß für die Stärke der π -Rückbindung.

2.1.3 Syn-Insertion

Die Bildung des Metall- π -Komplexes erfolgt zunächst in der out-of-plane-Konformation **70**. So können die für die *syn*-Insertion benötigten Orbitale jedoch nicht überlappen und daher kommt es zuerst zu einer Rotation in die in-plane-Konformation **71** (vgl. Abbildung 22)^[62].

Abbildung 22: out-of-plane 70- und in-plane-Konformationen 71

Das koordinierte Alken **72** schiebt sich schließlich in einem Vier-Zentren-Übergangszustand **73** in die Alkenyl- bzw. Aryl-Pd-Bindung unter Bildung des Alkyl-Pd-Komplexes **74**, wobei auch die Stereochemie der Doppelbindung konserviert wird (*syn*-Addition). Schließlich kommt es zur Dissoziation des Alkenyl- bzw. Arylrestes (R¹) vom Metallzentrum unter Ausbildung des Alkans **75** (Carbopalladierung, Abbildung 23). Die freie Bindungsstelle am Metallzentrum wird nachfolgend wieder durch Koordination des Liganden besetzt, welcher vor Bildung des π -Komplexes abgespalten wurde.

Abbildung 23: Insertion des Alkens 72 in die Pd-C-Bindungen von 72

2.1.4

2.1.5 Terminierung

Im Anschluss an die Insertion findet die Terminierung der Reaktion statt. Dabei handelt es sich zweifellos um eine konzertierte *syn*- β -Hydrid-Eliminierung. Diese ist aufgrund einer starken agostischen Wechselwirkung möglich und führt schließlich zu der Freisetzung von H-Pd(L)₂-X (Abbildung 24).

Abbildung 24: Mechanismus der β-Hydrid-Eliminierung

Damit es überhaupt zu einer *syn*- β -Hydrid-Eliminierung, der formalen Umkehrung der *syn*-Insertion, kommen kann, muss vorher eine innere Rotation von **75** stattfinden, damit das Palladium und das Wasserstoffatom *syn*-ständig zueinander sind (**76**).

Die Stereochemie des Produktes wird durch die *syn*-β-Hydrid-Eliminierung festgelegt. Es gibt zwei mögliche *syn*-coplanare Übergangszustände. Während der bevorzugte Übergangszustand **77** zu dem *E*-Produkt **78** führt, würde über den ungünstigeren Übergangszustand **79** das *Z*-Produkt **80** gebildet. Die Heck-Reaktion verläuft somit in der Regel mit ausgeprägter *E*-Seleketivität.

Für eine (eher seltende) Z-Selektivität der Heck-Reaktion kann es mehrere Gründe geben. Zum einen kann es nach der *syn*-β-Hydrid-Eliminierung zu einer Isomerisierung der Doppelbindung kommen. Dies passiert zumeist, wenn die Palladium-Hydrid-Spezies nicht durch eine Base abgefangen wird, sondern reinsertiert. In diesem Fall kommt es zu thermodynamisch kontrollierten E/Z-Gemischen. Des Weiteren kann es vor der *syn*-β-Hydrid-Eliminierung zu einer Isomerisierung des Komplexes kommen, oder die β-Hydrid-Eliminierung folgt einem anderen Mechanismus. Dies ist beispielsweise dann der Fall, wenn die Stärke der eingesetzten Base groß genug ist, die *syn*-β-Hydrid-Eliminierung zu katalysieren.

2.2 Regioselektive Heck-Reaktionen^[63]

Die selektive Reaktionsführung ist einer der großen Ansprüche der modernen Synthesechemie. Im Falle der Heck-Reaktion gibt es im Katalysecyclus (Abbildung 18) zwei Schritte, bei denen Regioselektivitätsprobleme auftreten können: Zum einen während der Insertion und zum anderen während der β-Hydrid-Eliminierung.

Die folgenden Kapitel befassen sich mit der Regioselektivität der Heck-Reaktion und deren Steuerung.

2.2.1 Die regioselektive Insertion

In vielen Naturstoffsynthesen werden in den Kupplungsreaktionen asymmetrisch substituierte Alkene eingesetzt. In diesem Fall können die Alkene auf zwei Arten an das Metallzentrum koordinieren

Zum einen kann sich das Alken auf solche Weise anordnen, dass es eine sterische Abstoßung zu R¹ vermeidet (**72**), was schließlich zum Olefin **62** führt, oder es ordnet sich so an (**81**), dass der Rest R¹ auf das höher substituierte C-Atom übertragen wird (**84**, Abbildung 25). Bis *dato* können keine exakten Vorhersagen getroffen werden, welcher der beiden Übergangszustände **73** oder **82** durchschritten wird, da die Bildung von vielen unterschiedlichen Parametern abhängig ist. Zunächst sind die sterischen Wechselwirkungen zu beachten. Untersuchungen zeigten, dass R¹ zumeist auf das weniger hoch substituierte Kohlenstoffatom übertragen wird.^[51c,64] Dies gilt

vorzugsweise für den neutralen Reaktionspfad. Wird hingegen ein kationischer Reaktionsweg bevorzugt (Abbildung 20), haben elektronische Effekte einen größeren Einfluss und R¹ wird eher auf das elektronenreichere Kohlenstoffatom übertragen.^[51c]

Abbildung 26: Beeinflussung der Regioselektivität durch die Abgangsgruppe bei Verwendung bidentaler Liganden

Entscheidenden Einfluss auf die Regioselektivität kann auch die Substitution der Reaktanden ausüben. Mit akzeptorsubstituierten Aromaten konnten gute Ausbeuten an 1,2-disubstituierten Olefinen (β -Produkt) **85** erhalten werden.^[65] Höher substituierte Alkene führten ebenfalls zu guten β -Selektivitäten.^[66] Gute α -Selektivitäten konnten hingegen durch den Einsatz von Aryltriflaten erreicht werden, da Triflate **91** den kationischen Weg (Weg B) begünstigen. Der gleiche Effekt kann durch die Zugabe von Thallium- bzw. Silbersalzen erzielt werden. So kommt es durch Zugabe von Thalliumacetat zu einem Austausch vom Halogen gegen Acetat **90**. Da hier wie bei den Triflaten **91** eine Pd-O-Bindung vorliegt, neigen Verbindung **90** und **91** dazu, den anionischen Liganden abzuspalten und über den Übergangszustand **92** dem Weg B folgend das α -Produkt **94** zu bilden (Abbildung 26).

Ferner wirkt sich auch die Zähnigkeit des Liganden auf die Wahl des Reaktionsweges aus. Im Gegensatz zu beispielsweise einzähnigen Phosphan-Liganden, die eher einen neutralen Reaktionsweg (Weg A) beschreiben, werden bei Verwendung von

Q

bidentaten Phosphan-Liganden die beiden Komplexe **87** und **89** gebildet. Dadurch können sowohl α -Arylaloxyolefine **94** als auch β -Arylaloxyolefine **85** gebildet werden. Mehrzähnige Liganden haben eine größere Komplexstabilität, daher kommt es nicht zwangsläufig zur Abspaltung eines der Phosphan-Liganden, sondern zur Abspaltung des anionischen Br⁻ bzw. I⁻.^[67] Folglich kann durch die Wahl der richtigen Basen, Additive, Liganden und Substrate die Regioselektivität der oxidativen Insertion maßgeblich beeinflusst werden.

Ein Beispiel für eine bevorzugte Reaktivität der sterisch schwerer zugänglicher Positionen liefert die sowohl regio- als auch diastereoselektiv verlaufende zweifache Heck-Reaktion, welche im Arbeitskreis Tietze entwickelt wurde (Abbildung 27).^[68] Es handelt sich hierbei um eine regioselektive Heck-Reaktion zwischen dem Vinylbromid **96** und dem Olefin **97**.

Abbildung 27: Steroidsynthese mit zweifacher regio- und diastereoselektiver Heck-Reaktion nach Tietze

Diese Selektivität zu Gunsten des Angriffs an C-4 gegenüber C-5 scheint auf den ersten Blick verwunderlich. Elektronisch sollten die beiden Positionen sich diesbezüglich kaum unterscheiden. Sterisch ungünstiger sollte hingegen die C-4-Position sein, da C-3a höher substituiert ist als C-6. Bei Betrachtung der räumlichen Anordnung zeigt sich, dass zumindest die Diastereoselektivität erklärt werden kann. Die obere Raumhälfte, die sogenannte α -Seite, wird durch die axiale Methylgruppe soweit abgeschirmt, dass der Angriff des Palladiums von der besser zugänglichen Unterseite (β-Seite) erfolgt (Abbildung 28).

In Bezug auf die Regioselektivität postulierte Tietze, dass die aus dem reversiblen Insertionsschritt gebildeten Intermediate **102** und **103** sich energetisch stark unterscheiden (Abbildung 28). Im Falle des Angriffs an C-4 kann die günstigere Sesselkonformation **102** eingenommen werden, während ein Angriff an C-5 zu der ungünstigen Wannenkonformation **103** führt. Während die *syn*-β-Hydrid-Eliminierung aus der Sesselkonformation problemlos ablaufen kann, ist die *syn*-β-Hydrid-Eliminierung in der Wannenkonformation **104** behindert und damit ist die Rückreaktion zu **101** begünstigt. Es kommt folglich nicht zur Bildung von **104**.

In der zweiten, intramolekularen Heck-Reaktion zu dem Tetracyclus **99** (Abbildung 27) wird erneut ein Stereozentrum diastereoselektiv aufgebaut. Die Ringschlussreaktion zum Tetracyclus **99** (Abbildung 27) erfolgt, gemäß den Baldwin-Regeln, einer 6-*exo-trig*-Anordnung.

Die Vorhersage des Produktes einer Ringschlussreaktion ist dank der Baldwin-Regeln^[69] möglich. Baldwin unterteilt die Produkte in *endo-* **110** und *exo-*Produkte **107** (Abbildung 29). Im Falle des *endo-*Produktes **110** liegt die Doppelbindung innerhalb des neu gebildeten Ringes und es wird der größere Ring gebildet. Das *exo-*Produkt **107** besitzt hingegen eine *exo-*cyclische, also nicht in den Ring integrierte, Doppelbindung. Folglich wird ein kleinerer Ring gebildet. Die zweite Unterteilung der Ringschlussreaktionen erfolgt nach der Geometrie des Kohlenstoffatoms in *tet* (tetraedrisch, sp³), *trig* (trigonal, sp²) und *dig* (digonal, sp). Beschrieben wird die Ringschlussreaktion folgendermaßen:

(gebildete Ringgröße)-(endo/exo)-(Geometrie des C-Atoms).

 Tabelle 8: Beobachte Regioselektivität bei intramolekularen Ringschlussreaktionen

3	endo	-	~	5	endo	-	-	√
	exo	√ √	-		exo	✓	√	√
4	endo	-	~	6	endo	-	√	√
	ехо	√ √	-		ехо	✓	√	√

Tabelle 8 zeigt die empirische beobachtete Regioselektivität von intramolekularen Ringschlussreaktionen.

Abbildung 29: endo- und exo-Cyclisierung

Während kleinere Ringe bei der Insertion eher eine *exo*-Zwischenstufe **106** durchlaufen, können größere Ringe aufgrund ihrer größeren Flexibilität eher eine *endo*-Zwischenstufe **109** durchlaufen.

2.2.2 Die regioselektive Eliminierung

Immer dann, wenn in bei einem Alken **112** in β - und in β '-Position Wasserstoff-Atome vorhanden sind, kann es zu Selektivitätsproblemen kommen. Es lässt sich lediglich über das geeignete Substrat in Richtung der gewünschten Eliminierungsprodukte **114** und **115** steuern.

 β -H-Eliminierung

Abbildung 30: β-H-Eliminierung und β'-H-Eliminierung

Im Falle der Bildung von endocyclischen Alkenen kann keine innere Rotation stattfinden. Die β -Hydrid-Eliminierung kann nicht stattfinden, da das Wasserstoffatom in β -Position *anti*-ständig ist. Da in β '-Position ein *syn*-ständiges Wasserstoffatom vorhanden ist, wird ausschließlich das β '-H-Eliminierungsprodukt **119** gebildet (Abbildung 31).

Abbildung 31: Regioselektive β-H-Eliminierung bei endocyclischen Alkenen Eine weitere, sehr elegante Methode findet im Aufbau von quartären Stereozentren nach Tietze *et al.* Anwendung. Es handelt sich dabei um eine Silicium-terminierte Heck-Reaktion^[70], bei welcher statt des [H-PdL₂-X] vermutlich eine [X-PdL₂-SiMe₃]-Spezies eliminiert wird.

Abbildung 32: Postulierter Mechanismus der Silicium-terminierten Heck-Reaktion Die SiMe₃-Gruppe in Verbindung **120** wird nucleophil angegriffen und es kommt zum Si-C-Bindungsbruch. Unter Bildung der Doppelbindung kommt es zur Eliminierung der Pd-Spezies und somit zum gewünschten Produkt **122**. Diese Methode fand später Anwendung in der enantioselektiven Synthese des Norsesquiterpens **125** (Abbildung 33).

Abbildung 33: Enantioselektive Synthese des Norsesquiterpens 125

Das Katalysatorsystem spielt bei dieser Synthese eine entscheidende Rolle. Die Entwicklung neuer Katalysatoren und Liganden machen die Heck-Reaktion heute nicht nur zu einer vielgenutzten Kupplungsreaktion, sondern zu einem vielfältigen Werkzeug für die (enantioselektive) Naturstoffsynthese. Im nachfolgenden Kapitel soll die Entwicklung verschiedener Katalysatorsysteme besprochen werden.

2.2.3 Katalysatorsysteme – Der Schlüssel zu einer enatioselektiven Synthese^[71]

Das Katalysatorsystem spielt in der Heck-Reaktion eine entscheidende Rolle. Die breite Anwendbarkeit, auch in der Totalsynthese, ist nicht zuletzt auf die Entwicklung neuer Katalysatoren und neuer Liganden zurückzuführen. Eine Vielzahl unterschiedlicher Katalysatoren fanden bisher Anwendung. Die am häufigsten verwendeten Prä-Katalysatoren in der enantioselektiven Heck Reaktion sind Pd(OAc)₂, Pd₂(dba)₃, Pd₂(dba)₃·CHCl₃, zumeist in einer Beladung von 5-10 mol-%. In dem Fall, dass ein zweizähniger Diphosphan-Ligand eingesetzt wird, muss der Reaktion die doppelt Menge an Ligand zugesetzt werden, da für die Bildung der katalytisch aktiven Pd⁰-Spezies bereits ein Äquivalent des Liganden für die Reduktion des Metalls verbraucht werden.^[59g]

Katalysatorsysteme müssen vielfältigen Anforderungen gerecht werden. Neben hohen TONs (Turn-Over Number, Umsatzzahl) muss der Katalysator eine gewisse Stabilität und Wasserbeständigkeit besitzen. Ferner sollte der Katalysator wiederverwertbar und gegenüber vielen funktionellen Gruppen tolerant sein.

Mit der Entwicklung des Hermann-Beller-Katalysators **100** wurden viele dieser Kriterien erfüllt. Zum einen besitzt der Katalysator eine hohe Stabilität und kann so bei Reaktionen über 100 °C eingesetzt werden. Er ist gegenüber Wasser stabil und weist sehr hohe Umsatzzahlen auf. Des Weiteren können neben den Bromiden und lodiden auch die wesentlich günstigeren Chloride eingesetzt werden (Abbildung 34).^[72]

Abbildung 34: Beispiele für Katalysatorsysteme für die Heck-Reaktion Neuere Katalysatorsysteme beruhen häufig auf *N*-heterocyclischen Carbenen wie zum Beispiel **127**^[73]. Diese Liganden haben besonders gute Donor-Eigenschaften und

sind diesbezüglich den Phosphanliganden sehr ähnlich. Ebenfalls von Interesse sind die Katalysatoren vom Pincer-Typ wie zum Beispiel **126**.^[74] Diese tridentaten Systeme zeichnet sich durch große Stabilität und Reaktivität aus.

Abbildung 35: Beispiele für Liganden für die enantioselektive Heck-Reaktion

Ebenfalls von besonderem Interesse sind chirale Liganden, welche in der enantioselektiven Synthese Anwendung finden. Eine Vielzahl chiraler Phosphanliganden wurde bisher in der asymmetrischen Synthese eingesetzt. Grundsätzlich begünstigen basische Liganden und bidentate Liganden mit einem kleinen Bindungswinkel die oxidative Addition. Sehr häufig fanden dabei Phosphanliganden wie das achsenchirale BINAP **128**, Chirophos **132** oder DIOP **133** Anwendung in (Abbildung 35). Aber auch Liganden auf Ferrocen-Basis (z. B. **129**)^[75], Pfaltz-Liganden (z.B. **130**)^[76] oder Liganden auf Carben-Basis (**131**)^[77] erreichten hohe Enantiomerenüberschüsse.

2.2.4 Die Heck-Reaktion in der Naturstoffsynthese

Die Heck-Reaktion findet häufig in der Naturstoffsynthese Anwendung. Besondere Beachtung fand zum Beispiel die Synthese von Taxol **135** von Danishefsky *et al.* ^[78], die Synthese von Strychnin **136** von Rawal *et al.* ^[79], die diastereoselektive Synthese von Wortmannin **137** von Shibasaki *et al.*^[80] und die enantioselektive Synthese von α -Tocopherol **138** nach Tietze *et al.*^[81] (Abbildung 36).

138

Abbildung 36: Beispiele für mittels Heck-Reaktionen aufgebauter Naturstoffe Bei der enantioselektiven Synthese von α -Tocopherol 138 (Abbildung 36) ist der Schlüsselschritt eine *Domino*-Wacker-Heck Reaktion. Dabei wird zuerst ein quartäres Stereozentrum aufgebaut und gleichzeitig die Seitenkette eingeführt. Der nach Tietze *et al.* postulierte Mechanismus (Abbildung 37) beginnt mit einer enantiofacialen Koordination des Pd^{II}-Komplexes an das Alken 139 in Anwesenheit des chiralen BOXXAX-Liganden 140 unter Bildung von 141. Es kommt durch eine intramolekulare Cyclisierung zur Alkyl-Pd(II)-Spezies 142. Da für eine β -Hydrid-Eliminierung kein Wasserstoffatom zur Verfügung steht, geht das Intermediat 142 mit dem bereitgestellten Alken 143 eine intermolekulare Heck-Reaktion zu Intermediat 144 ein. Es erfolgt die nun mögliche β -Hydrid-Eliminierung zu Chroman 145, welches in sechs weiteren Stufen zu α -Tocopherol 138 umgesetzt werden kann. Damit das Palladium(0) erneut in den Katalysecyclus eintreten kann, wird es durch *p*-Benzochinon wieder oxidiert.

Q

Abbildung 37: Postulierter Mechanismus der *Domino*-Wacker-Heck-Reaktion zum Aufbau des Chromans 145

D Zielsetzung und Planung der Arbeit

3 Planung der Arbeit

Die Naturstoffklasse der Spinosyne gehört zu den Insektiziden, die im Rahmen des modernen Pflanzenschutzes Anwendung finden. Sie zeichnen sich durch eine hohe Selektivität gegenüber Zielorganismen und eine sehr gute Umweltverträglichkeit aus. Seit dem Jahr 2000 zeigen sich jedoch die ersten Schadinsekten Resistenzen gegenüber dem Spinosad, einer Wirkstoffmischung aus Spinosyn A **17** und D **18**. Folglich ist die Entwicklung neuer Spinosyn-Analoga von besonderem Interesse. Daher wird im Arbeitskreis Tietze ein neuartiges Analogon des Typs **150** entwickelt.

Abbildung 38: Natürlich Spinosyne 17 und 18 sowie das Spinosynanalogon 150

Von besonderer Wichtigkeit für die insektizide Wirkung ist die *cis*-Anordnung zwischen Ring B und C in **17** und **18**. Zum Aufbau des Analogon **150** mit dieser Stereochemie kann eine doppelte Heck-Reaktion eingesetzt. So konnte bereits in Vorarbeiten zur Synthese von **150** eine doppelte Heck-Reaktion erfolgreich durchgeführt werden.^[82,83,84] Bisher ist es jedoch nicht gelungen, das Analogon mit dem D-Forosaminyl- und dem L-Rhamnosyl-Rest zu synthetisieren (vgl. Abbildung 39). Glycosidierungsversuche zwischen einem D-Forosaminyl-Donor und dem Analogon **152** führten weder in Bezug auf die Regiochemie noch in Bezug auf die Stereochemie am anomeren C-Atom zu einer selektiven Glycosidierung (o. Abb.).

R

Abbildung 39: Im Arbeitskreis Tietze synthetisierte Spinosynanaloga 151, 152 und 153

4 Retrosynthese

Ziel der vorliegenden Arbeit war die Untersuchung der zweifachen Heck-Reaktion mit dem Baustein **154**. Ferner sollte für Untersuchungen der β -selektiven Glycosidierung in Kooperation mit Simone Dietz aus dem Arbeitskreis Tietze geeignete Akzeptoren bereit gestellt werden.

Abbildung 40: Retrosyntheseschema des Spinosyn-Analogons 150

In der Retrosynthese lässt sich das Spinosyn-Analogon **150** in fünf Bausteine zerlegen (Abbildung 40). Diese Bausteine lassen sich mittels einer zweifachen Heck-Reaktion, einer Evans-Aldolreaktion, einer Grignard-Reaktion und schließlich einer Yamaguchi-Macrolactonisierung als Schlüsselschritte verknüpfen.

Im Rahmen dieser Arbeit wurde noch ein weiterer Syntheseweg verfolgt. Statt der Grignard-Reaktion und der Evans-Aldol-Addition sollte eine Additionsreaktion und eine Metathese zum Aufbau des Macrolactons Anwendung finden. Der Aufbau des Tricyclus erfolgt wie im ersten Ansatz mittels einer zweifachen Heck-Reaktion mit dem Vinyliodid **154**.

Abbildung 41: Retrosynthese 2

Das Glycosid **159**, welches in einer Additionsreaktion an den Tricyclus **158** gebunden werden soll, kann auf die drei Bausteine **161**, **162** und **158** zurückgeführt werden. Das Produkt der Glycosidierungsreaktion zwischen **161** und **158** (o. Abb.) soll dann nachfolgend in einer Olefinmetathese eingesetzt werden.

R

Ebenfalls im Rahmen dieser Arbeit soll in einer Kooperation mit der Bayer AG eine Glycosidierungsreaktion zu dem Spinosynanalogon **163** durchgeführt werden (Abbildung 42).

Abbildung 42: Retrosyntheseschema zu Analogon 163

Analog zur Synthese des Vinyliodids **154** sollte ebenfalls ein heterocyclisches Vinyliodid **164** als Vorstufe zur zweifachen Heck-Reaktion zum Aufbau von weiteren Spinosid-Analoga synthetisiert werden (Abbildung 43).

164

Abbildung 43: Heterocyclisches Vinyliodid 164

Zusammengefasst ergaben sich folgende Teilaufgaben:

- Synthese des Vinyliodids 154
- Synthese des heterocyclischen Vinyliodids 164
- Synthese des Bromids 228
- Untersuchung zur Heck-Reaktion mit unterschiedlichen Cyclopentenen
- Synthese des Alkohols **301**
- Synthese des Ketons 282
- Untersuchung der Glcosidierung im Rahmen einer Kooperation mit der Bayer AG.

E Ergebnisse und Diskussion

5 Synthese des aromatischen Vinyliodids 154

5.1 Synthese des Glycosylakzeptors 167

Ein für den Aufbau von Spinosynanaloga nötiger Synthesebaustein ist das Vinyliodid **154**. Die Synthese dieses Bausteins gelang nach einem leicht modifizierten literaturbekannten Verfahren^[85].

Abbildung 44: Synthese des Glycosylakzeptors 167

Die Synthese des Glycosylakzeptors **167** erfolgte in einer Gesamtausbeute von 65% über zwei Schritte aus kommerziell erhältlichem 3-Methoxybenzaldehyd **165**. Die Bromierung des Aromaten **165** mit Br₂ in Dichlormethan lieferte Verbindung **166** in 84% Ausbeute. Nachfolgende Spaltung des Methylethers durch BBr₃ in Dichlormethan ergab den Glycosylakzeptor **167** in 77% Ausbeute (Abbildung 44). Versuche zur Methyletherspaltung mittels Iodcyclohexan in DMF bei 160 °C führten hingegen zum Umsatz des Substrates.

5.2 Synthese des Vinyliodids 154

Für die Glycosidierungsreaktion wurde neben dem Akzeptor **167** ein entsprechender Donor benötigt. Die Wahl fiel auf einen Trichloracetimidatdonor **168** nach Schmidt *et al.*, der sich durch Stabilität und Reaktivität auszeichnet.⁸⁶

Der Trichloracetimidatdonor **168** wurde aus dem kommerziell erhältlichen L-Rhamnose Monohydrat **169** in drei Stufen synthetisiert.

Abbildung 45: Synthese des anomer-entschützten L-Rhamnosederivates 171

Die Permethylierung des L-Rhamnose Monohydrats **169** mittels NaH und MeI in DMSO gelang in einer Ausbeute von 81% als α,β -Mischung von **170** im Verhältnis 1:1. Anschließend wurde der Zucker **170** anomer entschützt, indem er in wässriger 0.5 M H₂SO₄ bei 100 °C für 14 h gerührt wurde. Die so erhaltende α,β -Mischung von **171** im Verhältnis 6:1 wurde nachfolgend durch Umsetzung mit Cl₃CCN und PS-DBU in den Glycosyldonor **168** überführt.

Abbildung 46: Glycosidierungsreaktion zwischen Donor 168 und Akzeptor 167

Durch die Verwendung von polymergebundenen DBU als Base konnte auf eine säulenchromatographische Aufreinigung des Produktes verzichtet werden, da sich die Base durch Filtration entfernt lies (Abbildung 46).

In der nachfolgenden Glycosidierung wurden der Donor **168** und der Akzeptor **167** in Gegenwart der Lewis-Säure TMSOTf in CH_2Cl_2 glycosidiert. Das Glycosid **172** wurde in einer Ausbeute von 67% über 2 Stufen erhalten.

Anschließende Überführung des Aldehydes **172** in das für die Heck-Reaktion benötigte (*Z*)-Vinyliodids **154** gelang in einer Wittig-Reaktion mit dem Wittig-Salz **173** und KHMDS in THF in einer Ausbeute von 63% (Abbildung 47).

5.2.1 Diskussion der spektroskopischen Daten von 154

Das ¹H-Spektrum (Abbildung 48) zeigt im Hochfeldbereich ein Dublett bei δ = 1.24 ppm mit einer Kopplungskonstante von *J* = 6.8 Hz, typisch für eine ³J-Kopplung, mit einer Intensität von 3 H, welches der 6⁷⁷-Methylgruppe zugeordnet werden kann. Weiter ins Tieffeld verschoben mit einer chemischen Verschiebung von δ = 3.17 ppm findet sich das 4^{''}-H-Signal mit der Intensität von 1 H, welches aufgrund seiner beiden gleichwertigen axial-axial-Kopplungen zu einem Triplett mit der Kopplungskonstante von J = 9.6 Hz aufspaltet. Die drei Methoxygruppen zeigen Signale bei einer chemischen Verschiebung von δ = 3.54 und 3.54 ppm in Form von zwei Singuletts mit den Intensitäten von 6 H und 3 H. Bei δ = 3.61 resoniert 5^{''}-H als Dublett vom Quartett mit der Kopplungskonstante J = 6.2 Hz zu 6"-H und der axial*axial*-Kopplungskonstante von J = 9.5 Hz zu 4^{''}-H mit einer Intensität von 1 H. Das an C-4'' befindliche Proton koppelt ebenfalls mit dem bei δ = 3.64 ppm resonierenden Proton 3^{''}-H. Es besitzt ebenfalls eine für *axial-axial*-Kopplungen typische Kopplungskonstante von J = 9.5 Hz und einer für axial-äquatorial-Kopplungen typische Kopplungskonstante von J = 3.2 Hz. Das benachbarte 2^{''}-H bei $\delta = 3.75$ koppelt in einer *äquatorial-äquatorial*-Kopplung zu 1^{''}-H mit einer Kopplungskonstante von J = 2.0 Hz und einer Intensität von 1 H. Das am anomeren Kohlenstoff C-1" befindliche Proton 1''-H resoniert bei δ = 5.50 ppm. Es spaltet als ein Dublett mit der Intensität von 1 H auf und besitzt ein Kopplungskonstante von *J* = 2.0 Hz. Neben der starken Verschiebung ins Tieffeld ist die Kopplungskonstante ein wichtiges Indiz für das Vorliegen eines α -L-Zuckers, da es sich bei einer so kleinen Kopplungskonstante

R

von J = 2.0 Hz um eine *äquatorial-äquatorial*-Kopplung handeln muss und das 1''-H-Proton damit *äquatorial* steht.

Weiter ins Tieffeld verschoben resonieren die Protonen der sp²-hybridisierten Kohlenstoffatome. Bei $\delta = 6.72$ ppm resoniert als Dublett mit einer Intensität von 1 H und einer Kopplungskonstante von J = 8.6 Hz das an C-2′ befindliche Proton 2′-H. Das benachbarte Proton 1′-H resoniert hingegen weiter tieffeldverschoben bei $\delta = 7.26$ ppm als Dublett mit einer Kopplungskonstante von J = 8.5 Hz und einer Intensität von 1 H. Die Kopplung von J = 8.5 Hz weist eindeutig auf eine Z-Doppelbindung hin. Die für vinylische Doppelbindungsprotonen ungewöhnlich starke Tieffeldverschiebung lässt sich auf die Resonanz mit dem Aromaten zurückführen.

Abbildung 48: ¹H-NMR-Spektrum der Verbindung 154 bei 600 MHz in CDCl₃

Die aromatischen Protonen 5-H (δ = 6.90 ppm), 3-H (δ = 7.36 ppm) und 6-H (δ = 7.45 ppm) resonieren in dem für aromatische Protonen typischen Bereich und zeigen für die 1,2,4-trisubstituierte Aromaten übliche Kopplungen. 5-H koppelt als Dublett von Dublett (Intensität = 1 H) mit einer *meta*-Kopplungskonstante von J = 2.9 Hz zu 3-H und mit einer *ortho*-Kopplungskonstante von J = 8.8 Hz zu 6-H. Das an C-3 gebundene Proton 3-H zeigt lediglich ein Dublett mit der Intensität 1 H mit

einer *meta*-Kopplungskonstante von J = 2.9 Hz zu 5-H, jedoch keine Kopplung zu 6-H, welches ebenfalls nur als ein Dublett mit der Intensität von 1 H aufspaltet. Hierbei handelt es sich um eine *ortho*-Kopplung mit einer Kopplungskonstante von J = 8.8 Hz zu 5-H.

Im ¹³C-Spektrum (Abbildung 49) kann bei δ = 17.9 ppm das Signal der C-6^{''}-Methylgruppe beobachtet werden. Weiter im Tieffeld finden sich die drei Signale für die Methoxygruppen bei δ = 58.0, 59.3, 61.0 ppm. Die fünf übrigen Signale für die Kohlenstoffatome der L-Rhamnose finden sich bei δ = 68.8 (C-5^{''}), 76.8 (C-2^{''}), 80.8 (C-3^{''}), 81.9 (C-4^{''}), 95.5 ppm (C-1^{''}), welche alle zweifelsfrei durch die Zuhilfenahme eine HSQC-Experimentes zugeordnet werden konnten.

Abbildung 49: ¹³C-NMR-Spektrum der Verbindung 154 bei 126 MHz in CDCl₃

Das Kohlenstoff-Signal C-2' resoniert bei δ = 83.8 ppm. Dafür verantwortlich ist der Schweratomeffekt des Iod-Substituenten, der für die Abschirmung des Kohlenstoffatoms sorgt. Deshalb findet sich das Signal stark ins Hochfeld verschoben. Das zweite vinylische Kohlenstoffatom C-1' resoniert weit tieffeldverschoben bei

2

 δ = 138.6 ppm. Die tertiären aromatischen Signale bei δ = 117.8 (C-3), 117.9 (C-5), 113.3 (C-6) konnten alle zweifelsfrei zugeordnet werden. Die quartären, aromatischen Kohlenstoffatome resonieren schließlich bei δ = 115.5 (C-2), 138.3 (C-1), 155.0 (C-4).

Das IR-Spektrum der Verbindung **154** weist neben den charakteristischen Banden für die CH-Valenzschwingung des Aromaten bzw. des Alkens bei 2928 cm⁻¹ auch die Bande für die Methylether bei 2825 cm⁻¹ auf.

Das ESI-Massenspektrum weist bei m/z = 535.0 einen Peak mit der Intensität von 100% auf. Dieser Peak kann auch auf Grund der Bromisotopenverteilung dem Molpeak der Verbindung **154** in Assoziation mit Natrium zugeordnet werden. Ein weiterer Peak bei m/z = 1048.0 mit einer Intensität von 60% zeigt eine Isotopenverteilung von zwei Bromatomen und kann dem zweifachen Molpeak von Verbindung **154** in Assoziation mit Natrium zugeordnet werden. Das gemessene hochaufgelöste Massenspektrum zeigt unter anderem einen Peak bei m/z = 534.9582(berechnet: m/z = 534.9588 [M + Na]⁺)

6 Synthese des Pyridin-Bausteins 164

6.1 Synthese des Vinyliodids 164

Eine Alternative zum bereits synthetisierten Benzol-abgeleiteten Vinyliodid **154** ist dessen Pyridin-Derivat **164**.

Abbildung 50: Synthese des Aldehyds 180

Die Synthese des Aldehyds **180** gelang aus kommerziell erhältlichem 2-Methoxy-6methylpyridin **175** in 5 Stufen einem literaturbekanntem Verfahren folgend.^[87] Zunächst wurde mit 1,3-Dibrom-5,5-dimethylhydantoin (DBDMH) in THF unter Lichtausschluss bei Raumtemperatur regioselektiv in 3-Position in einer Ausbeute von 83% bromiert. Anschließend wurde aus dem Bromid **176** mit *m*-CPBA in CHCl₃ das *N*-Oxid **177** in einer moderaten Ausbeute von 55% gebildet, welches dann mit Essigsäureanhydrid in einer Claisen-Umlagerung zum Acetat **178** in 88% Ausbeute umgesetzt wurde. Nachfolgende Acetyl-Entschützung mittels 1 M wässriger K₂CO₃-Lösung in MeOH ergab Alkohol **179** in 96% Ausbeute, welcher mit aktiviertem MnO₂ in 95% Ausbeute zum Aldehyd **180** oxidiert wurde (Abbildung 50).

Abbildung 51: Wittig-Reaktion mit Aldehyd 180

Die nachfolgende Wittig-Reaktion erfolgte in sehr guter Ausbeute von 99% analog der Durchführung für Aldehyd **172** (vgl. Kapitel 5.2). Einzig das *E/Z*-Verhältnis bei der Umsetzung der beiden Aldehyde **172** und **180** unterschied sich deutlich. So lieferte die Reaktion nur ein *E/Z*-Verhältnis von ungefähr 1:1 (Abbildung 51). Optimierungsversuche zur Wittig-Reaktion wurden im Rahmen der Bachelorarbeit von *Sven Kampmann*^[88] durchgeführt. Untersucht wurden in diesem Kontext primär die Verwendung der Basen Kaliumtertbutanolat (KOt-Bu) und Kaliumbis(trimethylsilyl)amid (KHMDS). Obwohl der Einsatz von KOt-Bu in der Literatur bei Strukturanaloga von **180** zu guten *Z*-Selektivitäten führte, wurde mit **180** eine Selektivität von 20:1 zu Gunsten des *E*-Isomers **181** beobachtet (Tabelle 9, Eintrag 1). Der Einsatz von KHMDS lieferte ein 2:3 *Z/E*-Verhältnis bei Einsatz von 1.00 Äq. Base, jedoch mit einer nur moderaten Ausbeute von 56% (Eintrag 2). 1.30 Äq. KHMDS führten zu einer verbesserten Ausbeute von 91% bei kürzerer Reaktionszeit, um einer möglichen Basen-katalysierten Isomerisierung vorzubeugen (Eintrag 3). Das beste Ergebnis ergaben die unter Eintrag 4 dargestellten Bedingungen.

110	
	7

 Tabelle 9: Untersuchungen zur Wittig-Reaktion

1	1) 173 (1.20 Äq.), KO <i>t</i> -Bu (1.20 Äq.), THF, –78 °C, 80 min 2) 180 , –78 °C, dann RT, 12 h	41%	20:1
2	1) 173 (1.30 Äq.), KHMDS (1.00 Äq.), THF, RT, 20 min 2) 180 , –78 °C, dann RT, 16 h	56%	3:2
3	1) 173 (1.30 Äq.), KHMDS (1.30 Äq.), THF, RT, 20 min 2) 180 , −78 °C, 45 min, dann RT, 45 min	91%	3:2
4	1) 173 (1.30 Äq.), KHMDS (1.30 Äq.), THF, RT, 20 min 2) 180 , –78 °C, dann RT, 16 h	quant.	9:10

Mit dem so hergestellten Vinyliodid **164** ergab sich ein weiterer Baustein für die zweifache Heck-Reaktion (s. Kapitel 12.7.5).

7 Synthese *cis*-verknüpfter Cyclopentene

Bei der Synthese der für die zweifache Heck-Reaktion erforderlichen Cyclopentenbausteine **183** wurde auf literaturbekannte Verfahren zurückgegriffen^[89], da hierbei auf eine enantioselektive Reaktionsführung verzichtet wurde. Für die geplante Reaktionsführung war es erforderlich, dass die beiden Substituenten in der thermodynamisch ungünstigeren *cis*-Anordnung vorliegen; dies wird im Folgenden weiter erläutert.

7.1 Stereochemische Aspekte der Heck-Reaktion

Für die Synthese des Tricyclus **186** war eine doppelte Heck-Reaktion von **182** und **183** vorgesehen.

Abbildung 52: Stereochemische Aspekte der doppelten Heck-Reaktion

Bei einem regioselektiven Angriff an C-2′ in **183** erfolgt eine Steuerung der Diastereoselektivität durch das stereogene Zentrum C-1′. Der Angriff des Palladium-Komplexes **182** auf **183** erfolgt von der α -Seite und es kommt zur selektiven Bildung von **184** (Abbildung 52).

In der zweiten Heck-Reaktion insertiert zuerst das Palladium in die C-Br-Bindung. Der Angriff des gebildeten Pd-Komplexes erfolgt wiederum von der α -Seite und es bildet sich das Intermediat **185** mit einer α -ständigen PdXL₂-Substitution. Da nur das H-Atom an C-5'die α -Konfiguration aufweist, ist eine *syn*- β -Hydrid-Eliminierung nur in eine Richtung möglich, so dass selektiv der Tricyclus **186** gebildet wird. Bei Verwendung eines Cyclopentens mit einer 1',5'-*trans*-Substitution ist eine *syn*- β -Hydrid-Eliminierung in der zweiten Heck-Reaktion nicht möglich, da beide zum Pd benachbarten Wasserstoffe eine *anti*-Anordnung aufweisen. Zudem ist nicht zu erwarten, dass der Angriff von **182** an das entsprechende Cyclopentenderivat **183** mit hoher Selektivität erfolgt.

7.2 Synthese des Lactons *rac-*194

Für die Synthese des erforderlichen Cyclopenten-Derivates **183** (R = CHO) wurde zuerst das Lacton *rac*-**194** hergestellt.

Abbildung 53: Synthese des Lactons rac-194

Zur Synthese von *rac*-**194** mit einer *cis*-Anordnung der Substituenten, wurde ein literaturbekanntes Verfahren nach Goldstein *et al.* angewendet⁸⁹. Die dort beschriebene Synthese erwies sich als zuverlässige Syntheseroute, welche auch im großen Maßstab angewendet werden konnte.

Als Startmaterial diente kommerziell erhältlicher Malonsäuredimethylester **189**, welcher in einer Ausbeute von 81% mittels Spaltung einer Esterfunktionalität durch äquimolaren Einsatz von KOH in MeOH zum Monoester **190** hydrolysiert wurde⁹⁰. Die

gebildete Carbonsäure-Funktionalität wurde mittels SOCl₂ in das entsprechende Säurechlorid überführt, welches durch die Zugabe von *N*-Chlorsuccinimid in einem Eintopfverfahren an C-2 unter Bildung von *rac*-**191** in 63% Gesamtausbeute chloriert wurde. Um eine mehrfache Chlorierung an C-2 zu vermeiden, musste auf die strikte Einhaltung der Temperatur geachtet werden. Durch Zugabe einer katalytischen Menge konz. wässriger HCl konnte die Reaktionsgeschwindigkeit drastisch erhöht werden.

Das sehr hydrolyseempfindliche Säurechlorid rac-191 konnte nicht gelagert werden und musste unmittelbar in der folgenden [2+2]-Cycloaddition eingesetzt werden. Dazu wurde zu einer Mischung des Säurechlorids rac-191 und frisch destillierten Cyclopentadien über einen Zeitraum von 8 Stunden NEt₃ zugetropft. Das durch die Base in situ erzeugte Keten reagierte mit dem Cyclopentadien zu dem Bicyclus rac-192 mit einer Ausbeute von 83%. Die Reaktion verläuft thermisch kontrolliert bei Raumtemperatur, da nach den Regeln von Woodward und Hoffmann^[91] die [2+2]-Cycloaddition zwischen Ketenen und Alkenen antarafacial erlaubt ist und der konzertierte Reaktionsverlauf eine cis-Verknüpfung beider Komponenten gewährleistet. Untersuchungen von Goldstein et al. zeigten auch, dass das Chloratom, welches im nächsten Schritt wieder entfernt wird, essentiell für die [2+2]-Cycloaddition ist^[89]. Der chlorierte Bicyclus *rac-***192** wurde dann ohne weitere Aufreinigung direkt der Dechlorierung unterzogen. Dazu wurde von der von Goldstein et al. beschriebenen Methode, der Dehalogenierung mittels HSnBu₃ und AIBN, abgewichen und eine im Arbeitskreis Tietze etablierte Methode verwendet.^[82] Dazu wurde der Bicyclus rac-192 in Eisessig gelöst und unter Eiskühlung mit Zn-Staub versetzt. Nach einer Reaktionszeit von 1 h und nachfolgender destillativer Reinigung wurde der dehalogenierte Bicyclus rac-193 in einer Ausbeute von 73% erhalten.

Abbildung 54: Postulierter Mechanismus für die Bildung des Lactons *rac*-194 Der Bicyclus *rac*-193 wurde anschließend durch den Einsatz von 3.00 Äq. NaBH₄ als Reduktionsmittel in Methanol einer Reduktion/*Retro*aldoladdition/Reduktion/Lactonisierung Dominosequenz unterzogen. Durch den Überschuss an Reduktionsmittel wurde der intermediär in der *Retro*-aldoladdition gebildete *cis*-Aldehyd *rac*-196 in den konfigurationsstabilen Alkohol *rac*-197 überführt. Dieser reagiert anschließend wegen der räumlichen Nähe der *cis*-angeordneten Substituenten unter Abspaltung von Methanol zum Lacton *rac*-194 in 67% Ausbeute. Bei der Reaktionsführung ist es von Bedeutung, dass das NaBH₄ in einer Portion zur Reaktionslösung hinzugegeben wird, um eine durch Keto/Enol-Tautomerie verursachte Isomerisierung zur *trans*-Verbindung zu unterbinden. Der Reaktionsansatz konnte bis zu einer Substratmenge von 5.00 g problemlos vergrößert werden. Größere Ansätze sind wegen der starken Wasserstoffentwicklung schlecht zu kontrollieren, zumal es im Kolben zu einer Überhitzung kommen kann, was zur Verringerung der Ausbeute führt.

7.3 Synthese des Aldehyds *rac*-201

Die Synthese des Aldehyds *rac*-**201** gelang in 3 Stufen ausgehend vom Lacton *rac*-**194**. Dazu wurde das Lacton *rac*-**194** mit NaOH in MeOH verseift. Das erhaltene Salz der Carbonsäure *rac*-**195** (o. Abb.) wurde nach Trocknung am Hochvakuum bei schwach sauren Bedingungen unter Verwendung des Isoharnstoffderivates **199** und NH₄Cl in den *tert*-Butylester *rac*-**196** überführt. Im Falle eines stärker sauren Milieus wurde eine Rückbildung des Lactons **rac-194** beobachtet, weshalb stärkere Lewis- oder Brønsted-Säuren hier nicht eingesetzt werden durften.

Abbildung 55: Synthese des Aldehyds rac-201

Der Vorteil der Einführung der *tert*-Butylgruppe unter Verwendung des aus N,N'-Diisopropylcarbodiimid **198** hergestelltem Isoharnstoffs **199** liegt darin, dass die Übertragung des *tert*-Butylfragments unter mild sauren Bedingungen stattfindet. Das Carbonsäuresalz wurde dazu in einer Mischung aus CH₂Cl₂/*tert*-BuOH gelöst und in mehreren Portionen NH₄Cl und Isoharnstoff **199** zugegeben. Die Ausbeute an *rac*-**200** konnte dabei deutlich durch Pulverisieren des Carbonsäuresalzes *rac*-**195** auf 93% gesteigert werden. Anschließend wurde die Hydroxyfunktion in *rac*-**200** mit dem Dess-Martin-Reagenz in CH₂Cl₂ zum Aldehyd *rac*-**201** in 92% Ausbeute oxidiert. Dabei war eine zügige säulenchromatographische Reinigung in Form einer Säulenfiltration von Bedeutung, da das saure Kieselgel zu einer *trans*-Isomerisierung führte.

7.4 Synthese der Aldehyde 218 und 219

Der Aldehyd *rac*-**201** wurde anschließend in einer Evans-Aldoladdition mit dem chiralen (4*S*)-Oxazolidinon **202** unter Verwendung von *n*-Bu₂BOTf als Lewissäure umgesetzt (Abbildung 56).^[92]

Abbildung 56: Aldolreaktion

Der für die Reaktion benötigte C-3-Baustein **202** wurde nach einem literaturbekannten Verfahren synthetisiert. Das benötigte Oxazolidinon **202** wurde in zwei Schritten aus L-Phenylalanin hergestellt und im Anschluss mit *n*-BuLi deprotoniert und mit Propionsäurechlorid (o. Abb) in THF umgesetzt⁹³. Das enantiomerenreine Produkt (4*S*)-3-Propionyl-4-benzyl-2-oxazolidinon **202** wurde in quantitativer Ausbeute erhalten (o. Abb.).

Durch die Reaktion von *rac-***201** mit **202** wurde eine C3-Einheit unter Generierung zwei neuer stereogener Zentren eingeführt. Von essentieller Bedeutung war der konfigurativ richtige Aufbau des stereogenen Zentrums, welches die Methyl-Gruppe trägt, während die Konfiguration des zweiten stereogenen Zentrums mit der Hydroxyfunktion nicht von Bedeutung war, da dieses Zentrum im späteren Syntheseverlauf durch Oxidation in ein planares Enonsystem überführt werden soll. Im vorliegenden Fall werden beide stereogenen Zentren hochselektiv aufgebaut.^[94] Abbildung 57 veranschaulicht die mechanistischen Aspekte zur Bildung der stereogenen Zentren.

Abbildung 57: Mechanismus der Evans-Aldol-Reaktion

Durch die Koordination von *n*-Bu₂BOTf an das (4*S*)-Oxazolidinon **202** wird der Komplex **204** gebildet. Durch die Zugabe von NEt₃ als Base kommt es zur Bildung des für Amide typischen (*Z*)-Enolats **205**. Für den Aufbau des stereogenen Zentrums ist es von Bedeutung, in welchem Verhältnis Oxazolidinon **202** und dem eingesetzten *n*-Bu₂BOTf eingesetzt werden. Wird mit äquimolaren Mengen an *n*-Bu₂BOTf gearbeitet, so kommt es bei Zugabe eines Aldehyds zur Ausbildung eines geschlossenen sechsgliedrigen Übergangszustandes **206**. Dieser Übergangszustand führt zur Bildung des *syn*-Aldoladduktes **203**. Wird hingegen ein Überschuss an *n*-Bu₂BOTf zugegeben, so kommt es zur Ausbildung eines offenen Übergangszustandes **207**. In diesem Fall kommt es zur Bildung des *anti*-Aldoladduktes **208**. Da für die Synthese der Spinosynanaloga eine (*S*)-Konfiguration am Kohlenstoffatom mit der Methylgruppe benötigt wird, wurden das Oxazolidinon **202** und die Lewis-Säure *n*-Bu₂BOTf in äquimolaren Mengen eingesetzt. Ein besonderer Aspekt bei der Umsetzung von *rac*-**201** mit dem enantiomerenreinen **202** beruht in der Bildung von zwei enantiomereinen Diastereomeren, die allerdings auf dieser Stufe nicht säulenchromatographisch getrennt werden konnten.

Für die weitere Syntheseroute war es notwendig, den sekundären Alkohol **203** in eine entsprechende geschützte Form zu überführen. Als Schutzgruppe kamen weder Ether- noch Ester-Schutzgruppen in Frage, da im späteren Syntheseverlauf eine Methoxy-ethoxy-methyl-Schutzgruppe eingeführt wird und das Macrolacton nicht geöffnet werden darf, wenn nach der Macrolactonisierung die Schutzgruppe wieder entfernt werden soll. Aus diesem Grund fiel die Wahl auf eine Silylschutzgruppe, da diese im weiteren Syntheseverlauf stabil sein sollte. Ferner wurde eine Schutzgruppe mit großem sterischen Anspruch benötigt, um im späteren Syntheseverlauf die stereoselektive Einbringung des C6-Bausteins **157** durch eine Grignard-Reaktion unter Annahme eines Felkin-Ahn-Übergangszustand ohne konkurrierende chelatisierende Effekte des Sauerstoffs zu ermöglichen. Da die große TIPS-Schutzgruppe an der sterisch anspruchsvollen C-1-Position nicht installiert werden konnte^[83], fiel die Entscheidung auf die etwas kleinere TBS-Schutzgruppe.

Unter den Standardbedingungen mit Imidazol und TBSCl in DMF konnte jedoch keine Umsetzung beobachtet werden. Die reaktiveren Bedingungen TBSOTf und 2,6-Lutidin in CH₂Cl₂ führten hingegen schon bei 0 °C zur Abspaltung des *tert*-Butylesters. Eine Kombination aus beiden Methoden, TBSOTf und Imidazol in DMF, führte bei Raumtemperatur zu keiner Umsetzung. Erst die Erwärmung auf 60 °C lieferte die gewünschten Produkten **210** und **210** in einer Ausbeute von 89% bezogen auf die Mischung der Diastereomere. Auf dieser Stufe wurde ebenfalls versucht, die beiden Diastereomere **210** und **210** zu trennen. Dies ist zwar durch aufwendige Säulenchromatographie möglich aber wenig effektiv.

Abbildung 58: TBS-Schützung des Alkohols 203

Die Durchführung der Aldolreaktion (o. Abb.) mit enantiomerenreinem Aldehyd **201** konnte ebenfalls zu dem diastereomerenreinen Alkohol **203** durchgeführt werden.^[95] Nachfolgende Schützung der Alkohol-Funktionalität erfolgte in 89% zum TBS-Ether **209** wie oben beschrieben. Schließlich konnte das Auxiliar abgespalten werden und so wurde der primäre Alkohol **211** erhalten (Abbildung 59).

Abbildung 59: TBS-Schützung des Alkohols 203

7.4.1 Diskussion der Röntgenstruktur von Verbindung 209

Die durch Kristallisation des TBS-Ethers **209** (CH_2CI_2 , RT) erhaltenen Kristalle konnten röntgenkristallographisch durch Markus Granitzka aus dem Arbeitskreis von Prof. Stalke untersucht werden^[96].

Abbildung 60: Röntgenstruktur des TBS-Ethers 210

Die anschließend anhand der Messdaten vorgenommene Strukturzuweisung war aufgrund der bekannten Stereochemie des Evans-Auxiliars eindeutig (Abbildung 60). Deutlich zu erkennen ist die *cis*-Anordnung zwischen C-19 und C-15. Ebenfalls zu erkennen ist die Konfiguration an C-12, C-14, C-15 und C-19. Folglich handelt es sich um die in Verbindung **209** vorliegende Stereochemie. Die durch A. Grube und Chr. Stadler bis dato nur postulierte Stereochemie ist damit korrekt^[83,84].

7.5 Synthese der Diole 213 und 212

Da die säulenchromatographische Reinigung nach der TBS-Schützung sich als außergewöhnlich aufwendig erwies, wurde aufgrund des großen Substanzbedarfs eine andere Route verwendet, die auch im großen Maßstab angwendet werden konnte^[83]. Dafür wurde zuerst das Auxiliar mittels LiBH₄ und EtOH in Et₂O abgespalten und die Diastereomere **212** in 45% und **213** in 49% Ausbeute erhalten. Die Trennung der beiden Diastereomere **212** und **213** war auf dieser Stufe problemlos mittels Säulenchromatographie möglich (Abbildung 61).

Abbildung 61: Reduktive Abspaltung des Evans-Auxiliars

7.5.1 Diskussion der Röntgenstruktur des Diols 212

Die durch Kristallisation des Diols **212** (CH₂Cl₂, RT) erhaltenen Kristalle wurden röntgendiffraktometrisch durch Dr. Julian Holstein aus dem Arbeitskreis von Dr. Birger Dietrich untersucht.^[97] Die anschließend anhand der Messdaten vorgenommene Strukturzuweisung war eindeutig, jedoch wegen der Fehlordnung der frei drehbaren *tert*-Butyleinheit mit Schwierigkeiten verbunden (Abbildung 62).

Abbildung 62: Molekülstruktur des Diols 212

Die Struktur zeigt die *cis*-Verknüpfung zwischen C-3 und C-7. Zur Bestimmung der absoluten Struktur wurde der Flack-Parameter mit der Parsons Methode^[98] verwendet. Im Gegensatz zum konventionellen Flack-Parameter^[99] ist eine Bestimmung der absoulten Struktur mittels Parsons Methode möglich [Parsons' Q-values Flack x: 0.11(6)]. Damit liefert diese Kristallstruktur einen weiteren Beweis für die Richtigkeit der Struktur.

7.6 Synthese der Aldehyde 218 und 219

Nachfolgend wurden beide Alkoholfunktionalitäten in **213** mit 3.00 Äquivalenten TBSOTf und 6.00 Äquivalenten 2,6-Lutidin in CH₂Cl₂ mit TBS-Schutzgruppen in 97% geschützt. Im Falle des Diastereomers **212** wurden für das Diol **212** hingegen 4.00 Äquivalente TBSOTf und 8.00 Äquivalente 2,6-Lutidin in CH₂Cl₂ benötigt und lieferte den TBS-Ether **214** in 95% Ausbeute. Die in der Dissertation von A. Grube^[83] berichtete Abspaltung des *tert*-Butylesters konnte unter diesen Bedingungen nur dann beobachtet werden, wenn die Qualität des eingesetzten TBSOTf nicht ausreichend war (Abbildung 63).

72 Synthese cis-verknüpfter Cyclopentene

Abbildung 63: TBS-Schützung der Alkohole 212 und 213

Anschließend wurde der primäre TBS-Ether unter Erhalt der Silylschutzgruppe am sekundären Alkohol mittels HF[.]Pyridin in THF/Pyridin wieder abgespalten. So wurden die primären Alkohole **211** und **217** jeweils in 89% erhalten.

Abbildung 64: Synthese der beiden Aldehyde 218 und 219

Die nachfolgende Oxidation mit DMP in CH_2Cl_2 verlief ebenfalls in beiden Fällen problemlos mit quantitativer Ausbeute für **213** und in 83% Ausbeute für **219** (Abbildung 63).

8 Synthese des C-6-Fragments 229

Für die geplante Grignard-Reaktion von 218 und 219 wurde zunächst ein C-6-Baustein mit geschützter sekundärer Alkoholfunktion in **4-Position** und einem Halogensubstituenten in 1-Position benötigt. Dazu wurde auf den von Gordon Brasche^[82] im Arbeitskreis Tietze entwickelten C-6-Baustein **229** zurückgegriffen. Dazu wurde kommerziell erhältliches 1,4-Butadiol 220 mittels TIPSCI und NaH in THF selektiv in quantitativer Ausbeute monogeschützt.^[100] Der primäre Alkohol **221** wurde anschließend in einer Swern-Oxidation ebenfalls in quantitativer Ausbeute in den Aldehyd **222** überführt¹⁰¹. Zur stereoselektiven Einführung der Ethylgruppe wurde eine von Knochel et al. beschriebene Addition des Zinkorganyls an den Aldehyd 222 verwendet.^[102]

Abbildung 65: Synthese des Alkohols 225

Der für die stereoselektive Einführung benötigte Ligand **223** wurde aus kommerziell erhältlichem (1R,2R)-Cyclohexandiamin **222** und einer 1 M Lösung von Trifluor-

methansulfonsäureanhydrid in CH_2Cl_2 in das Ditrifluormethansulfonat **223** in 87% Ausbeute überführt.¹⁰³ Nachfolgend wurde der Aldehyd **224** in Toluol mit Diethylzink in Anwesenheit von 10 mol% Ligand **223** und Ti(*i*PrO)₄ in 98% Ausbeute unter Erhalt des Alkohols **225** alkyliert (Abbildung 65).

Abbildung 66: Synthese des Grignard-Reagenzes 229

Der sekundäre Alkohol **225**, welcher nach der Additionsreaktion generiert wurde, musste für die weiteren Transformationen geschützt werden. Dazu wurde **225** anschließend mit MEMCI und Hünig-Base in CH₂Cl₂ in den MEM-Ether **226** in 85% Ausbeute überführt. Darauffolgend wurde durch Umsetzung des MEM-Ethers **226** mit TBAF³ H₂O in THF die TIPS-Schutzgruppe in 94% Ausbeute entfernt. Der so erhaltene Alkohol **227** konnte über längere Zeit gelagert werden. Bei Bedarf wurde der Alkohol **227** dann in einer modifizierten Appel-Reaktion in THF mit *N*-Bromsuccinimid und PPh₃ eingesetzt und lieferte das Bromid **228** in 84% Ausbeute.

Nach zügiger säulenchromatographischer Reinigung wurde das Bromid **228** direkt in das Grignard-Reagenz **229** überführt (Abbildung 66).

Die Lagerung auf der Stufe des Bromids **228** war nicht möglich, da schon nach wenigen Stunden Zersetzung auftrat. Auch das Grignard-Reagenz ist nicht lagerfähig und musste ebenfalls innerhalb weniger Stunden eingesetzt werden.

8.1.1 Diskussion der spektroskopischen Daten des Bromids 228

Das ¹H-NMR-Spektrum des Bromids **228** (Abbildung 67) zeigt im Hochfeldbereich bei δ = 0.87 ppm ein Triplett mit der Kopplungskonstante von *J* = 7.4 Hz mit einer Intensität von 3 H. Zwischen 1.42 ppm und 2.04 ppm resonieren zwei Multipletts mit der Intensität von 4 H und 2 H, welche den 2-H₂-, 3-H₂- und 5-H₂-Protonen zugeordnet werden können. Das Signal der Methoxyfunktion der MEM-Schutzgruppe resoniert bei δ = 3.37 ppm als Singulett mit der Intensität von 3 H. Bei δ = 3.40 ppm resoniert als Triplett mit der Kopplungskonstante J = 6.9 Hz und einer Intensität von 2 H die 1-CH₂-Gruppe. Obwohl die Protonen diastereotop sind, fallen die Protonen zu einem gemeinsamen Triplett zusammen. Weiter im Tieffeld finden sich zwei Multipletts. Eines bei δ = 3.49–3.57 ppm mit einer Intensität von 3 H, welches zum einen 4-H zuzuordnen ist und zum anderen resonieren darunter 2 Protonen der MEM-OCH₂CH₂O-Struktur. Die übrigen beiden Protonen der MEM-OCH₂CH₂O-Struktur resonieren in Form eines weiteren Multipletts bei δ = 3.66–3.73 ppm mit einer Intensität von 2 H. Am weitesten ins Tieffeld verschoben finden sich bei δ = 4.71 ppm und δ = 4.74 ppm zwei Dubletts, welche mit J = 11.0 Hz eine für geminale Protonen typische Kopplungskonstante aufweisen. Des Weiteren zeigen die beiden Dubletts auf Grund der sehr ähnlichen chemischen Verschiebung einen stark ausgeprägten Dacheffekt.

Abbildung 67: ¹H-NMR-Spektrum des Bromids 228 bei 300 MHz in CDCl₃

Das ¹³C-NMR-Spektrum (Abbildung 68) zeigt im Hochfeld bei δ = 9.5 ppm das Signal für das C-6-Kohlenstoffatom. Weiter im Tieffeld finden sich die Signale für C-1, C-2, C-3 und C-5 bei δ = 26.8, 28.7, 32.3 und 34.1 ppm. Das verbleibende C-4-Kohlenstoffatom resoniert hingegen wegen seiner chemischen Umgebung signifikant weiter im Tieffeld bei δ = 77.7 ppm. Die Kohlenstoffsignale der MEM-Schutzgruppe finden sich bei δ = 59.1 ppm (OCH₃), δ = 67.1 und 71.8 ppm (O<u>C</u>H₂<u>C</u>H₂O) sowie bei δ = 94.3 ppm (OCH₂O).

2

Abbildung 68: ¹³C-NMR.Spektrum des Bromids 228 bei 126 MHz in CDCl₃

Das IR-Spektrum des Bromids **228** weist Signale bei 2962, 2930, 2877 cm⁻¹ auf. Dies ist ein Hinweis auf gesättigte Kohlenwasserstoffreste hin, da dies der Bereich für die CH-Valenzschwingung ist. Signale bei 1253, 1199, 1154, 1129 und 1102 cm⁻¹ liegen hingegen im Bereich der C-O-Einfachbindungs-Valenzschwingungen und weisen auf C-O-C-Strukturen hin, wie sie in der MEM-Schutzgruppe vorhanden sind.

Das ESI-Massenspektrum zeigt bei m/z = 291.1 ein Signal mit einer Intensität von 100% und einem Bromisotopenverteilung. Es kann dem Molekülionen-Peak in Assoziation mit Natrium zugeordnet werden. Das gemessene hochaufgelöste Massenspektrum zeigt unter anderem einen Peak bei m/z = 291.0569 (berechnet: m/z = 291.0566), welcher ein Beweis für das Vorliegen der Summenformel C₁₀H₂₁BrO₃ darstellt

9 Grignard-Reaktion

9.1 Synthese der Alkohole 230 und 231

Das frisch hergestellte Grignard-Reagenz **229** wurde anschließend in Anwesenheit von LiCl mit den Aldehyden **218** und **219** umgesetzt. Im Fall des Aldehyds **219** führte die Reaktion, welche unter Felkin-Ahn-Kontrolle stattfindet, zu den beiden Alkoholen **230** (22%) und **231** (67%).

Abbildung 69: Grignard-Reaktion (1)

Beide Alkohole konnten mittels Säulenchromatographie voneinander getrennt werden. Das ebenfalls bei der Reaktion gebildete Wurtz-Kupplungsprodukt **232** ließ sich hingegen nicht einfach von dem (*S*)-Diastereomer **231** trennen. Dies gelang erst durch eine sehr aufwendige Umkehrphasen-Säulenchromatographie. Optimierungsversuche, um das Verhältnis der Diastereomere zu Gunsten des (*S*)-Diastereomers **231** zu verschieben, blieben im Bezug auf Temperatur und Zugabetechnik erfolglos. Verminderung der Temperatur auf weniger als –60 °C führte zum Erliegen der Reaktion. Es konnte eine Selektivität von 2.4:1 (**231:230**) erreicht werden. Jedoch konnte durch den Zusatz von LiCl die Reaktionsgeschwindigkeit erheblich gesteigert werden. Die Temperatur konnte unter diesen Bedingungen auf –78 °C gesenkt werden und somit konnte das Verhältnis auf ~3:1 zu Gunsten des (*S*)-Diastereomers **231** verbessert werden (Abbildung 69). Auch die Bildung des Wurtz-Kupplungsproduktes **232** konnte unter diesen Bedingungen minimiert werden.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Weitere Absenkung der Temperatur auf –90 °C führte hingegen nicht mehr zu einer Verbesserung der Selektivität, sondern nur noch zu einer Verringerung der Reaktionsgeschwindigkeit.

9.2 Synthese der Alkohole 233 und 234

Im Falle der Umsetzung des Aldehyds **218** wurden ebenfalls zwei Diastereomere gebildet. Bei einer Reaktionsführung bei −60 °C wurde eine Selektivität von 1:1.6 zu Gunsten des (*S*)-Diastereomers **234** erhalten. Es konnte in einer sehr aufwendigen Umkehrphasenchromatographie vom dem Wurtz-Kupplungsprodukt **232** getrennt werden. Außerdem gelang es nach mehreren Säulen, die Diastereomere von einander zu trennen. Die Selektivität konnte erfreulicherweise durch Zugabe von LiCl und der damit verbundenen Absenkung der Temperatur auf −78 °C zu Gunsten des (*S*)-Diastereomers auf 1:1.8 gesteigert werden.

Ohne Zugabe von LiCl wurde bei –60 °C eine Selektivität von 1:1.5 (233:234) erhalten.

Abbildung 70: Grignard Reaktion (2)

Auch hier konnte das Wurtz-Kupplungsprodukt **232** mittels aufwendiger Umkehrphasen-Säulenchromatographie von den Alkoholen **233** und **234** abgetrennt werden. Auch eine Antrennung der beiden Diastereomere war mittels Umkehrphasensäulenchromatographie möglich, jedoch erwies sich dies als zu aufwendig und so wurde in den folgenden Umsetzungen das Epimerengemisch eingesetzt.

Q

10 Synthese der Lev- und Fmoc-geschützten Derivate

10.1 Synthese der Lev-geschützten Derivate

Für weitere Transformationen musste der sekundäre Alkohol geschützt werden. Auf Grund der vorliegenden Ergebnissen von G. Brasche^[82], C. Stadler^[84] und A. Grube^[83] war bekannt, dass sowohl eine Acetyl-, als auch eine Pivaloyl-Schutzgruppe im späteren Verlauf nicht mehr abgespalten werden kann, da das im späteren Syntheseverlauf gebildete Macrolacton unter den Bedingungen der Schutzgruppenabspaltung nicht stabil ist. Außerdem musste eine Schutzgruppe ausgewählt werden, die unter Einwirkung von TMSI, TFA bzw. TMSOTf und Palladiumkatalyse stabil ist. Anders als die Acetylschutzgruppe wird die Lävulinylschutzgruppe (Lev) mittels Hydrazinacetat entschützt. Unter diesen Bedingungen könnte die Öffnung des Macrolactons umgangen werden.

Für die Lev-Schützung standen nun verschiedene Diastereomere zu Verfügung. Der Einsatz von Lävulinsäure HOBt, EDC[·]HCl und Hünig-Base führte bei keinem der Diastereomere zu einer Umsetzung. Die Bedingungen unter Benutzung von Lävulinsäure, DMAP und DIC führte hingegen zur Veresterung.

Abbildung 71: Synthese des Alkohols 236

Im Falle der Epimerenmischung **233/234** konnte die Lev-Schutzgruppe mittels Lävulinsäure, *N*,*N*-Diisopropylcarbodiimid, DMAP in Dichlormethan in 72% Ausbeute eingeführt werden. Die beiden Epimere scheinen eine ähnliche Reaktivität aufzuweisen, da das Verhältnis der beiden Epimere zueinander erhalten blieb.

Die nachfolgende MEM-Ether Entschützung bei Verbindung **235** gelang schließlich mit *in situ* generiertem TMSI aus 2.00 Äq. TMSCI und 2.00 Äq. NaI in Acetonitril in einer Ausbeute von 91% (Abbildung 71).

Im Falle der Diasteromere **230** und **231** konnte die Lev-Schutzgruppe mittels Lävulinsäure, *N*,*N*-Diisopropylcarbodiimid, DMAP in Dichlormethan in unterschiedlichen Ausbeuten eingeführt werden. Die nachfolgende MEM-Ether Entschützung gelang ebenfalls mit *in situ* generiertem TMSI mittels 2.00 Äq. TMSCl und 2.00 Äq. Nal in Acetonitril allerdings mit unterschiedlichen Ausbeuten (Abbildung 72).

Abbildung 72: Synthese der beiden Alkohole 239 und 240

Leider ist es nicht gelungen eine selektive Spaltung des *tert*-Butylesters in den Verbindungen **236**, **239** und **240** zu erwirken. Da dies für die nachfolgende Macrolactonisierung jedoch erforderlich ist, wurde die weitere Bearbeitung dieser Verbindungen eingestellt.

10.2 Synthese der Fmoc-geschützten Derivate

Eine Alternative zu den bisher gewählten Schutzgruppen für den sekundären Alkohol stellte die Fluorenylmethoxycarbonyl-Schutzgruppe (Fmoc) dar. Diese in der Peptidsynthese häufig zur Schutzung von Aminen eingesetzte Schutzgruppe kann ebenfalls zur Schützung von Alkoholen verwendet werden.

Abbildung 73: Synthese der Fmoc-Derivate

Die Schützung gelang bei der Diastereomerenmischung von **233** und **234** und dem reinen Diastereomer **231** problemlos mit FmocCl in Pyridin. Im Falle des Diastereomers **230** wurde jedoch keine Umsetzung beobachtet. Dies lässt sich durch den sterischen Anspruch der Methylgruppe in Nachbarposition begründen.

Dies steht in Übereinstimmung mit den Versuchen zur Glycosidierungen im Rahmen der Doktorarbeit von Simone Dietz ^[104], die mit unterschiedlichen Donoren des D-Forosamins bei denen das Diastereomer **230** ebenfalls nicht zur Reaktion gebracht werden konnte.

Die Abspaltung der MEM-Ether-Schutzgruppe bei den Verbindungen **242** und **246** gelang wiederum mittels TMSCI und Natriumiodid in Acetonitril bei –45 °C. Die Zugabe von Dichlormethan führte auch in diesem Fall zur Zersetzung (Abbildung 73). Wiederum sehr problematisch verlief die Spaltung des *tert*-Butylesters bei Verbindung **245** und **246** (Abbildung 74).

Abbildung 74: Hydrolyse des tert-Butylesters von Verbindung 245 und 246

Tabelle 10 gibt eine Übersicht über die verschiedenen Versuche zur Hydrolyse des *tert*-Butylesters. Das beste Ergebnis wurde mit Montmorillonit KSF bei portionsweiser Zugabe bei 50–65 ° erzielt.

So konnte der *tert*-Butylester mittels Montmorillonit KSF in CH₃CN in einer Ausbeute von 34% bei 60 °C und portionsweiser Zugabe des Silicats erreicht werden (Tabelle 10, Eintrag 11).

1	TMSOTf (7.00 Äq.), 2,6-Lutidin (14.00 Äq.), 1 h, THF	246	RT	-
2	Montmorillonit KSF, 12 h, CH ₃ CN	246	50 °C	15%
3	Montmorillonit K10, 12 h, CH ₃ CN	246	50 °C	Keine Reaktion
4	Montmorillonit KSF, 2 h, MeOH	246	RT	Zersetzung
5	Montmorillonit K10, 12 h, CH ₃ CN	246	60 °C	Spuren
6	IR 120, MS 3Å	245	50°C	Keine Reaktion

Tabelle 10: Ausgewählte Ergebnisse zur Hydrolyse des tert-Butylesters bei den Fmoc-
geschützten Derivaten 246 und 245

Tabelle 10 (Fortsetzung): Ausgewählte Ergebnisse zur Hydrolyse des tert-Butylesters bei denFmoc-geschützten Derivaten 246 und 245

7	4 N HCl in AcOEt, 1 h	245	60 °C	Keine
				Reaktion
8	Montmorillonit KSF, CH ₃ CN, Mikrowelle,	245	100 °C	7ersetzung
	5 min	245		20130120115
9	Montmorillonit KSF, DMF, Mikrowelle, 2 h	245	70 °C	-
10	TESOTf (1.00 Äq.), 1 h, CH ₂ Cl ₂	245	RT	-
11	Montmorillonit KSF (portionsweise), 12 h,		50 °C–65 °C	34%
	CH₃CN			

Die so freigesetzte Säure wurde nachfolgend in einer Yamaguchi-Macrolactonisierung eingesetzt. Dies gelang mittels 4.00 Äq. TCBzCl, 6.00 Äq. NEt₃ und 10.0 Äq. DMAP in Toluol in Hochverdünnung bei 85 °C in einer Ausbeute von 68% (Abbildung 75).

Abbildung 75: Macrolactonisierung

Erste Untersuchungen zur Heck-Reaktion an diesem System ergaben jedoch, dass lediglich das ungewünschte (*E*)-Produkt unter Verlust der Fmoc-Schutzgruppe gebildet wurde. Wegen der limitierten Menge an Substrat wurden keine Optimierungsversuche unternommen.

10.2.1 Diskussion der spektroskopischen Daten von 248

248

Das ¹H-NMR-Spektrum des Macrolactons **248** (Abbildung 76) zeigt im Hochfeldbereich zwei Singuletts mit der Intensität von je 3 h bei δ = 0.05 und 0.10 ppm, welche den beiden diastereotopen Methylgruppen der TBS-Schutzgruppe zugeordnet werden können. Das dazugehörige Signal für die tert-Butylgruppe mit einer Intensität von 9 H findet sich bei einer chemischen Verschiebung von δ = 0.87 ppm. Die CH₃-Gruppe, welche 4-CH₂CH₃ zugeordnet werden kann, resoniert bei δ = 0.84 ppm als Triplett mit der Kopplungskonstante von J = 7.4 Hz und einer Intensität von 3 H. Ein weiteres Dublett mit der Kopplungskonstante von J = 6.6 Hz und der Intensität von 3 H resoniert bei 0.94 ppm und kann der an C-9-gebundenen Methylgruppe zugeordnet werden. Im Bereich von 1.21–1.53 finden sich mehrere Multipletts mit der Gesamtintensität von 5 H, welche den diastereotopen Protonen von 4-CH₂CH₃, 5-H_A und 6-H₂ zugeordnet werden können. Weiter im Tieffeld resonieren die diastereotopen Protonen von C-7 bei einer chemischen Verschiebung von δ = 1.58 ppm als Dublett von Dublett von Dublett mit den Kopplungskonstanten J = 14.4, 11.9 und 2.3 Hz und mit einer chemischen Verschiebung von δ = 1.93–2.01 als Multiplett mit einer Intensität von je 1 H. Das Multiplett bei δ = 1.77–1.85 mit der Intensität von 2 H kann 5-H_B und 9-H zugeordnet werden. Weiter im Tieffeld resonieren weitere diastereotope CH₂-Gruppen. Die Signale, welche den Protonen an C-1 zugeordnet werden können, resonieren je als Dublett von Dublett mit einer Intensität von 1 H bei δ = 2.05 ppm mit den Kopplungskonstanten *J* = 16.8 und 1.9 Hz sowie bei δ = 2.44 ppm mit den Kopplungskonstanten J = 16.8 und 9.6 Hz. Die Kopplungskonstante von 16.8 Hz ist dabei typisch für eine geminale ²J-Kopplung, während die kleineren ³J-Kopplungen durch Kopplung mit dem vicinalen 13a-Proton zu Stande kommen. Die diastereotopen Protonen, welche an C-11 gebunden sind, resonieren

als Multiplett bei δ = 2.12–2.18 ppm und als Dublett von Dublett von Dublett mit den Kopplungskonstanten von J = 16.3, 7.5, 1.5 Hz bei δ = 2.30 ppm. Das Proton, welches dem Proton an C-10a zugeordnet werden kann, resoniert als Dublett von Dublett von Triplett mit den Kopplungskonstanten J = 9.5, 7.5, 2.5 Hz mit einer Intensität von 1 H bei δ = 2.55 ppm. Ein wenig mehr ins Tieffeld verschoben resoniert das Proton an C-13a als Multiplett mit einer chemischen Verschiebung von δ = 3.13–3.18 mit einer Intensität von 1 H. Weiter ins Tieffeld verschoben finden sich schließlich die Proton der Kohlenstoffatome, welche einen Sauerstoffsubstituenten tragen. Bei δ = 3.85 ppm resoniert als Dublett von Dublett 10-H mit den Kopplungskonstanten von J = 9.7 und 1.1 Hz mit einer Intensität von 1 H. Ebenfalls als Dublett von Dublett resoniert bei δ = 4.68 ppm und den Kopplungskonstanten J = 11.1 und 6.5 Hz das an C-8 gebundene Proton und mit einer chemischen Verschiebung von δ = 5.02–5.15 als Multiplett das Proton 4-H mit einer Intensität von je 1 H. Die olefinischen Protonen von C-12 und C-13 können hingegen dem Multiplett mit der Intensiät von 2 H bei einer chemischen Verschiebung von δ = 5.71–5.77 ppm zugeordnet werden. Komplettiert wird das Spektrum durch die Signale, welche der Fmoc-Schutzgruppe zuzuordnen sind. Bei δ = 4.23 resoniert als Triplett die CH-Gruppe mit einer Kopplungskonstante von J = 7.4 Hz, welche durch die Kopplung mit der CH₂-Gruppe zu Stande kommt, welche bei δ = 4.37 ppm als Dublett mit der gleich Kopplungskonstante resoniert. Ferner finden sich im für Aromaten typischen Bereich von 7.29-7.74 vier Signale unterschiedlicher Multiplizitäten, welche ebenfalls der Fmoc-Schutzgruppe zugeordnet werden können.

Abbildung 76: ¹H-NMR-Spektrum des Macrolactons 248

Das ¹³C-NMR-Spektrum des Macrolactons **248** (Abbildung 77) zeigt im Hochfeld bei $\delta = -3.5$ und -2.8 ppm für die beiden diastereotopen Methylgruppen, sowie das Signal des quartären Kohlenstoffatoms ($\delta = 18.6$ ppm) und der drei chemisch äquivalenten Methylgruppen ($\delta = 26.2$ ppm) der *tert*-Butylgruppe der TBS-Schutz-gruppe. Bei einer chemischen Verschiebung von $\delta = 8.9$ (9-CH₃) und 9.9 ppm (4-CH₂CH₃) finden sich die Signale für die terminalen Methylgruppen. Die erwarteten sechs Resonanzsignale für die CH₂-Gruppen finden sich bei $\delta = 18.2$ (C-6), 28.5 (4-<u>C</u>H₂CH₃), 30.5 (C-7), 32.1 (C-5), 32.8 (C-1) und 35.0 ppm (C-11). Weiter ins Tieffeld verschoben finden sich die Signale, welche einen Sauerstoffsubstituentn tragen, sind weiter ins Tieffeld verschoben und resonieren bei $\delta = 71.9$ (C-10), 77.5 (C-4), 78.5 ppm (C-8). Die Signale bei $\delta = 46.9$ (CH₂CH-Ar) und 69.2 (<u>C</u>H₂CH-Ar) sowie die aromatischen Signale bei $\delta = 120.0$, 125.2, 127.1, 128.2, 141.3, 143.5 ppm sind der Fmoc-Schutzgruppe zuzuordnen. Das am weitesten ins Tieffeld verschobene Signal bei 173.8 ppm konnte dem Carbonylkohlenstoffatom C-2 zugeordnet werden.

Abbildung 77: ¹³C-NMR-Spektrum des Macrolactons 248

Q

11 Synthese des enantiomerenreinen Cyclopentens255

Die Synthese des enantiomerenreinen Cyclopentens **255** startet mit einer Bayer-Villinger-Oxidation des kommerziell erhältlichen Cyclopentens *rac*-**250**. Dazu wurde das Substrat 20 h bei Raumtemperatur in 30%igem H_2O_2 und Essigsäure (im Verhältnis 1:3) gerührt und lieferte das Lacton *rac*-**251** in 60% Ausbeute. Anschließend wurde es in Anlehnung an die Synthese des *tert*-Butylesters *rac*-**201** (Abbildung 55) zuerst verseift und im Anschluss mit NH₄Cl und dem Harnstoffderivat zum *tert*-Butylester *rac*-**252** umgesetzt (Abbildung 78). Nach Optimierung der Reaktionsbedingungen konnte der *tert*-Butylester *rac*-**252** in 49% Ausbeute erhalten werden. Ferner konnte noch Lacton *rac*-**251** in 24% Ausbeute reisoliert werden.

Abbildung 78: Synthese des racemischen Cyclopentens rac-252

Der *tert*-Butylester *rac*-**252** wurde anschließend in einer enzymkatalysierten Reaktion mit dem Vinylacetat **253** eingesetzt (Abbildung 79).

Abbildung 79: Enzymatisch katalysierte Acylierung von Alkohol rac-252

Für die enantioselektive Acylierung eignen sich Lipasen, im speziellen Fall aus *pseudomonas* Stämmen isolierte, besonders gut^[105]; folglich wurden mehrere Lipasen untersucht (Tabelle 11).

1	Amano Lipase AK aus pseudomonas fluoreszens	Hexan	1 h	23%	52%	>99%
2	Acrylharz von candida antarctica	Hexan	1 h	23%	52%	>99%
3	Lipase Typ VII aus candida rugosa	Hexan	>3 d	-	-	-
4	Acrylharz von candida antarctica	Hexan/Benzol (2:1)	1.5 h	24%	24%	>99%
5	Lipase Typ VII aus candida rugosa	Hexan/Benzol (2:1)	>3 d	-	-	-
6	Amano Lipase PS von <i>Burkholderia</i> cepacia	Hexan/Benzol (2:1)	1 d	34%	24	>99%
7	Amano Lipase AK aus pseudomonas fluoreszens	Hexan/Benzol (2:1)	1 h	17%	15%	>99%
8	Amano Lipase AK aus pseudomonas fluoreszens	Hexan	2 h	39%	n. d.	>99%

Die Ermittlung des *ee*-Wertes des gebildeten Acetats **255** erfolgte mittels chiraler GC (siehe Anhang). Zum Vergleich wurde das racemische Gemisch von **252** durch Umsetzung des mit Essigsäureanhydrid in Pyridin hergestellt (o. Abbildung).

Die Untersuchung diese Reaktion zeigte, dass von den vier ausgewählten Lipasen (Amano Lipase AK aus *pseudomonas fluoreszens*, Amano Lipase PS aus *Burkholderia*

2

cepacia, Lipase Typ VII aus *candida rugosa*, Acrylharz von *candida antarctica*) lediglich die Lipase Typ VII aus *candida rugosa* das Substrat nicht umsetzte (Eintrag 3 und 5). Die drei übrigen Lipasen katalysieren die enantioselektive Acetylierung mit exzellenten *ee*-Werten von >99%. Das andere Enantiomer konnte gaschromatographisch nicht nachgewiesen werden.

Im Folgenden wurde das Acetat **289** in einer zweifachen Heck-Reaktion eingesetzt.

12 Synthese diverser Tricyclen

12.1 Doppelte Heck-Reaktion

Ein Schlüsselschritt in der Synthese der Spinosyn-Analoga stellt die zweifache Heck-Reaktion dar. Da es bei der Reaktion zur gleichzeitigen Bildung von vier Produkten (*E/Z*-Gemische, 2'- und 3'-Regioisomere) kommen kann, ist die Auswahl der richtigen Substrate besonders wichtig. Es wurden deshalb unterschiedliche Cyclopenten Derivate eingesetzt.

Basierend auf Vorarbeiten aus dem Arbeitskreis Tietze^[82,83,84] wurden für die intermolekulare Heck-Reaktion die von Larock *et al.* beschriebenen Bedingungen gewählt.^[106]

12.2 Doppelte Heck-Reaktion mit dem Carbamat 210

Abbildung 80: Intermolekulare Heck-Reaktion des Carbamats **210** mit dem Vinyliodid **154** Umsetzung des Vinyliodids **154** und einem Überschuss (1.20 Äq) des enantiomerenreinen Cyclopenten-Derivates **210** bei Raumtemperatur unter Lichtausschluss 16 mol% Pd(OAc)₂, 1.20 Äq. *n*-Bu₄NCl (TBACl) als Additiv und 3.00 Äq. NaOAc als Base lieferte nach 22 h 72% einer nicht trennbaren Mischung der vier Produkte **256–259** erhalten (Abbildung 80). Wegen der Komplexität des ¹H-NMR-Spektrums und des ¹³C-NMR-Spektrums war es nicht möglich, das Verhältnis der Diastereomeren zu bestimmen, da keine separierten Signale der einzelnen Diastereomere vorgefunden wurden. Es wurde daher ohne weitere Aufreinigung die intramolekulare Heck-Reaktion durchgeführt. Hierbei wurde eine Mischung der Regioisomere **260** und **261** im Verhältnis von 3:1 und einer Ausbeute von 39% isoliert (Abbildung 81). Die geringe Ausbeute ist darauf zurückzuführen, das die im Gemisch enthaltenen *E*-Isomere **257** und **259** keine intramolekulare Heck-Reaktion eingehen können.

Da eine Trennung der Regioisomere **260** und **261** mit diversen chromatographischen Methoden nicht erreicht wurde, wurden keine Optimierungsversuche an der Reaktion durchgeführt, da im weiteren Syntheseverlauf eine effiziente Trennung möglich sein muss.

Abbildung 81: 2. Heck-Reaktion zu den Tricyclen 260 und 261

12.3 Doppelte Heck-Reaktion mit dem Alkohol 211

Eine weitere zweifache Heck-Reaktion wurde mit dem Alkohol **211** durchgeführt. Es wurde wiederum ein Überschuss an Cyclopenten (1.20 Äq.) zur Unterdrückung des Homokupplungsproduktes des Vinyliodids **154** eingesetzt. Als Palladiumquelle dienten 6 mol% Pd(OAc)₂, mit 1.20 Äq. *n*-Bu₄NCl (TBACl) als Additiv und 3.00 Äq. Na₂CO₃ als Base. Nach 24 h wurden 17% des gewünschten Produktes **256** (Abbildung

Q/

82) isoliert. Eine weitere Fraktion, welche zum größten Teil aus dem entsprechenden (*E*)-Isomer bestand, konnte in 71% Ausbeute isoliert werden.

Abbildung 82: Doppelte Heck Reaktion mit dem Alkohol 211

Die intramolekulare Heck-Reaktion verlief unter Einsatz von 5 mol% des HBK **100**, 2.00 Äq. TBAOAc in DMF/CH₃CN/H₂O (5:5:1) in einer exzellenten Ausbeute von 93%. Die analytischen Daten zu dieser Verbindung sollen im nächsten Abschnitt eingehend diskutiert werden.

12.3.1 Diskussion der spektroskopischen Daten von 263

Das ¹H-NMR-Spektrum (Abbildung 83) von Verbindung **263** zeigt im Hochfeldbereich bei $\delta = 0.03$ und 0.07 ppm zwei Singuletts mit der Intensität von je 3 H und ein weiteres Singulett bei $\delta = 0.85$ ppm mit der Intensität von 9 H, welche den beiden Methylgruppen und der *tert*-Butylgruppe der TBS-Schutzgruppe zugeordnet werden.

2^{''}-CH₃ resoniert als Dublett bei δ = 0.88 mit einer Kopplungskonstante von *J* = 6.8 Hz und einer Intensität von 3 H. Das Dublett bei δ = 1.24 ppm mit einer Intensität von 3 H entspricht der 6^{'''}-CH₃-Gruppe. Bei δ = 1.44 ppm resoniert das charakteristische Signal der *tert*-Butylgruppe des Esters mit einer Intensität von 9 H. Ein breites Singulett mit einer Intensität von 1 H bei einer chemischen Verschiebung von δ = 1.67 weist auf das OH-Proton hin. Bei einer chemischen Verschiebung von δ = 1.84–1.91 resoniert 2^{''}-H mit der Intensität von 1 H, welches aufgrund seiner vielen Kopplungspartner als ein Multiplett aufspaltet. Wegen seiner Kopplung zu 2^{''}-CH₃ handelt es sich hierbei um 2^{''}-H.

Die beiden diastereotopen Protonen 2-H_A und 2-H_B resonieren bei δ = 2.21 als Dublett von Dublett mit einer Intensität von 1 H und den Kopplungskonstanten J = 15.9 und 11.4 Hz und bei δ = 2.88 als Dublett von Dublett mit einer Intensität von 1 H und den Kopplungskonstanten J = 15.9 und 3.3 Hz. Die größere Kopplungskonstante von ²J = 15.9 Hz ist charakteristisch für eine geminale Kopplung an einem sp³-Kohlenstoffatom. Die kleineren Kopplungskonstanten ergeben sich durch die Kopplungen zu 3'-H, welches als Multiplett zusammen mit 3a'-H bei δ = 3.04–3.09 ppm mit einer Intensität von 2 H resoniert. Das Vorliegen des 3'-H-Signals ist ein eindeutiger Hinweis auf das Vorliegen des gewünschten Regioisomers **263**, da im unerwünschten Regioisomer C-3' als quartäres Kohlenstoffatom vorliegt.

3a'-H hingegen zeigt eine Kopplung in ¹H-COSY-Experiment zu dem Dublett bei δ = 4.03 ppm. Dieses Dublett besitzt eine Kopplungskonstante von J = 8.6 Hz, was gemäß der Karplus-Beziehung^[107] auf einen kleinen Diederwinkel hinweist. Es handelt sich hierbei um das Signal, welches 9b'-H zugeordnet werden kann. Die Kopplunskonstante von 9b'-H zu 1'-H ist hingegen in diesem Signal nicht aufgelöst. Das olefinische Proton von 1'-H befindet sich bei δ = 5.35 ppm sehr viel weiter im Tieffeld verschoben. Es resoniert als ein Dublett mit der Kopplungskonstante von J = 1.7 Hz und der Intensität von 1 H. Die beiden weiteren olefinischen Protonen 4'-H und 5'-H resonieren bedingt durch Konjugation zum aromatischen System weiter im Tieffeldbereich. 4'-H resoniert als Dublett von Dublett bei δ = 5.69 ppm mit der

Intensität von 1 H und den Kopplungskonstanten J = 9.8 und 2.8 Hz. Die Kopplung zu 5'-H mit 9.8 Hz ist typisch für Z-konfigurierte Doppelbindungen. Die kleinere Kopplungskonstante ergibt sich aus der Resonanz zu 3a'-H. Die entsprechende Kopplungskonstante von 9.8 Hz zu 4'-H findet sich auch bei dem 5'-H-Signal bei $\delta = 6.22$ ppm, welches eine Intensität von 1 H aufweist und als Dublett von Dublett aufspaltet mit der bereits genannten Kopplungskonstante von J = 9.8 und einer weiteren von 2.2 Hz, welche sich durch die allylische ⁴J-Kopplung zu 3a'-H ergibt.

Die aromatischen Signale resonieren bei $\delta = 6.67$ ppm (6'-H), $\delta = 6.83$ ppm (8'-H) und $\delta = 7.01$ ppm (9'-H) mit je einer Intensität von 1 H mit den für trisubstituierte Aromaten charakteristischen Kopplungsmustern. 6'-H spaltet in ein Dublett mit einer Kopplungskonstante von J = 2.6 Hz auf. Dies ist der zu erwartende Wert für eine *meta*-Kopplung. 8'-H hingegen resoniert als ein Dublett von Dublett mit der *meta*-Kopplung von 2.6 Hz und einer für *ortho*-substituierte Aromaten typischen Kopplung von J = 8.2 Hz. Diese identische Kopplungskonstante findet sich ebenfalls bei dem Signal von 9'-H, welches als Dublett aufspaltet.

Das Proton, welches sich 1^{''}-H zuordnen lässt, zeigt zwar keine allylische Kopplung zu 1[']-H, dafür aber eine vicinale Kopplung zu 2^{''}-H. 1^{''}-H resoniert als Dublett mit einer Kopplungskonstante von J = 6.5 Hz bei $\delta = 4.23$ ppm. Wegen des Hydroxy-Substituenten sind die beiden diastereotopen Protonen an C-3^{''} relativ ins Tieffeld verschoben. 3^{''}-H_A resoniert mit einer Intensität von 1 H als Dublett von Dublett mit den Kopplungskonstanten J = 10.9 und 3.5 Hz, wobei es sich bei der größeren Kopplungskonstante wiederum um die geminale ²J-Kopplung handelt. Das Signal von 3^{''}-H_B findet sich als Multiplett bei einer Verschiebung von $\delta = 3.49-3.53$ ppm mit der Intensität von 1 H.

R

Abbildung 83: ¹H-NMR-Spektrum des Tricyclus 263 bei 600 MHz in CDCl₃ Bei den verbleibenden Signalen handelt es sich um die durch das L-Rhamnosid verursachten Signale. 1^{···}-H resoniert bei δ = 5.48 ppm mit der Intensität von 1 H als Dublett mit einer Kopplungskonstante von 1.9 Hz. Diese Kopplungskonstante weist auf das Vorliegen des α -Glycosides, also einer *äquatorial-äquatorial*-Kopplung zu 2^{···}-H, hin. Das Signal zeigt eine Kopplung zu dem Dublett von Dublett bei δ = 3.71 ppm mit einer Kopplungskonstante von *J* = 3.3 und 1.9 Hz, folglich einer *äquatorial-äquatorial*-Kopplung zu 1^{···}-H und einer *axial-äquatorial*-Kopplung zu 3^{···}-H, und einer Intensität von 1 H, welches 2^{···}-H zuzuordnen ist. Von diesem aus besteht eine Kopplung zu dem Multiplett bei δ = 3.61–3.66 ppm. Hierbei handelt es sich um die zu 3^{···}-H und 5^{···}-H gehörigen Signale mit einer Intensität von 2 H. Ferner besteht eine Kopplung des Tripletts bei δ = 3.17 ppm zu diesem Multiplett. Es handelt sich dabei zweifelsfrei um das Signal von 4^{····}-H, da die Kopplungskonstante von *J* = 9.4 Hz einer *axial-axial*-Kopplung entspricht.

Abbildung 84: ¹³C-Spektrum des Tricyclus **263** bei 126 MHz in CDCl₃ Das ¹³C-Spektrum der Verbindung **263** (Abbildung 84) zeigt im Hochfeldbereich bei $\delta = -5.1$ und -4.1 ppm die beiden Methylgruppen der TBS-Schutzgruppe. Bei $\delta = 18.1$ und 25.1 ppm resonieren hingegen das quartäre C-Atom und die drei Methylgruppen der TBS-Schutzgruppe. Bei $\delta = 12.9$ (2^{''}-<u>C</u>H₃) und 17.8 (C-6^{'''}) ppm resonieren die beiden terminalen Methylgruppen. Das markante Signal der primären CH₃-Gruppen des *tert*-Butylesters liegt bei $\delta = 28.2$ ppm, während der quartäre Kohlenstoff CO₂<u>C</u>(CH₃)₃ dem Signal bei $\delta = 80.5$ ppm entspricht. Die verbleibenden CH₂-Gruppen resonieren bei $\delta = 40.1$ (C-2) und 40.5 ppm (C-2^{''}). Die den Brückenkopf-Kohlenstoffatomen zugehörigen Signale finden sich bei $\delta = 44.1$ (C-9b[']), 45.3 (C-3a[']) und 50.3 ppm (C-3[']). Etwas weiter ins Tieffeld verschoben resonieren die drei charakteristischen Signale für die drei OCH₃-Gruppen bei $\delta = 57.9$, 59.2 und 60.9 ppm. $\delta = 65.6$ und 74.0 ppm entsprechen C-3^{'''} und C-1^{'''}, welche beide, bedingt durch den Sauerstoff-Substituenten, weiter ins Tieffeld verschoben sind. Die Signale bei $\delta = 68.5$ (C-5^{''''}), 77.4 (C-2^{''''}), 80.9 (C-3^{'''}), 82.1 (C-4^{''''}) lassen sich alle dem L-Rhamnosid zuordnen. Bedeutend weiter ins Tieffeld verschoben findet sich schließlich das anomere Kohlenstoffatom mit einer chemischen Verschiebung von δ = 95.3 ppm. Die tertiären aromatischen Kohlenstoffatome zeigen Signale bei δ = 114.7 (C-6'), 114.9 (C-8') und 128.9 (C-9'), während die quartäre aromatischen Kohlenstoffatome bei δ = 127.9 (C-9a'), 133.2 (C-5a') und 155.2 ppm (C-7') resonieren. Die relative weite Verschiebung ins Tieffeld bei C-7' lässt sich durch den an das Kohlenstoffatom gebundene Sauerstoffatom begründen. Ebenfalls im gleichen Bereich resonieren die olefinischen Kohlenstoffatome bei δ = 125.6 (C-5'), 132.3 (C-4'), 133.2 (C-1') und 145.4 (C-2'). Das am weitesten ins Tieffeld verschobene Signal lässt sich bei einer chemischen Verschiebung von δ = 172.2 ppm im für Ester typischen Bereich C-1 zuordnen.
12.4 Zweifache Heck-Reaktion mit dem Grignard-Produkt 231

Eine weitere zweifache Heck-Reaktion wurde mit dem Cyclopenten-Derivat **231** durchgeführt. Da die Aldehyde **218** und **219** sich als nicht stabil erwiesen, wurden mit diesen Verbindungen keine Untersuchungen zur Heck-Reaktion unternommen. Die doppelte Heck-Reaktion wurde nur mit dem Substrat **231** durchgeführt, da sich das 3^{''}-Epimer wegen der schlecht zugänglichen OH-Funktionalität nicht für eine spätere Glycosidierungs-Reaktion eignet. Ebenfalls nicht in der Heck-Reaktion eingesetzt wurden die Grignard-Produkte **233** und **234** des analogen Diastereomers, da sie als Mischung vorlagen.

Abbildung 85: Intermolekulare Heck-Reaktion zwischen dem Vinyliodid 154 und dem Alkohol 231

Die intermolekulare Heck-Reaktion des Vinyliodids **154** und des Cyclopentens **231** wurde analog den vorhergegangenen Versuchen mit einem Überschuss an **231** (1.20 Äq.) durchgeführt. Unter Einsatz von 5 mol% Pd(OAc)₂, 1.20 Äq. TBACl und 3.00 Äq. NaOAc als Base konnte so eine Mischung der Regioisomere **264** und **267** erhalten werden. Die Bildung der *E*-Isomere **265** und **268** scheint bei Mikrowelleneinstrahlung erstaunlicherweise verringert zu sein. In Tabelle 12 sind die Versuche zur Optimierung unter Variation der Temperatur und des Lösungsmittels dargestellt.

Abbildung 86: Intramolekulare Heck-Reaktion zu den Tricyclen 268 und 269 Die nachfolgende intramolekulare Heck-Reaktion lieferte unter erneutem Einsatz des HBK 100 und 2.00 Äq. TBAOAc 89% einer Regioisomeren-Mischung im Verhältnis von etwa 1:1.

1	10 mol% Pd(OAc) ₂ , RT, DMF, 12 h	61% (29%)	29% (269)	n. b.	
2	10+5+5 mol% Pd(OAc) ₂ , RT, DMF, 3 d	32% (12%)	63%	1.8:4.5	
3	10 mol% Pd(OAc) ₂ , MW, 80 °C, DMF/CH ₃ CN/H ₂ O 5:5:1, 1 h	71% (24%)	89%	~1:1	
4	10 mol% Pd(OAc) ₂ , MW, 70 °C, DMF/CH ₃ CN/H ₂ O 5:5:1, 3 h	n.b. (51%)	89%	~1:1	
5	10+10 mol% Pd(OAc) ₂ , 5 °C, DMF, 16 d,	40%		1.1 6	
J	Na_2CO_3 (3.00 Äq.) als Base	(24%)	-	1.1.0	

Tabelle 12: Untersuchungen zur doppelten Heck-Reaktion mit dem Alkohol 231

In Klammern stehen die isolierten Ausbeuten für die Mischung der Z-Isomere

12.5 Heck-Reaktion mit den Glycosiden 271 und 272

Als weiteres Substrat für die zweifache Heck-Reaktion mit **154** diente das mit dem D-Forosamin-Derivat im Rahmen der Dissertation von Simone Dietz^[104] dargestellten Olefine α -**271** und β -**272**. Auch in diesem Falle gelang die intermolekulare Heck-Reaktion.

12.5.1 Heck-Reaktion mit dem α-Glycosid 271

Im Falle des α -Glykosids **271** konnten die Produkte der ersten Heck-Reaktion unter Einsatz von 3 mol% Pd(OAc)₂, TBACl (1.20 Äq.) und NaOAc (3.00 Äq.) bei 0 °C in DMF als nicht trennbare Mischung vierer Produkte erhalten. Es liegt ein Verhältnis der *E*-Produkte zu den *Z*-Produkten von 1:1.2 vor. Die *E*-Produkte der Regioisomere liegen in einem Verhältnis von 1:1.2 und die *Z*-Produkte von 1:1.5 vor. Wegen der Komplexität des Spektrums konnte jedoch nicht geklärt werden, welches der beiden Regioisomere bevorzugt gebildet wurde.

Abbildung 87: Doppelte Heck-Reaktion zwischen dem Vinyliodid 154 und dem α -Glycosid 271

Die nicht trennbare Mischung wurde direkt in der intramolekularen Heck-Reaktion eingesetzt (Abbildung 87). Leider konnte hierbei kein Produkt einer intramolekularen Heck-Reaktion nachgewiesen werden. Wegen der geringen bereitgestellten Substanzmengen konnten auch keine Optimierungsversuche unternommen werden.

12.5.2 Heck-Reaktion mit dem β-Glycosid 272

Schließlich wurden auch Versuche zur Heck-Reaktion mit dem β -Glycosid **272** durchgeführt. Im Falle des β -Glycosides **272** konnte das Produkt der ersten Heck-Reaktion unter Einsatz von 5 mol% Pd(OAc)₂, TBACI (1.00 Äq.) und NaOAc (3.00 Äq.) bei 0 °C nach 6 d in DMF in 15% Ausbeute erhalten werden. Ferne konnte eine weitere Fraktion, welche überwiegend aus dem (*E*)-Isomer bestand, in 37% Ausbeute erhalten werden (Abbildung 88).

Abbildung 88: Doppelte Heck-Reaktion mit dem β-Glycosid **272**

Bedauerlicherweise konnte auch beim β -Glycosid **272** unter den gewählten Bedingungen kein Tricyclus isoliert werden. Aufgrund der nur sehr geringen bereitgestellten Mengen konnten auch hier keine weiteren Optimierungsversuche unternommen werden.

Zusammenfassend lässt sich sagen, dass die zweifache Heck-Reaktion unter den gewählten Bedingungen nicht auf der Stufe der Glycoside **271** und **272** durchgeführt werden kann.

$\langle \! \! \! \! \! \rangle$

12.6 Intermolekulare Heck-Reaktion mit dem Macrolacton 248

Eine weitere Heck-Reaktion von **154** wurde mit dem Makrolacton **248** unter Einsatz von 5 mol% $Pd(OAc)_2$, TBACI (1.00 Äq.) und NaOAc (3.00 Äq.) bei Raumtemperatur für 12 h in DMF durchgeführt. Es wurde hierbei in 33% Ausbeute ausschließlich das (*E*)-Isomer unter Verlust der entbehrlichen Fmoc-Schutzgruppe erhalten (Abbildung 89).

Abbildung 89: Intermolekulare Heck-Reaktion mit dem Macrolacton 248

12.7 Synthese der Tricyclen 280 und 282

12.7.1 Intermolekulare Heck-Reaktion mit dem Cyclopenten 255

Das enantiomerenreine Cyclopenten **255** wurde in einer intermolekularen Heck-Reaktion mit dem Vinyliodid **154** bei unterschiedlichen Reaktionsbedingungen eingesetzt (Tabelle 13, Tabelle 14, Tabelle 15).

Abbildung 90: Intermolekulare Heck-Reaktion mit dem enantiomerenreinen Cyclopenten 255

Der Nachweis der gebildeten Produkte **276**, **277**, **278** und **279** erfolgte mittels analytischer HPLC an chiraler Phase (IA) bei Hexan/*i*PrOH 98:2. Zunächst wurde die Basenabhängigkeit der Heck-Reaktion untersucht. Dazu wurde unter identischen Bedingungen (Ansatzgröße, 1.20 Äq. **255**, 1.20 Äq. TBACl, 5.00 mol% Pd(OAc)₂, DMF, Lichtausschluss) das Verhältnis der in der Reaktionslösung befindlichen Substanzen durch HPLC-Messung bestimmt. Da die Extinktionskoeffizienten der Diastereomere bei 220 nm im Rahmen des Messfehlers identisch sind, so kann durch Integration der Peaks das Verhältnis der Produkte bestimmt werden. Während Silbersalze (Eintrag 5 und 10) zur Bildung eines weiteren, nicht weiter identifizierten Produktes führte, führte die Umsetzung mit DMAP und NaH₂PO₄ (Eintrag 12 und 14) zur unerwünschten

106 Synthese diverser Tricyclen

 $\langle \! \rangle$

Homokupplung des Vinyliodids **154**. Das beste Ergebnis wurde mit Na_2CO_3 als Base erzielt werden (Eintrag 7).

Tabelle 13: Untersuchung der basenabhängigen Bildung des *Z*-Isomers **290** (1.20 Äq. 255, 1.20 Äq. TBACl, 5.00 mol% Pd(OAc)₂, DMF, Lichtausschluss)

1	NaOAc	RT	12 h	19.5	28.3	28.3	1.8
2	NaOAc	RT	51 h	1.8	38.6	59.6	1.5
3	K ₂ CO ₃	RT	12 h	2.4	62.1	35.5	0.6
4	LiOH	RT	12 h	1.4	32.9	65.8	2.0
5	Ag ₂ CO ₃	RT	12 h	21.9	14.4	22.4	1.6
6	NaHCO ₃	RT	12 h	7.1	34.2	58.7	1.7
8	KOAc	RT	12 h	24.3	57.5	18.2	0.3
9	NaOH	RT	12 h	95.6	4.4	-	-
10	Ag ₃ PO ₄	RT	12 h	5.16	24.4	2.1	0.1
11	LiOAc·2 H ₂ O	RT	12 h	53.6	17.7	28.7	1.6
12	DMAP	RT	12 h	100	-	-	-
13	CaCO ₃	RT	12 h	100	-	-	-
14	NaH_2PO_4	RT	12 h	0	0.8	-	0.1
15	NaOAc	60 °C (MW)	10 h	10.5	42.5	47.0	1.1

Des Weiteren wurde der Einfluss von Additiven auf die Bildung des gewünschten Produktes **276** untersucht (Tabelle 14). LiCl (Eintrag 2) konnte die Selektivität zwar verbessern, jedoch wurde dir Reaktionsgeschwindigkeit gesenkt, so dass der Messfehler ein größeres Gewicht bekommt. Deshalb wurde TBACI als Additiv bevorzugt. Einen wirklich großen Einfluss hatte auch die Wahl des Katalysators. Durch Substitution des Pd(OAc)₂ durch PdCl₂ wurde nicht nur die Reaktionsgeschwindigkeit stark gesenkt, sondern es konnte auch eine bevorzugte Bildung der ungewünschten Isomere beobachtet werden.

1	ΤΒΔΟΙ	Pd(OAc)	12 h	_	31.0	69.0	2.2
-	IDACI	I a(OAC)	12 11		51.0	05.0	2.2
_							
2	LiCl	Pd(OAc) ₂	12 h	91.0	2.3	6.64	2.8
3	TBACI	PdCl ₂ ^[*]	12 h	89.9	5.0	0.4	0.4
5					210		

Tabelle 14: Untersuchung zur Additiv- und Katalysator-abhängigen Bildung des gewünschtenZ-Isomers**290**

Schließlich wurde auch untersucht, ob Lichteinstrahlung Einfluss auf die Bildung der Produkte, vornehmlich das *E*-Produkt, nimmt. Folglich wurde auch eine Reaktion unter Sonnenlichteinstrahlung durchgeführt. Im Vergleich war die unter Lichtausschluss geführte Reaktion (Eintrag 1) tatsächlich selektiver, jedoch ist der Einfluss von Licht immer noch wesentlich geringer als der der gewählten Reagenzien.

Tabelle 15: Untersuchung des Einflusses von Sonnenlicht auf die Produktbildung

1	Na ₂ CO ₃	Licht	12 h	-	36.5	63.5	1.7
2	Na_2CO_3	Dunkel	12 h	-	31.0	69.0	2.2

Beim Übertrag des analytischen Ansatzes in einen präparativen Ansatz unter den optimalen Bedingungen unter Verwendung von Pd(OAc)₂ und Na₂CO₃ sowie TBACl konnte das gewünschte Produkt der intermolekularen Heck Reaktion in einer Ausbeute von 69% erhalten werden.

12.7.2 Synthese des Tricyclus 280

Umsetzung des primären Heck-Produktes **276** in einer intramolekularen Heck-Reaktion führte nicht zu dem gewünschten Enolacetat sondern in 45% Ausbeute zu **280** (Abbildung 91), welches für die weiteren geplanten Umsetzungen nicht verwendbar ist. Aus diesem Grund war es erforderlich, die Acetylschutzgruppe in **276** vor der zweiten Heck-Reaktion abzuspalten.

Abbildung 91: Bildung des Tricyclus 280 in der intramolekularen Heck-Reaktion

12.7.3 Hydrolyse des Acetats 276

Die Abspaltung der Acetyl-Schutzgruppe in **276** erwies sich als problematisch. Unter den Standardbedingungen kam es gleichzeitig zur Spaltung des *tert*-Butylesters und nachfolgend zur Bildung des entsprechenden Lactons. In Tabelle 16 sind die unterschiedlichen Versuche zur Hydrolyse der Acetylschutzgruppe angegeben.

Abbildung 92: Hydrolyse des Acetats 276 + Isomere

1	NaOMe	MeOH	0 °C	Zersetzung	
2	I ₂	MeOH/H ₂ O	RT	Keine Reaktion	
3	LiBH ₄	Et ₂ O	0 °C	Zersetzung	
4	La(OTf) ₃	MeOH/H ₂ O	RT	Keine Reaktion	
5	N ₂ H ₄ ·HOAc	DMF	RT	Keine Reaktion	
6		MeOH/CH ₂ Cl ₂ (9:1)	0 °C		Bildung
				-	Lacton
7	Ag ₂ CO ₃	MeOH	0 °C/RT	Keine Reaktion	
8	Cs ₂ CO ₃	MeOH	0 °C		Bildung
					Lacton
9	K ₂ CO ₃	MeOH	0 °C	33% (43%)	22%
					Lacton
10	Schweineleber-	MeOH/Phosphat-	RT	Keine Reaktion	
	esterase	puffer			

Tabelle 16: Untersuchungen zur Hydrolyse des Acetats**276** (Auszug); in Klammern: Ausbeutebezogen auf reisoliertes Startmaterial

Schließlich konnte der Alkohol in 33% (43% basierend auf dem reisolierten Startmaterial) erhalten werden.

12.7.4 Intramolekulare Heck-Reaktion zu Tricyclus 282

Zur Fertigstellung des tricyclischen Systems wurde der Alkohol **296** (+Isomere) in der Mikrowelle für 3 h bei 135°C unter Zugabe von 2.00 Äq. TBAOAc und HBK **100** (5 mol%) gerührt.

Durch die β -Hydrid-Eliminierung kommt es zur Verschiebung der Doppelbindung und damit zur Ausbildung eines Enols, welches zum Keton tautomerisiert.

12.7.5 Intermolekulare Heck-Reaktion mit dem Heterocyclus 164

Ebenfalls untersucht wurde die intermolekulare Heck-Reaktion mit dem heterocyclischen Vinyliodid **164**. Dazu wurde in ersten Testreaktionen das Cyclopenten **255** eingesetzt, da es in der Heck-Reaktion mit dem Benzol-abgeleiteten Vinyliodid **154** die besten Resultate erzielte.

Abbildung 94: Intermolekulare Heck Reaktion mit dem heterocyclischem Vinyliodid 164 und dem Acetat 255

Die Umsetzung mit 10 mol% Pd(OAc)₂, 1.50 Äq. TBACl, 3.00 Äq. Na₂CO₃ in DMF führte zu keiner Reaktion. Jedoch konnte bei Einsatz von Ag₃PO₄ als Base bei ähnlichen Systemen Heck-Reaktionen bei höheren Temperaturen durchgeführt werden.^[108] Folglich wurde der Heterocyclus **137** und das Cyclopenten **255** in äquimolaren Verhältnis eingesetzt, 1.00 Äq. TBACl als Additiv und Pd(OAc)₂ als Katalysator und 3.00 Äq. Ag₃PO₄ in DMF bei 75 °C für 2 h in der Mikrowelle erwärmt. Es konnte in einer Ausbeute von 28% eine Mischung der vier möglichen Isomere **300**, **301**, **302** und **303** in einem Verhältnis von ungefähr 2:2:1:1 erhalten werden (Abbildung 94). Da das komplexe ¹H-NMR-Spektrum keine separierbaren Signale aufweist, kann das Verhältnis nicht den entsprechenden Signalen zugeordnet werden.

13 Synthese des Alkohols 301

13.1 Synthese des Glycosylakzeptors 289

Der Glycosylakzeptor **289** konnte nach einer literaturbekannten Vorschrift^[109] synthetisiert werden.

Abbildung 95: Synthese des Olefins 289

Dazu wurde zuerst der kommerziell erhältliche Alkohol 287 mittels Benzyltrichloracetimidat und TfOH in den Benzylether 288 in einer Ausbeute von 53% überführt. Anschließend wurde der Methylester in einer DIBAL-H-Reduktion zu dem entsprechenden Aldehyd reduziert. Dieser wurde ohne weitere Aufreinigung in einer SnCl₄-katalysierten Additions-Reaktion mit dem Allytributylzinn bei –90 °C umgesetzt und lieferte so den Allylalkohol 289 in einer Ausbeute von 78% Ausbeute über 2 Stufen.^[110] Dieser Allylalkohol konnte von Simone Dietz im Rahmen ihrer Dissertation^[104] mit dem D-Forosamin-Donor **290** umgesetzt werden.

Abbildung 96: Glycosidierung mit dem D-Forosamindonor 290 durch S. Dietz

Im Rahmen dieser Arbeit wurde aus Zeitgründen auf die weitere Umsetzung des α -Glycosids **292** verzichtet. Die Untersuchungen beschränken sich im Folgenden auf das β -Glycosid **291**.

13.2 Synthese des Alkohols 301

Das β -Glycosid **291** wurde in der weiteren Synthese in einer Metathese-Reaktion eingesetzt, in welcher enantioselektiv die Ethyl-Seitenkette eingeführt werden soll. Dazu wurde zuerst ausgehend von kommerziell erhältlichem racemischen Pent-1-en-3-ol **293** in einer Enzym-katalysierten Racematspaltung der Alkohol **295** synthetisiert, welcher aufgrund seines niedrigen Siedepunktes ohne weitere Aufarbeitung in das Dinitrobenzoat **296** mittels mit NEt₃, DMAP und 3,4-Dinitrobenzoylchlorid überführt wurde. Leider lieferte die enzymatische Racematspaltung nur einen *ee*-Wert von 94% und so wurde mittels einer HPLC-Trennung an chiraler Phase an Chiralpak[®] IA enantiomerenreines Olefin **296** mit einem *ee*-Wert von >99% bereitgestellt.

Abbildung 97: Synthese des Dinitrobenzoats 296

Dieses Olefin **296** wurde nun in einer Metathese mit dem β -Glycosid **291** unter Verwendung des Grubbs II Katalysators in CH₂Cl₂ bei 45 °C in das Olefin **297** überführt. Die nachfolgende Abspaltung der Dinitrobenzoyl-Schutzgruppe gelang mittels K₂CO₃ in THF/MeOH 4:1 bei 0 °C in exzellenter Ausbeute von 96%. Anschließend wurde der sekundäre Alkohol **2298** mittels TBSOTf in Anwesenheit von 2,6-Lutidin in CH₂Cl₂ bei –10 °C in 84% Ausbeute geschützt.

Abbildung 98: Metathese und nachfolgende TBS-Schützung zu 299

Im folgenden Schritt wurde die Cbz-Schutzgruppe und die Doppelbindung mit Pd/C unter Wasserstoff bei 3.5 bar für 4.5 h hydriert. Durch Zugabe von 37%iger Formaldehyd-Lösung wurde unter gleichen Bedingungen das Amin in einer Eschweiler-Clark-Reaktion in das tertiäre Amin **300** überführt.

Abbildung 99: Synthese des Alkohols 301

Bedauerlicherweise konnte unten diesen Bedingungen die Benzylschutzgruppe nicht entfernt werden, weshalb der Benzylether in einer Reduktion unter Birch-Bedingungen^[111] abgespalten werden musste und so den Alkohol **301** in exzellenten 92% Ausbeute über 3 Stufen lieferte.

14 Glycosidierung des Spinosyn-Analogons 305

14.1 Synthese der Spinosyn-Analoga 306 und 307

Im Rahmen dieser Arbeit wurde außerdem eine Glycosidierungsreaktion eines 5-Azido-D-Forosamins **304** und dem Akzeptor **305**^[112] durchgeführt, der von der Bayer-AG bereitgestellt wurde. Das Zucker-Derivat **304** wurde zunächst in das Trichloracetimidat überführt, das als Donor bei der Glycosidierung von **305** diente. Hierbei wird das Trichloracetimidat *in situ* bei –90 °C durch Umsetzung mit Et₃SiH (3.00 Äq.) und I₂ (3.00 Äq.) in das entsprechende Iodid überführt, welches mit **305** reagiert. Es wurden 25% des α-Glycosids **307** und 7% des β-Glycosids **306** erhalten. Basierend auf dem reisoliertem Startmaterial entspricht das Ausbeuten von 59% für das α-Glycosid und 17% für das β-Glycosid.

Abbildung 100: Glycosidierung des Spinosyn-Analogons 305

Damit konnte gezeigt werden, dass die durch Simone Dietz etablierte Methode zur β -selektiven Glycosidierung auch auf komplexe Systeme wie dem Spinosyn-Analogon **305** angewendet werden kann.

14.2Diskussion der spektroskopischen Daten des β-Glycosids306

Abschließend soll die Aufklärung der Struktur anhand des β -Glycosids **306** erörtert werden.

Das ¹H-NMR-Spektrum der Verbindung 306 (Abbildung 101) zeigt im Hochfeld ein Triplett mit der Kopplungskonstante J = 7.5 Hz bei einer Verschiebung von δ = 0.80 ppm mit einer Intensität von 3-H, welches der terminalen Methylgruppe 9-CH₂CH₃ zugeordnet werden kann. Die Protonen 6'-H₃ und 12-H_A resonieren als Multiplett bei δ = 1.10–1.19 ppm mit einer Intensität von 4 H. Die Protonen der 14-CH₃-Gruppe sowie die beiden Protonen, welche an C-11 gebunden sind, resonieren, ebenfalls als Multiplett bei einer chemischen Verschiebung von δ = 1.19–1.30 ppm. Weiter im Tieffeld verschoben finden sich mehrere Multipletts mit einer Intensität von insgesamt 12 H, welche die Protonen der CH₂-Gruppen (1-H_A, 3-H_A, 9-CH₂CH₃, 10-H₂, 12-H_B, 2[']-H₂, 3[']-H₂) zugewiesen werden können. Bei einer chemischen Verschiebung von 2.11-2.18 ppm resoniert 16a-H in Form eines Multipletts mit der Intensität von 1 H. Ein weiteres Multiplett mit der Intensität von 2 H resonieren die diastereotopen Protonen 1-H_A und 6-H_A sowie 4'-H. Bei einer chemischen Verschiebung δ = 2.50 ppm resoniert 3-H_B ein Dublett von Dublett mit der Intensität von 1 H und den Kopplungskonstanten J = 17.6 Hz für die geminale Kopplung und 7.1 Hz für die vicinale Kopplung zu 3a-H. Das Proton 3a-H sowie 16b-H resonieren als Multiplett bei einer chemischen Verschiebung von δ = 2.94–3.01 ppm mit einer Intensität von 2 H. Ebenfalls als Multiplett resonieren weiter im Tieffeld 5b-H und 6-H_B mit einer Intensität von 2-H bei einer Verschiebung von δ = 3.04–3.14. Bei δ = 3.23–3.31 ppm resonieren die beiden Protonen 14-H und 5'-H mit einer Intensität von 1 H. Als zentriertes Multiplett resoniert bei δ = 3.50–3.58 ppm 5a-H,

116 Glycosidierung des Spinosyn-Analogons 305

welches wegen seiner Allylstellung deutlich tieffeldverschoben ist. Als Dublett von Triplett mit den Kopplungskonstanten J = 9.3, 4.4 Hz bei einer chemischen Verschiebung von $\delta = 3.62$ ppm resoniert 13-H, welches aufgrund des an C-13 befindlichen Sauerstoffsubstituenten ins Tieffeld verschoben wird. Bei einer chemischen Verschiebung von $\delta = 4.41-4.47$ ppm resoniert das anomere Proton, welches an C-1' gebunden vorliegt, mit einer Intensität von 1 H. Das anomere Proton ist wegen der beiden Sauerstoffsubstituenten an C-1' deutlich tieffeldverschoben. Ein weiteres Multiplett bei $\delta = 4.62-4.68$ ppm ist mit einer Intensität von 1 H 9-H zuzuordnen.

Abbildung 101: ¹H-NMR-Spektrum des β-Glycosids **306**

Schließlich resonieren am weitesten tieffeldverschoben die drei olefinischen Protonen bei δ = 5.86 (5-H), 5.92 (4-H) ppm je als Dublett von Triplett mit einer für *cis*-ständige Doppelbindungsprotonen typischen Kopplungskonstante von *J* = 9.8 Hz. Die weiteren Kopplungskonstanten von *J* = 2.9 (5-H) und 2.1 Hz (4-H) stammen von den Kopplungen zu den benachbarten Protonen. Am weitesten ins Tieffeld verschoben findet sich bei δ = 6.72 ppm als Singulett mit einer Intensität von 1 H ein Signal, welches 16-H zugeordnet werden kann. Das ¹³C-NMR-Spektrum (Abbildung 102) zeigt in Hochfeld die drei CH₃-Gruppen bei einer chemischen Verschiebung von $\delta = 9.5$ (9-CH₂<u>C</u>H₃), 16.3 (C-6') und 18.8 ppm (C-14-CH₃). Weiter ins Tieffeld verschoben resonieren die CH₂-Gruppen, welche sich wegen ihrer diastereotopen Protonen eindeutig zuordnen lassen. Sie resonieren bei chemischen Verschiebungen von $\delta = 21.5$ (C-12), 28.5 (9-<u>C</u>H₂CH₃), 34.3 (C-6), 43.2 (C-1), 43.9 (C-3), 44.6 (C-10). C-1 und C-3 sind wegen des Ketons in β-Position weiter ins Tieffeld verschoben. Die Signale bei $\delta = 30.3^*$, 30.3^* , 34.4^* ppm können nicht direkt zugeordnet werden, gehören jedoch zu den Kohlenstoffen C-11, C-2' oder C-3'.

Abbildung 102: ¹³C-NMR-Spektrum des β-Glycosids **306** (mit * gekennzeichnete Signale konnten nicht zugeordnet werden)

Mit Ausnahme von C-16a (δ = 28.0 ppm) resonieren weiter ins Tieffeld verschoben die CH-Gruppen des D-Forosamins bei δ = 40.7 (C-4') und 47.6 (C-5') ppm. Weitere CH-Gruppen zum Macrolacton gehörend resonieren bei δ = 47.8 (C-5b), 74.3 (C-14) ppm. Die weitere Tieffeldverschiebung von C-14 liegt in der β -ständigen Keto-Funktionalität begründet. Weiter CH-Gruppen resonieren bei δ = 41.2 (C-5a), 49.3 (C-3a) und 62.0 (C-16b) ppm, welche wegen ihrer Allylstellung relativ ins Tieffeld verschoben sind. Die CH-Kohlenstoffe, welche einen Sauerstoffsubstituenten tragen,

118 Glycosidierung des Spinosyn-Analogons 305

resonieren noch weiter im Tieffeld bei δ = 77.2 (C-9), 81.0 (C-13). Noch weiter ins Tieffeld verschoben finden sich die olefinischen Protonen bei δ = 128.1 und 129.4 ppm, welche sich zweifelsfrei C-4 (128.1 ppm) und C-5 (129.4 ppm) zuordnen lassen. Bei δ = 144.6 ppm resoniert das quartäre olefinische C-15a und bei δ = 146.0 resoniert C-16. Am weitesten tieffeldverschoben finden sich schließlich die Carbonyl-Kohlenstoffatome. Während C-7 in dem für Ester typischen Bereich bei δ = 172.3 resoniert, weist das Spektrum bei δ = 202.3 (C-15) und 215.7 (C-2) ppm zwei Signale auf, die zweifelslos den beiden Ketofunktionen zugewiesen werden können.

In diesem Spektrum von besonderem Interesse ist das anomere Kohlenstoffatom C-1'. Es resoniert bei einer chemischen Verschiebung von δ = 103.0 ppm. Im Vergleich dazu zeigt das Spektrum des anderen Anomers **307** eine chemische Verschiebung des anomeren Kohlenstoffatoms von δ = 91.7 ppm. Die weitere chemische Verschiebung weist bereits auf ein β -Glycosid hin. Um dieses Ergebnis zu stützen, kann ein gekoppeltes CH-Spektrum zu Rate gezogen werden. Unter Bestimmung der Kopplungskonstante kann schließlich festgestellt werden, welches Anomer vorliegt, zumal die CH-Kopplungskonstante des β -Anomers kleiner sein muss, als die des α -Anomers. In diesem speziellen Fall liegt eine ¹³C-Kopplungskonstante an C-1' von J = 153.5 Hz vor. Im Falle des α -Anomers liegt eine ¹³C-Kopplungskonstante an C-1' J = 164.8 Hz vor, weshalb gesichert ist, dass es sich bei dem Glycosid **306** um das β -Anomer handelt.

F Zusammenfassung

Die Spinosyne A **17** und D **18** sind wichtige Insektizide, welche in der Landwirtschaft eingesetzt werden. Sie zeichnen sich durch hohe Aktivität gegenüber Schadinsekten aus und sind gegenübe Säugetieren, Fischen und Nutzinsekten entweder nicht oder nur geringfügig toxisch. Auftretende Resistenzen machen es erforderlich neue Analoga zu entwickeln.

15 Synthese von Spinosynanaloga

Im Rahmen dieser Arbeit werden Ansätze zur Synthese neuer Spinosyn-Analoga beschrieben, welche statt des aliphatischen fünfgliedrigen A-Ringes einen aromatischen A-Ring besitzen (Abbildung 103). Die Grundlage für diese Entscheidung basiert auf Untersuchungen zur Struktur-Wirkbeziehung.

Abbildung 103: Natürliches Spinosyne A 17 17 und 18 sowie die Leitstruktur des neuartigen Spinosyn-Analogons 150

Retrosynthetisch lässt sich das Spinosyn-Analogon **150** wie folgt zerlegen (Abbildung 104):

Abbildung 104: Retrosynthetische Schnitte zum Aufbau des Spinosynanalogons 150 Für den Aufbau des tricyclischen Grundgerüstes ABC mit der *cis*-Verknüpfung der Ringe B und C war eine Pd-katalysierte zweifache Heck-Reaktion als Schlüsselschritt vorgesehen. Weitere wichtige Reaktionen zur Anbindung des Macrocyclus D sind eine Evans-Aldoladdition, eine Grignard-Addition und eine Macrolactonisierung.

Als eine Komponente für die zweifache Heck-Reaktion diente das Vinyliodid **154**. Als zweite Komponente wurde das Cyclopenten-Derivat **183** eingesetzt, wobei R² in vielfältiger Weise variiert wurde.

15.1 Synthese der Vinyliodide 154 und 164

Das Vinyliodid **154** wurde nach einem modifizierten literaturbekannten Verfahren hergestellt. Dazu wurde L-Rhamnose permethyliert, anomer entschützt und in den entsprechenden Trichloracetimidat-Donor **168** überführt.

Abbildung 105: Synthese des Vinyliodids 154

Schließlich wurde der Donor **168** mit dem in zwei Stufen aus 3-Methoxybenzaldehyd synthetisierten Akzeptor **167** gekuppelt und der resultierende Aldehyd **172** in einer Wittig-Reaktion in das entsprechende Vinyliodid **154** überführt (Abbildung 105).

Als weitere potenzielle Komponente für die zweifache Heck-Reaktion wurde das Pyridinderivat **164** ausgehend von 2-Methoxy-6-methylpyridin **175** in 6 Stufen mit einer Gesamtausbeute von 18% synthetisiert.

15.2 Synthese der Cyclopenten-Derivate

Als Kupplungspartner für die zweifache Heck-Reaktion wurden *cis*-Cyclopenten-Derivate mit unterschiedlichen Substitutionsmustern synthetisiert.

Abbildung 107: cis-Cyclopenten-Vorläufer für die zweifache Heck-Reaktion

Eingesetzt wurden schließlich die Derivate **210**, **211**, **231**, **248**, **255**, **271** und **272** (vgl. Abbildung 107).

Der Aldehyd *rac*-**201** wurde in acht linearen Syntheseschritten aus **189** aufgebaut (Abbildung 108). Die nachfolgende Evans-Aldol-Reaktion und die anschließende Abspaltung des Auxiliars lieferte die beiden säulenchromatographisch trennbaren enantiomerenreinen Diole **212** und **213** (Abbildung 108), deren absolute Konfiguration mittels Röntgenstrukturanalyse nachgewiesen werden konnte.

Abbildung 108: Synthese der Diole 212 und 213

Die Diole **212** und **213** wurden jeweils zweifach TBS-geschützt, selektiv die primäre Alkoholfunktion zu **216** und **217** entschützt und zu den Aldehyden **218** und **219** oxidiert (Abbildung 109).

Abbildung 109: Synthese der Aldehyde 218 und 219

Eine alternative Syntheseroute zu Alkohol **211** geht von enatiomerenreinem Aldehyd **201** aus. Anschließende Evans-Aldolreaktion und TBS-Schützung führte zu dem TBS-Ether **210**, dessen absolute Konfiguration mittels Röntgenstrukturanalyse belegt werden konnte. Die nachfolgende reduktive Abspaltung des Evans-Auxiliars lieferte den Alkohol **211** (Abbildung 110).

Zusammenfassung 123

Abbildung 110: Enantiomerenreine Synthese des Alkohols 211

Die Aldehyde **218** und **219** wurden anschließend in einer Grignard-Addition eingesetzt. Das dazu benötigte chirale Bromid **228** konnte einer literaturbekannten Synthese folgend in sechs Syntheseschritten enantiomerenrein in einer Gesamtausbeute von 66% ausgehend von 1,4-Butandiol **220** (Abbildung 111) synthetisiert werden.

Abbildung 111: Synthese des Grignard-Reagenzes 229

Umsetzung des aus **228** gebildeten Grignard-Reagenzes **229** mit dem Aldehyd **219** führte unter Felkin-Ahn-Kontrolle zu einer 1:3-Mischung der Alkohole **230** und **231** (Abbildung 112(A)).

Abbildung 112: Grignard-Reaktion

Die Umsetzung des diastereomeren Aldehyds **218** mit **229** lieferte ein 1:1.8-Gemisch der Alkohole **233** und **234**, das chromatographisch nicht getrennt werden konnte und in den folgenden Reaktionen als Gemisch eingesetzt werden (Abbildung 112(B)).

Die sekundären Hydroxyfunktionen in **230–234** wurden mit Fmoc und Lev (o. Abb.) geschützt und die aus **231** erhaltene Fmoc-Verbindung in das Macrolacton **248** überführt (Abbildung 113).

Abbildung 113: Synthese der Fmoc-geschützten Derivates **246** und des Macrolactons **248** Der Bicyclus *rac*-**252** wurde in eine Bayer-Villinger-Oxidation zunächst zum Lacton *rac*-**251** oxidiert. Anschließende Verseifung und Überführung in der *tert*-Butylester *rac*-**252** gelang in 29% Ausbeute über 3 Stufen.

Abbildung 114: Synthese des enantiomerenreinen Acetats 255

Die enzymatische enantiomerendifferenzierende Acetylierung lieferte das Acetat **255** in einer Ausbeute von 39% und einem *ee*-Wert von >99% (Abbildung 114).

15.3 Zweifache Heck-Reaktion

Die Cyclopenten-Bausteine **210**, **211**, **231**, **248**, **255**, **271** und **272** (vgl. Abbildung 107) wurden in einer zweifachen Heck-Reaktion eingesetzt. Die Umsetzung des Vinyliodids **154** beispielsweise mit dem Cyclopenten **212** in der intermolekularen Heck-Reaktion führte 17% des gewünschten *Z*-Isomers (Abbildung 115).

Zusammenfassung | 125

Abbildung 115: Beispiel für die doppelte Heck-Reaktion

Pd-katalysierte Umsetzung des Acetats **255** in einer intermolekularen Heck-Reaktion mit dem Vinyliodid **154** führte in 69% Ausbeute zu **276**, das in einer intramolekularen Heck-Reaktion den Tricyclus **280** in 45% lieferte. Heck-Reaktion von **281**, welches durch Hydrolyse aus **276** erhältlich ist, führte zu dem Keton **282** in 45% Ausbeute.

Abbildung 116: Synthese der Tricyclen 280 und 282

15.4 Untersuchungen zur Einführung des Forosamins

Zur Einführung des Forosamins in das Spinosynanalogon **150** wurden die Bausteine **272**, **231** und **269** hergestellt.

Methyl (*S*)-(+)-3-hydroxy-2-methylpropionat **287**, welches in drei Stufen in den Alkohol **289** mit einer Gesamtausbeute von 41% überführt wurde, wurde in einer Kooperation mit S. Dietz im Rahmen ihrer Dissertation zu **291** und **292** glycosidiert.

Abbildung 117: Synthese des Alkohols 301

Nachfolgend wurde das Olefin **291** in einer Olefin-Metathese mit dem Dinitrobenzoat **296** umgesetzt wurde. Dieses wurde zunächst in einer Olefin-Metathese mit dem Dinitrobenzoat **296** eingesetzt. Eine Entschützungs/Schützungssequenz lieferte den TBS-Ether **282**, welcher in einer Hydrierungs-/Eschweiler-Clark-Eintopfsequenz nach Abspaltung der Benzylschutzgruppe unter Birch-Bedingungen Alkohol **301** lieferte (Abbildung 117). Zusätzlich wurden in einer Kooperation mit der Bayer AG die Spinosyn-Analoga **306** und **307** synthetisiert.

Abbildung 118: Glycosidierung des Aglykons 305

Dazu wurde das Spinosyn-Derivat **305** mit dem Azido-Forosamin **304** nach Überführung in das Trichloracetimidat und nachfolgend in das entsprechende Iodid umgesetzt. Es wurde das β -Glycosid **306** in 7% Ausbeute (bezogen auf Umsatz 17%) und das α -Glycosid **307** in 25% Ausbeute (bezogen auf Umsatz 59%) erhalten.

G Experimenteller Teil

16 Allgemeines

Alle Umsetzungen wurden, soweit nicht anders erwähnt, in ausgeheizten Glasapparaturen unter leichtem Argonüberdruck durchgeführt. Käufliche Substanzen wurden, falls nicht anders angegeben, ohne weitere Reinigung eingesetzt. Lösungsmittel wurden vor ihrer Verwendung entsprechend den üblichen Methoden getrocknet und destilliert.¹¹³

16.1 Instrumentelle Analytik und verwendete Geräte

Schmelzpunkte: Die Bestimmung der Schmelzpunkte erfolgte mit Hilfe einer automatischen Schmelzpunktbestimmungsapparatur EZ-Melt MPA120 der Firma *SRS*.

Drehwerte: Drehwerte wurden in einem Polarimeter Modell 241 der Firma *Perkin-Elmer* gemessen.

UV/Vis-Spektren: Die Aufnahme der UV-Spektren erfolgte mit dem Modell Lambda 2 der Firma *Perkin-Elmer*.

IR-Spektren: Die IR-Spektren wurden mit dem Modell Vector 22 der Firma *Bruker* aufgenommen. Flüssige Substanzen wurden als Film zwischen KBr-Platten und Feststoffe als KBr-Pressling gemessen.

¹**H-NMR-Spektren:** ¹H-NMR-Spektren wurden mit den Modellen UNITY300 (300 MHz), MERCURY-Vx (300 MHz), VNMRS-300 (300 MHz) und INOVA-600 (600 MHz) der Firma *Varian* von in deuterierten Solventien gelösten Proben aufgenommen. Die chemischen Verschiebungen sind in Einheiten der δ-Skala angegeben. Als interner Standard diente Tetramethylsilan (TMS, $\delta_{TMS} = 0$ ppm) oder das verwendete Lösungsmittel. Die Multiplizität der Signale erster Ordnung wurde durch folgende Abkürzungen gekennzeichnet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), dd (Dublett vom Dublett), dt (Dublett vom Triplett). Signale, die durch Überlagerung oder Anteile höherer Ordnung nicht interpretiert werden konnten, wurden mit m (Multiplett) bezeichnet und verbreiterte Signale durch den Zusatz br indiziert. Die Kopplungskonstanten *J* sind in Hertz [Hz] angegeben.

¹³C-NMR-Spektren: Die ¹H-breitbandentkoppelten ¹³C-NMR-Spekren wurden mit den Modellen INOVA-500 (125 MHz) und VNMRS-300 (75 MHz) der Firma *Varian* aufgenommen. Die chemischen Verschiebungen sind in Einheiten der δ-Skala angegeben. Als interner Standard diente CDCl₃ (δ = 77.0 ppm) oder das verwendete deuterierte Lösungsmittel. Die Multiplizitäten der Signale wurden ggf. durch APT-Pulsfolgen (attachede proton test) ermittelt. Unsichere Zuordnungen sind mit dem Index * gekennzeichnet.

Massenspektren: Zur Aufnahme der Massenspektren dienten ein Triple-State-Quadrupol-Instrument TSQ 7000 oder einem Ion-Trap-Massenspektrometer LCQ der Firma *Finnigan*. Angegeben werden die Quotienten aus Masse zu Ladung sowie in Klammern die relativen Intensitäten bezogen auf den Basispeak (I = 100). Die Messung der ESI-HRMS-Spektren erfolgte an einem 7 Tesla-Fourier Transform Ion Cyclotron Resonance (FTICR)-Massenspektrometer APEX IV der Firma *Bruker*, das mit der Apollo-Quelle der Firma *Bruker* und einer Spritzenpumpe 74900 Series der Firma *Cole-Parmer* ausgestattet ist. Der Fluß der Spritzenpumpe betrug 2 µL/min. Zur Aufnahme und Auswertung der Spektren diente das Programm XMASS.

Kältetechnik: Die Reaktionsführung bei konstant tiefen Temperaturen erfolgte unter Einsatz von Kryostaten. Benutzt wurde das Modell RL6 CS der Firma *Lauda*.

16.2 Chromatographische Methoden

Dünnschichtchromatographie (DC): Es wurden DC-Fertigfolien SIL G/UV₂₅₄ der Firma *Macherey-Nagel & Co. KG* mit einer Schichtdicke von 0.25 mm und DC-Fertigfolien TLC Silica gel 60 F₂₅₄ der Firma *Merck* verwendet. Angegeben sind die *R_f*-Werte (Laufhöhe relativ zur Laufmittelfront). Als Abkürzungen für die verwendeten Lösungsmittel dienen: AcOEt (Essigsäureethylester), Et₂O (Diethylether), MTBE (*tert*-Butylmethylether), PE (Petrolether, Siedebereich 40-80 °C), P (Pentan) und DCM (Dichlormethan). Neben der UV-Detektion diente eine Vanillin-Schwefelsäure-Lösung (0.5 g Vanillin, 3 mL konz. H₂SO₄, 10 mL HOAc und 25 mL MeOH) als Anfärbereagenz.

Säulenchromatographie (SC): Säulenchromatographische Trennungen wurden mit Kieselgel 60 (Korngröße 0.063–0.200 mm) der Firma *Merck* durchgeführt. In Abhängigkeit vom Trennproblem wurde das Adsorbenz/Substanz-Verhältnis zwischen 20:1 und 200:1 gewählt.

Gaschromatographie (GC): Die Bestimmung der optischen Reinheit einiger Reaktionsprodukte erfolgte unter Verwendung einer GC-Anlage des Typs *Star 3400CX* der Firma *Varian* mit einem Splitt/Splitless-Injektor und einem FID-Detektor. Als chirale stationäre Phase wurde eine Chrompack Capillary Column CP-Cyclodextrin- β -2,3,6-M-19 #CP7500 (Länge: 25 m, Durchmesser: 0.25 mm) eingesetzt. Angegeben sind die Retentionszeiten R_t [min] bei einer T [°C] und einem H₂-Druck [mbar].

Hochdruckflüssigkeitschromatographie (HPLC):

Analytische HPLC: Analytische Trennungen wurden auf einer HPLC-Anlage der Firma *Jasco*, ausgestattet mit einer Lösungsmittelpumpe PU-2080, Mischkammer LG-1590-04, Multiwellenlängendetektor MD-2010 Plus und Steuerung LC-Net II/ADC durchgeführt. Zusätzlich war ein automatischer Probenwechsler Typ AS-2055 angeschlossen. Zur Bedienung, Datenerfassung sowie Auswertung wurden die Computerprogramme Borwin PDA, HSS 2000 und Borwin Chromatography der Firma *Jasco* eingesetzt. Für die analytischen Messungen wurde die Fertigsäule Chiralpak IA (250–4.6 mm, Partikelgröße: 5 μm) der Firma *Daicel Chemical Industries Ltd.* verwendet. Als

Lösungsmittel dienten *n*-Hexan und *i*-Propanol in HPLC-Qualität. Alle Proben wurden vor der Messung membranfiltriert.

Präparative HPLC: Präparative Trennungen wurden auf einem HPLC-System der Firma *Jasco*, ausgestattet mit zwei Lösungsmittelpumpen Modell PU-2087 PLUS und einem UV-Detektor Modell UV-2075 Plus durchgeführt. Eingesetzt wurde eine Fertigsäule Chiralpak IA (250 × 20 mm, Partikelgröße: 5 µm) der Firma *Jasco*. Als Lösungsmittel dienten *n*-Hexan, *n*-Hexan und *i*-Propanol in HPLC-Qualität. Alle Proben wurden vor der Messung membranfiltriert.

17 Verwendung und Herstellung von Reagenzien

17.1 Palladiumkatalysatoren

Palladium(II)acetat wurde bei Raumtemperatur unter einer Argonschutzatmosphäre in Schraubdeckelgläsern gelagert und ohne Reinigung verwendet. Der *Hermann-Beller*-Katalysator (HBK, *trans*-Di-(µ-acetato)-bis[*o*-(di-*o*-tolylphosphanyl)benzyl]dipalladium(II) **100** wurde nach einer Literaturvorschrift¹¹⁴ hergestellt und ebenfalls bei Raumtemperatur unter einer Argonatmosphäre gelagert. Bei allen im Rahmen dieser Arbeit durchgeführten palladiumkatalysierten Umsetzungen wurden die Reaktionslösungen vorab entgast. Dazu wurde mittels einer Nadel für 20 min Argon durch die Reaktionslösung geleitet.

17.2 Silylierungsreagenzien

tert-Butyldimethylsilyltriflat (TBSOTf) wurde nach einem literaturbekannten Verfahren¹¹⁵ hergestellt und destillativ gereinigt. Bei Lagerung unter einer Argonatmosphäre bei –28 °C konnte die Qualität des Reagenzes über mehrere Monate (6–12) erhalten werden.

17.3 Dess-Martin-Periodinan

Das für Oxidationen verwendete *Dess-Martin*-Periodinan (DMP) wurde analog zu einer Literaturvorschrift¹¹⁶ hergestellt und ohne Qualitätsverlust bei –28 °C unter einer Argonatmosphäre gelagert.

18 Experimentelle Vorschriften

18.1 Synthese des Benzaldehydderivates 167^[85]

18.1.1 2-Brom-5-methoxy-benzaldehyd 166

Zu einer Lösung von 3-Methoxybenzaldehyd **165** (10.0 g, 73.4 mmol, 1.00 Äq.) in abs. CH₂Cl₂ (140 mL) wurde bei 0 °C Brom (3.80 mL, 11.7 g, 73.4 mmol, 1.00 Äq.) getropft. Anschließend wurde auf Raumtemperatur erwärmt und die Reaktionsmischung für 18 h gerührt. Durch Zugabe von 5 %iger Na₂S₂O₃-Lösung (28 mL) und ges. NaHCO₃-Lösung (80 mL) wurde die Reaktion abgebrochen. Die organische Phase wurde abgetrennt, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Umkristallisation des Rohproduktes aus Petrolether lieferte die Zielverbindung **166** (13.2 g, 61.4 mmol, 84%) in Form farbloser Nadeln.

DC: *R_f* = 0.42 (PE/MTBE 9:1).

Smp.: 74.6 °C.

UV (CH₃CN): λ_{max} (lg ε) = 225.0 (4.353), 253.0 (3.854), 329.0 (3.449) nm.

IR (ATR): $\tilde{\nu}$ = 1673, 1198, 1169, 931, 864, 818, 752, 547, 597, 560, 504 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.82 (s, 3 H, OCH₃), 7.01 (dd, *J* = 3.2, 8.8 Hz, 1 H, 4-H), 7.39 (d, *J* = 3.2 Hz, 1 H, 6-H), 7.50 (d, *J* = 8.8 Hz, 1 H, 3-H), 10.29 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 55.7 (OCH₃), 112.6, 123.1, 134.5 (C-3, C-4, C-6), 117.9, 133.9, 159.2 (C-1, C-2, C-5), 191.7 (CHO).

MS (EI): m/z (%) = 214.0 (100) [M + H]⁺.

ber.: 213.9629 [M + H]⁺, gef.: 213.9632 (EI-HRMS).

C₈H₇BrO₂ (215.04).

18.1.2 2-Brom-5-hydroxy-benzaldehyd 167

Zu einer Lösung des Aromaten **166** (3.58 g, 16.7 mmol, 1.00 Äq.) in abs. CH_2CI_2 (70 mL) wurde bei –20 °C BBr₃ (1 M Lösung in CH_2CI_2 , 35.0 mL, 35.0 mmol, 2.10 Äq.) langsam getropft. Die Reaktionsmischung wurde 20 h bei –20 °C gerührt, die Reaktion durch Zugabe von ges. NH_4CI -Lösung (500 mL) abgebrochen und auf Raumtemperatur erwärmt. Nach Zugabe von Et_2O (350 mL) wurde die organische Phase abgetrennt und die wässrige Phase mit Et_2O (3 × 200 mL) gewaschen. Die vereinigten organischen Phasen wurden über $MgSO_4$ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (250 g, P/AcOEt 7:1) wurde die Titelverbindung **167** (2.57 g, 12.8 mmol, 77%) in Form eines grauen Feststoffes erhalten.

Smp.: 113.9 °C

DC: *R_f* = 0.42 (PE/MTBE 9:1).

UV (CH₃CN): λ_{max} (lg ε) = 224.0 (4.259), 253.0 (3.792), 330.0 (3.364) nm.

IR (Film): $\tilde{\nu}$ = 1589, 1437, 1300, 1233, 1168, 1112, 1102, 972, 864, 831, 760, 655, 583, 563 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 5.62 (s_{br}, 1 H, OH), 7.02 (dd, *J* = 8.7, 3.1 Hz, 1 H, 4-H), 7.22 (d, *J* = 3.1 Hz, 1 H, 6-H), 7.55 (d, *J* = 8.7 Hz, 1 H, 3-H), 10.1 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 114.1 (C-2), 115.5, 123.3, 134.5 (C-3, C-4, C-6), 133.5 (C-1), 157.1 (C-5), 191.3 (CHO).

MS (ESI): *m/z* (%) = 199.0 (100) [M – H]⁻.

ber.: 198.9400 [M – H][–],

gef.: 198.9401 (ESI-HRMS).

C₇H₅BrO₂ (201.02).

18.2 Synthese des Glycosyldonors 168^[85]

18.2.1 1,2,3,4-Tetra-*O*-methyl- α/β -L-rhamnopyranosid 170

Zu einer Lösung des L-Rhamnose-Monohydrats **169** (500 mg, 2.74 mmol, 1.00 Äq.) in DMSO (20.0 mL) wurde portionsweise bei 0 °C NaH (60%ig in Mineralöl, 770 mg, 32.1 mmol, 12.0 Äq.) gegeben und für 30 min gerührt. Anschließend wurde über 4 h bei 5–10 °C Methyliodid (6.64 mL, 2.14 g, 15.1 mmol, 5.50 Äq.) zugetropft und nach erfolgter Zugabe für 12 h bei Raumtemperatur gerührt. Nach Zugabe von MeOH (10 mL) wurde für 1 h bei Raumtemperatur gerührt, die Reaktionsmischung auf H₂O (100 mL) gegeben und mit Et₂O (3 × 150 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 9:1 \rightarrow 1:1) wurde die permethylierte L-Rhamnose **170** (494 mg, 2.24 mmol, 82%, α : β = 1:1) als farbloses Öl erhalten.

DC: $R_f = 0.13$ (PE/AcOEt 5:1).

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2935, 2834, 1749, 1447, 1372, 1274, 1110, 1012, 861, 778 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃, α-Anomer beschrieben): δ (ppm) = 1.26 (d, *J* = 6.1 Hz, 3 H, 6-CH₃), 3.07 (t, *J* = 9.3 Hz, 1 H, 4-H), 3.32 (s, 3 H, (C-1)-OCH₃), 3.39–3.53 (m, 3 H, 2-H, 3-H, 5-H), 3.45, 3.46, 3.51 (3 × s, 3 × 3 H, 3 × OCH₃), 4.68 (d, *J* = 1.7 Hz, 1-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.7 (C-6), 54.7 (C-1-O<u>C</u>H₃), 57.7, 59.0, 60.9 (3 × O<u>C</u>H₃), 67.6 (C-5), 77.3, 81.1, 82.1 (C-2, C-3, C-4), 97.9 (C-1).

MS (ESI): m/z (%) = 243.1 (100) [M + Na]⁺, 463.3 (25) [2M + Na]⁺.

ber.: 243.1203 [M + Na]⁺, gef.: 243.1218 (ESI-HRMS).

 $C_{10}H_{20}O_5$ (220.26).
18.2.2 2,3,4-Tri-*O*-methyl-α/β-L-rhamnopyranosid 171

Eine Lösung der permethylierten L-Rhamnose **170** (2.25 g, 11.8 mmol, 1.00 Äq.) wurde in 0.5 M wässriger H_2SO_4 (150 mL) gelöst und für 14 h bei 100 °C gerührt. Durch Zugabe von NaHCO₃ wurde die Lösung neutralisiert. Es wurde ges. wässrige NaCl-Lösung (50 mL) zugegeben und mit AcOEt (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 2:1 \rightarrow 1:2) wurde die Titelverbindung **171** in Form eines gelben Öls (2.00 g, 9.70 mmol, 82%) erhalten.

DC: R_f = 0.29 (PE/AcOEt 1:1).

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 3388, 2932, 1137, 1096, 1086, 1060, 1024, 987, 788, 586 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.28 (d, *J* = 6.2 Hz, 3 H, 6-H₃), 2.46 (d, *J* = 3.3 Hz, 1 H, OH), 3.12 (t, *J* = 9.5 Hz, 1 H, 4-H), 3.55–3.45 (m, 10 H, 3 × OMe, 3-H), 3.60 (dd, *J* = 2.0, 3.3 Hz, 1 H, 2-H), 3.78 (dd, *J* = 9.5, 6.2 Hz, 1 H, 5-H), 5.25 (s, 1 H, 1-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.9 (C-6), 57.8, 59.2, 60.9 (3 × OCH₃), 68.0 (C-5), 77.6, 80.6, 82.1 (C-2, C-3, C-4), 91.8 (C-1).

MS (ESI): m/z (%) = 229.1 (100) [M + Na]⁺.

ber.: 229.1046 [M + Na]⁺, gef.: 229.1047 (ESI-HRMS).

C₉H₁₈O₅ (206.24).

18.2.3 Trichloracetimidat 168

Zu einer Lösung des Pyranosids **171** (3.09 g, 15.0 mmol, 1.00 Äq.) in abs. CH_2CI_2 (280 mL) wurde bei 0 °C Trichloracetonitril (30.0 mL, 43.3 g, 300 mmol, 20.0 Äq.) und Polymer-gebundenes DBU (6.56 mmol/g, 3.43 g, 22.5 mmol, 1.50 Äq.) gegeben, auf Raumtemperatur erwärmt und für 1 h gerührt. Es wurde über Celite[®] filtriert und der Rückstand mit CH_2CI_2 (400 mL) gespült. Das Filtrat wurde im Vakuum eingeengt und das Trichloracetimidat **168** in Form eines gelben Öls (5.31 g) analysenrein erhalten und in der nächsten Reaktion ohne weitere Reinigung eingesetzt.

DC: $R_f = 0.31$ (PE/AcOEt 4:1).

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.31 (d, *J* = 6.2 Hz, 3 H, 6-H₃), 3.21 (t, *J* = 9.5 Hz, 1 H, 4-H), 3.50, 3.54, 3.56 (3 × s, 3 × 3 H, 3 × OCH₃), 3.50–3.53 (m, 1 H, 3-H), 3.71–3.80 (m, 2 H, 2-H, 5-H), 6.29 (d, *J* = 1.9 Hz, 1 H, 1-H), 8.57 (s, 1 H, NH).

MS (ESI): m/z (%) = 374.0 (42) [M + Na]⁺, 723.1 (100) [2M + Na]⁺.

ber.: 374.0106 [M + Na]⁺, gef.: 374.0114 (ESI-HRMS).

 $C_{11}H_{18}CI_{3}NO_{5}$ (350.62).

18.3 Synthese des Vinyliodids 154^[85]

18.3.1 Benzaldehyd 172

Zu einer Lösung des Alkohols **167** (4.52 g, 22.5 mmol, 1.50 Äq.) in CH_2Cl_2 (680 mL) wurde Molsieb 4 Å (100 g) gegeben und 30 min gerührt. Anschließend wurde auf 0 °C gekühlt, nacheinander das Trichloracetimidat **168** (5.31 g, 15.1 mmol, 1.00 Äq.) in CH_2Cl_2 (25.0 mL) und TMSOTf (336 mg, 1.51 mmol, 270 µL, 10 mol%) in CH_2Cl_2 (25 mL) zugetropft und für 30 min bei 0 °C gerührt. Die Reaktion wurde durch Zugabe von NEt_3 (1.00 mL) beendet und auf Raumtemperatur erwärmt. Es wurde vom Molsieb filtriert, mit CH_2Cl_2 (400 mL) gewaschen und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (500 g, PE/Et_2O 5:1) wurde die Titelverbindung **172** als farbloses Öl (3.90 g, 10.0 mmol, 67% über 2 Stufen) erhalten.

DC: *R_f* = 0.18 (P/Et₂O 3:1).

 $[\alpha]_D^{20} = -66.5$ ° (c = 1.3 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 223.0 (4.341), 251.0 (3.833), 322.0 (3.333) nm.

IR (Film): $\tilde{\nu}$ = 1469, 1389, 1300, 1271, 1228, 1169, 1133, 1120, 1101, 1005, 824 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.21 (d, *J* = 6.3 Hz, 3 H, 6[′]-H₃), 3.17 (t, *J* = 9.4 Hz, 1 H, 4[′]-H), 3.53 (s, 9 H, 3 × OCH₃), 3.50–3.65 (m, 1 H, 3[′]-H, 5[′]-H), 3.73 (dd, *J* = 3.3, 2.0 Hz, 1 H, 2[′]-H), 5.53 (d, *J* = 2.0 Hz, 1 H, 1[′]-H), 7.15 (dd, *J* = 8.8, 3.1 Hz, 1 H, 4-H), 7.53 (d, *J* = 8.8 Hz, 1 H, 3-H), 7.58 (d, *J* = 3.1 Hz, 1 H, 6-H), 10.26 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.8 (C-6′), 58.0, 59.3, 60.9 (3 × OCH₃), 69.0 (C-5′), 77.0, 80.7, 81.8 (C-2′, C-3′, C-4′), 95.4 (C-1′), 116.9, 119.0, 123.6 (C-3, C-4, C-6), 134.1 (C-2), 134.6 (C-1), 155.7 (C-5), 191.1 (CHO).

MS (ESI): m/z (%) = 443.1 (100) [M + Na + MeOH]⁺, 865.1 (64) [M + K + H₂O + MeOH]⁺.

ber.: 411.0414 [M + Na]⁺, gef.: 411.0413 (ESI-HRMS).

C₁₆H₂₁BrO₆ (389.24).

18.3.2 Iodmethyl-triphenyl-phosphonium-iodid 173

Bei Raumtemperatur wurde eine Lösung von Triphenylphosphin (26.2 g, 100 mmol, 1.00 Äq.) in abs. Toluol (80.0 mL) mit Diiodmethan (8.47 mL, 28.1 g, 105 mmol, 1.05 Äq.) versetzt. Das Reaktionsgemisch wurde für 14 h auf 80 °C erwärmt. Der Feststoff wurde filtriert und mit *n*-Pentan (8 × 200 mL) gewaschen. Nach Trocknung im Hochvakuum wurde das Wittig-Salz **173** (28.3 g, 53.4 mmol, 53%) in Form eines weißen Feststoffes analysenrein erhalten.

Smp.: 211.9 °C.

UV (CH₃CN): λ_{max} (lg ε) = 221.0 (4.565), 269.0 (3.521) nm.

IR (Film): $\tilde{\nu}$ = 2846, 1436, 1107, 996, 782, 743, 720, 685, 562, 504 cm⁻¹.

¹**H-NMR** (300 MHz, DMSO-d₆): δ (ppm) = 5.06 (d, *J* = 8.7 Hz, 2 H, CH₂), 7.71–7.95 (m, 15 H, Ph-H).

¹³**C-NMR** (76 MHz, DMSO-d₆) δ = 117.4–118.9 (d, *J* = 88.8 Hz, PCH₂I), 130.0 (d, *J* = 12.7 Hz, Ph-H), 133.7 (d, *J* = 10.1 Hz, Ph-H), 134.9–135.1 (d, *J* = 3.0 Hz, C_{ipso}).

³¹**P-NMR** (122 MHz, DMSO-d₆) δ (ppm) = 24.72.

MS (ESI): m/z (%) = 403.0 (100) [M-I]⁺.

ber.: 403.0107 [M-I]⁺, gef.: 403.0117 (ESI-HRMS).

 $C_{19}H_{17}I_2P$ (530.12).

18.3.3 Vinyliodid 154

Zu einer Suspension des Wittig-Salzes $[Ph_3PCH_2I]^+I^-$ **173** (7.13 g, 13.4 mmol, 1.50 Äq.) in abs. THF (135 mL) wurde bei Raumtemperatur KHMDS (0.5 M in Toluol, 31.5 mL, 15.7 mmol, 1.75 Äq.) getropft und für 5 min gerührt. Die orange Suspension wurde auf –78 °C gekühlt und eine Lösung des Aldehyds **172** (3.49 g, 8.97 mmol, 1.00 Äq.) in

abs. THF (60.0 mL) zugetropft. Es wurde 60 min bei -78 °C und 45 min bei Raumtemperatur gerührt, bevor durch Zugabe von ges. NH₄Cl-Lösung (600 mL) die Reaktion abgebrochen wurde. Die organische Phase wurde abgetrennt und die wässrige Phase mit Et₂O (3 × 200 mL) extrahiert. Die vereinigten organischen Extrakte wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (P/Et₂O 10:1 \rightarrow 6:1) wurde das Vinyliodid **154** (2.90 g, 5.65 mmol, 63%) in Form eines weißen Feststoffes erhalten.

Smp.: 102.4 °C.

DC: $R_f = 0.21$ (P/Et₂O 3:1).

 $[\alpha]_D^{20} = -58.7$ ° (c = 1.1 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 200.0 (4.380) nm.

IR (Film): $\tilde{\nu}$ = 1458, 1197, 1148, 1119, 1102, 1090, 1046, 1037, 1008, 991, 931, 873, 799, 692, 657 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.24 (d, J = 6.2 Hz, 3 H, 6^{''}-H₃), 3.17 (t, J = 9.5 Hz, 1 H, 4^{''}-H), 3.54, 3.54 (2 × s, 9 H, 3 × OCH₃), 3.61 (dq, J = 9.5, 6.2 Hz, 1 H, 5^{''}-H), 3.64 (dd, J = 9.5, 3.2 Hz, 1 H, 3^{''}-H), 3.75 (dd, J = 3.2, 2.0 Hz, 1 H, 2^{''}-H), 5.50 (d, J = 2.0 Hz, 1 H, 1^{''}-H), 6.72 (d, J = 8.5 Hz, 1 H, 2[']-H), 6.90 (dd, J = 8.8, 2.9 Hz, 1 H, 5-H), 7.26 (d, J = 8.5 Hz, 1 H, 1^{''}-H), 7.36 (d, J = 2.9 Hz, 1 H, 3-H), 7.45 (d, J = 8.8 Hz, 1 H, 6-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.9 (C-6^{''}), 58.0, 59.3, 61.0 (3 × OCH₃), 68.8 (C-5^{''}), 76.8 (C-2^{''}), 80.8 (C-3^{''}), 81.9 (C-4^{''}), 83.8 (C-2[']), 95.5 (C-1^{''}), 115.5 (C-2), 117.8 (C-3), 117.9 (C-5), 133.3 (C-6), 138.3 (C-1), 138.6 (C-1[']), 155.0 (C-4[']).

MS (ESI): m/z (%) = 535.0 (100) [M + Na]⁺, 1048.0 (60) [2M + Na]⁺.

ber.: 534.9588 [M + Na]⁺, gef.: 534.9582 (ESI-HRMS).

C₁₇**H**₂₂**BrIO**₅ (513.16).

18.4 Synthese des Pyridinderivates 164^[117]

18.4.1 3-Brom-6-methoxy-2-methylpyridin 176

Zu einer Lösung von 2-Methoxy-6-methylpyridin **175** (1.05 g, 8.56 mmol, 1.00 Äq.) in THF (80.0 mL) wurde bei Raumtemperatur unter Lichtausschluss DBDMH (2.45 g, 8.56 mmol, 1.00 Äq.) gegeben. Es wurde 16 h bei gleicher Temperatur gerührt und durch Zugabe von ges. wässriger $Na_2S_2O_3$ -Lösung (50 mL) die Reaktion beendet. Anschließend wurde mit MTBE (4 × 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (P/Et₂O 100:1) wurde das Brompyridin **176** (1.44 g, 7.11 mmol, 83%) in Form eines weißen Feststoffes erhalten.

DC: *R_f* = 0.46 (P).

Smp.: 74.6 °C.

UV (CH₃CN): λ_{max} (lg ε) = 215.0 (4.128), 247.0 (3.745), 315.0 (3.555) nm.

IR (ATR): $\tilde{\nu}$ = 1573, 1460, 1416, 1390, 1305, 1247, 1123, 1035, 998, 818, 664 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.52 (s, 3 H, CH₃), 3.87 (s, 3 H, OCH₃), 6.43 (d, J = 8.7 Hz, 1 H, 5-H), 7.58 (d, J = 8.7 Hz, 1 H, 4-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 24.5 (CH₃), 53.5 (OCH₃), 109.4 (C-5), 111.8 (C-3), 142.0 (C-4), 154.4 (C-2), 162.4 (C-6).

MS (ESI): *m*/*z* (%) = 202.0 (100) [M + H]⁺, 224.0 (61) [M + Na]⁺.

ber.: 201.9862 [M + H]⁺, gef.: 201.9862 (EI-HRMS).

C₇H₈BrNO (202.05).

18.4.2 3-Brom-6-methoxy-2-methylpyridin-N-oxid 177

Zu einer Lösung des Brompyridins **176** (2.00 g, 9.98 mmol, 1.00 Äq.) in CHCl₃ (30.0 mL) wurde bei Raumtemperatur und unter Lichtausschluss *m*-CPBA (2.60 g, 15.0 mmol, 1.50 Äq.) über einen Zeitraum von 3 h gegeben und weitere 18 h bei dieser Temperatur gerührt. Die Reaktionslösung wurde anschließend auf Kieselgel aufgezogen und nach säulenchromatographischer Reinigung (Et₂O \rightarrow AcOEt/MeOH 95:5) wurde das *N*-Oxid **177** (1.19 mg, 5.44 mmol, 55%) in Form eines weißen Feststoffes erhalten.

DC: *R_f* = 0.60 (MeOH).

UV (CH₃CN): λ_{max} (lg ε) = 198.0 (4.172), 235.5 (4.362), 275.0 (3.872), 321.0 (3.408) nm.

IR (Film): $\tilde{\nu}$ = 3502, 3405, 1607, 1494, 1375, 1327, 1198, 1081, 1005, 854 cm⁻¹.

¹**H-NMR** (300 MHz, DMSO-d₆): δ (ppm) = 2.52 (s, 3 H, CH₃), 3.96 (s, 3 H, OCH₃), 7.04 (d, *J* = 9.1 Hz, 5-H), 7.60 (d, *J* = 9.1 Hz, 4-H).

¹³**C-NMR** (126 MHz, DMSO-d₆): δ (ppm) = 17.4 (CH₃), 57.2 (OCH₃), 106.3 (C-5), 110.8 (C-3), 128.1 (C-4), 147.9 (C-2), 157.9 (C-6).

MS (ESI): m/z (%) = 240.0 (16) [M + Na]⁺, 458.9 (100) [2M + Na]⁺.

ber.: 239.9631 [M + Na]⁺, gef.: 239.9636 (ESI-HRMS).

C₇H₈BrNO₂ (218.05).

18.4.3 3-Brom-6-methoxy-2-(methyl-O-acetyl)-pyridin 178

Eine Lösung des *N*-Oxids **177** (827 mg, 3.78 mmol, 1.00 Äq.) in Essigsäureanhydrid (4.70 mL) wurde 3 h bei 120 °C gerührt und im Anschluss mit MeOH (25 mL) versetzt. Das Lösungsmittel wurde im Vakuum entfernt, der Rückstand in MTBE (25 mL)

aufgenommen und mit ges. NaHCO₃-Lösung (3×25 mL), H₂O (25 mL) und ges. NaCl-Lösung (25 mL) gewaschen. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Das Acetat **178** (866 mg, 3.33 mmol, 88%) wurde analysenrein in Form eines braunen Öls erhalten.

DC: *R_f* = 0.26 (PE/AcOEt 3:1).

Smp.: 74.6 °C.

UV (CH₃CN): λ_{max} (lg ε) = 225 (4.022), 285 (3.650) nm.

IR (Film): $\tilde{\nu}$ = 1742, 1579, 1460, 1417, 1373, 1319, 1300, 1225, 1028, 1012, 823 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.14 (s, 3 H, OC(O)CH₃), 3.88 (s, 3 H, OCH₃), 5.20 (s, 2 H, CH₂), 6.57 (d, *J* = 8.7 Hz, 1 H, 5-H), 7.63 (d, *J* = 8.7 Hz, 1 H, 4-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 20.7 (OCO<u>C</u>H₃), 53.6 (OCH₃), 65.6 (CH₂), 110.7 (C-3), 112.0 (C-5), 142.5 (C-4), 150.1 (C-2), 162.6 (C-6), 170.6 (O<u>C</u>OCH₃).

MS (ESI): m/z (%) = 282.0 (100) [M + Na]⁺, 542.9 (18) [2M + Na]⁺.

ber.: 281.9736 [M + Na]⁺, gef.: 281.9739 (ESI-HRMS).

C₉**H**₁₀**BrNO**₃ (260.08).

18.4.4 3-Brom-2-(hydroxymethyl)-6-methoxypyridin 179

Zu einer Lösung des Acetats **178** (635 mg, 2.44 mmol, 1.00 Äq.) in MeOH (10 mL) wurde 1 M wässrige K_2CO_3 -Lösung (4.20 mL) gegeben und 1 h bei Raumtemperatur gerührt. Die Reaktion wurde durch die Entfernung des Lösungsmittels im Vakuum abgebrochen. Der wässrige Rückstand wurde mit CHCl₃ (4 × 10 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Der Alkohol **179** (502 mg, 2.33 mmol, 96%) wurde ohne weitere Reinigung analysenrein als weißer Feststoff erhalten.

DC: $R_f = 0.52$ (PE/MTBE).

Smp.: 37.3 °C.

UV (CH₃CN): λ_{max} (lg ε) = 225 (4.012), 285 (3.685) nm.

IR (Film): $\tilde{\nu}$ = 1574, 1465, 1398, 1383, 1320, 1275, 1246, 1200, 1123, 1065, 1016, 952, 816, 669 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.94 (s, 3 H, OCH₃), 4.01 (t, *J* = 4.7 Hz, 1 H, OH), 4.66 (d, *J* = 4.7 Hz, 2 H, CH₂), 6.58 (d, *J* = 8.6 Hz, 1 H, 5-H), 7.65 (d, *J* = 8.6 Hz, 1 H, 4-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 53.8 (OCH₃), 63.0 (CH₂), 108.7 (C-3), 110.9 (C-5), 142.6 (C-4), 153.6 (C-2), 162.4 (C-6).

MS (ESI): m/z (%) = 240.0 (90) [M + Na]⁺, 458.9 (100) [2M + Na]⁺.

ber.: 239.9631 [M + Na]⁺, gef.: 239.9633 (ESI-HRMS).

C₇H₈BrNO₂ (218.05).

18.4.5 3-Brom-6-methoxy-picolinaldehyd 180

Zu einer Lösung des Alkohols **179** (488 mg, 2.24 mmol, 1.00 Äq.) in $CHCl_3$ (16.0 mL) wurde aktiviertes MnO_2 (260 mg, 2.69 mmol, 1.20 Äq.) zugegeben und für 3 d unter Lichtausschluss bei Raumtemperatur gerührt. Es wurde über Celite[®] filtriert, mit CHCl₃ (50 mL) gespült und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 15:1) wurde der Aldehyd **180** (462 mg, 2.13 mmol, 95%) in Form eines gelben Feststoffes erhalten.

DC: $R_f = 0.58$ (PE/MTBE 3:1).

UV (CH₃CN): λ_{max} (lg ε) = 215.0 (4.210), 246.0 (3.830), 315.0 (3.643) nm.

IR (Film): $\tilde{\nu}$ = 1694, 1462, 1395, 1374, 1321, 1264, 1164, 1029, 1007, 961, 830, 745, 613 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.99 (s, 3 H, OCH₃), 6.83 (d, *J* = 8.7 Hz, 1 H, 5-H), 7.80 (d, *J* = 8.7 Hz, 1 H, 4-H), 10.1 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 54.1 (OCH₃), 113.9 (C-3), 117.4 (C-5), 144.5 (C-4), 145.3 (C-2), 163.0 (C-5), 190.5 (CHO).

MS (ESI): m/z (%) = 237.9 (37) [M + Na]⁺, 270.0 (100) [M + Na + MeOH]⁺.

ber.: 237.9474 [M + Na]⁺, gef.: 237.9476 (ESI-HRMS).

C₇H₆BrNO₂ (216.03).

18.4.6 (Z)-Vinyliodid 164 und (E)-Vinyliodid 181

Zu einer Suspension des Wittig-Salzes [Ph₃PCH₂I]⁺I **173** (460 mg, 868 µmol, 1.30 Äq.) in abs. THF (3.00 mL) wurde bei Raumtemperatur KHMDS (0.5 M in Toluol, 1.74 mL, 868 µmol, 1.30 Äq.) getropft und 5 min gerührt. Die orange Suspension wurde auf -78 °C gekühlt und eine Lösung des Aldehyds **180** (145 mg, 671 µmol, 1.00 Äq.) in abs. THF (1.00 mL) zugetropft. Es wurde 60 min bei -78 °C und 45 min bei Raumtemperatur gerührt, bevor durch Zugabe von ges. wässriger NH₄Cl-Lösung (10 mL) die Reaktion bendet wurde. Die organische Phase wurde abgetrennt und die wässrige Phase mit MTBE (3 × 10 mL) extrahiert. Die vereinigten organischen Extrakte wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE) wurden das (*Z*)-Vinyliodid **164** (121 mg, 356 µmol, 53%) in Form eines gelben Öls, sowie das (*E*)-Vinyliodid **181** (104 mg, 306 µmol, 46%) in Form eines bräunlichen Feststoffes erhalten.

Analytische Daten für (Z)-3-Brom-2-(2-iodvinyl)-6-methoxy-pyridin 164:

DC: *R_f* = 0.27 (PE).

UV (CH₃CN): λ_{max} (lg ε) = 196 (4.256), 249 (3.901), 317 (3.699) nm.

IR (Film): $\tilde{\nu}$ = 1723, 1564, 1456, 1407, 1293, 1255, 1119, 1034, 1012, 820, 742 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 4.08 (s, 3 H, OCH₃), 6.66 (d, *J* = 8.7 Hz, 1 H, 5-H), 6.97 (d, *J* = 8.9, 1 H, 2[′]-H), 7.69 (d, *J* = 8.7 Hz, 1 H, 4-H), 7.70 (d, *J* = 8.9 Hz, 1 H, 1[′]-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 55.4 (OCH₃), 83.9 (C-2΄), 112.5 (C-5), 113.0 (C-3), 134.7 (C-1΄), 142.6 (C-4), 149.2 (C-2), 161.8 (C-6).

MS (ESI): m/z (%) = 339.9 (30) [M + H]⁺, 702.7 (100) [2M + Na]⁺.

ber.: 361.8648 [M + Na]⁺, gef.: 361.8637 (ESI-HRMS).

C₈H₇BrINO (339.96).

Analytische Daten für (E)-3-Brom-2-(2-iodvinyl)-6-methoxy-pyridin 181:

DC: *R_f* = 0.38 (PE).

UV (CH₃CN): λ_{max} (lg ε) = 201.0 (4.210), 256.0 (4.124), 319.5 (4.115) nm.

IR (Film): $\tilde{\nu}$ = 2940, 1594, 1561, 1458, 1410, 1323, 1252, 1115, 1036, 1007, 938, 817 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.91 (s, 3 H, OCH₃), 6.55 (d, *J* = 8.7 Hz, 1 H, 5-H), 7.62 (d, *J* = 8.7 Hz, 1 H, 4-H), 7.66 (d, *J* = 14.2 Hz, 1 H, 2´-H), 7.71 (d, *J* = 14.2 Hz, 1 H, 1´-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 53.6 (OCH₃), 87.4 (C-2΄), 110.2 (C-3), 112.5 (C-5), 141.1 (C-1΄), 142.8 (C-4), 149.3 (C-2), 162.0 (C-6).

MS (ESI): m/z (%) = 361.9 (100) [M + Na]⁺.

ber.: 361.8648 [M + Na]⁺, gef.: 361.8638 (ESI-HRMS).

C₈H₇BrINO (339.96)

18.5 Synthese des Cyclopentenbausteins^[85]

18.5.1 Malonsäuremonomethylester 190

Zu einer Lösung des Malonsäuredimethylesters **189** (80.0 g, 606 mmol, 1.00 Äq.) in MeOH (250 mL) wurde KOH (33.9 g, 606 mmol, 1.00 Äq.) gelöst in MeOH (275 mL), zugetropft. Es wurde für 13 h bei Raumtemperatur gerührt, 1 h unter Rückfluss erhitzt und anschließend filtriert. Durch Einengen der Mutterlauge wurde eine weitere Fraktion erhalten. Beide Feststofffraktionen wurden vereint, im Vakuum getrocknet und nachfolgend in H₂O (150 mL) gelöst. Es wurde auf 0 °C gekühlt und langsam konz. HCl (50 mL) zugetropft. Nach erfolgter Zugabe wurde das Gemisch mit Et₂O (15 × 150 mL) extrahiert. Die organischen Extrakte wurden vereint, über MgSO₄ getrocknet und filtriert. Das Lösungsmittel wurde im Vakuum entfernt und lieferte die Titelsubstanz *rac-***190** (58.1 g, 492 mmol, 81%) in Form eines farblosen Öls.

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2960, 1736, 1441, 1335, 1214, 1162, 1018, 912 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.39 (s, 2 H, CH₂), 3.72 (s, 3 H, CO₂CH₃), 7.58 (s, 1 H, CO₂H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 40.7 (CH₂), 52.7 (CO₂<u>C</u>H₃), 167.4 (<u>C</u>O₂CH₃), 170.8 (CO₂H).

MS (ESI): m/z (%) = 141.0 (100) [M + Na]⁺, 259.0 (28) [2M + Na]⁺.

ber.: 141.0158 [M + Na]⁺, gef.: 141.0162 (ESI-HRMS).

C₄**H**₆**O**₄ (118.09).

18.5.2 rac-2-Chlor-2-chlorcarbonylessigsäuremethylester rac-191

Malonsäuremonomethylester **190** (44.2 g, 374 mmol, 1.00 Äq.) wurde bei Raumtemperatur zügig mit Thionylchlorid (109 mL, 178 g, 1.50 mol, 4.00 Äq.) versetzt und mit einem vorgeheiztem Ölbad 30 min auf 70 °C erhitzt. Es wurde auf Raumtemperatur abgekühlt und portionsweise *N*-Chlorsuccinimid (100 g, 750 mmol, 2.00 Äq.) sowie Thionylchlorid (50.0 mL) und konz. HCl (6 Tropfen) zugegeben. Es wurde mit einem auf 85 °C vorgeheiztem Ölbad wiederum für 100 min gerührt. Durch Abkühlung auf Raumtemperatur wurde die Reaktion beendet. Das Lösungsmittel wurde im Vakuum über eine Kühlfalle entfernt, der Rückstand in wenig CCl₄ aufgenommen, filtriert und das Lösungsmittel im Vakuum entfernt. Nach fraktionierter Destillation wurde die Titelverbindung *rac*-**191** (38.8 g, 133 mmol, 63%) in Form eines farblosen Öls erhalten.

Sdp.: 56–61 °C, 8–9 mbar.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 3.90 (s, 3 H, CO₂C<u>H₃</u>), 5.14 (s, 1 H, 2-H).

C₄H₄Cl₂O₃ (170.98).

18.5.3 *rac*-(1*R*,5*R*,6*R*)-7-Oxo-bicyclo[3.2.0]hept-3-en-6-chlor-6-carbonsäuremethylester *rac*-192

rac-**192**

Zu einer Lösung des Säurechlorids *rac*-**191** (50.6 g, 296 mmol, 1.00 Äq.) und Cyclopentadien (97.8 g, 1.48 mol, 5.00 Äq.) in *n*-Hexan (2.00 L) wurde bei Raumtemperatur über einen Zeitraum von 7 h NEt₃ (20.5 mL, 28.6 g, 296 mmol, 1.00 Äq.) in *n*-Hexan (1.00 L) getropft und für 7 h bei Raumtemperatur gerührt. Durch Zugabe von H₂O (1.00 L) wurde die Reaktion abgebrochen. Die organische Phase wurde abgetrennt, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Der chlorierte Bicyclus *rac*-**192** (49.1 g, 245 mmol, 83%) wurde in Form eines gelben Feststoffes analysenrein erhalten und ohne weitere Aufreinigung eingesetzt.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.46–2.60 (m, 1 H, 2-H_A), 2.73–2.86 (m, 1 H, 2-H_B), 3.82 (s, 3 H, CO₂CH₃), 4.05–4.09 (m, 1 H) und 4.15–4.21 (m, 1 H) (1-H, 5-H), 5.69–5.74 (m, 1 H) und 5.94–6.00 (m, 1 H) (3-H, 4-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 36.0 (C-2), 50.4, 53.9, 61.1 (C-1, C-5, CO₂<u>C</u>H₃), 79.8 (C-6), 127.9, 136.2 (C-3, C-4), 166.6 (<u>C</u>O₂CH₃), 199.5 (C-7).

C₉**H**₉**ClO**₃ (200.62).

18.5.4 Bicyclus *rac*-193

Zu einer Lösung des Bicyclus *rac*-**192** (10.9 g, 54.3 mmol, 1.00 Äq.) in Essigsäure (100 mL) wurde bei 10 °C in Portionen Zinkstaub (14.0 g, 214 mmol, 4.00 Äq.) zugegeben. Nach erfolgter Zugabe wurde auf Raumtemperatur erwärmt und für 1 h gerührt. Es wurde vom Zinkstaub filtriert, auf Eiswasser (500 mL) gegeben und mit Et₂O (3 × 500 mL) extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaHCO₃-Lösung (500 mL) neutralisiert und bis zum Ende der Gasentwicklung festes NaHCO₃ zugegeben. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach fraktionierter Destillation wurde der Bicyclus *rac*-**193** (6.54 g, 39.5 mmol, 73%) in Form eines farblosen Öls erhalten.

Sdp.: 65 °C, 0.07 mbar.

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 1784, 1723, 1315, 1285, 1249, 1211, 1155, 1031, 715 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃, Diastereomerengemisch): δ (ppm) = 2.40–2.57, 2.64–2.77 (2 × m, 2 H, 2-H₂), 3.66, 3.70 (2 × s, 3 H, CO₂CH₃), 3.72–3.86 (m, 2 H, 1-H, 5-H), 4.03–4.11, 4.34–4.39 (2 × m, 1 H, 6-H), 5.75–5.88 (m, 2 H, 3-H, 4-H).

¹³**C-NMR** (75 MHz, CDCl₃, Diastereomerengemisch): δ (ppm) = 34.4, 35.2 (C-2), 40.8, 41.2, 51.9, 52.4, 60.1, 62.6, 67.0, 71.3 (C-1, C-5, C-6, CO₂CH₃), 129.8, 130.7, 133.5, 134.3 (C-3, C-4), 165.9, 167.2 (<u>C</u>O₂CH₃), 203.9, 204.2 (C-7).

MS (ESI): m/z (%) = 189.1 (48) [M + Na]⁺, 205.1 (10) [M + K]⁺, 221.1 (10) [M + MeOH + Na]⁺, 355.1 (100) [2M + Na]⁺, 371.1 (37) [2M + K]⁺, 387.2 (40) [2M + MeOH + Na]⁺.

ber.: 189.0522 [M + Na]⁺, gef.: 189.0524 (ESI-HRMS).

C₉**H**₁₀**O**₃ (166.17).

18.5.5 Lacton *rac*-194

Zu einer auf 0 °C gekühlten Lösung des Bicyclus *rac*-**193** (5.00 g, 30.1 mmol, 1.00 Äq.) in abs. MeOH (150 mL) wurde bei geöffnetem Gasauslass in einer Portion NaBH₄ (3.42 g, 90.3 mmol, 3.00 Äq.) gegeben. Nach 45 min wurde das Lösungsmittel im Vakuum entfernt, der Rückstand in CH₂Cl₂ (100 mL) aufgenommen und mit ges. NaCl-Lösung (80 mL) und 2 M HCl (80 mL) gewaschen. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH₂Cl₂ (4 × 80 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 1:1) wurde das Lacton *rac*-**194** (2.78 g, 20.1 mmol, 67%) in Form eines weißen Feststoffes erhalten.

Smp.: 44.6 °C.

DC: $R_f = 0.19$ (MTBE).

UV (CH₃CN): λ_{max} (lg ε) = 290.0 (3.260) nm.

IR (Film): $\tilde{\nu}$ = 1731, 1273, 1230, 1132, 1075, 1028, 992, 949, 857, 721 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.17–2.25 (m, 1 H, 7-H_A), 2.29 (dd, *J* = 15.0, 6.5 Hz, 1 H, 4-H_A), 2.58–2.80 (m, 2 H, 7-H_B, 7a-H), 2.66 (dd, *J* = 15.0, 7.1 Hz, 1 H, 4-H_B)

3.25–3.35 (m, 1 H, 4a-H), 3.99 (dd, J = 11.4, 6.6 Hz, 1 H, 1-H_A), 4.24 (dd, J = 11.4, 4.5 Hz, 1 H, 1-H_B), 5.47–5.51 (m, 1 H), 5.67–5.71 (m, 1 H) (5-H, 6-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 33.8 (C-7), 34.0 (C-7a), 36.2 (C-4), 41.9 (C-4a), 70.3 (C-1), 130.8, 131.7 (C-5, C-6), 173.1 (C-3).

MS (ESI): m/z (%) = 161.1 (55) [M + Na]⁺, 299.1 (100) [2M + Na]⁺.

ber.: 161.0573 [M + Na]⁺, gef.: 161.0575 (ESI-HRMS).

C₈H₁₀O₂ (138.16).

18.5.6 Isoharnstoff 199^[118]

Zu einer Lösung von N,N'-Diisopropylcarbodiimid (50.0 g, 396 mmol, 1.00 Äq.) in *tert*-Butanol (43.3 mL, 33.7 g, 455 mmol, 1.15 Äq.) wurde Cul (392 mg, 3.96 mmol, 1.00 mol%) gegeben und 7 d bei Raumtemperatur gerührt. Nach fraktionierter Destillation wurde das Harnstoffderivat **199** (68.1 g, 340 mmol, 86%) in Form einer farblosen Flüssigkeit erhalten.

Sdp.: 61 °C (13 mbar).

IR (Film): $\tilde{\nu}$ = 2963, 1656, 1383, 1363, 1327, 1253, 1170, 1122, 953 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃, Diastereomerenmischung): δ (ppm) = 1.01–1.08 (m, 12 H, 2 × CH(C<u>H₃</u>)₂), 1.44 (s, 9 H, CO₂C(C<u>H₃</u>)₃), 3.03–3.25 (m, 2 H), 3.57–3.75 (m, 1 H) (2 × C<u>H</u>(CH₃)₂, NH).

¹³**C-NMR** (126 MHz, CDCl₃, Diastereomerenmischung): δ (ppm) = 22.7, 22.8, 23.5, 23.9, 23.9, 24.4, 24.6, 24.7 (2 × CH(<u>C</u>H₃)₂), 28.5, 29.1 (C(<u>C</u>H₃)₃), 43.5, 43.6, 46.3, 49.0 (2 × <u>C</u>H(CH₃)₂), 77.2, 78.2 (<u>C</u>(CH₃)₃) 149.6 (C-1).

MS (ESI): m/z (%) = 201.2 (100) [M + H]⁺.

ber.: 201.1961 [M + H]⁺, gef.: 201.1964 (ESI-HRMS).

C₁₁**H**₂₄**N**₂**O** (200.32).

18.5.7 *tert*-Butylester *rac*-200

Zu einer Lösung des Lactons rac-194 (3.78 g, 27.2 mmol, 1.00 Äq.) in MeOH (42.0 mL) wurde bei Raumtemperatur NaOH (1.96 g, 48.9 mmol, 1.80 Äq.) gegeben und 5 h unter Rückfluss erhitzt. Es wurde auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum entfernt und der Rückstand für 12 h im Hochvakuum getrocknet. Anschließend wurde das Natriumsalz gemörsert und in CH₂Cl₂/tert-Butanol (96.0 mL, 1:1) suspendiert. Es wurde auf 0 °C gekühlt, NH₄Cl (3.23 g, 60.4 mmol, 2.20 Äq.) zugegeben und Isoharnstoff 199 (16.7 mL, 13.9 g, 69.4 mmol, 1.90 Äq.) zugetropft. Nachfolgend wurde auf Raumtemperatur erwärmt, 2 h gerührt und wiederum auf 0 °C gekühlt. Nachfolgend wurde erneut NH_4Cl (1.61 g, 30.1 mmol, 1.10 Äq.) zugegeben und Isoharnstoff 199 (16.7 mL, 13.9 g, 69.4 mmol, 1.90 Äq.) zugetropft, auf Raumtemperatur erwärmt und 2 h gerührt. Es wurde nochmals auf 0 °C gekühlt, erneut NH₄Cl (1.61 g, 30.1 mmol, 1.10 Äq.) zugegeben und Isoharnstoff **199** (16.7 mL, 13.9 g, 69.4 mmol, 1.90 Äq.) zugetropft, auf Raumtemperatur erwärmt und 14 h gerührt. Die Reaktion wurde durch Zugabe von H₂O (200 mL) beendet. Die Phasen wurden getrennt, die wässrige Phase wurde mit CH_2Cl_2 (3 × 200 mL) extrahiert, mit 1 M wässriger HCl auf pH \sim 1 angesäuert und erneut mit CH₂Cl₂ (2 × 200 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1) wurde der *tert*-Butylester *rac*-**200** (5.35 g, 25.2 mmol, 93%) in Form eines farblosen Öls erhalten.

DC: R_f = 0.19 (PE/AcOEt 9:1).

UV (CH₃CN): (keine Absorption).

IR (ATR): \tilde{v} = 1726, 1703, 1392, 1366, 1255, 1146, 1073, 1034, 947, 850, 758, 706, 679 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.40 (s, 9 H, CO₂C(CH₃)₃), 1.98–2.09 (m, 1 H, 4'-H_A), 2.12 (dd, *J* = 15.8, 7.2 Hz ,1 H, 2-H_A), 2.24 (s_{br}, 1 H, OH), 2.29–2.39 (m, 1 H, 4'-H_B), 2.37 (dd, *J* = 15.8, 8.0 Hz ,1 H, 2-H_B), 2.45–2.58 (m, 1 H, 5'-H), 3.05–3.16 (m, 1 H, 1'-H), 3.59 (d, *J* = 7.2 Hz, 2 H, CH₂OH), 5.64–5.74 (m, 2 H, 2'-H, 3'-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 28.0 (CO₂C(<u>C</u>H₃)₃), 34.3 (C-4'), 35.4 (C-2), 42.1 (C-1'), 43.4 (C-5'), 63.0 (<u>C</u>H₂OH), 80.7 (CO₂C(CH₃)₃), 130.0, 134.3 (C-2', C-3'), 173.3 (C-1).

MS (ESI): m/z (%) = 235.1 (21) [M + Na]⁺, 447.3 (100) [2M + Na]⁺.

ber.: 235.1305 [M + Na]⁺, gef.: 235.1313 (ESI-HRMS).

 $C_{12}H_{20}O_3$ (212.29).

18.5.8 Aldehyd *rac*-201

Zu einer auf 0 °C gekühlten Lösung des Alkohols rac-200 (3.07 g, 14.5 mmol, 1.00 Äq.) in CH₂Cl₂ (150 mL) wurde DMP (9.31 g, 21.8 mmol, 1.50 Äq.) in einer Portion gegeben. Es wurde 10 min bei 0 °C und 30 min bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von 1 M Na₂S₂O₃-Lösung (90 mL) und ges. NaHCO₃-Lösung (90 mL) beendet. Anschließend wurde die zweiphasige Mischung 45 min bei Raumtemperatur gerührt. Es wurde anschließend H₂O (300 mL) zugegeben, die organische Phase abgetrennt und die wässrige Phase mit CH_2Cl_2 (4 × 250 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1) wurde die Titelverbindung rac-201 (2.79 g, 13.3 mmol, 92%) in Form eines farblosen Öls erhalten.

DC: *R_f* = 0.48 (PE/AcOEt 9:1).

 $[\alpha]_D^{22}$: +83.1 ° (c = 0.9 in CHCl₃) (Hinweis: Der Drehwert bezieht sich auf das abgebildete (1*S*,5*R*)-Enantiomer).

UV(CH₃CN): (keine Absorption).

IR (Film): \tilde{v} = 3432, 2978, 1728, 1456, 1368, 1256, 1151, 952, 845, 762 cm⁻¹.

¹**H-NMR** (300 MHz, C_6D_6): δ (ppm) = 1.34 (s, 9 H, $CO_2C(CH_3)_3$), 1.92–2.03 (m, 1 H, 4'-H_A), 2.03 (dd, J = 15.5, 8.4 Hz, 1 H, 2-H_A), 2.23 (dd, J = 15.5, 6.4 Hz, 1 H, 2-H_B), 2.44–2.55 (m, 1 H, 4'-H_B), 2.67–2.77 (m, 1 H, 5'-H), 3.20–3.28 (m, 1 H, 1'-H), 5.32–5.35 (m, 2 H, 2'-H, 3'-H), 9.43 (d, J = 0.2 Hz, 1 H, CHO).

¹³**C-NMR** (126 MHz, C_6D_6): δ (ppm) = 28.2 ($CO_2C(\underline{C}H_3)_3$), 32.4 (C-4′), 41.0 (C-2), 43.3 (C-1′), 55.4 (C-5′), 80.2 ($CO_2\underline{C}(CH_3)_3$), 129.6, 132.5 (C-2′, C-3′), 171.0 (C-1), 200.6 (CHO).

MS (ESI): m/z (%) = 233.1 (100) [M + Na]⁺.

ber.: 233.1148 [M + Na]⁺, gef.: 233.1152 (ESI-HRMS).

 $C_{12}H_{18}O_3$ (210.07).

18.6 Synthese des C-3-Fragmentes^[82]

18.6.1 (4*S*)-3-Propionyl-4-benzyl-2-oxazolidinon 202

Zu einer Lösung von (*S*)-4-Benzyloxazolidin-2-on (5.66 g, 31.9 mmol, 1.00 Äq.) in THF (90.0 mL) wurde bei –78 °C *n*-BuLi (2 M in Hexan, 33.5 mmol 1.05 Äq.) getropft und 20 min gerührt. Es wurde Propionylchlorid (3.25 g, 35.1 mmol, 1.10 Äq.) zugetropft, 20 min bei –78 °C und 45 min bei 0 °C gerührt. Durch Zugabe von 1 M K₂CO₃-Lösung (90 mL) wurde die Reaktion beendet. Es wurde 5 min bei 0 °C gerührt und die flüchtigen Bestandteile im Vakuum entfernt. Die wässrige Lösung wurde mit H₂O (90 mL) verdünnt und mit CH₂Cl₂ (4 × 100 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/MTBE 2:1) wurde das Oxazolidinon **202** (6.99 g, 30.0 mmol, 94%) als weißer Feststoff erhalten.

DC: *R_f* = 0.29 (PE/AcOEt 5:1).

 $[\alpha]_D^{20}$: +93.5 ° (c = 1.0 in EtOH).

UV (CH₃CN): λ_{max} (lg ε) = 204.0 (4.203), 247.5 (2.402), 252.0 (2.442), 257.5 (2.470), 263.5 (2.383) nm.

IR (Film): $\tilde{\nu}$ = 2984, 2941, 1784, 1701, 1496, 1456, 1365, 1220, 1123, 1081, 1015, 876, 761, 728, 698, 629, 572, 485 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.18 (t, *J* = 7.4 Hz, 3 H, 3'-H₃), 2.73 (dd, *J* = 13.4, 9.5 Hz, 1 H, 1''-H_A), 2.85–3.01 (m, 2 H, 2'-H₂), 3.28 (dd, *J* = 13.4, 3.4 Hz, 1 H, 1''-H_B), 4.11–4.20 (m, 2 H, 5-H₂), 4.60–4.68 (m, 1 H, 4-H), 7.17–7.33 (m, 5 H, Ph-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 8.4 (C-3΄), 29.2 (C-2΄), 38.0 (C-1΄΄), 55.2 (C-4), 66.2 (C-5), 127.2, 128.8, 129.3, 135.2 (6 × C-Ph), 153.4 (C-2), 173.9 (C-1΄).

MS (ESI): m/z (%) = 256.1 (75) [M + Na]⁺, 489.2 (100) [2M + Na]⁺.

ber.: 256.0944 [M + Na]⁺, gef.: 256.0948 (ESI-HRMS).

C₁₃H₁₅NO₃ (233.26).

18.7 Synthese der Aldehyde 218 und 219^[83]

18.7.1 Oxazolidinon 203

Eine Lösung des Oxazolidinons 202 (1.60 g, 6.85 mmol, 1.20 Äq.) in abs. CH₂Cl₂ (36.0 mL) wurde auf 0 °C gekühlt und nacheinander *n*-Bu₂BOTf (1 M Lösung in CH_2Cl_2 , 7.42 mL, 7.42 mmol, 1.30 Äq.) und NEt₃ (1.18 mL, 867 mg, 8.57 mmol, 1.50 Äq.) zugetropft. Die Lösung wurde 1 h bei 0 °C gerührt und anschließend auf -78 °C gekühlt. Es wurde eine Lösung des Aldehyds rac-201 (1.20 g, 5.71 mmol, 1.00 Äq.) in abs. CH₂Cl₂ (12.0 mL) zugetropft und die Reaktionsmischung über einen Zeitraum von 4 h auf 0 °C erwärmt. Die Reaktion wurde durch die Zugabe von Phosphatpuffer (pH 7, 18 mL), abs. MeOH (12 mL) und MeOH/30%ige H₂O₂-Lösung (1:1, 24 mL) beendet und weitere 30 min bei 0 °C gerührt. Nach Zugabe von H₂O (120 mL) wurde die organische Phase abgetrennt und die wässrige Phase mit CH_2Cl_2 (3 × 120 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert Lösungsmittel wurde Vakuum und das im entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1 \rightarrow 2:1) wurden die diastereomeren Aldolprodukte 203 in Form eines weißen Feststoffes (2.32 g, 5.23 mmol, 92%) erhalten.

DC: $R_f = 0.42$ (PE/AcOEt 3:1).

IR (Film): \tilde{v} = 2975, 1768, 1728, 1672, 1395, 1219, 763, 703 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃, Diastereomerengemisch) δ = 1.22–1.38 (2 × d, *J* = 7.0 Hz, 2 × 3 H, 2 × 2^{′′}-CH₃), 1.43 (2 × s, 2 × 9 H, 2 × CO₂C(CH₃)₃), 1.93–2.24 (m, 3 H, 2-H_A, 4[′]-H₂), 2.66 (d, *J* = 5.4 Hz, 1 H, 2-H_A), 2.32–2.52 (m, 5 H, 2-H_B, 4[′]-H₂, 2 × 5[′]-H), 2.71 (dd, *J* = 5.4, 3.2 Hz, 1 H, 2-H_B), 2.74–2.81 (m, 2 H, 2 × 1^{′′′′}-H_A), 2.89–3.09 (m, 1 H, 1[′]-H), 3.06 (d, *J* = 3.4 Hz, 1 H, OH), 3.03–3.17 (m, 1 H, 1[′]-H), 3.17–3.31 (m, 2 H, 2 × 1^{′′′′}-H_B), 3.33 (d, *J* = 2.6 Hz, 1 H, OH), 3.73 (ddd, *J* = 14.1, 7.0, 1.5 Hz, 1 H, 2^{′′}-H), 3.88 (dd, *J* = 7.0, 3.9 Hz, 1 H, 2^{′′}-H), 3.93–4.02 (m, 1 H, 1^{′′}-H), 4.02–4.08 (m, 1 H, 1^{′′}-H), 4.11–4.26 (m, 4 H, 2 × 5^{′′′}-H₂), 4.59–4.75 (m, 2 H, 2 × 4^{′′′}-H), 5.65–5.90 (m, 4 H, 2 × 2[′]-H, 2 × 3[′]-H), 7.13–7.38 (m, 10 H, 10 × Ph).

¹³**C-NMR** (126 MHz, CDCl₃, Diastereomerengemisch): δ (ppm) = 9.3, 11.9 (2 × C-2^{''}-<u>C</u>H₃), 28.0, 28.1 (2 × CO₂C(<u>C</u>H₃)₃), 32.7 (2 × C-4[']), 35.6, 36.1 (2 × C-2), 37.7, 37.8 (2 × C-5^{'''}), 40.4, 41.5 (2 × C-2^{''}), 42.1, 42.7 (2 × C-1[']), 44.0, 44.2 (2 × C-5[']), 55.0, 55.1 (2 × C-4^{'''}), 66.1, 66.2 (2 × <u>C</u>H₂Ph), 70.8, 71.0 (2 × C-1^{''}), 80.1, 80.4 (2 × CO₂<u>C</u>(CH₃)₃), 127.4, 128.9, 128.9, 129.4 (10 × C-Ph), 129.7, 131.0, 134.3, 135.0 (2 × C-2['], 2 × C-3[']), 135.2 (2 × C-Ph), 152.8, 152.8 (2 × C-2^{'''}), 172.5, 172.8 (2 × C-1), 177.4, 177.8 (2 × C-3^{''}).

MS (ESI): m/z (%) = 466.2 (100) [M + Na]⁺, 909.5 [2M + Na]⁺.

ber.: 466.2200 [M + Na]⁺, gef.: 466.2201 (ESI-HRMS).

C₂₅H₃₃NO₆ (443.53).

Analytische Daten für 2-(1*S*,5*R*)-5-(1*R*,2*S*)-3-(4*S*)-2-{5-[3-(4-Benzyl-2-oxo-oxazolidin-3-yl)-1-hydroxy-2-methyl-3-oxo-propyl]-cyclopent-2-enyl}-essigsäure-*tert*-butylester **203**:

DC: $R_f = 0.42$ (PE/AcOEt 3:1).

 $[\alpha]_{D}^{20}$: +110.6 ° (c = 0.5 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 252.0 nm (2.426), 258.0 (2.393).

IR (Film): $\tilde{\nu}$ = 1767, 1726, 1671, 1363, 1210, 1163, 1152, 1105, 973, 762, 751, 588, 534 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.24 (d, J = 7.0 Hz, 3 H, 2^{''}-CH₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.97 – 2.06 (m, 2 H, 2-H_A, 4[']-H_A), 2.18 (dddd, J = 15.8, 8.2, 2.9, 1.3 Hz, 1 H, 4[']-H_B), 2.42 (tt, J = 10.8, 8.2 Hz, 1 H, 5[']-H), 2.68 (dd, J = 14.9, 5.3 Hz, 1 H, 2-H_B), 2.78 (dd, J = 13.4, 9.4 Hz, 1 H, 5^{'''}-H_A), 3.08–3.16 (m, 1 H, 1[']-H), 3.24 (dd, J = 13.4, 3.4 Hz, 1 H, 5^{'''}-H_B), 3.32 (d, J = 2.6 Hz, 1 H, OH), 3.74 (qd, J = 7.0, 1.4 Hz, 1 H, 2^{''}-H), 3.96 (ddd, J = 10.9, 2.6, 1.6 Hz, 1 H, 1^{''}-H), 4.18 (dd, J = 9.3, 2.8 Hz, 1 H, 1^{''''}-H_A), 4.21 (dd, J = 17.1, 9.3 Hz, 1 H, 1^{''''}-H_B), 4.67–4.71 (m, 1 H, 4^{'''}-H), 5.70–5.71 (m, 1 H, 3[']-H), 5.84–5.86 (m, 1 H, 2[']-H), 7.18–7.19 (m, 2 H, Ph-H), 7.24–7.28 (m, 1 H, Ph-H), 7.29–7.34 (m, 2 H, Ph-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.3 (C-2^{''}-<u>C</u>H₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 32.8 (C-4[']), 35.6 (C-2), 37.8 (C-5^{'''}), 40.6 (C-2^{''}), 42.1 (C-1[']), 44.2 (C-5[']), 55.1 (C-4^{'''}), 66.2 (<u>C</u>H₂Ph),

MS (ESI): m/z (%) = 466.2 (25) [M + Na]⁺, 909.4 (100) [2M + Na]⁺.

ber.: 466.2200 [M + Na]⁺,

gef.: 466.2200 (ESI-HRMS).

C₂₅H₃₃NO₆ (443.53).

Zu einer Lösung des Alkohols **203** (680 mg, 1.53 mmol, 1.00 Äq.) in abs. DMF (3.00 mL) wurde bei Raumtemperatur Imidazol (313 mg, 4.60 mmol, 3.00 Äq.) und TBSOTF (0.80 mL, 1.22 g, 4.60 mmol, 3.00 Äq.) gegeben. Es wurde 16 h bei 60 °C gerührt, nachfolgend die Reaktion durch Zugabe von H₂O (65 mL) abgebrochen und auf Raumtemperatur abgekühlt. Die organische Phase wurde abgetrennt und die wässrige Phase mit MTBE (65 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (CH₂Cl₂/PE 9:1 \rightarrow CH₂Cl₂) wurden die TBS-Ether **209** und **210** in Form eines farblosen Öls (759 mg, 1.36 mmol, 89%) erhalten.

Analytische Daten von TBS-Ether 209

DC: *R_f* = 0.46 (PE/AcOEt 5:1).

UV (CH₃CN): λ_{max} (lg ε) = 274.0 (3.115), 308.0 (2.778), 324.0 (2.684), 328.0 (2.685) nm.

 $[\alpha]_{D}^{25} = 130.2$ ° (c = 0.5 in CHCl₃).

IR (Film): $\tilde{\nu}$ = 1763, 1736, 1699, 1176, 1133, 1101, 831, 772, 764, 707 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = -0.01, 0.07 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.89 (s, 9 H, SiC(CH₃)₃), 1.23 (d, *J* = 6.6 Hz, 3 H, 2^{''}-CH₃), 1.40 (s, 9 H, CO₂C(CH₃)₃), 1.94 (dd,

 $J = 15.2, 9.2 \text{ Hz}, 1 \text{ H}, 2-\text{H}_{A}, 2.08-2.13 \text{ (m, 1 H, 4'-H}_{A}, 2.27-2.40 \text{ (m, 2 H, 4'-H}_{B}, 5'-\text{H}), 2.46 \text{ (dd, } J = 15.2, 4.7 \text{ Hz}, 1 \text{ H}, 2-\text{H}_{B}, 2.73 \text{ (dd, } J = 13.4, 9.7 \text{ Hz}, 1 \text{ H}, 1'''-\text{H}_{A}), 2.88-2.95 \text{ (m, 1 H, 1'-H}, 3.29 \text{ (dd, } J = 13.4, 3.1 \text{ Hz}, 1 \text{ H}, 1'''-\text{H}_{B}), 3.84 \text{ (ddd, } J = 12.8, 6.6, 3.0 \text{ Hz}, 1 \text{ H}, 2''-\text{H}), 4.15-4.17 \text{ (m, 3 H, 1''-H, 5'''-H}_{2}), 4.57-4.62 \text{ (m, 1 H, 4'''-H)}, 5.75-5.76 \text{ (m, 1 H, 3'-H)}, 5.88-5.89 \text{ (m, 1 H, 2'-H)}, 7.19-7.21 \text{ (m, 2 H, 2 × Ph)}, 7.26-7.27 \text{ (m, 1 H, Ph)}, 7.31 \text{ (t, } J = 7.4 \text{ Hz}, 2 \text{ H}, 2 \times \text{Ph}).$

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.9, -3.8 (2 × Si<u>C</u>H₃), 10.3 (C-2^{''}-<u>C</u>H₃), 18.6, (Si<u>C</u>(CH₃)₃), 26.1 (SiC(<u>C</u>H₃)₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 32.8 (C-4[']), 36.3 (C-2), 37.6 (C-1^{'''}), 41.4 (C-1[']), 43.3 (C-2^{''}), 48.0 (C-5[']), 55.9 (C-4^{'''}), 66.0 (C-5^{'''}), 72.3 (C-1^{''}), 80.1 (CO₂C(CH₃)₃), 127.4, 129.0, 129.4, (6 × Ph-C), 130.5 (C-3[']), 135.4 (C-2[']), 153.0 (C-2^{'''}), 172.2 (C-1), 175.0 (C-3^{''}).

MS (ESI): m/z (%) = 580.3 (100) [M + Na]⁺, 1137.6 (64) [2M + Na]⁺.

ber.: 580.3065 [M + Na]⁺,

gef.: 580.3064 (ESI-HRMS).

C₃₁**H**₄₇**NO**₆**Si** (557.79).

Analytische Daten für TBS-Ether **210**:

DC: *R_f* = 0.43 (PE/AcOEt 5:1).

IR (Film): $\tilde{\nu}$ = 1778, 1209, 1147, 1109, 1008, 833, 773, 762, 739, 701 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃) δ = 0.07, 0.09 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.87 (s, 9 H, SiC(CH₃)₃), 1.24 (d, *J* = 6.4 Hz, 3 H, 2^{''}-CH₃), 1.43 (s, 9 H, CO₂C(CH₃)₃), 1.86–1.93 (m, 1 H, 5[']-H), 2.05 (dd, *J* = 14.7, 9.9 Hz, 1 H, 2-H_A), 2.18–2.26 (m, 1 H, 4[']-H_A), 2.44 (dd, *J* = 14.7, 4.7 Hz, 1 H, 2-H_B), 2.47–2.53 (m, 1 H, 4[']-H_B), 2.74 (dd, *J* = 13.4, 9.6 Hz, 1 H, 1^{'''}-H_A), 2.91–3.01 (m, 1 H, 1[']-H), 3.24 (dd, *J* = 13.4, 3.1 Hz, 1 H, 1^{'''}-H_B), 3.81–3.88 (m, 1 H, 2^{''}-H), 4.12 (dd, *J* = 7.3, 1.6 Hz, 1 H, 1^{'''}-H), 4.13–4.20 (m, 2 H, 5^{'''}-H₂), 4.59–4.64 (m, 1 H, 4^{'''}-H), 5.56–5.57 (m, 1 H), 5.62–5.64 (m, 1 H) (2[']-H, 3[']-H), 7.19–7.21 (m, 2 H, 2 × Ph-H), 7.26 (d, *J* = 7.2 Hz, 1 H, Ph-H), 7.30–7.33 (m, 2 H, 2 × Ph-H).

¹³**C-NMR** (126 MHz, CDCl₃) $\delta = -3.8, -3.4$ (2 × Si<u>C</u>H₃), 14.9 (C-2⁻⁻CH₃), 18.5 (Si<u>C</u>(CH₃)₃), 26.2 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 32.2 (C-4⁻⁻), 37.7 (C-1⁻⁻⁻), 41.0 (C-2), 43.7 (C-2⁻⁻), 45.3 (C-1⁻⁻), 49.4 (C-5⁻⁻), 55.5 (C-4⁻⁻⁻), 66.0 (C-5⁻⁻⁻), 73.4 (C-1⁻⁻⁻), 80.1 (CO₂C(CH₃)₃), 127.3, 128.8, 129.3, 130.3 (6 × Ph-C), 132.5, 135.1 (C-2´, C-3´), 152.7 (C-2´´´), 171.8 (C-1), 175.7 (C-3´´).

MS (ESI): m/z (%) = 580.3 (100) [M + Na]⁺, 1137.6 (64) [2M + Na]⁺.

ber.: 580.3065 [M + Na]⁺,

gef.: 580.3064 (ESI-HRMS).

C₃₁H₄₇NO₆Si (557.79).

18.7.3 Diol 212 und 213

Eine Suspension von pulverisiertem **203** (5.00 g, 11.3 mmol, 1.00 Äq.) in Et₂O (850 mL) wurde auf -20 °C gekühlt und nacheinander EtOH (0.73 mL, 571 mg, 12.4 mmol, 1.10 Äq.) und LiBH₄ (2 M in THF, 6.22 mL, 12.3 mmol, 1.10 Äq.) zugegeben. Es wurde für 90 min bei -20 °C gerührt, auf 0 °C erwärmt und die Reaktion durch Zugabe von 1 M wässriger NaOH (35 mL) beendet. Es wurde mit H₂O (500 mL) versetzt, die organische Phase abgetrennt und die wässrige Phase mit Et₂O (3 × 500 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (1.00 Kg, PE/AcOEt 3:1 + 10% Aceton) wurden die diastereomeren Diole **213** (1.36 g, 5.03 mmol, 45%) in Form eines weißen Feststoffes und **214** (1.49 g, 5.51 mmol, 49%) in Form eines farblosen Öls erhalten.

Analytische Daten für Diol 212:

DC: *R_f* = 0.33 (P/AcOEt 2:1).

 $[\alpha]_D^{20}$ = +60.5° (c = 0.52 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 1720, 1365, 1228, 1150, 1128, 1036, 982, 962, 748, 710, 681 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.99 (d, *J* = 7.1 Hz, 3 H, 2^{''}-CH₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.59–1.74 (m, 1 H, 2^{''}-H), 1.83–1.96 (m, 1 H, 4[']-H_A), 2.05 (dd, *J* = 16.4,

6.4 Hz, 1 H, 2-H_A), 2.07–2.18 (m, 1 H, 4[']-H_B), 2.38 (ddt, J = 10.6, 7.4, 1.6 Hz, 1 H, 5[']-H), 2.50 (dd, J = 16.4, 7.6 Hz, 1 H, 2-H_B), 2.57 (dd, J = 6.9, 3.5 Hz, 1 H, 3^{''}-OH), 3.01–3.13 (m, 1 H, 1[']-H), 3.39 (d, J = 3.6 Hz, 1 H, 1^{''}-OH), 3.63–3.73 (m, 1 H, 3^{''}-H_A), 3.77–3.86 (m, 2 H, 1^{''}-H, 3^{''}-H_B), 5.69–5.74 (m, 1 H), 5.77–5.82 (m, 1 H) (2[']-H, 3[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 8.8 (C-2^{''}-CH₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 32.6 (C-4[']), 35.0 (C-2), 37.3 (C-2^{''}), 41.3 (C-1[']), 46.5 (C-5[']), 68.5 (C-3^{''}), 73.7 (C-1^{''}), 81.0 (CO₂C(CH₃)₃), 129.9, 135.2 (C-2['], C-3[']), 173.8 (C-1).

MS (ESI): m/z (%) = 293.1 (39) [M + Na]⁺, 563.3 (100) [2M + Na]⁺.

ber.: 293.1723 [M + Na]⁺, gef.: 293.1726 (ESI-HRMS).

 $C_{15}H_{26}O_4$ (270.36).

Analytische Daten für Diol **213**:

DC: *R_f* = 0.23 (P/AcOEt 2:1).

 $[\alpha]_{D}^{20} = -73.6^{\circ}$ (c = 0.55 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 3393, 1722, 1365, 1248, 1148, 1035, 1016, 980, 731, 704 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.96 (d, J = 7.0 Hz, 3 H, 2^{''}-CH₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.75–1.85 (m, 1 H, 2^{''}-H), 2.06 (dd, J = 14.7, 9.9 Hz, 1 H, 2-H_A), 2.23–2.49 (m, 6 H, 2-H_B, 4[']-H₂, 5[']-H, 2 × OH), 3.62–3.74 (m, 1 H, 1[']-H), 3.87–3.94 (m, 2 H, 3^{''}-H₂), 3.86–3.94 (m, 1 H, 1^{''}-H), 5.78–5.82 (m, 2 H, 2[']-H, 3[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.8 (C-2^{''}-CH₃), 28.0 (CO₂C(<u>C</u>H₃)₃), 33.5 (C-4), 35.9 (C-2), 38.1 (C-2^{''}), 42.5 (C-1[']), 44.6 (C-5[']), 67.4 (C-3^{''}), 73.5 (C-1^{''}), 80.6 (CO₂C(CH₃)₃), 131.1, 134.5 (C-2['], C-3[']), 172.7 (C-1).

MS (ESI): m/z (%) = 293.1 (33) [M + Na]⁺, 563.3 (100) [2M + Na]⁺.

ber.: 293.1723 [M + Na]⁺, gef.: 293.1725 (ESI-HRMS).

C₁₅H₂₆O₄ (270.36).

18.7.4 Di-TBS-Ether 214

Zu einer Lösung des Diols **212** (959 mg, 3.55 mmol, 1.00 Äq.) in abs. CH_2Cl_2 (40 mL) wurde bei Raumtemperatur 2,6-Lutidin (3.31 mL, 3.04 g, 28.4 mmol, 8.00 Äq.) getropft und für 5 min gerührt. Die Reaktionslösung wurde auf –15 °C gekühlt und tropfenweise TBSOTf (3.26 mL, 3.75 g, 14.2 mmol, 4.00 Äq.) in CH_2Cl_2 (25 mL) zugegeben. Es wurde auf –10 °C erwärmt und 40 min bei dieser Temperatur gerührt. Nachfolgend wurde die Reaktion durch Zugabe von H_2O (100 mL) beendet und auf Raumtemperatur erwärmt. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH_2Cl_2 (4 × 150 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 15:1) wurde die Titelverbindung **214** in Form eines farblosen Öls (1.67 g, 3.36 mmol, 95%) erhalten.

DC: R_f = 0.52 (PE/AcOEt 9:1).

 $[\alpha]_{D}^{23}$ = +20.8 ° (c = 0.5 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 2928, 1731, 1252, 1147, 1090, 1044, 1006, 832, 814, 771, 667 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.01, 0.02, 0.08, 0.09 (4 × s, 4 × 3 H, 4 × SiCH₃), 0.81 (d, *J* = 6.9 Hz, 3 H, 2´´-CH₃), 0.87, 0.87 (2 × s, 2 × 9 H, 2 × SiC(CH₃)₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.62–1.71 (m, 1 H, 2´´-H), 1.87 (dd, *J* = 14.5, 12.1 Hz, 1 H, 2-H_A), 1.94–2.18 (m, 2 H, 4´-H₂), 2.27–2.41 (m, 1 H, 5´-H), 2.51 (dd, *J* = 14.5, 3.7 Hz, 1 H, 2´-H_B), 2.89–3.02 (m, 1 H, 1´-H), 3.40 (dd, *J* = 9.8, 6.6 Hz, 1 H, 3´´-H_A), 3.54 (dd, *J* = 9.8, 7.8 Hz, 1 H, 3´´-H_B), 3.92 (dd, *J* = 9.1, 1.8 Hz, 1 H, 1´´-H), 5.72–5.78 (m, 1 H), 5.86–5.93 (m, 1 H) (2´-H, 3´-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -5.2, -5.2, -3.9, -3.4 (4 × SiCH₃), 10.5 (C-2^{''}-<u>C</u>H₃), 18.3, 18.8 (2 × Si<u>C</u>(CH₃)₃), 26.0 , 26.3 (2 × SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 33.3 (C-4[']), 36.1 (C-2), 40.6 (C-2^{''}), 42.0 (C-1[']), 47.4 (C-5[']), 65.5 (C-3^{''}), 71.6 (C-1^{''}), 80.0 (CO₂C(CH₃)₃), 130.4, 135.5 (C-2['], C-3[']), 172.4 (C-1).

MS (ESI): m/z (%) = 521.3 (100) [M + Na]⁺.

ber.: 521.3453 [M + Na]⁺, gef.: 521.3452 (ESI-HRMS).

 $C_{27}H_{54}O_4Si_2$ (498.89).

18.7.5 Di-TBS-Ether 215

Zu einer Lösung des Diols **213** (1.28 g, 4.73 mmol, 1.00 Äq.) in abs. CH_2Cl_2 (140 mL) wurde bei Raumtemperatur 2,6-Lutidin (4.68 mL, 3.04 g, 28.4 mmol, 6.00 Äq.) getropft und für 5 min gerührt. Die Reaktionslösung wurde auf -10 °C gekühlt und tropfenweise TBSOTf (4.62 mL, 3.75 g, 14.2 mmol, 3.00 Äq.) in CH_2Cl_2 (28.0 mL) zugegeben. Es wurde für 45 min bei -10 °C gerührt, nachfolgend die Reaktion durch Zugabe von H₂O (150 mL) beendet und auf Raumtemperatur erwärmt. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH_2Cl_2 (4 × 150 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 15:1) wurde die Titelverbindung **215** in Form eines farblosen Öls (2.28 g, 4.57 mmol, 97%) erhalten.

DC: R_f = 0.64 (PE/AcOEt 9:1).

 $[\alpha]_{D}^{21} = -23.0^{\circ}(c = 0.84 \text{ in CHCl}_{3}).$

UV (CH₃CN): (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 2928, 1731, 1366, 1251, 1146, 1078, 1047, 1006, 833, 813, 772, 740, 667 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.01, 0.02, 0.03, 0.04 (4 × s, 4 × 3 H, 4 × SiCH₃), 0.77 (d, *J* = 6.9 Hz, 3 H, 2^{''}-CH₃), 0.87, 0.87 (2 × s, 2 × 9 H, 2 × SiC(CH₃)₃), 1.40 (s, 9 H, CO₂C(CH₃)₃), 1.69–1.78 (m, 1 H, 2^{''}-H), 1.87 (dd, *J* = 15.2, 12.2 Hz, 1 H, 2-H_A), 1.96–2.10 (m, 1 H, 4[']-H_A), 2.25–2.44 (m, 2 H, 4[']-H_B, 5[']-H), 2.53 (dd, *J* = 15.2, 3.5 Hz, 1 H, 2-H_B), 2.67–2.79 (m, 1 H, 1[']-H), 3.34 (dd, *J* = 9.8, 5.5 Hz, 1 H, 3^{''}-H_A), 3.43 (t, J = 9.8 Hz, 1 H, 3^{''}-H_B), 3.95 (d, J = 10.3 Hz, 1 H, 1^{''}-H), 5.75–5.79 (m, 1 H), 5.84 – 5.89 (m, 1 H) (2[']-H, 3[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -5.4, -5.3, -3.9, -3.6 (4 × SiCH₃), 9.2 (C-2^{''}-<u>C</u>H₃), 18.1, 18.5 (2 × Si<u>C</u>(CH₃)₃), 26.0, 26.2 (2 × SiC(<u>C</u>H₃)₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 35.2, 35.5 (C-2, C-4[']), 39.6 (C-2^{''}), 41.9 (C-1[']), 45.5 (C-5[']), 65.0 (C-3^{''}), 71.0 (C-1^{''}), 78.0 (CO₂C(CH₃)₃), 131.3, 135.1 (C-2['], C-3[']), 172.5 (C-1).

MS (ESI): m/z (%) = 521.3 (100) [M + Na]⁺.

ber.: 521.3453 [M + Na]⁺, gef.: 521.3453 (ESI-HRMS).

C₂₇H₅₄O₄Si₂ (498.89).

18.7.6 Alkohol 211

Variante A:

Eine Lösung von Pyridin (15.5 mL) und HF·Pyridin (70% HF, 3.80 mL, 2.75 mmol, 1.30 Äq.) in THF (30.0 mL) wurde bei 0 °C zu einer Lösung von Verbindung **214** (1.80 g, 3.61 mmol, 1.00 Äq.) in THF (8.00 mL) gegeben. Es wurde auf Raumtemperatur erwärmt und 8 h gerührt. Anschließend wurde die Reaktion durch Zugabe von ges. wässriger NaHCO₃-Lösung (200 mL) beendet. Die organische Phase wurde abgetrennt, die wässrige Phase mit CH_2Cl_2 (3 × 200 mL) extrahiert. Die vereinigten organischen Extrakte wurden mit ges. wässriger CuSO₄-Lösung (2 × 200 mL) gewaschen, über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 6:1) wurde die Titelverbindung **211** in Form eines farblosen Öls (1.23 g, 3.21 mmol, 89%) erhalten.

Variante B:

Zu einer Lösung von **210** (1.50 g, 2.69 mmol, 1.00 Äq.) in Et_2O (200 mL) wurde bei 0 °C nacheinander EtOH (0.24 mL, 186 mg, 4.03 mmol, 1.50 Äq.) und LiBH₄ (4 M Lösung in THF, 2.01 mL, 4.03 mmol, 1.50 Äq.) gegeben und für 1.5 h bei dieser Temperatur

gerührt. Die Reaktion wurde durch Zugabe von 1 M wässriger NaOH (10 mL) beendet. Es wurde mit H₂O (120 mL) versetzt, die organische Phase abgetrennt und die wässrige Phase mit Et₂O (4 × 100 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 9:1 \rightarrow 1:1) wurde der Alkohol **211** (794 mg, 2.06 mmol, 77%) in Form eines farblosen Öls erhalten.

DC: *R_f* = 0.81 (PE/AcOEt 3:1).

 $[\alpha]_D^{22}$ = +85.3 °(c = 1.0 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2931, 1732, 1473, 1368, 1257, 1150, 1048, 835, 773 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.11, 0.11 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.86 (d, J = 12.1 Hz, 3 H, 2^{''}-CH₃), 0.87 (s, 9 H, SiC(CH₃)₃), 1.41 (s, 9 H, CO₂C(CH₃)₃), 1.72 (t, J = 5.1 Hz, 1 H, OH), 1.80–1.87 (m, 1 H, 2^{''}-H), 1.90 (dd, J = 14.6, 11.8 Hz, 1 H, 2-H_A), 1.96–2.04 (m, 1 H, 4[']-H_A), 2.11 (dddd, J = 15.6, 7.7, 2.9, 1.3 Hz, 1 H, 4[']-H_B), 2.36–2.42 (m, 1 H, 5[']-H), 2.50 (dd, J = 14.6, 3.8 Hz, 1 H, 2-H_B), 2.94–2.99 (m, 1 H, 1[']-H), 3.48–3.52 (m, 1 H, 3^{''}-H_A), 3.63–3.68 (m, 1 H, 3^{''}-H_B), 3.90 (dd, J = 9.4, 2.1 Hz, 1 H, 1^{''}-H), 5.73–5.76 (m, 1 H), 5.89–5.92 (m, 1 H) (2[']-H, 3[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -4.1, -3.4 (2 × SiCH₃), 11.2 (C-2[']-CH₃), 18.6 (Si<u>C</u>(CH₃)₃), 26.1 (SiC(<u>C</u>H₃)₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 33.1 (C-4[']), 36.0 (C-2), 40.7 (C-2^{''}), 42.0 (C-1[']), 46.9 (C-5[']), 65.51 (C-3^{''}), 73.0 (C-1^{''}), 80.1 (CO₂C(CH₃)₃), 130.4, 135.6 (C-2['], C-3[']), 172.33 (C-1).

MS (ESI): m/z (%) = 407.3 (96) [M + Na]⁺, 791.5 (100) [2M + Na]⁺.

ber.: 407.2588 [M + Na]⁺, gef.: 407.2591 (ESI-HRMS).

C₂₁H₄₀O₄Si (384.63).

18.7.7 Alkohol 217

Eine Lösung von Pyridin (8.50 mL) und HF·Pyridin (70% HF, 2.10 mL, 2.73 mmol 1.30 Äq.) in THF (16.0 mL) wurde bei 0 °C zu einer Lösung von Verbindung **215** (1.05 g, 2.10 mmol, 1.00 Äq.) in THF (5.00 mL) zugetropft. Es wurde für 14 h bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von ges. wässriger NaHCO₃-Lösung (100 mL) beendet. Die organische Phase wurde abgetrennt, die wässrige Phase mit CH_2Cl_2 (3 × 130 mL) extrahiert. Die vereinigten organischen Extrakte wurden mit ges. wässriger $CuSO_4$ -Lösung (2 × 200 mL) gewaschen, über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (200 g, PE/AcOEt 6:1) wurde der Alkohol **217** (717 mg, 1.87 mmol, 89%) in Form eines farblosen Öls erhalten.

DC: R_f = 0.23 (PE/AcOEt 10:1).

 $[\alpha]_{D}^{20} = -106.6$ ° (c = 1.6 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2957, 2930, 2857, 1729, 1368, 1254, 1147, 1046, 1025, 838, 774, 667 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.05, 0.07 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.85 (d, J = 6.9 Hz, 3 H, 2^{′′}-CH₃), 0.88 (s, 9 H, SiC(CH₃)₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.66 (s_{br}, 1 H, OH), 1.80–1.88 (m, 1 H, 2^{′′}-H), 1.95 (dd, J = 14.7, 11.4 Hz, 1 H, 2-H_A), 2.02–2.16 (m, 1 H, 4[′]-H_A), 2.25–2.49 (m, 3 H, 2-H_B, 4[′]-H_B, 5[′]-H), 2.72–2.83 (m, 1 H, 1[′]-H), 3.43–3.62 (m, 2 H, 3^{′′}-H₂), 3.90 (dd, J = 9.9, 1.1 Hz, 2 H, 1^{′′}-H), 5.76–5.85 (m, 2 H, 2[′]-H, 3[′]-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.8, -3.5 (2 × SiCH₃), 10.0 (2^{''}-CH₃), 18.6 (Si<u>C</u>(CH₃)₃), 26.2 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 35.2, 35.5 (C-2, C-4[']), 39.9 (C-2^{''}), 42.2 (C-1[']), 45.3 (C-5[']), 65.4 (C-3^{''}), 71.8 (C-1^{''}), 80.3 (CO₂C(CH₃)₃), 131.3, 134.8 (C-2^{''}, C-3^{''}), 172.4 (C-1).

MS (ESI): m/z (%) = 407.3 (100) [M + Na]⁺, 791.5 (51) [2M + Na]⁺.

- ber.: 407.2588 [M + Na]⁺,
- gef.: 407.2586 (ESI-HRMS).

C₂₁H₄₀O₄Si (384.63).

18.7.8 Aldehyd 218

Eine Lösung des Alkohols **211** (659 mg, 1.71 mmol, 1.00 Äq.) in abs. CH_2Cl_2 (30.0 mL) wurde auf 0 °C gekühlt und DMP (2.20 g, 5.14 mmol, 3.00 Äq.) zugegeben. Es wurde 10 min bei 0 °C und weitere 6 h bei Raumtemperatur gerührt. Zur Beendigung der Reaktion wurde ges. $Na_2S_2O_3$ -Lösung (25 mL) und ges. $NaHCO_3$ -Lösung (25 mL) zugegeben und für 30 min kräftig gerührt. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH_2Cl_2 (3 × 100 mL) extrahiert. Die vereinigten organischen Phasen wurden über $MgSO_4$ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an SiO₂ (9:1 PE/AcOEt) wurde der Aldehyd **218** (650 mg, 1.70 mmol, quant.) in Form eines farblosen Öls erhalten.

DC: R_f = 0.25 (PE/AcOEt 9:1).

 $[\alpha]_D^{20} = +80.9$ ° (c = 0.4 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2931, 1730, 1473, 1368, 1258, 1149, 1028, 837, 775 cm⁻¹.

¹**H-NMR** (300 MHz, C₆D₆): δ (ppm) = 0.00, 0.16 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.93 (s, 9 H, SiC(<u>C</u>H₃)₃), 0.95 (d, J = 7.4 Hz, 3 H, 2^{′′}-CH₃), 1.38 (s, 9 H, CO₂C(CH₃)₃), 1.69–1.58 (m, 2 H, 4[′]-H₂), 1.77 (dq, J = 7.12, 1.9 Hz, 1 H, 2^{′′}-H), 2.01 (dd, J = 14.8, 11.8 Hz, 1 H, 2-H_A), 2.25–2.38 (m, 1 H, 5[′]-H 2.61 (dd, J = 14.8, 3.7 Hz, 1 H, 2-H_B), 3.11–3.22 (m, 1 H, 1[′]-H), 4.22 (dd, J = 10.0, 1.8 Hz, 1 H, 1^{′′}-H), 5.57–5.62 (m, 1 H), 6.14–6.18.(m, 1 9.40 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, C_6D_6): δ (ppm) = -4.2, -3.1 (2 × Si<u>C</u>H₃), 7.0 (C-2^{''}-<u>C</u>H₃), 18.9 (Si<u>C</u>(CH₃)₃), 26.3 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 33.4 (C-4[']), 36.3 (C-2), 42.2 (C-2^{''}), 47.3 (C-1[']), 51.4 (C-5[']), 79.8 (C-1^{''}), 80.8 (CO₂<u>C</u>(CH₃)₃), 129.9, 136.5 (C-2['], C-3[']), 171.6 (C-1), 203.4 (CHO).

MS (ESI): m/z (%) = 405.2 (22) $[M + Na]^+$, 437.3 (100) $[M + Na + MeOH]^+$, 819.5 (17) $[2M + Na + MeOH]^+$, 851.5 (43) $[2M + Na + 2 MeOH]^+$.

ber.: 405.2432 [M + Na]⁺, gef.: 405.2439 (ESI-HRMS).

C₂₁H₃₈O₄Si (382.61).

18.7.9 Aldehyd 219

Eine Lösung des Alkohols **217** (261 mg, 677 μ mol, 1.00 Äq.) in CH₂Cl₂ (12.0 mL) wurde auf 0 °C gekühlt und DMP (1.18 g, 2.75 mmol, 3.00 Äq.) zugegeben. Es wurde für 10 min bei 0 °C und 5 h bei Raumtemperatur gerührt. Zur Beendigung der Reaktion wurde ges. wässrige Na₂S₂O₃-Lösung (10 mL) und ges. wässrige NaHCO₃-Lösung (10 mL) zugegeben und für 45 min gerührt. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH₂Cl₂ (3 × 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (9:1 PE/AcOEt) wurde der Aldehyd (216 mg, 565 μ mol, 83%) in Form eines farblosen Öls erhalten.

DC: R_f = 0.68 (PE/AcOEt 9:1).

 $[\alpha]_{D}^{20}$ = -85.1 ° (c = 0.5 in CHCl₃).

UV (CH₃CN): (keine Absorption).

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = -0.06, -0.05 (2 × s, 6 H, 2 × SiCH₃), 0.83 (s, 9 H, SiC(<u>C</u>H₃)₃), 1.08 (d, *J* = 7.1 Hz, 3 H, 2^{''}-CH₃), 1.38 (s, 9 H, CO₂C(CH₃)₃), 1.97-2.11 (m,

2 H, 4´-H_A, 2´´-H), 2.11–2.41 (m, 4 H, 2-H₂, 4´-H_B, 5´-H), 2.72–2.74 (m, 1 H, 1´-H), 4.28 (dd, *J* = 10.0, 1.6 Hz, 1 H, 1´´-H), 5.78–5.84 (m, 2 H, 2´-H, 3´-H), 9.72 (s, 1 H, CHO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -4.0, -3.8 (2 × Si<u>C</u>H₃), 7.0 (C-2^{''}-<u>C</u>H₃), 18.4 (Si<u>C</u>(CH₃)₃), 26.0 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 35.0, 35.5 (C-2, C-4[']), 41.9 (C-2^{''}), 45.6 (C-1[']), 50.9 (C-5[']), 71.2 (C-1^{''}), 80.6 (CO₂<u>C</u>(CH₃)₃), 131.3, 134.6 (C-2['], C-3[']), 171.8 (C-1), 212.4 (CHO).

MS (ESI): m/z (%) = 405.2 (29) $[M + Na]^+$, 437.3 (100) $[M + Na + MeOH]^+$, 819.5 (15) $[2M + Na + MeOH]^+$, 851.5 (26) $[2M + Na + 2MeOH]^+$.

ber.: 405.2432 [M + Na]⁺, gef.: 405.2425 (ESI-HRMS).

C₂₁H₃₈O₄Si (382.61).

18.8 Synthese des C-6-Fragments^[85]

18.8.1 4-Triisopropylsilyloxy-butanol 221

Zu einer Lösung von 1,4-Butandiol **220** (18.0 g, 200 mmol, 1.00 Äq.) in abs. THF (350 mL) wurde bei Raumtemperatur portionsweise NaH (4.80 g, 200 mmol, 60%ig in Mineralöl, 1.00 Äq.) gegeben und 1 h bei Raumtemperatur gerührt. Nachfolgend wurde TIPSCI (42.8 mL, 38.6 g, 200 mmol, 1.00 Äq.) zugetropft und weitere 90 min bei Raumtemperatur gerührt. Die Suspension wurde mit Et₂O (300 mL) verdünnt und mit 10%iger wässriger K₂CO₃-Lösung (150 mL) und ges. wässriger NaCl-Lösung (150 mL) gewaschen. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Der monogeschützte Alkohol **221** wurde in Form eines farblosen Öls (51.8 g, 200 mol, quant.) analysenrein erhalten.

DC: R_f = 0.72 (PE/AcOEt 1:1).

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 2941, 2865, 1463, 1103, 1059, 1013, 994, 881, 837, 789, 677, 658 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.97–1.09 (m, 21 H, Si(C<u>H(CH₃)₂)₃)</u>, 1.58–1.74 (m, 4 H, 2-H₂, 3-H₂), 2.64 (s_{br}, 1 H, OH), 3.62–3.68 (m, 2 H), 3.72–3.79 (m, 2 H) (1-H₂, 4-H₂).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 12.0 (Si(<u>C</u>H(CH₃)₂)₃), 18.0 (Si(CH(<u>C</u>H₃)₂)₃), 30.1, 30.4 (C-2, C-3), 62.8, 63.6 (C-1, C-4).

MS (ESI): m/z (%) = 247.2 (4) [M + H]⁺, 269.2 (100) [M + Na]⁺.

ber.: 269.1907 [M + Na]⁺, gef.: 269.1909 (ESI-HRMS).

C₁₃H₃₀O₂Si (246.46).

18.8.2 4-Triisopropylsilyloxy-butanal 224

Zu einer auf -78 °C gekühlten Lösung von DMSO (9.50 mL, 10.5 g, 134 mmol, 3.20 Äq.) in abs. CH₂Cl₂ (120 mL) wurde durch eine Transferkanüle eine -78 °C kalte Lösung von Oxalylchlorid (5.80 mL, 8.49 g, 66.9 mmol, 1.60 Äq.) in abs. CH₂Cl₂ (250 mL) getropft. Es wurde 30 min bei -78 °C gerührt, anschließend eine Lösung des Alkohols **221** (10.3 g, 41.8 mmol, 1.00 Äq.) in abs. CH₂Cl₂ (80 mL) zugetropft und wiederum 90 min bei -78 °C gerührt. Nachfolgend wurde NEt₃ (23.1 mL, 16.9 g, 167 mmol, 4.00 Äq.) zugetropft, auf Raumtemperatur erwärmt und 45 min bei dieser Temperatur gerührt. Durch Zugabe von H₂O (300 mL) wurde die Reaktion beendet. Die organische Phase wurde abgetrennt und die wässrige Phase wurde mit CH₂Cl₂ (3 × 150 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 10:1) wurde der Aldehyd **224** in Form eines farblosen Öls (10.2 g, 41.7 mmol, quant.) erhalten.

DC: $R_f = 0.61(PE/Et_2O)$.

IR (Film): $\tilde{\nu}$ = 2941, 2891, 2865, 1463, 1099, 1068, 1012, 995, 880, 793, 725, 678, 657 cm⁻¹.

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.00–1.18 (m, 21 H, (Si(C<u>H</u>(C<u>H₃)₂)₃), 1.80–1.90 (m, 2 H, 3-H₂), 2.51 (dt, *J* = 7.2, 1.8 Hz, 2 H, 2-H₂), 3.71 (t, *J* = 5.9 Hz, 2 H, 4-H₂), 9.78 (t, *J* = 1.8 Hz, 1 H, 1-H).</u>

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 11.9 (Si(<u>C</u>H(CH₃)₂)₃), 17.9 (Si(CH(<u>C</u>H₃)₂)₃), 25.6 (C-3), 40.8 (C-2), 62.3 (C-4), 202.6 (C-1).

MS (ESI): m/z (%) = 245.2 (12) $[M + H]^+$, 267.2 (6) $[M + Na]^+$, 299.2 (46) $[M + Na + MeOH]^+$, 315.2 (11) $[M + K + MeOH]^+$, 575.4 (100) $[2M + Na + 2MeOH]^+$.

ber.: 245.1931 [M + H]⁺, gef.: 245.1936 (ESI-HRMS).

C₁₃H₂₈O₂Si (244.45).
18.8.3 (1*R*,2*R*)-trans-N,N²-(Bis(trifluormethylsulfonyl)-1,2-cyclohexandiamin 223

Zu einer Lösung von (1*R*,2*R*)-Cyclohexandiamin **222** (1.84 g, 16.1 mmol, 1.00 Äq.) in abs. CH₂Cl₂ (37.0 mL) wurde bei Raumtemperatur NEt₃ (4.91 mL, 3.59 g, 35.4 mmol, 2.20 Äq.) getropft. Das Gemisch wurde auf -78 °C gekühlt, mittels Glasspritze eine Lösung von Trifluormethansulfonsäureanhydrid (1 M in CH₂Cl₂, 35.4 mL, 35.4 mmol, 2.20 Äq.) zugetropft, für 1 h bei -78 °C und 1 h bei Raumtemperatur gerührt. Durch Zugabe von Et₂O (200 mL) und H₂O (200 mL) wurde die Reaktion abgebrochen. Die organische Phase wurde abgetrennt und die wässrige Phase mit Et₂O (4 × 100 mL) extrahiert. Anschließend wurden die vereinigten organischen Phasen mit H₂O (400 mL) gewaschen, über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Umkristallisation aus CHCl₃ und *n*-Hexan lieferte das Zielprodukt **223** (5.31 g, 14.0 mmol, 87%) in Form weißer Kristalle.

Smp.: 183.8 °C.

 $[\alpha]_D^{25} = -45.0$ ° (c = 1.2 in Pyridin).

UV (CH₃CN): λ_{max} (lg ϵ) = 199.0 (2.373), 229.0 (1.921).

IR (Film): $\tilde{\nu}$ = 3302, 2953, 1459, 1378, 1195, 1085, 988, 910, 593 cm⁻¹.

¹**H-NMR** (300 MHz, CD₃OD): δ (ppm) = 1.25–1.52 (m, 4 H), 1.69–1.80 (m, 2 H), 2.00–2.07 (m, 2 H) (3-H₂, 4-H₂, 5-H₂, 6-H₂), 3.11–3.21 (m, 2 H, 1-H, 2-H).

¹³**C-NMR** (126 MHz, CD₃OD): δ (ppm) = 25.7 (C-4, C-5), 34.5 (C-3, C-6), 59.7 (C-1, C-2), 121.2 (q, *J* = 319 Hz, SO₂CF₃).

MS (ESI): m/z (%) = 401.0 (100) [M + Na]⁺, 779.0 (75) [2M + Na]⁺.

ber.: 401.0035 [M + Na]⁺,

gef.: 401.0037 (ESI-HRMS).

 $C_8H_{12}F_6N_2O_4S_2$ (378.31).

18.8.4 (4*S*)-Triisopropylsilyloxy-hexan-4-ol 225

Zu einer Suspension des Liganden **223** (1.87 g, 4.95 mmol, 10 mol%) in Toluol (46.0 mL) wurde bei Raumtemperatur Ti(*i*-PrO)₄ (29.0 mL, 28.1 g, 99.0 mmol, 2.00 Äq.) getropft und 30 min bei 50 °C gerührt. Die Reaktionsmischung wurde auf –65 °C gekühlt, Et₂Zn (1.0 M in *n*-Hexan, 89.1 mL, 89.1 mmol, 1.80 Äq.) zugetropft und für 30 min bei –65 °C gerührt. Dann wurde auf –30 °C erwärmt, der Aldehyd **224** (12.1 g, 49.5 mmol, 1.00 Äq.) in Toluol (6.00 mL) zugetropft und 4 d bei –30 °C gerührt. Durch Zugabe von ges. NH₄Cl-Lösung (25 mL) wurde die Reaktion beendet. Es wurde mit MTBE (140 mL) verdünnt, auf Raumtemperatur erwärmt und mit 2 N HCl-Lösung (280 mL) versetzt. Die organische Phase wurde abgetrennt und die wässrige Phase mit Et₂O (4 × 140 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 4:1) wurde der Alkohol **225** in Form eines farblosen Öls (13.3 g, 48.4 mmol, 98%) erhalten.

DC: *R_f* = 0.45 (PE/AcOEt 9:1).

 $[\alpha]_{D}^{20} = +4.0$ ° (c = 1.0 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 2941, 2865, 1463, 1100, 1012, 994, 881, 793, 677, 657 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.91 (t, *J* = 7.4 Hz, 3 H, 6-H₃), 0.99–1.12 (m, 21 H, Si(C<u>H(CH₃)₂)₃), 1.41–1.53 (m, 3 H), 1.58–1.69 (m, 3 H) (2-H₂, 3-H₂, 5-H₂), 2.60 (s_{br}, 1 H, OH), 3.48–3.58 (m, 1 H, 4-H), 3.68–3.76 (m, 2 H, 1-H₂).</u>

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 10.1 (C-6), 12.0 (Si(<u>C</u>H(CH₃)₂)₃), 18.1 (Si(CH(<u>C</u>H₃)₂)₃), 29.3, 30.2, 34.2 (C-2, C-3, C-5), 63.8 (C-1), 73.0 (C-4).

MS (ESI): m/z (%) = 297.3 (100) [M + Na]⁺, 571.5 (2) [2M + Na]⁺.

ber.: 297.2220 [M + Na]⁺, gef.: 297.2216 (ESI-HRMS).

C₁₅H₃₄O₂Si (274.51).

18.8.5 (4*S*)-4-(2-Methoxy-ethoxymethoxy)-1-triisopropylsilyloxy-hexan 226

Zu einer Lösung des Alkohols **225** (5.11 g, 18.6 mmol, 1.00 Äq.) in abs. CH_2CI_2 (50.0 mL) wurde bei Raumtemperatur (*i*-Pr)₂NEt (6.50 mL, 4.81 g, 37.2 mmol, 2.00 Äq.) getropft, 5 min gerührt und anschließend auf 0 °C gekühlt. Es wurde MEMCI (3.70 mL, 4.06 g, 32.6 mmol, 1.75 Äq.) tropfenweise zugefügt, 10 min bei 0 °C und weitere 5 h bei Raumtemperatur gerührt. Durch die Zugabe von ges. wässriger NH₄Cl-Lösung (50 mL) wurde die Reaktion beendet. Die organische Phase wurde abgetrennt und die wässrige Phase mit CH_2CI_2 (3 × 50 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 30:1) wurde die Titelverbindung **226** (5.73 g, 15.8 mmol, 85%) in Form eines farblosen Öls erhalten.

DC: *R_f* = 0.57 (PE/MTBE 3:1).

 $[\alpha]_D^{20}$: -5.2 ° (c = 1.0 in CHCl₃).

UV (MeCN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2942, 2867, 1464, 1106, 1045, 883, 681, 658 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.4 Hz, 3 H, 6-H₃), 0.97–1.06 (m, 21 H, (Si(C<u>H</u>(C<u>H₃)₂)₃), 1.47–1.65 (m, 6 H, 2-H₂, 3-H₂, 5-H₂), 3.36 (s, 3 H, OCH₃), 3.51–3.54 (m, 3 H), 3.61–3.72 (m, 4 H) (1-H₂, 4-H, OC<u>H₂CH₂O), 4.72 (s, 2 H, OCH₂O).</u></u>

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.5 (C-6), 12.0 (Si(<u>C</u>H(CH₃)₂)₃), 18.0 (Si(CH(<u>C</u>H₃)₂)₃), 26.8, 28.8, 29.8 (C-2, C-3, C-5), 59.0 (O<u>C</u>H₃), 63.4, 66.9, 71.8 (C-1, O<u>C</u>H₂CH₂O), 78.3 (C-4), 94.2 (O<u>C</u>H₂O).

MS (ESI): *m*/*z* (%) = 385.3 (100) [M + Na]⁺, 401.2 (11) [M + K]⁺.

ber.: 385.2745 [M + Na]⁺, gef.: 385.2745 (ESI-HRMS).

C₁₉**H**₄₂**O**₄**Si** (363.62).

18.8.6 (4S)-4-(2-Methoxy-ethoxymethoxy)hexanol 227

Zu einer Lösung des TIPS-geschützten Alkohols **226** (1.22 g, 3.36 mmol, 1.00 Äq.) in abs. THF (20.0 mL) wurde bei 0 °C TBAF·3 H₂O (2.12 g, 6.72 mmol, 2.00 Äq.) gegeben. Die Reaktionsmischung wurde 1 h bei 0 °C gerührt, auf Raumtemperatur erwärmt und für weitere 2 h gerührt. Es wurde Kieselgel (24.0 g) zugegeben und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (MTBE) wurde der Alkohol **227** (650 mg, 3.15 mmol, 94%) in Form eines farblosen Öls erhalten.

DC: R_f = 0.19 (MTBE).

 $[\alpha]_D^{20}$: +19.0 ° (c = 1.0 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (Film): \tilde{v} = 3425, 2937, 2878, 1457, 1366, 1199, 1132, 1105, 1045, 986 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.5 Hz, 3 H, 6-H₃), 1.49–1.60 (m, 6 H, 2-H₂, 3-H₂, 5-H₂), 1.97 (s_{br}, 1 H, OH), 3.36 (s, 3 H, OCH₃), 3.52–3.77 (m, 7 H, 1-H₂, 4-H, OCH₂CH₂O), 4.69 (d, *J* = 9.8 Hz, 1 H, OCH_AH_BO) 4.72 (d, *J* = 9.8 Hz, 1 H, OCH_AH_BO).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.6 (C-6), 26.8, 28.4, 30.1 (C-2, C-3, C-5), 59.0 (OCH₃), 62.9, 67.1, 71.8 (C-1, O<u>C</u>H₂CH₂O), 78.6 (C-4), 94.4 (O<u>C</u>H₂O).

MS (ESI): m/z (%) = 229.1 (100) [M + Na]⁺.

ber.: 229.1413 [M + Na]⁺, gef.: 229.1410 (ESI-HRMS).

C₁₀**H**₂₂**O**₄ (206.28).

18.8.7 (4*S*)-1-Brom-4-(2-methoxy-ethoxymethoxy)-hexan 228

Zu einer Lösung des Alkohols **227** (1.30 g, 6.30 mmol, 1.00 Äq.) in abs. THF (17.0 mL) wurden bei –15 °C nacheinander NBS (1.68 g, 9.45 mmol, 1.50 Äq.) und PPh₃ (2.15 g, 8.19 mmol, 1.30 Äq.) gegeben. Die Reaktionsmischung wurde für 20 min bei dieser Temperatur gerührt und die Reaktion durch Zugabe von ges. wässriger NaCl-Lösung (26.0 mL) beendet. Es wurde mit MTBE (2 × 25 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 4:1) wurde das Bromid **228** (1.42 g, 5.29 mmol, 84%) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.21 (P/Et_2O)$.

 $[\alpha]_D^{22}$: +12.2 ° (c = 1.1 in CHCl₃).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2962, 2930, 2877, 1456, 1364, 1253, 1199, 1154, 1129, 1102, 982, 922, 849, 647, 559 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.4 Hz, 3 H, 6-H₃), 1.42–1.73 (m, 4 H), 1.76–2.04 (m, 2 H) (2-H₂, 3-H₂, 5-H₂), 3.37 (s, 3 H, OCH₃), 3.40 (t, *J* = 6.9 Hz, 2 H, 1-H₂), 3.49–3.57 (m, 3 H), 3.66–3.73 (m, 2 H) (4-H, OC<u>H₂CH₂O), 4.71 (d, *J* = 11.0 Hz, 1 H, OC<u>H_AH_BO), 4.74 (d, *J* = 11.0 Hz, 1 H, OCH_A<u>H_BO).</u></u></u>

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.5 (C-6), 26.8, 28.7, 32.3, 34.1 (C-1, C-2, C-3, C-5), 59.1 (OCH₃), 67.1, 71.8 (O<u>C</u>H₂CH₂O), 77.7 (C-4), 94.3 (OCH₂O).

MS (ESI): m/z (%) = 291.1 (100) [M + Na]⁺.

ber.: 291.0566 [M + Na]⁺, gef.: 291.0569 (ESI-HRMS).

C₁₀H₂₁BrO₃ (269.18).

18.9 Grignard-Reaktionen^[119]

Zu unter im Vakuum ausgeheizten Mg-Spänen (478 mg, 19.7 mmol, 5.00 Äq.) wurde bei Raumtemperatur Br₂ (1 Tropfen) getropft und das Gemisch für 15 min intensiv gerührt. Überschüssiges Brom wurde im Vakuum entfernt. Anschließend wurde eine Lösung des Bromids **228** (1.06 g, 3.94 mmol, 1.00 Äq) in THF (10.0 mL) zu den Magnesiumspänen getropft und nachfolgend mit einer Heißluftpistole auf ca. 40 °C erwärmt. Nach Anspringen der Grignard-Reaktion (deutliche Erwärmung und Farbänderung der Lösung von farblos über violett über grün nach gelb) wurde das Reagenz sofort eingesetzt. Der Gehalt der Lösung an magnesiumorganischer Verbindung **229** in Lösung wurde durch Titration bestimmt.^[120]

Titration:

Menthol (17.4 mg) und 1,10-Phenantrolin (1-2 Körner) wurden in wasserfreiem THF (2.00 mL) bei Raumtemperatur unter Argon vorgelegt. Dazu wurde die oben hergestellte *Grignard*-Lösung (0.72 mL) getropft, bis eine bleibende violette Färbung bestehen blieb. Die Konzentration errechnete sich wie folgt:

$$c = \frac{n \text{ (Menthol)}}{V \text{ (Grignard - Lösung)}} = \frac{111 \mu mol}{0.72 \text{ mL}} \cong 0.15 \text{ M}$$

18.9.2 Alkohol 230 und 231

Zu einer Lösung des Aldehyds 219 (923 mg, 2.41 mmol, 1.00 Äq.) und LiCl (204 mg, 4.82 mmol, 2.00 Äq.) in THF (15.0 mL) wurde bei -78 °C das Grignard-Reagenz 229 (3.27 mL, c = 0.92 м, 3.01 mmol, 1.25 Äq.) getropft und für 2 h bei –78 °C gerührt. Durch die Zugabe von H₂O (18 mL) und ges. NH₄Cl-Lösung (18 mL) wurde die Reaktion beendet und auf Raumtemperatur erwärmt. Es wurde mit MTBE (3 × 200 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, wurde filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1) wurden der Alkohol **230** (304 mg, 531 µmol, 22%) als farbloses Öl, sowie eine Fraktion bestehend aus Alkohol 231 (1.12 g, 4.89:1 (231:232), 1.62 mmol, 67%) als Mischung mit dem Wurtz-Kupplungsprodukt 232 in Form eines farblosen Öls erhalten. Durch Umkehrphasenchromatographie (Reversed Phase Kieselgel C-18, CH₃CN) konnten diese getrennt werden. Ferner konnte noch Aldehyd **219** (51.0 mg, 133 µmol, 6%) reisoliert werden.

Analytische Daten von 230:

DC: $R_f = 0.44$ (PE/AcOEt 3:1).

UV (CH₃CN): (keine Absorption).

IR (Film): \tilde{v} = 2929, 1727, 1366, 1252, 1143, 1087, 1032, 939, 832, 814, 772, 672 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.05, 0.07 (s, 2 × 3 H, 2 × SiCH₃), 0.79 (d, J = 6.9 Hz, 3 H, 2^{''}-CH₃), 0.86–0.89 (m, 12 H, SiC(CH₃)₃, 9^{''}-H₃), 1.25–1.34 (m, 1 H, 4^{''}-H_A), 1.41 (s, 9 H, CO₂C(CH₃)₃), 1.41–1.60 (m, 8 H, 2^{''}-H, 4^{''}-H_B, 5^{''}-H₂, 6^{''}-H₂, 8^{''}-H₂), 1.92 (dd, J = 14.7, 11.5 Hz, 1 H, 2-H_A), 2.08–2.16 (m, 1 H, 4[']-H_A), 2.26 (s_{br}, 1 H, OH), 2.31 (ddd, J = 15.9, 7.6, 2.9 Hz, 1 H, 4[']-H_B), 2.39–2.48 (m, 2 H, 2-H_B, 5[']-H), 2.71–2.77 (m, 1 H, 1[']-H), 3.37 (s, 3 H, OCH₃), 3.43–3.49 (m, 1 H, 3^{''}-H), 3.50–3.56 (m, 3 H, OCH_AH_BCH₂O, 7^{''}-H), 3.67 (dt, J = 10.9, 4.4 Hz, 1 H, OCH_AH_BCH₂O), 3.72–3.78 (m, 1 H, OCH_AH_BCH₂O), 4.13 (dd, J = 9.8, 1.3 Hz, 1 H, 1^{''}-H), 4.72 (d, J = 7.2 Hz, 1 H,

OC<u>H</u>_AH_BO), 4.75 (d, *J* = 7.2 Hz, 1 H, OCH_A<u>H</u>_BO), 5.77–5.80 (m, 1 H), 5.81–5.83 (m, 1 H) (2'-H, 3'-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.7, -3.7 (2 × SiCH₃), 9.5 (C-9''), 10.6 (C-2''-<u>C</u>H₃), 18.5 (Si<u>C</u>(CH₃)₃), 21.2 (C-5''), 26.2 (SiC(<u>C</u>H₃)₃), 26.9 (C-8''), 28.1 (CO₂C(<u>C</u>H₃)₃), 33.7 (C-6''), 35.2 (C-4'), 35.4, 35.4 (C-2, C-4''), 42.3 (C-1'), 43.5 (C-2''), 45.2 (C-5'), 59.0 (OCH₃), 67.0 (O<u>C</u>H_AH_BCH₂O), 71.8 (OCH_AH_B<u>C</u>H₂O), 72.1 (C-3''), 72.7 (C-1''), 78.6 (C-7''), 80.1 (CO₂<u>C</u>(CH₃)₃), 94.3 (OCH₂O), 131.2, 134.7 (C-2', C-3'), 172.5 (C-1).

MS (ESI): m/z (%) = 573.4 (6) $[M + H]^+$, 590.4 (20) $[M + NH_4]^+$, 595.4 (100) $[M + Na]^+$, 611.4 $[M + K]^+$.

ber.: 595.4001 [M + Na]⁺, gef.: 595.4001 (ESI-HRMS).

C₃₁H₆₀O₇Si (572.89).

Analytische Daten von 231:

DC: $R_f = 0.30$ (PE/Et₂O 1:1).

 $[\alpha]_{D}^{22} = -55.7 \circ (c = 0.52 \text{ in CHCl}_{3}).$

UV (CH₃CN): (keine Absorption).

IR (ATR): $\tilde{\nu}$ = 3440, 2929, 1726, 1461, 1367, 1253, 1148, 1094, 1036, 938, 834, 773, 670, 577, 524 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.05, 0.06 (2 × SiCH₃), 0.85–0.90 (m, 12 H, SiC(CH₃)₃, 9⁻⁻H₃), 0.98 (d, *J* = 6.8 Hz, 3 H, 2⁻⁻CH₃), 1.22–1.65 (m, 9 H, 2⁻⁻H, 4⁻⁻H₂, 5⁻⁻H₂, 6⁻⁻H₂, 8⁻⁻H₂), 1.42 (s, 9 H, CO₂C(<u>C</u>H₃)₃), 1.92 (s_{br}, 1 H, OH), 1.94 (dd, *J* = 14.5, 11.5 Hz, 1 H, 2-H_A), 2.04–2.10 (m, 1 H, 4⁻-H_A), 2.24 (dd, *J* = 14.5, 4.2 Hz, 1 H, 2-H_B), 2.30 (ddd, *J* = 16.1, 7.6, 2.8 Hz, 1 H, 4⁻-H_B), 2.41–2.48 (m, 1 H, 5⁻-H), 2.73–2.79 (m, 1 H, 1⁻-H), 3.37 (s, 3 H, OCH₃), 3.48–3.56 (m, 2 H, 7⁻⁻-H, OCH_AH_BCH₂O), 3.58–3.62 (m, 1 H, 3⁻⁻-H), 3.65–3.71 (m, 1 H, OCH_AH_BCH₂O), 3.72–3.77 (m, 1 H, OCH_AH_BCH₂O), 3.78 (dd, *J* = 9.8, 1.8 Hz, 1 H, 1⁻⁻-H), 4.71–4.75 (m, 2 H, OCH₂O), 5.77–5.80 (m, 1 H, 2⁻-H), 5.80–5.84 (m, 1 H, 3⁻-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.5, -3.1 (2 × SiCH₃), 8.3 (2^{''}-<u>C</u>H₃), 9.6 (C-9^{''}), 18.6 (Si<u>C</u>(CH₃)₃), 22.0 (C-5^{''}), 26.20 (SiC(<u>C</u>H₃)₃), 26.92 (C-8^{''}), 28.2 (CO₂C(<u>C</u>H₃)₃), 33.9

(C-6^{\prime}), 35.0 (C-4^{\prime}), 35.5 (C-2), 35.9 (C-4^{\prime}), 42.1 (C-1^{\prime}), 43.0 (C-2^{\prime}), 46.0 (C-5^{\prime}), 59.1 (OCH₃), 67.0 (O<u>C</u>H_ACH_BCH₂O), 71.9 (OCH_ACH_BCH₂O), 73.4 (C-3^{\prime}), 75.2 (C-1^{\prime}), 78.9 (C-7^{\prime}), 80.4 (CO₂<u>C</u>(CH₃)₃), 94.5 (O-CH₂-O), 131.2 (C-3^{\prime}), 134.7 (C-2^{\prime}), 171.96 (C-1).

MS (ESI): m/z (%) = 595.4 (100) [M + Na]⁺.

ber.: 595.4002 [M + Na]⁺, gef.: 595.4001 (ESI-HRMS).

C₃₁H₆₀O₇Si (572.89).

Analytische Daten für das Wurtz-Kupplungsprodukt 232:

RP-DC (C-18): R_f = 0.55 (CH₃CN).

 $UV(CH_3CN)$: (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2929, 2876, 1730, 1461, 1364, 1277, 1199, 1103, 981, 932, 849 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.84 (t, *J* = 7.4 Hz, 6 H, 1-H₃, 12-H₃), 1.18–1.33 (m, 8 H, 5-H₂, 6-H₂, 7-H₂, 8-H₂), 1.35–1.53 (m, 8 H, 2-H₂, 4-H₂, 9-H₂, 11-H₂), 3.34 (s, 6 H, 2 × OCH₃), 3.40–3.55 (m, 4 H, 2 × OCH₂CH₂O, 3-H, 10-H), 3.63–3.71 (m, 4 H, 2 × OCH₂CH₂O), 4.69 (s, 6 H, 2 × OCH₂O).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.5 (C-1, C-12), 25.2, 29.8 (C-5, C-6, C-7, C-8), 26.7, 33.6 (C-2, C-4, C-9, C-11), 58.9 (2 × OCH₃), 66.8 (2 × O<u>C</u>H₂CH₂O), 71.7 (2 × O<u>C</u>H₂CH₂O), 78.4 (C-3, C-10), 94.1 (2 × OCH₂O).

MS (ESI): m/z (%) = 401.3 (100) [M + Na]⁺.

ber.: 401.2874 [M + Na]⁺, gef.: 401.2874 (ESI-HRMS).

 $C_{20}H_{42}O_6$ (378.54).

18.9.3 Alkohol 233 und 234

Zu einer Lösung des Aldehyds **218** (232 mg, 606 µmol, 1.00 Äq.) und LiCl (51.4 mg, 1.21 mmol, 2.00 Äq.) in abs. THF (5.00 mL) wurde bei -78 °C das Grignard-Reagenz **228** (4.50 mL, c = 0.15 M, 675 µmol, 1.11 Äq.) getropft und für 1 h bei -78 °C gerührt. Durch die Zugabe von H₂O (15 mL), ges. NH₄Cl-Lösung (15 mL) und Et₂O (25 mL) wurde die Reaktion beendet und anschließend auf Raumtemperatur erwärmt. Es wurde mit Et₂O (3 × 30 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1) wurde eine Mischung der diastereomeren Alkohole im Verhältnis von 1:1.8 (**233:234**) und des Wurtz-Kupplungsproduktes in Form eines farblosen Öls (242 mg) erhalten. Umkehrphasenchromatographie (Reversed Phase Kieselgel C-18, CH₃CN) lieferte die Alkohole **233** und **234** (180 mg, 314 µmol, 52%) in Form farbloser Öle.

DC: *R_f* = 0.39 (PE/MTBE 3:1).

¹**H-NMR** (300 MHz, CDCl₃, Epimerengemisch 1:1.8 (**233**:**234**)): δ (ppm) = 0.08, 0.10 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.13, 0.14 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.80 (d, *J* = 7.2 Hz, 3 H, 2΄΄-CH₃), 0.87 (s, 18 H, SiC(<u>C</u>H₃)₃), 0.84–0.91 (m, 6 H, 2 × 9΄΄-H₃), 0.94 (d, *J* = 7.1 Hz, 3 H, 2΄΄-CH₃), 1.41, 1.42 (2 × s, 2 × 9 H, 2 × CO₂C(CH₃)₃), 1.18–1.33 (m, 6 H), 1.44–1.69 (m, 12 H) (2 × 2΄΄-H, 2 × 4΄΄-H₂, 2 × 5΄΄-H₂, 2 × 6΄΄-H₂, 2 × 8΄΄-H₂), 1.82–2.21 (m, 4 × 2 H, 2 × 2-H₂, 2 × 4΄-H₂), 2.37–2.57 (m, 2 × 1 H, 2 × 5΄-H), 2.81–2.90 (m, 1 H, 1΄-H), 2.92–3.04 (m, 1 H, 1΄-H), 3.37, 3.37 (2 × s, 2 × 3 H, 2 × OCH₃), 3.45–3.81 (m, 10 H, 2 × 7΄΄-H, 2 × OCH₂C(<u>H</u>₂O), 3.84 (dd, *J* = 8.5, 3.0 Hz, 1 H, 1΄΄-H), 4.04 (dd, *J* = 10.2, 1.8 Hz, 1 H, 1΄'-H), 4.69–4.77 (m, 6 H, 2 × OCH₂O, 2 × 3΄΄-H), 5.70–5.78 (m, 2 H), 5.84–5.89 (m, 1 H), 5.90–5.95 (m, 1 H) (2 × 2΄-H, 2 × 3′-H).

¹³**C-NMR** (126 MHz, CDCl₃, Epimerengemisch 1:1.8 (**233**:**234**)): δ (ppm) = -4.3, -3.5, -3.0, -2.8 (4 × SiCH₃), 9.0, 9.6, 9.6, 15.4 (2 × C-9^{\prime}, 2 × C-2^{\prime})-<u>C</u>H₃), 18.6, 18.7 (2 × Si<u>C</u>(CH₃)₃), 20.9, 21.9 (2 × C-5^{\prime}), 26.1, 26.2 (2 × SiC(<u>C</u>H₃)₃), 28.2, 28.2

 $(2 \times CO_2C(\underline{CH}_3)_3)$, 26.9, 27.0, 29.8, 29.9, 33.2, 33.7, 33.9, 35.5, $(2 \times C-4', 2 \times C-4'', 2$

MS (ESI): m/z (%) = 595.4 (100) [M + Na]⁺.

ber.: 595.4001 [M + Na]⁺, gef.: 595.4000 (ESI-HRMS).

C₃₁H₆₀O₇Si (572.89).

Analytische Daten von 233:

RP-DC (C-18): *R_f* = 0.32 (CH₃CN).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2929, 1729, 1366, 1254, 1143, 1104, 1039, 969, 937, 832, 814, 771, 705 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.13, 0.14 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.79–0.83 (d, J = 7.1 Hz, 3 H, 2΄΄-CH₃), 0.85 (m, 12 H, SiC(CH₃)₃, 9-H₃), 1.41 (s, 9 H, CO₂C(CH₃)₃), 1.20–1.35 (m, 4 H), 1.48–1.55 (m, 4 H), 1.56–1.76 (m, 2 H) (2΄΄-H, 4΄΄-H₂, 5΄΄-H₂, 6΄΄-H₂, 8΄΄-H₂, OH), 1.89 (dd, J = 14.5, 12.0 Hz, 1 H, 2-H_A), 1.92–2.00 (m, 1 H, 4′-H_A), 2.07–2.14 (m, 1 H, 4′-H_B), 2.44–2.54 (m, 2 H, 2-H_B, 5΄-H), 2.95–3.02 (m, 1 H, 1′-H), 3.37 (s, 3 H, OCH₃), 3.48–3.57 (m, 3 H, 7΄΄-H, OCH_AH_BCH₂O), 3.57–3.63 (m, 1 H, 3΄΄-H), 3.64–3.70 (m 1 H, OCH_AH_BCH₂O), 3.71–3.77 (m, 1 H, OCH_AH_BCH₂O), 4.04 (dd, J = 10.1, 1.9 Hz, 1 H, 1′΄-H), 4.72 (d, J = 7.6 Hz, 1 H, OCH_AH_BO), 4.75 (d, J = 7.6 Hz, 1 H, OCH_AH_BO), 5.69–5.80 (m, 1 H), 5.91–5.94 (m, 1 H) (2΄-H, 3΄-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -4.3, -2.8 (2 × SiCH₃), 9.6 (2^{''}-CH₃), 15.4 (C-9^{''}), 18.6 (Si<u>C</u>(CH₃)₃), 20.9 (C-5^{''}), 26.2 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 26.9, 33.2, 33.9, 35.5 (C-4['], C-4^{''}, C-6^{''}, C-8^{''}), 36.0 (C-2), 42.3 (C-1[']), 43.8 (C-2^{''}), 46.8 (C-5[']), 59.1 (OCH₃), 67.0, 71.9 (OCH₂CH₂O), 72.6 (C-3^{''}), 75.0 (C-1^{''}), 78.6 (C-7^{''}), 80.1 (CO₂<u>C</u>(CH₃)₃), 94.4 (OCH₂O), 130.3, 135.5 (C-2['], C-3[']), 172.1 (C-1). **MS** (ESI): m/z (%) = 595.9 (100) [M + Na]⁺.

ber.: 595.4001 [M + Na]⁺, gef.: 595.4003 (ESI-HRMS).

C₃₁**H**₆₀**O**₇**Si** (572.89).

Analytische Daten von 234:

RP-DC (C-18): R_f = 0.34 (CH₃CN).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2928, 1728, 1366, 1255, 1139, 1080, 1037, 969, 832, 814, 772, 740, 706 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.08, 0.10 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.81–0.89 (m, 12 H, SiC(CH₃)₃, 9-H₃), 0.94 (d, *J* = 7.1 Hz, 3 H, 2^{''}-CH₃), 1.42 (s, 9 H, CO₂C(CH₃)₃), 1.22–1.34 (m, 3 H), 1.44–1.68 (m, 6 H) (2^{''}-H, 4^{''}-H₂, 5^{''}-H₂, 6^{''}-H₂, 8^{''}-H₂), 1.93 (dd, *J* = 14.7, 11.7 Hz, 1 H, 2-H_B), 2.04 (m, 1 H, 4[']-H_A), 2.12–2.25 (m, 1 H, 4[']-H_B), 2.36–2.48 (m, 1 H, 5[']-H), 2.51 (dd, *J* = 14.7, 4.0 Hz, 1 H, 2-H_B), 2.97–3.00 (m, 1 H, 1[']-H), 3.37 (s, 3 H, OCH₃), 3.48–3.59 (m, 3 H, 7^{''}-H, OCH_AH_BCH₂O), 3.62–3.72 (m, 2 H, 3^{''}-H OCH_AH_BCH₂O), 3.72–3.77 (m, 1 H, OCH_AH_BCH₂O), 3.84 (dd, *J* = 8.4, 3.0 Hz, 1 H, 1^{''}-H), 4.72 (d, *J* = 7.2 Hz, 1 H, OCH_AH_BO), 4.74 (d, *J* = 7.2 Hz, 1 H, OCH_AH_BO), 5.72–5.76 (m, 1 H), 5.83–5.90 (m, 1 H) (2[']-H, 3[']-H)

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.5, -3.0 (SiCH₃), 9.0 (C-2^{''}-<u>C</u>H₃), 9.6 (C-9^{''}), 18.7 (Si<u>C</u>(CH₃)₃), 21.9 (C-5^{''}), 26.2 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 33.6 (C-4[']), 27.0, 33.9, 36.0 (C-4^{''}, C-6^{''}, C-8^{''}), 36.3 (C-2), 42.0 (C-1[']), 43.3 (C-2^{''}), 47.0 (C-5[']), 59.1 (OCH₃), 67.1, 71.9 (O<u>C</u>H₂<u>C</u>H₂O), 73.1 (C-3^{''}), 75.3 (C-1^{''}), 79.0 (C-7^{''}), 80.1 (CO₂<u>C</u>(CH₃)₃), 94.5 (OCH₂O), 130.5, 135.1 (C-2['], C-3[']), 172.3 (C-1).

MS (ESI): m/z (%) = 595.9 (100) [M + Na]⁺.

ber.: 595.4001 [M + Na]⁺, gef.: 595.4002 (ESI-HRMS).

C₃₁H₆₀O₇Si (572.89).

18.10 Synthese der Lävulinyl-geschützten Derivate

18.10.1 Lävulinsäureester 235

Zu einer Lösung von Lävulinsäure (LevOH) (116 mg, 1.00 mmol, 5.00 Äq.) in CH₂Cl₂ (5.00 mL) wurde bei Raumtemperatur DMAP (126 mg, 1.00 mmol, 5.00 Äq.) zugegeben und für 10 min gerührt. Anschließend wurde auf 0 °C gekühlt, DIC (126 mg, 154 μ L, 1.00 mmol, 5.00 Äq.) zugetropft und für 10 min gerührt. Nachfolgend wurde eine Lösung des Alkohols **233/234** (115 mg, 201 μ mol, 1.00 Äq.) in CH₂Cl₂ (2.5 mL) zugegeben, auf Raumtemperatur erwärmt und für 14 h gerührt. Die Reaktion wurde durch Zugabe von ges. wässriger NH₄Cl-Lösung (20 mL) und ges. wässriger NaCl-Lösung (20 mL) abgebrochen. Die organische Phase wurde abgetrennt und die wässrige Phase wurde mit CH₂Cl₂ (3 × 30 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/MTBE 4:1→2:1) wurde die Titelverbindung **235** (97.0 mg, 145 μ mol, 72%) als leicht gelbes Öl erhalten.

DC: *R_f* = 0.68 (PE/AcOEt 9:1).

UV (CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 2931, 1728, 1462, 1366, 1312, 1257, 1157, 1044, 939, 835, 774, 707, 667 cm⁻¹.

¹**H-NMR** (301 MHz, CDCl₃): δ (ppm) = 0.06 (s, 6 H, 2 × SiCH₃), 0.09, 0.10 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.73–0.97 (m, 30 H, 2 × SiC(CH₃)₃, 2 × 2^{''}-CH₃, 2 × 9^{''}-H₃), 1.41 (s, 6 H, 2 × CO₂C(CH₃)₃), 1.12–1.79 (m, 16 H, 2 × 4^{''}-H₂, 2 × 5^{''}-H₂, 2 × 6^{''}-H₂, 2 × 8^{''}-H₂), 1.90 (dd, J = 14.6, 11.6 Hz, 2 H, 2 × 2-H_A), 1.96–2.11 (m, 4 H, 2 × 4[']-H₂), 2.15 (s, 6 H, 2 × 5^{'''}-H), 2.29–2.43 (m, 2 H, 2 × 5[']-H), 2.49 (dd, J = 11.6, 3.7 Hz, 2 H, 2-H_B) 2.43–2.58 (m, 4 H, 2 × 2^{'''}-H₂), 2.72 (t, J = 6.6 Hz, 4 H, 2 × 3^{'''}-H), 2.88–2.30 (m, 2 H, 2 × 1[']-H), 3.37, 3.37 (2 × s, 2 × 3 H, 2 × OCH₃), 3.42–3.55 (m, 6 H, 2 × 7^{''}-H, 2 × OCH₂CH₂O), 3.55–3.81 (m, 6 H, 2 × 1^{''}-H, 2 × OCH₂CH₂O), 4.72, 4.72 (2 × s, 2 × 3 H, 2 × OCH₂O),

4.83–4.90 (m, 1 H, 3^{''}-H), 5.03 (td, *J* = 8.3, 3.3 Hz, 1 H, 3^{''}-H), 5.70–5.76 (m, 2 H), 5.81–5.93 (m, 2 H) (2 × C-2^{''}, 2 × C-3^{''}).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -4.0, -3.6, -3.1, -2.8 (4 × SiCH₃), 9.5, 9.6, 9.7, 10.6 (2 × C-2´´-<u>C</u>H₃, C-9´´), 18.7, 18.9 (2 × Si<u>C</u>(CH₃)₃), 19.9, 21.2 (2 × C-5´´), 26.2, 26.2 (2 × SiC(<u>C</u>H₃)), 26.8, 26.8 (2 × C-8´´), 28.1 (C-2´´´), 28.2 (CO₂<u>C</u>(CH₃)₃), 28.3 (C-2´´´), 29.8, 29.9, 31.7, 33.2, 33.4, 33.5, 33.8, (2 × C-4´, 2 × C-4´´, 2 × C-6´´, CO₂<u>C</u>(CH₃)₃), 36.2, 36.3 (C-2), 38.1, 38.1 (C-3´´), 40.4, 41.8, 41.9, 41.9 (2 × C-1´, 2 × C-2´), 46.9, 47.4 (2 × C-5´), 59.0 (OCH₃), 66.9, 67.0 (O<u>C</u>H₂CH₂O), 71.6, 71.8 (OCH₂<u>C</u>H₂O), 73.1, 75.2, 75.6, 78.3, 78.4, 78.5 (2 × C-1´´, 2 × C-3´´, 2 × C-7´´), 80.0, 80.1 (CO₂<u>C</u>(CH₃)₃), 94.2, 94.3 (2 × OCH₂O), 130.1, 130.3, 135.3, 135.6 (2 × C-2´, 2 × C-3´), 172.1, 172.2, 172.2, 172.3 (2 × C-1, 2 × C-1´´'), 206.1 (C-4´´´).

MS (ESI): m/z (%) = 693.4 (100) [M +Na]⁺.

ber.: 693.4368 [M + Na]⁺, gef.: 693.4368 (ESI-HRMS).

C₃₆H₆₆O₉Si (670.99).

18.10.2 Lävulinsäureester 237

Zu einer Lösung von Lävulinsäure (157 mg, 1.35 mmol, 5.00 Äq.) in CH_2Cl_2 (7.00 mL) gelöst wurde bei Raumtemperatur DMAP (165 mg, 1.35 mmol, 5.00 Äq.) gegeben und für 10 min gerührt. Anschließend wurde auf 0 °C gekühlt, DIC (170 mg, 1.35 mmol, 5.00 Äq.) zugetropft und für 10 min gerührt. Nachfolgend wurde eine Lösung des Alkohols **231** (155 mg, 271 µmol, 1.00 Äq.) in CH_2Cl_2 (3.50 mL) zugegeben, auf Raumtemperatur erwärmt und für 14 h gerührt. Die Reaktion wurde durch Zugabe von ges. wässriger NH₄Cl-Lösung (30 mL) und ges. wässriger NaCl-Lösung (30 mL) beendet. Die organische Phase wurde abgetrennt und die wässrige Phase wurde mit CH_2Cl_2 (3 × 40 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach

Säulenchromatographie an Kieselgel (PE/MTBE 4:1 \rightarrow 2:1) wurde die Titelverbindung **237** (173 mg, 258 μ mol, 95%) in Form eines leicht gelben Öls erhalten.

DC: R_f = 0.68 (PE/AcOEt 9:1).

UV (CH₃CN): (keine Absorption).

 $[\alpha]_{D}^{20} = -49.5$ ° (c = 1.0 in CHCl₃).

IR (Film): \tilde{v} = 2931, 1730, 1462, 1367, 1255,1155, 1043, 836, 774 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.03, 0.06 (2 × s, 2 × 2 H, 2 × SiCH₃),0.81–0.90 (m, 15 H, SiC(CH₃)₃, 2΄΄-CH₃, 9΄΄-H₃), 1.12–1.29 (m, 1 H, 5΄΄-H_A), 1.42 (s, 3 H, CO₂C(CH₃)₃), 1.42–1.53 (m, 6 H, 4΄΄-H₂, 6΄΄-H₂, 8΄΄-H₂), 1.69–1.76 (m, 2 H, 2΄΄-H, 5΄΄-H_B), 1.93 (dd, J = 14.3, 11.6 Hz, 1 H, 2-H_A), 2.00–2.08 (m, 1 H, 4΄-H_A), 2.15 (s, 3 H, 5΄΄-H₃), 2.24 (dd, J = 14.3, 4.0 Hz, 1 H, 2-H_B), 2.27–2.33 (m, 1 H, 4΄-H_B), 2.39 (td, J = 7.4, 3.6 Hz, 1 H, 5΄-H), 2.54 (td, J = 6.7, 1.6 Hz, 2 H, 2΄΄-H₂), 2.71–2.76 (m, 3 H, 1΄΄-H, 3΄΄΄-H₂), 3.36 (s, 3 H, OCH₃), 3.45–3.50 (m, 1 H, 7΄΄-H), 3.50–3.54 (m, 2 H, OCH₂CH₂O), 3.63–3.72 (m, 2 H, OCH₂CH₂O), 3.74 (dd, J = 9.8, 1.5 Hz, 1 H, 1΄΄-H), 4.71 (s, 2 H, OCH₂O), 4.98 (td, J = 9.5, 2.9 Hz, 1 H), 5.76–5.79 (m, 1 H), 5.79–5.81 (m, 1 H) (2΄-H, 3΄-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.4, -3.4 (2 × SiCH₃), 9.5, 9.8 (C-2^{''}-<u>C</u>H₃, C-9^{''}), 18.5 (Si<u>C</u>(CH₃)₃), 21.4 (C-5^{''}), 26.2 (SiC(<u>C</u>H₃)₃), 27.0 (C-8^{''}), 28.0 (C-2^{'''}), 28.2 (CO₂<u>C</u>(CH₃)₃), 29.9 (C-5^{'''}), 33.3, 33.9 (C-4^{''}, C-6^{''}), 35.2 (C-4[']), 35.4 (C-2), 38.1 (C-3^{'''}), 42.0 (C-2^{''}), 42.2 (C-1[']), 46.1 (C-5[']), 59.0 (OCH₃), 66.9 (O<u>C</u>H₂CH₂O), 71.8 (OCH₂<u>C</u>H₂O), 72.6 (C-1^{''}), 75.5 (C-3^{''}), 78.4 (C-7^{''}), 80.5 (CO₂<u>C</u>(CH₃)₃), 94.2 (OCH₂O), 131.3, 134.6 (C-2['], C-3[']), 171.9, 172.2 (C-1, C-1^{'''}), 206.1 (C-4^{'''}).

MS (ESI): m/z (%) = 693.5 (100) [M + Na]⁺.

ber.: 693.4368 [M + Na]⁺, gef.: 693.4368 (ESI-HRMS).

C₃₆**H**₆₆**O**₉**Si** (670.99).

18.10.3 Lävulinsäureester 238

Zu einer Lösung von Lävulinsäure (51.0 mg, 434 µmol, 3.00 Äq.) in CH_2Cl_2 (4.50 mL) gelöst wurde bei Raumtemperatur DMAP (53.0 mg, 434 µmol, 3.00 Äq.) zugegeben und für 10 min gerührt. Anschließend wurde auf 0 °C gekühlt, DIC (55.0 mg, 434 µmol, 3.00 Äq.) zugetropft und für 10 min bei 0 °C gerührt. Nachfolgend wurde eine Lösung des Alkohols **230** (155 mg, 271 µmol, 1.00 Äq.) in CH_2Cl_2 (2.80 mL) zugegeben, auf Raumtemperatur erwärmt und für 19 h gerührt. Die Reaktion wurde durch Zugabe von CH_2Cl_2 (50 mL) und ges. wässrige NH_4Cl -Lösung (40 mL) beendet. Die organische Phase wurde abgetrennt, mit ges. wässriger NH_4Cl -Lösung (40 mL) und ges. wässriger NaCl-Lösung gewaschen, über $MgSO_4$ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 1:1) wurde die Titelverbindung **238** (32.0 mg, 48.0 µmol, 43%) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.68$ (PE/AcOEt 9:1).

UV(CH₃CN): (keine Absorption).

 $[\alpha]_{D}^{20} = -50.3 \circ (c = 1.14 \text{ in CHCl}_{3}).$

¹**H-NMR** (301 MHz, CDCl₃): δ (ppm) = 0.00, 0.03 (2 × s, 2 × 2 H, 2 × SiCH₃), 0.76–0.92 (m, 15 H, SiC(CH₃)₃, 2΄-CH₃, 9΄-H₃), 1.17–1.38 (m, 2 H, 5΄-H_A, 8΄-H_A), 1.41 (s, 9 H, CO₂C(CH₃)₃), 1.42–1.71 (m, 5 H, 5΄-H_B, 6΄-H₂, 8΄-H_B), 1.71–1.87 (m, 1 H, 2΄-H), 1.90–2.09 (m, 1 H, 2-H_A, 4΄-H_A), 2.15 (s, 3 H, 5΄΄-H₃), 2.26–2.41 (m, 2 H, 4΄-H_B, 5΄-H), 2.41–2.63 (m, 3 H, 2-H_B, 2΄΄-H₂), 2.67–2.79 (m, 3 H, 1΄-H, 3΄΄-H₂), 3.37 (s, 3 H, OCH₃), 3.42–3.55 (m, 3 H, 7΄-H, OC<u>H</u>₂CH₂O), 3.64–3.78 (m, 3 H, 1΄-H, OCH₂C<u>H</u>₂O), 4.72 (s, 2 H, OCH₂O), 4.80–4.88 (m, 1 H, 3΄-H), 5.74–5.79 (m, 1 H), 5.84–5.90 (m, 1 H) (2΄-H, 3΄-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.9, -3.8 (2 × SiCH₃), 9.6, 9.6 (C-2^{''}-<u>C</u>H₃, C-9^{''}), 18.8 (Si<u>C</u>(CH₃)₃), 19.9 (C-5^{''}), 26.4 (SiC(<u>C</u>H₃)₃), 26.7 (C-8^{''}), 28.1 (C-2^{'''}), 28.2 (CO₂C(<u>C</u>H₃)₃, 29.8 (C-5^{'''}), 32.1, 33.8 (C-4^{''}, C-6^{''}), 34.8 (C-2), 35.7 (C-4[']), 38.0 (C-3^{'''}), 40.3 (C-2′), 41.9 (C-1′), 46.1 (C-5′), 59.0 (OCH₃), 66.9 (O<u>C</u>H₂CH₂O), 71.8 (OCH₂<u>C</u>H₂O), 72.2 (C-5′′), 76.1 (C-3′′), 78.3 (C-7′′), 80.1 (CO₂<u>C</u>(CH₃)₃), 94.2 (OCH₂O), 131.2, 134.9 (C-2′, C-3′), 172.2, 172.4 (C-1, C-1′′′), 205.8 (C-4′′′).

MS (ESI): m/z (%) = 693.4 (100) [M + Na]⁺.

ber.: 693.4368 [M + Na]⁺, gef.: 693.4366 (ESI-HRMS).

C₃₆H₆₆O₉Si (670.99).

18.10.4 Alkohol 240

Zu einer Lösung des MEM-Ethers **238** (22.0 mg, 32.8 µmol, 1.00 Äq.) in CH₃CN (2.00 mL) wurde bei Raumtemperatur Natriumiodid (20.0 mg, 133 µmol, 4.00 Äq.) zugegeben und anschließend auf -45 °C gekühlt. Bei dieser Temperatur wurde TMSCl (0.15 M in CH₃CN, 400 µL, 60.0 µmol, 1.83 Äq.) zugetropft und für 1 h bei -45 °C gerührt. Durch Zugabe von ges. wässriger NaHCO₃-Lösung (10 mL) und ges. wässriger Na₂S₂O₃-Lösung (10 mL) wurde die Reaktion abgebrochen. Das zweiphasige Gemisch wurde auf Raumtemperatur erwärmt, mit AcOEt (10 mL) verdünnt und anschließend die organische Phase abgetrennt. Die wässrige Phase wurde mit AcOEt (3 × 30 mL) extrahiert, die organischen Phasen vereinigt, über MgSO₄ getrocknet und filtriert. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand säulenchromatographisch an Kieselgel (PE/MTBE 4:1 \rightarrow 1:1) gereinigt. Der Alkohol **240** (14.0 mg, 24.0 µmol, 73%) konnte in Form eines farblosen Öls erhalten werden.

DC: *R_f* = 0.20 (PE/AcOEt 3:1).

 $[\alpha]_{D}^{20} = -50.3$ ° (c = 1.0 in CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.00, 0.03 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.85 (m, 12 H, SiC(CH₃)₃, 2^{''}-CH₃), 0.91 (t, *J* = 7.5 Hz, 3 H, 9^{''}-H₃), 1.42 (s, 3 H, CO₂C(CH₃)₃), 1.31–1.54 (m, 6 H, 4^{''}-H_A, 5^{''}-H₂, 6^{''}-H_A, 8^{''}-H₂), 1.65–1.73 (m, 1 H, 4^{''}-H_B), 1.76–1.85

(m, 2 H, 2^{\prime}-H, 6^{\prime}-H_B), 1.95 (dd, *J* = 14.9, 11.9 Hz, 1 H, 2-H_A), 1.99–2.06 (m, 1 H, 4^{\prime}-H_A), 2.16 (s, 3 H, 5^{\prime}-H₃), 2.27–2.41 (m, 2 H, 4^{\prime}-H_B, 5^{\prime}-H), 2.46–2.54 (m, 2 H, 2^{\prime}-H₂), 2.56 (dd, *J* = 15.0, 3.6 Hz, 1 H, 2-H_B), 2.66–2.80 (m, 3 H, 1^{\prime}-H, 3^{\prime}-H₂), 3.44–3.50 (m, 1 H, 7^{\prime}-H), 3.74 (d, *J* = 10.3 Hz, 1 H, 1^{\prime}-H), 4.81–4.90 (m, 1 H, 3^{\prime}-H), 5.76–5.78 (m, 1 H), 5.86–5.88 (m, 1 H) (2^{\prime}-H, 3^{\prime}-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.84 (2 × SiCH₃), 9.6, 10.0 (C-2^{''}-CH₃, C-9^{''}), 18.8 (Si<u>C</u>(CH₃)₃), 20.2 (C-5^{''}), 26.4 (SiC(<u>C</u>H₃)₃), 28.1 (C-2^{'''}), 28.2 (CO₂C(<u>C</u>H₃)₃), 29.8 (C-5^{'''}), 30.4 (C-8^{''}), 31.8 (C-4^{''}), 34.8 (C-2), 35.7 (C-4[']), 36.8 (C-6^{''}), 38.0 (C-3^{'''}), 40.3 (C-2^{''}), 42.0 (C-1[']), 46.1 (C-5[']), 72.2 (C-1^{''}), 72.9 (C-7^{''}), 76.1 (C-3^{''}), 80.2 (CO₂C(CH₃)₃), 131.2, 134.9 (C-2['], C-3[']), 172.3, 172.4 (C-1, C-1^{'''}), 206.3 (C-4^{'''}).

MS (ESI): m/z (%) = 605.4 (100) [M + Na]⁺, 1187.8 (24) [M + Na]⁺.

ber.: 605.3844 [M + Na]⁺, gef.: 605.3844 (ESI-HRMS).

C₃₂H₅₈O₇Si (582.88).

18.10.5 Alkohol 239

239

Zu einer Lösung des MEM-Ethers **237** (150 mg, 0.22 mmol, 1.00 Äq.) in CH₃CN (10.0 mL) wurde bei Raumtemperatur Natriumiodid (134 mg, 0,89 mg, 4.00 Äq.) zugegeben und anschließend auf –60 °C gekühlt. Bei dieser Temperatur wurde TMSCI (0.39 M in CH₃CN, 1.00 mL, 0.39 mmol, 1.80 Äq.) zugetropft und für 1 h bei –60 °C gerührt. Durch Zugabe von ges. wässriger NaHCO₃-Lösung (10 mL) und ges. wässriger Na₂S₂O₃-Lösung (10 mL) wurde die Reaktion beendet. Das zweiphasige Gemisch wurde auf Raumtemperatur erwärmt, mit AcOEt (20 mL) verdünnt und anschließend die organische Phase abgetrennt. Die wässrige Phase wurde mit AcOEt (3 × 30 mL) extrahiert, die organischen Phasen vereinigt, über MgSO₄ getrocknet und filtriert. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand säulen-

chromatographisch an Kieselgel (PE/MTBE 4:1 \rightarrow 1:1) gereinigt. Die Titelverbindung **239** konnte in Form eines farblosen Öls (52.0 mg, 89.4 µmol, 41%) erhalten werden.

UV (CH₃CN): (keine Absorption).

 $[\alpha]_{D}^{20} = -53.2 \circ (c = 0.65 \text{ in CHCl}_{3}).$

IR (Film): $\tilde{\nu}$ = 2929, 1727, 1462, 1256, 1158, 836, 774, 739 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.04, 0.07 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.87 (s, 12 H, CO₂C(CH₃)₃, 2΄-CH₃), 0.92 (t, *J* = 7.4 Hz, 3 H, 9΄-H₃), 1.43 (s, 3 H, CO₂C(CH₃)₃), 1.37–1.43 (m, 4 H), 1.44–1.76 (m, 4 H)(4΄-H₂, 5΄-H₂, 6΄-H₂, 8΄-H₂), 1.76–1.83 (m, 1 H, 2΄-H), 1.94 (dd, *J* = 14.4, 11.6 Hz, 1 H, 2-H_A), 2.00–2.08 (m, 1 H, 4΄-H_A), 2.16 (s, 3 H, 5΄΄-H₃), 2.25 (dd, *J* = 14.4, 3.9 Hz, 1 H, 2-H_B), 2.31 (ddd, *J* = 15.9, 7.1, 2.6 Hz, 1 H, 4΄-H_B), 2.36–2.44 (m, 1 H, 5′-H), 2.48 (dd, *J* = 17.1, 6.5, 4.9 Hz, 1 H, 2΄΄-H_A), 2.59 (ddd, *J* = 17.1, 8.8, 4.9 Hz, 1 H, 2΄΄-H_B), 2.68 (ddd, *J* = 18.4, 8.8, 4.9 Hz, 1 H, 3΄΄-H_A), 2.72–2.77 (m, 1 H, 1΄-H), 2.84 (ddd, *J* = 18.4, 6.5, 4.9 Hz, 1 H, 3΄΄-H_B), 3.45–3.55 (m, 1 H, 7΄-H), 3.76 (dd, *J* = 10.1, 1.3 Hz, 1 H, 1΄-H), 5.00 (td, *J* = 9.5, 2.9 Hz, 1 H, 3΄΄-H), 5.76–5.81 (m, 1 H), 5.81–5.85 (m, 1 H) (2΄-H, 3΄-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.4, -3.3 (2 × SiCH₃), 9.8, 10.0 (2^{''}-<u>C</u>H₃, C-9^{''}), 18.6 (Si<u>C</u>(CH₃)₃), 21.6 (C-5^{''}), 26.2 (SiC(<u>C</u>H₃)₃), 28.1 (C-2^{'''}), 28.2 (CO₂C(<u>C</u>H₃)₃), 29.9 (C-5^{'''}), 30.2 (C-8^{''}), 33.0 (C-4^{''}), 35.3 (C-2), 35.5 (C-4[']), 37.2 (C-6^{''}), 38.1 (C-3^{'''}), 41.9, 41.9 (C-1['], C-2^{''}), 46.2 (C-5[']), 72.5 (C-1^{''}), 72.9 (C-7^{''}), 75.6 (C-3^{''}), 80.6 (CO₂C(CH₃)₃), 131.3, 134.7 (C-2['], C-3[']), 172.0, 172.4 (C-1, C-1^{'''}), 206.8 (C-4^{''}).

MS (ESI): m/z (%) = 600.4 (20) [M + NH₄]⁺, 605.4 (100) [M + Na]⁺, 621.4 (20) [M + K]⁺, 1187.8 (15) [2M + Na]⁺.

ber.: 605.3844 [M + Na]⁺, gef.: 605.3844 (ESI-HRMS).

C₃₂H₅₈O₇Si (582.88).

18.11 Synthese der Fmoc-geschützten Derivate

18.11.1 Carbonat 242

Zu einer Lösung der Epimerenmischung **233/234** (293 mg, 511 μ mol, 1.00 Äq.) in Pyridin (1.00 mL) wurde bei Raumtemperatur FmocCl (662 mg, 2.56 mmol, 5.00 Äq.) zugegeben und für 2 d unter Lichtausschluss gerührt. Es wurde auf Kieselgel immobilisiert und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE \rightarrow PE/AcOEt 2:1) wurde die Titelverbindung **242** als Epimerengemisch (264 mg, 332 μ mol, 65%) in Form eines gelben Öls erhalten.

DC: $R_f = 0.76$ (PE/AcOEt 3:1).

IR (Film): $\tilde{\nu}$ = 2931, 1741, 1451, 1367, 1259, 1042, 835, 760, 741 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃, Epimerengemisch): δ (ppm) = 0.06, 0.07, 0.11, 0.13 (4 × s, 4 × 3 H, 4 × SiCH₃), 0.84–0.93 (m, 24 H, 2 × SiC(CH₃)₃, 2 × 9-H₃), 0.96 (d, *J* = 6.9 Hz, 2 × 3 H, 2 × 2΄΄-H₃), 1.42, 1.42 (2 × s, 2 × 9 H, 2 × CO₂C(CH₃)₃), 1.43–1.66 (m, 4 H), 1.67–1.87 (m, 12 H) (2 × 4΄-H₂, 2 × 5΄΄-H₂, 2 × 6΄΄-H₂, 2 × 8΄΄-H₂), 1.89–1.96 (m, 2 × 1 H, 2 × 2-H_A), 1.97–2.18 (m, 5 H, 2 × 4΄-H_A, 2 × 4΄-H_B, 5΄-H), 2.35–2.43 (m, 1 H, 5΄-H), 2.51 (dd, *J* = 14.5, 3.7 Hz, 2 × 1 H, 2 × 2-H_B), 2.99 (m, 2 × 1 H, 2 × 1′-H), 3.34, 3.35 (2 × s, 2 × 3 H, 2 × OCH₃), 3.47–3.52 (m, 4 H), 3.64–3.68 (m, 6 H) (2 × OC<u>H₂CH₂O</u>, 2 × 7΄΄-H), 3.80 (dd, *J* = 8.9, 2.9 Hz, 1 H, 1΄΄-H), 3.92 (dd, *J* = 9.2, 1.6 Hz, 1 H, 1΄΄-H), 4.23 (t, *J* = 7.4 Hz, 1 H, OC(O)OCH₂CH), 4.25 (t, *J* = 7.4 Hz, 1 H, OC(O)OCH₂CH), 4.39–4.44 (m, 2 × 2 H, OC(O)OCH₂CH), 4.68–4.73 (m, 5 H, 3΄΄-H, 2 × OCH₂O), 4.89 (td, *J* = 8.4, 3.4 Hz, 1 H, 3΄΄-H), 5.71–5.74 (m, 1 H), 5.75–5.77 (m, 1 H), 5.87–5.90 (m, 1 H), 5.91–5.93 (m, 1 H) (2 × 2΄-H, 2 × 3΄-H), 7.28–7.32 (m, 4 H, Ar), 7.36–7.40 (m, 4 H, Ar), 7.58–7.62 (m, 4 H, Ar), 7.72–7.77 (m, 4 H, Ar).

¹³**C-NMR** (126 MHz, CDCl₃, Epimerengemisch): δ (ppm) = -3.8, -3.6, -3.4, -2.8 (4 × SiCH₃), 9.5, 9.5 (2 × C-9^{''}), 9.6, 10.4 (2 × C-2^{''}-<u>C</u>H₃), 18.7, 18.9 (2 × Si<u>C</u>(CH₃)₃), 19.5, 21.1 (2 × C-5^{''}), 26.2, 26.2 (2 × SiC(<u>C</u>H₃)₃), 26.7, 26.8 (2 × C-8^{''}), 28.1 (2 × CO₂C(<u>C</u>H₃)₃),

31.4 33.2, 33.3, 33.4, 33.8, 33.8 (2 × C-4′, 2 × C-4′′, 2 × C-6′′), 36.1, 36.2 (2 × C-2), 40.2, 41.8, 41.9, 42.2 (2 × C-1′, 2 × C-2′′), 46.8, 46.9, 47.1, 47.4 (2 × C-5′, 2 × OC(O)OCH₂CH), 59.0, 59.0 (2 × OCH₃), 66.9, 67.0 (C-7′′), 69.5, 69.5, (2 × OC(O)O<u>C</u>H₂CH), 71.3 (C-1′′), 71.8, 71.9 (2 × O<u>C</u>H₂CH₂O), 73.2 (C-1′′), 78.2, 78.2 (2 × OCH₂<u>C</u>H₂O), 79.4, 79.8 (2 × C-3′′), 80.1, 80.1 (2 × CO₂<u>C</u>(CH₃)₃), 94.2, 94.3 (2 × OCH₂O), 119.9, 120.0, 125.0, 127.0, 127.0, 127.1, 127.5, 127.7 (8 × Ar), 130.1, 130.3, 135.3, 135.6 (2 × C-2′, 2 × C-3′), 141.2, 141.2, 143.3, 143.4 (4 × Ar), 154.8, 155.2 (2 × O<u>C</u>(O)OCH₂CH), 172.0, 172.1 (2 × C-1).

MS (ESI): m/z (%) = 817.5 (100) [M +Na]⁺.

ber.: 817.4681 [M + Na]⁺, gef.: 817.4683 (ESI-HRMS).

C₄₆**H**₇₀**O**₉**Si** (795.13).

18.11.2 Carbonat 243

Zu einer Lösung des Alkohols **231** (461 mg, 805 µmol, 1.00 Äq.) in Pyridin (6.00 mL) wurde bei Raumtemperatur FmocCl (937 mg, 3.62 mmol, 5.00 Äq.) zugegeben und für 2 d gerührt. Es wurde auf Kieselgel aufgezogen und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE \rightarrow PE/MTBE 9:1 \rightarrow 4:1) wurde die Titelverbindung **243** (495 mg, 623 µmol, 77%) in Form eines gelben Öls erhalten. Ferner konnte noch Edukt (72.0 mg, 126 µmol, 16%) reisoliert werde.

DC: $R_f = 0.79$ (PE/AcOEt3:1).

UV (CH₃CN): λ_{max} (lg ε) = 205.0 (4.686), 227.0 (4.034), 255.5 (4.344), 265.0 (4.287), 288.5 (3.794), 299.5 (3.816) nm.

IR (Film): $\tilde{\nu}$ = 2918, 2895, 2850, 1446, 1274, 1117, 1071, 749, 724, 620, 570 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.05, 0.08 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.85 (t, J = 7.2 Hz, 3 H, 9^{''}-H₃), 0.88 (s, 9 H, SiC(CH₃)₃), 0.95 (d, J = 6.7 Hz, 3 H, 2^{''}-CH₃), 1.43 (s, 9 H, CO₂C(CH₃)₃), 1.28–1.63 (m, 7 H, 4^{''}-H_A, 5^{''}-H₂, 6^{''}-H₂, 8^{''}-H₂), 1.77–1.85 (m, 2 H, 2^{''}-H, 4[']-H_B), 1.95 (dd, J = 14.3, 11.6 Hz, 1 H, 2-H_A), 2.04–2.09 (m, 1 H, 4[']-H_A), 2.25 (dd, J = 14.3, 4.4 Hz, 1 H, 2-H_B), 2.32 (ddd, J = 15.6, 7.2, 2.7 Hz, 1 H, 4[']-H_B), 2.39–2.48 (m, 1 H, 5[']-H), 2.75–2.80 (m, 1 H, 1[']-H), 3.33 (s, 3 H, OCH₃), 3.45–3.51 (m, 3 H, OCH₂CH₂O, 7^{''}-H), 3.62–3.68 (m, 2 H, OCH₂CH₂O), 3.77 (dd, J = 9.7, 1.3 Hz, 1 H, 1^{''}-H), 4.24 (t, J = 7.3 Hz, 1 H, OCH₂CH), 4.37 (dd, J = 10.5, 7.3 Hz, 1 H, OCH₄H_BCH), 4.44 (dd, J = 10.5, 7.5 Hz, 1 H, OCH₄H_BCH), 4.68 (s, 2 H, OCH₂O), 4.83 (td, J = 9.6, 2.9 Hz, 1 H, 3^{''}-H), 5.76–5.81 (m, 1 H), 5.81–5.85 (m, 1 H) (2[']-H, 3[']-H), 7.27–7.33 (m, 2 H, Ar), 7.37–7.40 (m, 2 H, Ar), 7.58–7.64 (m, 2 H, Ar), 7.72–7.78 (m, 2 H, Ar).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.4, -3.4 (2 × SiCH₃), 9.5 (C-9^{''}), 9.7 (C-2^{''}-<u>C</u>H₃), 18.6 (Si<u>C</u>(CH₃)₃), 21.4 (C-5^{''}), 26.2 (SiC(<u>C</u>H₃)₃), 26.7 (C-8^{''}), 28.2 (CO₂C(<u>C</u>H₃)₃), 33.3, 33.8 (C-4^{''}, C-6^{''}), 35.2 (C-4[']), 35.5 (C-2), 42.0 (C-1[']), 42.4 (C-2^{''}), 46.1 (C-5[']), 46.9 (OC(O)OCH₂<u>C</u>H), 59.0 (OCH₃), 66.9 (OCH₂<u>C</u>H₂O), 69.5 (OC(O)O<u>C</u>H₂CH), 71.8 (OCH₂<u>C</u>H₂O), 72.6 (C-1^{''}), 78.2 (C-7^{''}), 80.2 (CO₂<u>C</u>(CH₃)₃), 80.5 (C-3^{''}), 94.1 (OCH₂O), 119.9, 125.0, 127.1, 127.7 (4 × Ar), 131.3, 134.6 (C-2['], C-3[']), 141.2, 143.4 (2 × Ar), 155.3 (O<u>C</u>(O)OCH₂CH), 171.8 (C-1).

MS (ESI): m/z (%) = 817.5 (100) [M + Na]⁺.

ber.: 817.4681 [M + Na]⁺, gef.: 817.4682 (ESI-HRMS).

C₄₆H₇₀O₉Si (795.13).

18.11.3 Alkohol 245

Zu einer Lösung der Epimerenmischung **242** (210 mg, 264 μ mol, 1.00 Äq.) in CH₃CN (8.40 mL) wurde bei –40 °C Nal (158 mg, 1.06 mmol, 4.00 Äq.) und TMSCI (115 mg, 1.06 mmol, 186 μ L, 4.00 Äq.) zugegeben und für 10 min bei –45 °C gerührt. Durch die Zugabe von ges. wässriger Na₂S₂O₃-Lösung (20 mL) und ges. wässriger NaCl-Lösung

(20 mL) wurde die Reaktion abgebrochen. Es wurde mit CH_2Cl_2 (4 × 50 mL) extrahiert, die vereinigten organischen Extrakte wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 1:1) wurde eine Mischung der epimeren Alkohole **245** (127 mg, 180 µmol, 68%) in Form eines gelben Öls erhalten.

DC: *R_f* = 0.76 (PE/AcOEt 3:1).

¹**H-NMR** (600 MHz, CDCl₃, Epimerenmischung): δ (ppm) = 0.06, 0.07, 0.11, 0.13 (4 × s, 4 × 3 H, 4 × SiCH₃), 0.83–0.93 (m, 27 H, 2 × SiC(CH₃)₃, 2^{''}-CH₃, 2 × 9^{''}-H₃), 0.96 (d, J = 6.9 Hz, 3 H, 2^{''}-CH₃), 1.42, 1.42 (2 × s, 2 × 9 H, 2 × CO₂C(CH₃)₃), 1.32–1.87 (m, 20 H, 2 × 2^{''}-H, 2 × 4^{''}-H₂, 2 × 5^{''}-H₂, 2 × 6^{''}-H₂, 2 × 8^{''}-H₂), 1.88–1.96 (m, 2 H, 2 × 2-H_A), 1.98–2.18 (m, 4 H, 2 × 4[']-H₂), 2.35–2.43 (m, 2 H, 2 × 5[']-H), 2.48–2.55 (m, 2 H, 2 × 2-H_B), 2.94–3.03 (m, 2 H, 2 × 1[']-H), 3.46–3.52 (m, 2 H, 2 × 7^{''}-H), 3.82 (dd, J = 8.7, 3.1 Hz, 1 H, 1^{''}-H), 3.94 (dd, J = 9.3, 1.6 Hz, 1 H, 1^{''}-H), 4.24 (t, J = 7.4 Hz, 1 H, OC(O)OCH₂C<u>H</u>), 4.27 (t, J = 7.8 Hz, 1 H, OC(O)OCH₂C<u>H</u>), 4.33–4.45 (m, 2 × 2 H, 2 × OC(O)OC<u>H₂CH</u>), 4.74 (ddd, J = 9.7, 6.0, 3.5 Hz, 1 H, 3^{''}-H), 4.90 (td, J = 8.0, 3.8 Hz, 1 H, 3^{''}-H), 5.68–5.78 (m, 2 H), 5.85–5.93 (m, 2 H) (2 × 2[']-H, 2 × 3[']-H), 7.27–7.32 (m, 4 H, Ar), 7.36–7.41 (m, 4 H, Ar), 7.57–7.62 (m, 4 H, Ar), 7.74–7.76 (m, 4 H, Ar).

¹³**C-NMR** (126 MHz, CDCl₃, Epimerenmischung): δ (ppm) = -3.9, -3.7, -3.6, -2.9 (4 × SiCH₃), 9.4, 9.8, 9.9, 10.4 (2 × C-9΄, 2 × C-2΄ -<u>C</u>H₃), 18.6, 18.8 (Si<u>C</u>(CH₃)₃), 19.8, 21.2 (C-5΄), 26.1, 26.2 (2 × SiC(<u>C</u>H₃)₃), 28.1 (2 × CO₂C(<u>C</u>H₃)₃), 30.1, 30.3, 31.2, 32.8, 33.3, 33.4 (2 × C-4΄, 2 × C-6΄, 2 × C-8΄), 36.1, 36.2 (2 × C-2), 36.8, 36.8 (2 × C-4΄), 40.1 (C-2΄), 41.8, 41.8, 41.9 (2 × C-1΄, C-2΄), 46.7, 46.9 (2 × C-5΄), 46.9, 47.4 (2 × OC(O)OCH₂<u>C</u>H), 69.5 (2 × OC(O)O<u>C</u>H₂CH), 71.3 (C-1΄), 72.9, 73.0 (2 × C-7΄), 73.2 (C-1΄), 79.4, 79.8 (2 × C-3΄), 80.1, 80.2 (2 × CO₂<u>C</u>(CH₃)₃), 120.0, 125.1, 125.1, 125.1, 127.1, 127.1, 127.2, 127.8 (8 × Ar), 130.2, 130.4, 135.3, 135.6 (2 × C-2΄, 2 × C-3΄), 141.3, 141.3, 143.4, 143.5 (4 × Ar), 155.0, 155.4 (2 × O<u>C</u>(O)O), 172.3, 172.4 (2 × C-1).

MS (ESI): m/z (%) = 729.4 (100) [M + Na]⁺, 1438.8 (17) [2M + Na]⁺.

ber.: 729.4157 [M + Na]⁺,

gef.: 729.4155 (ESI-HRMS).

C₄₂H₆₂O₇Si (707.02).

18.11.4 Alkohol 246

Zu einer Lösung der MEM-Ethers **243** (377 mg, 474 µmol, 1.00 Äq.) in CH₃CN (15.0 mL) wurde bei –40 °C Nal (284 mg, 1.80 mmol, 4.00 Äq.) und TMSCI (207 mg, 1.90 mmol, 240 µL, 4.00 Äq.) zugegeben und für 30 min bei –45 °C gerührt. Durch die Zugabe von ges. wässriger Na₂S₂O₃-Lösung (40 mL) und ges. wässriger NaCl-Lösung (40 mL) wurde die Reaktion beendet. Es wurde mit CH₂Cl₂ (4 × 80 mL) extrahiert, die vereinigten organischen Extrakte wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/MTBE 19:1 \rightarrow MTBE) wurde Alkohol **246** (268 mg, 379 µmol, 80%) in Form eines gelben Öls erhalten.

DC: $R_f = 0.74$ (PE/AcOEt 3:1).

IR (Film): $\tilde{\nu}$ = 3405, 2929, 1717, 1367, 1251, 1147, 1107, 1034, 1005, 937, 834, 772, 736 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.05, 0.08 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.80–1.06 (m, 15 H, SiC(CH₃)₃, 2^{′′}-CH₃, 9^{′′}-CH₃), 1.44 (s, 9 H, CO₂C(CH₃)₃), 1.31–1.63 (m, 9 H, 2^{′′}-H, 4^{′′}-H₂, 5^{′′}-H₂, 6^{′′}-H₂, 8^{′′}-H₂), 1.95 (dd, J = 14.4, 11.9, 1 H, 2-H_A), 2.00–2.12 (m, 1 H, 4[′]-H_A), 2.25 (dd, J = 14.6, 3.8 Hz, 1 H, 2-H_B), 2.30–2.38 (m, 1 H, 4[′]-H_B), 2.39–2.47 (m, 1 H, 5[′]-H), 2.71–2.84 (m, 1 H, 1[′]-H), 3.43–3.54 (m, 1 H, 7^{′′}-H), 3.77 (d, J = 9.7 Hz, 1 H, 1^{′′}-H), 4.24 (t, J = 7.2 Hz, 1 H, OC(O)OCH₂CH), 4.42 (dd, J = 7.2, 3.8 Hz, 2 H, OC(O)OCH₂CH), 4.77–4.87 (s, 1 H, 3^{′′}-H), 5.81 (m, 2 H, 2[′]-H, 3[′]-H), 7.29 (tt, J = 7.4, 1.1 Hz, 2 H, Ar), 7.34–7.44 (m, 2 H, Ar), 7.61 (d, J = 7.4 Hz, 2 H, Ar), 7.66–7.79 (m, 2 H, Ar).

MS (ESI): m/z (%) = 673.4 (100) [M + Na]⁺, 1323.8 (10) [2 M + Na]⁺.

ber.: 673.3531 [M + Na]⁺, gef.: 673.3516 (ESI-HRMS).

C₄₂H₆₂O₇Si (707.02).

18.11.5 Säure 247

Zu einer Lösung des *tert*-Butylesters **246** (20.0 mg, 28.3 μ mol, 1.00 Äq.) in CH₃CN (1.00 mL) wurde bei 40 °C Montmorillonit KSF (17.0 mg) portionsweise zugegeben. Nach 2 h wurde vom Feststoff filtriert und das Lösungsmittel im Vakuum entfernt. Säulenfiltration an Kieselgel (PE/AcOEt 3:1 \rightarrow 1:1) wurde die Säure **247** (6.4 mg, 9.83 μ mol, 35%) in Form eines weißen Feststoffes erhalten.

DC: $R_f = 0.52$ (PE/AcOEt 9:1).

C₃₈H₅₄O₇Si (650.92).

18.11.6 Macrolacton 248

Zu einer auf 0 °C gekühlten Lösung der Säure **247** (29.0 mg, 44.6 µmol, 1.00 Äq.) in THF (0.70 mL) wurden nacheinander NEt₃ (27.0 mg, 267 µmol, 37.0 µL, 6.00 Äq.) und TCBzCl (43.0 mg, 178 µmol, 28.0 µL, 4.00 Äq.) zugetropft. Das Kühlbad wurde entfernt und die Reaktionsmischung wurde für 1 h bei Raumtemperatur gerührt. Es wurde mit Toluol (9.00 mL) verdünnt und diese Lösung mit einer Spritzenpumpe über einen Zeitraum von 2 h zu einer 75 °C warmen Lösung von DMAP (54.0 mg, 267 µmol, 10.0 Äq.) in Toluol (140 mL) getropft. Nach erfolgter Zugabe wurde für 2 h bei 75 °C gerührt und die Reaktion durch Abkühlung auf Raumtemperatur beendet. Die organische Phase wurde mit wässriger 1 M wässriger NaH₂PO₄-Lösung (2 × 70 mL) und gesättigter, wässriger NaCl-Lösung gewaschen. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/AcOEt 19:1 \rightarrow 9:1) wurde das Macrolacton **248** (19.6 mg, 31.0 µmol, 70%) in Form eines farblosen Schaums erhalten. **DC**: *R_f* = 0.52 (PE/AcOEt 9:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.05 (s, 3 H, SiCH₃), 0.10 (s, 3 H, SiCH₃), 0.84 (t, J = 7.6 Hz, 3 H, 4-CH₂CH₃), 0.87 (s, 9 H, SiC(CH₃)₃), 0.94 (d, J = 6.6 Hz, 3 H, 9-CH₃), 1.21–1.35 (m, 2 H, 5-H_A, 6-H_A), 1.41–1.49 (m, 1 H, 6-H_B), 1.48–1.53 (m, 2 H, 4-CH₂CH₃), 1.58 (ddd, J = 14.4, 11.9, 2.3 Hz, 1 H, 7-H_A), 1.77–1.85 (m, 2 H, 5-H_B, 9-H), 1.93–2.01 (m, 1 H, 7-H_B), 2.05 (dd, J = 16.8, 1.9 Hz, 1 H, 1-H_A), 2.12–2.18 (m, 1 H, 11-H_A), 2.30 (ddd, J = 16.3, 7.5, 1.5 Hz, 1 H, 11-H_B), 2.44 (dd, J = 16.8, 9.6 Hz, 1 H, 1-H_B), 2.55 (ddt, J = 9.5, 7.5, 2.5 Hz, 1 H, 10a-H), 3.13–3.18 (m, 1 H, 13a-H), 3.85 (dd, J = 9.7, 1.1 Hz, 1 H, 10-H), 4.23 (t, J = 7.4 Hz, 1 H, CH₂CH-Ar), 4.37 (d, J = 7.4 Hz, 2 H, CH₂CH-Ar), 4.68 (dd, J = 11.1, 6.5 Hz, 1 H, 8-H), 5.02–5.15 (m, 1 H, 4-H), 5.71–5.77 (m, 2 H, 12-H, 13-H), 7.29 (tdd, J = 7.6, 3.5, 1.7 Hz, 2 H, Ar), 7.36–7.40 (m, 2 H, Ar), 7.59 (ddq, J = 7.6, 1.7, 0.9 Hz, 2 H, Ar), 7.74 (dt, J = 7.6, 0.9 Hz, 2 H, Ar).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -3.5, -2.8 (2 × SiCH₃), 8.9 (9-<u>C</u>H₃), 9.9 (4-CH₂-C<u>H₃</u>), 18.2 (C-6), 18.6 (Si<u>C</u>(CH₃)₃), 26.2 (SiC(<u>C</u>H₃)₃), 28.5 (4-<u>C</u>H₂CH₃), 30.5 (C-7), 32.1 (C-5), 32.8 (C-1), 35.0 (C-11), 39.8 (C-9), 41.5 (C-13a), 46.5 (C-10a), 46.9 (CH₂<u>C</u>HAr), 69.2 (<u>C</u>H₂CHAr), 71.9 (C-10), 77.5 (C-4), 78.5 (C-8), 120.0, 125.2, 127.1, 128.2 (4 × Ar), 130.3, 136.7 (C-12, C-13), 141.3, 143.5 (Ar), 154.9 (O<u>C</u>(O)OCH₂CH), 173.8 (C-2).

MS (ESI): m/z (%) = 655. 4 (100) [M + Na]⁺, 1287.8 (24) [2M + Na]⁺.

ber.: 655.3425 [M + Na]⁺, gef.: 655.3425 (ESI-HRMS).

C₃₈H₅₂O₆Si (632.90).

19.1.1 Lacton *rac*-251

Zu einer Lösung des Bicyclus *rac*-**250** (10.0 g, 92.5 mmol) in konz. Essigsäure (150 mL) wurde bei 0 °C H₂O₂ (50 mL, 30%ig in H₂O) zugegeben. Es wurde auf Raumtemperatur erwärmt und für 20 h bei dieser Temperatur gerührt. Durch Zugabe von H₂O (300 mL) wurde die Reaktion beendet. Es wurde mit Ethylacetat (4 × 250 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 9:1 \rightarrow 1:1) konnte das Lacton *rac*-**251** (6.93 g, 55.8 mmol, 60%) in Form eines gelben Öls erhalten werden.

DC: $R_f = 0.15$ (PE/AcOEt 4:1).

UV(CH₃CN): (keine Absorption).

IR (Film): \tilde{v} = 3346, 2933, 1740, 1417, 1350, 1296, 1258, 1174, 1043, 1011, 723, 552, 505 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 2.41 (dd, *J* = 17.9, 1.8 Hz, 1 H), 2.61–2.81 (m, 2 H, 6-H₂), 2.74 (dd, *J* = 17.9, 9.8 Hz, 1 H, 2-H_B), 3.42–3.52 (m, 1 H, 3a-H), 4.99–5.17 (m, 1 H, 6a-H), 5.52–5.57 (m, 1 H, 5-H), 5.72–5.80 (m, 1 H, 4-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 33.2 (C-6), 39.5 (C-3), 45.5 (C-3a), 83.0 (C-6a), 129.7 (C-5), 131.2 (C-4), 176.8 (C-2).

MS (ESI): m/z (%) = 147.1 [M + Na]⁺, 163.0 [M + K]⁺, 271.1 [2M + Na]⁺, 287.1 [2M + K]⁺, 303.1 [2M + MeOH + Na]⁺.

ber.: 147.0417 [M + Na]⁺, gef.: 147.0416 (ESI-HRMS).

C₇H₈O₂ (124.14).

19.1.2 Alkohol *rac*-252

Zu einer Lösung von *rac*-**251** (239 mg, 1.93 mmol, 1.00 Äq.) in MeOH (9.00 mL) wurde NaOH (116 mg, 2.89 mmol, 1.50 Äq.) gegeben und 24 h bei 80 °C unter Rückfluss gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand für 3 d am Hochvakuum getrocknet. Der Feststoff wurde zerkleinert und in *tert*-Butanol/MeOH (6.00 mL/6.00 mL) gelöst. Es wurde bei 0 °C NH₄Cl (310 mg, 5.79 mmol, 3.00 Äq.) und Isoharnstoff **199** (1.31 g, 6.56 mmol, 3.40 Äq.) zugegeben und nachfolgend auf Raumtemperatur erwärmt und für 12 h bei dieser Temperatur gerührt. Durch Zugabe von H₂O (25 mL) wurde die Reaktion abgebrochen. Die organische Phase wurde abgelassen und die wässrige Phase mit DCM (3 × 25 mL) extrahiert. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1->1:1) wurde der Alkohol *rac*-**252** (187 mg, 944 µmol, 49%) in Form eines farblosen Öls erhalten. Ferner konnte Edukt *rac*-**251** (57.3 mg, 462 µmol, 24%) reisoliert werden.

DC: *R_f* = 0.30 (PE/AcOEt 3:1).

UV(CH₃CN): (keine Absorption).

IR (Film): $\tilde{\nu}$ = 1726, 1703, 1392, 1366, 1255, 1146, 1073, 1034, 947, 850, 758, 706, 679 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.44 (s, 9 H, CO₂C(CH₃)₃), 2.26–2.41 (m, 1 H, OH), 2.40 (dd, J = 15.2, 5.2 Hz, 2-H_A), 2.51 (dd, J = 15.2, 9.5 Hz, 1 H, 2-H_B), 2.58–2.63 (m, 1 H, 4-H_A), 2.63–2.70 (m, 1 H,4[′]-H_B), 2.93–3.02 (m, 1 H, 1[′]-H), 4.51 (td, J = 6.4, 3.1 Hz, 1 H, 5[′]-H), 5.49–5.54 (m, 1 H), 5.69–5.75 (m, 1 H) (2[′]-H, 3[′]-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 28.1 (CO₂C(<u>C</u>H₃)₃), 34.4 (C-2), 41.3 (C-4[′]), 46.7 (C-1[′]), 72.3 (C-5[′]), 80.9 (CO₂C(CH₃)₃), 129.0, 131.7 (C-2[′], C-3[′]), 173.7 (C-1).

MS (ESI): m/z (%) = 221.1 [M + Na]⁺, 419.3 [2M + Na]⁺.

ber.: 221.1153 [M + Na]⁺, gef.: 221.1148 (ESI-HRMS).

C₁₁H₁₈O₃ (198.26).

19.1.3 Enantiomerenreines Acetat 255

Zu einer Lösung von *rac*-**252** (687 mg, 3.21 mol, 1.00 Äq.) in *n*-Hexan (16.0 mL) wurde Molekularsieb 4 Å (160 mg), Vinylacetat (1.38 g, 1.48 mL, 16.1 mmol, 5.00 Äq.) und Amano Lipase AK aus *pseudomonas fluoreszenz* (161 mg) gegeben und 1 h gerührt. Durch Filtration wurde die Reaktion abgebrochen und das Lösungsmittel im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/AcOEt 19:1 \rightarrow 1:1) wurde das Acetat **255** (218 mg, 906 µmol, 28%) als farbloses Öl erhalten. Alkohol **254** (245 mg, 1.24 mmol, 38%) konnte ebenfalls reisoliert werden.

DC: *R_f* = 0.73 (PE/AcOEt 3:1).

 $[\alpha]_D^{25} = +10.9$ ° (c = 1.0 in CHCl₃).

 $UV(CH_3CN)$: (keine Absorption).

IR (Film): $\tilde{\nu} = 1728$, 1392, 1367, 1315, 1235, 1145, 1053, 1026, 951, 917, 843, 761, 708, 677, 607 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.42 (s, 9 H, CO₂C(C<u>H</u>₃)₃), 2.00 (s, 3 H, OC(O)CH₃), 2.25–2.36 (m, 2 H, 2-H_A, 4'-H_A), 2.42 (dd, *J* = 16.0, 8.1 Hz, 1 H, 2-H_B), 2.66–2.77 (m, 1 H, 4'-H_B), 3.14–3.27 (m, 1 H, 1'-H), 5.42 (dt, *J* = 3.0, 6.7 Hz, 1 H, 5'-H), 5.62–5.67 (m, 1 H), 5.69–5.74 (m, 1 H) (2'-H, 3'-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 21.0 (OC(O)<u>C</u>H₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 34.7 (C-2), 39.4 (C-4΄), 44.5 (C-1), 74.4 (C-5΄), 80.4 (CO₂<u>C</u>(CH₃)₃), 128.4, 132.2 (C-2΄, C-3΄), 170.6, 171.7 (<u>C</u>O₂CH₃, <u>C</u>O₂C(CH₃)₃).

GC: Fluss: 20 PSI; Starttemperatur: 80 °C; Anfängliche Haltezeit: 5 min
Gradient: 5 °C/min; Endtemperatur: 120 °C; Finale Haltezeit: 45 min
(-)-Enantiomer: R_t = 19.444 min; (+)-Enantiomer 255: R_t = 19.859 min

MS (ESI): m/z (%) = 263.1 (21) [M + Na]⁺, 503.3 (100) [2M + Na]⁺.

ber.: 263.1254 [M + Na]⁺, gef.: 263.1256 (ESI-HRMS).

C₁₃H₂₀O₄ (240.30).

19.2 Synthese diverser Tricyclen mittels Heck-Reaktionen

19.2.1 Carbamat 256 und Isomere 257-259

256 + Isomere

Zu einer entgasten Lösung des Vinyliodids **154** (39.2 mg, 73.2 µmol, 1.00 Äq.), Carbamat **210** (49.0 mg, 87.8 µmol, 1.20 Äq.) und TBACI (21.0 mg, 73.2 µmol, 1.00 Äq.) in DMF (1.5 mL) wurde bei Raumtemperatur und unter Lichtausschluss Na₂CO₃ (23.3 mg, 220 µmol, 3.00 Äq.) und Pd(OAc)₂ (9.5 mg, 11.5 µmol, 16 mol%) gegeben und für 22 h gerührt. Durch Zugabe von H₂O (20 mL) wurde die Reaktion beendet. Es wurde mit Et₂O (3 × 20 mL) extrahiert, die organischen Phasen wurden vereinigt, über MgSO₄ getrocknet, filtriert und das Leben wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1→3:1) wurde das Isomerengemisch der Verbindungen **256–259** (49.7 mg, 52.7 µmol, 72%) in Form eines gelben Öls erhalten.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

C₄₈**H**₆₈**BrNO**₁₁ (943.04).

Eine entgasten Lösung der Diastereomerenmischung **250–253** (45.9 mg, 48.7 µmol, 1.00 Äq.), *n*-BuNOAc (29.4 mg, 97.3 µmol, 2.00 Äq.) und HBK **100** (2.3 mg, 2.44 µmol, 5 mol%) in DMF/CH₃CN/H₂O (4.4 mL) wurde in der Mikrowelle 3 h bei 135 °C erwärmt. Es wurde mit H₂O (20 mL) versetzt, mit Et₂O (3 × 20 mL) extrahiert, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 9:1) wurde die Mischung der Regioisomeren **260** und **261** (16.2 mg, 18.8 µmol, 39%) in Form eines gelben Öls erhalten.

DC: *R_f* = 0.62 (PE/AcOEt 3:1).

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

C₄₈**H**₆₇**NO**₁₁**Si** (862.13).

19.2.3 Alkohol 262

Zu einer entgasten Lösung des Vinyliodids **154** (83.0 mg, 162 μ mol, 1.00 Äq.), des Alkohols **211** (73.1 mg, 190 μ mol, 1.20 Äq.) und TBACI (43.3 mg, 190 μ mol, 1.20 Äq.) in DMF (3.0 mL) wurden unter Lichtausschluss Na₂CO₃ (51.5 mg, 486 μ mol, 3.00 Äq.) und Pd(OAc)₂ (6.5 mg, 29.0 μ mol, 18.0 mol%) gegeben. Es wurde 18 h bei Raumtemperatur gerührt und durch Zugabe von H₂O (20 mL) die Reaktion beendet. Dann wurde mit Et₂O (4 × 20 mL) extrahiert. Die vereinigten organischen Phasen

wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/AcOEt 19:1 \rightarrow 5:1) wurde das (Z)-Heck-Produkt **262** (18.7 mg, 24.3 µmol, 15%) als weißer Schaum erhalten. Ferner konnte ein gelbes Öl (54.3 mg, 70.5 µmol, 44%) erhalten werden, welches zum größten Teil aus den entsprechend (*E*)-konfigurierten Kupplungsisomeren bestand.

DC: *R_f* = 0.42 (PE/AcOEt 3:1).

 $[\alpha]_{D}^{20} = -185.2 \circ (c = 1.0 \text{ in CHCl}_{3}).$

IR (Film): $\tilde{\nu}$ = 1726, 1287, 1252, 1136, 1120, 1101, 1037, 1006, 978, 835, 813, 773, 667 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.02, 0.08 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.73 (d, J = 6.8 Hz, 3 H, 2^{''}-CH₃), 0.86 (s, 9 H, SiC(CH₃)₃), 1.26 (d, J = 6.3 Hz, 3 H, 6^{''''}-H₃), 1.39 (s, 9 H, CO₂C(CH₃)₃), 1.43–1.46 (m, 1 H, 2^{''}-H), 2.24 (t, J = 5.7 Hz, 1 H, OH), 2.40 (dd, J = 15.9, 4.9 Hz, 1 H, 2-H_A), 2.51–2.57 (m, 1 H, 1[']-H), 2.60 (dd, J = 15.9, 10.0 Hz, 2-H_B), 3.11–3.14 (m, 1 H, 5[']-H), 3.19 (t, J = 9.5 Hz, 1 H, 4^{''''}-H), 3.283.38 (m, 2 H, 3^{'''}-H₂), 3.49–3.53 (m, 1 H, 2[']-H), 3.54, 3.55 (3 × s, 3 × 3 H, 3 × OCH₃), 3.55–3.65 (m, 2 H, 3^{''''}-H), 3.73 (dd, J = 3.1, 2.0 Hz, 1 H, 2^{''''}-H), 4.00 (d, J = 4.1 Hz, 1 H, 1^{''}-H), 5.40 (d, J = 2.0 Hz, 1 H, 1^{''''}-H), 5.50 (t, J = 11.2 Hz, 1 H, 1^{'''}-H), 5.56 (dt, J = 5.8, 1.6 Hz, 1 H, 4[']-H), 5.94 (dt, J = 5.8, 2.3 Hz, 1 H, 3^{''}-H), 6.45 (d, J = 11.2 Hz, 1 H, 2^{'''}-H), 6.80 (dd, J = 8.8, 2.9 Hz, 1 H, 4^{''''}-H), 7.08 (d, J = 2.9 Hz, 1 H, 6^{''''}-H), 7.45 (d, J = 8.8 Hz, 1 H, 3^{''''}-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -4.9, -4.0 (2 × SiCH₃), 11.9 (C-2′′-<u>C</u>H₃), 17.9 (C-6′′′′′), 18.2 (Si<u>C</u>(CH₃)₃), 25.9 (SiC(<u>C</u>H₃)₃), 28.1 (CO₂C(<u>C</u>H₃)₃), 34.2 (C-2), 40.1 (C-2′′), 44.0 (C-1′), 49.1 (C-2′), 53.2 (C-5′), 58.0, 59.6, 61.0 (3 × OCH₃), 66.3 (C-3′′), 68.9 (C-5′′′′′), 71.3 (C-1′′), 77.2 (C-2′′′′), 80.3 (CO₂<u>C</u>(CH₃)₃), 81.2 (C-3′′′′), 82.0 (C-4′′′′′), 96.2 (C-1′′′′), 116.6 (C-2′′′′), 116.7 (C-4′′′′), 118.0 (C-6′′′′), 129.3 (C-2′′′), 133.3 (C-3′′′′), 133.4 (C-4′), 134.8 (C-3′), 136.4 (C-1′′′). 138.2 (C-1′′′′), 155.4 (C-5′′′′), 172.7 (C-1).

MS (ESI): m/z (%) = 793.4 (100) [M + Na]⁺.

ber.: 791.3160 [M + Na]⁺, gef.: 791.3163 (ESI-HRMS).

C₃₈H₆₁BrO₉Si (769.88).

19.2.4 Tricyclus 263

Zu einer entgasten Lösung von **256** (10.2 mg, µmol, 1.00 Äq.) und *n*-BuNOAc (43.3 mg, 190 µmol, 2.00 Äq.) in DMF/CH₃CN/H₂O (0.5 mL/0.5 mL/0.1 mL) wurde *Hermann-Beller*-Katalysator **100** (0.6 mg, 0.66 µmol, 5 mol%) gegeben und 3 h bei 135 °C in der Mikrowelle erwärmt. Durch Zugabe von H₂O (10 mL) wurde die Reaktion beendet. Es wurde mit Et₂O (4 × 10 mL) extrahiert. Die organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach Säulenchromatographie an Kieselgel (PE/AcOEt 19:1 \rightarrow 1:1) wurde der Alkohol **257** (8.5 mg, 12.3 µmol, 93%) als weißer Feststoffes erhalten.

DC: R_f = 0.38 (PE/AcOEt 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.07, 0.03 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.85 (s, 9 H, SiC(CH₃)₃), 0.88 (d, *J* = 6.8 Hz, 3 H, 2^{''}-CH₃), 1.24 (d, *J* = 6.3, 3 H, 6^{'''}-CH₃), 1.44 (s, 9 H, CO₂C(CH₃)₃), 1.67 (s_{br}, 1 H, OH), 1.84–1.91 (m, 1 H, 2^{''}-H), 2.21 (dd, *J* = 15.9, 11.4 Hz, 1 H, 2-H_A), 2.88 (dd, *J* = 15.9, 3.3 Hz, 1 H, 2-H_B), 3.04–3.09 (m, 2 H, 3[']-H, 3a[']-H), 3.17 (t, *J* = 9.4 Hz, 1 H, 4^{'''}-H), 3.37 (dd, *J* = 10.9, 5.3 Hz, 1 H, 3^{''}-H_A), 3.49–3.53 (m, 1 H, 3^{''}-H_B), 3.52, 3.54, 3.55 (3 × s, 3 × 3 H, 3 × OCH₃), 3.61–3.66 (m, 2 H, 5^{'''}-H, 3^{'''}-H), 3.71 (dd, *J* = 3.3, 1.9, 1 H, 2^{'''}-H), 4.03 (d, *J* = 8.6 Hz, 1 H, 9b[']-H), 4.23 (d, *J* = 6.5 Hz, 1 H, 1^{''}-H), 5.35 (d, *J* = 1.7 Hz, 1 H, 1^{''}-H), 5.48 (d, *J* = 1.9 Hz, 1 H, 1^{'''}-H), 5.69 (dd, *J* = 9.8, 2.8 Hz, 1 H, 4^{''}-H), 6.22 (dd, *J* = 9.8, 2.2 Hz, 1 H, 5[']-H), 6.67 (d, *J* = 2.6 Hz, 1 H, 6[']-H), 6.83 (dd, *J* = 8.2, 2.6 Hz, 1 H, 8[']-H), 7.01 (d, *J* = 8.2 Hz, 1 H, 9[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -5.1, -4.1 (2 × SiCH₃), 12.9 (C-2[']-<u>C</u>H₃), 17.8 (C-6^{''}), 18.1 (Si<u>C</u>(CH₃)₃), 25.1 (SiC(<u>C</u>H₃)₃), 28.2 (CO₂C(<u>C</u>H₃)₃), 40.1 (C-2), 40.5 (C-2^{''}), 44.1 (C-9b[']), 45.3 (C-3a[']), 50.3 (C-3[']), 57.9, 59.2, 60.9 (3 × O<u>C</u>H₃), 65.6 (C-3^{''}), 68.5 (C-5^{'''}), 74.0 (C-1^{''}), 77.4 (C-2^{'''}), 80.5 (CO₂<u>C</u>(CH₃)₃), 80.9 (C-3^{'''}), 82.1 (C-4^{'''}), 95.3 (C-1^{'''}), 114.7 (C-6[']), 114.9 (C-8[']), 125.6 (C-5[']), 127.9 (C-9a[']), 128.9 (C-9[']), 132.3 (C-4^{''}), 133.2 (C-1[']), 133.2 (C-5a[']), 145.4 (C-2[']), 155.2 (C-7[']), 172.2 (C-1).

MS (ESI): m/z (%) = 711.4 (100) [M + Na]⁺, 1399.8 (25) [2M + Na]⁺.

ber.: 711.3899 [M + Na]⁺, gef.: 711.3901 (ESI-HRMS).

C₃₈H₆₀O₉Si (688.96).

19.2.5 Alkohol 258 und 264-268

Zu einer entgasten Lösung des Vinyliodids **154** (39.9 mg, 77.7 µmol, 1.00 Äq.), des Olefins **231** (62.3 mg, 109 µmol, 1.40 Äq.) und TBACI (21.3 mg, 93.2 µmol, 1.20 Äq.) in DMF/CH₃CN/H₂O (5:5:1, 4.85 mL) wurde NaOAC (19.1 mg, 233 µmol, 3.00 Äq.) und Pd(OAc)₂ (1.7 mg, 7.77 µmol, 10.0 mol%) gegeben. Es wurde für 3 h bei 70 °C in der Mikrowelle erhitzt. Durch Zugabe von H₂O (20 mL) wurde die Reaktion beendet. Anschließend wurde mit Et₂O (3×20 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 3:1->2:1) wurde das (*Z*)-Heck-Produkt **258** als nicht trennbare Mischung mit den Isomeren **264-268** in Form eines farblosen Öls (37.7 mg, 39.3 µmol, 51%) erhalten.

DC: *R*_f = 0.12 (PE/Et₂O 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

MS (ESI): m/z (%) = 981.4 (100) [M + Na]⁺, 1937.8 (100) [2M + Na]⁺.

ber.: 979.4573 [M + Na]⁺, gef.: 979.4573 (ESI-HRMS).

C₄₈H₈₁BrO₁₂Si (958.14).

19.2.6 Tricyclus 269 und Regioisomer 270

Zu einer entgasten Lösung der Verbindungeb **258-261** (32.6 mg, 34.0 μ mol, 1.00 Äq.) und TBAOAc (20.5 mg, 68.1 μ mol, 2.00 Äq.) in DMF/CH₃CN/H₂O (5:5:1, 4.85 mL) wurde *Hermann-Beller*-Katalysator (3.2 mg, 3.40 μ mol, 10 mol%) gegeben und für 3 h bei 135 °C in der Mikrowelle erwärmt. Durch Zugabe von H₂O (10 mL) wurde die Reaktion abgebrochen. Es wurde mit MTBE (4 × 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 1:1) wurden die *Heck*-Produkte **269** (13.4 mg, 15.3 μ mol, 45%) und **270** (5.3 mg, 6.04 μ mol, 18%) in Form eines braunen Feststoffes erhalten.

Analytische Daten von 262:

DC: R_f = 0.23 (PE/AcOEt 1:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.01, 0.08 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.72 (d, J = 7.1 Hz, 3 H, 2^{''}-CH₃), 0.83 – 0.93 (m, 12 H, 9^{''}-H₃, SiC(CH₃)₃), 1.18–1.57 (m, 8 H, 4^{''}-H_A, 5^{''}-H₂, 6^{'''}-H₂, 6^{'''}-H₃), 1.45 (s, 9 H, CO₂C(CH₃)₃), 1.46–1.57 (m, 4 H, 4^{''}-H_B, 8^{''}-H₂, OH), 1.59–1.67 (m, 1 H, 2^{''}-H), 2.28 (dd, J = 15.5, 9.9 Hz, 1 H, 2-H_A), 2.49 (dd, J = 15.5, 4.7 Hz, 1 H, 2-H_B), 2.84 (dd, J = 10.0, 4.6 Hz, 1 H, 3[']-H), 3.04–3.07 (m, 1 H, 3a[']-H), 3.17 (t, J = 9.4 Hz, 1 H, 4^{'''}-H), 3.37 (s, 3 H, OCH₃), 3.48–3.58 (m, 11 H, 3 × OCH₃, 3^{''}-H, 7^{''}-H), 3.61–3.76 (m, 7 H, OCH₂CH₂O, 3^{'''}-H, 2^{'''}-H, 5^{'''}-H), 3.93–4.01 (m, 1 H, 9b[']-H), 4.27–4.34 (m, 1 H, 1^{''}-H), 4.73 (s, 2 H, OCH₂O), 5.39 (t, J = 1.7 Hz, 1 H, 1^{''}-H), 5.49 (d, J = 1.9 Hz, 1 H, 1^{'''}-H), 5.65 (dd, J = 9.8, 2.9 Hz, 1 H, 4^{''}-H), 6.24 (dd, J = 9.8, 2.4 Hz, 1 H, 5[']-H), 6.72 (d, J = 2.5 Hz, 1 H, 6[']-H), 6.82 (dd, J = 8.3, 2.5 Hz, 1 H, 8[']-H), 7.02 (d, J = 8.3 Hz, 1 H, 9[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = -5.1, -4.1 (2 × SiCH₃), 6.1 (C-2^{''}-<u>C</u>H₃), 9.5 (C-9^{''}), 17.8 (C-6^{'''}), 18.0 (Si<u>C</u>(CH₃)₃), 21.8 (C-5^{''}), 25.9 (SiC(<u>C</u>H₃)₃), 26.7 (C-8^{''}), 28.1 (CO₂C(<u>C</u>H₃)₃), 33.7 (C-6^{''}), 35.6 (C-4^{'''}), 39.1 (C-2), 42.8 (C-2^{''}), 44.2 (C-9b[']), 44.9 (C-3a[']), 50.4 (C-3[']), 57.9 (OCH₃), 59.0 (OCH₃(MEM)), 59.1 (OCH₃), 60.9 (OCH₃), 66.9 (O<u>C</u>H₂CH₂O), 68.5 (C-5^{'''}), 71.8 (O<u>C</u>H₂CH₂O), 74.3 (C-3^{''}), 75.1 (C-1^{''}), 77.5 (C-2^{'''}), 78.6 (C-7^{''}), 80.8 (CO₂C(CH₃)₃), 80.9 (C-3^{'''}), 82.1 (C-4^{'''}), 94.3 (OCH₂O), 95.3 (C-1^{'''}), 114.3 (C-6[']), 115.4 (C-8[']), 126.0 (C-5[']), 128.1 (C-9a[']), 128.9 (C-9[']), 130.2 (C-5a[']), 132.0 (C-1[']), 133.1 (C-4[']), 146.3 (C-2[']), 155.4 (C-7[']), 171.8 (C-1).

MS (ESI): m/z (%) = 899.6 (100) [M +Na]⁺, 1777.1 (8) [2M + Na]⁺.

ber.: 899.5311 [M + Na]⁺, gef.: 899.5324 (ESI-HRMS).

C₄₈H₈₀O₁₂Si (877.23).

Analytische Daten von 263:

DC: R_f = 0.29 (PE/AcOEt 1:1)

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = -0.07, 0.03 (2 × s, 3 × 3 H, 2 × SiCH₃), 0.87 (s, 9 H, SiC(CH₃)₃), 0.88 (t, *J* = 7.3 Hz, 3 H, 9^{''}-CH₃), 0.95 (d, *J* = 6.7 Hz, 3 H, 2^{''}-CH₃), 1.16 (s, 9 H, CO₂C(CH₃)₃), 1.24 (d, *J* = 6.4 Hz, 3 H, 6^{'''}-H₃), 1.19–1.62 (m, 8 H, 4^{''}-H₂, 5^{''}-H₂, 6^{''}-H₂, 8^{''}-H₂), 1.63–1.69 (m, 1 H, 2^{''}-H), 2.30 (d, *J* = 16.0 Hz, 1 H, 3[']-H_A), 2.82 (dd, *J* = 16.0, 7.3 Hz, 1 H, 3[']-H_B), 2.89 (d, *J* = 15.0 Hz, 1 H, 2-H_A), 2.96 (d, *J* = 15.0 Hz, 1 H, 2-H_B), 3.11 (d, *J* = 4.2 Hz, 1 H, OH), 3.16 (t, *J* = 9.4 Hz, 1 H, 4^{'''}-H), 3.22–3.25 (m, 1 H, 3a[']-H), 3.37 (s, 3 H, OCH₃ (MEM)), 3.49–3.58 (m, 13 H, 3 × OCH₃ (rham), OC<u>H₂CH₂O, 3^{''}-H, 7^{''}-H</u>), 3.60–3.65 (m, 2 H, 3^{'''}-H, 5^{'''}-H), 3.68 (m, 1 H, 2^{'''}-H), 3.69–3.74 (m, 3 H, OCH₂C<u>H₂O</u>, 9b[']-H), 4.25 (d, *J* = 8.7 Hz, 1 H, 1^{''}-H), 4.69–4.77 (m, 2 H, OCH₂O), 5.45 (d, *J* = 1.9 Hz, 1 H, 1^{'''}-H), 5.50 (dd, *J* = 9.7, 2.2 Hz, 1 H, 4[']-H), 6.26 (dd, *J* = 9.7, 2.6 Hz, 1 H, 5[']-H), 6.69 (d, *J* = 2.6 Hz, 1 H, 6[']-H), 6.80 (dd, *J* = 8.2, 2.6 Hz, 1 H, 8[']-H), 7.05 (d, *J* = 8.2 Hz, 1 H, 9[']-H).

¹³**C-NMR** (151 MHz, CDCl₃): δ (ppm) = -5.0, -4.9 (2 × SiCH₃), 8.8 (C-2^{''}-CH₃), 9.5 (C-9^{''}), 17.8 (C-6^{'''}), 18.1 (Si<u>C</u>(CH₃)₃), 21.9 (C-5^{''}), 25.7 (SiC(<u>C</u>H₃)₃), 26.7 (C-8^{''}), 27.7 (CO₂C(<u>C</u>H₃)₃), 33.6 (C-6^{''}), 33.7 (C-2), 35.4 (C-4^{''}), 37.0 (C-3a[']), 38.3 (C-3[']), 42.4 (C-2^{''}), 50.9 (C-9b[']), 57.9 (C-3^{'''}-OCH₃), 59.0 (OCH₃ (MEM)), 59.2 (C-2^{'''}-O<u>C</u>H₃), 60.9 (C-4^{'''}-OCH₃), 66.9 (OCH₂<u>C</u>H₂O), 68.6 (C-5^{'''}), 69.5 (C-3^{''}), 71.8 (O<u>C</u>H₂CH₂O), 72.5 (C-1^{''}), 77.5 (C-2^{'''}), 78.5 (C-7^{''}), 80.8 (C-3^{'''}), 81.0 (CO₂<u>C</u>(CH₃)₃), 82.0 (C-4^{'''}), 94.2

(OCH₂O), 95.3 (C-1^{'''}), 114.1, 144.2 (C-8['], C-6[']), 126.5 (C-9a[']), 126.6 (C-5[']), 130.0 (C-9[']), 130.8 (C-1[']), 134.1 (C-4[']), 134.7 (C-5a[']), 140.9 (C-2[']), 156. (C-7[']), 171.0 (C-1).

MS (ESI): m/z (%) = 899.6 (100) [M + Na]⁺.

ber.: 899.5311 [M + Na]⁺, gef.: 899.5314 (ESI-HRMS).

C48H80O12Si (877.23).

19.2.7 D-Forosamin-derivat 273 und Isomere

Zu einer Lösung des α -Glycosids **271** (5.2 mg, 7.30 μ mol, 1.50 Äq.) und des Vinyliodids **154** (2.5 mg, 4.87 μ mol, 1.00 Äq.) in DMF (0.75 mL) wurde bei Raumtemperatur NaOAC (1.1 mg, 13.5 μ mol, 3.00 Äq.) und TBACl (1.7 mg, 7.30 μ mol, 1.50 Äq.) versetzt und gründlich entgast. Es wurde auf -20 °C abgekühlt, Pd(OAc)₂ (0.1 mg) zugesetzt und nach 1 h auf 0 °C erwärmt. Es wurde 3 d bei dieser Temperatur gerührt und die Reaktion durch Zugabe von H₂O (1 mL) beendet. Es wurde mit MTBE (2 mL) extrahiert. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 3:1 \rightarrow AcOEt) wurde das Heck-Produkt **273** (2.5 mg, 2.28 μ mol, 47%) als Isomerengemisch als gelbes Öl erhalten.

DC: R_f = 0.30 (PE/AcOEt 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

 $C_{54}H_{90}BrN_3O_{13}Si$ (1097.29).

19.2.8 D-Forosamin-derivat 274 und Isomere

Zu einer Lösung des β -Glycosids **272** (10.7 mg, 15.0 μ mol, 1.50 Äq.) und des Vinyliodids **154** (6.0 mg, 11.7 μ mol, 1.00 Äq.) in DMF (1.5 mL) wurde bei Raumtemperatur NaOAC (2.9 mg, 35.1 μ mol, 3.00 Äq.) und TBACI (2.7 mg, 11.7 μ mol, 1.50 Äq.) versetzt und gründlich entgast. Es wurde auf -20 °C abgekühlt, Pd(OAc)₂ (0.1 mg) zugesetzt und nach 1 h auf 0 °C erwärmt. Es wurde 5 d bei dieser Temperatur gerührt und die Reaktion durch Zugabe von H₂O (2 mL) beendet. Es wurde mit MTBE (5 mL) extrahiert. Die organische Phase wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 3:1 \rightarrow AcOEt) wurde das Heck-Produkt **273** (6.8 mg, 6.20 μ mol, 53%) als Isomerengemisch als gelbes Öl erhalten.

DC: R_f = 0.30 (PE/AcOEt 3:1)

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

C₅₄H₉₀BrN₃O₁₃Si (1097.29).

19.3 Heck-Reaktion mit dem enantiomerenreinen Cyclopenten 289

19.3.1 Acetat 276

Zu einer Lösung des Vinyliodids **154** (109 mg, 212 µmol, 1.00 Äq.) und des Cyclopentens **255** (61.1 mg, 254 µmol, 1.20 Äq.) DMF (5.00 mL) wurde bei Raumtemperatur TBACI (57.9 mg, 254 µmol, 1.20 Äq.) zugegeben und entgast. Anschließend wurde Na₂CO₃ (80.8 mg, 762 µmol, 3.00 Äq.)und Pd(OAc)₂ (2.9 mg, 12.7 µmol, 5 mol%) unter Lichtausschluss zugegeben und für 12 h gerührt. Durch Zugabe von Wasser (20 mL) wurde die Reaktion abgebrochen. Es wurde mit Et₂O (4 × 20 mL) extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 5:1 \rightarrow 3:1) wurde das Produkt der Heck-Reaktion **276–279** (91.7 mg, 147 µmol, 69%) als chromatographischen.

Analytische Daten von 290:

DC: *R_f* = 0.41 (PE/AcOEt 3:1)

UV (MeOH): λ_{max} (lg ε) = 205.0 (4.380), 215.0 (4.384), 288.0 (3.071) nm.

UV (Hexan/*iso*-Propanol 98:2): λ_{max} (lg ε) = 205.0 (4.378), 215.0 (4.386), 290.0 (3.259) nm.

IR (Film): \tilde{v} = 1730, 1367, 1233, 1138, 1120, 1100, 1046, 1006, 987, 953 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.19 (d, J = 6.2 Hz, 3 H, 6^{····}-H₃), 1.38 (s, 9 H, CO₂C(CH₃)₃), 1.93 (s, 3 H, OC(O)CH₃), 2.20–2.34 (m, 2 H, 2-H₂), 2.34–2.51 (m, 1 H, 1[·]-H), 3.16 (t, J = 9.4 Hz, 1 H), 3.29–3.44 (m, 1 H, 5[·]-H), 3.50–3.58 (m, 10 H, 3 × OCH₃, 5^{····}-H), 3.61 (dd, J = 9.4, 3.2 Hz, 1 H, 3^{····}-H), 3.75 (dd, J = 3.3, 1.9 Hz, 1 H, 2^{····}-H), 5.42–5.54 (m, 2 H, 1^{···}-H, 1^{····}-H), 5.68 (ddd, J = 6.6, 2.4, 1.5 Hz, 1 H, 2^{····}-H), 5.91–6.04 (m, 2 H, 3[·]-H, 4[·]-H), 6.50 (d, J = 11.3 Hz, 1 H, 2^{···}-H), 6.83 (dd, J = 8.8, 2.9 Hz, 1 H, 4^{····}-H), 6.95 (d, J = 2.9 Hz, 1 H, 6^{····}-H), 7.45 (d, J = 8.8 Hz, 1 H, 3^{····}-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.7 (C-6^{····}), 20.9 (OC(O)<u>C</u>H₃), 28.0 (CO₂C(<u>C</u>H₃)₃), 33.7 (C-2), 45.1 (C-1[′]), 48.5 (C-5[′]), 57.9 (OCH₃), 59.4 (OCH₃), 61.0 (OCH₃), 68.8 (C-5^{····}), 77.2 (C-2^{····}), 78.6 (C-2[′]), 80.5 (CO₂<u>C</u>(CH₃)₃), 80.9 (C-3^{····}), 81.9 (C-4^{····}), 95.3 (C-1^{····}), 116.0 (C-2^{···}), 117.0 (C-4^{····}), 117.9 (C-6^{···}), 130.4 (C-3^{·*}), 131.1 (C-2^{···}), 133.3 (C-3^{···}), 134.3 (C-1^{···}), 138.1 (C-1^{···}), 140.7 (C-4^{·*}), 155.1 (C-5^{···}), 170.2 (O<u>C</u>(O)CH₃), 171.5 (C-1).

HPLC (analytisch):	Säule:	Chiralpak [®] IA
	Eluens:	<i>n</i> -Hexan / 2-Propanol = 98:2
	Fluss:	0.8 mL / min
	t _R :	16.4 min

MS (ESI): m/z (%) = 649.2 (100) [M + Na]⁺.

ber.: 647.1826 [M + Na]⁺, gef.: 647.1826 (ESI-HRMS).

C₃₀**H**₄₁**BrO**₉ (625.55).

19.3.2 (E)-Isomer 279

DC: *R_f* = 0.41 (PE/AcOEt 3:1).

UV (MeOH): λ_{max} (lg ε) = 219.0 (4.078), 254.0 (3.828), 301.0 (3.088) nm.

UV (Hexan/*iso*-Propanol 98:2): λ_{max} (lg ε) = 219.0 (4.310), 254.0 (4.061), 301.0 (3.311) nm.

lg ε (220.0): 4.309

IR (Film): $\tilde{v} = 1731$, 1461, 1367, 1234, 1147, 1120, 1101, 1047, 1007, 981, 919, 802 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.23 (d, *J* = 6.4 Hz, 3 H, 6^{····}-H₃), 1.40 (s, 9 H, CO₂C(CH₃)₃), 2.03 (s, 3 H, OAc), 2.33 (dd, *J* = 16.7, 8.2 Hz, 1 H, 2-H_A), 2.40 (dd, *J* = 16.7, 7.7 Hz, 1 H, 2-H_B), 2.83–2.89 (m, 1 H, 1[′]-H), 3.17 (t, *J* = 9.3 Hz, 1 H, 4^{····}-H), 3.51–3.54

(m, 4 H, 2'-H, OCH₃), 3.54 (s, 6 H, 2 × OCH₃), 3.58 (dd, J = 9.3, 6.4 Hz, 1 H, 5'''-H), 3.63 (dd, J = 9.3, 3.4 Hz, 1 H, 3'''-H), 3.73 (t, J = 2.7 Hz, 1 H, 2'''-H), 5.48 (s, 1 H, 1'''-H), 5.63 (dd, J = 6.5, 2.6 Hz, 1 H, 5'-H), 5.84 (dd, J = 15.6, 9.5 Hz, 1 H, 1''-H), 6.01–6.04 (m, 1 H, 4'-H), 6.09 (dd, J = 5.8, 2.8 Hz, 1 H, 3'-H), 6.66 (d, J = 15.6 Hz, 1 H, 2''-H), 6.82 (dd, J = 8.8, 3.0 Hz, 1 H, 4'''-H), 7.18 (d, J = 3.0 Hz, 1 H, 6'''-H), 7.40 (d, J = 8.8 Hz, 1 H, 3'''-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.9 (C-6^{····}), 21.2 (OC(O)<u>C</u>H₃), 28.0 (CO₂C(<u>C</u>H₃)₃), 32.4 (C-2), 41.1 (C-1[′]), 50.7 (C-2[′]), 57.9, 59.3, 61.0 (3 × OCH₃), 68.7 (C-5^{····}), 77.2 (C-2^{····}), 78.6 (C-5[′]), 80.5 (CO₂<u>C</u>(CH₃)₃), 80.9 (C-3^{····}), 81.9 (C-4^{····}), 95.4 (C-1^{····}), 114.6 (C-6^{····}), 115.7 (C-2^{····}), 116.9 (C-4^{····}), 130.2 (C-4[′]), 130.8 (C-2^{···}), 133.2 (C-1^{···}), 133.6 (C-3^{····}), 137.9 (C-1^{····}), 140.5 (C-3[′]), 155.7 (C-5^{····}), 170.5, 171.5 (C-1, <u>CO₂CH₃).</u>

MS (ESI): m/z (%) = 649.2 (100) [M + Na]⁺.

ber.: 647.1826 [M + Na]⁺,

gef.: 647.1826 (ESI-HRMS).

C₃₀**H**₄₁**BrO**₉ (625.55).

19.3.3 Tricyclus 280

Zu einer entgasten Lösung des Acetats 276 (81.1 mg, 130 µmol, 1.00 Äq.) und *n*-Bu₄NOAc (78.1 mg, 259 μmol, 2.00 Äq.) in DMF/CH₃CN/H₂O (5:5:1, 4.4 mL) wurde Hermann-Beller-Katalysator (6.1 mg, 6.48 µmol, 5 mol%) gegeben und für 3 h in der Mikrowelle auf 135 °C erwärmt. Durch Abkühlen auf Raumtemperatur wurde die Reaktion beendet. Es wurde H₂O (20 mL) zur Reaktionslösung gegeben und anschließend mit Et₂O (3 × 20 mL) extrahiert. Es wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 3:1) konnte der Tricyclus **280** (28.2 mg, 57.9 µmol, 45%) in Form eines farblosen Öls erhalten werden.

DC: R_f = 0.33 (PE/AcOEt 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.23 (d, J = 5.8 Hz, 3 H, 6^{''}-H₃), 1.43 (s, 9 H, CO₂C(CH₃)₃), 2.35 (d, J = 7.4 Hz, 2 H, 2-H₂), 2.91–2.98 (m, 1 H, 3[']-H), 2.98–3.02 (m, 1 H, 9b-H), 3.16 (dd, J = 10.4, 8.4 Hz, 1 H, 4^{''}-H), 3.51, 3.53, 3.54 (3 × OCH₃), 3.56–3.66 (m, 2 H, 3^{''}-H, 5^{''}-H), 3.70 (dd, J = 3.4, 2.0 Hz, 1 H, 2^{''}-H), 4.05–4.08 (m, 1 H, 3a-H), 5.47 (d, J = 2.0 Hz, 1 H, 1^{''}-H), 5.65–5.68 (m, 1 H, 1[']-H), 5.73–5.81 (m, 2 H, 2[']-H, 4[']-H), 6.22 (dd, J = 9.8, 2.1 Hz, 1 H, 5[']-H), 6.69 (d, J = 2.6 Hz, 1 H, 6[']-H), 6.83 (dd, J = 8.3, 2.6 Hz, 1 H, 8[']-H), 7.02 (d, J = 8.3 Hz, 1 H, 9[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.8 (C-6^{''}), 28.1 (CO₂C(<u>C</u>H₃)₃), 40.7 (C-2), 43.6 (C-3[']), 45.1 (C-3a[']), 51.0 (C-9b[']), 57.8, 59.1, 60.9 (3 × OCH₃), 68.5 (C-5^{''}), 77.3 (C-2^{''}), 80.5 (CO₂C(<u>C</u>H₃)₃), 80.9 (C-3^{''}), 82.0 (C-4^{''}), 95.2 (C-1^{''}), 114.6 (C-6[']), 115.0 (C-8[']), 125.3 (C-5[']), 128.3 (C-9a[']), 128.7 (C-9[']), 131.6, 132.7 (C-2['], C-4[']), 133.0 (C-5a[']), 134.4 (C-1[']), 155.1 (C-7[']), 171.8 (C-1).

C₂₈H₃₈O₇ (486.60).

214 Experimentelle Vorschriften

19.3.4 Alkohol 281

281

Zu einer Lösung des Olefins **276** (108 mg, 173 µmol, 1.00 Äq.) in MeOH (10.0 mL) wurde bei 0 °C K₂CO₃ (11.9 mg, 86.3 µmol, 0.50 Äq.) gegeben und für 3 h bei 0 °C gerührt. Anschließend wurde wiederum bei 0 °C K₂CO₃ (6.0 mg, 43.0 µmol, 0.25 Äq.) zugegeben und 2 h gerührt. Nach weiteren Zugaben von K₂CO₃ nach 2 h (6.0 mg, 43.0 µmol, 0.25 Äq.), nach 5 h (6.0 mg, 43.0 µmol, 0.25 Äq.) wurde die Reaktion durch Zugabe von ges. NH₄Cl-Lösung (20 mL) beendet. Es wurde mit CH₂Cl₂ (4 × 20 mL) extrahiert, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulechchromatographischer Reinigung an Kieselgel (PE/AcOEt 3:1) wurde der Alkohol **296** (33.3 mg, 57.1 µmol, 33% (43% brsm) sowie das Acetat **290** (23.6 mg) als Isomerenmischung isoliert werden. Der Alkohol wurde wegen seiner schlechten Lagerfähigkeit direkt in der nächsten Reaktion umgesetzt.

DC: R_f = 0.21 (PE/AcOEt 3:1).

IR (Film): $\tilde{\nu}$ = 1730, 1367, 1233, 1138, 1120, 1100, 1046, 1006, 987, 953 cm⁻¹.

MS (ESI): m/z (%) = 605.1 (100) [M + Na]⁺, 1189.3 (32) [2M + Na]⁺.

ber.: 605.1721 [M + Na]⁺, gef.: 605.1718 (ESI-HRMS).

C28H39BrO8 (583.51).

19.3.5 Keton 282

Zu einer entgasten Lösung des Alkohols **281** (33.3 mg, 57.1 μ mol, 1.00 Äq.) und *n*-BuNOAc (34.4 mg, 114 μ mol, 2.00 Äq.) in DMF/CH₃CN/H₂O (5:5:1, 4.4 mL) wurde

Hermann-Beller-Katalysator (2.7 mg, 2.86 µmol, 5 mol%) gegeben und anschließend für 3 h in der Mikrowelle auf 135 °C erwärmt. Es wurde mit H₂O (10 mL) versetzt und mit Et₂O (4 × 10 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an SiO₂ (PE/AcOEt 3:1→AcOEt) wurde das Keton **297** (12.9 mg, 25.7 mmol, 45%) in Form eines weißen Schaums erhalten.

DC: R_f = 0.43 (PE/AcOEt 3:1)

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 1.25 (d, J = 6.3 Hz, 3 H, 6^{''}-H), 1.41 (s, 9 H, CO₂C(CH₃)₃), 2.36 (dd, J = 4.9, 17.8 Hz, 1 H, 1[']-H_A), 2.48–2.44 (m, 2 H, 9b[']-H), 2.51 (d, J = 17.8 Hz, 1 H, 2-H_A), 2.59 (dd, J = 4.6, 17.2 Hz, 1 H, 1[']-H_B), 2.73 (dd, J = 9.2, 18.6 Hz, 1 H, 2-H_B), 3.23–3.14 (m, 2 H, 4^{''}-H, 3a[']-H), 3.44–3.36 (m, 1 H, 3[']-H), 3.53, 3.55, 3.55 (3 × s, 9 H, 3 × OMe), 3.60–3.68 (m, 2 H, 2^{''}-H, 5^{''}-H), 3.71 (dd, J = 2.0, 3.4 Hz, 1 H, 3^{''}-H), 5.49 (d, J = 1.9 Hz, 1 H, 1^{''}-H), 5.64 (d, J = 9.7 Hz, 1 H, 4[']-H), 6.38 (dd, J = 2.8, 9.7 Hz, 1 H, 5[']-H), 6.81 (d, J = 2.5 Hz, 1 H, 6[']-H), 6.85 (dd, J = 2.5, 8.2 Hz, 1 H, 8[']-H), 6.92 (d, J = 8.2 Hz, 1 H, 9[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 17.9 (C-6^{''}), 28.1 (CO₂C(<u>C</u>H₃)₃), 32.5 (C-1[']), 34.4 (C-3[']), 42.7 (C-1[']), 43.8 (C-3a[']), 48.7 (C-9b[']), 57.9, 59.2, 60.9 (3 × OCH₃), 68.6 (C-5^{''}), 77.4 (C-2^{''}), 80.9 (C-3^{''}), 81.0 (CO₂C(CH₃)₃), 82.0 (C-4^{''}), 95.4 (C-1^{''}), 115.0, 115.4 (C-6['], C-8[']), 125.5 (C-5[']), 128.0, 128.7, 129.0, 131.7 (C-4['], C-5a['], C-9['], C-9a[']), 156.1 (C-7[']), 170.9 (C-1), 216.6 (C-2[']).

MS (ESI): m/z (%) = 525.3 (57) [M + Na]⁺, 557.3 (13) [M + MeOH + Na]⁺, 1027.5 (100) [2M + Na]⁺, 1059.6 (53) [2M + MeOH + Na]⁺.

> ber.: 525.2459 [M + Na]⁺, gef.: 525.2455 (ESI-HRMS).

C₂₈H₃₈O₈ (502.60).

19.3.6 Pyridinderivat 283 und Isomere

Eine Lösung des Vinyliodids **154** (89.7 mg, 37.4 µmol, 1.00 Äq.) und des Cyclopentens **289** (127 mg, 37.4 µmol, 1.00 Äq.) in DMF (5 mL) wurde gründlich entgast. Es wurde bei Raumtemperatur TBACI (103 mg, 37.4 µmol, 1.00 Äq.), Ag₃CO₄ (156 mg, 37.4 mg, 1.00 Äq.) und Pd(OAc)₂ (8.4 mg, 3.74 µmol, 10 mol%) zugegeben und anschließend in der Mikrowelle für 2 h auf 75 °C erwärmt. Durch Abkühlung auf Raumtemperatur wurde die Reaktion beendet. Es wurde H₂O (5 mL) zugesetzt und mit Et₂O (4 × 5 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1) wurde das Heck-Produkt als Isomerenmischung (47.1 mg, 104 µmol, 28%) in Form eines farblosen Öls erhalten.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = Wegen der vorliegenden Diastereomerenmischung ist das Spektrum zu komplex für eine Zurdnung der Signale.

C₂₁H₂₆BrNO₅ (451.34).

20 Synthese des Alkohols 284

20.1.1 Methyl (S)-(+)-3-benzyloxy-2-methylpropionat 288

Zu einer Lösung von Methyl (*S*)-(+)-3-hydroxy-2-methylpropionat **287** (2.25 g, 19.1 mmol, 1.00 Äq.) und Benzyltrichloracetimidat (3.50 mL, 4.81 g, 19.1 mmol, 1.00 Äq.) in CH₂Cl₂ (34.0 mL) und Cyclohexan (34.0 mL) wurde bei 0 °C TfOH (0.27 mL) gegeben, auf Raumtemperatur erwärmt und für 18 gerührt. Durch Entfernung des Lösungsmittels wurde die Reaktion beendet. Der Rückstand wurde in PE/Et₂O (70 mL, 6:1) aufgenommen, filtriert und mit PE/Et₂O (6:1) gewaschen. Das Filtrat wurde mit ges. wässriger NaHCO₃-Lösung (50 mL) und ges. wässriger NaCl-Lösung gewaschen, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 9:1) wurde der Benzylether **288** (2.09 g, 10.0 mmol, 53%) in Form eines farblosen Öls erhalten.

DC: R_f = 0.18 (PE/AcOEt 3:1).

 $[\alpha]_D^{25}$ = +12.4 ° (c = 1.7 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 205.0 (4.014), 258.0 (3.351), 278.0 (3.229), 315.0 (3.049) nm.

IR (Film): $\tilde{\nu}$ = 1735, 1454, 1435, 1363, 1247, 1198, 1175, 1153, 1091, 1028, 991, 736, 697 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 1.17 (d, *J* = 7.1 Hz, 3 H, 2-C<u>H₃</u>), 2.71–2.84 (m, 1 H, 2-H), 3.48 (dd, *J* = 9.2, 5.9 Hz, 1 H, 3-H_A), 3.65 (dd, *J* = 9.2, 7.4 Hz, 1 H, 3-H_B), 3.68 (s, 3 H, OCH₃), 4.51 (s, 2 H, OC<u>H₂Ph</u>), 7.16–7.38 (m, 5 H, Ph).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 14.1 (C-2-<u>C</u>H₃), 40.2 (C-2), 51.7 (OCH₃), 72.0 (CH₂-Ph), 73.1 (C-3), 127.5, 127.5, 128.3, 138.1 (4 × Ph), 175.1 (C-1).

MS (ESI): m/z (%) = 231.1 (56) [M + Na]⁺, 439.2 (100) [2M + Na]⁺.

ber.: 231.0992 [M + Na]⁺, gef.: 231.0991 (ESI-HRMS).

 $C_{12}H_{16}O_3$ (208.3).

20.1.2 (25,35)-1-(Benzyloxy)-2-methylhex-5-en-3-ol 289

Zu einer Lösung des Methylesters **288** (1.78 g, 8.55 mmol, 1.00 Äq.) in Toluol (50.0 mL) wurde bei -95 °C langsam DIBAL-H (1 M Lösung in Hexan, 11.1 mL, 11.1 mmol, 1.30 Äq.) und 1 h bei -95 °C gerührt. Die Reaktion wurde durch Zugabe von Essigester (15.0 mL) beendet. Es wurde auf Raumtemperatur erwärmt, auf 1 M wässrige Zitronensäure-Lösung (40 mL) gegeben und mit AcOEt (4 × 50 mL) extrahiert. Die vereinigten organischen Phasen wurden mit ges. wässriger NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel wurde im Vakuum entfernt. Der Aldehyd (1.49 g, 8.33 mmol, quant.) wurde als farbloses Öl erhalten und wurde direkt in der nächsten Reaktion eingesetzt.

Eine Lösung von SnCl₄ (1 M in CH₂Cl₂, 8.55 mmol, 1.03 Äq.) wurde mit CH₂Cl₂ (100 mL) verdünnt und auf -78 °C gekühlt. Es wurde Allyltributylzinn (2.60 mL, 8.55 mmol, 1.03 Äq.) zugetropft und für 30 min bei -78 °C gerührt. Nachfolgend wurde auf -90 °C gekühlt, eine Lösung des Aldehyds (1.49 g, 8.33 mmol, 1.00 Äq.) in CH₂Cl₂ (20 mL) zugetropft und für 15 min bei dieser Temperatur gerührt. Durch Zugabe von 1 M wässriger KF-Lösung (100 mL) wurde die Reaktion abgebrochen. Es wurde auf Raumtemperatur erwärmt und mit Hexan (100 mL) extrahiert. Die organische Phase wurde mit ges. wässriger NaHCO₃-Lösung (100 mL) und ges. wässriger NaCl-Lösung (100 mL) gewaschen. Anschließend wurde über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 4:1) wurde das Olefin **289** (1.41 g, 6.40 mmol, 78% über 2 Stufen) in Form eines farblosen Öls erhalten.

DC: R_f = 0.66 (PE/AcOEt 3:1).

 $[\alpha]_{D}^{21} = +6.7^{\circ}$ (c = 0.84 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 258.0 (2.204), 253.0 (2.139) nm.

IR (Film): $\tilde{\nu}$ = 2958, 2909, 2856, 1415, 1363, 1091, 1074, 1028, 987, 960, 910, 735, 696, 608, 510 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.91 (t, *J* = 3.8 Hz, 3 H, 2-CH₃), 1.83–1.90 (m, 1 H, 2-H), 2.14–2.20 (m, 1 H, 4-H_A), 2.30–2.36 (m, 1 H, 4-H_B), 3.23 (s_{br}, 1 H, OH), 3.48 (dd, *J* = 7.3, 9.4 Hz, 1 H, 1-H_A), 3.55–3.60 (m, 2 H, 1-H_B, 3-H), 4.50 (s, 2 H, OCH₂Ph), 5.06–5.12 (m, 2 H, 6-H₂), 5.82–5.92 (m, 1 H, 5-H), 7.23–7.34 (m, 5 H, 5 × Ph).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 13.9 (C-2-<u>C</u>H₃), 37.9 (C-2), 39.4 (C-4), 73.4 (CH₂Ph), 74.7 (C-1), 74.9 (C-3), 117.1 (C-6), 127.5 (Ph), 127.6 (Ph_p), 128.3 (Ph), 135.1 (C-5), 137.7 (Ph_i)

MS (ESI): m/z (%) = 221.1 (11) [M + H]⁺, 243.1 (9) [M + Na]⁺, 463.3 (100) [2M + Na]⁺.

ber.: 221.1536 [M + H]⁺, gef.: 221.1538 (ESI-HRMS).

C₁₄H₂₀O₂ (220.31).

20.1.3 (S)-Pent-1-en-3-yl-3,5-dinitrobenzoat 296

Zu einer Lösung von *rac*-Pent-1-en-3-ol **293** (5.07 g, 58.9 mmol, 1.00 Äq.) wurde in *n*-Hexan (150 mL) gelöst und mit MS 4 Å (2.50 g), Vinylacetat (15.2 g, 16.3 mL, 177 mmol, 3.00 Äq.) und Amano Lipase AK aus *pseudomonas fluoreszenz* (2.50 g) versetzt und für 6 h bei Raumtemperatur gerührt. Es wurde filtriert, mit CH_2Cl_2 (150 mL) gespült. Diese Lösung von (*S*)-Pent-1-en-3-ol **295** und (*R*)-Pent-1-en-3-acetat **294** wurde auf 0 °C gekühlt, mit NEt₃ (10.1 g, 13.9 mL, 100 mmol, 1.70 Äq.), DMAP (720 mg, 5.89 mmol, 10.0 mol%) und 3,5-Dinitrobenzoylchlorid (10.0 g, 118 mmol, 2.00 Äq.) versetzt. Es wurde auf Raumtemperatur erwärmt und 6 h bei dieser Temperatur gerührt. Durch Zugabe von H₂O (50.0 mL) wurde die Reaktion beendet. Es wurde mit AcOEt (4 × 200 mL) extrahiert, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 9:1) wurde das Dinitrobenzoat **296** (2.73 g, 9.74 mmol, 17%) in Form eines gelben Feststoffes mit einer optischen Reinheit von 78% *ee*

erhalten. Nach HPLC an chiraler Phase wurde das Dinitrobenzoat **279** mit einer optischen Reinheit von >99% *ee* erhalten.

DC: *R*_f = 0.41 (PE/AcOEt 9:1).

 $[\alpha]_D^{25} = 29.0^{\circ} (c = 0.81 \text{ in CHCl}_3).$

UV (CH₃CN): λ_{max} (lg ε) = 209.0 (4.442) nm.

IR (Film): $\tilde{\nu}$ = 1719, 1538, 1342, 1277, 1171, 1119, 1072, 943, 922, 913, 903, 822, 729, 716 cm⁻¹.

¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 0.73 (t, *J* = 7.4 Hz, 3 H, 5-H₃), 1.26–1.62 (m, 2 H, 4-H₂), 5.00 (dt, *J* = 10.3, 1.2 Hz, 1 H, 1-H_A), 5.15 (dt, *J* = 17.1, 1.2 Hz, 1 H, 1-H_B), 5.34 (t, *J* = 6.8 Hz, 1 H, 3-H), 5.56 (ddd, *J* = 17.1, 10.5, 6.8 Hz, 1 H, 2-H), 8.43 (t, *J* = 2.1 Hz, 1 H, 4'-H), 8.65 (d, *J* = 2.1 Hz, 2 H, 2'-H, 6'-H).

MS (ESI): m/z (%) = Es konnte kein Molekülionenpeak detektiert werden.

Säule:	Chiralpak IA
t _R :	15.00 min
Fraktion:	14.7–25.3 min
Säule:	Chiralpak [®] IA
Eluens:	<i>n</i> -Hexan/2-Propanol = 98:2
Fluss:	1.0 mL / min
t _R :	14.88 min, 99.9% ee
	Säule: t _R : Fraktion: Säule: Eluens: Fluss: t _R :

 $C_{14}H_{20}O_2$ (220.31).

20.1.4 Olefin 297

Zu einer Lösung der beiden Olefine **291** (113 mg, 252 µmol, 1.00 Äq.) und **296** (91.9 mg, 328 µmol, 1.30 Äq.) in CH₂Cl₂ (30.0 mL) wurde bei 0 °C eine Lösung des Grubbs II-Katalysator (16.0 mg, 18.9 µmol, 7.50 mol%) in CH₂Cl₂ (5.0 mL) zugegeben und für 3 h bei 45 °C (Ölbadtemperatur) unter Rückfluss gerührt. Es wurde auf 0 °C abgekühlt und wiederum Grubbs II-Katalysator (16.0 mg, 18.9 µmol, 7.50 mol%) in CH₂Cl₂ (5.0 mL) zugegeben und für 12 h bei 45 °C (Ölbadtemperatur) unter Rückfluss gerührt. Die Reaktion wurde durch Entfernung des Lösungsmittels beendet. Nach säulenchromatographischer Reinigung an Kieselgel (100 g, PE/AcOEt 19:1 \rightarrow 1:1) wurde das Olefin **297** (113 mg, 157 µmol, 62%) in Form eines farblosen Öls erhalten.

DC: *R_f* = 0.18 (PE/AcOEt 3:1).

 $[\alpha]_D^{25} = -22.2$ ° (c = 0.4 in CHCl₃).

IR (Film): $\tilde{\nu}$ = 1698, 1298, 1239, 1130, 1100, 1063, 1025, 983, 735, 696 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.92 (d, J = 6.8 Hz, 3 H, 8-C<u>H</u>₃), 0.97 (t, J = 6.8 Hz, 3 H, 1-H₃), 1.19 (d, J = 6.0 Hz, 3 H, 6^{''}-H₃), 1.28–1.46 (m, 1 H, 3^{''}-H_A), 1.44–1.68 (m, 1 H, 2^{''}-H_A), 1.81 (m, 3 H, 2-H₂, 2^{''}-H_A), 1.95–2.14 (m, 2 H, 8-H, 3^{''}-H_B), 2.20 (dt, J = 14.7, 7.7 Hz, 1 H, 6-H_A), 2.25–2.31 (m, 1 H, 6-H_B), 3.07–3.25 (m, 1 H, 5^{''}-H), 3.25–3.38 (m, 2 H, 9-H_A, 4^{''}-H), 3.40–3.51 (m, 1 H, 9-H_B), 3.69 (td, J = 6.9, 3.7 Hz, 1 H, 7-H), 4.26–4.56 (m, 3 H, 1^{''}-H, OC<u>H</u>₂Ph), 5.07 (s, 2 H, NHC(O)OC<u>H</u>₂Ph), 5.43 (dt, J = 7.3, 6.9 Hz, 1 H, 3-H), 5.55 (dd, J = 15.2, 7.7 Hz, 1 H, 4-H), 5.88 (dt, J = 15.2, 7.1 Hz, 1 H, 5-H), 7.13–7.40 (m, 10 H, 10 × Ph), 9.10 (d, J = 2.1 Hz, 2 H, 2[']-H, 6[']-H), 9.17 (t, J = 2.1 Hz, 1 H, 4[']-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.6 (C-1), 13.0 (C-8-<u>C</u>H₃), 18.5 (C-6^{''}), 27.5 (C-2), 29.7 (C-3^{''}), 31.0 (C-2^{''}), 34.0 (C-6), 37.5 (C-8), 52.2 (C-4^{''}), 66.8 (NHC(O)O<u>C</u>H₂Ph),

72.5 (C-9), 72.8 (O<u>C</u>H₂Ph) , 75.1 (C-5^{''}), 78.8 (C-7), 79.5 (C-3), 101.0 (C-1^{''}), 122.2 (C-4[']), 127.3, 127.4, 128.1, 128.2, 128.2, 128.5 (6 × Ph), 129.3, 129.3, 129.3, 129.3 (C-4, C-1['], C-2['], C-6[']), 133.0 (C-5), 134.4 (Ph_i), 138.8 (Ph_i), 148.6 (C-3['], C-5[']), 155.8 (NH<u>C</u>(O)OCH₂Ph), 161.8 (O<u>C</u>(O)Ar).

MS (ESI): m/z (%) = 742.3 (100) [M + Na]⁺.

ber.: 742.2946 [M + Na]⁺, gef.: 742.2946 (ESI-HRMS).

C₃₈H₄₅NO₁₁ (719.8).

20.1.5 Alkohol 298

Zu einer Lösung des Dinitrobenzoats **297** (114 mg, 158 μ mol, 1.00 Äq.) in THF/MeOH (10 mL, 4:1) wurde bei 0 °C K₂CO₃ (109 mg, 790 μ mol, 5.00 Äq.) gegeben und für 15 min gerührt. Durch Zugabe von ges. wässriger NaCl-Lösung (10 mL) wurde die Reaktion beendet. Es wurde mit AcOEt (4 × 25 mL) extrahiert, über MgSO₄ getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (25 g, PE/AcOEt 2:1 \rightarrow 1:4) wurde der Alkohol **298** (69.8 mg, 133 μ mol, 96%) in Form eines gelben Öls erhalten.

DC: *R_f* = 0.18 (PE/AcOEt 3:1).

 $[\alpha]_{D}^{25} = -22.2^{\circ}$ (c = 0.4 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 251.0 (3.682), 257.0 (3.671), 279.0 (3.528), 310.0 (3.416), 326.0 (3.390) nm.

IR (Film): $\tilde{\nu}$ = 1698, 1298, 1239, 1130, 1100, 1063, 1025, 983, 735, 696 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.87 (t, *J* = 7.2 Hz, 3 H, 9-H₃), 0.92 (d, *J* = 6.9 Hz, 3 H, 2-CH₃), 1.20 (d, *J* = 6.0 Hz, 3 H, 6[′]-H₃), 1.24–1.33 (m, 1 H, 3[′]-H_A), 1.42–1.69 (m, 6 H, OH, 4-H₂, 8-H₂, 2[′]-H_A), 1.78 (d, *J* = 13.0 Hz, 1 H, 2[′]-H_B), 2.06 (m, 2 H, 2-H, 3[′]-H_B),

2.16 (dt, J = 14.2, 7.3 Hz, 1 H, 4-H_A), 2.23–2.29 (m, 1 H, 4-H_B), 3.15–3.21 (m, 1 H, 5'-H), 3.29–3.38 (m, 2 H, 1-H_A, 4'-H), 3.52 (dd, J = 9.3, 5.7 Hz, 1 H, 1-H_B), 3.66–3.72 (m, 1 H, 3-H), 3.96 (q, J = 6.5 Hz, 1 H, 7-H), 4.35–4.42 (m, 2 H, 1'-H, NH), 4.43–4.55 (m, 2 H, OC<u>H</u>₂Ph), 5.04–5.10 (m, 2 H, NHC(O)OC<u>H</u>₂Ph), 5.49 (dd, J = 15.4, 7.0 Hz, 1 H, 6-H), 5.60–5.67 (m, 1 H, 5-H), 7.27–7.36 (m, 10 H, Ph).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.8 (C-9), 13.2 (C-2-<u>C</u>H₃), 18.6 (C-6'), 29.8 (C-3'), 30.2 (C-2'), 31.0 (C-8), 33.8 (C-4), 37.3 (C-2), 52.2 (C-4'), 66.8 (NHC(O)O<u>C</u>H₂Ph), 72.5 (C-1), 72.8 (O<u>C</u>H₂Ph), 74.4 (C-7), 75.1 (C-5'), 78.9 (C-3), 100.8 (C-1'), 127.3 (Ph), 127.4 (Ph), 128.0 (Ph), 128.1 (C-5), 128.1 (Ph), 128.2 (Ph), 128.2 (Ph), 128.5 (Ph), 135.3 (C-6), 138.8 (Ph), 155.7 (NH<u>C</u>(O)OCH₂Ph).

MS (ESI): m/z (%) = 548.3 (100) [M + Na]⁺.

ber.: 548.2983 [M + Na]⁺, gef.: 548.2982 (ESI-HRMS).

C₃₁H₄₃NO₆ (525.7).

20.1.6 TBS-Ether 299

Zu einer Lösung des Alkohols **298** (60.6 mg, 115 µmol, 1.00 Äq.) in CH_2Cl_2 (5.00 mL) wurde bei Raumtemperatur 2,6-Lutidin (49.4 mg, 53.7 µL, 461 µmol, 4.00 Äq.) gegeben, auf -10 °C gekühlt und langsam TBSOTf (61.1 mg, 53.0 µL, 231 µmol, 2.00 Äq.) zugetropft. Es wurde für 15 min bei -10 °C gerührt und die Reaktion durch Zugabe von H₂O (10 mL) abgebrochen. Die Phasen wurden getrennt, die wässrige Phase wurde mit CH_2Cl_2 (3 × 20 mL) extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet, filtriert und das Lösungsmittel wurde im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (25 g, Hexan/AcOEt 95:5 \rightarrow 3:1) wurde der TBS-geschützte Alkohol **299** (62.0 mg, 96.9 µmol, 84%) in Form eines farblosen Öls erhalten.

DC: $R_f = 0.19$ (PE/AcOEt 9:1)

 $[\alpha]_{D}^{25} = -16.5$ ° (c = 0.275 in CHCl₃).

UV (CH₃CN): λ_{max} (lg ε) = 252.0 (2.710), 258 (2.739) nm.

IR (Film): $\tilde{\nu}$ = 1247, 1132, 1065, 1024, 1004, 984, 856, 834, 774, 735, 696 cm⁻¹.

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = -0.02, 0.01 (2 × s, 2 × 3 H, 2 × SiCH₃), 0.83 (t, J = 7.4 Hz, 3 H, 9-C<u>H₃</u>), 0.87(s, 9 H, SiC(CH₃)₃), 0.92 (d, J = 7.0 Hz, 3 H, 2-CH₃), 1.21 (d, J = 6.4 Hz, 3 H, 6′-H₃), 1.22–1.30 (m, 1 H, 3′-H_A), 1.39–1.50 (m, 3 H, 3′-H_A, 8-H₂), 1.51–1.59 (m, 1 H, 2′-H_A), 1.79 (d, J = 13.4 Hz, 1 H, 2′-H_B), 2.01–2.16 (m, 2 H, 2-H, 4-H_A), 2.18–2.25 (m, 1 H, 4-H_B), 3.08–3.27 (m, 1 H, 5′-H), 3.27–3.43 (m, 2 H, 1-H_A, 4′-H), 3.46–3.58 (m, 1 H, 1-H_B), 3.60–3.71 (m, 1 H, 3-H), 3.95 (dd, J = 12.5, 6.2 Hz, 1 H, 7-H), 4.33–4.43 (m, 2 H, 1′-H, NH), 4.42–4.53 (m, 2 H, Bn-CH₂), 5.00–5.12 (m, 2 H, NHC(O)OC<u>H₂Ph</u>), 5.43 (dd, J = 15.6, 6.6 Hz, 1 H, 6-H), 5.48–5.57 (m, 1 H, 5-H), 7.27–7.39 (m, 10 H, Ph).

¹³**C-NMR** (151 MHz, CDCl₃): δ (ppm) = -4.6, -4.2 (2 × SiCH₃), 9.7 (C-9), 13.2 (C-2-<u>C</u>H₃), 18.6 (C-6′), 25.9 (SiC(<u>C</u>H₃)₃), 29.9, 30.9, 31.2 (C-8, C-2′, C3′), 33.9 (C-4), 37.5 (C-2), 52.2 (C-4′), 66.8 (NHC(O)O<u>C</u>H₂Ph), 72.6 (Bn-<u>C</u>H₂), 72.8 (C-1), 74.6 (C-7), 75.1 (C-5′), 79.4 (C-3), 79.6 (Si<u>C</u>(CH₃)₃), 101.0 (C-1′), 126.1 (C-5), 127.3, 127.4, 128.1, 128.2, 128.5(Ph), 135.9 (C-6), 136.3, 138.9 (Ph), 155.7 (NH<u>C</u>(O)OCH₂Ph).

MS (ESI): m/z (%) = 662.4 (100) [M + Na]⁺.

ber.: 662.3847 [M + Na]⁺, gef.: 662.3850 (ESI-HRMS).

C₃₇H₅₇NO₆Si (639.9).

20.1.7 Alkohol 301

301

Zu einer Lösung des Olefins **299** (54.5 mg, 85.2 µmol, 1.00 Äq.) in MeOH (3.00 mL) wurde Formaldehyd (\geq 37%ig, 25.6 mg, 0.63 mL, 852 µmol, 10.0 Äq.) und Pd (10%ig auf Aktivkohle, 18.1 mg, 17.0 µmol, 20 mol%) gegeben und für 4.5 h bei 3.5 bar geschüttelt. Nachfolgend wurde über Celite[®] filtriert und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung an Kieselgel (25 g, CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 9:1) wurde der Benzylether **300** in Form eines weißen Feststoffes (50 mg) erhalten.

Anschließend wurde in einem 100 mL-2-Halskolben NH₃ (~50 mL) bei -78 °C kondensiert, Li-Granulat (33.2 mg) zugegeben und anschließend der Benzylether **300** (50 mg) in Et₂O (2.0 mL) zugetropft. Es wurde für 1 h bei -78 °C gerührt, das Kühlbad entfernt und auf Raumtemperatur erwärmt. Nach 3 h wurde das Lösungsmittel im Vakuum entfernt und der Rückstand säulenchromatographisch an Kieselgel (AcOEt \rightarrow AcOEt/MeOH 19:1) gereinigt. Der Alkohol **301** konnte in Form eines farblosen Öls (35.0 mg, 78.5 µmol, 92% über 3 Stufen) erhalten werden.

DC: $R_f = 0.20$ (CH₂Cl₂/MeOH 9:1).

¹**H-NMR** (600 MHz, CD₃OD): δ (ppm) = 0.06, 0.07 (2 × SiCH₃), 0.88 (t, J = 7.5 Hz, 3 H, 9-H₃), 0.90 (s, 9 H, SiC(CH₃)₃), 0.91 (d, J = 6.9 Hz, 3 H, 2-CH₃), 1.25 (d, J = 6.3 Hz, 3 H, 6´-H₃), 1.26–1.55 (m,), 1.72–1.80 (m, 1 H, 2-H), 1.85–1.91 (m, 1 H, 2´-H_B), 2.22 (s, 7 H, C-4´, 2 × NCH₃), 3.46 (dd, J = 11.2, 4.6 Hz, 1 H, 1-H_A), 3.55–3.60 (m, 2 H), 3.62–3.66 (m, 2 H) (1-H_B, 3-H, 7-H, 5´-H), 4.24–4.34 (m, 1 H, 7-H), 4.49 (dd, J = 9.3, 2.0 Hz, 1 H, 1´-H).

¹³**C-NMR** (126 MHz, CD₃OD): δ(ppm) = -4.1, -4.1 (2 × SiCH₃), 10.0 (C-9), 14.1 (C-2-<u>C</u>H₃), 19.1 (Si<u>C</u>(CH₃)₃), 19.4 (C-6′), 26.5 (SiC(<u>C</u>H₃)₃), 19.6, 22.1, 30.9, 32.5, 33.3, 37.9 (C-4, C-5, C-6, C-8, C-2′, C-3′), 40.7 (C-2), 40.9 (2 × NCH₃), 65.6 (C-1), 66.4 (C-4′), 74.5, 75.0, 81.2 (C-3, C-7, C-5′), 103.0 (C-1′).

MS (ESI): m/z (%) = 446.4 (100) [M + Na]⁺.

ber.:	446.3660 [M + H] ⁺ ,
gef.:	446.3662 (ESI-HRMS).

C₃₇H₅₇NO₆Si (639.9).

21 Glycosylierung mit D-Forosamin-Derivaten

21.1.1 β -Glycosid 306 und α -Glycosid 307

Zu einer Lösung des Azids **304** (27.8 mg, 177 μ mol, 1.00 Äq.) in CH₂Cl₂ (9.00 mL) wurde bei Raumtemperatur Trichloracetonitril (0.18 mL, 128 mg, 884 µmol, 5.00 Äq.) und Cs_2CO_3 (17.1 mg, 52.4 μ mol, 30 mol%) gegeben und für 30 min gerührt. Anschließend wurde durch einen Membranfilter (0.2 µm) filtriert und das Lösungsmittel wurde im Vakuum entfernt. Das so erhaltene Trichloracetimidat von **304** und der Akzeptor **305** wurden in Toluol (4.5 mL) gelöst und mit MS 5 Å (25 mg) für 30 min bei Raumtemperatur gerührt. Es wurde auf -90 °C gekühlt und Et₃SiH (30.9 mg, 65.5 μmol, 3.00 Äq.) sowie eine Lösung von I₂ (67.5 mg, 266 μmol, 3.00 Äq.) in Toluol (8.0 mL) zugetropft. Es wurde für 3 h bei –90 °C gerührt und anschließend auf –78 °C erwärmt und für weitere 5 h gerührt. Die Reaktion wurde bei gleicher Temperatur durch Zugabe von NEt₃ (3.00 mL) abgebrochen. Es wurde mit 1 M wässrige Na₂S₂O₃-Lösung (5.00 mL) und ges. wässrige NaHCO₃-Lösung (5.00 mL) versetzt. Die organische Phase wurde abgetrennt und die wässrige Phase wurde mit CH_2Cl_2 (3 × 5 mL) extrahiert. Nach säulenchromatographischer Reinigung an Kieselgel (PE/AcOEt 19:1 \rightarrow 100% AcOEt) wurde das α -Glycosid **307** (11.7 mg, 21.7 μ mol, 25%) und das β -Glycosid **306** (3.4 mg, 6.30 μ mol, 7%) in Form farbloser Öle erhalten. Des Weiteren konnte der Akzeptor **305** (20.7 mg, 51.7 µmol, 58%) reisoliert werden.

Analytische Daten für das α-Glycosid **307**:

DC: $R_f = 0.58$ (CH₂Cl₂/MeOH 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.79 (t, *J* = 7.4 Hz, 3 H, 9-CH₂CH₃), 0.97–1.08 (m, Hz, 1 H, 11-H_A), 1.15–1.29 (m, 8 H, 10-H_A, 14-CH₃, 3-H_A, 6´-H₃), 1.36–1.48 (m, 3 H, 12-H_A, 11-H_B, 9-CH_AH_BCH₃), 1.47–1.61 (m, 3 H, 12-H_B, 9-CH_AH_BCH₃, 2´-H_A), 1.62–1.69 (m, 1 H, 10-H_B), 1.69–2.03 (m, 5 H), 2.35–2.52 (m, 5 H) (6-H_A, 3-H_B, 1-H₂, 2´-H_B, 3´-H₂, 4´-H), 2.93–3.02 (m, 2 H, 16b-H, 16a-H), 3.04 (dd, *J* = 13.6, 4.9 Hz, 1 H, 6-H_B), 3.09–3.14 (m, 1 H, 5b-H), 3.28–3.33 (m, 1 H, 14-H), 3.54–3.56 (m, 1 H, 5a-H), 3.62–3.65 (m, 1 H, 3a-H), 3.78–3.81 (m, 1 H, 13-H), 4.08 (q, *J* = 7.1 Hz, 1 H, 5´-H), 4.61–4.66 (m, 1 H, 9-H), 4.84 (t, *J* = 2.3 Hz, 1 H, 1′-H), 5.83 (dt, *J* = 9.5, 3.0 Hz, 1 H, 5-H), 5.91 (dt, *J* = 9.5, 2.2 Hz, 1 H, 4-H), 6.75 (s, 1 H, 16-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 9.5 (9-CH₂<u>C</u>H₃), 18.3, 18.7 (C-14^{''}-<u>C</u>H₃, C-6[']), 19.8 (C-11), 23.9 (C-2[']), 27.9 (9-<u>C</u>H₂CH₃), 29.6, 30.5, 30.9 (C-12, C-11, C-4[']), 34.8 (C-6), 40.5 (C-10), 41.1 (C-5a), 43.2, 43.9, 44.9 (C-1, C-3, C-3[']), 46.2 (C-14), 47.8 (C-5b), 49.5 (C-16a), 62.5 (C-16b), 67.9 (C-3a), 75.8 (C-13), 76.1 (C-9), 91.7 (C-1[']), 128.1 (C-4), 129.7 (C-5), 144.1 (C-15a), 145.7 (C-16), 172.2 (C-7), 202.2 (C-15), 215.7 (C-2).

¹³C-Kopplungskonstante C-1^{''''}: 164.8 Hz

MS (ESI): m/z (%) = 562.3 (100) [M + Na]⁺.

ber.: 562.2888 [M + Na]⁺, gef.: 562.2890 (ESI-HRMS).

 $C_{30}H_{41}N_{3}O_{6}$ (539.66).

Analytische Daten für das β-Glycosid **306**:

DC: $R_f = 0.50$ (CH₂Cl₂/MeOH 3:1).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm) = 0.80 (t, J = 7.5 Hz, 3 H, 9-CH₂CH₃), 1.10–1.19 (m, 4 H, 6′-H₃, 12-H_A), 1.19–1.30 (m, 5 H, 14-CH₃, 11-H₂), 1.35–1.79 (m, 9 H), 1.87–2.00 (m, 3 H) (1-H₂, 3-H_A, 9- CH₂CH₃, 10-H₂, 12-H_B, 2′-H₂, 3′-H₂), 2.11–2.18 (m, 1 H, 16a-H), 2.33–2.45 (m, 2 H, 6-H_A, 4′-H), 2.50 (dd, J = 17.6, 7.1 Hz, 1 H, 3-H_B), 2.94–3.01 (m, 2 H, 16b-H, 3a-H), 3.04–3.14 (m, 2 H, 6-H_B, 5b-H), 3.23–3.31 (m, 2 H, 14-H, 5′-H),

3.50–3.58 (m_c, 1 H, 5a-H), 3.62 (dt, *J* = 9.3, 4.4 Hz, 1 H, 13-H), 4.41–4.47 (m, 1 H, 1'-H), 4.62–4.68 (m, 1 H, 9-H), 5.86 (dt, *J* = 9.8, 2.9 Hz, 1 H, 5-H), 5.92 (dt, *J* = 9.8, 2.1 Hz, 1 H, 4-H), 6.72 (s, 1 H, 16-H).

¹³**C-NMR** (126 MHz, CDCl₃): δ(ppm) = 9.5 (9-CH₂<u>C</u>H₃), 16.3 (C-6΄), 18.8 (C-14-<u>C</u>H₃), 21.5 (C-12), 28.0 (C-16a), 28.5 (9-<u>C</u>H₂CH₃), 30.3^{*}, 30.3^{*}, 34.3 (C-6), 34.4^{*} (* = C-11, C-2΄, C-3΄), 40.7 (C-4΄), 41.2 (C-5a), 43.2 (C-1), 43.9 (C-3), 44.6 (C-10), 47.6 (C-5΄), 47.8 (C-5b), 49.3 (C-3a), 62.0 (C-16b), 74.3 (14-C), 77.2 (C-9), 81.0 (C-13), 103.0 (C-1΄), 128.1 (C-4), 129.4 (C-5), 144.6 (C-15a), 146.0 (C-16), 172.3 (C-7), 202.3 (C-15), 215.7 (C-2).

¹³C-Kopplungskonstante C-1': 153.5 Hz

MS (ESI): m/z (%) = 562.3 (100) [M + Na]⁺.

- ber.: 562.2888 [M + Na]⁺,
- gef.: 562.2879 (ESI-HRMS).

C₃₀H₄₁N₃O₆ (539.66).

H Anhang

Abbildung 119: Gaschromatogramm der racemischen Mischung

Abbildung 120: Gaschromatogramm des Acetats **255** zur *ee*-Wert-Bestimmung (rot = Racemat; grün = Probe)

23 Abkürzungsverzeichnis

Abb.	Abbildung
Ac	Acetyl
Äq.	Äquivalente
Ar	Aryl
ber.	berechnet
BINAP	2,2'-Bis-diphenylphosphino1,1'-binaphthyl
Bn	Benzyl
brsm	basierend auf reisoliertem Startmaterial
Bu	Butyl
bzw	beziehungsweise
с	Konzentration
d	Тад
dba	Dibenzylidenaceton
DIC	<i>N,N</i> ´-Diisopropylcarbodiimid
DC	Dünnschichtchromatogramm
DCI	direkte chemische Ionisation
DMAP	4-Dimethylaminopyridin
DMF	Dimetylformamid
DMP	Dess-Martin-Periodinan
DMSO	Dimethylsulfoxid
ds	Diastereoselektivität
EA	Evans-Auxiliar
ее	Enantiomerenüberschuss
EI	Elektronenstoßionisation
ESI	Elektronensprayionisation
Fmoc	Fluorenylmethoxycarbonyl
GC	Gaschromatographie
gef	gefunden
ges	gesättigt
h	Stunde
НВК	Hermann-Beller-Katalysator
HRMS	hochauflösende Massenspektrometrie
Hz	Hertz
IR	Infrarot(-Spektroskopie)

KHMDS	Kalium-bis-trimethylsilyl-amid
konz	konzentriert
L	Ligand
Lev	Lävulinyl
М	molar
MTBE	Methyl- <i>tert</i> -butylether
MW	Mikrowelle
0.	ohne
n. b.	nicht bestimmt
Р	<i>n</i> -Pentan
PE	Petrolether
RT	Raumtemperatur
TBACI	n-BuNCl (Tetrabutylammoniumchlorid)
TBS	<i>tert</i> -Butyl-dimethylsilyl
THF	Tetrahydrofuran
TIPS	Triisopropylsilyl
vgl.	vergleiche

24 Literaturverzeichnis

¹ Agrarpolitischer Bericht 2011 der Bundesregierung, http://berichte.bmelvstatistik.de/DFB-0010010-2011.pdf (29.12.2011)

² Welthunger-Index 2011–Herausforderung Hunger: Wie steigende und stark schwankende Nahrungsmittelpreise den Hunger verschärfen, **2011**, http://www.welthungerhilfe.de/fileadmin/media/pdf/WHI/WHI2011/20110921_WHI -2011 final.pdf (29.12.2011)

³ W. Krämer, U. Schirmer, *Modern Crop Protection Compounds*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2007**.

⁴ H. Börner, *Pflanzenkrankheiten und Pflanzenschutz*, Springer-Verlag, Berlin Heidelberg, **2009**.

⁵ ABI L 309 vom 24.11.2009, S. 29.

⁶ http://www.umweltbundesamt-daten-zur-umwelt.de/umweltdaten/public/theme.d o?nodeldent=2831 (Dez. 2011)

⁷ M. Hennigsen, *Chem. Unserer Zeit* **2003**, *37*, 98–111.

⁸ Amtsblatt Nr. L 100 vom 14/04/2011, 0039–0042.

⁹ T. Seitz, M. G. Hoffmann, H. Krähmer, *Chem. Unserer Zeit* **2003**, *37*, 112–126.

¹⁰ M. Beckmann, K.-J. Haack, *Chem. Unserer Zeit* **2003**, *37*, 88–97.

¹¹ M. Zumbado, M. Goethals, E. E. Álvarez-León, O. P. Luzardo, F. Cabrera, L. Serra-Majem, L. Dominguez-Boada, *Sci. Total Environ.* **2005**, *339*, 49–62.

¹² S. Jeanmart, Aust. J. Chem. **2003**, 56, 559–566.

¹³ R. Slater, S. Ellis, J.-P. Genay, U. Heimbach, G. Huart, M. Sarazin, C. Longhurst, A.

Müller, R. Nauen, J. L. Rison, F. Robin, Pest. Manag. Sci. 2011, 67, 633–638.

¹⁴ T. Anke, F. Oberwinkler, W. Steglich, G. Schramm, J. Antibiot. 1977, 30, 806–810.

H. Sauter, W. Steglich, T. Anke, Angew. Chem. 1999, 111, 1416–1438.

¹⁵ http://www.basf.com/group/pressemitteilungen/P-11-187. (Dez. 2011)

¹⁶ M. F. Loewe, R. J. Cvetovich, L. M. DiMichele, R. F. Shuman, E. J. J. Grabowski, *J. Org. Chem.* **1994**, *59*, 7870–7875.

¹⁸ F. P. Mertz, R. C. Yao, Int. J. Syst. Bacteriol. **1990**, 40, 34–39.

¹⁹ L. R. Kent (Eli Lilly), EP 1 744 768 B1, **2010**.

²⁰ D. R. Hahn, G. Gustafson, C. Waldron, B. Bullard, J. D. Jackson, J. Mitchell, *J. Ind. Microbiol. Biotechnol* **2006**, *33*, 94–104

²¹ S. Liu, Q. X. Li, *Chemosphere* **2004**, *56*, 1121–1127.

²² a) G. D. Thompson, R. Dutton, T. C. Sparks, *Pest. Manag. Sci.* 2000, *56*, 696–702; b)
V. L. Salgado, J. J. Sheets, G. B. Watson, A. L. Schmidt, *Pestic. Biochem. Physiol.* 1998, *60*, 103–110; c) T. C. Sparks, G. D. Crouse, G. Durst, *Pest. Manag. Sci.* 2001, *57*, 896–905; d) V. L. Salgado, *Pest. Biochem. Physiol.* 1998, *60*, 91–102.

²³ Übernommen aus der Dissertation von G. Brasche^[82]

²⁴ C. Alaux, J.-L. Brunet, C. Dussaubat, F. Mondet, S. Tchamitchan, M. Cousin, J. Brillard, A. Baldy, L. P. Belzunces, Yves Le Conte, *Environmental Microbiology* 2010, *12*, 774–782.

²⁵ BienSchV, **1992**.

²⁶ C. B. Cleveland, M. A. Mayes, S. A. Cryer, *Pest. Manag. Sci.* **2001**, *58*, 70–84.

²⁷ N. Orr, A. J. Shaffner, K. Richey, G. D. Crouse, *Pestic. Biochem. Physiol*, **2009**, *95*, 1–5.

²⁸ G. B. Watson, *Pestic. Biochem. Physiol* **2001**, *71*, 20–28.

²⁹ T. Perry, J. A. McKenzie, P. Batterham, *Insect Biochem. Molec. Biol.* **2007**, *37*, 184–188.

³⁰ V. Raymond-Delpech, K. Matsuda, B. M. Satelle, J. J. Rauh, D. B. Satelle, *Invert. Neurosci.*, **2005**, *5*, 119–133.

³¹ a) W. D. Bailey, H. P. Young, R. M. Roe, *Proc. Beltwide Cotton Production Conf.* **1999**, 1221–1224; b) T. Shono, J. G. Scott, *Pestic. Biochem. Physiol.* **2003**, *75*, 1–7;
c) H. P. Young, W. B. Bailey, R. M. Roe, T. Iwasa, T. C. Sparks, *Proc. Beltwide Cotton Production Conf.* **2001**, 1167–1171; d) C. F. Wyuss, H. P. Young, J. Shukla, R. M. Roe, *Crop. Protect.* **2003**, *22*, 307–314.

235

³² a) J. K. Moulton, D. A. Pepper, T. J. Dennehy, *Proc. Beltwide Cotton Production Conf.* **1999**, 884–889; b) J. K. Moulton, D. A. Pepper, T. J. Dennehy, *Pest. Manag. Sci.* **2000**, *56*, 842–848; c) J.-Z. Zhao, Y.-X. Li, H. L. Collins, L. Gusukuma-Minuto, R. F. L. Mau, G.
D. Thompson, A. M. Shelton, *J. Econ. Entomol.* **2002**, *95*, 430–436; d) A. H. Syyed, D.
Omar, D. J. Wright, *Pest. Manag. Sci.* **2004**, *60*, 827–832; e) M. D. K. Markussen, M.
Kristensen, *Pest. Manag. Sci.* **2011**, *68*, 75–82.

³³ L. C. Creemer, H. A. Kirst, J. W. Paschal, *J. Antibiot.* **1998**, *51*, 795–800.

³⁴ J. Dripps, B. Olson, T. C. Sparks, G. D. Crouse, *Plant Health Progress* **2008**.

³⁵ H.A. Kirst, L. C. Creemer, S. A. Naylor, P. T. Pugh, D. E. Snyder, J. R. Lowe, J. Z. Rothwell, T. C. Sparks, T. V. Worden, *Curr. Topics Med. Chem.* **2002**, *2*, 675–699.

³⁶ C. V. De Amicis, P. R. Graupner, J. A. Erickson, J. W. Paschal, H. A. Kirst, L. C. Creemer, P. E. Fanwick, *J. Org. Chem.* **2001**, *66*, 8431–8435.

³⁷ T. C. Sparks, P. B. Anzeveno, J. G. Martynow, J. M. Gifford, M. B. Hertlein, T. V. Worden, H. A. Kirst, *Pestic. Biochem. Physiol* **2000**, *67*, 187–197.

³⁸ A. A. Sial, J. F. Brunner, *Pest. Manag. Sci.* **2011**, *68*, 469–475.

³⁹ L. Besard, V. Mommaerts, G. Abdu-Alla, G. Smagghe, *Pest. Manag. Sci.* **2011**, *67*, 541–547.

⁴⁰ D. R. Hahn, G. Gustafson, C. Waldron, B. Bullard, J. D. Jackson, J. Mitchell, *J. Ind. Microbiol. Biotechnol.* **2006**, *33*, 94–104.

⁴¹ J. Daeble, T. C. Sparks, P. Johnson, P. R. Graupner, *Bioorg. Med. Chem.* **2009**, *17*, 4197–4205.

⁴² H. J. Kim, R. Pongdee, Q. Wu, L. Hong, H.-W. Liu, *J. Am. Chem. Soc.* 2007, 129, 14582–14584.

⁴³ Y. Chen, Y. Lin, K. Tsai, H. Chiu, J. Biol. Chem. 2009, 284, 7352–7363.

⁴⁴ H. J. Kim, J. A. White-Phillip, Y. Ogasawara, N. Shin, E. A. Isiorho, H.-W. Liu, *J. Am. Chem. Soc.* **2010**, *132*, 2901–2903.

⁴⁵ H. J. Kim, M. W. Ruszczycky, S.-H. Choi, Y.-N. Liu, H.-W. Liu, *Nature*, **2011**, *473*, 109–112.

- ⁴⁶ L. Hong, Z. Zhao, H.-W. Liu, *J. Am. Chem. Soc.* **2006**, *128*, 14262–14263.
- ⁴⁷ D. A. Evans, W. C. Black, *J. Am. Chem. Soc.* **1993**, *115*, 4497–4513.
- ⁴⁸ a) L. A. Paquette, Z. Gao, Z. Ni, G. F. Smith, *J. Am. Chem. Soc.* **1998**, *120*, 2543–2552;
- b) L. A. Paquette, I. Collado, M. Purdie, J. Am. Chem. Soc. 1998, 120, 2553-2562; c) L.
- A. Paquette, Z. Gao, Z. Ni, G. F. Smith, *Tetrahedron Lett.* **1997**, *38*, 1271–1274.
- ⁴⁹ a) D. J. Mergott, S. A. Frank, W. R. Roush, *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 11955–11959; b) D. J. Mergott, S. A. Frank, W. R. Roush, *Org. Lett.* 2002, 18, 3157–3160.

⁵⁰ W. L. Kelly, *Nature*, **2011**, *473*, 35–36.

⁵¹ Für eine exzellente Übersicht siehe auch: a) I. P. Beletskaya, A. V. Cheprakov, *Chem. Rev.* 2000, *100*, 3009–3066; b) S. Bräse, A. de Meijere in *Metal-catalyzed Cross coupling Reactions* (Hrgs.: P. J. Stang, F. Diederich), Wiley-VCH, Weinheim, 1997; c) W. Cabri, I. Candiani, *Acc. Chem. Res.* 1995, *28*, 2–7.

⁵² R. F. Heck, J. P. Nolley, *J. Org. Chem.* **1972**, *14*, 2320–2322.

⁵³ T. Mizoroki, K. Mori, A. Nozaki, *Bull. Chem. Soc. Jpn.* **1971**, *44*, 581.

⁵⁴ http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/ (18.12.2011).

⁵⁵ a) R. F. Heck, *Synlett* **2006**, *18*, 2855–2860; b) R. F. Heck, *J. Am. Chem. Soc.* **1968**, *90*, 5518–5526.

⁵⁶ R. F. Heck, J. P. Nolley, *J. Org. Chem.* **1972**, *37*, 2320–2322.

⁵⁷ L. F. Tietze, H. Ila, H. P. Bell; *Chem. Rev.* **2004**, *104*, 3453–3516.

⁵⁸ Für eine Übersicht siehe auch: J. Dupont, C. S. Consorti, J. Spencer, *Chem. Rev.* **2005**, *105*, 2527–2571.

⁵⁹ a) F. Ozawa, A. Kubo, T. Hayashi, *Chem. Lett.* **1992**, 2177–2180; b) C. Amatore, A. Jutand, M. A. M'Barki, *Organometallics* **1992**, *11*, 3009–3013; c) T. Hayashi, A. Kubo, F. Ozawa, *Pure Appl. Chem.* **1992**, *64*, 421–427; d) B. M. Trost, *Organometallics*, **1985**, *4*, 1143–1145; e) R. McCrindle, G. Ferguson, G. J. Arsenault, A. J. McAlees, J. Chem. Soc., Chem. Commun. **1983**, 571–572; f) C. Amatore, A. Jutand, *Organomet. Chem.* **1999**, *576*, 254–278; g) C. Amatore, A. Jutand, *Acc. Chem. Res.* **2000**, *33*, 314–321.

⁶⁰ G. P. C. M. Dekker, C. J. Elsevier, K. Vrieze, P. W. N. M. van Leeuwen, *Organometallics* **1992**, *11*, 1598–1603.

⁶¹ E. Riedel (Hrgs.), *Moderne Anorganische Chemie*, 2.Auflage, Walter de Gruyter Verlag, Berlin, New York, **2003**.

⁶² D. L. Thorn, R. Hoffmann, J. Am. Chem. Soc. **1978**, 100, 2079–2090.

⁶³ Übersichten asymmetrische Heck-Reaktionen: a) I. Ojima (Hrgs.), *Catalytic Asymmetric Synthesis*, John Wiley & Sons Inc, New York, **2000**; b) M. Shibasaki, C. D. J.
Boden, A. Kojima, *Tetrahedron*, **1997**, *53*, 7371–7395; d) L. S. Liebeskind, *Advances in Metal-Organic Chemistry*, Jai, Greenwich, **1996**, 119–151.

⁶⁴ a) R. F. Heck, Acc. Chem. Res. **1979**, *12*, 146–151; b) G. D. Davis, A. Hallberg, Chem.
 Rev. **1989**, *89*, 1433–1445.

⁶⁵ C.-M. Andersson, A. Hallberg, J. Org. Chem. **1988**, 53, 235–239.

⁶⁶ C.-M. Andersson, J. Larsson, A. Hallberg, J. Org. Chem. **1990**, 55, 5757–5761; b) D.
Badone, U. Guzzi, *Tetrahedron Lett.* **1993**, 34, 3603–3606.

⁶⁷ a) W. Cabri, I. Candiani, A. Badeschi, R. Santi, *Tetrahedron Lett.* 1991, *32*, 1753–1756; b) W. Cabri, I. Candiani, A. Badeschi, S. Penco, R. Santi, *J. Org. Chem.* 1992, *57*, 1481–1486; c) W. Cabri, I. Candiani, A. Badeschi, R. Santi, *J. Org. Chem.* 1990, *55*, 3654–3655; d) W. Cabri, I. Candiani, A. Badeschi, R. Santi, *Synlett*, 1992, 871–872; e) W. Cabri, I. Candiani, A. Badeschi, R. Santi, *J. Org. Chem.* 1992, *57*, 3558–3563.

⁶⁸ a) L. F. Tietze, T. Nöbel, M. Spescha, Angew. Chem. **1996**, 108, 2385–2386; Angew.
Chem. Int. Ed. **1996**, 35, 2259–2261; b) L. F. Tietze, T. Nöbel, M. Spescha, J. Am.
Chem. Soc. **1998**, 120, 8971–8977.

⁶⁹ J. E. Baldwin, J. Chem. Soc. Chem. Comm. **1976**, 18, 734–736.

⁷⁰ a) L. F. Tietze, R. Schimpf, Angew. Chem. **1994**, *106*, 1138–1139; Angew. Chem. Int.
Ed. **1994**, *33*, 1089–1091; b) L. F. Tietze, O. Burkhardt, Liebigs Ann. Chem. **1995**, 1153–1157; c) L. F. Tietze, T. Raschke, *Synlett* **1995**, 597–598; d) L. F. Tietze, T. Raschke, *Liebigs Ann. Chem.* **1996**, 1981–1987.

⁷¹ A. B. Dounay, L. E. Overman, *Chem. Rev.* **2003**, *103*, 2945–2963.

⁷² a) W. A. Herrmann, Chr. Broßmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller,
H. Fischer, *Angew. Chem.* **1995**, *107*, 1989–1992; *Angew. Chem. Int. Ed.* **1995**, *34*,
1844–1848; b) M. Beller, H. Fischer, W. A. Herrmann, K. Öfele, Chr. Broßmer, *Angew. Chem.* **1995**, *107*, 1992–1993; *Angew. Chem. Int. Ed.* **1995**, *34*, 1848–1849; c) W. A.
Herrmann, Chr. Broßmer, C.-P. Reisinger, T. H. Riermeier, K. Öfele, M. Beller, *Chem. Eur. J.* **1997**, *3*, 1357–1364; d) M. Beller, T. H. Riermeier; *Eur. J. Inorg. Chem.* **1998**,
29–36; e) W. A. Herrmann, V. P. W. Böhm, C.-P. Reisinger, *J. Organomet. Chem.* **1999**, *576*, 23–41; f) A. Zapf, M. Beller, *Chem. Eur. J.* **2001**, *7*, 2908–2915.

⁷³ a) Z. Wang, X. Feng, W. Fang, T. Tu, *Synlett*, **2011**, 951–954; b) W. A. Hermann, C.-P. Reisinger, M. Spiegler, *J. Organomet. Chem.* **1998**, *557*, 93–96; c) W. A. Hermann, J. Schwarz, M. G. Gardiner, M. Spiegler, *J. Organomet. Chem.* **1999**, *575*, 80–86; d) M. G. Gardiner, W. A. Hermann, C.-P. Reisinger, J. Schwarz, M. Spiegler, *J. Organomet. Chem.* **1999**, *572*, 239–247; e) N. Fröhlich, U. Pidun, M. Stahl, G. Frenking, *Organometallics*, **1997**, *16*, 442–448.

⁷⁴ a) D. W. Lee, C. M. Jensen, D. Morales-Morales, *Organometallics*, **2003**, *22*, 4744–4749; b) D. E. Bergbreiter, P. L. Osburn, Y.-S. Liu, J. Am. Chem. Soc. **1999**, *121*, 9531–9538; J. L. Bolliger, O. Blacque, C. M. Frech, *Chem. Eur. J.* **2008**, *14*, 7969–7977.

⁷⁵ a) S. Nukui, M. Sodeoka, M. Shibasaki, *Tetrahedron Lett.* **1993**, *34*, 4965–4968; b) Y.
 Sato, S. Nukui, M.Sodeoka, M. Shibasaki, *Tetrahedron* **1994**, *50*, 371–382.

⁷⁶ a) O. Loiseleur, M. Hayashi, N. Schmees, N. Pfaltz, *Synthesis*, **1997**, 1338–1345; b)
O. Loiseleur, P. Meier, N. Pfaltz, *Angew. Chem.* **1996**, *108*, 218–220; *Angew. Chem. Int. Ed.* **1996**, *35*, 200–202.

⁷⁷ E. A. B. Kantchev, C. J. O'Brian, M. G. Organ, *Angew. Chem.* **2007**, *119*, 2824–2870; *Angew. Chem.* **2007**, *46*, 2768–2813.

⁷⁸ a) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee,
D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi,
J. Am. Chem. Soc. 1996, 118, 2843–2859; b) J. J. Masters, J. T. Link, L. B. Snyder, W. B.

Young, S. J. Danishefsky, Angew. Chem. 1995, 107, 1886–1888; Angew. Chem. Int. Ed. Engl. 1995, 34, 1723–1726.

⁷⁹ V. H. Rawal, S. Iwasa, J. Org. Chem. **1994**, 59, 2685–2686.

⁸⁰ T. Mizutani, S. Honzawa, S.-Y. Tosaki, M. Shibasaki, *Angew. Chem.* **2002**, *114*, 4874–4876; *Angew. Chem. Int. Ed.* **2002**, *41*, 4680–4681.

⁸¹ L. F. Tietze, K. M. Sommer, J. Zinngrebe, F. Stecker, *Angew. Chem.* **2005**, *117*, 262–264; *Angew. Chem. Int. Ed.* **2005**, *44*, 257–259.

⁸² G. Brasche, *Dissertation*, Universität Göttingen, **2005**.

⁸³ A. Grube, *Dissertation*, Universität Göttingen, **2007**.

⁸⁴ C. Stadler, *Dissertation*, Universität Göttingen, **2006**.

⁸⁵ L. F. Tietze, G. Brasche, A. Grube, N. Böhnke, Chr. Stadler, *Chem. Eur. J.* **2007**, *13*, 8543–8563.

⁸⁶ Schmidt, R. R., Michel, J. *Angew. Chem.* **1980**, *92*, 763–764.

⁸⁷ a) Y. Foricher, J. Mann, *Tetrahedron Lett.* **1999**, *41*, 2007–2009.

⁸⁸ S. Kampmann, *Synthese von Pyridin-Vorstufen zur Darstellung von Spinosynanaloga*, Bachelorarbeit Göttingen, **2010**.

⁸⁹ S. Goldstein, P. Vannes, C. Houge, A. M. Frisque-Hesbain, C. Wiaux-Zamar, L. Ghosez, G. Germain, J. P. Declerq, M. Van Meerssche, J. M. Arrieta, *J. Am. Chem. Soc.* **1981**, *103*, 4616–4618.

⁹⁰ D. S. Breslow, E. Baumgarten, C. R. Hauser, *J. Am. Chem. Soc.* **1944**, *66*, 1280–1288.

⁹¹ R. B. Woodward, Roald Hoffmann, J. Am. Chem. Soc. **1965**, 87, 395–397.

⁹² a) I. Paterson, D. D. P. Laffan, D. J. Rawson, *Tetrahedron Lett.* **1988**, *39*, 1461–1464;

b) G. Dahmann, R. W. Hoffmann, Liebigs Ann. Chem. 1994, 837-846; c) H. Danda, M.

M. Hansen, C. H. Heathcock, J. Org. Chem. 1990, 55, 173–181; d) F. Yokohawa, H.

Fujiwara, T. Shioiri, Tetrahedron 2000, 56, 1759–1775; e)T. K. Jones, R. A. Reamer, R.

Desmond, S. G. Mills, J. Am. Chem. Soc. 1990, 112, 2998-3017.

⁹³ C. Bittner, *Dissertation*, Universität Göttingen, **2002**.

⁹⁴ a) D. A. Evans, J. V. Nelson, T. R. Taber, *Top. Stereochem.* **1982**, *13*, 1–115; b) D. A. Evans, J. Bartroli, T. L. Shih, *J. Am. Chem. Soc.* **1981**, *103*, 2127–2109; c) D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis, D. J. Mathre, J. Bartroli, *Pure Appl. Chem.* **1981**, *53*, 1109–1127.

2

⁹⁵ Die Synthese des Aldehydes 201 konnte aus enantiomerenreinem *tert*-Butylester
200, synthetisiert durch Dr. Chr. Stadler, realisiert werden.

⁹⁶ Markus Granitzka, Nina Schützenmeister, CCDC No. 879948. Die Daten können unter http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi abgerufen werden.

⁹⁷ Julian Holstein, Nina Schützenmeister, Unveröffentlichte Ergebnisse.

⁹⁸ S. Parsons, H. Flack, Acta Cryst., **2004**, Band 60.

⁹⁹ H. D. Flack. Acta Cryst. A 39, **1983**, 876–881.

¹⁰⁰ P. G. Mc Dougal, J. G. Rico, Y.-I. Oh, B. D. Condon, *J. Org. Chem.* **1986**, *51*, 3388–3390.

¹⁰¹ H. Ishiyama, T. Takemura, M. Tsuda, J. Kobayashi, *Tetrahedron* **1999**, *55*, 4583–4594.

¹⁰² P. Knochel, W. Brieden, M. J. Rozema, C. Eisenberg, *Tetrahedron Lett.* **1993**, *34*, 5881–5884.

¹⁰³ R. Ostwald, P.-Y. Chavant, H. Stadtmueller, P. Knochel, *J. Org. Chem.* **1994**, *59*, 4143–4153.

¹⁰⁴ S. Dietz, *Dissertation*, Universität Göttingen, **2012**.

¹⁰⁵ C.-H. Wong, G. M. Whitesides, *Enzymes in synthetic oranic chemistry*, Tetrahedron Organic Chemistry Series Volume 12, Pergamon, Oxford, New York, Tokyo, **1994**.

¹⁰⁶ R. C. Larock, W. H. Gong, *J. Org. Chem.* **1989**, *54*, 2047–2050.

¹⁰⁷ M. Karplus, J. Chem. Phys. **1959**, 30, 11–15.

¹⁰⁸ T. Buck, *Dissertation*, Universität Göttingen, **2001**.

¹⁰⁹ K. Ziegler, H.-G. Gellert, H. Lehmkuhl, W. Pfohl, K. Zozel, *Liebigs Ann. Chem.* **1960**, *1*, 14–19.

¹¹⁰ C. H. Heathcock, S.-I. Kiyooka, T. A. Blumenkopf, *J. Org. Chem.* **1984**, *49*, 4214–4223.

¹¹¹ A. J. Birch, J. Chem. Soc. (Resumed) **1944**, 430–436.

¹¹² Bereitstellung durch die Bayer-AG

¹¹³ D.D. Perrin, N.L.F. Armarego, D. R. Perrin, *Purification of Laboratory Chemical*, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, **1988**.

¹¹⁴ a) W.A. Hermann, C. Broßmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller, H.
Fischer, Angew. Chem. 1995, 107, 1989–1992; Angew. Chem. Int. Ed. 1995, 34, 1844–1848; b) M. Beller, H. Fischer, W. A. Hermann, K. Öfele, C. Broßmer, Angew.
Chem. 1995, 107, 1992-1993; Angew. Chem. Int. Ed. 1995, 34, 1848–1849; c) W. A.
Hermann, C. Broßmer, C.-P. Reisinger, T. H. Riermeier, K. Öfele, M. Beller, Chem. Eur.
J. 1997, 3, 1357–1364; d) M. Beller, T. H. Riermeier, Eur. J. Inorg. Chem. 1998, 29–36;
e) W. A. Hermann, V. P. W. Böhm, C.-P. Reisinger, J. Organomet. Chem. 1999, 576, 23–41; f) A. Zapf, M. Beller, Chem. Eur. J. 2001, 7, 2908–2915.

¹¹⁵ E. J. Corey, H. Cho, C. Rücker, D. H. Hua, *Tetrahedron Lett.* **1981**, *22*, 3455–3458.

¹¹⁶ S. D. Meyer, S. L. Schreiber, *J. Org. Chem.* **1994**, *59*, 7549–7552.

¹¹⁷ C. Chassaing, A. Haudrechy, Y. Langlois, *Tetrahedron Lett.* **1997**, *38*, 4415–4416.

¹¹⁸ K. R. West, K. D. Bake, S. Otto, *Org. Lett.* **2005**, *7*, 2615–2618.

¹¹⁹ In Anlehnung an die Durchführung beschrieben in der Dissertation von A. Grube^[83]
¹²⁰ H.-S. Lin, L. A. Paquette, *Synth. Commun.* **1994**, *24*, 2503–2506.

H Danksagung

An dieser Stelle möchte ich all jenen danken, die mich auf unterschiedliche Art und Weise in der Durchführung dieser Dissertation unterstützt haben.

Der Konrad-Adenauer-Stiftung sei an dieser Stelle für die finanzielle Unterstützung in Form eines Promotionsstipendiums gedankt.

Die Arbeit in besonderer Weise unterstützt haben die Analytikabteilungen unseres Institutes. Den Mitarbeitern der NMR-Abteilung Martin Weitemeyer, Christiane Siebert, Carola Zolke und Evelyn Pfeil sei für ihre aufopfernde Bereitschaft zur schnellen Messung der NMR-Proben recht herzlich gedankt. Ihr habt mir die ganze Zeit wirklich den Rücken freigehalten! Herrn Machinek danke ich neben der Messung auch für seinen steten, besonders abends, sehr bereitwillig erteilten Support seitens der Theorie und so manche Lebensweisheit außerhalb der Forschung.

Den Mitarbeitern der massenspektrometrischen Abteilung Gabriele Krökel, Györgyi Sommer-Udvarnoki und Frank Hambloch gilt auch besonderer Dank für die schnelle und sehr sorgfältige Bearbeitung meiner Massen. Dr. Holm Frauendorf sei außerdem für sein wachsames "Massenauge" und die zahlreichen Rücksprachen gedankt. Olaf Senge danke ich für seine Unterstützung an der *ee*-Wert-Front, also der Messung von HPLC-Spektren und bei seiner Unterstützung bei dem Wechsel der chiralen GC-Säulen. Frank Hambloch sei ferner noch für sein Engagement als Sicherheitsbeauftragter gedankt. Beiden zusammen danke ich für ihren steten Einsatz zum Wohl der Mitarbeiter am Institut.

Evelyn Pfeil danke ich für das Messen unzähliger IR-, UV- und Drehwertproben.

Den lieben Kollegen aus der Anorganik Ina Objartel, Markus Granitzka und Julian Holstein danke ich für die Röntgenstrukturanalysen.

Großer Dank gilt auch unseren beiden Hausmeistern Frank Peters und Wolfram Matthies für die Instandhaltung der Arbeitsstätte. Ebenfalls Dank gilt den Werkstätten, insbesondere Thao Nguyen, für ihren Einsatz. Auch Holger Tucholla und
244 Danksagung

Ein wirklich, wirklich großer Dank gebührt Martina Pretor für ihre ständige Unterstützung im Kampf gegen meine diversen Computerprobleme. Auch Sabine Schacht sei recht herzlich für ihre Hilfe im Kampf gegen die administrativen Stolpersteine im Forscherleben gedankt. Danke!

Für das sorgfältige Korrekturlesen dieser Arbeit danke ich Sven Heidemann, Christoph Eichhorst, Simon Biller, Johannes Rainer, Anatol Spork und Simone Dietz.

Den Hütern des Materials Galina Pestel, Svenia-Concetta Schild, Henning Böckemeier, Linda Nacke und Niels Böhnke danke ich für die Versorgung mit Verbrauchsmaterialien.

Meinen Laborkollegen Sven Heidemann, Katja Grube, Christian Raith, Frank Behrendt, Tim Hungerland, Arne Heins, Deshan Liu, und Alexander Düfert danke ich für die gute Zusammenarbeit. Katja gilt dabei besonderer Dank für ihre präparative Unterstützung und Sven für die mentale.

Für die Versorgung mit so manchen größeren Geräten sowie präparativen Tipps und vor allem gehässigen Spot ("Na, die Säule ist aber größer als Du"), manchmal aber auch aufmunternden Worten danke ich ganz besonders Ralf Gerke. Für so manche helfende Hand danke ich auch Uta Kaiser. Ohne die beiden wäre die Lehre im Praktikum sicher sehr viel erschwerlicher – und vor allem weniger witzig gewesen. Es war eine großartige Zeit mit euch.

Für die Zusammenarbeit auf dem Spinosyn-Thema danke ich Simone Dietz, Timo Scheffer, Niels Böhnke, Christian Stadler, Gordon Brasche, Alexander Grube und Dr. Baag. Dem "Bachelor" Sven Kampmann danke ich auch für die schöne gemeinsame Zeit und seinen steten Einsatz.

Meinen Jungs Sveni, Crissi, Jêrome (aka Puschel), Stefan, Michael und Simon, später auch Tobi und Marius, danke ich für die gemeinsame (Fußball)-Zeit und den Spaß bei und nach der Arbeit. Auch Galina danke ich für die gemeinsame "Teezeit" und ebenso meiner "Tochter" Claudia für so manches Gespräch. Der gesamten Abteilung Ducho danke ich für die inspirierenden gemeinsamen Mittagspausen.

Für die mentale Unterstützung danke ich meinen Freunden. Meinem Zwilling Simone gilt dabei besonderer Dank. Seit dem ersten Semester haben wir doch so einiges erlebt, durchgestanden und vor allem geteilt. Es war eine super Zeit. Ebenfalls großer Dank gilt Juliane, Heiko, Karin, Christian, Hohmann und Ina für ihre

aufmunternden Worte und ihr Verständnis.

Für die Unterstützung in allen Lebenslagen danke ich meiner Familie. Besonderer Dank gilt Klaus, der für die kleine Schwester natürlich immer größtes Verständnis aufbringen konnte. Aber auch meinem lieben Pappi sei für seine ständige Sorge gedankt (Ach, Du bischt no im Inschtitut. Ja Jesses, gohscht ned hei? (oder so ähnlich)) und natürlich für seine Unterstützung, vor allem dann, wenn es mal nicht so gut lief.

Der größte Dank gebührt jedoch Anatol für seine absolut bedingungslose Unterstützung in den letzten Jahren und für seine Geduld, Nachsicht und Liebe. Du hast mir in den letzten Jahren unheimlich viel Kraft gegeben. Danke!

Meine akademischen Lehrer wahren u. a. die folgenden Professoren und Dozenten:

G. Beuermann, S. Beuermann, P. Botschwina, M. Buback, A. de Meijere, H. Desel, U. Diederichsen, C. Ducho, G. Eckold, I. Feussner, L. Fietjer, C. Griesinger, S. Grond, U. Klingebiel, H. Laatsch, T. Lenzer, J. Magull, F. Meyer, N. C. Mösch-Zanetti, H. W. Roesky, K. Samwer, C. Schulzke, P. H. Seeberger, G. M. Sheldrick, D. Stalke, J. Stülke, M. Suhm, J. Troe, L. F. Tietze, S. Tsogoeva, P. v. Zeschwitz, A. Zeeck.

Curriculum Vitae

Zur Person

Name:	Nina Schützenmeister
Geburtsdatum:	06.01.1983
Geburtsort:	Reinbek
Familienstand:	ledig
Nationalität	deutsch

Ausbildung

06/2002	Allgemeine Hochschulreife
10/2002–11/2006	Studium der Chemie an der Georg-August-Universität Göttingen
10/2004	Diplomvorprüfung
03/2006–09/2006	Externe Diplomarbeit unter Leitung von Prof. P. H. Seeberger an der Eidesgenössischen Technischen Hochschule Zürich
	D-Glucuronsäure zum Aufbau von Glycosaminoglycanen"
11/2006	Diplomprüfungen
12/2006–01/2012	Promotion unter Leitung von Prof. Dr. Dr. h.c. L. F. Tietze an der Georg-August-Universität Göttingen
	"Totalsynthese von Spinosynanaloga"
25.01.2012	Disputation

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q