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ABSTRACT

In this thesis, we consider mathematical optimization under data uncertainty using mixed
integer linear programming (MILP) techniques. Our investigations follow the determinis-
tic paradigm known as robust optimization. It allows to tackle an uncertain variant of
a problem without increasing its complexity in theory or decreasing its computational
tractability in practice.

We consider four robustness concepts for robust optimization and describe their parametri-
zation, application, and evaluation. The concepts are Γ-robustness, its generalization
multi-band robustness, the more general submodular robustness, and the two-stage
approach called recoverable robustness.

For each concept, we investigate the corresponding robust generalization of the knapsack
problem (KP), a fundamental combinatorial problem and subproblem of almost every
integer linear programming (ILP) problem, and many other optimization problems. We
present ILP formulations, detailed polyhedral investigations including new classes of
valid inequalities, and algorithms for each robust KP. In particular, our results for the
submodular and recoverable robust KP are novel. Additionally, the recoverable robust
KP is experimentally evaluated in detail.

Further, we consider the Γ-robust generalization of the capacitated network design
problem (NDP). For example, the NDP arises from many application areas such as
telecommunications, transportation, or logistics. For the Γ-robust NDP, we present
MILP formulations, detailed polyhedral insights with new classes of valid inequalities,
and algorithms. Moreover, we consider the multi-band robust NDP, its MILP formula-
tions, and generalized polyhedral results of the Γ-robust NDP.

Furthermore, we present computational results for the Γ-robust NDP using real-life mea-
sured uncertain data from telecommunication networks. These detailed representative
studies are based on our work with the German ROBUKOM project in cooperation with
Nokia Siemens Networks GmbH & Co. KG.

Finally, we give concluding remarks on the presented robustness concepts and discuss
future research directions.

Keywords: Γ-Robustness, Multi-Band Robustness, Submodular Robustness, Recover-
able Robustness, Robust Knapsack Problem, Robust Network Design Problem

Mathematics Subject Classification (2010): 90C27, 90C35, 90C57, 90C90, 90B18
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ZUSAMMENFASSUNG

Die vorliegende Dissertation untersucht mathematische Optimierung unter Unsicher-
heiten mittels Methoden der gemischt-ganzzahligen linearen Programmierung (MILP).
Dabei folgen wir dem deterministischen Paradigma der robusten Optimierung. Dieses
ermöglicht die Lösung unsicherer Problemvarianten ohne Erhöhung der theoretischen
Komplexität oder Verschlechterung der praktischen Lösbarkeit.

Wir untersuchen vier Robustheitskonzepte und beschreiben deren Parametrisierung, An-
wendung, und Evaluierung. Die untersuchten Konzepte sind Γ-Robustheit [Γ-robustness ],
deren neue Verallgemeinerung Multi-Band-Robustheit [multi-band robustness ], die neue
allgemeinere submodulare Robustheit [submodular robustness ], sowie der adaptive
zweistufige Ansatz der wiederherstellbaren Robustheit [recoverable robustness ].

Für jedes Konzept untersuchen wir die entsprechende robuste Verallgemeinerung
des Rucksackproblems [knapsack problem] (KP), eines der fundamentalen kombina-
torischen Probleme und Teilproblem fast jeden Problems der ganzzahligen linearen
Programmierung (ILP) und vieler anderer Optimierungsprobleme. Wir präsentieren
ILP-Formulierungen, detaillierte polyedrische Studien mit neuen Klassen gültiger
Ungleichungen und Algorithmen für jedes robuste KP. Dabei sind insbesondere unsere
Ergebnisse für das submodular- und wiederherstellbar-robuste KP neuartig. Zusätzlich
evaluieren wir das wiederherstellbar-robuste KP experimentell in einer detaillierten
Rechenstudie.

Außerdem betrachten wir die Γ-robuste Verallgemeinerung des kapazitierten Netzwerk-
planungsproblems [capacitated network design problem] (NDP). Das NDP ist z. B. in
Anwendungsproblemen aus den Bereichen Telekommunikation, Transport oder Logistik
zu finden. Für das Γ-robuste NDP präsentieren wir MILP-Formulierungen, detaillierte
polyedrische Ergebnisse, neue Klassen gültiger Ungleichungen und Algorithmen.
Zusätzlich untersuchen wir das Multi-Band-robuste NDP, dessen MILP-Formulierungen,
sowie dessen polyedrische Struktur als Verallgemeinerung des Γ-robusten NDP.

Im Weiteren beschreiben wir unsere detaillierten Rechenstudien zum Γ-robusten NDP
mit real gemessenen unsicheren Daten verschiedener Telekommunikationsnetze. Diese
repräsentativen Rechenergebnisse basieren auf unserer Arbeit im Projekt ROBUKOM in
Kooperation mit der Nokia Siemens Networks GmbH & Co. KG.

Wir schließen diese Dissertation mit einigen zusammenfassenden Bemerkungen und einer
Diskussion zukünftiger Forschungsrichtungen ab.
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INTRODUCTION

Our life is affected by countless complex interdependent processes forming the backbone
of economy including production, trading, logistics, distribution, and communication.
Oftentimes, thousands, millions or even more decisions must be taken into account to
plan and operate these processes.

Mathematical optimization strives for providing theory, models, and methods to
tackle these problems and obtain relevant solutions in practice. As a sub-discipline of
mathematics, mathematical optimization investigates the (hidden) problem structure to
identify and exploit reoccurring (sub)structures and develop tailor-made strategies.

An example of reoccurring structures are networks. A network describes the dependen-
cies between entities, e. g., logistics networks describe the places from which and where
to commodities are sent, energy networks characterize the supply of energy, or telecom-
munication networks specify the possible ways of information exchange. The problem to
plan a network, i. e., determine its layout and the rules how it can be used later on, is
called the capacitated network design problem (NDP) in mathematical optimization.

Another crucial aspect are scarce resources and the resulting challenging question of
prioritizing their usage. For example, the (scarce) loading capacity of a delivery truck
must be utilized in the best way in logistics, the limited monetary budget must be
managed in finance, or the available bandwidth of an optical fiber must be shared among
several optical data signals in telecommunication. Mathematically, this leads to the
so-called knapsack problem (KP).

The understanding of problems such as the NDP or the KP allows a more accurate
mathematical modeling of the underlying real-world problem. However, the mathemati-
cal model is always a simplification; oftentimes a rather rough one. In particular, the
temporal dynamics and uncertainties of real-life processes are hard to take into account,
e. g., travel times are not constant but subject to delays like traffic jams in practice, the
food production depends on future weather conditions, or telecommunication demands
fluctuate significantly by the daytime with peaks during certain hours of the day and
lows during the night.

Mathematical optimization offers several paradigms to incorporate uncertainty into the
mathematical framework. Robust optimization is one of these. Here, the data uncertainty
is modeled implicitly by a so-called uncertainty set. The robust optimization problem
asks to find an optimal solution that is feasible for any possible data realization in this un-
certainty set. In particular, robust linear optimization offers several advantages over other
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Introduction

approaches. The definition of an uncertainty set does not rely on the knowledge of proba-
bility distributions and is thus often better suited to applied problems where only a finite
discrete set of historical data is available, if any. In addition, robust solutions are feasible
for all realizations in the uncertainty set by definition. Further, the complexity of robust
linear programs does not increase compared to the original non-robust linear program
under mild conditions. Instead, there often exist compact reformulations, i. e., formu-
lations that are at most polynomially larger than the original non-robust formulations.
Thus, robust linear optimization problems are more computationally tractable than other
mathematical optimization problems applying different paradigms to handle uncertainties.

In this thesis, we consider robust integer linear optimization problems. In particular,
we consider four different robustness concepts and the associated uncertainty sets. For
each concept, we investigate the corresponding robust KP presenting integer linear
programming formulations, results on the polyhedral structure of the solution sets, and
algorithms to solve the occurring separation problems or the robust KP themselves.
Moreover, we study the corresponding robust NDP problem for two of the concepts,
also presenting several integer linear programming formulations, polyhedral insights, and
(separation) algorithms to solve the (separation) problems.

Our theoretical investigations are completed by two extensive computational studies:
one for the recoverable robust KP, the other for the Γ-robust NDP. The latter uses
real-life uncertain data from an application in telecommunication and is based on our
work with the German ROBUKOM project in cooperation with Nokia Siemens Networks
GmbH & Co. KG.

Contributions. Some results are partially based on joint work as common in the area
of applied mathematical optimization. Whenever this is the case, we state explicitly our
coauthors and possible prior published publications of our joint work in the beginning of
the corresponding chapters.

The main contributions of the thesis are the following.

• The introduction and study of the concept of submodular robustness.

• A detailed investigation of the recoverable robust KP. In particular with a Γ-robust
scenario set and the k-removal recovery rule.

• A detailed investigation of the submodular robust KP introducing the classes of
submodular robust (1, k)-configuration and weight inequalities.

• A study of the structure of covers and their extendability for each considered robust
KP.

• A detailed investigation of the Γ-robust NDP including new classes of valid and
facet-defining inequalities (e. g., Γ-robust cutset inequalities, Γ-robust envelope

2



inequalities, Γ-robust arc residual capacity inequalities, and Γ-robust metric in-
equalities) and algorithms solving the corresponding separation problems as well as
the Γ-robust NDP problem itself.

• A first-time investigation of the multi-band robust NDP including mixed integer
linear programming formulations, polyhedral studies yielding new classes of valid
inequalities (multi-band robust cutset inequalities and multi-band robust metric
inequalities), and algorithms to solve the corresponding separation problems. In
particular, we point out by examples how results of the Γ-robust NDP can be
generalized to the multi-band robust setting.

• Representative extensive computational studies for two recoverable robust knapsack
variants and one robust network design problem (the latter with application to
telecommunications).

Outline. This thesis is structured into three parts.

In Part I - Concepts, we introduce the relevant mathematical methodology, provide a
survey on related work, and introduce the objects of research for this thesis. Therefore,
we first recap mathematical requirements focusing on mathematical optimization and
introducing the classic knapsack and capacitated network design problems in Chapter 1.
A brief primer on relevant applications in telecommunications is given at the end of
the same chapter. In Chapter 2, we present a detailed survey on literature related to
mathematical optimization under data uncertainty and in particular robust optimization.
Next in Chapter 3, we introduce the four robustness concepts which are our main focus of
investigation in this thesis: Γ-robustness, multi-band robustness, submodular robustness,
and recoverable robustness. Moreover, we address the evaluation of robustness discussing
several alternative approaches.

In Part II - Robust Knapsack Problems, we consider the robust counterpart of the clas-
sic knapsack problem for each of the four robustness concepts. For each resulting robust
knapsack problem, we present mathematical formulations, study the corresponding poly-
hedral solution sets identifying strong classes of valid inequalities, and develop algorithms
solving the occurring separation problems as well as the robust knapsack problem itself.
Following this structure of investigation, we consider the Γ-robust knapsack problem in
Chapter 4, the more general multi-band robust knapsack problem in Chapter 5, and the
submodular robust knapsack problem in Chapter 6 which generalizes the multi-band
robust knapsack problem even further. In Chapter 7, we consider the recoverable robust
knapsack problem which is an integrated two-stage problem. Two special cases are
of particular interest for us whereof one generalizes the one-stage Γ-robust knapsack
problem. We conclude this part of the thesis in Chapter 8 reporting on the results of
extensive computational studies we carried out on recoverable robust knapsack problems.
Therefore, we focus on the rather general recoverable robust knapsack problem evaluating
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Introduction

the effect of the robustness parameters, the strength of the derived valid inequalities and
finally the overall performance in a cut-and-branch approach to solve this problem.

Part III - Robust Network Design Problems is structured similarly to Part II. Here,
we consider the robust counterpart of the classic (capacitated) network design problem
for selected robustness concepts. We primarily focus on the Γ-robust network design
problem and provide several mathematical formulations for this problem, investigate
the corresponding polyhedral structure, derive several classes of valid inequalities, and
algorithms. Our investigation is described in great detail in Chapter 9. Afterwards,
we consider the more general multi-band robust network design problem in Chapter 10
pointing out how results for the Γ-robust network design problem are generalized to
the multi-band robust setting. In Chapter 11, we describe the results of computational
studies on robust network design problems and in particular the Γ-robust design of
telecommunication networks. We experimentally compare its different formulations, the
derived classes of valid inequalities, separation algorithms, and algorithms to solve the
Γ-robust network design problem itself. For our experiments, we use historical real-life
traffic measurements to define the data uncertainty.

Finally, we give concluding remarks to the contributions of this thesis and discuss
potential future research directions.
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CONCEPTS
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CHAPTER ONE

MATHEMATICAL PRELIMINARIES

The first chapter of this thesis gives a brief survey of the mathematical prerequisites
and thereby introduces the reader to the used notation. Furthermore, we present two
important optimization problems: the knapsack problem and the capacitated network
design problem. In later parts of this thesis we will consider variants of both problems
where the input data is subject to some random uncertainty. In this chapter we introduce
both problems in their classic deterministic settings, reporting on related work, important
results, and polyhedral insights to their solution sets. The last section of this chapter is a
primer to the telecommunications application area. There, we give a short introduction to
the structure and operation of telecommunication networks and the related mathematical
optimization challenges.

1.1 Basics

In the following, we introduce our notation while reminding the reader of some basics of
(integer) linear optimization and polyhedral combinatorics. We assume that most results
are well-known and therefore give only a brief introduction without making the claim to
be complete. For further reading, we refer to some well-established monographs below.

An introduction to graphs, networks, flows, and related algorithms is given in the
excellent book by Ahuja et al. [10]. The standard book about complexity theory is
written by Garey and Johnson [72]. A well-written introduction to linear optimization
with various examples is given by Chvatal [53]. A more formal and more recent survey
on linear programming can be found in Dantzig [61].

Algorithmic combinatorial optimization is described by Grötschel et al. [76]. The books
by Schrijver [143], Nemhauser and Wolsey [126], and Wolsey [159] consider the theory
of integer programming, combinatorial optimization and the related polyhedral theory.
The three-volume encyclopedic book by Schrijver [144] gives an excellent survey on
state-of-the-art combinatorial optimization theory and techniques referencing thousands
of original work. A good survey of the algorithmic aspects of solving mixed integer linear
programs and experimental results are described in detail by Achterberg [6].
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Linear algebra. We denote by Z, Q, and R, the sets of integer, rational, and real numbers,
respectively. The set of positive natural numbers is denoted by N. Let K ∈ {Z,Q,R}.
Then, K>0, K≥0, K≤0, and K<0 denotes the positive, nonnegative, nonpositive, and
negative subset of K, respectively. For two arbitrary sets A and B, let A ∪B denote the
union, A∩B the intersection, and A�B := (A∪B) \ (A∩B) the symmetric difference
of A and B. The power set of A, i. e., the set of all subsets of A, is denoted by 2A. For a
function x : A → R, we define the notation x(A) :=

∑
a∈A x(a). A function f : A → R

is called submodular if f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) holds for all S, T ⊆ A. A
function f : A× A → R≥0 is called metric if the following three conditions hold for all
a, b, c ∈ A: (i) f(a, a) = 0, (ii) f(a, b) = f(b, a), and f(a, b) ≤ f(a, c) + f(c, b).

For x ∈ R\Z, the largest integer number smaller than x is denoted by 
x�. Analogously,
the smallest integer number larger than x is denoted by �x. For x ∈ Z, we define

x� = �x = x. Further, we define frac(x) := x − (�x − 1) as the fractional part of
x ∈ R. Note, frac(x) = 1 if x ∈ Z.
Let v ∈ Rn, M ∈ Rm×n be a vector and a matrix, respectively. If not stated differently,

all vectors are column vectors and v� denotes the transposed vector of v. Further, vi is
the i-th component or entry of v. Analogously, Mi· is the i-th row, M·j the j-th column,
and Mij the entry in row i and column j of M . Let ei denote the i-th unit vector, i. e.,
the vector whose i-th entry is 1 and all others are 0. Let x1, x2, . . . , xt ∈ Rn. A vector
x ∈ Rn is a linear (affine, conic, or convex) combination of x1, . . . , xt if there exists a
λ ∈ Rn so that x =

∑t
i=1 λixi (and

∑t
i=1 λi = 1, λ ≥ 0, or

∑t
i=1 λi = 1 and λ ≥ 0,

respectively). Considering one type of combination, if λ = 0 is the only solution, we
call x linearly, affinely, conic, or convex independent of x1, . . . , xt, respectively. Let
X ⊆ Rn. Then lin(X), aff(X), cone(X), or conv(X), denotes the linear, affine, conic,
or convex hull , i. e., the set of all linear, affine, conic, or convex combinations of vectors
in X, respectively. The dimension dim(X) is defined as the maximum number of affinely
independent vectors in X minus 1.

Let E be a finite set, and I ⊂ 2E. Then, the pair (E, I) is called an independence
system if ∅ ∈ I and A ∈ I ⇒ B ∈ I for all B ⊆ A ∈ I. The elements of I are called
independent sets.

Complexity theory. Next, we provide a rather informal introduction to mathematical
optimization and complexity theory. Based on Garey and Johnson [72] we define a
problem as a question to be answered. Usually the answer depends on some input
parameters. A (problem) instance of a problem is an assignment of values to all its
input parameters. If only “yes” and “no” are feasible answers, we call the problem a
decision problem. An optimization problem is a problem whose answer is the minimum
or maximum value of a given objective function. For each optimization problem there
exists a corresponding decision problem asking if the objective function is less than or
greater than a given value (depending on if the optimization problem is a minimization
or maximization problem).

An algorithm is a procedure which answers the problem for all problem instances. It
solves the problem if the answers given are always feasible to the problem.
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In this thesis, we assume all problem instances are coded binary and the model of
computation is a deterministic one-tape Turing machine, see Garey and Johnson [72] for
details. The (time) complexity of an algorithm is the number of elementary operations
executed to solve a problem instance. The big-O notation is used to denote the complexity
of an algorithm or problem depending on the size n of its input data. Then O(f(n))

means there exist functions f, g : Z≥0 → Z≥0 with limn→∞
f(n)
g(n)

> 1 and a scalar a ∈ R≥0

such that (there exists an algorithm such that) the number of elementary operations
to solve the given instance of size n is bounded by the term a · f(n) + g(n). Notice
that the scalar a and the dominated term g(n) are usually dropped in the corresponding
big-O notation. If f(n) is a polynomial, we say the algorithm or problem has polynomial
(time) complexity. In addition to the time complexity, we can also count the elementary
read and write operations accessing the information storage. Analogously, this yields the
so-called memory or size complexity.

We define P as the class of all decision problems for which a polynomial time algorithm
exists. The class NP consists of all decision problems for which a “yes“-instance can
be verified in polynomial time by another algorithm. It holds P ⊆ NP . The class
NP-hard consists of all problems as hard as the hardest problems in NP . Although
the misleading name, a NP-hard problem may not be in NP . If a problem is both in
NP and NP-hard, then it is called NP-complete. We define the class co-NP as all
decision problems for which a “no“-instance can be verified with polynomial complexity.
It holds P ⊆ co-NP . Analogously, we define the complexity classes co-NP-hard and
co-NP-complete. An algorithm has pseudo-polynomial complexity if its complexity is
polynomial w.r.t. numeric value of the input and not its binary encoding. A NP-hard
problem with pseudo-polynomial complexity is called weakly NP-hard. A problem in
NP-hard is called strongly NP-hard if it is proven that no pseudo-polynomial algorithm
solving this problem exists (unless P = NP). There exist polynomial time algorithms to
NP-hard optimization problems if and only if P = NP holds which is one famous open
question in complexity theory; cf. Cook [56]. An extensive list of classical combinatorial
problems known to be NP-complete is given by Garey and Johnson [72]. The definition
of (fully) polynomial approximation schemes can also be found therein.

Graph theory. An (undirected) graph is defined by a set of nodes V , a set of edges
E ⊂ V × V and an incidence function ψ : E → V 2 relating each edge e = {i, j} ∈ E
to its end nodes i, j ∈ V . A graph is denoted by G = (V,E, ψ) or G = (V,E) for short
(in which case we assume that the omitted incidence function ψ is implicitly defined
by the set of edges). Let G = (V,E) be a graph with n nodes, U ⊂ V , and F ⊂ E.
Then, G′ = (U, F ) is the subgraph of G with node set U and edge set F . A subgraph
G′ = (U, F ) is called a tree if it is connected and |F | = |U |−1; if U = V , then G′ is called
a spanning tree of G. The subset of edge P = (v1v2, v2v3, . . . , vi−1vi) ⊂ E is called a path
if vj �= vk for all j, k ∈ {1, . . . , i}, j �= k. A cycle C is defined as C := P ∪ {viv1} ⊂ E.
A subset S ⊂ V of the nodes partitions the graph two parts S and V \ S and is called
cut. The subset of edges with one end node in S and the other in V \ S is denoted by
δ(S) and called cutset .
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P (A,b)

facet-defining

facet

valid

Figure 1.1: Example of a polytope P (A, b) with a valid inequality, a facet-defining in-
equality, and a facet.

In addition to undirected graphs, there exist directed graphs or digraphs for short. A
digraph D is analogously defined as the triple (V,A, ψ) of a set of nodes V , a set A of
directed arcs, and an incidence function ψ. An undirected graph G = (V,E) can be
directed by an orientation o : E → V × V assigning each edge {i, j} ∈ E to either the
arc (i, j) or the arc (j, i).

Notice, for simplicity, we also write ij for an edge or an arc if it is unambiguous in the
current context.

Polyhedral theory. Let A ∈ Rm×n, b ∈ Rm, J = {1, 2, . . . ,m}, and Ax ≤ b a system
of linear inequalities. Then, the set P (A, b) := {x ∈ Rn : Ax ≤ b} is called a (convex)
polyhedron. W. l. o. g. we assume P (a, b) to be full-dimensional in the following definitions.
If P (A, b) is bounded, it is called a polytope. The convex hull of all integer lattice points of
a polyhedron, conv(P (A, b)∩Zn), is called integer hull and a polyhedron itself. A vector
x ∈ P (A, b) is called an extreme point if it is not a convex combination of any vectors in
P (A, b). A set F is called a face of P (A, b) if F := {x ∈ P (A, b) : ∃J ′ ⊂ J,AJ ′·x = bJ ′}
holds. A face F �∈ {P (A, b), ∅} is called proper. A proper face F of P (A, b) which is not a
subset of another face is called facet , i. e., it holds dim(F ) = dim(P (A, b))−1. For v ∈ Rn

and w ∈ R, we call an inequality v�x ≤ w valid for P (A, b) if P (A, b)∩P (v, w) = P (A, b)
holds. A valid inequality is called facet-defining for P (A, b) if there exist a facet F of
P (A, b) so that F ⊆ {x ∈ Rn : v�x = w

} �= ∅. Figure 1.1 illustrates a polytope, a valid
inequality, a facet-defining inequality, and a facet.

Let Q(A, b) :=

{
x1 ∈ Rn1 , x2 ∈ Rn2 : A

(
x1

x2

)
≤ b

}
. Then we define its projection onto

the space of x1 by projx1
Q(A, b) :=

{
x1 ∈ Rn1 : ∃x2 ∈ Rn2 so thatA

(
x1

x2

)
≤ b

}
. Let

a1 ∈ Rn1 , b ∈ R, and a1
�x1 ≤ b for x1 ∈ Rn1 . Then, we call

(
a1
a2

)�(
x1

x2

)
≤ b for

x2 ∈ Rn2 the lifted inequality to the space of the x1- and x2-variables. For x ≥ 0, an
inequality v�x ≤ w dominates another inequality v′�x ≤ w� if there exists a λ ∈ R>0 so
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P (A,b)

x∗

κ
� x

min

(a) LP

P (A,b)

conv(P (A,b)∩Zn)

x∗
ILP

x∗

κ
� x

min

(b) LP with integer hull as ILP

Figure 1.2: Example of an LP and the ILP defined by the integer hull conv(P (A, b)∩Zn).
The optimal LP solution x∗ and integer solution x∗

ILP are shown.

Linear programming. Let A ∈ Rm×n, b ∈ Rm, κ ∈ Rn. Then, we call the optimization
problem to maximize a linear function over the polyhedron P (A, b) a linear programming
(LP) problem (in standard form). It can be written as

max κ�x (1.1)

s. t.Ax ≤ b. (1.2)

A vector x ∈ Rn satisfying the conditions of LP (1.1) is called feasible; a feasible vector
x∗ minimizing the objective value κ�x∗ is called optimal. If there exists an optimal
solution, then there exists an optimal solution which is an extreme point of P (A, b). In
Figure 1.2(a), an LP and its optimal solution x∗ is visualized.
Given an LP in standard form (1.1), we call the associated LP

min b�y (1.3)

s. t.A�y = κ (1.4)

y ≥ 0 (1.5)

its dual LP. The original LP (1.1) is called the primal LP. Note, the dual LP of the dual
LP (1.3) is again the primal LP (1.1).

Theorem 1.1 (Duality of linear programming). Let A ∈ Rm×n, b ∈ Rm, κ ∈ Rn. If
there exist feasible solutions x̃ and ỹ of the primal LP max

{
κ�x : Ax ≤ b

}
and the dual

LP min
{
b�y : A�y = κ, y ≥ 0

}
, respectively, then there exist finite optimal solutions

x∗ and y∗ so that κ�x∗ = b�y∗ holds.

Notice that the standard form of an LP is no restriction of generality: there exist trans-
formations between maximization and minimization problems, equality and inequality
constraints, and unbounded and bounded/nonnegative variables.
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In 1951, Dantzig [59] developed the simplex algorithm, an iterative algorithm which
starts with a feasible solution (corresponding to an extreme point of the polytope) and
improves to another feasible solution (also corresponding to an extreme point) which
yields a better objective value until an optimal solution is reached. Unfortunately,
the simplex algorithm has exponential worst-case complexity since exponentially-many
extreme points have to be evaluated in the worst-case (using known pivot rules); cf. Klee
and Minty [95]. However, later it has been proven that its complexity is polynomial
on average; cf. Borgwardt [43] and Spielman and Teng [148]. Another approach to is
the ellipsoid method which has polynomial complexity but is useless in practice due to
numerical instabilities; cf. Khachiyan [93] and Grötschel et al. [75]. A different polynomial
algorithm to solve an LP has been introduced by Karmarkar [90] and is called interior
point method or barrier algorithm.

(Mixed) integer linear programming. Given an LP in standard form (1.1) and with
rational input data. If we restrict its feasible solutions to integer vectors only, we obtain
an integer linear programming (ILP) problem. It reads

max κ�x (1.6)

s. t.Ax ≤ b. (1.7)

x ∈ Zn. (1.8)

By relaxing the integrality constraint x ∈ Zn, we obtain the linear (programming) re-
laxation of ILP (1.6). In Figure 1.2(b), an LP and its integer hull are visualized. In
addition, the optimal LP solution x∗ and integer solution x∗

ILP are shown. Note, if only a
subset of the variables is restricted to integrality, a mixed integer linear program (MILP)
is obtained. The following algorithmic approaches to ILPs are w. l. o. g. also applicable to
MILPs. In contrast to LPs, solving ILPs is known to be strongly NP-hard; see Kannan
and Monma [88].

In the 1960s, Land and Doig [108] and Dakin [57] introduced the branch-and-bound
algorithm to solve ILPs. It is an (implicitly) enumerative algorithm following the
divide-and-conquer principle used in computer science.
In this algorithm, only the LP relaxation of an ILP is solved, e. g., by using the simplex

algorithm. If the LP relaxation is unbounded or has no solution, the ILP is as well or
has not one either, respectively. If the LP relaxation has an integer optimal solution,
then this solution is also optimal for the original ILP. If the optimal solution vector
x∗ of the LP relaxation has a fractional valued entry x∗

i , it is not feasible for the ILP.
This fractionality is removed by splitting the LP relaxation into two new subproblems
where the constraint xi ≤ 
x∗

i � is added to one of them and the constraint xi ≥ �x∗
i  to

the other. This split step is called branching. Notice, the union of the set of feasible
solutions of both newly created subproblems contains all feasible integer points of the
solution set of the original ILP. Figure 1.3(a) illustrates the branching geometrically.
After branching, each subproblem is solved individually. If the solution vector of a
subproblem has again fractional entries, the algorithm is recursively repeated for this
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x∗

xi≥�x∗
i 

xi≤
x∗
i �

(a) branching

cu
t

x∗

(b) cutting plane

Figure 1.3: Example of branching and cutting in a branch-and-bound or branch-and-cut
algorithm, respectively.

subproblem. By succeeding branchings, the so-called (binary) branch-and-bound tree is
built. Note, the LP relaxation of the original problem is located at the root node of this
tree. Its leaf nodes correspond to subproblems which are either infeasible (i.e. have no
solution) or have an integer optimal solution.

Clearly, the branch-and-bound tree grows exponentially. Hence, the explicit enumera-
tion of all tree nodes should be avoided. A way to do so is motivated by the following
observations: on the one hand, every integer feasible solution found at any node of the
branch-and-bound tree is feasible to the original ILP. Thus, its objective value yields
an global lower bound (for a maximization problem) on the actual possible currently
unknown objective value of the ILP. On the other hand, at each node, the objective value
of an optimal solution of the LP relaxation is a local upper bound on the objective value
of an optimal solution of the corresponding ILP at the same node. Hence, whenever
the local upper bound is lower than the currently best known global upper bound while
running the branch-and-bound algorithm, the node corresponding to the local upper
bound cannot yield any better integer solution than the one corresponding to the current
global upper bound. Thus, this node and its subproblem can be ignore. No branching
takes places. It can be removed from the branch-and-bound tree; the node and its
potential subtree are called fathomed. This overall principle is known as bounding.

Another approach to reduce the number of actual solved branch-and-bound nodes is
to tighten the LP relaxations by adding additional inequalities which are valid for the
ILP but violated for the actual fractional solution of the LP relaxation. Geometrically,
these inequalities cut-off some region of the polyhedron associated with the LP relaxation
including the fractional LP solution (but no integer feasible solution of the ILP). Hence,
these inequalities are called cutting planes or cuts for short. Figure 1.3(b) shows an
example of a cut. The problem to determine a cut given a fractional LP solution or proof
that none exist, is called separation problem, the procedure itself we call separation. In
1981, Grötschel et al. [75] have shown that optimization and separation are polynomially
equivalent, i. e., an optimization problem can be solved efficiently if and only if the
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Figure 1.4: Example of a MIR cut in two dimensions.

separation problem to remove infeasible solutions can be solved efficiently. Numerous
classes of cutting planes are known. Some of then are general cutting planes exploiting
the structure of the coefficient matrix A, the right hand side vector b, or the variable
ranges. Others are problem-specific cuts which are only valid for the specific polyhedral
structure of selected combinatorial problems. Chvátal-Gomory cuts [73, 74] or mixed
integer rounding (MIR) cuts [126] (for MILPs) are examples for the first type of cuts,
cover inequalities to the knapsack problem for the latter [18, 80, 158].
We will use MIR to derive valid inequalities for several polyhedra in this thesis. Let us

now consider the two-dimensional MIR inequalities as an example.

Lemma 1.2 (Wolsey [159]). Let Q = {(x, y) ∈ R× Z : x+ y ≥ b, x ≥ 0}. Then, the
mixed integer rounding inequality

x+ ry ≥ r �b (1.9)

with r := b− 
b� is valid for Q.

In Figure 1.1 a mixed integer set and MIR cut is shown.

By integrating the separation of cutting planes into the branch-and-bound algorithm,
we obtain the so-called branch-and-cut algorithm. Here, cuts are separated, added to the
LP relaxation, and the extended LP is resolved. A problem is only branched into two
subproblems if no violated cut has been found or another technically motivated abort
criterion for the implemented separation algorithm is met. If the cutting planes are only
applied at the root node, the resulting algorithm is called cut-and-branch. Achterberg
[6] presents an excellent survey on the state-of-the-art algorithms and implementations
of branch-and-cut algorithms.

1.2 The knapsack problem

One of the most fundamental problems in mathematical optimization is the well-known
knapsack problem. In its general form the (binary or 0-1) knapsack problem asks to select
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a subset of valuable items such that their total value is maximized while they have to
“fit into” the knapsack, i. e., their total weight must not exceed the given capacity of the
knapsack. Although its apparent clearness, the knapsack problem turns out to be a hard
problem, in fact weakly co-NP-hard. Nevertheless, it occurs in the mathematical models
of many applications. Oftentimes, it is a subproblem or relaxation of more complex
real-world problems, e. g., (i) in telecommunications traffic has to be routed within the
capacity of cables or bandwidth restrictions of base station antennas, (ii) in logistics the
capacity restrictions of trucks, planes, ships have to be met, and (iii) in finance the costs
of taken decisions must be within a given budget.
Furthermore, each individual constraint of a general 0-1 integer linear program (0-1

ILP) can be considered as knapsack constraint. Therefore inequalities for the knapsack
polytope can be used as general cutting planes to 0-1 ILPs. In fact, many results from
the 1950/60s on the polyhedral structure of the knapsack polytope were obtained when
considering individual rows of 0-1 ILPs; cf. Martello and Toth [119].
The knapsack problem, its variants, and extensions have been studied for several

decades. For example, Karp [91] has investigated the complexity of the knapsack problem
showing its NP-hardness. Kolesar [98] and Horowitz and Sahni [82] have considered
branch-and-bound approaches to solve the knapsack problem exactly. At the same time,
a polynomial time approximation scheme has been presented by Johnson [87]. One year
later, a fully polynomial time approximation scheme has been published by Ibarra and
Kim [83]. Whereas Salkin and De Kluyver [142] have studied the relation between ILPs
and knapsack problems. Dudzinski and Walukiewicz [62] have studied LP and Lagrangian
relaxations of the problem obtaining lower/dual bounds. In 1979 Martello and Toth [115]
have presented an exact exponential algorithm to solve the binary knapsack problem.
An algorithmic survey including dynamic programming approaches is given in Martello
and Toth [118] and the books by Martello and Toth [119] and Kellerer et al. [92].
Besides its simplest form, the binary knapsack problem, many variants and extensions

of the knapsack problem exist. A very famous one is the subset-sum problem where the
item values are identical to the item weights, see Karp [91], Martello and Toth [119]. It has
applications in complexity theory, cryptography and computer science. The (un)bounded
knapsack problem allows items to be selected more than once up to an (optional) upper
bound, see Martello and Toth [119]. The multiple knapsack problem and multiple-choice
knapsack problem group the items such that at most one item per group may be selected,
see Martello and Toth [117], Sinha and Zoltners [146]. In multi-dimensional knapsack
problems, the selected items have to ”fit“ into several knapsacks at the same time while
the weight of an item may differ between these knapsacks, see Weingartner and Ness
[156]. Multi-objective knapsack problems and min-max knapsack problems attach several
values to an item and consider a multi-objective approach to determine the combined
total value of items, see Ehrgott [67]. Furthermore, variants exists where items have to
be selected with minimum value and a total weight above a certain threshold (minimum
knapsack problem), or where the total weight of the items to be selected is given (equality
knapsack problem; if additionally all item values are the same: change-making problem,
see Martello and Toth [116]). Sometimes certain items have to be selected before other
items, leading to precedence constraint knapsack problems, see Boyd [45]. In addition,
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more non-linear variants exists, e. g., the quadratic knapsack problem where pairs of items
are valued, see Hochbaum [81], Mathur et al. [120], Pisinger [138].

For an extensive survey and detailed description of the knapsack problem, its variants
and extensions, we recommend the excellent books by Martello and Toth [119] and
by Kellerer et al. [92].

In the following, we focus on the (binary or 0-1) knapsack problem and the main
results on its computability and the polyhedral structure of the corresponding polytope.

Definition 1.3 (Binary or 0-1 Knapsack Problem). Given a set of items N , a knapsack
capacity c ∈ Z>0, a weight function w : N → Z>0 with wj ≤ c for all j ∈ N , and a profit
function p : N → Z>0. The (binary or 0-1) knapsack problem is to find a subset of items
with maximum total profit whose total weight does not exceed the knapsack capacity.

The ILP formulation of the knapsack problem reads

max
∑
j∈N

pjxj (1.10a)

s. t.
∑
j∈N

wjxj ≤ c (1.10b)

xj ∈ {0, 1} ∀j ∈ N. (1.10c)

where xj = 1 if item j ∈ N is selected, and 0 otherwise.

Theorem 1.4 (Karp [91]). The knapsack problem is NP-hard.

Considering the decision problem of the knapsack problem, Karp [91] gives a proof of
Theorem 1.4 by polynomial reduction of the NP-complete partition decision prob-
lem [72] to the subset-sum decision problem which itself is a special case of the knapsack
decision problem.

For constant profit functions, the KP can be solved polynomially as the following
example illustrates.

Example 1.5. Consider the knapsack problem with six items given by N = {1, . . . , 6},
c = 10, w =

(
2 2 3 4 6 7

)
, and p =

(
1 1 1 1 1 1

)
. An optimal solution is the

subset {1, 2, 4} ⊆ N with an optimal solution value (i. e., total profit) of 1 + 1 + 1 = 3
and a total weight of 2 + 2 + 4 = 8 ≤ c.

Although no efficient algorithm to solve the knapsack problem exists, unless P = NP ,
the knapsack problem can be solved in pseudo-polynomial time (in the number of items
|N | and capacity c) by the following dynamic program:

Let φ : N → {1, . . . , |N |} be an ordering of the item set. Define fφ(j, u) as the optimal
solution value of the knapsack with the item set {φ(1), . . . , φ(j)} ⊆ N and integer
capacity 0 ≤ u ≤ c. Define fφ(j, u) = −∞ where no feasible solution exists. Then the
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optimal solution value fφ(|N |, c) of the knapsack problem can be determined by the
following dynamic program

fφ(1, u) =

{
0 if 0 ≤ u ≤ wφ(1) − 1

pφ(1) if wφ(1) ≤ u ≤ c
(1.11a)

fφ(j, u) = max{fφ(j − 1, u), fφ(j − 1, u− wφ(j)) + pφ(j)} ∀ j ≥ 2. (1.11b)

with complexity O(|N | c), see also [119] for details.
In addition to this exact algorithm, numerous heuristic and/or approximative algorithms

exist yielding lower bounds on the optimal objective value. In this thesis, we focus on
exact algorithms and refer to the literature mentioned above for more details on heuristics,
approximation algorithms, and (fully) polynomial approximation schemes for the knapsack
problem.
The knapsack problem occurs as subproblem in more complex problems. Oftentimes

these problems are solved using ILP techniques exploiting the polyhedral problem
structure. Hence the polyhedral aspects of the set of feasible solutions of the knapsack
problem reoccurs in these problems. In the following, we report on important polyhedral
insights of the knapsack problem. Therefore, we define the knapsack polytope as the
convex hull of the set of feasible solutions to ILP (1.10); more formally:

Definition 1.6 (Knapsack Polytope). The knapsack polytope is defined as

K := conv
{
x ∈ {0, 1}|N | : x satisfies (1.10b)

}
.

Lemma 1.7 (Balas [18]). The knapsack polytope is full-dimensional, i. e.,

dim(K) = |N |.
Proof. The zero vector and all unit vectors are feasible to K and define |N |+ 1 affinely
independent vectors.

Lemma 1.8 (Balas [18]). Trivial facets of the knapsack polytope K are given by the
inequalities

xj ≥ 0 ∀j ∈ N (1.12a)

xj ≤ 1 ∀j ∈ N : wj + max
i∈N\{j}

wi ≤ c. (1.12b)

Next, we consider certain subsets of items to derive further valid or facet-defining
inequalities for K. Let C ⊆ N be a subset of items whose total weight exceeds the
knapsack capacity, i. e.,

∑
j∈C wj > c, then C is called a cover. A cover is called

minimal if C \ {j} is not a cover for all j ∈ C. Given a cover C, the set E(C) :=
{j ∈ N \ C : wj ≥ wi ∀ i ∈ C} ∪ C is called the extension of C and is a cover itself.

Example 1.9. The set C = {2, 4, 5} with total weight 2 + 4 + 6 = 12 > c is a cover for
the knapsack defined in Example 1.5. Furthermore, it is minimal. The corresponding
extension is E(C) = {2, 4, 5, 6}.
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Note that any feasible solution to the knapsack problem cannot contain a subset of
selected items forming a cover. Based on this observation, the following valid inequalities
for the knapsack polytope can be derived.

Lemma 1.10 (Balas [18], Hammer et al. [80], Wolsey [158]). Let C ⊆ N be a cover and
E(C) its extension. Then, the cover inequality∑

j∈C
xj ≤ |C| − 1 (1.13)

and the extended cover inequality ∑
j∈E(C)

xj ≤ |C| − 1 (1.14)

are valid for K. In addition, the cover inequality is facet-defining for K if C = N and C
is minimal.

In fact, the knapsack polytope can be characterized by the extensions of all minimal
covers as follows:

Theorem 1.11 (Balas and Jeroslow [19]). The point x ∈ {0, 1}|N | is feasible for K if
and only if it satisfies the extended cover inequality (1.14) for all minimal covers C ⊆ N .

The extension of a cover can be interpreted as a simple lifting procedure from the
corresponding cover inequality to its extended cover inequality [18, 89, 133]. A more
general form of lifted cover inequalities has been introduced by Van Roy and Wolsey
[154] using the so-called up-lifting and down-lifting [77, 78].

Lemma 1.12 (Van Roy and Wolsey [154]). Let C ⊆ N be a cover and C ′ � C. Then
lifting coefficients α ≥ 0 and β ≥ 0 can be determined such that the lifted cover inequality∑

j∈C\C′
xj +

∑
j∈N\C

αjxj +
∑
j∈C′

βjxj ≤ |C \ C ′|+
∑
j∈C′

βj − 1 (1.15)

is valid for K.

We refer to [154] for details how to determine the lifting coefficients. Note, lifted cover
inequalities (1.15) generalize the class of extended cover inequalities (1.14).
A subset N ′ ⊆ N and an element t ∈ N \ N ′ is called a (1,k)-configuration with

2 ≤ k ≤ |N ′|, if∑j∈N ′ wj ≤ c and Q∪{t} is a minimal cover for all Q ⊆ N ′ with |Q| = k.
For k = |N ′|, a (1,k)-configuration is a minimal cover.

Example 1.13. Let k = 2. The set N ′ = {2, 3, 4} and the element t = 5 are a
(1,k)-configuration for the knapsack defined in Example 1.5.

The concept of (1,k)-configurations generalizes the minimal covers and yields a new
class of inequalities valid for the knapsack polytope.
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Theorem 1.14 (Padberg [134]). Let N ′ ⊆ N and t ∈ N \N ′ be a (1,k)-configuration.
Then, the (1,k)-configuration inequalities

(r − k + 1)xt +
∑
j∈T

xj ≤ r (1.16)

where T ⊆ N ′ with |T | = r and k ≤ r ≤ |N ′| are valid for K. If N ′ = N \ {t}, these
inequalities are facet-defining.

Note, (1,k)-configuration inequalities (1.16) are a special case of up-and-down-lifted
cover inequalities (1.15).
Another class of valid inequalities, not based on the concept of covers, can be derived

from the so-called pack inequality. A set P ⊆ N is called a pack if
∑

j∈P wj ≤ c holds.

Lemma 1.15 (Martello and Toth [119]). Let P ⊆ N be a pack. Then, the pack inequality∑
j∈P

wjxj ≤
∑
j∈P

wj (1.17)

is valid for K.

The pack inequality can be derived as sum of the upper bound inequalities xj ≤ 1
scaled by wj for each j ∈ P . Although it is a relatively weak inequality dominated by the
corresponding upper bound inequalities, lifting also yields non-dominated inequalities.
A specific subclass of these lifted pack inequalities are the so-called weight inequalities,
introduced by Weismantel [157].

Lemma 1.16 (Weismantel [157]). Let N ′ ⊆ N with
∑

j∈N ′ wj < c and residual capacity
cres := c−∑j∈N ′ wj. Then, the weight inequality

∑
j∈N ′

wjxj +
∑

j∈N\N ′
max{0, wj − cres}xj ≤

∑
j∈N ′

wj (1.18)

is valid for K.

Most branch-and-cut approaches to solve the knapsack problem include the separation
of lifted and/or extended cover inequalities. The separation of (1,k)-configurations or
weight inequalities seems not to be that common, cf. [89]. However, the exact separation
of violated cover inequalities, extended cover inequalities, lifted cover inequalities has been
shown to be NP-hard [68, 78, 94]. Weismantel [157] has presented a pseudo-polynomial
algorithm to separate violated weight inequalities. An excellent survey on state-of-the-
art separation algorithms for the 0-1 knapsack problem and detailed computational
experiments can be found in Kaparis and Letchford [89]. A statistical study on knapsack
instances to identify classes of knapsack instances particularly hard to solve is given
by Pisinger [137].
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1.3 The capacitated network design problem

Another class of well-known mathematical optimization problems are flow problems.
Here a network is given by its nodes, edges and capacity values assigned to the edges.
Furthermore, some nodes are marked as sources (or source nodes) and others as sinks
(or target nodes). At each source, a certain value of a commodity is available. At
each sink a certain value of commodity is requested. The flow problem asks to send
available commodity from the sources to the sinks such that their requests are satisfied,
the individual edge capacities are not exceeded and flow conservation holds at each
node which is neither source nor sink. This way a so-called flow through the network is
established. If you think of water: it flows from the sources through a network of pipelines
(edges) with different diameters (edge capacities) to the sinks. Flow problems occur in
many real-world application areas wherever some commodities have to be transported; for
example in transportation, logistics, public transport, telecommunications, etc. Objective
functions are usually to maximize the amount of flow to be send or to satisfy the requested
demand while minimizing the utilization of the edges.

Of course, the basic flow problem previously sketched can be enriched by more restric-
tions to model the underlying real-world problems and their requirements more accurately.
For example, oftentimes survivability of network connectivity and the satisfiability of
the demands is required in the case that some parts of the network fail, i. e., nodes or
edges become unavailable; cf. Stoer and Dahl [150] and Pióro and Medhi [136] for more
details on survivability in telecommunication networks. Moreover, usually not only one
type of commodity is considered but a set of different commodities and thus commodity
dependent sources and sinks. Then a flow must be determined for all commodities
simultaneously as each commodity contributes to the usage of the available edge capacity.
This is called the multi-commodity flow problem.

The capacitated network design problem includes the multi-commodity flow problem.
In addition, the edge capacities are not given (i. e., fixed and part of the input) anymore.
Instead, they have to be determined together with the optimal flow. The objective is to
minimize the total costs consisting of the costs of edge capacities and the edge- and volume-
dependent costs of sending flow. In most practical settings, the volume-dependent costs
of sending flow along an edge is zero or can be neglected with respect to the much higher
costs for installing or increasing the capacities on the edges. Furthermore, in real-world
applications as telecommunication networks there exists some discretization of available
edge capacities. For example, the available bandwidth (capacity) on telecommunication
edges depends on the installed line card hardware at the end nodes of this edge. Due to
the available technological and commercial hardware products only a bounded number
of line cards and only a certain set of available line card types can be installed. Thus,
the installable edge capacities can be assumed to be integer (after some normalization).
The resulting problem where only integer units of edge capacity can be installed and the
total costs are only inflicted by capacity installation is called the (capacitated) network
loading problem. Oftentimes the (capacitated) network loading problem is also just called
the network design problem in literature. In this thesis we follow this popular slight
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1.3 The capacitated network design problem

There exists a wide range of work on the capacitated network design problem yielding
different problem formulations, intensive studies on the polyhedral structure of the set
of feasible solutions, classes of valid and facet-defining inequalities strengthening these
formulations, as well as separation algorithms and heuristics. This includes for examples
the early work by Magnanti et al. [114], Bienstock and Günlük [39], and Günlük [79]
on the network design polyhedron and classes of valid inequalities, as well as the work
of Avella et al. [17] describing the capacity formulation of the network design problem,
and the references therein.

It is beyond the focus of this thesis to give a complete survey of all related results.
Instead we refer to Ahuja et al. [10] for a detailed survey on network flow problems, and
to Magnanti and Wong [112] and Pióro and Medhi [136] on network design problems
including an extensive catalog of variants of this problem. Nevertheless in the following
we give a brief survey on the most important results and polyhedral insights of this
problem.

Now, let us consider the capacitated network design problem more formally.

Definition 1.17 (Capacitated Network Design Problem). Let G = (V,E) be an undi-
rected graph where V denotes the set of all nodes and E the set of all edges. Further let
K be the set of all node-to-node commodities. For each commodity k ∈ K, let sk and
tk denote its source and target node, respectively, and let dk > 0 denote its requested
demand value. Moreover let κ : E → R≥0 be a cost function assigning to an edge the
installation costs of one unit of capacity on this edge.

Then the capacitated network design problem (NDP) asks to determine an installment
of edge capacities and a multi-commodity flow such that

1. all demands are satisfied, i. e., for each commodity, there is a flow between its source
and target nodes whose flow value is at least the demand value of this commodity,

2. no capacities are exceeded, i. e., for each edge, the total value of all flows along this
edge has to be at most the installed capacity on this edge,

3. and the total capacity costs are minimized

Remark 1.18. Although the NDP is defined on an undirected graph, an orientation of
the edges is needed to have the notation of ingoing and outgoing edges when modeling
the flow. This orientation is omitted when determining the total flow on an edge.

Notice, usually we do not explicitly state the fact that the problem is capacitated and
just call it the network design problem.

Chopra et al. have investigated the complexity of the NDP.

Theorem 1.19 (Chopra et al. [52]). The NDP is strongly NP-hard.
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Figure 1.5: Example of network design. Given a 5-node network with three commodities,
edge capacities are installed (black) and a multi-commodity flow is determined
(green/red/blue) minimizing the installment costs.

Example 1.20. Let us consider a simple 5-node example of a network design problem
with three node-to-node demands. The demand values may be non-integral but the edge
capacities have to be integral. Further let the edge capacity installment costs be the same
for all edges. Figure 1.5(a) shows the potential network topology, the three commodities
and their demand values.
In Figure 1.5(b), a network design solution is shown for this problem instance: one

unit of edge capacity is installed on all thin black edges (ab, ae, bc, cd) and two units
are installed on all thick black edges (bd, de). Besides a multi-commodity flow has been
determined splitting the red commodity b → e along two paths such that 2 demand units
are send b → d → e and 0.5 demand units are send b → a → e. For the green commodity
a → c, a single-path flow a → b → c is established. The blue commodity c → d is satisfied
by the direct flow c → d. The total installation costs are minimized since the costs are
the same for all edges and the total number of installed capacity units is minimized.

Several mixed integer programming formulations of the NDP exist. In the following
we report on three important ones: the edge-flow formulation, the path-flow formulation,
and the capacity formulation. The edge-flow formulation of the NDP reads:

min
∑
e∈E

κexe (1.19a)

s. t.
∑

j : ij∈E
(fk

ij − fk
ji) =

⎧⎪⎨
⎪⎩
1 i = sk

−1 i = tk

0 else

∀i ∈ V, k ∈ K (1.19b)

∑
k∈K

dk(fk
ij + fk

ji) ≤ xe, ∀e ∈ E (1.19c)

f, x ≥ 0 (1.19d)

x ∈ Z|E| (1.19e)

where variables fk
ij denote the fraction of the demand k send along the (orientated) edge

e = {i, j} ∈ E from end node i to j, and variables xe denote the number of capacity
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units installed on edge e at cost κe per unit. The constraints (1.19b) describe a multi-
commodity flow using an edge-flow formulation. The flow for commodity k is directed
from (its source) sk to (its target) tk without loss of generality. Constraints (1.19c) are
edge capacity constraints guaranteeing that the flow on an edge does not exceed the
installed capacity on this edge.
Since the cost for edge capacity is minimized, we may ignore cycle flows and hence

assume that either fk
ij = 0 or fk

ji = 0 and fk
e ≤ 1 in any optimal solution. More precisely,

given an optimal solution where a cycle flow exists, there exists another solution with the
same objective value but without this cycle flow. Notice that while flow and demands
are directed, the actual direction is arbitrary since we sum up the two flows in (1.19c).
Moreover by model (1.19) we also see that the NDP includes a multi-commodity flow
problem and a knapsack problem with variable knapsack capacity and fractional item
selection.
While the previous model is based on flow variables for each directed edge, another

flow-based model is often used where the flow is modeled based on paths from the source
to the target node of each commodity. This so-called path-flow formulation of the NDP
is the following

min
∑
e∈E

κexe (1.20a)

s. t.
∑
p∈Pk

fk
p ≥ 1 ∀k ∈ K (1.20b)

∑
k∈K

dk

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠ ≤ xe, ∀e ∈ E (1.20c)

f, x ≥ 0 (1.20d)

x ∈ Z|E| (1.20e)

This formulation includes flow variables fk
p ≥ 0 for each commodity k ∈ K and path

p ∈ P k where P k is the set of all possible sk-tk-paths. Each variable denotes the fraction of
demand of the considered commodity sent along the considered path. Constraint (1.20b)
ensures that at least 100% of the demand of each commodity is routed. It corresponds to
the flow conservation constraint (1.19b) of the edge-flow formulation (1.19). The remain-
ing constraints (1.20c)–(1.20e) are also the path-flow equivalents of the corresponding
constraints of the edge-flow formulation (1.19).
Note that formulation (1.20) is of exponential size due to the exponential number of
possible paths and thus f -variables. But this formulation is still computationally tractable
since a column generation approach can be applied where the resulting pricing problem is
a shortest-path problem. Note, the multi-commodity flow and knapsack (with fractional
item selection) subproblems of the NDP can again be found in this formulation.

W. l. o. g. we assume that there are no cycle flows in any solution. Otherwise, a
solution with the same or less objective value exists whose corresponding flow has no
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cycles and satisfies all demands. Then both, the edge-flow and the path-flow formulation
are equivalent formulations of the NDP: given a solution of one of them a corresponding
solution of the other can be constructed transferring the flow variables straight-forwardly.
For example, given path flow variables fk

p , the corresponding edge flow variables fk
e can

be determined as fk
e =

∑
p∈Pk : e∈p f

k
p . Vice versa, a solution fk

e for all e ∈ E defines a
multi-flow which can be decomposed into paths yielding corresponding path flow variables
fk
p ; cf. Pióro and Medhi [136].

These two flow-based formulations both include the multi-commodity flow problem as
subproblem. The feasibility of a (fixed) capacity vector x according to this subproblem
can be characterized by the following sufficient and necessary condition.

Theorem 1.21 (Iri [85], Onaga and Kakusho [129]). Given link capacities x ∈ R|E|
≥0 ,

there exists a flow satisfying (1.19b)–(1.19d) if and only if for all length functions 	 the
length inequality ∑

e∈E
xe	(e) ≥

∑
k∈K

	(sk, tk)dk (1.21)

holds where 	(sk, tk) is the length of a shortest-path from sk to tk.

This theorem can be proven directly by applying Farkas’ Lemma. Further, note that
Theorem 1.21 is often called the “Japanese Theorem” in literature. Its results can also
be obtained by the more general technique known as Benders decomposition applied
to the flow-formulation of the NDP; cf. Benders [32]. Then the length inequality (1.21)
corresponds to the resulting Benders cut.

Theorem 1.21 gives rise to the capacity formulation of the network design problem:

min
∑
e∈E

κexe (1.22a)

s.t.
∑
e∈E

	(e)xe ≥
∑
k∈K

	(sk, tk)dk for all length functions 	 (1.22b)

x ∈ Z|E|
≥0 (1.22c)

Notice that formulation (1.22) does not include flow-based variables but only the edge
capacity variables x. The flow-variables have been projected out in the process of Benders
decomposition. The feasibility of x is guaranteed by the Benders cuts, the length inequal-
ities (1.21). Furthermore, inequalities (1.22b) obtained from non-metric length functions
are dominated: moreover, Avella et al. [17] shows that all facet defining inequalities are
so-called tight metric inequalities, i. e., length inequalities with metric length functions
and maximal right hand side value.

For each of the three presented models, the convex hull of all its feasible solutions
is a polyhedron, a network design polyhedron. In fact, we obtain the following three
polyhedra:
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Definition 1.22 (Network Design Polyhedra). The edge-flow (or link-flow) network
design polyhedron

N LF := conv
{
(x, f) ∈ Z|E|

≥0 × R2|E||K|
≥0 : (x, f) satisfies (1.19)

}
,

the path-flow network design polyhedron

N PF := conv
{
(x, f) ∈ Z|E|

≥0 × R|P |
≥0 : (x, f) satisfies (1.20)

}
,

and the capacity network design polyhedron

Nx := conv
{
x ∈ Z|E|

≥0 : x satisfies (1.22)
}
.

By construction, it holds Nx = projx N LF = projx N PF. Network design polyhedra have
been studied intensively: for example by Magnanti et al. [113], Bienstock and Günlük
[39], Bienstock et al. [40], and Günlük [79].

Proposition 1.23. If the underlying graph G = (V,E) is connected, the dimension of
N LF is 2|E|(|K|+ 1)− |K|(|V | − 1).

Lemma 1.24 (Mattia [121]). The polyhedron Nx is full-dimensional, i. e., dim(Nx) =
|E|.
Oftentimes “easier” (i. e., less-dimensional) polyhedra like relaxations and/or pro-

jections of network design polyhedra are considered to study their polyhedral faces.
Afterwards the identified classes of valid or facet-defining inequalities are lifted to cor-
responding classes for the original network design problem itself. A good example of
such an approach leads to the well-studied cutset inequalities: Given a subset S � V of
nodes, the network is partitioned into two parts S and V \ S. More precisely, S defines
a cut and a corresponding cutset δ(S), i. e., the set of edges with one end node in S
and the other in V \ S. Then for investigation, the node sets S and V \ S are shrunken
into one node each and thus yielding a 2-node network with only the cutset edges in
between. The convex hull of all feasible solutions of NDP on this small network is called
the cutset polyhedron and has been studied among others by Atamtürk [14], Chopra
et al. [52], Magnanti and Mirchandani [111], Magnanti et al. [114], and Raack et al. [141].
The valid class of cutset inequalities is based on the following simple observation: the
total capacity installed on all cutset edges must be at least the total demand value of
all commodities with sources in S and targets in V \ S or vice-versa. If less capacity is
installed on the cutset edges, not all demand values of the “cut-crossing” commodities
can be satisfied.

Theorem 1.25 (Atamtürk [14], Barahona [20], Magnanti et al. [114]). Let KS ⊆ K
denote the set of cut-crossing commodities, i. e.,

KS :=
{
k ∈ K : (sk ∈ S ∧ tk ∈ V \ S) ∨ (sk ∈ V \ S ∧ tk ∈ S)

}
.
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Then, the cutset inequality ∑
e∈δ(S))

xe ≥
⌈∑
k∈KS

dk

⌉
(1.23)

is valid for N LF, N PF and Nx. It is facet-defining if frac(
∑

k∈KS
dk) < 1 and S �∈ {∅, V }.

Another class of valid inequalities for the NDP are the so-called arc residual capacity
inequalities which are obtained by studying another projected relaxation of the edge-
flow network design polyhedron N LF: here we apply Lagrangian relaxation to the
flow conservation constraints (1.19b). The resulting problem is decomposable into |E|
individual problems, one per edge e ∈ E. Each of these problems is called a single arc
design problem (SADP) and can be formulated as

max
∑
k∈K

λkf
k + κx (1.24)

s. t.
∑
k∈K

dkf ≤ x (1.25)

fk ∈ [0, 1] ∀k ∈ K (1.26)

x ∈ Z≥0. (1.27)

Notice that we have dropped the edge-dependent subscripts; fk (k ∈ K), κ, and x
are scalars in this formulation. Its feasible solutions give rise to the single arc design
polyhedron. It has been studied by Magnanti et al. [113] identifying the class of so-called
arc residual capacity inequalities which are also valid for the NDP polyhedra.

Theorem 1.26 (Magnanti et al. [113]). Let Q ⊆ K. The arc residual capacity inequality

∑
k∈Q

dkfk ≤ rQx+ (

⌈∑
k∈Q

dk

⌉
− 1)(1− rQ)

is valid for N LF, N PF and Nx and facet-defining if the two following conditions are
satisfied: (i)

∑
k∈Q dk = 1 implies |Q| = 1, and (ii) rQ = 1 implies Q = K.

Furthermore, the single arc design polytope is in fact completely described by the arc
residual capacity inequalities; cf. [113].

Besides these two classes of valid inequalities many more are known for the NDP:
for example, the concept of cutset inequalities can be generalized to k-node partitions
resulting in k-partition inequalities; cf. Agarwal [7], Barahona [20], Magnanti et al. [113],
and Agarwal [8]. Also metric inequalities generalize k-partition (and thus 2-partition or
cutset) inequalities; cf. Avella et al. [17] and Mattia [121]. Another more general concept
is applied by the so-called flow-cover inequalities; cf. Padberg et al. [135] and Atamtürk
[13].
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1.4 Applications in telecommunication

Network design problems arise in many application areas, for example in logistics, public
transport, or telecommunications. In particular, telecommunications depends on the
solution of network design problems to determine the topology, (hardware) configuration,
and routing of electrical or optical signals through the communication network in a
cost-efficient way.

Today’s telecommunication networks are rather complex in reality: knowledge covering
the fields of physics, information theory, engineering, computer science and mathematics
is required to completely understand the structure, functionality and operation of these
networks. For the purpose of (strategic) network planning and design using mathematical
optimization techniques, we consider a more abstract and less technical view of the
real network architectures aggregating and hiding a lot of its complexity in high-level
concepts and models. In the following, we will briefly elaborate on this more abstract
structure and the arising mathematical challenges. For a detailed survey on and for a
classification of optimization problems in telecommunication and their mathematical
models, we refer to Pióro and Medhi [136]. More recently, Koster and Munoz [102]
give a state-of-the-art survey on mathematical optimization problems in communication
networks and algorithmic approaches to solve them.
We consider the topology of fixed line telecommunication networks as directed graphs.

It is used to establish node-to-node connections for communication using the network
edges, oftentimes called links. These connections are realized via electrical or optical
signals and require specific hardware to be installed, set-up, and maintained at the nodes
and links of the network.

Example 1.27. Let us simplify a telecommunication network and consider a single
communication demand and its way through the network. Its connection may start at
a customer’s home computer where an electrical connection is set-up via his landline.
Then the electrical signal may be send to a network node where it is aggregated with
other signals to facilitate the available bandwidth better. This process of aggregation
is called multiplexing. Let us assume the multiplexed signal is then send further via
several network nodes and probably de-multiplexed and multiplexed with other signals
several times. At some point it may reach a node where it is transformed into an optical
signal. Then, an optical transponder sends the signal along a so-called light path which
can be seen as an optical channel passing further network nodes not interfering with the
content of the channel. At the end of the light path is the receiver and another hardware
transforming the optical signal back into an electrical one. After passing several nodes,
de-multiplexing (and maybe intermediate multiplexing) the signal reaches its destination
network node and another customer’s computer establishing a communication with the
first customer.

This is a simple abstract view on the key aspects of telecommunication networks.
Of course, it contains a lot of technical inaccuracies. For example, it does not reflect
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core

metro

access

a connection

Figure 1.6: Spatial (or horizontal) hierarchy of telecommunication networks: access nodes
are single-connected to regional metro nodes which are multiple-connected to
nodes of the fully connected core network. The available edge capacity also
increases from access to core network. In addition, an arbitrary connection
between two access nodes is shown.

protocols, nor physical aspects as the degeneracy of signals and thus the need to amplify
them, etc.

The structure of telecommunication networks can be classified by different hierarchical
systems: First, there exists a spatial or horizontal hierarchy that distinguishes between
the access, the metro, and the core network . The access network is the outer-most
network part which connects directly to the customers. Thus the sources and destinations
of demands are usually located in or directly connected to the access network. Most of the
times, the access network is relatively sparse with less requirements for survivability. The
metro network connects to the access network. It is denser than the access network and
usually contains some basic survivability functionality. The traffic is further aggregated in
the metro network. Geographically, this usually takes place on a regional level. The inner-
most network part is the core network. It is connected to the metro network, is oftentimes
fully connected (maximum density), and has high requirements for survivability. It forms
the backbone of the communication network. Here the aggregated demands of the metro
network are further aggregated and sent on long distance connections.

Figure 1.6 shows the horizontal hierarchy. From this point of view, a connection starts
at the access network, goes through the metro and the core network, back to another
metro network node, and to the access network.

Second, there also exists a technological or vertical hierarchy of telecommunication
networks; this is illustrated in Figure 1.7. Here the network is considered as a stack of
different so-called network layers which lie on top of each other. Each layer represents

28



1.4 Applications in telecommunication

logical layer: e.g., IP

logical layer: e.g., MPLS

physical layer

a connection

Figure 1.7: Technological (or vertical) hierarchy of telecommunication networks: the
physical layer represents the real-world hardware, cables, fibers. On top of
this are several logical layers without real-world counterparts. In addition,
an arbitrary connection between two nodes is shown.

different technologies or protocols that are used in the network. The lowest layer is the
physical layer whose nodes correspond to real-world locations and links are real-world
cables or fibers between these locations. The upper layers usually share copies of the same
nodes but not the same links. In general, each higher layer is on a higher aggregation
level than the lower, i. e., a link between two nodes in a higher layer is realized by a path
between the corresponding copies of these nodes in a lower layer. The resulting topologies
of those layers do not have physical counterparts. Because of this they, are called logical
or virtual layers. For example, a very high logical layer is the Internet Protocol (IP)
layer which is usually highly connected. The node-to-node demands can also be seen as
individual layer (demand layer) in which case it is usually the highest layer and each of
its logical links corresponds directly to a demand between the end nodes of this link.

The basic network planning and design problem asks to find the cost-efficient hardware
installation and configuration such that all demands are satisfied. Therefore, the hardware
to be installed at the links (e. g., fibers, amplifiers, regenerators, etc.) and nodes (e. g.,
transponders, receivers, (de-)multiplexers, switches and routers, wavelength converters,
etc.) must be determined as well as a routing of each node-to-node demand using this
hardware.

In this thesis we consider only non-survivable single layer core networks. Figure 1.8
shows an example single layer network design instance taken from the SNDlib [130]
problem library. It is reasonable to focus our investigations to such networks as our
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Figure 1.8: Example network design instance. The Germany50 instance and this picture
are taken from SNDlib [130, 131], a public problem library for the design of
survivable networks. This instances was originally provided to SNDlib by
T-Systems International AG.

30



1.4 Applications in telecommunication

0 2,000 4,000 6,000 8,000
0

1

2

3

4

5
·105

matrices

M
b
p
s

(a) 1 month (8928 matrices)

0 500 1,000 1,500 2,000
0

1

2

3

4

5
·105

matrices

M
b
p
s

(b) 1 week (2016 matrices)

0 50 100 150 200 250 300
0

1

2

3

4

5
·105

matrices

M
b
p
s

(c) 1 day (288 matrices)

0 10 20 30
0

1

2

3

4

5
·105

matrices

M
b
p
s

(d) 3 hours (36 matrices)

Figure 1.9: Total network load over time for the Abilene network [5]. Different time
periods in 2004 are shown: 1 month (July), 1 week (July 5th–11th), 1 day
(July 5th), 3 hours (July 5th, 11 am–2pm). The dotted areas illustrate
the areas zoomed-in in the subsequent diagram, i. e., the dotted area in
Figure 1.9(a) is shown in detail in Figure 1.9(b)

results transfer to more complex networks models (whereof our models are relaxations).
For example, in Koster and Kutschka [100] we have shown the integration of survivability
requirements into our models for the Γ-robust network design problem (cf. Chapter 9).
In Duhovnikov et al. [64] we have extended our models to represent more technical
hardware of a telecommunication network also aspects of multi-layer networks (implicitly
by modeling multi-line rate planning).

Network dynamics. The planning and operation of communication networks holds
several mathematical challenges. Especially the dynamics of such a complex structure
are tricky to take into account in the mathematical planning. A key aspect of these
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dynamics is that network traffic fluctuates heavily over time. Figure 1.9 shows the total
network load of Abilene, the US Internet2 IP research backbone network [5, 162], for
different time scales. We observe that it is far from constant. In fact, we can identify
some trends and “patterns”: first, the individual weeks of the 1-month time period can
easily be identified in Figure 1.9(a) by the low-load weekend phases. If we zoom into
one week of this month (see Figure 1.9(b)), we also notice the five working days with
higher network load. However, we also observe that there are some — almost singular –
very high peaks “on top” of this pattern. This is presumably caused by some large data
transfers present in such kind of research backbone networks. Figures 1.9(c) and 1.9(d)
show a more detailed zoom into time periods of one day and three hours, respectively.
Here, we see that the amplitude of fluctuations decreases with smaller time periods, i. e.,
extreme fluctuations of the total network load are on larger time scales. For shorter time
periods, there seems to be an averaging effect.
This averaging is caused by the following observation: the fluctuation peaks do not all

occur at the same time at the same location. This happens only during extraordinary
events like major sports events, special holidays, or greater emergencies. Usually, traffic
peaks are equilibrated over time, i. e., multiple communication connections sharing the
same resource tend to need less of that resource together than the sum of their individu-
ally maximal usage of this resource. This effect is known as statistical multiplexing in
telecommunications. For example, Figure 1.10 shows the fluctuations of two different
node-to-node demands of the Abilene network for one day. We notice that the “pat-
terns“ are quite different. Furthermore, if we draw both plots into one diagram (see
Figure 1.10(c)), we clearly see the effect of statistical multiplexing for these two demands.
As a consequence, we do not need to reserve the sum of the maximum peaks for both
demands when dimensioning capacity that is shared between both demands.

Another important aspect of network dynamics is the exponential growth of the total
global network traffic. The latest forecast of consumer internet traffic by Cisco [54]
predicts an average annual increase of 24% between 2012 and 2017. Furthermore, the
traffic is forecast to be more dynamic: while the average internet traffic will increase
by factor 2.9 between 2012 and 2017, the internet traffic at busy hours is predicted
to increase by factor 3.5. Figure 1.11 illustrates the annual forecast up to 2017. The
traffic is shown in peta bytes per month; 1 peta byte is 1000 tera bytes. In addition, the
forecast traffic is categorized into four types of traffic: gaming, file sharing (p2p), web,
email and data transfer excluding file sharing (web/data), and internet video streaming
(video). Notice the increasing importance of internet video streaming service from 56.6%
of consumer internet traffic in 2012 to 69.4% in 2017. Also notice that the internet traffic
caused by gaming can be neglected since it is less than 0.1% of the consumer internet
traffic.

These traffic fluctuations, statistical multiplexing, and the overall global traffic growth
yielding an increasing scarcity of network capacity are currently not taken sufficiently
into account during the planning process.
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Figure 1.10: Example of traffic fluctuations and statistical multiplexing in the Abilene
network [5]. Traffic measurements for the Chicago–Denver and Houston–
Washington D.C. demands on July 5th in 2004 are shown.

So how are traffic fluctuations handled in practice? — Usually the uncertain traffic
values are estimated by some rather vague measure yielding a single estimated value. For
example, there exist several estimation rules based on population statistics; cf. Bley et al.
[42] and Dwivedi and Wagner [65]. Then a deterministic optimization problem is solved
using this single value. In a second step additional “safety resources” are included in the
solution to increase the feasibility of the solution for more extreme traffic realizations. For
example, additional edge capacities of about 300% are added by some telecommunication
network providers in practice. Needless to say, the resulting network is (most of the time)
over-provisioned and not cost-efficient. Here new mathematical optimization methods
can help.
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Figure 1.11: Forecast of consumer internet traffic by Cisco [54]. The traffic is categorized
into gaming, file sharing (p2p), web, email and data transfer excluding file
sharing (web/data), and internet video streaming (video).

In Chapter 9, we will consider one specific approach to network design taking into
account such traffic fluctuations that yield cost-efficient solutions avoiding unnecessary
over-provisioning of telecommunication networks. Our studies were carried out as part
of the German ROBUKOM [3] project in cooperation with Nokia Siemens Networks
GmbH & Co. KG, and also experimentally validated using real-life traffic measurements;
cf. Chapter 11.
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CHAPTER TWO

OPTIMIZATION UNDER DATA UNCERTAINTY

The scientific progress in the field of mathematical optimization has always been motivated
by real-world problems. Oftentimes those problems include complicated processes and
depend on numerous possible decisions. Mathematical optimization has been proven as
an efficient methodology to obtain meaningful solutions to these problems.
Nevertheless, the mathematical model always simplifies the underlying real-world

problem. This simplification intends to reduce the complexity of the mathematical model
and thus to increase its computational tractability. One specific simplification is data
certainty , e. g., the assumption that all input data is exactly known a-priori and can be
represented exactly during the solving process.
But the optimization of real-world problems is always subject to data uncertainty.

Ben-Tal et al. [31] name some reasons for data uncertainty:

prediction errors The data does not exist and can only be forecast, e. g., future de-
mands in telecommunication networks, or future customer behavior. Oftentimes,
estimations are based on historical data, if available. Sometimes the estimations
are intentionally too conservative to introduce some buffering range for prediction
errors.

measurement errors The data cannot be measured exactly, e. g., physical limitations to
obtain real-time measurements. Furthermore, large distributed systems may imply
the need for local measurements whose results cannot be propagated instantly.
Delays are introduced and an exact real-time data measurement is not possible in
practice.

implementation errors The real-world data cannot be represented exactly in the solving
process or vice-versa. For example, on the one hand the input data is represented
on a computer as precise as the precision of the floating point arithmetics. On the
other hand, the precise value of a decision variable in an optimal solution might
not be realizable in the real-world application the mathematical model is based on.

In Ben-Tal and Nemirovski [27], the authors present a sensitivity analysis of LP problems
to data uncertainty. They study 90 instances from NETLIB [2] and their optimal
solutions, which they call the nominal solutions. By perturbing the input data by 1%,
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the corresponding nominal solution becomes infeasible with probability more than 5%
for 27 of these instances. In fact, for 13 instances a perturbation of 0.01% already makes
the nominal solution infeasible violating some constraints by more than 50%. For a
detailed example, see Ben-Tal and Nemirovski [27], Ben-Tal et al. [31].
From the very beginning of modern computer-aided optimization, researchers have

been aware of the model limitations by assuming data certainty and of the open challenge
to take data uncertainty into account properly. Several approaches based on different
paradigms have been proposed, always struggling with the accuracy of the uncertainty
model on the one hand and the increase in complexity and computational intractability
on the other hand. Bertsimas et al. [36] give a good survey of optimization under data
uncertainty with a focus on robust optimization in particular.
A very intuitive view on optimization problems under data uncertainty is given by the

chance constraints: arbitrary constraints of the mathematical optimization model have
to be satisfied with a given probability. For example, for the linear constraint

a�x ≤ b

with uncertain coefficients a, the corresponding chance constraint

P[a�x ≤ b] ≥ ε

requires the probability that a�x ≤ b is satisfied for the uncertain data to be at least ε ∈
[0, 1]. Of course, a chance constraint can also be formulated based on the complementary
event and thus the probability that the constraint is not satisfied(i. e., violated):

P[a�x > b] ≤ 1− ε.

In the following, we give a brief survey on different paradigms and approaches to
handle data uncertainty in optimization problems. While also reporting on stochastic
programming, dynamic programming and nonlinear approaches, we focus on robust
optimization and its linear approaches in particular.

2.1 Stochastic optimization

In 1955, Dantzig [60] considered LPs under uncertainty coining the paradigm of stochastic
optimization. Stochastic optimization assumes that the underlying stochastic distribution
of the uncertain data is known. The aim of stochastic optimization is to solve a stochastic
program such that the expected value of the objective function is optimal, cf. Shapiro
et al. [145]. The general stochastic optimization problem can be formulated as follows

min E[κ(x, U)] (2.1a)

s. t. f(x, U) ≤ 0 (2.1b)

x ≥ 0 (2.1c)
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2.2 Robust optimization

where x ∈ Rn
≥0 is the vector of decision variables, f : Rn×k → R a constraint function,

and κ : Rn → R the objective function. The data uncertainty is given by the vector of
random variables U ∈ Rk with known distribution D(U). Note, if the distribution D(U)
is discrete, the expected value in the objective function can be written as a finite sum.
Thus, if f(x, U) is linear, the stochastic optimization problem can be formulated as an
LP in this case.
Unfortunately, most of the times the distribution of uncertain real-world data is not

known. Instead, a certain distribution is assumed, e. g., Poisson distribution for queuing
problems or just a standard distribution. The resulting stochastic program might not
model the data uncertainty properly anymore. Furthermore, a solution which is optimal
for the expected value must not be optimal for any realization.
Moreover, it is well-known that solving stochastic optimization problems is computa-

tionally hard in practice as many scenarios or realizations have to be considered.
A detailed introduction and survey of stochastic optimization is given in Shapiro et al.

[145], and applications are considered in Stein and Ziemba [149].

2.2 Robust optimization

A different paradigm, robust optimization, dates back to Soyster [147] in 1973. In contrast
to stochastic programming, here the probability of a specific realization of uncertain
data is not considered. Instead, it is assumed that all realizations of the uncertain data
take place in a so-called uncertainty set U . The aim of robust optimization is to solve
a robust program such that its solution is optimal among all possible realizations of
uncertain data, i. e., realization in the uncertainty set U . Consider a general optimization
problem

min κ(x) (2.2a)

s. t. f(x) ≤ 0 (2.2b)

with a vector of decision variables x ∈ Rn
≥0, an objective function κ : Rn → R, and a

constraint function f : Rn → Rm. The general robust optimization problem can be
formulated as follows

min max
u∈U

κ(x, u) (2.3a)

s. t. fR(x, u) ≤ 0 ∀u ∈ U (2.3b)

where x ∈ Rn
≥0 is the vector of decision variables, κ : Rn+k → R the objective function,

and fR : Rn+k → Rm a constraint function. The possible realizations of the uncertain
data u are given by the uncertainty set U ⊆ Rk. The formulation (2.3) is called the robust
counterpart of the original formulation (2.2). We call a robust counterpart compact if its
size is polynomial in the size of problem formulation for a single realization.
Ben-Tal et al. [31] show that any uncertain data in the objective function can be

moved to the constraints by introduction of a new auxiliary variable capturing the
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uncertain terms. Hence, w. l. o. g., we consider the objective function to be unaffected
of the data uncertainty, i. e., we write κ(x). In addition, they show that the i-th
constraint is only affected by the uncertainty of the data included in this constraint, i. e.,
fR
i (x, ui) ≤ 0 ∀ui ∈ Ui where Ui is the projection of the uncertainty set U to the data of
constraint i. W. l. o. g., we assume U = U1 × U2 × · · · × Um with (topologically) closed
sets Ui. Then the robust counterpart of (2.2) reads

min κ(x) (2.4a)

s. t. fR
i (x, ui) ≤ 0 ∀i = 1, . . . ,m, ui ∈ Ui. (2.4b)

Note, a singleton uncertainty set, i. e., |Ui| = 1, is used to model a constraint without
data uncertainty. Furthermore, if U is a continuous set, infinitely many constraints (2.4b)
exist.
By neglecting the probability of a specific realization, the robust solution has to be

feasible even for realizations with probabilities almost zero, i. e., realizations which almost
never occur. Therefore, a robust solution tends to be “cautious” by including additional
slacks to constraints to guarantee feasibility for these rare realizations. This effect is
called conservatism and one major drawback of the robust optimization paradigm. To
overcome conservatism, the concept of a budget of robustness has been introduced where
the uncertainty set U does not include all possible realizations but appropriate many
realizations, especially those with high probability.
Following the robust optimization paradigm, we can formulate a robust version of an

optimization problem which takes data uncertainty into account. In general this robust
counterpart of an optimization problem has a significantly increased computational
complexity compared to the original problem. In fact, Ben-Tal and Nemirovski [25] show
that the robust counterpart of a convex optimization problem is in general computationally
intractable. Nevertheless, there exist computationally tractable robust counterparts for
special classes of functions fi(x) and types of uncertainty sets Ui.

2.2.1 Uncertainty sets

In the previous, we have seen that in robust optimization the data uncertainty is
characterized by uncertainty sets. Five important types of uncertainty sets are the
following; cf. Bertsimas et al. [36].

discrete uncertainty set Let (ui)i∈{1,...,n} be a finite collection of real vectors ui ∈ Rn.
Then

U := {u1, . . . , un} (2.5)

defines a discrete uncertainty set. An example is shown in Figure 2.1(a).

ellipsoidal uncertainty set Let Q ∈ Rl×k be a matrix and ρ ∈ R≥0. Then

U :=
{
u ∈ Rk : ‖Qu‖ ≤ ρ

}
(2.6)

defines an ellipsoidal uncertainty set. Figure 2.2(a) shows such a set.
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Figure 2.1: Example of a non-convex uncertainty set: discrete uncertainty set
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Figure 2.2: Example of convex uncertainty sets: ellipsoidal and polyhedral uncertainty
sets

polyhedral uncertainty set Let D ∈ Rk×l be a matrix and d ∈ Rk a vector. Then

U := P (D, d) =
{
u ∈ Rk : Du ≤ d

}
(2.7)

defines a polyhedral uncertainty set. If U is bounded and thus the polyhedron,
then it can be written as the convex hull of a finite number of extreme points
corresponding to the worst-case realizations. A polyhedral uncertainty set is shown
in Figure 2.2(b).

interval uncertainty set Let I1, I2, . . . , Ik ⊆ R be closed intervals. Then

U :=
{
u =

(
u1 u2 · · · uk

)� ∈ I1 × I2 × · · · × Ik

}
(2.8)
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Figure 2.3: Example of special polyhedral uncertainty sets: interval and cardinality
constraint uncertainty sets.

defines an interval uncertainty set; a special case of a polyhedral uncertainty set.
See Figure 2.3(a) for an illustration.

cardinality constraint uncertainty set Another special case of a polyhedral uncertainty
set is the cardinality constraint uncertainty set. Let ū, ǔ, û ∈ Rk be bounds such
that u ∈ [ū− ǔ, ū+ û] holds for all realizations of the uncertain data u. We call
ū the nominal value of u, and ǔ and û the negative resp. positive deviation of u.
Further let γ ∈ {0, . . . , k} be the budget of robustness parameter bounding the
number of data entries which deviate maximally at the same time in a realization
of u. Then

U :=
{
u = (ui)i=1,...,k ∈ Rk : ūi − α̌iǔi ≤ ui ≤ ūi + α̂iûi, (2.9)

k∑
i=1

(α̌i + α̂i) ≤ γ,

α̌i, α̂i ∈ [0, 1]
}

defines a cardinality constraint uncertainty set, where at most γ many data entries
of u deviate with maximal negative or positive deviation. Note, it is possible that
more than γ data entries deviate from their nominal value with only a fraction
of their maximal positive or negative deviations, e. g., instead of two data entries
at their maximal positive deviations, there can be four data entries deviating to
half of their maximal positive deviations. Such an uncertainty set is shown in
Figure 2.3(b).

A prominent cardinality constraint uncertainty set is the Γ-robust uncertainty set
used in the Γ-robustness approach. Note, it is also a special case of polyhedral
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uncertainty. We will investigate this set and the underlying concept of Γ-robustness
in detail in section 3.1.

2.2.2 Tractability of robust optimization problems

In the following, we consider different classes of optimization problems defined by
specific constraint functions f in (2.2). We report on tractability results for the robust
counterparts of these classes and different types of uncertainty sets.

Robust linear optimization. Let the constraint function f be of the form

f(x) = Ax− b, (2.10)

with b certain. Then problem (2.2) is an LP and its robust counterpart is given by

min κ�x (2.11a)

s. t. Ai·x ≤ bi ∀Ai· ∈ Ui, i = 1, . . . ,m. (2.11b)

Note, that Ai·x ≤ bi holds for all Ai· ∈ Ui if and only if max{Ai·x : Ai· ∈ Ui} ≤ bi
holds for all i = 1, . . . ,m. Thus, the possible infinitely many constraints (2.11b) can be
verified by solving the maximization subproblem max{Ai·x : Ai· ∈ Ui} and checking if
the maximum is not greater than the smallest right-hand side bi.
The robust counterpart of an LP with ellipsoidal uncertainty set is a second-order cone

program (SOCP) as the maximization subproblem optimizes over a quadratic constraint;
cf. [36]. If the uncertainty set U is polyhedral, the maximization subproblem is an LP
and the robust counterpart (2.11) is linear as well; cf. [36]. The robust counterpart of an
LP with a cardinality constrained uncertainty set is also an LP.

Robust quadratic optimization. Optimization problems with quadratic terms of deci-
sion variables in the objective or constraint functions are called quadratic optimization
problems. The general optimization problem (2.2) with a constraint function f of the
form

f(x) = ‖Aix‖2 + b�i x+ ci (2.12)

is called a quadratically constraint quadratic problem (QCQP). An equivalent formulation
is the one obtained for constraint functions of the form

f(x) = ‖Aix+ b�xi‖ − c�i x− di (2.13)

which is called second-order cone program (SOCP). Sometimes the second-order cone is
more illustratively also called the “ice cream cone”.
The robust counterparts of a QCQP or a SOCP are NP-hard if the uncertainty set U

is the intersection of ellipsoids or even if it is polyhedral, see Ben-Tal and Nemirovski
[25, 26], Ben-Tal et al. [29]. If U is a single ellipsoid, the robust counterparts are
semidefinite optimization problems; cf. Ben-Tal et al. [29].
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Robust semidefinite optimization. The optimization over symmetric positive definite
matrix variables with linear cost and constraint functions is called semidefinite opti-
mization. For example, quadratically constraints quadratic programming and linear
programming are special cases of semidefinite programming. A general semidefinite
programming formulation is given by

min tr(κ�X) (2.14a)

s. t. tr(A�
i X) = bi ∀i = 1, . . . ,m (2.14b)

X � 0 (2.14c)

where X ∈ Rn×n is the (symmetrical) matrix decision variable, κ ∈ Rn×n is a symmetrical
objective coefficient matrix, Ai ∈ Rn×n is a symmetrical constraint matrix for i = 1, . . . ,m,
and b ∈ Rm a vector of corresponding right-hand side coefficients.
The robust counterparts of semidefinite optimization problems (SDP) are in general

computationally intractable (see Ben-Tal and Nemirovski [25], Ben-Tal et al. [28]) even
if the uncertainty set U is polyhedral (see Nemirovski [127]).

Robust discrete optimization. The robust counterpart to polynomially solvable dis-
crete optimization problems may become NP-hard, as shown for selected discrete
optimization problems by Kouvelis and Yu [107]. When considering only uncertain data
in the objective function, the robust counterpart becomes computationally tractable in
some cases, e. g., the cardinality constrained data uncertainty in the objective function
by Bertsimas and Sim [33, 34], or Altin et al. [12].

2.3 Multi-stage optimization under data uncertainty

In the previous sections, we considered single-stage optimization under data uncertainty,
i. e., the optimal decision of all decision variables has to be made before any uncertainty
is realized. Multi-stage optimization under data uncertainty, also called robust adaptable
optimization, introduces a sequence of stages. A subset of the decision variables is
assigned to each stage. The decisions have to be made sequentially, one stage at a time,
and may take realizations of uncertain data in previous stages into account.
There exist several approaches to multi-stage optimization and extensions taking data

uncertainty into account have been proposed for some of them. In the following, we
highlight some of these.

Receding horizon. The receding horizon approach is an iterative approach. In each
stage, a single-stage optimization problem including all decision variables of the current
stage and all subsequent stages is solved. Realizations of data uncertainty in previous
stages is taken into account. Thus, a static solution feasible to the current and all
subsequent stages is determined and implemented for the current stage. Due to its non-
adaptive static nature, this solution tends to be conservative and sub-optimal compared
to an adaptive approach. Nevertheless, oftentimes the receding horizon approach is
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computationally tractable and used by operations research practitioners in production
planning, etc. [36].

Dynamic programming. The recursive nature of dynamic programming can be seen
as a sequential process where the outcome of the n-th step (or stage) depends only
on the input of the (n − 1)-th step. In this sense, it includes aspects of multi-stage
optimization. The integration of uncertain data leads to robust dynamic programming
and also to robust Markov decision processes. For details on those approaches we refer
to Iyengar [86], Nilim and El Ghaoui [128], Xu et al. [160] and the references therein.
Finally, we remark that the computational tractability of dynamic programs with certain
data is highly influenced by the dimension of the recursion space. In the setting with
uncertain data further assertions have to be met to preserve this property and obtain a
computationally tractable robust dynamic program; cf. Xu et al. [160].

2.3.1 Multi-stage stochastic optimization

In multi-stage stochastic optimization, the decisions of later stages are called recourse
(actions) as they may change decisions of earlier stages; sometimes even restoring feasibility
lost due to a specific realization of uncertain data. If a complete change of earlier decisions
is allowed, this is called complete recourse; cf. Birge and Louveaux [41]. In this case, a
completely new/different solution can be obtained in each stage. If the recourse must
preserve some parts of the earlier decisions, it is called incomplete or limited recourse.
Note that in this case infeasibilities due to data realizations might not be restorable
because of the limitations of the recourse action.
Multi-stage stochastic optimization problems with limited recourse are more difficult

to solve in practice than those with complete recourse [36]. In general, multi-stage
stochastic optimization problems are computationally more tractable if only a finite
number of scenarios have to be considered. Then decomposition techniques as Bender’s
decomposition can be applied; cf. Bertsimas and Tsitsiklis [35]. Yet, a very large number
of realizations may have to be considered to capture the structure of the uncertainty
set. Furthermore, the overall complexity increases rapidly with the number of stages
increasing.

2.3.2 Multi-stage robust optimization

Although we have learned that single-stage robust optimization is oftentimes computa-
tionally tractable for reasonable uncertainty sets, extending the concepts to multiple
stages makes it rather tricky. Ben-Tal et al. [30] have shown that already the two-stage
linear problem with deterministic uncertainty is NP-hard in general, i. e., for general
rules how future decisions depend on past realizations.

Affine adaptability. However Ben-Tal et al. [30] also point out that there exist special
cases, i. e., classes of dependencies of the decision between the individual stages, which
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might be easier to solve. They introduce the concept of affine adaptivity where future
decisions depend affinely on past decisions. Therefore, decisions of later stages can be
parametrized by affine functions taking arguments of earlier stages. This can be done
iteratively. Thus, only the first-stage decisions remain and the optimization problem
becomes again a single-stage problem. Yet, the resulting problem includes non-linearities
involving the uncertain data coefficients because of the recursive parametrizations; loosing
its computational tractability.
If only the first-stage coefficients are uncertain and the uncertainty set is conic, then

the affine adaptable robust counterpart is an LP [36].

Recoverable robustness A recent approach to multi-stage robust optimization is the
so-called recoverable robustness concept, a two-stage deterministic approach similar
to non-deterministic stochastic optimization with (limited) recourse. In recoverable
robustness, a first-stage decision is taken without the knowledge of the uncertain data.
Then after the realization of the uncertainty this first-stage decision may be adjusted in a
second-stage to obtain feasibility (”recover“ from a solution that became infeasible due to
the data realization). The overall optimization problem is to determine the best first-stage
decision taking the possible limited (and costly) second-stage adjustments/recovery into
account while minimizing the total costs.
Recoverable robustness has been introduced in the context of applications in train

scheduling by Liebchen et al. [110] and intensively studied in Büsing [46]. We discuss
this robustness concept in detail in Section 3.4.
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CHAPTER THREE

ROBUSTNESS CONCEPTS

In this chapter, we present four different concepts of robustness, which we will investigate
in detail in this thesis. We discuss their usability and highlight their advantages and
limitations.

At first, we consider the concept of Γ-robustness. It is well-known and thus can be
seen as a starting point for our investigation of further robustness concepts. In addition,
we consider the experimental properties of Γ-robust optimization problems as benchmark
in the computational comparison of the robustness concepts we consider in this thesis.

Second, we present the concept of multi-band robustness, which generalizes the single
deviation interval of the Γ-robust approach to multiple “histogram-like” intervals providing
a more detailed modeling potential.

At third, recoverable robustness, a robustness concept implementing a two-stage robust
optimization approach is discussed. Its key idea consists of a first stage decision and
a limited second stage modification of the first stage decision after the realization of
the uncertain data is known. The first stage decision may even become infeasible for a
specific data realization such that its feasibility has to be “recovered” by the subsequent
modification to restore its feasibility. Hence it is called recoverable robustness.

Fourth, we describe the concept of submodular robustness which generalizes multi-band
robustness (and thus Γ-robustness) even further.

The last section of this chapter does not focus on further robustness concepts but on
two other important aspects: determination of robustness parameters and evaluation
of robustness. All presented robustness concepts include several robustness parameters
and/or modeling decisions which highly affect the accuracy of the resulting model. We
discuss how to determine meaningful parameter settings based on historical data and
which trade-offs have to be considered. Furthermore, we present different robustness
measures to evaluate the realized robustness of an optimal robust solution with respect
to the historical data/sample the uncertainty set is based on.

3.1 Γ-robustness

With the revival of robust optimization in the last years, one specific robustness concept
has become in particular popular: the concept of Γ-robustness. Introduced by Bertsimas
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3 Robustness concepts

and Sim [33, 34] in 2003, it uses a cardinality constrained uncertainty set. The concept of
Γ-robustness implements a budget of robustness to control conservatism using a so-called
robustness parameter, denoted by Γ. Bertsimas and Sim [34] have shown that the robust
counterpart of an LP with a Γ-robust uncertainty set remains computational tractable.
Furthermore, they have derived probabilistic guarantees that a constraint, affected by
uncertain data from a Γ-robust uncertainty set, is fulfilled. These are only some reasons
why Γ-robustness has become popular and widely applied to many optimization problems
and real-world application areas, e. g., facility location, inventory management, supply
chain management, revenue management, telecommunication network problems, vehicle
routing problems, (train) shunting, and time tabling problems; as of summer 2013,
Bertsimas’ and Sim’s original work has been cited about a thousand times.

3.1.1 The concept of Γ-robustness

In the following, we will define the concept of Γ-robustness formally, report on important
results and investigate the Γ-robust counterparts of selected optimization problems under
data uncertainty.

Let Γ ∈ [0, n]. The concept of Γ-robustness makes the following assumptions on the
vector of uncertain data u ∈ Rn:

• Each entry ui of u is modeled as an independent random variable with unknown
bounded symmetrical distribution.

• The distribution is assumed to be symmetrical around a nominal value ūi with a
maximal deviation of ûi ≥ 0, i. e., ui ∈ [ūi − ûi, ūi + ûi] holds for every realization
of u.

• Every realization vector of u has at most 
Γ�-many entries ui simultaneously
deviating from their nominal values ūi to either their minimum ūi− ûi or maximum
values ūi+ ûi. In addition, another entry ui may deviate to Γ−
Γ� to its minimum
or maximum value at the same time.

Although, the Γ-robustness concept of Bertsimas and Sim allows fractional values of Γ,
we restrict ourselves w. l. o. g. to integer values of Γ in this thesis. Note, our results can
be generalized to fractional values following the interpretation of those values presented
above.

This leads us to the subsequent definition of the Γ-robust uncertainty set.

Definition 3.1 (Γ-robust Uncertainty Set). Let ū, û ∈ Rn, û ≥ 0 be the nominal

and the deviation values of the uncertain data u =
(
u1 u2 · · · un

)�
such that ui ∈

[ūi − ûi, ūi + ûi] holds for every realization of u. Further, let Γ ∈ {0, 1, . . . , n} be a
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u1

u2
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(a) Γ = 0

u1

u2
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(b) Γ = 1

u1

u2
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4

8

12

(c) Γ = 2

Figure 3.1: Γ-robust uncertainty sets for the problem instance defined in Example 3.2
and Γ = 0, 1, 2. Also the nominal data value (6, 8) is shown. While only a
single point (6, 8) for Γ = 0, the volume of the convex uncertainty set and
thus its conservatism grows with increasing value of Γ.

UΓ :=
{
u = (ui)i=1,...,n ∈ Rn : ūi − α̂iûi ≤ ui ≤ ūi + α̂iûi, (3.1)

n∑
i=1

α̂i ≤ Γ, α̂i ∈ [0, 1]
}
.

Note, the Γ-robust uncertainty set includes realizations where more than Γ entries ūi

deviate from their nominal values as long as the sum of their relative deviations (i. e.,
α̂i) is at most Γ. Clearly, the most deviated realizations are those on the border of
the polyhedra and thus, vertices or a convex combination of them. Hence, it suffices to
consider extreme points, i. e., realizations with α̂ ∈ {0, 1}n and

∑n
i=1 α̂i = Γ.

Example 3.2. Let us consider uncertain data u ∈ R2 with nominal values ū =
(
6 8

)�
and deviation values û =

(
3 4

)�
. Figure 3.1 illustrates some possible data realizations of

such a set. Furthermore let Γ ∈ {0, 1, 2}; cf. Figure 3.1(a)–3.1(c). With increasing value
of Γ, more realizations are in the uncertainty set and thus protected (i. e., considered
in the worst-case determination to derive the Γ-robust counterpart). At the same time
the level of conservatism increases: for Γ = 2 the worst-case is the realization (9, 12),
although this realization may only occur with very low probability.
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3 Robustness concepts

3.1.2 The Γ-robust counterpart

Let κ ∈ Rn
>0, A ∈ Rm×n, and b ∈ Rm. Consider a general LP in its maximization form

max κ�x (3.2a)

s. t. Ai·x ≤ bi ∀i = 1, . . . ,m (3.2b)

x ≥ 0. (3.2c)

Its Γ-robust counterpart reads

max κ�x (3.3a)

s. t. Ai·x ≤ bi ∀i = 1, . . . ,m,A�
i· ∈ UΓ

i (3.3b)

x ≥ 0. (3.3c)

Note, there are exponential many constraints (3.3b). We can rewrite (3.3) using a
polynomial number of constraints as

max κ�x (3.4a)

s. t. max
A�

i·∈UΓ
i

Ai·x ≤ bi ∀i = 1, . . . ,m (3.4b)

x ≥ 0 (3.4c)

with only m constraints (3.4b). Unfortunately, formulation (3.4) is not linear anymore
due to its max-term. However, the max-term of constraint 1 ≤ i ≤ m is an optimization
problem itself and can – for a fixed value x̃ of x – be formulated as an ILP

max
A�

i·∈UΓ
i

Ai·x̃ = max
n∑

j=1

(
Āijx̃j + Âijx̃jzj

)
(3.5a)

s. t.
n∑

j=1

zj ≤ Γ (3.5b)

zj ∈ {0, 1} ∀j = 1, . . . , n (3.5c)

with indicator variables zj = 1 if and only if the j-th entry Aij is at its maximal/peak value

Āij + Âij . Negative deviations are ignored in this formulation as (3.5) is a maximization
problem and its optimum will always include positive and exclude negative deviations
(since x ≥ 0). Note, the objective function term

∑n
j=1 Āijx̃j is constant. Further, the

coefficient matrix defined by constraints (3.5b) is totally unimodular, i. e., the set of
feasible solutions of the linear relaxation of (3.5) is a polytope with only integer vertices.
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3.1 Γ-robustness

of linear programming

max
n∑

j=1

Âijx̃jzj = min Γπi +
n∑

j=1

ρij

s. t.
n∑

j=1

zj ≤ Γ s. t.πi + ρij ≥ Âijx̃j ∀j = 1, . . . , n

zj ∈ [0, 1] ∀j = 1, . . . , n πi, ρij ≥ 0 ∀j = 1, . . . , n

holds. The variables πi and ρi are dual variables to constraints (3.5b) and the upper
bound constraints of the relaxation of (3.5c), respectively. This yields the following
nonlinear formulation of the Γ-robust counterpart of (3.2):

max κ�x (3.7a)

s. t.
n∑

j=1

Āijxj +min

(
Γπi +

n∑
j=1

ρij

)
≤ bi ∀i = 1, . . . ,m (3.7b)

πi + ρij ≥ Âijxj ∀i = 1, . . . ,m, j = 1, . . . , n (3.7c)

x, π, ρ ≥ 0. (3.7d)

We can relax the min-operator in constraint (3.7b) because if a non-minimal solution
of the minimization subproblem fulfills this constraint, the minimum does it as well.
Furthermore, due to the objective sense of (3.7) and the non-negativity of x, the term
tends to its minimum in the overall optimization process. In summary this gives us the
following compact LP formulation of the Γ-robust counterpart of the general LP (3.2)

max κ�x (3.8a)

s. t.
n∑

j=1

Āijxj + Γπi +
n∑

j=1

ρij ≤ bi ∀i = 1, . . . ,m (3.8b)

πi + ρij ≥ Âijxj ∀i = 1, . . . ,m, j = 1, . . . , n (3.8c)

x, π, ρ ≥ 0. (3.8d)

In contrast to the exponential formulation (3.3), its size is polynomial in the size of the
non-robust LP (3.2). In fact, it has m(n+ 1) additional variables and m · n additional
constraints.
This observation is crucial as it implies that applying the Γ-robustness concept to

linear programming does not increase the complexity of the problem. Nevertheless, we
can expect an impact on its computational tractability in practice as the problem size
increases polynomially.
In contrast to the compact reformulation (3.8), Fischetti and Monaci [69] propose to

use the exponential-sized formulation (3.3) together with a lazy constraint approach
(i.e., dynamic row generation) in practice. In their approach, violated constraints (3.3b)
are separated on-the-fly as so-called robustness cuts. The computational effectiveness
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3 Robustness concepts

of those cuts is discussed for the uncertain set covering problem in [69]. The authors
conclude that this approach seems promising for LPs but not computationally tractable
for ILPs as the solver produces too many infeasible solutions which must be cut-off
quite inefficiently by robustness cuts each. This comes along with our computational
results in Koster et al. [103, 106] where the compact robust counterpart outperforms
other approaches.

3.1.3 Probabilistic analysis and feasibility guarantees

Bertsimas and Sim [33, 34] also investigate the probability that a constraint subject to a
Γ-robust uncertainty set is violated. They derive probability bounds on the constraint
violation under mild conditions to the underlying unknown probability distribution. In
the following, we report on these results.
Given Γ ∈ {0, . . . , n} and a Γ-robust linear constraint

Ai·x ≤ bi ∀A�
i· ∈ UΓ

i , (3.9)

we are interested in the probability

P[Ai·x̃ > bi] (3.10)

that this constraint is violated for an optimal solution x̃. The next theorem yields
upper bounds on this probability. Notice that these bounds may be fractional since the
definition of Γ may also be extended to fractional values; cf. the introduction of this
chapter.

Theorem 3.3 (Bertsimas and Sim [33, 34]). Let x̃ be an optimal solution of problem (3.8),
then the following holds:

1. Suppose the Γ-robust data uncertainty set is used in the model, then the probability
that the i-th constraint is violated satisfies:

P[Ai·x̃ > bi] ≤ B(n,Γi) =
1

2j

⎛
⎝(1− μ)

n∑
�=�ν�

(
n

	

)
+ μ

n∑
�=�ν�+1

(
n

	

)⎞⎠ (3.11)

where n = dim(UΓ
i ) is the number of coefficients affected by data uncertainty,

ν = Γi+n
2

, and μ = ν − 
ν�. Moreover, the bound is tight.

2. The bound (3.11) satisfies

B(n,Γi) ≤ (1− μ)C(n, 
ν�) +
n∑

�=�ν�+1

C(n, 	) (3.12)

where

C(n, 	) =

⎧⎨
⎩

1
2n
, if 	 ∈ {0, n},

1√
2π

√
n

(n−�)�
exp
(
n log

(
n

2(n−�)

)
+ 	 log

(
n−�
�

))
, otherwise.
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3.2 Multi-band robustness

n bounds (3.11), (3.12) approximation (3.14)

5 5.0 5.0
10 8.2 8.4
100 24.3 24.3
200 33.9 33.9
2000 105.0 105.0

Table 3.1: Bertsimas and Sim [34]. Choice of Γi as a function of n(= dim(UΓ)) so that
the probability of constraint violation is less than 1%.

3. For Γi = θ
√
n,

lim
n→∞

B(n,Γi) = 1− Φ(θ) (3.13)

where

Φ(θ) =
1√
2π

∫ θ

−∞
exp

(
−y2

2

)
dy

is the cumulative distribution function of the standard normal.

Bertsimas and Sim [33] remark that the bound (3.12) is easier to compute than
bound (3.11) because it avoids to evaluate sums of binomials for large values n. Further,
they derive the following approximation of the bound (3.11) by using the De Moive-
Laplace approximation of the Binomial distribution

B(n,Γi) ≈ 1− Φ

(
Γi − 1√

n

)
. (3.14)

Table 3.1 states the bounds on (and approximation of) Γi for selected values of n as
determined in Bertsimas and Sim [34]. It shows that a Γ-robust linear constraint (3.9)
with a sufficiently large number of uncertain coefficients is already fulfilled with probability
greater than 99% for comparatively small values of Γi. For example, if there are 100
uncertain coefficients, Γi = 24.3 already yields a probability greater than 99% that this
constraint is satisfied.

3.2 Multi-band robustness

In the following, we present a generalization of the concept of Γ-robustness: multi-band
robustness. It uses multiple deviation intervals, so-called bands. For each band and each
uncertain data coefficient an associated deviation value is assumed. In addition, bounds
on the total number of realizations in each band are included in the concept. Thus, a
“histogram-like” discrete distribution can be specified. Following this approach, the concept
of Γ-robustness is the special case with one nominal value (band) and one negative and
one positive deviation band. The idea of multi-band (or histogram) robustness goes back
to the work of Bienstock [37] where the key idea has been applied to portfolio optimization
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3 Robustness concepts

problems in finance but not formulated as a more general abstract robustness concept.
Later, this idea has been applied to wireless network design problems by Bienstock and
D’Andreagiovanni [38], D’Andreagiovanni [58]. Recently, Büsing and D’Andreagiovanni
[47, 48] introduced the concept of multi-band robustness as a theoretical framework
presenting fundamental investigations on its properties, multi-band robust counterparts
of LPs, and preliminary probabilistic studies on feasibility guarantees. Shortly after this
work, Mattia [122] presented a very similar robustness concept in a technical report. But
in contrast to multi-band robustness it is less general: it assumes symmetrical random
variables and does not have lower bounds on the number of realizations. In particular,
the lack of the lower bounds implies a higher conservatism.

3.2.1 The concept of multi-band robustness

Let us consider the concept of multi-band robustness more formally. It makes the
following assumptions on the vector u ∈ Rn of uncertain data: Each entry ui of u is
modeled as an independent random variable with unknown distribution. There is a set
B of negative and positive deviation bands

B = {B, . . . ,−1, 0, 1, . . . , B} (3.15)

where −B and B denote the number of negative and positive deviation bands, respectively.
The band 0 corresponds to no deviation and thus the nominal value. It is included as
a band for notational reasons. Hence, there are B − B + 1 bands in total. For each
uncertain coefficient ui, there exists a nominal value ū and a deviation value ûb for each
band b ∈ B so that

−∞ < ûB
i < · · · < û0

i = 0 < · · · < ûB
i < ∞ (3.16)

holds. We say a realization ũi lies in band b ∈ B if and only if

ũi ∈ (ūi + ûb−1
i , ūi + ûb

i ].

In addition each band b ∈ B has two robustness parameters γb,Γb ∈ {0, 1, . . . , n} with
0 ≤ γb ≤ Γb ≤ n bounding the total number of realizations in b from below (γb)
and above (Γb). To allow feasible realizations

∑
b∈B γb ≤ n must hold. Further, the

band 0 robustness parameters are defined as γ0 = 0 and Γ0 = n. All bands, nominal
and deviation values, and robustness parameters are assumed to model the underlying
probability distribution. In particular, we assume that

u ∈ (ū+ ûB, ū+ ûB] (3.17)

holds for all realizations of the uncertain data vector u ∈ Rn.

Using the previous notation and definitions, we can now formally define the multi-band
robust uncertainty set as
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u1
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Figure 3.2: Multi-band robust uncertainty set of problem instance defined in Example 3.5
and for bounds γb = 0 for all b ∈ B, Γb = 1 for all b ∈ B \ {0} and Γ0 = 2

Definition 3.4 (Multi-band Robust Uncertainty Set). Let the vector of uncertain data

be denoted by u =
(
u1 u2 · · · un

)� ∈ Rn. Let B be the set of bands and ū, ûb ∈ Rn,

γb,Γb ∈ {0, 1, . . . , n} for all b ∈ B such that u ∈ (ū+ûB, ū+ûB] holds for every realization
as described above.
Then, the multi-band robust uncertainty set Umb is defined as

Umb := conv
{
u = (ui)i=1,...,n ∈ Rn :

ūi +
∑
b∈B

α̂b
i û

b−1
i < ui ≤ ūi +

∑
b∈B

α̂b
i û

b
i ∀i = 1, . . . , n,

γb ≤
n∑

i=1

α̂b
i ≤ Γb ∀b ∈ B,

∑
b∈B

α̂b
i = 1, α̂b

i ∈ {0, 1} ∀i = 1, . . . , n, b ∈ B
}
.

with ûB−1 := ûB for technical reasons and notational simplicity.

Example 3.5. Let us consider an example of an uncertain problem where two coefficients
u1, u2 are uncertain. We decide to model five bands: the nominal band, two positive and
two negative deviation bands. Formally, let n = 2 and B := {−2,−1, 0, 1, 2} with the
following deviation values û−2

1 = −3, û−1
1 = −1, û1

1 = 1, û2
1 = 3, û−2

2 = −4, û−1
2 = −2,

û1
2 = 2, û2

2 = 4, and û0
1 = û0

2 = 0. For each deviation band we assume at least 0 and
at most 1 realization to fall into this band: i. e., γb = 0 for all b ∈ B, Γb = 1 for all
b ∈ B \ {0} and Γ0 = 2.
The corresponding multi-band robust uncertainty set is shown in Figure 3.5. Note

that the example corresponds to Example 3.2 for the Γ-robust uncertainty set. The
deviation value of the maximal deviation bands is the same. Here, we have introduced
additional intermediate deviation bands to model the uncertainty more precise. By
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3 Robustness concepts

comparing Figures 3.5 and 3.1(c), we observe that the uncertainty set Umb is a subset of
the corresponding uncertainty set UΓ and thus, it is also less conservative.

Remark 3.6. In the following, we assume that the uncertain data u affects the left-hand
side of linear constraint of the for ux ≤ d. Thus positive deviations contribute most to a
worst-case realization with respect to the feasibility of this constraint. For constraints
with different relation signs, the following definition of the frequency profile has to be
adjusted accordingly or the constraints have to be transformed into the assumed form.

Given a multi-band robust uncertainty set Umb, Büsing and D’Andreagiovanni [48]
define its (frequency) profile p, {ϑb}b∈B as follows

p := min

⎧⎨
⎩b ∈ B :

b∑
i=B

γi +
B∑

i=b+1

Γi ≤ n

⎫⎬
⎭

ϑb :=

⎧⎪⎨
⎪⎩
γb if b ≤ p− 1

Γb if b ≥ p+ 1

n−∑b∈B\{p} ϑ
b if b = p

where p denotes the smallest band index where the lower bound on data realization may
be exceeded in the worst-case. It is used to determine the values ϑb which determine
the exact number of data realizations in band b in a worst-case realization; see also
Example 3.8. Note that since Γ0 = n, it holds p ≥ 0. Besides,

∑
b∈B ϑb = n by definition.

Further, Büsing and D’Andreagiovanni [48] have shown that only realization vectors

u = (ui)i=1,...,n ∈ Umb with ui ∈ {ū+ ûB+1, . . . , ū+ û0, . . . , ū+ ûB} have to be considered
when determining a worst-case data realization. Furthermore, there exists a worst-case
realization for which we can determine the number of realizations ui for each band b ∈ B
as follows.

Lemma 3.7 (Büsing and D’Andreagiovanni [48]). Consider uncertain data modeled using
a multi-band robust uncertainty set Umb. Let p, {ϑb}b∈B be its corresponding frequency
profile and u ∈ Umb an arbitrary realization vector.
If there exists a band b ∈ B with not exactly ϑb-many realizations ui, then u is

dominated by a different realization vector u′ ∈ Umb with ϑb-many realizations u′
i in band

b.

The following example illustrates the idea of the frequency profile and its contribution
to a worst-case scenario realization.

Example 3.8. Consider a constraint with n = 10 uncertain coefficients modeled by a
multi-band robust uncertainty set with three negative and three positive bands, and bounds

γ and Γ given by Table 3.2. In addition, this table shows the value
∑b

i=B γi +
∑B

i=b+1 Γ
i

used to determine the band p. It follows p = 1. The resulting values ϑb are shown in the
last row of Table 3.2. We observe that the frequency profile basically follows the idea of
first satisfying all lower bounds γb and second filling up bands from high bands to low
bands until the upper bounds Γb are reached or in total n uncertain coefficients have been
assigned.
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3.2 Multi-band robustness

band b: -3 -2 -1 0 1 2 3

lower bound γb on #realizations: 0 1 2 0 2 2 0
upper bound Γb on #realizations: 1 2 3 10 4 3 1∑b

i=B γi +
∑B

i=b+1 Γ
i 24 23 21 11 9 8 7

number ϑb of realizations in worst-case: 0 1 2 0 3 3 1

Table 3.2: Example of frequency profile for multi-band robust uncertainty sets

From Lemma 3.7, we know that the frequency profile determines for each band the
number of coefficient realizations ui of a worst-case realization vector u ∈ Umb. But
it does not state which coefficient ui realizes in exactly which band b ∈ B and thus
also the total value

∑n
i=1 ui cannot be evaluated directly. Büsing and D’Andreagiovanni

[47] have shown that this assignment problem (uncertain coefficients must be assigned
to bands in which they realize such that the total sum is maximized) subject to the
side constraints of multi-band robustness can be solved optimally by a combinatorial
algorithm in polynomial time.

Lemma 3.9 (Büsing and D’Andreagiovanni [47]). The problem to determine a worst-case
realization vector, i. e., an assignment of uncertain coefficient to bands such that

∑n
i=1 ui

is maximized, is equivalent to solving a min-cost flow problem on an appropriate auxiliary
graph.

3.2.2 The multi-band robust counterpart

Let κ ∈ Rn
>0, A ∈ Rm×n, and d ∈ Rm. Consider a general LP in its maximization form

max κ�x (3.18a)

s. t. Ai·x ≤ di ∀i = 1, . . . ,m (3.18b)

x ≥ 0. (3.18c)

Then its multi-band robust counterpart reads

max κ�x (3.19a)

s. t. Ai·x ≤ di ∀i = 1, . . . ,m,A�
i· ∈ Umb

i (3.19b)

x ≥ 0. (3.19c)

and can be reformulated using only a polynomial number of constraints of type (3.19b)
by considering the worst-case realization. This is analogous to the special case of
Γ-robustness. The resulting formulation is

max κ�x (3.20a)

s. t. max
A�

i·∈Umb
i

Ai·x ≤ di ∀i = 1, . . . ,m (3.20b)

x ≥ 0. (3.20c)
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3 Robustness concepts

This formulation is nonlinear since maxA�
i·∈Umb

i
Ai·x has to be determined which is itself

a maximization problem. Again, as for the Γ-robust counterpart, we can formulate this
inner maximization problem as a separate integer LP. At this point the frequency profile
pays off in particular: by using it, we avoid to characterize the number of realizations in
a band b by its bounds γb and Γb because the resulting two constraints would later yield
additional dual variables in the dualized problem. Considering a constraint 1 ≤ i ≤ m
and a fixed vector x̃ for x, the term maxA�

i·∈Umb
i

Ai·x̃ can be formulated as

max
A�

i·∈Umb
i

Ai·x̃ = max
n∑

j=1

(
Āijx̃j +

∑
b∈B

Âb
ijx̃jz

b
j

)
(3.21a)

s. t.
n∑

j=1

zbj ≤ ϑb ∀b ∈ B (3.21b)

∑
b∈B

zbj = 1 ∀j = 1, . . . , n (3.21c)

zbj ∈ {0, 1} ∀j = 1, . . . , n, b ∈ B (3.21d)

with indicator variables zbj = 1 if and only if the j-th entry Aij is assigned to band b ∈ B,

i. e., Aij ∈ (Āij + Âb−1
ij , Āij + Âb

ij ]. W. l. o. g. we can ignore the constant term
∑n

j=1 Āijx̃j .
Let us consider the remaining problem. Büsing and D’Andreagiovanni [48] have shown the
totally unimodularity of the coefficient matrix resulting from formulation (3.21). In their
model, the constraint (3.21c) is relaxed to the inequality

∑
b∈B zbj ≤ 1. Nevertheless

their proof holds to our formulation (3.21) as the coefficient matrix is not changed. Due
to the totally unimodularity, the integrality constraint (3.21d) can be relaxed resulting
in the constraint

0 ≤ zbj ≤ 1.

Notice, the upper bound on zbj is dominated by constraint (3.21c) and thus redundant.
The resulting formulation is a pure LP. Hence, we can apply strong LP duality. This
yields

max
∑
b∈B

Âb
ijx̃jz

b
j = min

∑
b∈B

ϑbπb
i +

n∑
j=1

σij

s. t.
n∑

j=1

zbj ≤ ϑb ∀b ∈ B s. t. πb
i + σij ≥ Âb

ijx̃j
∀j = 1, . . . , n,

b ∈ B∑
b∈B

zbj = 1 ∀j = 1, . . . , n πb
i ≥ 0 ∀b ∈ B

zbj ≥ 0 ∀j = 1, . . . , n, b ∈ B σij free ∀j = 1, . . . , n

with dual variables zbj and σij corresponding to constraints (3.21b) and (3.21c), re-
spectively. Note, in contrast to Büsing and D’Andreagiovanni [48] we do not relax
constraint (3.21c) and thus, obtain free dual variables σ. This difference is needed to
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exploit the information of minimum numbers of realizations in the negative deviation
bands. Otherwise, these realizations would be accounted by 0 and not contribute with a
negative value to the objective function. Therefore, the dualized subproblem determining
the worst-case deviation in [48] is not correct as it does not model the multi-band robust
uncertainty set Umb but its restriction to positive deviations.
Analogously to the Γ-robust setting, we can use the minimization formulation to

reformulate the multi-band robust counterpart of the general LP (3.18) in a compact
way. This yields the compact multi-band robust counterpart

max κ�x (3.23a)

s. t.
n∑

j=1

Āijxj +
∑
b∈B

ϑbπb
i +

n∑
j=1

σij ≤ di ∀i = 1, . . . ,m (3.23b)

πb
i + σij ≥ Âb

ijxj ∀i = 1, . . . ,m, j = 1, . . . , n, b ∈ B (3.23c)

x, π ≥ 0, σ free (3.23d)

Notice that we have relaxed the inner min-operator. This can be done since the term
tends to its minimum by the objective sense, the objective coefficients of (3.23a) are
positive, and the relation sign “≤” of constraint (3.23b). Formulation (3.23) is compact as
its size is polynomial in the size of the non-robust LP (3.18): it contains m(|B|+n) addi-
tional variables and mn|B| additional constraints. Furthermore, the compact multi-band
robust counterpart of an LP is again linear and thus does not increase the computational
complexity.

Alternatively to the compact counterpart, a separation approach can be followed by solv-
ing the non-robust original LP (3.18) and separating violated model constraints (3.19b).
These inequalities are called robustness cuts. They ensure the feasibility with respect to
the uncertain data; cf. Büsing and D’Andreagiovanni [47].

3.2.3 Probabilistic analysis

Since multi-band robustness is a generalization of Γ-robustness, we expect similar proba-
bilistic results on the feasibility of a constraint containing uncertain coefficient in the
multi-band robust counterpart. Both, Mattia [122] and Büsing and D’Andreagiovanni
[48] present theoretical bounds on the constraint violation based on probabilistic analysis.
These bounds seem rather rough and less handy than the (already complicated) bounds
in [34] for the special case of Γ-robustness. We refer to Büsing and D’Andreagiovanni
[48] for further details as it is not in the focus of this work.

3.3 Submodular robustness

Now we investigate a more general robustness concept where the constraints of the robust
counterparts can be described by submodular functions resulting in so-called submodular
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knapsack constraints (in Chapter 6, we will investigate the submodular knapsack problem
itself). The concept of submodular robustness generalizes the Γ-robustness and multi-
band robustness concepts. The underlying uncertainty set of this general robustness
concept is the polymatroid of the corresponding submodular function.

Polymatroids have been introduced by Edmonds [66] and have been studied extensively;
for example, see Frank and Tardos [70] and the references therein. One particular
interesting result shown by Edmonds is that a linear function can efficiently be optimized
over a polymatroid by using a greedy algorithm. Although many studies exist, to our
knowledge polymatroids have not been related to robust optimization except for the work
by Atamtürk and Narayanan [15] on mean-risk minimization where submodular functions
and polymatroids are considered for a stochastic optimization problem. A relation
to discrete robust optimization and Γ-robustness is drafted for a special case of this
mean-risk minimization problem. Investigations of polymatroidal uncertainty sets have
not been published. The submodular robust counterpart includes a submodular knapsack
constraint. The related submodular knapsack problem has been introduced by Atamtürk
and Narayanan [16]. Their investigation includes mathematical formulations of the
problem, basic properties of the corresponding polyhedron, and the class of extended
submodular robust cover inequalities.

3.3.1 The concept of submodular robustness

Let us recall submodularity: Given a base set N := {1, . . . , n}, a function f : 2N → R≥0

is called submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y )

holds for all X, Y ⊆ N . Alternatively, f is submodular if for all X, Y ⊆ N with X ⊆ Y
and j ∈ N \ Y

f(X ∪ {j})− f(X) ≥ f(Y ∪ {j})− f(Y )

holds, or — equivalently — if

f(X ∪ {j1}) + f(X ∪ {j2}) ≥ f(X ∪ {j1, j2}) + f(X)

is satisfied for all X ⊆ N and j1, j2 ∈ N \X . Note that we will sometimes abuse the
notation and write f(x) instead of the correct set notation f({j ∈ N : xj = 1}) if the
vector x ∈ {0, 1}n acts as an incidence vector of subsets of N .

Definition 3.10 (Submodular Robust Uncertainty Set). Let N := {1, . . . , n} be a base
set and f : 2N → R≥0 be submodular. Then the submodular robust uncertainty set Uf is
defined as follows

Uf :=

{
u ∈ Rn :

∑
j∈X

uj ≤ f(X) for all X ⊆ N

}
. (3.24)

The set Uf is the polymatroid of f .
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Example 3.11. Let us consider the function fΓ1 : 2N → R≥0 defined by fΓ1(X) :=∑
j∈X ūj +maxj∈X ûj for some vectors ū, û ∈ Rn.

Next, we show the submodularity of fΓ1. Therefore we consider the following transfor-
mations and relaxations.

fΓ1(X) + fΓ1(Y )

=
∑
j∈X

ūj +max
j∈X

ûj +
∑
j∈Y

ūj +max
j∈Y

ûj

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj +max
j∈X

ûj +max
j∈Y

ûj

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj +max{max
j∈X

ûj,max
j∈Y

ûj}+min{max
j∈X

ûj,max
j∈Y

ûj}

≥
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj + max
j∈X∪Y

ûj + max
j∈X∩Y

ûj

=fΓ1(X ∪ Y ) + fΓ1(X ∩ Y )

Hence the function fΓ1 is submodular. The corresponding submodular robust uncertainty
set UfΓ1

is

UfΓ1

:=

{
u ∈ R|N | :

∑
j∈X

uj ≤
∑
j∈X

ūj +max
j∈X

ûj

}

which is the Γ-robust uncertainty set UΓ where ū is the nominal and û the deviation data
vector and Γ = 1; cf. Section 3.1.

3.3.2 The submodular robust counterpart

Let κ ∈ Rn
>0, A ∈ Rm×n, and b ∈ Rm. Consider a binary ILP in its maximization form

max κ�x (3.25a)

s. t. Ai·x ≤ bi ∀i = 1, . . . ,m (3.25b)

x ∈ {0, 1}n. (3.25c)

Given a submodular function f : 2N → R≥0, its submodular robust counterpart reads

max κ�x (3.26a)

s. t. Ai·x ≤ bi ∀A�
i· ∈ Uf

i , i = 1, . . . ,m (3.26b)

x ∈ {0, 1}n. (3.26c)

Note, there are exponential many constraints (3.26b). We can rewrite (3.26) using a
polynomial number of constraints as

max κ�x (3.27a)

s. t. max
A�

i·∈Uf
i

Ai·x ≤ bi ∀i = 1, . . . ,m (3.27b)

x ∈ {0, 1}n (3.27c)
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with only m constraints (3.27b). Formulation (3.27) is not linear. By definition of Uf

the following holds.

Uf =
{
u ∈ Rn :

∑
j∈X

uj ≤ f(X) ∀X ⊆ N
}

=
{
u ∈ Rn : u�x ≤ f(x) ∀x ∈ {0, 1}n}

Hence, u�x ≤ f(x) ∀u ∈ Uf also holds and implies maxu∈Uf u�x = f(x). Setting u = Ai·
and Uf = Uf

i , we can reformulate (3.27) as

max κ�x (3.28a)

s. t. f(x) ≤ bi ∀i = 1, . . . ,m (3.28b)

x ∈ {0, 1}n (3.28c)

using the submodular function f . Notice, the resulting submodular robust counter-
part (3.28) does not include the coefficient matrix A anymore. Instead the constraints are
solely defined by the submodular function whose definition has to capture the intended
restrictions modeled by the original coefficient matrix.

3.3.3 Submodular functions: Γ- and multi-band robustness

In this section, we state selected submodular functions including those describing the
robustness concepts Γ-robustness and multi-band robustness. Therefore, we consider the
ILP 3.25 and define X := {i ∈ N : xi = 1} ⊆ N .

Let ū, û ∈ Rn, Γ ∈ {0, . . . , n} be the vector of nominal values, the vector of deviation
values, and the robustness parameter as defined for the concept of Γ-robustness. We
define

fΓ(X) :=
∑
j∈X

ūj + max
X′⊆X
|X′|≤Γ

∑
j∈X′

ûj.

Then constraint (3.28b) of the submodular robust counterpart with f = fΓ is a formula-
tion of the corresponding constraint (3.4b) of the Γ-robust counterpart.

Lemma 3.12. The function fΓ as defined above is submodular.

Proof. Define v̂Sj as the j-th largest element in set S ⊆ N w.r.t. û and with v̂Sj = 0

for j > |S|. For S1, S2 ⊆ N , it clearly holds v̂S1∪S2
j = max{v̂S1

j , v̂S2
j }, v̂S1∩S2

j ≤ v̂S1
j ,

v̂S1∩S2
j ≤ v̂S2

j , and thus v̂S1∩S2
j ≤ min{v̂S1

j , v̂S2
j }. Now, let X, Y ⊆ N . Considering fΓ, the
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fΓ(X) + fΓ(Y ) =
∑
j∈X

ūj + max
X′⊆X
|X′|≤Γ

∑
j∈X′

ûj +
∑
j∈Y

ūj + max
Y ′⊆Y
|Y ′|≤Γ

∑
j∈Y ′

ûj

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj + max
X′⊆X
|X′|≤Γ

∑
j∈X′

ûj + max
Y ′⊆Y
|Y ′|≤Γ

∑
j∈Y ′

ûj

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj +
Γ∑

j=1

v̂Xj +
Γ∑

j=1

v̂Yj

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj +
Γ∑

j=1

max{v̂Xj , v̂Yj }+
Γ∑

j=1

min{v̂Xj , v̂Yj }

≥
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj +
Γ∑

j=1

v̂X∪Y
j +

Γ∑
j=1

v̂X∩Y
j

=
∑

j∈X∪Y
ūj +

∑
j∈X∩Y

ūj + max
Z′⊆X∪Y
|Z′|≤Γ

∑
j∈Z′

ûj + max
Z′⊆X∩Y
|Z′|≤Γ

∑
j∈Z′

ûj

= fΓ(X ∪ Y ) + fΓ(X ∩ Y )

Hence, fΓ is submodular.

Let B, ϑb, ū, ûb be the set bands, the number of realizations in band b ∈ B in the
worst-case, the vector of nominal, and the vector of deviation values for band b ∈ B as
defined for the concept of multi-band robustness. Further let (Xb)b∈B be a partition of
X. We define

fmb(X) :=
∑
j∈X

ūj + max
X=

⋃
Xb

|Xb|=ϑb

∑
b∈B

∑
j∈Xb

ûb
j.

Then constraint (3.28b) of the submodular robust counterpart with f = fmb is a
formulation of the corresponding constraint (3.20b) of the multi-band robust counterpart.

Lemma 3.13. The function fmb as defined above is submodular.

Proof. Define v̂b,Sj as the j-th largest element in set S ⊆ X w.r.t. ûb and with v̂b,Sj = 0
for j > |S|. Then the proof is analogous to the proof of Lemma 3.12.

3.4 Recoverable robustness

Recoverable robustness is a recent two-stage approach to optimization under uncertainty
and can be seen as a deterministic alternative to stochastic programming with limited
recourse. It has been introduced in the context of robust railway optimization by Liebchen
et al. [110] in 2009.
The concept of recoverable robustness can be described as follows: after the first-stage

decision the realization of the uncertain data is observed. Then, the previous decision
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account. This second-stage adjustment is called recovery as the first-stage decision may
become infeasible due to the data realization. If there exists a realization such that the
first-stage solution cannot be recovered, then the recoverable robust problem has no
solution. Both, the first stage decision and its second stage adjustment inflict costs. An
optimal recoverable robust solution minimizes the overall costs, i. e., the first stage costs
and the worst-case second stage costs.
We already mentioned that recoverable robustness can be seen as a robust optimization

version of stochastic optimization with (limited) recourse. In contrast to stochastic
optimization with (limited) recourse, recoverable robustness does not optimize the costs
in expectation but the first-stage costs plus the worst-case recovery costs. It does not
depend on the knowledge of the underlying probability distribution.
In fact, the concept of recoverable robustness is a rather general framework which

allows some flexibility in the structure of the uncertainty. Each possible realization of
uncertain data is called a scenario. All scenarios are (implicitly) given in the set of
scenarios. Several types of sets of scenarios for recoverable robust problems have been
studied by different authors, e.g., discrete scenarios [49], interval scenarios [49], Γ-robust
scenarios [50], and others [46, 110]. Scenario sets are related to uncertainty sets in robust
optimization: each scenario is associated to a single realization of uncertain data. Thus,
each scenario set induces a corresponding uncertainty set.

3.4.1 The concept of recoverable robustness

Let us define the concept of recoverable robustness more formally.

Definition 3.14 (Recoverable Robustness Concept). Let S be the set of scenarios
of uncertain data whose realizations define the recoverable robust uncertainty set US .
Further, let the optimization problem Π consist of the following two stages:

1. a first-stage decision before the realization of the uncertain data

2. a second-stage decision modifying the first-stage decision according to a recovery
rule and possibly recovering the feasibility of the first-stage decision according to
the data realization.

We call Π a recoverable robust optimization problem. Furthermore, R(x0) is the set of
all values xS, which are feasible as second-stage decision with respect to the first-stage
decision x0. The set R(x0) is called recovery set (of x0). Therefore it (implicitly) defines
the so-called recovery rule which characterizes the adaptability of the second stage
decision from the first stage decision.

In general, the scenario set (and thus the corresponding uncertainty set) can be chosen
arbitrarily. For example, the set of all realizations of any of the uncertainty sets defined
in Section 2.2.1 can be used. Some explicit examples of scenario sets are the following
three:
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discrete scenarios The set SD of discrete scenarios defines an explicit vector for each
possible realization of the uncertain data. The corresponding uncertainty set USD

consists of all realizations.

interval scenarios The set SI of interval scenarios defines intervals for each uncertain
data such that all realizations are within these intervals. The corresponding
uncertainty set is denoted by USI .

Γ-scenarios The set SΓ of Γ-scenarios defines the data uncertainty according to the
Γ-robustness concept; cf. Section 3.1. The corresponding uncertainty set is denoted
by USΓ .

3.4.2 The recoverable robust counterpart

Let κ ∈ Rn
>0, A ∈ Rm×n, and b ∈ Rm. Consider a general LP in its maximization form

max κ�x (3.29a)

s. t. Ai·x ≤ bi ∀i = 1, . . . ,m (3.29b)

x ≥ 0. (3.29c)

To model the two-stages of the recoverable robustness concept some more notation is
needed. Let the first-stage be modeled by κ0 = κ, A0 = A, and b0 = b. Further let
κS ∈ Rn

>0, A
S ∈ RmS×n, and bS ∈ RmS

model the second-stage for scenario s. Then, the
recoverable robust counterpart of LP (3.29) can be formulated as

max

(
κ0�x0 +min

S∈S
κS�

xS

)
(3.30a)

s. t. A0
i·x

0 ≤ b0i ∀i = 1, . . . ,m0 (3.30b)

AS
i·x

S ≤ bSi ∀AS�
i· ∈ US , i = 1, . . . ,mS (3.30c)

xS ∈ R(x0) ∀S ∈ S (3.30d)

x0, xS ≥ 0 ∀S ∈ S (3.30e)

where R(x0) is the set of all solutions recoverable from x0. The objective (3.30a)
maximizes total first-stage profit plus the worst-case maximum second-stage profit.
Constraint (3.30b) models the first, (3.30c) the second-stage constraints. The recovery
rule is enforced by (3.30d), non-negativity is ensured by (3.30e).
The size of this formulation highly depends on the formulation of the uncertainty set

US and the formulation of the recovery rule xS ∈ R(x0).

Example 3.15. Let us consider a LP with uncertain input data and determine its
recoverable robust counterpart. Therefore we have to decide on a scenario set and
recovery rule. Let us consider the discrete scenario set SD and the following recovery
rule: for each scenario the sum of second-stage decision variables may change only up
to 25% to the sum of first-stage decision variables. Furthermore, let only the first-stage
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decision contribute to the objective value. The resulting recoverable robust counterpart
can be formulated as

max
n∑

j=1

κ0
jx

0
j (3.31a)

s. t. A0
i·x

0 ≤ b0i ∀i = 1, . . . ,m0 (3.31b)

AS
i·x

S ≤ bSi ∀AS�
i· ∈ USD , i = 1, . . . ,mS (3.31c)

(1− 0.25)
n∑

j=1

x0
j ≤

n∑
j=1

xS
j ∀S ∈ SD (3.31d)

n∑
j=1

xS
j ≤ (1 + 0.25)

n∑
j=1

x0
j ∀S ∈ SD (3.31e)

x0, xS ≥ 0 ∀S ∈ SD (3.31f)

3.5 Evaluation of robustness

In the previous sections, we have considered different approaches to take data uncertainty
into account when modeling and solving optimization problems. We have focused on
robust optimization and presented different robustness concepts to define the uncertainty
set modeling the data uncertainty. Although we have presented theoretical bounds on
the probability that a Γ-robust constraint is violated, we have excluded the question how
to evaluate robustness and compare different robustness concepts in practice. Of course,
this question is important in practice as a basis for the decision which robustness concept
should be applied for a given application. Moreover, each presented robustness concept
also includes a wide range of parameters whose settings have to be determined and tuned
according to the actual problem, e. g., the nominal and deviation data in Γ-robustness or
multi-band robustness, or the recovery rule of recoverable robustness. We address the
second problem of parameter determination at the end of this section.

In the following, we present several measures to evaluate robustness, compare the
concepts, or even different parameter settings. Considering a robust optimization problem
following a certain robustness concept, there exist two key questions to evaluate its quality:

1. What is the ratio of realizations of uncertain data in the underlying real-world
application that is actually modeled by the uncertainty set? – Or shorter: How
robust is the model or a specific robust solution?

2. What is the change in the objective value compared to the objective value of the
corresponding non-robust model or solution? – Or shorter: How much does the
given robustness cost?

Let us start with the second question. Bertsimas and Sim [34] coined the phrase price
of robustness to describe the increase in the objective function value by introducing
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Γ-robustness to the nominal non-robust model. It is associated with the fact that
oftentimes the objective models total costs to be minimized and Γ-robustness requires
additional (costly) resources to guarantee feasibility for the worst-case data realization of
the uncertainty set. Formally, let z be the objective value of a non-robust optimization
problem with data vector u. Let zΓ be the objective value of the Γ-robust counterpart
with nominal data vector ū = u, deviation data vector û and robustness parameter Γ.
Then the price of robustness (PoR(Γ)) is defined by

PoR(Γ) :=
zΓ

z
.

This measure is quite intuitive and can easily be used as decision support in practice,
e. g., it allows statements like “the Γ-robust counterpart of this problem is 60% more
expensive for Γ = 12”. Nevertheless, there exists also one major flaw: to determine the
PoR the objective is compared with the non-robust problem where the data vector is
the nominal data vector of the robust problem. Clearly, the nominal problem does not
sufficiently reflect the real problem under data uncertainty; otherwise the consideration
of optimization under data uncertainty and robust optimization in particular would not
be necessary at all. Hence, when determining the PoR, the comparison should be with a
non-robust setting that takes the worst-case data realization into account, e. g., the data
vector ū+ û. This view is very conservative and the resulting solution is expensive. The
corresponding robust solution is expected to be less conservative, more resource-efficient,
and thus less expensive. This way the ratio between zΓ and z is less than 1 and the
PoR becomes rather a “gain of robustness” describing the relative cost saving according
to the most-conservative setting. In summary, both approaches to determine the PoR
are plausible, give meaningful measures and answer our question about determining the
costs of a robust solution.
Note that for the concept of recoverable robustness we also use the term gain of

recovery instead of price of robustness. This relates to the fact that this concept allows
first-stage solutions to become infeasible as long as they can be recovered in the second
stage. Thus, the first-stage constraints are “softer” as in the setting without recovery.
This “relaxation” of constraints yields a better optimal value and the idea behind the
term gain of recovery.
Next we consider the question how to quantify robustness of a given a solution of a

robust problem. Let R be the set of all possible realizations of the uncertain data. Let
Rfeas ⊆ R be the subset of realizations for which the given solution is still feasible. The
ratio

|Rfeas|
|R|

denotes the (exact) robustness of this solution. In theory, the sets R or Rfeas may be of
infinite cardinality. But in practice, oftentimes only a finite sample or historical data
is known and can be used as set R. Then Rfeas is finite as well and the robustness is
well-defined.
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certain realization, may be too restrictive in practice. Instead the level of (in)feasibility
should be determined. Let us illustrate this idea by an example:

Example 3.16. When considering a multi-commodity flow problem with uncertain
demands, a robust flow may become infeasible with respect to a specific realization vector
just because of one entry in this vector, i. e., because of one deviating demand value of a
single commodity while it is still feasible for all other commodities. In this case it would
be better to regard this as “almost feasible” rather than infeasible.

To obtain a well-defined measure of “almost feasibility”, we propose the following:
determine the largest α, 0 ≤ α ≤ 1 such that the solution is feasible for the realization
vector scaled by α. Hence for a specific realization vector, α = 1 corresponds to a feasible
solution and 0 ≤ α < 1 to an infeasible one. But the actual value of α gives a measure of
the level of (in)feasibility. In a second step the average, minimum, or maximum value of
α for all realizations in R can be determined to give a measure of the overall robustness
independent of specific realizations.

In Koster et al. [103] and Koster and Kutschka [101], we have considered a wide range
of different robustness measures in our work on (Γ-)robust network design problems in
telecommunications. In this setting, data uncertainty is given as the uncertain future
demands between the network nodes. Most of the times historical data is available as
snapshots of measurements of the actual point-to-point traffic. Each snapshot is called a
traffic matrix. In Koster et al. [101, 103], we propose several robustness measures for a
robust network design D w.r.t a given set of traffic matrices M. For example, we define
the realized robustness (w.r.t. the supported traffic matrices) as follows

rsuppTM(D,M) :=
|Msupp(D)|

M (3.32)

where Msupp(D) ⊆ M denotes the subset of traffic matrices which can be completely
routed using the routing template and link dimensions of the robust network design
D. This is a rather conservative measure as it disqualifies a traffic matrix as soon as it
cannot support a single demand completely regardless the total network load. However,
it gives an idea of robustness measures in practice.
To emphasize that these measures are comparing the robustness of a given solution

with the set of historical traffic matrices, we call them realized robustness (measures).
These different realized robustness measures reflect different modeling intentions and
assumed levels of conservatism. Hence, the actual values vary depending on the used
measure and have to be interpreted by the decision maker according to the original
real-world application.
Furthermore, a single realized robustness value averaging the robustness values of each

individual traffic matrix, etc. may not be sufficient as decision support. In particular
if detailed historical data is available, the following approach yields a more meaningful
evaluation of realized robustness. We propose to use the so-called robustness profile
which visualizes bar-code-like the robustness values of all traffic matrices of the evaluated
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3.5 Evaluation of robustness

Figure 3.3: Example of robustness profile. Given a set of historical data spanning four
weeks, the realized robustness value for each individual data is shown in the
diagram on top. Below the corresponding robustness profile is drawn. Its
bars are darker the lower the related realized robustness value 0 ≤ r(d) ≤ 1
is; compare with diagram on top.

historical data. More precisely, let a robust solution, a data set H of available historical
data, and a realized robustness value r(d) ∈ [0, 1] for each data d ∈ H be given. Then the
robustness profile visualizes each individual r(d) value as a vertical bar of some height.
The color of such a bar is gray-scaled and determined by the value r(d) reaching from
white (r(d) = 1) to black (r(d) = 0). Hence, profiles with fewer and lighter bars are
better.

Figure 3.3 illustrates the construction of a robustness profile. On top the realized
robustness values r(d) of some four-week spanning historical data set H are shown in a
diagram. Below the corresponding robustness profile is visualized. Notice that the bars
are darker the lower the corresponding r(d) value is in the diagram above.

Each robustness concept comes with its own set of robustness parameters, e. g., the
Γ parameter of Γ-robustness, the number of bands and their bounds in the setting
of multi-band robustness, or the choice of scenario sets and recovery rule and their
parametrization for recoverable robustness. Unfortunately, there does not exist a general
rule how to set these parameters. It usually depends on the application and the available
historical data. Nevertheless, determining the right parameter settings is crucial.

Therefore, we propose the following approach in practice. Although the theoretical
probability bounds may give some suggestions on the order of the parameter values, they
are usually less useful in practice. Hence, we propose to utilize the robustness measures
we described above. Given a set of historical data and some (preliminary) robust solution
for an (arbitrary) parameter setting, we can evaluate its realized robustness using some of
the previously presented measures (or a better suited new one). In addition, we can also
evaluate the cost of robustness of this solution. Hence the trade-off between robustness
and costs can be determined. By repeating this analysis for different parameter settings,
we can do a practical sensitivity analysis of a (reasonable) subset of parameter settings.
Furthermore, pareto-optimal settings can be identified. Then a decision maker can use
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3 Robustness concepts

these pareto-optimal settings as decision support to determine the most robust setting
given a certain cost budget
or — vice- versa — the cost-minimal parameter setting realizing a requested minimal
robustness level. Of course, this approach is biased as only historical data is used. But
in many real-world applications it is suitable to assume that the same unknown source
of uncertainty behaves similarly in trend in the future as it has in the past. In Koster
et al. [105] and Koster and Kutschka [101] we have successfully applied this approach to
determine the robustness parameters of Γ-robust network design of telecommunication
networks using real-world historical data of research backbone networks.
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ROBUST KNAPSACK PROBLEMS
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CHAPTER FOUR

THE Γ-ROBUST KNAPSACK PROBLEM

In this chapter, we consider the (binary) knapsack problem under data uncertainty. Here
we use the Γ-robust uncertainty concept and the corresponding uncertainty set UΓ to
model the uncertain data. The resulting problem is called the (Γ-)robust knapsack
problem (Γ-RKP) and has been investigated by different authors. Bertsimas and Sim
[33, 34] have given the Γ-RKP as an example when introducing the concept of Γ-
robustness and evaluating the price of robustness. In 2008, Klopfenstein and Nace [96]
have considered the chance-constraint knapsack problem and the Γ-RKP as a possible
implementation of it pointing out the relation between feasible and optimal solutions of
these two problems. A work focusing on the Γ-RKP and the properties of the related
polyhedron has been published by the same authors [97] in 2012. They present results
on the dimension of the polytope, introduce the classes of Γ-robust cover inequalities and
extended Γ-robust cover inequalities, proof that these classes are facet-defining under
some conditions, and present an exact ILP-based and a heuristic separation algorithm.
Monaci and Pferschy [124] consider the solution of Γ-RKP: they investigate the worst-case
price of robustness and performance of greedy algorithms to solve Γ-RKP heuristically.
Moreover, let N denote the set of items, they characterize the optimal solution of the
fractional Γ-RKP and give a O(|N | · log | gkpitemset|) algorithm for a special case.
Monaci et al. [125] present an exact solution algorithm for the Γ-RKP using a dynamic
program with running time O(Γ · |N | · c) where c denotes the knapsack capacity.
In the following, we investigate the Γ-RKP and its related polyhedron. On the one

hand, we state important results focusing on the polyhedral structure. On the other
hand, we extend the known results, e. g., by introducing a stronger class of extended
cover inequalities.

Definition 4.1 (Γ-Robust Knapsack Problem). Given a set of items N , a knapsack
capacity c ∈ Z>0, a profit function p : N → Z>0, and a parameter Γ ∈ Z>0. For each item
j ∈ N , let the item weight wj be uncertain such that wj ∈ [w̄j, w̄j + ŵj] holds for given
nominal weight function w̄ : N → Z>0 and deviation weight function ŵ : N → Z>0.
The Γ-robust knapsack problem (Γ-RKP) is to find a subset of items with maximum

total profit whose total weight does not exceed the knapsack capacity in any realization
of the uncertain weights with at most Γ item weights set to their maximum.
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4 The Γ-robust knapsack problem

the Γ-RKP is the classic non-robust knapsack problem; cf. Definition. 1.3. Since the
Γ-RKP contains the classic knapsack problem as a special case, its complexity is at least
weakly NP-hard. Monaci et al. [125] have shown that the Γ-RKP can be solved in
pseudo-polynomial time by dynamic programming.

Example 4.2. Consider the Γ-robust knapsack problem with four items given by N =
{1, . . . , 4}, c = 8, w̄ =

(
3 4 5 4

)
, ŵ =

(
1 1 1 4

)
, Γ = 1, and p =

(
1 1 1 1

)
.

An optimal solution is given by the subset {1, 2} ⊆ N with an optimal solution value
(i. e., total profit) of 1 + 1 = 2 and a total weight of 3 + 4 + 1 = 8.

4.1 Formulations

The Γ-robust knapsack problem can be formulated as

max
∑
j∈N

pjxj (4.1a)

s. t.
∑
j∈N

w̄jxj + max
N ′⊆N :|N ′|=Γ

∑
j∈N ′

ŵjxj ≤ c (4.1b)

xj ∈ {0, 1} ∀j ∈ N (4.1c)

whereas (4.1a) maximizes the profit while satisfying the robust knapsack constraint (4.1b).
Note, this formulation is the Γ-robust counterpart of the classic knapsack problem
formulation (1.10). The linearization of (4.1) is given by

max
∑
j∈N

pjxj (4.2a)

s. t.
∑
j∈N

w̄jxj +
∑
j∈N ′

ŵjxj ≤ c ∀N ′ ⊆ N : |N ′| = Γ (4.2b)

xj ∈ {0, 1} ∀j ∈ N. (4.2c)

The compact reformulation of (4.1) reads as follows

max
∑
j∈N

pjxj (4.3a)

s. t.
∑
j∈N

w̄jxj + Γπ +
∑
j∈N

ρj ≤ c (4.3b)

π + ρj ≥ ŵjxj ∀j ∈ N (4.3c)

xj ∈ {0, 1}, π, ρj ≥ 0 ∀j ∈ N (4.3d)

with nonnegative dual variables π and ρ and dual constraints (4.3c).

72

W. l. o. g., we assume integer realizations of the uncertain weights. Note, for Γ = 0,



4.2 Polyhedral study

4.2 Polyhedral study

In the following, we will report on the main polyhedral results from literature. We
will extend the results on extended cover inequalities by providing a stronger type of
extension. We define the corresponding polytope as follows

Definition 4.3 (Γ-Robust Knapsack Polytope). The Γ-robust knapsack polytope is
defined as

KΓ := conv
{
x ∈ {0, 1}|N | : x satisfies (4.2b)

}
.

By construction of the compact Γ-robust counterpart

KΓ = conv
{
x ∈ {0, 1}|N | : ∃ π, ρ ≥ 0 so that x, π, ρ satisfy (4.3b)–(4.3c)

}
holds.

4.2.1 Basic characteristics

Lemma 4.4 (Klopfenstein and Nace [97]). For Γ ≥ 1, the Γ-robust knapsack polytope
KΓ is full-dimensional if and only if w̄j + ŵj ≤ c for all j ∈ N .

In the following, we assume w. l. o. g. that KΓ is full-dimensional.

Lemma 4.5. Let j ∈ N . The constraints

xj ≥ 0 (4.4)

and

xj ≤ 1 if and only if w̄j + w̄i + ŵj + ŵi ≤ c ∀i ∈ N \ {j} (4.5)

are trivial facets of KΓ.

Proof. For xj ≥ 0, the unit vectors ei (i �= j) and the zero vector are valid for KΓ, satisfy
the non-negativity constraint (4.4) with equality, and are affinely independent.

For xj ≤ 1, the unit vector ej and the vectors ej+ei (i �= j) satisfy the upper bound (4.5)
with equality, are feasible for the full-dimensional KΓ, and affinely independent.

Vice versa, let xj ≤ 1 be a facet of KΓ. Then there exist |N | affinely independent points
xτ ∈ KΓ on this facet. Suppose there exists i ∈ N \ {j} such that w̄j + w̄i + ŵj + ŵi > c
holds. Further suppose there exists a τ ′ with xτ ′

i = 1. Then it follows

c < w̄j + w̄i + ŵj + ŵi = w̄jx
τ ′
j + w̄ix

τ ′
i + ŵjx

τ ′
j + ŵix

τ ′
i ≤ c

a contradiction. Hence, xτ ′
i = 0 follows for all values τ ′. This implies that xτ cannot be

affinely independent contradicting our first supposition. This completes the proof.
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4 The Γ-robust knapsack problem

4.2.2 Valid inequalities

In the following, we will consider selected classes of valid inequalities which are based on
subsets of items with specific properties. For example, Γ-robust cover inequalities are
such a class.
Similar to the classic knapsack, we define covers, minimal covers, and extensions as

follows. A subset of items C ⊆ N is called a (Γ-robust-)cover if there exists a a realization
of uncertain weights such that its total weight exceeds the knapsack capacity, i. e.,∑

j∈C
w̄j + max

C′⊆C:|C′|=Γ

∑
j∈C′

ŵj > c.

A cover is called minimal if C \ {j} is not a cover for all j ∈ C. Given a cover C,
Klopfenstein and Nace [97] define its (Γ-robust-)extension E(C) as

E(C) :=

⎧⎪⎪⎨
⎪⎪⎩
{
j ∈ N : w̄j + ŵj ≥ max

i∈C
(w̄i + ŵi)

}
∪ C, if |C| ≤ Γ{

j ∈ N : w̄j ≥ max
i∈C

w̄i ∧ w̄j + ŵj ≥ max
i∈C

(w̄i + ŵi)

}
∪ C, if |C| > Γ.

(4.6)

Analogously to the classic knapsack problem, the extension is a cover itself.
We can strengthen this extension by exploiting the structure of an optimal solution

of the inner maximum as follows. In the case of the Γ-RKP, a maximum weight subset
N ′ ⊆ N has the weight ∑

j∈N ′
w̄j + max

N ′′⊆N ′:|N ′′|=Γ

∑
j∈N ′′

ŵj

which can be determined easily for a given subset N ′ ⊆ N . Therefore, let C be a cover
with partition C = C̄ ∪ Ĉ where C̄ ∩ Ĉ = ∅ and

∑
j∈C̄ w̄j +

∑
j∈Ĉ ŵj is maximal, i. e., items

j ∈ C̄ take their nominal and items j ∈ Ĉ take their peak weights. Then, the extension
E(C) can be strengthen to

E+(C̄, Ĉ) :=
{
j ∈ N : w̄j ≥ max

i∈C̄
w̄i ∧ w̄j + ŵj ≥ max

i∈Ĉ
(w̄i + ŵi)

}
∪ C̄ ∪ Ĉ. (4.7)

We call E+(C̄, Ĉ) the strengthened (Γ-robust-)extension. By definition, E+(C̄, Ĉ) is a cover
itself.

Lemma 4.6. Let C ⊆ N be a cover, E(C) its extension, and E+(C̄, Ĉ) its strengthened
extension. Then, the cover inequality∑

j∈C
xj ≤ |C| − 1 (4.8)

and the extended Γ-robust cover inequalities∑
j∈E(C)

xj ≤ |C| − 1 (4.9)
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and ∑
j∈E+(C̄,Ĉ)

xj ≤ |C| − 1 (4.10)

are valid for KΓ.

Proof. Klopfenstein and Nace [97] have shown the validity of (4.8) and (4.9).
Suppose the extended cover inequality (4.10) is not valid. Then there exist an integer

point x̃ ∈ KΓ∩{0, 1}|N | (integer since KΓ is defined as an integer hull) and a strengthened
extension E+(C̄, Ĉ) for which ∑

j∈E+(C̄,Ĉ)
x̃j ≥ |C|

holds. Define NE+ :=
{
j ∈ E+(C̄, Ĉ) : x̃j = 1

}
. From the feasibility of x̃ follows

c ≥
∑
j∈N

w̄jx̃j + max
N ′⊆N :|N ′|=Γ

∑
j∈N ′

ŵjx̃j

≥
∑

j∈E+(C̄,Ĉ)
w̄jx̃j + max

N ′⊆E+(C̄,Ĉ):|N ′|=Γ

∑
j∈N ′

ŵjx̃j

=
∑

j∈NE+

w̄j + max
N ′⊆NE+ :|N ′|=Γ

∑
j∈N ′

ŵj

≥ min
NC⊆NE+ :|NC |=|C|

{∑
j∈NC

w̄j + max
N ′⊆NC :|N ′|=Γ

∑
j∈N ′

ŵj

}

=
∑
j∈C

w̄j +
∑
j∈Ĉ

ŵj > c.

This is a contradiction and completes the proof.

Example 4.7. The set C = {1, 3} with total weight 3 + 5 + 1 = 9 > c is a cover for the
Γ-RKP instance defined in Example 4.2. Furthermore, it is minimal. Although this cover
cannot be extended in the sense of Klopfenstein and Nace, i. e., E(C) = C, there exists a
strengthened extension E+(C̄, Ĉ) = {1, 3, 4} for C̄ = {1} and Ĉ = {3}. This is the only
way to obtain the (strengthened) extended cover inequality x1 + x3 + x4 ≤ 1. It dominates
x1 + x3 + x4 ≤ 2, the cover inequality for the cover {1, 3, 4}. Furthermore, there does not
exist any cover such that this strengthened extended cover can be obtained as an normal
extension of another cover.

Example 4.7 demonstrates that stronger inequalities can be obtained by preferring our
strengthened extensions to the common extensions by Klopfenstein and Nace.
The conditions under which extended robust cover inequalities are facet defining have

been studied by Klopfenstein and Nace [97]. The following results give an example.

Lemma 4.8 (Klopfenstein and Nace [97]). Without loss of generality, suppose that N is
ordered non-increasingly w. r. t. the item peak weights, i. e., j < i ⇒ w̄j + ŵj ≥ w̄i + ŵi.
Let C = {j1, . . . , jr} be a minimal cover with j1 < j2 < · · · < jr. If any of the following
conditions holds, then (4.9) is a facet of KΓ:
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4 The Γ-robust knapsack problem

1. C = N ,

2. E(C) = N , |C| ≤ Γ + 1, and (C \ {j1, j2}) ∪ {1} is not a cover,

3. E(C) = C, |C| ≤ Γ, and (C\{j1})∪{p} is not a cover, where p := min{j ∈ N\E(C)},
4. C ⊂ E(C) ⊂ N , |C| ≤ Γ, and neither (C \ {j1, j2}) ∪ {1} nor (C \ {j1}) ∪ {p} with

p := min{j ∈ N \ E(C)} are covers.

4.3 Algorithms

In this section, we present algorithmic approaches to solve the Γ-RKP. Furthermore, we
describe algorithms solving the related separation problems of finding maximally violated
Γ-robust (extended) cover inequalities.

4.3.1 Separation of violated Γ-robust (extended) cover inequalities

In Klopfenstein and Nace [97], the authors present two approaches to solve the separation
problem for Γ-robust cover inequalities: an exact ILP-based algorithm and a heuristic
greedy algorithm. In the following, we will briefly report on these algorithms and refer
to [97] for more details. At the end of this section, we present an ILP formulation of the
separation problem for Γ-robust strengthened extended cover inequalities. Therefore, let
x∗ be a fractional LP solution of the Γ-RKP.
Similar to the classic KP, Klopfenstein and Nace [97] formulated separation problem

for violated cover inequalities (4.8) as ILP as follows. Let ȳj and ŷj defined as binary
decision variables so that ȳj = 1 if and only if j ∈ C, and ŷj = 1 if and only if j ∈ C and
j is set to its peak weight, respectively. Then the resulting ILP reads.

Z := min
∑
j∈N

(1− x∗
j)ȳj (4.11a)

s. t.
∑
j∈N

(w̄j ȳj + ŵj ŷj) ≥ c+ 1 (4.11b)

∑
j∈N

ŷj ≤ Γ (4.11c)

ŷj ≤ ȳj ∀j ∈ N (4.11d)

ȳj, ŷj ∈ {0, 1} ∀j ∈ N (4.11e)

where the objective function (4.11a) minimizes the feasible of the resulting cover inequality.
The Constraint (4.11b) ensures the covering condition whereas constraints (4.11c) and
(4.11d) model the Γ-robustness. Finally, the variable ranges are given by (4.11e).

Let (ȳ∗, ŷ∗) be an optimal solution of (4.11) and define C :=
{
j ∈ N : ȳ∗j = 1

}
. Then,

the cover inequality for C is violated if and only if Z < 1 holds.
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In addition to this exact ILP-based separation algorithm, Klopfenstein and Nace [97]
present a greedy heuristic to separate violated Γ-robust cover inequalities (4.8). There,
they follow a similar approach as known for the KP. However in contrast to the classic
problem, the relative profits of the items are first sorted w.r.t. the peak weights of the
items. Then, up to Γ items are selected greedily (while not exceeding the knapsack ca-
pacity). Afterwards, the remaining items are resorted w.r.t. the relative profit according
to their nominal weight. Then, the items are selected greedily if they still fit into the
already partially filled knapsack; cf. Klopfenstein and Nace [97] for further details and
computational experiments.

Finally, we present an exact ILP-based separation algorithm to separate violated
strengthened extended cover inequalities (4.10). Therefore, let ȳj, ŷj and αj be binary

decision variables so that ȳj = 1 if and only if j ∈ C̄, ȳj = 1 if and only if j ∈ Ĉ, and
αj = 1 if and only if j is added while extending the cover, i. e., j ∈ E+(C̄, Ĉ) \ (C̄ ∪ Ĉ).
Next, we formulate the resulting ILP. It extends ILP (4.11) by incorporating the partition
of the cover and the conditions for the strengthened extension. It reads as follows.

Z := max
∑
j∈N

(x∗
j − 1)(ȳj + ŷj) +

∑
j∈N

x∗
jαj (4.12a)

s. t.
∑
j∈N

w̄j ȳj +
∑
j∈N

(w̄j + ŵj)ŷj ≥ c+ 1 (4.12b)

∑
j∈N

ŷj ≤ Γ (4.12c)

ȳj + ŷj + αj ≤ 1 ∀j ∈ N (4.12d)

ȳi + αj ≤ 1 ∀j, i ∈ N : w̄i > w̄j (4.12e)

ŷi + αj ≤ 1 ∀j, i ∈ N : w̄i + ŵi > w̄j + ŵj (4.12f)

ȳj, ŷj, αj ∈ {0, 1} ∀j ∈ N (4.12g)

where the objective function (4.12a) maximizes the violation of the resulting Γ-robust
strengthened extended cover inequality. Constraint (4.12b) ensures the covering condition.
Constraint (4.12d) guarantees that an item may either be in the cover at their nominal
weight, or in the cover at their peak weight, or in the set of items added in the extension,
or not in the extended cover at all. At most Γ items may be at their maximum peak;
this is modeled by constraint (4.12c). The constraints (4.12e) and (4.12f) model the
conditions for an item added into the strengthened extension. Finally, the variable ranges
are given by (4.12g).
Let (ȳ∗, ŷ∗, α∗) be a solution of ILP (4.12). Then define

E+(C̄, Ĉ) := {j ∈ N : ȳ∗j + ŷ∗j + α∗
j = 1

}
with C̄ =

{
j ∈ N : ȳ∗j = 1

}
and Ĉ =

{
j ∈ N : ŷ∗j = 1

}
. By construction, the Γ-robust

strengthened extended cover inequality corresponding to E+(C̄, Ĉ) is violated if and only
if Z > −1.
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4 The Γ-robust knapsack problem

Note that ILP (4.12) is a special case of the separation ILP (7.23) to find violated
recoverable robust strengthened extended cover inequalities for the k/Γ-RRKP we will
present in Section 7.3.2.

4.3.2 Solving the Γ-RKP

There exist different approaches to solve the Γ-RKP. First, the presented exponential (4.2)
or compact ILP formulation (4.3) can be solved by an out-of-the-shelf MIP solver as
ILOG Cplex [84]. Further, the solution process may be improved by integrating the
separation of violated Γ-robust (extended) cover inequalities using any of the algorithms
presented in Section 4.3.1. Klopfenstein and Nace [97] have followed this approach and
carried out computational studies.
Second, Fischetti and Monaci [69] suggest to solve Γ-robust problems using robustness

cuts, i. e., to solve the deterministic non-robust problem (here: the Γ-RKP using the
nominal item weights of the Γ-RKP instance) and add violated cuts ensuring robustness
on the fly. Robustness is ensured by cutting off solution vectors that may become
infeasible w.r.t. the uncertainty set UΓ; cf. Fischetti and Monaci [69] and Monaci et al.
[125] who also present experimental results on the usage of robustness cuts for the Γ-RKP.
Third, Monaci et al. [125] provide a dynamic programming approach to solve the

Γ-RKP in 2013. Their algorithm has a pseudo-polynomial time complexity of O(Γ|N |c).
We refer to Monaci et al. [125] for details on this algorithm, suggested refinements to
decrease its recursion space in practice, and computational results.
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CHAPTER FIVE

THE MULTI-BAND ROBUST KNAPSACK PROBLEM

The knapsack problem is one of the most fundamental problems in mathematical opti-
mization, it is a reoccurring subproblem to many other optimization problems, and has
been studied intensively. Hence, it is obvious to consider this problem and its robust
counterpart when investigating and comparing (new) robustness concepts. The Γ-RKP as
a robust approach to the knapsack problem under data uncertainty has been well-studied
in the literature; cf. Chapter 4. Nevertheless, its quality is bounded by the limitations of
the concept of Γ-robustness. To overcome some of these, we have introduced the concept
of multi-band robustness in Section 3.2.

In the following, we apply this concept to the knapsack problem to take uncertain data
into account. The resulting multi-band robust knapsack problem (mb-RKP) generalizes
the Γ-RKP considered in Chapter 4.

So far, the mb-RKP has only been studied implicitly: Büsing and D’Andreagiovanni
[47] and Mattia [122] describe the multi-band robust counterpart of a general linear
constraint, thus a multi-band robust knapsack constraint. They do not introduce the
problem itself nor study its polyhedral structure. When applying the histogram model
of Bienstock [37] to wireless network design (WND), D’Andreagiovanni [58] considers one
specific constraint of the WND model as a dyadic knapsack constraint under histogram
uncertainty (a special case of the mb-RKP) and describes a corresponding cover inequality
for this special case without further proof of its validity or investigation of the facial
structure of the knapsack polytope.

Definition 5.1 (Multi-Band Robust Knapsack Problem). Given a set of items N , a
knapsack capacity c ∈ Z>0, a profit function p : N → Z>0, and uncertain item weights w
modeled by a multi-band robust uncertainty set Umb, i. e., w ∈ Umb.

The multi-band robust knapsack problem (mb-RKP) is to find a subset of items maxi-
mizing the total profit whose total weight does not exceed the knapsack constraint for
all realizations in Umb.

Example 5.2. Let us consider the mb-RKP with four items, two negative and two
positive deviation bands, and robustness parameters defined by the following table
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5 The multi-band robust knapsack problem

j w̄j ŵ−2
j ŵ−1

j ŵ0
j ŵ1

j ŵ2
j pj

1 3 -4 -2 0 2 4 1
2 3 -3 -2 0 2 3 1
3 2 -3 -1 0 1 2 1
4 2 -2 -1 0 1 2 1

γb - 0 1 0 1 0 -
Γb - 2 3 4 2 1 -
ϑb - 0 1 0 2 1 -

By its frequency profile {ϑb}b∈B, we observe that a maximum-weight realization has one
item deviating in band -1, two items in band 1, and one item in band 2. Assume a
knapsack capacity of 15. Then the solution x1 = x2 = x3 = 1, x4 = 0 is optimal with
objective value 3. See also Section 3.2 for further information on the parameters defining
Umb.

Since KP and Γ-RKP are special cases of the mb-RKP its complexity is at least
weakly NP-hard. So far, no dynamic program solving the mb-RKP is known in the
literature. The development of an applicable dynamic program also depends on a better
characterization and in particular a closed formula of worst-case realizations in Umb that
can be exploited by a dynamic program. The state-of-the-art algorithm based on solving
a min-cost flow might not be suited for this application; cf. Büsing and D’Andreagiovanni
[47, 48] and Mattia [122].

5.1 Formulations

In this section, we present integer programming formulations for the mb-RKP. For each
item j ∈ N , we introduce a binary variable xj which is 1 if and only if item j is selected
to be in the subset of items maximizing the total profit.

First, we present a straight-forward exponential ILP formulation for the mb-RKP. It
reads

max
∑
j∈N

pjxj (5.1a)

s. t.
∑
j∈N

w̄jxj +
∑
b∈B

∑
j∈Nb

ŵb
jxj ≤ c ∀N b ⊆ N, b ∈ B : N =

⋃
b∈B

N b, |N b| = ϑb (5.1b)

xj ∈ {0, 1} ∀j ∈ N. (5.1c)

The objective (5.1a) maximizes the total profit and the exponentially many knapsack
constraints (5.1b) ensure that no worst-case realization in Umb exceeds the capacity. The
worst-case realizations are characterized using the frequency profile ϑb (for b ∈ B).

Second, the following compact ILP formulation of the mb-RKP can be obtained by
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max
∑
j∈N

pjxj (5.2a)

s. t.
∑
j∈N

w̄jxj +
∑
b∈B

ϑbπb +
∑
j∈N

σj ≤ c (5.2b)

πb + σj ≥ ŵb
jxj ∀j ∈ N, b ∈ B (5.2c)

xj ∈ {0, 1}, πb ≥ 0, σj free ∀j ∈ N, b ∈ B (5.2d)

where (5.2a) maximizes the total profit subject to the multi-band robust knapsack
constraint (5.2b) and the dual constraint (5.2c). Variables π and σ are dual variables
modeling the deviation; cf. Section 3.2.2.

5.2 Polyhedral study

In this section, we investigate the polyhedral structure of the multi-band robust knapsack
polytope. This section starts with the definition of the polytope followed by a report on
its basic properties. Afterwards, we consider classes of valid inequalities.

Definition 5.3 (Multi-Band Robust Knapsack Polytope). Given a mb-RKP. The multi-
band robust knapsack polytope is defined as

Kmb := conv
{
x ∈ {0, 1}|N | : x satisfies (5.1b)

}
By construction of the compact multi-band robust counterpart,

Kmb = conv
{
x ∈ {0, 1}|N | : ∃ π ≥ 0, σ so that x, π, σ satisfy (5.2b)–(5.2c)

}
holds.

5.2.1 Basic characteristics

The investigation of the dimension of Kmb and its trivial facets is straight-forward. The
results are as follows.

Lemma 5.4. For ΓB > 0, the polytope Kmb is full-dimensional if and only if w̄j+ ŵB
j ≤ c

for all j ∈ N .

Proof. All unit vectors and the zero vector are feasible to Kmb and affinely independent.
Let Kmb be full-dimensional. Assume there exists a i ∈ N such that w̄j + ŵB

j > c.
Then ei �∈ Kmb. Furthermore, by definition of Kmb it holds xi = 0 for all x ∈ Kmb. Thus,
Kmb is not full-dimensional; a contradiction completing the proof.

W. l. o. g. we assume Kmb is full-dimensional in the following.
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5 The multi-band robust knapsack problem

Lemma 5.5. Let j ∈ N . The constraints

xj ≥ 0 (5.3)

and
xj ≤ 1 if and only if w̄j + w̄i + ŵB

j + ŵB
i ≤ c ∀i ∈ N \ {j} (5.4)

are trivial facets of Kmb.

Proof. For xj ≥ 0, the unit vectors ei (i �= j) and the zero vector are valid for Kmb,
satisfy the non-negativity constraint (5.3) with equality, and are affinely independent.
For xj ≤ 1, the unit vector ej and the vectors ej+ei (i �= j) satisfy the upper bound (5.4)

with equality, are feasible for the full-dimensional Kmb, and affinely independent. Vice
versa, let xj ≤ 1 be a facet of Kmb. Then there exist |N | affinely independent points

xτ ∈ Kmb on this facet. Suppose there exists i ∈ N \{j} such that w̄j+ w̄i+ ŵB
j + ŵB

i > c

holds. Further suppose there exists a τ ′ with xτ ′
i = 1. Then it follows

c < w̄j + w̄i + ŵB
j + ŵB

i = w̄jx
τ ′
j + w̄ix

τ ′
i + ŵB

j x
τ ′
j + ŵB

i x
τ ′
i

≤
∑
j∈N

w̄jx
τ ′
j +

∑
b∈B

∑
j∈Nb

ŵb
jx

τ ′
j ≤ c;

a contradiction. Hence, xτ ′
i = 0 follows for all values τ ′. This implies that xτ cannot be

affinely independent contradicting our first supposition. This completes the proof.

5.2.2 Valid inequalities

In the following, we investigate (extended) covers and the corresponding classes of valid
inequalities for the mb-RKP generalizing the results for the KP and Γ-RKP.
A subset of items C ⊆ N is called a (multi-band robust-)cover if there exists a a

realization of uncertain weights such that its total weight exceeds the knapsack capacity.
A cover is called minimal if C \ {j} is not a cover for all j ∈ C.

Given a cover C ⊆ N , we can define its extension E(C) similar to the special case of
Γ-RKP:

E(C) :=
{
j ∈ N : w̄j + ŵb

j ≥ max
i∈C

(w̄i + ŵb
i ) ∀b ∈ B

}
(5.5)

Furthermore, an assignment of items j ∈ C to bands b ∈ B which maximizes the total
weight of the cover C can be obtained by the min-cost flow algorithm pointed out in
Section 3.2 in particular cf. Lemma 3.9. Let {Cb}b∈B be a family of disjoint subsets of

C defining such an assignment. Then a strengthened extension E+(CB, . . . , CB) can be
defined as

E+(CB, . . . , CB) :=

{
j ∈ N : w̄j + ŵb

j ≥ max
i∈Cb

(w̄i + ŵb
i ) ∀b ∈ B

}
(5.6)

By definition, both extensions are covers themselves.
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Lemma 5.6. Let C ⊆ N be a cover, E(C) its extension and E+(CB, . . . , CB) its strength-
ened extension. Then, the cover inequality

∑
j∈C

xj ≤ |C| − 1 (5.7)

and the extended cover inequalities

∑
j∈E(C)

xj ≤ |C| − 1 (5.8)

and ∑
j∈E+(CB ,...,CB)

xj ≤ |C| − 1 (5.9)

are valid for Kmb.

Proof. Let C ⊆ N be a cover, E(C) its extension and E+(CB, . . . , CB) its strengthened
extension. Further, let x ∈ Kmb be a feasible point of the multi-band robust knapsack
polytope.

Suppose x does not satisfy (5.7). Then
∑

j∈C xj ≥ |C| implies xj = 1 for all j ∈ C.
Hence ∑

j∈N
w̄jxj + max

Nb⊆N,b∈B:N=
⋃

b∈B Nb,|Nb|=ϑb

∑
b∈B

∑
j∈Nb

ŵb
jxj

≥
∑
j∈C

w̄j + max
Nb⊆C,b∈B:C=⋃

b∈B Nb,|Nb|≤ϑb

∑
b∈B

∑
j∈Nb

ŵb
j

≥c+ 1

and thus x �∈ Kmb; a contradiction.

Let us consider the extended cover inequalities next. Define Δ := E(C) \ C and

Δ+ := E+(CB, . . . , CB) \ C. By definition, C \ {j} ∪ {i} is a cover for all j ∈ C and
i ∈ Δ or i ∈ Δ+, respectively. Hence the corresponding cover inequalities are valid.
The extended cover inequalities (5.8) and (5.9) are conic combinations of these cover
inequalities with right hand side values rounded down (due to x ∈ {0, 1}|N |) and thus
valid. This completes the proof.

5.3 Algorithms

In this section, we present an ILP-based separation algorithm to find violated multi-band
robust strengthened extended cover inequalities.
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5 The multi-band robust knapsack problem

5.3.1 Separation of multi-band robust strengthened extended cover
inequalities

We consider a fractional LP solution x∗ of the mb-RKP. Let ybj and αj be binary decision
variables so that ybj = 1 if and only if j ∈ Cb and αj = 1 if and only if j is added

while extending the cover, i. e., j ∈ E+(CB, . . . , CB) \⋃b∈B Cb. Using this notation, we
formulate the separation problem as ILP as follows.

Z := min
∑
j∈N

∑
b∈B

(1− x∗
j)y

b
j +
∑
j∈N

x∗
jαj (5.10a)

s. t.
∑
j∈N

∑
b∈B

(w̄j + ŵb
j)y

b
j ≥ c+ 1 (5.10b)

∑
b∈B

ybj + αj ≤ 1 ∀j ∈ N (5.10c)

∑
j∈N

ybj = ϑb ∀b ∈ B (5.10d)

ybi + αj ≤ 1 ∀j, i ∈ N, b ∈ B : w̄i + ŵb
i > w̄j + ŵb

j (5.10e)

ybj , αj ∈ {0, 1} ∀j ∈ N, b ∈ B (5.10f)

where the objective function (5.10a) minimizes the feasibility of the resulting Γ-robust
strengthened extended cover inequality. Constraint (5.10b) ensures the covering condition.
Constraint (5.10c) guarantees that an item may either be in the cover, or in the set
of items added in the extension, or not in the extended cover at all. We know by the
definition of the frequency profile, that ϑb items with fall in band b ∈ B in a worst case
realization; this is modeled by constraint (5.10d). The constraints (5.10e) models the
conditions for an item added into the strengthened extension. Finally, the variable ranges
are given by (5.10f).
Let (yb

∗
, α∗) be a solution of ILP (5.10). Then define

E+(CB, . . . , CB) :=

{
j ∈ N :

∑
b∈B

ybj + αj = 1

}

with Cb :=
{
j ∈ N : ybj = 1

}
. By construction, the Γ-robust strengthened extended

cover inequality corresponding to E+(CB, . . . , CB) is violated if and only if Z < 1.
Note that ILP (5.10) generalizes ILP (4.12) from the Γ-robust setting to multi-band

robustness.
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CHAPTER SIX

THE SUBMODULAR KNAPSACK PROBLEM

In this chapter, we consider knapsack problems under data uncertainty for which sub-
modular formulations for the corresponding robust counterparts exist. The resulting
problem is called the submodular knapsack problem (SMKP). For example, it generalizes
the Γ-robust knapsack problem.
The SMKP has been introduced by Atamtürk and Narayanan [16]. Their investigation

covers a polyhedral study on the problem focusing on the class of (extended) cover
inequalities and the related lifting problem. Further, they consider a special subclass
of submodular functions and present theoretical bounds on the lifting coefficients as
well as a practical separation algorithm for lifted extended cover inequalities for this
subclass. Koster and Kutschka [99] applied the SMKP to routing problems in the context
of telecommunication networks and also identified new valid and facet-defining classes of
inequalities for the SMKP.
Before the work by Atamtürk and Narayanan [16], the submodular knapsack problem

was not covered in the literature. Instead in most works, only the min-/maximization of
a super-/submodular objective function over a linear (i.e. classic) knapsack constraint
is considered. For example, Sviridenko [151] gives an approximation algorithm to the
maximization of a submodular function subject to a knapsack constraint. Atamtürk and
Narayanan [15] and Ahmed and Atamtürk [9] consider the minimization/maximization
of a special subclass of submodular functions (containing a concave term) using a cutting
plane approach. The supermodular knapsack problem has been investigated by Gallo
and Simeone [71] applying a Lagrangian relaxation to the problem of maximizing a
supermodular function over a linear knapsack constraint.

Definition 6.1 (Submodular Knapsack Problem). Given a set of items N , a knapsack
capacity c ∈ Z>0, a profit function p : N → Z≥0, and a submodular weight function
f : 2N → Z>0. The submodular (robust) knapsack problem (SMKP) is to find a subset
of items N ′ with maximum total profit whose total weight f(N ′) does not exceed the
knapsack capacity.

We define the difference function �j : 2
N → Z≥0 as �j(N

′) := f(N ′ ∪{j})− f(N ′), i. e.,
the difference function �j returns the increase in weight by adding item j ∈ N to the set
N ′ ∈ 2N .
We follow Atamtürk and Narayanan [16] and assume that
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6 The submodular knapsack problem

1. f is non-decreasing, i. e., f(N ′) ≤ f(N ′′) for all N ′ ⊆ N ′′ ⊆ N ,

2. f(∅) = 0,

3. 0 < �j(∅) ≤ c for all j ∈ N .

Note, the first two assumptions imply that the system of subsets of items fitting into
the submodular knapsack is an independence system. Vice versa, given an independence
system I ⊆ 2N , we can construct a corresponding SMKP instance as follows: define the
capacity as cI := 1, and the weight function fI(∅) := 0, fI(N ′) := 1 for all N ′ ∈ I \ {∅},
and 2 otherwise.

Example 6.2. Let us consider an SMKP instance with four items defined as follows.
Let N := {1, 2, 3, 4} be the set of items, p1 = p2 = p3 = p4 = 1 be constant profits (thus
maximizing the number of items), and c = 11 be the knapsack capacity. Next, we have to
define a submodular function f . For N ′ ∈ 2N define

f(N ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if N ′ = ∅,
6 if |N ′| = 1,

11 if N ′ = {1, 2},
12 if |N ′| = 2 and N ′ �= {1, 2},
15 if N ′ = {1, 2, 3} or N ′ = {1, 2, 4},
18 if N ′ = {1, 3, 4} or N ′ = {2, 3, 4},
20 if N ′ = N.

Then, N ′ = {1, 2} with weight 11 satisfies the knapsack capacity of 11 and maximizes the
profit function with value 2 since it is the largest subset of N fitting into the submodular
knapsack.

6.1 Formulations

The SMKP can be formulated as the following mathematical program

max
∑
j∈N

pjxj (6.1a)

s. t. f({j ∈ N : xj = 1}) ≤ c (6.1b)

xj ∈ {0, 1} ∀j ∈ N. (6.1c)

An ILP formulation exists if f can be linearized. For example, for f = fΓ with

fΓ : 2N → Z>0, f
Γ(N ′) :=

∑
j∈N ′

w̄j + max
N ′′⊆N ′ : |N ′|≤Γ

∑
j∈N ′′

ŵj
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for all N ′ ⊆ N , the formulation (6.1) reads

max
∑
j∈N

pjxj (6.2a)

s. t.
∑
j∈N

w̄jxj + max
N ′⊆N : |N ′|≤Γ

∑
j∈N ′

ŵjxj ≤ c (6.2b)

xj ∈ {0, 1} ∀j ∈ N. (6.2c)

This formulation is the Γ-robust counterpart of the Γ-RKP for which a compact linear
reformulation exists; cf. Chapter 4.

6.2 Polyhedral study

In this section, we describe polyhedral insights to the set of feasible solutions of the
SMKP. We start with the following basic definition. Note, we write f(x) instead of the
correct f({j ∈ N : xj = 1}) for a simpler notation and better readability.

Definition 6.3 (Submodular Knapsack Polytope). Given a set of items N , a positive
capacity c ∈ Z>0, and a submodular weight function f : 2N → Z≥0, the submodular
knapsack polytope is defined as

Kf := conv
{
x ∈ {0, 1}|N | : f(x) ≤ c

}
.

6.2.1 Basic characteristics

Some basic properties of the SMKP polytope are the following.

Lemma 6.4 (Atamtürk and Narayanan [16]). The submodular knapsack polytope Kf is
full-dimensional.

In the following, we assume w. l. o. g. that Kf is full-dimensional.

Lemma 6.5 (Atamtürk and Narayanan [16]). Trivial facets of the submodular knapsack
polytope Kf are given by the inequalities

xj ≥ 0 ∀j ∈ N (6.3a)

xj ≤ 1 ∀j ∈ N : max
i∈N\{j}

f({j, i}) ≤ c. (6.3b)

6.2.2 Valid inequalities

Many classes of valid inequalities for the classic knapsack problem are derived from
special structured subsets of items, e. g., covers. In this section, we present results for the
generalizations of these structures. The results on (extended) covers have been obtained
by Atamtürk and Narayanan [16] and are stated for completeness.
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6 The submodular knapsack problem

A subset of items C ⊆ N is called a (submodular) cover if its total weight exceeds the
knapsack capacity, i. e., f(C) ≥ c+ 1. A cover is called minimal if C \ {j} is not a cover
for all j ∈ C.
Let Kf (N ′) := projxj : j∈N ′ Kf be the submodular knapsack polytope restricted to the

items in N ′ ⊆ N .

Lemma 6.6 (Atamtürk and Narayanan [16]). Let C ⊆ N be a cover. Then, the cover
inequality ∑

j∈C
xj ≤ |C| − 1 (6.4)

is valid for Kf . Furthermore, it is facet-defining for Kf (C) if and only if C is minimal.

Let π = (π1, . . . , π|N\C|) be a permutation of the items not in the cover C. Let
Ct := C ∪ {π1, . . . , πt} for all t ∈ {1, . . . , |N \ C|} and let C0 := C. The extension of C
(w.r.t. π) is given by

Eπ(C) := C ∪ {πt ∈ N \ C : �πt(Ct−1) ≥ �j(∅) for all j ∈ C} . (6.5)

In general, the extension Eπ(C) of a cover C is sequence-dependent due to the submodu-
larity of f .

Example 6.7. Let us consider the SMKP instance with four items introduced in Ex-
ample 6.2. Then, the set C := {3, 4} is a cover since f(C) = 12 > 11 = c. The set
of remaining items N \ C is {1, 2}. Thus, there exist two permutations of this two
item set: π = (1, 2) and π′ = (2, 1). The two extensions w.r.t. these permutations are
Eπ(C) = {1, 3, 4} and Eπ′(C) = {2, 3, 4}. This illustrates the sequence-dependency of the
cover extension in the submodular robust setting.

Lemma 6.8 (Atamtürk and Narayanan [16]). Let C ⊆ N be a cover, π a permutation of
the items N \ C, and Eπ(C) the corresponding extension of the cover. Then, the extended
cover inequality ∑

j∈Eπ(C)
xj ≤ |C| − 1 (6.6)

is valid for Kf . Furthermore, it is facet-defining for Kf (Eπ(C)) if and only if C is minimal
and for each j ∈ {πt ∈ N \ C : �πt(Ct−1) ≥ �j(∅) for all j ∈ C} there exist distinct i, i′ ∈
C such that f(C ∪ {j} \ {i, i′}) ≤ c.

Further, Atamtürk and Narayanan [16] consider the lifting of cover inequalities to
strengthen the inequalities and define facets of the higher-dimensional polytope Kf .
Consider the lifted cover inequality∑

j∈C
xj +

∑
j∈N\C

αjxj ≤ |C| − 1 (6.7)

with lifting coefficients αj. These lifting coefficients are sequence-dependent. Given a
(possible empty) subset N ′ ⊆ N of items for which the lifting coefficients have already
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been determined, the lifting coefficient αi with i ∈ N \ (C ∪ N ′) can be calculated as
follows

αi := |C| − 1− max
N ′′⊆(C∪N ′)

{
|C ∩N ′′|+

∑
j∈N ′∩N ′′

αj : f(N ′′ ∪ {i}) ≤ c

}
. (6.8)

Note, determining the optimal lifting coefficients is again submodular knapsack problem.

Proposition 6.9 (Atamtürk and Narayanan [16]). If C is a minimal cover for SMKP,
then for any lifting sequence the lifted cover inequality (6.7) with lifting coefficients αi

determined by (6.8) is facet-defining for Kf .

Atamtürk and Narayanan [16] state sufficient conditions to bound the lifting coefficients
from below and above. They consider a subclass of submodular functions and show
the upper bound can be computed in polynomial time for this subclass whereas the
determination of the lower bound is NP-complete.

Next, we consider structures more general than covers. The concept of a (1, k)-
configuration has been introduced by Padberg [134] for the knapsack, see Section 1.2.
We generalize this concept to submodular knapsacks. A subset N ′ ⊆ N and an element
t ∈ N \N ′ is called a (1, k)-configuration if f(N ′) ≤ c and Q∪ {t} is a minimal cover for
2 ≤ k ≤ |N ′| and for all Q ⊆ N ′ with |Q| = k. Note, for k = |N ′| a (1, k)-configuration
is a minimal cover; cf. Section 1.2 for (1, k)-configurations for KP.
Padberg [134] has shown that (1, k)-configurations yield valid inequalities for the

knapsack polytope K which are also facet-defining under mild conditions. This result
can be extended to the submodular knapsack polytope Kf as follows.

Theorem 6.10. Given a submodular knapsack polytope Kf with elements N = {1, . . . , n}.
Let t ∈ N and N ′ ⊆ N \{t} be a (1, k)-configuration. The (1, k)-configuration inequalities

(r − k + 1)xt +
∑
j∈T

xj ≤ r ∀T ⊆ N ′ : |T | = r, k ≤ r ≤ |N ′| (6.9)

are valid for Kf and facet-defining for Kf (N ′ ∪ {t}).
Proof. First, we show the validity of the inequalities (6.9). Given a (1, k)-configuration
and a related inequality (6.9), we consider the two possible values of xt: If xt = 0, then
the inequality reduces to ∑

j∈T
xj ≤ r.

This is valid for Kf by definition of T . If xt = 1, then inequality (6.9) reduces to∑
j∈T

xj ≤ k − 1

which is valid for Kf since Q ∪ {t} is a minimal cover for all Q ⊆ N ′ with |Q| = k and
so it holds that f(Q ∪ {t}) > c for each k-element subset Q of T .
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Second, we show that for the case N ′ = N \ {t}, the face defined by inequality (6.9)
contains n affinely independent vectors. W. l. o. g., we assume T = {1, . . . , r} and t = n.
For i = 1, . . . , r we define the sets Ui := {((i − 1) mod r) + 1, (i mod r) + 1, ((i +
1) mod r) + 1, . . . , ((i+ k − 3) mod r) + 1}. Since |Ui| = k − 1, it holds f(Ui ∪ {t}) ≤ c
by definition. Further, we define sets Wj := {1, . . . , k − 2, j, n} for j = r + 1, . . . , n− 1.
For these sets, f(Wj) ≤ c holds because t ∈ Wj and |Wj \ {t}| = k − 1. Finally, we
consider the set T for which f(T ) ≤ c holds by definition. The n characteristic vectors
of Ui ∪ {t} (1 ≤ i ≤ r), Wj (r ≤ j ≤ n− 1) and T are clearly affinely independent and
on the face defined by inequality (6.9).

An even stronger result for (1, k)-configurations can be obtained: the submodular
knapsack polytope Kf is completely described by the trivial facets, the knapsack con-
straint, and all (1, k)-configuration inequalities. The following theorem states this result
more formally.

Theorem 6.11. Given the submodular knapsack polytope Kf and its linear relaxation
LPKf defined by

LPKf := conv
{
x ∈ [0, 1]|N | : f(x) ≤ c

}
. (6.10)

If for N ′ = {2, . . . , n} and t = 1 the following two conditions hold

1. f(N ′) ≤ c,

2. Q ∪ {t} is a minimal cover for all Q ⊆ N ′ with |Q| = k and 2 ≤ k ≤ |N ′|,
then the polytope obtained by intersecting LPKf with the (1, k)-configuration inequalities

(r − k + 1)xt +
∑
j∈T

xj ≤ r ∀T ⊆ N ′ : |T | = r, k ≤ r ≤ |N ′| (6.11)

has zero-one vertices only, i. e.,

Kf = LPKf ∩ {x ∈ R|N | : x satisfies all inequalities (6.11)
}
. (6.12)

Proof. W. l. o. g., let
π�x ≤ 1 (6.13)

define a non-trivial facet F (with right-hand side normalized to 1) of Kf . In the following,
we show that F is in fact of the form (6.11).

From f(N ′) ≤ c it follows that
∑n

j=2 πj = 1. Suppose this is not true, i. e.,
∑n

j=2 πj < 1.

Then for x ∈ F , 1 = π�x = π1x1+
∑n

j=2 πjxj ≤ π1x1+
∑n

j=2 πj < π1x1+1 which holds if
and only if 0 < π1x1. This implies that the facet F is identical to x1 = 1; a contradiction
to F being non-trivial.
W. l. o. g., let the variables be indexed such that πj ≥ πj+1 for j = 2, . . . , n − 1.

Since, Q ∪ {t} is a minimal cover for all Q ⊆ N ′ with |Q| = k and 2 ≤ k ≤ |N ′|, it
follows that

∑k
j=1 πj = 1. Suppose this is not true, i. e.,

∑k
j=1 πj < 1. Let R ⊆ N ′

such that f(R ∪ {t}) ≤ c holds. Then |R| ≤ k − 1. It follows for x with xj = 1 if
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6.2 Polyhedral study

and only if j ∈ R ∪ {t} that π�x = π1 +
∑

j∈R πj ≤ π1 +
∑k

j=2 πj < 1. Therefore, no
solution with x1 = 1 exists on the facet F . Thus, the facet F is contained in the face{
x ∈ Kf : x1 = 0

}
� Kf contradicting F being a facet of Kf .

Furthermore, it holds
∑k−1

j=1 πj + πk+1 = 1. Suppose this is not true, i. e.,
∑k−1

j=1 πj +
πk+1 < 1. Let R ⊆ N ′ such that f(R∪{t}∪{k+1}) ≤ c holds. Then |R| ≤ k− 2. For x
with xj = 1 if and only if j ∈ R ∪ {t} ∪ {k + 1}, it follows π�x = π1 +

∑
j∈R πj + πk+1 ≤

π1 +
∑k−1

j=2 πj + πk+1 < 1. Therefore, no solution with xk+1 = 1 exists on the facet F and

F ⊆ {x ∈ Kf : xk+1 = 0
}
� Kf ; a contradiction to F being a facet of Kf .

On the other hand, it holds π1 +
∑k+1

j=3 πj = 1. Suppose this is not true, i. e., π1 +∑k+1
j=3 πj < 1. Let R ⊆ N ′ \ {2} such that f(R∪{t}) ≤ c holds. Then |R| ≤ k− 1. For x

with xj = 1 if and only if j ∈ R∪{t}, it follows π�x = π1+
∑

j∈R πj ≤ π1+
∑k+1

j=3 πj < 1.
Hence, x2 = 1 holds for all points on F . Thus, F is identical to the trivial facet x2 = 1;
a contradiction.

Repeating the argument for 3, 4, . . . , k − 1, it follows that there exists a value μ with
0 ≤ μ ≤ 1 such that πj = μ for all j = 2, . . . , k + 1. Since μ = 0 implies π1 = 1, μ = 1
implies π1 = 0, and F being non-trivial, it holds 0 < μ < 1.

Further, it holds x1 + xj ≥ 1 (j = 2, . . . , n) for every point x ∈ Kf satisfying π�x = 1.
Suppose this is not true, i. e., there exists a x ∈ F with x1 + xj < 1. Then, x1 = xj = 0.
W. l. o. g., we assume j = 2. Then 1 = π�x =

∑n
j=1 πjxj =

∑n
j=3 πjxj ≤ ∑n

j=3 πj =∑n
j=2 πj − π2 = 1− π2. This implies π2 = 0; a contradiction to π2 = μ > 0.

Suppose πj = μ for all j = 2, . . . , q and πj = 0 for all j ≥ q + 1. Then 1 =
∑n

j=2 πj =
(n− 1)μ if and only if μ = 1/(n− 1), and π1 = 1− (k − 1)/(n− 1) = (n− k)/(n− 1).
Thus, the facet F is of the form

(n− k)x1 +
n∑

j=2

xj ≤ n− 1 (6.14)

which is a (1, k)-configuration inequality with r = n− 1.

Suppose πj = μ for all j = 2, . . . , q and πj = μ for all j ≥ q + 1. Then 1 =
∑n

j=2 πj =
(q − 1)μ if and only if μ = 1/(q − 1), and π1 = 1 − (k − 1)/(q − 1) = (q − k)/(q − 1).
Thus, the facet F is of the form

(q − k)x1 +
n∑

j=2

xj ≤ q − 1 (6.15)

which is a (1, k)-configuration inequality with r = q − 1.

Notice, Theorem 6.11 generalizes Theorem 2 in Padberg [134] to the submodular setting.

Next, we consider the submodular robust counterpart of weight inequalities. In contrast
to the classic setting, it turns out that submodular robust weight inequalities are sequence-
dependent in general; similarly to the extension of submodular robust covers we presented
earlier.

91



6 The submodular knapsack problem

Lemma 6.12. Let N ′ = {j1, . . . , jk} ⊆ N with f(N ′) ≤ c and let π = (π1, . . . , πn−k) be
a permutation of the items N \ N ′. Define cres := c − f(N ′) as the residual capacity
w. r. t. N ′ and the following sets of items

N ′
0 := ∅,

N ′
t := {j1, . . . jt} ∀t = 1, . . . , k,

N̄0 := N ′
k = N ′,

N̄t := N ′ ∪ {π1, . . . , πt} ∀t = 1, . . . , n− k.

Then, the weight inequality

k∑
t=1

�jt(N
′
t−1)xjt +

n−k∑
t=1

max{0, �πt(N̄t−1)− cres}xπt ≤ f(N ′) (6.16)

is valid for Kf .

Proof. Let x∗ ∈ Kf ∩ Zn. Define X :=
{
j ∈ N : x∗

j = 1
}
. To prove the validity of

inequality (6.16), we consider the following two cases.
First, let X \N ′ = ∅. Then, for the left-hand side of inequality (6.16) holds

k∑
t=1

�jt(N
′
t−1)xjt +

n−k∑
t=1

max{0, �πt(N̄t−1)− cres}xπt︸ ︷︷ ︸
=0

=
k∑

t=1

�jt(N
′
t−1)xjt

≤
k∑

t=1

�jt(N
′
t−1) = f(X ∩N ′) ≤ f(N ′).

Second, let X \N ′ �= ∅. Then, for the left-hand side of inequality (6.16) holds

k∑
t=1

�jt(N
′
t−1)xjt +

n−k∑
t=1

max{0, �πt(N̄t−1)− cres}xπt

=
k∑

t=1

�jt(N
′
t−1)xjt +

∑
t=1,...,n−k :

�πt (N̄t−1)>cres

�πt(N̄t−1)xπt

− |{t = 1, . . . , n− k : �πt(N̄t−1) > cres
} |︸ ︷︷ ︸

:=τ

·cres

=
k∑

t=1

�jt(N
′
t−1)xjt +

∑
t=1,...,n−k :

�πt (N̄t−1)>cres

�πt(N̄t−1)xπt − τ · cres. (6.17)

Let us consider τ = 0, i. e., �πt(N̄t−1) ≤ cres for all items in j ∈ N \ N ′. Hence, it
follows

(6.17) ≤ f(X ∩N ′) ≤ f(N ′).
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6.2 Polyhedral study

Now, let us consider τ ≥ 1. Because of ∅ = N ′
0 ⊇ · · · ⊇ N ′

k = N ′ = N̄0 ⊇ N̄1 ⊇ · · · ⊇
N̄n−k = N , we relax the term (6.17) as follows

(6.17) ≤ f(X ∩N ′) +
n−k∑
t=1

�πt(N̄t−1)xπt − τ · cres

≤ f(X ∩N)− τ · cres = f(X)− τ · cres ≤ f(X)− cres ≤ c− cres = f(N ′)

where f(X) ≤ c holds because of the definition of X and x∗ ∈ Kf . This completes the
proof.

Note, the weight inequalities are sequence-dependent similar to the submodular robust
extended cover inequalities.
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CHAPTER SEVEN

THE RECOVERABLE ROBUST KNAPSACK PROBLEM

Previously, we have considered one-stage approaches to solve the knapsack problem
under data uncertainty. Now, we follow the two-stage concept of recoverable robustness
and investigate the corresponding recoverable robust knapsack problem (RRKP). In a
first-stage decision, this problem asks to find a most profitable subset of items fitting
into a given first-stage knapsack capacity taking the future second stage decisions into
account. In a second-stage adjustment, some of the items may be removed or new items
may be added to satisfy a given second-stage knapsack capacity or to increase the profit
further.

The author of this thesis together with the co-authors Christina Büsing and Arie Koster
has investigated special cases of the general RRKP: the k, 	-recoverable robust knapsack
problem with discrete scenarios (k, 	/D-RRKP), the k, 	-recoverable robust knapsack
problem with interval scenarios, and the k-recoverable knapsack problem with Γ-scenarios
(k/Γ-RRKP). Some of the results for special cases of the RRKP in this chapter have
been previously published; cf. [46, 49, 50]. The special case of the k, 	/D-RRKP for
which the item weights are certain but the scenario knapsack capacity is uncertain has
been studied by Bouman et al. [44] focusing on its computability by applying column
generation methods.

To our best knowledge, most work on uncertain knapsack problems is limited to
uncertain item weights or profits and/or knapsack capacity without the capability of
recovery. Thus, we are not aware of other work on the RRKP besides the mentioned
ones. A survey on previous work on the Γ-robust knapsack problem (without recovery)
and other approaches on uncertain knapsack problems can be found in the introduction
of Chapter 4.

Although we are also going to present main results of our work on the k, 	/D-RRKP,
the main focus will be on new results for the k/Γ-RRKP. First, let us define the RRKP
in general.

Definition 7.1 (Recoverable Robust Knapsack Problem). Let N be a set of n items
with first-stage profits p0j ∈ N and weights w0

j ∈ N, and second-stage profits pSj ∈ N and
weights wS

j ∈ N. Let S be the scenario set and R(N ′) the recovery set of N ′ ⊆ N .
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7 The recoverable robust knapsack problem

recoverable robust knapsack problem is to find a set N ′ ∈ N with maximum profit

p0(N ′) + min
S∈S

max
N ′′∈R(N ′)

pS(N ′′)

such that w0(N ′) ≤ c0 and for every scenario S ∈ S, there exists a set N ′′ ∈ R(N ′) with
wS(N ′′) ≤ cS and N ′′ maximizing pS(N ′′).

Next, we define three scenario sets and two recovery rules which we are going to
investigate.

Definition 7.2. Let N be a set of n items. We define the following scenario sets:

discrete scenarios The finite set SD consists of scenarios S, each defining a weight
function wS : N → N, a profit function pS : N → N, and capacity cS ∈ N.

interval scenarios The set SI consists of scenarios S, each defining a weight func-
tion wS : N → N such that wS

j ∈ [wmin
j , wmax

j ] where wmin
j defines the minimum

and wmax
j maximum weight. Further, let pS : N → N be the profit function of

scenario S and cS = c ∈ N be the capacity. Note, the latter is the same for all
scenarios.

Γ-scenarios For a given Γ ∈ N, the set SΓ consists of all scenarios S which define
a weight function wS : N → N such that wS

j ∈ [w̄j, w̄j + ŵj ] for all j ∈ N and

|{j ∈ N : wS
j > w̄j

} | ≤ Γ where w̄j is the nominal (or default) and ŵj the
maximum deviation weight. Again, let pS : N → N be the profit function of
scenario S and cS = c ∈ N be the capacity. Note, the capacity is the same for
all scenarios.

Furthermore, let N ′ ⊆ N be the subset of items selected as first-stage decision. We
consider the following two recovery rules:

k, 	-recovery For k, 	 ∈ N, the recovery set Rk,�(N ′) consists of all subsets of N ′

with at least |N ′| − k elements combined with all subsets of N \N ′ with at
most 	 elements, i. e.,

Rk,�(N ′) := {N ′′ ⊆ N : |N ′ \N ′′| ≤ k, |N ′′ \N ′| ≤ 	} .

This recovery rule allows to remove up to k elements from N ′ and add up to 	
additional elements to N ′.

k-recovery For k ∈ N, the recovery set Rk(N ′) consists of all subsets of N ′ with
at least |N ′| − k elements, i. e.,

Rk(N ′) := {N ′′ ⊆ N ′ : |N ′ \N ′′| ≤ k} .

This recovery rule allows to remove up to k elements from N ′. It is the special
case of the k, 	-recovery rule with 	 set to 0.
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7.1 Formulations

Now we can define the special cases of the RRKP mentioned in the introduction of
this chapter.

Definition 7.3. We call the RRKP with S = SD and R(N ′) = Rk,�(N ′) the k, 	-
recoverable robust knapsack problem. We denote it by k, 	/D-RRKP.

Further, we call the RRKP with S = SΓ, R(N ′) = Rk(N ′), and pSj = 0 for all j ∈ N
the k-recoverable Γ-robust knapsack problem. We denote it by k/Γ-RRKP.

In Büsing et al. [49], we show that the RRKP with interval scenarios and k, 	-recovery
(S = SI , R(N ′) = Rk,�(N ′)) can be reduced to the k, 	/D-RRKP with a single discrete
scenario where for each item only the maximum weight of its weight interval is considered.

Note, the k/Γ-RRKP with ŵ = 0 or Γ = 0 is identical to the k, 	/D-RRKP with
pS = 0, 	 = 0, and a single scenario S defined by wS = w̄.

In Büsing et al. [49] we prove the following complexity results.

Lemma 7.4 ([49]). Considering the k,	/D−RRKP , the decision if the total profit of a
feasible first stage solution is greater or equal to a constant for just one given scenario,
is weakly NP-hard, even if k = 0 or 	 = 0.

Theorem 7.5 ([49]). The k, 	/D-RRKP is strongly NP-hard for an unbounded number
of discrete scenarios even if p0 = 0.

Furthermore, the k,	/D−RRKP cannot be approximated within (	 + 1)/	, unless
P = NP . In particular, the problem is inapproximable for 	 = 0.

Theorem 7.6 ([49]). The k, 	/D-RRKP is strongly NP-complete for an unbounded
number of discrete scenarios even if pS = 0 for all S ∈ SD.

Theorem 7.7 ([49]). The k, 	/D-RRKP can be solved in pseudo-polynomial time for a
bounded number of scenarios.

Note, this last result is obtained by generalizing a dynamic program for the Γ-robust
knapsack problem presented by Yu [161] to the recoverable robust setting.

7.1 Formulations

In this section, we present (compact) ILP formulations for the k, 	/D-RRKP and k/Γ-
RRKP. To obtain a compact ILP formulation for the k/Γ-RRKP, we have to consider
the so-called maximum weight set problem to determine the worst-case realization and
thus the left-hand side value. This way, we develop a compact ILP reformulation of
the k/Γ-RRKP exploiting a new combinatorial algorithm solving the related maximum
weight set problem.
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7 The recoverable robust knapsack problem

k, �/D-RRKP. To formulate the k, 	/D-RRKP as ILP, we introduce binary variables
x0
j = 1 if and only if j ∈ N is selected in the first-stage solution, and 0 otherwise. Similarly,

binary variable xS
j = 1 if and only if item j is part of the second-stage solution after the

recovery rule has been applied, and 0 otherwise. To keep track of the recovery actions,
i. e., the addition and removal of items from the first-stage decision, the formulation
includes the binary variables ySj and zSj to indicate whether the item j has been added
or removed from the first-stage solution in scenario S ∈ SD, respectively. The rational
variable ω is used to linearly model the min-max term of the objective function, i. e., the
worst-case scenario profit. Thus, an ILP formulation of the k, 	/D-RRKP is given by

max
∑
j∈N

p0jx
0
j + ω (7.1a)

s. t. ω ≤
∑
j∈N

pSj x
S
j ∀S ∈ SD (7.1b)

∑
j∈N

w0
jx

0
j ≤ c0 (7.1c)

∑
j∈N

wS
j x

S
j ≤ cS ∀S ∈ SD (7.1d)

xS
j ≤ ySj + x0 ∀S ∈ SD, j ∈ N (7.1e)

xS
j ≥ x0 − zSj ∀S ∈ SD, j ∈ N (7.1f)∑

j∈N
ySj ≤ 	 ∀S ∈ SD (7.1g)

∑
j∈N

zSj ≤ k ∀S ∈ SD (7.1h)

ω ∈ Q≥0, x
0
j , x

S
j , y

S
j , z

S
j ∈ {0, 1} ∀S ∈ SD, j ∈ N (7.1i)

where (7.1a) and (7.1b) model the objective function of the k, 	/D-RRKP. Constraints
(7.1c) and (7.1d) enforce the first-stage and scenario knapsack capacities, respectively.
The recovery rule is implemented by constraints (7.1e)–(7.1h). The variable bounds are
given by (7.1i).

k/Γ-RRKP. Next, we develop a compact ILP formulation of the k/Γ-RRKP. We model
the fist-stage decision by binary variables x0

j as in the case of discrete scenarios. But
we do not model the second-stage decision explicitly. This is due to the fact that for
this problem pSj = 0 holds for all S ∈ SΓ and j ∈ N . Hence, we do not need to keep
track of the second-stage decision to determine the scenario profit and thus we can omit
additional variables to model the second stage. In addition, the number of scenarios
would be anyway exponential in the worst case and thus, we avoid to handle them
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7.1 Formulations

max
∑
j∈N

p0jx
0
j (7.2a)

s. t.
∑
j∈N

w0
jx

0
j ≤ c0 (7.2b)

∑
j∈N

w̄jx
0
j + max

N′⊆N
|N′|≤Γ

(
∑
j∈N ′

ŵjx
0
j − max

N′′⊆N
|N′′|≤k

(
∑
j∈N ′′

w̄jx
0
j +

∑
j∈N ′′∩N ′

ŵjx
0
j)) ≤ c (7.2c)

x0
j ∈ {0, 1} ∀j ∈ N. (7.2d)

The objective (7.2a) maximizes the total first-stage profit. Constraint (7.2b) ensures
the first-stage knapsack capacity. The variable bounds are given by (7.2d). The more
interesting constraint is (7.2c) which models both, the recovery rule and the scenario
knapsack capacity constraint. Its left-hand side consists of the term

∑
j∈N w̄jx

0
j capturing

the nominal item weights plus the remaining and possible negative maximum term which
determines the change of weight due to Γ-robustness and k-recovery. Formulation (7.2)
is nonlinear because of the two nested maximum terms. Its straight-forward linearization
contains exponentially many constraints.

To obtain a compact reformulation, we investigate the outer maximum term of con-
straint (7.2c). It can be considered as an optimization problem itself and we call it the
maximum weight set problem. More formally, we define the following.

Definition 7.8 (Maximum Weight Set Problem). Given a k/Γ-RRKP instance with
first-stage solution X ⊆ N , X :=

{
j ∈ N : x0

j = 1
}
. Let Γ ∈ N and k ∈ N be fixed.

The maximum weight set problem (MWSP) is to find a subset X ′ ⊆ X with |X ′| ≤ Γ
maximizing its weight

∑
j∈X′

ŵj − max
X′′⊆X
|X′′|≤k

(
∑
j∈X′′

w̄j +
∑

j∈X′′∩X′
ŵj)

according to the given set X, and the parameters Γ and k.

In Büsing et al. [50], we point out that if k > 0, there is no inclusion relation between
optimal solutions of the MWSP for different values of Γ, i. e., a maximum weight set
for a value Γ cannot be extended to a maximum weight set for Γ + 1 in general. The
following example illustrates this observation.

Example 7.9. Let us consider a k/Γ-RRKP instance with 3 items, k = 1, Γ ∈ {1, 2},
and nominal and deviation weights are given by the following table
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7 The recoverable robust knapsack problem

maximum-sized sets of deviating item(s)
item Γ = 1 Γ = 2
j w̄j ŵj {1} {2} {3} {1, 2} {1, 3} {2, 3}
1 1 2 3 1 1 3 3 1
2 3 4 3 7 3 7 3 7
3 4 4 4 4 8 4 8 8

removed items by recovery {3} {2} {3} {2} {3} {3}
total weight after recovery 6 5 4 7 6 8

For both values of Γ, all extremal scenarios in SΓ are shown. The deviating item weights
are highlighted in bold. The bottom rows state the items removed by the recovery action
and the total weight of the remaining items after the recovery has taken place. For Γ = 1,
the scenario where item 1 deviates yields the maximum weight set with total weight 6.
For Γ = 2, the maximum weight of 8 is realized in the scenario where items 2 and 3 are
deviating from the nominal weights. In contrast to Γ = 1, item 1 does not deviate. The
optimal solutions of the two MWSP for the two values of Γ are not related.

Nevertheless, the MWSP can be solved efficiently. Let us recall that the maximum
term in constraint (7.2c) is a mathematical formulation of the MWSP based on which
we obtain the following equivalent mathematical formulation:

max
y∈{0,1}|X|

{∑
j∈X

ŵjyj − max
z∈{0,1}|X|

{∑
j∈X

(w̄j + ŵjyj)zj :
∑
j∈X

zj ≤ k

}
:
∑
j∈X

yj ≤ Γ

}
(7.3)

Indicator variables yj model the Γ-robustness part, i. e., yj = 1 if the weight of item
j ∈ N deviates to its maximum, and 0 otherwise. Similarly, indicator variables zj are
used to model the k-recovery part, i. e., zj = 1 if item j ∈ X is removed from X when
the recovery rule is applied, and 0 otherwise.
The coefficient matrix of the inner maximization problem in Formulation (7.3) is totally

unimodular. Hence, (7.3) can be solved by its linear relaxation for a fixed value of y.
Exploiting LP duality, cf. Section 3.1.2, yields a compact ILP formulation for the MWSP.
It reads

max
∑
j∈X

ŵjyj − k · u−
∑
j∈X

vj (7.4a)

s. t.
∑
j∈X

yj ≤ Γ (7.4b)

ŵjyj − u− vj ≤ −w̄j ∀j ∈ X (7.4c)

yj ∈ {0, 1}, u, vj ≥ 0 ∀j ∈ X (7.4d)

with dual variables u and vj corresponding to the constraints
∑

j∈X zj ≤ k and zj ≤ 1,
respectively. The following two lemmas characterizes optimal solutions of (7.4) differently
providing a basis for an efficient algorithm to solve the MWSP.
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7.1 Formulations

Lemma 7.10. For a fixed parameter u′, define wj(u
′) := min{ŵj,−w̄j + u′} for all

j ∈ X, X−(u′) := {j ∈ X : wj(u
′) < 0}, and let X(u′) ⊆ X \ X−(u′) maximizing∑

j∈X(u′) wj(u
′) with |X(u′)| ≤ Γ. Then, the optimal solution value z(u) of (7.4) equals∑

j∈X(u′)

wj(u
′) +

∑
j∈X−(u′)

wj(u
′) + k · u′.

Proof. Let u′ ≥ 0 be some value and let us define

c(u′) :=
∑

j∈X(u′)

wj(u
′) +

∑
j∈X−(u′)

wj(u
′)− k · u′.

We show z(u′) = c(u′). Let y∗j ∈ {0, 1} and v∗j ≥ 0, for all j ∈ X, be an optimal solution
of the ILP (7.4) with u = u′. If −w̄j+u′ < 0 for some j ∈ X, ŵj · y∗j − v∗j = −w̄j + u′ due
to the coefficients of y∗j and v∗j in the objective. If y∗i = 1 for an item i with −w̄i +u′ < 0,
the solution yi = 0, yj = y∗j for i �= x, vi = w̄i − u′, and vj = v∗j for i �= x is also an
optimal solution. Therefore, we can assume that w.l.o.g. y∗j = 0 for all j ∈ X−(u′).
Let X(y∗) = {j ∈ X | y∗j = 1}. Then Y ∗ ⊆ X\X−(u) with |Y ∗| ≤ Γ. If y∗j = 0 for

j ∈ X\X−(u), then v∗j = 0. If y∗j = 1 for some j ∈ X, ŵj − vj ≤ −w̄j + u′. Hence,
if ŵj > −w̄j + u′, v∗j = ŵj + w̄j − u′ and v∗j = 0 otherwise. Therefore,

z(u′) =
∑

j∈X−(u′)

(−w̄j + u′) +
∑
j∈Y ∗

min{−w̄j + u′, ŵj} − k · u′

≤
∑

j∈X−(u′)

wj(u
′) +

∑
j∈X(u′)

wj(u
′)− k · u′ = c(u′).

Lemma 7.11. There always exists an optimal solution (u∗, y∗, v∗) of (7.4) with u∗ ∈ U
where U := {0} ∪ {w̄j : j ∈ X} ∪ {w̄j + ŵj : j ∈ X}.
Proof. We show that there always exists an optimal solution (u∗, y∗, v∗) of (7.4) with
u∗ ∈ U , where the set U consists of the values 0, w̄j, w̄j + ŵj, j ∈ X.
Let (u∗, y∗, v∗) be an optimal solution of (7.4) with u∗ /∈ U . Then, we consider u ∈ U

with u = argmin{u∗ − u | u ∈ U, u < u∗} and u ∈ U with u = argmin{u − u∗ | u ∈
U, u > u∗}. Define X̃ = {j ∈ {1, . . . , n′} | wj(u

∗) < ŵj} and r = |X̃|. Since u∗ /∈ U , we
obtain −w̄j + u∗ �= {ŵj, 0} for j ∈ X, and for j ∈ X̃

wj(u) + (u∗ − u) = wj(u
∗) = wj(u) + (u− u∗).

If r < k,

z(u∗) =
∑

j∈X(u∗)

wj(u
∗) +

∑
j∈X−(u∗)

wj(u
∗)− k · u∗

=
∑

j∈X(u)

wj(u) +
∑

j∈X−(u)

wj(u) + r · (u∗ − u)− k · u∗

= z(u) + (r − k)(u∗ − u) ≤ z(u).

A similar argument provides the result for r ≥ k.
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7 The recoverable robust knapsack problem

Let U , wj(u) for j ∈ N and u ∈ U , and X−(u) for u ∈ U defined as in Lemmas 7.10
and 7.11. By the same lemma, constraint (7.2c) can equivalently be written as

∑
j∈N

w̄jx
0
j +max

u∈U

⎧⎨
⎩∑

j∈X−
wj(u)x

0
j − ku+ max

N′∈N
|N′|≤Γ

∑
j∈N ′

wj(u)x
0
j

⎫⎬
⎭ ≤ c. (7.5)

Linearizing the outer maximum and simplifying the inner maximum results in the
following set of constraints:∑

j∈N
w̄jx

0
j +

∑
j∈X−

wj(u)x
0
j +max

∑
j∈N

wj(u)x
0
jy

u
j ≤ c+ ku ∀u ∈ U (7.6a)

∑
j∈N

yuj ≤ Γ ∀u ∈ U (7.6b)

yuj ∈ {0, 1} ∀j ∈ N, u ∈ U. (7.6c)

where yuj indicates if the item j is set to its peak value in the scenario characterized by u.
Only the maximum term max

∑
j∈N wj(u)x

0
jy

u
j is left, which given x0 can be linearized

by dualization due to its totally unimodular structure. Based on the resulting set of
linear constraints, we give a formulation of the k/Γ-RRKP differently from (7.2):

max
∑
j∈N

p0jx
0
j (7.7a)

s. t.
∑
j∈N

w0
jx

0
j ≤ c0 (7.7b)

∑
j∈N :
w̄j<u

w̄jx
0
j +

∑
j∈N :
w̄j≥u

ux0
j + Γξu +

∑
j∈N

θuj ≤ c+ ku ∀u ∈ U (7.7c)

min{ŵj,−w̄j + u}x0
j − ξu − θuj ≤ 0 ∀j ∈ N, u ∈ U (7.7d)

x0
j ∈ {0, 1}, ξu, θuj ≥ 0 ∀j ∈ N, u ∈ U. (7.7e)

Constraint (7.7b) models the first-stage knapsack capacity. The second-stage knapsack
capacity together with the recovery rule are enforced by constraints (7.7c) and (7.7d).
The variable bounds are given by (7.7e). Formulation (7.7) is compact: it contains O(n2)
variables and O(n2) constraints depending on the number of different values of w̄j and
w̄j + ŵj for all j ∈ N .

7.2 Polyhedral study

In this section, we investigate the polyhedral structure of the RRKP and its special
cases, the k, 	/D-RRKP and the k/Γ-RRKP. Therefore, we define the general recoverable
robust knapsack polytope as the convex hull over all valid first-stage solutions.
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7.2 Polyhedral study

Definition 7.12 (Recoverable Robust Knapsack Polytope). Let S be a scenario set and
R a recovery set. Then, the recoverable robust knapsack polytope is defined as

KRR := conv

{
x ∈ {0, 1}n :

∑
j∈N w0

jxj ≤ c0,

minN ′⊆R({j∈N : xj=1})
∑

j∈N ′ wS
j xj ≤ cS ∀S ∈ S

}
.

The corresponding polytopes for the special cases k, 	/D-RRKP and k/Γ-RRKP are
defined as follows.

Definition 7.13 (selected recoverable robust knapsack polytopes). The k, 	-recoverable
robust knapsack polytope is defined as

Kk,�/D := conv

⎧⎨
⎩x ∈ {0, 1}n :

∑
j∈N w0

jxj ≤ c0,

min N′⊆N
|N′|≤k

∑
j∈N\N ′ wS

j xj ≤ cS ∀S ∈ SD

⎫⎬
⎭ .

The k-recoverable Γ-robust knapsack polytope is defined as

Kk/Γ := conv

⎧⎨
⎩x ∈ {0, 1}n :

∑
j∈N w0

jxj ≤ c0,

min N′⊆N
|N′|≤k

∑
j∈N\N ′ wS

j xj ≤ c ∀S ∈ SΓ

⎫⎬
⎭

Note, that we defined the recoverable robust polytopes in the space of the first-stage
variables analogously to the polytopes of the KP, Γ-RKP, mb-RKP, and SMKP.

7.2.1 Basic characteristics

First, we consider the dimensions of the polytopes defined above. Second, we investigate
the conditions for which the variable bounds imply trivial facets for these polytopes.

Lemma 7.14. KRR is full-dimensional if and only if the following two conditions hold

1. w0
j ≤ c0 for all j ∈ N ,

2. wS
j ≤ cS for all j ∈ {i ∈ N : {i} ∈ N ′ for all N ′ ∈ R({i})}, S ∈ S.

Proof. All unit vectors and the zero vector are feasible for RRKP and affinely independent.

Corollary 7.15. Kk,�/D is full-dimensional if and only if the following two conditions
hold

1. w0
j ≤ c0 for all j ∈ N ,

2. if k = 0, then wS
j ≤ cS for all j ∈ N , S ∈ SD.

Kk/Γ is full-dimensional if and only if the following two conditions hold

1. w0
j ≤ c0 for all j ∈ N ,
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7 The recoverable robust knapsack problem

2. if k = 0, then w̄j + ŵj ≤ cS for all j ∈ N , S ∈ SΓ.

Proof. All unit vectors and the zero vector are feasible for k, 	/D-RRKP and k/Γ-RRKP.
Furthermore, they are affinely independent.
Let Kk,�/D (Kk/Γ) be full-dimensional. Suppose there exists a i ∈ N with w0

i >
c0, then xi = 0 for all x ∈ Kk,�/D (Kk/Γ). This is a contradiction to the polytope
being full-dimensional. Next, suppose there exists another i ∈ N with wS

i > cS for
PrrkpKLDiscrete (or w̄i+ŵi > cS for Kk/Γ, respectively). Then xi = 0 for all x ∈ Kk,�/D

(Kk/Γ); again contradicting the precondition that the polytope is full-dimensional. This
completes the proof.

W. l. o. g. we assume RRKP to be full-dimensional in the rest. By studying the variable
bounds xj ≥ 0 and xj ≤ 1, we obtain the following results.

Lemma 7.16. Trivial facets of the recoverable robust knapsack polytope KRR are

xj ≥ 0 ∀j ∈ N (7.8)

and
xj ≤ 1 ∀j ∈ N : w0

j + w0
i ≤ c0 ∀i ∈ N \ {j}. (7.9)

Proof. For xj ≥ 0, the zero vector and all unit vectors ei for i ∈ N \ {j} are feasible for
the RRKP, affinely independent, and satisfy inequality (7.8) with equality.
For xj ≤ 1, the unit vector ej and the points ej + ei for all i ∈ N \ {j} are feasible,

affinely independent and satisfy inequality (7.9) with equality.

Corollary 7.17. The inequalities

xj ≥ 0 ∀j ∈ N (7.10)

are trivial facets of Kk,�/D. Furthermore, the inequality

xj ≤ 1 (7.11)

is a trivial facet of Kk,�/D for all j ∈ N for which the following conditions hold

1. w0
j + max

i∈N\{j}
w0

i ≤ c0,

2. if k = 0, then wS
j + max

i∈N\{j}
wS

i ≤ cS for all S ∈ SD,

3. if k = 1, then min{wS
j , max

i∈N\{j}
wS

i } ≤ cS for all S ∈ SD.

Proof. The zero vector and all unit vectors ei for i ∈ N \ {j} are feasible for the
k, 	/D-RRKP, affinely independent, and satisfy inequality (7.10) with equality.
The unit vector ej and all vectors ej+ei for i ∈ N\{j} are feasible for the k, 	/D-RRKP,

affinely independent, and satisfy inequality (7.11) with equality.
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7.2 Polyhedral study

Lemma 7.18. The inequalities

xj ≥ 0 ∀j ∈ N (7.12)

are trivial facets of Kk/Γ. Furthermore, the inequality

xj ≤ 1 (7.13)

is a trivial facet of Kk/Γ for all j ∈ N for which the following conditions hold

1. w0
j + max

i∈N\{j}
w0

i ≤ c0,

2a. if k = 0, Γ = 0, then w̄j + max
i∈N\{j}

w̄i ≤ c

2b. if k = 0, Γ = 1, then w̄j + max
i∈N\{j}

(w̄i +max{ŵj, ŵi}) ≤ c

2c. if k = 0, Γ ≥ 2, then w̄j + ŵj + max
i∈N\{j}

(w̄i + ŵi) ≤ c

3a. if k = 1, Γ = 0, then min{w̄j, max
i∈N\{j}

w̄i} ≤ c

3b. if k = 1, Γ ≥ 1, then min{w̄j + ŵj, max
i∈N\{j}

(w̄i + ŵi)} ≤ c

Proof. The zero vector and all unit vectors ei for i ∈ N \ {j} are feasible for the
k/Γ-RRKP, affinely independent, and satisfy inequality (7.12) with equality.
The unit vector ej and all vectors ej + ei for i ∈ N \{j} are feasible for the k/Γ-RRKP,

affinely independent, and satisfy inequality (7.13) with equality.

7.2.2 Valid inequalities

In this section, we continue our polyhedral study and investigate valid or facet-defining
inequalities besides the trivial ones. Motivated by the classic knapsack problem and its
well-studied polyhedral structure, we also consider specially structured subsets of items
of the RRKP generalizing (extended) covers and the corresponding valid inequalities to
the recoverable robust setting. We base our study on the definitions introduced in our
previous work; cf. [49, 50].
For the RRKP, a subset C ⊆ N is called a (recoverable robust) cover if at least one of

the following conditions holds

1. C is a first-stage cover, i. e., its total first-stage weights exceed the first-stage
capacity: ∑

j∈C
w0

j ≥ c0 + 1
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7 The recoverable robust knapsack problem

2. C is a second-stage or scenario cover, i. e., there exists a scenario such that the total
weight of this scenario exceeds the capacity of this scenario:

∃S ∈ S : min
C′∈R(C)

∑
j∈C′

wS
j ≥ cS + 1.

As for to the classic knapsack problem, a cover C is called minimal if C \ {j} is not a
cover for all j ∈ C. Furthermore, it holds

Lemma 7.19. Let C ⊆ N be a cover. Then, the cover inequality∑
j∈C

xj ≤ |C| − 1

is valid for KRR.

Proof. Suppose x ∈ KRR does not satisfy the cover inequality. Then |C| ≤ ∑j∈C xj

implies xj = 1 for all j ∈ C. If C is a first-stage cover, then∑
j∈N

w0
jxj =

∑
j∈C

w0
jxj +

∑
j∈N\C

w0
jxj ≥ c0 + 1.

A contradiction to x ∈ KRR. If C is a second-stage cover, an analogous contradiction can
be obtained completing the proof.

Theorem 7.20. Let x ∈ {0, 1}n. Then x ∈ KRR if and only if x satisfies all minimal
cover inequalities.

Proof. Let x ∈ {0, 1}n satisfy all minimal cover inequalities and Nx ⊆ N be its support,
i. e., Nx := {j ∈ N : xj = 1}. Suppose x �∈ KRR, i. e., it violates the first or second
stage knapsack constraint. Thus, the set Nx is a cover. By iteratively removing the item
with minimum weight, Nx becomes a minimal cover whose corresponding minimal cover
inequality is not satisfied by x; a contradiction.
Conversely, consider a binary feasible point x ∈ KRR. Then it satisfies all cover

inequalities since they are valid.

Our previous definition of a cover has two variable aspects not included in the definition:
if the cover is a scenario cover, the scenario for which the capacity is exceeded is not
known beforehand. Moreover, the best recovery action and thus the recovered cover is
only implicitly given by the min-term. To overcome these aspects and to give a more
explicit description of a cover, we introduce an alternative notation where the scenario of
a scenario cover as well as the recovery is fixed in the definition of the cover. Therefore,
let C ⊆ N , K ⊆ C, and S ∈ S. Then, (C, S,K) is a cover if at least one of the following
conditions is true.

1. C is a first-stage cover, i. e.,
∑

j∈C w
0
j ≥ c0 + 1,

106
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2. (C, S,K) is a second-stage cover with C \ K = argminC′∈R(C)
∑

j∈C′ wS
j , i. e.,∑

j∈C\K wS
j ≥ cS + 1.

We apply this alternative definition of a cover to the special cases k, 	/D-RRKP and
k/Γ-RRKP of the RRKP. The resulting definitions take the specific aspects of the special
cases better into account.

k, �/D-RRKP. We consider the k, 	/D-RRKP, subsets of its items C ⊆ N , K ⊆ C,
and a scenario S ∈ S. Then, the tuple (C, S,K) is a cover if at least one of the following
conditions is true.

1. C is a first-stage cover, i. e.,
∑

j∈C w
0
j ≥ c0 + 1

2. (C, S,K) is a scenario cover, i. e., all of the following conditions hold

a) |K| = k

b) wS
j ≥ wS

i for all j ∈ K and i ∈ C \K
c)
∑

j∈C\K wS
j ≥ cS + 1

Corollary 7.21. Let (C, S,K) be a cover. Then, the cover inequality∑
j∈C

xj ≤ |C| − 1

is valid for Kk,�/D.

Proof. Follows directly from Lemma 7.19.

In the following, we present two methods to extend a given cover and thereby to
strengthen its implied cover inequality. Note, that both extension methods are scenario-
dependent. Let (C, S,K) be a cover. Then, a canonical extension is given by

E(C, S,K) = C ∪
{
j ∈ N : w0

j ≥ max
i∈C\K

w0
i , w

S
j ≥ max

i∈C\K
wS

i

}
(7.14)

To obtain a strengthened extension, we make the following observations. Consider the
non-recovered items C \K. It is not necessary that an item of the extension has a weight
at least maximum weight of C \K since it may replace the item with maximum weight
by the exchange argument of an extension. Instead it is necessary that the weight of the
newly added item is at least the second largest weight of an item in C \K. However,
by replacing the maximum weight item in C \ K the total weight of C \ K might be
lowered so that it does not exceed the knapsack capacity anymore. To avoid this, a
second condition is needed relating the maximum weight item in C \K to the knapsack
capacity. In summary, a strengthened extension can be obtained in the following way:
When considering the non-recovered items C \K, by only adding all items whose weight
is at least the residual capacity according to the total weight of the first |C| − k− 1 items
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7 The recoverable robust knapsack problem

with lowest weight and whose weight is at least the second-largest weight in C \K. This
yields the following definition of a strengthened extension

E+(C, S,K) = C ∪

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
j ∈ N : wS

j ≥ cS − ∑
i∈C\K

wS
i + max

i∈C\K
wS

i + 1,

wS
j ≥ max

C′⊆C
|C′|=k+2

∑
i∈C′

wS
i − max

C′⊆C
|C′|=k+1

∑
i∈C′

wS
i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (7.15)

Of course, an extended cover is a cover itself.

Example 7.22. Consider a scenario S of a k, 	/D-RRKP instance with 5 items, k = 1,
and 	 = 0. Let the scenario weights be wS =

(
4 6 6 5 6

)
and the scenario capacity

cS = 8. Then, (C, S,K) with C = {1, 2, 3} and K = {3} is a scenario cover for S with total
weight 10 exceeding the scenario capacity. Its canonical extension is obtained by addition
of all items with scenario weight at least maxj∈C wS

j = 6. Hence, E(C, S,K) = C ∪ {5}.
In contrast, its strengthened extension E+(C, S,K) = C ∪ {4, 5} allows the addition of
item 4 as well (the first condition in the definition of the strengthened extension requires
the weight of the additional item to be at least 5 in this case, the second condition asks
for an item with weight at least 4 here).

Extended covers give rise to the following class of valid inequalities.

Lemma 7.23. Let (C, S,K) be a cover together with its corresponding canonically ex-
tended cover E(C, S,K) and its strengthened extended cover E+(C, S,K). Then, the
extended cover inequalities ∑

j∈E(C,S,K)

xj ≤ |C| − 1

and ∑
j∈E+(C,S,K)

xj ≤ |C| − 1

are valid for Kk,�/D.

Proof. This proof is similar to the proof of Lemma 4.6 for the Γ-RKP.

Let E∗ ∈ {E(C, S,K), E+(C, S,K)} be an extended cover. Suppose the corresponding
(strengthened) extended cover is not valid. Then there exists a N ′ ⊆ E∗, |N ′| ≥ |C| so
that ∑

j∈N ′
wS

j − max
K′⊆N′ :
|K′|≤k

∑
j∈K′

wS
j ≤ cS

holds. Let x̃ ∈ Kk,�/D ∩ Z|N | the characteristic vector of N ′, i. e., x̃j = 1 if and only if
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cS ≥
∑
j∈N

wS
j x̃j − max

K′⊆N,:
|K′|≤k

∑
j∈K′

wS
j x̃j

=
∑
j∈N ′

wS
j − max

K′⊆N′ :
|K′|≤k

∑
j∈K′

wS
j

≥ min
Nmin⊆E∗ :

|Nmin|=|C|

⎧⎨
⎩ ∑

j∈Nmin

wS
j − max

K′⊆Nmin :
|K′|≤k

∑
j∈K′

wS
j

⎫⎬
⎭

=
∑

j∈C\K
wS

j > c.

This is a contradiction to x̃ ∈ Kk,�/D and completes the proof.

k/Γ-RRKP. Next, we identify classes of valid inequalities for the k/Γ-RRKP. We start
with the definition of a cover for this problem. Let C̄ ⊆ N , K̄ ⊆ C̄, Ĉ ⊆ N , K̂ ⊆ Ĉ
with C̄ ∩ Ĉ = ∅. Then, the tuple (C̄, K̄, Ĉ, K̂) is a cover if at least one of the following
conditions is true

1. C̄ ∪ Ĉ is a first-stage cover, i. e.,
∑

j∈C̄∪Ĉ
w0

j ≥ c0 + 1

2. (C̄, K̄, Ĉ, K̂) is a scenario cover, i. e., all of the following conditions hold

a) |Ĉ| ≤ Γ

b)
∑

j∈C̄\K̄
w̄j +

∑
j∈Ĉ\K̂

(w̄j + ŵj) ≥ c+ 1

c) |K̄|+ |K̂| = k

d) w̄j ≥ w̄i for all j ∈ K̄ and i ∈ C̄ \ K̄
e) w̄j ≥ w̄i + ŵi for all j ∈ K̄ and i ∈ Ĉ \ K̂
f) w̄j + ŵj ≥ w̄i + ŵi for all j ∈ K̂ and i ∈ Ĉ \ K̂
g) w̄j + ŵj ≥ w̄i for all j ∈ K̂ and i ∈ C̄ \ K̄

Next, we define the corresponding recoverable robust cover inequality for the k/Γ-
RRKP.

Corollary 7.24. Let (C̄, K̄, Ĉ, K̂) be a cover. Then, the cover inequality∑
j∈C̄∪Ĉ

xj ≤ |C̄ ∪ Ĉ| − 1

is valid for Kk/Γ.

Proof. Follows directly from Lemma 7.19.
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7 The recoverable robust knapsack problem

As for the classic knapsack problem, recoverable robust covers may be extended and
thus the corresponding cover inequality strengthened. Therefore let

N̄(C̄, K̄, Ĉ, K̂) :=

⎧⎨
⎩j ∈ N : w̄j ≥ max

i∈C̄∪Ĉ
i �∈K̄∪K̂

w̄i

⎫⎬
⎭ (7.16)

N̂(C̄, K̄, Ĉ, K̂) :=

⎧⎨
⎩j ∈ N : w̄j + ŵj ≥ max

i∈C̄∪Ĉ
i �∈K̄∪K̂

w̄i + ŵi

⎫⎬
⎭ (7.17)

be the set N̄(C̄, K̄, Ĉ, K̂) of all items not in the cover whose nominal weight is at least the
maximum nominal weight of the not-recovered items of the cover and the set N̂(C̄, K̄, Ĉ, K̂)
of all items not in the cover whose peak weight is at least the maximum peak weight of
the not-recovered items of the cover, respectively. Klopfenstein and Nace [97] propose
the following extension of covers for Γ-RKP which we adopted to the recoverable robust
setting.

E(C̄, K̄, Ĉ, K̂) =

{
C̄ ∪ Ĉ ∪ N̂(C̄, K̄, Ĉ, K̂) if |C̄| ≤ Γ

C̄ ∪ Ĉ ∪ (N̄(C̄, K̄, Ĉ, K̂) ∩ N̂(C̄, K̄, Ĉ, K̂)) if |C̄| ≥ Γ + 1
(7.18)

This extension can be strengthened by adding all items whose nominal weight is at least
the maximum nominal weight in C̄ \ K̄ and whose peak weight is at least the maximum
peak weight in Ĉ \ K̂. This leads to the following definition of a strengthened extended
cover.

E+(C̄, K̄, Ĉ, K̂) := C̄ ∪ Ĉ ∪
{
j ∈ N : w̄j ≥ max

i∈C̄\K̄
w̄i, w̄j + ŵj ≥ max

i∈Ĉ\K̂
w̄i + ŵi

}
(7.19)

Note, a (strengthened) extended cover is a cover itself.

Example 7.25. Consider an instance of k/Γ-RRKP with 5 items, k = 1, Γ = 1, and
c = 10. Let the nominal and deviation weights of the items be w̄ =

(
8 5 3 6 7

)
and

ŵ =
(
1 2 3 6 8

)
, respectively. Then (C̄, K̄, Ĉ, K̂) with C̄ = {1, 2}, K̄ = {1}, Ĉ = {3},

and K̂ = ∅ is a cover for this instance. Its weight of 11 exceeds the scenario capacity
by 1. This cover can be canonically extended by adding all items with nominal weight of
at least 5, and peak weight of at least 7. Therefore, E(C̄, K̄, Ĉ, K̂) = C̄ ∪ Ĉ ∪ {5}. The
strengthened extension allows the addition of one more item since items with peak weight
6 may be added as well, thus E+(C̄, K̄, Ĉ, K̂) = E(C̄, K̄, Ĉ, K̂) ∪ {4}.

Based on extended covers, we formulate the following class of valid inequalities.

Lemma 7.26. Let (C̄, K̄, Ĉ, K̂) be a cover together with its corresponding extended cover
E(C̄, K̄, Ĉ, K̂) and its strengthened extended cover E+(C̄, K̄, Ĉ, K̂). Then, the extended
cover inequalities ∑

j∈E(C̄,K̄,Ĉ,K̂)

xj ≤ |C̄ ∪ Ĉ| − 1
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and ∑
j∈E+(C̄,K̄,Ĉ,K̂)

xj ≤ |C̄ ∪ Ĉ| − 1

are valid for Kk/Γ.

Proof. This proof is similar to the proof of Lemma 4.6 for the Γ-RKP (the special case
of k = 0).
Let E∗ ∈ {E(C̄, K̄, Ĉ, K̂), E+(C̄, K̄, Ĉ, K̂)} be an extended cover. Suppose the cor-

responding (strengthened) extended cover is not valid. Then there exists a N ′ ⊆ E∗,
|N ′| ≥ |C̄ ∪ Ĉ| so that

∑
j∈N ′

w̄j + max
N̂′⊆N′ :
|N̂′|≤Γ

⎛
⎝∑

j∈N̂ ′

ŵj − max
K′⊆N′ :
|K′|≤k

∑
j∈K′

(w̄j + ŵj)

⎞
⎠ ≤ c

holds. Let x̃ ∈ Kk/Γ ∩ Z|N | the characteristic vector of N ′, i. e., x̃j = 1 if and only if
j ∈ N ′. Then, it follows

c ≥
∑
j∈N

w̄jx̃j + max
N̂⊆N :

|N̂|≤Γ

⎛
⎝∑

j∈N̂ ′

ŵjx̃j − max
K⊆N :
|K|≤k

∑
j∈K

(w̄j + ŵj)x̃j

⎞
⎠

=
∑
j∈N ′

w̄j + max
N̂′⊆N′ :
|N̂′|≤Γ

⎛
⎝∑

j∈N̂ ′

ŵj − max
K′⊆N′ :
|K′|≤k

∑
j∈K′

(w̄j + ŵj)

⎞
⎠

≥ min
Nmin⊆E∗ :

|Nmin|=|C̄∪Ĉ|

⎧⎨
⎩ ∑

j∈Nmin

w̄j + max
N̂′⊆Nmin :

|N̂′|≤Γ

⎛
⎝∑

j∈N̂ ′

ŵj − max
K′⊆Nmin :

|K′|≤k

∑
j∈K′

(w̄j + ŵj)

⎞
⎠
⎫⎬
⎭

=
∑

j∈C̄\K̄
w̄j +

∑
j∈Ĉ\K̂

ŵj > c.

This is a contradiction to x̃ ∈ Kk/Γ and completes the proof.

7.3 Algorithms

In this section, we present algorithms for the RRKP, the MWSP, and the separation
problem associated with the considered classes of valid inequalities. These algorithms
are based on the theoretical results of our previous investigation.

7.3.1 Solving the Maximum Weight Set Problem

The MWSP asks for determining a subset X ′ ⊆ X ⊆ N with maximum weight taking
all possible realizations in US and recovery actions defined by Rk,�(X) into account. By
Lemma 7.10, we can determine the objective value of an optimal solution if u is fixed.
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Furthermore by Lemma 7.11, there exists always a solution where u takes a value of
a given finite set of possible values. Combining both results, we propose the following
algorithm: first, determine the set U of possible values for u. Then, for each value,
determine the corresponding objective value z(u) of the MWSP with fixed u. Finally,
return the maximum u and the corresponding item subset. This procedure is formalized
as pseudo-code in Algorithm 7.3.1.

Algorithm 1: Maximum Weight Set Problem

Input : item set X, for all j ∈ X nominal item weights w̄j ∈ N, deviation item
weights ŵj ∈ N , robustness parameter Γ ∈ N, and recovery parameter
k ∈ N

Output : maximum weight set X ′ ⊆ X

set U = {0} ∪ ⋃
j∈X

{w̄j} ∪
⋃
j∈X

{w̄j + ŵj} ;

forall u ∈ U do
forall j ∈ X do

set wj(u) = min{ŵj,−w̄j + u} ;

set X−(u) = {j ∈ X : wj(u) < 0} ;
set X(u) = argmax

X′⊆X\X−, |X′|≤Γ

∑
j∈X wj(u) ;

set z(u) =
∑

j∈X(u) wj(u) +
∑

j∈X− wj(u)− k · u ;

return X(umax) with umax = argmax
u∈U

z(u)

The algorithm has a run-time of O(|X|2) because |U | ≤ 2|X|+ 1.

7.3.2 Separation of violated recoverable robust extended cover
inequalities

The definition of covers for the RRKP always includes two cases: the cover may be a
first-stage cover or a second-stage cover. First-stage covers are classic knapsack covers
with respect to the first-stage weights and capacities. They can be separated using the
well-known methods and algorithms for the KP; cf. Martello and Toth [119].
Therefore in this section, we focus on the new challenge to separate violated valid

inequalities based on second-stage (extended) covers. We present exact separation
algorithms to separate violated (extended) cover inequalities for both, the k, 	/D-RRKP
and the k/Γ-RRKP. In addition to ILP formulations, we develop dynamic programs
solving these separation problems in pseudo-polynomial time.

k, �/D-RRKP. The extended covers we have presented for k, 	/D-RRKP are scenario-
dependent. Hence, the separation problem has to be solved for each scenario (or until a
scenario with a violated extended scenario cover is found).

Let (C, S,K) be a cover and E(C, S,K) its canonical extension. Notice, E(C, S,K) \ C
consists of those items with weights at least the maximum weight of the items in C \K.
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In Büsing et al. [49] we refer to the items C \K as the core of the cover since they are
not recovered and remain in the cover after the recovery rule has been applied. These
core items contribute to the knapsack capacity and must satisfy the cover condition (i. e.,
exceed the knapsack capacity). Hence, our separation approaches focus on determining
the core items. Further, we observe that if an item is added to the recovery K or
the extension E(C, S,K) \ C, all items with larger weight can also be added to the
extension as they are exchangeable by the first one. We exploit this fact of transitivity by
grouping items with same weights in buckets and treating them uniformly. Therefore, let
Ω =

⋃
j∈N{wS

j } be the set of different weight values in scenario S and let T := {1, . . . , |Ω|}
be an index set. Furthermore, let the different weight values be ordered increasingly, i. e.,
0 ≤ wS

j1
< wS

j2
< · · · < wS

j|Ω| ≤ cS and define Nt :=
{
j ∈ N : wS

j = wS
jt

}
as the set of

items in bucket t for all t ∈ T .
To formulate the separation problem of extended covers as an ILP, we introduce binary

variables yj and αj for all j ∈ N indicating whether an item is a core item (j ∈ C \K)
or added to the cover as part of the extension (j ∈ E(C, S,K) \ C), respectively. Given
an LP solution x∗S, we now formulate the separation problem as follows

max
∑
j∈N

(x∗S
j − 1)yj +

∑
j∈N

x∗S
j αj − k (7.20a)

s. t.
∑
j∈N

wS
j yj ≥ cS + 1 (7.20b)

yj + αj ≤ 1 ∀j ∈ N (7.20c)

αj ≤ αi ∀j ∈ Nt, i ∈ Nt+1, t ∈ T (7.20d)

yj, αj ∈ {0, 1} ∀j ∈ N (7.20e)

The objective (7.20a) maximizes the violation of the resulting extended cover inequality.
The constraint (7.20b) ensures that the items with yN = 1 exceed the scenario capacity.
The remaining constraints (7.20c) and (7.20d) model the extension rule exploiting the
simplification by using buckets of items.
A violated extended cover inequality is found if the objective value (7.20a) is greater

than -1. Otherwise, a proof is given that such an inequality does not exist. Furthermore,
since the extension determined by (7.20) may be empty, this proof is given for violated
cover inequalities, too.
To speed up the solving of (7.20), several preprocessing rules can be applied to reduce

the number of variables and constraints. In addition, it suffices to find a (non-optimal)
feasible solution with objective values > 1. Found (extended) covers can be extended
further greedily.
Note, by fixing αj = 0 for all j ∈ N , we force E(C, S,K) \ C = ∅ and thus restrict

ourselves to the separation of cover inequalities.

Given a solution with objective greater than -1, a violated extended cover E(C, S,K)
can be constructed in the following way: define C := {j ∈ N : yj = 1}, the removed items
K := argmaxN ′⊆C, |N ′|≤k

∑
j∈N ′ wS

j , and the extension E(C, S,K) := C∪{j ∈ N : αj = 1}.
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Based on the ILP (7.20), we formulate a dynamic program solving the separation
problem. Therefore, we define the function

fω(t, d) := max
t∑

j=1

(x∗S
j − 1)yj +

t∑
j=1

x∗S
j αj

s. t.
∑
j∈N

wS
j yj = d

yj + αj ≤ 1 ∀j = 1, . . . , t

αj = 0 ∀j = 1, . . . , t : wS
j < ω

yj = 0 ∀j = 1, . . . , t : wS
j > ω

yj, αj ∈ {0, 1} ∀j = 1, . . . , t.

determining the optimal objective value of the separation ILP by restricting to the first
t items, setting the total sum of scenario weights of items in C \K to d, and limiting
the maximal (minimal) weight of an item in C \K (resp. the extension) to ω. Then, the
optimal solution of the separation problem (7.20) can be obtained as

max
ω∈Ω, d=cS+1,...,2cS+1

fω(n, d). (7.22)

For t = 1 (i. e., only the first item), the function fω(1, d) can easily be evaluated
considering the following three cases

fω(1, d) =

⎧⎪⎨
⎪⎩
x∗S
1 − 1 if wS

1 = d and ω > d

x∗S
j if d = 0 and wS

1 ≥ ω

−∞ otherwise

For t ≥ 2 and d = 0, . . . , 2cS + 1, the function fω(t, d) can be evaluated by the following
recursive formula generalizing the three cases considered above.

fω(t, d) = max{fω(t− 1, d),

fω(t− 1, d− wS
t ) + (xS

t − 1) if wS
t ≤ ω,

fω(t− 1, d) + xS
t if wS

t ≥ ω}
In other words we decide, whether t is not in the core and not added to the extension,
is part of the core or the cover, or is added to the extension taking the weight bound
imposed by ω into account. Obviously, we can construct via an optimal solution of
fω(t− 1, d), fω(t− 1, d− wS

t ), and fω(t− 1, d) three feasible solutions for fω(t, d).
Because of |Ω| ≤ n, the run-time of the dynamic program (7.22) is O(n2cS).

k/Γ-RRKP. Next, we consider the separation problems arising for the k/Γ-RRKP. To
model the separation of violated strengthened extended covers for k/Γ-RRKP as ILP,
we introduce five binary decision variables reflecting whether an item is in the cover at
nominal/peak weight, or in the recovered set at nominal/peak weight, or not in the cover
but in the extension. More formally, for all j ∈ N let
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• ȳj = 1 if and only if the item is at its nominal weight and not removed (i.e.
j ∈ C̄ \ K̄),

• ŷj = 1 if and only if the item is at its peak weight and not removed (i.e. j ∈ Ĉ \ K̂),

• z̄j = 1 if and only if the item is at its nominal weight and removed (i.e. j ∈ K̄),

• ẑj = 1 if and only if the item is at its peak weight and removed (i.e. j ∈ K̂), and

• αj = 1 if and only if the item is added to the extension and has not been in the

cover (i.e. j ∈ E+(C̄, K̄, Ĉ, K̂) \ (C̄ ∪ Ĉ)).
This gives rise to the following ILP formulation of this separation problem.

max
∑
j∈N

(x∗0
j − 1)(ȳj + ŷj + z̄j + ẑj) +

∑
j∈N

x∗0
j αj (7.23a)

s. t.
∑
j∈N

w̄j ȳj +
∑
j∈N

(w̄j + ŵj)ŷj ≥ c+ 1 (7.23b)

∑
j∈N

(z̄j + ẑj) = k (7.23c)

∑
j∈N

(ŷj + ẑj) = Γ (7.23d)

ȳj + ŷj + z̄j + ẑj + αj ≤ 1 ∀j ∈ N (7.23e)

ȳi + z̄j + αj ≤ 1 ∀j, i ∈ N : w̄i > w̄j (7.23f)

ŷi + z̄j + αj ≤ 1 ∀j, i ∈ N : w̄i + ŵi > w̄j (7.23g)

ŷi + ẑj + αj ≤ 1 ∀j, i ∈ N : w̄i + ŵi > w̄j + ŵj (7.23h)

ȳi + ẑj + αj ≤ 1 ∀j, i ∈ N : w̄i > w̄j + ŵj (7.23i)

ȳj, ŷj, z̄j, ẑj, αj ∈ {0, 1} ∀j ∈ N (7.23j)

where x∗0 is the current LP solution. The violation of the resulting extended cover
inequality is maximized by the objective (7.23a). The scenario covering property is
enforced by (7.23b) whereas constraints (7.23c) and (7.23d) bound the size of the recovery
set and the number of deviating item weights according to the recovery rule and scenario
set. Furthermore, constraints (7.23e)–(7.23i) model the scenario set and recovery rule by
implementing logical rules on the settings of the five indicator variables.
Note, by fixing αj = 0 for all j ∈ N , we force E+(C̄, K̄, Ĉ, K̂) \ (C̄ ∪ Ĉ) = ∅ and thus

restrict to the separation of cover inequalities.
If ILP (7.23) has an optimal value greater than -1, a violated extended cover inequality

is found. The corresponding extended cover E+(C̄, K̄, Ĉ, K̂) is defined by the sets
C̄ := {j ∈ N : ȳj + z̄j = 1}, Ĉ := {j ∈ N : ŷj + ẑj = 1}, K̄ := {j ∈ N : z̄ = 1}, and
K̂ := {j ∈ N : ẑ = 1}.
If the objective value of (7.23) is equal or less than -1, a proof is given that no violated

cover inequality exists. Note that since the ILP formulation allows an empty extension,
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the proof of non-existence is really given not only for an extended cover inequality but
also for a violated cover inequality.

Next, we present a pseudo-polynomial algorithm solving the separation problem.
Therefore, let Ω̄ :=

⋃
j∈N{w̄j} be the set of different values of nominal item weights and

Ω̂ :=
⋃

j∈N{w̄j + ŵj} be the set of different values of peak item weights. Define

fω̄,ω̂(t, κ, γ, d) :=

max
t∑

j=1

(x∗0
j − 1)(ȳj + ŷj + z̄j + ẑj) +

t∑
j=1

x∗0
j αj

s. t.
t∑

j=1

w̄j ȳj +
t∑

j=1

(w̄j + ŵj)ŷj = d

t∑
j=1

(z̄j + ẑj) = κ

t∑
j=1

(ŷj + ẑj) = γ

ȳj + ŷj + z̄j + ẑj + αj ≤ 1 ∀j = 1, . . . , t

ȳi + z̄j + αj ≤ 1 ∀j = 1, . . . , t : w̄i > w̄j

ŷi + z̄j + αj ≤ 1 ∀j = 1, . . . , t : w̄i + ŵi > w̄j

ŷi + ẑj + αj ≤ 1 ∀j = 1, . . . , t : w̄i + ŵi > w̄j + ŵj

ȳi + ẑj + αj ≤ 1 ∀j = 1, . . . , t : w̄i > w̄j + ŵj

ȳj, ŷj, z̄j, ẑj, αj ∈ {0, 1} ∀j = 1, . . . , t.

as the function determining the optimal objective value (7.23a) when restricting this
separation problem to the first t items, the removal of at most κ items due to recovery,
the deviation of at most γ-many items from their nominal weights, setting the total
weight of items in C̄ ∪ Ĉ to d, and limiting the maximal nominal (peak) weight of an item
to ω̄ (ω̂, respectively).

Then, the optimal solution of the separation ILP (7.23) can be determined by

max
ω̄∈Ω̄, ω̂∈Ω̂, d=c+1,...,

∑
j∈N (w̄j+ŵj)

fω̄,ω̂(n, k,Γ, d). (7.25)
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When considering only one item, i. e., t = 1, the function fω̄,ω̂(1, κ, γ, d) can be evaluated
directly as

fω̄,ω̂(1, κ, γ, d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗0
1 − 1 if w̄1 ≤ ω̄, d = w̄1, κ = 0

x∗0
1 − 1 if w̄1 ≥ ω̄, d = 0, κ = 1

x∗0
1 − 1 if w̄1 + ŵ1 ≤ ω̂, d = w̄1 + ŵ1, κ = 0, γ ≥ 1

x∗0
1 − 1 if w̄1 + ŵ1 ≥ ω̂, d = 0, κ = 1, γ ≥ 1

x∗0
1 if w̄1 ≥ ω̄, w̄1 + ŵ1 ≥ ω̂, d = 0, κ = 0

−∞ otherwise

For t ≥ 2, κ = 0, . . . , k, γ = 0, . . . ,Γ, and d = 0, . . . ,
∑

j∈N(w̄j + ŵj), the function
fω̄,ω̂(t, κ, γ, d) can be evaluated by using the following recursive formula based on the
different cases above.

fω̄,ω̂(t, κ, γ, d) =

max{ fω̄,ω̂(t− 1, κ, γ, d),

fω̄,ω̂(t− 1, κ, γ, d− w̄t) + (x0
t − 1) if w̄t ≤ ω̄,

fω̄,ω̂(t− 1, κ− 1, γ, d) + (x0
t − 1) if w̄t ≥ ω̄,

fω̄,ω̂(t− 1, κ, γ − 1, d− w̄t) + (x0
t − 1) if w̄t + ŵt ≤ ω̂,

fω̄,ω̂(t− 1, κ− 1, γ − 1, d) + (x0
t − 1) if w̄t + ŵt ≥ ω̂,

fω̄,ω̂(t− 1, κ, γ, d) + x0
t if w̄t ≥ ω̄ and w̄t + ŵt ≥ ω̂}.

Note, that |Ω̄| ≤ n and |Ω̂| ≤ n. Hence, the run-time of this dynamic program is
O(n5

∑
j∈N(w̄j + ŵj)).

7.3.3 Solving the RRKP: an approach using robustness cuts

The initial exponential formulation of the recoverable robust counterpart can be tackled
by means of robustness cuts. For the special case of the Γ-RKP, Fischetti and Monaci
[69] suggest such an approach. In the following, we describe how to solve the k/Γ-RRKP
using robustness cuts. Although this approach can be applied to the k, 	/D-RRKP
as well, we focus on the more interesting case of the Γ-robust scenario set SΓ and the
k/Γ-RRKP.

Solving the k/Γ-RRKP by robustness cuts. The compact formulation (7.7) allows
to solve the k/Γ-RRKP in an one-step integrated approach. An optimal solution takes
the worst-case scenario and its recovery into account while maximizing the total profit.
Although this formulation is compact, O(n2) additional variables and O(n2) additional
constraints are needed to model the second-stage decision of the k/Γ-RRKP. Depending
on n, the increased size of the formulation may decrease its computational tractability in
practice.
To overcome this potential slow-down, an approach by so-called robustness cuts is

oftentimes used in robust optimization: only the nominal first stage decision is included

117



7 The recoverable robust knapsack problem

in the formulation and the feasibility according to the second-stage decision (and in
our case, recovery) is guaranteed by additional constraints separated on-the-fly during
the solution process. These constraints are called robustness cuts since they separate
first-stage feasible solutions that are not feasible in the robust sense; cf. Fischetti and
Monaci [69] for the case k = 0.

In the context of k/Γ-RRKP we consider the incomplete formulation defined by (7.7a),
(7.7b), and x0

j ∈ {0, 1} for all j ∈ N . This models the first-stage decision/knapsack only.
Let x∗ be a solution of this system. To ensure its feasibility w.r.t. the second stage, we
propose two alternative separation procedures for two types of robustness cuts:

1. Separation of discrete scenarios. This procedure identifies a violated scenario, con-
structs a corresponding discrete scenario, and adds it to the incomplete formulation
as follows:

Algorithm 7.3.1 is applied to determine a subset X of items with maximum weight
and thus defining the deviating items in a worst-case scenario S ∈ SΓ. If this
maximum weight exceeds the second-stage capacity, the system∑

j∈N
w̄jx

S
j +
∑
j∈X

ŵjx
S
j ≤ c (7.26a)

∑
j∈N

(xj − xS
j ) ≤ k (7.26b)

xS
j ∈ {0, 1} ∀j ∈ N (7.26c)

defines a discrete scenario violated for x = x∗. By adding it to the incomplete
formulation, the solution x∗ is separated.

2. Separation of model constraints (7.7c)–(7.7e). This procedure identifies a u∗ ∈ U
for which the system (7.7c)–(7.7e) restricted to u∗ is violated: For fixed x∗ and
arbitrary u∗ ∈ U , define

c(ξ, θ) := min Γξu
∗
+
∑
j∈N

θu
∗

j (7.27a)

s. t. ξu
∗
+ θu

∗
j ≥ βj ∀j ∈ N (7.27b)

ξu
∗
, θu

∗
j ≥ 0 ∀j ∈ N (7.27c)

with βi := min{ŵj,−w̄j + u∗}x∗
j . Then, the system (7.7c)–(7.7e) is satisfied if and

only if

c(ξ, θ) ≤ c+ ku∗ −
∑

j∈N :w̄j<u∗
w̄jx

∗
j −

∑
j∈N :w̄j≥u∗

u∗x∗
j (7.28)

holds. The separation problem can be solved by solving ILP (7.27) for each value
u ∈ U . If condition (7.28) is not satisfied for a u∗ ∈ U , constraints (7.7c)–(7.7e)
(for u∗) are added to the incomplete formulation and separate x∗.
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Moreover, there exists a combinatorial algorithm alternatively to solving (7.27) as
an ILP. For an optimal solution (ξ∗, θ∗) of (7.27), it holds θ∗j = max{βj − ξ∗, 0}.
Therefore, the objective function c(ξ, θ) is only a function of ξ. Furthermore c(ξ) is
convex. For ξ > 0, it holds c(ξ + 1) − c(ξ) = Γ − |{j ∈ N : βj − ξ > 0}| + |{j ∈
N : βj − (ξ + 1) > 0}|. Let the values βj be sorted non-decreasingly and βΓ its
Γ-largest value, then c(ξ + 1) − c(ξ) ≤ 0 for ξ < βΓ and c(ξ + 1) − c(ξ) ≥ 0 for
ξ > βΓ. Hence, c(βΓ) equals the optimum of (7.27).
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CHAPTER EIGHT

COMPUTATIONAL STUDIES

We will finalize our investigation of robust knapsack problems with computational studies.
Since we have considered four different robustness concepts in the previous, excessive
computational studies and detailed analyses for each of them go beyond the scope of
this thesis. In addition, some problems such as the Γ-RKP have also been studied
experimentally by other authors before. Therefore, we give a brief survey on related
computational studies in the following. Then, we present exemplarily the detailed results
of our computational studies for the RRKP and in particular the special cases of the
k, 	/D-RRKP and the k/Γ-RRKP, respectively. By definition of the k/Γ-RRKP this
also includes the Γ-RKP as special case for k = 0.

Computational studies for robust knapsack problems include the following. We explic-
itly also refer to the references therein.

For the Γ-RKP, Bertsimas and Sim [34] give a very short exemplary computational
study in their initial paper introducing the Γ-robustness concept itself. Klopfenstein and
Nace [97] consider the polyhedral aspects of the Γ-RKP introducing (extended) cover
inequalities and thus, evaluate these inequalities experimentally in a branch-and-cut
approach in the context of the robust bandwidth packing problem; an application arising
in telecommunications where different traffic flows share the same link. Klopfenstein and
Nace consider an exact (IP based) and an heuristic approach to separate violated cuts in
their study. In 2012, Monaci et al. [125] present a dynamic program solving the Γ-RKP
and test it experimentally.

For the mb-RKP, only computational studies for applications from wireless telecom-
munications exist which include mathematical covering and assignment problems and
are thus not primary related to the mb-RKP.

For the SMKP, Atamtürk and Narayanan [16] present a computational study on the
effectiveness of submodular robust cover, extended cover, and lifted cover inequalities for
a test set of generated instances.

For the RRKP, Büsing [46] presents the results of computational studies based on
joint work with the author of this thesis and partially published before in Büsing et al.
[49] (for the k, 	/D-RRKP) and Büsing et al. [50] (for the k/Γ-RRKP).
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Environment. All algorithms were implemented in C++ using ILOG Cplex 12.1 [84]
with ILOG Concert as MIP solver and branch-and-cut framework, respectively.

The computations were carried out using a single thread of Intel Xeon W3540 CPU at
2.93GHz and 12GB RAM. If not stated differently, all other solver settings were left at
their defaults. A time limit of 1 hour was set for solving each problem instance.

8.1 Instances

To our knowledge, no public available RRKP instances exist. Hence, we considered
multi-dimensional knapsack instances from the ORLIB [21] problem library as a starting
point to obtain realistic test instances for the k, 	/D-RRKP. For the k/Γ-RRKP, we
followed the generation rules used by Klopfenstein and Nace [97] for the Γ-RKP and
based on the analysis for the KP by Pisinger [137]. We discuss our problem instances in
more detail in the following.

k, �/D-RRKP. The considered k, 	/D-RRKP instances are slight modifications of
multi-dimensional KP instances taken from the ORLIB [21] created by Chu and Beasley.
The ORLIB provides instances with three different knapsack tightness ratios (i. e., the
quotient of the knapsack capacity and the the sum of all item weights), where from we
selected all instances with a medium tightness ratio of 0.5 for all combinations of n and m,
where n ∈ {100, 250, 500} denotes the number of items and m ∈ {5, 10, 30} the number of
constraints. This yields 90 instances. For each k, 	/D-RRKP instance, the first knapsack
is treated as first stage constraint, and each remaining knapsack as individual discrete
scenario. For each item, the profit of the corresponding multi-dimensional knapsack KP
is scaled by 0.7 and used as first stage profit. The scenario profits are also determined by
scaling these values but the scaling factor is uniformly randomly generated in [0.2, 0.4].

k/Γ-RRKP. Pisinger [137] identifies general classes of computationally hard knapsack
instances. In particular, the KP instances which Pisinger classifies as “weakly correlated”
are hard to solve in practice. Despite their naming there is a high correlation between
the item weights and the item profits, such that highly weighted items tend to be more
profitable. Based on this, Klopfenstein and Nace [97] generated hard instances of the
Γ-RKP when computationally investigating its solvability and the impact of extended
cover inequalities in a branch-and-cut approach. We followed their generation approach.
But we observed that the generated instances are too easy to solve in the recoverable
robust setting. This is primary caused by the interaction of the setting of the knapsack
tightness ratio and our recovery rule (the limited removal of items). Klopfenstein and
Nace’s setting oftentimes leads to second-stage knapsack constraints that are trivially
satisfied and thus reducing the overall problem hardness in practice more or less to its
first-stage knapsack. To overcome this effect, we start again at Pisinger’s results and
generate instances similar to Klopfenstein and Nace [97] without the described flaws
as follows: For each number of items n ∈ {10, 25, 50, 100, 250, 500, 1000} and knapsack
tightness ratio τ ∈ {1

4
, 1
3
, 1
2
}, we randomly generate first-stage item weights w0

i ∈ [1, 1500],
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nominal second-stage item weights w̄i ∈ [1, 1000], deviation second-stage item weights
ŵi ∈ [1, 500] and item profits pi ∈ [w0

i + 150 − 30, w0
i + 150 + 30]. The first-stage and

second-stage knapsack capacities are determined as c0 = τ
∑

i∈N w0
i and c = τ

∑
i∈N w̄i,

respectively. All generated values are rounded to the nearest integer.

8.2 Robustness parameters

Following the concept of recoverable robustness the robustness parameters depend on
the chosen scenario set and recovery rule. For the k, 	/D-RRKP, we have to specify the
maximal number of removed items k, the maximal number of added items 	, and for each
scenario S ∈ SD the corresponding vector wS of item weights and the knapsack capacity
cS. The item weights and the capacity are part of the instance, thus k and 	 remain.
For the k/Γ-RRKP, we have to specify the maximal number of removed items k, the
robustness parameter Γ, the vector of nominal weights w̄, the vector of deviation weights
ŵ, and the scenario knapsack capacity c. Again, the item weights and the capacity is
given as part of the instances, thus k and Γ remain in this case.
In order to analyze the impact of the recovery parameters k and 	 (the latter only for the

k, 	/D-RRKP), we chose them as a fraction of the number of items, e. g., k = 0.25 means
that 25% of the total set of items may be removed in each scenario. All combinations of
k, 	 ∈ {0%, 1%, 5%, 10%, 25%, 50%, 100%} are tested. Furthermore, for k/Γ-RRKP, we
set Γ ∈ {0%, 1%, 5%, 10%, 25%}.

8.3 Results for the k, �/D-RRKP

We solve the IP formulation (7.1) of the k, 	/D-RRKP in the following. First, we
investigate the gain of recovery, i. e., the increase in the objective profit function due
to the presence of the recovery action. In addition, we report on the solvability of
the k, 	/D-RRKP in practice. Second, we investigate the strength of (extended) cover
inequalities by evaluating the additional closure of the integrality gap at the root node.

Gain of recovery. In comparison to the classic KP, we achieve an increase in the
objective function by the flexibility of the recovery action. In the following, we evaluate
this gain of recovery averaged for all instances with 4, 9 and 29 discrete scenarios and
w.r.t. different values of k and 	. The corresponding results are shown in Figures 8.1(a)
and 8.1(b). Since not all instances could be solved optimally within the time limit we
take the best known primal solution for our calculations and thus, the obtained gains of
recovery are lower bounds on the actual gains. Later, we report on the solvability of the
instances in detail.
Considering the gain of recovery, we observe that it is higher the larger the number

of scenarios is, e. g., it ranges from 15% (k = 10%, 4 scenarios) to 31% (k = 10%, 29
scenarios). Furthermore, the gain also increases with increasing value of k, e. g., for 4
scenarios it increases from 3% for k = 1% to 25% for k = 100%. We observe similar
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8 Computational studies

(a) average gain of recovery w.r.t. k

(b) average gain of recovery w.r.t. �

(c) average number of (almost-)optimally solved instances w.r.t. k

(d) average number of (almost-)optimally solved instances w.r.t. �

Figure 8.1: Gain of recovery (normalized to k = 	 = 0), and number of optimally
solved instances (solid blue) and instances solved with gap less than 0.5% to
optimum (shaded blue), respectively. All results are averaged and shown for
instances with 4, 9 and 29 scenarios, and k = 1%, 5%, 10%, 25%, 50%, 100%
and 	 = 1%, 5%, 10%, 25%, 50%, 100%, respectively.
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(a) average additional gap closed at root node w.r.t. k

(b) average number of separated cuts at root node w.r.t. k

Figure 8.2: Additional integrality gap closed at root node by separation of covers (C) and
extended covers (EC). In addition the number of separated cuts is presented.
All results are averaged and shown for k = 1%, 5%, 10%, 25%, 50%, 100%.

trends for the results w.r.t. the value of 	. The effects can be explained as follows: larger
numbers of scenarios enforce more conservative solutions in the deterministic non-robust
case (k = 	 = 0). Thus, it allows a higher gain if this restriction is relaxed by the recovery
action and in particular for higher values of k or 	. The resulting solutions are more
profitable.

Next, we address the practical computability of the k, 	/D-RRKP. Figures 8.1(c) and
8.1(d) visualize the averaged relative number of optimally solved instances with 4, 9
and 29 discrete scenarios for selected values of k and 	 as solid blue bars, respectively.
For larger number of scenarios, the instances could often not be solved to optimality.
Nevertheless almost-optimal solutions with remaining optimality gaps at most 0.5% to
optimality could be in 98% of all cases. Therefore, we report on the averaged relative
number of these instances as well. They are shown as shaded blue bars stacked on the
solid blue bars in Figures 8.1(c) and 8.1(d). First, we observe that 98% of all instances
can be solved to 0.5% of optimality within the time limit. Second, the number of actually
optimally solved instances decreases with increasing number of scenarios whereas the
instances with 29 scenarios could not be solved to optimally in 97% of all cases. Moreover,
the solution times are on average 50 to 100 times, 16 to 20 times, and about 12 times
larger than the corresponding non-robust KP (k = 	 = 0) instances with 4, 9, and 29
scenarios, respectively.
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Impact of recoverable robust extended covers. Next, we consider the cover and
extended cover inequalities for the k, 	/D-RRKP. In particular, the strength of these
inequalities is of interest to us. Therefore, we implemented the separation problem
in its ILP formulation (7.20) to separate violated extended cover inequalities exactly.
Whenever our separator is called the first stage knapsack is checked. If no violated
extended cover is found, all scenarios are tested beginning with the last scenario which
provided a violated cut, until a violation is determined. This inequality is then added to
the LP and the separation round is aborted. Only the root node of the k, 	/D-RRKP is
solved in this study. We consider three algorithms which differ by the IP solved (i.e.,
whether the canonical extension is integrated or not) and how the solution is strengthened
in a post processing step (i.e., items with x∗

j = 0 are not necessarily selected in the
separation ILP): Algorithm 0 solves the IP (7.1) with Cplex at its default settings,
Algorithm C additionally separates cover inequalities with canonical greedy extension,
and Algorithm EC additionally separates extended cover inequalities with canonical
greedy extension. All results are evaluated normalized to the results of Algorithm 0
which serves as a benchmark (and thus allows to determine the added value).

Figure 8.2(a) shows the averaged additional integrality gap closed (w.r.t. Algorithm 0) at
the end of the root node for Algorithms C and EC, and k = 1%, 5%, 10%, 25%, 50%, 100%.
The results are in line with those for the classical KP. The separation of extended cover
inequalities always closes the integrality gap more than covers only. On average 5% to
10% can be closed by extended cover inequalities. The averaged numbers of separated
cuts are shown for both algorithms and selected values of k in Figure 8.2(b). Here,
we observe that Algorithm EC separates at least twice the number of cuts on average.
In general, only a small number of cuts is separated (on average less than 5 cuts by
Algorithm C, and about 10 cuts by Algorithm EC). Hence, it is remarkable that such a
small number of cuts achieve additional gap closures of the observed values.

Conclusions. We have carried out extensive tests evaluating the gain of recovery
observing an average profit increase of up to 26% (k = 50%, 29 scenarios). Although
many instances could not be solved to optimality, solutions with a guaranteed relative
distance to the optimum of at most 0.5% have been achieved in 98% of all cases.
Furthermore, we have investigated the effectiveness of recoverable robust (extended)
cover inequalities showing that the integrality gap at the root node could be closed by
up to 10% on average by these cuts in our experiments. These are promising results on
the quality of the cuts. Hence, fast heuristic separation approaches should be the focus
of future investigations.

8.4 Results for the k/Γ-RRKP

We consider different algorithmic approaches to solve the k/Γ-RRKP, cf. Section 7.3 for
details. The following list gives an overview.

CmpIP: Algorithm CmpIP solves the compact IP (7.7).
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SepU: Algorithm SepU solves (7.7a), (7.7b), (7.7e), and separates model constraints (7.7c)
and (7.7d) on-the-fly by the combinatorial algorithm described in Section 7.3.

SepEC: Algorithm SepEC solves (7.7a), (7.7b), (7.7e), and separates extended cover
inequalities on-the-fly by solving IP (7.23).

SepS: Algorithm SepS solves (7.7a), (7.7b), (7.7e), and separates scenarios (7.26) on-
the-fly by the combinatorial algorithm described in Section 7.3.

CmpIPec/SepUec: For CmpIP and SepU we also consider variants which include the
additional separation of violated extended cover inequalities in a cut-and-branch
approach by solving IP (7.23). We denote them by the suffix -ec.

First observations. The k/Γ-RRKP generalizes the classic KP (special case: Γ = k = 0),
the RRKP without data uncertainty (special case: Γ = 0), as well as the Γ-RKP (special
case: k = 0). Notice that these special cases are not representative for the k/Γ-RRKP in
general and other more specific algorithms to solve these may exist or our algorithms may
perform much better. For example, our compact model (7.7) reduces to the well-known
multi-dimensional KP for Γ = 0. In this case, we observed a drastic decrease in the
solution times of our algorithm CmpIP compared to the robust case where Γ > 0.

In an initial study, we tested the computational tractability of the generated instances
(for Γ = k and τ = 1

4
, 1
3
, 1
2
) within the time limit depending on the number of items. We

observe the following: instances with 100 items are the most interesting for our study as
on the one hand smaller instances could be solved by all algorithms oftentimes with no
effort within a few seconds and on the other hand larger instances were not solvable by
most algorithms within the time limit of one hour. Hence, in the following we focus on
instances with 100 items to compare the proposed algorithms within our experimental
set-up.

Analysis per tightness ratio. First, we investigate the algorithmic performances solving
all instances with 100 items and knapsack tightness ratios of 1

4
, 1

3
, and 1

2
for each

algorithm. Therefore, we evaluate the average, minimal and maximal solution times for
each algorithm and tightness ratio. The results are shown in Figure 8.3. Notice, some
instances did not terminate within the time limit (due to the technical implementation of
the time limit) resulting in some higher solution times. In Figure 8.3(a), we observe that
Algorithm SepU is the fastest on average. But also the range of its observed minimal and
maximal solution time is good compared to the other algorithms. Solving the compact
ILP, CmpIP is the second-fasted algorithm. The algorithms CmpIPec and SepUec are
slower than the corresponding algorithms without the additional separation of extended
cover inequalities. In fact, it turns out that the exact separation of these inequalities by
solving an ILP is also quite slow in practice. Among all considered algorithms SepEC
is the slowest; reaching the time limit in 60% of all cases (80%, 100% and 0% of all
cases for τ = 1

4
, 1
3
, 1
2
, respectively) whereas the algorithms CmpIP and SepU are able to
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(a) average/minimal/maximal solution times

(b) percentage of optimally solved instances

Figure 8.3: Comparison of algorithmic performance according to aver-
age/minimal/maximal solution times and the percentage of optimally solved
instances. The results are shown for tightness ratios τ = 1

4
, 1
3
, 1
2
.
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solve most instances in the time limit. The second-worst algorithm is SepS. For τ < 1
2
it

is the second slowest, only slightly better for τ = 1
2
. Besides it solves less than half the

instances to optimality, for τ = 1
2
even less than 25%.

Comparing the results of different tightness ratios for a fixed algorithm, we do not
observe any clear trend. One difference is remarkable: the difference between maximal
and minimal solution time increases significantly with higher tightnesses for SepUec while
SepS remains stable. An explanation of this effect is unknown to us. In the following we
focus on the instances with tightness ratio 0.5.

Analysis per instance. Second, we compare the performance of the algorithms per
instance. Therefore we evaluate the average solution times, the percentage of optimally
solved instances, and the maximal remaining optimality gaps. For each instance and
algorithm, The results are averaged for all considered values of the parameters k and
Γ. Figure 8.4 visualizes the results of this analysis. To obtain meaningful results in a
normalized way, the x-axes do not state the individual instances but an ordering of the
evaluated values. For example, in Figure 8.4(a) the solution times of each algorithm are
sorted non-decreasingly and thus 1 on the x-axis relates to the smallest value, 2 to the
second-smallest value and so on, e.g., for SepU the smallest value is 106 sec. and the
second-smallest is 390 sec. Notice that Figures 8.4(a) and 8.4(c) have logarithmically
scaled axes. Again, Algorithm SepU performs best followed by Algorithm CmpIP which is
already about 10 times slower. The slowest is algorithm SepEC which is about 100 times
slower than SepU. Algorithm SepS is similarly slow. The variants CmpIPec and SepUec
are also about 10 times slower than CmpIP and SepU, respectively. Both algorithms
CmpIP and SepU solve 85% resp. 100% of all instances to optimality. SepEC solves the
least instances to optimality; at least 70% remain unsolved. Algorithm SepS achieves
only slightly better results. Considering the maximal optimality gaps, we observe that
Algorithm SepEC performs worst with optimality gaps between 29% and 57% when
reaching the time limit. Although SepS yields results similar to SepEC w.r.t. solution
times and solvability, it achieves optimality gaps ten times better than the ones by
SepEC. In contrast, the gaps of the unsolved instances by CmpIPec and SepUec are
less than 2.5%. All other optimality gaps — in particular of SepU— are zero or negligible.

Analysis per (k,Γ). Third, we report on the solution times and percentage of solved
instances dependent on the values of k and Γ. Figures 8.5(a) and 8.5(b) show the results
of this evaluation. First we observe that the results for k = 0 are differently shaped
than for k > 0. For increasing Γ, the solution times trends remain similar, as does the
number of optimally solved instances for all algorithms except for SepS. For algorithm
SepS, less instances are solved for increasing values of Γ, e.g., 70% for Γ = 5 down to 0%
for Γ = 25. Second, for k > 0 we observe the following trends: if Γ increases, then the
solution times increase as well and thus the ratio of optimally solved instances decreases
(by trend). With increasing value of k the solution time tends to decrease whereas there
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(a) average solution times

(b) percentage of optimally solved instances

(c) maximal optimality gap

Figure 8.4: Comparison of algorithmic performance according to average solution times,
the percentage of optimally solved instances, and maximal optimality gaps.
All results are computed for ten instances with 100 items each. For each
algorithm the considered values (time/#solved/gap%) are sorted and shown
w.r.t. this ordering.
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(a) average solution times

(b) percentage of optimally solved instances

Figure 8.5: Comparison of algorithmic performance according to average solution times
and the percentage of optimally solved instances. All results are averaged for
ten instances with 100 items each. They are shown for k = 0, 5, 10, 15, 20, 25
and Γ = 5, 10, 15, 20, 25.

is no clear trend for the number of optimally solved instances. Only for SepEC and SepS
there is an increase in the ratio of optimally solved instances for higher values of k.

Additionally, we report on the average number of separated extended cover inequalities
for algorithms CmpIPec and SepUec. Remember that a recoverable robust cover is
defined as a cover for the first-stage knapsack or the second-stage / scenario knapsack.
Thus, we distinguish between first- and second-stage covers in our evaluation. Figure 8.6
shows the average numbers of first-stage and second-stage extended cover inequalities
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(a) Algorithm CmpIPec

(b) Algorithm SepUec

Figure 8.6: The total numbers of separated extended covers inequalities for algorithm
CmpIPec and SepUec. All results are averaged for ten instances with 100
items each, k = 0, 5, 10, 15, 20, 25 and Γ = 5, 10, 15, 20, 25.

(cuts). We observe no clear trend depending on k or Γ. It seems that more cuts have been
separated for higher values of k and lower values of Γ. Further, we notice that — in line
with our separation strategy which first separates first-stage cuts and second-stage cuts
only if no first-stage cuts have been found — more first-stage covers have been found than
second-stage covers but still second-stage covers have been separated indicating that in
these case no further violated first-stage covers have existed. Furthermore, comparing the
results for CmpIPec and SepUec more second-stage cuts have been separated when using
SepUec than when using CmpIPec. This indicates that extended cover inequalities may
contribute more to the feasibility of the problem in an algorithm using lazy constraints
for the second stage than in an algorithm solving a complete IP.

Conclusions. We have carried out extensive computational studies comparing k/Γ-
RRKP instances with seven different numbers of items and three different tightness
ratios for 36 different values of k and Γ each. We have evaluated the performance
w.r.t. the solution times, the number of optimally solved instances, and the remaining
optimality gaps. All results strongly indicate that our new approach leading to the
combinatorial separation of violated model constraints (7.7c)–(7.7d) is best-suited to
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solve the k/Γ-RRKP: the corresponding algorithm SepU clearly outperforms the others.
The compact ILP formulation (7.7), corresponding to Algorithm CmpIP, is second-best
and the Algorithm SepEC is the worst (at least 10 times slower). Also algorithm SepS,
the approach to separate scenarios which is oftentimes suggested in literature, performs
bad in our studies and should not be used to solve RRKP in practice. Although violated
recoverable robust extended cover inequalities have been separated, their effect on the
overall solving process is disadvantageous because the proposed exact separation by IP is
too slow. Here an alternative heuristic separation should be considered.
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CHAPTER NINE

THE Γ-ROBUST NETWORK DESIGN PROBLEM

In this chapter, we consider a robust version of the classic network design problem with
zero routing costs and integral link capacities. Sometimes this classic network design
problem is more precisely called the network loading problem. Nevertheless, we use
the more common term network design problem. The robustness concept which we
apply to take demand uncertainties into account is Γ-robustness. We call the resulting
problem the Γ-robust network design problem (Γ-RNDP). Due to the popularity of
Γ-robustness, this problem, its formulations, and related structures are oftentimes just
called robust neglecting alternative robustness concepts. For example, network design
under data uncertainty has been consider in telecommunications using multi-period or
multi-hour approaches by Lardeux et al. [109] and Terblanche et al. [152], where an
optimal solution is determined for each data realization of a given finite set of possible
realizations. Ben-Ameur and Kerivin [24] or Duffield et al. [63] follow approaches closer
to robust optimization by introducing a polyhedral uncertainty sets and determining a
single solution feasible for all possible realizations of the uncertainty set. A prominent
special case of a polyhedral uncertainty set is the so-called hose model, where the sum of
out-going and in-going traffic is given for each traffic node; cf. Altin et al. [11], Chekuri
et al. [51] and Altin et al. [12]. The Γ-robustness concept, also a special case of a
polyhedral uncertainty set, has been applied to the Γ-RNDP by Altin et al. [11] in the
context of the planning of virtual private networks. Further investigations by others
include a simplification of the Γ-RNDP for Γ = 1 studied by Belotti et al. [22], the
Γ-RNDP with alternative routing rules studied by Ouorou and Vial [132] and Poss and
Raack [139], and the integration of technological decisions studied by Belotti et al. [23].
Note that although several robust approaches exist, telecommunication networks are
typically designed using historical traffic measurements or population statistics as in Bley
et al. [42], Dwivedi and Wagner [65], Uhlig et al. [153] and Zhang [162] in practice. Thus
deterministic NDP are obtained which neglect the data uncertainty of the underlying
real-world applications and thus have to be overestimations to ensure feasibility. Clearly,
these are cost-inefficient approaches.

In contrast, we consider the Γ-RNDP in the following. Parts of this chapter are based
on joint work and have been published by the author of this thesis and the corresponding
co-authors or have been submitted for publication. These works are Koster and Kutschka
[101], Koster et al. [103, 105], Raack [140] and Koster et al. [106] on different formulation,
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basic polyhedral properties and cutset-based inequalities, and Claßen et al. [55] on the
capacity formulation and Γ-robust metric inequalities.

We consider the following robust network design problem. We are given an undirected
connected graph G = (V,E) representing a potential network topology. On each of the
links e ∈ E capacity can be installed in integral units and costs κe per unit. A set
of commodities K represents potential traffic demands. More precisely, a commodity
k ∈ K corresponds to node pair (sk, tk) and a demand dk ≥ 0 for traffic from sk ∈ V
to tk ∈ V . The actual demand values are considered to be uncertain. We model the
uncertain demand using the Γ-robustness concept, i. e., the demand vector d ∈ UΓ

corresponding to the demand values dk, k ∈ K w. r. t. given nominal and deviation
demand values: d̄ ∈ R|K|

≥0 and d̂ ∈ R|K|
≥0 , respectively. Furthermore, let Γ ∈ {0, 1, . . . , |K|}

be the associated robustness parameter determining the maximal number of maximally
deviating demands at the same time. Notice that we could also consider fractional
values Γ ∈ [0, |K|] \ N. This would correspond to at most 
Γ� simultaneously maximally
deviating demands and an additional demand deviating to (Γ− 
Γ�)-times its maximal
deviation. Although we focus on integer values for Γ in this thesis, the results can be
generalized following this previous interpretation.

The traffic for commodity k is realized by a multi-path flow between sk and tk which
is not restricted to one single path and hence also called splittable. Of course, the actual
multi-commodity flow depends on the realization of the demand d ∈ UΓ. In this context,
the literature roughly distinguishes two main routing principles. We either choose an
arbitrary flow for every realization of the demand in UΓ, which is known as dynamic
routing or we fix a routing template for every commodity, that is, every realization of
the uncertain demand has to use the same set of paths between sk ∈ V and tk ∈ V with
the same fraction of the total sk-tk-flow assigned to these paths. This latter principle is
known as oblivious routing (or static routing) and is considered in this paper. We refer
the reader to Mattia [121] and Poss and Raack [139] for solution approaches considering
dynamic routing.

Definition 9.1 (Γ-Robust Network Design Problem). Given a potential network topology,
a Γ-robust uncertainty set UΓ of the demand, and installation costs as described above,
the Γ-robust network design problem (Γ-RNDP) using oblivious/static, splittable routing
is to find a minimum-cost installation of integral capacities and a routing template (i. e.,
a partition of the total flow of a commodity into paths) for every commodity such that
actual flow does not exceed the link capacities independent of the realization of demands
in UΓ.

This chapter is structured as follows: Next, we present formulations of the Γ-RNDP.
Then it follows a polyhedral investigation, starting with the definition of the related
polyhedra, their basic properties, and followed by classes of valid inequalities based on
three approaches: the study of the Γ-robust cutset polyhedron, the Γ-robust single arc
design polyhedron, and the capacity formulation of the Γ-RNDP. We conclude with
reports on representative computational studies using real-life traffic measurements of
telecommunication networks as uncertain traffic/demand data.
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Next, we formulate the Γ-RNDP as ILP. As for the classic network design problem,
NDP, there also exist link-flow and path-flow formulations for the Γ-RNDP.

9.1 Formulations

In this section, we present ILP formulations of the Γ-RNDP. Therefore, let us recall the
ILP formulation (1.19) of the classic NDP.
Given link-based flow variables fk

ij denoting the fraction of demand k routed along arc
ij and link capacity installment variables xe determining the number of capacity modules
to be installed on edge e, the link-flow formulation of the NDP is

min
∑
e∈E

κexe (1.19a)

s. t.
∑

j : ij∈E
(fk

ij − fk
ji) =

⎧⎪⎨
⎪⎩
1 i = sk

−1 i = tk

0 else

∀i ∈ V, k ∈ K (1.19b)

∑
k∈K

dkfk
e ≤ xe, ∀e ∈ E (1.19c)

f, x ≥ 0 (1.19d)

x ∈ Z|E| (1.19e)

with fk
e := fk

ij +fk
ji; flow conservation (1.19b), link capacity (1.19c), nonnegativity(1.19d)

and integrality (1.19e) constraints; cf. Section 1.3.
By introducing path-based flow variables fk

p denoting the fraction of demand k routing
along path p ∈ P k (where P k is the set of all possible sk-tk-paths), we obtain the path-flow
ILP formulation of the NDP:

min
∑
e∈E

κexe (1.20a)

s. t.
∑
p∈Pk

fk
p ≥ 1 ∀k ∈ K (1.20b)

∑
k∈K

dk

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠ ≤ xe, ∀e ∈ E (1.20c)

f, x ≥ 0 (1.20d)

x ∈ Z|E| (1.20e)

with path covering constraints (1.20b), link capacity (1.20c), nonnegativity(1.20d) and
integrality (1.20e) constraints; cf. Section 1.3.
Further, in Section 1.3 we also describe how a solution of the link-flow formulation can

be transformed into a solution of the path-flow formulation and vice-versa showing the
equivalence of both formulations.
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Although the Γ-robustness concept assumes a symmetric distribution around a nominal
value, we can focus only on the positive deviations w. l. o. g. because the worst-case
realization does not include negative deviations: for each realizations with a negative
demand deviation for commodity k a dominating realization exists without a deviation or a
positive demand deviation for k using the following definition of dominance. A realization
dominates another if its contribution to the left-hand side of the link capacity constraint
is greater than or equal to the corresponding contribution of the other realization.

Routing templates and realized flows under demand uncertainty. Given a capacity
allocation x ∈ R|E|

≥0 , and routing templates fk for all k ∈ K, we say that (x, f) supports
d ∈ UΓ in case (1.19c) is satisfied for d. Fixing d ∈ UΓ, the realized flow fk

e (d) for
commodity k on edge e amounts to

fk
e (d) := dkfk

e . (9.3)

This means that we allow the flow to change with the demand fluctuations d but we
restrict the flow dynamics to the linear functions given by (9.3). The realized flow fk

p (d)
on a path in the path-flow formulation can be determined analogously. Note hat (9.3) is
a special case of so-called affine recourse introduced by Ben-Tal et al. [30] in the context
of adjustable robust solutions of LPs with uncertain data. Ouorou and Vial [132] apply
affine recourse to network design introducing a new affine routing scheme. Poss and
Raack [139] provide a conceptual discussion of the three routing schemes: oblivious,
affine, and dynamic.

Exponential flow formulations of the Γ-RNDP. The Γ-robust counterparts of the
classic link-flow (1.19) and path-flow formulation (1.20) are

(1.19a), (1.19b)− (1.19e)∑
k∈K

dkfk
e ≤ xe ∀e ∈ E, d ∈ UΓ (9.4a)

and

(1.20a), (1.20b)− (1.20e)

∑
k∈K

dk

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠ ≤ xe ∀e ∈ E, d ∈ UΓ, (9.5a)

respectively. In both formulations infinitely many realizations d ∈ UΓ are considered in
the corresponding link capacity constraints. In fact, not infinitely but exponentially
many extremal realizations are non-dominated resp. unobtainable as convex combination
of other realizations and have to be taken into account to determine the worst-case value
in UΓ; cf. Section 3.1.2. Hence, both formulations are of exponential size.
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9.1 Formulations

Compact flow formulations of the Γ-RNDP. Following the explanations in Sec-
tion 3.1.2, formulations (9.4) and (9.5) can be linearized and reformulated in a compact
way by exploiting strong duality of linear programming theory. Thus, the compact
link-flow formulation of the Γ-RNDP reads

(1.19a), (1.19b), (1.19d), (1.19e)

Γπe +
∑
k∈K

d̄kfk
e +
∑
k∈K

ρke ≤ xe, ∀e ∈ E (9.6a)

− πe + d̂kfk
e − ρke ≤ 0 ∀e ∈ E, k ∈ K (9.6b)

ρ, π ≥ 0 (9.6c)

with nonnegative dual variables ρ and π and the dual constraints (9.6b). Similarly, the
compact path-flow formulation of the Γ-RNDP is given by

(1.20a), (1.20b), (1.20d), (1.20e)

Γπe +
∑
k∈K

d̄k

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠+

∑
k∈K

ρke ≤ xe, ∀e ∈ E (9.7a)

− πe + d̂k
∑

p∈Pk : e∈p
fk
p − ρke ≤ 0 ∀e ∈ E, k ∈ K (9.7b)

ρ, π ≥ 0 (9.7c)

with nonnegative dual variables ρ and π and the dual constraints (9.7b). Notice that
we have assumed a common source of uncertainty affecting all paths of a commodity
simultaneously. Hence, we can model the uncertainty with a single max-term in the
first step, dualize and obtain (9.7a)–(9.7c) with a single robustness parameter Γ and
path-independent dual variables; cf. Bertsimas and Sim [33] and Bertsimas and Sim [34]
for a discussion of this assumption.

Capacity formulation of the Γ-RNDP. Given the link capacities x ∈ Z|E|
≥0 , we can

characterize the existence of a feasible flow satisfying the constraints (1.20b), (1.20d),
and (9.7a)–(9.7c) by applying Farkas’ lemma. In fact, this characterization holds even
for fractional capacities:

Lemma 9.2. Given x̃ ∈ R|E|
≥0 , there exists a flow satisfying (1.20b), (1.20d), and (9.7a)–

(9.7c) if and only if for all lengths functions 	 : E → R≥0

∑
e∈E

x̃e	(e) ≥ b� (9.8)
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holds, where b� is defined by the following LP.

b� := max
∑
k∈K

bk (9.9a)

s.t. bk −
∑
e∈p

d̂kmk(e) ≤ d̄k	(p) ∀k ∈ K, p ∈ P k (9.9b)

∑
k∈K

mk(e) ≤ Γ	(e) ∀e ∈ E (9.9c)

mk(e) ≤ 	(e) ∀k ∈ K, e ∈ E (9.9d)

bk, mk(e) ≥ 0 ∀k ∈ K, e ∈ E (9.9e)

We call (9.8) the Γ-robust length inequality (RLI), and if 	 is metric, (9.8) is called a
Γ-robust metric inequality (RMI).

Proof. By setting x = x̃ in (9.7), the problem is turned into an LP. We introduce dual
variables {bk}k∈K , {	(e)}e∈E, {mk(e)}e∈E, k∈K for constraints (1.20b), (9.7a) and (9.7b),
respectively, and apply Farkas’ lemma yielding conditions (9.9b)–(9.9e) and 	(e) ≥ 0.
Thus, a solution to (9.7) exists if and only if∑

e∈E
x̃e	(e) ≥

∑
k∈K

bk (9.10)

is valid for all bk, 	(e), mk(e) ≥ 0 satisfying (9.9b)–(9.9d). Therefore, for a given length
function {	̃(e)}e∈E inequality (9.10) is valid for the convex hull of all feasible solutions of
the linear relaxation of (9.7) if constraints (9.9b)–(9.9e) are fulfilled. To determine the
strongest valid inequality for 	̃, we maximize the sum over bk for k ∈ K. This can be
formulated as LP (9.9), where 	 = 	̃, completing the proof.

Although we use the path-flow formulation of the Γ-RNDP in Lemma 9.2 and its
proof, the result holds for the link-flow formulation as well due to the equivalence of both
formulations.
The LP (9.9) to compute the right-hand side of a RLI is comparable to the problem

(subsepmax) of Mattia [121]. However, we specified the general constraint Ad ≤ b
according to the compact formulation of the Γ-RNDP. Lemma 9.2 generalizes the
“Japanese Theorem” 1.21 of the classic NDP to the Γ-robust setting. Compared to this
theorem, bk is the length of the shortest path with respect to 	 adjusted by values mk(e)
for which additional constraints (9.9c) and (9.9d) hold. The previous lemma gives rise
to the capacity formulation of the Γ-RNDP:

(1.20a)∑
e∈E

	(e)xe ≥ b� ∀	 ∈ L (9.11a)

x ∈ Z|E|
≥0 (9.11b)
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where L is the set of all length functions E → R≥0 and the right-hand sides b� of the
Γ-robust length inequalities (9.11a) are determined as described in Lemma 9.2. Note,
the convex hull of feasible points of (9.11) is the projection of the convex hull of feasible
points of the formulations (9.6) and (9.7) onto the space of x.

9.2 Polyhedral study

In this section, we investigate the polyhedral structure of the convex hull of solutions
feasible to the Γ-RNDP. First, we define the corresponding polyhedra for the link-flow and
path-flow formulations and introduce notation for selected projections of these polyhedra.
Second, we state basic characteristics of these objects. Finally, we investigate further
valid inequalities based on cutsets, the residual capacity of arcs, and metric inequalities.
To obtain strong inequalities, we follow the path of projecting the original polyhedra,
characterizing classes of facet-defining inequalities and lifting them back to the original
problem space.
We start with the definitions of the basic polyhedra:

Definition 9.3 (Γ-robust Network Design Flow Polyhedra). We define the Γ-robust
network design link-flow polyhedron N LF,Γ as the convex hull of all feasible solutions of
the compact link-flow formulation (9.6) of the Γ-RNDP, i. e.,

N LF,Γ := conv

{
(x, f, π, ρ) ∈ Z|E|

≥0 × R2|E||K|
≥0 × R|E|

≥0 × R|E||K|
≥0 :

(x, f, π, ρ) satisfies (9.6)

}
. (9.12)

We denote by N LF,Γ
x,π the projection of N LF,Γ onto the space of the x and π variables, i. e.,

N LF,Γ
x,π = projx,π N LF,Γ, (9.13)

and by N LF,Γ
x the projection of N LF,Γ onto the space of the x variables, i. e.,

N LF,Γ
x = projx N LF,Γ. (9.14)

Similarly, we define the Γ-robust network design path-flow polyhedron N PF,Γ as the
convex hull of all feasible solutions of the compact path-flow formulation (9.7) of the
Γ-RNDP, i. e.,

N PF,Γ := conv

{
(x, f, π, ρ) ∈ Z|E|

≥0 × R|P |
≥0 × R|E|

≥0 × R|E||K|
≥0 :

(x, f, π, ρ) satisfies (9.7)

}
. (9.15)

We denote by N PF,Γ
x the projection of N PF,Γ onto the space of the x variables, i. e.,

N PF,Γ
x = projx N PF,Γ. (9.16)
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9 The Γ-robust network design problem

Definition 9.4 (Γ-robust Network Design Capacity Polyhedron). We define the Γ-robust
network design capacity polyhedron N Γ

x as the convex hull of all feasible solutions of the
capacity formulation (9.11) of the Γ-RNDP, i. e.,

N Γ
x := conv

{
x ∈ Z|E|

≥0 : x satisfies (9.11)
}
. (9.17)

By construction of the capacity formulation (9.11), the following corollary holds

Corollary 9.5. N Γ
x = N LF,Γ

x = N PF,Γ
x .

9.2.1 Basic characteristics

In this section, we report on the dimensions of the Γ-robust network design link-flow and
capacity polyhedra. The proofs follow similar proofs for the NDP.

Lemma 9.6. The dimension of N LF,Γ equals 2|E| + 3|E||K| − (|V | − 1)|K| whereas
N LF,Γ

x,π is full-dimensional.

Proof. For N LF,Γ, there are 2|E|+3|E||K| variables and (|V |−1)|K| linearly independent
flow conservation constraints (1.19b). We show that there are no additional implied
equations. Let

∑
e∈E

αexe +
∑
e∈E

βeπe +
∑
e∈E

∑
k∈K

δkeρ
k
e +

∑
e={i,j}∈E

∑
k∈K

(μk
ijf

k
ij + μk

jif
k
ji) = γ (9.18)

be an equation satisfied by all points in N LF,Γ and let �̂ = (x̂, f̂ , π̂, ρ̂) ∈ N LF,Γ. For all
e ∈ E, we can modify �̂ by increasing the capacity without leaving N LF,Γ. Hence, αe = 0
for all e ∈ E. Once we have increased the capacity we can also increase variables πe and
ρke for every e ∈ E and k ∈ K which gives βe = δke = 0 for all e ∈ E and k ∈ K. Now,
we choose a spanning tree T ⊆ E in G which exists since G is connected. By adding a
linear combination of the flow conservation constraints (1.19b) to (9.18), we can assume
that either μk

ij or μ
k
ji = 0 for all e = {i, j} ∈ T, k ∈ K. Sending a small flow in both

directions on every e in T gives μk
ij = μk

ji = 0. Now choosing an arbitrary edge e ∈ E \ T
there is an unique circuit consisting of e and edges in T . Sending small circulation flows
on this circuit finally results in μk

ij = μk
ji = 0 for all e = {i, j} ∈ E, k ∈ K. It follows that

(9.18) is a linear combination of flow conservation constraints which gives the desired
results. By projecting all constructed points, we also conclude that N LF,Γ

x,π has dimension
2|E|.

Lemma 9.7 (Mattia [121]). The polyhedron N Γ
x is full-dimensional.
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9.2.2 Cutset-based inequalities

In the following, we investigate classes of valid inequalities based on cuts and the
corresponding cutset edge sets. First, we generalize the classic cutset inequalities to their
Γ-robust counterparts. Second, we introduce a new class of valid inequalities by further
generalizing the Γ-robust cutset inequalities. The polyhedral study of cutset-based
inequalities is based on joint work and has previously be published in Koster et al. [106].
An overview of all investigated polyhedra is shown in Figure 9.2.4.

Γ-robust cutset polyhedron. We consider a proper and non-empty subset S of the
nodes V and the corresponding cutset δ(S) and denote by QS ⊆ K the subset of
commodities with source sk and target tk not in the same shore of the cut. Since we
may always reverse single demands without changing the model, we may assume in this
description sk ∈ S for all k ∈ QS. We denote by d̄S :=

∑
k∈QS

d̄k the aggregated nominal
cut-demand with respect to S. We will throughout assume that |QS| ≥ Γ ≥ 1. Notice
that we can always reduce Γ to |QS| without changing the problem on the cut. It follows
d̄S > 0. Contracting both shores of the cut δ(S), we consider the following Γ-robust
two-node formulation corresponding to (9.6):∑

{i,j}∈δ(S)
(fk

ij − fk
ji) = 1 ∀k ∈ QS (9.19a)

∑
{i,j}∈δ(S)

(fk
ij − fk

ji) = 0 ∀k ∈ K \QS (9.19b)

Γπe +
∑
k∈K

d̄kfk
e +
∑
k∈K

ρke ≤ xe ∀e ∈ δ(S) (9.19c)

− πe + d̂kfk
e − ρke ≤ 0 ∀e ∈ δ(S), k ∈ K (9.19d)

x, f, ρ, π ≥ 0 (9.19e)

We define the Γ-robust cutset polyhedron N LF,Γ(S) with respect to S to be

N LF,Γ(S) := conv

{
(x, f, π, ρ) ∈ Z|δ(S)|

≥0 × R2|δ(S)||K|
≥0 × R|δ(S)|

≥0 × R|δ(S)||K|
≥0 :

(x, f, π, ρ) satisfies (9.19)

}
.

The projection of N LF,Γ(S) onto the space of the variables x and π is denoted by

N LF,Γ
x,π (S) := conv

{
(x, π) ∈ Z|δ(S)|

≥0 × R|δ(S)|
≥0 : ∃ (f, ρ) ∈ R2|δ(S)||K|

≥0 × R|δ(S)||K|
≥0

so that (x, f, π, ρ) ∈ N LF,Γ(S)

}
.

The following follows from Lemma 9.6 as N LF,Γ(S) defines a two-node Γ-robust network
design problem.

Corollary 9.8. The dimension of N LF,Γ(S) equals 2|δ(S)|+ 3|δ(S)||K| − |K| whereas
N LF,Γ

x,π (S) is full-dimensional.
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9 The Γ-robust network design problem

Γ-robust cutset inequalities. Independent of the realization of demand, all cut com-
modities QS have to be realized across the cut δ(S), that is fk(δ(S)) ≥ 1 for all k ∈ QS.
It follows that we have to provide sufficient cut capacity x(δ(S)). Thus the following
base cutset inequality must hold:

x(δ(S)) ≥ d0 :=
∑
k∈QS

d̄k + max
Q′

S⊆QS : |Q′
S |≤Γ

∑
k∈Q′

S

d̂k (9.20)

It states that the capacity on the cut should be at least the nominal cut demand plus
the Γ largest deviations among QS. Note that the right-hand side is independent of the
realized flow. The value d0 only depends on the cut δ(S) and the value of Γ. As the
left-hand side is integral, we may round up the right-hand side yielding

x(δ(S)) ≥ �d0 . (9.21)

This already generalizes the classic cutset inequality for network design; cf. Magnanti and
Mirchandani [111]. Since no dual variables πe appear in this inequality, it is also valid
for the exponential formulation (9.4) and capacity formulation (9.11). We will prove
in Corollary 9.24, inequality (9.21) defines a facet of N LF,Γ(S) if d0 < �d0 and either
|δ(S)| = 1 or d0 > 1. It also defines a facet of N LF,Γ if additionally the graphs defined by
the two shores S and V \ S are connected. In the rest of this section, we will generalize
this essential result to a more general class of inequalities in the space of the x and π
variables.

Generalizing Γ-robust cutset inequalities. Let us start by generalizing the base in-
equality (9.20). Let Q be an arbitrary but non-empty subset of the cut-commodities QS.
From the flow-conservation constraints (9.19a) follows that∑

k∈Q
d̄kfk(δ(S)) ≥ d̄(Q) and

∑
k∈Q

d̂kfk(δ(S)) ≥ d̂(Q). (9.22)

Aggregating all capacity constraints (9.19c), adding all constraints (9.19d) for e ∈ δ(S)
and k ∈ Q, using (9.22), and relaxing the backward flow variables results in

x(δ(S)) + (|Q| − Γ)π(δ(S)) ≥ d̄S + d̂(Q) . (9.23)

The left-hand side of (9.23) is not changing as long as the cardinality of the subset Q is
constant. Hence among all subsets ofQ with cardinality |Q| the one maximizing d̂(Q) gives
the strongest inequality (9.23). To state this inequality, we have to sort the commodities
non-increasingly w.r.t. the maximum deviation d̂k and define subsets of QS corresponding
to large deviations. This needs some new notation. Let ϕ : QS �→ {0, . . . , |QS|} be a
permutation of the commodities in QS such that d̂ϕ

−1(1) ≥ d̂ϕ
−1(2) ≥ · · · ≥ d̂ϕ

−1(|QS |) and
let J = {−Γ, . . . , |QS| − Γ}. Fixing the cut, we define Qi := {k ∈ QS : ϕ(k) ≤ i+ Γ} for
i ∈ J as the commodities corresponding to the i+Γ largest d̂k values with respect to QS.
Hence, the demand di := d̄S+d̂(Qi) denotes the total nominal demand plus the i+Γ largest
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peak demands across the cut. This definition is consistent with the definition of d0 in
(9.20) since |QS| ≥ Γ and hence d̄S =

∑
k∈QS

d̄k and d̂(Q0) = maxQ′
S⊆QS : |Q′

S |≤Γ

∑
k∈Q′

S
d̂k.

Using this notation, inequality (9.23) reduces to

x(δ(S)) + iπ(δ(S)) ≥ di. (9.24)

It is valid for all i ∈ J and by setting i = 0, we get inequality (9.21). In the sequel, we
consider the polyhedron

XΓ(S) = conv
{
(x, π) ∈ Z|δ(S)|

≥0 × R|δ(S)|
≥0 : (x, π) satisfies (9.24) ∀i ∈ J

}
Every valid inequality for XΓ(S) is also valid for the Γ-robust formulation (9.6). In the
following, we will completely describe XΓ(S) providing all facet-defining inequalities.
Since all coefficients in (9.24) are identical for all edges in δ(S), it suffices to study the
two-dimensional case with base inequalities

x+ iπ ≥ di (9.25)

for i ∈ J and the related polyhedron

XΓ = conv {(x, π) ∈ Z≥0 × R≥0 : (x, π) satisfy (9.25) for all i ∈ J} .

Notice that XΓ(S) is obtained from XΓ by copying variables and forcing nonnegativity
for the copied variables. It follows that every facet for XΓ translates into a facet for XΓ(S)
and vice versa except for the nonnegativity constraints. In fact, a complete description
of XΓ determines a complete description of XΓ(S) and vice versa. We formalize this
observation as follows

Lemma 9.9. Let α ∈ R|QS |, β ∈ R|QS | and γ ∈ R. Let∑
e∈E

αexe +
∑
e∈E

βeπe ≥ γ

be different from a nonnegativity constraint and facet-defining for XΓ(S) with |δ(S)| ≥ 2.
Then it holds αe1 = αe2 and βe1 = βe2 for all e1, e2 ∈ δ(S).

Proof. The statement is obviously true if |δ(S)| = 1. Let |δ(S)| ≥ 2 and e1, e2 ∈ δ(S)
with e1 �= e2. There exists a point (x̄, π̄) on the facet such that π̄e1 > 0 since it is not
a nonnegativity constraint. This point still satisfies all nonnegativity constraints and
(9.24) if we move the x-values from e1 to e2. Hence, (αe2 − αe1) ≥ 0. But there is also a
point (x̂, π̂) on the facet with π̂e2 > 0 from which we conclude that (αe1 − αe2) ≥ 0 and
thus αe1 = αe2 . In a similar way, we argue that βe1 = βe2 .

Lemma 9.10. Let α, β, γ ∈ R and |δ(S)| > 1. Inequality αx(δ(S)) + βπ(δ(S)) ≥ γ
defines a facet for XΓ(S) if and only if αx + βπ ≥ γ defines facet of XΓ and is not a
nonnegativity constraint.
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Proof. First assume αx(δ(S)) + βπ(δ(S)) ≥ γ defines a facet for XΓ(S). Hence, it is
not the sum of nonnegativity constraints. Hence αx + βπ ≥ γ is not a nonnegativity
constraint for XΓ. Consider 2|δ(S)| affinely independent points (xi, πi) ∈ XΓ(S) for
i = 1, . . . , 2|δ(S)| satisfying αxi(δ(S))+βπi(δ(S)) = γ. We construct a point (yi, ωi) ∈ R2

for every i = 1, . . . , 2|δ(S)| by setting yi :=
∑

e∈δ(S) x
i
e and ωi :=

∑
e∈δ(S) π

i
e. The points

(yi, ωi) are valid for XΓ and they satisfy αyi(δ(S)) + βωi(δ(S)) = γ. There must exist at
least two affinely independent points among (yi, ωi) otherwise the points (xi, πi) cannot
be affinely independent.

Now assume αx+ βπ ≥ γ defines a facet of XΓ. There are two affinely independent
points (yi, ωi), i = 1, 2 on the facet. From these points, we can construct two points in
XΓ(S) on the face defined by αx(δ(S)) + βπ(δ(S)) ≥ γ by setting the corresponding
values to a single edge e only. Varying e, we get 2|δ(S)| valid points. These are affinely
independent since αx+ βπ ≥ γ was not x ≥ 0 and not π ≥ 0, thus y1 > 0 or y2 > 0, and
similarly either ω1 > 0 or ω2 > 0.

Corollary 9.11. Every facet-defining inequality αx + βπ ≥ γ for XΓ with α, β, γ ∈
R different from a nonnegativity constraint translates into a facet-defining inequality
αx(δ(S)) + βπ(δ(S)) ≥ γ for XΓ(S). All facets of XΓ(S) defined by inequalities different
from nonnegativity constraints are of the form αx(δ(S)) + βπ(δ(S)) ≥ γ for α, β, γ ∈ R
and correspond to a facet-defining inequality αx+ βπ ≥ γ for XΓ.

Of course, we have XΓ = XΓ(S) if and only if |δ(S)| = 1. In the following, we will
not distinguish facet-defining inequalities of XΓ and XΓ(S) as long as they are different
from nonnegativity constraints.

Envelope inequalities. Let us partition the index set J into three sets as follows:
J− := {−Γ, . . . ,−1}, J+ := {1, . . . , |QS|−Γ}, and {0}. Then, it holds J = J−∪{0}∪J+.
The upper region of XΓ corresponds to indices in J− and the lower region of XΓ

corresponds to indices in J+; see Figure 9.1(a). More precisely, the upper region is given
by XΓ ∩{π ≥ d0 − d−1} whereas we define the lower region of XΓ as XΓ ∩{π ≤ d1 − d0}.
Notice that the upper region is always non-empty if Γ > 0. The lower region is non-empty
if and only if |QS| > Γ and d1 > d0. Let us assume Γ > 0 in the following.

We call valid inequalities for XΓ trivial if they are nonnegativity constraints or if they
are of type (9.25). In the following we are only interested in non-trivial facets of XΓ as
these will translate to facets of N LF,Γ. We will call such inequalities envelope inequalities
as they describe the envelope of XΓ. Lower and upper regions are similar in structure.
The lower region, however, is cut by π ≥ 0 which leads to one additional type of facet.
We will see that besides the vertical facet x ≥ �d0, there are two classes of non-trivial
inequalities describing the lower region and one class of non-trivial inequalities describing
the upper region facets.

Setting ri := frac(di) and applying mixed integer rounding to (9.25) yields

rix+max(0, i)π ≥ ri �di , (9.26)
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which is valid for XΓ; see Lemma 1.2. If ri = 1, inequality (9.26) reduces to the base
inequality x+ iπ ≥ di. For ri < 1 and i = 0, this inequality reduces to x ≥ �d0 which is
the Γ-robust cutset inequality (9.21):

Lemma 9.12. Inequality (9.26) defines a facet of XΓ if i = 0 and ri < 1.

Proof. Consider ε > 0 and the two affinely independent points (�d0 , d0 − d−1) and
(�d0 , d0 − d−1 + ε) which both satisfy (9.26) with equality. To see feasibility, notice that
d0 − d−1 ≥ 0 gives the Γ largest deviation demand among QS. Setting

xe = �d0 , πe = d0 − d−1, ρ
k
e = max(d̂k − πe, 0), and fk

uv = 1 for k ∈ QS (9.27)

for some edge e = {u, v} ∈ δ(S) gives a feasible point for N LF,Γ(S) which has a slack
of 1 − r0 in the capacity constraint (9.19c) since Γπe +

∑
k∈K ρke +

∑
k∈K d̄kfk

e = d0.
Hence, (�d0 , d0 − d−1) is feasible for XΓ. As r0 < 1 it follows also that the second point
(�d0 , d0 − d−1 + ε) is feasible for XΓ for ε < 1− r0.

For i ∈ J−, inequalities (9.26) are obviously dominated by (9.21). For i ∈ J+, inequality
(9.26) connects the two points (
di� , ri/i) and (�di , 0) in case ri < 1. We get:

Lemma 9.13. Assume J+ �= ∅ and
⌈
d|QS |−Γ

⌉
> �d0. Set i = argmax(r�/	 : 	 ∈

J+ with �d� =
⌈
d|QS |−Γ

⌉
). Inequality (9.26) defines a facet of XΓ if ri < 1.

Proof. Let π′ := max(r�/	 : 	 ∈ J+ with �d� =
⌈
d|QS |−Γ

⌉
). Since 
di� ≥ �d0, the two

points (
di� , π′) and (�di , 0) are feasible . They satisfy (9.26) with equality and are
affinely independent.

Inequality (9.26) for i = 0 reduces to a cutset inequality in the space of the capacity
variables. Inequality (9.26) for i ∈ J+ is called a lower envelope inequality as by
Lemma 9.13, it may define a facet of the lower region; see also Figure 9.1(a). However, in
general, the two inequalities from Lemma 9.12 and Lemma 9.13 do not suffice to provide
a complete description of XΓ. To get a complete description of the lower region of XΓ

we have to consider two arbitrary base inequalities x + iπ ≥ di and x + jπ ≥ dj with
i, j ∈ J+, i < j. Their intersection has x-value

bi,j := (jdi − idj)/(j − i).

Now we can “connect” the two points (
bi,j� , (di − 
bi,j�)/i) and (�bi,j , (dj − �bi,j)/j)
to obtain a valid inequality. Therefore let ri,j := (j − i)r(bi,j). Recall that ri,j defined
this way is the remainder of the division of jdi − idj by (j − i) with ri,j = (j − i) in case
bi,j is not fractional; see Lemma 1.2. Then we obtain the following inequality.

Lemma 9.14. For i, j ∈ J+ with i < j, the following inequality is valid for XΓ.

(i+ ri,j)x+ ijπ ≥ ri,j �bi,j+ idj (9.28)
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9 The Γ-robust network design problem

Proof. We scale the two base inequalities with j and i, respectively:

jx+ jiπ ≥ jdi and ix+ ijπ ≥ idj.

Introducing the slack sj := ix+ ijπ − idj ≥ 0 of the second constraint and combining
the two inequalities gives

(j − i)x+ sj ≥ jdi − idj.

Applying MIR and re-substituting results in (9.28).

We also call (9.28) a lower envelope inequality. In a similar way, we combine two base
constraints for i, j ∈ J− to get valid inequalities for the upper region of XΓ.

Lemma 9.15. For i, j ∈ J− with i < j, the following inequality is valid for XΓ.

(−j + ri,j)x− ijπ ≥ ri,j �bi,j − jdi (9.29)

Proof. We multiply the base constraints for i and j by −j and −i, respectively:

−jx− jiπ ≥ −jdi and − ix− ijπ ≥ −idj.

Introducing the slack si := −jx− jiπ + jdi ≥ 0 for the first constraint and combining
the two inequalities gives

(j − i)x+ si ≥ jdi − idj.

Applying MIR and back substituting results in (9.29).

We call (9.29) an upper envelope inequality as it defines a facet of the upper region
of XΓ. In case bi,j is fractional, inequalities (9.28) resp. (9.29) defined above cut off the
fractional intersection point (bi,j, π) with π = (di − bi,j)/i of the two base inequalities
(9.25) corresponding to i and j. Note that by construction of the demand values di,
it holds that bi,i+1 ≥ bi+1,i+2 for 0 > i ∈ J− and bi,i+1 ≤ bi+1,i+2 for 0 < i ∈ J+. Also
note that if bi,j is not fractional, then inequality (9.28) and (9.29) reduces to the base
inequality for i and j, respectively. Of course, not every pair (i, j) results in a facet. In
fact, only linearly many of the inequalities (9.28) and (9.29) are non-redundant. Let us
define the function

π(	, x) :=
d� − x

	
for all 	 ∈ J− ∪ J+ and x ∈ R≥0.

We now consider an arbitrary interval [a, a+1] with a ∈ Z, a ≥ �d0 and easily determine
the indices i, j that yield an inequality of (9.28) and (9.29) respectively dominating
all others of this type on the chosen interval by simply maximizing (or minimizing
respectively) the value π(	, a) and π(	, a+ 1). Doing so for all relevant values of a, we
get all (non-trivial) facets of the lower and upper region, respectively:
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Figure 9.1: Example of XΓ and its completely described convex envelope with Γ-robust
cutset, Γ-robust upper and lower envelope inequalities. Let Γ = 3, |QS| = 6,
d̄S = 9

5
, and d̂ = 1

5
(11 8 6 6 3 1)�. The upper Γ-robust envelope inequali-

ties (9.29) for i = −3, j = −2 (2x − 5π ≥ 6) and for i = −2, j = −3
(3x − 5π ≥ 14), the lower Γ-robust envelope inequality (9.28) for i = 1,
j = 2 (7x + 10π ≥ 59), the lower Γ-robust envelope inequality (9.26) for
i = 2 (3x+ 10π ≥ 27), the Γ-robust cutset inequality (9.21) x ≥ 7, the base
inequality (9.25) x − 3π ≥ 9

5
and nonnegativity π ≥ 0 completely describe

the convex hull.

Lemma 9.16. Assume J+ �= ∅ and
⌈
d|QS |−Γ

⌉
> �d0 + 1. For a ∈ Z with �d0 ≤ a ≤⌈

d|QS |−Γ

⌉− 1 let i := argmax�∈J+ π(	, a) and j := argmax�∈J+ π(	, a+ 1). If i �= j, then

inequality (9.28) defines a facet of XΓ. If otherwise i = j, then the base inequality (9.25)
defines a facet of XΓ.

Proof. If i �= j or i = j then inequality (9.28) or (9.25) respectively connects the two
affinely independent points (a, π(i, a)) and (a + 1, π(j, a + 1)), that is, they satisfy
inequality (9.28) or (9.25) at equality, respectively. To see feasibility of the first point,
we check that for k ∈ J+ it holds a + 	π(i, a) ≥ 	π(	, a) = d� by definition of i. For
	 ∈ J−, we have a+ 	π(i, a) ≥ d0 + 	(di − d0)/i ≥ d0 + 	(dk − d0)/	 = d� where the first
inequality follows from a ≥ d0 and the second inequality follows from 	 < 0 < i and the
definition of the demands di. The difference di − di−1 is non-increasing with i. Feasibility
of the second point can be shown in a similar way.

Note that for the lower region and
⌈
d|QS |−Γ

⌉ − 1 ≤ x ≤ ⌈d|QS |−Γ

⌉
, we get a facet of

type (9.26) by Lemma 1.2. For x ≥ ⌈d|QS |−Γ

⌉
, we have π ≥ 0 as a facet. Together, these

inequalities completely describe the lower region. A complete description of the upper
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9 The Γ-robust network design problem

region of XΓ is obtained with the following lemma which is proved similar to the proof
of Lemma 9.16.

Lemma 9.17. For a ∈ Z with a ≥ �d0, let i = argmin�∈J− π(	, a + 1) and j =

argmin�∈J− π(	, a). If i �= j, then inequality (9.29) defines a facet of XΓ. If otherwise

i = j, then the base inequality (9.25) defines a facet of XΓ.

For x ≥ �bΓ−1,Γ, the base inequality (9.25) for i = −Γ is the only facet. Also notice
that the pairs {i, j} in Lemma 9.16 and Lemma 9.17 respectively are not unique. However,
the resulting facet-defining inequalities are of course unique.
We have established different classes of facet-defining inequalities for XΓ. In fact,

all these inequalities together with the trivial facets completely describe XΓ. This es-
sentially follows already from the above since we stated the dominant inequalities for
all intervals [a, a+1] with a ≥ �d0. Figure 9.1 illustrates the convex envelope by example.

Completeness also follows from a result of Miller and Wolsey [123] who study a two-
dimensional set (Model W ) similar to XΓ. Applying [123, Theorem 3] for the lower and
upper region (using an appropriate variable transformation) respectively, we get:

Corollary 9.18. The polyhedron XΓ is completely described by the inequalities (9.25),
(9.26), (9.28), (9.29), and π ≥ 0.

Lifting results. We have provided a complete and non-redundant description of XΓ and
thus of XΓ(S) in the previous paragraph. Next, we show how facets of XΓ(S) translate
to facets of the cutset polyhedron N LF,Γ(S) and the original network design polyhedron
N LF,Γ. We also prove that the set XΓ(S) is identical to N LF,Γ

x,π (S), the projection of the
cutset polyhedron N LF,Γ(S) to the space of the x and π variables, if the cut contains a
single edge.

Lemma 9.19. N LF,Γ
x,π (S) ⊆ XΓ(S). Moreover, N LF,Γ

x,π (S) = XΓ(S) if and only if |δ(S)| =
1.

Proof. For (x, π) ∈ N LF,Γ
x,π (S), let (x, f, π, ρ) ∈ N LF,Γ(S). Inequalities (9.24) are valid for

N LF,Γ(S) which gives (x, π) ∈ XΓ(S) and N LF,Γ
x,π (S) ⊆ XΓ(S).

Let δ(S) = {e} with e = {i, j} for i, j ∈ V . Given (x, π) ∈ XΓ(S), we set fk
ij :=

1, fk
ji := 0, and ρke := max(0, d̂k − πe) for all k ∈ QS. Now (x, f, π, ρ) obviously satisfies

(9.19a), (9.19d), and (9.19e). Moreover,

Γπe +
∑
k∈QS

d̄kfk
e +

∑
k∈QS

ρke = Γπe +
∑
k∈QS

d̄k +
∑
k∈QS

max(0, d̂k − πe)

= Γπe + d̄S + d̂(Qi)− (i+ Γ)πe

≤ xe

for some i ∈ J using the introduced ordering of demands and (9.24). It follows that
(x, f, π, ρ) satisfies (9.19c) and hence, (x, π) ∈ N LF,Γ

x,π (S).
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9.2 Polyhedral study

It remains to show that N LF,Γ
x,π (S) �= XΓ(S) if |δ(S)| > 1. Let e1, e2 ∈ δ(S). There

is a point (x, f, π, ρ) in N LF,Γ(S) with xe1 , πe1 > 0 and xe2 , πe2 = 0. We simply route
all traffic on e1 and set xe1 , πe1 large enough. Clearly, (x, π) ∈ XΓ(S) as already shown.
We modify this point by shifting the capacity from e1 to e2 but keeping the value πe1

such that xe1 = 0 and πe1 > 0. This gives a vector (x, π) ∈ XΓ(S) \ N LF,Γ
x,π (S) since

inequalities (9.24) are still satisfied but (9.19c) is violated for e1.

Notice, from Lemma 9.19 follows that any point (x, π) which is defined on a single
edge, that is, there exists e ∈ δ(S) such that xf = πf = 0 for all f ∈ δ(S), f �= e, is valid
for XΓ(S) if and only if it is valid for N LF,Γ

x,π (S). We will use this fact several times below.

Lemma 9.20. Every facet-defining inequality for XΓ(S) different from a nonnegativity
constraint defines a facet of N LF,Γ

x,π (S).

Proof. By Lemma 9.9, we can assume that the facet of XΓ(S) is defined by αx(δ(S)) +
βπ(δ(S)) ≥ γ for α, β, γ ∈ R. Consider 2|δ(S)| affinely independent points (xi, πi) ∈
XΓ(S) for i = 1, . . . , 2|δ(S)| satisfying αxi(δ(S)) + βπi(δ(S)) = γ. Given an arbitrary
edge f ∈ δ(S) we construct a point (x̃i, π̃i) for every i = 1, . . . , 2|δ(S)| by shifting all
entries to edge f , more precisely x̃i

f :=
∑

e∈δ(S) x
i
e and π̃i

f :=
∑

e∈δ(S) π
i
e. All other entries

are set to zero: x̃i
e := π̃i

e := 0 for all e ∈ δ(S) \ {f}. The points (x̃i, π̃i) are valid for
XΓ(S) and they satisfy αx̃i(δ(S)) + βπ̃i(δ(S)) = γ. Moreover, since (x̃i, π̃i) is defined on
a single edge, we get (x̃i, π̃i) ∈ N LF,Γ

x,π (S). Notice, that (x̃i, π̃i) �= 0 as there is at least one
cut demand. There must exist at least two affinely independent points among (x̃i, π̃i),
otherwise the points (xi, πi) cannot be affinely independent. Assume these points are
(x̃1, π̃1) and (x̃2, π̃2). The proof is complete for |δ(S)| = 1. In case |δ(S)| > 1, we can
assume that either x̃1

f > 0 or x̃2
f > 0 and similarly either π̃1

f > 0 or π̃2
f > 0. Otherwise, the

original points (xi, πi) are all contained in the face defined by x(δ(S)) ≥ 0 or π(δ(S)) ≥ 0
respectively which is a contradiction as the sum of nonnegativity constraints cannot
define a facet. Now we vary f ∈ δ(S) which gives 2|δ(S)| affinely independent points,
both in N LF,Γ

x,π (S) and on the face defined by αx(δ(S)) + βπ(δ(S)) ≥ γ.

Lemma 9.21. Let α, β, γ ∈ R. If αx(δ(S)) + βπ(δ(S)) ≥ γ defines a facet for N LF,Γ
x,π (S)

then it also defines a facet for XΓ(S).

Proof. Since N LF,Γ
x,π (S) ⊆ XΓ(S) is full-dimensional, we only have to show that αx(δ(S))+

βπ(δ(S)) ≥ γ is valid for XΓ(S). Assume the contrary. We take a point in XΓ(S) which
violates αx(δ(S)) + βπ(δ(S)) ≥ γ. Now we modify this point by shifting everything to
one edge. The constructed point is also valid for N LF,Γ

x,π (S) as shown above but violates
the facet-defining inequality which is a contradiction.

We call facet-defining inequalities for N LF,Γ
x,π (S) non-trivial if they are non-trivial for

XΓ(S), i. e., they are different from nonnegativity constraints and different from (9.24).

Theorem 9.22. Every non-trivial facet-defining inequality

αx(δ(S)) + βπ(δ(S)) ≥ γ (9.30)

for N LF,Γ
x,π (S) also defines a facet of N LF,Γ(S) if one of the following conditions holds:
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9 The Γ-robust network design problem

• |δ(S)| = 1 and there exists a feasible point (x, f, π, ρ) on the face of N LF,Γ(S)
defined by (9.30) such that the link capacity constraint (9.6a) is not tight.

• |δ(S)| ≥ 2 and there exists a feasible point (x, f, π, ρ) on the face of N LF,Γ(S)
defined by (9.30) such that the capacity constraint (9.6a) is not tight for at least
two different edges.

Proof. We assume that (9.30) does not define a facet for N LF,Γ(S). Hence, every point
(x, f, π, ρ) ∈ N LF,Γ(S) satisfying (9.30) with equality must be contained in a facet of
N LF,Γ(S) defined by∑

e∈δ(S)
αexe +

∑
e∈δ(S)

βeπe +
∑

e∈δ(S)

∑
k∈K

δkeρ
k
e +

∑
e={i,j}∈δ(S)

∑
k∈K

(μk
ijf

k
ij + μk

jif
k
ji) ≥ γ (9.31)

By adding flow conservation constraints to (9.31), we conclude that μk
ij = 0 for an

arbitrary edge e = ij ∈ δ(S) and all k ∈ K. We may hence assume that for the same
edge the capacity constraint is not tight for the point (x, f, π, ρ) on the face of N LF,Γ(S)
defined by (9.30). By increasing ρke we see that δke = 0 for all k ∈ K. Similarly, sending
a small circulation flow on e, we conclude μk

ji = 0. Notice that by these perturbations we
never leave the face.
Now assume that |δ(S)| ≥ 2. There is a second edge e′ �= e such that the corresponding

capacity constraint is not tight. Since we may exchange variable values of two different
edges without leaving the face (9.30), edge e′ �= e is in fact arbitrary. By sending
circulation flow using edges e and e′ and by increasing ρke′ , it follows that δ

k
e = μk

ij = μk
ji = 0

for all edges e ∈ δ(S) and commodities k ∈ K.
Since (9.30) defines a facet of N LF,Γ

x,π (S), 2|δ(S)| affinely independent points exist.
These points can be lifted to points in N LF,Γ(S) remaining affinely independent in the
(x, π) space and satisfying (9.30) as well as (9.31) with equality. We showed that only the
2|δ(S)| coefficients in (9.31) corresponding to the x and π variables are nonzero. Hence
(9.31) equals (9.30) up to scaling and up to a linear combination of flow conservation
constraints. It follows that (9.30) defines a facet of N LF,Γ(S).

We call a valid inequality for N LF,Γ(S) non-trivial if it is different from the constraints
(9.19a)-(9.19e) defining N LF,Γ(S). The following result is a straightforward generalization
of the corresponding result for the deterministic case from Raack et al. [141]; also see
Agarwal [7].

Lemma 9.23. Every non-trivial facet-defining inequality of N LF,Γ(S) defines a facet of
N LF,Γ if both cut shores are connected.

The proof of Lemma 9.23 is based on the fact that in case both shores are connected,
then the flow for commodities in K \QS can be routed in the two shores without using
cut edges. This means that we can construct feasible points for N LF,Γ from points valid
for N LF,Γ(S) without changing the cut values. This is done by assigning sufficiently large
values for xe, πe, and ρke for edges e ∈ E \ δ(S) and then decomposing the problem w.r.t.
the two graphs defined by S and V \ S, respectively.
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9.2 Polyhedral study

Corollary 9.24. Given a node set S ⊂ V such that the two shores of the corresponding
cut δ(S) are connected, the cutset inequality (9.21) defines a facet of N LF,Γ if frac(d0) < 1
and either |δ(S)| = 1 or d0 > 1.

Proof. By Lemma 9.12 and Lemma 9.20, inequality (9.21) defines a facet of N LF,Γ
x,π (S). In

this case inequality (9.21) is also non-trivial for N LF,Γ
x,π (S). Fixing edge e = {i, j} ∈ δ(S),

we consider the point (x, f, π, ρ) defined in (9.27) which is on the face of N LF,Γ(S) defined
by (9.21). All other variables are set to zero. Recall that the capacity constraint of e has
a slack of 1− frac(d0). In case |δ(S)| ≥ 2 and d0 > 1 and hence �d0 ≥ 2, we can shift
one unit of capacity to a second edge. Also a fraction of 1/ �d0 of all other variables is
shifted to the second edge. This way, we construct a point on the face with two edges
not being tight in the capacity constraint. Hence, using Theorem 9.22 and Lemma 9.23
we get the desired result.

Corollary 9.25. Given a node set S ⊂ V such that the two shores of the corresponding
cut δ(S) are connected and J+ �= ∅ as well as

⌈
d|QS |−Γ

⌉
> �d0, the lower envelope

inequality
rix(δ(S)) + max(0, i)π(δ(S)) ≥ ri �di (9.32)

defines a facet of N LF,Γ if i = argmax(r�/	 : 	 ∈ J+ with �d� =
⌈
d|QS |−Γ

⌉
) and ri < 1.

Proof. By Lemma 9.13 and Lemma 9.20, inequality (9.32) defines a facet of N LF,Γ
x,π (S) if

ri < 1. In this case, inequality (9.32) is also non-trivial for N LF,Γ
x,π (S). Fixing e ∈ δ(S)

we consider the following point (x, f, π, ρ) on the face of N LF,Γ(S) defined by (9.32)

xe = �di =
⌈
d|QS |−Γ

⌉
, πe = 0, ρke = d̂k, and fk

ij = 1 for k ∈ QS.

All other variables are set to zero. The point protects against all demands across the cut
at their peak. There is a slack of at least 1− ri. Now

⌈
d|QS |−Γ

⌉ ≥ 2 since �d0 ≥ 1. If
|δ(S)| ≥ 2, we can hence shift one unit of capacity and a fraction of all other variables to
a second edge such that two edges are non-tight in the capacity constraint. Hence, using
Theorem 9.22 and Lemma 9.23 we get the desired result.

Corollary 9.26. Given a node set S ⊂ V such that the two shores of the corresponding
cut δ(S) are connected, the upper envelope inequality

(−j + ri,j)x(δ(S))− ijπ(δ(S)) ≥ ri,j �bi,j − jdi (9.33)

defines a facet of N LF,Γ if i, j ∈ J−, i < j, such that i = argmin�∈J− π(	, a + 1) and
j = argmin�∈J− π(	, a) with ri,j < 1 and a ∈ Z with a ≥ �d0 having either |δ(S)| = 1 or
a ≥ 2.

Proof. By Lemma 9.17 and Lemma 9.20, inequality (9.33) defines a facet of N LF,Γ
x,π (S).

From ri,j < 1 it follows that i < j and the break point bi,j is fractional and hence (9.33)
is non-trivial for N LF,Γ

x,π (S). Let F be the face of N LF,Γ(S) defined by (9.33). There is a
point (x̄, π̄) with a < x̄ < a+ 1 cut off in the linear relaxation of XΓ by (9.33). Using
a single edge e we may of course lift this point to a valid point (x̄, f̄ , π̄, ρ̄) of the linear
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9 The Γ-robust network design problem

relaxation of N LF,Γ(S). Set α = (−j + ri,j), β = −ij, and γ = ri,j �bi,j − jdi. The point
(ẋ, π̄) with ẋ = γ−βπ̄

α
> x̄ is in XΓ and lies on the facet. Moreover p1 := (ẋ, f̄ , π̄, ρ̄) ∈ F

is such that for the selected single edge e the capacity constraint is not tight. However,
p1 is not feasible because ẋ with a < ẋ < a+ 1 is not integral. Consider the two points
(a, π(j, a)) and (a+ 1, π(i, a+ 1)) on the facet of XΓ and denote by p2 and p3 the two
corresponding points lifted to N LF,Γ(S) on the face F . We can assume that p2 and p3
have nonzero values only on edge e and that p1 is a convex combination of p2 and p3.
Hence at least one of p2 or p3 is not tight in the capacity constraint of e. The proof is
complete in case |δ(S)| = 1. Assume |δ(S)| ≥ 2. By shifting one unit of capacity to
a second edge e2 we construct points p4 and p5 from p2 and p3 similar to the proof of
Corollary 9.24. As long as a ≥ 2, at least one of these points is not tight in the capacity
constraint of at least two edges. By Theorem 9.22 and Lemma 9.23, the claim follows.

Corollary 9.27. Let S ⊂ E be a node set such that the two shores of the corresponding
cut δ(S) are connected and J+ �= ∅ as well as

⌈
d|QS |−Γ

⌉
> �d0+ 1. The lower envelope

inequality

(i+ ri,j)x(δ(S)) + ijπ(δ(S)) ≥ ri,j �bi,j+ idj (9.34)

defines a facet of N LF,Γ if i, j ∈ J+, i < j, such that i := argmax�∈J+ π(	, a) and

j := argmax�∈J+ π(	, a+1) with ri,j < 1 and a ∈ Z with �d0 ≤ a ≤ ⌈d|QS |−Γ

⌉− 1 having
either |δ(S)| = 1 or a ≥ 2.

Proof. Similar to the proof of Corollary 9.26.

9.2.3 Γ-robust arc residual capacity inequalities

In this section, we investigate a relaxation of the Γ-RNDP, the Γ-robust single arc design
problem and its associated polyhedron. We identify classes of facet-defining inequalities
for this polyhedron which are also valid for Γ-robust network design polyhedra. An
overview of all investigated polyhedra is shown in Figure 9.2.4.

Our results generalize the polyhedral study of the classic single arc design problem and
polyhedron to the Γ-robust setting; see Magnanti et al. [113] for results on the classic
problem.

Γ-robust single arc design polyhedron. We consider the compact link-flow formu-
lation of the Γ-RNDP (9.6) and apply Lagrangian relaxation to its flow conservation
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max
λ

min
∑
e∈E

κexe +
∑
k∈K

∑
i∈V

λk,i

( ∑
j : ij∈E

(fk
ij − fk

ji)− δk,i

)
(9.35a)

Γπe +
∑
k∈K

d̄kfk
e +
∑
k∈K

ρke ≤ xe, ∀e ∈ E (9.35b)

− πe + d̂kfk
e − ρke ≤ 0 ∀e ∈ E, k ∈ K (9.35c)

f, x, ρ, π ≥ 0 (9.35d)

x ∈ Z|E| (9.35e)

with Lagrangian multipliers λk,i penalizing the violation of the flow conservation constraint
for k ∈ K and i ∈ V , and δk,i := 1 if i = sk, −1 if i = tk, and 0 otherwise. The
objective (9.35a) can be rewritten as follows

max
λ

min
∑
e∈E

κexe +
∑
ij∈E

∑
k∈K

(λk,ijf
k
ij + λk,jif

k
ji)−

∑
k∈K

∑
i∈V

λk,iδk,i (9.35a’)

where λk,ij := λk,i − λk,j . Clearly, formulation (9.35) with its rewritten objective (9.35a’)
decomposes for a given λ into |E| separate problems. For a fixed edge e = ij ∈ E, we
can assume by a flow cancellation argument that there is a flow fk

e only in one direction
of the edge with value |fk

ij − fk
ji|. Thus we drop the edge-related variable subscripts.

Furthermore, we can assume w. l. o. g. that this flow is at most 1 since thus all demands
still can be satisfied. Hence, each individual problem can be written as

min κx+
∑
k∈K

λkf
k (9.36a)

s. t. Γπ +
∑
k∈K

d̄kfk +
∑
k∈K

ρk ≤ x (9.36b)

− π + d̂kfk − ρk ≤ 0 ∀k ∈ K (9.36c)

f ≤ 1 (9.36d)

f, x, ρ, π ≥ 0 (9.36e)

x ∈ Z (9.36f)

We call (9.36) the Γ-robust single arc design problem (Γ-RSADP). The associated
polyhedron, the Γ-robust single arc design polyhedron, is defined as the convex hull of all
feasible solutions to (9.36), i. e.,

SLF,Γ :=

{
(x, f, π, ρ) ∈ Z≥0 × [0, 1]|K| × R≥0 × R|K|

≥0 :

(x, f, π, ρ) satisfies (9.36b)–(9.36c)

}
(9.37)

The dimension and trivial facets of SLF,Γ are presented first.

Lemma 9.28. The polyhedron SLF,Γ is full-dimensional, i. e., dim(SLF,Γ) = 2|K|+ 2.
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9 The Γ-robust network design problem

Proof. The following 2|K| + 3 points are feasible to SLF,Γ and affinely independent:

pkρ := (1, 0, 0, ek) for k ∈ K, pkf := (1, 1

d̄k+d̂k
ek, 0,

d̂k

d̄k+d̂k
ek) for k ∈ K, pπ := (1, 0, 1

Γ
, 0), the

point px := (1, 0, 0, 0), and p0 := (0, 0, 0, 0).

Lemma 9.29. The following inequalities define trivial facets of SLF,Γ:

1. nonnegativity constraints fk ≥ 0 for all k ∈ K

2. nonnegativity constraint π ≥ 0

3. nonnegativity constraints ρk ≥ 0 for all k ∈ K

4. dual constraints (9.36c) for all k ∈ K

5. capacity constraint (9.36b)

Proof. Let the points pkρ, p
k
f , pπ, and px be constructed as in the proof of Lemma 9.28. For

each of the six types of constraints in Lemma , we construct 2|K|+2 affinely independent
points that satisfy the corresponding constraint with equality and are feasible to SLF,Γ:

1. For k′ ∈ K, consider the points pkρ for all k ∈ K, pkf for all k ∈ K \ {k′}, pπ, px,
and p0.

2. Consider the points pkρ for all k ∈ K, pkf for all k ∈ K, px, and p0.

3. For k′ ∈ K, consider the points pkρ for all k ∈ K \ {k′}, pkf for all k ∈ K, pπ, px, the

point (1, 1

d̄k′+Γd̂k′
ek′ ,

d̂k′
d̄k′+Γd̂k′

, 0), and p0.

4. For k′ ∈ K, consider the points pkf for all k ∈ K, the points px, p0, the points

(
⌈
d̄k′ + |K|d̂k′

⌉
, ek′ , 0, ek) for all k ∈ K \ {k′}, and (d̄k′ + Γd̂k′ , ek′ , d̂k′ , 0).

5. Consider the points pkρ for all k ∈ K, pkf for all k ∈ K, pπ, and p0.

This completes the proof.

We denote by SLF,Γ(Q) the Γ-robust single arc design polyhedron SLF,Γ restricted to
the subset Q ⊆ K of commodities. The following lifting result motivates the study the
polyhedral structure of the lower-dimensional SLF,Γ(Q) instead of SLF,Γ.

Lemma 9.30. Let SLF,Γ(Q) be the polyhedron SLF,Γ restricted to Q ⊆ K. Let α�f +
βπ + γ�ρ+ δx ≤ 1 define a facet F of SLF,Γ(Q). If F is not defined by (9.36b), then it
also defines a facet of SLF,Γ.

Proof. As F is a facet of SLF,Γ(Q), there exist i = 0, . . . , 2|Q|+ 2 affinely independent
points piQ ∈ SLF,Γ(Q) with α�f + βπ + γ�ρ+ δx = 1. For each point piQ, we construct a
corresponding point pi ∈ SLF,Γ by copying the entries and filling entries k ∈ K \Q with
0. The points pi are affinely independent.
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9.2 Polyhedral study

Since F is not defined by (9.36b), the inequality (9.36b) is not satisfied with equality
by at least one of the points piQ. W. l. o. g. let p0Q be such a point. Define s0 :=

x0 − Γπ0 +
∑

k∈K d̄kf 0,k +
∑

k∈K ρ0,k = x0
Q − Γπ0

Q +
∑

k∈K d̄kf 0,k
Q +

∑
k∈K ρ0,kQ as the

corresponding slack value. It holds s0 > 0. For k ∈ K \Q, define

ζk := min{1, s0}/((|K| − |Q|)(d̄k + d̂k)).

Then, for k ∈ K \ Q the points qk := p0 + (0, ζkek, 0, ζ
kd̂kek) and the points q̄k :=

p0 + (0, 0, 0,min{1, s0}ek) are feasible for SLF,Γ by construction. Furthermore, all points
qk and q̄k are on the facet F as p0 is on the facet. Finally, the points pi, qk, and q̄k are
affinely independent by construction completing the proof.

Γ-robust arc residual capacity inequalities. In the following, we identify classes of
valid or facet-defining inequalities for the SLF,Γ. First, we consider the simple case
|Q| = Γ.

Lemma 9.31. Let Q ⊆ K, |Q| = Γ, d(Q) := d̄(Q) + d̂(Q), rQ := d(Q)− (�d(Q) − 1).
The simple Γ-robust arc residual capacity inequality∑

k∈Q
(d̄k + d̂k)fk ≤ rQx+ (�d(Q) − 1)(1− rQ) (9.38)

is valid for SLF,Γ. Furthermore, it defines a facet of SLF,Γ if and only if rQ < 1.

Proof. First we show the validity of inequality (9.38) by applying mixed integer rounding.
Therefore, we relax the Γ-robust capacity constraint (9.36b) by restricting it to the subset
Q ⊆ K of commodities. Then it reads

Γπ +
∑
k∈Q

d̄kfk +
∑
k∈Q

ρk ≤ x.

Next, we add the dual constraint (9.36c) for all k ∈ Q to the relaxed constraint. This
yields ∑

k∈Q
(d̄k + d̂k)fk ≤ x. (9.39)

Due to the upper bounds on the flow variables, the left-hand side is bounded:
∑

k∈Q(d̄
k +

d̂k)fk ≤ d(Q). By introducing a slack variable sQ := d(Q)−∑k∈Q(d̄
k + d̂k)fk ≥ 0 and

combining it with (9.39), we obtain

x+ sQ ≥ d(Q).

Applying mixed integer rounding to this inequality and back substitution yields the
simple Γ-robust arc residual capacity inequality (9.38) and completes the proof of its
validity.
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9 The Γ-robust network design problem

Second, we investigate the conditions that inequality (9.38) defines a facet of SLF,Γ. If
rQ = 1, then the simple Γ-robust arc residual capacity inequality (9.38) is dominated by
its base inequality (9.39).
If rQ < 1, then there exist solutions (x∗, f ∗, π∗, ρ∗) and (x∗∗, f ∗∗, π∗∗, ρ∗∗) with x∗ =


d(Q)� and x∗∗ = �d(Q) satisfying the inequality (9.38) with equality. We can vary the
solution (x∗, f ∗, π∗, ρ∗) in |Q| − 1 ways while still satisfying (9.38) with equality.
The solution (x∗∗, f ∗∗, π∗∗, ρ∗∗) does not satisfy the capacity constraint (9.36b) with

equality. Hence, we can increase π∗∗ and ρ∗∗ (for all k ∈ Q) while still satisfying (9.38)
with equality.

The vector (x∗, f ∗, π∗, ρ∗), its |Q| − 1 variations, the vector (x∗∗, f ∗∗, π∗∗, ρ∗∗), and its
1 + |Q| variations, are feasible for SLF,Γ and affinely independent. This completes the
proof.

Next, we discuss a more general case.

Lemma 9.32. Let Q ⊆ K, R ⊆ Q, d(Q,R) := d̄(Q) + d̂(R), rQ,R := d(Q,R) −
(�d(Q,R) − 1). The Γ-robust arc residual capacity inequality∑

k∈Q
d̄kfk +

∑
k∈R

d̂kfk + (Γ− |R|)−π ≤ rQ,Rx+ (�d(Q,R) − 1)(1− rQ,R) (9.40)

is valid for SLF,Γ.

Proof. The proof is similar to the proof of Lemma 9.31. First, we relax the Γ-robust
capacity constraint (9.36b) by restricting it to Q ⊆ K. Then we add the dual con-
straint (9.36c) for all k ∈ R and the nonnegativity constraint ρk ≥ 0 for k ∈ Q \ R to
the relaxed constraint. This yields∑

k∈Q
d̄kfk +

∑
k∈R

d̂kfk + (Γ− |R|)−π ≤ x (9.41)

where we only consider nonpositive values of (Γ − |R|) by adding (Γ − |R|) times the
nonnegativity constraint π ≥ 0 if (Γ − |R|) is positive. Note, the sum

∑
k∈Q d̄kfk +∑

k∈R d̂kfk is bounded by d(Q,R). We introduce a slack variable sQ,R := d(Q,R) −∑
k∈Q d̄kfk −∑k∈R d̂kfk and combine it with inequality (9.41) to obtain

x+ s ≥ d(Q,R) (9.42)

where s := sQ,R − (Γ− |R|)−π is now a a single continuous variable and apply mixed
integer rounding to this inequality. By back substitution this yields the Γ-robust arc
residual capacity inequality (9.40) and completes the proof.

9.2.4 Γ-robust metric inequalities

In this section, we investigate the capacity formulation of the Γ-RNDP and the associated
polyhedron N Γ

x . First, we consider the linear relaxation LPN Γ
x of N Γ

x and obtain a
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9.2 Polyhedral study

complete description of this polyhedron. Based on this result, we completely describe
N Γ

x itself in a second step. The polyhedral study of Γ-robust metric inequalities is based
on joint work and has been submitted for publication (Claßen et al. [55]). An overview
of all investigated polyhedra is shown in Figure 9.2.4.
Now, let us consider the polyhedron LPN Γ

x of the linear relaxation of N Γ
x and its facial

structure. We present a constructive proof which is specific to the Γ-RNDP with static
routing and splittable flows. If we proved the theorem analogously to Avella et al. [17],
the right-hand side value b could not be specified.

Theorem 9.33. Let 	̄x ≥ b�̄ be any valid inequality for LPN Γ
x .Then there exists a

metric 	M ∈ Met(G) with

• 	Mx ≥ b�̄ is valid for LPN Γ
x ,

• 	M(ij) ≤ 	̄(ij) for all edges ij.

Proof. Let 	̄ be a non-metric length function and b�̄ the corresponding optimal solution
of (9.9). The length function 	̄ is transformed to a metric by setting 	M (ij) := 	̄(i, j) for
all ij ∈ E. Since only values are changed that are not already the shortest path value,
all changes can be done simultaneously and the resulting function is a metric. To prove
that the right-hand sides b�̄ and b�M are the same, we however assume that the lengths
are adapted one at a time. Hence, without loss of generality we assume that there exists
only one edge uv with 	̄(uv) > 	̄(u, v).
Let p1 = (u, v) be the direct path from u to v. Since 	̄(uv) > 	̄(u, v), there must exist

a path p2 �= p1 such that 	̄(p2) = 	̄(u, v) and

	M(p1) = 	M(p2) = 	M(uv) = 	̄(u, v).

Given a length function 	, the dual of (9.9) reads as follows.

min
∑
k∈K

d̄k
∑
p∈Pk

	(p)μk(p) + Γ
∑
e∈E

ν(e)	(e) +
∑
k∈K

∑
e∈E

zk(e)	(e) (9.43a)

s.t.
∑
p∈Pk

μk(p) ≥ 1 ∀k ∈ K (9.43b)

ν(e) + zk(e)− d̂k	(e)
∑

p∈Pk:e∈p
μk(p) ≥ 0 ∀k ∈ K, e ∈ E (9.43c)

μk(p), ν(e), zk(e) ≥ 0 ∀k ∈ K, p ∈ P k, e ∈ E, (9.43d)

where {μk(p)}k∈K,p∈Pk , {ν(e)}e∈E and {zk(e)}k∈K,e∈E are the dual variables for (9.9b),
(9.9c), and (9.9d), respectively. Let (μ̃, ν̃, z̃) be the optimal solution of this dual LP (9.43)
with 	 = 	M . Hence, 	Mx ≥ b�M is a valid inequality. If we show b�M ≥ b�̄, then 	Mx ≥ b�̄
is valid and the proof is completed.
Therefore, we construct a feasible as well as optimal solution (μ, ν, z) of the dual

LP (9.43) with 	 = 	M , prove that (μ, ν, z) is also feasible for the dual LP (9.43)
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ν(e) :=

⎧⎪⎨
⎪⎩
ν̃(e) + ν̃(uv) e ∈ p2

0 e = uv

ν̃(e) otherwise,

zk(e) :=

⎧⎪⎨
⎪⎩
z̃k(e) + z̃k(uv) e ∈ p2

0 e = uv

z̃k(e) otherwise.

For the definition of μ, we first define two specific subsets of paths P k
uv := {p ∈ P k : uv ∈

p} ⊆ P k and P k
p2

:= {p ∈ P k : p = puv \ {uv} ∪ p2 , puv ∈ P k
uv} ⊆ P k, where P k

p2
is the

set of paths which use p2 instead of the edge uv. Hence, for each p ∈ P k
p2

exists exactly
one path puv ∈ P k

uv. We can now define μ as follows.

μk(p) :=

⎧⎪⎨
⎪⎩
μ̃k(p) + μ̃k(puv) p ∈ P k

p2

0 p ∈ P k
uv

μ̃k(p) otherwise.

Thus, we shift the value μ̃k(puv) for every path using edge uv to the corresponding path
using p2 instead of uv. It is easy to see that the objective values for (μ̃, ν̃, z̃) and (μ, ν, z)
are equal regarding 	M . Furthermore, (9.43b) is fulfilled for all k ∈ K. If e = uv
then (9.43c) is valid since

ν(uv) + zk(uv) = 0 + 0 ≥ d̂k	M(uv)
∑
p∈Pk

uv

μk(p) = 0.

If e ∈ p with p ∈ P k
p2
, then (9.43c) is equivalent to

ν(e) + zk(e)− d̂k	M(e)μk(p)

= ν̃(e) + ν̃(uv) + z̃k(e) + z̃k(uv)− d̂k	M(e)
(
μ̃k(puv) + μ̃k(p)

)
= ν̃(e) + z̃k(e)− d̂k	M(e)μ̃k(p)︸ ︷︷ ︸

≥0

+ν̃(uv) + z̃k(uv)− d̂k 	M(e)︸ ︷︷ ︸
≤�M (p2)=�M (uv)

μ̃k(puv)

≥ 0 + ν̃(uv) + z̃k(uv)− d̂k	M(uv)μ̃k(puv)

≥ 0,

thus, also fulfilled. So (μ, ν, z) is feasible (and also optimal) for (9.43) with 	 = 	M .
Moreover, μk(p) = 0 for all p ∈ P k with uv ∈ p. Therefore, the objective value does
not change for 	̄ and (μ, ν, z) is also feasible for (9.43) with 	 = 	̄ since 	̄(e) = 	M(e)
for all e ∈ E \ {uv}. Thus, b�M ≥ b�̄ and the proof is completed. Note that we even
have b�M = b�̄ since b�M ≤ b�̄ holds as 	M(e) ≤ 	̄(e) ∀e ∈ E.

Corollary 9.34. RMIs together with the nonnegativity completely describe LPN Γ
x , i.e.,

LPN Γ
x =

{
x ∈ R|E|

≥0 :
∑
e∈E

	(e)xe ≥ b�, ∀	 ∈ Met(G)

}
.
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Based on the preceding result, we can now introduce a complete description of the
Γ-RNDP in the capacity space.

(1.20a)

s.t.
∑
e∈E

	M(e)xe ≥ b ∀	M ∈ Met(G) (9.44a)

xe ≥ 0 ∀e ∈ E (9.44b)

Due to the fact that Farkas’ lemma can only be applied to LPs, Theorem 9.33
cannot be directly transferred to the integer case since we do not always have a good
characterization of the right-hand side b and N Γ

x itself. Therefore, the following theorem
extends Theorem 9.33 to integer capacity variables. (Here, b is not necessarily defined
by (9.9).)

Theorem 9.35. Let 	x ≥ b be any valid inequality for N Γ
x . Then there exists a met-

ric 	M ∈ Met(G) with

• 	Mx ≥ b valid for N Γ
x ,

• 	M(ij) ≤ 	(ij) for all edges ij.

Proof. Let 	 be a non-metric length function and b the corresponding right-hand side
of the valid inequality. We define the metric 	M as 	M(ij) := 	(i, j). Now assume there
exists an x̄ ∈ N Γ

x with 	x̄ ≥ b but 	M x̄ < b. Thus, there must exist an edge ij ∈ E
with 	M(ij) < 	(ij) and x̄ij > 0.

Let b� be the optimal solution of (9.9) regarding 	. Then 	x ≥ b� is a valid inequality
for LPN Γ

x and by Theorem 9.33, 	Mx ≥ b� is also valid for LPN Γ
x . We determine a feasible

solution ȳ of LPN Γ
x with ȳe ≤ x̄e ∀e ∈ E based on a feasible flow f̄ ∈ [0, 1]|P | computed

as follows.
By definition of LPN Γ

x , there exist (f̄ , π̄, ρ̄) such that (x̄, f̄ , π̄, ρ̄) satisfies (9.7). We set
for all e ∈ E

ȳe :=
∑
k∈K

d̄kf̄k(e) + Γπ̄e +
∑
k∈K

ρ̄ke ,

the left-hand side of the capacity constraint (9.7a). Hence, ȳ ∈ LPN Γ
x and 	ȳ ≥ b� is

valid. Now replace the objective of (9.7) by the all zero function and exploit LP duality.
Compared to (9.9), the objective now reads

max −
∑
e∈E

x̄e	(e) +
∑
k∈K

bk.

This value constitutes the violation of the inequality 	x̄ ≥ b� and, by the strong duality, is
equal to 0. Hence, 	x̄ = b�. Since 	ȳ ≥ b� and x̄ ≥ ȳ, it follows 	ȳ = b�. Since 	Mx ≥ b�
is valid for all x ∈ LPN Γ

x , it follows that ȳij = 0 for all ij ∈ E with 	M(ij) < 	(ij).
Set x̃e = �ȳe ∀e ∈ E. Clearly, x̃ ∈ N Γ

x but 	x̃ = 	M x̃ ≤ 	M x̄ < b, which implies
that 	x ≥ b is not valid for x̃ ∈ N Γ

x , a contradiction.
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9 The Γ-robust network design problem

It is possible to prove Theorem 9.35 analogously to [17] or [121]. However, we have
chosen this proof since it is constructive and makes an explicit use of the compact
formulation of the Γ-RNDP with static routing and splittable flows. A further way to
prove Theorem 9.35 is by Chvátal-Gomory derivations as follows. By Theorem 9.33, LPN Γ

x

can be completely described by RMIs. Additionally, N Γ
x ⊆ LPN Γ

x holds. All facet-defining
inequalities defining N Γ

x can be derived by a sequence of Chvátal-Gomory derivations
from the facet-defining inequalities of LPN Γ

x . Since Met(G) is a cone, these derived
inequalities are also RMIs. Thus, N Γ

x can be completely described by RMIs.
The right-hand side of valid inequalities 	Mx ≥ b in Theorem 9.35 cannot be derived

by (9.9) or a similar procedure. A first step can be done by Chvátal-Gomory rounding.

For a RMI (9.44a), we can assume 	M ∈ Z|E|
≥0 . (If 	M(e) /∈ Z≥0 for e ∈ E, the metric can

be scaled such that all lengths are integer.) Since x ∈ Z≥0, the rounded Γ-robust metric
inequality (rounded RMI) ∑

e∈E
	M(e)xe ≥ �b�M  (9.45)

is also a valid inequality for N Γ
x . The strongest RMI is defined as follows.

Definition 9.36. Let 	M ∈ Met(G) and let β�M be the optimal solution of the Γ-RNDP
where the cost vector κ in the objective function (1.20a) is replaced by 	M . Thus,
β�M = min{	Mx : x ∈ Z≥0, x ∈ N Γ

x }. Obviously, any valid RMI 	Mx ≥ b for N Γ
x is

dominated by 	Mx ≥ β�M . Hence, any inequality of the form

	Mx ≥ β�M (9.46)

is denoted as tight Γ-robust metric inequality (tight RMI).

Corollary 9.37. Tight RMIs 	Mx ≥ β�M with 	M ∈ Met(G) together with nonnegativity
completely describe N Γ

x .

The right-hand side value β�M of a tight RMI can be determined easily without solving
a minimization problem over N Γ

x if the metric 	M is an extreme ray of the metric cone.
This result is known for the classic NDP [17] and can be generalized to the Γ-RNDP
with static routing and splittable flows as follows.

Theorem 9.38. If 	M : E → Z≥0 is an extreme ray of the metric cone Met(G) such that
the greatest common divisor of 	M is 1, then β�M = �b�M .
Proof. We recall that LPN Γ

x can be completely described by RMIs due to Theorem 9.33
and the subset correlation N Γ

x ⊆ LPN Γ
x . All valid inequalities defining N Γ

x can be derived
by a sequence of Chvátal-Gomory derivations from the facet-defining inequalities of LPN Γ

x .
Consider a metric length function 	M that satisfies the conditions of the theorem and
suppose that, for all x ∈ N Γ

x , 	M satisfies the inequality 	Mx ≥ α with α > �b�M .
This inequality cannot be derived by a Chvátal-Gomory procedure from the single RMI
	Mx ≥ b�M . Thus, it can only be derived by combining two or more inequalities in at
least one step of the sequence of Chvátal-Gomory derivations. But this contradicts the
assumption that 	M is an extreme ray of Met(G).

Note, following a two-stage approach to solve the Γ-RNDP, an analogous proof has
been done by [121] in the context of the Γ-RNDP with dynamic routing.
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SLF,Γ(Q) SLF,Γ N LF,Γ N LF,Γ(S)

N LF,Γ
x,π N LF,Γ

x,π (S) XΓ(S)

N Γ
x

XΓ

projection

relaxation

facets define facets

facets define valid ineq.

complete description

Figure 9.2: Overview of investigated polyhedra

Selected subclasses of Γ-robust metric inequalities Some well-known classes of valid
inequalities for the Γ-RNDP are generalized by RMIs.
We define (L-)bounded RMIs as the subclass of RMIs consisting of all rounded RMIs

obtained from metrics with integer link lengths bounded by L ∈ Z>0, i. e., MetL(G) :=
{	M ∈ Met(G) : 	M ∈ {0, 1, .., L}|E|}.
The class of 1-bounded RMIs consists of all Γ-robust partition inequalities, i.e., the

Γ-robust counterparts of partition inequalities (see [7, 8] and the references therein).
A well-known subclass of Γ-robust partition inequalities are the Γ-robust 2-partition
inequalities, better known as the Γ-robust cutset inequalities (9.24).

9.3 Algorithms

In this section, we present separation algorithms for selected classes of valid inequalities.
We discuss both, exact algorithms as well as separation heuristics.

9.3.1 Separation of cutset-based inequalities

We have investigated the Γ-robust cutset inequalities and the envelope inequalities in
Section 9.2.2. Here, we describe several approaches to separate violated inequalities of
these types. Note, the Γ-robust cutset inequalities are a special case of the Γ-robust
metric inequalities. Thus, complementing algorithms can be found in Section 9.2.4.

Exact separation of Γ-robust cutset inequalities (Enumeration). To study the ef-
fectiveness of the valid inequalities, we propose an exact separation algorithm which
enumerates all network cuts explicitly and generates all violated inequalities of type (9.21),
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9 The Γ-robust network design problem

(9.32), (9.33), and (9.34). Clearly, this approach is suited for small networks only as the
number of network cuts that must be enumerated increases exponentially. Still, for small
networks this enumerative algorithm can be used to investigate the maximal effectiveness
of these inequalities that can be achieved by separating all existing violated inequalities
in terms of improving the root node dual bound.

Exact separation of Γ-robust cutset inequalities (ILP). Further, we present another
exact separation algorithm which solves an ILP to separate a most violated inequality
of type (9.21). It was introduced by us in Koster et al. [104] and is computationally
tractable for larger networks as well.
We define binary variables δi (i ∈ V ) with δi = 1 if and only if i ∈ S determining the

cut, αk with αk = 1 if and only if k ∈ QS determining the cut-crossing commodities, γk

with γk = 1 if and only if commodity k ∈ QS deviates from its nominal, and δ̄ij (ij ∈ E)
with δ̄ij = 1 if and only if ij ∈ δ(S) determining the cutset. In addition, let d determine
the worst-case total demand value crossing the cut, and let R be the right-hand side value
of the corresponding cutset inequality (9.21). Given an LP solution x∗, we minimize the
feasibility (i.e., maximize the violation) of inequality (9.21) such that a negative objective
value yields a violated cut. Then, the ILP formulation of the separation problem is given
by

min
∑
ij∈E

x∗
ij δ̄ij −R

s. t. max{δi − δj, δj − δi} ≤ δ̄ij ≤ min{δi + δj, 2− δi − δj} ∀ij ∈ E (9.47a)

max{δsk − δtk , δtk − δsk} ≤ αk ≤ min{δsk + δtk , 2− δsk − δtk} ∀k ∈ Q (9.47b)

γk ≤ αk ∀k ∈ Q (9.47c)∑
k∈Q

γk ≤ Γ (9.47d)

∑
k∈Q

(d̄kαk + d̂kγk) = d (9.47e)

d ≤ R ≤ d+ 1− ε (9.47f)

αk, δi, γ
k, δ̄ij ∈ {0, 1}, R ∈ Z≥0, d ≥ 0 ∀k ∈ Q, ∀ij ∈ E, ∀i ∈ V (9.47g)

where constraints (9.47a), (9.47b), and (9.47c) define the logical dependencies between
the indicator variables αk, δi, and γk. Constraint (9.47d) limits the number of deviating
commodities to Γ. The total demand d is calculated by (9.47e). Constraint (9.47f)
guarantees the round-up of the right-hand side variable R using 0 < ε � 1 to avoid
rounding R to �d+ 1 or higher. Note, by setting a node limit (or time limit) for solving
ILP (9.47), we obtain a (non-deterministic) heuristic ILP-based separation algorithm.

Heuristic separation of Γ-robust cutset inequalities (Shrinking). Complementing
the exact separation algorithms, we propose the following heuristic separation algorithm:
Violated inequalities are separated for all single node network cuts (i.e., δ(S) with
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|δ(S)| = 1) as well as a set of network cuts resulting from a graph shrinking heuristic.
This graph shrinking heuristic generalizes a shrinking heuristic dating back to Bienstock
et al. [40], Günlük [79] and used by Raack et al. [141] for the deterministic model (1.19).
The idea of this extended graph shrinking heuristic is the following: The base inequality

of the Γ-robust cutset inequality (9.21) is the sum of flow conservation constraints (1.19b),
capacity constraints (9.6a), and constraints (9.6b). For violated cutset inequalities we
need (almost) tight base inequalities. Hence we wish to have edges e in the cut δ(S) that
have (almost) no slack in the constraints (9.6a) and (9.6b). In the shrinking heuristic, we
hence shrink edges whose corresponding model constraints have large slacks. Technically,
we try to minimize the sum of weights we for edges e on the cut: Given the solution of the
current LP relaxation, we use we := s

(9.6a)
e +

∑
k∈K s

(9.6b)
e,k where s

(9.6a)
e denotes the slack

of the capacity constraint (9.6a) for edge e and the s
(9.6b)
e,k the slack of constraint (9.6b)

for edge e and commodity k. By contracting edges in non-increasing order of we, we
shrink the network until only η nodes or no edges with positive weight are left. Based on
empirical values of previous computational studies, we propose to set η = 5.
Let N̄(V̄ , Ē) be the remaining shrunken network with node set V̄ and edge set Ē.

Then, the set of network cuts returned by the shrinking heuristic consists of all network
cuts corresponding to single node network cuts in N̄ as well as to at most |V̄ |2 additional
network cuts in N̄ obtained by enumeration.

9.3.2 Separation of Γ-robust arc residual capacity inequalities

Next, we present an exact algorithm to separate Γ-robust arc residual capacity inequalities
efficiently. It is based on two necessary conditions on the positive violation of such
inequalities.

Lemma 9.39. Given a solution (x∗, f ∗, π∗, ρ∗) of LPSLF,Γ. A Γ-robust arc residual
capacity inequality (9.40) can only be violated if 
x∗� < d(Q,R) < �x∗ holds.

Proof. Suppose d(Q,R) ≤ 
x∗�, then inequality (9.40) is dominated by∑
k∈Q

d̄kf ∗k +
∑
k∈R

d̂kf ∗k + (Γ− |R|)−π∗ ≤ x∗.

Suppose d(Q,R) ≥ �x∗, then inequality (9.40) is dominated by∑
k∈Q

d̄kf ∗k +
∑
k∈R

d̂kf ∗k + (Γ− |R|)−π∗ ≤ d(Q,R).

Figure 9.3 illustrates these observations.

Given a solution (x∗, f ∗, π∗, ρ∗) of LPSLF,Γ, we consider the violation of a Γ-robust arc
residual capacity inequality as a function of the sets Q and R:

violation(Q,R)

:=
∑
k∈Q

d̄kf ∗k +
∑
k∈R

d̂kf ∗k + (Γ− |R|)−π∗ − rQ,Rx∗ − (�d(Q,R) − 1)(1− rQ,R)
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Λ

Λ :=
∑

k∈Q d̄kfk +
∑

k∈R d̂kfk + (Γ− |R|)−
1 2 3

x

1

2

3

Λ
=

d
(Q

,R
)

d(Q,R)

d(Q,R)

Λ
=
x

Figure 9.3: Example of Γ-robust arc residual capacity inequality. On the x-axis the
value of the term

∑
k∈Q d̄kfk +

∑
k∈R d̂kfk + (Γ − |R|)− (or Λ for short) is

shown. On the y-axis the integer value of x is shown. This yields the mixed
integer set illustrated by thick black lines. The Γ-robust arc residual capacity
inequality (red) cuts-off the reddish shaded area and thus tightens the convex
hull of the feasible set.

For a violated Γ-robust arc residual capacity inequality, �d(Q,R) = �x∗ and rQ,R =
d(Q,R)− 
x∗� hold by Lemma 9.39. Hence, we can determine the violation as

violation(Q,R)

=
∑
k∈Q

d̄kf ∗k +
∑
k∈R

d̂kf ∗k + (Γ− |R|)−π∗ − d(Q,R)(x∗ − 
x∗�)− 
x∗� (�x∗ − x∗)

=
∑
k∈Q

d̄k(f ∗k − (x∗ − 
x∗�)) +
∑
k∈R

d̂k(f ∗k − (x∗ − 
x∗�))

+ (Γ− |R|)−π∗ − 
x∗� (�x∗ − x∗)︸ ︷︷ ︸
<0

.

We observe that a positive violation can only be achieved by the contribution of
commodities k with f ∗k − (x∗ − 
x∗�) > 0.

Lemma 9.40. Given a solution (x∗, f ∗, π∗, ρ∗) of LPSLF,Γ, a Γ-robust arc residual capacity
inequality (9.40) with corresponding sets Q, R and violation violation(Q,R). Let k∗ ∈ Q
with f ∗k∗ ≤ (x∗ − 
x∗�).
Then violation(Q,R) ≤ violation(Q \ {k∗}, R \ {k∗}), i. e., the violation does not

increase by including k∗.
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Proof. If k �∈ R, then holds

violation(Q \ {k∗}, R \ {k∗}) = violation(Q \ {k∗}, R)

= violation(Q,R)− d̄k′(f
∗k∗ − (x∗ − 
x∗�)) > violation(Q,R),

since f ∗k∗ ≤ (x∗ − 
x∗�) by assumption.

Based on these two observations, we are now able to describe an efficient exact
separation algorithm. Let us introduce the following notation τk := d̂k(f ∗k−(x∗−
x∗�))+
π∗. The presented algorithm is a greedy algorithm. First, it assigns all commodities k
with fk > x∗ − 
x∗� to Q as those commodities contribute to the violation with positive
coefficients. Second, the subset R ⊆ Q is determined. If |Q| ≤ Γ, R := Q is set since
this contributes most and the term with π∗ is zero. If |Q| > Γ, the set R is determined
greedily by adding all commodities k with τk < 0 as those are the commodities adding
a nonnegative value to the violation when taking the term (Γ − |R|)−π∗ into account.
Algorithm 2 states the described procedure in pseudo-code.

Algorithm 2: Separation of Γ-robust arc residual capacity inequalities

Input : solution (x∗, f ∗, π∗, ρ∗) of LPSLF,Γ

Output : sets Q,R defining the most-violated Γ-robust arc residual capacity
inequality or ∅ if none exists

set Q =
{
k ∈ K : f ∗k > x∗ − 
x∗�} ;

if |Q| ≤ Γ then
set R = Q ;

if |Q| > Γ then
sort Q non-decreasingly with ordering ϕ : K → N such that τk1 ≤ τk2

holds for all k1, k2 ∈ Q with ϕ(k1) < ϕ(k2) ;
set ϕ0 := max {i = 1, . . . , |Q| : τϕ−1(i) < 0} ;
set R = {k ∈ Q : ϕ(k) ≤ max{ϕ0,Γ}} ;

if violation(Q,R) > 0 then
return Q,R ;

return ∅;

Lemma 9.41. Algorithm 2 is an exact separation algorithm.

Proof. Notice, the algorithm returns ∅ if and only if 
x∗� < d(Q,R) < �x∗ does not hold
or violation(Q,R) ≤ 0. By Lemma (9.39), the first condition is necessary for a violated
cut. Therefore, it is correct that the algorithm returns ∅ if no violated cut exists.
To show that the algorithm is exact it is sufficient to show that the algorithm always

determines subsets Q and R for which the violation of the corresponding Γ-robust arc
residual capacity inequality is maximum.
Let Q and R be determined by Algorithm 2. Suppose there exist sets R∗ ⊆ Q∗ ⊆ K

with Q∗ �= Q or R∗ �= R defining a maximum violated Γ-robust arc residual capacity
inequality with violation(Q∗, R∗) > violation(Q,R).
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9 The Γ-robust network design problem

If Q � Q∗, then there exists k ∈ Q \ Q∗ with d̄k(f ∗k − (x∗ − 
x∗�)) > 0 and thus
violation(Q∗ ∪ {k}, R∗) > violation(Q∗, R∗); a contradiction to the maximum violation
of the inequality defined by Q∗, R∗. Hence, Q ⊆ Q∗.
If Q∗ � Q, then there exists k ∈ Q∗ \Q with either f ∗k = x∗−
x∗� or f ∗k < x∗−
x∗�.

If f ∗k = x∗ − 
x∗� holds, the coefficient d̄k(f ∗k − (x∗ − 
x∗�)) is zero and Q∗ \ {k}
and Q∗ yield the same Γ-robust arc residual capacity inequality for a fixed R∗ and
k �∈ R∗. If k ∈ R∗, violation(Q∗ \ {k}, R∗ \ {k}) ≥ violation(Q∗, R∗). Hence, w. l. o. g. let
f ∗k < x∗ − 
x∗� hold. Then violation(Q∗ \ {k}, R∗) > violation(Q∗, R∗) by Lemma 9.40;
a contradiction. So Q∗ = Q holds.

Next we consider R∗. If R � R∗, then there exists k ∈ R \ R∗ with τk < 0 and
violation(Q∗, R∗ ∪ {k}) > violation(Q∗, R∗) holds; a contradiction. Hence, R ⊆ R∗.

If R∗ � R, then there exists k ∈ R∗ \R. By assumption, Q∗ and R∗ define a maximum
violated inequality. Therefore, violation(Q∗, R∗) ≥ violation(Q∗, R∗ \ {k}) holds. If the
last relation hold with equality, R∗ can be set to R \ {k} without reducing the violation.
By iterating this step, we either construct a set R∗ = R a contradiction and thus
implying R∗ = R, or we end up with a set R∗ and commodity k with violation(Q∗, R∗) >
violation(Q∗, R∗ \{k}). In this case violation(Q∗, R∗) = violation(Q∗, R∗ \{k})+ τk with
positive τk. By definition, this implies k ∈ R; a contradiction. Hence, R∗ = R. This
completes the proof.

The complexity of Algorithm 2 is dominated by the sorting of all commodities k ∈ Q.
In addition, each commodity has to be checked twice: once when setting Q and once for
R. This gives a total worst-case complexity of O(|K| log |K|).

9.3.3 Separation of Γ-robust metric inequalities

In this section, we investigate the separation of RMIs. First, we present a polynomial
time exact separation algorithm to separate RMIs as model inequalities. Second, we
present an exact separation procedure to determine violated rounded RMIs in a cut-and-
branch approach for solving the Γ-RNDP. Third, we address tight RMIs pointing out
the differences to the non-robust setting.

The separation algorithms presented in this section separate violated RLIs in a first
step. If the length function 	 is not metric, a metric 	M and hence a corresponding
violated metric inequality can be constructed by 	M(e) := min{	(e), 	(u, v)} for all
e = uv ∈ E (cf. Theorem 9.33). Note, the right-hand side of the RLI does not change
and the violation of the RMI is at least the violation of the previous RLI.

Γ-robust metric inequalities. In the following, we describe the exact separation of
violated RMIs analogously to the non-robust case considered by Avella et al. [17] and
analogously to the Γ-RNDP with dynamic routing by Mattia [121]. Therefore, we define
fk
e :=

∑
p∈Pk:e∈p f

k(p) as the flow on edge e ∈ E for commodity k ∈ K. Given a capacity
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max α (9.48a)

s. t.
∑
uv∈E

(fk
uv − fk

vu) ≥

⎧⎪⎨
⎪⎩
α u = sk

−α u = tk

0 otherwise

∀u ∈ V, k ∈ K (9.48b)

∑
k∈K

d̄kfk
e + Γπe +

∑
k∈K

ρke ≤ x̃e ∀e ∈ E (9.48c)

d̂kfk
e − πe − ρke ≤ 0 ∀e ∈ E, k ∈ K (9.48d)

fk
uv, πe, ρ

k
e , α ≥ 0 ∀e = uv ∈ E, k ∈ K. (9.48e)

The value of an optimal solution (α∗, f ∗, π∗, ρ∗) of (9.48) is at least 1 if and only if the
point (x̃, f ∗, π∗, ρ∗) is feasible for LPN Γ

x . The dual of (9.48) reads

min
∑
e∈E

x̃e	(e) (9.49a)

s. t. βk
u − βk

v ≤ d̄k	(e) + d̂kmk(e) ∀e = uv ∈ E, k ∈ K (9.49b)∑
k∈K

mk(e) ≤ Γ	(e) ∀e ∈ E (9.49c)

mk(e) ≤ 	(e) ∀e ∈ E, k ∈ K (9.49d)∑
k∈K

(βk
sk − βk

tk) ≥ 1 (9.49e)

βk
u, 	(e), m

k(e) ≥ 0 ∀u ∈ V, e ∈ E, k ∈ K. (9.49f)

By strong duality, x̃ is feasible for LPN Γ
x if and only if the optimal value of (9.49) is at least

1. If the objective value of a solution (β∗, 	∗,m∗) is strictly less than 1, constraint (9.49e)
implies the RLI ∑

e∈E
	∗(e)xe ≥

∑
k∈K

(β∗k
sk − β∗k

tk) (9.50)

to be violated for x̃.

Corollary 9.42. Violated RMIs can be separated in polynomial time.

Proof. Since (9.49) is a pure LP with polynomial size and 	M is constructable from 	 in
polynomial time, violated RMIs can be exactly separated in polynomial time.

Despite this result, experiments have shown that the separation of these inequalities
can be very time consuming in practice; cf. Section 11.7.

Rounded Γ-robust metric inequalities. To cut-off a fractional solution of the LP relax-
ation of the Γ-robust network design polyhedron, the right-hand side of a corresponding
RLI (with integer lengths) has to be rounded up to yield a violation; cf. derivation
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of (9.45). Hence, formulation (9.49) has to be modified to take the integrality of 	 and
the rounding into account. The exact separation of rounded RLIs can be formulated as
the following ILP.

max φ−
∑
e∈E

x̃e	(e) (9.51a)

s. t.(9.49b)− (9.49d)∑
k∈K

(βk
tk − βk

sk) + φ ≤ 1− ε (9.51b)

φ ∈ Z (9.51c)

	(e) ∈ Z≥0 ∀e ∈ E (9.51d)

βk
u, m

k(e) ≥ 0 ∀u ∈ V, e ∈ E, k ∈ K, (9.51e)

where, given a small constant ε > 0, constraint (9.51b) determines the rounded up
right-hand side value φ of the resulting RLI. The objective value of (9.51) equals the
violation of the rounded RLI. Hence, a nonpositive objective value gives a proof that no
such inequality exists.
Given a violated rounded RLI, a corresponding violated rounded RMI (9.45) can be

constructed as described above.

Bounded Γ-robust metric inequalities. Bounded RMIs can be separated by solving
formulation (9.51), where constraint (9.51d) is replaced by

	(e) ∈ {0, 1, .., L}, (9.51d’)

and strengthening the obtained RLI to a RMI as before.

Tight Γ-robust metric inequalities. The strongest RMIs are those with a tight right-
hand side; cf. Corollary 9.37. By definition, a minimization problem over the Γ-robust
network loading polyhedron has to be solved to determine the best right-hand side β�M

to obtain a tight RMI. Clearly, this is as hard as solving the original Γ-RNDP. In this
paragraph, we present a preprocessing method to speed up the computation of β�M in
practice.
Avella et al. [17] suggest a shrinking heuristic to reduce the network size before

determining the best right-hand side β�M given a 	M in the non-robust setting. In the
following, we describe a version of this shrinking that can be used in the Γ-robust setting.

Theorem 9.43. Let 	M ∈ Met(G) and {i, j} ∈ E with 	M (ij) = 0. Define the shrunken
graph Gh = (V h, Eh) by

V h := V \ {i, j} ∪ {h}
Eh := E \ {uv ∈ E : u ∈ {i, j} ∨ v ∈ {i, j}} ∪ {uh : ui ∈ E ∨ uj ∈ E} .

Then βh
�M

= β�M .
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Proof. The proof is analog to the proof of Theorem 3.3 in [17].
Suppose β�M < βh

�M
. Let x satisfy 	Mx = β�M and xh be the mapping of x on Gh.

Then βh
�M

≤ 	hMxh = 	Mx = β�M < βh
�M

holds; a contradiction.
Suppose β�M > βh

�M
. Let xh satisfy 	hMxh = βh

�M
. Define x as follows.

xe :=

⌈∑
k∈K

d̄k + max
Q⊆K,|Q|≤Γ

d̂k,

⌉

xuh = xh
ui + xh

uj for all u ∈ V \ {i, j}, and xuv := xh
uv for all uv ∈ E, u, v ∈ V \ {i, j}.

Then x is feasible for N Γ
x and 	Mx = 	hMxh holds by construction. Further, it holds

	Mx = 	hMxh = βh
�M

< β�M ; a contradiction to the minimality of β�M .

In contrast to the non-robust setting [17], commodities cannot be aggregated in the
shrinking procedure for the Γ-robust setting. Instead, the shrunken graph may have
“parallel” commodities with same source and destination nodes corresponding to different
nodes in the original graph. The following example illustrates the difference to the
non-robust setting.

Example 9.44. Consider the complete graph G with nodes V := {n1, n2, n3}, edges
E := {n1n2, n1n3, n2n3}, commodities K (with |K| = 2), and Γ = 1. Further, let
	M(n1n2) = 0, 	M(n1n3) = 	M(n2n3) = 1 be a metric. In the Γ-robust setting, Γ many
commodities may deviate on each edge in this network. Applying the shrinking heuristic
of [17] results in the reduced graph Gh with nodes V h := {h, n3}, edges E := {hn3}, and
new metric 	hM(hn3) = 1. In contrast to the non-robust setting, the commodities cannot
be aggregated since the deviations of a single aggregated commodity from h to n3 cannot
reflect the independent demand deviations on the two edges n1n3 and n2n3. Furthermore,
this cannot be overcome by increasing the Γ for Gh as the resulting solution might violate
the limit of Γ = 1 on the original edges n1n3 and n2n3.

Theorem 9.43 can be exploited to obtain a processing procedure shrinking the graph.
This might increase the computational tractability of the problem to determine the
right-hand side of a tight RMI in practice.
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CHAPTER TEN

THE MULTI-BAND ROBUST
NETWORK DESIGN PROBLEM

Network design problems are well-studied and occurring in many real-world applications,
e. g., in the field of telecommunications, public transport or logistics. Due to limitations
in the computational tractability, data uncertainty has mostly been ignored. Robust
network design problems under data uncertainty have come to the center of attention
with the rising popularity of the Γ-robustness concept. Following this concept, data
uncertainty is characterized by two values only: a nominal data value and a maximal
(symmetrical) deviation value. This simplification of the unknown underlying probability
variable is rather rough. In fact, Γ-robustness is a special case of the more general
multi-band robustness concept, which characterizes the uncertain data by a nominal
value and a set of deviation bands each with its own deviation value and further bounds
on the number of realizations in this band. This concept allows to model a discrete
distribution in a histogram-like fashion capturing the unknown underlying probability
distribution in more detail than the Γ-robustness concept. A survey on network design
under data uncertainty and Γ-RNDP in particular is given in the introduction of Chapter 9.
To our knowledge the concept of multi-band robustness had not been applied to the
network design problem in general. Only a simplified preliminary version of multi-band
robustness has been considered in the planning of wireless networks by Bienstock and
D’Andreagiovanni [38] and D’Andreagiovanni [58]. Recently, Mattia [122] published a
technical report about a network design problem with multiple intervals which follows a
robustness concept very similar to multi-band robustness. However, her concept is less
general: it assumes symmetrical random variables and does not have lower bounds on
the number of realizations. In particular the latter implies a higher conservatism. In her
technical report, she gives link-flow ILP formulations of the network design problem with
multiple intervals, analyzes the probability of constraint satisfaction w.r.t. to uncertainty
and given robustness parameter settings. Further, she considers solving the problems
by a robustness cuts approach. Neither a capacity formulation of the problem, nor the
polyhedral structure of the problem (including valid inequalities) are studied.
In this chapter, we introduce the multi-band robust network design problem (mb-

RNDP) generalizing the Γ-RNDP to the multi-band robust setting. Therefore let us
introduce some notation: like the Γ-RNDP this problem is defined on an undirected graph
G = (V,E), has link capacity installment costs κe for all e ∈ E, and commodities k ∈ K
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10 The multi-band robust network design problem

with sources sk, targets tk, and uncertain demand values d ∈ Umb. Following the concept
of multi-band robustness, the uncertain demand of commodity k ∈ K is specified by its
nominal demand value d̄k, and deviation bands B = {B,B+1, . . . , 0, . . . , B− 1, B} each
with an associated deviation demand value d̂b,k, lower bounds γb ≥ 0 and upper bounds
Γb ≤ |K| on the number of realizations in band b ∈ B. The deviation demand values
of a commodity k ∈ K are required to be increasing, i. e., d̂B,k < d̂B+1,k < · · · < d̂0,k <
· · · < d̂B−1,k < d̂B,k, and to include all assumed realizations, i. e., dk ∈ [d̄+ d̂B,k, d̄+ d̂B,k].
Note that d̂0,k = 0. Furthermore, to be feasible

∑
b∈B γb ≤ |K|, γ0 = 0, and Γ0 = |K|

are required.
The traffic for commodity k ∈ K is realized by a multi-commodity flow. Analogously

to the Γ-RNDP, we focus on fixed routing templates and thus static or oblivious routing
in this thesis.

Definition 10.1 (Multi-Band Robust Network Design Problem). Given a potential
network topology, a multi-band robust uncertainty set Umb of the demand, and installation
costs as described above.
The multi-band robust network design problem (mb-RNDP) with oblivious/static,

splittable routing is to find a minimum-cost installation of integral capacities and a
routing template for every commodity such that the actual flow does not exceed the link
capacities independent of the realization of demands in Umb; cf. Definition 3.4 of Umb.

Remark 10.2 (Generalization of the Γ-RNDP). As mentioned in the introduction, the
Γ-RNDP is a special case of the mb-RNDP with only the nominal and one deviation band.
The explicit construction is as follows. Let an instance of the Γ-RNDP be given by a
graph G = (V,E), a link capacity installment cost function κ : E → R≥0, a commodity set

K with nominal demand values d̄k and deviation demand values d̂k for every commodity
k ∈ K, and a robustness parameter Γ. Then the corresponding mb-RNDP is given by the
same graph G, same cost function κ, same set K of commodities with nominal demand
values d̄k and deviation demand values d̂0,k = 0 and d̂1,k = d̂k for all k ∈ K, bounds
γ0 = γ1 = 0 and Γ0 = |K| and Γ1 = Γ, and two bands B := {0, 1}.
Furthermore, the results of our investigation of the Γ-RNDP can be generalized to

the multi-band robust setting. Although these generalizations require more notations to
capture the additional uncertainty bands, the polyhedra associated to the mb-RNDP
can be investigated quite similarly and often straightforward generalizations to the multi-
band robust setting can be obtained. Therefore, we demonstrate these generalizations
not as detailed as our investigation of the Γ-RNDP and limit ourselves to cutset-based
inequalities when investigating classes of non-trivial valid inequalities. Nevertheless, we
conjecture that our further results on Γ-robust arc residual capacity and Γ-robust metric
inequalities can be generalized for the mb-RNDP in an analogous way.

10.1 Formulations

In this section, we present formulations for the mb-RNDP. As for the classic network
design problem NDP and its Γ-robust counterpart, modeling alternatives exist: link- and
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10.1 Formulations

Exponential flow formulations of the mb-RNDP Following the multi-band robustness
concept, we can formulate the multi-band robust counterpart of formulation (1.19) as

(1.19a), (1.19b)− (1.19e)∑
k∈K

dkfk
e ≤ xe ∀e ∈ E, d ∈ Umb. (10.1a)

The multi-band robust counterpart of formulation (1.20) reads

(1.20a), (1.20b)− (1.20e)

∑
k∈K

dk

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠ ≤ xe ∀e ∈ E, d ∈ Umb. (10.2a)

Although infinitely many realizations may exists in Umb only exponentially many are
non-dominated as described in Section 3.2.2. Only those non-dominated realizations
contribute to the worst-case left-hand side value and thus to the feasibility of the
constraints (10.1a) and (10.2a), respectively. Hence, for both formulations (10.1) and
(10.2) finite but exponentially sized reformulations exist.

Compact flow formulations of the mb-RNDP Compact ILP reformulations of the
exponential link-flow (10.1) and path-flow formulation (10.2) can be obtained by exploiting
LP duality; cf. Section 3.2.2. In this process the contribution of worst-case realization
to the link capacity constraint is determined. In Lemma 3.7 we have shown that the
number of data realizations in each band for a worst-case realization can be determined
a-priori. This has led us to the (frequency) profile of a multi-band robust problem and the
coefficients ϑb denoting the number of realizations in band b of a worst-case realization.
Taking this consideration into account, the resulting compact ILP link-flow formulation
of the mb-RNDP is

(1.19a), (1.19b), (1.19d), (1.19e)∑
k∈K

d̄kfk
e +
∑
b∈B

ϑbπb
e +
∑
k∈K

σk
e ≤ xe, ∀e ∈ E (10.3a)

− πb
e − σk

e + d̂b,kfk
e ≤ 0 ∀e ∈ E, k ∈ K, b ∈ B (10.3b)

π ≥ 0 (10.3c)

with dual variables π and σ. Note that σ is a free variable, i. e., no lower/upper bounds
on its value exist, especially no nonnegativity constraint.
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The corresponding compact ILP path-flow formulation of the mb-RNDP reads

(1.20a), (1.20b), (1.20d), (1.20e)

∑
k∈K

d̄k

⎛
⎝ ∑

p∈Pk : e∈p
fk
p

⎞
⎠+

∑
b∈B

ϑbπb
e +
∑
k∈K

σk
e ≤ xe ∀e ∈ E (10.4a)

− πb
e − σk

e + d̂b,k
∑

p∈Pk : e∈p
fk
p ≤ 0 ∀e ∈ E, k ∈ K, b ∈ B (10.4b)

π ≥ 0 (10.4c)

with dual variables π and σ.

In both formulations, we apply Lemma 3.7 to determine the number of realizations in
each uncertainty band in the worst-case. In this way the subproblem determining the
worst-case is formulated more efficiently and thus, the number of dual variables in the
compact reformulation is reduced.

Capacity formulation of the mb-RNDP Similar to the classic NDP, a capacity for-
mulation of the mb-RNDP can be derived. Therefore, we consider the link capacities
x ∈ Z≥0 as given. Then, the existence of a feasible flow satisfying the constraints (1.20b),
(1.20d), and (10.4a)–(10.4c) can be characterized by applying Farkas’ lemma as follows.
Notice, that this result also holds for fractional capacities.

Lemma 10.3. Given x̃ ∈ R|E|
≥0 , there exists a flow satisfying (1.20b), (1.20d), and

(9.7a)–(9.7c) if and only if for all lengths functions 	∑
e∈E

x̃e	(e) ≥ z� (10.5)

holds, where z� is defined by the following LP.

z� := max
∑
k∈K

zk (10.6a)

s.t. zk −
∑
b∈B

∑
e∈p

d̂b,kmb,k(e) ≤ d̄k	(p) ∀k ∈ K, p ∈ P k (10.6b)

∑
k∈K

mb,k(e) ≤ ϑb	(e) ∀e ∈ E, b ∈ B (10.6c)

∑
b∈B

mb,k(e) = 	(e) ∀k ∈ K, e ∈ E (10.6d)

zk, mb,k(e) ≥ 0 ∀k ∈ K, e ∈ E (10.6e)

We call (10.5) the multi-band robust length inequality (RLI), and if 	 is metric, (10.5)
is called a multi-band robust metric inequality (RMI).
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Proof. For fixed link capacities x̃, formulation (10.4) is an LP. Corresponding to con-
straints (1.20b), (10.4a) and (10.4b), we introduce the dual variables zk, 	(e) and mb,k(e)
for all e ∈ E, k ∈ K, b ∈ B, respectively. The application of Farkas’ lemma yields
the conditions (10.6b)–(10.6e) and 	(e) ≥ 0. Therefore, there exists a feasible flow
satisfying (1.20b), (1.20d), and (9.7a)–(9.7c) if and only if∑

e∈E
x̃e	(e) ≥ z�

is valid for all zk, 	(e),mb,k(e) ≥ 0 satisfying (10.6b)–(10.6e). For all length functions 	,
this implies that the multi-band robust length inequality (10.5) is valid for the convex
hull of all feasible solutions of the linear relaxation of (10.4) if constraints (10.6b)–(10.6e)
are fulfilled. To determine the strongest multi-band robust length inequality for a given
length function 	, the sum

∑
k∈K zk has to be maximized. This can be formulated as

LP (10.6) completing the proof.

This lemma generalizes the “Japanese Theorem” 1.21 to the multi-band robust setting.
A special case of Lemma 10.3 is given by Lemma 9.2 for the Γ-RNDP.

Now, we formulate the mb-RNDP in the space of the capacity variables as follows

(1.20a)∑
e∈E

	(e)xe ≥ z� ∀	 ∈ L (10.7a)

x ∈ Z|E|
≥0 . (10.7b)

where L denotes the set of all length functions 	 : E → R≥0. We call ILP (10.7) the
capacity formulation of the mb-RNDP.

10.2 Polyhedral study

In this section, we define the multi-band robust network design polyhedra and study
their polyhedral structure. We emphasize the fact that multi-band robustness is a
generalization of the well-studied Γ-robustness concept. Therefore, we do not present
a polyhedral study as detailed as for the Γ-RNDP (cf. Section 9.2) but study valid
inequalities for the generalized polyhedra using the example of cutset-based inequalities.

Definition 10.4 (Multi-Band Robust Network Design Flow Polyhedra). We define the
multi-band robust network design link-flow polyhedron N LF,mb as the convex hull of all
feasible solutions of the compact link-flow formulation (10.3) of the mb-RNDP, i. e.,

N LF,mb := conv

{
(x, f, π, σ) ∈ Z|E|

≥0 × R2|E||K|
≥0 × R|E||B|

≥0 × R|E||K| :

(x, f, π, σ) satisfies (10.3)

}
.

(10.8)
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10 The multi-band robust network design problem

We denote by N LF,mb
x,π the projection of N LF,mb onto the space of the x and π variables,

i. e.,
N LF,mb

x,π = projx,π N LF,mb, (10.9)

and by N LF,mb
x the projection of N LF,mb onto the space of the x variables, i. e.,

N LF,mb
x = projx N LF,mb. (10.10)

Similarly, we define the multi-band robust network design path-flow polyhedron N PF,mb

as the convex hull of all feasible solutions of the compact path-flow formulation (10.4) of
the mb-RNDP, i. e.,

N PF,mb := conv

{
(x, f, π, σ) ∈ Z|E|

≥0 × R|P |
≥0 × R|E||B|

≥0 × R|E||K| :

(x, f, π, σ) satisfies (10.4)

}
.

(10.11)
We denote by N PF,mb

x the projection of N PF,mb onto the space of the x variables, i. e.,

N PF,mb
x = projx N PF,mb. (10.12)

Definition 10.5 (Multi-Band Robust Network Design Capacity Polyhedron). We define
the multi-band robust network design capacity polyhedron Nmb

x as the convex hull of all
feasible solutions of the capacity formulation (10.7) of the mb-RNDP, i. e.,

Nmb
x := conv

{
x ∈ Z|E|

≥0 : x satisfies (10.7)
}
. (10.13)

By construction of the capacity formulation (10.7), the following corollary holds.

Corollary 10.6. Nmb
x = N LF,mb

x = N PF,mb
x .

10.2.1 Basic characteristics

In this section, we briefly report on the dimension of the multi-band robust link-flow and
capacity polyhedra.

Lemma 10.7. The dimension of N LF,mb equals 3|E||K|+ |E||B|+ |E| − (|V | − 1)|K|
whereas N LF,mb

x,π is full-dimensional.

Proof. The proof is analog to the proof of Lemma 9.6 for the Γ-RNDP.

Lemma 10.8. The polyhedron Nmb
x is full-dimensional, i. e., dim(Nmb

x ) = |E|.
Proof. Let dmax :=

⌈
maxd∈Umb

∑
k∈K dk

⌉
be the maximum total demand. Define v0 as the

one vector multiplied by dmax. Then, v0 and (v0 + ee)e∈E are |E|+1 affinely independent
vectors in Nmb

x .
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10.2.2 Cutset-based inequalities

In the past, cutset-based inequalities have been proven to be effective in a branch-and-cut
approach to solve instances of network design problems, both in the classic non-robust
and the Γ-robust setting. Therefore, we focus our investigation of the polyhedral structure
of the mb-RNDP on these types of inequalities.

Multi-band robust cutset polyhedron. Analogously to the Γ-RNDP, we consider a
non-empty subset S � V of the nodes, its corresponding cutset δ(S) ⊆ E, and the
induced set of cut-crossing commodities QS ⊆ K. We assume w. l. o. g. that sk ∈ S for
all k ∈ QS.
As in the classic or Γ-robust setting, the capacities installed on the cutset edges must

be large enough to support the worst-case demand realization in Umb of all cut-crossing
cuts QS. Therefore the multi-band robust cutset inequality

x(δ(S)) ≥ �dmax
δ (S) (10.14)

must hold where dmax
δ (S) denotes the worst-case total demand value crossing the cut.

In contrast to the Γ-robust uncertainty set UΓ no closed formula is known for all terms
and sets needed to determine dmax

δ (S). Instead Büsing and D’Andreagiovanni [47] give a
polynomial-time combinatorial algorithm to determine dmax

δ (S) by solving a min-cost flow
problem on an auxiliary graph (in fact, the underlying assignment problem of assigning
commodities to deviation bands), cf. Lemma 3.9.
In the following we show the validity of the multi-band robust cutset inequality (10.14)

by deriving it from valid model constraints. Moreover, we define valid inequalities which
give rise to generalizations of the envelope inequalities for the Γ-RNDP.
Let us begin by restricting the mb-RNDP to a cutset δ(S): contracting both shores

of the cut δ(S), we consider the resulting multi-band robust two-node formulation
corresponding to (10.3):∑

{i,j}∈δ(S)
(fk

ij − fk
ji) = 1 ∀k ∈ QS (10.15a)

∑
{i,j}∈δ(S)

(fk
ij − fk

ji) = 0 ∀k ∈ K \QS (10.15b)

∑
k∈K

d̄kfk
e +
∑
b∈B

ϑbπb
e +
∑
k∈K

σk
e ≤ xe, ∀e ∈ δ(S) (10.15c)

− πb
e − σk

e + d̂b,kfk
e ≤ 0 ∀e ∈ δ(S), k ∈ K, b ∈ B (10.15d)

x, f, π ≥ 0 (10.15e)

We define the multi-band robust cutset polyhedron N LF,mb(S) with respect to S as

N LF,mb(S) := conv

{
(x, f, π, σ) ∈ Z|δ(S)|

≥0 × R2|δ(S)||K|
≥0 × R|δ(S)||B|

≥0 × R|δ(S)||K| :
(x, f, π, σ) satisfies (10.15)

}
.
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The projection of N LF,mb(S) onto the space of the variables x and π is denoted by

N LF,mb
x,π (S) :=

{
(x, π) ∈ Z|δ(S)|

≥0 × R|δ(S)||B|
≥0 : ∃(f, σ) ∈ R2|δ(S)||K|

≥0 × R|δ(S)||B|

so that (x, f, π, σ) ∈ N LF,mb(S)

}
.

We can apply Lemma 10.7 as N LF,mb(S) defines a two-node multi-band robust network
design problem. This yields the following.

Corollary 10.9. It holds dim(N LF,mb(S)) = 3|δ(S)||K|+ |δ(S)||B|+ |δ(S)| − |K| and
dim(N LF,mb

x,π (S)) = |δ(S)||B|+ |δ(S)|.

Multi-band robust cutset inequalities. Let Q ⊆ QS be a non-empty subset of the cut
commodities and {Qb}b∈B be a family of non-empty subsets of Q. Further let μk :=
|{b ∈ B : k ∈ Qb

} | denote the number of subsets of {Qb}b∈B containing commodity
k ∈ K. Next, we add and relax constraints of formulation (10.15) to obtain a valid (base)
inequality which is used in a subsequent application of MIR to derive a new class of valid
inequalities. This approach is similar to the one we followed for Γ-RNDP.
First, note that

fk
e (δ(S)) =

∑
e={i,j}∈δ(S)

(fk
ij + fk

ji) ≥
∑

e={i,j}∈δ(S)
fk
ij ≥

∑
e={i,j}∈δ(S)

(fk
ij − fk

ji) = 1

holds by (10.15a) and (10.15b). Thus, the following two relaxations also holds∑
k∈K

d̄kfk(δ(S)) ≥
∑
k∈K

d̄k and
∑
b∈B

∑
k∈Qb

d̂b,kfk(δ(S)) ≥
∑
b∈B

∑
k∈Qb

d̂b,k.

Second, by adding all link capacity constraints (10.15c) for all e ∈ δ(S), dual con-
straints (10.15d) for all e ∈ δ(S), b ∈ B, k ∈ Qb, we obtain the inequality

x(δ(S)) +
∑
b∈B

∑
k∈Qb

πb(δ(S))−
∑
b∈B

ϑbπb(δ(S)) +
∑
b∈B

∑
k∈Qb

σk(δ(S))−
∑
k∈K

σk(δ(S))

≥
∑
k∈K

d̄kfk(δ(S)) +
∑
b∈B

∑
k∈Qb

d̂b,kfk(δ(S)).

Using the two relaxations introduced before, we can simplify and relax this inequality to

x(δ(S)) +
∑
b∈B

(|Qb| − ϑb)πb(δ(S)) +
∑
k∈K

(μk − 1)σk(δ(S)) ≥
∑
k∈K

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

(10.16)

which is valid for N LF,mb
x,π (S). We call (10.16) the non-disjoint base inequality.

Lemma 10.10. Let Q ⊆ QS and let {Qb}b∈B and {Q̄b}b∈B be two families of subsets
Qb, Q̄b ⊆ QS. Further let μk be defined as above and let μ̄k be defined analogously to μk

but according to {Q̄b}b∈B.
If Q̄b = Qb for all b ∈ B \ {b∗} and Q̄b∗ = Qb∗ ∪ {k∗} with k∗ ∈ ⋃b∈B\{b∗} Q

b holds for

an arbitrary but unique b∗ ∈ B, then the non-disjoint base inequality (10.16) for {Qb}b∈B
dominates the non-disjoint base inequality for {Q̄b}b∈B.
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Proof. We consider the left-hand side of the non-disjoint base inequality (10.16) for
{Q̄b}b∈B. It holds

x(δ(S)) +
∑
b∈B

(|Q̄b| − ϑb)πb(δ(S)) +
∑
k∈K

(μ̄k − 1)σk(δ(S))

=x(δ(S)) +
∑
b∈B

(|Qb| − ϑb)πb(δ(S)) + πb∗(δ(S)) +
∑
k∈K

(μk − 1)σk(δ(S)) + σk∗(δ(S)).

Next, we transform the corresponding right-hand side of the non-disjoint base inequality
for {Q̄b}b∈B as follows∑

k∈Q
d̄k +

∑
b∈B

∑
k∈Q̄b

d̂b,k =
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k + d̂b
∗,k∗ .

From constraints (10.15a) and (10.15d) it follows d̂b
∗,k∗−πb∗(δ(S))−σk∗(δ(S)) ≤ 0. Thus,

the non-disjoint base inequality (10.16) for {Qb}b∈B dominates the one for {Q̄b}b∈B; this
completes the proof.

Because of this lemma, we restrict our further investigation to families {Qb}b∈B of
disjoint subsets of Q, i. e., Qb1∩Qb2 = ∅ for all b1, b2 ∈ B, b1 �= b2. Then, inequality (10.16)
can be simplified and reads

x(δ(S)) +
∑
b∈B

ibπb(δ(S)) ≥
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k. (10.17)

with ib := |Qb| − ϑb. We refer to inequality (10.17) as the base inequality. Applying
mixed integer rounding yields

rQbx(δ(S)) +
∑
b∈B

ib
+
πb(δ(S)) ≥ rQb

⎡
⎢⎢⎢
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

⎤
⎥⎥⎥ (10.18)

with rQb := frac(
∑

k∈Q d̄k +
∑

b∈B
∑

k∈Qb d̂b,k).

If the family {Qb}b∈B of disjoint subsets of Q is in fact a partition of Q and ib = 0 for
all b ∈ B, then the inequality (10.18) reduces to

x(δ(S)) ≥
⎡
⎢⎢⎢
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

⎤
⎥⎥⎥ . (10.19)

In the beginning, we have mentioned that dmax
δ (S) can be determined combinatorially

by a min-cost flow on an auxiliary graph; cf. Lemma 3.9. Such an optimal flow also
defines sets Qb such that dmax

δ (S) =
∑

k∈Q d̄k +
∑

b∈B
∑

k∈Qb d̂b,k holds but does not yield

a closed formula to determine the sets Qb algebraically. Nevertheless by construction,
inequality (10.19) is in fact the multi-band robust cutset inequality and by construction
feasible for N LF,mb(S).
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Generalizing multi-band robust cutset inequalities. When we were considering the
cutset-based inequalities for Γ-RNDP, we were able to parametrize the corresponding
2-dimensional base inequality (9.25) on a single edge by a parameter i ∈ J . This has
yield more general inequalities, in particular the class of envelope inequalities.

Here, we can restrict our investigation to a single edge analogously to the problem for
the Γ-RNDP. This yields the single edge base inequality

x+
∑
b∈B

ibπb ≥
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k (10.20)

which still includes |B| + 1 variables in contrast to the resulting 2-dimensional set in
the Γ-robust setting. Moreover, to parametrize (10.20) by {ib}b∈B all combinations of
ib ∈ {−ϑb, . . . , |QS| − ϑb} are feasible that satisfy |QS| =

∑
b∈B |Qb| =∑b∈B(i

b + ϑb) =∑
b∈B ib +

∑
b∈B ϑb or equivalently

∑
b∈B ib = 0. In fact, there are as many feasible

combinations of {ib}b∈B as there are combinations of values for ib that sum up to zero.
This problem is a number partitioning problem and known to have exponentially many
combinations. Hence, a general parametrization approach as for the Γ-robust setting is
not promising and most likely computationally intractable. Instead, we propose a more
tractable yet less general parametrization in the following.
Let b1, b2 ∈ B, b1 �= b2 and Qb ⊂ Q be a partition of Q such that ib = 0 for all

b ∈ B \ {b1, b2}, ib1 = i, ib2 = −i with i ∈ {−ϑb1 , . . . , ϑb2}. Then the single edge base
inequality (10.20) reduces to

x+ iπb1 − iπb2 ≥
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k. (10.21)

Applying mixed integer rounding gives

rQbx+ i+πb1 ≥ rQb

⎡
⎢⎢⎢
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

⎤
⎥⎥⎥ if i > 0 (10.22a)

rQbx ≥ rQb

⎡
⎢⎢⎢
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

⎤
⎥⎥⎥ if i = 0 (10.22b)

rQbx− iπb2 ≥ rQb

⎡
⎢⎢⎢
∑
k∈Q

d̄k +
∑
b∈B

∑
k∈Qb

d̂b,k

⎤
⎥⎥⎥ if i < 0 (10.22c)

where either the πb1- or the πb2-term has a non-zero coefficient if i �= 0. If i = 0,
inequality (10.22) reduces to the multi-band robust cutset inequality (10.14).
Notice, inequality (10.21) generalizes the base inequality (9.25) of the 2-dimensional

polyhedron XΓ for the Γ-RNDP: set bands B := {0, 1}, b1 = 1, b2 = 0, γ0 = γ1 = 0,
Γ0 = |QS| and Γ1 = Γ, and deviations d̂0,k = 0 and d̂1,k = d̂k for all k ∈ QS. This gives
ϑ1 = Γ and ϑ0 = |QS| − Γ and thus i ∈ {−Γ, . . . , |QS| − Γ}. Besides, constraint (10.15d)
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for b = 0 and d̂0,k = 0 implies that πb1 = 0 is feasible. Hence, for the Γ-robust setting
inequality (10.21) reads

x+ iπb1 ≥
∑
k∈Q

d̄k +
∑
k∈Q1

d̂1,k

where
∑

k∈Q1 d̂1,k is maximal for the sum of the |Q1| = i+ ϑ1 = i+ Γ largest deviations

d̂1,k; cf. inequality (9.25).

10.3 Algorithms

In this section, we present exact ILP-based separation algorithms for the multi-band
robust cutset inequalities as well as for multi-band robust length and multi-band robust
metric inequalities. These algorithms are generalizations of the corresponding ones for
the Γ-RNDP.

10.3.1 Separation of multi-band robust cutset inequalities.

To obtain an exact approach to separate violated multi-band robust cutset inequali-
ties (10.19) we generalize the ILP (9.47), which we used for the separation of Γ-robust
cutset inequalities, to the multi-band robust setting. Therefore, we define binary variables
δi (i ∈ V ) with δi = 1 if and only if i ∈ S determining the cut, αb,k with αb,k = 1 if and
only if k ∈ Qb determining the cut-crossing commodities in band b ∈ B, and δ̄ij (ij ∈ E)
with δ̄ij = 1 if and only if ij ∈ δ(S) determining the cutset. In addition, let d determine
the worst-case total demand value crossing the cut, and let R be the right-hand side
value of the corresponding multi-band robust cutset inequality (10.19). Given an LP
solution x∗, we minimize the feasibility (i.e., maximize the violation) of inequality (10.19)
such that a negative objective value yields a violated cut. Then, the ILP formulation of
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min
∑
ij∈E

x∗
ij δ̄ij −R

s. t. max{δi − δj, δj − δi} ≤ δ̄ij ≤ min{δi + δj, 2− δi − δj} ∀ij ∈ E
(10.23a)

max{δsk − δtk , δtk − δsk} ≤
∑
b∈B

αb,k ≤ min{δsk + δtk , 2− δsk − δtk} ∀k ∈ Q

(10.23b)∑
k∈Q

αb,k ≤ ϑb ∀b ∈ B

(10.23c)∑
b∈B

∑
k∈Q

(d̄k + d̂b,k)αb,k = d (10.23d)

d ≤ R ≤ d+ 1− ε (10.23e)

αb,k, δi, δ̄ij ∈ {0, 1}, R ∈ Z≥0, d ≥ 0 ∀b ∈ B, k ∈ Q, ∀ij ∈ E, ∀i ∈ V
(10.23f)

where constraints (9.47a) and (9.47b) define the logical dependencies between the indicator
variables αk, δi, and δ̄ij. Constraint (10.23c) bounds the number of realizations in band
b. Notice, that this constraint is no equality since there might be commodities which
are not cut-crossing. The total demand d is calculated by (9.47e). Constraint (9.47f)
guarantees the round-up of the right-hand side variable R using 0 < ε � 1 to avoid
rounding R to �d+ 1 or higher. Note, by setting a node limit (or time limit) for solving
ILP (9.47), we obtain a (non-deterministic) heuristic ILP-based separation algorithm.

10.3.2 Separation of multi-band robust length inequalities

In the following, we generalize the polynomial exact separation of Γ-robust metric
inequalities to the multi-band robust setting. Therefore, we follow an analogous approach
as we did for the Γ-robust setting. First, we formulate the feasibility problem for a given
capacity vector as an LP. Second, we dualize the LP to derive a valid multi-band robust
length inequality for which the violation is determined by the objective value of the dual
LP.
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10.3 Algorithms

Given a capacity vector x̃ ∈ R|E|
≥0 , the feasibility problem can be formulated as

max α (10.24a)

s. t.
∑
uv∈E

(fk
uv − fk

vu) ≥

⎧⎪⎨
⎪⎩
α u = sk

−α u = tk

0 otherwise

∀u ∈ V, k ∈ K (10.24b)

∑
k∈K

d̄kfk
e +
∑
b∈B

ϑbπb
e +
∑
k∈K

σk
e ≤ x̃e, ∀e ∈ E (10.24c)

− πb
e − σk

e + d̂b,kfk
e ≤ 0 ∀e ∈ E, k ∈ K, b ∈ B (10.24d)

fk
uv, πe, σ

k
e , α ≥ 0 ∀e = uv ∈ E, k ∈ K. (10.24e)

Thus, the point (x̃, f ∗, π∗, ρ∗) is feasible for LPNmb
x if and only if the objective value

(α∗, f ∗, π∗, ρ∗) of (10.24) is at least 1, i. e., if at least 100% of the demand can be satisfied
for each commodity. Next, we dualize (10.24) and obtain the following LP

min
∑
e∈E

x̃e	(e) (10.25a)

s. t. βk
i − βk

j ≤ d̄k	(e) +
∑
b∈B

d̂b,kmb,k(e) ∀e = ij ∈ E, k ∈ K (10.25b)

∑
k∈K

mb,k(e) ≤ ϑb	(e) ∀e ∈ E (10.25c)

∑
b∈B

mb,k(e) = 	(e) ∀e ∈ E, k ∈ K (10.25d)

∑
k∈K

(βk
sk − βk

tk) ≥ 1 (10.25e)

βk
i , 	(e), m

b,k(e) ≥ 0 ∀i ∈ V, e ∈ E, k ∈ K, b ∈ B. (10.25f)

By strong duality, x̃ is feasible for LPNmb
x if and only if the optimal value of (10.24)

is at least 1. If the objective value of a solution (β∗, 	∗,m∗) is strictly less than 1,
constraint (10.25e) implies the multi-band robust length inequality∑

e∈E
	∗(e)xe ≥

∑
k∈K

(β∗k
sk − β∗k

tk) (10.26)

to be violated for x̃. Given a violated multi-band robust length inequality (10.26) (for
length function 	), a violated multi-band robust metric inequality (for metric 	M) can
be constructed by defining 	M(e) := min{	(e), 	(u, v)} for all e = uv ∈ E. Note, the
right-hand side is not changed and the violation of the multi-band robust metric inequality
is at least the violation of the multi-band robust length inequality. Furthermore, we
claim that the obtained multi-band robust metric inequality is still valid.

Corollary 10.11. Violated multi-band robust length inequalities and violated multi-band
robust metric inequalities can be separated in polynomial time.
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10 The multi-band robust network design problem

Proof. Since (10.24) is a pure LP with polynomial size and 	M is constructable from 	 in
polynomial time, violated multi-band robust metric inequalities can be exactly separated
in polynomial time.

Note, experiments for the special case of Γ-robust length inequalities have shown that
the separation of these inequalities can be very time consuming in practice.
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CHAPTER ELEVEN

COMPUTATIONAL STUDIES

We will finalize our investigation of robust network design problems with computational
studies. In Chapter 9, we have presented a detailed study of the Γ-RNDP including various
problem formulations, three different approaches to derive valid inequalities (cutset-
based, arc residual capacity, and metric), and several exact and heuristic algorithms.
Furthermore, we have motivated and shown how the Γ-RNDP can be generalized to the
mb-RNDP in Chapter 10.
In the following, we present the detailed results of our excessive computational studies

for the Γ-RNDP using historical real-life traffic measurements of telecommunication
back-bone networks to build the Γ-robust uncertainty set. Our computational studies
are based on and extend the computational experiments carried out by the author of
the thesis while working with the ROBUKOM project [3]. The ROBUKOM project
started in 10/2010 and has finished in 06/2013. It involved five research groups at
different German universities and research institutions (RWTH Aachen University, TU
Chemnitz, TU Berlin, Zuse Institute Berlin) as well as two industrial vendors (Nokia
Siemens Networks GmbH & Co. KG, and DFN-Verein). The experimental results have
partially been published by the author of this thesis and his co-authors in [103, 105, 106]
and submitted for publication [55].

Environment. All algorithms were implemented in C++ using ILOG Cplex 12.1 [84]
with ILOG Concert as MIP solver and branch-and-cut framework, respectively.

The computations were carried out using a single thread of Intel Xeon W3540 CPU at
2.93GHz and 12GB RAM. If not stated differently, all other solver settings were left at
their defaults. A time limit of 12 hours was set for solving each problem instance.

11.1 Instances

We consider problem instances based on live traffic data from different sources: the
U.S. Internet2 Network (Abilene) [5, 162], the pan-European research backbone network
Géant [1], and the national research backbone network operated by the German
DFN-Verein [155] mapped on the network (Germany17) defined by the NOBEL
project [4], and in addition mapped on a larger network (Germany50) [131]. The
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11 Computational studies

(c) Germany17 (d) Germany50

Figure 11.1: Network topologies for the Abilene, Géant, Germany17, and Ger-
many50 networks; cf. SNDlib [130, 131]. Notice, the Géant network
contains two transatlantic links to New York City, USA.
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(b) Abilene2
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(d) Geant2

Figure 11.2: Distribution of total network load over time for the considered traffic mea-
surements of the Abilene1, Abilene2, Geant1, and Geant2 networks.

network topologies of all four networks are shown in Figure 11.1. For each network the
live traffic data is given as a set of measured traffic matrices with a granularity of 5 minutes
(Abilene, Germany17, Germany50) or 15 minutes (Géant). Recently, the live traffic
measurements of these networks have also become available in the SNDlib [130, 131].
For Abilene and Géant we consider two time periods of one week each, resulting in
two instances each: Abilene1, Abilene2, Geant1, and Geant2, respectively. For
Germany17 and Germany50 we consider one day each. Figure 11.2 visualizes the
distribution of the total network loads (i.e. the sum of all measured demands in the
network at a certain moment) of the planning week for Abilene1, Abilene2, Geant1,
and Geant2. We observe that most of the time three of the four networks are moderately
loaded: 20–40% (Abilene1), 20–50% (Abilene2), and 30–60% (Geant2). In contrast,
the planning week of Geant1 includes many high loaded traffic matrices resulting in
total network loads from 50% to 90%. Moreover, in particular for Abilene1, we see
that there exist few matrices with very high total loads of up to 100%.

We call the one-week time periods used for Abilene and Géant the planning week(s).
In addition to each planning week, the three following weeks are used in the evaluation
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11 Computational studies

Network Abilene Géant Germany17 Germany50

# nodes 12 22 17 50
# links 15 36 26 89
# demands 66 231 136 1044

traffic data:
- period 6months 4months 1 day 1 day
- granularity 5min 15min 5min 5min
- # matrices (TMs) 48 095 10 737 288 288

instances Abilene1 Geant1 Germany17 Germany50
from 2004/05/03 2005/05/26 2005/02/15 2005/02/15

to 2004/05/09 2005/06/01 2005/02/15 2005/02/15

instances (cont.) Abilene2 Geant2
from 2004/06/28 2005/07/28

to 2004/07/04 2005/08/03

per instance:
- planning period 1 week 1 week 1 day 1 day

2016 TMs 762 TMs 288 TMs 288 TMs
- evaluation period 4 weeks 4 weeks 1 day 1 day

8064 TMs 2688 TMs 288 TMs 288 TMs

Table 11.1: Network and traffic properties of considered data sets. For each instance, the
beginning and end of the planning period are shown in rows from and to. The
format yyyy/mm/dd is used for all dates.

to simulate uncertain future traffic. Hence, in total four weeks of traffic measurements
are used for each Abilene and Géant instance. Table 11.1 summarizes the network
and traffic properties of all considered data sets.

Input instances are derived as follows: There are six data sets. For Abilene and
Géant, we consider the traffic measurements of twice one planning weeks each. For
Germany17 and Germany50, we consider all available traffic measurements (one day
each). For each data set, let T denote the considered time period and let dk(t) be the
measured demand for commodity k ∈ K at time step t ∈ T . In a first step, we determine
a scaling factor σ ∈ R≥0 used to scale the traffic data in such a way that the sum of all
peak demands maxt∈T (dk(t)) over all commodities k ∈ K amounts to 1 Tbps. That is,

assuming that demands are given in Mbps, we set σ := 106/(
∑

k∈K maxt∈T (dk(t))).

Notice that the mentioned data sets contain traffic measurements that are only weakly
correlated w.r.t the different source-destination pairs: The averages of the correlations
between the measured point-to-point traffic volumes are 0.21 (Abilene1), 0.18 (Abi-
lene2), 0.10 (Geant1), and 0.06 (Geant2), respectively. For 95% of the traffic pairs,
the correlation ranges from -0.49 to 0.50 (Abilene1), from -0.25 to 0.42 (Abilene2),
from -0.40 to 0.40 (Geant1), and from -0.28 to 0.28 (Geant2). However, regardless
of the correlation between some traffic pairs, we apply the Γ-robust approach and con-
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11.2 Robustness parameters

sider the Γ-RNDP. In a post-processing step, we evaluate the realized robustness of
our Γ-robust solutions in Section 11.8. The mentioned correlations, a less conservative
setting of the peak demands, and historical data including traffic matrices with more
than Γ-many simultaneous peaks, influence the realized robustness we evaluate.
We set the link capacity module size, that is one unit of capacity, to 40Gbps in our

computational studies. This is in line with capacities in today’s IP core networks; cf.
citepROBUKOM.

11.2 Robustness parameters

Following the concept of Γ-robustness and given the historical data (traffic measurements),
we have to determine the robustness parameter Γ, the nominal d̄k and the deviation
demand value d̂k for each k ∈ K. Then, d̄k + d̂k is the peak demand value. Alternatively,
it is also sufficient to specify only d̄k and d̄k + d̂k.
Given historical data, i. e., the planning week traffic measurements, we assume that

individual demand values are uncorrelated. Therefore, we can consider each demand
individually. The nominal value d̄k should relate to some average realization value.
We propose to use the arithmetic mean, geometric mean, or median of the available
demand values for k. The peak value corresponds to the maximum demand value for
k. Considering the fact, that only a few matrices with maximum total network load
(and thus presumably in general also only a few matrices with maximum demand value
k) exist, setting the peak demand value to the actual maximum demand value is too
conservative.

Instead, we propose to eliminate statistical outliers to obtain less conservative values.
For example, this can be done by neglecting the top 5% demand values, i. e., we consider
the 95%-percentile. Of course, this introduces some kind of approximation into our
modeling of the uncertainty set. On the one hand, a resulting Γ-robust solution may
never achieve 100% robustness because we omit the necessary high-demand matrices.
However on the other hand, the level of conservatism may be reduced significantly. As
for Γ-robustness, this is another kind of budgeting or trade-off decision to be made.

To evaluate this potential trade-off, we carried out a detailed computational study
in Koster et al. [105]. We solved the compact link flow formulation (9.6) using Cplex as
stand-alone solver for different combinations of values of nominal demand, peak demand,
and Γ. We considered five possible ways to determine the nominal demand values
(arithmetic mean, geometric mean, median, 60%- and 70%-percentile), nine possible
ways to determine the peak demand values (the 80%-, 85%-, 90%-, 95%-, 96%-, 97%-,
98%-, 99%-, 100%-percentile), and eleven possible Γ-values (Γ = 0, 1, . . . , 10).
We determined the level of conservatism by the total cost (objective value) and evaluated

the realized robustness of all 495 (nominal, peak, Γ)-combinations. Figure 11.3 visualizes
the normalized cost versus the realized robustness for Abilene1. Each combination is
marked by a cross. In addition, the lower convex envelope of the points is shown. Clearly,
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Figure 11.3: Determining robustness parameters. Normalized cost vs. realized robustness
for the Abilene1 network is shown for different combinations of (nominal,
peak, Γ) parameter settings. In addition, the dominant settings defining the
lower envelope are labeled.

there exist (nominal, peak, Γ)-combinations which are dominated by some others, i. e.,
which are less robust for the same or higher costs. Following our analysis, pareto-optimal
settings could be determined defining the lower envelope. We refer to [105] for further
details.
Following our observations in [105], we determine the nominal values d̄k and peak
values d̄k + d̂k formally as follows. For every commodity k ∈ K, we first order the
demands dk(t) non-decreasingly such that dk(ti) refers to the i-th element in the list with

dk(t1) ≤ dk(t2) ≤ · · · ≤ dk(t|T |)
. We then set d̄k := |T | ·∑t∈T σdk(t) and d̂k := σdk(t�0.95|T |)

− d̄k.

Furthermore, we consider eleven values of Γ, i. e., Γ ∈ {0, 1, . . . , 10}. Thus, we obtain in
total 66 realistic test instances.

11.3 Comparison of formulations

In our first computational study, we compare the exponential link flow formulation (9.4),
the compact link flow formulation (9.6), and the capacity (9.11) formulation of the
Γ-RNDP. We abbreviate these formulations as Exp, Cmp, and Cap, respectively.
For Exp, the exponentially many inequalities (9.4a) are treated implicitly: violated

ones are separated as so-called lazy constraints during the solving process. Figure 11.4
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11.3 Comparison of formulations

(a) solution times averaged over Γ = 0, . . . , 10

(b) number of optimally solved instances

Figure 11.4: Comparison of different MILP formulations of the Γ-RNDP. The expo-
nential (9.4), compact (9.6), and capacity (9.11) formulation are solved by
Cplex as stand-alone solver. The Germany50 instance could not be solved
in any case within the time limit.

visualizes the computational behavior of the three formulations: First, for each network a
comparison of the solution times averaged over Γ = 0, . . . , 10 is shown in Figure 11.4(a).
Second, for each network and formulation, the number of optimally solved instances out
of eleven is shown in Figure 11.4(b).

Impact on the solution time. In our computational study, the capacity formulation is
(among) the fastest in 54.5% of all 66 test instances; for the Cmp and Exp formulation
it is 43.6% and 9.1%, respectively. Only for Abilene1 with Γ = 0 and Abilene2 with
Γ = 1 the solution time of Exp has been slightly faster than the others by less than a
second. Nevertheless, it is the overall slowest formulation in our study outperformed by
Cmp and Cap for 75.8% and 68.2% of all instances. Its average solution times range
from 2.1 (Geant1) to 14.5 (Germany17) times the averages obtained for Cap. In
addition, very often the time limit has been reached while solving Exp.
Germany50 could not be solved in any case within the time limit of 12 hours. For

Germany50, the optimality gap has been in the range from 43% to 59% (Exp), from
51% to 71% (Cmp), and from 47% to 104% (Cap).
It turns that out the MIP solver obtains many solutions feasible for the incomplete

Exp formulation which are infeasible to the complete problem. Thus, these solutions
are separated by additional model inequalities (lazy constraints). In our studies, the
number of these non-redundant cuts slows down the solution processes of this formulation
significantly. These results are in contrast to those in Fischetti and Monaci [69] for
the set covering problem, since their instances for the set covering problem does only
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abbreviation class reference

RCI Γ-robust cutset inequality (9.21)

REI Γ-robust envelope inequality (9.26), (9.28), (9.29)
upper REI upper Γ-robust envelope inequality (9.29)
lower REI lower Γ-robust envelope inequality (9.26), (9.28)

RMI Γ-robust metric inequality (9.8)

1-bounded RMI 1-bounded Γ-robust metric inequality (9.45) : �M ∈ {0, 1}|E|

rounded RMI rounded Γ-robust metric inequality (9.45)
tight RMI rounded Γ-robust metric inequality

with minimum right hand side
(9.46)

RARCI Γ-robust arc residual capacity inequality (9.40)

Table 11.2: List of considered classes of valid inequalities with abbreviations used in this
chapter

include very small deviations compared to the measured real-world deviations of the
telecommunication networks we consider.

Impact on solvability. In the following, we consider the number of optimally solved
instances within the time limit. First, we observe that the Abilene1 and Abilene2
instances could be solved optimally by all three formulations. The instance Germany50
could not be solved optimally by any model. For all 33 remaining instances, Cap solved
all instances to optimality, whereas Cmp and Exp only solved 82% and 39%, respectively.
Every instance solved by Exp was also solved by Cmp.

Conclusions. Clearly for all solved instances, Exp is outperformed by the others.
Therefore, we focus on the compact and capacity formulations in the following studies.
However, we want to remark that additional special purpose primal heuristics might
improve on the computational behavior of the Exp.

11.4 Strength of valid inequalities

In our next computational study, we investigate the strengthening of the linear relaxation
of the compact link flow formulation (9.6) of the Γ-RNDP at the root node by nine
different classes of valid inequalities. Therefore, we consider the exact separation of
violated inequalities for these classes. Table 11.2 gives an overview of the considered
classes and also introduces abbreviations for better readability. Notice, some of the
inequalities generalize some of the others: RCIs are 1-bounded RMIs which are rounded
RMIs and thus RMIs themselves. Obviously, tight RMIs are also RMIs, and upper and
lower REIs are REIs.
Using the callback functionality of Cplex, we add an exact separation algorithm

solving (9.51) including the option to separate bounded RMIs or tighten the right hand
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11.4 Strength of valid inequalities

(a) minimal/average/maximal additional gap closed at the root node for Γ = 0, . . . , 10

(b) additional gap closed at the root node by RMIs

Figure 11.5: Additional gap closed at the root node by cutset-based inequalities
(RCIs+REIs), 1-bounded RMIs, rounded RMIs, tight RMIs, and RAR-
CIs, for Γ = 0, . . . , 10. The gap is computed w.r.t. the LP dual bound and
the best known primal bound.

side. Furthermore, we solve the exact separation ILP (9.47) to find violated Γ-robust
cutset-based inequalities. Therefore, we solve the separation problem for all possible
cutsets which we enumerate. In this study, only the root node is solved, all Cplex cuts
are turned off, and the gap closed at the end of the root node is evaluated. Then, the
additional gap closed is determined for each considered class of valid inequalities.

The additional gap closed is the ratio (DBroot −DBLP)/(PBbest −DBLP) where DBroot

denotes the dual bound after solving the root node before branching, DBLP the objective
value of the LP relaxation at the end of the root node, and PBbest the (overall) best
known primal bound. A gap closed of 100% is observed if the instance could be solved
to optimality at the root node.

Figure 11.5 shows the (minimal/average/maximal) gap closed for each network (except
Germany50), value of Γ, and considered classes of inequalities. For Germany50, the
root node could not be solved within the time limit in any setting. This is due to the
fact that the standard cuts of Cplex were turned off in this study. A further evaluation
of Germany50 in a full cut-and-branch approach is presented later in Section 11.7.

Figure 11.5(a) shows the average gap closed by separating cutset-based inequalities
(RCIs+REIs), 1-bounded RMIs, rounded RMIs, tight RMIs, or RARCIs exactly. Con-
sidering the averages, we observe that already RCIs+REIs close the gap on average
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at least by 48.8% (Geant1). This concurs with the conclusion of the effectiveness of
RCIs+REIs in Koster et al. [106]. When considering more general RMIs, the average
gap can be closed by additional 7.7% by 1-bounded RMIs, further 1.3% by rounded
RMIs, and even further 4.2% by tight RMIs. In this way, the gap can be closed in total
by additional 13.3% by tight RMIs compared to RCIs+REIs. Furthermore, the total gap
closed by tight RMIs is 100% for both Abilene instances and Γ = 0, . . . , 10, solving
these instances optimally at the root node. For RARCIs, we observe that the average
additional gap closed is always less than the corresponding values for the other classes
of inequalities. It ranges from 26.9% for Abilene1 to 41.6% for Geant2 on average.
Considering the minimal and maximal observed values for the additional gap closed, we
notice that except for two cases (Abilene2 and RCIs+REIs and RARCIs, respectively),
the minimal and maximal values are relatively close to the average and deviate less than
32%.

Figure 11.5(b) provides a break down of the additional gap closed by individual
subclasses of RMIs per instance and value of Γ. RARCIs are left out since they are not
RMIs. Besides, due to their low potential of closing the integrality gap as seen above,
they are of little interest for us. In Figure 11.5(b), we observe that RCI contribute most
to the gap closed. Nevertheless, more general RMIs as (1-bounded) RMIs are needed to
completely close the gap at the root node for all Abilene instances. In addition, tight
RMIs are needed for Abilene2 and Γ = 2 to achieve 100% gap closed.

So far, we have considered the additional gap closed at the root node w.r.t the
overall best known primal solution and the LP dual bound. In particular, the cut
generating methods of Cplex have been switched off. Next, we change the latter
and allow Cplex to separate its own cuts in addition to ours. Thus, we can evaluate
the added value of our cuts in another more realistic setting. For this extra analysis,
we focus on cutset-based inequalities: RCIs, upper REIs, and lower REIs. Similar to
Figure 11.5, the (minimal/average/maximal) additional gap closed for this set-up is
shown in Figures 11.6(a) and 11.6(b). Moreover, the number of separated RCIs, lower
and upper REIs are reported in Figure 11.6(c).

We observe that the RCIs together with the cuts of Cplex perform remarkable well.
Abilene1 is solved optimally at the root node for all considered values of Γ. Also for
Abilene2, the gap can be closed in most of the time. In total, for more than 90% of all
instances, the optimality gap can be closed at least by 50% at the root node.

Only for 7 of 66 instances, we observe an additional gain of 2.5% on average by
separating violated REIs. In fact, Figure 11.6(c) shows that for Geant1, Geant2, and
Germany17 hundreds or thousands of violated RCIs are separated while only a few
violated lower REIs (always less than 10 cuts, except for Geant2 and Γ = 3, 8, 10) and
no upper REIs are separated.

Conclusions. The results of our first computational study show that separating violated
RMIs closes the gap significantly at the root node. In particular cutset-based inequalities
are contributing a lot to the tightening of the formulations. Furthermore, when switching
on the cut generation of Cplex, RCIs+REIs still have a positive impact. In contrast,
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(a) minimal/average/maximal additional gap closed at the root node for Γ =
0, . . . , 10

(b) additional gap closed at the root node

(c) number of separated RCIs and REIs

Figure 11.6: Additional gap closed at the root node by RCIs and REIs, and RCIs alone,
for Γ = 0, . . . , 10. The gap is computed w.r.t. the dual bound obtained by
standard Cplex and the best known primal bound. Notice, the dual bound
is not necessarily the LP bound. In addition, the number of separated RCIs
and REIs is shown.

RARCIs have the lowest contribution to the tightening of the formulation and thus
should not be applied in a cut-and-branch approach.

11.5 Speed-up of the compact link flow formulation

In the next computational study, we investigate the speed-up by integrating the separation
of violated RMIs in a cut-and-branch approach to solve the compact flow formulation (9.6)
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Algorithm Description

I Cplex Cplex as stand-alone solver; no additional separa-
tion of RMIs.

IIs RCI/s Heuristic separation of violated RCIs using the
shrinking heuristic described in Section 9.3.1. The
network is shrunken with respect to the slack val-
ues of inequalities (9.6a) and (9.6b). If no violated
cut is found heuristically, an ILP-based exact sep-
aration algorithm is run.

IIc RCI/c Same as algorithm IIs, but the network is shrunken
with respect to the LP value of the capacity vari-
ables x.

IIIs 1. RCI/s, 2. rounded RMI/s First, algorithm IIs is run. Second, if no cut has
been found, the network is shrunken with respect to
the slack values of (9.6a) and (9.6b). Then violated
RMIs are separated by solving the ILP (9.51) for
the shrunken network.

IIIc 1. RCI/c, 2. rounded RMI/c Same as algorithm IIIs, but all network shrink-
ings are done with respect to the LP value of the
capacity variables x.

IVc 1. RCI/c, 2. tight RMI/c Same as algorithm IIIc. If a violated RMI is found,
its best right hand side β�M is determined by solv-
ing an ILP. Only the resulting tight RMI is sepa-
rated.

Table 11.3: Overview of considered algorithms to solve the Γ-RNDP

of the Γ-RNDP. In our previous studies, we observed that on the one hand violated
REIs are almost never separated and on the other hand violated RARCIs perform bad
w.r.t. additional gap closed by the other classes. Therefore, we focus on RMIs and their
promising subclasses in this study. We consider several heuristic algorithms summarized
in Table 11.3.

Figure 11.7 shows the average speed-up factors obtained by the individual algorithms.
The factors are normalized to the solution time of Cplex as stand-alone solver (algorithm
I). For example, a solution time of 60 seconds compared to a corresponding solution
time of 120 seconds of Cplex yields a speed-up factor of 2. For the Abilene network,
we observe that all average speed-up factors are less than 1.0 except for algorithm IIs
and Abilene1. In fact, the solution times of Abilene1 and Abilene2 instances are in
the range of only a few seconds. Therefore, the overhead introduced by all separation
algorithms results in a slow-down on average. For all larger instances, there is a significant
average speed-up factor of at least 1.85 (algorithm IIIc, Geant2). Separating only
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11.6 Speed-up of the capacity formulation

Figure 11.7: Speed-up factors of algorithms IIs, IIIs, IIc–IVc in a cut-and-branch approach
to solve the compact flow formulation (9.6) of the Γ-RNDP. All factors are
normalized to solution times of algorithm I (Cplex as stand-alone solver).

violated RCIs (algorithms IIs and IIc) yields good speed-up factors for Geant1, Geant2,
and Germany17 of 2.5 (IIs) and 3.6 (IIc), 2.5 (IIs) and 2.0 (IIc), 5.5 (IIs) and 4.6
(IIc), respectively. Most of the times these are better than the corresponding speed-up
factors obtained by algorithms IIIc and IVc where additionally tight RMI are separated
heuristically. This can be explained by the additional computational effort to solve the
ILP (9.51) to separate violated RMIs. Although the network has been shrunken, the
remaining integer problem may still be computationally hard reducing the speed-up
factor compared to the RCI-only algorithm IIc.

Conclusions. In our study, we have observed a substantial speed-up in solving the
compact flow formulation of the Γ-RNDP on mid-sized instances (e.g., Geant1, Geant2,
and Germany17) by separating RMIs in a cut-and-branch approach. Furthermore, the
highest speed-up factors are achieved by separating RCIs.

11.6 Speed-up of the capacity formulation

In our next computational study, we compare the compact flow formulation (9.6) to the
capacity formulation (9.11) in a cut-and-branch approach. The exponentially many robust
metric model inequalities of the capacity formulation are handled implicitly: violated
RMIs (10.26) separated on-the-fly as lazy constraints using the callback capabilities of
Cplex whenever an integer solution is found. We start without any RMI.

We consider algorithms I, IIc, and IVc introduced before and summarized in Table 11.3.
Algorithms IIs and IIIs are not applicable to the incomplete capacity formulation because
the slack values of inequalities (9.6a) and (9.6b) cannot be evaluated as these constraints
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Figure 11.8: Speed-up factors of algorithms IIc–IVc in a cut-and-branch approach to solve
the capacity formulation of the Γ-RNDP. Algorithm I: Cplex corresponds
to solving the capacity formulation (9.11) with Cplex as a stand-alone
solver. All factors are normalized to solution times of Cplex solving the
compact flow formulation as stand-alone-solver.

do not exist. Notice, RARCIs are also not applicable to the capacity formulation as their
definition includes flow and dual variables.

Figure 11.8 shows the average speed-up factors of algorithms IIc–IVc normalized to
the solution times of Cplex solving the compact flow formulation as stand-alone solver.
Because the solution times of Cplex as stand-alone solver solving the compact flow
formulation and the capacity formulation differ, we report also on the normalized solution
times of Cplex for the capacity formulation. Similarly to the compact flow formulation,
we observe that on the small-sized Abilene1 and Abilene2 instances no speed-up
can be achieved. The computational effort to separate RMI slows down the instances
compared to their fast solution times. For Geant1, Geant2, and Germany17, we
notice significant average speed-up factors of 2.7 (Geant1), 5.9 (Germany17), and 7,3
(Geant2) obtained by Cplex solving the capacity formulation (algorithm I). Introduc-
ing the separation of RMIs yields even higher speed-up factors on average whereas the
best are achieved by algorithm IIc: 1.5 (Abilene1), 1.2 (Abilene2), 24.4 (Geant1),
9.0 (Geant2), and 8.9 (Germany17). For each network, the best average speed-up
factor for the capacity formulation is higher than the corresponding one for the compact
flow formulation (cf. Figure 11.7). In particular, the algorithms IIs (only compact flow
formulation) and IIc perform well achieving the highest average speed-up factors in
most cases. In summary, we conclude that the capacity formulation is computationally
more tractable than the compact flow formulation for mid-sized instances. A significant
speed-up could be observed in our computationally studies.
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11.7 Handling large instances using the capacity formulation

11.7 Handling large instances using the capacity
formulation

To evaluate the impact of RMIs in a cut-and-branch approach to larger instances such as
Germany50 which cannot be solved within the time limit of 12 hours, we consider the
optimality gap after 12 hours. In particular, we evaluate the gap reduction factor compared
to the optimality gap left by Cplex as stand-alone solver when solving the compact flow
formulation to the time limit. For example, let Cplex solve the Germany50 instance
to 60% of optimality and let another algorithm obtain a optimality gap of 40%. Then
the gap reduction factor of this other algorithm is 0.6/0.4 = 1.5 compared to Cplex.
Therefore, a gap reduction factor less than 1.0 is given if the optimality gap after 12
hours is larger than the corresponding one by Cplex and the compact flow formulation.
The cuts obtained by algorithm IIIc may be strengthened to tight RMIs and hence are
dominated by those obtained by algorithm IVc. Thus, we do not consider algorithm IIIc
in this study.

Figure 11.9 shows the gap reduction factors for Germany50 compared to Cplex
as stand-alone solver solving the compact flow formulation. The figure consists of two
diagrams. Figure 11.9(a) reports the gap reduction factors using the actual gap value
obtained by the MIP solver. In contrast, the gap reduction factors in Figure 11.9(b)
are calculated based on the best known primal bound values (and thus normalizing the
influence of the primal bounds on the gaps). Hence, the latter figure focuses on the
improvement in the dual bound value.

In Figure 11.9(a) we observe that the optimality gaps of the capacity formulation
are worse than the corresponding ones for the compact flow formulation. Oftentimes
the gaps are in fact as twice as large. This can mainly be explained by the fact that
integer solutions found for the incomplete capacity formulation are actually not feasible
for the complete formulation and thus discarded at a later point during the solving
process. Hence they are slowing down the solving process. For Algorithm IIc and IVc
and Γ = 5, 8, (9), no primal solution has been found resulting in gap reduction factors of
0. Nevertheless, notice that for Γ ≤ 2 positive gap reduction factors could be achieved for
algorithms IIc and IVc. Moreover, except for the cases where no primal solution could
be determined the gap reduction factors of algorithm I is always the worst.

If we do not limit our analysis on the gap but consider the dual bound values, we
get a different picture. Therefore we normalize the primal bound values by taking the
best known primal bound value for each value of Γ when determining the remaining gap
after 12 hours. The resulting gaps are shown in Figure 11.9(b). First, we notice that
algorithm I (Cplex) for the capacity formulation cannot close the optimality gap better
than Cplex for the compact flow formulation. In fact, in most cases algorithm I finishes
with optimality gaps at least twice as high. This bad performance can be explained
by the fact that during the solution process of algorithm I temporary solutions are
obtained which are in fact infeasible to the complete capacity formulation but not the
current incomplete one. To lower the computational effort, these solutions are only
separated if they are integer. In contrast, algorithms IIc and IVc separate violated
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(a) gap reduction factors according to obtained primal bounds

(b) gap reduction factors according to best known primal bounds

Figure 11.9: Gap reduction factors of algorithms I, IIc, and IVc in a cut-and-branch
approach to solve the capacity formulation of the Γ-RNDP for the Ger-
many50 instance. Algorithm I: Cplex corresponds to solving the capacity
formulation with Cplex as a stand-alone solver. All factors are normalized
to the optimality gap left by Cplex as a stand-alone solver at the time
limit of 12 hours when solving the compact flow formulation.

rounded RMIs for fractional solutions in addition to the model constraints. So both finish
with smaller optimality gaps compared to Cplex and the compact flow formulation.
The gap reduction factor ranges from 1.1 (Γ = 10) to 1.5 (Γ = 1). For Γ ≤ 4 the gap
reduction factor is at least 1.2. For larger values of Γ it decreases. The gap reduction
factors do not differ much between the algorithms IIc and IVc except for Γ = 1 and
Γ = 9 where algorithm IIc clearly outperforms the others. In summary, we observe that a
cut-and-branch approach with rounded RMIs on the capacity formulation of the Γ-RNDP
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11.8 Quality of optimal robust network designs

Figure 11.10: Cost savings of robust Abilene and Géant network design compared to
classical network design with peak demand values (i.e., corresponding to
Γ-Robust Network Design with Γ = |K|), for Γ = 0, . . . , 10.

Comparing Figures 11.9(a) and 11.9(b), we conclude that algorithms IIc and IVc
significantly improve the dual bounds. At the same time this has only little effect on
the overall performance because the straight-forward approach to solve the incomplete
capacity formulation by separating model inequalities is slowed down by disadvantageous
primal solutions. Here, additional good primal heuristics would be promising.

Conclusions. In conclusion, in our studies it turns out that the capacity formulation of
the Γ-RNDP is computationally more tractable on mid-sized instances. When used in a
cut-and-branch approach, it offers higher speed-up factors on mid-sized instances and
might lowers the optimality gap left at the time limit for larger instances when combined
with strong primal heuristics.

11.8 Quality of optimal robust network designs

Our final computational study focuses on the quality of optimal robust network designs.
We investigate two aspects as quality criteria: the cost of an optimal robust network
design and the realized robustness with respect to a given set of traffic matrices.

For the latter, we only consider the Abilene and Géant networks because only for
these networks, traffic measurements spanning several weeks are available and thus, a
meaningful robust evaluation can be carried out. Given the traffic measurements of
one week as input data (as described above), we include additional weeks of traffic
measurements in our evaluation of the realized robustness to simulate uncertain future
traffic.

Cost savings. In contrast to the price of robustness which compares the objective value
of an optimal robust solution to the same of an optimal non-robust solution, we report
on the cost savings by comparing to the value of the most conservative solution, i. e.,
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Figure 11.11: Realized robustness of Abilene1 and Γ = 0. Additionally, the correspond-
ing traffic loss profile is shown below the realized robustness diagram.

Γ Abilene1 Abilene2 Geant1 Geant2

0

1

5

10

|K|

Table 11.4: Traffic loss profiles of Abilene and Géant networks and selected values of
Γ. Note, the traffic loss profile of Abilene1 and Γ = 0 is the same as in
Figure 11.11.

to the setting Γ = |K|. This corresponds to the (conservative) classical network design
where capacities are optimized against the worst peak scenario.

Figure 11.10 shows the relative cost savings of Abilene1, Abilene2, Geant1, and
Geant2 for Γ = 0, 1, . . . , 10. Clearly, the cost savings (compared to Γ = |K|) decrease
with increasing value of Γ as the costly additional installment of link capacity modules is
implied. Still, for Γ = 5 about 10% of the cost can be saved in all considered networks.
We also see that the advantage of a robust design in terms of cost is relatively small
already for Γ = 10. That is, allowing for 10 commodities being at the peak simultaneously
gives capacity designs at a cost similar to networks that are designed against the all-peak
scenario.

Realized robustness. Given a traffic matrix d, a capacity design x, and a static routing
f of all commodities, the realized robustness is determined as the maximal fraction of
the total demand

∑
k∈K dk that can be realized as flow within the given capacities x and

using the routing defined by f ; cf. Section 3.5. To calculate this value, we solve a linear
program that takes d, x, and f as input and maximizes the fraction of total demand that
can be realized. For each instance, we evaluate the realized robustness in every time step
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for traffic measurements of four consecutive weeks. The first week within the time period
refers to the planning week. Recall that only traffic measurements of the planning week
are used to parametrize the Γ-model. The traffic measurements of the remaining three
weeks are used to simulate uncertain future traffic.
Figure 11.11 shows the result for Abilene1 and Γ = 0. The average of the realized

robustness in this case is 88.2%, that is, on average over the considered time period we
are able to realize 88.2% of the demand in the given capacities using the given static
routing. Clearly, such a value does not catch the change of the realized robustness over
time. We observe most of the time a realized robustness of 85–100%. But there exist
several traffic matrices for which the realized robustness is as worse as 15%. To capture
this temporal aspect of robustness, we propose a different visualization which we call
the traffic loss profile. The corresponding traffic loss profile of Abilene1 and Γ = 0 is
shown below the diagram in Figure 11.11. This profile visualizes each traffic matrix by a
vertical line whose gray scale value corresponds to the relative traffic amount that cannot
be routed (i.e., 100% minus the realized robustness of the considered traffic matrix).
The darker the line, the more traffic is lost, i.e., the less robustness is realized. Hence, a
profile without lines is best and corresponds to a totally robust network design.
Table 11.4 shows the traffic loss profiles of optimal robust network designs forAbilene1,

Abilene2, Geant1, and Geant2 for selected values of Γ. Notice that the traffic
profiles for Γ = |K| correspond to the best robustness that can be achieved with the
given parametrization of nominal and peak demand values d̄ and d̄ + d̂. These values
are derived from traffic measurements in the planning week. Moreover, as we used 95%
percentiles to determine the peak demand values d̄k + d̂k for each commodity k ∈ K,
even w.r.t the planning week the profiles are not necessarily totally robust.
Fixing Γ = 0, we observe that the realized robustness of optimal network designs of

the four instances are quite different: 88.2% (Abilene1), 99.9% (Abilene2), 93.2%
(Geant1), and 96.3% (Geant2). Comparing Γ = 0 to Γ = 1 already shows a significant
improvement for Abilene1 (from 88.2% to 94.9%) and Geant2 (from 96.3% to 98.6%).
By trend, the realized robustness of a network design increases when Γ increases, i.e., the
corresponding traffic loss profile has fewer vertical lines or the gray scales of the lines are
brighter. A decrease can only occur due to a different and disadvantageous traffic routing.
For example, this can be observed for Geant2 where the realized robustness decreases
from 99.8% to 99.7%; compare the traffic loss profiles. Note, for Abilene2 the classical
network design (Γ = 0) achieves already a realized robustness of almost 100%.
For Γ = |K|, the realized robustness is 95.8% (Abilene1), 99.9% (Abilene2), 98.0%

(Geant1), and 99.9% (Geant2). This is best for the given choice of nominal and peak
demand values. Note that by choosing the 95% percentile to determine the peak demand
values, some strong peaks in the traffic data of Abilene1 are ignored, resulting in the
shown traffic profile with some dark lines still present for Γ = |K|. The evaluation of
the realized robustness for all instances and considered values of Γ yields that for Γ ≥ 1
(Abilene1), Γ ≥ 0 (Abilene2), Γ ≥ 10 (Geant1), and Γ ≥ 5 (Geant2), at least
99% of the corresponding realized robustness value for Γ = |K| is achieved. The traffic
loss profiles for these cases hence basically coincide with the corresponding profiles for
Γ = |K|; compare with Table 11.4.
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Further, by comparing the first quarter of each traffic loss profile to its remaining
part, we can evaluate the realized robustness of the planning week (the first week of the
four-week time period) compared to the remaining three weeks representing uncertain
future traffic. For example, we observe that the network design of Geant1 realizes high
robustness during the planning week but is significantly less robust in the following weeks.
Clearly, the network load has been larger in the three weeks following the planning week.

Conclusions. Optimal robust network designs provide high potential for significant
cost savings compared to the conservative setting where only peak demand values are
considered. Further, the traffic loss due to peaks drops significantly already for relatively
small values of Γ. In particular, for Γ ≤ 5 a remarkable increase in the realized robustness
can be achieved. A good value for Γ seems to depend on the size of the instance. For
Abilene a value Γ = 1 is sufficient for high robustness while for Géant choosing Γ = 5
gives a good trade-off between cost and robustness. With these values we get almost
totally robust networks at a cost of roughly 10–20% less than the cost for a network
designed for the all-peak scenario; see Figure 11.10.
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CONCLUSIONS

In this thesis, optimization problems under data uncertainty have been studied by means
of mathematical optimization methods, polyhedral combinatorics, and computational
experiments. Strongly influenced by our work with the ROBUKOM project and our indus-
trial partners from telecommunications, we aimed to develop and investigate robustness
concepts suited to be applied to network planning problems arising in telecommunications
and ILPs in general.

In total, we have studied four different robustness concepts: the well-known Γ-
robustness, its recent refinement multi-band robustness, the new and more general
submodular robustness, and the adaptive two-staged recoverable robustness. Applying
these concepts, we have investigated selected robust variants of the KP and NDP in
detail. The study of robust KPs has given us a fundamental understanding of the
properties of each robustness concept and its theoretical applicability to general ILPs.
By the investigation of robust NDPs, we have considered a challenging application of
robust concepts to a more complex problem while also investigating the underlying
mathematical problem of planning problems which arise in telecommunications and many
other application areas where capacities for multi-commodity flow problems have to be
dimensioned and a corresponding flow has to be determined.

For each robustness concept, we have considered the corresponding robust KP stating
its ILP formulations and have given insights to its polyhedral structure. In particular,
the structure of covers has been identified for all robust KPs. Furthermore, we have given
canonical and strengthened cover extensions yielding stronger extended cover inequalities
than the best known until now. For the SMKP, we have generalized (1, k)-configurations,
(1, k)-configuration inequalities, and weight inequalities; including a generalization of the
strong results on (1, k)-configurations inequalities by Padberg [134]. Additionally, we
have related the determination of the worst-case realization of the submodular robust
uncertainty set to the maximization of a linear function over a polymatroid. For the
RRKP, we have given ILP formulations and polyhedral results while focusing on the
special cases of the k, 	/D-RRKP and k/Γ-RRKP. In particular, we have considered
the MWSP subproblem of the k/Γ-RRKP, provided a combinatorial polynomial-time
algorithm solving it, and thus presented a new compact reformulation of the k/Γ-RRKP.
Moreover and besides developing several separation algorithms, we have discussed how to
solve the k/Γ-RRKP by means of robustness cuts. Our studies of robust KPs have been
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completed by computational studies for both considered variants of the RRKP showing
the gain of recovery, the effectiveness of (strengthened (extended)) cover inequalities,
and comparing the different approaches based on robustness cuts.
Our studies show that a significant increase in profit (gain of recovery) is achieved by

applying the recoverable robustness concept. Although, extended cover inequalities are
effectively tightening the LP formulation, our proposed ILP-based separation is too slow
in practice. Nevertheless for the k/Γ-RRKP, our algorithm SepU is the fastest clearly
outperforming standard ILP solvers.

In addition to the robust KPs, we have studied the Γ-RNDP in great detail. We
have presented the following: several MILP formulations including the recent capacity
formulation, an intensive study of the polyhedral structure including new classes of
valid and to some extend facet-defining inequalities (Γ-robust cutset inequalities, Γ-
robust envelope inequalities, Γ-robust arc residual capacity inequalities, and Γ-robust
metric inequalities with several subclasses), and algorithms solving the corresponding
separation problems. In addition and for the first time, the mb-RNDP has been studied
and we have exemplarily shown how results for the Γ-RNDP can be generalized to
the mb-RNDP. In particular, our results include a capacity ILP formulation of the
mb-RNDP generalizing the so-called “Japanese Theorem” to the multi-band robust
setting, as well as the generalization of cutset inequalities and the derivation of Γ-
robust envelope inequalities. Our studies of robust NDPs have also been completed
by extensive computational experiments of the Γ-RNDP. Here, we have used real-life
traffic measurements of telecommunication backbone networks to derive representative
realistic instances. In our experiments, we have addressed the problem of parametrizing
the uncertainty set by historical data, compared three different formulations of the Γ-
RNDP, and investigated the effectiveness of nine different (sub)classes of valid inequalities.
Furthermore, we have proposed several algorithms to solve the Γ-RNDP and evaluated
their performance for both, the compact link flow and the capacity formulation of the
problem. Moreover, we have highlighted the handling of larger network instances in
practice. Finally, we have evaluated the realized robustness of the obtained optimal
robust solutions w.r.t. the given historical data.
In particular, our computational results show the effectiveness of Γ-robust cutset

inequalities in a cut-and-branch approach. Moreover, we have observed that the capacity
formulation is oftentimes more tractable than the other formulations.

Altogether, the crucial question remains which robustness concept should be used.
Based on our work, we are convinced that there does not exist a best concept in general.
Instead, the choice of the robustness concept must be in line with the considered problem.
We have investigated robustness concepts which are widely applicable, especially Γ-robust
and multi-band robust uncertainty sets are well-suited if historical data is given. The
recoverable robustness concept offers additional adaptability which allows the modeling
of different time scales (first stage and second stage correspond to long-term and short-
term, respectively), or different planning options as “rent” (first stage decision) or “buy”
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practice but highlights the underlying common structures of many robustness concepts.
For each choice of concept, we have highlighted its individual properties and provided

mathematical programming formulations, polyhedral insights, and methods to solve the
considered robust KPs and robust NDPs in this thesis.

Outlook As a final outlook, some research directions for future investigations are
mentioned. The concepts of submodular robustness and recoverable robustness should
be applied to the NDP, the related polyhedra should be investigated, and their structure
exploited to develop effective algorithms. The study of a submodular robust NDP should
in particular include the investigation of the possible generalizations of results from the
Γ-RNDP. Furthermore, the relation between submodular robustness and polymatroids
should be the focus of further investigation.
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[50] Christina Büsing, Arie M.C.A. Koster, and Manuel Kutschka. Recoverable Robust
Knapsacks: Gamma-Scenarios. In Proceedings of INOC 2011, International Net-
work Optimization Conference, volume 6701 of Lecture Notes on Computer Science,
pages 583–588. Springer, 2011. Cited on pages 62, 95, 99, 105, and 121.

[51] Chandra Chekuri, Gianpaolo Oriolo, Maria G. Scutellá, and F. Bruce Shepherd.
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[75] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197,
1981. Cited on pages 12 and 13.

[76] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. 1988. Cited on page 7.

[77] Zonghao Gu, George L. Nemhauser, and Martin W.P. Savelsbergh. Lifted cover in-
equalities for 0-1 integer programs: computation. INFORMS Journal on Computing,
10:427–437, 1998. Cited on page 18.

222



Bibliography

[78] Zonghao Gu, George L. Nemhauser, and Martin W.P. Savelsbergh. Lifted cover
inequalities for 0-1 integer programs: complexity. INFORMS Journal on Computing,
11:117–123, 1999. Cited on pages 18 and 19.
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