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GENERAL REMARK 

1 GENERAL REMARK  
 This thesis is submitted as a cumulative thesis with the main issue of 

elucidating potential functions and the regulation of matrix metalloproteinases 

(MMPs) and their inhibitors (TIMPs) in the bovine placenta. The thesis consists of two 

parts; each part being covered in one original paper published in peer reviewed 

journals. The first part analyses the involvement of MMPs/TIMPs in restricted 

trophoblast invasion/migration in respect to signal transduction, cell motility and 

proliferation in bovine trophoblast cells in vitro. The second part contains results of in 

vivo studies concerning the localization and expression of the MMP/TIMP system in 

different experimental groups and its possible involvement in the aetiology of retained 

fetal membranes (RFM). 
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GENERAL INTRODUCTION 

2 GENERAL INTRODUCTION 

2.1  THE BOVINE PLACENTA AND RETENTION OF FETAL 
MEMBRANES 
The bovine placenta is classified according to its shape as cotyledonary type 

(Placenta cotyledonaria sive multiplex), where placentomes are formed of fetal 

cotyledons and maternal caruncles (Strahl 1906). The fetal and maternal tissue is in 

close contact to each other by interdigitation of fetal villi into maternal crypts 

(Mossmann 1987; Strahl 1906). Originally, the bovine placenta was classified as 

syndesmochorial by the number and form of layers between the fetal and maternal 

circulations (Grosser 1927). It was believed that the uterine epithelium disappeared 

and the trophoblast was apposed directly to the maternal connective tissue. Further 

studies demonstrated that the uterine epithelium persisted and therefore the bovine 

placenta was reclassified as an epitheliochorial placenta (Björkman 1954; Ludwig 

1962; Steven 1975). The matter is further complicated by the fact that the chorionic 

epithelium consists of two populations of trophoblast cells, polarized uninucleated 

trophoblast cells and trophoblast giant cells (TGC). TGC are mostly binucleated, non-

polarized and migrate through the chorionic epithelium to fuse with uterine epithelial 

cells (Wathes and Wooding 1980; Wimsatt 1951). As the resulting feto-maternal 

hybrid cells are indeed syncytia, it was recommended to classify the bovine placenta 

as synepitheliochorial (Wooding 1992).  

The mostly binucleated TGC evolve from uninucleated trophoblast cells by 

acytokinetic mitosis and are able to migrate from the fetal into the maternal 

compartment (Klisch et al. 1999a; Wimsatt 1951). During this process TGC loose 

contact to the trophoblast, migrate through chorionic tight junctions and finally fuse 

with single maternal epithelial cells to form feto-maternal hybrid cells. Since the 

migration/invasion does not continue beyond the maternal basement membrane, this 

unique feature of the bovine placenta was termed “restricted trophoblast 

invasion/migration” (Pfarrer et al. 2003). The feto-maternal hybrid cells degenerate 

(Wimsatt 1951) and are phagocytized by uninucleated trophoblast cells (Klisch et al. 

1999b). The main function of TGC is the production and delivery of proteins and 

steroid hormones into the maternal compartment (Wooding 1992). Thus, 
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GENERAL INTRODUCTION 

placentomes are not only places of fetal-maternal exchange, but also of feto-maternal 

communication and signal transduction.  

Supporting these functions TGC additionally contain a variety of signalling molecules, 

such as placental lactogen (Wooding and Beckers 1987) and pregnancy associated 

glycoproteins (Zoli et al. 1992). Furthermore, several growth factor systems as 

vascular endothelial growth factor, platelet-activating factor, fibroblast growth factor, 

and epidermal growth factor (EGF) are co-localized either in TGC or the uterine 

epithelium (Bucher et al. 2006; Pfarrer et al. 2006; Weise 2001), which implies 

autocrine and paracrine ways of action. In view of this synthetic capacity, TGC are 

prospective candidates for regulation of various biological effects such as migration, 

cell-adhesion, cell growth, differentiation and tissue remodelling.  

For differentiation, migration and several other cell functions, the scaffolding 

extracellular matrix (ECM) plays a pivotal role beside its main function as tissue 

framework to give functional structure to organs (Ekblom and Timpl 1996; Humphries 

and Reynolds 2009; Stetler-Stevenson and Yu 2001; Werb 1997). Prior to cell 

migration, components of the ECM have to be degraded by proteases, such as 

matrix metalloproteinases (MMPs) (Brew and Nagase 2010; Itoh 2006; Seiki 2003; 

Stetler-Stevenson and Yu 2001). In the bovine placenta, the expression of the ECM 

proteins fibronectin, laminin, collagen types I, III, and IV, as well as MMPs and their 

tissue inhibitors of matrix metalloproteinase (TIMPs) has been demonstrated 

throughout pregnancy (Boos 2000; Pfarrer et al. 2003; Walter and Boos 2001). It has 

been suggested that the migration of TGC is accomplished by movement along 

laminin matrices (Pfarrer et al. 2003). Based on the observation that prior to 

parturition TGC cease to express the above mentioned growth factor systems, we 

hypothesize that TGC play an essential role in the release of fetal membranes by 

regulating the proteolytic activity of MMPs and the extracellular architecture at the 

end of gestation.  

The tight connection between maternal crypts and fetal villi of each placentome which 

is essential during gestation must be terminated after expulsion of the fetus to ensure 

a healthy puerperium (Al-Sadi et al. 1994; Gross et al. 1986; Paisley et al. 1986). 

Loosing adherence at the feto-maternal interface is accompanied by a distinct ECM 

remodelling in late gestation. In parallel, a process termed placental maturation 

occurs, which includes reduction of the caruncular epithelium (Björkman 1954; 

Grunert 1985; Woicke et al. 1986) and decline in TGC numbers (Gross et al. 1991; 
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Shenavai et al. 2010; Williams et al. 1987). Therefore, the timely release of the fetal 

membranes after calving could depend on both placental maturation and the 

controlled reduction of feto-maternal adherence. 

In cows the release of fetal membranes usually takes place less than 6 hours after 

expulsion of the fetus (Roberts 1986). Placental retention is most commonly defined 

as the condition in which the fetal membranes are not expelled from the uterus within 

12-48 hours postpartum (Fourichon et al. 2000; Kelton et al. 1998). The retention of 

fetal membranes (RFM) is one of the major disorders in bovine reproduction. It 

affects the reproductive performance and leads to significant economic loss at the 

herd level (Joosten et al. 1988; Kossaibati and Esslemont 1997; Laven and Peters 

1996; Peters and Laven 1996). A considerable number of factors have been 

implicated leading to RFM such as breed, dystocia, twin pregnancy, gestation length, 

season, herd management, environment, induction, nutrition and hormonal 

imbalances (Barnouin and Chassagne 1991; Bo et al. 1992; Claydon 1984; Dlamini 

et al. 1995; Garcia et al. 1992; Grunert et al. 1989; Kankofer et al. 2002; Takagi et al. 

2002). However, despite an abundance of extensive studies, the regulatory 

mechanisms and pathogenesis of placenta retention are not completely understood. 

From a clinical point of view, a variety of methods have been used for the treatment 

of RFM (e.g. manual removal, ecbolic drugs). Whereas manual removal of the 

placenta remains a common practice, intrauterine antibiotic therapy in combination 

with manual removal is a more prospective treatment (Drillich et al. 2007; Drillich et 

al. 2003; Drillich et al. 2006; Peters and Laven 1996). First and foremost postpartum 

metritis is a frequent sequela of RFM, the use of antibiotics in cases of RFM is to 

prevent or treat metritis and subsequent negative effects on fertility (Paisley et al. 

1986; Sheldon et al. 2009). To avoid side effects associated with manual removal, 

Eiler and Hopkins (1992) tested the effect of collagenase and/or hyaluroindase on 

sections of placentomes. They demonstrated that only collagenase had an effect on 

placental separation and injection of collagenase (into the umbilical vein) was 

effective in the treatment of RFM (Eiler and Hopkins 1992; Eiler and Hopkins 1993). 

Therefore it seems reasonable that proteolytic activity of degrading enzymes and the 

breakdown of ECM components could contribute the detachment of fetal 

membranes. 
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2.2  MATRIX METALLOPROTEINASES AND THEIR TISSUE 
INHIBITORS 
The bovine placenta undergoes extensive growth and tissue remodelling from 

implantation and placentation until parturition. Likely candidates responsible for these 

dynamic changes in the extracellular architecture are matrix metalloproteinases 

(MMPs) and the tissue inhibitors of matrix metalloproteinases (TIMPs). The 

MMP/TIMP system acts to control the breakdown of ECM components and affects 

several reproductive processes, such as embryonic development, organ 

morphogenesis, cell growth, differentiation and migration (Curry and Osteen 

2001)(Curry and Osteen 2003). These processes and MMP mediated structural 

changes can be influenced by various hormones, cytokines and growth factors (Brew 

and Nagase 2010; D'Alessio et al. 2008; Itoh 2006; Nagase et al. 2006; Woessner 

and Nagase 2000). Loss of control of the MMP/TIMP system can lead to a 

destructive degradation of the ECM as seen in cancer (Stetler-Stevenson and Yu 

2001). 

MMPs are zinc-dependent endopeptidases capable of degrading essential 

components of the ECM. To date the MMP family (matrixin subfamily of zinc 

metalloprotease family M10) encompasses at least 25 related proteolytic enzymes 

that include four classes (Nagase et al. 2006; Nagase and Woessner 1999; Visse 

and Nagase 2003; Woessner and Nagase 2000): collagenases, gelatinases, 

stromelysins, and membrane type enzymes (MT-MMPs). MMPs show several 

common features, for instance the presence of zinc in the active site of the catalytic 

domain. Furthermore, MMPs are synthesized and secreted as proenzymes, which 

have to be activated for the cleavage of ECM components. The enzyme activity of 

MMPs is specifically inhibited by TIMPs in the extracellular environment.  

The TIMP family consists of four members TIMP-1, -2, -3 and -4, which can bind 

MMPs in a 1:1 stoichiometry (Bode et al. 1999; Brew and Nagase 2010; Nagase et 

al. 2006; Visse and Nagase 2003; Woessner and Nagase 2000). Despite the fact that 

all members of the TIMP family are able to inhibit MMP activity, selective inhibition 

and functional diversity have been observed (Brew and Nagase 2010; Stetler-

Stevenson 2008; Stetler-Stevenson and Seo 2005). For example, although TIMP-1 is 

a prototypic inhibitor for the gelatinases (MMP-2 and MMP-9), it is a poor inhibitor of 

the MT-MMPs (Baker et al. 2002). Furthermore, TIMP-2 functions to both inhibit MMP 

activity and promote activation of pro-MMP-2 by MT1-MMP (Wang et al. 2000; 

Zucker et al. 1998). MT1-MMP, also termed MMP-14, has been described as 
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possible “master switch” that can control ECM remodelling in several organs and 

species (Bai et al. 2005a; Bai et al. 2005b; Bakke et al. 2002; Rabot et al. 2007; 

Uekita et al. 2004; Wang et al. 2001). The key to many tissue remodelling processes 

is a delicate balance of MMPs and counteracting TIMPs controlling formation and 

dissolution of extracellular matrix (ECM) and thus the composition of the ECM. In the 

bovine placenta the distribution and activity of MMP-2, MMP-9 and TIMP-2 was 

demonstrated (Maj and Kankofer 1997; Walter and Boos 2001), but functional 

evidence that MMP-14 is the decisive molecule whether an activation or inactivation 

takes place has not been presented yet. Previous studies in the goat demonstrated 

the expression of MMP-14, MMP-2 and TIMP-2 during pregnancy and hypothesized 

a regulated ECM breakdown (Uekita et al. 2004). In addition, the MMP gene 

expression is transcriptionally regulated by different extracellular stimuli 

(Westermarck and Kahari 1999) including growth factors (Tian et al. 2007), which are 

also expressed in the bovine placenta (Pfarrer et al. 2006; Weise 2001). Beside other 

growth factors, EGF is a well described candidate for remodelling of extracellular 

matrix, invasion and migration by activating key signalling molecules like the mitogen-

activated protein kinases (MAPKs) (Oda et al. 2005), Akt and phosphatidylinositol 3-

kinase (PI3K) (LaMarca et al. 2008; Qiu et al. 2004a; Qiu et al. 2004b) In addition, 

migration and invasion are active processes in which proteases and degradation of 

extracellular matrix (ECM) play a pivotal role (Pilcher et al. 1997; Stetler-Stevenson 

and Yu 2001). In human trophoblast cells EGF activates the degradation of ECM by 

the stimulation and secretion of MMP-9 (Anteby et al. 2004) and also promotes cell 

motility (Qiu et al. 2004a). In vivo studies have shown that the MMP-9 protein is 

expressed in trophoblast cells of the synepitheliochorial sheep placentae throughout 

the last third of gestation and during the whole gestational period in the cow (Vagnoni 

et al. 1998; Walter and Boos 2001). In the human placenta, a strong enzymatic 

activity for MMP-9 and MMP-2 was detected at various regions of the feto-maternal 

interface, suggesting a pivotal role of MMPs in the separation of the placenta from 

the uterine wall after birth (Demir-Weusten et al. 2007). Altogether, these findings 

support our idea, that MMPs can be involved in placental tissue remodelling and the 

release of bovine fetal membranes. 

Fact is that placental remodelling has to occur when fetal membranes disengage 

from the maternal surface and ECM proteins are due to degrade. The capacity of 

MMPs to degrade components of the ECM could be a precondition for tissue 
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remodelling and migration of TGC throughout gestation as well as the release of fetal 

membranes after birth. 

General purpose of this thesis was to gain more information on the regulation and 

aetiology of placental retention. To achieve our aims, we used two approaches 1) to 

prove the hypothesis in vitro that growth factors, such as EGF, are involved in the 

regulation of the MMP/TIMP balance and could influence placental functions in 

several ways including TGC migration and tissue remodelling, and 2) to test the 

hypothesis that the expression of MMP-14, MMP-2 and TIMP-2 is involved in the 

ECM turnover during pregnancy and in the regulatory mechanisms leading to the 

release of fetal membranes in the bovine placenta in vivo.  
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3 PAPER I 

Epidermal growth factor (EGF) induces motility and upregulates  
MMP-9 and TIMP-1 in bovine trophoblast cells 

Abstract 

Differentiation and restricted invasion/migration of trophoblast cells are crucial for 

feto-maternal communication in the synepitheliochorial placenta of cattle. EGF is 

expressed in the bovine placenta and likely regulates these cell properties. As cell 

migration and motility rely on the degradation of extracellular matrix we hypothesize 

that EGF is involved in the regulation of the MMP-9/TIMP-1 balance and thus could 

influence trophoblast migration, tissue remodeling, and the release of the fetal 

membranes after parturition. The aim of this in vitro study was to examine EGF-

mediated effects on cell motility, proliferation, and MMP-9 and TIMP-1 expression in 

cultured bovine trophoblast cells. We used a trophoblast cell line (F3) derived from 

bovine placentomes to examine the influence of EGF on MMP-9 and TIMP-1 

expression by semiquantitative RT-PCR and MMP activity by zymography. Migration 

assays were performed using a Boyden chamber and cell motility was measured by 

time-lapse analyses. To identify the involved signaling cascades, phosphorylation of 

mitogen-activated protein kinase (MAPK) 42/44 and Akt was detected by Western 

blot. EGF treatment increased both the abundance of MMP-9 and TIMP-1 mRNAs 

and the proteolytic activity of MMP-9. Furthermore, EGF stimulated proliferation and 

migration of F3 cells. Addition of specific inhibitors of MAPK (PD98059) and/or PI3K 

(LY294002) activation abolished or reduced EGF-induced effects in all experiments. 

In conclusion, EGF-mediated effects stimulate migration and proliferation of bovine 

trophoblast cells and may be involved in bovine placental tissue remodeling and 

postpartum release of fetal membranes. 

Mol Reprod Dev. 2010 Jul;77(7):622-9. 

www.interscience.wiley.com 

DOI 10.1002/mrd.21197 
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SUMMARY

Differentiation and restricted invasion/migration of trophoblast cells are crucial for feto-
maternal communication in the synepitheliochorial placenta of cattle. EGF is expressed in
the bovine placenta and likely regulates these cell properties. As cellmigrationandmotility
rely on the degradation of extracellular matrix we hypothesize that EGF is involved in the
regulation of the MMP-9/TIMP-1 balance and thus could influence trophoblast migration,
tissue remodeling, and the release of the fetal membranes after parturition. The aim of
this in vitro study was to examine EGF-mediated effects on cell motility, proliferation, and
MMP-9andTIMP-1expression inculturedbovine trophoblastcells.Weuseda trophoblast
cell line (F3) derived frombovineplacentomes toexamine the influenceofEGFonMMP-9
and TIMP-1 expression by semiquantitative RT-PCR and MMP activity by zymography.
MigrationassayswereperformedusingaBoydenchamberandcellmotilitywasmeasured
by time-lapse analyses. To identify the involved signaling cascades, phosphorylation of
mitogen-activated protein kinase (MAPK) 42/44 and Akt was detected by Western blot.
EGF treatment increased both the abundance of MMP-9 and TIMP-1 mRNAs and the
proteolytic activity of MMP-9. Furthermore, EGF stimulated proliferation and migration of
F3 cells. Addition of specific inhibitors of MAPK (PD98059) and/or PI3K (LY294002)
activation abolished or reduced EGF-induced effects in all experiments. In conclusion,
EGF-mediated effects stimulatemigration andproliferationof bovine trophoblast cells and
may be involved in bovine placental tissue remodeling and postpartum release of fetal
membranes.
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INTRODUCTION

The trophoblast of the bovine synepitheliochorial placen-
ta is composed of two cell populations, polarized uninu-
cleated trophoblast cells and nonpolarized trophoblast giant
cells (TGC). Throughout gestation TGC evolve from unin-
ucleated trophoblast cells by acytokineticmitosis, invade the
maternal epithelium, and fuse with single cells to form feto-
maternal hybrid cells. The ability to undergo this differentia-
tion, genome duplication, migration, and fusion is shared by
all uninucleated trophoblast cells (Wooding and Wathes,
1980; Klisch et al., 1999). The processes of restricted
migration and fusion result in the delivery of substances to

the maternal compartment and are of major importance for
feto-maternal communication and maintenance of pregnan-
cy in the bovine placenta (Klisch et al., 2006; Hashizume
et al., 2007). Since the underlying mechanisms regulating
these processes are barely understood, we recently estab-
lished a trophoblast cell line (F3) from bovine placentomes.
This tool allows the evaluation of possible differences and
regulatory mechanisms in both compartments in vitro
(Bridger et al., 2007; Hambruch et al., 2010).

Migration and invasion are active processes in which
proteases and degradation of extracellular matrix (ECM)
play a pivotal role (Pilcher et al., 1997; Stetler-Stevenson
and Yu, 2001). Matrix metalloproteinases (MMPs) are

� 2010 WILEY-LISS, INC.
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zinc-dependent endopeptidases capable of degrading
essential components of the ECM. Most of the MMPs are
secreted as inactive pro-enzymes, which become activated
upon cleavage of an N-terminal propeptide. Among the
MMPs identified, MMP-9 is well described in a wide array
of physiological and pathophysiological events, including
cellular migration, inflammation, metastasis/invasion, and
tissue remodeling (Lemaitre and D’Armiento, 2006). In
the bovine placenta, MMP-9 has been localized in the
trophoblast throughout gestation (Walter and Boos,
2001). Its capacity to degrade components of theECMcould
be a precondition for tissue remodeling and migration of
TGC throughout gestation as well as the release of fetal
membranes after birth. Therefore, it is important to investi-
gate the regulatory mechanisms and involved pathways for
a better understanding of bovine reproductive disorders
such as retained placenta, which is a common disease
resulting in considerable economic loss (Laven and Peters,
1996).

The activity ofMMPs is strictly regulated by counteracting
tissue inhibitors of MMPs (TIMPs) (Nagase et al., 2006).
Severalmembers of theTIMP family have been identified for
maintaining the delicate balance of active and inactive
MMPs. Among them TIMP-1 is the preferential inhibitor of
MMP-9 (Curry and Osteen, 2003). In addition to the regula-
tion ofMMPactivity byTIMPs, the expression ofMMPgenes
is transcriptionally regulated by different extracellular stimuli
(WestermarckandKahari, 1999) includingepidermal growth
factor (EGF) (Tian et al., 2007), which is also expressed in
the bovine placenta (Weise, 2001). EGF can activate key
signaling molecules like the mitogen-activated protein ki-
nases (MAPKs) (Oda et al., 2005), Akt and phosphatidyli-
nositol 3-kinase (PI3K) (Qiu et al., 2004b; LaMarca et al.,
2008) and is therefore a likely regulatory candidate for a
variety of cell properties such as growth, differentiation,
remodeling of ECM, invasion, and migration. In human
trophoblast cells, EGF activates the degradation of ECM
by the stimulation and secretion of MMP-9 (Anteby et al.,
2004) and also promotes cell motility (Qiu et al., 2004b).
Based on the findings from these in vitro studies and the fact
that MMP-9 is expressed in bovine trophoblast throughout
gestation (Walter and Boos, 2001), we hypothesized that
EGF is involved in the regulation of the MMP-9/TIMP-1
balance and thus could influence bovine placental function
in several ways. This includes specifically TGC migration,
tissue remodeling, and the release of the fetal membranes
after parturition.

Therefore, the aim of this in vitro study was to examine
EGF-mediated effects on cell motility, proliferation, and
MMP-9 and TIMP-1 expression in cultured bovine placental
cells. The identification of the underlying mechanisms is
particularly interesting because key pathways of EGF sig-
naling are functional in cultured bovine trophoblast cells
(Hambruch et al., 2010).

RESULTS

EGF Increases mRNA Levels of MMP-9 and TIMP-1
Stimulation with EGF significantly increased the abun-

dance of MMP-9 (378bp) and TIMP-1 (231bp) mRNAs

(Fig. 1). To examine whether MAPK and/or PI3K signaling
pathways are involved in the upregulation of MMP-9 and
TIMP-1 mRNAs, cells were treated with EGF (50ng/ml) for
24 hr with or without pretreatment (for 45min) with inhibitors
PD98059 (PD, 50mM) and LY294002 (LY, 10mM). The EGF
-induced increase inmRNA abundance ofMMP-9 and TIMP
-1 was reduced by the presence of specific inhibitors of
MAPK (PD98059) or PI3K (LY294002).

EGF Induces MMP-9 Secretion and Activity
Zymographic analysis of F3 cell supernatant after EGF

treatment revealed an increase in MMP-9 activity (Fig. 2).
After treatment with EGF (50ng/ml) the predominant form of
MMP-9 was the active form (82 kDa) compared to pro-form
of MMP-9 (92 kDa). In order to examine whether or not the
regulation of MMP-9 activity involves MAPK or PI3K, cells
were treated with two specific inhibitors (PD98059 and
LY294002), as described above. The presence of either the
inhibitor of MAPK (PD980053, 50mM) or PI3K (LY294002,
10mM) abolished the effect of EGF on MMP-9 activation.

MAPK 42/44 and PI3K Signaling Pathways Are
Involved in EGF-Mediated Proliferation, Migration,
and Motility of the Bovine Trophoblast Cell Line F3

We have previously shown that EGF-induced F3 prolif-
eration can be abolished by the MAPK inhibitor PD98059
(Hambruch et al., 2010). Additionally, we report here that the
EGF-dependent increase in cell growth (67% compared to
serum-free medium) could not only be blocked in full by
PD98059 but also by LY294002, a PI3K inhibitor (Fig. 3A).
Since EGF is also known to be a potent migratory factor, the
regulatory mechanisms involved in EGF-mediated cell mo-
tility were investigated by time-lapse analyses. EGF was
consistently able to enhanceF3 cellmotility by 66%whereas
10% FCS had no significant effect. EGF-stimulated motility
was completely inhibited by pretreatment with specific in-
hibitors to MAPK (PD98059) or PI3K (LY294002) (Fig. 3B).
In theBoydenChamber assay, addition of EGF (50 ng/ml) or
10% FCS significantly increased migration of F3 cells by
68% (EGF) or 28% (10% FCS) compared to serum-free
conditions (Fig. 3C).

Detection of EGF-R and Effect of EGF Stimulation
on Signaling Molecule Activation

The presence of EGF-R protein in F3 cells was confirmed
by Western blot. Homogenate from bovine placentome
served as positive control (Fig. 4A). The signaling involved
in the regulation of F3 cell migration and proliferation was
analyzedusing pharmacological inhibitors. For this purpose,
Western blot analysis was performed for phospho-p42/44
MAPK and phospho-Akt (Ser473). While addition of
PD98059 completely suppressed the EGF-induced MAPK
activation, no effect on the phospho-Akt content was
observed. Treatment with LY294002 consistently reduced
only the phosphorylation of Akt after growth factor stimula-
tion and did not affect the phospho-p42/44 MAPK level
(Fig. 4B).
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DISCUSSION

Several signaling pathways have been investigated in
connection with cell migration and differentiation, yet the
mechanisms regulatingmotility of bovine trophoblast are still
unknown. Utilizing the well-characterized trophoblast cell
line F3 derived from a bovine placentome, we demonstrated
for the first time that EGF is involved in the upregulation of
MMP-9 and TIMP-1 mRNAs in bovine trophoblast cells and
enhancesMMP-9 activity. Furthermore, wehave shown that

MAPK42/44 andAkt activation are required for proliferation,
migration, and motility in F3 cells in response to EGF,
suggesting that EGF plays a pivotal role in the differentiation
and migratory activity of bovine trophoblast cells.

Influence of EGF on MMP Expression
As EGF is a potent inductor of MMP-9 expression and

activation, it can upregulate invasion and motility in different
cell types. For instance, EGF is involved in the upregulation
of MMP-9 expression in human breast cancer cells
(Kondapaka et al., 1997). A recent study of Rothhut et al.
(2007) demonstrated that EGF increases MMP-9 gene
expression and enhances motility in human follicular thyroid
carcinoma cells by distinct signaling pathways. In the pres-
ent study, we have shown that a significant upregulation in
the abundance of MMP-9 mRNA in response to EGF corre-
lates with an increased motility and proliferation of F3 cells.
Furthermore, both EGF-mediated migration and MMP-9
activity require the MAPK and PI3K pathway. Hence, the
upregulation of MMP-9 expression and activity could be
involved in the process of migration in bovine trophoblast
cells. Thesefindingsare in accordancewith previous studies
where EGF induced the secretion of MMP-9 and motility in
human trophoblast cells (Qiu et al., 2004b; LaMarca et al.,
2008).

Figure 2. Effect of EGF and inhibitors of PI3K and MAPK on MMP
activity. Zymographic analysis of MMP-9 activity in conditioned
media (after stimulation for 24hr). EGF increases the expression of
active MMP-9 in fetal cells (F3). This effect could be abolished in
the presence of inhibitors PD98059 (PD, 50 mM) and LY294002
(LY, 10mM), respectively.

Figure 1. Effect of EGF and inhibitors of MAPK and PI3K on the abundance of MMP-9 and TIMP-1 mRNA. Agarose gel electrophoresis
demonstrates the presence of RT-PCR products ofMMP-9 (378 bp), TIMP-1 (231 bp), and GAPDH (198bp) in bottompanels. Top panels show
the influence of specific inhibitors ofMAPK (PD980053,PD,50 mM)andPI3K (LY294002, LY, 10mM)onEGF-induced (50 ng/ml)mRNA levels
ofMMP-9 andTIMP-1. EGF significantly increasesmRNA levels ofMMP-9 and TIMP-1 in F3 cells compared to control (SF, serum-freemedium).
Values represent means�SEM of three independent experiments, one asterisk represents P<0.05, two asterisks indicate P<0.005 compared
to control (SF), dimethyl sulfoxide (DMSO) served as vehicle control.
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While the upregulation of MMPs by single cytokines such
as tumornecrosis factor (TNF)alpha in bovine luteal cells, as
well as transforming growth factor (TGF) alpha and TGF
beta in humanandbovineendometrial cells, was reportedby
several authors (Hashizume et al., 2003; Zhang et al., 2005;
Braundmeier et al., 2006), others have demonstrated that a
synergistic effect of growth factors is needed to increase
MMP gene expression (Tian et al., 2007). We have shown

Figure 3. Involvement of mitogen-activated protein kinases (MAPK)
and phosphatidylinositol 3 kinase (PI3K) signaling in F3 proliferation,
migration, and motility. A: The growth response of F3 cells was
determined by the MTT assay. Serum-starved F3 cells were pretreated
with 50mM PD98059 (specific inhibitor to MAPK) or 10 mM
LY294002 (specific inhibitor to PI3K) for 45min and afterwards
incubated 10% FCS or 50 ng/ml EGF for 24hr. Treatment with either
LY294002 or PD98059 significantly inhibited EGF-induced prolifer-
ation.B: For motility measurement, time-lapse digital microscopy was
performed. Serum-starved F3 cells were pretreated with 50 mM
PD98059 (specific inhibitor to MAPK) or 10 mM LY294002 (specific
nhibitor to PI3K) for 45min. After stimulation with 10% FCS or 50 ng/
ml EGF, motility was monitored over 10hr. Tracks (black lines) of
individual motile F3 cells (60 cells per experiment) were recorded and
the accumulated distance was analyzed with the help of Image J
software. Treatment with either LY294002 or PD98059 significantly
inhibited EGF-induced motility. C: For analysis of migration, a Boyden
chamber was used. Serum-starved F3 cells were exposed to 10% FCS
or 50 ng/ml EGF in the Boyden chamber. The cells that migrated
through the porous membrane were stained, and the average number
ofmigrating cells was determined. Representative images (10�) of the
stained membranes of cells exposed to serum-free medium (SF), 10%
FCS in SF or 50 ng/ml EGF are depicted on the right. Both 10% FCS
and EGF significantly stimulated F3 migration. The data presented in
each panel were normalized relative to the control (SF, serum-free
medium) and then averaged (mean�SEM). Asterisks represent
P<0.001 compared to control. Each experiment was repeated three
times.

Figure 4. Detection of EGF-R and effect of EGF on MAPK42/44 and
Akt phosphorylation in the absence or presence of PD98059 or
LY294002. A: Western blot of protein samples derived from F3 cells
(1) and bovine placentome (2) detecting EGF-R (170 kDa).B: F3 cells
were serum-starved for 4 hr and treated with EGF (50ng/ml) for 24hr.
PD98059 (50mM) or LY294002 (10mM) was added 45min before
EGF treatment as indicated in the figure. Whole cell lysates were used
for immunoblotting to detect pMAPK42/44 and pAkt. Actin (42 kDa)
was used as loading control. PD specifically abolishes EGF-dependent
activation of MAPK, while LY exerts the same effect on Akt phosphor-
ylation. The presented experiments were repeated three times.
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that EGF alone significantly upregulates mRNA levels of
MMP-9 and TIMP-1 in bovine trophoblast cells. The simul-
taneous upregulation of MMP-9 and TIMP-1 by EGF may
appear contradictory. However, upregulation of TIMP1 by
EGF is very reasonable because TIMP1 promotes cell
growth independently of its inhibitory capacity (Bertaux
et al., 1991; Hayakawa et al., 1992; Stetler-Stevenson,
2008). The fact that TIMPs are multifunctional proteins
suggests that other TIMPs potentially also have the ability
to inactivate MMP-9 (Brew and Nagase, 2010, for review).
For instance TIMP-2, which is expressed in the bovine
placenta throughout gestation (Walter and Boos, 2001), is
able to block growth factor induced migration and prolifera-
tion (Murphy et al., 1993; Oh et al., 2004) and thus could be
involved in the regulation of restricted trophoblast invasion
and differentiation in the bovine placenta. Nevertheless, it
has to beconsidered that, besidesEGF, other growth factors
could participate in the control of bovine trophoblast migra-
tion and differentiation. Such an involvement has been
shown for TNF-a, vascular endothelial growth factor
(VEGF) and fibroblast growth factors (FGF), which, in
addition to the expression and secretion of active MMP-9,
can activate MMP-9 protease activity in human trophoblast
cells (Anteby et al., 2004; Cohen et al., 2006). As members
of the FGF and VEGF systems are localized in the bovine
trophoblast, these factors are also likely to play a role in
trophoblast differentiation and migration (Pfarrer et al.,
2006).

In vivo studies have shown that the MMP-9 protein is
expressed in trophoblast cells of the synepitheliochorial
sheep placentae throughout the last trimester of gestation
and throughout the whole gestational period in the cow
(Vagnoni et al., 1998; Walter and Boos, 2001). However,
the localization of MMPs alone is not sufficient as it does not
give any information on MMP activity. In our study, we
demonstrated for the first time that EGF induces the activa-
tion of MMP-9 protease in bovine placental cells. This
suggests that such activation may also take place in vivo.
So far the active and latent forms of MMP-9 have only been
distinguished by zymography in the sheep placenta
(Vagnoni et al., 1998). These authors found MMP-9 activity
in conditioned media of all compartments of the ovine
placenta and concluded that MMP-9 and TIMP-1 are in-
volved in angiogenesis and tissue remodeling during gesta-
tion. In the human placenta, a strong enzymatic activity for
MMP-9 was detected at various regions of the feto-maternal
interface, including anchoring villi, basal plate, and decidua,
suggesting a pivotal role of MMP-9 in the separation of the
placenta from the uterine wall after birth (Demir-Weusten
et al., 2007). These findings support our idea that MMP-9
plays a role in placental tissue remodeling and the release of
bovine fetal membranes besides its presumed functions for
trophoblast migration and differentiation.

Implications of EGF Utilized Pathways
Treatment with EGF in our study consistently led to an

increase in the active form of MMP-9 in F3 cells while the
inhibition of MAPK or Akt activation blocked this effect.
These results confirm that the MAPK and the PI3K/Akt

signaling pathways are involved in the secretion and activa-
tion of MMP-9 in bovine trophoblast cells. Utilization of the
same signaling cascades has been reported for human
trophoblast cells, which require the activation of both MAPK
and PI3K pathways for the regulation of migration and
secretion of MMP-9 and TIMP-1 (Qiu et al., 2004a,b).
Furthermore, we demonstrated that MAPK 42/44 and Akt
were phosphorylated in response to EGF in F3 cells. Addi-
tionally, both MAPK and PI3K inhibitors abolished the EGF-
inducedactivation of these signaling pathwaysaswell as the
induction of motility and proliferation. This is in agreement
with other studies,which describeEGF-stimulatedmigration
and invasion through these pathways using human tropho-
blast cell lines (Qiu et al., 2004a; LaMarca et al., 2008). In a
previous study, we demonstrated the activation of the small
GTPase Ras upon stimulation with EGF (Hambruch et al.,
2010). The involvement of this classicalmitogenic Raf/MEK/
ERK cascade in the regulation of MMP-9 expression is well
documented (Rothhut et al., 2007; Tian et al., 2007). More-
over, EGF has been shown to have a proliferative effect on
cultured human trophoblast cells (Iguchi et al., 1993; Li and
Zhuang, 1997) and can inhibit apoptosis and mediate dif-
ferentiation in human cytotrophoblasts (Morrish et al., 1997;
Smith et al., 2002). Our experiments examining the growth
response of F3 cells to EGF indicate that the activation of
both MAPK and PI3K/Akt pathways is essential for tropho-
blast proliferation and motility. It remains to be determined
whether NFkB and AP-1 are part of the downstream signal-
ing cascade (Bancroft et al., 2002) and if activation of these
transcription factors is crucial for promoting proliferation
and/or MMP-9 expression.

In addition to the various biological effects of the EGF
system,wewere also able to confirm the presence of EGF-R
in F3 cells. These findings are in accordance with in vivo
studieswhere the EGF-Rwas localized in the trophoblast as
well in the maternal epithelium of the bovine placenta
throughout gestation (Weise, 2001). Therefore, we specu-
late that the effect of EGF on the activity of MMP-9 in
trophoblast cells and the subsequent degradation of ECM
might be involved in the process of tissue remodeling
throughout the whole gestational period as well as the
release of fetal membranes. This latter point is of particular
interest due to the fact that the underlying mechanisms of
placenta release might be far too complicated to be clarified
by in vivo studies. Further studies will be necessary to gain
more insight into the regulatory events in the process of
loosening adherence between the fetal and maternal com-
partment of the bovine synepitheliochorial placenta.

Based on the in vitro results presented and above-
mentioned published data, we developed our current work-
ing concept that in vivo EGF produced by TGC and/or
uninucleated trophoblast cells stimulates MMP-9 and
TIMP-1 secretion and activation (via MAPK and PI3K/Akt)
in an auto- or paracrine fashion. Protease activity is neces-
sary for the detachment of cells from the basal membrane
and surrounding cells prior to migration, while the balance of
protease activity and inhibition influences the number
of migrating cells and thus participates in the control of
restricted trophoblast migration/invasion in the bovine
placenta.
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MATERIALS AND METHODS

Cell Culture and Stimulation Experiments

The bovine trophoblast cell line F3 was derived from placen-
tomes and has been well characterized (Hambruch et al., 2010).
Cells were cultured in full supplementedmedium (FSM: Dulbecco’s
modified Eagle medium (DMEM)/Ham’s F12 containing 10% fetal
calf serum (FCS), 100 IU/ml penicillin, 100 mg/ml streptomycin and
2mM glutamine (PAA, Coelbe, Germany) at 37�C in 5% CO2. For
stimulations, F3 cells were seeded in 3.5 cm tissue culture dishes
(TPP, Trasadingen, Switzerland; 1� 105 cells) and cultivated for
48 hr in FSM. Afterwards cells were serum-starved for 4 hr (SF
medium: DMEM/Ham’s F12 containing 100 IU/ml penicillin, 100mg/
ml streptomycin, and 2mM glutamine) before being treated with
inhibitors of MAPK activation (PD98059, 50mM in DMSO) or inhibi-
tor of PI3K activation (LY294002, 50mM in DMSO). After 45min
EGF 50ng/ml, human recombinant EGF (Biomol, Hamburg,
Germany) was added and the cells were incubated for 24 hr.
Incubations with SF and SF with DMSO (vehicle control for
inhibitors) served as controls. All experiments were designed in
double and repeated three times. Fromeachexperiment, cellswere
lysed for analysis via Western blot as well as for isolation of total
RNA. Furthermore, the medium was collected prior to lyses to
determine MMP-9 activity.

RNA Isolation and Semiquantitative RT-PCR Analyses

Total RNA from stimulated cells was isolated with SV Total RNA
Isolation System (Promega, Madison, WI) according to the
manufacturer’s instructions. Reverse transcription was performed
using 0.5mg of total RNA in a 20ml reaction volume. Briefly, RNA
and randomhexamersweremixed and incubated for 5min at 70�C,
then chilled on ice for 3min. The reaction mix (1� ImProm-II
reaction buffer, 3mM MgCl2, 0.5mM each dNTP, 20U RNasin
ribonuclease inhibitor, 1ml ImProm-II reverse transcriptase) was
added to themixture and incubated according to themanufacturer’s
instructions. Primer pairs (purchased from MWG Biotech, Ebers-
berg, Germany) for cDNA amplification (in the 50-30direction) were
as follows: AGATTCCAGACCTTTGAGGGCGAA (forward) and
TTGCCCAGAGACCACAACTCTTCA (reverse) for bovine MMP-
9; CATCTACACCCCTGCCATG (forward) and CAGGGGATG-
GATGAGCAG (reverse) for bovine TIMP-1; GTCTTCACTAC-
CATGGAGAAGG (forward) and TCATGGATGACCTTGGCCAG
(reverse) for bovine GAPDH. The expected fragment length of
MMP-9, TIMP-1, and GAPDH was 326, 231, and 198bp, respec-
tively. PCR amplifications were performed on a PeqStar Cycler
(PeqLab, Erlangen, Germany) using GoTaq Hot Start Polymerase
(Promega) for 28 cycles for TIMP-1 and GAPDH and 35 cycles for
MMP-9. GoTaq Hot Start Polymerase was activated at 95�C for
2min before the beginning of the cycle (94�C for 30 sec for dena-
turing, 58�C for annealing, 72�C for extension). PCR products were
visualized under UV transillumination on 1.5%agarose gel contain-
ing ethidium bromide. The ratios of MMP-9 and TIMP-1 to GAPDH
were analyzed by densitometric measurement and quantification
using BIO-1D software (Vilber Lourmat, Eberhardzell, Germany).

Gelatin Zymography

After stimulation, enzymatic activity ofMMP-9 in thesupernatant
was determined by zymography. Equal volumes of culture super-
natants were mixed with 4� sodium dodecyl sulfate (SDS)-loading
buffer (RotiLoad�, Roth, Karlsruhe, Germany) and incubated for
10min at 37�C and resolved on 10% SDS–polyacrylamide gels
containing 0.1% gelatin (Sigma, Steinheim, Germany) as sub-
strate. After electrophoresis, the gels were washed in renaturing
buffer (Invitrogen, Darmstadt, Germany) for 30min at room tem-
perature (RT), followed by incubation in developing buffer
(Invitrogen) for 30min at RT. Thereafter, developing buffer was
changed and gels were incubated over night at 37�C. Gels were
stained with 0.5% Coomassie blue R-250 in 10% acetic acid/50%

methanol, and destained with 10% acetic acid/40% methanol to
reveal discrete areas of gelatine degradation. The proteolytic ac-
tivity appeared as clear bands on a blue background. The images
were scanned by using Vision Capt software (Vilber Lourmat).

Western Blot Analyses

After stimulation cellswere placedon ice,washedoncewith cold
PBS, andwere lysedwith a buffer containing 50mMTris–HCl at pH
7.4, 150mMNaCl, 40mMNaF, 5mMEDTA, 1% (v/v) Nonidet P40,
0.1% (w/v) sodium deoxycholate, and 0.1% (w/v) SDS supplemen-
ted with protease and phosphatase inhibitor cocktail (75ml per
35mm; 300ml per 60mm dish). Lysates were centrifuged for 5min
at 13,000g (4�C), and the protein concentration of the supernatant
was determined. For stimulation experiments, equal amounts of
protein (15mg/slot) were denaturated in Laemmli sample buffer
(5min at 95�C) and analyzed with 12% SDS–polyacrylamide gels.
Protein derived form unstimulated F3 cells and from bovine pla-
centome homogenate were used for the detection of EGF-R and
analyzedwith a 10%SDS–polyacrylamide gel. AfterwardsWestern
blots were performed as suggested by the suppliers of the anti-
bodies anti-phosphoMAPK (M8159, 1:12,500, Sigma), anti-phos-
phoAkt (4060, 1:4,000, Cell Signaling, Frankfurt, Germany), anti-
EGF-R (1234-1. Epitomics, Burlingame, CA, USA), and anti-beta-
actin (sc-47778, 1:5,000, Santa Cruz, Santa Cruz, CA, USA) and
detectedwith chemiluminescence (SuperSignalWest Pico, Pierce,
Rockford, IL, USA).

Migration Assay

For analysis of cell migration, fibronectin-coated 8mm polycar-
bonate filters in a Boyden chamber (Neuro Probe, Gaithersburg,
MD, USA) were used according to the manufacturer’s information.
Briefly, cellswere starved for 4 hr anda total number of 4,000 cells in
SF medium were added to the upper compartment. Fifty nano-
grams EGF or 10% FCS as a positive control were added to the
lower chamber, and the system was incubated at 37�C for 16 hr in
5% CO2. After incubation and fixation, the nonmigrating cells were
removed with a cotton swab and the remaining cells were stained
with Crystal Violet (0.2% in 2% ethanol) for 15min. The number of
cells in four microscopic fields was counted and the median of six
wells was determined. The experiment was repeated three times.

Cell Motility Assay

F3 cells (2.5� 105 cells per well) were allowed to adhere in 12-
well tissue culture test plates (TPP) for 4 hr in culture medium. Prior
to stimulation cells were serum starved for 2 hr and pretreated for
45min with 50mM PD98059 or 10mM LY294002. Afterwards, the
cells were stimulated with 10% FCS or 50 ng/ml EGF. The plates
were placed in an environmental chamber (Cell Observer System,
Zeiss MicroImaging, Jena, Germany) and pictures were taken
every 25min for 10 hr. Sixty cells were chosen at random per
treatment and the accumulated distance cells moved was quanti-
fied using ImageJ software over the entire time period (Abramoff
et al., 2004). The experiment was repeated three times.

Statistical Analyses

Data are presented as the mean�SEM. Data from treated
groups were compared with control groups and significant differ-
ences were determined by one-way analysis of variance followed
by Tukey’s honestly significant difference (HSD) test using SPSS
software. A P-value of <0.05 was defined as significant.
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Expression of matrix metalloproteinase (MMP)-2, MMP-14 and tissue 
inhibitor of matrix metalloproteinase (TIMP)-2 during bovine 
placentation and at term with or without placental retention 

Abstract 

Matrix metalloproteinases (MMPs) and counteracting tissue inhibitors of 

metalloproteinases (TIMPs) are balancing extracellular matrix (ECM) formation and 

degradation. The latter is believed to be an important aspect for the detachment of 

fetal membranes postpartum when loosening the feto-maternal connection which is a 

prerequisite to avoid placental retention a common disease in cows leading to 

considerable economic loss. Membrane-type (MT) MMPs have been suggested as 

potential activators controlling ECM remodelling. In particular, MT1-MMP (MMP-14) 

is able to degrade ECM substrates and activate MMP-2 through binding TIMP-2 at 

the cell surface. Since the connection between the trophoblast and the maternal 

caruncular epithelium is supported by integrin receptors bound to ECM, we 

hypothesize that impaired modulation of the ECM by TIMPs/MMPs participates in the 

aetiology of bovine retained fetal membranes. To analyse this involvement, 

placentomes were collected from cows after term parturition and timely release of 

fetal membranes (n = 4) and cows with retained fetal membranes after various 

treatments for the induction of parturition using progesterone antagonist 

(aglepristone), PGF(2�) analogue, glucocorticoid, and after elective caesarean 

sections (each group n = 3). The expression of MMP-14, MMP-2 and of TIMP-2 was 

examined by real-time-PCR, immunohistochemistry, Western blot and zymography. 

The relative mRNA expression levels of MMP-14 remained unchanged, while the 

expression levels of TIMP-2 and MMP-2 partly increased in animals with induced 

parturition and retention of fetal membranes compared to animals without placental 

retention. MMP-14 protein was expressed in cells of the uninucleated trophoblast, the 

fetal mesenchyme and maternal stroma. TIMP-2 was present exclusively in 

trophoblast giant cells, while MMP-2 could be detected in uninucleated trophoblast 

cells and the fetal mesenchyme. The presence of the activated enzyme was 

confirmed by zymography. In conclusion, MMP-14, MMP-2 and TIMP-2 are co-
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Abstract

Matrix metalloproteinases (MMPs) and counteracting tissue inhibitors of metalloproteinases (TIMPs) are balancing extracellular matrix
(ECM) formation and degradation. The latter is believed to be an important aspect for the detachment of fetal membranes postpartum when
loosening the feto-maternal connection which is a prerequisite to avoid placental retention a common disease in cows leading to considerable
economic loss. Membrane-type (MT) MMPs have been suggested as potential activators controlling ECM remodelling. In particular,
MT1-MMP (MMP-14) is able to degrade ECM substrates and activate MMP-2 through binding TIMP-2 at the cell surface. Since the
connection between the trophoblast and the maternal caruncular epithelium is supported by integrin receptors bound to ECM, we hypothesize
that impaired modulation of the ECM by TIMPs/MMPs participates in the aetiology of bovine retained fetal membranes. To analyse this
involvement, placentomes were collected from cows after term parturition and timely release of fetal membranes (n � 4) and cows with retained
fetal membranes after various treatments for the induction of parturition using progesterone antagonist (aglepristone), PGF2� analogue,
glucocorticoid, and after elective caesarean sections (each group n � 3). The expression of MMP-14, MMP-2 and of TIMP-2 was examined
by real-time-PCR, immunohistochemistry, Western blot and zymography. The relative mRNA expression levels of MMP-14 remained
unchanged, while the expression levels of TIMP-2 and MMP-2 partly increased in animals with induced parturition and retention of fetal
membranes compared to animals without placental retention. MMP-14 protein was expressed in cells of the uninucleated trophoblast, the fetal
mesenchyme and maternal stroma. TIMP-2 was present exclusively in trophoblast giant cells, while MMP-2 could be detected in uninucleated
trophoblast cells and the fetal mesenchyme. The presence of the activated enzyme was confirmed by zymography. In conclusion, MMP-14,
MMP-2 and TIMP-2 are co-localized in the fetal compartment and therefore could influence the timely release of fetal membranes in cattle.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Bovine placenta; Matrix metalloproteinases

1. Introduction

In the synepitheliochorial bovine placenta a tight
feto-maternal connection is established in so-called pla-
centomes where fetal cotyledons interdigitate with ma-

ternal caruncles [1]. While the uterine or caruncular
epithelium (CE) is a homogeneous cell population, the
bovine trophoblast characteristically consists of two
populations of trophoblast cells, uninucleated tropho-
blast cells (UTC) and mostly binucleated trophoblast
giant cells (TGC). TGC migrate and fuse with singular
uterine epithelial cells to form feto-maternal hybrid
cells throughout gestation [2,3]. A firm anchorage is
guaranteed firstly by the complementary interdigitation
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of fetal villous trees with maternal crypts and secondly
by the interdigitation of the apical microvilli from UTC
and CE directly by cell-cell or indirectly by cell-matrix
contacts [4]. This tight connection is essential during
gestation, but must be terminated after expulsion of the
fetus to ensure a healthy puerperium. Therefore distinct
remodelling and loosing adherence at the feto-maternal
interface takes place in late gestation. A process,
termed placental maturation, includes a reduction of the
CE and a decline in TGC numbers, and is required for
the release of the bovine fetal membranes [5–9].

Impaired regulation of the process may lead to one
of the major reproductive disorders in cattle, the reten-
tion of fetal membranes (RFM). This disturbance is
defined as the condition in which the fetal membranes
are not expelled from the uterus within 12–48 h post-
partum [10,11]. RFM can affect the reproductive per-
formance and lead to considerable economic loss at the
herd level [12–14]. Several risk factors are associated
with RFM, as are shortened gestation, caesarean section
and induced parturition [15–17]. With regard to the
latter factor it is reported that hormonal changes and
prostaglandins play an important role in the regulation
of placental separation and maturation [18–24]. There-
fore, an impairment of placental separation likely oc-
curs after induction of parturition.

Furthermore, local factors might be involved in
loosening the adherence of the fetal membranes from
the maternal compartment. Both, the maternal and fetal
compartment are subject to rapid growth, angiogenesis
and tissue remodelling during gestation. These pro-
cesses, as well as the proper release of fetal membranes
require proteolytic enzymes and subsequent degrada-
tion of extracellular matrix (ECM) components [25,26].
Matrix metalloproteinases (MMPs) are considered to
play a pivotal role in the processes of tissue remodel-
ling and breakdown of the ECM during placentation
and implantation in several species [27–29]. MMPs are
zinc-dependent endopeptidases capable of degrading
essential components of the ECM. Most MMPs are
secreted as inactive pro-enzymes, which become acti-
vated upon cleavage of an N-terminal propeptide. Their
activity is strictly regulated by counteracting tissue in-
hibitors of MMPs (TIMPs). Among the MMP family,
two members (gelatinases MMP-2 and MMP-9) are
well characterized in ruminants. However, the enzy-
matic activity of MMP-2 seems to play a more impor-
tant role in the synepitheliochorial placenta of rumi-
nants, than the activity of MMP-9 [30–35]. Thus, the
regulation and activation of MMP-2 is of particular
interest for our study. It has been reported that the latent

form of MMP-2 (proMMP-2) is mainly activated
through formation of a trimolecular complex between
MMP-14, TIMP-2, and proMMP-2 [36]. The mem-
brane bound MMP-14, also called membrane type-1
MMP (MT1-MMP), interacts with proMMP-2/TIMP-2
to form a ternary complex. The proteolytical activation
of this complex is triggered by cleavage of the propep-
tide of MMP-2 by a second MMP-14 molecule. Thus,
TIMP-2 can serve as an inhibitor and activator of
MMPs depending on the quantity of surrounding com-
ponents of the MMP/TIMP system [37]. So far, infor-
mation about enzyme activity and potential activation
of MMP-2 via MMP-14 and TIMP-2 is lacking for the
bovine placenta. The spatial regulation of ECM degra-
dation and subsequent release of fetal membranes could
be mediated by the fetal compartment itself and/or by
the maternal compartment. Furthermore, the underlying
mechanisms involved in the loosing of adherence of
fetal membranes postpartum are barely understood in
the bovine placenta. We hypothesize that the process of
loosing adherence between the maternal and fetal com-
partment is modulated by TIMPs/MMPs.

Therefore, the aim of our study was to test this
hypothesis and to gain more information about the
regulatory mechanisms leading to the release of fetal
membranes. As induced parturition leads to RFM in
most cases, the expression of MMP-14, MMP-2 and
TIMP-2 was compared in placentomes from animals
with induced parturition (by progesterone receptor an-
tagonist aglepristone, PGF2� analogue, glucocorticoid)
and placentomes collected during preterm caesarean
sections as well as after spontaneous parturition.

2. Materials and methods

2.1. Sample collection and fixation

All animal experiments were approved by the
committee on the use of animals for research pur-
poses at the regional council (Regierungspraesidium
Giessen, no.V54-19c-20-15(I) Gi 18/14-Nr.41/2007;
LAVES, 33.9-42502-04-09/1634) according to the
German animal protection law. Placental tissues
were collected from Holstein cows (n � 16). The
cows were divided into five different groups as fol-
lows (I) preterm elective caesarean section at day
272 of gestation (n � 3), (II) induced parturition by
injection of dinoprostum, PGF2� analogue [Dino-
lytic/Dinoprost® 25 mg i.m.] at day 272 of gestation
(n � 3), (III) induction of parturition by treatment
with dexamethasone, glucocorticoid [Dexafort® 0.06
mg/kg i.m.] at day 272 of gestation (n � 3), (IV)
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induced parturition by injection of progesterone re-
ceptor blocker [aglepristone 5 mg/kg s.c.] at day 270
and day 271 of gestation (n � 3) and (V) term
parturition (spontaneous parturition) and release of
fetal membranes within a period of 12 h after calving
(n � 4). In groups II and III caesarean sections were
performed within 24-36 h after injections, while par-
turition occurred within 24 h after second treatment
in group IV. All animals from groups I–IV retained
the fetal membranes for more than 24 h.

Immediately after expulsion of vital calves three
placentomes were collected randomly from each an-
imal per vagina or caesarean section, respectively.
For immunohistochemistry placentomes were cut
into slices of 0.5 cm thickness and fixed in 4% (v/v)
neutral buffered formaldehyde solution according to
Lillie for 24 h. Tissue samples were subsequently
dehydrated in a graded ethanol series and finally
embedded in paraffin. Every tissue block includes the
total height of the placentome from allantochorion to
caruncular stalk. For extraction of mRNA, gelatinase
assay (zymography) and western blot analysis, re-
spectively, further tissue samples from the central
part of the placentomes were cut into smaller pieces
(approximately 0.3 cm edge length) and shock frozen
immediately in liquid N2 [38].

Additionally, placentomes from 18 generally
healthy, pregnant cows were collected at a slaughter-
house, perfusion-fixed with Bouins solution and paraf-
fin embedded for immunohistochemistry. The animals
were assigned to the following groups: early gestation
(�3 mo, n � 6, 4th mo, n � 3 and 5th mo, n � 2) and
late gestation (6th mo, n � 2; 7th–8th mo, n � 2, and
�8 mo, n � 3) [39]. The gestational age was assessed
according to fetal crown-rump length [40].

2.2. Total RNA extraction and reverse transcription

Total RNA was extracted from placentome tissue
using the SV Total RNA Isolation System (Promega,

Madison, WI, USA) according to the manufacturer’s
instructions. To quantify the amount of total RNA
extracted, the optical density (260 nm) was deter-
mined with a spectrophotometer (SmartSpec, Bio-
Rad, CA, USA) for two different dilutions of the
final RNA preparations. Reverse transcription was
performed using 1 �g of total RNA in a 20 �l
reaction volume. Briefly, RNA (or nuclease free wa-
ter for negative control) and random hexamer prim-
ers were mixed and incubated for 5 min at 70 °C then
chilled on ice for 3 min. The reaction mix (1x Im-
Prom-II reaction buffer, 3 mM MgCl2, dNTP (0.5
mM each), 20 U RNasin ribunuclease inhibitor and 1
�l ImProm-II reverse transcriptase) was added to the
mixture and incubated according to the manufactur-
er’s instructions. All components were purchased
from Promega.

2.3. Quantitative real-time PCR

Specific primer sequences and size of resulting
fragments for reference and target genes are shown
(Table 1). Each polymerase chain reaction was car-
ried out with 200 ng cDNA sample and 5 nM primer
in a final reaction volume of 25 �l using SYBR
Green PCR Master Mix (Applied Biosystems, For-
ster City, CA, USA). A negative control containing
the reaction mix and no cDNA was included in each
assay. Thermocycling was performed in a StepOne-
Plus Real Time PCR system (Applied Biosystems)
using the following conditions: 95 °C for 10 min,
followed by 40 cycles of 95 °C for 15 s and 60°C for
60 s with fluorescence detection during the anneal-
ing/extension step. The efficiency of primers (90.1–
93.5%) were analysed and quality of amplification
was verified by subsequent melt curve analysis. The
amplicons were checked by gel electrophoresis and
commercial sequencing. The values were normalized
to reference gene ribosomal protein S9 (RPS-9) us-
ing ��CT threshold method.

Table 1

Gene Sequence of forward and reverse
primer (5=¡ 3=)

Fragment size
(bp)

Accession number
or Reference

MMP-2 CCCAGACAGTGGATGATGC (for)
TTGTCCTTCTCCCAGGGTC (rev)

248 NM_174745 [41]

MMP-14 ACTTGGAAGGGGGACACC (for)
AGGGGGCATCTTAGTGGG (rev)

235 AF144758 [41]

RPS-9 AAACGTGAGGTCTGGAGGGTCAAA (for)
GCAACAGGGCATTACCTTCGAACA (rev)

117 NM_001101152 [42]

TIMP-2 GGGTCTCGCTGGACATTG (for)
TTGATGTTCTTCTCCGTGACC (rev)

255 NM_174472 [41]
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2.4. Immunohistochemistry

Proteins were localized in paraffin embedded pla-
centa tissue sections (4–5 �m) using EnVision�™
anti-rabbit or anti-mouse immunoglobulin conjugated
to peroxidase labelled dextran polymer (DAKO,
Glostrup, Denmark). Sections were deparaffinised and
hydrated in graded ethanol. Detection of immunoreac-
tive protein was performed according to the manufac-
ture’s instructions. Antibodies used for immunohisto-
chemistry included rabbit anti-MMP-14 (1:150, Ab-2)
and rabbit anti-MMP-2 (1:75, Ab-7) from Thermo
Fisher Scientific (Fremont, CA, USA) and mouse anti-
TIMP-2 (1:2500, MAB3310) from Chemicon (Bil-
lerica, MA, USA). Primary antibodies were incubated
in a humidified chamber over night at 4 °C. Finally,
sections were washed with PBS and peroxidase activity
was detected with DAB (Sigma, Steinheim Germany)
as substrate for 5 min at room temperature. Sections
were counterstained with hemalum, dehydrated and
mounted with DPX (Fluka, Buchs, Switzerland). To
analyse unspecific binding, primary antibodies were
replaced by rabbit IgG and mouse IgG (Sigma) respec-
tively, at the same concentration of the primary anti-
body.

2.5. Western blot analyses

Immunoblotting was performed to verify specificity
of the used antibodies with bovine placental tissue.
Tissue samples were cut into small pieces and manually
homogenized in ice-cold protein extraction buffer (50
mM Tris-HCl, 150 mM NaCl, 40 mM NaF, 5 mM
EDTA, 5 mM EGTA, 1 mM Na3VO4, 1% (v/v) non-
idet, 0.1% (w/v) natriumdesoxycholat and 1 mM
PMSF). Protein content was determined using DC Pro-
tein Assay Kit™ (BioRad, Hercules, CA, USA). Equal
amounts of samples, normalized to 40 �g total protein
concentration, were mixed with loading buffer under
reducing conditions and subjected to 8% SDS-polyac-
rylamid gels. SDS-PAGE was performed according to
manufacture’s instructions using a BioRad electro-
phoresis unit. Broad range molecular weight marker
(Sigma) was used to determine molecular weights. Af-
ter electrophoresis, separated proteins were transferred
onto a nitrocellulose membrane (Roth, Karlsruhe, Ger-
many) in a blotting device (BioRad). After blocking
non-specific binding sites with BSA (3% in TBS/
Tween for 45 min at room temperature) the membranes
were incubated with primary antibodies over night at 4
°C (anti-MMP-14 1:500, anti-MMP-2 1:500 and anti-
TIMP-2 1:2000). After washing the secondary antibod-
ies were incubated for 45 min at room temperature. The

bands were visualized using chemiluminescence (Su-
perSignal West Pico, Pierce, Rockford, IL, USA).

2.6. Zymographic analysis

Enzymatic activity of MMP-2 was determined by
gelatine zymography. Proteins were extracted in ice-
cold sample buffer (50 mM Tris-HCl, 150 mM NaCl,
10 mM CaCl2, 1% (v/v) nonidet) and protein concen-
tration was determined. Samples of different groups
(1–5) were normalized to 80 �g total protein concen-
tration per sample. Samples were mixed with loading
buffer containing 2% SDS and resolved on an 8%
SDS-polyacrylamide gel containing 0.1% gelatine
(Sigma, Germany) as substrate. After electrophoresis,
the gels were washed in renaturing buffer (Invitrogen,
Darmstadt, Germany) for 30 min, followed by immer-
sion in developing buffer (Invitrogen) for 30 min. De-
veloping buffer was changed and gels were incubated
over night at 37 °C. Gels were stained with 0.5%
Coomassie blue R-250 (10% acetic acid/50% metha-
nol), staining was removed with 10% acetic acid/40%
methanol to reveal discrete areas of gelatin degradation.
The proteolytic activity was indicated by clear bands on
a blue background.

2.7. Data analyses

All data are expressed as the mean � standard error
(SEM). After testing for normality and equal variance,
the relative mRNA expression of each gene from every
experimental group (three animals per group, three pla-
centomes per animal) was separately analyzed by a
one-way ANOVA followed by multiple pair-wise com-
parisons using the Tukey’s HSD (Honestly Significant
Difference) test. All experiments were repeated three
times and data were analyzed with SPSS software (Chi-
cago, IL, USA) and a P value of �0.05 was defined as
significant.

3. Results

3.1. mRNA expression profiles obtained with
quantitative real time PCR

Quantitative real time PCR of placentome homoge-
nates from animals with induced parturitions and term
parturition was performed to evaluate the relative
mRNA expression of MMP-14, TIMP-2 and MMP-2.
The expression levels of MMP-14 were not signifi-
cantly different between the analysed groups, while the
expression levels of TIMP-2 and MMP-2 were in-
creased in animals with induced parturition and elected

4 M. Dilly et al. / Theriogenology xx (2011) xxx

22



caesarean section with RFM (�RFM) compared to
animals at term parturition without placental retention
(-RFM, Fig. 1). For the TIMP-2 expression a significant
higher value (P � 0.05) could be demonstrated at term
parturition in comparison to PGF2� induced parturition
as well as induction of parturition by glucocorticoid
treatment. The expression of MMP-2 was significantly
higher in all induced parturitions and elected caesarean
section including RFM (�RFM), than in animals at
term without RFM (-RFM).

3.2. Localization of MMP-14, TIMP-2 and MMP-2 in
bovine placentomes during gestation

To gain insight in the localization and expression
patterns of MMP-14, TIMP-2 and MMP-2 in the course
of gestation, we performed immunohistochemistry of
sections from bovine placentomes (Fig. 2).

In early gestation (days 60–150), MMP-14 was pri-
marily expressed in fetal mesenchyme, with highest in-
tensities in the chorionic plate and stem villi (Fig. 2A).
Both uninucleated trophoblast cells and TGC were devoid
of any MMP-14 immunoreactivity. In the caruncular ep-
ithelium and stroma of maternal crypts only weak staining
occurred. Staining for MMP-14 in the caruncular epithe-
lium decreased and vanished with ongoing pregnancy. In
late gestation (days 180–278), immunoreactivity for
MMP-14 increased and was detected in the fetal mesen-
chyme of secondary and tertiary villi (Fig. 2B). Uninucle-
ated trophoblast cells moderately expressed MMP-14 near
term while TGC demonstrated no staining. Fetal and ma-
ternal blood vessels showed a weak staining or no specific
staining for MMP-14 throughout gestation. TIMP-2 is
exclusively expressed in TGC during the whole gesta-
tional period (Fig. 2C, D). In early pregnancy, MMP-2 is
restricted to the mesenchyme of the chorionic plate and
primary and secondary villi (Fig. 2E). The caruncular
epithelium is negative for MMP-2, while the maternal
stroma showed a weak staining. At the beginning of ges-
tation the immunoreactivity for MMP-2 is weakly positive
in the uninucleated trophoblast, but became strongly pos-
itive from the 4th until the 9th month of gestation (Fig. 2F).
TGC showed no positive staining for MMP-2 throughout
pregnancy. Several endothelia of blood vessels are posi-
tive for MMP-2 in the fetal and maternal stroma, smooth
muscle cells of blood vessel walls showed a weak or no
staining (data not shown).

3.3. Localization of MMP-14, TIMP-2 and MMP-2 in
bovine placentomes in induced parturition and term
parturition

All cows with induced parturition by injection of
aglepristone, PGF2� analoque or glucocorticoid and
premature caesarean section (n � 12) retained the fetal
membranes (�RFM) for more than 24 h. Immunolo-
calization of the analysed proteins in these groups with
induced parturition showed consistent patterns among
all animals. The results were compared to the expres-
sion patterns of cows with spontaneous birth of a vital
calf and following release of fetal membranes (-RFM)
within 12 h (n � 4).

MMP-14 protein was localized in the fetal mesen-
chyme, while the maternal stroma showed a moderate

Fig. 1. Relative gene expression of MMP-14, TIMP-2 and MMP-2
from placentomal homogenates were determined to mRNA expres-
sion of ribosomal protein S9 (RPS-9) as reference gene. Data are
expressed as means � SEM; asterisks represent P � 0.05 by Tukey=s
HSD test.

C. sec., premature caesarean section (n � 3); PGF2� (n � 3);
Corticoid, glucocorticoid (n � 3); Aglepristone (n � 3); Term part.,
term parturition (n � 4); RFM, retained fetal membranes.
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staining in animals with RFM (Fig. 3A). In cows with
release of fetal membranes, MMP-14 was expressed in
cells of the uninucleated trophoblast, the fetal mesen-
chyme and maternal stroma (Fig. 3B). Fetal and maternal
blood vessels showed a weak staining or no specific stain-
ing for MMP-14. Only trophoblast giant cells demon-
strated a positive staining for TIMP-2 which was not
affected by RFM (Fig. 3C, D). The fetal mesenchyme and
the uninucleated trophoblast expressed MMP-2 in animals
with induced parturition (Fig. 3E). In contrast, in cows
with placental release, the staining intensities for MMP-2
were higher in the uninucleated trophoblast, but absent in

the fetal mesenchyme (Fig. 3F). Maternal stroma cells
showed a consistent weak staining in animals of all
groups. Furthermore, trophoblast giant cells were negative
for MMP-14 and MMP-2 immunoreactivities.

3.4. Western blot and gelatin zymography

Western blot analyses verified the specificity of the
antibodies against MMP-14 (latent proform 64 kDa/
active form 54 kDa), MMP-2 (latent proform 72 kDa/
active form 62 kDa), and TIMP-2 (24 kDa) for bovine
placental tissue (Fig. 4A). The abundance of the pre-

Fig. 2. Immunostaining for MMP-14, TIMP-2 and MMP-2 in bovine placentomes throughout pregnancy (A–F). Staining for MMP-14 is localized
in the chorionic plate (CP) and the fetal mesenchyme of basal and apical primary villi (arrows) in early gestation (day 120, A). With ongoing
pregnancy (day 270, B), immunoreactivity increased in the fetal villi (arrows) and uninucleated trophoblast cells moderately expressed MMP-14.
Maternal stroma (MS) showed a weak staining throughout pregnancy. TIMP-2 is exclusively expressed by TGC (arrows) in early gestation (day
110, C) and late gestation (day 270, D). MMP-2 is restricted to the chorionic plate (CP) and the fetal villi (arrows) in early gestation (day 100,
E) while in late gestation (day 275, F) uninucleated trophoblast moderately and the maternal stroma (MS) weakly expressed MMP-2.

Inserts show negative controls with rabbit and mouse IgG, respectively. Chorionic plate (CP), maternal stroma (MS), uninucleated trophoblast cells
(UTC), caruncular epithelium (CE). Scale bars � 200 �m (A, B, E, F); scale bars � 50 �m (C, D).
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dominant latent proform of MMP-2 at 72 kDa corre-
lates with enzyme activity observed by zymography.
Zymograms revealed only small amounts of activated
enzymes and predominantly the latent form of MMP-2
in supernatants of homogenates from bovine placen-
tomes from animals after induced and spontaneous par-
turitions (Fig. 4B). No differences were observed
within and between the analysed groups.

4. Discussion

In this study, the expression of MMP-14, TIMP-2
and MMP-2 as well as the protein activity of MMP-2

was analysed on mRNA and protein level for the first
time during gestation and in conjunction with placental
retention after induction of birth or premature section in
cattle. We were able to demonstrate that the gene ex-
pression of TIMP-2 and MMP-2 was significantly
higher in animals with RFM after induction of birth or
premature section in comparison to animals releasing
the fetal membranes. MMP-14, TIMP-2 and MMP-2
proteins were located in neighbouring cell populations
of the fetal compartment showing spatiotemporal alter-
ations in the course of pregnancy. Additionally, local-
ization of MMP-14 and MMP-2 differed between ani-
mals with/without retained fetal membranes. The

Fig. 3. Immunostaining for MMP-14, TIMP-2 and MMP-2 in bovine placentomes at induced and term parturition (A–F). Representative sections
for induced parturition are shown for the aglepristone group, as all induced parturitions retained the fetal membranes (�RFM) and showed
comparable results. MMP-14 was detected in the fetal mesenchyme (FM) of induced parturition (A) and in the uninucleated trophoblast (UTC)
of term parturition (B). Maternal stroma (MS) reacts positive in both. TIMP-2 is restricted to TGC (arrows, C, D). MMP-2 is localized in the fetal
mesenchyme (FM) of induced parturition and the uninucleated trophoblast (UTC) of both induced and term parturition (E, F).

Inserts show negative controls with rabbit and mouse IgG, respectively. Fetal mesenchyme (FM), maternal stroma (MS), uninucleated trophoblast
cells (UTC), caruncular epithelium (CE), retained fetal membranes (RFM). Scale bars � 50 �m.
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apparent alterations we have shown at the transcrip-
tional level together with a specific localization of
MMP-14, TIMP-2 and MMP-2 imply that the function
of the MMP/TIMP system is altered in RFM following
induction of birth or premature caesarean section and
thus may be involved in the process of placental reten-
tion.

In the present study, all cows with induced parturi-
tion or elected caesarean section retained their fetal
membranes for more than 24 h. Even though, it is know
that treatment with glucocorticoids or PGF2� analogue
is associated with a high incidence of RFM [43–45] it
is commonly applied in veterinary practice to induce
parturition in cattle. One reason for placental retention
could be an insufficient placental maturation, which is
a prerequisite for a timely release of fetal membranes
and can be influenced by several substances [9,20,46].
The induction of parturition using PGF2�, glucocorti-
coids or preterm caesarean section and the known com-
plications concerning the physiological release of fetal
membranes [16,47], provides a useful model to inves-
tigate the underlying mechanisms of placental reten-
tion.

Physiologically, the mRNA expression levels of
MMP-2 and TIMP-2 decrease at the end of gestation in

the placenta of the closely related goat [32]. For bovine
placentomes it has been suggested that the reduction of
MMP-2 and TIMP-2 mRNA expression in conjunction
with an impaired placental steroid synthesis might be
related to RFM [48]. In our study, the mRNA expres-
sion of TIMP-2 and MMP-2 was significantly higher in
bovine placentomes after certain regimes of induced
parturition (�RFM) in comparison to spontaneous par-
turition (Fig. 1). This implies that the degree of matu-
rity possibly correlates with hormonal changes and
MMP/TIMP gene expression in bovine placentomes.

In our study, the mRNA expression profiles of
MMP-2 are not directly correlated with the respective
enzyme activity. The inactive proform of MMP-2 was
predominant in all groups comparing cows with reten-
tion of fetal membranes and cows with proper release
of fetal membranes. However, the active form of
MMP-2 could play a role in the tissue remodelling of
bovine placentomes. Similar to our findings, the major-
ity of MMP-2 protein in ovine placental homogenates
corresponded to the latent proform at term [31]. In
contrast, zymographic analysis of the goat placenta
demonstrated that MMP-2 is predominantly present in
the active form at the end of gestation [32]. It has also
been reported that the latent proform of MMP-2 is
predominantly expressed in the maternal part while the
active form of MMP-2 is found in the fetal part of the
bovine placenta [30]. The discrepancy in the detected
amounts of inactive or active MMP-2 is probably due to
different species and/or homogenate preparations used
in the studies. The tissue preparation itself could cause
the release of both forms of MMP-2 as well as their
specific inhibitors. In connection with the apparent dis-
crepancy in the activity between the latent proform and
the active form of MMP-2, it has been suggested that
proMMP-2 is secreted and probably accumulated in the
ECM [32,49].

Several components of the ECM are expressed in the
bovine placenta throughout gestation [50,51]. Beside
fibronectin, collagen type III is the predominant extra-
cellular matrix protein in the fetal compartment of bo-
vine placentomes, whereas collagen types I and IV are
expressed in the maternal as well as in the fetal com-
partment [50,52]. It is reported that MMP-2 is able to
degrade collagen types IV, V, VII, X, gelatine, elastin
and fibronectin. MMP-14, besides cleaving its substrate
proMMP-2, is capable of digesting collagen types I, II,
III, IV, laminin and fibronectin (for review see [53,54]).
In view of its distribution in the fetal stroma, the
uninucleated trophoblast and maternal stroma, the
MMP-14 protein may function as an activator for

Fig. 4. Western blot and Zymography. (A) Western blot analyses of
bovine placental homogenates detecting MMP-14 (64/54 kDa),
MMP-2 (72/62 kDa) and TIMP-2 (23 kDa). (B) Gelatin zymography
was performed from supernatants of bovine placental homogenates.
In all groups the proform of MMP-2 was the predominant form. For
representative illustration, samples derived aglepristone group for
induced parturition with RFM (�RFM) and from animals after term
parturition and release of fetal membranes (-RFM).
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proMMP-2 as well as a proteolytic active enzyme itself.
With ongoing pregnancy the immunoreactivity of
MMP-14 and MMP-2 increased in the mesenchyme of
the chorionic plate and fetal villi suggesting a function
during fetal expansion, growth and tissue remodelling.
The fact that uninucleated trophoblast cells (UTC)
moderately expressed MMP-14 and MMP-2 at the end
of gestation suggests that the fetal compartment func-
tions as the regulatory side for the separation of fetal
membranes. In addition, we demonstrated the localiza-
tion of MMP-14 and MMP-2 in the uninucleated tro-
phoblast of placentomes, which expel the fetal mem-
branes. On the contrary, uninucleated trophoblast of
placentomes retaining the fetal membranes showed no
or only weak staining for MMP-14 and MMP-2 indi-
cating a minor degree of maturation. It is believed that
the co-localization of MMP-14, TIMP-2 and MMP-2
leads to the activation of MMP-2 in the placenta of
several species [32,52,55–57]. Our finding that bovine
TGC constantly expressed TIMP-2 protein is in accor-
dance with previous studies [35]. Hence, TIMP-2 is a
prospective candidate for the regulation of MMP-2 ac-
tivity in the fetal compartment. For example previous
studies demonstrated MMP-2 activity only in the fetal
part of bovine placentomes [30]. On the contrary, our
results revealed the latent form of MMP-2 is predom-
inant in placentomal homogenates. Similar to these
findings other studies have demonstrated that the latent
form of MMP-2 is the prevailing form in the maternal
and fetal part of the bovine placenta from day 150 to
day 250 [34]. However, the balance between inhibitors
and MMPs is dynamic and the ECM degrading capacity
of cells have been shown to be dependent on the ratio
of TIMP to MMP [58]. Furthermore, TIMP-2 can exert
inhibitory and activating effects which are regulated in
a dose dependent manner [59]. It has also been hypoth-
esized that loss of TGC, which expressed TIMP-2
throughout gestation, is necessary for a regular release
of fetal membranes [7,35]. This hypothesis is sustained
by the finding that TGC possess glucocorticoid recep-
tors as well as steroidogenic enzymes [60,61]. Further-
more, the maternal compartment should not be under-
estimated, since almost all cell types express a variety
of hormone receptors and could therefore react on pre-
term hormonal and cellular changes [46,60,62–64].

It can be assumed that both, the activities of proteo-
lytic enzymes and changes at the intercellular interface
play a role in the complete release of fetal membranes
in cattle. During mouse placentation and human partu-
rition a change in the integrin expression is observed,
which influences differentiation, invasion and interac-

tion of trophoblast cells at the cell-ECM level [65,66].
Additionally, it is reported that integrin subunits are
involved in the migration of TGC and the anchoring of
epithelial cells to the basement membrane by integrins
�2�1 (collagen) and �6�1 (laminin) in bovine placen-
tomes [50]. Thus, possible alterations in the integrin
expression at the feto-maternal interface can influence
the detachment/separation of fetal membranes in the
cow.

5. Conclusions

In view of the expression patterns of MMP-14,
TIMP-2 and MMP-2 throughout gestation, we can con-
clude that the fetal compartment can act as the regula-
tory/effective side for a timely release of fetal mem-
branes. Moreover, the co-localization of MMP-14,
TIMP-2 and MMP-2 proteins in the fetal compartment,
the fetal mesenchyme and the trophoblast in relation to
correlating degrees of maturation probably reflects the
functional involvement of these factors during the re-
lease/retention of fetal membranes. Further studies
have to clarify the role of other MMP related mole-
cules, stimulators, precursors, and inhibitors.
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GENERAL DISCUSSION AND CONCLUSIONS 

5 GENERAL DISCUSSION AND CONCLUSIONS 
Based on the results presented and published data we developed our current 

working concept that growth factors and MMPs produced by TGC and/or 

uninucleated trophoblast cells participate in the control of restricted trophoblast 

migration/invasion and the release of fetal membranes in the bovine placenta. A 

delicate balance of protease activity and inhibition is necessary for the detachment of 

cells from the basal membrane and surrounding cells prior to migration/invasion, as 

well as the detachment of the fetal cotyledon from the maternal caruncle to ensure a 

healthy puerperium. 

Several growth factors and MMPs have been studied in connection with cell 

migration and differentiation in vitro. We could demonstrate that EGF is involved in 

the upregulation of the MMP/TIMP system in bovine trophoblast cells and enhances 

MMP activity. Furthermore, we have shown that MAPK 42/44 and Akt activation are 

required for proliferation, migration and motility in cultured bovine trophoblast cells 

(F3 cells) in response to EGF, suggesting that EGF plays a pivotal role in the 

differentiation and migration of F3 cells.  

EGF is a potent inductor of MMP expression and activation, it upregulates invasion 

and motility in different cell types by distinct signalling pathways (Kondapaka et al. 

1997; Rothhut et al. 2007). We have shown that a significant increase in the 

abundance of MMP-9 mRNA in response to EGF correlates with an enhanced motility 

and proliferation of F3 cells. Furthermore, both EGF-mediated migration and MMP-9 

activity require the MAPK and PI3K pathway. Hence, the upregulation in MMP-9 

expression and activity could be involved in the process of migration in bovine 

trophoblast cells. While the activation of MMPs by single cytokines as tumor necrosis 

factor (TNF) alpha in bovine luteal cells, as well as transforming growth factor (TGF) 

alpha and TGF beta in human and bovine endometrial cells, was reported by several 

authors (Braundmeier et al. 2006; Hashizume et al. 2003; Zhang et al. 2005), others 

have demonstrated that a synergistic effect of growth factors is needed to increase 

MMP gene expression (Tian et al. 2007). We have shown that EGF alone 

significantly upregulates mRNA levels of MMP-9 and TIMP-1 in bovine trophoblast 

cells. Nevertheless, it has to be considered that, besides EGF, other growth factors 

could participate in the control of bovine trophoblast migration and differentiation. 
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GENERAL DISCUSSION AND CONCLUSIONS 

Such an involvement has been shown for TNF-�, vascular endothelial growth factor 

(VEGF) and fibroblast growth factors (FGF), which can activate MMP-9 in human 

trophoblast cells (Anteby et al. 2004; Cohen et al. 2006). As members of the FGF and 

VEGF systems are localized in the bovine trophoblast, these factors are also likely to 

play a role in trophoblast differentiation and migration (Pfarrer 2006). Treatment with 

EGF consistently led to an increase of the active form of MMP-9 in F3 cells while the 

inhibition of MAPK or Akt activation blocked this effect. These results confirm that the 

MAPK and the PI3K/Akt signalling pathways are involved in the secretion and 

activation of MMP-9 in bovine trophoblast cells. Furthermore, MAPK and PI3K 

inhibitors abolished the EGF-induced activation of these signalling pathways as well 

as the induction of motility and proliferation. In a previous study it has been 

demonstrated that stimulation with EGF leads to the activation of the small GTPase 

Ras (Hambruch et al. 2010). The involvement of this classical mitogenic 

Raf/MEK/ERK cascade in the regulation of MMP-9 expression is well documented 

(Rothhut et al. 2007; Tian et al. 2007). Moreover, EGF has been shown to have a 

proliferative effect on cultured mouse and human trophoblast cells (Iguchi et al. 1993; 

Li and Zhuang 1997) and can inhibit apoptosis and mediate differentiation in human 

cytotrophoblasts (Morrish et al. 1997; Smith et al. 2002). Our experiments examining 

the growth response of F3 cells to EGF indicate that the activation of both, MAPK 

and PI3K/Akt pathways is essential for trophoblast proliferation and motility.  

In addition to the various biological effects of the EGF system, we confirmed the 

presence of EGF-R in F3 cells. Therefore, we suggest that EGF produced by TGC 

and/or uninucleated trophoblast cells stimulates MMP-9 and TIMP-1 secretion and 

activation (via MAPK and PI3K/Akt) in auto- or paracrine fashion. Thus, proteolytic 

activity and degradation of ECM might be involved in the control of restricted 

trophoblast migration/invasion in the bovine placenta and the process of tissue 

remodelling throughout pregnancy as well in the release of fetal membranes.  

In several species it is believed that co-localized MMP-14, TIMP-2 and MMP-2 lead 

to the activation of MMP-2 during placentation (Bai et al. 2005a; Bai et al. 2005b; 

Bjorn et al. 1997; Uekita et al. 2004; Wang et al. 2001). We demonstrated that cows 

with the release of fetal membranes differed in the MMP-14 and MMP-2 expression 

compared to cows with induced parturition or elected caesarean section, which all 

subsequently retained their fetal membranes for more than 24 hours. Even though, it 
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is know that treatment with glucocorticoids or PGF2� analogue is associated with a 

high incidence of RFM (Claydon 1984; Johnson and Jackson 1982; Rasmussen et al. 

1996), this treatment is commonly applied in veterinary practice to induce parturition 

in cattle. In our in vivo study, we assumed that different degrees of placental 

maturation were represented by different experimental groups and treatments, 

respectively. Therefore, animals with caesarean section represented the premature 

placenta, whereas animals with spontaneous parturition and release of fetal 

membranes were considered to have mature placentae. The placentae derived from 

induced parturition with glucocorticoids, PGF2�, and aglepristone represented an 

incomplete placental maturation.  

The mRNA expression and protein localization of MMP-14, TIMP-2 and MMP-2 as 

well as the enzymatic activity of MMP-2 was analysed during gestation and in 

conjunction with placental retention in cattle. We were able to demonstrate that the 

gene expression of TIMP-2 and MMP-2 was significantly increased in animals with 

RFM in comparison to animals releasing the fetal membranes. This implies that the 

degree of maturity correlates with MMP/TIMP gene expression in bovine 

placentomes. Additionally, MMP-14, TIMP-2 and MMP-2 proteins were located in 

neighbouring cell populations of the fetal compartment showing spatiotemporal 

alterations in the course of pregnancy. Furthermore, MMP-14 and MMP-2 protein 

expression differed between animals with/without retained fetal membranes, while 

TIMP-2 consistently stained TGC. In animals with RFM, MMP-14 was localized 

exclusively in the fetal mesenchyme, whereas MMP-2 was expressed in the fetal 

mesenchyme and uninucleated trophoblast cells. However, in cows with release of 

fetal membranes, MMP-14 and MMP-2 were co-localized in uninucleated trophoblast 

cells. The apparent alterations we have shown at the transcriptional level together 

with a specific localization of MMP-14, TIMP-2 and MMP-2 imply that the function of 

the MMP/TIMP system is altered in RFM and thus may be involved in the process of 

placental retention. Moreover, the process of placental maturation could be 

insufficient in animals with induced parturition (Boos et al. 2003; Grunert et al. 1989; 

Shenavai et al. 2010). In addition, it has also been hypothesized that the loss of 

TGC, which expressed TIMP-2 throughout gestation, is necessary for a regular 

release of fetal membranes (Walter and Boos 2001; Williams et al. 1987). 

Thus, we conclude that both, the activities of proteolytic enzymes and changes at the 

intercellular interface play a role in the complete release of fetal membranes in cattle. 
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In view of the expression patterns of MMP-14, TIMP-2 and MMP-2 throughout 

gestation, we can conclude that the fetal compartment can act as the 

regulatory/effective side for a timely release of fetal membranes. Moreover, the co-

localization of MMP-14, TIMP-2 and MMP-2 proteins in the fetal compartment, the 

fetal mesenchyme and the trophoblast in relation to correlating degrees of maturation 

reflects the functional involvement of these factors during the release/retention of 

fetal membranes.  
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6 SUMMARY 
 

Marc Dilly 

Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors 

(TIMPs) in bovine placental cells in vivo and in vitro 

 

The cumulative thesis presented characterizes the expression and functional 

significance of matrix metalloproteinases (MMPs) and their tissue inhibitors of 

metalloproteinases (TIMPs) in bovine placental cells in vitro and in vivo with special 

reference to trophoblast giant cell (TGC) invasion/migration and placental retention.  

 

The bovine synepitheliochorial placenta is characterized by restricted trophoblast 

invasion/migration, a unique feature of which the regulatory mechanisms are not 

completely understood. The activity of MMPs in the extracellular space is specifically 

inhibited by counteracting TIMPs to serve and control cell migration and tissue 

remodelling. MMP-9 is present in the bovine placenta throughout gestation; its 

proteolysis is believed to be predominantly regulated by the action of endogenous 

TIMP-1. Epidermal growth factor (EGF), as regulator of fundamental cell properties, 

is expressed in the bovine placenta and capable to up-regulate MMP-9 activity in a 

variety of cells types. Aim of this in vitro study was therefore to examine the influence 

of EGF on cell motility, proliferation, as well as MMP-9 and TIMP-1 expression in 

cultured bovine trophoblast cells. 

The effect of EGF on MMP-9 and TIMP-1 expression was examined in a trophoblast 

cell line (F3) by semiquantitative RT-PCR. The proteolytic activity of MMP-9 was 

determined by zymography. Migration assays were performed using a Boyden 

chamber and cell motility was measured by time-lapse analyses. To identify the 

involved signalling cascades, phosphorylation of mitogen-activated protein kinase 

(MAPK) 42/44 and Akt was detected by Western blot. EGF treatment increased both 

the abundance of MMP-9 and TIMP-1 mRNAs and the proteolytic activity of MMP-9. 

Furthermore, EGF stimulated proliferation and migration of F3 cells. Addition of 

specific inhibitors of MAPK (PD98059) and/or phosphatidylinositol 3-kinases 

(LY294002) activation abolished or reduced EGF-induced effects in all experiments. 
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The results of the in vitro study suggest that EGF could also be responsible for 

stimulating migration and proliferation of bovine trophoblast cells in vivo, and thus 

may be involved in bovine placental tissue remodelling and postpartum release of 

fetal membranes by the upregulation MMP-9 and TIMP-1. 

 

The retention of fetal membranes is one of the most common reproductive diseases 

in cattle causing considerable economic loss (e.g. reduced milk yield, poorer fertility). 

To allow a physiological release of fetal membranes and avoid placental retention, 

the tight feto-maternal connection established by fetal cotyledonary villi interdigitating 

with maternal caruncles must be separated. 

Membrane-type MMPs have been suggested as potential activators controlling 

extracellular matrix (ECM) degradation and remodelling. In particular, MMP-14 is able 

to degrade ECM substrates and activate MMP-2 through binding TIMP-2 at the cell 

surface. We hypothesize that impaired modulation of the ECM by MMPs/TIMPs 

participates in the aetiology of bovine retained fetal membranes.  

This involvement was analysed in vivo comparing placentomes from cows at term 

parturition and timely release of fetal membranes and cows with retained fetal 

membranes after various treatments for the induction of parturition, and after elective 

caesarean sections. The expression of MMP-14, MMP-2 and TIMP-2 was examined 

by real-time-PCR, immunohistochemistry, Western blot and zymography.  

The relative mRNA expression levels of MMP-14 was similar in all groups, while the 

expression levels of MMP-2 and TIMP-2 were higher in most animals with induced 

parturition and retention of fetal membranes compared to animals without placental 

retention. In cows with placental retention, MMP-14 protein was expressed in cells of 

the fetal mesenchyme and maternal stroma, whereas in cows with release of fetal 

membranes MMP-14 was localized in uninucleated trophoblast cells. MMP-2 could 

be detected in uninucleated trophoblast cells and the fetal mesenchyme, while TIMP-

2 was present exclusively in trophoblast giant cells. The enzyme activity was 

confirmed by zymography. 

The co-localization of MMP-14, MMP-2 and TIMP-2 in the fetal compartment, 

especially in trophoblast cells at term, allows the modulation of ECM composition at 

the feto-maternal interface and therefore could influence the timely release of fetal 

membranes in cattle. 
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 In conclusion, the specific expression of MMPs and TIMPs in bovine 

trophoblast cells in vitro and in vivo suggests an involvement of the MMP/TIMP 

system in TGC migration/invasion and in the aetiology of placental retention. The 

capability of growth factors, in particular EGF, to induce proteolysis by MMPs and 

changes in the MMP/TIMP system itself can lead to alterations of the ECM 

composition and therefore support the release of fetal membranes.  
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7 ZUSAMMENFASSUNG (GERMAN) 
 

Marc Dilly 

Expression von Matrix-Metalloproteinasen und ihren Inhibitoren in bovinen 

plazentaren Zellen in vivo und in vitro 

 

Die vorgelegte kumulative Arbeit charakterisiert die Expression und 

funktionelle Bedeutung von Matrix-Metalloproteinasen (MMPs) und ihren Inhibitoren 

(TIMPs) in bovinen Plazentazellen unter Berücksichtigung der Invasion/Migration von 

Trophoblastriesenzellen (TGC) und der Nachgeburtsverhaltung des Rindes. 

 

Die bovine synepitheliochoriale Plazenta ist durch eine eingeschränkte 

Trophoblasteninvasion/-migration gekennzeichnet, eine Besonderheit deren 

regulative Mechanismen nicht vollständig geklärt sind. Die Aktivität von MMPs im 

extrazellulären Raum wird durch entgegenwirkende TIMPs spezifisch inhibiert, um 

Zellmigration und Gewebeumbau zu unterstützen und kontrollieren. MMP-9 ist 

während der gesamten Trächtigkeit in der bovinen Plazenta vorhanden; seine 

Proteolyse wird vorwiegend durch die Aktivität von endogenem TIMP-1 reguliert. Der 

epidermale Wachstumsfaktor (EGF), als Regulator grundlegender Zelleigenschaften, 

wird in der bovinen Plazenta exprimiert und kann die Aktivität von MMP-9 in einer 

Vielzahl von Zellarten hoch regulieren. Ziel dieser in vitro Studie war es daher, den 

Einfluss von EGF auf die Zellmotilität, Zellproliferation sowie die Expression von 

MMP-9 und TIMP-1 in kultivierten bovinen Trophoblastzellen zu untersuchen. 

Der Effekt von EGF auf die Expression von MMP-9 und TIMP-1 wurde mittels 

semiquantitativer RT-PCR in einer Trophoblastzelllinie (F3) untersucht. Die 

proteolytische Aktivität von MMP-9 wurde mittels Zymographie bestimmt. 

Migrationsuntersuchungen wurden in der Boyden Chamber durchgeführt und die 

Zellmotilität wurde mit Hilfe von „time-lapse“ Messungen bestimmt. Zur Identifizierung 

der beteiligten Signalkaskaden, wurde die Phosphorylierung der mitogen-activated 

protein kinase (MAPK) 42/44 und Akt mittels Western Blot detektiert. EGF führte zu 

einem Anstieg der mRNA Expression von MMP-9 und TIMP-1 sowie zum Anstieg der 

proteolytischen Aktivität von MMP-9. Weiterhin stimulierte EGF die Proliferation und 

Migration von F3 Zellen. Die Zugabe von spezifischen Inhibitoren für die Signalwege 

37



ZUSAMMENFASSUNG (GERMAN) 

MAPK (PD98059) und/oder Phosphoinositid-3-Kinase (LY294002) führte zu einer 

Reduzierung oder Aufhebung aller durch EGF induzierter Effekte und Aktivierungen 

in allen Experimenten.  

Die Ergebnisse der in vitro Studie lassen vermuten, dass EGF auch für die 

Stimulation der Migration und Proliferation von bovinen Trophoblastenzellen in vivo 

verantwortlich ist, und somit über die Hochregulation von MMP-9 und TIMP-1 am 

plazentaren Gewebeumbau und dem Ablösen der Nachgeburt postpartum beteiligt 

sein könnte. 

 

Die Nachgeburtsverhaltung (Retentio secundinarum) ist eine der häufigsten 

Reproduktionskrankheiten des Rindes, welche bedeutende ökonomische Verluste 

verursacht (z.B. reduzierte Milchleistung, geringere Fertilität). Um eine 

physiologische Ablösung der Nachgeburt zu ermöglichen und eine 

Nachgeburtsverhaltung zu verhindern, muss die enge feto-maternale Verbindung, 

welche durch die Interdigitation von fetalen kotyledonären Zotten mit maternalen 

Karunkeln gebildet wird, von einander getrennt werden. Membrane-type MMPs 

wurden als potentielle Aktivatoren für den Abbau und Umbau der extrazelluläre 

Matrix (ECM) vorgeschlagen. Insbesondere MMP-14 ist fähig ECM-Substrate 

abzubauen und MMP-2 mittels Bindung von TIMP-2 an der Zelloberfläche zu 

aktivieren. Wir nehmen an, dass eine gestörte Modulation der ECM durch 

MMPs/TIMPs an der Ätiologie der Nachgeburtsverhaltung beim Rind beteiligt ist.  

Diese Beteiligung wurde in vivo an Plazentomen von Rindern nach fristgerechter 

Geburt und zeitgerechten Abgang der Nachgeburt, sowie Plazentomen von Rindern 

nach verschiedenen Geburtseinleitungen und nach Kaiserschnitt mit 

Nachgeburtsverhaltung analysiert. Die Expression von MMP-14, MMP-2 und TIMP-2 

wurde mittels quantitativer real-time PCR, Immunhistochemie, Western Blot und 

Zymographie untersucht.  

Die relative MMP-14 mRNA Expression war in allen Gruppen ähnlich, während die 

Expression von MMP-2 und TIMP-2 in den meisten Tieren mit Geburtseinleitung und 

Nachgeburtsverhaltung erhöht waren. Bei Rindern mit Nachgeburtsverhaltung wurde 

MMP-14 Protein in Zellen des fetalen Mesenchyms und maternalen Stromas 

exprimiert, wohingegen MMP-14 in Rindern bei denen die Nachgeburt fristgerecht 

abgegangen war, im uninukleären Trophoblasten detektiert wurde. MMP-2 konnte in 

uninukleären Trophoblastzellen und im fetalen Mesenchym nachgewiesen werden, 
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während TIMP-2 ausschließlich in Trophoblastriesenzellen lokalisiert war. Die 

Enzymaktivität wurde mittels Zymographie bestätigt. 

Die Kolokalisation von MMP-14, MMP-2 und TIMP-2 im fetalen Kompartiment, 

insbesondere den Trophoblastzellen zum Zeitpunkt der Geburt, erlaubt eine 

Modulierung der ECM Komposition an der feto-maternalen Kontaktfläche und könnte 

so den fristgerechten Abgang der Nachgeburt beim Rind beeinflussen.  

 

 Schlussfolgerung: Die spezifische Expression von MMPs und TIMPs in 

bovinen Trophoblastzellen in vitro und in vivo weist auf eine Beteiligung des 

MMP/TIMP Systems bei der TGC Migration/-Invasion sowie der Ätiologie der 

Nachgeburtsverhaltung des Rindes hin. Die Fähigkeit von Wachstumsfaktoren, 

insbesondere EGF, Proteolysen durch MMPs und Veränderungen im MMP/TIMP 

System selbst zu induzieren, kann zu Veränderungen der ECM Komposition führen 

und somit eine Ablösung der Nachgeburt unterstützen.  
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