Christina Biising

Recoverable Robustness
in Combinatorial Optimization

(V Cuvillier Verlag Gottingen

Internationaler wissenschaftlicher Fachverlag

Recoverable Robustness
in Combinatorial Optimization

vorgelegt von
Diplom-Mathematikerin
Christina Biising
aus Bonn

Von der Fakultat II - Mathematik und Naturwissenschaften
der Technischen Universitdt Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
Dr. rer. nat.

genemigte Dissertation

Vorsitzender: Prof. Dr. Fredi Troltzsch
Berichter: Prof. Dr. Rolf H. Mohring
Prof. Dr. Peter Widmayer

Tag der wissenschaftlichen Aussprache: 10. Dezember 2010

Berlin, 2010
D 83

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet iiber
http://dnb.d-nb.de abrufbar.

1. Aufl. - Gottingen: Cuvillier, 2011

Zugl.: (TU) Berlin, Univ., Diss., 2010

978-3-86955-771-7

© CUVILLIER VERLAG, Gottingen 2011
Nonnenstieg 8, 37075 Gottingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdriickliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfiltigen.

1. Auflage, 2011

Gedruckt auf sdaurefreiem Papier

978-3-86955-771-7

Preface

This work would not have been possible without the support of several thoughtful and generous
people. First of all I very much like to thank my supervisor Prof. Dr. Rolf Md6hring for
trusting me in choosing my research topic, for discussing problem settings and first approaches
whenever I needed some feedback and for giving me the opportunity to visit workshops,
conferences and other research groups for further inspirations. Financially this research was
supported by the research training group “Methods for Discrete Structures” and the Berlin
Mathematical School.

[am very grateful for all my colleagues at TU Berlin. Without the constant encouragement
by Wiebke Hohn and Dr. Mareike Massow, the cheerful nature of Jens Schulz and the many
discussions with Dr. Tobias Harks and Max Klimm, [would never have finished this thesis.
Furthermore, I like to thank Prof. Dr. Andreas Bley, Dr. Janina Brenner, Martin Fuchsberger,
Elisabeth Giinther, Martin Groft, Ronald Koch, Prof. Dr. Ekkehard Kohler, Dr. Felix Konig,
Dr. Nicole Megow, Daria Schymura, Madeleine Theile, José Verschae and Andreas Wiese for
various inspirations, cups of coffee and proofreading of my thesis.

In particular, I wish to thank all the people I did intensive research with. Jens Maue from
the ETH Ziirich introduced me to the topic of train classification and we spent several days
and nights in his office to tackle this problem. Prof. Dr. Peter Widmayer welcomed me in
his research group and gave important feedback on these results. Prof. Dr. Arie Koster and
Manuel Kutschka from the RWTH Aachen provided me with their knowledge of the knapsack
problem and with the implementations of our theoretical results. Last December I spent one
wonderful week in Ziirich working with Dr. Rico Zenklusen who brought me, among other
things, to the topic of Matroids.

Finally, I thank all of my friends and my family for their support and endless discussions, in
particular, Henrik Biising who always listened to my complains but also shared many happy
moments with me.

Christina Biising
Berlin, October 2010

Contents

Introduction

1. Dealing with Uncertainties in a Robust Way
1.1. Robustness
1.1.1. Robust Linear Programming
1.1.2. Robust Combinatorial Optimization
1.2. Extending Robustness to Recoverable Robustness

2. k-Distance Recoverable Robustness
2.1. Introduction
2.2. Discrete Scenarios L e
2.2.1. Weighted Disjoint Hitting Set Problem
2.3. Interval Scenarios
2.3.1. Weighted Disjoint Hitting Set Problem
2.3.2. Minimum Weight Basis Problem for Matroids
2.4, T-scenarioS.
2.5. Shortest Path Problem
2.5.1. Simple (s,t)-Paths as First-Stage Solutions
2.5.2. (s,t)-Paths as First-Stage Solutions
2.6. Conclusion and Open Issues

3. Rent Recoverable Robustness
3.1. Introduction e
3.2. Discrete Scenarios e e e
3.3. Interval Scenarios e
3.4. T-Scenarios e
3.5. Approximation via Robust Solutions
3.6. Conclusion and Open Issues

4. Exact Subset Recoverable Robustness
4.1. Introduction e
4.2. Discrete Scenarios e e e
4.3. Interval Scenarios e
4.3.1. Shortest Path Problem
4.3.2. Minimum (s,¢)-Cut Problem
4.4, T-scenarios. v v e e e
4.4.1. Weighted Disjoint Hitting Set Problem
4.5. Matroids
4.5.1. Discrete ScenarioS e e e e e e e e
4.5.2. Interval ScenarioS e
4.5.3. T'-scenarios v e e e
4.6. Approximation Algorithmso oo

il Contents
4.7. Conclusion and Open Issues 83

5. A Recoverable Robust Knapsack Problem 85
5.1. Introduction 85
5.2. Discrete Scenarios 88
5.2.1. Complexity of the (k,¢)-tvKP 89

5.2.2. Extended Cover Inequalities 97

5.2.3. Computational Experiments 102

5.3. Interval Scenarios 107
5.4. T'-Scenarios 107
5.4.1. An Optimal [-Strategy 108

5.4.2. A Polynomial Size ILP-Formulation 111

5.4.3. Extended Cover-Inequalities 113

5.5. Conclusion and Open Issues 117

6. Recoverable Robust Train Classification 119
6.1. Introduction L 119
6.2. Encoding Classification Schedules, 121
6.3. Recovery by Additional Sorting Steps 123
6.3.1. Generic Algorithm 125

6.3.2. Computational Complexity 127

6.3.3. Problem Variants 129

6.4. Limited Number of Delayed Trains 129
6.4.1. Experimental Evaluation 133

6.5. Typesin Fixed Order 135
6.6. Conclusion and Open Issues 137
Bibliography 139
A. Max-Scenario Problems 145
A.1. Shortest Path Problem 145
A.2. Minimum (s,¢)-Cut Problem 148
A.3. Weighted Disjoint Hitting Set Problem 150

B. Cardinality Constrained Minimum (s, ¢)-Cut Problem 153
Zusammenfassung (German) 155

Introduction

Combinatorial optimization is an important tool for solving optimization problems from
industry like vehicle routing, network design or production scheduling. To define such an
optimization problem, data concerning the cost, the constraints on the solutions or the topol-
ogy of the networks are assumed to be known. However, these data can often only be esti-
mated based on imprecise measuring methods or predictions of future events (development
of the stock markets, change of weather conditions, variations in traffic volume). In several
applications, average values from historical data adjusted by some anticipated changes are
used to determine the problem setting.

An attractive approach for dealing with these variations in data is to include different data
sets into the optimization process. Many researchers have selected a scenario approach, where
each scenario represents a reasonable data set. Depending on the considered setting and the
available information, such a set of data sets is equipped with a probability distribution to
reflect the likelihoods of the scenarios.

There are two major trends in dealing with uncertainty given by a scenario set: stochastic
programming and robust optimization. The goal in stochastic programming is to find some
solution that is feasible in almost all considered scenarios and minimizes some stochastic
function like the expected cost. This approach is only applicable if a probability distribution
of the scenario set is known or can be estimated. Minimizing the expected cost is reasonable
if the process is repeated several times and the same solution is chosen in each iteration.
Furthermore, the approach assumes some flexibility in the realization process, since a solution
may turn infeasible, and it assumes reasonable cost in the unlikely worst-case. These conditions
are not satisfied when dealing with high risk situations or with basic services like planning
water and power supply networks. In these settings a robust approach is more appropriate.

Robust optimization provides a high level of security but represents a rather risk-averse atti-
tude. A solution is called robust if it remains feasible under all considered scenarios. The task
in robust optimization is to find a robust solution that minimizes its worst-case cost. The
difficulty in robustness is that feasibility in all realizations is quite demanding and may not
be achieved by any solution. But even if a robust solution exists, it may generate high cost in
many scenarios which is not representative for other solutions. These drawbacks have already
be discussed when robustness was first applied to linear programming by Soyster [92| in 1973.

To address these concerns, Ben-Tal and Nemirovski [12], El Ghaoui et al. [40, 41|, Bertsimas
and Sim [15] and Bienstock [16] introduced for linear programs new types of scenario sets.
They showed in particular that linear programs under their scenario sets remain tractable.
Kouvelis and Yu [78] started to consider robust combinatorial optimization problems with
discrete scenario sets and proved several hardness results. A famous theorem by Bertsimas
and Sim [14] states that for every polynomially solvable 0-1 discrete optimization problem its
robust version with so-called I'-scenarios can also be solved in polynomial time. Note that
all settings for combinatorial optimization problems assume that the values of the objective
function are subject to variations, but that the set of feasible solutions remains unchanged.

2 Introduction

Despite the progress in defining scenario sets, several researchers felt the need to relax the
concept of robustness. Inspired by the idea of a recourse in two-stage stochastic programming,
they defined a two-stage procedure that allows a solution chosen under uncertainty in a first
stage to be modified by previously fixed means as soon as all data are known. As in the
robust setting, the worst-case cost of such a solution is minimized. This idea was introduced
by several groups, e.g., Ben-Tal et al. [11], Dhamdhere et al. [37] or Liebchen et al. [81], under
the names of adaptive robustness, demand robustness or two-stage robustness, and recoverable
robustness, respectively. In this thesis we will call this concept recoverable robustness.

Recoverable robust linear programs have been studied in [11, 81, 95]. One drawback of this
setting is the increase in complexity, since most of these problems are strongly NP-hard.
From a practical point of view, recoverable robustness turns out to be an important tool
for modeling real world problems gaining valuable insights into the scope of applicability of
optimization. For example, its application to several railway optimization problems is analyzed
in |25, 26, 30, 81]. In terms of combinatorial optimization, the main focus of research activities
focused on scenario sets modeling failures of the underlying topology or uncertainties on the
side constraints like the demands (e.g., [37, 44, 55, 73]). The objective function in these cases
is assumed to be fixed.

This thesis focuses on two aspects of recoverable robustness. The first one is motivated by a
theoretical interest:

e How to define useful recoverable robust combinatorial optimization problems for scenario
sets modeling uncertainties in the objective function?

e What kind of changes in respect to complexity can be observed compared to robust
models?

e Which combinatorial structures or properties can be detected within the recoverable
robust model?

The second aspect is a practical one and emphasizes on how a recoverable robust approach
can be adapted to practical problems, e.g., what kind of scenario sets to consider and how to
define the recovery actions.

Chapter 1 contains a short introduction to the concept of robustness, important results in this
area and their extension to recoverable robustness. The following three Chapters 2, 3 and 4
are dedicated to theoretical issues and Chapters 5 and 6 to more practical applications. In the
Appendices A and B, we investigate two combinatorial subproblems of the recoverable robust
models introduced in Chapters 2, 3 and 4, in order to give a deeper understanding of the
results obtained there. Apart from the definition of different scenario types in Chapter 1, all
chapters are self-contained and thus can be read independently of each other. In the remainder
of this introduction, we give a short overview of each chapter.

Chapter 1: Dealing with Uncertainties in a Robust Way This chapter contains the
history of robustness and its extension to recoverable robustness with the main results in
linear programming and combinatorial optimization. In particular we give the definition of
three different types of scenario sets, which we will investigate throughout this thesis: the so-
called discrete scenario sets, the interval scenario sets and the I'-scenario sets. Note that we
mainly consider uncertainties occurring in the cost function of a given optimization problem.

The considered types of scenario sets differ in the way they are modeled in the input, i.e.,
whether they are defined explicitly or implicitly, and by further restrictions on the values of
the cost functions. In a discrete scenario set each scenario and its integer cost function is

Introduction 3

explicitly given. Interval scenario sets consist of all scenarios that determine a cost function
whose values lie in a given cost interval defined by lower and upper cost bounds. For some
integer I', I'-scenario sets are modifications of interval scenario sets. In contrast to interval
scenarios, a ['-scenario may change only I' cost values from the lower bound, in the worst-case
to the corresponding upper bound.

Chapter 2: k-Distance Recoverable Robustness This chapter covers a recoverable robust
approach to combinatorial optimization which is probably the most natural: the k-distance
recoverable robustness approach. Let us consider a linear combinatorial minimization (LCMin)
problem such as the shortest path problem, and a set of scenarios, each defining a cost function,
e.g., in the shortest path setting different traveling times. In the k-distance recoverable robust
model, a solution is chosen in the first stage, e.g., a simple path. As soon as the scenario is
revealed, i.e., once the exact data for the cost function is known, we are allowed to choose a
solution that differs just a “little” from the first one. In the shortest path setting one can think
of a path using small detours compared to the originally chosen path. In general the difference
is measured by the number of new elements contained in the second solution. This number
is bounded by some integer k, also called recovery parameter. The goal in the k-distance
recoverable robust setting is to find a solution in the first stage with minimum total cost. This
cost is composed of the so-called first-stage cost and the maximum cost occurring in a scenario
for the chosen second path.

We investigate the k-distance recoverable robust version of several well-known combinatorial
optimization problems, e.g., the shortest path problem, the minimum spanning tree problem
and the minimum perfect matching problem, in combination with the three basic scenario
sets defined above, namely discrete scenario sets, interval scenario sets and I'-scenario sets.
For discrete scenarios we start by analyzing the k-Dist-RR version of a quite simple LCMin
problem, the weighted disjoint hitting set (WDHS) problem. This problem represents a special
case of the deterministic shortest path problem, the minimum (s, ¢)-cut problem, the minimum
perfect matching problem and the minimum spanning tree problem. For two scenarios we show
that the k-distance recoverable robust (k-Dist-RR) version of this WDHS problem is weakly
NP-hard. We also present a pseudo-polynomial algorithm with a run-time depending on a
constant number of scenarios and the values of the scenario cost functions. If the number
of scenarios is not constant, the problem turns out to be strongly NP-hard. In a special
case, a lower bound of 1.5 (later improved independently to a bound of 2 by Kasperski and
Zielinski |70]) on the best possible approximation factor is achieved, unless P = NP. The
hardness results can easily be transferred to all the problems of which the WDHS problem is
a subproblem.

Considering interval scenarios, where the cost function of each scenario is bounded by box-
constraints, the complexity status varies between not approximable and solvable in polynomial
time. On one hand, the k-Dist-RR shortest path problem is strongly NP-hard and cannot be
approximated, unless P = NP. This is in stark contrast to the case where a not necessarily
simple (s, t)-path needs to be chosen in a first stage, and the recovery parameter k is a constant,
since then the problem is tractable. Also the k-Dist-RR version of the minimum weight basis
problem for matroids is solvable in polynomial time for constant k. For the WDHS problem,
it can be solved efficiently even if k£ is not constant but part of the input.

Finally, we analyze ['-scenarios. By a reduction from the closely related max-scenario problem
considered in Appendix A, we show that the k-Dist-RR shortest path problem and the k-Dist-
RR minimum (s, t)-cut problem become strongly NP-hard.

4 Introduction

Chapter 3: Rent Recoverable Robustness Rent recoverable robustness focuses on situ-
ations where a choice of an element in the first stage lowers the cost to actually purchase
this element in the second stage. The idea is similar to option dealing and the right of first
refusal. Let U be a set of elements and F be a set of feasible solutions, where the goal is to
possess a cheap feasible solution in the second stage. In the first stage some elements can be
rented. We assume that the rental cost is a fraction of the cost for the elements revealed in
the second stage. If we rent an element v € U, in scenario S we need to pay the rent cost of
a-c®(u), where ¢® : U — N is a cost function defined by S and 0 < « < 1 is a previously fixed
rental factor. To purchase the element in the second stage we just need to pay the remaining
cost (1—a)c®(u). On the other hand, if we did not rent the element before, we have to pay the
original cost and additional inflation cost, i.e., (1 + 8)c®(u) for some inflation factor 8 > 0.
To sum up, an element u may produce cost 0 or ac®(u) or ¢®(u) or (1 + 8)c%(u). The task
in a rent recoverable robust problem is to determine a set of elements for rent, such that the
maximum cost for purchasing a solution over all scenarios is minimized. In contrast to the
k-Dist-recoverable robust model, a first-stage solution does not limit the set of solutions we
can choose from in the second stage.

We show that the rent recoverable robust version of all combinatorial optimization problems
that contain the WDHS problem, is weakly NP-hard for two scenarios. If the number of
scenarios is not constant, the same problems are not approximable with a factor better than 2,
unless P = NP. Considering interval scenarios, a rent recoverable robust problem is solvable
in polynomial time if the underlying combinatorial optimization problem is in P. In the case of
['-scenarios the complexity of the rent recoverable robust problem depends on the complexity
of the max-scenario problem, i.e., if the max-scenario problem is strongly NP-hard and some
technical details are fulfilled then the rent recoverable robust version is also strongly NP-hard.

In the last section we provide an approximation algorithm, which depends on a robust solution.
If the robust solution is a y-approximation of the corresponding robust problem, we obtain a
min{~y + 1 + 3, I }-approximation for the rent recoverable robust version with a given rental
factor @ and an inflation factor 8. In general, such relations between robust and recoverable
robust solutions cannot be achieved, since a robust solution may produce arbitrarily high total
cost like it is the case for k-Dist-recoverable robust problems.

Chapter 4: Exact Subset Recoverable Robustness In network design the words robust-
ness and stability are often used interchangeably. In that context a network is called ro-
bust /stable if its task is not influenced by intentional or random attacks. For example, in
telecommunication networks the demand should remain routable if certain links fail. In gen-
eral, a network is more robust if it contains redundant links. On the other hand, maintaining
such a network is rather costly. In order to reduce the cost, one is interested in abandoning as
many links as possible without losing stability. Yet, this approach does not take into account
the needs of the customers. A customer is generally not only interested that his requests are
routed but also that they are routed as fast as possible.

Exact subset recoverable robustness concentrates on this second requirement. Assuming un-
certainties given in the cost function, e.g., in the routing times, the task is to find a subnetwork
with minimum size guaranteeing that in every scenario the considered request is routed in the
subnetwork as fast as in the original network according to the realized cost function. This
problem can be easily extended to all combinatorial optimization problems and interpreted as
finding a small set of elements such that this set always contains an optimal solution w.r.t. the
original instance.

Introduction 5

Starting again with discrete scenario sets, we show strong NP-hardness for the exact subset
recoverable robust version of the minimum spanning tree problem, the minimum shortest path
problem and the minimum perfect matching problem. The key difficulty lies in the subproblem
of choosing one element out of a given set with minimum cost. This problem is a special case of
the weighted disjoint hitting set problem, which was investigated already in different chapters.

For interval scenario sets the problem becomes more interesting. We develop a general criterion
to decide in which case a given element needs to be part of any feasible solution. If a considered
linear combinatorial optimization problem is in P, we can use this criterion to show that its
exact subset recoverable robust version is in coNP. Furthermore, we use the criterion in two
directions: on the one hand, we prove that the exact subset recoverable robust version of the
shortest path problem and the minimum (s,¢)-cut problem are not approximable within a
factor of |A|~%) on a directed graph G = (V, A) for any ¢ > 0, unless P = NP. On the other
hand, we derive an algorithm for solving the exact subset recoverable robust minimum weight
basis problem on matroids.

The case of I'-scenarios is again closely related to the max-scenario problem, and thus it
follows that the exact subset recoverable robust versions of the shortest path problem and the
minimum (s, ¢)-cut problem are strongly NP-hard. But even for matroids the problem turns
out to be more difficult. The exact subset recoverable robust minimum spanning tree problem
contains as a subproblem the k-connected minimum subgraph problem and can therefore not
be solved in polynomial time, unless P = NP. Finally, we introduce an approximation scheme
for interval and I'-scenarios. This chapter is based on joint work with Rico Zenklusen. In [22]
results on the exact subset recoverable robust shortest path problem are published.

Chapter 5: A Recoverable Robust Knapsack Problem An important task in telecommu-
nication is to assign bandwidth to different customers, maximizing the profit for the company.
In many cases the demand of the customers varies, e.g., the source, the destination and the
traffic volume. Hence, not enough capacity may be available at the point of realization, al-
though service was granted beforehand. To obtain a trade-off between the loss of benefit due
to unused resources and the loss in reputation, we allow in our model violations of up to &
service promises and new service offers for up to ¢ new requests while maximizing the profit.
Applying this approach to a single link of a telecommunication network leads to a recoverable
robust version of the knapsack problem. Uncertainties are given in the profit function and in
the weight function. As recovery action, k items of the first-stage solution may be deleted and
¢ items may be added, as soon as a scenario reveals its profits and the weights.

Our main focus in this chapter is to obtain similar results as for the classical (robust) knapsack
problem. We start with an investigation of the complexity status for discrete scenario sets.
As in the robust and deterministic case, the (k,f)-recoverable robust knapsack ((k,¢)-rrKP)
problem is weakly NP-hard and can be solved in pseudo-polynomial time via a dynamic
program if the number of scenarios is constant. If this is not the case, the problem is strongly
NP-hard and in some cases even not approximable, unless P = NP. occur to

In addition to its complexity status, we are interested in obtaining strongly polyhedral de-
scriptions for this problem. We thus generalize the well-known concept of covers to gain valid
inequalities for the recoverable robust knapsack polytope. Besides the canonical extension of
covers we introduce a second kind of extension exploiting the scenario-based problem struc-
ture and producing stronger valid inequalities. Furthermore, we present two computational
studies to investigate the influence of parameters k£ and ¢ to the objective and evaluate the
effectiveness of our new class of valid inequalities.

6 Introduction

The (k, ¢)-rrKP problem with interval scenarios is a special case of the setting with just one
discrete scenario. For I'-scenarios this is not the case. We start by investigating the so-called
maximum weight set problem and introduce a combinatorial algorithm for computing for a
given set of items the scenario that induces the maximum weight on this set after the recovery
is applied. Using this result we introduce an IP formulation for the (k, ¢)-rrKP problem with
['-scenarios and no scenario profit whose size is polynomial in the size of the knapsack instance.
Note that the set of I'-scenarios contains an exponential number of different scenarios.

As for discrete scenarios, we adapt cover inequalities and strengthen previous formulations
introduced for the robust knapsack polytope by Klopfenstein and Nace [76]. Furthermore,
we give an optimal pseudo-polynomial algorithm for solving the corresponding separation
problem. This chapter is joint work with Arie Koster and Manuel Kutschka [23].

Chapter 6: Recoverable Robust Train Classification Train classification is an important
task in railway optimization, in which a set of given freight trains is sorted to form new
trains. In general these trains arrive according to a previously known order at the so-called
classification yard, where the cars are decoupled such that they can be sorted. The sorting
is performed by moving the cars over a hump, collecting them at some receiving track and
pulling them out again if necessary, until the desired train is formed. Since trains are often
delayed, the expected order of cars changes and a previously determined sorting schedule
becomes infeasible. Traditional classification methods deal with this problem by assuming a
worst-case scenario, i.e., that all cars arrive in reversed order, with the drawback of using more
sorting steps than necessary.

In our recoverable robust model, we assume that we can interfere the sorting process after an
offset of p sorting steps to add k& new sorting steps. But, we expect that a recoverable robust
schedule sorts the incoming trains into the desired outgoing train if no delay occurs. In the
case of disturbances, feasibility of the schedule is reobtained by using the described recovery
means. The parameters p and k£ model the trade-off between robustness and rescheduling. For
large p and small k& almost no changes happen to a schedule fixed in the first stage, for small
p and large £ many changes are possible.

We start by introducing a generic algorithm for computing a recoverable robust train classifi-
cation schedule. For the special scenario set in which each scenario delays up to j trains, this
algorithm can be implemented in polynomial time. Yet, in general a special NP-hard sub-
problem needs to be solved, which also induces NP-hardness on the recoverable robust train
classification problem for £ > 1. In experiments on real-world traffic data we further explore
the trade-off underlining that our algorithm saves sorting steps in comparison to traditional
methods even for small recovery actions. The results in this chapter are joint work with Jens
Maue and partly published in [24].

Appendix A: Max-Scenario Problems The max-scenario problem is an important sub-
problem of several recoverable robust settings. Given a combinatorial optimization problem
and a set of scenarios, the task of this problem is to find a scenario that maximizes the
minimum cost of a feasible solution. For discrete scenario sets and interval scenario sets the
problem is easy to solve. However, for I'-scenarios we show that the max-scenario problem
for the shortest path problem and the minimum (s, ¢)-cut problem become strongly NP-hard.
Using this result, we can show in several recoverable robust settings that recoverable robust
versions of these two problems are at least strongly NP-hard.

Introduction 7

Appendix B: Cardinality Constrained Minimum (s,t)-Cut Problem The upper bounded
cardinality constrained minimum (s, ¢)-cut problem asks for a minimum (s, ¢)-cut in a graph
with bounded cardinality such that its cost is minimized. To the best of our knowledge the
complexity status of this problem was open, e.g., stated in [21]. We show that the problem
is strongly NP-hard. As a consequence, the total cost for an (s,t)-cut cannot be computed
in polynomial time in the k-distance recoverable robust model. This result is joint work with
Rico Zenklusen.

1. Dealing with Uncertainties in a
Robust Way

The definition of an optimization problem requires the specification of several parameters,
as for example, the coefficient in an objective function or constraints on the set of solutions.
Often these parameters are subject to uncertainties, especially when dealing with models for
real-world problems: Data may be incomplete or erroneous due to imprecise methods for
measurement or may be unknown since they depend on future trends. The actual parameters
which will be realized in the future can just be approximated since several such realizations
are reasonable. Models integrating the idea of different future settings are normally based on
a scenario approach, where a set of scenarios is given and each scenario corresponds to an
assignment of plausible values to the model parameters.

In recent years, incorporating scenarios into deterministic models has generated much research
activity due to their importance for practical problems. Two models are widely used: stochastic
programming and robust optimization. In stochastic programming, one assumes to have perfect
knowledge of the probability distribution of the scenarios and optimizes some stochastic variant
of the original objective function, e.g., the expected value. In low risk situations the expected
value or some other stochastic function is appropriate. But in high risk situations this choice
is out of place, since these functions ignore the risk disposition of the decision maker. For
detailed description of stochastic programming see [18].

Robust optimization reflects a natural, high risk averse attitude towards uncertainty: when
in doubt, assume the worst. Thus, a solution is called robust if it remains feasible for any
possible realization of a scenario and minimizes the worst-case cost. The performance of such
a solution is guaranteed within the considered scenario set. The drawback of robustness is the
unacceptably high cost of an optimal solution. The concept also ignores the fact that in most
settings minor changes to the previously determined solution are possible. To overcome these
drawbacks researchers focused on the development of different scenario sets and included the
idea of recovery presented in stochastic programming.

In the following sections we describe and discuss the basics of robust optimization. Finally, we
introduce several related methods to extend the concept of robustness to so-called recoverable
robustness.

We will not give an introduction into the main concepts of combinatorial optimization here.
We assume the reader to be familiar with basic graph theory terms such as graphs, nodes, arcs,
paths, and with NP-hardness and definitions of well-known problems such as the minimum
(s,t)-cuts problem, the minimum cover problem, the minimum spanning tree problem and the
shortest path problem. As a reference, we recommend Korte and Vygen’s book “Combinato-
rial Optimization: Theory and Algorithms” |77]. For a detailed introduction to complexity
theory and the definition of several NP-hard problems we refer to Garey and Johnson’s book
“Computers and Intractability: A Guide to the Theory of NP-Completeness” [52].

10 Chapter 1. Dealing with Uncertainties in a Robust Way

1.1. Robustness

A robust approach is crucial when dealing with high risk events, e.g., in the scheduling of
aircrafts for U.S. military operations [83], or sensor placement when planning contaminant
warning system for water distribution networks [96]. In such settings, standard approaches
like deterministic optimization or stochastic programming fail to hedge against severe attacks
with unpredictable consequences. Furthermore, robustness is appropriate whenever a pre-
defined goal needs to be reached under any variation of the input data [88|.

We start with a historical overview of the development of robustness and different scenario sets
in linear programming. In a second part, we state the main results in robust combinatorial
optimization.

1.1.1. Robust Linear Programming

The Robust Formulation of Soyster In 1973, Soyster [92] was the first to investigate a
robust approach for linear programming. He considers uncertainties to be given column-wise
and seeks for a solution that remains feasible independent of the input data. One important
advantage of this approach is that no probability distribution needs to be known. Furthermore,
Soyster shows that if the set of uncertainties is given as convex sets, the problem reduces to a
simple linear program and thus remains tractable.

More formally, let ¢ € R"™ be a cost vector, b € R™ be the right-hand side and A% € R™*" be
an (m xn)-matrix. The nominal linear program, i.e., the linear program without uncertainties,
on a set of variables x € R" is defined as

minc'zx
AVx < b
z > 0.

In the inexact linear program formulation of Soyster, each column of the matrix A° is subject
to uncertainties. Note that in linear programming, variations in the cost function or in the
right-hand side can easily be transferred to the case where just the coefficients of the matrix are
effected. The uncertainties of A? are modeled via n convex sets K; CR™, j =1,...,n, where
each feasible realization chooses one column vector a; € K;. In a scenario based formulation,
each feasible scenario S defines an (m x n)-matrix A% such that we have af € K; for each
column af, j=1,...,n. The inexact linear program, or more general the robust counterpart
of the LP, is then given by

minc'

ASrx < b VS eS
z > 0,

where S denotes the set of feasible scenarios. As Soyster proved, an optimal solution for
this problem is obtained by solving a nominal linear program for the (m x n)-matrix A with
@i = maXyex; {0} fori=1,...,nand j =1,...,m.

Soyster’s approach received little attention, since the solutions tend to be over-conservative.
Only Falk (e.g. [43]) and Soyster (e.g. [93|) published short notes on the topic of inexact linear
prograis.

1.1. Robustness 11

Ellipsoidal Uncertainty Sets In the 1990s Ben-Tal and Nemirovski [12] as well as E1 Ghaoui
et al. |40, 41| independently started to approach the over-conservatism by considering row-
wise uncertainties where the coefficient of each row lay within an ellipsoidal set. Row-wise
uncertainties reflect the fact that usually not all coefficients of a row turn to their worst-case
values simultaneously. There are several good reasons to consider ellipsoidal sets. They include
a wide family of uncertainty sets, e.g., sets defined by a polytope, and they approximate more
complicated uncertainty sets. In addition, they can be described parametrically by data of
moderate size. Constraint-wise ellipsoidal uncertainty sets Sg are given in the following form:
let @) € R" be the nominal value of the ith row, i = 1,...,m, and let A; € R™" be some
perturbation matrix of the ith row. Then a scenario S € Sg defines a feasible realization
AS = (a7,...,a) if there exists for i = 1,...,m a vector u' € R" such that ||[u’||; < 1 and
ai = a) + Ajut, where || - |2 is the euclidean norm. As it turns out, the robust counterpart
of a linear program with ellipsoidal uncertainty sets Sg is equivalent to a second-order cone
program

minc'

z > 0.

This problem can be solved in polynomial time by interior point methods.

In order to test their robust approach, Ben-Tal and Nemirovski [13| studied 90 LPs from
the NETLIB collection and assumed that the given coefficients of the (m x n)-matrix A are
99.9%-accurate approximations for the unknown “true” entries of the (m x n)-matrix A. Since
a worst-case change in the data set seemed too pessimistic, they assumed the rows of A to
be given randomly by a; = (1 + ¢;)a; with independent and uniformly distributed values of
& € [—0.001,0.001], j =1,...,m. In 50% of the tested cases, a nominal optimal solution
became infeasible and could not be restored by moderate small correction. On the other
hand, the loss in the objective of a robust solutions never exceeds 1% in their test instances.
Hence, the price for robustness is relatively small compared to the gain in reliability.

I'-Scenarios A different approach to model uncertainty sets was published in 2004 by Bert-
simas and Sim [15]. Their uncertainty set controls the degree of conservatism for every con-
straint by hedging against all scenarios which assign to a limited number of coefficients in each
row values deviating from their nominal value. Intuitively speaking, they suppose that it is
very unlikely that all uncertain parameters change to their worst-case behavior as assumed
by Soyster [92] and thus put a cardinality constraint on the number of changes. To this end,
they introduced the concept of I'-scenarios: Let AY be again the nominal (m x n)-matrix with
rows aj, i = 1,...,m. For each entry af;, i=1,...,m, j=1,...,n, a maximal deviation
d;; > 0 from this value is assumed, i.e., all values of a disturbed input lay within the interval

[agj —dj, agj +d;;]. In order to restrict the number of deviation in each row, parameters I'; > 0
fori =1,...,m are fixed. A scenario S € Sr is a feasible I'-scenario if the realized (n x m)-
matrix A% = (a7,...,a>) obeys the following three properties: First, for all i = 1,...,m,
j =1,...,n, the coefficients a;s;- are in the interval [agj — d;j, agj + d;;]. Second, the number

of values deviating from the nominal value in the ith row are restricted to |I';] + 1, i.e., the
cardinality of J; = {j = 1,...,n | |a; — afj| > 0} is bounded by [I;] 4+ 1. The third condition
requires to have one coefficient af; in each row with af; = af; + (I'; — [I;])d;;. We assume in
general the values of I';, + = 1,...,m, to be integer. For I'; = 0, ¢ = 1,...,m, the robust
counterpart with I'-scenarios corresponds to the nominal problem and I'; = n matches the

12 Chapter 1. Dealing with Uncertainties in a Robust Way

model of Soyster. Hence, the parameter I' is to adjust the robustness against the level of
conservatism of the solution, depending on the modeler’s need.

Robustness with ['-scenarios turned out to be quite attractive, since Bertsimas and Sim [15]
showed that the robust LP problem with I'-scenarios is not only tractable but also equivalent
to a simple LP obtained from the robust counterpart by using results from duality theory. If
the nominal LP consists of n variables and m constraints, the robust counterpart has maximal
(2 + m)n + m variables and (1 + m)n + m constraints and is defined by

minc'z
Za%ﬂfj—i-zim—kz]oij < b Vi=1,...,m
7j=1 7j=1
Zzi+pij > diyy; Vi=1,....m,j=1,...,n
r; <y Vi=1,...,n
Yj, %, T, 0ij = 0 Vi=1,....m,i=1,...n.

Furthermore, they proved that the parameters I';, © = 1,...,m, control the probability that
some constraint is violated by a robust solution.

The Histogram-Model In Bertsimas and Sim’s model the coefficients of the matrix are
bounded by a box and in most realizations they take the nominal value or one of the two
box bounds. Bienstock [16] introduced in 2007 a refinement of this approach, the Histogram-
model. Instead of one deviation value from the nominal value, several deviation bands for each
parameter are defined. Each feasible scenario guarantees that a certain number of parameters
fall into each band.

More formally, let A° be the nominal (m x n)-matrix. For each coefficient af;, i = 1,...,m,
j=1,...,n, asequence of K deviation values d;,...,d} with d);, =0 < dj; <d}; <... <dfs
are given. Let furthermore n},..., nX and N}, ..., N/ be natural numbers forming lower
and upper bounds on the parameter distribution in the ¢th row, ¢ = 1,...,m. A scenario
S introduces a feasible realization A% € R™*™ if in each row a; and for all k = 1,..., K the
number of parameters a3, with af; € [al; — df;, ad; — dl ' U [a; + d ', al; + dF] lies within the
interval [n¥, N¥,i=1,...,m,j=1,...,n.

The choice of the number and the size of the bands, the values nf and NF, i=1,...,m,

k=0,..., K, reflect the willingness to take risks of the modeler and depends therefore highly
on the problem structure. For a detailed description of this model and its application to
portfolio optimization, we refer the reader to the original paper by Bienstock [16|. This model
has also successfully be applied to wireless network design [17].

1.1.2. Robust Combinatorial Optimization

Robust frameworks for discrete combinatorial optimization problems where first introduced
by Kouvelis and Yu in the middle of the 1990s [78]. Inspired by classical decision theory, they
proposed three different classes of robust solutions: the absolute robust solution, also called
min-max solution or strict robust solution, the robust deviation solution, also called min-max
regret solution, and the relative robust solution, also called min-max relative regret solution.
All robust solutions need to be feasible in all possible realizations. Yet, the objective function
varies. In the absolute robust case, the maximum occurring cost is minimized. The regret in

1.1. Robustness 13

a scenario S € § is defined as the difference in cost by the robust solution and an optimal
solution. An optimal regret robust solution minimizes the maximum regret. Finally, for the
relative robust case, the regret is normalized by the value of the optimal solution. In the
following we will define the framework of absolute robust solutions in detail and just call them
robust solutions for the sake of simplicity.

We consider the class of combinatorial minimization problems with linear objective functions.
Such problems are defined as follows:

Definition 1.1.1 (Linear Combinatorial Minimization (LCMin) problem). Let U be a finite
set, F C 2V be a set of feasible solutions and ¢ : U — N be a cost function. The triple (U, F, ¢)
defines a linear combinatorial minimization problem where the goal is to find a set F* € F
with minimum cost c(F™*) = Y~ p. c(u).

This class covers several classical combinatorial minimization problems like the shortest path
problem, the minimum spanning tree problem, the minimum (s, t)-cut problem or the mini-
mum perfect matching problem. In order to model uncertainties, we use sets of scenarios S,
where each scenario S defines a scenario cost function ¢ : U — N and a set of scenario feasible
solutions F° C F. Let now (U, F,c) be an LCMin instance and S be a set of scenarios. Then a
solution F' € F is called robust if F is part of every set of scenario feasible solutions F°, S € S.
The robust linear combinatorial minimization problem is to find for a given LCMin instance
and a scenario set S a robust solution F' with minimal robust cost cg(F) = maxges c®(F).
In the following part we focus on scenarios which just imply uncertainties in the cost of the
given LCMin instance, i.e., F¥ = F for all S € S.

Different Types of Scenario Sets In robust combinatorial optimization mainly three dif-
ferent types of scenario sets have been considered: the discrete scenario set Sp, the interval
scenario set Sy and the I'-scenario set Sr.

Let (U, F,c) be an LCMin problem. In the discrete scenario set Sp, e.g., considered in |3, 78,
87, 101|, every scenario is explicitly given with its cost function, i.e., the set Sp consists of r
scenarios Si, ..., S, where each scenario S;, i = 1,...,7, defines a cost function ¢% : U — N.
Also covered in several of these articles is the interval scenario set Sy, an implicit description of
all possible scenarios: For each element u € U a lower and an upper cost bound c(u),¢(u) € N
with 0 < ¢(u) < ¢(u) is given. The cost functions of all scenarios in S; obey these bounds and
for any cost function ¢ : U — N with ¢(u) € [c(u),¢(u)] for all w € U, a scenario S € S; with
this cost function exists. For the I'-scenario set again upper and lower cost bounds limit the
values of the scenario cost functions, as already described for linear programs [15]. But, in
contrast to interval scenarios, a scenario S € Sr is only allowed to have at most I' cost values
deviating from the lower bound. Note that we assume I' to be integer.

Results for Discrete Scenarios The complexity status of robust combinatorial optimization
problems has extensively been studied in recent years. Kouvelis and Yu |78] started by proving
that many robust LCMin problem are NP-hard for a constant number of discrete scenarios
by a reduction from partition, e.g., the robust version of the shortest path problem or of the
minimum spanning tree problem. In [4] Aissi et al. established a close relation between the
multi-objective version of an optimization problem and its robust version: They transformed
any approximation algorithm of the multi-objective problem into an approximation algorithm
of the robust problem. Since there is an FPTAS for the multi-objective version of the shortest
path problem and the minimum spanning tree problem [85], there exists an FPTAS for their

14 Chapter 1. Dealing with Uncertainties in a Robust Way

robust versions as well and hence, they are also solvable in pseudo-polynomial time. Yet,
not all robust LCMin problems with a constant number of discrete scenarios can be solved in
pseudo-polynomial time. Even for two scenarios Aissi et al. showed that the robust minimum
(s,t)-cut problem is strongly NP-hard [5].

Let us now consider the case in which the number of scenarios Sp is not constant. In that
case most robust problems turn out to be strongly NP-hard by a reduction from 3-partition,
which was already noted by Kouvelis and Yu [78]. Concerning the approximability, Aissi et
al. [4] were the first to give lower bounds on the best possible approximation factor for robust
combinatorial optimization problems where the number of scenarios is not constant. In detail,
they proved a lower bound of 2 — ¢ for the shortest path problem and a 1.5 — ¢ bound for
the minimum spanning tree problem, for any € > 0. In |70] Kasperski and Zielinski improved
these bounds: the robust shortest path and the robust minimum (s,¢)-cut problem with
discrete scenarios Sp are not approximable within log!~ |Sp| for any € > 0, unless NP C
DTIME (nP°¥!°¢7) Furthermore, the robust minimum spanning tree is also not approximable
with a factor better than 2.

On the other hand, little has been known on approximation algorithms. A simple way to
obtain an |Sp|-approximation for any robust LCMin problem (U, F, ¢) with discrete scenarios
Sp is by choosing an optimal solution of the corresponding (U, F,¢) instance with ¢ : U — R*
and ¢(u) = @ > ses,, ¢ (u). Table 1.1 summarizes the results on the complexity status of
robust combinatorial minimization problems.

Problems |Sp| constant |Sp| not constant

Complexity Approx. Complexity Approx.
Shortest Path weakly NP-hard [78] | FPTAS [3] | strongly NP-hard [78] | not log'~*(|Sp|) [70]
Spanning Tree weakly NP-hard [78] | FPTAS |3| | strongly NP-hard [78] | not (2 —¢) |70]
(s,1)-Cut strongly NP-hard [5] strongly NP-hard [78] | not log'~*(|Sp|) [70]
Perfect Matching | weakly NP-hard* FPTAS [4] | strongly NP-hard* not (2 —e)*

* nowhere explicitly stated

Table 1.1.: Complexity and approximation of robust combinatorial optimization problems in
the discrete scenario case.

Results for I'-Scenarios In [14], Bertsimas and Sim applied the concept of I'-scenarios to
combinatorial optimization problems, but only assumed the cost function to vary. They con-
sidered the set of all 0-1 discrete optimization problems with linear cost functions, where the
set of feasible solutions X is a subset of {0,1}", n € N. The shortest path problem, the mini-
mum spanning tree problem and the minimum perfect matching belong to this problem class.
The main theorem of [14] states that the robust counterpart with I’-scenarios of these problems
remains solvable in polynomial time. To this end, it suffices to solve n + 1 special instances of
the considered problem with fixed parameters. For NP-hard problems any a-approximation
algorithm transforms in the same way to an a-approximation for the robust counterpart. The
proof is limited to solutions having a 0-1 representation and cannot be adapted to general
LCMin problems.

A robust approach has a number of weaknesses, as mentioned above. On further drawback is,
that robust optimization corresponds to the case where all decisions have to be made before
the actual realization is known. There are settings, e.g., in contaminant warning system
for water networks [96|, in which such an approach is appropriate. But in the majority of
optimization problems of real-world origin only parts of a decision have to be taken here and

1.2. Extending Robustness to Recoverable Robustness 15

now. Small changes to a solution are acceptable as reaction to a new situation. For example,
in the inventory control problem the number of produced goods needs to meet the demand of
the market. Yet, this demand may change on a daily base and thus is only known after the
production took place. On the other hand, in a long term process the decision on the number
of products can also be adapted depending on the development of the markets [11].

Strict robustness is more or less restricted to scenarios that affect the cost function of a given
problem. Yet, in general, changes may also have an influence on the set of feasible solutions
as an element may not be available in a certain setting. Or the demand may change, e.g.,
the target vertex in a shortest path problem depends on the realized scenario or the nodes
connected via a spanning graph are fixed after the edges are chosen [37]. In these cases it is
rare that a robust solution exists. To address these issues, new approaches were introduced
incorporating small modifications of the solution after the uncertain parameters are fixed. We
will define this concept and give a short overview of the results in the next section.

1.2. Extending Robustness to Recoverable Robustness

The idea to broaden the concept of robustness and to include some changes of the solution in
the revealed setting has attracted many different researchers: Mulvey et al. [83] differentiate
in their new robust model between design decisions and control decisions, Ben-Tal et al. [11]
introduced the concept of adjustable robustness for linear programs, Dhamdhere et al. [37] con-
sidered demand robustness, Atamtiirk and Zhan |7| called their concept two-stage robustness,
and Liebchen et al. |81] investigated recoverable robustness inspired by the recovery action.
All these models include a two-stage process: in the first stage some decision is taken, e.g., a
solution or a superset of a solution is chosen. We call it a first-stage solution. This solution
leads to limitations of the feasible solution set in the second stage, the so-called recovery set
of a solution. In the second stage, after the exact parameters are revealed, a solution out
of the recovery set is chosen and implemented. This second-stage solution can be different
for each scenario. Under all first-stage solutions that contain a scenario feasible solution in
the second stage, one with minimal total cost is chosen. The total cost is composed of two
parts: the first part does not underlie uncertainty and needs to be payed for the first-stage
solution, it is called first-stage cost. The second part depends on the scenario cost functions.
In each scenario, cost for the chosen second-stage solution and in some cases the first-stage
solution have to be payed. The maximum amount of this cost over all scenarios determines
the second-stage cost.

Beside this common structure there are small differences in the proposed models above: One
feature in the robust linear program of Mulvey et al. [83| is that the first-stage solution and
the recovery actions do not need to generate a feasible second-stage solution. The violation is
captured in scenario-dependent error variables. Furthermore, the proposed objective function
is kept in a quite general way: depending on the given information of the scenario set, it
minimizes either the maximum scenario cost or, if some distribution for the scenario set
is available, the expected value or some other stochastic function. In addition a penalty
term for the error variables is included in the objective function. Mulvey et al. [83] applied
their robust concept to the power capacity expansion problem, the matrix balancing problem,
image reconstruction and an airline allocation problem for the Air Force. For these problems
they compared the performance of robust solutions with the performance of stochastic linear
programming solutions. In most cases the robust solutions had slightly higher expected cost
than the stochastic solution but with substantially lower standard deviation. Yet, in the
investigated robust models they always included some stochastic distributions.

16 Chapter 1. Dealing with Uncertainties in a Robust Way

Adjustable Robustness Ben-Tal et al. [11] extend the notion of robustness for linear pro-
grams and define an adjustable robust counterpart. They start by distinguishing between
first-stage variables uw € R™ (in their terminology called non-adjustable variables), which are
fixed in a first stage and do not change, and second-stage variables v € R™ (there called
adjustable variables), which may change in every scenario realization. In the same way they
divide the coefficient matrix into two parts, namely, U € R™*™ and V' € R"™*"2, In a last step,
they normalize the objective function given by the vector ¢ € R™ such that it is independent
of the second-stage variables. For a given right-hand side b € R™, the nominal linear problem

1S
T

minc' x
Uu+Vov < b
u,v > 0.

As before, uncertainties can be modeled via a scenario set S, where each S € S defines an
(m x np)-matrix U% € R™™ and an (m X ny)-matrix V* € R™*"2 that models the recourse,
i.e., the allowed modifications of u by v. Note that the right-hand side b € R™ and the cost
vector ¢ € R™ are w.l.o.g. not effected by uncertainties. Now, the adjustable robust counterpart
(ARC) of the nominal linear program is defined by

min{c'u | for all S € S there exists v : USu 4+ Vv < b, u,v > 0}.

In general, the adjustable robust counterpart is more difficult to solve than the nominal prob-
lem. Guslitser showed in |56] that even if the recourse V' is fixed for all scenarios, i.e., Vo =V
for all S € S, and the set of realizable matrices U is defined by a list of linear inequalities,
the ARC is an NP-hard problem. The same holds if we consider a discrete set of r scenarios
Sp = {S1,...,S,} where the recourse V° may differ in each scenario, i = 1,...,r. Yet, in
the case of a fixed recourse and a set of discrete scenarios Sp, the problem becomes solvable
in polynomial time. These results motivated Ben-Tal et al. [11] to consider the case where the
second-stage variables are affine functions of the corresponding data. They showed that for a
fixed recourse, the ARC is tractable in many cases.

The concept of adjustable robustness has been applied in several real-world problems like the
inventory management problem [11], the empty repositioning problem [42] or the air traffic
control problem [27|. The overall valuation is that the price of robustness remains relatively
small. For example, in the inventory management problem with variation in the demand of
20%, the average management cost for the robust adjustable policy is just 3,4% worse than
the corresponding ideal cost.

Demand- and Two-Stage-Robustness The development of demand robustness, also called
two-stage robustness, is mainly influenced by two-stage stochastic programming and the limits
of the robust model in combinatorial optimization to capture variations in the demand. For
example, in the two-stage robust shortest path problem, a directed graph G = (V, A) with arc
cost ¢: A — N is given. Instead of uncertainty in the arc cost, the target vertex is not known
in advanced. In a first stage some arcs can already be purchased. This set must be completed
to a path as soon as the target vertex is known. Arcs bought in the second stage come to
an higher cost, namely (1 + $°) times the cost of the first stage for some scenario dependent
inflation factor 3° > 0, S € S. More formally, the goal is to buy some parts of the possible
path A; C A in advance for the cost ¢(A4;), and to complete it for the given target vertex
t9 € V to a feasible (s,t%)-path in A; U A5 by buying the arcs A5 for the cost (1 + 3%)c(A3)
as soon as the scenario S € S has realized. The objective is to minimize this cost over all

1.2. Extending Robustness to Recoverable Robustness 17

possible scenarios, i.e., to minimize c(A4;) + maxges(1 + 3%)c(A3). Note that in this setting a
strictly robust path does not exist in general.

The investigation of this kind of uncertainties and the development of two-stage robustness has
been initialized by Dhamdhere et al. |37], who considered covering problems as the minimum
cut problem, the shortest path problem, Steiner trees or vertex cover with discrete scenario
sets. Using LP-rounding as main technique, they achieved several approximation results for
discrete scenario sets Sp. More precisely, they achieved an O(log|Sp|)-approximation for
the robust minimum cut problem, a 30-approximation for the robust Steiner tree problem, a
16-approximation for the robust shortest path problem or a 4-approximation for the robust
vertex cover problem. Furthermore, they introduced a lemma about the structure of first-stage
solutions in a two-stage robust setting to derive lower bounds on the optimal cost. Golovin et
al. [54] used this lemma to present a (1 + v/2)-approximation for the minimum cut problem
and a 7.1-approximation for the robust shortest path problem.

Since considering discrete scenarios seemed rather restrictive, Feige et al. [44] suggested the
k-robust model in which every subsets of the given cover problem with a cardinality of £ forms
a scenario, i.e., they proposed an implicit description of the scenario set. Since the number
of scenarios may be exponential, there is a unique inflation factor on the cost in the second
stage for all considered scenarios. Using an online algorithm for set cover they obtained an
O(log n log m)-approximation for the robust set cover with n elements U and a set m subsets
to cover U. On the other hand, they show that the problem is not approximable within a factor
better than €(lolgﬁ);”m + logn) and thus left a logarithmic gap between the lower and upper
bounds. Khandekar et al. |73] adopted the model of Feige et al. [44] for the robust Steiner tree,
Steiner forest and facility location problem. They noted that the techniques proposed for the
set cover problem did not give good results, and developed new constant factor approximations
for these problems. The last improvement in this area of robust optimization was established
by Gupta et al. [55]. They introduced a general framework to design algorithms for these robust
problems. Using them, they obtained an O(logm + logn)-approximation for the robust set
cover and improved the constant in the approximation factor for Steiner tree to 8, for Steiner
forest to 10 and for min-cut to 17.

Recoverable Robustness The definition of recoverable robustness introduced by Liebchen
et al. [81] is probably the most general one of the mentioned concepts. A recoverable robust
problem is defined via three steps: in a first step, the original optimization problem is given.
In a second step, a scenario set for this optimization problem needs to be specified, and in
the last step, the limited recovery possibilities are fixed. The new input of the definition lies
in the formalization of the recovery, which is represented via a class A of admissible recovery
algorithms. A recoverable robust solution x in that case not only consists of the first-stage
solution but also of a specific recovery algorithm A € A. Such a solution pair (z, A) is feasible
for a set of scenarios S if for every scenario S € S the algorithm A applied to x and S produces
a scenario feasible solution.

In [81] several examples are given on how this setting, and especially the set of recovery
algorithms A, may be interpreted. If, for example, the set of recovery algorithms just consists
of the algorithm A with A(x,S) = x for all S € S, they obtain the standard robust setting.
If the distance d(z,y) from the first-stage solution z to the implemented solution 2 in the
second stage shall be limited by some 6 > 0 for S € S, all recovery algorithms are forced to
satisfy d(A(z,S),z) <. Another setting to mention here covers the case where the caused
cost by the second-stage solution z° is limited by some A > 0 for every S € S. Since usually

18 Chapter 1. Dealing with Uncertainties in a Robust Way

not only the cost for the first-stage solution but also the limit A needs to be minimized, this
last setting corresponds to finding a first-stage solution with minimal maximum scenario cost.

Especially in railway optimization the concept of recoverable robustness is widely accepted and
applied to different settings. To mention a few, Cacchiani et al. [25] introduced a recoverable
robust model for the rolling stock problem, Cicerone et al. [30] considered timetabling and
shunting, and Caprara et al. [26] adapted this concept to approach the train platforming
problem with delays. Furthermore, a simple linear program is proposed in [81] to solve linear
programs with variations in the right-hand side and several different scenario sets. This setting
corresponds to the network buffering problem in timetabling.

There exist further concepts of robustness beyond the scope of this thesis, such as regret
robustness introduced by Kouvelis and Yu [78], light robustness investigated by Fischetti et
al. [46] or lexicographic a-robustness considered by Kalai et al. [65]. This introduction to
robustness focuses on the settings which are closest related to the research presented here.

2. k-Distance Recoverable Robustness

This chapter presents k-distance recoverable robustness. In this setting, a solution chosen in
the first stage is allowed to be modified in the second stage. Such a modified solution can
contain up to k new elements compared to the solution in the first stage. These changes
serve as tool for hedging against uncertainties in the cost function which are modeled via a
set of scenarios. Each scenario determines a scenario cost function. The task in k-distance
recoverable robustness is to find a solution in the first stage that minimizes the cost over all
scenarios for a solution taken in the second stage w.r.t. the scenario cost function.

Choosing different types of scenario sets, we analyze the complexity status and combinatorial
properties of the k-distance recoverable robust version of several well-known optimization
problems. In the case of discrete scenarios most of these problems are already weakly NP-hard
for two scenarios and even strongly NP-hard if the number of scenarios is not constant. For
the weighted disjoint hitting set problem, a subproblem of the shortest path problem, the
minimum spanning tree problem and the minimum perfect matching problem, we introduce a
pseudo-polynomial algorithm for a constant number of scenarios.

As a second type of scenario sets, we investigate interval scenarios. In this setting the k-
distance recoverable robust minimum weight basis problem for matroids with interval scenarios
becomes tractable as well as the k-distance recoverable robust weighted disjoint hitting set
problem. However, for the shortest path problem with simple (s, t)-paths as first-stage solution
the k-distance recoverable robust version remains strongly NP-hard and is furthermore not
approximable, unless P = NP.

Considering I'-scenarios, in addition to the shortest path problem, also the minimum (s,?)-
cut problem turns out to be strongly NP-hard. Finally, we analyze the special case of one
scenario, a constant recovery parameter, and some not necessarily simple (s, ¢)-paths as first-
stage solution, and present a polynomial algorithm for this k-distance recoverable robust
shortest path version.

2.1. Introduction

Motivation As described in Section 1.2, recoverable robustness is a two-stage procedure. In
a first stage a solution is taken without knowing the exact parameters of the optimization
problem. In the second stage this solution is modified according to the realized scenario
in order to obtain a feasible and potentially cheaper solution. Each scenario determines all
parameters considered uncertain in the first stage. Interpreting recoverable robustness as a
mediator between “optimization on the fly“, where for every scenario an optimal solution is
chosen in the second stage, and robustness, where no changes are allowed after the solution
is chosen in the first stage, our first recoverable robust approach allows only small changes
in the second stage. For that reason, we adapt the idea of neighborhoods in local search to
define the set of solutions taken as recovery.

20 Chapter 2. k-Distance Recoverable Robustness

A simple concept of neighborhoods are the so-called k-exchange neighborhoods introduced by
Kernighan and Lin |72]|. The k-exchange neighborhood for a solution consists of all solutions
that can be constructed by removing k elements and replacing them by £ other elements.
Kernighan and Lin use this concept to design heuristics for the traveling salesman problem
(TSP) and the graph partitioning problem. This approach has also been applied fruitfully to
the TSP with time windows and the job shop scheduling problem, see [1]. The k-exchange
neighborhoods define a reasonable neighborhood if all feasible solutions of the considered
optimization problem have the same cardinality, e.g., in the minimum weight basis problem
for matroids or in the traveling salesman problem. For example, any TSP tour can be reached
from any other TSP tour by a finite sequence of local changes within a 2-neighborhood. Yet,
for problems like the shortest path problem or the minimum (s, ¢)-cut problem, this property
is not satisfied.

We therefore broaden the definition to gain a useful description of a recovery by limiting only
the number of new elements taken in the second stage. In other words, a solution is a feasible
recovery for a given first-stage solution if it is constructed by removing an arbitrary number of
elements and using at most k£ new elements. Summing up, we obtain the following recoverable
robust concept called the k-distance recoverable robustness: Choose in a first stage a first-stage
solution for the given optimization problem. As soon as all data is known, take one solution
with minimum second-stage cost that includes at most k£ new elements w.r.t. the first-stage
solution.

Model and Notation We will now formally introduce k-distance recoverable robustness for
linear combinatorial minimization problems. Recall that a linear combinatorial minimization
(LCMin) problem is given by a finite set U, a set of feasible solutions F C 2V, and a cost func-
tion ¢ : U — N. The task is to find a feasible solution with minimum cost (Definition 1.1.1).
We start by defining which kind of sets we consider as feasible first-stage solutions.

Definition 2.1.1 (First-Stage Solution Set). Let (U, F,c) be an LCMin instance. A set
G C 2V is called a first-stage solution set of U if for any subset £ C U it can be decided in
polynomial time in U whether E is in G. A set F' € G is called a first-stage solution.

According to this definition a first-stage solution set G may not be given explicitly, but can
be described to consist of all subsets fulfilling a certain property, e.g., containing exactly /¢
elements, ¢ € N, or being a feasible solution of the given LCMin instance. Note that a feasible
solution of the given LCMin problem does not necessarily need to be chosen in the first stage
as it is also the case in two-stage robustness [37]. An important subclass of first-stage solution
sets are so-called proper sets, which we define below.

Definition 2.1.2 (Proper First-Stage Solution Set). A first-stage solution set G is proper if

1. every element F' € G contains a feasible solution of the given LCMin instance (U, F, c)
and

2. FCQG.

Combining this definition with the idea of recovery derived from local search, we obtain the
following definition for k-distance recoverable robust linear combinatorial minimization prob-
lems.

Definition 2.1.3 (k-Distance Recoverable Robust Linear Combinatorial Minimization Prob-
lem (k-Dist-RR LCMin Problem)). Let (U, F, ¢) be a linear combinatorial minimization prob-
lem; ¢? : U — N be a first-stage cost function; S be a set of scenarios, where each scenario S

2.1. Introduction 21

defines a scenario cost function ¢ : U — N; G be a first-stage solution set of U, and k € N
be a recovery parameter. Then the recovery F % of a first-stage solution F' € G consists of all
sets I € F with |F\F| <k, and the recovery cost cgrr(F') is determined by

F) = in ¢”(F).
crr(F) @g§£%0()

The first-stage cost of F are given by ¢”(F) =3 . cP(u). First-stage cost and recovery cost
sum up to the total cost cp(F) of F i.e.,

CT(F) = CD(F) —|— CRR(F).

The k-distance recoverable robust LCMin problem is to find a feasible first-stage solution
F* € G with minimum total cost cp(F™*).

In this definition the cost function ¢ of the underlying LCMin instance (U, F,c) does not
directly cause any cost for a first-stage solution or a solution taken in the second stage.
However, we assume this function to be perturbed and hence the scenario cost functions can
be seen as variations of c.

Note that for £ = 0 and G = F the k-Dist-RR LCMin problem is equivalent to the robust
LCMin problem. Let us consider the following example to illustrate the different definitions.

Example 2.1.4. We consider a k-Dist-RR shortest path problem for £k = 1. Let G = (V, A)
be the graph given in Figure 2.1. We assume that the first-stage cost is 1 for every arc in
G. Furthermore, we consider I-scenarios defined by lower cost bounds c(a) = 0, upper cost
bounds ¢(a) = 10 for all a € A and T" = 1. Hence, a feasible I-scenario assigns cost 10 to one
arc and cost 0 to all others. The two smaller graphs GG; and G5 show two of these scenarios:
scenario S; increases the cost of arc (a,b) to 10 in the graph G and scenario Sy increases the
cost for the arc (s, e) in the graph G. The arcs with the higher cost are marked red. Finally,
we define the set of first-stage solutions G to consist of all simple (s, t)-paths.

[0, 10] 10

Figure 2.1.: The left graph G shows the situation in the first stage, where the different cost
values of the arcs are not known. On the right side, two possible realizations are illustrated,
where all arc costs are 0 except for the red arcs.

Let us consider the blue colored path p = secabdft in G. The first-stage cost of p is 7, which
is rather high compared to all other (s,t)-paths in G. On the other hand, its recovery set .7:;
consists of four paths, namely, the blue path p, p; = seft with the new arc (e, f), po = sabdft
with the new arc (s,a) and p3 = secabt with the arc (b,t). If, for example, the scenario S
is realized, the path p; should be chosen as recovery in the second stage inducing no extra
cost. This situation is shown in graph G;. If S5 is realized, the path p, is the best recovery

22 Chapter 2. k-Distance Recoverable Robustness

(see graph Gi3). Considering all scenarios in Sp one can easily verify that there exists always
a path in the recovery with cost 0 w.r.t. the scenario cost function. Hence, the recovery cost
crr(p) is 0 and the total cost is 7.

For the (s,t)-path p; = seft the first-stage cost is 3, but p; does not contain any other path in
the recovery set. Therefore, its recovery cost is 10 induced, for example, by scenario S, and
sum up to total cost 13. Computing the cost for all other paths shows that p is the optimal
first-stage solution in the described instance. This changes if we consider a different set of
first-stage solutions. If, for example, the first-stage solution set consists of all subgraphs of G
that contain an (s,t)-path, an optimal solution is given by the path p; plus two arcs of ps,
e.g.,, A ={(s,a),(a,b),(b,1t),(s,e), (e, f)}. The total cost of this solution is 5, since in every
scenario there exists a path in the recovery with cost 0. H

A k-Dist-RR LCMin problem can be interpreted in various ways. First of all, it can be seen as
a bi-criteria problem if the first-stage cost function is chosen independently from the scenario
cost function for each scenario. In real world applications, the first-stage cost are usually seen
as the normal cost that occur for the given problem instance. The scenario cost, on the other
hand, just models slight increase on these cost. We capture this dependency in the following
definitions.

Definition 2.1.5 (Worsening-Condition). Let (U, F,c) be an LCMin instance, ¢” : U — N
be a first-stage cost function and S be a set of scenarios where each scenario S € S defines a
cost function ¢® : U — N. Then S and cP satisfy the worsening-condition if ¢ (u) < ¢°(u)
forallue U, S eS.

Even if a set of scenarios and a first-stage cost function obey the worsening-condition, the
values of the cost functions defined by the scenarios may be arbitrarily high in comparison to
the first-stage cost. To limit these variances we define the following a-deviation-condition.

Definition 2.1.6 (a-Deviation-Condition and afpgqj-Deviation-Condition). In the setting of
Definition 2.1.5 a scenario set S and a first-stage cost function c” fulfill the a-deviation-
condition w.r.t. « € RT if forallu € U and S € S we obtain

S (u) € [P (u), (14 a) - cP(w)].

We call the factor o the a-deviation. If o € [0,1], we say that S and c” obey the
ayo,1)-deviation-condition.

Contribution and Chapter Outline Our research focuses on the complexity status and
combinatorial structure of k-Dist-RR LCMin problems. The obtained results depend on the
considered LCMin problem, but are also influenced by the set of scenarios, the recovery pa-
rameter k—taken as constant or not as constant—and the first-stage solution set. We consider
discrete scenario sets, interval scenario sets and I'-scenario sets, already described in Chapter 1.

Section 2.2 covers discrete scenario sets and presents an analysis of the simple so-called
weighted disjoint hitting set problem, which is a subproblem of several LCMin problems,
like the shortest path problem, the minimum (s,¢)-cut problem or the minimum spanning
tree problem. However, its k-Dist-recoverable robust version is already weakly NP-hard for
two scenarios, and strongly NP-hard if the number of discrete scenarios is not constant. For
the first case we introduce a pseudo-polynomial algorithm solving this problem, whose run-
time depends on the values of the scenario cost functions and is exponential in the number of
scenarios.

2.2. Discrete Scenarios 23

In Section 2.3 we consider interval scenarios and show that this setting is a special case of
discrete scenario sets, where the set is formed by just one single scenario. For the weighted
disjoint hitting set problem, we introduce a polynomial algorithm solving this problem. If
the recovery parameter k is taken as a constant, we can also solve the minimum weight
basis problem for matroids efficiently. Finally, in Section 2.4 robustness w.r.t. ['-scenarios is
analyzed. Using a close relation to the max-scenario problem, we show NP-hardness for the
k-Dist-RR minimum (s, t)-cut problem and the k-Dist-RR shortest path problem.

Section 2.5 presents results on the shortest path problem. Even for one scenario, the k-Dist-RR
shortest path problem is strongly NP-hard and not approximable if the first-stage solution is a
simple (s, t)-path. Surprisingly, an extension of the first-stage solution set to a set that consists
of all (s,t)-paths, leads to a tractable k-Dist-RR, shortest path problem if k is constant.

We begin by considering discrete scenario sets.

2.2. Discrete Scenarios

A discrete scenario set Sp consists of r scenarios Si, ..., S, with their scenario cost function
U — N,i=1,...,r, for an LCMin instance (U, F,c). We start with an investigation
of the complexity status of a k-Dist-RR LCMin problem with discrete scenario sets. To
this end, we consider the weighted disjoint hitting set problem, which can be interpreted as
a subproblem of the shortest path problem, the minimum (s,#)-cut problem, the minimum
perfect matching problem and the minimum spanning tree problem, as we will later see in
detail (Corollary 2.2.3). A disjoint hitting set instance contains a set U = {u1,...,u,} of n
elements, a set M of d pairwise disjoint subsets of U, i.e., M = {Mj,..., My} with M; C U
and M; " M; =0 forall i #j,i,5=1,...,d, and a cost function ¢: U — N. A set F CU is
a feasible solution if F' contains exactly one element for every set M € M, i.e., |[FNM| =1
for all M € M. Then the WDHS problem is defined in the following way:

Given: A set of n elements U = {uy,...,u,}, a set of d pairwise disjoint subsets M =
{M,..., My} and a cost function ¢ : U — N.

Task: Find a feasible solution F' that minimizes ¢(F") = Y_ pc(u).

Obviously the WDHS problem can be solved in polynomial time by choosing an element with
lowest cost from every set My, ..., My. Yet, this is not the case for its k-Dist-recoverable
robust version with proper first-stage solutions sets and |Sp| > 2.

Theorem 2.2.1. The k-Dist-recoverable robust weighted disjoint hitting set problem is weakly
NP-hard for |Sp| = 2 and proper first-stage solution sets even if the o 1)-deviation-condition
15 fulfilled and k s constant or depends on the number of elements of the WDHS' instance.

Proof. We start with the case of k£ being constant and show a reduction from partition. Let [
be an instance of partition containing n integers ey, ..., e, with > e; = 2b for some b € N.
Then the task for I is to decide whether there exists a partition A; U Ay = {ey,...,e,} such
that > ., e = b. We construct I" as the corresponding k-Dist-RR WDHS instance with a
set of elements U, n + k disjoint sets, two scenarios Sp = {51, 52}, and a proper first stage
solution set G. Suppose for a moment, that the considered proper first-stage solution set G
consists of all feasible solutions.

The set U contains 2n + 2k elements uy, . .., Uoy1or, Where the first 2n elements model the
partition of the set eq, ..., e, and the last 2k elements capture the recovery action. We denote

24 Chapter 2. k-Distance Recoverable Robustness

with Uy the first 2n element, with U; all elements with an odd index greater than 2n and
with Us all elements with an even index greater than 2n, i.e., Uy = {uy,...,us,}, U3 =
{U2n+1, U2n+3, - - - 7u2n+2k—1} and Ug = {U2n+2, Uon+45 - - - 7u2n+2k}- The elements Ury .-y Udn+2k
are subdivided into n + k sets My, ..., M, with M; = {ug;_1,us}. The element u; with
1 even are called the even elements and the element u; with ¢ odd the odd elements, 1 =
1,...,2n+ 2k. Since any feasible first-stage solution contains exactly one element out of the
sets M, ..., M,, the choice of the even elements u;, ¢ = 1,...,2n, can be interpreted as a set
Ay of a partition and the odd elements as a set Ay. More formally, let F' be a feasible solution,
then A = {e; |uy € F, i € {1,...,n}} and ALY = {e,...,e,}\ AL are a partition induced
by F. We will now define the first-stage cost function and the two scenario cost functions in
a way such that they satisfy the following properties:

1. Every feasible solution F' with U; C F has lower total cost than a first-stage solution
which contains one element u; € U,. We call such a first-stage solution a reasonable
solution.

2. Let F be a reasonable solution and ¢ some unavoidable cost, defined later, then

cr(F) = cP(F) + max ¢ (F5) = c+max{z Z e}

i=1,2
ecAF ecAY

with £ = U, M; N F U U, being the best possible recovery.

3. The first-stage cost function and the scenario cost functions obey the
ap,1-deviation-condition.

If these conditions are satisfied, I is a yes-instance if there exits a first-stage solution F' € F
with total cost cp(F') = ¢+ b. It remains to define the cost functions and show that we can
always restrict a proper first-stage solution set G to the set of feasible solutions.

To this end, the first-stage cost function ¢ assigns to the elements in U, cost 6(b + 1) and

the to the elements in U; cost 4(b+ 1). All other elements get first-stage cost 2(b + 1) (see
Figure 2.2). The cost function of scenario S; assigns cost 2(b+ 1) 4 ¢; to the ith even element,
i=1,...,n,and cost 6(b+1) to the other even elements. The odd elements of the k remaining
sets Myi1,..., Myix get cost 8(b+ 1). All other costs are set to 2(b + 1). The scenario S,
exchanges the cost of the first n elements, i.e., the odd elements get cost 2(b+ 1) +¢; and the
even ones 2(b+ 1) (see Figure 2.2). The cost for the k sets M, 1, ..., M, x remain as for Sj.

cP:2(b+1) P 2(b+1) P 2(b+1) cP:4(+1) P4 +1)
S 2(b+1) S 2(b+1) S 2(b+1) S 8(b+1) S 8(b+1)
2 2(b+1) + e 52 2(b+1) + ey 2200+ 1) +e, 2 8(b+1) 2 8(b+1)
@ u ® us @ uz @ uziii @ 22k
P 2(b+1) cP:2(b+1) P 2b+1) P 6(b+1) [cP6(b+1)
S 2(b+ 1)+ e S 2(b+1) +eg 200+ 1) + e, 5 6(b+1) 5 6(b+1)
%2 2(b+1) %2 2(b+1) 2 2(b+1) % 6(b+1) %2 6(b+1)
’ Ug . Uy . U2y .Uz,H,Q ’ U2n+2k
M,y M, M, M4 M1y

Figure 2.2.: Construction of I’ for a given partition instance.

Note that all three conditions mentioned above are satisfied: If a first-stage solution contains
an element u; € Us, then its total cost are at least (b + 1) units higher than the total cost of
the feasible solution F'!' containing all odd elements. Since the total cost of any reasonable

2.2. Discrete Scenarios 25

solution are less than cp(F*), the first property is satisfied. The second property is easy to
see for the unavoidable cost

c=2nb+1)+4k(b+1)+2n(b+1) +6k(b+1).

Finally, the cost functions satisfy the o j-deviation-condition.

So far, we assumed that the set of first-stage solutions consists of all feasible first-stage solu-
tions. Due to the high first-stage cost any set G C U containing more than 2n + 2k elements
and a feasible solution F' € F has higher cost than a reasonable feasible solution. Thus,
we can restrict any proper first-stage solution set G to the set F. Furthermore, if A; U A
is a partition of {ei,...,e,}, then we can define the reasonable solution F(4, 4,y € F, which
contains the even element wuo; of the set M;, if e; € Ay, and the odd element uo;_1 of M;, if
e; € Ay, i=1,...,n, and the U;. Its total cost is

cr(Fla,,a,)) =€+ max{z b, Z c}.

beA; c€As

Hence, we obtain, that there exists a first-stage solution in I’ with total cost equal to ¢+ b if
and only if I is a yes-instance.

We extend the proof to the case, when k depends on the number of elements of the WDHS
instance. To this end, let k = 2(52;1) -|U| for any ¢ € N. Instead of U consisting of 2n + 2k
elements divided into n + k sets, we construct a set with 2n + 2(¢ — 1) - n elements and ¢ - n
disjoint sets. The first stage and the scenario cost for the first n sets My, ..., M, remain the
same as above and the cost for the last (¢ — 1) - n sets are defined like the ones for the last k
sets. With the same arguments as before we can restrict the set of first-stage solutions to F.
Due to the restriction of k, we are allowed to exchange

k= (€;€1>(2-€n) =(l-1)-n
elements. Thus, the recovery should be used to change the elements of the last (£ —1) - n sets.
Since the unavoidable cost for any F' € F are @ =2n-2(b+ 1)+ ({ —1)-n-10(b+ 1), any
F € F with total cost smaller than @ + 2b contains the (¢ — 1) - n odd elements of the last
(¢ — 1) - n sets in the first stage and exchanges them in each scenario for the even elements.
As in the constant case there exists a partition A;UA; = A and ZeeAl e = b if and only if a
first-stage solution with cost @ + b exists. O

At the end of this subsection we show that the WDHS can be solved in pseudo-polynomial
time via dynamic programing for a constant number of scenarios. But before that, we consider
the case where the number of scenarios is not constant.

Theorem 2.2.2. The k-Dist-RR WDHS problem is strongly NP-hard for discrete scenario
sets and proper first-stage solution sets even if the oo)-deviation-condition is fulfilled and k
s constant or k depends on the number of elements of the WDHS' instance.

Proof. We start again with the case of constant £ and show a reduction from 3SAT. Let [

be an instance of 3SAT with n variables xq,...,z, and m clauses C4,...,C,,. We construct
an instance of the k-Dist-RR WDHS problem [’ in the following way: The set U contains for
each variable x; two elements a; and b;, ¢ = 1,...,n, where a; represents a true assignment of

x; and b; a false assignment of x;. Furthermore, the sets U contains two elements ¢; and d;,

26 Chapter 2. k-Distance Recoverable Robustness

1t =n-+1,...,n+ k, which will capture the recovery action. The elements a; and b; form a
set M; for e = 1,...,n as the elements ¢; and d; form a set M; fori =n+1,...,n+ k. As
first-stage cost, the elements ¢; get cost 6(n + k), the elements d; cost 4(n + k) and all other
elements cost 2(n + k). Again, these cost values are chosen in a way, that every reasonable
first-stage solution contains exactly one element from each set My, ..., M, .

The scenario set S represents the clause of the instance I. For every clause Cj, j =1,...,m,
the scenario set S contains a scenario S; with

2n+k)+2 itz eC

Csj (a> . 2(n +]{7) + 2 if T; € Cj
v 2(n+k)+1 otherwise

2(n+k)+1 otherwise

and ¢% (b;) = {

fort=1,...,n and

¢ (¢;) = 6(n + k) and ¢ (d;) = 8(n + k)
fori = n+1,...,n+ k. As the element a; corresponds to a true assignment and b; to
a false assignment of z;, ¢ = 1,...,n, the scenario cost S; represent a verification of a

clause C;. We suppose for a moment that a feasible first-stage solution is a feasible so-
lution of the WDHS instance and that all recovery actions are used on the last k& sets.
Then the scenario cost is at most 2n(n + k) + 6 + (n — 3) + 6k(n + k) for every scenario
S e S. If the clause Cj, j € {1,...,m}, contains the literal z;, i € {1,...,n}, then this
scenario cost for S; is reduced to 2n(n+ k) + 54 (n — 3) + 6k(n + k) if the solution con-
tains a;. On the other hand, if the clause C} contains the literal T;, then this cost in S;
is reduced to 2n(n + k) + 5+ (n — 3) + 6k(n + k) if the first stage solution contains the ele-
ment b;. Hence, a clause Cj is verified if and only if the scenario cost \S; are smaller or equal
to 2n(n+ k) +5+ (n — 3) + 6k(n + k).

We will now show, that there is always an optimal first-stage solution F' € F, if the first-stage
solution set G is proper, and then, that any first-stage solution with small cost contains the
elements d;, i =n+1,...,n+ k.

Let G be a proper first-stage solution set. The first-stage cost of any first-stage solution G € ¢
are bounded by
P(G)>n-2(n+k)+k-4(n+k),

and the recovery cost of any feasible solution F' of the WDHS instance by
2n(n+k)+34+(n—3)+k-6(n+k) <crr(F)<2n(n+k)+(n—3)+6+k-6(n+k).

Hence, for every solution F° € JF, which includes the elements d; in the first stage,
i=n-+1,...,n+k, and every other solution G € G\ F, we get

or(F) = c”(F
<2n(n+k)+2n+k-6(n+k)+n-2(n+k)+k-4(n+k)
=4dn(n+k)+ 10k(n + k) + 2n
<dn(n+k)+10k(n+k)+n+2(n+k) <cr(G).

) + crr(F)

We can therefore restrict the instance to the case where F is the set of feasible first-stage
solutions.

Due to the definition of the cost functions, any first-stage solution with small cost should
contain the elements d;, : =n+1,...,n+k, in the first stage and removes them in the second
stage. Thus, an obvious translation from such a first-stage solution F' to an assignment of the

2.2. Discrete Scenarios 27

x variables is to set x; = true if a; € F and z; = false if b, € ', i = 1,...,n. This assignment
satisfies a clause C}, 7 = 1,...,m if and only if the corresponding scenario cost for F' are
smaller than or equal to 2n(n + k) + k6(n + k) + (n — 3) + 5. Hence, [is a yes-instance if
and only if there exists a solution F' € F with cr(F) < 4n(n+ k) + 10k(n+ k) + (n — 3) + 5.

Analog to the proof of Theorem 2.2.1 we can extend this construction to k = % -|U] and
any ¢ € N with 2n 4 2(¢ — 1) - n elements and ¢ - n disjoint sets. This shows, that the problem
remains NP-hard, if £ is a fraction of the size of the considered LCMin instance. 0

Note that if the app 1)-condition is dropped, if the first-stage solution set G equals the set of all
feasible solutions F, if the first-stage cost are set to 0 and if the second stage cost assign values
0 instead of 2(n + k) + 1 and 1 instead of 2(n + k) + 2, then the reduction proves that there
exists no approximation algorithm with a factor better than p = 1.5. However, in this case
a better lower bound on the best possible approximation factor can be achieved by adapting
the reduction from 3SAT to the robust shortest path problem by Kasperski and Zielinski [70].
Their proof improves the lower bound to p = 2.

The NP-hardness proofs extends to the case where the first-stage solution set consists of all
subsets of the given set U. For different first-stage solution sets the complexity status remains
open.

The WDHS problem can be interpreted as a special case of several classical combinatorial
minimization problems such as the shortest path or the minimum spanning tree problem. This
is also the case for their k-Dist-recoverable robust versions, as we will show in the following
corollary.

Corollary 2.2.3. The k-Dist-RR wversion of the minimum spanning tree problem on series
parallel graphs, the shortest path problem on series-parallel graphs, the minimum (s,t)-cut
problem on series-parallel graphs and the minimum perfect matching problem on series-parallel
graphs with proper first stage solution sets are weakly NP-hard for |Sp| = 2 and strongly NP-
hard if the number of scenarios is not constant, even if the first-stage cost function and the
scenario cost functions obey the ay,1)-deviation-condition.

L
hted S [] ¢ °
Weighted Disjoint Hitting Set
g g P ° o
o [

Shortest Path, Spanning Tree s@@@.t

Perfect Matching @ O @
o —0
(s,t)-Cut ‘\

Figure 2.3.: The different constructions illustrate how to obtain a shortest path problem, a
minimum spanning tree problem, a minimum perfect matching problem or a minimum (s, t)-
cut problem from a WDHS instance.

28 Chapter 2. k-Distance Recoverable Robustness

Proof. Any instance of the weighted disjoint hitting set problem can be interpreted as one
of the listed problems: Let I be a WDHS instance with a set U of elements and d disjoint
sets My, ..., M, of U. Then the corresponding minimum spanning tree and the shortest path
instance use a graph G that is an extension of a simple (s,)-path of length d, in which the
ith arc is replaced by | M;| parallel arcs, i = 1,...,d. The length of a path is determined by its
number of arcs. Obviously, there is a one-to-one correspondence between arcs and elements in
the different instances (see Figure 2.3). Furthermore, any simple (s, ¢)-path or spanning tree
equals a feasible solution of the WDHS instance, and vice verse. Also the cost functions and
the first-stage solution sets can be transferred canonically. Hence, the k-Dist-RR versions are
alike.

In a similar way a reduction is obtained to the minimum perfect matching problem. Instead
of a path of length d, there are d arcs, where again the ith arc is replaced by |M;|-parallel arcs,
i=1,...,d. In the minimum (s, t)-cut problem, each set M; is represented by an (s, t)-path of
length |M;|, i =1,...,d and G is the parallel composition of these paths. All other relations
remain as for the first two cases. O

An open question is to find better lower bounds on the best possible approximation factors
for the k-Dist-RR WDHS problem, since these bounds transfer automatically to all other
problems mentioned in Corollary 2.2.3. On the other hand, a 2-approximation algorithm for
the k-Dist-RR WDHS problem would prove that the obtained lower bound is tight at least
for this problem.

Before we consider an approximation algorithm, we shortly discuss the complexity of comput-
ing the total cost of a given first-stage solution. Let (U, F,c) be an LCMin instance solvable
in polynomial time, G be a first-stage solution set, ¢ : U — N be a first-stage cost function
and Sp be a discrete scenario set such that each scenario S € Sp defines a scenario cost func-
tion ¢® : U — N. If we can compute for every scenario S € Sp a solution F*¥ with |F5\F| < k
and F° minimizes ¢®(F°), then the total cost of F' are determined by
cr(F) = P (F) 4 max ¢”(F®).
SeSp

The constraint |F¥\F| < k can be modeled by the cost function ¢ : U — N with £(u) =0
if u € F and ¢(u) = 1 otherwise. Thus we obtain a constraint LCMin problem of finding
a feasible solution F’ € F with ¢(F’) < k which minimizes the scenario cost ¢*(F”). If
k is constant, we can always solve this problem efficiently, since FF contains a number of
solutions that is bounded polynomially by the input. If £ is not constant, this needs not to
hold. On the one hand, this problem can be solved in polynomial time for the shortest path
problem [6, 64| or the minimum spanning tree problem via weighted matroid intersection [48].
On the other hand, since the upper bounded cardinality constraint minimum (s, t)-cut problem
is strongly NP-hard (Theorem B.0.3), also this special optimization problem cannot be solved
in polynomial time, unless P = NP: We add an extra vertex s’ and the arc (s, s) with scenario
cost K +1 to the given constrained minimum (s, t)-cut instance. Then there exists a minimum
(s,t)-cut C with cost ¢(C) < K containing at most k arcs if and only if the scenario cost of
the first-stage solution C" = {(s', s)} is at most K. By adding first-stage cost 0 to (s, s), the
reduction implies the NP-hardness of computing the total cost for a first-stage solution.

Corollary 2.2.4. The total cost for a first-stage solution can be computed in polynomial time
for the k-Dist-RR version of the minimum spanning tree or the shortest path problem. For
the k-Dist-RR version of the minimum (s,t)-cut problem the computation of the total cost is
strongly NP-hard.

2.2. Discrete Scenarios 29

Moving to more constructive results, there is a simple 1.5 approximation algorithm for k-Dist-
RR LCMin instances obeying the oy i-deviation.

Theorem 2.2.5. Let (U, F,c) be an LCMin instance, G be a first-stage solution set, S be a
set of scenarios, c? : U — N be a first-stage cost function and k € N a recovery parameter
defining a k-Dist-RR LCMin instance I'. If cP and S satisfy the ao,1)-deviation-condition and
if G is a proper first-stage solution set, then any optimal solution of the (U, F,cP) instance is
a 1.5-approzimation of I'.

Proof. Let F, be an optimal solution of the (U, F, c”) instance. For any first-stage solution
G € G we get

cr(G) = (@) + max min ¢”(F)
SeS FeFk

> CD(Fmin) + max min CD(F) > 2cD(Fmin)
SeS FeF

and therefore
OPT > 2¢” (Fou),

where OPT denotes the total cost of an optimal solution in the given k-Dist-RR LCMin
instance ['.

Using this bound we obtain

cr(Fpin) = ¢”(Fpi) + max min ¢¥(F)

Ses FeFg
< ¢”(Fin) + max ¢ (Fin)
< P (Fuim) + 2+ ?(Fuw) < 1.5-OPT.
O
By choosing the minimum feasible solution w.r.t. to the first-stage cost function c¢”, one gets,

with the same argument, a (1 4 §)-approximation for any first-stage cost function cP and a
scenario set S fulfilling the a-condition.

The arguments to prove Theorem 2.2.5 are straight forward. An open question is how to
construct approximation algorithms with better approximation factors.

Before we start with an investigation of interval scenarios, we will introduce a pseudo-
polynomial algorithm for solving the k-Dist-RR WDHS problem with a constant number
of scenarios.

2.2.1. Weighted Disjoint Hitting Set Problem

We will now introduce a way to solve the k-Dist-RR WDHS problem in pseudo-polynomial
time when the number of scenarios is constant and the set of feasible solutions is the set of
feasible first-stage solutions.

Let U = {uy,...,u,} be a set of n elements and M = {Mj,..., My} be a set of d pairwise
disjoint subsets of U. For simplicity we denote with w;; the jth element in the set M;, i =
L,...,n, 7 =1,...,|M;|. We will solve the corresponding k-Dist-RR WDHS problem for a

30 Chapter 2. k-Distance Recoverable Robustness

first-stage cost function ¢ : U — N, a given set of 7 scenarios Sp = {S,...,S,}, a recovery
parameter k and the set of feasible first-stage solutions

G={FCU||IFNM]|=1Vi=1,...,d} = F,

via a dynamic program based on a recursive formula. We therefore define the following
parametrized problem for the parameter d’ € {1,...,d}, k¥ € {0,...,k} and o p° €
{0,...,C} for all S € Sp with C' = maxges,, Zle max,e s, ¢ (u):

Given: The sets M, ..., My, a scenario dependent recovery parameter 0 < k° < k, and an
upper bound o on the cost occurring for scenario S in the sets My, ..., M, and
an upper bound ° on the cost occurring for scenario S in the sets M, ..., My for

every scenario S € Sp.
Find: A set F' C U and a recovery set F'* C U for every scenario S € Sp such that
e F and F® are feasible solutions according to the first d’ sets, i.e., |[F N M;| = 1
and |[FSNM;|=1fori=1,...,d and S € Sp;
e F9 are feasible recovery sets according to the recovery parameter k%, S € Sp,
ie, [FO\F| < k%
e F% obeys the upper cost bound

> Fu) < %

ucF*s

e F and F° minimize the cost function

c(d’,{ks,as,ﬁS}SESD) :ZCD(U)—i-maX (65—1-045).

Ses
uel b

In other words, compute a first-stage solution F' and its recovery solutions according to the first
d’ sets using at most k° recovery actions, such that the scenario cost induced in M, ..., My are
bounded by 3% and the cost ¢ (F) 4+ maxges, (3° + o) are minimized. An optimal solution
to the k-Dist-RR WDHS problem is given by mingego oy c(d, {k, 0, 8%} ses),)-

We will now show:
1. How we can compute c(1,{k% o, 3°}scs,) for any k% € {0,...,k} and o B° €
{0,...,C} in polynomial time.
2. That the cost function ¢ can be computed via a recursive formula.
3. How we can extract a feasible solution from this recursive formula.

1. Let y = (1,{k%, 0, B} ses,,) be some parameter set. If &5 ¢ {0,... k}, we set c(y) = oo,
since there exists no feasible solution to this problem setting. In the other case, we define
by = argmingeyy, ¢®(u) for every S € S. Obviously this element is chosen as recovery if we
decide to use a recovery action in this set in the scenario S. Furthermore, we set ¢ € {0,1}"
with €% = 0 if k% = 0, and ¢ = 1 otherwise, i = 1,...,r. This vector determines whether
we can use a recovery action for scenario S or not. According to ¢, we define for every element
u € M, and scenario S € Sp the function v¥(u,) with

W (u, 0) = (1= 0%)c” (u) + L™ (by),

2.2. Discrete Scenarios 31

which displays the induced cost in scenario S by the element u under consideration of the
recovery distribution £. If there exists an element u € M, with 7 (u,£) < 8% for all S € Sp,
choose such an v* with minimal first-stage cost ¢”(u*). Hence, this element is an optimal
solution to ¢(1, {k°, a®, 3%} ses,) with

(L, {15, 05, 8%} sesy) = P(u?) + max (55 + @)
eSp

If no element u € M, satisfies 77 (u,£) < B9 for all S € Sp, no feasible solution to the
parametrized problem exists and therefore c(1, {k*, a®, 8} ses,,) = 0o.

2. In order to derive a recursive formula, we consider different distributions ¢ € {0,1}" over
the recovery actions taken in set My, i.e., £° = 1 if a recovery action is taken in S € Sp
and /% = 0 otherwise. If /% = 1, then independent of the element u € My being part of the
first-stage solution, the element bd, = arg minyeyy,, ¢ c®(u) is chosen as recovery. Hence, as soon
as the recovery distribution is fixed, we decide for each element v € My whether it is chosen to
be part of the first-stage solution or not. Like in the case d’ = 1, we define, for every element
u and any distribution ¢, the value 75 (u,) = (1 — £5)c%(u) + £5¢%(b5) and thus obtain the
following recursive formula:

(¢ k0%, 8%,)
= min {c (d/— 1, {k% — %, 0 + 45 (u, 0), B° — v3 (u, 0) }Ses) —i—cD(u)}.

uGMd/
£€{0,1}"

3. We can construct a feasible solution for ¢(d, {k°, o, 3%} ses,,) based on an optimal solution
for e(d' — 1, {k% — 05,0 + 5 (u, (), B° — v5 (u, {) } ses,,) defined by some element u € My and
a distribution ¢ € {0,1}" by adding u to the first stage solution and b3 to the recovery in
scenario S if £° = 1 and the element u to the recovery in scenario S if ¢ = 1, as long as
kS — 05 > 0.

Theorem 2.2.6. The k-Dist-RR WDHS problem defined on a set U of n elements and d
disjoint subsets My, ..., My with r different discrete scenarios S, ..., S, defining cost functions
S U = N, i=1,...,r, can be solved in O (n*7(2C%)") via dynamic programming with
C =% maxyen, ¢ (u).

Proof. 1t remains to show that the recursive formula is correct. Since we can derive from
every feasible solution for c(d’, {k°, a®, 35} ses,,) a feasible solution for ¢(d’ — 1, {k% — ¢%, o +
5 (u, 0), 3% — 5 (u, €) }ses,,) defined by some u € My and some distribution ¢ € {0,1}", we
obtain

C(d/7{ks7a5765}563D)
< min {c (d’— 1, {k% — 0%, 0” + 75 (u,0), B° — v (u, L) }SGS) +cD(u)}.

uGMd/
£e{0,1}7

Now suppose there is a solution Fy and F; for all S € Sp with

C (dla {ksu aS7 ﬁS}SESD)
< min {c (d'— 1,{ks—ﬁs,a5+7§(u,€),ﬁ — i (u, £) }Ses) +CD(U)}

ue]b[d,
£e{0,1}7

32 Chapter 2. k-Distance Recoverable Robustness

and let d’ be chosen minimal in this respect. Let uq; be the element contained in Fy and 05 =0
if up; € F and (% = 1 otherwise. Thus

C (d/a {ksa aSa ES}SESD)
_ D S S
= Z c (u)+g£}gﬁ +a
u€Fy

= > @)+ max {F% =i (uay, O + 0 + 95 (uay, O} + P (vay)
uEFd/\{udj}

c <d’ — 1, {k* = 05,0° + 95 (ug;, 0), B° — 7§(Ud’jaf)}5€sD> + e (uary),

which is a contradiction.

Since o® and £ can be bounded by C with C' = Zle max,epr, ¢ (u), the dynamic program
obtained through the recursive formula runs in O(n?*"(2C?)"). O

For general k-Dist-RR LCMin problems there exists no pseudo-polynomial algorithm, since
for the shortest path problem the k-Dist-RR version is not approximable for one discrete
scenario (Corollary 2.5.3). Yet, it remains open if we can construct further pseudo-polynomial
algorithms by using methods from multi-criteria optimization as it is the case for robust
optimization problems. Another question is, whether an FPTAS for the k-Dist-RR WDHS
problem exists.

2.3. Interval Scenarios

The interval scenario set Sy is defined indirectly for an LCMin instance (U, F,c) by lower
and upper bounds c(u) and ¢(u) on the scenario cost functions for each element u € U,
0 < ¢(u) <¢(u). For each cost function ¢: U — N with ¢(u) € [c(u),¢(u)] there exists a sce-
nario S € S; with ¢ = ¢ and every scenario cost function obeys these bounds. The number
of different scenarios in S; may be exponential in the number of elements U. But due to the
simple structure of the scenario set and an obvious worst-case scenario, the interval scenario
case is equivalent to the discrete scenario case with just one scenario.

Theorem 2.3.1. The k-Dist-RR LCMin problem with interval scenario sets is equivalent to
the k-Dist-RR LCMin problem with just one discrete scenario whose cost function is given by
the upper cost bounds on each element of the instance.

Proof. First note that the set of first-stage solutions and the recovery of a k-Dist-RR LCMin
instance are not influenced by the scenario set. Let c(u), ¢(u) be lower and upper cost bound
on the elements u € U of the underlying LCMin instance (U, F, c). We define the cost function
of the scenario Spax by ¢ (u) = ¢(u) for all u € U and show that the total cost of a first-
stage solution F' according to interval scenarios, denoted by cl.(F), equals the total cost of F
according to the discrete scenario Syax, denoted by ¢ (F). The cost ¢k.(F') can be bounded

by
Cé(F) = CD(F> -+ gleé‘ls}ICFI/Ig;lllg CS(F/>

> cP(F)+ min ¢(F') = #*(F)
F'eFk

2.3. Interval Scenarios 33

and
1 _ D : St
cr(F)=c”(F)+ rggg{;/rgjrrlg ¢ (F")
< cP(F) + max Frlrélj% ¢(F") = ™(F).
Therefore, cL.(F) = 2 (F) for all feasible first-stage solutions F. O

No valid statement about the complexity status of all k-Dist-RR LCMin problems can be given
since the complexity strongly depends on the given first-stage solution set G, the considered
combinatorial minimization problem, and whether k is taken as constant. In the shortest
path problem, for example, the problem is strongly NP-hard and cannot be approximated
with a constant factor when G is the set of all simple (s,¢)-paths (Corollary 2.5.3). If G is
the set of all (s,t)-paths, however, the k-Dist-RR shortest path problem can be solved in
polynomial time for constant k (Theorem 2.5.9). For k being not constant, the problem is
again strongly NP-hard and not approximable. On the other hand, the k-Dist-RR WDHS
problem can be solved in polynomial time for an arbitrary k, whereas we only succeeded to
show that the £-Dist-RR version of the minimum weight basis problem for matroids can be
solved in polynomial time for constant k.

2.3.1. Weighted Disjoint Hitting Set Problem

We will consider the k-Dist-RR WDHS problem with proper first-stage solution sets for interval
scenarios. Let U be a set of n elements divided into d disjoint sets M, ..., My, G be a proper
first-stage solution set, ¢” : U — N be a first-stage cost function and ¢ : U — N be the upper
cost bound treated as the only scenario cost function occurring in this setting. Let us start
with two observations:

1. Let ¥ € G and F' € F be the best solution from the recovery of F, ie., F =
argmingezx ¢(F). With I(F) € {1,...,d} we define the indices of the sets in which
a recovery action is taken, i.e., I(F)={i € {1,...,d} | FNFNM;=0}. Then

cr(F) > Z (5161}6]1 cP (u) +5r€1}\£11 E(u)) + Z 521}\2(0’3 +72)(u).
1€I(F) ieigl,iﬁ,)d}

2. If G is a proper first-stage solution set, there is always an optimal solution ' € G with

|[FNM;|=1 foralli=1,...,d.

Due to the first observation, we can assume w.l.o.g. that any first-stage solution F' contains one
element u;; = argmin,eyy, ¢ (u) for i € I(F) and one element u;s = arg min,epy, (¢” +¢)(u)
otherwise. Therefore, the k-Dist-RR WDHS problem reduces to deciding in which sets the
recovery action should be used.

Let us consider the case of two given sets M; and M, and the decision to use one re-
covery action, i.e., k = 1. For i = 1,2 we define u; = argmingeys, c?(u), upn =
arg min,e s, €(u) and w;3 = arg ming,e s, (P +¢)(u) and finally we set ¢! (M;) = P (u;1) + (i)
and c?(M;) = (cP +¢)(us3). The value ¢'(M;) indicates the cost distributed by the set M; to
the total cost if a recovery action is taken in this set, i = 1,2. The value ¢?(M;) indicates the

34 Chapter 2. k-Distance Recoverable Robustness

other case. Hence, if we decide to use the recovery for set M;, we get a solution with total
cost c' (M) + c*(M,). In the case we distribute the recovery to My, we pay c'(My) + ¢(M;).
Hence, the best way to use the recovery is for the set M;, such that

¢! (M) + (M) < (M) + (M),

for i,j € {1,2}, i # j. Since we can compare any two given sets and decide the best way to
assign a recovery action, we can use this idea to derive a polynomial algorithm for computing
an optimal first-stage solution.

Algorithm 2.1 k-Dist-RR WDHS with &;

Input : A set U, d sets My,..., My with M; CU and M; N M; =0 for all i,j € {1,...,d}
with 7 # j, a first-stage cost function ¢” : U — N, scenario cost function ¢ : U — N,
and a recovery parameter k € N.

Output : A first-stage solution F'.

/* Compute candidates for the first-stage solution */

for i=1,...,ddo

\; Compute uy; = arg minc? (u) and uy; = arg Qireliné(u) and uz; = arg min (¢ (u) + ¢(u)).

UEMZ M,L uEM,;
Set Cl(Mi) = CD(UM) + E(Ugi) and CZ(MZ') = CD(Ugi) + E(U&')
/* Order reflects best use of recovery action */
Sort My, ..., My such that for all j,¢ € {1,...,d} with j </¢
! (Myy) + ¢ (M;,) < /(M) + ¢*(M;,).

J J

return F' = {uh’l, .. .,ulik,U3ik+1, c. ,U3Z’d}

Theorem 2.3.2. Algorithm 2.1 computes an optimal solution to a given k-Dist-RR WDHS
problem for any proper first-stage solution set G and interval scenarios.

Proof. We start by proving that the order defined by the algorithm on the sets M, ..., My is
transitive, i.e., if M, < M, and M, < M, then M, < M,.. Let

N (M,) + P (My) < M (My) + *(M,)

and
(M) + A (M,) < (M) + (M.

Since ¢'(M) < ¢*(M), we obtain

(M) + A (My) + M (My) + (M) < (M) + (M,) + ' (M.) + 2(M,)
& c'(M,) + A(M,) < (M) + *(M,)
& M, < M.,.

For the remainder of the proof, we assume that the sets in M = {M;,..., My} are already
ordered such that M; < M, for ¢ < j. Let us now suppose that I’ computed via Algorithm 2.1,
is not an optimal solution, but F* is an optimal solution with I(F*)N{1,...,k} ={1,...,¢}
and maximal . The set I(F*) consists of the indices of the sets the recovery action is used

2.3. Interval Scenarios 35

on to obtain an optimal recovery from F*. Let r € I(F*)\{1,...,¢} and define the first-
stage solution F' = F™* but with I(F’) = I(F*)\{r} U {f¢ + 1}. The total cost of the solution
obtained by F’ are

/ o * — . D . — . D —
cr(F') = er(F7) in e (u)+ugﬂ1412n+10(U)+g€1;%(c +0)(u)

o . D o P o . D _
min ¢”(u) — min 2(u) ug}ﬁl(c +a)(u)

— HMys) + (M) = HM,) — A(My) <0
since r > ¢ 4+ 1. This is a contradiction to the choice of F™*. O

We showed that the k-Dist-RR, WDHS problem can be solved in polynomial time if we consider
proper first-stage solution sets. Similar techniques can be used to obtain the same result for
first-stage solutions sets consisting of all subsets of the element set U.

2.3.2. Minimum Weight Basis Problem for Matroids

In this section we consider the k-Dist-RR version of the minimum weight basis (MWB) problem
for matroids with interval scenarios and the set of bases as first-stage solutions. A matroid is
a tuple M = (E,Z), where F is a finite set and Z C 2F is a non-empty collection of subsets of
E, called independent sets, such that:

1. 0 eT;
2.ifI €Z and J C I, then J € T;
3. if I,J € T with |I| > |J| then there exists an element ¢ € I\ J with J +i € Z.

A set I C E which is not in Z is called a dependent set. A basis of Z is a maximal independent
set, i.e., adding one element leads to a dependent set. In a matroid all bases have the same
cardinality and the rank r of a matroid is the cardinality of a basis. The minimum weight
basis problem of a matroid is defined in the following way:

Given: A matroids M = (E,Z) and a cost function ¢ : £ — Z.
Find: A basis B of M with minimum cost ¢(B).
A more detailed introduction to matroid theory is given in Section 4.5.

In order to define a feasible k-Dist-RR MWB instance, we add to a given matroid M = (F,T)
the set of all bases B as first-stage solutions, a cost function c¢” : E — N as first-stage cost
function and a cost function ¢ : £ — N as an upper cost bound function of the interval scenar-
ios. Then the k-Dist-RR MWB problem can be modeled by solving the following optimization
problem
Lin c”(By) +¢(By) = Luin c”(Bi\By) +&(B\By) + (¢’ +¢)(B1 N By),
[B2\B1|<k |B2\B1|<k
where B; is the first-stage solution and By the recovery taken in the second stage. This
problem can be solved efficiently, as we will show in the remaining subsection. The idea of
our algorithm is to enumerate B\ Bs and By\B; and compute By N By instead of computing
two bases simultaneously.

Let us assume that (Bf, B3) is an optimal solution for the MWB instance I as described
above and that we guessed the right set of elements I, = Bf\Bj and I, = B3\ Bf with || =

36 Chapter 2. k-Distance Recoverable Robustness

Algorithm 2.2 k-Dist-RR MWB problem

Input : Matroid M = (E,Z), cost functions ¢ : E — N, ¢: E — N, and a recovery
parameter k € N

Output : Sets By and B,
Set r as the rank of M and C' = 1+ r - max.cp(c? +7¢)(e).
Set If =0, I} =0, I; =0 and D = o0
for k=0,...,k do
for Il Q E, Ig Q E with |Il| = |]2| = K,]1 ﬂ]g = @ and 11,12 €71 do
Define matroids M; = (E,Z;) with Z, ={I C E | I\I; € Z} for i,j € {1,2}, i # j.
Define weight function w : £ — Nwith w(e) = C'ife € [Ul, and w(e) = C—(cP+¢)(e)
otherwise.
Compute an optimal solution 7* to the maximum weighted matroid intersection prob-
lem (M, M, c).
if |I*| =7 + k then

if ¢P(I,) +2(1y) + (P +¢)(1)) < D then

Set I; =1}, If =1, and I = I,
L Compute D = cP(I;) +¢(Is) + (P +7¢)(I})

return By = I; U I} and By = [} UL}

|I5] = k, k < k. Then we can compute a set Iy C E in polynomial time via weighted matroid
intersection such that Iy U I; and Iy U I, are two bases in (E,Z) and an optimal solution
to I. In general the weighted matroid intersection problem is given by two matroids M; =
(E,Z,) and My = (E,Z,) on the same set F and a weight function w : £ — N. The
objective of the weighted matroid intersection problem is to find an independent set I € Z; N 7
with maximum weight w(/). In our case, the corresponding weighted matroid intersection
instance (M;, My, w) is constructed in the following way: For ¢,j € {1,2} and i # j define the
matroid M; = (E,Z;) with Z, = {I C E | I\I; € Z}. Any set I’ being part of the intersection
can be transformed into two independent sets in M by setting I; = I'\[; and [}, = I'\I,. If I]
and [, are bases, then [} is a feasible recovery for I7, i.e., |[I}\I]| = |I' N I3 < k. Finally we
set the weight function w : £ — N to

w(e) =

C ife €]1 U IQ,
C — (c”? +7?)(e) otherwise,

with C'=1+r-max.cg(c? +¢)(e) and r being the rank of M. Let I* be an optimal solution
to this weighted matroid intersection instance. Since B} U Bj is a feasible solution of matroid
intersection instance, |I*| = r + k, as we will later show in detail. We will further prove in
Theorem 2.3.3 that we obtain two bases in M by defining B, = I*\I5 and By = I*\I; which
have the property

c”(B1) +¢(Bs) = ”(BY) +e(By).

Thus, they are optimal solutions of the k-Dist-RR MWB instance. More formally, this proce-
dure is described in Algorithm 2.2.

Theorem 2.3.3. Algorithm 2.2 computes an optimal solution to a given k-Dist-RR MWB
instance with interval scenarios Sy and the set of all bases as first-stage solution set.

2.4. T'-scenarios 37

Proof. Let I* be an optimal solution to this weighted matroid intersection instance (M7, My, w)
induced by two disjoint independent sets [; and I, with |I;| = |I5] = k as defined in Algo-
rithm 2.2. Note that |[I*| < r + k. If there exists a set [y C E such that I U I} and Iy U I,
are bases in M, then Iy U I; U I, is a feasible solution of (M;, Ms, w) containing exactly x +
elements. In that case,

w(I*) > w(lyULUL) = (k+k)-C =Y (c”+7)(e)

> (k+r—1)-C >w(l'),

for any feasible solution I’ with |I'| < (k+7). Since [I"\{[1ULy}| =r—k and I; N [y = (), the
sets I;UI; and I§UI, are independent and these sets form a feasible solution for the k-Dist-RR
MWB problem, where I = I*\{I; U I}. Furthermore, if I, = Bf\Bj and I, = B\ B} for an
optimal first-stage solution B} and its optimal recovery Bj, we obtain

cP(BY) +@(B3) = cP(1)

Thus, I5U I is an optimal solution of the k-Dist-RR MWB instance with the recovery Iy U Is.
Since there are at most kn* different sets I, and I, with I, I, € Z, [1NIy, = (and |I1]| = |I,| =
k, k < k, and since the weighted matroid intersection problem can be solved in polynomial
time (Lawler [80] or Frank [48]), Algorithm 2.2 runs in polynomial time. O

Two major question remain open: If the set of first-stage solutions is proper, can the k-Dist-
RR MWB problem be solved in polynomial time? In such a case, the set of all bases may not

contain an optimal first-stage solution. And, if k is not constant, does the problem become
NP-hard?

2.4. ['-scenarios

Recall that for I' € N the set of I'-scenarios of an LCMin instance (U, F, ¢) is defined as follows:
Let ¢(u) and ¢(u) be lower and upper bounds on the scenario cost with 0 < ¢(u) < é(u) for
all w € U. A scenario S € Sp is only allowed to have at most ' cost values deviating from the
lower bound, i.e., [{u € U | ¢®(u) > c(u)}| < T. We focus again on the complexity status of
k-Dist-RR LCMin problems.

The complexity status of a k-Dist-RR LCMin problem is closely related to the max-scenario
problem introduced in Appendix A. The max-scenario problem is to find a scenario that
maximizes the minimum cost of every feasible solution in the corresponding LCMin instance.
We need one further definition, before we prove NP-hardness of several k-Dist-RR LCMin
problems.

Definition 2.4.1. A class of LCMin problems satisfies the add-condition, if for every instance
(U, F,c) and for every set U’ with U’ NU = (), there is another LCMin problem (U UU’, F’,)
in the same class such that 7/ = FU{U’} and ¢'(u) = ¢(u) for all uw € U.

38 Chapter 2. k-Distance Recoverable Robustness

The add-condition enables us to add a solution consisting of an arbitrary set of elements and
with arbitrary cost to a given LCMin instance. The shortest path and the minimum (s, t)-cut
problem satisfy the add-condition. For the minimum spanning tree problem or the minimum
perfect matching problem, this is not the case.

Theorem 2.4.2. Let C be a class of LCMin problems that satisfies the add-condition and such
that the maz-scenario problem on C is strongly NP-hard. Then the k-Dist-RR version of the
problems in C is strongly NP-hard.

Proof. Let (U, F,c) be an LCMin instance in the class C and let Sp be a set of ['-scenarios
defined by the lower and upper cost bounds ¢(u) and ¢(u) for each u € U and some I' € N.
We consider the decision version I of the corresponding max-scenario problem on (U, F,Sr)
with threshold K € N, which asks to decide whether there is a scenario S € Sr with
profit(S) = minperc®(F) > K. We will now prove that the k-Dist-RR LCMin with I'-
scenarios is strongly NP-hard. We start by multiplying the values of ¢, ¢, and K by 2, such
that the max-scenario instance [is transferred to the decision if there exists a scenario S € Sr
with profit(S) > 2K. If this is not the case, profit(S) < 2K — 2 for every S € Sp. We con-
struct a k-Dist-RR instance I’ of (U, F, ¢) with I'-scenarios in the following way: We start by
adding a set U' = {u),...,u.}, 2 =2-|U|, to U such that 7' = F U {U’}. All these elements
get first stage, lower and upper cost 0, except ¢P(u}) = 2K — 1. The upper and lower cost
functions for all other elements remain as in I and the first-stage cost are set to 0. Finally, we
set k = |U| and the first-stage solution set to the set F'. Note that the recovery Fr = F for
all F € F and Ff, = F'. Hence, if I is a yes-instance, U’ is the optimal first-stage solution
with total cost of ¢p(U") = 2K — 1. If I is a no-instance, any solution F' € F has total cost of
at most 2K — 2. Therefore, the k-Dist-RR LCMin is strongly NP-hard.

O

Since the shortest path problem and the minimum (s, ¢)-cut problem satisfy all conditions to
apply Theorem 2.4.2, their k-Dist-RR versions are strongly NP-hard. Since all (s, t)-paths in
the reduction graph for the hardness proof of the max-scenario shortest path problem have a
length of at most 4 (Theorem A.1.1), the complexity result is even valid for constant k > 4.

Corollary 2.4.3. The k-Dist-RR shortest path problem with I'-scenarios and k > 4 and the
k-Dist-RR minimum (s,t)-cut problem with T'-scenarios are strongly NP-hard.

For other problems, like the minimum spanning tree problem or the weighted disjoint hitting
set, problem, the complexity status remains open. For the latter problem, we can just state
that for k > d, an optimal first-stage solution is constructed by taking in each set an element
of minimum first-stage cost. Furthermore, we can compute the total cost of such a solution
via a constrained longest path problem in a chain graph, as described in Section A.3.

To complete the chapter about k-Dist-RR LCMin problems, we consider the shortest path
problem.

2.5. Shortest Path Problem

The shortest path problem is to find a path between two designated vertices s and ¢ in a
digraph G = (V, A) with minimum cost according to a cost function ¢ : A — N. This problem
is one of the most studied combinatorial optimization problems and can be solved efficiently

2.5. Shortest Path Problem 39

in its deterministic version with non-negative arc lengths. But in real-world applications
like transportation, network design or telecommunication, some data might be subject to
uncertainty.

We will consider in this section the k-Dist-RR shortest path problem and investigate its
complexity status according to different first-stage solution sets and the interpretation of k as
constant or not constant. Note that all results for k-Dist-RR LCMin problems are valid for
the shortest path problem. Yet, we can strengthen them by taking into account its special
structure. We thus obtain that if any simple (s,t)-path is a feasible first-stage path, the
k-Dist-RR shortest path problem is not approximable even if we consider just one scenario,
unless P = NP. This already settles the complexity for discrete scenarios, interval scenarios
and ['-scenarios.

A natural extension of simple (s,t)-paths as feasible first-stage solutions is to consider the
set of all (s,t)-paths. If the parameter k is not constant, the complexity status compared to
the set of simple (s,t)-paths does not change. Yet, for constant k£ we introduce a polynomial
algorithm that solves the k-Dist-RR shortest path problem for interval scenarios.

2.5.1. Simple (s,t)-Paths as First-Stage Solutions

A natural restriction of the first-stage solution set G is to choose the set of all simple (s, t)-paths
denoted by P. Theorem 2.2.1 and Theorem 2.4.2 imply that the k-Dist-RR shortest path
problem with P as first-stage solution set is weakly NP-hard for two scenarios and strongly
NP-hard for I'-scenarios. Yet, we will show that even for one scenario and thus for interval
scenarios it is strongly NP-hard and not approximable, unless P = NP.

Theorem 2.5.1. The k-Dist-RR shortest path problem with simple (s,t)-paths as first-stage
solutions 1s NP-hard for one scenario S, first-stage and scenario cost functions just assigning
values 0 and 1 and constant k > 2 or k depending on the number of arcs.

Proof. We show a reduction from the two vertex disjoint path problem to the
k-Dist-RR shortest path problem with P. Let I be an instance of the two vertex disjoint
path problem given by a directed graph G = (V, A) and two vertex pairs (vq, u;) and (vg, us).
The task in [is to decide whether two paths, a (vq, u1)-path p; and a (vg, ug)-path ps, which
are vertex disjoint, exist. We start with constant k& > 2 and define an instance I’ of the
k-Dist-RR shortest path with P and one scenario in the following way: Let G’ = (V', A’) be
an extension of G by two vertices s and ¢, four arcs (s,v1), (ug,vs), (v2,u2) and (ug,t) and a
path pe, u,) with length & — 1 (see Figure 2.4). The first-stage cost function ¢? : A" — {0,1}
adds cost 0 to all arcs except these on the path p(,, .,) and (vs, uz), which get cost 1. The one
scenario imposes cost 0 at the new added arcs, i.e., (s,v1), the path pe, u,), (u1,v2), (v2, u2)
and (us,t), and cost 1 to all other arcs. The size of the instance I’ is polynomial in the size of
the instance I.

We will now prove that there are two vertex disjoint paths p; and py in G if and only if any
optimal solution in I’ has total cost 0.

Let p; and py; be two vertex disjoint paths in G. Then the path
p=(s,v1) Up U (u1,v2) Upy U (ug,t) is simple and has first-stage cost 0. Furthermore,
the path D = (5,v1) U P(oy,ur) U (U1, v2) U (v2, u2) U (ug,t) is in the recovery set of p, since p
contains only k arcs other then p (namely the ones in p,, .,) and (v2,us)). Since the scenario
cost of p is 0, path p and p form an optimal solution of I’ with total cost 0.

40 Chapter 2. k-Distance Recoverable Robustness

Figure 2.4.: The path D = (s,v1) U Dy ,u1) U (t1,v2) U (v, u2) U (ug, t) is the only path with
scenario cost 0.

Let now p* be an optimal first-stage path to I’ with total cost 0 and let p* be its recovery path.
According to the scenario cost the only path with cost 0 is the path p = (s,v1) U p(y, u;) U
(u1,v9) U (vg, ug) U (ug, t), hence p* = p. Since any (s, t)-path crosses the arcs (s, v1) and (us,t)
and since p* is in the recovery of p*, the path p* has to contain at least one of the arcs in
P(vi,u), the arc (uq,v2) or the arc (ve, uz). The first-stage cost of any arc in p(, ;) and (vs, us)
are set to 1. Since the first-stage cost of p* is 0, p* cannot contain any of these arcs and hence
crosses arc (up,v9). Therefore, p* connects the vertices v; and u; and vy and ug via two paths
just containing arcs of G. Since p* is a simple path, these two paths are vertex disjoint and a
feasible solution of I.

A similar construction works for the case k = HLI|V(G’)| for any ¢ € N and £ > 2. In this
case, the path p, .,) is replaced by a path of length ¢-|V(G)| — 1. The number of vertices in
G’ is

V(G| = (t+1)-V(G)]

and at most

k=(-V(G)]
arcs can be recovered. Hence, any path with total cost 0 uses ¢ - |V(G)| — 1 arcs to recover
the path p(,, 4,) and the last recovery action for the arc (v, us). O

Since the value of an optimal solution equals 0, any approximation algorithm with an approx-
imation factor o computes an optimal solution. Also, no absolute performance guaranty for
any approximation algorithm, i.e., ALG(I) < OPT(I)+ § for all instances I, can be given,
since we can just scale the scenario cost and the first-stage cost with (5 + 1).

Corollary 2.5.2. There is no efficient approzimation algorithm for the k-Dist-RR shortest
path problem with P, unless P = NP.

As shown in Theorem 2.3.1, the k-Dist-RR shortest path problem with P and S; is equiv-
alent to the problem with one discrete scenario. Hence, also in this setting there exists no
approximation algorithm. The same arguments hold for I'-scenarios.

Corollary 2.5.3. The k-Dist-RR shortest path problem with P and S; (or Sr) is not
approzimable, unless P = NP.

Note that in this case the complexity status of the recoverable robust version of an LCMin
problem is much harder than the corresponding robust version. The robust version can always
be solved efficiently for one scenario if the LCMin problem is in P.

2.5. Shortest Path Problem 41

So far, we considered the case, in which the first-stage cost function and the scenario cost
functions are chosen independently. But the proof of Theorem 2.5.1 can be extended to
first-stage cost and scenario cost satisfying the worsening-condition. Instead of adding cost
(c?,¢%) = (1,0) to the arcs of the path p(,,) and (v2, u2), we add cost (1, 1) to the arc (va, u)
and the first arc on p,, 4,) and cost (0,0) to all other arcs on p(,). Furthermore, any arc
in the original graph G gets cost (0,3) (see Figure 2.5, left). An optimal solution with total
cost 2 exists if and only if there are two disjoint paths p; and ps. Any other solution has cost
of at least 3.

Figure 2.5.: The cost functions in the left figure obey the worsening-condition and the cost
functions in the right figure satisfy the oy ;)-deviation-condition.

Another variation of the cost structure obeying the cjo;-deviation can be achieved by adding
cost (1.5,1.5) to the arc (vg,us) and the first arc of the path (vi,u;), cost (1,2) to all arcs
(v1,v), (v,v2), and (v,uz), v € V (besides the one for the already mentioned arc cost) (see
Figure 2.5, right). Hence, the cheapest recovery path has cost 3, and the cheapest first-stage
path with this recovery, has first-stage cost 2. A solution with total cost 5 can only be achieved
if there are two disjoint paths connecting (vy,u;) and (vq, ug). Since any other solution will
have cost of at least 5.5, we get a lower bound of 1.1 on the best possible approximation
factor. Thus, there remains a gap of 0.4 between the approximation algorithm introduced
in Theorem 2.2.5 and this bound.

Corollary 2.5.4. The k-Dist-RR shortest path problem with P cannot be approximated with
a factor better than 1.5, if the worsening-condition is satisfied, and a factor of 1.1, if the
ayo,1)-deviation-condition is satisfied, unless P = NP.

Note that all results obtained from the reduction in the proof to Theorem 2.5.1 cannot be
transferred to undirected graphs. The two vertex disjoint path problem is in that case solvable
in polynomial time [90].

Extending the first-stage solution set from simple (s,?)-paths P to the set of all (s,t)-paths

P changes the complexity of the problem. For the interval case the k-Dist-RR shortest path
with P and constant k is even solvable in polynomial time, as we will show in Theorem 2.5.9.

2.5.2. (s,t)-Paths as First-Stage Solutions

The complexity status of the k-Dist-RR shortest path problem with P depends mainly on the
fact that the first-stage solution has to be a simple (s,t)-path. To relax this condition we
consider the k-Dist-RR shortest path problem with the set of all (s, t)-paths denoted by P as
first-stage solution set.

42 Chapter 2. k-Distance Recoverable Robustness

Discrete Scenarios In 70| Kasperski and Zieliniski show that the robust shortest path prob-
lem with discrete scenarios Sp cannot be approximated with a factor better then log |Sp.
Since we are interested in transferring this complexity and approximability result to the k-
Dist-RR shortest path problem with P, we introduce an L-reduction. Recall that to establish
an L-reduction (e.g. [77]) from an optimization problem X to an optimization problem X’
we have to define a pair of functions f and g, both computable in polynomial time, and two
constants «, 8 > 0 such that for any instance x of X

e f(z) is an instance of X’ with OPT(f(z)) < a OPT(z);

e for any feasible solution y' of f(z), g(x,vy’) is a feasible solution of z such that
|ca(g(x,y')) = OPT(x)] < Blesw) (y) — OPT(f(2))],

where ¢, is the cost function of the instance x. We will now introduce an L-reduction from
the robust shortest path problem to the k-Dist-RR shortest path with P and constant k.

Theorem 2.5.5. For the k-Dist-RR shortest path problem with P, a discrete scenario set Sp
and constant k there exists no approximation algorithm with an approximation factor better
than log |Sp|, unless P = NP.

Proof. We prove Theorem 2.5.5 by an L-reduction from the robust shortest path problem. Let
G = (V, A) be a directed graph, s,t € V' be two designated vertices and Sp be a scenario set,
where each scenario S € Sp defines a cost function. The robust shortest path problem is to
find an (s,t)-path p that minimizes the maximum scenario cost, i.e., that minimize the cost
function c(p) = maxses, ¢*(p). In order to define a k-Dist-RR shortest path instance with P
and some constant k£ € N, we add a vertex s’ to V' and connect s’ with s via an (', s)-path of
length k. In this path, we replace every arc by two parallel arcs, a lower and an upper arc. This
forms the new graph G' = (V’,; A"). The upper arcs obtain first-stage cost C' = maxges, ¢(A)
and all other arcs first-stage cost 0. Finally, we extend for every scenario S € Sp the scenario
cost function ¢ : A — N to the set of A’ by defining ¢®(a) = C for all lower arcs a € A’\ A and
c®(a) = 0 for all upper arcs a € A’\ A. In this k-Dist-RR shortest path instance any first-stage
path p with total cost smaller than C' chooses the lower arcs to reach s and exchanges in ever
scenario these arcs by the upper arcs. Such a path p can be converted into a robust path with
the same robust cost as the original total cost by just considering the part pjs 4. O

Note that this bound on the approximation factor is stronger than the one proposed in Corol-
lary 2.2.3, if neither the worsening nor the a-deviation-condition needs to be fulfilled. In
Theorem 2.5.5 we just considered the k-Dist-RR shortest path problem with P for constant
k, since otherwise, the problem becomes inapproximable for one scenario, as we prove in the
next theorem.

Theorem 2.5.6. The k-Dist-RR shortest path problem with P on a directed graph G = (V, A)
with one scenario cannot be approximated, unless P = NP.

Proof. We show a reduction from 3SAT. Let I be an instance of 3SAT with n variables
x1, ..., 2, and m clauses C1, ..., C,,. Each clause is formed by three literals and w.l.o.g. n = m.
We start by constructing the graph G’ of the corresponding k-Dist-RR shortest path instance
with P.

This graph G’ is composed of three parts: the variable part, the clause part and the connecting
part. In the variable part we introduce, for each variable x;, ¢ = 1,...,n, two vertices s; and
t;, which are connected by two paths of length 2 (see Figure 2.6). We call the vertex in the

2.5. Shortest Path Problem 43

upper path the x; docking verter and the vertex in the lower path the x; docking vertex.
Furthermore, the vertices ¢; and s;,.1, 2 = 1,...,n — 1, and ¢, with ¢ are connected via an
arc, while s is connected with s; via a path of length 5. All arcs in the variable part get cost
(cP,c%) = (0,1), where S is the only scenario considered in this setting.

The clause part of G’ contains for every clause C}, j = 1,...,n, two vertices v; and w;, which
are connected via three disjoint paths of length 3. We call the middle arc aj, in the ¢th path
the (j,0)-literal arc, j = 1,...,n, { = 1,2,3. The vertices u; and vj41, j =1,...,n —1, s
and v; and u, and ¢ are again connected via an arc. The literal arcs have a cost structure of
(cP, %) = (0,0), while all other arcs in the clause part of G' have cost (¢, %) = (1,0).

The last part, the connecting part of G, connects the clause part with the variable part. In
general, we define the cycle Cla,b] with a = (u,v) being an arc and b being a vertex as the
cycle (b,u) UaU (v,b) of length 3. The connecting part of G’ consists of all cycles Clajy, 2]
with aj, being the (j, ¢)-literal arc and z;, the y;, docking vertex, j = 1,...,n, £ € {1,2,3}.
The arcs in the connecting part, except the literal arcs, get cost (c”,¢”) = (0,1). Hence, the
graph G’ consists of 12 - n + 6 vertices and 21 - n + 6 arcs. For k = 1 -|V(G’)|, we are allowed
to change the first-stage path p; by at most 3n + 1 arcs.

an (0,0)

Figure 2.6.: The lower part of the graph represents the variables of I, the upper part its clauses.
The dashed arcs form the cycle Claja, 212] for the clause C; = x5 V 21 V x3, i.e., 210 = x1, and
the literal arc aqs.

An optimal solution to I’ with total cost 0, i.e., a first-stage path p; and a recovery path po
with |p2\p1] < 3n+ 1 and cP(p;) + ¢”(p2) = 0, exists if and only if I is a yes-instance.

Let (p1,p2) be an optimal solution with total cost 0. Since p; has first-stage cost 0, it only
contains arcs of the variable part and of the Clajy, 2j¢] cycles. Therefore, for every variable

i, t=1,...,n, it crosses either the x; docking vertex or the Z; docking vertex. We define an
assignment x according to p; by

{true if p; crosses the x; docking vertex
xXr; =

false if p; crosses the T; docking vertex

for i = 1,...,n. The path ps only crosses arcs in the clause part of G’ (otherwise it induces
recovery cost greater than 0). Since p, is a simple path, it has a length of 4n + 1 and contains
exactly n literal arcs. The only arcs in the clause part of G’ with first-stage cost 0 are the
literal arcs. Therefore, p; has to cross, for every clause Cj, j = 1,...,n, one literal arc aj,
¢ € {1,2,3}. If the path p; contains a literal arc ajp, then it also crosses the y;, docking vertex.
Hence, z verifies every clause C; if the path pair p, p» has total cost 0.

44 Chapter 2. k-Distance Recoverable Robustness

Let now be x a feasible assignment of /. We define the first-stage path p; in the following
way: for ¢ = 1,...,n, the path p; contains the z; docking vertex and all cycles Claje, 2]
with y;, = z; if x; = true, i € {1,...,n}; and the path p; contains the T; docking vertex
and all cycles Clajg, zj¢] with y;, = 7; if x; = false, i € {1,...,n}. This path is well defined,
has first-stage cost 0 and crosses at least one literal arc aj, for each clause Cj, j =1,...,n,
¢ € {1,2,3}. In addition, any simple (s,t)-path py in the clause part containing these literal
arcs is a feasible recovery path of p; with recovery cost 0. Therefore, a feasible first-stage path
p1 with a recovery path py and total cost 0 exists in I’ if I is a yes-instance. O

The first-stage cost and the scenario cost can be scaled with a factor polynomial in the
input to satisfy the worsening or the «j-deviation-condition. Note that the proof de-
pends on the recovery action, i.e., the possibility to exchange k arcs. It remains open if
the k-Dist-RR shortest path with P, constant k and more than one scenario is solvable in
pseudo-polynomial time. For k constant and |Sp| = 1, we introduce a polynomial algorithm
in the next section.

Interval Scenarios Since the interval scenario case is equivalent to the case of just one
discrete scenario (Theorem 2.3.1), the k-Dist-RR shortest path with P and interval scenarios
is inapproximable, unless P = NP.

Corollary 2.5.7. The k-Dist-RR shortest path with P, interval scenarios and k being part of
the input s strongly NP-hard and inapproximable, unless P = NP.

If £ is constant, we will show that this problem can be solved in polynomial time. The main
idea of the algorithm is to find, for a given recovery action, i.e., the set of arcs just taken by
the recovery path, the best first-stage path. A given recovery action consists of at most k arcs
and a best first-stage path can be calculated by at most 2k shortest path computations on the
end-vertices of the detours and a set of at most 2k additional vertices.

Before we start with a detailed description of a polynomial algorithm, we need some general
observations about the structure of feasible solutions. Let (p,p’) € P x P be a first-stage
path p and its recovery path p’ of a k-Dist-RR shortest path instance with P and constant
k. W.l.o.g., we assume that p does not cross any arc twice. If this is not the case, we replace
each arc used more than once by parallel arcs with the same cost structure and modify p in
the canonical way to use each arc once.

According to their appearance in p and p’, we divide all arcs in three sets: We call the connected
components in p’\p the recovery components of (p,p’), the connected components in p\p’ the
first-stage components of (p,p’) and the connected components in pNp’ the shared components
(see Figure 2.7). Furthermore, we denote the end-vertices of the recovery components as
recovery break vertices Vie.. Next to the recovery break vertices, we define the inner break
vertices Vimer in the following way: Let a = (u,v) and ¢’ = (v, w) be two consecutive arcs on
p. faepnp and d’ € p\p' ora € p\p' and a’ € pNp" and v ¢ Vi, than v is an inner break
verter. Obviously the number of recovery break vertices is bounded by 2k, since at most k
arcs may be exchanged. Furthermore, the next theorem states that also the number of inner
break vertices is limited by 2k for at least one optimal solution.

2.5. Shortest Path Problem 45

!

s@ Q© o ¢ >0

Figure 2.7.: The gray parts are the shared, the blue the first-stage and the red the recovery
components. The yellow vertex is an inner break vertex and the big red ones the recovery
break vertices.

Theorem 2.5.8. For any k-Dist-RR shortest path instance with P, there exists an optimal
solution with at most 2k — 2 inner break vertices Vipner-

Proof. Let (p,p’) be an optimal solution with a minimal number of inner break vertices. To
simplify the remaining proof, we assume that s and ¢ are part of a shared component. If this
is not the case we add a super source connected with s and a super sink connected with ¢ and
enlarge p and p’ by these two arcs. In the worst-case, we will add two inner break vertices.

We will now define a graph G, as a simple representation of p, in which we can later bound the
number of inner break vertices: Due to the definition of first-stage and shared components,
the path p runs alternating through these different components. Instead of considering these
subpaths, we substitute them by simple arcs and obtain the graph G),. Furthermore, we color
all arcs representing parts of a shared component gray and all arcs representing first-stage
components blue (see Figure 2.8). More formally, the path p is given by the sequence of
vertices svjvy ... vxt. We now define a subsequence v;,,v;,, ..., v;, of vertices in p obeying the
following conditions: vy, = s, v;, = ¢; for odd j > 1, the vertex v;; satisfies Ploi,_y, i) Cpny
] € p\p' and

and py C pNp'; and for even j > 2 the vertex v;, satisfies py,

j—1) 7Y%
Plos;_yywi] & p\p’. The graph G, contains all vertices {vi,,...,v;,} and all arcs (v, vi,,)

Vi 1) ij 1]

for j =0,1,...,0—1. All arcs (v;;,v;,,,,) with j even are colored gray and all other arcs are
colored blue.

@ o o '@ ® ®
o o
s@ o o
s@ ([) [)
p Gp

Figure 2.8.: The graph G, shrinks the graph p maintaining the different components, the inner
break vertices and the recovery break vertices.

The graph G, has the following properties:
1. G, contains an Eulerian path.

2. Any Eulerian path p in G}, represents an optimal first-stage path of the original instance.
This path is obtained by replacing each arc (y, z) in p by the subpath py, ..

3. Every vertex in G, besides s and ¢ has an even degree of at most 4: Every shared
component is a simple path and hence induces at most two gray arcs in G, at one

46 Chapter 2. k-Distance Recoverable Robustness

vertex. Since p alternating by passes gray and blue arcs, there are as many blue arcs as
gray arcs incident to one vertex.

4. By definition, Viee = {v € V(G)) | deg(v) = 2} and Vipper = {v € V(G,) | deg(v) = 4},
where deg(v) denotes the degree of a vertex v.

5. G, does not contain any loop since p minimizes the number of inner break vertices.

We will now show that the number of vertices with degree 4, denoted by V, is bounded by the
number of vertices with degree 2, denoted by V5. We start by defining a procedure to reduce
G to a simple (s, t)-path. In each iteration, the remaining graph contains at least two vertices
of degree 2 less than the previous one and at most two vertices of degree 4 are deleted. Since
the remaining path contains no vertices of degree 4, we obtain the desired estimation of inner
break vertices.

Repeat the following procedure starting with Gi, = G, and 7 = 0 until no cycle in G}, exists:
Find an Eulerian path p = sujuy...uxt in G}, and let w; be the first vertex that is visited
by p for the second time. Set K; = Py, w, as this simple cycle starting and ending in w; and
define G = G;\Ki. The two arcs in K; incident to w; have the same color as have the two arcs
e1 = (a,w;) and ey = (w;,b) incident to w; in G . (Otherwise, we obtain a contradiction to
p minimizing the number of inner break vertices.) Now, we replace these two arcs and w; by
just one arc (a,b) of the same color as e; and ey. If this new arc (a,b) is a loop, it has to be
blue, since all gray components from an acyclic graph. We delete this loop from G and replace
the vertex a and the two gray arcs incident to a by one gray arc. Finally, we set G;jrl =G
and 1 =1+ 1.

Let 2. be the index with which the procedure stops. In each iteration the cycle K; has at

least a length of 3 and, as we will later show, contains besides w; just vertices of degree 2 in
Gp. Thus,

Va(Gyh) = V(@) — Va(K;) < Va(G)) — 2

for ©: = 0,...,%max — 1. Furthermore, at most two vertices of degree 4 are deleted in each
iteration. Hence,

Vi(G) = Vi(Gy) — 2

for i = 0,...,imax — 1. Since |Vao(G)| < 2k, [Va(Ghr)| > 2 and [Vi(Gi)| = 0, [Vigne| =
Vi(GY)] < 2k — 2.

It remains to show that K;\w; contains just vertices of degree 2. Let us assume that Kg\wy
contains one further vertex v* with degree 4. We will show that we can construct a new
first-stage path p with the same recovery path p’ that has one inner break vertex less. Let
D = UpUiUs . . . UgUk+1 be an Eulerian path in G = Gg\KO with uy = s, and ui; = t. Since
Ky is a simple cycle, there exists an index r with u, =v*. Add K, to p at the vertex u,
and replace all arcs by the corresponding subpaths of p to obtain a feasible first-stage path
in GG. The vertex wy is neither an inner break vertex of this new path p nor of the recovery
path p’. Hence, this is a contradiction to the choice of p and p’. In any other iteration the
same argument works by reverting the replacement of arcs and the deletion of cycles in the
previous iterations. This concludes the proof of Theorem 2.5.8. 0

2.5. Shortest Path Problem 47

® 00 -0<0 -0
0~ @ o

5@ +O O O ® 0!

Figure 2.9.: The graph contains 2k recovery break vertices, colored red, and 2(k — 1) inner
break vertices, colored yellow.

The k-Dist-RR shortest path instance in Figure 2.9 shows a case in which any optimal solution
has 2k — 2 inner break vertices. In this graph, the blue arcs have first-stage cost ¢ = 0 and
scenario cost ¢® = 1, the red arcs cost (c”,¢”) = (1,0) and the gray arcs cost (¢, ¢”) = (0,0).
The blue arcs represent the first-stage components, the gray arcs the shared components and
the red arcs the recovery components of an optimal solution. All recovery break vertices are
marked red and the inner break vertices yellow.

Algorithm 2.3 k-Dist-RR shortest path with P, constant k and S;

Input : directed graph G = (V, A), s,t € V, first-stage cost ¢ : A — N, scenario cost
:A—=>N keN

Output : two (s,t)-paths p and 7

/* Initialization */

Add the vertices s’ and ¢’ and the arcs a; = (§',s) and as = (¢,t') to G

Set ¢P(a;) = ¢®(a;) =0, i = 1,2 and cost = oo

/* Computation of optimal first-stage and recovery path */
/* Selection of recovery */
forall possible recoveries A" do

/* Selection of inner break vertices */

forall V' C V with |V'| < 2k do
Set VT =Vsdy VvV and V- = Vit y v/
/* Fixing order of the break vertices */
forall o : {1,...,|[VT|} = VT ando™ : {1,...,|[V7|} =V~ do
Set 07 (0) =5 and o~ (JV~|+1) =¥

/* Computation of shared components */
fori=1,...,|[V-|+1do

| Find a shortest (67" (i — 1), 07 (¢))-path piy+-1)0-@) W.I.t. ¢” +¢°

/* Computation of first-stage components */
fori=1,...,|V*| do

L Compute a shortest (o7 (i), 07 (i))-path pi—(i)o+ @) w.r.t. ¢

/* Definition of first stage path and recovery path */
Set p = plo+0),0- (1)) Vi 1‘ {P[a (.0t (@) Y Plot(i),0- (1))}

Compute in the graph U ‘ p[g+(i_1)7r(i] U A" a shortest (s,t')-path p’ w.r.t. ©
if cP(p) + S (p') < cost then

| Set p=p, P =p and cost = cP(p) + *(p')

Delete (s',s) and (t,t') from p and P’
return p, 7

48 Chapter 2. k-Distance Recoverable Robustness

Besides the bound on the inner break vertices, Algorithm 2.3 is based on the following obser-
vation: Let Vi be a set of recovery break points, Vi be a set of inner break points and

Vg, V1, - - -, Vg, Ugs1, With vg = s and vy = ¢, be an order in which an optimal first-stage path
passes these break vertices. As in the proof of Theorem 2.5.8, we assume that s and ¢ are
contained in a shared component. Then, for i = 0,...,/, the subpath py,, .,,,] is a shortest

path according to the cost c” + ¢, if i is even, and according to c”, if i is odd, where c”

denotes the first-stage cost and ¢® the scenario cost. If an optimal first-stage path violates
this property, the corresponding part could be replaced by a shortest path, a contradiction.

For the description of the algorithm, we need one more definition. An arc set A’ C A with
|A'| < k is called a possible recovery if all connected components in A’ are directed paths

in (V,A’). The source vertices of the connected components in A’ are denoted by V§a*,

the target vertices by V. Note that, for any vertex v € V§#t there is an incoming arc
of a shared component and, for every vertex v € VM, there is an outgoing arc of a shared

component.

Theorem 2.5.9. Algorithm 2.5 constructs an optimal first-stage path to a given k-Dist-RR
shortest path instance with P, constant k and Sy in O(2-m* - n?* . 2k! - 2k(SP)), where SP
denotes the time to compute a shortest path.

A canonical question is if this approach can be adapted to more scenarios, e.g., |Sp| = 2. Yet,
as Figure 2.10 shows, the number of break vertices, i.e., the separation of the first-stage path
and one of the recovery paths, may not be bounded by k. We therefore think that different
techniques need to be developed for that case to derive a pseudo-polynomial algorithm.

Figure 2.10.: The path p is the first-stage path and contains all arcs. In the case k = 0, the
path p; is the recovery path in S; and crosses all lower arcs, while the path ps as recovery path
in S, passes all upper arcs. Arcs contained in p, p;, and py are colored blue, red, and green,
respectively. Arcs used by p, p; and py are gray. All vertices with degree 4 or 3 represent some
kind of break vertex and are not bounded by any constant.

2.6. Conclusion and Open Issues

We considered several different £-Dist-RR LCMin problems and showed that their complexity
status depends on

1. the considered underlying LCMin problem;
2. whether k is constant or not;
3. the first stage decision set.

In this chapter, we investigated the weighted disjoint hitting set (WDHS) problem, the mini-
mum weight basis (MWB) problem for matroids, e.g., the minimum spanning tree problem,
the minimum (s,t)-cut problem, the minimum perfect matching problem and the shortest
path problem. We showed that for discrete scenario sets the k-Dist-recoverable robust ver-
sions of these linear combinatorial optimization problems are at least weakly NP-hard, if the

2.6. Conclusion and Open Issues 49

number of scenarios is constant (Section 2.2). For the weighted disjoint hitting set problem
we introduced a pseudo-polynomial time algorithm whose run-time depends on the values of
the scenario cost functions and is exponential in the number of scenarios (Subsection 2.2.1).

If the number of discrete scenarios is not constant, we have seen that the problems mentioned
above become strongly NP-hard. We also showed that for arbitrary cost functions they are not
approximable with a factor better than 2. However, for the case that the cost functions, i.e., the
first-stage cost function and the scenario cost functions, obey the oy i-deviation-condition,
we introduced a 1.5-approximation algorithm. For the shortest path problem with simple
(s,t)-paths, we gave a lower bound of 1.1 on the best possible approximation factor, leaving
a gap of 0.4 (Subsection 2.5).

The following Table 2.1 summarizes our results for interval scenarios and ['-scenarios from Sec-
tion 2.3, 2.4 and 2.5. The lower bound on the best possible approximation factor is given for
arbitrary first-stage cost functions and scenario cost functions. Scaling these values shows the
NP-hardness of these problems if the cost functions, i.e., the first-stage cost function and the
scenario cost functions, are to obey the oo jj-deviation-condition. Yet, for these cases the lower
bound on the approximation factor changes. In the case of I'-scenarios, the complexity status
of several k-Dist-RR LCMin problems like the WDHS, the MWB or the perfect matching
problbaseem remains open.

Problems g S Sr
k constant | k part of input | k constant | k& part of input
WDHS proper ? ?
MWB B ? ? ?
(s,t)-cut D ? ? = =
shortest path P [0} o o
shortest path P]

:in P, m: strongly NP-hard, m : not approximable

Table 2.1.: The first-stage solution set G is defined according to the underlying LCMin problem
by B as the set of all bases, P as the set of all simple (s, t)-paths, P as the set of all (s, t)-paths
and D as the set of all (s,t)-cuts.

One direction of further research is to investigate the open problems marked by a question
mark. Another is to consider special cases of the LCMin problems like the shortest path prob-
lem on series-parallel graphs or grid graphs. Furthermore, taking different neighborhoods from
local search as recovery or allowing a limited number of local search steps define new interest-
ing recoverable robust models. Besides analyzing their complexity status and combinatorial
structures, research could focus on developing exact methods to solve these problems.

3. Rent Recoverable Robustness

Rent recoverable robustness deals with uncertainty in the objective function similar to the
concept of option dealing: in a first stage we can rent several elements, which gives us the
privilege to buy these elements for a price that will be presented in the future. If we buy an
element not rented before, we generate additional inflation cost which need to be paid next to
the normal price. However, renting elements costs. In our setting these cost are assumed to
depend on the realized cost. As before, we model all possible realizations of the cost via sets
of scenarios.

We investigate the complexity status of the rent recoverable robust version of several combi-
natorial optimization problems, e.g., the shortest path problem and the minimum spanning
tree problem. For discrete scenario sets we show that these problems are weakly NP-hard
for two scenarios and strongly NP-hard if the number of scenarios is not constant. In the
case of interval scenarios the rent recoverable robust problem can be solved efficiently. How-
ever, considering I'-scenarios the rent recoverable robust shortest path problem and the rent
recoverable robust minimum (s, t)-cut problem are strongly NP-hard. Finally, we introduce
an approximation algorithm for I-scenarios whose approximation factor just depends on the
given so-called rental factor and inflation factor.

3.1. Introduction

Motivation A common approach for pricing elements in a two-stage setting is the following.
If an element is bought in the first stage, we pay an amount of ¢; if we buy it in the second stage,
the cost are multiplied with some inflation factor 5 > 0 and hence the element costs (1 + 3)c
(see Section 1.2). This approach is based on the assumption that elements bought “today*
are cheaper than they are “tomorrow* |37, 55]. In our model, we extend this pricing system
slightly to the case where we do not actually buy the element in the first stage, but rather buy
an option it for some amount with the option to purchase it later. We gain with this action
the right to buy this element but are not obligated to do so. If we actually buy it, we pay the
full second-stage price. On the other hand, if we buy the element in the second stage without
renting it in the first stage, we have to add some inflation cost to the price.

To avoid the drawback of a bi-criteria objective as in the k-distance recoverable robust model,
we assume that the price for rental is not known in the first stage but depends on the revealed
cost in the second stage. All possible realizations of cost values for the elements are captured
again in a set of scenarios S, i.e., every scenario S € S defines a cost function ¢ on the given
set, of elements. More formally, the pricing system is constructed as follows. Let ¢”(e) be the
cost for some element e in scenario S € S and 1 > a > 0 be some rental factor. If we rented
this element in the first stage, we need to pay ac(e) in the second stage whether or not we
actually buy it. If we actually buy the element in the second stage, we just need to pay the
remaining cost, i.e., additional (1 — a)c®(e). On the other hand, buying this element if it is
not rented before, costs us (1 + 3)c%(e) for some inflation factor 8 > 0. Thus, given a rental

02 Chapter 3. Rent Recoverable Robustness

factor a and an inflation factor S the rent recoverable robust LCMin problem is to find a set
of elements that is rented in the first stage such that the maximum cost over all scenarios for
purchasing a solution in the second stage is minimized.

Model and Notation As for k-distance recoverable robustness we define rent recoverable
robustness for linear combinatorial minimization (LCMin) problems. Such an LCMin instance
(U, F,c) is given by a finite set of elements U, a set of feasible solutions F C 2V and a cost
function ¢ : U — N. Then the task is to find a feasible solution F' € F with minimum
cost ¢(F) =) e c(u) (Definition 1.1.1). Since recoverable robustness implicates a two-stage
process, we assume that a first-stage solution set is given as in Definition 2.1.1. For a given
LCMin instance (U, F,c) a set G C 2Y is called a first-stage solution set of U, if we can decide
for any subset £ C U in polynomial time in U whether or not E is in G, i.e., whether F is a
feasible first-stage solution. In most cases we assume that the first-stage solution set G is the
set of feasible solutions F or an extension of F called a proper first-stage solution set. Proper
sets G contain the set F and any other feasible first-stage solution G € G is a superset of
at least one feasible solution F' € F (Definition 2.1.2). We will now formally define the rent
recoverable robust model motivated above.

Definition 3.1.1 (Rent Recoverable Robust Linear Combinatorial Minimization Problem
(Rent-RR LCMin problem)). Let (U, F,c) be an LCMin problem; S be a set of scenarios,
where each scenario S € S determines a scenario cost function ¢® : U — N; G be a first-stage
solution set of U; 0 < a < 1 be a rental factor and § > 0 be an inflation factor. For a set
F € G and a scenario S € S the rental cost c3(F) in scenario S are defined as c5(F) = a-c*(F)
and the implementation cost c;(F) as
¢ (F) = min (1= a)e”(F) + (a + 8)c* (F'\F)) .
Then the scenario cost of F' are the sum over both cost values and the total cost cr(F') the
maximum scenario cost, i.e.,
_ S S
er(F) = max (c5(F) + ¢ (F)) .

The rent recoverable robust linear combinatorial minimization problem is to find a first-stage
solution F' € G that minimizes the total cost ¢y (F) over all first-stage solutions F' € G.

Similar to the k-Dist-recoverable robust model, the cost function c of the underlying LCMin
problem (U, F,¢) just implicitly influences the problem setting. We assume that this cost
function is subject to uncertainties and hence all scenario cost functions are variations of c.

For a large inflation factor, e.g., 8 = maxges ¢®(U), any optimal robust solution in the classical
sense is an optimal solution for the Rent-RR LCMin problem.

In contrast to the k-Dist-recoverable robust model, the recovery set for a feasible first-stage
solution is not restricted, i.e., we can choose any feasible scenario solution for the given LCMin
problem. Furthermore, there are no first-stage cost. In order to illustrate the model, we
consider the following example.

Example 3.1.2. We consider a rent recoverable robust shortest path problem. Let G = (V, A)
be the graph given in Figure 3.1 and the set of I'-scenarios be defined by I' = 2, the lower cost
bounds and the upper cost bounds shown on the arcs. The two graphs GG; and G5 illustrate two
feasible I'-scenarios with their cost functions. The arcs with upper bound cost are marked red.

3.2. Discrete Scenarios 53

We now consider the rent recoverable robust problem for a = 0.2, § = 2 and the first-stage
solution set consisting of all simple (s, t)-paths.

a
G |[0.0] Gy |0 ®
S t S t
1,10 [1,5] 1 .Av
b b
First Stage Scenario S Scenario Ss

Figure 3.1.: The left graph G illustrates the situation before any scenario is realized. The
other two graphs show the cost values for each arc according to two different scenarios S; and

Ss.

Let us investigate the blue path p in G with its cost. In the scenario S; shown in the graph
GG1, the rental cost of p are 2 and the implementation cost 7, choosing the green colored
path: for the arc (s,a) we just pay the remaining cost 4 and for the arc (a,t) we need to
pay (1+) -1 = 3. Hence, the scenario cost is 9. If the scenario S; is realized, the scenario
cost are 5. Under all feasible I'-scenarios, S; induces the maximum scenario cost on p and
therefore cp(p) = 9.

For the other two (s,t)-paths in G, i.e., p; = sat and py = sbt, we obtain the same total cost.
However, if we increase the inflation factor to 3, then p is the optimal solution with total cost
10, while the other two paths have total cost 11. Note that in this example it is better to rent
some arcs beforehand, since otherwise we need to pay 6(1 + /). H

Contribution and Chapter Outline We start again with a complexity study. For discrete
scenario sets, the rent recoverable robust problem is weakly NP-hard for two scenarios and
strongly NP-hard if the number of scenarios is not constant (Section 3.2). In contrast to the
k-Dist-recoverable robust model, the problem is solvable in polynomial time if we consider
interval scenarios (Section 3.3). Yet, for I'-scenarios the rent recoverable robust version of the
shortest path problem and the minimum (s, ¢)-cut problem are strongly NP-hard (Section 3.4).

In the last Section 3.5, we establish a close relation between robust solutions and optimal
solutions for a rent recoverable robust problem. We thus are able to present a min{y+1+4, 1}-
approximation algorithm for a Rent-RR LCMin problem with a rental factor a and an inflation
factor (if there exists a y-approximation algorithm for the robust problem.

3.2. Discrete Scenarios

In the discrete scenario case, a set of r scenarios Si,...,S, with their corresponding cost
functions is explicitly given. We start with a complexity study of the Rent-RR LCMin problem
and consider again the weighted disjoint hitting set (WDHS) problem, since this problem can be
interpreted as a special subproblem of several combinatorial optimization problems, e.g., the
minimum spanning tree problem, the shortest path problem, the minimum (s, ¢)-cut problem
or the minimum perfect matching problem (see Corollary 2.2.3). Recall that the WDHS
problem is defined in the following way:

24 Chapter 3. Rent Recoverable Robustness

Given: A set of n elements U = {uy,...,u,}, a set of d pairwise disjoint subsets M =
{M,..., My} and a cost function ¢: U — N.

Task: Find a set ' C U minimizing the cost ¢(F) = Y . c(u) such that |F' N M;| = 1 for
i=1,....d

We will show that already for two scenarios the rent recoverable robust version of the WDHS
problem is weakly NP-hard.

Theorem 3.2.1. For a > 0 and proper first solution sets the Rent-RR WDHS problem with
discrete scenarios Sp is weakly NP-hard, even if |Sp| = 2.

Proof. The reduction from partition is quite similar to the one for the k-Dist-RR version
(Theorem 2.2.1). Let I be an instance of partition containing n integer elements eq, ..., e,
with > e; = 2b for some b € N. We construct I’ as the corresponding Rent-RR WDHS
instance with a set of 2n elements U = {uy, ..., us,}, n disjoint subsets M = {M;,..., M,},
two scenarios Sp = {51, S2} and a proper first-stage solution set G. Each set M;, i =1,...,n,
consists of the elements uy; 1 and wsy;, i.e., M; = {ug;_1,us}, and the scenarios Sy, Ss define
the following cost functions

051(u): €; u:u2i.—1a’ie{lg...,n}andcg2(u): €; u:u%"ie{l"”’n}
0 otherwise 0 otherwise.

Hence, for every scenario S there exists a solution F*¥ € F with cost ¢(F°) = 0. Let F be a
feasible first-stage solution, a > 0 and § > 0, then

er(F) = max min ac™(F) + (1 = @)™ (F' 0 F) + (a + 8)c (F'\F)

= amax{c™(F),c™(F)}.

Since G is proper, there exists a first-stage solution F' with ¢y (F) = ab if and only if [is a
yes-instance. O

We will see in the following theorem that if the number of discrete scenarios is not constant,
the Rent-RR WDHS problem becomes strongly NP-hard. The proof is an adaption of the
hardness prove for the robust shortest path problem given by Kasperski and Zielinski [70] to
the Rent-RR WDHS problem.

Theorem 3.2.2. For a > 0 and proper first-stage solution sets the Rent-RR WDHS problem
15 not approzimable with a factor better than 2, unless P = NP,

Proof. The following reduction from 3SAT shows that the problem is strongly NP-hard and
not approximable with a factor better than 2. Let I be an instance of 3SAT with n variables
z1,...,%, and m clauses C1,...,C,, each clause consisting of three literals y;;, i = 1,2, 3,
j=1,....,m, withy;; € {z1,71,...,2,,%Tn}. The set U’ of the corresponding Rent-RR WDHS
instance I’ contains 3m different elements wuy;, us; and ug;, 7 = 1,...,m. The element uy;
represents the first literal of the clause Cj}, ug; the second literal and wus; the third literal,
j = 1,...,m. The elements form m disjoint sets M; = {uyj, usj,us;}, j = 1,...,m. Any
feasible solution for this WDHS instance chooses exactly one element out of every set. So far,
two elements may be picked that represent contradictory literals, e.g., a feasible solution F’
may contain ug; with yo1 = x4 and usy with yso = 7y, £ € {1,...,n}. In order to punish such
a choice, we construct for every pair of elements w;, ;,, us,;, that represent such contradictory

3.3. Interval Scenarios 55

literals, i.e., i, = U,,j,, @ scenario S that assigns cost 1 to each of the two elements v;,;, and
Uiyj, and 0 otherwise. There are at most 3m? different scenarios forming the set Sp that might
be added to I’. Let now G be some proper first-stage solution set, a > 0 be some rental factor
and 5 > 0 be some inflation factor. Since for every scenario S € Sp there exists a solution F¥
with ¢(F®) = 0, the total cost of any first-stage solution F' € G are given by

F) = S(F).
or(F) = amaxc”(F)
Hence, there exists a first-stage solution F' € G with total cost smaller than or equal to la
if and only if I is a yes-instance. Since in any other case the total cost are at least 2a;, no

efficient approximation algorithm can be found with an approximation factor better than 2,
unless P = NP. O

As in the £-Dist-RR case (Corollary 2.2.3), these results can be transferred to the shortest path
problem, the minimum (s,¢)-cut problem, the perfect matching problem and the minimum
spanning tree problem.

Corollary 3.2.3. The Rent-RR version of the minimum spanning tree problem, the shortest
path problem, minimum (s,t)-cut problem and the minimum perfect matching problem on
bipartite graphs are weakly NP-hard for |Sp| = 2 and strongly NP-hard if the number of
discrete scenario sets is mot constant. In the later case, no approximation algorithm with an
approximation factor better than 2 exists, unless P = NP.

In contrast to the k-Dist-RR LCMin setting, the total cost for a given first-stage solution
F € G of a Rent-RR LCMin problem can be computed in polynomial time, when considering
the scenarios as not constant and when the corresponding LCMin problem is in P: let (U, F, ¢)
be an LCMin instance, G be a first-stage solution set, Sp be a scenario set, « > 0 be a rental
factor and S > 0 be an inflation factor. To compute the total cost for some F' € G we just need
to solve an LCMin instance (U, F, cy.) for every scenario S € Sp with modified cost function
% defined by

cp(u) =

(1—-a)®(u) fueF
(1+B)c®(u) otherwise.

If [is an optimal solution of (U, F,c%), then

cr(F) = max ac®(F) + cp(F?)

determines the total cost of F'.

In the next section we analyze interval scenarios and show that the Rent-RR LCMin problem
can be solved efficiently in that case.

3.3. Interval Scenarios

Interval scenarios are given implicitly by lower and upper bounds ¢ and ¢ on the cost value for
each element u € U of the underlying LCMin instance (U, F,c). In a Rent-RR version, there
is one dominating scenario, namely, Sy With ¢®==(u) = ¢(u) for every u € U, as shown in
the following theorem:.

26 Chapter 3. Rent Recoverable Robustness

Theorem 3.3.1. Let (U, F,c) be an LCMin instance, o > 0 be a rental factor, B >0 be an
inflation factor, G be a proper first-stage solution set and ¢ and ¢ be lower and upper bounds
to define interval scenarios. Then any optimal solution to the LCMin instance (U, F,¢) is an
optimal first-stage solution.

Proof. Let F.x be an optimal solution of the LCMin instance (U, F,¢). Recall that a first-
stage solution set G is called proper if every F' € G contains a feasible solution F’ € F and
F C G. Due to this property, for any G € G

cr(G) = max min ac®(G) + (1 — a)c®(F') + (a + B) Z ®(u)

SES F'eF
uEF\G
> II:‘HII} ac(G) + (1 — a)e(F') > e(Fax) = cr(Fuax)-
‘e
Hence, Fi.x is an optimal first-stage solution. O

For the k-Dist-RR case, the simplification for interval scenarios worked in a similar way, yet
we obtained a bi-criteria optimization problem, which in general cannot be solved efficiently,
in contrast to the polynomial algorithm proposed here.

3.4. ['-Scenarios

[-scenarios Sy are a slight modification of interval scenarios. Again each scenario cost function
c®, S € Sr, obeys the given box constraint on the cost, yet for some integer I' at most I' values
of ¢® may deviate from their lower bounds. Although similar to interval scenarios, many
recoverable robust problems tend to be strongly NP-hard for this scenario set. We will show
that this is also the case for the Rent-RR version. To this end, we introduce the following
definition.

Definition 3.4.1 (Increasing-Condition). A class of LCMin problems satisfies the increasing-
condition if for every instance (U, F, ¢) of this class there is another LCMin instance (U’, F', ¢)

in the same class such that U'\U = {u} and F' = {F C U’ |u € F and F\{u} € F}. The
instance I’ is called the increased instance of I by the element u.

This condition enables us to uniformly increase the cost of every feasible solution in the original
instance by considering the modified instance and placing arbitrary cost to the new element.
Many combinatorial optimization problems, e.g., the shortest path problem, the minimum
spanning tree problem or the minimum (s, t)-cut problem, obey this condition. In combination
with the add-condition (Definition 2.4.1) and the NP-completeness of the corresponding max-
scenario problem (Definition A.0.1), NP-hardness follows for these Rent-RR LCMin problems.

Theorem 3.4.2. Let C be a class of LCMin problems that satisfy the add-condition and the
increasing-condition and such that the maz-scenario problem on C s strongly NP-hard. Then
the Rent-RR version of the problems in C is strongly NP-hard.

Proof. Let (U, F,c) be an LCMin instance of a class C described in the theorem and let I be a
corresponding max-scenario version with ['-scenarios Sp. The task in the decision version of [
is to decide for a given threshold K whether there exists a scenario S* € Sr that places more
than or equal to K cost on every solution F' € F, i.e., minpcrc® (F) > K. We now exploit

3.4. T'-Scenarios 57

the increasing-condition and the add-condition first to increase (U, F,¢) by the element u and
afterwards to add a solution A to built a modified LCMin instance (U’, F',¢’). In order to
obtain also a modified instance of the max-scenario version I, we fix the lower and upper cost
bounds for A and u to a and z, respectively, while all other bounds remain as in the original
max-scenario instance. To define a Rent-RR LCMin instance I’, we set G = F’, the set of all
feasible solutions in (U’, F',). Yet, as for a and x, we will set the parameters o and f later.

In the following we derive upper and lower bounds on the total cost in I’ for the solutions
A and and the other solutions F' € F’ depending on I being a yes-instance or a no-instance.
Using these bounds we will define «, 3, a and x, such that A is the optimal solution of I if [
is a yes-instance and some other F' € F'\{A} is an optimal solution of " if I is a no-instance.

Let I be a yes-instance, i.e., there exists a scenario S € Sp with mingcr ¢®(F) > K. For every
feasible solution F' € F'\{A} the total cost can be lower bounded by

cr(F) = gé%flglel% ac®(F) + (1 —a)c®(F') + (a + B)c*(F'\F)
> min{(K +z),a(K +x) + (1 + 5)a}.

For the solution A we get

cr(A) < min{a, gé%x(aa +(1+06) glelg S(F)} <a

Thus, ¢r(A) < ¢p(F) for any F € F'\{A} if
a< K+ . (3.1)

Let now I be a no-instance, i.e., for every scenario S € Sr there is a solution F' € F with
S(F) < K —1. We choose a solution F' € F and set ¢’ = maxges, ¢*(F \{u}). For this
solution we obtain an upper bound on the total cost by

-

cr(F) = max min ac®(F') + (1 —) (F') + (a + B)c*(F\F')

SeSr FeF!
<al@ o)+ (1 -z + (1+6)(K-1),

if
(I4+B)a>(1+6)(K—-1)+(1—a)z. (3.2)

On the other hand, since ¢®(F) > x for all S € Sp and all F' € F'\{A}, the total cost of A
sum up to

. : SO —
cr(A) = min{a, max min o +(1+p)c?(F)}=a

if
(1-a)a< (14 05)z. (3.3)
Comparing these two bounds, cr(F) < cp(A) if

ald+z)+(1—-a)z+ (1+8)(K —1) <a. (3.4)
As one can easily recalculate, the inequalities (3.1)-(3.4) next to a €]0,1[and § > 0 are
satisfied for 8 = %, a = ﬁﬁ, T = %(K—e)%—é, for some 0 < ¢ < % and § > 0,

and a = K + x —e. Thus, A is the optimal solution of the Rent-RR LCMin instance I’ with
f =3t and a = ﬁﬁ if and only if the max-scenario instance [is a yes-instance. O

28 Chapter 3. Rent Recoverable Robustness

Since the shortest path problem and the minimum (s,¢)-cut problem meet the requirements
of Theorem 3.5.1, their Rent-RR versions are strongly NP-hard.

Corollary 3.4.3. The Rent-RR shortest path problem and the Rent-RR minimum (s,t)-cut
problem with I'-scenarios are strongly NP-hard.

Note that the robust version of the shortest path problem as well as of the minimum (s, t)-cut
problem can be solved in polynomial time [14]. It remains open, whether, for example, the
Rent-RR minimum spanning tree problem with I'-scenarios can be solved efficiently.

In the next section we show, how to get an approximation algorithm for the Rent-RR, problem
based on a robust solution.

3.5. Approximation via Robust Solutions

Rent-RR LCMin problems tend to be NP-hard and for discrete scenarios not to be approxi-
mable with a factor better than 2 (Corollary 3.2.3). We will show that an upper bound for the
total cost can be deduced from an optimal robust solution. Furthermore, any approximation
algorithm of the classical robust optimization problem yields an approximation algorithm of
the Rent-recoverable robust version with a similar approximation guaranty. As an optimal
robust solution we denote the following solution: Let (U, F,c¢) be an LCMin instance and S
be a set of scenarios, where each scenario S € S defines a cost function ¢ : U — N. Then
an optimal robust solution is a solution F* € F which minimizes the maximum cost over all
scenarios, i.e., [’* = arg minpcr maxges ¢ (F).

Theorem 3.5.1. Let (U, F,c) be an LCMin instance, S be a set of scenarios and ALG be an
approzimation algorithm for the robust LCMin problem with an approximation factor . For
a given rental factor o €]0, 1] and inflation factor B > 0, we define algorithm ALG' as:

First Stage: Run ALG and set the first-stage solution F" to the output of ALG.

Recovery: For any S € S calculate an optimal solution F¥ to the LCMin instance (U, F,c')
with
) = (1—@)-c§(u) Vu e F"
(14+8)-c°(u) YugF".
Then ALG’ is an approzimation algorithm with an approzimation factor

7’zmin{(7+1+5),%} of the Rent-RR wersion for given « and [and proper first
solution set.

Proof. Let F" be a solution computed by algorithm ALG for the given LCMin instance
(U, F,c) and a set of scenarios S and let OPT,. be the value of an optimal robust solution, i.e.,
OPT, = minpcr maxges ¢’ (F). Furthermore, let OPT be the value of an optimal solution of
the Rent-RR LCMin instance with a rental factor @ > 0 and an inflation factor / and some
proper first-stage solution set G. We start with two lower bounds on OPT: First

o . . S _ S / S /
OPT = min max min ac (F)+ (1 —a)c?(F') + (a+ B)c” (F'\F)

> aminmax ¢’ (F) = a OPT, (3.5)
FeF Se§

3.5. Approximation via Robust Solutions 59

and second

OPT > max min ¢ (F"). (3.6)
Ses FleF

We use the first bound (3.5) to obtain an estimation of the maximum rental cost of F", more
precise,
cr(F") = amax (F") < a-v-OPT, <yOPT. (3.7)
S
An upper bound of the implementation cost of F" is given by

¢ (F") < (1 + f)max min ¢*(F’) < (1+) OPT, (3.8)

SeS FleF
using inequality (3.6). Combining estimates (3.7) and (3.8), we get
er(F") = max cp(F") + ¢ (F7) < cp(F") + maxcj (F")
<~yOPT +(1+B)OPT < (y+ 1+ 3)OPT,

Thus, we have a first approximation guaranty of ALG’.

The second guaranty is based on the recovery step. In the second stage an optimal solution
w.r.t. the cost function ¢ is chosen, hence

1 1
—cr(FT) < minmax c¢¥(F) < — OPT.
v FeF Ses a

To sum up, algorithm ALG' is a min{y + 1+ §, Z}-approximation algorithm for the Rent-RR
LCMin problem. O

Since the robust version of an LCMin problem with I'-scenarios can be solved efficiently, the
algorithm proposed in Theorem 3.5.1 has an approximation factor of min{i, 2+ (B} in that
case. Considering the shortest path problem, this analysis is tight for a > 0.5: Let G be the
given graph in Figure 3.2 with the associated lower and upper cost bounds. Then in the case
of I'-scenarios with I' = 2, both paths p and p are robust shortest paths. If we choose P, its
total cost is

cr(@) =min{l,a -1+ 0.5(1 4+)},

whereas the path p just generates total cost
cr(p) = max{0.5, a}.

For a > 0.5, er(p) is the optimal solution and by choosing 7 we obtain a performance ratio
of L.

[0, 1] G

./N*
005 'p‘ o @

*——=0

le,e]

Figure 3.2.: We consider I'-scenarios defined by the lower and upper cost bounds shown on
the arcs and I' = 2. Then both paths p and p have robust cost 1.

60 Chapter 3. Rent Recoverable Robustness

Note that an optimal solution of the Rent-RR shortest path problem is not necessarily a robust
solution: Let us consider a graph G containing two parallel arcs a; and ay, two scenarios S;
and Sy with (c®'(ay),c*2(a1)) = (0,50) and (¢ (az),c*2(az)) = (100,20), and o = 0.1 and
B = 10. In this setting a; is a robust shortest path but its total cost in the Rent-RR version
are 50, whereas the total cost of as are just 20. Yet, as is not a robust shortest path.

Unfortunately, the algorithm proposed in Theorem 3.5.1 does not guarantee an approximation
factor for every recoverable robust setting. Consider the following example for a k-Dist-RR,
shortest path problem with [-scenarios: Let G be the graph given in Figure 3.3 without first-
stage cost ¢, i.e., ¢” = 0, and I'-scenarios defined by upper and lower cost bounds of [0, 1] and
I' = 2. Then p; is the only robust shortest path. Yet, if we consider the recovery parameter
k = 3, the total cost of p; are 1, while any other (s,¢)-path has total cost 0.

Figure 3.3.: The path p; is an optimal robust solution, but does not approximate the optimal
solution of the k-Dist-RR shortest path version.

3.6. Conclusion and Open Issues

Rent recoverable robustness models a setting in which the choice of an element in the first stage
influences the cost of purchasing the element in the second stage. For discrete scenario sets
and in the case of two scenarios, we showed in Section 3.2 that the problem is at least weakly
NP-hard. It remains open whether we can actually solve these problems in pseudo-polynomial
time. The Rent-RR, WDHS problem should be considered first, since this simple problem is
a subproblem of several other combinatorial optimization problems (Corollary 3.2.3). If the
number of discrete scenarios is not constant, the problem is even strongly NP-hard and not
approximable with a factor better than 2, unless P = NP.

In the case of interval scenarios the Rent-RR, LCMin problem with proper first-stage solution
sets is tractable if the considered LCMin problem is tractable (Section 3.3). The same probably
holds when the first-stage solution set consists of all subsets of the underlying set of elements.
However, further restrictions on this set may change the result or make computing an optimal
solution more challenging.

As last type of scenario sets, we analyzed I'-scenarios in Section 3.4. Since the Rent-RR
problem behaves like the robust version for the two other scenario types, it surprises that
the Rent-RR problem is strongly NP-hard for the shortest path problem and the minimum
(s,t)-cut problem. However, it is not known if we can solve, for example, the Rent-RR WDHS
problem in polynomial time. Furthermore, no lower bound on the best possible approximation
factor results from the provided hardness proof.

Finally, we proved that any 7y-approximation algorithm for the robust problem induces a
min{vy + 1 + /3, Z}-approximation algorithm for the Rent-RR problem (Section 3.5). This is
so far the only constructive result for discrete scenario sets and I'-scenario sets. It would
be interesting to find a different approximation algorithm, whose approximation factor is
independent of the rental factor and the approximation factor.

4. Exact Subset Recoverable Robust-
ness

In this chapter we consider exact subset recoverable robustness. For a given LCMin instance
(U, F,c) and a scenario set S, where each scenario defines a cost function ¢® : U — N, this
problem is to find a set U’ C U that contains for every scenario S € S an optimal solution
w.r.t. ¢ of the original instance.

For discrete scenario sets the exact subset recoverable robust (exSub-RR) version of the short-
est path problem, the minimum spanning tree problem or the minimum (s, ¢)-cut problem are
strongly NP-hard. In the case of interval scenarios we introduce a criterion to decide for a
given element, whether it is contained in every optimal solution. Using this criterion we give
a lower bound of |U|*=%), for any € > 0, on the approximability of the exSub-RR shortest
path and the exSub-RR minimum (s, t)-cut problem, where U denotes the set of arcs in the
considered graph. On the other hand, we prove that the exSub-RR minimum weight basis
problem for matroids can be solved efficiently.

Considering I'-scenarios, the exSub-RR shortest path problem and the exSub-RR (s,t)-cut
problem remain NP-hard shown by a reduction from the corresponding max-scenario problem.
But even the exact subset recoverable robust minimum spanning tree problem is strongly
NP-hard since it is closely related to the k-connected spanning subgraph problem. Finally,
we introduce an approximation algorithm with an approximation guarantee of %|U | for any
¢ € N and any LCMin instance (U, F,¢).

4.1. Introduction

Motivation Security and stability is a major concern in network design, e.g., in the design
of telecommunication networks, railway networks or highway networks [19, 75|. Several dif-
ferent evaluation techniques have been developed like the classical concepts of connectivity or
maximum distance, to measure the risk of a network break down due to random failures or
intentional attacks. Often, stability of a network comes at the cost of maintaining a large sys-
tem. To lower these cost, companies are interested in reducing the network without decreasing
its stability. However, this criterion does not include any service promises to the customers.
The obtained subnetwork may therefore be stable but the requests of the customers may be
routed along very long paths.

For telecommunication networks one aspect of the trade-off between stability and fast con-
nection is captured in the so-called bounded disjoint path problems [19]. In this problem we
consider only the connection between two designated nodes. The task is to find a set of k
disjoint paths such that the length of each path is bounded by a given value ¢. Thus, the
number of disjoint paths models the stability and the length of the path represents the service
for the customers.

62 Chapter 4. Exact Subset Recoverable Robustness

The ezxact subset recoverable robust problem focuses on these service guarantees. Given a
network problem in which demand needs to be routed, we assume that the cost functions,
e.g., the routing times, are uncertain and modeled via a set of scenarios. Then the ezact
subset recoverable robust problem asks for a minimum subnetwork such that for each scenario
an optimal routing in the whole network is also contained in the subnetwork. Hence, the
customer experiences no change in service, i.e., in the traveling time, although the network
is reduced. Due to the modeling power of scenario sets, we will later see that the issue of
connectivity can also be included in this approach.

Model and Notation Exact subset recoverable robustness was mainly motivated by net-
work design problems and variances in the cost function. In terms of our general framework
we will introduce the concept for linear combinatorial minimization problems and scenario
sets that determine sets of feasible solutions. As defined before (see Definition 1.1.1), a lin-
ear combinatorial minimization (LCMin) problems is given by a set of elements U, a set of
feasible solutions F C 2Y, and a cost function ¢ : U — N. The task of such a problem is to
find a solution F' € F with minimum cost ¢(F) = >, . c(u). Typical linear combinatorial
minimization problems are the shortest path problem, the minimum spanning tree problem
and the minimum (s,¢)-cut problem. For an LCMin we define the exact subset recoverable
robust version in the following way:

Definition 4.1.1 (Exact Subset Recoverable Robust Linear Combinatorial Minimization (ex-
Sub-RR LCMin) Problem). Let (U, F,¢) be an instance of an LCMin problem and S be a set
of scenarios, such that each scenario S € S defines a set of scenario feasible solutions F° C F.
A set U C U is a feasible first-stage solution if for every scenario S € S, there exists an
F € F5 with F C U'. The ezact subset recoverable robust linear combinatorial minimization
problem is to find a feasible first-stage solution of minimum cardinality. An instance of this
problem is given by the triple (U, F,S).

The cost function ¢ of the underlying LCMin problem (U, F, ¢) does not explicitly induce any
cost for a first-stage solution. The problem setting can easily be extended to find a feasible
solution U" with minimum cost ¢(U’). In order to keep it simple, we begin with a study of
minimizing the cardinality of a first-stage solution.

In contrast to the other two recoverable robust models considered in Chapter 2 and 3, each
scenario of the given scenario set determines a set of feasible solutions. This definition could
be arbitrary, e.g., the set of scenario feasible solutions could consist of all feasible solutions
with bounded cardinality. However, in this chapter we will just consider a special case of
scenario sets in which every scenario S € S defines a cost function ¢® : U — N and the set
of scenario feasible solutions consists of all minimum cost solutions of the underlying LCMin
problem (U, F,c) with respect to the cost function ¢ = 7, i.e.,

S S s S

FP={FeF|c (F)—glér}c (F")}.

We will still distinguish the different types of scenario sets by the way their cost functions
are defined. That means that we call, for example, a set of scenarios a discrete scenario set
if r scenarios S1,...,.S, with their cost functions are explicitly given while the set of scenario
feasible solutions may be arbitrarily large. Before we give an overview of related results, we
consider a small example for the exact subset recoverable robust shortest path problem.

Example 4.1.2. Let G = (V, A) be the graph shown in Figure 4.1 and Sr be the set of
['-scenarios determined by I' = 1, the lower cost bound 0 and upper cost bound 1 on every

4.1. Introduction 63

arc. For a scenario S € Sr the set of scenario feasible solutions corresponds to all (s, t)-paths
in G which do not cross the arc whose cost value is increased to 1. In G the scenario S; is
shown that increases the cost of the red colored arc. The green path is a feasible recovery path
in this setting and is also included in the blue subgraph, shown in the left part of the figure.
For the scenario S, illustrated in G5 a different path, e.g., the green colored one, needs to be

chosen.
[0,1] P
* ¢ ¢ AR TN
o—> o >0
S t
Gy
e O

*o—0 060 00 ° o o
t

s
G >0 - /’
° o o N
Figure 4.1.: The left graph G shows the situation in the first stage, where the different cost

values of the arcs are not known. On the right side, two possible realizations are illustrated,
where all arc costs are 0 except for the red arcs.

One can easily observe that any feasible solution for this exSub-RR shortest path instance
contains two disjoint paths in GG. Since the blue colored graph is a minimum subgraph w.r.t. the
number of arcs with this property, it is an optimal solution. If we change the lower and upper
bound to 1 and 2, the optimal solution consists of the middle (s,t)-path. This path is a
shortest path in any feasible I'-scenario with I' = 1. H

Related Results The classical concept of connectivity leads to the k-spanning subgraph
problem for some integer k, where a k-connected subgraph of a given graph G = (V, E') with a
minimum number of edges needs to be found. A graph G = (V, E) is called k-connected if for
each vertex pair u,v € V there exist k edge disjoint paths in G. This problem has widely been
studied (see [28, 51, 74| and references within). It is well-known that the problem is strongly
NP-hard, since any Hamiltonian cycle is a minimum 2-connected spanning subgraph of a
given graph. Gabow et al. [51| showed that a polynomial-time algorithm approximating the
smallest k-connected subgraph within a ratio 1+ ¢ for some constant ¢ implies P = NP. On
the other hand, they developed an approximation algorithm based on rounding an LP solution
of the relaxation of the natural linear integer program formulation. Its approximation ratio is
1+ % for any directed graph and arbitrary k as well as for undirected graphs with even k. If
k is odd, the performance guaranty is at least 1 + % for undirected graphs.

As described above, in telecommunication networks the trade-off between stability and fast
connections is captured in the bounded disjoint path problem. Given a directed graph G =
(V,A), two vertices s,t € V, a length bound ¢ € N and a parameter k& € N, the problem
is to find a set of k disjoint (s,t)-paths, where each path contains at most ¢ arcs. Roughly
speaking, the problem of finding a maximum number of disjoint paths with a length bound
¢ < 3 is solvable in polynomial time, while for £ > 5 the problems become APX-complete.
More details on related results can be found in [19].

In |58] Hassin and Rubinstein introduced the concept of a-robustness for the maximum
weighted matching problem. For a given graph G = (V| F) they defined a p-matching to
be a subset of pairwise disjoint edges with cardinality p. An a-robust matching is an inclusion

64 Chapter 4. Exact Subset Recoverable Robustness

wise maximal matching M, such that for a given weight function w : E — N the heaviest p
edges in M have a weight of at least a-times the weight of a maximum p-matching in the graph
G for every p < |M]|. They show that there always exists a %—robust matching, which can
be computed efficiently. Fujita et al. [50] also provided a polynomial algorithm for computing
a l-robust matching if one exists, and proved NP-hardness for finding an a-robust matching
for % < a < 1. This concept can also be adapted to different parametrized problems, e.g.,
finding a maximum weighted tree spanning k vertices. Thus, Hassin and Segev [59] consid-
ered the problem of finding heavy paths and heavy trees of k edges and Fujita et al. [50] the
maximum weight intersection of two matroids.

Contribution and Chapter Outline We consider again three different types of scenario sets,
the discrete scenario sets, the interval scenario sets and the I'-scenario sets. In the discrete
scenario case (Section 4.2), we show that most problems are strongly NP-hard if the number
of scenarios is not constant. For three scenarios the exSub-recoverable robust version of an
artificial LCMin problem is strongly NP-hard by a reduction from 3-matroid intersection.

In Section 4.3 we discuss interval scenarios. If the lower cost bound is strictly smaller than
the upper cost bound of an element, we introduce a necessary and sufficient criterion for this
element to be contained in every feasible solution. We call such an element necessary. Using
this concept, we show that the exSub-RR LCMin problem is in coNP. Furthermore, this
problem cannot be approximated within a factor of |U|"~) for any ¢ > 0 if it is NP-hard to
decide whether an element is necessary or not. This is in particular the case for the shortest
path problem or the minimum (s, ¢)-cut problem. On the other hand, we can use the criterion
to obtain a polynomial algorithm for solving the minimum weight basis problem on matroids
(Section 4.5.2).

Section 4.4 covers our results w.r.t. I'-scenarios. For I'-scenarios, several exSub-RR LCMin
problems become again NP-hard, e.g., the shortest path problem, the minimum (s,%)-cut
problem and the minimum spanning tree problem. The first two statements are obtained from
a general construction relating the max-scenario problem to the exSub-RR LCMin problem.
The last result is due to a correspondence of the k-connected subgraph problem with the exSub-
recoverable robust minimum spanning tree (MST) problem with I'-scenarios, where the set of
['-scenarios is defined by lower cost bounds 0, upper cost bounds 1 and I' = k + 1. A simple 2-
approximation for the exSub-RR MS'T problem is given in Section 4.5.3. Finally we introduce
in Section 4.6 approximation algorithms for the exSub-RR LCMin problem with I'-scenarios
and interval scenarios. Parts of this chapter are based on work with Rico Zenklusen. Results
on the shortest path problem have been published in [22].

4.2. Discrete Scenarios

A discrete scenario set Sp is given by r scenarios Si,...,S5., where each scenario 5,
i=1,...,r, defines a cost function ¢% : U — N on the underlying LCMin instance (U, F,c).
We start with a complexity study of the exSub-RR LCMin problem. To this end, we analyze
the exSub-RR version of the so-called minimum element problem. This problem can be in-
terpreted as a special case of the shortest path problem, the minimum (s, t)-cut problem and
the minimum perfect matching problem. If the number of scenarios is not constant, we prove
its NP-hardness and proceed with a reduction from this problem to all exSub-RR LCMin
versions mentioned above.

4.2. Discrete Scenarios 65

The minimum element problem is a linear combinatorial optimization problem given by a set
of n elements U = {uy,...,u,} and a cost function ¢ : U — N. Every feasible solution F
consists of exactly one element v € U and the task is to find an element with minimum cost
c(u). Although this problem is quite simple, we will show that its exact subset recoverable
robust version is already strongly NP-hard.

Theorem 4.2.1. The exact subset recoverable robust minimum element problem is strongly
NP-hard for discrete scenario sets Sp.

Proof. We show a reduction from 3SAT. Let I be an instance of 3SAT with n variables
Z1,...,2, and m clauses Ci,...,C,,. We construct an instance I’ of the exact subset re-
coverable robust minimum element problem by defining a set U’ and a set of discrete sce-
narios Sp. For each variable x;, ¢ = 1,...,n, we introduce two elements u;,w; to U’. The
set of scenarios Sp contains for every clause Cj, j = 1,...,m, a scenario S; with the cost
function ¢ : U’ — {0, 1} defined as ¢% (u) = 0 if u = u; and z; € C}, ¢% (u) = 0 if u = T; and
T, € Cj,i=1,...,n, and ¢ (u) = 1 otherwise. Furthermore, we add for every variable z;,
i=1,...,n, ascenario S} to Sp with ¢%(u) = 0 if u € {u;, %}, and ¢%(u) = 1 otherwise.
Due to the latter extra scenarios each feasible solution has to contain at least one of the two
elements u; or u;, i = 1,...,n. Since |U'| = 2-n and |Sp| = m+n, the size of I’ is polynomial
in the size of I.

In the next two paragraphs we will prove that there exists a feasible solution U* with |U*| = n
if and only if / is a yes-instance.

Let x* be a feasible solution of I. A solution U* to I’ is constructed by adding for each

variable z;, ¢ = 1,...,n, the element u; to U* if 7 = true and by adding the element u,; to U*
if xf = false. Hence, |U*| = n. For every scenario S, i = 1,...,n, an element of cost 0, i.e., a
minimum element according to the cost function ¢%, is contained in U*. Since z* is a feasible

solution, U* contains an element of cost 0 for every scenario S;, j = 1,...,m. Therefore, U~
is a feasible first-stage solution with |U*| = n.

Let U* be a feasible first-stage solution with |[U*| = n. Due to the definition of the scenarios
Sl i=1,...,n, either u; or w; is part of U*. Since |U*| = n, the assignment z* is well defined
fort=1,...,n with

. true if u; € U*
xT. =
! false otherwise.

Furthermore, for every scenario S € Sp an element of cost 0 is included in U* and thus at
least one literal of any clause is verified by x*. Therefore, x* is a feasible solution of I. O

Obviously, the minimum element problem (U, F,c) can be interpreted as a shortest path,
a minimum spanning tree or a perfect matching problem. The set U is represented by a
graph formed by |U| parallel arcs, where each arc represents an element of U. Any (s,t)-
path, spanning tree or matching corresponds to a feasible solution of the original problem.
Representing U as a simple (s, t)-path with length |U| instead of |U| parallel arcs, any (s, t)-
cut presents a feasible solution. Thus, the minimum element problem can also be read as
a minimum (s,t)-cut problem. Since any cost function adapts in a natural way, i.e., the
cost of an element u € U are assigned to the corresponding arc in the considered graph, the
complexity status of the exSub-RR version of the minimum element problem passes over to
the exSub-RR versions of the shortest path problem, the minimum spanning tree problem,
the minimum matching problem and the minimum (s, t)-cut problem. A similar construction

66 Chapter 4. Exact Subset Recoverable Robustness

was already introduced in the proof of Corollary 2.2.3 to model a k-Dist-RR version of the
weighted disjoint hitting set problem as a k-Dist-RR version of the above mentioned problems.

Corollary 4.2.2. The exact subset recoverable robust version of the shortest path problem, the
minimum spanning tree problem and the minimum (s,t)-cut problem is strongly NP-hard for
discrete scenario sets Sp even in series-parallel graphs.

The proof of Theorem 4.2.1 depends on the assumption that the number of scenarios is not
constant. But even if we restrict the set Sp to three scenarios, the exSub-RR LCMin problem
remains strongly NP-hard.

Theorem 4.2.3. The exact subset recoverable robust linear combinatorial minimization prob-
lem with a constant number of discrete scenarios is strongly NP-hard.

Proof. The reduction is from 3-matroid intersection (SP11, in [52]). We consider such an
instance [given by a set E and three different independent sets Fi, F, and F3 over FE,
which form the matroids (E, F), (E,F2) and (E,F3). For some given K < |E| the task
is to decide whether there exists a subset E* of E with E* € (F; N F N F3) and |E*| >
K. In order to define a linear combinatorial minimization instance I’ = (U’, F',c), we set
U' = EU {uy,up,u3}. A subset U C U’ is a feasible solution in I’ if U contains exactly one
of the elements uy, us, uz, namely u;, and E\U is an independent set of the corresponding
matroid (E,F;), i.e., U N {uy,uz,uz} = {u;} and E\U € F, for some i € {1,2,3}. To obtain
an exSub-RR version of I’, we define three scenarios Si,.S; and S3 with the cost function

csi(u):{l ifu=mwu; j#1

0 otherwise

for i = 1,2,3. Due to the definition of ¢,

U'| UnA{uy,ug,u3} = {u;} and E\U € F;}
U'|U=FE\UU{u}and U € F;}.

We show that the exSub-RR version of I’ with Sp = {51, S, S3} contains a solution U* with
|U*| < |E| — K 4 3 if and only if there exists a set E* € (F; N Fy N F3) with |E*| > K.

Let E* be a subset of F and E* € (F, N F N F3) with |E¥| > K. Then
U* = {E\E*} U{uy,ug,us} is a feasible first-stage solution since for ¢ = 1,2,3 the set
U; = {E\E*} U {u;} is a subset of U* and in F%. Furthermore,

U*| = |E| — |E*| +3 < |E| - K +3.

On the other hand, if U* is a feasible solution of I’, it contains the elements uy, us and wus.
Furthermore, E* = E\U* is part of F; N Fy N F3: the set U* is a feasible solution. Hence,
for i = 1,2,3 there exists a subset E; C U* with E\FE; € F;. Since F; is an independent
system and E* = E\U* C E\E;, E* is also part of F;. Thus, E* is a feasible solution of
the intersection. If finally |U*| < |E| — K + 3, then |E*| = |E| — |U*| 4+ 3 > K. To sum up, [
is a yes-instance if and only if an optimal solution of the formed exSub-RR LCMin instance
contains less than or equal to |E| — K + 3 elements. O

4.3. Interval Scenarios 67

The constructed linear combinatorial minimization problem in the proof is artificial, but it can
be solved in polynomial time as follows. It suffices to compute for a given cost function and
each matroid (F, F;) a maximum weight basis B;, i = 1,2, 3, and choose the set F\B; U {u;}
with minimum cost. However, no conclusion can be drawn from this result for the recoverable
robust versions of the shortest path problem, the minimum spanning tree problem or some
other well-known combinatorial minimization problems.

So far, we investigated optimization problems and proved their NP-hardness. As we will see
in the following, their decision versions are in NP. The decision version of an exSub-RR
LCMin problem is defined as:

Given: A linear combinatorial minimization problem (U, F,c), a discrete scenario set Sp,
such that each scenario S € Sp defines a cost function ¢® : U — N, and a size bound
K.

Decide: Is there a feasible first-stage solution U’ C U with |U'| < K7

If the set of scenarios is part of the input, a first and simple NP-certificate for this decision
problem is a set U’ C U as first-stage solution and a set F° € F* for each scenario S € Sp. But
since the considered LCMin problems are in P, the feasibility of a set U’ C U can be tested in
polynomial time: For each scenario S € Sp, we define the following cost function ¢ : U — N
with

() = {cs(u) ifuel

M otherwise.

Furthermore, we compute an optimal solution F}j, for the instance (U, F,¢°) and an
optimal solution Fyj for the instance (U, F,c). By choosing M large enough, e.g.,
M = |U| - max,cy c®(u), the set FJ, just contains elements of U’ as long as U’ contains any
feasible solution. If ¢”(F5) = ¢(Ff) for all S € S, the set U’ is a feasible first-stage solution.
Thus, a set U’ C U suffices as certificate for a yes-instance (in contrast to the k-Dist-RR
version). Furthermore, the exSub-RR LCMin decision problem can be decided in polynomial
time for K not being part of the input: We just test for every subset of U with cardinality
equal to K, whether it is a feasible solution.

Discrete scenario sets are very powerful, since there is in general no dependency between the
different cost functions. To restrict the possible values of these cost functions and model more
realistic scenario sets, interval scenarios are often chosen.

4.3. Interval Scenarios

The interval scenario set Sy is defined implicitly by a set of cost functions with box constraints.
More precisely, for every element v € U of an LCMin instance (U, F, ¢) we are given lower and
upper bounds ¢(u) and ¢(u) on the cost with 0 < ¢(u) < ¢(u). The scenarios are then defined
as follows: For each cost function ¢: U — N with ¢(u) € [c(u),¢(u)] there exists a scenario
S € 8; with ¢”(u) = ¢(u) for all u € U and for each S € S; the scenario cost function ¢® obeys
the bounds ¢ and ¢.

The set St contains several irrelevant scenarios and we will show that it suffices to consider a
special subset, the so-called extreme scenarios. A scenario S is extreme if ¢®(u) € {c(u),c(u)}
for all w € U. We introduce a short notation for extreme scenarios: For a subset A C U, we

68 Chapter 4. Exact Subset Recoverable Robustness

define the extreme scenario S(A) as the scenario with the cost function

S (y) = {g(u) ifueA

¢(u) otherwise.

As a consequence of the following lemma it suffices to focus on the set of extreme scenarios
instead of considering all scenarios S € &7 for an exSub-RR LCMin instance.

Lemma 4.3.1. Let (U, F,S;) be an exSub-RR LCMin instance with interval scenarios Sy,
S € S; be a scenario and F € F° be a scenario feasible solution. Then FSE) C FS.

Proof. Let S be a scenario and Fy, F» € F. Then
CS(F1> — CS(F2> Z CS(Fl)(Fl) — CS(FI)(FQ).

If furthermore F € F¥ and F' € F55) ie. SF)N(F') < SE(F) for all F € F, we obtain
S(F) — S(F) > AEN(F) — SENF) > 0 and thus F' € F9. O

Hence, for any scenario S € &§;, the condition imposed by S on a solution to the exSub-RR
LCMin problem is weaker than the condition imposed by the extreme scenario S(F') where
F € F% A set U C U is a feasible solution if and only if it contains for every extreme
scenario a feasible solution. We therefore restrict our consideration to extreme scenarios in
the remaining section.

A special type of elements that will show useful in the analysis of exSub-RR LCMin problems,
are elements that must be part of any feasible solution.

Definition 4.3.2. Let (U, F,S;) be an instance of an exSub-RR LCMin problem. An el-
ement u € U is called necessary if there exists a scenario S € S; such that u € F' for ev-
ery F € F5. We call S a witness of u.

For a given scenario S, we can test if S is a witness for u by increasing ¢*(u) by one unit and
computing an optimal solution with respect to this new cost function. Then the scenario S is
a witness for u if and only if the value of an optimal solution w.r.t. the modified cost is higher
than the value of an optimal solution w.r.t. the cost ¢°.

In general, an optimal solution of an exSub-RR LCMin problem also contains non-necessary
elements. Yet, in a large class of such problems with interval scenarios, the optimal solution
is unique and just consists of the set of necessary elements. More precisely, we will show that
this is the case if the cost value of every element v € U may suffer deviation, i.e., c¢(u) < ¢(u)
for all u € U. Interval scenarios that satisfy this condition are called strictly deviating. We
start by focusing on a special subset of scenarios and then derive a close relation between
necessary elements and these scenarios.

Definition 4.3.3. Let F' € F. We call S(F) dominant if F5) = {F}.

Karagan et al. [68| already use this concept to show that any optimal path in a robust regret
shortest path problem with interval scenarios is a dominant path. The following lemma pro-
vides a key result for the role of dominant scenarios in a strictly deviating interval scenario
set, for exSub-RR LCMin problems.

4.3. Interval Scenarios 69

Lemma 4.3.4. Let (U, F,S;) be an exSub-RR LCMin instance with strictly deviating interval
scenarios and let U* be an optimal solution. Then u € U* if and only if there exists a dominant
witness of u.

Proof. Let U* C U be a feasible solution with a minimum number of elements to a given exSub-
RR LCMin instance (U, F,S;). We assume that there is an element v’ € U*, but there exists
no dominant witness S(F”) of v’ with F’ € F. Let us consider the subset U’ = U*\{u'}. Since
U’ is no feasible solution, there exists a scenario S € S; in which all solutions F' € F* with
F C U* contain «'. Let F* € F* and ¢ = 1. Due to our assumption S(F") is not dominant.
Hence, there exists a solution F™*1 € FSENLF} If S(F™1) is not dominant, we set i =i + 1
and choose F'*! ¢ FSFI\{F'}. We repeat this scheme until { '} = F5F") for some 4.y € N.
Since ¢(u) 4+ 1 < ¢(u) and 0 < SEFV(F) +1 < SETI(FY) for 1 < i < imay, the routine
stops. Due to the construction of the solutions F%, i = 1,... imax, FOE) C FSE™D with
S(F%) = S as shown in Lemma 4.3.1. Thus, Fimex € F9 Fimax C U* and therefore v’ € Fimsx,
This is a contradiction to the assumption that there is no dominant witness of u’. O

As a direct consequence of Lemma 4.3.4 we get the following results.

Theorem 4.3.5. An exSub-RR LCMin problem with strictly deviating interval scenarios has
a unique optimal solution consisting of all necessary elements.

The above characterization allows us to derive conclusions about the complexity status of the
decision version of an exSub-RR LCMin problem.

Corollary 4.3.6. Consider an LCMin problem which lies in P. Then the decision version
of the corresponding exSub-RR LCMin problem with strictly deviating interval scenarios is in
coNP.

Proof. In the decision version of an exSub-RR LCMin problem (U, F,S;) we are given an
integer K, and the task to decide whether there is a solution with at most K elements. Hence,
for this problem to be in coNP, we have to guarantee that there is a polynomial certificate
to verify that for a given no-instance, every feasible solution needs indeed K + 1 or more
elements.

We assume that we are dealing with a no-instance. Let U* be an optimal solution to the
exSub-RR LCMin problem (U, F,Sy), which needs at least K + 1 elements. By Lemma 4.3.4
for every element u € U* there is a dominant witness S(F') with F' € F and v € F. Hence, if [
is a no-instance, there exists a set of dominant scenarios {S(F}),...,S(F,)} with ¢ < K + 1
and | UL, F;| > K + 1. If the dominance of a scenario S(F) can be tested in polynomial time
this can be done in polynomial time for all scenarios S(F}), ..., S(Fy). In that case, we obtain
a polynomial certificate for a no-instance.

A scenario S(F) is dominant if F is the unique minimizer of minzcr ¢ (F’). This can be
tested as follows: for each f € F' we define a cost function ¢/ : U — N with

N O T
cw) = {cS<F>(u) 1 ifu=f.

One can easily check that F is the unique minimizer of mingerc®F)(F) if and only if
SENF) < mingrer cf (F') for each f € F. Since the LCMin problem is by assumption in P,
this can be done in polynomial time. In conclusion, a set of at most K + 1 dominant scenarios
S(Fy),...,S(Fy) with | Uf_, F;| > K + 1 is a polynomial certificate for a no-instance. 0O

70 Chapter 4. Exact Subset Recoverable Robustness

Corollary 4.3.7. The exSub-RR shortest path problem, the exSub-RR minimum spanning
tree problem and exSub-RR the minimum (s,t)-cut problem with strictly deviating interval
scenarios are in cONP.

Before we show that certain problems are solvable in polynomial time, we focus on a statement
about the approximability of exSub-RR LCMin problems and show that a large class of these
problems are hard to approximate. We use the following notion of duplication-condition to
characterize this problem class.

Definition 4.3.8 (Duplication-Condition). A class of LCMin problems satisfies the
duplication-condition if for every instance (U,F,c) of this class and for every element
u € U, there is another LCMin instance (U’ = U U {u'}, F',) in the same class such that
F=FU{F CU |u e F ug¢F, FF\{u}U{u} € F}. The new element v’ is called a
duplication of u.

The shortest path problem, the minimum spanning tree problem and the minimum (s, t)-cut
problem fulfill the duplication-condition by adding a parallel arc for any arc in the first two
cases and dividing an arc into two consecutive arcs in the last case. The vertex cover problem,
on the other hand, does not satisfy the duplication-condition.

Theorem 4.3.9. Let C be a class of LCMin problems (U, F,c) that satisfy the duplication-
condition and such that it is in general NP-hard to decide for a given element u € U whether
u 1s necessary in the exSub-RR version of a problem in C with strictly deviating interval
scenarios. Then there is no |U|"~%) -approzimation algorithm, € > 0, for the exSub-RR version
with strictly deviating interval scenarios of the problems in C, unless P = NP.

Proof. Let us consider a class C of LCMin problems as described in the theorem. By contra-
diction assume that there exists an approximation algorithm ALG for the exSub-RR version
of a problem in C with strictly deviating interval scenarios with an approximation factor of
|U|@=%) for some ¢ € N. Let I = (U, F,¢) be an instance of C, let 7 € U and S; be an interval
scenario set. We consider an instance I’ = (U’, F, /) which corresponds to I with |U|* — |U|
duplications of @ and the scenario set S which extends the scenario Sy by assigning the same
upper and lower bounds of w to any duplication of u.

One can easily observe that because of the properties of element duplication, @ is part of the
(unique) optimal solution of the instance I if and only if @ or any duplication of @ is part
of the optimal solution of I’. Furthermore, if any duplication of @ or the element @ itself is
contained in the optimal solution I’, then all of these elements are in the optimal solution.

Hence, if the element is not part of the optimal solution for instance I, the optimal solution
for the instance I’ contains at most |U| — 1 elements. In that case, the cardinality of Uarg
returned by the algorithm is bounded by

1 _ N
U7 (U] = 1) = U] (U] = 1) = U] = [U"".

Since the number of duplications of @ exceeds this bound for ¢ > 3 and |U| > 1, not all of these
elements can be contained in the solution Uap,g. On the other hand, if all of the duplications of
u and @ itself are in Upy,q, then the optimal solution of I must contain @, since otherwise ALG
would not satisfy the assumed approximation guaranty. Hence, the existence of the algorithm
ALG would allow to find an optimal solution of every problem in C in polynomial time. This
is not possible, unless P = NP. O

4.3. Interval Scenarios 71

Figure 4.2.: Every dominant path is a simple path.

Any algorithm just returning the given set U is already an approximation algorithm with a
factor |U|. We will now consider the exSub-RR shortest path and the exSub-RR minimum
(s,t)-cut problem and show that we can apply Theorem 4.3.9.

4.3.1. Shortest Path Problem

Let G = (V, A) be a directed graph with a set of vertices V' and a set of directed arcs A. Let
s,t € V and c(a) € N and ¢(a) € N be lower and upper bounds on the cost for every arc
a € A. The exSub-RR shortest path problem asks for a subgraph G’ of G with a minimum
number of arcs such that G’ contains for every scenario in S; a shortest path of G.

Corollary 4.3.10. There exists no efficient approzimation algorithm with an approximation
factor |A|=2) for any € > 0 for the exSub-RR shortest path problem with strictly deviating
interval scenario sets, unless P = NP, where A denotes the set of arcs in the given shortest
path instance.

For the proof it suffices to show that it is already NP-hard to decide whether an arc is necessary
and thus has a dominant witness (Lemma 4.3.4 and Theorem 4.3.9). This was stated in [68]
without proof. For completeness, we prove the NP-hardness in Theorem 4.3.11 by a reduction
from two vertex disjoint path.

Theorem 4.3.11. The decision problem whether an arc is necessary for the class of exSub-RR
shortest path problems with strictly deviating interval scenarios is strongly NP-hard.

Proof. We show a reduction from the two vertex disjoint path problem. Let I be a two
vertex disjoint path instance composed of a directed graph G = (V, A) and four vertices
vy, Uy, Vg, us € V. The task is to decide whether two vertex disjoint paths p; and ps exist
such that p; connects v; and u; and py connects vy and us. We transform this instance to
an instance I’ of the exSub-RR shortest path problem by adding two vertex s and ¢ and the
arcs (s,v1), (ug,ve) and (ug,t) to G. The lower and upper bounds on each arc are set to 0
and 1 (see Figure 4.2). The size of this new graph G’ and the value of the cost bounds are
polynomial in the size of the instance I.

We will show that there exists a (vy,u;)-path p; and a disjoint (vg, us)-path py in G if and
only if the arc (uy,vy) is necessary.

If the arc (uy,vs) is necessary, there exists a dominant scenario S(p) with (uy,vs) € p
(Lemma 4.3.4). Since S(p) is dominant, p is a simple path. Hence, the subpaths of p connecting
vy with vy and vy with us are vertex disjoint and form a feasible solution to 1.

72 Chapter 4. Exact Subset Recoverable Robustness

On the other hand, let p; and ps be two vertex disjoint paths in G from v; to u; and from
vy t0 ug, respectively. The path p = (s,v1) U py U (ug,v2) Ups U (ug,t) in G’ is a simple path
with ¢®®)(p) = 0. The cost of any other (s,t)-path in G’ w.r.t. the cost function ¢5® is at
least 1. Thus, S(p) is dominant by definition and since p traverses (uj,vs), the arc (uq,vs) is
necessary. 0

For undirected graphs the two vertex disjoint path problem can be solved in polynomial
time [90]. Hence, we do not know if the exSub-RR shortest path problem remains NP-hard
on this graph class.

4.3.2. Minimum (s,t)-Cut Problem

Let G = (V, A) be a directed graph with a vertex set V' and a directed arc set A and s,t € V.
A subset of arcs 07 (X) with X C V\{t}, s € X, 6" (X) ={(u,v) e AJue X,ve V\X} is
called an (s,t)-cut. For a given cost function ¢ : A — N the minimum (s, t)-cut problem is to
find an (s, t)-cut 01 (X) with minimum cost ¢(67(X)). For general graph classes the exSub-RR
version of the minimum (s, t)-cut problem with interval scenarios is strongly NP-hard.

Theorem 4.3.12. The exSub-RR minimum (s,t)-cut problem with strictly deviating interval
scenarios is not approzimable within a factor of |A|"=2) for any € > 0, unless P = NP, where
A denotes the set of arcs in the given instance.

Proof. We show again a reduction from the two vertex disjoint path problem to prove that it
is NP-hard to decide whether a given arc is necessary. In combination with Theorem 4.3.9,
this results in the statement of the theorem.

Let I be an instance of the two vertex disjoint path problem given by a directed graph
G = (V,A) and two vertex pairs (vy,u;) and (vg,uz). In order to construct an instance
I’ of the exSub-RR minimum (s, t)-cut problem, we add the arc @ = (uy, v2) to the graph and
set s = v; and ¢ = uy. Furthermore, we assign 0 as the lower bound on the cost of all arcs
a € A, 2 as the upper bound of all arcs a € A and set the bounds for @ to ¢(@) = 1 and
¢(@) = 2. The reduction is the following: Arc @ is necessary in I’ if and only if there exist two
disjoint paths connecting v; with u; and vy with ws.

Figure 4.3.: All arcs except @ have lower cost bounds 0 and upper cost bounds 2.

Let @ be a necessary arc. Since c(a) < ¢(a) for all a € A U {a}, there exists a dominant
scenario S in which the unique minimum (s, ¢)-cut 0% (X) contains the arc @ (Lemma 4.5.6).
Therefore, vy, u; € X and ug,vo € V\X. Let f be a maximum (s,¢)-flow in G’ where the
upper capacities on the arcs are given by the cost of the scenario S. Hence, f(a) > 1 and

4.4. T'-scenarios 73

since 1 (X) is a minimum (s, t)-cut, no backward arc is allowed to carry any flow. Therefore,
there is a path from v; to uy just using arcs of A(X) and a path connecting v, and wuy just
using arcs of A(V\X).

Conversely, let there be two simple paths p; and p, where p; connects vy with u; and po
connects vy with us. We combine these paths via the arc @ to an (s, t)-path and define a cost
function for S € &; in the following way:

2 ifa€p1Up2,
Ala)={1 ifa=a,

0 otherwise.

Every minimum (s, ¢)-cut according to this scenario has cost 1 and therefore contains the arc
a. Hence, @ is by definition necessary. Applying Theorem 4.3.9 we obtain the lower bound on
the best possible approximation factor. O

In the case of outer-planar graphs the exSub-RR minimum (s,t)-cut problem is solvable in
polynomial time, since there are at most n? simple (s, t)-cuts in a given graph. The dominance
of each scenario induced by such a cut can be tested efficiently, as described in the proof of
Corollary 4.3.6.

4.4. I'-scenarios

Recall that the I'-scenario set is defined as follows: Let c(u) and ¢(u) be lower and upper
bounds on the scenario cost for each element u € U of the given LCMin instance (U, F, ¢) and
let I' be some integer. The cost function ¢ of each scenario S € Sr obeys these cost bounds and
there are at most I" values deviating from the lower bound, i.e., |{u € U | ¢*(u) > c(u)}| < T.
As in the interval case it suffices to consider cost functions only taking values equal to c(u)
or ¢(u) for all u € U.

The complexity of an exSub-RR LCMin problem is, as in the k-Dist-RR version, closely related
to the max-scenario problem (Definition A.0.1) and the add-condition (Definition 2.4.1). The
max-scenario problem asks for a scenario which induces the maximum cost on a minimum
solution of the LCMin instance w.r.t the scenario cost function. The add-condition allows to
add a feasible solution to a given instance by extending the set of feasible solutions by just
this one solution.

Theorem 4.4.1. Let C be a class of LCMin problems (U, F,c) that satisfy the add-condition
and such that the maz-scenario problem on C is strongly NP-hard. Then the exSub-RR LCMin

version of the problems in C with I'-scenarios is strongly NP-hard and not approximable within
a factor [U|=9) for any € > 0, unless P = NP.

Proof. Let I = (U, F,c) be an instance of the class C with the properties stated in the theorem.
Let furthermore Sr be a set of I'-scenarios defined by the lower and upper bounds ¢(u) and
¢(u) for each u € U, such that the corresponding max-scenario version of [is strongly NP-
hard. I.e., it is NP-hard to decide for a given threshold K whether there is a scenario S € Sr
with profit(S) = minpcr ¢”(F) > K. Finally, we assume by contradiction that there exists an
algorithm ALG allowing to approximate the exSub-LCMin problem with an approximation
factor |U]0~7) for some £ € N.

74 Chapter 4. Exact Subset Recoverable Robustness

We define the following exSub-LCMin instance I’ = (U’, ', ') as a modification of I by adding
aset W= {wy,...,w,} of p= (JU| +1)* — |U| elements to U and the set of feasible solutions
F according to the add-condition. Furthermore, we define the lower and upper bounds for the
[-scenario set S on I’ by

c(u) forallueU, ¢(u) forallueU,
du)=<K—-1 u=uw, and d(u) =< K -1 u=w,
0 otherwise, 0 otherwise.

The new instance I’ contains (|U| + 1)¢ elements. If I is a no-instance, then for every scenario
S € Sr there exists a solution F' € F with ¢°(F) < K — 1. Hence, the size of an optimal
solution in I’ is bounded by |U|. Thus, ALG returns at most (|U| + 1)*~! elements. Since
p > (JU|+ 1)L, not all elements of W are part of the solution computed by the algorithm.
On the other hand, if I is a yes-instance, there exists a scenario S’ € Sp with ¢ (F) > K for
all F € F. Thus, 7% = {W} and any feasible solution contains 1¥. Hence, we can decide the
max-scenario instance I with ALG. O

Since the maximum scenario version of the shortest path and the minimum (s, ¢)-cut problem
is strongly NP-hard for I'-scenarios (Theorem A.1.1 and Theorem A.2.1) and both problem
classes satisfy the add-condition, we can apply Theorem 4.4.1.

Corollary 4.4.2. The exSub-RR wversion of the shortest path and the minimum (s,t)-cut
problem with I'-scenarios is strongly NP-hard and not approzimable with a factor better than
|A|=2) for any € > 0, unless P = NP, where A denotes the set of arcs of the corresponding
graph.

Finally, we consider the weighted disjoint hitting set problem, whose exSub-RR version with
[-scenarios can be solved efficiently.

4.4.1. Weighted Disjoint Hitting Set Problem

The weighted disjoint hitting set (WDHS) problem is a simple extension of the minimum
element problem. In this problem a set U = {uy,...,u,}, a set of d pairwise disjoint subsets
M ={Mi,..., My} of U and a cost function ¢ : U — N are given. A set F' C U is a feasible
solution if F' contains from every set M € M exactly one element. The WDHS problem is to
find a feasible solution with minimum cost. We will prove that the exact subset recoverable
robust disjoint hitting set problem with I'-scenarios is in P.

Theorem 4.4.3. The exSub-RR WDHS problem with I'-scenarios can be solved in polynomial
time.

Proof. Let U be a set of n elements, M, ..., My be d pairwise disjoint subsets of U, ¢(u) and
¢(u) be lower and upper bounds on all elements © € U and I' € N. First note that U* is an
optimal solution of this given exSub-RR WDHS instance if and only if for « = 1,...,d the
sets U = U* N M; form optimal solutions for the exSub-RR WDHS instance restricted to U;.
Hence, we can confine ourselves to the case of d = 1.

We start by ordering the elements of U, such that c(u;) < ¢(u;) for i < j and ¢(u;) < ¢(u;)
if ¢(u;) = c(u;) and i < j. Let ¢ be the first index with min,—y__, 1 ¢(u;) < c(uy) if such an

.....

4.5. Matroids 75

index exists and ¢ = co otherwise. Then U* = {uq,...,ux} with & = min{¢ — 1,I"' + 1} is an
optimal solution: Let us first assume |[U*| = '+ 1. In that case the feasibility is obvious, since
any scenario can increase at most I' values. Thus, one of the elements in U* is an optimal
solution. Assume that u’ can be deleted from U*. Increasing all other elements in U*, leads to
u’ being an optimal solution. Due to the definition of ¢, we have ¢(u) > ¢(u’) for all u € U*.
Therefore, none of the other elements in U* can be an optimal solution, a contradiction.

A similar argumentation works for the case |U*| = ¢ — 1: If a scenario increases the cost of
all elements uq, ..., uy,_q1 there is still an optimal solution within this set. If the cost of one of
these elements is not increased, than this element is an optimal solution. O

4.5. Matroids

Matroids form the special class of combinatorial optimization problems, where the set of
feasible solutions is described by an independence system. They have several nice properties:
given two independent sets there always exist two elements that can be exchanged to gain a new
independent set; maximal independent sets of a matroid, so-called bases, have the same length;
and the greedy-algorithm always computes a basis of minimum cost. We start with some
basic definitions and results on matroids provided, for example, in the book “Combinatorial
Optimization: Theory and Algorithms” by Korte and Vygen [77].

Definition 4.5.1. A matroid is a tuple M = (FE,Z), where E is a finite set and Z C 2¥ is a
non-empty collection of subsets of E, called independent sets, such that:

1. 0 eT;
2.ifI €Z and J C I, then J € T;
3. if I,J € T with |I| > |J| then there exists an element ¢ € [\ J with J 4+ i € Z.

Any subset of E that is not in Z is called dependent, and minimal dependent sets are called
circuits. A basis in Z, on the other hand, is a maximal independent set, i.e., adding any
element leads to a dependent set. The cardinality of a basis in a matroid M is called the rank
of the matroid. Special circuits are the so-called fundamental circuits constructed by a basis
B and an element not contained in the basis.

Definition 4.5.2. Let M = (E,Z) be a matroid and B be a basis in M. For any element
e € FE\B the unique circuit in B U {e} is called the fundamental circuit induced by e. We
denote this circuit with C.(B).

Another basic concept in matroid theory is duality.

Definition 4.5.3. Let M = (E,Z) be a matroid. We define the dual matroid of M by
M* = (E,T*), where

Z* = {I C FE | there is a base B of (F, F) such that I N B = (}}.

The circuits of the dual matroid M* are called cocircuits of M. Similar to fundamental circuits
we can define fundamental cocircuits.

Definition 4.5.4. Let M = (E,Z) be a matroid. For a given basis B of M and an element
e € B, we define the unique cocircuit in £\ B U {e} as the fundamental cocircuit induced by e.
We denote this cocircuit with K.(B).

76 Chapter 4. Exact Subset Recoverable Robustness

The probably most basic optimization problem concerning matroids is the minimum weight
basis (MWB) problem:

Given: A matroid M = (F,Z) and a weight function ¢: E — Z.
Task: Find a basis B of M with minimum cost ¢(B).

Since in the context of matroids, the notion of weight is more commonly used than cost, we
use these two terms interchangeably in this section. If not further specified, we assume that
the independent sets of a given matroid are implicitly given by an independence oracle, i.e.,
for a given set I C E, we can call an oracle to decide whether I € 7.

Before we investigate the exSub-recoverable robust minimum weight basis problem of a ma-
troids, we need two more properties of matroids:

1. Let M = (E,Z) be a matroid, C' be a circuit of M and D be a cocircuit of M, then
|CN M| #1.

2. Let M = (E,Z) be a matroid and ¢ : E — Z be a cost function. Then the following
statements are equivalent:

a) The basis B* is a minimum weight basis.
b) For every element e € B* and any other element ¢’ € K,.(B*) it holds: c(e) < ¢(¢').
¢) For every element e € E\B* and any other element ¢’ € C.(B*) it holds: c(e) >

c(e).

We will now consider the exact subset recoverable robust minimum weight basis problem of a
matroids with different types of scenario sets.

4.5.1. Discrete Scenarios

We start investigating again discrete scenario sets, where each scenario defines a cost function.
Since any basis in a matroid has the same cardinality, the exSub-RR MWB problem with one
discrete scenario S corresponds to the MWB problem with ¢° as cost function. As we will show
in the following theorem, for two discrete scenarios the problem becomes more difficult but
can still be solved in polynomial time by using matroid intersection. The matroid intersection
problem is defined in the following way:

Given: Two matroids M; = (E,Z;) and My = (E,Z,) on the same set E and a cost function
c: B — 7.

Task: Find a set [€ Z; N Z, with maximum cost ¢(/).

The matroid intersection problem can be solved in polynomial time with the algorithm of
Lawler [80] or Frank [48].

Theorem 4.5.5. The exSub-RR minimum weight basis problem of matroids can be solved in
polynomial time via matroid intersection for two discrete scenarios.

Proof. Let (E,T) be a matroid as described above, S; and Sy be two scenarios defining cost
functions ¢ : F — N and ¢® : E — N. According to these cost functions, we define the
following two matroids on E: Let B be the set of minimum bases of the MWB instance
(E,Z,c%), i =1,2. We define an independent system

Z(S;) = {F C E | there exists a B € B with F' C B},

4.5. Matroids 77

which determines the matroid M = (FE,Z(S;)), as shown in [77]. For a given set FF C E
we can test in polynomial time, whether F' € Z(S;), by the following method: Compute a
minimum basis B; as reference basis for (E,Z,c%). Furthermore, define the cost function

cf;i:E—)Zas
. -1 ifee F
C?(e) :{ S;

cpi(e) otherwise

and compute a minimum basis B for the problem (E,Z, C%) Since
Si _ S Si
¢’(B) =cp(B)+ |FNB|+ ¢ (FNB)

and c3i(e) < chi(¢/) for all e € F and ¢ € E\F, F € Z(S;) if and only if F C B and
*(B) = 5(B;).

Using this independence oracle we can compute an independent set E’ in M and M®2 of
maximum size in polynomial time. Extending E’ to a basis in M*' and M*? via elements
E; and E, respectively, £ U Ey U E5 is an optimal solution of the given exSub-RR minimum
weight basis instance. O

For more scenarios it is rather unlikely that the exSub-RR MWB problem is solvable in
polynomial time, since it seems similar to the intersection problem with three matroids. But,
we did not succeed to show its NP-hardness.

4.5.2. Interval Scenarios

We will show that the exSub-RR MWB problem with interval scenarios is in P and start with
a characterization of necessary elements. Recall that we denote with C.(B) the fundamental
circuit induced by e for a basis B and some element e € E\ B and with K. (B) the fundamental
cocircuit induced by e for some element e € B. The next lemma states how to decide whether
an element is necessary for a given exSub-RR MWB instance.

Lemma 4.5.6. Let (E,Z) be a matroid and (E,Z,Sy) be the corresponding exSub-RR version
with interval scenarios defined by lower and upper cost bounds c(e) and ¢(e) for each element
e € E. For an element e € E we define with S(e) the scenario that assigns cost ¢(e') to all
¢ € E\{e} and c(e) to e. Then e € E with c(e) < ¢(e) is necessary if and only if S(e) is a
witness of e.

Proof. Let (E,Z,S;) be an exSub-RR MWB instance with interval scenarios as described in
the lemma. Let further € € £ be an element with ¢(e) < ¢(€). If S(€) is a witness of €, € is a
necessary element by Definition 4.3.2. Conversely, let € be a necessary element and S* € &y
be a witness of €. Let us further assume that there exists a basis B’ € BS® with e ¢ B’. For
every scenario S € Sy and every element e € Co(B'),

(@) 2 (@) = (@) 2 2le) = FD(e) 2 S(e),

since B’ is a minimum weight basis according to ¢°®. Let now B € B and e* € Kz(B) N
Cz(B')\{e}. Since B is a minimum basis according to the cost function ¢*°, ¢ (€) < % (e¥)
and due to our assumption ¢ (2) = ¢ (e*). Therefore, B = B\{e} U {e*} is also a minimum
basis according to ¢ . This contradicts the assumption that S* is a witness of €. U

78 Chapter 4. Exact Subset Recoverable Robustness

As a consequence, we can decide for every element e with deviating cost whether this element
is necessary by solving two MWB instances: first we compute a minimum weight basis for
¢®© and in a second step a minimum weight basis for a modification of ¢° by increasing the
cost of e by one unit. If both bases have the same cost w.r.t. ¢3¢, e is not necessary. Yet, in
general these elements do not suffice to form an optimal solution. The next lemma indicates
which elements to add.

Lemma 4.5.7. Let (E,T) be a matroid and (E,Z,S;) a corresponding exSub-RR version with
interval scenarios. Let E. = {e € E | c(e) < Z(e)} and N> C E be the set of all necessary
elements in E~. If B € BS®) then B U N- is a feasible solution of (E,Z,S;).

Proof. Let us assume by contradiction that there exists a scenario S’ € Sy, such that every
basis B € B contains at least one element e which is not in BU N-. Let B; € B% such that
|B1\{B U N-}| is minimal, and let e; € B;\{B U N-}. Furthermore, we denote with Ej the
set of all elements for which their lower bound equals their upper bound, i.e., Fy = {e € E'|

c(e) =¢(e)}-

Case 1: e; € Ey\B. Since ¢; ¢ B, for every element ¢’ € C,, (B),

(ey) = B (ey) > ele) > ().

Furthermore, there exists an element € € C.,(B) N K., (By) with € # e;. Hence, B’ =
By U{e}\{e1} is a minimum basis. This is a contradiction to the choice of B;.

Case 2: e; € E~. Since e; ¢ N, there exists a basis By € B5) with e, ¢ By. For every
element ¢’ € C¢,(By) and every scenario S € S,

Sler) > cley) > () > 3(€).

Let e5 € Ce,(By) N K., (By) and e3 # e;. Then By = By U {e3}\{e1} is a minimum basis
according to S" and ¢¥'(e3) = ¢(es). If e3 € N» U B, this is a contradiction to the choice
of B;. Thus, Bs also minimizes the number of elements not in BU N-. If e3 € Ey\B, we
can use the same arguments as in Case 1 this time considering Bs to derive a contradiction.
Therefore, it remains the case e3 € F<\N~. We will use the same exchange argument as for e;:
Since e3 ¢ N, there exists a basis By € B5(%3) with e3 ¢ B,. For every element ¢’ € C.,(By)
and every scenario S € Sy,
®(e3) > cles) > () > 5(e).

Let es € C.(By) N K., (Bs) and es # e3. Since ¢¥(e3) = @(e3) > cles) > ¢¥(es) and
Bs = By U {es}\{es} is a basis, we have a contradiction to the minimality of B;. Thus, for
every scenario S € S; there exists a basis B € F° with B C N> U B. O

These two lemmas lead to the following algorithm.

Algorithm 4.1 Exact Subset for MWB with interval scenarios.

Input : Matroid (F,Z) via an independence oracle, lower and upper bounds ¢(e) and ¢(e)
foralle € E.

Output : Set £ C F.

Set B~ ={e € E | c(e) <¢(e)}.

Determine the set N- of all necessary elements in F-.

Compute a minimum weight basis B w.r.t. the cost function of S(F) such that |B N N| is
maximum.

return N. U B.

4.5. Matroids 79

Theorem 4.5.8. Algorithm 4.1 computes for any exSub-RR MWB problem with interval sce-
narios an optimal solution in polynomial time.

Proof. For a given exSub-RR MWB instance I = (E,Z,S;) with interval scenarios Sy the set
N- U B defined as in the Algorithm 4.1 is a feasible solution according to Lemma 4.5.7. Since
S(F) is a feasible scenario, any feasible solution for I has to contain at least | N~ U B| elements.

It remains to show that every step can be accomplished in polynomial time. Determining
all necessary elements is achieved by solving at most 2|E| minimum weight basis problems
for matroids. Constructing a minimum weight basis B with maximum elements from N is
solved by matroid intersection: Let B be the set of minimum bases of the MWB instance
(E,Z,c%). We define M, = (E,T;) with

I, = {F C E'| there exists B € B with F' C B}

as in the proof of Theorem 4.5.5. The second matroid My = (E,Z,) on E is defined by the
independent system
I, ={FCFE|FCN.}

Computing a maximum intersection By, this set can be extended to a minimum basis B in B.
This basis B satisfies the required properties. O

In the next section we focus on I'-scenarios and will show that these problems are in general
strongly NP-hard.

4.5.3. T'-scenarios

The exSub-RR MWB with I'-scenarios is more difficult to solve than its counterpart with
interval scenarios. To this end, we consider the exSub-RR version of the minimum spanning
tree (MST) problem with lower and upper bounds 0 and 1 and some I' € N. An optimal
solution of this instance with I-scenarios corresponds in most cases to a (I'+1)-edge connected
spanning subgraph of minimum size, as we will see in the following theorem.

Theorem 4.5.9. For I' € N, let G = (V, E) be an undirected (I' + 1)-edge connected graph
and let c(e) = 0 and ¢(e) = 1 be lower and upper cost bounds for each edge e € E. Then a
set U C E is a solution to this exSub-RR minimum spanning tree problem with I'-scenarios if
and only if the graph (V,U) is (I' + 1)-edge connected.

Proof. First note that since G is (I' + 1)-edge connected, the minimum weight basis for any
scenario is 0. Hence, a set of edges U C F is a feasible solution to the exSub-RR MST problem
with I'-scenarios if and only if for every scenario, there is a spanning tree with cost 0 in U. If
U is not (I + 1)-edge connected, then there exists a cut 67 (X) C U in the graph (V,U) with
at most I edges. Consider the scenario given by the cost function c¢(e) = 1 for e € 67(X), and
cle) =0 for e € E\ 0%(X). Since every spanning tree in U must contain an edge of §7(X),
every spanning tree in U has cost at least 1, and hence, U is not a solution to the exSub-RR
MST problem.

Conversely, if U is (I'+1)-edge connected, then for every I'-scenario S € Sr every cut in (V, U)
contains an edge e with ¢”(e) = 0. Hence, the edges in U of cost 0 with respect to ¢°, span
all vertices. Thus, U contains a spanning tree of cost 0. 0

80 Chapter 4. Exact Subset Recoverable Robustness

In the setting described by Theorem 4.5.9, the exSub-RR MST problem with I'-scenarios
equals the minimum (I" + 1)-edge connected subgraph problem, which is a problem that is
well-known to be NP-hard. In particular, for a given graph G one can easily observe that
there is a Hamiltonian cycle in G if and only if the minimum 2-edge connected subgraph
of G is a Hamiltonian cycle. Furthermore, also results about the approximation hardness of
the minimum k-edge connected subgraph problem carry over to the exSub-RR MST problem
with I'-scenarios. The following result is due to Gabow et al. [51]: There exists a constant
¢ > 0 such that for any fixed integer £ > 2, no polynomial time algorithm approximates the
minimum k-edge connected spanning subgraph problem on undirected multigraphs within a
ratio 1+ ¢, unless P = NP. Hence by Theorem 4.5.9 we can restate this result as well for the
exSub-RR MST problem with I'-scenarios as follows.

Corollary 4.5.10. There exists a constant ¢ > 0 such that for any fized integer I' > 1, no
polynomial time algorithm approximates the exSub-RR MST problem with I'-scenarios on undi-
rected multigraphs within a ratio 1+ ¢/(I' + 1), unless P = NP.

In the reduction the lower and upper bounds are fixed to 0 and 1. For this special case the
following algorithm derives a I' + 1-approximation for general matroids and a 2-approximation
for the minimum spanning tree problem.

Algorithm 4.2 Approximation for matroids
Input : Matroid (E,Z), lower and upper bounds c(e) = 0 and ¢(e) = 1 foralle € £, I" € N.
Output : Feasible solution F.

Set My = (E,F) and i = 0.
while 1 < T do
Compute a basis B; in M.
L Set Mi+1 = (Ei+17L+1) with Ei-}—l = EZ\BZ and f;'_}_l = {F Q Iz | F g Ei-}—l} and 1 = ’L—I—]_

return £ = Ul_B;

Theorem 4.5.11. Algorithm 4.2 computes a (I + 1)-approzimation for the exSub-RR MWB
problem and a 2-approximation for the exSub-RR MST problem.

Proof. First note that for ¢ = 0,...,I the system (E;,Z;) is a matroid. Hence, computing a
basis B; is well defined.

We now need to show that E is a feasible solution. Let us assume that there exists a sce-
nario S € Sp, such that E does not contain an optimal solution. Let us choose B* as
a minimum weight basis of the instance (E,Z,c°) and B as a minimum weight basis of
the instance (E,Z = {I C E | I € I},c”) such that B* and B have a maximum number of
common elements. W.lo.g., ¢*(B*) =0. Let y € B* but y ¢ B. Such an element exists,
since ¢*(B) > ¢%(B*). If y € E, then BU {y}\{z} is a minimum basis in E according to ¢°
with 2z € C,(B) N K,(B*), z # y. This is a contradiction to the choice of B and B*. Hence,
y & E. Theny € E;fori=0,...,T and the fundamental cycle induced by y and a basis B; for
(E;, Fi) is well defined. Thus, there exists an element e; € C,(B;) N K, (B*) for i =0,...,T.
Since at most ' elements have cost 1, there is an element e; € E with ¢%(e;) = 0. Then the
basis B’ = B*\{y}U{e;} is an optimal solution in F°. Choosing e; and B’ instead of y and B*
in the above argumentation, we obtain a contradiction. It remains to show the approximation
guaranty of the algorithm.

4.6. Approximation Algorithms 81

Let r be the rank of the considered matroid. Since any optimal solution contains at least
r elements and the computed solution contains maximal (I' + 1)r elements, the proposed
algorithm is in a (I" 4+ 1)-approximation.

We finally strengthen the estimation on the number of elements contained in an optimal
solution for the MST problem. Let G = (V, E) be a graph and c(e) = 0 and ¢(e) = 1 for all
e € E. We partition V into two sets V4 and V5 with Vi = {v € V | d(v) < T} and Vo = V\1].
Let now G* = (V, E*) be an optimal solution to this exSub-RR MST instance. Then,

o I+1
|E|ZT|Vz|—I—Z 9

veV]

On the other hand, the number of edges Fapg chosen by Algorithm 4.2 is bounded by

Eare < (T+1)- [V +) d(v).

veVy
Hence, this is a 2-approximation. O

In the last section we introduce an approximation scheme to solve any exSub-RR LCMin
problem.

4.6. Approximation Algorithms

For any exSub-RR LCMin problem independent of the type of scenario sets, an algorithm

returning the whole set U is an |U|-approximation. We improve this factor to é% for any

¢ € N and a run-time of O(2%|U|*X), where X denotes the run-time to compute an optimal
solution of a corresponding LCMin instance. We start by introducing a criterion to test the
feasibility of a given subset in the case of interval scenarios. The test runs in polynomial time
if the size of the given subset is constant.

Lemma 4.6.1. Let (U, F,S;) be an instance of an exSub-RR LCMin problem with interval
scenarios given by lower and upper cost bounds c(u) and ¢(u) for allu € U. Let U' C U and

Si(UN)=1{S €S| c®(u) =c(u) Yu ¢ U and ¢ (u) € {c(u),e(u)} Yu € U'}.

If there exists a solution F € F¥ with F C U’ for every S € S;(U'), then U’ is a feasible
solution of the given exSub-RR LCMin instance.

Proof. Let S € S; and S’ € S;(U') with ¢ (u) = ¢%(u) for all uw € U’ and ¢ (u) = c(u)
otherwise. For any F' € F¥ and F' € F¥ with F' C U,

S(F) = S(F) > ' (F) = '(F') > 0,

since F/ C U’. Thus, U’ is a feasible solution of the given instance. O

A similar result can be achieved for I'-scenarios.

82 Chapter 4. Exact Subset Recoverable Robustness

Algorithm 4.3 An ll%—approximation for Sp and Sj.

Input : A set U, a set of feasible solutions F, lower and upper cost bounds ¢(u) € N and
¢(u) € N for all uw € U, a scenario parameter I' € N, and an approximation factor

¢ e N.
Output : Feasible solution U’.

fori=1/¢,...,1do
forall 7 C U with |U| =i do
Set Sp = {S € Sr | (u) = c(u) Vu ¢ U', c”(u) € {c(u),e(u)} Vu € U'}.
if U is feasible according to Sr(U) then

L Set U' =T
if U’ = () then
L return U
else

L return U’

Lemma 4.6.2. Let (U, F,Sr) be an instance of an exSub-RR LCMin problem with I'-scenarios
given by lower and upper bounds c(u) and ¢(u) for all w € U and a parameter I' € N. Let
U CU and

Se(U) ={S €S| c(u) =cu) Vu ¢ U and c®(u) € {c(u),e(u)} Yu € U'}.

If there exists a solution F € F° with F C U’ for every S € Sp(U’"), then U’ is a feasible
solution of the given exSub-RR LCMin instance.

Both sets S;(U’) and Sp(U’) contain exponentially many scenarios in the cardinality of U’.
If this cardinality is constant, the feasibility of a subset U’ can be tested in O(2/V'X), where
X denotes the time to solve a corresponding LCMin instance. This idea is captured in Al-
gorithm 4.3, which test for all subsets with less than or equal to ¢ elements their feasibility,
¢ € N. Choosing a fe@?ible set with a minimum number or the whole set, if no feasible subset

is found, leads to a ;;-approximation.

Theorem 4.6.3. Let (U, F,S) be an exSub-RR LCMin instance with I'-scenarios or interval
scenarios and let Ugpt be an optimal solution. Then Algorithm 4.3 calculates a feasible solution
UALG with

|Uarcl < U]

|UOPT| 4 +1

for any £ € N and I = |U| in the interval case. The run-time of the algorithm is O(2%4|U|*X).

Proof. If Uopr < ¢, the set U = Ugpr is tested and U’ is set to Uopr. Hence, |U'| = |Uarg| =
|Uopr|. If the optimal solution contains more than ¢ + 1 elements,

[Uac| _ U]
|UOPT| (41

4.7. Conclusion and Open Issues 83

4.7. Conclusion and Open Issues

We considered the exact subset recoverable robust problem and investigated its complexity
status and combinatorial properties. For discrete scenario sets and the case that the number
of scenarios is not constant, we showed in Section 4.2 that the problem is strongly NP-hard.
The hardness result is based on a simple subproblem, the minimum element problem. In order
to construct approximation algorithms, one should start investigating this problem in more
detail.

If the number of scenarios is constant, we only succeeded to prove that the
exSub-RR LCMin problem is strongly NP-hard for a rather artificial LCMin problem. Thus,
analyzing the exSub-RR shortest path problem or exSub-RR minimum spanning tree problem
would be interesting. For a special type of scenarios, where the cost functions take only the
values 0 or 1, the exSub-RR minimum spanning tree problem with three scenarios seems to
be similar to finding a maximum independent set in the intersection of three graphical ma-
troids. Whether this problem can be solved efficiently is—to the best of my knowledge—open.
Note that for a constant number of scenarios the minimum element problem is solvable in
polynomial time, since any optimal solution contains at most one element for any scenario.

For interval scenarios, the gap concerning complexity seems rather large: the exSub-RR mini-
mum weight basis problem for matroids is solvable in polynomial time while the exSub-RR
shortest path problem or exSub-RR minimum (s, ¢)-cut problem on a graph G = (V, A) cannot
be approximated with a factor better than |A|1~) for any £ > 0. It would be interesting to
find a problem that is strongly NP-hard but can be approximated with a constant factor.
Considering strictly deviating cost bounds for such a problem, the decision whether an ele-
ment is necessary needs to be strongly NP-hard. Furthermore, this problem is not allowed
to satisfy the duplication-condition. Hence, the minimum perfect matching problem is no
candidate, since it satisfies this condition.

In case of I'-scenarios, most problems become again strongly NP-hard. This is the case for
the exSub-RR shortest path problem and the exSub-RR minimum (s, ¢)-cut problem and the
exSub-RR minimum spanning tree problem. For the first two problems we also provided a
lower bound of |A|1=) for any € > 0 on the approximability. In the case of the minimum
spanning tree problem, the complexity is based on a reduction from the k-connected spanning
subgraph problem. The considered ['-scenarios define cost functions with values 0 or 1. For this
case, we give a 2-approximation algorithm. However, algorithms with a better approximation
factor can probably be designed using more of the techniques proposed by Gabow et al. [51].
It remains open how to approximate the exSub-RR minimum spanning tree problem if the
cost bounds are chosen arbitrarily.

We finally proposed approximation algorithms for the exSub-RR problem with interval sce-
narios and ['-scenarios. It remains open if better run-times or approximation guarantees can
be achieved.

5. A Recoverable Robust Knapsack
Problem

Admission control problems have been studied extensively in the past. In a typical setting,
resources like bandwidth have to be distributed to different customers according to their
demands maximizing the profit for the company. Yet, in real-world applications these demands
deviate over time. In order to satisfy the service promises of the company, often a robust
approach is chosen wasting benefits for the company. Our model overcomes this problem by
allowing a limited recovery of a previously fixed assignment as soon as the data are known
by violating at most k service promises and serving up to ¢ new customers. Applying this
approach to the call admission problem on a single link of a telecommunication network leads
to a recoverable robust version of the knapsack problem.

In this chapter we consider on the one side the complexity status for this recoverable robust
knapsack problem and on the other side its polyhedral structure. For discrete scenario sets,
we prove weakly NP-hardness for a constant number of scenarios and introduce a pseudo-
polynomial algorithm. If the number of scenarios is not constant, the problem is strongly
NP-hard and in some cases not approximable. In order to obtain valid inequalities for the
recoverable robust knapsack polytope, we generalized the well-known concept of covers and
extended covers. Finally, we present two computational studies to investigate the influence of
parameters k£ and ¢ on the objective and evaluate the effectiveness of our new class of valid
inequalities.

For I'-scenarios we introduce an IP-formulation which is polynomial in the size of the input if
the scenario profit is 0. Furthermore, we also adapt the concept of covers and extended covers
and gain valid inequalities for the knapsack polytope strengthening the results obtained for
the robust knapsack version by Klopfenstein and Nace [76]. This chapter is based on work
with Arie M. C. A. Koster and Manuel Kutschka [23].

5.1. Introduction

Motivation We consider a telecommunication network in which an operator has to decide
which demand is granted admission at which time. In many cases these requests made by the
customers are handed in before their actual realization. Each request specifies the amount
of traffic, the source and destination. The task of the operator is to give service promises
according to these data maximizing the total profit for the company. Yet, in many applications
the requests change at the time of realization. In case of slight deviations the customer still
expects the promised quality of service.

A straight-forward approach dealing with such demand uncertainties estimates the unknown
demand with its deviations, and bases the resource distribution on the worst-case occurrence:
a robust approach. In most cases this leads to over-conservative decisions where the largest

86 Chapter 5. A Recoverable Robust Knapsack Problem

part of the available bandwidth capacity is unused. This is clearly neither cost-efficient nor
resource exploiting.

There are at least two means of increasing the economical benefits for the company: first by
relaxing the deviation assumption and second by satisfying all but k& service promises. The
first idea is reflected in the consideration of different types of scenario sets. The second idea is
captured in the two stage concept of recoverable robustness. Here over-conservatism in robust
optimization is avoided by allowing a limited recovery after the full data is revealed. This
concept has been introduced, for example, by Liebchen et al. [81] (see also Section 1.2), and
applied to railway optimization problems as delay-management, platforming and shunting.

We adopted these approaches for the call admission problem on a single link of a telecom-
munication network. This problem can be seen as a classical knapsack problem, where the
demands are represented by items and the amount of traffic is equivalent to the weights. The
profit of an item is divided into two parts: the first-stage profit captures the basic fee for a
customer to use the network and the scenario profit the profit obtained by routing the demand.
Finally, the bandwidth of the link is modeled by the knapsack capacity. As an adaption of the
recoverable robust approach, a first-stage solution is in our case a subset of items such that
the sum of weights does not exceed the link capacity. In the second stage, when the scenario
is revealed and the scenario profits and weights are known, k& service promises, i.e., k items,
may be removed from the first-stage solution. The new subset must satisfy the link capacity
constraint of this scenario. The objective is to find a first-stage solution with maximum total
profit. The total profit of a given subset is the sum of the first-stage profit representing the
basic fee of the customers to use the network and the minimal scenario profit representing the
actual gain through the routing rates.

Another motivation for the investigation of this recoverable robust knapsack problem can be
found in wireless (cellular) networks (e.g., WLAN, 3G). Each antenna has a limited bandwidth
capacity to be partitioned among the users in its cell. Users, however, do not generate a con-
stant traffic rate. Depending on their needs (e.g., data traffic, web browsing), the requested
data rate fluctuates (e.g., 64 Kbit/s, 384 Kbit/s, 2 Mbit/s). In the network capacity planning
phase usually averages are considered. During operation, individual users with their actual
data rates are admitted to the cell. In the context of recoverable robust knapsack, the plan-
ning problem can be enhanced by considering the capacity planning as first-stage knapsack,
whereas snapshots of the operation can be taken as scenarios in the second stage. Compared
to the planning phase, up to k users can be refused a connection, whereas up to ¢ new users
can be admitted. Since this admission problem has to be considered by each cell, the recover-
able robust knapsack problem is a subproblem of such a recoverable robust wireless network
planning problem.

Model and Notation We introduce a recoverable robust version of the knapsack problem,
in which the weights as well as the profits are subject to uncertainties. These uncertainties
are given via a set of scenarios. In this recoverable robust counterpart a first-stage solution is
a subset of items such that its first-stage weight does not exceed the first-stage capacity. In
the second stage, i.e., when the scenario is revealed and the profits and weights are known,
k items may be removed from the first-stage solution and ¢ items may be added. This new
subset must satisfy the scenario capacity restriction according to the weights of the scenario.
The objective is to find a first-stage solution with maximum total profit. The total profit is
the sum of the first-stage profit and the minimum scenario profit. More formally, the problem
is defined in the following way.

5.1. Introduction 87

Definition 5.1.1 ((k,¢)-Recoverable Robust Knapsack ((k,¢)-rrKP) Problem). Let N =
{1,...,n} be aset of n items, ¢ € N be the first-stage capacity, p? be the first-stage profit and
w? be the first-stage weight of each item j € N. Each scenario S of a given set of scenarios &
defines a profit function p® : N — N, a weight function w® : N — N and a capacity ¢® € N.
Furthermore, the parameter £ € N limits the number of deletable items from a first-stage
solution and the parameter £ € N the number of new items contained in a recovered solution.
For a given subset X C N the recovery set X)((W) includes all subsets of N that contain at
most ¢ additional items and fail to contain at most k items of X, i.e.,

X = {X' C N | [X\X| < k and | X\X| < ¢}.

With X% for S € S we denote all subsets of X’ C N that satisfy the scenario weight constraint
Y iex: w? < 5. A feasible first-stage solution is a subset X C N which satisfies the first-stage

weight constraint Y,y w < ¢ and X)((k’e) N&S £ () for all S € S. The total profit p(X) of a
feasible solution X is defined as

p(X) = Zp? +min max Z Y.

SES 5 ekl ys
iex XSexynxs ‘g

The recoverable robust knapsack problem is to find a feasible first-stage solution with maximum
total profit.

Related Work The knapsack problem is one of the basic problems in combinatorial opti-
mization. An instance of the knapsack problem (KP) consists of n items collected in an item
set N = {1,...,n} with integer profits p; and integer weights w, for all items j € N, and
a capacity ¢ € N. The objective is to select a subset X of these items such that the profit
of X is maximized and the total weight does not exceed c. The knapsack problem provides
a relaxation of several combinatorial optimization problems (e.g., generalized assignment, ca-
pacitated facility location, capacitated vehicle routing, airline scheduling). Despite its simple
structure the problem is known to be weakly NP-hard [69] but solvable via dynamic pro-
gramming in pseudo-polynomial time [10, 35|. Different branch-and-cut algorithms are used
to solve this problem in practice. A detailed introduction to the knapsack problem and its
variations can be found in Martello and Toth [82] and Kellerer, Pferschy and Pisinger [71].

In Yu [100] a robust version of the knapsack problem is defined by introducing uncertainty in
the profit values: Let & be a set of scenarios, each scenario S determining a profit function
p® : N — N on the given set of items N. The robust knapsack problem is to find a set
of items maximizing the minimum profit over all scenarios such that the total weight does
not exceed the capacity. By a reduction from the set covering problem, Yu showed that for
discrete scenario sets the decision version of the problem is strongly NP-hard if the number
of scenarios is not constant. As mentioned by Aissi et al. 3| this proof includes the result
that the optimization version is not f-approximable for any function f : N — (1,00). For
a discrete scenario set with a constant number of scenarios the problem is weakly NP-hard,
solvable in pseudo-polynomial time [65, 100] and there exists an FPTAS [3]. Iida [61] provided
a computational study on the robust knapsack problem with discrete scenarios comparing
several methods to derive upper and lower bounds for the profit. A different type of scenarios,
so-called I'-scenarios, were introduced by Bertsimas and Sim [14]. Their main result for the
robust counterpart of 0-1 combinatorial optimization problems with cost uncertainties shows
that robust knapsack problems with I'-scenarios can be solved in pseudo-polynomial time.

A different robust version of the knapsack problem assumes the weights to be subject to
uncertainties. The objective is to find a set of items which maximizes the profit and satisfies

88 Chapter 5. A Recoverable Robust Knapsack Problem

the weight restriction for any weight function w® : N — N defined by a scenario S € S.
The main focus in Klopfenstein and Nace |76] is to find strong polyhedral descriptions for
this robust problem with I'-scenarios. For this model Bertsimas and Sim [14] investigated the
trade-off between robustness and optimality in a short computational study.

Contribution and Chapter Outline Our research focuses on adapting classical results of
the (robust) knapsack problem for this recoverable robust version. We start with a complex-
ity study. For a constant number of discrete scenarios, we show that the recoverable robust
knapsack problem is weakly NP-hard. Any such instance can be solved in pseudo-polynomial
time by a dynamic program. If the number of discrete scenarios is not constant, the prob-
lem is strongly NP-hard and in special cases not approximable in polynomial time, unless
P = NP (Section 5.2.1). For I'-scenarios the complexity status is still unknown. So far we
just established a polynomial size ILP-formulation for the case without any scenario profits
(Section 5.4.2).

Next to its complexity we are interested in obtaining strong polyhedral descriptions of all
feasible first-stage solutions. For discrete scenarios and I'-scenarios we adapt the well-known
(minimal /extended) cover inequalities for the knapsack problem to gain valid inequalities for
the recoverable robust knapsack polytope (Section 5.2.2 and 5.4.3). Any 0-1-point satisfying
all these inequalities is a feasible solution to the (k,¢)-rrKP instance. For I'-scenarios, we
manage to strengthen the extended robust cover inequalities introduced by Klopfenstein and
Nace in [76]. Finally, we present computational studies to investigate the impact of these new
inequalities for solving (k, £)-rrKP instances as well as the gain of recovery (Section 5.2.3).

5.2. Discrete Scenarios

In a discrete scenario set Sp every scenario Sy, . . ., S, is explicitly given with its weight function
w¥ : N — N and its profit function p® : N — N on the item set N and its capacity ¢,
i = 1,...,r. The following integer program models the (k,¢)-recoverable robust knapsack
problem
(drrKP-IP) max Z P +w
iEN
Zw?xi < (5.1)
ieN
wa:cf <c? VS esSp (5.2)
ieN
r¥ —m <y? vVSeSp,ieN (5.3)
r—) <zP vSeSp,ieN (5.4)
> yf < VS eSh (5.5)
iEN
> # <k VS eSy (5.6)
iEN
w—pr:cfSO VS eSp (5.7)
iEN

v ad yd 25 €{0,1} VSeSp,ieN
w >0

5.2. Discrete Scenarios 89

The variable z represents the first-stage solution, 2 the solution taken in scenario S € Sp, y?
determines if item i is added in S and 2z if item 7 is removed from z in S, i € N. Inequalities
(5.3)-(5.6) guarantee that x° is a feasible recovery for the first-stage solution z and (5.1) and
(5.2) that the weight constraints are obeyed. The last inequality (5.7) in combination with
the objective function models the total profit

max E pYz; + min max E pla;.
SeSp
ieEN 1EN

The minimum scenario profit, i.e., minges, maxy p?x;, is captured in the variable w. The
size of the program depends on the number of scenarios and the number of items.

5.2.1. Complexity of the (k,/)-rrKP

We start with an analysis of the complexity status of the (k,¢)-rrKP for discrete scenarios.
Since the nominal knapsack problem is part of the second stage, it is already weakly NP-hard
to compute the total profit for a given set of items even for one scenario.

Lemma 5.2.1. The decision if the total profit of a feasible first-stage solution X is greater
than or equal to a constant K for just one scenario is weakly NP-hard, even if k =0 or £ = 0.

Proof. We start with the general case of £ # 0 and ¢ # 0 and show a reduction from the
nominal knapsack problem. Let I be a knapsack instance with an item set N = {1,...,n},
a weight function w : N — N, a profit function p : N — N and a capacity value ¢ € N. We
construct a (k, ¢)-recoverable robust knapsack instance I’ with one scenario S in the following
way: the set of items remains the same, w® =p° =c* =0,k =n, { =n, w® = w, p° = p and
¢® = c. Any subset X C {1,...,n} is a feasible solution of the instance I’. The total profit
of any set X is greater than or equal to K if and only if there exists a feasible solution to I
with a profit greater than or equal to K. Replacing k = n by k = 0 in I’, the total profit of
the feasible first-stage solution X = (J in I’ indicates whether I is a yes-instance. For ¢ = 0,
the total profit of N is greater than or equal to K if and only if [is a yes-instance. O

If & and ¢ are constant, the recovery set X’)((M) contains a constant number of solutions for any
X C N. Hence, the total profit can be computed in polynomial time by enumeration.

Since the knapsack problem is a special case of the (k, ¢)-rrKP problem, the (k, ¢)-rrKP prob-
lem remains at least weakly NP-hard for one scenario. We will later show by introducing an
optimal pseudo-polynomial algorithm that the problem is weakly NP-hard if the number of
scenarios is constant. We now prove that even in the case p® = 0 the (k, £)-rrKP is strongly
NP-hard if the number of scenarios in Sp is not constant.

Theorem 5.2.2. The (k,{)-rrKP problem is strongly NP-hard for discrete scenario sets even
iof there is no first-stage profit.

Proof. We show a reduction from 3SAT. Let I be an instance of 3SAT with n variables
x1,...,x, and m clauses C, ..., C,,. Each clause is formed by three literals. The correspond-
ing instance I’ of the (k, £)-rrKP problem contains a set of 2n+ k+ ¢ items N = N; U No U N3
with Ny ={1,...,2n}, Ny = {2n+1,....,2n+ k} and Ny = {2n+ k+1,....2n + k + (}.
The items in N represent the true or false assignment of the variables x. The last k& + ¢

90 Chapter 5. A Recoverable Robust Knapsack Problem

items are auxiliary items to fix the recovery action for any reasonable first-stage solution. The
parameters of the first stage are set to

1 1€ Ny UN,

O =0Vie N, and K =1+V/.
4+ 1 otherwise (@) t

 =n+k, wo(z’):{

Hence, no feasible first-stage solution contains any of the items in N3. But the profit functions
of each scenario will be constructed in a way such that all these items have to be added to the
recovery solution for each scenario to obtain a total profit of at least K.

It remains to define these scenarios S. This set consists of three different types: The first type
forces any first-stage solution with a total profit greater than or equal to K to incorporate the
items in Ny. Furthermore, these items need to be removed in any other recovery solution and
thus no item of N; can be removed. The second type guarantees that for i = {1,...,n} either
the item 27 —1 or 27 is part of the first-stage solution. The choice models the assignment of the
variables x; to true or false, ¢ = 1,...,n. The last type assures that all clauses are satisfied.

First type of scenarios: For the items j € Ny we add a scenario S} to I’ with ¢% = 0,

1 1 i=jorie N 1
p°i (i) = !]0?26 ? and w¥ (i) = 0 for i € N.
0 otherwise

Hence, a first-stage solution must contain these k items, to get a value greater than or equal

to K. Second type of scenarios: For each variable z;, j € {1,...,n}, we add S]2 to I’ defining
52

c’i =0,

1 4 27 —1,29}.i € N. 1 7€ N.
P53 () = ze{y‘ ,2j},1 € N3 and wi(i) = ic i .
0 otherwise 0 otherwise

Third type of scenarios: For each clause j = 1, ..., m we construct one scenario S;’ which puts

a profit of 1 to all items representing a verification of the clause, i.e., ps? (i) = 1 for an even
item ¢ € N, if and only if 7; € C; and p% (i) = 1 for an odd item i € Ny if and only if z; € Cj.
Furthermore, all items ¢ € N3 are assigned a profit of 1. The weights of all items 2 € Ny U N3
in all these scenarios and the scenario capacity are set to 0. The weights of items ¢ € N, are
set to 1. The size of the constructed instance is polynomial in the size of I. A true assignment
of the 3SAT instance I exists if and only if there exists a solution of I’ with a total profit
greater than K. O

Note that the optimal value of the (k,¢)-rrKP instance in the reduction determines a lower
bound of ”71 for £ € N on the best possible approximation factor. This implies that any
(k,0)-rrKP is inapproximable, unless P = NP.

Finally, we consider the special case, in which all scenario profits are set to 0.

Theorem 5.2.3. The (k,0)-rrKP is strongly NP-hard for discrete scenario sets even when
there is no scenario profit.

Proof. The reduction is a modification of the proof of Theorem 5.2.2. In that case the first-
stage profit is set to 1 for all items ¢ € Np, to 2n for ¢ € N, to 0 otherwise and K =
n + 2nk. Hence, any first-stage solution X with p(X) > K needs to contain all items of Ns.
The first-stage weight equals 1 for all items and the first-stage capacity n + k. A scenario

5.2. Discrete Scenarios 91

S]1 representing a clause Cj, j =1,...,m, sets wSi (1) =1 if and only if the corresponding
variable falsifies the clause for i € Ny, wS (1) = 3 for i € Ny and 0 otherwise. The capacity
for each clause equals 2. Furthermore, for each variable z;, j = 1,...,n, we add a scenario SJ2
with w% (25 — 1) =1, w% (2j) =1, w% (i) = 2 for i € Ny, w (i) = 0 otherwise and ¢% =
1. These scenarios guarantee that either the item 25 — 1 or 2j is in a feasible first-stage
solution. O

This reduction does not imply a lower bound on the approximation factor.

Constant Number of Scenarios We will now demonstrate that the recoverable robust
knapsack problem can be solved in pseudo-polynomial time for a constant number of scenarios.
The presented algorithm is based on dynamic programming and extends the idea of Yu [100]
for the robust case. The concept of the algorithm is to compute recursively the value of the
optimization problem when the optimal selection is made among the first ¢ items under the
first-stage capacity d° with ¢ > d° > 0, the scenario dependent recovery parameters (57,7%),
0 < j% <k, 0<i% </, the scenario capacities d° with ¢ > d° > 0 and a guaranteed extra
profit in each scenario S of o induced by the items {¢t + 1,...,n}. This problem is modeled
by an integer program quite similar to the drirKP-IP-formulation (page 88): As in that setting
the variable = represents the first-stage solution, #° the solution taken in scenario S € Sp,

y? indicates if item i is added in S and z? if item 4 is removed from x in S, i € N.

g(t,d® v, . 0% = mapr?xi +w

1€ENy
1E€EN
wa:cfgds VS esSp
1ENt
xf—xigyf Vie N, VS € Sp
r—) <20 Vie N,VSeSp
dyi<i® vSesp
1E€EN
S <i® vSeSp
1EN;
w—prxf—l—aSSO VS eSp (5.8)
1ENt
ri,al y? 2 €{0,1} Yie N, Se€Sp
w >0

to the given parameters t,d’, v° with v* = (d°,a®, ;%) and o® > 0 for all S € Sp and
N;:={1,...,t}. The inequality (5.8) differs from the inequality (5.7) in the drrKP-IP-
formulation by the addition of the parameter o to the maximum profit achieved by any
recovered solution in scenario S. This parameter a® models a guaranteed profit in scenario S
obtained by items ¢+ 1,...,n under consideration of the remaining capacity ¢ — d° and
recovery means (k — j°, 0 — i),

92 Chapter 5. A Recoverable Robust Knapsack Problem

In order to simplify the initialization, we add an item i = 0 with pJ = 0, pJ = 0 for all
scenarios S € Sp, w) = ® + 1 and wi = ¢+ 1 for all S € S. Hence, for |Sp| = r any feasible
solution sets xo = 0 and ¢(0,d% v°1,...,v9) =0if d®° > 0, d® > 0, 7° > 0 and i° > 0 for all
S € Sp. We denote this set of all feasible parameter sets with Z, i.e.,

Z=10,...,n} x{0,...,"} x {{0,..., "}, {0, ..., Puax}, {0, ..., K}, {0, ..., 0}}

with P = maxses, Yoy p7. Fory = (t,d° d°, o5, 7515 .. i) we denote v, with ¢(7),
2 with d°(7) and so on. If there is a parameter set v ¢ Z with ~(¢) = 0, there exists no feasible
solution for g(y) and thus, we set g(y) = —oc.

In the next step, we define a recursion formula computing the value of g(7) out of the values
of g(+') with t(+") = t(y) — 1. Loosely speaking, we decide if item (7y) is part of the first-stage
solution and in which scenarios the recovery action is taking place. More formally, for a given
parameter set v we define g*(7) as the maximum value of g(v) if the item ¢(v) is added to
the first-stage solution. As we will show ¢g*(7) can recursively be computed by
gt (t,d’ v, .. %) = I?ax} gt —1,d° — w?,vgll, : ..,vg:) + p?

with v® = (d%, a®, 79 —1,i%) and v2 = (d° —w?, a”+p7, j°,i%). Here, the vector v° represents
the decision to delete this item in the recovered solution of scenario S and v° the decision to
keep the item. In the same way we define g~ () as the maximum value of g(7) if the item ¢(~)
is not added to the first-stage solution. This can also be recursively be computed by

t,.d% v, v%) = max g(t—1,d% 03, ... v

g () Berror g(81 B,)
with v+ (d¥ —w?, a® + p?, 75, — 1) and v§ = v°. The vector vf represents the case to
add this item in the recovered solution of scenario S and v3 to refrain from doing so. The
combination of these two values determines g(7) as

9(y) = max{g"(v),9~(v)}. (5.9)
The value of an optimal solution is given by g(n,c®, 7%, ... %) with 7% = (¢%,0,k, (). To
obtain an optimal solution z*, 2% ... 2 to g(n, co vsl ,0°7) we consider a feasible se-

quence 7', t = 0,...,n, in Z Wlth 7" = (n,, 7%, .,ES’"). A sequence A, t = 0,...,4, is

called feasible, if v € Z for all t = 0,.... ¢, t(y") =i, and v'~! € Z(4') with

o(7') = g(v7) if 7t € 27(7")
g)+ iy e 27()
for t = 1,...,¢. The set Z(v) contains all possible predecessors of a given parameter 7. An

element ' is called a predecessor of v, if t(y') = t(v)—1, d°(¥') = d°(v) —w?_, or d°(y/) = d°(v)

)
and
W) € {{vzmvgm} it d°(v) = ()
{v3(7), v} i d°(Y) = d°(7) — wy,)-
A predecessor of v is element of Z*(v), if d°(7/) = d°(v) — w .y and otherwise it is an element

of Z7 (). According to such a feasible sequence v, t = 0, . n With = (n,c, vSl 007,
also called a solution sequence, a solution x*, x5, . S’" is deﬁned by o = 0, 2§ = 0 for all
S € Sp,

1’ o
t 1 otherwise 1 otherwise

* {o if 47! € 27(+") andxf:{o if v5(y'71) = {(u5(7"), 03 (7))

5.2. Discrete Scenarios 93

for all S € Sp and t > 1. Based on the initial condition and the recursion a dynamic
program can easily be achieved with a run-time of O(7 - Cpax(Cimax - Prax - k - £)1°P! - 21901 with
Cmax — maX{CO, maxsesp CS} and Pmax = maX{Z:'L:l p?a maxsesp Z?:l p;S‘}

Theorem 5.2.4. Let z*, 2%, ..., 25 be some 0-1 points computed according to the recursive
formula (5.9) and a solution sequence 7', t = 0,...,n. Then this is an optimal solution to the
given (k, 0)-rrKP instance with p(z*) = g(7").

Proof. Let Ve Z t=0,. . ,t be any feasible sequence and the corresponding 0-1 points
7€ {0,1}"! and 7° € {0,1}*! with 2y = 0, 75 = 0 for all S € Sp,

5= 10 TTEZ0) s 10 0T =160, 200}
1 otherwise 1 otherwise

for t > 1. Furthermore, we define the optimization problem ¢(v) for v € Z by

()

®(7y) = max Zp?xi +w

i=0

()

> wfw <d(v)

i=0
()
> wiay <d(y) VSeSy
i=0

xf —x; <yl Vi=0,...,t(y), VS € Sp

z;—x <z Vi=0,...,t(y), VS € Sp

y; <i°(y) VYSeSp

% <j%() VSeSp

=0
£(y)
: S..s S
_ S s <
w gé%;pzx1+a(7)_0 VS eSp
zi, s P 27 € {0,1} i=0,...,t(7),S € Sp,
w >0

with p) = 0, w) = +1, w5 = 0 and p; = 0 for all S € Sp. The value of an optimal solution
of ¢(7) is denoted by ®(7v). We will show that T, 7%, ..., 7% is an optimal solution to the
optimization problem ¢(7?).

Let us assume for contradiction that this is not the case and %, t = 0,...,t, is a feasible
sequence with minimum #' such that either ®(y) # g(7") or 7, 7%, ..., 7% is not a feasible
solution. For any v € Z with t(y) = 0 and Tp = 0 = T we obtain g(y) = ®(y) , and since

To = 0 = T is a feasible solution for ¢(7), t' is greater than or equal to 1. We will show in

the next three claims that

94 Chapter 5. A Recoverable Robust Knapsack Problem

St ..., 7% is a feasible solution of ¢(7");

=
&l

N =

szxz%— mmsz +a*(y");

3. and g(v") > ®(v").

This leads to a contradiction to our assumption.

Claim. The solution T, 7%, ..., 7% is a feasible solution of ¢(7").

Proof. Due to definition of 7, . . ., " and our assumption, {Z, Z°!, . x "Hi0,..t— 1] 1s a feasible
solution of ¢(7'). We will now consider all four cases to construct 7" out of ¥~ and show
that in any case the solution Z, ..., T remains feasible.

If v"~1 € Z ("), then Ty = 0 and Ty < 75 for all S € Sp. Therefore,

{5 €0t 7 =2 > 0} = 756" = 5°0")
for all S € Sp and

t t'—1
>oulfE; =Y ufE < () = ().
j=0 3=0

For S € Sp with v9(¥~1) = v5'(7"') the solution {Z,7%,..., 7% }jjp._»_1 obeys the inequal-

ities
t—1
'

S wiz <d’(y'), [{jedo,.. =1} T -7 >0} <i¥(Y")
=0

and T3 = 0, and thus

{ie{0,... .t =1} |7 -7, >0} <®(7") =i¥(y) — 1

are also satisfied and we obtain with 7, = 1,
> wiT <d’(y") and |{j €{0,... ¢ =1} |7 — 7 > 0}| <i°(Y").

If ¥t € Z+(4), then Ty = 1, and Ty > T3, for all S € Sp. Hence,
€ 0t} 17 -7 > 0)] <) =50,
Since (¥ 1) = d°(4") — wl, we get

t'—1

t/
> wiT =D wiT +wy < d'(y").
j=0 j=0

5.2. Discrete Scenarios 95

For S € Sp with v5(7"~1) = v%(4") we obtain

and ff =0, and thus

> wiE <d*(y)and [{j€{0,.. ¢} T -7 >0} <) +1=5(").

In the case of v¥(y¥' 1) = v3(7"), the following inequalities follow from the construction
-1
> wiE <d*() = d° () — wy,
7=0

and ff =1,
t/
wSTS < d(7") and
=0
[{jefo,....t} |z —z >0} < P = 5S¢,
Therefore, 7,75, ..., 75 is a feasible solution of ¢(~%). A

Since T, 1 s . T is a feasible solution, it remains to show within the next two claims that
9(2") = 2(v").
Claim. The value g(y") equals the total profit of Z, if Z%,..., 7% are taken as recovery and

a®(y") is added to each scenario profit S € S, i.e.,

szxz—i-mmpr + o ()

Proof. Let I° := {t € {1,. t’} |yt e Z (v") and (") = i¥(7") — 1} and I3 = {t €
{1,... ¢} |y e ZT () and 75(1) = 59(4")} for each S € S. Thus

aS(y°) =¥ () + D T+ D p

iel’ el
Since
={te{l,...,t'} |7 =0and T; =1} and
={te{l,....t'} |7, =1and 7} =1},
we obtain

t/
(V) = (V) +)+ 0l = () + D piE.
=1

~7S 1S
i€l” iely

96 Chapter 5. A Recoverable Robust Knapsack Problem

Furthermore,
g) =9(y') + 1T

due to the definition of Z and thus
t/
9(7") =9+ >)T
i=0

Since

t/
0y __ : S0y : St S=S
9(7") = min a*(y") = min a*(y)+;pixi
we get
t t
vy _ 0. = LSt S—S
90y)—Z;pi 7+ min a®(y)+2;pzxz-

A

As a consequence of these two claims g(y") < ®(4"). Thus, it remains to show that g(y*) >
®(y") to obtain a contradiction.

Claim. 1t holds g(7*) > ®(y").

Proof. Let &, 3%, ...

, 75" be an optimal solution of ¢(y*). According to this solution we define
a feasible sequence 7"

7" with 7 = 4" in the following way:

P

vi (7)) ifx, =0, 3 =0
o 4O (7" if 7, = 0 L BSFY it 7 =0, 5 =1
dO(Vt 1) _ 0(_t) . ~t and US(”Yt 1) _ ;(_) ‘ ~t ~t
dHF) —w) itz =1 v (F) it =1, 37 =
05(7) ifz, =1, 2y =

Due to our assumption and the construction of 7', g(7*) = ®(F") for t = 0,...,¢ — 1 and
'l e Z(y). I 7Y € ZH (), then

O(v") = d(F) +ph = g(F) + 1) < g(7")

and if =1 € Z=(y"), then

This is a contradiction. A
To sum up, any 0-1 point corresponding to a feasible sequence 72, ..., ! determines an optimal
solution of ¢(~"). O

In the following subsection we will focus on the polyhedral structure of a (k, £)-rrKP instance.

5.2. Discrete Scenarios 97

5.2.2. Extended Cover Inequalities

As pointed out by Crowder et al. [32] one motivation for studying the polytope of the knapsack
problem is that valid inequalities for the knapsack polytope can be used as cutting planes for
general 0-1 linear integer programs (ILP). The idea is to consider each individual constraint of
a 0-1 ILP as a 0-1 knapsack constraint. Several classes of valid inequalities are known, such as
the lifted cover inequalities (LCIs) of Balas [8] and Wolsey [98], the weight inequalities (WIs)
of Weismantel [97], or the (1, k)-configurations introduced by Padberg [84]|. For the class of
(k, £)-rrKP problems we will focus on extended cover inequalities which have been shown to
be quite efficient in solving knapsack instances by Kaparis and Letchford [67].

The knapsack polytope is the convex hull of the set of solution vectors for a knapsack problem,
ie.,

K= conv{x € {0,1}"| Zwixi < c}.
i€EN
An important class of valid inequalities for the knapsack problem are the so-called minimal

cover inequalities and their extensions. A subset C' C N is called a cover for K if ZjeC wj > .
A cover is minimal if 3 ;o\ w; < c for every i € C. For a (minimal) cover C' the (minimal)

cover inequality

d a<|ol -1

jec
provides a valid inequality for IC. The minimal cover inequalities are facet-defining for C' = N,
but in general they are not. Yet, they can be lifted to define a facet of the knapsack polytope.
One way to lift cover inequalities is based on an extension E(C') of a cover C

E(C)=CU{je N\C|w; >w, forallieC}.

The resulting eztended cover inequality for I reads

JEE(C)

In general, it is not reasonable to generate all extended cover inequalities, but solve the LP-
relaxation and find for a non-integer point a violated inequality. This problem is called the
separation problem. Thus, in the case of (extended) cover inequalities we are interested in
finding for a given fractional solution such an inequality that is violated or state that no such
inequality exists. More formally, let 2* € [0,1]" be a fractional solution with) ._\ w;z; < c.
The separation problem is to find a cover C' C N, such that

> 7z Cl
jel

This task can be transformed into

Zx;‘ <|Cl—=1 VC cover
jec
& max ;=0 <1

C cover 4
jeC

98 Chapter 5. A Recoverable Robust Knapsack Problem

Introducing 0-1 variables y; taking the value 1 if and only if item j is part of the cover, j € IV,
the last problem is equivalent to solving the knapsack problem

2* = max Z(:c;‘ — 1)y, (5.10)
jEN
Z'Lijj Z c+ 1
jEN

y; € {0,1} Vje N.
There is a violated cover inequality to the point x* if and only if z* > —1, as Crowder et
al. noted in [32]. Yet, solving the problem is weakly NP-hard [45].

In the following part we show how the classical concept of cover inequalities can be generalized
for the (k, ¢)-rrKP polytope in a quite natural fashion.

RRKP Extended Cover Inequalities Before we start with the investigation of robust covers,

we introduce the following notation: for a set N = {1,...,n}, a function f : N — N, a set

X C N and an integer r we define f(X) = > .. f(i), f(max, X,r) = max xcx f(K) and
K|<r

f(min, X, r) = min xcx f(K).

|[K|>r

For a given (k,¢)-rrKP instance the (k,¢)-recoverable robust knapsack polytope Kp(k) of a
discrete scenario set Sp is the convex hull over all valid first-stage solutions, i.e.,

Kp(k):= conv{x € {0,1}"| Zw?xi < and min (Z wa) < cs}.

TCN
iEN ITI<k ieN\T

Note that ¢ does not play a role in the feasibility of a first-stage solution. The polytope Kp(k)
has full dimension if and only if w? < c® for all i € N and (1 — k)w? < ¢ for all S € S.

Following the concept of covers we call a set C' C N an rrKP cover if one of the next conditions
holds

L w(C)>+1

2. there is a scenario S € Sp with

w9 (C) — w¥(max, C, k) > ¢ + 1.

An rrKP cover C'is minimal if
1. w°(C) — w’(min, C, 1) < and
2. w9 (C) — w’(max, C, k) — w®(min, C, 1) < ¢ for all S € Sp.
and an rrKP cover defines the following cover inequality:
in <|C|—-1.
ieC

Theorem 5.2.5. Let x be a 0-1 point. Then x € Kp(k) if and only if x satisfies all minimal
cover inequalities.

5.2. Discrete Scenarios 99

Proof. (=): Let z € Kp(k) and let us assume that there exists a minimal rrKP cover C' such

that
>z =|Cl.

ieC
Since C'is a cover, there exists either a scenario S € Sp such that

w®(C) — w(max, C, k) > ¢ + 1

or
w’(C) > & + 1.

This is a contradiction to the feasibility of x.

(<): Let T, = {i € N | z; = 1} be the support of x. Let us further assume that x is infeasible,
i.e., either
w'(T,) > +1

or there exists a scenario S € Sp with
w(T,) — w® (max, Ty, k) > ¢ + 1.

Hence, T, is an rrKP cover by definition. In a last step we modify 7, to become a minimal
rrKP cover. For this reason we repeatedly remove an item ¢ € T, with ¢ = argmin;ep, wio
if w'(T,) > &+ 1 or i = argminger, w? if w¥(T,) — w¥(max, T,, k) > ¢ + 1 for a scenario
S € S, until the remaining set 77 is a minimal rrKP cover. Thus, z violates the (minimum)

cover inequality defined by 77. O

As in the case of the nominal knapsack polytope, a cover inequality is facet defining if a
minimal rrKP cover C' consists of N: let us consider the sets N; := N\{i} fori = 1,...,n.
All these sets are feasible solutions to the knapsack instance, since C' = N is a minimal rrKP
cover. Thus, N;, i = 1,...,n, are n affine independent solutions and C' is therefore facet
defining.

The concept of rrKP covers can be similarly extended to strengthen the cover inequalities as
for the deterministic knapsack polytope. A canonical way to define an extension is by adding
all items whose weight is greater than or equal to the highest not recovered item in an rrKP
cover C. More formally, let C' be an rrKP cover and S be a scenario such that the scenario

weight inequality is violated by C. A canonical extension ES(C’) is given by
ES(C’) ={i € N |w] > w’(max,C, k + 1) — w®(max, C, k)} U C. (5.11)

Yet, it even suffices for an item to be added to C' if its weight exceeds the residual capacity
according to the weight of the first |C| — k — 1 items with lowest weight and the weight of the
item with the second highest not recovered item in C'.

Definition 5.2.6. Let C be an 1rKP cover and S be a scenario with
w¥(C) — w®(max,C, k) > ¢+ 1. An extension E°(C) of C according to S is defined
by
ES(C)=CU{ie N |w’>c —w’(C)+w’(max,C,k+ 1) + 1,
wi > w¥(max, C, k4 2) — w®(max, C, k + 1)}
and determines the rrKP extended cover inequality

> oz <|C]-1

i€ES(C)

100 Chapter 5. A Recoverable Robust Knapsack Problem

For the nominal knapsack problem the set of inequalities obtained by extending minimal
covers is independent of the extension method, as we will show in the following: Let C'
be a minimal cover and jyax = argmaxjec w(C) and iyin = arg min,e ponzo) w(4). Hence,
C" = C U {imin } \{Jmax} is @ minimal cover with |C’| = |C| and E(C") = E(C).

For the recoverable robust knapsack problem the canonical extensions define weaker inequali-
ties than the rrKP extended cover inequalities as the following example indicates: In the in-
stance described in Table 5.2 with 6 items {1,...,6}, no first-stage weights and two scenarios
S, and S, and k = 1, the set C = {1,2,4,5} is a minimal cover. If we extend C by the second
method according to scenario S,, E%(C) = {1,2,3,4,5,6} although w®(3) < w®(4). But the
set C" = {1, 2, 3,5} is not a minimal cover, since w”*(C")—w" (max, C’, 1) —w" (min, C’, 1) > 3.
Also no other minimal cover induces a canonical extended cover inequality as strong as the
one derived from E%(C).

S\N|1]2][3[4]|5]6]c
S [2]2]3]4]8]9]6
Se [10]1]5]2]1][0]3

Table 5.2.: The table shows the knapsack capacity and the weights for each item according to
the different scenarios.

In the following lemma we prove that the rrKP extended cover inequalities are feasible.

Lemma 5.2.7. Let C be an rrKP cover and E°(C) be an extension according to scenario S.
Then

Y wm<C]-1 (5.12)

i€ES(C)

is a valid inequality for Kp(k).

Proof. Let us assume that there exists an integer point x € Kp(k), a minimal cover C' and a
scenario S such that
> m=|C)

i€eES(C)
Let T, = {i € N | z; = 1} be the support of =z and i, be an item in 7, N
ES(C)\C' with minimum weight according to S. We furthermore order the items in
C increasingly according to the weights of S, ie., w®(i;) < w%(iy) < ... < w(ic))

and define X = {i,...,0c—k—1}. Since w”(i,) > ¢® — w®(C) 4+ w¥(max, C, k + 1) + 1,
w9 (i,) > w¥(max, C, k + 2) — w®(max, C, k + 1) and w®(X U {ijc|_x}) > ¢ + 1,

w® (T,) — w”(max, T,, k) = min w® (T \K)
|KT<k

> w(X) 4+ min{w® (ijo1 1), w”(ia) }
>+ 1.

This is a contradiction to the feasibility of x. O

5.2. Discrete Scenarios 101

Separation of the RRKP Extended Cover Inequalities for S, The separation problem
is to find an inequality that is violated by a given non-integer point, or to prove that none
exists. In our case, we are interested in finding for a given fractional solution z* € [0, 1]" an
rrKP extended cover inequality. Since the definition of a cover is based on the consideration of
a single scenario or to the first-stage weight set, we can separately consider each scenario and
hence are interested in finding an rrKP extended cover inequality according to one scenario
S € Sp or the first-stage weight constraint. For simplicity we drop the S on the variables,
the weights and the knapsack capacity and set k& = 0 when considering the first-stage weight
constraint.

Our first approach uses integer programming and is based on the following observation: In
order to find a violated extended cover inequality, it suffices to determine the items which are
part of the cover and not recovered (i.e., not deleted to satisfy the capacity constraint). We
call these items the core of the cover. In a second step all other items which exceed the weight
of every item in the core of the cover, can be added to form possibly an extended rrKP cover.
This is the case if more than k items are added to the core. Although these extra items are
fixed as soon as the core of a cover is known, we introduce an integer program to determine
both sets for two reasons: first, the number of additional items is crucial for the detection of
an rrKP cover and secondly, even for nominal knapsack instances a fractional point x* may
not violate a cover inequality but an extended cover inequality.

For the IP formulation we introduce two different binary variables y; and z; for each item ¢ € N.
The variable y; determines whether item ¢ is part of the core of the cover and z; whether item
i is added in the second step. In order to define a cover the inequality >, y wiy; > ¢+ 1 has
to be obeyed by y. An item ¢ is added as extension of the core (z; = 1, i € N) if its weight
exceeds the weight of every item in the core. Note that if an item with a sufficient large weight
is added to the recovery or the extension, all items with larger weights may also be added to
the extension as they are exchangeable with the first one. In order to efficiently implement this
condition, we group the items according to their weights: Let 0 < w;, < w;, < ... <w;, <c
be an ordering of all different item weights occurring in the scenario and R := {1,...,p}. We
define N(r) == {j € N | wj = w;.} for all » € R. Then z; < z; is valid for all i € N(r),
jeEN(r+1),r=1,...,p— 1. Hence, we obtain the following ILP

(rrEC-IP) max Z(x;‘ —1)y; + Z iz —k
jEN jEN
ijyj Z c+ 1
jEN
Yi 2
Zi

Yj, 25

1 VjeN
2; Vie N(r),j€ N(r+1),re R
0,1} Vj € N.

m INAIA

An optimal solution defines a violated rrKP extended cover inequality if the value of the
objective function is greater than —1. Note that in this case more than k items are added to
the core of the cover.

Based on this integer formulation and dynamic programming we will finally introduce a pseudo-
polynomial algorithm solving the separation problem for the extended cover inequalities. We
define U = U {w;} and D =>"" w;. Forallt=1,...,n,d=0,...,D and w € U we solve
the problem to find a part of the core of a cover and added items within the set {1,... ¢}
such that the violation of x* is maximized, the weight of the core equals d, their weights are

102 Chapter 5. A Recoverable Robust Knapsack Problem

below w and the weight of all items added in the extension is greater than or equal to w. More
formally, we consider the following function

t t
fu(t,d) = max Z(:cf — Dy + Z X2
=1 i=1

Zwiyi =d

yi+2 <1 Vi=1,...,t
zi =0 Vi:iw, <w
yZZO Vz’:wi>w

vi,z € {0,1} Vi=1,...,t.
The optimal solution to the separation problem is given by

max f,,(n, d).
d>c+1

The function f,(1,d) can easily be solved via three case distinctions:
Case 1: ifw; =dand w > d, then f,(1,d) = (z] — 1)

Case 2: ifd=0 and w; > w, then f,(1,d) = 2]

Case 3: otherwise, f,(1,d) = —oc.

For all other combinations of t > 2, d = 0,...,D and w € U, the general recursive formula
referring to the three cases above holds

Jult,d) = max{f,(t — 1,d),
fw(t_]-)d_wt)_i_(x:_l) ifwtgw,
fo(t = 1,d) + zf if w, > w}.

In other words we decide, whether ¢ is not in the core and not added to the extension; whether
t is part of the core of the cover; or whether ¢ is added to the extension taking into account
the weight bound imposed by w. Obviously we can construct out of an optimal solution of
fo(t—1,d), fo(t —1,d —wy), and f,(t — 1,d) three feasible solutions for f,(t,d). Note that
the recursion formula is valid, since otherwise we obtain a contradiction to the optimality of
f.(1,d"). The run-time of this approach is in O(D - n?), since |U| < n.

5.2.3. Computational Experiments

In this section we present computational results on the recoverable robust knapsack problem
with discrete scenarios. We start with an investigation of the gain of recovery, i.e., the increase
in the profit obtained by allowing recovery compared with the profit obtained in the robust
case. Afterwards we study the impact of rrKP extended cover inequalities on the relaxed
recoverable robust knapsack problem.

The considered (k,/¢)-rrKP instances are modifications of multi-dimensional knapsack in-
stances from the OR-library [9] created by Chu and Beasley. The original nine problem sets

5.2. Discrete Scenarios 103

are characterized by the number of items n € {100, 250, 500}, and the number of knapsack con-
straints m € {5,10,30}. For each n-m combination Chu and Beasley generated 30 instances
with different tightness ratios v € {0.25,0.5,0.75}. This ratio is given by ¢; = a ", wjs,
where wj; denotes the weight of item ¢ in the jth constraint and the ¢; the capacity of the jth
constraint, i € {1,...,n], 7 € {1,...,m}. In order to obtain (k,¢)-rrKP instances, we kept
the set of items, treated the first knapsack constraint as first-stage weight constraint and used
each further constraint as scenario weight constraint for an individual discrete scenario. Fi-
nally, we divided the profit of each item according to the multi-dimensional knapsack instance
into first-stage profit and scenario profit in the following way: 70% of the profit is assigned to
the items as first-stage profit and between 20% and 40% of the profit is chosen uniformly at
random in each scenario as profit. Thus, the scenario profits range from 29% to 57% of the
corresponding first-stage profits. We just considered the 10 instances of each n-m combination
with a tightness ratio of a = 0.5. The parameter k£ and ¢ are chosen as fractions of the number
of items k, ¢ € {0.00,0.01,0.05,0.10,0.25,0.05, 1}, i.e., if we consider 100 items and k& = 0.01,
then we are allowed to delete up to one item.

We implemented the drrKP-IP formulation (page 88) of the recoverable robust knapsack prob-
lem with discrete scenarios in C++ using Scip 1.2.0 [2]| as branch-and-cut framework with
IBM ILOG CPLEX 12.1 as underlying LP solver. Applying the callback functionality of Scip,
we added a separator for rrKP extended cover inequalities which exactly generates violated
cuts by solving the rrEC-IP formulation (page 101). In our first study concerning the gain of
recovery the separator is turned off.

The experiments were carried out on a Linux machine with 2.93 GHz Intel Xeon W3540 CPU
and 12 GB RAM. A time limit of one hour was set for solving each problem instance. All
other solver settings were left at their defaults.

Gain of Recovery The gain of recovery is a measure for the impact of recovery on the
objective function in a robust setting. Applied to the recoverable robust knapsack problem we
obtain the following definition: let X ¢ be an optimal first-stage solution of a given (k,)-
rrKP instance according to the recovery parameters £ > 0 and ¢ > 0, where k£ denotes the
number of items that may be removed from a first-stage solution and ¢ denotes the number of
items that may be added to a first-stage solution. Then, X g ¢) is an optimal robust solution in
the classical sense which is equivalent to an optimal solution of the multi-dimensional knapsack
problem. The gain of recovery gain(k, () is defined as

. p(X(k e))
ain(k, () = —————=.
gain(k,) p(X(0,0)

Note that gain(k, () > gain(k', ') with k > k" and £ > €', since X ;s ¢ is a feasible solution of
the instance with recovery parameters of k£ and ¢, and thus gain(k, ¢) > 1.

In our computational study we considered the nine combinations of n and m as described
above with all parameter combinations of k£ and ¢ given as fractions of the number of items,
k,¢ € {0.00,0.01,0.05,0.10,0.25,0.05,1}. For each of these 63 settings we computed the
objective value of an optimal solution, respectively the best known solution within the time
limit of one hour, for 10 different instances. Since the achieved optimality gaps are very
small, we did not distinguish these cases. Table 5.3 shows the average values of the gain of
recovery w.r.t. the selected values of k£ and ¢ and the combination of n and m. A graphical
representation is given in Figure 5.1.

104 Chapter 5. A Recoverable Robust Knapsack Problem

S| 4 9 29
N 100 250 500 100 250 500 100 250 500
koot

0.00 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.01 1.0093 1.0076 1.0059 1.0185 1.0195 1.0133 1.0233 1.0295 1.0266
0.05 1.0268 1.0135 1.0104 1.0699 1.0542 1.0370 1.0933 1.1057 1.1112
0.10 1.0319 1.0137 1.0104 1.1099 1.0726 1.0463 1.1504 1.1752 1.1929
0.25 1.0320 1.0137 1.0104 1.1545 1.0798 1.0474 1.2508 1.2899 1.3295
0.50 1.0320 1.0137 1.0104 1.1563 1.0797 1.0474 1.2888 1.3183 1.3635
1.00 1.0320 1.0137 1.0104 1.1568 1.0799 1.0470 1.2901 1.3187 1.3637

0.01 0.00 1.0210 1.0248 1.0206 1.0244 1.0286 1.0212 1.0267 1.0323 1.0285
0.01 1.0297 1.0314 1.0260 1.0421 1.0455 1.0329 1.0496 1.0593 1.0539
0.05 1.0454 1.0363 1.0298 1.0907 1.0759 1.0540 1.1134 1.1332 1.1360
0.10 1.0495 1.0365 1.0298 1.1287 1.0922 1.0625 1.1718 1.1998 1.2157
0.25 1.0496 1.0365 1.0298 1.1700 1.0983 1.0632 1.2670 1.3068 1.3446
0.50 1.0496 1.0365 1.0298 1.1723 1.0982 1.0631 1.2969 1.3299 1.3743
1.00 1.0496 1.0365 1.0299 1.1720 1.0980 1.0632 1.2983 1.3304 1.3745

0.05 0.00 1.0840 1.0856 1.0826 1.0962 1.0905 1.0773 1.1054 1.1135 1.1224
0.01 1.0906 1.0908 1.0867 1.1103 1.1037 1.0868 1.1230 1.1368 1.1456
0.05 1.1034 1.0943 1.0888 1.1509 1.1273 1.1034 1.1805 1.1993 1.2177
0.10 1.1056 1.0943 1.0888 1.1840 1.1390 1.1082 1.2317 1.2554 1.2829
0.25 1.1056 1.0943 1.0888 1.2163 1.1421 1.1083 1.3073 1.3447 1.3848
0.50 1.1056 1.0943 1.0888 1.2165 1.1421 1.1083 1.3216 1.3541 1.4002
1.00 1.1056 1.0943 1.0888 1.2168 1.1422 1.1083 1.3231 1.3545 1.4004

0.10 0.00 1.1359 1.1367 1.1404 1.1533 1.1417 1.1267 1.1557 1.1725 1.2064
0.01 1.1421 1.1415 1.1440 1.1663 1.1531 1.1347 1.1724 1.1945 1.2264
0.05 1.1550 1.1450 1.1458 1.2024 1.1726 1.1481 1.2279 1.2503 1.2858
0.10 1.1570 1.1450 1.1458 1.2303 1.1805 1.1503 1.2749 1.2998 1.3383
0.25 1.1570 1.1450 1.1457 1.2542 1.1823 1.1502 1.3361 1.3702 1.4153
0.50 1.1570 1.1450 1.1457 1.2544 1.1821 1.1501 1.3419 1.3725 1.4201
1.00 1.1570 1.1450 1.1458 1.2542 1.1821 1.1502 1.3420 1.3731 1.4203

0.25 0.00 1.2047 1.2049 1.2191 1.2246 1.2074 1.1863 1.1783 1.2288 1.2909
0.01 1.2146 1.2150 1.2271 1.2387 1.2214 1.1976 1.1983 1.2519 1.3112
0.05 1.2327 1.2284 1.2375 1.2747 1.2424 1.2160 1.2566 1.3090 1.3664
0.10 1.2384 1.2299 1.2379 1.2963 1.2494 1.2193 1.3111 1.3543 1.4100
0.25 1.2386 1.2299 1.2378 1.3067 1.2501 1.2194 1.3610 1.3940 1.4450
0.50 1.2386 1.2299 1.2379 1.3067 1.2502 1.2194 1.3611 1.3940 1.4450
1.00 1.2386 1.2299 1.2379 1.3068 1.2502 1.2194 1.3613 1.3941 1.4451

0.50 0.00 1.2056 1.2054 1.2217 1.2250 1.2088 1.1869 1.1787 1.2287 1.2917
0.01 1.2170 1.2168 1.2317 1.2401 1.2232 1.1992 1.1986 1.2522 1.3127
0.05 1.2427 1.2393 1.2539 1.2788 1.2521 1.2258 1.2568 1.3099 1.3718
0.10 1.2555 1.2497 1.2641 1.3043 1.2651 1.2370 1.3110 1.3573 1.4187
0.25 1.2575 1.2508 1.2646 1.3164 1.2666 1.2375 1.3617 1.3958 1.4501
0.50 1.2575 1.2508 1.2647 1.3164 1.2667 1.2375 1.3618 1.3958 1.4501
1.00 1.2575 1.2508 1.2647 1.3164 1.2664 1.2374 1.3618 1.3959 1.4501

1.00 0.00 1.2056 1.2054 1.2218 1.2254 1.2087 1.1871 1.1793 1.2293 1.2918
0.01 1.2170 1.2169 1.2317 1.2399 1.2235 1.1995 1.1994 1.2529 1.3131
0.05 1.2427 1.2393 1.2540 1.2787 1.2525 1.2259 1.2582 1.3103 1.3720
0.10 1.2555 1.2497 1.2642 1.3042 1.2652 1.2370 1.3115 1.3573 1.4188
0.25 1.2575 1.2508 1.2648 1.3164 1.2668 1.2376 1.3617 1.3959 1.4501
0.50 1.2575 1.2508 1.2648 1.3163 1.2667 1.2375 1.3617 1.3959 1.4501
1.00 1.2575 1.2508 1.2648 1.3164 1.2668 1.2375 1.3619 1.3959 1.4502

Table 5.3.: Gain of recovery gain(k, ¢) for selected values of k£ and ¢. Averages of 10 instances
are shown for 100, 250, 500 items and 4, 9, 29 scenarios.

5.2. Discrete Scenarios 105

Fixing the number of items we observe a rise in the gain of recovery when the number of
scenarios increases (e.g., compare Figures 5.1(a), 5.1(d), and 5.1(g)). This can be explained
as follows: the profit achieved by a robust solution decreases depending on to the number of
scenarios. On the other hand, the scenario profit remains more or less the stable.

o o

0

o o

(g) 29 scenarios, 100 items (h) 29 scenarios, 250 items (1) 29 scenarios, 500 items

Figure 5.1.: Gain of recovery gain(k, ¢) for selected values of k and ¢. Averages of 10 instances
are shown for 100, 250, 500 items and 4, 9, 29 scenarios.

Next, we compare the influence of the parameters k£ and ¢ on the gain of recovery. According
to our computational results an increase of k leads to a strong increase in the scenario profits.
This is reasonable since the first-stage profit exceeds the scenario profit and items with heavy
weights but high profits can be removed in the second stage. The influence of ¢ on the gain
of recovery seems to vary with the number of scenarios. In the case of four scenarios almost
no improvement is achieved. On the other hand, the additional profit of £ = 1 (and k = 0)
exceeds the additional profit of £ = 1 (and ¢ = 0) for 29 scenarios independently of the number
of items.

In summary, allowing recovery produces a gain of up to 45% (e.g., for k = ¢ = 0.5). But even
a rather limited recovery of k = ¢ = 0.1 achieves an additional profit ranging from 15% to
33% compared to the robust case.

106 Chapter 5. A Recoverable Robust Knapsack Problem

RRKP Extended Cover Inequalities In the following we present the results of our second
study where we investigate the effectiveness of rrKP extended cover inequalities using the
canonical extension (5.11). In order to separate violated rrKP extended cover inequalities
exactly (but still within a time frame of one hour time per instance), we implemented the
rrEC-IP formulation (page 101) of the corresponding separation problem. Whenever our
separator is called the first-stage weight constraint is tested. If no violated extended cover
is found, all scenarios are tested beginning with the last scenario which provided a violated
cut. As soon as a violated rrKP extended cover inequality has been determined, it is added
to the LP and the separation round is aborted. Hence, we separate at most one cut per call.
Furthermore, only the root node of the recoverable robust knapsack problem is solved in this
study.

For each generated (k,¢)-rrKP instance we investigated two different methods based on LP-
relaxations to obtain upper bounds on the total profit: We started by solving the canonical
LP-relaxation without any (external or internal) separators to determine the integrality gap
of the instance. In a second step we solved the same LP-relaxation this time with an exact
separation of violated rrKP extended cover inequalities and again evaluated the integrality
gap. The impact of the separation routine can be seen by comparing these two values.

m 4 9 29

n 100 250 500 100 250 500 100 250 500 geom.
k mean
0.00 5,27 3,02 1,53 8,54 1,98 0,63 0,76 3,69 1,61 2,19
0.01 8,60 2,00 0,62 9,09 3,46 2,15 1,11 3,28 5,37 2,89
0.05 7,47 1,25 0,07 5,22 1,87 0,08 1,57 642 7,77 1,49
0.10 6,99 1,52 1,20 6,09 1,64 3,24 162 3,65 5,89 2,89
0.25 5,60 5,21 2,42 3,71 3,11 4,95 3,04 436 6,03 4,09
0.50 7,87 5,61 8,20 7,78 10,16 9,29 13,28 16,04 23,90 10,34
1.00 7,74 491 7,25 7,40 10,00 9,05 12,70 14,60 21,56 9,67

geom. mean 6,98 2,88 1,40 6,57 3,52 2,03 2,72 6,03 7,42

Table 5.4.: Gap closed for selected values of k. Averages are shown for the number of scenarios
m € {4,9,29} and number of items n € {100, 250,500}, in the case of an exact separation of
rrKP extended cover inequalities.

Table 5.4 reports to which percentage an additional improvement in the integrality gap is
achieved by rrKP extended cover inequalities for selected values of k. Note that violated rrKP
extended cover inequalities do not depend on the parameter . As in the study of the gain of
recovery, all values are given as the average over 10 instances with the same number of items
and scenarios. In addition, the geometric means over all instances is shown for fixing either
the value of k£ or the number of items and scenarios.

Finally, in Figure 5.2(a) the average percental gap closed is described for the selected values
of k and each combination of n and m. For a better illustration, we divide the instances
according to the number of items and scenarios into 9 different groups corresponding to the
columns in Table 5.4, e.g., instances in group 1 have 4 scenarios and 100 items, instances in
group 2 have 4 scenarios and 250 items. In Figure 5.2(b) the geometric mean of the group
averages are shown depending on k.

5.3. Interval Scenarios 107

geometric mean gap closed (%)

instance group

0

0 1 5 10 25 50 100

K (%)
(a) Averages for instance groups of 10 instances with (b) Geometric means
same number of scenarios and number of items

Figure 5.2.: Integrality gap closed by separating violated rrKP extended cover inequalities.

An evaluation of the data shows that the geometric mean of the integrality gap closed lies in
the range from 1.49% (k = 0.05) to 10.34% (k = 0.50). Considering all instances with 4 (9,
29) scenarios it varies from 0.07% (0.08%, 0.76%) to 8.60% (10.16%, 23.90%). This suggests
that an increase in the number of scenarios results in better bounds. Unfortunately, there is
no clear dependency. For example, the average gap closed for instances with 100 items and
k= 0.10 is 6.99%, 6.09%, and 1.62% for 4, 9, and 29 scenarios, respectively. But considering
the instances with 250 items an improvement of 1.52%, 1.64%, and 3.65% is achieved. In other
cases the changes are neither monotonic increasing nor decreasing.

In summary, this study shows that the lower bound obtained via LP-relaxation improves by
adding all violated rrKP extended cover inequalities. In the best case the gap was further
closed by 23.90%. In more than 50% of all considered settings at least 5% improvement was
obtained. In addition, the overall computational time spend for one run of this study was
less than half an hour. Hence, the separation of violated rrKP extended cover cuts has a high
potential to tighten the linear relaxation of the recoverable robust knapsack problem and to
speed-up the solving process significantly.

5.3. Interval Scenarios

In the interval scenario case the scenario set is implicitly described. For given lower and
upper bounds p,p,w,w € N each scenario S € S; has to fulfill p° € [p,p] and w® € |[w,w].
Any (k, 0)-rrKP instance with interval scenarios can be transformed to a (k, £)-rrKP instance
with one discrete scenario S. The profit of this function is defined by py = p, and the

weight function by w?® = w; for every item i of the item set N = {1,...,n}. Hence, the

interval scenario problem is weakly NP-hard, but can be solved in pseudo-polynomial time
(Theorem 5.2.4).

5.4. ['-Scenarios

The I'-scenario set Sp limits the power of interval scenarios by allowing at most I' values of
the scenario weight- and profit function to change from the lower weight bound and the upper

108 Chapter 5. A Recoverable Robust Knapsack Problem

profit bound, I' € N. More formally, for each item i € N, N = {1,...,n}, two intervals
[D; — pi, P;] and [w;, w, + ;] are given with w, +w; < c¢. All values w;, w;, p; and p; are assumed
to be positive integers, w is the nominal weight and @ the maximum deviation for each item,
as p is the nominal profit and p its maximum deviation. In any scenario S € Sr the weight
and the profit of an item ¢ lies within the intervals [w;, w; + @;] and [p; — p;, ;|- As a slight
variation of Bertsimas and Sims definition of I'-scenarios [15], there are at most I' values w?
and p;, i € N, which vary from the lower bound or the upper bound respectively, i.e., |J| <T
with J = {i € N | wy —w, > 0 or p, — p > 0}. This definition forces all scenarios to focus
their disturbances on I' items. In contrary to the discrete scenario set we assume the knapsack
capacity c to be constant for every scenario but independent of the first-stage capacity c°.

Obviously, the (k, £)-rrKP is weakly NP-hard. Yet, we did not succeed in either constructing
a pseudo-polynomial algorithm for this problem or providing a proof for strong NP-hardness.
Since the number of scenarios in Sp has exponential size in the number of items, we start by
investigating the problem of testing a given set of items for its feasibility, i.e., finding a scenario
S € Sr, such that the induced weight for a given first-stage solution is maximized where the
k heaviest items are already deleted. This problem can be solved efficiently (Subsection 5.4.1)
and can be used to obtain an ILP-formulation of polynomial size for the (k,¢)-rrKP with
[-scenarios and p; = p; = 0. In the last subsection we focus again on (extended) cover
inequalities and their separation.

5.4.1. An Optimal I'-Strategy

In this subsection we consider the problem of finding a scenario S € Sr that imposes the
maximum weight on a given first-stage solution. More formally, let X = {1,...,n'} C N be a
set of items. For given parameters I' € N and £ € N we define the weight of a subset X C X

as
weight(X) = 3, — max (wi+ Y w>

ieX IYI<k i€y ieynX
A mazimum weight set XF is a subset of X with |XF| < T and with maximum weight. The

mazximum weight set problem is to find for a given set X, and parameters I' and k, a maximum
weight set XE.

As the following example indicates, there is no inclusion relation between optimal solutions of
a maximum weight set problem for different I' values, i.e., in general X} C X .

Example 5.4.1. Counsider the set X = {1,...,4} with weights and deviation given in Table
5.5and k =1.

i |1]2]3]4
w, [3[3]10]10
w; [2]2]5]5

Table 5.5.: A maximum weight set instance.

For I' = 1, the sets X' = {1} and X" = {2} are the maximum weight sets for this instance
with weight(X’) = —8. On the other hand, X = {3,4} is the maximum weight set with

weight(X) = —5 for I' = 2, whereas the sets {1,3}, {1,4}, {2,3} and {2,4} have a weight of
—8. H

5.4. T'-Scenarios 109

Algorithm 5.1 Maximum weight set

Input :itemset X ={1,...,n'}, w, € Nand w; e Nforallie X, 'e N, ke N
Output : maximum weight set XF

Set U ={w,+w; | 1€ X}U{w, |ie X}U{0}

forall v € U do

Set w;(u) = min{w;, —w,; + u} for all i € X.

Set X~ (u) ={i € X | w;(u) < 0}.

Select in X (u) the (at most) I items u € X with largest w;(u) > 0.

Compute
c(u) = Z w;(u) + Z w;(u) — k- u.

1€X (u) 1€X(u)

return X = X (upayx) With ., = arg max,ep c(u).

Yet, the problem can be solved in polynomial time by Algorithm 5.1. This algorithm exploits
the structure of an ILP-formulation of the maximum weight set problem. Details are provided
in the proof of Theorem 5.4.2.

Theorem 5.4.2. Let X be a set of items, w, be the integer nominal weight and w; be the
mazimal deviation for all i € X and ', k € N. Then Algorithm 5.1 computes a mazimum

weight set X; in O(|X[?).

Proof. Let X ={1,...,n'} be some item set with nominal weights w, and maximum deviation
values w; for all i € X. Let I' and k£ be some positive integers. We will prove that Algorithm
5.1 computes an optimal solution of an IP-formulation of this maximum weighted set instance.
We start with the following IP

!

max (2": w;y; — max i(gz + ﬁ)iyi)zi)
i1 i=1

Xn:yi <T

i=1

yi€{0,1}Vie X

d um<k (5.13)
=1
2z €{0,1}Vie X (5.14)

The variables y; represent the choice, whether an item ¢ is in the maximum weight set, and
z;, whether the item ¢ is recovered. Given a vector y, the remaining [LP can be solved as LP,
relaxing the integrality constraint. Since the matrix is totally unimodular the optimal value
of the ILP and the LP are the same. By dualizing it, we obtain

minku+Zvi
i=1
0,v;, >0 VieX.

U+ v;

>
uw >

110 Chapter 5. A Recoverable Robust Knapsack Problem

The dual variable u corresponds to constraint (5.13) and v; to the upper bound on z; for
i =1,...,n'. Replacing the primal version by the dual, we get a new ILP-formulation of the
maximum weight set problem

(ILP™) maxnzwiyi —k-u— "Z v;
i=1 i=1

Z%SF
i=1
Wiy —u—v < —w, VieX
u >0
y; € {0,1} Vi € X.

We parametrize (ILP*) by the value of u and denote with z(u) the optimal value. In the
remaining proof we will first show that z(u) can be combinatorial computed for a given u, as
described in the subroutine of Algorithm 5.1. Secondly we prove that the optimal value of the
(ILP*) is given by z(u*) = maxyep z(u) with U = {w; + w; | i € X} U{w, | i € X} U{0}.
Let ' > 0 be some value. As in Algorithm 5.1 we define w;(u") = min{w@;, —w, + '} for all
ie{l,...,n}, X () ={i € X | wy(v) <0}, X(u) C X\X («) with |[X(«')] <T and
> iex () Wi(u') maximal, and

c(u') = Z w;(u') + Z wi(u') — k-

1€X (u') ieX~(u)

We show z(u') = c(u’). Let yf € {0,1} and v} > 0, for all i € X, be an optimal solution
of the (ILP*) with v = «/. If —w, +u' < 0 for some i € X, w; -y} — v = —w, + ' due to
the coefficients of y' and v} in the objective. If y* =1 for an item x with —w_ + v’ < 0, the

solution
B {0 1= _ {—wx%—u/ 1=z
Y, = and v; =

(2 . .
y; otherwise vy otherwise

is also an optimal solution. Therefore, we can assume that w.l.o.g. y* = 0 for all i € X~ (u/).

Let X(y*) = {i € X | yf = 1}. Then X(y*) € X\X (u) with | X(y*)] < T. If yf =0 for
i€ X\X " (u), then v} =0. lf yf =1, W; — v; < —w; +u'. Hence, if w; > —w, + «’ for some
ie X, v =w;+w, —u and v] = 0 otherwise. Therefore,

Z(q/) — zn:ﬁ)zy: _HZU: N
=1 i=1
- Z (—w; +u') + Z min{ —w, + ', w;} — k -/

i€X () i€X (y*)

= Z w;(u') + Z wi(u) — k-
i€X—(w) i€X (y*)

< Z w;(u') + Z wi(u') —k-u = c(u).
i€X—(u) i€X (w)

Thus, to solve the (ILP*) we only need to find the optimal value of u.

5.4. T'-Scenarios 111

We will show that there always exists an optimal solution (u*, y*, v*) of the (ILP*) with u* € U,
where the set U consists of the values 0, w,, w, + w;, 1 € X.

Let (u*,y*,v*) be an optimal solution to the (ILP*) with v* ¢ U. Then, we consider u € U
with u = argmin{u*—u | v € U,u < u*} and @ € U with @ = argmin{u—u* | u € U,u > u*}.
Define X = {i € {1,...,n'} | w;(u*) < i} and r = | X|. Since u* ¢ U, —w, +u* # {1, 0} for
i=1,....n,and fori € X

wilw) + (" —) = w,(u*) = w,(@) + (@).

Ifr <k,
c(u*) = w;(u*) + wi(u*) — k- u*
e X (u*) 1€X (u*)
- Zw,(g)—l— (w)+7r - (v —u)—k-u"
i€ X (u) i€X ™ (u)
=c(u)+ (r—k)(u —u) < c(u)
Otherwise,
c(u*) = w; (u*) + wi(u*) — k- u*
1€X (u*) 1€X ™ (u*)
= w;(T) + wi(@) —r-(u—u*) —k-u*
i€ X () ieX~ (u)

Hence, there exists always an optimal solution (u*,y*, v*) with u* € U. Since U contains at
most (2| X| + 2) values, Algorithm 5.1 runs in O(| X |?). O

5.4.2. A Polynomial Size ILP-Formulation

In this subsection we present an ILP-formulation for the (k, ¢)-rrKP problem with I'-scenarios
and p = p = 0. Note that in this case it is not beneficial to add any items to the recovered
solution. As before the binary variables x; € {0,1}, i« = 1,...,n, model the first-stage solu-
tion X as subset of the n items in N = {1,...,n}, i.e.,, i € X if and only if z; = 1. Due to
the restriction of p = p = 0, the profit for any feasible solution X C N equals »_,_, p? and is
expressed by the linear objective function Y | pYx;. Considering the feasibility, any 0-1 point
x satisfying the following inequalities represents a feasible first-stage solution:

Zw?xi < (5.15)
i=1
Zw xz+r§1§§<2wzxz—ryg§<(2wixi—l— Z zb,)) <ec. (5.16)
i=1 IX|<0 jeX lYI<t €Y ieXny

We focus on the second inequality and show in the remaining part how to linearize it by using
the results of the previous Section 5.4.1.

112 Chapter 5. A Recoverable Robust Knapsack Problem

Let us define U = {w, + w; | i € N} U{w, | i € N} U{0}, w;(u) = min{—w; + u,w;} for
i=1,...,nandu e U, X (u) ={i € N |w;(u) <0} and u € U as in Algorithm 5.1. Hence,
inequality (5.16) is equivalent to

n
2%1’@- + r&agc(Z wi(u) - x; —k-u+ max sz(u) x2> <e,
1=

1€X (u) IX/|<T i€X

as shown in the proof of Theorem 5.4.2. This inequality can be transformed into the following
set of constraints

waﬁ— Z w;(u :l:z—l-maxsz iyl <c+kuVuelU

1€X~

iyygr VuelU

y*€{0,1} Vie N,YueU.

We dualize the last part, which is totally unimodular, and obtain the following linear ILP

waz%— Z wi(u xz+mm<F §“+Zé’“><c+k u YueU

i€eX—
40 >wi(u) -z, YVie NVuelU
£",0 >0 Vie N,YVueU.

with new (dual) variables £* and 6}, uw € U, i € N. Combining this set of inequalities with

1)
the objective function, we obtain

n
max Zp?xi
i=1
n
Z wlz; < c°

waz—l— Z wi(u) - x; + - +Z€“ k-u<c YueU

ieX—(u) i=1
'+ 0 —wi(u)-x; >0 Vie N,VueU
.0 >0 Vie N VueU

z; € {0,1} Vi€ N.

The size of this ILP depends on the number of different values of w,,w;, i = 1,...,n, but does
not contain more than (1 +n) - (2n + 1) + n variables and 4n + 3 inequalities.

5.4. T'-Scenarios 113

5.4.3. Extended Cover-lnequalities

As already described at the beginning of Section 5.2.2, the concept of extended cover inequali-
ties is quite efficient to solve the knapsack problem. We will introduce a version of recoverable
robust extended cover inequalities for I'-scenarios, which dominate the inequalities introduced
by Klopfenstein and Nace |[76] for the robust case. Furthermore, we give an optimal pseudo-
polynomial algorithm computing these inequalities instead of an ILP-formulation as in [76].

Let N = {1,...,n} be a set of n items, ¢ be integer first-stage capacity, w) be integer first-
stage weights, w, be nominal weights, w; maximal integer deviations, ¢ € N, and k,¢ € N the
recovery parameters. In the following we denote with w; = w, + w; the highest weight of item
i € N. The (k,{)-recoverable robust knapsack polytope of a I'-scenario set Sr is the convex
hull over all valid first-stage solutions for I' € N i.e.,

Kr(k): = conv{x e {0,1}"| Zw?xi <" and min Z wir; < ¢, VS € SF}

ieN ITI<k jeN\T

Similar to [76] a quadruple (C, K, J, K5) is an rtKP cover with C C N, K1 C C, J C N and
Ky, C Jif CUJ is a cover according to the first-stage weight constraint, i.e.,

Z w?260+1,

ieCuJ
or if

1. JNnC =0
w; > w; for all i € K and j € C\K;
w;, > w; for all i € K; and j € J\K,
w; > w; for all i € Ky and j € J\K,
w; > w; for all i € Ky and j € C\K;
K| + | K| =k
|J| <T

® NS e WD

S owi+ Y Wze+l

1€C\K1 1€J\K2

with w; = w, + w;, © = 1,...,n. As in the discrete case, we already fix the recovery action
in the definition of an rrKP cover. Due to the conditions (2)-(5) the items in K; and K, are
recovered. Condition (8) guarantees that the remaining items in the cover exceed the knapsack
capacity.

An rKP cover (C, K7, J, K3) defines an rtKP cover inequality

d m<|CuJ-1

1€(C,J)

The following theorem shows that these inequalities are feasible and describe all feasible first-
stage solutions.

114 Chapter 5. A Recoverable Robust Knapsack Problem

Theorem 5.4.3. Let x be a 0-1 point. Then x € Kr(k) if and only if x obeys all cover
inequalities.

Proof. (=) Obviously any x € Kr(k) obeys all irKP cover inequalities derived from an rrKP
cover based on the first-stage weight constraint. Let us therefore assume that there exists an
rrKP cover (C, Ky, J, Ky) with

JjEC\K1 JEJ\K2

such that
Y m>|CuJl-1.

1€eCuUJ

According to this 1rTKP cover, we define a scenario S with its weight function w® in the
following way:

ws(z') _ {wi ifieJ

w, otherwise.

Since |J| < T, this weight function is feasible in Sp. But

E w; Ty — max wix; > E wir; — max w;
KCN

C KCCuJ
iEN K<k i€CUJ |K|<k
= E wi + E w? >c+1,
i€C\K1 i€J\K2

a contradiction to z € Kr(k).

(«<:) Since z satisfies all rrKP cover inequalities derived from an rrKP cover based on the
first-stage weight constraint, x obeys the first-stage weight constraint.

We now assume that there exists a vector z € {0,1}" which satisfies all rrKP cover in-
equalities and yet there exists a scenario S € Sp such that w®(T,) — w®(max, Ty, k) > c+1
with T, ={i e N |x; =1} Let K = argmaxxcr, w’(K). We define the sets

|K[<k
Ki={ieK|w=w}, Ko={i€eK|w’=w;}, J={i€ N|w’=1w;andx; =1} and
C={ieN|w’=w,and z; =1}. Obviously (C,K;,J,K;) is an 1rKP cover with
w(C\K1) —w(J\K3) > ¢+ 1. Its 1tKP cover inequality demands djer, v < || — 1, a
contradiction. O

In |76] Klopfenstein and Nace propose the following method to extend an rrKP cover D =
(Ca K17 J7 KQ):

CuJu{ie N |w;, > max w,} if |C| <T
Jje(CU)
_() — JEK UK
CuJu{ieN|w, > max w;, w; > max w;} if |[C]|>T+1.
JjE(CUJ) JE(CUJ)
JEK UKy JgK UKo

This set of extensions can be strengthened in the following way: Add all items, whose lower
weight is greater than or equal to the maximum lower weight in C\K; and whose higher

5.4. T'-Scenarios 115

weight is greater than or equal to the maximum weight in J\ K5. Formally, we define an rrKP
extension E(C, Ky, J, Ks) by

E(C,K\,J,K;) == {i € N |w; > max w; and w; > max w;}U{CUJ}.

JEC\K1 JEJ\K>

This rrKP extension determines the rrKP extended cover inequality

> m<lcud -1

ieE(CvKle]vKQ)

The following example shows a case in which the rrKP extended inequalities based on
E(C, Ky, J, Ks) dominate the rrfKP extended inequalities defined by E(C, K1, J, K3) even for
the robust case k = 0.

Example 5.4.4. Consider the robust KP instance with I-scenarios for N = {1,2,3}, w =
(5,6,5), w = (6,7,8), [=1, and ¢ = 11 without any first-stage weights. The following table
contains all rrKP covers for I" = 1, their extensions according to Klopfenstein and Nace [76]
and inequalities. Since no recovery action is allowed, we drop the sets K; and K, in our
notation.

CuUJ | E(C,J) | E(C,J)-inequality

{1a2} {172} 1+ T < 1
{1a3} {173} 1+ w3 < 1
{2a 3} {273} ro + 23 <1

Table 5.6.: rrKP covers and their extensions E(C, J).

Yet, for the cover C = {1} and J = {2}, the 1rKP extension is E(C,.J) = {1,2,3} and yields
the inequality x1 + 29 + 23 < 1. H

In the following part we introduce a method to compute violated rrKP extended cover in-
equalities via an ILP-formulation or a dynamic program in pseudo-polynomial time.

Separation of RRKP Extended Cover Inequalities The objective in the separation prob-
lem is to decide for a given non-integer point z* € [0, 1]", whether there exists a violated
rrKP extended cover inequality. In order to find such a violated inequality according to the
first-stage constraint, we can either use the methods proposed in literature (e.g. [66, 82]) or
the methods described for the discrete case in Section 5.2.2. We will therefore focus on the
problem to find a violated rrKP extended cover for one of the scenarios using again integer
programming.

Let N be a set of n items. For every item ¢ € N we introduce five different binary variables
to represent a cover and its extension, namely

y, withy =1ifie C\Kj,

y;, withy, =1ifie J\K,,

z; withz; =11if7¢€ K,

Z; withz; =11ifi e Ky and

a; with o; = 1 if 7 is part of the extension but not in the cover.

116 Chapter 5. A Recoverable Robust Knapsack Problem

Since any item can take at most one of these five states, y+y+tzt+zZito <1 for every
1 € N. Furthermore, the associated weight of the not recovered items needs to exceed the
knapsack capacity, i.e., > ..y wiy, + Y ien WiY; = ¢+ 1. Since the recovery action has to
be fixed, >, .y 2; +Z = k. Also the set of variables taking the weight w; is bounded by I,
reflected in), v Z +w; < I'. Finally, the lower weight of any item in K has to be greater
than or equal to the associated weight of any item in C\ K; or J\ K,. Similar conditions need
to be fulfilled by any variable with Z; = 1 being part of K5, ¢ € N. In summary we obtain the

following ILP
max Z(:cj Dy, +y;+2+7) + Z e’

iEN iEN
wy, + Y Wy > c+1
1EN iEN
Z(§i+zi) =k
iEN
> @+m) <T
iEN
ai+yi+yi+§i+zi§1 VieN
gj+§,~+ozi§1 Vi,je N 1w, >w,
y]—l—gz—l—ozzgl Vz,jEN@]>Q,
@—I—Z%—a,ﬁl ‘v’z’,jeN:@j>m~
gj+§i+@i§1 Vi,jENij>wi

a27g17yzuézazz {071} Vi € N.
The computed rrKP extended cover with C' ={i € N |y +z, =1}, Ky ={i € N | z; =1},
J={ieN|y,+z =1} and Ky = {i € N | Z; = 1} determines an rrKP-extended cover in-
equality which is violated by x* if and only if the value of the ILP is greater than —1.

m

We finally present a pseudo-polynomial algorithm for solving this separation problem. Let
U=ur{w}, U=Ur{w;} and D=3, yw;. Foreveryt=0,....,n,d=0,...,D, vy =
0,....1,k=0,...,k,w € U, and @ € U we solve the problem of finding an rrKP extended
cover within the first ¢ items, such that at most v items are in J, x items are removed and
the remaining items have a weight of d. Furthermore, the items in C'\ K; have to obey w, < w
whereas any item in K7 satisfies w, > w. Similar, w; < @ for all items in J\ K> and w; > @
for all items in K5. We thus consider the following function with N(¢) = {1,...,t}

fi(t,/{,y,d):maxZ(x:—l)(gz%—@%—gz%—z Zxaz

iEN(t) iEN(t
Z wyy, + Z wy; =d
1EN(t 1EN(t)
Z ZitZi=kK
1EN(t
Z yz + ZZ -
1EN(t)

Y +Titntate <l Vi=1. ..t
y, =0 Vi:iw, >w

y, =0 Vi:w, >w

Zi—ai=0 Vi:w <o

5.5. Conclusion and Open Issues 117

The optimal solution to the separation problem is given by

max_ [9(n,k,T,d)

wel,wel

and for f¥(t, k,7,d) with £ = 1 we can obtain the optimal value by considering the following
cases:

Case 1: if w, <w,d=w, and k =0, then fZ(t, k,7,d) = (z] — 1) with y, =1

Case 2: ifw; >w,d=0and k=1, then fJ(t K,7,d) = (] — 1) with z; =1

Case 3: ifw, <@, d=w, k=0andy > 1, then f&(t,k,7,d) = (z] — 1) with g, =1
Case 4: ifw, >w,d=0,xk=1andy > 1, then f&(¢ K,7,d) = (z] — 1) with Z; = 1
Case 5: if w, >w, W, >w,d=0, k=0, then f¥(t,x,7,d) = 2] with oy =1

Case 6: otherwise, fJ(t, x,7,d) = —oo.

Adapting these case distinctions for general values of ¢, x,y and d, we receive the following
recursive formula

fg(t, K,7,d) = max{ g(t 1,K,7,d),
fot—1,k,7,d—w,) + (x; — 1) if w, < w,
fot—1,k—1,7,d) + (z; — 1) if w, > w,
fot—1,ky—1,d—w) + (z; — 1) if w; <,
fot—1,k—1,yv—1,d)+ (2 — 1) if w, > w,
fot—1,k,7,d) + if w, > w and wW; > wW}.

The validation of this formula can easily be achieved via a proof by contradiction. The run-
time of the pseudo-polynomial algorithm obtained by the recursive formula lies in O(D - n®).

5.5. Conclusion and Open Issues

In this chapter we studied the (k, £)-recoverable robust knapsack problem with different types
of scenario sets. For discrete scenarios, we obtained in Subsection 5.2.1 similar complexity
results as for the robust knapsack problem. If the number of scenarios is constant, the problem
is weakly NP-hard and can be solved optimally in pseudo-polynomial time. However, the total
cost for a given first-stage solution cannot be computed efficiently. If the number of scenarios
is not constant, the problem becomes strongly NP-hard. The lower bound on the best possible
approximation factor depends on ¢, the number of items that might be added in the second
stage. Ome question is whether there is a lower bound that is independent of ¢. Another

challenge is to find an approximation algorithm with a constant approximation factor for
(> 1.

Next to the complexity status, we considered the polyhedral structure of the (k,¢)-rrKP
problem. To this end, we adapted the well-known cover inequalities and extended cover
inequalities to the (k,¢)-rrKP problem. In our computational study we showed that these
inequalities improve the bound obtained by the naive linear program relaxation of the integer
program. One topic of future research is to adjust further inequalities to the (k,¢)-rrKP
problem.

118 Chapter 5. A Recoverable Robust Knapsack Problem

There are several open problems concerning the (k, £)-rrKP problem with I-scenarios. A first
one is to find an IP-formulation that is polynomial in the size of the input, i.e., the number of
items. So far, we just introduced a formulation for the special case where no scenario profit
functions are given (Section 5.4.2). Furthermore, the complexity status is still open. The
problem is obviously weakly NP-hard, but it might even be strongly NP-hard. One could
also try construct a pseudo-polynomial algorithm. A different task is to test the impact of our
extended cover inequalities on the upper bounds for the total profit via an LP-relaxation, in
a similar way as in the discrete scenario case. Furthermore, it could be interesting to extend
different inequalities to strengthen the polyhedral formulation of the (k, ¢)-rrKP polytope.

So far, we considered rather theoretical problems. However, our investigation was motivated
by the admission control problem from telecommunication. Therefore, we are on the one
hand interested in modeling I'-scenarios, such that they reflect the actual data setting and,
on the other hand, in testing how our solutions perform compared to a robust approach.
Furthermore, to extend the modeling power of I'-scenarios, we want to adapt the Histogram
model of Bienstock |16]. For a special nested setting of bands, we think that the robust
problem is solvable in polynomial time. It remains open how the bounds can be defined to
represent a real data set. Another open question is whether we can extend our results to the
(k, £)-rrKP problem with Histogram scenarios.

6. Recoverable Robust Train
Classification

An essential task in railway optimization is train classification: according to a classification
schedule incoming trains are split up into their single cars and are reassembled to form new
outgoing trains. Often such a prepared sorting schedule becomes infeasible when the incoming
trains are subject to delay and arrive in an unexpected order. Classification methods applied
today deal with this issue by completely disregarding the input order of cars, which presents
robustness against any amount of disturbance but also wastes the potential contained in an a
priory knowledge of the input.

We introduce a new method that provides a feasible sorting schedule for the expected input
and allows to flexibly insert additional sorting steps if the schedule has become infeasible
after revealing the disturbed input. By excluding disruptions that almost never occur from
our consideration, we obtain a classification process that is quicker than the current railway
practice but still provides robustness against realistic delays. In fact, our algorithm allows a
trade-off of fast classification and high degrees of robustness depending on the respective need.
We further explore this flexibility in experiments on real-world traffic data underlining that
our algorithm improves on the methods currently applied in practice. This chapter is based
on joint work with Jens Maue and is partly published in [24].

6.1. Introduction

In freight railway, cars are carried from different origins to different destinations in a given
network. According to their origin and destination a route for each car is fixed and trains
composed of several cars and a locomotive are formed along these routes depending on the
demand. In general a car is part of several different trains until it reaches its final destination.
At certain stops, so-called classification yards, incoming trains need to be sorted to form new
outgoing trains. With increasing world-wide freight traffic, operating freight trains efficiently
becomes more and more important, and reducing the dwell time of cars in railway yards is
one of the important factors to improve freight service profitability.

Train classification problems have been studied under different assumptions on the physical
layout of the shunting yard, elementary sorting operations, constraints on the classification
schedules and objective functions (e.g. [34, 38, 39, 49, 57]). We focus on shunting over a hump
of ¢ incoming trains to form a single outgoing train as described in Jacob et al. [63]. In that
case the shunting yard consists of incoming tracks, a hump track, a hump, several switches
and classification tracks (see Figure 6.1 (a)). The incoming trains are collected at one of the
incoming tracks in their arrival order (see Figure 6.1 (b)). From there all trains are brought
to the hump track, where they are disconnected and slowly pushed over the hump to roll to
their destination track, the classification tracks. This operation is called a roll-in. A hump is
a small hill such that the cars are accelerated by gravity. The guiding of each car is done by

120 Chapter 6. Recoverable Robust 'Irain Classification

a series of switches. Normally it does not suffice to roll-in the cars just one time to form the
desired outgoing train. Hence, all cars of one track are coupled and pulled back to the hump
track by a shunting engine (pull-out) where a further roll-in is performed. A pair of pull-out
and roll-in operations is called a (sorting) step and an initial roll-in followed by a sequence of
h sorting steps is called a classification schedule of length h. The number of steps h essentially
determines the time required to conclude the sorting procedure. Hence, train classification
aims at transforming the incoming trains into the desired outgoing train with a small number
of sorting steps (see Figure 6.1 (c)).

incoming Tg@

tracks | 0

T8

| O

—1

O

T,
N hump 'm
track ~J |~
|~ s
hump 1Ty T~

N =
cn . [|
classification T 0
tracks o
O

(a) (b) (c)

Figure 6.1.: (a) A classification yard consists of incoming tracks, a hump track, a hump and
classification tracks. (b) The incoming trains 77, T, and T3 are collected at one incoming track.
(c) After several sorting steps the trains are reordered to form the outgoing train 7" at one
classification track.

The methods for train classification most-commonly applied today and widely studied are
triangular and geometric sorting [33, 47, 79, 86, 91]. Classification schedules constructed in
these ways do not depend on the order of railway cars entering the classification process.
In the case of an unknown input geometric sorting minimizes the number of sorting steps
and triangular sorting is optimal for restricting the number of roll-ins per car to three |63].
However, neither method exploits the situation of a partially ordered input sequence and thus
generates more sorting steps than necessary.

To take advantage of information about the input order a new classification algorithm was de-
veloped by Jacob in [62] and Hansmann and Zimmermann in [57] independently. This sorting
method derives optimal schedules w.r.t. the number of sorting steps in case of unrestricted
track length and an unbounded number of classification tracks. A round-robin variation solves
the classification problem if the number of tracks is restricted. Yet, if the length of the tracks
is bounded the problem is strongly NP-complete [62] but can be 2-approximated [63|. Recent
overviews of train classification can be found in [53] and [57].

Often inbound trains are subject to delay, so we might be faced with an unexpected inbound
order of trains and an optimal classification schedule according to the expected order does not
achieve the desired result. Since changes during the process of scheduling are time consuming, a
certain amount of robustness is crucial for classification methods to work in practice. Providing

6.2. Encoding Classification Schedules 121

strict robustness, however, wastes a lot of potential to disruption scenarios that almost never
occur in practice. We deal with this dilemma by regarding realistic scenarios of delay and
present optimal robust solutions w.r.t. a limited amount of recovery in case of disturbance.
We call such solutions recoverable robust.

The general concept of recoverable robustness was introduced, for example, by Liebchen et
al. [81]. This method is applied to several railway-related optimization problems such as
rolling stock scheduling by Cacchiani et al. [25] or timetabling by Cicerone et al. [30, 31]. A
first attempt to study recoverable robustness for train classification is made by Cicerone et
al. |29, 30] for a single inbound and outbound train. Besides the situations of strict robust-
ness and complete recomputation from scratch, which are more of theoretical interest, they
consider a recovery action that allows completely changing the classification instruction for
one set of cars that was planned to run through the same series of tracks. The most relevant
disturbances in their setting are one additional car in the input and one car occurring at a
different position than expected. Furthermore, they deal with the problem of a single classifi-
cation track becoming unavailable before the classification starts. This may, for example, be
caused by a faulty switch.

In our model we focus on the most relevant reason for disruptions, which is delayed trains.
All possible settings of disturbed inbound orders are given by a set of scenarios S. Each
scenario S € § defines a modified instance, which is a permutation of the original inbound
train sequence. In a first stage we fix a feasible schedule for the original instance, which is called
a first-stage solution. This schedule may be infeasible for a modified instance corresponding
to some arising scenario. In response to the modified input, we are prepared to insert up to
k additional sorting steps after the pth step of the first-stage solution, providing a recovered
schedule. A first-stage solution is called recoverable robust if there exists a recovered schedule
for every scenario S € S. Given a sequence of £ inbound trains, a specification of the outbound
train, and a set of scenarios S, the recoverable robust train classification problem is to find a
recoverable robust, feasible first-stage solution of minimum length.

In the next section we will introduce the train classification problem with its terminology
and notation as proposed in [63|. Section 6.3 contains a more detailed description of the
recoverable robust train classification problem, first properties of an optimal schedule and a
generic algorithm for computing such a schedule. Depending on the scenario set, the generic
algorithm may have exponential run-time. We further prove that, for every constant k£ >
1, finding a recoverable robust schedule of minimum length is an NP-hard problem. As a
generalization of the scenario set of one car in unexpected position introduced in [29], we
investigate the practically relevant scenario set of delaying up to j arbitrary trains. For this
setting the problem can be solved in polynomial time as shown in Section 6.4. Furthermore,
we evaluate our new algorithm on real-world traffic data for various parameter values k, p,
and j. It turns out that our algorithm yields very short schedules while providing a fair degree
of robustness. In the last Section 6.5, we consider the setting in which cars are not unique.
This allows a more flexible order of cars in their outbound trains. Nevertheless, the problem
can be solved in polynomial time if, for example, the set of scenarios is constant.

6.2. Encoding Classification Schedules

We start with an introduction of the terminology and notation to describe a feasible train
classification schedule based on the notation of [63|. In this classification setting every car is
represented by a positive integer 7 € N and a train 7' by a sequence of cars T' = (1y,...,7),

122 Chapter 6. Recoverable Robust 'Irain Classification

where ¢ is called the length of 7. In our model, a set of ¢ inbound trains needs to be sorted
into one specified outbound train (1,...,n). We assume that the concatenation of the inbound
trains is a permutation of (1,...,n) and in all sections except the last one that all cars are
distinct. Furthermore, the number of available classification tracks and their lengths are
unrestricted. Note that the problem setting for several outbound trains remains the same,
since we can compute for every single outbound train a classification schedule and due to the
property of the classification tracks just apply them simultaneously.

A sorting procedure consists of a sequence of alternating roll-in and pull-out steps. In order
to specify a single pull-out step, it suffices to specify the classification track from which to pull
out all cars. Since the number of tracks is unrestricted, the number of actually used tracks is
identical with the number of sorting steps h. The track pulled in the kth step is referred to by
Oy, k=0,...,h—1. Note that w.l.o.g. always all cars on a track are pulled out. The journey,
a car 7 takes through the classification yard, can be encoded by bitstrings b™ = b} _, ... 0.
The car is pulled out in the kth step if b = 1. After such a pull-out, the car is sent to track 6,
with ¢ = min{ilk < i < h, b] = 1}; if b = 0 for all ¢ > k, it is moved to the destination
track of its outbound train. A classification schedule of length h can now be represented by a
(n x h) binary matrix, where each row b describes the journey of car 7 € {1,...,n}, and each
column a sorting step. The classification schedule is read from right to left (see Figure 6.2).

B T
1 0 13
1 0 0[Q %
11 0@
1 0 13
1 1 1 [E
05 0y 0, 2] [5
(1] [4] [2] [1][4]

O3 0y 01 63 O 01 63 62 01 03 6 61 605 62 61 65 6, 6,

(a) (b) () d) (o) (f) (8)

Figure 6.2.: The schedule B represents a sorting procedure to order the incoming train 7' =
(5,2,4,1,3) with two sorting steps. Note that due to the 3th column b5 all trains are collected
at track 3. In general this last sorting step is left out in the description of a schedule.

Before we explain when such a (n x h)-matrix is a feasible classification schedule, we set some
notations for bitstrings. We will refer to the binary representation of a decimal integer j > 0
by [j]2- Given any bitstring b = by_1 ...y of length h, let num(b) denote the integer number
represented by b, i.e., num(b) = Z?:_(]l 2b;. For two bitstrings by, by we define b; < by if and
only if num(b;) < num(by).

In |63] Jacobs et al. showed the following property of a schedule B for sorting n cars to be
feasible: two cars 7 and 7 + 1 must be assigned bitstrings " < b, 7 € {1,...,n —1}. If
these cars occur in reversed order in the inbound sequence, b™ < b™ is required to swap their
relation during the sorting process; in that case the tuple g = (7,7 4+ 1) is called a break.
According to this observation, they present the following procedure to obtain an optimal
classification schedule: let 8y = (71,71 + 1),..., Bx = (7w, Tut1) be the set of breaks with 7, < 7;
fori < j,i,5 € {1,...,Kk}, according to the concatenation of the train sequence 71, ..., 7T, and
the specifications of the outbound train. Add 5y = (0,1) and B.11 = (n,n+ 1) as dummy
breaks and define the jth chain [7;,7;41] to consist of all cars 7 with 7, +1 < 7 < 7;4; for

6.3. Recovery by Additional Sorting Steps 123

j €10,...,k}. The schedule B with ™ = [j], for all cars 7 in the jth chain, j € {0,..., k},
is a feasible train classification schedule with minimal length h = [log,(x + 1)]. Hence, the
length of a classification schedule depends only on the number of breaks.

Figure 6.2 shows a classification process and the corresponding encoding: cars 1 and 2 arrive
in reversed order as cars 3 and 4 and cars 4 and 5. These three breaks 5, = (1,2), 52 = (3,4)
and (3 = (4,5) define the chains [1], [2,3], [4] and [5] and induce the classification schedule
bt =(0,0), v* = (0,1), v®> = (0,1), b* = (1,0) and b° = (1,1) (see Figure 6.2 (a) and (b)). In
(c) the cars are the first time pushed over the hump and according to the schedule car 1 is
guided to the final track 3, whereas cars 2, 3 and 5 visit first track #; and car 4 track 6,. In
the following pull-out step (see Figure 6.2 (d)), cars 2, 3, and 5 are coupled and pulled to the
hump track again. From there cars 2 and 3 are led to track #3 and car 5 is led to track 6, and
finally in the second sorting step car 4 and 5 are pulled out and guided to track 65.

6.3. Recovery by Additional Sorting Steps

In this section we introduce the recovery strategy of inserting a limited number of additional
sorting steps to a classification schedule as a response to delay and start with some further
observations on considered disturbances.

As already mentioned, delay of trains is the most common source for variations in the inbound
train sequence. We model these uncertainties by a set of scenarios S, where each scenario
defines a permutation of the original inbound train sequence. A break [is induced by S if
B is a break in the modified instance corresponding to S. In order to distinguish between
breaks for the expected order of inbound trains and a modified order, we call the first ones
original breaks and all other breaks potential breaks. For any scenario S, X* denotes the set
of potential breaks induced by S. Note that this set is uniquely defined for every scenario
S € § and thus we will repeatedly regard these sets of breaks without considering the actual
underlying scenario. In particular, we will describe sets of scenarios implicitly by providing
the set of induced breaks of every scenario.

In the train classification process the planed schedule B becomes infeasible if and only if the
revealed scenario S induces a break § = (7,7 + 1) which is unresolved by B. A break [
is called unresolved w.r.t. S if 8 is induced by S and b™ = b71. With the recovery action
of inserting up to k additional sorting steps to the first-stage solution, £ € N, we seek to
obtain a feasible schedule for the modified instance. The classification process according
to the originally planned schedule may have started when the delay of a train is realized.
Furthermore, distributing the recovered solution, i.e., the changed schedule, to all people
involved in the operation takes some time depending on the available communication channels.
For these reasons, inserting additional sorting steps is only allowed after an offset of p steps,
p € N. Since every car may be affected by the additional sorting steps, we assume that all
cars are collected at the (p+ 1)th track. From that position the k additional sorting steps are
performed before the remaining schedule is executed.

In terms of classification schedules expressed as binary matrix this means the following: given
two parameters p > 0 and £ > 0 and a classification schedule B of length i with b, =1, B is
to be recovered by inserting up to k£ additional columns with indices greater than p+ 1. Since
every car visits the (p 4+ 1)th track, the (p 4+ 1)th column of every feasible schedule equals the
1-vector. For the sake of simplicity we will omit this sorting step in the remaining part and
formalize the concept in the following definition.

124 Chapter 6. Recoverable Robust 'Irain Classification

Definition 6.3.1. Let B = (by_1,...,bp) and B" = (bj,_,,;,...,by) be two classification
schedules for n cars of length h and h + 7, 7 > 0, respectively. Let further p > 0 and £ > 0.
The schedule B’ is called a (p, k)-extension of Bif j <k, b; =0, forall 0 <i < p and b,_; =]
forallp—1+7<:<h—-1+7.

The notion of (p, k)-extensions yields a natural concept of recoverable robustness as stated in
the following definition.

Definition 6.3.2 (Recoverable Robust Train Classification Problem). Let T7,...,7; be a
sequence of ¢ inbound trains and S be a set of scenarios. Each scenario defines a permutation
of the original train sequence. A feasible classification schedule B is called recoverable robust
if, for every scenario S € S there is a (p, k)-extension of B that is feasible w.r.t. S.

Our objective is to find recoverable robust classification schedule of minimum length. In order
to specify when a given schedule is recoverable robust for a given set of scenarios, we use the
notion of a block of a schedule. A block basically is a maximal set of bitstrings representing
integers between two powers of two.

Definition 6.3.3. Let B be a schedule of length i for an inbound train sequence of n cars,
and p > 1. For any bitstring &/ of B, bj_,...b) is called the leading part of b/, denoted

by b>p, and bA bj the trailing part of B, denoted by bj< A subset of A consecutive
bitstrings ¢/, .. b7+’\ L of B is called a block of B if their leading parts satisfy b’>p < b>p,

bl, = bLL* for All 1< 2 <A — 1, and 62" < b2t while A is called the size of the block.
Furthermore, the jth car of the inbound train sequence is called the head of the block.

The following lemma states necessary and sufficient conditions for the existence of (p, k)-
extensions. The second part of its proof presents a method to derive a (p, k)-extension for a
given scenario S making use of the block structure of the original schedule. We will refer to this
construction by canonical recovery and call the resulting schedule a canonical (p, k)-extension.

Lemma 6.3.4. Let T1,...,T; be a sequence of inbound trains, B be a feasible classification
schedule, S be a scenario, and p,k > 0. Then, there exists a (p,k)-extension of B that is
feasible for S if and only if the number of unresolved breaks w.r.t. S does not exceed 2F — 1 for
any block of B.

Proof. (=): Let X' = {(m,m+1),...,(r, 7 + 1)} be the set of unresolved breaks w.r.t. S
within a block of B. Assume t > 2¥ — 1. For every (7, 7; + 1) € X', schedule B satis-

fies b = b7 so, for every (p,k)-extension B = bp—14k...bo of B, the leading part and
the trailing part of b and b“+1 are equal. For B to be a valid schedule w.r.t. scenario S,

num(bp b < num(bﬂ Lig---bp) for every unresolved break (7,7 +1), 4 =1,... ¢
Since also num(l; e) > 0 and further b} ... by > b\ ... b7 must hold for
every i = 1,...,t — 1, we obtain bT”llJrk b;t“ >t > 281, Which is a contradiction. Hence,

there is no (p, k;)—extensmn of B that is valid w.r.t. S'if ¢t > 2’“ — 1.

(«<): Let k denote the number of blocks of B, 7; the head of the ith block, and \; the size of
the ith block, i = 1,..., k. Let further X] = {(7{,7{ +1),..., (7,7 + 1)} € X’ be the subset
of unresolved breaks of the ith block with ¢; denoting their number.

We extend B in the following way to a schedule B': for the ith block, we put b7 ;... b) = [j]2
for every car 7 with T;f +1<7< T;+1, where Toi 4+ 1 := 7; is the head and Tti“ =T+ AN —1
the last car of the ith block. If |[j]2| < k, we simply add leading zeros to obtain a bitstring of
length k. Since j < t; < 28 —1, also |[j]s| < k and the construction results in a (p, k)-extension
of B.

6.3. Recovery by Additional Sorting Steps 125

It remains to show that this schedule B’ is feasible w.r.t. S. First, if (7],7/ + 1) € X/, then
b5 = b% ! in the original schedule B. The construction yields

b by == s < [fla=b7"", .. b7

p—l+k"'P_[j]2<[j]2_p—1+k:"'p7
so b < b5 holds for B'. Second, if (7,7 + 1) € X \ X', where X denotes the set of
all breaks induced by S, then 6 < b + 1 in B. If, in this case, b" and b” + 1 are in the
same block, then b7 |, ...b) = b;fhk b7 so b7 < b7t holds for B'. Otherwise, let b7
be contained in the ith block and b™ 4 1 in the (i 4+ 1)th; then, they satisfy b7, < bZt', so
b™ < bt for B'. Finally, if (7,7+1) € X, then b” < b"L. If b” and b" ! are in the same block,
b - 0D =0T b7 so b7 < b7 still holds for the extension. Otherwise, let b7 be
contained in the ith and b™*' in the (i 4 1)th block, i € {1,... imax — 1}; then, b7, < bZH!
already for B, so b™ < b"! also holds for B’. Therefore, the extension B’ presents a feasible
schedule w.r.t. S. O

6.3.1. Generic Algorithm

Exploring this last observation we introduce a generic algorithm for computing recoverable
robust train classification schedules. Basically, the algorithms successively grows the size of
a block to its maximum size. This size is determined by two factors: First, a schedule B
assigns at most 2P different bitstrings to the trailing part of cars in the same block, i.e., at
most 27 — 1 breaks can be resolved. Secondly, the number of unresolved breaks in a block is
limited by 2¥ — 1 induced by one scenario. In order to formalize these conditions we denote
with X, ,) the set of all original and potential breaks occurring between two cars 7, and 7o,
1 <71 <71 <n and consider so-called k-recoverable break sets.

Definition 6.3.5. Let T}, ...,T; be a sequence of £ inbound trains with a total of n cars and
k> 0. Let further & be a set of scenarios and X7,) be the set of all original and potential
breaks between the cars 7 and 7. A set of breaks X' C X, .,y is called k-recoverable if

IX'NX% <28 -1 VSed.

Algorithm 6.1 (p, k)-recoverable robust train classification
Input : number of cars n, set of original breaks X,,, set of scenarios S, k,p > 0
Output : k-recoverable robust classification schedule B

Set i1 =0, =1, Tmax = 0, X = X' =0
while 7; <n do
while 7. <7 + 2P 4+ | X'| and 7, + 2P + | X’| < n do
Set Tmax = 7 + 2P + | X|
Set X = X(Ti,Tmax) N (UgesXs)
Compute a maximum k-recoverable set of breaks X' C X
Set Tmax = Ti41 = min(r; + 2P + | X'|,n + 1)
Compute a subschedule of length p for the cars 7;,..., 7,41 — 1 feasible w.r.t. the breaks
X(Tiyﬂ‘«rl*l)\X,
| Seti=i+1and X' =0
Set b/ = [log, i — 1]
for j=0,...,i—1do
L Set b7,y g ... by = jlaforall ; <7 <74, —1
return B

126 Chapter 6. Recoverable Robust 'Irain Classification

Algorithm 6.1 now tests for a given range of cars 7/ to 7 whether there exists a k-recoverable
break set in X(;+ 7, such that the number of remaining breaks is smaller than 27. If this is the
case, we consider in a next step the cars from 7’ to 7 + 1. Otherwise 7’ to 7 is fixed to form a
block. In Theorem 6.3.6 we show that this strategy constructs an optimal recoverable robust
schedule.

Theorem 6.3.6. For any p > 0 and k > 0, Algorithm 6.1 computes an optimal recoverable
robust train classification schedule.

Proof. Let B denote a schedule of x blocks computed by Algorithm 6.1 and 7, ..., 7, be the
heads of the blocks. The unresolved breaks of any block of B present a k-recoverable set of
breaks by construction and all original breaks are considered. It follows that B is a feasible
recoverable robust algorithm.

Assume for contradiction that B is not optimal. Let B* be an optimal recoverable robust
schedule, x* its number of blocks, and 77, ..., 7% their heads. Let 7; # 77, ¢ € {0,..., K}, with
7; =77 for all j <, and w.l.o.g. let B* be an optimal schedule that mazimizes the value of
7. We distinguish two cases:

Case 1: 7; > 7. Replacing the bitstrings b*Ti-1, ..., b*7 in B* by the bitstrings b%-1,...,b"
of B produces an optimal schedule in which the head of the ith block is given by 7;. This
contradicts the choice of B*.

Case 2: 7; < 7. Let Y;*; be the set of unresolved breaks of the (i —1)th block of B*, and
Y1 be the set of unresolved breaks of the (i — 1)th block of B. Since Y, ; is a maximum

k-recoverable break set, its size satisfies |Y; ;| > |Y;*,|. Consider the number of resolved
breaks of B* in its (i — 1)th block:

— Yol > [X = [Yica| =22 — 1.

|X(7_'¢717T{‘) - |Y;*—1| > |X(7"¢71,T{‘)
This is a contradiction since there are at most 27 different bitstrings in a block. As a conse-
quence B is optimal. O

In Algorithm 6.1 the step of computing a maximum k-recoverable break set is not specified.
One way of solving this problem is by integer programming. For any break 8 € X = Uges XN
X (s 7, the binary variable 4 indicates if 3 is part of the k-recoverable break set (x5 = 1) or
not (xz = 0). Any optimal solution of the following ILP represents a maximum k-recoverable
break set

maXZxﬁ
BeX
dag<2t—1 VSeS
Bexs
zs € {0,1} VBeX.

As we will show in the following section there is no polynomial time algorithm for solving
this problem for general scenario sets, unless P = NP. On the other hand, for the class of
scenarios, in which each scenario delays up to j trains, the maximum k-recoverable break set
can be computed efficiently and thus the recoverable robust train classification problem can
be solved in polynomial time.

6.3. Recovery by Additional Sorting Steps 127

6.3.2. Computational Complexity

In this subsection we assume w.l.o.g. that we are looking for a maximum k-recoverable break
set between the cars 1 and n, i.e., let S be a set of scenarios, find a maximum k-recoverable
break set X’ of X = UgesX®. By a reduction from the independent set problem, this problem
is strongly NP-hard for & = 1.

Lemma 6.3.7. Let T',...,T; be a sequence of { inbound trains, S be a set of scenarios, and
K > 0. Deciding whether there exists a feasible 1-recoverable break set X' C Uges X of size
greater than or equal to K 1s strongly NP-hard.

Proof. We show a reduction from the independent set problem, which is well known to be
strongly NP-hard [52]. Let G = (V,E), V = {1,...,n}, be a graph in which we look for
an independent set of size a. W.l.o.g., we assume that G contains no isolated vertex and
|V| —a = 2P — 1. In the corresponding 1-recoverable break set instance there are n + 1 cars.
Furthermore, for every edge (i,j) € E the scenario set contains a scenario S that induces the
set, of breaks X° = {(i,i+1), (4,7 +1)}. Note that the size of the break set X = UgesX* and
the number of scenarios S is polynomial in the size of G. We show that there is a 1-recoverable
break set X’ C X of size a if and only if there is an independent set of size a in G.

Let A be an independent set in G with |A| = a. Define the break set X, = {(i,7 +1)|i € A}.
For any scenario S € S with X = {(i,i+1), (j,j+ 1)}, there is an edge {i,j} € E and either
i ¢ Aorj ¢ A. For this reason at most one of the breaks of X° is an element of X4 and thus
X 4 1s a 1-recoverable break set of size a.

Conversely, let X’ be a 1-recoverable break set of size a. Define A = {i | (i,i+ 1) € X'}. For
any edge (i,j) € E there is a scenario S € S with X% = {(i,i + 1), (4,7 + 1)}. Since either
(i,i+1) ¢ X' or (7,j+1) ¢ X', there is at most one endpoint of the edge (7, 5) in A. Therefore,
A is an independent set of size a. O

A quite different reduction from 2FSAT leads to the NP-hardness of the maximum k-
recoverable break set problem for any constant k > 2.

Lemma 6.3.8. It is strongly NP-hard to decide whether there exists a k-recoverable break set
of size K for any constant k > 2.

Proof. We show a reduction from 2¥SAT, which is strongly NP-hard |52]. Let I be an instance
of 2¥SAT composed of n variables z1, ..., z, and m clauses Ci, ..., C,,. Each clause consists
of 2% different literals. For each variable z; we add the auxiliary variables z, ... s Tok-1_1;
and the clause

Ci=xi VTV T VT V.oV To1 g, V Tger

to the problem instance. The new instance is a yes-instance if and only if the old instance is
one.

In the maximum k-recoverable break set instance there are 2(n + n(281 — 1)) +
1 cars. For each clause C; we construct a scenario S; with £; = (2i —1,2i) € X%
if and only if z; € C; and Bi=(2i,2i+1)€ X% if and only if z; € C;.
Furthermore, S contains for every clause C;, i@ = 1,...,n, the scenario S,
which induces the breaks B;, B, B;:= (2n+2F(i —1)+2j —1,2n+ 2% — 1) +2j) and
Bii=n+2i—1)+25,2n+2%(i—1)+2j+1) for j = 1,...,251 — 1. The maximum
k-recoverable break set instance contains m + n scenarios and 2n + n(2* — 2) breaks. Since k

128 Chapter 6. Recoverable Robust 'Irain Classification

is constant, the size of the instance is polynomial in the size of the input data. We will show
that there exists a k-recoverable break set X’ C UgesX® with exactly n + n(2% — 2) breaks if
and only if I is a yes-instance.

Let X’ be a maximum k-recoverable break set with |X'| = n +n - (28 —2). W.lLo.g., all
breaks f3;; and 3;; are contained in X’. Otherwise replace 3; by one missing 3;; and j3; by
one missing f3;; to obtain again a maximum k-recoverable break set. We will show that X’
defines a feasible assignment to I.

Due to | Uses X¥| — | X’| = n and the definition of Cj, i = 1,...,n, the set X’ contains either
B; or B;. Thus, the following assignment is well defined:

o true if §5; ¢ X’
false if B; ¢ X'

Since every scenario S; contains 2% breaks, at least one break in X is resolved, i.e., there
exists an £ € {1,...,n} such that 8, € X%\ X' or B, € X%\ X". If B, € X%\ X', the clause
C; contains the literal x, and zj = true verifies C;. If Be € X%\ X', the clause C; contains
the literal z, and xj = false. Hence, x* verifies every clause.

Conversely, let 2* be an assignment, which satisfies the 2*SAT instance I. If x7 = true, we
delete 3; from Uges X® and if 2 = false, we delete 3; to construct a maximum k-recoverable
break set X’. The set X’ consists of n +n - (2% — 2) elements. Furthermore, in every scenario
S; there are at most 2¥ — 1 breaks unresolved. Therefore, X’ is a k-recoverable break set. [

Note that this reduction does not imply NP-hardness for £k = 1, since 2SAT is solvable in
polynomial time.

Both lemmas not only state that Algorithm 6.1 can just be implemented in polynomial time, if
P = NP, but also enable us to prove the NP-hardness of the recoverable robust classification
problem.

Theorem 6.3.9. Let T1,...,T; be a sequence of ¢ inbound trains, S be a set of scenarios,
h,p > 0, and k > 1 constant. Deciding whether there exists a feasible recoverable robust
classification schedule of length of at most h is strongly NP-hard.

Proof. We show a reduction from the decision version of the maximum k-recoverable break
set problem. Let S be a set of scenarios, in which each scenario induces breaks between the
cars 1,...,n, X = UgesX? and K € N form a maximum k-recoverable break set instance.
W.lo.g.,, K < |X|. In order to schedule all cars within one block, we suppose for a mo-
ment | X| — K = 2¥ — 1 for some integer v € N. In that case there exists a feasible recoverable
robust schedule with p = v of length at most v for this instance if and only if there is a
k-recoverable break set X’ of size K in X.

If2/—1 > | X|-K > 2""'—1, we define 7 = 2 —1—|X|+K and add the cars n+1, ..., n+y+1
to the instance in reversed order. Thus, there are « original breaks that need to be recovered
using v + 1 different bitstrings. A maximum k-recoverable break set X’ for the old instance
is also a maximum k-recoverable break set for this new instance. Furthermore, there exists
a feasible recoverable robust schedule with p = v of length at most v for this instance if and
only if there is a k-recoverable break set X' of size K in X. O

Note that if the number of scenarios is polynomially bounded by the number of cars, the
recoverable robust train classification problem is in NP, since we can test the feasibility of
a schedule for every single scenario exploiting Lemma 6.3.4. In general this may not be the
case.

6.4. Limited Number of Delayed Trains 129

6.3.3. Problem Variants

Infeasible Initial Solutions In our model the first-stage solution is a feasible classification
schedule for the original order of trains. A special case of this setting is, to allow recovery
even in the case of no disturbance. We can then model the original breaks by a scenario Seg
which induces all original breaks and no original breaks are considered, i.e., one assumes that
the cars arrive in perfect order.

Extremal Values of p So far, we were given some values p, k > 0 and looked for the optimal
length A of a recoverable robust schedule. Conversely, given a length value h > 0 and some
k > 0, we can ask for the maximum value of p for which there exists a recoverable robust
schedule of length at most h.

An obvious way to calculate this optimal threshold p is the following: successively increasing
p from 0 to h, calculate the minimum value h,, ;, for which there is a feasible recoverable robust
schedule of length hy, ;; then, simply take the maximum value p for which h,; < h. Note that
this value can also be estimated with binary search between p = 0 and p = h. For a general
set of scenarios S, calculating this value of p is an NP-hard problem since deciding whether
there exists a feasible recoverable robust classification schedule of length at most h with £ =1
is an NP-hard problem by Corollary 6.3.9. A corresponding statement holds for fixing h and p
and minimizing the value of k.

Several Outgoing Trains As shown in [63], the classification task involving m outgoing
trains with their order specification is equivalent of finding an optimal schedule for one outgoing
train as long as the length of the classification tracks is unbounded. In that case, one computes
for every single outgoing train an optimal classification schedule and applies these schedules
simultaneously. Since the recovery action can be carried out independently for every schedule,
this approach can also be used to deal with the recoverable robust train classification problem
with several outgoing trains.

6.4. Limited Number of Delayed Trains

As mentioned before, providing strict robustness wastes a lot of potential to extreme scenarios
which rarely occur. For this reason we introduce a simple yet general class of scenarios, in
which the number of delayed trains is restricted.

Given some parameter j, the scenario set S; consists of all scenarios which delay up to
7 trains. More formally, let T7,...,7, be a set of trains. A scenario S defines an order
os:{1l,...,¢} — {1,... ¢} in which the trains actually arrive at the yard, i.e., o5(i) indicates
the position of train ¢ and thus they form the inbound train 75 = ngl(l) .. .To,gl(z). Then,
a sequence Tz-1(1),. .., T5-1(p), where 7 is some permutation, is called an (a, k)-delayed train
sequence of 675 if og(a) < k and the following conditions hold: &(x) = og(x) if og(z) < os()
or og(x) > k, d(x) = og(x) — 1 for og(a) < og(x) < k, and 7(a) = k (see Figure 6.3). In
other words, train T, is delayed from the og(a)th to the kth position. The set of scenarios
S;, 0 < j < ¢, is now defined to contain a scenario S (inducing some sequence 6°) if and
only if there is a sequence 6°,...,67 of train sequences " such that 0° = #'¢ with id(j) = 7,
j=1,...,4, 0" is an (q, k;)-delayed sequence of ! for alli = 1,...,7, and 6" = 6°. Every
train T,, will be called to be delayed by S.

130 Chapter 6. Recoverable Robust 'Irain Classification

| — 7] L[
Ty T, T
Ty ;3 Ty
F A —

(1, 3)-delay (3, 4)-delay

Figure 6.3.: In a first step, train 77 is delayed to position 3 and in a second step train 73 to
position 4. The final sequence belongs to a scenario in Ss.

As we will see in Theorem 6.4.1 all our considerations can be restricted to a dominant subset 3]-

of the scenario set S;. A scenario S is a member of S; if there is a sequence °, ..., 607 of train
sequences 6% such that 6° = 04, % is an (o, £)-delayed sequence of §°~* for all i = 1,...,7,
a; < o foralli =1,...,5 and #7 = #°. In other words, if two trains are delayed by a

scenario S € S;, they swap their relative order and arrive later than all punctual trains. Note
that for uniquely defining a scenario S € §; it suffices to list the j delayed trains since the
order and amount of their delay is determined by the definition of S;.

Theorem 6.4.1. If B is a recoverable robust classification schedule for gj then B is a recov-
erable robust classification schedule for S;.

Proof. Let S € S; and {T;,,...,Tj;} be the set of trains delayed by S with i; <y < ... <y,
Consider the scenario S’ € S; delaying these trains and let o be their corresponding order.
Let (7,7 + 1) be a break induced by S. If (7,7 + 1) is an original break, B resolves it. If
(1,741) is a potential break, then there are trains 7,,, T, € {T1,...,T;}, z < y with 7 € T}, and
T+1eT, Ifyé¢{i,...,i;},00(x) >l—j+1>09(y). Hye{i,....i;}, 09(z) > o5(y).
In both cases, S’ induces the break (7,7 + 1). Therefore, a (p, k)-extension of B resolving all
breaks of S also resolves all breaks of S. Thus, B is a recoverable robust classification schedule
for Sj.]

Due to Theorem 6.4.1 we restrict all further observations to the scenario set S;. For this
scenario set not only a scenario S is already defined by the set of delayed trains, but also the
set of potential breaks induced by S.

Lemma 6.4.2. Let § = (7,7 + 1) be a potential break with T € T,, x € {1,...,l}. Then the
scenario S € S; induces B if and only if T, is a train delayed by S.

Proof. Let 7+1 € T,, y € {1,...,¢}. Since S is a potential break, x < y. If train T, is delayed
by S, og(x) > o5(y) and therefore 3 € X°. If 3 € X%, og(z) > os(y). Since og(z) < o5(y)
for all y > x if T, is not delayed by scenario S, the train 7} is delayed by S. 0

6.4. Limited Number of Delayed Trains 131

A
| X

1
20

| 43
8| 71615 =3
12711109 " L — 9
171161 15]14[13]
1 2 3 4 5 4

Figure 6.4.: The numbers indicate the order of removal of a break in X; by Algorithm 6.2. For
J =2, k = 3, the algorithm stops after the 3rd iteration. In the case of k = 2 it stops after
the 11th removal of a break.

Since any car belongs to exactly one train, the set of potential breaks X* of any scenario
S e 3]- can be partitioned into disjoint subsets w.r.t. the respective delayed train causing
the break. We denote this set of breaks induced by train 7; with X;, i.e., X; = {(1,7+ 1) |
7€ T,,3y >i:7+1¢eT,}. The observation that these sets are disjoint provides the key
observation for the following algorithm, which computes a maximum k-recoverable break set
for gj in the set X 7 for two given cars 7/, 7. The algorithm successively removes one break
from the break set X; N X 7 with the highest number of potential breaks until there are
less than 2* potential breaks in the worst-case scenario, i.e., in the union of the j break sets
induced by trains with maximum remaining size (see Figure 6.4).

Algorithm 6.2 Maximum k-Recoverable Break Set for S;

Input : Parameters j,& € N and sets of induced breaks Xi,..., X, with
Xi CH{(m,m+1),..., (2, + 1)}, j,k €N
Output : Maximum recoverable break set

Sort Xi,..., X, such that | X, | > |X,| > ... > |X;
Set a := max{i, | |X;,| = |X;[}
while >7_ | X;,| > 2" do
Remove an arbitrary break from X,
L Update «
return X’

o

Lemma 6.4.3. Given a set of potential breaks X; induced by the delay of train T; according to
the expected inbound order fori=1,... A, Algorithm 6.2 computes a mazimum k-recoverable
break set X' C US_, X; for S; in O(zlogl) with x = | Uf_; X;.

Proof. For the proof we assume that the numbering of the trains is monotonically decreasing
according to the input size of X;, i.e., | X;| > |Xj| for i < j. Note that this order is invariant
for the while-loop of Algorithm 6.2. Let X’ be the set of breaks returned by the algorithm
and V;=X'NnX,fori=1,... ¢

We start by proving that Algorithm 6.2 computes a feasible recoverable break set. Let .S € gj

be any scenario delaying trains 75, ,...,T;,. Due to the construction of X’ we get
J J J
XX = 3NN X =S < Yo <2 -
r=1 r=1 r=1

Therefore, all unresolved breaks of X’ induced by S can be recovered (Lemma 6.3.4), and thus
X' is a k-recoverable break set.

132 Chapter 6. Recoverable Robust 'Irain Classification

We continue with the optimality of X’. Let us consider the following ILP-formulation to
compute a maximum k-recoverable break set, where the variables z; € N represent the number
of remaining breaks of the set X;, i =1,... ¢

¢
(ILP1) maXZzi
i=1
Na<L VISl =)
icJ
Z; € N.

With L' = 28 —1 any solution z* can be transformed into a k-recoverable break set by removing
| X;| — zf potential breaks from the set X;, ¢ =1,...,¢. The ILP1 can be solved by repeatedly
solving ILP2 with L taken as variable and constant c by starting with ¢y := Zle | X;| and
decreasing in every iteration ¢ by one unit until the optimal value of ILP2 is not greater
than L’

(ILP2) min L

-
S
I
o

@
Il
—

<L VIC{lL.... 0=

<

1€
z €N

We will show that in the tth iteration of the while loop the reduced size of X; forms an
optimal solution to ILP2 for ¢ = ¢y —t. We therefore denote with X} the current size of X;
after the tth iteration took place and define z! = |X!| and L' = }~7_, 2!. Any solution 2! is
monotonically decreasing, i.e., zf > z]t for i > j. Furthermore, let ' be the maximum index

with | X,| — 2%, > 0. Then due to the construction in the algorithm, =} < zf, — 1.

Let us now assume that there exists a t’, such that the values of zf' and L' are not an optimal
solution for ILP2 with ¢ = Zle x; —t" and L' > 2% — 1 but z* and L*. The solution 2} is
w.l.0.g. monotonically decreasing, since for a,b € {1,...,¢} with 2} < zf buta > b, z; 1= z; —1
and 2z, = 2 is an optimal solution. Furthermore, L' > L* + 1 and thus we obtain

J J

t _ rt * *
E zj—L > L —|—1ZE zj+1.
i=1 =1

Hence, there exists an index i; € {1,...,} with 2f > z;. For all indices i € {j +1,...,x"}
we get zf >zl — 1>z > 2F. Since z!' = |X;| for all i > k% + 1,

l j l
IEEDISERED DTN
7j=1

i=1 = i=j+1
a contradiction.

The loop in Algorithm 6.2 is executed at most 2 times with z = >>7_, | Xj,|, and one execution
takes O(log?). Outside the loop, the sorting takes O(¢log/), so the total running time is
O(zlog/) and thus polynomial. O

6.4. Limited Number of Delayed Trains 133

Theorem 6.4.4. The recoverable robust train classification problem with S; is solvable in
polynomial time.

Theorem 6.4.4 is an immediate consequence of Lemma 6.4.3 and an optimal recoverable ro-
bust train classification schedule can be computed efficiently by combining Algorithm 6.2 and
Algorithm 6.1. The resulting algorithm is implemented in the following section and tested for
a number of real-world classification instances.

6.4.1. Experimental Evaluation

For the evaluation of the algorithm just described, we took the five real-world instances used
in |60], which correspond to five days of traffic in the Swiss classification yard Lausanne Triage.
Their volumes range from 310 to 486 with numbers of inbound trains between 44 and 49,
outbound trains between 24 and 27, and numbers of breaks between 24 and 28 (see Table 6.1).
In order to obtain unique types of cars, we converted all cars of the same type between two
consecutive original breaks to distinct types ascending in the order the cars appear between
the breaks, as shown in the following example: if 73 = 74 = 3, 77 = 79 = 719 = 4, and (712, 73)
as well as (79, 72) formed original breaks, we set 73 =3, 7 =4, 77 =5, 79 = 6, 19 = 7, and
further = 8.

instance | n | £ | m | Buax | B
inst-1 | 486 | 49| 24| 3 |28
inst-2 | 329 | 44| 24| 4 |24
inst-3 | 310 | 47| 24| 3 |25
inst-4 | 364 | 44| 24 3 25
inst-5 | 368 | 44 | 27| 3 |25

Table 6.1.: The five problem instances correspond to five traffic days: n denotes the number of
cars, £ denotes the number of inbound trains, m denotes the number of outbound trains, S.x
denotes the maximum number of breaks of outbound trains, and 8 denotes the total number
of breaks.

Essentially, through adjusting the parameters p, k, and j, the algorithm allows flexibly trad-
ing off shortest schedules against the other extreme of strict robustness. Given some train
classification instance, let h denote the length of an optimal non-robust schedule and A the
length of an optimal strictly robust schedule. The values h and h present the lower and upper
bounds for the length resulting from any combination of j, k, and p.

Table 6.2 summarizes the computed length of an optimal recoverable robust schedule according
to the different parameters p, k and j. As lower and upper bounds for these lengths inst-2
requires h = 3, while all other instances yield h = 2 and h = 5 for all instances.

If only small amounts of recovery action (k = 1) are allowed, for j = 1 the schedule length
does not exceed h for inst-1 and inst-5 with p = 0, for inst-3 and inst-4 with p <1, and for
inst-2 even for p < 3, so yet for lowest degrees of recovery we obtain some robustness without
increasing the length beyond that of an optimal non-robust schedule. Raising the degree of
disturbance to j > 2, we still obtain a length h = 4 < h if the value of p is increased to p = 1
for inst-1, to p = 2 for inst-2, inst-4, and inst-5, and even to p = 3 for inst-3. These values are
significantly smaller than these for the strictly robust methods.

134 Chapter 6. Recoverable Robust 'Irain Classification

oo oo | o o

BB s N o

NS NG INSY NS Y | O

e e s | ot no| ol =

ol ot | ot en| o e

o ot o o | o e

w| w| w|w|w|l &l o
— o

| e | O

NI ke

inst-1
inst-2
inst-3
inst-4
inst-5

oo | w| || o |
NN DO W M|~
wino| o w| w|l s
wW|w|w| w|lwl|~|
W w|w| w| |l —s
oMo o Wl o] Wi
Wl w| wo| W]| i~
Wl wo| ol |]| wo ||

w
b}
I
—
i)
|
N

x>
|
Il | e
>
[
S

w| w| w|w|wl|l oo o

O s | O e po

ro| bof w| wl| wl| o] s

W NN W[W] | —
"3

DO DN DN Qof WOf v~

wl o) po| wo| wl| o=

J
inst-1
inst-2
inst-3
inst-4
inst-5

|| ol | e
o
w| wl| ot

CIENIRGIRGUR I IEN Thet
o | no| ol nof| ot
oo o w| w|| o
w| w| w|w|wl| oo
Mo K| b0 | bof| o
w| wo| wo| wl wol| =1
| wo| wo| wol x| co
w
| | | || oo

3

Table 6.2.: Optimal length of a recoverable robust classification schedule for different values
of recovery parameters p and k£ and values for S;. Omitted entries represent no meaningful
choice of p.

The degree of robustness grows rapidly with increasing degrees of recovery, and for k = 4 with
p < h — except for inst-4 with p = 2 — we can allow any number of delayed trains and still
achieve the length h of an optimal non robust schedule. Between these extremes, Table 6.2
shows how far the value of p can be raised for £ = 2 and arbitrarily high amounts of delay
7 > 4: most instances allow p = 1 to obtain h = 3, and h = 4 can be achieved even for p = 4
for three out of five instances. For k = 3, Figure 6.5 (left) summarizes the values of inst-1:
a schedule of length 3 with a recovery action starting after the third sorting step suffices to
cope with a delay of up to six trains and p = 1 allows h < 3 even for any disturbance value j.
Similarly, for a fixed value of p = 2, Figure 6.5 (center) shows the rapid growth of robustness:
except for inst-2, £ must be raised rather quickly between 7 = 1 and j = 3 to achieve a
length of h, whereas the required value of £ does not exceed 4 for higher disturbances ;7 > 6.
Conversely, Figure 6.5 (right) fixes & = 2 and shows the maximum value of p that allows a
length of h: j =1 still allows p = h for all instances, but, except for inst-2, this length A
cannot be achieved for any choice of p for high amounts of delay j > 4. Hence, higher values
of k£ contribute much more to the potential of recovery than low values of p. Summarizing,
through adjusting the recovery parameters k and p, our algorithm presents a tool to flexibly
trade off between fast classification and robust schedules.

2 3 4 5 6 7 8 2 3 4 5 6 1 2 3 4
J]]

Figure 6.5.: left: optimal schedule lengths A of inst-1 for & = 3; center: smallest possible values
of k to achieve a length of h for p = 2; right: highest possible values of p to achieve a length
of h for k = 2;

6.5. Types in Fixed Order 135

6.5. Types in Fixed Order

So far we investigated the case in which all cars were distinct and had a fixed position in
the outgoing train. Often cars are grouped in the classification process according to common
characteristics like destination, design and capacity. In general just an order of groups is given
as specification for the outbound train, where cars of the same group must appear consecutively
but the relative order of cars in a group is free. In order to adapt the model described in
Section 6.2 we represent the different cars 1,...,n by a positive integer 7; € {1,...,0}, 6 < n,
called the type of the car i, i € {1,...,n}. The method to derive a train classification schedule
and properties of the schedules can also be easily adjusted as shown in |63]: A classification
schedule is represented by an (n x h)-matrix and it is feasible if both of the following conditions
are satisfied for every pair 7, < 7,: if # < y, then 0® < 0¥ and if > y, then b* < 0¥ for all
x,y € {1,...,n}. The algorithms to compute optimal schedules for distinct cars are based on
determining maximal ascending sequences of consecutive cars that can be assigned the same
bitstring. A partition of the inbound sequence of cars into such subsequences is called a chain
decomposition. We redefine this notion for the generalized model where the inbound cars are
not necessarily distinct in the following definition.

Definition 6.5.1. Let 71, ...,T; be a sequence of inbound trains, Tt = (71,...,7,) be their
concatenation with 7, € {1,...,0}, z = 1,...,n, and let 7,,1 = 6 + 1. For any pair of cars
xz,y with 1 <7, <71, <0+1, let [x,y] contain the car z, 1 < z <mn, if and only if one of the
following three conditions holds:

1. 7, =7, and z < x,
2. 7, <7, <Ty,oOr

3. 7, =1, and z > y.

We call [z, y] a chain if w < z for every pair w, z € [z, y] with 7, < 7,. A sequence iy, ..., 7,11
with 7, < ... < 7,,, defines a chain decomposition (of length q) if i, = max{z|r, = 1},
igt1 =n+ 1, and [iy, ;1] is a chain for every x = 1,...,¢q.

Note that the introduced dummy car n + 1 is the only car not contained in the chain de-
composition. For a given chain decomposition iy,...,7,1, the schedule B with b* = [z]y
for z € [i,,1,41] is a feasible schedule. According to these observations, we define predecessors
y €{l,...,n+ 1} for some = € {1,...,n+ 1} if they can occur consecutively in a feasible
chain decomposition.

Definition 6.5.2. Let T,...,T; be a sequence of inbound trains with cars of types 7; €
{1,...,6},i=1,...,n, and let 7,41 = 6 + 1. For any car y € {1,...,n+ 1}, we define the
subset of cars

pred(y) = {z | 7, < 7yand [z, y]is a chain}.

Using this concept of predecessors, we set a as the largest index of any car of type 1, i.e.,
a=max{l <i<n+ 1|7 =1}, and define the chain representation graph G = (V, A) of a
train classification instance as follows:

V = {1<i<n+1|n>1}U{a} and
A = {(z,y) eV xV |z € pred(y)}.

Any path from a to n+ 1 in G = (V, A) defines a chain decomposition, and a shortest path
according to the number of arcs presents an optimal solution to the nominal train classification

136 Chapter 6. Recoverable Robust 'Irain Classification

problem. In the following we will extend this approach of finding a shortest path in the chain
representation graph to the robust problem, i.e., to an uncertain order of the inbound sequence.

In order to embed the set of scenarios S into the chain representation model, we add for every
scenario S € S a cost function ¢® : A — {1,...,n} to the graph G. The cost function ¢°
assigns to every arc (z,y) € A the number of breaks induced by S in the chain [z,y]. A
scenario S defining the new order of cars o induces a break (7,7 + 1) in [z, 9] if there exist
two cars w, z € [z,y] with 7, = 7, 7, = 7. + 1 and o°(w) > 0°(2).

To derive a feasible recoverable robust train classification schedule, we use the same process as
in the generic Algorithm 6.1: instead of a whole schedule we compute step by step a block of
maximum length. W.l.o.g., we assume to start with the first block. Any block assigns at most
2P different bitstrings to the trailing parts of its cars and in every scenario S there are at most
2% — 1 unresolved breaks. Thus, in the chain representation graph any block corresponds to a
path p which starts in the vertex a, has a length of at most 2”7 + 1, and obeys ¢°(p) < 2F — 1
for all S € S. In order to find a block of maximum size, we add for every vertex x € V an
arc a, = (z,n+ 1) to G and set ¢%(a,) =0 for all S € S and x € V. Furthermore, we define
a new cost function d : A — N rating the number of cars covered by a chain. More formally,
for a = (z,y) € A we define

1-— if @ = 1
d(a) = O+1—7)n+x ifa ('x,6’+)
0 otherwise.

Hence, a block of maximum length corresponds to a (a, 6 + 1)-path p with length at most
2? + 1 and ¢®(p) < 2¥ — 1 for every S € S that minimizes d(p). This constrained shortest
path problem can be solved in polynomial time if the number of constraints is constant and
the values of the cost functions are bounded by the input. A dynamic program for it was
introduced by Joksch |64] and a labeling Dijkstra algorithm by Aneja et al. [6]. We sum up
this analysis in the following theorem:.

Theorem 6.5.3. The recoverable robust train classification problem can be solved in polyno-
mial time via a constrained shortest path problem if the number of scenarios is bounded by a
constant.

Note that the run-time of the proposed procedure depends on the constant number of scenarios.

Single Cars and S; In this part we consider a slight modification of the general setting
in which each train of the incoming sequence consists of exactly one car. In this case the
delay of one train, respectively one car, results in at most one break. Exploding this fact
leads to a polynomial algorithm for S;. For j < 2% — 1 this is obvious since the number of
unresolved breaks induced in a block by any scenario in S; is bounded by j. In any scenario
these breaks can be recovered and hence any feasible schedule for the case of no delay is a
feasible (p, k)-extension for S;. For j > 2% — 1 the set S; can be reduced to a single scenario
as shown below.

Lemma 6.5.4. Let iy,..., 04, 75 < ... < T, with ¢ < 2P + 1 be a chain decomposition for
a single block. For x = 1,...,q — 1, define f(x) = 7,,,, — 7, if there is no car z > i
with 7, = 7;,,,, and f(x) = 7;,,, — T, — 1 otherwise. Then, putting b> = [z]y for every car
2 € [ig,igr1] yields a recoverable robust subschedule for the cars of this block if and only if
SO flw) < 2P 42— 1

6.6. Conclusion and Open Issues 137

Proof. Assume that Zi;ll f(x) > 2P +2% — 1, and define a set of cars X in the following way:
for every chain [iy,i,41], * = 1,...,q — 1, choose f(x) — 1 different cars z € [i,,i;41], such
that each car is of a different type and 7. > 7,,. Since Y071 f(x) > 22 +2F — 1, | X| > 2F. Any
scenario S € §; which delays 2% of these trains, induces 2* unresolved breaks between cars of
different types. Hence, these unresolved breaks cannot be recovered, so B is not recoverable
robust.

Conversely, let B satisfy Zg;ll f(xr) < 2P+ 2% — 1. Consider the following recovery strategy:
Let 71, ..., 7; be the set of cars that are delayed by a scenario. If several cars of the same type
are delayed, at most one unresolved break needs to be recovered. Hence, it suffices to use the
following recovery strategy: let z be a delayed car with =, <7, <7, . If there is a car y in
chain [i,,i,41] with 7, > 7., we increase the bitstrings of each car y with 7, > 7,.

Since f(x) denotes the number different types that occur in the chain [i,,i,41], 2 =1,...,¢—1,
at most 2¥ — 1 unresolved breaks between cars of different types can be induced by one

scenario. Therefore, the above recovery strategy yields a (p, k)-extension of B for every scenario
Ses;. O

As a consequence of Lemma 6.5.4, instead of considering S;, it suffices to consider the chain
representation graph for the single cost function ¢® : A — N with ¢°((z,y)) = 7, — 7, if there
is no car z > y with 7, = 7,, and ¢”((x,y)) = 7, — 7, — 1 otherwise. Since ¢®(a) < n for all
arcs a of the chain representation graph, this constrained shortest path problem can again be
solved in polynomial time, which is finally summarized in the following theorem:

Theorem 6.5.5. The recoverable robust train classification problem can be solved in polyno-
mial time for the set of scenarios S; in the case of singleton trains.

6.6. Conclusion and Open Issues

We have developed a practically applicable algorithm for deriving robust train classification
schedules of minimum length. In contrast to [30], we take into account multiple inbound
trains, which allows integrating the most relevant disturbance in form of delayed trains. We
have introduced the natural recovery action of (p, k)-extensions, for which we proved that
the problem is NP-hard for every constant & > 1. Nevertheless, for the quite general set
of scenarios S; where each scenario can delay up to j trains, we showed that our generic
algorithm of Section 6.3 computes a solution in polynomial time by solving the subproblem
of calculating a maximum recoverable set of breaks efficiently. The experimental study of
Section 6.4 indicates that the resulting algorithm improves on the current classification practice
as it yields shorter schedules and still allows high degrees of robustness. Its flexibility further
allows balancing between strictly robust and optimal non-robust schedules and raises potential
for increased traffic throughput in classification yards. Finally, we have shown that the problem
variant with non-distinct cars is polynomial-time solvable for a constant number of scenarios.

Future Work First of all, it is an open question whether the problem variant with non-
distinct cars (Section 6.5) can be solved efficiently for S; (or a similar natural set of scenarios).
Further practical restrictions, such as a limited number of classification tracks (see [|63]),
should be considered in the context of robustness. Moreover, the number of cars rolled in
presents a secondary objective, which can be additionally minimized for a minimum length.
Finally, making the order of inbound trains part of the optimization yields a different robust
optimization problem.

Bibliography

[1] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
Wiley, Chichester, UK, 1997.

[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1-41, 20009.

[3] H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation complexity of min-max
(regret) versions of shortest path, spanning tree, and knapsack. In G. S. Brodal and
S. Leonardi, editors, Algorithms — ESA 2005, volume 3669 of LNCS, pages 862—-873.

Springer, Berlin, 2005.

[4] H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation of min-max and min—
max regret versions of some combinatorial optimization problems. European Journal of
Operational Research, 179(2):281-290, 2007.

[5] H. Aissi, C. Bazgan, and D. Vanderpooten. Complexity of the min-max (regret) versions
of min cut problems. Discrete Optimization, 5:66—73, 2008.

[6] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest chain subject to side constraints.
Networks, 13(2):295-302, 1983.

[7] A. Atamtiirk and M. Zhang. Two-stage robust network flow and design under demand
uncertainty. Operations Research, 55(4):662-673, 2007.

[8] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8(1):146-164,
1975.

[9] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of
the Operational Research Society, 41(11):1069-1072, 1990.

[10] R. Bellman. Notes on the theory of dynamic programming IV - maximization over
discrete sets. Naval Research Logistics Quarterly, 3(1-2):67-70, 1956.

[11] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions
of uncertain linear programs. Mathematical Programming, 99(2):351-376, 2004.

[12] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Opera-
tions Research Letters, 25(1):1-13, 1999.

[13] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems con-
taminated with uncertain data. Mathematical Programming, 88(3):411-424, 2000.

|14] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98(1-3):49-71, 2003.

[15] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35-53,
2004.

[16] D. Bienstock. Histogram models for robust portfolio optimization. Journal of Compu-
tational Finance, 11(1):1-64, 2007.

140 Bibliography

[17] D. Bienstock and F. D’Andreagiovanni. Robust wireless network planning. In Proceed-
ings of the XL Annual Conference of the Italian Operational Research Society (AIRO),
2009.

[18] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer, New
York, 1997.

[19] A. Bley and J. Neto. Approximability of 3- and 4-hop bounded disjoint paths problems.
In F. Eisenbrand and F. B. Shepherd, editors, Integer Programming and Combinatorial
Optimization, volume 6080 of LNCS, pages 205-218. Springer, Berlin, 2010.

|20] M. Bruglieri, M. Ehrgott, H. W. Hamacher, and F. Maffioli. An annotated bibliogra-
phy of combinatorial optimization problems with fixed cardinality constraints. Discrete
Applied Mathematics, 154(9):1344-1357, 2006.

[21] M. Bruglieri, F. Maffioli, and M. Ehrgott. Cardinality constrained minimum cut prob-
lems: Complexity and algorithms. Discrete Applied Mathematics, 137(3):311-341, 2004.

[22] C. Biising. The exact subgraph recoverable robust shortest path problem. In R. K.
Ahuja, R. H. Mohring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale
Optimization, volume 5868 of LNCS, pages 231-248. Springer, Berlin, 2009.

[23] C. Biising, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks: The
discrete scenario case. Optimization Letters, online first, 2011.

[24] C. Biising and J. Maue. Robust algorithms for sorting railway cars. In M. de Berg
and U. Meyer, editors, Algorithms — ESA 2010, volume 6346 of LNCS, pages 350-361.
Springer, Berlin, 2010.

[25] V. Cacchiani, A. Caprara, L. Galli, L. Kroon, G. Mar6ti, and P. Toth. Recoverable
robustness for railway rolling stock planning. In M. Fischetti and P. Widmayer, editors,
ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems. Schloss Dagstuhl - LZI, Dagstuhl, 2008.

[26] A. Caprara, L. Galli, L. Kroon, G. Mar6ti, and P. Toth. Robust train routing and online
re-scheduling. In T. Erlebach and M. Liibbecke, editors, ATMOS 2010 - 10th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems,
pages 24-33. Schloss Dagstuhl - LZI, Dagstuhl, 2010.

[27] C. Caramanis. Adaptable Optimization: Theory and Algorithms. PhD thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Eng. and Comp. Science., 2006.

|28] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning
subgraphs via matching. SIAM Journal on Computing, 30(2):528-560, 2000.

[29] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Robust algo-
rithms and price of robustness in shunting problems. In C. Liebchen, R. K. Ahuja,
and J. A. Mesa, editors, ATMOS 2007 - 7th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization and Systems. Schloss Dagstuhl - IBFI, Dagstuhl,
2007.

[30] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck, and
A. Schobel. Recoverable robustness in shunting and timetabling. In R. K. Ahuja, R. H.
Mohring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization,
volume 5868 of LNCS, pages 28—60. Springer, Berlin, 2009.

[31] S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schobel. Dynamic algorithms for re-
coverable robustness problems. In M. Fischetti and P. Widmayer, editors, ATMOS 2008

Bibliography 141

- 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems. Schloss Dagstuhl - LZI, Dagstuhl, 2008.

[32] H. Crowder, E. L. Johnson, and M. Padberg. Solving large-scale zero-one linear pro-
gramming problems. Operations Research, 31(5):803-834, 1983.

[33] C. F. Daganzo, R. G. Dowling, and R. W. Hall. Railroad classification yard throughput:
The case of multistage triangular sorting. Transportation Research Part A: General,
17(2):95-106, 1983.

|34] E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial problems
related to train marshalling. In L. Branlovic and J. Ryan, editors, AWOCA 2000 -
11th Australasian Workshop on Combinatorial Algorithms, pages 7-16. University of
Newecastle, Callaghan, NSW, 2000.

|35] G. B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266—
277, 1957.

[36] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells. Complexity of the discrete time-cost
tradeoft problem for project networks. Operations Research, 45(2):302-306, 1997.

[37] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to pay, come what may: Approx-
imation algorithms for demand-robust covering problems. In J. D. Cantarella, editor,
FOCS 2005 - 46th Annual IEEE Symposium on Foundations of Computer Science, pages
367-378. IEEE Computer Society, Los Alamitos, California, 2005.

|38] G. Di Stefano and M. L. Ko¢i. A graph theoretical approach to the shunting problem.
Electronic Notes in Theoretical Computer Science, 92:16-33, 2004.

|39] C. Eggermont, C. A. J. Hurkens, M. Modelski, and G. J. Woeginger. The hardness of
train rearrangements. Operations Research Letters, 37(2):80-82, 20009.

[40] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matriz Analysis and Applications, 18(4):1035-1064, 1997.

[41] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite
programs. SIAM Journal on Optimization, 9(1):33-52, 1998.

[42] A. L. Erera, J. C. Morales, and M. Savelsbergh. Robust optimization for empty reposi-
tioning problems. Operations Research, 57(2):468-483, 2009.

[43] J. E. Falk. Exact solutions of inexact linear programs. Operations Research, 24(4):783—
787, 1976.

[44] U. Feige, K. Jain, M. Mahdian, and V. Mirrokni. Robust combinatorial optimization
with exponential scenarios. In M. Fischetti and D. P. Williamson, editors, Integer Pro-
gramming and Combinatorial Optimization, volume 4513 of LNCS, pages 439-453, 2007.

[45] C. E. Ferreira, A. Martin, and R. Weismantel. Solving multiple knapsack problems by
cutting planes. SIAM Journal on Optimization, 6(3):858-877, 1996.

[46] M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R. H. M6hring, and
C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of
LNCS, pages 61-84. Springer, Berlin, 2009.

[47] H. Flandorffer. Vereinfachte Giiterzugbildung. ETR RT, 13:114-118, 1953.

[48] A. Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2:328 —
336, 1981.

142 Bibliography

[49] R. Freling, R. M. Lentink, L. G. Kroon, and D. Huisman. Shunting of passenger train
units in a railway station. Transportation Science, 39(2):261-272, 2005.

[50] R. Fujita, Y. Kobayashi, and K. Makino. Robust matchings and matroid intersections.
In M. de Berg and U. Meyer, editors, Algorithms — ESA 2010, volume 6347 of LNCS,
pages 123-134. Springer, Berlin, 2010.

[51] H. N. Gabow, M. X. Goemans, E. Tardos, and D. P. Williamson. Approximating the
smallest k-edge connected spanning subgraph by LP-rounding. Networks, 53(4):345-357,
2009.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, 1979.

[53] M. Gatto, J. Maue, M. Mihalak, and P. Widmayer. Shunting for dummies: An introduc-
tory algorithmic survey. In R. K. Ahuja, R. H. Mohring, and C. D. Zaroliagis, editors,
Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages 310-337.
Springer, Berlin, 2009.

[54] D. Golovin, V. Goyal, and R. Ravi. Pay today for a rainy day: Improved approximation
algorithms for demand-robust min-cut and shortest path problems. In B. Durand and
W. Thomas, editors, STACS 2006, volume 3884 of LNCS, pages 206-217, 2006.

[55] A. Gupta, V. Nagarajan, and R. Ravi. Thresholded covering algorithms for robust and
max-min optimization. In S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide,
and P. G. Spirakis, editors, ICALP 2010, volume 6198 of LNCS, pages 262-274, 2010.

[56] E. Guslitser. Uncertainty-immunized solutions in linear programming. Master’s thesis,
Technion, Israel Institute of Technology, IE&M faculty, 2002.

[57] R. S. Hansmann and U. T. Zimmermann. Optimal sorting of rolling stock at hump
yards. In H.-J. Krebs and W. Jager, editors, Mathematics - Key Technology for the
Future, chapter 5, pages 189-203. Springer, Berlin, 2008.

[58] R. Hassin and S. Rubinstein. Robust matchings. SIAM Journal on Discrete Mathemat-
ics, 15(4):530-537, 2002.

[59] R. Hassin and D. Segev. Robust subgraphs for trees and paths. ACM Transactions on
Algorithms, 2(2):263-281, 2006.

|60] A. Hauser and J. Maue. Experimental evaluation of approximation and heuristic algo-
rithms for sorting railway cars. In P. Festa, editor, SEA 2010, volume 6049 of LNCS,
pages 154-165. Springer, Berlin, 2010.

[61] H. Iida. A note on the max-min 0-1 knapsack problem. Journal of Combinatorial
Optimization, 3(1):89-94, 1999.

[62] R. Jacob. On shunting over a hump. Technical Report 576, Institute of Theoretical
Computer Science, ETH Ziirich, 2007.

|63] R. Jacob, P. Marton, J. Maue, and M. Nunkesser. Multistage methods for freight train
classification. Networks, 2010. to appear.

[64] H. C. Joksch. The shortest route problem with constraints. Journal of Mathematical
Analysis and Applications, 14(2):191-197, 1966.

|65] R. Kalai and D. Vanderpooten. Lexicographic a-robust knapsack problem: Complexity
results. In IEEFE International Conference on Service Systems and Service Management
(ICSSSM 2006), pages 1103-1107, 2006.

Bibliography 143

[66] K. Kaparis and A. N. Letchford. Local and global lifted cover inequalities for the 0-1 mul-
tidimensional knapsack problem. Furopean Journal of Operational Research, 186(1):91-
103, 2008.

|67] K. Kaparis and A. N. Letchford. Separation algorithms for 0-1 knapsack polytopes.
Mathematical Programming, 124(1-2):69-91, 2010.

|68] O. E. Karagan, M. ¢. Pinar, and H. Yaman. The robust shortest path problem with
interval data. Technical report, Industrial Engineering Department, Bilkent University,
2001.

[69] R. M. Karp. Reducibility among combinatorial problems. Complezity of Computer
Computations, pages 85-103, 1972. Also known as Karp’s 21 NP-complete problems.

|70] A. Kasperski and P. Zielinski. On the approximability of minmax (regret) network
optimization problems. Information Processing Letters, 109(5):262-266, 2009.

|71] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

|72] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291-307, 1970.

[73] R. Khandekar, G. Kortsarz, V. Mirrokni, and M. R. Salavatipour. Two-stage robust
network design with exponential scenarios. In D. Halperin and K. Mehlhorn, editors,
Algorithms — ESA 2008, volume 5193 of LNCS, pages 589-600. Springer, Berlin, 2008.

[74] S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform con-
nectivity problems. Journal of Algorithms, 21(2):434-450, 1996.

[75] G. W. Klau and R. Weiskircher. Robustness and resilience. In U. Brandes and T. Er-
lebach, editors, Network Analysis, volume 3418 of LNCS, chapter 15, pages 417-437.
Springer, Berlin, 2005.

[76] O. Klopfenstein and D. Nace. A note on polyhedral aspects of a robust knapsack problem.
2007.

[77] B. Korte and J. Vygen. Combinatorial Optimization: Theory and algorithms. Springer,
Berlin, 2008.

[78] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Dordrecht, 1997.

|79] K. Krell. Grundgedanken des Simultanverfahrens. ETR RT, 22:15-23, 1962.

|80] E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31-56,
1975.

|81] C. Liebchen, M. E. Liibbecke, R. H. Mohring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. H.
Mohring, and C. D. Zaroliagis, editors, Robust and Online Large-Scale Optimization,
volume 5868 of LNCS, pages 1-27. Springer, Berlin, 2009.

[82] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, Chichester, 1990.

|83] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale
systems. Operations Research, 43(2):264-281, 1995.

|84] M. W. Padberg. (1, k)-configurations and facets for packing problems. Mathematical
Programming, 18(1):94-99, 1980.

144 Bibliography

[85] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In D. C. Young, editor, FOCS 2000 - 41st Annual I[IEEE
Symposium on Foundations of Computer Science, pages 86-92. IEEE Computer Society,
Los Alamitos, California, 2000.

[86] K. J. Pentinga. Teaching simultaneous marshalling. The Railway Gazette, pages 590—
593, 1959.

[87] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. Mathematical Programming, 108(1):97-114, 2006.

|88] J. Rosenhead, M. Elton, and S. K. Gupta. Robustness and optimality as criteria for
strategic decisions. Operational Research Quarterly, 23(4):413-431, 1972.

|89] T. J. Schaefer. The complexity of satisfiability problems. In STOC 1978 - Proceedings of
the tenth annual ACM symposium on Theory of computing, pages 216-226. ACM, New
York, N.Y., 1978.

[90] Y. Shiloach. A polynomial solution to the undirected two paths problem. Journal of the
Association for Computing Machinery, 27(3):445-456, 1980.

[91] M. W. Siddiqee. Investigation of sorting and train formation schemes for a railroad
hump yard. In G. F. Newell, editor, Proceedings of the 5th International Symposium on
the Theory of Traffic Flow and Transportation (ISTTT5), pages 377-387. Elsevier, New
York, N.Y., 1972.

[92] A. L. Soyster. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research, 21(5):1154-1157, 1973.

[93] A. L. Soyster. A duality theory for convex programming with set-inclusive constraints.
Operations Research, 22(4):892-898, 1974.

|94] R. Stephan. Cardinality constrained combinatorial optimization: Complexity and poly-
hedra. Discrete Optimization, 7(3):99-113, 2010.

[95] S. Stiller. Eztending Concepts of Reliability — Network Creation Games, Real-time
Scheduling, and Robust Optimization. PhD thesis, Technische Universitat Berlin, 2008.

[96] J.-P. Watson, W. E. Hart, and R. Murray. Formulation and optimization of robust
sensor placement problems for contaminant warning systems. In S. G. Buchberger,
R. M. Clark, W. M. Grayman, and J. G. Uber, editors, Proceedings of the 8th Annual
Water Distribution Systems Analysis Symposium. ASCE, Cincinnati, Ohio, 2006.

[97] R. Weismantel. On the 0/1 knapsack polytope. Mathematical Programming, 77(3):49-68,
1997.

[98] L. A. Wolsey. Faces for a linear inequality in 0—1 variables. Mathematical Programming,
8(1):165-178, 1975.
[99] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling,
17(2):1-18, 1993.
[100] G. Yu. On the max-min 0-1 knapsack problem with robust optimization applications.
Operations Research, 44(2):407-415, 1996.

[101] G. Yu and J. Yang. On the robust shortest path problem. Computers & Operations
Research, 25(6):457-468, 1998.

A. Max-Scenario Problems

The max-scenario problem is a subproblem of several recoverable robust optimization prob-
lems, like the k-distance recoverable robust problem or the exact subset recoverable robust
problem, and represents the view of a worst-case scenario in such a setting. In Gupta et
al. [55] this kind of problems were named max min problems, which contradicts the name for
the robust versions of maximization problems also called max min problems. They considered
the special demand scenario set in which & elements may not be available in the second stage.
We will focus on scenarios that define different cost functions but have no influence on the set
of feasible solutions.

Definition A.0.1 (Max-Scenario Problem). Let (U, F,c¢) be an LCMin problem and S be
a set of scenarios, each scenario determining a cost function ¢ : U — N. Then profit(S) =
mingcr ¢”(F) defines the profit of a scenario S € S. The maz-scenario problem of this LOMin
problem is to find a scenario S € S with maximum profit.

Let us consider the three scenario types. If we start with an LCMin problem in P and deal
with discrete scenarios, then the max-scenario problem is solvable in polynomial time: Given
r scenarios Si,...,5,, we just need to compute the profit for each scenario S;, 1 = 1,...,7r,
and choose the best one. Considering interval scenarios defined by lower and upper bounds
c and ¢ on the cost values, the scenario Spax with ¢ = is an optimal solution to any
max-scenario problem.

It remains to investigate the set of I'-scenarios. Recall that this set is described implicitly
by lower and upper cost bounds ¢ and ¢ and a parameter I' € N. The cost function of each
feasible scenario obeys these cost bounds, and at most I' values may vary from the lower bound.
From a combinatorial perspective the max-scenario problem with I'-scenarios becomes more
interesting, since no obvious optimal solution exists. In the following part we prove that the
max-scenario versions of the shortest path problem and the minimum (s,¢)-cut problem are
strongly NP-complete. Finally, we consider the max-scenario weighted disjoint hitting set
problem and show that it can be solved efficiently.

A.1l. Shortest Path Problem

Let G = (V, A) be a directed graph, s,t be two vertices in V and ¢ : A — N be a cost function.
The shortest path problem is to find a simple (s, t)-path with minimum cost. In the following
theorem, we show that the max-scenario version of this problem with I'-scenarios is strongly
NP-hard. The reduction is from exactly-one-in-three 3SAT. It is similar to the NP-hardness
proof for the discrete time-cost trade-off problem with negative processing times and the goal
to maximize the makespan |36].

Theorem A.1.1. The mazx-scenario shortest path problem with I'-scenarios is strongly
NP-hard.

146 Appendix A. Max-Scenario Problems

[0, 2]

S
—mmm— block arc
Figure A.1.: The arcs a,, a,, and az, form the fork G,, . For every clause C;, j = 1,...,m,

there exist three clause-arcs a1, aj2 and a;3. Note that all arcs are directed from right to left.

Proof. In order to prove NP-hardness of the max-scenario shortest path problem, we show a
reduction from the NP-hard exactly-one-in-three 3SAT problem [89]. Let I be an exactly-one-
in-three 3SAT instance with n variables x1,..., 2, and m clauses C1, ..., C,,. Each clause C}
consists of three literals y;1, vio, ¥j3 € {21, T1, ..., Tn, T}, L€,

C; =yj1 Vyj2 Vyjs.

W.lo.g. x; and T; are each contained in a least one clause and no clause contains both of
them, for each i = 1,... n. A feasible assignment of [is a vector z € {true, false}", such that
exactly one literal in every clause is satisfied. In the following, we construct a max-scenario
instance I’ based on a shortest path problem defined by a graph G and two vertices s and ¢,
and a I'-scenario set Sp determined by lower and upper cost bounds on the arcs in GG and a
value I' € N. We start with a description of the graph. For each variable x;, ¢« = 1,...,n, the
graph G contains a fork G, with s; = s, the origin vertex in G. A fork is a graph G, defined
by four vertices s;, y;, vz, and vz, and three arcs a;, a,,, az, with a; = (s;,v;), az, = (yi, vs,) and
az, = (Yi, vz,). The arcs a; and az, are block arcs. A block arc (v,w) is an arc representing
M parallel (v, w) arcs each having the same properties, e.g., the same lower and upper cost
bounds. We call a; the handle of a fork, a,, the true arm of a fork and az, the false arm of a
fork (see Figure A.1).

Furthermore, G' contains three parallel arcs a1, a2 and a;3 for each clause Cj, j =1,...,m.
Each arc represents a true assignment for C;, where for a;; the ith literal is true, i = 1,2, 3.
We call these arcs the clause arcs. Each clause arc is connected with ¢, the destination vertex
in G. We finish the construction of G' by defining the arcs between the fork arms and clause
arcs. Let aj;, i = 1,2, 3, be the clause arcs of the clause C; = y;1 Vy;2Vy;3, j =1,...,m. For
e {1,2,3}, 0 #iand yj =Ty, k € {1,...,n}, we connect the true arm of the fork G,, with
aji, and if y;, = xy, we connect the false arm of G, with a;;. In the other two cases, i.e., for
¢ e {1,2,3}, ¢ =i and yj; = vy and y;; = Ty, we add an arc between a;; and the true as well
as the false arm of G,,. See Figure A.2 for an example.

We continue with the upper and the lower cost bounds in GG. The handles, the true arms and
the clause arcs get upper cost bounds of 2 and the false arms obtain upper cost bounds of
4. Furthermore, the lower cost bounds of the true arms are set to 2, i.e., the cost of these
arcs are fixed in every scenario. Every other cost bound is 0 (see Figure A.1). Finally, for the

A.1. Shortest Path Problem 147

Figure A.2.: This graph G is constructed for the instance I with C; = x1 V Ty V x3. The sce-
nario S*, defined according to the feasible assignment z* = (true, true, false), has profit(S*) =
4. In C the first variable x; verifies the clause. Therefore, the cost of a;; is not raised.

definition of the scenario set Sp, we set M = 2m + 1 and I' = Mn + 2m. Note that the size
of the constructed max-scenario instance I’ is polynomial in the size of I.

We will prove that there exists a I'-scenario S* with profit(S*) = 4 in I’ if and only if I is a
yes-instance of exactly-one-in-three 3SAT.

(<): Let 2* be a feasible assignment of I. We define the cost function of S* in the following
way: If 7 = true, i € 1,...,n, then S* assigns upper cost to the handle of GG,, and lower cost
to the false arm. If 7 = false, 1 = 1,...,n, the false arm gets the upper cost and the handle
the lower cost. Note that any (s, t)-path already has a length of 2 due to this cost assignments.
It remains to set the scenario cost for the clause arcs. Since x* is a feasible assignment, in
every clause C, j = 1,...,m, there exists exactly one literal y;;,, i; € {1, 2,3}, which verifies
this clause. The scenario S* assigns the upper cost bounds to all clause arcs a;; with @ # i;
and leaves the cost of aj;; at the lower bound (see Figure A.2). In total S* changes the cost
values of n block arcs and 2m clause arcs from the lower cost bounds to the upper bound, i.e.,
the cost values of Mn + 2m arcs. Therefore, S* is a feasible I'-scenario. It remains to show
that any (s,t)-path in G has cost 4 w.r.t. the cost function ¢ .

Let us assume that there exists a path p with ¢® (p) = 2. This path crosses one true or false
arm b of a variable x, ¢ € {1,...,n}, and one clause arc aj;, j € {1,...,m}, i € {1,2,3}.
Due to the construction of ¢, the cost of the subpath of p starting in s and ending after
traversing b are already 2. Hence, i = i; and ¢ (a;;) = 0. We now distinguish two cases: the
assignment x; verifies Cj, i.e., y;;;, € {7, Ty}, or the assignment falsifies C;. In the first case
and y;;, = w4, p traverses the true arm. But since x; = true, the cost assigned to the handle of
G, are set to 2. Hence, p collects cost 4. The same argument works if y;;; = T,. In the other
case and z, € Cj, b is the true arm and zj = true. As before, crossing the handle produces
cost 2 and thus ¢ (p) > 4. If 2, € C}, then b is the false arm and since z} = false, the path p
gets a cost of at least 4. In summary, all paths traversing the arc a;;; have already a cost 4
before they pass the clause arc. This is a contradiction.

(=): Let S* be a I'-scenario in I" with profit(S*) = 4. Before we start with a construction of
x*, we need some observations.
Claim. The scenario S* assigns upper cost bounds to exactly one block arc in every fork.

Proof. Assume that there is a fork G,,, ¢ € 1,...,n, in which the cost in no block arc are all
assigned to ¢. Then in the handle block arc and in the false arm block arc there exists an arc
with cost 0. An (s,t)-path traversing these two arcs has at most cost 2. This is a contradiction
to profit(S*) = 4.

Since 2m < M, at most n block arcs can obtain cost values on the upper cost bound. A

148 Appendix A. Max-Scenario Problems

Claim. Exactly two cost values of the clause arcs of each clause are moved to their upper cost
bounds.

Proof. We assume that there exists a clause Cj, j € 1,...,m, in which only one clause arc is
changed to the upper cost. Each one of the three clause arcs a;1, a2 and a;3 is connected to
the same forks G,,, G, and G, a,b,c € {1,...,n}. Since in every fork one of the block arcs
has been assigned to the upper cost, either a shortest path to the end of the true arm or a
shortest path to the end of the false arm has cost 4. The other one has cost 2. W.l.o.g. let
a;1 be the one clause in which the cost have been moved to the upper cost bound. Since the
shortest path from s to ¢ has a cost 4 and the other two clause arcs a;o and aj3 have cost 0,
both must be connected to the three arms with the higher cost (see Figure A.3). This is a
contradiction to the construction of G.

Figure A.3.: If a scenario S moves just one of three clause arcs, then there exists an (s, t)-path
in GG of length 2.

Since S* already changed n - M arc cost, there are just 2m possibilities left; two for every

clause. A
Now we define a solution x* to the scenario S* by setting for ¢ = 1,...,n the assignment
z; = true if ¢¥(a;) = 2 and z} = false otherwise. For every clause C}, j = 1,...,m, there
is one clause arc aj; with cost 0. W.lo.g. i; = 1. If y;; = 2, £ € {1,...,n}, then a; is

connected to the true arm of G,,. Every path crossing this arm produces cost 4. Therefore,
the cost of the handle arc a, is at the upper bound and hence z; = true. The same argument
works for y;;1 = ZTp. Furthermore, for y;; = x;, or y;; = 7, with t € {1,...,n}, t # ¢, the two
variables are set such that they do not satisfy the clause. Hence, z* is a feasible solution.

This completes the proof for the NP-hardness of the max-scenario problem. O

The graph G constructed in the reduction has few structural properties, e.g., is neither series-
parallel nor planar nor a grid graph. An open question is whether the max-scenario version
of the shortest path problem with I'-scenarios can be solved efficiently on these special graph
classes.

A.2. Minimum (s,t)-Cut Problem

Let G = (V, A) be a directed graph, s,t € V be two vertices and ¢ : A — N be a cost function.
A (s,t)-cut 07(X) with X €V, s € X and t ¢ X consists of all arcs (a,b) with a € X and
b € V\X. Furthermore, we assume all (s,?)-cuts to be inclusion minimal, i.e., for a given
(s,t)-cut 67(X) there exists no subset d*(X’) C 67(X), such that §*(X’) is an (s, ¢)-cut for

A.2. Minimum (s,t)-Cut Problem 149

some X’ C V. Then, the minimum (s,t)-cut problem is to find an (s,t)-cut 0% (X) with
minimum cost ¢(6% (X)) = 3,5+ (x) c(a).

Theorem A.2.1. The maz-scenario minimum (s,t)-cut problem with I'-scenarios is strongly
NP-hard, even on bipartite graphs.

Proof. We show a reduction from 3SAT. Let I be an instance of 3SAT with n variables
x1,...,x, and m clauses (4, ..., C,,, where each clause consists of three literals. We construct
a max-scenario instance I’ for the minimum (s, ¢)-cut problem in the following way: The graph
G = (V, A) contains for every variable x;, ¢ = 1,...,n, the vertices v;, T; and w;, and for
every clause C, j = 1,...,m, a vertex u;, and finally two vertices s and ¢. The vertex v;
represents the true-assignment of z; and v; the false-assignment, ¢ = 1,...,n. The vertices
w;, © = 1,...,n, are auxiliary vertices. The vertex s is connected to all vertices v; and v,
1 =1,...,n, and each of these arcs has a lower cost bound 0 and an upper cost bound m + 1.
All vertices uj, j = 1,...,m, and w;, ¢ = 1,...,n, are connected to ¢t and have a lower and
upper cost bound 1. Furthermore, there is an arc connecting v; and u; if and only if z; € C},
and an arc connecting v; and u; if and only if 7, € C;, 1 =1,...,n, j = 1,...,m. These arcs
also get lower and upper cost 1. Finally, we link the vertices v;, v; with w; and assign upper
and lower cost bound 1 (see Figure A.4). The size of this instance I” is clearly polynomial in
the size of I.

Figure A.4.: The vertices v;, U; represent the true and false assignment of the variable z;,
1 =1,...,n, and the vertices uq,...,u,, the different clauses C1,...,C,,. All arcs have a
fixed cost 1 except for the arcs incident to s, which have lower and upper cost 0 and m + 1,
respectively.

We will prove that the instance I is a yes-instance if and only if there exists a I'-scenario S
with ' = n and profit(S) > m + n.

(=): Let z* be an assignment satisfying all clauses. We define
A" =UL {(s,v;) | zf = true} UL, {(s,v;) | xf = false}.

The scenario S* assigns cost of the upper bound to all arcs a € A*. Since |A*| = n, the
scenario S* is feasible. We consider the graph with these cost as capacities and compute a
maximum (s, t)-flow. It is well-known that the value of a maximum (s, t)-flow is equivalent to
the minimum cost of an (s, t)-cut. We will show that for every arc (u;,t), j =1,...,m, there
exists an (s, u;)-path in the graph which crosses just arcs with cost greater than 0.

Let C; be the clause corresponding to the vertex w;. Since z* is a valid assignment, there
exists a variable in C; which satisfies this clause. Let x} be that variable with = = true,
i € {1,...,n}. Due to the definition of A*, the arc (s,v;) has an upper cost m + 1 and v; is

150 Appendix A. Max-Scenario Problems

connected to u;. Hence, this forms a path from s to w;. The same holds for the path sv;u; if
xf = false. The existence of such an (s, w;)-path using just arcs with positive cost can also be
shown for every (w;,t)-arc, i = 1,...,n. Choosing such a path for every (u;,t), j =1,...m,
and (w;,t), i« = 1,...,n, and prolonging it with the arc (u;,t) or (w;,t), respectively, the
flow sending one unit along each of these paths is feasible: there are at most m + 1 paths
containing an arc (s,v;) or (s,7;) and at most one path containing any other arc. The value
of this (s, t)-flow is m 4+ n. Since profit(§+ (X)) = m+n for X = V\{t}, the flow is maximum
and thus profit(S*) = m + n.

(<): Let S* be a scenario changing the cost of the arcs A* with profit(S*) > m + n. Hence,
there exists a flow sending one unit across every arc (u;,t) and (w;,t), ¢ = 1,...,n, j =
1,...,m. Since (w;,t) is just adjacent to (v;,w;) and (7;,w;), the scenario changes either
the cost of the arc (s,v;) or (s,7;). Since there are at most n arcs with cost m + 1, the
assignment = = true if (s,v;) € A*, and =} = false if (s,7;) € A*, is well defined, i = 1,...,n.
Let us assume that there exists a clause Cj, j € {1,...,m}, which is not satisfied by z*. It
follows from the considerations above that there exists no path from s to u; using arcs with
positive cost. This is a contradiction to profit(S*) > m + n. O

Note that it is essential for the reduction that G is a directed graph.

A.3. Weighted Disjoint Hitting Set Problem

The weighted disjoint hitting set problem is a special case of the well-known weighted hitting
set problem: Let U = {uq,...,u,} be a set of n elements, M = {M;,..., My} be a set of d
pairwise disjoint subsets of U, i.e., M; C U and M; N M; = (for all i # j, i,j € {1,...,d},
and ¢ : U — N be a cost function. A feasible solution F' C U of the weighted disjoint hitting
set problem (WDHS) contains exactly one element for every set M € M, i.e., |[FNM| =1 for
all M € M. Then the weighted disjoint hitting set problem is the following:

Given: A set of n elements U = {uy,...,u,}, a set of d pairwise disjoint subsets
M ={My,..., My} and a cost function ¢ : U — N.

Task: Find a feasible solution F' € F minimizing the cost ¢(F) = > pc(u).

This problem has a quite simple structure, and a solution choosing the element with minimum
cost from every subset is optimal. Yet, its recoverable robust version turns out to be the key
problem showing NP-hardness for several recoverable robust LCMin problems. For the sake
of completeness (and to prove that not all max-scenario problems are NP-complete), we show
how this problem can be solved in polynomial time.

Theorem A.3.1. The maz-scenario WDHS problem is solvable in polynomial time.

Proof. Let U be a set of n elements, M, ..., My be d pairwise disjoint subsets of U, ¢(u) and
¢(u) be lower and upper bounds on all elements v € U and I' € N. The max-scenario WDHS
problem is to find a scenario S € S, i.e., a scenario S with ¢® : U — N, ¢°(u) € [e(u), ¢(u)] for
all w € U and |[{u € U | ¢(u) > c(u)}| < T, with maximum profit. We start by ordering the
items of M;, 1 =1,...,d, such that c(uy) < c(uy) for k < £and ¢(uy) < ¢(ug) if c(u) = c(uip)
for k < ¢. Let S* be an optimal solution moving ~;(S*) values of the set M; to the upper cost
bound, 7 =1,...,d. We define
Cji(S*)

i 0 =min{ min E(u), c(ui(s+1)}-
J=1,...,7:(8%)

A.3. Weighted Disjoint Hitting Set Problem 151

Since c(uij) < c(Uigy,(s7)+1)) and c(u;) < €(uy;) for any j < 4;(S*),

d
profit(S™*) = Z ci%(s*).
i=1
Thus, it suffices to determine the values v;(S*), ¢ = 1,...,d, instead of the set of elements,

which obtain the upper bound as cost. In the remaining part we assume that any scenario S
changing 7;(5) values in M;, i = 1,...,d, chooses the set {u;, ..., U, s}

We now show how to compute the values v;(5*), i =1,...,d, of an optimal I'-scenario S* via
a constraint longest path problem. First we transform the sets M;, + = 1,...,d, into a graph
G. The graph G is an extension of a simple (s, t)-path of length d where the ith arc is replaced
by |M;| parallel arcs, i = 1,...,d. Bach arc a;; gets two cost values (w(ai;), £(ai;)) = (cl, 4),
i=1,....d, 7 =1,...,|M;|. Let p=ay;as,...aq, be an (s,t)-path in G with {(p) < T
Then p represents a I'-scenario .S,, where .S, changes exactly j; elements to their upper bound
in each set M;, 1 =1,...,d, and

On the other hand, any scenario S € Sr represents an (s, t)-path in G. Thus, a longest (s,)-
path p with ¢(p) < I' generates a I'-scenario with maximum profit. Since the chain graph is
acyclic and the values of the second cost function ¢ are polynomially bounded by the input,
such a constraint longest path can be computed in polynomial time via a dynamic program
introduced by Joksch |64] or the labeling Dijkstra algorithm analyzes by Aneja et al. [6]. O

For several classic combinatorial optimization problems, as the minimum perfect matching
problem or the minimum spanning tree problem, the complexity status of their max-scenario
version remains open.

B. Cardinality Constrained Minimum
(s,t)-Cut Problem

Cardinality constrained combinatorial optimization problems ask for a feasible solution with
minimal cost containing either exactly k, nor more than k, or less than £ elements, k£ € N.
These problems have widely be studied with respect to their complexity or their polyhedral
structure 20, 94]. Yet, to the best of our knowledge, the complexity status for the cardinality
constrained minimum (s,t)-cut problem, where the number of arcs is upper bounded by k,
remained an open problem. The constrained versions where the cardinality is fixed to k or is
lower bounded by k are known to be strongly NP-complete, shown via a reduction from max
cut [21]. In the following we prove that this result also holds for the upper bounded case. This
is joint work with Rico Zenklusen.

Definition B.0.2 (Upper Bounded Cardinality Constrained Minimum (s,¢)-Cut Problem).
Let G = (V, A) be a directed graph, s,t be two designated vertices in V', ¢: A — N be a cost
function on the arc set A and k € N be an upper bound on the cost. An (s,t)-cut is a subset
of arcs 01 (X) with X C V\{t}, s € X, 6" (X) :={(u,v) € A|ue X,v € V\X}. The upper
bounded constrained minimum (s,t)-cut problem is to find an (s,t)-cut §(X) with minimal
cost ¢(01(X)) such that |67 (X)| < k.

We assume that all (s, ¢)-cuts are inclusion minimal, i.e., no subset 67 (X’) C 67(X) forms a
feasible (s, t)-cut 61 (X’) for some X' C V.

Theorem B.0.3. The upper bounded cardinality constrained (s,t)-cut problem is strongly
NP-hard.

Proof. In order to prove NP-hardness we show a reduction from the network interdiction
problem with unit removal cost, which is strongly NP-hard [99]. Let G = (V, A) be a directed
graph, s and t be two designated nodes, u : A — N be a capacity function, and B be a
budget on the removal cost. The task in the network interdiction problem is to decide for
a given parameter K € N whether there exists a set of arcs D C A with |D| < B such that
the value of a maximum (s,)-flow in the graph (V, A\D) is smaller than or equal to K. By
the Max-Flow-Min-Cut Theorem of Ford and Fulkerson, this is equivalent to finding a set of
arcs D C A with |D| < B such that the value of a minimum (s, ¢)-cut 67 (X) in the graph
(V, A\D) is smaller than or equal to K. We assume that §*(X)U D forms an (s, t)-cut in G.
If this is not the case, we can choose a subset D’ of D such that §7(X) U D’ is an (s, t)-cut.

To derive an upper bounded cardinality constrained minimum (s, t)-cut instance I’, we modify
the graph G = (V, A) and define a cost function ¢ on the arcs in the following way: We
subdivide each arc a = (u,v) € A by an extra vertex v, and add M parallel (v,,v) arcs to
the set of arcs of the new graph G’ = (V'; A"), M € N. All these (M + 1) parallel arcs obtain
cost 0, and the (u,v,) arc obtains the original capacity as cost, i.e., ¢((u,v,)) = u(a) for all
a € A. Finally, we set M = |A| and the upper bound on the cardinality k = B- (M +1) + |A|.
Let 07(X’) be an (s,t)-cut in G' with |¢(67(X"))] < K and |[67(X")| < k. Since this cut

154 Appendix B. Cardinality Constrained Minimum (s, t)-Cut Problem

contains (M + 1) different arcs, for every vertex v,, v, € V and a € A, at most B of these
vertices are included in X’. Hence, the set D = {a € A | v, € X'} contains at most B arcs.
Furthermore, the set 67(X) with X = {v € V | v € X'} is an (s, t)-cut in the graph (V, A\D)
with u(07(X)) = ¢(67(X")) < K. Thus, D is a feasible solution of the network interdiction
instance.

On the other hand, let D be a subset of A with |D| < B, such that the (s,t)-cut 67(X)
in (V; A\D) produces cost of less than or equal to K, and D U 6" (X) forms an (s,t)-cut in G.
Then X' = X U{v, | a € D} is a feasible solution of I’ with ¢(67(X’)) = u(67(X)). Thus, the
network interdiction instance is a yes-instance if and only if the constructed upper bounded
cardinality constrained minimum (s,t)-cut instance is a yes-instance. 0

The upper bounded constrained minimum (s,¢)-cut problem is a subproblem in one of the
recoverable robust settings introduced in Section 2. The NP-completeness of this problem
implies that the total cost of a given (s, t)-cut cannot be computed efficiently, unless P = NP.

Zusammenfassung

Recoverable Robustness ist eine Methode um mit Unsicherheiten in Optimierungsproblemen
umzugehen und erweitert das Konzept der robusten Optimierung. Im Gegensatz zur klassi-
schen Robustness darf eine gewdhlte Losung durch die Anwendung limitierter Mafnahmen
verdndert werden. Eine so verdnderte Losung wird auch als Recovery bezeichnet. Gesucht ist
eine Losung, die fiir jeden eintretenden Fall der Unsicherheitsparameter eine zulédssige Losung
im Recovery enthidlt und die maximal auftretenden Kosten minimiert. Dieses Konzept wurde
bisher hauptséichlich auf Probleme aus der Verkehrsoptimierung angewandt, so zum Beispiel
auf das Timetabling und das Platforming.

Die vorliegende Arbeit besteht aus zwei Teilen: Der erste Teil beschiftigt sich in drei Kapiteln
mit unterschiedlichen Modellen zur Recoverable Robustness fiir kombinatorische Optimie-
rungsprobleme und der zweite mit der Anwendung dieses Konzepts auf Praxisprobleme.

Die drei theoretischen Modelle unterscheiden sich in der Art der Recovery und in ihren Ziel-
funktionen. Im ersten Modell, der k-Distance Recoverable Robustness, ist die Recovery auf
Losungen beschriankt, die maximal k£ neue Elemente beinhalten. Im zweiten Fall, der Rent
Recoverable Robustness, ergibt sich durch die Wahl einer ersten Losung keine Einschrankung
an die Recovery. Die Kosten fiir eine aus der Recovery gewéahlten Losung variieren jedoch mit
dieser Wahl. Im letzten Modell soll eine kardinalitdtsminimale Menge gesucht werden, die fiir
jedes Szenario eine optimale Losung enthilt. Das Hauptaugenmerk in diesem Teil der Arbeit
liegt auf der Untersuchung des Komplexititsstatus und der kombinatorischen Eigenschaften
der Modelle in Abhéngigkeit des gegebenen Optimierungsproblems und der betrachteten Un-
sicherheiten.

Im zweiten Teil der Arbeit wird das Knapsack Problem als Spezialfall des Bandwidth Packings
aus der Telekommunikation sowie das Train Classification Problem betrachtet. Neben der
Modellierung und einer erneuten Analyse der kombinatorischen Eigenschaften, werden im
Anschluss die Auswirkungen des Ansatzes der Recoverable Robustness im Vergleich zur reinen
Robustness in mehreren auf Praxisdaten basierenden Experimenten ausgewertet.

	Contens
	Introduction
	1.
	2.
	3.
	4.
	5.
	6.
	Bibliography
	A.
	B.

 HistoryItem_V1
 InsertBlanks

 Wo: vor der ersten Seite
 Anzahl der Seiten: 2
 Wie aktuell

 2
 1

 D:20100922093656
 841.8898
 a4
 Blank
 595.2756

 2
 Tall
 562
 413

 CurrentAVDoc

 SameAsCur
 AtStart

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Wo: nach der letzten Seite
 Anzahl der Seiten: 3
 Wie aktuell

 3
 1

 D:20100922093656
 841.8898
 a4
 Blank
 595.2756

 2
 Tall
 562
 413

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

