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Abstract

In this thesis two different dissipative quantum impurity systems are studied. The
dissipative environment in both models is described by a one-dimensional chain of
bosons with an ohmic spectral density. By coupling to the impurities, the translational
invariance in the environment is broken. It is investigated to what extent impurities of
different nature can be traced in the environment by means of static thermal averages
as a function of distance to the impurities.

In the first model, an oscillator is used as the impurity in the system. The impurity
oscillator can act on itself via density-density interactions. For zero self-interaction,
the system is studied analytically via equations of motion, as all relevant propagators
can be expressed in terms of the bare ones. In the limit of infinite self-interaction,
the system then transforms into the renowned spin-boson model [27, 51]. Here, the
system shows a Kosterlitz-Thouless quantum phase transition as a function of the
coupling strength between impurity and an ohmic environment. This transition can
be observed between a delocalised phase where the reduced two-level impurity system
performs oscillations between the two states and a localised phase where the impurity
is frozen in either of those two remaining states. In the range from zero to infinite
self-interaction the system is elusive to a purely analytic treatment. To investigate
the model in that regime, the Numerical Renormalization Group method (NRG) is
employed. Based on the NRG results, a renormalization-group flow of the system-
parameters is suggested, incorporating a whole line of quantum-phase-transitions as
a function of coupling strength between impurity and environment.

As a second model two identical spin-1/2 impurities are coupled at a variable
distance to the environment. The model has been studied before in case of zero
inter-impurity distance [41, 24], where the chosen interaction of the spins via their
z-component to the bath induces a ferromagnetic interaction between the spins. In
the two-dimensional subspace of parallel aligned spins there is again a quantum phase
transition of the Kosterlitz-Thouless nature as a function of the coupling strength
between impurities and environment. For infinite distance, each spin is independently
treatable and the system can be described by two uncoupled spin-boson models. A
wide range of impurity distances is studied within this thesis in order to trace the
quantum phase transition between zero and infinite inter-impurity distance. To this
end, a two-channel NRG for Bosonic models is developed that is capable of dealing
with both limits. Details on the algorithm and its implementation are presented in
this work.

In the delocalised phases of the models, the average site occupation in the environ-
ment is changed due to the presence of the impurities. This change is found to drop in
a power-law manner with growing distance to the impurities, where different phases
show different power-law exponents. In addition, the change in the average displace-
ment of the environmental bosons due to the coupling to the impurities is calculated.
While this change is highly sensitive to numerical noise in intermediate parameter
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2 Abstract

regimes, power-laws can be extrapolated as well for a large range of parameters. Be-
tween the two spin-1/2 impurities of the second model the changes in the thermal
averages remain comparably large, indicating an effective coupling of the impurities
which is mediated by the common environment. In conclusion, no intrinsic length
scale is found in the environment in either of the models. The implemented bosonic
two-channel NRG proved successful in describing the physics of the two-spin-boson
model in its delocalised phase.
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Kurzzusammenfassung

In der vorliegenden Arbeit werden dissipative Quantenstörstellen-Systeme betrachtet,
in denen verschieden geartete Störstellen an eine gemeinsame dissipative Umgebung
koppeln. Die dissipative Umgebung wird hierbei in beiden Fällen durch eine eindi-
mensionale Kette von Bosonen mit ohmscher Spektraldichte beschrieben. Da durch
die Kopplung von Störstellen an die Umgebung deren Translationsinvarianz gebrochen
wird, ergibt sich die Frage, inwiefern verschiedenartige Störstellen innerhalb der eindi-
mensionale Kette nachweisbar sind. Hierzu werden statische thermische Erwartungs-
werte innerhalb der Kette als Funktion des Abstandes zu den Störstellen in beiden
Modellen betrachtet.

In dem zuerst betrachteten Modell fungiert ein Oszillator als Störstelle, der mit
sich selbst durch Dichte-Dichte-Wechselwirkungen interagieren kann. Bei Abwesen-
heit dieser Selbstwechselwirkung können die Bewegungsgleichungen des betrachte-
ten, rein bosonischen Modells, vollständig analytisch gelöst werden. Im Grenzfall un-
endlich starker Selbstwechselwirkung geht das Modell in das bekannte Spin-Boson
Modell über [27, 51]. Dieses zeigt einen Kosterlitz-Thouless Quantenphasenübergang
in Abhängigkeit der Kopplungsstärke zwischen Störstellenoszillator und Umgebung.
Hierbei findet der Übergang zwischen einer delokalisierten Phase und einer lokalisier-
ten Phase auf der Störstelle statt. Während in der delokalisierten Phase eine endliche
Tunnelwahrscheinlichkeit zwischen den beiden möglichen Zuständen der Störstelle
besteht, wird die Störstelle in der lokalisierten Phase durch die starke Kopplung
an ihre Umgebung in einem der beiden Zustände eingefroren und ein Tunneln ist
nicht mehr möglich. Da das System für endliche Selbstwechselwirkungsstärken nicht
analytisch lösbar ist, verwenden wir in diesem Parameterregime die Numerische Re-
normierungsgruppenmethode (NRG), um Resultate zu erhalten. Basierend auf den
Ergebnissen der NRG-Berechnungen wird ein Phasendiagramm entwickelt, welches
eine Linie von Quantenphasenübergängen als Funktion der Kopplungsstärke zwi-
schen Störstellenoszillator und Umgebung für alle Werte der Selbstwechselwirkung
der Störstelle aufweist.

Für das zweite betrachtete Modell werden zwei magnetische Spin-1/2 Momente als
Störstellen gewählt, die in einem endlichen Abstand voneinander an die gemeinsame
Umgebung koppeln. Dieses Modell wurde bereits ausgiebig für den Fall untersucht,
dass beide Störstellen lokal an die gleiche Stelle der Umgebung koppeln [41, 24]. In dem
Fall induziert die Kopplung beider Störstellen-Spins über deren z-Komponente an die
gemeinsame Umgebung effektiv eine ferromagnetische Wechselwirkung. Innerhalb des
zweidimensionalen Unterraums parallel ausgerichteter Spins findet dann wieder ein
Kosterlitz-Thouless Quantenphasenübergang als Funktion der Kopplungsstärke zwi-
schen Störstellen und Umgebung statt. Im Fall unendlich weit separierter Spins werden
diese unabhängig voneinander und die korrekte Beschreibung des Modells ist die zweier
unabhängiger Spin-Boson Modelle. Das Modell wird für verschiedene Abstände meh-
rerer Größenordnungen zwischen den beiden Störstellen untersucht, um die Grenzfälle
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4 Kurzzusammenfassung

keines und unendlich großen Abstandes miteinander in Verbindung zu bringen. Zu die-
sem Zweck wird eine Zwei-Kanal-NRG für bosonische Modelle entwickelt, mit deren
Hilfe beide Grenzfälle untersucht werden können. Details zur Zwei-Kanal-NRG und
ihrer Implementierung werden in der Arbeit vorgestellt.
In allen Phasen der betrachteten Modelle wird die lokale Besetzung der einzelnen

Umgebungsoszillatoren durch die Anwesenheit der Störstellen erhöht. Hierbei fällt die
zusätzliche Besetzung als Funktion des Abstandes zu den Störstellen nach einem Po-
tenzgesetz ab. Des Weiteren wird die Änderung der mittleren Auslenkung der Umge-
bungsoszillatoren durch die Anwesenheit der Störstellen untersucht. Es zeigt sich, dass
diese Berechnungen für große Abstände numerisch ungenau werden, da dort starke Os-
zillationen der freien Propagatoren vorliegen. Dennoch zeigen sich für eine Vielzahl
von Parametern und kleine bis mittlere Abstände zu den Störstellen ebenfalls Potenz-
gesetze für die Änderung der mittleren Oszillatorauslenkung in der Umgebung. Zwi-
schen den beiden Störstellen des zweiten Modells ergeben sich vergleichsweise starke
Änderungen in den Erwartungswerten der Umgebung, die auf eine indirekte Wechsel-
wirkung der Spins miteinander durch die gemeinsame Umgebung hindeutet. Aus den
untersuchten Modellen lassen sich für die verschiedenen Störstellen keine typischen
Längenskalen ableiten.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1. Introduction

Ever since Richard P. Feynman’s keynote speech at the first conference on physics
and computation at the MIT in 1981, where he presented his idea of a quantum
computer as a simulator of quantum mechanical systems [16], computer scientists and
physicists alike expended huge efforts to actually realise such a device. The simulation
of quantum mechanical systems by means of other, controllable quantum systems has
shown first promising results in recent years as the field of quantum optics has grown to
a point where one-, two-, and three-dimensional optical lattices can be constructed by
interference of laser light. In these optical lattices, ultracold atomic gases could then
be efficiently controlled to simulate solid states of matter. There, e. g. the paramount
model of solid state theoretical physics, the Hubbard model, has been shown to be
realizable in case of bosonic particles [21].
While the prospect of a quantum simulator is fascinating and desirable to actu-

ally probe the models that physicists claim to describe nature, a second branch has
emerged that is interested in quantum systems to perform calculations which are not
possible on a classical computer.
As the algorithms needed for such a quantum computer are entirely different from

classical computer algorithms, only a handful have been devised so far which are
known to outperform any classical algorithm. The most prominent ones are those of
quantum Fourier transform and its application to the factorisation of large integer
numbers and the quantum search, or Grover’s algorithm, useful e. g. in the solution
of the travelling salesman problem [36].
However, it is not only algorithms that need to be invented in the field of quan-

tum computation but also means to build quantum mechanical systems and control
them with high accuracy. Like the NAND logic gate is the universal gate of classical
computer, making it possible to build any other logic gate from a number of NAND
gates, “any multiple qubit logic gate may be composed from CNOT and single qubit
gates” [36], making those the universal building blocks of a quantum computer.
Since at first no physicist had the knowledge of how to build single quantum bits

and perform controlled operations on them, a wide field of possible systems have been
proposed and built, culminating only recently in the 2012 Physics Nobel prize for
Serge Haroche and David J. Wineland “for ground-breaking experimental methods
that enable measuring and manipulation of individual quantum systems” [38].
To the author the most promising candidates for scalable arrays of quantum bits,

out of which quantum registers may be composed, are quantum dots already realised
in GaAs semiconductor devices [43] and recently also in silicon-based semiconductors
[17], circuit-quantum electro dynamics (QED) [49, 15] and the aforementioned optical
lattice systems with ultra cold atomic gases [29]. Besides these, there is the rather new
class of topological insulators where stable topological excitations (particles) may e. g.
arise in between the surfaces of topological insulator/superconductor heterostructures
[34]. Those topological excitations may then be stable against decoherence, like the
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6 1. Introduction

two Majorana-Fermions at the ends of a superconducting nano-wire that have been
proposed and arguably been measured [35].
While multiple qubits in a quantum register should behave independently, their

connection to the same environment may spoil that independence, as they start to
influence each other via the environment. In this work two qubits, modelled by
magnetic spin-1/2 impurities, are investigated that are coupled at a finite distance
to the same dissipative environment. From the spin-boson model it is known that
there exists a phase for weak coupling where the spin is not localised in either of
its states |↑〉 or |↓〉 and may thus explore the whole SU(2) Bloch sphere, while for
strong coupling it is localised in one of those configurations, completely destroying
its quantum mechanical nature [27]. As a second spin is coupled in direct vicinity of
the first, the environment mediates an effective ferromagnetic interaction between the
spins, rendering them no longer independent [41].
Within the Numerical Renormalization Group (NRG) it is investigated at which

point the two spins can be treated independently as the distance between them is
increased. To this end a two-channel bosonic NRG is developed that can deal with
the model and its limit of two independent spin-boson models. The two-channel NRG
is first tested on a model incorporating a single oscillator as an impurity. While the
latter model only involves a single channel, a self-interaction of the impurity oscillator
provides accessible limits, where the numerical implementation of the two-channel
NRG can be tested. Furthermore signals of the different impurities are traced in the
environment by means of thermal averages and their changes due to the presence of
the impurities.

Outline

The thesis presented here is structured as follows. The two dissipative quantum im-
purity models under discussion, named the dissipative oscillator model (do) and the
two-spin-boson model (2sbm) are introduced in detail in section 2. For the environ-
ment, a one-dimensional chain of bosons in real space is chosen to which the different
impurities are then connected. While the one-dimensional character of the environ-
ment allows for a convenient calculation of distance-dependent averages, it is not the
generic kind of system to show an ohmic spectrum of excitations, as studied here.
The latter is only achieved in this thesis by tuning the particle dispersion and thus
in real space the hopping amplitudes of excitations between the different sites in the
chain. For the chosen dispersion, however, long range hopping amplitudes that drop
in a power-law manner emerge in real-space. To which extent such a dispersion can
be achieved in, e. g. optical lattice experiments with very shallow potentials, remains
elusive at this point in time. In higher dimensional systems an ohmic spectrum is
more likely to appear without the need of such long-range hopping. There the calcu-
lation of the distance-dependent averages—of interest in this thesis—turns out to be
more complicated to obtain numerically.
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Section 3 introduces the concept of correlation functions and illustrates how they
may be obtained from a set of equations of motion. Afterwards, the representation
of correlation functions in terms of Lehmann-sums and their connection to spectral
functions via their imaginary part are stated. The connection between thermal ex-
pectation values for the site occupation as well as the average displacement of the
environmental oscillators to corresponding correlation functions is drawn in sections
3.4 and 3.5 respectively. The processes that need to be averaged involve both free
propagation between different sites and scattering at either one of the impurities.
The scattering processes are encoded in so-called scattering matrices which are

purely described in terms of impurity correlation functions. In case of the dissipative
oscillator model the scattering matrix is a complex function whereas for the two-spin-
boson model it obtains a more complex, 2× 2 matrix structure of complex functions.
Both the free bath correlators for different distances and the scattering matrices en-
tering the thermal average processes are derived in section 4. Here, it is also shown
how the bath spectral functions which enter the different models are connected to
the dispersion relation of the bosonic particles in the chain and how the long-range,
real-space hopping amplitudes emerge.
Section 5 focuses on the discussion of the Numerical Renormalization Group (NRG)

and its application to both models. After its introduction a discussion of how spectral
functions can be obtained from the numerical data provided by the NRG follows.
Section 5.5 examines the actual implementation of the NRG employing sparse matrix
storage formats and Lanczos diagonalisation routines for the appearing Hamiltonians.
The computational demands of the current NRG implementation are compared to an
implementation which uses dense matrix representations and exact diagonalisation
routines as is typical for a single channel NRG.
The results obtained for the two models under discussion are presented in section

6. In both models the renormalization group flow and the fixed point structure of the
Hamiltonians that are set up within the NRG are discussed.
Section 6.1 presents the results that have been derived for the dissipative oscillator

model. For every value of the self-interaction of the impurity oscillator, the NRG data
suggest a quantum phase transition in the dissipative oscillator model as a function
of the coupling strength between impurity and environment. In the scattering matrix
the pole at the bare oscillator frequency is found to be shifted to lower frequencies
as the coupling strength to the environment increases. At the same time, the peak
is broadened and its height increased until it finally vanishes beyond the quantum
critical point. With the results for the scattering matrix, finally the thermal averages
in the environment are calculated as a function of distance to the impurity oscillator.
Both the average site occupation and the average displacement of the oscillators are
found to change strongest right at the impurity. Going away from the impurity those
changes then drop in a power-law manner for a large range of parameters.
For the two-spin-boson model the results are collected in section 6.2. There the

fixed point spectra for finite inter-impurity distance are compared to those for zero
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8 1. Introduction

distance between the impurities. A localised and a delocalised phase are found to
exist for every distance investigated in this work. In the spectrum of the scattering
matrix a low energy peak appears that can be assigned to a renormalized tunnelling
rate on the impurities. This peak is suppressed as the localised phase is entered
and the impurities are each locked in a single configuration. The distance dependent
averages that are calculated in the environment show clear peaks right at the position
of the two impurities. In between the impurities, it is possible to see their influence
on each other by a comparably large finite effect on the environmental oscillators. Far
away from the two impurities, the changes they cause in the environment drop in a
power-law manner.
As the different techniques used in this thesis are close to identical for the two models

under discussion their application to both models is presented consecutively. This is
to emphasise similarities and differences between the two models. In each section,
the method at hand is first applied to the dissipative oscillator model, followed by an
application of the technique to the two-spin-boson model.
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2. Introduction of the models

It is the purpose of this work to study the extent to which different quantum impurity
systems, coupled to a common dissipative environment, may influence each other via
that environment. Both the low-energy physics of the impurities and different thermal
averages in the environment will be determined. Thereby it can be estimated to what
extent the impurities effectively influence the environment and thus may also influence
each other.
For the quantum impurity systems an oscillator of bosonic nature and two spin-1/2

particles that are coupled at a finite distance R to a common environment are chosen.
The dissipative environment itself is modelled in real-space by a one-dimensional
chain of bosonic orbitals. The signals that are investigated in the environment are
the change of the average site occupation Δ

〈
n̂x

〉
and the change of the average of

the squared displacement Δ
〈
(ax + a†x)

2
〉
of the oscillators at position x in the chain

due to the coupling of the impurities to the chain. In the following the two different
models under investigation in this work are introduced, which are both connected to
the renowned spin-boson model, already investigated by Leggett et al. in 1987 [27]. In
that case, a two-state system is coupled to a dissipative environment and the setup is
such that the bare two-state system may tunnel between its two states with a rate Δ.
As the coupling to the environment is increased the tunnelling rate is suppressed until
it eventually becomes zero, freezing the spin in either of its two possible configurations
and thereby destroying its quantum mechanical nature.
The otherwise harmonic oscillator in the dissipative oscillator model discussed here

features a self-interaction which, as it is increased, projects out higher lying states
of the impurity until only two states are left that can be identified with a spin-1/2
system. In case of the two spins of the second model they become independent in the
limit of infinite distance R between them and thus each behave as the single spin-1/2
in the spin-boson model.

2.1. Dissipative oscillator model

The first model under investigation features an oscillator with frequency Δ that is
subject to dissipation introduced by an environment. The single oscillator here and
in the following is termed the impurity as it has in general a different character from
the oscillators of the environment. Its Hamiltonian is given by

Himp = Δ
(
n̂b +

1

2

)
+ ε
(b + b†

2

)
+

U

2
n̂b(n̂b − 1) (2.1)

where b† creates an excitation of the oscillator that features, apart The underlying
potential in real-space is still quadratic, rendering the oscillator harmonic. However,
the self-interaction via its density makes coherent states of the harmonic oscillator,
which are the next best thing to a classical particle moving in a square potential well,
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10 2. Introduction of the models

decohere in time as the eigenenergies of the different states |n〉 are no longer multiples
of the bare oscillator frequency Δ. The environment of the impurity is modelled by
an infinite chain of bosons. In real space the bosonic operator a†xi

creates a particle
at position xi = ia in the chain. Here a is the lattice spacing and i ∈ Z. The particle
can hop with an amplitude txi,xj

= t|xi−xj | between any two sites xi and xj. Typically
hopping amplitudes fall of with growing distance |xij| = |xi − xj|. In this model
the hopping amplitudes are considered to be real and the lattice spacing a to unity
are set in the following. Thus the Hamiltonian describing the translational invariant
environment can be written as

Hbath =
∑
i,j∈Z

t|xi−xj |a
†
xi
axj

=
∑
x,y∈Z

t|x|a
†
yay−x. (2.2)

Dissipation is introduced into the model by coupling the displacement of the impurity
to the displacement of the bosonic degree of freedom at the origin of the bath. The
interaction part of the model is then given by

Hint =

√
α

2

(
b + b†

)(
a0 + a†0

)
. (2.3)

Here α parametrises the coupling strength between the impurity and the bath. Thus
the total Hamiltonian of the dissipative oscillator model is given by

Hdo = Himp +Hbath +Hint,

where Himp describes the oscillator of interest (the impurity), Hbath describes the free
environment and Hint comprises the interaction between the oscillator and the bath
as mentioned above.
In figure 1, a sketch of the system around the origin is shown which comprises all

relevant energy-scales. In order to diagonalise the bath part of the Hamiltonian a
Fourier-transformation of the lattice is performed via

ak =
1√
2π

∑
x∈Z

axe
ikx, ax =

1√
2π

∫ π

−π

ake
−ikx dk. (2.4)

Here the integral in k-space is over the first Brillouin-zone. Applying the Fourier-
transformation to the bath part of the Hamiltonian leads to

Hbath =
1

2π

∑
x,y

t|x|

∫ π

−π

∫ π

−π

a†kak′e
i(k−k′)yeik

′x dk dk′

=
∑
x

t|x|

∫ π

−π

∫ π

−π

a†kak′δ(k − k′)eik
′x dk dk′

=

∫ π

−π

a†kak
∑
x

t|x|e
ikx dk

=

∫ π

−π

ω(k)a†kak dk
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2.1. Dissipative oscillator model 11

Figure 1:
The impurity (circle) with energy-scales Δ, ε, U couples with a strength

√
α to the

origin of a linear chain of bosons (disks). The bosons in the chain can hop between
any two sites where the hopping amplitudes tx decrease with the distance x between
the sites in a power-law manner. Here, only the first three hopping amplitudes t1, t2
and t3 are depicted for clarity.

where ω(k) =
∑

x t|x|e
ikx is the dispersion of the bath-modes. The interaction part of

the model is likewise transformed to

Hint =
1

2

√
α

2π

(
b + b†

) ∫ π

−π

(
ak + a†k

)
dk.

The total Hamiltonian describing the oscillator with bare frequency Δ which can be
damped by the coupling to a one dimensional chain of bosons thus reads

Hdo = Himp +

∫ π

−π

ω(k)a†kak dk +
1

2

√
α

2π

(
b + b†

) ∫ π

−π

(
ak + a†k

)
dk (2.5)

in momentum space.
Until now there were not any specific hopping parameters t|x| chosen, they were

merely considered to be real and expected to drop with growing distance. The t|x|
are connected to the spectral function of the bath via the dispersion relation ω(k). In
this work, models which show a power-law behaviour in the spectral function of the
chain are investigated. The spectral function here is parametrised as

J(ω) =

{
απ(s+ 1)ωsω1−s

c , for 0 ≤ ω ≤ ωc

0 , else.
(2.6)

Here s > −1 is the power-law exponent, α parametrises the coupling strength between
bath and impurity and ωc is a high-frequency cutoff. Throughout this thesis only
models that show an ohmic spectral density where s = 1 are investigated. In section
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12 2. Introduction of the models

4.1 it will be discussed that the spectral function J(ω) is connected to the imaginary
part of the local retarded Green’s function 〈〈a0, a†0〉〉ω+iε at the origin of the bath in
real space as

J(ω) = −α lim
ε→0

Im[〈〈a0, a†0〉〉ω+iε]

=
α

2

∫ π

−π

δ(ω − ω(k)) dk. (2.7)

In the spectral function J(ω) all information on the single-particle-excitations of the
non-interacting bath, which couples to the impurity, is comprised. Besides it will be
shown in section 4.1 how one has to adjust the dispersion ω(k) in order to arrive at
the desired behaviour (2.6) of the spectral function. Furthermore it will be validated
that the corresponding hopping amplitudes t|x| do drop in a power-law manner in
real space as t|x| ∼ |x|−(s+2)/(s+1). For the later treatment of the model by means
of the Numerical Renormalization Group (NRG) the Hamiltonian is presented here
directly in frequency space, which is the usual representation to start with in the NRG-
community. Expressing the bath excitations directly in terms of their corresponding
frequencies ω instead of their momenta k, the Hamiltonian of the dissipative oscillator
model can be rewritten as

H = Himp +

∫ ωc

0

g(ω)a†ωaω dω +
1

2

(
b + b†

) ∫ ωc

0

h(ω)
(
aω + a†ω

)
dω. (2.8)

Here the function g(ω) comprises the possible excitations of the bath modes at fre-
quency ω and the function h(ω) encodes the coupling of the impurity to those excita-
tions. The functions g(ω) and h(ω) are connected to the spectral function J(ω) [12]
by:

J(ω) = π

∣∣∣∣∂g(ω)∂ω

∣∣∣∣−1

h2(ω). (2.9)

Figure 2 depicts the situation where the impurity couples to a continuous bath that is
described by its spectral function J(ω) given by (2.6) for an ohmic environment with
s = 1. As the high-frequency cutoff ωc should represent the largest energy-scale in
the problem, all other parameters in the model will be given in units of that cutoff.
This way ωc is factored out leaving the dimensionless Hamiltonian

Hdo

ωc

= Himp

(
Δ

ωc

,
ε

ωc

,
U

ωc

)
+

∫ 1

0

g(ω)a†ωaω dω +
1

2

(
b + b†

) ∫ 1

0

h(ω)
(
aω + a†ω

)
dω.

(2.10)
For fixed power-law exponent s and high frequency cutoff ωc, the model possesses
four remaining parameters: the bare frequency of the impurity oscillator Δ, its dis-
placement ε, its self-interaction strength U via its local density and finally the cou-
pling strength α of the impurity to the environment. In the following all parameters
X ∈ {Δ, ε, U} are given in units of ωc and the explicit notation is dropped, keeping
only the bare parameter name (X=̂X

ωc
).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.1. Dissipative oscillator model 13

Figure 2:
The impurity (circle) with energy-scales Δ, ε, U couples with a strength

√
α to a

continuous bath of bosons characterised by the spectral density J(ω). Here the bath
features an ohmic spectral density J(ω) ∼ ω and corresponds in real-space to the
linear chain as depicted in figure 1.

Large-UUU limit: the spin-boson model

The dissipative oscillator model transforms into the spin-boson model as the on-site
interaction U is made stronger and stronger. If the impurity Hamiltonian Himp is
expressed in the basis of eigenstates |n〉 of the number operator b†b, its diagonal
elements read

〈n|Himp|n〉 = Δ(n+
1

2
) +

U

2
n(n− 1).

In the limit of U → ∞ all states with n > 1 are separated from the low energy
sector of the theory by an infinite amount of energy and therefore can be effectively
projected out. Hence the impurity Hamiltonian is restricted to the two-dimensional
basis {|0〉=̂|↑〉, |1〉=̂|↓〉} where it reads

lim
U→∞

Himp =
1

2

(
−Δ ε
ε Δ

)
=

ε

2
σx −

Δ

2
σz

after the ground-state-energy is shifted by an amount of −Δ. Likewise the interaction
part Hint is transformed to

Hint =

√
α

2π

σx

2

∫ π

−π

(
ak + a†k

)
dk.

Thus the total Hamiltonian reads

Hsbm =
ε

2
σx +

Δ

2
σz +

∫ π

−π

ω(k)a†kak dk +

√
α

2π

σx

2

∫ π

−π

(
ak + a†k

)
dk. (2.11)
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14 2. Introduction of the models

Figure 3:
As the density-density interaction U is increased, all states but the lowest two |0〉

and |1〉 of the oscillator are projected out. Those can then be mapped onto a spin-
degree of freedom living on the SU(2) sphere.

which is the Hamiltonian of the well studied spin-boson model [27] in momentum
representation. Figure 3 depicts the situation where the higher lying oscillator states
|n〉 with n > 1 are shifted due to the interaction U . In the end only the two lowest
states remain in the theory which then can be mapped onto a spin-1/2 degree of
freedom living on the SU(2) sphere. It will be shown numerically in section 6.1.3 that
the low energy spectrum of the spin-boson model and the displaced oscillator model
agree already for values of U ∼ 103.
In the simplest case of a magnetic field of strength Δ only applied in x-direction

and no coupling to the environment, measuring the chance that the spin has re-
turned to an initial state |σ(0)〉 = |↑〉 after time t leads to the perfect periodic result
〈↑|σ(t)〉 = cos(Δt/2). As the coupling to the environment in z-direction is switched
on two things will happen. First of all the oscillations get damped as the environment
leads to dissipation. Second of all the frequency Δ of the spin oscillations is decreased
as the spin becomes somewhat dressed by environmental fluctuations and is no longer
free. Ultimately, strong coupling of the environment to the spin will pin it in a single
state for which then 〈↑|σ(t)〉 = const follows and the quantum mechanical nature of
the spin has been destroyed.

2.2. Two-spin-boson model

The second model investigated in this work is termed the two-spin-boson model. It
describes two spin-1/2 particles that couple to a common dissipative environment.
Here the environment is again modelled by the one-dimensional chain of bosons in-
troduced in the dissipative oscillator model (cf. equation (2.2)). Each of the two spins
now couples to a lattice site ±r with a total of R = 2r environmental lattice sites in
between them where r = 0, 1/2, 1, 3/2, . . .. Of interest in this study is the behaviour
of the two spins as the distance R between them is increased. The Hamiltonian of the
model has again the general form
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2.2. Two-spin-boson model 15

H2sbm = Himp +Hbath +Hint.

Here the impurity part now describes the two spins Si =
1
2
σi, (i = 1, 2) that feel

a local magnetic field Bloc,i = (Δi, 0, εi)
T and couple to each other directly via their

z-components with an Ising coupling strength K:

Himp =
Δ1

2
σx,1 +

Δ2

2
σx,2 +

ε1
2
σz,1 +

ε2
2
σz,2 +

K

4
σz,1σz,2. (2.12)

In the environment the bosons can again hop between any two sites y and y− x with
an amplitude t|x| that only depends on the modulus of the distance x. Here the lattice
spacing a has already been set to unity such that x, y ∈ Z. Thus the bath part of the
Hamiltonian is again given by

Hbath =
∑
x,y∈Z

t|x|a
†
yay−x. (2.13)

The spins are coupled via their z-component to the displacement of the harmonic
oscillators to which the individual spins couple. It is the same kind of interaction as
in the standard spin-boson model. Spin 1 couples to the oscillator at site +r while spin
2 couples to the oscillator that resides at site −r with a respective coupling strength
of

√
α1/2. This leads to an interaction part of the Hamiltonian that reads

Hint =
√
α1

σz,1

2
(ar + a†r) +

√
α2

σz,2

2
(a−r + a†−r) (2.14)

in real space. A sketch of the system in real space is presented in figure 4.
In the limit of r → ∞ the spins do not feel each other (if K = 0 is set, which is

the only reasonable value for a direct coupling amongst the spins in this limit). In
that limit the physics of two spin independent spins is recovered. Each of the spins
behaves as the single spin in the spin-boson model whose behaviour depends on the
local coupling strength to the bath and the spectrum of that bath.
The two-spin-boson model is studied by means of the Numerical Renormalization

Group (NRG), (cf. section 5), as a purely analytical treatment does not suffice to
solve the model for a large set of model parameters. In the NRG one typically maps
the environment seen by the impurity onto a semi-infinite, one-dimensional chain and
couples the impurity to the first site of that chain. The current model features two
spins that do not couple to the original one-dimensional chain in real space at the
same site. Hence, they do not see locally the same environment. The standard scheme
in the mapping of that environment onto an object that is iteratively treatable (the
semi-infinite chain) thus has to be altered.
In a first step, the bath is once more Fourier-transformed. There a splitting of

the bath modes into symmetric and antisymmetric linear combinations of modes with
opposite momentum ±k is performed. Those combinations are referred to as even
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16 2. Introduction of the models

Figure 4:
Two independent spins that couple to a common linear bosonic chain at positions

±r with respective couplings
√
α1/2. To each spin a magnetic field may be applied

(not shown) and the spins may interact directly via an Ising-type interaction as long
as they are close to each other. Further interaction between the two spins needs then
to be mediated by the common environment.

and odd throughout the remainder of the work. After the mapping it turns out that
the even/odd combination of the two spins σe/o =

1
2
(σ1±σ2) couple to the even/odd

modes of the bath only. This kind of setup can be understood as two impurity-
objects that each couple to a single bath with a characteristic spectrum. The standard
mapping of the bath onto the semi-infinite chain, necessary for performing the NRG,
can then be applied to each of the two environments individually. The impurities still
formally couple to each other via Himp. However, they loose their local nature as the
even/odd spin combinations σe/o are now extensive objects with a size of R.
The Fourier-transformed bath Hamiltonian reads

Hbath =

∫ π

−π

ω(k)a†kak dk (2.15)

where ω(k) =
∑

x t|x|e
ikx is the dispersion of the bath modes. The introduction of

even and odd bath mode operators as

ak,e =

{
a0, k = 0
ak+a−k√

2
, k > 0

; ak,o =

{
0, k = 0

−iak−a−k√
2

, k > 0
. (2.16)

turns out useful in rewriting the interaction part of the Hamiltonian. It can be easily
verified that all ak,s, s = e, o obey the standard bosonic commutation relations. The

bath part can then be written as
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2.2. Two-spin-boson model 17

Hbath = ω(0)a†0a0 +
∑
s=e,o

∫ π

0+
ω(k)a†k,sak,s dk (2.17)

where it was used, that the dispersions ω(k) considered in this thesis (cf. section 4.1)
are even functions of k. The integrals

∫ π

0+
indicate that the zero mode is not integrated

over. In the following both coupling strengths
√
αi are considered to be equal to

√
α.

Therefore the interaction part of the Hamiltonian reads

Hint =
√
α
σz,1

2
(ar + a†r) +

√
α
σz,2

2
(a−r + a†−r) (2.18)

=
1

2

√
α

2π

∫ π

−π

[
ak(σz,1e

−ikr + σz,2e
ikr) + a†k(σz,1e

ikr + σz,2e
−ikr)

]
dk (2.19)

=

√
α

2π
σz,e(a0,e + a†0,e) +

√
α

π
σz,e

∫ π

0+
(ak,e + a†k,e) cos(kr) dk

+

√
α

π
σz,o

∫ π

0+
(ak,o + a†k,o) sin(kr) dk (2.20)

The even/odd combinations σz,e/o = 1
2
(σz,1 ± σz,2) couple to the even/odd modes of

the bath only. In an effective theory for the even and the odd spin combinations the
spectral functions of the even and the odd bath read

Je(ω,R) = α

[
1

2

∫ ε

−ε

δ
(
ω − ω(0)

)
dk +

∫ π

0+
cos2(kR/2)δ

(
ω − ω(k)

)
dk

]
(2.21)

Jo(ω,R) = α

∫ π

0+
sin2(kR/2)δ

(
ω − ω(k)

)
dk (2.22)

in momentum space. Here, a small ε > 0 is introduced such that the zero mode in
Je(ω,R) is integrated over in k-space. By introducing the functions

hs(k,R) =

√
Js
(
ω(k), R

)
π

∂

∂k′ω(k
′)|k′=k (2.23)

the Hamiltonian of the model can be rewritten as

H2sbm = Himp +
∑
s=e,o

∫ π

0

ω(k)a†k,sak,s dk + σz,s

∫ π

0

hs(k,R)[ak,s + a†k,s] dk (2.24)

where now strictly speaking the integral for the odd modes has again to exclude a
zero mode since there is no odd zero mode. The impurity part of the Hamiltonian
expressed in the even and odd spin operators reads

Himp =
∑
s=e,o

σx,sΔs + σz,sεs +
K

4
(1e − 1o) (2.25)
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with the definitions Δe,o = (Δ1±Δ2)/2 and εe,o = (ε1±ε2)/2. The identity operators
1e,o in the common basis {|↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉} are then given by

1e = |↑↑〉〈↑↑|+ |↓↓〉〈↓↓|, (2.26)

1o = |↑↓〉〈↑↓|+ |↓↑〉〈↓↑|. (2.27)

The Hamiltonian in equation (2.24) can also be expressed in a frequency picture in
which it will be studied by means of a two bath bosonic NRG (to be explained in
more detail in section 5). Here, the high-frequency cutoff ωc of the environment is
introduced into the theory that marks the highest energies in the bath (the ones cor-
responding to momenta at the edges of the one-dimensional Brillouin-zone). Thereby,
all other model parameters are expressed in units of that cutoff. In frequency space
the Hamiltonian of the two-spin-boson model then becomes

H2sbm = Himp +
∑
s=e,o

∫ 1

0

gs(ω,R)a†ω,saω,s dω + σz,s

∫ 1

0

hs(ω,R)[aω,s + a†ω,s] dω (2.28)

where now R marks the total distance of the two spin-1/2 impurities. The func-
tions gs(ω,R) and hs(ω,R) now have to combine to the even/odd spectral functions
Je/o(ω,R) in frequency space individually like

Js(ω,R) = π

∣∣∣∣∂gs(ω,R)

∂ω

∣∣∣∣−1

h2
s(ω,R), s = e, o. (2.29)

In section 4.2 the even and odd spectral functions in frequency space will be derived
for the case that the environment does locally show an ohmic spectral density. The
Hamiltonian H2sbm in its frequency representation (2.28) is the starting point for the
Numerical Renormalization Group mappings to be applied in sections 5.1-5.3 after
the general philosophy of the NRG has been introduced.
In the next section, the concept of correlation functions is introduced. These can—

at least in case of local correlators—be interpreted as probability-distributions of
finding corresponding physical processes of interest in the system. The physical ob-
servables of interest in this thesis are discussed in that section as well. Afterwards the
spectral functions J(ω) and Je/o(ω,R) appearing in the dissipative oscillator model
and the two-spin-boson model are connected to imaginary parts of corresponding bath
propagators in section 4.

2. Introduction of the models
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system where the impurities are absent and a situation where they are coupled to the
environment are investigated.
The thermal averages are calculated from spectral functions which are themselves

imaginary parts of certain correlation functions. In the following the concept of cor-
relation functions is introduced and a set of equations of motion is given from which
they may be calculated. Afterwards, the representation of correlation functions in
terms of Lehmann-sums and the concept of spectral functions and their connection
to corresponding correlation functions are introduced in section 3.2.
The desired thermal averages, namely the average site occupation and the dis-

placement amplitude, are introduced in section 3.3. In the sections 3.4 and 3.5, the
spectral functions which are needed in the calculations of the thermal averages are
derived both for the dissipative oscillator model and the two-spin-boson model. Those
spectral functions contain always a free contribution from the clean system and a part
that describes the interaction of the impurities with their environment. The interac-
tions are fully encoded in impurity correlation functions which are termed scattering
matrices and which are defined as well in section 3.4.

3.1. Resolvent and equations of motion

A quantum mechanical system with a Hamiltonian H can in general be subject to
an external, time dependent driving force F (t). In such a situation it is desirable
to know how the system adapts to the external force. Answering that question is
intimately linked to the concept of Green’s functions, also referred to as correlation
functions. In this section, the general strategy is outlined how to obtain the answer
of a quantum mechanical system to an external driving force and see where exactly
correlation functions enter the field.
The problem of a general force F (t), to which the system has to adapt, can be

reduced to that of a signal which has the form of a delta peak in time ∼ δ(t − t′).
The problem for a general function F (t) is then found by summing up the systems
answers to delta peaks at different times with the corresponding amplitude F (t′) using
the identity

F (t) =

∫ ∞

−∞
F (t′)δ(t− t′) dt′. (3.1)

To see how the system adapts to a force which is peaked in time it is necessary to solve
the inhomogeneous, time dependent Schrödinger equation where the inhomogeneity
is given by that delta peak in time:

3. Correlation functions

One focus of this thesis is to understand how the dissipative environment to which
the impurity systems are coupled is affected by the presence of those impurities.
In the present work, thermal averages Δ

〈
. . .
〉
:=
〈
. . .
〉
−
〈
. . .
〉
0
between the clean
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20 3. Correlation functions

has been made on the kind of Hamiltonian H or its formulation up to now. The Ha-
miltonian may be a linear differential operator like that of a free massive particle or
an operator in second quantisation like that describing a free electron gas. Equation
(3.2) can be formally solved for H with the help of the Laplace transformation [1].

Given a function f̃(t) that is zero for all negative times one can define its Laplace

transform L
[
f̃
]
= f(z) via

f(z) =

∫ ∞

0

f̃(t)eizt dt, (3.3)

where z = ω+iε is a frequency with a small, positive imaginary part ε which is needed
for the convergence of the integral. Integrating the Schrödinger equation (3.2) that
way leads to

1 =

∫ ∞

t′
δ(t− t′)eiz(t−t′) dt =

∫ ∞

t′
[(i∂t −H)G̃R(t− t′)]eiz(t−t′) dt

=

∫ ∞

t′
[(z −H)G̃R(t− t′)]eiz(t−t′) dt− iGR(0)

= (z −H)GR(z). (3.4)

Here, GR(z) is the Laplace transform of the real time retarded Green’s function. In
the second equation, an integration by parts has been performed, where the small
imaginary part in z suppresses the contribution of G̃R(t) at infinity. For the third

equation the boundary condition G̃R(0) = 0 was employed, which should hold since
the system cannot adapt instantaneously to the driving force δ(t− t′).
Thus, after the Laplace transformation the problem is formally solved by inverting

the operator (z − H). The solution GR(z) = (z − H)−1 is often referred to as the
resolvent operator of the model at hand (cf. for example [57]). In order to invert the
operator (z −H), a basis {|n〉} and thus a representation in which to formulate the
linear operator H has to be chosen. This basis allows to calculate any matrix element
〈n|GR(z)|m〉 of the retarded Green’s function in frequency space. Conveniently, the
operator GR(z) is diagonalised by going to the eigenbasis |η〉 = a†η|0〉 of a Hamiltoni-
an with H|η〉 = Eη|η〉. Here a†η should formally create the exited state |η〉 out of a
well-chosen vacuum state |0〉. The choice of the eigenbasis results in matrix elements

GR(η, η′, ω + iε) = 〈η|GR(ω + iε)|η′〉 = (ω + iε− Eη′)
−1δη,η′

ε→0
= δη,η′

[
(ω − Eη′)

−1 − iπδ(ω − Eη′)
]
. (3.5)

The retarded Green’s function GR(η, η′, ω) thus has a simple pole on the real axis right
at the eigenenergy Eη′ of the system. Its negative imaginary part can be interpreted as

(i∂t −H)G̃R(t− t′) = δ(t− t′). (3.2)

Here, Planck’s constant � has been set to one. The solution of equation (3.2) is then

named the retarded Green’s function G̃R(t−t′) which is finite only for times t > t′ and
encodes the systems reaction to the signal δ(t−t′). Note that up to now, no restriction
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3.1. Resolvent and equations of motion 21

− lim
ε→0

Im[Tr(GR(ω + iε))] = − lim
ε→0

Im

[∑
n

〈n| 1

ω + iε− En

|n〉
]

= π
∑
n

δ(ω − En) =: πρ(ω), (3.6)

which encodes information on all possible excitations of the system. In the following
the short hand notation 〈〈aη, a†η′〉〉z := GR(η, η′, z) for the retarded Green’s function is
used.
Beyond excitations to eigenstates, correlation functions 〈〈Â, B̂〉〉z of two arbitrary

bosonic operators Â and B̂ can be considered. Here the operators Â and B̂ may
create/annihilate more complicated excitations of a system like e. g. ax+a†x which are
not necessarily eigenstates ofH and might dissipate in time. The correlator 〈〈Â, B̂〉〉z =
GR(Â, B̂, z) is then defined as the Laplace-transform of the retarded Green’s function
GR(Â, B̂, t) that reads

GR(Â, B̂, t) = −iΘ(t)
〈
[Â(t), B̂(0)]

〉
. (3.7)

and is finite only for positive times [3]. Here,
〈
. . .
〉
= Tr[e−β(H−μN) . . .]/Z is the

thermal average in a grand canonical ensemble, Z is the partition function and [., .] is
the commutator. The particle number is given by N and μ is the chemical potential
of the system. In case of the bath single particle propagator Gx,y(z) between two sites
x and y in the bosonic chain its retarded Green’s function in real time encapsulates
information on the process of creating a particle at position y at time zero and later
on being able to destroy it at position x at time t.
The time-dependence of the operator Â is introduced via the Heisenberg represen-

tation as
Â(t) = ei(H−μN)tÂe−i(H−μN)t. (3.8)

The correlator 〈〈Â, B̂〉〉z can be obtained by performing the Laplace transformation

〈〈Â, B̂〉〉z = −i

∫ ∞

0

〈
[Â(t), B̂(0)]

〉
eizt dt. (3.9)

There are several ways to obtain a desired correlation function 〈〈Â, B̂〉〉z. One way is to
express the right hand site of equation (3.9) in the eigenbasis of the operator H−μN .
In the literature, the result is referred to as a Lehmann sum [3] and is presented in
the next section. It requires the knowledge of the eigenbasis of the operator H −μN ,
which may not be accessible analytically for most systems.
Another approach is that of equations of motion. To this end the time derivative

of GR(t− t′) is Laplace-transformed to obtain

z〈〈Â, B̂〉〉z =
〈
[Â, B̂]

〉
+ 〈〈Â, [H − μN, B̂]〉〉z, (3.10)

z〈〈Â, B̂〉〉z =
〈
[Â, B̂]

〉
− 〈〈[H − μN, Â], B̂〉〉z. (3.11)

the frequency dependent probability distribution of creating an excitation |η′〉 = a†η′ |0〉
in the system. This excitation is only possible right at the energy Eη′ . By taking the
trace of the operator GR(z), the systems density of states ρ(ω) can be obtained as
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22 3. Correlation functions

That way a whole set of equations may be derived which connect different correlators
of the system. In certain cases those equations may be solved analytically without
the need to obtain the eigenbasis of the operator H−μN . They also allow to read off
the physical processes that contribute to a correlator. In the following the technique
of equations of motions is employed both for the dissipative oscillator model with
Hamiltonian (2.5) and the two-spin-boson model with Hamiltonian (2.24) in order to
derive expressions for correlation functions both in the bath and at the impurities. In
these calculations a central quantity of interest is the scattering matrix or T -Matrix
of the impurities. This matrix contains all information on the interactions between
the bath and the impurities. It is defined below in section 3.4 for both models and
will be investigated closer in section 4.4.

3.2. Lehmann-representation and spectral functions

By employing the technique of equations of motion in order to obtain a desired cor-
relator 〈〈Â, B̂〉〉z, this correlator is connected to a set of other correlators and thermal
averages. The set of equations derived for all relevant correlators will however not
always reduce to analytic expressions. In such a situation, the right hand site of equa-
tion (3.9) still needs to be evaluated. Here the Lehmann representation is useful as it
can be evaluated numerically as long as the eigenstates and -energies of a system are
accessible by some means.
Given a complete set of eigenstates {|n〉} and corresponding energies En of the

operator H − μN , the Laplace-transformed retarded Green’s function GR(Â, B̂, z)
can be evaluated by inserting a resolution of identity 1 =

∑
m|m〉〈m| between the

operators Â(t) and B̂(0) on the right hand site of equation (3.9). Performing the
integral over time results in

GR(Â, B̂, z) =
1

Z
∑
n,m

e−βEn − e−βEm

z + En − Em

〈n|Â|m〉〈m|B̂|n〉. (3.12)

The only frequency dependent parts are the fractions (z + En − Em) which may be
evaluated on the real axis as in (3.5) to read

lim
ε→0

1

ω + iε+ En − Em

=
1

w + En − Em

− iπδ(w + En − Em). (3.13)

The retarded Green’s function thus has simple poles on the real frequency axis at
frequencies ωmn = Em − En. These frequencies correspond to transitions between
two states |n〉 and |m〉 in the system which are connected by the operators Â and B̂.
Formally, a spectral function A(η, η′, ω) is introduced as the negative imaginary part
of GR(η, η′, z), evaluated on the real axis and weighted by 1/π:

A(η, η′, ω) = − 1

π
lim
ε→0

Im
[
GR(η, η′, z = ω + iε)

]
= δ(ω − Eη)δη,η′ . (3.14)
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3.3. Average site occupation and displacement amplitude 23

The spectral function A(η, η′, ω) directly encodes at which frequency the state |η〉 may
be excited out of the vacuum. A general spectral function A(Â, B̂, ω) is then defined
as the negative imaginary part of the corresponding correlator, once more evaluated
on the real axis and weighted by 1/π:

A(Â, B̂, ω) = − 1

π
lim
ε→0

Im
[
GR(Â, B̂, z = ω + iε)

]
(3.15)

=
1

Z
∑
n,m

[
e−βEn − e−βEm

]
〈n|Â|m〉〈m|B̂|n〉δ(ω + En − Em). (3.16)

The total weight contained in a spectral function is given by∫ ∞

−∞
A(Â, B̂, ω) dω =

1

Z
∑
n,m

[
e−βEn − e−βEm

]
〈n|Â|m〉〈m|B̂|n〉 (3.17)

=
1

Z
∑
n,m

e−βEn
[
〈n|Â|m〉〈m|B̂|n〉 − 〈n|B̂|m〉〈m|Â|n〉

]
(3.18)

=
〈
[Â, B̂]

〉
(3.19)

which is the thermal expectation value of the commutator between Â and B̂.

3.3. Average site occupation and displacement amplitude

In a clean system where the impurities do not couple to the chain, the one-dimensional
chain is translational invariant. There the average site occupation

〈
n̂x

〉
and the aver-

age square of the displacement amplitude
〈
(ax+a†x)

2
〉
are constant as a function of x.

As soon as the coupling between the impurities and the chain is switched on, transla-
tional invariance in the system is broken and a space dependence in those quantities
can be expected. Details of this space dependence are determined by the nature of
the impurities and their coupling to the bath oscillators. The local averages in the
environment are linked to different correlation functions, as will be derived in the
following.
To obtain the single particle propagator of the environment, the operators Â =

ax and B̂ = a†x are chosen in equation (3.15). They correspond to an annihila-
tion/creation of a bosonic particle at position x in the chain. From the retarded
Green’s function GR(ax, a

†
x, z = ω+ iε) the corresponding spectral function A(x, ω) :=

A(ax, a
†
x, ω) is obtained (cf. equation (3.15)), which reads

A(x, ω) = − 1

π
lim
ε→0

Im
[
GR(ax, a

†
x, z = ω + iε)

]
=

1

Z
∑
n,m

[
e−βEn − e−βEm

]∣∣〈n|ax|m〉
∣∣2δ(ω + En − Em). (3.20)
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24 3. Correlation functions

At each site x the spectral function A(x, ω) is normalised as∫ ∞

−∞
A(x, ω) dω =

〈
[ax, a

†
x]
〉
= 1. (3.21)

Using the Bose-Einstein distribution function nB(ω, β) = (eβω−1)−1 and the auxiliary
identity∫ ∞

−∞

e−βEn − e−βEm

eβω − 1
δ(ω + En − Em) dω =

e−βEn − e−βEm

eβ(Em−En) − 1
= e−βEm (3.22)

the spectral function A(x, ω) can be connected to the average site occupation
〈
n̂x

〉
at

position x as

〈
n̂x

〉
=
〈
a†xax

〉
=

1

Z
∑
n,m

e−βEm
∣∣〈n|ax|m〉

∣∣2 (3.23)

=
1

Z
∑
n,m

∫ ∞

−∞

e−βEn − e−βEm

eβω − 1
δ(ω + En − Em) dω

∣∣〈n|ax|m〉
∣∣2 (3.24)

=

∫ ∞

−∞
A(x, ω)nB(ω, β) dω. (3.25)

Thus, the average site occupation is given by the integral over the spectral func-
tion A(x, ω) over the whole frequency range, weighted by the function nB(ω, β) that
encapsulates the thermal population of a bosonic state at frequency ω for a given
temperature kBT = β−1 (kB being the Boltzmann-constant, T the temperature and
β the dimensionless, inverse temperature).
Choosing the operators Â = B̂ = ax + a†x, the local displacement-displacement

correlation function of the environment is defined as

DR
x (z) = 〈〈ax + a†x, ax + a†x〉〉z (3.26)

and its corresponding spectral function reads

Adis(x, ω) = − 1

π
lim
ε→0

Im
[
DR

x (z = ω + iε)
]
. (3.27)

This function is then normalised as∫ ∞

−∞
Adis(x, ω) dω =

〈
[ax + a†x, ax + a†x]

〉
=
〈
0
〉
= 0. (3.28)

That the integral over Adis(x, ω) vanishes can be traced back to the statement that
the imaginary part of DR

x (z) is antisymmetric on the real axis.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3.3. Average site occupation and displacement amplitude 25

Like before, a local operator-average can be connected to the displacement spectral
function Adis(x, ω). The corresponding quantity is the square of the displacement
amplitude

〈
(ax + a†x)

2
〉
:〈

(ax + a†x)
2
〉
=

1

Z
∑
n,m

e−βEm
∣∣〈n|ax + a†x|m〉

∣∣2 (3.29)

=

∫ ∞

−∞
Adis(x, ω)nB(ω, β)dω. (3.30)

In this work spectral functions and corresponding expectation values are always cal-
culated in their zero temperature limit. To this end a truncated set of eigenstates
and -energies of a system together with matrix-elements (like 〈n|Â|m〉) of a desired
operator Â is obtained via the Numerical Renormalization Group (see section 5). The
next step is to combine all those informations to a continuous spectral function for
which the integrals (3.25) and (3.30) can be evaluated numerically. The details of how
to obtain spectral functions from data provided by the NRG will be given in section
5.4.
In the limit of zero temperature the Bose-Einstein distribution function turns into

the Heavyside stepfunction as

lim
β→∞

1

eβω − 1
=

{
−1 , ω ≤ 0

0 , ω > 0
= −Θ(−ω). (3.31)

The integrations in equation (3.25) and (3.30) therefore only need to be performed over
the negative frequency domain in the limit of zero temperature. Thus the integrals
that need to be evaluated for the local averages simplify to〈

n̂x

〉
= −

∫ 0

−∞
A(x, ω) dω (3.32)

〈
(ax + a†x)

2
〉
= −

∫ 0

−∞
Adis(x, ω) dω (3.33)

where the spectral functions A(x, ω) and Adis(x, ω) are meant as their zero tempera-
ture limit.
In this section the connection of the local averages for the site occupation

〈
n̂x

〉
and

for the displacement amplitude squared
〈
(ax + a†x)

2
〉
to corresponding propagators

via their spectral functions has been established. In the following, the propagators
required to evaluate the integrals (3.32) and (3.33) are investigated further. To this
end the equations of motion (3.10) and (3.11) are employed for both the dissipative
oscillator model and the two-spin-boson model to obtain the single particle propaga-
tors and the displacement-displacement correlators of the bath in the following. In
section 4 the knowledge of those single particle propagators is being used to explain
how the bath spectral functions J(ω) and Je/o(ω), which entered the different models,
can be understood in terms of the underlying propagators.
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26 3. Correlation functions

3.4. Bath single particle propagator

In order to calculate the spectral function A(x, ω) that enters the equation for the aver-
age site occupation

〈
n̂x

〉
in (3.32) the knowledge of the local single particle propagator

Gx,x(z) for an arbitrary site x in the chain is needed. As also non-local propagators
Gx,y(z) between different sites x and y in the chain will appear in the derivation of
the local propagator, the more general case is considered first and only later reduced
to its local version with x = y. First, the propagator Gx,y(z) is Fourier-transformed
to momentum space. Since the chain-Hamiltonian is diagonal in k-space, the equa-
tions of motion will obtain a less complex form making it easier to apply them. The
real-space propagator Gx,y(z) is transformed as

Gx,y(z) = 〈〈ax, a†y〉〉z =
1

2π

∫ π

−π

∫ π

−π

〈〈ak, a†k′〉〉ze−ikxeik
′y dk dk′. (3.34)

In the following, the appearing correlators Gk,k′(z) = 〈〈ak, a†k′〉〉z are calculated sepa-
rately for the two models under discussion.

3.4.1. Dissipative oscillator model

The first step is to investigate the single particle propagator Gk,k′(z) in k-space where
the Hamiltonian of the system is that of the dissipative oscillator model Hdo. In
the following, propagators with an upper index (0), like G

(0)
x,y(z), are free propagators

referring to H0 = Himp +Hbath which denotes the Hamiltonian of the non-interacting

theory. Applying the first equation of motion (3.10) to the free propagator G
(0)
k,k′(z)

results in

G
(0)
k,k′(z) =

δ(k − k′)

z − ω(k′)
. (3.35)

The free propagator G
(0)
k,k′(z) is diagonal in k-space and has a simple pole at the

excitation energy ω(k). It will appear repeatedly in the following expressions for the
full propagator Gk,k′(z). Employing equation (3.10) to the full propagator leads to

z〈〈ak, a†k′〉〉z = δ(k − k′) + ω(k′)〈〈ak, a†k′〉〉z +
1

2

√
α

2π
〈〈ak, b+ b†〉〉z

⇒ 〈〈ak, a†k′〉〉z = G
(0)
k,k′(z) +

1

2

√
α

2π
〈〈ak, b+ b†〉〉zG(0)

k′,k′(z). (3.36)

The full propagator is thus given by the free propagator which is diagonal in k-
space, plus a propagator that connects the bath to the impurity. To progress further,

equation (3.11) is applied to 〈〈ak, b+ b†〉〉z leading to
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3.4. Bath single particle propagator 27

z〈〈ak, b+ b†〉〉z = ω(k)〈〈ak, b+ b†〉〉z +
1

2

√
α

2π
〈〈b+ b†, b+ b†〉〉z

⇒ 〈〈ak, b+ b†〉〉z = G
(0)
k,k(z)

1

2

√
α

2π
〈〈b+ b†, b+ b†〉〉z. (3.37)

The full propagator reads

〈〈ak, a†k′〉〉z = G
(0)
k,k′(z) +

α

4

1

2π
G

(0)
k,k(z)〈〈b+ b†, b+ b†〉〉zG(0)

k′,k′(z)

which can be used in expression (3.34) to obtain

〈〈ax, a†y〉〉z

=
1

2π

∫ π

−π

∫ π

−π

e−ikxeik
′y
[
δ(k − k′)

z − ω(k′)
+

α

4

1

2π

〈〈b+ b†, b+ b†〉〉z
[z − ω(k)][z − ω(k′)]

]
dk dk′

=
1

2π

∫ π

−π

eik(y−x)

z − ω(k)
dk

+
α

4
〈〈b+ b†, b+ b†〉〉z

[
1

2π

∫ π

−π

e−ikx

z − ω(k)
dk

][
1

2π

∫ π

−π

eik
′y

z − ω(k′)
dk′
] (3.38)

for the full real-space propagator. The real-space propagator that connects the sites
x and y in the non-interacting case reads

G(0)
x,y(z) = 〈〈ax, a†y〉〉z =

1

2π

∫ π

−π

eik(y−x)

z − ω(k)
dk = G

(0)
0,y−x(z)

and is only dependent on the distance between the sites y − x. The full propagator
can be rewritten as

Gx,y(z, T ) = G(0)
x,y(z) +G

(0)
x,0(z)Tdo(z, T )G

(0)
0,y(z) (3.39)

where the impurity T -matrix for the dissipative oscillator model is inserted. It is
defined as

Tdo(z, T ) :=
α

4
〈〈b+ b†, b+ b†〉〉z(T ). (3.40)

Unlike the bare propagators G
(0)
x,y(z) and G

(0)
k,k′(z) which are all temperature indepen-

dent (cf. equation (3.35)), the scattering matrix Tdo(z, T ) in general shows a temper-
ature dependence. From equation (3.39) the physical processes contributing to the
full propagator from site y to site x can be directly read off. The first term is the
free propagator between the two sites describing the propagation of a bosonic particle
as if no impurity were present. The second term describes the process of a particle
propagating freely from site y to site 0 which is connected to the impurity. There
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the particle scatters off of the impurity; this process is described by the T -matrix.
Afterwards the particle propagates freely onward to site x. Evaluating expression
(3.39) for the same site x = y leads to

Gx(z, T ) = G(0)
x (z) +G

(0)
x,0(z)Tdo(z, T )G

(0)
0,x(z)

= G
(0)
0 (z) +G

(0)
x,0(z)Tdo(z, T )G

(0)
0,x(z), (3.41)

which is dependent on the distance x to the impurity only through the free propagators
connecting the origin with the position x. Here the short hand notation Gx(z, T ) =
Gx,x(z, T ) for local propagators is used which depend only on one site index. In the
last equation the translational invariance of the bath in the non-interacting case was
used, by which G

(0)
x (z) = G

(0)
0 (z) holds for all sites x. The average site occupation〈

n̂x

〉
0
in the non-interacting system is a constant since the system is homogeneous.

As we are interested in the effects on the bath which are caused by the coupling of
the impurity oscillator to the origin of the chain, we will concentrate on the change
in the average site occupation. We derive Δ

〈
n̂x

〉
:=
〈
n̂x

〉
−
〈
n̂x

〉
0
to be

Δ
〈
n̂x

〉 (3.25)
= − 1

π

∫ ∞

−∞
Im[Gx(ω, T )−G(0)

x (ω)]nB(ω, T ) dω (3.42)

=− 1

π

∫ ∞

−∞
Im[G

(0)
x,0(ω)Tdo(ω, T )G

(0)
0,x(ω)]nB(ω, T ) dω. (3.43)

In the limit of zero temperature this expression simplifies to

Δ
〈
n̂x

〉
=

1

π

∫ 0

−∞
Im
[
G

(0)
x,0(ω)Tdo(ω, T = 0)G

(0)
0,x(ω)

]
dω. (3.44)

Results on the change in the average site occupation in case of the dissipative oscillator
model are given in section 6.1.4.

3.4.2. Two-spin-boson model

In case of the two-spin-boson model the same strategy as above is pursued in order to
calculate the single particle propagator in k-space Gk,k′(z). The free bath propagator

G
(0)
k,k′(z) is the same as for the dissipative oscillator model since the one-dimensional

chain is the same in both models. To calculate the full propagator Gk,k′(z), the
equation of motion (3.10) is applied to the system where now the Hamiltonian is
given by H2sbm (cf. equation (2.24)). This results in

〈〈ak, a†k′〉〉z = G
(0)
k,k′(z) +

1

2

√
α

2π
〈〈ak, σz,1e

−ik′r + σz,2e
ik′r〉〉zG(0)

k′,k′(z). (3.45)
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For the interaction part of the Hamiltonian the intermediate result from equation
(2.19) is used which is still expressed in the original impurity operators. Again the
full propagator of the interacting model is given by the bare one plus a correlator
that encapsulates the interaction of the bosonic modes with the impurities. Next the
correlator 〈〈ak, σz,1e

−ik′r + σz,2e
ik′r〉〉z is expressed in terms of a correlator that purely

incorporates impurity degrees of freedom by applying equation (3.11) to it:

〈〈ak, σz,1e
−ik′r + σz,2e

ik′r〉〉z =
1

2

√
α

2π
G

(0)
k,k(z)〈〈σz,1e

ikr + σz,2e
−ikr, σz,1e

−ik′r + σz,2e
ik′r〉〉z. (3.46)

Using this result in the expression for the propagator Gk,k′(z) (3.45) it follows

Gk,k′(z) = G
(0)
k,k′(z) +

α

8π
G

(0)
k,k(z)〈〈σz,1e

ikr + σz,2e
−ikr, σz,1e

−ik′r + σz,2e
ik′r〉〉zG(0)

k′,k′(z).

(3.47)
The propagator in k-space is then used in equation (3.34) to obtain the real-space
propagator

Gx,y(z, T ) = G(0)
x,y(z) +

(
G(0)

x,r(z), G
(0)
x,−r(z)

)
T2sbm(z, T )

(
G(0)

r,y(z), G
(0)
−r,y(z)

)T
. (3.48)

Here again an impurity T -matrix is defined where now T2sbm(z, T ) is a 2 × 2 matrix
with entries

T2sbm(z, T )ij =

√
αiαj

4
〈〈σz,i, σz,j〉〉z(T ), i, j = 1, 2 (3.49)

that can in general show a temperature dependence. The physical processes con-
tributing to Gx,y(z, T ) are easy to interpret. Again there is a part describing the
free propagation of a particle from site y to site x as if no impurities were present.
The additional processes are free propagation from site y to either of the impurities,
residing at ±r in the chain. There the bosonic particle can scatter and either remain
at the impurity or be propagated to the site of the other impurity. Afterwards the
particle propagates freely from its current position to the final position x in the chain.
With the result for the real-space propagator (3.48) at hand the change in the average
site occupation Δ

〈
n̂x

〉
at zero temperature is obtained to read

Δ
〈
n̂x

〉
=

1

π

∫ 0

−∞
Im
[(
G(0)

x,r(ω), G
(0)
x,−r(ω)

)
T2sbm(ω, T = 0)

(
G(0)

r,x(ω), G
(0)
−r,x(ω)

)T]
dω

(3.50)
in case of the two-spin-boson model. Results on the change in the average site occu-
pation in case of the two-spin-boson model are given in section 6.2.4.
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30 3. Correlation functions

3.5. Bath displacement-displacement correlator

Besides the change of the average site occupation Δ
〈
n̂x

〉
another focus is the change of

the expectation to displace an oscillator at site x due to the presence of the impurities.
To this end, the average square of the displacement amplitude

〈
(ax + a†x)

2
〉
, which is

connected to the imaginary part of the displacement-displacement correlation function
〈〈ax + a†x, ax + a†x〉〉z, is investigated. First the more general correlator Dx,y(z) :=
〈〈ax + a†x, ay + a†y〉〉z is derived for both the damped harmonic oscillator model and
the two-spin-boson model. Then its local version where x = y is investigated. In a
first step, the correlator is again Fourier-transformed to momentum space in which
the original chain-Hamiltonian of the bath is diagonal:

Dx,y(z) = 〈〈ax, ay〉〉z + 〈〈ax, a†y〉〉z + 〈〈a†x, ay〉〉z + 〈〈a†x, a†y〉〉z

=
1

2π

∫ π

−π

∫ π

−π

[
〈〈ak, ak′〉〉ze−i(kx+k′y) + 〈〈ak, a†k′〉〉ze−i(kx−k′y)

+ 〈〈a†k, ak′〉〉zei(kx−k′y) + 〈〈a†k, a†k′〉〉zei(kx+k′y)
]
dk dk′ (3.51)

which can be decomposed into four different correlation functions that all need to
be evaluated independently. The single particle propagator 〈〈ax, a†y〉〉z was already
calculated in the previous section. The three other correlators will be evaluated for
both models in the following in their Fourier-transformed version, i. e. 〈〈ak, ak′〉〉z,
〈〈a†k, ak′〉〉z and 〈〈a†k, a†k′〉〉z, using the equations of motion.

3.5.1. Dissipative oscillator model

Applying the equation of motion (3.10) in case of the dissipative oscillator model (cf.
equation (2.5)) to the correlator 〈〈ak, ak′〉〉z and solving for it leads to

〈〈ak, ak′〉〉z =
1

2

√
α

2π
〈〈ak, b+ b†〉〉zG(0)

k′,k′(−z)

(3.37)
=

1

2π
G

(0)
k,k(z)Tdo(z, T )G

(0)
k′,k′(−z). (3.52)

Here, again the impurity scattering matrix Tdo(z, T ) of the dissipative oscillator model
is used (cf. equation (3.40)). With that the corresponding real space correlator reads

〈〈ax, ay〉〉z = G
(0)
x,0(z)Tdo(z, T )G

(0)
0,y(−z) (3.53)

where
〈〈ay, a†0〉〉(0)z = 〈〈a†0, ay〉〉

(0)
−z = 〈〈a0, a†y〉〉(0)z (3.54)

is used in order to switch the indices 0 and y in the last bare propagator. By using
the identity

G(Â†, B̂†, z) = G(Â, B̂,−z) (3.55)
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3.5. Bath displacement-displacement correlator 31

which can be shown with the help of the Lehmann-representation for correlators (cf.
(3.12)), also the propagator 〈〈a†x, a†y〉〉z = 〈〈ax, ay〉〉−z is obtained. In the Lehmann-
representation one can furthermore show that

G(Â, B̂, z) = G(B̂, Â,−z). (3.56)

Thereby, Tdo(z, T ) = Tdo(−z, T ) holds, since Â = B̂ = b + b† for the impurity’s
T -matrix. Thus the correlator 〈〈a†x, a†y〉〉z reads

〈〈a†x, a†y〉〉z = G
(0)
x,0(−z)Tdo(z, T )G

(0)
0,y(z). (3.57)

The first identity for correlators (3.55) may also be used to obtain the last correla-
tor 〈〈ax, a†y〉〉z directly from the single particle propagator that was calculated in the
previous section in its real space representation. It is given by

〈〈ax, a†y〉〉z = G(0)
x,y(−z) +

1

2π
G

(0)
x,0(−z)Tdo(z, T )G

(0)
0,y(−z) (3.58)

All four correlators in (3.51) can then be combined to obtain

Dx,y(z, T ) = D(0)
x,y(z) +D

(0)
x,0(z)Tdo(z, T )D

(0)
0,y(z) (3.59)

which has exactly the same structure as the equation for the single particle propagator
Gx,y(z, T ) (cf. (3.39)). Here the free displacement-displacement correlation function
in case of the non-interacting system is used that reads

D(0)
x,y(z) = 〈〈ax, a†y〉〉(0)z + 〈〈a†x, ay〉〉(0)z . (3.60)

With (3.59), the change in the average of the squared displacement amplitude due to
the presence of the impurity in the system reads

Δ
〈
(ax + a†x)

2
〉
=

1

π

∫ 0

−∞
Im[D

(0)
x,0(ω)Tdo(ω, T = 0)D

(0)
0,x(ω)] dω (3.61)

in its zero temperature limit. The results on the change of the squared displacement
amplitude are presented in section 6.1.4 for the dissipative oscillator model.

3.5.2. Two-spin-boson model

The correlator 〈〈ak, ak′〉〉z is also evaluated for the two-spin-boson model (2.24) by
employing the first equation of motion (3.10). It reads

〈〈ak, ak′〉〉z =
1

2

√
α

2π
〈〈ak, σz,1e

ik′r + σz,2e
−ik′r〉〉zG(0)

k′,k′(−z)

(3.46)
=

1

2π
G

(0)
k,k(z)

(
eikr, e−ikr

)
T2sbm(z, T )

(
eik

′r, e−ik′r)TG(0)
k′,k′(−z). (3.62)
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32 3. Correlation functions

Here the 2 × 2 T -matrix of the two-spin-boson model (cf. equation (3.49)) is used
again. The real space correlator 〈〈ax, ay〉〉z is then obtained as

〈〈ax, ay〉〉z =
(
G(0)

x,r(z), G
(0)
x,−r(z)

)
T2sbm(z, T )

(
G(0)

r,y(−z), G
(0)
−r,y(−z)

)T
(3.63)

With the same methodology the correlator 〈〈a†k, a†k′〉〉z is calculated that reads

〈〈a†k, a†k′〉〉z =
1

2π
G

(0)
k,k(−z)

(
e−ikr, eikr

)
T2sbm(z, T )

(
e−ik′r, eik

′r)TG(0)
k′,k′(z). (3.64)

The corresponding correlator in real space reads

〈〈a†x, a†y〉〉z =
(
G(0)

x,r(−z), G
(0)
x,−r(−z)

)
T2sbm(z, T )

(
G(0)

r,y(z), G
(0)
−r,y(z)

)T
. (3.65)

The final correlator 〈〈a†k, ak′〉〉z turns out to read

〈〈a†k, ak′〉〉z = G
(0)
k,k′(−z) +

1

2π
G

(0)
k,k(−z)

(
e−ikr, eikr

)
T2sbm(z, T )

(
eik

′r, e−ik′r)TG(0)
k′,k′(z)

(3.66)
which, transformed to real space leads to the correlator

〈〈a†x, ay〉〉z = G(0)
x,y(−z) +

(
G(0)

x,r(−z), G
(0)
x,−r(−z)

)
T2sbm(z, T )

(
G(0)

r,y(z), G
(0)
−r,y(z)

)T
.

(3.67)
Combined with the expression (3.48) for the single particle propagator 〈〈ax, a†y〉〉z of
the two-spin-boson model, all four correlators necessary to calculate the displacement-
displacement correlator Dx,y(z, T ) are known. It reads

Dx,y(z, T ) = D(0)
x,y(z) +

(
D(0)

x,r(z), D
(0)
x,−r(z)

)
T2sbm(z, T )

(
D(0)

r,y (z), D
(0)
−r,y(z)

)T
(3.68)

which has again the same exact structure as equation (3.48) for the single particle
propagator. The change in the average displacement amplitude squared in case of the
two-spin-boson model can then be calculated at zero temperature from

Δ
〈
(ax + a†x)

2
〉
=

1

π

∫ 0

−∞
Im
[(
D(0)

x,r(ω), D
(0)
x,−r(ω)

)
T2sbm(ω, T = 0)

(
D(0)

r,x(ω), D
(0)
−r,x(ω)

)T]
dω.

(3.69)

The results for the change of the squared displacement amplitude of the bath oscilla-
tors in case of the two-spin-boson-model can be found in section 6.2.4.
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4. Bath spectral functions

In the previous section the concept of propagators and their connection to spectral
functions was introduced. In this section it is demonstrated how the different spec-
tral J(ω) in the dissipative oscillator model and the two separate spectral functions
Je(ω,R) and Jo(ω,R) in the two-spin-boson model can be understood in terms of
the underlying propagators. Furthermore, the up to now arbitrary dispersion ω(k)
of the one-dimensional chain is fixed in order to arrive at a local soft-gap spectral
density J(ω) ∼ ωs. With that dispersion ω(k) the real-space hopping amplitudes tx
of the chain are calculated. These amplitudes are derived to drop in a power-law
manner with growing distance x. Afterwards, in section 4.3 the free propagators and
displacement-displacement correlation functions of the bosonic chain are discussed
and it is discussed how they are obtained numerically. Finally, in section 4.4 the
different scattering matrices of the two models are further investigated.

4.1. Dissipative oscillator model

In the dissipative oscillator model the impurity oscillator couples only to the origin
of the bath and thus only feels local excitations of its environment. The spectrum of
excitations of the environment at the origin is given by the spectral function corre-
sponding to the local Green function G

(0)
0 (z) in real space. It constitutes of all single

particle excitations of the bosonic degree of freedom at the origin of the chain and is
given by

A
(0)
0 (ω) = − 1

π
lim
ε→0

Im[G
(0)
0 (ω + iε)] (4.1)

=
1

2π

∫ π

−π

δ(ω − ω(k)) dk. (4.2)

The impurity operator (b+ b†)/2 is coupled to the origin of the bath with a coupling
strength

√
α/ωc in units of the high-frequency cutoff. The Fourier-transformation

adds another factor of 1/
√
2π. Processes where the impurity interacts with the bath

and the bath acts back on the impurity both come with this factor. Thus, in an
effective theory for the impurity, each excitation of the bath in k-space can contribute
with a strength of α/2πω2

c . In the definition of the spectral function A
(0)
0 (ω) a factor

of π is divided out of the imaginary part of the local propagator G
(0)
0 (z). As the whole

propagator enters the theory this factor needs to be restored in the definition of the
bath spectral function J(ω). Thus, the bath spectral function for the effective theory
of the impurity is given by

J(ω) = απA
(0)
0 (ω) =

α

2ω2
c

∫ π

−π

δ(ω − ω(k)) dk. (4.3)
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34 4. Bath spectral functions

In order to obtain a spectral function of a desired form in frequency space, one has
to choose a dispersion ω(k) accordingly. In the following, the choice

ω(k) =

∣∣∣∣kπ
∣∣∣∣

1
s+1

ωc (4.4)

leads to the desired spectral function (2.6)

J(ω) = απ(s+ 1)ωsω1−s
c , 0 ≤ ω ≤ ωc.

Here, s > −1 is again the power-law exponent of the bath spectral function and the
momenta k in the dispersion were rescaled such that ω(k) ≤ ωc. In order to solve the
integral over k in equation (4.4), the zeros of the function ω−ω(k) need to be known.
For a fixed frequency ω these are given by

k± = ±π

[
ω

ωc

]s+1

. (4.5)

There, the inverse modulus of the derivative of ω − ω(k±) reads

|ω′(k±)|−1 = (s+ 1)πωsω−(s+1)
c (4.6)

leading to the spectral function

J(ω) =
α

2ω2
c

∫ π

−π

δ(ω − ω(k)) dk

=
α

2ω2
c

(s+ 1)πωsω−(s+1)
c

∫ π

−π

δ(k − k+) + δ(k − k−) dk

= απ(s+ 1)ωsω1−s
c . (4.7)

Strictly speaking, the two solutions k± collapse for ω = 0 which results in ω(0) = 0.
The bath however, features a soft gap behaviour with vanishing spectral density at
ω = 0. Thus, a factor of two in the spectrum does not pose a problem at zero
frequency. Having chosen a dispersion ω(k), the corresponding hopping parameters
tx of the original chain in real space can be calculated. They are connected to the
dispersion via (cf. section 2.1):

tx =
1

2π

∫ π

−π

ω(k)e−ikx dk

=
ωc

2π

∫ π

−π

∣∣∣∣kπ
∣∣∣∣

1
s+1

e−ikx dk =
ωc

2
π
− s+2
s+1

∫ π

0

k
1

s+1 cos(kx) dk (4.8)
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Figure 5:
a) Dispersion ω(k) = ωc

√
|k|/π in momentum space for an ohmic bath with a linear

spectrum.
b) The crosses show the negative hopping parameters tx in units of ωc in real space

corresponding to the dispersion ω(k). They were calculated using equation (4.11).
The red line shows the tx where the FresnelS function in (4.11) has been replaced
by its limiting value of 1/2 for x → ∞. The power-law behaviour of the hopping
amplitudes reads tx ∼ x−3/2.

By substituting u =
[
2kx
π

] 1
s+1 and integrating by parts the hopping amplitudes tx for

integer values of x > 0 read

tx = −ωc

π
(2x)

− s+2
s+1

∫ (2x)

1
s+1

0

sin(πus+1/2) du (4.9)

and

t0 =
ωc

2

s+ 1

s+ 2
(4.10)

by directly solving the integral appearing in (4.8). The integral over the sine is of
order 1 for all values of x and does not contribute to the scaling of the tx as a function
of x. The hopping t0 is an on-site energy that is homogeneous throughout the system
and can be understood as a shift in the chemical potential. Figure 5 a) shows the
dispersion ω(k) for an ohmic bath with s = 1 in units of the high-frequency cutoff
ωc. Figure 5 b) shows the corresponding hopping parameters tx in real space together
with their asymptotic behaviour. To obtain the prefactor of the asymptotic behaviour
of the tx for large x, equation (4.9) is evaluated for an ohmic spectrum with s = 1 to

tx = − ωc

2
√
2πx3/2

FresnelS(
√
2x) (4.11)
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36 4. Bath spectral functions

where

FresnelS(
√
2x) =

∫ √
2x

0

sin(πu2/2) du
x→∞−→ 1

2
(4.12)

is an oscillating function with a maximal value of ∼ 0.71 that is reached for x = 1
[53].
By adjusting the dispersion ω(k) of the one-dimensional chain it is thus possible to

model a desired power-law spectral density J(ω) ∼ ωs. The corresponding hopping
parameters in real space drop in a power-law manner as tx ∼ x−(s+2)/(s+1). The same
choice for the dispersion and thus the real-space hopping amplitudes tx is made for
the two-spin-boson model. In the following, the form of the spectra from the even
and the odd bath modes for this choice of ω(k) is discussed.

4.2. Two-spin-boson model

In case of the two-spin-boson model it was discussed in section 2.2 that the bath
modes can be split into even and odd ones. These enter an effective theory of the
impurities via the two separate spectral functions

Je(ω,R) = α

[
1

2

∫ ε

−ε

δ(ω − ω(0))dk +

∫ π

0+
cos2(kR/2)δ

(
ω − ω(k)

)
dk

]
(4.13)

Jo(ω,R) = α

∫ π

0+
sin2(kR/2)δ

(
ω − ω(k)

)
dk (4.14)

where R = 2r is the total distance between the two impurity spins residing at positions
±r in the chain. The two functions can be obtained from the single spectral function
J(ω) in equation (4.3). The fact that the dispersion ω(k) was chosen to be even (cf.
equation (4.4)), leads to

J(ω) =
α

2

∫ π

−π

δ(ω − ω(k))[cos2(kR/2) + sin2(kR/2)] dk (4.15)

=
α

2

∫ ε

−ε

δ(ω − ω(0))dk + α

∫ π

0+
δ(ω − ω(k))[cos2(kR/2) + sin2(kR/2)] dk

(4.16)

= Je(ω,R) + Jo(ω,R). (4.17)

Thus the total spectrum splits into the spectra of the even bath modes and the
odd bath modes, that can be seen by the even/odd linear combinations of the spins
residing at positions ±r respectively. In position space each spin, of course, sees
locally both the even and the odd modes of the bath, encapsulated in the total spectral
function J(ω). However, the even and the odd linear combinations of the spins are
coupled to the even and the odd modes in k-space, respectively. Again the dispersion
ω(k) = |k/π|1/(s+1)ωc is employed to perform the integrals over the delta-distributions
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4.3. Free bath propagator in position space 37

in k-space. For an arbitrary number of sites R = 2r in the chain that separate the
two impurity spins, the even and odd spectral function read

Je(ω,R) = απ(s+ 1)ωsω1−s
c cos2(ωs+1πR/2ωs+1

c ), (4.18)

Jo(ω,R) = απ(s+ 1)ωsω1−s
c sin2(ωs+1πR/2ωs+1

c ). (4.19)

It is mainly the even bath which provides a spectral weight close to zero frequency.
Expanding the trigonometric functions in the spectral functions around ω = 0 their
behaviour is found to read

Je(ω,R) ≈ α(s+ 1)ωsω1−s
c , (4.20)

Jo(ω,R) ≈ α(s+ 1)ω3s+2ω−(3s+1)
c (πR/2)2. (4.21)

The expansion is reasonable once the system is at energies ω � (2/πR)1/(s+1). From
its low-frequency behaviour it is inferred, that the odd bath is negligible once that
energy-scale is reached from above. With an effective power-law exponent s̃ = 3s+ 2
it is always super-ohmic for s > −1/3 in that region. Figure 6 presents the even and
odd spectral function of an ohmic bath for a total distance R = 20 between the two
spins. The low frequency behaviour can be seen to differ strongly between the spectra
of the even and the odd excitations.

4.3. Free bath propagator in position space

In the previous section a specific choice for the dispersion of the one-dimensional chain
(4.4) was made. The knowledge of the dispersion enables the calculation of the free
bath propagators

G(0)
x,y(ω + iε) =

1

2π

∫ π

−π

eik(y−x)

ω + iε− ω(k)
dk (4.22)

for arbitrary positions x and y in real space. The spectral functions G
(0)
x,y(ω) are re-

quired in the calculation of the change in the average site occupation Δ
〈
n̂x

〉
for a large

number of distances x−y (cf. equations (3.44) and (3.50) for the dissipative oscillator
model and the two-spin-boson model respectively). They show strong oscillatory be-
haviour in frequency space which makes their numerical calculation very demanding.
In this section the analytic results for the imaginary parts of the free propagators
G

(0)
x,y(ω+ iε) in frequency space are presented. Afterwards it is discussed, how the real

part of those propagators can be calculated by making use of the Kramers-Kronig
relation and fast Fourier transform algorithms.

In order to obtain a local power-law spectral density J(ω) ∼ ωs the bath dispersion
is chosen to be ω(k) = |k/π|1/(s+1)ωc (cf. equation (4.4)). The imaginary part of

G
(0)
x,y(ω) on the real axis can be obtained in the same manner as was done for x = y = 0
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Figure 6:
Spectral functions for the even (blue) and the odd (red) excitations of a one-

dimensional chain of bosons as seen by two spins with a distance of R = 20 lattice
sites in between them. The even and the odd spectral functions add up to the original
spectral function J(ω), shown in black. At small frequencies ω < 0.1× ωc almost all
the spectral weight is due to the even excitations, which adapt the original power-law
behaviour. For an ohmic bath the odd spectrum then vanishes as Jo(ω, 20) ∼ ω5 for
small frequencies.

when the bath spectral function J(ω) from the imaginary part of G
(0)
0,0(ω) in the

beginning of section 4.1 (see equation (4.1)) was derived. It is obtained to read

Im[G(0)
x,y(ω)] =

{
−π(s+ 1)ωsω

−(s+1)
c cos(ωs+1π(y − x)/ωs+1

c ) for 0 ≤ ω ≤ ωc

0 else.

(4.23)
Since the dispersion ω(k) is even, the free bath propagators depend only on the
modulus of the distance y − x and not on the direction of the propagation. Thus,
G

(0)
x,y(ω) = G

(0)
y,x(ω) holds for all sites x, y. The real part of the propagators can be

obtained in two different ways.

i) It can be determined by numerically evaluating the integral

Re[G(0)
x,y(ω + iε)] =

1

2π

∫ π

−π

cos(k(y − x))(ω − ω(k))

(ω − ω(k))2 + ε2
dk (4.24)
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4.3. Free bath propagator in position space 39

for a small imaginary part, e. g. ε = 10−3.

ii) The Kramers-Kronig relations [3]

Re[G(0)
x,y(ω)] =

1

π
P
[∫ ∞

−∞

Im[G
(0)
x,y(ω′)]

ω′ − ω
dω′

]
(4.25)

Im[G(0)
x,y(ω)] = − 1

π
P
[∫ ∞

−∞

Re[G
(0)
x,y(ω′)]

ω′ − ω
dω′

]
(4.26)

that connect the real- and imaginary part of an analytic function can be employed.
Here, P [. . .] denotes the Cauchy principal value of the integral.

Once a free propagator G
(0)
x,y(ω) is known in a desired interval of frequencies, the free

displacement-displacement correlation function D
(0)
x,y(ω) can be obtained immediately

in the same region. For a general complex frequency z it is given by (cf. equation
(3.60))

D(0)
x,y(z) = 〈〈ax + a†x, ay + a†y〉〉(0)z

= 〈〈ax, a†y〉〉(0)z + 〈〈a†x, ay〉〉(0)z

= G(0)
x,y(z) +G(0)

x,y(−z). (4.27)

The last step uses the fact that 〈〈a†x, ay〉〉
(0)
z = 〈〈ay, a†x〉〉

(0)
−z = 〈〈ax, a†y〉〉

(0)
−z holds for the

free bath propagator. Evaluated on the real axis the free displacement-displacement
correlator reads

D(0)
x,y(ω) = Re[G(0)

x,y(ω)] + Re[G(0)
x,y(−ω)] + i

(
Im[G(0)

x,y(ω)]− Im[G(0)
x,y(−ω)]

)
. (4.28)

and therefore the results obtained for the real and imaginary part of the free propaga-
tor G

(0)
x,y at positive and negative frequencies need to be combined accordingly. Figure

7 presents both the free propagator G
(0)
10,0(z) (part a)) and the free displacement-

displacement correlation function D
(0)
10,0(z) (part b)). Details on the calculation of

Re[G
(0)
10,0(z)] are discussed in the following section on the Kramers-Kronig relation via

fast Fourier transformation. After that the free displacement-displacement correlator
D

(0)
10,0(ω) was calculated from equation (4.28). For any other distance x one could

obtain G
(0)
x,0(ω) and from that D

(0)
x,0(ω) in the same manner. As the distance x grows,

the number of sample points needs to be increased to retain smooth functions for the
highly oscillating free correlation functions.

In section 3.4, integral expressions were derived that need to be evaluated in order
to calculate the change of the average site occupation Δ

〈
n̂x

〉
and the change of the

squared amplitude of the oscillator displacement
〈
(ax + a†x)

2
〉
at position x in the
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Figure 7:
Free correlation functions a) G

(0)
10,0(ω) and b) D

(0)
10,0(ω) for an ohmic bath with power-

law exponent s = 1. Note that the real part (blue) drops fast to zero outside the
interval, where the imaginary part (red) is finite, for both functions. This allows
to restrict the support needed in the FFT algorithms to the rather small frequency
interval [−2, 2]. Details on the numerical calculation to obtain the real parts of both
functions are provided in the end of this section.

chain both in the dissipative oscillator model and in the two-spin-boson model. The
following section describes how to calculate the free propagators G

(0)
x,0(ω). Apart from

the free bath correlation functions, scattering matrices on the impurities enter the
calculation of the thermal averages in both models. As it will be illustrated in sec-
tion 4.4, they elude an analytic evaluation except for special sets of model parameters.
To obtain them for a larger range of model parameters, their Lehmann-representation
will be calculated using the Numerical Renormalization Group method that provides
approximate eigenenergies and -states of the system.

Kramers-Kronig relation via fast Fourier transformation

Two methods were presented to obtain the real part of a function G
(0)
x,y(ω) of interest

whose imaginary part is known. Both methods rely upon the solution of a specific
integral. In the first method the integral

Re[G(0)
x,y(ω + iε)] =

1

2π

∫ π

−π

cos(k(y − x))(ω − ω(k))

(ω − ω(k))2 + ε2
dk

needs to be solved for a small imaginary part ε and for each frequency of interest
individually. The method is stable even for ε = 0, as long as ω < 0 or ω > ωc where
the imaginary part of G is strictly zero. However, the method is not very fast since
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4.3. Free bath propagator in position space 41

the numerical integration has to be performed for each desired point ω in frequency
space in order to obtain a smooth function. Hence this method is computationally
very demanding if a high resolution of the function in frequency space is desired.
The second method is very stable inside the interval [0, ωc] and there is a fast way

to perform the integral via Fourier-transformation for a large number of frequencies in
one go. This method makes use of the fact that the integral in (4.25) is a convolution
for which the convolution theorem in Fourier calculus [7] can be used. The convolution
theorem states that the Fourier transformation F [. . .] of the convolution

(f ∗ g)(ω) =
∫ ∞

−∞
f(ω′)g(ω − ω′) dω′ (4.29)

of two functions f and g is given by the product of the Fourier transformations of the
individual functions:

F [(f ∗ g)(ω)](t) =
√
2πF [f(ω)](t)F [g(ω)](t). (4.30)

Here, the Fourier transformation and its inverse are defined as

F [f(ω)](t) = f̃(t) =
1√
2π

∫ ∞

−∞
f(ω)e−iωt dω (4.31)

F−1[f̃(t)](ω) = f(ω) =
1√
2π

∫ ∞

−∞
f̃(t)eiωt dt (4.32)

(4.33)

for a given function f(ω). The method uses the Fourier transformation of g(ω) = ω−1

which reads

g̃(t) = −i

√
π

2
sign(t). (4.34)

With this knowledge, first the transformation F on the integral in (4.25) is performed

and afterwards its inverse transformation F−1. Thereby the real part of G
(0)
x,y(ω) is

obtained from

Re[G(0)
x,y(ω)] = F−1

[
F
[
Re[G(0)

x,y(ω
′)]
]
(t)
]
(ω) = F−1

[
Im[G̃(0)

x,y](t)i sign(t)
]
(ω). (4.35)

Both the inverse transformation on the right hand side and the forward transfor-
mation of the imaginary part of G can be performed efficiently on a computer us-
ing fast Fourier transformation (FFT) algorithms for a finite number of data points

(ω, Im[G
(0)
x,y(ω)]) [54].

Figure 7 in the previous section presents both the real and the imaginary part of
G

(0)
x,0(ω) for x = 10 in the frequency interval [−1.25, 1.25] in units of ωc (part a)). While

the imaginary part is given by the analytic expression (4.23) the real part was obtained
by combining the two different methods discussed above. The first Kramers-Kronig
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42 4. Bath spectral functions

relation (4.25) was performed via Fourier-transformation employing equation (4.35)
for a frequency range [−2, 2] in units of ωc with a resolution of 0.001. As the results
around the borders of the support are fluctuating and rather imprecise, the results
of Re[G

(0)
x,y(ω)] in the frequency range [0, 1] from those results were picked. Outside

the interval [0, 1] a numerical integration of equation (4.24) within Mathematica via
the function NIntegrate[] [55] was executed. The resolution in frequency space was
again set to 0.001.

4.4. Impurity scattering matrix

The impurity scattering matrix of the dissipative oscillator model was derived in
section 3.4.2 to read

Tdo(z, T ) =
α

4
〈〈b+ b†, b+ b†〉〉z(T ) =

α

4
Dimp(z, T )

and is the single quantity needed to describe the effect of the impurity and its environ-
ment onto each other within the framework of equations of motion. It is given by the
displacement-displacement correlation function Dimp(z, T ) = 〈〈b+b†, b+b†〉〉z(T ) of the
impurity and the factor α/4 encoding the interaction-strength with the zero orbital
of the one-dimensional chain in real space. A closed set of equations for Dimp(ω) can
be obtained since the dissipative oscillator model incorporates only bosonic degrees of
freedom. Consequently the possibility exists to relate the scattering matrix to a set
of other correlators, most of which are free ones that can be evaluated numerically
with high precision. In appendix A the relation

Dimp(z, T ) =
[
D

(0)
imp(z)

−1 − α

4
D(0)(x = 0, z)− U [Σ1(z, T ) + Σ2(z, T )]

]−1

(4.36)

is derived for the displacement-displacement correlation function of the impurity.
There the functions

D
(0)
imp(z) =

1

z −Δ
− 1

z +Δ
(4.37)

D(0)(x = 0, z) =
1

2π

∫ π

−π

1

z − ω(k)
− 1

z + ω(k)
dk (4.38)

are introduced as well. They are the bare displacement-displacement correlation func-
tions of the impurity with frequency Δ for zero self-interaction U , and the one of the
bath at the origin x = 0 in real space respectively. Furthermore the two self-energy
functions

Σ1(z, T ) =
Δ + z

2Δ

〈〈b†bb, b+ b†〉〉z(T )
Dimp(z, T )

(4.39)

Σ2(z, T ) =
Δ− z

2Δ

〈〈b†b†b, b+ b†〉〉z(T )
Dimp(z, T )

(4.40)
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4.4. Impurity scattering matrix 43

are introduced which have the function Dimp(z, T ) of interest in their denominator.

There are two routes to calculate D
(0)
imp(ω, T = 0) for real frequencies.

i) Calculating the matrix elements of the operator b + b† that are needed in the
evaluation of the Lehmann-sum for Dimp(ω, T = 0) in the eigenbasis that was
obtained via the NRG. Then the obtained poles need to be broadened appropri-
ately to get a smooth function for Tdo(ω, T = 0) (see the discussion in section 5.4
for details on obtaining a spectral function from NRG data).

ii) Calculating the matrix elements of the two correlators 〈〈b†bb, b+ b†〉〉ω and
〈〈b†b†b, b+ b†〉〉ω, appearing in the expressions for the self-energies Σ1 and Σ2 in
their zero-temperature limit. Those self-energies are then used in equation (4.36)
in order to get a second estimate for the T -matrix of the impurity.

In this work, the first method is used. The zero temperature Lehmann-sums, needed
for the calculation of Tdo(z, T = 0), show already to be smooth. They do not feature
any oscillations, like e. g. the Coulomb part of the self energy of the single impurity
Anderson model (SIAM). There, oscillations appear on energy-scales lower than the
finite temperature for which the self-energy is calculated, if only the simple calculation
i) is performed [11]. Once obtained, the smooth functions for the scattering matrix in
different parameter-regimes of the model are used to calculate the change in both the
average site occupation

〈
n̂x

〉
and the average of the squared displacement amplitude〈

(ax + a†x)
2
〉
.

Two-spin-boson model

In case of the two-spin-boson model a 2× 2 scattering matrix was deduced in section
3.4.2 with the different matrix entries

T2sbm(z, T )i,j =
α

4
〈〈σz,i, σz,j〉〉z(T ), i, j = 1, 2. (4.41)

For those correlators the spin commutation relations

[σα,j, σβ,k] = 2iδj,kεαβγσγ, j, k ∈ {1, 2}, α, β, γ ∈ {x, y, z} (4.42)

spoil the possibility to derive a closed set of equations of motion like in case of the
damped harmonic oscillator model. They lead to higher order correlation functions
between the bath and the impurities that cannot be simply absorbed in other cor-
relators. Therefore the correlators 〈〈σz,i, σz,j〉〉z(T ) themselves need to be calculated
numerically via the NRG from the outset to obtain information on the change in the
average site occupation. Results for the scattering matrix T2sbm(ω, T = 0) in its zero
temperature limit can be found in section 6.2.4.
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5. Numerical Renormalization Group

Both the dissipative oscillator model (2.5) and the two-spin-boson model (2.24) in-
troduced in section 2 are quantum impurity models that feature a small subsystem
consisting of either one or two impurities which is coupled to a dissipative environ-
ment. Their Hamiltonians have the general form

H = Himp +Hbath +Hint

where Himp describes the local subsystem (the impurities) while Hbath describes the
non-interacting environment in which the impurities reside. The interaction between
the impurities and their environment is then comprised in Hint. Due to their structure
the Hamiltonians are in general not analytically solvable and have to be solved by an
approximative method.
The method of choice in this thesis is the Numerical Renormalization Group method

put forward by Kenneth G. Wilson in 1975 [52]. In general, renormalization techniques
were already used in the 1950’s by e. g. Gell-Mann and Low who employed them
to study the effects of the vacuum polarisation around an electric charge both on
the charge itself and its mass within quantum electrodynamics [20]. Wilson made
huge contributions to this field in the mid-seventies of the twentieth century using
renormalization group (RG) methods in real-space (block-spin method) as well as
in field theories. He also connected statistical renormalisations and field theoretical
renormalization group ideas.
The typical starting point within field theory is to write down the action S corre-

sponding to the Hamiltonian H of the problem at hand. In the following, the model
parameters entering the action S are denoted by P , such that S(P ) can be considered
to reside in a multi-dimensional space spanned by those model parameters. The next
step is to integrate out the high-energy part of the theory in S leading to a renormal-
ization of the model’s parameters P → P ′ in the remaining low-energy sector. This
step is typically denoted by applying a renormalization group mapping R to the action
such that S(P ′) = R[S(P )]. A key concept within renormalization group techniques is
that of fixed points P ∗ of the mapping R[. . .] where S(P ∗) = R[S(P ∗)] is invariant un-
der R. Around these fixed points there are relevant, irrelevant or marginal operators
that either drive the system away from or towards the fixed point or that do neither
respectively as the mapping R[. . .] is repeatedly applied to the action S(P ). Stable
fixed points P ∗ in the parameter space where all operators are irrelevant or marginal
can be identified with stable phases of the model. The fixed points where all operators
need to be considered relevant are identified with ideal phases that cannot be reached
in reality (e. g. zero-temperature fixed points). Between stable fixed points and ideal
fixed points there have to be points where both relevant and irrelevant operators are
present. Such fixed points are identified with phase transitions and thus are of large
interest of their own. Figure 8 sketches the set of fixed points and the Renormalization
Group flow between them in the α-Δ-plane for the ohmic spin-boson-model.
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46 5. Numerical Renormalization Group

Figure 8:
RG-flow of the coupling α and tunnelling rate Δ of the spin boson model. The

model features a stable fixed point where the coupling between impurity and bath
has been renormalized to zero and the tunnelling rate is infinite (green corner). This
fixed point is termed the localised fixed point. An unstable fixed point is positioned
at infinite coupling strength and infinite tunnelling rate (red corner) which is of no
physical relevance as it cannot be reached. At zero tunnelling rate, a line of fixed
points appears for couplings larger than a critical value αc. These fixed points are all
localised fixed points where the bath oscillators are displaced by an amount set by
the fixed point value of α. The dashed line connecting the points (αc, 0) and (∞,∞)
is a separatrix which separates the flow of the system towards either the delocalised
or any of the localised fixed points.

While there are typically trivial fixed points where one or more parameters renor-
malise to a finite value or zero, there can as well appear fixed points in which one or
more parameters renormalise to infinity. A famous example would be the Coulomb-
interaction U in the Anderson impurity model (AIM) which, as it flows to infinity basi-
cally projects the theory down to the sector with a single electron occupying the impu-
rity [52]. In that limit, the AIM becomes the renowned Kondo model which eluded a
solution until the 1970s. Within standard RG the spin-spin interaction J of the model
diverges as the system is integrated out close to the band edge D of the conduction
electrons. In a perturbative expansion the second order term ∼ J2 log(D/kBT ) fea-
tures a logarithmic divergence once kBT < D, where kB is the Boltzmann-constant
and T is the temperature. Thus, the model becomes strongly interacting in J and a
perturbative expansion around small J is not feasible any longer.
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In his extensive work, Kenneth G. Wilson introduced a numerical, non-perturbative
method—termed the Numerical Renormalization Group (NRG)—by which he was
able to resolve the breakdown in the perturbative expansion, also known as the “Kondo
problem” [52]. Using the NRG, he was able to determine the ground state of the Kondo
model in the strong coupling limit by investigating the parameter flow and the fixed
point structure of the model. In doing so, he went beyond the limit of perturbation
theory in the spin-spin interaction J of the model. Later on, in 1982 he was awarded
the Nobel Prize in Physics “for his theory for critical phenomena in connection with
phase transitions” [37].
The NRG itself has since been used and extended to a whole zoo of other models.

Its role as an impurity solver for dynamical mean field calculations [31, 8, 48] and the
extension from fermionic systems to bosonic ones [13, 12, 41] as well as the extension
to multi-channel models in the recent past [32, 33] and the development of a time-
dependent version [4] make the NRG still an up-to-date numerical method. While
it is known to fail in obtaining the correct dynamical exponents for the spin-boson
model [46, 47] for s ≤ 1/2 in its crudest version, there is still lots of information to
be gained apart from those exponents for s > 1/2. The fixed points of the models as
well as information on the entropy, the ground states of the systems and correlation
functions in their zero temperature limit can be obtained from the NRG for the bosonic
models studied in this work.
It is the purpose of this section to introduce the NRG-method to the reader. Here

it is shown how to discretise the continuous dissipative environments appearing in
the models under discussion and how to map them onto a chain of modes that allows
the application of an iterative numerical algorithm. Additionally, the concept of a
flow of the Hamiltonian under the renormalization group mapping is introduced. An
identification of different types of fixed points in this flow is presented. A compre-
hensive introduction to the method of the NRG together with a series of applications
to different models can e. g. be found in [9]. The notation and argumentation in the
following derivation of the mappings that need to be performed to the Hamiltonian
is mainly along the lines of that work.
This section also demonstrates how to gain the correlation functions derived in sec-

tion 3.1, which were described in terms of their Lehmann representation, from the
NRG. [10], Section 5.5 identifies the main features in the numerical implementation
of the models and discusses the demands in computational cost of a bosonic NRG
implementation. It is presented how to get around certain bottlenecks arising espe-
cially in the two-spin-boson model where two dissipative environments need to be
incorporated into the calculations.

Introduction

A set of mappings is applied in the following, in order to gain a numerically solvable
model both for the dissipative oscillator model and the two-spin-boson model. These
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48 5. Numerical Renormalization Group

mappings affect the environments of the impurities only. Since the partsHbath andHint

are linear in the different channels for the two-spin-boson model (cf. equation (2.24)),
the mappings can be applied to each channel individually. Therefore, the discussion
concentrates on the mapping that needs to be performed for a single channel model,
i. e. the dissipative oscillator model (2.5). Its Hamiltonian is given by

Hdo = Himp +

∫ ωc

0

g(ω)a†ωaωdω +
(b + b†

2

)∫ ωc

0

h(ω)
(
aω + a†ω

)
dω. (5.1)

Here, ωc is a high-frequency cutoff, g(ω) encapsulates what excitations at frequency
ω there are in the bath and h(ω) is the coupling between the impurity oscillator and
that frequency. The operator b† is the creator of an excitation on the impurity while
an operator a†ω creates an excitation at frequency ω in the environment. Applying the
equations of motion to Hdo with the bath in its frequency representation (5.1) reveals
that the bath enters an effective theory for the impurity only via the quantity

J(ω) = − lim
δ→0

Im
[ ∫ ωc

0

h2(ω̃)

ω + iδ − g(ω̃)
dω̃
]

= π

∫ ωc

0

h2(ω̃)δ(ω − g(ω̃))dω̃

= πh2(ε(ω))

∣∣∣∣dε(ω′)

dω′

∣∣∣∣
ω′=ω

(5.2)

which is in general termed the bath spectral function. In the last equation the fact
that g(ω̃) is invertible on the interval [0, ωc] and therefore only has a single solu-
tion to g(ω̃)− ω = 0 for a given ω was used. Its inverse function is defined to be
ε(ω̃) := g−1(ω̃). The crucial point about the bath entering only via a specific combi-
nation of g and h is the freedom it poses in their choice so long as they combine to the
desired spectral function J(ω). This freedom of choice is employed in the following
discretisation process. In general there are three steps that need to be taken in order
to arrive at the kind of model that can be solved on a computer.

1) The continuous bath, described by J(ω) needs to be discretised in order to
allow for a numerical treatment of the system. To this end, the whole frequency
range is divided into a set of intervals whose width decreases exponentially.
This is achieved by introducing a logarithmic discretisation parameter Λ > 1
and defining a set of points

xn = Λ−nωc, n = 0, 1, 2, . . . . (5.3)

From the xn a series of intervals In is defined to be

In := (xn+1, xn] = (Λ−(n+1)ωc,Λ
−nωc], n = 0, 1, 2, . . . . (5.4)
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5.1. Logarithmic discretisation 49

In each of the intervals In the bath is then represented by a single mode, charac-
teristic of the bath in that interval. That way, an infinite but countable number
of bath-modes is obtained, describing the environment of the impurity down
to lowest energy scales. Details of the discretisation process are discussed in
section 5.1.

2) The discretised bath needs to be mapped onto a semi-infinite chain (the so-
called Wilson-chain), which is iteratively treatable. This mapping is described
in section 5.2.

3) The Wilson-chain needs to be diagonalised iteratively. That is achieved by
truncating the number of states kept after a diagonalisation to a finite number
Nkept. That way, the dimension of the total Hamiltonian in each iteration stays
finite and it is possible to successively add orbitals from the Wilson-chain and
thus to describe the system at lower and lower energies. The diagonalisation
and truncation scheme are discussed in full detail in section 5.3 for both models.

As mentioned before, the NRG is a non-perturbative method. However, it is not
an exact method in the sense that the steps 1) and 3) inherit approximations. To
what extent those approximations are justified and controllable is discussed in the
corresponding sections 5.1 and 5.3 as well as in the results section.

5.1. Logarithmic discretisation

A modern computer, be it a personal computer or a big computing-cluster is always
limited to perform only a discrete and finite number of tasks in a finite amount of time.
While the computational resources number of floating point operations per second
(FLOPS) that can be performed by one or more processing units (CPUs or GPUs)
and the amount of random access memory (RAM) available can differ by several
orders of magnitude, they always remain finite. It is therefore not possible to solve
a quantum impurity system like the dissipative oscillator model which incorporates
a continuous environment of excitations exactly on a computer in a finite amount
of time. It is thus necessary to somehow discretise the continuous environment and
make the model computationally calculable.

Like mentioned under point 1) in the previous section, the discretisation can be
achieved by introducing a logarithmic discretisation parameter Λ > 1 which is used
to introduce a set of points xn = Λ−nωc and split the interval [0, ωc] into a series of
intervals In = (Λ−(n+1)ωc,Λ

−nωc]. After that a corresponding set of excitations that
are a good description of the environment in those intervals needs to be chosen. From
the way the intervals In are distributed in frequency space one can already expect that
the excitations that represent the bath in each interval will drop of exponentially as
∼ Λ−n. It is in fact this exponential behaviour that will lead to a decent separation in
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energy scales between different iterations of the NRG algorithm and allow to discard
the high energy states in each iteration.
Within each interval In, a complete set of orthogonal functions ψn,p(ω) is introduced

via Fourier-transformation. They are given by

ψn,p(ω) =

{
1√
dn
eiknpω, ω ∈ In

0, ω �∈ In
, p ∈ Z (5.5)

where dn = Λ−nωc(1 − Λ−1) is the width of the interval In, the p label all different
momenta and kn = 2π/dn is the fundamental mode of interval In. The set of basis
states is then used to express the original bosonic operators aω in this new basis:

aω =
∑
n,p

an,pψn,p(ω). (5.6)

The corresponding inverse transformation reads

an,p =

∫ ωc

0

aωψn,p(ω) dω (5.7)

and one may check that due to the unitary transformation between the aω and the an,p
the usual bosonic commutation relations also hold for the latter. The Hamiltonian of
the dissipative oscillator model is then expressed in terms of the new operators an,p.
The environmental part of the interaction Hint is transformed as∫ ωc

0

h(ω)
(
aω + a†ω

)
dω =

∫ ωc

0

h(ω)
∑
n,p

(
an,pψn,p(ω) + a†n,pψn,p(ω)

)
dω

=
∑
n,p

∫ xn

xn+1

h(ω)
(
an,pψn,p(ω) + a†n,pψn,p(ω)

)
dω. (5.8)

By choosing the function h(ω) = hn to be a constant in each interval In all integrals
in (5.8) are zero except for the ones where p = 0. Thus the equation simplifies to∫ ωc

0

h(ω)
(
aω + a†ω

)
dω =

∞∑
n=0

hn

√
dn
(
an,0 + a†n,0

)
(5.9)

which is the desired result of a discrete number of states to which the impurity os-
cillator couples. The constants hn are set to the square root of the average spectral
weight contained in J(ω) in interval In:

hn =

[
1

πdn

∫
In

J(ω) dω

]1/2
:=

1√
πdn

γn. (5.10)
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The transformation (5.6) is also applied to the free part of the Hamiltonian Hbath

which becomes∫ ωc

0

g(ω)a†ωaω dω =
∑
n,p

ξna
†
n,pan,p +

∑
n,p �=p′

cn(p, p
′)a†n,pan,p′ (5.11)

where the first sum is over equal indices p = p′ and the functions

cn(p, p
′) =

1

dn

∫
In

g(ω) exp

[
2πi(p′ − p)ω

dn

]
dω, ξn = cn(p, p) =

1

dn

∫
In

g(ω) dω

(5.12)
are introduced. With the choice (5.10) for the constants hn in each interval In, the
integrals leading to the ξn can be rewritten as

ξn =
1

dn

∫
In

g(ω) dω ≡
∫
In

ωJ(ω) dω

/∫
In

J(ω) dω. (5.13)

They are then given by the normalised expectation to find an excitation at frequency
ω under the probability distribution J(ω). As the identity (5.13) is not entirely trivial
to see it’s proof is presented in appendix B to the interested reader.
By Fourier-transformation of the operators aω in a set of countable intervals In it is

thus achieved that the impurity couples to a single mode an,0 in each interval only. The
previously diagonal bath part of the Hamiltonian however has gained a more complex
structure. In each interval In the different p modes in (5.11) are coupled via the
cn(p, p

′). Were it not for those interactions it would be feasible to take the p = 0 part∑
n ξna

†
n,0an,0 of the transformed Hbath and neglect all other modes from the theory

since they do not couple to the impurity. Here actually the first approximation in the
whole treatment of the model is made. It is assumed, that all couplings cn(p, p

′) are
indeed zero (an approximation that becomes exact in the limit Λ → 1, which would
restore the continuous model). Bulla et al. estimate the cn(p, p

′) by choosing a linear
dispersion g(ω) = ω for which the integrals appearing in the definition of the cn(p, p

′)
can be solved analytically (cf. [9]). They obtain

cn(p, p
′) = Λ−nωc

1− Λ−1

2πi(p′ − p)
exp

[
2πi(p′ − p)

1− Λ−1

]
. (5.14)

The approximation of neglecting all terms cn(p, p
′) for p �= p′ is still quite good even

for values of Λ in the range of ∼ 1.5−10 (the latter can be achieved using the so-called
“z-trick”, cf. [56, 40]). This however can not easily be seen from the simple definition
of the cn(p, p

′) as there are infinitely many of them that are ignored.
Here a real-space argument, similarly already given by Wilson in his original work

on the Kondo-model [52] provides insight in why it is safe to neglect the cn(p, p
′),

even when adapted for the bosonic environment within this work. By inverting the
dispersion relation ω(k) = |k/π|1/(s+1)ωc the frequencies in a given interval In can
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Figure 9:
Modulus of the overlap between plane waves e−ik(ω)x and the functions ψn,p for n = 1

and a logarithmic discretisation parameter Λ = 2.0. The overlap is large around an
x ∼ p and thus only the p = 0 functions are peaked right at the origin x = 0 where
the impurity resides in the dissipative oscillator model.

be connected to a range of corresponding lattice momenta k(ω) = π|ω/ωc|s+1. It is
those momenta which are then important in the Fourier-transformation that connects
functions in momentum space and real space. A calculation of the overlap in frequency
space of any state ψn,p(ω) with plane waves e−ik(ω)x for different values of x reveals
a peaked structure around x ∼ p in case of an ohmic environment with s = 1 for
all values of p (cf. figure 9). It is thus safe to neglect those terms with p �= 0 for
which the ψn,p(ω) are peaked far away from the impurity in real space. Neglecting
all terms with p �= p′ and dropping the index p = 0 one finally arrives at the desired
Hamiltonian which reads

Hstar
do = Himp +

∞∑
n=0

{
ξna

†
nan +

(b + b†

2

) γn√
π

(
an + a†n

)}
(5.15)

and is sometimes also referred as star -Hamiltonian (cf. [12]). As mentioned above the
ξn and γn appearing are nothing but the expectation value to find an excitation at
frequency ω in each interval In under the distribution J(ω) and the square root of the
expectation value of the distribution J(ω) itself respectively. Thus the discretisation
process leads to a model where the impurity couples to a set of bath modes with
characteristic frequencies ξn with a corresponding coupling strength of γn/

√
π. Again,
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in the limit of Λ → 1, the continuous model would be retained where the bath modes
lie dense in the interval [0, ωc]. The γn and the ξn drop exponentially as Λ−n(s+1)/2 and
Λ−n respectively for baths with a spectral density J(ω) = απ(s+ 1)ωsω1−s

c , ω ∈ [0, ωc]
(cf. equation (2.6)) for which they read

γ2
n =

∫
In

J(ω) dω = απω2
c

(
1− Λ−(s+1)

)
Λ−n(s+1) (5.16)

ξn = γ−2
n

∫
In

ωJ(ω) dω =
s+ 1

s+ 2

1− Λ−(s+2)

1− Λ−(s+1)
Λ−nωc. (5.17)

Figure 10 presents a sketch illustrating the logarithmically discretised star -Hamilto-
nian (5.15). For the dissipative oscillator model under discussion, only power-law

Figure 10:
The impurity (blue circle) with energy scales Δ, ε, U couples to a discrete set of

bosonic modes at energies ξn (red lines) with a corresponding coupling strength of γn
(light grey). The original linear spectrum J(ω) ∼ ω is depicted by the dashed red
lines. The energies ξn and the couplings γn both drop exponentially as Λ−n in case of
the ohmic spectral density.

spectral functions J(ω) are considered which are in essence featureless within each
interval In, i. e. they are smooth and do not show single broad peaks which could
be identified with characteristic excitations of the environment. This behaviour is
very different from that of the spectral functions Je(ω) and Jo(ω) of the even and the
odd environmental excitations that do appear in the two-spin-boson model. While
both originate as well from a power-law spectrum of the environment as J(ω), they
are modulated by a cos2 and a sin2 respectively and thus show a more complicated
behaviour as they alternate frequently between zero and the original power-law. The
following discussion focusses on the behaviour of the even spectral function for a fixed
number of lattice spaces R between the spins. For a high-frequency cutoff ωc = 1 the
even spectral function was derived in section 4.2 to read
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Je(ω,R) = απ(s+ 1)ωs cos2(πRωs+1/2).

Therefore the oscillatory behaviour becomes more pronounced as ω is increased. There
are three different scenarios for the behaviour of Je(ω,R) within a given interval In
where ω ∼ Λ−n:

i) Λn(s+1) � πR/2: In such an interval there are no oscillations of the spectral
function and its behaviour can be assumed to be smooth meaning that the aver-
ages calculated in order to obtain the ξn and γn are well justified. This kind of
behaviour is reached for large n.

Figure 11:
Plot of the spectral function Je(ω,R = 10) together with the first few ξn that are

calculated numerically from equation (5.13) for a discretisation parameter Λ = 2.0
and a power-law exponent s = 1. The thin, dashed lines mark the borders of the first
few intervals In. There, the different quality of the averages that are taken in order
to position the ξn can be seen: in interval I0 there are 8 peaks which are represented
by a single excitation. Since the density of the peaks is rather high, the possible error
in positioning ξ0 becomes small. Interval I1 features two peaks but the averaging
process leads to a single ξ1 that is positioned where there is nearly no spectral weight
in Je. From the interval I2 on, the averaging process leads to excitations ξn that
are characteristic of the bath in those intervals. In green there are depicted the
corresponding excitations that are obtained for the simple ohmic bath that enters the
theory for the distance R = 0. They differ to a visible extent only in the intervals I1
and I2 where the condition Λn(s+1) ∼ πR/2 is met.
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ii) Λn(s+1) � πR/2: In this region the spectral function is highly oscillating leading
to a set of sharp peaks that are densely distributed over the interval. There
the approximation to simply pick one excitation ξn as a representative of the
environment is again well justified. It is the typical situation of the first few
iterations where n is small.

iii) Λn(s+1) ≈ πR/2: On this scale the bath spectral function does feature a small
number of oscillations. It is not obvious why the simple average leading to the ξn
leads to a good description of the excitations of the bath in that regime. Consider
e. g. a situation like in figure 11 where two broad peaks of the spectrum are located
at the borders of the interval I1 while there is minimal weight in its central region.
From a statistical point of view it would be a very bad decision to describe such
a distribution by one single average and not by two averages that take only
into account either of the two halves of the interval I1. However, the logarithmic
discretisation scheme presented here will always use one single excitation for each
interval only no matter what the explicit features of the spectrum are.

In general there is a solution to the dilemma of not approximating the features of
the bath spectral function correctly. It is referred to as the “z-trick” or interleaved
method (cf. [56, 40]) and it was originally introduced in order to reach larger
values of the discretisation parameter Λ which had long been used only up to
values of Λ = 3.0. A larger value of Λ ≈ 10.0 effectively leads to a smaller
number of iterations that need to be performed in order to reach a given energy
scale, reducing in total the numerical cost. But at the same time it also leads to
a rougher approximation of the environment. The main idea of the interleaved
method is to reposition the interval borders xn for n ≥ 1 slightly by introducing
a global factor Λ−z leading to interval-borders x̃n = Λ−(n+z). After solving the
model numerically with the NRG for different values of z ∈ [0, 1] one could then
average over those different discretisations of the bath and thus hope to average
out errors made in the discretisation process.

It is the purpose of this work to obtain physical quantities as a function of the
impurity-impurity distance R for the two-spin-boson model. However, for a fixed
Λ and different R the interval in which the approximation becomes bad will also
change. Hence an optimised value of Λ and a set of decently chosen z would be
needed for each value of R individually. Also two environments with an even
and an odd spectrum enter the calculations. The even spectrum has its peaks
where the odd spectrum has no weight at all and vice versa. So in principle one
would also need to discretise them with different values of Λ that still allow for
a meaningful definition of an energy scale in each iteration of the NRG. This
procedure is not feasible for the range of R-values that is considered in this work
(R ∈ {0, 1, 2, . . . , 1000}) and therefore I refrain from using the z-average method
in the following. The approximation made in the corresponding interval In is
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considered as not important for the physics that govern the low-temperature
regime. There the question is mainly whether a bath has enough spectral weight
in its low energy tail leading to either a complete freezing of the impurity in
one state or residual oscillatory behaviour. These physics should be governed by
the distribution of and the coupling strength to excitations at the lowest energy
scales. The details of the bath around the characteristic energy-scale set by the
condition Λn(s+1) ≈ πR/2 will influence the flow of the system between different
fixed points within the NRG and the calculation of e. g. the critical coupling
αc(R). However, the fixed points themselves and their structure should not be
influenced by those particular details in the flow between them.

The star -Hamiltonian in equation (5.15) can already be used in an iteration-scheme
where one bosonic mode after another is coupled to the impurity starting at high
energies and going down to lower ones. This approach has been taken e.g. in [12]
where the main emphasis was to find a decent basis describing the bosonic excitations.
When using the star -Hamiltonian the problem has to be faced that the Hilbert-space
in which the impurity needs to be described grows exponentially with the number
of iterations until a proper truncation scheme sets in. It is not obvious that the
truncated basis then still captures the low-energy sector of the theory and especially
of the impurity properly.
The need to keep track of the impurities Hilbert-space can be overcome as the

environment is mapped onto a semi-infinite chain, the so-called Wilson-chain. There
the impurity couples to the first site of the chain only and in going from one iteration
to the next one simply needs to keep track of the operators from the current chain
site and from the previous one. Details on the mapping of the environment onto a
semi-infinite chain are discussed in the following. baths

5.2. Mapping onto a chain-Hamiltonian

The starting point for the following mapping is the star -Hamiltonian given in equation
(5.15). As already mentioned this Hamiltonian will be mapped onto a configuration
where the impurity couples to the first site of a semi-infinite chain. This chain is also
referred to as the Wilson-chain, as it is the configuration that Kenneth G. Wilson
used in his original work [52] in order to tackle the Kondo-model. A schematic of the
impurity coupling to the Wilson-chain can be seen in figure 12 where further details
on the iterative solution of the system are mentioned, to be explained in more detail in
the following. The main features of the chain will be on-site energies εn and nearest-
neighbour hopping amplitudes tn which both drop of exponentially as Λ−n. In order
to arrive at the desired chain configuration a basis transformation is performed from
the operators an to new bosonic operators dn, not to be confused with the width of
Interval In. First of all the interaction part that couples the impurity to all bath-
modes ξn is considered. The aim is here to collect all the excitations to which the
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Figure 12:
The impurity (depicted by the blue circle) with energy-scales Δ, ε, U couples with

a coupling strength
√
η0 to the first site of a semi-infinite linear chain of bosons (the

Wilson-chain). The chain features on-site energies εn and nearest neighbour hopping
amplitudes tn which both drop off exponentially as Λ−n where Λ is the logarithmic
discretisation parameter. The rounded boxes enclose the subsystems corresponding
to the Hamiltonians H0 and H1 of the NRG iteration process. In a first step, H0 is
diagonalised. After truncation to the lowest Nkept states, the next site is coupled and
one arrives at H1. The process of diagonalisation, truncation and adding of the next
site is then iterated until a desired temperature-range T ∼ Λ−l is reached in the last
iteration l.

impurity couples in the star -Hamiltonian into a single bosonic mode d0 that is defined
by (cf. [12, pp. 18-19])

d0 =
1√
η0

∞∑
n=0

γnan (5.18)

where

η0 =
∞∑
n=0

γ2
n =

∫ ωc

0

J(ω) dω (5.19)

is the normalisation factor. More generally speaking one wants to perform an orthog-
onal basis transformation d = Ua where U is the orthogonal matrix and the vectors
d = (d0, d1, . . .)

T and a = (a0, a1, . . .)
T comprise all operators in the new and the old

basis respectively. From equation (5.18) it can already be read off that

U0n =
γn√
η0
, n = 0, 1, . . . ,∞ (5.20)

and indeed the first row of U normalises to one:
∑∞

n=0 U
2
0n = 1. That way the

interaction part of the star -Hamiltonian is transformed to

(b + b†

2

) ∞∑
n=0

γn√
π

(
an + a†n

)
=
(b + b†

2

)√η0
π

(
d0 + d†0

)
. (5.21)

The next goal is to transform the rest of the bath modes via a tridiagonalisation to a
set of new bath modes {dn} which also obey the standard commutation relations (U
is an orthogonal transformation) such that the total Hamiltonian reads
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Hchain
do = Himp+

∞∑
n=0

[
εnd

†
ndn+ tn

(
d†n+1dn+d†ndn+1

)]
+
(b + b†

2

)√η0
π

(
d0+d†0

)
(5.22)

which is also referred to here and in the following as the chain-Hamiltonian. The
mapping is called a tridiagonalisation because the bath part of the Hamiltonian could
be written as a bilinear form employing a tridiagonal matrix:

Hchain
bath = (d†0, d

†
1, d

†
2, . . . )

⎛⎜⎜⎜⎝
ε0 t0
t0 ε1 t1

t1 ε2
. . .

. . . . . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
d0
d1
d2
...

⎞⎟⎟⎟⎠ . (5.23)

Plugging the inverse transformation a = UTd into the bath part of the star -Hamil-
tonian one finds

Hstar
bath =

∞∑
n=0

ξna
†
nan =

∞∑
n=0

ξn

∞∑
i,j=0

UinUjnd
†
idj

!
= Hchain

bath . (5.24)

Now the two bath parts Hstar
bath and Hchain

bath in (5.24) can be compared in order to obtain
the prefactors εn and tn of the new bosonic operators dn. Since the U0n are already
given one obtains

ε0 =
∞∑
n=0

ξnU
2
0n =

∫ ωc

0

ωJ(ω) dω

/∫ ωc

0

J(ω) dω (5.25)

and from that one can calculate the parameter t0. One then iteratively solves for the
different Umn, εm and tm starting from m = 1. Bulla et al. present analytic expressions
connecting the parameters Umn, εm, tm amongst each other and with the ξn obtained
in the logarithmic discretisation which read [9]:

εm =
∞∑
n=0

ξnU
2
mn (5.26)

tm =

[ ∞∑
n=0

[(ξn − εm)Umn − tm−1Um−1n]
2

]1/2
(5.27)

Um+1n =
1

tm
[(ξn − εm)Umn − tm−1Um−1n] (5.28)

There are then two ways to obtain the parameters εm and tm of the Wilson-Chain.
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i) The recurrence relations for the desired parameters could be implemented numer-
ically in a calculation that necessarily has to truncate the evaluation of the Umn

at a large n (typically one uses n ≈ 400). This numerical scheme is the standard
way to go for an arbitrary given spectral function J(ω) and in fact I use this
method for the spectral functions Je and Jo that appear in the two-spin-boson
model.

ii) For certain special functions J(ω) one may obtain analytic results for the different
εm and tm. In case of the standard power-law spectrum which is not modulated
by a cos2 or a sin2, Chin et al. actually solved the recurrence relation (5.28)
analytically using orthogonal polynomials [14]. From the Umn they then also find
analytic expressions for the on-site energies εm and the hopping amplitudes tm
that read

εm = ξs(Am + Cm) (5.29)

tm = ξs
Nm+1

Nm

Am (5.30)

with the definitions

ξs =
s+ 1

s+ 2

1− Λ−(s+2)

1− Λ−(s+1)
ωc (5.31)

Am = Λ−m (1− Λ−(m+s+1))2

(1− Λ−(2m+s+1))(1− Λ−(2m+s+2))
(5.32)

Cm = Λ−(m+s) (1− Λ−m)2

(1− Λ−(2m+s))(1− Λ−(2m+s+1))
(5.33)

N2
m =

Λ−m(s+1)(Λ−1; Λ−1)2m
(Λ−(s+1); Λ−1)2m(1− Λ−(2m+s+1))

(5.34)

and in the last line the q-shifted factorials [14] were used which read

(a; q)m = (1− a)(1− aq)(1− aq2) · . . . · (1− aqm−1). (5.35)

In case of the two-spin-boson model I implemented the iterative solution of the equa-
tions (5.26)-(5.28). It is the evaluation of the analytic expressions in (5.29) and (5.30)
that I implemented and used for the cases where simple power-law spectral functions
are considered. They are numerically stable and circumvent the necessity to actually
calculate any matrix elements Umn of the underlying orthogonal transformation from
the star - to the chain-Hamiltonian. Note that in the actual implementation one can
calculate the factor Nm+1/Nm appearing in (5.30) quite efficiently since all but the last
factors in the q-shifted factorials cancel in the numerator and the denominator. Also
note that the chain parameters εm and tm do not depend on the coupling strength α
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of the impurity to the original bath. The coupling α enters the chain-Hamiltonian in
the coupling of the impurity to the ε0-mode only.
In case of the two-spin-boson model already the integrals in equations (5.16) and

(5.17) need to be evaluated numerically in order to obtain the coefficients γn,s and
ξn,s for the even (s = e) and the odd (s = o) bath independently. The resulting
star -Hamiltonian for this model reads

Hstar
2sbm = Himp +

∑
s=e,o

[ ∞∑
n=0

{
ξn,sa

†
n,san,s +

σz,s

2

γn,s√
π

(
an,s + a†n,s

)}]
. (5.36)

From that, the same mapping from star - to chain-Hamiltonian as before is performed
in the even and the odd bath independently and equations (5.26) – (5.28) need to
be evaluated numerically to determine the on-site energies εn,s and nearest-neighbour
hopping amplitudes tn,s of both chains. The chain-Hamiltonian of the two-spin-boson
model then reads

Hchain
2sbm = Himp +

∑
s=e,o

[ ∞∑
n=0

{
εn,sd

†
n,sdn,s + tn,s

(
d†n+1,sdn,s + d†n,sdn+1,s

)}
+

σz,s

2

√
η0,s
π

(
d0,s + d†0,s

)]
. (5.37)

In figure 13 the system with the even and the odd chain is presented along with
details on the first few iterations that are performed in order to solve the two-spin-
boson model within the NRG. In the following section the iterative numerical scheme
to actually solve the chain-Hamiltonians (5.22) and (5.37) on a computer both for the
dissipative oscillator model and the two-spin-boson model is explained.

5.3. Diagonalisation and truncation

The numerical solution of a system that features one or two Wilson-chains builds upon
defining a series of Hamiltonians HN that converges to the desired one (here either
Hchain

do or Hchain
2sbm ). Instead of solving the full system one solves the series of Hamil-

tonians iteratively thereby hopefully converging to the solution of the full system. In
what sense the convergence of the series is reached will be discussed as the solution
scheme is presented. Solving a single HN actually means in this context diagonalizing
its matrix-representation numerically on a computer. For the moment the discussion
focusses on the dissipative oscillator model where only a single semi-infinite chain is
coupled to the impurity.
The series HN is designed to fulfil

Hchain
do = lim

N→∞
Λ−NHN (5.38)
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Figure 13:
The even (green circle) and odd (red circle) impurity combinations couple with

strength
√
η0,e/o to the first site of semi-infinite linear chains of bosons (the Wilson-

chains of the even and odd bath). Both chains feature on-site energies εn,s and nearest
neighbour hopping amplitudes tn,s which both drop off exponentially as Λ−n where
Λ is the logarithmic discretisation parameter. The even and odd impurities still
interact with each other via the tunnelling terms Δe/o. The rounded boxes enclose
the subsystems corresponding to the Hamiltonians H0 and H1 of the NRG iteration
process. In a first step, H0 is diagonalised. After truncation to the lowest Nkept

states, the next site of both the even and the odd chain is coupled and one arrives at
H1. The process of diagonalisation, truncation and adding of the next sites is then
iterated until the desired temperature-range T ∼ Λ−l is reached where l is the last
NRG iteration to be performed.

where the different HN are defined as

HN = ΛN

[
Himp +

N∑
n=0

εnd
†
ndn +

N−1∑
n=0

tn
(
d†n+1dn + d†ndn+1

)
+
(b + b†

2

)√η0
π

(
d0 + d†0

)]
.

(5.39)
They describe (up to a pre-factor) the physics of the impurity that is coupled to
a Wilson-chain truncated to the first N + 1 sites. As the εn and tn drop down
exponentially roughly as Λ−n, the last site coupled features an on-site energy ∼ Λ−N .
This feature of the on-site energies and the hopping parameters holds true for all chains
that are derived in the logarithmic discretisation scheme as described in the previous
section. In case of a bath with a power-law spectrum J(ω) ∼ ωs the expressions (5.29)
and (5.30) for the chain parameters show a large n behaviour as

εn ∼ Λ−n, (5.40)

tn ∼ Λ−(n+(s+1)/2). (5.41)

Rescaling the Hamiltonians HN by a factor of ΛN leads to a low energy-sector of each
Hamiltonian which is roughly of the order of one. This allows for a direct comparison of
the energy-spectra of the HN between different iterations. In the identification of fixed
points within the NRG the comparability between different iterations is important as
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the spectra of several consecutive Hamiltonians should look identical once the system
is close to a fixed point.
Two consecutive Hamiltonians of the series HN are connected as

HN+1 = ΛHN + ΛN+1
[
εN+1d

†
N+1dN+1 + tN

(
d†N+1dN + d†NdN+1

)]
. (5.42)

It is this relation between the different Hamiltonians that makes up for the renor-
malization group character of the algorithm and allows for an interpretation of the
equation as a renormalization group transformation R [9]:

HN+1 = R(HN). (5.43)

Instead of fixed points P ∗ in parameter space (cf. discussion in section 5) one then
tries to identify fixed point HamiltoniansH∗ of the mapping (5.43). A renormalization
group transformation R is then in general characterised by a set of fixed point Ha-
miltonians H∗ which are invariant under R and, around these fixed points, sets of
relevant or (dangerously) irrelevant perturbations1 . In this work, each Hamiltonian
HN is characterized by its set of eigenenergies {Er(N), r = 1, . . . , Nkept} which obey

HN |r〉N = Er(N)|r〉N , (5.44)

where Nkept is the total number of eigenpairs kept in iteration N and the energies
are shifted such that E0(N) = 0. Finding a set of fixed points H∗ then corresponds
to finding fixed points in the flow of the eigenenergies Er(N) as a function of N .
Around each fixed point one could then study what influence different operators have
on its structure, cf. [26]. The mapping of a set of eigenstates Er(N) to the next one
Er(N + 1) works as follows:

i) The shifted energies are rescaled by a factor of Λ when setting up HN+1 (cf.
(5.47)).

ii) In diagonalizing HN+1 the new set of energies Er(N +1) are obtained. This set
of energies will be truncated to contain at most the Nkept lowest eigenstates.

iii) All energies Er(N +1) are shifted such that the ground-state energy E0(N +1)
is zero.

A schematic plot of this process is shown in figure 14 while an actual flow of the
first nine excited states of the dissipative oscillator model is shown in figure 15 for
an already strong self-interaction U = 1000. Setting up the Hamiltonian HN+1 in

1The fixed points themselves are either stable, metastable or unstable depending on whether no,
at least one or all perturbations around a fixed point are considered relevant and can carry the
system away from the fixed point. There are also marginal (irrelevant) perturbations which stay
constant in the vicinity of a fixed point.
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Figure 14:
Connection between two consecutive energy spectra Er(N) and Er(N + 1) within

the NRG. The Nkept eigenenergies that were obtained in iteration N enter the Ha-
miltonian HN+1, rescaled by a factor of Λ, together with the Nb degrees of freedom
that are coupled in the current iteration (blue). Those degrees of freedom reside in
the truncated Hilbert-space |s(N + 1)〉. After the Hamiltonian is diagonalised the
spectrum Er(N +1) is truncated again to contain only Nkept states. The ground state
energy of the new spectrum is then shifted to zero (dash-dotted line) and all states
Er(N +1), r = 0, . . . , Nkept− 1 can be compared to those from the previous iteration.
Here the parameters Nkept = 4 and Nb = 3 were chosen for simplicity.

equation (5.42) works as follows (cf. figure 2 in [9]). The Hamiltonian HN can be
expressed in terms of its eigenenergies and corresponding eigenstates {(Er(N), |r〉N)}
that are obtained from a numerical diagonalisation of its matrix-representation. The
states of the Hilbert-space from the newly added site with creation operator d†N+1

are labelled as |s(N + 1)〉, where s = 0, . . . , Nb − 1 has to be truncated to a finite
number Nb. The truncation is necessary to allow for a numerical treatment of the
otherwise infinite dimensional Hilbert-space that the bosonic mode created by d†N+1

naturally lives in. In the NRG one also needs to truncate the Hilbert-space of the
impurity oscillator to a finite number Nb,imp that can differ from the Nb used for the
different chain sites added in the iterative process. As there are no kept states from a
previous iteration when setting up the initial Hamiltonian H0 one may also choose a
comparably large value Nb,0 of states for the first site of the chain while still keeping
the dimension of H0 small enough to allow for a numerical diagonalisation. There
are several suggestions on how to choose this finite basis properly like standard and
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Figure 15:
Flow of the first nine energy levels Er(N) above the ground state as obtained from

the NRG for the dissipative oscillator model. There are two fixed points that can
be identified in the flow: a high-temperature fixed point between iterations ∼ 5− 15
where all states are doubly degenerate and a low-temperature fixed point where the
spectrum is given by that of the free chain. The early-iteration fixed point is the
localised fixed point of the spin-boson model where the impurities subspace has been
projected down to only two states and the oscillator frequency Δ = 10−4 has not yet
been resolved. The low-temperature fixed point is the delocalised fixed point of the
spin-boson model where the oscillator frequency has been renormalized to infinity.
For an extended discussion of the different fixed points in the model see section 6.1.2.
Further model parameters were U = 1000, α = 0.25, s = 1, Λ = 2, Nb,imp = 24,
Nb,0 = 400, Nb = 24, Nkept = 500.

displaced harmonic oscillator eigenstates [12] as well as iteratively optimised states
like in a Density Matrix Renormalization Group (DMRG) setup [22, 23]. In this work
the simplest states, i. e. the standard harmonic oscillator eigenstates that fulfil

d†N+1dN+1|s(N + 1)〉 = s|s(N + 1)〉 (5.45)

are chosen. These are known to work well for the spin-boson model in its delocalised
phase where the impurity spin can still oscillate between its two possible configurations
|↑〉 and |↓〉 [12]. The total basis in which HN+1 needs to be described is then given
by the direct product of the bases {|r〉N} from iteration N and {|s(N +1)〉} from the
newly added site:

|r, s〉N+1 = |r〉N ⊗ |s(N + 1)〉. (5.46)
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In this basis the matrix elements of HN+1 read

N+1〈r′, s′|HN+1|r, s〉N+1 =
[
ΛEr(N) + ΛN+1sεN+1

]
δr′,rδs′,s

+ ΛN+1tN
√
s
[
N〈r′|d†N |r〉Nδs′+1,s + N〈r′|dN |r〉Nδs′−1,s

]
.

(5.47)

Th new Hamiltonian HN+1 has again to be diagonalised numerically in order to obtain
a new set of eigenenergies {Er(N+1)} and corresponding eigenstates {|r〉N+1}. Since
a site with a Hilbert-space of size Nb is added in each iteration it is easy to see that
the total dimension of HN+1 is Nb,imp × Nb,0 × NN

b , which grows exponentially with
the length of the chain. One thus needs to truncate the number of states kept at
some point to a finite number Nkept in order to keep further iterations calculable on
a computer.
It is the truncation of the Hilbert-space of the bosons added to at mostNb states and

the truncation to a small number of states Nkept which might spoil the convergence of
the series of HN towards Hchain

do (given that all other operations could in principle be
performed numerically exact in the algorithm). The truncation of the total number of
states kept is known to be justified if the discarded high lying states do not influence
the low lying ones in further iterations. Then a true splitting of energy scales is given
and one could probe those different scales by iterating through the different chains
given by the HN . However, the truncation needs to be justified for each model in
hindsight, e. g. by probing the influence of the truncation cut-off Nkept on the flow of
the Er(N).
For the two-spin-boson model, whose chain-Hamiltonian was given by

Hchain
2sbm = Himp +

∑
s=e,o

[ ∞∑
n=0

{
εn,sd

†
n,sdn,s + tn,s

(
d†n+1,sdn,s + d†n,sdn+1,s

)}
+

σz,s

2

√
η0,s
π

(
d0,s + d†0,s

)]
,

the series of HN is then defined as

HN = ΛN

(
Himp +

∑
s=e,o

[
N∑

n=0

εn,sd
†
n,sdn,s +

N−1∑
n=0

tn,s
(
d†n+1,sdn,s + d†n,sdn+1,s

)
+

σz,s

2

√
η0,s
π

(
d0,s + d†0,s

)])
where now two consecutive Hamiltonians are connected by the relation

HN+1 = ΛHN + ΛN+1
∑
s=e,o

{
εN+1,sd

†
N+1,sdN+1,s + tN,s

(
d†N+1,sdN,s + d†N,sdN+1,s

)}
(5.48)
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which adds site N +1 both in the even and in the odd chain. The matrix elements of
a Hamiltonian HN+1 in the total basis

|r, se, so〉N+1 = |r〉N ⊗ |se(N + 1)〉 ⊗ |so(N + 1)〉 (5.49)

then read

N+1〈r′, s′e, s′o|HN+1|r, se, so〉N+1

=
[
ΛEr(N) + ΛN+1(seεN+1,e + soεN+1,o)

]
δr′,rδs′e,seδs′o,so

+ ΛN+1tN,e

√
seδs′o,so

[
N〈r′|d†N,e|r〉Nδs′e+1,se + N〈r′|dN,e|r〉Nδs′e−1,se

]
+ ΛN+1tN,o

√
soδs′e,se

[
N〈r′|d†N,o|r〉Nδs′o+1,so + N〈r′|dN,o|r〉Nδs′o−1,so

]
. (5.50)

At least two Kronecker-deltas appear in each expression contributing to Hamiltonian
HN+1, making its matrix-representation even more sparse as compared to the one of
the dissipative oscillator model.
When actually storing a Hamiltonian like HN+1 in any of the models, sparse ma-

trices are used, where only non-zero matrix elements are stored together with index-
fields enlisting their position in the original matrix. Since the different operator-
contributions to HN+1 all contain at least one Kronecker-delta one would store a lot
of entries that are zero if one were to keep the full matrix in its dense representation.
Before presenting details on the numerical implementation of the NRG that was used
to obtain the results presented in this work in section 5.5, it is discussed how spectral
functions can be obtained from the results provided by the NRG.
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5.4. Obtaining spectral functions from NRG data

One goal of this thesis is to calculate changes in the zero temperature averages
〈
n̂x

〉
and

〈
(ax + a†x)

2
〉
in the one-dimensional bosonic environment in real-space due to the

coupling of either bosonic or magnetic impurities to the chain. Here x labels the site of
the chain and thus also the distance to the impurity in case of the dissipative oscillator
model. To this end the connection of those averages to specific spectral functions was
derived in section 3.3. The spectral functions themselves were derived to be basically
the imaginary parts of corresponding correlation functions. In section 3.2 it was stated
that a general correlation function GR(Â, B̂, z) = 〈〈Â, B̂〉〉z for two operators Â and
B̂ can be evaluated in the eigenbasis {|n〉} of the underlying Hamiltonian by means
of the Lehmann-representation as

GR(Â, B̂, z) =
1

Z
∑
n,m

e−βEn − e−βEm

z + En − Em

〈n|Â|m〉〈m|B̂|n〉.

Here, z = ω + iε is an in general complex frequency with a small positive imaginary
part ε and the retarded Green’s function GR(Â, B̂, z) will be evaluated on the real
axis in the limit of ε going to zero. As it is not possible to solve, i. e. diagonalise the
Hamiltonians of the two models under investigation analytically for the whole range
of model parameters, the Numerical Renormalization Group was introduced as the
method of choice to solve them approximately in those cases. The results obtained
from applying the NRG to a certain model are sets of eigenpairs {(EN,r, |r〉N)} for
every iterationN = 0, 1, . . . , l where l is the last iteration for which the diagonalisation
is performed. Here the eigenenergies of an iteration N are of order Λ−Nωc with Λ
being the logarithmic discretisation parameter and ωc is the high-frequency cutoff
in the bath. It is then necessary to patch the informations gained in the different
iterations of the NRG together in order to be able to evaluate GR(Â, B̂, z) in a large
range of frequencies. Bulla et al. present in [10] a way to collect the informations from a
whole NRG run together in order to calculate an approximate Lehmann-representation
of the spectral functions A(Â, B̂, z) corresponding to the retarded Green’s function
GR(Â, B̂, z). First they calculate for each iteration N—corresponding to a system of
length N + 1—a spectral function AN(Â, B̂, ω) on the real frequency axis as

AN(Â, B̂, ω) =
1

ZN

∑
n,m

[(
e−βEn(N) − e−βEm(N)

)
N〈n|Â|m〉NN〈m|B̂|n〉N

δ
(
ω − (En(N)− Em(N))

)]
. (5.51)

Here, ZN is the partition function of the cluster of length N + 1 in the grand canon-
ical ensemble. The spectral function AN(Â, B̂, ω) is then a collection of different
delta-peaks (poles) at frequencies ωnm = En(N) − Em(N) with weights WN(ωnm) =

N〈n|Â|m〉NN〈m|B̂|n〉N . The information that is contained in the set of all spectral
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functions {AN} is then combined in a next step. Here extra care has to be taken
of those poles from consecutive iterations that are positioned in a frequency window
[ωN

min, ω
N+1
max ] where ω

N
min is the energy of the first excited state of iteration N and ωN+1

max

is the energy corresponding to the highest state kept in iteration N +12 . There, any
pole at position ω′ ∈ [ωN

min, ω
N+1
max ] with weight WN(ω

′) from the last iteration N is
weighted with a linear increasing function as

WN(ω
′) → WN(ω

′)
ω′ − ωN

min

ωN+1
max − ωN

min

(5.52)

and a pole WN+1(ω
′) at frequency ω′ from the next iteration N + 1 is weighted with

a linear decreasing function as

WN+1(ω
′) → WN+1(ω

′)
ωN+1
max − ω′

ωN+1
max − ωN

min

. (5.53)

A cartoon of the combination of two spectral functions AN and AN+1 is sketched in
figure 16. The weighting procedure is devised to counteract a problem resulting from
the connection of consecutive Hamiltonians with truncated bases which is termed
over-counting. As one moves from one iteration N to the next N + 1, the eigenstates
|r〉N are extended to reside in the Hilbert-space of iteration N + 1 as

|r, s〉N+1 = |r〉N ⊗ |s(N + 1)〉

where the states |s(N + 1)〉 span the Hilbert-space of the degrees of freedom that
are coupled to the chain(s) in iteration N + 1. If by chance a state |r〉N is also an
eigenstate of the current iteration then all states |r, s〉N+1 are eigenstates and without
a proper weighting procedure one would count all poles to which the eigenstate |r〉N
contributes once in iteration N and a second time in iteration N +1. For this special
case the linear weighting procedure adds two poles WN(ω

′) and WN+1(ω
′) ≡ WN(ω

′)
that belong to the same physical process correctly to one. As the states from one
iteration are not in general eigenstates of the next iteration as well, the simple linear
patching however is not exact and one needs to be a bit more cautious.
In the end of 2006, Anders and Schiller suggested a way to calculate spectral func-

tions in a complete basis where discarding high-energy states in an iteration N is
understood as simply splitting the full Hilbert-space of iteration N into a set of kept
states and a set of discarded ones that still could formally be combined to make up
the whole basis [4]. Then all states coming from every iteration in the NRG can
be exactly traced and any spectral function can be calculated accurately as proper

2The frequency εN+1 of the newly added site is strictly below the energy-scales of iteration N .
However, as a large number Nkept of order O(100) is kept in each iteration, the highest states
kept in iteration N + 1 are likely to have an energy that is larger than the first excited state
E1(N) of the previous iteration.
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Figure 16:
a) The poles of iteration N before weighting (black lines) together with the weight-

ing function (blue) that is applied. For frequencies larger than ωN+1
max they are un-

changed and thus the scaling factor is 1. In the range [ωN
min, ω

N+1
max ], marked by the

blue dashed lines, the weighting factor increases linearly. b) Poles and weighting func-
tion for the poles of iteration N + 1. c) The combined set of poles from iterations N
and N + 1.

weighting between different iterations is possible. More comprehensive introductions
to the calculation of Green’s functions in what is known as the Anders-Schiller-basis
can be found in [42] and [50] which both give insight into the complete basis descrip-
tion highlighting different aspects of the method. In order to perform calculations in
the Anders-Schiller-basis one needs to store all matrices UN that diagonalise the Ha-
miltonians HN in the NRG procedure as they contain the information on how different
states need to be weighted in the following. This method is already very demanding
concerning the storage of all UN on a hard drive in the fermionic case and is not used
to calculate the spectral functions investigated in this thesis. There is a drawback
when it comes to bosonic models apart from the size of the matrices UN that are
not block-diagonal as there are in general no conserved quantum numbers in bosonic
models. While the basis of each site added in a fermionic chain is inherently finite,
the finiteness of the bosonic basis is only artificial stemming from an approximation
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that is necessary even before a single site can be coupled to the impurity. Thus the
complete basis picture from [4, 42] breaks down and one would need to restrain the
method to a complete description of a chain of bosons where the Hilbert-space of each
bosonic degree of freedom is truncated from the outset.
Spectral functions AN(Â, B̂, ω) investigated in this work are all obtained via equa-

tion (5.51) in their zero temperature limit β = (kBT )
−1 → ∞, where they read

lim
β→∞

AN(Â, B̂, ω) =
1

gN

∑
n �=i,i

[
N〈gi|Â|n〉NN〈n|B̂|gi〉Nδ

(
ω − (E0(N)− En(N))

)
−N〈n|Â|gi〉NN〈gi|B̂|n〉Nδ

(
ω − (En(N)− E0(N))

)]
.

(5.54)

Here gN is the number of ground-states |gi〉 in iteration N . The poles in overlapping
frequency regions are then weighted via the linear weighting method using equations
(5.52) and (5.53).
In principle the models under consideration feature an environment with a contin-

uous spectrum in the interval [0, ωc]. Due to the logarithmic discretisation process
however, the environment is discrete and thus all correlation functions under consid-
eration are discretised as well. It is desirable to obtain smooth, continuous spectral
functions A(Â, B̂, ω) that resemble the continuous limit of the method (Λ → 1) and
in order to do so one needs to somehow broaden the delta-peaks in (5.51). For zero
temperature all poles are approximated by Gaussians on a logarithmic grid as

δ(ω − ωn) →
e−b2/4

√
π b ωn

exp

(
− [ln(ω)− ln(ωn)]

2

b2

)
(5.55)

where b is a broadening parameter that needs to be adjusted and it can be checked
that the Gaussians are properly normalised, i. e. the total spectral weight of the delta-
peaks is retained in the broadening process (cf. [10]). Once all spectral functions AN

are patched together one can proceed to obtain a continuous spectrum A(Â, B̂, ω)
by broadening all poles according to equation (5.55). The real part of the retarded
Green’s function GR(Â, B̂, ω) may be obtained on the real frequency axis by use of
the Kramers-Kronig-relations (4.25) and (4.26) as described in section 4.3.
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5.5. Numerical implementation

For a given model the numerical implementation of an iteration step j of a standard
NRG consists of

i) setting up the matrix containing the Hamiltonian Hj,

ii) diagonalizing the matrix Hj and truncating it to the lowest Nkept states,

iii) transforming any operator of interest Ai into the eigenbasis of Hj by performing
the matrix-matrix multiplications

A′
i = UTAiU (5.56)

where U is the orthogonal matrix whose columns are given by the lowest Nkept

eigenvectors of Hj.

For each iteration, step i)-iii) need to be performed both for fermionic and for bosonic
models. However, the computational cost between a fermionic and a bosonic NRG
differ drastically. In the bosonic case one can in general not make use of conserved
quantum numbers and the Hilbert-space of each boson is in principle infinite dimen-
sional. Thus the sizes of the matrices to be diagonalised are in general significantly
larger for a bosonic NRG than for a fermionic one.
In the following, the computational costs of all three steps are discussed in case

where the Hamiltonian Hj is kept in its dense representation and an exact diagonal-
isation is performed in step ii). The exact diagonalisation routine performs a set of
matrix-transformations numerically on a computer which are known to diagonalise a
given matrix exactly if they were performed analytically. Parallel to that the compu-
tational costs for the NRG are discussed if the Hj is stored in a sparse matrix repre-
sentation. There the exact diagonalisation has to be traded for an iterative Lanczos
diagonalisation algorithm that returns only the set of the lowest Nkept eigenenergies
and -vectors. Details of the different diagonalisation algorithms as well as their imple-
mentation are discussed after considering the differences in storing the Hamiltonian.
The NRG itself was implemented in FORTRAN and thus all discussions concerning
memory consumption are with respect to the data types available in FORTRAN [30].
The results obtained for the numerical demands of all three steps are summarised

in table 1 at the end of the section.

5.5.1. Storage of the Hamiltonian

As each hermitian Hamiltonian Hj considered in this work is purely real, it can be
represented by a real symmetric matrix of dimension l × l. Since Hj is symmetric
one actually only needs to store its main diagonal and its upper or lower triangle.
However, a typical exact diagonalisation routine for the full matrix containing Hj is
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fed with an array of size l × l and the part where no information on the matrix is
stored can be used by the diagonalisation routine to store intermediate results.
The linear size l for a single bath bosonic NRG is given by l = Nb,imp ×Nb,0 in the

first iteration and by l = Nkept×Nb in all further iterations. Here, the different Nb are
the sizes of the truncated bases of the different bosonic sites on either the impurity
or the chain. For a NRG with two bosonic baths like needed for the two-spin-boson
model it is l = Nkept × Nb,e × Nb,o in all iterations j > 0, where now each bath
increases the basis by a factor of Nb,e/o respectively. To see how severe the addition
of a second bosonic channel becomes consider the actual memory consumption in a
typical setup. All matrix entries will be stored in double precision where one double
precision number is stored in 8 bytes in FORTRAN. A desktop computer like the
one used by the author provides 4096 MB of RAM (1 MegaByte (MB) = 1.000.000
byte). The scientific computer cluster CHEOPS from the RRZK in Cologne, Germany
provides several hundred compute-nodes of which the majority feature 24 GB of RAM
[2].
Say that 400 states are kept in each iteration and each additional bosonic site will

be described by a Hilbert-space truncated to contain only the lowest ten states of the
occupation number operator. Both numbers are modest and realistic in a typical NRG.
Then an amount of 4.000×4.000×8 byte = 128.000.000 byte = 128 MB of memory is
needed to store the Hamiltonian of a single channel model and 40.000×40.000×8 byte
= 12.800 MB for a model comprising two channels employing a dense matrix storage
scheme. The latter is clearly beyond the limit of available memory on the desktop
machine and—since more than just the Hamiltonian needs to be stored—a two bath
NRG implementation featuring dense matrix representation and exact diagonalisation
already reaches the memory limits of a typical single compute-node of the CHEOPS
cluster.
At this point the sparsity of each Hamiltonian Hj is employed (cf. (5.47)) by storing

only those elements of the matrices which are non-zero. To this end, a derived type
sparse_matrix is defined in which the compressed sparse row (CSR) format like in
the Intel MKL [25] is used. The sparse_matrix type is loosely defined as

type sparse_matrix

integer, public :: dim1 = 0, dim2 = 0

double precision, allocatable, public :: val(:)

integer , allocatable, public :: col(:), row(:)

contains

...

end type sparse_matrix

and contains two integers holding the dimensions of the matrix together with three
one-dimensional arrays and a set of routines that are defined after the contains
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statement but are of no concern at this moment. The arrays have the following
purpose:

val(:) A double precision array storing all values of a matrix that are non-zero row
by row in consecutive order.

col(:) An integer array of the same length as val(:) storing the column indices of
the matrix-elements contained in val(:). It is also filled row by row such
that col(i) contains the column index of the matrix element val(i).

row(:) An integer array of length dim1 + 1. The element row(i) contains the index
of the element in the array val(:) that is the first non-zero element in row
i of the matrix. The last element row(dim1+1) contains the length of the
arrays val(:) and col(:) plus one. The first element row(1) is always
set to 1 such that row(i+1) - row(i), i=1, ..., dim1 is the number of
matrix-elements that are non-zero in every row i. If by chance a complete
row i (other than the first) of the matrix is zero, then row(i) is set such that
val(row(i) - 1) contains the last element of the row i-1 of the matrix.
Then the next row index will be set to row(i+1) = row(i).

Consider for example a matrix

M =

⎛⎝1 0 3
0 0 0
0 4 7

⎞⎠ . (5.57)

While there is hardly any need to store such a small matrix in the presented sparse
format memory-wise, the sparse_matrix type is employed in this minimal example
for educative purposes.

Going through the matrix M row by row one simply collects all non-zero elements
and stores them in the array val(:) as double precision floating point numbers to ob-
tain val = [1.0d0, 3.0d0, 4.0d0, 7.0d0]. Now the array col(:) is filled, again
going row by row through M and this time storing the column-number in which the
non-zero elements of M reside. That way one obtains col = [1, 3, 2, 3]. Finally
the information where in the arrays val(:) and col(:) a new row of M begins needs
to be stored in the array row(:). Keeping in mind that row(1) = 1 one needs to
check where row number 2 will start. Since there are no matrix elements in row 2
of M one needs to set row(2) = 3 to make sure that val(row(2) - 1) contains the
last non-zero element of row 1 of M . In the end one obtains row = [1, 3, 3, 5].
A FORTRAN code that stores M in the sparse_matrix type then reads:
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program main

implicit none

type(sparse_matrix) :: M

M%dim1 = 3

M%dim2 = 3

allocate( M%val(1:4), source = [1,0d0, 3.0d0, 4.0d0, 7.0d0] )

allocate( M%col(1:4), source = [1, 3, 2, 3] )

allocate( M%row(1:4), source = [1, 3, 3, 5] )

end program main

In order to see the benefit of the sparse matrix storage format as compared to
a dense storage scheme the amount of memory that is consumed in either case is
compared in the following. Assume that a matrix of interest M ∈ R

l×l has only a
fraction p � 1 of non-zero elements but its dimensionality is large (l � 1). While
the dense matrix would consume md = 8l2 bytes of memory, the sparse_matrix type
needs ms = 8pl2 + 4pl2 + 4(l+ 1) + 2× 4 ≈ 12pl2 + 4l bytes. Thus the ratio of sparse
matrix memory consumption to dense matrix memory consumption is

ms

md

≈ 12pl2 + 4l

8l2
=

3

2
p+

1

2l
(5.58)

The factor of 3/2 in front of the filling fraction p is due to the necessity to store both
the value and a column index for any non-zero matrix element. Thus the format
becomes even more demanding than the dense format, once a filling factor of p ∼ 2/3
is reached. Anyway, in this limit one would no longer talk of a sparse matrix and the
sparse_matrix type should not be used in that regime.

Consider a matrix of linear size l = 4 × 104 like in the example for the two-spin-
boson model. Its Hamiltonian could then at most have 1.441 × 40.000 entries (cf.
(5.50)) which corresponds to a fraction of p = 1.441/40.000 ≈ 0.036 of non-zero
elements. Then the sparse-matrix storage format needs only roughly 5.4% of the full
storage format and takes up roughly 692 MB instead of 12.800 MB allowing for a
numerical treatment on such compute-nodes as provided on the CHEOPS cluster.
For a symmetric matrix one actually only needs to store its main diagonal plus its
upper triangular part. This corresponds to roughly halving the demand on actual
memory consumption. The established sparse_matrix storage scheme is then used
in a Lanczos diagonalisation algorithm that is performed for a Hamiltonian stored in
this format. In order to understand the differences of a Lanczos algorithm to an exact
diagonalisation for a dense matrix, first of all the exact diagonalisation is discussed
briefly together with its computational demands.
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5.5.2. Exact Diagonalisation

Consider a real symmetric matrix M ∈ R
l×l that has to be diagonalised. A standard

way to do so is to first bring the matrix to a tridiagonal form T by performing an
orthogonal similarity transformation U such that

UTMU = T

and then performing a QR or QL algorithm in order to diagonalise the tridiagonal
matrix T .

The reduction to tridiagonal form can always be achieved for a real symmetric
matrix M and can e. g. be performed numerically with the routine dsytrd from the
LAPACK software package [5]. This routine uses the Householder method in order
to perform a set of l − 2 orthogonal transformations that in total result in applying
U to M (cf. [44, p. 462-469]). In the limit of large l the routine dsytrd will perform
4l3/3+O(l2) operations if both eigenvalues and eigenvectors are desired as is the case
for the NRG [5].

One may then use the routine dsteqr from the LAPACK software package [5] to
perform a set of QR decompositions and QL decompositions with implicit shifts on
T in order to diagonalise it [6]. Alternatively, more advanced routines like dstedc

may be used that implement a divide-and-conquer diagonalisation algorithm [45]. To
get an estimate of the operation count of dsteqr it is compared to the routine tqli

that performs QL decompositions with implicit shifts only. The routine tqli will use
roughly 3l3 + 30l2 operations in order to obtain both the eigenvalues and vectors of
the tridiagonal matrix T in the limit of large l. Thus the total operation count of
an exact diagonalisation via Householder reduction and QL decomposition with
implicit shifts scales as 13/3l3 + 30l2 making it an order O(l3) algorithm in terms of
runtime. The memory that is needed to store the matrix together with additional
arrays by the routines dsytrd and dsteqr is l2+O(l) in both cases, making the exact
diagonalisation in total an algorithm of order O(l2) in terms of memory consumption.

While being applicable to a one bath bosonic NRG like the one used for the
damped harmonic oscillator model, this exact diagonalisation strategy does not work
for bosonic two bath models. Remember that the dimension Nb,o of the Hilbert-space
of the odd bath enters the matrix size l linearly. Thus a value of Nb,o = 10 would
increase the operation count and thus the runtime of the algorithm by a factor of 1000
as compared to the single bath model. For any minute spent in the single bath NRG
within the exact diagonalisation routine one thus would need to spend 16h 40min in
the two bath NRG. Since a single bath NRG calculation typically takes several min-
utes to complete this means that a two bath NRG for a single set of model parameters
takes several days of runtime. Run times of this magnitude are not feasible if one is
interested in obtaining e. g. phase diagrams from the NRG where one typically needs
to vary one or two parameters and thus perform lots of independent NRG runs.
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5.5.3. Lanczos Algorithm

Assume now that the matrix M ∈ R
l×l has again only a small fraction p � 1 of

non-zero matrix elements like it is the case for the Hamiltonians Hj in the bosonic
NRGs. Within the NRG one needs to keep the lowest Nkept � l eigenvalues and
eigenvectors of M in each iteration only. Thus it would be a huge numerical overhead
to calculate the full spectrum and set of eigenvectors of M and discard its majority
as one goes to very large matrices. Here the Lanczos algorithm comes into play that
builds around the notion of Krylov-subspaces. Its main idea is to first project the
matrix M into a subspace that is built by the eigenvectors of M corresponding to the
largest eigenvalues in magnitude. In the rather small subspace one could then again
diagonalise the matrix by an exact diagonalisation.
The rth Krylov-subspace Kr(M,v) of a vector v to a linear operator M is defined

as the span of vectors that is generated by repeatedly applying M to v:

Kr(M,v) = span{v,Mv,M2v, . . . ,M r−1v}. (5.59)

It is truly one-dimensional if and only if v is an eigenvector of M . One may obtain
Kr(M,v) by calculating the series of vectors vi = Mvi−1 where i = 2, . . . , r, starting
with v1 = v. Letting the matrix M act n times onto a vector v in terms of the
eigenbasis {e1, . . . , el} of M reads

Mnv =
l∑

i=1

λn
i ei〈v, ei〉. (5.60)

Here the λi are the eigenvectors of M and it is assumed that they are ordered such
that λi ≥ λi+1 ≥ 0 for all 0 < i < r−1. This can always be achieved by relabelling the
eigenvalues and shifting the spectrum by an offset λi → λi+τ . Applying the matrixM
in its nth power to a given vector v thus mainly enhances the contribution of v along
the direction of the eigenvector which corresponds to the largest eigenvalue. Thus,
the series vi/‖vi‖ should converge to the eigenvector e1 and the series ‖vi+1‖/‖vi‖
should converge to the largest eigenvalue λ1. Likewise, if one now projects out the
first eigenvector e1 from v via

v → v − 〈v, e1〉e1 (5.61)

after each application of M one could hope to find the second eigenvector e2 and its
corresponding eigenvalue λ2 and so on.
The idea behind the Lanczos algorithm in finding a set of Nkept desired eigenvalues

and eigenvectors of M is now to calculate a Krylov-subspace Kr(M,v) for a random
initial v where r > Nkept (r = 4Nkept in the implementation used for the results
presented in this work). Taking an r that is larger than the actual number Nkept of
eigenpairs one is interested in allows for a better convergence of the algorithm. In
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shifting the spectrum of M previous to the calculation of Kr such that the lowest
eigenvalues now correspond to the largest eigenvalues in magnitude one will actually
build the Krylov-subspace around the low-energy sector of the Hamiltonian Hj to
which M corresponds (in the end, the spectrum has of course to be re-shifted). In
this subspace one then again wants to tridiagonalise the matrix with a similarity
transformation UKr such that is has the form

UT
Kr
MUKr = T =

⎛⎜⎜⎜⎝
a1 b1
b1 a2 b2

b2 a3
. . .

. . . . . .

⎞⎟⎟⎟⎠ (5.62)

where the ai = ti,i now denote the diagonal elements and the bi = ti,i+1 = ti+1,i denote
the off-diagonal elements. Both, building up Kr and reducing M to the tridiagonal
form T , can be achieved by one algorithm. Let v be an array of size l × (r + 1) to
which the r vectors vr are stored together with a vector v0 which is zero and only
considered in the first iteration. Furthermore let a and b be arrays of size r to store
the matrix-elements of T . Then the pseudo-code

1 v(1:l,0) = 0

2 v(1:l,1) = random normalized vector

3 a(1:r) = 0

4 b(0:r-1) = 0

5

6 do i = 1, r-1

7 w = M.v(1:l,i)

8 a(i) = w.v(1:l,i)

9 w = w - a(i)*v(1:l,i) - b(i-1)*v(1:l,i-1)

10 b(i) = norm(w)

11 v(1:l,i+1) = w/b(i)

12 end do

13

14 w = M.v(1:l,r)

15 a(r) = w.v(1:l,r)

both calculates the matrix elements ai and bi of T and the vectors vi that are the
columns of the transformation UKr which maps M onto T . Here, the dot product x.y
is either a matrix-vector product or a scalar product depending on the nature of x.
While the exact number of numerical operations performed by the Lanczos-algo-

rithm depends on its converge for a specific input matrix M , in general it scales with
the parameters of the matrix as follows: To set up the Krylov-subspace Kr one needs
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to perform roughly r matrix-vector products Mv. The matrix M has p × l2 non-
zero matrix elements that need to be multiplied with the elements of a given vector
v and all added up to form the new vector w. Thus roughly 2rpl2 operations need
to be performed. All other operations in the pseudo-code scale as rl and therefore
can be neglected in comparison to the ones performed for the matrix-vector product.
An exact diagonalisation of the matrix T ∈ R

r×r is then again an O(r3) algorithm
with respect to runtime and O(r2) with respect to memory consumption. In the end
the matrix V ∈ R

r×r that diagonalises T needs to be multiplied with the matrix
UKr ∈ R

l×r in order to obtain the desired eigenvectors of M which follows from

Tdiag = V TTV = [UKrV ]TM [UKrV ] (5.63)

The matrix-matrix product UKrV takes 2lr2 − l operations and thus the algorithm
runtime of the Lanczos-diagonalisation is of order O(lr[r+ pl]) where typically r and
pl are of similar magnitude. The memory consumption of the algorithm is mainly due
to the storage of the matrices M and UKr , since V is rather small. Therefore it is of
order O(l[r + pl]).
I adapted the program dssimp from the ARPACK software package [28] by incor-

porating a routine performing the matrix-vector product in line 7 of the pseudo-code
for a sparse symmetric matrix and a dense vector.
In order to obtain numerically an orthogonal basis truly spanning the full Kr one

in principle needs to re-orthogonalise w in an iteration i with respect to all previ-
ously obtained vj for j = 1, . . . , i− 1. This will prevent numerical rounding errors to
build up in the calculation of further vectors vi which otherwise could lead to a linear
dependence of the vi amongst each other. If convergence is reached for a vector vs

with s < r one needs to use a different starting vector u to be able to build a basis
of Kr. A proper re-orthogonalisation scheme together with an implicit restarting of
the algorithm is implemented into dssimp by the authors of the ARPACK package
[28], making it an Implicitly Restarted Arnoldi Method (IRAM). The routine dssimp
mainly calls the two subroutines dsaupd and dseupd also provided in the ARPACK
package which—together with the matrix-vector product provided by the author of
this work—return a properly orthogonalised Lanczos-basis of Kr and “converged ap-
proximations to eigenvalues” and “the corresponding approximate eigenvectors” [28]
of the input matrix M respectively.

5.5.4. Operator transformation

After having diagonalised the HamiltonianHj in a given iteration j one typically needs
to transform a set of operators {Ai} into the new diagonal basis ofHj. Those operators

are either bosonic creation- and annihilation operators d†j, dj of the last added chain-
site j or operators which are needed in order to calculate spectral functions like
e. g. Sz,e for 〈〈Sz,e, Sz,e〉〉z. The operators {Ai} are typically only transformed in the
subspace spanned by the lowest Nkept eigenstates of Hj since those are the ones that
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are used in the next NRG iteration j + 1. If the orthogonal matrix U ∈ R
l×Nkept

diagonalises Hj like
Hj,diag = UTHjU ∈ R

Nkept×Nkept (5.64)

then one also needs to transform the set of operators {Ai} like

A′
i = UTAiU. (5.65)

The operators Ai are all sparse with an individual sparsity of pi leading to a rather
small numerical cost for the matrix product Bi = AiU . This first product needs
O(Nkeptpil

2) operations and O(Nkeptl) memory. The resulting matrix Bi is now dense
and of size l×Nkept. Thus the second product A′

i = UTBi needs O(N2
keptl) operations

and O(Nkeptl) memory.
In total the transformation (5.65) performs O(Nkeptl[Nkept + pil]) operations and

needs O(Nkeptl) memory. This is independent of whether the transformation matrix U
was obtained via an exact diagonalisation or via the Lanczos-algorithm. Since for each
matrix Ai it is known where non-zero elements are stored one never needs to perform a
dense matrix-matrix multiplication Bi = AiU but can always rely on performing only
operations with non-zero elements of Ai, be it with a general sparse-matrix storage
format for the Ai or by programming the calculation of the Bi for each i individually
by hand. If one were to perform the first matrix-matrix multiplication with two dense
matrices, the total numerical cost would be of the order of O(Nkeptl

2) with respect to
the operation-count and O(l2) with respect to the memory consumption.
Table 1 summarises the numerical cost of the three different steps that need to be

performed in each NRG iteration both for a dense and a sparse matrix format of a
Hamiltonian Hj of size l×l with a filling factor of p for step i). For the diagonalisation
in step ii) the results for the discussed exact diagonalisation and the diagonalisation
using the Lanczos-algorithm are shown. There the r dependence in the latter has been
replaced by the dependence on the number of calculated eigenstates Nkept (remember
that r = 4Nkept). The operator transformation (5.65) in step iii) where the product
Bi = AiU is calculated should always make use of the sparsity of the Ai.
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O(. . .)
Dense w. Exact Diag. Sparse w. Lanczos Diag.

Memory Runtime Memory Runtime

Store Hj l2 pl2 pl2 pl2

Diagonalise Hj l2 l3 l[Nkept+pl] Nkeptl[Nkept + pl]

Transform operators Ai l2 Nkeptl
2 Nkeptl Nkeptl[Nkept + pil]

Table 1:
Comparison of the numerical demands for the different steps in an NRG iteration

between a dense matrix representation with an exact diagonalisation and a sparse
matrix representation with a Lanczos diagonalisation. First, one needs to set up the
Hamiltonian Hj of size l × l that has only a fraction of p non-zero matrix elements.
The filling takes up the same time both for sparse and dense matrices since one could
initialise a whole 2d-array very efficiently to zero and then simply has to add the
non-zero elements like for the sparse matrix. In a second step, Nkept eigenvalues and
-vectors are calculated either via an exact or a Lanczos diagonalisation. In a third
step, a set of sparse operators {Ai} with fractions pi of non-zero matrix elements
needs to be transformed into the basis spanned by the first Nkept eigenvectors of Hj.
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6. Results

6.1. Dissipative oscillator model

Here the results obtained for the dissipative oscillator model in this work are presented.
First, the model is investigated in case of zero self-interaction on the impurity oscillator
analytically, where the equations of motion involve only free correlation functions.
The impurity’s scattering matrix is there calculated numerically from exact analytic
results. In its imaginary part, the delta peak of the free oscillator at frequency Δ is
smoothly shifted and broadened to a flat curve as the interaction between impurity
and environment is increased. The total weight contained in the scattering matrix’s
spectrum shows universal scaling, suggesting a quantum phase transition (QPT) with
a critical coupling αc = 0 +O( Δ

ωc
).

For finite self-interaction on the impurity, the system is investigated with the aid
of the Numerical Renormalization Group method (NRG). From the NRG results, the
flow and fixed points of the model are derived. A whole line of quantum phase tran-
sitions in the α-U -plane is identified that connects the zero self-interaction quantum
phase transition and the well known one of the spin-boson model in the limit of infi-
nite self-interaction [27]. For a large range of the impurity’s self-interaction we study
the impurity scattering matrix. Ultimately, the differences between the clean system
and the one with an impurity are investigated by means of zero temperature thermal
averages. Both, the site occupation and oscillator displacement within the environ-
ment drop in a power-law manner as a function of growing distance to the impurity.
The power-laws in most cases show a x−1 behaviour with small corrections in the
exponent. Only for individual parameters, a deviation from that power-law drop can
be seen which is assigned to problems in the numerical evaluation of the appearing
integrals.

6.1.1. Analytic results for U = 0

An analytic expression for the impurity scattering matrix Tdo(z) =
α
4
〈〈b+ b†, b+ b†〉〉z

= α
4
Dimp(z) can be gained if the density-density interaction on the impurity is absent.

It can be evaluated without obtaining the eigenbasis or spectrum of the model with
help of e. g. the NRG or other methods. The imaginary part of the scattering matrix
Tdo(z) is used to study the changes in the average site occupation Δ

〈
n̂x

〉
and in the

average square of the displacement amplitude Δ
〈
(ax + a†x)

2
〉
via equations (3.44) and

(3.61) as given in sections 3.4 and 3.5 respectively. In appendix A we derive the
displacement-displacement correlation function Dimp(z) to read

Dimp(z, T ) =
[
D

(0)
imp(z)

−1 − α

4
D(0)(x = 0, z)

]−1

(6.1)

in case of zero self-interaction. Here D
(0)
imp(z)

−1 = (z −Δ)−1 − (z + Δ)−1 is the bare

displacement-displacement correlator of the impurity and D(0)(x = 0, z) is the free

displacement-displacement correlation function of the bath at the origin, reading
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D(0)(x = 0, z) =
1

2π

∫ π

−π

1

z − ω(k)
− 1

z + ω(k)
dk. (6.2)

In section 4.1 the dispersion was set to ω(k) = |k/π|1/(s+1)ωc in order to arrive at a
spectral density J(ω) = απ(s + 1)ωsω1−s

c that features a power-law behaviour. The
imaginary part of D(0)(x = 0, ω) on the real axis, i. e. z = ω, resulting from that
choice reads

Im[D(0)(x = 0, ω)] =

{
−π(s+ 1)ω1−s

c |ω|s sign(ω) , ω ∈ [−ωc, ωc]

0 , else.
(6.3)

For the ohmic bath with a linear spectrum (s = 1) this expression simplifies to

Im[D(0)(x = 0, ω)] = −2πωΘ(ω2
c − ω2). (6.4)

The real part is obtained analytically by evaluation of the integral in the Kramers-
Kronig relation (4.25) to

Re[D(0)(x = 0, ω)] = 4ωc + ω ln

[(
ωc − ω

ωc + ω

)2
]
, (6.5)

which is true on the entire real axis. It features logarithmic divergences right at the
cutoff frequencies ±ωc and a finite ω = 0 value of 4ωc. A plot, both of the real-
and the imaginary part of the bare displacement-displacement correlation function
D(0)(x = 0, ω), is presented in figure 17. The limiting behaviour of the impurity T -
matrix in case of very small and very large couplings can be obtained right away from
(6.1) to be

Tdo(z) =

{
α
4
D

(0)
imp(z), α � 1,

−D(0)(x = 0, z)−1, α � 1.
(6.6)

Thus, for large couplings between impurity and environment all features of the bare
impurity have vanished as only the bath displacement-displacement correlations enter
the T -matrix in that limit. There the impurity oscillator may no longer be understood
as an individual particle. In figure 18 results on the negative imaginary part of
Tdo(z = ω + iε) are presented for a large range of couplings α between 2−15 and 25,
where the transition between the two limiting behaviours can be seen. The imaginary
part of the argument z was set to a very small value of 10−10 for those calculations
and only the positive frequency part was plotted as the imaginary part of Tdo is
antisymmetric on the real axis.
There exists a coupling strength α where both, the contribution from the bare im-

purity oscillator and from the bare bath oscillator at the origin are of the same order of
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Figure 17:
Real- and imaginary part of the bare displacement-displacement correlation func-

tion D(0)(x = 0, ω) which enters the impurity T -matrix. The real part has been
rescaled by ωc such that D(0)(x = 0, ω) = 4. Right at the cutoff frequencies ±ωc the
real part show logarithmic divergences (cf. equation (6.5)).

magnitude. The value of α can be extrapolated by investigating the total weight that
is contained in the spectrum corresponding to Dimp(ω). As the integral of an antisym-
metric function over the whole frequency space vanishes we investigate here only the
single sided weight −

∫∞
0
Im[D

(0)
imp(ω)] dω/π. For small couplings α the weight is unity,

stemming from the delta-peak at the bare oscillator frequency Δ (cf. figure 19 a)). In
this regime, the eigenenergies of the oscillator are sharply peaked around Δ and the
impurity oscillator is basically free as there is almost no dissipation due to the thermal
environment. Thus, if the oscillator is initialised at time zero in a coherent state, it
will perform many oscillations before decoherence due to a mismatch of the eigenen-
ergies kicks in. Likewise, the amplitude of those oscillations drops slowly in time as
the dissipation due to the bath is very small. For very large couplings between im-
purity and environment, the total weight contained in the imaginary part of Dimp(ω)
vanishes ∼ α−1 (cf. figure 20 where the total weight contained in Tdo(ω) =

α
4
Dimp(ω)

becomes constant in that regime). In that limit the original impurity oscillator is
strongly bound to the oscillator at the origin of the bath and its free character is lost.
Its spectrum is then fully characterised by that of the bath oscillator at the origin.

The energy-spectrum of the dissipative oscillator model for zero self-interaction
U—obtained by means of the NRG—shows a unique ground state for small initial
couplings between impurity and environment. For large initial couplings the ground

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



84 6. Results

10−12

10−10

10−08

10−06

10−04

10−02

10+00

0 0.2 0.4 0.6 0.8 1

−
Im

[T
d
o
(ω

)]
/π

Frequency ω/ωc

α = 2−15

α = 25

Figure 18:
Negative imaginary part of the impurity T -matrix for several couplings α between

impurity and environment, plotted for positive frequencies only. The bare eigenfre-
quency of the impurity oscillator was set to Δ = 0.1 and its position is depicted in the
plot by the vertical line. The coupling parameters were α = 2−15, 2−13, . . . , 25 and an
imaginary part of ε = 10−10 was used for the frequency z = ω + iε in the evaluation
of equation (6.1). Two effects can be seen as the coupling strength increases from
small (blue) to large (red) values: for small couplings the delta peak structure of the
curve is retained and simply scaled by a factor of α/4. At larger couplings the peak of
the curve that can be identified with the oscillator frequency is shifted to ever larger
values. At the same time it is broadened and eventually turns into a flat curve which
is mainly given by the the bath spectrum ∼ ω in the ohmic case.

state is doubly degenerate in the even- and the odd-parity sector of the theory (cf.
discussion on the flow and fixed points of the model within the NRG in section 6.1.2).
In between, there is a critical coupling strength αc where the nature of the ground
state(s) changes abruptly and a quantum phase transition in the system takes place.
The scale on which the behaviour between the weak and the strong coupling limit
changes is numerically extrapolated from the analytic results on Dimp(ω). It is chosen
as that coupling strength where the total weight contained in Dimp(ω) has dropped
to 1/2 from the original delta-peak weight of unity.

In figure 19 a), the total weight contained in the imaginary part of Dimp(ω) is
presented as a function of the coupling strength α for several initial bare oscillator
frequencies Δ. The extrapolated critical coupling αc(Δ) is presented in part b) of fig-
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Figure 19:
a) Total weight contained in the spectrum −

∫ ωc

0
Im[Dimp(ω) dω/π within the pos-

itive frequency range. For small couplings α the peak of Dimp(ω) at Δ is almost
unchanged and its spectral weight remains close to one. In the strong coupling regime
the delta peak has vanished (cf. figure 18) and the term α

4
D(0)(x = 0, ω) in the

denominator of Dimp(ω) dominates. There the total remaining weight drops down
exponentially as ∼ α−1. b) The coupling strength αc(Δ) where the total weight
has dropped to 1/2 is chosen to mark the crossing region between the two limit-

ing behaviours where both contributions from the bare propagators D
(0)
imp(ω)

−1 and
α
4
D(0)(x = 0, ω) are of the same order of magnitude (crosses). For small values of

Δ < 0.1 a fit of the data results in αc(Δ) = (1.50± 0.04)Δ0.999±0.004 (line).

Plotting the total weight contained in the T -matrix spectrum as a function of
α × 2αc(Δ) reveal that all curves collapse to a single one (cf. figure 20), implying
universal scaling and indeed the existence of a quantum phase transition as a function
of α. The total weight contained in the spectrum of the scattering matrix shows a
maximum for intermediate couplings α before it drops to the constant in the strong
coupling limit. As its position is close to one, it is assigned to the quantum phase
transition taking place. With the results for the scattering matrix Tdo(ω), derived in
this section, we are now able to investigate the change in the average site occupation
of the bosonic sites in the chain due to the presence of the impurity oscillator.

ure 19 and is found to behave as αc(Δ) = (1.50±0.04)Δ0.999±0.004 for small frequencies
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Figure 20:
Total weight contained in the spectrum −

∫ ωc

0
Im[Tdo(ω)]/πdω within the positive

frequency range for several bare oscillator frequencies Δ. For large couplings, the total
weight becomes a constant as only the spectrum of D(0)(x = 0, ω)−1 enters the T -
matrix. For values of Δ < 0.1 all curves collapse onto a single universal curve. There
appears then a maximum in the total weight at an intermediate coupling strength of
α× 2αc(Δ) ≈ 1.

Change in the average site occupation

In section 3.4, the change in the environmental average site occupation was derived
to read

Δ
〈
n̂x

〉
=

1

π

∫ 0

−∞
Im[G

(0)
x,0(ω)Tdo(ω, T = 0)G

(0)
0,x(ω)] dω

in its zero temperature limit. As the free Green’s functions G
(0)
x,0(ω) ≡ G

(0)
0,x(ω) have

a non-vanishing imaginary part only in the positive frequency domain and they are
equal, the integral simplifies to

Δ
〈
n̂x

〉
=

1

π

∫ 0

−1

Im[Tdo(ω, T = 0)]Re[G
(0)
x,0(ω)]

2 dω.

For the calculations, the high-frequency cutoff was set to ωc = 1. Hence, the lower
bound in the integral is set to −ωc = −1 because the imaginary part of the scattering
matrix is numerically finite above ωc only due to the small imaginary part ε of the
frequency argument ω + iε. Results for the change in the average site occupation〈
n̂x

〉
for a large range of couplings α are presented in figure 21 for several decades
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in x. There an imaginary part ε = 10−3 was used for the evaluation of the impurity
scattering matrix. The change in the average site occupation is found to drop in a

10−12

10−10

10−08

10−06

10−04

10−02

0 1 10 100 1000

Δ
〈n̂

x
〉

Position x
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Figure 21:
Change of the average site occupation Δ

〈
n̂x

〉
for couplings α = 2−15, 2−13, . . . , 25.

The initial value of the impurity oscillator frequency was set to Δ = 0.1. For small
couplings α, the amplitude of the curves scale with α, while for large couplings the
curves collapse as T (ω) ∼ D(0)(x = 0, ω)−1 becomes independent of α.

power-law manner ∼ xp for large distances x. The power-law exponent p however,
is different in the weak coupling regime and the strong coupling regime. For small
couplings between impurity and bath, we find a power-law exponent of p = −5/2
while in the strong coupling limit it turns out to be p = −2. Figure 22 shows the
two limiting curves of

〈
n̂x

〉
for α = 2−15 and α = 25 along with the corresponding

power-laws of their large-distance behaviour. At small couplings, the curves of
〈
n̂x

〉
scale with the coupling α as the delta peak at the bare impurity oscillator frequency
Δ in the imaginary part of the T -matrix is almost unchanged. In the strong coupling
regime the results then again do not depend any longer on the specific value of α
and all curves collapse onto a single one. As all curves for

〈
n̂x

〉
drop in a power-law

manner for the positions x investigated, no characteristic length-scale of the problem
shows in this quantity.
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Figure 22:
Extrapolation of the large distance power-law behaviours of the change in the aver-

age site occupation Δ
〈
n̂x

〉
for large (red) and small (blue) values of the coupling α = 25

and α = 2−15, respectively. The power-laws were fitted in the region 100 ≤ x ≤ 1000.

Change in the average displacement amplitude

The change of the oscillator displacements in the chain due to the presence of the
impurity oscillator is investigated next. To this end, the integral

Δ
〈
(ax + a†x)

2
〉
=

1

π

∫ 0

−∞
Im[D

(0)
x,0(ω)Tdo(ω, T = 0)D

(0)
0,x(ω)] dω (6.7)

has to be evaluated numerically. It was derived in section 3.5.1 for the change of the
squared displacement amplitude at position x in the chain. The results for an impurity
oscillator frequency of Δ = 0.1 and several couplings α are presented in figure 23. In
the strong coupling limit, all oscillators in the environment are displaced by an amount
that is proportional to the coupling strength α. In the regime of couplings α < 1, the
change of the oscillator displacement in the environment shows oscillatory behaviour
close to the impurity. Far away from the impurity the average displacement is again
increased by a constant amount ∼ α.
In this intermediate regime, a length-scale can be assigned to the impurity, over

which it can be seen in the environment. Beyond that length scale, it causes a constant
change in the oscillators’ amplitudes.
For very weak couplings α < 10−3, the numerical data show oscillations in the sign

of Δ
〈
(ax + a†x)

2
〉
and a negative total change, i. e. a reduction of the bath oscillator
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displacement far away from the impurity. From the slope of the curves for very weak
coupling we can infer, that the change will eventually turn positive again. This point
of the last sign change marks supposedly also the region, over which the impurity can
be seen in the environment. To conclude, the change of the bath oscillator displace-
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10+04

0 1 10 100 1000

Δ
〈 (a x

+
a
† x
)2
〉

Position x

α = 2−15

α = 25

Figure 23:
Change of the average square of the displacement amplitude for an oscillator fre-

quency of Δ = 0.1 and different couplings α = 2−15, 2−13, . . . , 25. For very small
couplings, the sign of the difference oscillates. Therefore, the modulus of the data is
shown as well in black. Close to the impurity, the change in the oscillators amplitude
shows fluctuations in case of small initial coupling. At sites x > 10, the change turns
into a constant value that is ∼ α. In the limit of large couplings, the oscillators
throughout the entire bath become displaced by an amount ∼ √

α.

ment indicates indeed a length-scale over which the impurity oscillator influences its
environment. A constant change far away from the impurity, that is proportional to
the coupling strength α, can be seen in all cases. However, a non-uniform change of
the oscillator displacements may only be seen close to the impurity for intermediate
couplings. For very weak couplings between impurity and environment, the length-
scale over which the impurity can be seen, seems several orders of magnitude larger
than in the intermediate coupling regime.

In the following, the numerical results that were obtained with the NRG method
are presented in order to investigate the dissipative oscillator model in case of a finite
self-interaction U .
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6.1.2. Identification of fixed points

In section 5 the NRG method was introduced as the numerical method of choice to
investigate the dissipative oscillator model for arbitrary model parameters. The Ha-
miltonian of the dissipative oscillator model was mapped within this framework onto
a model featuring a semi-infinite chain of harmonic oscillators instead of a continuous
set of bath modes. The Hamiltonian after the mapping (5.22) was derived to read

Hchain
do = Himp +

∞∑
n=0

[
εnd

†
ndn + tn

(
d†n+1dn + d†ndn+1

)]
+
(b + b†

2

)√η0
π

(
d0 + d†0

)
(6.8)

where

Himp = ε
(b + b†

2

)
+Δ

(
n̂b +

1

2

)
+

U

2
n̂b(n̂b − 1) (6.9)

is the unchanged impurity part of the Hamiltonian.
The semi-infinite chain is called a Wilson-chain and features on-site energies εn and

nearest neighbour hopping amplitudes tn that both drop exponentially as Λ−n where
Λ > 1 is the logarithmic discretisation parameter introduced in section 5.1. Instead of
solving (6.8) directly we set up a series of Hamiltonians HN that contain the impurity
plus a chain truncated to the first N sites. Two consecutive Hamiltonians of the series
are connected by the transformation

HN+1 = ΛHN + ΛN
[
εN+1d

†
N+1dN+1 + tN

(
d†N+1dN + d†NdN+1

)]
− E0(N + 1) (6.10)

where the ground state energy of HN+1 is already shifted to zero. The initial Hamil-
tonian H0 is defined as

H0 = Himp + ε0d
†
0d0 +

(b + b†

2

)√η0
π

(
d0 + d†0

)
, (6.11)

constituting of the impurity and the zero orbital of the chain. In the limit of N → ∞
the series converges to Hchain

do as

Hchain
do = lim

N→∞
Λ−NHN . (6.12)

As outlined in section 5.3 the mapping (6.10) can be understood as a renormalization
group mapping R such that

HN+1 = R(HN). (6.13)

It was stated that an important feature of R to investigate is its set of fixed points
H∗ for which R(H∗) = H∗. Depending on the character of the perturbations around
those fixed points they are either attractive, corresponding to stable phases of matter,
or feature at least one or only relevant operators that carry the system away from the
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fixed points marking phase transitions and ideal, unreachable fixed points of matter
respectively.

The following analysis of the dissipative oscillator model (6.8) begins by considering
its different fixed points. Those are identified and discussed in a combination of
analytical arguments together with numerical data obtained from the NRG (cf. [26]
for a similar analysis of the Anderson Impurity Model). There a delocalised fixed point
and a whole set of localised fixed points is found. While the impurity oscillator has
a finite frequency Δ in the delocalised phase it will become completely frozen in the
localised phase. The different localised fixed points then all differ by the amount to
which the environmental oscillators are displaced, which turns out to be ∼ √

αc − α.

For each value of the self-interaction parameter investigated, a critical coupling
αc(U) is found that marks a quantum phase transition between the localised and the
delocalised phase. Numerical results on αc(U) are presented in section 6.1.3. In the
limit of zero self-interaction, the critical coupling vanishes as αc(U = 0,Δ) ∼ Δ. In
the limit of U → ∞, the critical coupling of the spin-boson model αc = 1+O( Δ

ωc
) can

be retained.

In the delocalised phase the effects of the impurity on the bath will be obtained by
calculating the scattering matrix of the impurity in section 6.1.4. With the scattering
matrix at hand, it is possible to calculate the change in the average site occupation
Δ
〈
n̂x

〉
and that of the average displacement amplitude squared Δ

〈
(ax + a†x)

2
〉
in the

one-dimensional chain of the original model (cf. equation (2.2)).

In the following, the displacement ε of the impurity oscillator is always set to zero
and the original bath features an ohmic spectral density J(ω) ∼ ω. With these
constraints it is possible to identify two different kinds of fixed points in the flow of
the energy spectrum Er(N) for the dissipative oscillator model, apart from the one of
the non-interacting system.

Free impurity and free chain Hamiltonian

If the impurity and the chain of bosons are non-interacting the system is trivial to
understand. In this case, the impurity Hamiltonian is already diagonal and its eigen-
states and corresponding -energies are given by

Himp(Δ, U)|n〉 =
[
Δn+

U

2
n(n− 1)

]
|n〉 (6.14)

if the energy of the ground state is set equal to zero. Here the states |n〉 are the
eigenstates of the occupation number operator b†b at the impurity. The free chain

spectrum can be obtained by re-diagonalizing the Hamiltonian
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H
(0)
chain(N) = ΛN−1(d0, d1, . . . , dN)

⎛⎜⎜⎜⎜⎜⎝
ε0 t0

t0 ε1
. . .

. . . . . . tN−2

tN−2 εN−1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

d0

d1
...

dN−1

⎞⎟⎟⎟⎟⎠ (6.15)

onto which the bath was originally mapped. This provides the single particle energies
of the chain of length N in a first step. From those, the many-particle spectrum
of the chain is calculated in a second step by combining the energies of the single
particle excitations and taking only the lowest ones of interest. Figure 24 presents the
spectra Er(N) of the series of Hamiltonians H

(0)
chain(N) for a logarithmic discretisation

parameter of Λ = 2. In that case, the chain reaches its low temperature fixed point
H∗

chain(N) = H
(0)
chain(N) already for iteration N ≈ 10, as for N � 10 the spectrum

appears constant. The ground state of the impurity oscillator is unique. Hence, the
total fixed point of the system is then given by a harmonic oscillator of frequency Δ
in its ground state and a free chain with fixed point H∗

chain(N).

0.0
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E
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Figure 24:
Flow of the first twenty states of the many-particle spectrum Er(N), calculated

for the Hamiltonians H
(0)
chain(N) for iterations N between 0 and 25 for a logarithmic

discretisation parameter of Λ = 2. Already for iterations N > 10 no further change
in the spectrum is visible as the chain has reached its low temperature fixed point
H∗

chain(N).
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Delocalised fixed point

To describe the delocalised fixed point, the bare impurity oscillator frequency Δ is
sent to infinity while keeping the self-interaction U arbitrary but fixed. Again, the
impurity oscillator will be in its ground state, as no other states are accessible at
finite temperatures. In this case, the coupling α to the zero orbital of the chain in
H0 (6.11) can be ignored since it couples the zero orbital to higher impurity states of
energy ∼ Δ. Thus, the fixed point is described by the free chain fixed point with the
impurity confined to its single ground state:

H∗
del = |0〉〈0| ⊗H∗

chain(N). (6.16)

The subscript del (for delocalised) indicates that the impurity oscillator in its ground
state is not localised. This means, that the average displacement 〈0|b + b†|0〉 of the
impurity oscillator in its ground state vanishes, much like the average magnetisation

sbm〈0|σz|0〉sbm in the spin-boson model vanishes in its delocalised phase. Thus the
oscillator is not localised at a finite position in space.

Within the NRG, the delocalised fixed point can be reached as long as the coupling
α between impurity and chain is smaller than a critical value αc. Then, the bath
renormalizes the initial parameters Δ and U of the impurity to smaller, finite values
Δ̃ and Ũ . As the frequency Δ̃ reaches a fixed but finite value Δ̃∗, the first excited
state on the effective impurity will eventually be projected out as soon as the energy-
scale Λ−N reaches Δ̃∗. In further iterations, the energy-scale Δ̃∗ can be considered
large and is ultimately projected out of the low energy sector, which is kept in each
iteration of the NRG.

Figure 25 presents the energy-spectra Er(N) obtained from the NRG, rescaled by
ΛN . The initial set of model parameters for the calculations was α = 2×10−5, Δ10−4

and U = 10−3. For the numerical implementation a logarithmic discretisation of Λ = 2
is chosen and the lowest Nkept = 500 states are kept in each iteration. Furthermore
the sizes of the different Hilbert-spaces were truncated to the first Nb,imp = 60 = Nb,0

states for the impurity and the zero orbital of the chain and to Nb = 16 states for all
further orbitals of the chain. With the choice of Δ = 10−4 and U = 10−3 it is ensured,
that the lowest states of H0 are well below the energy ε0 of the first excited state of
the site zero in the chain. Thereby it was possible to fit the first twenty states of H0

to the spectrum of an effective impurity Hamiltonian with rescaled parameters Δ̃ and
Ũ that is no longer coupled to the zero orbital of the chain. In figure 25, the different
states are projected out successively as their energy becomes large compared to the
low-energy sector of the chain.

The renormalizing effect of the bath on the impurity is observable in figure 26,
where the unscaled spectra of the first eight iterations are presented for the same set
of parameters as in figure 25. The lowest eigenstates of the full system are almost
unchanged, as the impurity is weakly coupled to the environment.
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Figure 25:
Energy levels obtained from the NRG (blue) in comparison to the spectrum of a

free ohmic chain (red) for a coupling of α = 2 × 10−5 and bare impurity parameters
Δ = 10−4, U = 10−3. For early iterations the spectrum resembles that of a free
impurity (cf. figure 26). In later iterations the low energy spectrum of the total
system is given by that of the free Wilson-chain. Further parameters were Λ = 2.0,
Nkept = 500, Nb,imp = Nb,0 = 60 and Nb = 16 for a chain sites after the first.
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Figure 26:
Energy levels obtained from the NRG (blue) in comparison to the spectrum of a

free impurity (red) for the same parameters as given in figure 25. The energy levels of
the free impurity are given by En = Δ̃n+ Ũn(n− 1)/2. The first twenty levels of the
diagonalised initial Hamiltonian H0 were used to fit renormalized values of Δ̃ and Ũ
to the spectrum. The parameter U = 10−3 remains almost unchanged and the bare
oscillator frequency Δ = 10−4 has been renormalized to a value of Δ̃ = 0.8504×10−4.
In further iterations the structure of the impurity spectrum remains unchanged and
the higher lying states of the impurity are projected out successively as the low-energy
sector of the almost uncoupled chain drops down exponentially as Λ−N .

Localised fixed point

A second kind of fixed point of the renormalization group mapping (6.10) can be
identified in the flow of the spectra of the Hamiltonians HN (cf. figure 27). At these
fixed points the spectrum is given by that of the free chain H∗

chain(N) where now each
state is doubly degenerate. As the coupling α becomes large, all oscillators in the
chain get displaced by an amount ∼ √

α. That the ground state of the initial Ha-
miltonian H0 is indeed twofold degenerate in the limit of large α can be understood
from symmetry considerations. As the displacement ε of the impurity is zero, each
Hamiltonian HN conserves the parity Pπ(N) = eiπ(nb+

∑N
i=0 ni) = ±1. For the following

line of arguments the self-interaction U is considered large, such that only the states
|0〉 and |1〉 of the impurity are important for the low energy sector of the theory. In
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Figure 27:
Energy levels obtained from the NRG (blue) in comparison to the spectrum of

a free chain (red) for a coupling of α = 2 × 10−3. For early iterations the spectrum
resembles that of a free impurity (cf. figure 26). An intermediate fixed point is reached
for iterations ∼ 8− 15. There the spectrum is that of the free chain where each state
is twofold degenerate. In later iterations the spectrum of the total system is given by
that of the free Wilson-chain where possible degeneracies are only accidental. There
the system has reached the delocalised fixed point. The further NRG parameters
were: Λ = 2, Nb,imp = 60, Nb,0 = 60, Nb = 16, s = 1, Nkept = 500.

(cf. equation (2.11))

H0 = −Δ

2
σz + ε0d

†
0d0 +

√
η0
π

σx

2
(d0 + d†0

)
(6.17)

where the states |↑〉=̂|0〉 and |↓〉=̂|1〉 are identified on the impurity. Rotating the
coordinate system of the impurity by −π/2 about the y-axis leads to

H0 =
Δ

2
σx + ε0d

†
0d0 +

√
η0
π

σz

2
(d0 + d†0

)
.

that case, the initial Hamiltonian H0 −Δ/2 reduces to that of the spin-boson model
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From that, the Hamiltonian H0 is projected into an even and an odd parity sector by
the transformation U = 1√

2
(1− iσyPπ(0)) [19] as

H̃0 = UTH0U =

(
H+ 0

0 H−

)

=

(
ε0d

†
0d0 +

1
2

√
η0
π
(d0 + d†0

)
+ Δ

2
Pπ(0) 0

0 ε0d
†
0d0 − 1

2

√
η0
π
(d0 + d†0

)
− Δ

2
Pπ(0)

)
.

(6.18)

The limit of α ∼ η0 going to infinity renders the terms ±Δ
2
Pπ(0) unimportant. In

that case, the Hamiltonian H̃0 describes a harmonic oscillator with frequency ε0,
displaced by an amount ∼ ±√

α in the even/odd parity sector. However, displacing
the oscillator does not change its energy and hence the eigenenergies of the even and
the odd sector agree in the limit of α → ∞ leading to a twofold degeneracy. In the
same sense the eigenenergies of the original Hamiltonian H0 for arbitrary values of Δ
and U agree in the sectors of even and odd parity as the coupling strength α is sent to
infinity. It can be proved numerically, that the ground states are almost degenerate
for finite initial values of the parameters Δ and U , where they are small as compared
to α.

The localised fixed point spectrum can appear for intermediate iterations in the
flow of the system if α is large but still below its critical value. As long as the energy-
scales Δ and U are not resolved, the system shows an almost double degeneracy of all
states. For couplings α > αc the system has renormalized the oscillator frequency to
zero, and it is no longer able to flow to the delocalised fixed point. Hence, the system
stays at one of infinitely many localised fixed points.

Figure 28 shows the flow of the first few eigenenergies within the NRG for the
model parameters α = 1 > αc for U = 10 and Δ = 10−4. It demonstrates that the
energy of the first excited state drops faster than the expected exponential behaviour
∼ Λ−N of the rest of the states. Thus, there is no low energy scale that might be
resolved at some point in the iterative NRG process. On the contrary, as more and
more sites are couple to the chain, the ground state of the system becomes more and
more degenerate.

That the ground state and the first excited state indeed belong to different sectors
of parity may be checked by calculating the matrix elements N〈0|n̂b|1〉N and N〈0|b|1〉N
between the ground state and the first excited state of iteration N . While the operator
n̂b does commute with the parity operators Pπ(N) and thus does not mix the different
parity sectors, the operator b does mix these sectors. The destruction of a single
particle leads to a difference in the total number of particles of one. This leads to a
factor eiπ = −1 when applying Pπ(N) to that state, making it belong to the opposite
parity sector. In figure 29 both N〈0|n̂b|1〉N and N〈0|b|1〉N are shown for the model
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Figure 28:
Energy levels obtained from the NRG (blue) for a coupling of α = 1 > αc for U = 10

and Δ = 10−4. The first excited state (red) drops faster than the scale with which the
energies in the system can be resolved, i.e. ∝ Λ−N . Thus, the system stays at the fixed
point where all states are twofold degenerate. As the energy of the first excited state
reaches the order of the numerical resolution (around iteration 22), the flow leads
away from the localised fixed point. However, this flow is due to numerical errors
that lift the degeneracy. It is not caused by any underlying physics that would pick
either of the ground states. The further NRG parameters were: Λ = 2, Nb,imp = 60,
Nb,0 = 60, Nb = 16, s = 1, Nkept = 500.

parameters α = 1 > αc, U = 10 and Δ = 10−4. The matrix element N〈0|n̂b|1〉N
vanishes numerically, while N〈0|b|1〉N obtains a finite value.
Keeping the values for U = 10 and Δ = 10−4 fixed and reducing the coupling to

α = 0.6 < αc(U) leads to a significant change in the flow of the first excited level as
compared to that in figure 28. There, the energy of the first excited state grows faster
than the exponential drop of the general set of states. At iterations where E1 ≈ E2,
the system will ultimately flow to the delocalised fixed point (cf. figure 30).
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Figure 29:
Matrix elements N〈0|b|1〉N and N〈0|n̂b|1〉N for a coupling α = 1 > αc and the

impurity parameters U = 10 and Δ = 10−4. The system starts out in the localised
phase, where the ground state and the first excited state are close to being degenerate
(cf. figure 28). The parity-conserving operator n̂b vanishes numerically between the
states of different parity while the operator b connecting the even and the odd parity
sector remains finite suggesting that indeed |0〉 and |1〉 live in different parity sectors.
The finiteness of N〈0|n̂b|1〉N results from the large sizes of the basis of the HN that
were Nkept ×Nb = 500× 16 = 8000 together with numerical errors of the order 10−14

of each individual basis coefficient.
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Figure 30:
Energy levels obtained from the NRG (blue) for a coupling of α = 0.6 < αc for

U = 10 and Δ = 10−4. The first excited state (red) drops slower in energy than
the resolution in energies that is ∝ Λ−N . As soon as its energy reaches the order of
the second excited state, the system flows to the delocalised fixed point. The further
NRG parameters were: Λ = 2, Nb,imp = 60, Nb,0 = 60, Nb = 16, s = 1, Nkept = 500.
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6.1.3. Determination of the phase diagram

It is precisely the aforementioned behaviour of the first excited state that is inves-
tigated in this thesis in order to determine the value of the critical coupling αc for
several values of U , as will be done in the following. If the first excited state drops
down in energy faster than the resolution Λ−N , the system is understood to be above
the critical coupling and the low energy fixed point is a localised fixed point (cf. figure
28). If, however, the first excited state does drop slower or almost as Λ−N , the system
will ultimately flow to the delocalised fixed point (cf. figure 30). The point where
the system approaches the delocalised fixed point can be pushed to lower energies by
increasing the coupling strength α from below αc.

Figure 31 presents the flow of the first six excited energy levels above the ground
state for a fixed self-interaction parameter U = 100 and an initial impurity oscillator
frequency of Δ = 10−4 for several values of the coupling strength α < αc. For a
fixed value of the coupling strength α, the bare oscillator frequency Δ is renormalised
to smaller values as more and more sites of the chain are coupled within the NRG.
As long as the coupling α stays below its critical value, the renormalised oscillator
frequency will reach a fixed but finite value Δ∗(α). Λ−N ∼ Δ∗ and can be considered
large for further iterations leading to the delocalised fixed point with Δ∗ = ∞. By
increasing the initial coupling strength, the value of Δ∗(α) will drop to lower values
and ultimately to zero once the critical coupling is reached. Once the renormalized
Δ̃ is zero, there is no iteration for which Λ−N ∼ Δ̃ holds and the system stays at the
localised fixed point with a fixed point value Δ∗ = 0.

Bounds on the critical values of α for an ohmic bath are presented in figure 32.
For αc,max the first excited state dropped down faster in energy than Λ−N and for
αc,min the flow of the system was ultimately still to the delocalised fixed point. The
limiting value αc(U = ∞) = αSBM

c = 1+O
(
Δ
ωc

)
for large self-interactions U is clearly

identified, which is the literature-value of the critical coupling in the spin-boson model
[12]. For small self-interactions it can be inferred that the critical coupling drops to
αc(U = 0) = 0 +O

(
Δ
ωc

)
as derived in section 6.1.1.

The interpolation between these two limits in terms of the systems energy levels
can be tracked in figure 33. The first six energy levels above the ground state are
presented for a fixed bare oscillator frequency of Δ = 10−4 and a coupling strength
α = 0.6 < αc(U) below its critical value for several values of the self-interaction U .
As the self-interaction U is increased, the scale on which the system flows to the
delocalised fixed point is decreased and is thus seen at later iterations. The flow of
the energies in the spin-boson model (dashed black lines) can already be matched for
a value of U = 1000. For larger values of U (yellow and purple lines) numerical errors
start to kick in and the flow is again different from that of the spin-boson model. This
is most likely due to the large difference in the energy scales Δ = 10−4 and U ≥ 104 in
combination with the large number of states Nb,imp = 60 by which the impurity was
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Figure 31:
The first six energy levels above the ground state are plotted for several values of

the coupling strength α for a fixed self-interaction parameter U = 100 and an impurity
oscillator frequency of Δ = 10−4. As the coupling strength approaches the critical
coupling αc(U = 100) ≈ 1.08 from below, the transition from the intermediate fixed
point to the delocalised fixed point is shifted to later iterations and thus to smaller
energies. The energy scale at which the transition happens can be identified with the
impurity’s rescaled oscillator frequency Δ∗(α) that is suppressed to zero as α → αc

from below. The further NRG parameters were: Λ = 2, Nb,imp = 60, Nb,0 = 60,
Nb = 16, s = 1, Nkept = 500.

10−03

10−02

10−01

10+00

10−03 10−01 10+01 10+03 10+05

α
c
(U

)

U

delocalised

localised

αc,min
αc,max

Figure 32:
Critical coupling αc as a function of U . In the limit of U → ∞ the critical coupling

becomes that of the spin-boson model where αc = 1 + O( Δ
ωc
). As U decreases to

zero, the critical coupling also turns to zero with corrections of the order of O( Δ
ωc
).

The further NRG parameters were: Λ = 2, Nb,imp = 60, Nb,0 = 60, Nb = 16, s = 1,
Nkept = 500.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



102 6. Results

harmonic oscillator model and the spin-boson model agree again.
In the next section the impurity’s T -matrix is calculated within the delocalised

phase of the system. For the localised phase, such a calculation is beyond reach as the
system will eventually pick artificially a unique ground state due to numerical errors
and the spectrum of the T -matrix can not be obtained in the desired frequency range.
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Figure 33:
The first six energy levels above the ground state are plotted for several values of the

self-interaction parameter U for a fixed α = 0.6 < αc(U). Already for U = 1000 (green
lines) the flow is no longer discernible from that of the spin-boson model (dashed black
lines). Larger values of U then lead to numerical errors as the relative difference in
energy-scales U/Δ � 107 becomes large. The further NRG parameters were: Λ = 2,
Nb,0 = 60, Nb = 16, s = 1, Nkept = 500.

described. As Nb,imp is lowered with increasing U , the NRG flow of the dissipative
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6.1.4. Impurity scattering matrix and local averages

In sections 3.4 and 3.5, expressions have been derived to calculate the change of
the average site occupation

〈
n̂x

〉
and of the square of the displacement amplitude〈

(ax + a†x)
2
〉
respectively as a function of the position x in the chain. The scattering

or T -matrix of the impurity

Tdo(z) =
α

4
〈〈b+ b†, b+ b†〉〉z (6.19)

was derived to be the single quantity entering these averages apart from free corre-
lators in the bath. In this section, the spectrum, i. e. the imaginary part of Tdo(ω)
is presented on the real axis for data obtained by means of the NRG. The spectral
function corresponding to the scattering matrix in the limit of zero temperature reads
(cf. equation (3.16))

lim
β→∞

AT (ω, β) =
α

4

∞∑
N=0

Nkept∑
m=1

|N〈0|b+ b†|m〉N |2[
δ(ω + (E0(N)− Em(N)))− δ(ω − (E0(N)− Em(N)))

]
(6.20)

for a non-degenerate ground state as can be found in the delocalised phase. The
spectrum (6.20) was calculated combining the poles of the different NRG iterations
N as described in section 5.4 and broadening them afterwards3.
In the following, the spectraAT (ω) are presented for three different values of the self-

interaction U = 10−3, 1, 103, which cover a wide range of the phase-diagram derived
in the previous section. The bare oscillator frequency is set to Δ = 10−4 and for
the coupling α between impurity oscillator and environment different, appropriate
values were chosen. From the full scattering matrices the change of the average site
occupation

Δ
〈
n̂x

〉
=

1

π

∫ 0

−∞
ImRe[G

(0)
x,0(ω)]

2Tdo(ω, T = 0) dω (6.21)

and the change of the squared displacement amplitude

Δ
〈
(ax + a†x)

2
〉
=

1

π

∫ 0

−∞
Im[D

(0)
x,0(ω)Tdo(ω, T = 0)D

(0)
0,x(ω)] dω (6.22)

are calculated in their zero-temperature limit that were derived in sections 3.4 and 3.5,
respectively. Here, the expression for the change of the average site occupation has
been simplified, since the imaginary part of the free propagators G

(0)
x,0(ω) = G

(0)
0,x(ω)

vanishes in the negative frequency domain and they are identical.

3The broadening was performed with the program broadenVonG in version V2.0 that was made
available to us by Andrew K. Mitchell. It is programmed by Martin Galpin [18] and uses the
broadening of Gaussian peaks on a logarithmic scale from Bulla et al. [10] that has also been
described in section 5.4. In order to obtain the real part, the program broadenVonG performs
the integral appearing in the Kramers-Kronig relation 4.25 using the FFT trick pointed out in
section 4.3.
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Spin-boson limit

For the large self-interaction U = 103 and small couplings α a single peak is identi-
fied in the spectrum AT (ω) that corresponds to the oscillator frequency Δ = 10−4.
Parameters for the NRG were Λ = 2.0, Nkept = 500, Nb,imp = Nb,0 = 60 and Nb = 16
for all chain sites after the first. As the coupling strength α increases, this peak shifts
to lower frequencies, corresponding to the reduction of the oscillator frequency Δ to
lower values. At the same time, the peak is broadened and its maximal height in-
creases with stronger couplings. This behaviour can be seen in figure 34, where the
spectra AT (ω) for several couplings α are shown. For small frequencies, the spectrum
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Figure 34:
Spectrum AT (ω) for zero temperature in the positive frequency domain for a large

self-interaction U = 1000. For small couplings to the bath, the peak-like structure of
the bare propagator at Δ = 10−4 is almost retained. The broad shape around Δ is due
to the broadening parameter b = 0.5 that was used in order to get smooth curves for
AT (ω). As the coupling strength is increased, the peak is shifted to lower frequencies
and is broadened. For frequencies well below the peak the spectrum behaves ∼ ω.
The peaks at the band edge ωc are negligible, as they are about fifteen orders of
magnitude smaller than the mayor peak.

vanishes as AT (ω) ∼ ω, corresponding to the behaviour of the spin-spin correlation
function C(ω) in the spin-boson model (cf. discussion in [12]). The change of the
average site occupation due to the presence of the effective impurity spin is presented
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in figure 35 for the same couplings α that were used to calculate the scattering ma-
trix spectra in figure 34 and a large range of distances x from the impurity. In the
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Figure 35:
Change of the average site occupation Δ

〈
n̂x

〉
in the spin-boson limit of the dissi-

pative oscillator model. Right at the impurity, the change is most significant. In the
long distance limit, all curves drop in a power-law manner as x−(1.02104±8×10−5) (fitted
to the curve for α = 2.0 × 10−4, black line). All curves collapse as the coupling α/4
is scaled out (coloured dots). Parameters are given in the beginning of the section.

long range limit, all curves drop as x−(1.02104±8×10−5), and only for the first few sites
a deviation from that behaviour can be seen. Furthermore, all curves collapse as the
coupling α/4 stemming from the scattering matrix is scaled out. This results from

the character of the real part of the free propagators G
(0)
x,0(ω) entering the integral for

the average site occupation. These propagators are mainly evaluated close to zero fre-
quency, where the peak in the scattering matrix spectrum appears. In this range the
free propagators vary only slowly and the shift of the broadened peak in the scattering
matrix becomes negligible.
The numerical evaluation of the integrals in 6.22 turns out to be stable only for

rather small distances x to the impurity. The displacement-displacement correlation
functions D

(0)
x,0(ω) in the environment are oscillating stronger close to zero frequency.

Hence, for larger values of x, they are highly sensitive to the peak stemming from
the scattering matrix. Figure 36 shows the results obtained for the change in the
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Figure 36:
Change of the average displacement amplitude of the oscillators in the environment

due to the coupling of an effective spin-1/2 impurity. For small couplings α < 0.1
large fluctuations can be seen on distances x ≈ 10000. Apart from the fluctuations,
all curves collapse to a single one (coloured symbols). A fit of the curve for α = 0.7
reveals a power-law behaviour ∼ x−(1.0061±0.0014) (black curve). Parameters are given
in the beginning of the section.

square of the displacement amplitude due to the presence of the effective spin-1/2
impurity. For large couplings which are still below the critical value αc ≈ 1, rather
broad peaks appear in the scattering matrix. There the change Δ

〈
(ax + a†x)

2
〉
shows

again a power-law drop like x−(1.0061±0.0014) far away from the impurity. In case of very
small couplings, the original peak at Δ = 10−4 is still sharp. There the numerical
evaluation of integral 6.22 leads to large fluctuations. Apart from the fluctuations at
large distances ≈ 104 and small couplings α, the curves again collapse upon rescaling.

Intermediate self-interaction regime

The same calculations as before are repeated in case of an intermediate self-interaction
U = 1 of the impurity oscillator. Now, the self-interaction is of the same order as
the high-frequency cutoff ωc in the environment and the spectrum of the scattering
matrix reveals two peaks (cf. figure 37). One peak can be assigned to the energy-scale
U that appears around its initial value for all couplings α investigated. The second

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6.1. Dissipative oscillator model 107

peak is initially again at the bare oscillator frequency Δ = 10−4. Therefore, it can be
identified with the impurity oscillator. This peak is shifted first to larger values as the
coupling to its environment is increased. At the same time, there appears some weight
in the flanks of both peaks. Only for large couplings α � 0.3 the peak is broadened and
shifted to lower frequencies, like in case of the spin-boson limit. The richer structure
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Figure 37:
Spectrum of the scattering matrix for a self-interaction U = 1 and several couplings

α < αc(U). Two peaks can be identified that can be assigned to the bare parameters
Δ = 10−4 and U = 1 (vertical lines). The behaviour of the peak associated to the
oscillator frequency is more intricate than in to the spin-boson limit. Also, features
in the flanks of the two dominant peaks arise. Parameters are given in the beginning
of the section.

in the scattering matrix directly enters the zero temperature averages Δ
〈
n̂x

〉
and

Δ
〈
(ax + a†x)

2
〉
as can be seen in figures 38 and 39, respectively. In the average site

occupation, there appear again power-laws x−1 in the limit of large and small couplings
with small corrections in the exponent. A fit for a large coupling α = 0.36, e. g. results
in a power-law ∼ x−(1.00909±0.00013). However, in the intermediate regime, where the
peak at ω = 1 dominates, there appears a faster drop of Δ

〈
n̂x

〉
for intermediate

distances 102 < x < 106. This drop basically follows the amount of weight that the real
part of the free propagators G

(0)
x,0(ω) contributes around that frequency. In the change

of the average displacement amplitude appears a transition from a power-law drop for
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Figure 38:
Change of the average site occupation in the chain due to the presence of the

oscillator impurity. Small and intermediate couplings lead to power-law drops of
Δ
〈
n̂x

〉
. In the intermediate regime of α ∼ 0.1 the peak in the scattering matrix right

at the band edge ω = ωc dominates. The drop occurs faster than x−1 as the free bath
propagators G

(0)
x,0(ω) are small in that regime. Parameters are given in the beginning

of the section.

small couplings, which follows Δ
〈
(ax+a†x)

2
〉
∼ x−(1.029±0.004), to a constant behaviour

(apart from fluctuations around a constant mean-value). The latter behaviour was
also observed in the analytic discussion of the U = 0 case. There, all oscillators
far away from the impurity show an average extra amount of displacement, which is
proportional to

√
α.

Weak self-interaction regime

In the regime, where the energy-scales Δ = 10−4 of the bare oscillator frequency and
its self-interaction strength U = 10−3 become comparable, the impurity scattering
matrix again features mainly two peaks. The lower energy peak can still be iden-
tified with a renormalized oscillator frequency, since it is suppressed towards lower
frequencies and its shape becomes broadened as the coupling to the environment α
is increased (cf. figure 40). The second, higher energy peak, in the imaginary part
of the scattering matrix is shifted to an energy ω ≈ 0.01ωc when approaching the
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Figure 39:
Change of the average displacement amplitude for a self-interaction U = 1. Only

for weak couplings the power-law drop ∼ x−(1.029±0.004) can be seen. For intermediate
and large couplings between impurity and environment, all bath oscillators far away
from the impurity are displaced by a significant amount that is ∼ √

α. Here, the
fluctuations are large and eventually lead to negative values. The regions of negative
changes in the displacement amplitude are coloured black. Parameters are given in
the beginning of the section.

critical coupling strength αc(U = 10−3) ≈ 5.2 × 10−3 from below. Many different
low-energy states on the impurity are mixed due to their coupling to the environ-
ment. As a result, for intermediate couplings between impurity and environment,
the effective impurity states entering the scattering matrix show no clear trend in
the location of the main excitations on the impurity. The change of the average site
occupation Δ

〈
n̂x

〉
in the environment features again mainly a power-law behaviour

x−1 for all values of the coupling strength (cf. figure 41). As the low-energy peak,
corresponding to the renormalized oscillator frequency, is dominant in the spectrum
of the scattering matrix, the bare bath propagators G

(0)
x,0(ω) are mainly evaluated close

to zero frequency. For the change of the average oscillator displacement amplitude
Δ
〈
(ax + a†x)

2
〉
in the environment, we obtain again a power-law behaviour x−1 for

intermediate distances 5 < x < 300 in case of all investigated values of the coupling
parameter α (cf. figure 42). Only at larger distances, the average displacement seems
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Figure 40:
For very weak self-interaction U = 10−3, the spectrum of the scattering matrix

shows again mainly two peaks. While one of them is suppressed and broadened in the
limit of large couplings, the other one is pushed to a frequency ω ≈ 0.01ωc. For weak
couplings no clear trend for the behaviour of the different peaks is visible. Parameters
are given in the beginning of the section.

to be increased by a constant amount with fluctuations around that constant. To what
extent these fluctuations can be suppressed by increasing the numerical precision in
the evaluation of the integral (6.22) needs to be investigated in the future.
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Figure 41:
Change of the average site occupation for several couplings α. Since the low-energy

peak in the spectrum of Tdo(ω) always dominates, the drop in Δ
〈
n̂x

〉
is ∼ x−1 for all

couplings. A fit of the curve for α = 2× 10−5 reveals a power-law of x−(1.01715±0.00007)

(black line). Parameters are given in the beginning of the section.
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Figure 42:
Change of the average displacement amplitude of the environmental oscillators.

For weak couplings, the drop is again in a power-law manner as ∼ x−(1.030±0.004)

(black line). At intermediate and strong coupling between bath and impurity, the
displacements turn eventually into a constant behaviour with fluctuations around a
constant mean value for large distances to the impurity. Parameters are given in the
beginning of the section.
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6.1.5. Conclusion

Within this work, a new bosonic two-channel Numerical Renormalization Group
method has been implemented. It makes use of a Lanczos diagonalisation routine
from the ARPACK [28] and uses a sparse matrix storage format to handle the large-
dimensioned matrices appearing in models with more than one channel.

The NRG implementation itself has been devised to study the two-spin-boson model
considered in this thesis, as well. Before applying the method to the full two-spin-
boson model, it was tested on a simpler single-channel model, namely the dissipative
oscillator model. This model provides an easily accessible limit for an infinite value
of the self-interaction on the impurity oscillator, i. e. the spin-boson model. In its
application to the dissipative oscillator model, the NRG implementation has proven
trustworthy, as the spin-boson limit could be retained.

Apart from the known limits of zero and infinite self-interaction of the impurity
oscillator, the investigations within this work revealed a whole line of quantum phase
transitions for finite values of the self-interaction. The transition line separates a de-
localised phase, where the impurity is free to oscillate with an average displacement
of zero, and a phase where it is localised far away from its potential minimum.

Furthermore, it was investigated whether the presence of the impurity oscillator
influences its environment on a typical length scale. Such a length scale can e. g.
be identified in case of an exponential behaviour of the distance dependent averages
calculated in the environment. The change of the average site occupation drops in a
power-law fashion in all investigated situations. Hence, in this case no typical length
scale exists in the investigated region. As a second signal, the change of the average
oscillator displacement in the environment was calculated. This average proved to be
very sensitive both to the model parameters investigated and the numerical evaluation
of relevant integrals. In the spin-boson limit power-law behaviour was observed. For
intermediate and small values of the impurity’s self-interaction, fluctuations around a
constant displacement occur at intermediate to long distances.

Whether the fluctuations in the change of the average displacement amplitude are
due to numerical issues or stemming from the physical nature of the model needs
to be investigated in the future4. If they can be assigned to numerical issues and
a constant change of the oscillator displacement far away from the impurity occurs,
indeed a length scale can be identified, where the initial drop in the signal close to
the impurity vanishes.

4For the numerics, there are mainly two sources of possible errors that need to be addressed.
The first one is the resolution with which the free environmental correlation functions can be
calculated, as they show strong oscillatory behaviour for large distances to the impurity.
A second source of error may result for intermediate values of the self-interaction parameter from
the simple combination of the NRG data from different iterations to single spectral functions,
where no clear trend for the impurity’s spectral function was visible.

Since the implementation of the NRG method itself proved successful, it is applied
to the two-spin-boson model in the following.
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6.2. Two-spin-boson model

The two-spin-boson model is investigated in this thesis with the NRG method. To
this end, a two-channel bosonic NRG was devised and implemented. The results are
presented in the following. Within the NRG, different fixed points show up in the
flow of the Hamiltonians. These fixed points are classified and discussed in the follow-
ing. First, results for zero inter-impurity distance from the literature are summarized,
which allow an understanding of the fixed points observed at finite inter-impurity
distances. For different model parameters, the impurities’ scattering matrix is cal-
culated and from that the changes of local averages in the environment. Both, the
change of the average site occupation and that of the average displacement amplitude
show strong peaks at the sites to which the impurities are coupled. The changes are
found to decrease in a power-law manner like x−1 as the distance to the impurities
is increased. Between the impurities, these changes drop to a finite amount, that is
comparably large.

6.2.1. Identification of fixed points

The different fixed pointsH∗ of the Numerical Renormalization Group mappingR(H),
now in case of the two-spin-boson model, are identified and discussed. The Hamilto-
nian of the two-spin-boson model was derived in section 5.3 to read

Hchain
2sbm = Himp +

∑
s=e,o

√
η0,s
π

σz,s

(
d0,s + d†0,s

)
+Hchain

e +Hchain
o (6.23)

where the impurities were described by

Himp =
∑
s=e,o

σx,sΔs + σz,sεs +
K

4
(1e − 1o). (6.24)

to the even and the odd chain which read

Hchain
s =

∞∑
n=0

[
εn,sd

†
n,sdn,s + tn,s

(
d†n+1,sdn,s + d†n,sdn+1,s

)]
, s = e, o. (6.25)

Here the on-site energies εn,s and nearest-neighbour hopping amplitudes tn,s both drop
off exponentially as ∼ Λ−n for the two baths. The renormalisation group mapping

HN+1 = R(HN) (6.26)

is given by

HN+1 = ΛHN +ΛN
∑
s=e,o

[
εN+1,sd

†
N+1,sdN+1,s + tN,s

(
d†N+1,sdN,s + d†N,sdN+1,s

)]
. (6.27)
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The initial Hamiltonian H0 features the two impurities that are coupled to the zero
orbitals of both chains:

H0 = Himp +
∑
s=e,o

[√η0,s
π

σz,s

(
d0,s + d†0,s

)
+ ε0,sd

†
0,sd0,s

]
. (6.28)

In the limit of N → ∞, the series of the HN converges to the full Hamiltonian (6.23)
as

Hchain
2sbm = lim

N→∞
Λ−NHN . (6.29)

In the following the discussion is restricted to two impurities, which are considered
identical, and only see a magnetic field Δ in x-direction. Here, the interaction be-
tween them is mediated only by the common environment. The original bosonic chain
is chosen to feature an ohmic dissipation. First the different fixed points and corre-
sponding phases in case of zero inter-impurity distance R of the two-spin-boson model
are briefly discussed. Those results have been obtained before by Orth et al. [41] and
the author of this work [24], and are summarised here to allow a comparison with the
results obtained in this work for finite inter-impurity distances R > 0.

6.2.2. Zero inter-impurity distance

For a distance R = 0 between the two spin-1/2 impurities, a rather simple single bath
NRG can be applied as there are no odd excitations to which the impurities might
couple (cf. equations (4.18) and (4.19) for the even- and odd-bath spectral functions).
Hence, the two spins see the exact same environment as they couple to the same site
of the linear chain and thus only a single bath has to be incorporated into the NRG.

Free impurity fixed point at zero distance

In the simplest case, the magnetic field Δ as well as the coupling to the chain α are
set to zero. This leads to a simple fixed point H∗

fi, given by the free chain fixed

point Hamiltonian H∗
chain(N) = H

(0)
chain(N) (cf. equation (6.15)) and either of the four

states |↑↑〉, |↑↓〉, |↓↑〉 or |↓↓〉 of the impurities. The subscript fi denotes the free
impurity fixed point. As all impurity states are degenerate, the fixed point features
the free chain spectrum where each state is fourfold degenerate. For finite values of
the magnetic field Δ, this fixed point can still be identified in the flow of the energy-
spectra Er(N), as long as the coupling α is small and the energy scale Δ has not yet
been resolved. The four eigenstates and corresponding energies on the impurity in

case of a finite magnetic field Δ are given by
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|v1〉 =
1

2

[
|↑↑〉+ |↓↓〉 − |↑↓〉 − |↓↑〉

]
, E1 = −Δ, (6.30)

|v2〉 =
1√
2

[
|↑↑〉 − |↓↓〉

]
, E2 = 0, (6.31)

|v3〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
, E3 = 0, (6.32)

|v4〉 =
1

2

[
|↑↑〉+ |↓↓〉+ |↑↓〉+ |↓↑〉

]
, E4 = Δ. (6.33)

The free impurity fixed point is typically reached for early iterations if the initial Δ is
much smaller than one. In figure 43 a) the rescaled energy-spectra Er(N) are shown
for a value of Δ = 10−4 and a coupling strength of α = 10−5. The fourfold degeneracy
of the energy-levels is lifted, once the energy scale Δ is resolved in iteration N where
Δ ∼ ΛN is satisfied. There the zero temperature fixed point is that of a free chain
with the impurity in its single ground state. For early iterations, the system is at the
free impurity fixed point where all impurity states are thermally accessible.

Delocalised fixed point at zero distance

The coupling of the impurities to their environment can cause a reduction of the
energy scale Δ, felt by the impurities. This behaviour also occurred in the dissipative
oscillator model. As long as the coupling α of the impurities to the chain is small, Δ
is rescaled to a smaller but finite value Δ̃ > 0. Here the system flows to a fixed point
with a free chain and the impurities in their common ground state. Once the rescaled
energy scale Δ̃ is resolved in the NRG, it is considered large in all further iterations.
The fixed point value Δ∗ is infinite and the coupling strength α∗ at the fixed point is
zero. The delocalised fixed point Hamiltonian can thus be gained by setting Δ = ∞
and α = 0, leading to

H∗
del(N) = |v1〉〈v1| ⊗H∗

chain(N) (6.34)

with the free chain H∗
chain(N) (cf. (6.15)) and the impurities in a common ground

state |v1〉. In figure 43 the flow of the energy-levels is shown for zero distance between
the impurities, an initial magnetic field Δ = 10−4 and several values of the coupling
strength α. In sub-figures a) and b) there remains a finite magnetic field Δ̃ as long as
α < αc. As the coupling strength is increased from a) to b), the value of Δ̃ is lowered
and thus resolved later in the flow of the energy-levels. Also, an intermediate fixed
point is reached where all states are doubly degenerate. For large couplings α > αc,
the delocalised fixed point cannot be reached any longer and all states remain doubly
degenerate (figure 43 c)). There the system remains at one of infinitely many localised
fixed points.
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Figure 43:
Energy flow of the first eleven states above the ground state as obtained from the

NRG for zero distance of the impurities, an initial tunnelling rate Δ = 10−4 and
different values of the coupling strength α. In subfigure a) the flow is directly from
the free impurity fixed point to the delocalised fixed point around iteration 12, where
the energy scale Δ is resolved. As the coupling strength is increased from a) to b),
there are two effects. First of all the initial tunnelling rate Δ is renormalised to a
lower value. Second, an additional fixed point is found at intermediate iterations. It
is one of infinitely many localised fixed points, where all eigenstates of the free chain
are twofold degenerate. Subfigure c) depicts the situation where the initial coupling
strength α is large enough to renormalise the tunnelling rate Δ to zero and the system
remains at the localised fixed point. The chain couples only to the states |↑↑〉 and
|↓↓〉, where it induces a ferromagnetic interaction favouring these configurations above
the anti-ferromagnetic ones. Thus, the two states span the impurities Hilbert-space
at the localised fixed point. Further NRG parameters were Λ = 2.0, Nkept = 500,
Nb,e(0) = 800 and Nb,e = 16.
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Localised fixed points at zero distance

In case of zero distance between the two impurities, only the even spin combinations
|↑↑〉 and |↓↓〉 couple to the chain. As Orth et. al. discussed in [41], a finite coupling
α of the impurities via their z-components to a common environment leads to a
renormalisation of the bare Ising coupling strength K̃ = K − 2αωc(s+1)/s due to an
indirect ferromagnetic interaction stemming from coherent phonon exchange between
the impurities. Here, s is again the power-law exponent of the bath spectral function.
Thus, for an initial value of K = 0 the anti-parallel spin configurations |↑↓〉 and |↓↑〉
are penalised by an energy ∼ α. If the initial coupling strength α is larger than a
critical value αc, the tunnelling rate Δ of the impurities gets renormalised to zero while
their coupling to the environment remains finite. Exactly at the localised fixed point
the tunnelling rate Δ is zero and the Hamiltonian in the basis {|↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉}
reads

Hchain
2sbm = |↑↑〉〈↑↑|

[
− αωc(s+ 1)

2s
+ 2

√
η0
π
(d0 + d†0)

]
+ |↓↓〉〈↓↓|

[
− αωc(s+ 1)

2s
− 2

√
η0
π
(d0 + d†0)

]
+

αωc(s+ 1)

2s

[
|↑↓〉〈↑↓|+ |↓↑〉〈↓↑|

]
⊗ 1bos + 1imp ⊗H

(0)
chain (6.35)

where the renormalisation of the Ising couplingK has already been taken into account.
The low energy sector of the theory is found in the ferromagnetic impurity sector,
spanned by the spin configurations |↑↑〉 and |↓↓〉. As the coupling strength α remains
finite, there is a whole line of fixed points with fixed point values of α∗ ∈ (0,∞) and
Δ∗ = 0 as in the spin-boson model. Within the two-dimensional ferromagnetic im-
purity sector, the coupling of the impurities to the chain leads to a positive/negative
displacement of the harmonic oscillators in the Wilson-chain and the displacement is
proportional to the coupling strength

√
α. Since positive and negative displaced os-

cillators have the same energy, the fixed point spectrum of the Hamiltonian is twofold
degenerate (cf. figure 43 c)).

6.2.3. Finite inter-impurity distances

For finite distances R between the impurities an investigation of the flow of the energy-
spectra Er(N), obtained from the bosonic two-channel NRG, reveals the same kind of
fixed points as for zero distance. However, the fixed point spectra look different from
the single channel model that was investigated for R = 0, since there are two chains,
each with their own spectrum.
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Free impurity fixed point at finite distances

For very small couplings between impurities and environment, the impurities remain
almost unaffected and they form the eigenstates |v1〉, . . . , |v4〉 with corresponding
eigenenergies as given in equations (6.30) - (6.33). The single energy scale on the
impurities is the bare tunnelling rate Δ, which can be resolved for all investigated dis-
tances R = 1, . . . , 1000 between the impurities within the flow of the eigenspectrum
Er(N). The free impurity fixed point is that of the two chains, where now each state
is fourfold degenerate and the chains form the fixed point

H∗
chain(N) = Hchain

e (N) +Hchain
o (N). (6.36)

It appears in early iterations of the NRG as long as the scale Δ has not been resolved
(cf. figure 44). The spectra of the even and the odd chain turn out to be similar
in early iterations for large distances R between the impurities. There the highly
oscillating characters of the even and the odd spectral functions are averaged out to
almost identical chain parameters εn,e/o and tn,e/o, as both the sine and the cosine
lead to similar averages. The point at which the two chain spectra start to differ
is decreased to lower frequencies, and thus later NRG iterations, as the distance R
between the impurities is increased.

Delocalised fixed point at finite distances

At the delocalised fixed point, the spectrum is that of the free chains (6.36), where
the impurities form a common, single ground state. Due to the coupling to the chain,
the tunnelling rate Δ is renormalised to a smaller, but finite value Δ̃. Once this
energy scale is resolved in the NRG, the system flows to the delocalised fixed point,
as all higher energetic impurity states are projected out of the model. The effective
coupling strength between the common impurity states and the even and the odd chain
decreases with increasing distance R between the impurities. This behaviour can be
traced in figure 45 for a coupling between impurities and environment of α = 10−2.
The energy scale, at which the renormalised tunnelling rate Δ̃ can be identified,
is resolved in earlier iterations for larger distances. For R ≈ 1000, the tunnelling
frequency is almost unaffected and eventually turns larger than the energy scale at
which the two environments start to differ in their behaviour. Thus, for distances
much larger than 1000 lattice sites we expect the flow to be again directly from the
free impurities fixed point to the delocalised fixed point. There further calculations
need to verify this expected behaviour.
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Figure 44:
Energy flow of the first eleven states above the ground state for a coupling of

α = 10−5 for several distances R of the impurity-spins. The tunnelling rate Δ = 10−4

is almost not affected by the bath and is resolved around the same iteration for all
distances. In early iterations, the even and the odd chain seem more and more alike
as the distance R > 0 grows. Thus in the beginning, the two independent chains have
the same spectrum leading to a huge degeneracy of the states on top of the already
fourfold degeneracy stemming from the impurities. The flow is from the free impurity
fixed point, where each state is fourfold degenerate, to the delocalised fixed point with
infinite Δ in the single ground state of the impurities and otherwise free chains. For
the logarithmic discretisation a value of Λ = 2 was chosen. Further NRG parameters
were Nkept = 200, Nb,e/o(0) = 50 and Nb,e/o = 12 in case of finite distances R > 0.
For R = 0 the odd bath does not enter and we chose Nb,e(0) = 50, Nb,e = 16 and
Nkept = 500.

Localised fixed points at finite distances

In case of strong coupling between the impurities and the dissipative environment,
the tunnelling rate Δ on the impurities gets eventually renormalised to zero and the
spectrum is again that of the two free chains, where each state is twofold degenerate.
This corresponds to a situation, where the environmental oscillators are either pos-
itively or negatively displaced. As the displacement of the oscillators does not cost
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Figure 45:
Energy flow of the first eleven states above the ground state for an intermediate

coupling of α = 10−2 and an initial tunnelling rate Δ = 10−4 for several distances
R of the impurity-spins. The systems flow from the free impurity fixed point to the
localised fixed point with a twofold degeneracy of all states. The energy scale at which
the localised fixed point is reached drops as the distance R between the impurities
is increased. From the localised fixed point, the flow is towards the delocalised fixed
point at late iterations where the renormalised tunnelling rate Δ̃ is large and the
impurities are in their unique ground state. The energy scale at which the second
transition happens grows with distance R and eventually the intermediate localised
fixed point cannot be identified any longer when the scales of the two transitions
become identical for distances R larger than 1000. Model parameters were the same
as given in figure 44.
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Figure 46:
Ground state expectation values of N〈0|σz,e|0〉N and N〈0|σz,o|0〉N for a coupling

strength of α = 1 and an inter-impurity distance R = 1000. While the spins in the
even spin sector become polarised, those of the odd sector do not show any finite
expectation value.

α, the oscillators are displaced by an amount that is proportional to
√
α.

In the limit of infinite distance between the spins, each spin can be considered
independently. For couplings larger than a critical value, each spin is localised in
configuration |↑〉 or |↓〉. The oscillators in the environment are all displaced by an
amount ∼ ±√

α. For the two anti-parallel spin configurations |↑〉1⊗|↓〉2 and |↓〉1⊗|↑〉2,
there can be no net displacement of the oscillators, as their opposite amplitudes cancel.
These two configurations are effectively projected out in the NRG flow for finite
distances. This can be seen in figure 46, where the expectation values N〈0|σz,e|0〉N
and N〈0|σz,o|0〉N are presented for a large distance of R = 1000 between the spins.
The even spin configuration shows a finite expectation value, which grows until it
reaches 0.5 once the state is fully localised. There the expectation value N〈0|σz,o|0〉N
vanishes numerically exact to zero, suggesting that the odd spin sector has indeed been
projected out of the Hamiltonian. In figure 47 the localised fixed point spectrum
can be seen for a coupling strength of α = 1 and different distances R. There, two
states rise in their energy in early iterations, starting at zero energy, until they are
eventually projected out of the system.

In the following, results for the impurity scattering matrix T2sbm(ω) in the delo-
calised phase of the system are presented. Additionally the expectation values for the
change of the average site occupation and the oscillator displacement in the environ-
ment are discussed.

any energy, both configurations are energetically degenerate. For different couplings
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Figure 47:
Energy flow of the first eleven states above the ground state for a large coupling of

α = 1 > αc(R) and an initial tunnelling rate Δ = 10−4 for several distances R of the
impurity-spins. Here the system stays always in the localised phase where the spins
are completely frozen out. The spectrum is that of the two free chains where now
each state is twofold degenerate. As the distance R increases, the region where the
two chains look identical increases as the energy scale at which they start to differ
decreases. Model parameters were the same as given in figure 44.

6.2.4. Impurity scattering matrix and local averages

The impurity scattering matrix T2sbm(ω) for the two-spin-boson model is a 2×2 matrix
of frequency dependent, complex functions. It is defined as

T2sbm(z)ij =

√
αiαj

4
〈〈σz,i, σz,j〉〉z, i, j = 1, 2 (6.37)

in the complex plane and has been derived in section 3.4, equation (3.49). Here the
temperature dependence is dropped as only the zero temperature limit is considered.
As the two impurity spins are equal, the scattering matrix shows the symmetries
T2sbm(z)11 = T2sbm(z)22 and T2sbm(z)12 = T2sbm(−z)21. Hence, only the imaginary part
of the two independent functions T2sbm(z)11 and T2sbm(z)12, evaluated on the real axis,
are presented in case of different distances between the spins. For the inter-impurity
distances R = 1, . . . , 1000 studied in this thesis, the two functions show always similar

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6.2. Two-spin-boson model 123

trends as the coupling strength approaches its critical value from below. Therefore,
only the matrix elements in case of two typical distances R = 10 and R = 100 are
presented in the following, to exemplify this similarity.

10−20

10−15

10−10

10−05

10+00

10+05

10+10

A
T
(ω

)

10−20

10−15

10−10

10−05

10+00

10+05

10+10

10−1410−1210−1010−8 10−6 10−4 10−2

A
T
(ω

)

Frequency ω/ωc

10−1410−1210−1010−8 10−6 10−4 10−2

Frequency ω/ωc

α = 1.0× 10−1

α = 1.0× 10−2

α = 1.0× 10−3

α = 1.0× 10−4

α = 1.0× 10−5

a) T11, R = 10

α = 1.0× 10−1

α = 1.0× 10−2

α = 1.0× 10−3

α = 1.0× 10−4

α = 1.0× 10−5

b) T12, R = 10

α = 1.0× 10−1

α = 1.0× 10−2

α = 1.0× 10−3

α = 1.0× 10−4

α = 1.0× 10−5

c) T11, R = 100

α = 1.0× 10−1

α = 1.0× 10−2

α = 1.0× 10−3

α = 1.0× 10−4

α = 1.0× 10−5

d) T12, R = 100

Figure 48:
Comparison of the scattering matrix elements T2sbm(ω)11 (top) and |T2sbm(ω)12|

(bottom) for two distances R = 10 and R = 100 between the impurities and several
values of α. The general behaviour of the two scattering matrix components is similar,
where T2sbm(ω)12 additionally features sharp kinks where its sign changes. At small
couplings, the impurities remain free and the single energy scale Δ is resolved in the
scattering matrix. As the coupling of the environment to the impurities is increased,
the single peak splits into two. The lower energy peak is broadened and shifted to lower
frequencies as the coupling becomes larger. This peak is assigned to a renormalized
tunnelling frequency Δ.
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Figures 48 presents the imaginary parts of the scattering matrix elements T2sbm(ω)11
and T2sbm(ω)12 in the positive frequency range for distances R = 10 and R = 100. As
the off-diagonal element T2sbm(ω)12 is a non-local correlation function, whose imagi-
nary part is not strictly positive or negative, only its modulus is presented. The chosen
couplings α between impurities and environment cover several orders of magnitude
and the limit of the free impurities can be seen for α = 10−5 in both cases. In the di-
agonal element T2sbm(ω)11, a single peak at the bare frequency Δ = 10−4 arises, which
is split for larger values of the coupling. One of the arising peaks is shifted to larger
frequencies. At the same time its total weight is lowered. The second peak arising
for intermediate couplings is shifted to lower frequencies and broadened. At the same
time its maximal height increases as the critical coupling αc, corresponding to the
transition to the localised phase, is approached from below. This second, low-energy
peak is assigned to the renormalized tunnelling rate Δ. The same general behaviour is
seen in the off-diagonal element T2sbm(ω)12, which furthermore shows several changes
of sign, situated at the sharp kinks in the curves.
The changes in the local averages of the environmental oscillator are calculated via

Δ
〈
n̂x

〉
=

1

π

∫ 0

−∞
Im[
(
G(0)

x,r(ω), G
(0)
x,−r(ω)

)
T2sbm(ω, T = 0)

(
G(0)

r,x(ω), G
(0)
−r,x(ω)

)T
] dω

(6.38)
and

Δ
〈
(ax + a†x)

2
〉
=

1

π

∫ 0

−∞
Im[
(
D(0)

x,r(ω), D
(0)
x,−r(ω)

)
T2sbm(ω, T = 0)

(
D(0)

r,x(ω), D
(0)
−r,x(ω)

)T
] dω

(6.39)

as derived in sections 3.4 and 3.5, respectively. The results for the change in the
average site occupation are presented in figures 49 and 51 for the distances R = 10
and R = 100, respectively. As the change of the displacement amplitude Δ

〈
(ax+a†x)

2
〉

shows strong fluctuations of the sign between the impurities, figures 50 and 52 present
its modulus.
Both changes in the averages show clear peaks right at the location of the impurities

(r = ±5 and r = ±50). The magnitude of the change scales with the coupling
strength between impurities and environment in all cases. Therefore, close below the
transition from the delocalised to the localised phase, the oscillator occupation and
its displacement represent strong signals within the environment, in the vicinity of
the impurities.
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Figure 49:
Change of the average site occupation in the environment for a finite inter-impurity

distance R = 10 and several couplings α. A clear peak is seen at the position r = 5
where impurity σ1 resides. The amplitude of the curves scales with the coupling α
and for large distances a power-law drop ∼ x−1 is seen for the different curves. At
the origin of the chain, right in between the two impurities, a comparably large finite
signal remains.
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Figure 50:
Modulus of the average change in the oscillator displacement amplitude for a finite

inter-impurity distance R = 10 and several couplings α. A clear peak is seen at
the position r = 5 where impurity σ1 resides. The data show the same qualitative
behaviour as the results for the change of the average site occupation in figure 49.
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Figure 51:
Change of the average site occupation in the environment for a finite inter-impurity

distance R = 100 and several couplings α. The same general behaviour is seen as for
a distance of R = 10 that has been presented in figure 50.
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Figure 52:
Modulus of the average change in the oscillator displacement amplitude for a finite

inter-impurity distance R = 10 and several couplings α. A clear peak is seen at the
position r = 5 where impurity σ1 resides. The same general behaviour is seen as for
a distance of R = 10 that has been presented in figure 50.
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6.2.5. Conclusion

The impurities affect the environmental oscillators in the region between each other
to a considerable amount. There the total strengths of the signals drop about one
to two orders of magnitude in comparison to the peak signal, but they remain large
compared to the outer region. Thus, the two impurities appear to be connected
via their common environment in real-space, although no initial direct coupling was
present in the calculations. As the distance between the impurities is large in units of
the lattice spacing, this connection between the impurities by means of their common
environment may prove important when constructing a multi qubit quantum register.
The original motivation to investigate the effect of the two impurities on their

environment was to answer the question, whether a characteristic length scale can
be assigned to the impurities as they interact with their environment. Such a length
scale can arise in two possible scenarios. If the drop far away from the impurity is
exponential, a typical length scale can be assigned. At this length, the signal has
dropped to 1/e of its initial strength. Alternatively, an abrupt change in the averages
can occur as an intrinsic length scale of the problem is surpassed.
In this work, the signals investigated within the dissipative environment rule out

the first scenario. Far away from the impurities, their effects on the environmental
oscillators diminishes in a power-law manner as x−1 with small corrections in the ex-
ponent only. The power-law corresponds to the drop of the zero frequency value in
the real part of the bare propagators G

(0)
x,0(ω = 0) and D

(0)
x,0(ω = 0) as a function of

distance x. To clarify whether a length scale might arise farther away from the impu-
rities, the local averages need to be calculated for larger distances x than investigated
in this thesis.
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Summary

In this work two dissipative quantum impurity models have been investigated. For
the dissipative environment a linear one-dimensional chain of bosons was used that
features an ohmic spectrum. This environment was chosen as it allows to calculate
thermal averages as a function of the distance to the impurities. The main goal was to
determine, to what extent two impurities that are coupled to a common environment
can interact with each other through that environment. For a quantum register it is
crucial to ensure precise control of the different qubits; interaction effects mediated
by the common environment may spoil the functionality of the register.

To model two qubits in a common environment, the well studied two-spin-boson
model was extended to finite inter-impurity distances. A meaningful description of
this model requires the treatment of two local bosonic channels, which is computation-
ally very demanding. To treat the two-spin-boson model in case of finite distances
between the impurities, a bosonic two channel Numerical Renormalization Group
method (NRG) has been devised in this work, which is capable of dealing with the
model in the whole range from zero to large finite distances.

It was successfully tested on a different quantum impurity model, namely the dissi-
pative oscillator model, which is known to have two well behaved limits. The limits of
zero and infinite self-interaction of the impurity oscillator have been recovered in this
thesis with the newly devised NRG method. At the same time, a whole line of quan-
tum phase transitions was found to exist for all finite values of the self-interaction.
This line separates a delocalised phase, where the impurity is free to oscillate with
an average displacement of zero, and a phase where it is localised far away from its
potential minimum.

From NRG calculations the different fixed points of the two-spin-boson model have
been explored. There a localized phase with a twofold degenerate ground state and
a delocalised phase with a unique ground state have been found for all investigated
inter-impurity distances.

In both models, the changes of space dependent local averages in the environment
have been calculated in order to investigate, whether characteristic length scales can
be assigned to either a bosonic or magnetic impurity. The signals investigated were
the change of the local site occupation in the chain and the change of the average
displacement of the environmental oscillators. For almost all investigated parameters a
power-law drop of the change in those signals has been found, leading to the conclusion
that no such length scale exists in the regions investigated in this work. The only
exception is the dissipative oscillator model in the region of small to intermediate
values of the self-interaction. In that region, further efforts are required to clarify the
long distance behaviour of the two thermal averages.
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Outlook

Two interesting effects were observed in this work, that call for more detailed inves-
tigations:

i) The two-spin-boson model contains a line of quantum phase transitions, that
separates the localised from the delocalised phase. Its dependence on the inter-
impurity distance can eventually reveal the distance at which the two spins can
be treated as being independent. Furthermore, thermodynamic quantities like
the entropy or the systems specific heat have been neglected completely from the
investigations in this work. Such quantities require a larger set of basis states
than the two hundred that were kept in the calculations for the two-spin-boson
model. The analysis of the scaling of the NRG algorithm with the number of
states kept revealed a linear increase in memory and a quadratic increase in
runtime. Therefore it is possible to investigate such quantities in the future with
an increased amount of computational resources.

ii) The change of the average displacement amplitude shows fluctuations in the dis-
sipative oscillator model in case of intermediate self-interactions on the impurity
oscillator. These fluctuations might be due to numerical issues in the evaluation
of the relevant integrals and smoothed spectral functions. If they can be identified
as such, a true length scale of the impurity oscillator could be identified. Thus, it
is desirable to further investigate the origin of the fluctuations. Numerical issues
may be excluded by performing the calculations with higher precision.

The two-channel NRG devised in this work is well suited to study the situation of
a single spin coupled to two rivalling dissipative environments. This model is known
to show so-called frustration of decoherence if the coupling to the two environments
is identical. None of the two environments is capable of localizing the spin in either
of its configurations in such a scenario[39].
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A. Impurity displacement-displacement correlation
function

Here it is derived, how the displacement-displacement correlation function in the har-
monic oscillator can be obtained using the equations of motion. Thereby its connection
to other correlation functions is obtained. The correlator of interest reads

Dimp(z, T ) = 〈〈b+ b†, b+ b†〉〉z(T ) (A.1)

and is proportional to the impurity’s scattering matrix Tdo(z, T ). The Hamiltonian of
the damped harmonic oscillator model was given by

H =
ε

2
(b + b†) + Δ

(
n̂b +

1

2

)
+

U

2
n̂b(n̂b − 1)

+

∫ π

−π

ω(k)a†kak +
1

2

√
α

2π

(
b + b†

) ∫ π

−π

(
ak + a†k

)
dk. (A.2)

The Hamiltonian is split into a free part H0 and an interaction part V as

H0 =
ε

2
(b + b†) + Δ

(
n̂b +

1

2

)
+

∫ π

−π

ω(k)a†kak (A.3)

V =
U

2
n̂b(n̂b − 1) +

1

2

√
α

2π

(
b + b†

) ∫ π

−π

(
ak + a†k

)
dk (A.4)

such that both, the bath and the impurity are non-interacting. The direct interaction
of the impurity with itself is then due to the density-density interaction ∼ U and the
interaction with the bath modes is due to the second term in V . First of all the free
displacement-displacement correlators D

(0)
imp(z) of the impurity and D(0)(x = 0, z) of

the bath at the origin are calculated. Here all correlators with respect to the free
Hamiltonian H0 wear an index (0). Applying the equation of motion (3.11) twice on

either D
(0)
imp(z) or D

(0)(x = 0, z) immediately leads to

D
(0)
imp(z) = 〈〈b+ b†, b+ b†〉〉z = 〈〈b, b†〉〉z + 〈〈b†, b〉〉z

=
1

z −Δ
− 1

z +Δ
(A.5)

and

D(0)(x = 0, z) = 〈〈a0 + a†0, a0 + a†0〉〉z = 〈〈a0, a†0〉〉z + 〈〈a†0, a0〉〉z

=
1

2π

∫ π

−π

〈〈ak + a†k, ak + a†k〉〉zdk

=
1

2π

∫ π

−π

1

z − ω(k)
− 1

z + ω(k)
dk. (A.6)
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132 A. Impurity displacement-displacement correlation function

Omitting in the notation the temperature dependence (T ), the following set of equa-
tions is obtained for the full correlation functions:

zDimp(z) = Δ〈〈b− b†, b+ b†〉〉z
+ U〈〈b†bb, b+ b†〉〉z − U〈〈b†b†b, b+ b†〉〉z (A.7)

z〈〈b− b†, b+ b†〉〉z = 2 +ΔDimp(z) +

∫ π

−π

〈〈ak + a†k, b+ b†〉〉zdk

+ U〈〈b†bb, b+ b†〉〉z + U〈〈b†b†b, b+ b†〉〉z (A.8)∫ π

−π

〈〈ak + a†k, b+ b†〉〉zdk =
α

2
D(0)(x = 0, z)Dimp(z) (A.9)

Using the results (A.9) and (A.8) in equation (A.7) and solving for Dimp(z, T ) (with
restored notation of the temperature dependence) leads to

Dimp(z, T ) =
[
D

(0)
imp(z)

−1 − α

4
D(0)(x = 0, z)− U [Σ1(z, T ) + Σ2(z, T )]

]−1

. (A.10)

Here the two self-energy functions

Σ1(z, T ) =
Δ + z

2Δ

〈〈b†bb, b+ b†〉〉z(T )
Dimp(z, T )

(A.11)

Σ2(z, T ) =
Δ− z

2Δ

〈〈b†b†b, b+ b†〉〉z(T )
Dimp(z, T )

(A.12)

are defined that enter the full displacement-displacement correlator due to the finite
self-interaction with a strength of U .
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B. Calculation of the ξnξnξn

Here it is argued, that the parameters ξn of the logarithmically discretised Hamilto-
nian, introduced in equation (5.12), can be calculated from

ξn =

∫
In

ωJ(ω)dω

/∫
In

J(ω)dω (B.1)

for each interval In = (xn+1, xn] independently. The proof itself is mainly based on
a geometric interpretation of the integrals appearing in (5.12)5. Starting from the
definition (5.12)

ξn =
1

dn

∫
In

g(ω)dω (B.2)

the integral over g(ω) = ν can be expressed as an integral over its inverse function
ε(ν) = ω. The function ε has the boundary values ε(xm) = xm both for m = n, n+ 1
in interval In if the function h is chosen appropriately. Likewise, it is g(xm) = xm for
m = n, n+ 1 in interval In since g is the inverse function to ε. The derivative of ε(ν)
was related to the spectral density J(ν) by

J(ν) = πh2(ε(ν))

∣∣∣∣dε(ν ′)

dν ′

∣∣∣∣
ν′=ν

(B.3)

The function h was chosen to be a constant hn =
( ∫

In
J(ω)dω/(πdn)

)1/2
in each

interval In. Solving for the derivative ε′(ν) leads to

ε′(ν) = J(ν)dn

/∫
In

J(ω)dω., ν ∈ In (B.4)

Integrating this equation over the whole interval In leads to

ε(xn)− ε(xn+1) =

∫
In

J(ν)dndν

/∫
In

J(ω)dω = dn = xn − xn+1. (B.5)

A comparison of the coefficients leads to ε(xm) = xm up to a constant both for
m = n, n + 1. This constant can be set to zero since it does not enter the spectral
function J(ν) anyway. A sketch both of g and ε is presented in figure 53. The two
areas A and B depicted in that figure are connected as

A+B = x2
n − x2

n+1. (B.6)

5Private communications with Priv. Doz. Dr. Ralf Bulla, University of Cologne, Germany.
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134 B. Calculation of the ξn

Figure 53:
Schematics of the functional behaviour of g(ω) = ν in the ω interval In = (xn+1, xn].

The area A corresponds to the integral
∫
In
g(ω)dω. At the same time, the function

drawn is the inverse function ε(ν) = ω of g in the ν interval In. That way the area B
corresponds to the integral

∫
In
ε(ν)dν.

On the other hand, A is given by the integral
∫
In
g(ω)dω while B is given by the

integral
∫
In
ε(ν)dν. Using these integrals, equation (B.6) can be rewritten as∫

In

g(ω)dω = x2
n − x2

n+1 −
∫
In

ε(ν)dν

= x2
n − x2

n+1 − ε(ν)ν
∣∣∣xn

xn+1

+

∫
In

νε′(ν)dν. (B.7)

In the last equation a partial integration of ε(ν)× 1 was performed. The surface term
ε(ν)ν|xn

xn+1
exactly cancels the term x2

n − x2
n+1 resulting in∫

In

g(ω)dω =

∫
In

νε′(ν)dν. (B.8)

By using equation (B.4) to replace ε′(ν), equation (B.2) transforms to

ξn =
1

dn

∫
In

g(ω)dω =

∫
In

νJ(ν)dν

/∫
In

J(ω)dω (B.9)

which, up to relabelling of ν → ω is the initial identity to be shown.
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Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebe-
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Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die
Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dis-
sertation ist von Priv. Doz. Dr. Ralf Bulla betreut worden.

Etienne Gärtner
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