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List of symbols and abbriviations

Symbols

E, B vector of the electric and magnetic field
I intensity of the electromagnetic field
∇ differential operator Nabla
k wave vector of radiation
ε0, μ0 vacuum permittivity, vacuum permeability
ε dielectric permittivity
ñ = n + iκ complex refractive index
n refractive index (real part of ñ)
κ absorption index (imaginary part of ñ)
c0, c speed of light in vacuum and medium with refractive index n

λ0, λ wavelength of radiation in vacuum and medium with refractive index n

ω angular frequency
� reduced Planck constant
Ĥ Hamilton operator
μ̂ electric dipole operator
m̂ magnetic dipole operator
Θ̂ electric quadrupole operator
α electric dipole polarizability tensor
G′ mixed electric-magnetic dipole polarizability tensor (optical activity tensor)
A mixed electric dipole-electric quadrupole polarizability tensor
Djn dipole strength of transition |n〉 ↔ |j〉
Rjn rotational strength of transition |n〉 ↔ |j〉
α, [α] optical rotation angle and specific rotation
ψ, [ψ] ellipticity and specific ellipticity
J0, J1, J2 Bessel functions of zeroth, first and second order
j1, j2 spherical Bessel functions of first and second order
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A′′, ε′′ absorbance and molecular absorptivity
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εαβγ Levi-Civita symbol
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VCD, VCB Vibrational CD, Vibrational CB
VOA Vibrational Optical Activity
ORD Optical Rotatory Dispersion
CDSI Circular Differential Scattering Intensity
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MCT Mercury Cadmium Telluride
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FT-VCD Fourier transform vibrational circular dichroism (spectroscopy)
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TIR Total Internal Reflection
DFT Density Functional Theory
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rad radian
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Zusammenfassung

Diese Arbeit widmet sich der Entwicklung und Untersuchung neuer optischer Messver-
fahren zur Analyse chiraler Substanzen. Das Wort Chiralität bedeutet wörtlich übersetzt
Händigkeit, d.h. ein Objekt wird als chiral bezeichnet, wenn es nicht mit seinem Spiegel-
bild zur Deckung gebracht werden kann, wie zum Beispiel unsere Hände. Ebenso existieren
chirale Moleküle in zwei zueinander spiegelbildlichen Konfigurationen ihrer Atome, welche
als Enantiomere bezeichnet werden. Viele organische, in der Natur vorkommende Mole-
küle sind chiral, wie z.B. Peptide, Enzyme, viele Aminosäuren oder Proteine. Trotz ähnli-
cher physikalisch-chemischer Eigenschaften können Enantiomere über sehr unterschiedliche
biochemische und physiologische Wirkungen verfügen. Dieser Unterschied ist bei der Ent-
wicklung von neuen pharmazeutischen Wirkstoffen von großer Bedeutung. Während ein
Enantiomer die gewünschte Wirkung zeigt, kann das andere nur eingeschränkt wirksam
sein oder sogar zu ungewollten Nebeneffekten führen. Ein bekanntes Beispiel ist der Wirk-
stoff Thalidomid. Er wurde unter dem Namen Contergan in den späten 1950ern als Beru-
higungsmittel verkauft, führte jedoch zu schweren Missbildungen von Neugeborenen. Der
Contergan-Skandal hat daher gezeigt, dass zur Vermeidung von ungewollten Nebeneffekten
zwischen den Enantiomeren pharmazeutischer Wirkstoffe unterschieden werden muss.
Aufgrund der unterschiedlichen Wechselwirkung chiraler Moleküle mit links und rechts
zirkular polarisiertem Licht bieten optische Methoden eine direkte Möglichkeit zur Diffe-
renzierung der Enantiomere. Makroskopisch führt dieser Unterschied zu einem ungleichen
komplexen Brechungsindex ñ = n + iκ für die beiden Zirkularpolarisationen. Der Unter-
schied im Realteil des Brechungsindex δn = nl − nr ist als Zirkulare Doppelbrechung (CB)
bekannt, und ist in Brechung, Beugung und Streuung messbar. Der Unterschied im Ima-
ginärteil δκ = κl − κr hingegen ist gleichbedeutend mit einer differentiellen Absorption
und wird Zirkulardichroismus (CD) genannt. Die für gewöhnlich kleinen Unterschiede δn

und δκ (≤ 10−4) resultieren in winzigen Effekten, deren Nachweis wiederum experimentell
anspruchsvoll ist. Daher werden hier alternative Detektionsmethoden untersucht basierend
auf der differentiellen Brechung, Streuung und Absorption zirkular-polarisierten Lichts. Die
Arbeit ist hierbei zum Teil motiviert, optische Aktivität in kleinen Probenvolumina und
schwierigen (stark absorbierenden) Umgebungen detektierbar zu machen.
Durchtritt linear-polarisiertes Licht eine chirale Substanz, so verursacht der Unterschied im
Realteil des Brechungsindex δn die Drehung der Polarisationsebene, bekannt als optische
Rotation. Da der Drehwinkel direkt proportional zur Konzentration und zurückgelegten
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Strecke innerhalb der Substanz ist, werden Langwegzellen für die Messung sehr kleiner
Werte von δn benötigt. Dies ist jedoch problematisch, wenn nur kleine Mengen verfügbar
sind, was bei der Entwicklung neuer Wirkstoffe oft der Fall ist. Daher werden verschiedene
Konzepte für ein Chirales Refraktometer vorgestellt, welches die Messung von zirkularer
Doppelbrechung in Kleinstvolumina erlaubt. Die Refraktometer basieren auf der differenti-
ellen Brechung der zirkular polarisierten Strahlkomponenten an einer Trennfläche zwischen
einem chiralen und einem achiralen Medium. Da in der Regel δn ≤ 10−6 ist, liegen die
zu erwartenden Strahlablenkungen im Nanometerbereich. Drei unterschiedliche Verfahren
werden präsentiert und getestet, welche Modulationen der Polarisation mit direkten oder
interferometrischen Strahlpositionsmessungen vereinen.
Vibrational Circular Dichroism (VCD) misst die differentielle Absorption der zirkular Kom-
ponenten im Mittelinfrarot (MIR) bezüglich Vibrationszuständen des chiralen Moleküls. Da
VCD damit sensitiv gegenüber der räumlichen Anordnung bestimmter funktionaler Grup-
pen ist, ist es ein wichtiges Werkzeug zur Ermittlung der Absolutkonfiguration chiraler
Moleküle. Ein Problem jedoch ist meist die starke Absorption des Lösemittels selbst, was
die Untersuchungen auf ausgewählte Substanzen und Spektralbereiche einschränkt. Aus
diesem Grund wurde ein Quanten-Kaskaden-Laser (QCL) basiertes VCD-Spektrometer
realisiert. QCLs bieten unter anderem eine deutlich höhere Ausgangsleistung im Vergleich
zu thermischen Lichtquellen (∼ 104), was VCD-Messungen in stark absorbierenden Lö-
sungsmitteln wie Wasser ermöglicht. Untersuchungen an Lösungen verschiedener chiraler
Substanzen (u.a. Prolin in Wasser) werden gezeigt und sowohl mit quantenchemischen
Rechnungen als auch mit Referenzmessungen an einem FT-VCD-Spektrometer verglichen.
Ihrem robusten und kompakten Design zum Trotz leiden QCLs oftmals unter Intensitäts-
schwankungen, welche die erreichbare Sensitivität von Absorptionsmessungen limitiert. An-
hand eines indirekten Messverfahrens wird gezeigt, wie Absorptionsspektren ohne direkte
Detektion der Intensität bestimmt werden können. Das vorgestellte Verfahren ist eine Art
MIR-Refraktometer, welches über die Bestimmung des Totalreflexionswinkels die Messung
der Absorption ermöglicht. Hierfür werden Änderungen des Strahlprofils nach der Totalre-
flexion an einer Grenzfläche zwischen einem ZnSe-Prisma und der untersuchten Flüssigkeit
analysiert und sowohl Real- als auch Imaginärteil simultan bestimmt. Ergebnisse für Di-
chlormethan (DCM) werden präsentiert.
Chirale Kolloide mit einer Größe von wenigen Mikrometer bieten die Möglichkeit, Effek-
te auf mesoskopischen Längenskalen zu untersuchen, welche auf molekularer Ebene nur
schwer nachweisbar sind. Glancing Angle Physical Vapor Deposition (GLAD) wird für
Herstellung der Kolloide mit programmierbarer Geometrie, Chiralität und Materialzusam-
mensetzung in großer Stückzahl benutzt. Die differentielle Streuung von zirkular polari-
siertem Licht dient dabei der Untersuchung und Charakterisierung der Kolloide in Lösung.
Die Messungen werden mit Rechnungen basierend auf einem analytischen Modell vergli-
chen. Es wird gezeigt, dass die differentiellen Streusignale sensitiv gegenüber den chiralen
Strukturelementen der Kolloide sind.



Abstract

This thesis is dedicated to the development and study of new optical measurement tech-
niques for the analysis of chiral substances. The word chirality, which has its origin in
the Greek, literally means handedness. So an object is called chiral if it can not be supe-
rimposed with its mirror image, as for example our left and right hands. Similarly, chiral
molecules exist in two geometric configurations of their atoms with mirror-image symme-
try. These mirror images are called enantiomers. Many natural and organic molecules are
chiral, such as peptides, enzymes, many amino acids or proteins. Despite similar physical
and chemical properties, enantiomers may have very different biochemical and physiologi-
cal effects. This difference is of great interest for the development of new pharmaceutically
active compounds. While one of the enantiomers posses the desired effect, the other may
have limited activity or even cause unwanted side effects. A prominent example is the drug
thalidomide, which was sold as a sedative (Contergan) in the late 1950s, but caused severe
birth defects. Therefore, the thalidomide case raised awareness for the discrimination of
enantiomers of chiral pharmaceuticals to prevent side effects.
Optical methods provide a direct means of distinguishing the enantiomers due to their
differential interaction with left and right circularly polarized light. Macroscopically this
difference leads to an unequal complex refractive index ñ = n + iκ for the two circular
polarizations, which manifests itself in various ways and is referred to as Optical Activity.
The difference in the real part of the refractive index, δn = nlnr, is known as Circular
Birefringence (CB), and is detectable in refraction, diffraction or scattering. The difference
in the imaginary part δκ = κl −κr, called Circular Dichroism (CD), is equivalent to a diffe-
rential absorption of left- and right-circularly polarized light. The usually small differences
δn and δκ (≤ 104) result in tiny effects, which in turn are experimentally demanding to
detect. Therefore, in the presented work alternative detection methods for both δn and δκ

are developed and examined. They are based on the differential refraction, scattering and
absorption of circularly polarized light. Thereby the work is in part motivated by the chal-
lenge of detecting optical activity in small sample volumes or in difficult (strong absorbing)
environments.
When traversing a chiral liquid the difference in the real part of the refractive index δn

causes the rotation of the plane of polarization for linear-polarized light, known as Optical
Rotation. Since the rotation angle is directly proportional to the concentration and the
distance the light traveled within the substance, longer pathlength cells are needed if small



vi Abstract

values of δn are to be detected. This is difficult if only small sample volumes are available,
which is often the case in the synthesis of new compounds. Therefore, different concepts
for a Chiral Refractometer are presented, which allow the measurement of circular birefrin-
gence in microfluidic volumes. The refractometers are based on the differential refraction
of circularly polarized beam components at a surface between a chiral and achiral medium.
Since δn is usually ≤ 106, the expected lateral separations between the beam components
are in the nanometer range. Three different detection schemes are presented and tested, all
combining appropriate polarization modulation techniques with direct or interferometric
beam position measurements.
Vibrational Circular Dichroism (VCD) in the middle infrared (MIR) probes the differential
absorbance between circular polarization states observed across the absorption bands of
molecular vibrational modes. Since VCD is sensitive to the mutual orientation of distinct
functional groups, it provides structural information and has become an important tool for
the determination of the absolute configuration of chiral molecules. One problem, howe-
ver, is the strong absorption of many solvents, which usually limits the studies to selected
solvents and spectral regions. Consequently, a quantum cascade laser (QCL) based VCD
spectrometer was realized. QCLs provide a higher output power compared to thermal light
sources (∼ 104), which allows VCD studies in strongly absorbing solvents like water. So-
lutions of different chiral compounds are examined and compared with FT-VCD reference
measurements, as well as theoretical calculations. These include an aqueous solution of the
amino acid proline with an optical density of up to 3.5.
Despite their compact and rugged design QCLs are often plagued by intensity fluctuations,
which limits the achievable sensitivity in absorption measurements. An indirect method is
shown, how vibrational spectra can be determined without the need for direct intensity
measurements. The presented setup is a type of mid-infrared refractometer, which allows
the measurement of the absorption through the determination of the angle of total internal
reflection. Here changes in the beam profile are analyzed after the total internal reflection
at a boundary between a ZnSe-Prism and the sample. Both the real and imaginary parts
(n and κ) are simultaneously revealed. Measurement results of Dichloromethane (DCM)
are presented, which exhibits a single absorption band in the examined spectral range.
Chiral colloids with a size of a few micrometers provide the possibility to examine effects on
a mesoscopic length scale which are difficult to prove at the molecular level. Glancing Angle
Physical Vapor Deposition (GLAD) is used for the parallel grows of such colloids with pro-
grammable shape, chirality and material composition in large quantities. The differential
scattering of circularly polarized light is used for the characterization of these colloids in
solution. The measurements are compared with calculations based on an analytical model.
It is shown that the differential scattering signal is sensitive to the chiral structural features
of the colloids.



1
Introduction

1.1 Life is chiral

The term chirality has its origin in the Greek word kheir, which means hand. It was brought
into general use by Lord Kelvin, who stated in 1894 [1]:

“I call any geometrical figure, or any group of points, chiral, and say that it has chirality,
if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself.”

Perhaps the most prominent chiral objects are our left and right hands. A molecule is called
chiral when it posses handedness, i.e. it can be found in two geometrical configurations
of its atoms with mirror-image symmetry. These mirror images are called enantiomers
when referring to molecules, while the word enantiomorphs is usually still reserved for
larger objects like crystals. Many organic and natural molecules are chiral, especially those
effecting our daily life like peptides, enzymes, amino acids (except glycine) or proteins. But
the reason why these molecules exist primarily just in one configuration is still unclear.
The two enantiomers of a chiral molecule posses similar physical and chemical properties

in a non-chiral environment but will act differently in the interaction with other chiral
objects. This may lead to very different biochemical and physiological effects. Referring
to pharmaceutical active compounds this difference is of great interest. While one of the
configurations posses the desired properties the other one may have limited activity or
unwanted side effects. A prominent example is the molecule thalidomide (Fig. 1.1), which
was sold as a sedative drug (Contergan) in the late 1950s. It was prescribed to treat morning
sickness, but caused server birth defects in the newborn babies. Studies soon indicated that
the (S)-(−)-enantiomer could be responsible for the fetal damage due to the interaction
with the embryo’s prenatal DNA [2]. Since both thalidomide enantiomers racemize quickly
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in the human body it is not sufficient to take just the (R)-conformer. Although the complete
picture turned out to be not that simple, the thalidomide case raised awareness for the
discrimination of enantiomers of chiral pharmaceuticals to prevent side effects, and the
determination of the enantiomeric excess (or purity) is now a requirement demanded by
the FDA (U.S. Food and Drug Administration).

1.2 Probing chirality

Optical methods provide a direct means of distinguishing the enantiomers of chiral mo-
lecules. Most of these methods are based on the differential interaction of the molecules
with circularly polarized light, which is also chiral. It is macroscopically described by a
difference in the complex refractive index δñ = δn + i δκ to left- and right- circularly pola-
rized light, which is referred to as Optical Activity. It was first discovered by Jean-Baptiste
Biot, Augustin Fresnel, and Aimé Cotton in the early 19th century [3,4]. The usually small
differences (< 10−6) result in tiny effects, which in turn are experimentally demanding to
observe. Nevertheless, a number of optical methods have been developed.
The difference in the real part of the index, called Circular Birefringence (CB), is detecta-
ble in refraction, diffraction or scattering. If linearly polarized light traverses an optically
active medium, the Circular Birefringence will cause the rotation of the plane of pola-
rization, known as optical rotation. In the polarimetry the rotation is detected for the
determination of the handedness and/or the concentration of optically active solutions [3].
The variation in the rotation angle as a function of the wavelength is known as Optical
Rotary Dispersion (ORD). Since the rotation angle is also proportional to the pathlength

Figure 1.1: Both enantiomers of thalidomide, the chiral molecule that caused the Contergan
scandal in the late 1950s. Where the (R)-enantiomer seems to act as a sedative the other
enantiomer turned out to cause dramatic birth defects. (adapted from Wikimedia Commons)
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Figure 1.2: (a) Schematic of a polarimeter for the detection of optical rotation. Unpolarized
light (1) is linearly polarized (2) before passing the optical active sample (3). The rotation
is detected with a second rotatable polarizer (4). (b) Circular dichroism (CD) manifests
itself in the differential absorption between left- and right-circularly polarized light. (adapted
from Wikimedia Commons)

the light travels inside the sample, longer pathlength cells are needed if small differences
δn are to be detected. But this is difficult if only small volumes are available, as is often the
case in high-throughput screenings or if new compounds are synthesized. Polarimetry in
microfluidic volumes is therefore generally not possible. In this thesis a scheme to measure
optical activity in sub-micro liter volumes is presented.
Circular Dichroism (CD) refers to the difference to left- and right-circularly polarized light,
δκ, in the imaginary part of the complex refractive index. It is equivalent to a differential
absorption of the two circular polarization states, which is measured with a CD spec-
trometer. Nowadays CD spectroscopy has a wide range of applications depending on the
spectral region of interest. UV CD, for example, is used to examine the secondary struc-
ture of proteins or charge-transfer processes in chiral metallic complexes [5]. Vibrational
Circular Dichroism (VCD) observed across the absorption bands of vibrational molecular
transitions extends the CD studies to the middle infrared (MIR) region. Being sensitive to
the mutual orientation of distinct functional groups, VCD provides structural information
about chiral molecules. Together with ab initio calculations VCD has become a powerful
tool for the determination of the absolute conformation of small molecules. It is also used
for structural studies of small organic molecules, or proteins and DNA [5]. One difficulty,
however, is often the strong absorption of the solvent itself, especially in aqueous (polar)
solvents. This often restricts traditional VCD instrumentation to selected spectral regions
and special solvents. In this thesis it is shown how the use of MIR lasers permit VCD
studies in aqueous solutions.
Raman-Optical-Activity (ROA) is an alternate form of Vibrational Optical Activity (VOA),
measuring the differential Raman scattering intensities of the circular polarizations. It is a
complementary technique to VCD spectroscopy. Because ROA spectroscopy uses laser in
the transparent (visible) spectral region of the solution, ROA does not suffer from solvent
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absorption. It can be observed in a number of forms defined by the polarization of the
incident and scattered light [3, 6]. In scattered circular polarization (SCP) experiments,
for example, is the incident light linearly polarized and differences in circular polarizati-
on components of the scattered light are measured. In dual circular polarization (DCP)
ROA the incident as well as the scattered light are circularly polarized. Nevertheless, ROA
instrumentations are experimentally and technically more demanding compared to VCD
instrumentation and due to the weakness of the observed ROA signals.
In the field of nonlinear optics there are also forms of optical activity [7, 8], and observa-
bles exist at different orders of nonlinearity. The intensity of the generated light field in
second-order nonlinear processes like sum-frequency (SFG) or second harmonic generati-
on (SHG), for instance, can be used as a measure for the chirality of the sample. Beside
these second order process additional optical activity observables are predicted to exist in
higher-order processes like the (quartic) nonlinear Raman spectroscopy (BioCARS) with
similar properties.
Beside the described methods there are also non-optical indirect tools for chiral structural
analysis like nuclear magnetic resonance (NMR) spectroscopy or X-ray diffraction. Because
both enantiomers show identical chemical shifts and spin-spin coupling constants, conven-
tional NMR spectroscopy is unable to distinguish between them. This requires the use of
chiral reagents typically leading to the formation of diastereomers showing different NMR
signals. Ideas for a direct discrimination in chiral NMR have been published [9] as well as
the use of achiral reagents [10]. The inelastic or resonant scattering of X-rays by optically
active compounds in the solid state is still one of the key methods for the determination
of absolute configuration. It has been first proposed and realized by Bijvoet in 1951 [11].
Since elastic X-ray scattering measures the interatomic distances which do not differ for a
pair of enantiomers, the absolute configuration can not be determined. Using X-rays with a
wavelength near the absorption of just one type of atoms the two crystallized enantiomers
can be distinguished. This is due to the additional phase-lag of the radiation resonantly
scattered at these atoms. This in turn leads to different scattering patterns for the crystal
and its mirror image. Nevertheless, crystallization of optically active compounds with high
purity and regularity is not always easy to accomplish, and the evaluation of scattering
patterns of complex compounds gets difficult.
Despite the wide diversity of techniques detecting optical activity, this work is in part mo-
tivated by the challenge of detecting optical activity in small sample volumes or in difficult
(strong absorbing) environments.

1.3 Motivation and outline

This work presents and investigates new optical methods for the analysis of chiral me-
dia based on different optical activity effects in refraction, absorption and scattering. It is
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motivated by the following questions: How can optical activity (OA) be detected in small
sample volumes as for example is the case in microfluidics? Can OA be analyzed using
VCD in (aqueous) solutions despite the strong solvent absorption? Is there a possibility to
observe OA in scattering and are the colloidal analogues chiral molecules?
The first method introduces a chiral refractometer. Here the refractive index difference δn

(CB) is detected in refraction. At an interface between a chiral and an achiral medium
both circular polarization components will refract with slightly different angles of refrac-
tion. Light which is initially collinear splits into two polarization components propagating
in slightly different directions. This splitting is in the order of nanorad (10−9 rad) for
millimolar (mM) solutions. Since the effect happens at the interface the method requires
potentially much smaller fluid volumes (∼ 1 μl) than usual transmission based experiments
(polarimetry). The sensitivity of the measurement scheme now depends on how small a be-
am displacement or separation can be detected. Therefore different beam position detection
schemes are tested and compared with each other.
The second method which has been developed is a VCD spectrometer using quantum cas-
cade lasers (QCL). These middle infrared (MIR) lasers provide orders of magnitude more
optical power compared to thermal light sources. This allows optical activity measure-
ments in strongly absorbing solutions. Results for different solutions recorded with the
QCL-spectrometer are presented. These include the VCD spectra of aqueous solutions of
the amino acid proline with an optical density of up to 3.5 in the examined spectral region.
Despite their higher power levels and compact and rugged design QLCs suffer often from
intensity fluctuations. This affects and limits the sensitivity in absorption measurements
(for example VCD). Therefore a QCL based MIR refractometer is presented, which allows
the detection of vibrational spectra without direct measurement of the QCL’s intensity.
The real and imaginary part (n and κ) of the refractive index are determined in an imaging
setup. Changes in the beam profile at a total internal reflection interface are used to deduce
simultaneously n and κ of the analyte.
Finally helical colloidal molecules with programmable shape and chirality are investiga-
ted. Glancing angle physical vapor deposition (GLAD) is used for the batch-production of
large numbers of colloids. Suspensions are characterized in water by differential scattering
of both circular polarization components. Scattering CD data of different chiral colloids
(helices) are presented and compared to calculation based on an simple analytical model.
It is shown that the differential scattering signals are sensitive to the chiral parameters of
the colloidal scatterer.

1.4 Publication of main results

The main results of this thesis have been published in four peer-reviewed scientific journals
and two conference proceedings, on which the following chapters (3,4,5,6) are based on:
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Chapter 3: Chiral refractometer

• M. Pfeifer and P. Fischer, “Weak value amplified optical activity measu-
rements”, Opt. Express 19, pp. 16508 - 16517 (2011) [P1].

• M. Pfeifer, and P. Fischer, “Heterodyne ”weak measurements” of nanorad
beam deflections”, SENSOR+TEST Conference proc. 4.3, (2011), presented at
OPTO 2011 [P2].

Chapter 4: QCL based vibrational optical activity

• S.Lüdeke, M. Pfeifer, and P. Fischer, “Quantum cascade laser based
circular dichroism”, J. Am. Chem. Soc. 133, pp. 5704 - 5707 (2011) [P3].

• M. Pfeifer, S. Lüdeke, and P. Fischer, “Mid-IR laser-based vibrational
optical activity”, Proceedings of SPIE 8219, pp. 821906-1 (2012), presented at
Photonics West 2012 [P4].

Chapter 5: QCL based middle infrared refractometry

• M. Pfeifer, A. Ruf, and P. Fischer, “Indirect absorption spectroscopy
using quantum cascade lasers: mid-infrared refractometry and photothermal
spectroscopy”, Opt. Express 21, pp. 25643 - 25654 (2013) [P5].

Chapter 6: Chiral scattering and colloidal molecules

• D. Schamel, M. Pfeifer, J. G. Gibbs, B. Miksch, A. G. Mark, and P.

Fischer, “Chiral colloidal molecules and observation of the propeller effect”, J.
Am. Chem. Soc. 135, pp. 12353 - 12359 (2013) [P6].



2
Theory

This chapter presents the main theoretical background for the understanding of the thesis.
A number of different optical effects are covered in the thesis and so we reserve the specific
theoretical aspects for subsequent chapters. A short overview of the concepts of molecular
chirality and optical activity are given as well as an introduction to the description of
polarized light. A detailed analysis of both can be found in the books of Laurence Nafie [12]
or Laurence Barron [3]. Here we will point out the main results.

2.1 Definitions of molecular chirality and optical activity

2.1.1 Definitions and sources for molecular chirality

We will now take a closer look at the definition of chirality in the context of molecular
geometry and symmetry. As mentioned before, a molecule is called chiral if it cannot be
superimposed on its mirror image. This is the simplest definition of molecular chirality. A
more rigorous definition can be given using group theory, i.e. the classification of symmetry
operations. These include rotations, reflections, and improper rotations. A molecule posses
symmetry if it is unchanged after one of those operations. A molecule is chiral, if it does not
contain any improper rotation symmetry elements [3], like a center of inversion, reflection
planes or rotation-reflection axis. Therefore chiral objects are not asymmetric, since they
can posses symmetry. An example is a left- or right-handed helix, a chiral object which is
symmetric with respect to a rotation axis through the mid point of the helix, perpendicular
to its long axis (C2). Molecular chirality is a special form of isomerism, which describes
compounds with the same molecular formula but distinct structural compositions. There
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Figure 2.1: Overview about the different forms of isomerism. It can be seen, that chirality
or enantiomerism is a special form of stereoisomerism (source: Wikimedia Commons)

are many different classes of isomers which can be split into two main forms: structural
isomerism and stereoisomerism (spatial isomerism) (Fig. 2.1). Structural or constitutional
isomers are compounds where the connections/bonds of atoms and functional groups differ,
which is in contrast to stereoisomers. Here the bond structure is the same, but the geome-
trical orientation of atoms and functional groups in space is different. This class includes
the enantiomers of chiral molecules as well as diastereomers. While structural isomers ty-
pically have different chemical properties, stereoisomers behave often identically except in
their interaction with other stereoisomers, a property already mentioned in chapter 1.
Four distinct structural elements can impart chirality in a molecule (Fig. 2.2) [12]:

1. Helix:
It is the simplest embodiment of a chiral structure. Here the molecule posses a helical
shape, where the sense of its chirality is equal to the handedness of the helix and is
classified as P (plus) for a clockwise and M (minus) for a counterclockwise orientation.
Examples are the molecule hexahelicene or DNA.

2. Chiral Center:
The chiral center is a central atom bonded to a set of different ligands (atoms or
groups of atoms) in a spatial arrangement which is not superposable on its mirror
image. In its simplest an most common form a chiral center is an atom with four
unequal groups, usually a tetrahedral carbon. But also nitrogen, sulfur or phosphorus
can be chiral centers. The chirality of the centers are specified by the letters R (rectus)
and S (sinister) depending on a clockwise or counterclockwise orientation of the
ligands with respect to their priority. The priority of the groups is assigned based
on their atomic mass following the Cahn-Ingold-Prelog system. In some cases, like
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Figure 2.2: Schematic illustration of the four structural elements responsible for molecular
chirality. These are (a) the helix, (b) the chiral center, (c) the chiral axis, and (d) the chiral
plane. See text for details (adapted from Wikimedia Commons).

sugars, amino acids or peptides, a nomenclature with the symbols l and d based on
the Fischer projections is used.

3. Chiral Axis:
A chiral axis can be thought of as a structure starting from a tetrahedral chiral
center where two groups are stretched away from the other two groups. The center
now becomes a line of chirality if the two pairs at each end do not lie in the same
plane. The four groups no longer need to be different from one another, it is just
required that the two groups at each end are not the same. The specification of the
axis can follow the P/M or R/S system based on the relative priority of the groups
when looking along the axis, where those nearest to the viewer have a higher priority.

4. Chiral Plane:
A chirality plane is the plane of a structural fragment in a chiral molecule that cannot
lie in a symmetry plane because of restricted rotation or structural requirements.
The enantiomers of such a chiral molecule differ in the spatial arrangement of the
remaining atoms of the molecule with respect to the chirality plane. Analogous to
the chiral axis the plan is specified by the P/M or R/S system.

If molecules posses more than one structural chirality element they are termed diastereo-
mers, where each unique combination of the configuration of these elements is a different
molecule. Generally each configuration, called diastereomer, has distinct physical and che-
mical properties. Diastereomers which differ in all of their structural elements are enan-
tiomers of each other and are distinguished only by their mirror symmetry. A racemic
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mixture of a chiral substance consist of a equal number of both enantiomers. Any excess of
one enantiomer over the other is called the enantiomeric excess ee, which is defined as the
ratio of the absolute difference between the corresponding amounts (moles, concentration,
or number of molecules) and their sum:

ee = R − S

R + S
× 100 (2.1)

Therefore the enantiomeric excess of a racemic mixture is eerac = 0 whereas for a enantio-
pure solution ee = ±100.

2.1.2 Definition of optical activity and symmetry considerations

The definition of optical activity involves both, the concepts of molecular chirality and
those for circularly polarized radiation. Analogous to enantiomers, left and right circularly
polarization states are spatial mirror images if we consider the pattern of their field vectors
at any instant in time describing a helix in space. So generally it can be stated, that na-
tural optical activity is defined as the differential interaction of a chiral molecule with left-
or right-circularly polarized radiation. Electronic optical activity (EOA) and vibrational
optical activity (VOA) involve electronic or vibrational transitions, respectively.
The behavior of chiral molecules with respect to spatial and time symmetry operations
exhibits information about possible optical activity phenomena and their observables. The
parity operator P̂ is the representation of the space inversion symmetry operation, e.g.
P̂ (x,y,z) = (−x, − y, − z). Most physical laws and the corresponding equations represen-
ting them are unchanged by P̂ , and the therein described physical processes are said to
conserve parity. The time reversal operator T̂ reverses the motion of all particles in the
system. Under T̂ the time coordinate t is replaced by −t in classical mechanics. In quantum
mechanics time reversal is represented by an antiunitary operator T̂ = ÛK̂ where Û is an
unitary operator and K̂ is the operator of complex conjugation [3]. For the case of spinless
particles, Û is the unit operator so time reversal is accomplished by t → −t and complex
conjugation [3,13]. Otherwise Û = iσy, with σy being one of the Pauli spin matrices. If an
equation is left unchanged under T̂ , then the system is said to be time reversal invariant
or have reversality.
Scalar, vector and tensor physical quantities can be characterized due to their behavior un-
der the operations P̂ and T̂ , i.e. whether they change sign or not, and are correspondingly
parity-odd or parity-even, or time-odd or time-even. A vector whose sign changes under P̂

is called a polar or true vector whereas the sign of a axial or pseudo vector is unchanged.
Examples are the position vector r (polar) and the angular momentum vector L (axial).
Analogue is a pseudoscalar a quantity which changes sign with parity operation in contrast
to normal scalars. We will see that chiral observables in solutions are pseudoscalars.
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The electric field vector E and the dipole moment μ can also be classified as parity odd,
whereas the magnetic field B and m (dipole moment) are axial vectors [8]. Since the opera-
tor T̂ reverses the direction of momenta and spins of charged particles but leaves the charge
itself unchanged, it follows that E and μe are time-even and B and m are time-odd. It
now can be verified that the laws of electromagnetism, represented by Maxwell‘s equati-
ons and the Lorentz force equation, conserve parity and reversality [3]. Consequently, any
physical process involving just electromagnetism, the interaction of light with a molecule
for example, has to do the same.
In an isotropic medium, like an achiral liquid, optical effects cannot depend on the orien-
tation of the sample, since it “looks” the same from all sides. As a consequence all optical
observables of this system have to be parity-even scalar quantities, like for example the
refractive index. For a chiral object (molecule), however, this symmetry requirement may
change. Under parity it is transformed into its mirror image, rendering it parity-odd, since
all chirality-specific properties change their sign. Thus this requires scalars and tensors
describing the chiral response also to be parity-odd. Furthermore it can be shown, that a
true chiral observable, i.e. for natural chirality, has to be symmetric with respect to time
reversal [3, 8]. In a chiral solution with ee �= 0 we therefore expect to find experimental
observables that are pseudoscalars.
The weak force, acting on all leptons, is the only fundamental force that does not conserve
parity. This leads to a slight difference between the ground state energies of enantiomers on
the order of ∼ 10−17 of the total energy [12]. This difference disappears, when additionally
every particle is replaced by its corresponding anti-particle (charge conjugation operator
Ĉ). Thus, an anti-particle mirror image is the true equal-energy enantiomer. This energy
difference of the P̂ T̂ enantiomers of a molecule induced by the weak force has so far not
been observed and is still discussed as one of the possible reasons for the homochirality of
most biomolecules.

2.2 Polarized light as a probe for chirality

The interaction of polarized light with an optically active medium can act as a test for
its chirality. Especially the response to circular polarization states, electromagnetic fields
which are chiral by themselves, gives rise to chiroptical effects. This includes effects based
on refraction, absorption and scattering, which will be discussed in this thesis. Therefore
a convenient formalism describing the polarization states of radiation is needed. In what
follows a short summary of two different approaches shall be given. The measurable obser-
vables resulting from the interaction of circularly polarized radiation with an optical active
medium will subsequently be discussed.
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2.2.1 States of polarized light

Here the main points of two different matrix based concepts used to describe the polariza-
tion of light shall be given. Both are based on the wave nature of light, i.e the description
of electromagnetic radiation as a transverse oscillating wave of electric and magnetic fields
obeying Maxwell’s equations. While the Jones formalism is based on complex field ampli-
tudes and is therefore able to describe interference effects, the Mueller-Stokes formalism
uses the resulting intensities for polarization characterization. With the latter it is also
possible to describe partially polarized light in contrast to the Jones formalism. We will
restrict our considerations to the case of a plane wave propagating along or under a small
angle with respect to an optical axis, i.e. the paraxial case.

Jones formalism

Generally, the oscillating electric field of an electromagnetic plane wave at some point
r = (x,y,z)T in space and at time t can be described by:

E(r,t) = Ã exp
[
i
(
k̃ · r − ωt

)]
(2.2)

The complex vector Ã contains the information about the polarization of the wave. The
complex wave vector k̃ and the angular frequency ω are:

k̃ = 2πñ

λ
k̂ and ω = 2πc

λ
, (2.3)

where λ is the wavelength and ñ = n+ i κ the complex index of refraction. Here k̂ is a unit
vector pointing along the direction of propagation. For a wave traveling along the z-axis of
a Cartesian coordinate system the field vector oscillates in the xy-plane since the wave is
transversal. Any polarization state can now be written as a sum of two orthogonal vectors
and Eq. 2.2 simplifies to [12]:

E(r,t) = (Ãxx̂ + Ãxŷ) exp [i (kz − ωt)]
with Ãx,y = ax,y exp [iϕx,y] (2.4)

The polarization state is fully described by the complex amplitudes Ãx,y, therefore it can
be characterized by a two-dimensional matrix known as the Jones vector [14]:

|J〉 =
[
Ãx

Ãy

]
(2.5)
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polarization ϕy − ϕx ax, ay Jones vector

linear (LP) in x direction n · π 1 , 0 |H〉 =
[
1
0

]

linear (LP) in y direction n · π 0 , 1 |V 〉 =
[
0
1

]

linear (LP) along angle β n · π cos β , sin β |β〉 =
[
cos β
sin β

]

left-circular (LCP) π
2 1 , 1 |L〉 = 1√

2

[
1
i

]

right-circular (RCP) −π
2 1 , 1 |R〉 = 1√

2

[
1

−i

]

Table 2.1: Jones vectors for the most common polarization states [14]

The formalism can now be extended to the description of an arbitrarily polarized wave
with a spatial profile of the electric field E(x,y), so one can write:

E(r,t) = E(x,y) exp [i (kz − ωt)] |J〉 (2.6)

This formalism will be used in chapter 3 for the calculation of the intensity profiles in the
chiral refractometer measurements using weak value amplification. The resulting polari-
zation state depends on the amplitudes ax,y and the phases ϕx,y of the two polarization
vectors. Usually the vector |J〉 is normalized, so a2

x + a2
y = 1. The corresponding values for

the most common polarization states are shown in Tab. 2.1.
The transmission of a plane wave with arbitrary polarization through an optical system is
established through a simple matrix formalism. Each polarization optical element in the
system is represented by a 2 × 2 transformation matrix T, the so called Jones matrix.
The Jones vector of the new polarization state follows from matrix multiplication [14]:

|J2〉 =
[
Ã2,x

Ã2,y

]
=
[
T11
T21

T12
T22

]
·
[
Ã1,x

Ã1,y

]
= T |J1〉 (2.7)

For a wave passing N consecutive optical elements the final polarization state is evaluated
through the subsequent multiplication of the corresponding Jones matrices:

|J2〉 = TN . . . T2 T1 |J1〉 (2.8)

Since the elements of the Jones vectors and matrices depend on the choice of the coordinate
system, matrix methods are needed for the transformation between different systems. If
|J〉 and T are the Jones vector and matrix in the xy-basis, then the transformation matrix
R(θ) can be used to calculate the corresponding quantities |J ′〉 and T′ in the x′y′-basis
rotated by an angle θ. The new Jones vector is:
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|J ′〉 = R(θ) |J〉 (2.9)

Similarly, the Jones Matrices can be transformed [14]:

T′ = R(θ) T R(−θ)

T = R(−θ) T′ R(θ) with R(θ) =
[

cos θ

− sin θ

sin θ

cos θ

]
(2.10)

Equation 2.10 may be used to determine the matrix describing a polarizer that has its
transmission axis rotated by an angle β with respect to a polarizer that is oriented along
the x-axis. The resulting matrix is found in Tab. 2.2 together with other useful optical
elements.

Müller-Stokes formalism

The polarization state of an electromagnetic wave may also be described by the Müller-
Stokes formalism. Here the Stokes parameters, a set of four real numbers (S0, S1, S2, S3),
fully describe the intensity and the polarization state of the system. Often they are com-
bined into a vector, the Stokes vector:

�S =

⎡
⎢⎢⎢⎢⎣
S0
S1
S2
S3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I

Q

U

V

⎤
⎥⎥⎥⎥⎦ (2.11)

All Stokes parameters refer to radiation intensities instead of complex field vectors as in
the Jones formalism and are therefore more directly related to experiments. Moreover, in
the Stokes formalism it is possible to represent unpolarized light. The first parameter S0
represents the total intensity of the light beam, whereas S1, S2 and S3 are the intensity
differences between the x- and y, the 45◦- and −45◦, and the left- and right-circular polari-
zation components, respectively. Using the complex amplitudes Ãx,y we can write [12,14]:

S0 = Ix + Iy =
∣∣∣Ãx

∣∣∣2 +
∣∣∣Ãy

∣∣∣2 = a2
x + a2

y

S1 = Ix − Iy =
∣∣∣Ãx

∣∣∣2 −
∣∣∣Ãy

∣∣∣2 = a2
x − a2

y

S2 = I45◦ − I−45◦ = Ã�
xÃy + ÃxÃ�

y = 2axay cos (ϕy − ϕx)
S3 = IR − IL = i

(
Ã�

xÃy − ÃxÃ�
y

)
= 2axay sin (ϕy − ϕx) (2.12)
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optical element Jones matrix

linear polarizer
oriented in x direction P(0◦) =

[
1
0

0
0

]

linear polarizer
oriented under angle θ

P(θ) = R(−θ) P(0◦) R(θ) =
[

cos2 θ
sin θ cos θ

sin θ cos θ
sin2 θ

]

quarter-wave plate
fast axis horizontal Q(π/2, 0◦) =

[
1
0

0
i

]

retarder with
fast axis vertical Q(π/2, 90◦) =

[
i
0

0
1

]
=
[
1
0

0
−i

]

retarder (retardance δ)
fast axis rotated by θ

Q(δ, θ) =
[

cos2 θ + eiδ sin2 θ
(1 − eiδ) cos θ sin θ

(1 − eiδ) cos θ sin θ
eiδ cos2 θ + sin2 θ

]

Table 2.2: Jones matrices for often used optical elements [14]

For completely polarized radiation the relation S2
1 +S2

2 +S2
3 = S2

0 holds so only three of the
four components of the Stokes vector are independent. The system is completely defined
by these parameters. In the general case also including partial polarization we write:

S2
1 + S2

2 + S2
3 � S2

0 (2.13)

Similar to the Jones formalism are Stokes vectors transformed when radiation passes an
optical element, which is generally represented by a corresponding 4×4 matrix, the Müller
matrix [M ] [12]:

�S2 =

⎡
⎢⎢⎢⎢⎣
S2,0
S2,1
S2,2
S2,3

⎤
⎥⎥⎥⎥⎦ = [M ] · �S1 =

⎡
⎢⎢⎢⎢⎣
M00
M10
M20
M30

M01
M11
M21
M31

M02
M12
M22
M32

M03
M13
M23
M33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
S1,0
S1,1
S1,2
S1,3

⎤
⎥⎥⎥⎥⎦ (2.14)

For a wave passing the optical element M1, M2, . . . MN Eq. 2.7 becomes:

�S2 = [M ]N . . . [M ]2 [M ]1 �S1 (2.15)

To calculate the matrix [M(θ)] of a polarization element, which has been rotated by an
angle θ with respect to the propagation direction, the corresponding 4 × 4 version of the
rotation matrix R(θ) is used [15]:
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Table 2.3: Collection of Stokes vectors and Müller matrices. Here HLP , V LP , RCP and
LCP stand for linearly polarized (H = horizontal, V = vertical), right-circularly polarized
and left-circularly polarized, respectively [15].

HLP VLP LP ±45◦ RCP LCP unpol.
�H �V �D �R �L �U⎡
⎢⎢⎢⎣
1
1
0
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
−1
0
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
0

±1
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1
0
0
1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎥⎦

Linear polarizer, transmission axis
horizontal oriented with ±45◦

vertical

1
2

⎡
⎢⎢⎢⎣

1
±1
0
0

±1
1
0
0

0
0
0
0

0
0
0
0

⎤
⎥⎥⎥⎦ 1

2

⎡
⎢⎢⎢⎣

1
0

±1
0

0
0
0
0

±1
0
1
0

0
0
0
0

⎤
⎥⎥⎥⎦

Linear polarizer, transmission axis oriented with θ

1
2

⎡
⎢⎢⎢⎣

1
cos 2θ
sin 2θ

0

cos 2θ
cos2 2θ

cos 2θ sin 2θ
0

sin 2θ
cos 2θ sin 2θ

sin2 2θ
0

0
0
0
0

⎤
⎥⎥⎥⎦

Retarder, retardance δ, fast axis
horizontal oriented with ±45◦

vertical⎡
⎢⎢⎢⎣
1
0
0
0

0
1
0
0

0
0

cos δ
∓ sin δ

0
0

± sin δ
cos δ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1
0
0
0

0
cos δ

0
sin δ

0
0
1
0

0
− sin δ

0
cos δ

⎤
⎥⎥⎥⎦

Retarder, retardance δ, fast axis oriented with θ

⎡
⎢⎢⎢⎣
1
0
0
0

0
cos2 2θ + sin2 2θ cos δ

sin 4θ sin2 δ/2
sin 2θ sin δ

0
sin 4θ sin2 δ/2

sin2 2θ + cos2 2θ cos δ
− cos 2θ sin δ

0
− sin 2θ sin δ
cos 2θ sin δ

cos δ

⎤
⎥⎥⎥⎦
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[M(θ)] = [R(θ)] [M ] [R(−θ)]

with [R(θ)] =

⎡
⎢⎢⎢⎢⎣
1
0
0
0

0
cos 2θ

sin 2θ

0

0
− sin 2θ

cos 2θ

0

0
0
0
1

⎤
⎥⎥⎥⎥⎦ (2.16)

A collection of Stokes vectors and Müller matrices for the most prominent polarization
states and optical elements is shown in Tab. 2.3.

2.2.2 Light-matter-interaction

Optical properties and phenomena including those of optical activity can be explained on
a molecular scale by the following model. A radiation field induces time-varying electric
and magnetic multipole moments in a molecule. These molecular moments are themselves
radiation sources and the corresponding multipolar interaction Hamiltonian is described
by [16,17]:

Ĥint = −μ̂ · E − m̂ · B − Θ̂ : (∇ · E) (2.17)

Here μ̂, m̂ and Θ̂ are the electric dipole, the magnetic dipole and the electric quadrupole
moment operators. For a collection of N point charges ei at position ri with mass mi and
momentum pi they are defined as [3, 18]:

μ̂ =
∑

i

eiri

m̂ =
∑

i

ei

2mi

(li + gisi) =
∑

i

ei

2mi

(ri × pi + gisi)

Θ̂ = 1
2
∑

i

ei(3riri − r2
i 1) (2.18)

li and si are the orbital angular momentum and the spin of the particle, whereas gi is the
g-value of the ith particle. In the definition of the quadrupole moment we also used the
symmetric identity matrix 1 = ∑

αβ δαβ.
Quantum mechanical perturbation theory is now used to describe the influence of the
incident electromagnetic wave on the molecule. The expectation values of the multipole
operators of Eq. 2.18 are calculated to deduce the corresponding induced multipole mo-
ments as a function of the applied electric and magnetic field components, and their spatial
and temporal derivatives. They are in complex notation given by [3, 18,19]:

μ̃ind(t) = 〈Ψ(t)|μ̂|Ψ(t)〉 = α̃E + G̃B + 1
3Ã : (∇E) + . . .
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m̃ind(t) = 〈Ψ(t)|m̂|Ψ(t)〉 = χ̃
m

B + G̃E + . . .

Θ̃ind(t) = 〈Ψ(t)|Θ̂|Ψ(t)〉 = Ã : E + . . . (2.19)

The fields E and B are taken at the molecular origin and the states |Ψ(t)〉 are written in
terms of the perturbed eigenstates of the system. The tensor α̃ is the electric dipole polariz-
ability and χ̃

m
the magnetic dipole susceptibility, whereas G̃ is the mixed electric-magnetic

dipole polarizability or optical activity tensor. The property tensors can be separated into
their real and imaginary parts, i.e. α̃ = α − iα′ etc.

Most linear optical phenomena such as refraction, absorption or Rayleigh light scattering
are described by α. The imaginary part α′ is none zero only in time-odd systems as in a
magnetic field and it is responsible for the Faraday effect (magneto optical rotation) and
magneto circular dichroism (MCD). Optical rotation, circular dichroism and other natural
optical activity phenomena such as vibrational circular dichroism (VCD) and Raman opti-
cal activity (ROA) are due to the tensors G′ and A. The latter is the electric quadrupole
polarizability and contributes only in oriented samples [19]. The remaining tensors G and
A′ generate more exotic phenomena such as gyrotropic birefringence and magnetochiral ef-
fects when the system is both chiral and under the influence of a magnetic field [3,18]. Here
we will restrict the subsequent discussion to the tensors α and G′, as these are relevant
for natural optical activity phenomena. Their Cartesian components are given as [3]:

ααβ = 2
�

∑
j �=n

ωjnRe [〈n|μ̂α|j〉〈j|μ̂β|n〉] (f + ig)

G′
αβ = −2ω

�

∑
j �=n

Im [〈n|μ̂α|j〉〈j|m̂β|n〉] (f + ig) (2.20)

We have used the Einstein summation convention, i.e. repeated subscripts denote summa-
tion. The frequencies ωjn = (Ej − En)/� are the natural transition frequencies between
states n and j. We also introduce the dispersion and absorption line-shape functions f and
g, which are seen in Fig. 2.3 and where Γjn is the full width at half maximum (FWHM):

f(ω,ωjn,Γjn) = (ωjn − ω)
(ωjn − ω)2 + Γ 2

jn

g(ω,ωjn,Γjn) = Γjn

(ωjn − ω)2 + Γ 2
jn

(2.21)

In the next section we define the optical observables for some chiral and achiral phenomena
which are discussed in this thesis.The observables are expressed in terms of molecular
property tensors.
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Figure 2.3: Dispersion and absorption lineshape functions f(ω) and g(ω) in the region of a
resonance ω0 (adapted from [12]).

2.2.3 Observables of optical activity

We restrict the discussion to isotropic samples because only liquids have been used in this
thesis. In an isotropic medium the corresponding polarizability or susceptibility tensors χ

may be replaced by appropriate scalars. These are obtained from an orientational average
denoted by 〈. . . 〉. Using the Einstein summation convention this can be expressed for
tensors of rank 2 and 3 by [8]:

χ̄(1) = 〈χ(1)〉 = 1
3χ

(1)
αβδαβ = 1

3
(
χ(1)

xx + χ(1)
yy + χ(1)

zz

)

χ̄(2) = 〈χ(2)〉 = 1
6χ

(2)
αβγεαβγ = 1

6
(
χ(2)

xyz − χ(2)
xzy + χ(2)

yzx − χ(2)
yxz + χ(2)

zxy − χ(2)
zyx

)
(2.22)

For the derivation of the observables we will use the isotropic components of the molecular
property tensors α and G′, which are (Eq. 2.20 and 2.22)

ᾱ = 2
3�
∑
j �=n

ωjn Re [〈n|μ̂|j〉 · 〈j|μ̂|n〉] (f + ig)

Ḡ′ = − 2
3�
∑
j �=n

ω Im [〈n|μ̂|j〉 · 〈j|m̂|n〉] (f + ig) (2.23)

Linear optical activity

In an achiral medium the tensor G′ vanishes and the induced dipole moments up to first
order in the multipolar expansion are proportional just to the molecular polarizability α.
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The ensemble of induced dipoles gives rise to an average macroscopic polarization P in the
medium, which in linear optics is [7, 8]

P = N〈μind〉 = ε0χ
(1)E + . . . (2.24)

where the angular brackets denote an average over a region containing N molecules per
unit volume. The linear susceptibility χ(1) = Nα/ε0 is the macroscopic analogue to the
molecular polarizability. In an isotropic medium such as a liquid it is written as:

χ̄(1) = N

3ε0
(αxx + αyy + αzz) = N

ε0
ᾱ (2.25)

The linear refractive index ñ0 is defined as a function of the susceptibility and is in the
isotropic case also a scalar

ñ0 =
√

1 + χ̄(1) ≡ √
ε (2.26)

Here we introduced the dielectric permittivity ε. Using the real and imaginary part for
the isotropic components of α (Eqs. 2.23) we can write for the complex refractive index
ñ0(ω) = n0(ω) + iκ0(ω) [12]:

n0(ω) = 1 + N

3�ε0

∑
j �=n

Re [〈n|μ̂|j〉 · 〈j|μ̂|n〉] ωjn(ωjn − ω)
(ωjn − ω)2 + Γ 2

jn

= 1 + N

3�ε0

∑
j �=n

Djnωjnf(ω)

κ0(ω) = N

3�ε0

∑
j �=n

Re [〈n|μ̂|j〉 · 〈j|μ̂|n〉] ωjnΓjn

(ωjn − ω)2 + Γ 2
jn

= N

3�ε0

∑
j �=n

Djnωjng(ω) (2.27)

Djn is the dipole strength of the transition |n〉 ↔ |j〉 and is related to the oscillator
strength fjn by a proportionality constant depending on mass me and charge −e of the
electron [3]:

fjn = 2ωjnme

3�e2 Djn = 2ωjnme

3� 〈n|r|j〉 · 〈j|r|n〉 (2.28)

For a chiral medium it is necessary to go beyond the electric dipole approximation of
Eq. 2.24 and to also consider the induced magnetic dipole moment mint as well as the
electric quadrupole moment Θint. It follows that in Eqs. 2.19 we have to consider the
terms due to G′ and for oriented samples also A. Analog to the macroscopic polarization
the macroscopic magnetization and quadrupole density are defined as

M = N〈mind〉 and Q = N〈Θind〉 (2.29)
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The contributions from both the magnetization and the quadrupole density are considered
by defining an effective polarization [7, 8]

P eff = P + i

ω
∇ × M − ∇ · Q (2.30)

The electric field Er,l of a left- or right-circularly polarized plane wave traveling along the
z direction is:

Er,l(z,t) = E0 exp [i (kz − ωt)] (x̂ ∓ iŷ), (2.31)

where the upper sign corresponds to a right-circularly polarized and the lower sign to a
left-circularly polarized wave. The following relations can be deduced:

Ė
r,l = −iωEr,l, ∇ × Er,l = ±i

ω

c
Er,l, Ḃr,l = ±ω

c
Er,l

In an isotropic chiral medium the tensors α and G′ are replaced by their isotropic com-
ponents while A vanishes [3]. Substitution of the fields Er,l into the equations for the
induced multipole moments (Eqs. 2.19) and using the above relations the effective polari-
zation can be calculated to (for nonmagnetic material, i.e. χ̄m = 0) [7, 8]

P r,l
eff = ε0

[
N

ε0
ᾱ ± 2Nn0

ε0c
Ḡ′
]

Er,l = ε0χ̄
(1)
effEr,l (2.32)

Since Eq. 2.26 also holds in an optically active isotropic medium we obtain the refractive
index for left- and right-circularly polarized light

ñr,l =
√

1 + χ̄
(1)
eff ≈ ñ0 ± g0 with g0 = Nn0

ε0c
Ḡ′ (2.33)

The refractive index difference δñ = ñl − ñr between both circular polarizations is therefore
proportional to the isotropic components of the optical rotation tensor Ḡ′. Similar to the
linear refractive index ñ0 the real and imaginary part of δñ are defined by [12]:

δn(ω) = 4ω

3�
Nn0

ε0c

∑
j �=n

Rjnf(ω)

δκ(ω) = 4ω

3�
Nn0

ε0c

∑
j �=n

Rjng(ω) (2.34)

Rjn is called the rotational strength for the transition |n〉 ↔ |j〉:

Rjn = Im [〈n|μ|j〉 · 〈j|m|n〉] (2.35)

It is seen in Eq. 2.23 that Ḡ′ is a (parity-odd) pseudoscalar because it can be seen as
a product of an electric and a magnetic dipole transition moment. Therefore it fulfills
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the requirements we defined for a chiral observable making the difference in the complex
refractive index a macroscopic observable for molecular chirality. The different effects and
measures resulting from this difference are characterized whether they are based on the
real (δn) or the imaginary part (δκ) of the index.

Circular Birefringence and Optical Rotation (dispersion)

The difference in the real part of the refractive index for left- and right-circularly polarized
light is known as Circular Birefringence (CB). It describes the phase difference between
the two circular components. We now consider a plane wave linearly polarized at angle
β (with respect to the x-axis) and traveling along z. Since linearly polarized light can be
described as a superposition of left- and right-circular states the field vector can be written
using Jones calculus (Eq. 2.6):

E(z = 0,t) = E0e
−iωt|β〉 = E0√

2
e−iωt

[
eiβ|R〉 + e−iβ|L〉

]
(2.36)

After traveling a distance z0 in the optically active medium the field is therefore descri-
bed by:

E(z0,t) = E0√
2

ei(kz0−ωt)
[
ei(β+α)|R〉 + e−i(β+α)|L〉

]

with α = πz0

λ
[nl − nr] = πz0

λ
δn (2.37)

This corresponds to a plane wave with its initial polarization rotated by an angle α, and is
called Optical Rotation or Optical Rotatory Dispersion (ORD) when measured as a function
of wavelength. The measurement of α is mostly used for the characterization of chiral media
in their transparent regions. Because δn depends on the concentration C of the sample,
the wavelength λ, and the pathlength z0, it is useful to define a specific rotation [12]:

[α]Tλ = 1
C z0

α (2.38)

where C is the concentration in g cm−3, z0 the pathlength in decimeter (dm) and T the
temperature. The sign of the specific rotation depends on the handedness of the sample
and is therefore equal and opposite for a pair of enantiomers.

Circular Dichroism and absorption

The difference δκ in the imaginary part of the refractive index is known as Circular Di-
chroism (CD). It manifests itself as a differential attenuation for the circular components
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and is measured as a difference in absorbance. It can be expressed as a difference in the
absorption coefficients for left- and right-circularly polarized light or as an ellipticity of the
resulting polarization. Considering a left- or right-circularly polarized plane wave traveling
along the z-axis through an absorbing optically active medium, we can write the intensity
after a distance z0 as

Ir,l(z0,λ) ∝ |Er,l(z0,t)|2 = I0(λ) exp
[
−4πz0

λ
κr,l

]
= I0(λ)10−Ar,l(λ) (2.39)

This is the Beer-Lambert law where in the last relation we introduced the decadic ab-
sorbance A(λ) = Cz0ε(λ), which is defined by the concentration C, the molar absorption
coefficient ε(λ) and the path length z0 of the sample. Comparison of the exponents re-
lates the imaginary part of the refractive index κ with the absorbance A and the molar
absorption coefficient ε [12]:

Ar,l(λ) = 4πz0

λ ln 10κr,l(λ) and εr,l(λ) = 4π

λ ln 10C
κr,l(λ) (2.40)

Therefore the difference of the absorbance ΔA(λ) and molar absorptivity Δε(λ) for the two
circular polarization states is proportional to δκ(λ) This differences results in an intensity
difference for both circular polarization components which can be detected in a setup using
an appropriate polarization modulation. This will be further explained in chapter 4.
When a linearly polarized light beam travels through the sample its circular components
will be attenuated differently (Eq. 2.39) and the polarization state will become elliptical.
The ellipticity angle, which is the angle between the major axis of the polarization ellipse
and the original polarization direction, is defined as [3, 12]:

ψ(λ) = πz0

λ
δκ = 1

4 ln 10ΔA(λ) = cz0

4 ln 10Δε(λ) (2.41)

Analog to the expression for the specific rotation the density and pathlength dependence
is removed by defining a specific ellipticity [12]

[ψ(λ)]Tλ = 1
C z0

ψ(λ) (2.42)

Often the dependence on the wavelength λ is converted to wavenumber frequency given by
ν = 1/λ. Depending on the molecular transitions involved it is customary to distinguish
between Electronic Circular Dichroism (ECD) and Vibrational Circular Dichroism (VCD).
For measurements of CD spectra one often specifies an anisotropy or ga factor for a specific
transition to state a as the dimensionless ratio of the corresponding circular dichroism to
its parent absorption. Using Eqs. 2.27 and 2.34 we can write [3, 12]:
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ga = δκa

κa

= 4n0

c

Ran

Dan

≈ r

λ
(2.43)

The relation is the same for ΔA and A, as well as Δε and ε. The ratio ga is a measure of the
intrinsic chiral strength of the transition and therefore also of the expected signal-to-noise
ratio. The factor ga scales as the ratio of the spatial extend of the transition, r, to the
wavelength λ of the radiation [12]. Usually r is approximately ∼ 1 nm, so VCD anisotropy
ratios are in the range of 10−3 to 10−6, whereas those of ECD are between 10−2 and 10−4.

Kramers-Kronig transform of optical activity observables

The molecular property tensors α, G′, and Θ when expressed as a sum of dispersive and
absorptive parts (Eq. 2.20) belong to a class of functions known as response functions.
The real (dispersive) and imaginary (absorptive) parts of such functions tare related to
each other by a Kramers-Kronig transform (KKT) [3, 12]. Because the complex refractive
index ñ(ν) and the circular index difference δñ(ν) are both functions of the above property
tensors, the Kramers-Kronig transform also applies to optical activity observables. In the
case of ñ(ν) the KKT relationship is [12]:

n(ν) = 1 + 2
π

P
∫ ∞

0

x κ(x)
x2 − ν2 dx

κ(ν) = −2ν

π
P
∫ ∞

0

n(x) − 1
x2 − ν2 dx, (2.44)

where P denotes the Cauchy principal value of the integral evaluated by a contour integra-
tion in the complex plane. Here we use the wavenumber ν for the spectral dependence. The
equations are the same for any other frequency variable like ω. The integration variable x

has the same units as ν. Because the index of refraction of the vacuum is taken to be unity
an additional term of 1 enters the equation for n(ν).
The relationship can easily be extended to the spectra of circular birefringence (CB) δn(ν)
and circular dichroism (CD) δκ(ν) which are the circular polarization differences of n(ν)
and κ(ν) [12]:

δn(ν) = 2
π

P
∫ ∞

0

x δκ(x)
x2 − ν2 dx

δκ(ν) = −2ν

π
P
∫ ∞

0

δn(x)
x2 − ν2 dx (2.45)

This Kramers-Kronig transform holds not only for δn(ν) and δκ(ν), but also for any pair
of equivalent CB and CD observables, such as the optical rotation α(ν) and the ellipticity
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angle ψ(ν) [12]. As can bee seen from Eqs. 2.44 and 2.45 knowledge of either the dispersive
or absorptive part of a response function over the entire spectrum permits the evaluation
of the other part at any specified frequency ν. And since

P
∫ ∞

0

1
x2 − ν2 dx = 0,

it is obvious that the absorptive part of any response function vanishes if the dispersive
part is constant [3]. As we shall see in chapter 5, KKT are especially useful in the IR,
as here absorption bands are well separated. Thus the integral can be substituted by an
integration over the absorption line.

Optical activity in scattering

The interaction of light with matter, including optical activity, can be understood as a
scattering process on molecular scale as shown in the previous sections. Therefore optical
activity is also detectable in scattering experiments such as Rayleigh (elastic) or Raman
(inelastic) scattering. Especially the latter has proven its usefulness for the measurement of
vibrational optical activity as an alternative to absorbance measurements, i.e. measurement
of VCD. Another form of optical activity is found in the Mie-Scattering of chiral colloids
and macromolecules. Moreover, all optical activity observables in transmission (CD and
CB) can be understood as a result of the interference of the forward scattered waves with
the incident primary wave, which is called refringent scattering [3].
The source of the scattered light is considered to be the emitted radiation generated by the
oscillating electric and magnetic multipole moments induced in a molecule by the incident
light wave (Eq. 2.19). The scattered electric field detected at a distance R large compared
with the wavelength is therefore [3]:

Es = ω2μ0

4πR
ei(kR−ωt)

[(
1 − k̂k̂

)
· μ̃

ind
− 1

c
k̂ × m̃ind − iω

3c

(
1 − k̂k̂

)
· k̂ : Θ̃ind

]
(2.46)

Here k̂ is the unit propagation vector in the direction of the detected wave and k = 2π/λ.
The terms in k̂k̂ · μ̃ and k̂k̂ · (k̂ : Θ̃) ensure that the wave is transverse. Using Eq. 2.19
the field of the scattered wave can be expressed in terms of the molecular property tensors
and the incident plane wave E0 [3]:

Es = ω2μ0

4πR
ei(kR−ωt)aE0 (2.47)
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The scattering tensor a for particular incident and scattering propagation vectors (k̂0 and
k̂) and pure transverse waves is given by:

aαβ = ααβ − i

c

(
εγδβ k̂0

δG′
αγ − εγδαk̂δG

′
γβ

)
− iω

3c

(
k̂0

γAαγβ − k̂γAβγα

)
+ . . . (2.48)

Transmission observables like simple absorption, optical rotation or circular dichroism can
be understood as the interference of the forward scattered part of Es (i.e. k̂ = k̂0) and the
incident wave E0. Any intensity or polarization change arising from refringent scattering
can be considered if the final field Ef = E0 + Es is used to calculated the four Stokes
parameters defined in Eq. 2.12. Detailed calculations of the different transmission observa-
bles are given in [3].
Optical activity and polarization effects are also detectable in light scattering processes
which do not involve the interference between the unscattered and forward-scattered com-
ponents. These cover Rayleigh, Mie and Raman scattering in all other directions, and also
forward Raman scattering due to the different frequencies of the scattered and unscattered
fields. Again a light wave propagating along the z axis is incident upon a scatterer (mo-
lecule) at the origin of the right-handed coordinate system x, y, z. We consider the wave
scattered at an arbitrary angle θ in the yz plane and calculate its polarization and inten-
sity using the Stokes parameters. The scattered wave propagates along the unit vector z′

of second coordinate system x′, y′,z′, with [3]:

x′ = x, y′ = y cos θ − z sin θ, z′ = y sin θ + z cos θ (2.49)

These relations are used to calculate the Stokes parameters (Eq. 2.12) of the scattered wave
Es in the x, y, z system [3]:

Ss
0 = Es

xEs∗
x + Es

yEs∗
y cos2 θ + Es

zEs∗
z sin2 θ −

(
Es

yEs∗
z + Es

zEs∗
y

)
cos θ sin θ

Ss
1 = Es

xEs∗
x − Es

yEs∗
y cos2 θ − Es

zEs∗
z sin2 θ −

(
Es

yEs∗
z + Es

zEs∗
y

)
cos θ sin θ

Ss
2 = −

(
Es

xEs∗
y + Es

yEs∗
x

)
cos θ + (Es

xEs∗
z + Es

zEs∗
x ) sin θ

Ss
3 = −i

(
Es

xEs∗
y − Es

yEs∗
x

)
cos θ + i (Es

xEs∗
z − Es

zEs∗
x ) sin θ (2.50)

Using Eq. 2.47 for the electric field of the scattered wave Es the Stokes parameters can
be expressed in terms of the scattering tensor a and the Stokes parameters of the incident
wave E0, as shown in [3]. Explicit expressions in terms of the dynamic molecular property
tensors α, G′ and A are found by regarding their contributions to the scattering tensor a

(Eq. 2.48). For isotropic samples like fluids and in the absence of external fields products
of tensor components have to be averaged over all orientations of the molecule, analogue
to Eq. 2.22 [3].
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Scattering of randomly oriented achiral molecules at transparent frequencies is usually do-
minated by the real dynamic polarizability α. Only components of the tensor product αα∗

contribute to the Stokes parameters of the scattered wave. In contrast, Rayleigh and Ra-
man scattering from isotropic chiral samples can show additional polarization effects. These
are mainly due to the interference between waves generated by α and waves generated by
G′ or A. Therefore components of the tensor products αG′∗ and αA∗ are added to the
scattered Stokes parameters (Eq. 2.50) [3]. Although A only contributes to optical rotation
or circular dichroism in oriented samples, it is also part of scattering optical activity even
in isotropic samples, where the corresponding terms are on the same order of magnitude
as those from G′. Terms in G′2 and A2 are also found in the Stokes parameters of the
scattered field, but they are expected to be about 10−6 times the terms in α2 and even
10−3 times terms in αG′∗ and αA∗ [3, 20].
An appropriate observable in scattering optical activity is the difference in intensities scat-
tered at an angle θ for both circular polarizations, named Circular Differential Scattering
Intensity (CDSI):

CDSI(θ) = Ir(θ) − Il(θ)
Ir(θ) + Il(θ) ∝ Ss,r

0 − Ss,l
0

Ss,r
0 + Ss,l

0
(2.51)

where Ss,r
0 and Ss,l

0 are the Stokes parameters of the scattered field for right- or left-circularly
polarized incident light. For an isotropic chiral sample neat equations for the scattering in
(near) forward, backward and 90◦-direction can be found in [3, 18, 20]. For 90◦ scattering
we have for example:

CDSI(90◦) =
2
(
13ααβG′∗

αβ − αααG′∗
ββ − 1

3ωααβεαγδA
∗
γδβ

)
c
(
13αλμα∗

λμ − αλλα∗
μμ

) (2.52)

CDSI can also be found in the Mie scattering of chiral colloids and macromolecules even
if only contributions of α are considered. A macromolecule or colloid is considered as an
arbitrary set of polarizability tensors αi, where each emits a wave according to Eq. 2.46.
The total scattered field Es is the sum over all fields emitted by the polarizabilities. Using
Eq. 2.31 for a left- or right-circularly polarized incident plane wave the scattered intensities
Il,r can be calculated. If considering an isotropic suspension of colloids or macromolecules,
the difference and the sum of Ir and Il have to be averaged over all orientations of the
scatterer. Further details are given in chapter 6 where this differential scattering is used
for the characterization of artificial chiral colloids. In contrast to other chiroptical methods
(CD or ORD), CDSI of chiral colloids can give information about structural elements on
the order of the wavelength used in the experiment and is not restricted to spectral regions
within absorption bands of the scatterers [21].





3
Chiral Refractometry

One hallmark of natural and magnetic optical activity is the difference in the real part of
the refractive indices for circularly polarized light (Circular Birefringence), which causes the
rotation of the plane of polarization of a linearly polarized light beam traversing an optically
active medium (Sec. 2.2.3). The small difference typically found in optically active systems
can be detected in transmission (polarimetry) [3]. However, as Fresnel first proposed, it
may also be detected in refraction [22]. A linearly polarized light beam incident at an
interface between a chiral and an achiral medium will split into its two circular polarization
components, as the two components refract with different angles of refraction [22, 23].
Optical activity measurements at interfaces require potentially much smaller fluid volumes
than transmission experiments [23–28]. For chemical and pharmaceutical applications it is
of interest to measure small optical activities (with correspondingly small refractive index
differences) in minute liquid samples.
The sensitivity of the refraction scheme now depends on how small a separation between
the left- and right-circular components can be registered on a detector [22,23,27]. Various
methods have been tested and compared with each other and a distinction is drawn between
two different measurement principles to detect the small beam deflections:

(1) Position Methods, and (2) Intensity Methods

The Position Methods include the direct detection of the beam position with a position
sensitive detector and appropriate polarization modulation, whereas the Intensity Methods
make use of interferometric-like intensity measurements to detect the beam deflection (also
called Weak Value Amplification). The corresponding details are presented in the following
sections. Part of this chapter has been published in [P1,P2].
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3.1 Optical activity induced light beam deflection and splitting

We now consider the following two situations to calculate the angular splitting δθ of a
linearly polarized light beam as a function of the refractive index difference δn between
circularly polarized beam components. The light beam is either travelling from the non
chiral to the chiral medium (named external refraction, Fig. 3.1a) or vice versa (called
internal refraction,Fig. 3.1b). In what follows n = (n+ +n−)/2 is the mean refractive index
of the chiral liquid and n+,− the refractive indices for the circular polarizations.

3.1.1 Calculation of light beam splitting

External refraction: achiral to chiral medium

Both circularly polarized beam components must independently obey Snell’s Law of re-
fraction. With the difference in the refractive index δn = n+ −n− and the angular splitting
δθ = θ+ − θ− this can be expressed as:

n0 sin θ0 = n+ sin θ+ = (n + δn/2) sin (θ + δθ/2) (3.1a)
n0 sin θ0 = n− sin θ− = (n − δn/2) sin (θ − δθ/2) (3.1b)

Here n0 is the refractive index of the achiral surrounding. This equation system can be sol-
ved by subtracting both equations from one another and using fundamental trigonometric
relations. Since δθ is small, the approximations sin δθ/2 ≈ δθ/2 and cos δθ/2 ≈ 1 are true

Figure 3.1: Schematic drawing for the refraction of a linearly polarized light beam at (a)
an achiral-chiral and (b) a chiral-achiral interface (adapted from [23])

and we obtain the following expression for the angular splitting δθ [23]:
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δθ ≈ −δn

n
tan θ (3.2)

Internal refraction: chiral to achiral medium

As before, Snell’s Law of refraction must be independently fulfilled by both circular pola-
rization components, so we get a similar equation system:

(n + δn/2) sin θ0 = n0 sin (θ + δθ/2) (3.3a)
(n − δn/2) sin θ0 = n0 sin (θ − δθ/2) (3.3b)

Subtracting both equations from one another and using the same trigonometric relations
and approximations than for the external refraction we get the following expression for the
angular splitting δθ:

δθ ≈ δn

n0

sin θ0

cos θ
(3.4)

Spatial separation and splitting enhancement

A distance d behind the chiral-achiral interface the two refracted beams are in both cases
separated by a distance 2δx, which is

δx(d) = d · tan
[

δθint,ext

2

]
, (3.5)

where δθint,ext is the angular splitting observed for the internal or external refraction,
respectively. This separation can be detected in different ways to measure δθ and therefore
δn. Moreover, the magnitude of the angular separation δθ for both, the internal and external
refraction, depends on the angle of incidence θ0. Figure 3.2 shows the angular splitting for
both cases for different values of θ0. For the calculation we considered an interface between
air (n0 = 1.0) and a chiral medium with a mean refractive index of n = 1.77 and a circular
birefringence of δn = 1 × 10−6. 1 As a result, an enhancement of δθ takes place for the
internal refraction when the angle of incidence is taken to be close to the angle of total
internal reflection (TIR) [29]. Therefore, the TIR condition for internal refraction for SF11-
glass has been used in the subsequent measurements with θ0 = 30◦.
Another enhancement can be achieved by using a diffraction grating after the chiral sample.

1 This choice of parameters is motivated by the given experimental settings, which will be demonstrated
in the proceeding sections.
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Figure 3.2: Angular separation δθ for internal and external refraction at an interface between
air (n0 = 1.0) and a chiral medium with a mean refractive index of n = 1.77 and a circular
birefringence of δn = 1 × 10−6

This is due to the strong dependence of the diffraction angles on the angle of incidence,
especially for higher diffraction orders with angles close to 90◦. This has been demonstrated
by Ghosh et al. [30] but has not been used here.

3.1.2 Magneto optical activity: The Faraday Effect

Any isotropic medium becomes optically active and uniaxial in the presence of a longitudi-
nal magnetic field. This is also known as the Faraday effect. We consider the Faraday effect
in a glass prism as a model system for an optically active solution with an angled interface.
The plane of polarization of a linearly polarized electromagnetic wave at wavelength λ is
rotated by an angle α as the wave propagates a distance l inside the medium along the
direction of the field, which is

α = π l

λ

(
n+ − n−) = V B l (3.6)

where V is the frequency dependent Verdet constant and B is the magnetic field strength.
Using equations 3.2 and 3.4 the angular divergence δθ between the two refracted circular
polarization components can be written as [23,28]:

δθint ≈ −V Bλ

πn
tan θ (external refraction) (3.7a)

δθext ≈ V Bλ

πn0

sin θ0

cos θ
(internal refraction) (3.7b)
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The angular divergence δθ is now directly proportional to the magnetic optical activity,
i.e. the magnetic field strength B and the Verdet constant V of the glass prism. When V

is known, the optical activity of the glass prism, i.e. the magnitude of δθ, can be precisely
controlled by tuning the magnetic field strength B.
Therefore, a glass prism inside a longitudinal magnetic field induced by an electromagnet
serves as a model system for optical activity to test different detection methods for the
angular splitting. In all subsequent measurements the prism was made from SF11-glass
(n = 1.77 and Verdet constant V = 14 rad/Tm at λ = 633 nm) and the magnetic field
strength was detected with a Gaussmeter (MAGSYS HGM09, resolution 0.1 Gauss, accu-
racy ±0.5%).

3.2 Position method: dual polarization modulation

The first method that has been tested is the Position Method. The small angular deflection
of the probe beam after passing the chiral / achiral interface is directly measured with a
position sensitive detector. Fischer et al. [23] demonstrated with a simple setup the first
measurements of optical activity making use of such a position method. By using a Photo
Elastic Modulator (PEM) for the modulation between circular polarization states combined
with a lock-in detection scheme they were able to measure the Optical Rotary Dispersion
(ORD) of limonene and carvone. Furthermore, angular deviations δθ of ≤ 1 μrad have been
measured with a standard deviation of ∼ 10 nrad. Unfortunately the modulator itself gives
rise to artefacts due to beam deflections (≈ μrad) and/or interference effects modulated at
the PEM frequency. Both arise from surface deformations of the PEM-crystal due to the
modulation process and cause deviations of the data points. Nevertheless, being a versatile
tool providing a variety of polarization modulation schemes a modified setup has been
implemented using an additional PEM to minimize these artifacts.

3.2.1 Experimental setup

The setup used for the dual polarization modulation is shown in Figure 3.3. The light
of a Helium-Neon (HeNe) laser with a wavelength of λ = 633 nm and an optical output
power of P = 10 mW is at first linearly polarized by a polarizer with βpol = 45◦. After
passing the first PEM with its modulation axis horizontally (βP EM1 = 0◦) the light travels
through a Quarter-wave plate (QWP) and a second PEM both with their principle axis
oriented parallel to the first polarizer, i.e. βQW P = βP EM2 = βpol = 45◦. The polarizati-
on of the light is now modulated between the circular states at the difference frequency
Δf = |fP EM1 − fP EM2| of the modulators with fP EM1 = 50 kHz and fP EM2 = 47 kHz, as
will be shown in the next section. The polarization modulated light now enters the opti-
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Figure 3.3: Setup used for Dual-polarization-Modulation. See text for details.

cally active wedge (i.e SF-11 prism inside a magnetic field, Sec. 3.1.2) and the circularly
polarized light beams are refracted at the angled exit surface. A position sensitive detector
(PSD, UDT SPOT-9DMI) is placed a distance d behind the prism to track the position
of the beam and detect any deflections. Therefore the induced photo currents from both
halves of the PSD are detected and transformed to the corresponding voltages using a
transimpedance amplifier. After generating the sum and difference voltages electronically
the signals are detected with a lock-in amplifier (LIA, Stanford Research Systems SR830)
locked to Δf . The reference signal for the LIA is produced by multiplying and low-pass
filtering both reference signals of the PEMs.

3.2.2 Model and calculations

Considering the setup described in the previous section we will now take a closer look at the
polarization modulation using the Stokes-Müller-formalism. The laser emits horizontally
polarized light defined by (Sec. 2.2.1)

�H =

⎡
⎢⎢⎢⎣
1
1
0
0

⎤
⎥⎥⎥⎦ (3.8)

The two PEMs are operated with the same retardation of π/2, so that the light component
that modulates between left and right circular at the difference frequency of the two mo-
dulators is detected. The resulting Stokes-vector is calculated by successively multiplying
the Müller matrices for each component to this vector:
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�Sout = [P EM2,45◦ ] · [QW P45◦ ] · [P EM1,0◦ ] · [LP45◦ ] · �H

=

⎡
⎢⎢⎢⎢⎣

1
− cos [δM2(t)] sin [δM1(t)]

cos [δM1(t)]
− sin [δM2(t)] sin [δM1(t)]

⎤
⎥⎥⎥⎥⎦ (3.9)

For the calculation the corresponding matrices defined in Section 2.2.1 have been used.
The Photoelastic Modulator (PEM) can be described as a retarder with a time-varying
retardation oscillating at a circular frequency ω = 2πf :

δM1,2(t) = δ1,2 sin [ω1,2t] (3.10)

The expression for [Sout] can further be simplified using the following relations:

cos [a sin (bt)] = J0(a) + 2J2(a) cos (2bt) + . . .

sin [a sin (bt)] = 2J1(a) sin (bt) + . . . (3.11)

The functions J0(x), J1(x) and J2(x) are the Bessel functions of the zeroth, first, and second
order, respectively. So we have:

�Sout =

⎡
⎢⎢⎢⎢⎣

1
−2J1(δ1)J0(δ2) sin (ω1t) − 4J1(δ1)J2(δ2) sin (ω1t) cos (2ω2t)

J0(δ1) + 2J2(δ1) cos (2ω1t)
−4J1(δ1)J1(δ2) sin (ω1t) sin (ω2t)

⎤
⎥⎥⎥⎥⎦ (3.12)

Since the fourth component of [Sout] is defined as the difference between the intensities of
the circularly polarized beam components we will focus our attention on this component.
It can be written as:

�Sout,4 = −2J1(δ1)J1(δ2){cos [(ω1 − ω2) t] − cos [(ω1 + ω2) t]} (3.13)

Equation 3.13 contains two time-varying terms, one oscillating with the difference and one
at the sum frequency. An example calculation of [Sout]4 for f1 = 47 kHz and f2 = 50 kHz
is shown in Fig. 3.4. The polarization of the laser beam is modulated between the circular
states at the difference frequency Δf = f1 − f2. The component oscillating at the sum
frequency is suppressed by using a lock-in amplifier. The displacement δx of the beam
induced by the circular birefringence δn of the optically active sample will oscillate with
Δω = 2πΔf with its amplitude δx0 proportional to δn

δx(t) = −2J1(δ1)J1(δ2)δx0 cos [Δωt] (3.14)
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Figure 3.4: Example calculation of [Sout]4 for f1 = 47 kHz, f2 = 50 kHz and a quaterwave
retardation for both PEMs, i.e. δ1 = δ2 = π/2. The signal is now composed of two frequency
components, one at the difference and one at the sum frequency.

All other unwanted beam displacements arising from the surface deformations of the PEMs
are expected to oscillate at frequencies other then Δf , so δx can be separated from these
artifacts. The deflection δx is measured with a position sensitive detector. The detected
intensity of the deflected laser beam with a Gaussian beam profile can be written as:

Iδ(x,y) = I0 exp
[
−2(x + δx)2 + y2

w2

]
, (3.15)

where w is the beam radius. The power PA and PB incident on the two halves of the PSD
is calculated by an appropriate integration of Iδ(x,y)

PA(t) =
∞∫

−∞
dy

0∫
−∞

Iδ(x,y) dx and PB(t) =
∞∫

−∞
dy

∞∫
0

Iδ(x,y) dx (3.16)

Therefore we obtain for the power difference ΔP = PB − PA detected by the PSD:

ΔP (t) = −P0 erf
[√

2δx(t)
w

]
with P0 = 1

2πw2I0 (3.17)

Both, the difference ΔP and the power of the laser P0 can be expressed in terms of the
difference ΔU and the sum ΣU of the generated voltages UA,B:

ΔP = ΔU

10 · atrans · g
and P0 = ΣU

2.5 · atrans · g
(3.18)
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Here atrans = 4 × 104 V/A is the gain factor of the transimpedance amplifier and
g = 0.48 A/W is the responsivity of the detector element. In addition ΔU and ΣU are
amplified by a factor of 10 and 2.5, respectively. While ΔU is fed into the signal input
of the LIA ΣU is detected with one of the auxiliary inputs. Since the measured lock-in
amplitude RΔU is an RMS- not a peak-to-peak-value we have to multiply it by

√
2. Our

final result for the amplitude δx0 of the displacement is therefore

δx0 = w

2
√

2J2
1 (δ)

erf−1
[√

2RΔU

4ΣU

]
, (3.19)

where erf−1 is the inverse of the error function erf(x) = (2/
√

π)
∫ x

0 e−t2
dt. We also assumed

that both PEMs have the same retardation δ = δ1 = δ2 = π/2.

3.2.3 Measurements

To test the Dual Polarization Modulation method the following measurements have been
performed. At first the PSD was placed at a distance d = 0.6 m behind the SF11 sample
prism. Four consecutive measurements have been taken, where the magnetic field strength
B was changed in steps of ΔB ≈ 27 Gauss. Each data point is an average of 100 lock-in

Figure 3.5: Measurement results using the Dual Polarization Modulation technique for two
distances d between the prism and the PSD. As the distance increases so does the measured
beam separation δx. The theoretically predicted values are also shown (dashed and dotted
lines).
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values, which have been taken in 100ms time intervals. The same procedure was now per-
formed with an increased distance between prism and PSD of d = 2.0 m. All measurement
results are shown in Fig. 3.5 together with the theoretically predicted values calculated
using Eq. 3.5. The error bars shown correspond to the standard deviation also calculated
from the averages. The measurements are in agreement with theory. The shift of the first
measurement of each data set is due to the magnetization of the iron core of the elec-
tromagnet. The slope of the measurement line increases as the distance d between prism
and detector is increased which is what the theory predicted (see Eq. 3.5). The data has
been corrected for the offset, which is introduced through the PEMs as described above.
It was determined by simply using a linear fit of the uncorrected data and by taking the
intercept with the y-axis (B = 0 Gauss). For all measurements it was on the order of
δxoffset ≈ 50 nm (d = 0.6 m) to δxoffset ≈ 73 nm (d = 2.0 m). Changes of δn ∼ 1 × 10−8

in the circular birefringence are well resolved.

3.3 Intensity method: weak value amplified detection

Ideally, a measurement yields distinct (eigen)values that can be recorded using a suitable
measuring device. Aharonov, Albert, and Vaidman (AAV) considered the case of “weak
measurements” in quantum mechanics, where the measurement is unable to distinguish
between (eigen)values after a weak perturbation [31,32]. AAV showed that, if prior to the
measurement the system is prepared in a well-defined state, then a suitable post-selection
can give rise to large expectation values and thereby permit the (eigen)values to be distin-
guished. They considered the displacement of the spin-components of a Gaussian ensemble
of spin-1

2 particles that are detected on a screen after passing through two orthogonal
Stern-Gerlach magnets. An optical weak value measurement was performed by Ritchie et
al. [33], who showed that by carefully pre- and post-selecting the polarization state of a
light beam, a weak value amplification scheme can be used to detect a lateral beam shift
of 0.64μm between the two linear-polarization components induced by a birefringent cry-
stal. Hosten and Kwiat [34] reported the observation of an optical analog of the Spin Hall
effect, where the lateral displacement of the two orthogonal linearly-polarized components
of a light beam was measured via weak value amplification with ∼ Å sensitivity. Dixon et
al. [35] similarly showed that beam deflections down to 0.4 prad could be detected in a
Sagnac interferometer.

Here, it is shown how weak value amplification can be adapted to measure optical activity.
Whilst weak value amplification has been used to determine small lateral beam shifts, it is
difficult to determine the handedness of a chiral liquid with a conventional weak value mea-
surement, as reported in the literature. Therefore a weak value measurement is combined
either with an appropriate polarization modulation or with a heterodyne detection. This
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enables the measurement of the handedness (sign) of weak optically active media whilst
still benefiting from an increase of up to 106 in the beam separation opposed to the case
without a weak value amplification.

3.3.1 Weak value amplified measurement of small beam deflections

Weak measurements in optics that are based on polarization entail three steps: (1) pre-
paration of the system in a defined (polarization) state, which is termed pre-selection,
(2) a weak interaction giving rise to a (small) polarization-dependent beam deflection, and
finally (3) post-selection of the final (polarization) state, which is chosen to be nearly or-
thogonal to the initial state. In our case the weak interaction is due to optical activity. A
coherent light beam with a Gaussian beam profile is linearly polarized and incident upon
an optically active wedge (see Fig. 3.6). Here the wedge’s optical activity is introduced by
the Faraday effect as described before (Sec. 3.1.2), but the theory is the same for natural
optical activity, e.g. a chiral liquid in a triangular cuvette. The linear polarization state
of the light is equivalent to a superposition of two circular polarization states (left- and
right-circular) which experience different refractive indices in the wedge.
This makes them refract at different angles of refraction at the second interface such that
the light beam splits into two [23] as shown in Sec. 3.1. Since the handedness of the optically
active medium determines which of the two circular components has the larger refractive
index and hence the larger angle of refraction, this information is crucial in natural optical
activity measurements. We will now first explain how ’conventional’ weak measurements
can be used to detect minute angular beam deflections. In the subsequent sections the dis-
cussion is extended to describe how to retain the sign information and hence the handedness
of the optically active medium in a weak measurement with an orthogonal post-selection.
Although the weak scheme was initially proposed for quantum measurements [31], the same
principle can be understood using a classical treatment [32,33,36], as is used here.
A light beam is assumed to propagate along the z′ direction and is taken to be linearly po-
larized along x′, denoted by |H ′〉 (Fig. 3.6 and Fig. 3.7). Using Jones calculus the complex
electric-field vector after the pre-selection polarizer is:

E1(x′,y′,z′) = E(x′,y′) eik0·r′|H ′〉 = E0 exp
[
−x′ 2 + y′ 2

w2

]
eik0z′

[
1
0

]
(3.20)

where w is the radius of the Gaussian beam and k0 ‖ ẑ′ the wavevector with |k0| = 2πn0/λ.
After refraction at the optically active prism surface the beam now propagates along z

(Fig. 3.7). The weak interaction at the interface causes an angular deflection of the left-
(−) and right- (+) circularly polarized beam components. Their angular beam separation
δθ = θ− − θ+ is proportional to the difference of their index of refraction δn (see Eq. 3.4).
For neat (undiluted) chiral liquids |δθ| is already � 10−6 rad and the beam separation
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Figure 3.6: Usually weak measurement are based on three steps: (a) preparation of the
system in a defined (polarization-) state (pre-selection), (b) weak interaction (perturbation)
with the system giving here rise to different angles of refraction for two orthogonal circular
polarization states (CP , and CP ), and finally (c) post-selection of the final (polarization-)
state. (taken from [P1])

compared to w (∼ mm) is consistently small (∼μm), even after ∼ m. As before we know
that at a distance d after the interface the two Gaussian beam components are separated
by 2 |δx(d)| (Eq. 3.5), thus:

E2(x,y,d) = 1√
2
[
E− eik−·r |L〉 + E+ eik+·r |R〉

]
(3.21)

with

E± = E(x ∓ δx(d),y) and k± = 2πn0

λ
[± sin (δθ/2) x̂ + cos (δθ/2) ẑ] ,

where n0 is the refractive index of the surrounding medium (here air). The vectors |L〉
and |R〉 are respectively the normalized Jones vectors for the left- and right-circularly
polarized components. Because the angular beam shift is so weak, the circular polarization
components spatially overlap except for the outermost wings of the Gaussian beam. It
follows that the center of the resulting beam is still linearly polarized, and only the edges
contain circular polarization components. Post-selection is achieved with an analyzer set
to an angle βpol placed after the interface and in front of the detector. If βpol is orthogonal
to the initial polarization the center is extinguished and only the circular components at
the wings of the Gaussian pass the analyzer. A weak value amplification takes place as the
beam separation dramatically increases from a few ∼ nm or less to the width of the light
beam, typically ∼ mm. This amplification is maximal for an orthogonal post-selection
state [33]. However, the nature of the measurement has changed, as now the intensity
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Figure 3.7: Refraction geometry at a chiral-achiral interface for a positive (a) and negative
(b) circular birefringence δn. (taken from [P1])

becomes the measure of the weak interaction [32, 37]. The intensity after post-selection
is directly proportional to the angular beam separation |δθ|. The bigger |δθ| the more
intensity passes the analyzer. This can be seen from the field vector and the expression for
the intensity after the analyzer:

E3(x,y,d) = 1
2

[
E− ei(k−·r−βpol) + E+ ei(k+·r+βpol)

]
(cos βpol |H〉 + sin βpol |V 〉)

I3(x,y,d) = 1
2c0ε0|E3|2 = c0ε0

8
[
E2

+ + E2
− + 2 E+E− cos(Δk · r + 2βpol)

]
(3.22)

where c0 and ε0 are the speed of light and the permittivity of the vacuum, respectively.
The difference between the two wavevectors k± corresponding to the separated circularly
polarized modes is given by:

Δk = k+ − k− = 2k0 sin
[

δθ

2

]
x̂ (3.23)

Figure 3.8 shows plots of the intensities I2(x,y,d) and I3(x,y,d) calculated for two different
beam displacements δx(d) and an orthogonal post-selection polarizer (i.e. βpol = 90◦). I2
is a single Gaussian (Fig. 3.8a and c), while I3 shows two peaks separated by a distance
comparable to the beam diameter (Fig. 3.8b and d). Here, the peak intensity is proportional
to the displacement of the beams. As can be seen from Fig. 3.8 and Eq. 3.22, the peak
intensity after orthogonal post-selection is not sensitive to the sign of δx(d), i.e. the left-
and right-circular components can not be distinguished when βpol = 90◦, as it is no longer
clear which of the two polarization components deflects with δx(d) and which one deflects
with −δx(d). The sign information of the optical activity is therefore lost. It thus becomes
necessary to combine weak value amplification with an appropriate modulation scheme
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to retrieve the sign. This will be shown in the subsequent sections, where two different
modulation schemes are presented and compared. In optical activity measurements the
linear polarization state will necessarily rotate as it passes the optically active medium.
Due to the necessary wedge geometry of the sample cell (Fig. 3.7), the light beam now
traverses unequal distances through the optically active medium across the beam diameter.
The optical rotation α(x) also varies linearly across the beam diameter:

α(x) = α0 + κα · x (3.24)

Here κα is a proportionality constant and α0 is the rotation angle at the center of the beam.
Now Eq. 3.22 has to be modified accordingly:

I ′
3(x,y,z) = c0ε0

8

{
E2

+ + E2
− + 2 E+E− cos

[
2
(

k0 sin
(

δθ

2

)
x + βpol − α(x)

)]}
(3.25)

Any polarization scheme that simply modulates the angle of the pre- or post-selection
polarizers will adjust the amplification factor of the separation, but will also be sensitive
to the optical rotation across the beam waist and will therefore primarily measure optical
rotation (polarimetry) and not the angular deflection (beam separation). Therefore care
must be taken when designing an appropriate modulation scheme, if these two phenomena
are to be distinguished.

3.3.2 Heterodyne weak value amplified measurements

At first a heterodyne detection scheme is implemented to extract amplitude and the sign
of the optical activity. The setup of Fig. 3.6 is now slightly modified (Fig. 3.9). A so called
Zeeman HeNe laser is now used as a polarized light source, which emits two orthogonally
circularly polarized modes with a frequency difference given by the Zeeman effect. This
is realized by placing the laser cavity inside a strong longitudinal magnetic field, where
the normal Zeeman effect leads to a splitting of the corresponding energy levels of the
laser medium [38]. A quarter-waveplate converts the circular components into vertical and
horizontal polarized Gaussian modes, polarized along y′ and x′ respectively. Again each
mode is split into its circular polarization components at the chiral interface as described
before (Sec. 3.1). A post-selecting analyzer is introduced for one of the two beams before
the heterodyne beat signal is observed at the detector. As before the direction of the laser
beam is taken to be along the z′-axis. Both modes have a 2D-Gaussian beam profile with
the same amplitude E(x′,y′) and beam size w. So Eq. 3.20 has to be slightly modified:

E4(x′,y′,t) = E(x′,y′)
[
e−iωH t|H ′〉 + e−iωV t|V ′〉

]
eik0·r (3.26)
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Figure 3.8: Calculated intensities for the sum (solid blue line) of two separated and ortho-
gonally polarized Gaussians (dashed lines) before ((a) and (c)) and after post-selection (red
line, (b) and (d)) for different beam displacements δx. The amplitude of the post-selected
intensity is directly proportional to |δx| but not to the sign of δx [P1]

Here ωH and ωV are the angular frequencies of the horizontally and vertically polarized
modes, respectively, and k0 is the incident wavevector. The complex amplitudes for the
horizontal and vertical polarized modes can be expressed in terms of the Jones vectors for
left- and right-circular polarized light (Sec. 2.2.1).

|H〉 = 1√
2

(|L〉 + |R〉)

|V 〉 = 1√
2i

(|L〉 − |R〉) = 1√
2

i (|R〉 − |L〉) (3.27)

After refracting at the glass prism, the circular polarized field components of both modes
are independently refracted and separated. The right-circularly polarized components of
the two laser modes are deflected in the same direction, similarly the left-components. After
the post-selection analyzer one obtains after a distance d behind the glass prism:

I4(x,y,d,t) = c0ε0

8
[(

E2
+ + E2

−
)

+
(
E2

− − E2
+

)
sin Δωt + 2E+E− sin 2Γ (x) cos Δωt

]

with Γ (x) = k0 sin
(

δθ

2

)
x − α(x) + βpol (3.28)

The resulting intensity has contributions oscillating at the difference frequency Δω of the
two laser modes. The first term is constant and not of interest. The second term oscillating
at sin Δωt is proportional to the difference of the two shifted Gaussian amplitudes E+ and
E− and so a measure of the splitting. The third one modulated with cos Δωt depends on the
product of E+ and E− and also on the optical rotation α(x) through Γ (x). Assuming that a
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position sensitive split detector is used for detection with I4 centered on the two halves A

and B of the photodetector, then the measured time-dependent power modulated at Δω

on each side of the detector can be calculated analog to Eqs. 3.16. By inserting Eq. 3.28 in
Eq. 3.16 the integrals can be calculated and we obtain for the difference ΔP = PB − PA of
the signals:

ΔPΔω(t) = P0

2

{
erf
[√

2δx

w

]
sin Δωt + cos (2b) erfi

[
aw√

2

]
exp

[
−2δx2

w2 − a2w2

2

]
cos Δωt

}

with a = k0 sin
(

δθ

2

)
− κα and b = (βpol − α0) (3.29)

where P0 = 0.25πε0c0E2
0 w2 is the power of the laser, and erf(x) = (2/

√
π)
∫ x

0 e−t2
dt and

erfi(x) = −i erf(i x) are the real and complex error functions, respectively. As expected,
the amplitude of the first term is proportional to the magnitude and sign of the lateral
displacement δx , i.e. the optical activity δn. It can be separated from the second term due
to the phase shift using lock-in detection.

Experimental setup

The setup used for the heterodyne weak measurements is shown in Fig. 3.9. A HP 5517B
Zeeman-HeNe-laser was taken as a light source, which emits both orthogonal linear po-
larized modes with an frequency difference of Δω = 2.5 MHz and a center wavelength
of λ = 633 nm. The light passes through the 30◦-sample prism (SF11-glass) inside the
homogeneous longitudinal magnetic-field. The post-selection is done by a Glan-Thompson-

Figure 3.9: Experimental setup used for the heterodyne weak value amplified measurements.
See text for details. (adapted from [P2])
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polarizer before the position sensitive detector (PSD, UDT SPOT-9DMI). The latter is
placed 0.6 m after the prism. Once again the generated left and right-side signals are elec-
tronically subtracted and sent to a lock-in amplifier (Stanford Research Systems SR844)
locked to the difference frequency Δω.
The in-phase (X(B)) and the out-of-phase component (Y (B)) of the LIA represent the
amplitudes of the signals oscillating with cos Δωt and sin Δωt, respectively. At the begin-
ning of each measurement the beam was centered on the PSD. The lateral displacement δx

can now be measured based on the lock-in amplitude Y (B) of the out-of-phase component:

δx = w√
2

erf−1
[2ΔP

P0

]
= w√

2
erf−1

[
2
√

2 Y (B)
gtrans ρsens P0

]
(3.30)

Here gtrans = 1 ·104 V/A is the gain of the transimpedance amplifier and ρsens = 0.48 A/W
the sensitivity of the detector element.

Measurements

The magnetic field was tuned between 250 and 550 Gauss with a step size of 30 Gauss and
the corresponding in-phase and out-of-phase lock-in amplitudes were measured. Figure 3.10
shows the results for three measurements where each is an average over five consecutively

Figure 3.10: Measurement results using heterodyne weak value detection. Shown are both,
(a) the in-phase and (b) out-of-phase component, where only the latter changes sign as the
polarity of the magnetic field does.
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Figure 3.11: Comparison of the displacement values δx calculated from Y (B) using Eq. 3.30
and the theoretically predicted ones (Eq. 3.5). Both are in good agreement with each other.

taken data sets. Differences in the magnetic field strength of ΔB = 30 Gauss are well
resolved both in X(B) and Y (B) which correspond to a difference in the circular birefrin-
gence of δn = 10−8 and an angular beam deflection of δθ = 4.5 nrad. Now the polarity of
the B-field was changed and again three measurements were performed where both X(B)
and Y (B) were recorded. As expected only the out-of-phase signal Y (B) changes sign with
a reversal of the B-field polarity and is therefore sensitive to the handedness of the optical
activity. Furthermore, the three measurements of each diagram show the same response of
the system to linear changes of the magnetic field, which is reflected in the slopes of the
three data sets. Therefore, Eq. 3.30 was used to calculate the displacement δx from the
measured Y (B) values. The results are shown in Fig. 3.11, where they are compared with
the values predicted from theory (Eq. 3.5). All measured values are in good agreement
with the theoretical ones. All data sets have been recorded with no active temperature or
position stabilization of the prism and the PSD, respectively.
Using the Zeeman-HeNe-laser in the heterodyne detection setup has slightly improved the
sensitivity compared to the method shown before. However, the setup requires speciali-
zed equipment. In the following section an even more sensitive measurement scheme is
introduced using a conventional HeNe laser.
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3.3.3 Polarization modulated weak value amplified measurements

We now tested a combination of a weak value amplified measurement with an appropriate
polarization modulation and therefor adapted the setup in Fig. 3.6. The post-selection
analyzer is kept nearly orthogonal (within experimental error) and a Faraday-rotator (FR)
and a quarter-wave plate (QWP) are introduced after the pre-selection polarizer as shown
in Fig. 3.13. As before, the light is first polarized along x′ (Eq. 3.20), but then passes the
FR in combination with the QWP. The FR rotates the plane of polarization by a small
angle βF R, but since the quarter-waveplate is oriented with its fast-axis parallel to the pre-
selection polarizer, the beam now contains a circular polarization component and becomes
elliptical:

E5 = E√
2

eik0·r [(cos βF R − sin βF R) |L〉 + (cos βF R + sin βF R) |R〉] (3.31)

where the explicit x and y dependence has been suppressed for clarity. Again at the exiting
surface of the optically active wedge the circular polarization components are split, and
after passing the post-selecting analyzer, set at βpol, the resultant intensity distribution at
the detector becomes

I5 = c0ε0

8
[(

E2
+ + E2

−
)

+
(
E2

+ − E2
−
)

sin 2βF R + 2E+E− cos 2Γ (x) cos 2βF R

]
(3.32)

This expression is very similar to the one we derived for the heterodyne weak value amplified
measurements in Sec. 3.3.2. A position sensitive split detector is used and the resulting
power on each side of the detector can also be calculated using equations 3.16. The difference
of the two signals is

ΔPF R = P0

2

{
erf

[√
2δx
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]
sin 2βF R − sin (2b) erfi

[
aw√
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]
exp
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−2δx2

w2 − a2w2
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]
cos 2βF R

}

with a = k0 sin
(

δθ

2

)
− κα and b = (βpol − α0) (3.33)

If the Faraday-rotator is now modulated at ωF R so that βF R(t) = Δβ sin ωF R t, the inten-
sity I5(x,y,d,t) as well as the power difference ΔPF R(t) become time-dependent, which is
illustrated in Fig. 3.12. Analog to equations 3.11 we can write:

sin [2Δβ sin ωF R t] = 2J1(2Δβ) sin ωF R t + . . .

cos [2Δβ sin ωF R t] = J0(2Δβ) + 2J2(2Δβ) cos 2ωF R t + . . . (3.34)
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Figure 3.12: (a) Intensity I5(x,y,z,t) at y = 0 for beam displacements δx = ±100 nm
calculated for different fractions of the period T . (b) Resulting sin ωF Rt term of the time-
dependent power difference ΔP (t) calculated with Eq. 3.33 for δx = ±100 nm. Both signals
have the same amplitude but are phase-shifted by π. (taken from [P1])

tively. As can be seen from Eq. 3.33 the first term now oscillates at the fundamental, ωF R,
and is directly proportional to the splitting δx. The second term splits into two, a constant
and one modulated at the harmonic 2ωF R. Lock-in detection allows the discrimination of
the first term from the others influenced by the optical rotation α(x). Figure 3.12b demons-
trates, that the amplitude of the first term is proportional to |δθ| and the sign of the signal
is proportional to sgn(δθ). If the magnetic field B is switched off, the lateral displacement
δx and optical rotation α(x) will vanish and Eq. 3.32 simplifies to

I ′
5 = c0ε0

4 A2
0 [1 + cos 2βpol cos 2βF R] , (3.35)

The sum of the power signals ΣP = PA + PB generated at the detector can again be
calculated using equations 3.16:

ΣP (t) = P0

2 [1 + cos 2βpol (J0(2Δβ) + 2J2(2Δβ) cos 2ωF Rt)] (3.36)

Now just the term oscillating at the second harmonic of ωF R is detected with the lock-
in amplifier. The rotation angle Δβ of the rotator is directly proportional to the applied
voltage UF R, so the resulting amplitude RLIA,2f is:

RLIA,2f = U0 J2(2Δβ) cos 2βpol = U0 J2(2 c UF R) cos 2βpol (3.37)

This equation can now be used for the calibration of the Faraday rotator.

Here J0, J1, and J2 are the Bessel functions of the zeroth, first, and second order, respec-
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Figure 3.13: Setup used for polarization modulated weak measurements, involving a HeNe-
laser, two Glan-Thompson-polarizers (P1 and P2), a Faraday-Rotator (FR), a quaterwave-
plate (QWP), a glass prism, and a dual-anode photomultiplier tube (PMT). A lock-in am-
plifier (LIA) was used to detect the time varying difference signal ΔP [P1].

Experimental setup

For all the subsequent measurements the setup is as shown in Fig. 3.13, where a position-
sensitive dual anode-photomultiplier tube (Hamamatsu R5900U-04-M4) is used as a de-
tector and placed at a fixed distance behind the sample prism. A Helium-Neon laser with
λ = 633 nm and an output power of P0 ∼ 7 mW is taken as a light source. The amplitude
and the phase of ΔP (t) are measured with a lock-in amplifier (Stanford Research Systems
SR830). The lateral displacement δx can be calculated from the detected lock-in amplitude
RLIA:

δx = w√
2

erf−1
[

ΔP

J1(2Δβ)P0

]
= w√

2
erf−1

[ √
2RLIA

gP J1(2Δβ)P0

]
(3.38)

The gain factor gP converts between the generated power signal ΔP and the measured
lock-in amplitude RLIA and has been determined experimentally to gP = 2.8 · 109 V/W
for an anode voltage of Uanode = 500 V of the PMT 1.
The Faraday rotator consists of a 5 mm thick BK7 glass plate centered in a Helmholtz coil.
The output of the reference channel of the LIA was used as voltage source, so that the coil
was modulated at 187 Hz with an amplitude UF R = 3 V (i.e. ∼ 100 Gauss). This causes
the plane of polarization of the light incident on the QWP to be rotated by ±5 millidegree,
which can be seen from the calibration curve shown in Fig. 3.14. Here the output voltage

1 Comparison between RLIA and optical power measured with a power meter (HP8152 A) for different
anode voltages of the PMT.
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Figure 3.14: Calibration curve for the Faraday rotator. The LIA amplitude R2f was detected
while increasing the applied voltage UF R. A fit with Eq. 3.37 yields the proportionality
constant c to 1.65 millidegree/V.

UF R was increased while the LIA amplitude for the sum signal ΣP was recorded. Finally,
a fit with Eq 3.37 to the measured data yielded c = 1.65 millidegree/V.

Measurements

First the optical activity was varied by changing the longitudinal magnetic field B across
the glass prism between 100 and 400 Gauss, whilst detecting ΔP (t). Figure 3.15 shows
the results for two measurements with the analyzer placed respectively at d = 0.65 m
and d = 1.2 m after the prism. Each data point corresponds to an average over 100
measurements taken in 200 ms time intervals. It can be seen that as the distance between
the interface and the post-selection polarizer increases, so does the intensity after the post-
selection analyzer, in accordance with theory (dashed lines in Fig. 3.15). This is expected, as
ΔP is proportional to δx(d) = d tan (δθ/2) (see Eq. 3.33), and therefore scales linearly with
distance. The distance d increases 1.846 fold in Fig. 3.15 and this is in good agreement with
the experimentally observed increase in the slope of 1.87 ± 0.08. This clearly demonstrates
that the setup is sensitive to the angular divergence δθ, as opposed to a lateral beam shift
or some effect due to optical rotation.

To demonstrate that the measurements can be used to determine the absolute sign of the
optical activity, the post-selection polarizer P2 was placed a distance d = 1.2 m after
the prism. While changing the magnetic field in 10 Gauss steps ΔP (t) was measured for
opposite signs of the longitudinal magnetic field (optical activity). The results are depicted
in Fig. 3.16a. As before each data point is an average of 100 measurements taken in 200 ms



3.4 Comparison of methods 51

Figure 3.15: Measurements of ΔP for two different distances d between the prism surface
and the post-selection analyzer P2 together with the theoretically predicted power differences
(Eq. 3.32, dashed lines). (adapted from [P1])

time intervals. Both data sets match the theoretically predicted lines for ΔP (t) (Eq. 3.33). It
follows that the sign (i.e. the direction) of the angular splitting, and hence the handedness
are faithfully recovered in this weak value amplification scheme. Figure 3.16b depicts a
zoom of a region of Fig. 3.16a delineated by the box. It can be seen, that the data points
are well separated, even though the magnetic field was only increased in 10 Gauss steps.
This corresponds to a change in the circular birefringence of δn = 3 × 10−9 or to a change
of δθ = 3 nrad in the relative angle of refraction. It could be resolved with a relative error
of srel ≤ 1%.

3.4 Comparison of methods

The measured values for the spatial separation δx have been used to calculate the corre-
sponding circular birefringence δn for the different detection schemes. This has been done
by combining Eq. 3.4 and 3.5 to

δn = 2n0
cos θ

sin θ0
arctan

[
δx

d

]
(3.39)



52 3 Chiral Refractometry

Figure 3.16: (a) Measurement of ΔP for d = 1.2 m with B||ẑ (black) and B|| − ẑ (red).
Both have the same magnitude but opposite sign and are in good agreement with theoretical
predictions according Eq. 3.33 (dashed lines). (b) Zoom of the data in (a) marked by the
box. The step size of ΔB = 10 Gauss corresponding to δn = 3 × 10−9 and δθ = 3 nrad is
well resolved. In both diagrams δx corresponds to the separation before the post-selection
analyzer calculated from ΔP (Eq. 3.38).(taken from [P1])

mean refraction angle θ = 62.792◦. The results are shown in Fig. 3.17 together with the
theoretical values δntheo = V Bλ/π computed from Eq. 3.6 (first row). The measurements
are in good agreement with the theory for all three detection schemes. This is illustrated
by the deviation values Δ = δn − δntheo also shown in Fig. 3.17 (second row). The error
bars are the errors of the corresponding measurement values, i.e. the standard deviation.
For all detection schemes the deviation Δ is less then 1 × 10−8, where for the polarization
modulated weak value amplification (PMWVA) it is less than 1 × 10−9.
The third row of Fig. 3.17 shows the relative error srel for each data point. The smallest
values have been achieved with the PMWVA method, so here srel ≤ 2% for most of the
measured values. Nevertheless, errors below 5% could be realized for the other methods,
except for the dual polarization modulation (DPM) with d = 0.6m. The solid horizontal
lines in the diagrams represent the mean relative error values. The RMS deviations Δ̄ and
mean relative errors have in detail been determined to:

dual polarization modulation, 0.6 m: Δ̄ = 3.1 × 10−9, srel = 3.6%

The angle of incidence at the chiral/achiral surface of the SF11-prism was θ0 = 30◦ and the
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Figure 3.17: Comparison of the (a) dual-polarization-modulation, (b) heterodyne weak value
amplification and (c) polarization modulated weak value amplification detection. Shown are
the measured values for δn derived from Eq. 3.39 together with the theoretical ones δntheo

(first row), the deviation Δ = δn − δntheo (second row), as well as the relative error.

dual polarization modulation, 2.0 m: Δ̄ = 2.5 × 10−9, srel = 2.2%
heterodyne weak value amplification: Δ̄ = 3.2 × 10−9, srel = 2.3%

pol. modulated weak value amplification: Δ̄ = 0.9 × 10−9, srel = 1.3%

Therefore the PMWVA method seems to be the most sensitive one for the detection of the
optical activity induced spatial displacement δx and so for the circular birefringence δn in
small sample volumes. The steps of δn = 3 × 10−9 are well resolved with a mean relative
error of ∼ 1% and a RMS deviation of ∼ 1×10−9. Therefore, a sensitivity of δns ≤ 1×10−9

is assumed for this setup. This sensitivity corresponds to an optical rotation measured in
a polarimeter that uses a 10 cm sample cell of about

α1 = πl

λ
δns = 0.03◦
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Here l = 10 cm is the pathlength and λ = 633 nm the wavelength. Such a polarimeter
sample cell requires volumes of at least 800 μl, assuming a rectangular cell with a dimension
of 2 × 4 × 100 mm3 and a laser beam cross section of less than 2 mm. In contrast, the
refraction method requires a volume of less than 8 μl for a wedge shaped sample cell with
a size of 2 × 4 × 2 mm3. Using a cell of the same length in a polarimeter the 50-fold shorter
pathlength of l2 = 2 mm would lead to a reduced optical rotation of

α2 = πl2
λ

δns = 0.0006◦

This is comparable to the sensitivity δα of a commercial polarimeter, which is in usually in
the order of δα ∼ 0.001◦. Therefore, the detection of circular birefringence of δn < 1×10−9

is difficult for traditionally polarimetry when using such small sample volumes but could
be resolved with the presented refraction method.



4
MIR Laser-Based Vibrational Optical Activity

The measurement of the difference in left- and right-circularly polarized absorption (circu-
lar dichroism) is the basis for determining the absolute configuration of a chiral molecule in
solution [5]. Detection of circular dichroism in the visible and ultraviolet (ECD) has proven
its use in the analysis of protein secondary structure, but generally offers only one or two
broad difference bands for stereochemical analysis. Vibrational optical activity (VOA) in
the mid infrared (MIR), in contrast, provides a characteristic band pattern with contribu-
tions of up to 3N − 6 vibrational modes all being active [39–41] where N is the number
of the atoms. Vibrational circular dichroism (VCD) spectroscopy has become one of the
key methods for the determination of the absolute configuration of pharmaceutically active
chiral compounds and natural products [40–42]. Since VOA spectroscopy is also sensitive
towards the conformation of molecules, a VOA spectrum can be interpreted as a linear
combination of the spectral contributions of all conformers that are populated for the gi-
ven experimental condition. Therefore, VOA and in particular VCD are not only tools for
conformational analysis of small molecules [42,43], but also a sensitive probe for secondary
structure in biomolecules [44]. One difficulty in VCD spectroscopy, however, is the strong
absorption of most solvents in the (M)IR. Traditional VCD instrumentation therefore li-
mits the study of (bio)molecules to selected spectral regions and solvents.
Here, it is demonstrated that quantum cascade lasers (QCLs) are an attractive and powerful
light source for VOA spectroscopy. QCLs were first demonstrated in 1994 by Faist et al. [45]
and opened up new possibilities in mid-infrared (MIR) vibrational spectroscopy [46, 47].
They represent the only practical laser source available in the MIR as they are technically
less demanding than nonlinear optical schemes based on frequency conversion. The latter
have recently been applied to measurements of VOA [48, 49]. The spectral brightness of
a QCL (> 104) compared with conventional FT-light sources should allow measurements
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even in strongly absorbing solvents. The measurement of the optical rotation (vibrational
circular birefringence VCB) in the MIR based on the difference of the real part of the
refractive index is a complementary technique [50]. It can also be used for optical activity
analysis.
Therefore, VCD and VCB spectra recorded with a cw tunable mid-infrared laser are pre-
sented. The QCL measurements are compared to traditional FTIR based measurements
and calculations. It is shown that QCLs are useful for both vibrational spectroscopies espe-
cially regarding aqueous solutions. This chapter has been in part published in [P3,P4]. The
work was a collaboration with Dr. Steffen Lüdeke and Anja Rüther from the Institute of
Pharmaceutical Sciences of the University Freiburg (Germany), who also contributed DFT
calculations, FT-VCD and FTIR reference measurements, and the assignment of vibratio-
nal modes presented in this section.

4.1 Theory

In chapter 2 we have seen, that optical activity observed in an isotropic chiral medium
manifests itself via the differential response to left- and right-circularly polarized light,
which is a function of the difference in the complex refractive indices for both polarizations
(Eq. 2.34). The circular birefringence (CB) δn = nl − nr, measured in the previous chapter
with a chiral refractometer, is also detectable in the MIR. The differential absorption of
left- and right-circularly polarized light caused by the difference in the imaginary part
δκ = κl − κr gives rise to circular dichroism (CD). Analogous to the complex refractive
index ñ the absorbance A and the molecular absorptivity ε of the material can be defined
as complex functions, too [50]:

Ã = A′
L,R + i · A′′

L,R and ε̃ = ε′
L,R + i · ε′′

L,R (4.1)

VCD and VCB can therefore be translated to a difference in the real and imaginary part
of the complex absorbance ΔÃ or molecular absorptivity Δε̃ (see Eq. 2.40) [12]:

VCB : ΔA′ = 4πνz0

ln(10)δn and Δε′ = 4πν

ln(10) · C
δn (4.2a)

VCD : ΔA′′ = 4πνz0

ln(10)δκ and Δε′′ = 4πν

ln(10) · C
δκ (4.2b)

Here z0 and C are the path length and the concentration of the sample, respectively, and
ν = 1/λ is the frequency in wavenumbers. Since both, ΔA′ and ΔA′′, scale linearly with
the path length z0, they benefit from powerful light sources, that can propagate through
long path-lengths (and strongly absorbing samples). So both spectroscopies can therefore
potentially benefit from QCLs.
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4.1.1 Measurement of vibrational circular dichroism, VCD

Typically the setup used for VCD measurements consist of a light source (LS), a line-
ar polarizer (LP), a photoelastic modulator (PEM), the sample (S) and a detector (D).
Schematically we can write [12]:

LS → LP → PEM → S → D

Here the light source is a quantum cascade laser emitting linearly polarized light (�V). The
light from the laser is sent trough a ZnSe PEM, which modulates the light at the frequency
ωP EM = 2πfP EM between left- and right-circularly polarization states. Using a Mueller-
Matrix formalism the intensity I1(t) at the detector can be calculated [12]. The resulting
Stokes vector �Sf is:

�Sf = [D] [S] [P EM45◦ ] �V (4.3)

The PEM is modeled as a retarder with a time-varying retardation and its principal axis
is oriented with θP EM = 45◦ (Tab. 2.3). The general Müller matrix of the optically active
sample is given by [12]:

[S] = 10−A′′

⎡
⎢⎢⎢⎢⎣

1
0
0

CD

0
1

−CB

0

0
CB

1
0

CD

0
0
1

⎤
⎥⎥⎥⎥⎦ (4.4)

CD = ln 10ΔA′′/2 and CB = ln 10ΔA′/2 represent the intensity changes induced by the
sample’s circular dichroism and circular birefringence [12]. A′′ is the decadic absorbance.
The detector is assumed to have no birefringence and measures the intensity, so it is
represented simply by a 4 × 1 matrix:

[D] =

⎡
⎢⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎥⎦ (4.5)

Using Eqs. 3.10 and 3.11 for the time-varying retardation of the PEM we finally can write
for the intensity I1(t) at the detector [12,50,51]:

I1(t) = I0 10−A′′ [1 − J1(δ0) ln(10)ΔA′′ sin(ωP EM t)]
= IDC − IAC sin(ωP EM t) (4.6)

J1 is the Bessel function of the first order and δ0 ≈ π/2 the phase retardation introduced by
the PEM. The difference in the absorbance ΔA′′ for the two circular polarizations leads to
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an intensity modulated at the frequency of the PEM. The amplitude IAC of the modulated
term is detected using a lock-in amplifier (LIA). The VCD spectrum ΔA′′ or δk can be
derived from Eq. 4.6:

ΔA′′ = 1
ln(10) · J1(δ0)

IAC/IDC δκ = 1
4πνz0 · J1(δ0)

IAC/IDC (4.7)

4.1.2 Measurement of vibrational circular birefringence, VCB

For the measurement of VCB spectra we now insert an additional linear polarizer after the
sample set at 45◦ with respect to the input polarization and parallel to the optical axis of
the PEM [12]:

LS → LP → PEM → S → LP → D

Again the polarization is modulated by the PEM from vertical to circular and back at
a frequency of 2ωP EM . Without a sample the same intensity can pass the polarizer for
both polarizations and no modulated signal is observed. When inserted the difference in
the refractive index real part δn of the sample rotates the vertically polarized light when
passing it. It now has an additional small polarization component along the ±45◦ axis
compared to the circular states, which can pass the polarizer. Therefore, the intensity is
modulated at twice the frequency of the PEM, 2ωP EM . This can be seen by calculating the
intensity using the Mueller-Matrix formalism and Eq. 3.11 [12,50]:

I2(t) = I0

2 10−A′′ [1 − J1(δ0) ln(10)ΔA′′ sin(ωP EM t) − J2(δ0) ln(10)ΔA′ cos(2ωP EM t)]

= IDC − IAC,1 sin(ωP EM t) − IAC,2 cos(2ωP EM t) (4.8)

Figure 4.1: Setup used for QCL based VCD measurements, consisting of a quantum cascade
laser (QCL), a photoelastic modulator (PEM), a liquid cell, an optical chopper, a lens, and
an IR detector. The two lock-in amplifiers (LIA) are used to extract the VCD and IR signals
(adapted from [P4]).
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J1 and J2 are the Bessel functions of the first and second order. By tuning the LIA to twice
the PEM frequency it is possible to measure the amplitude IAC,2 and calculate the VCB
spectrum:

ΔA′ = − 2
ln(10) · J2(δ0)

IAC,2/IDC δn = − 1
2πνz0 · J2(δ0)

IAC,2/IDC (4.9)

4.2 Optical setup

4.2.1 Quantum cascade laser-based setup for VCD measurements

The setup for the VCD measurements is shown in Fig. 4.1. A tunable external-cavity QCL
(EC-QCL, Daylight Solutions TLS-21078) is used as the light source. It provides linearly
polarized light with up to 200 mW (cw) in the spectral range of 1220−1320 cm−1 (Fig. 4.2a).
A ZnSe photoelastic modulator (Hinds PEM 80, fP EM = 37 kHz) is set to quarter-wave
retardation at 1270 cm−1. To minimize noise at the modulation frequency due to etalon and
interference effects the modulator is tilted. This allows the separation of the beam reflected
inside the PEM from the transmitted beam. It is found that a tilt angle of ∼ 30◦ is sufficient
(Fig 4.2b). The reflected beam is blocked by an aperture. After passing the sample cell the
light is focused onto a detector. In a first configuration a thermoelectrically (TE) cooled
Mercury-Cadmium-Telluride-detector (MCT) from VIGO System S.A. (PVMI-3TE-10.6)
is used. It has a detectivity (D*) of 3 × 109 cm

√
Hz/W and a Silicon immersion lens. A

Figure 4.2: (a) Optical output power of the QCL in cw-mode at a laser diode current
of 1000 mA. (b) MIR-camera images of the laser beam after passing the tilted PEM. The
reflected beam is well separated an could be blocked by the aperture.
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modified setup involves a MCT detector with liquid N2-cooling and an enhanced detectivity
(D*) of 1 × 1010 cm

√
Hz/W (InfraRed Associates Inc., L-8575 HCT-70). Due to the small

diameter and the collimation of the laser beam no additional focusing element (lens) was
needed. It was therefore omitted in later experiments, also because MIR transparent lenses
often exhibit small linear birefringence resulting in instrumental artifacts. Due to the AC
coupling of both detectors an optical chopper is used to record the absorption spectra. The
modulated detector signal is processed and recorded by two lock-in amplifiers (Stanford
Research Systems SR830) locked to the PEM and the chopper frequency, respectively.
Data were recorded by tuning the wavelength of the EC-QCL over the examined spectral
region with a step size of 0.5 cm−1. Each frequency data point is an average of 100 lock-in
readings (time constant 100 ms), and standard deviations are used to gauge the noise. The
measurement time for one scan was ∼ 20 min. Artifacts due to instrumental birefringence
were reproducible and could thus be eliminated by background subtraction of the pure
solvent spectra. To suppress higher-frequency spectral components, which are attributed
to interference effects, the data were processed with a Fourier or a moving average filter
set to a cutoff-frequency of 4 cm−1, if not otherwise noted.

4.2.2 Quantum cascade laser-based setup for VCB measurements

The VCB spectra were recorded using the slightly modified setup shown in Fig. 4.3. Here an
additional polarizer is added right behind the sample with its transmission axis oriented
at 45◦ with respect to the incoming vertically polarized laser light. One of the lock-in
amplifiers is set to twice the PEM frequency 2fP EM . Data were taken and processed as
mentioned above by scanning the wavelength in 0.5 cm−1 steps and averaging over 100
lock-in readings.

Figure 4.3: Slightly modified setup for QCL based VCB measurements. A polarizer is added
right behind the sample. To extract the VCB signal one of the lock-in amplifiers is set to
twice the PEM frequency 2fP EM (adapted from [P4]).
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4.2.3 Reference spectra and theoretical calculations

VCD reference spectra were recorded on a Bruker Tensor 27 FTIR spectrometer equipped
with a Bruker PMA 50 VCD side-bench module with a resolution of 4 cm−1. Each spec-
trum has been averaged over 20 min. For measurements between 1800 and 800 cm−1 the
photoelastic modulator (PEM) was set to quarter-wave retardation at 1400 cm−1. Since
VCD and VCB are Kramers-Kronig transforms of one another, the VCB reference spectra
are calculated from the VCD spectra. Theoretical calculations for the relative dipole and
rotational strength have been performed by Dr. Steffen Lüdeke on basis of density functio-
nal theory (DFT). For this purpose the software Gaussian03 was used on different levels
of computation .

4.3 QCL based measurements of vibrational optical activity

The spectral region between 1320 cm−1 (7.6 μm) and 1220 cm−1 (8.2 μm) was examined for
different chiral compounds. The QCL-based measurements are compared with those from
a commercial Fourier transform (FT) VCD spectrometer (Bruker) and with the results of
calculations. A modified VCD-setup comprising a MCT detector with liquid N2-cooling
and a different PEM was also tested.

Figure 4.4: Background spectra taken for two orientations of the TE-cooled MCT detec-
tor (left panel). Four consecutively recorded background spectra for deuterated chloroform
(CDCl3) in a 1 mm KBr-cell (right panel). See text for details.



62 4 MIR Laser-Based Vibrational Optical Activity

4.3.1 Noise and stability

First the background stability and noise of the QCL-VCD-setup shown in Fig. 4.1 was
tested. Two spectra with the sample cell removed were taken for two orientations of the
TE-cooled detector. A rotation of 90◦ with respect to the optical axis reduced the artifacts
caused by instrumental birefringence (Fig. 4.4). This is likely due to the polarization sen-
sitivity of the detector as proposed by Nafie et al. [12, 51]. Afterwards four VCD spectra
were taken consecutively for deuterated chloroform (CDCl3) filled in a 1 mm KBr-cell. The
results are shown in Fig. 4.4. The high frequency artifacts in the data are attributed to
interference effects inside the PEM. As can be seen, the solvent spectra are reproducible,
which is important for background subtraction. This becomes obvious from the RMS-value
of the deviations between consecutive spectra, shown in Fig. 4.4 together with the mean
noise (average over the noise data of the four spectra). The RMS deviation has a mean of
3 × 10−4 and shows some spikes with a maximum value of 8 × 10−4.

4.3.2 VOA measurements I: Ni-sparteine complex

The nickel-(−)-sparteine complex (Ni(sp)Cl2) was synthesized at the Institute of Phar-
maceutical Science (University Freiburg) as described in the literature [52]. The open-shell
complex exhibits strong VCD signals but has a molar absorptivity ε comparable to those of

Figure 4.5: Vibrational spectra of a 200 mM solution of Ni(sp)Cl2 in CDCl3. (a) FT-IR and
FT-VCD data recorded in a 100 μm path length BaF2 cell. (b) QCL based measurements
taken in a 1000 μm KBr cell. All spectra are shown with a resolution of 4 cm−1. The black
line is the raw unfiltered data. (c) Molecular structure of Ni(sp)Cl2. (adapted from [?])



4.3 QCL based measurements of vibrational optical activity 63

typical organic and inorganic molecules [53]. It has been shown, that the vibronic coupling
of low-lying magnetic-dipole-allowed d-d transitions to the vibrational modes of the ground
state results in a VCD enhancement for all modes [54]. Figure 4.5c shows the structure of
the complex.
VCD and IR spectra were recorded with the QCL-based setup (Fig. 4.1) including the TE-
cooled MCT detector. Together with measurements from a lamp-based FT instrument the
results are depicted in Fig. 4.5. A 200 mM solution of the complex in deuterated chloroform
CDCl3 was used in both cases. It was measured in either a 100 μm path length BaF2 cell
(FTIR) or a 1000 μm KBr cell (QCL). All of the bands observed in the FT measurements
(Fig. 4.5a) are clearly reproduced in the QCL spectra (Fig. 4.5b). Here additional spectral
features can be seen. The QCL data were recorded with a scan step size of 0.5 cm−1 and
processed with a 4 cm−1 Fourier filter in order to suppress the higher-frequency spectral
components that are attribute to interference effects. This is illustrated by the unfiltered
data also shown in Fig. 4.5b (black line).

4.3.3 VOA measurements II: Limonene

Non-polar aromatic terpenoids, such as pinene and limonene, are small, rigid molecules, and
show few intra- and inter-molecular interactions, which allows for the accurate computation
of their chiroptical properties using high-level ab initio or DFT methods [50, 55, 56]. In
contrast to the chiral Ni-complex these compounds have no low-lying transitions and show
therefore weaker VCD signals – typically 10−4 to 10−3 of the corresponding IR transitions

Figure 4.6: Structure of (S)-(−)- and (R)-(+)-limonene. The more common (R)-isomer of
the aromatic terpenoid shows a strong smell of oranges whereas the (S)-configuration has a
lemonlike aroma. (adapted from Wikimedia Commons)
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Figure 4.7: Spectra of a 3 M solution of (R)-(+)-limonene in CDCl3. (a) FT-IR and FT-VCD
spectra recorded in a 100 μm BaF2 cell, and FT-VCB data calculated from the corresponding
VCD spectra. (b) QCL measurements recorded in a 1 mm KBr cell. All spectra are shown with
a resolution of 4 cm−1. (c) Theoretically predicted Boltzmann-weighted dipole and rotational
strengths for the two most abundant conformers (grey and black vertical lines) convolved
with dispersive (VCB) and absorptive (IR and VCD) Lorentzian line shape functions. (images
adapted from [P3,P4]).

[39, 41, 57]. Here the terpenoid limonene was examined, a colorless liquid hydrocarbon
which is the monoterpene most frequently found in natural products. It takes its name
from lemons since most citrus fruits contain considerable amounts contributing to the odor
of the fruits. The more common (R)-(+)-isomer shows a strong smell of oranges whereas
(S)-(−)-limonene has a more lemon-like aroma. Limonene, and mainly the (R)-(+)-isomer,
is used in chemical synthesis as a precursor to other terpenoids, as a biogenic solvent, or
as a flavor for cosmetics and food. The molecular structures of both, (R)-(+) and (S)-(−)-
limonene, are shown in Fig. 4.6. VOA spectra have been measured using the QCL based
setups shown before and the TE-cooled MCT detector (Fig. 4.1 and 4.3). All data are
presented in refractive index units (δn, δk) and a resolution of 4 cm−1. The QCL spectra
were smoothed by Fourier-filtering. For both VCD and VCB a 3 M solution of (R)-(+)-
limonene in CDCl3 was examined in the same sample cells as used for the chiral Ni-complex
(100 μm BaF2 cell (FTIR) or a 1000 μm KBr cell (QCL)).
First the VCD spectrum of the limonene solution was recorded. In Fig. 4.7a and b we
compare the respective FT and QCL vibrational spectra. The QCL measurements could
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clearly reproduce all bands observed in the FT-spectra, as was the case in the Ni(sp)Cl2
measurements shown before. Additionally the broad band around ≈ 1308 cm−1 in the
FT-IR spectrum, appears as a doublet (1311 and 1305 cm−1) in the QCL-IR spectrum. It
corresponds to the in-phase wagging modes of the hydrogens at C1, C3, C4, and C5 (see
Fig. 4.6 for atom numbering) with contributions from the two most abundant conformers,
which are rotamers regarding the C3-C8 axis. Moreover the C-H twisting modes of these
conformers at ∼ 1240 cm−1 are resolved in the QCL-VCD data.
In Fig. 4.7 the measured QCL-VCB spectrum of the same limonene solution is shown
together with FT-based data. Since VCD and VCB are Kramers-Kronig transforms of one
another, the FT-VCB spectrum has been calculated from the FT-VCD reference spectrum
(Fig. 4.7a). Compared to FT-VCB additional features are observed in the QCL-data, which
also leads to an improved agreement with the calculation results.
The relative dipole and rotational strength for both conformers have been computed at
the B3PW91/cc-pVTZ level. In Fig. 4.7c the calculation results are compared with the
measured QCL data. The black and gray vertical lines represent the dipole and rotational
strength for one or the other conformer, which were Boltzmann-weighted in respect to their
relative energies (0.57 and 0.43, respectively). The black solid lines show calculated spectra,
which are linear combinations of dispersive (VCB) and absorptive (IR and VCD) Lorentzian
line shape functions weighted with the corresponding dipole or rotational strength. All data
are shown with a resolution (linewidth) of 4 cm−1. Both, the VCD and VCB data taken
with the QCL are in good agreement with the calculations.

4.3.4 VOA measurements III: Proline

In contrast to nonpolar organic solvent/solute systems, aqueous solutions not only are
strongly absorbing but also give rise to more complex solvation characteristics. Aqueous
VCD studies are computationally and experimentally demanding, but often inevitable for
systems of biological molecules. High concentrations of, for example, proteins and peptides
are often necessary in order to allow for the use of short-path-length sample cells, which
permit a sufficient transmission of intensity. This can lead to aggregation problems [5].
Nevertheless, some aqueous VCD studies have been reported with < 25 μm cells [58–60].
Here the amino acid proline is examined. It is one of the twenty proteinogenic amino acids,
and can be synthesized by the human body. The molecular structure of both zwitterion
enantiomers is provided in Fig. 4.8, where it can be seen, that the common l form posses
S stereochemistry. Figure 4.9 shows the measured QCL-IR and VCD spectra of a 3 M
aqueous solution taken in a 100 μm sample cell. The molar absorptivity of water in the
studied spectral range is ∼ 4.5 Lmol−1cm−1 [61] so that the samples had an optical density
of up to 3.5, of which 2.0 is due to water (Fig. 4.9a). Nevertheless, satisfactory spectra of
l- and d-proline were observed, albeit with a slight asymmetry and noticeable noise in the
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Figure 4.8: Structure of both enantiomers of the amino acid proline [P3]

optically dense parts of the spectrum. While a racemic mixture (3 M in water) was used for
the background correction in Fig. 4.9b, pure water was used in the spectrum shown in the
inset. Here the different strengths in the absorbance of the pure solvent and the solution
resulted in a deviation of the corresponding baselines. This complicated the background
subtraction and was responsible for the observed offset.
For the assignment of modes DFT calculations based on the B3LYP/6-311++G(d,p) mo-
del were performed combined with a polarized continuum model (PCM) to simulate the
influence of water [62]. Previous studies of zwitterionic l-proline in aqueous solution iden-

Figure 4.9: Vibrational spectra of 3 M aqueous solutions of proline. (a) IR-absorbance of
H2O and l-proline, showing an optical density of up to 3.5 for the solution. (b) QCL-VCD
spectra of l- and d-proline in a 100 μm CaF2 cell. Data were background-corrected using a
racemic mixture (Inset: corrected with pure water). (c) Relative VCD intensities computed
for the two ring-puckering conformers of l-proline (gray and black vertical lines).(adapted
from [P3])
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tified two dominant ring-puckering conformers equally populated corroborated by NMR
data [63]. The results of the rotational strength for both conformers are shown in Fig. 4.9c
(black and gray vertical lines) together with the corresponding theoretical spectrum (dot-
ted line) [P7]. On the basis of the results, the two positive bands at 1295 cm−1 and at
1286 cm−1 in the measured spectra are most likely explained by wagging vibrations of
one conformer (1299 cm−1) and H-N-C2 bending of the other conformer (1275 cm−1) (see
Fig. 4.8 for atom numbering). The two negative bands at 1248 cm−1 and 1227 cm−1 in
the theoretical spectrum are correlated to twisting and rocking of ring protons of the two
conformers. Both can be seen in the measured spectrum as a small dip at 1253 cm−1 and
a band at 1239 cm−1. The strong negative band at 1317 cm−1 in the theoretical spectrum
originates from carboxylate bending and C-C stretching of C1 and C2. It just appears as
a decline at the end of the measured spectrum.

4.3.5 Modified optical setup

The sensitivity of the QCL-based setup presented in the previous section is primarily li-
mited by the reproducibility of the high-frequency background due to interference effects
inside the PEM (Fig. 4.4) and the sensitivity of the detector. The latter is especially im-
portant for measurements of strongly absorbing samples, i.e. aqueous solutions. To further
reduce the interference artifacts the PEM was replaced by a different photoelastic mo-
dulator. Apart from a higher modulation frequency of fP EM2 = 70 kHz the new PEM
also provided an optical element with an anti-reflection coating. This resulted in reduced

Figure 4.10: Comparison of VCD data taken before (left panel) and after (right panel) the
replacement of the PEM. A reduction of the high-frequency components due to the anti-
reflection coating of the new modulator is clearly visible.
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Figure 4.11: Test of the repeatability of the modified setup. Shown are consecutively recor-
ded spectra of (a) CHCl3 and (b) H2O. (c) For the water measurements a dual demodulation
technique according to [64] has also been tested. RMS deviations are depicted with offsets
for clarity.

background artifacts as can be seen in Fig. 4.10. Here the VCD data taken before and
after the replacement of the PEM are compared with each other. Both, a 3 M solution of
(R)-(+)-limonene and the pure solvent CDCl3 have been measured in a 1 mm KBr cell.
The reduction of the high-frequency components is clearly visible.
To further increase the sensitivity, the TE-cooled detector was replaced by the MCT detec-
tor with liquid N2 cooling providing an enhanced detectivity. The stability of the modified
setup was tested by consecutively taking 4 to 5 background spectra. The RMS deviati-
ons between successive data sets are shown in Fig. 4.11 with results for both chloroform
(CHCl3) and pure water filled in a 1 mm-KBr or a 100 μm-CaF2 cell, respectively. Com-
pared to the previous results (Fig. 4.4) a decreased RMS deviation is observed (Tab. 4.1).
For CHCl3 (Fig. 4.11a) the deviation shows a mean value of 6 × 10−5 and a maximum

mean value maximum
setup 1, CDCl3 3 × 10−4 8 × 10−4

setup 2, CDCl3 6 × 10−5 1.5 × 10−4

setup 2, single demodulation, H2O 3 × 10−5 1.3 × 10−4

setup 2, dual demodulation, H2O 2 × 10−5 1.3 × 10−4

Table 4.1: Mean and maximum values for the RMS deviation of the different setups. Setup
1 comprises a TE-cooled detector and a modulator without coatings. Setup 2 has a detector
with LN2 cooling and a modulator with anti-reflection coating.
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Figure 4.12: Schematic drawing of the electronic layout for the double demodulation tech-
nique following [64] using three lock-in amplifiers (LIA). See text for details.

of 1.5 × 10−4. For the water measurements a slightly reduced mean value of 3 × 10−5 is
achieved (Fig. 4.11b). This is in part because of the reduced laser power at the detector
due to the strong absorbance. The MCT detector is noisy if operated near saturation. As
before, the RMS deviation shows spikes with maximum values up to 1.3 × 10−4. They are
attributed to wavelength tuning errors of the QCL, i.e. the wavelength slightly varies from
scan to scan. For the pure water sample a double demodulation detection scheme accor-
ding to [64] was also tested (Fig. 4.11c). Here the detector signal is processed by three
lock-in amplifiers (LIA) to further suppress background noise. One LIA is still locked to
the chopper frequency providing the MIR absorption spectra. The remaining two LIAs are
locked to the PEM and the chopper frequency, respectively. The LIA locked to the PEM is
operated with a short time constant (tc = 300 μs) and its output signal is fed into the third
LIA locked to the chopper. Therefore only signals modulated both at the PEM and the
chopper frequency are detected. A small improvement of the RMS deviation is observed
resulting in a mean deviation of 2 × 10−5.

4.3.6 VOA measurements IV: Test of the modified setup

The modified setup is further tested with VCD measurements of different samples using
the dual demodulation technique. All spectral data were recorded as before through wave-
length tuning and averaging over 50 lock-in readings. The data shown were processed with
a 4 cm−1 moving average (limonene, BINOL) or a Fourier filter of 4 cm−1 (proline). First
the vibrational spectra (IR and VCD) of 3 M solutions of (R)-(+)- and (S)-(−)-limonene
in CDCl3 were measured in the 1 mm KBr cell. The results are depicted in Fig. 4.13 in
absorbance units with a resolution of 4 cm−1 after filtering. All VCD bands are clearly seen
as mirror image spectra for both enantiomers. The slight difference in the absolute values
is likely due to small differences in the concentration of the solutions.
A second sample was prepared with the chiral organic compound BINOL (1,1’-Bi-2-naphthol).
It finds use as a ligand in catalyzed stereo selective synthesis [65, 66]. The enantiomers of
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Figure 4.13: Vibrational spectra (IR: left panel, VCD: right panel) for a 3 M solution of both
limonene enantiomers recorded with the modified QCL setup in a 1 mm KBr cell.(adapted
from [P8])

BINOL exhibit axial chirality (Fig. 4.14). They can either be separated by high-performance
liquid chromatography (HPLC) with chiral stationary phases [67] or synthesized separately
in enantioselective reactions [68]. For both enantiomers, (M )- and (P)-BINOL a 150 mM
solution in CDCl3 was prepared and measured in a 1 mm KBr cell. The corresponding
IR and VCD spectra are shown in Fig. 4.15. As expected, the VCD signals of the two
enantiomers resolve and reproduce almost all bands with opposite signs.
Finally the aqueous solution (3 M) of l-proline was investigated in the 100 μm CaF2 sample
cell as used before (Sec. 4.3.4). Figure 4.16 shows the corresponding IR and VCD spectra.
Due to the enhanced sensitivity of the LN2-cooled detector, the pure solvent (H2O) and
solution measurements showed no baseline deviations. Therefore a water spectrum could
be used for VCD background subtraction. Compared to the previous results (Fig. 4.9b and
inset), the data could be recorded with reduced noise and no observable offset. An enhan-
cement of the mean signal-to-noise (SNR) ratio from 28 to 40 was observed. Additionally
the negative band at 1248 cm−1 in the calculated spectrum (Fig. 4.9c) originating from

Figure 4.14: Molecular structure of both BINOL (1,1’-Bi-2-naphthol) enantiomers. The
organic compound exhibits axial chirality. (images taken from Wikimedia Commons)
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Figure 4.15: IR (left panel) and VCD (right panel) spectra for a 150 mM solution of (M )-
and (P)-BINOL in CDCl3. Both solutions have been measured in a 1 mm KBr cell with the
modified QCL-setup. (adapted from [P8])

twisting and rocking of ring protons is now clearly visible in the measured spectrum as a
small negative band at 1253 cm−1.
The enhanced sensitivity and reproducibility of the modified QCL-based VCD-setup are
promising for time-resolved studies of optical activity in aqueous solutions. This is also sup-
ported by the moderate measurement time of ∼ 20 min compared to aqueous studies with
FTIR-VCD instrumentations. While IR absorbance measurements just reveal substance-
specific informations of a sample, VCD in contrast provides information about the three
dimensional arrangement of the molecule, i.e. configuration and conformation. The chiral

Figure 4.16: Vibrational data for a 3 M aqueous solution of l-proline measured in a 100 μm
CaF2 cell using the modified setup. Due to the enhanced sensitivity data could be background
corrected with pure water and recorded with reduced noise (see Fig. 4.9).
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information from VCD spectra can also be evaluated quantitatively. The potential of VCD
for real-time monitoring of enantiomeric excess (ee) had recently been demonstrated [69].
This might be useful to optimize reaction conditions leading to a maximum ee (enantio-
meric excess) which may not be the same yielding maximum product. For enantioselective
(enzymatic) reactions for example, maximum ee is often achieved before maximum yield
and may decrease again over time [70]. The time resolution of such reaction-monitoring
measurements depend on the signal to noise (SNR) ratio of the used setup. With the actual
setup it is possible to follow a reaction at a rate of a spectrum every ∼ 20 minutes. By fur-
ther increasing the SNR and reproducibility of the QCL measurements the time resolution
could be further increased.
A first test of the use of laser-based VCD spectroscopy for reaction monitoring was per-
formed in collaboration with the group of Dr. S. Lüdeke (University Freiburg) [P7, P9].
Therein the change of the VCD signals of an aqueous proline solution due to protonation
of the amino acid have been investigated. The pH-value of the solution was changed from
11.5 to 2 by titration with hydrochloric acid (HCl) in ∼ 400 minutes, where spectra were
recorded every 20 minutes. Significant changes in the signals reproduced by both enan-
tiomers (l- and d-proline) could be observed. All results and further details are going to
be published in [P7,P9]. These studies show that reactions involving chiral compounds in
aqueous solutions can be followed and the IR and VCD spectra recorded.



5
Mid-Infrared Refractometry

Typically, absorption spectroscopy is based on measuring intensity changes to reveal vi-
brational resonances, which in turn require stable light sources if weakly absorbing (e.g.
dilute) species are to be detected. However, despite the higher power levels and the compact
rugged design, quantum cascade lasers (QCL) are often plagued by intensity fluctuations,
which affect the achievable sensitivity in absorption measurements. In this chapter it is
therefore examined how vibrational spectra may be obtained without direct measurement
of the QCL’s intensity.
The infrared spectrum of molecules is mostly characterized by distinct absorption bands,
i.e. imaginary part of the refractive index. The Kramers-Kronig transformation relates the
real (n(ν)) and imaginary (κ(ν)) parts of the complex refractive index ñ = n + iκ of a
medium, as has been shown in chapter 2. It follows that knowledge about the real part
is sufficient to obtain the imaginary part and vice versa. The refractive index real part is
generally observed via changes in beam direction and chiral refractometer (see for instance
in chapter 3). Changes in the real part of the refractive index across a absorption band
in the MIR can be much larger than what is commonly observed at visible frequencies.
For instance, across the ∼ 700 cm−1 resonance a benzene solution’s real part of the index
changes by ±0.6 refractive index units [71]. This raises the question whether the change
in the real part can give rise to a measurable deflection of the IR beam. Observing the
deflection as a function of wavelength could then be related to the IR absorption band.
The measurement of refractive indices (refractometry) is well established in the visible [72].
Efforts have been made to transfer some of those methods to the MIR and these include
refractometry with a hollow prism, an Abbe refractometer, or using interferometric me-
thods [73–78]. An early refractive index measurement by Pfund et al. in 1935 [79] recorded
the dispersion of CS2 and CCl4 in the solvents’ transparent IR regions. Fahrenfort et al. [80]
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used attenuated total reflection (ATR) to measure the optical constants of benzene. They
showed that the refractive index can be calculated from a measurement of the reflectivity
for two angles of incidence. However, since all these methods rely on absolute intensity
measurements, they all have problems acquiring refractive index data for strongly absor-
bing samples.
Here, a more convenient experimental geometry involving a QCL is examined, whereby the
change in the index is observed in an imaging setup. It is a form of refractometry where the
beam of a QCL is imaged on a infrared camera. The change in the beam profile at a total
internal reflection interface is used to deduce the absorption peak without measuring abso-
lute intensities. Furthermore it is possible to simultaneously extract n(ν) and κ(ν) of the
analyte, as will be shown next. Since only relative intensity measurements within the beam
profile are made this technique should be immune to the QCL’s intensity fluctuations.
After describing the theoretical model and experimental setup, measurements on dichloro-
methane (DCM) are presented. How this approach may also be applied to chiral liquids is
discussed. Parts of this chapter have been published in [P5].

5.1 Experimental setup

The experimental setup for the MIR-refractometer is shown in Fig. 5.1. The Quantum
Cascade Laser (QCL, Daylight Solutions TLS-21078) also used for the VCD measure-
ments shown in the previous chapter, provides linearly polarized light in the spectral range
of 1220 − 1320 cm−1. The horizontal polarization of the laser is defined by the polarizer
P1. The laser beam is expanded and collimated with two spherical mirrors (SM1 with

Figure 5.1: Setup of the MIR-refractometer (top-down view). The linearly polarized light of
a QCL is expanded, collimated and finally refocused onto the entrance side of a ZnSe-prism.
The inset is a detailed view of the prism (side-view). (adapted from [P5])
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f1 = 25 mm and SM2 with f2 = 200 mm) to a beam diameter of d = 30 mm. The be-
am is then focused onto the entrance surface of a ZnSe-prism with a parabolic mirror
(PM1 with f3 = 101.6 mm). After reflection at the prism/sample interface the beam
exits the prism (see inset of Fig. 5.1). After re-collimation with a second parabolic mirror
PM2 (f4 = 101.6 mm) the beam is directed onto a diffuser. The attenuated reflection of
the laser beam’s profile is imaged by a infrared camera (640 × 480 pixels, Thermoteknix
Miricle 307K-25u). Because the focus is at the entrance face of the prism, the angle of
incidence at the prism/sample interface varies across the beam profile. If no sample is pre-
sent (prism/air), then all angles fulfill the condition for total internal reflection (TIR) and
the entire beam is reflected. However, when a sample with an index of refraction n > 1
is present, then the condition for TIR is no longer fulfilled for all angles. It follows that
the intensity profile imaged by the camera will no longer be symmetric, as parts of the
beam will be transmitted into the sample where they also experience absorption. It is now
shown that the complex refractive index ñ of the sample can be measured by detecting and
analyzing this intensity profile.

5.2 Theoretical model

The angle of incidence (AOI) γ0 of the center of the beam at the second surface of the
prism (Zn-Se prism/sample interface) is a function of the AOI α0 at the entrance side of
the prism, as can be seen in Fig. 5.2a. The prism has a refractive index np and prism angle
θ1, therefore we can write:

γ0 = θ1 + arcsin
[

1
np

sin α0

]
(5.1)

Figure 5.2: Detailed views of the beam path inside the prism for (a) geometrical ray optics
(b) a Gaussian beam profile.(taken from [P5])
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Figure 5.3: Comparison of γ(x) for a Gaussian beam profile with different beam waists w0
at the focus

Accounting for the spatial extent of the beam (x) with Gaussian beam optics a waist w0
is assumed for the beam profile at the entrance surface of the prism. The beam’s lateral
components propagate a distance z(x) to the second surface of the prism (prism/sample
interface), which depends on their distance x from the center of the beam. The radius of
curvature of the wavefront is R(z(x)) = R(x) at the intersection with the prism/sample
interface (Fig. 5.2b). The angle of incidence γ(x) at this point is defined by the surface
normal and R(x):

γ(x) = γ0 − arcsin
[

x

R(x)

]
= θ1 + arcsin

[
1
np

sin α0

]
− arcsin

[
x

R(x)

]
(5.2)

The radius R(x) is further defined as [81]:

R(x) = z(x)
⎡
⎣1 +

(
z0

z(x)

)2
⎤
⎦ with z0 = πw2

0
λ/np

(5.3)

The distance z(x) is described by z(x) = z1 + x · tan γ0 where z1 is shown in Fig. 5.2b.
It has been experimentally determined that z1 = 10.8 mm. The variation of the angles of
incidence over the beam cross section follow if Eq. 5.3 is inserted into Eq. 5.2:

γ(x) = γ0 − arcsin

⎧⎪⎨
⎪⎩

x

z1 + x · tan γ0
·
⎡
⎣1 +

(
z0

z1 + x · tan γ0

)2
⎤
⎦

−1
⎫⎪⎬
⎪⎭ (5.4)
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Figure 5.4: Calculations of the predicted intensity profile for model liquids with different
values of the refractive index ñl using Eq. 5.6 with w0 = 30 μm, α0 = 25◦, θ1 = 45◦ and
np = 2.4 [P5].

shown in Fig. 5.3. It is obvious, that the smaller the focus spot is, the more pronounced is the
variation of γ(x) over the beam cross section. The polarization of the beam is chosen such
that it is p-polarized, i.e. parallel to the plane of incidence at the prism/sample interface.
Therefore the Fresnel coefficients for the reflected beam components are calculated to
be [15]:

rp(x) =
ñ2

l cos θx − np

√
ñ2

l − n2
p sin2 γ(x)

ñ2
l cos θx + np

√
ñ2

l − n2
p sin2 γ(x)

(5.5)

Here the liquid sample is assumed to have the complex index of refraction ñl = nl + iκl.
The intensity profile detected by the IR camera can now be calculated assuming a Gaussian
profile:

I1(x,y) = I0(x,y) · |rp(x)|2 with I0(x,y) = I0e
−2 x2+y2

w2 (5.6)

The real and imaginary components of the liquid’s index of refraction nl and κl may now be
determined by fitting Eq. 5.6 to the experimentally detected intensity profile. Theoretical
beam profiles after reflection are shown in Fig. 5.4 for a Gaussian beam with a focus spot
size of w0 = 30 μm and different values of the liquid’s refractive index ñl (here α0 = 25◦,
θ1 = 45◦ and np = 2.4).

For different values of the beam waist, i.e. focus spot size w0 the angle γ(x) is calculated and
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Figure 5.5: Image analysis and data processing. Shown are two camera images, one without
(a) and one with (b) liquid sample. The gray scale values of the images are added as indicated
in the figure. Equation 5.6 is fitted to the one-dimensional profiles (c, d).(adapted from [P5])

5.3 Measurements

Dichloromethane (DCM) exhibits an absorption peak in the tuning range of the QCL
(see FTIR measurement, Fig. 5.7 rhs.) and serves as a model solution to test the MIR-
refractometer. Less than 100 μl of neat (undiluted) DCM are pipetted on the upper surface
of the prism. The QCL is then wavelength-scanned in 1 cm−1 steps over the complete tuning
range and an image is recorded by the IR-camera for each step. The images are processed
as schematically shown in Fig. 5.5. First, all the gray scale values for each camera pixel-
column are summed to obtain a 1-D beam profile. A theoretical fit of Eq. 5.6 to this profile
reveals both, nl and κl.
The focus spot size w0, important for the calculation of γ(x), is determined for each wa-
velength using an ABCD-matrix formalism [81] together with measurements of the beam
waist directly behind the laser. Thus camera images are taken without a sample. A fit of
the resulting 1-D profiles with a Gaussian function (Eq. 5.6 ) shows a linear decrease of
the beam diameter of the laser with increasing wavenumber (Fig. 5.6a). The beam waist is
measured at three wavelengths in the interval between 1220 cm−1 and 1320 cm−1 (movable
detector and a razor blade). The other values are calculated by a linear approximation
(Fig. 5.6b). For the ABCD-matrix algorithm the so called complex beam parameter q is
defined as [81]:

1
q

= 1
R

− i
λ

πw2 (5.7)

where R is the radius of curvature of the wavefront and w the beam radius. So both, R and
w, are given by the real and imaginary part of q. The parameter q2 of a Gaussian beam
after passing an optical system is related to the beam parameter q1 at the entrance by:
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Figure 5.6: (a) Beam radius values gained from refractometer measurement without sample.
(b) Measured beam waists. A linear fit of the data is used for calculation of the focus spot
size. (c) Calculated values for the focus spot size.

q2 = A · q1 + B

C · q1 + D
(5.8)

The real parameters A, B, C, D are written as a 2 × 2 matrix. Each optical element of
the system is described by such a matrix. Analogous to the Jones and Müller formalism
the ABCD matrix of the system is calculated by multiplying the matrices for each optical
element. Here the matrices p(d) for the free space propagation of a distance d and l(f) for
a thin lens with focal length f are needed [81]:

p(d) =
[
1
0

d

1

]
and l(f) =

[
1

−1/f

0
1

]
(5.9)

The focus spot size w0 is calculated using the measured values for w and R = 0 (since it is
the beam waist) and the ABCD-matrix M is then given by:

M = p(d3) · l(f3) · p(d2) · l(f2) · p(d1) · l(f1) · p(d0) (5.10)

were d0 = 500 mm is the distance between the laser output aperture and the first spherical
mirror SM1, d1 = f1 + f2 is the distance between SM1 and SM2, d2 = f2 is the distance
from SM2 to PM1, and finally d3 = f3 is the distance from the parabolic mirror PM1 to
the entrance surface of the ZnSe prism (see Fig. 5.1) . The results of the calculation are
shown in Fig. 5.6c. Also important for the evaluation is the index of refraction np of the
ZnSe-prism, which is determined with the corresponding Sellmeier equation [15]:
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n2
p = 1 + 4.2980149λ2

λ2 − 0.19206302 + 0.62776557λ2

λ2 − 0.378782602 + 2.8955633λ2

λ2 − 46.9945952 (5.11)

The results from the Gaussian beam optics model are shown in Fig. 5.7, where they are
compared to conventional FTIR-measurements. The FTIR values for the real part of the re-
fractive index nl have been derived from absorbance measurements using a Kramers-Kronig
transformation. For the refractometer data neat DCM was used, whereas a 3M solution of
DCM in deuterated chloroform (CDCl3) was used for the FTIR spectra. It is seen that the
dispersion and absorption line profiles qualitatively agree for both measurements, but the
absolute values differ. This is in part because any distortion of the beam (partly induced
by the diffuser) will affect the quality of the fit. Therefore the RMS error is calculated and
shown for comparison in Fig. 5.7. The error is computed from the RMS value of the fit
residuals weighted by the peak height. Overall this error is < 10%. For ν < 1260 cm−1 the
deviation is larger because here the camera pixel noise increases as the intensity incident
on the camera becomes small. The image noise on the camera is similarly analyzed and

Figure 5.7: Results of MIR refractometer measurements of dichloromethane (DCM). Gaus-
sian beam profiles in the fits are compared to direct FTIR absorption measurements. In the
FTIR data n has been determined form the corresponding κ values using a Kramers-Kronig
transformation. The RMS error and the mean image noise are plotted in the upper panels
(see text for details). (taken from [P5])
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shown in Fig. 5.7. It is calculated by first smoothing the raw data of the beam profile with
a moving average filter. Afterwards the RMS deviation between smoothed and raw data is
computed and weighted by the peak value.
In the present setup the refractometer requires an expensive imaging setup and is limited
by any distortions of the beam profile. Improvements in sensitivity and ease of imple-
mentation could be provided by position sensitive detectors (PSD) in the MIR, which are
however not yet commercially available. Sensitive position detection schemes using PSDs
are presented in chapter 3 (chiral refractometer) for the visible spectral region and could
also be implemented here. Together with a wedge-shaped sample cell and an appropriate
polarization modulation (as shown in chapter 3) this would allow the detection of the vi-
brational circular birefringence (VCB) δn via measurements of the optical activity induced
beam deflection and splitting in the MIR. The corresponding VCD spectrum of the opti-
cally active substance could then be revealed by a Kramers-Kronig transform. Therefore,
the VCD analysis of optically active substances would be possible without the need for
direct intensity measurements.





6
Chiral Scattering and Colloidal Molecules

This chapter is based on [P6]. It has been shown, that the interaction potential of spherical
colloids can be tuned to mimic the potentials that drive certain atomic and ionic processes.
It allows a direct visualization of solid state phenomena difficult to observe at the ato-
mic level, such as crystallization, melting, and dislocation dynamics [82–86]. In analogy to
“colloidal atoms” [87] the name “colloidal molecules” [88] has been proposed to describe
small non-spherical clusters of particles representing molecules and their interactions at
the mesoscale.
In this context the colloidal counterparts of chiral molecules are particularly interesting,
since they could serve as mesoscopic model systems that may permit the visualization of
molecular phenomena that are otherwise difficult to observe. These include several useful
effects like the propeller effect, which have not been demonstrated on the molecular scale
due to the weak symmetry-breaking of chiral molecules. Because surface minimization ge-
nerally favors the growth of symmetric particles it is, however, difficult to synthesize chiral
colloids. So available synthetic approaches generally yield particles that are either spherical
or highly symmetric [89–93]. Only a few methods have been published that can produce
enantiopure chiral colloids [94, 95] but none of them being able to generate large numbers
of colloids with programmable shape, chirality and material composition.
In this chapter it is shown how glancing angle physical vapor deposition (GLAD) can be
used for the batch-production of large numbers of helical colloids with defined handedness
and shape. Moreover, the differential scattering of circular polarized light is shown to be
a useful diagnostic tool for the characterization of the corresponding colloidal solutions
and to observe the mirror-asymmetric nature of colloids with different handedness. The
measurement results are compared to theoretical predictions based on a simple analyti-
cal model. Finally the chiral colloids are used for the experimental demonstration of the
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propeller effect, first predicted in 1978 by Baranova and Zel’dovich [96]. It is used for the
separation of a racemic mixture of colloids with opposite handedness. The work has been
performed at the Max-Planck-Institute for Intelligent Systems (Stuttgart, Germany) and
has been published in [P6]. The main contribution of the author (Marcel Pfeifer, M.P.) was
the calculation and measurement of the Circular Differential Scattering (CDSI).

6.1 Synthesis of chiral colloids

Many strategies like geometrical confinement (e.g. by microwells or emulsion droplets),
controlled surface nucleation, phase separation approaches or cluster-formation through
the application of external fields or the inclusion of magnetic patches have been developed
to produce colloidal molecules [89–93]. But since colloids, contrary to atoms, generally lack
directional interaction most of the approaches tend to yield mixtures of different clusters
with high symmetry. Glancing angle deposition (GLAD) has been used to grow a large
number of colloids with defined shape, chirality, and in-built dipole functionality. GLAD
as a physical vapor deposition (PVD) technique can grow ∼ μm-sized particles with a
variety of shapes. Moreover it allows the inclusion of a number of different materials and
thus functionalities such as magnetic properties or surface chemistries, in a one-step pro-
cess [97, 98]. In Fig. 6.1 the used fabrication principle is shown.
At first a silicon wafer is coated with a monolayer of silica seed particles using vertical col-
loidal deposition. The monodisperse silica particles with a diameter of about 300 − 400 nm
were synthesized by Debora Schamel (D.S.) according to a modified Stoeber-Method [99]
and surface-treated with allyltrimethoxysilane [100]. A dispersion of these particles in chlo-
roform was dropped onto the surface of a Langmuir-Blodgett trough. A monolayer was

Figure 6.1: (a) Schematic of the GLAD technique as described in the text. (b) SEM image
of a wafer containing helices representative of those used in this work. (c) Left- and (d) right-
handed chiral particles released in solution. Scale bar in (b) is 2 μm, (c) and (d) are 0.5 μm.
(taken from [P6]).
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transferred onto a 2”-wafer at a surface pressure of about 20 mN/m (work by D.S.). The
patterned wafer is brought into the GLAD chamber, where the material to be used is hea-
ted with an electron beam and deposited onto the silica microspheres at a glancing angle
of α ≈ 85◦ (Fig. 6.1a). For the growth of helices an azimuthal rotation of the wafer during
the deposition process is implemented. The chirality and pitch of the particles can be easily
tuned by adjusting the rotation direction and speed at a given vapor flux, i.e. the faster
the rotation the smaller the pitch. For magnetic properties, as used for the experimental
verification of the propeller effect (Sec. 6.3), the deposition of nickel is used which is fer-
romagnetic already as a thin film and relatively stable in aqueous solutions. The number
of helices produced in one batch is of the order of 1010 on a 2′′-wafer. The particles are
released from the wafer into solution by sonicating a wafer piece. The GLAD growth has
been undertaken by Dr. John Gibbs and D.S..

6.2 Optical characterization

This section is work by the present author (M.P.) and has only in part been published
in [P6]. To characterize the handedness and geometrical shape of the colloidal solutions
of glass helices the differential scattering of circularly polarized light has been used. This
effect was first demonstrated experimentally in 1982 by Bustamante et al. who measured
the scattering of helical octopus sperm heads [101]. They showed that the chirality of
colloidal scatterers clearly manifests itself in circular differential scattering spectra even
in the absence of chromophores [101, 102]. Moreover, the differential scattering reveals
information about chiral structural elements of the colloids on the order of the wavelength
used in the experiment. Due to this sensitivity of the circular differential scattering intensity
(CDSI) to the chiral geometry [21, 103, 104] it can serve as a diagnostic to ensure that
colloidal solutions obtained from helices with opposite handedness grown on different wafers
are enantiomers. Indeed, since the octopus sperm head used in the previous study is only
available in one helicity and geometry, CDSI has previously not been validated for pairs of
enantiomers [105–107].

6.2.1 Calculation of circular differential scattering (CDSI)

All calculations are based on the analytical model first proposed by Bustamante et al.
[21]. Here a small error that appears in their final expression for the circular differential
scattering intensity (in Ref. [21]) has been corrected. The calculations are also extended to
consider helical scatterers of finite thickness. Results from both, the corrected single helical
scatterer (based on [21]) as well as the thick helix are shown.
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As shown in Sec. 2.2.3 is the circular differential scattering intensity (CDSI) defined as [101]:

CDSI = Ir(θ) − Il(θ)
Ir(θ) + Il(θ) = ΔI

TSI
(6.1)

where Il,r(θ) are the intensities of the scattered light propagating in the direction defined
by the angle θ for left or right circularly polarized light incident upon the sample and TSI

the total scattered intensity. In general, scattering processes are modeled by considering
a finite object to consist of a set of point polarizabilities arranged in space, where each is
represented by a tensor αj and emits a wave according to Eq. 2.46. The total scattered
wave Es is the sum over all the emitted fields. At a distance r′ to the scattering volume it
is then given by [21]:

Es(r′) = k2

r′ e−ikr′(1 − k̂k̂) ·∑
j

eiΔk·rjαj · E0 (6.2)

where E0 and k0 are the electric field amplitude and wave vector of the incident field and
k = 2π/λ. The wave vector of the scattered radiation is k = (2π/λ)k̂ and Δk = k − k0.
The tensor for each point polarizability is written in terms of its components along a single
principal axis t̂j [21]:

αj = αj t̂j t̂j (6.3)

Using Eq. 6.3 together with Eq. 2.31 for a left- or right-circularly polarized incident plane
wave, ΔI and TSI can be calculated from Eq. 6.2. For an isotropic suspension of colloids
or macromolecules, both the difference ΔI and the sum TSI have to be averaged over all
orientations of the scatterer. This is possible by expressing all quantities in Eq. 6.2 in terms
of a well-defined space-fixed and a scatterer-fixed coordinate system [21]. The isotropic
differential scattering intensity 〈ΔI〉 for a scatterer of arbitrary shape is then [21,103]:

〈ΔI〉 = 8π4

λ4r′2
∑
ij

α∗
i αj

(
t̂j × t̂i

)
· R̂ij

[(
t̂i · t̂j

)(j2(q)
q

− j1(q)
)

(6.4)

−
(
t̂i · R̂ij

) (
t̂j · R̂ij

)(5j2(q)
q

− j1(q)
)] [

sin θ

2 + sin3 θ

2

]

where Rij = |rj − ri|R̂ij is the distance vector between the polarizabilities αi and αj with
principal axis t̂i and t̂j. The functions j1 and j2 are spherical Bessel functions of the first
kind of, respectively, first and second order. Their argument is given by [21]:

q =
(4πRij

λ

)
sin θ

2

Similarly, an analogous expression for the total scattering intensity TSI can be derived [21].
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Figure 6.2: (a) Scheme of a single helical scatterer with pitch P and radius a made up
of uniaxial point polarizabilities (red dots) evenly spaced. Their principal axes are oriented
tangential to the helix (black arrows). (b) A set of concentric helices with the same pitch but
increasing radius is used to describe a helical scatterer of finite thickness [P6].

Even only achiral dipole polarizabilities α have been considered, circular differential scat-
tering can be obtained if these polarizabilities are arranged in a chiral geometry. A number
of simplifications can be made for the special case of a helical scatterer. The geometry can
be expressed in terms of the radius a and pitch P and the uniaxial point polarizabilities are
supposed to be evenly spaced along the helix with their principal director aligned tangential
to it (Fig. 6.2a). We can then write ri and t̂i as a function of a and P [21]:

ri = a cos (iτ0)êx + a sin (iτ0)êy + i
Pτ0

2π
êz (6.5a)

t̂i = − a

M
sin (iτ0)êx + a

M
cos (iτ0)êy + P

2πM
êz (6.5b)

with M =
√

a2 + P 2

4π2

here τ0 is the angular distance between subsequent polarizabilities i and i + 1 in radians,
and êx, êy, êz are the unit vectors along the scatterer fixed coordinate system. Using Eqs.
6.5 and τij = (j − i)τ0 in Eq. 6.4 we can write:

〈ΔI〉h = 2π3a2P

M4λ4r′2
∑
ij

α∗
i αj√
Gij

(
4 sin2 τij

2 − τij sin τij

) [(
a2 cos τij + P 2

4π2

)(
j2(q)

q
− j1(q)

)

− 1
Gij

(
a2 sin τij + P 2

4π2 τij

)2 (5j2(q)
q

− j1(q)
)⎤⎦(sin θ

2 + sin3 θ

2

)
(6.6)
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with Gij = |Rij|2 = 4a2 sin2 (τij/2) + (Pτij/2π)2. In the prefactor of Eq. 6.6 Gij has been
replaced by

√
Gij and α∗

i αj appears here (it was missing in the equation given in [21]). Due
to the helical symmetry we can replace the double summation by ∑N−1

k=1 (N −k), where N is
the total number of polarizabilities. This gives the following expression for the differential
scattering intensity of a thin helix:

〈ΔI〉h = 2π3a2P

M4λ4r′2

N−1∑
k=1

(N − k) |αk|√
Gk

(
4 sin2 kτ0

2 − kτ0 sin kτ0

)
(6.7)

[(
a2 cos kτ0 + P 2

4π2

)(
j2(q)

q
− j1(q)

)

− 1
Gk

(
a2 sin kτ0 + P 2

4π2 kτ0

)2 (5j2(q)
q

− j1(q)
)⎤⎦(sin θ

2 + sin3 θ

2

)

In order to model helical colloids with a finite thickness, i.e. an inner and outer radius
(ain, aout), we consider a stack of nh concentric “thin” helices with the same pitch but
increasing radius (ain ≤ a ≤ aout) (Fig. 6.2b). The CDSI value for the colloid is either
calculated by independently simulating each thin helix using Eq. 6.7, or by summing a
helix stack. For the latter approach we have to slightly modify Eq. 6.7. First the radius is
defined as a function of the index i, the number of turns T , the number of polarizabilities
per turn np and the number of helices nh:

a(i) = ain +
⌊

i

T np

⌋(
aout − ain

nh

)
(6.8)

Here �x� is the floor function giving the greatest integer less than or equal to x. Next we
use a(i) and Eq. 6.5 to redefine the following parameters:

ri = a(i) cos (iτ0)êx + a(i) sin (iτ0)êy + ci
Pτ0

2π
êz (6.9a)

t̂i = −a(i)
Mi

sin (iτ0)êx + a(i)
Mi

cos (iτ0)êy + P

2πMi

êz (6.9b)

Mi =
√

a(i)2 + P 2

4π2 , cij = (cj − ci)τ0, ci = i −
⌊

i

Tnp

⌋
Tnp (6.9c)

Gij = a(i)2 + a(j)2 − 2a(i)a(j) cos τij +
(

Pcij

2π

)2
(6.9d)

Finally, using the equations above we can express the spatially averaged differential
intensity for the multi-helix stack as:

〈ΔI〉mh = 2π3P

λ4r′2
∑
ij

α∗
i αj√

GijM2
i M2

j

(
a(i)2 + a(j)2 − a(i)a(j) (2 cos τij + cij sin τij)

)
. . .
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. . .

[(
a(i)a(j) cos τij + P 2

4π2

)(
j2(q)

q
− j1(q)

)
(6.10)

− 1
Gij

(
a(i)a(j) sin τij + P 2cij

4π2

)2 (5j2(q)
q

− j1(q)
)⎤⎦(sin θ

2 + sin3 θ

2

)

In what follows CDSI intensities are computed for both models and a variety of helix
geometries.

Convergence criteria

For the subsequent calculations the vacuum wavelength and the refractive index of the
solvent are λ0 = 532 nm and nsl = 1.33 (water), respectively, which gives a wavelength
inside the solvent of λ1 = 400 nm. Furthermore we only consider helical scatterers made
out one material, so we can write αi = α for all i and α∗

i αj = α2. Because α2, which is
proportional to the refractive index of the used material, is then simply a scaling factor for
〈ΔI〉 (Eq. 6.7 and 6.10), we can set α2 = 1 in this qualitative analysis for simplicity.
At first 〈ΔI〉 is calculated for a single helix while increasing the number of polarizabili-
ties per turn np. The other parameters pitch, radius and number of turns are fixed and
P = 250 nm, a = 150 nm and T = 2, respectively. The results for five different values of
np using Eq. 6.7 are shown in Fig. 6.3a. As can bee seen the shape of the 〈ΔI〉 signals is
unchanged, only the absolute values scale quadratically with np. This is also shown by the
ratios of the signals for np = 10, shown in Fig. 6.3b, and the corresponding mean values
in Fig. 6.4a. Therefore a number of np = 20 polarizabilities per turn is sufficient for a
qualitative analysis. Here the lateral distance between adjacent polarizabilities is approxi-

Figure 6.3: Variation of the number of polarizabilities per turn np. Shown are the (a) ΔInp

signals and (b) the ratios ΔInp/ΔI10.
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Figure 6.4: (a) Mean values of the ratios ΔInp/ΔI10, which scale quadratically with np. (b)
Lateral distance for adjacent polarizabilities for different values of np.

mately Ri,i+1 = 50 nm (Fig. 6.4b). For a multi-helix stack the number of thin helices
nh varies. We examined a multi-helix with the following parameters: P = 250 nm, T = 2,
ain = 150 nm and aout = 175 nm. We set the number of polarizabilities per turn to np = 20
and calculate the multi helix signal 〈ΔI〉mh (Eq. 6.10). The results are shown in Fig. 6.5a
together with the ratio ΔInh/ΔI2 of the signals and the signal for nh = 2 (Fig. 6.5b).
The differential intensity for a multi-helix stack scales with the number of thin helices nh.
Moreover, a slight change in the root positions can be observed, as seen in the increasing
‘spikes’ in the ratio signals (Fig. 6.5b) and also in Fig. 6.6. Here the values θzero for the two
roots are plotted against nh. For values of nh ≥ 5 the changes in θzero are small (≤ 0.05◦).
So for the multi-helix stack five thin helices are sufficient for calculations.

Figure 6.5: Variation of the number of thin helix nh composing a multi-helix stack. (a) The
values for ΔInh calculated with Eq. 6.10. (b) Ratio ΔInh/ΔI2 for different values of nh.
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Figure 6.6: Position of the roots of the ΔInp signal for different nh. For nh ≥ 5 θzero changes
by less than ≤ 0.05◦.

Variation of geometrical parameters

Next we will have a look how the 〈ΔI〉 signals change with respect to variations of geome-
trical parameters of the helix. Here only a thin single helix is considered, since the behavior
should be the same for 〈ΔI〉mh. At first the number of turns T is changed for a helix with
P = 250 nm, a = 150 nm and np = 20. Figure 6.7 shows the results for 〈ΔI〉 along with
the ratio ΔIT /ΔI2. Again the absolute value of the differential scattering scales with the
number of turns while the shape of the signal is mainly unchanged except for a small shift
of the roots (see Fig. 6.7b).

Figure 6.7: (a) Differential scattering intensity ΔI for single helices with increasing number
of turns T . (b) Ratio of the signals with ΔI2.
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Figure 6.8: (a) Total and (b) differential scattering intensity for single helices with P =
250 nm, T = 3 and increasing radius a.

In contrast, the differential scattering intensity is very sensitive to small changes of the
radius a or the pitch P of the helix. To see how 〈ΔI〉 varies the signals have been calcula-
ted for a helix with three turns (T = 3), where either the radius or the pitch is increased.
In Fig. 6.8 the results for both the total scattering intensity (TSI) and ΔI are shown for
helical scatterers with P = 250 nm and different radius a. The TSI values have been calcu-
lated using the formula given in [21]. One can see, that the ΔI signals change dramatically
when a is increased. Especially the number of roots, and therefore the number of maxima
and minima of the signal grows with an increasing radius a. This is illustrated by Fig. 6.9.
Here the number and the position of the corresponding roots of the signal are given for the
different values of a.

Figure 6.9: (a) Changing root positions θzero of the ΔI spectra with increasing radius a of
the helix. (b) The number of roots increases with the radius a of the helix.



6.2 Optical characterization 93

Figure 6.10: (a) Total and (b) differential scattering intensity for single helices with a =
150 nm, T = 3 and increasing pitch P .

Figure 6.11: (a) Root positions θzero of the ΔIlr spectra with increasing pitch P of the
helix. (b) The number of roots also varies when the pitch P of the helix is changed.

An analogous response of the differential scattering intensity ΔI to changes of the pitch P

can be found. For helices with a radius of a = 150 nm and three turns the TSI and ΔI

signals have been calculated while increasing the pitch. The results are shown in Fig. 6.10.
Here also the number and position of the roots, and therefore of the extrema, varies for
the different values of P , which is visualized in Fig. 6.11.
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Comparison of calculation methods

Finally the two simulation models for the thick helix are compared. Therefore we assumed
two multi-helix stacks, one with a pitch of P = 250 nm, two turns (T = 2), and an inner
and outer radius of ain = 150 nm and aout = 175 nm, respectively. Whereas for other we set
P = 550 nm, T = 3, ain = 100 nm and aout = 275 nm. The stacks are composed of five thin
helices, each having np = 20 point polarizabilities per turn. The ΔI signals are calculated
by either considering each thin helix independently using Eq. 6.7 and summation of the
five spectra, or by using the multi-helix approach of Eq. 6.10. Figure 6.12a and c show the
results of the five thin helix, whereas in Fig. 6.12b and d the sum of these signals is depicted
together with the multi helix signal. It is obvious that the multi helix signal is in both cases
bigger than the sum by a factor of ∼ 5, also validated by the ratios ΔImh/ΣΔIsh shown in
Fig. 6.13. Here the ‘spikes’ indicate shifts of the root positions between the signals, which is

Figure 6.12: Comparison of two different calculation methods. Calculated spectra of ΔI for
thin helices with (a) pitch P = 250 nm or (c) pitch P = 550 nm and radius a using Eq. 6.7.
(b) and (d) Sum of the spectra shown in (a) and (c) (black line) compared with the result
obtained using the multi helix approach (Eq. 6.10).
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Figure 6.13: Ratios of the multi-helix signal ΔImh and the sum of the single helix signals
ΣΔIsh for the spectra shown in (a) Fig. 6.12b and (b) Fig. 6.12d. The multi-helix signal is
in both cases approximately five times bigger than the sum. The spikes also indicate a shift
of the root positions, which are more pronounced for (b).

more pronounced for the thicker helix stack (Fig. 6.13b). These differences are likely due to
the fact, that the multi-helix approach considers also cross-terms between polarizabilities
on different thin helices inside the stack. In contrast, these interference terms are neglected
in the simple summation of the thin helix spectra. Therefore, when considering helical
scatterer of finite thickness, the multi-helix approach (Eq. 6.10) should be used for more
accurate results.

6.2.2 Experimental setup

The setup used for the differential scattering experiments is shown in Fig. 6.14. A diode
pumped solid state laser (DPSS) with an optical output power of P = 100 mW (cw)
and a wavelength of λ = 532 nm was used as a light source. After passing an optical
chopper (fchopper = 300 Hz) the light is first linearly polarized (θ = −45◦) and then
sent to a photoelastic modulator (PEM). The PEM modulates between left- and right-
circular polarization states at fP EM ≈ 50 kHz, before the light is incident on a cylindrical
scattering cell that contains the colloidal solution. The scattered light is detected using a
photomultiplier tube (PMT) mounted on a precision goniometer with an angular resolution
of < 1◦. The distance between the PMT and the center of the sample cell is d = 10 cm
and together with an entrance aperture of 1.5 mm of the PMT this results in an angular
resolution of 0.86◦.
The detector signal is electronically processed by two lock-in-amplifiers (LIA) locked to the
modulation frequency of either the chopper or the PEM. While the PMT moves around
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Figure 6.14: (a) Optical and electronical setup used for the differential scattering experi-
ments [P6]. Pictures showing parts of the setup (b) and the illuminated cylindrical sample
cell (c). Further details can be found in the text.

the sample in an arc of 1◦-steps, 50 data points are taken and averaged for every angular
position of the detector. The total scattering intensity (TSI) can be derived from the
LIA locked to the chopper frequency whereas the difference in the scattering between
the circular polarization states is detected by the second LIA. The circular differential
scattering intensity (CDSI) as defined in Section 6.2.1 is calculated according to [12]:

CDSI ∝ RP EM

Rchopper · J1(αP EM) (6.11)

Here αP EM = π/2 is the retardation introduced by the PEM and J1(x) the Bessel function
of the first kind. RP EM and Rchopper are the measured amplitudes of the LIAs. To minimize
artifacts arising from unwanted back-reflections and scattering, care has been taken to block
the transmitted laser beam and cover all reflecting surfaces close to the sample. Scattering
signals between 10◦ and 145◦ can be detected with this setup.

6.2.3 Measurements

Different chiral colloids have been grown by the GLAD method described in Sec. 6.1. Col-
loids with opposite handedness as well as different geometrical shapes have been measured
and compared using the CDSI setup (Fig. 6.14). The shape and geometrical parameters
were determined by analyzing scanning electron microscopy (SEM) images. An overview of
these parameters can be found in Tab. 6.1, which were also used for simulation purposes.
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2ab 2ah,i 2ah,o lh lt T P
left-handed
helix LH1 0.43 ±

0.03
0.23 ±
0.02

0.35 ±
0.04

1.386 ±
0.008

1.832 ±
0.003

5 0.277 ±
0.002

left-handed
helix LH2 0.33 ±

0.02
0.19 ±
0.06

0.55 ±
0.03

2.17 ±
0.02

2.478 ±
0.005

4 0.55 ±
0.004

left-handed
helix LH3 0.35 ±

0.03
0.17 ±
0.04

0.90 ±
0.04

2.800 ±
0.014

3.08 ±
0.01

3 1.161 ±
0.006

right-handed
helix RH1 0.31 ±

0.02
0.212 ±
0.011

0.34 ±
0.02

1.323 ±
0.011

1.630 ±
0.006

5 0.265 ±
0.002

achiral rod 0.33 ±
0.02

− − −− − − −− − − −− 2.314 ±
0.004

−− − − −−

Table 6.1: Geometrical parameters of the measured colloids also used for calculations. Shown
are diameter of bead (2ab), inner diameter of helix (2ah,i), outer diameter of helix (2ah,o),
length of helix (lh), total length of colloid (lt), number of turns (T ), and pitch of helix (P ).
All values are in μm.

Chiral sensitivity of CDSI

First TiO2 screws of both helicities (LH1 and RH1) were grown on 300nm SiO2 beads
with a helical pitch of P ∼ 250 nm and 4 to 5 turns. As an achiral control both solutions
of the seed SiO2 beads and TiO2 rods of the same hight were also measured. The latter
were grown with the same GLAD-method but fast azimuthal rotation. The results from
the total scattered intensity (TSI) and the circular differential scattered intensity (CDSI)
measurements of the helical colloids are shown in Fig. 6.15 together with SEM images.
The TSI values for all samples decrease monotonically with increasing scattering angles for
angles greater than 20◦. The differences in the absolute values are mainly due to slight dif-
ferences in the concentrations of the measured solutions. As expected, the total scattering
intensity (TSI) does not differentiate between opposite helicities.
In contrast the measured CDSI signals of the two enantiomers are approximately equal in
shape and opposite in sign. Small variations are due two slight differences in the geome-
try of the screws, as can be seen from the SEM images. The CDSI signal for the achiral
rods and the spherical SiO2 beads vanish for all scattering angles, as expected. Therefore
the CDSI signals are only sensitive to the chiral features of the scatterer, as proposed by
Bustamante et al [21]. It can therefore distinguish between left and right-handed helices.
Furthermore even small chiral structural features of the helices give rise to relatively big
CDSI signals (up to ∼ 10−2).
The solid lines represent theoretical calculations of the differential scattering intensity
〈ΔI〉mh and are based on the algorithm described in Sec. 6.2.1 using the measured geome-
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Figure 6.15: Total scattering intensity (first row) and the differential scattering signal of
circular polarized light of (a) left- and (b) right handed helices, as well as (c) achiral rod-
shaped colloids of the same size and spherical SiO2 beads. Also shown are the corresponding
SEM images. The dots are experimental data, whereas the solid lines show calculation results.
Each solution had a concentration of approximately 0.5 pM [P6].

trical parameters of the colloids. The number of thin helices and polarizabilities was set to
nh = 5 and np = 20, respectively. The calculation results are scaled for a better comparison.
The calculations are in qualitative agreement with the experimental results for all samples.
Discrepancies between theory and experiment for small angles can be traced back to the
fact that due to experimental limitations at low angle scattering (LAS) the detector also
sees some of the direct incident beam [108,109]. But overall, the CDSI signals are sensitive
to the geometry and thus serve as a diagnostic for the chirality of the solutions
We also measured a racemic mixture of the aqueous solutions of the left- and right handed
helices, shown in Fig. 6.16. For this purpose 500 μl of each solution were mixed together.
As expected the CDSI signals almost vanish whereas the TSI signals do not change signi-
ficantly. Moreover, the CDSI signal of the racemate is in good agreement with the mean
value of the signals for both helices, which is also shown for comparison.

Variation of geometrical parameters

Now the CDSI and TSI signals of chiral colloids with different geometrical parameters shall
be compared. Therefore TiO2 screws have been grown with increasing pitch. Screws with
twice (P ∼ 500 nm, LH2) and foretimes (P ∼ 1000 nm, LH3) the pitch of the colloids
measured before were fabricated. As the SEM pictures and the measured parameters show
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Figure 6.16: (a) Total scattered intensity (TSI) and (b) circular differential scattering signal
(CDSI) for a racemic mixture of the left- and right handed helices. The CDIS values for
the enantioclean solutions are also shown as well as the mean value of these signals (taken
from [P6]).

(Fig. 6.18 and Tab. 6.1) was not only the pitch increased, but also the diameter of the
screws. If the radius now exceeds the mean distance between neighboring seeds, then the
helices may join during the growth process which causes aggregates in solution (Fig. 6.17).
This changes the CDSI signals and complicates the interpretation. Nevertheless we suc-
cessfully measured CDSI and TSI for helices with increasing pitch, as is shown in Fig. 6.18.
The different colloids exhibit different CDSI signals making it possible to clearly distin-
guish between them.
As before the expected CDSI signals were calculated using Eq. 6.10 for the multi-helix stack
with the measured parameters for pitch, number of turns, and inner and outer radius. The

Figure 6.17: SEM images showing examples for conglomerates found in the solutions of (a)
LH2 and (b) LH3. If the radius of the helices exceeds the mean distance between neighboring
seeds, they may join during the growth process.
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Figure 6.18: Total scattering intensity and the differential scattering signal of circular po-
larized light for left-handed helices with different geometrical parameters. The pitch P and
also the radius a of the screws have been increased (from (a) to (c)). Also shown are the
calculation results (solid lines).

number of thin helices and polarizabilities per turn were set to nh = 5 and np = 20,
respectively. The results have been scaled and are also shown in Fig. 6.18. It is obvious
that the agreement with the calculation is only guaranteed for sample LH1, the one with
the smallest pitch. A possible explanation for the disagreement may be the influence of
the aggregates on the CDSI signals, which have not been considered in the calculations.
Exemplarily this influence has been estimated for LH2 through calculations of 〈ΔI〉 for
aggregates of two, three and four multihelices as shown in Fig. 6.19a. Here the multiheli-
ces are joined together along the x-axis of the scatterer fixed coordinate system. For the
calculations Eq. 6.9a is appended by the term

1.25 aout

⌊
i

nhnpT

⌋
êx,

and the modified Eqs. 6.9 are used in Eq. 6.4. Here all symbols have the same meaning as
before. Figure 6.19b shows the scaled results together with the measured CDSI signal of
LH2. As can be seen, the more helices are joined together the stronger the negative band
at ∼ 80◦ gets compared to the one at ∼ 40◦, which is also observed in the measured signal.
The monotonic increase in the measured CDSI signal for θ > 80◦, however, is not reflected
by the calculations. This is likely due to the influence of other aggregates then the ones
considered here.
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Figure 6.19: (a) Schemes of multihelix aggregates used for calculation. (b) Scaled results of
〈ΔI〉 for the aggregates shown in (a) together with the measured CDSI signal for LH2.

6.3 The propeller-effect and chiral separation

In 1978 Baranova and Zel’dovich predicted the ”propeller effect” where a racemic mixture
of chiral molecules is separated into its left and rigth-handed fractions when subjected to a
radio-frequency electric field of rotating polarization [96]. The coupling between the applied
electric field and the electric dipole moment of the molecules causes their rotation. Because
the sense of the rotation is given by the circularity of the electric field, opposite enantiomers
will “screw” in opposite directions. Therefore a separation along the rotation axis of the
electric field takes place. Estimations by Baranova and Zel’dovich of the propeller effect for
molecules with a permanent electric dipole moment of 4 Debye and a rotating electric field
of 0.3 MV/m and 100 MHz deduced an enantiomeric excess of 7% per centimeter of sample
vessel after ∼ 27 hours. Therefore the propeller effect has thus far not been demonstrated
experimentally.
In the colloidal analogue the electric dipolar molecules are replaced by magnetic dipolar
colloids driven by a rotating magnetic field. For this purpose a ferromagnetic 200 nm strip
made of Ni was included into the helices. Before releasing the helices from the wafer they are
magnetized orthogonally to their long axis by placing the wafer into a strong electromagnet
(∼ 1.8 T). In Fig. 6.20a it is schematically shown how a homogeneous, rotating magnetic
field couples to the magnetic moment of the helices and causes their rotation. Due to
shape-induced rotation-translation coupling the helices also translate. To minimize drag
the helices will align since the drag on the side of the helix is larger. Finally they will be
propelled along the rotation axis of the rotating magnetic field. For a helix the direction
of translation is given by its chirality and is therefore opposite to its enantiomer. For a
racemic mixture this results in a chiral separation, as has been successfully shown in [P6].
In summary it could be successfully demonstrated, that the differential scattering (CDSI) of
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Figure 6.20: (a) Schematic of magnetic dipolar colloidal helices in the presence of a rotating
magnetic field. The enantiomers (red and green) possess a magnetic dipole moment (blue
arrow) which will align and rotate with the applied field. Therefore the helices propel in
opposite directions. (b) Tracks of right- (red) and left-handed (green) colloids in a magnetic
field of 20 Gauss rotating with 20 Hz (time interval 20 s, scale bar 20 μm) (taken from [P6]).

circularly polarized light is a useful diagnostic tool for the characterization of chiral colloids
in solution. Beside a small correction of the theory proposed by Bustamante et al. [21] an
extension to helices of finite thickness was developed. By measurements of different μm-
sized TiO2 helices in solution, the CDSI signal was shown to be sensitive to the sense and
shape of the chiral parts of the colloids (i.e. pitch and radius).



7
Conclusion

Optical methods provide a direct mechanism of distinguishing between the enantiomers of
chiral molecules. Although there exist a number of established techniques and commercial
instruments optical activity remains difficult to detect in small sample volumes or strongly
absorbing environments. Thus new chiroptical methods have been successfully developed,
evaluated and presented in this thesis. These methods are based on the difference of the
interaction of chiral molecules and colloids with left- and right-circularly polarized light in
refraction, absorption or scattering. These phenomena are now discussed in turn.

7.1 Chiral refractometry

In the chiral refractometer optical activity is detected in refraction. The difference δn in the
real part of the refractive index causes both circular polarizations to refract with slightly
different angles at an interface between a chiral and an achiral medium. The difference
in the refraction angles for the polarization components is usually on the order of several
nanorads (10−9 rad). Furthermore knowing in which direction the right- or the left-circular
components refract contains the information on the handedness of the optically active me-
dium (e.g. the molecules’ chirality). Therefore different detection schemes for the optical
activity induced beam deflection or splitting have been tested. They can be separated into
(I) position methods and (II) intensity methods.
The position method (I) incorporates the direct detection using a position sensitive diode
(PSD) combined with an appropriate polarization modulation. Here a dual-polarization
modulation scheme was implemented with two photoelastic modulators (PEM). The po-
larization of the incoming light beam is altered between circular states at the difference
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frequency of the two PEMs. This reduced artifacts arising from interference and beam de-
flections induced by the PEM. Therefore changes in the circular birefringence δn of 1×10−8

could be resolved.
The intensity method (II) demonstrates a new form of optical activity measurement based
on a modified weak value amplification scheme. Weak value amplification has been shown
to be a promising tool to detect small, achiral and polarization-dependent beam deflections,
where the spatial beam separation is several orders of magnitude than the beam diameter
itself. To determine the sign of the polarization-dependent beam splitting two modifications
were introduce: a heterodyne mixing scheme using a Zeeman-HeNe laser and a polarization
modulation scheme. This allows for an amplification of up to ∼ 106 in the separation of
the beam components compared with the actual separation (in the absence of weak value
amplification). Both modulation schemes have been chosen so that they measure angular
deflections and not optical rotation. It was further demonstrated that they can be used to
determine the absolute sign of the optical activity. With the heterodyne detection setup
a circular birefringence of δn = 1 × 10−8 has been resolved. The most sensitive method
developed is the polarization modulated weak value amplification scheme since it could
detect circular birefringence of Δn ∼ 1 × 10−9 with a relative error of srel ≤ 1%.
This sensitivity corresponds to an optical rotation α = πδn l/λ of about 0.03◦ in a po-
larimeter that uses a 10 cm sample cell. However, unlike the polarimeter, which requires
volumes of at least 800μl, the refraction method requires a volume of less than 8 μl (ass-
uming a laser beam with a cross section of < 2mm and a wedge shaped sample cell with
2×4×2 mm3). Using a cell of the same length (2 mm) in a polarimeter the 50-fold shorter
pathlength would result in a reduced optical rotation of 0.0006◦, which is comparable to
the sensitivity of typical commercial polarimeters (∼ 0.001◦). The schemes shown in this
thesis can be even more sensitive when using enhancement methods of the angular splitting
as proposed by Ghosh et al. [29, 30]. An interesting prospect is also to extend the refrac-
tion scheme by combining it with interferometric weak-value detection (which we used for
the photothermal spectroscopy of a silane monolayer [P5]). A resolution of ∼ 1 picorad
in angular separation has been reported in [35]. Such sensitivity promises the analysis of
solutions that rotate the polarization by 0.00003◦ in ∼ μl volumes, and would surpass the
sensitivity of any commercial laboratory polarimeter.

7.2 MIR laser-based vibrational optical activity

Work in this thesis reports the first vibrational optical activity (VOA) spectra recorded
with a tunable quantum cascade laser (QCL). Both, circular dichroism (VCD) and circu-
lar birefringence (VCB) spectra, which are Kramers-Kronig transforms of each other, were
measured in the mid-infrared region. Despite their limited spectral range, quantum cascade
lasers offer a number of distinct advantages. They can be tuned with high resolution, which
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permits close-lying bands to be resolved and facilitates comparison with calculations. They
also provide a significantly higher output power compared to conventional thermal light
sources (up to 104), which permits measurements in longer-path-length cells. This is pro-
mising for both chiroptical spectroscopies (VCB and VCD) since they scale linearly with
path length. Moreover allows the spectral brightness of a QCL measurements in strongly
absorbing solvents, i.e. aqueous solutions.
These advantages have been demonstrated with a QCL-based setup comprising a ZnSe-
modulator (PEM) and a thermo-electrically (TE) cooled detector. VOA spectra of different
samples have been recorded and compared to FT spectrometer measurements and calcu-
lations. They were found to be in good agreement with each other. Among the samples
were solutions of the inorganic complex Ni(sp)Cl2 and the aromatic terpenoid limonene.
Furthermore spectra of an aqueous solution of the amino acid proline were presented. Mea-
sured in a 100 μm cell they had an optical density of up to 3.5 in the examined spectral
region. Nevertheless satisfactory VCD data have been recorded for both enantiomers.
The limiting factor for the sensitivity of the QCL setup is the reproducibility of the sol-
vent background. It is mainly dominated by instrumental birefringence and interference
effects inside the PEM. Therefore a modified setup was implemented using a detector
with LN2 cooling (providing an enhanced detectivity) and an anti-reflection coated PEM.
Background artifacts due to interference effects could be reduced, and a decreased mean
RMS deviation between subsequent measurements of 2×10−5 is demonstrated compared to
3 × 10−4 for the first setup. Finally, VCD spectra of an aqueous solution of L-proline were
recorded using the modified setup, which showed an enhanced SNR (40 compared to 28).
The reproducibility and therefore the sensitivity of the present setup may be further en-
hanced through the implementation of an optical reference channel. This could eliminate
artifacts arising form wavelength tuning errors of the QCL, which are suspected to be
the reason for the “spikes” observed in the RMS deviation data. A dual PEM method
as proposed by Nafie et. al [51] could be a promising tool to further suppress artifacts
due to linear birefringence. Nevertheless, the results of this thesis pave the way for laser-
based vibrational optical activity measurements. They also demonstrate the viability of
QCLs for VOA spectroscopy of biomolecules in spectral regions that are difficult to study
due to significant absorption by water, such as the amide III region (1400 − 1100 cm−1).
Moreover, QCL-based VCD-setups are promising for time-resolved studies of optical acti-
vity in aqueous solutions, which is also supported by the moderate measurement time of
∼ 20 min compared to aqueous studies with FTIR-VCD instrumentations. Time-resolved
VCD measurements can be used to optimize reaction conditions leading to a maximum
ee (enantiomeric excess) which may not be the same yielding maximum product. First
successful tests of the use of laser-based VCD spectroscopy for reaction monitoring were
performed in collaboration with the group of Dr. S. Lüdeke (University Freiburg). The
results are going to be published in [P7] and [P9].
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7.3 Mid-infrared refractometry

Due to their compact and rugged design quantum cascade lasers are an attractive practical
laser light source in the MIR spectral range. They are also technically less demanding then
nonlinear optical frequency conversion schemes based on short pulse high power lasers.
One drawback, however, are the intensity fluctuations QCLs are often plagued with. These
limit the achievable sensitivity in transmission based absorption measurements especially
when detecting weakly absorbing species. Therefore vibrational spectroscopy in the MIR
was demonstrated with a quantum cascade laser without the need to directly measure
absolute intensities. A MIR refractometer has been introduced which relies on detecting
changes in the real part of the index of refraction (angles of reflection) to deduce the
absorption via a beam profile analysis. First measurements with an achiral sample have
been successful. Pure dichloromethane (DCM), which showed a single absorption line in
the wavelength region of the laser, has been used as a test sample. Both the dispersion
and absorption line shapes were deduced simultaneously from the analysis of beam profile
changes at a total internal reflection interface. In the present setup it requires an expensive
imaging setup limited through any distortion of the beam profile. The sensitivity and ease of
implementation would therefore benefit from position sensitive detectors in the MIR, which
are not yet commercially available. This would allow for the implementation of position
detection schemes as presented for the chiral refractometer to measure vibrational circular
birefringence (VCB) via measurements of the optical activity induced beam deflection
and splitting. The corresponding VCD spectrum could then be revealed by a Kramers-
Kronig transform permitting an alternative CD detection mode without the need for direct
intensity measurements.

7.4 Chiral scattering and colloidal molecules

Generally, the physical effects due to the symmetry breaking of chiral molecules (optical
activity) are often weak and difficult to experimentally detect. Therefore a number of physi-
cal chiral separation schemes have been proposed but have thus far not been demonstrated
experimentally at the molecular scale. Complex nonspherical colloidal particles could act
as “colloidal molecules” in mesoscopic model systems and thereby permit the visualization
of molecular phenomena that are otherwise difficult to observe.
Using glancing angle physical vapor deposition (GLAD) a large number of helical colloids
were produced in good yields. This technique allows the composition of chiral colloids with
programmable shape and chirality. In this thesis the circular differential scattering (CDS)
has been shown to be useful for the characterization of these chiral colloidal suspensions.
CDS spectra for suspensions of left- and right-handed helical colloids have been obtained.
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Cylindrical shaped colloids and SiO2 beads were used as an achiral probe, showing no
CDS signals, as expected. The scattering data of the colloids agreed well with theoretical
predictions. The calculations are based on a model presented by Bustamante et al. [21],
which has been adapted to the case of an helical scatterer with a finite thickness. Further
calculations are presented to show the sensitivity of the scattering signals to the chiral
parameters of the helices, like pitch and radius for example. The model has been tested
with measurements on colloids with increasing pitch and it could be clearly distinguished
between the signals of the different samples. However, here the formation of aggregates in
solution complicates the analysis and no satisfactory agreement with theoretical predicti-
ons could be found. Finally, the observation of the propeller effect was reported using the
chiral colloidal molecules. In summary it could be successfully demonstrated that chiral
scattering is a sensitive probe of the configuration and structure of chiral colloids.
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