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Overview

In this thesis, the classical aeroelastic panel flutter problem, where a compressible fluid flows over

a thin elastic plate, is investigated in detail. A non-linear modeling is necessary when flutter is

analyzed in the transonic flow regime and here inviscid as well as turbulent viscous air flows are

considered. For these purposes, a consistent unified coupling approach is developed based on

an energetic variational formulation, where the structural as well as the fluid subsystem are de-

scribed by Hamilton’s principle. With this procedure, the classical direct two-field approach and

a novel indirect three-field approach can be employed. By discretization of the entire coupled

system consistently with finite elements, the fluid subsystem can be treated with the characteristic

based split (CBS) scheme independently of a classical structural discretization. In this context,

the established continuous Galerkin form of the CBS scheme is advanced and a discontinuous

version is proposed, which is an attractive approach due to its local element edge flux conserva-

tion. The Spalart-Allmaras turbulence model in conjunction with the CBS scheme and unsteady

Reynolds-averaged Navier-Stokes equations is considered within this topic. With the separated

discretization of the fluid and structural subsystem, a data transfer scheme over the non-matched

interface grids is mandatory and based on the variational formulation, several energy and load

conservative transmission schemes are employed.

These methods and further coupling aspects, in particular time integration and equilibrium

iteration as well as the fluid grid deformation, are assessed with the aid of several examples and

the panel flutter problem at transonic flow conditions. Especially, the three-field approach yields

an attractive smooth transfer of the interface values with being load and energy conservative at

the same time, which results in a more accurate and improved fluid flow solution. Consequently,

the flutter phenomenon is studied in detail for sub-, super-, and transonic flows including the

evaluation of stability boundary for different parameters.



Übersicht

In dieser Arbeit soll das klassische aeroelastische Panelflattern, bei dem ein kompressibles Fluid

über eine dünne elastische Platte strömt, detailliert untersucht werden. Um das Flatterphänomen

in transonischer Strömung zu analysieren, ist dazu eine nichtlineare Modellierung notwendig.

Sowohl reibungsfreie als auch turbulente, reibungsbehaftete Luftströmungen werden dabei berück-

sichtigt. Zu diesem Zwecke wird ein konsistenter, einheitlicher Kopplungsansatz entwickelt,

welcher auf einer energetischen Variationsformulierung beruht, bei dem das strukturelle und fluid-

dynamische Teilsystem mittels dem Hamilton-Prinzip beschrieben werden. Mit diesem Vorgehen

kann die klassische, direkte Zwei-Feld- aber auch eine neuartige indirekte Drei-Feld-Formulierung

entwickelt werden. Um eine einheitliche Diskretisierung mit finiten Elementen zu erreichen, wird

das fluiddynamische Teilgebiet mit dem characteristic based split (CBS) Schema unabhängig

von einer konventionellen Strukturdiskretisierung behandelt. In diesem Zusammenhang wird die

etablierte kontinuierliche Galerkin-Form des CBS Schemas erweitert und eine diskontinuierliche

Version erarbeitet, welche sich durch eine lokale Konservativität der Kantenflüsse über benach-

barte Elemente auszeichnet. Das Spalart-Allmaras Turbulenzmodell im Zusammenhang mit dem

CBS Schema und der instationären, Reynolds-gemittelten Navier-Stokes Gleichungen wird eben-

falls innerhalb dieser Arbeit berücksichtigt. Aufgrund der getrennten Diskretisierung des struk-

turellen und fluiddynamischen Teilgebietes, wird ein Datentransferverfahren über nicht konforme

Oberflächengitter notwendig. Mit Hilfe der Variationsformulierung können dazu verschiedene

energie- und lasterhaltende Transferverfahren entwickelt werden.

Diese Methoden und weitere Kopplungsaspekte, wie beispielsweise die Zeitintegration und die

Gleichgewichtsiteration aber auch die Deformation des Fluidgitters, werden anhand verschiedener

Beispiele und des Plattenflattern bei transonischer Strömung bewertet. Besonders die neuartige

Drei-Feld-Formulierung führt zu einem vorteilhaften glatten Transfer der Oberflächengrößen bei

gleichzeitiger Erhaltung der Gesamtlast und -energy, welcher zu einer genaueren und verbesserten

Strömungssimulation beiträgt. Infolgedessen, wird das Flatternverhalten des Panels detailliert im

Unter-, Über- und Transschall untersucht. Dies beinhaltet auch die Berechnung der Flatter-Stabi-

litätsgrenze für verschiedene Parameter.
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k turbulent kinetic energy
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L, l0, L0 Lagrangian of a system, specific Lagrangian, Lagrangian density

L strain displacement vector

m mass

m Kronecker like vector (= [1, 1, 1, 0, 0, 0]T )
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M mass matrix

M data transfer operator

n time step index
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p, p0 Hamiltonian and specific Hamiltonian momentum density

p,x nodal pressure derivatives

P potential energy

Pr Prandtl number
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q heat flux

Q general source term
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t time
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T,T,x vector of nodal temperature values and its nodal derivatives
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tial derivative

u displacement vector

U,U0 strain energy and strain energy density

v, u, v velocity, velocity vector in the Eulerian frame of reference, vector of nodal

velocity values
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Greek Symbols
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γ ratio of specific heats γ = cp/cv
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ζ damping ratio
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λi, λi j vector of Lagrange multipliers on the boundary of the domain i and between

two subdomains i and j

Λ,Λ constraint function, vectorial constraint function

μ, μa, μT , μ̆, μ̆ dynamic, artificial, eddy and modified eddy viscosity as well as its nodal

representative
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Π total potential energy
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ςT data transfer tolerance
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σ Cauchy stress vector
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δ variational operator
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1 Introduction

1.1 Motivation

The dynamic interaction of a fluid flow with an elastic structure plays an important part in engi-

neering science. Interesting applications can also be found in biomechanical engineering, where

for example the blood flow interacting with the abdominal aorta is investigated to prevent an

aneurysm, [FVJ+06, SF07]. In civil engineering, wind induced vibrations of bridges need to be

suppressed, [BS06]. A fluid-structure interaction (FSI) analysis, may help to find an engineering

solution for this demand. A further application of FSI in civil engineering is the computation of a

dam failure caused by a seismic excitation [RFPS08, RSFP09]. Such applications are of interest

due to the enormity of the destructive power of the water flood wave, which is released after the

failure of a dam.

In engineering science the field of aeroelasticity mainly driven by aeronautical engineering

has been developed for such FSI problems. Quoting [WC07], “Aeroelasticity is the subject that

describes the interaction of aerodynamic, inertia and elastic forces for a flexible structure and the

phenomena that can result”. Aircraft structures in particular are subjected to massively deflect

under aerodynamic and inertia loads. Modern lightweight structures and increasing flight speeds

amplify the aeroelastic behavior. Aeroelastic problems can mainly be divided into two classes

[CD04, Foe74, WC07]:

1. static aeroelasticity

2. dynamic aeroelasticity

Inertia forces can be neglected for the first class and typical problems are: torsional divergence,

control reversal, static stability. Typical problems for the second class are: flutter, dynamic flight

stability, buffeting. Thereby, flutter is a critical aeroelastic problem, which can lead to the damage

of the structure. A typical flutter phenomenon is the panel flutter problem, Figure 1.1(a), which

shows - depending on the flow conditions - a limited flutter amplitude. Such limit cycle oscillation

(LCO) is caused by a non-linear structural deflection. Furthermore, simplified linear aerodynamic

models, in particular strip theory or panel method aerodynamics, are unable to predict shocks in the

flow field. Thus, the prediction of the stability in the transonic flow regime becomes inaccurate as

shown in Figure 1.1(b), where the flutter speed versus the Mach number for a typical panel flutter

problem is plotted. The flutter speed is defined as the lowest flow speed at which flutter occurs.

In the transonic flow regime, a significant reduction of this characteristic aeroelastic value can

be observed from Figure 1.1(b). Such transonic dip cannot be predicted with linear aerodynamic

models and modern fluid dynamics modeling techniques need thus to be used, which solve the

Euler or Navier-Stokes equation of fluid motion. Moreover, depending on the flow conditions

other long term system responses of the panel might be static deflection, i.e. divergence or an

undeflected panel. Thus, the panel flutter problem can serve as a significant model problem for

aeroelastic applications to study several numerical schemes, which are going to be discussed in

this thesis.
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Figure 1.1: Description of the panel flutter problem and the typical flutter behavior in a transonic

flow regime

Although several non-linear structural approaches for the panel flutter problem can be found

in literature, [Dow70, ACM99], only some attention has been paid to the non-linear fluid part of

the panel flutter problem, [DB93]. To consider shock waves in the transonic flow regime, often

the Euler equations of fluid motion are solved, [GM00, Mas02]. In [Dow73], a simplified shear

layer fluid model is used to incorporate the effect of viscosity. A full Navier-Stokes fluid solver

was used in [GV02] for the panel flutter problem, but the flow was assumed to be laminar at a

Reynolds number of 105 based on the panel length. Some results for the panel flutter problem

with a turbulent Navier-Stokes fluid solver can be found in [GV02, Hur01, HAN09, BS08]. That a

turbulent boundary layer affects the flutter behavior depending significantly on a supersonic Mach

number of the overflowing fluid could be shown in [HAN09].

1.2 Methodology

In the previous section, it could be shown, that aeroelasticity describes a subset of fluid-structure

interaction problems and this multidisciplinarity is an important aspect for aeronautical engineer-

ing. In this thesis, computational aeroelasticity (CA) is understood as the numerical treatment

of aeroelastic problems with accurate simulation methods [Far04, Ben04]. Several approaches

exist here. In the so-called monolithic coupling approach, one computational algorithm is devel-

oped for both - the fluid and the structural subsystem - and the governing equations are treated

simultaneously, [Blo98]. Such a method often requires a new code development and is frequently

applied only for academic problems, [Hei04]. Since the coupled physical system is treated with

one numerical scheme, the monolithic approach might show better and more robust computational

behavior, [BC10]. However, the most common method to numerically treat an aeroelastic problem

is the so-called partitioned approach, which is discussed in the next subsection.

2



1.2 Methodology

1.2.1 Partitioned coupling approach

Applying the partitioned coupling approach each participating subdomain is computationally sol-

ved by its own solver [FLM95, Pip97, FL00, MS03, GBD+03, vZB05, DP06, VLDV07, SMU+10,

DSVP+10]. Thus, a framework is necessary, into which the fluid and structural solver are inte-

grated. Numerical data have to be transferred from one to the other simulation code to ensure

the computational coupling. Moreover and due to the use of separate solvers, the aerodynamic

forces and the structural deformations need to be intrinsically in an equilibrium, which requires an

iteration procedure.

Frequently, for the second demand of the equilibrium iteration, a straightforward Richardson

iteration is applied, where the coupled problem is treated as a Dirichlet-Neumann-decomposition,

i.e. the structural deformations are set as boundary conditions on the fluid and the aerodynamic

forces are imposed on the structural side. However, this simple Richardson iteration procedure

might show an unstable behavior or slow convergence rate for strong coupled problems, where a

high density fluid acts on a high flexible structure, [CGN05, FWR07]. Thus, high-order iteration

schemes, like Netwon-Raphson, Newton-GMRES, etc. are applied for these kinds of applications,

which is an active research field, [vZB05, VLDV07]. The most typical aeroelastic problems are

weakly coupled, i.e. a relative stiff structure interacts with an airflow. For those weakly coupled

applications, a simple staggered iteration procedure, where the force and deformation data trans-

mission is accomplished only once in a time step, is generally sufficient [FL00]. The accuracy of

this simple staggered scheme can be improved by the usage of structural predictors, where the

structural deformation of the next time level is estimated based on the structural solution at the

actual time level [Pip97, FvdZG06].

While the equilibrium iteration is extensively studied in literature, the topic of data transmis-

sion over computational meshes is often treated without significant attention. A comprehensive

overview of this essential coupling aspect can be found in [JH04, JJGL05, dBvdSB07, Kim10].

The problem of the numerical data transfer arises due to the usage of different computational grids

for the fluid flow and the structural simulations. Thus, the interface is represented by different

surface grids which are generally non-matched, i.e. the nodes and elements are non-coincident.

Several methods exist and an appropriate transfer scheme should not only satisfy accuracy but

also load and energy conservation, i.e. neither artificial load nor energy should be generated when

transmitting data from one to the other interface grid, [dBvZB08, dB08]. Furthermore, the ac-

curacy of the structural displacements transfer is frequently disregarded. In [dB08], an example

of an unsatisfied deformation transfer and its effect on the accuracy of the solution are given by

a problem of a flexible flap coupled with an incompressible fluid. For multiphysical problems

involving a compressible fluid, an inaccurate displacement transmission can lead to unintentional

artificial shocks close to the interface when the fluid interface grid is much better resolved than the

structural counterpart [UHH07b].

The most common transfer method is the nearest neighbour interpolation, [TBU00], where the

datum of a node from mesh one is simply set to the nearest node of mesh two. Obviously, such a

procedure is neither load nor energy conservative. A further class of transfer schemes are projec-

tion methods like the conservative node interpolation, [FLL98] or quadrature point interpolation,

[CL97]. A variation of the quadrature point interpolation was proposed within the field of con-

tact mechanics by Puso in [Pus04], which uses dual-Lagrange multipliers to obtain more efficient

transfer schemes. Furthermore, geometric splines are frequently used for the data transmission

across non-matching interface meshes, [SCH00].
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1.2.2 Finite-element methodology for the fluid flow

Another difficulty of using a partitioned coupling approach arises due to the application of incon-

sistent numerical schemes to simulate aeroelastic phenomena. For example, often a finite volume

scheme for the computation of the fluid flow, [Bla06, FP01], is utilized in conjunction with a finite

element methodology (FEM) for the structural part, [Hug00, ZTZ05, Bat96]. Due to this fact, dif-

ficulties might be encountered to design a mathematically correct transfer scheme. Therefore and

for reasons of numerical consistency, a numerical coupling scheme is employed, where the fluid

subdomain is also discretized with finite elements. In the context of the discontinuous Galerkin

method such finite element approximation becomes a key method for solving the governing fluid

equations in the near future, [BO99, ZTSP03, Coc03, BCRS05, Har06, LBL08, HHLP10].

The finite element method for fluid flow problems has been established in the last twenty years,

while first attempts were made by Zienkiewicz, [ZC65], Oden, [Ode72], or Chung, [CC76] with

a continuous Galerkin method. To use the standard Petrov-Galerkin form (weight functions are

equal to interpolation functions), stability terms need to be added to suppress instabilities caused

by the convective terms of the fluid equations. Such stability terms are introduced naturally by the

characteristic based split (CBS) scheme proposed by Zienkiewicz and Codina [ZC95, ZMS+95],

which uses a local Taylor expansion to design a computational effective scheme. A comprehensive

overview of this scheme is provided by Nithiarasu in [NCZ06] and nowadays the CBS scheme is

widely used to solve the compressible and incompressible fluid flows. In [Nit03, NMWM04] in-

compressible flows are treated via an artificial compressibility method. Turbulent incompressible

flow with the aid of the CBS scheme is investigated in [NHM+08]. Inviscid compressible flows

treated with the CBS scheme is analyzed for a wide range of Mach numbers in [TN05].

In the context of FSI problems, the concept of artificial compressibility is advantageous, due

to the observation of the so-called added mass effect when simulating an elastic structure coupled

to a pure incompressible fluid flow, [CGN05, FWR07]. With an incompressible fluid, Poisson’s

equation is solved for the pressure unknown and thus a disturbance caused by the elasticity of

the structure can propagate with infinite velocity, i.e. the speed of sound is infinity. This infinite

velocity is responsible for the added mass effect, which cause numerical difficulties. Recently, it

could be proven, that this fact is responsible for the requirement of an equilibrium iteration with

slow convergence rates, [vB09]. In the same paper, it was revealed, that with a finite speed of

sound a simple staggered iteration procedure is possible and the added mass effect can be reduced

by a smaller time step. With the artificial compressibility, the infinite value for the speed of sound

is replaced by a finite numerical value and thus the CBS scheme can be used for incompressible

fluid without any restrictions. This is motivated by the findings in [FRWB10], where a stable and

robust simple staggered scheme could be designed as long as the fluid is basically modeled as a

compressible fluid.

The discontinuous Galerkin method has been developed mainly for problems in fluid mechan-

ics and combines features of the finite element and the finite volume schemes. Indeed, the finite

element method is frequently criticized to violate local conservation of the primary fluid quan-

tities, [HSBB06]. The discontinuous Galerkin method can ensure such local conservation by a

proper treatment of the element edge flux. A good overview of this methodology can be found in

[Coc03, Li06, BCRS05] and the references therein. One noteworthy advantage of the discontin-

uous Galerkin method is the possibility of easy parallelization of the algorithm since this method

allows an element-by-element solution procedure. However, each node belongs to several ele-

ments and therefore multiple solutions for each node need to be stored, which results in a large

memory requirement. Further, additional edge fluxes for each element have to be computed, which

makes the discontinuous methodology usually more computationally expensive than its continu-

ous Galerkin counterpart. On the other hand, solving a large system of linear algebraic equations
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necessary for the continuous Galerkin CBS scheme is needless for the explicit discontinuous ver-

sion, proposed in this thesis. In [TNB08], the discontinuous Galerkin method to the CBS scheme

for laminar incompressible fluids was applied and the accuracy for typical testcases shown.

Finally, a consistent usage of finite elements as the spatial discretization method is motivated

by the geometric flexibility of this method and the inherent possibility to impose physical boundary

conditions, [GSE98, Loe08]. A further advantage of the FEM is the straightforward development

of higher order spatial discretizations. In this context and from the mathematical point of view, a

rigorous convergence theory is available, e.g. [Hug00, ZTZ05, Bat96]. Furthermore, in [GSE98,

Chu02] the finite element method is seen as a generalized finite volume method, which underlines

the general character of the FEM.

1.3 Research aim

Two different points of view are considered for the research aim in this thesis.

From the numerical standpoint, consistency is an important requirement for a system’s con-

vergence, especially when a system should be analyzed as accurately as possible with modern

computational tools. Consistency of a numerical scheme is usually defined as the property, that

the discretized equations converge to the underlying differential equations if the time step as well

as the element size approach zero [Bla06]. Therefore, a unified coupling approach is developed

in this thesis, which is in its discrete form spatially as well as temporally consistent. The question

arises whether such unified coupling approach can be designed in a partitioned way so that exist-

ing and well-established algorithms can furthermore be used. Thus, a continuous energy based,

variational principle for coupled problems is employed, which serves as the fundament for the

consistent spatial discretization with finite elements. The choice of the FEM is motivated by a

long history of this scheme in structural mechanics and by recent numerous research activities of

Galerkin methods in fluid dynamics. The partitioning of the system leads to the consideration of

several coupling aspects, e.g. data transfer, fluid grid deformation, equilibrium iteration and time

integration.

With the requirement of keeping the consistency of the discrete system and with the variational

principles as the fundament, some new ideas regarding these coupling aspects are considered and

existing schemes are revisited and improved. Especially with the three-field approach, an attractive

smooth transfer of the interface values can be employed to overcome unphysical numerical effects

in the fluid flow solution. Further, the development of the CBS scheme for moving and deforming

fluid domains is a topic to be answered in this thesis. To obtain a temporal consistency of the

simulation, a classical fluid time integration scheme is adapted to the structural subdomain of

an aeroelastic system. Finally, the question arises whether with higher order finite elements, an

improvement of a simulation’s accuracy can be reached. In this context, a discontinuous Galerkin

form of the CBS scheme is required to implement, which yields a matrix-free scheme for the fluid

part of the coupled simulation.

From the aeroelastic point of view, the transonic panel flutter problem is still an interesting

and important model problem, which is characterized by structural as well as aerodynamic non-

linearities. As already mentioned, many of the simulations found in literature have been conducted

with an inviscid fluid flow model. The effect of a boundary layer is the topic to be answered in this

thesis and therefore, the panel flutter problem is investigated with a modern CFD algorithm, which

solves the fluid equations in the framework of the Reynolds-averaged Navier-Stokes model. The

proposed numerical methods (three-field approach, consistent time integration) are used to ensure

accurate simulations and a turbulence model needs further to be applied for compressible flows

in the context of the CBS scheme. Some insights into the importance of a viscous fluid boundary
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layer on the stability boundary should be provided and thus the panel’s LCO is also intensively

investigated with an inviscid flow.

1.4 Thesis outline

To draw the introduction to a close, this thesis is divided into two parts: in a first, the continuous

coupling approach and its discretization with finite elements are presented. Within the second

part numerical examples and verification are shown. More precisely, a unified coupling approach

based on a classical variational principle of stationary action is introduced in chapter 2. This

principle is known as Hamilton’s principle and it is used to consistently express the structural and

fluid subsystem by a variational principle. The fluid subsystem itself is described by Hamiltonian

fluid dynamics in an Arbitrary-Lagrangian-Eulerian frame of reference. The interaction of both

subsystems is then further expressed via a weak formulation of the interface displacement equality.

The spatial and temporal discretization of the fluid and structural subsystem as well as the

interface displacement transfer are discussed in chapters 3 and 4. Thereby, the discretization of

the fluid subsystem is dedicated to an extra chapter (chapter 3), where the characteristic based split

scheme is used to numerically treat the Navier-Stokes equation for the ALE frame of reference. A

discontinuous version of this scheme is furthermore proposed in this chapter. The discretization

of the whole coupled aeroelastic system is discussed in chapter 4, where an operational view of

the system is introduced. This operational view is used to express the equilibrium iteration and the

time integration of the coupled system. Further, data transfer methods over non-matching interface

grids as well as a constistent time integration for the structural subsystem are proposed.

Within the second part of this thesis, the fluid solver is verified for several flow problems rang-

ing from inviscid, viscous and turbulent as well as compressible and incompressible fluid flows,

chapter 5. The whole coupling environment is verified and assessed in terms of the fluid grid

deformation algorithm, the data interface approach in chapter 6 and the equilibrium iteration pro-

cedure. A smooth data transfer is proposed here, which use the three-field approach in conjunction

with a higher order spatial discretization of the interface frame.

Finally, the methods proposed in this thesis are examined for the panel flutter problem, which

shows a limit cycle oscillation at various flow conditions in chapter 7. Moreover, the panel flutter

behavior is investigated in a transonic flow regime and additionally for turbulent flows.

In chapter 8, this thesis is summarized with a conclusion and an indication of future work is

discussed. In the appendix A, some further informations are provided, where some mathematical

notations are explained and the turbulence modeling with the aid of the CBS scheme are discussed

in detail.
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2 A Unified Coupling Approach

In this thesis, coupled problems involving interaction of a fluid with a structure are derived from a

variational formulation of the physical system. Variation principles have been an important basis in

mechanics because many mechanical problems require finding an extremum (minima or maxima)

by nature and thus can be natively formulated in terms of a variational statement. Other physical

problems can only be expressed by partial differential equations, but can also be transformed to a

variational principle equivalent to the original corressponding partial differential equations. These

variational principles, naturally defined or derived from differential equations, are the basis for

obtaining approximate solutions like finite element models. Such approximations of variational

statements and their application to a broad range of physical problems were mainly investigated at

the beginning of the twentieth century by Ritz [Rit08], Rayleigh [Ray77] and Galerkin [Gal15] to

name a few. In the middle of the twentieth century new ideas in the field of variational principles

were developed by Hellinger [Hel14] and Reissner [Rei50] for structural mechanics to describe

continuum systems with mixed formulations and their approximation. With the appearance of

modern computer systems, also variational principles for fluid systems have been developed, e.g.

Seliger [SW68], Additionally, the spatial approximation with finite elements has been derived.

A more general approach to treat the dynamics of a system is Hamilton’s principle, which

uses the kinetic and potential energy as the basis for the variation [Ham34]. Hamilton’s principle

has been well established in the field of elastodynamics and dynamics of particles. In structural

mechanics, Hamilton’s principle reduces to the principle of virtual displacement for systems that

are in static equilibrium. Due to the generalization of Hamilton’s principle, in this thesis, physi-

cal phenomena involving fluid-structure interaction are formulated based on an expression of the

scalar energy functional of the coupled system utilizing this principle. For an introduction to vari-

ational principle applied to interaction problems the reader is refered to [ACD09] and the various

references therein.

2.1 System of reference

Before deriving the governing equations for the structure and fluid, a few comments on the system

of reference should be made. Two systems of reference are usually used in continuum mechanics,

distinguished in the way the kinematics are observed. Structural systems and their displacements

are most frequently described in the so-called Lagrangian frame of reference, in which each ma-

terial point is observed as it moves through the space. The coordinate system for the Lagrangian

frame of reference is denoted as X and is associated with the material points. On the other hand,

single fluid systems are commonly described in the Eulerian frame of reference, where the mo-

tion is observed from a fixed reference in space, while the fluid flow is passing. The coordinate

system for the Eulerian frame of reference is denoted as x. The Eulerian and Lagrangian frame of
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X
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x
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dt
=
∂ f (X,t)
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∣∣∣∣
X
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dt
=
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x
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+[u(x, t) − w(x, t)]T∇ f (x, t)
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Figure 2.1: Frame of references used in continuousc mechanics and their substantial derivative

ḟ =
d f

dt
=
∂ f (X, t)

∂t

∣∣∣∣∣
X

(Lagrangian)

=
∂ f (x, t)

∂t

∣∣∣∣∣
x
+ [u(x, t)]T∇ f (x, t) (Eulerian) ,

(2.1.1)

where d/dt is called either the advective, convective, substantial, Lagrangian or material derivative

and is the time rate of change following a moving material particle The vector u(x, t) = ẋ =

∂x(X, t)/∂t |X is the velocity of the material point given in the Eulerian frame of reference and f

is some physical property. Furthermore, in Cartesian coordinates, the vector operator ∇ = ∂/∂x =

[ ∂
∂x1
, ∂
∂x2
, ∂
∂x3

]T is the nabla operator in the Eulerian frame of reference.

In the context of fluid-structure interaction, the domain, where the fluid flow passes through,

needs to be time-dependent. Therefore, a third frame of reference is introduced as the arbi-

trary Lagrangian-Eulerian (ALE) frame of reference, denoted by χ, Figure 2.1. The ALE frame

of reference was first introduced in the context of fluid flow for finite difference methods in

[Noh64, HAC74] and later for finite element schemes in [HLZ81, HL88]. For the ALE frame

of reference, the motion is neither observed in Lagrangian nor in the Eulerian frame of reference,

but is a mixture between the two of them, where the ALE frame of reference follows the structural

motion at the boundaries while deforming arbitrarily within it. For the ALE frame of reference

the substantial derivative can be written in a mixed form as, see [DH03] or [Li06] for details:

ḟ =
d f

dt
=
∂ f (x, t)

∂t

∣∣∣∣∣
χ
+ [u(x, t) − w(x, t)]T∇ f (x, t)

=
∂ f (x, t)

∂t

∣∣∣∣∣
χ
+ [s(x, t)]T∇ f (x, t) ,

(2.1.2)

where the w is the velocity of the ALE frame of reference in the Eulerian frame of reference:

w =
∂x(χ, t)

∂t

∣∣∣∣∣
χ

(2.1.3)
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and s = u − w is known as the convective velocity and is the difference between the material ve-

locity and the ALE frame velocity. Eq. (2.1.2) is often denoted as the fundamental ALE function,

[DH03]. If χ = X, clearly the velocity u and w are the same and Eq. (2.1.2) reduces to the equation

of the substantial derivative for the Lagrangian frame of reference. If on the other hand χ = x,

then w = 0 and the equation of the substantial derivative for the Eulerian frame of reference is

obtained.

2.2 Hamilton’s principle for continuum systems

Hamilton’s principle states that a physical system undergoes that particular trajectory between t1
and t2, whose action has a stationary value (optimal path in time), see [Red02]. The system’s

action, which has the physical meaning of ’energy x time’ can be described by a functional subject

to be minimized:

I( t, r(t) ) =

t2∫
t1

L( t, r(t), ṙ(t) ) dt =

t2∫
t1

∫
Ω

L0( t, r(t), ṙ(t) ) dΩ dt → minimize . (2.2.1)

The quantity L is usually denoted as the Lagrangian of the system with the generalized coordinates

r and can be expressed as:

L = EK − Π = EK − U − P , (2.2.2)

where EK is the total kinetic and Π is the total potential energy to which the strain energy U and

the potential energy P contribute. With Eq. (2.2.2) it follows that the quantity L0 is the Lagrangian

density. Minimizing the functional I is equivalent to the first variation of this functional to be

equal zero:

δI = δ

t2∫
t1

L( t, r(t), ṙ(t) ) dt = δ

t2∫
t1

(EK − Π) dt = δ

t2∫
t1

(EK − U − P) dt = 0 , (2.2.3)

where δ is the variational operator. This states, that the difference between the kinetic and potential

energies will be stationary, which is equivalent to the solution of the Euler-Lagrange equations:

∂L

∂r
−

d

dt

∂L

∂ṙ
= 0 . (2.2.4)

Before applying Hamilton’s principle to a coupled system like FSI problems, the variational

formulation for each single field needs to be investigated.

2.3 Hamiltonian structural dynamics

Using Hamilton’s formalism, the standard displacement-based action functional for a non-linear

single structural mechanical system may be written as follows, [Red02, ZT05]:

Is(us) =

t2∫
t1

[∫
Ωs

1

2
ρsu̇

T
s u̇s dΩs −

∫
Ωs

U0(Dus) dΩs

+

∫
Ωs

uT
s b̂s dΩs +

∫
ΓN

s

uT
s t̂ s dΓN

s

]
dt ,

(2.3.1)
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where us = [u1, u2, u3]T
s is the displacement field vector, u̇s = dus/dt is the material time deriva-

tive of the displacement field vector, ρs is the density and U0(Dus) is the strain-energy den-

sity function to model non-linear elastic material behavior from which the stress vector σs =

[σ11, σ22, σ33, σ12, σ23, σ31]T
s is calculated as:

σs =
∂U0

∂Dus

, (2.3.2)

in whichD is the three-dimensional strain-displacement operator given by:

DT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0

0 0 ∂
∂x3

0 ∂
∂x2

∂
∂x1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.3.3)

to calculate the strain vector εs = [ε11, ε22, ε33, ε12, ε23, ε31]T
s by:

εs =Dus . (2.3.4)

It should be noted here, that the stress and the strain are already assumed to be symmetric through-

out this thesis, i.e. σi j = σ ji and εi j = ε ji. For linear elasticity, the strain-energy density function

is:

U0 =
1

2
εT

s Eεs − ε
T
s Eε0

s (2.3.5)

and the constitutive equation provided by Eq. (2.3.2) then becomes:

σs =
∂U0

∂Dus

=
∂U0

∂εs

= E(εs − ε
0
s) , (2.3.6)

where E is the 6x6 material stress-strain matrix and ε0
s are strains caused by non-displacement

sources, e.g. temperature strain.

With reference to Eq. (2.2.2) the first term in Eq. (2.3.1) represents the kinetic energy, whereas

the second term stands for the potential energy of the inner forces, which is equivalent to the strain

energy. The last two terms account for potential energy of external forces, where b̂s = [b̂1, b̂2, b̂3]T
s

are the body forces and t̂ s = [t̂1, t̂2, t̂3]T
s are the traction or surface forces.

Now, taking the first variation of Eq. (2.3.1) with respect to us gives:

δIs =

t2∫
t1

[
−

∫
Ωs

ρsδu
T
s üs dΩs −

∫
Ωs

δ(Dus)
T ∂U0

∂Dus

dΩs

+

∫
Ωs

δuT
s b̂s dΩs +

∫
ΓN

s

δuT
s t̂ s dΓN

s

]
dt = 0 ,

(2.3.7)

where üs is the second material time derivative of the displacement field. Integration by parts and

using Eq. (2.3.2) and (2.3.4) leads to:

δIs =

t2∫
t1

[∫
Ωs

δuT
s

(
−ρsüs +D

Tσs + b̂s

)
dΩs +

∫
ΓN

s

δuT
s

(
t̂ s − Υ

Tσs

)
dΓN

s

]
dt = 0 , (2.3.8)

where ΥT contains the entries of the boundary normal vector:

ΥT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
n1 0 0 n2 0 n3

0 n2 0 n1 n3 0

0 0 n3 0 n2 n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.3.9)
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Cleary, the Euler-Lagrange equation corresponding to the double integral Eq. (2.3.1) is:

DTσs + b̂s = ρsüs , (2.3.10)

which is the well-known equation of (linear) momentum conservation for a structural systems.

Further, as seen from the second term of Eq. (2.3.8), the natural boundary condition - or Neumann

boundary condition - for the traction are obtained by the variation of the functional:

t s = Υ
Tσs = t̂ s on ΓN

s , (2.3.11)

where ΓN
s is called Neumann boundary subset.

Boundary conditions for displacement - the Dirichlet boundary conditions - on the Dirichlet

boundary subset ΓD
s :

us = ûs on ΓD
s , (2.3.12)

where ΓD
s ∩ Γ

N
s = ∅ and ΓD

s ∪ Γ
N
s = Γs holds, as well as initial conditions for transient problems:

us(Xs, t = 0) = û0
s(Xs) and u̇s(Xs, t = 0) = ˙̂u0

s(Xs) (2.3.13)

are required to be applied.

It should be noted here, that the variation of Eq. (2.3.8) is the simplest form and only requires

the displacement field to be considered. More general variational principles, including also the

constitutive equation Eq. (2.3.2) and all boundary condition, is the Hu-Washizu variational princi-

ple [Was75], which is often used for mixed formulation in structural elasticity.

2.4 Hamiltonian fluid dynamics

Hamilton’s principle can also be applied to problems in fluid mechanics. As Hamilton’s formula-

tion is based on an energy expression, two problems arise when formulating a proper Lagrangian

density L0. First, viscous fluids are dissipative in terms of energy due to friction or heat conduc-

tion and second, the equations of choice in fluid dynamics are usually given in a Eulerian frame

of reference, where the flow quantities are expressed as a function of fixed position and time since

the fluid motion is observed from a fixed reference in space. As it was pointed out in [Mue98],

the fluid equations of motion in a Eulerian frame of reference are non-canonical, while the equa-

tions of motion in a Lagrangian frame of reference are canonical and can therefore be derived

from a Lagrangian density L0 by using Hamilton’s principle. Or as expressed in [Sal88], in the

Lagrangian frame of reference the equations of motion are coupled in the sense that the location

together with velocities of particles are governed by them. This is in contrast to the equations

in a Eulerian frame of reference, which are closed, meaning that the velocity, density and a fifth

thermodynamic variable, e.g. entropy or energy, can be solved without finding the trajectory of

the fluid particle.

In the following, the three equations describing fluid motion in the Eulerian frame of refer-

ence are derived with the aid of Hamiltonian fluid dynamics before the governing equations are

obtained in the ALE frame of reference. These are the equation of mass, momentum and energy

conservation. Without going unneccessarily into detail, good introductions on this topic can be

found in [Lee77, Sal88, Sal98, Mue98, Lyn02, Swa00, Mor06, Pal06].

2.4.1 Mass conservation

As it was pointed out in [Sal88, Lyn02, Mor06], the equation of mass conservation is implicit

given by switching from the Lagrangian to the Eulerian frame of reference. In these references
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an infinitesimal fixed volume dΩX with a constant density is assumed, where the Lagrangian

coordinates are assigned in a way that:

dm = dX1dX2dX3 = dΩX (2.4.1)

holds. On the other hand, for the Eulerian frame of reference this infinitesimal mass can be ex-

pressed as:

dm = ρ f dx1dx2dx3 = ρdΩx , (2.4.2)

where the coordinates in the Eulerian frame of reference, x f = [x1, x2, x3]T
f
, are a function of the

Lagrangian coordinates and the time:

x f = x f (X f , t) . (2.4.3)

Therefore, both expressions for the mass are related by the well-known Jacobian, which gives:

ρ f = det

[
∂x f

∂X f

]
. (2.4.4)

A direct application of the substantial derivative, d/dt, to this equation and using dx f /dt = ẋ f = u f

lead to (see [Sal98]):
dρ f

dt
+ ρ f ∇

T u f = 0 (2.4.5)

and with the use of Eq. (2.1.1) and the product rule:

∇T ( fg) = gT∇ f + f∇Tg , (2.4.6)

this can be rewritten to obtain the equation of mass conservation in conservative form and in the

Eulerian frame of reference as:
∂ρ f

∂t
+ ∇T (ρ f u f ) = 0 , (2.4.7)

where:
∂ f

∂t

∣∣∣∣∣
x
=
∂ f

∂t
(2.4.8)

is used as an abbreviation. Nevertheless, the mass conservation equation for the fluid flow can also

be derived from the condition, that the Lagrangian density is constant over the time, [Pal06]:

d L0

d t
= L̇0 = 0 ⇒

∂ρ f

∂t
+ ∇T (ρ f u f ) = 0 . (2.4.9)

2.4.2 Hamilton’s canonical equations

To derive now the equations of momentum and energy conservation, it is first convenient to use

Hamilton’s canonical equations, which introduce a new variable p = ∂L/∂ṙ and define a new

function by a Legendre transformation. The Hamiltonian of the system is then be written as:

H = H(r, p, t) =

∫
Ω

pT ṙ dΩ − L =

∫
Ω

pT ẋ f dΩ − L =

∫
Ω

pT u f dΩ − L , (2.4.10)

which forms the second order differential equations of Eq. (2.2.4) to a first order differential equa-

tions.

14



2.4 Hamiltonian fluid dynamics

With a Lagrangian density L0 = ρ f l0, the action functional for a fluid can be expressed as:

I f =

t2∫
t1

∫
Ω f

(pT u f − H0) dΩ f dt =

t2∫
t1

∫
Ω f

ρ f (pT
0 u f − h0) dΩ f dt , (2.4.11)

where l0 is the specific Lagrangian, H0 and h0 are the Hamiltonian density and the specific Hamil-

tonian, respectively, and the variable p0 is defined as p0 = ∂l0/∂ṙ = ∂l0/∂u f . The equation of

momentum conservation is now obtained by taking the first variation of this action functional

while the equation of energy conservation is derived from the assumption, that the Hamiltonian

density will not change with time, thus dH0/dt = 0. A distinction for the different fluid model is

required, which is discussed further in the following subsections.

2.4.3 Inviscid fluid

For an inviscid fluid, the Lagrangian density L0 and the specific Lagrangian l0 can be expressed

as:

L0 = L0(x f , u f , ρ f , t) =
1

2
ρ f u

T
f u f − ρ f ε f (ρ f ) − ρ fφ

g

f
(x f ) (2.4.12)

⇒ l0 = l0(x f , u f , ρ f , t) =
1

2
uTf u f − ε f (ρ f ) − φ

g

f
(x f ) , (2.4.13)

where 1
2
ρ f u

T
f
u f is the kinetic energy density, ρ f ε f (ρ f ) is the potential energy density with ε f (ρ f )

being the specific internal energy of the fluid and φ
g

f
(x f ) is a given gravitational potential, which

depends on the position in such a way that:

b̂ f = −∇φ
g

f
= −
φ
g

f

∂x f

, (2.4.14)

where b̂ f is the external body force per unit mass caused for example by gravitation. The Hamil-

tonian density H0 as well as the specific Hamiltonian h0 can therefore be obtained as:

H0 = H0(x f , u f , ρ f , t) =
1

2
ρ f u

T
f u f + ρ f ε f (ρ f ) + ρ fφ

g

f
(x f ) (2.4.15)

⇒ h0 = h0(x f , u f , ρ f , t) =
1

2
uTf u f + ε f (ρ f ) + φ

g

f
(x f ) , (2.4.16)

where it is easy to verify, that p0 = u f holds. The action functional for an inviscid fluid can then

be written as:

I f (x f , u f , ρ f , t) =

t2∫
t1

[∫
Ω f

ρ f (u
T
f u f − h0) dΩ f +

∫
ΓN

f

xT
f t̂ f dΓN

f

]
dt , (2.4.17)

where analogue to Eq. (2.3.1) the surface traction integral is added.

2.4.3.1 Momentum conservation

According to [Pal06], the first variation of the action functional, Eq. (2.4.17), results in:

δI f =

t2∫
t1

{∫
Ω f

δxT
f

[
−

d

dt
(ρ f p0) − ρ f p0 ∇

T u f − ρ f

∂h0

∂x f

− ∇

(
ρ2

f

∂h0

∂ρ f

)]
dΩ f

+

∫
ΓN

f

δxT
f

[
t̂ f −

(
ρ2

f

∂h0

∂ρ f

)
n

]
dΓN

f

}
dt = 0 ,

(2.4.18)
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2 A Unified Coupling Approach

where n is the outward normal vector. This equation is only valid, if the volume and the surface

integral vanishes. With the pressure definition for a perfect fluid:

p f = −
∂ε f

∂(1/ρ f )
= ρ2

f

∂ε f

∂ρ f

(2.4.19)

and with the given specific Hamiltonian of Eq. (2.4.16), the equation of momentum conservation

in the Eulerian frame of reference for an inviscid fluid is obtained from the integrand of the volume

integral as:
∂(ρ f u f )

∂t
+ [∇T (ρ f u f u

T
f )]T = −∇p f + ρ f b̂ f , (2.4.20)

where the definition of the Eq. (2.4.14), the product rule Eq. (2.4.6) and the definition of the

Eq. (2.1.1) are used. The Neumann boundary conditions are obtained directly from the surface

integral as:

t̂ f −

(
ρ2

f

∂h0

∂ρ f

)
n = 0 ⇒ t̂ f = p f n on ΓN

f . (2.4.21)

Further, the initial condition for the velocity field needs to be prescribed:

u f (x f , t = 0) = û0f (x f ) (2.4.22)

as well as the boundary conditions for inviscid fluid flow on the Dirichlet boundary subset ΓD
f
:

u f = û f on ΓD
f , (2.4.23)

including the slip boundary condition on walls:

uTf n = ûTf n on ΓD
f , (2.4.24)

where ΓD
f
∩ ΓN

f
= ∅ and ΓD

f
∪ ΓN

f
= Γ f holds.

2.4.3.2 Energy conservation

The equation of energy conservation is, like the equation of mass conservation, automatically

fulfilled by the action functional. According to [Pal06], the energy equation is obtained from the

specific Hamiltonian by generating its total derivative with respect to the time, dh0/dt, which leads

to:
dH0

dt
+ H0 ∇

T u f + ∇
T

(
ρ2

f

∂h0

∂ρ f

u f

)
= 0 . (2.4.25)

With the Hamiltonian density and specific Hamiltonian of the inviscid fluid provided by Eq. (2.4.15)

and Eq. (2.4.16), the equation of energy conservation can be obtained as:

∂

∂t

(
1

2
ρ f u

T
f u f + ρ f ε f

)
+ ∇T

[(
1

2
ρ f u

T
f u f + ρ f ε f + ρ fφ

g

f

)
u f

]
+ ∇T (p f u f ) = 0 , (2.4.26)

where the definition of the fluid pressure, Eq. (2.4.19), and of the substantial derivative, Eq. (2.1.1),

as well as the product rule, Eq. (2.4.6), are utilized. Introducing the specific total energy:

e f = ε f +
1
2
uTf u f , (2.4.27)

the equation of energy conservation for an inviscid fluid in a Eulerian frame of reference can be

rewritten as:
∂(ρ f e f )

∂t
+ ∇T (ρ f e f u f ) = −∇

T (p f u f ) + ρ f b̂T
f u f . (2.4.28)
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2.4 Hamiltonian fluid dynamics

2.4.3.3 Closure of the conservation equations

To summarize, the only fluid governing equation obtained directly by a variational principle is the

equation of momentum conservation, Eq. (2.4.20), together with the Neumann boundary condi-

tions. The equation of mass and energy conservation, Eq. (2.4.7) and Eq. (2.4.28), are derived

from conditions, which are valid for the general form of the action functional. These conditions

can be seen as constraints for the equation of momentum conservation, which has to be considered

when solving it. In order to close the set of equations, the equation of state for a perfect fluid:

p f = ρ f RT f (2.4.29)

and the thermodynamic relation:

ε f = cvT f (2.4.30)

are additionally needed as well as proper boundary conditions for the density and temperature:

ρ f = ρ̂ f on Γ
ρ

f
and T f = T̂ f on ΓT

f , (2.4.31)

where R and cv are the specific gas constant and the specific heat at constant volume, respectively.

Further, initial conditions for equation of mass and energy conservation need to be applied:

ρ f (x f , t = 0) = ρ̂0
f (x f ) and e f (x f , t = 0) = ê0

f (x f ) . (2.4.32)

2.4.4 Viscous fluid

To describe the viscous fluid by Hamiltonian fluid dynamics, the dissipative processes need to

be taken into account. Two sources of dissipative processes arise in viscous fluids. The first is

viscosity due to internal friction of fluid particles and the second is the thermal conductivity due

to temperature gradients within the fluid.

The equations of momentum and energy conservation for a viscous fluid are obtained in the

same way from a Hamiltonian density and the corresponding action integral as for the inviscid

fluid. The difference to the inviscid fluid consists in the specific internal energy ε f , which for

the viscous fluid flow depends on the deviatoric strain rate ε̇ f = [ ˙ε11, ˙ε22, ˙ε33, 2 ˙ε12, 2 ˙ε23, 2 ˙ε31]T
f

according to Eq. (2.3.4) given by:

ε̇ f =Du f , (2.4.33)

whereD is given in Eq. (2.3.3). Further and related to Eq. (2.3.2), the Cauchy stress in a viscous

fluid is obtained by:

σ f =
∂ε f (ε̇ f )

∂ε̇ f

, (2.4.34)

which can then be decomposed into a hydrostatic and a viscous part:

σ f = −(p f +C f )m+ τ f , (2.4.35)

where C f = C f (T f ) is a temperature depended function, τ f = [τ11, τ22, τ33, τ12, τ23, τ31]T
f

is the

viscous stress vector and mT = [1, 1, 1, 0, 0, 0] gives the functionality of the Kronecker delta to the

stress vector. For a linear, isotropic (Newtonian) fluid, the entries of the viscous stress vector can

be written as:

τi j = 2μ f

(
ε̇i j −

1

3
δi j ˙εkk

)
= μ f

[(
∂vi

∂x j

+
∂v j

∂xi

)
−

2

3
δi j

∂vk

∂xk

]
, (2.4.36)
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2 A Unified Coupling Approach

where μ f is the dynamic viscosity of the fluid and δi j is the Kronecker delta (δi j = 1 if i = j and

δi j = 0 otherwise). In vector notation this can be rewritten as:

τ f = μ f

(
I0 −

2

3
mmT

)
ε̇ f = μ f

(
I0 −

2

3
mmT

)
Du f , (2.4.37)

with I0 being a diagonal matrix:

I0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4.38)

Now, the Hamiltonian density H0 and the specific Hamiltonian h0 can be expressed similarly

to Eq. (2.4.15) and Eq. (2.4.16) as:

H0 = H0(x f , u f , ε̇ f , t) =
1

2
ρ f u

T
f u f + ρ f ε f (ε̇ f ) + ρ fφ

g

f
(x f ) (2.4.39)

⇒ h0 = h0(x f , u f , ε̇ f , t) =
1

2
uTf u f + ε f (ε̇ f ) + φ

g

f
(x f ) . (2.4.40)

The action functional is similar to functional for the inviscid fluid given in Eq. (2.4.17), but has a

different dependency:

I f (x f , u f , ε̇ f , t) =

t2∫
t1

[∫
Ω f

ρ f (u
T
f u f − h0) dΩ f +

∫
ΓN

f

xT
f t̂ f dΓN

f

]
dt . (2.4.41)

2.4.4.1 Momentum conservation

Related to Eq. (2.4.18), the first variation of the action functional can be derived as, see [Pal06]:

δI f =

t2∫
t1

{∫
Ω f

δxT
f

[
−

d

dt
(ρ f p0) − ρ f p0 ∇

T u f − ρ f

∂h0

∂x f

+DT

(
∂h0

∂ε̇ f

)]
dΩ f

+

∫
ΓN

f

δxT
f

[
t̂ f − Υ

T

(
∂h0

∂ε̇ f

)]
dΓN

f

}
dt = 0 ,

(2.4.42)

where again p0 = u f holds and Υ is given in Eq. (2.3.9).

This variation is only valid, if both integrals vanish and with the given Hamiltonian density

the following equation of momentum conservation in the Eulerian frame of reference is obtained

from the integrand of the first space-time integral:

∂(ρ f u f )

∂t
+ [∇T (ρ f u f u

T
f )]T = −∇p f +D

Tτ f + ρ f b̂ f , (2.4.43)

where the product rule Eq. (2.4.6) and the definition of the Eq. (2.1.1) as well as the constitu-

tive relation Eq. (2.4.34) and the decomposition of the stress in Eq. (2.4.35) are used. From the

integrand of the surface integral the Neumann boundary conditions are obtained as:

t̂ f − Υ
T

(
∂h0

∂ε̇ f

)
= 0 ⇒ t̂ f = Υ

Tσ f on ΓN
f . (2.4.44)
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2.4 Hamiltonian fluid dynamics

The initial conditions:

u f (x f , t = 0) = û0f (x f ) (2.4.45)

as well as the velocity boundary conditions for viscous fluid flow:

u f = û f on ΓD
f , (2.4.46)

where again ΓD
f
∩ ΓN

f
= ∅ and ΓD

f
∪ ΓN

f
= Γ f holds, are further required to apply. Eq. (2.4.46)

incorporates the no-slip condition on viscous walls, where the normal and tangential velocity

components are set to zero. Other velocity boundary conditions could be the symmetry condition,

which is similar to the slip boundary condition of Eq. (2.4.24).

2.4.4.2 Energy conservation

As for the case of the inviscid fluid, the third conservation equation, the equation of energy con-

servation, can similarly be obtained by generating the total derivative of the specific Hamiltonian

with respect to the time, i.e. dh0/dt, and thus:

dH0

dt
+ H0 ∇

T u f − ∇
T

(
QT

f

∂h0

∂ε̇ f

)
= 0 , (2.4.47)

where Q f is a 6x3 matrix, which has the same structure asD or Υ but contains the fluid velocities

as:

QT
f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1 0 0 v2 0 v3
0 v2 0 v1 v3 0

0 0 v3 0 v2 v1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
f

. (2.4.48)

Thus, with the given Hamiltonian density and with the constitutive relation Eq. (2.4.34), the equa-

tion of energy conservation is obtained as:

∂

∂t

(
1

2
ρ f u

T
f u f + ρ f ε f

)
+ ∇T

[(
1

2
ρ f u

T
f u f + ρ f ε f + ρ fφ

g

f

)
u f

]
− ∇T (QT

f σ f ) = 0 , (2.4.49)

where again the definition of the substantial derivative, Eq. (2.1.1), and the product rule Eq. (2.4.6)

are used. With e f = ε f +
1
2
uT

f
u f and Eq. (2.4.35) and Eq. (2.4.14), this can be rewritten as:

∂(ρ f e f )

∂t
+ ∇T (ρ f e f u f ) = ∇

T (κ f∇T f ) + ∇
T (QT

f τ f ) − ∇
T (p f u f ) + ρ f b̂T

f u f , (2.4.50)

where the heat flux q f was introduced by (see [Pal06]):

q f = C f u f = −κ f∇T f , (2.4.51)

with κ f being the thermal conductivity of the fluid and the relation q f = −κ f∇T f known as Fouri-

ers’s law.

2.4.4.3 Closure of the conservation equations

With the equation of mass conservation, Eq. (2.4.7), the equation of momentum and energy con-

servation, Eq. (2.4.43) and Eq. (2.4.50), the three governing equations describing a viscous fluid

in a Eulerian frame of reference are found, where the only equation derived from a variational for-

malism is, like for the structural domain, the momentum equation. As also stated for the inviscid

fluid, the mass and energy conservation can be viewed as constraint conditions to the momentum

equation, which arise due to the general form of the action functional. Furthermore, this set of
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2 A Unified Coupling Approach

equations needs to be closed by the equation of state, Eq. (2.4.29), and the thermodynamic re-

lation, Eq. (2.4.30), as well as boundary conditions for ρ f and T f , Eq. (2.4.31), and the initial

condition Eq. (2.4.32). Finally, the values for viscosity, μ f , and the thermal conductivity, κ f , are

a function of the temperature. For air, these values are provided by Sutherland’s relation through,

[Ian06]:

μ

μ0
=

(
T

T0

) 3
2 T0 + S μ

T + S μ
and

κ

κ0
=

(
T

T0

) 3
2 T0 + S k

T + S k

(2.4.52)

T0 = 273.15 K, μ0 = 1.7161 · 10−5 kg

m s
, κ0 = 2.3360 · 10−2 J

m s K
,

S μ = 110.4 K, S κ = 112.0 K ,

where S is called Sutherland temperature, which is slightly different for the viscosity and conduc-

tivity expression. This relation remains valid for T < 2000 K.

2.4.5 Conservation equation in the ALE frame of reference

In the previous two subsections, the governing equations for an inviscid as well as for a viscous

fluid are derived from Hamilton’s principle. As Hamilton’s principle is based on an energy expres-

sion, the variational principle is in general invariant in terms of the frame of reference. Therefore,

the governing equations in the ALE frame of reference are obtained by consequently substituting

Eq. (2.1.1) through Eq. (2.1.2). This ALE version of the governing equations is needed due to the

deforming fluid domain in the context of fluid-structure interaction.

With the fundamental ALE equation (2.1.2), the equation of mass conservation, Eq. (2.4.5),

can be rewritten in the ALE frame of reference as:

∂ρ f

∂t
+ (uTf − w

T
f )∇ρ f + ρ f∇

T u f = 0 (2.4.53)

or
∂ρ f

∂t
+ ∇T (ρ f u f ) − w

T
f ∇ρ f = 0 , (2.4.54)

where:
∂ f

∂t

∣∣∣∣∣
χ
=
∂ f

∂t
(2.4.55)

is used as an abbreviation.

From the first variation of the action functional for a viscous fluid, Eq. (2.4.42), the equation

of momentum conservation is obtained by using Eq. (2.1.2) as:

∂(ρ f u f )

∂t
+ [(uTf − w

T
f )∇(ρ f u

T
f )]T + ρ f u f ∇

T u f = −∇p f +D
Tτ f + ρ f b̂ f (2.4.56)

or
∂(ρ f u f )

∂t
+ [∇T (ρ f u f u

T
f )]T − [wT

f ∇(ρ f u
T
f )]T = −∇p f +D

Tτ f + ρ f b̂ f . (2.4.57)

Finally, the equation of energy conservation in the ALE frame is derived from Eq. (2.4.47) by

again using Eq. (2.1.2) as:

∂(ρ f e f )

∂t
+ (uTf − w

T
f )∇(ρ f e f ) + ρ f e f ∇

T u f =

∇T (κ f∇T f ) + ∇
T (QT

f τ f ) − ∇
T (p f u f ) + ρ f b̂T

f u f

(2.4.58)

or

∂(ρ f e f )

∂t
+ ∇T (ρ f e f u f ) − w

T
f ∇(ρ f e f ) =

∇T (κ f∇T f ) + ∇
T (QT

f τ f ) − ∇
T (p f u f ) + ρ f b̂T

f u f .

(2.4.59)
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This ALE-form of the conservation equations is the same as derived in [DGH82]. Comparing

these equations with Eq. (2.4.7), (2.4.43) and (2.4.50), obviously, an additional advection term

−wT
f
∇(ρ f f ) is added to the governing equations in the Eulerian frame of reference, where f is

either 1, u f or e f for Eq. (2.4.54), (2.4.57) and (2.4.59), respectively.

The velocityw f needs to be calculated, which is provided by Eq. (2.1.3) or otherwise expressed

as:

w f =
∂u f

∂t

∣∣∣∣∣∣
χ

, (2.4.60)

where the displacement u f of the fluid domain is introduced. Then clearly, the Hamiltonian density

H0 or the specific Hamiltonian h0 can be expressed as:

H0 = H0(u f , u f , ε̇ f , t) =
1

2
ρ f u

T
f u f + ρ f ε f (ε̇ f ) + ρ fφ

g

f
(u f ) (2.4.61)

⇒ h0 = h0(u f , u f , ε̇ f , t) =
1

2
uTf u f + ε f (ε̇ f ) + φ

g

f
(u f ) , (2.4.62)

without changing the results. It follows, that the action functional for a viscous fluid in the ALE

frame of reference is:

I f = I f (u f , u f , ε̇ f , t) . (2.4.63)

Again, the set of equations needs to be closed by the equation of state, Eq. (2.4.29), the ther-

modynamic relation, Eq. (2.4.30) and Sutherland’s law, Eq. (2.4.52). Furthermore, boundary con-

ditions for the velocity u f , Eq. (2.4.46), for the boundary stress t̂ f , Eq. (2.4.44), and for the density

ρ f and temperature T f , Eq. (2.4.31) need to be applied. The initial conditions for the basic un-

knowns, ρ f , u f , e f are required as already provided by Eq. (2.4.45) and (2.4.32).

2.4.6 Geometric conservation law

The usage of the ALE form of the governing equations instead of the conservation equations in the

Eulerian frame of reference should not influence the exact solution of the fluid flow. The minimum

requirement for the calculation of the flow field on moving domains is that a uniform flow should

be preserved. This requirement was first pointed out by Thomas and Lombard in [TL79] and

leads to the so-called geometric conservation law (GCL), which can be seen as a further constraint

equation to the governing flow equations linking the position and the velocity of the ALE frame of

reference together. Considerable research was conducted by Farhat et al. in [FLM95] or LeTallec

and Mani in [LM99] in this field, who has shown the importance of the GCL for the accuracy

and stability of the flow field on moving meshes. The GCL in continuum space can be written as,

[LM99]:

∇Tw f =
1

Jxχ

∂Jxχ

∂t
with Jxχ = det

[
∂x

∂χ

]
, (2.4.64)

which has to be discretized in time leading to the discrete geometric conservation law (DGCL).

2.5 A weak formulation for fluid-structure interaction

In the previous subsections, it was shown, that a variational principle based on Hamilton’s princi-

ple for a single fluid and a single structural system exist. The first variation of the action functionals

results in the equation of momentum conservation for a single structural system, Eq. (2.3.10), and

in the equation of momentum conservation for a single fluid system, Eq. (2.4.43) or Eq. (2.4.57),

as well as their Neumann boundary conditions. These momentum equations are completed by
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2 A Unified Coupling Approach

various additional conditions, e.g. constitutive equations for both - the fluid and the structure - or

equations of mass and energy conservation in the case of the fluid system.

With the existence of a variational principle for a fluid as well as for a structural problem, it

is now possible to express a coupled system involving FSI by an action functional and to derive

the governing equations by its first variation. Here, only surface coupled problems should be

considered, where the system’s domains share a common boundary - the interface. Describing a

coupled problem via an action functional can then be done by defining constraints for the common

boundary of the systems to be coupled. In general, a functional to be minimized:

I( t, r(t) ) =

t2∫
t1

L( t, r(t), ṙ(t) ) dt → minimize (2.2.1)

and subject to the following constraint:

Λ( r(t) ) = 0 (2.5.1)

can be treated by the Lagrange multiplier method, see [Red02], which results in a modified func-

tional:

IΛ( t, r(t), λ ) =

t2∫
t1

(L + λΛ) dt → minimize , (2.5.2)

where the so-called Lagrange multiplier λ is introduced. The Lagrange multiplier is initially an

arbitrary parameter, which weights the constraint, Eq. (2.5.1), so that the first variation of the

functional IΛ with respect to the Lagrange multiplier leads to this constraint equation. Having

multiple constraints:

Λ( r(t) ) = 0 , (2.5.3)

the modified functional can be rewritten as:

IΛ( t, r(t), λ ) =

t2∫
t1

(L + λTΛ) dt → minimize , (2.5.4)

where λ is the vector of Lagrange multipliers.

In the following subsection, two different approaches will be introduced, which use the equal-

ity of system’s variables on the interface. In the case of fluid-structure interaction, obviously, the

constraint condition is, that the displacements along the interface are equal, that is to say:

u f = us or u f − us = 0 on Γ f s . (2.5.5)

It should be taken into account here, that some formulations in the field of FSI use the equality

of fluid and structural velocities at the interface. Clearly, the equation above is equivalent to this

statement. Moreover, the equality of the displacements at the interface also ensures the geometry

to be consistent at the interface, which is not given per se when stipulating the equality of the

displacement’s first temporal derivative. Further, for an inviscid fluid, only the equality of fluid

and structural velocities along the normal to the interface, uT
f
n = uTs n, is required from the fluid

equation point of view, which also leaves the geometric consistency out of consideration. There-

fore, the equality of the fluid and structural interface displacements, Eq. (2.5.5), is used throughout

this thesis, which also ensures the equality of fluid and structural interface velocities. It is then the

matter of the fluid formulation to use the appropriate boundary conditions on the interface, i.e. the

slip for inviscid fluids or the no-slip boundary condition for a viscous fluid.
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2.5 A weak formulation for fluid-structure interaction

Ω1

Ω2
Ω3

Γc with uc
λ1

λ3

λ2

Figure 2.2: Three-field approach of a continuum system

2.5.1 Three-field approach

For the action functional of the three-field approach, an additional connectivity frame is used to

which each physical field is connected only. Thus, there exists no direct connection of the fields but

the they are indirectly coupled with the aid of the frame. Thereby the name three-field is derived

from the minimal case, where a fluid field is coupled with a structural field via a connectivity frame

field, i.e. the three fields - structure, fluid and frame - need to be considered. The action functional

of the whole coupled system can then be divided into an interior and connectivity functional for

each participating system or more precisely for each participating subdomain:

IΛ3 =

Nd∑
i=1

(Ii − Ici) , (2.5.6)

where Ii is the action functional of a single fluid or structure, I f or Is and Ici denotes the appropriate

connectivity functional to the connectivity frame, Figure 2.2. The sum in Eq. (2.5.6) runs from 1

to the number of all subdomains Nd. The connectivity functional for each subdomain is expressed

as:

Ici =

t2∫
t1

∫
Γci

λT
i (uc − ui) dΓci dt , (2.5.7)

where uc is the displacement of the frame. For each set of Ii and Ici a Lagrange multiplier field

λi is defined on Γci, which means according to [PF00], that λi is localized to each Ii, Figure 2.2.

Thus, each subdomain is associated with one appropriate Lagrange multiplier field to connect the

displacements to the frame. The sum of the interfaces Γci forms the complete connectivity frame:

Γc = Γc1 ∪ Γc2 ∪ . . . ∪ Γci =

Nd⋃
i=1

Γci . (2.5.8)

From Eq. (2.3.1) or Eq. (2.4.17), it can be discovered, that the Lagrange multiplier has the same

physical meaning as t s or t f . Thus, the Lagrange multiplier acts as a force flux gluing the subdo-

main and the connectivity frame together.
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2 A Unified Coupling Approach

The variation of the three-field action functional, Eq. (2.5.6), related to the unknowns yields:

δIΛ3 =

Nd∑
i=1

[δIi − δIci]

=

Nd∑
i=1

{
δIi +

t2∫
t1

[∫
Γci

λT
i δui dΓci −

∫
Γci

λT
i δuc dΓci

−

∫
Γci

δλT
i (uc − ui) dΓci

]
dt

}
= 0 .

(2.5.9)

The third integral is only valid, if the integrand becomes zero, which results in the interface dis-

placements equality for each subdomain. The second integral is the contribution of the force

equilibrium on the interface frame, that is to say:

Nd∑
i=0

t2∫
t1

∫
Γci

λT
i δuc dΓci dt = 0 . (2.5.10)

Thus, Newton’s third law is represented through this term. With the first integral, the single field

problem is now transformed to be:

δIi +

t2∫
t1

∫
Γci

λT
i δui dΓci dt = 0 , (2.5.11)

where the second term has to be considered within the single field problem due the variation

with respect to ui. Therefore, the variation of the structural subdomain becomes with the aid of

Eq. (2.3.8):

δIs +

t2∫
t1

∫
Γcs

λT
s δus dΓcs dt =

t2∫
t1

[∫
Ωs

δuT
s

(
−ρsüs +D

Tσs + b̂s

)
dΩs

+

∫
ΓN

s

δuT
s

(
t̂ s − Υ

Tσs

)
dΓN

s

+

∫
Γcs

δuT
s

(
λs − Υ

Tσs

)
dΓcs

]
dt = 0

(2.5.12)

and in the same way, the variation of the fluid subdomain is rewritten as:

δI f +

t2∫
t1

∫
Γc f

λT
f δu f dΓc f dt =

t2∫
t1

[∫
Ω f

δuT
f

(
−

d

dt
(ρ f u f ) − ρ f u f ∇

T u f + ρ f b̂ f +D
Tσ f

)
dΩ f

+

∫
ΓN

f

δuT
f

(
t̂ f − Υ

Tσ f

)
dΓN

f

+

∫
Γc f

δuT
f

(
λ f − Υ

Tσ f

)
dΓc f

]
dt = 0 ,

(2.5.13)
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Ω1

Ω2
Ω3

λ13

λ12

λ23

Figure 2.3: Two-field approach of a continuum system

where Eq. (2.4.42) is used with the substitution provided in section 2.4.4.

Using a partitioned coupling approach, the structure is usually treated as a Neumann problem,

that is, the Lagrange multiplier λs is prescribed on the interface Γcs and transformed to internal

stresses as given by the third integral on the right hand side in Eq. (2.5.12):

ΥTσs = λs on Γcs , (2.5.14)

which then gives - according to the first integral - the displacement us on the interface.

In contrast, the fluid is usually treated as Dirichlet problem. Thus, the displacement u f is

prescribed on the interface Γc f and the resulting Lagrange multiplier λ f is obtained from the third

integral in Eq. (2.5.13) as:

λ f = Υ
Tσ f on Γc f . (2.5.15)

These different points of view cause difficulties in the case of three-field approach as discussed

later in this thesis. Treating the fluid as a Neumann problem can also be done, when two fluid

subdomains are linked together.

2.5.2 Two-field approach

Using the two-field approach, the connectivity frame is omited and the subdomains are coupled

directly via one Lagrange multiplier field for each inter-connection, Figure 2.3. The action func-

tional of the whole coupled system is then expressed as:

IΛ2 =

Nd∑
i=1

Ii −

Nd∑
i=1

Nd∑
j=i+1

Ii j , (2.5.16)

where Ii is again the action functional of a single fluid or structure, I f or Is and Ii j denotes the

appropriate connectivity functional, which can be expressed as:

Ii j =

t2∫
t1

∫
Γi j

λT
i j(ui − u j) dΓi j dt , (2.5.17)

where Γi j is the interface between subdomain i and j. This equation also includes the case, where

Γi j = ∅ holds and from which Ii j = 0 follows.
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2 A Unified Coupling Approach

The variation of the action functional (2.5.16) is obtained as:

δIΛ2 =

Nd∑
i=1

δIi +

Nd∑
i=1

Nd∑
j=i+1

t2∫
t1

[ ∫
Γi j

λT
i jδu j dΓi j −

∫
Γi j

λT
i jδui dΓi j

−

∫
Γi j

δλT
i j

(
ui − u j

)
dΓi j

]
dt = 0 .

(2.5.18)

Here again, the third integral under the double sum results in the interface displacement equality

and the first and the second integral are the interface force flux for each interface Γi j. If the

minimal case is assumed, where only a fluid subdomain (index 1) and a structural domain (index

2) are coupled via the two-field approach, Eq. (2.5.18) simplifies to:

δI = δI f + δIs +

t2∫
t1

[ ∫
Γ f s

λT
f sδus dΓ f s −

∫
Γ f s

λT
f sδu f dΓ f s

−

∫
Γ f s

δλT
f s

(
u f − us

)
dΓ f s

]
dt = 0 .

(2.5.19)

Similar to Eq. (2.5.12), the variation of the structural subdomain becomes:

δIs +

t2∫
t1

∫
Γ f s

λT
f sδus dΓ f s dt =

t2∫
t1

[∫
Ωs

δuT
s

(
−ρsüs +D

Tσs + b̂s

)
dΩs

+

∫
ΓN

s

δuT
s

(
t̂ s − Υ

Tσs

)
dΓN

s

+

∫
Γ f s

δuT
s

(
λ f s − Υ

Tσs

)
dΓ f s

]
dt = 0

(2.5.20)

and for the fluid subdomain it is obtained:

δI f −

t2∫
t1

∫
Γ f s

λT
f sδu f dΓ f s dt =

t2∫
t1

[∫
Ω f

δuT
f

(
−

d

dt
(ρ f u f ) − ρ f u f ∇

T u f + ρ f b̂ f +D
Tσ f

)
dΩ f

+

∫
ΓN

f

δuT
f

(
t̂ f − Υ

Tσ f

)
dΓN

f

+

∫
Γ f s

δuT
f

(
−λ f s − Υ

Tσ f

)
dΓ f s

]
dt = 0 .

(2.5.21)

The structural domain is again treated as a Neumann problem. The Lagrange multiplier λ f s is

applied on the fluid-structure interface Γ f s with:

ΥTσs = λ f s on Γ f s (2.5.22)

to obtain the displacements us with the aid of the conservation of momentum, i.e. with the inte-

grand of the first integral.
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2.6 Chapter summary

The Lagrange multiplier prescribed on the structure is obtained from the fluid with the aid of

the integrand of the third integral of Eq. (2.5.21) as:

λ f s = −Υ
Tσ f on Γ f s (2.5.23)

under the constraint of the interface problem obtained from the integrand of the third integral in

Eq. (2.5.19):

u f = us on Γ f s . (2.5.24)

This two-field approach is the most often used formulation for FSI problems due to the natural use

of the Dirichlet-Neumann cycle here. However, by using more then two fields, e.g. fluid-fluid-

structure interaction, this scheme can be challenging in conjunction with a partitioned coupling

approach. For more than two connecting domains, it might be advantageous to use the three-field

approach, because here each domain is only connected to the connectivity frame, i.e. there is no

direct inter-domain coupling.

2.6 Chapter summary

In this chapter, the three systems of references - the Eulerian, the Lagrangian and the ALE system

of reference - are introduced, which are needed to describe and distinguish the usually used physi-

cal natures of problem description. These systems of references differ basically in their expression

of the substantial derivative and are essential to describe the structural and fluid subsystems with

the aid of an energy principle, i.e. with Hamilton’s principle. Hamilton’s principle as a varia-

tional scheme is well established for pure structural systems, but some assumption are needed to

apply this principle to the fluid subsystem. The three conservation laws (mass, momentum and

energy conservation) of a fluid flow can be derived by Hamiltonian fluid dynamics using Hamil-

ton’s canonical form. In this chapter, both basic fluid model equations - inviscid and viscous fluid

models - are employed with this weak variational energy principle.

Finally, as a unified coupling approach on continuum mechanics level, the two- and three-field

approach are obtained, which use Lagrange multipliers in terms of a weak formulation to con-

nect the fluid and structural subsystem. While the three-field approach utilizes an intermediate

connectivity frame, the two-field approach connects directly the fluid and structural domain. The

main advantage of the indirect three-field approach is the property, that each physical subdomain

is only connected to an intermediate frame. Thus, the communication of each participating subdo-

main is only accomplished with that frame. Another important benefit of the three-field approach,

which is used for the first time in this thesis, is the possibility of an independent and high-order

discretization of the frame.
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3 Characteristic Based Split
Methodology for the Fluid Flow

In this chapter, the method to spatially discretize the governing fluid equations is presented. In

this thesis, the finite elements method (FEM) is used, which is the third major method to solve

the fluid conservation equations numerically, apart from finite difference and finite volume meth-

ods. The finite element method for fluid flow problems was established within the last twenty

years, while first attempts were made by Zienkiewicz, [ZC65], Oden, [Ode72], or Chung, [CC76].

For appropriate textbooks on the introduction of the finite element method see, Hughes [Hug00],

Bathe [Bat96] and the three volume set of Zienkiewicz and Taylor [ZTZ05, ZT05, ZBN05]. The

third volume of the latter set of books also covers the characteristic based split scheme for fluid

dynamics.

In the context of the finite element method, it is usually advisable to use the standard Galerkin

form (weight functions are equal to interpolation functions) of the FEM method as a numerical

method, which leads to symmetric matrices for self-adjoint problems, e.g. diffusion dominated

problems. Due to the convective term - the second term on the left hand side in Eq. (2.4.54),

(2.4.57), (2.4.59) - the resulting matrices from this non self-adjoint term are asymmetric, which

can lead to instability, if the fluid problem to be solved is convective dominated. Therefore, the

variational integral statements of the last chapter obtained from Hamilton’s principle cannot be

used directly, because stability schemes need to be used to suppress this instability caused by the

standard Galerkin form. Several stability schemes have been proposed, including the streamline

upwind Petrov Galerkin (SUPG) method [BH82], the Galerkin least square method [HFH89] or

the characteristic Galerkin (CG) method [LMZ84, LPZ87]. While the SPUG method uses modi-

fied weight functions for the convective term, the CG method modifies the governing equations,

whereby the temporal derivative is discretized along the problem characteristic, [LMZ84], by us-

ing the wave nature of the governing equations. The resulting equations are now self-adjoint and

the standard Galerkin scheme can be applied as the optimal scheme. The characteristic based

split (CBS) method is a variant of the CG method first proposed by Zienkiewicz and Codina

[ZC95, ZMS+95], which utilizes a local Taylor expansion to design a computational more effec-

tive scheme. A comprehensive overview of this scheme is provided by Nithiarasu in [NCZ06]

and nowadays the CBS scheme is widely used to solve the compressible and incompressible fluid

flows.

In the following sections, the CBS scheme is applied to the ALE version of the compressible

conservation equations.

3.1 Characteristic Galerkin method

The characteristic Galerkin (CG) method forms the basis of the CBS scheme presented in the next

sections. Several variants of this scheme are in existence and discussed in the context of the CBS
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3 Characteristic Based Split Methodology for the Fluid Flow

procedure in [NCZ06]. For the CBS method, the simple explicit characteristic Galerkin proce-

dure is applied due to its simplicity, [LMZ84]. Assuming a simple one-dimensional convection

diffusion equation:
∂ f

∂t
+
∂(v f )

∂x
−
∂

∂x

(
a
∂ f

∂x

)
+ Q = 0 , (3.1.1)

where f is some scalar quantity, v is the velocity, a is the diffusion coefficient and Q is the source

term. The simple explicit characteristic Galerkin procedure then leads to the following form, by

using a local Taylor expansion, see [NCZ06] or [ZBN05]:

f n+1 − f n

Δt
= −

[
∂(v f )

∂x
−
∂

∂x

(
a
∂ f

∂x

)
+ Q

]n

+
Δt

2
v
∂

∂x

[
∂(v f )

∂x
−
∂

∂x

(
a
∂ f

∂x

)
+ Q

]n

−
Δt2

6
v2
∂2

∂x2

[
∂(v f )

∂x
−
∂

∂x

(
a
∂ f

∂x

)
+ Q

]n

+ O(Δt3) .

(3.1.2)

Usually the higher order terms are neglected. Rewriting this equation for the case of a multidi-

mensional velocity leads to:

f n+1 − f n

Δt
= −

[
∇T (u f ) − ∇T (a∇ f ) + Q

]n

+
Δt

2
(uT∇)

[
∇T (u f ) − ∇T (a∇ f ) + Q

]n
+ O(Δt2) .

(3.1.3)

This equation is used as the basis for the discretization of the fluid dynamics equations using the

standard Galerkin form of the FEM. The second term on the right hand side forms the stability

part for the spatial discretization, because it acts as an extra diffusion term. It should be noted

here, when using linear elements, the second term in the second square brackets leads to no con-

tribution in the resulting matrix system and can therefore also be neglected. However, this term

has to be considered for the discretization, when higher order elements are used. Before applying

Eq. (3.1.3) to the basic conservation equation for fluid flows, these equations are converted to a

non-dimensional form, which is often done in computational fluid dynamics.

3.2 Non-dimensional form of the conservation equations

The conservation equations in ALE form derived from Hamilton’s principle are rewritten first:

∂ρ f

∂t
+ ∇T (ρ f u f ) − w

T
f ∇ρ f = 0 (2.4.54)

∂(ρ f u f )

∂t
+ [∇T (ρ f u f u

T
f )]T − [wT

f ∇(ρ f u
T
f )]T = −∇p f +D

Tτ f + ρ f b̂ f (2.4.57)

∂(ρ f e f )

∂t
+ ∇T (ρ f e f u f ) − w

T
f ∇(ρ f e f ) = ∇

T (κ f∇T f ) + ∇
T (QT

f τ f )

− ∇T (p f u f ) + ρ f b̂T
f u f

. (2.4.59)

To reduce the parameter space, these equations are non-dimensionalized, i.e. all unknown quanti-

ties are written as ratios to reference values.Different non-dimensionalization schemes are possible

and here a density-velocity based form is used, i.e. the reference quantities for the density and ve-

locity are the respective free stream values. Thus, for most of the reference quantities, the free
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3.2 Non-dimensional form of the conservation equations

variable
reference non-dimensional dimensional

value value value

length, coordinate xi l x�
i
=

xi

l
xi = x�

i
· l

velocity vi v∞ v�
i
=
vi
v∞

vi = v
�
i
· v∞

frame velocity wi v∞ w�
i
=
wi

v∞
wi =w

�
i
· v∞

convective velocity si v∞ s�
i
=

si

v∞
si = s�

i
· v∞

speed of sound c v∞ c� = c
v∞

c= c� · v∞

density ρ ρ∞ ρ� =
ρ

ρ∞
ρ= ρ� · ρ∞

time t l
v∞

t� =
tv∞

l
t= t�l
v∞

pressure p ρ∞v
2
∞ p� =

p

ρ∞v
2
∞

p= p� · ρ∞v
2
∞

total specific energy e v2∞ e� = e

v2∞
e= e� · v2∞

temperature T
v2∞
cp

T� =
Tcp

v2∞
T =

T�v2∞
cp

heat flux qi
v3∞
l

q�
i
=

qil

v3∞
qi =

q�
i
v3∞
l

thermal conductivity κ κ∞ κ� = κ
κ∞

κ= κ� · κ∞

body force bi
v2∞
l

b�
i
=

bil

v2∞
bi =

b�
i
v2∞
l

dynamic viscosity μ μ∞ μ� =
μ

μ∞
μ= μ� · μ∞

dynamic eddy viscosity μT μ∞ μ�
T
=
μT

μ∞
μT = μ

�
T
· μ∞

kinematic viscosity ν ν∞ ν� = ν
ν∞

ν= ν� · ν∞

kinematic eddy viscosity νT ν∞ ν�
T
=
νT
ν∞

νT = ν
�
T
· ν∞

modified eddy viscosity ν̆ ν∞ ν̆� = ν̆
ν∞

ν̆= ν̆� · ν∞

Table 3.1: Fluid values and their references used for non-dimensionalization and re-dimensionali-

zation

stream values can be taken, but for some the references need to be calculated from other val-

ues to provide a coherent non-dimensionalization. In Table 3.1, the references for the several

fluid variables used for non-dimensionalization are listed, where the superscript (·)� denotes a

non-dimensional value. Inserting the dimensional quantity of the last row into the conservation

equations, the non-dimensional form of the governing equations are obtained as:

• equation of mass conservation:

∂ρ�
f

∂t�
+ ∇T
� (ρ�f u

�
f ) − w�f

T
∇�ρ

�
f = 0 (3.2.1)
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• equation of momentum conservation:

∂(ρ�
f
u�

f
)

∂t�
+ [∇T

� (ρ�f u
�
f u
�
f

T
)]T − [w�f

T
∇�(ρ�f u

�
f

T
)]T = −∇�p�f +

1

Re
D�

T
τ�f + ρ

�
f b̂�f (3.2.2)

• equation of energy conservation:

∂(ρ�
f
e�

f
)

∂t�
+ ∇T
� (ρ�f e�f u

�
f ) − w�f

T
∇�(ρ�f e�f ) = −∇T

� (p�f u
�
f ) +

1

Re
∇T
� (Q�f

T
τ�f )

+
1

Re Pr
∇T
� (κ�f ∇�T�f ) + ρ�f b̂�f

T
u�f ,

(3.2.3)

where the Reynolds and Prandtl number are introduced as:

Re =
ρ∞v∞l

μ∞
=
v∞l

ν∞
(3.2.4)

Pr =
μ∞cp

κ∞
, (3.2.5)

and ∇� is the nabla operator in the Eulerian frame of reference using the non-dimensional coordi-

nates. The free stream kinematic viscosity is defined as ν∞ = μ∞/ρ∞ and cp is the specific heat at

constant pressure. The non-dimensional viscous stress vector is given by:

τ�f = μ
�
f

(
I0 −

2
3

mmT
)
D�u�f , (3.2.6)

the thermodynamic relation by:

ε�f =
1

γ
T�f with γ =

cp

cv
, (3.2.7)

and the equation of state by:

p�f = ρ
�
f R�T�f with R� =

R

cp

=
γ − 1

γ
. (3.2.8)

With the definition of the specific total energy, Eq. (2.4.27), the non-dimensional temperature is

obtained as:

T�f = γ

(
e�f −

1

2
u�f

T
u�f

)
, (3.2.9)

and further useful fluid values are the speed of sound:

c�f =
√
γR�T�

f
=

√
(γ − 1)T�

f
, (3.2.10)

and the local Mach number:

Ma =

√
u�

f

T
u�

f

c�
f

. (3.2.11)

The above set of equations is also valid for the flow in the Eulerian frame of reference or for

inviscid flows by setting the velocity of the ALE frame of reference to zero and the Reynolds

number to infinity, respectively.

For the CBS scheme, it is appropriate to introduce the conservative variables V�
f
= ρ�

f
u�

f
and

E�
f
= ρ�

f
e�

f
. Further, for clarity the superscript (·)� is omitted in the following, but it should be

32



3.3 The CBS scheme

evident, when the dimensional or non-dimensional form of the governing equations are used. The

conservation equations are then rewritten as:

∂ρ f

∂t
+ ∇T V f − w

T
f ∇ρ f = 0 (3.2.12)

∂V f

∂t
+ [∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T = −∇p f +

1

Re
DTτ f + ρ f b̂ f (3.2.13)

∂E f

∂t
+ ∇T (u f E f ) − w

T
f ∇E f = −∇

T (p f u f ) +
1

Re
∇T (QT

f τ f )

+
1

Re Pr
∇T (κ f∇T f ) + ρ f b̂T

f u f .

(3.2.14)

These equations together with the proper boundary and initial conditions are the starting point for

the discretization using the CBS scheme.

3.3 The CBS scheme

The CBS procedure is an application of the characteristic Galerkin method to the fluid conservation

equations with a subsequent split regarding the momentum conservation equation to decouple the

pressure term. Two different split possibilities can be found in literature and the way known as split

A from [ZBN05] is modified in the present thesis. Further, it is desirable from the computational

point of view, to create a matrix free scheme, which can be derived with the full explicit version the

CBS scheme. The CBS scheme has been chosen in this thesis due to its broad range of applicability

ranging from inviscid to viscous, from laminar to turbulent or from incompressible to compressible

fluid problems. Further, this scheme and its properties are well-documented in literature and

an extension of this method to the ALE frame of reference is straightforward. Moreover, the

CBS scheme is similar computional efficient as state-of-the-art finite volume codes, which is an

important property to compute time-resolved aeroelastic problems [ZBN05].

3.3.1 Temporal discretization and splitting

For the characteristic based split, the conservation of momentum, Eq. (3.2.13), is first considered.

Using the temporal discretization provided by the characteristic Galerkin method, the question

arises, which velocity should be used in Eq. (3.1.3). Solving the fluid equations in the Eulerian

frame of reference, this velocity is identical to the local fluid velocity, but using the ALE frame of

reference, this velocity is equal to the convective velocity s f = u f − w f . Therefore, the following

can be obtained with the aid of Eq. (3.1.3):

ΔV f = Vn+1
f − Vn

f = −Δt

[
[∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T −

1

Re
DTτ f − ρ f b̂ f

]n

− Δt∇p
n+θ2
f
+
Δt2

2

[
(sT

f ∇)

(
[∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T

−
1

Re
DTτ f − ρ f b̂ f + ∇p f

)]n

,

(3.3.1)

where everything is computed at time tn except the pressure gradient in the second term of the right

hand side, which is evaluated at time tn+θ2 . The value θ2 is a user specified value, which is in the

range of (0 ≤ θ2 ≤ 1). Setting θ2 = 0 the temporal discretization is full explicit and semi-implicit

else. The pressure gradient is expressed as:

∇p
n+θ2
f
= ∇pn

f + θ2∇(Δp f ) , (3.3.2)
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3 Characteristic Based Split Methodology for the Fluid Flow

where Δp f = pn+1
f
− pn

f
holds. The concept of the CBS scheme is now to split the calculation

of Vn+1
f

into two steps. In a first, an intermediate value for the quantity V f without the second

term - the primary pressure term - of the right hand is evaluated, followed by the calculation of

the pressure using the equation of mass conservation (Eq. (3.2.12)). With the pressure quantity

available, Vn+1
f

can then finally be obtained. Thus, the intermediate momentum quantity, V̌n+1
f

, is

primarily calculated as:

ΔV̌ f = V̌n+1
f − Vn

f = −Δt

[
[∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T −

1

Re
DTτ f − ρ f b̂ f

]n

+
Δt2

2

[
(sT

f ∇)

(
[∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T −

1

Re
DTτ f

− ρ f b̂ f + ∇p f

)]n

.

(3.3.3)

This is in contrast to the split A of [ZBN05], where all pressure terms are removed from Eq. (3.3.1).

Once, the pressure is known, Vn+1
f

can be completed by:

ΔV f = ΔV̌ f − Δt∇p
n+θ2
f

= ΔV̌ f − Δt∇
[
pn

f + θ2(Δp f )
]

.
(3.3.4)

The pressure is calculated with the equation of mass conservation, which is discretized as:

Δρ f = ρ
n+1
f − ρn

f =

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

Δp f =

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

(pn+1
f − pn

f ) = −Δt∇T V
n+θ1
f
+ ΔtwT

f ∇ρ
n
f , (3.3.5)

where from classical mechanics:

c2
f =
∂p f

∂ρ f

(3.3.6)

is used and:

V
n+θ1
f
= Vn

f + θ1ΔV f (3.3.7)

holds, i.e. the first term on the right hand side is taken implicitly. The user specified value for θ1
has a range of (0.5 ≤ θ1 ≤ 1). By using Eq. (3.3.4) and (3.3.7), the density and pressure difference,

Eq. (3.3.5), are rewritten as:

Δρ f =

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

Δp f = −Δt
[
∇T Vn

f + θ1∇
T (ΔV̌ f ) − w

T
f ∇ρ

n
f

]
+ Δt2θ1∇

T
[
∇pn

f + θ2∇(Δp f )
]

.

(3.3.8)

The temporal discretization of the energy conservation equation, Eq. (3.2.14), is obtained by ap-

plying the characteristic Galerkin scheme, Eq. (3.1.3), by keeping all terms explicit and thus:

ΔE f = En+1
f − En

f = −Δt

[
∇T (u f E f ) − w

T
f ∇E f + ∇

T (p f u f ) −
1

Re
∇T (QT

f τ f )

−
1

Re Pr
∇T (κ f∇T f ) − ρ f b̂T

f u f

]n

+
Δt2

2

[
(sT

f ∇)

(
∇T (u f E f ) − w

T
f ∇E f + ∇

T (p f u f )

−
1

Re
∇T (QT

f τ f ) −
1

Re Pr
∇T (κ f∇T f ) − ρ f b̂T

f u f

)]n

.

(3.3.9)
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3.3 The CBS scheme

With these equations, the iterative solution procedure using the CBS scheme can be summarized

in terms of the temporal discretization as:

1. solve Eq. (3.3.3) for ΔV̌ f

2. solve Eq. (3.3.8) for Δρ f in the case of a compressible fluid or for Δp f in the case of an

incompressible fluid

3. solve Eq. (3.3.4) for ΔV f

4. solve Eq. (3.3.9) for ΔE f

where the unknowns are iterated to a steady state solution.

3.3.2 Spatial discretization

The temporal discretized equations of the previous subsection now need to be discretized in space

by using the FEM and the standard Galerkin procedure. For a comprehensive introduction to

this procedure, the textbooks by Bathe [Bat96], Hughes [Hug00] and Zienkiewicz [ZTZ05] are

recommended to consult.

Using the spatial Galerkin discretization, the fluid domain is divided into a mesh of non-

overlapping cells - the finite elements - connected at nodes, at which the fluid values are to be

evaluated. The fluid variables are approximated with the aid of shape functions as:

f ≈ Nf , (3.3.10)

where f = [f1, f2, . . . , fm]T contains the nodal values of the quantity f and N = [N1,N2, . . . ,Nm] is

the vector of shape functions at the nodes with m being the number of nodes. The strong form of

the temporal discretized equations is transformed to an integral weak form by introducing a weight,

which in the case of the standard Galerkin procedure is equal to the shape functions. Although

an independent discretization can be taken for each fluid variable, all primary fluid quantities are

discretized by using the same shape functions in this thesis. Therefore, it is:

ρ f ≈ Nρ f ; p f ≈ Np f ; u f ≈ Nvv f ; w f ≈ Nvw f ;

s f ≈ Nvs f ; V f ≈ NvV f ; E f ≈ NE f ; T f ≈ NT f ;

(3.3.11)

where each component of the fluid velocity is approximated with the shape functions, which are

also used for each other quantity and thus:

Nv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
N1 0 0 N2 0 0 . . . Nm 0 0

0 N1 0 0 N2 0 . . . 0 Nm 0

0 0 N1 0 0 N2 . . . 0 0 Nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
V f = [V11,V12,V13,V21,V22,V23 . . . ,Vm1,Vm2,Vm3]T

f .
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3 Characteristic Based Split Methodology for the Fluid Flow

3.3.2.1 Step 1: intermediate velocity

With the shape function matrix given above, the Galerkin form of Eq. (3.3.3) leads to:∫
Ω f

NT
v ΔV̌ f dΩ f = −Δt

[∫
Ω f

NT
v [∇T (u f V

T
f )]T dΩ f −

∫
Ω f

NT
v [wT

f ∇VT
f ]T dΩ f

+

∫
Ω f

(DNv)
T 1

Re
τ f dΩ f −

∫
Ω f

NT
v ρ f b̂ f dΩ f −

∫
Γ f

NT
v

1

Re
ΥTτ f dΓ f

]n

+
Δt2

2

[
−

∫
Ω f

(sT
f ∇)NT

v [∇T (u f V
T
f )]T dΩ f +

∫
Ω f

(sT
f ∇)NT

v [wT
f ∇VT

f ]T dΩ f

−

∫
Ω f

NT
v (sT

f ∇)(ρ f b̂ f ) dΩ f −

∫
Ω f

(sT
f ∇)NT

v ∇p f dΩ f

+

∫
Γ f

NT
v [∇T (u f V

T
f )]T (sT

f n) dΓ f −

∫
Γ f

NT
v [wT

f ∇VT
f ]T (sT

f n) dΓ f

+

∫
Γ f

NT
v ∇p f (sT

f n) dΓ f

]n

,

(3.3.12)

where integration by parts (or the product rule) on the second order terms are used and third

order terms are neglected. The surface integrals of the stabilizing terms are equal to zero for

most fluid problems because either the convective velocity on the wall is zero (no-slip boundary

condition), the scalar product of convective velocity and the wall normal is zero (slip conditions)

or the velocity and pressure gradient is zero (farfield boundary condition). Therefore, these surface

integrals can be neglected. Further, the contributions resulting from body forces are excluded in

this thesis, but can be included without difficulty. By replacing the continuous fields with the

approximations of Eq. (3.3.11), the final matrix form of the above equation is obtained as:

ΔV̌ f = M−1
v Δt

[
(−CvVV f + CwVV f − Kτv f + fτ) + Δt(−KvVV f + KwVV f − KpVp f )

]n

, (3.3.13)

where:

Mv =

∫
Ω f

NT
v Nv dΩ f ; CvV =

∫
Ω f

NT
v Bv dΩ f ; CwV =

∫
Ω f

NT
v Bw dΩ f ;

Kτ =

∫
Ω f

BT
τ

μ f

Re

(
I0 −

2
3

mmT
)
Bτ dΩ f ; fτ =

∫
Γ f

NT
v Υ

T
[μ f

Re

(
I0 −

2
3

mmT
)
Bτv f

]
dΓ f ;

KvV =
1

2

∫
Ω f

BT
s Bv dΩ f ; KwV =

1

2

∫
Ω f

BT
s Bw dΩ f ; KpV =

1

2

∫
Ω f

BT
s (∇N) dΩ f .

The B-matrices are expressed as:

B[v,w,s] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ba1 0 0 ba2 0 0 . . . bam 0 0

0 ba1 0 0 ba2 0 . . . 0 bam 0

0 0 ba1 0 0 ba2 . . . 0 0 bam

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ;

bvi = ∇
T (u f Ni); bwi = w

T
f ∇Ni; bsi = (sT

f ∇)Ni;

Bτ =DNv;
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3.3 The CBS scheme

where for Bv, Bw and Bs the velocities u f , w f , s f are needed to be discretized for the integration.

The most obvious way is to use the nodal values of these velocities for the B-matrices, [ZBN05].

Thus, one can write for bvi, bwi and bsi:

bvi = vT
i (∇Ni); bwi = wT

i (∇Ni); bsi = sT
i (∇Ni); (3.3.14)

where vi = [vi1, vi2, vi3]T
f
, wi = [wi1,wi2,wi3]T

f
, si = [si1, si2, si3]T

f
are the values of the fluid, the

mesh and the convective velocity at a node i, respectively. Therefore, with Bs = Bv − Bw, the

matrix equation of Eq. (3.3.13) simplifies to:

ΔV̌ f = M−1
v Δt

[
(−CsVV f − Kτv f + fτ) + Δt(−KsVV f − KpVp f )

]n

, (3.3.15)

where:

CsV =

∫
Ω f

NT
v Bs dΩ f ; KsV =

1

2

∫
Ω f

BT
s Bs dΩ f .

3.3.2.2 Step 2: density/pressure

The weak form of the density/pressure equation, Eq. (3.3.8), can be expressed as:

∫
Ω f

NTΔρ f dΩ f =

∫
Ω f

NT

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

Δpf dΩ f

= Δt

[∫
Ω f

(∇N)T (Vn
f + θ1ΔV̌ f ) dΩ f +

∫
Ω f

NT (wT
f ∇ρ

n
f ) dΩ f

−

∫
Γ f

NT [Vn
f + θ1ΔV̌ f ]

T ndΓ f

]

+ Δt2θ1

[∫
Ω f

−(∇N)T [∇pn
f + θ2∇(Δp f )] dΩ f

+

∫
Γ f

NT [∇pn
f + θ2∇(Δp f )]

T ndΓ f

]
.

(3.3.16)

In the last surface integral on the right hand side, the gradient of the term θ2Δp f is omitted,

which is reasonable as shown in [NCZ06]. Substituting the continuous field variables with the

approximations of Eq. (3.3.11), the final matrix system is obtained either for the density as:

Δρ f = (M + Δt2θ1θ2Kρ)
−1Δt

[
G(Vn

f + θ1ΔV̌ f ) + Cwρρ
n
f − fV + Δtθ1(−Kppn

f + fp)
]

, (3.3.17)

or for the pressure as:

Δp f = (Mp + Δt2θ1θ2Kp)−1Δt

[
G(Vn

f + θ1ΔV̌ f ) + Cwρρ
n
f − fV + Δtθ1(−Kppn

f + fp)
]

, (3.3.18)
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3 Characteristic Based Split Methodology for the Fluid Flow

where the matrices and vectors are expressed as:

M =

∫
Ω f

NT N dΩ f ; Mp =

∫
Ω f

NT

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

N dΩ f ; Kp =

∫
Ω f

(∇N)T (∇N) dΩ f ;

Kρ =

∫
Ω f

(∇N)T (c2
f )

n(∇N) dΩ f ; G =

∫
Ω f

(∇N)T Nv dΩ f ; fp =

∫
Γ f

NT (∇Npn
f )

T ndΓ f ;

Cwρ =

∫
Ω f

NT Lw dΩ f ; fV =

∫
Γ f

NT (Nv[V
n
f + θ1ΔV̌ f ])

T ndΓ f ;

with Lw being:

Lw = [bw1, bw2, . . . , bwm]

and bwi given in Eq. (3.3.14) at the time n.

3.3.2.3 Step 3: velocity correction

Having calculated the pressure or density update, Eq. (3.3.4) is used in its weak form to correct

the intermediate velocity:∫
Ω f

NT
v ΔV f dΩ f =

∫
Ω f

NT
v ΔV̌ f dΩ f + Δt

∫
Ω f

−NT
v ∇[pn

f + θ2(Δp f )] dΩ f , (3.3.19)

which results in the final matrix form:

ΔV f = ΔV̌ f +M−1
v Δt

[
−GT (pn

f + θ2Δp f )
]

. (3.3.20)

3.3.2.4 Step 4: energy

Analogous to the first step (intermediate velocity), the weak form of the energy equation (3.3.9)

can be expressed as:∫
Ω f

NTΔE f dΩ f = −Δt

[∫
Ω f

NT∇T (u f (E f + p f )) dΩ f −

∫
Ω f

NTwT
f ∇E f dΩ f

+

∫
Ω f

(∇N)T 1

Re

(
QT

f τ f +
1

Pr
κ f∇T f

)
dΩ f −

∫
Ω f

NTρ f b̂T
f u f dΩ f

−

∫
Γ f

NT 1

Re

[
QTτ f +

1

Pr
κ f∇T f

]T

ndΓ f

]n

+
Δt2

2

[
−

∫
Ω f

(sT
f ∇)NT∇T (u f (E f + p f )) dΩ f +

∫
Ω f

(sT
f ∇)NT (wT

f ∇E f ) dΩ f

−

∫
Ω f

NT (sT
f ∇)(ρ f b̂T

f u f ) dΩ f

]n

,

(3.3.21)

where again integration by parts on the second order terms are used and third order terms are

neglected. Further, the surface integrals arising due to the integration by parts of the stabilization
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3.3 The CBS scheme

terms are again omitted, because they are equal to zero due to boundary conditions. The matrix

form is then obtained by substituting the approximations of Eq. (3.3.11) into the above equation

as:

ΔE f = M−1Δt

[
(−CsEE f − CvEp f − KτEv f − KT T f + fE) + Δt(−KsEE f − KvEp f )

]n

, (3.3.22)

with the matrices and vectors:

CsE =

∫
Ω f

NT Ls dΩ f ; CvE =

∫
Ω f

NT Lv dΩ f ; KT =

∫
Ω f

(∇N)T
κ f

Re Pr
(∇N) dΩ f ;

KτE =

∫
Ω f

(∇N)T QT
f

μ f

Re

(
I0 −

2
3

mmT
)
Bτ dΩ f ; KsE =

1

2

∫
Ω f

LT
s Ls dΩ f ;

fE =

∫
Γ f

NT 1

Re

(
QT

[
μ f

(
I0 −

2
3

mmT
)
Bτv f

]
+
κ f

Pr
(∇N)T f

)T

ndΓ f ; KvE =
1

2

∫
Ω f

LT
s Lv dΩ f ;

where:

Ls = [bs1, bs2, . . . , bsm]; Lv = [bv1, bv2, . . . , bvm] .

The entries of Ls and Lv are given in Eq. (3.3.14).

3.3.2.5 Final CBS scheme

The matrix equations derived in the last subsections are summarized here due to its importance in

this thesis. By using the CBS scheme, a steady state solution for compressible fluid problems is

obtained by the following iterative procedure:

• preprocess (read grid, form mass matrices, initialize V0
f
, ρ0

f
, E0

f
, and secondary fluid quanti-

ties (temperature, velocity, viscosity, etc.))

• loop over Nt time steps or until convergence is reached

– intermediate velocity:

ΔV̌ f = M−1
v Δt

[
(−CsVV f − Kτv f + fτ) + Δt(−KsVV f − KpVp f )

]n

(3.3.15)

– density:

Δρ f = (M+Δt2θ1θ2Kρ)
−1Δt

[
G(Vn

f +θ1ΔV̌ f )+Cwρρ f −fV+Δt(−θ1Kppn
f +fp)

]
(3.3.17)

– correct velocity:

ΔV f = ΔV̌ f +M−1
v Δt

[
−GT (pn

f + θ2Δp f )
]

(3.3.20)

– energy:

ΔE f = M−1Δt

[
(−CsEE f − CvEp f − KτEv f − KT T f + fE)

+ Δt(−KsEE f − KvEp f )
]n (3.3.22)

– update solution and calculate secondary fluid quantities (temperature, velocity, viscos-

ity, etc.)
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3 Characteristic Based Split Methodology for the Fluid Flow

– set boundary conditions (slip, no-slip, farfield, symmetry, etc.)

– check for convergence

• postprocess (write solution, calculate lift and drag, etc.)

With this CBS scheme, a powerful tool is available, which can be used to calculate a wide range

of problems in fluid dynamics, ranging from inviscid to laminar or turbulent viscous as well as

from compressible to incompressible flows. The treatment of these different fluid flow types is the

topic of the next section. However, with the scheme above the basic steps are derived to calculate

the fluid flow in the ALE frame of reference.

3.4 Additional computational techniques

The CBS scheme to solve fluid problems via finite elements is in its basic form of general applica-

bility and some aspects for compressible and incompressible fluids need to be addressed. Further,

some techniques to save computational time or to acquire a faster solution will be covered in next

few subsections.

3.4.1 Matrix free, explicit form

As mentioned above, the full explicit version is obtained by setting θ2 = 0. Then, for the density

or pressure equation, Eq. (3.3.17) or (3.3.18), only the inversion of the consistent mass matrix M

or Mp is required1. In this thesis, the most numerical examples are carried out with the full explicit

CBS scheme unless indicated differently. Especially, when a compressible fluid is considered, this

explicit CBS scheme is advantageous since by using Eq. (3.3.17), M needs to be inverted, which

is - unlike Mp - constant throughout the solution procedure. But as noted in [NCZ06], better

convergence can be achieved for incompressible flows, if the implicit scheme for the pressure

equation (3.3.18) is used, i.e. 0 < θ2 ≤ 1.

Further, a matrix free scheme can be obtained, by setting θ2 = 0 and diagonalization (or

lumping) of the mass matrix. From the computational point of view, such matrix free scheme is

attractive since the solution of the system becomes trivial. A lumped mass matrix ML is usually

obtained by summing up the mass matrix entries of each row and placing the sum on the diagonal,

while setting the non-diagonal entries to zero. This is equivalent to distributing the mass of the

element to the nodes, which is sketched on the left hand side of Figure 3.1 for linear triangles.

However, this is only possible for linear or bilinear elements. For quadratic elements, zero sums

are obtained, which prevents a solution. Therefore, for triangular quadratic elements a suggestion

for lumping the mass matrix is shown on the right side of Figure 3.1, where the quadratic element

is virtually divided into four linear triangles and the same lumping rule as for linear triangles is

applied. For other quadratic elements, similar lumping procedures can be found. However, the

nodal decoupling by using a lumped mass matrix can lead to unphysical oscillations. Another

method to avoid a large system of linear equations invoked by the consistent mass matrix is the

usage of a discontinuous characteristic based split scheme, where each finite element is treated

independently and the element-by-element linking is considered by the elemental edge flux. This

discontinuous characteristic based split scheme is the topic of section 3.5.

1The term mass matrix comes from the finite element method in structural mechanics, where the consistent mass

matrix is calculated as: M =
∫
Ω

NTρN dΩ.
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M/3

M/3M/3

M/12

M/12M/12

M/4 M/4

M/4

Figure 3.1: Mass lumping of linear (left) and quadratic triangle elements (right), where M indicates

the whole mass of the element

3.4.2 Variable smoothing

In computational fluid dynamics, the use of a residual smoothing scheme is a common compu-

tational method [Bla06]. In this work, the fluid residuals are smoothed in each iteration of the

CBS procedure. Adapted from [TN05, Loe08], the residual is smoothed by a Laplace operator

approach, whereas the Laplacian coefficients are approximated with the aid of the consistent mass

matrix as:

rn+1
S = Srn+1 , (3.4.1)

where rn+1
S

is the smoothed residual and S is the is symmetric smoothing matrix, whose each row

sum is equal to one.

The smoothing matrix, which represents the Laplacian coefficients, can be obtained from the

consistent mass matrix as (see [Loe08]):

S = (1 − ςs)I + ςsM̆
−1
L M̆ , (3.4.2)

where M̆ is the consistent mass matrix with diagonal elements set to zero, i.e. M̆ = M − MD with

MD being the diagonal of the consistent mass matrix. The matrix M̆L denotes the lumped version

of M̆ and ςs is a user specified smoothing parameter which varies between 0 and 0.03. Thus, an

increasing value of ςs means, that the influence of the nodes surrounding the node in question is

decreased. To account for solid walls, a distance based linear dependency of ςs is considered for

S, i.e. along a transition wall distance, ςs decreases linearly to zero at wall points.

3.4.3 Incompressible fluid - artificial compressibility

The CBS scheme presented can also be used for incompressible fluids in the ALE frame of ref-

erence. Incompressible fluids are characterized by a constant density and therefore the pressure

equation (3.3.18) instead of Eq. (3.3.17) needs to be used. On the other hand, for incompressible

fluids the speed of sound c f (or wave speed) becomes very large or even infinity, which results

in a stiff solution scheme. Therefore, c f is replaced by an artificial compressibility parameter

β in the matrix Mp of (3.3.18). Still, the whole set of equations of the CBS scheme is used to

iterate to steady state and it could be shown, that the parameter β does not affect the solution,

[DGP94, Nit03, NMWM04, NCZ06, MLN02]. The parameter β makes sure that Mp does not

reach zero, which is important, when the full explicit version (θ2 = 0) of the CBS scheme is used.

According to [Liu05], β (in its non-dimensional form) is locally calculated as:

β = max(ςc, v
conv
f , vdiff

f ) = max

(
ςc,

√
uT

f
u f ,

2ν f

h Re

)
, (3.4.3)

where ςc is a user specified lower bound, vconv
f
=

√
uT

f
u f is the convective velocity and vdiff

f
=

2ν f

h Re

is the diffusive velocity.
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1

2

3

4

5

i
hi1

hi2

hi3

hi4

hi5

Figure 3.2: Calculation of hi for the node i, surrounded by Nie = 5 triangular elements, hi =

min(hi1, hi2, hi3, hi4, hi5)

The quantity h denotes a characteristic length, which is derived from the local element size

he. Since the value β is calculated for every node of the computational mesh, the local element

size needs to be evaluated for each node, i.e. a value hi for each node i is required. Therefore,

hi at a node is taken as the minimum of sizes of each element connecting to the node, that is for

triangular elements, see also Figure 3.2:

hi = min(hie)Nie
= min

(
2Area

Length of the opposite side

)
Nie

, (3.4.4)

where Nie is the number of elements connecting to the node i. For tetrahedral elements, one can

find:

hi = min

(
3Volume

Area of the opposite face

)
Nie

. (3.4.5)

For quadrilateral and hexahedral elements, a similar calculation can be made considering here that

the minimal orthogonal distance from all opposite edges or areas to the node in question needs to

be taken. An alternative evaluation of the characteristic length based on the streamline vector is

given in [Sha89] and applied and investigated in the context of the CBS scheme in [TN05]. Clearly,

the characteristic length computed by a streamline based calculation would change during the

iteration to steady state and is therefore more computational expensive than the static calculation

of h given above. Thus, such a streamline based calculation of h is not considered here.

3.4.4 Inviscid flow problems

For inviscid flow problems, the Reynolds number Re is infinity, which results in solving the so-

called Euler equations for fluid flow problems. Thus, the first step of calculating the intermediate

velocity can be obtained as:

ΔV̌ f = M−1
v Δt

[
(−CsVV f + Δt(−KsVV f − KpVp f )

]n

(3.4.6)

and the fourth step of calculating the energy becomes:

ΔE f = M−1Δt

[
(−CsEE f − CvEp f + Δt(−KsEE f − KvEp f )

]n

. (3.4.7)

The rest of the CBS scheme remains unchanged.
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3.4.5 Local time stepping

Since the CBS scheme is used for flow problems to iterate to steady state, different local time steps

can be used to accelerate the iteration, i.e. different time steps at the nodes and elements are used.

These local time steps depend on the characteristic length as:

Δt = ςt min(Δtconv,Δtdiff) , (3.4.8)

where:

Δtconv =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
h

vconv
f
+c f
= h√

uT
f
u f+c f

for compressible flows

h
vconv

f
+β
= h√

uT
f
u f+β

for incompressible flows
(3.4.9)

and:

Δtdiff =
h2Re

2ν f

(3.4.10)

and ςt denotes a user specified safety factor ranging from 0.1 to 1.0 depending on the flow problem

and used mesh. For the nodal value of the time step, Δti, again the nodal value of the element size

hi from Eq. (3.4.4) as well as nodal velocities and nodal viscosities are needed. An elemental

time step, Δte, is calculated then as the mean of the nodes adjacent to the element in question.

For inviscid problems, Δtdiff is not considered and the local time step is only calculated from the

convective time step Δtconv.

3.4.6 Unsteady flow problems

The CBS scheme is used to iterate a solution to steady state, i.e. t → ∞. Most fluid problems -

especially when structural interaction takes place - are unsteady in nature. For such time accurate

(or transient) problems, it is common in CFD to use a dual time stepping approach, [Jam91], where

in each real time step ΔtR, an iterative procedure is carried out, in which the pseudo time t goes to

infinity. Thus, the unsteady flow problem becomes a pseudo-steady state problem within each real

time step.

In order to recover a transient solution, real time terms need to be added to the CBS equations

(3.3.15), (3.3.17)/(3.3.18), (3.3.20) and (3.3.22). The velocity real time term can be added to

step 1, Eq. (3.3.15), or to step 3, Eq. (3.3.20). Here, the velocity real time term is added to step 3,

which results in the following modified third term:

ΔV f = ΔV̌ f +M−1
v Δt

[
−GT (pn

f + θ2Δp f )
]
−
Δt

ΔtR
ΔVR

f , (3.4.11)

where ΔVR
f

is the velocity real time term, which is implicitly approximated with a second order

time-accurate three-point backward difference scheme as:

ΔVR
f = [Mm+1

v ]−1
(
3

2
Mm+1
v Vm+1

f − 2 Mm
v Vm

f +
1

2
Mm−1
v Vm−1

f

)
=

3

2
Vn

f +M−1
v

(
−2 Mm

v Vm
f +

1

2
Mm−1
v Vm−1

f

)
,

(3.4.12)

where Vm+1
f

is the desired solution at the new real time level m + 1 equal to the nth pseudo time

level value within the n-iteration (and thus Mm+1
v = Mv), Vm

f
is the solution at the last real time

level m and Vm−1
f

denotes the solution at the real time level m − 1. Here, a constant real time step

ΔtR is assumed. Due to the use of an implicit real time stepping scheme, the real time step size is

unrestricted in terms of stability.

43



3 Characteristic Based Split Methodology for the Fluid Flow

For compressible flow, the density real time term is added to step 2 resulting in:

Δρ f = (M + Δt2θ1θ2Kρ)
−1Δt

[
G(Vn

f + θ1ΔV̌ f ) + Cwρρ
n
f − fV + Δt(−θ1Kppn

f + fp)
]

−
Δt

ΔtR
ΔρR

f ,

(3.4.13)

where ΔρR
f

is similar approximated as ΔVR
f
:

ΔρR
f =

3

2
ρn

f +M−1
(
−2 Mmρm

f +
1

2
Mm−1ρm−1

f

)
. (3.4.14)

For incompressible flow, a pressure real time term is added to step 2 resulting in:

Δp f = (Mp + Δt2θ1θ2Kp)−1Δt

[
G(Vn

f + θ1ΔV̌ f ) + Cwρρ
n
f − fV + Δt(−θ1Kppn

f + fp)
]

−
Δt

ΔtR
ΔpR

f ,

(3.4.15)

with ΔpR
f

being:

ΔpR
f =

3

2
pn

f +M−1
(
−2 Mmpm

f +
1

2
Mm−1pm−1

f

)
. (3.4.16)

Finally, an energy real time term is added to the energy equation (3.3.22), which results in the

following modified energy equation:

ΔE f = M−1Δt

[
(−CsEE f − CvEp f − KτEv f − KT T f + fE)

+ Δt(−KsEE f − KvEp f )
]n

−
Δt

ΔtR
ΔER

f ,

(3.4.17)

with

ΔER
f =

3

2
En

f +M−1
(
−2 MmEm

f +
1

2
Mm−1Em−1

f

)
. (3.4.18)

It should be noted here, that after each real time step the solution vectors at the time level m

and m−1 need to be appropriately stored and the vectors ΔVR
f
, ΔρR

f
or ΔpR

f
, and ΔER

f
need to be

recalculated after each inner (pseudo time) iteration.

3.4.7 Geometric conservation law

In section 2.4.6, the geometric conservation law is introduced, which is a requirement for predict-

ing exactly the trivial solution of a uniform flow on deforming meshes. A very comprehensive

overview on this topic using different numerical schemes is given in the paper [EGP09] and the

reference therein. Some literature references pointed out the importance of the GCL for the stabil-

ity of the resulting numerical ALE scheme. But this is still a controversial topic of current research

as the two papers - [FGG01] and [BG04] - show. While the first paper states that the GCL is a

sufficient and necessary condition for stability up to second order accuracy in time, the second

shows that through the GCL accuracy is likely to improve and stability is enhanced in some cases.

Mostly, the GCL is used to find a rule for the derivation of the discrete mesh velocity w f .

In [LF96], a first temporary order scheme to calculate the mesh velocity is given by w
m+1/2
f

=

(xm+1
f
− xm

f
)/ΔtR, where x f is the position of the fluid grid nodes. To calculate the mesh velocity,

in this thesis and according to [BG04, Bla06, Foe07] the same second order approximation is used

as for the other primary fluid quantities in Eq. (3.4.12), (3.4.14)/(3.4.16) and (3.4.18), that is:

wm+1
f =

ΔxR
f

ΔtR
=

3xm+1
f
− 4xm

f
+ xm−1

f

2ΔtR
. (3.4.19)

44



3.5 Discontinuous Galerkin form

This equation automatically satisfied Eq. (2.4.64), [Bla06, Foe07]. Further, it should be noted

here, that by using a partitioned coupling approach for fluid-structure interaction after each real

time step, the fluid solver is restarted with the mesh at time level m+1 and its node positions xm+1
f

.

Therefore, the mass matrix M is calculated at each real time step according to the mesh at time

level m + 1.

3.5 Discontinuous Galerkin form

Mass matrix lumping as described in section 3.4.1 is not applicable, when the implicit form of the

CBS scheme is applied, i.e. when θ2 > 0. Also, as noted in [ZBN05], the usage of mass matrix

lumping can lead to serious errors, when used for time accurate problems. Further, it could be

observed, that unphysical oscillations appear in the solution, when mass matrix lumping is applied

for quadratic and higher order elements, i.e. for elements with quadratic and higher order shape

function interpolation. Such oscillations are caused by a nodal decoupling, when a lumped mass

matrix is used. Therefore, a consistent mass matrix should be applied in such situations, which is

computational expensive with many degrees of freedom. Alternatively, an elemental discontinuous

Galerkin (DG) form of the CBS scheme can be used, which was proposed for incompressible fluid

flow problems in [Tho06, TNB08].

The DG method has been developed mainly for problems in fluid mechanics and combines

features of finite element and the finite volume schemes. A good overview of this methodology

can be found in [Coc03, Li06] and the references therein. One important advantage of the DG

method is the possibility of an easy parallization of the algorithm since this method allows an

element-by-element solution procedure. However, each node belongs to several elements and

multiple solutions for each node need therefore to be stored, which results in a large memory

requirement. Further, additional edge fluxes for each element have to be computed, which makes

the computation of the residual for the discontinuous methodology more expensive than for the

continuous Galerkin counterpart.

In this thesis, a discontinuous form of the characteristic based split (DG-CBS) scheme for the

ALE frame of reference is employed, which has the same structure as the continuous Galerkin

form of the CBS scheme. This has the advantages, that only minor modifications to the CBS

scheme are necessary and that computational effort is reduced, [HSBB06]. The standard finite

element assembly of the continuous Galerkin form is removed and the element-by-element linking

is done by the edge flux, which ensures continuity between the elements. This edge flux also can

be used to satisfy a local or elemental conservation, if this flux is equal for the common boundary

of two adjoining elements. Due to the avoidance of a global matrix system, the necessity of solving

a system of linear algebraic equations is omitted. As noted in [TNB08], the DG-CBS scheme is

not only globally but also locally conservative in terms of the fluid variables.

To show the concept of the discontinuous Galerkin form, plots of a primary variable over a

patch of three two-dimensional finite elements using continuous and discontinuous spatial shape

function interpolation are shown in Figure 3.3. While for the continuous case the spatial evolution

of a primary variable shows no steps over the element edges (C0 continuous), this continuity

requirement is abandoned with the discontinuous spatial discretization, Figure 3.3(b). Due to the

avoidance of a global matrix system, the necessity of solving a system of linear algebraic equation

is omitted for an explicit scheme.

3.5.1 Discontinuous Galerkin spatial discretization

The discretization of the DG-CBS scheme starts with the same weak statement as the continuous

Galerkin form of Eq. (3.3.12). Using non-overlapping finite elements Ωe
f
, one can write for each
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(a) continuous shape function interpolation
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(b) discontinuous shape function interpolation

Figure 3.3: Plot of a primary variable over a patch of two-dimensional finite elements using con-

tinuous and discontinuous spatial shape function interpolation

∫
Ωe

f

NT
v ΔV̌ f dΩe

f = Δt

[∫
Ωe

f

[(uTf ∇)NT
v ]V f dΩe

f −

∫
Ωe

f

[(wT
f ∇)NT

v ]V f dΩe
f

−

∫
Γe

f

NT
v [n(u f V

T
f )]T dΓe

f +

∫
Γe

f

NT
v [wT

f nVT
f ]T dΓe

f

−

∫
Ωe

f

(DNv)
T 1

Re
τ f dΩe

f +

∫
Ωe

f

NT
v ρ f b̂ f dΩe

f +

∫
Γe

f

NT
v

1

Re
ΥTτ f dΓe

f

]n

+
Δt2

2

[
−

∫
Ωe

f

(sT
f ∇)NT

v [∇T (u f V
T
f )]T dΩe

f +

∫
Ωe

f

(sT
f ∇)NT

v [wT
f ∇VT

f ]T dΩe
f

−

∫
Ωe

f

NT
v (sT

f ∇)(ρ f b̂ f ) dΩe
f −

∫
Ωe

f

(sT
f ∇)NT

v ∇p f dΩe
f

]n

,

(3.5.1)

where an additional integration by parts for the convective terms is applied, which leads to the

appearance of an additional edge flux. It should be further noted here, that the element boundary

terms of the stabilization part are neglected, which is a valid approach, [TNB08]. With the same

assumption as in section 3.3.2.1, the resulting matrix system for this one element is:

ΔV̌ f = Me,−1
v Δt

[
(Ce

sVV f − Ke
τv f − fe

sV + fe
τ) + Δt(−Ke

sVV f − Ke
pVp f )

]n

, (3.5.2)

where

Me
v =

∫
Ωe

f

NT
v Nv dΩe

f ; Ce
sV =

∫
Ωe

f

BT
s Nv dΩe

f ; Ke
sV =

1

2

∫
Ωe

f

BT
s Bs dΩe

f

Ke
τ =

∫
Ωe

f

BT
τ

μ f

Re

(
I0 −

2
3

mmT
)
Bτ dΩe

f ; fe
τ =

∫
Γe

f

1

Re
NT
v Υ

T Nττ̆ f dΓe
f ;

fe
sV =

∫
Γe

f

NT
v (sT

f n)NvV f dΓe
f ; Ke

pV =
1

2

∫
Ωe

f

BT
s (∇N) dΩe

f .
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It is important to note, that for the boundary term fe
τ the nodal stress vector τ̆ f is needed, which

is spatially interpolated with the shape function matrix Nτ. This form ensures the local con-

servation of the edge flux and requires the nodal stress values to be computed in an additional

post-processing step in each iteration.

The second step remains nearly unchanged and is rewritten for one finite element Ωe
f

as:

Δρ f = (Me + Δt2θ1θ2Ke
ρ)
−1Δt

[
Ge

V (Vn
f + θ1ΔV̌ f ) + Ce

wρρ
n
f − fe

V + Δtθ1(−Ke
ppn

f + fe
p)

]
, (3.5.3)

where

Me =

∫
Ωe

f

NT N dΩe
f ; Ke

ρ =

∫
Ωe

f

(∇N)T (c2
f )

n(∇N) dΩe
f ; Ge

V =

∫
Ωe

f

(∇N)T Nv dΩe
f ;

fe
p =

∫
Γe

f

NT nT Nvp f ,x dΓe
f ; Ce

wρ =

∫
Ωe

f

NT Lw dΩe
f ; fe

V =

∫
Γe

f

NT (Nv[V
n
f + θ1ΔV̌ f ])

T ndΓe
f .

Similar to the vector fe
τ from step 1, the nodal pressure derivatives p f ,x interpolated with Nv are

needed for fe
p to ensure local conservation over the element boundaries. These nodal pressure

derivatives are calculated in an extra step in each iteration. For incompressible flows, the pressure

is calculated rather than the density as:

Δp f = (Me
p + Δt2θ1θ2Ke

p)−1Δt

[
Ge

V (Vn
f + θ1ΔV̌ f ) + Ce

wρρ
n
f − fe

V + Δtθ1(−Ke
ppn

f + fe
p)

]
, (3.5.4)

with the matrices:

Me
p =

∫
Ωe

f

NT

⎛⎜⎜⎜⎜⎜⎜⎝ 1

c2
f

⎞⎟⎟⎟⎟⎟⎟⎠n

N dΩe
f ; Ke

p =

∫
Ωe

f

(∇N)T (∇N) dΩe
f .

In the next step the velocity is corrected with:

ΔV f = ΔV̌ f +Me,−1
v Δt

[
Ge

p(pn
f + θ2Δp f ) − fe

V2

]
, (3.5.5)

where again integration by parts of Eq. (3.3.19) is used to obtain the elemental boundary flux fe
V2

.

The matrices and vectors are defined as:

Ge
p =

∫
Ωe

f

([
∂/∂x1 0 0

0 ∂/∂x2 0
0 0 ∂/∂x3

]
Nv

)T

N dΩe
f ; fe

V2 =

∫
Γe

f

NT
v nNpn

f dΓe
f .

Finally and in analogy to step 1, the energy matrix-vector equation is obtained as

ΔE f = Me,−1Δt

[
(Ce

sEE f + Ce
vEp f − Ke

τEv f − Ke
T T f − fe

sE − fe
vE + fe

E)

+ Δt(−Ke
sEE f − Ke

vEp f )
]n

,

(3.5.6)

with the matrices and vectors being:
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Figure 3.4: Triangular and quadrilateral element sharing a common boundary, where the flux is

conserved

Again, the nodal temperature derivatives T f ,x are needed for the element boundary flux to ensure

local conservation and this vector is computed at the end of each iteration cycle.

3.5.2 Calculation of the edge fluxes and continuous solution

As already mentioned above, the DG-CBS scheme ensures a conservation of the flux crossing a

common boundary of neighboring elements.

In Figure 3.4, a triangular (e1) and a quadrilateral (e2) element are depicted, which share

a common edge. The condition for this flux conservation can be expressed with the aid of the

boundary normals as:

FT
e1ne1 = FT

e2ne2 , (3.5.7)

where Fei is the flux and nei denotes the outward normal of the common boundary. Due to this

equation, nodal values of the viscous stress vector and of the pressure and temperature derivatives

are necessary, which are calculated from the surrounding elements of the node in question once

a global continuous solution is obtained. For triangular elements, these derivatives are constant

for each element and a mean value for specific nodes can be computed in a straightforward way.

For quadrilateral elements and higher order elements, the derivatives are extrapolated from the

Gaussian points of the element to the node and the nodal derivative is obtained by averaging these

elemental derivatives. A patch of Nie = 5 elements is shown in Figure 3.5 and the nodal derivative

(∇φ)i at a node i is calculated as:

(∇φ)i =
1

Nie

Nie∑
e=1

(∇φ)ei . (3.5.8)

In a similar way, the global continuous solution (ρ f ,V f ,E f ) is obtained by averaging the local

elemental solution at the node in question, that is:

φi =
1

Nie

Nie∑
e=1

φei , (3.5.9)

where φi is the global discrete solution at the node i and φei the solution at the node i on element

level.

After obtaining the global continuous solution, the calculation of the secondary fluid quantities

like temperature, local Mach-Number, etc. is accomplished. For incompressible flow problems,

the artificial compressibility scheme is available without restriction and a time accurate solution

can again be recovered by the dual time-stepping approach employed in section 3.4.6.
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Figure 3.5: Patch of 5 finite elements and its discontinuous discretization - calculation of the nodal

derivative (∇φ)i

3.6 Chapter summary

In this chapter, the CBS methodology is employed for the fluid domain described by the Navier-

Stokes equation in ALE frame of reference. Thus, a spatial discretization scheme consistent to

the structural solver is provided with CBS scheme. Modern discontinuous Galerkin developments

are considered with the development of the DG-CBS scheme. The mathematical formulation

of the CBS scheme uses a characteristic Galerkin expansion of the governing equations in non-

dimensional form and the splitting is introduced during the temporal discretization. The full matrix

scheme is then obtained by a spatial discretization with the aid of finite elements, which use a shape

function interpolation of the unknown variables.

Since the fluid domain needs to be adapted according to the structural deformation the ALE

form of the governing fluid equations is used in this thesis and this form is a novel extension

compared to the work of Zienkiewicz [ZBN05] and Nithiarasu [NCZ06]. Furthermore, additional

computational techniques, in particular a matrix free form, residual smoothing, artificial compress-

ibility for incompressible fluids or local time stepping, are discussed in detail.

Additionally, an novel alternative spatial discretization is introduced in section 3.5, which

uses a discontinuous Galerkin formulation of the CBS scheme. In this variant, it is circumvented

to solve a system with a global coefficient mass matrix. A more important advantage of this DG-

CBS scheme is the property that the element edge flux can be designed to be locally conservative.

Further, turbulence modeling with the aid of CBS the scheme is included in the appendix A.2.

In appendix A.2, the Favre and Reynolds averaging to the governing fluid equations is applied

and two models to determine the eddy viscosity are introduced. The first model is the well-known

Spalart-Allmaras (SA) turbulence model as a representative of an one-equation turbulence model.

In section A.2.4.2 the discretization of the k-ω baseline (BSL) and shear stress transport (SST)

model of Menter using the CBS scheme are additionally shown. These models are two-equation

turbulence models and like the Spalart-Allmaras model often used for aeronautical applications.
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4 Discrete Coupling Scheme

In this chapter, the numerical aspects of the weak formulation for the coupled problem, which

is presented in section 2.5, are discussed. For convenient reasons, an operational view will be

introduced for each numerical ingredient, which also assists the partitioned coupling approach of

the FSI problem.

4.1 Reduction on the coupling interface

To discuss the discrete coupling scheme, it is appropriate to reduce the discrete equation for each

single field on the coupling interface. This reduction is naturally inspired by the use of the parti-

tioned coupling approach, where distinguished solvers for each single field problem are combined

to solve coupled problems. Thus operators are introduced, which provide the discrete forces on

the coupling interface. This is physically reasonable as shown for the structural subdomain in the

next subsection. For the fluid subdomain a similar operational view is introduced in a subsequent

section.

4.1.1 Reduction on the coupling interface for the structural subdomain

For the structural domain, the first variation of the actions functional given in Eq. (2.3.8) can be

directly discretized in space by using shape function interpolation as described in section 3.3.2.

Thus, the structural displacement field as well as its first variation (Galerkin scheme) is interpo-

lated as:

us ≈ Nuus; δus ≈ Nuδus , (4.1.1)

where the matrix of the shape functions is

Nu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
N1 0 0 N2 0 0 . . . Nm 0 0

0 N1 0 0 N2 0 . . . 0 Nm 0

0 0 N1 0 0 N2 . . . 0 0 Nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Therefore, each component of the displacement field is interpolated with the same set of shape

functions. With this interpolation, the first variation of the structural problem leads directly to, see

[Hug00, ZTZ05, Bat96] for details:

Muüs + fu,int(us) = fu,ext , (4.1.2)

where:

Mu =

∫
Ωs

NT
u ρsNu dΩs; fu,int =

∫
Ωs

(DNu)Tσs dΩs; fu,ext =

∫
Ωs

NT
u b̂s dΩs +

∫
Γs

NT
u t̂ s dΓs .
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4 Discrete Coupling Scheme

For non-linear structural problems, the internal forces fu,int depend on the displacements. For

linear problems, the constitutive relation of Eq. (2.3.6) is used and the spatial discretization leads

to:

Muüs + Kuus = fu,ext , (4.1.3)

with the stiffness matrix defined as:

Ku =

∫
Ωs

BT
u E Bu dΩs =

∫
Ωs

(DNu)T E (DNu) dΩs .

The unknown displacements us as well as the forces fu can be split into internal values and values

on the coupling interface Γc as:

us =

(
uΩs
uΓs

)
; fu =

(
fΩu
fΓu

)
. (4.1.4)

With this splitting, it is convenient to introduce a structural operator S as:

SuΓs = fΓu,ext = fΓs , (4.1.5)

where fΩu,ext = 0 is assumed, which implies b̂s = 0. This operator is in general non-linear and

depends on the displacements us. In the case of a static linear structural problem, Kuus = fu,ext,

this operator is identical to the Schur complement of Ku:[
KΩΩu KΩΓu

KΓΩu KΓΓu

] (
uΩs
uΓs

)
=

(
fΩu,ext = 0

fΓu,ext

)
⇒

(
KΓΓu − KΓΩu KΩΩu

−1
KΩΓu

)
︸������������������������︷︷������������������������︸

=S

uΓs = fΓu,ext . (4.1.6)

The Schur complement S projects the interface state vector uΓs on the domain and evaluates the

resulting fluxes fΓs . Usually, the inverse statement, i.e. a Neumann problem, has to be computed

for the structure, where a structural displacement vector needs to be obtained under prescribed

forces. Therefore, it can be written:

uΓs = S
−1fΓs , (4.1.7)

where S−1 implies, that the matrix system of Eq. (4.1.2) has to be solved for the displacements.

4.1.2 Reduction on the coupling interface for the fluid subdomain

Similar to the structural solver operator S, a fluid solver operator can be introduced. For consis-

tency such an operator is written as:

fΓf = FuΓf , (4.1.8)

where uΓ
f

is the displacement of the interface processed by the fluid solver to obtain the interface

forces fΓ
f
. Using the CBS scheme, these interface forces are computed from the Cauchy surface

stress as:

fΓf =

∫
Γc

NT
v Υ

Tσ f dΓc =

∫
Γc

NT
v Υ

Tτ f dΓc −

∫
Γc

NT
v p f ndΓc . (4.1.9)

Behind the operator F several operations need to be performed. Based on the interface dis-

placement uΓ
f
, the displacement vector for the whole fluid domain is required to be obtained in a

first step. This task is part of the mesh deformation algorithm, which is written in an operational

context as:

u f = GuΓf . (4.1.10)
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4.2 Finite element grid deformation

Details on the mesh deformation will be described in a following subsection. Once the fluid

domain displacement is obtained, the new position of each node can be calculated easily as:

x f = u f + x0
f , (4.1.11)

where x0
f

is the initial nodal position, i.e. the location of the nodes at t = 0. Using Eq. (3.4.19), the

mesh velocity can be computed from the new nodal position. From an operational point of view,

this second step can be written as:

w f =Wu f . (4.1.12)

With this mesh velocity, the actual fluid solver, or in this case the CBS scheme, can be invoked to

get the resulting forces on the fluid interface:

fΓf = Cw f . (4.1.13)

Therefore, the fluid solver operator can be replaced as:

fΓf = (C ◦W ◦G) uΓf ⇒ F = C ◦W ◦G . (4.1.14)

This operational view also underlies the partitioned solution approach, mentioned in the introduc-

tion of this thesis.

4.2 Finite element grid deformation

In the previous section, a grid deformation operator G as part of the fluid solver operator F is

shown to be necessary for the update of the nodal positions. Since the grid quality has a major

influence on the solution accuracy and on the convergence, the grid deformation operator has to

fulfill the requirements of avoiding extreme element shapes and of keeping the boundary layer for

viscous flow calculations. Several methods exist for such deformation operator G.

In [dBvdSB07], radial basis functions are used for this task, but the mesh quality strongly

depends on the type of the basis function and its support radius. Another promising method

is based on the concept of Delauny graphs, [LQX06]. But for high deformations, this method

requires an incremental application of this Delauny graph. Certainly, the most common method

is the spring analogy method, [DF02], where the edges are represented through springs with a

certain stiffness.

In this thesis, a variant of this method is used, where the grid is treated as a pseudo structure,

i.e. the fluid domain is seen as a solid body, on which the interface displacement field is prescribed

as a boundary condition. According to the linear static structural system, given in the left part of

Eq. (4.1.6), such grid deformation can be written as:

Kgu f = 0 ⇒

[
KΩΩg KΩΓg
KΓΩg KΓΓg

] ⎛⎜⎜⎜⎜⎝ uΩ
f

uΓ
f

⎞⎟⎟⎟⎟⎠ = (
0
0

)
, (4.2.1)

where

Kg =

∫
Ω f

(DNv)
T Eg (DNv) dΩ f .

Eq. (4.2.1) has to be solved for uΩ
f

every time the interface displacement field changes. For the

stress-strain matrix Eg, a linear material behavior is assumed, which is isotropic for each ele-

ment. Therefore, a locally adapted stress-strain matrix is used, where for each element, the elastic

modulus Eg and Poisson’s ratio νg need to be calculated.
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4 Discrete Coupling Scheme

To obtain a higher stiffness for small elements, the Jacobian determinant, which arises during

the numerical integration, can be simply neglected, [Hug00, ZTZ05, Bat96]. This is to say for the

elastic modulus:

Eg,i =
1

Ωe,i

, (4.2.2)

where Ωe is the volume size of the element in question, [JT94, STB03]. The stiffness for each

finite element Eg,i can also be evaluated as the inverse of the minimal element edge length:

Eg,i =
1

min(le,i j)
; j = 1 . . .Nedges , (4.2.3)

where le,i j is the length of the jth edge for the element i. Thus, smaller elements near the wall have

a higher stiffness than greater elements in the farfield. A third possibility is to use the shortest

distance from a node to the nearest solid wall, dw, and thus the element stiffness is expressed as:

Eg,i =
1

dw,i
. (4.2.4)

Further, the element stiffness can be calculated from the characteristic length, which is given in

Eq. (3.4.4):

Eg,i =
1

hi

. (4.2.5)

All these stiffness evaluation methods can also be combined and in this thesis two combinations

are used:

• usage of the wall distance and the characteristic length:

Eg,i =
1

dw,ihi

(4.2.6)

• usage of the wall distance and the Jacobian determinant:

Eg,i =
1

dw,iΩe,i

(4.2.7)

For the second pseudo material parameter - Poisson’s ratio - different values are possible,

which were investigated in [XA04]. Since the results obtained with the pseudo structural approach

have no physical meaning, also negative values for Poisson’s ratio can be considered, although

such material does not exist. Using positive values, as typical solids have, a stretching in one

direction is always accompanied with a compression in the other directions. This might lead

to a degradation of the element aspect ratios. Therefore, a negative value for Poisson’s ratio

νg = −0.5 is used, [XA04]. This results in the advantageous behavior, that a grid element, which

is compressed in one direction, is also shortened in the other two perpendicular directions. Thus,

the initial element aspect ratios can be preserved.

In terms of the computational effort, it should be noted, that it is sufficient to create and to

factorize Kg only once at the beginning of the simulation for most engineering problems. Further,

an exact solution of Eq. (4.2.1) in the sense of a structural problem, is usually not necessary, but

the resulting mesh should show good convergence behavior and not extensively deformed element

shapes. Therefore, also iterative methods, in particular conjugate gradient methods, can be used

with a relatively high termination threshold to accelerate the solution.
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4.3 Finite element data transfer

4.3 Finite element data transfer

Using the two- and three-field approach, the interface problem arises as a weak expression of the

displacement’s equality at the interface due to the variation of the Lagrange multiplier field.

For the three-field approach, the interface problem could be written from Eq. (2.5.9) as:∫
Γci

δλT
i (uc − ui) dΓci = 0 . (4.3.1)

Using again a shape function interpolation of the interface variables:

ui ≈ N
(i)
u ui; λi ≈ N

(i)
λ
λ́i; (4.3.2)

the three-field interface problem can be rewritten in discretized form as:

M
(ic)
λu

uΓc = M
(ii)
λu

uΓi , (4.3.3)

where the interface mass matrices are defined as:

M
(i j)
λu
=

∫
Γci

N
(i)
λ

T
N

( j)
u dΓci . (4.3.4)

Clearly, the shape functions N
(i)
u have to be the same as for the field discretization, while the

shape functions N
(i)
λ

can be chosen freely under the requirements of solvability of the above matrix

system. This freedom of choice opens a broad range of possibilities for the multipliers, which will

be the topic of the next subsections.

At this stage, it should be noted, that a matrix M
(ii)
λu

is quadratic due to the usage of the same

interface grid for the shape function interpolation of λi and ui, i.e. λi is localized as discussed in

section 2.5.1. On the other hand, the matrix M
(ic)
λu

is usually a rectangular matrix due to the different

interface grid representation of the frame and field. Further, the numerical evaluation of M
(ic)
λu

is a

non-trivial task, which requires some computational effort. The discussion of the evaluation will

be expanded in an extra subsection.

For the direct two-field approach, a similar interface problem is obtained from Eq. (2.5.18):∫
Γi j

δλT
i j

(
ui − u j

)
dΓi j = 0 , (4.3.5)

which leads with the aid of the shape function interpolation of Eq. (4.3.2) to the following matrix

system:

M
(i)
λu

uΓi = M
( j)
λu

uΓj , (4.3.6)

with the interface mass matrices:

M
(i)
λu
=

∫
Γi j

NT
λN

(i)
u dΓi j . (4.3.7)

Setting now the ith subdomain to be the fluid and the jth subdomain to be the structure according

to Eq. (2.5.19), the interface matrix system can be rewritten as:

M
( f )
λu

uΓf = M
(s)
λu

uΓs . (4.3.8)

In general both interface mass matrices are rectangular. But defining the Lagrange multiplier on

one involved interface, at least one matrix can be made quadratic. Again, the other matrix then

needs to be computed from shape functions defined on two different discrete interface representa-

tions. This evaluation of the interface mass matrix is described next.
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4 Discrete Coupling Scheme

4.3.1 Data transfer schemes based on the weak interface problem

In the next sections, some popular transfer schemes are introduced, which are often used in FSI

problems. For simplicity, only the two-field approach will be considered, but the statements here

could be easily adopted for the three-field approach too. The schemes only differ in the choice of

the shape functions Nλ for the Lagrange multiplier field. Due to the weak formulation, all schemes

share the property that they are conservative a priori. Another desired feature is accuracy of the

transfer scheme, which is mainly influenced by Nλ and by the evaluation of the interface mass

matrices.

Once the shape functions, Nλ, have been chosen and the interface transfer matrices calculated,

they also need to be used for the load transfer. Basically, the load transfer is provided by the

exchange of the Lagrange multiplier represented through the first and second integral in Eq. (2.5.9)

or Eq. (2.5.18). The reuse of the interface transfer matrices for the load transfer is also a result of

the principle of virtual work, which can be written for discrete nodal values at the interface as:

δuΓf
T

fΓf = δu
Γ
s

T
fΓs . (4.3.9)

Assuming, that the displacement transfer is accomplished with the aid of a general rectangular

coupling matrix P as:

uΓf = PuΓs , (4.3.10)

then the transfer of forces is obtained as the transposed scheme:

fΓs = PT fΓf (4.3.11)

to ensure the principle of virtual work at the interface. Therefore, the load transfer is automatically

specified by a given displacement transfer. Several types of transfer schemes can be constructed

by defining proper shape functions Nλ, which will discussed in the following sections.

4.3.2 Conservative interpolation

Taking the Dirac delta function on the fluid interface representation for the Lagrange multipliers, it

can be shown, that the integral vanishes and the scheme reduces to the evaluation of the structural

shape functions N
(s)
u at the fluid nodes position x f ,i. The entries for the coupling matrix P are

therefore:

Pi j = N
(s)
u, j

(x f ,i) . (4.3.12)

The scheme is sketched principally in Figure 4.1(a) for a simple 1D problem, where the shape

function on the fluid and structural interface are depicted together with the Dirac delta shape

function used for the interpolation of the Lagrange multiplier. This transfer procedure is similar

to that presented in [FLL98] and often referred to as conservative interpolation or node projection

scheme, since the structural nodes on the interface are mapped to the closest fluid interface element

and the transposed load transfer conserves the overall interface load from the fluid to the structure.

4.3.3 Galerkin’s method

The conservative interpolation could lead to unphysical effects in terms of the load transfer, if two

interface mesh sizes are highly different, [CL97]. An improvement is the use of the fluid shape

functions for the Lagrange multipliers at the interface, Figure 4.1(b):

Nλ = N
( f )
u . (4.3.13)
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Figure 4.1: Principle sketches of simplified 1D transfer problems using different transfer schemes

- fluid, structural and Lagrange shape functions on the interface grid representations

This choice is advantageous, since the matrix M
( f )
λu
= M̆( f f ) is positive definite and thus regular.

The transposed load transfer according to Eq. (4.3.11) is evaluated by:

fΓs = M̆(s f )[M̆( f f )]−1fΓf = M̆(s f )tΓf , (4.3.14)

where M̆( f f ) and tΓ
f

denote the mass matrix of the fluid interface and the discrete traction vector

at the fluid interface, respectively. This scheme is equivalent to that proposed in [CL97] and also

minimizes the L2-norm of the jump of the traction field across the interface. The main difficulty

lies in the computation of the matrix M
(s)
λu
= M̆(s f ), which is done by the aid of Ngp quadrature

points in each of the Nie elements of an integration grid:

M̆(s f ) =

∫
Γs f

N
(s)
u

T
N

( f )
u dΓs f =

Nie∑
ie=1

Ngp∑
gp=1

ψgp N
(s)
u

T
(xgp)N

( f )
u (xgp) , (4.3.15)

where ψgp is the weight of the quadrature point. This scheme is frequently referred to as qua-

drature-projection scheme. For integration, either the fluid or the structural representation of the

interface or an independent interface grid can be used. For curved interfaces, it is advisable to use

an integration grid based on the fluid interface, as only then, an exact load conservation can be

ensured [UHH07a].
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Figure 4.2: Possibilities for the integration grids to calculate the transfer mass matrices

4.3.4 Dual-Lagrange multiplier

Although the matrix M
( f )
λu
= M̆( f f ) in the Galerkin based interpolation is sparse and positive defi-

nite, the inversion process can be computational expensive in systems with many degrees of free-

dom. By choosing an appropriate space for the Lagrange multipliers depending on the shape

functions of the fluid interface representation, this matrix can be diagonalized making the in-

version process trivial. This is the idea of the so-called dual-Lagrange multipliers introduced in

[Pus04, FPW05]. For instance, considering an interface discretized by quadrilateral elements with

the shape functions being:

N
( f )

u,k
= N

( f )
u,i j
= 1

4
(1 + ξ1ξ1i)(1 + ξ2ξ2 j) where ξ1i = ±1; ξ2 j = ±1 , (4.3.16)

where (ξ1, ξ2) are the local coordinates within a finite element. The corresponding shape functions

for the Lagrange multipliers defined on the same discretization are:

Nλ,k = Nλ,i j =
1
4
(1 + 3ξ1ξ1i)(1 + 3ξ2ξ2 j) . (4.3.17)

A one-dimensional example on the dual-Lagrange multipliers is depicted in Figure 4.1(c). Appro-

priate dual-Lagrange multipliers according to higher order shape functions of the interface can be

found likewise. The evaluation of the matrix M
(s)
λu
= M̆(s f ) is accomplished by quadrature points

too.

4.3.5 Minimizing the Sobolev-norm

As previously mentioned, the Galerkin based transfer also minimizes the jump of the displace-

ments over the interface in the L2 norm. An extended transfer can be constructed, which minimizes
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(a) fluid interface grid (b) structural interface grid

(c) merged grid - fluid reference (d) merged grid - structural refer-

ence

Figure 4.3: Construction of a merged grid as integration grid

∂

∂uΓ
f

⎛⎜⎜⎜⎜⎜⎜⎝∫
Γs f

q∑
n=0

∣∣∣ςSN,nA
n(u f − us)

∣∣∣2 dΓs f

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

= 0 , (4.3.18)

where An operates on a function to get the nth spatial derivative. With q = 0, and using the

shape function interpolation, the Galerkin based transfer can be obtained, while with q = 1 the

discretization process results in [JH04]:(
M̆( f f ) + ςSNK̆( f f )

)
uΓf =

(
M̆( f s) + ςSNK̆( f s)

)
uΓs , (4.3.19)

where K̆(i j) =
∫
Γs f
∇N

(i)
u

T
∇N

( j)
u dΓs f is the interface stiffness matrix and ςSN = ςSN,1/ςSN,0 denotes

its weight. The transposed scheme is conservative due to the properties of the shape functions,

but the system might be algebraically badly conditioned for specific choices of ςSN . This transfer

scheme can smooth a transfer value from a coarse to a fine mesh. Unfortunately, experience has

shown that the transposed scheme can lead to locally unphysical oscillations.

4.3.6 Automatic generation of the integration grid

As already stated, a quadrature rule is used to compute the transfer mass matrices, where quadra-

ture points defined on an integration grid are mapped perpendicularly to the interface grids, Fig-

ure 4.2. As can be seen from this figure, accuracy can be lost due to the violation of regularity,

which is assumed by the quadrature rule, i.e. the quadrature points of one integration element are

mapped to different elements of the fluid or structural interface.

Using an independent integration grid, the position and optimal number of the quadrature

points can be found by computing a merged grid [JH04, JJGL05, HL03], which is constructed

appropriately from the fluid and structural interface grids, Figure 4.3. Two characteristic possi-

bilities of such a merged grid exist in a three-dimensional space, which have the same topology

but different geometric references, Figure 4.3(c) and 4.3(d). While the structural interface grid of

Figure 4.3(b) is mapped onto the fluid interface mesh in Figure 4.3(c), the fluid interface grid is

mapped onto the structural interface representation in Figure 4.3(d).
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(a) fluid interface grid (b) structural interface grid

(c) integration grid - level 1 (d) integration grid - level 2 (e) integration grid - level 3

(f) integration grid - level 4 (g) integration grid - level 5 (h) integration grid - level 6

Figure 4.4: Adaptive refinement of the integration grid

Using a grid like this, the regularity assumption of the quadrature remains valid, and the accu-

racy can be improved noticeably. The main loss of accuracy is then due to the so-called faceting

error, which occurs due to a point projection on a curved surface. A natural choice and applied

here, is the projection of quadrature points carried out perpendicularly to the target surface mesh.

Since the automatic construction of a merged mesh is a non-trivial and error-prone task in three

dimensions, it is computationally more robust to use an adaptive quadtree-based h-refinement of

the integration mesh. In Figure 4.4, a sequence of refinement levels of the integration grid is

depicted, whereby the integration grid is initially set to the fluid interface grid. New elements in

the integration elements, and therefore more quadrature points, are introduced in the vicinity of

the fluid mesh edges, which is best seen in Figure 4.4(f) to 4.4(h). The refinement is based on

a hierarchical balanced quadtree data structure of the integration mesh and the criterion for an

element refinement is the adherence of the quadrature regularity rule, i.e. if all quadrature points

of one integration element are associated with the same projection element. This criterion might

lead to infinitely small integration elements and a termination criterion needs to be evaluated.

4.3.7 Patch-test

With the patch-test, a transfer scheme can be checked in terms of its accuracy. The test has its

origin in general finite element procedures for mechanical problems and is a necessary condition

for convergence [Bat96, ZTZ05]. For the finite element data transfer schemes, the patch-test is

passed, if a constant stress can be transmitted from one to the other interface grid.

In the case of non-curved (flat) or nested surfaces, the interfaces are geometrically coincident

and an exact integration is achieved with merged meshes [DB06, HL03]. Therefore, the patch-
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4.3 Finite element data transfer

test is passed, if the shape functions for the Lagrange multiplier are defined in an appropriate

space [EB01]. Using the adaptive refinement of the integration mesh, the integration is performed

approximately exact and thus the patch-test can only be passed within a certain tolerance.

On non-coincident (curved) interfaces, the patch-test is per se not passed due to the faceting

error [Pus04, DB06, HL03]. Utilizing the Galerkin based transfer for the transfer of tractions,

Eq. (4.3.14) yields:

tΓs = [M̆(ss)]−1
structM̆

(s f )tΓf , (4.3.20)

where [M̆(ss)]struct is the structural interface mass matrix usually evaluated on the structural inter-

face mesh indicated by the subscript []struct. The failure of the patch-test is caused by geometric

discrepancy of the coupled surface grids and the evaluation of [M̆(ss)]struct and M̆(s f ) on different

surface grids.

Evaluating the structural interface mass matrix in contrast on the integration mesh, i.e. using

[M̆(ss)]int instead of [M̆(ss)]struct, the same surface Jacobian’s for both surface mass matrices in

Eq. (4.3.20) are used and the patch-test is passed [HL03]. However, the resulting transfer scheme

will not be conservative, since on curved interface surfaces usually

[M̆(ss)]struct[M̆
(ss)]−1

int � I (4.3.21)

holds, where I is the identity matrix. Nevertheless, in the case of convergence, i.e. fine inter-

face grids, the interface geometries become coincident and the patch-test will be passed using

Eq. (4.3.20).

In summary, a transfer scheme is desired, which is load conservative as well as accurate in

terms of passing the patch test. However, on arbitrary curved interface grids only one of these

properties can be achieved and in this thesis, a scheme that is unconditional load conservative is

preferred.

4.3.8 Evaluation of the coupling matrix using the adaptive refinement of the inte-
gration grid

It remains to define a termination criterion for usage of the adaptive refinement of the integration

grid. Otherwise and as mentioned above, the adaptive mesh refinement may lead to infinitely small

integration elements. Therefore, a maximum level of refinements can be provided or alternatively,

further element refinements are not allowed once the element size has reached a certain minimum

value.

Further, a termination criterion can be provided through the patch-test. Thus, after each re-

finement level of the integration mesh, the patch-test is performed. The resulting tractions on the

target interface should reach unity, if the interface meshes are flat or nested and the integration

is performed exactly. Any discrepancy of the nodal target tractions from unity (1 + errloc) can

be used to localize integration elements with a significant integration error, which are labeled for

potential refinement. Is the discrepancy within a user-specified tolerance or within the machine

accuracy, no further refinement is required. On curved interfaces, the patch-test is only passed

within a tolerance due to faceting error and the criterion of tractions equal to unity is replaced with

the criterion that the tractions will not change within the tolerance errloc from one refinement level

to the next. A global criterion to terminate the refinement procedure is provided by the relative

error in the L2 norm for a load transfer of a constant pressure field:

||err||2 =

√√√√√√√√√√√
∫
Γs f

(p f − ps)2 dΓs f∫
Γs f

p2
f

dΓs f

≈

√√√√√√√√√√√√√
Nn,s∑
i=1

(p f ,i − ps,i)2As,i

Nn, f∑
i=1

p2
f ,i

A f ,i

< ςT , (4.3.22)
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where As,i, A f ,i are the areas associated with the node i, Nn,s and Nn, f denote the number of

structural and fluid interface nodes, and ςT is a user-defined tolerance for the data transfer.

4.4 Solution of the discrete two-field approach

With the given ingredients of the coupled solution described in the previous sections, the discrete

two-field approach of Eq. (2.5.19) can be developed to obtain for the interface:

Fluid:

Structure:

State Transfer:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
F 0 −M f f

0 S Ms f

−M f f M f s 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uΓ
f

uΓs
λ́

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

fΓs
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (4.4.1)

where for consistency a full operational view is used and it is assumed, that external forces are

applied on the structural side of the interface only. In the above equation, theM-operators are the

interface mass matrices defined in Eq. (4.3.7):

M f f = M
( f )
λu

; M f s = M
(s)
λu

; Ms f = M
(s)
λu

T
.

Eq. (4.4.1) represents the classical coupling approach for FSI problems with the unknowns uΓ
f
, uΓs ,

and λ́ on the interface. With a partitioned coupling approach and taking into account that the fluid

is treated as a Dirichlet and the structure as a Neumann problem, the system reduces to:

uΓs = S
−1 ◦ (fΓs −Ms f ◦M

−1
f f ◦ F ◦M

−1
f f ◦M f s ◦ uΓs︸����������������︷︷����������������︸

=uΓ
f︸���������������������������������︷︷���������������������������������︸

=λ́

) . (4.4.2)

Here, it can be seen, that the operator M−1
f f

is used in its inverted form, i.e. a system with the

matrix M
( f )
λu

needs to be solved. This is consistent with defining the Lagrange multiplier on the

fluid side of the interface as it is shown for the data transfer schemes discussed above.

Without access to the matrices of each solver S or F , the classical Richardson iteration can be

used to find a solution of the reduced system (4.4.2):

uΓs,k+1 = ςRI S
−1 ◦ (fΓs −Ms f ◦M

−1
f f ◦ F ◦M

−1
f f ◦M f s ◦ uΓs,k)︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸

ŭΓ
s,k+1

+(1 − ςRI)u
Γ
s,k , (4.4.3)

where ςRI is the user defined relaxation parameter for the Richardson iteration, which is usually in

the range of 0.5 to 0.9. Here, in each iteration a Dirichlet-Neumann (DN) step, F -S−1 is invoked

to get the displacement field of the fluid and structure on the interface, respectively. For weak

coupled problems, usually a small number of iterations is needed to find the equilibrium state. For

strong coupled problems, the relaxation parameter ςRI needs to be reduced to very small values

and the number of iterations increases considerably. In such situations it may be better to use

higher class iteration procedures in particular Krylov subspace methods.

To apply such methods, a non-linear vector function needs to be generated, which for the

reduced system can be obtained as:

R(uΓs ) = S−1(fΓs −Ms f ◦M
−1
f f ◦ F ◦M

−1
f f ◦M f s ◦ uΓs ) − uΓs = 0 . (4.4.4)

To find a solution uΓs , which satisfies R = 0, the Newton-GMRES method can be applied, see

[Kel95] for algorithmic details. Other methods to solve R = 0, like the Bi-CGSTAB iteration,
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t, n t + Δt, n + 1

fΓ,n+1
f ,λ

F n+1

S−1,n+1

M−1
f f

M−1
f f

Ms f

M f s
λ́n+1

fΓ,n+1
s,λ

ŭΓ,n+1
s

uΓ,n+1
s,k+1

uΓ,n+1
f

F n

S−1,n

M−1
f f

M−1
f f

Ms f

M f s
λ́n

ŭΓ,ns

uΓ,ns

uΓ,n
f

predictor
iteration
control

uΓ,n+1
s,k=0

iteration
control

Figure 4.5: Time integration and equilibrium iteration for the two-field problem

were investigated in [Ste02]. Comparison of different iteration methods for a simplified structure-

structure coupled problem can be found in [Nie09].

However, all methods share the property, that a full DN step has to be carried out for one

iteration. From a computational point of view, the most expensive part is to solve the fluid problem.

Therefore, the number of iterations should be reduced whenever possible. Using the Newton-

GMRES method for the iteration, at least three DN steps per iteration are needed, which makes

this method only applicable for strong coupled problems, where several iterations are needed

anyway. For transient problems, where in each time step such iteration is required, reducing the

number of DN steps is even more attractive.

The principal sketch of solving a transient coupled problem with the two-field approach is

depicted in Figure 4.5. For the time t + Δt, the fluid interface displacements uΓ,n+1
f

are calculated

from an initial guess for the structural interface displacements uΓ,n+1
s,k=0

using finite element data

transfer. With these displacements, the fluid part of the coupled problem is advanced from the

time t to t + Δt involving the grid deformation G, the calculation of the grid velocitiesW and the

CBS scheme C. With calling the fluid operator F , the fluid interface forces fΓ,n+1
f ,λ

are obtained and

the discrete Lagrange multiplier field λ́n+1 = M−1
f f

fΓ,n+1
f ,λ

is calculated. This Lagrange multiplier

field is transmitted to the structural side of the interface and updated interface displacements ŭΓ,n+1
s

are obtained by advancing the structural part of the coupled problem from the time t to t + Δt.

Depending on the iteration method used (Richardson iteration, Newton-GMRES, etc.), an iteration

control instance updates to the interface displacements uΓ,n+1
s,k+1

by e.g. relaxation. Further iterations

can be run or the iteration procedure breaks and the next time level is considered.

Using the Richardson iteration with ςRI = 1 and setting the maximum number of iteration for

each time level to one, the simple staggered scheme or loose coupling method is obtained, which

is often used for transient weak coupled problems. However, the simple staggered approach is

usually only stable for a certain time step Δt.

To improve the accuracy of the simple staggered scheme, an appropriate predictor can be used

for the initially estimated structural interface displacements uΓ,n+1
s,k=0

. Several choices are available
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uΓ,n+1
s,k=0

= uΓ,ns + Δt u̇Γ,ns (4.4.5)

uΓ,n+1
s,k=0

= uΓ,ns +
Δt

2

(
3u̇Γ,ns − u̇Γ,n−1

s

)
(4.4.6)

uΓ,n+1
s,k=0

= uΓ,ns + Δt u̇Γ,ns +
Δt2

2
üΓ,ns (4.4.7)

uΓ,n+1
s,k=0

= S−1,n+1(fΓs − fΓ,n
s,λ

) . (4.4.8)

The predictor of Eq. (4.4.5) is first order time accurate, while the predictor (4.4.6) and (4.4.7) are

second order accurate. With the dual-time stepping scheme within the fluid solver presented in

section 3.4.6, a second order time accuracy in the time integration scheme of the whole coupled

system can be reached with the predictor (4.4.6), [FvdZG06]. The predictor (4.4.8) is basically a

pre-computation of the structure with the forces at the interface from the previous time step. Thus,

the time accuracy order of this predictor depends on the order of the time integration scheme within

the structural solver, which is usually second order. Good experience with the predictor (4.4.8)

could be obtained, if the coupled problem involves also rigid body motion of the interface.

4.5 Solution of the discrete three-field approach

Analogous to the two-field problem of Eq. (4.4.1), the discrete three-field approach of Eq. (2.5.9)

can be obtained for the interface as:

Fluid:

Structure:

Transfer Fluid:

Transfer Structure:

Frame:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
F 0 M f f 0 0

0 S 0 Mss 0

M f f 0 0 0 −M f c

0 Mss 0 0 −Msc

0 0 −Mc f −Mcs 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uΓ

f

uΓs
λ́ f

λ́s

uc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

fΓs
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.5.1)

where the fluid and structural operatorsF andS involve the computations of all fluid and structural

subdomains, respectively. The matrix operators are defined similarly to the two-field approach and

according to Eq. (4.3.4) as:

M f f = M
( f f )
λu

; Mss = M
(ss)
λu

; M f c = M
( f c)
λu

;

Msc = M
(sc)
λu

; Mc f = M
( f c)
λu

T
; Mcs = M

(sc)
λu

T
.

Using the three-field approach, the coupling between the two types of subdomains are performed

through the two Lagrange-multiplier fields λ f and λs. It is important to remember here, that each

Lagrange multiplier field is defined on their corresponding subdomain, i.e. they are localized

[PF00]. This basically means, that each subdomain is only connected to the frame. Further, the

frame displacement field can be discretized independently of each subdomain connected to the

frame. This provides an additional feature of constructing a smooth transfer by using higher order

elements for the frame displacements uc, i.e. using a C1-continuity shape function like Hermitian

shape functions [Bat96, ZTZ05]. However, a solution of Eq. (4.5.1) in a partitioned way is usually

difficult to obtain, especially if a simple staggered scheme is desired.

Without any assumption, the system (4.5.1) can be reduced to obtain:[
Mss ◦ S

−1 ◦Mss Msc

−Mcs Mc f ◦M
−1
f f
◦ F ◦M−1

f f
◦M f c

]
︸����������������������������������������������������������������������︷︷����������������������������������������������������������������������︸

=B

[
λ́s

uc

]
=

[
Mss ◦ S

−1 ◦ fΓs
0

]
. (4.5.2)
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This system can be solved using an iterative method, e.g. Newton-GMRES, by introducing the

residual as a vector function R(λ́s,uc):

R(λ́s,uc) = B

[
λ́s

uc

]
−

[
Mss ◦ S

−1 ◦ fΓs
0

]
. (4.5.3)

Due to the different physical nature of λ́s and uc the system matrix operator B might be badly

conditioned and a scaling/ preconditioning of B needs to be used to obtain reasonable results.

A further reduction of Eq. (4.5.2) is possible with the assumption, that the matrix behindMsc

has more rows than columns. i.e.:

NDOF,c ≤ NDOF,s , (4.5.4)

where NDOF,c and NDOF,s are the number of degrees of freedom for the frame and structural inter-

face, respectively. Then, the frame displacement field can be computed with the assistance of the

Moore-Penrose pseudo-inverseM+
cs as, [LH87]:

uc = (Mcs ◦Msc)−1 ◦Mcs︸�����������������������︷︷�����������������������︸
M+

cs

◦Mss ◦ uΓs , (4.5.5)

which is equivalent to solve a least square problem for the fourth equation of Eq. (4.5.1). With this

pseudo inverse, the three-field system further reduces to:

Mc f ◦M
−1
f f ◦ F ◦M

−1
f f ◦M f c ◦M

+
cs ◦Mss ◦ S

−1 ◦ (fΓs −Mss ◦ λ́s)︸�����������������������������������������������������������������������������������������︷︷�����������������������������������������������������������������������������������������︸
=fc

=Mcs ◦ λ́s︸�����︷︷�����︸
=fc

. (4.5.6)

Both sides of this equation represents the force field fc on the frame. To use this fact to construct an

iterative procedure, it remains to find a way to calculate the vector λ́s from fc. Again the principle

of virtual work, Eq. (4.3.9), can be utilized to find:

λ́s =M
+
cs

T
◦ fc =Msc ◦ (Mcs ◦Msc)−1 ◦ fc . (4.5.7)

Finally, a DN step for the three-field approach can be constructed as:

fc =Mc f ◦M
−1
f f ◦ F ◦M

−1
f f ◦M f c ◦M

+
cs ◦Mss ◦ S

−1 ◦ (fΓs −Mss ◦M
+
cs

T
◦ fc) , (4.5.8)

with

M+
cs

T
=Msc ◦ (Mcs ◦Msc)−1 . (4.5.9)

Usually, it is advantageous to proceed the DN step for the frame displacement field and a reorder-

ing of the above equation thus leads to:

uc =M
+
cs ◦Mss ◦ S

−1 ◦ (fΓs −Mss ◦M
+
cs

T
◦Mc f ◦M

−1
f f ◦ F ◦M

−1
f f ◦M f c ◦ uc) . (4.5.10)

To directly compare this DN step with the two-field approach, the operator chain can be accom-

plished for the structural displacement field as:

uΓs = S
−1 ◦ (fΓs −Mss ◦M

+
cs

T
◦Mc f ◦M

−1
f f ◦ F ◦M

−1
f f ◦M f c ◦M

+
cs ◦Mss ◦ uΓs ) . (4.5.11)

Comparing this DN step with the one obtained from the two-field approach of Eq. (4.4.2), the

three-field matrices can be identified as:

Mss ◦M
+
cs

T
◦Mc f

∧
=Ms f ; M f c ◦M

+
cs ◦Mss

∧
=M f s =M

T
s f . (4.5.12)

Therefore, the same iteration methods can be used for the three-field approach as for the two-field

approach. Especially, a simple staggered procedure, which results from the Richardson iteration

by setting ςRI = 1 and kmax = 1, can be used here including a predictor uΓ,n+1
s,k=0

. The advantage of

the three-field approach lies in the independent discretization of the frame and that each subdomain

is connected to frame only.
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4.6 Consistent time integration

As already discussed in section 3.4.6, the fluid domain is usually time resolved with a second order

time-accurate three-point backward difference scheme. Furthermore and as seen from Eq. (3.4.19),

the grid velocities arising due to a grid motion use the same time discretization scheme as the

primary fluid variables.

On the other hand, the spatially discretized structural subsystem is usually solved with the aid

of the Newmark method, see [Hug00] for an introduction. Using the approximation dn
s , vn

s and an
s

for us(t), u̇s(t) and üs(t), respectively, the structural system to solve is written as:

Muan+1
s + fu,int(d

n+1
s ) = fu,ext

with dn+1
s = dn

s + Δtvn
s +
Δt2

2
([1 − 2ςβ] an

s + 2ςβ an+1
s )

vn+1
s = vn

s + Δt([1 − ςγ] an
s + ςγ an+1

s ) .

(4.6.1)

If the Newmark parameters ςβ and ςγ are set to ςβ = 0.25 and ςγ = 0.5, the scheme is second order

time accurate and similar to the trapezoidal rule.

Compared to Eq. (3.4.19), the structural velocities are computed with a different scheme, i.e.

vs and w f are inconsistently approximated, although both subdomains are treated with second

order time accurate integration schemes. To circumvent this inconsistency, the structural accelera-

tions as well as the velocities can temporally be discretized with a three-point backward difference

scheme:

an+1
s =

3vn+1
s − 4vn

s + vn−1
s

2Δt
; vn+1

s =
3dn+1

s − 4dn
s + dn−1

s

2Δt
, (4.6.2)

which results in solving the structural problem including non-linearities as:

1

4Δt2
Mu(9dn+1

s − 12dn
s + 3dn−1

s − 8Δtvn
s + 2Δtvn−1

s ) + fu,int(d
n+1
s ) = fu,ext . (4.6.3)

This scheme is second order time accurate and consistent with the time integration scheme of the

fluid domain.

4.7 Chapter summary

In this chapter, the numerical scheme based on finite elements for the coupled aeroelastic problem

is presented. An operational view is employed for each coupling part, starting with the structural

subdomain, where the structural interface operator is intentified as the Schur complement. The

fluid grid needs to be adapted due to the structural displacements at the interface. A pseudo-

structural approach is used for this fluid grid deformation, where the material parameters can be

chosen regardless of any physical correctness.

A further important coupling aspect is the data transfer across non-matching interface grids.

From the weak coupling conditions presented in chapter 2, different discrete data transfer schemes

are derived, which share the property of load and energy conservation. To improve the accuracy

of the transfer, a h-refinement of the integration grid is proposed.

Furthermore, the numerical time integration and the equilibrium iteration are discussed for the

two-field approach. For the three-field approach, the same coupling matrices are identified, which

alreay appeared within the iteration process of the two-field approach. Thus, no change for the

iteration scheme itself is needed when conducting the three-field approach.

Moreover, the fact, that usually both - fluid and structure - are treated with different numerical

time integration schemes, is overcome by a proposed consistent time integration approach for the

structure, so that both subsystems use the same temporal discretization for the interface velocity.
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Verification and Application





5 Verification of the CBS Scheme

In this chapter, the performance and properties of the CBS scheme are shown for examples of

pure fluid motion on fixed grids, i.e. w f = 0 and s f = u f . To solve such flow problems, the CBS

scheme is coded in an object-oriented way using the programming language C++ and the multi-

processing programming interface OpenMP. Compressible inviscid, laminar viscous and turbulent

viscous fluid flows over the NACA0012 airfoil are shown and compared with data provided in

literature. Furthermore, unsteady as well as incompressible flow is tested for well-documented

flow problems.

5.1 Inviscid flow past the NACA0012 airfoil

First of all, a flow problem, where all viscous effects are neglected, is considered. Thus, the CBS

scheme for inviscid flow problems as described in section 3.4.4 is used to solve the example of

this section. As a test case, an inviscid steady flow past the NACA0012 airfoil at a subsonic Mach

number of Ma∞ = 0.5 and an angle of attack of α = 3◦ is chosen. A sequence of grids with

linear triangular elements is generated for this flow problem ranging from a very coarse to fine

grid resolution. A certain number of nodes is distributed on the airfoil, whereas the grid spacing at

the leading and trailing edge times this number of nodes is kept constant. Thus, with 100 elements

on the surface of the NACA0012 airfoil, the leading and trailing edge spacing are 0.0064lc (where

lc denotes the chord length) and with 400 surface elements the spacing reduces to 0.0016lc. The

farfield for all grids is generated to be 50 times of the chord length around the airfoil. This value

is chosen because no significant change in the solution could be observed using a higher distance.

Close-up views on the grids around the airfoil are shown in Figure 5.1.

The results obtained with the flow solver for this subsonic flow problem are shown in Fig-

ure 5.2 with the Mach number and pressure distribution around the airfoil in Figure 5.2(a) and

Figure 5.2(b) on the finest grid level. In Figure 5.2(c), the obtained Cp-distribution on the surface

is shown together with the surface pressure distribution obtained from [JM86] and with the well-

validated DLR TAU solver [RK08]. The calculated pressure distribution is in good agreement

with the given reference surface pressure. From Figure 5.2(d), the same statement can be made

for the total surface pressure loss coefficient defined as:

Cp,tot =
p +

ρ

2
v2 − (p∞ +

ρ∞
2
v2∞)

ρ∞
2
v2∞

= Cp +
ρv2

ρ∞v
2
∞

− 1 . (5.1.1)

The lift coefficient obtained in [JM86] is 0.4296 and calculated to 0.4226 for the TAU solver on

the present finest grid. With the CBS scheme, a lift of Cl = 0.4202 is computed, which is less

than 1% in difference to the TAU value on the same fine grid. In Figure 5.3, the convergence of

the lift and drag coefficients over different grid levels (elements on the airfoil surface) is depicted.

With more elements, the lift converges to the above mentioned lift value. The drag coefficient

converges to 5.12 · 10−4 and to 4.98 · 10−4 for the CBS scheme and the TAU solver, respectively.
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(a) 50 surface elements on the airfoil (full grid: 4171

nodes and 8246 elements)

(b) 200 surface elements on the airfoil (full grid: 8212

nodes and 16178 elements)

(c) 400 surface elements on the airfoil (full grid: 12374

nodes and 24302 elements)

(d) 600 surface elements on the airfoil (full grid: 16281

nodes and 31916 elements)

Figure 5.1: Close-up views on the unstructured grids for calculations of inviscid flow past the

NACA0012 airfoil
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Figure 5.2: Results for the inviscid testcase on the finest grid level - flow at Ma∞ = 0.5 and α = 3◦

past the NACA0012 airfoil
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Figure 5.3: Convergence of the lift and drag coefficients using the CBS scheme and the TAU solver

- inviscid flow at Ma∞ = 0.5 and α = 3◦ past the NACA0012 airfoil

Figure 5.4: Structured grid for calculation of laminar viscous flow past the NACA0012 airfoil -

level 0 (561x81 nodes, 44800 elements)

The drag is very low for both solvers, but is not perfectly zero, which would be expected according

to d’Alembert’s paradox.

Finally, it should be noted, that the same results on the finest grid are obtained with running

the CBS scheme in unsteady mode (i.e. with the dual time stepping scheme) with a real time step

of ΔtR = (0.01, 0.005, 0.001) s. This indicates the correct implementation of the dual time stepping

scheme.

5.2 Laminar viscous flow problems

In this section, more complex fluid problems are considered for validation of the CBS scheme on

fixed grids. Here, additional diffusive terms, resulting from viscosity and conductivity, should no

longer be neglected and the CBS scheme is used as described in section 3.3.2. Again, the fluid flow

past a NACA0012 airfoil is investigated here and the solution is compared with results obtained

with the TAU solver. Furthermore, an incompressible flow example is investigated, which uses the

artificial compressibility concept as described in section 3.4.3.

5.2.1 Laminar viscous flow past the NACA0012 airfoil

The solution of the CBS and the DG-CBS scheme obtained from the simulation of the fluid flow

past the NACA0012 airfoil is used again here to verify the fluid solver. As a testcase, a flow with

a Mach number of Ma∞ = 0.5, Reynolds number of Re = 5000 and an angle of attack of α = 0◦
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Figure 5.5: Results for the laminar viscous testcase - flow at Ma∞ = 0.5, Re = 5000 and α = 0◦

past the NACA0012 airfoil on the finest grid level (grid level 0)
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is chosen. This testcase is characterized by two – symmetric to the airfoil chord – steady trailing

edge vortex, which has to be resolved by the solver.

A structured grid around the airfoil is generated, Figure 5.4, to calculate the fluid flow on

different grid levels. The computational grid at level 0 as shown in Figure 5.4 is a C-type grid and

consists of 561x81 points. On the airfoil, 401 points are distributed, whereas at the leading and

trailing edge a grid spacing of 0.001lc and 0.0006lc are chosen, respectively.

In the context of the CBS scheme, the usage of quadrilateral elements are novel compared to

[NCZ06, TN05, Liu05, Hic08, Nit03, NMWM04, NL06], where triangles to fill the computational

domain are exclusively applied. Although the computational effort is higher using quadrilateral

elements, the accuracy is clearly improved. This arises from the fact, that the viscous stress and

the heat flux can only be interpolated as constants in each triangular element by using linear shape

functions [Bat96, Hug00]. In contrast, using bilinear quadrilateral elements, the viscous stress and

heat flux can vary linearly over the elements due to the linear variation of the metric within this

kind of elements.

In Figure 5.5, the results of this testcase are depicted for the finest grid level, where in Fig-

ure 5.5(a) and Figure 5.5(b) the contour plots of the Mach number and the pressure are shown,

respectively. Moreover, the upper trailing edge vortex is shown in Figure 5.5(c) together with

the negative flow velocity contours for v1. This vortex is situated between 0.84 < x/lc < 1.19.

Although not shown, there is also lower trailing edge vortex, where the fluid flow rotates in an

anticlockwise direction.

To verify the results, the pressure and skin friction coefficient are compared with results ob-

tained with the well-validated flow solver TAU, [RK08]. Further, reference values could be found

in [Mit98]. It can be observed from Figure 5.5(d), that the surface pressure distribution is in good

agreement with results obtained with TAU and with the data given in [Mit98]. Additionally, the

surface pressure obtained with the DG version of the CBS scheme is plotted, which is similar to

the conventional CBS scheme.

In Figure 5.5(e), the corresponding upper surface friction distribution are shown for the CBS

and DG-CBS scheme as well as for the TAU simulation and the data obtained from [Mit98]. Good

agreement of the present CBS and DG-CBS scheme compared to the TAU simulation on the same

fine grid can be found. Small discrepancies to the results of [Mit98] are observed. Especially the

maximum value of C f is higher on the current grid than that of this reference. Furthermore, the

x-position where the surface friction changes its algebraic sign is 0.84 for both version of the CBS

scheme and TAU, which again indicates the start of reverse flow.

Finally, the relative error in the L2-norm of the surface pressure for different grid levels is

depicted in Figure 5.6. The reference surface pressure is chosen to the one, which is obtained with

TAU on the finest grid level (level 0). For both versions of the CBS scheme, the error is less than

0.14% on level 0 and only small difference can be noticed between the CBS and the DG-CBS

scheme in terms of this error. Further, it is remarkable, that the relative surface pressure error

for both variants of the CBS scheme is less than that for TAU on the coarser grid levels (1, 2, 3),

whereas with the DG-CBS scheme a slightly lower error value compared to the standard CBS is

obtained on each grid level. This improvement is caused due the local flux conservation property

of the DG-CBS scheme. However, the main advantage of the DG-CBS scheme is the fact, that no

global system of linear equations is needed to be solved in each time step. This might be useful in

situations, when matrix lumping is unavailable.

5.2.2 Unsteady laminar viscous flow past a cylinder

To test the dual time stepping scheme adapted in section 3.4.6, the two-dimensional flow over a

cylinder in a channel is investigated. In literature, often an incompressible flow is studied. Here,
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Figure 5.6: Relative error in the L2-norm of the surface pressure for different grid levels and

algorithms - laminar viscous flow at Ma∞ = 0.5, Re = 5000 and α = 0◦ past the NACA0012

airfoil (reference is the surface pressure on the finest grid level obtained with the TAU code)
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Figure 5.7: Domain geometry and hybrid grid for the calculations of laminar viscous flow over a

cylinder
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Figure 5.9: Mach number contours at the minimal and maximal lift for an unsteady viscous fluid

flow past a cylinder at Mainlet = 0.7 and Re = 2000

a compressible case with a relatively high Mach number is chosen as a testcase, which involves a

shock-boundary layer interaction.

The grid and the dimension of this problem are shown in Figure 5.7. Again, a hybrid grid is

employed, which consists of 31444 triangles and 3200 quadrilaterals connected with the aid of

19110 nodes. On the boundary of the cylinder, 200 nodes are placed with constant space to each

other. 51 points are located on the upper and lower channel wall, respectively, which are equally

spaced, too. The structured mesh around the cylinder is created by 16 layers. The dimensions of

the domain are depicted in Figure 5.7(a) together with the prescribed boundary conditions. The

no-slip boundary condition for the velocity is applied on the cylinder surface. Further, the cylinder

surface is assumed to be adiabatic regarding the energy equation. The slip boundary condition for

the velocity is applied to the channel walls.

The flow at the inlet has a Mach number of Mainlet = 0.7 and a Reynolds number of Re = 2000

based on the diameter of the cylinder. At the inlet the corresponding values for the density as well

as the velocity and at the outlet only the free stream pressure are prescribed. Initially, the free

stream values of the density, velocity and energy are used for the whole domain at tR = 0. A real

time step size of ΔtR = 4.0 · 10−4 s is used throughout the simulation.
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Figure 5.10: Convergence of the Strouhal number over different time step sizes for a viscous fluid

flow past a cylinder at Mainlet = 0.7 and Re = 2000

Obviously, such a flow is highly unsteady and forms the well-known von Kármán vortex sheet

behind the cylinder after an initial phase. In Figure 5.8, the time histories of the lift and drag are

plotted, where the periodic character of the von Kármán vortex sheet can be observed. From the

detailed view of the lift evolution, a Strouhal number of:

St =
l f

v∞
=

2r f

v∞
= 0.197 (5.2.1)

can be determined, which is close to the usually assumed Strouhal number of 0.2. In the above

equation, l is the characteristic length, which is equal to the diameter of the cylinder and f is the

frequency of the vortex shedding. In Figure 5.9, the Mach number contours at time instants of

minimal and maximal lift are shown and the periodic structure of the vortex sheet is seen here,

too.

Finally, the convergence of the Strouhal number for different time step sizes is depicted in

Figure 5.10. For very coarse time steps, the Strouhal number is high and then rapidly converges to

a limit value for very fine time step sizes. For a time step size of ΔtR = 4.0 · 10−4 s, a reasonable

value for St is obtained.

5.2.3 Incompressible laminar flow past a backward facing step

In this section, the capability of the CBS scheme to solve incompressible flow problems is demon-

strated. Here, the classical testcase of a laminar incompressible flow at a Reynolds number of

Re = 229 past a backward facing step is chosen and compared with experimental data provided in

[DP74]. The setup of this problem is shown in Figure 5.11(a). The channel entrance is placed at

a distance of four step heights upstream, while the total length of the channel is 40 step heights.

The diameter at the entrance is two step heights. The experimentally obtained velocity profile is

prescribed at the entrance, which is approximated as [Tho06]:

v1

v∞
= 0.6624

(
x2

hs

)6

− 7.5547

(
x2

hs

)5

+ 33.9

(
x2

hs

)4

− 75.283

(
x2

hs

)3

+ 83.368

(
x2

hs

)2

− 37.793

(
x2

hs

)
+ 2.6959 .

(5.2.2)

At the channel exit, the pressure is set to the ambient pressure. The no slip condition for the

velocities is applied at all solid walls. Further, the Reynolds number of Re = 229 is based on the

step height.
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Figure 5.11: Domain geometry and structured grid for the calculations of incompressible laminar

flow past a backward facing step

The grid used for the computation is a structured mesh partly shown in Figure 5.11(b) and

consists of 17136 quadrilateral elements and 17421 nodes.

In Figure 5.12(a), the horizontal velocity contours are shown. As seen, the step leads to a

flow separation downstream the corner and a reattachment at the lower channel wall, which is

caused due to an adverse pressure gradient. The resulting vortex is depicted in Figure 5.12(b).

Further, the reattachment length is obtained as xR/hs = 9.54, which is in good agreement with

experimental reported length of 9.77 published in [DP74]. To validate the computational results,

several velocity profiles at distinguished horizontal locations are compared with the experimentally

obtained data also published in [DP74]. The comparison is shown in Figure 5.12(c) and as seen

the velocity profiles computed with the flow solver are in good agreement with the experimental

data. Thus, the capability of the CBS scheme to solve incompressible flows is satisfied with only

minor modifications to the compressible version of the CBS scheme.

5.3 Turbulent flow problems

In this section, the CBS scheme for turbulent flow problems is investigated. In this thesis, the

method of one point closure is used, where the governing conservation equations are averaged

in time or space leading to the Reynolds-averaged Navier-Stokes (RANS) equations. Using this

averaging, additional transport equations - turbulence models - need to be additionally consid-

ered. Such turbulence models are quite standard in CFD and can handle a broad range of fluid

problems with adequate computational costs. In appendix A.2, the turbulence modeling with the

CBS scheme in the ALE frame of reference is described in detail, where a Favre and Reynolds

averaging is applied to the governing fluid equations and two models to determine the eddy vis-

cosity are introduced. The first model is the well-known Spalart-Allmaras turbulence model as

a representative of a one-equation turbulence model. This model is used to calculate turbulent
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Figure 5.12: Results for the incompressible testcase - laminar viscous flow at Re = 229 past a

backward facing step

flows past the NACA0012 airfoil in the subsequent section. Nevertheless, in section A.2.4.2 the

discretization of the k-ω baseline (BSL) and shear stress transport (SST) model of Menter using

the CBS scheme are additionally shown. These models are two-equation turbulence models and

like the Spalart-Allmaras model often used for aeronautical applications.

5.3.1 Turbulent flow past the NACA0012 airfoil

The NACA0012 airfoil is again used, but now a turbulent flow at a low Reynolds number is stud-

ied. As noted in [RS09], turbulence models like the Spalart-Allmaras model are not designed to

predict transition from laminar to turbulence when run in conjunction with a full RANS solver, i.e.

such one point closure models have not any transition modeling capability per se. Nevertheless,

the characteristic behavior of the turbulent viscosity for a low-Reynolds number fluid flow can

be shown. In [RS09], some data are given, which are compared with results obtained with the

turbulent CBS scheme. Additionally, the TAU solver is again used to verify the CBS scheme.

In Figure 5.13 the hybrid grid used for the turbulent calculations is shown. The grid consists

of 36700 nodes connected by 25354 triangular and 23800 quadrilateral elements. At the leading

and trailing edge of the airfoil, a grid spacing of 0.002lc is set. A normal grid spacing at the wall

of 5 · 10−5lc yields a minimal y+ of less than 0.5. The airfoil wall itself is discretized with 400

elements.

A freestream Mach number of Ma∞ = 0.2, a Reynolds number of Re = 100000 and an

angle of attack of α = 5◦ are used as initial conditions. In Figure 5.14(a), the non-dimensional
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Figure 5.13: Hybrid grid for calculations of the turbulent flow past the NACA0012 airfoil - close-

up view on the airfoil
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Figure 5.14: Turbulent dynamic eddy viscosity contours - turbulent flow at Ma∞ = 0.2, Re =

100000 and α = 5◦ past the NACA0012 airfoil
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Figure 5.15: Mach number contours - turbulent flow at Ma∞ = 0.2, Re = 100000 and α = 5◦ past

the NACA0012 airfoil
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CBS Ref. [RS09]

upper lower upper lower

Ma∞ = 0.20 0.091 0.325 0.081 0.314

Ma∞ = 0.55 0.098 0.351 ∼ 0.12 ∼ 0.32

Table 5.1: Upper and lower NACA0012 airfoil location, where the values of μT/μ∞ first exceed

unity - variation of the farfield Mach number, whereas Re = 100000, α = 5◦
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Figure 5.16: Pressure contours and surface pressure distribution - turbulent flow at Ma∞ = 0.2,

Re = 100000 and α = 5◦ past the NACA0012 airfoil

dynamic eddy viscosity contours using the present CBS scheme are shown. For comparison,

the results for the same configuration reported in [RS09] are replotted in Figure 5.14(b). Both

contour plots are in very good agreement. However, the y-range of the μT > μ∞ values at the

trailing edge is smaller than that found in [RS09]. The minimal x-position on the upper side of the

airfoil, where the non-dimensional eddy viscosity becomes 1, is computed with the CBS scheme

to xu
min
/lc(μT > μ∞) = 0.091, whereas in [RS09] a value of 0.081 was reported. For the lower side

of the airfoil, this value is xl
min
/lc(μT > μ∞) = 0.325, which agrees well with the location of 0.314

obtained in the reference. These values together with locations obtained at one additional Mach

number are summarized in Table 5.1. From this table, it can be seen, that the source of turbulence

moves only slightly further downstream, i.e. the upper and lower airfoil location, where the values

of μt/μ∞ first exceed unity, increase a bit with higher Mach numbers. The values for the location at

Ma∞ = 0.55 taken from the reference are estimated from a plot in [RS09]. Further, a dependency

of these locations on the grid density is reported in the reference and thus the values obtained here

with the CBS scheme are satisfactory.

The Mach number contours of the case with Ma∞ = 0.2 are shown in Figure 5.15 for the

solution with the CBS scheme and the TAU solver. It can be seen, that the CBS scheme provides

a slightly smoother soultion compared with the results obtained with TAU. Finally, the pressure

contours of CBS solution are shown in Figure 5.16(a) and the according surface pressure distri-

bution is plotted and compared with TAU in Figure 5.16(b). It can be conclude, that the surface

pressure obtained with the CBS scheme is in good agreement with the TAU computed on the same

grid.
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5.4 Chapter summary

In this chapter, the implementation of the presented CBS scheme is verified by the aid of several

fluid flow problems ranging from inviscid to laminar and turbulent viscous fluid flow. For the

steady inviscid fluid flow past the NACA0012 airfoil, good agreement with available published

data and another flow solver are shown. Convergence of the lift and drag coefficients are observed

varying the resolution of the unstructured mesh. Steady laminar fluid flow cases are conducted

for compressible flows past the NACA0012 airfoil and for incompressible flows past a backward

facing step within a channel. The results of simulations with both flow models show a good agree-

ment with data published in literature. Again, results are compared with data obtained with the

well-validated fluid solver TAU and spatial convergence is shown for the CBS as well as for the

DG-CBS scheme on a serie of structured grids. Thus, it is shown, that the CBS scheme is widely

applicable for general fluid dynamics, which is an important property for a CFD algorithm. Un-

steady flow problems are verified by the flow past a cylinder, where the well-known von Kármán

vortex sheet is observed.

Further, results of turbulent flow past the NACA0012 airfoil are compared, with data found in

literature and thus the Spalart-Allmaras turbulence model is verified in conjunction with the CBS

scheme for compressible fluids.

Finally, it should be noted, that many more example applications of the CBS scheme can

be found in literature, e.g. [NMWM04, ZBN05, NCZ06, NL06, TNB08, BNvL+10, BBH10,

SNRA10]. This chapter is restricted to summarize the results solely obtained with the CBS

scheme. However some new aspects are employed, e.g. the usage of quadrilateral elements in

the boundary layer yields more accurate results than that obtained in [Hic08]. To the author’s

knowledge, so far only pure triangular elements are used in the literature. Furthermore, turbulent

flows are calculated here, which is satisfactorily done so far only for incompressible fluid flow

problems, e.g. [NL06].
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6 Assessment of the Coupling
Environment

In this chapter, the coupling environment is computationally investigated in terms of the grid

deformation, the data transfer as well as the time integration and equilibrium iteration. In the first

section, the finite grid deformation for different grid types will be analyzed using several pseudo

stiffness evaluation methods. The data transfer algorithm - especially the adaptive h-refinement of

the integration grid - will be demonstrated for a simple model problem and a more complex three-

dimensional wing structure in the second section. Further, the advantage of the novel three-field

approach in conjunction with a higher order discretization of the interface frame will be shown,

which leads to a smooth data transfer.

A simple FSI problem of a thin and flexible panel excited under an inviscid isentropic fluid

is used to verify the equilibrium iteration scheme for the two- and three-field approach. Finally,

a more complex aeroelastic problem is chosen to validate the coupling environment with experi-

mental data. A simple staggered iteration procedure is applied to simulate a flapping and flexible

airfoil in a low-Reynolds number flow regime.

6.1 Finite element grid deformation

6.1.1 Unstructured grid with high deformation

In this section, a simple test problem adapted from [STB03, XA04] with high grid deformations

is investigated, which uses the unstructured grid shown in Figure 6.1. This grid consists of 1189

nodes connected to 2198 triangular elements. The interface, which is subject to deformation, is
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Figure 6.1: Initial grid for investigation of the finite element grid deformation
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Figure 6.2: Deformed grid due to interface translation

located at y = 0 in the interval of −0.5 ≤ x ≤ 0.5. At this interface 100 nodes are equally

distributed. The quality of the grid is measured in terms of the aspect ratio, which is defined as the

ratio of the circumradius of the triangle to twice its inradius. Thus, the aspect ratio of an equilateral

triangle is exactly one. The mean aspect ratio of the present grid is 1.075, which is obtained by

integration of all elemental aspect ratios over the domain and dividing the value by the whole area.

The highest aspect ratio of a triangle is 1.609.

Using the six possibilities of the elemental stiffness evaluation, Eq. (4.2.2) to (4.2.7), three

deformation types of the grid are investigated: a vertical translation of the interface to y = 0.5, an

interface rotation of 45◦ around the origin and a bending of the interface to a circular arc with an

angle of 180◦, whereas the length of the interface is kept constant.

6.1.1.1 Translation of the interface

In a first test campaign, the desired interface translation to y = 0.5 is computed in three equal steps,

where in each step the stiffness matrix is newly calculated and the previously deformed grid is used

as a new basis. This translational movement is important because it divides the computational

domain into two parts: a region with compressed elements and a region with stretched elements.

In Figure 6.2, the resulting deformed grid using the stiffness evaluation strategy of Eq. (4.2.2)

is depicted because this strategy leads to the smallest maximum aspect ratio. However, all stiffness

evaluation possibilities behave similar. Due to the large interface displacements, the average and

maximum aspect ratio grow non-linearly with the interface translation, Figure 6.3. The usage of

the combined stiffness evaluation methods of Eq. (4.2.6) and (4.2.7) results in the worst meshes,

whereas the length scale based methods of Eq. (4.2.3) and (4.2.5) give the best meshes in terms of

the average aspect ratio. For the maximum aspect ratio, these two methods are also the best until

a translation of y = 0.33 (second step). However, for the final, third step, the stiffness method of

Eq. (4.2.2) results in the smallest maximum aspect ratio.

In Figure 6.4, the aspect ratios of the deformed grids are plotted against the number of steps

used for the interface translation to y = 0.5. For the combined stiffness evaluation methods of

Eq. (4.2.6) and (4.2.7), no usable grid could be obtained with only one step. Further, it can be seen

from Figure 6.4(a), that with two steps onward the average aspect ratio remains constant, whereas

the stiffness methods of Eq. (4.2.3) and (4.2.5) perform best. Considering the maximum aspect

ratio of a triangle in the deformed mesh, the only suitable grid after one step of deformation could

be obtained with the method of Eq. (4.2.2), Figure 6.4(b). With more steps used for the interface
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Figure 6.3: Grid quality for interface translation to y = 0.5 - translation done in three steps
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Figure 6.4: Grid quality for interface translation to y = 0.5 - influence of the step number

6.1.1.2 Rotation of the interface

For this testcase, the interface is rotated with an angle of 45◦ around the point (0, 0). A successful

deformation of the grid in three steps can be seen in Figure 6.5, where the combination of wall

distance and characteristic length for the stiffness evaluation, i.e. Eq. (4.2.6), is used due to its best

performance in terms of the maximum aspect ratio, Figure 6.6(b). Another method, which also

gives a good deformed grid, is the one which uses only the wall distance as the stiffness criterion,

i.e. Eq. (4.2.4). This method also gives a good average aspect ratio, Figure 6.6(a). The procedures,

that have been performed very well for the vertical translation of the interface (Eq. (4.2.3) and

(4.2.5)), now give the poorest meshes with unacceptable high maximum aspect ratios (method of

Eq. (4.2.5)) or even degenerated meshes after the second step (method of Eq. (4.2.3)).

Moreover, using Eq. (4.2.3) as the stiffness evaluation method, a valid grid could be obtained

only in 4 and more steps to the desired rotation, Figure 6.7(a). However, the obtained grid shows

elements with very high aspect ratios, Figure 6.7(b). Further, as already observed for the vertical

interface translation, the average aspect ratio remains almost constant for each stiffness strategy,

Figure 6.7(a). In summary, for the rotation testcase, the methods which use Eq. (4.2.4) and (4.2.6),
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Figure 6.5: Deformed grid due interface rotation
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Figure 6.6: Grid quality for interface rotation to 45◦ - rotation done in three steps

gives the best grids and also with only one step these strategies give reasonably good meshes,

Figure 6.7(b).

6.1.1.3 Bending of the interface

As the last and most demanding testcase, the bending of the interface to a circular arc is inves-

tigated, whereas the length of the interface is kept constant. For the parameter studies, a central

angle of 180◦ is used for the circular arc. In Figure 6.8, a successful deformation of the inter-

face in three steps is depicted, which uses again Eq. (4.2.6) as stiffness evaluation. Together with

the strategy of Eq. (4.2.4), this method provides the best results in terms of the maximum aspect

ratio, Figure 6.9(b). In addition, the stiffness methods based on a length scale, i.e. Eq. (4.2.3)

and (4.2.5), again perform very poorly regarding the maximum aspect ratio, although the average

aspect ratio shows good values, Figure 6.9(a).

Using a different number of steps to reach the desired bending of 180◦, the same statements

as for the rotation testcase of the previous subsection can be expressed here. However, the solely

acceptable grid deformed with only one step, is obtained with the stiffness strategy of Eq. (4.2.6),

Figure 6.10(b). Further, it should be noted, that with the method of Eq. (4.2.3) the highest aspect
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Figure 6.7: Grid quality for interface rotation to 45◦ - influence of the step number
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Figure 6.8: Deformed grid due interface bending
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Figure 6.10: Grid quality for interface bending to a circular arc with a central angle of 180◦ -

influence of the step number
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Figure 6.11: Structured grid for flow simulation past the flapping SG04 airfoil

In summary, for the rotation and bending testcase, the best results could be obtained with the

stiffness strategy based on a combination of the wall distance and the characteristic length, i.e.

Eq. (4.2.6). Good results could be obtained with this method for the vertical translation testcase,

although other methods perform better for this interface movement.

6.1.2 Structured grid with high deformation and rigid body motion

In this section, a further grid deformation testcase is investigated. For a flapping and flexible

airfoil simulation, a robust mesh update algorithm is needed, which prevents the structured grid

from containing distorted elements. In Figure 6.11 a structured grid around a thin airfoil is shown,

which contains 216x80 quadrilateral elements.

For testing of the grid deformation, a pure plunging motion with a sinusoidal vertical trans-

lation and an amplitude of double the airfoil chord length is assumed. The farfield of the grid is

kept fixed in space and therefore the translation results in a mesh deformation rather than only

a rigid body motion of the whole grid. A typical beam-like deformation is incorporated to this

motion with a deflection amplititude at the trailing edge to be a quarter of the cord length. This

deformation is also assumed to have a temporal sine characteristic, i.e. at the top and bottom dead
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Figure 6.12: Deformed structured grid due to rigid vertical translation and airfoil deformation
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Figure 6.13: Grid quality for structured grid deformation during a flapping cycle

center the deformation is positive and negative, respectively. For this testcase, the stiffness matrix

for each method is evaluated only once for the initial grid and is then used throughout the flapping

motion. To assess the quality of the resulting mesh, the average and maximum skewness of the

elements are considered. The skewness of a quadrilateral element is defined as the maximum,

relative and absolute difference of the inner angles to be orthogonal, i.e. a skewness of 0.0 would

be the optimal shape of a rectangle. The average skewness of the initial grid is 0.194, while the

maximum skewness is 0.739.

In Figure 6.12, the deformed grids at the top and bottom dead center are shown, where the

stiffness is evaluated according to Eq. (4.2.2) due to its best performance in terms of the maximum

skewness, Figure 6.13(b) and Table 6.1. In Figure 6.13, the average and maximum skewness

using the different stiffness evaluation strategies over one period are depicted. It can be observed,

that each method is able to produce valid meshes for this strong flapping motion, although the

deformation for each time step is done only in one step. Regarding the average skewness in

Figure 6.13(a), its value increases while the airfoil moves to the top dead center (t/T = 0.25) and

decreases then again to the mid of the downstroke (t/T = 0.5). Shortly after the mid-downstroke,

the average skewness increases to the bottom dead center (t/T = 0.75) and decreases then during

the upstroke to its initial value. Integrating the skewness evolutions over one period, it can be

noticed, that the stiffness methods based on the wall distance give the best results in terms of the
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mean skewness

average maximum

Eg,i = 1/Ωe,i; Eq. (4.2.2): 0.2029 0.7497

Eg,i = 1/min(le,i j); Eq. (4.2.3): 0.2023 0.7703

Eg,i = 1/dw,i; Eq. (4.2.4): 0.1982 0.7570

Eg,i = 1/hi; Eq. (4.2.5): 0.2034 0.7621

Eg,i = 1/(dwhi); Eq. (4.2.6): 0.1986 0.7678

Eg,i = 1/(dw,iΩe,i); Eq. (4.2.7): 0.1976 0.7603

Table 6.1: Mean values of the average and maximum skewness over one flapping period for several

stiffness evaluation methods

For the maximum skewness, the same behavior during a flapping period can be observed, Fig-

ure 6.13(b), except the maximum skewness at the bottom dead center is lower than its value at the

top dead center for all methods. Although other methods provide temporarily smaller maximum

skewness values, the methods based on the element area and the wall distance give the best results

at the top and bottom dead center. Thus, these both schemes also results in the lowest integrated

mean values of the maximum skewness, Table 6.1. In summary, all methods give reasonably good

deformed grid. However, the stiffness evaluation scheme based on the wall distance has shown the

property, that this method gives meshes, which have a good average as well as maximum skewness

values.

6.2 Interface data transfer

In this section, the developed adaptive quadtree-based h-refinement of the integration mesh pro-

posed in section 4.3.6 is investigated. Further, a smooth transfer scheme is proposed, which uses

the three-field coupling approach. All the examples presented in this part employ the Galerkin

based transfer. The performance of the different transfer schemes, which has been described in

section 4.3.2 to 4.3.5, will be analyzed in the context of the panel flutter problem in an own chapter.

6.2.1 Simple model problem

In a first testcase, a simple data transfer between two non-matching grids is investigated. Here,

the level of adaptive refinement of the integration mesh and the curvature of the involved grids

are examined in terms of the error in a constant flux transfer, i.e. the patch test is used. In

Figure 6.14, the fluid and structural interface grids are shown. A load transfer is assumed, i.e. a

data transfer from the fluid to the structural representation of the interface is applied. To ensure

load conservation, the integration is performed on a grid based on the fluid interface grid. This

integration is subjected to the adaptive quadtree-based h-refinement to improve the accuracy of the

transfer.

To investigate the influence of the grid’s curvature on the transfer error, the interface meshes

are projected on a sphere with a certain curvature. The curvature is defined as the inverse of the
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Figure 6.14: Interface grids used for the model problem - without curvature
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Figure 6.15: Interface grids used used for the model problem - curvature of 0.4

sphere’s radius. An example of the three-dimensional interface grids with a curvature of 0.4 is

shown in Figure 6.15.

The results of the data transfer are depicted in Figure 6.16, where the relative error in the L2-

norm of the obtained structural flux to the constant fluid flux is computed according to Eq. (4.3.22).

In Figure 6.16(a), this error is plotted over the levels of the integration mesh refinement. As

seen from this figure, a transfer without adaptive refinement (level 0) yields an error, which is

identical for different curvature of the interface grids. Using the flat interface grids (curvature

is 0.0), the error can be considerably reduced with more levels of integration mesh refinement.

This improvement is caused by the more accurate integration for the transfer matrices using the

Galerkin based transfer. However, increasing the curvature the error can only be asymptotically

decreased to a certain value. For a curvature of 0.7, a level higher than 3 is ineffective in terms

of the error and its value remains at approximately 10−3. Therefore, the transfer accuracy is not

only influenced by the quality of the integration, but also by the curvature of the interface grids.

Due to the curvature, the so-called faceting error becomes the dominant factor for the data transfer

accuracy of highly curved interfaces. Using a high integration accuracy with six refinement levels,

the error increases with higher curvature as seen in Figure 6.16(b). From this figure also the

independence of the curvature, when using non-refined integration grids, can be seen. In this case

the integration error is a dominant factor for the accuracy of the data transfer.
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Figure 6.16: Error in constant flux transfer at different curvature of the interface grids and using

different levels of adaptive refinement for the integration grid
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Figure 6.17: Interface grids of the AGARD wing 445.6

6.2.2 Data transfer for the AGARD wing 445.6

In a more realistic testcase, the data transfer over the interface meshes of the AGARD wing 445.6

is investigated. The numerical aeroelastic analysis is widely used as a benchmark problem, see

e.g. [Gup96, GM00, FL00, CZY06, LB93]. The flutter behavior of this wing is experimentally

analyzed in an AGARD report by [YLF63]. In this thesis, only the data transfer properties are

highlighted rather than to conduct a full aeroelastic analysis.

For the wing, the 2.5 ft weakened model number 3 is used, which has a 45◦ quarter-chord

sweep angle, a panel aspect ratio of 1.65, a taper ratio of 0.66, and the cross sections given by

the NACA65A004 airfoil. The fluid interface mesh is shown in Figure 6.17(a) and the structure

is modeled using 27x40 solid elements, whose interface is depicted in Figure 6.17(b). The fluid

interface holds 30666 elements and 15380 nodes.

In Figure 6.18, the relative error in the L2-norm of a constant flux transfer is depicted, where

the fluid and structural interface discretization have served as the integration mesh and a constant

flux distribution is applied on the fluid interface mesh. If the integration mesh is set to the struc-

tural interface mesh, the error remains high and by increasing the level of adaptive refinements,
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for the integration grid

no improvement of the transfer can be observed. Utilizing the fluid interface as the integration

mesh, a considerable transfer improvement can be noticed up to the second refinement level. Ad-

ditional refinements, i.e. more quadrature points, are ineffective in terms of the error due to the

predominance of the faceting error in three dimensions. The dashed line in Figure 6.18 represents

the transfer of the same configuration as above except that flat interface meshes are used, i.e. the

z-coordinate of the interface discretization is set to zero to circumvent the faceting error. Without

the presence of the faceting error, a further improvement of the data transfer can be observed with

increasing level of refinements.

6.2.3 A smooth transfer using the three-field approach

In section 4.5 and with Eq. (4.5.12), the adaptation of the data transfer problems in the context

of the three-field approach to the utilization with the numerical algorithms used for the two-field

approach could be developed. Thus, the data transfer properties of the three-field approach can be

studied separated from a real physical problem.

It was already mentioned, that the discretization of the frame can be done independently from

a grid connected to the frame. The advantage of such transfer is the smoothness of the data

transmitted to the target grid, if the connectivity frame is discretized with higher order interpolation

functions. For instance, C1 continuous shape functions can be used to discretize the displacement

field of the frame, whereas the shape function of the two grids linked to the frame are interpolated

with C0 continuous shape functions. In Figure 6.19, the three interface representations are shown,

which use different discretizations. The fine fluid and the coarse structural interfaces hold 65x34

and 10x5 quadrilateral C0 continuous elements, respectively. The connectivity frame is discretized

with only 6x3 C1 continuous elements, which use Hermitian rectangle shape functions derived

from standard Hermitian Euler beam shape functions, see section 11.14 of [ZT05]. Thus, each

node of the connectivity frame has four degrees of freedom, corresponding to the values of:

u3,
∂u3

∂x
,
∂u3

∂y
,
∂2u3

∂x∂y
,

whereas the fluid and structural interfaces have only the displacement u3 as the degree of freedom.
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Figure 6.19: Structured interface grids used displacement field transfer
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Figure 6.21: Problem setup and fluid grid of elastic-acoustic coupled problem

This combination of interface discretization is now used for the displacement transfer using

the two- and three-field approach. A structural displacement field is prescribed as shown in Fig-

ure 6.20(a), which is analytically described by:

u3 = sin(2πx) · sin(2πy) .

The resulting displacement field using the two-field approach in connection with the Galerkin

based transfer is shown in Figure 6.20(b). Here, an exact integration of the coupling matrices could

be easily reached by using the merge mesh approach of section 4.3.6. As can be seen from this

figure, the obtained fluid displacements follow exactly the linear behavior of the coarse structural

elements, i.e. the edges of the structural interface loom at the resulting fluid displacements. This

transfer behavior might lead to unphysical CFD solutions, especially when dealing with transonic

or supersonic flows.

Finally, the obtained fluid interface displacement field using the three-field approach is shown

in Figure 6.20(c), where again an exact integration together with the Galerkin based transfer is

applied. As seen, the nodal fluid displacements are much smoother than the field obtained with

the two-field approach. Such a smooth transfer is more favorable in terms of a solution of the fluid

domain with the CBS scheme or other CFD algorithms. However, the transfer based on the three-

field approach is initially more expensive due to its computation of more coupling matrices, but

the smooth interface displacements might reduce the inner iteration of the CFD scheme. It should

be noted here, that the transposed load transfer remains conservative and thus this approach is

advantageous.

6.3 Iterative solution of an elastic-acoustic problem

In this section, a simple FSI model is simulated to verify the staggered iteration procedure, which

is described in section 4.4 and 4.5. The testcase consists of a flexible panel, which is coupled to an

inviscid isentropic fluid (acoustic fluid). The panel is excited with an external force and due to its

oscillating movement, acoustic waves travel through the fluid domain to an open end. A similar
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two-field approach three-field approach

Richardson NGMRES Richardson NGMRES

DN cycles: 20512 14999 18934 12996

mean DN cycles per time step: 20.51 15.00 18.93 13.00

Table 6.2: Number of Dirichlet-Neumann cycles needed for the elastic-acoustic coupled problem

using different iteration schemes

testcase is described in [FKW06], but here a modified setup of the testcase is used to design a

strongly coupled problem, where the high density fluid is coupled with a flexible structure.

The physical setup of the elastic-acoustic problem is shown in Figure 6.21(a). A density of

ρ f = 1000 kg/m3 and a speed of sound of c f = 1000 m/s for the water is assumed. On the lower

edge of the fluid domain, a thin and flexible aluminum panel is mounted, which has a length of

ls = 0.1 m and a height of hs = 1 mm.

The fluid domain is discretized with 55x50 equispaced quadratic 8-node finite elements shown

in Figure 6.21(b). The primary unknown is a velocity potential from which the pressure is calcu-

lated as the secondary variable, see section 7.3.4 of [Bat96] for details of this formulation. At the

top edge, an open boundary condition is applied and at all other edges, wall boundary conditions

are set. The thin structure is modeled as a two-dimensional von Kármán plate (von Kármán beam)

with 25 elements, see [Hur01] for implementation details. An external time-dependent pressure

force acts on the panel with:

pext(t) = 5 · 104 N/m2 sin(2π f t)

with a frequency of f = 1000 Hz. Further, it should be noted, that the fluid and structural interface

grids are non-matched making it necessary to use a data transfer scheme. Thus, the Galerkin based

transfer is applied, where the integration of the coupling matrices is exactly accomplished by the

merge mesh approach described in section 4.3.6. For the three-field approach, the connectivity

frame is discretized with only 4 elements using C1 continuous Hermitian shape functions.

In Figure 6.22(a), the panel midpoint deflection is plotted over the time using different iteration

schemes, where for all schemes a constant time step of Δt = 50 μs is set. For the two-field ap-

proach, Eq. (4.4.3) and (4.4.4) are utilized to accomplish the Richardson and the Newton-GMRES

iteration, respectively. For the three-field approach, Eq. (4.5.2) is used to run the Newton-GMRES

algorithm, whereas Eq. (4.5.12) is applied to set up the Richardson iteration. As one can see, all

schemes result in the same deformation behavior. In Figure 6.22(b), the panel deflection within

the time interval of 0.040 s ≤ t ≤ 0.043 s is depicted. During this time span the panel exhibits

three oscillations and this deformation has a higher mode. For two time points (t = 0.04225 s

and t = 0.04275 s), the pressure distribution within the fluid field is shown in Figure 6.22(c) and

6.22(d). These pressure distributions are similar for all iteration schemes.

To assess the iteration schemes in terms of their computational costs, the number of Dirichlet-

Neumann cycles is logged. In Table 6.2, the numbers of DN cycles for each scheme required

to run the simulation are listed. The iterations in each time step are terminated, when a residual

of 10−6 is reached. Since the problem is strongly coupled, the relaxation parameter ςRI for the

Richardson iteration is needed to set to a very low number of ςRI = 0.1. Therefore, the number

of cycles is higher than that needed for the Newton-GMRES iteration. Further, the number of

cycles for the three-field approach is less than that for two-field scheme, which is caused by the
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Figure 6.22: Results for the elastic-acoustic coupled problem

smooth transfer property by using C1 continuous Hermitian frame elements. Thus, for the present

elastic-acoustic coupled problem, the three-field approach gives also promising results in terms of

the computational costs.

6.4 Simple staggered solution of a complex coupled problem - flap-
ping airfoil simulation

In this section, a more complex FSI problem is investigated and validated. The numerical sim-

ulation of an oscillating and flexible airfoil for flapping wing propulsion is chosen, due to the

availability of experimental data. These data have been produced within the project “Analysis of

the flapping flight with flexible airfoils” of the DFG priority program SPP1207. Inspired by the

flapping flight of birds, such an airfoil can be used for future micro air vehicles to improve thrust

efficiency. The size of such moving vehicles and the low flight speed range cause a low-Reynolds-

number flow regime with a typical Reynolds number of about Re = 106. The accurate prediction

of the flow behavior using CFD is still challenging due to the occurrence of laminar-turbulent

transition [LS07, YKW+07, RWS07, OMH+05]. The transition takes place along a laminar sepa-

ration bubble, which is caused by a strong adverse pressure gradient within the laminar boundary
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Figure 6.23: close-up view on the structured grid for flow calculation over the SG04 airfoil
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Figure 6.24: Principle design of the flexible airfoil

layer and along the smooth aerodynamic surface. Therefore, instead of the CBS scheme, the

well-validated finite volume code FLOWer, which solves the unsteady Reynolds-averaged Navier-

Stokes equation, is used in conjunction with an eN method for the transition prediction to take this

instability phenomenon into account [RWS07, WR08].

A coupled problem involving the CBS scheme will be the topic of the next chapter. In this

section, the coupling environment, with a conservative transfer scheme, the grid deformation and

simple staggered time integration scheme with a predictor is validated. More precisely the follow-

ing numerical components are used for the computation:

1. FLOWer together with an eN method for transition prediction for the fluid domain

2. the commercially available finite element solution package Ansys� for the structural do-

main, [ANS06]

3. the conservative interpolation as described in section 4.3.2 for the data transfer

4. the stiffness evaluation based on the wall distance, i.e. Eq. (4.2.4), for the finite element grid

deformation due to its performance evaluated in section 6.1.2

5. the simple staggered two-field approach for the time integration of the coupled problem with

the predictor of Eq. (4.4.8)

6.4.1 Simulation setup

For the fluid part of the coupled computation, a structured grid around the SG04 airfoil is generated

with 585x129 nodes, Figure 6.23. The SG04 airfoil was designed based upon a handfoil of a

seagull with a camber of 4% and its aerodynamic behavior was published in [UKH+07, BRU+10].

The use of the wall distance based stiffness evaluation method for the fluid grid deformation is

motivated due to the results obtained in section 6.1.2.

For the structural part of the simulation environment, a non-linear finite element model of the

airfoil is designed. This numerical model is based on a design using carbon reinforced plastic

with a stiff forebody and an overlapping three-shell concept, Figure 6.24. Further, the finite el-

ement model contains layered shell elements for the carbon reinforced plastic plates and contact

elements to model the area, where the upper and lower shell are in contact with the central shell.

This model is structurally validated with a manufactured wind tunnel model in terms of the first

eigenfrequency, eigenform and mass, see [UHHW08, BRU+10] for details. The structural airfoil

has a camber, which is higher than that for the original SG04 airfoil. This higher camber is de-

signed in a way, that at a gliding flight with a Reynolds number of Re = 105 and angle of attack

α = 3◦ the aerodynamic shape is obtained.
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Figure 6.25: Definition of the effective angle of attack
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Figure 6.26: Combined pitch-plunge motion witch 90◦ phase shift

6.4.2 Flapping flight motion parameters

A harmonic pitching-plunging motion of the airfoil is investigated for the flapping flight simula-

tion, i.e. the motion is prescribed through the structural model. The plunging part of the motion

can be expressed as:

z(t) = z̀ sin(2π f t) , (6.4.1)

with z(t) being the position of the quarter-chord line. The effective angle of attack due to the

pitching motion is then, see also Figure 6.25:

αeff(t) = α(t) + arctan

(
ż(t)

v∞

)
= α0 − ὰ cos(2π f t) + arctan

(
2Kz̀

lc
cos(2π f t)

)
≈ α0 +

(
2Kz̀

lc
− ὰ

)
· cos(2π f t) ,

(6.4.2)

where K = π f lc/v∞ is the reduced frequency and a phase angle of 90◦ between the plunging and

pitching motion is assumed. The following parameters of the flapping flight simulation are used:

• reduced frequency of K = 0.2

• plunging amplitude of z̀ = 0.5lc

• angle of attack of α0 = 4◦

• effective angle of attack amplitude of ὰeff =
2Kz̀
lc
− ὰ = 4◦

• Reynolds number of Re = 105

• time step size of Δt = 1
500 f

• critical N-factor of Ncrit = 8 (corresponds to a turbulence level of 0.1%).

A sketch of this combined pitching-plunging motion is depicted in Figure 6.26.
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Figure 6.27: Lift and pressure induced drag coefficients as well as transition location and trailing

edge deformation of the flapping flexible airfoil over two periods of motion

6.4.3 Validation of a reference testcase

The resulting time history of the lift and pressure induced drag coefficient as well as the evolution

of the transition location of the upper airfoil side and the trailing edge deformation are shown in

Figure 6.27 for two periods of the motion. It can be seen, that due to the unsteady fluid flow,

the always positive lift has its maximum during the downstroke shortly after the mid-downstroke,

although the highest effective angle of attack is reached at t/T = 0.25 + i (i being the period

number). The mean lift over one period is Cl = 0.8802. The highest negative drag, i.e. thrust,

is also reached during the downstroke shortly after the mid-downstroke, but before the maximum

lift is obtained. On the other hand, the highest positive drag is obtained shortly before the mid-

upstroke. Integrating the drag over one period gives the mean drag, which is computed as Cd,p =

0.0 -0.5 -1.0 -1.5 -2.0 -2.5

Cp

t/T

x/lc

−Cp

1.0

1.0

Figure 6.28: Pressure distribution of the upper airfoil over one period
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−0.0128, i.e. thrust is generated during one flapping period. From the time history plot of the

transition location, it can be observed, that the laminar separation bubble moves from the trailing

edge towards the leading edge during the downstroke and moves back during the upstroke, whereas

it never reaches the last 30% of the rear part. Thus, the laminar separation bubble is present at all

times for the flapping flexible airfoil.

The trailing edge deformation evolution is depicted without the rigid body motion part, i.e. the

evolution in Figure 6.27 shows the pure deformation in the local airfoil coordinate system. The

highest deformation is numerically obtained shortly after the top dead center at t/T = 0.1+ i. The

deformation decreases, i.e. the camber increases, while the airfoil moves to the bottom dead center.

The lowest deformation is computed shortly after the bottom dead center and during the upstroke

the camber is then decreased. The phase shift between the lift and the trailing edge deformation is

Δt/T = 0.275 = 100◦.

The lowest reached transition location is obtained at t/T = 0.35 + i with a value of xu
t /lc =

0.134. The effect of this laminar separation bubble to the pressure distribution of the upper side of

the airfoil is shown in Figure 6.28, where the Cp-value is plotted over the x/lc − t/T -plane for one

period. A jump in the Cp distribution is induced due to laminar-turbulent transition. This jump

moves together with transition location from the trailing to the leading edge and back during one

period of motion, where the height of the jump increases with lower values of xu
t /lc. Interesting

is the correlation between the lift and transition location. At the time, when the lowest transition

location is reached, the lift has its maximum value and vice versa.

The turbulent shear stress distribution, which is an adequate indicator for the transition from

laminar to turbulent flow, is shown in Figure 6.29 for four discrete time points together with the

turbulent shear stress obtained in wind tunnel test campaigns, published in [BRU+10]. These

experimental data were obtained with the aid of stereoscopic PIV measurements at the flapping

airfoil, where the flow velocity was captured at several window locations around the airfoil and at

multiple time instances. These sets of velocity vector images are ensemble averaged to get the de-

sired turbulent stress. It can be observed from the comparison, that at the top dead center the com-

puted transition location is more upstream than that found in the experiment, Figure 6.29(a). This

situation changes during the downstroke and at the mid-downstroke the calculated transition loca-

tion lies behind the experimental found location, Figure 6.29(b). This indicates, that the change

of xu
t is insufficiently resolved by the numerical scheme. During the upstroke the experimentally

found transition location is again more downstream than numerically predicted, Figure 6.29(c)

and 6.29(d). This disagreement was already noticed for the rigid version of the airfoil and is likely

caused by the turbulence assumption of the URANS solver, [BRU+10, Ban11].

6.5 Chapter summary

In this chapter, parts of the coupling environment are numerically verified and validated. Further-

more, several options for the fluid grid deformation and data transfer schemes are assessed. For the

fluid grid deformation it is found, that the stiffness evaluation methods introduced in section 4.2

perform similarly. However, the stiffness strategy based on the wall distance and the character-

istic length is recommended to use for the simple testcases with the unstructured grid. For the

structured grid in conjunction with the flapping-bending grid deformation, the best grids are ob-

tained with the stiffness evaluation methods based on the wall distance. Thus, for general fluid

grid deformations, the method which uses (4.2.6) is recommended.

Regarding the interface data transfer it is shown, that for low-curved interface grids an adaptive

refinement of the integration grids leads to a reduction of the transfer error. For highly curved
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Figure 6.29: Comparison of computational and experimental results in terms of the turbulent shear

stress distribution around the airfoil at several time instances - experimental data from [BRU+10]

reduced. This faceting error is also identified by the data transfer for a realistic wing configuration.

Further, a smooth transfer scheme is proposed in this chapter, which uses the three-field cou-

pling approach with a higher spatial order discretization of the connectivity frame. This transfer

scheme remains also load conservative, which is an important property for computational aeroe-

lasticity.

The three-field approach is further investigated in the context of an elastic-acoustic FSI prob-

lem, where two equilibrium iteration schemes - Richardson iteration and Newton-GMRES - are

studied in terms of the number of DN cycles. For this strongly coupled problem, it is shown, that

with the usage of the Newton-GMRES iteration scheme the number of DN cycles are reduced for

both, the two- and three-field approach. Further, the smooth transfer of the three-field leads to the

best computational effort for this problem.

In the last section of this chapter, the simulation of the flapping airfoil at a low Reynolds-

number flow is validated with experimental data. Since transition prediction is needed for such

flow problems, FLOWer with an eN method is used. Here, a simple staggered two-field coupling

procedure is utilized together with the conservative interpolation and the finite element fluid grid

deformation. Thus, the validated structural finite element model is coupled to the fluid grid and

the simulation is compared to experimental data in terms of the turbulent shear stress distribution.

It could be shown that the experimental data are principally captured by the numerical simulation,

although the change in the transition location in reality is faster than numerically predicted.
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7 Finite Element Fluid-Structure
Interaction - Panel Flutter Problem

In this chapter, the typical non-linear and dynamic aeroelastic phenomenon of the panel flutter

is intensively investigated with the aid of schemes presented in chapter 3 and 4. This classical

aeroelastic problem exhibits a limit cycle oscillation (LCO), i.e. the flutter amplitude is restricted

due to the non-linear nature of the thin structure.

7.1 Problem description

The panel flutter problem is a classical phenomenon in aeroelasticity and consists of a clamped

or simply supported plate over which a fluid flows. Usually, this plate or panel is very thin and

has therefore to be modeled as a non-linearly behaving structure. Due the fluid flow, the panel

can exhibit a self-exciting oscillation. Another aeroelastic behavior, which can be observed, is a

steady deflection of the panel known as divergence. Which of these aeroelastic phenomena exhibit,

depends on the combination of parameters in particular the panel thickness, the flow Mach number

or the flow pressure at infinity. Further, the panel flutter problem is often used as an aeroelastic

model problem, since the phenomena observed here are also present in aircraft wings.

In Figure 7.1, the setup of the panel flutter problem is depicted. The fluid flows tangentially

over the panel, which has a height hs and a length ls. Underneath the panel a constant pressure of

p f ,∞ is applied. The pressure induced by the flow deforms the panel, which in turns influences the

flow field.

7.1.1 Structural model of the panel

To take the large structural deformation into account, the panel itself is modeled with the von Kár-

mán plate model, where the non-linearity comes from an in-plane restoring force, whose value

depends on the panel deflection, [Dow77, CD04]. Therefore, the amplitude of a panel oscilla-

tion is limited due to the restoring force and this kind of flutter phenomenon is called limit cycle

oscillation (LCO).

x

y, us

p f ,∞

Ma, ρ f ,∞, p f ,∞

p f
hs

ls

Figure 7.1: Description of the panel flutter problem
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The structural displacement-based action functional Is for a thin one-dimensional von Kármán

plate, i.e. a constant plate behavior in spanwise direction, can be expressed as:

Is(us) =

t2∫
t1

{ ls∫
0

1

2

⎡⎢⎢⎢⎢⎢⎣D (
∂θs

∂x

)2

+ 5
6
G

(
∂us

∂x
− θs

)2

+
B0 + Bx

2

(
∂us

∂x

)2
⎤⎥⎥⎥⎥⎥⎦ dx

−

ls∫
0

1

2

⎡⎢⎢⎢⎢⎢⎣ρshs

(
∂us

∂t

)2

+
ρsh

3
s

12

(
∂θs

∂t

)2
⎤⎥⎥⎥⎥⎥⎦ dx −

ls∫
0

us p̂s dx

}
dt ,

(7.1.1)

where us is defined as the deflection of the panel, i.e. as the deformation in y-direction. The first

integral represents the potential and the second denotes the kinetic energy. The angle θs is the

rotation of the plate section. The values D and G denote the plate stiffness and shear module of

the panel with:

D =
Eh3

s

12(1 − ν2s)
; G =

E

2(1 + νs)
; (7.1.2)

with E and νs being the stiffness module and Poisson’s ratio of the panel, respectively. The non-

linearity occurs due to the force Bx = Bx(∂us/∂x):

Bx =
Ehs

2ls

ls∫
0

(
∂us

∂x

)2

dx . (7.1.3)

The structural system is spatially discretized by Timoshenko beam elements, which are free of

shear locking, resulting in the following matrix system, [Hur01, FK93]:[
(ρshs)Mu +

ρsh
3
s

12
Mθ

]
üs +

[
DKu +

5
6
GhsKθ +

1
2
Ehs(u

T
s KRus)KR

]
us = fu,ext , (7.1.4)

where it is assumed, that the panel is not pre-stressed, i.e. B0 = 0. Clearly, the non-linearity is

given by the third part of the stiffness term. For a definition of the matrices Mu, Mθ, Ku, Kθ and KR

consult [FK93, Hur01].

7.1.2 Aeroelastic parameters of the panel flutter problem

All the structural parameters like panel length, thickness, stiffness and the fluid parameters like

density, pressure and velocity of the flowing air at infinity can be expressed through three aeroe-

lastic parameters. The first parameter is the non-dimensional mass ratio, here defined as rm, which

can be written as:

rm =
ρ f ,∞ls

ρshs

=
ρ f ,∞

ρs
hs

ls

. (7.1.5)

A second parameter is the non-dimensional dynamic pressure rp, which is:

rp =
ρ f ,∞v

2
f ,∞

l3s

D
=
ρ f ,∞v

2
f ,∞

12(1 − ν2s)

E
(

hs

ls

)3
. (7.1.6)

The key aeroelastic parameter is the reduced frequency K, which is defined as:

K =
π f ls

v f ,∞

. (7.1.7)
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Figure 7.2: Unstructured grid for calculations of inviscid panel flutter problem

Here, the reduced frequency is the result of the computation for the panel flutter problem. There-

fore, the Mach number Ma∞ is used as third input parameter. The aeroelastic problem of the

panel flutter is thus defined by the three input parameters (rm, rp,Ma∞). Given a panel with the

material density ρs, Young’s modulus E and Poisson’s ratio νs as well as the geometric parameters

hs and ls, the fluid density and the velocity at infinity are obtained from Eq. (7.1.5) and (7.1.6),

respectively. From the definition of the Mach number Eq. (3.2.11), the temperature or the pressure

at infinity can be obtained. Usually, the mass ratio rm is fixed and the response of the system due

to the Mach number and the non-dimensional dynamic pressure rp is studied to obtain a stability

chart.

7.2 Transonic panel flutter - methodology assessment

Initially, the panel flutter problem is investigated at a transonic Mach number of Ma∞ = 1.0. The

panel is made by aluminum with a density of ρs = 2700 kg/m3. Young’s modulus and Poisson’s

ratio are E = 7.1 · 1010 N/m2 and νs = 0.34, respectively. The geometry of the panel is set to a

thickness of hs = 4.537 mm and a length of ls = 1.0 m. The panel is simply supported at x/ls = 0.0

and x/ls = 1.0.

In [Mas02], a bifurcation of the panel’s aeroelastic behavior with a constant mass ratio of

rm = 0.1 was reported when increasing the non-dimensional dynamic pressure rp from 160 to 180.

At a pressure of rp = 180 a LCO can be observed and for rp = 160 a divergence of the panel is

predicted. For a pressure of rp = 170, flutter should be obtained and therefore this case is chosen

to study the influence of the different transfer schemes, the performance of the structural predictors

in conjunction with a simple staggered time integration scheme. Further, the proposed consistent

time integration scheme is investigated as well as the performance of the DG-CBS compared to

standard CBS scheme.

For this testcase, an inviscid fluid is assumed and therefore the Euler equations of the fluid

motion are solved. In Figure 7.2, the used triangular mesh for the fluid domain is depicted. This

grid consists of 7516 nodes connected to 14521 elements. Small elements are placed in the vicinity

of the panel (0.0 ≤ x ≤ 1.0). The fluid interface is discretized with 400 elements.

7.2.1 Influence of the transfer scheme

First, the influence of the different transfer schemes presented in section 4.3 on the flutter behavior

of the panel is studied. Additionally, the non-conservative load transfer often used in aeroelas-
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Figure 7.3: Midpoint deflection of the panel using different transfer schemes and number of ele-

ments

tic computations is included in this study. For the non-conservative load transfer, the structural

pressure load at the nodes are calculated from the fluid pressure with the aid of the fluid shape

functions, i.e. the structural nodes need to be mapped on a proper fluid element and the pressure

is calculated from the adjoined fluid nodes.

A constant time step of Δt = 10−3 s is used for all calculations presented in this section.

Further, in terms of the CBS scheme, the explicit scheme with θ1 = 0.75 and θ2 = 0.0 is applied
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Figure 7.4: Reduced frequency and midpoint amplitude of the LCO using different transfer

schemes and number of elements

as well as the lumped mass matrix option to obtain a matrix free solution procedure. The iterative

equilibrium iteration depicted in Figure 4.5 is used to suppress possible errors due to a simple

staggered time integration scheme, i.e. the Richardson equilibrium iteration is applied.

In Figure 7.3, the midpoint deflections of the panel using different transfer schemes are shown

for various numbers of structural elements. The time history plots are non-dimensionalized with

πls/v f ,∞ so that the reduced period time, 1/K, can be directly identified.

In Figure 7.3(a), the panel’s midpoint deflection using the Galerkin based transfer is depicted,

where the coupling matrix M̆(s f ) is computed based on a merged mesh, which can be simply ob-

tained from the fluid and structural interface grids. Even for a very coarse structural mesh, a flutter

behavior of the panel is obtained and the results fit well with those reported in [Mas02]. For 50 and

more structural elements, identical results are obtained and no differences in terms of flutter am-

plitude and frequency can be seen. The convergence of the reduced frequency and the amplitude

regarding the number of structural elements is shown in Figure 7.4. For the Galerkin based trans-

fer, a reduced frequency of K = 0.118 and a midpoint amplitude of 0.5(Δus/hs)x/ls=0.5 = 1.812

are obtained for 50 and more elements. In [Mas02], a reduced frequency of 0.110 and a non-

dimensional amplitude of 1.79 could be reconstructed, but a structured grid with 80 elements on

the fluid interface was used for these computations.

The deflection of the panel discretized with 50 elements over one period of the limit cycle

oscillation is shown in Figure 7.5(a), where the panel deformation is also colored. The panel is

fully deflected in positive y-direction at a non-dimensional time t · v f ,∞/(πls) = 74.7. The structure

then rapidly deflects to the opposite direction. From the bottom dead center, the panel is now

deformed to the top dead center, while the deflection shows a wavelike behavior, where the first

50% of the panel reaches a positive deflection at t·v f ,∞/(πls) ≈ 79.2 before the remaining panel part

follows upward. This main deformation behavior of the panel is accompanied by higher modes,

which are also excited by the fluid flow. The corresponding pressure coefficient on the structural

discretization is shown in Figure 7.5(b), where a weak shock occurs on the panel, which is mostly

present while the panel deforms from bottom to the top dead center. This shock moves from

the middle to the end of the panel and the Galerkin based transfer is able to resolve this shock

on the coarse structure, while the pressure distribution is transmitted from a fine fluid interface

grid. Finally, the Mach number contours at four discrete time points are shown in Figure 7.6. In

Figure 7.6(a) and 7.6(d), the moving weak shock is again visible.
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Figure 7.5: Deformation of the panel during one cycle of oscillation and the according pressure

load on the panel using the Galerkin based transfer with 50 structural elements

fer shows nearly the same behavior as the Galerkin based transfer scheme, Figure 7.3(b). With

100 and more structural elements, the same LCO frequency is obtained, Figure 7.4(a), and only

a slightly lower midpoint amplitude compared to the Galerkin based transfer is computed, Fig-

ure 7.4(b). The advantage of the dual-Lagrange multipliers lies in the computational costs of

inverting the matrix M
( f )
λu
= M̆( f f ). Therefore, this is a favorable transfer scheme for FSI problems

involving many degrees of freedom.

The conservative interpolation shows a similar midpoint panel deflection behavior as the

Galerkin or the dual-Lagrange based transfer, see Figure 7.3(c). The reduced frequency and the

midpoint deflection of this scheme converge to a slightly higher value than that for the Glaerkin

based transfer, Figure 7.4(a) and Figure 7.4(b). But it should keep in mind that this identical be-

havior is due to the fine fluid interface grid compared to the structural interface representation. As

soon as, the structural interface grid becomes much finer as the fluid interface grid, unphysical

oscillation in the transmitted pressure will be present [UHH07a]. This unphysical oscillation is

caused by the property of this scheme, that some structural nodes will not receive any forces from

the fluid interface due to the different discretization of the interface, [CL97].

Using the non-conservative interpolation as described above, no flutter is observed, when the

structure is discretized with 10 or 20 finite elements, Figure 7.3(d). Only with 50 and more ele-

ments a LCO of the panel is identified and with 100 structural elements similar flutter frequencies

and amplitudes are obtained, Figure 7.4(a) and Figure 7.4(b). The main reason for this behavior is

the artificial energy loss during the data transfer, i.e. the load computed by the CBS scheme is not

conserved, when transmitted to the structure. Therefore, this scheme cannot be recommended for

aeroelastic computations.

In Figure 7.3(e), the midpoint deflection of the panel is shown using the Sobolev-norm based

transfer scheme with ςSN = 0.3, whereby the integration is performed on a merged mesh. For

50 and more structural elements, almost an identical time history as for the transfer using the

Galerkin based can be identified. However, the panel losses stability after a few cycles for 10

elements (t · v f ,∞/(πls) > 50) and no flutter is observed. The reduced frequency converges to lower

value than that for the Galerkin based transfer, Figure 7.4(a), whereas no definite convergence is

observed for the amplitude with 200 structural elements. The main difficulty of the Sobolev-norm

based transfer is to estimate an optimal parameter ςSN . In [JH04], a suggestion for the evaluation

of the weight ςSN is given, which is of local character and only applicable for structured grids.

Therefore, this scheme cannot be recommended for general aeroelastic application yet.
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(c) Mach number contours at t · v f ,∞/(πls) = 78.9
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Figure 7.6: Mach number contours of the fluid passing the panel at four time points using the

Galerkin based transfer with 50 structural elements
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Figure 7.7: Reduced frequency and midpoint amplitude of the LCO using different predictors at

several time step sizes

interpolation give similar results for the transonic panel flutter problem. The dual-Lagrange based

transfer is recommended here, since this scheme is load conservative and combines the general ap-

plicability for different interface discretization with the efficiency of a matrix-free transfer scheme

like the conservative interpolation.

7.2.2 Influence of the time integration scheme

In a next investigative campaign, the panel flutter problem is studied with a simple staggered time

integration scheme, i.e. the data transmission from the fluid to the structure and vice versa is only

accomplished once in a time step to reduce the computational effort. Thus, the first and second
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Figure 7.8: Reduced frequency and midpoint amplitude of the LCO using time integration schemes

at several time step sizes

order structural predictors Eq. (4.4.5) to (4.4.8) are tested at several time step sizes with a structural

discretization of 100 elements and with the application of the dual-Lagrange based transfer due to

its performance observed in the previous section. The remaining parameters are kept unchanged.

First, an inconsistent time integration of the coupled system is used, i.e. for the structural

subsystem, the Newmark scheme of Eq. (4.6.1) is utilized. Using a small time step size of

Δt = 0.5 · 10−3 s, which corresponds to a non-dimensional time step of Δt · v f ,∞/(πls) = 0.047,

all schemes except the one without predictor result in a similar flutter frequency and amplitude,

Figure 7.7. Without any predictor, a considerably lower reduced frequency and higher amplitude

are obtained. Moreover, with the second order predictor from Eq. (4.4.7), a slightly lower fre-

quency and amplitude as for the other predictors are computed. The reduced frequency for the

schemes with predictor is a bit smaller as the frequency obtained with Richardson equilibrium

iteration from the previous section. Further, the amplitude of the LCO is decreased when a simple

staggered scheme is used.

Increasing the time step size to Δt = 1.0 · 10−3 s or Δt · v f ,∞/(πls) = 0.094, the predictor of

Eq. (4.4.7) fails to predict flutter for the testcase, Figure 7.7. For very coarse time steps (Δt ·

v f ,∞/(πls) = 0.468), only the first and second order predictor from Eq. (4.4.5) and Eq. (4.4.6)

predict flutter.

Finally, it should noted, that Figure 7.7 represents the temporal convergence of the presented

coupling scheme and regarding the panel flutter problem, and the second order predictor (4.4.6)

gives the best results even for very coarse time steps.

Switching the structural time integration scheme to the three-point difference backward sche-

me, the resulting coupling scheme is consistent in terms of the time integration. In Figure 7.8,

the Newmark and the consistent three-point difference backward time integration scheme for the

structural subsystem are compared for several time steps in terms of the reduced frequency and

the midpoint panel flutter amplitude. Here, the second order predictor (4.4.6) for both integration

methods is applied. For small time steps, both time integration methods results in an identical

flutter frequency and amplitude. For very coarse time step sizes, the differences in both values

become noticeable. Especially from the reduced frequency convergence plot, it can be seen, that

the consistent time integration scheme yields a better convergence behavior than the classical

Newmark integration scheme.

To summarize, with a simple staggered time integration scheme of the coupled problem in

conjunction with the usage of the structural predictor, the computational time can be reduced due

to the omission of the equilibrium iteration within a time step. Nevertheless, the results obtained

with such a scheme are reliable in terms of both the flutter frequency and amplitude. Further,

similar results are observed when the Newmark or the consistent three-point backward difference

scheme for the structural time integration is used.
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Figure 7.9: Fluid interface pressure during one cycle of oscillation using the two-field approach

(dual-Lagrange based transfer) for several structural discretization

7.2.3 Comparison of the two- and three-field coupling approach

In terms of the two-field approach, the structural displacements are directly transmitted to the fluid

grid, which in turns influences the fluid pressure distribution. In Figure 7.9, the fluid interface pres-

sure is depicted over the time for one limit cycle period using the two field coupling approach. This

pressure is again warped in the third direction for visualization. Different structural discretizations

are used and a constant time step size of Δt · v f ,∞/(πls) = 0.094 as well as the simple staggered

time integration with the three-point backward time discretization for the structure are applied. For

the data transmission, the dual-Lagrange based transfer is utilized. As seen from Figure 7.9(a),

equidistant unphysical oscillation in the pressure distribution can be noticed. Such oscillations,

which result in small and very local shocks, are caused by the transfer of the displacement field

from a coarse structural to a finer discretized fluid interface. More precisely, after the displacement

field transfer, the fluid interface becomes chiseled, which is responsible for local pressure changes.

This kind of chiseled fluid interface was already observed in Figure 6.20(b).

To overcome this transfer behavior, more elements for the panel discretization can be used. In

Figure 7.9(d), the fluid interface pressure is depicted, where the structural panel consists of 100 fi-

nite elements, while the fluid interface still contains 400 elements. The local pressure disturbances

are less visible as in the case, where the structure has only 10 elements. Clearly, an optimal solu-

tion would be obtained with matched fluid and structural interface grids, but often such demand is

far away from being possible.

111



7 Finite Element Fluid-Structure Interaction - Panel Flutter Problem

x/
l s

1.0

0.0

0.5
t · v

f ,∞/(πls)

Cp

Cp
-0.16 -0.08 0.080.00 0.16

72.2

83.0

77.9

(a) 10 structural elements

x/
l s

1.0

0.0

0.5
t · v

f ,∞/(πls)

Cp

Cp
-0.16 -0.08 0.080.00 0.16

76.7

85.9

81.3

(b) 20 structural elements

x/
l s

1.0

0.0

0.5
t · v

f ,∞/(πls)

Cp

Cp
-0.16 -0.08 0.080.00 0.16

75.2

84.2

79.7

(c) 50 structural elements

x/
l s

1.0

0.0

0.5
t · v

f ,∞/(πls)

Cp

Cp
-0.16 -0.08 0.080.00 0.16

75.0

83.9

79.4

(d) 100 structural elements

Figure 7.10: Fluid interface pressure during one cycle of oscillation using the three-field approach

(Galerkin based transfer) for several structural discretization

plication of the three-field approach in conjunction with an independent frame discretization with

C1 continuous elements as proposed in section 6.2.3. Here, the frame is automatically created,

so that the requirement of Eq. (4.5.4) is barely satisfied. For the coupling matrices, the Galerkin

scheme is utilized and the remaining parameters are kept unchanged. In Figure 7.10 the obtained

pressure on the fluid interface is shown. Using the three-field approach, the pressure distribu-

tion is much smoother and the local pressure oscillations are no longer apparent for all structural

discretizations. Thus, the three-field approach, which is used here to employ an accurate dis-

placement field transfer scheme, is a favorable method to simulate a coupling problem involving

a compressible fluid.

Comparing the reduced frequency as well as the amplitude of the two-field approach with

those of the three-field approach, similar results are obtained, Figure 7.11. Only for a very coarse

structural grid, small differences are noticeable. This basically indicates that both coupling ap-

proaches are conservative in terms of the load transfer and in terms of the energy transfer over

the interface. Due to the more accurate results for the fluid domain when using the three-field

approach, this approach is the preferred coupling scheme.

7.2.4 Comparison of the CBS and the DG-CBS scheme

The temporal as well as the spatial structural convergence have been employed in the previous

sections and it remains to clarify, the spatial convergence in terms if the fluid grid resolution.
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Another solution of this coarse-to-fine data transfer over non-matched interface grids is the ap-
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Figure 7.11: Reduced frequency and midpoint amplitude of the LCO using different coupling

approaches and number of elements
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Figure 7.12: Example of a structured grid for calculations of inviscid panel flutter problem - 160

elements distributed on the panel

According to section 5.2.1, a structured grid is now used for the panel flutter problem, due to its

simple creation of similar grids with bilinear or biquadratic finite elements at different resolution

levels. In Figure 7.12, an example of a structured grid is shown, which is characterized by the

existence of 160 elements distributed on the panel. Other fluid grids created for the computations

use 80, 120, 160, 240 or 320 elements on the panel interface. Again the panel flutter phenomenon

is computed with the same parameter set as described above (Ma∞ = 1.0, rm = 0.1, rp = 170) and

with the aid of the three-field coupling approach.

In Figure 7.13, the midpoint deflection together with the midpoint velocity is shown for dif-

ferent discretizations and for different spatial order of finite elements. Using a coarse grid with

bilinear elements and with 80 elements on the interface, a high flutter frequency of 0.167 and

0.164 for the CBS and DG-CBS scheme are obtained. Comparing these results with a finer grid,

e.g. 320 elements at the interface, Figure 7.13(b), this high frequency is caused by a non-satisfying

midpoint velocity time history. While the panel moves to the top dead center, the velocity shows a

higher mode, where the midpoint velocity almost reaches zero.

Using grids with biquadratic elements, similar expressions can be made. Although slightly

better results are obtained when using 80 elements at the fluid interface, the velocity time history

of the midpoint deflection is still insufficient, Figure 7.13(c). With 120 quadratic elements at the

interface, the midpoint velocity shows a behavior similar to the case, where 320 linear elements at

the interface are used, and a reasonable flutter frequency is therefore obtained.

Finally, the relative error of the obtained flutter frequencies over the number of elements used

to discretize the fluid interface is plotted in Figure 7.14 for the CBS as well as the DG-CBS

scheme. Since a structured grid is used in [Mas02], the frequency reported there is chosen as

reference. Using linear elements, the differences between the curve for the CBS and the DG-CBS

113



7 Finite Element Fluid-Structure Interaction - Panel Flutter Problem

50 60 70 80 90

-3

-2

-1

0

(u
s/

h
s)

x/
l s
=

0
.5

,
(v

s
·
[(
π

l s
)/

(h
sv

f,
∞

)]
) x
/l

s=
0
.5

1

2

t · v f ,∞/(πls)

continous form of CBS deflection

continous form of CBS - velocity

discontinous form of CBS deflection

discontinous form of CBS - velocity

(a) 80 linear elements on the fluid interface

50 60 70 80 90

-3

-2

-1

0

(u
s/

h
s)

x/
l s
=

0
.5

,
(v

s
·
[(
π

l s
)/

(h
sv

f,
∞

)]
) x
/l

s=
0
.5

1

2

continous form of CBS deflection

continous form of CBS - velocity

discontinous form of CBS deflection

discontinous form of CBS - velocity

t · v f ,∞/(πls)

(b) 320 linear elements on the fluid interface
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(c) 80 quadratic elements on the fluid interface
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(d) 120 quadratic elements on the fluid interface

Figure 7.13: Midpoint deflection of the panel using different version of CBS scheme and number

of elements at the fluid interface
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Figure 7.14: Relative error of the reduced frequency using different versions of the CBS scheme

and number of elements on the interface

scheme are marginal. Only with 320 fluid interface elements, relative error is lower as for the

DG version. Using a biquadratic grid with 160 elements on the fluid interface, the error becomes

similar small as the value for 320 linear elements. Moreover, it should be noted, that the difference

between the CBS and the DG-CBS scheme is noticeable for the case with biquadratic elements.

Therefore, it can be conclude here, that application of the DG-CBS scheme for the solely reason
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of improving the accuracy is only attractive, when quadratic elements are used for the fluid grid.
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Figure 7.15: Midpoint deflection of the panel at Ma∞ = 0.9, rm = 0.1, rp = 200 - upward and

downward deflection

7.2.5 Choice of schemes for upcoming simulations

Due to the experience obtained in the previous subsections, the following schemes and parameters

are used for all upcoming calculations:

• the simple staggered solution strategy, i.e. ςRI = 1.0 and setting the maximum number of

iteration for each time level to one to save computational effort

• the second order structural predictor of Eq. (4.4.6) due to its accuracy and stability

• a time step size of Δt = 0.001 s to guarantee accurate flutter calculations over a wide range

of non-dimensional pressure

• the consistent time integration, i.e. the time integration of Eq. (4.6.3) is used for the structure

due to its better stability at higher time step sizes

• 100 linear structural elements for the panel

• the usage of the unstructured grid from Figure 7.2

• the application of the three-field approach together with the Galerkin based transfer due to

its smooth data transfer property

• a lumped mass matrix and θ1 = 0.75 and θ2 = 0 within the CBS scheme to save computa-

tional effort with this matrix free form

• the continuous Galerkin version of the CBS scheme

The last point needs some further explanation. Although with the DG-CBS scheme, a local con-

servative procedure can be designed, the effect on the panel flutter results is marginal as shown in

the previous section. Thus, the continuous Galerkin version of the CBS scheme is chosen here.

7.3 Panel behavior at subsonic flow

With the given parameters and settings, which behave best for the transonic panel flutter at Ma∞ =

1.0, several simulations can be conducted of the panel interacting with fluid flow. Initially, the

panel behavior is investigated at subsonic Mach numbers varying the non-dimensional dynamic

pressure rp and mass ratio rm. At a Mach number of Ma∞ = 0.9, the panel shows no flutter.

Instead, it deflects in the upward or downward direction depending on rp and the initial value for

the panel velocity as for example shown in Figure 7.15. An initial velocity is necessary to trigger

the panel deflection, when an inviscid fluid model is used. Here, the initial velocity distribution has

the same form as the panel deflection assuming a constant pressure. This distribution is scaled with

a maximum value of |0.1|m/s at the panel midpoint. For the subsonic case, a positive or negative
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Figure 7.16: Upward panel deflection for different non-dimensional dynamic pressure values and

two Mach numbers at rm = 0.1
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Figure 7.17: Downward panel deflection for different non-dimensional dynamic pressure values

at Ma∞ = 0.98, rm = 0.1

velocity distribution is applied depending on the desired deflection direction. Thereby, it is not

mandatory, that a positive initial velocity leads to an upward panel deflection, see Figure 7.15.

Indeed, in some cases, the panel deforms always in one direction independently of a positive or

negative initial velocity distribution.

In Figure 7.16(a), the upward panel deflection for different values of rp is shown, where a

Mach number of Ma∞ = 0.9 and a non-dimensional mass ratio of rm = 0.1 are set. It can be

observed from this figure, that the highest deformation is nearly at the panel midpoint for all rp.

This situation changes by increasing the Mach number to Ma∞ = 0.98, where now the highest

deformation can be found at x/ls = 0.63 independently of rp, Figure 7.16(b). Such downstream

shift of the highest deformation location cannot be found, if the panel deflects downward, Fig-

ure 7.17. For the downward deformed panel at Ma∞ = 0.98, the highest deformation is found to

be at x/ls = 0.53. This behavior is caused by the occurrence of a shock situated near the down-

stream end of the upward deflected panel, which is absent in the case of the downward deflected
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Figure 7.18: Mach number and pressure contours of the fluid passing the panel at Ma∞ = 0.98,

rp = 100, rm = 0.1 - upward and downward deflected panel
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Figure 7.19: Critical non-dimensional dynamic pressure vs. the farfield Mach number for different

rm - subsonic stability chart

structure, Figure 7.18. In Figure 7.18, the Mach number and the pressure contours of the fluid

passing the panel are shown, where Ma∞ = 0.98, rp = 100, rm = 0.1 are used as parameters. Such

shock with its transonic effects leads to a shift of the maximum deflection location, whereas the

solution without a shock remains more symmetric about the panel midpoint. Comparing the up-

and downward deformation form, it is remarkable, that the absolute deformation of Figure 7.16(b)

is lower than that in Figure 7.17.
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value for rp depending on the Mach number, where the deflection of the panel is activated. This

critical pressure is equal to rp,crit = 18.0 and rp,crit = 10.2 for a Mach number of Ma∞ = 0.9 and

Ma∞ = 0.98, respectively. In Figure 7.19, the critical rp is plotted over the Mach number for

different mass ratios rm and it can be seen, that the influence of rm is marginal. An explanation

for this observation is the absence of inertia loads in the case of a static deflection. Only for

Mach numbers close to Ma∞ = 1.0, slightly higher critical pressures for higher rm can be noticed.

Nevertheless, with higher Mach numbers Ma∞ the critical pressure decreases in an almost linear

way. A stable panel behavior is observed below these curves, i.e. an initially deformed plate will

fall back to an undeformed structure. Above these curves, the panel deflects up- or downward to a

certain equilibrium.

Finally, the up- and downward midpoint deflection of the structure over the dynamic pressure

is depicted in Figure 7.20 for several farfield Mach numbers and mass ratios. First of all, it should

be noted, that the influence of the mass ratio rm is again insignificant in the subsonic range. For

the downward deflected plate, the panel deforms as soon as the stability boundary of Figure 7.19

is passed and the midpoint deformation increases with increasing the rp. Due to the use of the

von Kármán plate model, this deformation behavior is non-linear. A similar behavior can be

noticed for the upward deflected case, except that here a deformed structure for values of rp up to

2500 is obtained only at Ma∞ = 0.9. With a Mach number of Ma = 0.98, an upward deformed

plate is only achieved for rp ≤ 100 and otherwise, only a downward deflected panel behavior is

observed. For Ma = 0.94, this characteristic value is rp ≈ 320.

7.4 Panel behavior at supersonic flow

The principal aeroelastic behavior changes with supersonic flow conditions. Depending on the

non-dimensional dynamic pressure rp, the panel exhibits a limit cycle oscillation. Characteristic

values of such LCO are the reduced frequency and the amplitude of the oscillation. Moreover,

it is observed, that the temporal mean of a point on the panel is shifted downwards. Thus, the

deformations of the structure at the top and bottom dead center as well as the mean value are

further characteristic values.

First of all, the non-dimensional dynamic pressure rp is varied for three inflow Mach numbers,

Ma∞ = (1.04, 1.08, 1.12), at a non-dimensional mass ratio of rm = 0.1. The panel deflection of

the LCO at the top and bottom dead center for different values of rp can be viewed in Figure 7.21.

It can be noticed from Figure 7.21(a), that the location of the maximum deformation of the de-

flected panel at the top dead center is shifted downstream and situated between 0.58 ≤ x/ls ≤ 0.64,

whereas the location increases with higher rp. The same observation can be made for the deflected

plate at the bottom dead center, Figure 7.21(b). Increasing the Mach number to Ma∞ = 1.08,

the maximum panel deformation at the top dead center also increases, whereas the location of the

maximum remains nearly unchanged, Figure 7.21(c). The deflection at the bottom dead center

shows a similar behavior, but the increase turns out to be considerably smaller, Figure 7.21(d).

With a Mach number of Ma∞ = 1.12, the panel shows even higher deformations at the top and

bottom dead center, Figure 7.21(e) and Figure 7.21(f). The location of the upper maximum deflec-

tion is for this case 0.58 ≤ x/ls ≤ 0.62, whereas the highest values are obtained at rp = 500. From

the series of figures, it can be observed, that the panel deformation form at the top dead center

changes with the Mach number, especially for higher rp, whereas the shape at the bottom dead

center remains unchanged.

Similar to the behavior at subsonic Mach numbers, a LCO of the panel is activated at a certain

rp, which further can be noticed from Figure 7.21. For a Mach number of Ma∞ = 1.04 and a mass

ratio of rm = 0.1, this value is rp = 24.1. Below this value, an initially deflected plate will fall back
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Furthermore, it can be observed from the two plots of Figure 7.16, that there exists a certain
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Figure 7.20: Up- and downward midpoint deflection of the panel over the non-dimensional dy-

namic pressure for different Mach numbers Ma∞ and mass ratios rm
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Figure 7.21: Panel deflection at the top and bottom dead center for different non-dimensional

dynamic pressure values and three Mach numbers at rm = 0.1
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to its undeflected state and the behavior is thus stable. On the other hand, the panel shows a LCO

above this value for this specific set of parameters. In Figure 7.22, the critical rp are plotted over

the Mach number for three mass ratios. Contrary to the subsonic stability chart, Figure 7.19, the

mass ratio rm has a significant influence on the stability boundary. To the author’s knowledge, this

effect was not investigated in literature before. For low supersonic Mach numbers, the difference

in the critical rp is small, but increases considerably with higher Mach numbers. Moreover, a

supersonic dip in the stability boundary with its local minimum at Ma∞ = 1.17 is found for

rm = 0.1. Decreasing the mass ratio to rm = 0.05, the range of the dip is expanded at lower critical

rp-values, whereas an increase to rm = 0.2 leads to a cancellation of the local minimum at a higher

stability boundary.

The reduced frequency over rp is shown in Figure 7.23. In this figure, the Mach number as

well as the non-dimensional mass ratio are varied. For a Mach number of Ma∞ = 1.08 and a

mass ratio of rm = 0.1, Figure 7.23(b), it can be observed, that the frequency of the LCO increases

non-linearly with higher dynamic pressures and converges to a value of K = 0.312 for high values

of rp. Increasing the Mach number to Ma∞ = 1.12, the same principal relationship is noticed,

but the curve is shifted to higher frequencies. Decreasing the Mach number to Ma∞ = 1.04, the

frequency is reduced and a limit value of K for the considered range of rp cannot be noticed.

Doubling the mass ratio rm, the development of the flutter frequency is nearly identical for

rp < 80, Figure 7.23(c). With higher dynamic pressures, the panel shows higher frequencies of

the LCO as with rm = 0.1. For Ma∞ = 1.12, the flutter frequency converges to K = 0.408. For

rm = 0.05 and Ma∞ = 1.04, Figure 7.23(a) the development of the K − rp-curve is again nearly

identical as for the case with rm = 0.1. However, increasing the Mach number to 1.08 or 1.12 the

curves show a plateau at 35 < rp < 90 and local minima of the curves can be noticed at rp = 20.

A second local minimum at rp = 400 can be seen for Ma∞ = 1.12.

In Figure 7.24, the midpoint deflections of the panel at the top and bottom dead center are

shown. Similar to the subsonic pure deflection panel behavior, the deformation increases non-

linearly with higher rp as soon as the critical rp is exceeded. For rm = 0.1, the deformation

increases with higher Mach numbers, whereas the rate of change for the top dead center defor-

mation is slightly higher as for the bottom dead center, Figure 7.24(b). Furthermore, the LCO is

asymmetric, i.e. the midpoint deformation at the bottom dead center is greater than the deflection
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Figure 7.23: Reduced frequency of the panel’s oscillation over the non-dimensional dynamic pres-

sure for different Mach numbers Ma∞ and mass ratios rm
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Figure 7.24: Panel midpoint deformation at the top and bottom dead center over the non-dimen-

sional dynamic pressure for different Mach numbers Ma∞ and mass ratios rm
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at the top dead center. This fact also can be seen from the figures in the appendix, Figure A.1 to

Figure A.9, where the frequencies and periods as well as the amplitudes and means of the deforma-

tion are depicted for each considered combination of Mach number and mass ratio. For example

in Figure A.4, the development of the panel’s mean deformation is plotted. With higher values of

rp, this LCO’s deformation mean is decreased to negative values.

Increasing rm to 0.2, the deformation range of the structure is reduced, Figure 7.24(c). Inter-

estingly, the bottom dead center deformations for a Mach number of 1.04 and 1.08 show almost

identical results. For rm = 0.05, the highest considered midpoint deformation can be observed,

although the differences to the deflection at rp = 500 and rm = 0.1 is small, Figure 7.24(a).

Finally, the correlation of the frequency and the amplitude of the LCO is illustrated in Fig-

ure 7.25. Considering first the curve with rm = 0.1 and Ma∞ = 1.04 from Figure 7.25(b), it can be

seen, that the relationship is nearly linear. This situation changes with higher Mach numbers due

to the non-linearity of the structure. The same observation at lower amplitudes can be made for a

mass ratio of rm = 0.2. For rm = 0.05, a non-linear relationship is noticed for all Mach numbers.

Moreover, the relationship becomes non-injective for a Mach number of 1.08 and 1.12, e.g. for

Ma∞ = 1.12 and K = 0.27, two amplitude of the LCO are possible depending on rp.

7.5 Panel flutter stability chart

With the given analyses of the panel at sub- and supersonic flow conditions, the complete stability

boundary chart can be assembled. The stability boundary chart of the panel is depicted in Fig-

ure 7.26 for the three considered values of the mass ratio. It can be seen, that with a Mach number

of Ma∞ < 1.0 the stability boundary divides the Ma − rp-plane into an area with divergence and

an area with stable deflection behavior. For a Mach number Ma∞ > 1.0, the Ma − rp-plane is

divided into areas with a stable and with an unstable flutter behavior. This result agrees with that

obtained in [DB93]. As already discussed above, a supersonic dip occurs with its minimum value

of the stable boundary pressure at Ma∞ = 1.17 for rm = 0.1 and at Ma∞ = 1.18 for rm = 0.05. For

rm = 0.2, such dip is not present. Further, it should be pointed out again, that the mass ratio has

only a minor influence on the static subsonic stability, whereas for the supersonic flutter stability,

rm is responsible for an increase of the stability boundary. This is due to the higher fluid mass,

which has to be moved by the dynamic oscillation of the structure, i.e. the inertia load is increased

with higher rm.

It remains to analyze the panel behavior at Ma∞ = 1.0. In Figure 7.27, the up- or downward

deflection as well as the top and bottom dead center deformation of the panel at its midpoint is

plotted over the dynamic pressure rp at different mass ratios.

First, the case with rm = 0.1 is considered, Figure 7.27(b). With a value of rp = 4.5, the

deflection behavior of the panel is activated and depending on the initial conditions, the plate

deflects up- or downwards. For values 53 < rp < 165, a downward deflected panel is obtained as

the sole solution. With rp ≥ 170, the panel starts to oscillate and a LCO is obtained. Therefore,

this case (rm = 0.1, Ma∞ = 1.0 and rp = 170) is attractive and was thus chosen to study the

various numerical schemes presented in this thesis.

A similar behavior can be noticed, when the mass ratio is varied. For rm = 0.05, the range

where the panel behavior changes from static deflection to a LCO is shifted to higher values of rp,

i.e. the first flutter case is at rp = 190. On the other hand, the panel starts already at rp ≥ 160

to oscillate for rm = 0.20. Moreover, the flutter amplitudes at certain dynamic pressures increase

with higher rm, whereas the midpoint deflection behavior remains nearly unchanged.
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Figure 7.25: Midpoint deflection of the panel at the top and bottom dead center over the reduced

frequency for different Mach numbers Ma∞ and mass ratios rm
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Figure 7.26: Stability boundary chart

7.6 Influence of turbulence

To investigate the influence of the Reynolds number on the panel flutter behavior, a hybrid grid is

generated, which contains 300 elements at the panel interface, Figure 7.28. To keep the boundary

layer thickness small over the panel, the grid’s left inflow boundary is situated at x = −ls, i.e. the

grid starts a panel length before the panel itself. Further, the grid is designed to allow simulations

with a broad range of Reynolds numbers.

First, a flutter case with Ma∞ = 1.1, rm = 0.1 and rp = 250 is analyzed. In Figure 7.29,

the midpoint deflections of the panel at different Reynolds numbers are depicted. In Table 7.1,

specific values of the LCO at further Reynolds numbers are summarized. In that table, the midpoint

deformation values of the top and bottom dead center, ((us/hs)
top, (us/hs)

bottom), the amplitude

and the mean, (0.5(Δus/hs) and (us/hs)), as well as the reduced frequency K are listed. It can be

observed, that the main influence of the Reynolds number is given on the amplitude of the LCO

rather than on the frequency, which remains nearly unchanged. At a very low Reynolds number

of Re = 105, the flutter amplitude is lower compared to the amplitude of the LCO at Re = 106.

Comparing the curves for Re = 106 and 107 the amplitude decrease slightly with increasing Re.

Furthermore, the panel midpoint oscillates around a mean value which is lower than zero. This

mean offset is decreased with increasing the Reynolds number from Re = 1 · 105 to 3 · 106. This

panel flutter behavior is mainly driven by the damping influence of a boundary layer as noted in

[GV02].

Running the panel flutter simulation in the same point of the parameter space but in the in-

viscid mode of the CBS scheme with according boundary conditions, a significantly higher flutter

amplitude and frequency is obtained, Table 7.1. This further underlines the damping influence of

the boundary layer.

To further examine this influence, the parameters are changed to a stable flutter case, i.e.

simulations are now accomplished with a non-dimensional dynamic pressure of rp = 100, whereas

the remaining parameters are kept unchanged. In Figure 7.30(a), the panel midpoint deflections

are depicted for this stable flutter case for different Reynolds numbers. From this plot, it can

be observed, that the panel oscillations are strongly damped. For very low and high Reynolds

numbers, this damping is very distinctive, whereas for Re = (3 · 105, 1 · 106) the damping becomes

smaller. A reason for this behavior is given by the factor (μ + μT )/Re in the diffusion term of the
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Figure 7.27: Panel up- and downward midpoint deflection as well as the amplitude at the top and

bottom dead center for different dynamic pressures and mass ratios at Ma∞ = 1.0
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Figure 7.28: Close-up view on the hybrid grid for calculations of the turbulent panel flutter prob-

lem (number of nodes: 19832; number of quadrilateral elements: 12900; number of triangular

elements: 13307)
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Figure 7.29: Midpoint deflection of the panel for different Reynolds numbers at Ma = 1.1, rm =

0.1 and rp = 250 - time step size Δt = 0.001 s⇒ Δt · v f ,∞/(πls) = 0.114

non-dimensional RANS equations (see section A.2), which becomes higher for lower Reynolds

numbers and for higher μT . The dynamic eddy viscosity μT in turns increases with increasing Re.

These two contrary influences lead to a minimum value for the factor (μ + μT )/Re.

To quantify the influence, the logarithmic decrement ϑ and the damping ratio ζ:

ζ =
ϑ√

(2π)2 + ϑ2
; ϑ =

1

No

ln
u

top,3
s

u
top,3+No
s

; (7.6.1)

can be calculated from the time history plots. In the equations above, No denotes the number of

peaks considered for the logarithmic decrement and u
top,3
s is the third peak in the midpoint deflec-

tion. For the calculation of the damping ratio, No is set to 6. In Figure 7.30(b), the logarithmic

decrement and the damping ratio are plotted over the Reynolds number. For Re = 1 · 105, a high
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(us/hs)
top (us/hs)

bottom 0.5(Δus/hs) (us/hs) K

Re = 1 · 105: 0.366 -1.839 1.102 -0.737 0.244

Re = 3 · 105: 1.134 -2.162 1.648 -0.514 0.259

Re = 6 · 105: 1.170 -2.166 1.668 -0.498 0.260

Re = 1 · 106: 1.084 -2.082 1.583 -0.499 0.259

Re = 3 · 106: 1.120 -2.110 1.615 -0.495 0.251

Re = 6 · 106: 1.056 -2.089 1.572 -0.516 0.244

Re = 1 · 107: 0.994 -2.081 1.537 -0.544 0.246

inviscid calc.: 2.171 -2.434 2.303 -0.132 0.314

Table 7.1: Midpoint deflection at the top and bottom dead center, amplitudes, mean values as

well as reduced frequency of the LCO at different Reynolds numbers - Ma∞ = 1.1, rm = 0.1 and

rp = 250

damping ratio of 15.6% is obtained. Increasing the Reynolds number, the influence of the damping

decreases and reaches its lowest value at Re = 6 ·105 with 7.5%. The damping then increases with

higher Re and a strong damping of 21.2% can be obtained at Re = 1 · 107.

Due to this damping, the stability boundary of the panel flutter problem is influenced by the

Reynolds number. In Figure 7.31, the stability boundary chart of the panel in the transonic Mach

number range is depicted for inviscid and turbulent flows at rm = 0.1. Compared to the boundary

of an inviscid inflow, the critical dynamic pressures for the turbulent flow are shifted to higher

values. This means, that the flutter behavior is stabilized due to the presence of a boundary layer.

This shift is between 110 ≤ Δrp ≤ 120, depending on the Mach and Reynolds number. Such

high shift in the low-supersonic flow regime was also found in [HAN09] for a Mach number of

0 10 20 30 40 50

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2
Re = 1 · 105

Re = 3 · 105

Re = 1 · 106

Re = 3 · 106

Re = 1 · 107

t · v f ,∞/(πls)

(u
s/

h
s)

x
/l

s=
0
.5

(a) midpoint deflection

105 106 107

Re

0.05

0.10

0.15

0.20

0.25

ζ

damping ratio ζ
logarithmic decrement ϑ

0.25

0.50

0.75

1.00

1.25

ϑ

(b) damping ratio and logarithmic decrement over Re

Figure 7.30: Midpoint deflection of the panel for different Reynolds numbers as well as the

according damping ratio and logarithmic decrement for Ma = 1.1, rm = 0.1, rp = 100 and

Δt = 0.001 s⇒ Δt · v f ,∞/(πls) = 0.072
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Figure 7.31: Stability boundary chart at different Reynolds numbers at rm = 0.1

1.1 ≤ Ma∞ ≤ 1.3. Moreover, the supersonic dip observed for the inviscid flow is absent for

turbulent viscous fluid.

7.7 Chapter summary

In this chapter, the panel flutter problem is investigated with the finite element approach proposed

in this thesis. On the structural side, this panel is modeled with the non-linear von Kármán plate

theory. With the identified input parameter set (Ma∞, rp, rm) for a given aluminum plate, the panel

flutter problem serves as a benchmark problem to assess the numerical schemes. Due to the change

in the aeroelastic behavior, when increasing the dynamic pressure from 160 to 180 at Ma∞ = 1.0

and rm = 0.1, several coupled computations are conducted at rp = 170 with different numerical

schemes. A LCO should be observed at this point in the parameter space.

Investigating the different data transfer schemes, the Galerkin and the dual-Lagrange based

transfer as well as the conservative interpolation give similar results in terms of the frequency and

amplitude of the LCO. With its local accuracy together with a global load conservation property

and due to the efficiency of a matrix-free transfer scheme, the dual-Lagrange based transfer is an

attractive approach for the data transmission of the coupled system.

To reduce the computational effort by omitting the equilibrium, the simple staggered time

integration in conjunction with a structural predictor is analyzed for the panel flutter problem. Not

all predictors are capable to capture a reasonable LCO and only the first and the second order

predictor, (4.4.5) and (4.4.6), give reliable results for very coarse time steps. Furthermore, similar

results are obtained, when the Newmark or the consistent three-point backward difference scheme

for the structural time integration is used.

The comparison of the two- and three-field approach has shown, that both the frequency and

the amplitude of the LCO are only marginally affected by the type of the coupling approach.

However, the fluid field solution shows artificial shocks, when using a small number of structural

elements and the two-field coupling. A smooth data transfer can be designed with the three-field

approach and such shocks are omitted, which leads to a clean fluid solution.

This DG-CBS scheme with its advantage of a local flux conservation crossing two adjacent

elements is compared to the continuous CBS scheme. Only with the usage of biquadratic or very

fine bilinear elements, more accurate results in terms of the flutter frequency are obtained with

DG-CBS scheme.
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Consequently, the panel flutter behavior is systematically investigated at sub- and supersonic

flow conditions using a simple staggered time integration scheme with the consistent time integra-

tion in the fluid and structural field and with the proposed three-field approach. At subsonic flow

conditions, the panel shows a static deflection behavior in up- or downward direction depending

on the structural initial conditions and the dynamic pressure rp. Furthermore, the stability bound-

ary is computed at different non-dimensional mass ratios. The critical rp(Ma∞), where the panel

first deflect, is mainly independent of the non-dimensional mass ratio rm.

In the supersonic flow regime, the panel shows a LCO and the stability chart indicates a strong

dependency on the mass ratio. For low values of rm, a supersonic dip in the stability boundary

is observed. The frequency of the LCO increases with increasing the Mach number, dynamic

pressure and mass ratio. Moreover, a linear dependency between the frequency and the amplitude

of the LCO for high mass ratios and low supersonic Mach numbers has been found.

Considering a turbulent flow, the boundary layer leads to an additional damping behavior.

Thereby, the frequency of the LCO remains unaffected by varying the Reynolds number. However,

the amplitude and the mean deformation of the oscillation strongly depends on Re. Furthermore,

the damping influence of the Reynolds number is quantified and a minimum value of the damping

ratio and logarithmic decrement is identified for a certain point in the parameter space. Finally,

due to the additional damping, the stability boundary is shifted to higher values of rp.

131





8 Summary and Conclusion

In this thesis, a coupled multiphysical system is considered, whereas the focus is upon aeroelas-

tic problems. For a consistent formulation of such coupled systems, an energy based variational

formulation is chosen to describe initially the structural and fluid subsystem by Hamilton’s prin-

ciple. Both basic fluid model equations - inviscid and viscous fluid models - are employed by this

weak variational energy principle. This procedure allows to describe the coupled problem by the

classical direct two-field approach as well as by a novel indirect three-field approach.

To discretize the entire system consistently with finite elements, the CBS scheme is employed

for the fluid domain described by the Navier-Stokes equation in ALE frame of reference. This

allows the fluid domain to be temporally deformable, which is essential for aeroelastic computa-

tions. The CBS scheme is verified for a wide range of typical fluid problems ranging from inviscid,

viscous, incompressible and turbulent flows. A good agreement with data published in literature

and with the further solver TAU are found, which underlines the applicability of the CBS scheme

for different fluid flow models.

The DG-CBS scheme as a novel and attractive approach has been derived from the continuous

version. One important advantage of the DG version is the design of the element edge flux to be

locally conservative. For the example of the laminar flow over the NACA0012 airfoil as well as

for the panel flutter problem, a comparison of the CBS and DG-CBS scheme is made on struc-

tured fluid grids including grid convergence studies. With biquadratic, more accurate results in

terms of the flutter frequency are obtained with DG-CBS scheme. Moreover, no global system of

linear equations needs to be solved at the computational expense of addidtional element edge flux

calculations with the DG version. This might be attractive for fluid grids with a high number of

degrees of freedom.

Consequently, the whole coupled system is further discretized with finite elements includ-

ing the structural subdomain, the deformation of the fluid grid and the transfer scheme. For the

fluid grid deformation, it is found, that all of the presented stiffness evaluation methods perform

similarly. The stiffness strategy based on the wall distance and the characteristic length is recom-

mended to be used for the simple testcases with the unstructured grid. For a structured grid around

an airfoil, the best grids are obtained with the stiffness methods based on the wall distance. Thus,

for general fluid grid deformations, the method, which use a combination of the wall distance and

the characteristic length, can be recommended and is hence applied for the panel flutter problem.

Based on the unified weak variational coupling schemes, several data transfer schemes are

introduced, which share the property of load and energy conservation. With a h-refinement of the

integration grid, a significant reduction of the transfer error is observed for low-curved interface

meshes. The decrease of the transfer error is limited by the facetting error, which is identified

for highly curved interface meshes and for a realistic wing configuration. For the panel flutter

problem at Ma∞ = 1.0 and rp = 170, the Galerkin and the dual-Lagrange based transfer as well

as the conservative interpolation gives similar results in terms of the frequency and amplitude of

the LCO. With its local accuracy together with a global load conservation property and due to

the efficiency of a matrix-free transfer scheme, the dual-Lagrange based transfer is an attractive
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8 Summary and Conclusion

A smooth transfer scheme is proposed, which uses the novel three-field coupling approach

with a higher spatial order discretization of the connectivity frame. Regarding the time integration

and equilibrium iteration, the three-field approach is assessed for a strongly coupled problem.

With the use of the Newton-GMRES iteration scheme, the number of DN cycles is reduced for

the three-field approach. Moreover, the same coupling matrices are identified for the three-field

approach, which alreay appeared within the iteration process of two-field approach. This allows

the application of a simple staggered time integration scheme for the panel flutter problem. The

comparison of the two- and three-field approach shows that both, the frequency and the amplitude

of the LCO, are only marginally affected. However, the smooth data transfer leads to a clean

fluid solution without artificial shocks, which has been observed with the two-field approach and

a small number structural elements at the interface.

Furthermore, a consistent time integration approach for the structure is proposed, so that both

subsystems use the same temporal discretization. Here, similar results in terms of the LCO’s

frequency and amplitude are obtained, when the Newmark or the consistent three-point backward

difference scheme for the structural time integration of the panel is applied.

Thus, the panel flutter problem using a simple staggered time integration scheme with the

consistent time integration for the fluid and structural subsystem and with the proposed three-field

approach could be analyzed in detail running numerous simulations. At subsonic flow conditions,

the panel shows a static deflection behavior in up- or downward direction depending on Ma∞ and

rp, but indepentent of rm. On the other hand, the panel exhibits a LCO and the critical values

of the dynamic pressure strongly depend on the mass ratio. For low values of rm, a supersonic

dip in the stability boundary is observed. It is shown, that the frequency of the LCO increases

with increasing Mach number, dynamic pressure and mass ratio. Moreover, a linear dependency

between the frequency and the amplitude of the LCO for high mass ratios and low Mach numbers

is found.

Turbulence modeling with the aid of the CBS scheme in the context of an aeroelastic problem

is employed in this thesis. The Spalart-Allmaras turbulence model in conjunction with the CBS

scheme is primarily verified with data found in literature and with the flowsolver TAU for pure

compressible fluid flow over an airfoil. For the panel flutter problem, the turbulent boundary layer

leads to an additional damping behavior. The frequency of the LCO is unaffected by the Reynolds

number, but a dependency regarding Re is noticed for the amplitude and the mean deformation.

Finally, a strong shift of the critical dynamic pressure to higher values could be observed for the

stability chart, which is caused by the damping influence.

Subsequent work regarding this thesis certainly involves the investigation of the panel flutter

phenomenon in three dimensions. This is motivated by the good performance of the CBS scheme

in 3D found in literature. Another topic, which should be considered further, is the application

of the three-field coupling approach for more than two subdomains, e.g. fluid-fluid-structure or

fluid-structure-structure interaction. In this context, the performance of the presented coupling

scheme in conjunction with an incompressible fluid could be a subject for research. Herein, the

avoidance of the added mass effect due to an artificial compressibility within the CBS scheme

is an interesting aspect. Moreover, attempts to improve the standard finite element methodology

by a NURBS based isogeometric analysis can be observed in literature, see [CHB09] and the

references therein. A NURBS based coupling scheme is a straightforward enhancement to the

present methodology. Further, an adaptive refinement - mesh, polynomial, or a combination of

both - is surely an attractive approach to improve the accuracy of the methodology. Finally, from

the CFD point of view, more precise numerical methods were established and thus, the CBS

scheme could be enhanced with a transition prediction scheme as well as with a large or detached

eddy simulation (LES/DES) methodology to capture more complex fluid flow phenomena.
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A Appendix

A.1 Mathematical expressions

• scalar product of two vectors:

a = aT b (A.1.1)

• dyadic product of two vectors:

A = abT (A.1.2)

• gradient of a scalar value:

a = ∇a (A.1.3)

• gradient of a vectorial value:

A = ∇aT (A.1.4)

• divergence of a vectorial field:

a = ∇T a (A.1.5)

• divergence of a tensorial field:

aT = ∇T A (A.1.6)

• product rule with two scalars:

(ab)′ = ab′ + a′b (A.1.7)

• product rule with a scalar and a vector using the nabla operator (gradient type):

∇(abT ) = a∇bT + (∇a)bT (A.1.8)

• product rule with a scalar and a vector using the nabla operator (divergence type):

∇T (ab) = bT∇a + a∇T b (A.1.9)

• product rule with two vectors using the nabla operator (gradient type):

∇(aT b) = (∇bT )a + (∇aT )b (A.1.10)

• product rule with two vectors using the nabla operator (divergence type):

∇T (abT ) = aT (∇bT ) + bT (∇T a) (A.1.11)

• Laplace operator:

(∇T∇)a = ∇T (∇a) (A.1.12)
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A.2 Turbulence modeling with the CBS scheme in the ALE frame of
reference

In chapter 3, the solution of laminar flow using the CBS scheme is discussed, i.e. a flow without

vorticities, cross flows, or mixing between the flow layers. Laminar flows are characterized by a

small Reynolds number Re. Turbulent flows, on the other hand, are unsteady, three-dimensional,

contain vorticities, are dissipative due to mixing of flow layers with different momentum, fluctuate

on broad range of length and time scales and are characterized by a high Reynolds number, [FP01].

To simulate such flows, the method of one point closure is used in this thesis, where the governing

conservation equations are averaged in time or space leading to the Reynolds-averaged Navier-

Stokes (RANS) equations. Using this approach, additional transport equations - turbulence models

- need to be introduced and additionally computed. Such turbulence models are quite standard

in computational fluid dynamics and can handle a broad range of fluid problems with adequate

computational costs. Here, two turbulence models are investigated: first, the one-equation Spalart-

Allmaras (SA) and secondly, two-equation Menter’s Baseline (Menter-BSL) turbulence model.

The transport equations of both models are again discretized using the CBS scheme. While the

SA model is already in use in the context of the CBS scheme in [NL06, Liu05, Hic08] for steady

and unsteady flow problems on fixed grids, to the author’s knowledge the Menter-BSL model

has been never used before in the context of the CBS scheme. Therefore, the principle ideas for

turbulence modeling with the aid of the RANS equation using the ALE form are discussed in the

next subsections.

A.2.1 Favre and Reynolds averaging of the governing equations

For a compressible flow, a pure time averaging (which is used here as Reynolds averaging)1 would

lead to more additional terms rather than a mixed form of time (Reynolds) and mass (Favre)

averaging, [Bla06, Wil98]. Using the time averaging, a fluid quantity may be expressed as:

f = f + f ′ with f = lim
ΔtT→∞

1

ΔtT

t+ΔtT∫
t

f dt , (A.2.1)

where f is the mean quantity, f ′ is the turbulent fluctuation and ΔtT denotes a characteristic time

interval. The mass averaging is defined as:

f = f̃ + f ′′ with f̃ =
1

ρ f

lim
ΔtT→∞

1

ΔtT

t+ΔtT∫
t

ρ f f dt =
ρ f f

ρ f

, (A.2.2)

where f̃ is the mean and f ′′ denotes the turbulent fluctuation. The density and pressure are now

Reynolds-averaged and the remaining flow variables are Favre-averaged, which results in the fol-

lowing Favre- and Reynolds averaged governing conservation equation of fluid flow in ALE frame

1Indeed, three different forms of Reynolds averaging exist: 1. time averaging, 2. spatial averaging and 3. ensemble

averaging [Bla06]
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∂ρ f

∂t
+ ∇T (ρ f ũ f ) − w̃

T
f ∇ρ f = 0 (A.2.3)

∂(ρ f ũ f )

∂t
+ [∇T (ρ f ũ f ũ

T
f )]T − [w̃T

f ∇(ρ f ũ
T
f )]T = −∇p f +D

T (τ̃ f + τ
F) + ρ f b̂ f (A.2.4)

∂(ρ f

◦
e f )

∂t
+ ∇T (ρ f

◦
e f ũ f ) − w̃

T
f ∇(ρ f

◦
e f ) = −∇

T (p f ũ f ) + ∇
T [Q̃T

f (τ̃ f + τ
F)]

+ ∇T (κ f ∇T̃ f − qF) + ρ f b̂T
f ũ f + ∇

T RF .

(A.2.5)

Compared to the original governing conservative equations, these equations are extended by the

Favre-averaged Reynolds stress vector τF , by the turbulent heat flux vector qF and by a third order

fluctuating term RF . The quantity
◦
e f is now the specific total energy including the turbulent kinetic

energy k f :

◦
e f = ẽ f + k f

= ε̃ f +
1
2
ũTf ũ f + k f ,

(A.2.6)

where the turbulent kinetic energy is given as:

k f =
1

2
˜u′′T
f
u′′

f
. (A.2.7)

The term RF consists of the molecular diffusion and the turbulent transport of the turbulent kinetic

energy k f [Bla06]. These both parts are neglected here, which is a valid approximation for flows

with a Mach number up to supersonic range [Wil98]. To model the six components of τF and three

components of qF , different approaches exist and the eddy-viscosity hypothesis is here applied,

which is described is the next subsection.

A.2.2 Eddy-viscosity hypothesis

The Favre-averaged Reynolds stress vector τF in the above conservation equations arises due to

fluctuation term −(ρṽ′′
i
v′′

j
) f , which is modeled by the Boussinesq eddy-viscosity hypothesis. This

eddy-viscosity hypothesis assumes, that the Reynolds stress is related to the strain rate. Thus, the

eddy-viscosity hypothesis reads:

τF = μT

(
I0 −

2
3

mmT
)
Dũ f −

2
3

mρ f k f , (A.2.8)

where μT denotes the dynamic eddy viscosity, which has no primary physical meaning but is a

function of the local flow properties and is therefore the main subject for turbulence modeling.

Accordingly, the turbulent heat flux vector qF is modeled as:

qF = −κT∇T̃ f = −μT

cp

PrT

∇T̃ f , (A.2.9)

where κT = μT cp/PrT is the turbulent thermal conductivity and PrT denotes the turbulent Prandtl

number, which is usually constant over the flow field (PrT = 0.9 for air). Therefore, using the

eddy-viscosity hypothesis, the turbulence modeling reduces to the determination of one quantity

(one point closure), namely μT . From the code-implementation point of view, only a few modifica-

tions to the laminar version of the code are needed. The non-dimensional conservation equations,
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∂ρ f

∂t
+ ∇T V f − w

T
f ∇ρ f = 0 (A.2.10)

∂V f

∂t
+ [∇T (u f V

T
f )]T − [wT

f ∇VT
f ]T = −∇p f +

μ f + μT

μ f Re
DTτ f −

2
3
∇K f + ρ f b̂ f (A.2.11)

∂E f

∂t
+ ∇T (u f E f ) − w

T
f ∇E f = −∇

T (p f u f ) +
μ f + μT

μ f Re
∇T (QT

f τ f ) −
2
3
∇T (K f u f )

+
1

Re
∇T

[(
κ f

Pr
+
μT

PrT

)
∇T f

]
+ ρ f b̂T

f u f .

(A.2.12)

Here, the (non-dimensional) conservative turbulent kinetic energy K f = ρ f k f is introduced. Be-

fore the two turbulence models are discussed, the change in the original CBS scheme due to the

averaging should be highlighted.

A.2.3 Turbulent CBS scheme

To consider the Favre and Reynolds averaging, the calculation of the intermediate momentum,

Eq. (3.3.15), as well as the computation of the energy, Eq. (3.3.22), need to be modified, whereas

the density/pressure equation, (3.3.17) and (3.3.18), as well as the momentum correction, (3.3.20),

remains unchanged. With the procedure given in section 3.3, one can obtained for the calculation

of the intermediate momentum:

ΔV̌ f = M−1
v Δt

{[
−CsVV f − Kτ2v f −

2
3
GT K f + fτ2

]
+ Δt

[
−KsVV f + KpV (p f −

2
3
K f )

]}n

(A.2.13)

and for the computation of the energy:

ΔE f = M−1Δt

{[
−CsEE f − CvE(p f −

2
3
K f ) − KτE2v f − KT2T f + fE2

]
+ Δt

[
−KsEE f − KvE(p f −

2
3
K f )

]}n

,

(A.2.14)

where K f is the vector of the K f values at the nodes of the mesh, The modified matrices are:

Kτ2 =

∫
Ω f

Bτ
μ f + μT

Re

(
I0 −

2
3

mmT
)
Bτ dΩ f ; KT2 =

∫
Ω f

(∇N)T 1

Re

(
κ f

Pr
+
μT

PrT

)
(∇N) dΩ f ;

fτ2 =

∫
Γ f

NT
v Υ

T
[μ f + μT

Re

(
I0 −

2
3

mmT
)
Bτv f

]
dΓ f ;

KτE2 =

∫
Ω f

(∇N)T QT
f

μ f + μT

Re

(
I0 −

2
3

mmT
)
Bτ dΩ f ;

fE2 =

∫
Γ f

NT 1

Re

(
QT

[
(μ f + μT )

(
I0 −

2
3

mmT
)
Bτv f

]
+

(
κ f

Pr
+
μT

PrT

)
(∇N)T f

)T

ndΓ f .

Further, using the turbulent CBS scheme for incompressible flows, an appropriate modification to

the calculation of the artificial compressibility parameter β is needed, i.e. Eq. (3.4.3) transforms

to:

β = max(ςc, v
conv
f , vdiff

f ) = max

(
ςc,

√
uT

f
u f ,

2(ν f + νT )

h Re

)
, (A.2.15)
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where νT = μT/ρ f denotes the kinematic eddy viscosity. Thus, the diffusive velocity vdiff
f

takes the

modified kinematic viscosity into account. Accordingly, using the local time stepping scheme, the

diffusive time step size Δtdiff from Eq. (3.4.10) is modified as:

Δtdiff =
h2Re

2(ν f + νT )
(A.2.16)

to take the modified local viscosity into account. Further and similar to section 3.5, a DG version

of the turbulent CBS scheme can be designed likewise.

A.2.4 Determination of the eddy viscosity

The only additional quantities, which have to be calculated, are the eddy viscosity μT or νT and

the turbulent kinetic energy k f or K f . While the latter one is sometimes simply omitted (e.g. when

using the Spalart-Allmaras model) or results as a by-product of the turbulence model (e.g. in con-

junction with almost all two-equation turbulence models), the calculation of the eddy viscosity

(and adding it to laminar viscosity) is the only additional task using the turbulent CBS scheme.

Different model levels for the turbulence exist: algebraic, one-equation, and two-equation turbu-

lence models. The Spalart-Allmaras model is a representative of an one-equation while Menter’s

baseline model is a representative of a two-equation model. Both models use additional trans-

port equations, which are then temporally discretized by the CBS scheme followed by a spatial

discretization with the aid of finite elements.

A.2.4.1 Spalart-Allmaras model

The Spalart-Allmaras (SA) turbulence model is widely used for aerospace application and incom-

pressible flows. The SA model uses directly a transport equation for a modified eddy viscosity.

Thus, the turbulent kinetic energy in the discretized momentum and energy equation, (A.2.13) and

(A.2.14) is omitted, i.e. K f = 0. Adapted from [DLR09, SR07], the transport equation for the

modified eddy viscosity ν̆ with variable density and for the ALE frame of reference can be written

as:

∂(ρ f ν̆)

∂t
+ ∇T (ρ f ν̆u f ) − w

T
f ∇(ρ f ν̆) = Cb1(1 − ft2)S̆ ρ f ν̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ρ f

(
ν̆

dw

)2

+
1

Cνσ

[
∇T (μ f + ρ f ν̆)∇ν̆ +Cb2ρ f (∇ν̆)

T (∇ν̆)
]

,

(A.2.17)

where:

S̆ = |∇ × u f | +
ν̆

C2
κd

2
w

fv2; fv2 = 1 −
�

1 +� fv1
; fv1 =

�3

�3 +C3
v1

; � =
ν̆

ν f

;

fw = g

⎛⎜⎜⎜⎜⎜⎝ 1 +C6
w3

g6 +C6
w3

⎞⎟⎟⎟⎟⎟⎠1/6

; g = r +Cw2(r6 − r); r = min

(
ν̆

S̆ C2
κd

2
w

, 10

)
;

ft2 = Ct3 exp(−Ct4�
2) .

(A.2.18)

In the above set of parameters, dw denotes the shortest distance from a node to the nearest solid

wall, ∇ × u f is the vorticity and S̆ is a modified vorticity. The constants used for this model are:

Cb1 = 0.1355; Cb2 = 0.622; Cνσ =
2
3
; Cκ = 0.41; Cv1 = 7.1;

Cw1 =
Cb1

C2
κ

+
1 +Cb2

Cνσ
; Cw2 = 0.3; Cw3 = 2; Ct3 = 1.3; Ct4 = 0.5;

(A.2.19)
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and the turbulent kinematic and dynamic eddy viscosity are finally calculated as:

νT = ν̆ fv1; μT = ρ f νT = ρ f ν̆ fv1 = μ̆ fv1 . (A.2.20)

Boundary conditions for SA model can be applied at the inlet or farfield with a value of 10% of

the prescribed value for the laminar viscosity, which in turn can be evaluated from Sutherland’s

law (2.4.52):

ν̆ = ˆ̆ν = 0.1ν f (T f ) on Γ
D, f ar

f
. (A.2.21)

This value is also given as initial conditions:

ν̆(x f , t = 0) = ˆ̆ν0(x f ) = 0.1ν f (x f ,T f ) . (A.2.22)

On solid walls the modified eddy viscosity is set to zero:

ν̆ = ˆ̆ν = 0 on Γ
D,wall

f
. (A.2.23)

Non-dimensionalization according to Table 3.1 and application of Eq. (3.1.3), the Galerkin

form of Eq. (A.2.17) is obtained as:∫
Ω f

NTΔμ̆ dΩ f = −Δt

{∫
Ω f

NT∇T (u f μ̆) dΩ f −

∫
Ω f

NTwT
f ∇μ̆ dΩ f

+

∫
Ω f

(∇N)T

(
μ f + μ̆

CνσRe

)
∇ν̆ dΩ f −

∫
Ω f

NT
Cb2ρ f

CνσRe
(∇ν̆)T (∇ν̆) dΩ f

−

∫
Ω f

NT

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
μ̆ dΩ f

−

∫
Γ f

NT

(
μ f + μ̆

CνσRe

)
(∇ν̆)T ndΓ f

}n

+
Δt2

2

{
−

∫
Ω f

(sT
f ∇)NT∇T (u f μ̆) dΩ f +

∫
Ω f

(sT
f ∇)NT (wT

f ∇μ̆) dΩ f

−

∫
Ω f

NT (sT
f ∇)

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
μ̆ dΩ f

}n

,

(A.2.24)

where integration by parts on second-order term is used and the 1/Re coefficients result from

the non-dimensionalization procedure. Consistent with the equation of momentum and energy

conservation, μ̆ = ρ f ν̆ is introduced as the primary variable. Further, it should be noted at this

point, that due to non-dimensionalization the following quantities need a modified calculation:

S̆ = |∇ × u f | +
ν̆

ReC2
κd

2
w

fv2; r = min

(
ν̆

ReS̆ C2
κd

2
w

, 10

)
. (A.2.25)

By replacing the continuous fields with the approximations of Eq. (3.3.11) and with μ̆ = Nμ̆, the

final matrix form of Eq. (A.2.24) can be written as:

Δμ̆ = M−1Δt

[
(−Csμ̆μ̆ − Kμ̆ν̆ +Mμ̆μ̆ + fν̆Ω + fν̆Γ) + Δt(−Ksμ̆μ̆ − Csμ̆2μ̆)

]n

, (A.2.26)
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with the matrices and vectors:

Csμ̆ = CsE Kμ̆ =

∫
Ω f

(∇N)T

(
μ f + μ̆

CνσRe

)
(∇N) dΩ f ; fν̆Ω =

∫
Ω f

NT
Cb2ρ f

CνσRe
(∇ν̆)T (∇ν̆) dΩ f ;

Ksμ̆ = KsE Mμ̆ =

∫
Ω f

NT

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
N dΩ f ;

fν̆Γ =

∫
Γ f

NT

(
μ f + μ̆

CνσRe
(∇N)ν̆

)T

ndΓ f ;

Csμ̆2 =
1

2

∫
Ω f

NT

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
Ls dΩ f .

This equation is additionally solved in each step of the iteration after the energy equation. Further,

a matrix free scheme can be obtained by inverting the lumped mass matrix ML instead of M. Also,

the residual smoothing procedure and the local time stepping can be applied. For unsteady flow

problems, a real time term added to Eq. (A.2.26) resulting in:

Δμ̆ = M−1Δt

[
(−Csμ̆μ̆ − Kμ̆ν̆ +Mμ̆μ̆ + fν̆Ω + fν̆Γ) + Δt(−Ksμ̆μ̆ − Csμ̆2μ̆)

]n

−
Δt

ΔtR
Δμ̆R , (A.2.27)

where Δμ̆R is again approximated with a second order backward difference as:

Δμ̆R =
3

2
μ̆n − 2μ̆m +

1

2
μ̆m−1 . (A.2.28)

The DG version of this matrix system is again obtained by an additional integration by parts

applied on the convective term, which allows breaking the standard finite element assembly. This

integration by parts introduces an extra element edge flux, which ensures the element-by-element

linking. Thus, according to section 3.5, the DG-CBS version of the Spalart-Allmaras turbulence

reads:

Δμ̆ = Me,−1Δt

[
(Ce

sμ̆μ̆ − Ke
μ̆ν̆ +Me

μ̆μ̆ − fe
sμ̆ + fe

ν̆Ω + fe
ν̆Γ) + Δt(−Ke

sμ̆μ̆ − Ce
sμ̆2μ̆)

]n

, (A.2.29)

where the matrices and vectors are:

Ce
sμ̆ = Ce

sE Ke
μ̆ =

∫
Ωe

f

(∇N)T

(
μ f + μ̆

CνσRe

)
(∇N) dΩe

f ; fν̆Ω =

∫
Ωe

f

NT
Cb2ρ f

CνσRe
(∇ν̆)T (∇ν̆) dΩe

f ;

Ke
sμ̆ = Ke

sE Me
μ̆ =

∫
Ωe

f

NT

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
N dΩe

f ;

fe
sμ̆ =

∫
Ωe

f

NT (sT
f n)Nμ̆ dΓe

f ; fe
ν̆Γ =

∫
Γe

f

NT
μ f + μ̆

CνσRe
nT Nvν̆x dΓe

f ;

Ce
sμ̆2 =

1

2

∫
Ωe

f

NT

[
Cb1(1 − ft2)S̆ −

(
Cw1 fw −

Cb1

C2
κ

ft2

)
ν̆

d2
wRe

]
Ls dΩe

f .

Again, this matrix system is solved on element level, i.e. such system is computed for each

element. The additional element edge flux fe
sμ̆

ensures the element-by-element linking and fe
ν̆Γ

is modified to design a local conservative scheme, where, according to section 3.5.2, the nodal

derivative ν̆x needs to be calculated in an extra post-processing step.
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A.2.4.2 k-ω baseline (BSL) and shear stress transport (SST) model of Menter

As a representative of a two-equation turbulence model, Menter’s baseline model is chosen here.

Due to its similarity, the shear stress transport model of Menter can also be incorporated with

minor modifications and is therefore also introduced.

Both models are a combination of the classical k-ω model of Wilcox, [Wil98], and the k-ε

model, [JL72]. While the k-ωmodel is used for the inner part of the boundary layer, the k-εmodel

transformed to a k-ω representation is used for the outer part of the boundary layer. The transition

from one to the other model is done by a blending function, which weights the coefficients of each

model. Adapted from [Men93, DLR09, Bla06], the transport equation for the turbulent kinetic

energy k f and the specific turbulent dissipation ω f with variable density and for the ALE frame of

reference can be written as:

∂(ρ f k f )

∂t
+ ∇T (ρ f k f u f ) − w

T
f ∇(ρ f k f ) = ∇

T (μ f + Ćk
σ μT )∇k f + (Du f )

TτF

−Ck
β ρ fω f k f

(A.2.30)

∂(ρ fω f )

∂t
+ ∇T (ρ fω f u f ) − w

T
f ∇(ρ fω f ) = ∇

T (μ f + Ćωσ μT )∇ω f

+
Ćγ

νT
(Du f )

TτF − Ćωβ ρ fω
2
f

+ 2ρ f (1 − F1) Cωσ2 ω
−1
f (∇k f )

T (∇ω f ) ,

(A.2.31)

where all coefficients with a ´(·) are subject to weight with a blending function F1:

f́ = F1 f1 + (1 − F1) f2 . (A.2.32)

For the inner part of the boundary layer, set 1 is used with:

Ck
σ1 = 0.5; Cωσ1 = 0.5; Cωβ1 = 0.075; Cγ1 = Cωβ1/C

k
β −Cωσ1C2

κ /

√
Ck
β
; (A.2.33)

whereas for the outer part of the boundary layer, set 2 is used with:

Ck
σ2 = 1.0; Cωσ2 = 0.856; Cωβ2 = 0.0828; Cγ2 = Cωβ2/C

k
β −Cωσ2C2

κ /

√
Ck
β
; (A.2.34)

where the constant coefficients are:

Ck
β = 0.09; Cκ = 0.41 . (A.2.35)

The blending function is calculated as:

F1 = tanh(arg4
1); arg1 = min

⎡⎢⎢⎢⎢⎢⎢⎣max

⎛⎜⎜⎜⎜⎜⎜⎝
√

k f

Ck
β
ω f dw

;
500ν f

ω f d
2
w

⎞⎟⎟⎟⎟⎟⎟⎠ ;
4ρ f C

ω
σ2

k f

CDkω d2
w

⎤⎥⎥⎥⎥⎥⎥⎦ ;

CD = max
(
2ρ f Cωσ2 ω

−1
f (∇k f )

T (∇ω f ); 10−20
)

;

(A.2.36)

Finally, the turbulent eddy viscosity is computed as:

νT =
k f

ω f

; μT = ρ f νt =
ρ f k f

ω f

. (A.2.37)

A further improvement of the baseline model is the SST model, [Men93]. The difference to

the baseline model is the parameter Ck
σ1

, which changes to Ck
σ1
= 0.85. Furthermore, a shear stress

correction is introduced, which results in modified calculation of the turbulent eddy viscosity:

νT = min

(
k f

ω f

;
0.31ρ f k f

F2 |∇ × u f |

)
, (A.2.38)
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where

F2 = tanh(arg2
2); arg2 = max

⎛⎜⎜⎜⎜⎜⎜⎝2
√

k f

Ck
β
ω f dw

;
500ν f

ω f d
2
w

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.2.39)

The boundary conditions for the turbulent kinetic energy and the specific dissipation on the

solid walls are:

k f = k̂ f = 0; ω f = ω̂ f = 10
6μ f

ρ f C
ω
β1

d2
1

; on Γ
D,wall

f
, (A.2.40)

where d1 is the distance from the first node from the wall. On the farfield boundary the conditions

are:

ω f = ω̂ f = Cω∞
v∞

lΩ
= ω∞; νT = ν̂T = 10−3ν∞ = νT,∞;

k f = k̂ f = νT,∞ω∞ = k∞; on Γ
D, f ar

f
,

(A.2.41)

where Cω∞ is a constant, which lies in the range from 1 to 10 and lΩ denotes the length of the

computational domain. The values for the farfield boundary are also used as initial conditions.

Non-dimensionalization according to Table 3.1 and application of Eq. (3.1.3), the Galerkin

form from Eq. (A.2.30) is obtained as:

∫
Ω f

NTΔK f dΩ f = −Δt

{∫
Ω f

NT∇T (u f K f ) dΩ f −

∫
Ω f

NTwT
f ∇K f dΩ f

+

∫
Ω f

(∇N)T

⎛⎜⎜⎜⎜⎝μ f + Ćk
σ μT

Re

⎞⎟⎟⎟⎟⎠∇k f dΩ f −

∫
Ω f

NT (Du f )
TτF dΩ f

+

∫
Ω f

NTCk
β ω f K f dΩ f −

∫
Γ f

NT

⎛⎜⎜⎜⎜⎝μ f + Ćk
σ μT

Re

⎞⎟⎟⎟⎟⎠ (∇k f )
T ndΓ f

}n

+
Δt2

2

{
−

∫
Ω f

(sT
f ∇)NT∇T (u f K f ) dΩ f +

∫
Ω f

(sT
f ∇)NT (wT

f ∇K f ) dΩ f

−

∫
Ω f

NT (sT
f ∇)Ck

β ω f K f dΩ f

}n

,

(A.2.42)
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Similar, the Galerkin form of Eq. (A.2.31) is:∫
Ω f

NTΔω̆ f dΩ f = −Δt

{∫
Ω f

NT∇T (u f ω̆ f ) dΩ f −

∫
Ω f

NTwT
f ∇ω̆ f dΩ f

+

∫
Ω f

(∇N)T

⎛⎜⎜⎜⎜⎝μ f + Ćωσ μT

Re

⎞⎟⎟⎟⎟⎠∇ω f dΩ f −

∫
Ω f

NT
Ćγ

νT
(Du f )

TτF dΩ f

+

∫
Ω f

NTCωβ ω f ω̆ f dΩ f −

∫
Γ f

NT

⎛⎜⎜⎜⎜⎝μ f + Ćωσ μT

Re

⎞⎟⎟⎟⎟⎠ (∇ω f )
T ndΓ f

−

∫
Ω f

NT 2ρ f (1 − F1) Cωσ2 ω
−1
f (∇k f )

T (∇ω f ) dΩ f

}n

+
Δt2

2

{
−

∫
Ω f

(sT
f ∇)NT∇T (u f ω̆ f ) dΩ f +

∫
Ω f

(sT
f ∇)NT (wT

f ∇ω̆ f ) dΩ f

−

∫
Ω f

NT (sT
f ∇)Cωβ ω f ω̆ f dΩ f

}n

.

(A.2.43)

Again, integration by parts on second order terms is carried out and K f = ρ f k f and ω̆ f = ρ fω f is

introduced as primary variables. The final matrix form of Eq. (A.2.42) can then be written as:

ΔK f = M−1Δt

[
(−CsKK f − KKk f −MKK f + fKΩ + fkΓ) + Δt(−KsKK f − CsK2K f )

]n

, (A.2.44)

and of Eq. (A.2.43) as:

Δω̆ f = M−1Δt

[
(−Csω̆ω̆ f −Kω̆ω f −Mω̆ω̆ f + fω̆Ω+ fωΓ + fKω̆)+Δt(−Ksω̆ω̆ f −Csω̆2ω̆ f )

]n

, (A.2.45)

where the matrices and vectors are:

KK =

∫
Ω f

(∇N)T

⎛⎜⎜⎜⎜⎝μ f + Ćk
σ μT

Re

⎞⎟⎟⎟⎟⎠ (∇N) dΩ f ; Kω̆ =

∫
Ω f

(∇N)T

⎛⎜⎜⎜⎜⎝μ f + Ćωσ μT

Re

⎞⎟⎟⎟⎟⎠ (∇N) dΩ f ;

KsK = Ksω̆ = KsE MK =

∫
Ω f

NT (Ck
β ω f )N dΩ f ; Mω̆ =

∫
Ω f

NT (Cωβ ω f )N dΩ f ;

fkΓ =

∫
Γ f

NT

⎛⎜⎜⎜⎜⎝μ f + Ćk
σ μT

Re
(∇N)k f

⎞⎟⎟⎟⎟⎠T

ndΓ f ; fωΓ =

∫
Γ f

NT

⎛⎜⎜⎜⎜⎝μ f + Ćωσ μT

Re
(∇N)ω f

⎞⎟⎟⎟⎟⎠T

ndΓ f ;

CsK = Csω̆ = CsE; fKΩ =

∫
Ω f

NT (Du f )
TτF dΩ f ; fω̆Ω =

∫
Ω f

NT
Ćγ

νT
(Du f )

TτF dΩ f ;

CsK2 =

∫
Ω f

NTCk
β ω f Ls dΩ f ; Csω̆2 =

∫
Ω f

NTCωβ ω f Ls dΩ f ;

fKω̆ =

∫
Ω f

NT 2ρ f (1 − F1) Cωσ2 ω
−1
f (∇k f )

T (∇ω f ) dΩ f .
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These both equations are solved in each time step after the energy equation. For unsteady prob-

lems, the real time terms according to section 3.4.6 are added to the above matrix equations. Local

time stepping, residual smoothing and mass matrix diagonalization can also be used here. Fur-

thermore, a discontinuous version of this matrix system is obtained by an additional integration by

parts on the convective terms to remove the standard finite element assembly.

A.3 Additional panel flutter results

Additionally to results presented in section 7.4, panel flutter results in for the nine combinations

of Ma∞ = (1.04, 1.08, 1.12) and rm = (0.05, 0.1, 0.2) are depicted in the following figures. In each

of the figures, the reduced frequency K, the reduced period 1/K as well as the value of the upper

and lower panel midpoint deflection and the resulting amplitude and mean are plotted over the

non-dimensional pressure.
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Figure A.1: LCO of the panel at Ma∞ = 1.04, rm = 0.05
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Figure A.2: LCO of the panel at Ma∞ = 1.08, rm = 0.05
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Figure A.3: LCO of the panel at Ma∞ = 1.12, rm = 0.05
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Figure A.4: LCO of the panel at Ma∞ = 1.04, rm = 0.1
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Figure A.5: LCO of the panel at Ma∞ = 1.08, rm = 0.1
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Figure A.6: LCO of the panel at Ma∞ = 1.12, rm = 0.1
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Figure A.7: LCO of the panel at Ma∞ = 1.04, rm = 0.20
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Figure A.8: LCO of the panel at Ma∞ = 1.08, rm = 0.20
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Figure A.9: LCO of the panel at Ma∞ = 1.12, rm = 0.20
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