


Modelling Force Transfer in Boundary Layers of

Moving Walls for Compressible and Incompressible

Turbulent Flows Across Multiple Scales

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Modelling Force Transfer in Boundary Layers of

Moving Walls for Compressible and Incompressible

Turbulent Flows Across Multiple Scales

Vom Fachbereich Produktionstechnik

der

Universität Bremen

zur Erlangung des Grades

Doktor-Ingenieur

genehmigte

Dissertation

von

M.Math. Kristofer Leach

Gutachter:

Prof. Dr. rer. nat. Claus Braxmaier

Prof. Dr. rer. nat. Thomas Schuster, Universität des Saarlandes

Tag der mündlichen Prüfung:
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Zusammenfassung

Die Entwicklung kleiner Werkzeugmaschinen zur Bearbeitung extrem kleiner Werkstücke

ist u.a. auf den Gebieten der Mechantronik, der Optik oder der Medizin von zunehmend

größerer Bedeutung. Das Miniaturisieren existierender Werkzeuge stößt allmählich an

gewisse Grenzen und es ist nötig, neue Werkzeuge zu entwickeln, um einen Fortschritt zu

erzielen.

Diese Arbeit beschreibt die Gestaltung einer neuartigen Schleifkugel, die magnetisch gela-

gert und von einer pressluftgetriebenen Strömung in Rotation versetzt wird. Es wird eine

Parameterstudie durchgeführt, welche die optimale geometrische Auslegung eines Proto-

typs unter Einhaltung gewisser physikalischer Einschränkungen bestimmt. Die daraus

hervorgehende optimale Auslegung wird im Anschluss detailliert untersucht, um festzus-

tellen, welcher Belastung die elektromagnetische Lagerung standzuhalten hat und um

die zum Schleifen verfügbare Kraft zu quantifizieren. Entgegen den Erwartungen zeigte

die Untersuchung, dass Luft kein geeignetes Antriebsmedium darstellt und dass Öl an

dessen Stelle treten muss um genügend Schleifkraft zu erzielen. Die bei der Entwicklung

des Prototyps gesammelten Erfahrungen dienen als Grundlage für die Entwicklung eines

kleineren funktionsfähigen Schleifwerkzeugs, welches unter Verwendung von hydraulis-

chem Antrieb analysiert wird. Im Anschluss wird unter Verwendung von Luftantrieb

eine skalenübergreifende Analyse der auf die Schleifkugel wirkenden Kräfte durchgeführt.

Machzahlen betragen bis zu 0,9, während Reynoldszahlen maximal 105 erreichen. Daher

wird Large-Eddy-Simulation in Verbindung mit dem kompressiblen Smagorinsky Mod-

ell nach Furby eingesetzt. Geringe Temperaturvariation erlaubt die Annahme adiabater

Wände. Fluid-Struktur Interaktion wird durch das logarithmische Wandgesetz für kom-

pressible turbulente Strömungen modelliert. Die Parameterstudien untersuchen den Ein-

fluss verschiedener Faktoren wie geometrische Eigenschaften und Viskosität des An-

triebsmediums. Anschließend werden Simulationen unter einer Vielzahl verschiedener

Normvolumenströme V̇N und Kugelrotationsfrequenzen f durchgeführt.

Da die Schleifkraft des 40mm Prototyps weniger als 0,04N betrug, wurde für ein funk-

tionstüchtiges 8mm Schleifwerkzeug das Antriebsmedium durch ein Öl mit einer kinemat-

ischen Viskosität von 1,38 · 104m2 s-1 bei Raumtemperatur ersetzt. Zwei weitere Kanäle

wurden hinzugefügt und vertikal angeordnet, um die Schleifkraft und die Anpresskraft

zu erhöhen. So konnte ausreichend Schleifkraft von mehr als 0,1N und Anpresskraft

von mehr als 1N erzielt werden. Im Anschluss wurden durch eine Skalenanalyse dimen-
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sionslose Gleichungen für Normalkräfte, Schleifkraft sowie Anpresskraft aufgestellt. Diese

konnten nicht nur genutzt werden um auf beliebige weitere Skalen schließen zu können,

sondern auch um die beiden Antriebsmedien und die beiden Geometrien untereinander

zu vergleichen.

Die in dieser Arbeit präsentierten Ergebnisse zeigen nicht nur wie die Kraftübertragung

von Fluiden auf Festkörper skalenübergreifend modelliert werden kann und die Resultate

zur Herleitung dimensionsloser Gleichungen, welche für beliebige Parameter gelten, gen-

utzt werden, sondern bieten eine Grundlage für die Entwicklung eines neuartigen und

bahnbrechenden Schleifwerkzeuges auf dem Gebiet des Mikroschleifens.
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Abstract

Developing miniature tools used to machine parts that are themselves small in size is

rapidly gaining importance in fields such as mechatronics, optics, or medicine. Miniatur-

ising existing tools has its limitations and it is becoming ever more necessary to develop

new tools in order make progress in this regard.

This thesis describes the design of a new kind of abrading sphere which is magnetically

mounted inside a spherical gap and set in rotation pneumatically with air. A parametric

study is performed in order to determine optimal geometric layout of a prototype while

taking physical restrictions into account. The resulting optimal configuration is then

examined in detail in order to determine demands to be met by the magnetic bearing

and its computerised control, as well as to quantify the extent of force potentially available

to the abrasion process. Contrary to expectation, the analysis showed that air is not a

viable propulsion medium and that oil needs to take its place to yield sufficient grinding

force. Using the knowledge gained from developing the prototype, a smaller working

model is devised and analysed using hydraulic propulsion. Use of the tool with pneumatic

propulsion is then subjected to a study across multiple length scales focusing on the forces

acting on the grinding sphere.

Mach numbers range up to 0.9 with Reynolds numbers of up to 105. Hence, Large Eddy

Simulation is performed in conjunction with the compressible Smagorinsky model ac-

cording to Fureby. Minimal temperature variation allows for the assumption of adiabatic

walls. Fluid-solid interaction is modelled using the law of the wall for compressible tur-

bulent flow. Parametric studies investigate the influence of varying geometric factors and

viscosities of the fluid used. Subsequently, simulations are conducted under a variety of

standard volumetric flow rates V̇N and rotation frequencies f .

The available grinding force determined for the 40mm prototype using pneumatic propul-

sion was found not to exceed 0.04N. For the working 8mm model, the propulsion medium

was thus changed to an oil with a kinematic viscosity of 1.38 · 10−4m2 s-1 at room tem-

perature. Two additional fluid ducts were added and introduced vertically from the top

to increase grinding force and downward force. Sufficient grinding force in excess of 0.1N

and contact force exceeding 1N could be achieved. In a subsequent study across mul-

tiple scales, non-dimensional relations governing normal forces, grinding force, as well as

grinding power were established. These could not only be used to predict arbitrary scales,

but also to compare the two propulsion media and geometric variations with each other.
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The results presented in this thesis demonstrate how fluid-to-solid force transfer can be

modelled across a multitude of scales and the results used to derive non-dimensional

relations that hold true for arbitrary parameters. They also lay the foundation for the

development of a novel and revolutionary grinding tool in the field of miniature precision

machining.
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Carla Brandao, Alexander Norbach, and all the members of SPP 1476 for their excellent

cooperation and fruitful discussions while working on project GrindBall. Additionally,

I would like to thank my colleagues at ZARM Stephan Reichel, Claudia Zimmermann,

Torben Schadowski, Fabian Fastabend, Rico Schultz, and Želimir Marojević with whom
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Nomenclature

Nomenclature

Scalar quantities are dented by normal italic symbols while vectors and tensors are presen-

ted in bold. To differentiate, vectors are underlined once while tensors receive double

underlining. Alternatively, Einstein notation may be used to denote vector and tensor

components. Unless stated otherwise, units and dimensions are presented according to

the International System of Units, i.e. mass (M) in kg, length (L) in meters m, time

(T) in seconds s, temperature (Θ) in Kelvin K, and amount of substance (N) in mol.

Furthermore, the derived units Newton N=kgms-2, Pascal Pa=kgm-1 s-2, Hertz Hz=s-1,

Joule J=kgm2 s-2and Watt W=J s-1are employed.

Roman Symbols

Symbol Description Unit Dimension

A Area m2 L2

AS Sutherland coefficient kgm-1s-1K−
1

2 ML-1T-1Θ−
1

2

a Acceleration m s-2 LT-2

a Speed of sound m s-1 LT-1

a Arbitrary scalar

B Constant

b Body force vector N MLT-2

b Blending coefficient

Cij Clark tensor m2s-2 L2T-2

C Constant

cp Specific heat at constant pressure J kg-1K-1 L2Θ-1T-2

cv Specific heat at constant volume J kg-1K-1 L2Θ-1T-2

d Diameter m L

E Energy J ML2T-3

Etot Total energy per unit volume Jm-3 ML-1T-2

ei Unit vector

e Internal energy per unit mass m2s-2 L2T-2

F Force N MLT-2

f Force per volume Nm-3 ML-2T-2

Ft Abrasion force N MLT-2

f Rotation frequency Hz T-1

f Generic flux term

f Arbitrary function

G Convolution kernel

g Gravity vector m s-2 LT-2

h Enthalpy per unit mass m2s-2 L2T-2
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Nomenclature

h Height m L

I Identity tensor

K Constant

KB Boltzmann Constant JK-1 ML2Θ-1T-2

k Thermal conductivity Wm-1K-1 MLΘ-1T-3

kl Characteristic length of wall roughness m L

ksgs Subgrid scale kinetic energy m2s-2 L2T-2

Lij Leonard tensor m2s-2 L2T-2

L Characteristic length m L

M Moment Nm ML2T-2

M Molecular weight kgmol-1 MN-1

m Mass kg M

ṁ Mass flow rate kg s-1 MT-1

n Normal vector

P Power W M L T-3

p Pressure Pa ML-1T-2

Q Source term

Q Heat per unit volume Jm-3 ML-1T-2

q Heat flux kg s-2 MT-3

Rij Reynolds tensor m2s-2 L2T-2

R Specific gas constant J kg-1K-1 L2Θ-1T-2

R0 Universal gas constant Jmol-1K ML2N-1Θ-1T-2

r Spatial position vector

r Radial vector

r Radius m L

S Symmetric velocity gradient s-1 T-1

s Path length m L

T Arbitrary tensor

U Arbitrary tensor

T Temperature K Θ

TS Sutherland constant K Θ

t Time s T

U Magnitude of velocity m s-1 LT-1

u Velocity vector m s-1 LT-1

uτ Shear velocity m s-1 LT-1

u1, u2, u3 Velocity components m s-1 LT-1

v Arbitrary vector

V Volume m3 L3

V̇ Volumetric flow rate m3s-1 L3T-1

w Rate of work per unit area kg s-2 MT-3

w Arbitrary vector
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Nomenclature

W Work per unit volume Jm-3 ML-1T-2

x Spatial position vector

x̂ Unit vector

x Standard variable

x1, x2, x3 Cartesian coordinates

x, y, z Cartesian coordinates

Greek Symbols

Symbol Description Unit Dimension

α Thermal diffusivity Pa s ML-1T-1

α, β, γ Direction cosines

α, β Angles

β Coefficient of thermal expansion K-1 Θ-1

Γ Diffusion coefficient kgm-1s-1 ML-1T-1

γ Ratio of specific heats

δ Viscous sublayer thickness m L

δij Kronecker delta

Δ Difference

Δ Filter cutoff length m L

ε Strain rate tensor s-1 T-1

ε Error

ε Extrapolated standard deviation

θ Angle

κ Von Kármán Constant

λ Coefficient of bulk viscosity Pa s ML-1T-1

λ Interpolation factor

μ Dynamic viscosity Pa s ML-1T-1

ν Kinematic viscosity m2s-1 L2T-1

ξ parameter

ρ Density kgm-3 ML-3

σ Stress tensor kgm-1s-2 ML-1T-2

σ Standard deviation

σ(x) Sigmoid function

τ Sub-grid scale stress tensor m2s-2 L2T-2

τ Stress kgm-1s-2 ML-1T-2

τw Wall shear stress kgm-1s-2 ML-1T-2

Φ Dissipation function N s-1 MLT-3

ψ Arbitrary vector

ψ Arbitrary intensive property
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Nomenclature

dΩ Rotation vector

Ω Control volume m3 L3

ω Vorticity s-1 T-1

Dimensionless quantities

Symbol Description Definition

Co Courant number Δt
∑3

i=1
ui

Δxi

Pe Péclet number ρUΔx
2Γ

Re Reynolds number UL
ν

Rew Boundary Reynolds number uτkl
ν

u+ Dimensionless velocity u
uτ

uτ Shear velocity
√

τw
ρ

y+ Wall distance yuτ

ν

Subscripts

Symbol Description

0 Initial value

0 Zero value

d Duct

eff Effective quantity

g Gap

l Length related quantity

M Mechanical

max maximum

min minimum

o Offset

op operating point

p Pressure

s Sphere

sgs Sub-grid scale

t Tangential

t Turbulent

tot Total

τ Shear stress related quantity

v Viscous

w Wall related quantity
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Nomenclature

Superscripts

Symbol Description

+ Wall coordinate

∗ Deviatoric component

D Dimensionless quantity

1mm 1mm sphere

8mm 8mm sphere

40mm 40mm sphere

diff diffusive

num numerical

p prototype

real realistic

T Transpose

Operations

Operation Description Definition

∇s Gradient of s ∂s
∂xi

ei

∇v Gradient of v ∂vi
∂xj

(
ei ⊗ ej

)
∇ · v Divergence of v ∂vi

∂xi

∇2s Laplacian of s ∂
∂xi

∂s
∂xi

v ⊗w Outer product of v and w Tij = viwj

tr(T) Trace of T Tkk

T∗ Deviatoric component of T Tij − Tiiδij
T : U Double inner product of T and U TijUij

Abbreviations

Acronym Description

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

CDS Central differencing scheme

DNS Direct Numerical Simulation

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

LES Large Eddy Simulation

xv

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Nomenclature

LHS Left hand side

LUDS Linear Upwind Differencing Scheme

RANS Reynolds-averaged Navier-Stokes

RHS Right hand side

sgs Subgrid scale

rpm Revolutions per minute

UDS Upwind differencing scheme

w.r.t. With respect to

xvi

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Figures

1.1 Grinding force depending on axis orientation . . . . . . . . . . . . . . . . 2

1.2 GrindBall - basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Stresses σij acting on a control volume . . . . . . . . . . . . . . . . . . . 10

2.2 Distortion of a moving fluid element (as seen in [Whi05]) . . . . . . . . . 11

2.3 Exchange of heat and work done on dydz of a control volume [Whi05] . . 17

3.1 Discretisation on a computational grid in x-direction (cp. [Nol93]) . . . . 26

3.2 FVM control volume (cp. [Nol93]) . . . . . . . . . . . . . . . . . . . . . . 27

3.3 UDS for uw > 0 and ue > 0 (cp. [Nol93]) . . . . . . . . . . . . . . . . . . 30

3.4 LUDS for ue > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 CDS for ψ on the control borders w and e (cp. [Nol93]) . . . . . . . . . . 32

3.6 Approximation of f(t) integrated over Δt. (i) explicit Euler, (ii) implicit

Euler, (iii) midpoint rule, (iv) trapezoidal rule. (cp. [FP96]) . . . . . . . . 36

3.7 Symbolic representation of the energy spectrum decomposition in Large

Eddy Simulation where k is the wave number and E(k) is the associated

energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Law of the wall: layer transitions . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Magnetic bearing aligned around the grinding sphere . . . . . . . . . . . 56

4.2 Variable parameters for the parametric study . . . . . . . . . . . . . . . . 57

4.3 Side view of the mesh used for the parametric study (clipped along y = 0) 60

4.4 Top view of the mesh used for the parametric study (clipped along y = 0) 60

4.5 The four main mesh domains: (i) inlet basin, (ii) duct, (iii) spherical gap,

(iv) outlet basin (clipped along y = 0) . . . . . . . . . . . . . . . . . . . 61

4.6 Timeline for simulations in the parametric study . . . . . . . . . . . . . . 62

4.7 Results from the first part of the parametric study: Tangential force Ft

and normal forces Fx, Fy, and Fz . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Dimensionless velocity profiles for individual cases in part one of the para-

metric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Dimensionless pressure distribution for individual cases in part one of the

parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10 Mach number distribution for individual cases in part one of the parametric

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Figures

4.11 Results from the second part of the parametric study: Tangential force Ft

and normal forces Fx, Fy, and Fz . . . . . . . . . . . . . . . . . . . . . . 71

4.12 Mesh refinement inside the spherical gap (clipped along y = 0) . . . . . . 73

4.13 Timeline for simulations done for the GrindBall prototype . . . . . . . . 74

4.14 Temperature distribution in [K] for the case V̇N = 9m3 h-1, f = 100Hz . 76

4.15 Forces F p
x and F p

z for all simulations conducted for the prototype . . . . 77

4.16 Mean forces F
p

x and F
p

z averaged over rotation frequency f for the prototype 77

4.17 Tangential force F p
t over rotation frequency f with fitted regression lines

for each standard volumetric flow rate V̇N for the GrindBall prototype . 78

4.18 Stationary force transfer F p
t,0 and idle rotation frequency f p

0 over volumetric

flow rate V̇N for the GrindBall prototype . . . . . . . . . . . . . . . . . . 79

4.19 Flow profiles for f = 0Hz, V̇N = 8m3h-1 . . . . . . . . . . . . . . . . . . 80

4.20 Flow profiles for f = 50Hz, V̇N = 8m3h-1 . . . . . . . . . . . . . . . . . . 80

4.21 Flow profiles for f = 100Hz, V̇N = 8m3h-1 . . . . . . . . . . . . . . . . . 81

4.22 Flow profiles for f = 300Hz, V̇N = 8m3h-1 . . . . . . . . . . . . . . . . . 81

4.23 Tangential force F p
t depending on rotation frequency f and standard volu-

metric flow rate V̇N for the GrindBall prototype . . . . . . . . . . . . . . 82

4.24 Grinding power P p
G and P p

G,max over rotation frequency f with fitted curves

for each constant volumetric flow rate V̇N for the GrindBall prototype . . 84

4.25 Grinding power P p
G depending on rotation frequency f and volumetric flow

rate V̇N for the GrindBall prototype . . . . . . . . . . . . . . . . . . . . 85

5.1 Experiment devised to validate fluid-to-solid force transfer . . . . . . . . 87

5.2 Experimental setup for the dynamometer validation . . . . . . . . . . . . 88

5.3 Computational grid for the dynamometer validation (2D slice) . . . . . . 89

5.4 Computational grid for the dynamometer validation (3D view) . . . . . . 89

5.5 Isosurfaces with U = 40m/s for flow angles γ (from left) 90◦, 60◦, and 45◦ 90

5.6 Normal forces for a flow angle of 90◦ . . . . . . . . . . . . . . . . . . . . 91

5.7 Normal and tangential forces for a flow angle of 60◦ . . . . . . . . . . . . 91

5.8 Normal and tangential forces for a flow angle of 45◦ . . . . . . . . . . . . 92

6.1 Geometric parameters for the 8mm GrindBall . . . . . . . . . . . . . . . 96

6.2 Tangential force and normal force plotted over viscosity for three test runs 96

6.3 Tangential force and normal force plotted over gap height . . . . . . . . . 98

6.4 Further geometric parameters for the 8mm GrindBall . . . . . . . . . . . 99

6.5 Tangential force and normal force for varying co-duct configurations . . . 99

6.6 Tangential force and normal force plotted over duct diameter . . . . . . . 100

6.7 Tangential force and normal force plotted over main duct offset . . . . . 101

6.8 Tangential force and normal force plotted over the angle φ . . . . . . . . 101

6.10 Tangential force and normal force plotted over duct diameter . . . . . . . 102

6.9 Tangential force and normal force plotted over main duct offset . . . . . 102

xviii

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Figures

6.11 8mm GrindBall module (top left) and its interior represented by CAD

imagery (top right and bottom) . . . . . . . . . . . . . . . . . . . . . . . 104

6.12 Computational domain for the final GrindBall geometry . . . . . . . . . 106

6.13 Grids tested for the final GrindBall geometry. (i) base, (ii) mod 1, (iii)

mod 2, (iv) mod 3, (v) mod 4, (vi) base 2 . . . . . . . . . . . . . . . . . . . 107

6.14 Results of the mesh test for air . . . . . . . . . . . . . . . . . . . . . . . 107

6.15 Results of the mesh test for oil . . . . . . . . . . . . . . . . . . . . . . . . 108

6.16 Pressure and Cavitation number and velocity magnitude for V̇ = 7 lmin-1 110

6.17 Forces F oil
x and F oil

n for all simulations conducted for 8mm oil . . . . . . 110

6.18 3D forces F oil
x and F oil

n over rotation frequency f and flow rate V̇ . . . . 111

6.19 Pressure distribution for two different rotation frequencies f at constant

flow rate V̇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.20 Tangential force F oil
t over rotation frequency f with fitted regression lines

for each volumetric flow rate V̇ for 8mm oil . . . . . . . . . . . . . . . . 112

6.21 Stationary force transfer F oil
t,0 and idle rotation frequency f oil

0 over volumet-

ric flow rate V̇ for 8mm oil . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.22 Tangential force F oil
t depending on rotation frequency f and volumetric

flow rate V̇ for 8mm oil . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.23 Grinding power P oil
G and P oil

G,max over rotation frequency f with fitted curves

for each constant volumetric flow rate V̇ for 8mm oil . . . . . . . . . . . 115

6.24 Grinding power P oil
G depending on rotation frequency f and volumetric

flow rate V̇ for 8mm oil . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Timeline for simulations done for the GrindBall prototype . . . . . . . . 118

7.2 Mean pressure distribution inside the spherical gap across three scales . . 122

7.3 Forces Fx and Fz for all simulations conducted for 40mm, 8mm, and 1mm 123

7.4 Mean forces F x and F z averaged over rotation frequency f for 40mm,

8mm, and 1mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Tangential force F 40mm
t over rotation frequency f with fitted regression

lines for each standard volumetric flow rate V̇N for 40mm air . . . . . . . 125

7.6 Tangential force F 8mm
t over rotation frequency f with fitted regression lines

for each standard volumetric flow rate V̇N for 8mm air . . . . . . . . . . 126

7.7 Tangential force F 1mm
t over rotation frequency f with fitted regression

curves for each standard volumetric flow rate V̇N for 1mm air . . . . . . 127

7.8 Stationary force transfer F 40mm
t,0 and idle rotation frequency f 40mm

0 over

volumetric flow rate V̇N for 40mm, 8mm, and 1mm . . . . . . . . . . . . 128

7.9 Tangential force F 40mm
t for a 40mm pneumatic sphere . . . . . . . . . . . 130

7.10 Tangential force F 8mm
t for an 8mm pneumatic sphere . . . . . . . . . . . 130

7.11 Tangential force F 1mm
t for a 1mm pneumatic sphere . . . . . . . . . . . . 131

7.12 Grinding power P 40mm
G and P 40mm

G,max for a 40mm pneumatic sphere . . . . . 132

7.13 Grinding power P 8mm
G and P 8mm

G,max for an 8mm pneumatic sphere . . . . . 132

xix

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Figures

7.14 Grinding power P 1mm
G and P 1mm

G,max for a 1mm pneumatic sphere . . . . . . 133

7.15 Grinding power P 40mm
G for a 40mm pneumatic sphere . . . . . . . . . . . 134

7.16 Grinding power P 40mm
G for an 8mm pneumatic sphere . . . . . . . . . . . 135

7.17 Grinding power P 40mm
G for a 1mm pneumatic sphere . . . . . . . . . . . . 135

7.18 Mean force in x-direction F
D

x over Reynolds number Re (log-log) . . . . . 137

7.19 Mean force in z-direction F
D

z over Reynolds number Re . . . . . . . . . . 138

7.20 Tangential force FD
t over rotation frequency fD with fitted regression

curves for constant Reynolds numbers Re . . . . . . . . . . . . . . . . . . 139

7.21 Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re (log-log) with individual fits per scale . . . . . . . . . . . . . 139

7.22 Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re (log-log) with global fit . . . . . . . . . . . . . . . . . . . . . 140

7.23 Tangential force FD
t depending on rotation frequency fD and Reynolds

number Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.24 Grinding power PD
G depending on rotation frequency fD and Reynolds

number Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.25 Mean normal forces F
D

x and F
D

z over Reynolds number Re using air for

single and triple duct geometries . . . . . . . . . . . . . . . . . . . . . . . 144

7.26 Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re for single and triple duct geometries using air . . . . . . . . . 145

7.27 Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re for pneumatic and hydraulic propulsion . . . . . . . . . . . . 147

A.1 Grinding angle of 10◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.2 Extrapolation of standard deviation for f0 . . . . . . . . . . . . . . . . . 157

A.3 Functions f(x) and g(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.4 Functions h(x) (left) and H(x) (right) with x0 = 5 and λ = 0.1, 0.5, 1.0, 1.5 159

B.1 2D slices of a cylinder mesh. Crude mesh (left) and butterfly mesh (right) 161

B.2 Optimising butterfly mesh parameters . . . . . . . . . . . . . . . . . . . 162

B.3 Optimal butterfly mesh setup in coarse (left) and fine (right) variations . 163

B.4 Adaptive grid refinement for the GrindBall . . . . . . . . . . . . . . . . . 174

B.5 Local grid refinement for a submarine . . . . . . . . . . . . . . . . . . . . 175

xx

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Tables

4.1 Cases considered while examining duct diameter and spherical gap height 57

4.2 Mass flow rates used for the parametric study [kg s-1] . . . . . . . . . . . 58

4.3 Boundary conditions used for the parametric study . . . . . . . . . . . . 59

4.4 Results in Newton [N] from the first part of the parametric study: Tan-

gential forces Ft as well as pressure and viscous forces Fx, Fy, and Fz . . 64

4.5 Results in Newton [N] from the second part of the parametric study: Tan-

gential forces Ft as well as pressure and viscous forces Fx, Fy, and Fz . . 70

4.6 Case configurations simulated for the GrindBall prototype . . . . . . . . 72

4.7 Boundary conditions used for the GrindBall prototype . . . . . . . . . . 73

4.8 Reynolds numbers Re for each flow rate . . . . . . . . . . . . . . . . . . 75

4.9 Maximum Mach numbers Ma for each case . . . . . . . . . . . . . . . . . 75

6.1 Kinematic viscosity, density, and vapour pressure of examined EVO Fluid

HLP oils at room temperature T = 293.15K . . . . . . . . . . . . . . . . 95

6.2 Results of the propulsion fluid study: Tangential force Ft, contact force

Fn, and minimum pressure pmin . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Results of the final duct diameter study . . . . . . . . . . . . . . . . . . . 102

6.4 Grids tested for the final GrindBall geometry. ncells,gap denotes the number

of cells along the height of the top half of the spherical gap and ncells,total

denotes the total number of cells in the grid . . . . . . . . . . . . . . . . 105

6.5 Reynolds numbers and Cavitation numbers corresponding to each flow rate

simulated for 8mm oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Time details for simulations done across all length scales . . . . . . . . . 118

7.2 Case configurations simulated for the triple duct geometry using pneumatic

propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Reynolds numbers Re for each flow rate for 40mm air . . . . . . . . . . . 119

7.4 Maximum Mach Ma numbers for each case at 40mm . . . . . . . . . . . 121

B.1 Input parameters (standard font) and variables (italic font) used in the

Maple script to create the GrindBall mesh . . . . . . . . . . . . . . . . . 165

C.3 Coefficients for the 40mm GrindBall prototype . . . . . . . . . . . . . . 179

C.4 Dynamometer validation: experimental results . . . . . . . . . . . . . . . 180

C.5 Dynamometer validation: simulation results . . . . . . . . . . . . . . . . 180

xxi

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Tables

C.6 Results of the propulsion fluid study: Tangential force Ft, contact force

Fn, and minimum pressure pmin . . . . . . . . . . . . . . . . . . . . . . . 181

C.7 Results of the gap height study. All forces in [N] . . . . . . . . . . . . . . 181

C.8 Results of the co-duct position study. All forces in [N] . . . . . . . . . . . 181

C.9 Results of the duct diameter study. All forces in [N] . . . . . . . . . . . . 182

C.10 Results of the main duct offset study. All forces in [N] . . . . . . . . . . . 182

C.11 Results of the angle φ study. All forces in [N] . . . . . . . . . . . . . . . 182

C.12 Results of the second main duct offset study. All forces in [N] . . . . . . 183

C.13 Results of the second duct diameter study. All forces in [N] . . . . . . . . 183

C.14 Coefficients for the 8mm GrindBall using oil . . . . . . . . . . . . . . . . 184

C.15 Coefficients for the 40mm GrindBall using air . . . . . . . . . . . . . . . 186

C.16 Coefficients for the 8mm GrindBall using air . . . . . . . . . . . . . . . . 187

C.17 Coefficients for the 1mm GrindBall using air . . . . . . . . . . . . . . . . 188

xxii

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 1

Introduction

Project GrindBall is an applied research project sponsored by the German Research

Foundation (DFG) as part of the work-group Small Machine Tools (SPP 1476) involving

simulation, electro-magnetic control, and manufacture of a miniature abrading device.

The workload in this project is hence distributed across three institutes: computational

simulation is conducted at the Center of Applied Space Technology and Microgravity

(ZARM), the electro-magnetic control element is developed at the Institute for Electrical

Drives, Power Electronics and Devices (IALB), and manufacture of the tool itself is

undertaken by the Laboratory for Precision Machining (LFM).

1.1 Motivation

Miniaturisation is of great importance in many fields such as mechantronics, optics, or

medicine as it enables new functionality or makes processes more economical [BRB+13].

Micro-grinding, for example, can be performed with extremely high precision. While

this increasing precision [DMT06] has made it possible to produce smaller and smaller

workpieces, the tools used to work on them have, for the most part, remained con-

stant in size [WRK10]. The skewed ratio of tool size to workpiece size is creating a

growing ecological, economic, and technical inefficiency regarding respective processes

[WGKK12]. Until now, miniaturising existing tools has been performed in order to com-

bat said skewed ratio. This approach is, however, reaching its limits regarding technical

feasibility and usefulness [ASB10]. For this reason, new innovative concepts and tools

need to be developed, which are specifically designed to cope with small workpieces and

spatially confined environments, in order to make progress in production processes such

as micro-machining and ultra precise machining. It has already been shown that new

operating principles and technologies present innovative methods of miniaturisation that

supersede a mere reduction in size of pre-existing tools [BRB+13, DMK12]. This field

possesses a lot of potential in terms of research and development of new tools which will

be capable of outperforming currently available technologies. Workspace utilisation and

energy requirements can still be vastly improved upon. Furthermore, the tools’ susceptib-
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CHAPTER 1. INTRODUCTION

ility to thermal deformation effects can be greatly reduced as a result of their smaller size

[BRB+13]. Further direct results of miniature tools are increased flexibility and design

possibilities concerning the machining of small workpieces since micro-tools can quickly

adapt to new production procedures.

Since the ratio of surface area to volume increases dramatically with increasing mini-

aturisation, one has, proportionally, far more functional surface to work with as volume

decreases. This effect is extremely useful for abrasive tools because the control dynamics,

for example, improve with decreasing tool size, thus also improving the tools ability to

adapt to particular machining conditions [BRB+13]. Most abrasive tools used to cre-

ate micro cavities suffer from the following problem: since the axis of rotation and its

orientation to the workpiece are crucial in ensuring positive grinding results, aligning

the axis of rotation is key when grinding a cavity. A grinding pencil, for instance, has

its theoretical maximum effectiveness when the axis of rotation is parallel to the work

piece. This, however, can often be difficult to achieve as the grinding pencil’s mounting

apparatus can touch down on to the work piece before maximum effectiveness can be

reached. Also, should the axis of rotation be perpendicular to the workpiece, the grind-

ing pencil’s abrasion would tend to zero. This problem can be counteracted by tilting

the apparatus slightly, however, this still delivers mediocre results because it does not

maximise the tool’s effectiveness. Figure 1.1 illustrates the problems stated along with a

theoretical solution in which the axis of rotation is parallel to the workpiece at all times,

thus maximising the tool’s grinding efficiency. It is the goal of project GrindBall to de-

velop a spherical grinding tool, which, in addition, combines propulsion and control into

one single element. The intended result is a highly compact, precise, efficient, and adapt-

ive miniature tool, which can be used as a desktop machine for processing non-magnetic

workpieces such as glass or ceramic. Possible applications include manufacturing dentures

or miniature camera lenses as are used in modern smart phones (which require extreme

precision) to name just a few.

Figure 1.1: Grinding force depending on axis orientation

2
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1.2. BASIC SETUP

1.2 Basic setup

To achieve development of such a tool, fluid-driven propulsion is used in conjunction with

a ferromagnetic sphere which is either covered in an abrasive coating or made entirely

of abrasive material. It has already been shown that a variety of new production pro-

cesses can achieve pleasing results concerning the manufacture of viable grinding spheres

[BGB12, BRKB13]. In particular, injection moulding of micro-particle filled polymers

has been shown to perform well in experiments conducted by the LFM and presents a

viable option for use with the GrindBall [BRKB13].

Displacing forces are to be compensated by an adjustable opposing force, so that the

sphere is held in a predefined position relative to the shaft at all times (as seen in Figure

1.2). Such displacing forces include gravity, vibration, forces resulting from the process

of machining workpieces, and of course forces exerted by the fluid propulsion, all of which

are to be counteracted. This task is performed by a magnetic bearing, which in addition

to controlling the position of the grinding sphere, also defines an axis of rotation in

combination with the flow. Experiments and simulations conducted by the IALB have

shown that this concept can prove to meet the requirements demanded by this project and

mathematical models were derived which aid in magnetically controlling and adjusting

the position of the grinding sphere relative to the grinding shaft [Nor12, BOG+13].

The first prototype will utilise a sphere with a diameter of 40mm. Throughout the

duration of project GrindBall, this diameter is to be gradually scaled down to 1mm with

surrounding elements shrinking in proportion. The force necessary to achieve abrasion

will be applied by the fluid flow. Due to the sphere having little mass and the resulting

low moment of inertia, rotational frequencies in excess of 10,000 rpm and an extremely

high control dynamic and accuracy are to be expected. Planning and construction of the

GrindBall requires interdisciplinary cooperation between three branches of production

technology: manufacturing engineering, electrical engineering, and fluid mechanics.

Figure 1.2: GrindBall - basic setup

3
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CHAPTER 1. INTRODUCTION

1.3 Goals and limitations

This thesis begins by introducing the knowledge necessary to conduct computational

simulations in the scope of this project, i.e. by deriving the equations governing fluid

flow and stating common computational methods used in CFD simulations. Focus is

drawn to the Finite Volume Method (FVM) and the modelling of turbulence using Large

Eddy Simulation (LES). Throughout, the discussion is limited to sub-sonic flow and

the use of adiabatic walls with uniform initial temperature distribution. Supersonic flow,

heat-transferring walls, and temperature gradients on walls are best discussed once actual

grinding trails have been performed and more data is available regarding the magnetic

bearing’s capabilities, material properties, and production of heat both by the bearing

and the grinding process.

A parametric study is performed to determine the optimal configuration of a prototype

tool with a 40mm sphere using pneumatic propulsion (air). Once found, the optimal

layout is subjected to a multitude of simulations under varying volumetric flow rates and

spherical rotation frequencies, which ascertain the GrindBall ’s possibilities and limita-

tions. This includes identifying conditions for stable and efficient operation of the tool,

quantifying acting forces, and deriving mathematical models which govern the force and

power available to the abrasion process.

A fully functional version of the tool is devised with a spherical diameter of 8mm using the

knowledge gained from the development of the prototype. Parametric studies determine

an optimal propulsion fluid and further improve the geometric layout. Forces and power

are determined and discussed.

Simulation results - with specific focus on forces exerted by fluid impacting on to solid

bodies - are validated by devising and performing an experiment with which to empirically

confirm the presented findings. This is done using a setup consistent with the developed

prototype. However, moving walls, which are analogous to a rotating grinding sphere,

can not considered in the experimental setup.

Finally, a study is carried out using pneumatic propulsion which determines both forces

and power for three different spherical diameters. These cover laminar, transitional,

and fully turbulent flow. Using the resulting findings, non-dimensional relations are

derived which govern forces and power depending on Reynolds number and a dimesionless

spherical rotation frequency. Not only are the differences between laminar and turbulent

flow made apparent, the need for further simulations with this geometry is eliminated as

the resulting relations can be applied to arbitrary scales. Furthermore, it is shown that

this type of analysis can be used both to compare different propulsion media and varying

geometric layouts.

Knowledge of grinding force and power is extremely important when machining work-

pieces as it ensures that the rotation frequency and the cutting speed can be adapted

4
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to particular materials, thereby ensuring accurate manufacturing of high quality cavit-

ies with smooth surfaces. The analyses conducted within this thesis pave the way for

the development of a novel and revolutionary new grinding tool and demonstrate how

fluid-to-solid force transfer can be modelled across a multitude of scales.

5
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Chapter 2

Governing equations

The following section derives the equations which govern the flow of Newtonian com-

pressible fluids and gives an overview of the concepts behind their derivations. Their

incompressible equivalents are stated and specific models such as the perfect gas law and

Sutherland’s viscosity model are introduced.

2.1 Conservation of mass

Let ψ denote an arbitrary intensive property defined over a material control volume V .

The Reynolds transport theorem1 states that the rate of change of ψ within V must be

equal to the sum of the flux of ψ over the volume boundaries δV and sources or sinks Q

within V :
d

dt

ˆ

V

ψ dV = −
ˆ

δV

ψu · n dA+

ˆ

V

Q dV. (2.1)

Using the divergence theorem1, the surface integral becomes a volume integral:

d

dt

ˆ

V

ψ dV = −
ˆ

V

∇ · (ψu) dV +

ˆ

V

Q dV. (2.2)

Also the LHS can be written as

d

dt

ˆ

V

ψ dV =

ˆ

V

∂ψ

∂t
dV (2.3)

using Leibniz’s integral rule1. Now the volume integrals may be combined into one single

integral: ˆ

V

∂ψ

∂t
+∇ · (ψu)−QdV = 0. (2.4)

1See Appendix A
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CHAPTER 2. GOVERNING EQUATIONS

Since this must hold for an arbitrary volume V , the integrand itself must equal zero.

Hence,
∂ψ

∂t
+∇ · (ψu)−Q = 0. (2.5)

This generic equation of continuity (eqn (2.5)) may be used to derive various conservation

laws. The most basic such law is obtained by substituting the mass density ρ for ψ and

assuming Q = 0, i.e. mass is neither created nor destroyed:

∂ρ

∂t
+∇ · (ρu) = 0. (2.6)

This is known as the mass continuity equation, often also simply referred to as the con-

tinuity equation (cp. [Whi05]).

2.2 Conservation of momentum

In a similar yet somewhat less straight forward way, ρu may be substituted into eqn (2.5)

to derive a relation for the rate of change of momentum. Note that Q is replaced by f , a

vector representing sources and sinks of momentum, i.e. forces per unit volume:

∂ (ρu)

∂t
+∇ · (ρu⊗ u)− f = 0. (2.7)

Expanding the derivatives once yields

∂ρ

∂t
u+ ρ

∂u

∂t
+∇ (ρu) · u+ ρu∇ · u = f , (2.8)

which can be further decomposed into

∂ρ

∂t
u+ ρ

∂u

∂t
+∇ (ρ)u · u+ ρ∇ (u) · u+ ρu∇ · u = f . (2.9)

The following rearrangement highlights common factors ρ and u:

u
∂ρ

∂t
+ ρ

∂u

∂t
+ uu · ∇ρ+ ρu · ∇u+ ρu∇ · u = f , (2.10)

which may be collected thusly:

ρ

(
∂u

∂t
+ u · ∇u

)
+ u

(
∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u

)
= f . (2.11)

At this point it is worth noting that the expression inside the second parenthesis on

the LHS of eqn (2.11) is equal to the LHS of eqn (2.6), which is equal to zero. Hence,

conservation of momentum is given by

ρ
∂u

∂t
+ ρu · ∇u = f . (2.12)
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2.2. CONSERVATION OF MOMENTUM

f is typically further divided into surface forces and body forces. Body forces are those

which apply to the entire mass of the control volume. Such forces are usually gravitational

or electromagnetic in nature. Here only gravity is considered, and thus

f = fbody + f surface = ρg + f surface, (2.13)

where g is the vector acceleration of gravity.

Surface forces describe forces applied by external stresses on the sides of the volume

element. These stresses consist of 9 components and are described by the tensor

σ =

⎛⎝ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎠ . (2.14)

σ is a symmetric tensor, i.e. σij = σji. Symmetry is required to satisfy equilibrium of

moments about the three axes of the volume element and will be discussed in section 2.4.

Note that the entries in the ith row of σ correspond to the forces acting on the surface

facing in the direction of i. Entries in the jth column correspond to forces that act in the

direction of j. Figure 2.1 shows individual components σij acting on a control volume.

Hence, the total force in each direction exerted by stress is given by

dFx = σxxdydz + σyxdxdz + σzxdxdy

dFy = σxydydz + σyydxdz + σzydxdy

dFz = σxzdydz + σyzdxdz + σzzdxdy.

In equilibrium, these forces would be balanced by equal and opposite forces on the back

faces of the volume. However, if the element were to accelerate, stresses on the front and

back would differ by differential amounts. In the direction of x, for example,

σxx,front = σxx,back +
∂σxx

∂x
dx, (2.15)

resulting in a net force on the volume element in the direction of x:

dFx,net =

(
∂σxx

∂x
dx

)
dydz +

(
∂σyx

∂y
dy

)
dxdz +

(
∂σzx

∂z
dz

)
dxdy. (2.16)

Or, dividing by V = dxdydz and taking into account the symmetry of σ:

fx =
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
, (2.17)

which is equivalent to taking the divergence of the vector composed of the top row of the

stress tensor. Similarly, f2 and f3 are the divergences of the second and third row of σ

respectively. Thus, the total vector surface force is

f surface = ∇ · σ =
∂σij

∂xj

, (2.18)
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CHAPTER 2. GOVERNING EQUATIONS

Figure 2.1: Stresses σij acting on a control volume

where ∇·σ is to be interpreted in the tensor sense, resulting in a vector. Eqn (2.12) now

becomes

ρ
∂u

∂t
+ ρu · ∇u = ∇ · σ + ρg (2.19)

and it remains to express σ in terms of the velocity u. In order to do this, the type of

fluid must be taken into consideration. Here, only Newtonian fluids are examined, i.e.

fluids in which stress is considered a linear function of rate of strain.

2.3 Motion and deformation of a fluid element

In fluid mechanics it is important to be able to describe and quantify motion, deformation,

and rate of deformation of fluid elements. Four different types of motion and deformation

typically exist: translation, rotation, extensional strain (dilatation), and shear strain. A

2D example of these four types can be seen in Figure 2.2. Point B is subject to translation

as it has moved to the new position B′. The diagonal BD represented by the dashed line

has been slightly rotated counter-clockwise to B′D′. Dilatation can be seen in that the

element has gained in size. Finally, the element has been subjected to shear strain as it

is no longer square but now possesses a rhombic shape.

Now for a more analytical approach. Translation is defined using the displacements of

the point B, namely udt and vdt. Hence, the rate of translation is simply u and v.

The rotation of BD is given by dΩz = θ+dα− π
4
. Noting the fact that 2θ+dα+dβ = π

2
,
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2.3. MOTION AND DEFORMATION OF A FLUID ELEMENT

Figure 2.2: Distortion of a moving fluid element (as seen in [Whi05])

θ may be eliminated from the previous expression, leaving

dΩz =
1

2
(dα− dβ) . (2.20)

Both dα and dβ are linked to derivatives of velocity by

dα = lim
dt→0

⎛⎜⎝tan−1

∂v

∂x
dx

dx+
∂u

∂x
dxdt

⎞⎟⎠ dt =
∂v

∂x
dt

dβ = lim
dt→0

⎛⎜⎜⎝tan−1

∂u

∂y
dy

dy +
∂v

∂y
dydt

⎞⎟⎟⎠ dt =
∂u

∂y
dt,

(2.21)

which is valid for small angles. Eqn (2.21) may be substituted into (2.20) to yield the

rate of rotation (also referred to as the angular velocity) about the z-axis:

dΩz

dt
=

1

2

(
∂v

∂x
− ∂u

∂y

)
. (2.22)

Similarly, now for a 3D flow, the rates of rotation about the x and y axis are

dΩx

dt
=

1

2

(
∂w

∂y
− ∂v

∂z

)
dΩy

dt
=

1

2

(
∂u

∂z
− ∂w

∂x

)
. (2.23)
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Since there is a factor 1
2
in each of these 3 terms, the vorticity ω usually takes preference

over dΩ
dt
, as it is equal to twice the angular velocity:

ω = 2
dΩ

dt
(2.24)

Closer inspection of eqn (2.22) to eqn (2.24) shows their relation through vector calculus:

ω = ∇× u (2.25)

Hence, the vorticity is identically divergence free (or solenoidal):

∇ · ω = ∇ · (∇× u) = 0 (2.26)

On a side note, a flow with ω = 0 is referred to as irrotational flow.

Shear strain can be thought of as the average decrease of the angle between two lines

which are initially perpendicular to each other. Considering the lines AB and BC in

Figure 2.2 as initial lines, the shear strain increment is 1
2
(dα + dβ). Thus, making use of

eqn (2.21), the shear strain rate is

εxy =
1

2

(
dα

dt
+

dβ

dt

)
=

1

2

(
∂v

∂x
+

∂u

∂y

)
(2.27)

Similarly,

εyz =
1

2

(
∂w

∂y
+

∂v

∂z

)
εzx =

1

2

(
∂u

∂z
+

∂w

∂x

)
(2.28)

Note that shear strain rates are symmetric, i.e. εij = εji.

Finally, it remains to analytically define extensional strain (dilatation). Once again ex-

amining Figure 2.2, the extensional strain in direction of x is defined as the fractional

increase in length of the horizontal side of the fluid element, given by

εxxdt =

(
dx+

∂u

∂x
dxdt

)
− dx

dx
=

∂u

∂x
dt (2.29)

with similar expressions for εyydt and εzzdt. Hence, the three dilatation strain rates are

given by

εxx =
∂u

∂x
εyy =

∂v

∂y
εzz =

∂w

∂z
. (2.30)

These rates of strain form a second-order symmetric tensor

ε =

⎛⎝ εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎞⎠ , (2.31)

which will be shown to play a vital role in the derivation of the equation of motion.
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2.4. DEFORMATION LAW FOR A NEWTONIAN FLUID

2.4 Deformation law for a Newtonian fluid

In 1845, Sir George Gabriel Stokes postulated three assumptions which are valid for gases

and most common fluids:

1. The fluid is continuous and its stress tensor σij is at most a linear function of rates

of strain (σij = f
(
ε
)
).

2. The fluid is isotropic, i.e. its properties are independent of direction and therefore

the deformation law is independent of the coordinate axes in which it is expressed.

3. When the strain rates are zero, the deformation law must reduce to the hydrostatic

pressure condition σij = −pδij .

The previous section shows that the tensor ε is in fact symmetric, i.e. εij = εji. A

property of symmetric tensors is that there exists one and only one set of axes for which

the off-diagonal terms are zero. These are designated the principal axes, for which the

strain rate tensor becomes

ε′ =

⎛⎝ ε′xx 0 0

0 ε′yy 0

0 0 ε′zz

⎞⎠ . (2.32)

Condition 2 requires the principal strain axes be identical to the principal stress axes,

which makes this a good basis from which to derive the deformation law. Let x̂′, ŷ′, and ẑ′

be the principal axes for which shear strain rates and shear stresses, i.e. the off-diagonal

elements, are zero. Using these axes the deformation law can include at most three linear

coefficients, for example

σ′

xx = −p+ C1ε
′

xx + C2ε
′

yy + C3ε
′

zz. (2.33)

Note that −p is added to satisfy condition 3. The condition of isotropy (condition 2)

requires that C2 = C3, reducing the number of independent linear coefficients from three

to two. Hence,

σ′

xx = −p+Kε′xx + C2

(
ε′xx + ε′yy + ε′zz

)
= −p +Kε′xx + C2∇ · u, (2.34)

where K = C1 − C2, and the expression inside parentheses is the divergence of velocity.

Eqn (2.34) may now be transformed to some arbitrary set of axes x̂, ŷ, ẑ in which shear

stresses are not equal to zero. Using directional cosines

α1 ≡ x̂′ · x̂ β1 ≡ ŷ′ · x̂ γ1 ≡ ẑ′ · x̂
α2 ≡ x̂′ · ŷ β2 ≡ ŷ′ · ŷ γ2 ≡ ẑ′ · ŷ
α3 ≡ x̂′ · ẑ β3 ≡ ŷ′ · ẑ γ3 ≡ ẑ′ · ẑ
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coordinates may be transformed from the arbitrary coordinate system to the principal

coordinate system:

x̂′ = α1x̂+ α2ŷ + α3ẑ

ŷ′ = β1x̂ + β2ŷ + β3ẑ

ẑ′ = γ1x̂+ γ2ŷ + γ3ẑ

and vice-versa:

x̂ = α1x̂
′ + β1ŷ

′ + γ1ẑ
′

ŷ = α2x̂
′ + β2ŷ

′ + γ2ẑ
′

ẑ = α3x̂
′ + β3ŷ

′ + γ3ẑ
′.

By orthogonality of the coordinate system, it must hold that

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0,

giving the identity

αlαm + βlβm + γlγm = δlm,

where δlm is the Kronecker delta. These definitions allow the following transformation

rule for normal strain rates and stresses between the principal axes and the new arbitrary

system:

εxx = ε′xxα
2
1 + ε′yyβ

2
1 + ε′zzγ

2
1 (2.35)

σxx = σ′

xxα
2
1 + σ′

yyβ
2
1 + σ′

zzγ
2
1 (2.36)

Similarly, shear strain and stress can be expressed in terms of principal strain rates and

stresses:

εxy = ε′xxα1α2 + ε′yyβ1β2 + ε′zzγ1γ2 (2.37)

σxy = σ′

xxα1α2 + σ′

yyβ1β2 + σ′

zzγ1γ2 (2.38)

Now to eliminate σ′

xx, σ
′

yy , and σ′

zz from eqn (2.36) by using eqn (2.34) in conjunction

with eqn (2.35) and the fact that α2
1 + β2

1 + γ2
1 = 1:

σxx = −p+Kεxx + C2∇ · u. (2.39)

Similar expressions can be obtained for σyy and σzz. Also, σ′

xx, σ
′

yy, and σ′

zz may be

eliminated from eqn (2.38), resulting in

σxy = Kεxy (2.40)

with analogous expressions for σyz and σxz. Note how the symmetry of εij translates

to σij . For Newtonian fluids, K is typically equal to 2μ, twice the ordinary coefficient
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2.5. MECHANICAL AND THERMODYNAMIC PRESSURE

of viscosity (usually called the dynamic viscosity, or simply the viscosity), and C2, the

second coefficient of viscosity, is usually referred to as the coefficient of bulk viscosity λ,

as it is associated with volume expansion (∇ · u). Combining eqn (2.39) and eqn (2.40)

yields a general deformation law for Newtonian viscous fluids:

σij = −pδij + μ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ∇ · uδij, (2.41)

where the rates of strain εij are now presented in terms of velocity gradients.

2.5 Mechanical and thermodynamic pressure

A direct consequence of eqn (2.41) was pointed out by Stokes in that he defined the

mechanical pressure pM as the average compression stress exerted on a control volume

equal to −1
3
tr
(
σ
)
, which may also be expressed using (2.41). Hence,

pM = −1

3
(σxx + σyy + σzz) = p−

(
2

3
μ+ λ

)
∇ · u. (2.42)

This means that the average pressure in a viscous fluid under stress is not the same as the

thermodynamic property called pressure. pM also takes volume expansion into account,

which exerts a force opposite to p. Stokes circumvented this problem in 1845 by assuming

μ = −2

3
λ (2.43)

which is known as Stokes’ hypothesis. Also, in incompressible fluids this problem vanishes

as constant density implies ∇ · u = 0. This is discussed later in Section 2.10.
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CHAPTER 2. GOVERNING EQUATIONS

2.6 The Navier-Stokes equations

The momentum equation for a Newtonian fluid is now obtained by substituting eqn (2.41)

into eqn (2.12):

ρ
Du

Dt
= ρg1 − ∂p

∂x
+

∂

∂x

(
2μ

∂u

∂x
+ λ∇ · u

)
+

∂

∂y

[
μ

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

[
μ

(
∂u

∂z
+

∂w

∂x

)]
ρ
Dv

Dt
= ρg2 − ∂p

∂y
+

∂

∂x

[
μ

(
∂v

∂x
+

∂u

∂y

)]
+

∂

∂y

(
2μ

∂v

∂y
+ λ∇ · u

)
+

∂

∂z

[
μ

(
∂v

∂z
+

∂w

∂y

)]
ρ
Dw

Dt
= ρg3 − ∂p

∂z
+

∂

∂x

[
μ

(
∂w

∂x
+

∂u

∂z

)]
+

∂

∂y

[
μ

(
∂w

∂y
+

∂v

∂z

)]
+

∂

∂z

(
2μ

∂w

∂z
+ λ∇ · u

)
.

This can be expressed in a far more condensed manner using vector form:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+∇ ·

(
μ
(
∇u+ (∇u)T

))
+∇ (λ∇ · u) + ρg. (2.44)

For simplicity, eqn (2.44) is also presented using Einstein notation, while neglecting grav-

itational force, and assuming Stokes’ hypothesis (eqn (2.43)):

∂(ρui)

∂t
+

∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
μ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)]
(2.45)

with the associated mass continuity equation

∂ρ

∂t
+

∂ (ρuj)

∂xj
= 0. (2.46)

The Navier-Stokes equations were derived independently by Navier in 1823 and Stokes in

1845 and are of fundamental importance when studying the dynamics of a viscous fluid.

2.7 The energy equation

Rudolph Clausius states the first law of thermodynamics in [Cla50]: “In a thermodynamic

process, the increment in the internal energy of a system is equal to the difference between

the increment of heat accumulated by the system and the increment of work done by it”.

Based on this reasoning, the following equation must hold for a system:

dEtot = dQ + dW, (2.47)
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2.7. THE ENERGY EQUATION

where Etot is the total energy of a system, Q is the added heat, and W is the work done

to the system (not the work done by the system as stated by Clausius, hence the sign

change). Thus, considering a fluid particle as such a system in motion results in:

Etot =

(
ρe︸︷︷︸

internal
energy

+
1

2
ρU2︸ ︷︷ ︸

kinetic
energy

+
(−ρg · x)︸ ︷︷ ︸

potential
energy

)
, (2.48)

where e is the internal energy per unit volume, U = (u2 + v2 + w2)
1

2 is the magnitude of

u, and x is the displacement of the fluid particle. Note that considering “the system” as

a material control volume means that Etot, Q, and W are now acting per unit volume.

Eqn (2.47) may be differentiated using the material derivative following a particle in order

to comply with the continuity equation and the equation of motion:

DEtot

Dt
=

DQ

Dt
+

DW

Dt
. (2.49)

Similarly, for eqn (2.48):

DEtot

Dt
= ρ

(
De

Dt
+ U

DU

Dt
− g · u

)
. (2.50)

Eqn (2.47) and eqn (2.48) must now be linked by expressing Q and W in terms of fluid

properties.

According to Fourier’s law, the flow of heat is a direct result of temperature variation.

Formally, this may be expressed in terms of heat flux and the temperature gradient:

q = −k∇T, (2.51)

where q is the heat flow per unit area, k is the thermal conductivity, and T denotes

temperature. As seen in Figure 2.3, the heat flow entering the control volume through the

left face is

qxdydz, (2.52)

Figure 2.3: Exchange of heat and work done on dydz of a control volume [Whi05]
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CHAPTER 2. GOVERNING EQUATIONS

while the heat flow leaving the volume via the right face is(
qx +

∂qx
∂x

dx

)
dydz. (2.53)

Similar expressions hold for qy and qz. Note that the net heat flow is now leaving the

control volume. Hence, the heat transfer into the volume nets

−
(
∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)
dxdydz, (2.54)

which may be divided by the volume dxdydz to give the desired expression for heat

transfer:
DQ

Dt
= −∇ · q = ∇ · (k∇T ) . (2.55)

It may be noted that internal heat generation is neglected here.

Considering once again Figure 2.3, this time in conjunction with Figure 2.1, the rate of

work per unit area done to the control volume via the left face is

wx = − (uσxx + vσxy + wσxz) , (2.56)

while the rate of work per unit area exerted by stresses acting on the right face is

−
(
wx +

∂wx

∂x
dx

)
(2.57)

with similar expressions for the other faces. In accordance with heat transfer, the net

rate of work done to the control volume may now be expressed as

DW

Dt
= −∇ ·w =

∂

∂x
(uσxx + vσxy + wσxz)

+
∂

∂y
(uσyx + vσyy + wσyz)

+
∂

∂z
(uσzx + vσzy + wσzz)

= ∇ · (u · σ) , (2.58)

which may be decomposed to read

∇ · (u · σij) = u · (∇ · σij) + σij
∂ui

∂xj

(2.59)

while making use of Einstein notation for terms involving σ. The first term on the RHS

of eqn (2.59) is linked to the momentum equation

∇ · σij = ρ

(
Du

Dt
− g

)
, (2.60)
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2.8. THE PERFECT GAS

and thus,

u · (∇ · σij) = ρ

(
U
DU

Dt
− g · u

)
, (2.61)

the RHS of which is the same as the kinetic and potential energy terms presented in

eqn (2.50). Now, equating eqn (2.49) and eqn (2.50), while taking into consideration

eqn (2.55) and eqn (2.59), results in:

ρ
De

Dt
= ∇ · (k∇T ) + σij

∂ui

∂xj
. (2.62)

This form of the first law of thermodynamics for fluid motion is very common, however,

it may also be expressed using fluid enthalpy

h = e+
p

ρ
. (2.63)

To achieve this, the stress tensor σij is split into pressure terms and viscous terms using

eqn (2.41):

σij
∂ui

∂xj

= σ′

ij

∂ui

∂xj

− p∇ · u. (2.64)

Multiplying the continuity equation (eqn (2.6)) by pressure p results in the following

expression for p∇ · u:
p∇ · u = −p

ρ

Dρ

Dt
= ρ

D

Dt

(
p

ρ

)
− Dp

Dt
. (2.65)

Combining the above three equations with eqn (2.62) yields the following expression con-

taining the enthalpy h:

ρ
Dh

Dt
=

Dp

Dt
+∇ · (k∇T ) + σ′

ij

∂ui

∂xj

, (2.66)

the energy equation in terms of enthalpy.

2.8 The perfect gas

Common gases tend to follow the perfect gas law (often also referred to as the ideal gas

law)

p = ρRT (2.67)

within a reasonably small margin of error, where

R =
kB
m

(2.68)

is the ratio of Boltzmann’s constant kB = 1.3806 · 10−23 JK-1to the mass m of a single

molecule. Alternatively, R may also be expressed specific to a certain gas in terms of

specific molecular weight Mgas:

R =
R0

Mgas

, (2.69)
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CHAPTER 2. GOVERNING EQUATIONS

where R0 = 8.314 Jmol-1K-1 is the universal gas constant. Mixtures of gases may also be

treated using eqn (2.67) and eqn (2.69) by defining the molecular weight of the mixture

as

Mmix =
1∑

i

Ci

Mi

, (2.70)

where Ci = ρi
ρ

are mass fractions and Mi are the molecular weights of the individual

components. Or, regarding Mi in terms of mole fractions xi, i.e. the number of moles of

species i per mole of the mixture:

Mmix =
∑
i

xiMi. (2.71)

As an example, air consisting of 78% nitrogen N2, 21% oxygen O2, and 1% argon Ar has

molecular weight

Mair = 0.78 · 28.016 gmol-1 + 0.21 · 32.000 gmol-1 + 0.01 · 39.944 gmol-1

= 28.97 gmol-1

= 28.97 · 10−3 kgmol-1,

which implies the following specific gas constant for air:

Rair =
8.314 Jmol-1K

28.97 · 10−3 kgmol-1
= 287 J kg-1K-1.

These are commonly used values for air at room temperature.

It is also useful to define the specific heats cp and cv at constant pressure and volume

respectively:

cp =

(
∂h

∂T

)
p

cv =

(
∂e

∂T

)
v

. (2.72)

Note that despite their names, these are not actually heats as such, but rather rates of

change of energy. Another useful parameter is the ratio of specific heats

γ =
cp
cv
, (2.73)

which ranges from 1.0 to 1.7 for all fluids. Furthermore, it is often helpful to observe

the speed of sound a in a given fluid which is defined as the propagation of infinitesimal

pressure pulses:

a2 =
dp

dρ
= γ

(
∂p

∂ρ

)
T

= γ
p

ρ
= γRT. (2.74)

It is due to great simplicity combined with reasonable accuracy that the ideal gas law is

widely accepted and used in fluid mechanics.
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2.9. SUTHERLAND’S VISCOSITY MODEL

2.9 Sutherland’s viscosity model

William Sutherland proposed the following temperature dependent relation for the dy-

namic viscosity in [Sut93]:

μ = μ0

(
T

T0

) 3

2 T0 + TS

T + TS
, (2.75)

where μ0 is the reference viscosity measured at temperature T0, and TS is the Sutherland

constant which is characteristic of the gas considered. Note that eqn (2.75) may also be

rearranged to give a slightly more condensed version of the model:

μ =
AS

√
T

1 + TS

T

, (2.76)

with

AS = μ0
T0 + TS

T
3

2

0

. (2.77)

Consider, for example, air with a reference viscosity of μ0 = 1.8325 · 10−5 kgm-1 s-1,

measured at a reference temperature of 23◦C = 296.15K (see [Bir45]). The Sutherland

constant for air is taken to be TS = 120K, resulting in

AS = 1.8325 · 10−5 kgm s-1
296.15K+ 120K

296.15
3

2 K
3

2

= 1.496 · 10−6 kgm−1 s−1K−0.5. (2.78)

Now to calculate the viscosity of air at, say, 20◦C = 293.15K:

μ =
1.496 · 10−6 kgm-1 s-1 K

−
1

2 · √293.15K

1 + 120K
293.15K

= 1.817 · 10−5kgm-1 s-1. (2.79)

While the Sutherland transport model is usually only valid for gases made up of a single

substance, it can nevertheless be applied to air because of the nearly identical nature of

oxygen and nitrogen molecules. The properties of argon molecules may be neglected due

to its extremely low concentration. This allows the model to deliver fairly good results

for this particular mixture.

2.10 Incompressible flow

While gases usually have a density that can vary greatly with pressure, most liquids have

very little, or even negligible density variation. Water, for example, assuming constant

temperature, undergoes a change of less than 5% in density when increasing pressure

from atmospheric conditions by a factor of 1000. Hence, a special type of flow may
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CHAPTER 2. GOVERNING EQUATIONS

be considered when assuming constant density in both time and space. The continuity

equation (eqn (2.6)) reduces to

∇ · u = 0, (2.80)

leaving the divergence of u to equal zero. Note that this does not have a great effect

on the momentum equation (eqn (2.44)), apart from the obvious elimination of the ∇ · u
term, thus also removing λ. However, if the dynamic viscosity μ is additionally assumed

to be constant, several terms vanish, leaving the following incompressible Navier-Stokes

equations for a fluid flow of constant viscosity and density:

ρ
Du

Dt
= −∇p + μ∇2u+ ρg, (2.81)

where ∇2 is the Laplace operator.

The energy equation may also be simplified in the limit of incompressible flow. Starting

from the thermodynamic relation estimating the pressure dependence of enthalpy

dh = cpdT + (1− βT )
dp

ρ
(2.82)

known as the Boussinesq approximation (see [Whi05]), where

β = −1

ρ

(
∂ρ

∂T

)
p

(2.83)

is the coefficient of thermal expansion, the energy equation (eqn (2.66)) may be written

as

ρcp
DT

Dt
= βT

Dp

Dt
+∇ · (k∇T ) + σ′

ij

∂ui

∂xj
. (2.84)

Considering constant density, i.e. β = 0, and neglecting dissipative terms leaves

ρcp
DT

Dt
≈ ∇ · (k∇T ) . (2.85)

Now assuming constant thermal conductivity k:

ρcp
DT

Dt
≈ k∇2T, (2.86)

which is known as the incompressible heat convection equation.

2.11 Summary

In summary, there are three main laws that must be considered when discussing motion

of a Newtonian fluid. These are conservation of mass

∂ρ

∂t
+∇ · (ρu) = 0, (2.6)
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conservation of momentum in form of the Navier-Stokes equations

∂(ρui)

∂t
+

∂(ρujui)

∂xj

= − ∂p

∂xi︸︷︷︸
pressure
gradient

+
∂

∂xj

[
μ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)]
︸ ︷︷ ︸

diffusive terms

, (2.45)

and conservation of energy

ρ
Dh

Dt
=

Dp

Dt︸︷︷︸
pressure
term

+∇ · (k∇T )︸ ︷︷ ︸
diffusive
term

+ σ′

ij

∂ui

∂xj︸ ︷︷ ︸
dissipative

term

. (2.66)

These three equations involve seven variables, three of which are taken as primary (u, p,

and T ). The remaining variables are assumed to be known and related to one or more of

the three main variables. These relations can stem from empirical evaluation or formulas

derived from kinetic theory. Conservation laws are rather general and are subject to only

a few restrictions (cp. [Whi05]):

1. the fluid forms a (mathematical) continuum

2. the particles are essentially in thermodynamic equilibrium

3. the only effective body forces are due to gravity

4. heat conduction follows Fourier’s law

5. there are no internal heat sources

Here, the following relations are used for ρ, μ, h, and k: pressure is linked to density and

temperature through the ideal gas law

p = ρRT, (2.67)

by which the change of enthalpy is given by

dh = cpdT. (2.87)

Sutherland’s viscosity model governs the temperature dependence of viscosity

μ = μ0

(
T

T0

) 3

2 T0 + TS

T + TS
. (2.75)

Finally, heat conduction may also be approximated using Sutherland’s formula [Whi05]:

k ≈ k0

(
T

T0

) 3

2 T0 + TS

T + TS

, (2.88)

with k0 and TS stemming from tables. This, however, will be discussed with slightly more

detail in the next chapter.
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Chapter 3

Computational methods

This chapter deals with transforming the equations and relations derived in the previ-

ous chapter in a way that makes them viable for use in a computational simulation.

Discretisation methods are introduced along with a selection of required spacial and tem-

poral interpolation schemes. Treatment of pressure terms is shown to be of particular

importance and the turbulence model Large Eddy Simulation is presented.

3.1 Discretisation methods

As described in the previous section, the equations governing a flow typically form a

system of coupled, non-linear partial differential equations. In most cases these cannot

be solved analytically. Hence, it is necessary to employ numerical methods in order to

reach a solution. This can be achieved by discretising differential equations into algebraic

equations, which are much easier to solve.

A typical transport equation for an arbitrary flow property ψ may be expressed as

∂ρψ

∂t︸︷︷︸
local time
derivative

+
∂ρujψ

∂xj︸ ︷︷ ︸
convection

=
∂

∂xj

(
Γ
∂ψ

∂xj

)
︸ ︷︷ ︸

diffusion

+ Qψ︸︷︷︸
source terms

, (3.1)

where Γ is the diffusion coefficient belonging to ψ and Qψ represents sources and sinks

of ψ (cp. [Nol93]).

Several methods exist with which to perform discretisation of an equation such as eqn (3.1).

In the field of numerical flow simulation the currently most prominent methods are the

Finite Difference Method (FDM ), the Finite Volume Method (FVM ), and the Finite Ele-

ment Method (FEM ). In all three of these methods a computational grid is used within

the computational domain in which ψ is determined at discrete points referred to as com-

putational nodes. These nodes can be vertices of individual grid cells or centre points of

grid cells. Hence, analytical solutions to the differential transport equations are replaced

by numerical solutions to their discretised counter-parts, whereby the algebraic relations

required to reach a numerical solution are dictated by the chosen method of discretisation.
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CHAPTER 3. COMPUTATIONAL METHODS

The following will discuss FDM, FVM, and FEM as well as differences between these

methods. Special attention will be given to FVM as it is the method utilised within this

project besides being the most popular method in modern computational fluid dynamics.

3.1.1 Finite Difference Method

The Finite Difference Method uses Taylor series to approximate the derivatives occur-

ring in transport equations. For a computational grid with constant distances between

individual grid points this would imply

ψi = ψi+1 −Δx

(
∂ψ

∂x

)
i+1

+
1

2
Δx2

(
∂2ψ

∂x2

)
i+1

− ... (3.2)

ψi+2 = ψi+1 +Δx

(
∂ψ

∂x

)
i+1

+
1

2
Δx2

(
∂2ψ

∂x2

)
i+1

+ ..., (3.3)

here regarding the x-direction only as illustrated in Figure 3.1.

Figure 3.1: Discretisation on a computational grid in x-direction (cp. [Nol93])

Various terms occurring in partial differential equations (PDEs) can be approximated

through algebraic manipulation or combination of these calculation models. Eqn (3.2)

may be used to derive the backward differencing scheme (BDS):(
∂ψ

∂x

)
i+1

=
ψi+1 − ψi

Δx
+O(Δx2), (3.4)

where O(Δx2) means that the terms neglected by truncating the Taylor series (the ap-

proximation error) are a function depending on Δxn, where n ≥ 2. Furthermore, the

central differencing scheme (CDS) can be derived by subtracting eqn (3.2) from eqn (3.3):(
∂ψ

∂x

)
i+1

=
ψi+2 − ψi

2Δx
+O(Δx2), (3.5)

while addition of the two results in(
∂2ψ

∂x2

)
i+1

=
ψi + ψi+2 − 2ψi+1

Δx2
+O(Δx). (3.6)

These are but a few examples of the possible ways to approximate individual terms.

The Finite Differece Method approximates the derivative terms in differential transport

equations with discrete algebraic relations. The discretisation error describes the discrep-

ancy between the results obtained on a finite computational grid and theoretical results
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3.1. DISCRETISATION METHODS

obtained on an infinitely fine grid (or an analytical solution). This error can be reduced

by taking into account terms of higher order before truncating the Taylor series or by

using a finer computational grid.

Finite Difference is a very simple and effective method of calculating flows on simple

geometries and it is easy to develop higher order methods for regular computational grids.

The FD method, however, is not suitable for more complex problems. Furthermore, it is

not inherently conservative which makes it necessary to introduce additional conditions

to satisfy conservation, thereby increasing computational cost.

3.1.2 Finite Volume Method

The Finite Volume Method subdivides the entire computational domain into a finite

number of computational cells (control volumes). Computational nodes are taken to be

centres of control volumes (see Figure 3.2). The coordinates x, y, and z are defined by the

control volume and are not related to the entire domain. Nodes could also be taken to be

the vertices of grid cells, with control volume borders taken to lie between adjacent grid

points. Both options provide a computational grid consisting of non-overlapping control

volumes, however, only the former is discussed here.

Figure 3.2: FVM control volume (cp. [Nol93])

In contrast to FDM, the FV method integrates transport equations over each control

volume, meaning that transport equations need to be considered in integral form rather

than differential form. Using vector notation, the general stationary transport equation

∇ · (ρuψ) = ∇ · (Γ∇ψ) +Qψ (3.7)

becomes ˆ

V

∇ · (ρuψ) dV =

ˆ

V

∇ · (Γ∇ψ) dV +

ˆ

V

Qψ dV (3.8)

when integrated over a control volume V . Using the divergence theorem, volume integrals

27

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 3. COMPUTATIONAL METHODS

are replaced by surface integrals over the borders of the control volume:
ˆ

A

ρψ (u · dA) =

ˆ

A

Γ (∇ψ · dA) +

ˆ

V

QψdV. (3.9)

Now, assuming that ρ, Γ, u, and ψ are evenly distributed on each of the control borders,

integrals may be replaced by sums:

∑
j

[
(ρψ)j ujAj

]
=
∑
j

[
Γj (∇ψ)j Aj

]
+

ˆ

V

Qψ dV, (3.10)

where the index j refers to the individual borders comprising the control volume. Fig-

ure 3.2 shows a control volume enclosed by six cell faces which are represented by the

surfaces Aj for j ∈ [1, 6]. uj is the velocity component perpendicular to the surface Aj .

Similarly, (∇ψ)j is the component of the gradient perpendicular to Aj .

When discussing FVM, it is customary to use compass notation as seen in Figure 3.2. The

node lying inside the control volume under observation is designated P (point). Nodes

lying in the control volumes above and below (in y-direction) are named N (north) and S

(south) respectively, whereas nodes lying to the left and right (in x-direction) are called

W (west) and E (east). Nodes neighbouring in the z-direction are named T (top) and B

(bottom). Cell borders are given the according lower-case descriptions n, s, w, e, t, and

b.

Using this notation, one may, for example, describe purely diffusive transport of the

arbitrary property ψ based on the differential equation

∂

∂xj

(
Γ
∂ψ

∂xj

)
+Qψ = 0 (3.11)

in 3D for the node P as{
Γ
∂ψ

∂x

}
e

−
{
Γ
∂ψ

∂x

}
w

+

{
Γ
∂ψ

∂y

}
n

−
{
Γ
∂ψ

∂y

}
s

+{
Γ
∂ψ

∂z

}
t

−
{
Γ
∂ψ

∂z

}
b

+

ˆ

V

Qψ dV = 0. (3.12)

Assuming linear distribution of ψ between grid points, i.e. for example ψe = ψE − ψP

and hence
{

∂ψ
∂x

}
e
= ψE−ψP

Δxe
, eqn (3.12) becomes

ψE − ψP

Δxe
ΓeAe − ψP − ψE

Δxw
ΓwAw +

ψN − ψP

Δyn
ΓnAn − ψP − ψS

Δys
ΓsAs +

ψT − ψP

Δzt
ΓtAt − ψP − ψB

Δzb
ΓbAb +QψV = 0, (3.13)
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3.1. DISCRETISATION METHODS

where the volume integral over the source term Qψ has been approximated by QψV . Qψ

is a representative value of Qψ at node P. For simplicity, eqn (3.13) can be expressed in

form of a general difference equation:

aPψP =
∑
i

(aiψi) + b i = E,W,N, S, T, B, (3.14)

where

aE =
ΓeAe

Δxe
aW =

ΓwAw

Δxw
aN =

ΓnAn

Δyn
aS =

ΓsAs

Δys
aT =

ΓtAt

Δzt
aB =

ΓbAb

Δzb

aP =
ΓeAe

Δxe
+

ΓwAw

Δxw
+

ΓnAn

Δyn
+

ΓsAs

Δys
+

ΓtAt

Δzt
+

ΓbAb

Δzb

= aE + aW + aN + aS + aT + aB =
∑
i

ai

b = QψV.

The ai’s are coefficients that describe the influence neighbouring nodes (the values at

points E,W,N , ...) have on the value of ψ at point P. The general difference equation

(eqn (3.14)) can be linear or non-linear. Non-linearity occurs when the initial differential

equations themselves are also non-linear, as is the case for the Navier-Stokes equations.

Unlike the FD method, the Finite Volume Method is also suitable for complex geomet-

ries. Since it is constructed using fluxes over control borders, the FVM will always obey

conservation as long as the fluxes of two control volumes sharing a border are equal. It’s

simplicity and intuitive design is what makes it the most popular method in modern flow

computation.

It does, however, have the disadvantage that it can be very difficult to develop discret-

isation schemes of order higher than 2 in 3D. This is due to the fact that not only is

interpolation required in the approximation, but also integration over the cell boundar-

ies. Typically though, using schemes of order 2 delivers very good results as long as the

computational grid is fine enough.

3.1.3 Finite Element Method

The Finite Element Method (FEM) is rather similar to the FV method. The computa-

tional grid (or the mesh) is made up of a finite number of control volumes (elements)

which, unlike those used in the afore mentioned methods, tend to be unstructured. This

makes mesh generation easier and less time consuming as well as making this method

suitable for extremely complicated geometries.

The main difference between FEM and FVM is that in the former, equations are multi-

plied by a weight function before they are integrated over the whole domain. See [FP96]

for slightly more detail on the FE method, as well as a list of literature for further reading.
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CHAPTER 3. COMPUTATIONAL METHODS

FEM is widely used in solid body mechanics where it can aid in determining factors such

as stresses or displacements. This can, for example, be very helpful in determining the

behaviour of a car during a crash. For fluid dynamics, the FV method, however, is more

than sufficient and delivers very good results at reasonable computational cost.

3.2 Interpolation schemes

It has been shown that the finite volume approximation of integrals over the control

volumes and over their borders requires not only the values of variables at computational

nodes, but also their values on control volume borders. These can be obtained by inter-

polation of nodal values. There exist a wide variety of interpolation schemes capable of

delivering adequate results, two of which will be discussed in the following.

3.2.1 Upwind interpolation scheme

Consider ψe, the value if ψ on the border between the two nodes ψP and ψE . Using the

upwind differencing scheme (UDS), the value of ψe is simply taken to be the same as the

value of the node located upstream (or upwind) of the border e. Hence, depending on

the direction of the flow, this can be formally described as

ψe =

{
ψP if ue > 0

ψE if ue < 0
, (3.15)

where ue corresponds to the velocity u1 of the flow evaluated at the boundary e. See

Figure 3.3 for an illustration of the scheme.

Figure 3.3: UDS for uw > 0 and ue > 0 (cp. [Nol93])

While UDS will always deliver non-oscillatory results, it does have the draw-back of

introducing numerical diffusion. Considering the Taylor series expansion about the node

P yields

ψe = ψP + (xe − xP )

(
∂ψ

∂x

)
P

+
(xe − xP )

2

2

(
∂2ψ

∂x2

)
P

+O (x3
e

)
. (3.16)
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It is easily seen that this scheme is of first order since it uses only the first term on the

RHS, leaving a truncation error of O (xe) which closely resembles diffusive flux:

fdiff
e = Γe

(
∂ψ

∂x

)
e

, (3.17)

where Γe = Γreal
e + Γnum

e , and the numerical diffusion coefficient is Γnum
e = 1

2
(ρu)e Δx

([FP96]). Should the direction of the flow be oriented at an angle to a multi-dimensional

computational grid, numerical diffusion is increased even further since diffusion occurs

both perpendicular to the flow as well as in the direction of flow. Sudden peaks or heavy

variations tend to be smoothed out by UDS, and very fine grids are required to obtain

satisfying results as the scheme is only of first order.

3.2.2 Linear upwind interpolation scheme

UDS may be expanded to a second order method by considering two upstream data points

[VM07]. The resulting linear upwind differencing scheme (LUDS) uses the UDS estimate

ψP (for ue > 0) which is then corrected by an upwind-biased gradient (ψP−ψW )/(xP−xW )

multiplied by xe−xP , the distance between the node P and the east face. For equidistant

grids xP − xW = Δx and xe − xP = 1
2
Δx, yielding:

ψe =

{
ψP + 1

2
(ψP − ψW ) if ue > 0

ψE + 1
2
(ψE − ψEE) if ue < 0

. (3.18)

Figure 3.4: LUDS for ue > 0

3.2.3 Linear interpolation scheme

The linear interpolation scheme, usually abbreviated CDS as it is equivalent to the central

differencing scheme for the first derivative in FDM, is a very simple and intuitive way of
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approximating values on control borders. Again considering the border e, the value ψe is

taken to be a weighted average of its neighbouring values:

ψe = λeψE + (1− λe)ψP . (3.19)

Figure 3.5 shows an illustration of the scheme. The interpolation factor λe takes into

account the distance between the border e and the nodes P and E:

λe =
xe − xP

xE − xP
. (3.20)

Figure 3.5: CDS for ψ on the control borders w and e (cp. [Nol93])

It can be shown by constructing the Taylor series of ψE about the point xP and using

the result to eliminate the first derivative of ψ in eqn (3.16) that

ψe = (1− λe)ψP + λeψE − (xe − xP ) (xE − xe)

2

(
∂2ψ

∂x2

)
P

+O (x2
)
. (3.21)

The LHS in conjunction with the first two terms on the RHS comprises the linear inter-

polation scheme, leaving a truncation error of order 2. Furthermore, since a linear profile

of ψ is assumed between the nodes P and E, the gradient may also be approximated in

a manner equivalent to eqn (3.19):(
∂ψ

∂x

)
e

≈ ψE − ψP

xe − xP
. (3.22)

A Taylor expansion around ψe can be used to show that the approximation error for the

gradient is

ε =
(xE − xe)

2 − (xP − xe)
2

2 (xE − xP )

(
∂2ψ

∂x2

)
e

+

(xE − xe)
3 + (xe − xP )

3

6 (xE − xP )

(
∂3ψ

∂x3

)
e

+O (x4
)
. (3.23)

For uniform grids this becomes a second order approximation since the coefficient of the

second derivative in the truncation error cancels out. On non-uniform grids this method,
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3.3. BOUNDARY CONDITIONS

albeit being first order, behaves similarly to a second order approximation given that the

grid is fine enough. See [FP96] for greater detail.

CDS is the simplest and most widely used second order interpolation scheme. It delivers

very good results, thereby eliminating the need for higher order schemes and thus keeping

computational cost at acceptable levels.

3.2.4 Other interpolation schemes

While the afore mentioned interpolation schemes suffice for most problems, there do exist

several other schemes that deliver more exact results. Quadratic Upwind Interpolation

for Convective Kinematics (QUICK) uses not two, but three nodal values to estimate

the border value ψe by constructing a parabola through ψW , ψP , and ψE . On a uniform

grid this would lead to

ψe =
6

8
ψP +

3

8
ψE − 1

8
ψW , (3.24)

which has a truncation error of order 3. While this method brings with it the obvious

advantage of a more exact solution, the difference to CDS is only minute. Hence, the

increased computational cost is seldom justified.

It is also possible to construct hybrid methods that switch between two or more interpol-

ation schemes. For example, one could use CDS, but switch to UDS in the case where

CDS would produce an oscillatory solution. One could also use hybrid schemes to reduce

computational cost by switching to higher order schemes only when absolutely necessary.

For the purposes of this thesis, UDS, LUDS, and CDS are sufficient and no further

attention will be given to higher order or hybrid approximations.

3.3 Boundary conditions

Borders of control volumes that lie on the edge of the computational domain present

a special case since they do not have a node on either side from which to extrapolate

boundary values. Fluxes across these boundaries must either be given in the form of a

boundary condition, or extrapolated from interior values and boundary information.

Inlet conditions are typically given by mass or volumetric flux for compressible and in-

compressible flow respectively. For outlets it usually suffices to use UDS. Impenetrable

walls set the convective flux to zero, while relying on a zero gradient condition for pressure

and density. Zero gradient simply takes the boundary value to be the same as that of the

corresponding node. While much like upwind, this method is independent of the direction

of the flow. Walls may also be given a specific flux condition for diffusive fluxes such as

heat transfer, where zero heat flux corresponds to an adiabatic wall. If the gradient at
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the wall is specified, it can be used to calculate the flux over the boundary, as well as an

approximation for the value of the variable on the boundary.

Sensible boundary conditions are essential for simulating fluid flow. Incorrect, or even

slightly inaccurate BCs can lead to anything from minor discrepancies between simulated

and expected results, to an utterly unrealistic outcome. Even a complete failure of the

simulation is possible. Thus, great care and consideration must be given toward the

choice of correct boundary conditions prior to beginning a simulation.

3.4 Unsteady problems

So far, only spacial discretisation has been discussed. However, there is an additional

coordinate that must be considered and discretised: time. This can be done either in the

sense of FDM by using discrete points, or using the FV method by considering “temporal

control volumes”. Unlike spacial coordinates, time can obviously only influence the flow

in one direction, which means that no conditions can be imposed on solutions once the

calculation has begun, boundary conditions being the only exception. Methods for solving

unsteady problems progress in a step-by-step fashion and bear great similarity to methods

used for solving initial value problem ODEs.

The following basic first order initial value problem aids in discussing several solution

methods:
dψ

dt
= f (t, ψt) , ψ (t0) = ψ0. (3.25)

ψ is known at t0 and the challenge lies in determining a solution at a later time. This

becomes an iterative process as the new solution ψ1 at time t1 = t0 +Δt is taken as the

new initial value used to calculate ψ2. Note that here ψn refers to ψ (tn).

Integrating eqn (3.25) from tn to tn+1 is a good basis from which to construct a solution

method:
tn+1ˆ

tn

dψ

dt
dt = ψn+1 − ψn =

tn+1ˆ

tn

f (t, ψ (t)) dt. (3.26)

The RHS of eqn (3.26) involves unknowns meaning exact solutions cannot be found.

Hence, an approximation must be used. The mean value theorem states that there exists

a point τ ∈ [tn, tn+1] for which the integral is exactly equal to f (τ, ψ (τ))Δt. Since τ is

not known, the integral must be approximated in some way, for example by a quadrature.

Four such numerical quadrature methods are presented here.

Using the value of the integrand at the initial value is known as the forward Euler method

(also explicit Euler method):

ψn+1 = ψn + f (tn, ψ
n)Δt. (3.27)
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Similarly one could use the other limit of integration, resulting in the backward Euler

method :

ψn+1 = ψn + f
(
tn+1, ψ

n+1
)
Δt. (3.28)

This is also known as the implicit Euler method as it involves the unknown value of f at

time tn+1.

The midpoint rule is yet another method that evaluates f at the point half way between

tn and tn+1:

ψn+1 = ψn + f
(
tn+ 1

2

, ψn+ 1

2

)
Δt. (3.29)

The final method presented here utilises a straight line between f(tn) and f(tn+1) to

approximate the integral:

ψn+1 = ψn +
1

2

[
f (tn, ψ

n) + f
(
tn+1, ψ

n+1
)]

Δt. (3.30)

This is called the trapezoid rule.

There are several definitions regarding the stability of these types of method. One such

definition describes a method as stable if it produces a bounded solution provided the

solution to the underlying differential equation is bounded as well. For the explicit Euler

method, the following condition must be satisfied in order to guarantee a stable solution:∣∣∣∣1 + Δt
∂f (t, ψ (t))

∂ψ

∣∣∣∣ < 1. (3.31)

Allowing for complex values, this means that the second term on the LHS is restricted to

a circle with radius 1 around −1 on the real axis. Such a condition makes this method

conditionally stable.

As for accuracy, it can be shown using Taylor series that the explicit Euler method

delivers a solution with an error proportional to (Δt)2 at time tn + Δt. However, the

number of time steps needed to reach a solution at some time t = t0 +
∑N

n=1 tn is

inversely proportional to Δt. As an error is introduced at each time step, the overall

truncation error of the method is proportional to Δt, making this method a first order

method. Similarly, the implicit method is also a first order method, while the midpoint

and trapezoid rule methods are of second order.

The other three methods are unconditionally stable for any Δt, provided ∂f(t,ψ(t))
∂ψ

< 1.

The implicit Euler method has the additional advantage that it produces smooth (non-

oscillating) solutions, even for very large time steps.

All of these methods are two-level methods because they use two points to calculate the

unknown variable. In fact, it can be shown that second order is the highest achievable by

two-level methods. Figure 3.6 illustrates these methods graphically. Methods requiring

more than two points (multipoint methods) also exist. Naturally, they require more

computational effort, but they also provide greater accuracy. Generally it can be said
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Figure 3.6: Approximation of f(t) integrated over Δt. (i) explicit Euler, (ii) implicit

Euler, (iii) midpoint rule, (iv) trapezoidal rule. (cp. [FP96])

that greater accuracy usually leads to decreased stability, meaning the simulation is more

likely to diverge as a result of too coarse a mesh or complicated geometric features. Here,

two-level methods are sufficient and the following will discuss four particular methods.

Temporal discretisation is now applied to the generic transport equation eqn (3.1). Terms

that require spacial discretisation may be treated in the same way as has been previously

discussed. The question that remains is at which point in time they are to be evaluated.

To make the generic transport equation more in keeping with eqn (3.26), convective,

diffusive, and source terms are all collected on the RHS so they may be represented by

f (t, ψ (t)):
∂ρψ

∂t
= −∇ · (ρψu) +∇ · (Γ∇ψ) +Qψ = f (t, ψ (t)) . (3.32)

When using explicit methods, the RHS need only be evaluated at tn, for which the

solution is already known. Implicit methods require the RHS to be evaluated at times for

which the solution is not yet known, thereby introducing a new set of algebraic equations

that need to be solved. This set of equations is different to the one obtained for steady

problems.

3.4.1 Explicit (forward) Euler Method

The explicit Euler method is the simplest way of tackling unsteady problems. The only

unknown is the value of ψn+1 at the node in question and it is calculated in terms of

neighbouring values which are evaluated at tn and are thus already known.

The following simplified transport equation, in 1D, with constant velocity, constant fluid

properties, and without source terms is used to demonstrate the explicit Euler method:

∂ψ

∂t
= −u

∂ψ

∂x
+

Γ

ρ

∂2ψ

∂x2
. (3.33)

Spacial derivatives are discretised according to CDS and the mesh is taken to be uniform

in the direction of x. These assumptions deliver the same results for ψn+1
i using both

FDM and FVM:

ψn+1
i = ψn

i +

[
−u

ψn
i+1 − ψn

i−1

2Δx
+

Γ

ρ

ψn
i+1 + ψn

i−1 − 2ψn
i

(Δx)2

]
Δt. (3.34)
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This may be expressed in a more condensed manner:

ψn+1
i = (1− 2d)ψn

i +

(
d− Co

2

)
ψn
i+1 +

(
d+

Co

2

)
ψn
i−1, (3.35)

where

d =
ΓΔt

ρ (Δx)2
(3.36)

and

Co =
uΔt

Δx
(3.37)

are dimensionless parameters. The former, d, is the ratio of the time step to the char-

acteristic diffusion time, i.e. the time it takes for a disturbance to be transported by

diffusion over a spacial distance Δx. The latter, Co, is the ratio of time step to the

characteristic convection time, unsurprisingly, the time it takes for a disturbance to be

convected a distance Δx. Co is known as the Courant number and is a key parameter in

CFD.

Inspection of eqn (3.35) shows that it is possible for the coefficients of ψn
i and ψn

i+1 to

become negative. This can lead to oscillating solutions which in turn can lead to non-

physical behaviour or even instability of the simulation.

This is easily circumvented by imposing the following demands on the coefficients: d < 0.5

and Co < 2d. For the time step Δt this means

Δt <
ρ (Δx)2

2Γ
(3.38)

from the first condition. The second condition relates convection to diffusion:

ρuΔx

Γ
= Pe < 2, (3.39)

where Pe is the Péclet number of the computational grid cell under investigation.

This method inherits its order from both the CDS approximation as well as the the

explicit Euler method. Thus, it is said to be of second order in space and first order in

time.

There is another way to combat this problem. The more the flow is dominated by

convection, the more likely it becomes for the coefficient of ψn
i+1 to become negative. A

simple fix would be to use UDS for the convection term only, leading to

ψn+1
i = ψn

i +Δt

[
−u

ψn
i − ψn

i−1

2Δx
+

Γ

ρ

ψn
i+1 + ψn

i−1 − 2ψn
i

(Δx)2

]
, (3.40)

resulting in

ψn+1
i = (1− 2d− Co)ψn

i + dψn
i+1 +

(
d+

Co

2

)
ψn
i−1. (3.41)
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The only restriction required is

Δt <
1

2Γ

ρ (Δx)2
+

u

Δx

(3.42)

to ensure a positive coefficient of ψn
i . The other coefficients are all unconditionally pos-

itive. For negligible convection, eqn (3.38) is once again obtained. Negligible diffusion

yields

Δt <
Δx

u
. (3.43)

In other words Co < 1. This is what is known as the Courant–Friedrichs–Lewy condition

published in [CFL28] in 1928. Should both convection and diffusion be present, the

criterion for stability becomes more complicated. A simple workaround is to satisfy

both eqn (3.38) and eqn (3.43) individually. This may be a little more restrictive, but it

provides a safe and easy alternative.

Due to the introduction of UDS, this approximation is no longer of second order in space,

but rather of first order in both space in time. As a result, Δx and Δt must be kept

small to prevent large errors from being introduced. This may become troublesome when

simulating long time intervals as the required computation time can be dramatically

increased.

3.4.2 Implicit (backward) Euler Method

A more versatile and stable method for solving unsteady problems is presented by the

implicit Euler method. As the name suggests, the solution is no longer calculated expli-

citly, but approached iteratively because the algebraic equations use the unknown itself

to calculate the next time step. Applying eqn (3.28) to eqn (3.33) while once again using

CDS for spacial discretisation yields

ψn+1
i = ψn

i +Δt

[
−u

ψn+1
i+1 − ψn+1

i−1

2Δx
+

Γ

ρ

ψn+1
i+1 + ψn+1

i−1 − 2ψn+1
i

(Δx)2

]
, (3.44)

which may be expressed as

(1 + 2d)ψn+1
i +

(
Co

2
− d

)
ψn+1
i+1 +

(
−Co

2
− d

)
ψn+1
i−1 = ψn

i (3.45)

using the same dimensionless parameters as before. In fact, the resulting system of

algebraic equations are very similar to their steady counterparts. Rewriting the above as

aPψ
n+1
i = aWψn+1

i−1 + aEψ
n+1
i+1 +QP , (3.46)

where
aW = + ρu

2Δx
+ Γ

(Δx)2
, aE = Γ

(Δx)2
− ρu

2Δx
,

aP = − (aE + aW ) + ρ
Δt
, QP = ρ

Δt
ψn
i
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shows that the only difference to the steady version is the additional unsteady contribution

to the coefficient aP and the source term QP .

This method is of first order in time and requires a lot more computational effort due to

the process of iteration. Increased stability and the possibility of using larger time steps

is, however, often worth it. As previously stated, the implicit Euler method produces a

smooth solution. Nevertheless, oscillatory solutions can occur for large Péclet numbers,

yet this is easily counteracted by choosing the mesh fine enough.

This method’s compatibility with non-linear equations as well as the fact that it does not

depend on the size of the time step makes it a very efficient way of solving the unsteady

portion of the Navier-Stokes equations and is also the reason it is used here.

3.4.3 Crank-Nicolson Method

Both Euler methods are first order methods in time which is sometimes not accurate

enough for certain simulations. Crank and Nicolson proposed a way of combining both

Euler methods in [CN47]. This method adds implicit and explicit Euler methods and

divides by 2, thereby creating a second order method in a similar way as the midpoint

rule:

FCrank-Nicolson =
1

2
(Fexplicit Euler + Fimplicit Euler) (3.47)

Discretising eqn (3.33) in this manner yields:

ψn+1
i = ψn

i +
Δt

2

[
−u

ψn
i+1 − ψn

i−1

2Δx
+

Γ

ρ

ψn
i+1 + ψn

i−1 − 2ψn
i

(Δx)2

−u
ψn+1
i+1 − ψn+1

i−1

2Δx
+

Γ

ρ

ψn+1
i+1 + ψn+1

i−1 − 2ψn+1
i

(Δx)2

]
, (3.48)

which can be expressed as

(1 + d)
(
ψn+1
i − ψn

i

)
=

1

2

[(
d− Co

2d

)(
ψn+1
i+1 + ψn

i+1

)
+

(
d+

Co

2d

)(
ψn+1
i−1 + ψn

i−1

)]
.

(3.49)

This method is second order accurate in both space and time and thus provides greater

accuracy at the cost of decreased stability. Should stability become an issue it can be

increased by blending this method with the implicit Euler method [Ope13c]:

F blended
Crank-Nicolson =

b

2
(Fexplicit Euler + Fimplicit Euler) + (1− b)Fimplicit Euler. (3.50)

b = 1 corresponds to pure Crank-Nicolson and b = 0 to pure implicit Euler. Should pure

Crank-Nicolson fail to produce a stable solution, b can be lowered to introduce blending.

This way the loss of accuracy is not as great as switching straight to implicit Euler and it

provides a sensible alternative for simulations that require high accuracy (such as Large

Eddy Simulation discussed in Section 3.6) on complex geometries.
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3.4.4 Other methods

Several other methods exist which can be used to tackle unsteady problems. Such meth-

ods can be of higher order or use more than two points to calculate values at a given

time. Often both is the case. As with spatial methods, higher order temporal methods

deliver far greater accuracy in exchange for decreased stability. Thus, complex geometries

may not always be suitable and require that the order of the method used be lowered

in order to perform a stable and converging simulation. Higher order temporal schemes

are mostly applied when the spatial scheme is also of higher order. See [FP96] for more

detail on higher order methods for unsteady problems.

3.5 Solving the Navier-Stokes equations

So far discretisation techniques have only been applied to generic conservation equations.

This shall now be extended to the actual continuity and momentum equations, i.e. the

Navier-Stokes equations. Both unsteady and advection terms are of the same form as

the generic equations previously discussed. Hence, they can be treated in the same way

using any of the methods presented in this chapter.

The viscous term in the momentum equation is equivalent to the diffusive term in the

generic equation and can, for the most part, be treated in the same way. Special care,

however, needs to be taken to account for spacial variability of dynamic viscosity, as well

as having to account for bulk viscosity in compressible flow. This will not be discussed

further but suffice to say discretisation of viscous terms is fairly straight forward.

One term that does not appear anywhere in the generic transport equation is pressure.

Since there is no explicit transport equation for p, pressure must be determined using

another method. In a compressible flow it is possible to use the continuity equation to

obtain ρ, and then use an equation of state to determine p. Another approach would

be to use the fact that mass must always be conserved. Hereby the velocity is first

obtained from the momentum equation upon which a pressure field is constructed in

a way that the continuity equation is also satisfied. Such pressure-velocity coupling

techniques are usually derived for incompressible flow, but they may also be extended for

the compressible case.

The following will give an overview over three such techniques for incompressible flow

and state their compressible equivalents.
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3.5. SOLVING THE NAVIER-STOKES EQUATIONS

3.5.1 SIMPLE

Beginning with a solution for ui that satisfies both the continuity equation

∂ρun
i,P

∂xi

= 0 (3.51)

and the momentum equation

∂un
i,P

∂t
+

∂ρun
i,P

∂xj
= −1

ρ

∂pn

∂xi
+Qn

i (3.52)

at time n, one can advance to the next time step using any of the previously discussed

methods for unsteady problems to obtain un+1
i . It should be noted at this point that un+1

i

no longer satisfies the continuity equation which is why it must be corrected to ensure

that mass is still conserved. The Semi-Implicit Method for Pressure-Linked Equations

(SIMPLE) uses the pressure term to achieve this correction. Two types of iterations

are performed within each time step. Outer iterations are those in which coefficient and

source matrices of eqn (3.53) are updated and inner iterations are performed on the same

equations but with source and coefficient matrices held constant while the pressure and

velocity is corrected.

APu
m∗

i,P +
∑
L

ALu
m∗

i,L = −∂pm−1

∂xi
+Qm−1

i , (3.53)

where the notation of un+1
i has been changed to um∗

i . The asterisk indicates that it

does not yet satisfy the continuity equation and an outer iteration counter m has been

introduced. Rearranging yields the following expression for um∗

i,P :

um∗

i,P = − 1

AP

∂pm−1

∂xi
+

1

AP

(
Qm−1

i −
∑
L

ALu
m∗

i,L

)
(3.54)

and the (at this point) hypothetical velocity um
i that satisfies continuity is given by

um
i,P = − 1

AP

∂pm

∂xi

+
1

AP

(
Qm

i −
∑
L

ALu
m
i,L

)
. (3.55)

Subtracting eqn (3.54) from eqn (3.55) yields

um
i,P − um∗

i,P = − 1

AP

∂

∂xi

(
pm − pm−1

)− 1

AP

(∑
L

AL

(
um
i,L − um∗

i,L

))
, (3.56)

where the difference Qm
i −Qm−1

i between source terms in each outer iteration is neglected.

Furthermore, the SIMPLE method neglects the final term on the RHS of eqn (3.56)
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entirely which is why it does not always converge quickly. Substituting eqn (3.56) into

the continuity equation results in

∂ρum
i,P

∂xi
− ∂ρum∗

i,P

∂xi
= − ∂

∂xi

(
ρ

AP

∂p′

∂xi

)
. (3.57)

Note that p′ = pm−pm−1. Also, the first term on the LHS is equal to zero since it satisfies

continuity, resulting in an equation that can be implicitly solved for p′:

∂ρum∗

i,P

∂xi

− ∂

∂xi

(
ρ

AP

∂p′

∂xi

)
= 0. (3.58)

Now that p′ is known it can be used to correct um∗

i,P to deliver a velocity that satisfies

continuity:

um
i,P = um∗

i,P − 1

AP

∂p′

∂xi
. (3.59)

This completes one outer iteration. This process is repeated by using um
i,P and pm as new

starting estimates for un+1
i,P and pn+1 until the correcting terms p′ and u′ = um

i,P − um∗

i,P are

negligibly small upon which the next time step may be considered.

A compressible version of the SIMPLE method also exists. Rather than deriving this

method from scratch, the incompressible method is used as a basis and then modified to

account for variable density. This means that not only are velocity and pressure corrected,

but density is also used as a correcting factor. This is done using

ρ′ =
∂ρ

∂p
p′ (3.60)

where
∂ρ

∂p
=

1

a2
(3.61)

and a is the speed of sound. Note that for incompressible flow, i.e. for infinitely large a,

ρ′ vanishes. No further details will be presented here. See [DLP93] for more information

on the compressible equivalent of this method.

3.5.2 PISO

As was noted for the SIMPLE method, the last term on the RHS of eqn (3.56) is neglected

entirely, leading to slow convergence and possibly even instability. This can be improved

upon in a variety of ways, one of them being the Pressure-Implicit Solution by Split-

Operator (PISO) method.

The first step is essentially a SIMPLE iteration:

um∗

i,P = − 1

AP

∂pm−1

∂xi
+

1

AP

(
Qm−1

i −
∑
L

ALu
m∗

i,L

)
(3.62)
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is the initial velocity that fails to satisfy continuity and

um∗∗

i,P = − 1

AP

∂pm−
1

2

∂xi
+

1

AP

(
Q

m−
1

2

i −
∑
L

ALu
m∗∗

i,L

)
(3.63)

satisfies continuity. Note that the double asterisk implies that this is not the final velocity

and the superscript m− 1
2
denotes that only “half” an outer iteration has been performed

to reach this step. In other words a second part is required to complete an outer iteration.

Subtracting the two previous equations yields

um∗∗

i,P − um∗

i,P = − 1

AP

∂

∂xi

(
pm−

1

2 − pm−1
)
− 1

AP

(∑
L

AL

(
um∗∗

i,L − um∗

i,L

))
, (3.64)

which can be used to reach an implicit solution for p′ = pm−
1

2 −pm−1 as before while once

again neglecting the last term on the RHS of eqn (3.64):

∂ρum∗

i,L

∂xi
− ∂

∂xi

(
ρ

AP

∂p′

∂xi

)
= 0. (3.65)

The procedure up to this point is identical to the SIMPLE method apart from the different

choice of nomenclature and results in a velocity that satisfies continuity:

um∗∗

i,P = um∗

i,P − 1

AP

∂p′

∂xi
. (3.66)

The second step of the PISO method compensates for having neglected the term u′ =

um∗∗

i,P − um∗

i,P in the first step. Similarly to before the “initial” velocity

um∗∗

i,P = − 1

AP

∂pm−
1

2

∂xi
+

1

AP

(
Q

m−
1

2

i −
∑
L

ALu
m∗

i,L

)
(3.67)

and the “final”velocity

um
i,P = − 1

AP

∂pm

∂xi
+

1

AP

(
Qm

i −
∑
L

ALu
m∗∗

i,L

)
(3.68)

are subtracted from one another (again neglecting the difference of the two source terms)

um
i,P − um∗∗

i,P = − 1

AP

∂

∂xi

(
pm − pm−

1

2

)
− 1

AP

(∑
L

AL

(
um∗∗

i,L − um∗

i,L

))
(3.69)

and used to derive an implicit equation for p′′ = pm − pm−
1

2 :

∂

∂xi

(
ρ

AP

∂p′′

∂xi

)
= − ∂

∂xi

(
ρ

AP

∑
L

ALu
′

i,L

)
(3.70)
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where
∑

L ALu
′

i,L can be determined using u′

i which can be calculated simply by rearran-

ging the previously obtained eqn (3.66). Finally, the corrected velocity is given by:

um
i,P = um∗∗

i,P − 1

AP

(
∂p′′

∂xi
+
∑
L

ALu
′

i,L

)
(3.71)

together with the corresponding corrected pressure

pm = pm−
1

2 + p′′ = pm−1 + p′ + p′′. (3.72)

This method, while computationally more demanding, delivers greater stability and faster

convergence since it does not simply neglect u′

i as the SIMPLE method does. Both

methods are very similar and can be summarised into 6 basic steps:

1. Use un
i and pn to advance to time n + 1 according to the chosen temporal discret-

isation method

2. Obtain um∗

i by solving the discrete momentum equations

3. Obtain p′ by solving the pressure-correction equation

4. Use p′ to obtain corrected velocity and pressure.

If using the PISO algorithm, solve the second pressure-correction equation and

correct velocity and pressure a second time

5. Repeat the procedure from step 2 onwards until all correction terms become negli-

gible

6. Proceed to step one and repeat the loop for the text time step

As with the SIMPLE algorithm, PISO can be extended to the case of compressible flow

but because the basic principle governing SIMPLE and PISO has already been presented

here, no further attention will be given to the subject. See [Bre01] for more detail

regarding the compressible equivalent of this algorithm.

3.5.3 PIMPLE

The PIMPLE method is an amalgamation of the SIMPLE and PISO methods. Essen-

tially, inner iterations are performed using the SIMPLE method, while outer iterations

are done with PISO [Ope13b]. SIMPLE can be used in this way because time does not

progress within inner iterations and the flow can be locally treated as intransient. Res-

ults from the inner iterations are passed on to the outer iteration which then performs a

PISO loop. Criteria for advancing to the next time step can either be sufficiently small

corrections as mentioned before, or simply be done after a given amount of PISO loops.

The latter is more convenient in practice as the former may dramatically increase compu-

tation time. In fact, the number of pressure-correction loops within each SIMPLE loop is

usually also predetermined for the same reason. This means, however, that one needs to
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carefully choose the number of iterations to ensure stability. The correct choice depends

largely on geometry and complexity of the calculation.

As a result, this algorithm delivers even greater stability than the PISO method and also

enables the use of larger time steps. PIMPLE, like PISO, is also capable of accurately

solving transient flows, whereas the SIMPLE algorithm is more suited for steady state

solutions. The increase in computational cost is usually well worth the improved accuracy

of the result and stability of the calculation. Computational cost may even be lower than

that of the previous two methods if the geometry allows for large enough time steps to

be chosen without compromising stability.

3.6 Large Eddy Simulation

Turbulence in fluids is regarded as a very difficult subject in fluid dynamics. In fact,

Lesieur mentions in [Les08] that turbulence even proves difficult to unequivocally define.

Everyday life gives many different examples of turbulence: cigarette smoke being advected

by its surrounding air. Sudden and abrupt changes in direction and velocity of wind

affect not only air travel but also influence conditions on land and at sea. Fluid rapidly

flowing around an obstacle creates a turbulent wake which increases the drag exerted on

the object. Turbulent atmospheric and oceanic currents make the weather very hard to

accurately predict. The list goes on, however, the common ground of all these different

examples of turbulence is that they are disordered in time and space. This is, of course,

no precise mathematical definition. Turbulent flow seems to be able to mix transported

quantities more rapidly than molecular diffusion could do on its own. Hence, Lesieur

introduces the following definition for turbulent flow:

• “Firstly, a turbulent flow must be unpredictable, in the sense that a small uncertainty

as to its knowledge at a given initial time will amplify so as to render impossible a

precise deterministic prediction of its evolution”

• “...[it] has to satisfy the increased mixing property defined above”

• “...[it] must involve a wide range of spatial wave lengths”

The uncertainties stated in the above definition require a statistical model in order to

mimic turbulent behaviour in a numerical simulation. Despite only dealing with fluids

in the Newtonian sense, it has so far not been possible to derive a generally accepted

model. Instead, there exist a wide variety of models that all have varying accuracy

and computational demand. One such turbulence model - Large Eddy Simulation (LES)

[Frö06, Sag98] - is presented in the following.

The basic principle in LES is to differentiate between large and small frequency scales.

The former, also referred to as resolved scales, are those which are directly calculated by

the governing equations while the latter, also referred to as subgrid scales, are included by
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ψ = ψ + ψ′, (3.73)

with

ψ (x, t) =

∞ˆ

−∞

∞ˆ

−∞

ψ (r, t′)G (x− r, t− t′) dt′dr, (3.74)

where the overbar indicates the expected value of ψ (the resolved part), calculated by

means of a convolution, and the prime indicates a fluctuation (modelled quantity). This

is what is known as Reynolds filtering. G is the convolution kernel associated with the

filtering method used and t′ is a dummy variable. Note also that ψ′ = 0.

A special method of density-weighted filtering is utilised for compressible flow called Favre

filtering (see [Fav83]):

ψ = ψ̃ + ψ′′, (3.75)

with

ψ̃ =
ρψ

ρ
. (3.76)

ψ′′ is again a fluctuation but denoted with two primes to emphasise the different filtering

method. Note also that ρ̃ψ′′ = 0 but ψ̃′′ 
= 0. This prevents having to model additional

terms. Consider for example Reynolds filtering of ρui:

ρui = ρ (ui + u′

i) = ρ ui + ρu′

i = ρ ui + ρu′

i, (3.77)

whereas Favre filtering results in

ρui = ρ (ũi + u′′

i ) = ρ ũi + ρu′′

i = ρũi. (3.78)

Note that density fluctuations ρ′ and ρ′′ as well as pressure variations p′ and p′′ are

generally neglected. Thus, ρ̃ = ρ and p̃ = p.

In order to properly define scale separation, a cutoff length kc needs to be determined

which serves as a boundary between large and small scales. Figure 3.7 shows this de-

composition. Another way of viewing scale separation would be that the information

lost during the filtering process is subsequently modelled to compensate. In theory, the

filtered quantity ψ is obtained by means of a convolution as seen above. In practise, how-

ever, this is not very helpful since ψ is unknown to begin with. Hence, the filter is taken

to be the individual cells of the computational grid. Scales large enough to be calculated

directly on the grid are taken as resolved scales, while scales too small to be captured by

the grid are modelled. Thus, the cutoff length (or filter width) is easily defined as the

characteristic length of a grid cell kc = Δ. Calculated and modelled values of ψ are then

summed to obtain a more accurate estimate than the calculated value alone.

The following subsections give an overview over the application of a filter to the Navier-

Stokes equations and introduce a method for modelling subgrid scales. Furthermore,

treatment of flow near a boundary layer (such as a rigid wall) is briefly discussed.
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3.6. LARGE EDDY SIMULATION

Figure 3.7: Symbolic representation of the energy spectrum decomposition in Large Eddy

Simulation where k is the wave number and E(k) is the associated energy

3.6.1 Filtered Navier-Stokes equations

Applying the Favre filter to the compressible momentum equation eqn (2.45) serves as a

basis for deriving a suitable momentum equation for LES:

∂ρui

∂t
+

∂ρujui

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
2μS̃∗

ij

)
, (3.79)

where the dissipative terms have been combined into

S̃∗

ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 1

3

∂ũk

∂xk
δij . (3.80)

Note that the first term on the LHS of eqn (3.79) is, by eqn (3.78), simply decomposed

into

ρui = ρ ũi. (3.81)

The second term, however, requires more careful consideration as it has two velocity

components:

ρujui = ρũjui = = ρ ˜(ũi + u′′

i )
(
ũj + u′′

j

)
= ρ ˜

(
ũiũj + ũiu

′′

j + ũju
′′

i + u′′

i u
′′

j

)
= ρ

(˜̃uiũj + ˜̃uiu′′

j +
˜̃uju′′

i +
˜u′′

i u
′′

j

)
. (3.82)

All the terms that require modeling because they cannot be resolved on the grid are

represented by the subgrid tensor τij :

τij = ũjui − ˜̃uiũj = Cij +Rij , (3.83)
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where the Clark tensor Cij = ˜̃uiu′′

j +
˜̃uju′′

i represents interactions between resolved and

subgrid scales, and the Reynolds tensor Rij = ˜u′′

i u
′′

j represents interactions purely among

resolved scales. Additionally, ˜̃uiũj may be further decomposed into

˜̃uiũj =
(˜̃uiũj − ũiũj

)
+ ũiũj

= Lij + ũiũj, (3.84)

where the Leonard tensor Lij = ˜̃uiũj− ũiũj represents interactions among resolved scales.

Using this notation the subgrid tensor becomes

τij = ũjui − ũiũj = Cij +Rij + Lij . (3.85)

This procedure is commonly referred to as Leonard decomposition and results in the

following filtered momentum equations for compressible flow:

∂ρũi

∂t
+

∂ρũjũi

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
2μS̃∗

ij

)
− ∂ρτij

∂xj

. (3.86)

Using eqn (3.78) the associated continuity equation simply becomes

∂ρ

∂t
+

∂ρũi

∂xi

= 0. (3.87)

The filtered Navier-Stokes equations for incompressible flow are easily derived from the

above by assuming constant density and using the resulting fact that ψ̃ = ψ:

∂ui

∂t
+

∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
− ∂τij

∂xj
(3.88)

and
∂ui

∂xi
= 0. (3.89)

3.6.2 Smagorinsky model

It now remains to model the subgrid tensor τij . Several models exist that can perform

this task. Only one will be discussed here and that is the Smagorinsky Model based on

[Fur96]. It uses information obtained by computing the large scales in order to model the

small scales. See [Sag98] for more detail on other methods for modelling turbulence.

The Smagorinsky model conveniently assumes that τij is a function of S̃∗

ij . Specifically

that

− ρτij = 2μsgsS̃
∗

ij, (3.90)

resulting in the following modification to eqn (3.86)

∂ρũi

∂t
+

∂ρũjũi

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
2 (μ+ μsgs) S̃

∗

ij

)
. (3.91)
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The subgrid scale viscosity μsgs is calculated according to

μsgs = CkρΔ
√

ksgs, (3.92)

where Ck is a constant, Δ = |Δ1 · (Δ2 ×Δ3)|
1

3 is the cube root of the grid cell’s volume

(the preferred method for calculating the characteristic length of the grid cell in this

project), and ksgs represents the subgrid scale kinetic energy. ksgs is in turn modelled by

solving the following quadratic equation

− Ce

Δ
x2 +

2

3
S̃iix+ 2CkΔS̃ijS̃

∗

ij = 0, (3.93)

in which Ce is a constant and

x =
−b +

√
b2 − 4ac

2a
(3.94)

a = −Ce

Δ
(3.95)

b =
2

3
S̃ii (3.96)

c = 2CkΔS̃ijS̃
∗

ij (3.97)

ksgs = x2. (3.98)

Note that for incompressible flow, i.e. S̃ii = Sii = 0, b = 0 and S̃∗

ij = Sij and eqn (3.93)

reduces to

ksgs = 2
Ck

Ce
Δ2
∣∣Sij

∣∣2 . (3.99)

Plugging ksgs into eqn (3.92) yields

μsgs = ρ(CSΔ)2
∣∣Sij

∣∣ , (3.100)

where C2
S =

√
2C1.5

k C−0.5
e is the Smagorinsky constant.

Finally, the transport equation for enthalpy [Ope13b] is given by

∂ρh̃

∂t
+

∂ρũjh̃

∂xj

− ∂

∂xj

(
(α + αsgs)

∂h̃

∂xj

)
=

∂p

∂t
+ ũj

∂p

∂xj

, (3.101)

where

α =
k

cp
(3.102)

αsgs =
μsgs

Prsgs
. (3.103)

Note that k here is the thermal conductivity and Prsgs the subgrid scale Prandtl number.
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3.6.3 Dynamic Smagorinsky model for incompressible flow

The Smagorinsky model delivers good results with constant CS. The model can be

improved, however, by adjusting the constant according to flow properties as presented

in [LMC05]. This mainly improves upon the model’s behaviour near walls, especially if

no wall law (Section 3.6.4) is used.

A second filter - the test-filter - is applied on top the Reynolds filter with a larger filter

width, say αΔ with α > 1. This second filtering operation is denoted by ψ̂ and the

product of both filters (double filter) by ψ̂. The subgrid scale tensor for the double

filtered Navier-Stokes equations is

τij = ûiuj − ûiûj. (3.104)

Considering ui as the instantaneous field, the Leonard tensor may be expressed as

Lij = ûiuj − ûiûj. (3.105)

Applying the test filter to the incompressible version of eqn (3.83) yields

τ̂ij = ûiuj − ûiuj. (3.106)

Adding the previous two equations and then using eqn (3.104) results in Germano’s iden-

tity:

Lij = τij − τ̂ij . (3.107)

The Leonard tensor can be directly calculated by applying the test filter to ui whereas

τij and τ̂ij must be modelled. Using the Smagorinsky model and applying the test filter

yields

τ̂ij − 1

3
τ̂iiδij = 2̂AijC, (3.108)

where C = 2C2
S and

Aij = −Δ2
∣∣Sij

∣∣Sij. (3.109)

The stress from the filter product τij is also determined using the Smagorinsky model:

τij − 1

3
τiiδij = 2BijC, (3.110)

where

Bij = −(αΔ)2
∣∣∣Ŝij

∣∣∣ Ŝij. (3.111)

Subtracting eqn (3.108) from eqn (3.110) and using Germano’s identity leads to

Lij − 1

3
Liiδij = 2BijC − 2̂AijC, (3.112)

which relates C to the resolved stresses. Next C is removed from the filter, giving

Lij − 1

3
Liiδij = 2CMij , (3.113)
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3.6. LARGE EDDY SIMULATION

with Mij = Bij − Âij . This is now an overdetermined problem with five equations for one

unknown. Germano proposes in [Ger92] to multiply eqn (3.113) by Sij, giving

C =
1

2

LijSij

MijSij

. (3.114)

Note that Sii = 0 due to incompressibility. Using eqn (3.114), the problem may arise that

the denominator tends to zero which can cause instabilities. Lilly proposes a different

approach in [Lil92] using the least squares method:

C =
1

2

LijMij

MijMij

. (3.115)

While removing the instability arising from a vanishing denominator, eqn (3.115) allows

for negative values of C. This can be an advantage in that it allows for local backscat-

tering, however, very large negative values can cause numerical instability by introducing

an unrealistic growth in the resolved scales’ energy. To combat this, C can be averaged

over space, time, or both. Although this may counter the intent of a dynamic model, it

provides a stable method with which the constant C remains somewhat related to the

properties of the flow. Another solution is to cap the local effective viscosity in case of

large negative values for C, e.g. νeff = max(0, ν + νsgs). This method is more dynamic

as it allows for some local backscatter within the magnitude of ν while at the same time

tending to zero near walls where the velocity gradient vanishes. The latter method com-

bined with Lilly’s approach for determining C is used for incompressible LES in this

project.

3.6.4 Law of the Wall

The Law of the Wall (cp. [Spu06]) states that the mean velocity at a given point in

a turbulent flow is proportional to the logarithm of the distance between the point in

question and the nearest wall or boundary layer:

u+ =
1

κ
ln(y+) + B, (3.116)

where u+ = u/uτ is a dimensionless velocity, uτ =
√
τw/ρ is the shear velocity and τw is

the wall shear stress. Furthermore, y+ = yuτ/ν is a dimensionless distance from the wall

where y is the actual wall distance, made dimensionless by uτ and the kinematic viscosity

ν. B is a constant of integration and κ is the Von Kármán constant, typically equal to

0.41. The law does not hold in close proximity to the wall. In the region y+ < 5, known

as the viscous sublayer, the velocity displays linear behaviour: u+ = y+. The law of the

wall does not set in until y+ > 30. The region 5 < y+ < 30 is referred to as the transition

layer or buffer layer. Here the law relies on an approximation that smoothly combines

both layers with each other (see Figure 3.8).
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Figure 3.8: Law of the wall: layer transitions

With dimensions, the law of the wall may be written as

u = uτ
1

κ
ln

(
y

y0

)
. (3.117)

Note that the constant of integration is now inside the logarithm and denotes the distance

from the wall y0 at which the mean velocity given by the law of the wall is zero. This

distance is non-zero since the law of the wall ceases to hold before the wall is reached. Let

kl denote the characteristic length of roughness on the wall and δ be the thickness of the

viscous sublayer. The flow is said to be smooth for kl < δ, for kl > δ the flow is termed

as rough, and for kl ≈ δ the flow is considered transitional. It seems intuitive that rough

elements which only reside inside the viscous sublayer have a completely different effect

on the flow than do rough elements which reach past the viscous sublayer. In terms of

the boundary Reynolds number Rew = kluτ/ν, the flow is said to be smooth if Rew ≤ 3

and rough if Rew ≥ 100. For smooth flow y0 = ν/9uτ and for rough flow y0 = k/30.

For transitional flow, y0 needs to be evaluated empirically or calculated analytically (see

[LR02] for an example).

Wall roughness is of particular interest for future considerations of this project since the

GrindBall is an abrasive tool with a rough surface. Different surface coatings may have

varying effects on the flow, and a correlation between momentum transfer and roughness

of the surface could be observed. For now, however, only smooth surface coating will

be considered. Should experimental measurements display a non-negligible influence this

will be taken into account at a later stage.
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3.7 Summary

A large variety of numerical methods have been introduced in this chapter and comments

made about stability and accuracy for each one. The simulations described in the fol-

lowing chapters are performed on highly complex geometries. Nonetheless, they require

a high level of accuracy (i.e. higher order) and, furthermore, parametric studies require

that a large number of simulations be conducted. Hence, numerical methods must be

chosen to provide high accuracy at a low computational cost while remaining stable at

all times.

The Finite Volume Method (FVM) introduced in Section 3.1.2 is used throughout, as it is

the only method suited to the analyses within this project. Spacial interpolation is per-

formed with second order methods to guarantee accuracy either using CDS (Section 3.2.3

or LUDS (Section 3.2.2) depending on which proves more stable. UDS (Section 3.2.1) is

employed only in simulations in which accuracy is of lesser importance, e.g. precursor

simulations or initial parametric studies, thus saving time.

Since all simulated cases are unsteady in nature, temporal interpolation must also be

used. This is done either with the Implicit Euler Method (Section 3.4.2) or the Crank-

Nicolson Method (Section 3.4.3). While the latter provides greater accuracy, it does not

always produce sufficient stability and so the former must be used instead on some cases.

All simulations use the PIMPLE algorithm (Section 3.5.3) to solve the Navier-Stokes

equations. Its ability to yield good stability in combination with relatively high time-

step sizes for unsteady problems make it an ideal choice here.

Finally, turbulence must be modelled for cases with high Reynolds numbers. Large Eddy

Simulation (Section 3.6) is the preferred method in conjunction with the Smagorinsky

model. The “static” Smagorinsky model (Section 3.6.2) is chosen for compressible flow,

while incompressible cases employ the dynamic Smagorinsky model (Section 3.6.3). All

turbulent cases also require the Law of the Wall (Section 3.6.4) to adequately model the

flow’s behaviour near walls, thereby ensuring that fluid-solid interaction can be correctly

quantified. Laminar cases (Re < 2000) require neither the modelling of turbulence, nor

the Law of the Wall.

The methods and models employed, as well as further details such as boundary conditions,

fluids properties, etc. are listed for each individual set of cases in AppendixD.
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Chapter 4

Developing a prototype grinding tool

The previously discussed knowledge is now applied to a specific case - a pneumatically

powered abrading sphere referred to as the GrindBall. A parametric study is conducted

in order to identify the ideal configuration for the diameter of the duct hd, its offset ho, as

well as the height of the spherical gap hg as outlined in Section 1.2. The resulting optimal

setup is subsequently simulated and analysed to determine demands to be met by the

magnetic bearing and the force available to the abrasion process, as well as to derive a

mathematical function governing the behaviour of the available grinding force.

4.1 Parametric study

The goal of this parametric study is to make the GrindBall as efficient as possible while

abiding to certain practical and physical restrictions. The sphere’s predetermined dia-

meter of 40mm is considered fixed and will not be varied here. Furthermore, air is the

only considered medium of pneumatic propulsion. An important physical restriction is

the fact that the height of the spherical gap should not exceed 3mm as the resulting heat

transfer of the magnetic bearing on to its surroundings would impair prolonged use of the

tool. Force transfer on to the sphere should be maximised under these conditions while

also maintaining acceptable pressure forces which can be easily countered by the mag-

netic control element. It should furthermore be noted that the magnetic bearing consists

of five individual magnets, four of which can exert force on the sphere horizontally, and

one of which can exert force in an upward direction (see Figure 4.1). Hence, the bearing

relies on the weight of the sphere itself should the sphere be required to lower its position.

The grinding sphere, which weighs 0.25 kg, exerts a force approximately equal to 2.5N

in a downward direction, a force which should not be overcome by any upward force

resulting from effects the flow might have. Should this occur, the sphere could not be

lowered without adjusting the flow, a condition which would render the tool inoperable.

Thus, it is vital that the total vertical force always acts downwards within a reasonable

margin. Also, a rotating sphere will not be considered during the parametric study as it

is not a necessary factor when comparing individual geometries.
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Magnet Grinding sphere Fluid

Top view Side view

Non-magnetic filling

Figure 4.1: Magnetic bearing aligned around the grinding sphere

4.1.1 Variable parameters

Essentially, there are three main variable factors considered here. These are the height of

the spherical gap hg in which the abrading sphere is mounted and where most of the force

transfer on to the sphere takes place, the diameter of the duct hd which is responsible

for introducing the pneumatic propulsion medium into the spherical gap, as well as the

offset ho of the duct relative to the top of the spherical gap. See Figure 4.2 for a graphic

overview. The length of the duct as well as the diameter of the hose used to lead the

medium into the duct are a result of practicality and of physical demands brought forth

by the process of manufacture and operation of the tool. Hence, they are not included

as parameters in this study.

Gap heights of 2mm, 3mm, and 4mm are examined with duct diameters also ranging

from 2-4mm. Offset is taken as equal to gap height for this first run. Neglecting cases

in which duct diameter is less than the height of the gap results in 6 individual cases to

be considered (see Table 4.1). The 4mm gap height case is considered here purely as a

means of comparison since the maximum physically possible gap height is 3mm as stated

previously.

Offset of the duct relative to the top of the spherical gap is then examined using the

optimum configuration obtained from the first run for the following values: 50%, 75%,

125%, 150%, 175%, and 200%, where the percentage refers to the offset’s value relative

to gap height.
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Figure 4.2: Variable parameters for the parametric study

4.1.2 Simulation setup

Simulations are conducted using the open source package for numerical computation

OpenFOAM-2.1.x (Open Field Operation and Manipulation) [Ope13a].

The solver used is rhoPimpleFoam which is a pressure based compressible finite volume

solver that utilises the PIMPLE algorithm (Section 3.5.3) and is capable of turbulence

modelling. Large Eddy Simulation (discussed in Section 3.6) is the preferred method of

incorporating turbulence in conjunction with the compressible Smagorinsky model intro-

duced in Section 3.6.2. Spacial discretisation is performed using the linear interpolation

scheme (CDS) presented in Section 3.2.3 and temporal discretisation is done using the

2mm duct 3mm duct 4mm duct

2mm gap
√ √ √

3mm gap
√ √

4mm gap
√

Table 4.1: Cases considered while examining duct diameter and spherical gap height
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implicit Euler method seen in Section 3.4.2. Pressure is linked to density via the perfect

gas law (Section 2.8) and the viscosity’s temperature dependence is determined according

to Sutherland’s viscosity model (Section 2.9). Fluid-solid interaction is modelled using

the Law of the Wall for smooth walls stated in Section 3.6.4.

Inlet

Boundary conditions for the inlet are set as follows: each simulation has a fixed mass

flow rate ṁ which determines the amount of air entering the system. The variability of

the duct’s diameter must be taken into consideration when determining ṁ since the flow

should not be permitted to become super-sonic and the duct is the narrowest region in

the system (resembling a laval nozzle). Hence, the mass flow rate is determined according

to

ṁ = ρUA (4.1)

given that

U =
ṁ

ρdAd
= const = 230m s-1, (4.2)

where the density of air at the duct’s exit is estimated as ρd = 1.1 kgm-3 and Ad is the

cross-sectional area of the duct. A value as low as U = 230m s-1 for the mean velocity

ensures sub-sonic flow even if the estimate for ρd is inaccurate. Table 4.2 gives an overview

over the mass flow rates used for individual cases. Velocity u at the inlet is calculated

based on the mass flow rate. This approach is preferred over setting a fixed uniform value

for u across the inlet as it results in a realistic flow profile along the inlet. The boundary

condition for pressure p is set to zeroGradient. Temperature T is set to 293.15K, i.e.

room temperature. This value was obtained by measurements of air travelling through

the disconnected hose at different mass flow rates [Bra]. Values for μsgs and αsgs are

determined using zeroGradient.

Outlet

Boundary conditions for the velocity, the temperature, as well as μsgs and αsgs at the outlet

are set to zeroGradient. A fixed pressure condition called totalPressure is used to

govern pressure where the total pressure is defined as ptot =
(
1 + γ−1

2
Ma2

)(γ−1)/γ
[Bal07]

2mm duct 3mm duct 4mm duct

2mm gap 7.9 · 10−4 1.8 · 10−3 3.1 · 10−3

3mm gap 1.8 · 10−3 3.1 · 10−3

4mm gap 3.1 · 10−3

Table 4.2: Mass flow rates used for the parametric study [kg s-1]
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which is set equal to atmospheric pressure of 101,325Pa. Note that for incompressible

flow ptot = p+ 1
2
ρU2 [Kü01].

Stationary walls

Boundary conditions for stationary walls are simply zeroGradient for pressure and tem-

perature. A value of zero for the velocity ensures a no-slip condition. The special bound-

ary conditions muSgsUSpaldingWallFunction and alphaSgsWallFunction ensure that

the Law of the Wall presented in Section 3.6.4 is used by applying it via the modelled

quantities μsgs and αsgs.

Table 4.3 gives a brief overview of boundary conditions with descriptions as they are used

in OpenFOAM.

inlet outlet stationary wall

u timeVaryingFlow- zeroGradient fixedValue

RateInletVelocity

p zeroGradient totalPressure zeroGradient

T fixedValue zeroGradient zeroGradient

μsgs zeroGradient zeroGradient muSgsUSpalding-

WallFunction

αsgs zeroGradient zeroGradient alphaSgsWallFunction

Table 4.3: Boundary conditions used for the parametric study

Mesh

The mesh used consists of approximately 900,000 hexahedral cells and is comprised of 4

main areas. The first one is the inlet basin, which introduces the flow into the system

through a 30mm wide hose and leads up to the duct via a 90◦ constriction. The diameter

of the hose is chosen so that the velocity of the flow is low enough as to be able to neglect

the length of the hose and only simulate a small part of it. The constriction angle of 90◦

is preferred over the alternative 118◦ as it provides a smoother transition leading into the

duct. These two angles stem from drilling heads available to the manufacturing process.

The second area is the duct, which is responsible for transporting the flow into the

spherical gap. Its length is variable depending on its own diameter and the offset. The

x-coordinate of the transition from constriction to duct, however, is fixed at −36.4mm,

again a requirement of the construction process. Note that coordinates are relative to

the origin at the centre of the abrading sphere. See Figures 4.3 and 4.4 for clarification.

59

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

The spherical gap is the third area. This is where the flow transfers its force on to

the abrading sphere. As this is the most important area in the simulation domain,

special attention is given to ensuring that cell shapes are as close as possible to that of a

cube. This ensures best possible results since the Smagorisnky model assumes isotropic

turbulence. This also means that the amount of cells along the height of the gap must

be adapted depending on the absolute height of the gap for each case.

Figure 4.3: Side view of the mesh used for the parametric study (clipped along y = 0)

Figure 4.4: Top view of the mesh used for the parametric study (clipped along y = 0)

Finally, the outlet basin serves as the area where the flow can expand and slow down

before exiting the system. It is vital that this area is sufficiently large as the total pressure

boundary condition may not deliver physically accurate results if the outlet boundary is

too close to areas in which the flow still has a large momentum or pressure conditions

have not begun to converge to an atmospheric value as is imposed on the outlet boundary.

The importance of cell shapes as well as cell sizes in this region decreases with distance

to the sphere, thus allowing for a low number of cells in the basin and a subsequently

low computational cost. Figures 4.3 and 4.4 give an overview over the entire mesh, while

Figure 4.5 focuses on the individual domains.
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While the amount of cells may seem somewhat low considering the extent of the geometry,

the goal of this parametric study is not to deliver final results that can be used for

operating the GrindBall. Instead, the objective here is to compare the effects of different

parameters and determine which configuration delivers best performance by comparison.

Once this is done, the resulting optimum is investigated more carefully in Section 4.2.

Figure 4.5: The four main mesh domains: (i) inlet basin, (ii) duct, (iii) spherical gap, (iv)

outlet basin (clipped along y = 0)

Simulation Timeline

To avoid non-physical behaviour, the mass flow rate is initially set to zero and linearly

increased over 0.005 s of simulated time using a ramp function. Beyond 0.005 s a constant

value is maintained. The simulations are then allowed to continue up to 0.04 s where they

are halted. Since the flow needs time to reach its equilibrium, results are not averaged

before the simulations reach 0.025 s. Note that since these simulations involve turbulence

modelling, the term “equilibrium” does not refer to a steady-state solution, but rather a

state in which the flow is fluctuating about an average steady-state. Averages are thus

taken over the interval of time between 0.025 s and 0.04 s. See Figure 4.6 for a graphic

overview.

Variable time step size must be taken into account when averaging over this interval.

61

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

 0

 25

 50

 75

 100

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

P
er

ce
nt

 m
ax

 [%
]

Time t [s]

Volumetric flow rate
Averaging interval

Figure 4.6: Timeline for simulations in the parametric study

Using the midpoint rule, the average for an arbitrary quantity ψ is defined as

ψ =
1

ΔT

n−1∑
i=1

1

2
(ψi + ψi+1) (ti+1 − ti) , (4.3)

where n is the number of time steps in the interval and ΔT = 0.04 s− 0.025 s = 0.015 s

is the length of the interval.

4.1.3 Forces

The main criterion, not only for this parametric study, but for all simulations in this

project are forces and moments acting on the sphere. How these forces are calculated is

described in the following.

Pressure p is calculated in each cell adjacent to the sphere and multiplied by the surface

normal belonging to the corresponding cell face making up part of the sphere’s surface.

The sum of the resulting vectors yields the total pressure force acting on the sphere:

Fp =
n∑

i=1

pini, (4.4)

where ni is the surface normal vector of the individual sphere boundary face i, and n is

the total number of cell faces on the sphere. This is the discrete equivalent of integrating

pressure over the entire surface.

Pressure moment is calculated by taking the cross product of the vector ri, which points

to the cell face centre from the origin at the centre of the sphere, and the pressure force

defined previously:

Mp =
n∑

i=1

ri × pini. (4.5)
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Viscous forces are calculated using the part of stress tensor S̃ defined in eqn (3.80) that

acts on the cell face:

Fv =
n∑

i=1

ni · 2 [μ+ μsgs]i S̃i
, (4.6)

where the dot product of a vector with a tensor is defined as v ·T = vjTjiei.

Similarly to the pressure moment, the viscous moment is calculated thusly:

Mv =

n∑
i=1

ri ×
(
ni · 2 [μ+ μsgs]i S̃i

)
. (4.7)

Note that since the surface examined here is a sphere centred at the origin, ri and ni are

parallel for all i, resulting in Mp = 0. Furthermore, the total force exerted is obtained

by adding pressure force and viscous force resulting in

Ftot = Fp + Fv, (4.8)

which will henceforth simply be referred to as F, with individual vector components Fx,

Fy, and Fz. Also,

Fn = −Fz (4.9)

denotes the contact force with which the flow pushes the sphere down on to the workpiece.

Additionally, considering the weight of the sphere, total contact force is given by

Fn,tot = −Fz +msg, (4.10)

where ms is the grinding sphere’s mass and g is the negative z-component of the earth’s

gravitational acceleration g = (0, 0,−g) = (0, 0,−9.81)m s-2.

Total moment is obtained by

Mtot = Mp +Mv = Mv, (4.11)

henceforth referred to as M with individual vector components Mx, My, and Mz repres-

enting the moments about the respective axes. Force exerted by a moment is obtained

by dividing the moment by the length of the moment arm. Since the GrindBall ’s sphere

rotates purely about the y-axis, Mx and Mz can be neglected and the tangential force

available to the grinding process is given by

Ft ≈ My

r
, (4.12)

where r = 0.02m is the sphere’s radius in this case. Since the tangential force transferred

on to the sphere by the flow is equal to the force available for grinding, Ft may also be

referred to as force transfer or available grinding force. This approximation has an error

of ∼0.5% for a grinding angle of 10◦1. F and M are calculated and written to a file in

each time step of the simulation and averaged in post-processing according to eqn (4.3).

1See Appendix A for further details on how to obtain an exact solution if the grinding angle is known
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4.1.4 Evaluation

Part 1

The results from the first part of the parametric study can be seen in Table 4.4 and a

graphical representation is given in Figure 4.7.

2mm gap 2mm gap 2mm gap 3mm gap 3mm gap 4mm gap

2mm duct 3mm duct 4mm duct 3mm duct 4mm duct 4mm duct

Ft 1.28 · 10−2 2.76 · 10−2 4.60 · 10−2 1.85 · 10−2 3.16 · 10−2 3.04 · 10−2

σ (Ft) 1.03 · 10−3 0.99 · 10−3 1.05 · 10−3 1.07 · 10−3 1.12 · 10−3 2.82 · 10−3

Fx 6.17 · 10−2 1.30 · 10−1 1.22 · 10−1 7.87 · 10−2 8.53 · 10−2 7.50 · 10−2

σ (Fx) 0.30 0.22 0.20 0.09 0.12 0.13

Fy −2.45 · 10−3 −5.51 · 10−3 3.01 · 10−3 2.30 · 10−3 −3.34 · 10−3 −2.77 · 10−3

σ (Fy) 0.44 0.36 0.32 0.09 0.10 0.11

Fz 1.58 · 10−1 3.29 · 10−1 5.79 · 10−1 2.97 · 10−1 5.06 · 10−1 4.94 · 10−1

σ (Fz) 0.17 0.18 0.34 0.09 0.16 0.15

Table 4.4: Results in Newton [N] from the first part of the parametric study: Tangential

forces Ft as well as pressure and viscous forces Fx, Fy, and Fz

Clearly the case with a 2mm gap and a 4mm duct delivers the best results in terms of tan-

gential force. The 3/4mm case follows, with 4/4mm and 2/3mm closely behind. 3/3mm

and 2/2mm deliver a rather poor performance by comparison. Forces in x-direction all

display a similar average ranging from 0.06N to 0.13N. What is more interesting here are

the large differences among standard deviations. From here on, only the top three cases

are considered, bearing in mind that that the 4/4mm case is not practically feasible. The

3/4mm case’s σ(Fx) is approximately half of that seen in the cases 2/4mm and 2/3mm.

This means that the former would deliver a much smoother performance as the force

exerted does not oscillate as heavily about its mean. Similar observations can be made

for Fy and Fz. Forces Fy all display an extremely low average as is to be expected since

the geometry is symmetric about y = 0 and the flow’s main direction is perpendicular

to the y-axis. Standard deviations again display varying results. Here the cases 2/3mm

and 2/4mm both deliver a σ(Fy) more than 3 times as large as the 0.1N seen in the

3/4mm case. The force Fz is not quite in keeping with Fx and Fy: 2/3mm delivers

the best result with the lowest upward force of Fz = 0.33N and a standard deviation of

σ(Fz) = 0.18N. 3/4mm and 2/4mm both show values around 0.5N for Fz. The standard

deviation, however, of 0.34N for 2/4mm is more than double the deviation of 0.16N seen

in the 3/4mm case.

Despite having the largest tangential force, the 2/4mm case displays such high standard

deviations for force that is not a practical choice. The high upward force Fz combined

with a large standard deviation σ(Fz) make this configuration particularly problematic.
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Figure 4.7: Results from the first part of the parametric study: Tangential force Ft and

normal forces Fx, Fy, and Fz

Comparing 2/3mm and 3/4mm sees 3/4mm as the far better choice. While 2/3mm

shows a lower Fz with comparable values for σ(Fz), the standard deviations of Fx and

Fy are simply too high by comparison. Such highly fluctuating forces could cause strong

vibrations which would in turn cause the magnetic bearing to emit more heat while trying

to compensate. This may impair prolonged use of the tool.

In general, it can be said that forces Ft, Fx, and Fz increase with increasing gap height for

cases in which duct diameter is equal to gap height. Furthermore, these forces increase

with increasing duct diameter for constant gap height. Standard deviations of Ft show

little difference across all cases. Forces Fx, Fy, and Fz, however, display large variations

in their standard deviations. The standard deviations seen for all cases using 2mm gap

height are far greater than those seen using a 3mm or 4mm gap. Gap heights of 3mm

and 4mm are similar regarding σ(F). A smaller gap seems to promote heavier vibration

of the sphere while a larger gap enables “smoother” operation. Varying the duct diameter

at constant gap height shows similar results for standard deviations in all cases.

65

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.
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Figure 4.8 shows a comparison of velocity profiles for the dimensionless velocity

Û = U/U0, (4.13)

where U is the mean velocity averaged from t = 0.025 s to t = 0.04 s, and U0 = 230m s-1.

There are no distinct differences in velocity distribution among cases, all showing a typical

mean velocity profile for turbulent flow inside the duct. Once the flow enters the spherical

gap and impacts the sphere, velocity profiles shift toward the sphere, causing high velocity

gradients near the sphere’s surface and lower gradients near the top of the gap. This effect

is observed for all cases, however, it appears to be more prominent in cases where the ratio

of duct diameter to gap height is larger. Also, higher duct-to-gap ratios cause the flow to

maintain high speeds inside the gap over longer distances, explaining higher tangential

force in these cases. Furthermore, it is clear that the amount of mass impacting the

sphere increases with duct diameter, which explains higher forces in general for larger

ducts, i.e. higher flow rates.

Figure 4.9 compares dimensionless pressure distributions

p̂ = p/p0, (4.14)

where p is the average pressure and p0 = 101,325Pa. Larger ducts show bigger areas

of high pressure at the flow’s main point of impact on the sphere, which is a direct

consequence of higher flow rates. Varying gap height at constant duct diameter has no

apparent influence on this factor. Low pressure areas at the top of the sphere behind the

point of impact explain upward force acting on the sphere. These areas become more

apparent for high duct-to-gap ratios, which is in keeping with the results for Fz. They do,

however, also rise with flow rate, which is made apparent by comparing cases in which

duct diameter and gap height are equal. In fact, these low-pressure zones correspond to

the flow maintaining high speeds, as discussed above, which appears to be the cause of

the pressure drop. Finally, there appear to be small areas of low pressure at the point

in which the duct and the gap merge. They become more apparent for both higher flow

rates and duct-to-gap ratios, however, they seem to have no noticeable influence on the

flow, nor are they close enough to the sphere to exert any lifting force on it.

Figure 4.10 shows a comparison of Mach numbers between cases. Little variation is ob-

served as is to be expected due to the way in which the fixed mass flow rate is defined at

the inlet according to eqns (4.1) and (4.2). In general, there is no indication of significant

increase in Mach numbers at the end of the duct or anywhere inside the gap. Instead,

Mach numbers are homogeneously distributed throughout the vital areas of the geometry.

However, they are high enough - in fact up to 0.7 in these cases - to justify the use of a

compressible simulation model, which becomes necessary at Ma > 0.3 [Gra01, Whi09].
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(i) 2mm gap, 2mm duct (ii) 2mm gap, 3mm duct

(iii) 2mm gap, 4mm duct (iv) 3mm gap, 3mm duct

(v) 3mm gap, 4mm duct (vi) 4mm gap, 4mm duct

Figure 4.8: Dimensionless velocity profiles for individual cases in part one of the para-

metric study
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(i) 2mm gap, 2mm duct (ii) 2mm gap, 3mm duct

(iii) 2mm gap, 4mm duct (iv) 3mm gap, 3mm duct

(v) 3mm gap, 4mm duct (vi) 4mm gap, 4mm duct

Figure 4.9: Dimensionless pressure distribution for individual cases in part one of the

parametric study
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(i) 2mm gap, 2mm duct (ii) 2mm gap, 3mm duct

(iii) 2mm gap, 4mm duct (iv) 3mm gap, 3mm duct

(v) 3mm gap, 4mm duct (vi) 4mm gap, 4mm duct

Figure 4.10: Mach number distribution for individual cases in part one of the parametric

study
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Part 2

The optimum case from the first part of the study with a 3mm gap height hg and a 4mm

duct diameter hd is now subjected to a second study with varying offset. The offset ho

is given as a percentage of hg and is measured as the vertical distance between the top

of the gap and the highest point of the duct (see Figure 4.2). Cases investigated are for

ho ∈ {50%, 75%, 100%, 125%, 150%, 175%, 200%}. An offset higher than 200% cannot be

considered since the hose would penetrate the outlet basin, making multiple grid cells

occupy the same space. Again, the goal here is to maximise Ft while maintaining accept-

able values for F and σ(F). Boundary conditions are identical to those used previously.

The mass flow rate ṁ = 0.0031m3h-1 is the same used for 4mm ducts.

Table 4.5 shows results of the study and Figure 4.11 provides a graphic representation.

Standard deviations for the individual forces are relatively uniform across all cases com-

pared to the first study. Hence, the absolute values of the forces and how they compare

across cases are the focus of this second study. It is easily seen that the tangential force

50% 75% 100% 125% 150% 175% 200%

Ft 2.30 · 10−2 2.70 · 10−2 3.16 · 10−2 3.40 · 10−2 3.63 · 10−2 3.86 · 10−2 4.04 · 10−2

σ (Ft) 1.47 · 10−6 2.05 · 10−6 1.26 · 10−6 1.24 · 10−6 1.17 · 10−6 1.18 · 10−6 1.08 · 10−6

Fx 1.26 · 10−1 1.10 · 10−1 8.53 · 10−2 5.82 · 10−2 2.3 · 10−2 −1.22 · 10−2 −4.06 · 10−2

σ (Fx) 2.41 · 10−2 3.66 · 10−2 1.53 · 10−2 1.98 · 10−2 1.09 · 10−2 1.84 · 10−2 1.50 · 10−2

Fy 1.67 · 10−3 −3.60 · 10−4 −3.34 · 10−3 5.06 · 10−3 8.02 · 10−4 7.28 · 10−3 −5.28 · 10−4

σ (Fy) 7.26 · 10−3 1.34 · 10−2 1.03 · 10−2 1.68 · 10−2 7.82 · 10−3 3.96 · 10−2 2.27 · 10−2

Fz 4.32 · 10−1 4.72 · 10−1 5.06 · 10−1 5.39 · 10−1 5.57 · 10−1 5.78 · 10−1 5.86 · 10−1

σ (Fz) 3.02 · 10−2 2.36 · 10−2 2.47 · 10−2 4.14 · 10−2 1.28 · 10−2 4.46 · 10−2 2.96 · 10−2

Table 4.5: Results in Newton [N] from the second part of the parametric study: Tangential

forces Ft as well as pressure and viscous forces Fx, Fy, and Fz

Ft increases with higher offsets. This can be explained by the fact that the angle at flow’s

point of impact on the sphere between the flow’s main direction and the surface of the

sphere becomes larger as offset increases. Greater viscous forces are a direct consequence

of this. Although a maximum offset of 200% could not be exceeded, it seems intuitive

that there must exist an optimum offset beyond which tangential force starts to drop.

Should the afore mentioned angle become perpendicular, viscous forces vanish, cancelling

each other out as they are distributed uniformly in all directions. This intuition is sup-

ported by inspecting tangential forces in Figure 4.11. Regarding Ft as a function of offset

ho, there is a clear decrease in the slope of the function as offset increases. Assuming

Ft ≈ 0 for ho = 23mm, the slope must become negative somewhere between ho = 2hg

and ho = 23mm. While this is not of particular importance here, this can be further

investigated in the future for different geometries that allow for higher offsets. Forces

Fx in x-direction clearly display a reduction with increasing offset. Forces are minimal

for ho = 1.5hg and ho = 2hg. Forces Fy in y-direction are similar across all cases while
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(iv) Force exerted in z-direction Fz

Figure 4.11: Results from the second part of the parametric study: Tangential force Ft

and normal forces Fx, Fy, and Fz

Fz shows increasing upward force with increasing offset. Forces Fz, nonetheless, only

vary between 0.43N and 0.58N. Based on this data, the optimal value for the offset is

ho = 1.5hg = 4.5mm. While only in third place for tangential force, it delivers the lowest

standard deviation across all directional forces Fx, Fy, and Fz. Furthermore, the force Fx

is comparatively small. Hence, the sphere is subjected to the least amount of vibration

with this setup, causing the magnetic bearing to emit less heat.

Unfortunately, a tight manufacturing schedule did not permit for the second study to

reach completion on time. Consequently, only results from the first parametric study

could be considered which is why the following deals with a setup consisting of hg = 3mm,

hd = 4mm, and ho = 3mm.
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4.2 Computational results

The optimum configuration determined in Section 4.1 composed of hg = 3mm, hd =

4mm, and ho = 3mm is now simulated using a variety of rotation frequencies and mass

flow rates (see Table 4.6). Flow properties, forces Fx, Fy, and Fz as well as tangential

force Ft are investigated. Finally, a relation is established which states the dependency

of tangential force Ft on rotation frequency f and on standard volumetric flow rate V̇N .

Note that

V̇N =
ṁ

ρN
, (4.15)

where ρN = 1.293 kgm-3 is the standard density of air at 0◦C and atmospheric pres-

sure. This representation is preferred over the mass flow rate ṁ as it is a more common

quantification and is also the unit employed by the flow meter used in the actual setup.

Flow rates [m3h-1] 1 2 3 4 5 6 7 8 9 10

Frequencies [Hz]

0 0 0 0 0 0 0 0 0 0

50 75 25 50 75 50 50 50 50 200

100 100 150 100 100 100 100 400

200 250 300 350

Table 4.6: Case configurations simulated for the GrindBall prototype

4.2.1 Simulation Setup

The setup is very similar to that used for the parametric study described in Section 4.1.2.

Therefore, this section will only deal with differences in setup between the parametric

study and that which is used for simulating the prototype.

Boundary conditions

Special attention must be given to the sphere which is now no longer a stationary wall

but rotating at a given speed. The boundary condition for velocity is hence set using

rotatingWallVelocity which determines the tangential velocity of each cell face based

on a given rotation frequency about a given axis of rotation. All other boundary condi-

tions are adopted from those used for stationary walls. See Table 4.7 for an overview of

the boundary conditions used here.
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inlet outlet rigid wall rotating wall

u timeVaryingFlow- zeroGradient fixedValue rotatingWall-

RateInletVelocity Velocity

p zeroGradient totalPressure zeroGradient zeroGradient

T fixedValue inletOutlet zeroGradient zeroGradient

μsgs zeroGradient zeroGradient muSgsUSpalding- muSgsUSpalding-

WallFunction WallFunction

αsgs zeroGradient zeroGradient alphaSgs- alphaSgs-

WallFunction WallFunction

Table 4.7: Boundary conditions used for the GrindBall prototype

Mesh

Two separate meshes are used for simulating the prototype, a coarse mesh consisting of

1.8 million cells, and a fine mesh with 4.5 million cells. The reason for this being that

computational effort is reduced by first running the simulation on a coarse mesh until

the flow has reached equilibrium. The results are then mapped on to a fine mesh where

the computation is continued. The fine mesh is based on the coarse mesh with each cell

inside the spherical gap split once along each edge. Hence, each coarse cell transforms into

eight fine cells inside the gap. Figure 4.12 gives an overview of the entire mesh as well as

side-views of both the coarse and the refined spherical gaps. This method cost-effectively

Figure 4.12: Mesh refinement inside the spherical gap (clipped along y = 0)
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delivers detailed resolution of the flow’s behaviour near the surface of the grinding sphere.

Thus, forces F and moments M can be determined with high precision. Note also that

the outlet basin is larger in size compared to the mesh used in the parametric study as

higher mass flow rates lead to higher flow velocities, which implies that more space is

required so that the flow may converge to atmospheric pressure before exiting the system.

Simulation timeline

For each case the mass flow rate is initially set to zero and linearly increased over 0.005 s

of simulated time beyond which the simulation runs up to 0.03 s. Transition to the fine

mesh occurs at this point and the simulation is continued up to 0.05 s where it is then

halted. To save additional computational cost, the part of the simulation on the coarse

mesh is done using the upwind interpolation scheme (UDS) introduced in Section 3.2.1.

This is possible because obtaining accurate results on the coarse mesh is of no interest.

The only goal here is for the flow to become fully developed. Results are once again

averaged in post processing according to eqn (4.3) with ΔT = 0.05 s− 0.035 s = 0.015 s.

Note that the averaging interval is chosen to begin at t = 0.035 s at which point any

fluctuations caused by the mesh transition have subsided. See Figure 4.13 for a graphic

representation of the simulation timeline.
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Figure 4.13: Timeline for simulations done for the GrindBall prototype

4.2.2 Reynolds and Mach numbers

Table 4.8 shows Reynolds numbers for each flow rate V̇N , where the Reynolds number is

defined as

Re = Uhd/νS (4.16)

with

U = ṁ/ρSAd, (4.17)
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the mean velocity of the flow determined by dividing the mass flow rate ṁ by the density

of air at room temperature ρS ≈ 1.2 kgm-3 and the cross-sectional area of the duct

Ad ≈ 1.26 · 10−5m2. hd = 0.004m is the height of the duct and νS = 1.5 · 10−5m2s-1

represents the kinematic viscosity of air at room temperature.

Flow rates [m3h-1] 1 2 3 4 5

Re 6.30 · 103 1.26 · 104 1.89 · 104 2.52 · 104 3.15 · 104

Flow rates [m3h-1] 6 7 8 9 10

Re 3.78 · 104 4.41 · 104 5.03 · 104 5.66 · 104 6.29 · 104

Table 4.8: Reynolds numbers Re for each flow rate

Table 4.9 shows maximum Mach numbers for each case. The flow becomes super-sonic

for high rotation frequencies at V̇N = 10m3h-1. Super-sonic flow can lead to choking

at the narrowest point in the system (the duct), i.e. it can lead to high pressure and

density fluctuations which would cause heavy vibration and impair the transfer of the

flow’s momentum on to the sphere. Hence, only volumetric flow rates up to 9m3h-1

are considered beyond this point. High Reynolds numbers in conjunction with a broad

spectrum of Mach numbers justify the use of a compressible LES model.

Flow rates [m3h-1] 1 2 3 4 5 6 7 8 9 10

0Hz 0.11 0.21 0.29 0.40 0.48 0.57 0.67 0.77 0.9 0.93

25Hz 0.30

50Hz 0.10 0.41 0.58 0.65 0.78 0.87

75Hz 0.21 0.49

100Hz 0.30 0.40 0.6 0.69 0.74 0.87

150Hz 0.47

200Hz 0.65 0.93

250Hz 0.68

300Hz 0.78

350Hz 0.87

400Hz 1.01

Table 4.9: Maximum Mach numbers Ma for each case

4.2.3 Temperature variation

Figure 4.14 shows the temperature distribution for the case V̇N = 9m3h-1 with f = 100Hz.
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Figure 4.14: Temperature distribution in [K] for the case V̇N = 9m3 h-1, f = 100Hz

Temperature values lie between 270K and room temperature. Such low variation justifies

the use of adiabatic walls.

4.2.4 Normal forces

Figure 4.15 shows forces F p
x and F p

z exerted on the sphere for each case listed in Table 4.6.

Error bars are omitted for sake of clear visibility. F p
y is also omitted as average forces

in y-direction tend to zero over time due to symmetry. F p
x displays somewhat constant

behaviour for flow rates up to V̇N = 5m3h-1. For higher flow rates, F p
x fluctuates about

a mean and constant behaviour can no longer be observed. F p
x seems to increase with

increasing V̇N . Simulations for several more rotation frequencies per flow rate would be

required before a general statement can be made as to how F p
x behaves. This, however, is

unnecessary because the magnetic control bearing responds to displacement of the sphere

on the fly. Approximate values of acting forces are sufficient for programming the control

element prior to use. F p
z displays more consistent behaviour. Forces in z-direction seem

to be fairly constant across rotation frequency for all flow rates while, just as with F p
x ,

steadily increasing with increasing V̇N . Figure 4.16 shows forces averaged over rotation

frequency for each constant V̇N . Magnitudes of F
p

x as well as their standard deviations

increase with increasing V̇N . A similar observation can be made for F
p

z regarding both
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Figure 4.15: Forces F p
x and F p

z for all simulations conducted for the prototype

magnitude of F
p

z and standard deviations. Mean normal forces as a function of V̇N are

given by:

F
p

x = βp
1 V̇

1.789
N (4.18)

F
p

z = βp
2 V̇

1.912
N . (4.19)

Use of the tool is not impaired by upward force for high flow rates, as even with

max
(
F

p

z + σ
(
F

p

z

)) ≈ 0.8N it still has F p
n,tot = 1.7N of downward force resulting from

the weight of the sphere at its disposal. This means that the sphere will not be drawn

toward the top of the gap in idle conditions.
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z averaged over rotation frequency f for the prototype

77

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

4.2.5 Tangential forces

As seen in Figure 4.17, tangential force for the prototype F p
t displays a linear dependency

on rotation rate f for constant standard volumetric flow rates V̇N . This allows for a linear

regression line to be fitted to each constant V̇N , giving a mathematical approximation for

the dependency of F p
t on f .

As is to be expected, the slope of each regression line is negative since the velocity gradi-

ents (and thus the viscous forces) between the sphere’s surface and the flow impacting

the sphere become lower as rotation frequency increases (more on this is Section 4.2.6).

The intercept of each regression line corresponds to the tangential force for a stationary

sphere F p
t,0, i.e. tangential force for f = 0. Each null point can be interpreted as the idle

rotation frequency f p
0 for the corresponding flow rate due to the fact that if F p

t = 0, the

sphere can neither accelerate nor decelerate. Note for completeness that the trivial case

in which both F p
t = 0 and f = 0 implies the absence of flow, i.e. V̇N = 0. Figure 4.18.i

shows the tangential force for a stationary sphere F p
t,0 depending on volumetric flow rate

V̇N . This relation can be given using the function governing the regression curve:

F p
t,0 = αp

1V̇
1.544
N . (4.20)

A similar analysis can be done for idle rotation frequencies which are extrapolated from

the null points of the individual linear equations for constant standard volumetric flow

rates. Figure 4.18.ii shows idle rotation frequencies f p
0 determined through extrapolation

of the simulation results along with a fitted curve. See Appendix A for details on how

the standard deviation is extrapolated for these values.
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Figure 4.17: Tangential force F p
t over rotation frequency f with fitted regression lines for

each standard volumetric flow rate V̇N for the GrindBall prototype
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Figure 4.18: Stationary force transfer F p
t,0 and idle rotation frequency f p

0 over volumetric

flow rate V̇N for the GrindBall prototype

The fitted curve governing idle rotation frequency is a root function given by

f p
0 = αp

2V̇
0.875
N . (4.21)

Using the functions governing idle rotation frequency and stationary tangential force,

a three dimensional relation may be obtained governing tangential force in terms of

volumetric flow rate and rotation frequency.

4.2.6 Flow analysis

Before deriving this relation, a brief inspection of the flow will investigate the nature of

momentum transfer and the resulting tangential force. High velocity gradients near the

sphere are responsible for viscous forces that cause tangential stress on its surface. The

higher these gradients, the more stress is caused and, thus, the more momentum is trans-

ferred on to the sphere. This is basically the statement made by eqn (4.7). Figure 4.17

shows a linear dependency of tangential force on rotation frequency for constant volumet-

ric flow rates. The slopes of the functions governing this relation are negative, meaning

that less grinding force is available with increasing rotation frequency. While this may

seem intuitive, this section will take a closer look at the reason for this by considering

the simulations conducted for V̇N = 8m3h-1. The left hand side of Figure 4.19 shows a

side view of the dimensionless mass flow rate

ˆ̇m =
ρUA0

ṁ
, (4.22)

where A0 = 7.07 · 10−6m2 is the cross-sectional area of the duct and ṁ = 0.002874 kg s-1

is the mass flow rate corresponding to V̇N = 8m3h-1. The right hand side shows velocity
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CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

Figure 4.19: Flow profiles for f = 0Hz, V̇N = 8m3h-1

profiles plotted along the height of the gap for several angles α (the angle between the x-

axis and the line over which velocity is plotted). Figure 4.20 shows the same for a rotation

frequency of 50Hz. Note how the magnitudes of velocities are practically unchanged, yet

the gradients become smaller near the sphere at the bottom because its surface is moving

at a velocity of approx. 6m s-1. This becomes even more obvious in Figures 4.21 and 4.22.

Increasing surface velocity of the sphere causes velocity gradients near the sphere to

become smaller. Lower viscous moments Mv are a direct consequence.

Another interesting observation can be made upon considering the shape of the velocity

profiles. Regardless of the rotation frequency, the peak velocity starts out very close

to the sphere for α = 7π/12. Similarly for α = π/2, however, the peak moves slightly

towards the center of the gap while also decreasing in magnitude. α = π/3 sees a velocity

profile almost symmetric along the height of the gap while α = π/6 clearly shows that the

flow impacts the top of the gap at this point. The exit point of the gap at α = 0 displays

little change. This is a clear indication that most of the flow’s momentum is transferred

Figure 4.20: Flow profiles for f = 50Hz, V̇N = 8m3h-1
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4.2. COMPUTATIONAL RESULTS

Figure 4.21: Flow profiles for f = 100Hz, V̇N = 8m3h-1

at and close to its point of impact on the sphere. Beyond α = π/3 momentum transfer

becomes negligible. This is a valuable insight for future development should the duct no

longer be introduced horizontally, but vertically or at a specific angle. Care should be

taken that there is an angle of no less than 45◦ between the flow’s point of impact and

the end of the spherical gap to ensure that momentum is not lost by letting the flow exit

the gap prematurely.

4.2.7 Grinding force dependency

As previously seen, the relation between tangential force F p
t and rotation frequency f

is linear for constant volumetric flow rates V̇N . Furthermore, the 2D relations between

F p
t,0 and V̇N for f = 0 and between f p

0 and V̇N for F p
t = 0 are known. A single equation

Figure 4.22: Flow profiles for f = 300Hz, V̇N = 8m3h-1
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CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

the ratio of F p
t,0 to f p

0 as the slope, and f as the dependant variable:

F p
t = F p

t,0 −
F p
t,0

f p
0

f = F p
t,0

(
1− f

f p
0

)
. (4.23)

Hence, tangential force F p
t is governed by

F p
t = (αp

3V̇
1.544
N )

(
αp
4 − αp

5V̇N
−0.875f

)
. (4.24)

Figure 4.23 shows a three dimensional plot of eqn (4.24), with eqn (4.20) and eqn (4.21),

as well as the linear regression curves from Figure 4.17 superimposed on to the surface.

Eqn (4.24) is of particular interest for the use of the GrindBall, as knowledge of Ft is

required before commencing operation. Particular materials require certain amounts of

force, which can simply be plugged into eqn (4.24), resulting in a 2D equation governing

flow rate vs. rotation frequency. Thus, the flow rate can then be chosen to achieve a

certain frequency for a given amount of force. Usually, higher rotation frequencies are

desirable to achieve a smooth surface structure inside the cavity being ground [Bra].
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Figure 4.23: Tangential force F p
t depending on rotation frequency f and standard volu-

metric flow rate V̇N for the GrindBall prototype
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4.2.8 Grinding power

One shortcoming of eqn (4.24) is that it does not give any indication as to optimum

grinding conditions. Obviously one cannot grind at f = 0 where the force is largest

since the sphere is not spinning. Grinding is equally impossible at f0 where the rotation

frequency is largest as there is no force being transferred. Hence, grinding power PG is

introduced to quantify performance. The physical quantity power P is a measure of work

done per time, i.e.:

P =
dW

dt
. (4.25)

For a tangential force Ft acting parallel to the path length s, one can use

W =

ˆ

s(t)

Ftds (4.26)

and eqn (4.25) thus becomes

P =
d

dt

ˆ

s(t)

Ftds

=
d

dt
(Fts(t))

= Ftṡ, (4.27)

where the force is treated as constant in space and time [GHSW96]. For the GrindBall,

the force Ft is applied f times per second over the circumference of the sphere 2πr, hence

ṡ = 2πrf . Plugging into eqn (4.27), grinding power PG is expressed as:

PG = 2πrfFt. (4.28)

The functions governing the straight lines depicted in Figure 4.17 may be multiplied by

ṡ to obtain parabolic functions governing the prototype’s grinding power P p
G for each

simulated flow rate V̇N . These are presented in Figure 4.24.

The maximum of each parabola indicates the highest attainable grinding power for that

specific volumetric flow rate. It is thus possible to fit a curve through these maxima to

get P p
G,max, the maximum grinding power:

P p
G,max = αp

6f
2.798. (4.29)

Eqn (4.29) governs grinding power over rotation frequency. This is, however, not very

useful as it does not include the flow rate. To incorporate V̇N , one must consider each of

the parabola depicted in Figure 4.24. These have the general form

P p
G,n = (an − bnf) f, (4.30)
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CHAPTER 4. DEVELOPING A PROTOTYPE GRINDING TOOL

where P p
G,n = P p

G for V̇N = nm3/h. The coefficients an and bn are fitted over V̇N yielding

flow-rate-dependent coefficients a(V̇N) and b(V̇N). Plugging these back into eqn (4.30)

results in a relation for grinding power depending on flow rate and rotation frequency:

P p
G =

(
a(V̇N)− b(V̇N)f

)
f. (4.31)

Note that alternatively, one could also plug eqn (4.24) into eqn (4.28) to obtain an ex-

pression for P p
G.

For the 40mm GrindBall prototype, this relation is given by:

P p
G = αp

7V̇
0.632
N f 2 + αp

8V̇
1.566
N f. (4.32)

A plot of eqn (4.32) can be seen in Figure 4.25. P p
G,max(ξ) can now be given as a parametric

curve in three-dimensional space for ξ ∈ [0, 9]:

f(ξ) = αp
9ξ

0.875 (4.33)

V̇N(ξ) = αp
10ξ (4.34)

P p
G,max(ξ) = αp

11ξ
2.453 (4.35)

leading to the operating point Pp
op(ξ), which parametrically describes P p

G,max(ξ) as a

vector in 3D space:

Pp
op(ξ) =

(
αp
9ξ

0.875, αp
10ξ, α

p
11ξ

2.453
)
. (4.36)

Maximum grinding power is thus now determined. Using eqn (4.36) one can find the

maximum power for each flow rate V̇N along with a corresponding rotation frequency f .
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Figure 4.24: Grinding power P p
G and P p

G,max over rotation frequency f with fitted curves

for each constant volumetric flow rate V̇N for the GrindBall prototype
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Figure 4.25: Grinding power P p
G depending on rotation frequency f and volumetric flow

rate V̇N for the GrindBall prototype

Available grinding force and power are now both fully quantified for the 40mm GrindBall

prototype with eqns (4.24) and (4.32).
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Chapter 5

Empirical validation of simulated data

Unforeseen difficulties in the development of the electro-magnetic bearing caused the

practical portion of the project to fall behind schedule and development of a working

prototype of the GrindBall was subsequently delayed. It is, however, of vital importance

to validate numerical results, not only to show that formulae and methods are correctly

implemented in the CFD code, but also to confirm that the employed mesh is fine enough

and of sufficient quality to produce good results. To this end, a separate experiment was

devised with which to validate the performed simulations, especially the process of fluid-

to-solid force transfer.

Using a Kistler MiniDyn 9256C2 Multicomponent Dynamometer, a device capable of

accurately measuring all three Cartesian force components acting upon it, in combination

KISTLER 

MiniDyn 9256C2

KISTLER 

MiniDyn 9256C2

KISTLER 

MiniDyn 9256C2

Figure 5.1: Experiment devised to validate fluid-to-solid force transfer
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CHAPTER 5. EMPIRICAL VALIDATION OF SIMULATED DATA

with a disconnected duct taken from the 40mm GrindBall, experiments are conducted

under a variety of flow rates and flow angles using air (Figure 5.1). These are then

compared with analogous simulations using a simulation-setup as similar as possible to

that used for the GrindBall prototype. With the process of fluid-solid interaction and the

inherent transfer of forces and moments validated, past, present, and future simulations

done for the GrindBall can thus also be considered valid. The flow angle γ is introduced

to distinguish between normal and tangential forces. While γ = 90◦ sees only normal

forces, since tangential forces cancel each other out due to symmetry, flow angles of 60◦

and 45◦ introduce additional tangential forces. Thus, if all three simulated angles are in

good agreement with the corresponding experiments, both normal and tangential forces

can be considered valid. Validation of moments follows from this, as they are calculated

simply by taking the cross product of tangential force with the lever arm (see eqns (4.5)

and (4.7)).

5.1 Experimental setup

The experimental procedure uses much of the same hardware as is used for the GrindBall

prototype: air is delivered from a 30mm hose into a 4mm duct. The hose, the funnel,

and the duct are identical to those used for the the 40mm GrindBall. Instead of leading

into a spherical gap, however, the flow is expelled into open space before impacting on

to the dynamometer as seen in Figure 5.2.

Hence, the duct’s exit is straight and its length of 30mm is the same on all sides. For

all angles, the lowest point of the duct is positioned 4mm above the plate and the duct’s

centre is aligned with the plate’s mid-point (see Figure 5.1). Four standard volumetric

flow rates V̇N = 4, 6, 8, and 10m3/h are considered for each angle.

Figure 5.2: Experimental setup for the dynamometer validation
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5.2. SIMULATION SETUP

Figure 5.3: Computational grid for the dynamometer validation (2D slice)

5.2 Simulation setup

Experimental results are compared to analogous simulations conducted on a mesh consist-

ing of approx. 9 million cells. The employed numerical methods and boundary conditions

are identical to those used in the simulations conducted for the GrindBall prototype in

Section 4.2 and can be seen in detail in AppendixD.2. The top of the plate has the same

cell resolution as the GrindBall prototype does inside its spherical gap with about 8 cells

per millimetre in each direction. Also, the cell resolution inside the duct is chosen such

that it is in keeping with the prototype simulations. Local grid refinement (AppendixB.3)

ensures that this resolution is achieved while maintaining an acceptable total number of

cells. Figures 5.3 and 5.4 give an overview over the computational grid.

Furthermore, the simulation timeline is similar to that used for the GrindBall prototype

(see Figure 4.13) apart from the fact that simulations are conducted on the ultimate mesh

from the beginning. The flow is initialised until 0.005 s and results are averaged over the

interval from 0.01 s to 0.02 s.

Figure 5.4: Computational grid for the dynamometer validation (3D view)
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CHAPTER 5. EMPIRICAL VALIDATION OF SIMULATED DATA

5.3 Empirical and computational results

Figure 5.5 shows isosurfaces of constant mean velocity magnitude U = 40m/s for all three

flow angles, coloured according to the standard deviation of the instantaneous velocity

magnitude U . The left picture clearly shows the flow’s point-symmetric behaviour in the

xy-plane about the centre of the plate for γ = 90◦. Furthermore, the standard deviation

illustrates that turbulent fluctuations are distributed with symmetry equal to that of the

mean velocity. Hence, it is safe to ignore forces tangential to the plate at γ = 90◦ and

only consider normal forces resulting from pressure acting downward on to the plate for

this case. 60◦ and 45◦, however, display a strong asymmetry about the x-axis. While

Fx may still be neglected due to symmetry about the y-axis, Fy is of particular interest

as this is where viscous forces acting tangentially to the plate come into play. Even

though a measured Fy can not be considered a purely viscous force since regions of low

pressure may form immediately behind the end of the plate and exert pressure force,

the combination of first validating pure pressure forces for γ = 90◦ and subsequently

validating mixed pressure-viscous forces for γ = 60◦ and γ = 45◦ allows for forces of

purely viscous nature to be considered valid as well.

Figure 5.6 shows the results for γ = 90◦. Clearly, the simulations are in very good agree-

ment with the experiments for 90◦. The most noticeable discrepancy between simulated

and measured data is observed for V̇N = 4m3/h, however, it is still well within an ac-

ceptable range and may be attributed to forces being slightly too low to be measured

accurately by the dynamometer at this flow rate.

Figure 5.7 illustrates the results for γ = 60◦. Fy sees a minor deviation between measured

and simulated values again for V̇N = 4m3/h while Fz slightly deviates for V̇N = 8m3/h.

Both discrepancies, however, are again well within acceptable ranges and the agreement

of measured and simulated values is very good.

Finally, results for γ = 45◦ are seen in Figure 5.8. Simulated data and experimental

values are in excellent agreement for both Fy and Fz.

Figure 5.5: Isosurfaces with U = 40m/s for flow angles γ (from left) 90◦, 60◦, and 45◦
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Figure 5.6: Normal forces for a flow angle of 90◦

Simulated forces appear to coincide very well with measured data. Their standard devi-

ations, however, do not agree as well. With the exception of σ(Fy) for γ = 45◦, standard

deviation of measured forces seems fairly independent of the flow rate. Standard devi-

ations of simulated forces, however, clearly increase with rising flow rate as has also been

observed in all previous GrindBall related simulations. Actually, the latter result seems

intuitively correct since increasing flow rate incorporates more intense turbulence and

thus greater fluctuation about the mean. The question remains why this behaviour is

not observed in measurements. Generally, the discrepancy in standard deviation of the

simulated and measured value is much greater for low flow rates.

The higher the flow rate, the more the two begin to coincide. This leads to the possible

conclusion that the standard deviation of measured results is strongly influenced by noise

brought about by the dynamometer itself. This particular model can capture forces

ranging from 0.002N to 250N so clearly the forces measured here are at the low end of

the spectrum and a certain amount of noise is to be expected. Environmental effects of
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Figure 5.7: Normal and tangential forces for a flow angle of 60◦
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Figure 5.8: Normal and tangential forces for a flow angle of 45◦

the surroundings may also induce this behaviour such as a draft or vibrations caused by

machinery operating nearby. Regardless, the mean forces are clearly not influenced in

a measurable way as has been demonstrated above and the overall result is extremely

pleasing. The process of fluid to solid force transfer is now considered valid for previously

conducted prototype simulations. Future simulations should have equal validity provided

that the same simulation parameters are used and that the mesh resolution is not less

than that which was used here.
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Chapter 6

Developing a fully functional 8mm

grinding tool

With the 40mm GrindBall prototype completed, the next step is to miniaturise it down

to a tool incorporating an 8mm grinding sphere. Several changes are made in order to

improve upon the prototype. Firstly, two additional ducts are employed which introduce

a higher total flow rate (relative to the spheres diameter of course), thus transferring more

momentum from the flow on to the sphere. Secondly, all three ducts are aligned vertically

and lead into the spherical gap from the top in order to make the tool more compact

and to create downward contact force which assists the grinding sphere in penetrating

the surfaces of workpieces.

6.1 Determination of an adequate propulsion fluid

The abrasion force depicted in Figure 4.23 is nowhere near enough to conduct grinding

trials with the GrindBall prototype let alone use it to machine an actual work piece. The

viscosity of air is simply too low to produce enough shear stress on the grinding sphere’s

surface to achieve the necessary force transfer. Initial simulations have shown that scaling

down the tool even increases the gap between required and delivered tangential force.

Thus, the propulsion medium must be changed in order to achieve satisfactory results.

Switching to another gas is unlikely to induce the desired effect and so liquids - specifically

oils - are studied instead.

6.1.1 Cavitation: limiting factor of liquids

Cavitation must almost always be considered when designing devices or machinery that

handle liquids [Arn81]. It can affect performance and cause damage, even completely

destroy machinery. The latter can range from minor damage over a long period of time to

sudden catastrophic failure and complete destruction of components. Turbulent flows are

especially susceptible to this phenomenon [MP97]. On a side note, even though cavitation
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CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

is usually considered a hindrance, it can also be useful, for example in the homogenisation

of milk or the process of cleaning with ultrasonic cavitation [Arn81, MP97].

By definition, cavitation is the formation of vapour in a liquid. It is caused by a drop

in local absolute pressure below the liquid’s saturated vapour pressure pv (note that

conversely, boiling occurs when raising the liquids vapour pressure above local pressure).

Bubbles form which then implode as soon as pressure increases again. The implosion

releases energy in the form of acoustic waves and visible light. This can cause noise,

vibration, and even severe damage through erosion and should thus be avoided or at least

kept to a minimum when developing tools which employ liquid fluid flow. To quantify

cavitation, the cavitation number Ca is defined according to

Ca =
p− pv
1
2
ρU2

. (6.1)

It relates the difference between local absolute pressure and the vapour pressure to the

flow’s kinetic energy. The lower Ca, the greater the flow’s potential of producing cavita-

tion.

In designing the GrindBall, cavitation should be avoided for several reasons. Firstly, high

noise levels are always undesirable when using a tool of any kind and should be avoided

if it is possible and sensible to do so. Secondly, increased vibration causes the magnetic

bearing to produce more heat while attempting to maintain the sphere’s centred position,

which in turn could not only inhibit prolonged use, but also decrease the viscosity of the

propulsion fluid, thereby lowering Ft and making the tool less effective. Thirdly, the

grinding spheres would erode more quickly if subjected to cavitation. Finally and most

importantly, while the tool will consist mainly of high quality steel, its miniature nature

is prone to damage due to small components and thin walls. Structural damage could

lead to the tool’s destruction, which obviously undesirable.
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6.1. DETERMINATION OF AN ADEQUATE PROPULSION FLUID

6.1.2 Oil viscosity study

Initial tests using water show that, while it can produce more grinding force, cavitation

occurs even at low flow velocities and, more importantly, before a desirable level of

grinding force can be reached. Propulsion media with higher viscosities must thus be

considered. To this end, simulations are run using an initial version of the 8mm Grind-

Ball, comparing oils of varying viscosity grades with the goal of maximising grinding force

while at the same time keeping the risk of cavitation to a minimum. Table 6.1 shows

the viscosities of the oils considered here. EVO Fluid HLP is chosen, because these oils

ISO VG 5 7 10 15 22 32 46 68

ν [mm2/s] 8.9 13 22 37 57 87 138 210

ρ [kg/m3] 790 830 830 860 860 870 880 880

pv [Pa] < 10 < 10 < 10 < 10 < 0.5 < 0.5 < 0.5 < 0.5

Table 6.1: Kinematic viscosity, density, and vapour pressure of examined EVO Fluid HLP

oils at room temperature T = 293.15K

abide by ISO viscosity grade standards according to DIN 51519 [Deu98]. This guarantees

that the oils’ actual viscosities deviate no more that 10% from their stated values, thus

ensuring consistent results. Furthermore, other physical properties such as density and

vapour pressure are known and easily accessible.

Oils are compared using the following geometric parameters (cp. Figure 6.1): duct dia-

meters of all three ducts are equal with hd = 1mm. Gap height is hg = 1mm. The offset

of the main duct is ho,1 = 0.8mm and the offsets of the co-ducts are ho,2 = 1.2mm. Note

that for the 8mm GrindBall, the offset, unlike for the prototype, is measured from the

edge of the inlet basin. The angle of the imaginary lines connecting the centre of each

co-duct with the centre of the inlet basin and the symmetry plane y = 0 is φ = 60◦. Fur-

thermore, the inlet basin has a fixed diameter of 8mm, which is the maximum diameter

permitted due to spatial requirements of the magnetic bearing [Nor].

The simulations are conducted on a mesh consisting of approximately 4 million cells using

OpenFOAM-2.1.x’s incompressible solver pimpleFoam. See AppendixD.4 for a detailed

description of simulation parameters. Three runs are performed with varying volumetric

flow rates resulting in mean flow velocities of 10m/s, 20m/s, and 30m/s per duct (V̇ =

3UdA, where Ud is the mean velocity in each duct and A is the cross-sectional area of

a single duct). Those oils that do not show signs of cavitation in the first run are re-

examined in the second run. Similarly, those that do not cavitate in run 2 advance to

the third run and so on. Unless stated otherwise, all simulations described in this and

the following section incorporate a non-moving stationary sphere.
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CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

(i) Side view (ii) Top view

Figure 6.1: Geometric parameters for the 8mm GrindBall

Note that for incompressible simulations, pressure values are relative and not absolute

(although they are chosen to coincide with absolute values here). For this reason, it

is possible to obtain negative values for pressure. Furthermore, despite the low vapour

pressure of the oils tested in this study (see Table 6.1), to provide certainty the criterion

for the occurrence of cavitation is defined as a drop of pmin below 104Pa anywhere in the

simulation domain. Table 6.2 and Figure 6.2 show the results of the oil study.

The first run shows a clear increase of force transfer Ft with increasing viscosity up to

VG46, upon which it decreases slightly for VG68. Downward contact force Fn increases

with viscosity across the board. The minimum pressure pmin observed inside the simula-

tion domain stays within acceptable values except for VG15 and VG22 where pmin takes

on negative values. It is not clear why this occurs.
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Ud VG5 VG7 VG10 VG15 VG22 VG32 VG46 VG68

10 [m s-1]

Ft [N] 0.016 0.018 0.029 0.038 0.042 0.044 0.042 0.038

Fn [N] 0.022 0.040 0.087 0.117 0.156 0.223 0.344 0.516

pmin [mbar] 580 580 898 -2130 -748 862 810 792

20 [m s-1]

Ft [N] 0.031 0.044 0.060 0.093 0.138 0.166 0.177 0.174

Fn [N] -0.049 0.020 0.173 0.268 0.412 0.522 0.739 1.068

pmin [mbar] -968 -1003 -924 -308 493 493 378 264

30 [m s-1]

Ft [N] 0.214 0.316 0.386 0.400

Fn [N] 0.664 0.963 1.234 1.683

pmin [mbar] -1883 -176 -185 -405

Table 6.2: Results of the propulsion fluid study: Tangential force Ft, contact force Fn,

and minimum pressure pmin

In the second run, Ft displays the same behaviour as in run 1, peaking at VG46. Again,

downward contact force increases in magnitude with viscosity, however, this time begin-

ning with an upward force for VG5 resulting from low pressure zones at the top of the

sphere where cavitation is most likely to occur. pmin shows that cavitation occurs for

VG5 through VG15, hence these four oils do not advance to the third run.

In run 3, the remaining oils all show signs of cavitation and focus is drawn to VG46 and

VG68 in run 2 as these display the highest momentum transfer. Although VG68 displays

an Ft only less than 2% lower than that of VG46, its contact force is approximately 40%

higher in magnitude. However, since the abrasion process requires only 0.5N of downward

contact force [Bra], VG46 is chosen over VG68 in order to maximise tangential force.

6.2 Optimisation of geometric parameters

Now that an adequate propulsion fluid has been determined, the next step is to optim-

ise geometric parameters depicted in Figure 6.1. The goal is to maximise momentum

transfer on to the sphere while maintaining a downward contact force of Fn > 0.5N.

Five steps lead up to the final geometry: investigation of gap height, optimising co-duct

positions, examination of duct diameters, finding an optimal offset for the main duct,

and performing final tweaks to the entire geometric layout.

6.2.1 Gap height

Height of the spherical gap hg is investigated first. The aim here is to determine whether

better results are achieved using hg < hd (as was the case for the pneumatic prototype
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CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

in Section 4.1.4) for incompressible liquid flow. To this end, gap heights of 0.8mm and

0.9mm are compared to results from the reference case “VG46, run 2” in Table 6.2 where

hg = 1mm. Henceforth “VG46, run 2” is referred to as “case 0” in this section. Other

geometric parameters remain identical to those used in case 0 as does the volumetric flow

rate. Figure 6.3 shows the results.
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Figure 6.3: Tangential force and normal force plotted over gap height

Ft is highest for case 0 and it is clear that incompressible flow does not profit from hg < hd

in this regard. While contact force increases in magnitude with decreasing gap height,

case 0 still provides a sufficient Fn. Furthermore, setting the gap height at exactly 1.0mm

makes the magnetic control element more efficient as it decreases response times [Nor].

Hence, hg remains at 1mm.

6.2.2 Co-duct position

Next, the effect of shifting the co-ducts’ positions is investigated. The position of the

main duct is held constant with hd = 0.8mm and the position of the co-ducts is varied to

examine in which direction the co-ducts should be moved in order to maximise momentum

transfer. Starting from case 0, the co-ducts are shifted a distance a in y-direction away

from the symmetry plane y = 0, and a distance b in positive x-direction. Figure 6.4.i

shows the four cases simulated and Figure 6.5 shows the results.

Comparing case 0 to case 2 shows that shifting the co-ducts along y has very little effect

regarding momentum transfer. Comparing case 0 to case 1, however, shows that a shift

in x-direction increases Ft substantially. Case 3 (the combination of cases 1 and 2) shows

slight improvement over case 1. Finally, case 4 shows further improvement with an even

larger displacement in positive x-direction. Consequently it becomes clear that shifting

co-ducts away from the centre of the inlet basin results in higher momentum transfer.

Shifts along the y-axis show minor improvements while shifting along the x-axis are more

yielding. Also, improvements resulting from shifts along y are bound to be limited as the

moment arm between the point of the flow’s impact on the sphere and the axis of rotation

becomes shorter with increasing a. In contrast, regarding contact force, the opposite can
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6.2. OPTIMISATION OF GEOMETRIC PARAMETERS

(i) Investigation of co-duct positions (ii) Final part of the parametric study

Figure 6.4: Further geometric parameters for the 8mm GrindBall

be observed. Moving co-ducts further away from the centre results in lower magnitudes

of Fn.

While this may seem as an intuitive result, it is vital to ensure that Fn > 0.5N at all

times [Bra]. This imposes a limitation for the geometry at this point which is dealt with

in the following.

6.2.3 Duct diameter

While the investigation performed in Section 6.2.1 shows that decreasing gap height at

a constant volumetric flow rate does not have a desired effect, increasing duct-diameter

 0.16

 0.19

 0.22

 0.25

Case 0 Case 1 Case 2 Case 3 Case 4

Ta
ng

en
tia

l f
or

ce
 F

t [
N

]

 0.5

 0.6

 0.7

 0.8

Case 0 Case 1 Case 2 Case 3 Case 4

C
on

ta
ct

 fo
rc

e 
F

n
 [N

]

Figure 6.5: Tangential force and normal force for varying co-duct configurations
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CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

makes it possible to increase volumetric flow rate without exceeding U = 20 [m/s] per

duct as the cross sectional area A also increases. The risk of cavitation occurring despite

increasing the flow rate is kept low by doing so. Gap height cannot be increased beyond

1mm due to the distance between magnets and grinding sphere becoming too large and

so is held constant at 1mm. Diameters of 1.1mm, 1.2mm, 1.3mm, 1.4mm, and 1.5mm

are compared to case 0. Rather than keeping offsets constant as well, the centre of

each duct remains at the same spot relative to the sphere for each case, i.e. ho,1 =

0.8mm+0.5mm−hd/2 and ho,2 = 1.2mm+0.5mm−hd/2. This provides a better basis

for comparison. Figure 6.6 shows the results.
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Figure 6.6: Tangential force and normal force plotted over duct diameter

Momentum transfer increases with duct diameter and peaks at 1.4mm. Downward

contact force Fn displays the same behaviour. Hence, the best choice here is clearly

hd = 1.4mm.

6.2.4 Main duct offset

As an optimum value for the offset could not be determined for the prototype unequivoc-

ally due to spatial restrictions (see Section 4.1), the main offset ho,1 is varied in the follow-

ing. In order to maintain structural integrity under high pressure, the minimum distance

permitted between the main duct and the wall of the inlet basin is 0.6mm. Hence, the

following offsets ho,1 are considered: 0.6mm, 0.7mm, 0.8mm (case 0), 0.9mm, 1.0mm,

and 1.1mm. To enable comparison with case 0, the co-ducts remain at the exact same

position, i.e. ho,2 = 1.2mm and θ = 60◦, and duct diameters remain at hd = 1.0mm.

Figure 6.7 shows the results.

Ft peaks at ho,1 = 0.7mm upon which it decreases with rising offset. As expected, Fn

increases in magnitude with rising offset because the flow impacts the sphere’s surface at

a larger angle, resulting in more normal force and less tangential force.
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Figure 6.7: Tangential force and normal force plotted over main duct offset

6.2.5 Final adjustments

So far, parameters have been varied individually and compared to a reference case. Fur-

thermore, it has been determined that shifting co-ducts in positive x-direction results in

larger momentum transfer. Optimal positions for the co-ducts still need to be determ-

ined. Furthermore, it is not necessarily the case that the optimum values determined so

far deliver in the best possible setup when combined with each other. This final study de-

termines the best placement for the co-ducts and does some final tweaks to the geometry.

Figure 6.4.ii shows the relevant parameters for this final part.

The distance between main duct and co-ducts is fixed at its minimum permitted value

of dd = 0.6mm. This seems prudent considering the results from Section 6.2.2. Duct

diameters are hd = 1.4mm, gap height is hg = 1.0mm, and main offset is ho,1 = 0.7mm.

First, the angle φ between the imaginary lines connecting the centre of the main duct

with the centre of each co-duct and the symmetry plane y = 0 is varied. Simulations are

performed for φ = 30◦, 40◦, 50◦, and 60◦ (see Figure 6.8).
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Figure 6.8: Tangential force and normal force plotted over the angle φ

Ft increases with increasing φ. Fn is well within acceptable values across the board. Next,

the main offset ho,1 is once again considered. Unlike in Section 6.2.4, co-duct positions

are held fixed relative to the main duct with φ = 60◦ and dd = 0.6mm.
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Figure 6.10: Tangential force and normal force plotted over duct diameter
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Figure 6.9: Tangential force and normal force plotted over main duct offset

The minimum permitted value of ho,1 = 0.6mm delivers best results with the highest

momentum transfer. Since a value of φ = 70◦ would result in ho,2 < 0.6mm for this

configuration, choosing φ is abandoned in favour of fixing ho,2 = 0.6mm and dd = 0.6mm

at this point. In the following, the described geometry is subjected to one final variation:

duct diameter hd, results of which can be seen in Figure 6.10.

The best result is achieved using hd = 1.5mm. However, momentum transfer Ft for

duct diameters of 1.4mm and 1.6mm is considerably close. Thus, Table 6.3 gives a

more detailed perspective, incorporating not only simulations for a stationary sphere

(f = 0Hz), but also simulations for f = 250Hz. Using the results from two rotation

frequencies per case, a line can be fitted (cp. Section 4.2.5) allowing for conjectures to be

hd [mm] Ft,0 [N] Ft,250 [N] f0 [Hz] f0.1 [Hz]

1.4 0.37246 0.10400 346.57 253.73

1.5 0.37574 0.11529 360.66 264.68

1.6 0.36985 0.12030 370.51 270.33

1.7 0.35579 0.11023 362.22 260.41

Table 6.3: Results of the final duct diameter study
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6.2. OPTIMISATION OF GEOMETRIC PARAMETERS

made about the idle rotation frequency f0, and the rotation rate at which an abrasion

force of 0.1N is achieved f0.1.

Not only is Ft,250 highest for a diameter of 1.6mm, f0 and f0.1 also show that the best

performance is achieved using hd = 1.6mm.

6.2.6 Summary

The final geometry for the 8mm GrindBall is now determined. It is clear that moving

main duct and co-ducts as far as possible toward the forward edge of the inlet basin

(i.e. minimal offsets) maximises tangential force while maintaining acceptable values for

contact force. Furthermore, co-ducts should remain close to the main duct to ensure that

their flow impacts the sphere at a point at which the lever arm about the axis of rotation

is long. Varying gap height shows little influence and an optimal duct diameter is found

by considering simulations with two different spherical rotation frequencies per diameter.

Optimal values for geometric parameters are: a gap height of hg = 1.0mm, a main duct

offset of ho,1 = 0.6mm, a co-duct offset of ho,2 = 0.6mm, a distance of dd = 0.6mm

between main and co-ducts, and a duct diameter of hd = 1.6mm. Cavitation is not an

issue with pmin > 104Pa. This configuration delivers a tangential force of Ft = 0.12030N

at 250Hz and yields a rotation frequency of f0.1 = 270.33Hz at a tangential force of

Ft = 0.1N. These tangential forces in combination with downward contact forces of

Fn > 1.0N allow the tool to be used efficiently for industrial grinding purposes.

Based on the findings presented in this section, a tangible 8mm GrindBall module could

be manufactured using rapid prototyping by the LFM and fitted with a magnetic bearing

by the IALB. Figure 6.11 shows the actual module and two CAD images revealing its

interior design.

103

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

Figure 6.11: 8mm GrindBall module (top left) and its interior represented by CAD im-

agery (top right and bottom)
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6.3. OPTIMISATION OF THE COMPUTATIONAL GRID

6.3 Optimisation of the computational grid

Now that the geometric layout has been determined unequivocally, the computational grid

needs to be tailored to it to deliver best possible results at a relatively low computational

cost. To this end, several grids are tested and results are compared to an extremely fine

grid - one which would result in too high a cost were it used throughout. This is done

separately for two propulsion media - air and oil - as a further study using air is to be

carried out later in Chapter 7.

Grid ncells,gap ncells,total Description

base 15 3.5 · 106 unmodified coarse mesh

mod 1 30 9.50 · 106 gap refined

mod 2 30 7.49 · 106 top half of gap and ducts refined

mod 3 30 6.69 · 106 top half of gap refined

mod 4 30 10.32 · 106 gap and ducts refined (reference mesh)

base 2 20 7.06 · 106 finer base mesh

Table 6.4: Grids tested for the final GrindBall geometry. ncells,gap denotes the number of

cells along the height of the top half of the spherical gap and ncells,total denotes

the total number of cells in the grid

Table 6.4 lists the grids tested here. Base denotes a coarse base grid. Mod 1-4 are modific-

ations of the base grid with refinements implemented in various areas. See AppendixB.3

for details on refinement methods. Base 2 is an alternative, finer base mesh which is used

without additional refinement.

Figure 6.12 shows a clipped side view of the computational domain and Figure 6.13 the

particular meshes. A notable difference to the prototype, apart from the obvious addi-

tion of two ducts and their vertical introduction into the spherical gap, is the fact that

the sphere is no longer partially submerged in the bottom wall, i.e. in a workpiece, but

hanging freely 3mm above the floor. This is done for two reasons: firstly, the depth of

penetration into the workpiece is neither known nor is it constant so that choosing an

arbitrary constant depth would most certainly be incorrect. Secondly, validation experi-

ments involving a functioning GrindBall would most likely be carried out by measuring

idle rotation frequency and not by measuring Ft directly [Bra].

Mod 4 is used as a reference to which results from the other meshes are compared. It is

not suited for further studies because its large number of cells and the required small time

steps make it unsuitable for conducting analyses requiring many simulations. The grid

that comes closest to the results attained on mod 4 is then used for upcoming studies.

105

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



CHAPTER 6. DEVELOPING A FULLY FUNCTIONAL 8MM GRINDING TOOL

Figure 6.12: Computational domain for the final GrindBall geometry

6.3.1 Test setup

The tests are conducted for air and oil using the geometric parameters summarised in

Section 6.2.6. The mass flow rate at the inlet is set to V̇N = 3m3/h for air while V̇ =

7 l/min for oil. The rotation frequency of the sphere is set to 100Hz. See AppendixD.6 for

a detailed description of simulation settings for the compressible case and AppendixD.5

for the incompressible case. The aim is to compute mean tangential and normal forces

and see which of the meshes shows the best agreement with the mesh mod 4.

6.3.2 Results for air

Figure 6.14 shows the results for the various computational grids using air as the propul-

sion medium. It should be stated beforehand that mod 1 could not achieve stable opera-

tion using CDS for spatial discretisation and had to be run using UDS. Hence, the results

from mod 1 can be ignored here as they cannot be compared to results obtained using

CDS and will not be discussed any further.

Apart from base, all meshes show good agreement with mod 4 in terms of momentum

transfer with mod 2 performing best. Considering pressure force in x-direction, all meshes

are in good agreement, yet mod 2 once again displays the result closest to mod 4. Contact

force Fn sees base performing badly with a 50% discrepancy to mod 4, mod 3 and base 2

are below 20% deviation, and mod 2 performs best yet again. Finally, the mean time-step
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Figure 6.13: Grids tested for the final GrindBall geometry. (i) base, (ii) mod 1, (iii) mod 2,

(iv) mod3, (v) mod 4, (vi) base 2
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Figure 6.14: Results of the mesh test for air
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size unsurprisingly shows both base meshes outperforming the others approximately by

a factor of 2. Considering that a large number of simulations need to be performed on

this grid, the time-step size is a very important factor. Although mod 2 is clearly in

best agreement with the finest mesh, the discrepancies between base 2 and the fine mesh

are small enough to consider base 2 as the best choice because its computational cost

amounts to far less than that required by mod 2.

6.3.3 Results for oil

The incompressible case is unable to run on meshes using local grid refinement because

pressure correction fails to converge, most likely due to the high viscosity of the fluid.

Hence, base and base 2 are the only meshes considered for oil.

Figure 6.15 shows the results. Ft, Fx, and Fn are all in good agreement for both meshes

with less than 10% discrepancy. The only big difference is the average time-step. Δt is

larger on base by a factor of approximately 1.33 making base more efficient. However,

results should later be comparable to those obtained for compressible simulations. This

can be better achieved if the number of cells along the height of the gap are identical,

e.g. to ensure that velocity gradients near walls do not differ based solely on differences

in the mesh. For this reason base 2 is also chosen for incompressible simulations.
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Figure 6.15: Results of the mesh test for oil

6.4 Computational Results

This section discusses the computational results obtained from simulations conducted

for the final 8mm GrindBall using oil. Normal forces are briefly discussed upon which

tangential force is analysed in detail. Finally, grinding power is determined and an

operating point found.
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6.4.1 Reynolds and Cavitation numbers

Table 6.5 shows Reynolds numbers for each flow rate V̇ , where the Reynolds number is

defined as

Re =
Uhd

νoil
(6.2)

with U = V̇ /3Ad, the mean velocity of the flow determined by dividing a third of the

volumetric flow rate ṁ (because the flow is considered to be evenly distributed among the

three ducts) by the cross-sectional area of the duct Ad = (0.5hd)
2π. Note that hd = 0.4r,

r = 0.004m, and νoil = 1.38 · 10−4m2s-1 at room temperature.

V̇ [lmin-1] 1 2 3 4 5 6 7

Re 32 64 96 128 160 192 224

pmin [Pa] 1.0 · 105 9.3 · 104 7.7 · 104 5.4 · 104 4.2 · 104 2.4 · 104 1.3 · 104
Camin 9 2.3 1.1 0.59 0.38 0.29 0.18

Table 6.5: Reynolds numbers and Cavitation numbers corresponding to each flow rate

simulated for 8mm oil

Clearly the flow is purely laminar due to the high viscosity of oil making modelling of

turbulence redundant. Minimum pressure pmin and the minimum Cavitation number

Camin (see eqn (6.1)) both decrease with increasing flow rate. While pressure is still

at acceptable levels for V̇ = 7 lmin-1 with pmin = 1.3 · 104Pa, the Cavitation number

drops dangerously low to Camin = 0.18. For this reason, simulations are conducted only

until V̇ = 7 lmin-1 and not beyond. Figure 6.16 shows pmin and Ca as well as velocity

magnitude U for V̇ = 7 lmin-1. The areas most prone to cavitation, i.e. areas of both low

pressure and Cavitation number, are the near-wall regions where the ducts join into the

spherical gap, and the regions in close proximity to the sphere slightly below the point

of impact of the flow on to the sphere. Consequently, cavitation could damage both the

structure of the magnetic bearing and the surface of the grinding sphere. While the latter

can be easily replaced, damage to the former would require an entirely new tool to be

manufactured. Volumetric flow rates should thus not exceed V̇ = 7 lmin-1 in order to

avoid damage.

6.4.2 Normal forces

Figure 6.17 shows the forces F oil
x and F oil

n for the 8mm GrindBall. Unlike for the pro-

totype, F oil
x and F oil

n are no longer independent of the rotation frequency f for constant

V̇ . Instead, rising f causes a linear increase in both F oil
x and F oil

n . Moreover, there is no

clear pattern as to how the slopes of these linear fits behave regarding V̇ . While they

appear to become constant for V̇ ≥ 5 lmin-1, the behaviour at lower flow rates differs.
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(i) Pressure p (ii) Cavitation number Ca (iii) Velocity magnitude U

Figure 6.16: Pressure and Cavitation number and velocity magnitude for V̇ = 7 lmin-1

F oil
x starts with a flat slope for 1 lmin-1, quickly increases before decreasing and con-

verging to a constant. F oil
n on the other hand starts with a flat slope which gradually

increases and converges to a constant slope. Constructing a good 3D fit for such seem-

ingly irregular data requires the use of high order polynomials. Fitting the coefficients of

each straight line (each line of constant V̇ ) over the volumetric flow rate, results in the

following relations for F oil
x and F oil

n :

F oil
x = (βoil

1 V̇ 4 + βoil
2 V̇ 3 + βoil

3 V̇ 2 + βoil
4 V̇ )f + βoil

5 V̇ 2 + βoil
6 V̇ (6.3)

F oil
n = (βoil

7 V̇ 5 + βoil
8 V̇ 4 + βoil

9 V̇ 3 + βoil
10 V̇

2 + βoil
11 V̇ )f

+ βoil
12 V̇

3 + βoil
13 V̇

2 + βoil
14 V̇ . (6.4)

Note that while these high order polynomials fit the present data very well, they are

unlikely to provide a good basis for comparison to data obtained on other scales or using

other propulsion media. Additionally, the fact that liquid propulsion, i.e. oil propulsion,
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Figure 6.17: Forces F oil
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n for all simulations conducted for 8mm oil

110

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6.4. COMPUTATIONAL RESULTS

introduces rotation frequency dependence into normal forces makes a comparison even

more problematic. Both 3D relations are plotted in Figure 6.18.
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Figure 6.18: 3D forces F oil
x and F oil

n over rotation frequency f and flow rate V̇

The question arises why hydraulic propulsion invokes a frequency dependence while pneu-

matic propulsion does not. Two possible reasons are the incompressibility and the much

higher viscosity of oil. Figure 6.19 shows a comparison of oil propulsion at V̇ = 7 lmin-1

for f = 0Hz and f = 400Hz.

(i) V̇ = 7 lmin-1, f = 0Hz (ii) V̇ = 7 lmin-1, f = 400Hz

Figure 6.19: Pressure distribution for two different rotation frequencies f at constant flow

rate V̇

Clearly, pressure for f = 400Hz is higher inside the spherical gap both at the top of the

sphere and on the left (-x-direction) which is made apparent by differences in F oil
x and

F oil
n for constant V̇ . Rotation of the sphere causes surrounding fluid to be sucked into
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the spherical gap on the left side. While this effect occurs regardless of the propulsion

medium, the high viscosity of oil causes proportionally more fluid to be taken in, which

consequently, due to the fluid being incompressible, leads to an immediate rise in pressure

inside the gap both on the left and at the top. Hence, the effect is extremely noticeable

for oil propulsion and negligible when using air. Also interesting to note is the fact that

there is a visible difference in the pressure distribution at the very top of and inside

the duct, i.e. the rotation of the sphere has a noteworthy effect on the flow upstream,

effectively leading to a different pressure distribution inside the main parts of the tool.

6.4.3 Tangential forces

Tangential forces F oil
t are plotted in Figure 6.20. Straight lines are fitted for each simulated

constant V̇ . Close inspection of the data shows that the relation between F oil
t and f are

actually not linear, but slightly parabolic. This is made apparent by the fact that data

points close to the intercepts and null points tend to lie below the fitted straight lines,

and points in the mid field tend to lie above the fitted lines. In order to fit parabolae

accurately, however, more data points, i.e. more simulations would be necessary. Since

the deviation of the data points to the fitted lines is minor within the range discussed here

(F oil
t > 0∧ f > 0), straight lines provide an accurate enough representation of tangential

force and are kept at this point.
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Figure 6.20: Tangential force F oil
t over rotation frequency f with fitted regression lines

for each volumetric flow rate V̇ for 8mm oil

Much in the same way as performed in Section 4.2.5 on tangential force for the 40mm pro-

totype, fitting the intercepts and null points of the straight lines portrayed in Figure 6.20
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over volumetric flow rate yields the following equations for stationary force transfer F oil
t,0

and idle rotation frequency f oil
0 (see Figure 6.21 for plots):

F oil
t,0 = αoil

1 V̇ 1.777 (6.5)

f oil
0 = αoil

2 V̇ 1.270. (6.6)

The most notable difference to pneumatic propulsion at this point is that the exponent

of V̇ in eqn (6.6) is greater than 1, whereas it was less than one (0.875 to be exact) in

eqn (4.21) for the idle rotation frequency in the case of the prototype. Taking a look at

Figure 6.21 reveals that stationary force transfer has increased by a factor of 10 within

examined flow rates compared to the prototype, despite the sphere having only one fifth

the diameter. This fact demonstrates the positive effect of increasing both the number

of ducts and the viscosity of the propulsion medium on tangential force transfer. Idle

rotation frequencies are similar in magnitude for both oil and air. While higher frequencies

are to be expected for a smaller sphere, oil propulsion requires lower flow speeds to avoid

cavitation (Section 6.1.1).

Using eqn (4.23), the following relation governing tangential force is derived in the same

way as was done in Chapter 4:

F oil
t = (αoil

3 V̇ 1.777)
(
αoil
4 − αoil

5 V̇ −1.270f
)
. (6.7)

Figure 6.22 shows a plot of eqn (6.7). Tangential force of 0.1N is achieved with approx-

imately f = 300Hz at the maximum flow rate of V̇ = 7 lmin-1. Overall, tangential force

has increased dramatically comparing to the pneumatic case while rotation frequencies

have remained virtually identical (cp. Figure 4.23). This version of the tool with hy-

draulic propulsion and three ducts is capable of being used to conduct grinding trials and

represents the first model of the GrindBall able to machine actual workpieces.
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Figure 6.21: Stationary force transfer F oil
t,0 and idle rotation frequency f oil

0 over volumetric

flow rate V̇ for 8mm oil
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Figure 6.22: Tangential force F oil
t depending on rotation frequency f and volumetric flow

rate V̇ for 8mm oil

6.4.4 Grinding power

Grinding power is obtained by multiplying F oil
t by ṡ = 2πrf with r = 0.004m (see

Section 4.2.8 for details on how grinding power is derived). Each straight line from Fig-

ure 6.20 becomes parabolic as can be seen in Figure 6.23. Fitting a curve through the

maxima of these parabolae results in

P oil
G,max = αoil

6 f 2.499, (6.8)

which needs to be made dependant on the volumetric flow rate V̇ .

Fitting the coefficients of each parabola in Figure 6.23 over the volumetric flow rate results

in the following three-dimensional relation governing grinding power P oil
G in terms of f

and V̇ :

P oil
G = αoil

7 V̇ 0.429f 2 + αoil
8 V̇ 1.801f. (6.9)

Figure 6.24 shows a plot of eqn (6.9). Grinding power is roughly doubled compared to

the pneumatic prototype. This makes sense considering that tangential force is increased

ten-fold while the radius is reduced to one fifth, leaving a factor of 2.

114

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6.4. COMPUTATIONAL RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500

G
rin

di
ng

 p
ow

er
 P

Goi
l  [W

]

Rotation frequency f [Hz]

PG,1
oil

PG,2
oil

PG,3
oil

PG,4
oil

PG,5
oil

PG,6
oil

PG,7
oil

PG,max
oil
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for each constant volumetric flow rate V̇ for 8mm oil

As was also done for the prototype, P oil
G,max(ξ) is now given as a parametric curve in 3D

space for ξ ∈ [0, 7]:

f(ξ) = αoil
9 ξ1.270 (6.10)

V̇ (ξ) = αoil
10ξ (6.11)

P oil
G,max(ξ) = αoil

11ξ
2.916 (6.12)

leading to the operating point Poil
op(ξ), which parametrically describes P oil

max(ξ) as a vector

in 3D space:

Poil
op(ξ) =

(
αoil
9 ξ1.270, αoil

10ξ, α
oil
11ξ

2.916
)
. (6.13)

Poil
op(ξ) can be seen in Figure 6.24 along with P oil

G .

Grinding power is now fully determined for the 8mm GrindBall with oil propulsion.

Using eqn (6.13) one can find the maximum power for each flow rate V̇ along with a

corresponding rotation frequency f . Overall, the improvements made in comparison

with the prototype are very auspicious. In terms of design, the addition of two co-ducts

improve tangential force transfer while vertical arrangement of the ducts provide sufficient

contact force required to penetrate into workpieces. Similarly, the use of high-viscosity

oil as a means of propulsion increases tangential and normal forces while also eliminating

the problem of upward lift acting on the sphere. Normal forces described by eqns (6.3)

and (6.4) provide a basis for designing and calibrating the electro-magnetic bearing.

Furthermore, having fully quantified both grinding force and power with eqns (6.7) and

(6.9), the tool is now ready for production and subsequent operation.
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Chapter 7

Modelling force transfer across multiple

scales

This chapter focuses on the process of force transfer for compressible turbulent flow in

boundary layers of moving walls and investigates whether it can be made independent

of the length scale. To this end, the vertical triple duct GrindBall geometry discussed

in Chapter 6 is examined using three different spherical diameters: 40mm, 8mm, and

1mm. Relations for normal forces, tangential force, stationary force transfer, idle rotation

frequency, and grinding power are obtained. These are then made dimensionless and

compared to each other across the three different scales. Finally, the results are compared

to those found for the single duct geometry and for the triple duct setup using hydraulic

propulsion.

7.1 Simulation Setup

The setup is identical to the ones used for previous compressible simulations. See Ap-

pendixD.6 for a complete overview of settings and boundary conditions.

Mesh

The mesh used is the base 2 mesh described in Section 6.3.

Simulation timeline

Unlike for the prototype, the simulations are run on the ultimate mesh from the beginning.

Instead of switching meshes to save computational cost, each flow rate is first run with

a stationary sphere. Once complete, the final result is copied and the velocity boundary

condition for the sphere adjusted upon which the simulation is continued for each desired

rotation frequency. Computational cost is greatly reduced since the flow only needs to

develop for a stationary sphere. Following cases start with an already fully developed
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Figure 7.1: Timeline for simulations done for the GrindBall prototype

flow which only needs to adapt to the change in rotation frequency. Figure 7.1 gives an

overview.

Table 7.1 shows the time intervals used for different length scales.

t0 t1 t2 t3 t4 t5 t6

40mm sphere [s] 0 0.005 0.035 0.05 0.054 0.065 0.08

8mm sphere [s] 0 0.0005 0.003 0.009 0.0095 0.01 0.016

1mm sphere [s] 0 0.000015 0.0001 0.0003 0.000315 0.0004 0.0006

Table 7.1: Time details for simulations done across all length scales

Cases

Table 7.2 shows cases simulated for 40mm, 8mm, and 1mm using pneumatic propulsion.

40mm

Flow rates [m3h-1] 9 18 27 36 45 54 63 72 81 90 99

Frequencies [Hz]

0 0 0 0 0 0 0 0 0 0 0

50 100 100 100 100 200 200 200 200 200 200

200 250 300 400 400 500 400 400

500 600

8mm

Flow rates [m3h-1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Frequencies [Hz]

0 0 0 0 0 0 0

400 500 500 1000 10 0 1000 1000

1000 1500 2000 2000 2000

2400 2500
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7.1. SIMULATION SETUP

1mm

Flow rates [m3h-1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Frequencies [Hz]

0 0 0 0 0 0 0

2000 2000 5000 5000 5000 5000 5000

4000 5000 10000 10000 10000 10000 10000

5000 7500 15000 15000 15000 15000 15000

10000 20000 20000 20000 20000

30000 25000 25000

30000

Table 7.2: Case configurations simulated for the triple duct geometry using pneumatic

propulsion

Reynolds and Mach numbers

The Reynolds numbers for each flow rate for 40mm, 8mm, and 1mm can be seen in

Table 7.3. Re is defined as in Section 4.2.2, yet assuming that the volumetric flow rate is

distributed evenly among the three ducts:

Re = Uhd/ν (7.1)

with

U = ṁ/3ρSAd. (7.2)

40mm

Flow rates [m3 h-1] 9 18 27 36 45 54

Re 9.52·103 1.91·104 2.86·104 3.81·104 4.76·104 5.72·104

Flow rates [m3 h-1] 63 72 81 90 99

Re 6.67·104 7.62·104 8.57·104 9.53·104 1.04·105

8mm

Flow rates [m3 h-1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Re 2646 5293 7939 10586 13232 15879 18525

1mm

Flow rates [m3 h-1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Re 423 847 1270 1694 2117 2541 2964

Table 7.3: Reynolds numbers Re for each flow rate for 40mm air
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Turbulence (Re > 5000) is observed for all flow rates at 40mm. The flow becomes

transitional (3000 < Re < 5000) at 8mm only for V̇N = 0.5m3 h-1 and remains turbulent

at higher flow rates. 1mm is entirely laminar (Re < 3000). Maximum Mach numbers for

40mm, 8mm, and 1mm can be seen in Table 7.4. Flow rates for which the flow becomes

super-sonic (Ma > 1) are not considered beyond this point.

High Reynolds numbers justify the use of an LES model for 40mm and 8mm. While the

flow is mostly laminar for 1mm, transitional flow is also observed for some cases and,

hence, the LES model is used here as well. Employing the LES model on laminar flow

does not distort the results as subgrid scale quantities simply tend to zero. Mach numbers

ranging up to ∼1.0 justify performing compressible simulations for all three scales.

40mm

Flow rates [m3 h-1] 9 18 27 36 45 54 63 72 81 90 99

0Hz 0.09 0.17 0.28 0.36 0.47 0.56 0.67 0.74 0.86 0.97 1.05

50Hz 0.09

100Hz 0.18 0.26 0.37 0.44

200Hz 0.36 0.57 0.63 0.73 0.84 0.92 1.05

250Hz 0.48

300Hz 0.60

400Hz 0.68 0.76 0.94 1.13

500Hz 0.84 0.98

600Hz 1.06

8mm

Flow rates [m3 h-1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0Hz 0.38 0.26 0.38 0.48 0.62 0.75 0.88

400Hz 0.26

500Hz 0.24 0.38

1000Hz 0.37 0.51 0.65 0.73 0.91

1500Hz 0.50

2000Hz 0.66 0.75 0.94

2400Hz 0.74

2500Hz 0.92

1mm

Flow rates [m3 h-1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0Hz 0.30 0.28 0.43 0.58 0.79 0.86 0.99

2000Hz 0.16 0.27

4000Hz 0.23

5000Hz 0.34 0.28 0.41 0.58 0.86 1.05
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7500Hz 0.28

10000Hz 0.28 0.43 0.58 0.75 0.87 1.11

15000Hz 0.43 0.57 0.70 0.84 0.99

20000Hz 0.57 0.73 0.88 1.01

25000Hz 0.86 0.98

30000Hz 0.74 1.10

Table 7.4: Maximum Mach Ma numbers for each case at 40mm

7.2 Computational results

Results obtained on the vertical three-duct geometry using three different grinding sphere

diameters (40mm, 8mm, and 1mm) are discussed in this section and comparisons drawn

to the pneumatic prototype in Chapter 4 and the hydraulic tool from Chapter 6. Dimen-

sioned coefficients are again represented by αdmm
n and βdmm

n where d is the diameter of the

sphere and n is an enumerating integer. Their actual values can be seen in TableC.15,

TableC.16, and TableC.17 in AppendixC.

7.2.1 Normal forces

Forces in x and z-direction for each case simulated are shown for individual diameters in

Figure 7.3. The first thing to note is that there appears to be no clear dependence of force

on rotation frequency at constant flow rate for any of the three diameters. While this

was also the case for the prototype, hydraulic propulsion showed an obvious dependence.

This strengthens the assumptions made in Section 6.4.2 that attribute this dependence

to the fluid’s incompressibility and high viscosity, since covering such a large spectrum

of Reynolds numbers with air shows no apparent change in this matter. Independence of

rotation frequency allows for normal forces to be averaged over f so that a single value

is assigned to each V̇N thereby making the analysis more straightforward.

Figure 7.4 shows mean normal forces plotted over flow rate for each individual diameter.

Comparing F x across the three scales shows similar behaviour throughout: the sphere is

“pulled” in positive x-direction by the flow and this force increases with rising flow rate.

This makes sense considering the upward lift that was observed for the prototype. Vertical

arrangement of the ducts translates this effect into force in x-direction. The dependence

of F x on V̇N is roughly quadratic for 40mm and 8mm (see eqns (7.3) and (7.4)) but bears

an exponent of 2.473 for 1mm (eqn (7.5)). There are distinct differences in magnitude

between the three scales. Normal forces are dominated by pressure effects which are

defined as force acting on a surface. Since the sphere’s surface decreases according to r2,

it stands to reason that normal forces do the same. F x decreases by a factor of approx.

25 from 40mm to 8mm, supporting the hypothesis. From 8mm to 1mm, however, it
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decreases by a factor of approx. 80, possibly due to the absence of turbulence. Again the

1mm case is slightly out of line.

Now looking at F z across scales in Figure 7.4, rather inconsistent behaviour can be ob-

served. For 40mm and 8mm there is still upward lift acting on the sphere, i.e. despite

the flow being introduced vertically from the top, low pressure zones at the top of the

spherical gap outweigh the downward force exerted by the flow’s impact on to the sphere.

This phenomenon can be seen in Figure 7.2, as can the 1mm case in which the sphere

is in fact pushed downward. At 1mm the Reynolds numbers are so low that the flow

cannot generate enough lift on the sphere, however, Figure 7.4.vi clearly shows a turning

point at V̇N ≈ 0.055m3/h, corresponding to Re ≈ 2300 beyond which lift forces begin to

become apparent and start to counter downward force. Magnitudes of F z decrease by a

factor of approx. 30 going from 40mm to 8mm, and by a factor of around 64 going from

8mm to 1mm. While the former, much like for F x, is roughly in keeping with a decrease

according to r2, the latter is dead on, albeit acting in the opposing direction. F z shows an

approximately quadratic dependence on V̇N for 40mm and 8mm in eqns (7.6) and (7.7)

respectively. For 1mm, however, F z obeys a cubic function of flow rate. The relation in

eqn (7.8) provides the best match to the 1mm data in the given range considering that a

minimum and a turning point is required to provide an adequate fit.

F
40mm

x = β40mm
1 V̇ 2.053

N (7.3)

F
8mm

x = β8mm
1 V̇ 2.038

N (7.4)

F
1mm

x = β1mm
1 V̇ 2.473

N (7.5)

F
40mm

z = β40mm
2 V̇ 2.078

N (7.6)

F
8mm

z = β8mm
2 V̇ 2.216

N (7.7)

F
1mm

z = β1mm
2 V̇ 3

N + β1mm
3 V̇ 2

N + β1mm
4 V̇N . (7.8)

(i) 40mm spherical diameter,

V̇N = 90m3/h, f = 500Hz

(ii) 8mm spherical diameter,

V̇N = 3m3/h, f = 2400Hz

(iii) 1mm spherical diameter,

V̇N = 0.06m3/h, f = 25000Hz

Figure 7.2: Mean pressure distribution inside the spherical gap across three scales
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Figure 7.3: Forces Fx and Fz for all simulations conducted for 40mm, 8mm, and 1mm
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Figure 7.4: Mean forces F x and F z averaged over rotation frequency f for 40mm, 8mm,

and 1mm
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7.2.2 Tangential force

Tangential forces are analysed and compared across three scales in this section. Stationary

force transfer and idle rotation frequencies are then extrapolated and discussed. Finally,

three-dimensional relations governing tangential force in terms of flow rate and rotation

frequency are established.

Figure 7.5 shows the simulation results for tangential force F 40mm
t with a fitted regression

line for each flow rate. F 40mm
t displays a linear dependence on rotation frequency for

constant flow rates as is the case for the GrindBall prototype in Section 4. Extrapolated

from the intercepts and null points are the stationary force transfer F 40mm
t,0 and the idle

rotation frequency f 40mm
0 depicted in Figure 7.8.i and Figure 7.8.ii respectively. Stationary

force transfer is nearly tripled in magnitude compared to the prototype. A gain is to be

expected because of the increase in duct diameter and the addition of two supplementary

ducts, both of which cause a higher flow rate and thereby raise the potential amount of

momentum available for transfer on to the sphere. Vertical alignment of the ducts causes

no loss in tangential force transfer due to the fact that the flow’s point of impact lies more

than 45◦ above the end of the spherical gap (cp. Section 4.2.6). Rotation frequencies

are only increased by a factor of about 1.5 compared to the prototype, i.e. tangential

forces are subject to diminishing returns when increasing the rotation frequency using

the vertical three-duct model.
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Figure 7.5: Tangential force F 40mm
t over rotation frequency f with fitted regression lines

for each standard volumetric flow rate V̇N for 40mm air

Tangential force F 8mm
t again displays a linear dependence on rotation frequency for con-

stant flow rates at 8mm. Figure 7.6 shows the simulation results with a fitted regression
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line for each flow rate. Close inspection reveals that a linear fit is no longer accurate at

8mm. Looking at individual flow rates, the linear fit lies slightly above simulation results

both near the horizontal and the vertical axis, whereas it lies slightly below simulation

results within the middle range. Thus, a parabolic fit seems more appropriate, however,

there are not enough data points to accurately fit parabolae. Furthermore, the deviation

between the linear fit and the data is so minute that it provides an accurate result despite

being of lower order. The results for hydraulic propulsion in Section 6.4.3 also show a

somewhat parabolic behaviour at 8mm. Stationary force transfer for 8mm shown in Fig-

ure 7.8.iii drops in magnitude by a factor of approx. 18 compared to F 40mm
t,0 . This factor

lies between a quadratic drop (25) and a linear drop (5) and can be attributed to the way

in which force is transferred on to the sphere: the majority of force is transferred at the

spot at which the flow impacts on to the sphere and this spot’s area decreases according

to r2. Force is also transferred, however, between the point of impact and the exit of

the spherical gap as discussed in Section 4.2.6. This length decreases linearly according

to r. Hence, approximately 65% of force transfer takes places at the point of impact,

while the remaining 35% occur thereafter. This implies that since the area used to grind

workpieces on the bottom of the sphere decreases quadratically - as does the amount of

required tangential force - the tool becomes more efficient the smaller its grinding sphere.

Idle rotation frequency, on the other hand, increases by a factor of 5 (Figure 7.8.iv). This

is because the speed of the flow is kept constant across scales and rotation frequency of

the sphere must increase linearly in order to maintain the same surface velocity. This

also means that the diminishing returns observed for 40mm compared to the prototype

are maintained at smaller scales.
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Figure 7.6: Tangential force F 8mm
t over rotation frequency f with fitted regression lines

for each standard volumetric flow rate V̇N for 8mm air
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The results for tangential force F 1mm
t in Figure 7.7 show strong parabolic behaviour. For

this reason more simulations are performed per flow rate in order to be able to accurately

fit parabolae to the data. Considering also tangential forces for 8mm above and for

the hydraulic propelled tool in Section 6.4.3, it would appear that smaller scales promote

parabolic behaviour independent of fluid properties and the Reynolds number. Stationary

force transfer F 1mm
t,0 depicted in Figure 7.8.v drops by a factor of approx. 22 from 8mm

down to 1mm. This implies that tangential force transfer for laminar flow is dominated by

linear effects, i.e. momentum transfer along the gap dominates over momentum transfer

at the flow’s point of impact. Furthermore, the tool becomes even more efficient at this

very small 1mm scale. Idle rotation frequency f 1mm
0 shown in Figure 7.8.vi increases by

a factor of around 9.5, implying that there are slightly less diminishing returns resulting

from spherical rotation at this scale.
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(i) Stationary force transfer F 40mm
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(ii) Idle rotation frequency f40mm
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(iii) Stationary force transfer F 8mm
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(iv) Idle rotation frequency f8mm
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(v) Stationary force transfer F 1mm
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Figure 7.8: Stationary force transfer F 40mm
t,0 and idle rotation frequency f 40mm

0 over volu-

metric flow rate V̇N for 40mm, 8mm, and 1mm
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7.2. COMPUTATIONAL RESULTS

Eqns (7.9) through (7.11) state the relations between stationary force transfer Ft,0 and

volumetric flow rate V̇N across the three scales. The exponent of V̇N starts at 1.833 for

40mm and decreases with scale: 1.673 for 8mm and 1.441 for 1mm, i.e. the dependence

of Ft,0 on V̇N moves away from a quadratic relation towards a linear one with decreasing

scale. Eqns (7.12) through (7.14) give the relations between idle rotation frequency f0
and volumetric flow rate V̇N across the three scales. Here, the relation starts off almost

linear with an exponent 0.985 for V̇N and continues to decrease with scale: 0.921 for 8mm

and 0.869 for 1mm.

F 40mm
t,0 = α40mm

1 V̇ 1.833
N (7.9)

F 8mm
t,0 = α8mm

1 V̇ 1.673
N (7.10)

F 1mm
t,0 = α1mm

1 V̇ 1.441
N (7.11)

f 40mm
0 = α40mm

2 V̇ 0.985
N (7.12)

f 8mm
0 = α8mm

2 V̇ 0.921
N (7.13)

f 1mm
0 = α1mm

2 V̇ 0.869
N (7.14)

Obtaining a three-dimensional relation governing tangential forces in terms of flow rates

and rotation frequencies is done in the same way as for the prototype and the hydraulic

8mm tool according to

Ft = Ft,0

(
1− f

f0

)
(4.23)

for 40mm and 8mm since tangential forces are linearly dependent on rotation frequencies

at constant flow rates. For 1mm, however, tangential force can not be obtained using

eqn (4.23) because F 1mm
t depends on f parabolically. Instead, the coefficients of the

parabolae governing tangential force over rotation frequency must be made dependent on

the flow rate by fitting a curve in a similar fashion as was previously done for grinding

power. The result is that each parabola of the form

Ft,n = an (bn + f)2 + cn, (7.15)

where n represents a specific volumetric flow rate, is combined into a 3D equation of the

form

Ft = a(V̇N )
(
b(V̇N) + f

)2
+ c(V̇N). (7.16)

Tangential forces for 40mm, 8mm, and 1mm are thus given by the following relations:

F 40mm
t = (α40mm

3 V̇ 1.833
N )(α40mm

4 − α40mm
5 fV̇ −0.985

N ) (7.17)

F 8mm
t = (α8mm

3 V̇ 1.673
N )(α8mm

4 − α8mm
5 fV̇ −0.921

N ) (7.18)

F 1mm
t = (α1mm

3 V̇ 1.829
N + α1mm

4 )f 2 + (α1mm
5 V̇ 1.369

N )f + α1mm
6 V̇ 1.441

N , (7.19)

which are plotted in Figure 7.9, Figure 7.10, and Figure 7.11 respectively. These equations

fully describe tangential forces for all three simulated scales and a more detailed analysis

of tangential force behaviour is performed in Section 7.3.2
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Figure 7.9: Tangential force F 40mm
t for a 40mm pneumatic sphere
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Figure 7.10: Tangential force F 8mm
t for an 8mm pneumatic sphere
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Figure 7.11: Tangential force F 1mm
t for a 1mm pneumatic sphere

7.2.3 Grinding power

Grinding power is now extrapolated from tangential force as described in Section 4.2.8.

For 40mm and 8mm the procedure is the same as in previous cases. In a similar way,

grinding power for 1mm is obtained by multiplying each parabola for F 1mm
t,n by s = 2πrf

with r = 0.0005m resulting in cubic equations. These cubics each have a single maximum

within the considered domain between f = 0 and f = f0, and hence serve the purpose

of this analysis just as well. The results for 40mm, 8mm, and 1mm are illustrated in

Figure 7.12, Figure 7.13, and Figure 7.14 respectively, along with curves fitted through

the maxima of the parabolae, which obey the following relations:

P 40mm
G,max = α40mm

6 f 2.782 (7.20)

P 8mm
G,max = α8mm

6 f 2.751 (7.21)

P 1mm
G,max = α1mm

7 f 2.662. (7.22)

The exponents of f in eqns (7.20) through (7.22) are very similar to each other bearing

only a slight decrease with scale. Comparing the magnitude of P 40mm
G,max with the prototype,

grinding power increases by a factor of around 4.5. Note that tangential force only

increases by a factor less than 3, indicating that the slight increase in rotation frequency

toward the prototype has a positive effect on grinding power. PG,max drops by a factor

of ∼ 18 going from 40mm to 8mm. This is not surprising considering that ṡ = 2πrf is
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unaffected by scale as r decreases by a factor of 5 and f increases by roughly the same

amount, while tangential force is reduced by a factor of approx. 18 (see the previous

section). Going from 8mm to 1mm, PG,max drops by a factor of around 16, although

rotation frequency increases by a factor slightly bigger than the radius of the sphere

decreases, while stationary tangential force decreases by a factor of ∼ 22. The reason

for this is that the parabolic shape of F 1mm
t causes the maxima of P 1mm

G,max to be shifted

toward the right due to larger rotation frequencies. Much like tangential force, grinding

power’s decrease with scale moves away from quadratic effects and more towards linear

ones as the tool gets smaller. This again affirms, that the tool becomes more and more

efficient through miniaturisation.
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Figure 7.14: Grinding power P 1mm
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Now to introduce the dependence of grinding power on volumetric flow rate. Again, the

procedure for 40mm and 8mm are the same as for the prototype and the hydraulic tool.

With tangential force being parabolic for 1mm, however, grinding power at this scale is

no longer of the form presented in eqn (4.31), but obeys a third order polynomial in f :

P 1mm
G = a(V̇N)f

3 + b(V̇N )f
2 + c(V̇N)f, (7.23)

where the coefficients a, b, and c of the cubics presented in Figure 7.14 are fitted over

volumetric flow rate in order to introduce the additional dependence on V̇N . The resulting

three-dimensional relations governing grinding power over rotation frequency and flow

rate for all three scales are thus given by:

P 40mm
G = α40mm

7 V̇ 0.815
N f 2 + α40mm

8 V̇ 1.833
N f (7.24)

P 8mm
G = α8mm

7 V̇ 0.696
N f 2 + α8mm

8 V̇ 1.664
N f (7.25)

P 1mm
G = (α1mm

8 V̇ 1.813
N + α1mm

9 )f 3 + α1mm
10 V̇ 1.588

N f 2 + α1mm
11 V̇ 1.441

N f. (7.26)

Finally, the additional variable V̇N is also introduced into PG,max. For 40mm, P 40mm
G,max is

given as a parametric curve in three-dimensional space using the parameter ζ ∈ [0, 90]:

f(ζ) = α40mm
9 ζ0.985 (7.27)

V̇N(ζ) = α40mm
10 ζ (7.28)

P 40mm
G,max(ζ) = α40mm

11 ζ2.872. (7.29)

For 8mm, P 8mm
G,max is given parametrically for η ∈ [0, 3.5]:

f(η) = α8mm
9 η0.921 (7.30)

V̇N(η) = α8mm
10 η (7.31)

P 8mm
G,max(η) = α8mm

11 η2.634. (7.32)
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For 1mm, P 1mm
G,max is given parametrically for ξ ∈ [0, 0.06]:

f(ξ) = α1mm
12 ξ0.827 (7.33)

V̇N(ξ) = α1mm
13 ξ (7.34)

P 1mm
G,max(ξ) = α1mm

14 ξ2.043. (7.35)

Eqns (7.27) through (7.35) determine the operating point Pop for each scale, describing

PG,max as vectors in 3D space:

P40mm
op (ζ) =

(
α40mm
9 ζ0.985, α40mm

10 ζ, α40mm
11 ζ2.872

)
(7.36)

P8mm
op (η) =

(
α8mm
9 η0.921, α8mm

10 η, α8mm
11 η2.634

)
(7.37)

P1mm
op (ξ) =

(
α1mm
12 ξ0.827, α1mm

13 ξ, α1mm
14 ξ2.043

)
. (7.38)

Eqns (7.24) through (7.26) governing grinding power are plotted in Figure 7.15, Fig-

ure 7.16, and Figure 7.17 respectively, along with Pop for each case given in eqns (7.36)

through (7.38).
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G for a 1mm pneumatic sphere
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Unlike the dependence of PG,max on f in 2D, which was barely influenced by decreasing

the scale, the dependence on V̇N (i.e. on the parameter) does display a notable decrease

with scale. While it starts off with an almost cubic relation in eqn (7.29) at 40mm,

the exponent is only 2.634 in eqn (7.32) at 8mm, and becomes quadratic in eqn (7.35)

at 1mm. This implies that increasing returns from rising flow rates are amplified at

higher Reynolds numbers, i.e. larger turbulent effects. While this effect negatively influ-

ences miniaturisation, overall the sheer magnitude of grinding power profits greatly by

decreasing the size of the tool.

Having fully described tangential forces and grinding power across three scales covering

turbulent, transitional, and laminar flow, the next section deals with making these results

independent of scale and aims at providing a better suited basis for comparison.

7.3 Non-dimensional analysis

In the previous section, results are presented for three different scales which cover laminar,

transitional, and fully turbulent flow. While the results do seem very similar regarding the

resulting relations, an appropriate comparison requires non-dimensionalisation in order

to measure properties across various scales and be able to reach conclusions about arbit-

rary scales without having to conduct new sets of simulations. Non-dimensionalisation

is performed using the radius of the sphere r, the standard kinematic viscosity of air

νN = 1.33 · 10−5m2 s-1, and the standard density of air ρN = 1.293 kgm-3. The resulting

dimensionless variables are:

PD =
P

ν3
NρNr

−1
(7.39)

FD =
F

ν2
NρN

(7.40)

fD =
f

νNr−2
(7.41)

V̇ D
N =

V̇N

νNr
, (7.42)

where the exponent D denotes a dimensionless quantity. Furthermore, Re ∝ V̇ D
N , i.e. the

Reynolds number is proportional to the dimensionless flow rate:

Re =
10νNρN
3πνSρS

V̇ D
N =

3.18461

π
V̇ D
N . (7.43)

Noting the similarity between the numerator and denominator of the coefficient, it can

be said that

Re ≈ V̇ D
N . (7.44)
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Using these new variables, simulation results obtained on different scales may now be

compared to each other without bias resulting from different geometric proportions. Fur-

thermore, four additional simulations are conducted for a 400mm sphere with V̇N =

7200m3/h and rotation frequencies f = 0, 20, 30, and 50Hz to provide reference values

at a larger scale which are used to test the validity of the relations derived using the data

from the three smaller spherical diameters.

7.3.1 Normal forces

Dimensionless mean force acting on the grinding sphere in x-direction F
D

x can be seen in

Figure 7.18.

Figure 7.18.i shows varying behaviour between data sets for Reynolds numbers below and

above 5000. A function governing the full range of Reynolds numbers is thus defined in

a piecewise manner and is not continuously differentiable:

F
D

x =

{
1,029,470 (exp(4.152 · 10−6Re1.681)− 1) for Re < 5000

1.052Re2.051 for Re ≥ 5000.
(7.45)

Note that the data point for 400mm is not included in the fitting process and is used

merely to check whether the fitted curves still provide a good estimate at larger scales.

This is clearly the case for FD
x . To make eqn (7.45) continuously differentiable, a sigmoid

function (see AppendixA.6 for details)

σFx
(Re) =

1

1 + exp(−(Re− 2775.5)/200)
(7.46)

is used to smoothly combine the two sub-functions with Re0 = 2775.5, the point at which
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CHAPTER 7. MODELLING FORCE TRANSFER ACROSS MULTIPLE SCALES

both sub-functions intersect. The result is plotted in Figure 7.18.ii and obeys the function

F
D

x = 1,029,470
(
exp(4.152 · 10−6Re1.681)− 1

)
(1− σFx

(Re))

+ 1.052Re2.051 σFx
(Re). (7.47)

F
D

z , the dimensionless mean force acting in z-direction, is plotted in Figure 7.19.i for

Re < 105. Recalling that F 1mm
z is negative, only the horizontal axis is presented in the

logarithmic scale. A quadratic polynomial is chosen to fit the data in order to incorporate

negative values for low Reynolds numbers by making use of its parabolic shape, yielding

F
D

z = 0.618Re2 − 2095.751Re. (7.48)

Figure 7.19.ii shows a log-log representation incorporating only larger scales. Not only

does eqn (7.48) fit the data very well for all scales, it also agrees very well with the 400mm

reference value.
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Figure 7.19: Mean force in z-direction F
D

z over Reynolds number Re

Normal forces are now quantified across a variety of scales and can subsequently be

calculated for arbitrary scales without the need for additional simulations.

7.3.2 Tangential forces

Figure 7.20 shows the tangential forces for all the simulated scales plotted in one graph.

Despite non-dimensionalisation, there is still large variation among scales and it is dif-

ficult to illustrate all data points simultaneously. Using a log-log scale would also be

problematic because the behaviour on and near the axes cannot be depicted.

Instead, non-dimensional stationary force transfer FD
t,0 and idle rotation frequency fD

0

are considered separately. Figure 7.21 shows both variables with curves fitted to each
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Figure 7.20: Tangential force FD
t over rotation frequency fD with fitted regression curves

for constant Reynolds numbers Re

individual scale. Regarding FD
t,0, the three fitted curves obviously do not agree well with

each other. Use of the log-log scale portrays these curves as straight lines and there

are easily visible discrepancies between their “slopes”. Hence, a global fit encompassing

all scales is unlikely to be of the form aReb, but rather obeys an exponential function.

Furthermore, the question arises whether an exponential fit can be used across all scales,

or if it is merely useful for either laminar or turbulent flow. Idle rotation frequency fD
0

shows slightly better agreement among the individually fitted curves. Differences between

the three fitted curves are smaller, yet they still do not allow for a global fit.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 10  100  1000  10000  100000  1e+06

S
ta

tio
na

ry
 fo

rc
e 

tra
ns

fe
r F

t,
0D
  [

 - 
]

Reynolds number Re [ - ]

1mm
1mm fit

8mm
8mm fit
40mm

40mm fit

(i) Stationary force transfer FD
t,0

 10

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000  1e+06

Id
le

 ro
ta

tio
n 

fre
qu

en
cy

 f 0
D

 [ 
- ]

Reynolds number Re [ - ]

1mm
1mm fit

8mm
8mm fit
40mm

40mm fit

(ii) Idle rotation frequency fD
0
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Figure 7.22.i illustrates FD
t,0 wherein it is fitted with an exponential for Re < 105 and a

regular curve for Re ≥ 104 - again excluding the large 400mm scale. Close examination

of the two fitted curves shows that while the exponential fits the simulated data very

well for Re < 105, the larger 400mm scale lies almost exactly on the curve fitted only to

Re ≥ 104. Hence, FD
t,0 shows exponential behaviour only until a certain Reynolds number

upon which it follows a regular curve, giving

FD
t,0 =

{
1.323 · 10−4 (exp(13.653Re0.065)− 1) for Re < 105

0.354Re1.827 for Re ≥ 104.
(7.49)

Obviously, the overlap in the domain between 104 ≤ Re < 105 is not ideal. To make

the function unambiguously defined and continuously differentiable, a sigmoid function

is once again employed. Equating the two sub-functions shows that they intersect at

Re0 = 42,772. Hence, using a sigmoid with Re0 = 42,772, i.e.

σFt,0
(Re) =

1

1 + exp(−(Re− 42,772)/200)
, (7.50)

stationary force transfer is governed by:

FD
t,0 = 1.323 · 10−4

(
exp(13.653Re0.065)− 1

) (
1− σFt,0

)
+ 0.354Re1.827σFt,0

. (7.51)

Returning to Figure 7.21 and considering fD
0 shows that while the three individual fitted

curves differ less than they do for FD
t,0, a clear difference in slope can still be observed.
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7.3. NON-DIMENSIONAL ANALYSIS

are performed, one for Re < 104 and another for Re ≥ 104, resulting in

fD
0 =

{
0.335Re0.947 for Re < 104

0.240Re0.977 for Re ≥ 104.
(7.52)

Making use of the sigmoid function

σf0(Re) =
1

1 + exp(−(Re− 82,301)/200)
(7.53)

smoothly combines the two sub-functions about their point of intersection Re0 = 82,301

using λ = 200 into the following relation (Figure 7.22.ii):

fD
0 = 0.335Re0.947 (1− σf0) + 0.240Re0.977σf0 . (7.54)

A three dimensional relation governing tangential force FD
t in terms of rotation frequency

fD and Reynolds number Re may now be constructed using the relation in eqn(7.51) as

well as eqn (7.52). It has already been established that the dependence of tangential force

upon rotation frequency can be considered linear for spherical diameters of 40mm and

8mm. For 1mm, however, i.e. for laminar flow, this dependence is no longer linear but

quadratic. Hence, the approximation

FD
t = FD

t,0

(
1− fD

fD
0

)
(7.55)

bears an error inversely proportional to the Reynolds number. At this point it may be

pointed out that with the present state of technology, it is not possible to construct

a GrindBall with a radius of less than 4mm [Nor, Bra]. With this in mind and also

considering that the error is still within an acceptable range were the data in Figure 7.7

fitted with straight lines instead of parabolae, eqn (7.55) is used to derive the following

relation governing non-dimensional tangential force (Figure 7.23):

FD
t =

(
1.323 · 10−4

(
exp

(
13.653Re0.065

)− 1
) (

1− σFt,0

)
+ 0.354Re1.827σFt,0

)
·
(
1− (0.335Re0.947 (1− σf0) + 0.240Re0.977σf0

)
−1

fD
)
. (7.56)
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Figure 7.23: Tangential force FD
t depending on rotation frequency fD and Reynolds num-

ber Re

7.3.3 Grinding power

Non-dimensional grinding power PD
G is calculated according to

PD
G = FD

t ṡD (7.57)

using the dimensionless grinding velocity ṡD = 2πfD, giving the relation

PD
G =

(
1.323 · 10−4

(
exp

(
13.653Re0.065

)− 1
) (

1− σFt,0

)
+ 0.354Re1.827σFt,0

)
·
(
1− (0.335Re0.947 (1− σf0) + 0.240Re0.977σf0

)
−1

fD
)
2πfD. (7.58)

PD
G,max(ξ) is calculated by fitting a curve through the maxima of PD

G

∣∣
Re=const

, resulting in

the following parametric representation:

fD(ξ) = 0.167 ξ0.947 (7.59)

Re(ξ) = ξ (7.60)

PD
G,max(ξ) = 0.186 ξ2.774 (7.61)
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Figure 7.24: Grinding power PD
G depending on rotation frequency fD and Reynolds num-

ber Re

and yielding the operating point PD
op(ξ):

PD
op(ξ) =

(
0.167 ξ0.947, ξ, 0.186 ξ2.774

)
. (7.62)

Eqn (7.58) is plotted in Figure 7.24 along with PD
G,max(ξ).

7.4 Single duct vs. triple duct geometry

In the following, a comparison is made between the single duct geometry devised in

Chapter 4 and the improved triple duct geometry from Chapter 6. Note that the relation

between Reynolds number and dimensionless volumetric flow rate is different for the single

duct geometry due to the different ratio of duct diameter hd to the spherical diameter r,

and the fact that there is only one duct:

Re =
20νNρN
πνSρS

V̇ D ≈ 6V̇ D. (7.63)
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Figure 7.25: Mean normal forces F
D

x and F
D

z over Reynolds number Re using air for

single and triple duct geometries

Mean dimensionless forces F
D

x and F
D

z for both cases are governed by

F
D,triple

x = 1,029,470
(
exp(4.152 · 10−6Re1.681)− 1

)
(1− σFx

(Re))

+ 1.052Re2.051 σFx
(Re). (7.64)

F
D,single

x = 1.181Re1.789 (7.65)

F
D,triple

z = 0.618Re2 − 2095.751Re (7.66)

F
D,single

z = 2.141Re1.912, (7.67)

which are plotted in Figure 7.25. As is to be expected, they do not agree very well.

Forces in x-direction show a large disparity. The reason for this is that while the single

duct geometry introduces the duct into the spherical gap horizontally, the triple duct

geometry does so vertically. Consequently, the flow pushes the grinding sphere in a

different direction making a sensible comparison between the two geometries regarding

this force impractical. Force in z-direction does show some agreement with a certain

offset in the logarithmic representation. This suggests that the lift on the sphere behaves

similarly regardless of the direction from which the flow is introduced.

Force transfer on to a stationary sphere FD
t,0 for both cases are governed by

FD,triple
t,0 = 1.323 · 10−4

(
exp(13.653Re0.065)− 1

) (
1− σFt,0

)
+ 0.354Re1.827σFt,0

(7.68)

FD,single
t,0 = 7.218Re1.544 (7.69)

and idle rotation frequencies obey

fD,triple
0 = 0.335Re0.947 (1− σf0) + 0.240Re0.977σf0 (7.70)

fD,single
0 = 0.750Re0.875, (7.71)
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which are both plotted in Figure 7.26.

FD,triple
t,0 and FD,single

t,0 agree extremely well for Reynolds numbers below 75,000. However,

beyond this point the two curves begin to increasingly drift apart (not shown in the

plot). fD,triple
0 and fD,oil

0 show equally pleasing agreement, yet start to slowly drift apart

for Reynolds numbers beyond 2 · 105. The most probable reason for this Re-dependant

discrepancy is accuracy. Note that the data used to derive eqns 7.68 and 7.70 covers

a spectrum of Reynolds numbers ranging from 423 ≤ Re ≤ 1.04 · 105, while the data

used to generate eqns 7.69 and 7.71 is limited to 6.30 · 103 ≤ Re ≤ 6.29 · 104. It stands

to reason that the equations derived for the single duct geometry do not produce good

accuracy outside of their range of Reynolds numbers. This is supported by the fact

that agreement between single and triple duct equations is highly satisfactory within

the region of overlapping Reynolds numbers and gets increasingly worse with increasing

distance from the overlap. The linear relation between FD
t,0 and fD

0 implies that the same

is true for tangential force FD
t . All in all this shows that the non-dimensional relations

derived in Section 7.3 are not only applicable to the triple duct geometry, but are also

valid for variations of the GrindBall ’s geometry, provided of course that the changes are

not too radical. Furthermore, this implicitly shows that the full potential of the flow’s

momentum is still utilised by arranging the ducts vertically, as tangential force is not

reduced by the fact that the flow has proportionally less distance to travel inside the

spherical gap.
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Figure 7.26: Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re for single and triple duct geometries using air
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7.5 Air vs. oil propulsion

In the previous sections, non-dimensional equations are derived in order to compare

simulations done on various length scales or geometries. Remembering the role of the

kinematic viscosity in eqns (7.39) through (7.42), the same analysis can be used not only to

compare varying parameters depending on the radius r, but also different fluid viscosities

ν. Data from Section 7.3 using pneumatic propulsion can thus be compared to results

obtained for hydraulic propulsion in Section 6.4. Non-dimensionalisation is performed for

oil with νoil instead of νN and ρoil instead of ρN , both of which are constant. Also, for

incompressible cases

Re =
10

3π
V̇ D. (7.72)

Normal forces are difficult to compare since they cannot be considered independent of

rotation frequency for compressible cases and are omitted here. The two functions gov-

erning force transfer for air and oil on a stationary sphere in their non-dimensional forms

are

FD,air
t,0 = 1.323 · 10−4

(
exp(13.653Re0.065)− 1

) (
1− σFt,0

)
+ 0.354Re1.827σFt,0

(7.73)

FD,oil
t,0 = 1.551Re1.777, (7.74)

while idle rotation frequencies are given by

fD,air
0 = 0.335Re0.947 (1− σf0) + 0.240Re0.977σf0 (7.75)

fD,oil
0 = 4.917 · 10−2Re1.270. (7.76)

Both quantities are plotted in Figure 7.27.

Most notably, the exponents in the relations governing idle rotation frequency are > 1

for oil while they are < 1 for air. This implies that oil does not give diminishing returns

when increasing the flow rate at high rotation frequencies. The relations for stationary

force transfer are in keeping with air as they show a proportional increase with increasing

Reynolds number.

Looking at the plots, similar behaviour is observed for both quantities. Agreement

between oil and air, while poor for Re < 100, becomes increasingly better with rising

Reynolds numbers. Again, the linear relation between FD
t,0 and fD

0 implies that the same is

true for tangential force FD
t . The most likely reason for the discrepancies below Re = 100

is accuracy. The data used to derive eqns 7.74 and 7.76 covers 32 ≤ Re ≤ 224, while the

data used to derive eqns 7.73 and 7.75 has a minimum Reynolds number of 423. Hence,

the two curves diverge for very low Re due to lack of overlapping data. Similarly, the

curves diverge for large, turbulent Re (not shown). This is acceptable since a turbulent

oil propulsion scenario is not a realistic method of operation due to cavitation occurring.
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Arguably, the relations for non-dimensional tangential forces in Section 7.3 are applicable

not only to the triple duct GrindBall using pneumatic propulsion, but are also valid for

geometric variations and other propulsion media. The same is true for grinding power

because of the simplistic way in which it is calculated based on tangential force.
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Figure 7.27: Stationary force transfer FD
t,0 and idle rotation frequency fD

0 over Reynolds

number Re for pneumatic and hydraulic propulsion
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Chapter 8

Conclusion

The findings in this thesis are summarised and discussed in the following. Limitations

are stated along with the implications that these limitations may have. Finally, future

research possibilities are presented which may prove to elaborate or improve upon what

was produced within the scope of this project.

8.1 Summary

The aim of this thesis has been to investigate forces transferred by turbulent compressible

and incompressible fluid flows on to moving walls of smooth solid objects. It did so by

conducting CFD simulations with OpenFOAM of a novel micro-grinding tool, which was

introduced in Chapter 1. This tool utilises a grinding sphere set in rotational motion using

fluid-dynamic propulsion and is controlled by an electro-magnetic bearing. The aptly

named GrindBall presents an innovative way of maximising grinding force by keeping its

axis of rotation parallel to the workpiece at all times.

Chapter 2 discussed the equations relevant to the simulations performed here, most im-

portantly the compressible and incompressible Navier-Stokes equations. Chapter 3 gave

an overview as to how the equations derived in Chapter 2 can be made discrete and

applied to CFD simulations. Furthermore, the notion of Large Eddy Simulation was

introduced, which provides an elegant way of achieving a sophisticated level of accuracy

at relatively adequate computational cost.

Chapter 4 saw the first step in the development of theGrindBall by conducting parametric

studies on geometrical parameters leading up to a pneumatically propelled prototype with

a 40mm grinding sphere. This prototype was subsequently examined through simulations

with varying flow rates as well as spherical rotation frequencies. Relations were found

which govern normal forces acting on the grinding sphere, tangential forces equivalent to

the force available to the grinding process, as well as grinding power for which the tool

behaves optimally. Tangential forces display a linear dependence on rotation frequency for

constant volumetric flow rates and a 3D relation governing tangential force as a function
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of rotation frequency and flow rate could be derived. Contrary to prior expectations,

it was discovered that air delivers grinding forces of Ft < 0.04N, which is not enough

to make viable use of the tool, and that the propulsion medium had to be changed to

one with higher viscosity in order to achieve sufficient results. It stands to reason that

miniaturisation of the tool will not provide any improvement in this regard. Furthermore,

the horizontal arrangement of the duct introducing the flow into the spherical gap in

which the sphere is mounted causes lift, which is a hindrance considering that the tool

also requires downward contact force to machine a workpiece.

In order to test the validity of the results presented within this thesis, a separate ex-

periment was devised in Chapter 5: a dynamometer measures forces transferred by air

pneumatically propelled through a duct from the GrindBall prototype on to an even

plate. Analogous simulations were conducted which showed good agreement with the

experimental data. Thus, it could be shown that the performed simulations provide

trustworthy results in terms of fluid-to-solid force transfer.

Based on the findings of Chapter 4, Chapter 6 investigated how to turn the GrindBall

into a functioning grinding tool with a smaller 8mm sphere. Two additional ducts were

introduced in order to achieve proportionally higher flow rates to further increase tangen-

tial force. All three ducts were introduced vertically from the top, increasing downward

force and making the tool more compact. Several hydraulic propulsion media of varying

viscosities were examined with the aim of finding a viable means of propulsion. It was

found that EVO Fluid HLP VG46 oil with a kinematic viscosity of ν = 1.38 · 10−4m2 s-1

at room temperature delivers the best results regarding tangential force in combination

with contact force. Geometric parameters were optimised in a series of parametric stud-

ies and the best values for duct diameters, duct positions, and gap height determined.

Thus, the tool’s final geometric layout has been conceived. Similarly to the approach

used in Chapter 4, this layout was subsequently simulated under a variety of flow rates

and spherical rotation frequencies to examine the behaviour of acting forces in detail.

Unlike for the prototype, tangential force shows slightly parabolic behaviour depending

on rotation frequency at constant flow rates. A linear fit nonetheless still provided a

sufficiently accurate approximation. It has been shown that conditions for productive

use of the GrindBall are met by this particular combination of oil and geometry with

maximum contact force Fn in the range of 1-2N, and tangential force Ft = 0.1N at a

rotation frequency of f ≈ 300Hz. Grinding power has been determined and an operating

point Pop found at which the tool operates with maximum efficiency. The outcome is

that the GrindBall presents not only a viable alternative to existing grinding tools, it

in fact revolutionises the field of micro-grinding by presenting a compact, versatile, and

highly efficient product capable of being used in industrial applications. It is unfortunate

that efficient propulsion must resort to the use of oil because it not only makes handling

the tool more elaborate and costly, but also pollutes the workpieces being machined and

requires a laborious cleaning process. It does presently seem, however, to be the only

effective means of propulsion for the GrindBall.
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Finally, Chapter 7 conducted a scale analysis of the triple-duct geometry devised in

Chapter 6 using pneumatic propulsion. The scales investigated covered 40mm, 8mm,

and 1mm. Normal forces, tangential force, and grinding power were determined for each

scale, followed by a non-dimensional analysis of said quantities. It was found that the de-

pendence of tangential force on rotation frequency at constant flow rates becomes increas-

ingly parabolic with decreasing scale. Concluding from these and the afore mentioned

results, it can be speculated that the form of dependence between the two quantities is

dependent on the Reynolds number and fluid properties. Lower Reynolds numbers and

higher viscosities seem to promote an increasingly parabolic relation. Furthermore, it has

been shown that employing an appropriate method of non-dimensionalisation leads to a

single relation for each quantity which is valid across all scales - including arbitrary ones.

This implies that no further simulations are necessary to investigate scales which may be

of future interest, e.g. 4mm or 2mm. It was also discovered that the behaviour of forces

is dependant on the Reynolds number and the thereby implied degree of turbulence. In

some cases this led to piecewise functions that needed to be smoothly combined using a

sigmoid. Additionally, non-dimensional relations for grinding force and power were shown

to be valid both across different geometries by drawing a comparison to the prototype

results from Chapter 4, as well as other propulsion media by comparing them to hydraulic

propulsion from Chapter 6. This is an extremely pleasing result since future versions of

the tool, versions in which the geometry may have changed so radically that the results

presented here no longer apply, now require far less simulations in order to fully describe

tangential forces and grinding power. Instead of focussing on a multitude of flow rates

per scale and subsequently varying the scale, one simply needs to cover a large enough

spectrum of Reynolds numbers by scaling the tool and can then derive non-dimension

relations valid for arbitrary scales and propulsion media.

8.2 Limitations

Certain limitations do apply to the results presented in this thesis. Compressible sim-

ulations have throughout been restricted entirely to sub-sonic flow and hence all results

are valid only for Ma < 1. This needs to be considered when conducting future simu-

lations on other geometries. Achieving higher Reynolds numbers cannot be done solely

by increasing the flow rate because, at some point, this would result in super-sonic flow.

Instead, the scale of the geometry must be increased to keep the Mach number below 1.

Analogously to the Mach number, the Cavitation number Ca presented a limiting factor

for incompressible flow. The solver used is not capable of modelling cavitation bubbles

and instead produces negative values for pressure. This unrealistic behaviour needed to

be avoided and so flow rates are limited to those that do not produce cavitation. This of

course needs to be considered when using the herein derived non-dimensional relations

to determine the behaviour of forces at arbitrary scales or for other propulsion media.
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Normal forces could not be compared among different geometries or propulsion media.

While the former case presented discrepancies obviously resulting from changing the ar-

rangement of the duct, oil showed entirely different behaviour compared to air. While

normal forces for pneumatic propulsion seemed to be dependant only on flow rate, hy-

draulic propulsion introduced an additional dependence on spherical rotation frequency.

Supplementary studies into this matter would be required to be able to quantify these

forces definitively, however, tangential forces were regarded as a much higher priority and

so they were not investigated any further.

Temperature is another issue. Adiabatic walls were assumed for compressible simulations,

while temperature variation was neglected entirely for incompressible ones. Practical use

of the tool will see two major sources of temperature fluctuation: heat generated by

the magnets used to keep the sphere centred at its location and heat generated by the

process of grinding. The main reasons why these sources of heat were neglected is that

not only is the amount of generated heat unknown, it is also not known how this heat

is distributed. It is open to question what temperature the magnets will reach as this

depends mainly on the work the bearing has to carry out, which in turn depends on

the duration of use and the material being ground. Also, how much of this heat will

be transferred on to the propulsion fluid and into the spherical gap remains to be seen.

Temperature distribution across the sphere requires the nature of the sphere’s rotation to

be determined. Should there be slight fluctuations in the axis of rotation, the sphere would

tumble resulting in a uniform temperature across the sphere. A steady axis of rotation

on the other hand would cause a temperature gradient along said axis. These issues need

to be addressed by conducting grinding trials using the actual tool. Incorporating such

quantities into simulations before they have been examined experimentally would have

most likely reduced the accuracy of the results.

Finally, the penetration depth of the sphere into the workpiece presents an issue. This

depth depends entirely on the type of cavity being ground and covers a large range of

values, starting from close to zero and ending with the radius of the sphere. This addi-

tional parameter increases the simulation effort immensely. While an arbitrary value was

chosen for the prototype, later simulations disregarded penetration entirely. Chapter 4

showed that tangential force transfer on to the sphere takes place almost entirely inside

the spherical gap. Thus, no discrepancy is to be expected by neglecting this parameter

regarding Ft or PG. Normal forces, however, may be affected especially for high rotation

frequencies. Flow induced by rotation of the sphere in close proximity to the cavity may

cause local pressure variations, which could affect normal forces in all three directions.
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8.3 Future research possibilities

Should empirical studies show that super-sonic flow presents a means of stable operation,

this field could provide an interesting research opportunity. Higher flow rates would

increase force transfer on to the sphere and may prove to make air a viable propulsion

medium. It would be interesting to see whether the derived equations still hold, or if

super-sonic flow behaves in a different manner. Additionally, pre-heating the air would

increase the speed of sound and provide a way of increasing flow rates even further.

Regarding incompressible flow, should operation of the tool with cavitation occurring

prove to be only of minor concern, i.e. little to no damage being done to the tool, this

could also be considered as a means of increasing grinding forces.

Another way of improving the tool’s efficiency may be offered by considering other gap

shapes. The spherical gap could, for example, be replaced by an oval-shaped gap which

is narrower along the axis of rotation and wider along the intended direction of the

flow. This would force the flow to increasingly propagate in the direction of the sphere’s

surface’s direction of motion, thereby increasing tangential force transferred on to the

sphere.

Oil presents a more viable propulsion medium compared to air because of its high vis-

cosity. This high viscosity, however, also bears a disadvantage: those parts of the sphere

which are not influenced directly by the flow exiting the ducts are also submersed in oil

and hence exposed to increased friction as the high viscosity of the fluid slows down the

grinding sphere’s rotation frequency. This could be countered by two-phase operation:

while propulsion is still realised with oil, the tool need not be submersed in it entirely,

but used in atmospheric surroundings. This would not only increase the efficiency of the

tool, but also make it far more practical to use. Analogously, operating the GrindBall

inside a vacuum chamber would have a similar effect on pneumatic propulsion. This, of

course, does not exactly increase practicality, but may prove to improve the effectiveness

of air as a propulsion fluid.

Overall, it was very enjoyable to be a part of project GrindBall and to be able to conduct

research in this interdisciplinary venture. I hope this thesis inspires others to perform fur-

ther research in the field of micro-grinding, especially concerning innovative and efficient

propulsion methods and the simulation thereof.
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Appendix A

Theorems & formulae

A.1 Divergence theorem

Let V be a three-dimensional closed volume bounded by a piecewise smooth surface S.

Then for a finitely smooth vector field ψ defined on V , the following must hold:

˚

V

(∇ ·ψ) dV =

‹

δV

(
ψ · n̂) dS,

where n̂ is the unit normal surface vector pointing outward of V . This can be interpreted

physically as the sources of ψ within V being equal to the flow across the boundary δV .

A.2 Leibnitz integral rule

Leibnitz integral rule for fixed limits of integration states that for an integral of the form

bˆ

a

ψ(x, y)dy,

the derivative w.r.t. x may be expressed as

d

dx

bˆ

a

ψ(x, y)dy =

bˆ

a

∂

∂x
ψ(x, y)dy

given that ψ is continuous and continuously differentiable w.r.t. x.

For variable limits of integration, the rule takes the form

d

dx

b(x)ˆ

a(x)

ψ(x, y)dy =
db(x)

dx
ψ(x, b(x))− da(x)

dx
ψ(x, a(x)) +

b(x)ˆ

a(x)

∂

∂x
ψ(x, y)dy.
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A.3 Reynolds transport theorem

Leibnitz integral rule is extended to the 3D case in Reynolds transport theorem. The

function ψ = ψ(x, t) is integrated over a time dependant volume Ω(t) with corresponding

boundary δΩ(t) and then differentiated w.r.t. t:

d

dt

ˆ

Ω(t)

ψdV =

ˆ

Ω(t)

∂ψ

∂t
dV +

ˆ

δΩ(t)

(ub · n̂)ψdS,

where n̂(x, t) is the unit normal surface vector and ub(x, t) is the velocity of the corres-

ponding boundary element.

For the particular case of a continuous material volume, particles immediately adjacent

to the boundary move with the boundary elements, hence

ub · n̂ = u · n̂.

Substituting this into the above yields

d

dt

ˆ

Ω(t)

ψdV =

ˆ

Ω(t)

∂ψ

∂t
dV +

ˆ

δΩ(t)

(u · n̂)ψdS.

Or, applying the divergence theorem:

d

dt

ˆ

Ω(t)

ψdV =

ˆ

Ω(t)

∂ψ

∂t
dV +

ˆ

Ω(t)

∇ · (ψ ⊗ u)dV.

Similarly, considering a scalar ψ instead of a vector:

d

dt

ˆ

Ω(t)

ψdV =

ˆ

Ω(t)

∂ψ

∂t
dV +

ˆ

Ω(t)

∇ · (ψu)dV.

A.4 Grinding angle and corresponding abrasion force

In practise, Ft can be calculated without error as the grinding angle is chosen prior to the

use of the tool and can be used to calculate the average distance to the axis of rotation,

i.e. the average length of the moment arm:

ry =
r

2

( α

sinα
+ cosα

)
0 < α ≤ π

2
,

where α is half the grinding angle. This average distance is then used to calculate available

abrasion force exactly using

Ft =
My

ry
.
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A.5. EXTRAPOLATION OF STANDARD DEVIATION

Grinding sphere

(2D representation)

Workpiece

10° grinding 

angle

Cavity

Figure A.1: Grinding angle of 10◦

A.5 Extrapolation of standard deviation

Since the results for f0 stem from extrapolation, no explicit standard deviations exist for

these values. Error bars are thus determined using the standard deviations of the values

obtained through simulation using a mean standard deviation:

σ =
1

n

√√√√ n∑
i=1

σ2
i ,

where n is the number of simulation results for a given V̇N . The error ε is then obtained

using the angle α between the linear regression curve for the particular flow rate and the

f -axis:

ε =
σ

tanα
.

Figure A.2: Extrapolation of standard deviation for f0
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A.6 Sigmoid function

The sigmoid function [Wei] is an S-shaped mathematical function which initially grows

exponentially and then saturates for large values of x. It has a variety of uses in applica-

tions which present fast growth initially and eventually stagnate, e.g. a type of learning

curve. It can be defined as

σ(x) =
1

1 + exp(−(x− x0)/λ)
,

where x0 is a displacement relative to the origin and λ is used to influence the “transition

width”. Here, the sigmoid is used to smoothly combine discontinuous or non-continuously

differentiable functions with each other.

Consider two functions

f(x) = x

g(x) = −x+ 10

which intersect at (5, 5) and are plotted in FigureA.3.

The piecewise function amalgamating f(x) and g(x)

h(x) =

{
x for x < 5

−x+ 10 for x ≥ 5

is not continuously differentiable as its derivative jumps at x = 5. Using the sigmoid

function with x0 = 5, h(x) can be made continuously differentiable by defining

H(x) = (1− σ(x))f(x) + σ(x)g(x).
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Figure A.3: Functions f(x) and g(x)
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Figure A.4: Functions h(x) (left) and H(x) (right) with x0 = 5 and λ = 0.1, 0.5, 1.0, 1.5

FigureA.4 shows h(x) as well as H(x) for different values of λ.

The transition from f(x) to g(x) becomes smoother with rising λ. Too large values of λ

can, however, lead to unwanted behaviour further away from the point transition, as is

the case for λ = 2 which does not intersect the y-axis close to the origin.
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Appendix B

Advanced Meshing Techniques

B.1 Meshing a cylinder with hexahedra

Constructing computational grids purely with hexahedra provides the best basis for run-

ning simulations using the Finite Volume Method described in Section 3.1.2. Results are

obtained with a good combination of accuracy and low computational cost. Meshing com-

plex geometries purely with hexahedra, however, does not always present an easy task.

In order to construct a mesh consisting only of hexagonal cells, each enclosed volume

must be defined by six surfaces, which in turn must each consist of 4 enclosing lines.

Cylindrical shapes, i.e. pipes, are highly relevant to this project and present something

of a challenge when aiming to construct a high-quality hexahedral mesh. FigureB.1

illustrates the problem presented by meshing a cylinder in this way. While the mesh is of

decent quality in the inner regions of the cylinder, the outer region possesses bad quality

cells near the “corners” (i.e. where the curves enclosing the surface meet).

Figure B.1: 2D slices of a cylinder mesh. Crude mesh (left) and butterfly mesh (right)
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A so-called butterfly mesh can solve this issue by dividing the circular cross-section of

the pipe into five separate surfaces (see FigureB.1 on the right). Naturally, the question

arises in what way the circle should be divided in order to achieve best results. This

problem is outlined in FigureB.2.

The point P must be chosen such that the cells are evenly distributed and their sizes do

not vary a great deal. Regarding only the outer region of the circle and considering only

the distribution of points along ro and ao, optimum quality is reached when they are of

equal length, i.e. ro/ao = 1. This condition, however, implies P be located at the origin.

Considering again the outer region but this time considering the distribution of points

along ai and the cylinder wall, optimal distribution is achieved when they are both of

equal length, i.e. 4ai/rπ = 1. This condition implies P be located on the cylinder wall.

Note that the inner region need not be considered because the cells are always squares.

It should be clear that placing P at the origin or on the cylinder wall is an unrealistic

and purely hypothetical result. To determine an optimal position for P, both ratios are

equated so that they can be maximised according to one another:

ro
ao

=
4ai
rπ

. (B.1)

Note that ro = r − ri and ai = ri cos(π/4) and so eqnB.1 becomes

r − ri
r − ri cos(π/4)

=
4ri cos(π/4)

rπ
. (B.2)

Figure B.2: Optimising butterfly mesh parameters
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EqnB.2 is dependent only on r and ri and so it can be solved to express ri in terms of r:

ri,1 ≈ 0.682r and ri,2 ≈ 2.303. (B.3)

Obviously, ri,2 is not applicable in this case and a purely mathematical solution. Hence,

it can be said that an optimum hexahedral mesh is achieved when

ri ≈ 0.7r, (B.4)

which implies

ai ≈ 0.5r (B.5)

and so

P ≈ (0.5r, 0.5r). (B.6)

One final issue that needs to be addressed is the inner square. Since it takes up almost

one third of the circle’s area, there is not much room for the mesh to gradually adopt a

circular shape as it approaches the cylinder’s walls (see FigureB.2). In order to counter

this, the inner body need not actually be a square. Instead, the four lines can be slightly

convex so that the approximation of the circular shape of the wall is more gradual and

consistent. The convexity and the number of cells in the inner and outer parts need to be

carefully chosen so that the cells remain of similar shape and size throughout the cross

section of the cylinder. As a general rule, the number of cells along ro should make up

between 30% and 50% of the total number cells along r.

FigureB.3 shows the final result with a coarse and a fine version of the finished butterfly

mesh. Note how the cross-sectional area shows that the individual cells are virtually

equilateral. They do increase somewhat in size toward the cylinder walls because equi-

laterality is favoured over equal sizes in this example. This is especially important when

using isotropic turbulence modelling (see the Smagorinsky Model in Section 3.6.2).

Figure B.3: Optimal butterfly mesh setup in coarse (left) and fine (right) variations
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B.2 Automatic Mesh Generation

Conducting parametric studies in which geometric parameters vary implies the need to

generate a new mesh for each considered case. Since the GrindBall ’s geometry is ex-

tremely complicated, it would be profoundly time consuming to generate a new mesh

from scratch every time a new parameter is investigated. Instead, the computational grid

is generated with the help of a script which computes the grid points automatically based

on given geometric parameter input. This script defines the coordinates of every single

point in the GrindBall ’s geometry based on a given spherical radius, gap height, duct

diameter, duct position, et cetera. It then outputs a list of points with corresponding

coordinates that are inserted into a gmsh [GR09] file which goes on to create the compu-

tational grid. Using this technique, the grid needs only to be manually constructed once,

i.e. lines, curves, surfaces, and volumes are defined the first time the mesh is built. For

each subsequent mesh the script generates a new set of points and replaces the previous

list of points in the gmsh script, thereby drastically reducing the time needed for mesh

generation.

Maplesoft Maple 14 [Map10] is used to generate the script. While it would be also

possible to handle the scripting part with gmsh, Maple provides greater functionality and

ease of use, e.g. by providing while-loops and the ability to solve equations directly. The

following example is the script used to generate the meshes for the 8mm vertical three-

duct GrindBall ’s geometric parametric study discussed in Section 6.2. It computes the

coordinates of a total of 1751 points in 0.95 seconds on a regular desktop computer.

TableB.1 provides an overview over the variables used followed by the actual Maple script,

which includes annotations and graphic representations of the mesh in order to provide

an idea of which segment of the grid is being generated by the according lines of code.

The following script is the one used to create the computational grid for the vertical

triple-duct GrindBall geometry including pre-defined workpiece penetration as seen in

Chapter 6.
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Index of Variables

Variable Description

kugelR, r Spherical radius

R Spherical gap radius

spalt Gap height

zulauf, d Main duct diameter

zulauf2, d2 Co-duct diameters

offset, os Main duct offset

offset2, os2 Co-duct offset

winkel, θ Angle between ducts

Krümmungsradius, kr Radius of curvature

Eindringtiefe, Ae Penetration depth

Ap Penetration width

scaleme Subroutine to scale a point from one

sphere’s surface to another

PList List containing relevant points

PArray Array containing relevant points

tmpList Temporary list containing relevant points

x, y, z Spatial coordinates

ex, ey, ez Spatial coordinates

n, i Running indices

md,md2, md3 Coordinates of main and co-ducts

mz z-coordinate of duct entry points

mz2 z-coordinate of duct entry points including curvature

ir Radius of inlet basin

iz Height of inlet basin

Or Radius of outlet basin

h Height of outlet basin

α, β, γ, δ, ε, ζ, η Outlet basin segment angles

aL List of outlet basin segment angles

radii, cmd, cd Variables for smooth duct/gap intersection

a, b, c Dummy variables

tx,m, ur Dummy variables

fx, nfx Dummy coordinates

nx, ny, nz Dummy coordinates

r1, r2, r3, r4 Dummy radii

φ, alph, bet Dummy angles

Table B.1: Input parameters (standard font) and variables (italic font) used in the Maple

script to create the GrindBall mesh
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B.3 Selective Grid Refinement

Selective grid refinement refines the computational grid in certain areas based on pre-

defined criteria. The advantage of this is that the grid need only to be fine in close

proximity to particular areas of interest and not in the entire domain. Doing so keeps

both the number of cells and the computational cost low while the accuracy of obtained

results remains comparable to that achieved on an entirely refined mesh. Two particular

refinement methods are described here: adaptive grid refinement during the simulation

and local grid refinement prior to the simulation.

For adaptive grid refinement the solver rhoPimpleFoam [Ope13a] is modified to be able to

refine the mesh based on user defined criteria. More specifically, every 10 time steps the

solver checks the mesh for cells with μsgs > 10−5. Each of these cells is split equidistantly

into eight smaller cells. Also, previously refined cells are checked for cell clusters in which

μsgs < 10−7 in which case they revert back to a coarser cell. Hence, areas with high shear

stress, i.e. near-wall regions and areas with heavy turbulence are resolved with greater

precision, thereby increasing overall accuracy of the flow’s characteristics (see FigureB.4).

Figure B.4: Adaptive grid refinement for the GrindBall
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The advantage of this method is that the number of cells and thus the computational cost

is matched perfectly to the geometry, the flow, and the requirements of the user. However,

computational cost is added each time the grid is refined. Although the refinement

frequency can be defined by the user, too low a frequency will reduce accuracy and make

this method less effective. Adaptive grid refinement is especially effective for simulations

in which the area of interest is in motion, such as the phase interface in multiphase flow

or the transition from sub to supersonic speeds in high-speed compressible flows. For

simulations involving the GrindBall, however, this method is not favourable as the area

of interest, i.e. the area adjacent to the sphere is not in motion. Furthermore, the solver

does not distinguish between patches. Thus the criteria for refinement cannot be limited

to close proximity to the sphere, but are applied in the entire domain. The number of

cells are thereby unnecessarily increased, e.g. because of refinements being made on the

work piece or near the outlet.

Local grid refinement is applied in the pre-processing stage. Using snappyHexMesh - a

tool in OpenFOAM capable of modifying meshes - the grid is refined in a spatially defined

area. While this may incur a larger number of cells, the refinement is permanent and

no further computational cost arises from modifications during the simulation. This is

the method used for the 40mm GrindBall discussed in Section 4.2. Figure 4.12 shows an

unrefined mesh as well as a refined mesh with all cells within 3mm of the sphere refined

once. The level of refinement is not limited to 1. FigureB.5 shows the mesh used for

simulation of a submarine under water. The grid becomes finer with increasing proximity

to the hull of the vehicle.

Figure B.5: Local grid refinement for a submarine
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Appendix C

Supplemental results

This chapter contains supplemental results that are instrumental to the analyses conduc-

ted in this thesis. Results are sorted in order of appearance of the different cases in the

main body of the thesis:

• 40mm GrindBall prototype

• Dynamometer validation experiments

• 8mm hydraulic grinding tool

• Scalability analysis

Dimensioned coefficients are presented with their actual values and dimensions. The

corresponding equations are also given for the purpose of quick association as well as

their non-dimensional form according to eqns (7.39)-(7.42). Furthermore, data used to

generate plots and figures are given in the form of tables containing numeric values for

reference.

Quick Reference Guide

The following provides a brief summary of relevant variables and their variations.

Variables

Ft Tangential force

Ft,0 Stationary tangential force

Fx, Fy, Fz, Fn Normal forces

f Rotation frequency

f0 Idle rotation frequency

h Height/length

PG Grinding power

Pmax Maximum grinding power
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Pop Operating point vector for grinding power

p Pressure

V̇N Standard volumetric flow rate

α, β Dimensioned coefficients

ζ, η.ξ Parametric values

σ Standard deviation

Superscripts

p GrindBall prototype

oil 8mm pneumatic grinding tool

40mm 40mm triple duct hydraulic tool

8mm 8mm triple duct hydraulic tool

1mm 1mm triple duct hydraulic tool

D Dimensionless parameter

C.1 40mm GrindBall prototype (Chapter 4)

The following equations are relevant to the analysis conducted in Chapter 4 regarding the

40mm pneumatic GrindBall prototype. In their dimensioned forms they read:

Relevant equations

F
p

x = βp
1 V̇

1.789
N (4.18)

F
p

z = βp
2 V̇

1.912
N (4.19)

F p
t,0 = αp

1V̇
1.544
N (4.20)

f p
0 = αp

2V̇
0.875
N (4.21)

F p
t = (αp

3V̇
1.544
N )

(
αp
4 − αp

5V̇N
−0.875f

)
(4.24)

P p
max = αp

6f
2.798 (4.29)

P p
G = αp

7V̇
0.632
N f 2 + αp

8V̇
1.566
N f (4.32)

Pp
op(ξ) =

(
αp
9ξ

0.875, αp
10ξ, α

p
11ξ

2.453
)
. (4.36)

These equations contain dimensioned coefficients αp
n and βp

n, which are given in the fol-

lowing table:
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Coefficients

function coefficients unit

F
p

x βp
1 = 1.674 · 10−3 Nh1.789 m−3 · 1.789

F
p

z βp
2 = 8.901 · 10−3 Nh1.912 m−3 · 1.912

F p
t,0 αp

1 = 1.203 · 10−3 Nh1.544 m−3 · 1.544

f p
0 αp

2 = 52.384 Hzh0.875 m−3 · 0.875

F p
t

αp
3 = 1.203 · 10−3 N0.5 h1.544m−3 · 1.544

αp
4 = 1 N0.5

αp
5 = 1.909 · 10−2 N0.5 h-0.875 m3 · 0.875 s

P p
max αp

6 = 2.029 · 10−7 Ws2.798

P p
G

αp
7 = −3.129 · 10−6 Wh0.632 m−3 · 0.632 s2

αp
8 = 1.463 · 10−4 Wh1.566 m−3 · 1.566 s

Pp
op(ξ)

αp
9 = 26.192 Hz

αp
10 = 1 m3 h-1

αp
11 = 1.867 · 10−3 W

Table C.3: Coefficients for the 40mm GrindBall prototype

Using the non-dimensionalisation technique introduced in Chapter 7 by eqns (7.39)-(7.42),

dimensionless equations can be derived for each quantity presented above:

Relevant non-dimensional equations

F
D,p

x = 29.093V̇ D1.789
N

F
D,p

z = 65.790V̇ D1.912
N

FD,p
t,0 = 114.792V̇ D1.544

N

fD,p
0 = 3.597V̇ D0.875

N

FD,p
t = (1.736 · 10−3V̇ D1.544

N )
(
66122.474− 18382.753V̇ D−0.875

N fD
)

PD,p
max = 97.529fD2.798

PD,p
G = −281.173V̇ D0.632

N fD2 + 599.028V̇ D1.566
N fD

PD,p
op (ξ) =

(
787.729ξ0.875, 1044.277ξ, 1.227 · 1010ξ2.453) .
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C.2 Dynamometer validation (Chapter 5)

The results obtained while performing the validation experiments described in Chapter 5

are given here in detail. The experimental data used to generate the plots in Figure 5.6

and 5.7 are presented in TableC.4:

V̇N [m3/h] F 45◦

y σ(F 45◦

y ) F 45◦

z σ(F 45◦

z ) F 60◦

y σ(F 60◦

y ) F 60◦

z σ(F 60◦

z ) F 90◦

z σ(F 90◦

z )

4 0.038 0.010 0.059 0.007 0.040 0.005 0.117 0.005 0.139 0.003

6 0.081 0.014 0.170 0.028 0.060 0.015 0.228 0.017 0.257 0.006

8 0.130 0.034 0.265 0.076 0.107 0.024 0.380 0.060 0.406 0.027

10 0.218 0.060 0.397 0.146 0.152 0.037 0.458 0.088 0.5827 0.027

Table C.4: Dynamometer validation: experimental results

Figure 5.6 and 5.7 also contain data from simulation results. This data is given in

TableC.5:

V̇N [m3/h] F 45◦

y σ(F 45◦

y ) F 45◦

z σ(F 45◦

z ) F 60◦

y σ(F 60◦

y ) F 60◦

z σ(F 60◦

z ) F 90◦

z σ(F 90◦

z )

4 -0.036 0.028 0.074 0.120 -0.025 0.020 0.100 0.064 0.123 0.017

6 -0.084 0.020 0.153 0.077 -0.059 0.014 0.212 0.046 0.258 0.047

8 -0.141 0.058 0.251 0.077 -0.099 0.018 0.346 0.040 0.418 0.029

10 -0.208 0.053 0.353 0.074 -0.148 0.025 0.479 0.049 0.587 0.024

Table C.5: Dynamometer validation: simulation results

See Chapter 5 for details on the dynamometer validation.

C.3 8mm hydraulic grinding tool (Chapter 6)

This section presents results supplemental to the 8mm hydraulic grinding tool discussed

in Chapter 6. Raw data used to generate plots for the propulsion media study and the

study of geometric parameters are given, followed by the listing of dimensioned coefficients

used in the results section of this chapter.

Parametric study (propulsion media)

TableC.6 shows the data used to generate the plot in Figure 6.2. See Section 6.1.2 for

details on the execution of this study.
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Ud VG5 VG7 VG10 VG15 VG22 VG32 VG46 VG68

10 [m s-1]

Ft [N] 0.016 0.018 0.029 0.038 0.042 0.044 0.042 0.038

Fn [N] 0.022 0.040 0.087 0.117 0.156 0.223 0.344 0.516

pmin [mbar] 580 580 898 -2130 -748 862 810 792

20 [m s-1]

Ft [N] 0.031 0.044 0.060 0.093 0.138 0.166 0.177 0.174

Fn [N] -0.049 0.020 0.173 0.268 0.412 0.522 0.739 1.068

pmin [mbar] -968 -1003 -924 -308 493 493 378 264

30 [m s-1]

Ft [N] 0.214 0.316 0.386 0.400

Fn [N] 0.664 0.963 1.234 1.683

pmin [mbar] -1883 -176 -185 -405

Table C.6: Results of the propulsion fluid study: Tangential force Ft, contact force Fn,

and minimum pressure pmin

Parametric study (geometric parameters)

The following lists the data obtained in the study of geometric parameters for the hy-

draulic 8mm grinding tool discussed in Section 6.2.

TableC.7 shows the data used to generate the plot depicted in Figure 6.3 in Section 6.2.1.

hg [mm] Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

1.0 0.17682 5.50·10−7 0.02251 1.58·10−5 0.73874 1.19·10−6

0.9 0.17660 4.76·10−8 0.00238 4.64·10−7 0.85214 2.14·10−5

0.8 0.17408 5.14·10−8 -0.03704 1.71·10−8 1.04408 6.59·10−9

Table C.7: Results of the gap height study. All forces in [N]

The study of the co-duct positions performed in Section 6.2.2 bases its results on the data

in TableC.8, which is also used to generate the plot in Figure 6.5.

Case Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

Case 0 0.17682 5.50·10−7 0.02251 1.58·10−5 0.73874 1.19·10−6

Case 1 0.21476 5.76·10−8 0.01309 1.31·10−6 0.66300 2.18·10−5

Case 2 0.17967 2.08·10−8 0.01646 2.63·10−7 0.67602 1.21·10−8

Case 3 0.22436 6.56·10−9 0.00474 1.79·10−7 0.61082 7.55·10−7

Case 4 0.24060 1.46·10−9 -0.00379 7.40·10−8 0.57603 3.04·10−8

Table C.8: Results of the co-duct position study. All forces in [N]
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An optimal value for the duct diameter is derived in Section 6.2.3. The data used to

generate the plot in Figure 6.6 is presented in TableC.9:

hd [mm] Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

1.0 0.17682 5.50·10−7 0.02251 1.58·10−5 0.73874 1.19·10−6

1.1 0.19578 2.31·10−7 0.07013 1.36·10−6 0.85399 3.61·10−7

1.2 0.20437 2.46·10−7 0.11612 9.48·10−7 0.96286 4.69·10−7

1.3 0.22754 4.92·10−8 0.16176 1.30·10−5 1.00692 1.71·10−6

1.4 0.23034 3.04·10−8 0.21721 4.88·10−5 1.04630 7.24·10−7

1.5 0.22957 3.98·10−8 0.29598 6.97·10−5 1.02532 3.22·10−6

Table C.9: Results of the duct diameter study. All forces in [N]

Section 6.2.4 sees the investigation of an optimal value for the main duct offset. The res-

ults, including the data used to generate the plot in Figure 6.7, is presented in TableC.10:

ho,1 [mm] Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

0.6 0.17788 1.10·10−7 0.03534 8.61·10−7 0.72407 1.96·10−8

0.7 0.17797 7.88·10−8 0.03161 9.22·10−7 0.73117 3.19·10−8

0.8 0.17682 5.50·10−7 0.02251 1.58·10−5 0.73874 1.19·10−6

0.9 0.17631 3.30·10−8 0.02119 5.30·10−7 0.74750 3.48·10−8

1.0 0.17447 1.51·10−8 0.01408 2.74·10−7 0.75703 4.28·10−8

1.1 0.17185 6.51·10−9 0.00631 5.69·10−8 0.76762 3.19·10−8

Table C.10: Results of the main duct offset study. All forces in [N]

Final optimisations are performed for certain geometric parameters in Section 6.2.5.

The angle φ (see Figure 6.4) is optimised using the results presented in TableC.11, which

are also used to generate the plot in Figure 6.8.

φ Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

30◦ 0.24607 1.44·10−5 0.20734 8.42·10−4 1.03194 1.29·10−3

40◦ 0.28374 3.45·10−8 0.17919 1.06·10−5 0.97726 4.83·10−7

50◦ 0.32209 7.13·10−8 0.09779 3.70·10−6 0.93580 4.67·10−5

60◦ 0.34064 4.28·10−9 -0.01085 1.01·10−5 0.99565 1.08·10−4

Table C.11: Results of the angle φ study. All forces in [N]

The main duct offset is revisited and optimised based on the data given in TableC.12.

This data is also used for the plot in Figure 6.9.
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ho,1 [mm] Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

0.6 0.35209 4.71·10−9 -0.01008 1.25·10−6 0.95237 1.40·10−6

0.7 0.34064 4.28·10−9 -0.01085 1.01·10−5 0.99565 1.08·10−4

0.8 0.32910 2.77·10−9 -0.00800 1.30·10−6 1.03060 2.38·10−7

Table C.12: Results of the second main duct offset study. All forces in [N]

Duct diameter is investigated a second time. The results are listed in TableC.13 which

is also the basis for the plots in Figure 6.10

hd [mm] Ft σ(Ft) Fx σ(Fx) Fz σ(Fz)

1.4 0.37323 8.45·10−10 0.02902 1.91·10−6 0.83215 1.81·10−7

1.5 0.37574 1.61·10−8 0.03758 2.21·10−6 0.94400 2.66·10−7

1.6 0.36985 1.17·10−7 0.04579 1.36·10−6 1.04997 3.53·10−7

1.7 0.35579 3.52·10−7 0.05278 1.79·10−6 1.14356 3.16·10−7

Table C.13: Results of the second duct diameter study. All forces in [N]

Relevant equations

The following equations are relevant to the analysis conducted in Chapter 6 regarding the

8mm hydraulic grinding tool. In their dimensioned forms they read:

F oil
x = (βoil

1 V̇ 4 + βoil
2 V̇ 3 + βoil

3 V̇ 2 + βoil
4 V̇ )f + βoil

5 V̇ 2 + βoil
6 V̇ (6.3)

F oil
n = (βoil

7 V̇ 5 + βoil
8 V̇ 4 + βoil

9 V̇ 3 + βoil
10 V̇

2 + βoil
11 V̇ )f

+ βoil
12 V̇

3 + βoil
13 V̇

2 + βoil
14 V̇ (6.4)

F oil
t,0 = αoil

1 V̇ 1.777 (6.5)

f oil
0 = αoil

2 V̇ 1.270 (6.6)

F oil
t = (αoil

3 V̇ 1.777)
(
αoil
4 − αoil

5 V̇ −1.270f
)

(6.7)

P oil
max = αoil

6 f 2.499 (6.8)

P oil
G = αoil

7 V̇ 0.429f 2 + αoil
8 V̇ 1.801f (6.9)

Poil
op(ξ) =

(
αoil
9 ξ1.270, αoil

10ξ, α
oil
11ξ

2.916
)
. (6.13)

These equations contain dimensioned coefficients αoil
n and βoil

n , which are given in the

following table.
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Coefficients

function coefficients unit

F oil
x

βoil
1 = 5.920 · 10−6 Nmin4 l-4 s

βoil
2 = 7.202 · 10−5 Nmin3 l-3 s

βoil
3 = 1.620 · 10−4 Nmin2 l-2 s

βoil
4 = 4.554 · 10−4 Nmin l-1 s

βoil
5 = 2.286 · 10−2 Nmin2 l-2

βoil
6 = 6.912 · 10−2 Nmin l-1

F oil
z

βoil
7 = 2.833 · 10−6 Nmin5 l-5 s

βoil
8 = −4.075 · 10−5 Nmin4 l-4 s

βoil
9 = 1.632 · 10−4 Nmin3 l-3 s

βoil
10 = −9.427 · 10−5 Nmin2 l-2 s

βoil
11 = 1.303 · 10−4 Nmin l-1 s

βoil
12 = 3.925 · 10−3 Nmin3 l-3

βoil
13 = −3.656 · 10−2 Nmin2 l-2

βoil
14 = 0.220 Nmin l-1

F oil
t,0 αoil

1 = 1.231 · 10−2 Nmin1.777 l-1.777

f oil
0 αoil

2 = 34.518 Hzmin1.270 l-1.270

F oil
t

αoil
3 = 1.231 · 10−2 N0.5min1.777 l-1.777

αoil
4 = 1 N0.5

αoil
5 = 2.897 · 10−2 N0.5min-1.270 l1.270 s

P oil
max αoil

6 = 1.791 · 10−6 Ws2.499

P oil
G

αoil
7 = −1.047 · 10−5 Wmin0.429 l-0.429 s2

αoil
8 = 3.069 · 10−4 Wmin1.801 l-1.801 s

Poil
op(t)

αoil
9 = 17.259 Hz

αoil
10 = 1 lmin-1

αoil
11 = 3.498 · 10−3 W

Table C.14: Coefficients for the 8mm GrindBall using oil

Relevant non-dimensional equations

Using the non-dimensionalisation technique introduced in Chapter 7 by eqns (7.39)-(7.42),

dimensionless equations can be derived for each quantity presented above:
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FD,oil
x =

(
3.666 · 10−6V̇ D4 + 1.347 · 10−3V̇ D3 + 9.146 · 10−2V̇ D2 + 7.762V̇ D

)
fD

+1.496V̇ D2 + 136.601V̇ D

FD,oil
z =

(
5.811 · 10−8V̇ D5 − 2.524 · 10−5V̇ D4 + 3.051 · 10−3V̇ D3

−5.322 · 10−2V̇ D2 + 2.221V̇ D
)
fD

+ 8.509 · 10−3V̇ D3 − 2.393V̇ D2 + 434.783V̇ D

FD,oil
t,0 = 1.723V̇ D1.777

fD,oil
0 = 5.282 · 10−2V̇ D1.270

FD,oil
t =

(
7.052 · 10−3V̇ D1.777

)(
244.275− 4624.582V̇ D−1.270fD

)
PD,oil
max = 675.301fD2.499

PD,oil
G = −312.265V̇ D0.429fD2 + 9.894V̇ D1.801fD

PD,oil
op (ξ) =

(
2.001ξ1.270, 30.193ξ, 6050.063ξ2.916

)
.

C.4 Scale Analysis (Chapter 7)

The following equations are relevant to the analysis conducted in Chapter 7 regarding the

scalability analysis conducted for pneumatic propulsion at 40mm, 8mm, and 1mm.

Relevant equations

In their dimensioned forms these equations read:

F
40mm

x = β40mm
1 V̇ 2.053

N (7.3)

F
8mm

x = β8mm
1 V̇ 2.038

N (7.4)

F
1mm

x = β1mm
1 V̇ 2.473

N (7.5)

F
40mm

z = β40mm
2 V̇ 2.078

N (7.6)

F
8mm

z = β8mm
2 V̇ 2.216

N (7.7)

F
1mm

z = β1mm
2 V̇ 3

N + β1mm
3 V̇ 2

N + β1mm
4 V̇N (7.8)

F 40mm
0,t = α40mm

1 V̇ 1.833
N (7.9)

F 8mm
0,t = α8mm

1 V̇ 1.673
N (7.10)

F 1mm
0,t = α1mm

1 V̇ 1.441
N (7.11)

f 40mm
0 = α40mm

2 V̇ 0.985
N (7.12)

f 8mm
0 = α8mm

2 V̇ 0.921
N (7.13)

f 1mm
0 = α1mm

2 V̇ 0.869
N (7.14)
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APPENDIX C. SUPPLEMENTAL RESULTS

F 40mm
t = (α40mm

3 V̇ 1.833
N )(α40mm

4 − α40mm
5 fV̇ −0.985

N ) (7.17)

F 8mm
t = (α8mm

3 V̇ 1.673
N )(α8mm

4 − α8mm
5 fV̇ −0.921

N ) (7.18)

F 1mm
t = (α1mm

3 V̇ 1.829
N + α1mm

4 )f 2 + (α1mm
5 V̇ 1.369

N )f) + α1mm
6 V̇ 1.441

N (7.19)

P 40mm
max = α40mm

6 f 2.782 (7.20)

P 8mm
max = α8mm

6 f 2.751 (7.21)

P 1mm
max = α1mm

7 f 2.662 (7.22)

P 40mm
G = α40mm

7 V̇ 0.815
N f 2 + α40mm

8 V̇ 1.833
N f (7.24)

P 8mm
G = α8mm

7 V̇ 0.696
N f 2 + α8mm

8 V̇ 1.664
N f (7.25)

P 1mm
G = (α1mm

8 V̇ 1.813
N + α1mm

9 )f 3 + α1mm
10 V̇ 1.588

N f 2 + α1mm
11 V̇ 1.441

N f (7.26)

P40mm
op (ζ) =

(
α40mm
9 ζ0.985, α40mm

10 ζ, α40mm
11 ζ2.872

)
(7.36)

P8mm
op (η) =

(
α8mm
9 η0.921, α8mm

10 η, α8mm
11 η2.634

)
(7.37)

P1mm
op (ξ) =

(
α1mm
12 ξ0.827, α1mm

13 ξ, α1mm
14 ξ2.043

)
. (7.38)

These equations contain dimensioned coefficients αn and βn, which are given in the fol-

lowing tables.

Coefficients 40mm

function coefficients unit

F
40mm

x β40mm
1 = 3.690 · 10−4 Nh2.053 m−3 · 2.053

F
40mm

z β40mm
2 = 1.051 · 10−4 Nh2.078 m−3 · 2.078

Ft,0 α40mm
1 = 2.582 · 10−5 Nh1.833 m−3 · 1.833

f0 α40mm
2 = 6.836 Hzh0.985 m−3 · 0.985

Ft

α40mm
3 = 2.582 · 10−5 N 0.5 h1.833 m−3 · 1.833

α40mm
4 = 1 N0.5

α40mm
5 = 0.146 N0.5 h-0.985m 3 · 0.985 s

Pmax α40mm
6 = 2.553 · 10−7 Ws2.782

PG
α40mm
7 = −5.495 · 10−7 Wh0.815 m−3 · 0.815 s2

α40mm
8 = 3.253 · 10−6 Wh1.833 m−3 · 1.833 s

Pop(t)

α40mm
9 = 3.418 Hz

α40mm
10 = 1 m3 h-1

α40mm
11 = 4.409 · 10−6 W

Table C.15: Coefficients for the 40mm GrindBall using air
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C.4. SCALE ANALYSIS (CHAPTER7)

Coefficients 8mm

function coefficients unit

F
8mm

x β8mm
1 = 1.091 · 10−2 Nh2.038 m−3 · 2.038

F
8mm

z β8mm
2 = 2.376 · 10−3 Nh2.216 m−3 · 2.216

F 8mm
t,0 α8mm

1 = 6.582 · 10−4 Nh1.673 m−3 · 1.673

f 8mm
0 α8mm

2 = 926.510 Hzh0.921 m−3 · 0.921

F 8mm
t

α8mm
3 = 6.582 · 10−4 N0.5 h1.673m−3 · 1.673

α8mm
4 = 1 N0.5

α8mm
5 = 1.079 · 10−3 N0.5 h-0.921 m3 · 0.921 s

P 8mm
max α8mm

6 = 1.920 · 10−10 Ws2.751

P 8mm
G

α8mm
7 = −1.906 · 10−8 Wh0.696 m−3 · 0.696 s2

α8mm
8 = 1.686 · 10−5 Wh1.664 m−3 · 1.664 s

P8mm
op (t)

α8mm
9 = 463.255 Hz

α8mm
10 = 1 m3h-1

α8mm
11 = 3.700 · 10−3 W

Table C.16: Coefficients for the 8mm GrindBall using air

Coefficients 1mm

function coefficients unit

F
1mm

x β1mm
1 = 1.566 Nh2.473 m−3 · 2.473

F
1mm

z

β1mm
2 = 5.341 Nh3 m−9

β1mm
3 = −0.422 Nh2 m−6

β1mm
4 = −4.094 · 10−3 Nhm−3

F 1mm
t,0 α1mm

1 = 1.399 · 10−2 Nh1.441m−3 · 1.441

f 1mm
0 α1mm

2 = 326497.586 Hzh0.869m−3 · 0.869

F 1mm
t

α1mm
3 = 3.599 · 10−11 Nh1.829m−3 · 1.829 s2

α1mm
4 = −2.946 · 10−13 Ns2

α1mm
5 = −2.723 · 10−7 Nh1.369m−3 · 1.369 s

α1mm
6 = 1.399 · 10−2 Nh1.441m−3 · 1.441

P 1mm
max α1mm

7 = 4.734 · 10−14 Ws2.662

P 1mm
G

α1mm
8 = 1.269 · 10−13 Wh1.813m−3 · 1.813 s3

α1mm
9 = −9.775 · 10−16 Ws3
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α1mm
10 = −1.643 · 10−9 Wh1.588 m−3 · 1.588 s2

α1mm
11 = 4.394 · 10−5 Wh1.441 m−3 · 1.441 s

P1mm
op (t)

α1mm
9 = 156033.408 Hz

α1mm
10 = 1 m3h-1

α1mm
11 = 1.958 W

Table C.17: Coefficients for the 1mm GrindBall using air

Relevant non-dimensional equations

Using the non-dimensionalisation technique introduced in Chapter 7 by eqns (7.39)-(7.42),

dimensionless equations can be derived for each quantity presented above:

F
D,40mm

x = 1.024V̇ D2.053
N

F
D,8mm

x = 1.264V̇ D2.038
N

F
D,1mm

x = 2.559 · 10−2V̇ 2.473
N

F
D,40mm

z = 0.245V̇ D2.078
N

F
D,8mm

z = 5.997 · 10−2V̇ D2.216
N

F
D,1mm

z = 3.204 · 10−4V̇ 3
N − 1.057V̇ 2

N − 428.519V̇N

FD,40mm
0,t = 0.330V̇ D1.833

N

FD,8mm
0,t = 1.735V̇ D1.673

N

FD,1mm
0,t = 13.423V̇ D1.441

N

fD,40mm
0 = 0.219V̇ D0.985

N

fD,8mm
0 = 0.420V̇ D0.921

N

fD,1mm
0 = 0.592V̇ D0.869

N

FD,40mm
t = (4.998 · 10−6V̇ D1.833

N )(66122.474− 3.020 · 105V̇ D−0.985
N f ∗)

FD,8mm
t = (2.623 · 10−5V̇ D1.673

N )(66122.474− 1.575 · 105fDV̇ D−0.921
N )

FD,1mm
t = (1.574 · 10−6V̇ D1.829

N − 3.645)fD2 − 2.990 · 10−2V̇ D1.369
N fD + 13.423V̇ D1.441

N

PD,40mm
max = 128.569fD2.782

PD,8mm
max = 151.841fD2.751

PD,1mm
max = 305.789fD2.662

PD,40mm
G = −13.839V̇ D0.815

N fD2 + 2.082V̇ D1.833
N fD

PD,8mm
G = −44.762V̇ D0.696

N fD2 + 11.998V̇ D1.664
N fD

PD,1mm
G = (1.316 · 10−5V̇ D1.813

N − 24.192)fD3 − 3.510 · 10−2V̇ D1.588
N fD2 + 84.315V̇ D1.441

N fD

PD,40mm
op (ζ) =

(
102.797ζ0.985, 1044.277ζ, 2.899 · 107ζ2.872)

PD,8mm
op (η) =

(
557.299η0.921, 5221.387η, 4.865 · 109η2.634)

PD,1mm
op (ξ) =

(
2932.959ξ0.827, 41771.094ξ, 3.218 · 1011ξ2.043) .
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Appendix D

OpenFOAM settings

A wide variety of simulations are performed throughout this thesis with varying setups:

the GrindBall prototype (Chapter 4) and the scale analysis (Chapter 7), for example, are

simulated using a compressible medium and turbulence modelling on meshes of different

sizes, scales and refinement levels. Hydraulic propulsion (Chapter 6) is simulated mostly

without modelling turbulence on differing meshes.

Each set of simulations has a distinct setup ranging from specific solver settings, over

employed numerical methods, to different computational grids and simulation timelines.

The following lists all settings as they appear in OpenFOAM [Ope13a]. The stated methods

and variables are discussed in Chapter 3. For further reading see the OpenFOAM user guide

[Ope13c]. Furthermore, brief quantitative statements are made about the computational

grid and the simulation timeline is given.

D.1 40mm GrindBall parametric study (Chapter 4)

General settings

Solver rhoPimpleFoam

Fluid Air

Density Compressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model Large Eddy Simulation (LES)

Subgrid model Compressible Smagorinsky

Δ cubeRootVol

Ck 0.02

Ce 1.048

Prsgs 0.9

y+ 5 ≤ y+ ≤ 100
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Thermophysical properties

nMoles 1

molWeight [kg kmol-1] 28.96

Cp [J kg-1K-1] 1007

Hf [J kg-1] 0

Pressure-density dependence Ideal gas law

Viscosity properties

Transport model Sutherland

As [kgm
-1 s-1K-0.5] 1.4963 · 10−6

Ts [K] 120

Discretisation

Spatial Gauss linear (CDS)

Temporal Euler

Boundary Conditions

Inlet u timeVaryingFlowRateInletVelocity

p zeroGradient

T fixedValue 293.15K

μsgs zeroGradient

αsgs zeroGradient

Outlet u zeroGradient

p totalPressure 101,325Pa

T zeroGradient

μsgs zeroGradient

αsgs zeroGradient

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Mesh details

Total cells ∼900,000

Cells along gap height 4 per mm

Simulation timeline

Total time [s] 0.04

Mass flow initialisation [s] 0 - 0.005

Averaging interval [s] 0.025 - 0.04
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D.2. 40MM GRINDBALL PROTOTYPE (CHAPTER4)

D.2 40mm GrindBall prototype (Chapter 4)

General settings

Solver rhoPimpleFoam

Fluid Air

Density Compressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model Large Eddy Simulation (LES)

Subgrid model Compressible Smagorinsky

Δ cubeRootVol

Ck 0.02

Ce 1.048

Prsgs 0.9

y+ 5 ≤ y+ ≤ 100

Thermophysical properties

nMoles 1

molWeight [kg kmol-1] 28.96

Cp [J kg-1K-1] 1007

Hf [J kg-1] 0

Pressure-density dependence Ideal gas law

Viscosity properties

Transport model Sutherland

As [kgm
-1 s-1K-0.5] 1.4963 · 10−6

Ts [K] 120

Discretisation

Spatial Linear upwind (LUDS)

Temporal Crank Nicolson 0.5

Boundary Conditions

Inlet u timeVaryingFlowRateInletVelocity

p zeroGradient

T fixedValue 293.15K

μsgs zeroGradient

αsgs zeroGradient
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Outlet u zeroGradient

p totalPressure 101,325Pa

T zeroGradient

μsgs zeroGradient

αsgs zeroGradient

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Rotating wall u rotatingWallVelocity

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Mesh details

Coarse mesh total cells ∼1,800,000

Fine mesh total cells ∼4,500,000

Coarse cells along gap height 12

Fine cells along gap height 24

Simulation timeline

Total time [s] 0.05

Coarse mesh [s] 0 - 0.03

Fine mesh [s] 0.03 - 0.05

Mass flow initialisation [s] 0 - 0.005

Averaging interval [s] 0.035 - 0.05

D.3 Dynamometer validation (Chapter 5)

General settings

Solver rhoPimpleFoam

Fluid Air

Density Compressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model Large Eddy Simulation (LES)

Subgrid model Compressible Smagorinsky
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D.3. DYNAMOMETER VALIDATION (CHAPTER5)

Δ cubeRootVol

Ck 0.02

Ce 1.048

Prsgs 0.9

y+ 5 ≤ y+ ≤ 100

Thermophysical properties

nMoles 1

molWeight [kg kmol-1] 28.96

Cp [J kg-1K-1] 1007

Hf [J kg-1] 0

Pressure-density dependence Ideal gas law

Viscosity properties

Transport model Sutherland

As [kgm
-1 s-1K-0.5] 1.4963 · 10−6

Ts [K] 120

Discretisation

Spatial Linear upwind (LUDS)

Temporal Crank Nicolson 0.5

Boundary Conditions

Inlet u timeVaryingFlowRateInletVelocity

p zeroGradient

T fixedValue 293.15K

μsgs zeroGradient

αsgs zeroGradient

Outlet u zeroGradient

p totalPressure 101,325Pa

T zeroGradient

μsgs zeroGradient

αsgs zeroGradient

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Mesh details

Total cells ∼9,000,000

Coarse cells along gap height 12

Equiv. cells along gap height 32
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Simulation timeline

Total time [s] 0.02

Mass flow initialisation [s] 0 - 0.005

Averaging interval [s] 0.01 - 0.02

D.4 Propulsion fluid study (Chapter 6)

General settings

Solver pimpleFoam

Fluid Oil (ISO VG5-64)

Density Incompressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model Large Eddy Simulation (LES)

Subgrid model Dynamic Smagorinsky

Δ cubeRootVol

Filter simple

y+ 5 ≤ y+ ≤ 100

Viscosity properties

Transport model Constant

ν [m2 s-1] 1.38 · 10−4

Discretisation

Spatial Linear upwind (LUDS)

Temporal Euler

Boundary Conditions

Inlet u timeVaryingUniformFixedValue

p zeroGradient

νsgs zeroGradient

Outlet u zeroGradient

p totalPressure 101,325Pa/ρfluid
νsgs zeroGradient

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

νsgs nuSgsWallFunction

Rotating wall u rotatingWallVelocity

p zeroGradient

νsgs nuSgsWallFunction
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D.5. SIMULATIONS USING ISO VG46 OIL (CHAPTER6)

Mesh details

Total cells ∼7,000,000

Cells along gap height 20

Simulation timeline

Total time [s] 0.008

Mass flow initialisation [s] 0 - 0.002

Averaging interval [s] 0.007 - 0.008

D.5 Simulations using ISO VG46 oil (Chapter 6)

General settings

Solver pimpleFoam

Fluid Oil (ISO VG46)

Density Incompressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model laminar

Viscosity properties

Transport model Constant

ν [m2 s-1] 1.38 · 10−4

Discretisation

Spatial Linear upwind (LUDS)

Temporal Euler

Boundary Conditions

Inlet u timeVaryingUniformFixedValue

p zeroGradient

Outlet u zeroGradient

p totalPressure 115.142m2 s-2

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

Rotating wall u rotatingWallVelocity

p zeroGradient

Mesh details

Total cells ∼7,000,000

Cells along gap height 20
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Simulation timeline

Total time [s] 0.008

Mass flow initialisation [s] 0 - 0.002

Averaging interval [s] 0.007 - 0.008

D.6 Scale Analysis (Chapter 7)

General settings

Solver rhoPimpleFoam

Fluid Air

Density Compressible

Algorithm PIMPLE

Method Finite Volume Method (FVM)

Turbulence properties

Turbulence model Large Eddy Simulation (LES)

Subgrid model Compressible Smagorinsky

Δ cubeRootVol

Ck 0.02

Ce 1.048

Prsgs 0.9

y+ 5 ≤ y+ ≤ 100

Thermophysical properties

nMoles 1

molWeight [kg kmol-1] 28.96

Cp [J kg-1K-1] 1007

Hf [J kg-1] 0

Pressure-density dependence Ideal gas law

Viscosity properties

Transport model Sutherland

As [kgm
-1 s-1K-0.5] 1.4963 · 10−6

Ts [K] 120

Discretisation

Spatial Linear upwind (LUDS)

Temporal Crank Nicolson 0.5
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Boundary Conditions

Inlet u timeVaryingFlowRateInletVelocity

p zeroGradient

T fixedValue 293.15K

μsgs zeroGradient

αsgs zeroGradient

Outlet u zeroGradient

p totalPressure 101,325Pa

T zeroGradient

μsgs zeroGradient

αsgs zeroGradient

Stationary walls u fixedValue {0,0,0}m/s

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Rotating wall u rotatingWallVelocity

p zeroGradient

T zeroGradient

μsgs muSgsSpaldingWallFunction

αsgs alphaSgsSpaldingWallFunction

Mesh details

Total cells ∼7,000,000

Cells along gap height 20

Simulation timeline

40mm Total time [s] 0.05

Mass flow initialisation [s] 0 - 0.005

Averaging interval [s] 0.035 - 0.05

8mm Total time [s] 0.009

Mass flow initialisation [s] 0 - 0.0005

Averaging interval [s] 0.003 - 0.009

1mm Total time [s] 0.0005

Mass flow initialisation [s] 0 - 0.000015

Averaging interval [s] 0.0003 - 0.0005
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[GHSW96] D. Gross, W. Hauger, J. Schröder, and W.A. Wall. Technische Mechanik 3.

Springer Verlag, Heidelberg, Germany, 1996.

[GR09] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. International

Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[Gra01] W. Graebel. Engineering Fluid Mechanics. Taylor & Francis, New York,

USA, 2001.
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