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Zusammenfassung

Mehr als 90% der Herstellungskosten für Aminosäuren, Peptide und Proteine fallen
auf deren Reinigung zurück. Daher sind zuverlässige Informationen über das Phasen-
verhalten biologischer Systeme für die Auslegung von Trennstufen von zentraler
wirtschaftlicher Bedeutung. In der Regel werden o. g. Produkte fermentativ in
wässrigen Lösungen hergestellt, die außerdem noch Elektrolyte enthalten können.
Das Phasenverhalten dieser Lösungen wird in besonderem Maße durch Faktoren wie
Salztyp, Ionenstärke und pH bestimmt.
In dieser Arbeit wird zunächst ein auf der PC-SAFT Zustandsgleichung basiertes
Modell entwickelt, mit dem thermodynamische Eigenschaften wässriger Elektrolytlö-
sungen beschrieben werden können. Weiterhin wird das entstandene Modell zur
Modellierung wässriger Aminosäure- bzw. Peptid-Systeme verwendet. Besonderes
Augenmerk wird auf die gleichzeitige Beschreibung verschiedener Systemeigenschaf-
ten – Dichten, Dampfdrücke, Aktivitätskoeffizienten und Löslichkeiten – mit einer
minimalen Anzahl an Modellparametern gelegt. Nach erfolgreicher Modellierung
der binären Randsysteme, werden ternäre Wasser-Elektrolyt-Aminosäure Systeme
auf Ihre Modellierbarkeit untersucht.

Zusätzlich werden die metastabile flüssig-flüssig Entmischung, der zweite osmotis-
che Virialkoeffizient, Systemdichten und die Löslichkeit von Proteinen am Beispiel
von Hühnereiweis-Lysozym/NaCl Lösungen sowohl mit der PC-SAFT Zustands-
gleichung als auch mit einem auf dem Potential of Mean Force (PMF) basierenden
Ansatz modelliert. Hier zeigt sich die begrenzte Anwendbarkeit der PC-SAFT Zu-
standsgleichung bei solch komplexen Systemen. Qualitativ richtige Ergebnisse kön-
nen hingegen mit dem PMF Ansatz erreicht werden.
Alle in dieser Dissertation behandelten Modelle wurden in Fortran implementiert.
Die Auswertung der Ergebnisse erfolgte mit Matlab R©.

Schlüsselbegriffe: Perturbation Theory, PC-SAFT, Potential of Mean Force, Elektrolyte
(Alkalihalide, -hydroxide, -sulfate, -nitrate, Erdalkalisalze, Ammoniumchlorid), Aminosäuren
(Glycin, Alanin, Serin, Prolin, Valin, Arginin, Lysin, Threonin, Histidin, α-/β-/γ-Amino-
buttersäure, α-/γ-Aminovaleriansäure), Peptide (Diglycin, Triglycin, Dialanin, Alanyl-
glycin, Glycylalanin), Protein (Hühnereiweis Lysozym), Dampfdruck, (mittlerer ionischer)
Aktivitätskoeffizient, Dichte, Löslichkeit



Abstract

More than 90% of the production costs for amino acids, peptides, and proteins are at-
tributed to their purification. Therefore, reliable information about phase behavior of
biological systems is of essential financial importance for the design of separation units.
In general, bioproducts are obtained by fermentation in aqueous solutions that may also
contain electrolytes. The phase behavior of such solutions is particulary dependent on salt
type, ionic strength, and pH.
In this thesis a model based on the PC-SAFT equation of state is developed for the de-
scription of thermodynamic properties of aqueous electrolyte solutions. This model is also
applied for aqueous amino acid and peptide systems. The aim is to simultaneously describe
various system properties – densities, vapor pressures, activity coefficients, and solubilities
– with a minimum number of adjustable model parameters. After successful modeling of
the binary systems, ternary water/electrolyte/amino acid systems are investigated.

Additionally, the meta-stable liquid-liquid coacervation in protein solutions as well as the
second osmotic virial coefficients, system densities, and solubilities of proteins are scru-
tinized based on aqueous hen egg-white lysozyme/NaCl solutions. Both, the PC-SAFT
model and a model based on potential of mean force (PMF) are tested for their applicabil-
ity regarding such complex mixtures. It is shown that the PC-SAFT approach fails in the
description of protein solutions whereas the PMF ansatz yields, at least, good qualitative
agreement between model and experiment.
All models used for this thesis were implemented in Fortran. The evaluation of data was
carried out with MatlabR©.

Keywords: perturbation theory, PC-SAFT, potential of mean force, electrolyte (al-
kali halides, hydroxides, sulfates, nitrates, earth alkali salts, ammonium chloride), amino
acid (glycine, alanine, serine, proline, valine, arginine, lysine, threonine, histidine, α-/β-
/γ-aminobutyric acid, α-/γ-aminovaleric acid), peptide (diglycine, triglycine, dialanine,
alanylglycine, glycylalanine), protein (hen egg-white lysozyme), vapor pressure, (mean
ionic) activity coefficient, density, solubility
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Chapter 1

Introduction

Amino acids are the building blocks for all life on earth. Albeit the almost infinite variety
of species the number of amino acids forming proteins is limited to about 20. The major-
ity of them are rather simple organic compounds with an amino group and an aliphatic,
aromatic, or heterocyclic side chain (R) attached α to the carboxylic group. With the
exception of the simplest amino acid glycine, all other amino acids are chiral compounds.
In nature the L-form prevails. However, D-alanine, for example, is found in the cell mem-
brane of bacteria.

Amino acids and their derivatives are of particular economical importance since they are
utilized on a large scale as nutrition factors and flavor enhancers (e. g. glutamate). Addi-
tionally, many pharmaceuticals such as antibiotics, heart, cancer, and anti-HIV drugs are
produced starting from amino acids. An excellent overview about production methods and
the application of several amino acids is given by Kleemann et al.1. Most production pro-
cesses are based on white biotechnology – in other words, on fermentation and enzymatic
technologies. The purification of the target product is achieved by crystallization from the
filtered fermentation broth often containing also electrolytes and other by-products. For
the design of separation units knowledge of thermodynamic data is indispensable. There-
fore, since the beginning of the past century phase behavior in amino acid solutions has
attracted the interest of many research groups especially with regard to its modeling. Ac-
tivity coefficients as well as solubilities in aqueous amino acid solutions also containing
electrolytes have been measured and described with models of varying complexity.

In addition to amino acids, peptides and proteins are economically highly valuable bio-
products. Precipitation by addition of salts, non-ionic polymers, polyelectrolytes, or or-
ganic solvents is commonly used to isolate target proteins from solutions. Often two meta-
stable liquid phases – one protein-rich and one protein-lean – form instead of the ther-
modynamically stable solid precipitate. The phase behavior is very complex and strongly
depending on solution conditions such as ionic strength, salt type and pH. Although still
far away from a rigorous quantitative modeling of the thermodynamics of complex protein
solutions, qualitative agreement between model and experiment can already be achieved.
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1.1 Aim of the Thesis
The scope of this thesis is twofold: Because solutions in biotechnology often contain salts,
a model that can deal with charged species is essential. The Perturbed-Chain Statistical
Association Theory (PC-SAFT) developed by Groß et al.2 is extended by an electrolyte
term in order to describe solution densities, vapor pressure depression, and mean ionic
activity coefficients of aqueous electrolyte solutions. In a second step, phase behavior of
binary water-amino acid (peptide) mixtures is calculated with the same model. Herewith,
the foundation is laid for modeling the influence of electrolyte type and concentration on
activity coefficient and solubility of amino acids and peptides in aqueous solutions.
Another aim is to model phase behavior in protein systems with an equation of state.
The applicability of a rigorous approach such as PC-SAFT is investigated. Further, a
model based on the McMillan-Mayer framework is applied to describe second osmotic virial
coefficients of hen egg-white lysozyme in aqueous salt solutions as well as the meta-stable
liquid-liquid demixing and the solubility.

1.2 Structure of the Thesis
After this introduction Chapter 2 provides the thermodynamic basics of phase equilibria
calculations. Besides some fundamentals, Chapter 3 contains a detailed description of how
equations of state, especially the PC-SAFT equation of state, are developed from statistical
mechanics and perturbation theory. The concept of the radial distribution function and
its relation to other thermodynamic functions is elucidated. Chapter 4 is dedicated to the
potential of mean force ansatz and its theoretical application to colloidal dispersions. The
extension of the PC-SAFT model to electrolyte systems follows in Chapter 5. Further, the
method of modeling amino acid (peptide) solutions with electrolyte PC-SAFT (ePC-SAFT)
is explained. Modeling results for electrolyte solutions, amino acid (peptide) solutions, and
electrolyte/amino acid solutions are presented in Chapter 6 whereas Chapter 7 summarises
the results for the protein systems. A summary of the thesis, conclusions, and an outlook
for future work follow in Chapter 8.
The Appendix mainly comprises component model parameters and supplementary result
figures.

1.3 Investigated Systems
The electrolyte PC-SAFT equation of state is used to model solution densities, vapor
pressures, (mean ionic) activity coefficients and solubilities of following aqueous electrolyte,
amino acid, and peptide solutions:

• salts containing

cations: Li+, Na+, K+, NH+
4 , Mg2+, Ca2+

anions : F−, Cl−, Br−, I−, OH−, NO−3 , SO
2−
4
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• glycine, DL-alanine, DL-serine, L-serine, L-proline, L-valine, L-arginine, L-lysine,
DL-threonine, L-threonine, L-histidine

• α-ABA, β-ABA, γ-ABA∗

• α-AVA, γ-AVA†

• diglycine, triglycine, dialanine, alanylglycine, glycylalanine

As far as experimental data was available solubilities of amino acids and peptides were
modeled.
The influence of amino acids on the mean ionic activity coefficient of salts was investigated
for 17 electrolyte/amino acid systems (see Appendix H, pp. 130).
As an example of a protein system hen egg-white lysozyme/NaCl solutions were chosen.

∗ABA: aminobutyric acid
†AVA: aminovaleric acid





Chapter 2

Thermodynamical Background

2.1 Basics

A mixture of chemical compounds can distribute to multiple phases (solid, liquid, gas).
There will be an interchange of components between the coexisting phases until equilibrium
is reached and all intensive properties do not change anymore. Intensive properties are
those that do not depend on the size, mass, or shape of the phase, such as temperature,
pressure, density, and composition. The equilibrium thermodynamics provides an abstract
mathematical framework which quantitatively relates the variables describing the state of
the system.
A system is completely characterized by the following function which contains the infor-
mation of the first and second law of thermodynamics:

U = U(S, V,n) (2.1)

Eq. 2.1 is called thermodynamic potential or fundamental function of the internal energy
with the entropy S and the volume V as the respective fundamental variables. The total
differential of this function is

dU =
(

∂U

∂S

)

V,n︸ ︷︷ ︸
T

dS +
(

∂U

∂V

)

S,n︸ ︷︷ ︸
−P

dV +
N∑

i=1

(
∂U

∂ni

)

S,V,nj 6=i︸ ︷︷ ︸
µi

dni (2.2)

Here, the dependence of the internal energy on the amount of each component i is given
by the partial differential quotient

(
∂U
∂ni

)
S,V,nj 6=i

and is called chemical potential µi.

Equilibrium is reached when the entropy is maximized or in other words the internal energy
is at its minimum, i. e.

dS = 0 , d2S < 0 (2.3)

dU = 0 , d2U > 0 (2.4)

For a system consisting of C components distributed in π phases this can be translated
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into the three well-known phase equilibrium conditions:

T (1) = T (2) = ... = T (π) = T (2.5)

P (1) = P (2) = ... = P (π) = P (2.6)

µ
(1)
i (T, P,n(1)) = µ

(2)
i (T, P,n(2)) = ... = µ

(π)
i (T, P,n(π)) ∀ i ∈ C (2.7)

Applying Legendre transformation three other fundamental equations can be derived from
Eq. 2.2:

dH = d(U + PV ) = TdS + V dP +
N∑

i=1

µidni (2.8)

dG = d(H − TS) = −SdT + V dP +
N∑

i=1

µidni (2.9)

dA = d(U − TS) = −SdT − PdV +
N∑

i=1

µidni (2.10)

The fundamental variables for the enthalpy H are S and P . The Gibbs (free) energy (or free
enthalpy) plays an important role in equilibrium thermodynamics since its fundamental
variables T and P are easily accessible experimentally in contrast to the entropy, for
example. Also the Helmholtz (free) energy A, with its fundamental variables T and V ,
is of major interest because many thermodynamic models (especially those derived from
statistical mechanics) are written in terms of the Helmholtz energy.
A comparison of the coefficients of the total differential equations (Eqs. 2.2, 2.9-2.10)
and their respective fundamental equations (not shown here) yields following differential
quotients:

(
∂U

∂S

)

V,ni

=
(

∂H

∂S

)

P,ni

= T (2.11)
(

∂U

∂V

)

S,ni

=
(

∂A

∂V

)

T,ni

= −P (2.12)
(

∂A

∂T

)

V,ni

=
(

∂G

∂T

)

P,ni

= −S (2.13)
(

∂H

∂P

)

S,ni

=
(

∂G

∂P

)

T,ni

= V (2.14)

and
(

∂U

∂ni

)

S,V,nj 6=i

=
(

∂H

∂ni

)

S,P,nj 6=i

=
(

∂G

∂ni

)

T,P,nj 6=i

=
(

∂A

∂ni

)

T,V,nj 6=i

= µi (2.15)

The equations shown above prove the fact that the knowledge of one thermodynamic
potential suffices to derive all other properties of a system. Hence, without loss of generality
we confine ourselves to dealing only with the Helmholtz energy A and its derivatives
throughout this work.
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2.2 Calculation of Phase Equilibria

2.2.1 Vapor-Liquid and Liquid-Liquid Equilibria

The equality of the chemical potential of each component in every phase (Eq. 2.7) can be
reformulated as the isofugacity criterium

f
(1)
i = f

(2)
i = ... = f

(π)
i ∀ i ∈ C (2.16)

Within the scope of this work the number of phases is restricted to two. There are three
concepts for the calculation of phase equilibria: ϕ−ϕ, γ−ϕ, and γ−γ. These are explained
below.

ϕ− ϕ Concept

Using the definition of the fugacity coefficient ϕi

ϕi ≡ fi

xiP
(2.17)

with xi being the mole fraction of component i one obtains

(xiϕi)(1) = (xiϕi)(2) ∀ i ∈ C (2.18)

The fugacity coefficients are complex functions of system temperature, volume or density,
and composition: ϕi = ϕi(T, v,x). Therefore, the compositions in each phase must be
calculated iteratively. As an example, the iteration algorithm for an isobaric-isothermal
flash VLE or LLE calculation is illustrated in Fig. 2.1. However, this concept is generally
applicable (also in the critical phase region where liquid and gas phase have similar prop-
erties) as long as there are equations of state providing the fugacity coefficients for each
phase.

γ − ϕ Concept

When calculating VLE the fugacity of the liquid phase can also be described by an ac-
tivity coefficient γi while the behavior of the vapor phase is still captured by the fugacity
coefficient:

fL
i = xL

i γiP
LV
0i ϕLV

0i Poy = xV
i ϕV

i P = fV
i (2.19)

PLV
0i and ϕLV

0i are the vapor pressure and the fugacity coefficient of pure component i,
respectively. The Poynting factor Poy captures the pressure dependence of the fugacity
coefficient and is negligible (≈ 1) for pressures below 10 bar. Further, the ratio ϕLV

0i /ϕV
i ≈ 1

at low pressures. Hence, Eq. 2.19 simplifies to

xL
i γiP

LV
0i = xV

i P (2.20)
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INPUT
system state: T, p

initial values:         x ', x", ', "

model parameters
i i r r

iteration blocks

EOS
calculate pressure p

calc

p = p
calc

n
e
w

',
"

r
r

EOS
calculate fugacity

coefficients ', "j ji i

x ' = x"i ij ji i' "

n
e
w

 x
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x
"

i
i

OUTPUT

true

true

false

false

Fig. 2.1: Flowchart of an isobaric-isothermal VLE or LLE flash calculation for two phases ’ and
".
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and at low concentration, i. e. in the limit of an ideal solution where γi ≈ 1, to the
well-known Raoult’s law

xL
i PLV

0i = xV
i P (2.21)

The activity coefficient is obtained from gE-models∗ or can as well be calculated with the
help of an equation of state by the following definition

γi ≡ ϕi

ϕ0i
(2.22)

One advantage of the γ − ϕ concept is that for isothermal calculations and when the
vapor pressure is given as a function of temperature (e. g. Antoine equation) the phase
compositions are numerically easy to obtain. That is not the case for isobaric calculations.
Phase equilibrium calculations at higher pressures with the γ − ϕ concept are seldom
performed because an equation of state is needed to evaluate the Poynting factor and the
fugacities for Eq. 2.19. Hence, in this case it makes more sense to directly use the ϕ − ϕ

concept. Another shortcoming of the γ−ϕ concept is that – based on different assumptions
and simplifications for the liquid and the gas phase – the critical phase region is not well
described.

γ − γ Concept

For the description of LLE both liquid phases can be described with activity coefficients.
This method is only applicable for pressure and density independent phase equilibria be-
cause gE models generally are only able to capture the temperature and concentration
dependence of the excess free energy. Nevertheless, due to the incompressibility of liquids,
many binary mixtures reveal a negligible influence of the pressure on the phase equilib-
rium. Density effects due to temperature changes are also often neglected assuming similar
thermal expansion coefficients for all components.

2.2.2 Solid-Liquid Equilibria

The fugacities of the solid (S) and the liquid (L) phase are formulated using activity
coefficients:

fS
i = xS

i γS
i fS

0i (2.23)

fL
i = xL

i γL
i fL

0i (2.24)

where fS
0i and fL

0i are the (pure component) standard fugacities of the solid and the liquid,
respectively. Rearranging Eqs. 2.23-2.24 one obtains the solubility of component i in the
liquid phase

xL
i =

xS
i γS

i fS
0i

γL
i fL

0i

(2.25)

∗Remember: gE = kBT
C∑
i

xi ln γi.
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solid supercooled
liquid

step C
cool down

liquid

system
temperature T

triple point T
Tr

step A
heat up

solid

step B
melting

Dg = k T ln (f / )B 0i

L
f0i

S

1 2

Fig. 2.2: Thermodynamic cycle for the calculation of the ratio fS
0i/fL

0i.

Unfortunately, the standard fugacities are not readily available, especially when the system
temperature lies above the triple point of the crystallizing component and below the one
of the other component. In this case ‘pure solid’ and ‘pure liquid’ represent hypothetical
states. However, for the calculation of the solubility only the ratio fS

0i/fL
0i is of importance.

One harnesses a thermodynamic cycle as illustrated in Fig. 2.2.

The specific Gibbs enthalpy change for the transition from pure solid 1© to supercooled
liquid 2© at temperature T is given by

∆g = kBT ln
fL
0i

fS
0i

(2.26)

In analogy to Eq. 2.10 in a closed system (dn = 0)

∆g = ∆h− T∆s (2.27)

where the change in enthalpy and entropy can be expressed as the sum of the changes for
step A, step B, and step C:

∆h =

T Tr
0i∫

T

cS
p,i dT + ∆hTr

0i +

T∫

T Tr
0i

cL
p,i dT

= ∆hTr
0i +

T∫

T Tr
0i

∆cp,i dT (2.28)

∆s =

T Tr
0i∫

T

cS
p,i

T
dT +

∆hTr
0i

T Tr
0i

+

T∫

T Tr
0i

cL
p,i

T
dT

=
∆hTr

0i

T Tr
0i

+

T∫

T Tr
0i

∆cp,i

T
dT (2.29)
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Here, ∆cp,i is the difference between the specific heat capacities of the solid and the liquid,
respectively, i. e. ∆cp,i = cS

p,i − cL
p,i, and ∆hTr

0i is the melting enthalpy at the triple point.
Provided that the heat capacities are temperature independent between T and T Tr

0i , one
obtains

ln
fL
0i

fS
0i

= β∆hSL
0i

(
1− T

T Tr
0i

)
− β∆cp,i(T Tr

0i − T ) +
∆cp,i

kB
ln

T Tr
0i

T
(2.30)

Eq. 2.30 can be simplified assuming that the first term is the predominant one and that the
others cancel out. Further, the triple point temperature is often substituted by the melting
temperature TSL

0i , hence ∆hTr
0i becomes the melting enthalpy ∆hSL

0i at TSL
0i . Finally one

obtains an equation for the calculation of solubilities

− ln
fL
0i

fS
0i

= ln
xL

i γL
i

xS
i γS

i

= −β∆hSL
0i

(
1− T

TSL
0i

)
(2.31)

In case of a pure solid the activity of the solid becomes unity and Eq. 2.31 is rearranged
to directly yield the solubility

xL
i =

1
γL

i

exp
{
−β∆hSL

0i

(
1− T

TSL
0i

)}
(2.32)

2.3 Calculation of Thermodynamic Properties from
Helmholtz Energy

In the following subsections it will be shown how to calculate the fugacity coefficients from
an equation of state. The equation of state used in this work is given in terms of the
residual Helmholtz energy. Here, ‘residual’ denotes the difference between a property of
a real fluid and that of an ideal gas evaluated at the same T , V , and total number of
molecules N . Hence,

Ares(T, V,N) = A(T, V,N)−Aid(T, V, N) (2.33)

For convenience we define a dimensionless Helmholtz energy which is related to N

a(T, v,x) ≡ A(T, V, N)
NkBT

(2.34)

2.3.1 Pressure

The pressure results from the partial derivative of the reduced Helmholtz energy with
respect to the specific volume v at constant T and composition x (in analogy to Eq. 2.13):

(
∂a

∂v

)

T,x

= −βP (2.35)

(
∂(aid + ares)

∂v

)

T,x

= −β(P id + P res) (2.36)
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with β ≡ 1/kBT . Hence, the system pressure is

βP = βP id −
(

∂ares

∂v

)

T,x

(2.37)

with P id = kBT/v. An often used thermodynamic quantity is the compressibility factor

Z =
Pv

kBT
= 1 + Zres (2.38)

2.3.2 Chemical Potential and Fugacity Coefficients

For the calculation of phase equilibria according to Eq. 2.18 a relationship between the
residual Helmholtz energy ares, the fugacity coefficient ϕi and the chemical potential
µi(T, V ) is needed.

First we define the chemical potential as function of T and P :

µi(T, P ) = µid
i (T, P ) + kBT · ln fi

xiP
(2.39)

In this case the standard state of the ideal gas is chosen to be at T and P . Since T , P ,
and V are linked variables following equality is valid at equilibrium:

µi(T, P ) = µi(T, V ) (2.40)

Subtracting µid
i (T, V ) on both sides of Eq. 2.40 and including the definition of the fugacity

coefficient (Eq. 2.17) one obtains

µres
i (T, V ) = (µid

i (T, P )− µid
i (T, V )) + kBT · ln ϕi (2.41)

The term in brackets is equivalent to (kBT · lnZ) so that one finally gets an equation
for the calculation of the fugacity coefficient from chemical potential and compressibility
factor:

ln ϕi = βµres
i (T, V )− ln Z

↓ (Eq. 2.15)

= β

(
∂Ares

∂ni

)

T,v,nj 6=i

− lnZ (2.42)

It can be shown that the partial derivative can be replaced by3

β

(
∂Ares

∂ni

)

T,v,nj 6=i

= ares + Zres +
(

∂ares

∂xi

)

T,v,xk 6=j

−
C∑

j

xj

(
∂ares

∂xj

)

T,v,xk 6=j

(2.43)
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2.3.3 Activity Coefficients and Reference States

As already mentioned in Sec. 2.2.1 the activity coefficient is calculated as the ratio of the
fugacity coefficient in the mixture and the one of the pure component†

γi ≡ ϕi

ϕ0i
(2.22)

This definition is only meaningful if there exists an equation of state able to represent both
the aggregate state of the mixture (→ ϕi) and the one of the pure component, i. e. the
respective reference fugacity coefficient ϕ0i. As an example, the activity coefficient of an
amino acid in water shall be calculated. The solution is liquid while at the same conditions
(T , P ) the pure amino acid is solid. Hence, in this case the application of Eq. 2.22 is not
feasible. In order to avoid this shortcoming one introduces a new standard state, the
hypothetical ideal solution. The chemical potential of the solute i in this standard state is
defined at system temperature, pressure, and at unit concentration xi = 1. Transferred to
the real solution that means that γi → 1 for xi → 0, or in words: component i is infinitely
diluted in the solvent system. We define the fugacity coefficient at infinite dilution (index
∞)

ϕ∞i (n) = lim
ni→0

ϕi(n) (2.44)

or in terms of mole fractions

ϕ∞i (x) = lim
xi→0

ϕi(x,
xj

xk
= const) (2.45)

where, xj

xk
= const denotes that the ratio of the mole fraction of each pair of components

j and k (j, k 6= i) remains constant. For example, consider a ternary mixture at x1 = 0.5,
x2 = 0.3, x3 = 0.2. Then the fugacity coefficient at infinite dilution of component 1 is

ϕ∞i = ϕi(x1 = 0.0, x2 = 0.6, x3 = 0.4)

Having defined the fugacity coefficient at infinite dilution one obtains the so-called unsym-
metric activity coefficient

γ̃i ≡ ϕi

ϕ∞i

(
=

γi ·©©ϕ0i

γ∞i ·©©ϕ0i

)
(2.46)

Things get more involved if the solute is an electrolyte. Although one can define the activity
coefficient of the single ion γ̃+ and γ̃− and calculate them for example with the help of
an equation of state, it is not possible to measure them separately. By potentiometric or
vapor pressure measurements one always obtains a mean ionic activity coefficient (MIAC)

γ̃± = (γ̃ν+
+ · γ̃ν−

− )
1
ν (2.47)

†For the sake of better legibility the dependency of ϕi on T , P is omitted in the following, i. e.
ϕi = ϕi(T, P ).
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where ν+ and ν− are the stoichiometric coefficients of the cation and the anion, respectively,
ν = ν+ +ν−. In literature one will often find MIAC on a molal basis. The relation between
the molal scale (index m) and the mole fraction scale (index x) is given as‡

γ̃m
± =

γ̃x±
1 + MW

1000 · ν ·mS

(2.48)

where MW is the molecular weight of the solvent (in our case water) in g/mol and mS is
the molality of the salt as weighed into solution in mol salt per kg of solvent. The mean
ionic activity a± of the salt is defined as a± = m±γ± with

m± = (mν+
+ m

ν−
− )

1
ν = mS(νν+

+ ν
ν−
− )

1
ν (2.49)

If not stated differently, the activity coefficients appearing in this work are unsymmetri-
cally scaled and on molal basis. Hence, the index m will be omitted for the sake of better
legibility.

Activity Coefficients in Amino Acid/Electrolyte Solutions

As mentioned above, MIAC in binary electrolyte solutions are easily determined by electro-
chemical methods. The procedure is somewhat more intricate when a second solute (e. g.
an amino acid) is present in the electrolyte solution. By using ion selective electrodes (ISE)
the ratio of the MIAC of the electrolyte in the ternary solution (index ter) to the one in
the binary solution without amino acid but at same electrolyte molality (index bin) can
be measured,§

γter
± /γbin

±

The experimental method shall not be the issue here. The reader is referred to the litera-
ture: e. g. see Refs.4,5

Unfortunately, the activity coefficient of the non-electrolyte solute cannot be measured
directly. However, the ratio of the activity coefficient of the amino acid in the ternary
solution to the one in the binary solution without electrolyte¶

γter
A /γbin

A

‡For the derivation of this conversion formula see Appendix E.
§It shall be emphasized at this point that the reference state for the ratio of MIAC is not the

infinite dilution but the (hypothetical) pure component. This is due to the fact that the infinite
dilution in the binary solution is different from the one in the ternary (containing also an amino
acid).

¶In analogy to γter
± /γbin

± the reference state for γter
A /γbin

A is also the pure component.
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is related to the electrolyte’s MIAC by the Gibbs-Duhem equation‖:

ν

∫ m±

m±=0

(
∂ ln γter±
∂mA

)

m±
dm± = ln

(
γter

A

γbin
A

)

m±

(2.50)

Hence, measured electrolyte activity coefficients can – at least theoretically – be con-
verted to activity coefficients of the amino acid. This approach has been widely applied
by Khoshkbarchi et al.6 However, the applicability of this concept is questionable. A
discussion can be found in Appendix G.

‖This equation is also called cross-differential equation. Its derivation can be found in Ap-
pendix F.





Chapter 3

Equations of State from Statistical
Mechanics

3.1 Fundamentals
Many equations of state have been developed in the past centuries – van der Waals EOS
and Peng Robinson EOS, just to mention two of them. They describe the thermodynamic
properties of pure liquids and gases and their mixtures. Equations of state quantify the
dependency of the system pressure on system volume, temperature, and composition. Fur-
ther, they allow the calculation of fugacity coefficients. Equations of state can be derived
on the basis of the (classical canonical∗) partition function Q by using the well-known
relationship

A(T, V,N) = −kBT lnQ(T, V,N) (3.1)

The partition function is obtained by summation over all possible energy states in a system
of N particles at coordinates rN = [r1...rN]:

Q =
1

N !Λ3N
(qvqrqe)N

∫

V
exp

{−βUN (rN)
}

drN

︸ ︷︷ ︸
configuration integral Φ

(3.2)

Here, Λ =
√

h2

2πmkBT is the de Broglie wavelength, qv, qr, qe are the contributions from vi-
brational, rotational, and electron movements of the molecules, respectively. These terms
are negligible when dealing with spherically symmetric molecules and shall be omitted
further on for the sake of simplicity. UN is the internal energy arising from interactions be-
tween the molecules. Assuming that the intermolecular interactions are pair-wise additive,
i. e. they consist solely of pair terms, UN can be written as

UN = u12 + u23 + ... + uij =
N∑

i<j

uij (3.3)

∗A classical canonical ensemble is an ensemble of energy states at equal temperature, volume,
and number of molecules.
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Hence, the integrand of the configuration integral Φ becomes

exp
{−βUN (rN)

}
= exp



−β

N∑

i<j

u(rij)



 =

N∏

i<j

exp {−βu(rij)} (3.4)

In general, the pair potential u(r) approaches 0 at large separations (r → ∞), where
molecules do not ‘feel’ each other anymore, and to infinity at small separations which
prevents molecular overlap. For further calculations it is convenient to define the so-called
Mayer f -function that approaches zero at large separations and has a defined limit at small
separations:

f(r) ≡ exp{−βu(r)} − 1,





lim
r→0

f(r) = −1

lim
r→∞ f(r) = 0

(3.5)

Inserting Eq. 3.5 into Eq. 3.4 leads to

exp
{−βUN (rN)

}
=

N∏

i<j

[1 + f(rij)] . (3.6)

Exemplarily, for N = 3 molecules interacting pair-wise this product may be expanded
(writing fij ≡ f(rij))

(1 + f12)(1 + f13)(1 + f23) = 1 + f12 + f13 + f23 + ...

... + f12f13 + f12f23 + f13f23 + ...

... + f12f13f23 (3.7)

Keeping in mind the expansion in Eq. 3.7 and neglecting terms of higher order (i. e.
the indirect interaction of two particles over a third one) the configurational integral is
rewritten as

Φ =
∫

V
exp{−βUN (rN)}drN

=
∫

V

N∏

i<j

[1 + fij ]drN

=
∫

V


1 +

∑

i<j

fij + ...


 drN (3.8)

This integral can be split up into its addends. The term of zeroth order is simply Φ0 =
V N . As there is no interaction involving only one atom the next order is two. Since the
indices are only dummy variables all second order terms give the same contribution. From
statistical considerations one can derive that there are N(N − 1)/2 binary combinations,
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hence

Φ2 =
N(N − 1)

2

∫

V
fijdrN

=
N(N − 1)

2
V N−2

∫

V
f(r)dr1 dr2

=
N(N − 1)

2V 2
V NV

∫

V
f(r)dr (3.9)

The first factor is simply ρ2
N/2, the second is equal to Φ0 and V is the integral over

dr2. The two terms Φ0 and Φ2 contribute to an expansion of the configurational integral
Φ = Φ0(1+Φ2/Φ0 + ...) †. Considering the relationship between the Helmholtz free energy
and the configurational integral as given in Eq. 3.1 and approximating the logarithm by
its power series one obtains

A = −kBT ln[V N/N !Λ3N ]︸ ︷︷ ︸−kBT ln[1 + Φ2/Φ0 + ...]

= Aid − ρ2
NV kBT

2

∫

V
f(r)dr + ... (3.10)

This is now a power series in terms of the density for the Helmholtz free energy. Differen-
tiation (Eq. 2.13) directly leads to the corresponding power series for the pressure:

βP = ρN − ρ2
N

2

∫

V
f(r)dr + ... (3.11)

By comparison of Eq. 3.11 to the well-known virial expansion of the pressure in terms of
density

βP =
∞∑

i=1

B∗
i ρi

N (3.12)

one sees that the first term B∗
1 = 1 corresponds to the ideal gas expression while the second

virial coefficient can be calculated by

B∗
2 = −1

2

∫

V
f(r)dr

= −2π

∫ ∞

0
[exp{−βu(r)} − 1]r2dr (3.13)

We will come back to this quantity in Sec. 4.4.

The pressure expansion in terms of density derived so far reduces the many-body problem
to the sum of two-body, three-body, etc. problems. Such a decomposition is only applicable
in the low density region, i. e. in gaseous fluids. In liquids each molecule is in permanent
interaction with a large number of its surrounding neighbors. Therefore, more sophisticated
techniques which account for the structure of the fluid have to be used. The next section is

†This kind of expansion is called Padè approximation.
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devoted to a central idea included in most of the theories for liquids: the radial distribution
function.

3.2 Radial Distribution Function

The radial distribution function g(r, ρN ) gives the probability to find a molecule at distance
r in an infinitesimally narrow annulus of width dr from a randomly chosen center molecule
when the whole system has the global density ρN (see Fig. 3.1). In other words g(r, ρN ) is
the ratio between local and global density.‡

r

g(r, )r

dr

r

Fig. 3.1: Illustration of the radial distribution function g(r, ρN ).

The radial distribution function can be calculated by either molecular simulation or by
numerical or analytical calculations on the basis of statistical mechanics. The first method
is based upon computer simulations of a model system containing N molecules in a volume
V with system density ρN = N/V . The molecules are characterized by their shape (spheres,
chains, ...), size (σ) and intermolecular potential (u(r): hard-sphere, LJ-potential, ...).
Either by random displacement (Monte Carlo simulation) or by solving the Newtonian
equations (Molecular Dynamics) a large amount of new system configurations (typically
105 − 106) are generated and the frequency of occurrence of intermolecular distance r

between two particles is averaged over all configurations yielding directly g(r).
The second method consists in solving integral equations to calculate g(r). Making simpli-
fying assumptions it is possible to solve these integrals analytically. Due to the simplifica-
tions the models cannot reach the accuracy of molecular simulations. There is a trade-off
between the lower accuracy when solving the integral equations and the time-consuming
simulations.
As mentioned before, g(r) gives the probability of finding the center of a molecule at
distance r from a reference particle. For hard spheres with diameter σ it is obvious that
g(r < σ) = 0 since there cannot be any intersection between the two spheres. At infinite

‡For convenience we write g(r) instead of g(r, ρN ) keeping in mind the dependency of g on the
global density ρN .
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r/σ

g(
r)

 

 

ρσ3 = 0.5

ρσ3 = 0.9

Fig. 3.2: Hard-sphere radial distribution function g(r) at two different reduced densities. Data
taken from Ref.7

distance the probability of finding another molecule approaches unity, hence the local
density approaches the bulk value.
Here, the influence of the origin molecule is negligible. Fig. 3.2 shows the curve progression
of g(r) at different system densities for hard spheres. Especially at high densities the local
density in the direct vicinity of the center molecule is much higher than the global density.
This clearly shows that g(r) is a direct measure for the interdependence of two molecules.
The value at contact distance, more precisely the right limit g(r = σ+) = lim

r→σ+
g(r), plays

an important role in perturbation theories (see Sec. 3.5).
For convenience the function

h(r) ≡ g(r)− 1 (3.14)

is defined. This so-called correlation function describes the difference between the local
and the global density. Therefore, it reflects the mutual influence of two molecules.

C(r )12

1

2

3

C(r )13

Fig. 3.3: Direct (—) and indirect (– –) correlation of three molecules.

Most approaches for the calculation of g(r) or h(r) are based on the Ornstein-Zernicke
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equation§. Both authors suggested in 1914 to split up the correlation function h(r12)
between two molecules 1 and 2 into one direct part c(r12) and one indirect part (see
Fig. 3.3). c(r12) is consequently named direct correlation function and accounts for the
interactions that arise directly from particle 1 towards particle 2. Furthermore, there is
a collateral influence of 2 towards 1 which is mediated through a third molecule 3 either
directly or indirectly. This ‘detour’ effect is accounted for averaging over all possible
position configurations of 3 weighted by the system density ρN . The correlation function
is then

h(r12) = c(r12) + ρN

∫

V
c(r13)h(r23) dr3 (3.15)

Eq. 3.15 is called Ornstein-Zernicke equation and gives the definition for the direct cor-
relation function c(r). Unfortunately, Eq. 3.15 is implicit and can only be solved if c(r)
is expressed in terms of h(r) or g(r). For short-range interactions between the molecules
Percus and Yevick proposed following approximation8:

c(r) = g(r)[1− exp{βu(r)}] (3.16)

Inserting Eq. 3.16 into Eq. 3.15 and defining

y(r) = g(r) exp{βu(r)} (3.17)

and
f(r) = exp{−βu(r)} − 1 (3.5)

yields the Percus-Yevick (PY) integral equation for the calculation of h(r) or g(r) respec-
tively:

y(r12) = 1 + ρN

∫

V
f(r13)y(r13)h(r23) dr3 (3.18)

Another integral equation, the so-called hypernetted-chain (HNC) equation, is obtained
by setting

c(r) = g(r)− 1− ln g(r)− βu(r)) (3.19)

and yields

ln y(r12) = ρN

∫

V
[h(r13)− ln g(r13)− u(r13)]h(r23) dr3 (3.20)

Both approaches presented above have been used for analytical or numerical evaluation of
the radial distribution function for hard spheres, hard chains, LJ-molecules and the results
have more or less successfully been compared to molecular simulations (see Ref.3 pp. 129f).

3.3 Relation of Thermodynamic Functions to g(r)

The intermolecular potential energy between two randomly chosen molecules at r and
r + dr is simply u(r) · ρNg(r) · 4πr2 dr. After integration over all possible positions r and

§Original papers see: L. Ornstein and F. Zernike. Proc. Kon. Akad. Wet. Amsterdam, 19:
132, 1917; L. Ornstein and F. Zernicke. Phys. Z., 19: 134, 1918.
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accounting for the commutability of the molecules by multiplying with N/2, the internal
energy of the system is given by

U =
NρN

2

∫ ∞

0
u(r) · g(r) · 4πr2 dr (3.21)

Applying Eq. 2.13 gives the so-called pressure equation

− β

(
∂U

∂V

)

S,N

=
P

kBT
= ρN − ρ2

N

6kBT

∫ ∞

0
r

(
∂u(r)

∂r

)
· g(r) · 4πr2 dr (3.22)

An alternative function is the compressibility equation

kBT

(
∂ρN

∂P

)

T

= 1− ρN

∫ ∞

0
[g(r)− 1] 4πr2 dr (3.23)

Both Eq. 3.22 and Eq. 3.23 allow the calculation of the pressure directly from the inter-
molecular potential u(r) and the radial distribution function g(r). However, the integrals
can only be solved – after some simplifications – for a few model systems such as the hard-
sphere system. Although these simple systems do not reflect reality sufficiently well, they
have been of major interest in the past decades. A series of equations of state are based
on perturbation theory. This topic will be addressed in Section 3.5.

3.4 Intermolecular Potentials
In this section the most common intermolecular potentials are presented. The simplest form
is the already mentioned hard-sphere (hs) potential. Due to the hard core the spheres repel
each other at contact. Otherwise they do not ‘feel’ their neighbors. The curve progression
and the function of the hs potential are given in Fig. 3.4a. To account for attractive forces
(negative values of u(r)) the square-well (sw) potential provides a simple and in most
cases analytically manageable alternative. Like the hs-molecule the sw-molecule has an
invariant diameter and exerts a constant attractive force (potential depth u0) within σ

and λσ (Fig. 3.4b). If the box length approaches zero then the molecules stick together
when they collide due to an extremely strong but short-ranged attraction (Fig. 3.4c). The
Lennard-Jones (LJ) potential (Fig. 3.4d) is best suited to represent the real interactions
between molecules, especially at high pressure since it also accounts for soft repulsion at
r < σ. However, since the application of the LJ potential leads to analytically unsolvable
integral expressions, in many cases one harks back to the sw-potential.

3.5 Perturbation Theories
As mentioned above, many equations of state are based on perturbation theory. There-
fore, a short explanation of its main principals shall be given here. The idea behind a
perturbation theory is to find an approximate solution to a problem by starting from an
exactly solvable related problem and then adding terms that account for deviations from
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uhs(r) =

{ ∞ : r < σ
0 : r > σ

usw(r) =





∞ : r < σ
−u0 : σ < r < λσ

0 : r > σ

u
(r

)

r/s
0 21 3 4 5

3.4a: Hard-sphere potential.

u
(r

)

r/s
0 21 3 4 5

l

u0

3.4b: Square-well potential.

uss(r) =

{ ∞ : r < σ
−u0δ(r − σ) : r ≥ σ

uLJ(r) = 4ε
[(

σ
r

)12 − (
σ
r

)6
]

u
(r

)

r/s
0 21 3 4 5

u0

3.4c: Sticky-sphere potential.

u
(r

)

r/s
0 21 3 4 5

l

3.4d: Lennard-Jones potential

Fig. 3.4: Intermolecular potentials.

the exact solutions. Transferred to equations of state that means that one starts from a
reference system (e. g. hard-sphere) and adds terms to account for deviations from the
reference system. The basis of modern perturbation theories was developed by Zwanzig
in the early 1950s9,10. He considered spherical molecules with a Lennard-Jones interac-
tion potential. This total potential energy is divided into a repulsive (reference) and an
attractive (perturbation) part,

U(r) = U ref (r) + Upert(r) (3.24)

The residual free energy of the system is therefore also split into a reference and a pertur-
bation part which is expanded in terms of β

Ares = Aref + Apert

= Aref + ω1 + βω2 +O(β2) (3.25)
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ω1 and ω2 are perturbation terms of first and second order, respectively¶. There are several
approaches for their calculations12–14. In the following the Barker-Henderson Theory is
discussed in more detail since it provides the basis for the equations of state (PC-SAFT
and PMF-model) used in this work. Under the assumption that the total energy is the
sum of pair potentials (Eq. 3.3) ω1 is easily obtained as

ω1 =
ρN

2

∫ ∞

0
upert(r)gref (r) 4πr2dr (3.29)

Note that the radial distribution function is the one of the reference system. The derivation
of the second-order term is a little bit more involved because it includes three- and four-
body distribution functions. Barker and Henderson12 give an approximated term for ω2

ω2 = −ρN

4

∫ ∞

0
[upert(r)]2

(
∂ρN

∂P

)
gref (r) 4πr2dr (3.30)

This is the so-called macroscopic compressibility approximation. A better approach is ob-
tained replacing

(
∂ρN
∂P

)
gref by

(
∂[ρN ·gref ]

∂P

)
yielding the local compressibility approximation:

ares = aref +
ρNβ

2

∫ ∞

0
upert(r)gref (r) 4πr2dr

− ρNβ

4

∫ ∞

0
[upert(r)]2

(
∂[ρN · gref (r)]

∂P

)
4πr2dr (3.31)

Finally, an appropriate separation of the interaction potential in a reference and a pertur-
bation part is necessary. Barker and Henderson investigated Lennard-Jones spheres. They
suggested to split up the potential into a positive (repulsive) and a negative (attractive)
part as illustrated in Fig. 3.5. As reference they used the hard-sphere system. Since the
hard sphere is not an integral part of the Lennard-Jones potential (as it is for the square-
well potential), an effective hard-sphere diameter must be chosen. Barker and Henderson

¶This power series is obtained inserting the perturbation potential (Eq. 3.24) into Eq. 3.1. It
results that the perturbation free energy is given by

Apert = −kBT ln 〈exp{−βUpert
N }〉 (3.26)

where 〈〉 denotes a statistical average. The power series in terms of β is then

Apert =
∞∑

n=1

ωn

n!
(−β)n−1 (3.27)

where the coefficients ωn are functions of 〈(Upert
N )n〉. Further, replacing the exponential function

in Eq. 3.26 by its power series one obtains

exp{−βApert} = exp

{ ∞∑

k=0

βk

k!
〈(Upert

N )k〉
}

(3.28)

Comparison of like coefficients in Eq. 3.27 and Eq. 3.28 yields the coefficients ωn, e. g. ω1 =
〈Upert

N 〉11.
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Fig. 3.5: Separation of the Lennard-Jones potential into a reference part (—) and a perturbation
part (– –) according to Barker and Henderson.

suggested the following expression for a temperature-dependent hard-sphere diameter

σhs = σLJ

∫ 1

0
[1− exp{−βu(x)}]dx, x = r/σLJ (3.32)

Thereby, the soft-core repulsion behavior of real fluids can be accounted for.

A whole family of equations of state was developed on the basis of Eqs. 3.31 and 3.32.
Either the integrals were calculated analytically or they were approximated by power series
of varying order. For example, Alder et al.15 suggested a fourth-order expression for the
dispersion energy adisp

adisp =
4∑

i=1

9∑

j=1

Aij

(
ε

kBT

)i (η

τ

)j
(3.33)

where η = π
6 σ3ρN is a dimensionless density and τ = π

6

√
2 is the packing fraction at closest

packing. The authors fitted the constants Aij to computer simulation data of square-well
molecules. Chen and Kreglewski16 used experimental density and virial coefficient data
of argon, instead, to allow a better description of real substances. This led to the BACK
(Boublik-Alder-Chen-Kreglewski) equation of state. Chapman et al.17,18 and Huang and
Radosz19,20 followed a similar approach to develop the well-known SAFT (Statistical As-
sociation Fluid Theory) equation of state. The kernel of their work is the application of
Wertheim’s first-order thermodynamic perturbation theory (TPT1)21–26 in order to ac-
count for the concatenation of hard-sphere segments to chains and for associative effects
such as hydrogen bonding between molecules. However, the dispersion term is inconsis-
tently still based on a hard-sphere reference system.
To circumvent this shortcoming Groß and Sadowski2,27,28 developed an equation of state
whose reference state is the hard-chain instead of the hard-sphere. This implies that in the
Barker-Henderson integrals in Eq. 3.31 the hard-sphere radial distribution function must
be replaced by a hard-chain distribution function. Hence, this equation of state is called
Perturbed-Chain SAFT (PC-SAFT). However, in analogy to the proceeding of Chen and
Kreglewski, Groß et al. substituted the integrals by power series in terms of temperature T ,
density η, and segment number mseg and fitted the model constants to experimental data
of the alkane homologous series. They obtained an equation of state which is in particular
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suited for the description of polymer systems. The following section is dedicated to the
PC-SAFT EOS. Its extension to charged molecules will be discussed in Chapter 5.

3.6 The PC-SAFT Equation of State
As already mentioned in Sec. 3.5, the PC-SAFT equation of state is based on a second-
order perturbation theory. For non-associating fluids the residual Helmholtz energy is
given by summing the free energy of the reference fluid (hard chain) and the perturbation
term which reflects the dispersive interactions

ares = ahc + adisp (3.34)

Three parameters are necessary to describe the molecule: the temperature-independent
segment diameter σi, the segment number mseg,i, and the dispersion energy εi/kB.

Hard-Chain Term

Starting point for the description of a hard-chain fluid is a system of hard spheres that
each posses two sticky association sites. The bonds are irreversibly formed between two
adjacent spheres. The influence of the next neighbor is not included in the theory. The
hard-chain term in the PC-SAFT model is inherited from the SAFT model of Chapman
et al.17:

ahc = mseg · ahs −
∑

i

xi(mseg,i − 1) · ln ghs
ii (dii) (3.35)

Here mseg is the mean segment number given by

mseg =
∑

i

ximseg,i (3.36)

The segment-based free energy of a hard-sphere system is given by Boublik29 and Mansoori
et al.30 as

ahs =
1
ζ0

[
3ζ1ζ2

1− ζ3
+

(
ζ3
2

ζ2
3

− ζ0

)
· ln(1− ζ3)

]
(3.37)

where
ζn =

π

6
ρN

∑

i

ximseg,i · dn
i with n = {0, 1, 2, 3} (3.38)

Note that ζ3 corresponds to the reduced density (packing fraction). In analogy to the
temperature-dependent diameter proposed by Barker and Henderson (Eq. 3.32) the temperature-
dependent segment diameter di for the PC-SAFT EOS is defined as

di = σi (1− 0.12 · exp{−3βεi}) (3.39)

The radial distribution function value at contact needed in Eq. 3.35 is

ghs
ij (dij) =

1
1− ζ3

+
(

didj

di + dj

)
3ζ2

(1− ζ3)2
+

(
didj

di + dj

)2 2ζ2
2

(1− ζ3)3
(3.40)
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Dispersion Term

The free energy dispersion contribution is

adisp = −2πρN · I1(ζ3,mseg) ·m2εσ3

−πρN ·msegC1 · I2(ζ3, mseg) ·m2ε2σ3 (3.41)

For the compressibility term and the double sums following abbreviations were introduced

C1 =
(

1 + Zhc + ρN

(
∂Zhc

∂ρN

))−1

(3.42)

m2εσ3 =
∑

i

∑

j

xixjmseg,imseg,j(βεij)σ3
ij (3.43)

m2ε2σ3 =
∑

i

∑

j

xixjmseg,imseg,j(βεij)2σ3
ij (3.44)

In order to describe mixtures the one-fluid-theory is applied, i. e. a hypothetical fluid with
the same properties as the mixture is parameterized using adequate mixing rules. The
Berthelot-Lorenz mixing rules are used for the combination of two different segment types,
i. e.

σij =
σi + σj

2
(3.45)

εij =
√

εiεj · (1− kij) (3.46)

The binary interaction parameter kij is an optional adjustable parameter fitted to mixture
properties. The integrals of the perturbation theory have been replaced by potential series
according to

I1(ζ3, mseg) =
6∑

i=0

ai(mseg) · ζi
3 (3.47)

I2(ζ3, mseg) =
6∑

i=0

bi(mseg) · ζi
3 (3.48)

The coefficients ai and bi depend on the mean segment number

ai(mseg) = a0i +
mseg − 1

mseg
a1i +

mseg − 1
mseg

mseg − 2
mseg

a2i (3.49)

bi(mseg) = b0i +
mseg − 1

mseg
b1i +

mseg − 1
mseg

mseg − 2
mseg

b2i (3.50)

The model constants a0i, b0i, etc. have been fitted to experimental data of the alkane
homologue series31 and are tabulated in Ref.2
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Association Term

For molecules that exhibit strong anisotropic attractive interactions (e. g. hydrogen bond-
ing) an association term is added to the residual Helmholtz energy

ares = ahc + adisp + aassoc (3.51)

According to Wertheim’s TPT1 model21–26 two molecules i and j each having two off-
center association sites A and B can interact with each other via a square-well potential
of depth εAiBj and range rAiBj (see Fig. 3.6). The latter parameter is proportional to the
so-called association volume κAiBj which is commonly preferred. Hence, the association
term introduces two new pure-component parameters. Due to steric incompatibility certain
configurations of molecules and bonds are not allowed:

• Each association site can form only one single bond.

• Two molecules can only form a single bond. A double bond is prohibited.

• Two association sites on the same molecule cannot form a bond, i. e. ring formation
is not allowed.

• Two association sites of the same type cannot form a bond (e. g. A−−A is not
possible).

i j
AB

u
(r

)

e
AiBj

r
AiBj

~k
AiBj

Fig. 3.6: Square-well potential between two association sites A and B.

The association contribution for a mixture of components is given by‖

aassoc =
∑

i

xi

∀sites on i∑

Ai

(
lnXAi +

1−XAi

2

)
(3.52)

‖Here the summation index Ai denotes a site on molecule i and the summation is over all sites
on the molecule regardless of the type.
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The fraction of non-bonded molecules i at site Ai must be calculated iteratively using

XAi =


1 +

∑

j

xj

∀sites on i∑

Bj

XBj ·∆AiBj



−1

(3.53)

where ∆AiBj denotes the bonding strength given by

∆AiBj = ghs
ij (dij) · κAiBj · σ3

ij

[
exp{βεAiBj} − 1

]
(3.54)

To avoid numerical difficulties when dealing with compounds having a large amount of sites
(e. g. polymers) one can rewrite Eqs. 3.52-3.53 under the assumption, that all association
sites on a molecule have the same association parameters32:

aassoc =
∑

i

xi

∀site types∑

Ai

NAi

(
ln XAi +

1−XAi

2

)
(3.55)

XAi =


1 +

∑

j

xj

∀site types∑

Bj

NBjXBj ·∆AiBj



−1

(3.56)

Here, NAi denotes the number of association types A on molecule i. Note that the sum-
mation is over the association types and not over the association sites as in Eqs. 3.52-3.53.
For the cross-association the mixing rules of Wohlbach and Sandler are used

εAiBj =
εAiBi + εAjBj

2
(3.57)

κAiBj =
√

κAiBiκAjBj ·
(√

σiσj

σij

)3

(3.58)



Chapter 4

Potential of Mean Force

4.1 Interactions in Colloidal Dispersions
All the considerations for pure components made in Chapter 3 can be extended to mixtures
in a straightforward way. Within the scope of this work one main focus is directed to
colloidal dispersions such as protein solutions. The often charged macromolecules are very
big compared to the range of typical interaction potentials. Therefore, the interactions may
be approximated by a hard-sphere potential. Neglecting the small solvent molecules in a
first step the hard-sphere system represents the behavior of colloidal solutions quite well.
For a more realistic description, besides the interactions between alike molecules (colloid-
colloid, solvent-solvent) the unlike pairs (colloid-solvent) must be included as well. This
is a challenging task due to the complicated structure of the solvent particles especially
when electrolytes are involved. They lead to nontrivial screening effects. A common
approach in order to reduce complexity is to incorporate all solvent-solvent and solvent-
colloid interactions into the colloid-colloid potential. This modified potential is obtained
by statistical averaging with respect to all possible configurations of the solvent molecules.
Hence, it is called ‘potential of mean force’ (PMF)∗. Note, that applying this ‘trick’ the
many-component system has been reduced to one containing only a pure species floating
in a medium other than vacuum. Despite the analogy to a low-pressure pure gas phase
the interactions between two solute molecules can be of different character. This shall be
shown by an example: Two molecules at fixed separation may attract each other in free
space. However, when they are surrounded by small solvent particles the macromolecules
have to displace the solvent molecules from their path. The net colloid-colloid interaction
may then become repulsive if the work for the displacement is higher than the work gained
by the approach.
Before presenting some of the PMF commonly encountered in literature it shall be shown
how the phase behavior of colloidal dispersions depends on the shape of the interaction
potential and, further, how the second osmotic virial coefficient is linked to the PMF.

∗In the following, the symbol w is used for the PMF in order to distinguish it from the potential
in vacuo.
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Fig. 4.1: Schematic phase diagrams as the ratio ξ decreases (from top to bottom). Tc and Tt are
the critical and the triple point temperature, respectively. The phase types are denoted with Fluid,
Gas, Liquid, and Solid, respectively. For very short-ranged attractive potentials two solid phases
Se and Sc coexist below a solid-solid critical point. The dashed curve represents a meta-stable
vapor-liquid phase transition which maps into a liquid-liquid transition for real colloid systems.
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4.2 Global Phase Diagram of a Colloid System

Although the microscopic nature of colloidal suspensions is very complicated, given the
many possible interaction mechanisms, the net intermolecular potentials have two features
in common: hard-core repulsion and usually a very short-ranged attractive or repulsive
tail. The topology of the phase diagram is highly affected by the ratio ξ of the range of the
tail σT and the hard-core diameter σC (ξ = σT /σC)33. For large ξ, i. e. for long-ranged
tails, the phase diagram shows a typical behavior of a simple system such as a noble gas
(Fig. 4.1a). This type of phase diagram exhibits two first-order phase transitions. The first
transition from solid to liquid phase is an inherent property of any hard-core system. The
second vaporization transition emanates from the attractive tail. When ξ is decreased the
critical point Tc is shifted to lower temperatures. If ξ goes below a certain value, Tc becomes
lower than the triple point temperature Tt and, hence, the vapor-liquid transition becomes
meta-stable (dashed curve in Fig. 4.1b) giving way to a second-order phase transition, i. e.
sublimation.

An analogous phase behavior has been found for colloidal suspensions, e. g. protein so-
lutions. The proteins have a large diameter compared to the range of their interaction
potentials. Hence, they exhibit a phase diagram as depicted in Fig. 4.1b. The fluid-solid
transition of the model system corresponds to the liquidus line. The vapor-liquid transition
maps into a liquid-liquid coacervation. Here, two distinct liquid phases are formed: one
protein-rich, the other protein-poor (see e. g. Ref.34).

A further decrease of the attractive tail range leads to a solid-solid phase transition
(Fig. 4.1c). Such behavior occurs in some metallic systems35 but has not been measured
for colloid dispersions.

4.3 Osmotic Pressure

Many processes in nature are dominated by the phenomenon osmotic pressure. For exam-
ple, trees utilize this effect to suck water from their roots up to the leafs. Consider a system
divided by a semi-permeable membrane in two parts, one containing a pure solvent, the
other containing the same solvent and a solute as shown in Fig. 4.2. The membrane is per-
meable only to the solvent (w) but not to the solute (s). Nature aims at equilibration of the
solute’s concentration in both phases. Hence, solvent molecules will penetrate the mem-
brane and pressure will raise in the double-prime phase until thermodynamic equilibrium
is reached.

Since the solute is only present on one side of the membrane, the equilibrium condition can
only be formulated for the solvent. Besides the equality of temperature in both phases,
the chemical potential of the solvent must also be equal

µ′w = µ′′w (4.1)
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Fig. 4.2: Diagram of an osmotic cell. The membrane is permeable only to the solvent (w) but
not to the solute (s).

The chemical potentials in both phases are

µ′w = µ0w(T, p) (4.2)

µ′′w = µ0w(T, p) +

µ0w(T,p+Π)∫

µ0w(T,p)

dµw + kBT ln a′′w(T, p + Π) (4.3)

a′′w is the activity of the solvent in the double-prime phase. Combining Eqs. 4.1-4.3 and
rearranging leads to

µ0w(T,p+Π)∫

µ0w(T,p)

dµw = −kBT ln a′′w(T, p + Π) (4.4)

The left side can be replaced by

µ0w(T,p+Π)∫

µ0w(T,p)

dµw =

p+Π∫

p

v0wdp (4.5)

and hence – assuming an incompressible solvent, i. e. the specific volume v0w 6= v0w(p) –
one yields

p+Π∫

p

v0wdp = −kBT ln a′′w(T, p + Π)

→ βΠ = − 1
v0w

ln a′′w(T, p + Π) (4.6)

At low solute concentrations the activity can be approximated by the concentration and
the specific volume of the solvent equals the reciprocal system density so that Eq. 4.6
reduces to

βΠ = −ρ ln x′′w = −ρ ln(1− x′′s) (4.7)
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Further the logarithm can be expressed by its Taylor series as ln(1− x) ≈ −x yielding

βΠ = ρx′′s or βΠ = ρs (4.8)

with ρs being the solute’s number concentration in 1/m3. Eq. 4.8 is called van’t Hoff
equation for osmotic pressure Π. It is similar to the ideal-gas equation. Remember, the
main assumptions made for the derivation of van’t Hoff’s equation are that the solution is
very dilute and that the solvent is incompressible.

4.4 Second Osmotic Virial Coefficient
In Sec. 3.1 it was shown how the system pressure is linked to the intermolecular potential
between two molecules in vacuo. A formalism for the calculation of the second virial coeffi-
cient was derived. A similar approach is followed when dealing with pseudo one-component
systems such as colloid solutions. McMillan and Mayer† showed that the pressure of an
imperfect gas directly maps into the osmotic pressure of a solution (see also Refs.37,38)

βΠ =
∞∑

i=1

Biρ
i
s = ρs + B2ρ

2
s + ... (4.9)

Therefore, the second osmotic virial coefficient can be calculated using Eq. 3.13, replacing
the potential u by the PMF w (see Sec. 4.5), hence

B2 = −2π

∫ ∞

0
[exp{−βw(r)} − 1]r2dr (4.10)

The second osmotic virial coefficient is experimentally accessible by osmometry or light-
scattering measurements. The measured coefficients can be used to identify the inter-
colloidal interaction mechanisms and to fit model parameters.

4.5 PMF
In this section the main focus lies on the potentials of mean force that capture the different
interaction mechanisms in colloidal solutions. There exists a vast literature concerning the
PMF. Pioneering work has been done by Derjaguin and Landau39 and Verwey and Over-
beek40. The so-called DLVO theory is based on the assumption that the single potentials
are independent from each other and additive. The DLVO theory comprises hard-sphere
contributions whs, electrostatic repulsion welec and dispersive attraction wdisp. Other po-
tential forms have been developed in order to account for further intermolecular effects.

†Note that the independent variables in the McMillan-Mayer framework36 are temperature, vol-
ume, solute mole number, and (constant) chemical potential of the solvent (T, V,ns, µw). Instead,
in the classical (Lewis-Randall) framework the independent variable set is (T, V,n) or (T, P,n).
The McMillan-Mayer framework is best suited for calculations of the osmotic pressure because –
as was shown in the derivation in Sec. 4.3 – the solvent chemical potential is equal on both sides
of the membrane.
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Hard-Sphere Potential whs

The hs-potential of mean force is equivalent to the version for molecules in vacuo (compare
Fig 3.4a). The respective potential is given by

whs(r) =

{
∞ : r ≤ σ

0 : r > σ
(4.11)

Note that this potential is inherently part of many PMF models and can be omitted
explicitly when the lower integration bound (Eq. 4.10) is set to the particle’s diameter σ

instead of zero.

Dispersion

In DLVO theory attractive forces between two colloids are described by a van der Waals
type term. The attractive dispersion potential wdisp(r) is calculated from Hamaker’s the-
ory41:

wdisp(r) =




∞ : r ≤ σ

−H
12

{
σ2

r2−σ2 + σ2

r2 + 2 ln(1− σ2

r2 )
}

: r > σ
(4.12)

or
wdisp(r) =

H

36

(σ

r

)6
: r À σ (4.13)

Note that Eq. 4.12 is not defined at r = σ and the limes is −∞. Therefore, when eval-
uating the integral (Eq. 4.10) the lower integration limit must be chosen to be σ + δ,
where δ is mostly one order of magnitude smaller then the hard-core diameter. The value
of δ has a big influence on the calculated thermodynamic properties (osmotic virial co-
efficients, phase equilibria). Although there are expressions to approximatively calculate
Hamaker constants H from solvent and particle quantum mechanical properties (e. g.
Ref.42) they are commonly regressed from experimental data such as second osmotic virial
coefficients43,44. For bovine α-chymotrypsin Coen et al.45 have regressed Hamaker con-
stants using 4 models of varying complexity. Model (1) includes DLVO potential, model (2)
additionally accounts for charge-dipole and dipole-dipole interactions, and model (3) also
considers osmotic effects (see below). When using model (1) Hamaker constants at low
ionic strengths (0.01 M) are higher than expected and strongly pH-dependent. This indi-
cates that attractive forces not accounted for in DLVO theory are represented by the higher
value for the Hamaker constant. Model (2) provides Hamaker constants which are much
less pH-dependent and a magnitude lower than for model (1). The inclusion of osmotic-
attraction potential (model (3)) does not significantly affect Hamaker constants at low
ionic strengths. Model (4) additionally accounts for the charge fluctuation on the protein
surface due to ion binding. Here, the Hamaker constants show only little dependency on
solution pH. According to Nir46 H ≈ 1− 2 kBT and Hamaker constants for various glob-
ular proteins have similar values as H is directly proportional to protein density, which is
similar for most proteins. Nonetheless, Coen et al. obtained H ≈ 5− 10 kBT at low ionic
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strength. The higher values indicate additional attractive forces independent from ionic
strength and pH maybe due to hydrophobic interactions or hydrogen bonding which are
not accounted for explicitly in the models47.

Electrostatic Potential welec

Equally charged particles repel each other according to Coulomb’s law (u(r) = q2/4πε0r

in vacuo). In a dielectric medium the potential becomes w(r) = q2/4πεr, where ε = ε0εr.
ε0 is the permittivity in vacuo and εr is the relative permittivity of the medium. The
surrounding countercharges (in form of ions) screen the charges on the macromolecules.
This screening is described by a Debye-Hückel term so that the electrostatic potential due
to charge-charge interactions becomes

wDLV O
q−q (r) =




∞ : r ≤ σ
q2(1/r)

4πε
exp[−κ(r−σ)]

(1+κσ/2)2
: r > σ

(4.14)

where
κ =

√
(2e2NAI)/(kBTε) (4.15)

is the inverse Debye length and I = 1
2(z2

anρan + z2
catρcat) the ionic strength of the solution,

respectively. The superscript (DLVO) denotes that this equation is part of the DLVO
theory. Eq. 4.14 was derived using a mean field approximation assuming that the electrolyte
ions can be treated as point charges. Strictly speaking this assumption is only valid at low
ionic strengths (< 0.1 M)41. The Debye-Hückel theory will be addressed in more detail
in Chapter 5.1. An alternative expression for charge-charge interactions was suggested by
Sogami and Ise (SI)48

wSI
q−q(r) =




∞ : r ≤ σ

1
β z2LB

[
sinh(κa)

κa

]2 [
1+κa coth(κa)

r − κ
2

]
exp[−κr] : r > σ

(4.16)

where LB = βe2/4πε is the Bjerrum length and a = σ/2.
Both DLVO and SI theory are based on linearized Poisson-Boltzmann equations and Debye-
Hückel theory. Charge distributions on the macroion’s surface cannot be assessed. The
main differences between the models are that for DLVO theory the solution volume is
assumed to be unaffected by pressure and by charges of the ions while this is not the case for
SI theory. Further, the SI potential is able to describe attraction between like-charged ions
whereas DLVO theory needs a van der Waals dispersion term as described above to account
for attractive forces48. However, comparison with molecular dynamics simulations shows
that SI theory clearly underestimates repulsive interaction forces between macroions49.
Till here a uniform charge distribution on the macromolecule has been assumed. More
accurate models also account for charge-dipole (q − µ), charge-induced dipole (q − iµ),
dipole-dipole (µ − µ) and induced dipole-dipole (µ − iµ) interactions. The respective
potentials are listed below43 (valid for r > σ):
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wq−µ = −2
3
β

q2µ2

(4πε)2r4
·

{
3(1 + κr) exp[−κ(r − 2a)]

(1 + κa)[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)]

}2

(4.17)

wq−iµ = − q2α

(4πε)2r4
ξ(r) (4.18)

wµ−µ = −2
3
β

µ4

(4πε)2r6
·

{
34[2 + 2κr + (κr)2)]2 exp[−2κ(r − 2a)]

[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)]4

}
(4.19)

wµ−iµ = − 2µ2α

(4πε)2r6
ξ(r) (4.20)

where the ξ(r) are unknown screening parameters expected to be near unity and εs is the
dielectric constant at the surface of the macromolecule.

For the dipole-dipole interaction potential Coen et al.45 and Striolo et al.50 provide a
slightly different equation:

wµ−µ = −9
2
β

µ4

(4πε)2r6
·

{
[(2 + 2κr + (κr)2)2 + 2(1 + κr)2] exp[−2κ(r − 2a)]

[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)]4

}
(4.21)

Vilker et al.51 also give a deviant version of Eq. 4.20, where the factor 34 is replaced by 3,
the exponential term is exp[−2κ(r− a)] and the exponent of the denominator is 2 instead
of 4:

wµ−µ = −2
3
β

µ4

(4πε)2r6

{
3[2 + 2κr + (κr)2)]2 exp[−2κ(r − a)]

2 + 2κa + (κa)2 + (1 + κa)(εs/ε)

}2

(4.22)

εs is the dielectric constant at the surface of the macroion. According to Phillies et al.52

εs ≈ 4 compared to εwater ≈ 80. Some authors do not use a consistent definition of
the parameter ε. In order to obtain correct units, e. g. in Eq. 4.20 either εs should be
substituted by ε0εs or in the denominator of the last term ε should be replaced by εr.

It is difficult to retrace which author provides the correct version of the dipole-dipole and
charge-dipole interaction potential. However, numerical investigation of Vilker et al.’s equa-
tion (Eq. 4.22) for the dipole-dipole interaction shows that there must be a misprint in the
corresponding paper (Ref.51). For solutions containing no salt (ionic strength I = 0 mM)
κ = 0 and Eq. 4.22 yields a screening factor (in curly brackets) greater than 1. This is not
consistent with the purpose of the screening factor, namely to decrease the dipole-dipole
potential in the presence of small ions.
Typically, Boltzmann averages of the screened charge-charge, orientation-(angle)-averaged
charge-dipole and dipole-dipole interactions are first calculated separately and then summed
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up to obtain the overall interaction potential This procedure is not exact as angle-averaged
charge-dipole and dipole-dipole interactions are strongly non-additive and interlinked50.
The following model has been proposed to calculate the potential of mean force including
the strong coupling of respective interactions53:

welec(r) = wq−q(r) + wq−µ(r) + wµ−µ(r) + wp(r) (4.23)

with wq−q as in Eq. 4.14,

wq−µ(r) = −2kBT ln
[

1
α1

sinhα1

]
(4.24)

wµ−µ(r) = −kBT
2α2

2 + α2
3

9
(4.25)

wp(r) = −kBT ln
18(4 + 4 coshα3 + e2α2 + 8 coshα1 + e−2α2 cosh 2α1)

(9 + 8 coshα1 + cosh 2α1)(12 + 4 coshα3 + 2 cosh 2α2)
(4.26)

α1 = β
(ze)µ

4ε0εrr2
S1

α2 = β
µµ

4ε0εrr3
S2 (4.27)

α3 = β
µµ

4ε0εrr3
S3

S1 =
3(1 + κr) exp[−κ(r − 2a)]

(1 + κa)[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)

S2 =
9(1 + κr + (κr)2

2 )2 exp[−κ(r − 2a)]
[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)]2

(4.28)

S3 =
9(1 + κr) exp[−κ(r − 2a)]

[2 + 2κa + (κa)2 + (1 + κa)(εs/ε)]2

wp(r) is a correction term accounting for the non-additivity of the respective electrostatic
potentials.

Osmotic Effects

When dealing with colloid solutions containing salt at high concentrations, the excluded
volume of the salt ions theoretically should not be neglected. Two macroions approaching
contact displace the small salt ions from the spacing between the large molecules. This
causes an ion concentration imbalance and thus a net impulse on the two macromolecules
towards each other (see Fig 4.3). The result is a stronger attractive interaction between
the colloids41. However, numerical investigations have shown that calculated B2 and phase
equilibria are little affected by the osmotic contribution to the PMF.
A possible potential for osmotic-attractive interactions was presented by Asakura and
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net impulse

a) b)

Fig. 4.3: Osmotic effects at high salt concentrations and short intercolloidal distance. a) Large
distance between two colloids: The small ions can hit the macromolecule from all sides. The net
impulse on each colloid is zero. b) Short distance between two colloids: The space between the
colloids cannot be penetrated by the small ions. The net impulse exerted on the colloids is directed
towards each other causing attraction between the macromolecules.

Oosawa54:

wosmo(r) =





∞ : r < σ

−4
3πσ̃3(ρionkBT )

[
1− 3r

4σ̃ + r3

16σ̃3

]
: σ ≤ r ≤ 2σ̃

0 : r ≥ σmi

(4.29)

where σ̃ = (σ + σion)/2, σion = (zanσcat + zcatσan)/(zan + zcat) is the valence-weighted
mean ionic hydration diameter, and ρion is the total ion number concentration. Eq. 4.29
is derived by approximating the osmotic pressure difference by the ideal osmotic pressure
of the electrolyte solution (Πid = ρionkBT ). The ion diameters are dependent on the
thickness of the hydration layer and related to the ion’s position in the lyotropic series55.

Yukawa Potential wYuk

A simple but very useful model potential is the Yukawa potential of the form

wYuk (r) =

{
∞ : r < σ

−εσ
r exp

{
kσ

(
1− r

σ

)}
: r ≥ σ

(4.30)

where ε and k are, respectively, the magnitude of the attraction and the screening length
that provides a measure for the range of the forces. The Yukawa potential shows similarities
to a screened charge-charge potential (compare e. g. to wDLV O

q−q ) and is thus suitable to
describe qualitatively colloidal systems containing electrolytes. Phase behavior of Yukawa
systems have been investigated e. g. by Tavares et al.56.
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4.6 Calculation of Phase Equilibria with a PMF
Model

Once the form of the PMF is known, one obtains the Helmholtz free energy of the colloidal
system applying a perturbation theory, e. g. as already explained in Sec. 3.5. For the fluid
phase a second-order Barker-Henderson theory (macroscopic compressibility approach) is
applied while for the solid phase a first-order approach has turned out to be sufficiently
accurate.

In case of a pure component the chemical potential is directly obtained by

βµ = a + Z (4.31)

Note that a already includes the contribution of the ideal gas for the fluid phase or of the
ideal crystal for the solid phase, respectively. This contribution is given by

aid = lnC + ln η − 1 (4.32)

The exact value of constant C is irrelevant for equilibrium calculations because it is inde-
pendent from the phase type (fluid/solid) and it appears on both sides of the respective
equations. Different reference systems and radial distribution functions have to be chosen
for the fluid and the solid phase.

The Fluid Phase

The hard-sphere reference is described by the well-known Carnahan-Starling57 equation

ahs,CS =
4η − 3η2

(1− η)2
(4.33)

Zhs,CS =
1 + η + η2 − η3

(1− η)3
(4.34)

The differential
(

∂ρN
∂P

)
needed for the second-order term is given by

(
∂ρN

∂P

)
=

(1− η)4

1 + 4(η + η2 − η3) + η4
(4.35)

Further, the radial distribution function from Chang and Sandler58 is implemented.
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The Solid Phase

The contributions for the hard-sphere crystal reference (fcc structure) are proposed by
Velasco et al.59

ahs,fcc = −3 ln
(

1−
(η

τ

) 1
3

)
− 3 ln 2 (4.36)

Zhs,fcc =
1

1− (η
τ

) 1
3

(4.37)

The radial distribution function for the solid is based on equations of Kincaid and Weis60.
Combination of Eqs. 3.25, 3.29,3.30, and 4.31-4.36 provides the mathematical framework
for the calculation of phase diagrams.
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Electrolyte PC-SAFT (ePC-SAFT)

5.1 Electrolyte Systems

5.1.1 Introduction

Since the beginnings of the last century many researchers have concentrated their efforts
in correlating and predicting phase equilibria in electrolyte solutions. In 1923 Debye and
Hückel61 published one of the pioneering papers dealing with aqueous electrolyte solutions.
They considered a system of hard spheres in a dielectric continuum and calculated the con-
tribution to the system energy for charging up the spheres. Their model is often treated
as an excess Gibbs energy model; however, what they developed was an electrostatic con-
tribution to the Helmholtz energy when charging hard spheres at constant temperature,
volume and chemical potential of the solvent. Their development includes the background
potential as well as the self potential. The latter is also known as the Born potential which
is independent of the configuration as long as we are dealing with pure solvents.

gE-models like the local composition NRTL activity coefficient model by Chen et al.62 and
its extensions63–65 or other group contribution models66,67 have been applied to correlate
activity coefficients of single-salt and mixed-salt electrolyte solutions. However, one disad-
vantage of excess Gibbs enthalpy models is that they need many adjustable parameters,
some of them being temperature-dependent or even concentration-dependent. Further,
gE-models are not able to predict densities. Equation of state (EOS) models circumvent
these crucial disadvantages. Several models based on equations of state were extended to
electrolyte systems. Fürst and Renon68 combined the nonelectrolyte EOS of Schwartzen-
truber et al. with a mean spherical approximation (MSA) long-range term to account for
the electrostatic interactions. Wu and Prausnitz69 presented an electrolyte equation of
state based on the Peng-Robinson EOS (PREOS) which itself already accounts for hard-
core and dispersion interactions. They added a Born energy term for charging up the
uncharged reference system in a continuous medium of given permittivity, a Coulombic
term to account for electrostatic interactions between the ions, and further an association
term to consider hydrogen bonds between the water molecules. Myers et al.70 followed a
similar approach using the ideal gas mixture as a reference system, considering also the



44 5. Electrolyte PC-SAFT (ePC-SAFT)

Born energy to discharge the ions in vacuum and then recharging them in the dielectric
medium. Both approaches yield good agreement with experimental vapor pressure data.
However, they are based on the semi-empirical PREOS which is known to fail when pre-
dicting liquid densities.

A series of electrolyte equations of state are based on perturbation theories. Many models
of this kind are based on the SAFT approach. To describe electrolyte solutions, Galindo et
al.71,72 have successfully extended the SAFT-VR EOS73 to electrolyte solutions by using
an additive electrostatic term for the Helmholtz free energy obtained from the solution of
the Ornstein-Zernicke equation for the restricted primitive model (RPM) with the MSA
closure. Their model yields good results for vapor pressures and liquid densities of aque-
ous solutions of monovalent ions. Ji et al.74 have coupled the SAFT1 EOS with a similar
RPM model. They calculate osmotic and activity coefficients of some alkali salts and their
mixtures in water.

In this work the PC-SAFT model is extended to electrolyte solutions. Whereas the hard-
core, dispersion, and association interactions are already taken into account by the original
PC-SAFT, the charging of the ions is considered by the Debye-Hückel (DH) term. There-
fore, the DH term will be discussed in detail in the following section.

5.1.2 Debye-Hückel (DH) Theory of Electrolyte Solutions
Debye and Hückel61 considered diluted electrolyte solutions and regarded the solvent (wa-
ter) as a dielectric continuum. This assumption is feasible as the amount of water molecules
is much greater than the total amount of ions. The ions are treated as hard spheres which
can approach each other to distance ai. This value is equivalent to an ion diameter. De-
bye and Hückel proposed a contribution to the Helmholtz free energy for charging up a
hard-sphere system. This kind of model, where the ions are considered as charged spheres
and the solvent is implicitly regarded as a dielectric continuum, is referred to as primitive
model (PM). It should be denoted that the original DH theory was developed as a primitive
model and not as a restricted primitive model (RPM). Both types of model consider the
size of the ions but in the RPM the diameters of all ion species are equal.
The starting point for the treatment of charged particles is the Poisson equation:

∇2Φout(r) = −ρ

ε
(5.1)

where Φout(r) is the electric potential in dependency of the distance r from the center of
an arbitrarily chosen ion. The index out denotes that Eq. 5.1 is valid outside the ionic
sphere of diameter ai. ρ is the volumetric charge density, and ε is the dielectric constant
of the medium.

Following the Boltzmann principle, ρ itself can be expressed by

ρ = NA

∑

i

qici exp (−βqiΦout) (5.2)
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where qi and ci are the charge (in C) and the number concentration of ion i, respectively.
Combining Eqs. 5.1 and 5.2 yields the Poisson-Boltzmann differential equation which – in
order to be easily solved – is linearized

∇2Φout =
βNA

ε

∑

i

q2
i ciΦout (5.3)

= κ2Φout, with κ2 =
βNA

ε

∑

i

q2
i ci

κ is called the inverse Debye screening length and has the unit of reciprocal meter (compare
also Eq. 4.15). The differential Eq. 5.3 leads to the solution

Φout(r) =
A

r
e−κr +

A′

r
eκr for r ≥ ai (5.4)

where obviously A′ = 0 as the potential Φout(r) has to vanish for infinite distance r. This
solution is valid for r ≥ ai. The internal region of the ionic sphere (index in) is regarded as
a continuum of given permittivity with a point charge at the center. Here, the centers of
the surrounding ions are excluded and the Poisson equation (Eq. 5.1) simplifies to Laplace’s
equation, namely

∇2Φin = 0 (5.5)

and thus the electric potential is given by

Φin(r) =
qi

4πε

1
r

+ B for r ≤ ai (5.6)

The first term of Eq. 5.6 is the self potential often denoted as the Born potential. The two
constants A and B are obtained taking into consideration the boundary conditions that at
r = ai both Φin and Φout as well as their gradients

(
∂Φin
∂r

)
and

(
∂Φout

∂r

)
must be identical,

respectively. Hence,

A =
qi

4πε

eκai

1 + κai
and B = − qi

4πε

κ

1 + κai
(5.7)

Constant B represents the potential of the point charge in the center of the ion sphere.
Therefore, the potential energy of one ion relative to its environment is given by

ui = qiB = − q2
i

4πε

κ

1 + κai
(5.8)
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and the potential energy of the whole system becomes

U elec =
∑

i

Ni

2
ui

= −
∑

i

Niq
2
i

8πε

κ

1 + κai

= − κ

8πε

∑

i

Ni q2
i

1 + κai
(5.9)

To obtain an expression for the Helmholtz free energy the following standard thermody-
namic relationship is used

d

(
A

T

)
= U d

(
1
T

)
− P

T
dV +

1
T

∑

i

µi dni (5.10)

At constant volume and composition the molar electrostatic Helmholtz free energy be-
comes4,61

aelec = − β

4πε

∑

i

xiq
2
i

3
κ χi (5.11)

where
χi =

3
(κai)3

[
3
2

+ ln(1 + κai)− 2(1 + κai) +
1
2
(1 + κai)2

]
(5.12)

and xi is the mole fraction of ion i.

5.1.3 Augmented Electrolyte Theories

The original DH theory can be enhanced by considering more accurate descriptions of both,
the non-ionic and the ionic interactions. The non-electrostatic corrections may consist in
adding an attractive interaction to the hard-sphere repulsion. The electrostatic interactions
may be described more accurately, for example, by using a quadratic series expansion
of Eq. 5.2. These kind of extensions to both ionic and non-ionic contributions assume
implicitly that the respective interactions are decoupled. In reality, this is not the case. The
use of integral equation theories provides an alternative without assuming the decoupling
of these effects72. For example, the solution of the Ornstein-Zernicke equation for charged
particles with the mean spherical approximation closure for the RPM and PM can be found
in Refs.75,76 In his Diploma Thesis Held77 has compared several ionic contributions (DH,
MSA, PM, RPM) in combination with the PC-SAFT EOS. He has shown that none of the
more complex electrolyte terms yields markedly better results than the mathematically
rather simple DH model.
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5.1.4 The ePC-SAFT Model

In this work, the PC-SAFT EOS is extended to also account for the interaction of charged
molecules, hereafter referred to as ePC-SAFT. The grade of complexity is restricted to
the PM of Debye and Hückel keeping in mind that the long-term objective is not to
optimise the equation of state for electrolyte solutions but rather to find a meaningful basis
for the description of aqueous amino acid, polypeptide, and protein solutions containing
electrolytes. The ePC-SAFT model considers the following contributions:

ares = ahc + adisp + aassoc + aelec (5.13)

The respective equations for the residual Helmholtz free energy contributions to hard-chain
repulsion ahc, dispersion adisp, and association aassoc are summarized in Sec. 3.6 and in
Ref.2 The contribution due to charging up the system aelec is calculated by Eq. 5.11. The
electrostatic contributions for pressure and chemical potential are obtained by standard
thermodynamics:

pelec

kBT
= −

(
∂aelec

∂v

)

T,N
= − κρN

24πkBTε

∑

k

xkq
2
kσk (5.14)

µelec
j

kBT
=

(
∂Aelec/kBT

∂Nj

)

T,V,Ni 6=Nj

= − q2
j κ

24πkBTε

[
2χj +

∑
k xkq

2
kσk∑

k xkq
2
k

]
(5.15)

with
σk =

(
∂(κχk)

∂κ

)

T,N
= −2χk +

3
1 + κak

(5.16)

Here, the pressure and density dependency of the dielectric constant of water is neglected
since the values of εr in the temperature range of 278-373 K and at p = 1 kPa compared
to the values at p = 1 MPa differ only at the second decimal place.
The original PC-SAFT model for associating, uncharged molecules has 5 parameters,
namely: the segment number, the segment diameter, the dispersion energy, the associ-
ation energy, and the association volume. The DH term does not require any additional
adjustable parameter since the charge of the ions is given by their valence.
Also non-primitive (NP) models should be mentioned in this context. For example, Seyfkar
et al.78 couple the NP-MSA with the Boublik-Mansoori-Carnahan-Starling-Leland hard
sphere EOS as the reference system to calculate MIAC of several salt solutions. Zhao et
al.79 extend the SAFT-VR EOS with a NP-MSA electrolyte contribution and compare
their results with MC simulations.

5.2 Amino Acid and Oligopeptide Solutions
Since the early years of the last century vapor pressures, densities, solubilities, and activity
coefficients of amino acids and peptides in various solutions have been measured, correlated,
and modeled.
Two main approaches have been followed for the description of thermodynamic properties
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of amino acid and polypeptide solutions: gE-models and equations of state. Khoshkbarchi
and Vera80 give an excellent overview of the thermodynamic models – gE-models and
equation of states (EOS) – applied in recent years to calculate activity coefficients and
solubilities of amino acids in aqueous solutions. For example, Kuramochi et al.81 used the
UNIFAC model combined with a Pitzer-Debye-Hückel term for the long-ranged electro-
static interactions to calculate activity coefficients in aqueous solutions containing amino
acids, sugar, and inorganic salts. Nass82 applied the Electrolyte NRTL theory to model
amino acid solubilities of L-alanine, L-serine, and L-threonine.

Equations of state of varying complexity have been applied to amino acid solutions.
Khoshkbarchi and Vera present a primitive model based on first order perturbation the-
ory for the correlation of activity coefficients and solubilities of some amino acids and
oligopeptides (up to trimers) in water80,83,84. In a primitive model the solvent (in this case
water) is only considered implicitly by its dielectric constant. The amino acids and pep-
tides were modeled as Lennard-Jones spheres which also exhibit dipole-dipole interactions
(Stockmayer fluid). The model of Khoshkbarchi and Vera needs three pure-component
parameters, namely the sphere diameter, the dispersion energy, and the dipole moment.
While the first two are fitted to experimental data, the third is calculated by means of
quantum mechanics. In their model Khoshkbarchi and Vera include the pH-dependence of
the solubilities. Therefore, the pKa values of the carboxylic and the amino group of the
amino acids must be known in addition to the standard entropy and enthalpy of melting.

Simple models are based on a spherical shape of the molecules. This assumption may be
justified for molecules like small amino acids. Aiming at the description of more complex
biological systems, where the molecules exhibit a rod-like structure, segment based models
appear to be more appropriate. The model by Liu et al.85 is also based on perturbation
theory but treats the solvent as discrete molecules. Further, the molecules are described as
chains of Lennard-Jones spheres with dipole moment. The reference system consists of a
hard-sphere mixture; chain formation, dispersion, and dipole-dipole interactions are taken
into account as perturbation terms. Four pure-component parameters (segment number,
segment diameter, dispersion energy, and dipole moment) are fitted to correlate activity
coefficients and solubilities of some amino acids and dipeptides in aqueous solutions. Fuchs
et al.86 have applied the PC-SAFT EOS to model solubilities of glycine, DL-alanine, and
DL-methionine in water-alcohol solutions at varying pH.

The solutions examined within the scope of this thesis are restricted to single-solvent
(water) solutions of amino acids and oligopeptides.



Chapter 6

Results: Low Molecular Weight
Components

6.1 Modeling of Water

To be able to calculate vapor pressures and densities of aqueous solutions, the main com-
ponent, namely water, has to be modeled as accurately as possible. Groß and Sadowski28

fitted PC-SAFT model parameters to vapor pressure and density data in a temperature
range from the triple point to the critical point. Although the overall performance of the
model with respect to vapor pressures and densities is very good, the density deviations
at low temperature are remarkable.
Since the long-term objective is to describe phase equilibria in aqueous solutions of biologi-
cal components the temperature range of interest is restricted to T = 273−373 K. In order
to obtain better agreement between experimental and modeled data the parameter set for
water is refitted to experimental data in this temperature range using a nonlinear least
squares algorithm87. The parameters are summarized in Tab. 6.1. Although a four-site
model would best reflect the physics of water molecules it was demonstrated earlier that a
two-site (2B) approach yields better agreement between model and reality28. Another ad-
vantage of using only two association sites instead of four is the decrease in computational
time. The density anomaly at about 280 K cannot be reproduced by any state-of-the-art
equation of state (see Fig. 6.1, dashed line). Therefore, a temperature-dependent segment
diameter is introduced here for the component water:

σ∗ = σ + t1 · exp{t2 · T}+ t3 · exp{t4 · T} (6.1)

σ∗ is the temperature-dependent segment diameter and the ti are four additionally ad-
justable parameters. The relative mean deviation∗ for the densities and for the vapor
pressures are 0.015% and 0.60%, respectively. The excellent agreement between calculated

∗The relative mean deviation is calculated by RMD = 1
N

N∑
i

∣∣∣1− Modeli
Expti

∣∣∣, where N is the number

of data points.
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Fig. 6.1: Liquid phase densities (left) and vapor pressures (right) of pure water calculated with
ePC-SAFT (line). The symbols represent experimental data88. The dashed line is calculated with
a T-independent segment diameter.

and experimental data for the T-dependent water model is shown in Fig. 6.1.

Tab. 6.1: ePC-SAFT parameters for water.

segment number (mseg/M) = 0.06687 [−]
segment diameter σ = 2.7927 [Å]

t1 = 10.11 [Å]
t2 = −0.01775 [K−1]
t3 = −1.417 [Å]
t4 = −0.01146 [K−1]

dispersion energy ε = 353.9449 [K]
association sites N = 2 [−]
association energy εAiBj = 2425.6714 [K]
association volume κAiBj = 0.45090 [−]

6.2 Modeling of Electrolyte Solutions with ePC-SAFT
For the calculation of vapor pressures and densities of electrolyte solutions several assump-
tions have to be made. A reasonable approximation within the temperature range of this
work (T < 373 K) is that the vapor phase above the solution consists of pure water only
since the dissolved inorganic salts considered here are nonvolatile. A proof for the validity
of this assumption is given e. g. by Parisod and Plattner89. At T = 653 K they measured
a NaCl concentration of less than 0.1 % in the vapor phase of a H2O–NaCl solution.
The considered salts are regarded as strong electrolytes, i. e. they fully dissociate into the
respective cations and anions. The ions are treated as charged hard spheres (mseg = 1) with
diameter σj (j refers to ions) which mutually interact solely by hard-core and electrostatic
forces. The diameter is equivalent to the distance of closest approach aj . Dispersive
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Fig. 6.2: Interaction matrix: interactions in an aqueous electrolyte solution accounted for in the
ePC-SAFT model.

interactions reign exclusively between water–water (ε11) and water–ion pairs (ε1j), hence
εjj = 0. Association is considered only among water molecules.

In the ePC-SAFT model the water molecules are considered explicitly in the hard-chain,
the association and the dispersion terms. The interactions arising from the polarity and
polarisability of the water molecules and their effect on the electrical potential in the
solution are implicitly accounted for by the dielectric constant of water. The interactions
in the water-salt system are summarized in Fig. 6.2. The temperature-dependent dielectric
constant of water is calculated applying the correlation of Floriano and Nascimento90 and
setting the pressure to 100 kPa.

6.2.1 Strategy for Parameter Estimation

Two main concepts for modeling electrolyte solutions are found in the literature. The
majority of electrolyte models is based on a salt-specific approach. Albeit more flexible
and in some cases more accurate than an ion-specific model, the number of adjustable
parameters increases linearly with the number of electrolyte systems. Further, mixtures
of salts with a common ion (e. g. H2O-NaCl-KCl) are difficult to describe on a physically
sound basis. For the given example, the chloride ion of the sodium chloride would have
other parameters than the chloride ion of the potassium chloride. An ion-specific approach
appears to be more convenient circumventing the above mentioned shortcoming. Here, the
parameters are fixed for each ion, i. e. the chloride in NaCl is the same as in KCl. Another
advantage is that the number of parameters increases less than linearly with the number of
electrolyte systems. For example, 6 parameter sets suffice to describe 9 alkali halides. In
order to obtain a consistent parameter set, the ion parameters must be fitted simultaneously
to experimental data of all the considered salts. That makes the estimation procedure
slow and susceptible to numerical difficulties. The optimizer, which uses a gradient-based
algorithm, may get stuck at a suboptimal parameter set depending on the initial values
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provided by the user. The objective functions to be minimized contemporaneously are

OF1 =
NP∑

i

[
1− γ̃calc

i

γ̃exp
i

]2

(6.2)

and

OF2 =
NP∑

i

[
(ρcalc

i − ρcalc
i,w )− (ρexp

i − ρexp
i,w )

]2
(6.3)

where ρcalc
i,w and ρexp

i,w are the calculated and experimental densities of pure water at the same
T and P as the salt solution. Using the form of OF2 is more convenient than taking the
ratio of the density differences because it avoids the mathematically unfavorable division
by small numbers at very dilute solution conditions. Another drawback of the ion-approach
is that – strictly speaking – when salts with new ion types are added all parameters of
the extended ion matrix must be refitted. Since the ion parameters have been fitted to
aqueous solution data they implicitly include information about the solvent water. Hence,
the ion parameters may be used only in combination with the water parameters given in
Tab. 6.1.

6.2.2 Results

The parameters to be fitted for each ion are its hydrated diameter σj and its dispersion
energy εj when interacting with water. Note that εj is a pure component value of the
respective ion j. The dispersion energy between water (i = 1) and an ion j is calculated
using the standard vdW mixing rule εij = (εiεj)0.5(1− kij). All binary parameters kij are
set to zero. Nevertheless, it should be emphasized that the obtained parameters are only
valid for aqueous solutions since the dielectric constant of water is used in the aelec term.
Adding or exchanging the solvent will lead to a different behavior of the ions.
Since there is no vapor pressure or density data available for the pure ions their param-
eters must be obtained from aqueous solutions. First, vapor pressure and density data
of solutions containing only one of the respective salts were used for the parameter es-
timation91,92. The investigated salts were alkali halides AnCat with Cat = {Na+, Li+,
K+} and An = {Cl−, Br−, I−}. Further, the sulfate ion being part of Li2SO4, Na2SO4,
and K2SO4 was chosen as an example of a bivalent anion. With the obtained electrolyte
parameters vapor pressures and densities of single-salt and mixed-salt solutions could be
calculated with good accuracy. However, mean ionic activity coefficients (MIAC) calcu-
lated with the same parameter sets showed high deviations from experiment. This is not
surprising, because the vapor pressure depression obeys Raoult’s law to a large extent and,
thus, is not sensitive enough for a parameter estimation. Therefore, in a second step ionic
parameters were fitted to densities and MIAC resulting in an excellent description of all
three data sets77, densities, vapor pressures, and MIAC as demonstrated in Fig. 6.3 for
the arbitrarily chosen salt NaI.
Additionally, salts containing F−, OH−, NH+

4 , and NO−3 and the bivalent cations Mg2+ and
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Fig. 6.3: Densities, vapor pressures, and MIAC of NaI. The symbols represent experimental data,
the lines are calculated with the ePC-SAFT EOS. The vapor pressures have been predicted with
the ePC-SAFT EOS.

Ca2+ were considered. Tab. B.1 in Appendix B summarises the optimized ion parameters.
An excerpt is given in Tab. 6.2. Figs. B.1-B.6 show the modeling results for 24 alkali salts.
The good performance of the ePC-SAFT model is reflected in low deviations averaged over
all modeled salts of 0.94%, 4.69%, and 10.81% for densities, vapor pressures, and MIAC,
respectively. However, the MIAC of the sulfates are an exception. This may be due to
ionic association, detectable by conductance measurements93. Ion pairing effects are not
implemented in the ePC-SAFT model. Vapor pressures for LiBr are reproduced with an
exceptionally high average deviation of about 30%. This appears odd because the more
sensitive MIAC are modeled accurately suggesting that the measured VLE data should be
regarded as questionable. The average deviations between modeled and experimental data
for all salts are summarized in Tab. B.2.

Tab. 6.2: ePC-SAFT parameters for the alkali halide ions (excerpt from Tab B.1). The segment
number is set to unity. For comparison the Pauling ionic diameter σP

j (e. g. Ref94) are tabulated
as well. The hydration free energies ∆Ghydr are taken from Ref.95

ion molar mass diameter disp. energy valence hydration energy
M [g/mol] σP

j [Å] σj [Å] εj [1/K] zj [−] ∆Ghydr [kJ/mol]

Li+ 6.94 1.20 1.818 2697.280 +1 −531
Na+ 22.99 1.90 2.412 646.050 +1 −416
K+ 39.10 2.66 2.970 271.052 +1 −334

F− 19.00 2.72 1.613 648.313 −1 −510
Cl− 35.45 3.62 3.058 47.288 −1 −367
Br− 79.90 3.90 3.457 60.222 −1 −336
I− 126.90 4.32 3.932 80.435 −1 −291

It is worthwhile to scrutinise the trends of the ion parameters in order to test their physical
relevance. The segment diameters follow the same trend as the Pauling diameters. The
cation diameters are larger than the Pauling diameters indicating the formation of a tightly
bound hydration sheath. Contrariwise, the anion diameters are about 0.4 Å smaller than
their Pauling diameters. The dispersion energies, which reflect the interactions between
water and ions, decrease in the sequence Li+ > Na+ > K+ by an order of magnitude.
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This is consistent with the trend of the hydration free energies ∆Ghydr. The more negative
the value the more intense are the water-ion interactions. The bivalent cations Ca2+ and
Mg2+ reveal very high dispersion energies reflecting their two positive charges distributed
over a relatively small ion sphere (i.e. high charge density) allowing extensive hydration.
The interactions between (halide) anions and water are markedly weaker than it is the
case with the cations. This is due to the larger size of the anions and, therefore, smaller
charge density. The anion dispersion energies are smaller than the cation dispersion ener-
gies which is consistent with the fact, that the anions are only weakly hydrated. Especially
the anions NO−3 and SO2−

4 have very low dispersion energies because the oxygen atoms
prevent extensive hydration (see Ref.96, p. 122). Therefore, their dispersion energies are
set to 0. The sulfate ion has a very small fitted diameter (2.55 Å) which may compensate
for the vanishing dispersion energy value. An exception to the rule is the F− ion which
also reveals a fitted ion diameter which is about 1.1 Å smaller than the Pauling value.

That the fluoride breaks ranks suggests that it undergoes water-ion interactions not con-
sidered in the ePC-SAFT model. Dielectric relaxation measurements97 of aqueous fluoride
solutions prove that the fluoride ion is strongly hydrated, which explains the high disper-
sion value of about 650 K.
That the fluorides exhibit a ‘special’ behavior can also be shown for the MIAC. The same
is valid for the hydroxide ion. The MIAC of the alkali chlorides, bromides, and iodides
follow the sequence γ̃±LiAn > γ̃±NaAn > γ̃±KAn. This trend is reversed for the fluorides and
hydroxides. Fig. 6.4 illustrates this behavior for iodides and hydroxides. Here, two effects
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seem to be superposed: The MIAC of the hydroxides are higher than those of the iodides.
However, there must be another effect which decreases the MIAC for LiOH and NaOH. A
possible explanation for this phenomenon is given by Harned and Robinson93: The cation
Cat+ is surrounded by distorted water molecules

Cat+ + H2O → Cat+ · · ·OH− · · ·H+

where the dotted lines represent linkages due to ion-solvent forces. The positive partial
charge of the hydrogen atom attracts the anion An− which then docks to the hydration
shell. This effect is more pronounced for strong proton acceptors such as the small fluoride
anion or the hydroxide. The interaction may be represented as

Cat+ · · ·OH− · · ·H+ + An− → Cat+ · · ·OH− · · ·H+ · · ·An−

This kind of reaction is equivalent to ion pairing mediated by water molecules in the first
hydration sheath resulting in a reduction of free ions and, hence, a lower activity coefficient.
This effect is more pronounced for stronger hydrated cations, i. e. for the Li+ which has the
highest charge density. Since the K+ is only weakly hydrated the MIAC of KI is lower than
that of KOH. The ePC-SAFT is able to capture above-mentioned effects quantitatively.

Mixed Electrolyte Solutions

Vapor-pressures of solutions containing the mixtures NaCl/KBr and NaBr/KCl, respec-
tively, were predicted and the calculated data was compared to experimental data98. As
can be seen in Tab. 6.3 the ePC-SAFT EOS can easily handle such systems without any
readjustment of the ion parameters and without introducing any binary parameter kij .
The average relative deviation of the vapor pressures is about 1%.

Tab. 6.3: Comparison of predicted vapor-pressures and experimental data of aqueous NaCl–KBr
and NaBr–KCl solutions. Exp. data taken from Ref.98.

NaCl + KBr NaBr + KCl
T NaCl KBr pexp pmod ∆p NaBr KCl pexp pmod ∆p
[K] [m] [m] [kPa] [kPa] [%] [m] [m] [kPa] [kPa] [%]

303.15 1.500 1.498 3.77 3.76 0.28 1.5020 1.4980 3.77 3.76 0.28
303.15 2.000 1.999 3.59 3.59 0.08 1.9990 2.0020 3.60 3.59 0.34

308.15 1.496 1.502 4.99 4.97 0.36 1.5010 1.4990 5.01 4.97 0.74
308.15 2.001 1.998 4.80 4.74 1.22 2.0010 1.9980 4.79 4.74 0.96

313.15 1.501 1.498 6.58 6.51 1.04 1.4980 1.5000 6.60 6.51 1.29
313.15 1.998 2.001 6.30 6.21 1.49 1.9990 1.9990 6.32 6.21 1.72

318.15 1.002 0.999 8.93 8.83 1.09 1.0030 0.0090 8.91 9.18 2.98
318.15 1.499 1.501 8.53 8.45 0.95 1.4970 1.5030 8.55 8.45 1.12
318.15 2.000 2.001 8.18 8.05 1.62 1.9990 2.0010 8.20 8.06 1.75

323.15 0.499 0.498 11.95 11.83 1.03 0.4990 0.5010 11.94 11.83 0.95
323.15 0.998 1.004 11.49 11.36 1.10 1.0020 0.9990 11.49 11.37 1.06
323.15 1.496 1.501 11.02 10.87 1.39 1.4990 1.4990 11.00 10.87 1.14
323.15 1.999 1.998 10.50 10.35 1.46 2.0030 1.9980 10.49 10.36 1.26

328.15 0.496 0.503 15.20 15.09 0.72 0.5010 0.5000 15.20 15.09 0.72
328.15 1.001 0.999 14.59 14.50 0.63 0.9970 1.0040 14.60 14.50 0.66
328.15 2.001 1.998 14.01 13.19 5.88 1.5010 1.5020 14.00 13.87 0.96
328.15 1.502 1.497 13.33 13.86 3.95 2.0020 1.9990 13.33 13.20 0.94

333.15 0.499 0.502 19.17 19.10 0.37 0.5030 0.4970 19.17 19.10 0.35
333.15 1.000 1.001 18.48 18.35 0.72 1.0020 1.0000 18.48 18.35 0.68
333.15 1.499 1.502 17.71 17.53 1.04 1.4990 1.5030 17.71 17.54 0.94
333.15 1.997 1.998 16.93 16.68 1.50 1.9980 2.0010 16.91 16.70 1.24
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6.3 Modeling of Amino Acid and Peptide Solutions
with ePC-SAFT

Within the ePC-SAFT framework each of the 20 amino acids and peptides is treated
as a chain consisting of identical spheres. In analogy to the 2B-model of water (comp.
Sec. 6.1), the amino and the carboxylic group have each one association site (see Fig. 6.5)
mimicking the proton donator site (acidic group) and the proton acceptor site (amino
group). Amino and carboxylic groups in the residue R are also considered. For instance,
serine (R = −CH2 − OH) exhibits one additional proton donating site. For the sake of
reducing the number of adjustable parameters, both association-site types are assumed
to have the same energy and volume parameters. When two amino acids form a peptide
bond, two association sites are eliminated due to polycondensation (compare Fig. 6.5).
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Fig. 6.5: Schematic representation of an amino acid (left) and a peptide (right). The amino and
the carboxylic group are modeled by each one association site (black spheres). The residue R may
also have association sites. The peptide backbone has only two association sites, one proton donator
site and one proton acceptor site. When two amino acids form a peptide bond two association
sites are eliminated due to polycondensation.

Although amino acids and peptides in solution (without pH adjustment) are mainly present
as zwitterions, no charge-charge interactions are included in the model. Also, the interac-
tions emanating from the large dipole moment are not considered. Numerical investigation
has shown that including the dipole-dipole interactions in the EOS does not lead to an
ameliorated performance of the model. The interactions accounted for in the ePC-SAFT
EOS are summarized in Fig. 6.6.
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Fig. 6.6: Interaction matrix: interactions in an aqueous amino acid/peptide solution accounted
for in the ePC-SAFT model.
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6.3.1 Parameter Estimation

Only little experimental data is available for vapor pressures of pure amino acids (see
e. g. Ref.99) and peptides as they decompose before sublimation. Fuchs et al.86 have used
such data for the parameter regression for DL-methionine. They state that the relative
mean deviations are fairly large since the absolute vapor pressures are very low (down to
4 Pa). Moreover, at ambient temperature the amino acids are solids. Hence, for the pure-
component parameter estimation one harks back on binary (aqueous) solution data such
as densities, vapor pressure depression, activity coefficients in solution and solubilities. In
this work, the five ePC-SAFT parameters (segment number, segment diameter, dispersion
energy, association energy, and association volume) are regressed to experimental density
and activity coefficient data at 298.15 K. Afterwards, melting enthalpy and melting tem-
perature are fitted to solubility data. In order to describe all 4 data types with only one
parameter set a binary interaction parameter kij has to be introduced. Summing up, a total
of 8 parameters is necessary for modeling the above-mentioned thermodynamic properties
of amino acids and peptides in aqueous solutions. Since chiral molecules such as amino
acids reveal pronounced differences in their solubility behavior, as far as experimental data
is available, melting enthalpy and melting temperature are given for the L and DL form.

PC-SAFT parameters for glycine, alanine, serine, proline, valine, methionine, and some
oligopeptides have already been fitted by Fuchs et al.86 and Cameretti et al.100 to aqueous
solution densities, vapor pressures and solubilities. Although they achieved good agree-
ment between model and experiment, activity coefficients cannot be described with the
obtained parameters. Therefore, new parameters have been fitted to experimental density,
activity coefficient, and solubility data. Further, the association site number has been
decreased from two to one association site per type. This has the advantage of reduced
computation time without decreasing the accuracy of the model. Furthermore, this proce-
dure is consistent with the modeling of water with a 2B-approach. Fig. 6.7 clearly shows
the deficiency of the old parameter set for the calculations of activity coefficients: while
experimental activity coefficients are < 1 the model predicts γ̃A > 1. Additionally, with
the new parameter estimation strategy results are ameliorated also for vapor pressures and
solubilities.

For the homopolypeptides diglycine and triglycine the majority of the pure-component
parameters of glycine can directly be inherited as suggested by Cameretti et al.100. How-
ever, in order to reproduce activity coefficient data of the glycine-peptides the segment
number and the kij-parameter have to be refitted to experimental data. Of course, the
melting properties cannot be inherited either. This approach also yields reasonable re-
sults for dialanine . For the heteropolypeptides alanylglycine and glycylalanine the whole
set of parameters has to be regressed. Although these peptides are different in structure,
solution densities and activity coefficients are identical within measurement uncertainty.
Presumably, this is not the case for the solubilities, because here the steric orientation
of the peptide residues plays a predominant role for the insertion of a molecule into the
crystal structure.
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Fig. 6.7: Densities, activity coefficients, vapor pressure depressions and solubilities of glycine
solutions. Symbols represent experimental data at 298.15 K (except for solubilities), lines are
calculated with the ePC-SAFT EOS. The dashed lines have been calculated with the parameter
set adjusted to densities, vapor pressures and solubilities as described in Ref.100 The continuous
lines have been obtained with the new parameter set fitted to densities, activity coefficients and
solubilities as presented in this work.

For the aminobutyric acids and the aminovaleric acids the ePC-SAFT parameters were
first fitted to the γ-form. Then, all parameters but segment number, dispersion energy,
and binary interaction parameter were inherited to the β and α-types. mseg, ε and kij

were readjusted to experimental data. The incentive for this procedure is twofold: Firstly,
the number of adjustable parameters is reduced decreasing computation time. Secondly,
the obtained parameters may reveal physically relevant trends. Indeed, a closer look at the
parameters of the aminobutyric acids shows that the segment number slightly decreases
from α-ABA to γ-ABA indicating a more compact molecular structure of the γ-ABA in
water.
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The 20 amino acids and peptides considered in this work as well as their chiral types are
listed in Appendix C, Tab. C.1. Their parameters are summarized in Tab. C.2. Note
that the melting temperatures appear to have lost their physical meaning because they are
much higher than the decomposition temperatures of the amino acids. That is considered
to be the compromise one has to accept when using a simple model for the solid phase as
given by Eq. 2.32.

6.3.2 Results for the Binary Systems
Densities, vapor pressures, activity coefficients, and solubilities of the considered amino
acids and peptides can be reproduced by the model with good accuracy. The respective
plots are given in Appendix C. In the following, the interactions between the amino acids
and the solvent will be discussed by examining the trends of the activity coefficients for
various series of amino acids and peptides.

Homologous Series: Glycine – Alanine – α-ABA – α-AVA

These amino acids have charged head groups (COO− and NH+
3 ) attached to an aliphatic

tail. Hence, two antagonistic interaction types dominate in aqueous amino acid solutions:
hydrophilic and hydrophobic. The former leads to attractive water-amino acid interac-
tions and low solute activity coefficients. The latter provokes water-amino acid repulsion
and hence stronger attractive interactions between the amino acids (high solute activity
coefficients). This is reflected by the increase of the activity coefficients from glycine to
α-AVA shown in Fig. 6.8. Interestingly, the activity coefficients of α-ABA and -AVA do
not differ much suggesting that for residue chains longer than two carbons the interplay
between hydrophilic and hydrophobic interactions is already completely shifted towards
mutual attraction between the amino acid side chains.
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Fig. 6.8: Modeled activity coefficients of glycine (—), alanine (– –), α-ABA (· · · ), α-AVA (– –).
With increasing chain length in the residue the activity coefficient increases. Experimental data
omitted for the sake of clarity.
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Homologous Series: α-ABA – β-ABA – γ-ABA / α-AVA – γ-AVA

The influence of the location of the amino group on the intermolecular interactions becomes
clear when investigating amino acids of same chain length. In the α-ABA both the carboxyl
and the amino group are attached to the α-carbon. Hence, the dipole moment is compar-
atively small. In the β-ABA the amino group position is shifted by one carbon atom.
Therefore, the β-ABA reveals a larger dipole moment and an effectively shorter hydropho-
bic tail. The same holds for γ-ABA. It can be expected that larger dipole moments lead
to increased solvation effects and, thus, to decreased activity coefficients. Indeed, this as-
sumption is corroborated by experimental observation (see Fig. 6.9) – up to 4 m the activity
coefficients follow the trend γ̃α−ABA > γ̃β−ABA > γ̃γ−ABA – and also by the fact that the
dispersion energies of the aminobutyric acids are ranked as εα−ABA > εβ−ABA > εγ−ABA

(see Tab. C.2). The same considerations are also valid for the aminovaleric acids.
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Fig. 6.9: Modeled activity coefficients of (left) α-ABA (—), β-ABA (– –), γ-ABA (– · –), and
(right) α-AVA (—), γ-AVA (– · –). The amino group is shifted from the α-carbon to the γ-carbon
increasing the dipole moment of the molecule. Experimental data omitted for the sake of clarity.

The activity coefficients of β-ABA, γ-ABA, and γ-AVA show a minimum at about 1 mol/kg.
The reason for this could be that at low solute concentrations the solute-solvent interactions
(solvation) due to the amino acid’s large dipole moment dominate whereas at high solute
concentrations the hydrophobic solute-solute interactions become increasingly important.
Here, less water molecules are available in order to provide complete solvation.

Homologous Series: Glycine – Diglycine – Triglycine

Despite the growing backbone length of the glycine peptides the activity coefficients de-
crease in contrast to the series glycine-alanine-α-ABA-α-AVA (see Fig. 6.10). This behavior
can be attributed to the hydrophilic (polar) peptide group inserted per integrated glycine.
In this case the hydrophilic character of the oligopeptide controls the phase behavior lead-
ing to enhanced solute-solvent interactions.
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Fig. 6.10: Modeled activity coefficients of glycine (—), diglycine (– –), and triglycine (– · –). The
activity coefficients decrease with increasing chain peptide length. Experimental data omitted for
the sake of clarity.

Influence of Temperature on Activity Coefficients of Glycine and Alanine

The influence of temperature on the activity coefficients of amino acids shall be inves-
tigated using the examples of glycine and alanine. The increase in activity coefficients
of both glycine and alanine with increasing temperature indicates that solvation becomes
less favorable. The solvation process is exothermic101. Hence, according to LeChatelier’s
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Fig. 6.11: Activity coefficients of glycine (left) and alanine (right) at 293.15 K (—, ◦), 298.15 K
(– –, ¤), and 303.15 K (– · –, 4). The activity coefficients increase with increasing temperature.
Experimental data taken from Refs102,103.

principle, the amino acids will be less solvated at elevated temperatures. This trend can
be reproduced qualitatively by the ePC-SAFT EOS (see Fig. 6.11). However, quantitative
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agreement between model and experiment could not be achieved.

6.4 Modeling of Aqueous Electrolyte/Amino Acid
Solutions

To this point, binary aqueous mixtures have been investigated. Model parameters have
been fitted for electrolytes and amino acids as well as for small peptides. The ePC-SAFT
model has successfully been applied for the calculation of thermodynamic properties of
such systems. In the following the, applicability of the model and some extensions for
aqueous electrolyte/amino acid solutions will be briefly discussed.

As described in Sec. 2.3.3 on p. 14, the ratio of the MIAC of the electrolyte in the ternary
solution to the one in the solution without the amino acid (in the following abbreviated
as ratio of MIAC) can be assessed by electrochemical potential measurements. Such mea-
surements have been performed and interpreted especially by the group of Khoshkbarchi
et al. for several electrolyte/amino acid systems (see e. g. Refs.5,6,104–106).
From their measurements they conclude that at low salt concentrations the effect of the
amino acid on the MIAC of the electrolyte is more pronounced than at high ionic strength.
This can be seen in Fig. 6.12 using the example of NaNO3-serine solutions.

0 0.1 0.2 0.3 0.4 0.5
0.8

0.85

0.9

0.95

1

m
serine

γ ±te
r  / 

γ ±bi
n

 

 

m
serine

γ ±te
r  / 

γ ±bi
n

 

 

Fig. 6.12: Ratio of the MIAC of NaNO3 in a NaNO3-serine solution to the one in a solution without
amino acid at (◦) 0.1, (¤) 0.3, and (M) 0.7 m NaNO3. Experimental data taken from Ref.107
Calculations (dashed lines) with ePC-SAFT without introduction of further binary interaction
parameters revealing a reversed trend.

At constant amino acid molality the MIAC has its highest deviation from 1 at low ionic
strength. Here, electrostatic interactions exceed the non-electrostatic, short-ranged interac-
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tions. Instead, long-ranged electrostatic interactions are screened at high salt concentration
and short-ranged interactions prevail, especially those between the hydrophobic backbone
of the amino acid or peptide. Further, ion pairing between the dipolar, zwitterionic amino
acid and the salt ions leads to an additional reduction of electrostatic forces. According to
Soto-Campos et al.6 the formation of these ion-pair complexes is of physical type rather
than of chemical type. The importance of this conclusion will become clear below.
The experimental data is compared to values predicted with the ePC-SAFT EOS. With-
out introducing any further binary interaction parameters the ratio of MIAC cannot be
described properly as shown again by the example of serine in NaNO3 solutions depicted
in Fig. 6.12.
While experimental ratios increase with increasing salt content, the modeled data shows
the inverse trend. Further, the respective curves are less spread than it is the case with the
experiment. These facts indicate that there must be interactions between amino acid and
electrolyte ions not yet accounted for in the model. That there is a strong interaction be-
tween amino acid and ions can be demonstrated by the ‘preferential interaction parameter’
as described by Shimizu108. The quintessence of his work is that ions are tightly bound
to the first hydration shell of the biomolecule. There are two ways of implementing this
knowledge in the model.
The first and presumably easiest way is to introduce a binary interaction parameter kij

between the amino acid and the ions (equal value for cation and anion) which addresses
the dispersion energy between them. However, this procedure has turned out to be inap-
propriate for several electrolyte/amino acid systems† unless the kij is not considered to be
dependent on salt molality‡, which is per se a serious drawback. Nevertheless, the ratios
of the MIAC can be modeled in this way as shown in Fig. 6.13 (left), again for serine in
NaNO3 solutions. More systems are given in Appendix H.
Further, kij assumes high absolute values < −0.3. Last not least, solubilities of the amino
acid predicted with this approach do not match experimental data (Fig. 6.13, right and
Appendix H)

As explained above, due to the zwitterionic form of amino acids in solution, it is most
probably that the charged functional groups (carboxylic group and amino group) interact
with the ions. Although this interaction is surely of electrostatic type, the Debye-Hückel
term already implemented in the ePC-SAFT EOS is not readily applicable. The reason
is that this term was developed for spherical molecules and not for segmented ones as the
modeled amino acids. The discussion shall be stopped at this point and be referred to
future work.

†Systems considered were combinations of NaCl, KCl, NaNO3, KNO3, NaBr, and KBr with
glycine, alanine, valine, serine, and diglycine. Appendix H contains the fitted kij values as well as
plots of the MIAC ratios and the solubilities.

‡Khoshkbarchi and Vera106 propose a kij dependent on amino acid concentration. Its value is
rather high and can be > 0.4 depending on the investigated system.
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Fig. 6.13: Left: Ratio of the MIAC of NaNO3 in a NaNO3-serine solution to the one in a
solution without amino acid at (◦) 0.1, (¤) 0.3, and (M) 0.7 m NaNO3. Experimental data taken
from Ref.107 Calculations (continuous lines) with ePC-SAFT using a binary interaction parameter
between amino acid and salt ions dependent on salt molality, kij = -0.3183 + 0.2053·mS . Right:
Solubilities of DL-serine in NaNO3-solutions at 298.15 K vs. salt molality. Experimental data (◦)
taken from Ref.109 The lines are calculated without kij (– –), with constant kij (–·–), and with
(—) kij(ms) between ion and amino acid, respectively.



Chapter 7

Results: Protein Systems

7.1 Modeling of Protein Solutions with ePC-SAFT
Rigorous thermodynamic modeling of aqueous protein solutions is a challenging task as
will become clear in this section. Some aspects concerning the modeling of the meta-stable
liquid-liquid demixing in protein solutions with the ePC-SAFT EOS are addressed. Solu-
tions of HEW lysozyme will serve as an example.

The simplest protein system consists of four components, namely the solvent (water), the
(charged) protein, and an electrolyte which dissociates into its cation and anion. This
system is highly asymmetric concerning the molecule sizes. Solvent and ions have a diam-
eter of about 3-4 Å. The macromolecule’s diameter is one order of magnitude larger, in
the case of lysozyme about 34 Å. All species exhibit a spherical shape and the segment
numbers are unity or at least very close to one∗. For a first approximation the salt ions
shall be neglected. In terms of mole numbers of each species, the system consists of few
macromolecules solvated in an ocean of solvent molecules†. Hence, the mixture properties
should be dominated by the solvent. Applying the standard one-fluid mixing rule for the
diameter

σij =
σi + σj

2
(3.58)

will lead to a large value which is not characteristic for that component making up most of
the solution: the solvent (compare Fig. 7.1). This causes serious problems when calculating
the density of a protein solution. Fig. 7.2 (continuous line) shows that calculated solution
densities erroneously decrease with increasing protein concentration.
One method to circumvent the problems emanating from highly asymmetric molecule sizes
is to consider the macromolecule as a chain of smaller segments. As depicted in Fig. 7.2,
solution densities can be described perfectly when mseg,P = 1000 and σP = 2.68Å. How-
ever, the main task is to model the liquid-liquid phase transition. Again, the considered
system is restricted to the macromolecule and the solvent water. Due to the relatively high

∗Water has a segment number of mseg ≈ 1.2.
†Due to the high molecular mass (17 kDa) in a lysozyme solution at a concentration of 1 mg/mL

the molar ratio of protein to water is about 1:106.
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Fig. 7.1: Arithmetic mean of protein and water diameter as calculated with the standard mixing
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Fig. 7.2: Densities of HEW lysozyme solutions
(no salts added). Experimental data (o) (own
measurements), the continuous line (—) is calcu-
lated with the ePC-SAFT EOS setting the pro-
tein diameter σP = 34 Å. The dispersion en-
ergy of the protein has only a marginal influence
on the calculated densities and is set to an ar-
bitrary value of εP /kB = 500 K. The dashed
curve (– –) is calculated with mseg,P = 1000 and
σP = 2.68 Å. Both parameters are fitted to ex-
perimental density data.
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as explained in Ref.110 The dashed
line represents qualitatively a typical
polymer/solvent system.

molecular mass of the protein (17 kDa) it can be expected that the calculated phase behav-
ior will resemble that of a polymer-solvent mixture as depicted in Fig. 7.3 by a dashed line.
The concentration of dissolved polymer in the solvent-rich phase is very low (mole fraction
xP ¿ 10−6). The miscibility gap is relatively large and highly asymmetric. Experimental
data of protein systems reveal a different behavior. Here, both phases contain considerable
amounts of protein as shown in Fig. 7.3.

The question arises, whether the ePC-SAFT approach in principle is able to capture such
a behavior. A parameter study shall clarify the sensitivity of the locus of the binodal
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Tab. 7.1: ePC-SAFT parameters for cyclohexane.

segment number mseg = 2.53 [−]
segment diameter σ = 2.85 [Å]
dispersion energy ε = 278.11 [K]

on each adjustable parameter. An imaginary component P is mixed with water. As a
starting point the parameters for component P are set to those of cyclohexane (Tab. 7.1).
Cyclohexane and water are immiscible at room temperature and exhibit a LLE.
The segment number of P is increased from 2.5 to 32 keeping σ and ε constant. This
change leads to a significant shift of the left branch of the binodal by more than 20 orders
of magnitude to infinitesimal small mole fractions whereas the right branch is almost unaf-
fected (compare Fig. 7.4). Compared to that segment diameter and dispersion energy have
a minor effect on the equilibrium. As has been shown before, a high segment number is

P
P

P P P

Fig. 7.4: Influence of the pure component parameters on the loci of the left and right branch of
the phase boundary line expressed in mole fractions of component P . The segment number has
the most pronounced influence on the left branch.

necessary in order to reproduce the densities of aqueous protein solutions. However, large
segment numbers implicate practically complete immiscibility of the protein in the solvent,
i. e. one phase will consist of almost pure solvent. This is in clear contrast to experimental
data.
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A conclusion may be that phase equilibria in protein solutions cannot be described with
the state-of-the-art PC-SAFT approach. One reason may be that the PC-SAFT EOS was
developed to reproduce the phase behavior of long rod-shaped molecules. Proteins instead
possess a compact (tertiary) structure although the backbone consists of concatenated
amino acids. Further, the charge distribution on the protein’s surface is not only affected
by the solution pH but also by the surrounding salt ions111. This complicates a rigorous
modeling.

7.2 Modeling of Protein Solutions with PMF
The thermodynamic description of protein solutions fails when using a model based on the
Lewis-Randall framework, i. e. when the solvent is discretely taken into account. Hence,
the complexity of the real system is reduced switching to the McMillan-Mayer framework
where the solute is treated as a pseudo-pure component floating in a continuum of given
permittivity.

Second Osmotic Virial Coefficient, Liquid-Liquid Transition and Solubility

Second osmotic virial coefficients (B2) have been measured by osmometry or static light-
scattering for a couple of protein solutions containing different salts at varying
pH.43,51,112–116 PMF models of diverse complexity were used to correlate and reproduce
the measured values in dependency on salt type and concentration, and solution pH. How-
ever, simple theories like the DLVO theory often fail because they contain only information
about the ionic strength of the solution but not about specific interactions between the
electrolyte and the protein (e. g. ion binding). Hofmeister discovered in the 1880s that the
salting-out behavior of proteins is highly affected by the ion’s type. E. g. at equal ionic
strength NaSCN leads to a more pronounced salting-out than NaCl. The effectiveness of
the ions in precipitating (negatively charged) proteins follows the so-called Hofmeister se-
ries Cs+ > Rb+ > K+ > Na+ > Li+ for monovalent cations, Ba2+ > Sr2+ > Ca2+ > Mg2+

for divalent cations, and SCN− > I− > ClO−4 > NO−3 > HCOO− > Cl− > F− for monova-
lent anions95. These series also reflect the sequence of the ions’ polarizability corroborating
the assumption that this ion property plays an important role in the protein’s phase be-
havior. And indeed, MC calculations show that the higher the polarizability the more
attractive are the contributions to the mean force between two macroions117. Boström et
al.118 include a salt-specific contribution to the PMF, a polynomial ansatz which already
comprises the electrostatic interactions usually covered by a Debye-Hückel term. They use
MC data for HEW lysozyme in aqueous solutions of NaCl, NaI, and NaSCN at 0.2 M salt
concentration to fit the polynomial coefficients. They achieve at least qualitative agree-
ment with experimental phase equilibria data. Such an approach could be extended to
more salts and especially should include a salt-concentration dependency.

In this work, the original DLVO theory as described in Chapter 4.5 including Eqs. 4.11,
4.14, and 4.12 is used and compared to a more sophisticated approach by Bratko et al.53.



7.2. Modeling of Protein Solutions with PMF 69

Tab. 7.2: Model parameters for lysozyme. The net charge is dependent on solution pH. The
equation is regressed to literature data111.

molar mass M = 17000 [g/mol]
segment diameter σ = 34.4 [Å]

charge q(pH) = 0.375 · pH2 − 6.124 · pH + 32.5 [−]
dipole moment µD = 400 [D]

Hamaker constant H = 7.575 [kBT ]
Stern-layer thickness δ = 1.4 [Å]

Their electrostatic contribution is given by Eq. 4.23 including interactions emanating from
the large dipole moments of the proteins. As model system aqueous solutions of HEW
lysozyme containing NaCl are investigated. The lysozyme parameters are summarized in
Tab. 7.2. Although the formula weight of lysozyme is about 14.4 kDa static light scattering
measurements yield a higher molecular mass. This may be caused by impurities and water
or salt molecules bound to the protein surface. Further, the dipole moment of lysozyme
is arbitrarily chosen to be 400 Debye instead of 180 Debye, a mean value found in the
literature119,120.

One should keep in mind that the dipole moment as well as the effective protein charge
strongly depend on solution pH, ionic strength, and also the electrolyte type in solution.
Further, the patchy charge distribution on the protein’s surface reduces electrostatic re-
pulsion121 and the overall charge of a protein fluctuates when another protein molecule
approaches122. Both, the DLVO and the Bratko model, are based on spherically uniform
charge distributions and do not account for fluctuations. Hence, strictly speaking, it is not
feasible to set dipole moment and net protein charge to fixed values.

The pH dependence of the lysozyme net charge has been measured for KCl solutions at
low ionic strength and modeled up to 2 M111. The charges vary about ±1 with respect
to the ionic strength. This has already a marked influence on calculated B2 and phase
equilibria. Since there are no correlations for the lysozyme net charge in NaCl solutions,
the data for KCl is used instead. The Hamaker constant is regressed to experimental B2

data. The obtained value of H = 7.575 kBT is somewhat higher than the values predicted
by Lifshitz theory123. This discrepancy can be explained by the fact that the van der
Waals term must compensate for any error introduced in the other terms, in this case the
electrostatic contributions. As a consequence, the Hamaker constant is very sensitive to
solution conditions such as pH and ionic strength. The dielectric constant of the solvent
water is set to εr = 80, which approximately corresponds to the value at 298.15 K.

While it is possible to achieve quantitative agreement between experimental B2 and those
calculated by means of a PMF approach, the models fail at the description of phase equi-
libria such as the experimentally observed meta-stable liquid-liquid demixing in protein
solutions and the solubilities. Fig. 7.5 shows that second osmotic virial coefficients for
lysozyme in NaCl solutions at pH 4.5 and 7, respectively, can be described quantitatively
by both the DLVO and the Bratko model.

It surprises that the DLVO approach, albeit simpler, performs better than the Bratko
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model at low ionic strength‡.

Fig. 7.5: The second osmotic virial coefficient of lysozyme in NaCl solutions at pH 7 (o) and
pH 4.5 (¤) vs. ionic strength. Calculations of phase equilibria with the DLVO model (—, —) and
the Bratko model (– –, – –).

Experimental data shows that the solubility of the tetragonal form of lysozyme decreases
with increasing ionic strength due to enhanced screening of protein charges by salt ions.
Further, as illustrated in Fig. 7.6, the solubility line lies above the meta-stable liquid-liquid
region.
Using the same parameter set as for the description of B2, calculation of the liquid-liquid
and liquid-solid transitions leads to phase boundary lines which lie about 50 K below the
experimental values (see Fig. 7.6), indicating that the model net intermolecular potential
is not attractive enough. Qualitative agreement is achieved concerning the dependency of
the critical demixing temperature Tcrit on ionic strength: a lower salt content leads to a
decrease of Tcrit. This can be explained by the higher repulsive Coulombic forces due to
reduced screening at low ionic strength.
Both the DLVO and the Bratko model capture the correct trends, i. e. with increasing ionic
strength the critical temperature rises and the solubility decreases. Including an osmotic
potential as described in Sec. 4.5 has little effect on the B2 value but shifts the critical
temperature Tcrit to even lower temperatures.

The B2 provides a measure for the strength of intermolecular forces. Positive values of B2

indicate net repulsive interactions while negative values reflect net attraction. Therefore, it
appears self-evident to connect the B2 value to the solubility of the protein. Investigating
the crystallization behavior of several proteins at different solution conditions George and
Wilson124 found out that crystallization predominantly occurs in a narrow B2 slot at
negative values. For positive B2 the net repulsion inhibits the formation of crystal seeds.
Solution conditions resulting in a too negative B2, i. e. provoking strong intermolecular

‡DLVO and Bratko model yield almost indistinguishable results when the dipole moment is set
to lower values, e. g. 180 Debye.
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Fig. 7.6: Liquid-liquid and solid-liquid equilibrium of HEW lysozyme in NaCl solutions at pH 4.5
vs. reduced density at ionic strengths a) I = 510 mM (¤), b) I = 860 mM (M), and c) I = 1200 mM
(o). Experimental lysozyme solubilities for the tetragonal crystal form are regressed with the van’t
Hoff equation as described in Ref.110 (–·–). Experimental data for the LLE are taken from Ref.110
The dotted lines are to guide the reader’s eye. d) Critical temperature Tcrit vs. logarithm of ionic
strength. Calculations with the DLVO model (continuous lines), Bratko model (dashed lines).

attraction, lead to amorphous agglomerates which may also remain insoluble. Quantitative
relationships between B2 and the solubility have been given e. g. by Haas et al.125 or
by Curtis et al.126 Both groups propose a physically sound model based on statistical
mechanics.





Chapter 8

Summary and Outlook

The main focus of this thesis lay in modeling thermodynamic properties of aqueous elec-
trolyte solutions, aqueous amino acid or peptide solutions, and their combination, i. e.
aqueous electrolyte/amino acid solutions. Therefore, as a first step, a thermodynamic
model, the original PC-SAFT equation of state – developed for modeling non-polar, non-
associating compounds – was enhanced by an electrostatic term in order to account for
interactions emanating from the charged salt-ions. No additional parameters other than
those already needed for the PC-SAFT model were introduced for the extension. Ion
parameters fitted to experimental data show reasonable trends demonstrating the sound
physical basis of the model. Solution densities, vapor pressures, and (mean ionic) activity
coefficients (MIAC) in 25 electrolyte solutions calculated with the electrolyte PC-SAFT
(ePC-SAFT) match experimental data very well as can be shown by overall low mean
AARD values for each data set: 0.94%, 4.96%, and 10.81%, respectively. However, the
performance of the model for some electrolyte systems (e. g. sulfates) still demands im-
provement. Therefor, effects like ion pairing and chemical equilibria between undissociated
salt and respective ions have to be accounted for in the equation of state. By this it should
be possible to model weak electrolytes such as acetates. Till now, the systems have been
limited to the solvent water and mostly only one salt. Consequently, solvent mixtures
as well as more mixed-salt solutions are predestined for future work. In addition to the
already investigated properties density, vapor pressure, and MIAC solution enthalpies and
the temperature-dependence of the activity coefficients should be addressed in order to
check the limits of the ePC-SAFT model.

In a second step, thermodynamic properties of aqueous solutions of 14 amino acids and
5 peptides were modeled and compared to experimental data. Densities, vapor pressures,
activity coefficients, and solubilities could be described with only one parameter set for
each component obtaining excellent results. However, the temperature dependence of the
activity coefficients is not captured quantitatively by the ePC-SAFT model. The overall
good performance of the model encourages to extend the parameter estimation to more
amino acids and peptides as well as to model mixed-solvent and mixed-solute systems.
It can be shown that for homo-oligopeptides most model parameters can be inherited from
the monomeric unit, the respective amino acid. Only segment number and binary interac-
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tion parameter have to be refitted in order to reproduce densities and activity coefficients.
This approach is surely limited to small peptides. For longer chain lengths structure ef-
fects like chain folding, forming of intramolecular bonds, etc. will render modeling with an
equation of state very difficult.

For ternary electrolyte/amino acid systems the influence of the amino acid on the ratio
of MIAC can be described quantitatively by the model if a binary interaction parameter
is introduced between amino acid and salt ions. This kij depends on salt molality. Un-
fortunately, with the same approach solubilities of amino acids and peptides in electrolyte
solutions cannot even be described qualitatively for the investigated systems. Perhaps con-
sideration of the zwiterrionic form of the biomolecules may lead to better results in this case.
Therefor, dipole-dipole and dipole-charge interactions have to be implemented in the ePC-
SAFT model. In order to obtain a consistent description of the water/electrolyte/amino
acid systems, water and amino acids have to be regarded as dipolar and all parameters
have then to be refitted.

The ePC-SAFT approach was tested for its applicability to aqueous protein solutions. Here
the model failed in the description of phase equilibria. Numerical investigation revealed
that no physically meaningful pure-component parameters can be found in order to match
experimental LLE data of aqueous protein solutions containing electrolytes. A chain model
like the PC-SAFT approach appears to be unsuitable for proteins. Although they consist
of long amino acid chains, the physical effects emanating from the tertiary structure cannot
be captured properly. For example, some amino acid groups are buried inside the protein
sphere and cannot interact with the solvent. This is difficult to consider in the equation of
state.
For modeling protein systems, the best approach turned out to be one based on the po-
tential of mean force (PMF). Protein parameters were adjusted to experimental second
osmotic virial coefficients for two PMF models. Although varying in complexity the DLVO
and the Bratko model gave very similar results. The influence of ionic strength on liquidus
line and meta-stable LLE could be described qualitatively. However, due to the simplify-
ing assumptions made in the PMF framework it cannot be expected to obtain quantitative
agreement between experimental and modeled phase equilibria.
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Appendix A

Symbols and Abbreviations

Latin Symbols

symbol unit meaning
A [J ] Helmholtz free energy
a [−] dimensionless Helmholtz energy
ai [−] activity of component i

B2 [10−4mL/molg2] second osmotic virial coefficient
B∗

2 [−] second virial coefficient
c(r) [−] direct correlation function
ci [1/m3] number concentration of i

di [m] temperature dependent segment diameter
f(r) [−] Mayer f -function
fi [Pa] fugacity of component i

G [J ] Gibbs free enthalpy
g(r) [−] radial distribution function
ghs
ij [−] hard-sphere radial distribution function between

i and j

H [J ] enthalpy
h(r) [−] correlation function
Ha [J ] Hamaker constant
I [mol/L] ionic strength
k [1/m] screening length of Yukawa potential
kij [−] binary (dispersion) interaction parameter between

i and j

mseg,i [−] segment number
mseg [−] mean segment number of mixture
mi [mol/kg] molality (mol solute i / kg solvent)
Mi [g/mol] molecular weight
N [−] total particle number
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symbol unit meaning
N [−] total number of association sites
NAi [−] number of sites of type A on i

ni [−] number of particles of type i

P [Pa] pressure
Poy [−] Poynting factor
Q [−] partition function
q [C] charge
r [−] interparticle distance
S [J/K] entropy
T [K] temperature
t1..4 [Å, 1/K] parameters for the temperature-dependent segment

diameter of water
U [J ] internal energy
u(r) [J ] intermolecular potential between two particles at

distance r

V [m3] volume
v [m3] specific volume (based on particle number)
w(r) [J ] potential of mean force between two particles at

distance r

XAi [−] fraction of molecules i not bonded at site A

xi [−] mole fraction of component i

y(r) [−] distribution function, see Sec. 3.1
Z [−] compressibility factor
z [−] charge number

Greek Symbols

symbol unit meaning
β [1/J ] β = 1/kBT

χk [−] abbreviation for the Debye-Hückel term
δ [Å] Stern-layer thickness
ε [J ] dispersion energy
ε [C/V m] ε = ε0 · εr

ε [J ] potential depth of the Yukawa potential
εAiBj [J ] association energy between site A on i and

site B on j

εr [−] relative permittivity
η [−] reduced density
γ [−] activity coefficient ([kg/mol] molality scale)
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symbol unit meaning
κ [1/m] inverse Debye length
κAiBj [−] dimensionless association volume between site A on i

and site B on j

Λ [m] de Broglie wavelength
µ [J ] chemical potential
µ [Cm] dipole moment
ν [−] stoichiometric coefficient
ω1, ω2 [J ] Barker-Henderson Theory integrals of 1st and

2nd order
ϕ [−] fugacity coefficient
Φ [−] configuration integral
Φ [V ] electric potential
Π [Pa] osmotic pressure
ρ [kg/m3] density
ρN [1/m3] number density
σ [m,Å] diameter
σ∗ [m] temperature-dependent segment diameter of water
σk [−] abbreviation for the Debye-Hückel term
σij [m] arithmetic mean of segment diameters of i and j

ξ(r) [−] screening parameter
ζi [mi] moments of the segment diameter

Indices

index meaning
∞ infinite dilution
µ-µ dipole-dipole
± mean ionic
˜ unsymmetrical scaling of γ

’, " phase ’, "
–, an anion
+, cat cation
0i pure component
A amino acid, peptide
assoc association
bin binary system
CS Carnahan-Starling
disp dispersion
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index meaning
elec electrostatic
fcc face-centered-cubic lattice
hc hard chain
hs hard sphere
hydr hydration
i,j,k component in mixture
id ideal
L liquid phase
LJ Lennard-Jones
LV liquid-vapor transition
m molality scale
osmo osmotic
q-µ charge-dipole
q-q charge-charge
ref reference
res residual
S solid phase, salt (mS : salt molality)
seg segment
SL solid-liquid transition
ss sticky sphere
sw square-well
ter ternary system
Tr triple point
V vapor phase
W water
x mole fraction scale
Yuk Yukawa

Constants

constant value unit meaning
ε0 8.854187817 · 10−12 [C/V m] dielectric constant of vacuum
τ π

√
2/12 [−] packing fraction at closest packing

h 6.6260755 · 10−34 [Js] Planck’s constant
kB 1.380658 · 10−23 [J/K] Boltzmann factor
NA 6.0221367 · 1023 [1/mol] Avogadro number
RG 8.314(= kB ·NA) [J/molK] ideal gas constant
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Acronyms

acronym meaning
AAD absolute average deviation
AARD absolute average relative deviation
ABA aminobutyric acid
AVA aminovaleric acid
DH Debye-Hückel theory of electrolyte solutions
DLVO Derjaguin-Landau-Vervey-Overbeek theory
EOS equation of state
ePC-SAFT Electrolyte Perturbed-Chain Statistical Association Theory
HEW hen-egg white (lysozyme)
MIAC mean ionic activity coefficient γ±
MSA mean spherical approximation
PC-SAFT Perturbed-Chain Statistical Association Theory
PM primitive model
PMF potential of mean force
PREOS Peng-Robinson equation of state
RPM restricted primitive model
SI Sogami-Ise theory
TPT1 Thermodynamic Perturbation Theory, 1st order



Appendix B

Electrolytes

Tab. B.1: ePC-SAFT ion parameters. The segment number is set to unity.

ion molar mass diameter disp. energy valence
M [g/mol] σj [Å] εj [1/K] zj [−]

Li+ 6.94 1.8177 2697.280 +1
Na+ 22.99 2.4122 646.050 +1
K+ 39.10 2.9698 271.052 +1
NH+

4 18.04 3.6824 176.393 +1

Mg2+ 24.30 2.3229 8145.330 +2
Ca2+ 40.08 2.8889 2146.979 +2

F− 19.00 1.6132 648.313 −1
Cl− 35.45 3.0575 47.288 −1
Br− 79.90 3.4573 60.222 −1
I− 126.90 3.9319 80.435 −1

OH− 17.01 1.6401 2444.756 −1
NO−3 62.00 3.2284 0.000 −1
SO2−

4 96.06 2.5465 0.000 −2

Absolute Average Deviation (AAD) and Absolute Average Relative Deviation (AARD) are
calculated as follows:

AAD =
1
N

N∑

k=1

∣∣∣ycalc
k − yexp

k

∣∣∣ AARD =
100
N

N∑

k=1

∣∣∣∣1−
ycalc

k

yexp
k

∣∣∣∣
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Fig. B.1: Densities (∆ρ = ρsolution − ρwater) of 18 alkali salt solutions at 293.15 K (298.15 K for
the fluorides). Experimental data taken from Refs.127,128 Lines are calculated with the ePC-SAFT
model.
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Fig. B.2: Vapor pressures of 9 alkali halide solutions at different temperatures (298.15-343.15 K).
Experimental data taken from Refs.129–131 Lines are calculated with the ePC-SAFT model.
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Fig. B.3: MIAC of 18 alkali salt solutions at 298.15 K. Experimental data taken from Ref.128
Lines are calculated with the ePC-SAFT model.
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Fig. B.4: Densities of 6 earth alkali halide solutions at 293.15 K (o) and 313.15 K (¤). Experi-
mental data taken from Ref.127 Lines are calculated with the ePC-SAFT model.
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Appendix C

Amino Acids and Peptides

Tab. C.1: Amino acids considered in this thesis, their chiral type, and references for experimental
data. *Densities calculated from apparent partial molal volumes. [pc] Personal communication
with Ms. Elena Tsurko from University of Regensburg.

amino acid ρ ∆P γ̃A mS

glycine 132 133 134 135

alanine DL132 L133 DL103 DL136

serine L137 L133 L133 DL,L135

proline L138 L132 DL134 L135

valine L138 L133 L133 L139

threonine DL140 - DL134 DL141, L139

lysine L142 L143 L143 L139

histidine DL140 L [pc] L144 L139

arginine L132 L143 L143 L139

α-ABA DL145 - DL102,134 -
β-ABA DL145 - DL134 -
γ-ABA DL145 - DL146 -
α-AVA DL147* - DL134 -
γ-AVA DL148* - DL134 -
diglycine 140 - 134 own data
triglycine 149 - 134 -
dialanine DL150 - DL134 -
Gly-Ala L150 - DL134 -
Ala-Gly DL151 - DL134 -

Experimental and modeled densities, vapor pressure depressions, activity coefficients, and
solubilities of amino acids and peptides in aqueous solutions are presented on the following
pages. All curves (except the solubility lines) are for 298.15 K.
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Glycine, Gly
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glycine N AARD AAD

ρ 8 0.09 [%] 0.96 [kg/m3]
P 7 2.68 [%] 0.84 [mbar]
γ̃A 14 0.11 [%] 0.09 ·10−2 [-]
mS 9 4.34 [%] 0.14 [mol/kg]
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Alanine, Ala
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γ̃A 19 0.07 [%] 0.07 ·10−2 [-]
mS 15 2.24 [%] 0.05 [mol/kg]
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ρ 5 0.01 [%] 0.09 [kg/m3]
P 5 2.63 [%] 0.8 [mbar]
γ̃A 12 0.66 [%] 0.46 ·10−2 [-]

(DL) mS 11 3.05 [%] 0.03 [mol/kg]
(L) mS 5 5.09 [%] 0.13 [mol/kg]
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ρ 7 0.01 [%] 0.06 [kg/m3]
P 8 3.34 [%] 0.98 [mbar]
γ̃A 20 0.19 [%] 0.25 ·10−2 [-]
mS 11 0.14 [%] 0.03 [mol/kg]
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ρ 10 0.02 [%] 0.17 [kg/m3]
P 7 3.87 [%] 1.22 [mbar]
γ̃A 7 0.18 [%] 0.2 ·10−2 [-]
mS 5 16.83 [%] 0.19 [mol/kg]
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ρ 8 0.01 [%] 0.07 [kg/m3]
γ̃A 12 0.04 [%] 0.04 ·10−2 [-]

(DL-)mS 8 1.38 [%] 0.02 [mol/kg]
(L-)mS 3 2.16 [%] 0.02 [mol/kg]
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ρ 9 0.03 [%] 0.33 [kg/m3]
P 13 5.71 [%] 1.6 [mbar]
γ̃A 22 4.93 [%] 5.03 ·10−2 [-]
mS 5 9.81 [%] 0.34 [mol/kg]
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ρ 4 <0.01 [%] 0.04 [kg/m3]
P 4 0.16 [%] 0.05 [mbar]
γ̃A 4 0.06 [%] 0.06 ·10−2 [-]
mS 3 3.84 [%] 0.03 [mol/kg]
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ρ 9 0.03 [%] 0.29 [kg/m3]
P 7 3.2 [%] 1 [mbar]
γ̃A 13 0.6 [%] 0.52 ·10−2 [-]
mS 3 10.4 [%] 0.42 [mol/kg]
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γ̃A 12 0.27 [%] 0.28 ·10−2 [-]
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ρ 5 0.01 [%] 0.05 [kg/m3]
γ̃A 23 1.36 [%] 1.59 ·10−2 [-]
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ρ 5 0.02 [%] 0.25 [kg/m3]
γ̃A 14 2.26 [%] 2.97 ·10−2 [-]
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ρ 9 0.04 [%] 0.41 [kg/m3]
γ̃A 7 0.02 [%] 0.02 ·10−2 [-]
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ρ 11 0.27 [%] 2.7 [kg/m3]
P 29 0.96 [%] 0.3 [mbar]
γ̃A 8 0.75 [%] 0.59 ·10−2 [-]
mS 14 5.45 [%] 0.11 [mol/kg]
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ρ 9 0.27 [%] 2.73 [kg/m3]
γ̃A 3 0.53 [%] 0.44 ·10−2 [-]
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dialanine N AARD AAD

ρ 7 0.13 [%] 1.38 [kg/m3]
γ̃A 10 0.61 [%] 0.6 ·10−2 [-]
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Glycylalanine, GlyAla & Alanylglycine, AlaGly
O

CH
+

H N3 C N

H

CH2 COO
-

CH3
O

CH
+

H N3 C N

H

CH2
COO

-

CH3

0 0.5 1 1.5 2
980

1000

1020

1040

1060

1080

1100

m
A
 [mol/kg]

ρ 
[k

g/
m

3 ]

 

 

0 0.5 1 1.5 2
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

m
A
 [mol/kg]

∆p
 [m

ba
r]

 

 

0 0.5 1 1.5 2
0.8

0.85

0.9

0.95

1

m
A
 [mol/kg]

γ~ A
 [−

]
 

 

Gly-Ala (¤) N AARD AAD

ρ 9 0.06 [%] 0.66 [kg/m3]
γ̃A 10 0.41 [%] 0.36 ·10−2 [-]

Ala-Gly (◦) N AARD AAD

ρ 9 0.01 [%] 0.12 [kg/m3]
γ̃A 10 0.85 [%] 0.75 ·10−2 [-]
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Appendix D

Chemical Structures
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Appendix E

Conversion of the Activity
Coefficients

In this Appendix the conversion of the mean ionic activity coefficient from mole fraction
scale to molality scale (Eq. 2.48) is derived. Starting point is the equality of the chemical
potential, i. e.

µm
± = µx

± (E.1)

µm
0± + RT ln am

± = µx
0± + RT ln ax

± (E.2)

The activity of the electrolyte can be expressed as am
s = (msγ

m± )ν or ax
s = (xsγ

x±)ν ,
respectively. Hence

µm
0± + νRT ln ms + νRT ln γm

± = µx
0± + νRT ln xs + νRT ln γx (E.3)

Rearrangement yields

ln γm
± =

µm
0± − µx

0±
νRT

+ ln
xs

ms
+ ln γx

± (E.4)

To obtain the difference between the reference chemical potentials Eq. E.4 is evaluated at
infinite dilution:

lim
xs→0

γx
± = 1; lim

ms→0
γm
± = 1; lim

xs→0

xs

ms
= νMw

Therefore,
µm

0± − µx
0±

νRT
= − ln(νMW ) (E.5)

and Eq. E.4 becomes
ln γm

± = − ln(νMW ) + ln
xs

ms
+ ln γx

± (E.4)

With the conversion formula from mole fraction to molality

xs =
νms

νms + 1000
Mw

(E.6)
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we finally obtain

γ̃m
± =

γ̃x±
1 + MW

1000 · ν ·mS

(2.48)



Appendix F

The Cross-Differential Equation

In this appendix the cross-differential equation as used in Sec. 2.3.3 (p. 15) is derived first
for mixtures of uncharged components and then for the special case of one solvent, one
uncharged solute, and one electrolyte.

Starting point is the excess Gibbs free energy

GE =
N∑

i

niµ
E
i (F.1)

The first derivative of GE with respect to ni is equivalent to the excess chemical potential

µE
i =

∂GE

∂ni
(F.2)

Taking the derivative of µE
i with respect to nj yields

∂2GE

∂ni∂nj
=

∂µE
i

∂nj
(F.3)

Combining Eq. F.3 with
µE

i = RT ln γi (F.4)

directly leads to
∂2GE

∂ni∂nj
= RT

∂ ln γi

∂nj
(F.5)

Since GE is a homogeneous function the Maxwell criterion holds true and the order of
differentiation is irrelevant. Therefore,

∂2GE

∂ni∂nj
=

∂2GE

∂nj∂ni

∂ ln γi

∂nj
=

∂ ln γj

∂ni
(F.6)

Eq. F.6 represents the interlink of the activity coefficients of components in a mixture.
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For electrolytes the derivation is analogous. Without loss of generality mole numbers can
be replaced by molalities and the activity coefficients are based on molality instead of mole
fractions. First the chemical potential of the salt has to be derived

µ± = ν+µ+ + ν−µ−
= µ0± + ν+RT ln(m+γ+) + ν−RT ln(m−γ−)

= µ0± + RT ln(mν+
+ m

ν−
− ) + RT ln(γν+

+ γ
ν−
− ) (F.7)

Applying Eq. 2.47 and Eq. 2.49 one obtains

µ± = µ0± + νRT ln m± + νRT ln γ± (F.8)

µ0± is the chemical potential of the reference state and a function of T and P only.
The last term corresponds to the excess chemical potential µE±. For the special case of a
water/electrolyte/amino acid system Eq. F.1 is rewritten as

GE = mW µE
W + mAµE

A + m±µE
± (F.9)

Application of the Maxwell criterion leads in a straightforward way to

∂2GE

∂m±∂mA
=

∂2GE

∂mA∂m±

ν
∂ ln γ±
∂mA

=
∂ ln γA

∂m±
(F.10)

After integration of Eq. F.10 one gets the cross-differential equation on molal basis

ν

∫ m±

m±=0

(
∂ ln γter±
∂mA

)

m±
dm± = ln

(
γter

A

γbin
A

)

m±

(F.11)

Note that here the activity coefficients are normalized with respect to the pure component
and not as usual for electrolytes and solute systems to the infinite dilution. Further, when
evaluating the integral one must keep in mind that m± is not equivalent to mS (except for
1:1, 2:2, 3:3 electrolytes).

The question arises how to calculate γter± (symmetric convention!) with the help of an
equation of state such as the ePCSAFT EOS. One may write

γter
± = (γ+

ν+γ+
ν+)

1
ν =

((
ϕ+

ϕ0+

)ν+
(

ϕ−
ϕ0−

)ν−) 1
ν

(F.12)

where ϕ0+ and ϕ0− are the fugacity coefficients of the pure cation (x+ → 1) and anion
(x− → 1), respectively. But which meaning do these values have? Cations and anions do
not exist as pure components. Is it thus thermodynamically consistent to set, for example,
x+ = 1 while all other mole fractions (and also x−) are zero in order to calculate ϕ0+?
This would violate the electroneutrality condition. The reference state ’pure component’
appears to be inapplicable. However, the cross-differential equation as given above is clearly
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defined for this reference state.



Appendix G

Activity Coefficients in Ternary
Solutions

In the following, the applicability of the cross-differential equation (see p. 14) for the
calculation of activity coefficients of amino acids in amino acid/electrolyte solutions is in-
vestigated using the pathological example of aqueous alanine/NaNO3 solutions.

In order to obtain γter
A /γbin

A
∗ the MIAC of the electrolyte is measured by the electrochem-

ical method at various salt and amino acid molalities, m± and mA, respectively. The
experimental data is fitted to a parameterized equation of arbitrary form. Two types of
fitting equation are found in the literature (KV by Khoshkbarchi et al.105 and BR by
Breil4):

KV : ν ln
γter±
γbin±

= C1mA + C2mAm± + C3m
2
A

+ C4mAm2
± + C5m

3
A + C6m

2
Am± (G.1)

BR : ln
γter±
γbin±

=
A1mA

(1 + A2mA)(1 + A3m±)

+ (A4 + A5m±)mA + A6m
2
A (G.2)

As shown in Fig. G.1, both variants yield almost equivalent results† for the aqueous system
alanine/NaNO3.

Applying the cross-differential equation

ν

∫ m±

m±=0

(
∂ ln γter±
∂mA

)

m±
dm± = ln

(
γter

A

γbin
A

)

m±

(2.50)

∗Remember that in this case the activity coefficients are the symmetric ones.
†The parameters C1..6 and A1..6 were adjusted to experimental data using a least squares non-

linear fitting routine. C1..6 = [-0.1875, 0.3059, -0.0486, -0.1402, 0.0256, -0.0199]; A1..6 = [-0.1954,
0.0454, 1.2785, 0.0847, -0.0275, -0.0063].
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Fig. G.1: Ratio of the MIAC of NaNO3 in the ternary aqueous solution to the binary solution
without alanine for varying salt molalities (from top to bottom: 0.1, 0.3, 0.5, 0.7, and 1.0 mol/kg).
Experimental data taken from Ref.6 Lines are calculated with the KV Eq. G.1 (—) and the BR
Eq. G.2 (– –).

one obtains

KV : ln
γter

A

γbin
A

= C1m± +
1
2
C2m

2
± + 2C3mAm±

+
1
3
C4m

3
± + 3C5m

2
Am± + C6mAm2

± (G.3)

BR :
1
ν

ln
γter

A

γbin
A

=
C1/C3

(1 + C2mA)2
ln(1 + C3m±)

+ C4m± +
1
2
C5m

2
± + 2C6mAm± (G.4)

Fig. G.2 shows that the ratio of the activity coefficients of alanine in the ternary aqueous
solution to the one in the binary solution without salt (γter

A /γbin
A ) strongly depends on the

equation type used for the regression of γter± /γbin± . The KV equations yield γter
A /γbin

A which
first decrease and then increase with amino acid molality, whereas the BR ansatz reveals
a monotonic decrease of the ratio with increasing amino acid molality.
This example demonstrates that the conversion of γter± /γbin± to γter

A /γbin
A is dependent on

the type of regression equation. Hence, conclusions drawn from plots of γter
A /γbin

A are
questionable.
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Fig. G.2: Ratio of the activity coefficient of alanine in the ternary aqueous solution to the binary
solution without NaNO3 for varying alanine molalities. Lines are calculated with KV Eq. G.3 (—)
and BR Eq. G.4 (– –). The arrow indicates the order of increasing alanine molalities for the BR
equation.



Appendix H

Electrolyte/Amino Acid Solutions

In this appendix the ratios of the MIAC for several systems are summarized. The quality
of the measured data found in the literature is sometimes questionable. For example, the
ratios for NaBr in glycine solutions do not start at 1 for mglycine = 0. The data appears
to be shifted to lower ratios which is physically not correct. The concentration dependent
kij was fitted manually to the ratios of MIAC in ternary solutions at the highest and the
lowest salt content, respectively. The coefficients k0

ij and k1
ij were then determined by linear

regression. Solubilities of glycine and DL-serine in salt solutions are given below. Here,
the model fails independently from the application of a binary interaction parameter.

Tab. H.1: Ternary systems consisting of water, electrolyte and amino acid. Binary interaction
parameters kij = k0

ij + msalt · k1
ij .

Exp. data from Ref.
amino acid electrolyte k0

ij k1
ij γter± /γbin± SLE

glycine NaCl −0.1982 0.1158 105 152

glycine KCl −0.2039 0.1491 153 -
glycine NaBr −0.2115 0.0699 154 -
glycine NaNO3 −0.2707 0.1200 152 109

glycine KNO3 −0.4485 0.4343 107 -
alanine NaCl −0.0868 0.1010 105 -
alanine KCl −0.0766 0.1563 105 -
alanine NaNO3 −0.1730 0.1362 6 -
valine NaCl 0.0332 0.0559 80 -
valine KCl −0.0288 0.1448 104 -
valine NaNO3 −0.0965 0.1071 107 -
DL-serine NaNO3 −0.3234 0.2526 107 109

DL-serine KNO3 −0.3940 0.5033 107 109

diglycine NaCl −0.3000 0.2030 155 -
diglycine NaBr −0.4101 0.2939 155 -
diglycine KCl −0.2041 0.1467 155 -
diglycine KBr −0.6744 0.5406 155 -



131

Ratios of MIAC γter
± /γbin

±
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Solubilities

The red dashed line shows the SLE calculations with ePC-SAFT without binary interaction
parameter kij between amino acid and ions. The blue dashed-dotted line represents calcu-
lations with a constant kij = k0

ij . The green line gives the results for kij = k0
ij + msalt · k1

ij .
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