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Zusammenfassung

Motivation
Konvektionsströmungen sind eines der fundamentalen Probleme der Strömungsmechanik.
Diese Art von Strömungen spielt z. B. in der Meteorologie eine entscheidende Rolle. Aus-
gelöst durch Sonneneinstrahlung in der Atmosphäre können Konvektionsströmungen be-
dingt durch wirkende Corioliskräfte, welche durch die Erdrotation hervorgerufen werden,
zu Wirbelstürmen oder Tornados heranwachsen. Daher ist das Verständnis dieser Luft-
strömungen gerade in Zeiten von Klimaveränderungen besonders wichtig. Auch in indus-
triellen Anwendungen sind Konvektionsströmungen von großer Bedeutung, da sie hier als
passive Kühler für elektrische Bauteile eingesetzt werden. Hierdurch sollen Fehleranfäl-
ligkeiten und mögliche Lärmquellen alternativer Kühlteile reduziert werden.

Konvektionsströmungen entstehen in einem Fluid immer durch einen massebasierten Wär-
metransport zwischen zwei unterschiedlich temperierten Regionen. Wird die Bewegung
des Fluids alleine durch den auf dem Wärmeunterschied basierenden Dichtegradienten im
Fluid angetrieben, ohne dass eine äußere Kraft zusätzlich auf das Fluid einwirkt, so spricht
man von einer natürlichen Konvektionsströmung. Diese Art von Konvektionsströmung im
Fluid Luft steht im Fokus dieser Arbeit. Obwohl natürliche Konvektionsströmungen in
der Vergangenheit immer wieder Gegenstand vieler theoretischer, sowie experimenteller
und numerischer Untersuchungen waren, sind noch viele Fragen offen. Daher ziehen diese
Strömungen immer noch ein großes wissenschaftliches Interesse auf sich.

Zielsetzung und Aufbau der Arbeit
Diese Arbeit beschäftigt sich vor allem mit der numerischen Modellierung turbulenter,
natürlicher Konvektionsströmungen. Hierbei wird neben der numerischen Analyse der
Strömungen in unterschiedlichen Test-Konfigurationen, eine Konfiguration zusätzlich ex-
perimentell untersucht. Die realisierten Rayleigh-Zahlen liegen dabei in einem Bereich von
2, 33 · 106 ≤ Ra ≤ 1, 58 · 109. Die Prandtl-Zahl liegt in allen Fällen bei Pr = 0, 71, was
den untersuchten Temperaturintervallen des verwendeten Fluids, Luft, entspricht.

Für die numerische Modellierung der Strömungen wird für jede Test-Konfigurationen
eine dreidimensionale, kompressible, transiente und turbulente Large-Eddy Simulation
(kurz: LES) mittels des Open-Source Softwareprogramms OpenFOAM R© durchgeführt.
Die Bezeichnung kompressibel bezieht sich in diesem Fall auf Änderungen der Dichtegradi-
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enten im Fluid, welche durch die vorherrschenden Temperaturunterschiede hervorgerufen
werden. Sie bezieht sich nicht auf eine Spezifikation über den Begriff der Mach-Zahl.
Innerhalb der Simulation wird ein kompressibles Turbulenz-Modell eingesetzt, da die
inkompressiblen Turbulenz-Modelle den Einfluss der variierenden Dichtegradienten auf
die Turbulenz-Produktion bisher noch nicht zufriedenstellend abbilden können. Als kom-
pressibles Turbulenz-Modell wird das Modell von Fureby gewählt, welches auf dem so
genannten Smagorinsky Modell beruht. Das numerische Modell verwendet keine Boussi-
nesq-Approximation. Die Temperaturabhängigkeiten der Fluidgrößen werden durch das
Sutherland Modell berücksichtigt.

Zu Beginn der Arbeit werden als erstes die theoretischen strömungsmechanischen Zusam-
menhänge beschrieben, die benötigt werden, um die allgemeinen Navier-Stokes Gleichung-
en eines kompressiblen, instationären Strömungsproblems aufzustellen. Hieraus wird dann
im Folgenden das mathematische Modell herausgearbeitet, welches die betrachteten tur-
bulenten, natürlichen Konvektionsströmungen dieser Arbeit beschreibt. In diesem Zusam-
menhang werden ebenfalls die wichtigsten Fluideigenschaften betrachtet.

Um eine numerische Untersuchung der Konvektionsströmungen durchführen zu können,
müssen geeignete mathematische Verfahren und numerische Methoden zur Lösung des zu-
vor aufgestellten mathematischen Modells formuliert werden. In diesem Zusammenhang
wird sowohl die numerische Methode der LES vorgestellt als auch eine analytische Be-
trachtung der Strömungen, vor allem im Bereich der Wandnähe, erläutert.

Anschließend folgt der Schwerpunkt der Arbeit. Dieser widmet sich der numerischen Mo-
dellierung und Analyse drei verschiedener Strömungskonfigurationen, von denen eine
ebenfalls experimentell untersucht wird. In allen drei Test-Konfigurationen werden die
turbulenten Konvektionsströmungen in einem abgeschlossenen, rechteckigen Container,
welcher mit dem Fluid Luft gefüllt ist, modelliert. Das Fluid ist durch die Wände des
Containers begrenzt und wird von zwei gegenüberliegenden Wänden des Containers be-
heizt. Die beiden Wände werden isotherm temperiert. Zwischen den beiden Wänden liegt
eine konstante Temperaturdifferenz vor.

Die Wahl der zu beheizenden Wände hat einen entscheidenden Einfluss auf die sich aus-
bildende Strömung im Inneren des Containers. Die jeweiligen Test-Konfigurationen un-
terscheiden sich daher vor allem in der Orientierung der beiden beheizten Wände relativ
zu dem wirkenden, äußeren Gravitationsfeld von einander. Es wurde die einfache Form
eines rechteckigen Containers als Test-Konfiguration für alle drei Test-Fälle gewählt, damit
mögliche auftretende Schwierigkeiten und Fehleranfälligkeiten einer komplexen Geometrie
von vornherein vermieden werden. Trotzdem sind diese Test-Konfigurationen ausreichend
und werden oft eingesetzt um turbulente, natürliche Konvektionsströmungen in Experi-
ment und Simulation zu untersuchen.
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Alle drei Test-Konfigurationen bauen aufeinander auf. Die erste Test-Konfiguration, mit
VerCon im Verlauf der Arbeit gekennzeichnet, stellt die Ausgangskonfiguration einer
turbulenten, natürlichen Konvektionsströmung dar. In diesem Fall werden zwei der ver-
tikalen, gegenüberliegenden Wände isotherm beheizt. Im Gegensatz zu den anderen beiden
Test-Konfigurationen stellt sich hierdurch nach einiger Zeit eine quasi-stationäre Strö-
mung im Container ein. Bei den beiden anderen Test-Konfigurationen, mit RayCon und
CenCon gekennzeichnet, werden zwei der horizontalen Wände isotherm beheizt. Diese
Konfiguration wird auch als Rayleigh-Bénard Problem bezeichnet. Die jeweils anderen,
nicht beheizten Wände weisen in jeder Test-Konfiguration unterschiedliche Randbedin-
gungen auf, um somit mögliche Einflüsse der Randbedingungen auf das sich einstellende
Strömungsprofil im Container zu untersuchen.

Da VerCon den Ausgangszustand für die beiden anderen Test-Konfigurationen darstellt,
ist es ausschlaggebend und wichtig, zunächst die Dynamik und Eigenschaften der Strö-
mung in dieser Konfiguration zu modellieren und zu verstehen. Mit den zu diesem Zeit-
punkt gewonnenen Erkenntnissen und dem ebenfalls validierten numerischen Modell der
LES werden beide anderen Konfiguration anschließend analysiert. RayCon unterschei-
det sich von VerCon (abgesehen von den unterschiedlichen Längenverhältnissen) nur in
der Wahl der beheizten Wände, die im Vergleich zu VerCon um 90◦ gedreht sind. Diese
Drehung hat allerdings einen entscheidenden Einfluss auf das Strömungsprofil im Con-
tainer.

Der Test-Fall CenCon wird als letzter Punkt dieser Arbeit behandelt. Zusätzlich zu der
numerischen Analyse wird außerdem eine experimentelle Studie dieses Falles durchge-
führt. CenCon ist wie RayCon als ein Rayleigh-Bénard Problem aufgebaut, unterscheidet
sich von diesem aber durch den zusätzlichen Einfluss einer Corioliskraft, welche auf das
Fluid innerhalb des Containers wirkt. Im Experiment wird die Corioliskraft durch eine
gleichförmige Rotationsbewegung der Test-Konfiguration unter erhöhter Gravitationsbe-
dingung in einer Zentrifuge erzeugt. Um dies in der Simulation zu modellieren, muss das
numerische Modell der LES im Vergleich zum dem im Fall von RayCon verwendeten
Modells modifiziert werden, um die zusätzlichen Relativbeschleunigungen auf das Fluid
abbilden zu können.

Die aus dem Einfluss der Corioliskraft resultierenden zusätzlichen Relativbeschleunigung-
en, welche auf die künstlich erzeugte, vertikale Konvektionsströmung im Fluid wirken,
sollen genau die Relativbeschleunigungen simulieren, welche in der Atmosphäre durch die
Erdrotation entstehen und dort einen Wirbelsturm erzeugen können. Die experimentellen
Bedingungen in der Test-Konfiguration von CenCon sollen somit die Strömungsverhält-
nisse wiedergeben, die in der Atmosphäre zu Beginn eines Hurrikans oder Wirbelsturms
vorherrschen. Um solche Effekte stabil und ohne die Hilfe zusätzlicher Gebläse, wie sie
in anderen Versuchsständen eingesetzt werden, erzeugen zu können, muss der Radius der
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Zentrifuge entsprechend groß sein, was in der genutzten, institutseigenen Großzentrifuge
der Fall ist.

In allen zu untersuchenden Konfigurationen sollen die numerischen Simulationen Auf-
schluss über die Verteilung der Fluideigenschaften, wie Temperatur, Geschwindigkeit oder
Wärmetransport (charakterisiert durch die Nußelt-Zahl) vor allem in Nähe der beheizten
Wände geben. Die numerische Abbildung dieser Verteilungen ist wichtig, um die Dynamik
der Strömung sowie die Turbulenz-Produktion in dieser verstehen zu können.

Außerdem soll die numerische als auch experimentelle Studie der letzten Test-Konfigura-
tion, CenCon, Erkenntnisse darüber liefern, wie sich die wirkende Corioliskraft auf die
Fluideigenschaften, das Strömungsprofil und die Turbulenz-Produktion auswirkt. Hierbei
wird vor allem ein stabilisierender Effekt der Corioliskraft auf die turbulente Strömung un-
tersucht. Alle Ergebnisse der numerischen Studien werden mit gleichartigen numerischen
bzw. experimentellen Analysen aus der Literatur verglichen.

Ergebnisse der Arbeit
Test-Konfiguration VerCon
Die numerischen Ergebnisse der ersten Test-Konfiguration VerCon werden mit Hilfe einer
experimentellen Studie desselben Geometrie-Aufbaus aus [Tian00a], [Tian00b] validiert.
Die Randbedingungen der nicht beheizten Seitenwände weisen in der experimentellen
Studie eine wärmeleitende Eigenschaft auf. Diese Randbedingung lässt sich in der nu-
merischen Simulation nicht exakt abbilden. Es werden daher vier unterschiedliche Tem-
peraturrandbedingungen, von denen eine die wärmeleitende Randbedingung des Experi-
mentes approximiert, getestet und gegen die Ergebnisse von [Tian00a] verglichen.

Zusätzlich zu einer dreidimensionalen Simulation wird ebenfalls eine zweidimensionale
Simulation durchgeführt, um einerseits Aussagen zu dem in [Tian00a] erwähnten zwei-
dimensionalen Strömungsprofil in der mittleren Geometrie-Ebene treffen zu können, als
andererseits auch mögliche Einflüsse der Gitterauflösung beobachten zu können.

Die im Verlauf der Arbeit erzielten numerischen Ergebnisse approximieren sehr gut die
Daten der experimentellen Studie unter Berücksichtigung, dass in der Simulation un-
terschiedliche Temperaturrandbedingungen gewählt wurden und das numerische Modell
keine Boussinesq-Approximation verwendet. Die numerischen Ergebnisse zeigen diesel-
ben Profilverläufe der untersuchten Fluideigenschaften wie im Experiment von [Tian00a].
Zwischen den Ergebnissen der drei- und zweidimensionalen Simulationen treten starke
Abweichungen auf, welche sich größtenteils durch numerischen Einflüsse und durch die
Wahl der Gitterauflösung erklären lassen. Weitere mögliche Einflüsse müssten in zukünf-
tigen Studien analysiert werden, um hier andere Erklärungen gänzlich auszuschließen. Im
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Konvektionszellen aller Simulationen in ihrer Lage verschoben und teils größer sind.

Für die Analyse des zweidimensionalen Strömungsprofils in der mittleren Geometrie-
Ebene wird die vertikale Geschwindigkeitskomponente an unterschiedlichen Positionen
in der Tiefe der Test-Konfiguration entlang der horizontalen Achse ausgewertet. Die ver-
schiedenen Profile zeigen kaum Unterschiede zueinander, was auf ein zweidimensionales
Strömungsprofil schließen lässt. Um diesen Aspekt genauer zu untersuchen, wird auch
die transversalen Geschwindigkeitskomponente auf unterschiedlichen Höhen entlang der
horizontalen Achse auf der mittleren Geometrie-Ebene analysiert. Zwar weisen die Pro-
file der transversalen Geschwindigkeitskomponente nur kleine maximale Werte auf, aber
gleichzeitig ist eine deutliche Grenzschicht in Nähe der beheizten Wände erkennbar, was
als Indiz für ein dreidimensionales Strömungsprofil angesehen werden kann.

Die numerische Studie von VerCon zeigt, dass das gewählte Modell der LES geeignet ist,
um das Strömungsprofil und dessen Eigenschaften in der gewählten Test-Konfiguration
einer turbulenten natürlichen Konvektionsströmung gut abzubilden. Berücksichtigt man
die unterschiedlichen Temperaturrandbedingungen an den Seitenwänden in beiden Stu-
dien, zeigen die Simulationsergebnisse, dass die dreidimensionale numerische Studie die
Ergebnisse der experimentellen Studie in [Tian00a], [Tian00b] in allen untersuchten Fällen
gut approximiert. Das mit VerCon validierte numerische Modell der LES und die in diesem
Fall gewonnen Informationen werden im nächsten Schritt auf die Test-Konfiguration von
RayCon angewandt. Diese Konfiguration einer turbulenten natürlichen Konvektion baut
wie oben erwähnt direkt auf VerCon auf.

Test-Konfiguration RayCon
Um auch im Falle von RayCon mögliche Einflüsse der Gitterauflösung zu untersuchen,
werden zwei numerische Studien mit unterschiedlichen Gitterauflösungen durchgeführt,
welche sich vor allem im Bereich der beheizten Wände in ihren Auflösungen unterschei-
den. Die zeitlich und räumlich gemittelten Strömungsprofile der Fluidgrößen weisen alle
ein asymmetrisches Profil auf, was typisch für eine nicht-Boussinesqe, natürliche Konvek-
tionsströmung in der Konfiguration eines Rayleigh-Bénard Problems ist. Asymmetrische
Profile werden ebenfalls in anderen Studien turbulenter Rayleigh-Bénard Konvektionen
in unterschiedlichen Fluiden beobachtet, wie z. B. in der Studie von [Ahlers06] oder in der
Studie von [Wu1991] sowie in [Zhang1997].

Bei der Auswertung des Temperaturprofils an zwei spiegel-symmetrischen Positionen auf
der mittleren Geometrie-Ebene der Test-Konfiguration treten deutliche Abweichungen der
Temperaturwerte zwischen diesen beiden Positionen auf, obwohl die Symmetrie des Auf-
baus ähnliche Ergebnisse erwarten ließe. Ebenfalls werden signifikante Abweichungen im
Temperaturprofil zwischen beiden Gitterauflösungen deutlich. Die Untersuchung der Struk-
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Zustände die Reproduzierbarkeit des Temperaturprofils zerstört wird.

Die Analyse der thermalen Wandgrenzschicht durch Auswertung des dimensionslosen
Temperaturprofils weist eine gute Übereinstimmung mit der analytischen Funktion von
Hölling et al. in [Hölling05], [Hölling06] auf. Ebenfalls stimmen die Simulationsergebnisse
sehr gut mit der Theorie einer Nußelt-Rayleigh-Zahl-Korrelation von [Grossmann00] für
die betrachtete Prandtl Zahl überein.

Die numerischen Ergebnisse werden ebenfalls einer vergleichbaren experimentellen Studie
aus [Ebert08] gegenübergestellt. Es zeigt sich, dass die numerischen Ergebnisse von den
Messergebnissen in [Ebert08] deutlich abweichen. Höhere Temperaturgradienten und somit
folglich höhere Nußelt-Zahlen der experimentellen Studie in [Ebert08] führen zu signifikan-
ten Abweichungen, welche auf einen höheren Wärmefluss im Experiment schließen lassen.
Diese Vermutung wird dadurch unterstützt, dass die experimentellen Ergebnisse von
[Ebert08] ebenfalls stark von den Studien in [Grossmann00] und [Hölling06] abweichen,
mit welchen die Ergebnisse dieser Arbeit allerdings gut übereinstimmen.

Weiterhin weisen die Temperaturprofile in [Ebert08] eine anti-symmetrische Form auf,
die numerischen Ergebnisse hingegen durchgängig asymmetrische Profile. Diese asym-
metrische Form ist durch nicht-Boussinesqe Effekte im Fluid begründet und wird eben-
falls in der numerischen Studie von [Horn11] nachgewiesen. Diese Studie beschäftigt sich
mit dem Vergleich von Rayleigh-Bénard Konvektionen, bei denen sowohl eine Boussinesq-
Approximation als auch keine Boussinesq-Approximation berücksichtigt wird.

Abschließend lässt sich für die Analyse des Test- Falles RayCon sagen, dass das Modell
der gewählten LES ebenfalls auch in dieser Konfiguration die Dynamik der Strömung sowie
die Verteilung der Fluidgrößen sehr gut abbildet. Die numerischen Ergebnisse approximie-
ren gut die theoretischen Daten vergleichbarer analytischer Studien in [Grossmann00]
und in [Hölling06]. Ein Vergleich der Ergebnisse beider Gitterauflösungen zeigt, dass es
notwendig ist, vor allem die wandnahen Bereiche numerisch fein aufzulösen, um zufrieden-
stellende Ergebnisse erzielen zu können. Dies ist um so wichtiger, wenn in diesem Bereich
keine Wandfunktion im numerischen Modell verwendet wird.

Test-Konfiguration CenCon
Die Erkenntnisse und Ergebnisse der beiden zuvor behandelten Test-Konfigurationen
führen im Folgenden der Arbeit zu der Analyse der dritten Test-Konfiguration CenCon.
Im Experiment als auch in der Simulation werden zwei Zustände der Test-Konfiguration
berücksichtigt. Im ersten Zustand führt die Test-Konfiguration eine Rotationsbewegung
aus, während sie im zweiten Zustand keine Bewegung ausführt und in diesem Zustand
dem Fall RayCon ähnelt. Auf verschiedenen vertikalen Ebenen der Test-Konfiguration
wird das zweidimensionale Strömungsprofil sowohl numerisch als auch im zugehörigen Ex-
periment untersucht. Die erzielten Ergebnisse der numerischen Studie stimmen gut mit

viii

tur und Lage der Konvektionszellen zeigt, dass durch unterschiedliche quasi-stationäre

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



denen des Experimentes überein und zeigen einhergehende Strukturen und Eigenschaften
des Strömungsprofils, sowohl unter Rotation als auch im nicht-rotierenden Zustand. Im
nicht-rotierenden Zustand weisen beide Ergebnisse großskalige Strukturen auf, wie sie für
ein Rayleigh-Bénard Problem typisch sind.

Unter Rotation erhöht sich die Anzahl turbulenter Strukturen in beiden Studien. Ebenfalls
nimmt die Anzahl von Wirbeln mit höheren Rayleigh-Zahlen in beiden Studien zu. Der
Einfluss der Corioliskraft auf das Fluid erhöht somit das Auftreten irregulärer Strukturen,
welche stark miteinander vermischt sind. Die auftretenden Wirbelstrukturen werden unter
Rotation und mit erhöhter Rayleigh Zahl deutlich kleinsskaliger als im Fall von kleineren
Rayleigh Zahlen. Eine Ausrichtung der Wirbelstrukturen an der Rotationsachse wie im
Falle von kleineren Rayleigh Zahlen kann dann nicht mehr beobachtet werden.

Die zeitlich gemittelten Strömungsprofile der ausgewählten Fluidgrößen der Simulation
stimmen ebenfalls mit theoretischen Annahmen gut überein. Die Ergebnisse ohne Ro-
tation ähneln den Ergebnissen von RayCon aufgrund des vergleichbaren Aufbaus. Der
Einfluss der wirkenden Corioliskraft und die daraus resultierende Ablenkung der Fluid-
partikel kann ebenfalls gut in den Strömungsprofilen und in der Visualisierung der Kon-
vektionszellen beobachtet werden.

Allerdings können keine erhöhten Nußelt-Zahlen unter Rotation beobachtet werden, wie
es in einer ähnlichen numerischen Studie in [Horn11] der Fall ist. Die Nußelt-Zahlen sind
niedriger als im nicht-rotierenden Fall und konvergieren erst mit höheren Rayleigh-Zahlen
gegen die Werte des nicht-rotierenden Falles. Die Temperaturgradienten divergieren mit
steigenden Rayleigh-Zahlen deutlich von denen des nicht-rotierenden Falls. Aufgrund der
rotierenden Bewegung der Test-Konfiguration ist die Turbulenz-Produktion im Fluid
höher. Allerdings sind die resultierenden, turbulenten Strukturen kleiner und deutlich
irregulärer als im nicht-rotierenden Fall. Dieser Aspekt lässt nicht darauf schließen, dass
der Wärmetransport in der Test-Konfiguration unter Rotation unbedingt höher sein muss
als im nicht-rotierenden Fall.

Zusammenfassend ist zu sagen, dass die durchgeführte LES die Konvektion in der Test-
Konfiguration von CenCon sowohl unter Rotation als auch ohne Rotation gut numerisch
abbildet. Im Experiment bildet sich eine voll turbulente natürliche Konvektionsströmung
aus. Die Corioliskraft wirkt sich entscheidend auf die turbulenten Strukturen in der Test-
Konfiguration aus. Neben einer Verschiebung der Strukturen und einer Verzerrung der
Konvektionszellen (im Vergleich zum nicht-rotierenden Zustand) erhöht die Rotations-
bewegung die Turbulenz-Produktion im Fluid. Eine stabilisierende Wirkung der Cori-
oliskraft kann nicht beobachtet werden. Die Corioliskraft führt hingegen zur Entstehung
von irregulären, stark vermischten Strukturen im Fluid sowie zur Entstehung von Wirbeln.
Mit zunehmender Rayleigh-Zahl erscheinen die turbulenten Strukturen kleinskaliger. Die
Anzahl der sichtbaren Wirbelregionen steigt mit zunehmender Rayleigh-Zahl an.
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Abschließende Bemerkungen und Ausblick
Alle durchgeführten LES Studien dieser Arbeit eignen sich sehr gut, um die zu unter-
suchenden Strömungen in der jeweiligen Test-Konfiguration numerisch abzubilden. Es
treten in jeder Test-Konfiguration asymmetrische Profile der analysierten Fluideigen-
schaften auf, welche durch nicht-Boussinesqe Effekte im Fluid verursacht werden. Alle
untersuchten Strömungsprofile approximieren gut die experimentellen, analytischen und
numerischen Vergleichsdaten.

Die Corioliskraft und die damit auftretenden zusätzlichen Relativbeschleunigungen im
Test-Fall CenCon haben einen entscheidenden Einfluss auf das sich entwickelnde Strö-
mungsprofil und die Turbulenzproduktion. Allerdings kann kein stabilisierender Effekt
der Corioliskraft auf die turbulenten Strukturen erkannt werden. Die Corioliskraft führt
vielmehr zu stark vermischten, irregulären Strukturen und Wirbeln.

Es ist bemerkenswert, dass die Ergebnisse des Temperaturprofils von RayCon die Repro-
duzierbarkeit und damit auch die Vergleichbarkeit der Ergebnisse statistischer Analysen
von Fluideigenschaften in Frage stellen. Obwohl die numerischen Ergebnisse über hin-
reichend große Zeitintervalle gemittelt werden, treten zwischen den Ergebnissen spiegel-
symmetrischer Auswertungspositionen deutliche Abweichungen in den Profilwerten auf,
welche sich auf unterschiedliche quasi-stationäre Zustände der Konvektionszellen im Con-
tainer zurückführen lassen. Diese quasi-stationäre Zustände zerstören die Reproduzier-
barkeit der numerischen Temperaturprofile.

In zukünftigen Studien wäre sicherlich ein Vergleich zwischen dem in dieser Arbeit gewähl-
ten Turbulenz-Modell von Fureby und einem kompressiblen, dynamischen Smagorinsky-
Modell von Interesse. Weiterhin wäre der Einfluss der Wahl des Feinstrukturmodells der
thermalen Diffusivität von Bedeutung. Im Hinblick auf CenCon und den Experimentauf-
bau in der Zentrifuge wären hydrodynamische Stabilitätsuntersuchungen, wie z. B. der
Einfluss von kleineren Störpartikeln, welche ins Fluid eingebracht werden, wichtige As-
pekte. Neben der Durchführung einer lokalen Temperaturmessung sowie einer Mikro-LDA,
wären eine Modifikation der Längenverhältnisse der Test-Konfiguration und eine Variation
der relativen Rotationsbeschleunigungen ebenfalls spannende und entscheidende Aspekte
für eine weitergehende Analyse der Konvektionsströmung in dieser Konfiguration.
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Abstract

Convective flow is one of the fundamental problems in fluid dynamics. Many theoretical,
experimental and numerical investigations have been performed in the past, but still these
flows are not quite understood and play a decisive role. The understanding of these flows
is of great interest in many areas, as, for example, in meteorology where they appear as
wind caused by the solar radiation in the Earth’s atmosphere and can result in storms or
even hurricanes. Moreover, these flows are of great importance in industrial applications
where they are used as passive cooling systems instead of fans to reduce possible noise
exposures and technical failures.

Convective flow is always generated as a result of a heat flux between different heated
regions in a fluid. If the convection is only driven by local density changes inside the fluid
without any other acting influences, the flow is called a natural convection.

The main focus of this thesis lies on the numerical investigation of a turbulent natural
convection in air analysed in three different test case configurations. The natural convec-
tion is realised in each test case between two faced walls which are heated isothermally
but with a constant temperature difference between them. The heat transfer inside the
fluid is characterised by increasing temperature gradients near the heated walls and a
dominating convective mass exchange in the bulk region. Turbulent shear layers arise in
the fluid which increase the intensity of turbulence. The dynamic of the flow, the tur-
bulence production and the behaviour of the fundamental fluid properties are the main
aspects of the investigations in this thesis.

For each test case a compressible, 3-dimensional, transient, turbulent Large-Eddy Sim-
ulation is performed with help of the open-source software package OpenFOAM R© . As
turbulence model a compressible coupled model without a Boussinesq-approximation is
chosen considering the mentioned density changes inside the fluid.

Outstanding is the third test case. In this special case the influence of an impressed Cori-
olis force on the unsteady turbulent structures inside the fluid should be observed in a
numerical as well as in an experimental study. In the experimental study, the same condi-
tions as in the atmosphere in the beginning of a twister or hurricane should be realised by
a rotational movement of the test case in a large scale centrifuge. The numerical results
of this thesis are validated to the data of comparable experimental test case studies as
well as theoretical and numerical data from the literature.
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Nomenclature

Roman Symbols

Symbol Description Unit
a speed of sound m/s

aaa acceleration vector m/s2

aaac Coriolis acceleration vector m/s2

ar, aϕ components of an acceleration vector m/s2

aaaP centripetal acceleration vector m/s2

aaaZ centrifugal acceleration vector m/s2

bbb body force vector N

ce turbulence model coefficient, ce = 1.046

ck turbulence model coefficient, ck = 0.02

cp specific heat at a constant volume J/(kgK)

cp0 free stream specific heat constant J/(kgK)

cv specific heat at a constant pressure J/(kgK)

e internal energy per unit mass m2/s2

e0 internal energy per unit mass of a fluid particle at
rest

m2/s2

eeei unit vector of system SI

eee′
i unit vector of system S ′

R

f, f̃ arbitrary function

g arbitrary function

ggg gravitational acceleration vector m/s2

h enthalpy per unit mass m2/s2

h0 enthalpy per unit mass of a fluid particle at rest m2/s2

k kinetic energy per unit mass m2/s2
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kkk vector of body forces N

k coefficient of heat transmission W/(Km2)

ksgs subgrid scale kinetic energy m2/s2

kL wave number 1/m

lsgs subgrid length scale m

m mass kg

m fluid particle

n revolutions per minute rev./min

n amount of substance of gas mol

nnn normal vector

nPr, nρβ, nρλ, nc model coefficients

p pressure Pa

p̄ mechanical pressure Pa

ppp direction vector

prgh dynamic pressure Pa

qw wall heat flux density W/m2

q̇̇q̇q heat flux density vector W/m2

qsgs subgrid velocity scale m/s

rrr,RRR radius vector m

rrrP , rrrA, rrrAP position vectors m

rref reference value

s entropy J/K

t time s
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1. Introduction

1.1. Motivation
Convective flows play an important role in many different areas, as, for example, in geol-
ogy where these flows arise in the Earth’s mantle causing a movement of the continental
plates, the so-called continental drift. Convective flows are also used, to mention an ex-
ample from another area, in form of passive cooling systems in industrial applications to
reduce technical failures. Actually in everyday life, one can observe a convective flow, for
example, during cooking a soup. Regarding a possible climate change, the understanding
of these flows is especially important, because appearing as wind in the atmosphere they
can result in a twister or even hurricane due to a Coriolis acceleration of the Earth’s
rotation.

If the convection is only driven by local density changes resulting from temperature dif-
ferences inside the fluid, it is called a natural convection. In case of an additionally acting
mechanical force, e. g. blower or pump, which drives the convection from outside, one
would call it a forced convection.

1.2. Thesis purpose and outline
The main aspect of this thesis is the numerical investigation of a turbulent natural convec-
tion in air which is generated in different test case configurations between two opposite,
isothermally heated walls. The focus of the investigation lies, beside the numerical mod-
elling, on the understanding of the flow dynamic, the turbulence production and the fun-
damental fluid properties. Therefore, a compressible, 3-dimensional, transient, turbulent
Large-Eddy Simulation (short: LES) without a Boussinesq-approximation is performed
with help of the open-source software package OpenFOAM R©. “Compressible” means in
this case that density changes which are caused in the fluid by temperature differences
are considered by the numerical model. “Compressible” does not include a definition in
terms of the Mach number.

A compressible turbulence model is chosen, because, so far, incompressible models are
not able to reflect fully the influence of varying density gradients on the turbulence pro-
duction. Further, a compressible model is especially in one test case relevant due to an
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1. Introduction

intensified gravitational force field in this case. As turbulence model, the compressible
model of Fureby is chosen which is a modification of the so called Smagorinsky model for
compressible flows. Temperature dependent fluid properties are considered in all simula-
tions by the Sutherland model.

The turbulent natural convective flows are analysed in three different test case configu-
rations. Two of these test cases are numerically analysed (VerCon and RayCon) while
the third one (CenCon) is investigated in an experimental study. The flow is limited in
all setups by an enclosed rectangular container whose aspect ratios vary in each test case
configuration. The container properties are chosen simplified to reduce especially com-
plexity aspects. Nevertheless, they are still sufficient and commonly used regarding the
investigation of fluid properties and flow structures in a turbulent natural convection.

The choice of the heated walls varies in all setups. The orientation of these walls relative
to the effective direction of gravity effects significantly the profile of the main flow field in-
side the test case. The first setup (marked by VerCon) is made of a rectangular container
where two of the vertical walls are heated isothermally, while both other cases (RayCon
and CenCon) consist of a rectangular container where both horizontal walls are heated
isothermally. Lateral walls of each setup are designed with different boundary conditions
to analyse possible influences on the flow field inside the container.

The configurations of RayCon and CenCon are also called a Rayleigh-Bénard problem
(short: RB problem). In contrast to RayCon, the setup of CenCon is additionally influ-
enced by a Coriolis acceleration. The effect of the Coriolis acceleration is realised by a
rotational movement of the test case under hyper-gravity in a large-scale centrifuge. While
CenCon is rotating uniformly, possible influences on the flow structures, turbulence pro-
duction and fluid properties due to the Coriolis acceleration should be investigated. All
test cases are based on each other. The gained information and results of both first test
cases, VerCon and RayCon, lead to the analyse of the third test case, CenCon.

The first main aspect in this thesis is the numerical investigation and understanding of the
test cases VerCon and RayCon. Therefore, several fluid properties are estimated between
the heated walls in each test case. Especially in the thermal boundary layer near these
heated walls, the temperature as well as the velocity and Nusselt number profiles are im-
portant in order to understand the structure and dynamic of the flow and its turbulence
production. The second main aspect is the numerical as well as experimental analysis of
the influence of the Coriolis acceleration on the RB problem in the setup of CenCon.

Due to the vertical orientation of the heated walls in VerCon, the flow reaches a quasi-
steady state after a while. This configuration of a turbulent natural convection represents
the basis for both other test cases. Hence, it is very important and essential to study and
understand first the flow dynamic and the behaviour of the fluid properties in this con-
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figuration. The gained information and the at this point also validated numerical model
of the chosen LES is required to analyse and understand both other cases.

The setup of RayCon is based directly on VerCon with its by 90◦ rotated heated walls.
The setup of CenCon results from RayCon in its layout and in the realised flow dynamic
as well as in the behaviour of the fluid properties regarding the state without a rotational
movement of the test case. But, in contrast to RayCon, a rotation is additionally im-
pressed on the setup which generates the additionally acting Coriolis acceleration. This
realised relative acceleration affects the generated vertical convective flow inside the RB
cell of CenCon. The conditions in the rotating setup of CenCon should simulate the at-
mospheric conditions in the beginning of a twister or hurricane. To generate these effects
in the experimental setup without the help of additional air blowers, as they are used in
other experimental setups, the radius of the centrifuge has to be sufficiently large, which
is fulfilled in our case. The effect of the Coriolis acceleration is realised in the simulation
by an implemented modified governing equation system (compared to the one of RayCon)
which considers the additionally acceleration. CenCon is analysed at the end of this thesis
on the basis of the beforehand obtained results of RayCon.

The numerical results of this thesis are validated to data of comparable experimental
test cases as well as theoretical and numerical data from the literature. The realised
Rayleigh-numbers lie in the range of 2.33 × 106 ≤ Ra ≤ 1.58 × 109. For VerCon it lies
at Ra = 1.58 × 109, for RayCon between 6.16 × 107 ≤ Ra ≤ 4.1 × 108 and for CenCon
between 2.33×106 ≤ Ra ≤ 4.32×107. The Prandtl number stays in each case at Pr = 0.71
which represents the used fluid, air, in the chosen temperature intervals.

In the beginning of this thesis, the Navier-Stokes equations of a general compressible un-
steady flow problem are presented. Outgoing from these equations, the governing equation
system is derived which describes the observed turbulent natural convection. Subsequently,
the computational methods and the mathematical model of the LES, which are used to
solve the afore stated equations, are discussed. Before the particular test case configura-
tions are explained in detail and the obtained results are demonstrated as main aspect of
this thesis, the required thermodynamic properties of a turbulent natural convection are
presented.

1.3. Related and previous studies
In the beginning of the 20th century, the French physicist Henri Claude Bénard (1874 -
1939) and the English physicist Lord Rayleigh (1842 - 1919) (former John William Strutt),
performed the first analyses of a natural convection between two, horizontal, heated walls
(see [Bénard1900], [Rayleigh1916]). This configuration of a natural convection is also called
Rayleigh-Bénard problem named after both scientists. Since then, numerous studies in-

3
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vestigating convective flow in different configurations were performed in an experimental,
as well as a theoretical and a numerical way.

[Dafa’Alla1996] and [Betts00], for example, perform an experimental investigation of a
low-level turbulent natural convection in air in a rectangular container with vertical
heated walls and an aspect ratio of Γ = 28.6. While in the study of [Dafa’Alla1996] a
Rayleigh number of Ra = 0.86 × 106 is realised, the study of [Betts00] investigates a
Rayleigh number of Ra = 1.43 × 106 and one of Ra = 0.86 × 106. The main aspects of
both studies lie on the temperature as well as velocity profiles between the heated walls.
Based on the experimental study of [Dafa’Alla1996], [Versteegh1998] implements a Direct
Numerical Simulation (short: DNS) for the same setup and for Rayleigh numbers between
5.4 × 105 ≤ Ra ≤ 5 × 106 and obtains an adequate approximation of the experimental
results.

Furthermore, [Ziai1983], [Mergui1993], [Lankhorst1991] and [Tian00a], [Tian00b] analyse
each a natural convection of a low-level turbulence in an experimental setup for different
Rayleigh numbers. In [Tian00a], [Tian00b] a Rayleigh number of Ra = 1.58 × 109 is re-
alised and in [Mergui1993] one of Ra = 1.7 × 109, while [Ziai1983] and [Lankhorst1991]
investigate smaller values of Ra = 5×108 and Ra = 3.9×108. All studies examine mainly
the profiles of the fluid properties between the heated walls in the vertical midplane, e. g.
temperature and Nusselt number profiles. The experimental data in [Tian00a], [Tian00b]
is used in the following to validate the numerical data of test case VerCon in chapter 5.

The opposite configuration of a natural convection between horizontal, heated walls, a
Rayleigh-Bénard problem, was also the subject of many numerical as well as experimen-
tal studies in the last decade of years. One of the experimental studies can be found
in [Funfschilling04] which investigates experimentally the plume motion and large-scale
circulation in a methanol-filled cylindrical RB convection for Rayleigh numbers between
7×107 ≤ Ra ≤ 3×109 and a Prandtl number of Pr = 6. One of the main goals of his study
is the understanding of the periodically plume emission in the system. In [Maystrenko07]
the boundary layer thickness in a RB convection in air in dependence on the fluid proper-
ties skewness and kurtosis is analysed. The convection cell has an aspect ratio of Γx = 5,
Γy = 1 and the investigated Rayleigh numbers are 6 × 107 ≤ Ra ≤ 6 × 108.

Complementary to the previously mentioned study of [Maystrenko07], [Ebert08] mea-
sures in the same setup the temperature distribution and local heat flux density in air
for Rayleigh numbers between 6.16 × 107 ≤ Ra ≤ 6.02 × 108 to obtain information about
the local and global heat flux distribution mainly in the regions near the heated walls.
In [Weiss11], a RB problem in a water-filled cylindrical cell with an aspect ratio of Γ = 1/2
is analysed for Rayleigh numbers between 2×108 ≤ Ra ≤ 1×1011 as to the measurement
of the Nusselt number and large scale circulation structures.
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An example for a numerical study of a RB problem can be found in [Seiter1995], who
models with help of a LES as well as a DNS a convective flow in air and in sodium gen-
erated between infinite horizontal channels. The Rayleigh numbers in this study lie at
Ra = 2.5 × 106 and Ra = 107. [Seiter1995] discusses the analysis of flow structures in the
channels as well as the statistical evaluation of fluid properties for small Prandtl numbers.
[Reeuwijk08a] and [Reeuwijk08b] investigate, with help of a DNS and periodic boundary
conditions, the kinematic boundary layer and the heat flux in a RB configuration for an
aspect ratio of Γ = 4, different Rayleigh numbers between 105 ≤ Ra ≤ 108 and a Prandtl
number of Pr = 1.

Shiskina et al. concentrate in [Shishkina06, Shishkina08, Shishkina09] mainly on three-
dimensional, time-dependent DNS and well-resolved LES of turbulent RB problems in air
and water using a Boussinesq-approximation. The test case consists of a wide cylindrical
container. The realised Rayleigh numbers lie between 105 ≤ Ra ≤ 1010. The main goals
of these studies are the investigation of the thermal dissipation rate and the interaction
of thermal plumes.

Similar to the previous studies, the study in [Silano10] performs in his study a DNS,
using a Boussinesq-approximation, of a cylindrical cell with an aspect ratio of Γ = 1/2
for a range of Prandtl numbers between 10−1 ≤ Pr ≤ 104 as well as Rayleigh num-
bers between 105 ≤ Ra ≤ 109. The main goal of this study lies in the understanding of
Nusselt-Reynolds-number dependencies in relation to the chosen Rayleigh and Prandtl
numbers. Furthermore, van der Poel et al. investigate in [Poel13] differences between a
2- and a 3-dimensional RB convection in a cylindrical cell with varying aspect ratios for
Prandtl numbers of Pr = 4.38 and Pr = 0.7 up to a Rayleigh number of Ra = 108.
Therefore, numerical results are compared to experimental data. The main aspect in this
study are the Nu(Ra)- and also the Nu(Pr)-dependencies. Similarities between the 2D-
and 3D-convection can be found for some parameter ranges. But also large differences are
revealed, mainly for the case of Pr < 1 and low aspect ratios, which have a significant
effect on the Nusselt and Reynolds number distribution in the 2D-convection.

Complementary to the previously mentioned studies, [Ahlers06] searches experimentally
and theoretically for differences between a convection with and without a Boussinesq-
approximation. A natural convection for which a Boussinesq-approximation is assumed is
called Oberbeck-Boussinesq (short: OB) convection, while a natural convection without
a Boussinesq-approximation is called non-Oberbeck-Boussinesq (short: NOB) convection.
The realised Rayleigh numbers lie in [Ahlers06] between 108 ≤ Ra ≤ 1011. The cylindrical
cell has an aspect ratio of Γ ≈ 1. The study investigates the convection in water and in
glycerol.

Considering an analytical formulation describing a natural convection, the possibly first
approach to a formulated law of the turbulent boundary layer in the near wall region in a
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natural convection can be found in [George1979]. For the laminar region of the boundary
layer an analytical function can be found in [Pohlhausen1921]. Pohlhausen states in his
study a solution for a flow over an infinitely long plate.

In the last years, the studies of [Hölling05, Hölling06] discuss analytical functions describ-
ing the turbulent thermal and velocity boundary layer in a natural convective flow for
different ranges of Rayleigh as well as Prandtl numbers. The theory is valid for a configura-
tion with vertical or for one with horizontal, heated walls. [Grossmann00, Grossmann01]
describe in their studies possible Rayleigh-Nusselt-number-dependencies of strong RB
problems valid in different regimes in the Rayleigh number versus Prandtl number phase
space. The resulting power laws and defined regimes are discussed and updated in the
study of [Stevens13].

Regarding studies which deal also, as it is the case in this thesis, with a Coriolis force
influence, the studies of [Brown08a] and [Brown08b] can be mentioned. In both studies
measurements of large-scale circulations are performed in several water-filled cylindrical
convection cells of an aspect ratio of Γ = 1 and for Pr = 4.38. In [Brown08a] the anal-
ysed Rayleigh numbers lie between 3 × 108 ≤ Ra ≤ 1011, while they lie at Ra ≥ 1010

in the second study [Brown08b]. The experiments in [Brown08a] investigate the angular
orientation of a turbulent large scale circulation as a function of time. In [Brown08b] the
influence of a Coriolis force (caused by the Earth’s rotation) on the development of large-
scale structures is investigated over several days periods. The results show clockwise and
counter-clockwise revolutions of the circulation plane orientation.

In the study of [Horn11], on the one hand, a three-dimensional DNS of a NOB convection
is compared to one of an OB convection in a cylindrical cell of an aspect ratio of Γ = 1.
The cell is filled with water (Pr = 4.38) and the investigated Rayleigh number lies at
Ra = 108. The results show an asymmetrical temperature profile in the NOB convec-
tion as well as higher mean temperatures in the geometry centre than in case of the OB
convection. On the other hand, an additional influence of a rotational movement of the
NOB convection is analysed. The rotational movement of the cell leads to higher Nusselt
numbers compared to a non-rotating cell.

To model mathematically a turbulent natural convection in a numerical simulation, dif-
ferent approaches can be found in the literature. The American meteorologist Joseph
Smagorinsky was the first who formulated a turbulence model based on a formulation
of the eddy viscosity, see [Smagorinsky1963]. The model uses also the assumption of a
Boussinesq-approximation. The Smagorinsky model is widely used in LES methods and it
is also the basis for several other turbulence models, as in [Germano1991, Lilly1992]. Both
studies modify the Smagorinsky model to a dynamic version. In the study of [Fureby1996]
a modified version of the Smagorinsky model is formulated for compressible flows. The
study of [Deardorff1973] discusses the choice of the grid filter length in connection with

6

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



1.4. Conservation of mass

the Smagorinsky model concerning the use of subgrid transport equations for atmospheric
turbulence.

To obtain a successful performance of a LES, the turbulent Prandtl number has to be cho-
sen carefully in the turbulence model. Therefore, several studies on this topic can be found.
For example, a suggestion of a turbulent Prandtl number in combination with an unstruc-
tured grid can be found in [Okong’O 00] or also in [Kosović02, Sergent03, Erlebacher1992]
who develop new subgrid scale models. In [Kosović02, Erlebacher1992] turbulence models
are presented which can be applied on compressible flows without using a Boussinesq-
approximation. Furthermore, [Kenjereš1999, Sergent03] demonstrate turbulence models
which use additional force terms to describe a turbulent natural convection.

In comparison to the mentioned related studies, in this thesis a compressible well-resolved
LES is performed to model numerically a turbulent natural convection in air in three
different test case setups. In each test case a different Rayleigh number range is analysed.
In one test case, the natural convection is generated between two vertical, heated walls.
In both other test cases a RB convection is realised (two horizontal, heated walls). The
chosen computational grid of each test case is high-resolved, especially in the near wall
regions. But all used computational grids consists of a smaller number of cells than it
would be the case in a DNS.

The used compressible turbulence model is based on the mentioned model of Fureby in
[Fureby1996]. Compared to most of the above related studies, the mathematical model
of this thesis deals with the assumption of a non-Boussinesq fluid to investigate possible
differences to the studies which consider a Boussinesq-approximation. Outstanding is the
third test case, in which the influence of a Coriolis force on the development of turbulent
as well as large-scale structures inside the fluid is analysed numerically as well as in an
experimental study. The influence of the Coriolis acceleration is realised in the experiment
by a rotational movement of the test case in a large scale centrifuge.

Note that some of the presented contents of this thesis are also discussed in extracts in the
articles [Zimmermann12], [Zimmermann14a], [Zimmermann14b] and [Zimmermann15].

1.4. Conservation of mass

To describe a flow problem by a mathematical model, the flow properties and its move-
ment have to be formulated by appropriate equations. These equations have to determine
the kinematic as well as transport and thermodynamic properties of the flow. The first
mentioned group includes properties of the flow field, e. g. velocity and angular velocity,
while the two other mentioned groups describe properties of the fluid itself, e. g. fric-
tional tensions or thermal diffusion and pressure, density or temperature. Next to the
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description of the continuity motion also the thermodynamic properties like diffusion,
momentum and heat transfer have to be formulated. The equations of viscous flows are
well known in fluid dynamics. At this point, they are presented in their basic form for
a three-dimensional flow problem. The following demonstrations are based on [Spurk07],
chapter 1 and 2 and [White1991], chapter 1 and 2. The governing equations which model
the flow properties and its movement are derived in the following from an infinitesimal
small and finitely large fluid control volume Ω, as is indicated in figure 1.1. The following
evaluations are done based on the information in [Spurk07], chapter 1, 1.2.1-1.2.5.

The control volume is separated from the rest of the fluid by a closed surface ∂Ω. The vol-
ume consists of a set of infinitely many fluid particles, which are denoted by the set M̃ . To
model the movement of the flow, it has to be possible to identify the set of fluid particles
in time and space. From the movement of the fluid particles in Ω, the movement of the
whole flow can be concluded on the macroscopic level. The fluid volume is assumed to be
celestial. Further, it is assumed as continuum. Hence, each fluid particle can be considered
as material particle and the density as continuous function of time and position. Note,
that the continuity assumption must not be fulfilled in every technical flow problem.

Figure 1.1.: Fluid control volume Ω (as seen in [Oertel06]).

The form of each fluid particle is variable in time and can change continually. Therefore,
one particle has to be identified not by its form, but by a specified vector χχχ, which is
characteristic for each particle. The movement of one particle can then be characterised
at a time instant t0 by its position vector xxx in relation to a chosen origin of a particular
three-dimensional coordinate system

χχχ = xxx(t0) . (1.4.1)

Or for the whole flow

xxx = xxx(χχχ, t) , or xi = xi(χj , t) with i, j = 1, 2, 3 . (1.4.2)

Note, that χχχ is a time independent vector. Equation (1.4.2) formulates a mapping be-
tween the referenced configuration at a time instant t0 to the actual one at time t. The

8
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1.4. Conservation of mass

formulation with χχχ and time t is called material description or Lagrangian description,
where χχχ is the material coordinate. The velocity and acceleration of one fluid particle can
be formulated in terms of χχχ by

ui(χj , t) =
[

∂xi

∂t

]
χj

, ai(χj , t) =
[

∂ui

∂t

]
χj

, with i, j = 1, 2, 3 . (1.4.3)

The index χj specifies the deviation for the χj-th point in the material. The first equation
in (1.4.3) is called the material deviation of the velocity.

For the most problems in fluid mechanics, the above material notation is modified, to
describe the flow at a specific location xxx and time t and not any longer in the material
coordinate. With (1.4.3) each material coordinate can be transformed to the independent
variables of a field coordinate xxx and time t. This transformation between both vectors is
a bijective function (one-to-one correspondence). Equation (1.4.2) can then be rewritten
as

χχχ = χχχ(xxx, t) , (1.4.4)

which describes the material point, which is at the place xxx at time t. The transformation
for the velocity between both vectors is then

uuu(χχχ, t) = uuu [(χχχ(xxx, t), t] = uuu(xxx, t) . (1.4.5)

The notation in the field coordinate xxx and time t is called field or Euler’s description.
This notation describes the path of one particle at a time instant t and hence its position
at t.

Sometimes it is more important to describe the changes of a material particle, and not
the change in time at a given location. The change of uuu(xxx, t) at xxx is not in every case the
acceleration, which the material point felt in xxx at time t, e.g. for the case of a steady flow
where the change of the velocity is zero at a specified location. If a material point proceed
from xxx to xxx + dxxx, where dxxx is an element of the path line, it felt a change in uuu(xxx, t), If the
velocity is given in material coordinates, then the material derivative is given by (1.4.3),
as mentioned before. If the velocity is described in field coordinates uuu(xxx, t), the material
derivative with respect to t can be formulated for a fixed χχχ as

duuu

dt
=
[

∂uuu (xxx(χχχ, t), t)
∂t

]
χχχ

. (1.4.6)

In equation (1.4.6), the position xxx in uuu(xxx, t) is replaced by the path coordinates of the
fluid particle which is located in xxx at time t. The conservation of mass, momentum and
energy have to be fulfilled in the following. The evaluation of the continuity equation is
discussed in the following based on [Spurk07], chapter 1, 1.2.5 and chapter 2. The form

9
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1. Introduction

of the control volume varies during the motion. The region in space to which the volume
is extended at time t, is denoted by Ω(t). The total mass m in the bounded volume Ω is
determined by the sum of the particular material elements dm over the set of all material
particles M̃

m =
∫

M̃

dm =
∫

Ω(t)
ρ(xxx, t) dΩ (1.4.7)

with the continuous function of space of density ρ(xxx, t). Note, that M̃ should consists the
whole time of the same set of material points. Equation (1.4.7) can also be formulated for
an arbitrary continuous function ϕ over a region Ω(t) in space∫

M̃

ϕ(χχχ, t) dm =
∫

Ω(t)
ϕ(xxx, t)ρ(xxx, t) dΩ. (1.4.8)

In the following, the dependence on the coordinates is omitted and it infers from the range
of each given integral. The mass in the bounded fluid volume has to be constant in time
due to the conservation of mass. Hence, this is fulfilled for each mass particle in M̃

D

Dt
m = 0 ,

D

Dt
(dm) = 0 , (1.4.9)

where D

Dt
denotes the material derivative in time. With the connection in (1.4.9), the fact,

that ϕ is continuously differentiable and regarding the Leibniz rule (for further information
see [Heuser09], chapter 4), the variation rate in time of equation (1.4.8) is subsequently

D

Dt

∫
M̃

ϕ dm = D

Dt

∫
Ω(t)

ϕρ d Ω =
∫

Ω(t)

D

Dt
(ϕρ) d Ω. (1.4.10)

Due to the Leibniz rule, the derivation of a continuously differentiable function can be
done “under” the integral. An equivalent expression to (1.4.10) is

D

Dt

∫
Ω(t)

ϕ d Ω =
∫

Ω

D

Dt
ϕ d Ω +

∫
Ω

ϕ
D

Dt
( d Ω). (1.4.11)

Without loss of generality, the variable domain Ω(t) can be replaced by a fixed domain Ω
which coincides with Ω(t) at time t, for the detailed derivation of (1.4.11) see [Spurk07],
chapter 1, 1.2.5. Regarding equation (1.4.11), also the following formulation is valid

D

Dt

∫
Ω(t)

ϕ dΩ =
∫

Ω

(
∂ϕ

∂t
+ ∂ϕui

∂xi

)
dΩ , (1.4.12)

where ∂

∂t
denotes the partial derivative in time. Due to the fact, that ϕ is continuously

differentiable in Ω, application of the theorem of Gauss (for further details to Gauss’s
theorem see [Amann08], chapter 3) on (1.4.12) produces the so-called Reynolds’ transport

10
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1.5. Conservation of momentum

D

Dt

∫
Ω(t)

ϕ dΩ =
∫

Ω

∂ϕ

∂t
dΩ +

∫
∂Ω

ϕuuu · nnn dA , (1.4.13)

where ∂Ω is the orientated bounded surface of Ω and nnn its normal vector. The Reynolds’
transport theorem expresses the variation rate in time of the material volume integral to
the rate of change of an arbitrary quantity ϕ, which is expressed in terms of the integral
over Ω and in terms of its flux trough the bounded surface ∂Ω of Ω. At a time instant t,
both control volumes Ω and Ω(t) coincide with each other (see [Spurk07], chapter 2, 2.1).

As mentioned above, the mass in the fluid volume should be time independent and con-
stant. Regarding equation (1.4.12) with ϕ = ρ the conservation of mass in (1.4.9) is
transformed to

Dm

Dt
= D

Dt

∫
Ω(t)

ρ dΩ =
∫

Ω

(
∂ρ

∂t
+ ∂ρui

∂xi

)
dΩ = 0 . (1.4.14)

Because the range of the integral Ω is chosen arbitrarily, it can be concluded, that the
continuous integrand must vanish and the conservation of mass can be formulated in its
differential form

∂ρ

∂t
+ ∂ρui

∂xi
(1.4.15)

or
∂ρ

∂t
+ ∇ · (ρuuu) . (1.4.16)

Equation (1.4.15) is also called continuity equation. If the fluid is a steady flow, it is
∂ρ

∂t
= 0 and equation (1.4.16) becomes

∇ · (ρuuu) = 0 . (1.4.17)

If the volume is not variable in time ∂ρ

∂t
= 0 and space ∂ρ

∂x
= 0, the fluid is called

incompressible and it is
∇ · uuu = 0 . (1.4.18)

1.5. Conservation of momentum
The next step in this section is the derivation of the momentum balance in the fluid volume
Ω. Therefore, preliminary considerations are made. A fluid particle is able to perform
four different types of motion or deformation as translation, rotation, shear strain and
extensional stresses. The first two motions change only the location of the fluid particle,
while both last motions modify also its form. The following demonstrations are based
on [White1991], chapter 1, 1-3 (especially 1-3.3) and chapter 2, 2.4 as well as [Spurk07],
chapter 2, 2.2. The motion is always associated to a change in time. The translation is

11
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1. Introduction

characterised by a displacement from one to another location ux dt, uy dt, uz dt of the
particle (see as well figure 1.1). A rotation can be described by a motion of the fluid
volume around a specified rotation axis in a particular angle α. Hence, the rate of the
rotation is determined as

∂Ω̃x

dt
= 1

2

(
∂uz

∂y
− ∂uy

∂z

)
,

∂Ω̃y

dt
= 1

2

(
∂ux

∂z
− ∂uz

∂x

)
,

∂Ω̃z

dt
= 1

2

(
∂uy

∂x
− ∂ux

∂y

)
.

(1.5.1)

Expression (1.5.1) can be summarised as follows

ω̃̃ω̃ω = 2dΩ̃̃Ω̃Ω
dt

. (1.5.2)

ω̃̃ω̃ω is called vorticity of the fluid and can be connected to the velocity by

ω̃̃ω̃ω = ∇ × uuu , [ω̃̃ω̃ω] = 1
s

. (1.5.3)

Then it is
∇ · ω̃̃ω̃ω = ∇ · (∇ × uuu) = 0 . (1.5.4)

If ω̃̃ω̃ω = 0, the flow is called irrotational.

The shear strain is characterised as the averaged angle between two lines of the fluid
volume which were normal orientated to each other in the unstrained state. The shear
strain rate is defined by

εxy = 1
2

(
∂uy

∂x
+ ∂ux

∂y

)
, εyz = 1

2

(
∂uz

∂y
+ ∂uy

∂z

)
, εzx = 1

2

(
∂ux

∂z
+ ∂uz

∂x

)
. (1.5.5)

Consequently, the strain rates are symmetrical εij = εji. The extensional strain can be
explained as an increase in the fluid particle’s length

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εzz = ∂uz

∂z
(1.5.6)

or

εij =

⎛⎜⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞⎟⎠ . (1.5.7)
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1.5. Conservation of momentum

εij is a symmetric second-order tensor with the following invariants

I1 = εxx + εyy + εzz,

I2 = εxxεyy + εyyεzz + εzzεxx − ε2
xy − ε2

yz − ε2
zx,

I3 =

∣∣∣∣∣∣∣
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

∣∣∣∣∣∣∣ . (1.5.8)

In Newton mechanics, a system is denoted as inertial, if its axes are fixed and Newtons
first law of motion is satisfied. This implies, that the velocity of an object is constant in
the system, if the object is not affected by any forces. Either the object is at a rest or it is
moving linearly with a constant velocity (see [Nolting13], chapter 2, 2.2.3). In an inertial
system, the variation rate in time of the momentum III = muuu equals the sum of all forces
FFF k, which are acting on the system. Thus, for the fluid volume it has to be

DIII

Dt
= Dmuuu

Dt
= FFF =

∑
k

FFF k , ⇒ maaa = FFF , (1.5.9)

which is Newtons second law. aaa is the acceleration of the fluid particle of mass m. Regarding
the density instead of the mass, equation (1.5.9) is written as

ρ
Duuu

Dt
= fff = fffbody + fff surface (1.5.10)

with the velocity uuu of the fluid particle and the applied force per unit volume fff , which
acts on the fluid particle. The forces which impact on the fluid particle are divided in
two classes, body forces and surface forces. A body force is usually applied to the entire
mass and is impressed by an external field, e. g. the gravitational force ggg. The surface
forces are applied by external stresses which result from the surrounding fluid. The whole
force, which is acting on the observed fluid volume can be described with help of equation
(1.5.10) by an integration over the volume and its surface. The following demonstrations
are based on [Spurk07], chapter 2, 2.2. It is

F =
∫

Ω(t)
kkkρ dΩ +

∫
∂Ω(t)

ttt d∂Ω . (1.5.11)

The vector kkk stands for the body forces and the vector ttt is the so-called deformation
tensor which compromises the surface forces. The deformation tensor is dependent on
space, time and from the orientation of the normal vector nnn of the surface element. The
deformation tensor is a linear combination of the components of nnn. With the Einstein
notation it is

tj(xxx,nnn, t) = τij(xxx, t)ni with i, j = 1, 2, 3 , (1.5.12)
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1. Introduction

which is illustrated in figure 1.2. τji stands for the magnitude of the i-th component of
the deformation tensor, which effects the element of the coordinate plane with the normal
vector, which points in the j-th direction.

Figure 1.2.: Fluid volume with notation for stresses, heat and work exchange
(as seen in [White1991]).

The deformation tensor is a second-order tensor and its matrix notation is

ttt = nnnTTT = nnn

⎛⎜⎝τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎟⎠ . (1.5.13)

The elements at the main diagonal are the normal stresses, the remaining elements are
the shear stresses. If the fluid is at rest, the velocity is zero and the shear stresses have to
vanish, solely the normal stresses remain. Thus, it is

τij = −pδij, where δij =
{

1 i = j,

0 i �= j,
(1.5.14)

where the tensor δji is the so-called Kronecker-Delta. This case equals the hydrostatic
pressure

ti = −pni, (1.5.15)

where the pressure p which is independent of nnn, is its absolute value. In general, the
deformation tensor can be separated in

τij = −pδij + Pij , (1.5.16)

where Pij determines the tensor of frictional tension. In all common fluids the applied
shear is a function of the strain rate

τij = f(εij) with i, j = 1, 2, 3. (1.5.17)

14
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1.5. Conservation of momentum

For the so-called Newtonian fluids, which are considered in this thesis, it is

τij = 2μεij = μ
duj

dxi

with i, j = 1, 2, 3 (1.5.18)

and the dynamic viscosity μ [kg/ms]. The transport property of the dynamic viscosity
μ yields a relation between momentum flux and velocity gradient. As a thermodynamic
property it is dependent on temperature and pressure. Its properties are further discussed
in section 1.9.

The easiest assumption for the variation of viscous stresses with strain rate is a linear law
which was first stated by Sir George Gabriel Stokes in 1845 in form of three assumptions
(see [Stokes1845] and [White1991], chapter 2, 2-4). Regarding the first assumption, the
stress tensor τij of a continuous fluid is a linear function of the strain rates εij. Second, the
fluid is isotropic, hence its properties are independent of direction. And third, if the strain
rates are zero, the deformation law equals the hydrostatic pressure, which was already
mentioned above. From these three assumptions, Stokes derived the following deformation
law which is fulfilled for all gases and mostly fluids (see [White1991], chapter 2, 2-4)

τij = −pδij + μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ λ

(
∂uk

∂xk

)
δij = 0 (1.5.19)

with the thermal conductivity λ. Stokes assumed, that the sum of the normal stresses
τxx, τyy, τzz are also a tensor invariant, analogously to the invariants of the strain rate in
equation (1.5.8). Then, the mechanical pressure p can be supposed to be

p̄ = −1
3(τxx, τyy, τzz) . (1.5.20)

With the deformation law in (1.5.19), one obtains

p̄ = −1
3(τxx, τyy, τzz) = p −

(
λ + 2

3μ

)(
∂uk

∂xk

)
δij . (1.5.21)

From this expression follows, that the mean pressure in a deforming viscous fluid does
not equal the thermodynamic pressure. Stokes solved this problem by assuming, that

λ + 2
3μ = 0 . (1.5.22)

Furthermore, the assumption of an incompressible fluid with(
∂uk

∂xk

)
δij = 0 (1.5.23)

resolves the problem of inequality between both pressure terms. In compressible flows the
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1. Introduction

in boundary layer flows. For further details see as well [White1991], chapter 2, 2-4.2 and
2-4.3.

The conservation of momentum can now be formulated by inserting (1.5.12) in (1.5.11)
and regarding Gauss’s theorem (see [Spurk07], chapter 2, 2.2)∫

Ω

(
ρ

Dui

Dt
− ρki − ∂τij

∂xj

)
dΩ = 0 . (1.5.24)

In an analogous manner to the proceeding in section 1.4, the variable domain Ω(t) is
replaced by the fixed domain Ω which coincides with Ω(t) at time t. The conservation of
momentum can be formulated in its differential form by

ρ
Dui

Dt
= ρki + ∂τij

∂xj

(1.5.25)

and accordingly
ρ

Duuu

Dt
= ρkkk + ∇ · TTT . (1.5.26)

Equation (1.5.26) is called Cauchy momentum equation. With the Reynolds’ transport
theorem, equation (1.5.26) can be rewritten as

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = ρki + ∂

∂xj
τij . (1.5.27)

Inserting (1.5.19) in (1.5.26), one obtains the so-called Navier-Stokes equations which
are attributed to Claude Louis Navier ([Navier1823]) and Sir George Gabriel Stokes
([Stokes1845]). In general, also the set of equations which describe the conservation of
mass, momentum and energy are called together the Navier-Stokes equations. Note, that
the exact formulation of the body forces kkk and surface forces TTT is always dependent on
the particular flow problem.

1.6. Conservation of energy

To describe the movement and properties of the flow completely, besides both already
formulated conservation laws, a third one has to be added. Because mechanical energy
can be transformed to heat and vice versa, the third conservation law has to involve the
balance of energy in the flow. Therefore, the first law of thermodynamics is regarded (for
further information see [Spurk07], chapter 2, 2.6, [White1991], chapter 2, 2.5). It states,

16
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1.6. Conservation of energy

added to a closed system S, the total energy Etot of the system will increase about

dEtot = dQ + dW . (1.6.1)

The following demonstrations are based on [White1991], 2, 2.5. For a moving fluid particle,
besides the internal energy, the kinetic energy 1

2uuu2 and potential energy gggrrr have to be
regarded

Etot = ρ

(
e + 1

2uuu2 − gggrrr

)
(1.6.2)

with the internal energy per unit mass e and the displacement of the particle rrr. Assuming
conservation of mass and momentum, the change rate in time of equation (1.6.1) results
in

DEtot

Dt
= DQ

Dt
+ DW

Dt
. (1.6.3)

And hence, from equation (1.6.2) it follows

DEt

Dt
= ρ

(
De

Dt
+ uuu

Duuu

Dt
− ggguuu

)
. (1.6.4)

With help of Fourier’s law, Q and W can be written in terms of the fluid properties of
temperature T and thermal conductivity λ (see in addition figure 1.2)

qqq = −λ∇T with [λ] = W
m K = kg m

s3 K . (1.6.5)

qqq is the rate of heat flow per unit area. The heat flow varies with temperature fluctuations.
With this definition of energy, the particles which flow in the volume are characterised
as positive (see in addition figure 1.2). The thermal conductivity λ is, like the dynamic
viscosity, a thermodynamical property which varies with temperature and pressure

λ = λ(T, p) . (1.6.6)

In isotropic materials, the thermal heat conductivity is a scalar, while in non-isotropic
materials it is a tensor of second order.

At this point only the heat transfer by heat conduction is regarded in (1.6.5). But in
general other heat transfers, e. g. radiation, play possibly a role. Neglecting internal heat
production, Q is defined by

DQ

Dt
= −∇ · qqq = ∇ · (λ∇T ) . (1.6.7)
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that if an amount of work W , which is done to the system, and an amount of heat Q are
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The work which is done to the fluid volume is expressed by

DW

Dt
= ∇ · (uuu · τij) = uuu · (∇ · τij) + τij

∂ui

∂xj

. (1.6.8)

With help of the momentum equation, one obtains

uuu · (∇ · τij) = ρ

(
uuu

Duuu

Dt
− ggg · uuu

)
. (1.6.9)

Inserting the expression from (1.6.4), (1.6.7) and (1.6.8) in equation (1.6.3), the most
general form of the first law of thermodynamics for moving fluids is formulated as

ρ
De

Dt
= ∇ · (λ∇T ) + τij

∂ui

∂xj

. (1.6.10)

With the continuity equation (1.4.15), (1.5.19) and (1.6.10) it follows

ρ
D

Dt

(
e + p

ρ

)
= Dp

Dt
+ ∇ · (λ∇T ) + τij

∂ui

∂xj
(1.6.11)

with
τij

∂ui

∂xj

= τ ′
ij

∂ui

∂xj

− p∇ · uuu. (1.6.12)

In the following, an analogous expression is formulated in terms of the enthalpy. Consid-
ering the specific enthalpy per unit mass, one gets

h = e + p

ρ
. (1.6.13)

Equation (1.6.11) can then be modified to

ρ
Dh

Dt
= Dp

Dt
+ ∇ · (λ∇T ) + τ ′

ij

∂ui

∂xj

− p∇ · uuu. (1.6.14)

Analogously to both previous sections, equation (1.6.14) can be rewritten with its partial
derivatives as

ρ
∂h

∂t
= ∂p

∂t
+ ∇ · (λ∇T ) + φ . (1.6.15)

1.7. Dimensionless equations of fluid motion

Preceding, the basic flow equations were formulated. To analyse these equations, it can
be sometimes easier to non-dimensionalise the equations beforehand. Each system can
be described by dimensionless characteristic properties, because a physical solution of
a system has to be independent of the chosen system of units. Temperature and veloc-
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1.7. Dimensionless equations of fluid motion

ity fields, which are the same in dimensionless coordinates, are called similar fields (see
[Baehr08], chapter 1, 1.1.4). They can be transformed in each other by rescaling. To non-
dimensionalise the governing equations, one can use the so-called Buckingham pi theorem,
which is not presented in detail at this point. For a description it is referred to [White1991],
chapter 2, 2-9. The Buckingham pi theorem reveals the required dimensionless parame-
ters which are used to non-dimensionalise the flow equations. Therefore, the variables are
divided by constant reference properties, which made them dimensionless. These are for
example ([White1991], chapter 2, 2-9)

x∗
i = xi

L
, p∗ = p − p0

ρ0u2
0

, u∗ = u

u0
,

T ∗ = T − T0

Tw − T0
, t∗ = tu0

L
, μ∗ = μ

μ0
, (1.7.1)

ρ∗ = ρ

ρ0
, λ∗ = λ

λ0
, ∇∗ = L∇,

c∗
p = cp

cp0

,

where L is a reference length of the flow geometry and u0 a reference velocity. The no-
tation with the star ∗ stands for the dimensionless parameters. The variables which have
an index 0 are free stream properties. The free-stream properties describe the flow in a
far distant of any solid bodies or walls. These values are mostly known from experimental
measurements for particular flow problems. With the new dimensionless parameters, one
may reformulated the flow equations. The following explanations are based on the de-
tails in [White1991], chapter 2, 2-9. Consequently, the continuity equation from equation
(1.4.15) becomes

∂ρ∗

∂t∗ + ∇∗ · ρ∗u∗ = 0 . (1.7.2)

It can be seen from (1.7.2), that just the variables have changed. The energy equation in
(1.6.15) becomes, this time under consideration of the temperature T ,

ρ∗c∗
p

DT ∗

Dt∗ = EcDp∗

Dt∗ + 1
Re Pr∇∗ · (λ∗∇∗T ∗) + Ec

ReΦ∗ . (1.7.3)

In (1.7.3) three fundamental dimensionless parameters of heat-transfer problems appear.
These are the Reynolds number Re, the Prandtl number Pr and the Eckert number Ec
which are defined by

Re = ρ0u0L

μ0
,

Pr = μ0cp0

λ0
, (1.7.4)

Ec = u2
0

cp0(Tw − T0)
.
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1. Introduction

The notation goes back to the Anglo-Irish physicist Osborne Reynolds (1842 - 1912), the
German physicist Ludwig Prandtl and German scientist Ernst R. G. Eckert (1904 - 2004).
Note, that the variables ρ, μ, λ, cp must be determined as thermodynamic functions of the
particular fluid by

ρ∗, μ∗, λ∗, c∗
p = f(p∗, T ∗) . (1.7.5)

At least, the momentum equation is redefined, at this point only for low speed flows, which
are considered in this thesis. In low speed flows, gravitational forces cannot be neglected.
Moreover, density differences due to temperature differences have to be accounted under
regarding the thermal expansion coefficient β (see also section 1.6, eq. (1.8.20))

ρ = ρ0 + Δρ ≈ ρ0(1 − βΔT ) with β = −1
ρ

(
∂ρ

∂T

)
p

. (1.7.6)

The assumption
ρ = ρ0 + Δρ ≈ ρ0(1 − βΔT ) (1.7.7)

is the so-called Boussinesq-approximation which is named after the French mathemati-
cian and physicist Valentin Joseph Boussinesq (1842 - 1929) and German physicist Anton
Oberbeck (1846 - 1900) ([Boussinesq1903] and [Oberbeck1879]). If the variation rate of
temperature and hence of the density is only small, one may consider the density as con-
stant in the governing equations, except in the gravitational term where it depends linear
from the temperature. Further, all fluid properties are assumed to be constant over the
observed fluid volume. Hence, the momentum equation in (1.5.26) is rewritten as

ρ0
Duuu

Dt
≈ −∇p − ρ0gkgkgk − ρ0β(T − T0)ggg + ∇ · τ ′

ij . (1.7.8)

If one separates the stress tensor in pressure and viscous term with help of (1.5.19) one
obtains

τij
∂ui

∂xj

= τ ′
ij

∂ui

∂xj

− p
∂uk

∂xk

δij. (1.7.9)

With a modified dimensionless pressure P ∗

P ∗ = p + ρ0ggg − p0

ρ0u2
0

(1.7.10)

and β∗ = β/β0 the dimensionless momentum equation can be formulated as

Duuu∗

Dt∗ = −∇∗P ∗ − Gr
Re2 β∗T ∗ggg∗ + 1

Re
∇∗ · τ ∗

ij . (1.7.11)

The term Gr indicates an additional dimensionless parameter, the so-called Grashof num-
ber which is named after the German engineer Franz Grashof (1826 - 1893). It is used
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1.8. Thermodynamic state equations

Gr = gβ0ρ2
0L3 (Tw − T0)

μ2
0

, (1.7.12)

where Tw and T0 are two reference temperatures of the flow geometry. In natural con-
vection the motion arises simply due to temperature differences and resulting density
differences in the gravitational force field of the Earth. Convective flow problems may
be described merely by the Grashof- and Prandtl number, because the Prandtl number
becomes the solely resulting parameter. Hence, for these flows the reference velocity has
to be modified and the Grashof number is the dominant parameter

u0 = μ0

ρ0L
, Re ≡ 1,

Gr
Re2 = Gr . (1.7.13)

For high speed flows, the gravity is negligible. For the dimensionless formulation of these
flows it is pointed to [White1991], chapter 2, 2.9.2.

1.8. Thermodynamic state equations

The previously presented governing equations were derived in their basic form. To in-
vestigate a particular flow problem, the equations have to be specified by the particular
transport properties and an appropriate thermodynamical state equation. The transport
properties are the subject of the following section 1.9. A thermodynamical state is uniquely
defined by a number of independent state variables (see [Spurk07], chapter 2, 2.8). The
information of this section is based on [White1991], chapter 1, 1-3.12 - 1-3.17, [Spurk07],
chapter 2, 2.8 and [Groll10b]. In this thesis only one-phase fluids of ideal gases are in-
vestigated. Therefore, for a single component material, a thermodynamical state can be
described by two independent, arbitrary variables

p = p̂(ρ, T ) , (1.8.1)

which specify the value of every other variable of state. The following state equation

pV = nR0T (1.8.2)

defines an ideal gas. R0 is the so-called universal gas constant with

R0 = 8.3144621 J
K mol . (1.8.3)
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1. Introduction

n stands for the amount of substance of the gas (in moles). The mass is then defined by

m = nM (1.8.4)

with the molar mass M . The mole volume VA is defined by

VA = Mv = M

ρ
= V

n
(1.8.5)

with a specific volume v. With a constant mole mass M , equation (1.8.2) becomes

p

ρ
= R0

M
T ⇒ p ∼ ρT . (1.8.6)

Afore, the first law of thermodynamics was written as

dEtot = dQ + dW , (1.8.7)

where Q was the added heat and W the added work to a system S. For a substance which
is not moving and which show just infinitesimal changes it is

dW = −pdV and dQ = T dS . (1.8.8)

Therefore, (1.8.7) can be expressed on a unit mass basis by

de = T dS + p

ρ2 dρ (1.8.9)

which is shortly
e = ê(s, ρ) (1.8.10)

with the specific entropy s. The expression (1.8.9) combines the first and second law of
thermodynamics for infinitesimal processes. The expression in (1.8.10) suffices to deter-
mine a fluid thermodynamically. It is called canonical equation, because all other proper-
ties can be calculated from it. Transformation of equation (1.8.10)

de = ∂e

∂s
ds + ∂e

∂ρ
dρ (1.8.11)

reveals under considering of (1.8.9) the temperature and pressure expression

T = ∂e

∂s

∣∣∣∣
ρ

, p = ρ2 ∂e

∂ρ

∣∣∣∣
s

. (1.8.12)
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1.8. Thermodynamic state equations

Another canonical equation is
d h = T ds + 1

ρ
dp (1.8.13)

with the enthalpy from (1.6.13). From the canonical relation h = ĥ(s, p) the other prop-
erties may be estimated

T = ∂h

∂s

∣∣∣∣
p

,
1
ρ

= ∂h

∂p

∣∣∣∣
s

, e = h − p

ρ
. (1.8.14)

Another state equation is described as follows

e = ê(ρ, T ) (1.8.15)

and it is called caloric equation. Note, that in general, one equation of state, the thermal
or the caloric one, does not necessarily define the other one. This is only the case for
the canonical one. The change rate of energy in an ideal gas is given by the specific heat
capacities at a constant pressure and a constant volume where |· marks the constant
variable

dq

dT
= dh

dT
− v

dp

dT
, ⇒ cp = ∂q

∂T

∣∣∣∣
p

= ∂h

∂T
, (1.8.16)

dq

dT
= de

dT
+ p

dv

dT
, ⇒ cv = ∂q

∂T

∣∣∣∣
v

= ∂e

∂T
. (1.8.17)

In a caloric ideal gas it is
e = e0 + cvT (1.8.18)

with cv = const. and
h = h0 + cpT (1.8.19)

with cp = const. The term cv denotes the specific heat at a constant pressure and cp the
specific heat at a constant volume. The variables with index 0 indicate the energy, respec-
tively, enthalpy at rest. A further important fluid property is the expansions coefficient
β. It yields a relation for the temperature dependence on the expansion rate of a gas and
is formulated by a specific volume v and density ρ

β = 1
v

∂v

∂T
= ρ

∂

∂T

1
ρ

= −∂ρ/∂T

ρ
. (1.8.20)

In an ideal gas, the connection between temperature T and expansion coefficient β is
given with the help of (1.8.6) by

ρ = pM

R0T
⇒ ∂ρ

∂T
= − pM

R0T 2 ⇒ β = pM

ρR0T 2 = 1
T

.
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1. Introduction

As before seen in equation (1.7.6), the buoyant forces in natural convection are propor-
tional to the expansion coefficient β

β = −1
ρ

(
∂ρ

∂T

)
p

. (1.8.21)

1.9. Transport properties of a fluid

Fluid properties can be separated in four types, kinematic properties, e.g velocity, strain
rate, acceleration, transport properties, e. g. viscosity, thermal conductivity or mass diffu-
sivity, thermodynamic properties, e. g. pressure, density or temperature, and other miscel-
laneous properties, e. g. surface tension, vapour pressure or eddy diffusion coefficients. (see
[White1991], chapter 1, 1-3.4). Most of these properties were described in the previous
sections. Now, a special focus lies on the dynamic viscosity μ in ideal gases, due to the in
this thesis used working fluid, air.

The dynamic viscosity varies with pressure and temperature, because of its connection to
molecular interactions. Most typical gas problems are considered at a low reduced pres-
sure. For these problems it is common, to ignore the pressure dependence and model only
the temperature dependence. The viscosity increases with temperature in such gases. In
the simulations of this thesis, a temperature dependent dynamic viscosity is supposed at
an almost atmospheric pressure condition. Besides, the specific heat capacity is assumed
to be constant cp = const. The numerical model is based on the calculation of the specific
enthalpy h.

The temperature dependence on μ is described by the model of Sutherland as stated in
[Sutherland1893] which uses an idealised intermolecular-force potential. For ideal gases it
yields a relation between the dynamic viscosity μ and the absolute temperature T by

μ = μref ·
(

T

Tref

)3/2

·
(

Tref + Ts

T + Ts

)
(1.9.1)

with a reference dynamic viscosity μref at a related reference temperature Tref and the
so-called Sutherland temperature TS which is dependent on the observed gas. Equa-
tion (1.9.1) is sometimes used in a simplified form

μ = C1T
3/2

T + Ts
with C1 = μref

T
3/2
ref

(Tref + Ts) , (1.9.2)

where C1 is the so-called Sutherland coefficient which depends also on the gas. For air, the
model has an accuracy of 4% [K] ([White1991], chapter 1, 1-3.7). Possible Sutherland co-
efficients are listed in table 1.1. The values in table 1.1 may be found in [Sutherland1893]
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1.9. Transport properties of a fluid

or [Montgomery1947] as well as further information to the model itself. For further infor-
mation on the model see also [Bircumshaw1929].

μref
[ kg

ms
]

Tref [K] TS [K] C1

[
kg

ms
√

K

]
1.716 · 10−5 273.5 110.4 1.458 · 10−6

1.827 · 10−5 291.15 120 1.512 · 10−6

Table 1.1.: Sutherland coefficients.

The required coefficients are chosen in this thesis with μref = 1.827 · 10−5 kg/ms,
Tref = 291.15 K and TS = 120 K ([Montgomery1947]). Figure 1.3 shows a plot of the
dynamic viscosity values for particular temperatures between 290 K − 360 K.

Figure 1.3.: Temperature dependence on the dynamic viscosity μ according to the Sutherland
model in [Sutherland1893].

The following formulations are based on the information in [White1991], chapter 1, 1-3.
With help of the dynamic viscosity μ and thermal conductivity λ two further important
fluid properties are derived, the kinematic viscosity ν and the thermal diffusivity coefficient
κ

ν = μ

ρ
, [ν] = m2/s , κ = λ

ρcp

, [κ] = m2/s. (1.9.3)

Both properties consist simply of other fluid properties and may be regarded as diffusiv-
ity of vorticity and temperature. The relation between both properties gives the before
mentioned dimensionless fluid property of the Prandtl number, which can also be written
as

Pr = ν

κ
= μ

cp

λ
. (1.9.4)
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1. Introduction

The Prandtl number is a measure for relative rates of diffusion. In this thesis, the Prandtl
number is in all test cases Pr = 0.71 (air). From the thermal diffusivity coefficient κ an
additional thermal diffusivity α is defined by

α = κρ , [α] = kg/ms. (1.9.5)

Hence, α has the same unit as the dynamic viscosity μ. This thermal diffusivity is later
required to describe the chosen turbulence model for the observed compressible natural
convection.

The Grashof number from section 1.7 is related to a further important dimensionless
parameter, which is often used for the description of a convective flow. This parameter is
the so-called Rayleigh number, which is named after the English physicist Lord Rayleigh
(1842 - 1919) and which is discussed further in chapter 3, section 3.5. It is defined by

Ra = GrPr = gβ0L3 (Tw − T0)
ν0κ0

(1.9.6)

or in terms of the dynamic viscosity μ and thermal diffusivity α

Ra = ρ2
0gβ0L3 (Tw − T0)

μ0α0
. (1.9.7)

Note, that the Rayleigh number varies significantly with a change of temperature or a
change of length L (due to its cube in (1.9.7)). Further, a change of the gravitational force
g influences the Rayleigh number, which is discussed later in chapter 7.

1.10. Governing equations of a natural convection

To formulate the particular governing equation system describing a compressible natural
convection problem, the basic equations from section 1.4 - 1.6 have to be adapted by help
of the fluid properties and thermodynamical state equations.

- Compressible conservation of mass

∂ρ

∂t
+ ∂ρuj

∂xj
= 0 , (1.10.1)

- Compressible conservation of momentum

∂ρui

∂t
+ ∂ρuiuj

∂xj
− ∂

∂xj

(
μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

))
= − ∂p

∂xi
+ ρgi, (1.10.2)
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1.10. Governing equations of a natural convection

- Compressible conservation of enthalpy

∂ρh

∂t
+ ∂ρhuj

∂xj

− ∂

∂xj

(
α

∂h

∂xj

)
= ∂p

∂t
+ uj

∂p

∂xj

. (1.10.3)

Equations (1.10.1) - (1.10.3) represent a set of non-linear partial differential equations of
second-order with a hyperbolic characterisation. The equations consist of a compressible
coupled model. Note, that “compressible“ referred in this case to density changes in the
fluid due to temperature differences. It indicates no characterisation by the Mach number
(for further information it is pointed to [Ferziger02], chapter 1, 1.1). The temperature
dependence on the dynamic viscosity μ is defined by the Sutherland model of section 1.9.

The enthalpy h is used instead of the temperature T in equation (1.10.3), due to the
definition of the required equations in the used simulation software OpenFOAM R©. For
further information on the simulation software see [OpenFOAMa].

In this thesis, a non-Boussinesq fluid is assumed, hence no Boussinesq-approximation
appears in equation (1.10.2), as it was presented in section 1.7 in equation (1.7.7). This
aspect and its influence on the simulation results is further discussed in chapter 5 and
chapter 7.
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2. Computational methods

Most governing equations in fluid mechanics are solved analytically only for a limited
number of problems and under certain conditions. The remaining problems have to be es-
timated by a numerical simulation. Therefore, the particular flow problems are described
by an adapted mathematical model of the Navier-Stokes equations (as it was done in
chapter 1, section 1.4 - 1.6). To solve the resulting system of non-linear partial differential
equations of second order on a particular flow geometry by a computational algorithm,
the entire geometrical domain has to be discretised by a numerical grid or mesh. This grid
separates the geometrical domain in a finite number of several sub-domains, e. g. control
volumes or nodes. Before the system of differential equations can be solved at these dis-
crete locations, the equations have to be discretised and approximated in space and time
by a set of algebraic equations.

In computational fluid dynamics (short: CFD) three discretisation methods are mainly
used: finite difference method (short: FD methods), finite volume method (short: FV
methods) and finite element method (short: FE methods). These methods are presented
in the following. For each flow problem, the geometry is the determining factor for con-
structing an appropriate grid. In this thesis all flow configurations are presented by a
simplified geometry of a rectangular enclosed container. Therefore, a block-structured or-
thogonal mesh which is constructed like a Cartesian grid would be an obvious choice. The
grid consists of diverse levels of sub-domains which consists all of different resolutions. A
structured grid is indeed the easiest type of a numerical mesh and has its disadvantages
on complex geometrical solution domains. But for the observed geometries of this thesis,
a structured grid is the best choice. An advantage of this type of mesh is the regular
structure of the resulting system matrix which can be helpful during the computational
solving process ([Ferziger02], chapter 2, 2.4.4). The information of this chapter is based
on [Ferziger02], [Noll1993], chapter 4, 5, 7, and [Groll10].

2.1. Discretisation methods

2.1.1. Finite difference method (FDM)
All of the above mentioned discretisation methods approximate the system of partial
differential equations at the discrete grid locations by an algebraic equation. In the FD
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2. Computational methods

methods this equation describes the unknown variable values at each grid node and also its
relation to variables at the neighbouring nodes. The resulting set of algebraic equations
for all grid nodes is the approximated solution on the whole computational domain of
the partial differential equation system. In the FD methods three approximation schemes
are widely used, the forward differencing scheme (FDS), backward differencing scheme
(BDS) and central differencing scheme (CDS). All presented schemes are based on the
same principle and all of them are explained on the basis of a simplified transport equation

∂

∂xj
(ρϕuj)︸ ︷︷ ︸

convection
= ∂

∂xj

(
Γ ∂ϕ

∂xj

)
︸ ︷︷ ︸
diffusion

+ qϕ︸︷︷︸
source term

(2.1.1)

with density ρ, the j-th component of velocity uj, the term of diffusivity Γ and the source
term qϕ, which are all assumed as known. The arbitrary variable ϕ is assumed as unknown.
The following evaluations are performed analogously to [Ferziger02], chapter 3.

Figure 2.1.: 2D Cartesian structured mesh (as seen in [Ferziger02]).

In FD methods structured grids are usually used which are demonstrated in figure 2.1
on the basis of a 2D example. The filled circles indicate the boundary nodes, the other
circles the remaining nodes of the grid. Each node is specified by two coordinates (i, j).
The approximations of the first and second order derivatives on the grid are formulated
in the following with help of the differential quotient and a Taylor-series expansion of the
unknown variable ϕ around a specified grid node xi. All presented schemes vary in the
choice of this specified grid node.
The Taylor series of a continuously differentiable function ϕ(x) in a point xi is defined by

ϕ(x) = ϕ(xi) + (x − xi)
(

∂ϕ

∂x

)
i

+ (x − xi)2

2!

(
∂2ϕ

∂x2

)
i

(2.1.2)

+ ... + (x − xi)n

n!

(
∂nϕ

∂xn

)
i

+ O(hn+1) ,

where O(hn+1) stands for terms of the dimension hn+1. h is the step size between two grid
points x and xi with h = Δx = x−xi. From here on, the brief formulation ϕi+1 = ϕ(xi+1)
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2.1. Discretisation methods

is used. The forward differencing scheme (FDS) formulates the approximation of the first
order derivative by a Taylor series of ϕ(x) in the point xi+1 which lies in forward direction
to xi(

∂ϕ

∂x

)
i

= ϕi+1 − ϕi

xi+1 − xi

− xi+1 − xi

2

(
∂2ϕ

∂x2

)
i

−...− (xi+1 − xi)n

n!

(
∂nϕ

∂xn

)
i

+O(hn+1) . (2.1.3)

The backward differencing scheme (BDS) uses the Taylor series of ϕ(x) in the point xi−1

which lies in backward direction to xi(
∂ϕ

∂x

)
i

= ϕi − ϕi−1

xi − xi−1
+ xi − xi−1

2

(
∂2ϕ

∂x2

)
i

+...+ (xi − xi−1)n

n!

(
∂nϕ

∂xn

)
i

+O(hn+1) . (2.1.4)

The central differencing scheme (CDS) is a combination of both above stated schemes
and uses for the approximation both neighboured points of xi, xi+1 and xi−1,(

∂ϕ

∂x

)
i

= ϕi+1 − ϕi−1

xi+1 − xi−1
− (xi+1 − xi)2 − (xi − xi−1)2

2(xi+1 − xi−1)

(
∂2ϕ

∂x2

)
i

− ... −
(xi+1 − xi)n − (xi − xi−1)n

n(xi+1 − xi−1)

(
∂nϕ

∂xn

)
i

+ O(hn+1) . (2.1.5)

If the distance between two grid nodes is small, the higher order terms in the previous
expressions will be also small and can usually be neglected after the first term. The then
omitted terms are called the truncation or discretisation error of each scheme. For the
CDS the truncation error is interpreted by

εr = −(Δxi+1)2 − (Δxi)2

2(Δxi+1 + Δxi)

(
∂2ϕ

∂x2

)
i

− (Δxi+1)3 + (Δxi)3

6(Δxi+1 + Δxi)

(
∂3ϕ

∂x3

)
i

+ O(h4) (2.1.6)

with Δxi+1 = xi+1−xi and Δxi = xi−xi−1. The truncation error measures the discrepancy
between an approximated solution of the scheme and exact analytical solution. Usually
it is proportional to a power of the grid space Δxi. A method is called consistent, if the
truncation error tends to zero for Δxi → 0 and/or Δt → 0.

If the approximation converges with a reduced step size Δx, the error is proportional to
(Δx)k. k is the exponent of the leading term in the truncation error formulation and it
denotes the order of the scheme. It specifies how fast the error of a scheme is reduced,
when the mesh is refined. All schemes with k > 0 are consistent. The error depends
along on the grid spacing, always on the discretised derivatives. If the mesh resolution
is changed by a constant factor re, the distances between the nodes is also changing by
this factor, Δxi+1 = reΔxi. Hence, the changed resolution has also an influence of the
resulting truncation error. For a small step size, the first term becomes the dominating
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2. Computational methods

εr ≈ (Δxi+1)2 − (Δxi)2

2(Δxi+1 + Δxi)

(
∂2ϕ

∂x2

)
i

(2.1.7)

≈ Δxi+1

2

(
∂2ϕ

∂x2

)
i︸ ︷︷ ︸

εF DS

− Δxi

2

(
∂2ϕ

∂x2

)
i︸ ︷︷ ︸

εBDS

= (1 − re)Δxi

2

(
∂2ϕ

∂x2

)
i

with the error of the FDS and BDS. The error of these both methods can be approximated
by

εF DS/BDS
r ≈ Δxi

2

(
∂2ϕ

∂x2

)
i

. (2.1.8)

For a constant re close to 1, the error of the CDS is much smaller as the one of the FDS
or BDS, which is the advantage of the CDS.

To solve the Navier-Stokes equations from chapter 1, section 1.10, besides an approxima-
tion of the first order derivative, one for the second order derivative has to be found which
is done based on the information in [Ferziger02], chapter 3, and [Groll10]. Therefore, the
approximation of the first order derivative is executed twice with additional points. For
the CDS one obtains

(
∂2ϕ

∂x2

)CDS

i

≈

(
∂ϕ

∂x

)
i+ 1

2

−
(

∂ϕ

∂x

)
i− 1

2

(xi+ 1
2

− xi− 1
2
) , (2.1.9)

where
xi+ 1

2
− xi− 1

2
= 1

2(xi+1 − xi) + 1
2(xi − xi−1) = 1

2(xi+1 − xi−1) .

Both inner derivatives in (2.1.9) can be written in terms of the FDS and BDS(
∂ϕ

∂x

)CDS

i+ 1
2

=
(

∂ϕ

∂x

)F DS

i

≈ ϕi+1 − ϕi

xi+1 − xi

,(
∂ϕ

∂x

)CDS

i− 1
2

=
(

∂ϕ

∂x

)BDS

i

≈ ϕi − ϕi−1

xi − xi−1
. (2.1.10)

With the expressions in (2.1.10), equation (2.1.9) is modified to

(
∂2ϕ

∂x2

)CDS

i

≈
ϕi+1 − ϕi

xi+1 − xi

− ϕi − ϕi−1

xi − xi−1
1
2(xi+1 − xi) + 1

2(xi − xi−1)
. (2.1.11)

The FD methods are a simple and effective way to approximate flows on uncomplex
geometries. Higher order schemes can be developed on structured grids without great
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2.1. Discretisation methods

difficulties. However, for complex grid structures, the FD methods are not appropriate,
which is an important disadvantage. Besides a high accuracy of a discretisation scheme,
it should also be conservative. Therefore, the balance of each variable in the flow field,
e. g. the mass flow, should be fulfilled in the approximated algebraic equations in every
volume at steady state and in absence of sources. This is usually not satisfied in FD
methods without further precautions ([Ferziger02], chapter 2, 2.6.1).

Note that additionally to the truncation error, the numerical solution is also afflicted with
modelling errors of the transport equation model and convergence errors of the selected
solving algorithm ([Ferziger02], chapter 2, 2.5.7).

2.1.2. Finite element method (FEM)

These discretisation methods are not supplicated in this thesis and are presented only
summarised at this point. In the finite element methods the computational grid is divided
in a set of discrete volumes or finite elements. The grids are usually unstructured and
consists in 2D of triangles and in 3D of tetrahedral or hexahedral summits. Before the
set of differential equations is integrated over the whole grid, the equations are multiplied
by appropriate weighting functions. The advantage of these methods is the application
on arbitrary grids and an easy grid refinement. For further literature on this topic see,
e. g., [Ferziger02], chapter 2.6.3 and [Liu13].

2.1.3. Finite volume method (FVM)

The following explanations are based on [Ferziger02], chapter 4. In the FD methods the
first and second order derivatives of the transport equation are approximated in the nodes
of the grid by a Taylor series expansion. In contrast to this approach, the FV methods
approximate the set of partial differential equations by an integration over each control
volume (CV) of the grid. A CV is illustrated in figure 2.2 for a 2D and 3D example.

To obtain, as beforehand, an approximating algebraic equation for each CV, the surface
and volume integrals of each CV have to be approximated. Therefore, the grid is no longer
determined by the nodes, but rather by the boundary surfaces of the CVs. The cell nodes
of each CV should be located in the middle of each volume. The CVs should not overlap
each other to obtain a higher accuracy of the method. FV methods can even operate on
complex computational domains. But it is difficult to define schemes of higher as second
order. The volume integral of the transport equation in (2.1.1) on page 30 can be written
as ∫

Ω

∂

∂xj

(ρϕuj) dΩ =
∫

Ω

∂

∂xj

(
Γ ∂

∂xj

ϕ

)
dΩ +

∫
Ω

qϕ dΩ , (2.1.12)
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2. Computational methods

where Ω is one control volume of the grid. In consequence of Gauss’s theorem (for further
details to Gauss’s theorem see [Amann08], chapter 3) the volume integral is transformed
in a surface integral for the convective and diffusive term∫

∂Ω
ρϕuuu · nnn dS =

∫
∂Ω

Γ (∇ϕ) · nnn dS +
∫

Ω
qϕ dΩ (2.1.13)

with the boundary surface ∂Ω and its nnn normal vector.

Figure 2.2.: Sketch of a control volume (CV) in 2D (left) and 3D (right) (as seen in [Ferziger02]).

Considering a continuously distribution of the variables over the surfaces, the integral in
(2.1.13) can be described by the sum of the particular flows trough each face Sj∑

j

((ρϕ)j · (uj · Sj)) =
∑

j

(Γj · (∇ϕ)j · Sj) +
∫

Ω
qϕ dΩ , (2.1.14)

where the summand j stands for the number of individual faces Sj of the entire boundary
surface ∂Ω. For a characterisation of a CV, the common compass notation is used. There-
fore, the CV is divided in its six faces (see figure 2.2). The node in the middle of the CV
is indicated by P . The points which are located in direction of the y-axis are signified by
N and S (north and south). The points which are located in direction of the x-axis are
signified by W and E (west and east). The points T and B which are located in direction
of the z-axis mark the top and bottom of the CV in a 3-dimensional case. The boundary
faces of the CV around P are marked by n, s, e, w. In 2D, these donations would indicate
the edges of the particular face. The velocity uj is always normal to the face Sj.

The surface and volume integral can be approximated by interpolation of variable values
either in the midpoint P or one or more extra locations at the cell faces. Three methods
are very common for this interpolation, the Midpoint rule, the Trapezoid rule and Simp-
son’s rule (see [Ferziger02], chapter 4.2.). All methods are based on the same principle, but
are of different order, due to the utilised numbers of points in which the surface integral
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2.2. Interpolation schemes

is approximated. At this point only the Midpoint rule is presented for a 2-dimensional
example. The Midpoint rule is defined by

Fe =
∫

Se

f dS ≈ feSe. (2.1.15)

The integral is approximated by the value of f at the cell face’s centre and the entire
cell face area. This method is an interpolation of second order and needs the value of the
integrand f at the position e. Furthermore, an interpolation for the volume integral has
to be found. To approximate the volume integral in the easiest way, one takes the product
of the mean value and CV volume

Qp =
∫

Ω
q dΩ = q̄ΔΩ ≈ qpΔΩ, (2.1.16)

where qp designates the value at the CV centre. This method is of second order and no
interpolation is needed, because in the CV’s centre point P all variables are known. For an
interpolation of a higher order, the values of q are required at more positions as solely in the
centre. Therefore, nodal values have to be interpolated. Some appropriate interpolation
methods will be presented in the following section. For examples of 3-dimensional higher-
order methods it is referred to [Ferziger02], chapter 4.

Another method for the approximation of the volume integral is the Gaussian integration.
This method uses besides the estimated values at the grid nodes also so-called weight
coefficients. For the interval [−1, 1], the integration is formulated in [Liu13] chapter 7,
7.3.4 by

F =
∫ 1

−1
f(ξ)d ξ =

m∑
j=1

wjf(ξj) . (2.1.17)

The interval [−1, 1] can be transformed to any arbitrary one with help of a linear trans-
formation. The node ξj and the weight coefficients wj should be chosen in a way, that
(2.1.17) produces an exact result of a possible high order polynomial. Note that a higher
number of nodes does not assure a higher accuracy of the obtained results in any case.
But a higher number of nodes will increase the computational effort in any case. The
exact number of nodes is dependent on the integrand. An overview of different possible
nodes and weight coefficient as well as further information is given in [Liu13] chapter 7,
7.3.4.

2.2. Interpolation schemes

As mentioned in the previously section, the approximation of the surface and volume
integrals of the CV requires the variable values at locations other than the cell midpoint
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2. Computational methods

P . Therefore, these values have to be interpolated by the known nodal values. In this
section, diverse possibilities for such an interpolation scheme are demonstrated. The listed
schemes are explained with help of cell face e for a value ϕ and its derivatives. This values
are needed to estimate the convective fc = ρϕuuu · nnn and diffusive flux fd = Γ ∂

∂xj

ϕ · nnn

through the CV’s surface. Note that the used interpolation method is obligated to be
of the same order as the chosen integral approximation to receive the same accuracy.
The following explanations are based on the information in [Ferziger02], chapter 4 and
[Noll1993], chapter 4.

2.2.1. Upwind interpolation scheme (UDS)
This interpolation method is formulated analogously to the information in [Ferziger02],
chapter 4.4.1.

Figure 2.3.: Upwind interpolation scheme (UDS) (as seen in [Noll1993]).

To interpolate the value of ϕe between two nodes P and E at the boarder of face e, it is
assumed as the value of the point which is located upstream or upwind to the boarder e.
This interpolation equals the BDS, respectively FDS, in FD methods, as is illustrated in
figure 2.3. Hence, the direction of the flux is determining for the definition of ϕe

ϕe =
{

ϕP if (uuu · nnn)e > 0,

ϕE if (uuu · nnn)e < 0.
(2.2.1)

The method is of first order, as its Taylor series around P shows

ϕe = ϕP + (xe − xP )
(

∂ϕ

∂x

)
P

+ (xe − xP )2

2

(
∂2ϕ

∂x2

)
P

+ O(h3) . (2.2.2)

The arising truncation error is then

fdiff
e = Γe

(
∂

∂x
ϕ

)
e

. (2.2.3)
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2.2. Interpolation schemes

This error term produces a false diffusive flux which is directed normal to the flow. This
flux can influence the numerical results in this way that peaks or variations can be smooth
out. It can be expressed by

Γ = Γreal
e + Γnum

e , (2.2.4)

where Γnum
e = (ρuuu)e Δx/2. This produced numerical diffusion can be even intensified

in multidimensional grids. An subsequent disadvantage is the low order of the scheme.
Consequently, a fine grid resolution has to be chosen to reach anyway a high accuracy.

2.2.2. Linear interpolation scheme (CDS)
This second order interpolation scheme is described based on [Ferziger02], chapter 4.4.2.
The scheme needs for the integral approximation the two nearest nodes relative to the
CV face centre e. Hence, it is equivalent to the CDS method for the first order derivative.
The interpolation of ϕe is expressed by a weighted average of both nearest nodes E, P as
given

ϕe = λeϕE + ϕP (1 − λe). (2.2.5)

The geometrical interpolation factor λe describes the distance between the neighboured
points by

λe = xe − xP

xE − xP
. (2.2.6)

This is demonstrated in figure 2.4 A Taylor-series expansion of ϕ around P shows, that
the scheme is of second order

ϕe = ϕEλe + ϕP (1 − λe) − (xe − xP )(xE − xe)
2

(
∂2ϕ

∂x2

)
P

+ O(h3) . (2.2.7)

Assuming a linear approximation between the nodes P and E, the gradient is approxi-
mated by (

∂ϕ

∂x

)
e

≈ ϕE − ϕP

xE − xP

. (2.2.8)

The truncation error is indicated by a Taylor-series around ϕe

ετ = (xe − xP )2 − (xE − xe)2

2(xE − xP )

(
∂2ϕ

∂x2

)
e

− (xe − xP )3 + (xE − xe)3

6(xE − xP )

(
∂3ϕ

∂x3

)
e

+ O(h4).

(2.2.9)

If e is located midway between the nodes P and E, the method is of second order and
the leading error term is proportional to (Δx)2. If a non-uniform grid is used, the leading
term in (2.2.9) is proportional to the term of Δx and a potential grid expansion factor. As
all schemes of second order, this one too, may provide an possible additional oscillatory
which affects the solution. The important advantage of this FV method is its adaptability
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2. Computational methods

to any kind of geometry. The scheme is conservative, if the values of the surface integrals
of two adjoined CV’s boundary faces are identical. 3-dimensional higher order schemes
are difficult to construct for this type of scheme.

Figure 2.4.: Linear interpolation (CDS) (as seen in [Noll1993]).

2.2.3. Complementary notes

Besides the presented schemes for an approximation of the convective fluxes, there are
additionally methods used in CFD, e. g. schemes of higher order or hybrid schemes. In
this thesis the afore mentioned methods are sufficient for the examined problems. Hence,
a presentation of the other schemes is dispensed at this point and only a short summary
is given. For example, there is the quadratic upwind interpolation scheme (QUICK) which
is of fourth order and similar to the CDS. Instead of a linear function a quadratic one is
used to approximate the variables between the nodes P and E.

The linear upwind scheme (LUDS) is also of second order, but has a more complex struc-
ture than the CDS. Because unbounded solutions can be produced by a LUDS, the CDS
should be the better choice. Furthermore, one can create a new scheme by combining two
ore more other approximation schemes. This is done in the scheme of Spalding which uses
a UDS and CDS. For further literature on these topics see, e. g., [Ferziger02], chapter 4.

2.3. Solution methods for linear equation systems

After the discretisation methods for the system of partial differential equations were pre-
sented before, solving methods for the resulting system of algebraic equations are illus-
trated in the following. Even if the resulting system is primarily non-linear, linear equation
systems appear during the numerical solving process. Hence, one have to formulate ef-
ficient solving methods for such equation systems which is done in the following based
on [Ferziger02], chapter 5. A resulting system of linear algebraic equations for the whole
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2.3. Solution methods for linear equation systems

AP ϕP +
∑

l

Alϕl = qP ⇒ Aϕ = qqq . (2.3.1)

The source term qP on the RHS of equation (2.3.1) contains all terms, that may be
calculated in terms of the velocity uuu and body forces. These terms are presumed as known.
P stands for an arbitrary grid node where the partial differential equation is discretised
and l for the required neighboured nodes. Al includes fluid properties, geometrical aspects
and in nonlinear equations also the variable values themselves. The vector ϕ (or column
matrix) includes the variable values of the grid nodes. Equation (2.3.1) shows on the RHS
a summarised form.

The coefficient matrix A of the system is square and sparse. Sparse indicates, that each
equation contains only a few unknowns and hence, only few matrix entries are unequal
zero. The exact structure of A depends on the vector entries of ϕ ([Ferziger02], chapter
3, 3.8). For further explanations of the matrix properties it is pointed to the appendix A,
section A.1, A.1.3 on page 275 in this thesis.

Two groups of schemes can be used to find a solution of (2.3.1), the so-called direct
and the so-called iterative solution methods. The direct methods calculate directly a
solution by converting the system in (2.3.1), while in the iterative methods a solution
is estimated successively in several iteration steps until the final solution satisfies a stop
criterion. Usually, the stop criterion is a specified tolerance which should be reached by
the solution. Because of a high storage requirement and a possible non linearity of system
(2.3.1), iterative methods are used for flow problems in CFD mostly. At this point, only
these methods are demonstrated. For an description of the direct methods it is pointed,
for example, to [Noll1993], chapter 7.

2.3.1. Iterative methods

The following explanations are based on the information in [Ferziger02], chapter 5, 5.3.1 -
5.3.4, [Noll1993], chapter 7 and [Groll10]. To solve the equation system in (2.3.1) by an
iterative method, the matrix A is decomposed in two other matrices

A = (M − N) , (2.3.2)

where M is the so-called decomposition matrix and N the so-called iteration matrix of the
system. The choice of matrix M characterise each iteration method. By inserting (2.3.2)
in (2.3.1), it follows

Mϕ = Nϕ + ddd with ddd = M−1qqq . (2.3.3)
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2. Computational methods

With help of equation (2.3.3), an iteration formulation can be written by

ϕn+1 = M−1(Nϕn + ddd) . (2.3.4)

After n iteration steps are preformed, the approximated solution ϕn does not fulfil (2.3.1)
exactly and a residuum term ρρρn remains

Aϕn = qqq − ρρρn . (2.3.5)

Subtracting (2.3.5) from (2.3.1) it is

A (ϕ − ϕn) = ρρρn ⇒ AΔϕn+1 = ρρρn (2.3.6)

with the exact solution ϕ. Additionally, a formulation of the methods convergence error
is determined by

εεεn = ϕ − ϕn . (2.3.7)

With the matrix decomposition for ϕn+1 in (2.3.3) and an exact solution ϕ, it follows

εεεn+1 = M−1Nεεεn . (2.3.8)

From (2.3.5) a correction or updating formulation of the solution vector can be expressed
by

ϕn+1 = ϕn + Δϕn+1 , (2.3.9)

where Δϕn+1 is a correction vector of ϕn. The goal of the whole iteration process is
a residuum which converges, in the best case, to zero. The convergence of an iteration
method is mainly influenced by the eigenvalues λk and eigenvectors vk of its iteration
matrix A, respectively of its decompositions matrices

M−1Nvk = λkvk . (2.3.10)

The maximal eigenvalue of a matrix can be estimated by

λmax ≈ ‖ρρρn‖
‖ρρρn−1‖ (2.3.11)

with a chosen matrix norm ‖·‖. An iteration method is called convergent, if the maximal
eigenvalue of its iteration matrix satisfies the following condition

λmax = max
p

‖λp‖ < 1 . (2.3.12)
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2.3. Solution methods for linear equation systems

With the expression in (2.3.11), the convergence error can be rewritten as

εεεn = ϕ − ϕn ≈ ρρρn

λmax − 1 (2.3.13)

and
‖εεεn‖ ≈ ‖ρρρn‖

λmax − 1 . (2.3.14)

If the iteration matrix has complex eigenvalues, the error of the iteration method grows
no longer exponentially and the above presented method has to be modified. For further
details it is referred to [Ferziger02], chapter 5.

A further criterion for convergence of an iteration method can be formulated in terms of
the condition number of its matrix A. The condition number defines, how intense small
changes in the matrix A or source term qqq effect the solution vector ϕ. The condition
number of a regular matrix is defined by

k(A) := ‖A‖‖A−1‖ or k(A) := |λmax|
|λmin| . (2.3.15)

The condition number depends on the selected matrix norm, but it is always k(A) ≤ 1.
If the condition number is small, small changes in the matrix A have also only small
influence on the solution ϕ. A small condition number implies a small convergence error
of the iteration method. The bigger the condition number of a matrix A is, the slower the
iteration scheme converges.

Because the exact solution ϕ, and consequently the accuracy of the approximated solution
ϕn, is not known during the iteration process, another stop criterion for the iteration has to
be found. Usually, the reached approximated solution ϕn should fulfil a specified tolerance.
This tolerance can be given by

‖ρρρn‖
rref

≤ tol , (2.3.16)

where ‖·‖ is a chosen matrix norm of the residuum vector ρρρ, rref is a reference value and
tol a chosen tolerance value. For the correction vector Δϕn an equivalent criterion can be
found ‖Δϕn‖

ϕref
≤ tol . (2.3.17)

Note that both criteria are only working successfully, if the matrix A is well-conditioned.
Another approach of solving system (2.3.1) is a so-called pre-conditioning matrix. In this
case, the system in (2.3.1) is multiplied by a non-singular matrix P . “Non-singular” means,
that the inverse matrix of P exists. Due to the multiplication

P −1Aϕ = P −1qqq , (2.3.18)

41

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2. Computational methods

the resulting problem in (2.3.18) has a smaller condition number than the primarily
problem. The iteration formulation of the modified problem is then expressed by

Pϕn+1 = q + (P − A)ϕn . (2.3.19)

In terms of the above presented decomposition notation, it is M = P and N = P − A.

2.3.1.1. Conjugate gradient methods

The following information of this section is based on the details in [Ferziger02], chapter
5, 5.3.6 and [Noll1993], chapter 7, 7.2.6. In terms of this thesis, the decomposition of
matrix A is done by two different methods, the ILU (incomplete LU decomposition) and
the incomplete Cholesky factorisation. Both methods are based on the LU decomposition,
which is part of the direct methods (for further details see [Ferziger02], chapter 5, 5.2).

In the LU decomposition, the matrix A is decomposed as M = LU = A + N , where
L and U are triangular matrices. L is a lower and M an upper triangular matrix. The
diagonal elements of matrix L have to be equal unity, Lii = 1. The incomplete Cholesky
factorisation is a modified version of the above LU decomposition for symmetric matrices
only. The ILU is also based on the LU decomposition and can be used for asymmetric,
but positive definite matrices A.

The advantage of the ILU method is, that both decomposition matrices L and U can
be chosen as sparse matrices, like the system matrix A. For each entry of the matrix A

which is zero, the corresponding element in L or U is also set to zero. The matrix product
of L and U has to approximate the matrix A as adequate as possible. This factorisation
is not exact, but can be used as decomposition matrix M of an iterative method. The
factorisation can be done without knowing the vector qqq, which has many advantages as
to storage requirements for systems with the same coefficient matrix A.

Both mentioned methods are often used for the matrix decomposition in the so-called con-
jugate gradient methods which belong to the so-called descents methods. In their originally
form, these methods are only applicable on systems with symmetrical, positive definite
system matrices. On basis of these methods, the problem in (2.3.1) is equivalent to a
minimisation problem of the following form as it is described in [Ferziger02], chapter 5,
5.3.6

F = 1
2ϕT Aϕ − ϕTqqq = 1

2

n∑
j=1

n∑
i=1

Aijϕiϕj −
n∑

i=1
ϕiqi (2.3.20)

with respect to all ϕi. The function F may be considered as a surface in hyper-space.
F can be minimised with respect to several directions at once by searching only in one
direction at a time. This is possible by a careful choice of the search directions. For two
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2.3. Solution methods for linear equation systems

ϕ = ϕ0 + α1ppp1 + α2ppp2 , (2.3.21)

where the values α1, α2 should minimise function F in the plane which is spanned by
the two direction vectors ppp1, ppp2. If the two search directions are called A-conjugate (with
respect to the matrix A)

ppp1 · Appp2 = 0 , (2.3.22)

the problem in (2.3.21) can be reduced to a minimisation problem for ppp1 and ppp2 indi-
vidually. This approach can be performed for any number of direction vectors, but each
direction has to be conjugate to the previous ones. If the matrix A is non-singular, the
direction vectors are linear independent to each other. The actual search direction has to
be chosen as different as possible from the old search directions. The advantage of this
method is a decreasing error in each. The amount of the decrease depends on the chosen
search direction.

In [Noll1993], chapter 7, 7.2.7, an approach obtaining an iterative solution is formulated
as in the following. The exact solution ϕ∗ can be determined by a linear combination of
the A-conjugated vectors pppi

ϕ∗ = ϕ0 +
n−1∑
j=1

(hi · pppi) , (2.3.23)

where n is the number of unknowns of the system. A multiplication of equation (2.3.23)
with matrix A and a subsequent following scalar product with pppi, leaves to the following
expression

hi = pppT
i (qqq − Aϕ0)

pppT
i Apppi

. (2.3.24)

With help of expression (2.3.24), a formulation can be found to estimate an improvement
of the inertial value ϕ0

ρρρi = qqq − Aϕi , (2.3.25)

αi = pppT
i ρρρi

pppT
i Apppi

, i ≥ 0 , (2.3.26)

ϕi+1 = ϕi + αi · pppi , i ≥ 0 . (2.3.27)

The i-th direction vector pppi does not point in the same direction as the i-th residuum vector
ρρρi. αi is a constructing parameter which is used to formulate the new solution, the residual
vector and also the search direction. The above rules were stated first in [Faddejew1964].
The method reaches after n − 1 iteration steps the exact solution ϕn−1 = ϕ∗ with a
negligible rounding error due to (2.3.23). In most problems, the number of iteration steps
is smaller than n − 1. The exact number depends still on the condition number of matrix
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2. Computational methods

A. The condition number can be improved by a pre-conditioning matrix, as presented
before. The formulation for the estimation of the vectors pppi is defined differently in each
of the conjugate gradient methods.

The coefficient matrices of the discretised equations are usually asymmetrical, due to
the convective terms in the governing equations. To avoid a possible asymmetry, the
transposed matrix of A, AT , is chosen as pre-conditioning matrix, because the product of
both matrices A, AT , is a symmetric matrix again. The modified equation system is then

AT Aϕn+1 = ATqqq . (2.3.28)

This approach is called generalised conjugate gradient method and is described in the
following based on the information in [Noll1993], chapter 7, 7.2.7. Note that the matrix
product AT A is not as well-conditioned as the matrix A itself. The iteration formulation
of this generalised conjugate gradient method can be summarised as follows

1) Estimate the residuum by ρρρ0 = qqq − Aϕ0 with the initial vector ϕ0.

2) Calculate the i-th solution ϕi from MΔϕi = ρρρi with i ≥ 0.

3) Evaluate the direction vector pppi by

β0 = 0 , (2.3.29)

βi = −ΔϕT
i Apppi−1

pppT
i−1Apppi−1

, i ≥ 1 , (2.3.30)

pppi = Δϕi + βi · pppi−1 , i ≥ 0 . (2.3.31)

4) Correct the solution vector by

αi = pppT
i ρρρi

pppT
i Apppi

, i ≥ 0 , (2.3.32)

ϕi+1 = ϕi + αi · pppi , i ≥ 0 . (2.3.33)

5) Calculate the new residuum

ρρρi+1 = ρρρi − αiApppi, i ≥ 0 . (2.3.34)

6) Repeat steps 2) - 5) until the convergence criterion is reached.

The variable βi is, as before αi, a construction parameter. This scheme was published
first in [Concus1978]. In its primarily form, the matrix M has to be symmetrical, positive
definite and should approximate A. However, according to [Kosmol1993], this condition is
not necessary. It is sufficient, that the matrix is diagonal dominant and has a symmetrical
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2.4. Unsteady problems

band structure. Hence, the matrix M can be constructed on basis of the above presented
ILU or incomplete Cholesky factorisation. According to ([Noll1993], chapter 7, 7.2.7), the
resulting method is efficient and stable. Even the poor-conditioned equation system of
the pressure-correction can be solved by this method effectively with a relaxation factor
of α = 0.99. For symmetric matrices A the system in (2.3.1) is solved instead of system
(2.3.28) with help of the above described method.

2.3.1.2. Bi-conjugate gradient methods

A further method for the transformation of an asymmetrical matrix problem in a symmet-
rical one, is the so-called bi-conjugate gradient method. This method is described based
on the information in [Ferziger02], chapter 5, 5.3.7. The transformation is done as follows(

0 A

AT 0

)
·
(

Θ
ϕ

)
=
(

qqq

000

)
. (2.3.35)

Equation (2.3.35) can be regarded as a two sub-system, the original problem and the
second one which contains the transposed matrix of A. The generalised conjugate gradient
method is applied on the transformed system, as it was presented above. Regarding the
second system, the above presented iteration steps have to be modified.

Therefore, one has to estimate next to the residuum ρρρ0 = qqq − Aϕ0, also the residuum
ρ̄̄ρ̄ρ0 = qqq − AT ϕ0 with ϕ0. It is also ppp0 = p̄pp0. In step 2) also MΔϕi = ρ̄̄ρ̄ρi has to be solved.
In step 3) and 5) calculations of the additional direction vectors p̄ppi and the residuum
ρ̄ρρi+1 (with help of AT ) have to be performed. In step 3) and 4) βi and αi are estimated
this time with the help of p̄̄p̄pi, ρ̄ρρi instead of pppi, ρρρi The computational effort of this scheme
is as twice as much as for a generalised conjugate gradient method, but it needs about
the same number of iterations to reach convergence. This method was first published
in [Fletcher1976].

2.4. Unsteady problems
So far, the transport equation was treated in a steady state formulation. For unsteady
flows, the component of time has to be regarded additionally in the solving algorithm.
The following demonstrations in this section are based on [Ferziger02], chapter 6.

Similar to the afore presented discretisation of the equations in space, the time variable
has also to be discretised on the computational grid. In contrast to the discretisation in
space, the discretisation in time may affect the flow only in a future time direction. Hence,
after a calculation has already started, an implemented condition affects the solution only
in future time steps and not in the elapsed ones. The discretisation in time has to be
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2. Computational methods

performed always after the discretisation in space is done. As for the discretisation in
space, several solution methods can be used for a discretisation in time. In terms of this
thesis, just the required schemes of the explicit and implicit Euler method are presented.

According to [Ferziger02], chapter 6, 6.2.1, the formulation of a time discretisation method
equals solving methods for ordinary differential equation problems (short: ODE). An
initial value problem of first order is expressed for an arbitrary function ϕ(t) by

dϕ(t)
dt

= f(t, ϕ(t)), ϕ(t0) = ϕ0 . (2.4.1)

To find a solution ϕ(t) of the initial value problem in eq. (2.4.1) at a certain time step
t = t0 + Δt, equation (2.4.1) has to be integrated over an interval [tn, tn+1]∫ tn+1

tn

dϕ

dt
dt = ϕn+1 − ϕn =

∫ tn+1

tn

f(t, ϕ(t)) dt. (2.4.2)

The first presented solution method, the so-called explicit Euler method, evaluates the
function f(t, ϕ(t)) with help of the initial point tn, where the solution is already known

ϕn+1 = ϕn + f(tn, ϕn)Δt . (2.4.3)

The second solution method, the so-called implicit Euler method, uses instead of the initial
point tn the final point tn+1

ϕn+1 = ϕn + f(tn+1, ϕn+1)Δt . (2.4.4)

The value ϕn+1 at tn+1 is not known a priori, why the method is labelled implicit. Both
methods require the values of the unknown variable ϕ merely at two time points, why
they are also called two-levels methods.

The numerical solution of these methods is called stable, if the errors which appear during
the solving process are not magnified in the final solution. Many other definitions of a stable
temporal method can be found in the literature. For example, a scheme is called stable, if
the method produces a bounded solution, whenever the exact solution is bounded. One
potential definition of stability for the explicit Euler method can be defined by∣∣∣∣1 + Δt

∂f(t, ϕ)
∂ϕ

∣∣∣∣ < 1 . (2.4.5)

This state is fulfilled, if Δt
∂f(t, ϕ)

∂ϕ
is restricted to the unit circle around −1. Then the

method is even conditionally stable. If the function ϕ produces only real values, the con-
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∣∣∣∣Δt
∂f(t, ϕ)

∂ϕ

∣∣∣∣ < 2 . (2.4.6)

The implicit Euler method is a so-called unconditionally stable method, i.e, it produces
a bounded solution in any time step, if it is ∂f(t, ϕ)

∂ϕ
< 0. Even if a large step size Δt is

used, the resulting solution of the implicit Euler method tends to be smooth. The explicit
and the implicit Euler method are schemes of first order. The error of both methods is
proportional to the step size Δt.

Discretisation methods of unsteady flows can be formulated analogously to the ones of
steady state flows, except for the additional time component which has also to be consid-
ered in the methods.

2.4.1. Explicit Euler method

The next step is the application of both methods to the generic transport equation de-
scribed in (2.1.1) analogously to [Ferziger02], chapter 6, 6.3.1. The explicit Euler method
method is the simplest method which uses all known variables at the initial time step tn.
This method is demonstrated in the following with help of the transport equation in eq.
(2.1.1)

∂(ρϕ)
∂t

= − ∂

∂xj
(ρϕuj) + ∂

∂xj

(
Γ ∂ϕ

∂xj

)
+ qϕ = f(t, ϕ(t)) . (2.4.7)

In the following, the exception ρ = const. is taken, so equation (2.4.7) becomes

∂ϕ

∂t
+ ∂

∂xj
(ϕuj) = Γ

ρ

∂2ϕ

∂x2
j

+ qϕ. (2.4.8)

It is also
ϕn

i = ϕ(xi, t0 + nΔt) . (2.4.9)

Assuming a precedent discretisation in space using a CDS and a uniform grid spacing in
x-direction, the algebraic equation for ϕn+1

i becomes

ϕn+1
i = ϕn

i +
(

−u
ϕn

i+1 − ϕn
i−1

2Δx
+ Γ

ρ

ϕn
i+1 + ϕn

i−1 − 2ϕn
i

(Δx)2 + qn
i

)
Δt . (2.4.10)

Note that in connection with the CDS, the FD as well as FV discretisation method
provides in this case the same algebraic equation. To simplify the term in (2.4.10), two
dimensionless parameters are introduced. The first parameter d stands for the time which
a disturbance needs to be transmitted by diffusion over a distance Δx

d = ΓΔt

ρ(Δx)2 . (2.4.11)
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The term d is expressed by the ratio of the time step Δt and a characteristic diffusion
time Γ

ρ(Δx)2 . The second parameter is so-called Courant number. It is defined as ratio of
the time step Δt and the characteristic convection time u/Δx. Co represents the time
which a disturbance needs be transmitted by convection over a distance Δx

Co = uΔt

Δx
. (2.4.12)

With help of the terms in (2.4.11) and (2.4.12), equation (2.4.10) can be rewritten as

ϕn+1
i = (1 − 2d)ϕn

i +
(

d − Co

2

)
ϕn

i+1 +
(

d + Co

2

)
ϕn

i−1 + qn
i Δt. (2.4.13)

In the generic transport equation, ϕ may stand for any transport variable, e.g temperature
or a concentration of a substance. Hence, (2.4.13) should reflect a realistic physical rela-
tion. As in the situation of a concentration, equation (2.4.13) should not become negative.
The request, that the coefficients of all old nodal values should be positive, would imply
for the term of diffusivity, that d − Co

2 > 0 and d + Co
2 > 0. For the convective term it has

to be 1 − 2d > 0. Thus, stability conditions have to be defined which regard these terms.
This theory was invented by the Austrian-Hungarian mathematician John von Neumann
(born in 1957).

The consideration for the convective term, gives a limit on the time step Δt

1 − 2d > 0 ⇒ d <
1
2 ⇒ Δt <

ρ(Δx)2

Γ . (2.4.14)

The considerations for the diffusivity, give the following expressions based on the infor-
mation in [Groll10]

d − Co

2 > 0 ⇒ Co < 2d ⇒ uΔt

Δx
<

2ΓΔt

ρ(Δx)2 ⇒ ρuΔx

Γ < 2 ,

d + Co

2 > 0 ⇒ Co > −2d ⇒ uΔt

Δx
> − 2ΓΔt

ρ(Δx)2 ⇒ ρuΔx

Γ︸ ︷︷ ︸
> 0

> −2 . (2.4.15)

The term ρuΔx

Γ is the so-called Péclet number which is named after the French physicist
Jean Claude Eugène Péclet (1793 - 1857). From the relations in (2.4.14) and (2.4.15) it
follows that

Pe
Co > 2 ,

Pe < 2 ⇒ Co << 1 ⇒ Δt <<
Δx

u
. (2.4.16)
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Thus, to obtain a stable method the Péclet number has to be smaller than 2. This is a
sufficient, but not necessary condition, to obtain a bounded solution. The above presented
method is based on the explicit Euler method for ODEs and the CDS for a discretisation
in space. Hence, the method has to be of the same order as both used schemes are, i.e
first order in time and second order in space.

Note that the coefficient ϕn−1
i+1 in equation (2.4.13) may be possibly negative for flows

which are dominated by convective heat transport. One suggestion to avoid this problem
is the application of an UDS instead of a CDS in the calculation of the convective term
as given in [Ferziger02], chapter 6, 6.3.1. This implies a modified formulation of equation
(2.4.10)

ϕn+1
i = ϕn

i +
(

−u
ϕn

i − ϕn
i−1

Δx
+ Γ

ρ

ϕn
i+1 + ϕn

i−1 − 2ϕn
i

(Δx)2 + qn
i

)
Δt , (2.4.17)

which leads also to a modified version of (2.4.13)

ϕn+1
i = (1 − 2d − Co)ϕn

i + dϕn
i+1 + (d + Co) ϕn

i−1 + qn
i Δt. (2.4.18)

The stability criterion becomes then

Δt <
1

2Γ
ρ(Δx)2 + u

Δx

. (2.4.19)

If the convective heat transport is negligible, the criterion has the same formulation as
the one in equation (2.4.16). If diffusion is negligible, stability is reached, if

Co < 1 or Δt <
Δx

u
, (2.4.20)

i.e if the Courant number is less or equal unity. This condition is called Courant-Friedrich-
Lewy condition. It is named after the American mathematician Richard Courant (1888 -
1972), the German mathematician Kurt Otto Friedrichs (1901 - 1982) and the German
mathematician Hans Lewy (1904 - 1988) ([Courant1928]).

The formulation of a stability criterion becomes very complicated, if convective as well as
diffusive heat transports are present, In this case, one can require alternatively, that the
conditions in (2.4.19) and (2.4.20) should be fulfilled individually. Note that the restriction
on the Courant number implies that a fluid particle is only able to pass maximal one grid
length in one time step.
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2.4.2. Implicit Euler method
Analogously to section 2.4.1 and to [Ferziger02], chapter 6, 6.3.2, the application of the
implicit Euler method, combined by using a CDS approximation for the spatial derivatives,
on the generic transport equation leads to

ϕn+1
i = ϕn

i +
(

−u
ϕn+1

i+1 − ϕn+1
i−1

2Δx
+ Γ

ρ

ϕn+1
i+1 + ϕn+1

i−1 − 2ϕn+1
i

(Δx)2 + qn
i

)
Δt . (2.4.21)

With equation (2.4.11) and (2.4.12) one receives

(1 + 2d)ϕn+1
i︸ ︷︷ ︸

AP ϕn+1
i Δt

+
(

Co

2 − d

)
ϕn+1

i+1︸ ︷︷ ︸
AEϕn+1

i+1 Δt

+
(

−Co

2 − d

)
ϕn+1

i−1︸ ︷︷ ︸
AW ϕn+1

i−1 Δt

= ϕn
i + qn

i Δt︸ ︷︷ ︸
QiΔt

. (2.4.22)

This method evaluates all fluxes in terms of the unknown variable values at the new time
step tn+1. The difference to a system of a steady problem is the extra coefficient AP and
the source term QP which arise both from the unsteady term.

The above described method is adequate for using large time steps Δt. Difficulties may
appear at coarse grids. Although the scheme produces oscillatory results, it stays stable.
This method has a first order truncation order in time. In contrast to the explicit Euler
method, the computational effort of is method is high, because it solves a large coupled
set of equations and has to store the entire coefficient matrix A as well as an extra source
vector in each time step.

2.5. Solution methods for the Navier-Stokes equations
In the previous section, discretisation methods for a generic transport equation were
discussed. To solve, as next step, the whole Navier-Stokes equation system, these methods
have to be applied in an analogous manner to the momentum and continuity equation
which is done in the following based on [Ferziger02], chapter 7 and on [Groll10].

The unsteady and convective terms are of the same type as as before in the generic
transport equation and can thus be treated in the same way. The viscous term in the
momentum equation has a similar form to the diffusive term of the generic transport
equation and can be handled in the most cases in an analogous way. Contributions of
viscous effects, e. g. of the bulk viscosity and a contribution due to the spatial variability
of the viscosity, have to be treated with extra care. For further information is is pointed
out to [Ferziger02], chapter 7, 7.1.1.

Attention should be paid on the diffusive terms in the momentum equation, which require
a special treatment. These terms are similar to the preceding examined terms in the generic
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2.5. Solution methods for the Navier-Stokes equations

transport equation. But this time, the terms consist of vector equations. Moreover, the
pressure term has to be handled with extra care. It may be handled either as source term
or surface force. The pressure term stands in close connection to the continuity equation
and its gradient is coupled with each of the three momentum equations. Hence, there
exists no independent equation for its evaluation (see also chapter 1, section 1.10, page
26).

2.5.1. Pressure correction methods

To solve the Navier-Stokes equations based on the variables of velocity and pressure, their
solutions have to simultaneously satisfy the continuity and momentum equation in one
time step. This implicates often a great computational effort in solving the resulting al-
gebraic equations of the velocity field. In CFD applications, there are usually two solving
methods used.

The first method estimates a local density from the continuity equation. With this density
value and by means of a state equation, the pressure is evaluated subsequently. Afterwards,
the momentum equation can be solved. Therefore, a dependence between density and pres-
sure must be given. This approach is qualified to solve especially compressible flows. and
it is presented in the end of this section. Possible problems arise in flow geometries which
have besides a compressible, even an incompressible flow region, e. g. a flow in a Laval
nozzle or multiphase flows in which further factors impact the density. For further details
on these problems it is referred, for example, to [Ferziger02].

The second mentioned method uses an additional equation from which the pressure is
evaluated. The additional equation results from the momentum and continuity equation.
This approach is adequate for incompressible as well as compressible flows (see [Noll1993],
chapter 5). One method which is based on this approach, is the so-called pressure correc-
tion method which is used in this thesis. Before the implicit pressure correction methods
are explained, an explicit version is presented shortly in the following section.

2.5.1.1. Explicit methods

As first step, an explicit solving method is given for the unsteady Navier-Stokes equations
analogously on the information in [Ferziger02], chapter 7, 7.3.2. Therefore, the in space,
but not in time, discretised momentum equation is used. For its discretisation an arbitrary
method is generally applicable

∂

∂t
(ρui) = − ∂

∂xj

(ρuiuj) + ∂τij

∂xj︸ ︷︷ ︸
ζi

− ∂p

∂xi

. (2.5.1)
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The term ζi represents the adjective and viscous terms. Application of the explicit Euler
method for unsteady flow problems to equation (2.5.1), leads to

(ρui)n+1 − (ρui)n = Δt

(
ζn

i − ∂pn

∂xi

)
. (2.5.2)

The term ζn
i can then be estimated with help of the velocity un in time step tn. After

the pressure has been calculated, ∂pn

∂xi

, the term ρui can be determined. In this case, the
estimated value of ρui in time step n+1 does not fulfil the continuity equation. To obtain
continuity, one rewrite equation (2.5.2) as

∂(ρui)n+1 − ∂(ρui)n

∂xi

= Δt

(
∂

∂xi

(
ζn

i − ∂pn

∂xi

))
. (2.5.3)

The first term stands for the divergence of the new velocity and should be be zero. If
continuity was reached in time step n, the second term is zero. Otherwise, it will remain
in the equation. This is also the case for the term ζi which has to be zero as well, if the
density ρ is constant. From equation (2.5.3) follows for the pressure pn

∂

∂xi︸︷︷︸
∗

(∂pn

∂xi︸︷︷︸
Δ

) = ∂ζn
i

∂xi
. (2.5.4)

The term ∗ stem from the continuity equation and the term Δ from the momentum
equation. If the equation is solved by pn, the velocity in time step n+1 will be divergence
free. The method is then repeated in the subsequent time step n + 2.

If the pressure gradient had been handled with an implicit scheme, pn would be replaced
by pn+1. The rest of the method would stay the same. If an accuracy in time is obliged
in the simulation, modifications of this method commonly operate with time advanced
approaches which are more accurate as the explicit Euler method.

2.5.1.2. Implicit methods - SIMPLE

Incompressible flows
The next presented method is used to solve steady flow problems. The following demon-
strations are based on [Ferziger02], chapter 7, 7.3.3 - 7.3.4 and on [Groll10].

The method is implicit, due to its low sensitivity of the time step restriction. All pre-
sented methods are at explained on the basis of steady incompressible flows, but can also
be modified for compressible flows. Note that a pressure or pressure correction is obligated
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a solution un
i which fulfills the continuity and momentum equation in time step tn

∂

∂xj

(ρun
i,P ) = 0 , (2.5.5)

∂un
i,P

∂t
+ un

j,P

∂un
i,P

∂xj

= − 1
ρn

∂pn

∂xi

+ Qn
ui

. (2.5.6)

When the solution un
i is found in tn, one can advance to the next time step tn+1 and

derive the solution un+1
i+1 with help of one of the previously presented methods for unsteady

problems. The new solution un+1
i+1 does not satisfy the continuity equation any longer and

has to be corrected. This is done with help of the pressure term. The discretised equations
for the velocities at the new time step tn+1 are written as

Aui
P un+1

i,P +
∑

l

Aui
l un+1

i,l = Qn+1
ui

−
(

∂pn+1

∂xi

)
p

. (2.5.7)

The discretisation in space can be done by each of the previously explained methods. If
an implicit method was used for the time discretisation of the momentum equation, the
equations in (2.5.7) are a non-linear system. Q includes all terms that may be explicitly
formulated in terms of un

i as well as body forces or linearised terms that depend on un+1
i or

other variables of the new time step tn+1. The pressure term is not included in the source
term Q. P stands for an arbitrary velocity node and l for the neighbouring points. Due
to a probable dependence of the coefficients A and the source term Q on the unknown
solution un+1

i , the expression in (2.5.7) has to be estimated by iteration. This is performed
in two steps, or rather in two different iteration steps.

First, we have the so-called outer iteration. It marks the iterations executed during one
time step. During this outer iteration the source matrix and the coefficients are updated.
Second, we have the so-called inner iterations which are additional iterations executed
during one outer iteration. In these inner iterations, the same linear system as in the outer
iteration is solved, but this time with fixed matrices. Only the pressure and velocity terms
are corrected. In the following, an index m, which marks the outer iteration, replaces the
time step index n + 1. The equations which are solved in an outer iteration are

Aui
P um∗

i,P +
∑

l

Aui
l um∗

i,l = Qm−1
ui

−
(

∂pm−1

∂xi

)
p

. (2.5.8)

The estimated velocities um
i of this iteration step does normally not satisfy the discretised

continuity equation, because the pressure, which is required in (2.5.8), was estimated in
the previous outer iteration or time step. The velocities have to be corrected which implies
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next. Equation (2.5.8) is transformed to

um∗
i,P =

Qm−1
ui

−∑l Aui
l um∗

i,l

Aui
P

− 1
Aui

P

(
∂pm−1

∂xi

)
P

. (2.5.9)

um∗
i,P is just a predicted value of the iteration m and does not satisfy the continuity equation.

Hence, still a velocity um
i,P and a pressure field pm have to be found which satisfy the

continuity and momentum equation. This ideal velocity um
i,P is assumed to be

um
i,P =

Qm
ui

−∑l Aui
l um

i,l

Aui
P

− 1
Aui

P

(
∂pm

∂xi

)
P

. (2.5.10)

The corrected velocity can then be formulated as the difference of equation (2.5.10) and
(2.5.9)

um
i,P − um∗

i,P︸ ︷︷ ︸
u′

=
−∑l Aui

l (um
i,l − um∗

i,l )
Aui

P

− 1
Aui

P

∂

∂xi

⎛⎜⎝pm − pm−1︸ ︷︷ ︸
p′

⎞⎟⎠
P

(2.5.11)

with
um

i = um∗
i + u′ , pm = pm−1 + p′ . (2.5.12)

Instead of the pressure p a corrected pressure p′ is used. The difference of the source terms
Qm

ui
− Qm−1

ui
is neglected entirely in each outer iteration. Moreover, the method neglects

also the first term on the RHS in equation (2.5.11), which can cause sometimes a slow
convergence of the method. Note that the following term is equal zero(

∂(ρum
i,P )

∂xi

)
P

= 0, (2.5.13)

because it satisfies continuity. By inserting expression (2.5.11) in the continuity equation,
a discrete Poisson equation for the pressure correction results

∂

∂xi

[
ρ

Aui
P

(
∂p′

∂xi

)]
P

=
(

∂(ρum∗
i,l )

∂xi

)
P

. (2.5.14)

With the implicitly solved equation (2.5.14) and a now known pressure p′, um
i is corrected

in a new inner iteration.
um

i,P = um∗
i,P − 1

Aui
P

(
∂p′

∂xi

)
P

. (2.5.15)

This velocity satisfy the continuity equation, but still not the momentum equation. The
outer iteration is finished at this point. The above described process is repeated during
another outer iteration until a velocity is reached which satisfy the continuity equation
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a modification of the pressure p. This is done in the following inner iteration and shown
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2.5. Solution methods for the Navier-Stokes equations

and the momentum equation. As starting terms for the new outer iteration the terms um
i,P

and pm are used. The loop of outer iterations is repeated until the terms u′ and p′ reach
a negligible small value. Afterwards, the next time step is started.

The above presented method is called SIMPLE algorithm. The abbreviation SIMPLE
stands for Semi-Implicit Method for Pressure-Linked Equations ([Pantakar1980]). The
denotation semi-implicit refers to the aspect that the corrections and non-linearity are
neglected in the above steps. To ensure the convergence of the method, an under-relaxation
is possibly required during the solving process of the momentum equation. Therefore, the
following under-relaxation which should be performed after the estimation of the pressure
correction is proposed in [Ferziger02], chapter 7, 7.3.4

pm = pm−1 + αpp′ with 0 ≤ αp ≤ 1 . (2.5.16)

The choice of αp is flow problem dependent and has to be estimated by trial and error
([Noll1993], chapter 5, 5.2.1). The velocity has then be corrected as given in [Ferziger02],
chapter 7, 7.3.4

u
′m
i,P = − 1

Aui
P

(
∂p′

∂xi

)
P

. (2.5.17)

If the pressure p is known at the boundary nodes pBC , the pressure pm−1 can be assumed
as pm−1 = pBC at these nodes. Hence, no further correction of the pressure has to be done
at the boundary nodes. It is p′

BC = 0.

The SIMPLE algorithm can be summarised as follows

1) Start the calculation at time-step tn+1. The values un
i , pn are used as initial start

values for the estimation of un+1
i , pn+1.

2) Evaluate um∗
i from the linear algebraic equation system of the discretised momentum

equation.

3) Obtain p′ by solving the pressure-correction equation.

4) Estimate um
i from the corrected velocities and pressure values. um

i satisfy continuity.
The conservative fluxes can now be calculated. All other equations in the system
can be solved.

5) Go back to step 2. Repeat it onwards until the tolerance criterion is reached and all
correction terms are insignificantly small.

6) Move to step 1). Start the loop again for the subsequent time step tn+1 + Δt until
the final step is reached.
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2. Computational methods

Regarding turbulent flows, one additional step has to be considered in the above stated
step 4). The effective viscosity has to also be calculated from the turbulent quantities (see
chapter 3).

Compressible flows
The above discussed SIMPLE algorithm can be applied on incompressible flows as well
as compressible flows. Because the density ρ, viscosity μ and other fluid properties were
kept in the equations, the SIMPLE algorithm (as well as the beforehand demonstrated
discretisation and solving methods) can be applied also on problems with varying fluid
properties.

But however, temperature changes and implied changes of fluid properties have to be
considered with extra care. These changes increase the non-linearity of the equation sys-
tem. One has to consider two possible cases. In the first case, the pressure varies only
insignificantly with varying temperature (case 1). In the second case, the pressure varies
significantly with varying temperature and causes a change in density (case 2). For both
cases, the SIMPLE algorithm has to be modified, which is explained in the following based
on the information in [Ferziger02], chapter 10 and 12.

In case 1, two sub-cases have to be regarded. In the first sub-case, the fluid is temper-
ature dependent, but the density is assumed to be constant. Hence, the conservation of
energy and momentum are coupled and both equations have to be solved simultaneously.
Usually, the equations can be solved in a sequential anyway for most problems. Within
one outer iteration, the momentum equation, and thus, velocities and pressure are solved
with the “old” known values of temperature and fluid properties. Afterwards, the new
temperature value is estimated and fluid properties are updated (see [Ferziger02], chapter
12).

In the second sub-case, the temperature changes implicate a density change which drives
the flow, like it is the case in a natural convection. If these density changes are merely
small, a Boussinesq-assumption can be supposed (see chapter 1, section 1.7 on page 18).
These problems can then be solved like an incompressible flow problem with the above
presented SIMPLE method. Note that the considered Boussinesq-assumption implicates
an extra modulation error which increases with rising temperatures and density varia-
tions. Non-Boussinesq flows can be treated with help of two different outer iterations for
solving the momentum equation, as mentioned before. Within one outer iteration, the mo-
mentum equation is solved with help of the “old” known values of temperature and fluid
properties. After this outer iteration is done, the new temperature is estimated and the
fluid properties are updated in the following outer iteration. This approach is performed
in the simulation studies of this thesis. Note that the coupling between the velocity as well
as temperature and density may be very strong. The intensity of the coupling depends on
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2.5. Solution methods for the Navier-Stokes equations

the Prandtl number. Therefore, the equation system can converge slower than in case of
isothermal flows. The solving process of these systems increases the computational cost
due to a higher complexity and higher storage requirements (see [Ferziger02], chapter 10).

Regarding case 2, it exists a modified version of the SIMPLE algorithm which considers
the variation of pressure and changes in density. The compressible scheme is based on the
above presented SIMPLE algorithm. As mentioned before, these modified method uses
the continuity equation to estimate a local density. From this density the pressure can
be evaluated with help of a state equation. One commonly used method is based on the
approach of [Demirdžić1993]. Because this approach is not used in this thesis, it is pointed
to [Ferziger02], chapter 10 for further information.

2.5.1.3. Implicit methods - PISO

Incompressible flows

Another important algorithm for solving steady problems is the so-called PISO algorithm
([Issa1986]) which is presented in this section. Its abbreviation stands for Pressure Implicit
with Splitting of Operators. In the previously presented SIMPLE algorithm, the first term
on the RHS of equation (2.5.11) was entirely neglected which can cause a slow convergence
or even a possible instability of the method. Therefore, the PISO algorithm approximates
this term instead of neglecting it. Hereby, the PISO algorithm has indeed a more complex
structure as the SIMPLE algorithm, but it converges faster and provides a greater stability.
The following explanations are based on the commentaries in [Ferziger02], chapter 7, 7.3.3 -
7.3.4 and [Groll10].

In the first step of the PISO algorithm, a SIMPLE iteration is done

um∗
i,P =

Qm−1
ui

−∑l Aui
l um∗

i,L

Aui
P

− 1
Aui

P

(
∂pm−1

∂xi

)
P

. (2.5.18)

This equation is not yet divergence free. Again an ideal velocity um∗∗
i,P is formulated which

satisfies the continuity equation, but is not the final velocity solution.

um∗∗
i,P =

Q
m− 1

2
ui −∑l Aui

l um∗∗
i,l

Aui
P

− 1
Aui

P

(
∂pm− 1

2

∂xi

)
P

. (2.5.19)

Note that only an intermediate step of the outer iteration has been performed up to this
point which is indicated by m − 1

2 . To complete the outer iteration m, as before, the
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difference of equation (2.5.18) and (2.5.19) is used
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um∗∗
i,P − um∗

i,P︸ ︷︷ ︸
u′

i,P

= −
∑

l Aui
l (um∗∗

i,l − um∗
i,l )

Aui
P

− 1
Aui

P

∂

∂xi

⎛⎜⎝pm− 1
2 − pm−1︸ ︷︷ ︸

p′

⎞⎟⎠
P

(2.5.20)

with
u′

i,P = um∗∗
i,P − um∗

i,P , p′ = pm− 1
2 − pm−1 . (2.5.21)

As in the SIMPLE algorithm, the term of the corrected velocities∑
l Aui

L (um∗∗
i,l − um∗

i,l )
Aui

P

(2.5.22)

is neglected once again. The pressure correction can be estimated from equation (2.5.20)
(analogously as before by equation (2.5.14)),

∂

∂xi

[
ρ

Aui
P

(
∂p′

∂xi

)]
P

=
(

∂(ρum∗
i,l )

∂xi

)
P

. (2.5.23)

The first step of the PISO algorithm ends at his point obtaining a divergence free velocity

um∗∗
i,P = um∗

i,P − 1
Aui

P

∂

∂xi

(
pm− 1

2 − pm−1
)

P
. (2.5.24)

Up to this point, the PISO algorithm uses the same scheme as the SIMPLE algorithm.
The following second step, which starts at this point and compensates the neglected term∑

l Aui
L (um∗∗

i,l − um∗
i,l )/(Aui

P ), differs completely from the SIMPLE algorithm. Once again,
one subtracts the “starting” velocity

um∗∗
i,P =

Q
m− 1

2
ui −∑l Aui

l um∗
i,l

Aui
P

− 1
Aui

P

(
∂pm− 1

2

∂xi

)
P

(2.5.25)

from an ideal velocity, which satisfies continuity,

um
i,P =

Qm
ui

−∑l Aui
l um∗∗

i,l

Aui
P

− 1
Aui

P

(
∂pm

∂xi

)
P

(2.5.26)

and gains

um
i,P − um∗∗

i,P︸ ︷︷ ︸
u

′′
i,P

= −
∑

l Aui
l (um∗∗

i,l − um∗
i,l )

Aui
P

− 1
Aui

P

∂

∂xi

⎛⎜⎜⎝pm − pm− 1
2︸ ︷︷ ︸

p
′′

⎞⎟⎟⎠
P

, (2.5.27)
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2.5. Solution methods for the Navier-Stokes equations

where
u

′′
i,P = um

i,P − um∗∗
i,P , and p

′′ = pm − pm− 1
2 . (2.5.28)

Considering that (
∂(ρum

i,P )
∂xi

)
P

= 0, (2.5.29)

an implicit pressure correction follows from equation (2.5.27) by

∂

∂xi

[
ρ

Aui
P

(
∂p

′′

∂xi

)]
P

=
(

∂(ρum∗∗
i )

∂xi

)
P

− ∂

∂xi

(
ρ

∑
l Aui

l (um∗∗
i,l − um∗

i,l )
Aui

P

)
P

. (2.5.30)

This time, the term
∑

l Aui
L (um∗∗

i,l − um∗
i,l )/(Aui

P ) is not neglected. It can be estimated with
help of term u′

i,P in equation (2.5.21) and in (2.5.27). Thus, one obtains the corrected
velocity

um
i,P = um∗∗

i,P − 1
Aui

P

(
∂p

′′

∂xi

+
∑

l

Aui
l u

′
i,l

)
P

(2.5.31)

with the corrected pressure

pm = pm− 1
2 + p′′ = pm−1 + p′ + p′′ . (2.5.32)

The proceeding of the PISO algorithm can also be summarised by the overview of the
SIMPLE algorithm from page 55. The only exception is the fact, that the additional
pressure correction equation and the consequent modification of velocity and pressure
have to be additionally regarded in step 4).

An under-relaxation of the pressure correction is not necessarily required in the PISO
algorithm, but can be formulated as stated in [Ferziger02], chapter 5, 5.4.3. Within the
n-th outer iteration, the resulting algebraic equation for an arbitrary variable ϕ can be
written as

AP ϕn
P +
∑

l

Alϕ
n
l = QP . (2.5.33)

The coefficients Al and the source term Q can all include terms of ϕn−1, which itself does
not depend explicitly on ϕn. This time, the system is linear. To ensure stability, it is
required that ϕn changes within the outer iteration only by an amount of

ϕn = ϕn−1 + αϕ

(
ϕnew − ϕn−1) . (2.5.34)

ϕnew is the solution of (2.5.33) and it is 0 < αϕ < 1. When the old source vector and
coefficients are updated, the old iteration can be replaced by the new one

ϕnew
P = QP − Alϕ

n
l

AP
. (2.5.35)
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Inserting (2.5.35) in (2.5.34), one obtains a modified equation for the node P by

AP

αϕ

ϕn
P +
∑

l

Alϕ
n
l = QP + 1 − αϕ

αϕ

AP ϕn−1
P . (2.5.36)

The term AP

αϕ
and QP + 1 − αϕ

αϕ
AP ϕn−1

P are the adjusted main diagonal matrix elements

of A and the modified source vector. Equation (2.5.36) is then solved within the inner
iteration. If convergence is reached in the outer iteration, the term of αϕ vanishes and
the primarily problem is solved ([Ferziger02], chapter 5, 5.4.3). The best choice of the
under-relaxation factors is problem dependent and has to be found, as in the case of
the SIMPLE algorithm, by trial and error ([Noll1993], chapter 5, 5.2.1). This version of
the presented under-relaxation was stated by [Pantakar1980]. It is an efficient method,
because it increases the diagonal dominance of matrix A.

Compressible flows
For the PISO method also a compressible version can be formulated. Because of the sim-
ilarity between the PISO and the SIMPLE algorithm and the fact, that the compressible
version of the SIMPLE algorithm was already discussed in section 2.5.1.2, it is referred
at this point to [Issa1986] and [Bressloff01] for further information on the compressible
version of the PISO algorithm.

2.5.1.4. Implicit methods - PIMPLE

Besides the SIMPLE and the PISO algorithm, there exists a third widely used algorithm
which consists of a combination of both mentioned schemes. This algorithm is called
PIMPLE and its name is a combination of the name PISO and the name SIMPLE in one
word. In one time step, this method performs a loop of several PISO iterations in which the
pressure-velocity coupling is solved. At the end of one iteration, the turbulent quantities
are estimated by solving the transport equations. The final values obtained at the end
of one iteration, which are possibly corrected in advance by an under-relaxation, are
the initial values of the next PISO iteration. Either the process of iterations is repeated
until a sufficient tolerance of the corrected terms is reached (which implicates a high
computational effort) or a predetermined number of iterations is executed. Subsequent,
the algorithm goes to the next time step.

If the given number of PISO iterations is equal unity, the PIMPLE algorithm is of the
same scheme as the PISO algorithm. The predetermined number of PISO iterations and
pressure correction loops within a PISO iteration depend on the complexity of the equation
system and on the flow geometry. This predetermined number can influence the stability
of the method and should be chosen with care. The PIMPLE algorithm allows the choice
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2.5. Solution methods for the Navier-Stokes equations

of a higher Courant number Co > 1 and bigger time steps during the solving process,
whereby the stability is not affected adversely.

2.5.2. Boundary conditions
To solve the set of partial differential equations in the Navier-Stokes equations with a
unique solution, besides an initial condition, also a boundary condition has to be defined
(see [Ferziger02], chapter 7, 7.7). The definition of a boundary condition has to be chosen
very carefully. Boundary and initial conditions play a decisive role by finding a solution
and determining its accuracy. In the worst case, inconsiderate chosen conditions may
generate an unphysical solution. The boundary nodes in the computational grid have
only to one sight neighbour nodes. Hence, the values at these nodes have to be known
a priori or have to be extrapolated by data from nodes which are positioned near to the
boundary.

In most cases, Dirichlet, Neumann or periodic conditions are implemented as boundary
conditions. In terms of a Dirichlet condition a constant value of a variable is given at
the boundary nodes and no approximation equation is needed. While in a Neumann
condition the variable is given by its derivative and has to be discretised. Examples of
both conditions are demonstrated in the chapters 5 - 7, where the investigated setups
of this thesis are presented in detail. In a periodic condition the variable value recurs
periodically at specified nodes. Convective fluxes are commonly defined at the inlet of the
boundary. They are zero at walls and symmetry planes. Diffusive fluxes are sometimes
defined at a wall or by boundary variable values.

2.5.3. Grid arrangements
In many complex flow configurations the choice of the discretisation locations is decisive
to obtain a solution of the Navier-Stokes equations. Two possible basic arrangements of
the computational nodes are shortly illustrated. For a detailed description it is referred
to [Ferziger02], chapter 7 and 8. The first method, which is also applied in this thesis, is
called collocated. It uses the same grid points and control volumes for all variables.

The second presented method is called staggered. In this method not all variables are
stored at identical grid locations. Consequently, values which have to be estimated by
interpolation can now be estimated without any interpolation. Sometimes, this type of
distribution can avoid convergence problems and oscillatory solutions of pressure and
velocity.
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3. Turbulent natural convection in a
Large-Eddy Simulation (LES)

The presented Navier-Stokes equations in chapter 1, sections 1.4 - 1.6, can be used to
describe laminar or turbulent flows. Both types of a flow state are defined by different
properties. The state between both types is called transient flow. A laminar flow can
be destabilised either by an interruption, which acts from outside the flow, or it can be
become unstable by itself without any interruption. If this happens, the flow becomes
turbulent. The Large-Eddy Simulation (short: LES), which is performed in this thesis, is
a numerical method to describe turbulent flows with adapted Navier-Stokes equations.

Whereby, the LES gains more and more attention in the CFD, there exist two further
mainly used methods to solve turbulent flows numerically, the Reynolds-averaged Navier-
Stokes Simulation (short: RANS) and the Direct Numerical Simulation (short: DNS).
The RANS uses statistical averaged Navier-Stokes equations, in which all variations in
time of the flow variables are eliminated with help of an average determination in terms
of time and density. The fluctuations remain in the equations only in terms of their mean
values. To solve these adapted equations by the numerical method, these terms have to
be formulated by an appropriate turbulence model. A disadvantage of the RANS is the
assumption of a complete isotropic flow (see [Oertel06], chapter 3, 3.2.4). If the flow reveals
many high fluctuations, due to a complex geometry, for example, the choice of the right
turbulence model becomes difficult, because, at best, the model should not erase to many
of these fluctuations.

The DNS solves the Navier-Stokes equations directly at the discretisation grid, as the
name implies. It estimates the whole turbulent spectrum without any turbulence model
or averaged equations and can be used for anisotropic flows. But this method needs a high
computational effort due to a required fine grid resolution. With an increasing Reynolds
number, the grid resolution has to become sufficiently fine. Thus, the DNS is only adequate
for flow problems of small Reynolds numbers (see [Fröhlich06], chapter 5, 5.9.2). For a
funded analysis of both mentioned methods it is referred to [Fröhlich06] and [Oertel06].
The following information of this chapter is based mainly on [Fröhlich06], chapter 2, 5, 6
and 8, and [Groll10a].
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

3.1. Turbulent flow

The change from a laminar in a turbulent flow state can be defined by the Reynolds
number Re from chapter 1, section 1.7, equation (1.7.4). In flows of a small Reynolds
number, the flow is laminar and follows particular stream profiles which depend on the
flow geometry. With an increasing Reynolds number, perturbations of the velocity are not
damped any longer by friction forces. After a critical Reynolds number Recrit is reached,
the appearing perturbations change significantly the structure of the flow. The fluctua-
tions increase and the flow becomes turbulent. The critical Reynolds number varies for
each flow problem (for further details see [Baehr08], chapter 3, 3.3).

Turbulence is always generated by interactions between flow geometry, fluid properties
and boundary conditions. It can be characteristic by the following properties which are
described, for example, in [Fröhlich06], chapter 2 and 5. Turbulent flow is usually a 3-
dimensional unsteady and rotational problem. The flow is always chaotic and unstruc-
tured, dissipative and diffusive. Flow eddies of different sizes appear in the flow and
interact with each other on several scales in time and space. The kinetic energy is dis-
tributed over multiple scales in time and space. While the great scales are regular, non-
homogeneous, individual, diffusive and of high-energy, the small scales feature a universal
chaotic form. In contrast to the great scales, the small scales are homogeneous, dissipative
and of low-energy They receive most of their energy from the collapse of the great scales.

All turbulent flows are usually inhomogeneous, anisotropic and of a high Reynolds num-
ber. They show, in a local meaning, an isotropic structure (see [Schlichting06], chapter
16, 16.5.2). Therefore, the turbulent fluctuations can be considered as isotropic in a local,
small vicinity. In this case, the mean velocity is zero and all gradients of the statistic
variables converge to zero. According to [Fröhlich06], chapter 2, 2.4, no preferred flow di-
rection exists in this case. Hence, the main diagonals of the deformation and friction tensor
in the Navier-Stokes equations are equal (see chapter 3, section 3.5, 1.5, from page 74 on).
To model the turbulence in a general way, a space-time variable is separated in its mean
value φ and its fluctuation values φ′ in respect to time

φ = φ + φ′ . (3.1.1)

This method is also called Reynolds filtering. In case of an isotropic flow, it is for the
velocity components u = (u, v, w)

u′2 = v′2 = w′2 , u′v′ = u′w′ = v′w′ = 0 (3.1.2)

with the characteristic mean values in time of the fluctuation velocities ū′, v̄′, w̄′. For the
numerical discretisation of a LES the flow is spatial separated in large and small scales,
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which are called subgrid scales (short: sgs). The large scales are solved directly on the
discretisation grid, while the subgrid scales are modelled with an adequate turbulence
model. The assumption of a local isotropic turbulence is fulfilled for the small scales.
The size of the biggest flow scales is correlated to the characteristic length L of a given
geometry.

Figure 3.1.: Energy spectrum of isotropic turbulence after Kolmogorov (as seen in [Groll10a]).

Figure 3.1 shows the energy spectrum E of an isotropic turbulence in dependence on the
wave number kL. The wave number can be determined by

kL = 1
L

∼ εt

3√
ū′2 . (3.1.3)

Here εt is the turbulent kinetic energy dissipation rate and ū′ is the mean value in time of
the characteristic fluctuation velocity of the great scales. Figure 3.1 gives also an overview
of the operation range of the before mentioned numerical simulation methods which can
be characterised analogously to [Fröhlich06], chapter 2, 2.4.4. In the area of production
in figure 3.1, the energy spectrum E(kL) is only dependent on the wave number and on
the amount of added and dissipative energy εt. The flow field and the geometry interact
with each other. Consequentially, the kinetic energy of the large scales is produced in this
region. A scale analysis leads to

E(kL) = Ckε
2/3
t k

−5/3
L (3.1.4)

with the Kolmogorov constant Ck ≈ 1.5. Expression (3.1.4) is also called Kolmogorov
5/3-law or Kolmogorov spectrum. In connection with the previous expression (3.1.4), a
characteristic scale for the velocity can be given by

ukL
∼ ε

1/3
t k

−1/3
L . (3.1.5)
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

Further, an expression for the temporal development of eddies of the size l = 2π/kL can
be formulated by

tkL
∼ ε

−1/3
t k

−2/3
L . (3.1.6)

In the area of production, the RANS method is used. In the inertia area, the large scales
interact with each other. The biggest scales collapse and give their energy to smaller
scales. In this region a LES is used. The size of the inertia area changes with the variation
of the Reynolds number, because the Kolmogorov length is dependent on the Reynolds
number as it is formulated in the following equation

L

ηkL

= Re3/4
L (3.1.7)

with ReL =
√

KL

ν
. Here, K is the total energy with

K = cε
2/3
t k

−2/3
f , (3.1.8)

where both coefficients can be chosen as c = 1 and kf = 6 · (2π/0.43 L). If the large eddies
collapse and their size becomes about the size of the Kolmogorov length,

ηkL
=
(

ν3

εt

)1/4

, (3.1.9)

the energy dissipates in heat. This is the area of dissipation, where a DNS is usually used.
The smallest scales are solved directly by a DNS, as mentioned above, and their size is
described by the Kolmogorov length.

If the mean free path length between the fluid molecules λ is even significantly smaller than
the size of the smallest eddies (and thus smaller than ηkL

), the Navier-Stokes equations
are still valid in the turbulent case. Because the smallest eddies consists still of enough
molecules to fulfil the governing equations. No significant fluid motion of the smaller scales
exists beyond a size of ηkL

.

3.2. Turbulence modelling

The basic principle in a LES is to divide the flow in its large and small spatial scales. This
process is described in the following based on the information in [Fröhlich06], chapter 5.
The large scales of the flow are resolved directly at the discretisation grid by the chosen
numerical method, while the small scales are too fine to be solved. Therefore, these scales
have to be modelled by an adequate turbulence model. These small scales are also called
subgrid scales and they are marked in the following by the index sgs. The subgrid scales
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3.2. Turbulence modelling

have to model especially the dissipation of the kinetic energy and its influence on the solved
large parts. Regarding the filtering process in equation (3.1.1), a space-time variable is
separated by a homogeneous filtering function as

ψ = ψ + ψ′ , (3.2.1)

where ψ represents the great scale component, while ψ′ represent the modelled component.
The filtering process is performed by

ψ(x, t) =
∫ ∞

−∞

∫ ∞

−∞
ψ(r, t′)G(x − r, t − t′)dt′dr. (3.2.2)

The filter operation with function G in equation (3.2.2) is linear, commutative, differ-
entiable, Galileo invariant, and invertible (see [Fröhlich06], chapter 5, 5.2). Typical filter
operations are

Top hat filter G(x) =
{

1/Δ |x| ≤ Δ/2
0 others

, (3.2.3)

Cut off filter G(x) = 1
Δ

(sin(πx
Δ )

πx
Δ

)
, (3.2.4)

Gauss filter G(x) = 1
Δ

√
γ

π
exp
(

−γx2

Δ2

)
, (3.2.5)

where γ is an arbitrary model factor. Δ is a space dependent filter length. In the simu-
lation software OpenFOAM R© the standard used filter is the top hat filter, as it is defined
in (3.2.3). If the filter function is applied at both sides of the compressible governing
equations in chapter 1, section 1.10, one obtains the following filtered equation system

- Compressible conservation of mass

∂ρ

∂t
+ ∂ρ uj

∂xj

= 0 , (3.2.6)

- Compressible conservation of momentum

∂ρ ui

∂t
+ ∂ρ uiuj

∂xj
− 2μ

∂Sij

∂xj
= − ∂p

∂xi
− ∂

∂xj
τij , (3.2.7)

- Compressible conservation of enthalpy

∂ρh

∂t
+ ∂ρhuj

∂xj

− ∂

∂xj

(
α

∂h

∂xj

)
+ ∂

∂xj

ρ
(
uih − uih

)︸ ︷︷ ︸
τhi

= ∂p

∂t
+ uj

∂p

∂xj

, (3.2.8)
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

where
Sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.2.9)

is the filtered deformation tensor. The term τhi stands for the subgrid scale enthalpy flux.
The subgrid scales in the term

τij = uiuj − uiuj (3.2.10)

cannot be expressed directly by the filtered velocities ui. Hence, a turbulence model is
required to formulate these terms τij ≈ τmodel

ij (ū) with help of the filter length Δ. Most
models use as a possible filter length the grid width of the mesh resolution. With help of
the chosen turbulence model also the subgrid scale enthalpy flux

τhi = ρ
(
uih − uih

)
(3.2.11)

has to be formulated, especially if a coarser grid is used or a flow with a higher Prandtl
number should be estimated by the numerical method. A possible formulation can be
found in [Fröhlich06], chapter 6, 6.9

τhi = −αt
∂h

∂xi
(3.2.12)

with a turbulent thermal diffusivity αt which has to be determined by the turbulence
model as well. There exist numerous subgrid scale models which are based on different
approaches. In the next section, the chosen turbulence model of this thesis is presented.
For an overview of other models and further information on these schemes it is referred
to [Fröhlich06].

Due to the Galileo invariance of the Navier-Stokes equations and the Galileo invariance of
the filter operation, the filtered equations are also Galileo invariant. All terms that have
to be described by a subgrid scale model and can not be resolved directly are presented
by the subgrid tensor τij in equation (3.2.10) which is discussed in the following based
on the information in [Fröhlich06], chapter 5, 5.2.6. Inserting the modelled subgrid scale
velocities

u′
i = ui − ūi (3.2.13)

in (3.2.10), one obtains

τij = ūiūj − uiuj︸ ︷︷ ︸
:= Lij

+ u′
iūj + ūiu′

j︸ ︷︷ ︸
:= Cij

+ u′
iu

′
j︸︷︷︸

:= Rij

. (3.2.14)

The so-called Leonard term Lij described the product of the not modelled, resolved scales.
The Clark tensor Cij includes the tensions of the interaction between the modelled, sub-
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3.3. Subgrid scale models

grid scales and the resolved, large scales. The Reynolds tensor Rij describes the influence
of the subgrid scales on the not modelled, resolved scales. The term Lij can be evaluated
directly from ūi and has not to be modelled. Only the term Rij and the sum of Lij + Cij

are Galileo invariant. In a modified model of Germano [Germano1986] each term of τij is
Galileo invariant

τij = ūiūj − ¯̄ui
¯̄uj︸ ︷︷ ︸

:= Lm
ij

+ u′
iūj + ūiu′

j − u′
i
¯̄uj − ¯̄uiu′

j︸ ︷︷ ︸
:= Cm

ij

+ u′
iu

′
j − u′

i u′
j︸ ︷︷ ︸

:= Rm
ij

. (3.2.15)

The modelling of the term τij is the subject of the next section. The subgrid scale model
used in this thesis is based on the above Germano separation of τij in (3.2.15).

3.3. Subgrid scale models

3.3.1. Smagorinsky model

Before the turbulence model of Fureby, which is used in this thesis, is presented, its basis
model, the standard incompressible Smagorinsky model, is demonstrated. The Smagorin-
sky model is based on a formulation of the subgrid scale eddy viscosity νsgs and uses a
Boussinesq-approximation. The model shows analogies to a statistic turbulence modelling
of the unknown Reynolds strains in a RANS (see [Oertel06], chapter 3, 3.2.4). In com-
parison to a RANS, the modelling effort of a LES is smaller, because the subgrid scales
include only a small part of the kinetic energy spectrum.

The Smagorinsky model was formulated by the American meteorologist Joseph Smagorin-
sky in [Smagorinsky1963]. To model the viscosity in a LES, an effective viscosity is for-
mulated by the sum of a molecular part ν and a turbulent part νsgs

νeff = ν + νsgs . (3.3.1)

Now, the turbulent subgrid scale viscosity νsgs has to be described which is done in the fol-
lowing analogously to the description in [Fröhlich06], chapter 6, 6.2.2. First, a modulation
of the term τ aniso,model

ij is given by

τ aniso, model
ij = −νsgs2Sij, (3.3.2)

where the anisotropic term
τ aniso

ij = τij − δijτkk/3 (3.3.3)
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

is expressed in terms of the deformation tensor S̄ij . The not modelled term in

τij = τ aniso
ij + 1

3δijτkk (3.3.4)

can be expressed in the momentum equation (3.2.7) by help of a pseudo pressure term
P̄ = p̄ + τkk/3 (for details see [Fröhlich06], chapter 6, 6.2.2). Because of the no-slip
condition on surfaces, τij = 0, the correct estimation of the pressure is guaranteed in the
simulation.

The subgrid scale viscosity can be described by

νsgs = lsgsqsgs , (3.3.5)

where lsgs is an adequate subgrid scale length and qsgs an adequate subgrid scale velocity.
To define lsgs, one can choose a formulation of the filter length alone lsgs = Δ or a
formulation of the filter length and an additional model coefficient Cs, lsgs = CsΔ. qsgs

can be determined by qsgs = lsgs‖S‖. Then, one obtains for the eddy viscosity

νsgs = (CSΔ)2‖S‖ (3.3.6)

and hence
τSmag

ij = −2(CSΔ)2‖S‖Sij , (3.3.7)

where ‖S‖ =
√

2SijSij . The model coefficient CS can be estimated with help of the theory
of isotropic turbulence and can be found in the literature, e. g. [Fröhlich06]. It varies for
different flow problems and geometries. Note that the choice of CS should not be dependent
on the grid filter length Δ, because the grid filter length is problem dependent. Several
suggestions can be found in [Fröhlich06]. The Smagorinsky model is an easy and robust
method which is adequate for complex flow geometries. Note that the tensors τij and
Sij correlate only weak with each other. Possible disadvantages of this method are the
isotropic choice of νsgs by the norm of S̄ and the probable instability of the model due to
an improperly choice of CS.

At this point also the so called dynamic Smagorinsky models should be shortly mentioned.
In these models the parameter CS is not chosen as a constant and can vary in space
and time. It is estimated by an extra sub-model within the main model. This method
should adapt easier physical or numerical conditions. For further details on this subject
see [Germano1991, Lilly1992]. Because the computational grids of this thesis consist of
homogeneous directions, the standard Smagorinsky model is an adequate choice.
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3.3. Subgrid scale models

3.3.2. Model of Fureby
The model of Fureby in [Fureby1996] is an modification of the standard Smagorinsky model
for compressible flows. The model considers additionally the density ρ in the formulation
of the subgrid scale dynamic viscosity and in the formulation of the subgrid scale kinetic
energy. In the filtering process, a special density-weighted Favre-filtering [Favre1983] is
used. Therefore, a space-time variable is this time separated as follows by a homogeneous
filtering function

ψ = ψ̃ + ψ′′ . (3.3.8)

The component ψ′′ stands again for the fluctuations of variable ψ (as in equation (3.2.1)),
but marks this time the different filtering method of [Favre1983]. In equation (3.3.8), it is

ψ̃ = ρψ

ρ
, (3.3.9)

where the filtered variable ρψ is defined as in equation (3.2.2). With help of equa-
tions (3.3.8), (3.3.9) and the equations (3.2.6) - (3.2.8), one obtains the following filtered
equation system of a LES where the model of Fureby was considered

- Compressible conservation of mass

∂ρ

∂t
+ ∂ρũj

∂xj

= 0 , (3.3.10)

- Compressible conservation of momentum

∂ρũi

∂t
+ ∂ρũiũj

∂xj

− 2 (μ + μsgs)
∂S̃∗

ij

∂xj

= − ∂p

∂xi

+ ρgi , (3.3.11)

- Compressible conservation of enthalpy

∂ρh̃

∂t
+ ∂ρh̃ũj

∂xj

− ∂

∂xj

(
(α + αsgs)

∂h̃

∂xj

)
= ∂p

∂t
+ ũj

∂p

∂xj

(3.3.12)

with the filtered strain rate tensor

S̃ij = 1
2

(
∂ũi

∂xj
+ ∂ũj

∂xi

)
(3.3.13)

and its deviatoric part
S̃∗

ij = S̃ij − 1
3 S̃kkδij . (3.3.14)

In the model of Fureby, the term of the turbulent subgrid scale diffusivity αsgs is modelled
with help of the subgrid scale dynamic viscosity μsgs and a turbulent Prandtl number

71

Prsgs. It is

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3. Turbulent natural convection in a Large-Eddy Simulation (LES)

μsgs = ckρ̄Δ
√

ksgs and αsgs = μsgs

Prsgs
. (3.3.15)

Here, ksgs is the turbulent subgrid scale kinetic energy with

ksgs =

⎛⎜⎜⎜⎜⎝
−2

3
∂ũi

∂xi
+

√(
2
3

∂ũi

∂xi

)2

+ 8ceck(S̃ijS̃∗
ij)

−2 · ce

Δ

⎞⎟⎟⎟⎟⎠
2

, (3.3.16)

where the model coefficients are ck = 0.02 and ce = 1.046 ([Fureby1996]). The grid filter
length Δ depends on the cell edge length of the used Cartesian grid and is chosen as

Δ = (Δ x · Δ y · Δz)1/3 (3.3.17)

according to [Deardorff1973]. The temperature-dependence on the fluid properties is de-
scribed by the model of Sutherland [Sutherland1893] as mentioned in chapter 1, sec-
tion 1.10. The model uses the assumption of an ideal gas from eq. (1.8.19) and eq. (1.8.21)
in chapter 1, section 1.8 on page 23. Further, a Boussinesq-approximation is not included
in equation (3.3.11), as it was the case in the unfiltered equations in chapter 1, section 1.10.

Additional force terms which model additionally the natural convection effect in the tur-
bulent flow, as in [Kenjereš1999, Sergent03], are not included in the turbulent viscosity
μsgs in eq. (3.3.15). A consideration of the gravitational force as well as a dependence on
the temperature gradient is not considered in the turbulent terms of μsgs and αsgs. The
subgrid scale Prandtl number is chosen as Prsgs = 0.4 according to [Kosović02, Sergent03,
Erlebacher1992]. The performed numerical tests of this thesis confirmed this choice.

This model was also used and presented in similar form in the studies [Zimmermann12],
[Zimmermann14a], [Zimmermann14b] and [Zimmermann15].

3.4. Solving the governing equations in OpenFOAM R©

Computational methods and numerical conditions
The mathematical model of a turbulent, three-dimensional natural convection as described
in equations (3.3.10) - (3.3.17) is solved using OpenFOAM R©-1.7.1, a open-source simula-
tion tool (for further information see [OpenFOAMa]). As solution algorithm the solver
buoyantPimpleFOAM is chosen. The buoyantPimpleFOAM is a transient solver for tur-
bulent compressible flows with buoyant effects and heat-transfer. The solver evaluated
the previously stated filtered governing equations. Like the name indicates, the solver is
based on the PIMPLE algorithm as it is described in chapter 2, section 2.5.1.4. In the
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3.4. Solving the governing equations in OpenFOAM R©

simulation, only one outer iteration is done, hence the solver becomes a PISO algorithm
which performs two inner PISO loops. The algorithm estimates in the momentum equa-
tion (3.3.11) as pressure the dynamic pressure p̄rgh = 1

2 ρ̄ũ2. After a corrected solution of
p̄rgh is found, the total pressure p̄ is calculated by

p̄ = p̄rgh + ρ̄gh︸︷︷︸
static pressure

, (3.4.1)

where h is the height of the fluid column over the particular cell node.

All methods and schemes which are used by the solving algorithm are explained in chap-
ter 2. The time derivatives are discretised by the implicit Euler method which is of first-
order and produces bounded solutions (chap. 2, 2.4.1). The gradients are discretised spa-
tially with a Gaussian integration (chap. 2, 2.1.3) and a linear interpolation scheme (CDS)
which is a second-order method. (chap. 2, 2.2.2).

A Gauss integration and an additional upwind interpolation is performed for the spa-
tial discretisation of the divergence terms. This method is a first-order bounded method
(chap. 2, 2.2.1, 2.4.1). The spatial discretisation of the diffusion term in the momentum
equation is performed with help of a Gauss integration and a linear interpolation scheme
(CDS) which is a second-order unbounded method. For the Laplace terms as discreti-
sation method the Gaussian integration is chosen together with a linear interpolation
scheme (CDS) and an explicit non-orthogonal correction for the surface normal gradients.
This combination is of second-order, conservative and an unbounded method.

The maximum Courant number is chosen as maxCo = 0.5. Further, an adjusted time step
option is used with an maximum value of maxDelta T = 1 · 10−2 s.

The chosen spatial interpolation scheme of the upwind interpolation and the temporal
discretisation scheme of the implicit Euler method are both only of first order and may
hold disadvantages compared to schemes of higher order. Therefore, also other combina-
tions of numerical schemes were tested during this thesis concerning the same solver. But
only with help of the above presented combination of schemes satisfactory results could
be obtained. In future studies, further investigations of this aspect could be an important
topic.

Also a Gauss integration and an additional linear interpolation scheme (CDS) were used
instead of the upwind interpolation scheme for the discretisation of all stated divergence
terms. For the time discretisation an implicit second-order method, like the backward or
Crank Nicholson scheme, was tested, but produced, despite the higher order, an oscil-
latory or even no solution. Blending methods were not used in this thesis. A detailed
description of these schemes can be found in [Ferziger02].
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

The resulting algebraic equation system for ρ and the dynamic pressure term prgh are
solved by a preconditioned conjugate gradient solver for symmetric matrices which in-
cludes a diagonal incomplete-Cholesky scheme (DIC). The given tolerance for this method
lies at 1 · 10−8. The resulting algebraic equation system for the remaining properties are
estimated by a preconditioned bi-conjugate gradient solver for asymmetric matrices which
includes a diagonal incomplete LU scheme (DILU) (s. chapter 2, section 2.3). The given
tolerance here is 1 · 10−6. No under-relaxation is used in the pressure correction.

Near to the walls, the turbulent flow is anisotropic and inhomogeneous and it interacts
with the walls. Similar to the subgrid scale model, also a wall-law model could be used
to describe the turbulence at the wall ([Fröhlich06], chapter 8). Such a model is not used
in this thesis. The grid resolution is chosen in a way, that all relevant turbulent scales in
the boundary layer are resolved. But the size of the smallest grid cell is still larger than
it would be in case of a DNS (see also chapters 5 - 7).

Accuracy of a LES
According to [Fröhlich06], chapter 5, 5.8, the accuracy of a LES is always dependent on
the chosen turbulence model, on the accuracy of the numerical discretisation and on the
chosen grid resolution. Besides a modulation and discretisation error, the LES shows an
uncertainty of the initial condition. The subgrid scales are modelled at the beginning
of the simulation by a chosen filter length Δ and a depending wave number kΔ. This
uncertainty grows during the simulated process and increases the numerical error. The
error of the turbulence model is about the amount of the wave number kΔ.

3.5. Natural convection
The following presented information of this chapter are based mainly on the details given
in [Schlichting06], chapter 10, 17, 19, [Spurk07], chapter 12, [Pope00], chapter 7, and
[Baehr08], chapter 1.

3.5.1. An overview
In a free or natural convection, the motion of the flow is only enforced by temperature
dependent density differences in the gravitational force field of the Earth. Natural con-
vective flows are mostly investigated in an enclosed experimental setup. Hence, the fluid
is limited by the side walls. Some of the walls are also temperatured and heat the fluid
captured between these walls. Near the heated walls, the temperature of the fluid in-
creases and thus, its density decreases. Therefore, a buoyancy force arises in the fluid
which is directed against gravity. A buoyancy effect in an enclosed container is illustrated
in figure 3.2. The effects inside the fluid can now be described based on the information
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3.5. Natural convection

in [Velarde1980]. These buoyancy effects are damped by viscosity effects in the fluid and
a heat diffusion between the fluid particles. If the resistance forces are smaller than the
buoyancy force, the fluid starts moving. The ratio between buoyancy force on the one side
and and viscosity as well as heat diffusion effects on the other side is summarised in the
Rayleigh or Grashof number from chapter 1, section 1.7, on page 18.

Figure 3.2.: Heat distribution in an enclosed cavity with horizontal, heated walls (as seen in
[Velarde1980]).

The sketch shows a fluid layer between two horizontal walls which are heated isothermally,
but with a different temperature. Hence, between the upper and lower wall we have a
constant temperature difference. At the lower wall the temperature is higher than at the
upper wall, but its density is greater, thus T0 < T1 and ρ0 > ρ1. Only if the temperature
difference between the upper cold and lower hot wall reaches a critical value, the fluid is
moving and we can observe a convective heat transport which is based on a mass transport.
This critical temperature difference defines the critical Rayleigh number which is discussed
in the following. Beneath this critical value we can observe only a heat transmission by
diffusion.

If a warm fluid particle reaches a higher and thus cooler fluid layer caused by a disturbance
of the fluid, the fluid particles around the warm particle have a smaller temperature and
hence a bigger density. Thus, the warm fluid particle is affected by a buoyancy force as
described above. The buoyancy forces which drive the flow in the fluid can be expressed
by

ρ = ρ0 + Δρ ⇒ ρg = ρ0g + gΔρ . (3.5.1)

In a natural convection, the momentum and heat transport are coupled and have to
be solved together by the numerical method (s. also chapter 1, section 1.10, page 26,
and chapter 2, section 2.5.1.2, page 52). To investigate these flows in an experiment or
numerical simulation, mostly an enclosed setup is chosen. The setup consists, as mentioned
above, of two temperatured side walls, which are either vertical or horizontal orientated
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

to each other and which hold a fluid layer between them. The lateral walls of the setup
can have different boundary conditions, e. g. adiabatic or conducting walls. Normally, the
setup has to be of infinite length to erase totally the influence of the side walls, which is
not realisable in an experiment. Therefore, it is important, that the length of the test case
is at least a multiple of the height (or the depth a multiple of the length in a vertical wall
configuration), to generate a small fluid layer between the walls and to reduce as much as
possible the influence of the sidewalls on the main flow field.

The orientation of the temperatured walls is decisive for the resulting flow field in the
setup, which will be discussed in the following section 3.5.3.2. The change between a
laminar natural convection and a turbulent one depends on the instability of the fluid
itself or on perturbations from outside the fluid (see also this chapter, section 3.1 on
page 64). The Rayleigh number at which a resulting flow inside the fluid changes from a
laminar to a turbulent state is called critical Rayleigh number Racrit. This number varies
for each flow problem.

Figure 3.3.: Sketch of convection cells or rolls in a setup with horizontal, heated walls (as seen
in [Getling1998]).

In [Marek12] (chapter 6) the critical Rayleigh number of a horizontal natural convection
is given by Racrit = 1708. Beneath this Rayleigh number the heat transport is realised
only by heat conduction and no flow movement can be detected inside the fluid, because
the buoyancy forces are smaller than the viscosity effects. The heat conduction is directed
upwards due to the unstable thermal layering. According to [Marek12], a flow movement
can be detected for almost each Rayleigh number, in the case of a setup where two of the
vertical walls are heated. In this case, the appearing velocities are very small and they are
directed parallel relative to the vertical heated walls. They transport only a little amount
of heat. This regime of heat transmission exists for Ra ≤ 103.

If only small temperature differences appear in the flow, the flow can adjust the pertur-
bations. If the temperature differences exceed a critical value, the fluid starts moving and
the typical convection cells arise in the flow. These are illustrated in figure 3.3 for a case
of horizontal heated walls. These cells result from the ascending hot and descending cold
fluid layers driven by local density differences in the gravitational force field. The differ-
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entially temperatured fluid layers displace themselves in the flow geometry. The number
of convection cells and their composition is up to the dimensions of the geometry and the
orientation of the heated walls, as the simulation results will show in chapter 5, section 5.4
from page 122 on and chapter 6, section 6.3 from page 152 on.

3.5.2. Heat transport

Heat transport near walls
In the following, several aspects of heat transport in a fluid are discussed analogously to
the information in [Baehr08], chapter 1. Heat transport in a fluid is always directed in
direction of the decreasing temperature gradient according to the second law of thermo-
dynamics. There exist three different ways of heat transport in a fluid heat conduction,
heat convection and heat radiation. Mainly heat conduction and convection play a major
role in fluid dynamics.

A laminar flow is dominated by convection, which is directed stream wise, and a conduc-
tion, which is directed normal to the flow. In a turbulent flow, the role of the conduction
is taken by the turbulence production ([Ferziger02]). Steady heat conduction is described
by the Laplace equation and unsteady conduction by the energy equation in chapter 1,
section 1.6 from page 16 on. The energy transmission in a heat conducting material can
be described by the heat flux density

q̇ = q̇(x, t) . (3.5.2)

Thus, it is for the heat flux

dQ̇ = q̇(x, t)n dA = |q̇| cos β dA , (3.5.3)

where n is the unit vector of the surface element dA, which stands to q̇ in an angle
β. Different temperature gradients influence the heat conduction inside a material. The
temperature field inside the material system can be expressed by

T = T (x, t) . (3.5.4)

The temperature gradient is then defined by

∇T = ∂T

∂x
ex + ∂T

∂y
ey + ∂T

∂z
ez , (3.5.5)

where are ex, ey, ez are the unit vectors of the chosen coordinate system. The temperature
gradient is always directed normal to surfaces, which show the same temperature at a
particular time instant. The gradient points always in direction of the highest temperature
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

increase. As mentioned before in chapter 1, section 1.6, equation (1.6.5) on page 17,
the heat flux density can be expressed also by the thermal conductivity λ according to
Fourier’s law

q̇ = −λ∇T . (3.5.6)

The thermal conductivity λ is also temperature dependent

λ(T ) = λ0

1 − β0T
(3.5.7)

with a thermal conductivity λ0 measured at a reference temperature T0 and the depen-
dent thermal expansion coefficient β0 (s. also chapter 1, section 1.6, equation (1.8.20), on
page 23). To estimate a mean thermal conductivity inside a material between two bound-
aries, which have different temperatures Tw1 and Tw2, one estimates the mean conductivity
λm

λm = 1
Tw2 − Tw1

∫ Tw2

Tw1

λ(T )dT = λ0

β0(Tw1 − Tw2)
ln 1 − β0Tw2

1 − β0Tw1
(3.5.8)

= ln(λ(Tw1)/λ(Tw2))
λ(Tw1) − λ(Tw2)

λ(Tw1)λ(Tw2) .

With help of equation (3.5.8), the heat flux between both boundaries of the material can
be evaluated by

q̇ = λm

δ
(Tw1 − Tw2), (3.5.9)

where δ is the thickness of the material. The heat convection is the composition of heat
conduction and energy transmission in the macroscopic movement of the fluid. The fluid
layer directly at the wall is called the boundary layer of the fluid and will be discussed
in detail in the following section 3.5.3.2. Mainly this region is important for the heat and
mass transport in the fluid. The temperature change from the wall to the fluid is dependent
on the temperature at the wall and the one in the fluid. Either, the wall temperature is
higher than the one of the fluid and the wall heats the fluid, or, in the other case, the
wall cools the fluid. Figure 3.4 shows the typical profiles of velocity (left) and temperature
(right) near a wall.

Directly at the wall, the fluid adheres to the wall and its velocity is zero, assuming a
non-frictionless fluid. The velocity increases in distance to the wall, before it reaches its
maximum at the end of the boundary layer, which is indicated by δt in figure 3.4. Directly
at the wall, the energy is only transported by conduction, hence equation (3.5.2) becomes

q̇ = −λ
∂T

∂y

∣∣∣∣
w

, (3.5.10)
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3.5. Natural convection

where λ depends on the wall temperature. The heat flux density results from the tem-
perature gradient near the wall, as figure 3.4 shows (right plot). With this definition, the
local heat transfer coefficient can be defined with a known temperature field of the fluid
Tf in a great distance from the wall

α̃ = q̇
Tw − Tf

. (3.5.11)

The distance δt in figure 3.4 is of the same size as λ/α̃ and can be used to describe the
thickness of the boundary layer. With the local heat transfer coefficient, a mean value can
be obtained by an integration over the particular area A. Afterwards, the whole heat flux
Q̇ through this area can be calculated by

Q̇ = α̃mAΔT . (3.5.12)

Figure 3.4.: Velocity (left) and temperature (right) profile in vicinity of the heated wall (as
seen in [Baehr08]).

In an analogous manner to chapter 1, section 1.7 on page 18, the heat transfer coefficient
can be non-dimensionalised

α̃ = − λ

L

∂T ∗

∂y∗

∣∣∣∣
w

T ∗
w − T ∗

f
(3.5.13)

with a characteristic length L of the flow geometry. The expression in (3.5.13) can be
rewritten to

α̃ L

λ
= −

∂T ∗

∂y∗

∣∣∣∣
w

T ∗
w − T ∗

f
. (3.5.14)

The non-dimensional product of the left hand side in (3.5.14) is the so-called Nusselt num-
ber, which is named after the German engineer Ernst Kraft Wilhelm Nußelt (1882 - 1957).
This number is normally used to describe the heat flux in a natural convection. Note that
besides the flow geometry and its boundary conditions also the thermal boundary con-
ditions influence the Nusselt number and the other dimensionless parameters. According
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

to [Baehr08], chapter 1, 1.1.4, in a free convection, the heat flux density do not increase
proportional to the term of Tw − Tf, because α̃ is not independent of Tw − Tf. Also, the
temperature difference Tw − Tf drives not only the heat flux, but also the buoyancy force
in the flow and consequently the velocity field.

Heat transport between two fluids which are separated by a wall
In case of two fluids which are separated by a wall, a heat transport arises from the fluid
with the higher temperature through the wall to the fluid with the lower temperature
until a steady state is reached. This process is called heat transmission. In the following
this aspect is discussed analogously to the information in [Baehr08], chapter 1, 1.2. The
heat flux from the fluid with the higher temperature T1 to the first surface of the wall is
defined by

Q̇ = α̃1A1(T1 − Tw1) , (3.5.15)

where Tw1 is the temperature of the first surface and A1 the surface’s area, which touches
the first fluid. The heat flux inside the wall can be expressed by

Q̇ = λm

δ
Am(Tw1 − Tw2) (3.5.16)

with help of equation (3.5.9). λm is again the mean heat conductivity inside the wall, δ

its thickness and Am the mean area of both wall surfaces. For the heat flux from the wall
to the second fluid, it is analogous to equation (3.5.15)

Q̇ = α̃2A2(Tw2 − T2) , (3.5.17)

where Tw2 is the temperature at the second wall surface and A1 the surface’s area. The
surface temperatures can be neglected. The heat flux through the wall can be written
only in terms of the fluid temperatures

Q̇ = kA(T1 − T2) (3.5.18)

with
1

kA
= 1

α̃1A1
+ δ

λmAm

+ 1
α̃2A2

,

[
1

kA

]
= K

W . (3.5.19)

k is the heat transmission coefficient, which depends on the area A. Inside the wall, the
temperature decreases and the temperatures directly at the wall can be estimated by

Tw1 = T1 − kA

α̃1A1
(T1 − T2) = T1 − Q̇

α̃1A1
(3.5.20)
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3.5. Natural convection

and by

Tw2 = T2 + kA

α̃2A2
(T1 − T2) = T2 + Q̇

α̃2A2
. (3.5.21)

The above presented equations are required for the description of the experimental test
case in chapter 7, on page 201. The last type of a possible heat transport in a fluid is
the so-called heat radiation which appears in form of electro-magnetic waves. This form
of energy transport is detected only rarely in fluids and is mainly a phenomenal of solid
bodies. The radiation of the temperatured walls in the investigated experimental setup
can be neglected. Thus, this form of energy transport is not discussed at this point. For
further information it is referred to [Baehr08], chapter 1.

3.5.3. Boundary layers - Velocity and temperature profiles

3.5.3.1. An overview

In this thesis, two configurations of a turbulent natural convection are investigated. Both
configurations differ in the choice of the walls which are heated isothermally. This choice
and the position of the heated walls relative to the gravitational field, influences the tem-
perature and velocity profiles of the flow. This is demonstrated in figure 3.5. The configu-
ration, where both horizontal walls are heated, is also called a Rayleigh-Bénard convection
or a Rayleigh-Bénard problem, as it was mentioned before. This problem is named after
the English physicist Lord John William Rayleigh (1842 - 1919) and the French physicist
Henri Claude Bénard (1874 - 1939) (see [Bénard1900], [Rayleigh1916]).

In the most cases, convective flows are investigated as an incompressible fluid which sat-
isfies a Boussinesq-approximation as in [Shishkina08] and [Shishkina09] (s. also chapter 1,
section 1.10, on page 26). Due to an increased gravitational force field in the experimental
setup of CenCon, the density changes should not be neglected in the numerical method of
this case. Therefore, density changes due to temperature differences in the fluid are con-
sidered in the numerical model for each test case. Thus, a non-Boussinesq fluid is assumed.
In this way, possible differences to studies which consider a Boussinesq-approximation can
also be investigated.

A natural convection for which a non-Boussinesq fluid is assumed is also called a Non-
Oberbeck - Boussinesq convection (NOB) ([Ahlers06]). On the contrary, a convective flow
which satisfies a Boussinesq-approximation is called a Oberbeck - Boussinesq convection
(OB) ([Ahlers06]). According to [Schlichting06], chapter 10, 10.5, the wall temperature
in a natural convection between two heated walls, heats only a small region of the fluid
which is located directly near the heated walls. The wall heat flux does not reach the inner
layers of the fluid. The inner energy which the fluid receives from the wall is removed by
convective heat transport in flow direction along the heated wall. This implies, that the
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

temperature and also velocity boundary layer thickness have to increase in flow direction
along the heated walls. Figure 3.5 on page 82 demonstrates the typical resulting mean tem-
perature and velocity distribution in a natural convection generated between two heated
walls (as seen in [Hölling05], [Hölling06]). The left picture shows a configuration where the
vertical walls are heated isothermally. The right picture displays a configuration where
the horizontal walls are heated. Both configurations are similar to each other, but the
heated walls are rotated to each other about 90◦. Therefore, also the profiles of the fluid
properties must be rotated to each other about 90◦.

Figure 3.5.: Mean velocity and temperature distribution in an enclosed container with adiabatic
lateral walls (as seen in [Hölling05], [Hölling06]). Left: Vertical walls are heated.

Right: Horizontal walls are heated.

In case of a Boussinesq fluid, all fluid properties reveal an anti-symmetrical profile form.
The shaded areas under the functions in figure 3.5 are in this case equal to each other.
Their size is decreasing with an increasing temperature difference. In case of a NOB
convection and temperature dependent fluid properties, the profiles reveal an asymmetry,
which is further discussed in chapter 5 and chapter 6 from page 95 on (see also [Ahlers06]).
The vertical orientation of the heated walls effects a quasi-steady state flow, after a tran-
sient state of the system is passed. In the centre region of the container a temperature
Tcenter is reached, which is almost about the mean temperature between both heated walls,
Tmean = (Thot − Tcold)/2 + Tcold. The velocity at this point is almost equal zero.

In the horizontal configuration, hot lift-streams and cold sink-streams change the temper-
ature field inside the fluid due to the relative direction of gravity. These streams increase
the intensity of turbulence and produce an unsteady flow behaviour, which dominates the
vertical heat flux in the configuration. Local density differences drive the fluid between
the heated walls. The resulting temperature distribution is therefore characterised by in-
creasing temperature gradients in the near wall region and a dominating convective mass
exchange the centre region of the container.
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3.5. Natural convection

3.5.3.2. Turbulent flow

Two layer structure
Most turbulent flows of a high Reynolds number (Re → ∞) can be characterised by a
two layer structure as indicated in figure 3.6 . Note that figure 3.6 is valid for a horizontal
or vertical wall configuration. According to ([Hölling05], [Hölling06]), near the wall, the
boundary layer or inner layer can be seen. In this boundary layer, a viscous sublayer
exists directly at the wall.

Figure 3.6.: Two layer structure of a turbulent flow in distance to the hot wall (as seen
in [Hölling05]).

Most of the distance between both heated walls is covered by the so-called bulk region or
outer layer, which is significantly bigger than the boundary layer. The bulk region has
a thickness of about H/2, where H is a characteristic length of the flow geometry. In
this case is H the distance between both heated walls. In the boundary layer, molecular
and turbulent momentum transfer can be detected. The molecular momentum transport
is insignificant compared to the turbulent transport in the bulk region where the flow is
fully turbulent (see [Schlichting06], chapter 17, 17.1).

According to [Pope00], chapter 7, 7.1, the particular regions in the boundary layer can
be characterise as follows by the normal direction to the wall y and the non dimensional
wall distance y+. The inner layer is defined as y/δ < 0.1 and δ = H/2 is defined as the
half height between the walls. It is for the viscous sublayer y+ < 5. In this region, viscous
stresses are dominant.

Before the overlap layer is reached the viscous wall region begins (y+ < 50). Here, the
contribution of viscous effects to the shear stress is distinctive. The log-law region begins
at y+ > 30, y/δ < 0.3. The overlap layer is reached at y+ > 50, y/δ < 0.1. The bulk region
or outer layer begins at y+ > 50. Here, diffusive effects are negligible. In the following,
analytical functions of the velocity and temperature distribution in the boundary layer
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

are formulated. The following part deals with turbulent flows in general on the basis of a
Couette flow, while section 3.5.3.3 deals especially with a natural convection.

Analytical description of the velocity and temperature profiles in the boundary layer

The boundary layer laws are derived from the dimensionless Navier-Stokes equations
combined with a subsequent dimension analysis under an assumption of an asymptotic
solution for Re → ∞. Because the main focus of this thesis does not lie on the mathemat-
ical derivation of these functions, they are only presented in a summarised form which
is formulated in the whole next section analogously to the information in [Schlichting06],
chapter 17. For a detailed description of their derivation, it is pointed to [Spurk07] and
also to [Schlichting06].

It is assumed, that all variables are understand as turbulent as it was demonstrated for a
LES in this chapter from page 63 on. The variables separation in turbulent and viscous
parts is not used in the following to obtain a clearer presentation. The boundary layer
thickness can be derived on basis of the two-dimensional Couette flow for high Reynolds
numbers

δBL,u = ν

uτw

= H

Reτw

(3.5.22)

with Reτw = uτwH

ν
, where ν is the kinematic viscosity. The Couette flow is observed

between two walls where y describes the vertical distance between both walls and x the
horizontal distance along the walls. For Reτw → ∞, the boundary layer δBL converges to
zero. uτw in equation (3.5.22) is the wall shear stress velocity

uτw =
√

τw

ρ
(3.5.23)

with the wall shear stress τw

τw = μ

∣∣∣∣∂u

∂y

∣∣∣∣
w

, (3.5.24)

the dynamic viscosity μ, the velocity component u in vertical direction y and the velocity
gradient at the wall ∂u/∂y. Note that the velocity u is a function of the following properties

u = f̃(y, H, ν, τw/ρ). (3.5.25)

The characteristic variable of the boundary layer is the non-dimensional distance y+,
which is given by

y+ = uτw

ν
y = η+Reτw (3.5.26)

with a dimensionless distance η+ = y

H
.
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3.5. Natural convection

The velocity distribution in the boundary layer is then a function of the non-dimensional
distance y+

u+ = g(y+) . (3.5.27)

The expression in (3.5.27) is valid for all turbulent boundary layers with a finite wall
shear stress velocity uτw . The velocity distribution in the bulk region can be described by
a function of the following form

u+ = f(η+, Reτw) . (3.5.28)

For a region of 0 < η+ < 1, equation (3.5.28) fulfils the following boundary conditions

η+ = 0 : u+ = 0, τ+
w,t = 0 ,

η+ = 1 : d2u+/dη+2 = 0 (3.5.29)

with
u+ = u

uτw

, and τ+
w,t = τw,t

ρu2
τw

, (3.5.30)

where τw,t is the turbulent part of the wall shear stress τw and ρ the density. To estimate
the solution for the boundary layer and the bulk region, both expressions in (3.5.27) and
(3.5.28) have to be equal in the region between both layers. A dimension analysis reveals
the following boundary condition for the bulk layer

lim
η+→0

du+

dη+ = 1
κη+ (3.5.31)

and a condition for the boundary layer

lim
y+→∞

du+

dy+ = 1
κy+ (3.5.32)

with the so-called Karman constant κ = 0.41. Integration of the equation in (3.5.32) leads
to

lim
y+→∞

u+(y+) = 1
κ

ln y+ + C+
u . (3.5.33)

The integration constant C+
u is assumed with C+

u = 0.5 for smooth walls, according to
experimental measurements ([Schlichting06], chapter 17, 17.1).

Equation (3.5.33) is also called the logarithmic overlapping law or logarithmic wall law.
It describes, how the universal law u+(y+) acts for y+ → ∞. In [Schlichting06] (chapter
17, 17.1) the following analytical expression of the universal wall law is given which was

85

formulated by [Gersten1992]

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.
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du+

dy+ = 1
1 + (A + B)y+3︸ ︷︷ ︸

Λ

+ By+3

1 + κBy+4 ,

u+ = 1
Λ

[
1
3 ln Λy+ + 1√

(Λy+)2 − Λy+ + 1
+ 1√

3

(
arctan 2Λy+ − 1√

3
+ π

6

)]
(3.5.34)

+ 1
4κ

ln(1 + κBy+4)

with the following values

κ = 0.41 , A = 6.1 · 10−4, B = 1.43 · 10−3 , (3.5.35)

Λ = 0.127 , C+
u = 2π

3
√

3Λ
+ 1

4κ
ln(κB) = 5.0 ,

which result from experimental measurements. Both equations in (3.5.34) fulfil the con-
dition in (3.5.33). The boundary layer can be described by the following regions as in
[Schlichting06], chapter 17, 17.1

viscous sublayer : 0 ≤ y+ < 5 , u+ = y+ ,

transient layer : 5 < y+ < 70 , eq. (3.5.34) , (3.5.36)

overlapping layer : 70 < y+ , u+ = 1
κ

ln y+ + C+
u .

A universal boundary layer law can be formulated also for the temperature profile. This
is described in the following analogously to [Schlichting06], 17, 17.1.2.7.

In the velocity boundary layer theory, the kinematic viscosity ν is a decisive property.
This part is taken by the thermal diffusivity coefficient κ = λ/(ρ cp) in the temperature
boundary layer theory. If κ is almost of the same dimension as ν, the velocity and tem-
perature boundary layer are also almost of the same size.

The temperature boundary layer has only a universal character, if its size lies within the
size of the velocity boundary layer. This is satisfied in flows where Pr = ν/κ > 0.5 is
fulfilled. The thickness of the thermal boundary layer can be given by ([Spurk07], chapter
12)

δBL,T ∼ LRe−1/2
τw

. (3.5.37)

It is assumed that the heat flux density qw is constant directly at the wall in the boundary
layer. The fluid properties are also assumed as constant. Analogously to uτw a friction
temperature can be defined by

Tτw = − qw

ρcpuτw

. (3.5.38)
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The dimensionless temperature is defined by

θ+ = T − Tw

Tτw

. (3.5.39)

Analogously to the proceeding of the velocity boundary layer, an adjustment of boundary
layer and bulk region leads to a temperature distribution in the overlapping region

lim
y+→∞

θ+(y+, Pr) = 1
κθ

ln y+ + C+
θ (Pr) . (3.5.40)

According to [Schlichting06] (chapter 17, 17.1.2.7), a definition for both constants C+
θ , κθ

can be given. The constant κθ is κθ = 0.47. For smooth walls, the constant C+
θ is now

given as a function of the Prandtl number Pr as

C+
θ (Pr) = 13.7 Pr2/3 − 7.5 , (Pr > 0.5) . (3.5.41)

3.5.3.3. Natural convection

The above stated analytical solutions of the velocity and temperature in the boundary
layer are now discussed for a turbulent natural convection between two vertical walls
which are heated, as it was presented in figure 3.5, right picture, on page 82. The follow-
ing information are based on the details in [Schlichting06], chapter 10, 19 and [Spurk07],
chapter 12.

y is now the horizontal direction and describes the distance between the heated walls. The
governing equations in (1.10.2) - (1.10.3) in chapter 1, section 1.10, on page 26 are con-
sidered now for a natural convection along an endless vertical plate. These equations are
solved under certain conditions. In a natural convection in air the influence of dissipation
can be neglected. Also a turbulent natural convection between two vertical, heated walls
can be characterised by a two layer structure as indicated in figure 3.6.

Analytical description of velocity and temperature profiles in the boundary layer
At first, a laminar natural convection with a Boussinesq-approximation is considered
analogously to [Schlichting06], chapter 10, 10.5. For the thickness of the thermal boundary
layer it is

δT ∼ LGr−1/4 ∼ √
ν (3.5.42)

with the Grashof number Gr = Ra/Pr and the kinematic viscosity ν ([Spurk07], chapter
12, 12.3). As mentioned before in chapter 1, section 1.7, no given reference velocity appears
in a convective flow. Therefore, the Grashof number Gr is used instead of the Reynolds
number in the above formulation. For Gr � 1, we have δT /L � 1 and the flow has a
boundary layer character. Note that this time y stands for the horizontal axis which points
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away from the in this case vertical, heated wall. x stand for the vertical direction along
the heated wall. The characteristic velocity in the boundary layer can then be given by

uBL =
√

β∞ΔTgxL . (3.5.43)

T∞ denotes the temperature in great distance from the wall and β∞ the depending thermal
expansion coefficient. Further it is ΔT = |Tw − T∞|. One can define a dimensionless
temperature and velocity as

Θ∗ = T − T∞
Tw − T∞

, ũ+ = u

uBL
(3.5.44)

and the dimensionless variables as

x+ = x

L
, η̃+ = y

L
Gr1/4 , (3.5.45)

where x is the component in vertical direction and y in horizontal direction. With help
of equation (3.5.44) and (3.5.45) one obtains the following function for the temperature
profile in the boundary layer

Θ∗(x, y) = Θ∗(η̃+) . (3.5.46)

For a formulation of the Nusselt number distribution in the boundary layer different ex-
pressions can be found. [Schlichting06] (chapter 10, 10.5), for example, states the following
connection between Nusselt number and Grashof number

Nu = −Gr1/4
(∣∣∣∣∂Θ∗

∂η̃+

∣∣∣∣
w̃

)
(3.5.47)

with the gradient at the heated wall (marked by index w̃), while [Spurk07] (chapter 12,
12.3) gives a connection between Nusselt number, Grashof number and Prandtl number
by

Nu =
(

GrPr
2.43478 + 4.884Pr1/2 + 4.95283Pr

)1/4

. (3.5.48)

To consider the temperature dependent fluid properties and hence nonlinear density
effects, which arise in a non-Boussinesq fluid, corrections of the above stated expres-
sion (3.5.48) have to be made. The stated corrections were proposed from [Herwig1985],
[Herwig1984] and can be found in a summarised form in [Schlichting06], chapter 10, 10.5.6.

The above equations are valid for a laminar flow. Assuming Tw = const., it is

Nu
NufB

=
(

Prw

Pr∞

)nPr (ρwβ∞
ρ∞βw

)nρβ
(

ρwλw

ρ∞λ∞

)nρλ
(

cpw

cp∞

)nc

(3.5.49)
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with cp = 2(p − p∞)
ρV 2 . The index fB represents the results with the Boussinesq assump-

tion. The index ∞ denotes the values in great distance from the wall. For the appearing
coefficients in (3.5.49) the following values are assumed

nPr = −0.206
(
1 + 1.415Pr−0.7

∞
)−0.605

, nρβ = −0.070 , nρλ = 0.308 , nc = 0.202.

(3.5.50)
The expression in (3.5.49) is a good local approximation of the Nusselt number. For a
turbulent flow, the turbulent transport properties have to be considered in the above
expressions as it is formulated in [Schlichting06] (chapter 19, 19.3). For great Grashof
numbers, the flow can be also described by a two layer structure with a viscous sublayer
and a fully turbulent outer layer. The characteristic reference velocity is in then

UBL = (ΔTgxβ∞κ∞)1/3 (3.5.51)

with the thermal diffusivity coefficient κ∞ at T∞. Universal boundary layer laws of the
velocity u× and temperature θ× can be formulated in the viscous sublayer with an as-
sumption of Pr∞ = Pr by

u× = u

uq,ref
= f1(y×, Pr) and lim

y×→∞
u× = κ1 · (y×)1/3 − C×(Pr) , (3.5.52)

θ× = T − Tw

Tq
= f2(y×, Pr) and lim

θ×→∞
θ× = κ2 · (y×)−1/3 − C×

θ (Pr) .

This approach was formulated by [Gersten1992] and given in [Schlichting06], chapter 19,
19.3. u is the turbulent velocity component in vertical direction. Further, it is

uq,ref =
(

ΔTβgxνκ

L

)1/4

, y× = yuq,ref

ν
, Tq = ΔTκ

Luq,ref
(3.5.53)

with the thermal diffusivity coefficient κ and two constants κ1, κ2. Both constants can be
found in [Schlichting06], chapter 19, 19.3 with κ1 = 27, κ2 = 5.6 which was proposed by
[Gersten1992]. The universal functions C×(Pr), C×

θ (Pr) in equation (3.5.52) are dependent
of the Prandtl number. It is

C×
θ (Pr) = Pr1/2

0.24 (Ψ(Pr))1/4 , Ψ(Pr) =
(

1 +
(

Cch

Pr

)9/16
)−16/9

, (3.5.54)

which was proposed by [Churchill1983] and stated in [Schlichting06] (chapter 19, 19.3).
The Churchill constant is stated as Cch = 0.46. It is also

Ψ(Pr → ∞) = 1 and Ψ(Pr → 0) = 2.2 Pr. (3.5.55)
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3. Turbulent natural convection in a Large-Eddy Simulation (LES)

In the overlapping layer an adjustment of the temperature leads to

Tw − T∞
Tq

= C×
θ (Pr). (3.5.56)

An expression of a Nusselt number relation can be formulated by

Nu = 0.15(Ψ(Pr))1/3Gr1/3 = 0.15(Ψ(Pr)Ra)1/3 , (3.5.57)

where the Nusselt number is estimated in vertical direction along the vertical heated wall.

Complementary notes
The above considerations are formulated for a natural convection between vertical heated
walls which fulfils a Boussinesq-approximation. In the following of this thesis, analytical
functions of the temperature in the boundary layer are described also for a configuration
with horizontal heated walls. These functions are based on the above theory and are
similar to the equations (3.5.40) and (3.5.46). The modified functions are proposed by
Hölling et al. in [Hölling06], [Hölling05] and they are presented in chapter 6, section 6.3.3,
on page 164. There, they are compared to the simulation results. Further, a Nusselt-
Rayleigh-number dependence for a Prandtl number of Pr = 0.71 can be formulated for
the observed horizontal turbulent natural convection. Therefore, modified expressions of
Grossmann et al. in [Grossmann00] are used which are similar to the one given in equation
(3.5.57).
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4. Computational and experimental
test case studies - An overview

The purpose of the three following chapters 5 - 7 is the numerical and in one case also
experimental investigation of three configurations of a turbulent natural convective flow in
air. The analysis is based on the previously discussed theory from chapters 1 - 3. This short
chapter should give a summarised introduction of the three used test case configurations.

4.1. Test case configurations

Figure 4.1.: Left: Scheme of test case VerCon (see also [Zimmermann14a]). Right: Scheme
of test case RayCon (see also [Zimmermann12], [Zimmermann15]).

Figure 4.2.: Scheme of test case CenCon.
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4. Computational and experimental test case studies - An overview

The main focus lies in all studies on the numerical modelling and understanding of the
flow dynamic, its turbulence production, the fundamental fluid properties and the flow
structure inside the fluid. All three configurations consist of a rectangular enclosed con-
tainer with smooth walls which is filled with air. The container properties are chosen
simplified in each case to reduce especially complexity aspects. Nevertheless, the setups
are still sufficient and commonly used regarding the investigation of convective flows. The
walls of the container limit the expansion of the fluid. Two opposite walls of the setup are
isothermally heated with a constant temperature difference between them. All setups vary
in their aspect ratios and especially in the choice of the two heated walls. The orientation
of these heated walls relative to the direction of gravity, effects significantly the main flow
field. Lateral walls of all setups are designed with different boundary conditions, e.g. adia-
batic walls or a fixed temperature condition. A sketch of all three test case configurations
is given in figures 4.1 and 4.2.

The first setup of VerCon (left picture in figure 4.1) is built of a container where two
of the vertical walls are heated, while both other cases, RayCon and CenCon, consist
of a container where the horizontal walls are heated (right picture in figure 4.1 and fig-
ure 4.2). Both later mentioned configurations are so-called Rayleigh-Bénard convection
problems. The first test case is denoted by VerCon, because the convection (Con) is gen-
erated between the vertical heated walls (Ver). The second test case RayCon is named
after the Rayleigh-Bénard (Ray) convection (Con). The third test case CenCon is also a
Rayleigh-Bénard convection (Con) problem which is additionally rotating in a large-scale
centrifuge (Cen) with a constant angular velocity.

All three test cases are based on each other. Due to the parallel orientation of the ver-
tical, heated walls relative to the direction of gravity in VerCon, a quasi-steady state is
reached after a while in the setup. This configuration of a natural convection represents
the basis for both other test cases. This case has to be understood first to use the gained
information on the investigation of RayCon and finally of CenCon. Regarding the layout,
test case CenCon and RayCon have a similar construction to each other. But in contrast
to RayCon, a Coriolis force should affect the test case of CenCon which is generated by
a rotational movement of the test cell. To analyse the influences of the Coriolis force on
the test case, two different modes are analysed in case of CenCon.

First, the RB cell is studied in a non-rotation mode, similar to the investigation of RayCon.
Second, the RB cell is analysed while it is rotating under hyper-gravity in the centrifuge.
While CenCon is rotating, possible influences on the flow structures, the turbulence pro-
duction and the fluid properties due to the Coriolis acceleration should be investigated
in the simulation as well as in the experiment. The additional accelerations are realised
in the simulation by a set of modified governing equations compared to the equations of
RayCon.
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4.2. Boundary conditions

4.2. Boundary conditions
All test cases can be characterised by the non-dimensional parameters of Rayleigh number
Ra, Prandtl number Pr and the aspect ratio ΓΓΓ = L

H
, where L and H are characteristic

lengths of the geometrical setup (see also chapter 1, section 1.4 and chapter 3, section 3.5).
All parameters correspond to the mean temperature value Tmean taken between both
isothermally heated walls with Tmean = Tcold + Thot − Tcold

2 . The Prandtl number stays
in each case at Pr = 0.71 which represents the used fluid, air, in the chosen tempera-
ture intervals. The analysed range of Rayleigh-numbers varies in each study. The main
conditions of each test case can be given summarised by

1) VerCon: rectangular container filled with air, two of the vertical walls are heated,
different boundary conditions on lateral walls, numerical investigation, characteristic
numbers: Ra = 1.58 × 109, Pr = 0.71, Γx = L

H
= 1, Γz = D

L
= 2.

2) RayCon: rectangular container filled with air, both horizontal walls are heated,
adiabatic lateral walls (a Rayleigh-Bénard problem), numerical investigation, char-
acteristic numbers: 6.16×107 ≤ Ra ≤ 4.1×108, Pr = 0.71, Γx = L

H
= 5, Γy = H

D
= 1.

3) CenCon: rectangular container filled with air, both horizontal walls are heated,
conducting and adiabatic lateral walls (a Rayleigh-Bénard problem), investigation
in an experimental as well as numerical study, consideration of an additional Coriolis
force influencing the fluid inside the test case, characteristic numbers:
2.33 × 106 ≤ Ra ≤ 4.32 × 107, Pr = 0.71, Γx = D

H
= 2.9 and Γy = L

D
= 1.

4.3. Numerical simulation and computational mesh
For each test case a compressible LES of a non-Boussinesq fluid is performed which is
based on the before presented model of Fureby (s. chapter 3, section 3.3.2). The as-
sumption of a non-Boussinesq fluid is especially relevant in the numerical investigation of
CenCon, due to an intensified gravitational force field, which effects the test case while it
is rotating under hyper-gravity. Furthermore, the influence of density changes in the fluid
due to temperature differences should be investigated in all cases to compare the results
to other studies which consider a Boussinesq fluid for similar test cases.

For the numerical investigations all computational geometries have to be discretised spa-
tially by an appropriate mesh. Due to the rectangular setup of the test cases, a Cartesian
block-structured mesh is chosen which is divided in 27 sub-blocks with different mesh res-
olutions. The chosen block partition enables an exterior zone in vicinity to all walls where
a finer mesh resolution can be chosen easily and independently of the other sub-blocks to
resolve the boundary layers. A fine resolution or wall function is essential in the boundary
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4. Computational and experimental test case studies - An overview

layers, because the turbulent structures are generated mainly in this region. In the middle
of the geometry, large flow scales are dominant and the mesh can consist in this region of
a coarser resolution than close to the walls. The basic idea of the mesh structure of each
case is illustrated on the basis of the RayCon geometry in figure 4.3. The first layer of
cells is cubical formed. Regarding figure 4.3, it is Δx1 = Δy1 = Δz1 in the first layer of
cells.

Figure 4.3.: Scheme of the computational geometry and block-partition of the mesh resolution
on the basis of RayCon.

Because test case VerCon builds the basis for both other test cases, it is investigated as
first step in the following chapter 5. Afterwards, the gained information and the performed
numerical model of the LES are used to analyse both other test cases. Because CenCon
is based on RayCon in its layout and its flow dynamics in the non-rotating mode, it is is
analysed in chapter 7 on the basis of the gained information of RayCon from chapter 6.
The results of all three test cases are compared to data of comparable experimental test
cases as well as theoretical and numerical data from the literature.
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5. Case studies - Test case VerCon,
vertical, heated walls

5.1. Configuration of VerCon and its boundary conditions
The first test case VerCon is built of a rectangular enclosed container, as it is illustrated
in figure 5.1. Note that some of the following presented contents of this section and the
following section are also discussed in [Zimmermann14a]. The container consists of two
isothermally heated walls which are heated differentially with a constant temperature
difference. The container is filled with air. The heated walls are orientated in vertical
direction, so that the temperature gradient is normal relative to the direction of gravity.
This orientations implies a quasi-steady state flow in the container. To validate the results
of the non-Boussinesq 3-dimensional LES of this setup an comparable experimental setup
from Tian et al. in [Tian00a], [Tian00b] is chosen.

Figure 5.1.: Left: Configuration of VerCon. Right: Scheme of the computational geometry
and mesh resolution with (180 × 180 × 270) cells, 3D simulation (as in [Zimmermann14a]).

Tian et al. investigate a low level turbulent natural convection in an air-filled vertical
square container for a Rayleigh number of Ra = 1.58 × 109 and a Prandtl number of
Pr = 0.71. The experiment, and hence the computational setup, is built of a length (L)
of 0.75 m, a height (H) of 0.75 m and a depth (D) of 1.5 m. Therefore, the aspect ratios
are Γx = L

H
= 1 and Γz = D

L
= 2. According to [Tian00a], the chosen experimental setup

should offer a 2-dimensional main flow field at the xy-midplane. Between the heated walls
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5. Case studies - Test case VerCon, vertical, heated walls

a constant temperature difference of ΔT = 323.15 K−283.15 K = 40K exists. In [Tian00a],
the horizontal walls are highly conducting. Due to a non-slip condition, the velocity field
at all walls is zero (u ≡ 000) (Dirichlet condition). For the total pressure p, the boundary
conditions are taken as a zero normal gradient at all walls of the computational geometry
(Neumann condition), due to the non-slip condition of the velocity (mass conservation).
The index w stands for variables estimated directly at the lateral wall. The index w̃ stands
for variables estimated directly at one of the heated walls. It is

∂p

∂x

∣∣∣∣
w̃

= 0, for x = 0 m and x = 0.75 m, with 0 ≤ y ≤ 0.75 m, 0 ≤ z ≤ 1.5 m,

∂p

∂y

∣∣∣∣
w

= 0, for y = 0 m and y = 0.75 m, with 0 ≤ x ≤ 0.75 m, 0 ≤ z ≤ 1.5 m,

∂p

∂z

∣∣∣∣
w

= 0, for z = 0 m and z = 1.5 m, with 0 ≤ y ≤ 0.75 m, 0 ≤ x ≤ 0.75 m.

The initial field of the total pressure p is assumed to be constant at 1 · 105 Pa inside the
computational geometry. Because the chosen solver buoyantPimpleFoam in OpenFOAM R©

estimates first the field of the dynamic pressure prgh and subsequent the field of the total
pressure p, also an boundary condition for the dynamic pressure prgh has to be specified
(see also chapter 3, section 3.4 and equation (3.4.1)). The boundary condition of the
dynamic pressure prgh is defined by the option buoyantPressure. This option is a specified
boundary condition in OpenFOAM R©. It calculates the normal gradient of the dynamic
pressure prgh from the local normal density gradient and the gravitational force field vector
g by

∂prgh

∂x

∣∣∣∣
w̃

= ∂ρ

∂x

∣∣∣∣
w̃

gx, for x = 0 m and x = 0.75 m, with 0 ≤ y ≤ 0.75 m, 0 ≤ z ≤ 1.5 m,

∂prgh

∂y

∣∣∣∣
w

= ∂ρ

∂y

∣∣∣∣
w

gy, for y = 0 m and y = 0.75 m, with 0 ≤ x ≤ 0.75 m, 0 ≤ z ≤ 1.5 m,

∂prgh

∂z

∣∣∣∣
w

= ∂ρ

∂z

∣∣∣∣
w

gz, for z = 0 m and z = 1.5 m, with 0 ≤ y ≤ 0.75 m, 0 ≤ x ≤ 0.75 m.

This option is assumed to be a uniform value, hence the normal gradient of the dynamic
pressure prgh is taken as 1 ·105 Pa at all walls, which is also the value of the internal field of
prgh inside the geometry. Hence, inside the box an almost atmospheric pressure condition
is generated.

In the experimental study of [Tian00a], the sidewalls are highly conducting. This boundary
condition cannot be realised in the numerical simulation. Only an ideal linear boundary
configuration can be modelled. The values of the boundary condition match only in the
corner regions with the values of the experimental boundary condition, as it imaged in
figure 5.2 by a plot of the non-dimensional temperature. The non-dimensional temperature
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5.1. Configuration of VerCon and its boundary conditions

T ∗ = Tmean − Tcold

Thot − Tcold
, (5.1.1)

where Tmean = Tcold + (Thot − Tcold) /2 is the mean temperature between the isothermally
heated walls. Additionally to this boundary condition, three further conditions are inves-
tigated at the lateral walls in the numerical study.

Figure 5.2.: Temperature boundary condition at the lateral walls. Data of [Tian00a] compared
to the data of the linear bc simulation. - solid line: Top/bottom wall in the simulation (2D/3D).

Study [Tian00a]: •: top wall, ◦: bottom wall.

All conditions are compared to the perfectly conducting condition of the experiment. The
additional realised conditions are

1) adiabatic walls,

2) fixed temperature of Tlow = 296 K at the lower wall and of Tup = 310 K at the upper
wall,

3) fixed temperature condition of Tlow/up = 303 K at the lower and upper wall,

4) linear temperature distribution at the lower and upper wall (s. figure 5.2).

For the adiabatic boundary condition the normal gradient of the temperature has to be
zero at the non-heated, horizontal walls

∂T

∂y

∣∣∣∣
w

= 0, for y = 0 m and y = 0.75 m, with 0 ≤ x ≤ 0.75 m, 0 ≤ z ≤ 1.5 m,

∂T

∂z

∣∣∣∣
w

= 0, for z = 0 m and z = 1.5 m, with 0 ≤ x ≤ 0.75 m, 0 ≤ y ≤ 0.75 m.

The initial internal temperature field TIF is chosen equally to the mean average tempera-
ture in the experimental setup with TIF = Tmean = 303.15 K. The Rayleigh number and
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5. Case studies - Test case VerCon, vertical, heated walls

the Prandtl number stay in all numerical studies at Ra = 1.58 × 109 and Pr = 0.71. To
describe and understand the structure of the flow, diverse characteristic fluid properties
have to be analysed. To assure a validation of the numerical model with the experiment,
the same variables as in the study of [Tian00a] are estimated. In [Tian00a], the measure-
ment period was about 4 minutes at every measuring point. Considering a steady-state
of the system, a estimation time interval of Δt = 200 s − 400 s is considered in the sim-
ulation. The numerical data are averaged over an interval of Δt = 200 s − 400 s in the
simulated process with an intermediate steps size of Δt = 3 s for the 3D simulation cases
and Δt = 1 s for the 2D simulations. A time-averaged value of an arbitrary variable f in
a time interval [t1, t2] is formulated by

f̄ = 1
t2 − t1

∫ t2

t1

f dt. (5.1.2)

The simulation assumes a non-Boussinesq fluid (s. chapter 1, section 1.7, from page 18).
Consequently, fluid properties, as density ρ, the thermal expansions coefficient β, the ther-
mal diffusion coefficient α and dynamic viscosity μ are assumed to be temperature depen-
dent. The two recent parameters are calculated by the Sutherland model from chapter 1,
section 1.9 from page 24 on. The turbulent Prandtl number Prsgs is taken as Prsgs = 0.4
(s. chapter 3, section 3.3.2). The word boundary condition is abbreviated by the term bc
in the following.

5.2. Computational mesh of VerCon
To perform the numerical simulation, the geometry has to be discretised spatially by
an appropriate mesh. Due to the rectangular test case configuration, a Cartesian block-
structured mesh is chosen which is divided in twenty-seven sub-blocks.

A sketch of the mesh resolution is demonstrated in figure 5.1 (right picture). A snapshot
of the mesh resolution of the particular walls is exhibit in figures 5.3 - 5.4 on page 99.
Because of symmetry aspects, only a quarter is presented of the front/back walls and a
quarter of the horizontal/heated walls.

The partition of the mesh enables an exterior zone in vicinity to all walls where a finer
resolution can be easily chosen independently of the other sub-blocks. Mainly in this
region, the turbulent structures are generated. Thus, a fine resolution or wall function is
essential in this region. According to [Pope00], chapter 7, 7.1, the viscous wall region near
the walls is important concerning the grid resolution of a LES. In a region of y+ < 20, the
turbulence production, dissipation and kinetic energy reach their peak values. Thus, the
filter and grid width have to be sufficiently small to resolve 80% of the energy everywhere,
also in the viscous wall region. Hence, y+ should be y+ < 1 in the first cell midpoint from
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5.2. Computational mesh of VerCon

the wall. Further, in a LES, the size of one cell should be nowhere bigger than ten-times
of the size of the Kolmogorov length which is fulfilled by the chosen mesh. The first layer
of cells in the corner regions is cubical formed. Near to the walls, the mesh is clustered
and the cell ratios decrease in direction to the walls to resolve the boundary layers which
lie in the first sub-block near the walls. In this way, all relevant turbulent scales can be
resolved and no wall functions have to be used in the numerical model. In the middle of
the geometry, large flow scales are dominant and the mesh has a coarser resolution than
close to the walls.

Figure 5.3.: Mesh resolution of the computational geometry of VerCon, see figure 5.1, 3D
simulation, quarter of the front/back wall.

Figure 5.4.: Mesh resolution of the computational geometry of VerCon, see figure 5.1, 3D
simulation, quarter of the heated/side walls.

In [Tian00a], the first experimental measurement point is located at 3.4 ·10−4 m in vertical
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distance from the hot wall. In the simulation, the first grid point should be located as
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5. Case studies - Test case VerCon, vertical, heated walls

near as possible at this same position, but simultaneously, the total cell number of the
mesh should be limited to 10 million cells. As consequence, the final mesh consists of
(180 × 180 × 270) = 8, 748, 000 cells in (x, y, z)-direction. The first grid point is located at
yw1 = 6.9 · 10−4 m in vertical distance from the hot/cold wall. To analyse possible mesh
dependencies, additionally to the 3D simulation a 2D simulation is performed. The 2D
simulation consists of a mesh with (750 × 750) = 562, 500 cells. The cells are equally
spaced over the plane. The first grid point is located at yw1 = 5.0 · 10−4 m in vertical
direction from the hot/cold wall.

In a DNS, the Kolmogorov length is a scale for the size of the smallest turbulent eddies.
These smallest eddies have to be resolved by the computational grid (s. also chapter 3).
According to equation (3.1.7) in chapter 3, section 3.1 on page 66, the Kolmogorov length
can be estimated by

L

η
= Re3/4

L . (5.2.1)

With a higher Reynolds number, the Kolmogorov length becomes larger and the mesh
resolution must be adapted. In a LES, the grid resolution has not to be as fine as in a
DNS. In natural convection the characteristic flow variable is the Rayleigh or Grashof
number. According to equation (1.9.6) in chapter 1, section 1.9 it is

Ra = GrPr = gβ0L3 (Tw − T0)
ν0κ0

. (5.2.2)

According to [Schlünder1970], the Grashof number can be related to the Reynolds number
by the following formulation for a natural convection

Gr = 2.5Re2. (5.2.3)

With help of eq. (5.2.1) and equations (5.2.2), (5.2.3), the Kolmogorov length can then
be written in terms of the Rayleigh number

ηkL
≈ L

Re3/4 = L(
1

0.71 · 2.5Ra
)3/8 . (5.2.4)

For a Rayleigh number of Ra = 1.58 × 109, the Kolmogorov length is then

ηkL
≈ 3.4 · 10−4 m. (5.2.5)

The size of the smallest cell in the 3D resolution is Δx/Δy/Δz = 1.38 · 10−3 m. For the
2D resolution it is Δx/Δy = 1 · 10−3 m. Hence, the size of the smallest cell is in both grids
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5.3. Temperature profile

larger than the Kolmogorov length. Thus, the chosen resolution is not as small as it have
to be in a DNS. Table 5.1 contains an overview of reached values of the non-dimensional
wall distance y+ for the first cell midpoint yw1 and various boundary conditions in the
fully turbulent flow at t = 200 s and averaged values over an interval of Δt = 200 s − 400 s
(s. chapter 3, section 3.5, 3.5.3.2, eq. (3.5.26) on page 84). The values are estimated in
the first grid point yw1 at position x = 0.375 m, z = 0.75 m. At this position the observed
fluid properties profiles are analysed in the following. It is for all values y+ < 1 in yw1.
Further, in a LES, the size of one cell should be nowhere bigger than ten-times of the size
of the Kolmogorov length which is fulfilled by both chosen resolutions.

BC 3D 2D
t = 200s Δt = 200 − 400s t = 200s Δt = 200 − 400s

adiabatic y+ = 0.112 ȳ+ = 0.056 y+ = 0.048 ȳ+ = 0.532
linear temperature y+ = 0.332 ȳ+ = 0.811 y+ = 0.190 ȳ+ = 0.232
Tlow = 296 K,Tup = 310 K y+ = 0.490 ȳ+ = 0.176 y+ = 0.165 ȳ+ = 0.172
Tlow/up = 303 K y+ = 0.319 ȳ+ = 0.706 y+ = 0.311 ȳ+ = 0.222

Table 5.1.: Non-dimensional distance y+ estimated in the first cell midpoint yw1 in the fully
turbulent flow at t = 200 s and as averaged value over Δt = 200 s − 400 s. Ra = 1.58 × 109,

different boundary conditions.

5.3. Temperature profile

5.3.1. Temperature distribution between the heated walls estimated
along the horizontal axis

The flow movement in the container is initialised by the temperature difference between
the vertical, heated walls.

Figure 5.5.: Temperature profile between the heated walls. Left: Instantaneous temperature
profile of a natural convection with vertical, heated walls and a linear bc at the lateral walls,
t = 400 s (as in [Zimmermann14a]). Right: Evaluation points of the horizontal temperature

profile at the vertical xy-midplane at z = 0.75 m.
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5. Case studies - Test case VerCon, vertical, heated walls

Hence, one main aspect of the numerical study lies on the temperature distribution be-
tween the heated walls. Note that some of the following presented contents are also dis-
cussed in extracts in [Zimmermann14a]. Figure 5.5 demonstrates a typical quasi steady-
state temperature profile for a natural convection in a setup with vertical isothermally
heated walls. The picture shows the numerical results after t = 400 s in the simulated
process for a linear temperature boundary condition.

Near to the vertical walls, the temperature can be described by a linear law. This is
demonstrated in figure 5.6 on page 103 for the simulation data and the data of [Tian00a]
at the xy-midplane at midheight at y = 0.375 m (y = 0.5 H) and z = 0.75 m. It is clearly
visible, that the simulation can be approximated by a linear function (black solid line),
but that the gradients underrun the ones of the experiment. In [Tian00a], a 2-dimensional
flow field at the xy-midplane is considered. Therefore, the temperature profile is measured
only at the xy-midplane, at x = 0.375 m, z = 0.75 m and different heights, y1 = 0.1H,
y2 = 0.5H and y3 = 0.9H (s. figure 5.5, right picture). The temperature profile of the 3D
and 2D simulations are plotted for all cases against the data of [Tian00a] in figures 5.7
and 5.8 on pages 104 - 105. The thermal boundary layer near the vertical, heated walls
can clearly be seen in all results.

Steep temperature gradients appear close to the heated walls, before they reach their
minimum at ca. 0.03 m afar from the hot wall, respectively at ca. 0.73 m for cold wall.
At these points the bulk region of the flow begins. Before the bulk region is reached, the
profiles make a low ascent at height y2 = 0.5 H and height y3 = 0.9 H. The temperature in
the bulk region is almost stationary and equals the averaged mean temperature between
the hot and the cold wall. For the mean temperature it is Tmean = (Thot − Tcold)/2 + Tcold.

The variation of the thermal boundary layer thickness reported in [Tian00a] can clearly
be seen in the numerical data. Additionally, a dependence of the boundary layer thickness
on the boundary condition can be detected. The boundary layer increases in flow direction
which is in the simulations, as well as in the experiment of [Tian00a], a clockwise direc-
tion. The clockwise direction was expected according to chapter 3, section 3.5, 3.5.3.2,
page 83. The simulation profiles are not formed anti-symmetrically as in the experiment,
but asymmetrical. According to [Gifford1991], the anti-symmetrical profile vanishes for a
non-Boussinesq- approximation as it is considered in the numerical model.

At midheight, all simulations approximate the bulk temperature of the measured data.
In vicinity of both horizontal walls the adiabatic results deviate significantly from the
experimental data, especially at height y1 = 0.1 H and height y3 = 0.9 H. These devia-
tions are caused by the different boundary conditions of the simulation and experiment.
Adiabatic horizontal walls entail no heat flux, thus lower temperatures exist near these
walls. According to [Tian00a], the vertical thermal boundary layer of an experiment with
conducting walls has to be thicker as the boundary layer of one with adiabatic walls.
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5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.7.: Time-averaged temperature profile between the hot and cold wall, at the vertical
xy-midplane, at z = 0.75 m, estimated along the horizontal x-axis and different heights. Top
box: Adiabatic bc. Bottom box: Linear bc. Top row in each box: Overview. Bottom row in
each box: Detailed plot of the hot/cold wall. In all pictures: y1 = 0.1H (blue), y2 = 0.5H (red)
and y3 = 0.9H (black), - solid line: 3D, - - dashed line: 2D. ◦◦◦: study [Tian00a], Ra = 1.58 × 109

(as in [Zimmermann14a]).
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5.3. Temperature profile

Figure 5.8.: Time-averaged temperature profile between the hot and cold wall, at the vertical
xy-midplane, at z = 0.75 m, estimated along the horizontal x-axis and different heights. Top
box: Tlow = 296 K, Tup = 310 K. Bottom box: Tlow/up = 303 K. Top row in each box:
Overview. Bottom row in each box: Detailed plot of the hot/cold wall. In all pictures:
y1 = 0.1H (blue), y2 = 0.5H (red) and y3 = 0.9H (black), - solid line: 3D, - - dashed line: 2D.

◦◦◦: study [Tian00a], Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

This conclusion could be seen in the adiabatic simulation results at both vertical walls.
The only exception are the results at the hot wall at height y3 = 0.9 H. This aspect could
be a possible hint at shifted circulation zones and is further discussed in section 5.4.1. The
2D plot shows only slight deviations to the 3D one at the top hot and bottom cold corner.
The results of Tlow = 296 K, Tup = 310 K are similar to the results of case Tlow/up = 303 K.
Both simulations show higher values than in the experiment in vicinity to the upper
wall, but lower ones in vicinity to the bottom wall. The results of the 2D simulations
match almost exactly with the 3D simulations. Both simulation cases approximate well
the experimental data, considering the different boundary conditions.

The case of Tlow/up = 303 K reveals the best approximation to the experimental results.
rmal boundary layer of this case is slightly bigger than in the experiment at the hot wall at
height y1 = 0.1 H. At the cold wall the boundary layer is slightly smaller. This behaviour
is vice versa at height y3 = 0.9 H and both walls.

It is noteworthy, that the linear boundary condition case approximates the experiment
only at height y1 = 0.1 H well. Even though the temperature of the bc at the top left
corner is higher than in the experiment, the temperature profile at height y3 = 0.9 H lies
beneath the experimental one. The thermal boundary layer is slightly thicker than in the
experiment, especially at the cold wall at height y3 = 0.9 H, respectively at the hot wall
at height y1 = 0.1 H. The results of the 2D simulation differ significantly from the 3D
results, especially at both upper heights.

5.3.2. Temperature fluctuations between the heated walls estimated
along the horizontal axis

The previous section 5.3.1 dealt with the time-averaged temperature values at the xy-
midplane estimated along the horizontal x-axis. These profiles characterise the flow field
in the container. An additional important focus lies now on the fluctuations of these tem-
perature profiles which are essential for an accurate turbulence modelling (s. chapter 3
and [Fröhlich06]).

The fluctuations are given by the standard deviation σrms. Fluctuations related to a par-
ticular fluid property, e. g. temperature T , are denoted with the index rms, hence Trms.
For finitely many values xi, the standard deviation is calculated by

σrms =
(

1
n

n∑
i=1

(xi − x̄)2

) 1
2

, where x̄ = 1
n

n∑
i=1

xi . (5.3.1)

n stands for the size of the observed sample and x̄ is the averaged mean value of the sum
of the values xi. Figures 5.9 - 5.10 on pages 108 - 109 present the fluctuation values of the
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5.3. Temperature profile

simulations plotted against the ones of the experimental data in [Tian00b]. The profiles
are estimated at the xy-midplane, at z = 0.75 m, along the horizontal x-axis and three
different heights, y1 = 0.1H, y2 = 0.5H, y3 = 0.9H. For a better demonstration of all
results together in one plot, a constant is added to the particular results of each height.
These constants are y1 : +0, y2 : +4 and y3 : +8. Oscillations appear in all profiles
mainly in the boundary layer near the heated walls.

The peak values are located in vicinity to the heated walls. The profiles indicate a clock-
wise flow direction, as it was seen before in the temperature profiles in section 5.3.1. The
maximal peak values are located at the bottom hot and top cold corner. The tempera-
ture values, and consequently its standard deviation values, are almost stationary in the
bulk region. There, the fluctuations of the simulations equal almost the fluctuations of
the experiment in [Tian00b]. The experimental data shows a symmetrical profile only at
midheight. At both other heights asymmetrical profiles can be seen. [Tian00b] explains
these asymmetries by possible changes of fluid properties.

The fluctuations in case of the adiabatic simulation are lower than the experimental results
at every height. Besides, significant asymmetries are visible at height y1 = 0.1 H and at
height y3 = 0.9 H which are mirror-imaged to the ones of the experiment. The 2D and 3D
simulations show the same deviations to each other as before in the temperature profiles
(s. figure 5.7 on page 104). The results of the linear bc case and both fixed temperature
bc cases are again very similar to each other.

Although these profiles differ clearly from the experiment in [Tian00b], they reveal a sim-
ilar profile tendency, but with smaller peak values. The highest peak values are located at
the top cold and bottom hot corner. Noteworthy are the high fluctuations of the 2D cases
in the bulk region which imply flow movements in horizontal direction (s. section 5.4.1).
These high deviations could possibly be caused by numerical effects of the chosen numer-
ical methods or the chosen grid resolution. This aspect has to be further investigated in
future studies to obtain a clearer reason.

The maximum fluctuation value is about 3 K in the experiment of [Tian00b]. For the adi-
abatic bc case the maximum value is about 2 K, for the linear bc case it is about 2 K, for
the Tlow = 296 K, Tup = 310 K case about 1 K and for the Tlow/up = 303 K case about 1 K.
Concluding, all profiles of the temperature fluctuations reflect the temperature profiles
from section 5.3.1.
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5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.9.: Time-averaged profile of the temperature fluctuations between the hot and cold
wall, at the vertical xy-midplane, at z = 0.75 m, estimated along the horizontal x-axis and
different heights, given by the standard deviation σrms. Top box: Adiabatic bc. Bottom box:
Linear bc. Top row in each box: Overview. Bottom row in each box: Detailed plot of
the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D. +++: study [Tian00a],

Ra = 1.58 × 109.
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5.3. Temperature profile

Figure 5.10.: Time-averaged profile of the temperature fluctuations between the hot and cold
wall, at the vertical xy-midplane, at z = 0.75 m, estimated along the horizontal x-axis and
different heights, given by the standard deviation σrms. Top box: Tlow = 296 K, Tup = 310 K.
Bottom box: Tlow/up = 303 K. Top row in each box: Overview. Bottom row in each box:

Detailed plot of the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D.
+++: study [Tian00a], Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

5.3.3. Profile of the non-dimensional temperature profile between
the top and bottom wall estimated along the vertical axis

Afore, the temperature profile was estimated between the isothermally heated walls at the
xy-midplane in horizontal direction. A further important indicator for the flow dynamic
is the temperature profile between the bottom and top wall at the xy-midplane along the
vertical y-axis (s. figure 5.5 on page 101). This profile is analysed in this section on the
basis of the non-dimensional temperature T ∗ which is defined in [Tian00a] by

T ∗ = T − Tcold

Thot − Tcold
. (5.3.2)

The profile is plotted at the xy-midplane at x = 0.375 m (x = 0.5 L) along the vertical
y-axis. The results are shown in figure 5.11 on page 111 for the 2D and 3D simulations.
Besides the study of [Tian00a], further studies are additionally compared to the simula-
tion results.

In [Mergui1993] a geometry with aspect ratios of Γx = 0.923, Γz = 0.3 and a Rayleigh
number of Ra = 1.7 × 109 is investigated experimentally. In [Ziai1983] a convection cell
with aspect ratios of Arx = 5, Arz = 2 and a Rayleigh number of Ra = 5× 108 is analysed
experimentally. [Ziai1983] and [Mergui1993] use both adiabatic boundary conditions at
the horizontal walls. [Lankhorst1991] performs an experimental study of a cell with con-
ducting walls and aspect ratios of Arx = 1, Arz = 0.2. The investigated Rayleigh numbers
is Ra = 3.9 × 108.

The Prandtl number stays in all studies at Pr = 0.71. [Tian00a] concludes an agreement to
the experimental results in [Mergui1993]. According to [Tian00a], the differences between
[Tian00a] and [Ziai1983] result from a possible heat loss through the passive vertical walls
in [Ziai1983]. As it can be seen in the plot, the results of [Lankhorst1991] lie close to the
results of [Tian00a] and [Mergui1993], despite the adiabatic boundary condition.

The adiabatic 3D simulation deviates from the results of the other studies, as it was
expected due to the different boundary condition. In the container middle, the results
of [Tian00a] and [Mergui1993] are approximated by the simulation data. The adiabatic 2D
and 3D simulation correspond at the bottom wall to the experimental study of [Ziai1983]
due to the same boundary condition, but the simulations show deviations at the top wall.
The deviations to [Ziai1983] in the container middle could possibly be caused by the differ-
ent realised Rayleigh numbers and different aspect ratios. Near the bottom and top wall,
the linear bc case and Tlow = 296 K, Tup = 310 K approximate well the results of [Tian00a]
and and the adiabatic ones of [Mergui1993], which is remarkable. The Tlow/up = 303 K
case approximates near the bottom wall the results of [Tian00a] and [Mergui1993] as well
as of [Lankhorst1991], but at the top wall also the adiabatic results of [Ziai1983].
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5. Case studies - Test case VerCon, vertical, heated walls

Deviations between the 2D and 3D simulations with a fixed temperature bc arise especially
in the upper half of the container, as it was seen before in the temperature profile in
figure 5.7 on page 104.

5.3.4. Nusselt number profile

Besides temperature and velocity distribution, a further aspect of great interest is the
heat flux distribution in the container, which is determined by the Nusselt number.
Note that some of the following presented contents are also discussed in extracts in
[Zimmermann14a]. According to [Tian00a], the local Nusselt number is described by

Nu = − L

Thot − Tcold

∂T

∂x

∣∣∣∣
w̃

, (5.3.3)

where L is the container length between the heated walls, Tcold the temperature of the
cold wall, Thot the temperature of the hot wall and ∂T

∂x

∣∣
w̃ the temperature gradient directly

at the heated walls w̃. With the definition in equation (5.3.3), the heat flux is positive
defined in direction from the hot wall into the container and from there to the cold wall.
The heat flux from the bottom wall in direction to the container middle and along the
top wall is also defined positive.

5.3.4.1. Nusselt number profile estimated along the heated walls, vertical axis

The Nusselt number is evaluated along the isothermally heated walls and plotted in figures
5.12 - 5.15 on pages 114 - 115 and 116 - 117. Additionally results of similar experimental and
numerical studies are also presented in the plots. Complementary to figures 5.12 - 5.15,
table 5.2 on page 113 gives an overview of the time-averaged local Nusselt number values
estimated at the hot/cold wall at midheight y = 0.375 m.

The presented percentage is related to the difference between the results of [Tian00a] and
the results of the simulations in this thesis. Additionally to the local estimated values,
also area-averaged Nusselt number values are presented which are estimated over the com-
plete hot/cold wall for all studies. Besides the data of [Tian00a], the experimental study
of [Mergui1993] for a Rayleigh number of Ra = 1.7×109 and aspect ratios of Arx = 0.923,
Azx = 0.3 is plotted in figures 5.12 - 5.13.

Moreover, a numerical analysis of a similar case by [Beghein93a] is discussed in the fig-
ures 5.14 - 5.15. [Beghein93a], [Beghein93b] test in their studies a perfectly conducting
boundary condition at the lateral walls as well as an adiabatic condition, as in the study
of [Mergui1993], for an aspect ratio of Arx = 1 and Rayleigh numbers of Ra = 1.34 × 109

and Ra = 1 × 1010. The case of [Beghein93a] with Ra = 1.34 × 109 is now discussed
concerning the Nusselt number distribution. According to [Tian00a], in the conducting
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5.3. Temperature profile

case of [Beghein93a], a zero Nusselt number value becomes visible in the hot bottom and
top cold corner which could not be approved by the data in [Tian00a] or in any of the
performed simulations. The adiabatic values of [Beghein93a] exceed in the beginning of
the heated walls also the values of the adiabatic investigation in [Mergui1993]. The Nus-
selt number profiles in the performed simulations are mirror-imaged to the above stated
main circulation cell in the container. In the hot bottom corner, the Nusselt number re-
veals a quite low value caused by the influence of the cooler horizontal boundary layer
at the bottom wall. It reaches its peak value near the bottom wall, before it descends
along the hot wall until it arrives at its minimum in the top hot corner where it is almost
zero. For the cold wall this process is inverted. The form of the Nusselt number profile
resembles the one of the temperature gradients where the maximum values decrease also
in flow direction. The results of the adiabatic bc case and the linear bc case are plotted
in figure 5.12 each for the 3D (left picture) and 2D (right picture) simulation type.

Case local Nu (at midheight) averaged Nu
hot wall cold wall hot wall cold wall

[Tian00a] 57.1 59.5 64.0 65.3
[Mergui1993] 49.6 43.8 N/A N/A
[Beghein93a] 53.28 54.05 N/A N/A

adiabatic bc, 3D 57.1 57.7 67.05 67.18
- (-3.03 %) (4.76 %) (2.88 %)

adiabatic bc, 2D 52.71 57.80 62.49 62.61
(-7.69 %) (-2.86%) (-2.36%) (-4.12%)

linear bc, 3D 46.8 47.7 51.47 54.15
(-18.04%) (-19.83%) (-19.58%) (-17.08%)

linear bc, 2D 48.50 50.84 51.28 50.13
(-15.06%) (-14.55%) (-19.88%) (-23.23%)

Tlow = 296 K, Tup = 310 K, 3D 54.30 58.62 62.79 63.38
(-4.09%) (-1.48%) (-1.89%) (-2.94%)

Tlow = 296 K, Tup = 310 K, 2D 51.71 56.39 59.28 59.77
(-9.44%) (-5.23%) (-7.38%) (-8.47 %)

Tlow/up = 303 K, 3D 47.90 50.27 56.15 57.64
(-15.51%) (-16.11%) (-12.26%) (-11.73%)

Tlow/up = 303 K, 2D 52.71 57.80 54.82 54.10
(-7.69%) (-2.86%) (-14.34%) (-17.15%)

Table 5.2.: Time-averaged local Nusselt number values estimated at the hot/cold wall at
y = 0.375 m (midheight) and area-averaged Nusselt number values estimated over the complete
hot/cold wall. Simulation data compared to data of [Tian00a], [Mergui1993] and [Beghein93a].

It is noteworthy that the adiabatic 3D simulation matches at midheight of the hot wall
exactly with the values of [Tian00a] (s. in addition table 5.2). The cold wall value at this
position is slightly lower than in the experiment.
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5.3. Temperature profile

L
oc

al
N

us
se

lt
nu

m
be

r
va

lu
es

al
on

g
th

e
he

at
ed

w
al

ls
,

II

F
ig

ur
e

5.
13

.:
T

im
e-

av
er

ag
ed

pr
ofi

le
of

th
e

lo
ca

lN
us

se
lt

nu
m

be
r

es
ti

m
at

ed
al

on
g

th
e

he
at

ed
w

al
ls

,v
er

ti
ca

ly
-a

xi
s.

T
op

b
ox

:
T

lo
w

=
29

6K
,

T
up

=
31

0K
.B

ot
to

m
b

ox
:

T
lo

w
/u

p
=

30
3K

.I
n

ea
ch

b
ox

:L
ef

t:
3D

si
m

ul
at

io
n,

R
ig

ht
:

2D
si

m
ul

at
io

n.
In

ea
ch

pi
ct

ur
e:

-
re

d
so

lid
lin

e:
ho

t
w

al
l,

--
-

bl
ue

da
sh

ed
lin

e:
co

ld
w

al
l.

St
ud

y
[T

ia
n0

0a
]:

•:
ho

t
w

al
l,

◦:
co

ld
w

al
l,

R
a

=
1.

58
×

10
9 .

St
ud

y
[M

er
gu

i1
99

3]
:

:h
ot

w
al

l,
�

co
ld

w
al

l,
R

a
=

1.
7

×
10

9 .

115

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5. Case studies - Test case VerCon, vertical, heated walls
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5.3. Temperature profile
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5. Case studies - Test case VerCon, vertical, heated walls

The time-averaged local Nusselt number values and also the area-averaged values of the
adiabatic bc case deviate at most about 5% from the experiment, which can be neglected.
From midheight on, the values underrun the experimental results due to lower tempera-
ture gradients (s. figure 5.7 on page 104). The adiabatic bc case does not approximate the
conducting simulation of [Beghein93a], as it was expected. But the 2D and 3D simulation
approximate the adiabatic data of [Beghein93a]. The visible differences are effected by
higher realised Rayleigh numbers in [Beghein93a]. The 2D adiabatic simulation displays
an equal tendency as the 3D case and shows only differences to the 3D simulation in
vicinity to the heated walls.

The results of both simulation types of the linear bc case reveal an analogue profile to the
one in [Tian00a], as it was expected due to the similar boundary condition. The 3D case
presents higher results than the 2D case, which is caused by steeper temperature gradi-
ents. The time-averaged local Nusselt number values deviate at midheight significantly
of about at most 20% from the results of the experimental study in [Tian00a], the area-
averaged values even about 24%. This might possibly be caused by lower temperature
gradients in the simulation. The numerical data approximate well the experimental study
of [Mergui1993]. In case of both other fixed temperature boundary conditions, high values
can be seen in the top and bottom cold corner (see figures 5.14 - 5.15). On the contrary to
both other cases, the Nusselt number values increase this time significantly in the corner
regions due to the fixed boundary condition at the horizontal walls. The heat flux from
these walls interacts in this region with the heat flux from the vertical, heated walls.

The 3D and 2D simulation case of Tlow = 310 K and of Tup = 296 K approximate the data
of [Tian00a] along the heated walls, but reveal lower values. At the bottom hot corner,
respectively top cold corner, the peak values of the Tlow = 303 K, Tup = 303 K case are
lower than the ones of the Tlow = 296 K, Tup = 310 K case, due to lower temperature
gradients. The simulations of Tlow = 296 K, Tup = 310 K differ about at most 10% from
the experiment in [Tian00a]. The simulations of Tlow/up = 303 K differ about at most 17%
from the experiment. In comparison to the results of [Beghein93a] all results of the fixed
temperature bc cases show significantly differences at the top and bottom wall due to the
different boundary conditions. In the bulk region, the simulations approximate the results
of [Beghein93a] for the conducting as well as for the adiabatic bc case.

5.3.4.2. Nusselt number profile estimated along the top and bottom wall,
horizontal axis

Besides the Nusselt number profile estimated along the heated walls in figure 5.12 - 5.15
on pages 114 - 117 the profile along the top and bottom wall is discussed in this section
on the basis of figures 5.16 and 5.17 on pages 119 - 120. The results are compared only to
the study of [Tian00a].
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5.3. Temperature profile

Local Nusselt number along the top/bottom wall, I

Figure 5.16.: Time-averaged profile of the local Nusselt number estimated along the top and
bottom wall, horizontal x-axis, 3D simulation. Top: Linear bc. Middle: Tlow = 296 K,

Tup = 310 K. Bottom: Tlow/up = 303 K. In all pictures: - black solid line: top wall. - - black
dashed line: bottom wall. Study [Tian00a]: •: bottom wall, ◦: top wall, Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

Local Nusselt number along the top/bottom wall, II

Figure 5.17.: Time-averaged profile of the local Nusselt number estimated along the top and
bottom wall, horizontal x-axis, 2D simulation. Top: Linear bc. Middle: Tlow = 296 K,

Tup = 310 K. Bottom: Tlow/up = 303 K. In all pictures: - black solid line: top wall. - - black
dashed line: bottom wall. Study [Tian00a]: •: bottom wall, ◦: top wall, Ra = 1.58 × 109.
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5.3. Temperature profile

Because adiabatic walls entail no wall heat flux, no results are presented this time for
the adiabatic bc case. Both linear bc simulations converge to the profile structure of
the experiment. In the corner regions, higher values than in [Tian00a] are obtained in
consequence of a higher temperature condition at these locations. The values along the
horizontal walls are still higher than in the experiment, but they descend due to the also
decreasing temperature condition at the top and bottom wall. In the near of the faced
vertical hot, respectively vertical cold, wall, the values converge again to the experimental
data. Significant variances between the 2D and 3D case arise only in the corner regions.

According to [Tian00a], two further recirculation zones are indicated by the change of the
heat flux direction in the corner regions of the cold wall. These zones are characterised by
the observed negative Nusselt number values (s. in addition figure 5.20). In the experiment,
one recirculation region begins at about x = 0.6 m in distance from the hot wall, and one
at about x = 0.15 m in distance from the cold wall. In the simulations, these regions are
slightly shifted closer to the cold wall, as it was seen before in section 5.4.1.

In case of the linear bc, the first region begins in the 2D and 3D simulation at about
x = 0.65 m in distance from the hot wall, the second at about x = 0.1 m in distance from
the cold wall. Both other fixed temperature bc cases reveal similar results to each other.
The values are similar to the data of the linear bc case, but the 3D and 2D simulations
show in both cases high peak values close to the hot, respectively cold wall. At this
positions, the heat fluxes of the vertical wall interacts with the heat flux of the horizontal
wall.

The Nusselt number values are almost negative along the whole bottom wall. Thus, the
heat flux direction points this time from the container to the bottom wall. Therefore,
the air layer, which is located near the bottom wall, has to be warmer than the wall
itself. Along the top wall, the same effect can be seen. But this time, the Nusselt number
is positive almost along the whole top wall. This aspect is more distinctive in case of
the Tlow/up = 303 K condition than in case of the Tlow = 310 K, Tup = 296 K condition.
The recirculation zones are this time significantly shifted to the ones in the experimental
results. Both cases show one recirculation zone in the top cold corner and one near the
bottom hot corner. The recirculation zones lie close to the heated walls. In both cases the
first region begins at about x = 0.003 m in distance from the hot wall, the second one at
about x = 0.74 m in distance from the cold wall.

Concluding, the linear bc case shows indeed the highest local differences to the data
of [Tian00a] in table 5.2. But it features also the most similar profile form to the one
of the experiment. The other simulation cases show a good approximation to [Tian00a]
along the cold and hot wall. But the values in the bottom hot and top cold corner exceed
significantly the experimental ones. This is also the case for the profiles along the top and
bottom wall.
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5. Case studies - Test case VerCon, vertical, heated walls

5.4. Velocity profile

In this section, the velocity distribution between the heated walls is discussed to un-
derstand further the flow dynamic inside the test case. Note that some of the following
presented contents are also discussed in extracts in [Zimmermann14a]. The velocity in-
teracts with the temperature profile. Only if the velocity field is known, the temperature
field can be estimated in the numerical simulation. Before the vertical and horizontal ve-
locity components are analysed in detail, the velocity distribution in the whole setup is
presented. The arising circulation zones or rather convection cells can be sketched on the
basis of velocity stream tracers. The convection cells were introduced before in chapter 3,
section 3.5 on page 82.

Figure 5.18.: Snapshots of the instantaneous mean horizontal velocity distribution in the
simulation at t = 400 s, linear boundary condition. Left: Front view. Right: Top side view.

Figure 5.19.: Snapshot of the instantaneous mean vertical velocity distribution (contour lines)
at the vertical xy-midplane, at z = 0.75 m, t = 400 s. Linear boundary condition (as in

[Zimmermann14a]).

Figure 5.18 shows a snapshot of the instantaneous mean horizontal velocity distribution
in the container at t = 400 s in the simulated process for the linear bc case. The snap-
shot gives an impression of the velocity distribution of a natural convection problem in
a container with two vertical, heated walls. In figure 5.18 only one big convection cell
is visible which is 3-dimensional, as it was expected due to the container layout. Local
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5.4. Velocity profile

fluctuations arise in the cell during the simulated process, which are shown in the fol-
lowing. As a further example, a snapshot of the instantaneous mean velocity field at the
xy-midplane is presented in figure 5.19 on page 122. The snapshot displays the results
of the mean velocity in the linear bc case at t = 400 s in the simulated process. The
shown velocity values are time-averaged to the point of the presented time-step based
on a average process in the simulation software itself. For a clearer presentation of the
circulation zones, the snapshot shows the velocity distribution only for a limited range of
values between [−0.01 m/s, 0.01 m/s]. An exterior, clockwise circulation region becomes
visible in figure 5.19. Also two inner circulations are revealed, which are clearly visible in
the left bottom and top right corner. Both circulations have also a clockwise direction.

Figure 5.20.: Sketch of the time-averaged convection cell structures in the container. Top
left: Sketch for the adiabatic boundary condition. Top right: Sketch for all fixed temperature
boundary conditions. Bottom right: Sketch of the cells in the experiment, as seen in [Tian00a].

Figure 5.20 on page 123 illustrate the time-averaged mean velocity distribution in the con-
tainer cell for all simulations and the experimental test case as illustrated in [Tian00a].
The numerical simulation data are averaged over an interval of Δt = 200 s − 400 s in
the simulated process. For the 3D simulation the intermediate steps size lies at Δt = 3 s,
while it lies for the 2D simulations at Δt = 1 s. The distribution of the adiabatic bc case
is pictured in the top left plot. All other simulation cases show a similar distribution and
can be presented by the sketch in the top right figure. As one can see, the cell arrange-
ment in the simulations deviates from the one in the experiment. According to [Tian00a],

123

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5. Case studies - Test case VerCon, vertical, heated walls

small recirculation zones can be seen in the left top and right bottom corner in the ex-
periment. These both zones are not visible in the numerical studies of the fixed bc case.
However, in the adiabatic case, two additionally circulation zones appear in the bottom
cold and top hot corner, but with another circulation direction as in [Tian00a]. The inner
circulation zones of the adiabatic bc case are shifted compared to the other bc cases and
the experiment. The inner circulation zones in the fixed bc case differ from the adiabatic
bc case and also from [Tian00a]. In the following part, the mean vertical and horizontal
velocity components are investigated between the heated walls at the xy-midplane along
the horizontal x-axis.

5.4.1. Velocity distribution between the heated walls estimated
along the horizontal axis

5.4.1.1. Vertical velocity component

Figure 5.21 gives a plot of the time-averaged vertical velocity profile in the boundary layer
near the hot wall at the xy-midplane (z = 0.75 m) at y = 0.375 m (midheight, y = 0.5 H))
estimated along the horizontal x-axis. Some of the following presented contents are also
discussed in extracts in [Zimmermann14a]. It can be seen, that the boundary layer consists
of a two layer structure. The boundary layer is divided at the point where the velocity
reaches its maximum. According to [Tian00a], the inner layer of the boundary layer can
be described in close distance to the wall by a linear law, due to a constant heat flux
in this region. This was expected according to the information in chapter 3, section 3.5,
3.5.3.2. The linear law is plotted by the solid black line in figure 5.21. The boundary layer
of the simulations can be approximated by a linear law. But the simulations exceed in all
cases the peak values of the experiment and show steeper gradients. These higher velocity
values agree with the steeper temperature gradients compared to the experimental results
as it was seen in figure 5.6 on page 103.

Due to a higher velocity close to the hot wall, the heat flux of this wall is transmitted
faster into the fluid than in the experiment. The vertical velocity component is estimated
between the heated walls at the xy-midplane, at x = 0.375 m, z = 0.75 m and three
different heights, y1 = 0.1H, y2 = 0.5H and y3 = 0.9H. The results are plotted in fig-
ures 5.22 - 5.23 on pages 126 - 127. For a better demonstration of all results together in
one plot, a constant was added to the results of each height, which are y1 : +0, y2 : +1
and y3 : +2. Note, that the scale of the plotted region in the detailed view is changed
compared to other estimated profiles, to obtain a clearer presentation near the heated
walls. As in the temperature profiles in section 5.3.1, a clockwise flow direction can be
seen and also an increase of the boundary layer in flow direction. The flow structure along
the hot wall is inverted to the one along the cold wall.
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5.4. Velocity profile
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5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.22.: Time-averaged vertical velocity profile (uy) between the hot and cold wall, es-
timated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the horizontal
x-axis. Top box: Adiabatic bc. Bottom box: Linear bc. Top row in each box: Overview.
Bottom row in each box: Detailed plot of the hot/cold wall. In all pictures: - solid line:

3D, - - dashed line: 2D. ◦◦◦: study [Tian00a], Ra = 1.58 × 109 (as in [Zimmermann14a]).
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5.4. Velocity profile

Figure 5.23.: Time-averaged vertical velocity profile (uy) between the hot and cold wall, es-
timated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the horizontal
x-axis. Top box: Tlow = 296 K, Tup = 310 K. Bottom box: Tlow/up = 303 K. Top row in
each box: Overview. Bottom row in each box: Detailed plot of the hot/cold wall. In all

pictures: - solid line: 3D, - - dashed line: 2D. ◦◦◦: study [Tian00a], Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

The boundary layer reaches its maximum width at the hot wall at height y3 = 0.9 H,
respectively at the cold wall at height y1 = 0.1 H. The boundary layer reaches in all cases
a width of about 0.035 m at height y3 = 0.9 H. At y1 = 0.1 H it has only a width of about
0.015 m. Thus, the thermal boundary layer lies within the velocity boundary layer in all
cases, as it was expected according to chapter 3, section 3.5, 3.5.3.2, (see also figures 5.7 -
5.8, on pages 104 - 105).

Negative values appear between the inner and outer layer in the results of [Tian00a]
which indicate a reverse flow region. These negative values appear also in each simulation
case. The vertical velocity component reveals in the simulations high peak values at every
height close to the vertical walls. These peak values are mirror-imaged to the ones in
the temperature profile in figures 5.7 - 5.8 on pages 104 and 105. After the velocity has
reached its peak value close to the hot wall, the velocity profile descends and a minor
decrease with negative values can be noticed outside the boundary layer at the hot wall
(vice versa at the cold wall). Beyond this point, the profile ascends again and the bulk
region is reached where the velocity becomes almost stationary. According to [Tian00a],
this decrease/increase outside the boundary layer might possibly indicate two further
clockwise circulation zones.

The adiabatic profile shows a slightly smaller boundary layer than the experiment, as
it was the case in the temperature profile. Hence, the peak values are located in this
case closer to the heated walls and lie beneath the experimental ones. No significant
differences arise between the 2D and 3D simulation results. The peak values differ only
slightly from each other. The profiles of the fixed temperature bc cases approximate well
the results of [Tian00a], as it was the case in the temperature profiles. Due to the different
temperature conditions at the horizontal walls, the peak values of the simulations are in
all cases higher than in the experiment.

Moreover, the peak values are located closer to the vertical walls. The only exception
are the values in the left bottom and right top corner. The peak values descend after
midheight, except for the linear bc case. In this case, the maximum value is reached at
height y3 = 0.9 H for the hot, respectively y1 = 0.1 H for the cold, wall. The profile of
the Tlow = 303 K, Tup = 303 K case reveals a smoother profile near to the vertical walls
than in both other cases. Comparing the 2D and 3D simulation results of these cases to
each other, no great differences are visible. Only the Tlow = 296 K, Tup = 310 K case show
deviations between both simulation types near the heated walls at all three heights.

5.4.1.2. Horizontal velocity component

Analogously to the previous part, figure 5.24 and 5.25 on pages 130 - 131 present the
time-averaged horizontal velocity component estimated at the xy-midplane at the same
positions as before. For a better demonstration of all results together in one plot, a con-
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5.4. Velocity profile

stant was added to the results of each height, which are y1 : +0, y2 : +1 and y3 : +2.
The horizontal velocity component has a great influence on the development of the hori-
zontal boundary layer. Significant fluctuations become visible in the experiment as well in
the simulations along the container middle near the horizontal walls, especially at height
y1 = 0.1 m and y2 = 0.9 m. No significant amplitudes can be detected at midheight in the
simulation results.

According to [Tian00a], the observed fluctuations near the horizontal walls indicate an-
other interior clockwise circulation zone which is located next to the main external cir-
culation, as it was seen in figure 5.20. The peak values of the horizontal component lie
beneath the ones of the vertical component, as it was expected due to the main circu-
lation zone in figure 5.18 on page 122. The simulation results of the adiabatic bc case
approximate the experiment well directly at the heated walls. At height y3 = 0.9 m, the
3D values are smaller than in the experiment, but the 2D simulation approximates the
experiment closely. The results at height y1 = 0.1 m and height y3 = 0.9 m are mirror-
imaged to each other in both simulation types. This deviation to the experiment might
possibly be caused by the shifted circulation zones as seen in figure 5.20 on page 123.
In the simulation, the inner horizontal circulation zone near the top wall, respectively
bottom wall, lies closer to the left wall, respectively right wall, than in the experiment.
The inner vertical circulation zones close to the heated walls show even an inverted flow
direction compared to [Tian00a].

The linear bc case approximates well the experiment. The peak values of the 3D simu-
lation, located at height y1 = 0.1 m and height y3 = 0.9 m, are inverted to the 2D case
which indicate shifted circulation zones in both simulations. Positive velocity values be-
come visible in the experiment in the centre region at height y3 = 0.9 m, while negative
values arise in the 3D simulation at this position. This aspect is possibly caused by the
displaced circulation zones in the 3D simulation. At height y1 = 0.1 m, the 3D simulation
presents positive velocity values between x = 0.15 m − 0.75 m, while the 2D case reveals
negative ones in this region. Hence, the circulation zone in the 2D simulation has to be
displaced to the convection cell in the 3D case. Both other cases with a fixed temperature
boundary condition are similar to the linear bc case. The 2D and 3D results are shifted to
each other, but the results reveal smaller deviations to each other than both simulations
in the linear bc case.

Concluding, the vertical velocity component of the adiabatic bc case and of the simula-
tion with the Tlow = 296 K, Tup = 310 K condition approximate the experimental data
of [Tian00a] closer than both other bc cases. For the horizontal component, this is also
the case for the adiabatic condition. The other cases show higher and also shifted results
compared to the experiment. The vertical velocity component is mirror-imaged to the
temperature profile in all cases.
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5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.24.: Time-averaged horizontal velocity profile (ux) between the hot and cold wall,
estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the horizontal
x-axis. Top box: Adiabatic bc. Bottom box: Linear bc. Top row in each box: Overview.
Bottom row in each box: Detailed plot of the hot/cold wall. In all pictures: - solid line:

3D, - - dashed line: 2D. ◦◦◦: study [Tian00a], Ra = 1.58 × 109.
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5.4. Velocity profile

Figure 5.25.: Time-averaged horizontal velocity profile (ux) estimated between the hot and
cold wall, estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the
horizontal x-axis. Top box: Tlow = 296 K, Tup = 310 K. Bottom box: Tlow/up = 303 K. Top
row in each box: Overview. Bottom row in each box: Detailed plot of the hot/cold wall.

In all pictures: - solid line: 3D, - - dashed line: 2D. ◦◦◦: study [Tian00a], Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

The high fluctuations of the horizontal component, which appear mainly in the right upper
(about x = 0.45 m − 0.72 m) and left lower bulk region (about x = 0.15 m − 0.45 m),
can be also found in the temperature profile. Significant deviations can be seen especially
between the 2D and 3D cases, which have to be further investigated in future studies. The
highest values of both components are reached in the linear bc case. The highest absolute
value of the vertical velocity component uy is reached at the hot bottom wall in the 3D-
simulation and it is about 0.4 m/s. The highest absolute value of the horizontal velocity
component ux is reached at the hot bottom and top cold wall in the 2D-simulation and
it is about 0.5 m/s.

5.4.2. Investigation of a 2-dimensional flow field at the vertical
xy-midplane

Tian et al. consider in the experimental setup a 2-dimensional flow at the xy-midplane.
To generate a 2-dimensional flow field in a 3-dimensional geometry like the observed one,
the depth of the experimental setup has to be long enough to neglect the influences of the
front and back side walls on the flow field. In the observed test case the determining aspect
ratio is Γz = D

L
= 2. To investigate whether the setup offers actually a 2-dimensional flow

field, the vertical velocity component uy is analysed at three different depth positions in
the setup. If there arise no significant differences between the particular velocity values,
a 2-dimensional flow at the xy-midplane can be assumed.

Analogously to the approach in [Tian00a], the vertical velocity component uy is evaluated
along the horizontal x-axis at midheight (y = 0.375 m) at three different depth positions
of z = 0.15 m, z = 0.80 m and z = 1.2 m. The results are illustrated in figure 5.26 on
page 133. All results lie very close to each other. For the adiabatic bc case, the peak
values differ only about a maximum of 3% from each other. Thus, one can assume a 2-
dimensional flow field at the xy-midplane of the container in this case. For the linear bc
case and Tlow = 303 K, Tup = 303 K-condition the peak values deviate about a maximum
of 6% from each other and for the case of Tlow = 303 K, Tup = 303 K even about a
maximum of 10%. Furthermore, all estimated results reveal an asymmetrical profile. But
however, the deviations of the peak values have no visible effect on the remaining main
flow profile. Hence, a 2-dimensional flow can also be assumed.

To investigate this aspect further, the transversal velocity component uz is estimated
along the horizontal x-axis between the heated walls at the xy-midplane, at z = 0.75 m,
and different heights. The values are estimated at three different heights in the container,
y1 = 0.1H, y2 = 0.5H, y3 = 0.9H. The results are plotted in figure 5.27 on page 134. For a
better demonstration of the results together in one plot, a constant is added to the results
of each height which are y1 : +0, y2 : +3, y3 : +6.
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5.4. Velocity profile

Vertical velocity uy at different depth positions

Figure 5.26.: Time-averaged profile of the vertical velocity (uy) between the heated walls,
estimated at y = 0.375 m, and different depth positions (z-axis) along the horizontal x-axis. 3D

simulations. Top to bottom: Adiabatic bc, linear bc, Tlow = 296 K, Tup = 310 K,
Tlow/up = 303 K. - - blue dashed line: z = 0.15 m, - - red dashed line: z = 0.80 m, - - black dashed

line: z = 1.2 m. 133
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5. Case studies - Test case VerCon, vertical, heated walls

Tranversal velocity component uz

Figure 5.27.: Time-averaged profile of the transversal velocity component (uz) between the
hot and cold wall, estimated at the vertical xy-midplane, z = 0.75 m, and different heights along
the horizontal x-axis. 3D simulations. Clockwise direction, starting top left: Adiabatic bc,
linear bc, Tlow = 296 K, Tup = 310 K, Tlow/up = 303 K. - black solid line: y = 0.1 H, · · · black

dotted line: y = 0.5 H, − − − black dashed line: y = 0.9 H,

The transversal velocity component uz was not measured in [Tian00a]. Thus, no compa-
rable experimental data exist in this case. But if a 2-dimensional flow field is generated
at the xy-midplane in the container, the time-averaged values of the transversal velocity
component uz have to be zero.

As it can be seen in figure 5.27, all simulation results do not satisfy this condition. A
boundary layer can clearly be seen in all results, which is especially distinctive in the
linear bc case. The peak values of the uz profiles are reached in the corner regions which
agrees with the profiles of both other components, ux and uy. In the adiabatic bc case, the
peak values are shifted compared to the locations of the other peak values in all cases.

The highest values are reached in the linear bc case with an absolute value of about
0.02 m/s at the top hot corner. In comparison to the vertical and horizontal component
uy, ux, the values of uz are about a factor of 10−1 smaller. Therefore, one can assume a
2-dimensional flow field at the xy-midplane anyway.
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5.4. Velocity profile

5.4.3. Velocity fluctuations between the heated walls estimated
along the horizontal axis

5.4.3.1. Vertical component

The fluctuations of the vertical velocity component uy are illustrated in figures 5.28 -
5.29 on pages 137 - 138, complementary to the profiles of the temperature fluctuations in
section 5.3.2. Due to a better presentation of all results in one plot, a constant is added
to the results of each height which are this time y1 : +0, y2 : +0.1 and y3 : +0.2. The
values are given by the standard deviation from equation (5.3.1) on page 106. The profiles
in [Tian00b] are characterised by high peak values in the boundary layer close to the hot
and cold wall. At height y3 = 0.9 m the maximum value is reached. At every height, a
steady-state flow is clear visible in the bulk region. All profiles reveal an anti-symmetrical
form. Directly at the heated walls the fluctuation is, as the velocity itself, zero.

The simulation profiles reveal a similar form to one of the experiment, but show an
asymmetrical form. It is noteworthy, that the peak values of the 3D simulations are about
a factor of 10−3 smaller than in the experiment. The 2D simulation data do not comply
with the 3D cases, because the fluctuations are mainly located along the bulk region. This
behaviour was seen before in the results of the temperature fluctuations in section 5.3.2,
figures 5.9 and 5.10 on page 108 and 109. For the adiabatic boundary condition minor
fluctuations can be seen at the top hot and bottom cold corner. In the 2D simulations
the fluctuations arise also mainly in this region. The results for the 3D cases of the
fixed temperature boundary conditions show a similar tendency as the experiment. The
steady state flow arises in this cases at an equal position as in the experiment. In all 2D
simulations high fluctuations along the container middle become visible at every height.

The linear bc case exceeds the values of the experiment at the top hot corner. The 2D
and the 3D simulation of the Tlow = 303 K, Tup = 303 K-condition case show higher peak
values than all other simulations and higher values than the experimental data.

5.4.3.2. Horizontal component

The results of the fluctuations of the velocity component ux are presented in figures 5.30 -
5.31 on pages 139 - 140. The experimental profiles reveal a form which is similar to the
ones of the fluctuations of the vertical component uy. High peak values are located in the
boundary layer close to the heated walls. But these peak values are smaller than the ones
of the fluctuations of the vertical component uy. In the container middle, the fluctuations
become almost zero. According to [Tian00b], at height y1 = 0.1 m and height y3 = 0.9 m
a non steady state flow is expected and can also clearly be seen in the experiment due to
the conducting bc at the horizontal walls.
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5. Case studies - Test case VerCon, vertical, heated walls

Modest peak values appear in both simulation types of the adiabatic bc case at height
y1 = 0.1 m and y3 = 0.9 m, as it was observed before in the results of the fluctuations of
the vertical component uy. The values are smaller than the experimental ones. The 2D
simulation differs especially at the top hot and bottom cold corner from the 3D simulation,
as it was the case for the horizontal velocity results ux in section 5.4.1, figure 5.24 on
page 130. All simulations with a fixed temperature boundary condition reveal similarities
to each other, as it was the case before in the results of the fluctuations of the vertical
component uy.

For the 3D linear boundary condition simulation, high values arise only at the hot bottom
and top cold corner which match with the values of the experiment. Remarkably are
the high fluctuations of the 2D simulation for this boundary condition. Both other 3D
simulations of a fixed boundary condition show smaller values than in [Tian00b] at most
of the positions. The estimated values approximate the experimental data only at the hot
bottom and cold top corner. The peak values are shifted to the ones of the experiment and
appear mainly in the bulk region near the upper cold and lower hot corner. Noteworthy
are the significant fluctuations in the 2D simulation cases, especially in case of the linear
bc and the vertical component.

In [Tian00a] the maximum values are about 0.08 m/s for the vertical component uy and
about 0.04 m/s for the horizontal component ux. In case of the adiabatic bc these values lie
at about 0.04 m/s for the vertical component uy and at about 0.02 m/s for the horizontal
component ux. For the linear bc case these values are about 0.07 m/s for the vertical
component uy and about 0.04 m/s for the horizontal component ux.

For the case of the Tlow = 296 K, Tup = 310 K-condition these values are about 0.03 m/s
for the vertical component uy and about 0.03 m/s for the horizontal component ux. For
the case of the Tlow/up = 303 K-condition these values are about 0.05 m/s for the vertical
component uy and about 0.04 m/s for the horizontal component ux. Concluding, the 3D
simulation results of the fixed temperature boundary condition cases approximate the
tendency of the experimental results in both components with high peak values close to
the heated walls.
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5.4. Velocity profile

Figure 5.28.: Time-averaged profile of the vertical velocity fluctuations between the hot and
cold wall, estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along
the horizontal x-axis, given by the standard deviation σrms. Top box: Adiabatic bc. Bottom
box: Linear bc. Top row in each box: Overview. Bottom row in each box: Detailed plot
of the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D. +++: study [Tian00a],

Ra = 1.58 × 109.
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5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.29.: Time-averaged profile of vertical velocity fluctuations between the hot and cold
wall, estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the
horizontal x-axis, given by the standard deviation σrms. Top box: Tlow = 296 K, Tup = 310 K.
Bottom box: Tlow/up = 303 K. Top row in each box: Overview. Bottom row in each box:

Detailed plot of the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D.
+++: study [Tian00a], Ra = 1.58 × 109.
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5.4. Velocity profile

Figure 5.30.: Time-averaged profile of the horizontal velocity fluctuations between the hot and
cold wall, estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along
the horizontal x-axis, given by the standard deviation σrms. Top box: Adiabatic bc. Bottom
box: Linear bc. Top row in each box: Overview. Bottom row in each box: Detailed plot
of the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D. +++: study [Tian00a],

Ra = 1.58 × 109.

139

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5. Case studies - Test case VerCon, vertical, heated walls

Figure 5.31.: Time-averaged profile of the horizontal velocity fluctuations between the hot and
cold wall, estimated at the vertical xy-midplane, at z = 0.75 m, and different heights, along the
horizontal x-axis, given by the standard deviation σrms. Top box: Tlow = 296 K, Tup = 310 K.
Bottom box: Tlow/up = 303 K. Top row in each box: Overview. Bottom row in each box:

Detailed plot of the hot/cold wall. In all pictures: - solid line: 3D, - - dashed line: 2D.
+++: study [Tian00a], Ra = 1.58 × 109.
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5.4. Velocity profile

5.4.4. Profile of the non-dimensional horizontal velocity component
between the top and bottom wall estimated along the vertical
axis

In addition to the velocity profiles estimated at the xy-midplane along the horizontal x-
axis, the velocity distribution at the xy-midplane along the vertical y-axis is analysed in
this section. Therefore, the non-dimensional horizontal velocity component ux/u0 is esti-
mated analogously as in [Tian00a]. It is assumed that u0 =

√
gyβHΔT = 1 m/s, according

to [Tian00a]. Besides the data of [Tian00a], a further numerical study of [Beghein93b] is
compared to the simulation data. The values of all studies are plotted in figure 5.32 on
page 142. [Beghein93b] investigates a convection cell with aspect ratios of Arx = 1, and
Ra = 1 × 1010.

Tian et al. report in [Tian00a] a stationary flow region in vertical direction between the
positions y = 0.2 m and y = 0.56 m. Furthermore, Tian et al. observe a reverse flow at the
end of the boundary layer. On the contrary, the study of [Beghein93b] shows a stationary
flow region (where the velocity values are close to zero) in the centre of the container only.
The values of the adiabatic simulation are shifted to the experimental results of [Tian00a],
as it was seen before in the horizontal velocity profile in figure 5.24 on page 130.

The 2D simulation shows higher peak values as in case of the 3D simulation. At the top
wall, the estimated values of the 3D simulation are significantly small to the values of
the 2D simulation. In the 3D case the stationary flow can be detected at the position of
about y = 0.53 m only. For the 2D simulation a stationary flow region is visible near the
positions of about y = 0.37 m and of about y = 0.3 m. No reverse flow can be detected in
both simulation types.
The adiabatic simulations approximate rather the study of [Beghein93b]. Both simulation
types of the linear bc case reveal a stationary as well as a reverse flow region. In comparison
to [Tian00a], the stationary flow regions are smaller and the reverse flow regions of both
simulations are dislocated. Therefore, the boundary layers near the horizontal walls are
smaller than the one of the experiment, especially in case of the 3D simulation.

In the 2D simulation, the stationary flow region can be detected between the positions
of about y = 0.54 m and of about y = 0.3 m. In the 3D simulation, the stationary flow
region can be detected between the positions of about y = 0.45 m and of about y = 0.3 m.
This was also visible in the profile of the horizontal velocity at both outer positions in
figure 5.24 on page 130. The peak values in case of the linear bc are higher than in
the experiment of [Tian00a] due to the different boundary condition. The profiles of the
2D and 3D simulation are slightly dislocated to each other. The peak values of the 3D
simulation exceed the values of the 2D simulation and also the peak values of the other
simulation cases.
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5. Case studies - Test case VerCon, vertical, heated walls
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5.4. Velocity profile

The results of the 2D and 3D simulation of Tlow = 303 K, Tup = 303 K lie close to
each other. Near the bottom wall, the profiles of the 2D and 3D simulation are slightly
dislocated to each other. Both cases reveal a stationary and a reverse flow region. The last
mentioned region is dislocated compared to the experiment of [Tian00a]. In both cases,
the stationary flow regions are smaller than in the experiment. In the 2D simulation, the
stationary flow region can be detected between the positions of about y = 0.43 m and
of about y = 0.33 m. In the 3D simulation, the stationary flow region can be detected
between the positions of about y = 0.55 m and of about y = 0.36 m.

The closest approximation to the results of [Tian00a] gives the Tlow = 296 K, Tup = 310 K
case. The observed reverse flow regions, as well as the peak values, are located in this case
closest to the ones of the experiment. But, the peak values exceed the experimental peak
values due to the different boundary condition. In both simulation cases, the stationary
flow regions are significantly smaller than in the experiment. In the 2D simulation, the
stationary flow region can be detected between the positions of about y = 0.4 m and
of about y = 0.34 m. In the 3D simulation, the stationary flow region can be detected
between the positions of about y = 0.39 m and of about y = 0.37 m.

As before, only small differences appear between the 2D and 3D simulation in this case. In
case of the adiabatic bc, linear bc and Tlow = 296 K, Tup = 310 K bc, the stationary flow
regions of the 3D simulations are smaller than in case of the 2D simulation. The boundary
layers close to the horizontal walls of the 3D simulation lie in case of the Tlow = 296 K
and Tup = 310 K bc and Tlow/up = 303 K bc (at the top wall) within the boundary layers
of the 2D simulation. These aspects could possibly be caused by mesh dependencies.

5.4.5. Wall shear stress profile along the heated walls estimated
along the vertical axis

Afore in section 5.3.4 from page 112 on, the Nusselt number was discussed which was based
on the temperature wall gradients. This section deals now with a variable which is based on
the velocity wall gradients, the wall shear stress. Note that some of the following presented
contents are also discussed in extracts in [Zimmermann14a]. According to [Tian00a], a
cubic law can be assumed to formulate the velocity profile in the outer region of the inner
boundary layer. Therefore, the shear stress τ along the heated walls x = 0 m, respectively
x = 0.75 m, is described in [Tian00a] by the following expression for Newtonian fluids

τw = μ
∂uy

∂x

∣∣∣∣
w̃

, [τw] = kg/ms2, (5.4.1)

with the gradient of the vertical velocity component ∂uy

∂x

∣∣∣
w̃

directly at the heated walls
(index w̃) and a depending dynamic viscosity μ.
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5.4. Velocity profile
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5. Case studies - Test case VerCon, vertical, heated walls

As the figures 5.33 - 5.34 on pages 144 and 145 illustrate, the shear stress rises, in an
analogue manner to the velocity, along the vertical walls to its peak value and then back
to zero in the corner regions. The 3D simulation results (black solid lines) are presented
together with the ones of the 2D case (black dashed lines) and with the data of two
experimental studies. In addition to [Tian00a], another experimental setup of [King1989]
is considered. [King1989] examines also a natural convection in a container with aspect
ratio of Arx = 5 and Ra = 3.53 × 108.

The experimental results in [Tian00a] reveal an asymmetry in the corner regions. Due to
the negative values at the top hot and bottom cold corner, Tian et al. suppose an anti-
clockwise vortex in this region. According to [Tian00a] and as visible in the figures 5.33 -
5.34, the data of [King1989] show higher values than the data in [Tian00a], which are
possibly caused by a different investigated Rayleigh number. The differences between the
values of [Tian00a] and of [King1989] at the heated walls can be explained by a possible
heat loss in the cavity of [King1989] as it is supposed in [Tian00a].

All simulation results of this thesis reveal negative values in the top hot and bottom cold
corner which indicate also an anti-clockwise vortex as mentioned in [Tian00a]. The values
along the heated walls are higher than the values of [Tian00a], due to higher velocity
gradients and higher (temperature dependent) dynamic viscosity values. The simulation
values lie closer to the data of [King1989] than to the data of [Tian00a].

The estimated profiles of all simulation cases show an asymmetrical form. For the fixed
temperature boundary conditions, the differences between the hot/cold (and also between
the 2D/3D cases) appear mainly after midheight (y = 0.375 m) at both heated walls. In
the adiabatic bc case, the 2D and 3D simulations deviate significantly from each other at
the hot and cold wall. No case approximates best the experimental results. All simulations
display deviations along the heated walls. But the fixed boundary cases lie closer to the
experimental results than the adiabatic simulation, as it was expected due to the similar
boundary conditions.

5.5. Concluding comments

In this section, the results of a compressible, non-Boussinesq LES were presented for a
turbulent natural convection in an air-filled rectangular container where the vertical walls
were heated.

To analyse possible mesh resolution dependencies, additionally to a 3-dimensional simu-
lation also a 2-dimensional simulation was performed. The realised Rayleigh number lied
at Ra = 1.58 × 109 with a Prandtl number of Pr = 0.71. The main investigated aspects
of this chapter were
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5.5. Concluding comments

1) temperature profile and its fluctuations estimated between the heated walls at the
vertical xy-midplane,

2) non-dimensional temperature profile estimated between the top and bottom wall at
the vertical xy-midplane,

3) Nusselt number profile estimated along the heated walls as well as top and bottom
wall,

4) location of the convection cells,

5) velocity profile and its fluctuations estimated between the heated walls (vertical and
horizontal component),

6) investigation of a 2-dimensional flow profile at the vertical xy-midplane,

7) non-dimensional temperature profile estimated between the top and bottom wall at
the vertical xy-midplane,

8) wall shear stress profile estimated along the heated walls.

All presented results were time-averaged over an interval of Δt = 200 s − 400 s in the
simulated process. For the 3D simulation the intermediate steps size was Δt = 3 s, while
it was Δt = 1 s for the 2D simulations. The results were compared to an comparable
experimental setup from [Tian00a], [Tian00b]. In the experiment, the observed setup con-
sisted of a container with conducting later walls. In the simulation, four different related
boundary conditions were tested at the later walls. Additionally to the 3-dimensional
simulation, a 2-dimensional simulation was executed, to investigate the in [Tian00a] men-
tioned two-dimensional flow field at the vertical xy-midplane.

In contrast to the results of [Tian00a], the convection cells were dislocated in all cases.
This aspect could be caused by the different boundary conditions between experiment
and simulation. Regarding the different boundary conditions between the simulations and
the experiment in [Tian00a], the results of the analysed fluid properties in all 3D simula-
tions approximated well the experimental results. No simulation case conformed best in
all estimated fluid properties with the measured data in [Tian00a].

Summarising, the case of the fixed temperature boundary condition of Tlow = 303 K,
Tup = 303 K revealed a good approximation in most of the evaluated profiles. The results
of the 2-dimensional and 3-dimensional simulations showed in most cases similar results.
But the profiles of the velocity as well as temperature fluctuations revealed significant
deviations between the 2-dimensional and 3-dimensional simulations.

To analyse the by [Tian00a] assumed 2-dimensional flow field, the vertical velocity com-
ponent was evaluated at different depth positions in the container. The profile at each
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5. Case studies - Test case VerCon, vertical, heated walls

position revealed just small differences to the profiles at the other positions. These de-
viations appeared mainly close to the horizontal walls. The negligible deviations were a
possible indication of a 2-dimensional flow field.

The additionally investigated profiles of the transversal velocity component showed low
peak values at different height-positions in the container, but also a distinctive flow bound-
ary layer. In comparison to the vertical and horizontal component, the peak values of
the transversal velocity component were about a factor of 10−1 smaller. Therefore, a 2-
dimensional flow field at the xy-midplane can be assumed.

Concluding, the performed compressible, non-Boussinesq 3-dimensional LES is an ade-
quate choice to model this configuration of a turbulent natural convection in a test case
with two vertical, heated walls. The significant deviations between the 3-dimensional and
2-dimensional simulations have to be further investigated to find additional explanations
as the certain one of grid dependencies.
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6. Case studies - Test case RayCon, a
Rayleigh - Bénard problem

In an analogues manner to the previous chapter, the numerical non-Boussinesq model of
a compressible LES is used in this chapter to analyse the test case of RayCon. RayCon
consists of an an air-filled rectangular container. In contrast to VerCon, the heated walls
are this time the two horizontal ones. Hence, the temperature gradient points parallel
relative to the direction of gravity. This configuration is called a Rayleigh-Bénard problem
(short: RB) problem or a RB convection, as it was mentioned before and already discussed
in chapter 3, section 3.5.

Because the isothermally heated walls are the horizontal ones in a RB problem, the
convective flow is generated against gravity. As mentioned in chapter 3, section 3.5, the
fluid inside the test cell is driven by local density differences based on existing temperature
differences. Increasing temperature gradients in the near wall region and a convective mass
exchange in the bulk outline the heat transmission. Due to this heat transfer turbulent
shear layers parallel to the direction of gravity are generated inside the fluid, which increase
the intensity of turbulence and dominate the vertical heat flux. In contrast to VerCon,
the flow does not result in a quasi-steady state flow. Note that some of the following
presented results of this chapter are also discussed in extracts in [Zimmermann12] and
[Zimmermann15].

6.1. Configuration of RayCon and its boundary
conditions

A sketch of the computational geometry is displayed in figure 6.1, left picture. The RB
cell is realised by an enclosed rectangular container with a length (L) of 2.5 m, a depth
(D) of 0.5 m and a height (H) of 0.5 m. Hence, the aspect ratios are Γx = L

H
= 5 and

Γy = H
D

= 1. The working fluid in the container is air. All walls are smooth. The velocity
field at all walls is zero due to a non-slip-condition (u ≡ 0). The boundary condition of
the total pressure p is taken with a zero gradient-option at all walls, as it was the case
before for VerCon in chapter 5. The initial field of p inside the computational geometry is
assumed to be constant at 1 ·105 Pa. The boundary condition of the dynamic pressure prgh
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

is realised by the option buoyantPressure (for the description see also chapter 5). Inside
the container an almost atmospheric pressure condition is generated. The horizontal walls
are heated homogeneously with a constant temperature difference ΔT = Thot − Tcold,
between the lower hot and upper cold wall. Lateral walls are adiabatic.

Figure 6.1.: Left: Configuration of RayCon. Right: Scheme of the computational geometry
and mesh resolution with (430 × 140 × 140) cells (black numbers), (150 × 50 × 50) cells (red

numbers) (similar to [Zimmermann12], [Zimmermann15]).

Thus, the normal temperature gradient at the side walls is zero. The index w stands for
the lateral wall in the following. For both side walls and the front/back wall the boundary
conditions are

∂T

∂x

∣∣∣∣
w

= 0, for x = 0 m and x = 2.5 m, with 0 ≤ y ≤ 0.5 m, 0 ≤ z ≤ 0.5 m,

∂T

∂z

∣∣∣∣
w

= 0, for z = 0 m and z = 0.5 m, with 0 ≤ x ≤ 2.5 m, 0 ≤ y ≤ 0.5 m.

The investigated Rayleigh numbers are in this study Ra = 6.16 × 107, Ra = 1.92 × 108

and Ra = 4.1 × 108. These numbers were chosen to compare the numerical results to an
analogous experiment of [Ebert08] in the end of this chapter. The Prandtl number stays
in all cases Pr = 0.71. The turbulent Prandtl number Prsgs is taken as Prsgs = 0.4 (s.
chapter 3, section 3.3.2).

6.2. Computational mesh of RayCon
The simulation geometry consists of a structured Cartesian mesh which is built of twenty-
seven sub-blocks, similar to the previous setup of VerCon in chapter 5. The mesh resolu-
tion of the computational geometry is indicated in figure 6.1.

The first grid point in vertical direction from the wall should be located as close as possi-
ble in vicinity to the wall. But at the same time, a total cell number should be limited to
10 million cells. To observe the influence of the mesh resolution on the numerical results,
mainly in close distance to the heated walls, two different grid resolutions are chosen.
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6.2. Computational mesh of RayCon

Both grids are constructed as indicated in figure 6.1. The fine grid has a resolution of
(430 × 140 × 140) = 8, 428, 000 cells and the coarser grid one of (150× 50 × 50) = 375, 000
cells. The first grid point in vertical direction from the wall is located at yw1 = 4.6 ·10−4 m
in case of the fine grid, in case of the coarse grid it lies at yw1 = 1.25 · 10−3 m.

Figure 6.2.: Mesh resolution of the computational geometry of RayCon, see figure 6.1, quarter
of the left/right side wall. Left: (430 × 140 × 140) cells. Right: (150 × 50 × 50) cells.

Figure 6.3.: Mesh resolution of the computational geometry of RayCon, see figure 6.1, quarter
of the lateral (and heated) walls. Top: (430 × 140 × 140) cells. Bottom: (150 × 50 × 50) cells.

Because of symmetry aspects, only a quarter of the particular walls with its mesh res-
olution is displayed in figure 6.2 and figure 6.3. As before in chapter 5, the partition of
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

the mesh enables an exterior zone in vicinity to all walls where a finer resolution can eas-
ily be chosen independently of the other sub-blocks. Mainly near the heated walls, steep
temperature gradients and turbulent structures are generated in the thermal boundary
layer. Thus, a fine resolution or wall function is essential here. The first layer of cells is
cubical formed. Directly at the walls, the mesh is clustered and the cell ratios decrease
to the walls to resolve the boundary layers which lie in the first sub-block near the walls.
In this way, all relevant turbulent scales can be resolved and no wall functions have to
be considered in the computational model. Especially in the corner regions and closely to
the walls both grid resolutions reveal their main differences.

Ra (430 × 140 × 140) (150 × 50 × 50)
t = 200 s Δt = 200 s − 380 s t = 200 s Δt = 200 s − 380 s

6.16 × 107 y+ = 0.139 ȳ+ = 0.122 y+ = 0.382 ȳ+ = 0.436
1.92 × 108 y+ = 0.252 ȳ+ = 0.245 y+ = 0.679 ȳ+ = 0.619
4.1 × 108 y+ = 0.317 ȳ+ = 0.339 y+ = 0.689 ȳ+ = 0.941

Table 6.1.: Non-dimensional distance y+ estimated in yw1 for different Rayleigh numbers (Ra)
in the fully turbulent flow at t = 200 s and as averaged value over Δt = 200 s − 380 s.

Table 6.1 contains an overview of the non-dimensional wall distance y+ estimated in the
first cell midpoint yw1 for all investigated Rayleigh numbers in the fully turbulent flow
in the simulated process (s. chapter 3, section 3.5, 3.5.3.2, eq. (3.5.26) on page 84). The
values are calculated in the first cell midpoint yw1 at x = 1.185 m, z = 0.25 m. At this
position the observed fluid properties are also estimated in the following. It is for all
values y+ < 1 in yw1 (see also chapter 5, section 5.1, 5.2). The size of one cell is nowhere
bigger than ten-times of the size of the Kolmogorov length. The simulation considers,
as mentioned before, a non-Boussinesq-approximation (s. chapter 1, section 1.7, from
page 18 on). Consequently, fluid properties, as density ρ, thermal expansions coefficient
β, thermal diffusion coefficient α and dynamic viscosity μ are assumed to be temperature
dependent. The temperature dependence is considered by the Sutherland model from
chapter 1, section 1.9 from page 24 on.

6.3. Temperature profile

6.3.1. Temperature distribution between the heated walls estimated
at different positions, vertical axis

As before, the main attention of the computational investigation lies on the tempera-
ture distribution between the two horizontal, isothermally heated walls in the container.
Figure 6.4 presents the unsteady dominant turbulent flow in the computational setup of
RayCon.

152

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6.3. Temperature profile

Figure 6.4.: Instantaneous temperature profile visualised by iso-surfaces, simulation data of
Ra = 1.92 × 108 at t = 380 s, (430 × 140 × 140) cells (see also [Zimmermann15]).

Figure 6.5.: Snapshots of the instantaneous mean horizontal velocity distribution, simulation
data of Ra = 1.92 × 108 at t = 380 s, (430 × 140 × 140) cells. Top row: Front view. Bottom

row: Top view (see also [Zimmermann15]).

It displays a snapshot of the instantaneous temperature field between the heated walls
at t = 380 s in the simulated process indicated by the temperature iso-surfaces for the
case of Ra = 1.92 × 108 and (430 × 140 × 140) cells. An iso-surfaces connects locations
of the grid with each other which have in one time instant the same temperature value.
Note that some of the following contents in this section are also presented in extracts in
[Zimmermann12] and [Zimmermann15]. Table 6.2 lists the temperature boundary condi-
tions at the hot and cold wall for the investigated Rayleigh numbers. Figure 6.5 shows a
snapshot of the mean horizontal velocity distribution in the container at t = 380 s in the
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

simulated process exemplary for case Ra = 1.92 × 108. The velocity values shown are
time-averaged until the exposed time-step. Three convection cells are visible. They are
3-dimensional and have a thickness of the amount of the computational geometry depth
of D = 0.5 m. They are located next to each other along the length-side of the geometry.
With help of the velocity distribution in the container, the next section discusses the
temperature profile estimated at different positions at the vertical cross-section.

Rayleigh number RaRaRa ΔTΔTΔT [K] T cold wall [K] T hot wall [K]
6.16 × 107 4.83 290.44 295.27
1.92 × 108 16.11 305.22 289.11
4.1 × 108 41.15 288.10 329.25

Table 6.2.: Temperature boundary conditions at the hot and cold wall.

Temperature profile estimated at position x = 1.185 m, z = 0.25 m
Figure 6.6 establishes the time-averaged temperature profile between the heated walls
estimated along the vertical y-axis at the xy-midplane at x = 1.185 m, z = 0.25 m for
both grids. The values are averaged over a time interval of Δt = 200 s − 380 s in the
simulated process respecting the settlement of the system. The results of the fine grid
resolution are marked by solid lines. The coarse grid results are marked by the dashed
lines. All temperature gradients show no anti-symmetrical form, like it was expected for a
non-Boussinesq RB convection according to [Ahlers06]. This behaviour is further discussed
in the following section 6.3.2.

Noteworthy are the major grid dependencies in close distance to the heated walls. The
importance of a sufficiently fine grid can clearly be seen at the cold wall. The coarse
grid results reveal in all cases smaller temperature gradients at the cold wall and steeper
temperature gradients at the hot wall than the fine grid results. With increasing Rayleigh
numbers, the temperature gradients of both resolutions deviate more from each other.
In the bulk region, the profiles reach an almost constant temperature and almost no
deviations can be detected.

To investigate these deviations between both grid resolutions further, the distribution of
the mean velocity inside the container is examined next. On the basis of the mean velocity
distribution the circulation zones or rather convection cells can be sketched by stream
tracers at the vertical cross-section in the container. These convection cells are typical for
a natural convection and were introduced before in chapter 3, section 3.5, on page 82.

Based on the presentation of the mean velocity distribution in figure 6.5, the next section
discusses the distribution of convection cells in the container for each case and both
grid resolutions. Besides the discussion of the time-averaged velocity distribution, the
temperature profile is estimated additionally to position x = 1.185 m at the mirror-imaged
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6.3. Temperature profile

position, x = 1.315 m. Because the setup of RayCon is symmetrical, similar temperature
profiles at both mirror-imaged positions are expected. The results are displayed in the
next section in figures 6.9 - 6.15 on pages 157 - 161.

Figure 6.6.: Time-averaged temperature profile between the heated walls at the vertical xy-
midplane at x = 1.185 m, z = 0.25 m. Top: Overview. Bottom: Detailed plot of the tempera-
ture profile at the cold (left) and hot wall (right). In all pictures: - solid lines: (430×140×140)

cells, - - dashed lines: (150 × 50 × 50) cells (similar to [Zimmermann12], [Zimmermann15]).

Coherent structures in the test case and temperature profiles at position
x === 1.185 m versus position x === 1.315 m
The number of visible circulation zones, or convection cells, varies during the evolution
time. The height/width ratio of these zones is changing from a factor slightly lower than 1
to a factor near 1.5. Because the ratio of container length and cell width is not an integer,
a small gap δ can be generated at one side of the container. In this area no structured
flow can be detected. The convection cell distribution will show, that the detected major
grid dependencies between the estimated temperature distributions are caused in both
resolution types by different quasi stable-states in the setup. These quasi stable-states are
analysed in the following on the basis of the velocity distribution.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Rayleigh number Ra= 6.16 × 107

Figure 6.7 displays the circulation zones for the case of Ra = 6.16 × 107 and a mesh
resolution of (430 × 140 × 140) cells.

Figure 6.7.: Convection cells in the container for Ra = 6.16 × 107 and (430 × 140 × 140) cells
(see also [Zimmermann15]).

Figure 6.8.: Convection cells in the container for Ra = 6.16 × 107, (150 × 50 × 50) cells (see
also [Zimmermann15]). In the beginning of the simulated process, at t = 200 s, (left) and in the

end of the simulation, at t = 380 s, (right).

The convection cells are displayed on the basis of the estimation of the mean velocity
distribution at the vertical cross section. The velocity values of all results were each
time-averaged until the investigated shown time-step. In all figures, both mirror-imaged
positions, x = 1.185 m and x = 1.315 m, are marked.

In the beginning of the simulation, four convection cells arise in the container and exist
until the end of the simulated process at t = 380 s. No δ-area is detectable. The cells are
almost of the same size. The arrows in figure 6.7 (and in the following figures) stand for
the negative or positive circulation direction of the cells related to the coordinate system
in the container, as it is indicated in figure 6.1. In the beginning of the coarse grid simu-
lation, four convection cells exist in the setup and no δ-area is visible. All cells are almost
of the same size. At t = 380 s in the simulated process, the cell number has been changed
from four to three. On the right side of the container a δ-area with a width of 0.15 m can
be seen. Next, the differences between the temperature profiles ob both simulation types
at position x = 1.185 m are discussed on the basis of the presented circulation zones.

It will be seen, that the differences between the temperature profiles of both mesh resolu-
tions result from different cell structures existing at the investigated location. Regarding
figure 6.8 and the fine grid at the end of the simulation, position x = 1.185 m lies near the
edge of one circulation zone. At the coarse grid, this position is located closer to the centre
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6.3. Temperature profile

of a circulation zone. At both isothermal walls, the values of the coarse grid resolution
show steeper temperature gradients and thus smaller values than in case of the fine grid
(see section 6.3.1, figure 6.6 on page 155). Regarding the opposite circulation direction of
the cells at position x = 1.185 m and both grid resolutions, the air layers at the cold wall
have a longer exposition time and at the hot wall a shorter exposition time than in case
of the fine grid.

Ra === 6.16 × 107, (430 × 140 × 140) cells

cold wall hot wall

Ra === 6.16 × 107, (150 × 50 × 50) cells

cold wall hot wall

Figure 6.9.: Time-averaged temperature profile at the vertical xy-midplane, at the positions
x = 1.185 m, x = 1.315 m (z = 0.25 m) for the cold (left) and hot (right) wall. Ra = 6.16 × 107

(as in [Zimmermann15]). Top box: (430 × 140 × 140) cells. Bottom box: (150 × 50 × 50) cells.

As next step, the temperature profiles estimated at both mirror-imaged positions at the
xy-midplane, x = 1.185 m and x = 1.315 m, are plotted against each other in figure 6.9.
Because the setup has a symmetrical layout, similar temperature profiles would be ex-
pected at both mirror-imaged positions. The results obtained at position x = 1.185 m
are marked by the dashed black line. The results at position x = 1.315 m are marked
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

by the solid black line in figure 6.9. In case of the cold wall and fine grid resolution, the
values estimated at x = 1.185 m lie above the values estimated at x = 1.315 m, while
they lie beneath them in case of the hot wall. In figure 6.7, both mirror-imaged positions
are located near the end of one convection cell. Therefore, the temperature profiles of
both positions show at the cold wall only small differences. At the hot wall, the values at
position x = 1.185 m are lower than the values at x = 1.315 m. Possibly, the air layers at
x = 1.185 m are influenced already by ascending air layers of the neighbour cell.

In case of the coarse grid resolution, a deviation between both locations can clearly be
seen. At position x = 1.185 m, the values lie over the values at position x = 1.315 m at
both heated walls. This aspect could possibly be caused by a longer exposition time of the
air layers at the hot wall and a shorter exposition time of the air layers at the cold wall for
position x = 1.185 m. Regarding the convection cell distribution, the differences between
the temperature profiles at both estimated positions result from different cell structures
existing at these locations.

Rayleigh number Ra= 1.92 × 108

In figure 6.10, the cell distribution in the container is presented for Ra = 1.92 × 108 and
the fine grid.

Figure 6.10.: Convection cells in the container for Ra = 1.92 × 108, (430 × 140 × 140) cells (see
also [Zimmermann15]). In the beginning of the simulated process, at t = 200 s, (left) and in the

end of the simulation, at t = 380 s, (right).

Figure 6.11.: Convection cells in the container for Ra = 1.92 × 108, (150 × 50 × 50) cells (see
also [Zimmermann15]). In the beginning of the simulated process, at t = 200 s, (left) and in the

end of the simulation, at t = 380 s, (right).

In the beginning of the simulated process, four convection cells arise whose ratios increase
from left to right. A δ-area of about 0.25 m arise at the right side of the container as well
as one of about 0.1 m at the left side. At t = 380 s in the simulated process, both cells on
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6.3. Temperature profile

the right side has been merged together and the size of the middle cell has grown. A δ-area
unfolds at the left side of the container. It has a width of 0.4 m. The coarse grid shows
four convection cells in the beginning of the simulated process (s. figure 6.11), no δ-area
is visible. At t = 380 s a δ-area of about 0.3 m exists at the right side of the box. The
number of cells is reduced to three which are all of almost the same size. In figure 6.6 on
page 155, the temperature profiles of both resolution types reveal no significant deviations
at the hot wall. The results of the coarse grid lie slightly beneath the ones of the fine grid.

Ra === 1.92 × 108, (430 × 140 × 140) cells

cold wall hot wall

Ra === 1.92 × 108, (150 × 50 × 50) cells

cold wall hot wall

Figure 6.12.: Time-averaged temperature profile at the vertical xy-midplane, at the positions
x = 1.185 m, x = 1.315 m (z = 0.25 m) for the cold (left) and hot (right) wall. Ra = 1.92 × 108

(as in [Zimmermann15]). Top box: (430 × 140 × 140) cells. Bottom box: (150 × 50 × 50) cells.

At the cold wall significant deviations can be seen between both resolutions with higher
values at the fine grid. In case of the fine grid, position x = 1.185 m lies slightly closer to
the middle of one convection cell than it is the case at the coarse grid (see in figure 6.11). In
case of the coarse grid and x = 1.185 m, the air layers have a possibly shorter exposition
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

time at the hot wall (and hence reveal smaller temperatures) and a longer exposition
time at the cold wall than in case of the fine grid resolution (and hence reveal smaller
temperatures). The at both mirror-imaged positions, x = 1.185 m and x = 1.315 m,
estimated temperature profiles are illustrated in figure 6.12. Deviations are visible at
both heated walls in case of both resolutions. The results of the fine grid and position
x = 1.185 m are higher than the values at x = 1.315 m at both walls. In case of the coarse
grid, the values at x = 1.185 m are higher than at position x = 1.315 m at the cold wall,
which is vice versa at at the hot wall.

The distribution of the mirror-imaged positions at the fine grid is similar to the one in case
Ra = 6.16 × 107 and the coarse grid. Hence, analogous conclusions about the influences
on the temperature profiles can be made at this point. The air layers at x = 1.185 m have
a longer exposition time at the hot wall and a shorter exposition at the cold wall. At the
coarse grid and the hot wall, the temperature values at position x = 1.185 m lie beneath
the ones at position x = 1.315 m due to a shorter exposition time. At the cold wall, the
temperature values at position x = 1.185 m lie over the ones at position x = 1.315 m. This
aspect could be possibly caused by influencing descending air layers of the neighbour cell
at x = 1.315 m Position x = 1.185 m lies closer to the edge of one cell than position
x = 1.315 m.

Rayleigh number Ra= 4.1 × 108

Figure 6.13 displays the circulation zones for Ra = 4.1 × 108 and the fine grid resolution.

Figure 6.13.: Convection cells in the container for Ra = 4.1 × 108, (430 × 140 × 140) cells (see
also [Zimmermann15]). In the beginning of the simulated process, at t = 200 s, (left) and in the

end of the simulation, at t = 380 s, (right).

Figure 6.14.: Convection cells in the container for Ra = 4.1 × 108, (150 × 50 × 50) cells (see
also [Zimmermann15]).
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0.38 m and 0.24 m. At t = 380 s in the simulated process, the number of cells has been
changed to three which are all almost of the same size. A δ-area cannot be seen. The cell
distribution of the coarse grid is sketched in figure 6.14. Four convection cells exist from
the beginning of the simulated process until its end. The left cell has the biggest ratio
while the other three cells are almost of the same size. No δ-area can be detected.

Comparing the location of position 1.185 m in the end of the simulated process for both
resolutions related to the convection cell distribution, it can be seen that this position lies
almost at the same location for both grids. Hence, one would expect similar temperature
values at this position in both resolution types. But the values of the coarse grid are
smaller than the values of the fine grid at both heated walls.

Ra === 4.1 × 108, (430 × 140 × 140) cells

cold wall hot wall

Ra === 4.1 × 108, (150 × 50 × 50) cells

cold wall hot wall

Figure 6.15.: Time-averaged temperature profile at the vertical xy-midplane, at the positions
x = 1.185 m, x = 1.315 m (z = 0.25 m) for the cold (left) and hot (right) wall. Ra = 4.1 × 108

(as in [Zimmermann15]). Top box: (430 × 140 × 140) cells. Bottom box: (150 × 50 × 50) cells.
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In the beginning of the simulation, four cells are visible and two δ-area exist of about
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

sequence of a higher heat transmission than in case of the coarse grid. The temperature
profiles of both grid resolutions estimated at the mirror-imaged positions, x = 1.185 m
and x = 1.315 m, are plotted in figure 6.15. Major grid dependencies appear also in this
case which are distinctive this time. This dependencies are produced by the observed dif-
ferent quasi stable-states. The results at position x = 1.185 m exceed the ones at position
x = 1.315 m in case of both grid resolutions and both heated walls. Regarding the fine
grid, higher values can be seen at x = 1.185 m than at position x = 1.315 m at both
heated walls (s. figure 6.15). At the beginning of the simulation, both positions are lo-
cated near the end of two circulation zones. In the end of the simulation both positions lie
in the middle of one cell. This transmission cause possibly the higher values at position
x = 1.185 m in case of the fine grid.

In case of the coarse grid, higher values arise at position x = 1.185 m than at position
x = 1.315 m at both heated walls. Position x = 1.185 m lies closer to the middle of one
cell than position x = 1.315 m. At the hot wall, the higher values are caused by a longer
exposition time of air layers at this wall and a higher heat transmission than at position
x = 1.315 m. At the cold wall, the higher values at position x = 1.185 m are caused by a
shorter exposition time of the air layers at the cold wall than at position x = 1.315 m.

Concluding, the analysed distribution of convection cells shows that the deviations be-
tween the temperature profiles at both mirrored-imaged positions are caused by different
quasi-stable states which are generated during the simulation process in the container.
These altered quasi-stable states produce further the deviations between both mesh res-
olutions. The schemes of the convection cells in figures 6.7 - 6.14 show for each Rayleigh
number an opposite circulation direction at the hot, respectively cold, wall between the
fine and coarse grid resolution at x = 1.185 m. This aspect could also be observed for
position x = 1.315 m, except in case of Ra = 6.16 × 107. These opposite directions have
also an influence of the deviations between both grid resolutions. Because different coher-
ent structures exist in the container at the analysed positions and reveal additionally in
some cases an opposite circulation orientation, the reproducibility of the temperature pro-
files is destroyed between both mesh resolutions and also between both mirrored-imaged
positions.

6.3.2. Investigation of non-Boussinesq-effects in the fluid on the
basis of the temperature profile

This section deals with the further investigation of the before in section 6.3.1 men-
tioned asymmetrical temperature profiles. [Ahlers06] reports in his study also a not anti-
symmetrical, but rather asymmetrical temperature profile for a strongly turbulent non-
Boussinesq RB convection (short: NOB) in water and glycerol for investigated Rayleigh
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The higher values at the cold and hot wall in case of the fine grid might be a possible con-
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numbers between 108 ≤ Ra ≤ 1011. Ahlers et al. state in [Ahlers06] that the thermal
boundary layer thickness varies, because the values of the heat conductivity λ vary also
against the height of the container. Another reason can be found in the temperature values
which decrease across the thermal boundary layer. This aspect is caused by NOB effects
in the fluid according to [Ahlers06].

To determine these effects, the following variables are analysed. In a NOB convection, the
mean temperature Tmean = Thot − Tcold

2 + Tcold between the hot and cold wall does not
equal usually the temperature in the centre of the container (denoted by Tcentre), as it is
the case in an OB convection (see also chapter 3, section 3.5, 3.5.3.1). The temperature
Tcentre is defined in [Ahlers06] as

Tcentre = Thot − Δhot = Tcold + Δcold ,

where Δhot is the temperature change across the bottom hot boundary layer and Δcold

is the temperature change across the top cold boundary layer. In general, Tcentre can be
smaller or larger than Tmean, due to different properties of each working fluid according to
[Ahlers06]. For example, [Wu1991] reports that it is Δhot < Δcold for a NOB in cryogenic
helium. [Zhang1997], on the contrary, observes the inverted relation Δhot > Δcold in a
NOB convection in glycerol. The total temperature change inside the container is defined,
according to Ahlers et al. [Ahlers06], as

χ = χΔ = Δhot/Δcold . (6.3.1)

Ahlers et al. assume, that the total temperature difference between both heated walls
can be formulated as the sum of the temperature changes across the thermal boundary
layers. In the bulk region, the temperature is almost constant. Thus, the total temperature
difference has to be as mentioned in [Ahlers06]

Δ = Δcold + Δhot . (6.3.2)

With equations (6.3.1) and (6.3.2) Ahlers et al. formulate in [Ahlers06] and expression of
the temperature change in the top cold and bottom hot boundary layers

Δhot = χ

1 + χ
Δ , Δcold = 1

1 + χ
Δ . (6.3.3)

The table 6.3 on page 164 presents the noticed temperature drops in the simulation in
case of the fine grid (estimated according to equation (6.3.1) and (6.3.3)). It stands out,
that the temperature change of the hot boundary layer is smaller than the one of the cold
boundary layer Δhot < Δcold in case of Ra = 6.16 × 107 and Ra = 4.1 × 108. But in case of
Ra = 1.92 × 108, this relation is inverted Δhot > Δcold. Hence, no uniform statement can
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

be made for the NOB convection concerning the fine grid resolution. On the contrary, all
cases of the coarse grid resolution satisfy the relation Δhot > Δcold. The particular values
of these cases can be found in table 6.4.

(430 × 140 × 140)(430 × 140 × 140)(430 × 140 × 140) cells
Ra Tmean[K] Tcentre[K] Δhot[K] Δcold[K] χ

6.16 × 107 292.86 292.91 2.36 2.47 0.96
1.92 × 108 297.17 297.08 8.14 7.97 1.02
4.1 × 108 308.63 309.24 19.92 21.14 0.95

Table 6.3.: Temperature change across the boundary layers according to [Ahlers06] for diverse
Rayleigh numbers, (430 × 140 × 140) cells.

(150 × 50 × 50)(150 × 50 × 50)(150 × 50 × 50) cells
Ra Tmean[K] Tcentre[K] Δhot[K] Δcold[K] χ

6.16 × 107 292.86 292.84 2.43 2.4 1.01
1.92 × 108 297.17 296.93 8.29 7.82 1.06
4.1 × 108 308.63 308.31 20.85 20.21 1.03

Table 6.4.: Temperature change across the boundary layers according to [Ahlers06] for diverse
Rayleigh numbers, (150 × 50 × 50) cells.

6.3.3. Analytical model of the non-dimensional temperature profile

To validate the computational results of the estimated temperature profiles, they are com-
pared to an analytical function. Note that some of the following results are also discussed
in extracts in [Zimmermann12] and [Zimmermann15].

In [Hölling06] and [Hölling05] analytical functions are given for the temperature distribu-
tion in the thermal boundary layer near the heated walls for a RB problem with constant
fluid properties. In the simulations of this thesis temperature dependent fluid properties
are used. To compare the analytical function of [Hölling06] and [Hölling05] with the sim-
ulation results, the fluid properties of the simulation are time-averaged over an interval of
Δt = 200 s − 380 s and subsequently averaged over the distance between the heated walls.
The following proceeding is based on the boundary layer theory presented in chapter 3,
section 3.5, 3.5.3.2 from page 83 on. But at this point, a RB convection with horizontal
heated walls is regarded. Hölling et al. define in [Hölling06] a characteristic temperature
Tref based on the wall heat flux and the following characteristic fluid properties

Tref =
(

νκ

gβ

)(1/4)(
∂T

∂y

∣∣∣∣
w̃

)(3/4)

=
(

L ∂T

∂y

∣∣∣∣
w̃

)(3/4)
4

√
Thot − Tcold

Ra . (6.3.4)
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With help of Tref, a non-dimensional temperature T + is then formulated in [Hölling06] by

T +
h = Thot − T (y∗)

Tref
, T +

c = T (y∗) − Tcold

Tref
, (6.3.5)

where the indices represent the hot (h) or cold (c) wall and y∗ is a non-dimensional wall
distance. This last mentioned variable is defined by [Hölling06] as

y∗ = y

Tref

∂T

∂y

∣∣∣∣
w̃

= y

L
4

√(
L ∂T

∂y

∣∣∣∣
w̃

)
/
(

Thot − Tcold

Ra

)
(6.3.6)

with the temperature gradient ∂T/∂y directly at the hot/cold wall and a characteristic
length L of the geometry. In this thesis, L stands for the distance between the heated
walls, thus L = H. In [Hölling06], the boundary layer near the heated walls is, as men-
tioned before, divided into a two layer-structure. The boundary layer consists of a con-
ductive boundary layer directly at the heated walls and a turbulent boundary layer close
to these walls. The conductive boundary layer can be expressed generally by a linear
non-dimensional formulation

T + = y∗ . (6.3.7)

For the turbulent boundary layer a logarithmic law is proposed in [Hölling06] with two
coefficients C and D which have to be determined for each particular flow problem

T + = C · ln(y∗) + D . (6.3.8)

According to [Hölling06], the coefficient D may vary with the Rayleigh number. The
coefficient C is determined with help of several experimental and numerical studies as
C = 0.1 ([Hölling06]). The expression in equation (6.3.7) is of the same form as it was
stated before concerning the boundary layer in chapter 3, section 3.5, 3.5.3.3, eq. (3.5.46)
on page 88. The expression in equation (6.3.8) is of the same form as it was stated before
concerning the overlapping layer in chapter 3, section 3.5, 3.5.3.2, eq. (3.5.40) on page 87.
But the coefficients, which were suggested by [Schlichting06], are adjusted this time.

The simulation results approximate well the analytical functions for both regions. The
results are displayed in case of the fine grid in figure 6.16 for the cold (left) and hot
(right) wall and all realised Rayleigh numbers. The results are estimated along the vertical
y-axis at the vertical cross-section, at x = 1.185 m, z = 0.25 m. The black solid line in
figure 6.16 displays the analytical function T + = y∗ of the conductive boundary layer from
eq. (6.3.7). The black dashed line marks the logarithmic wall function of the turbulent
boundary layer with C = 0.1 and D = 5.5 from eq. (6.3.8). It can be seen that the
conductive boundary layer at the hot and cold wall (y∗ < 3) is well approximated by
the results of all cases. The turbulent boundary layer at the hot wall (y∗ ≥ 30) can be
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approximated by the logarithmic wall function with small deviations. Hence, the chosen
mesh resolution is sufficiently fine in this case. In the turbulent boundary layer at the
cold wall, the temperature is influenced by plumes from the hot wall and the coefficient
D has to be modified to obtain a better approximation of the logarithmic wall function.
Note that the visible plateau in the results of the turbulent layer is not exactly horizontal,
otherwise there would be no heat flux in this region and the coefficient C have to be equal
zero.

Figure 6.16.: Non-dimensional temperature profile T + in the boundary layer estimated at the
vertical xy-midplane, at x = 1.185m, z = 0.25m. Ra = 6.16 × 107 (red line −−−), Ra = 1.92 × 108

(blue dashed line − −− −− −), Ra = 4.1 × 108 (green dashed line − · −− · −− · −), (430 × 140 × 140) cells (as
in [Zimmermann12]). Left: T + at the cold wall. Right: T + at the hot wall.

Figure 6.17.: Non-dimensional temperature profile T + in the boundary layer estimated at the
vertical xy-midplane, at x = 1.185m, z = 0.25m. Ra = 6.16 × 107 (red line −−−), Ra = 1.92 × 108

(blue dashed line − −− −− −), Ra = 4.1 × 108 (green dashed line − · −− · −− · −), (150 × 50 × 50) cells (as in
[Zimmermann12]). Left: T + at the cold wall. Right: T + at the hot wall.

Figure 6.17 illustrates analogously to the previous results the estimated non-dimensional
temperature profile in case of the coarse grid. The values in the conductive layer at the
cold wall fall below the analytical T + = y∗ function from eq. (6.3.7). This behaviour
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is caused by smaller temperature gradients compared to the fine mesh (s. figure 6.6 on
page 155). In the turbulent boundary layer at the cold wall, the profiles are influenced
by plumes from the hot wall. The values are smaller than the logarithmic wall function
caused by smaller temperature gradients (s. figure 6.6 on page 155). At the hot wall, the
results approximate in all cases the analytical T + = y∗ function of the conductive layer.
The values in the turbulent layer at the hot wall are higher than at the cold wall. But
they approximate not in all cases the logarithmic wall function. Therefore, the coefficient
D has to be adjusted in both cases. At about (y∗ > 50), a transition from the turbulent
layer to the bulk region begins (outer layer). At this point, the influence from the other
wall is reinforcing.

Modification of the analytical formulations
As mentioned before, the coefficient D in equation (6.3.8) may vary with the Rayleigh
number and have to be modified from case to case according to [Hölling06]. This aspect
can also be seen in the profiles of the non-dimensional temperature in the turbulent layer
for both grid resolutions in in figures 6.16 - 6.17. Especially for the results at the cold wall
of both mesh types a adaption of coefficient D can possibly improve the approximation.
To obtain an possible improvement of the approximation in the turbulent boundary layer,
the coefficient D is modified in the following

Ra = 6.16 × 107 : T +
hot-fine =0.1 · ln(y∗) + 5.45, T +

hot-coarse = 0.1 · ln(y∗) + 5.75
T +

cold-fine =0.1 · ln(y∗) + 3.25, T +
cold-coarse = 0.1 · ln(y∗) + 3.14,

(6.3.9)
Ra = 1.92 × 108 : T +

hot-fine =0.1 · ln(y∗) + 5.3 T +
hot-coarse = 0.1 · ln(y∗) + 5.5,

T +
cold-fine =0.1 · ln(y∗) + 4.58, T +

cold-coarse = 0.1 · ln(y∗) + 4.38,

Ra = 4.1 × 108 : T +
hot-fine =0.1 · ln(y∗) + 4.78, T +

hot-coarse = 0.1 · ln(y∗) + 4.92,

T +
cold-fine =0.1 · ln(y∗) + 5.3, T +

cold-coarse = 0.1 · ln(y∗) + 5.34.

The formulations of the modified functions with an adapted coefficient D are formulated
in equation (6.3.9) for all Rayleigh numbers and both grid resolutions. The obtained non-
dimensional temperature profiles of the simulations (as seen in figures 6.16 - 6.17) are then
compared graphically to the modified functions in figure 6.18 on page 168. The modified
functions of equation (6.3.9) are displayed by the red coloured line. The blue coloured line
represents the analytical function of the conductive layer with T + = y∗ from equation
(6.3.7). With the modified coefficients D, the simulation results of the non-dimensional
temperature profile approximate well both regions in the thermal boundary layer and
conform with the theoretical assumptions of [Hölling06].
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Figure 6.18.: Modified non-dimensional temperature profile T +, estimated at the vertical xy-
midplane, at x = 1.185m, z = 0.25m. Left: (430 × 140 × 140), right: (150 × 50 × 50) cells. In
each picture: Top plotted function: cold wall. Bottom plotted function: hot wall. Top box:

Ra = 6.16 × 107. Middle box: Ra = 1.92 × 108. Bottom box: Ra = 4.1 × 108.

6.3.4. Nusselt number profile estimated at the heated walls

In this section, the heat flux in the container is investigated on the basis of the Nus-
selt number. Note that some of the following results are also presented in extracts in
[Zimmermann12] and [Zimmermann15]. The Nusselt number is defined as

Nu = ∂T

∂y

∣∣∣∣
w̃

H

ΔT
, (6.3.10)
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where ∂T
∂y

∣∣∣
w̃

is the temperature gradient directly at the cold, respectively hot, wall. H

stands for the distance between both heated walls. In [Grossmann00] and in [Hölling06]
theoretical considerations about possible Rayleigh-Nusselt number dependence of a strong
RB problem are discussed which is based on the presented theory in chapter 3, section 3.5,
3.5.3.2 from page 83 on.

Grossmann et al. on the one hand, define in [Grossmann00] for their theory different
regimes in the Rayleigh number versus Prandtl number phase space. The theory is based
on the thermal and kinematic dissipation rate in the thermal boundary layer and in
the bulk region only. The distance between the heated walls is neglected. The different
regimes are defined whether the contribution of the thermal or of the kinetic boundary
layer has a bigger influence in the particular region. For each such a regime a power law
of the Nusselt number is given with different determining pre-factors in [Grossmann00].
For the investigated Rayleigh numbers of this thesis, 6.16 × 107 ≤ Ra ≤ 4.1 × 108, and
Pr = 0.71, the regime Il comes into consideration. The depending power law is described
in [Grossmann00] by

Nu = 0.27 · Ra1/4Pr1/8. (6.3.11)

Hölling et al. on the other hand formulate in [Hölling06] an asymptotic Nu-Ra correlation
for arbitrary Rayleigh numbers Ra < ∞ which is given as

Nu = Ra1/3

[C
2 ln(0.078

16 Ra1.323) + 2D]4/3 , C = 0.1 and D = − 14.94
Ra0.25 + 3.43. (6.3.12)

The reached Nusselt number values of the simulations are compared in the next part to
the values estimated with help of both of these mentioned theories.

Nusselt number profile estimated at the hot and cold wall
The Nusselt number values which were reached in the simulations at the hot and cold
wall are listed in the following table 6.5 for all investigated Rayleigh numbers and both
mesh resolutions. The results were estimated by equation (6.3.10) and time-averaged over
an interval of Δt = 200 s − 380 s in the simulated process. Subsequently, the values were
area-averaged over the whole cold, respectively hot, wall. The results in table 6.5 show
clearly a significant difference between the Nusselt number at the hot wall and the one at
the cold wall, especially for Ra = 4.1 × 108.

These deviations are caused by deviations between the effective thermal diffusivity at the
heated walls and deviations between the temperature gradients at both heated walls. The
fluid properties influence directly the Nusselt number as the following equation shows

Nu = q

αeffCp

· h

ΔT
= ∂T

∂y

∣∣∣∣
w̃

H

ΔT
. (6.3.13)
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The values of the effective thermal diffusivity conform for both grid resolutions with the
temperature boundary conditions in table 6.1 on page 152. It is noteworthy, that the
values of the effective thermal diffusivity show for the case of Ra = 6.16 × 107 and for the
case of Ra = 1.92 × 108 the same results between both grid resolutions.

NucNucNuc NuhNuhNuh αeff-cαeff-cαeff-c αeff-hαeff-hαeff-h
∂T
∂y

∣∣∣
c

∂T
∂y

∣∣∣
c

∂T
∂y

∣∣∣
c

∂T
∂y

∣∣∣
h

∂T
∂y

∣∣∣
h

∂T
∂y

∣∣∣
h

[kg/ms] [kg/ms] [K/m] [K/m]
(430 × 140 × 140)
Ra = 6.16 × 107 22.35 24.33 2.64 · 10−5 2.68 · 10−5 215.90 234.980
Ra = 1.92 × 108 30.54 29.37 2.63 · 10−5 2.75 · 10−5 955.52 946.34
Ra = 4.1 × 108 39.37 35.97 2.61 · 10−5 3.14 · 10−5 3240.20 2960.60
(150 × 50 × 50)
Ra = 6.16 × 107 22.04 22.01 2.64 · 10−5 2.68 · 10−5 212.90 212.57
Ra = 1.92 × 108 29.96 29.82 2.63 · 10−5 2.75 · 10−5 959.94 955.52
Ra = 4.1 × 108 39.54 35.68 2.62 · 10−5 2.94 · 10−5 3236.50 2919.90

Table 6.5.: Comparison of time- and area-averaged values of the Nusselt number, the thermal
diffusivity and the temperature gradients estimated at the cold and hot wall (marked by index
c, respectively index h). Ra = 6.16 × 107, Ra = 1.92 × 108, Ra = 4.1 × 108 and both mesh

resolutions.

In figure 6.19, the simulation results of the Nusselt number from table 6.5 are plotted
versus the data which is based on the theoretical assumptions of [Grossmann00] (solid
black line) and the assumptions of [Hölling06] (dashed black line) (see also eq. (6.3.11)
and eq. (6.3.12) on page 169). The results at the hot wall are displayed by +++ and the ones
at the cold wall by ◦◦◦.

Figure 6.19.: Nu-Ra dependence at the cold and hot wall compared to data of [Grossmann00]
(see eq. (6.3.11)) and [Hölling06] (see eq. (6.3.12)), Pr = 0.71. Left: (430 × 140 × 140) cells.

Right: (150 × 50 × 50) cells. +: Hot wall. ◦: Cold wall. - - black dashed line: [Hölling06].
- black solid line: [Grossmann00].
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The simulation results approximate in all cases the consideration of [Grossmann00]. The
exact values which are estimated according to [Grossmann00] by equation (6.3.11) and
according to [Hölling06] by equation (6.3.12) are given in table 6.10 on page 190, where
the values are compared to an analogous experimental setup of [Ebert08].

Nusselt number values, shared factor for the hot and cold wall together
The Nusselt number values estimated in [Grossmann00] (see eq. (6.3.11)) are valid for
the complete observed flow. No division is made between values at different locations, as
for example the hot or cold wall. Therefore, in this section, a Nusselt number value valid
for the whole setup of the container should be formulated for each resolution case and all
Rayleigh numbers. To obtain such a common Nusselt number, an averaged shared factor
between the values estimated at the hot and at the cold wall is required, as it is the case
in the law of [Grossmann00] in eq. (6.3.11). Thus, a uniform factor has to be estimated
valid for both walls.

This is done by a linear approximation between the estimated factor for the hot and the
estimated factor for the cold wall. First, for the Nusselt number values given in table 6.5
an averaged factor is estimated with help of equation (6.3.11) for all Rayleigh numbers
regarding each heated wall and both mesh types. Second, an averaged shared factor valid
for both heated walls together is calculated. In case of the (150× 50 × 50) cells resolution,
the mean factors for each heated wall are listed in table 6.6.

(150 × 50 × 50)(150 × 50 × 50)(150 × 50 × 50) cells Factor cold wall Factor hot wall
Ra = 6.16 × 107 0.260 0.260
Ra = 1.92 × 108 0.266 0.264
Ra = 4.1 × 108 0.290 0.262

Mean factors 0.272 0.262

Table 6.6.: Estimation of a mean factor for all Rayleigh numbers regarding the hot and cold
wall, estimated with help of eq. (6.3.11), (150 × 50 × 50) cells.

Subsequently, as averaged shared factor a value of 0.267 is estimated valid for both heated
walls together. With this shared factor the following modified values of the Nusselt number
are calculated

Nu = 0.267 · (6.16 × 107)1/4 · (0.71)1/8 = 22.66,

Nu = 0.267 · (1.92 × 108)1/4 · (0.71)1/8 = 30.11, (6.3.14)
Nu = 0.267 · (4.1 × 108)1/4 · (0.71)1/8 = 36.40.

Analogously, one estimate an averaged shared factor in case of (430×140×140) cells (see
table 6.7). With an averaged shared factor of 0.272 for both heated walls together, the
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Nu = 0.272 · (6.16 × 107)1/4 · (0.71)1/8 = 23.09, (6.3.15)
Nu = 0.272 · (1.92 × 108)1/4 · (0.71)1/8 = 30.68,

Nu = 0.272 · (4.1 × 108)1/4 · (0.71)1/8 = 37.08.

(430 × 140 × 140)(430 × 140 × 140)(430 × 140 × 140) cells Factor cold wall Factor hot wall
Ra = 6.16 × 107 0.263 0.287
Ra = 1.92 × 108 0.271 0.260
Ra = 4.1 × 108 0.289 0.264

Mean factors 0.274 0.270

Table 6.7.: Estimation of a mean factor for all Rayleigh numbers regarding the hot and cold
wall, estimated with help of eq. (6.3.11), (430 × 140 × 140) cells.

In figure 6.20 the above estimated adapted Nusselt number values from eq. (6.3.14) and
eq. (6.3.15) are plotted against the theoretical data of [Grossmann00] (solid black line)
and [Hölling06] (dashed black line).

Figure 6.20.: Nu-Ra dependence with an adapted shared factor for the hot and cold wall
together, compared to data of [Hölling06]: − − − (black dashed line) (see eq. (6.3.12))
and [Grossmann00]: − (black solid line) (see eq. (6.3.11)). Simulation data: +: (430× 140× 140)

cells, ×: (150 × 50 × 50) cells.

The results of the (430×140×140) cells mesh are displayed by +++ and the ones of the (150×
50 × 50) cells mesh by ×××. The averaged simulation results with a shared factor for both
heated walls match well with the data of [Grossmann00]. The results of [Hölling06] exceed
the theoretical ones of [Grossmann00] and still the ones of the simulation evaluations. But
it has to be regarded that the assumption of [Hölling06] with Ra → ∞ is not realisable in
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6.3. Temperature profile

an enclosed test case setup as it is used in this study. Stevens et. al update in [Stevens13]
the in [Grossmann00] and [Grossmann01] given regimes in the Rayleigh number versus
Prandtl number phase space and the pre-factors of the belonging power laws. In the
updated version, the regime IIu comes this time into consideration for the simulation data
of Ra = 6.16 × 107. Further, for the cases Ra = 1.92 × 108 and Ra = 4.1 × 108, the
regime IVu comes now into consideration concerning all times Pr = 0.71. The power law
of the Nusselt number belonging to regime IIu is valid for 1 × 106 ≤ Ra ≤ 6.5 × 107 and
0.71 ≤ Pr ≤ 100. It is

Nu = 0.51 · Ra1/5. (6.3.16)

The power law of the Nusselt number belonging to regime IVu is valid for a range of
6.5 × 106 < Ra ≤ 1 × 1014 and 0.71 ≤ Pr ≤ 100. It is given by

Nu = 0.050 · Ra1/3. (6.3.17)

These new power laws are plotted together with the “old” power law from equation (6.3.11)
of [Grossmann00] (black solid line) in figure 6.21 next to the simulation data for the time-
averaged values with a shared factor from eq. (6.3.14) and eq. (6.3.15).

Figure 6.21.: Nu-Ra dependence with an adapted shared factor for the hot and cold wall
together, compared to theoretical data. [Hölling06]: − − −− − −− − − (black dashed line) (see eq. (6.3.12)).
[Grossmann00]: −−− (black solid line): Regime Il (see eq. (6.3.11)). [Grossmann01]/[Stevens13]:
− · · −− · · −− · · − (black dashed/dotted line): Regime IIu (see eq. (6.3.16)). [Grossmann01]/[Stevens13]:
· · ··· · ··· · ·· (black dotted line): Regime IVu. (see eq. (6.3.17)). Simulation data: +: (430 × 140 × 140)

cells, ×: (150 × 50 × 50) cells (see also [Zimmermann15]).

The power law for IIu from equation (6.3.16) is illustrated by a black dashed/dotted line
and the power law for IVu from equation (6.3.17) by a black dotted line. Additionally,
the data of [Hölling06] are displayed by a black dashed line (see eq. (6.3.12)). As one can
see in figure 6.21, the simulation data for Ra = 6.16 × 107 lie closer to the “old” power
law from eq. (6.3.11) of [Grossmann00] than to the updated power law of regime IIu. But
it has to be regarded, that the given power law in [Stevens13] is valid for a big range of
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Prandtl number values and that the observed case lies near to the boarder between two
regimes. The values for Ra = 1.92 × 108 lie close to the new updated power law of regime
IVu. In case of Ra = 4.1 × 108 the values match exactly the new updated power law of
regime IVu.

Averaged Nusselt number values at the hot and cold wall, mean values
Now we consider a simple mean average value between the Nusselt number values of
both heated walls given in table 6.5 for each Rayleigh number. Considering these mean
Nusselt number values between the hot and cold wall, a good approximation of the data
of [Grossmann00] (solid black line) can also be reached. This is displayed in figure 6.22.

Figure 6.22.: Nu-Ra dependence. Values estimated acc. to eq. (6.3.15) and eq. (6.3.14)
(shared factors) compared to the mean values between the heated walls from table 6.5 and
to [Grossmann00] (see eq. (6.3.11)). [Grossmann00]:−−− (black solid line). Left: (430 × 140 × 140)
cells, +: shared factor values, �: mean values between hot and cold wall. Right: (150× 50× 50)

cells, ×: shared factor values, �: mean values between hot and cold wall.

Additionally the values estimated with the shared factors from eq. (6.3.15) and eq.(6.3.14)
are displayed also in figure 6.22. The values with the shared factors are displayed by pluses
+++ for (430 × 140 × 140) cells and by crosses ××× for (150 × 50 × 50) cells, as before in
figure 6.20. The mean averaged values are plotted by diamonds ��� for (430 × 140 × 140)
cells and by triangles ��� for (150 × 50 × 50) cells. As the results in figure 6.22 show, the
values of the shared averaged factors lie closer to the data of [Grossmann00] than the
mean values between the hot and cold wall, but these values also approximate well the
data of [Grossmann00].

6.3.5. Profile of the effective dynamic viscosity μμμeff and the effective
thermal diffusivity αeff between the heated walls, vertical axis

In this section, the dynamic viscosity μ and the connected thermal diffusivity α are
analysed for both grid resolutions.
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Effective dynamic viscosity μμμeff and subgrid-scale dynamic viscosity μμμsgs between the
heated walls
We know from chapter 1, section 1.9 that the effective dynamic viscosity μeff consists of
two parts, the molecular part or resolved part μ which stands for the great scales and the
turbulent subgrid-scale part μsgs which stands for the small scales and has to be modelled
with help of a turbulence model. It is

μeff = μ + μsgs . (6.3.18)

The top three plots in figure 6.23 display the time-averaged profile of the effective dynamic
viscosity μeff between the heated walls estimated at the xy-midplane, at x = 1.185 m and
z = 0.25 m, along the vertical y-axis. Complementary to the profiles of μeff, the bottom
three plots in figure 6.23 display analogously the time-averaged profile of the subgrid-
scale dynamic viscosity μsgs at the same position. The plots show the results of both mesh
resolutions and all Rayleigh numbers. The fine grid resolution is presented by the solid
black line and the coarse resolution by the dashed black line.

An asymmetry appears in all profiles, at it was expected due to the non-Boussinesq effects
in the fluid. The subgrid-scale part μsgs shows the same behaviour as the effective part
μeff, as it was expected due to the flow profile. The form of all plots in figure 6.23 reveal
the structure of the computational mesh. At 0.1 m, respectively 0.4 m, the change from
the fine resolution in the boundary layer to the coarse resolution in the bulk region can
clearly be seen. Due to the relation α = μ/Pr, the profiles of the thermal diffusivity α

should show an similar form as the profiles in 6.23, as we will see in the following.

Effective thermal diffusivity αααeff and subgrid-scale thermal diffusivity αααsgs between
the heated walls
Analogously to the dynamic viscosity μeff we now discuss the thermal diffusivity αeff

profiles. We know from chapter 1, section 1.9 that the effective thermal diffusivity αeff

consists also of two parts, the molecular part or resolved part α and the turbulent subgrid-
scale part αsgs. It is

αeff = α + αsgs . (6.3.19)

The time-averaged profiles of both variables are plotted in figure 6.24. The values are
estimated at the xy-midplane, at x = 1.185 m and z = 0.25 m, along the vertical y-axis.
The plots illustrate the profiles for both mesh resolutions and all Rayleigh numbers. The
fine grid resolution is presented by the solid black line and the coarse resolution by the
dashed black line. An asymmetry appears in all profiles, at it was expected due to the
non-Boussinesq effects. The values of αeff, (respectively μeff) of the coarse grid exceed the
values of the fine grid, which is remarkable.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Figure 6.23.: Top box: Time-averaged profile of the effective dynamic viscosity μeff between
the heated walls. Bottom box: Time-averaged profile of the subgrid-scale dynamic viscosity
μsgs between the heated walls. Estimated at x = 1.185 m, z = 0.25 m. Clockwise direction,
starting left top: Ra = 6.16 × 107, Ra = 1.92 × 108, Ra = 4.1 × 108. - black solid line

(430 × 140 × 140) cells, - - black dashed line (150 × 50 × 50) cells.
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6.3. Temperature profile

Figure 6.24.: Top box: Time-averaged profile of the effective thermal diffusivity αeff between
the heated walls. Bottom box: Time-averaged profile of the subgrid-scale thermal diffusivity
αsgs between the heated walls. Estimated at x = 1.185 m, z = 0.25 m. Clockwise direction,
starting left top: Ra = 6.16 × 107, Ra = 1.92 × 108, Ra = 4.1 × 108. - black solid line:

(430 × 140 × 140) cells, - - black dashed line: (150 × 50 × 50) cells.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

This can be seen clearly directly at the heated walls. Due to this higher thermal diffusiv-
ity values, in the results of the coarse grid also higher temperature gradients should be
expected at the hot wall and lower temperature gradients at the cold wall. This is not
the case for the hot wall, as figure 6.6 in section 6.3.1, on page 155 shows. All temper-
ature gradients of the coarse grid at the hot wall are smaller than the ones of the fine
grid, especially for a higher Rayleigh number. This aspect has to be caused by numerical
deviations of the coarse grid resolution.

Ratio of μμμsgs/μμμ

To compare directly the resolved components and the sgs-contributions of the simulation
with each other, we discuss the behaviour of the following relation

μsgs

μ
. (6.3.20)

The above formulated term describes a ratio between the modelled subgrid-scale part μsgs

and the resolved part μ of the effective dynamic viscosity μeff=μ + μsgs.

Figure 6.25.: Time-averaged profile of the ratio μsgs/μ (s. eq. (6.3.20)). Estimated between the
heated walls at the vertical xy-midplane (x = 1.185 m, z = 0.25 m). Ra = 1.92 × 108.

- black solid line: (430 × 140 × 140) cells. - - - grey dashed line: standard deviation (s.
[Zimmermann15]).

Figure 6.25 displays the time-averaged profile of the relation in equation (6.3.20) exem-
plary for Ra = 1.92 × 108, (140 × 140 × 430) cells. Additionally, the standard deviation of
the profile is plotted. The values are estimated, analogously to the temperature profile,
at the xy-midplane, at x = 1.185 m, z = 0.25 m, along the vertical y-axis.

The form of the profile is equal to the above analysed profiles of the effective dynamic
viscosity μeff. The transition between regions of different mesh resolutions can clearly be
seen in the profile. All reached values in figure 6.25 are smaller than unity. Hence, the
chosen grid resolution is not as small as in a DNS. This can also be shown by the Kol-
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6.4. Global heat flux structure

mogorov length. In a DNS the Kolmogorov length is a scale for the size of the smallest
turbulent eddies which have to be resolved by the computational grid (s. also chapter 3).
According to equation (5.2.4) on page 100 in chapter 5, it is

ηkL
≈ L(

1
0.71 · 2.5Ra

)3/8 . (6.3.21)

Table 6.8 lists the values of the Kolmogorov length which are estimated according to
equation (5.2.4) for all Rayleigh numbers in this study. The smallest cell in the mesh of
both resolutions is cubical formed. Its size in the fine grid is Δx/Δy/Δz = 9.2 · 10−4 m.
For the coarse grid the size is Δx/Δy/Δz = 2.5 ·10−3 m. As table 6.8 shows, the size of the
smallest cell of both resolutions is bigger than the Kolmogorov length of all cases. Hence,
the chosen resolution is not as small as in a DNS.

Rayleigh number Kolmogorov length
Ra ηkL

6.16 × 107 7.44 · 10−4 m
1.92 × 108 4.85 · 10−4 m
4.1 × 108 3.65 · 10−4 m

Table 6.8.: Kolmogorov length ηkL
accord. to eq. (6.3.21) for several Rayleigh numbers.

6.4. Global heat flux structure

To obtain further information on the development of the asymmetrical temperature pro-
file, the heat flux in the container is investigated in another approach. Therefore, a de-
scription of the global heat flux structure in the container is formulated. To begin with,
the generation of an asymmetrical fluid property profile is illustrated in a demonstrative
way.

Imagine two different air volumes in the container, a hot and a cold one, which have
a different size. Figure 6.26 demonstrates this aspect by a simplified scheme of the two
different volumes. The bigger volume of hot air should ascend and the smaller volume of
cold air should descend. Then, the raising hot air displaces the cold air in vicinity of the
cold wall. As a consequence, the heat flux at the cold wall has to be smaller than the one
at the hot wall. Also, the temperature gradient at the cold wall has to be smaller than the
gradient at the hot wall. Because the container is an enclosed system, both mass flows of
the volumes have to be equal,

A+ρ+u+ = A−ρ−u− . (6.4.1)
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Since the density of the cold volume has to be higher than the density of the hot volume
ρ− > ρ+, it follows

A+u+

A−u−
= ρ−

ρ+
> 1 (6.4.2)

and thus
A+u+ > A−u− and A+u+ − A−u− > 0 . (6.4.3)

Consequently, the profiles of the fluid properties in a NOB convection have to be asym-
metrical. This aspect shall be demonstrated in the next part by different fluid properties
profiles which influence the heat flux in the container.

Figure 6.26.: Scheme of two different fluid volumes with different temperatures and different
sizes.

Estimation of a global heat flux variable and its profile at constant planes parallel
to the heated walls
The turbulent enthalpy equation from chapter 3, section 3.3.2 on page 71, is modified into
a time-averaged problem over an appropriate interval [t0, T ]

1
T − t0

∫ T

t0

∂ρ̄h̃

∂t
+ ∂ρ̄ũjh̃

∂xj

− ∂

∂xj

(
(α + αsgs)

∂h̃

∂xj

)
dt

= 1
T − t0

∫ T

t0

∂p̄

∂t
+ ũj

∂p̄

∂xj
. (6.4.4)

Therefore, the following equation holds

∇ · (ρ̄ũh̃) − ∇ · ((α∗ + α∗
sgs)∇h̃) = ũ∇p̄ ≈ 0 . (6.4.5)

Here, α∗ presents a time-averaged, constant molecular thermal diffusivity and α∗
sgs presents

a time-averaged subgrid-scale thermal diffusivity. Experimental data have shown, that the
pressure fluctuations ũ∇p̄ in the thermal boundary layer are insignificant in comparison
to the fluctuations of the temperature and specific enthalpy [Spurk07]. Thus according
to [Cebeci1968] and [Spurk07] (chapter 19, 19.1), the term on the RHS in equation (6.4.5)
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6.4. Global heat flux structure

located parallel to the cold/hot wall. The term <>A denotes the area-averaged values

1
A

∫
A

(
∇ · (ρ̄ũh̃)

)
− ∇ · ((α∗ + α∗

sgs)∇h̃) dA

= ∇ ·
〈

(ρ̄ũh̃)
〉

A
− ∇ ·

〈
(α∗ + α∗

sgs)∇h̃
〉

A
. (6.4.6)

Equation (6.4.6) can be modified into

∇ ·
(〈

ρ̄
〉

A

〈
ũ
〉

A

〈
h̃
〉

A
+ Δ̃
)

= ∇ ·
(

(α∗ + α∗
sgs)∇

〈
h̃
〉

A

)
(6.4.7)

with
Δ̃ := −α∗

t ∇
〈

h̃
〉

A
. (6.4.8)

The new term Δ̃ in (6.4.8) includes an additionally time- and area-averaged turbulent
thermal diffusivity α∗

t . This thermal diffusivity α∗
t should characterise the global plumes

structures in the container. Equation (6.4.7) can now be transformed into

∇ ·
(〈

ρ̄
〉

A

〈
ũ
〉

A

〈
h̃
〉

A

)
= ∇ ·

⎛⎜⎝(α∗ + α∗
sgs + α∗

t︸ ︷︷ ︸
=: αglobal

)∇
〈

h̃
〉

A

⎞⎟⎠ . (6.4.9)

Integration of equation (6.4.9) provides〈
ρ̄
〉

A

〈
ũ
〉

A

〈
h̃
〉

A
+ C = αglobal∇

〈
h̃
〉

A
. (6.4.10)

The integration constant C is determined by the boundary conditions at the heated
walls. From the non-slip condition, u = 0, and a zero turbulent and subgrid scale thermal
diffusivity, αt = αsgs = 0, it follows, that αglobal = α∗. Hence, it is

C = α∗∇
〈

h̃
〉

A
|w̃ = − 〈q〉A |w̃ . (6.4.11)

Here, 〈q〉A is the time- and area-averaged heat flux at the heated walls. Substitution of
equation (6.4.11) in (6.4.10) leads to〈

ρ̄
〉

A

〈
ũ
〉

A

〈
h̃
〉

A
− 〈q〉A |w̃ = αglobal∇

〈
h̃
〉

A
(6.4.12)

and

αglobal =

∣∣∣〈ρ̄〉
A

〈
ũ
〉

A

〈
h̄
〉

A
− 〈q〉A |w̃

∣∣∣∣∣∣∇〈h̃
〉

A

∣∣∣ . (6.4.13)

Equation (6.4.13) gives an expression for the global thermal diffusivity structure in the
container.
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Ra === 6.16 × 107, alpha global

Ra === 1.92 × 108, alpha global

Ra === 4.1 × 108, alpha global

Figure 6.27.: Time- and area-averaged αglobal-profile estimated at constant planes parallel to
the cold/hot wall. Top box: Ra = 6.16 × 107. Middle box: Ra = 1.92 × 108. Bottom box:
Ra = 4.1 × 108. Left picture in each box: Overview. Right picture in each box: Detailed

plot. In all pictures: •: (430 × 140 × 140) cells, �: (150 × 50 × 50) cells.

To avoid an influence of the gradient direction in equation (6.4.13), the absolute value of
αglobal is taken into account in the following. Because the main aspect of the investigation
of αglobal lies on the values at the xy-midplane, only the vertical velocity component uy is
considered in the following. Figure 6.27 on page 182 pictures the distribution of αglobal at
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6.4. Global heat flux structure

planes parallel to the cold wall. The results show the area-averaged values for all Rayleigh
numbers and both grids. The investigated planes are located at y1 = 0 m, y2 = 0.01 m,
y3 = 0.025 m, y4 = 0.05 m, y5 = 0.15 m, y6 = 0.25 m, y7 = 0.35 m, y8 = 0.45 m,
y9 = 0.475 m, y10 = 0.49 m and y11 = 0.5 m.

All estimations reveal an asymmetrical profile which is especially distinctive in vicinity of
the heated walls, as it was the case in the temperature profiles in section 6.3.1, figure 6.6
on page 155. The asymmetry can be clearly seen in the detailed plots at the right side in
each case in 6.27.

The values at the planes near the cold wall are smaller than the values at the planes
near the hot wall. The values of αglobal near the heated walls rise until they reach their
maximum near the bulk region, at plane y = 0.15 m, respectively plane y = 0.35 m. At
this point, the values of αglobal drop down, but they are still higher than at the planes
close to the heated walls. This behaviour matches with the temperature profiles where
steep gradients were located near the walls and an almost constant temperature could be
detected in the bulk region.

The values of the coarse grid resolution near the heated walls are mostly higher than the
values of the fine grid. αglobal reaches its absolute maximum value for Ra = 6.16 × 107

and the fine grid at plane y = 0.35 m with a value of 0.042 kg/ms. In case of the coarse
grid resolution, αglobal reaches its absolute maximum value for Ra = 6.16 × 107 at plane
y = 0.35 m with a value of 0.210 kg/ms.

Profile of αααglobal influencing fluid properties at constant planes parallel to the heated
walls - enthalpy, velocity, density and pressure
To investigate the asymmetrical form of αglobal, the influencing fluid properties, enthalpy,
velocity, density and pressure are analysed at the same planes parallel to the heated
walls. The above distribution of αglobal in figure 6.27, is caused by each variable in equa-
tion (6.4.13).

The distributions of the time- and area-averaged variables < h̃ >A, < ũy >A, < ρ̄ >A,
< p̄ >A are plotted in figures 6.28 - 6.29 on pages 184 - 185.

Also these properties should reveal a asymmetrical profile. Higher values of these prop-
erties and a higher wall heat flux influence directly αglobal. The heat flux at the heated
walls is constant due to the constant temperature conditions.

The enthalpy gradient reaches its peak values at the heated walls, analogously to the
temperature profile in section 6.3.1, figure 6.6 on page 155. The values become smaller
towards the bulk of the container. The enthalpy itself reaches its maximum at the hot wall
and its minimum at the cold wall, as it was expected. The density values show a tendency
which is vice versa to the one of the enthalpy, due to its temperature dependence.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

The vertical velocity component reaches its minimum at the planes which lie close to the
heated walls. The pressure values have a almost linear distribution over the container. Its
minimum is reached at the cold wall and its maximum at the hot wall. All profiles show
an asymmetrical form which causes also the asymmetrical form of αglobal.

Mainly in close distance to the heated walls this asymmetry is distinctive, as it is also
the case in the profile of αglobal. In case of the pressure, the visible significant differences
between both grid resolutions are compensated by the visible significant differences of the
density values < ρ̄ >A. Deviations between both grid resolutions can be observed. The
higher values in the αglobal profile for (150 × 50 × 50) cells are caused especially by higher
values of the enthalpy < h̃ >A, the vertical velocity and the enthalpy gradient as well as
the wall heat flux. The both last mentioned variables are discussed in the following.

Ra === 6.16 × 107

enthalpy vertical velocity

density pressure

Figure 6.28.: Clockwise direction, starting left top: Time- and area-averaged profiles of
enthalpy, vertical velocity, density, pressure estimated at constant planes parallel to the cold/hot
wall. Ra = 6.16 × 107. In all pictures: •: (430 × 140 × 140) cells, �: (150 × 50 × 50) cells.
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6.4. Global heat flux structure

Ra === 1.92 × 108
enthalpy vertical velocity

density pressure

Ra === 4.1 × 108
enthalpy vertical velocity

density pressure

Figure 6.29.: Time- and area-averaged profiles of enthalpy, vertical velocity, density, pressure
estimated at const. planes parallel to the cold/hot wall. Top box: Ra = 1.92 × 108. Bottom
box: Ra = 4.1 × 108. In all pictures: •: (430 × 140 × 140) cells, �: (150 × 50 × 50) cells.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Profile of the enthalpy gradient and wall heat flux at constant planes parallel to the
heated walls
The gradient of the enthalpy < h̃ >A is plotted in figure 6.30 for all Rayleigh numbers
and both grid resolutions.

enthalpy gradient

Figure 6.30.: Time- and area-averaged profiles of the enthalpy gradient estimated at constant
planes parallel to the cold/hot wall. Clockwise direction, starting left top: Ra = 6.16×107,
Ra = 1.92 × 108, Ra = 4.1 × 108. In all pictures: •: (430 × 140 × 140) cells, �: (150 × 50 × 50)

cells.

wall heat flux [W/m2] Ra = 6.16 × 107 Ra = 1.92 × 108 Ra = 4.1 × 108

cold hot cold hot cold hot
(430 × 140 × 140) 5.71 6.29 25.75 25.89 86.29 85.09
(150 × 50 × 50) 5.71 5.63 25.42 26.41 87.10 86.48

Table 6.9.: Time- and area-averaged values of the wall heat flux estimated at the cold/hot wall
for different Rayleigh numbers and both mesh resolutions.

The profiles of the enthalpy gradient show also an asymmetrical form, especially direct
at the heated walls, as it was expected due to the asymmetrical profile of the enthalpy
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6.4. Global heat flux structure

< h̃ >A (s. figures 6.28 - 6.29). Close to the heated walls significant deviations appear
between both grid resolutions, as it was also the case in the enthalpy profiles < h̃ >A.

Complementary to the profiles of the enthalpy gradient, the values of the wall heat flux
are listed in table 6.9 for all Rayleigh-numbers and both grid resolutions. The wall heat
flux is described by the term 〈q〉A in equation (6.4.13). The listed values are time- and
also area-averaged over the whole cold, respectively hot, wall. Also in these values an
asymmetry between the hot and cold wall is visible.

Summarising, the asymmetrical profile of αglobal as well as the deviations between both
grid resolutions in αglobal result from the interactions of the observed variables which were
estimated above. All variables show asymmetrical profiles and influence directly the profile
of αglobal.

Profile of the correlations of term
〈

ρ̄ũh̃
〉

A
at constant planes parallel to the heated

walls
Figures 6.31 - 6.32 on page 188 and page 189 present the profiles of the correlations of the
product in term

〈
ρ̄ũh̃
〉

A
for all Rayleigh numbers and both grid resolutions.

Because the asymmetry of αglobal is caused by the interactions of the observed particular
variables, also the correlations of term

〈
ρ̄ũh̃
〉

A
have to be analysed.

The influences of these correlations may not be directly visible in the profile of αglobal or
in the profiles of the other observed variables in equation (6.4.13). The distributions show
similar forms to the individual profiles of each variable in term

〈
ρ̄ũh̃
〉

A
.

Again, asymmetries are revealed which are resulting from the asymmetrical behaviour of
the particular variables. Concluding, the asymmetry of the global heat flux profile αglobal,
which causes also the asymmetrical form of the temperature profiles, is generated by the
asymmetrical behaviour of the above plotted fluid properties. These properties influence
directly the global heat flux structure in the test cell. Also [Ahlers06] reports asymmetrical
profiles of fluid properties in a NOB convection in water and glycerol, which emphasises
the obtained results.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Ra === 6.16 × 107

Ra === 1.92 × 108

Figure 6.31.: Time- and area-averaged profiles of
〈

h̃ũy

〉
A

,
〈

ρ̄h̃ũy

〉
A

,
〈
ρ̄ũy

〉
A

,
〈

ρ̄h̃
〉

A
estimated

at constant planes parallel to the cold/hot wall. Top box: Ra = 6.16 × 107. Bottom box:
Ra = 1.92 × 108. In all pictures:•: (430 × 140 × 140) cells, �: (150 × 50 × 50) cells.
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6.5. Simulation results versus experimental data

Ra === 4.1 × 108

Figure 6.32.: Time- and area-averaged profiles of
〈

h̃ũy

〉
A

,
〈

ρ̄h̃ũy

〉
A

,
〈
ρ̄ũy

〉
A

,
〈

ρ̄h̃
〉

A
estimated

at constant planes parallel to the cold/hot wall. Ra = 4.1 × 108. In all pictures:
•: (430 × 140 × 140) cells, �: (150 × 50 × 50) cells.

6.5. Simulation results versus experimental data
Nusselt number profile estimated at the heated walls - averaged values of the sim-
ulation
In this section, the simulation results are compared as last step to an analogous exper-
imental setup of Ebert et al. in [Ebert08]. The experiment has the same dimensional
configuration, and temperature conditions as the computational geometry. First, the ex-
perimental Nusselt number values and the results of the simulation should be discussed.
Note that some of the following contents are also presented in extracts in [Zimmermann12]
and [Zimmermann15].

In [Ebert08], the local heat flux is evaluated at two positions, at xc = 1.185 m and at
xp = 1.835 m at the hot and cold wall. From these values, the local Nusselt number is
estimated at these positions. Subsequently, the temperature wall gradients are estimated
from these local values. The measured values of the experiment are listed together with
the simulation results in table 6.10.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Additionally, the data of the theoretical studies in [Grossmann00] and [Hölling06] are
given.

Nu 1 2 3 (430 × 140 × 140) (150 × 50 × 50)
Ra = 6.16 × 107

cold 22.92 27.18 xc 77.04 22.35 (1: -2.49%) 22.04 (1: -3.84%)
xp 70.84 (2: -17.78%) (2: -18.91%)

hot 22.92 27.18 xc 74.57 24.33 (1: +6.15%) 22.01 (1: -3.97%)
xp 80.82 (2: -10.49%) (2: -19.02%)

Ra = 1.92 × 108

cold 30.45 38.60 xc 89.19 30.54 (1: +0.30%) 29.96 (1: -1.61%)
xp 83.80 (2: -20.88%) (2: -23.38%)

hot 30.45 38.60 xc 83.80 29.37 (1: -3.55%) 29.82 (1: -2.10%)
xp 95.53 (2: -23.91%) (2: -22.75%)

Ra = 4.1 × 108

cold 36.81 48.89 xc 89.38 39.37 (1: +6.95%) 39.54 (1: +7.42%)
xp 99.06 (2: -19.47%) (2: -19.12%)

hot 36.81 48.89 xc 110.39 35.97 (1: -2.28%) 35.68 (1: -3.07%)
xp 97.72 (2: -26.43%) (2: -27.02%)

Table 6.10.: Time- and area-averaged Nusselt number values estimated at the cold/hot wall
of the simulation compared to theoretical values of [Grossmann00] (indicated by 1, see also eq.
(6.3.11)) of [Hölling06] (indicated by 2, see also eq. (6.3.12)) as well as to local data of [Ebert08]

(indicated by 3, values estimated at position xc = 1.185 m and xp = 1.835 m).

Figure 6.33.: Nu-Ra dependence at the heated walls of the simulation compared to data
of [Grossmann00], [Hölling06] and [Ebert08]. Pr = 0.71. [Grossmann00]: - black solid line,

[Hölling06]: - - black dashed line. study [Ebert08]: cold wall: ◦ at xc = 1.185 m, � at
xp = 1.835 m (similar to [Zimmermann12] and [Zimmermann15]). hot wall: • at xc = 1.185 m,

� at xp = 1.835 m. Simulation data: +: (430 × 140 × 140) cells. ×: (150 × 50 × 50) cells.
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6.5. Simulation results versus experimental data

The percentage notation in table 6.10 gives the deviation between the simulation results
and the theoretical values of [Grossmann00]. The simulation results deviate only in a
range of 8% from the values of [Grossmann00] (indicated by number “1”). The simula-
tion results deviate about a maximum of 27% from the values of [Hölling06] (indicated
by number “2”). But it has to be regarded, as mentioned before, that the assumption
of [Hölling06] with Ra → ∞ is not realisable in an enclosed test case setup as it is used
in this study.

As table 6.10 shows, the experimental results of [Ebert08] are very high and exceed not
only the values of the simulation data but also the values of both theoretical estimations.
Afore, we have seen in figure 6.21 on page 173 that the simulation results of the averaged
Nusselt number values with a shared factor approximated well the theoretical assumptions
of [Grossmann00], respectively the modified theories of [Grossmann01] and of [Stevens13]
(see also eq. (6.3.15) and eq.(6.3.14) on pages 171 - 172). A graphical comparison between
these averaged simulation values to the study of [Ebert08] is shown in figure 6.33. Addi-
tionally, the values which are based on the theory of [Grossmann00] and [Hölling06] are
also plotted in figure 6.33.

Figure 6.33 shows clearly that the local values of the experiment of [Ebert08] exceed
significantly not only the simulation data, but also the values which are based on the
theoretical assumptions of [Grossmann00] and [Hölling06] (as well as the updated values
of [Grossmann01] and of [Stevens13] (see figure 6.21)).

To analyse these high deviations between the experiment of [Ebert08] and the simulations
of this thesis further, the local Nusselt number values are estimated in the simulation at
the same both positions, xc = 1.185 m and xp = 1.835 m, as in the experiment.

Nusselt number profile at the heated walls - local values of the simulation at the
positions xc = 1.185 m and xp = 1.835 m, hot and cold wall
Table 6.12 lists the local Nusselt number values estimated in the simulation and in the
experimental study of [Ebert08]. In [Ebert08], the local Nusselt number values were es-
timated at position xc = 1.185 m and xp = 1.835 m at the hot and cold wall. At these
positions the simulation data was also estimated for all Rayleigh number cases and both
grid resolutions.

The values in table 6.12 show, that also the local values of the simulation differ signifi-
cantly from the ones of the experiment, as it was the case before for the averaged values in
table 6.10. In the worst case, the values of the simulation lie about 80% under the values
of the experiment.

Regarding a tendency of the Nusselt number distribution in the experimental values, one
can give the following overview in table 6.11. H marks the values at the hot wall and C
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

the values at the cold wall at the positions xc = 1.185 m and xp = 1.835 m. The given ten-
dency can also be observed in the simulations for all cases, except for case Ra = 1.92×108

and the coarse grid resolution.

Ra ≤ 1.92 × 108 Ra > 1.92 × 108

xc H < C H > C
xp H > C H < C

Table 6.11.: Tendency of the Nusselt number distribution in the experiment of [Ebert08].
Position xc = 1.185 m and xp = 1.835 m.

local Nu [Ebert08] (430 × 140 × 140) (150 × 50 × 50)
Ra = 6.16 × 107

hot xc 74.57 14.49 16.38
xp 80.82 25.61 23.63

cold xc 77.04 29.37 19.30
xp 70.84 13.88 14.26

Ra = 1.92 × 108

hot xc 83.8 22.8 28.85
xp 95.53 33.0 21.36

cold xc 89.19 27.18 22.41
xp 83.3 22.62 33.30

Ra = 4.1 × 108

hot xc 110.39 34.84 35.34
xp 97.72 26.16 29.81

cold xc 89.38 29.96 29.37
xp 99.06 46.21 31.15

Table 6.12.: Time-averaged local Nusselt number values estimated at the cold and hot wall at
xc = 1.185 m and xp = 1.835 m. Simulation data compared to the study of [Ebert08].

Temperature distribution between the heated walls, estimated at position
x = 1.185 m, vertical axis
Complementary to the before presented results, the temperature profiles of the simulations
are compared at this point to the experimental data. In figure 6.34 on page 193, the
temperature profiles of the experiment are plotted versus the simulation data for all
Rayleigh numbers and both grid resolutions. Note that some of the following presented are
also discussed in extracts in [Zimmermann12]. As before, the values are estimated between
the heated walls at the xy-midplane, at x = 1.185 m, z = 0.25 m, along the vertical y-
axis. A detailed plot of the cold and hot wall is shown additionally in figure 6.35. The
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6.5. Simulation results versus experimental data

anti-symmetrical form of the experimental data stands out. But we have seen that the
asymmetrical profiles of the simulations were typical for a NOB convection, according, for
example, to [Ahlers06]. In the bulk region, the simulations approximate the experimental
data. Even the results of case Ra = 4.1 × 108 and (430 × 140 × 140) cells approximate
the experimental data at the cold wall. The visible deviations between experiment and
simulation are intensified in case of the coarse grid results.

Figure 6.34.: Time-averaged temperature profile between the heated walls. Estimated at the
xy-midplane, at x = 1.185 m and z = 0.25 m, vertical y-axis. Simulation data compared to

experimental data of [Ebert08]. Study [Ebert08]: �: Ra = 6.16 × 107. ◦: Ra = 1.92 × 108.
�: Ra = 4.1 × 108. - solid lines: (430 × 140 × 140) cells, - - dashed lines: (150 × 50 × 50) cells.

Figure 6.35.: Time-averaged temperature profile between the heated walls. Estimated at the
xy-midplane, at x = 1.185 m and z = 0.25 m, vertical y-axis. Simulation data compared to
experimental data of [Ebert08] (similar to [Zimmermann12]). Left: Cold wall. Right: Hot wall.
In each picture: study [Ebert08]: �: Ra = 6.16 × 107. ◦: Ra = 1.92 × 108. �: Ra = 4.1 × 108.

- solid lines: (430 × 140 × 140) cells, - - dashed lines: (150 × 50 × 50) cells.
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

cold wall in the study of [Ebert08] (xc = 1.185 m), together with global values of the
experiment as well as the simulation data. The global values were estimated by [Ebert08]
from global Nusselt number values which were estimated according to the theoretical
estimations of [Hölling06] and equation (6.3.12) on page 169.

∂T

∂y

∣∣∣∣
w̃

[K/m] [Ebert08] [Ebert08] (430 × 140 × 140) (150 × 50 × 50)

local global
(xc = 1.185 m)

Ra = 6.16 × 107

cold 743 263 214.72 212.90
( -18.36%) ( -19.05%)

hot 719 263 234.98 212.57
( -10.65%) ( -19.17%)

Ra = 1.92 × 108

cold 2876 1243 955.52 959.94
( -20.84%) ( -22.77%)

hot 2702 1243 946.34 955.52
( -23.87%) ( -23.13%)

Ra = 4.1 × 108

cold 7345 4024 3240.20 3236.50
(-27.44%) (-19.57%)

hot 9072 4024 2960.60 2919.90
( -26.43%) ( -27.44%)

Table 6.13.: Time- and area-averaged temperature gradients estimated at the cold and hot wall.
Simulation data compared to local and global values of [Ebert08] (estimated at the cold/hot wall

at position xc = 1.185 m).

The percentage notation describes the difference between the simulation data and the
global estimations of [Ebert08]. The high local Nusselt number values in the experiment
are reflected in high temperature gradients as table 6.13 shows. Also the global values
of [Ebert08] differ maximal of about 28% from the simulations, as it was expected, be-
cause the simulation data lie beneath the Nusselt number values of [Hölling06] which
were the basis for the estimation of the global values in [Ebert08].

Complementary to the before presented temperature profiles, the temperature values are
illustrated again this time with a standard deviation in figures 6.36 - 6.37 on pages 195 -
196. The standard deviations are estimated according to equation (5.3.1) in chapter 5, sec-
tion 5.3.2. Unfortunately, information on the standard deviation of the data in [Ebert08]
were only disposable for case Ra = 1

.

92 × 108
.
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6.5. Simulation results versus experimental data

Ra === 6.16 × 107, (430 × 140 × 140) cells

cold wall hot wall

Ra === 1.98 × 108, (430 × 140 × 140) cells

cold wall hot wall

Ra === 4.1 × 108, (430 × 140 × 140) cells

cold wall hot wall

Figure 6.36.: Time-averaged temperature profile between the heated walls with standard devi-
ation. Estimated at the xy-midplane, at x = 1.185 m and z = 0.25 m, vertical y-axis. Simulation
data compared experimental data of [Ebert08]. Left: Cold wall. Right: Hot wall. Top box:
Ra = 6.16 × 107. Middle box: Ra = 1.92 × 108. Bottom box: Ra = 4.1 × 108. In each

picture: - red line: (430 × 140 × 140) cells, ◦ study [Ebert08].
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

Ra === 6.16 × 107, (150 × 50 × 50) cells

cold wall hot wall

Ra === 1.92 × 108, (150 × 50 × 50) cells

cold wall hot wall

Ra === 4.1 × 108, (150 × 50 × 50) cells

cold wall hot wall

Figure 6.37.: Time-averaged temperature profile between the heated walls with standard devi-
ation. Estimated at the xy-midplane, at x = 1.185 m and z = 0.25 m, vertical y-axis. Simulation
data compared experimental data of [Ebert08]. Left: Cold wall. Right: Hot wall. Top box:
Ra = 6.16 × 107. Middle box: Ra = 1.92 × 108. Bottom box: Ra = 4.1 × 108. In each

picture: −−− red solid line: (150 × 50 × 50) cells, ◦ study [Ebert08].
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6.5. Simulation results versus experimental data

Hence, only for this case the standard deviation of the experimental values is presented in
figures 6.36 - 6.37 on pages 195 - 196. In vicinity to the heated walls, only a slight increase
of the standard deviation is visible. In direction to the bulk region, the values of the
standard deviation rise.

Close before the bulk region is reached, the values become smaller and are almost constant.
The values at the hot wall are at the most positions smaller than at the cold wall, except
for the case of Ra = 6.16 × 107 and the fine grid resolution. The highest fluctuations are
located between the turbulent boundary layer and the conductive layer, as it was expected.
This is also the case in the data of [Ebert08] in figure 6.36 for case Ra = 1.92 × 108.

Non-dimensional temperature profile in the thermal boundary layer at the cold/hot
wall, vertical axis
As last step, the non-dimensional temperature profile of the simulation is compared to
one for the experimental test case in [Ebert08] (see figure 6.38). Note that some of the
following results are also discussed in extracts in [Zimmermann15]. The simulation values
are again time-averaged. To illustrate the non-dimensional temperature profile for the
experimental test case, the in [Ebert08] given temperature values were normalised with
help of equation (6.3.5).

To obtain a reference temperature for the experimental case, the in the simulation esti-
mated fluid properties values were used, because the fluid properties required in eq. (6.3.4)
were not given in [Ebert08] for the experimental case. In this way both non-dimensional
profiles were normalised on the basis of the same properties. For a better demonstration of
all results together in one plot, a constant is added to the results of each Rayleigh number.
The constants are Ra = 6.16 × 107 : +0, Ra = 1.92 × 108 : +9 and Ra = 4.1 × 108 : +18.

Figure 6.38.: Time-averaged non-dimensional temperature profile in the boundary layer, sim-
ulation data compared to [Ebert08] (see also [Zimmermann15]). Estimated at the xy-midplane,
at x = 1.185m, z = 0.25m, vertical y-axis. Left: Cold wall. Right: Hot wall. In each picture:
- solid lines: (430 × 140 × 140) cells, - - dashed lines: (150 × 50 × 50) cells, ◦: study [Ebert08].
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

The deviations of the temperature values between simulation and experiment from fig-
ure 6.35 and table 6.13 are recovered in the non-dimensional profile, as it was expected.
The significant differences between both studies concerning the temperature profiles as
well as Nusselt number values might be due to a possible higher heat flux in the exper-
iment, and consequently, a more intensive mixing of hot and cold streams between the
walls.

6.6. Concluding comments
In this chapter, a compressible, non-Boussinesq LES was performed for a RB convection in
an air-filled enclosed container where the two horizontal walls were heated. The realised
Rayleigh numbers were Ra = 6.16 × 107, Ra = 1.92 × 108 and Ra = 4.1 × 108 with
a Prandtl number of Pr = 0.71. To observe the influence of the mesh resolution on
the numerical results, especially in close distance to the heated walls, two different grid
resolutions were performed. The simulation results were compared to theoretical data
of [Ahlers06], [Hölling06] as well of [Grossmann00, Grossmann01], respectively [Stevens13]
and subsequent to an analogous experiment in [Ebert08]. The investigated main aspects
of this chapter were

1) temperature profile between the heated walls estimated at different positions, along
the vertical axis, at the vertical cross-section,

2) location of the convection cells visualised by the mean velocity distribution,

3) investigation of non-Boussinesq-effects in the fluid on the basis of the temperature
profile, compared to data of [Ahlers06],

4) analytical model of the non-dimensional temperature profile, especially in the ther-
mal boundary layer near the heated walls, at the vertical cross-section,

5) profile of the effective dynamic viscosity μeff and thermal diffusivity αeff between the
heated walls, estimated along the vertical axis, at the vertical cross-section,

6) estimation of a global heat flux variable and its profile as well as the influencing
fluid properties, estimated at constant planes parallel to the heated walls,

7) local and area-averaged Nusselt number profiles at the heated walls, compared to
data of [Grossmann00, Grossmann01], [Stevens13] and [Hölling06],

8) comparison of simulation results to experimental data of [Ebert08], on the basis of
the Nusselt number and temperature profile as well as the non-dimensional temper-
ature profile.
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6.6. Concluding comments

All presented results were time-averaged over an interval of t = 200 s − 380 s in the simu-
lated process with an intermediate steps size of Δt = 1 s. The profiles of the temperature
as well as of the global heat flux structure and its dependent fluid properties revealed
an asymmetrical profile in the results of both grid resolutions. This asymmetry was also
reported by [Ahlers06] for a non-Boussinesq convection in water as well as in glycerol and
also by [Horn11] for a DNS of a non-Boussinesq convection in water. The asymmetry was
founded in the non-Boussinesq effects of density changes which were caused by tempera-
ture differences in the fluid.

Major grid dependencies were caused by different quasi-stable states, which could be seen
on the basis of the temperature profile estimated at two mirror-imaged positions at the
vertical cross-section and also on the basis of the convection cell arrangement in the con-
tainer. Because different coherent structures existed at the mirror-imaged positions with,
in some cases, also an opposite circulation orientation, the reproducibility of the temper-
ature profiles was destroyed.

The non-dimensional temperature profile of the thermal boundary layer approximated
the analytical function of [Hölling06]. The Nusselt- and Rayleigh number-dependence of
the simulation approximated well the theoretical data of [Grossmann00, Grossmann01],
respectively of [Stevens13] for the investigated Rayleigh numbers and a Prandtl number
of Pr = 0.71. The deviations between the dynamic viscosity profiles (and also thermal
diffusivity) for both resolutions could be possibly caused by numerical effects and by grid
dependencies and should be further investigated to state a distinct explanation.

In comparison to a comparable experimental setup in [Ebert08], the simulation showed
significantly deviations in the temperature profiles which were caused by higher Nus-
selt number values in the study of [Ebert08]. These higher values might be caused by
a possible higher heat flux in the experimental setup. The fact, that the experimental
local Nusselt number values in [Ebert08] exceeded also significantly the analytical theory
of [Grossmann00] and of [Hölling06] points also to a higher heat flux in the experiment
and explains the deviations to the simulation results. The anti-symmetrical form of the
temperature profiles in the experiment in comparison to the asymmetrical form in the
simulation was due to non-Boussinesq effects in the simulation.

[Horn11] investigated with help of a DNS a non-Boussinesq convection as well as a Boussi-
nesq convection in water in a setup with an unit aspect ratio and a Rayleigh number of
Ra = 108. Besides [Ahlers06], also Horn et al. report an asymmetrical temperature profile
in the non-Boussinesq convection compared to an anti-symmetrical profile in the Boussi-
nesq convection. Further, Horn et al. observed an increased bulk temperature as well as
a different boundary layer thickness in the non-Boussinesq convection, which could also
be revealed in the simulation compared to the experimental study of [Ebert08].
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6. Case studies - Test case RayCon, a Rayleigh - Bénard (RB) problem

The performed compressible, non-Boussinesq Large-Eddy simulation is an adequate choice
to model a Rayleigh-Bénard convection in the presented test case configuration. The ob-
tained results approximated very well the expected theoretical assumptions. The results
showed that it is essential to choose a well-resolved mesh especially in the near wall region
when no wall-function is used in the numerical model.
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7. Case studies - Test case CenCon, a
Rayleigh -Bénard problem affected
by the Coriolis force

7.1. Configuration of CenCon in the experiment

Figure 7.1.: CAD drawing of the experimental test case of CenCon.

Figure 7.2.: Photographs of the experimental setup of CenCon installed in the institute’s
centrifuge.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

The previously presented chapters 5 and 6 examine a turbulent natural convection in two
different setup configurations. As mentioned before, the choice of the two heated walls
is the determining factor for the development of the main flow field. Note that some
of the presented results and discussions in the following are also illustrated in extracts
in [Zimmermann14b].

In this section, the influence of a Coriolis force field impressed on the configuration of a
RB problem is investigated in an experimental as well as a numerical study. The main
purpose lies on the analysis of a possible stabilising effect of the Coriolis force on the
turbulent unsteady flow structures. Temperature and velocity distributions are influenced
by an interacting of thermal convection and conduction in the setup. In the experiment
the same conditions as in the atmosphere in the beginning of a twister or hurricane should
be realised but in smaller dimensions.

The relative accelerations which are caused in the atmosphere by the Earth’s rotation are
realised in the experiment by a uniform-rotational movement of the setup in a large-scale
centrifuge belonging to the institute. To analyse the influence of the Coriolis acceleration
on the turbulent flow structures, two different modes are investigated in the experiment
as well as in the simulation. First, the test case is investigated in a non-rotation mode.
Second, the test case is analysed while it is uniformly rotating in the large-scale centrifuge.
Differences between both modes will be observed.

The setup of CenCon consists of a rectangular air-filled container which has a similar
layout to the RB cell of RayCon in chapter 6. Regarding CenCon, both horizontal walls
are heated isothermally. A technical drawing of the experimental setup is presented in
figure 7.1 on page 201. Additionally, figure 7.2 shows two photographs of the test case
installation in the centrifuge.

Regarding the dimensions of the experimental test case, the layout was restricted to the
conditions in the centrifuge. Further, the influence from the sidewalls on the main flow
field should be reduced by choosing a bigger length than height of the setup (s. chapter 3,
section 3.5). The experimental test case consists of a container with a length (L) of 0.6 m,
a height (H) of 0.2 m and a depth (D) of 0.6 m. Hence, the aspect ratios are Γx = D

H
= 2.9

and Γy = L
D

= 1.

The sidewalls are made of polymethyl methacrylate (PMMA) assuring a visualisation of
the turbulent flow structures in the container. Each sidewall have a thickness of 0.01 m.
An almost atmospheric pressure condition is generated inside the container. A rectangular
layout was chosen due to visualisation aspects. The corner regions may imply disadvan-
tages concerning later used tracer particles, but a cylindrical cell would have implied
possible disadvantages concerning optical effects, e .g. optical refractions or reflections.
At the right side of the experimental test case a displaceable light-slit-section is installed
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7.1. Configuration of CenCon in the experiment

consisting of a a light-source of type Schölly R©, 1000.xenon 4, article number 04087 with
230 V, 50/60 Hz and 1.25/2.5 A. The optic is made of a line light with a diameter of 0.015 m
(Schölly R©, QWF.8050 ). The light-slit-section can be moved along an elevating screw at
the right side of the container driven by a small motor. It can be stopped in frequent
intervals of 0.01 m or 0.05 m along the container side. The whole experimental setup is
attached to an aluminium frame serving as an attachment possibility for other equipment,
e. g. light-section, power supplies and video cameras. Further, the frame should serve as
stabilisation for the whole setup.

Layout of heating and cooling circuits in the setup of CenCon
The container is heated isothermally from below and cooled from above with a constant
temperature difference between both heated walls. Both walls are made of aluminium
plates. The side walls do not satisfy an adiabatic condition. The walls are conducting and
a possible heat loss trough the side walls has to be considered (s. appendix A.2.1, from
page 278 on). An isolation layer of foam is attached between all walls to reduce a possible
heat loss.

A technical drawing of the heating/cooling plate can be found in figure 7.3. The heating
plate of the setup is build of four tubular heating components of type Hewid R© RHK/q.
They are fixed two in a row under the aluminium plate. The elements have each a diameter
of 0.14 m (s. figure 7.3, left picture). The centre of one component is adjusted in a distant
of 0.150 m to the side edge of the plate. The distance from one elements centre to the
centre of its neighbour is 0.3 m. The maximum voltage of one heating segment is 230 V

and its maximum power rate 300 W . The cooling plate is realised of nine Peltier elements
of type multicomp TE1 − 12715 L which are placed uniformly in parallel rows above the
top plat (s. figure 7.3, right picture).

The Peltier elements have each a diameter of 0.05 m. The centre of each element is adjusted
in a distance of 0.125 m to the side edge. The distance from one elements centre to the
centre of its neighbour is 0.35 m. The Peltier elements have a maximum voltage of 15.4 V
and a maximum electric current of 15 A. Generally, Peltier elements have a relative low
efficiency factor which is in this case of about η = 30%. Therefore, three rectangular
extruded heat sinks of type Fischer Elektronik, SK 109 1000 SA are fixed additionally
above the Peltier elements to enforce the heat transmission. One heat sink has a length
of 0.5 m, a height of 0.135 m and a width of 0.125 m.

Moreover, three customary computer cooling fans are placed on top of each heat sink to
intensify the heat transmission further. Two controller systems (RS components, KS 45 -
112 ) regulate the temperature calibration of both heated plates. Each controller operates
within an error range of ±2 K. A schematic diagram of the temperature controlling circuits
is given in figure 7.4. The heating segments are connected in a parallel diagram, as the left
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

picture in figure 7.4 on page 204 shows. Theoretically, the effective electric current ranges
between Ieff = [0 A, 5.1 A]. With a voltage interval of Ueff = [0 V, 230 V ], the maximum
external resistance of the circuit is then

Ritotal = Ueff

Ieff
= 230 V

5.1 A
= 45.11 Ω, (7.1.1)

according to Ohm’s law and Kirchhoff’s laws (see [Kuchling1999], chapter 28).

Figure 7.3.: CAD drawing of the heating (left) and cooling plate (right) in the experimental
setup of CenCon.

Figure 7.4.: Temperature controlling circuits in the experimental setup of CenCon. Left:
Heating. Right: Cooling.

The outcome of the complete electrical power rating is an approximated value of about

Petotal = UeffIeff ∼ [0 kW, 1.17 kW] . (7.1.2)

The nine Peltier elements are connected in series. According to their data sheet, all el-
ements have a theoretical internal resistance of Ri = 0.8 Ω. In the operating mode an
internal resistance of 1.02 Ω was measured. With a voltage range of Ueff = [0 V, 70 V ] and
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7.1. Configuration of CenCon in the experiment

Petotal = UeffIeff = [0 W, 532 W ] . (7.1.3)

Due to the low efficiency factor of the Peltier elements with η = 30 %, the temperature
power rating is minimised in the operating mode to an approximate value of

Ptemp = Petotal .η ∼ 160 W . (7.1.4)

The maximal convective heat flux of the heating plate is estimated approximatively to
Q̇hot = 101.93 W. The high power rating of the heating plate should minimise waiting pe-
riods of temperature adjustments. Also, it has to compensate a possible heat loss through
the side walls (for the estimation see A, section A.2.1, on page 278). In comparison to
the maximum heating power, the maximum value of the cooling power is very low, but
sufficient to hold the wall temperature constant at 293.15 K as counter reference to the
heating plate.

Infrared snapshots of the heating and cooling process in the experimental setup of
CenCon

Figure 7.5.: Infrared pictures of the heating/cooling process in the experimental setup of
CenCon. Top row: Heating process. Bottom row: Cooling process. Left: In the beginning.

Right: In a stable mode.

Figure 7.5 illustrates a top view of the heating and cooling plate seen by an infrared cam-
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era of model Flir R©SC7600 BB InSb. The camera spots a broadband of [1.5 μm, 5.1 μm]
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

and has a 640 × 512 pixel detector. It is calibrated at a constant temperature of 313.15 K.
The measuring equipment of the camera works accurate within ±0.05 K. Hence, the tem-
perature indications in the pictures are also accurate in an interval of ±0.05 K.

Both pictures in the top row of figure 7.5 show the heating process in the beginning (right)
and in a stable mode (left). Both bottom pictures display the cooling process in the be-
ginning (right) and in a stable mode (left). The small white patches in the pictures of the
heating plate (top row) and the pink coloured patches visible in the images of the cooling
plate indicate the temperature sensors which were used to evaluate the homogeneity of the
temperature distribution. The heating plate features a temperature homogeneity within
an error range of ±5 K. For the cooling plate it is even ±0.1 K.

7.2. Installation of CenCon in the centrifuge system
Figure 7.6 gives an overview of the centrifuge-configuration. The blue coloured parts in
figure 7.6 form the base frame of the centrifuge system. The green coloured parts mark
the rotator shaft and its both rotating arms.

Figure 7.6.: Scheme of the institute centrifuge ([ZARM], s. also [Zimmermann14b]). Top: Side
view. Bottom: Top view.

At each side of one arm a free running pendant is installed. The experiment is fixed at
the right pendant. At the opposite pendant a counterbalance is installed. The rotational
radius of the system is 5.42 m. The acceleration of the centrifuge can be controlled up to
5.42 g. Figure 7.7 gives in the left figure a sketch of the test case installed in the centrifuge
together with an overview over its relevant geometrical properties. The right picture shows
a photograph of the same setup. Note that some of the presented results and discussions
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in the following are also illustrated in extracts in [Zimmermann14b].
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7.2. Installation of CenCon in the centrifuge system

H = 2.735 m L1 = 3.724 m L2 = 4.742 m L3 = 0.361 m
L4 = 1.411 m L5 = 0.4 m L6 = 5.103 m α = 46.167◦

n = 13.704 rpm S1: 1.41 g S2: 1.44 g tot. weight: 107.5 kg

Figure 7.7.: Left: Scheme of CenCon installed in the centrifuge with characteristic properties.
Right: Photograph of the container installed in the centrifuge (as in [Zimmermann14b]).

Figure 7.8.: Detailed sketch of the test cell of setup CenCon in the centrifuge.

Figure 7.8 displays additionally a close-up sketch of the RB cell installed in one of the
rotating arms in the centrifuge. Due to the rotational movement in the rotation mode of
the centrifuge, besides a Coriolis acceleration also a centrifugal acceleration aaaA,ZF as well as
a higher gravitational acceleration geff affects the setup (see figure 7.8). The gravitational
acceleration geff is measured by two sensors installed in the experimental setup. The
sensors are marked in figure 7.7 by S1 and S2. The first sensor S1 is located in the centre
of the container and the second sensor half a meter below the first one. The gravitational
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

acceleration has a linear distribution between both sensors. The mass centre of the whole
setup is located 0.89 m below the location of S1. While rotating, a rotation angle arises
between the rotation axis of the centrifuge and its pendants, due to the design of the
centrifuge. This angle is denoted by α in figure 7.7 and figure 7.8. The resulting angle
depends on the chosen angular velocity of the rotation axis. While rotating, its minimal
deflection is about α = 46.167◦.

To record the flow structures in the experimental test case, a camera of type Sony HDR-
PJ260VE is fixed in front of the container at point K in a distance of 0.1 m from the side
wall parallel to the centre line of the container (see figure 7.7). A detailed scheme of the
camera installation is additionally illustrated in figure 7.9. Due to symmetry aspects of
the setup, only one half of the container is recorded by the camera.

Figure 7.9.: Scheme of the container-camera installation with mounted light-section in the
experimental setup of CenCon (as in [Zimmermann14b]).

Flow visualisation by tracer particles
To record the flow movement by the camera, it has to be visualised by tracer particles
moving inside the flow, this aspect is also discussed in [Zimmermann14b]. The particles
visualise the flow profile dependent on time and place without influencing the flow itself.
Thus, dimension and weight of the tracer particles play a decisive role. The flow resistance
and inertia of a moving tracer particle should not exceed a critical value and should
have the same density as air. Moreover, the particle should be detectable by the camera.
Particles of magnesium carbonate (MgCO3) are used as tracer particles. It is assumed
that in an ideal case, a tracer particle can be modelled by a spherical object. The flow
resistance Fw of a spherical object can be circumscribed by the force which the suspending
air encounter its movement. This can be formulated for a laminar flow by the inner friction
of air which is expressed for a 2-dimensional case by the law of Stokes ([Oertel06], chapter
2, 2.4.6)

Fw = 6πμru . (7.2.1)
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7.2. Installation of CenCon in the centrifuge system

Here, μ is the dynamic viscosity of air, r the radius of the spherical particle and u its
approaching velocity. It follows

6πμru = mg = V ρg = 4
3πr3ρg. (7.2.2)

The highest realisable temperature difference between the isothermally heated walls in
the experimental setup lies at ΔT = 60 K, the minimal one lies at ΔT = 3 K. Hence, one
can assume two dependent mean values of the inner temperature field in the container
with Thot, 1 = 353.15 K, Thot, 2 = 296.15 K, Tcold = 293.15 K

Tmean1 = Thot − Tcold

2 + Tcold = 323.15 K , (7.2.3)

Tmean2 = Thot − Tcold

2 + Tcold = 294.65 K . (7.2.4)

For both values the following fluid properties can be considered approximately as ([VDI06],
Dbb2 - Dbb16)

Tmean1 : g = 9.81 m/s2, ū1 = 0.3 m/s, ρ1 = 1.112 kg/m3, μ1 = 1.917 · 10−5 kg/ms,
Tmean2 : g = 9.81 m/s2, ū2 = 0.01 m/s, ρ2 = 1.189 kg/m3, μ2 = 1.821 · 10−5 kg/ms

with an assumed mean approaching velocity ū. With equation (7.2.2) it is

r1 = 1.54 · 10−3 m and r2 = 2.65 · 10−4 m. (7.2.5)

Hence, the used tracer particles should have at most a radius of 2.65 · 10−4 m, which
is fulfilled by the used magnesium particles in this study. A possible influence from the
tracers on the flow structures can be formulated by the non-dimensional number of Stokes
and with help of equation (7.2.1) ([Laurien09], chapter 3, 3.4.2).

St = Fw

μuL = 6πr

L ≈ 0.056, (7.2.6)

where L is the characteristic length of the setup. In the case of CenCon, L is the distance
between the heated walls with L = H = 0.2 m. If St � 1, the momentum of the tracer
particles is negligible and they move inside the flow without disturbing it. According to
equation (7.2.6), the chosen tracer particles can be used. A possible electrostatic charge
of the PMMA side walls influencing the movement of the tracer particles is inhibit by use
of an ioniser of the model Simco Aerostat XC.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

7.3. Two arbitrary, relative to each other moving systems

7.3.1. General statements

A motion is always described relatively to a related reference frame which depends on
a connected observer. In a system which is relative accelerated to an inertial system the
momentum conservation law is no longer valid, due to non-negligible inertia forces. The
conservation of mass and energy rest unchanged in this system (see [Spurk07], chapter 2,
2.4 and also chapter 1, section 1.5, from page 11 on).

The system of CenCon is relative rotating to the inertial system of the centrifuge axis.
To model the flow in the rotating container of CenCon, the Navier-Stokes equations
from chapter 1, section 1.10 on page 26 have to be modified. For an observer in the
rotating system it is more important to describe the motion in his own system than in
inertial system. Because the observer can only perform measurements in his own system.
Therefore, one has to determine what a possible observer, which is connected to the system
of CenCon, sees in it.

Thus, the conservation of momentum has to be reformulated in terms of variables and
accelerations which appear only in the rotating system of CenCon. To begin with, we
make some assumptions for two general to each other moving systems. The following
information is referred to [Spurk07], chapter 2, 2.4.

Figure 7.10.: Two relative to each other moving systems SI , S′
R (as seen in [Spurk07]).

The inertial system is denoted in the following by SI . The relative to SI moving system
is denoted by S ′

R. The system S ′
R fulfils relative to SI a translation with a velocity uuu and

a rotation with an angular velocity ωωω (s. figure 7.10). For a detailed derivation of the
angular velocity ωωω it is pointed to the appendix of this thesis, appendix A, section A.1.4,
on page 277.
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7.3. Two arbitrary, relative to each other moving systems

In the relative to SI rotating system S ′
R a uniformly moving fluid particle m perceives an

acceleration, which causes a change in its velocity direction. Hence, S ′
R is a non inertial

system. The additional forces, which affect the fluid particle, are called fictitious forces.
Due to these forces, an observer in the inertial system SI notices a uniform, linear move-
ment of the fluid particle m in the non-inertial system S ′

R.

It is assumed that forces and momenta are the same in both systems. The time measure-
ments should be independent in each system, hence, it is t = t′ in both systems. But the
variation in time of each vector, e. g. velocity vector, depends on the particular reference
frame. The system SI consists of the coordinate axes (1, 2, 3) and the system S ′

R of the
coordinate axes (1′, 2′, 3′). The following evaluation of the modified conservation of mo-
mentum is done analogously to the statements in [Spurk07], chapter 2, 2.4.

The time derivative of a position vector of an arbitrary fluid particle can be expressed in
S ′

R by
D

Dt
xxx

∣∣∣∣
S′

R

= uuuS′
R

. (7.3.1)

uuuS′
R

is the relative velocity of the fluid particle in S ′
R. In the system SI , the position vector

of the particle is described by xxx + rrr. Its time derivative is then

D

Dt
(xxx + rrr)

∣∣∣∣
SI

= uuuSI
. (7.3.2)

uuuSI
is the absolute velocity in SI . It can be formulated in terms of the relative velocity

uuuS′
R
, the velocity vvv of the origin of S ′

R

vvv = D

Dt
rrr

∣∣∣∣
SI

(7.3.3)

and the circumferential velocity ωωω × xxx which arises from the rotation of the coordinate
system S′

R at position xxx. Altogether, the absolute velocity in SI is then determined by

uuuSI
= uuuS′

R
+ ωωω × xxx + vvv . (7.3.4)

With the expressions in equations (7.3.1) - (7.3.4) the time derivative of the vector xxx can
be expressed in both systems by

D

Dt
xxx

∣∣∣∣
SI

= D

Dt
xxx

∣∣∣∣
S′

R

+ ωωω × xxx . (7.3.5)

The expression in (7.3.5) is valid for each arbitrary vector, for further details see [Spurk07],
chapter 2, 2.4. Therefore the following is also valid. If xxx = ωωω, the variations in SI equal
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the variations in S ′
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

D

Dt
ωωω

∣∣∣∣
SI

= D

Dt
ωωω

∣∣∣∣
S′

R

= d

dt
ωωω . (7.3.6)

Note that equation (7.3.6) is only fulfilled for the vector of the angular velocity or vectors
which point parallel to it. To modify the conservation of momentum as it was formulated
in chapter 1, section 1.5, the variation in time of the absolute velocity uuuI in system SI is
required. With help of equation (7.3.6), it follows from equation (7.3.4)

D

Dt
uuuSI

∣∣∣∣
SI

= D

Dt
uuuS′

R

∣∣∣∣
SI

+ D

Dt
(ωωω × xxx)

∣∣∣∣
SI

+ D

Dt
vvv

∣∣∣∣
SI

(7.3.7)

= D

Dt
uuuS′

R

∣∣∣∣
S′

R

+ ωωω × uuuS′
R

+ ωωω × ( D

Dt
xxx

∣∣∣∣
S′

R︸ ︷︷ ︸
uuuS′

R

+ωωω × xxx) + D

Dt
ωωω

∣∣∣∣
S′

R

× xxx + D

Dt
vvv

∣∣∣∣
SI︸ ︷︷ ︸

aaa

,

which can be summarised by

D

Dt
uuuSI

∣∣∣∣
SI

= D

Dt
uuuS′

R

∣∣∣∣
S′

R

+ 2ωωω × uuuS′
R

+ ωωω × (ωωω × xxx) + dωωω

dt
× xxx + aaa . (7.3.8)

This formulation of the compressible conservation of momentum is only valid in the inertial
system SI . But under consideration of (7.3.8), the absolute velocity uuuSI

can be formulated
in terms of the relative rotating system S ′

R. As result one obtains

ρ
D

Dt
uuuS′

R

∣∣∣∣
S′

R

= ρkkk + ∇ · TTT −
(

ρaaa + 2ρωωω × uuuS′
R

+ ρωωω × (ωωω × xxx) + ρ
dωωω

dt
× xxx

)
. (7.3.9)

Equation (7.3.9) gives an expression of the compressible conservation of momentum which
is valid in system S ′

R. Note that the meaning of body force vector kkk and deformation tensor
TTT in (7.3.9) are independent of the observed reference frame. But their components have
to be adapted to the particular accelerated system, in this case to S ′

R.

The term ρaaa becomes zero, if the origin of S ′
R is not moving or only with constant velocity.

This will be the case in the test case CenCon. The term 2ρωωω ×uuuS′
R

stands for the Coriolis
acceleration which becomes zero, if the observed particle is not moving in S ′

R. The term
ρωωω ×(ωωω × xxx) describes the centrifugal acceleration. Even if the particle is at rest in system
S ′

R, this term remains in equation (7.3.9). Thus, the terms in brackets in (7.3.9) describe
additional inertial forces which result from the relative motion of S ′

R to SI .

7.3.2. Formulations in the simulation software OpenFOAM R©

The previous conclusions can be used to modify the Navier-Stokes equation from chapter 1,
section 1.10 as they are implemented in the OpenFOAM R© software (for further details
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7.3. Two arbitrary, relative to each other moving systems

see [OpenFOAMa]) concerning this thesis. Note that the filter formulation of the LES is
omitted at first to obtain a clear presentation. For the inertial system SI , the compressible
momentum equations are formulated as (s. chapter 1, section 1.10, equation (1.10.2))

∂ρuuuSI

∂t
+ ∇ · (ρuuuSI

uuuSI
) − ∇ · μ(∇uuuSI

+ (∇uuuSI
)T − 2

3∇ · uuuSI
)I = −∇p + ρggg . (7.3.10)

Next, equation (7.3.10) will be modified to a compressible momentum equation which is
valid in the rotating reference frame S ′

R. This is done analogously to the statements in
[OpenFOAMb]

∇ · uuuSI
= ∇ · (uuuS′

R
+ ωωω × xxx

)
= ∇ · uuuS′

R
= 0, since ∇ · (ωωω × xxx) = 0, (7.3.11)

∇ · ∇(uuuSI
) = ∇ · ∇ (uuuS′

R
+ ωωω × xxx

)
= ∇ · ∇uuuS′

R
= 0, since ∇ · ∇ (ωωω × xxx) = 0.

Taking (7.3.8) as well as (7.3.11) into account and considering the Reynold’s transport
theorem, one obtains

D

Dt
uuuSI

∣∣∣∣
SI

= D

Dt
uuuS′

R

∣∣∣∣
S′

R

+ 2ωωω × uuuS′
R

+ ωωω × (ωωω × xxx) + dωωω

dt
× xxx + aaa (7.3.12)

=
∂uuuS′

R

∂t
+ uuuS′

R
· ∇uuuS′

R
+ 2ωωω × uuuS′

R
+ ωωω × (ωωω × xxx) + dωωω

dt
× xxx + aaa

=
∂uuuS′

R

∂t
+ ∇ · (uuuS′

R
uuuS′

R
) + 2ωωω × uuuS′

R
+ ωωω × (ωωω × xxx) + dωωω

dt
× xxx + aaa.

The term ρaaa in (7.3.9) vanishes, if the origin of system S ′
R is not moving or only with

constant velocity relative to SI which is the case in this study. Hence, also aaa in (7.3.12)
vanishes. With help of eq. (7.3.12), one can express a compressible momentum equation
in terms of the relative velocity uuuS′

R
which is valid in the rotating system S ′

R

∂ρuuuS′
R

∂t
+ ∇ · (ρuuuS′

R
uuuS′

R
) − ∇ · μ(∇uuuS′

R
+ (∇uuuS′

R
)T − 2

3∇ · uuuS′
R
)I + 2ρωωω × uuuS′

R

+ρ
dωωω

dt
× xxx + ρωωω × (ωωω × xxx) + ρaaa︸︷︷︸

= 0
= −∇p + ρggg. (7.3.13)

In the software package OpenFOAM R© the solution algorithm buoyantPimpleFOAM is
chosen, which was presented before in chapter 3, section 3.4. This time the solver uses
the modified governing equations considering the rotational movement (this time with the
filtering operation done in the process of the LES). The complete set of modified filtered
governing equations in the rotating system S ′

R can then be written as follows
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

- Compressible conservation of mass

∂ρ

∂t
+ ∇ · (ρũuuS′

R
) = 0 , (7.3.14)

- Compressible conservation of momentum

∂ρũuuS′
R

∂t
+ ∇ · (ρũuuS′

R
ũuuS′

R
) − ∇ · (μ + μsgs) (∇ũuuS′

R
+ (∇ũuuS′

R
)T − 2

3∇ · ũuuS′
R
)I

+ 2ρωωω × ũuuS′
R︸ ︷︷ ︸

Coriolis acceleration

+ ρωωω × (ωωω × xxx)︸ ︷︷ ︸
centrifugal acceleration

+ ρ
dωωω

dt
× xxx︸ ︷︷ ︸

=0

= −∇p + ρgggS′
R
,

(7.3.15)

- Compressible conservation of enthalpy

∂ρh̃

∂t
+ ∇ · (ρũuuS′

R
h̃) − ∇ · ((α + αsgs)∇h̃) = ∂p

∂t
+ ũuuS′

R
· ∇p̄, (7.3.16)

where xxx is the position vector between the origin of the rotating system S ′
R and the ob-

served fluid particle in the container.

Note that if Cartesian coordinates are used, the values of all scalars in the governing
equations, especially in the momentum equations, are not dependent on the chosen coor-
dinate system (see [Spurk07], appendix, A.2). Hence, the scalar field of density ρ, dynamic
viscosity μ and subgrid scale viscosity μsgs have the same values in system SI as in system
S ′

R. This is also the case for the scalar fields of enthalpy h as well as thermal diffusivity
α and its subgrid scale part αsgs. The tensor fields keep their physical meanings in both
systems, but their components have to be adapted to the relative moving reference sys-
tem S ′

R, as mentioned before. This is demonstrated on the basis of the gravitational force
vector ggg for system S ′

R in the following section.

7.4. The system of CenCon in the centrifuge
To formulate the modified governing equations for the specified problem of CenCon and
the centrifuge, the conservation of momentum in (7.3.15) has to be adapted to the dimen-
sions of the whole setup. The required terms of uuuS′

R
, dωωω

dt
× xxx, 2ωωω × ũuuS′

R
, ωωω × (ωωω × xxx) and

aaa have to be expressed in terms of the experimental setup CenCon. The continuity and
energy equation stay the same as they were formulated before in (7.3.14), (7.3.16).

In the configuration of the centrifuge and experimental test case, the whole system can
be divided in two sub-systems. The rotational movement of the container relative to the
rotating axis of the centrifuge is a uniform motion. Therefore, one can chose the centrifuge
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7.4. The system of CenCon in the centrifuge

axis as the inertial system SI and the container as the relative to SI rotating system S ′
R,

as it is indicated in figure 7.11 and also in figure 7.8.

Figure 7.11.: Both coordinate systems, SI (centrifuge axis) and S′
R (container) regarding the

setup of CenCon.

The origin of the inertial system SI should be at the end of the rotor shaft in the centrifuge,
hence at the end of the rotation axis. The system is denoted by the components (x, y, z).
The origin of the rotating reference frame S′

R should be located in the container centre.
The system is denoted by the components (x′, y′, z′).

7.4.1. General statements

For the formulation of the absolute velocity uuuS′
R

and its time derivative in the governing
equations one requires the vector rrrAP (which equals vector xxx in eq. (7.3.15)).

Figure 7.12.: Cylindrical coordinates of an arbitrary point P (as seen in [Richard11]).

For the formulation of the absolute velocity uuuSI
and its time derivative the term rrrA is

required (s. figure 7.11). To specify these terms and also the fictitious forces, which act
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

on a fluid volume in the container, we express the coordinates in the rotating reference
frame S′

R in relation to the inertial frame of the centrifuge SI . It is convenient to perform
such a transformation between both systems in cylindrical polar coordinates with (z, r, ϕ).
The following formulations are based on the information in [Nolting13], chapter 1, 2 and
[Spurk07], appendix, A.2. One can specify the position vector rrr of an arbitrary point P

in cylindrical coordinates by its components r, z and its basis vectors eeer, eeez (s. figure 7.12
and [Richard11], chapter 3, 3.5.2)

rrrP = eeerr + eeezz , (7.4.1)

where eeez is time-independent. In cylindrical polar coordinates it is for the unit vectors

deeez = 0 ,

deeer = eeeϕdϕ ⇒ ė̇ėer = dϕ

dt
eeeϕ = ωωω × eeer,

deeeϕ = −eeerdϕ ⇒ ė̇ėeϕ = −dϕ

dt
eeer = −ωωω × eeeϕ, (7.4.2)

eeer = eeeϕ × eeez.

The term ė·ė·ė· = d
dt

e·e·e· defines the derivation in time of one unit vector. The velocity vvvP in P

is the time derivation of the position vector rrrP in equation (7.4.1)

vvvP = ṙ̇ṙrP = eeerṙ + ė̇ėerr + eeez ż + ė̇ėezz = eeer ṙ︸︷︷︸
vr

+eeeϕ rϕ̇︸︷︷︸
vϕ

+eeez ż︸︷︷︸
vz

. (7.4.3)

The time derivation of second order of vector rrrP gives the acceleration aaaP in point P

aaaP = ˙vvvP = r̈̈r̈rP = eeer (r̈ − rϕ̇2)︸ ︷︷ ︸
ar

+eeeϕ (rϕ̈ + 2ṙϕ̇)︸ ︷︷ ︸
aϕ

+eeez z̈︸︷︷︸
az

. (7.4.4)

In the experiment, the container is turned by an angle α and translated in x− and subse-
quently in z− direction relative to the centrifuge axis. This transformation is described by
the vector rrrA, as is indicated in figure 7.13. The following evaluations are done analogously
to [Nolting13], chapter 1. An arbitrary position vector in system S ′

R can be formulated in
its general expression by

rrr′ =
3∑

i=1
x′

ieee
′
i . (7.4.5)

The vector x′x′x′ in the system S ′
R is then defined by

x′
j =

3∑
i=1

xi(eeeieee
′
j) =

3∑
i=1

cos ϕjixi, with j = 1, 2, 3 , (7.4.6)
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7.4. The system of CenCon in the centrifuge

where xi is a vector in system SI and (e1, e2, e3) are again the unit vectors in SI . The
vectors (e′

1, e′
2, e′

3) are the unit vectors in system S ′
R.

Figure 7.13.: Location of the container S′
R relative to system SI .

The inner product of eeeieee
′
j , respectively cos ϕji, defines the rotational matrix between both

systems, where j stands for the j-th coordinate axis in S ′
R and i for the i-th coordinate

axis in SI . The term ϕji defines the angle between the axis j in S ′
R and the axis i in

SI . The rotational matrix is not allocated to any basis of both systems. Because the
rotational matrix is an orthogonal matrix, its transposed matrix equals its inverse matrix.
The inverse transformation between both systems is given by

xj =
3∑

i=1
x′

i(eee′
ieeej) =

3∑
i=1

cos ϕijx
′
i with j = 1, 2, 3 . (7.4.7)

In Cartesian coordinates, the unit vectors and the components of a tensor can be described
by the same above transformation expression. Hence it is

eee′
i =

3∑
k=1

dikeeek with dim = eee′
i · eeem = cos ϕim and i, m = 1, 2, 3 . (7.4.8)

The inverse transformation is formulated as

eeei =
3∑

i=1
dkie

′e′e′
i with k = 1, 2, 3 . (7.4.9)

For an arbitrary second order tensor TTT , the transformation can be formulated with help
of (7.4.9) analogously to the statements in [Spurk07], appendix, A.2.,

TTT = tijeeeieeej =
3∑

i=1

3∑
j=1

tijeeeieeej =
3∑

i=1

3∑
j=1

tij cos ϕik cos ϕjleee
′
keee

′
l k, l = 1, 2, 3 . (7.4.10)
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Because of the orthogonality of tensor TTT = TTT ′, the transformed components in S ′
R are

t′
kl = cos ϕik cos ϕjltij . (7.4.11)

The inverse transformation for the components in SI is then described by

tkl = cos ϕki cos ϕljt
′
ij . (7.4.12)

The above described transformation laws are adapted in the following on the transfor-
mation between system SI and system S ′

R in the centrifuge. As mentioned before, the
components of vector fields have to be modified in the rotating system S ′

R. For the grav-
itational force vector ggg in SI it is

gggSI
= (gx, gy, gz) = (0, 0, −9.81 m/s). (7.4.13)

In system S ′
R, the components of ggg are transformed to ggg′

S′
R

= (g′
x, g′

y, g′
z). According to

equation (7.4.6), it is then in S′
R

g′
x = gx cos α + gy cos 90◦ + gz cos(90◦ − α),

g′
y = gx cos 90◦ + gy cos 0◦ + gz cos(90◦), (7.4.14)

g′
z = gx cos(90◦ + α) + gy cos 90◦ + gz cos(α) .

Hence it is
ggg′

S′
R

= (gz cos(90◦ − α), 0, gz cos(α)) . (7.4.15)

7.4.2. Two relative to each other moving systems, the centrifuge
axis and the test container

7.4.2.1. The non-rotating system SI of the centrifuge axis

With help of figures 7.11 - 7.12 and equations (7.4.1) - (7.4.4) the position vector rrrA, the
velocity vector vvvA and the acceleration vector aaaA can be defined in point A seen from SI

by

rrrA = (H − L4 cos α)eeez + (L1 + L4 sin α)eeer,

uuuA = (L1 + L4 sin α)ė̇ėer, (7.4.16)
aaaA = (L1 + L4 sin α)ë̈ëer.

uuuA equals the afore presented absolute velocity uuuSI
in equation (7.3.2). With the assump-

tions in equation (7.4.2), the acceleration vector aaaA in point A in equation (7.4.16) is
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7.4. The system of CenCon in the centrifuge

aaaA = (L1 + L4 sin α) [ω̇̇ω̇ω × eeer + ωωω × (ωωω × eeer)] . (7.4.17)

In the inertial system of the centrifuge SI , the angular velocity ωωω has to be constant, i. e.
ωωω = const., thus it is

ω̇̇ω̇ω = 0, ωωω ⊥ eeer ,

ωωω‖eeez ⇒ eeeϕ = ωωω × eeez = 0

}
ωωω × eeer = ωeeeϕ

ωωω × eeeϕ = −ωeeer.
(7.4.18)

As result of equation (7.4.18), the vector aaaA in equation (7.4.17) becomes

⇒ aaaA = (L1 + L4 sin α) (ωωω × (ωωω × eeer)) = (L1 + L4 sin α) (ωωω × (ωeeeϕ))
= − (L1 + L4 sin α)︸ ︷︷ ︸

|rrrA|
ω2eeer. (7.4.19)

Estimation of the acceleration vector aaaA and deflecting angle ααα

The acceleration vector aaaA in equation (7.4.19) describes the centripetal acceleration aaaA,ZP,
which acts on the container centre seen from SI . The centripetal acceleration has a nega-
tive value, because it points in the inward direction to the centrifuge axis. The centripetal
acceleration aaaA depends on the radius rA and the angular velocity ωωω. Its absolute value
is the same as the one of the centrifugal acceleration aaaA,ZF.

The centrifugal acceleration aaaA,ZF acts in the opposite direction of the centripetal accel-
eration aaaA,ZP. aaaA,ZF points away from the centrifuge axis and it is counted positive. This
is illustrated in figure 7.8 on page 207. The deflection angle α can be circumscribed by

tan α =
∣∣∣∣−ωωω2

ggg
(L1 + L4 sin α)

∣∣∣∣ . (7.4.20)

Due to the rotational movement of the centrifuge, a higher effective gravitational com-
ponent gggeff affects the experimental cell. It can be determined with help of figure 7.8 on
page 207

geff =
√

ggg2 + aaaA,ZF. (7.4.21)

geff increases with an increasing angular velocity ωωω (see equation (7.4.19)). In the beginning
of the rotation mode, a pre-determined angular velocity ωωω of the centrifuge axis has to be
chosen. The resulting deflection angle α depends on this absolute value, as is demonstrated
in figure 7.8 on page 207. The higher ωωω, the bigger becomes the deflection angle α. The
essential angular velocity component ωz which is pointing along the rotation axis is defined
by

ωz = 2πn, (7.4.22)
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

where n is the number of revolutions per minute (rpm). With a given angular velocity ωωω,
α can be determined approximately with help of aaaA,ZF and ggg by

α = arctan
( |aaaA,ZF |

|ggg|
)

. (7.4.23)

With help of equation (7.4.20) ωz can then also be formulated as

ωz =

√
gz tan(α)

L1 + L4 sin(α) . (7.4.24)

The main goal of the experiments is to gain information of the influence of the Corio-
lis acceleration on the turbulent flow structures. Hence, a high Coriolis acceleration is
preferable. The Coriolis force is defined by

FFF C = −2m (ωωω × uuu) . (7.4.25)

It is named after the French physicist and mathematician Gaspard Gustave de Coriolis
[Coriolis1835]. If a fluid particle moves in a known angle β relative to the rotation axis
of the system, respectively relative to the direction of the angular velocity vector ωωω, the
resulting Coriolis force can be written as

FC = 2 mω u sin β. (7.4.26)

Consequently, the deflection angle α between centrifuge axis and its rotating arm has next
to the angular velocity an implication of the intensity of the resulting Coriolis acceleration
due to an increasing distance between centrifuge axis and the container (s. figure 7.8 on
page 207 and equation (7.4.19) on page 219). Because the exact fluid movement and
velocity values are not known a priori, one has to make the following assumptions.

Due to the design of the centrifuge, the minimal deflection angle α in the rotation mode
is α = 46.167◦. To obtain a as possible high Coriolis acceleration, a high angular velocity
ωωω should be chosen. Thus, the resulting angle α will lie between 46.167◦ ≤ α ≤ 90◦. In
this range the sine function in equation (7.4.26) grows continuously.

Regarding the resulting angle α, the influence of the gravitational force vector gggeff has
also to be considered. To obtain a typical RB problem, the direction of the heated walls
should be pointing normal relative to the effective gravity acceleration. With an increasing
angular velocity ωωω this aspect is still fulfilled, but the resulting effective gravitational
acceleration gggeff is also increasing and gains bigger influence on the RB convection inside
the container. Due to its increasing value, the typical RB problem is destroyed and the
fluid is not only influenced by a high Coriolis acceleration, which is the intention of this
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7.4. The system of CenCon in the centrifuge

study, but also simultaneously by a hyper gravity effect. Because an increasing angle α

and thus an increasing vector gggeff debilitate more and more the typical RB problem, a
possible high Coriolis acceleration with a possible small influence of the vector gggeff should
be realised. Therefore, a theoretical value of α = 45◦ is the best choice. But, due to
the design of the centrifuge, the minimal value has to be at α = 46.167◦. With a pre-
determined value of α = 46.167◦, the centrifuge rotates with 13.704 revolutions per minute
(rpm) due to its layout. The resulting angular velocity ωz is then

ωz = 2πn = 2π · 13.704 rev./min = 2π · 0.2284 rev./s = 1.435 rad/s, (7.4.27)

according to equation (7.4.22). The centrifugal acceleration aaaA,ZF,S1 in point of the first
sensor S1 can be theoretically estimated as |aaaA,ZF,S1| ≈ 1g, according to equation (7.4.19),
respectively

|aaaA,ZF,S1| =
∣∣−(L1 + L4 sin α) ω2eeer

∣∣ (7.4.28)
= (3.724 m + 1.411 m · sin(46.167◦)) · (1.435 rad/s)2 = 0.995g .

With help of equation (7.4.21) and |aaaA,ZF,S1| = 0.995g a resulting gravitational force vector
gggeff can be theoretically estimated as by its absolute value

|gggeff| =
∣∣∣√ggg2 + aaa2

A,ZF,S1

∣∣∣ = 1.41 g . (7.4.29)

This values was also measured by sensor S1 in the middle of the container (s. figure 7.7).
The centrifugal acceleration |aaaA,ZF,S2| in S2 has to be theoretically, according to equation
(7.4.19),

|aaaA,ZF,S2| =
∣∣−(L1 + (L4 + Δm) sin α) ω2eeer

∣∣ = 1.07g (7.4.30)

with Δm = 0.5 m. With help of equation (7.4.29) and the value of |aaaA,ZF,S2| = 1.07g a
resulting gravitational force value is theoretically estimated for position S2 by

|gggeff| =
∣∣∣√ggg2 + aaa2

A, ZF,S2

∣∣∣ = 1.465 g. (7.4.31)

The centrifuge measured in S2 a gravitational force value of 1.44 g, which is about 1.73%
smaller than the value of 1.465 g. With help of equation (7.4.20) and the values of aA,ZF,S1

and aA,ZF,S2 one obtains the following theoretical values of α

α1 = 45.143◦ and α2 = 43.063◦ . (7.4.32)

The first estimated value α1 lies about 2.22% under the measured value of α = 46.167◦.
The second estimated value α2 lies about 6.72% under the angle α.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

7.4.2.2. The rotating system S′
RS ′
RS ′
R of the test container

Concerning two arbitrary, relative to each other moving systems, as it is displayed in
figure 7.14, one can describe the time-dependent position vector rrr(t) of a particle m

(which is located in system S ′
R) seen from system SI by

SI : rrr(t) = rrr0(t) + rrr′(t). (7.4.33)

Note that in the following the time dependence of the described vectors are assumed
without describing it explicitly. The following assumptions are formulated analogously
to [Nolting13], chapter 2. The derivative in time of vector rrr′ can then be described in
system

S ′
R : ṙ̇ṙr′ =

3∑
j=1

ẋ′
jeee

′
j . (7.4.34)

The axes are not changing for the observer in system S ′
R who rotates with it, but they do

for an observer in system SI . Thus, it is

SI : ṙ̇ṙr = ṙ̇ṙr0 +
3∑

j=1
(ẋ′

jeee
′
j︸︷︷︸

A

+ x′
jė̇ėe

′
j︸︷︷︸

B

). (7.4.35)

ṙ̇ṙr0 stands for the relative velocity of both origins of the coordinate systems. Term A stands
for the velocity of particle m in system S ′

R. Term B stands for the velocity of an fixed
with system S ′

R rotating particle seen from system SI . For this particle only the direction
of the axes are changing but not the components x′.

Figure 7.14.: Two arbitrary, relative to each other moving systems: position vector rrr(t) of a
particle m (as seen in [Nolting13]).

Term B can be modified with help of the angular velocity ωωω which describes the rotational
movement of system S ′

R around the origin of S ′
R. With help of equation (7.4.34), equation
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7.4. The system of CenCon in the centrifuge

SI : rrr = ṙ̇ṙr0 + ṙ̇ṙr′ + ωωω × rrr′ ⇒ d

dt
(rrr − rrr0) = d

dt
rrr′︸︷︷︸

a

= ṙ′ṙ′ṙ′ + ωωω × rrr′︸ ︷︷ ︸
b

, (7.4.36)

where term a describes the derivation in time seen by system SI and term b the derivation
in time in system S ′

R of vector rrr′. The above considerations are used in the following for
both observed systems of the container and the centrifuge axis. The complete description
of a fluid particle in point P in figure 7.11 on page 215 seen by an observer in system SI

can be formulated with help of the equations in (7.4.16) as

SI : rrrP = rrrA + rrr′
AP , uuuP = uuuA + uuu′

AP , aaaP = aaaA + aaa′
AP . (7.4.37)

The vectors rrrA ,uuuA , aaaA were described already in section 7.4.2.1 from page 218 on. To
describe the position vector rrr′

AP of an arbitrary fluid particle at point P seen by an
observer in system SI , an extra angle ϕ is needed. The transformation between both
systems can be understand as a rotation of the origin of S ′

R relative to the origin of SI

by angle α. Subsequent, S ′
R is translated in horizontal direction (in the xy-plane) about

L1 + L4 sin α and in vertical direction (z-axis) about H − L4 cos α (s. figure 7.15).

Figure 7.15.: Left: Sketch of the by an angle α rotated system S′
R relative to system SI .

Right: Horizontal translation of S′
R from SI about an amount of (L1 + L4 sin α) (xy-plane, top

view).

Thus, it is possible to describe rrr′
AP and its first and second order derivative in time directly

on the basis of the unit vectors eeer, eeeϕ of system SI . Therewith, an observer in SI obtains

rrr′
AP |SI

= x(eeez sin α + eeer cos α) + z(eeez cos α − eeer sin α)

+ eeeϕ

[
(L1 + L4 sin α) sin

(
arctan

(
y

L1 + L4 sin α

))]
(7.4.38)

+ eeer

[√
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2 − (L1 + L4 sin α)

]
.

Considering system S ′
R, the angular velocity ωωω is not constant, ω̇̇ω̇ω �= const.. The first

and second derivation in time of equation (7.4.38) leads to the velocity uuu′
AP and the

acceleration aaa′
AP in equation (7.4.39) valid for the fluid particle in point P (seen from SI)
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

uuu′
AP |SI

= ẋ(eeez sin α + eeer cos α) + x(ωωω × eeer) cos α

+ ż(eeez cos α − eeer sin α) − z(ωωω × eeer) sin α

+ ė̇ėeϕ

[
(L1 + L4 sin α) sin

(
arctan

(
y

L1 + L4 sin α

))]
+ eeeϕ

[
(L1 + L4 sin α) cos

(
arctan

(
y

L1 + L4 sin α

))(
(L1 + L4 sin α)

(L1 + L4 sin α)2 + y2

)
2yẏ

]
+ ė̇ėer

[√
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2 − (L1 + L4 sin α)

]
+ eeer

[
1
2
[
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2]−1/2 2yẏ

]
, (7.4.39)

uuu′
AP |SI

= eeez(ẋ sin α + ż cos α) + eeer(ẋ cos α − ż sin α)

+ eeeϕ

[
(L1 + L4 sin α) cos

(
arctan

(
y

L1+L4 sin α

))(
(L1+L4 sin α)

(L1+L4 sin α)2+y2

)
2yẏ
]

+ eeer

[
1
2
[
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2]−1/2 2yẏ

]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ṙ̇ṙr′

AP,S′
R

+(−ωωω × eeeϕ)
[
(L1 + L4 sin α) sin

(
arctan

(
y

L1+L4 sin α

))]
+(ωωω × eeer)

[
(x cos α − z sin α)

+
√

(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2 − (L1 + L4 sin α)
]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ωωω × rrr′

AP ,

aaa′
AP |SI

= eeez(ẍ sin α + z̈ cos α) + eeer(ẍ cos α − z̈ sin α)

+ eeeϕ

[
− (L1 + L4 sin α) sin

(
arctan

(
y

L1+L4 sin α

))((
(L1+L4 sin α)

(L1+L4 sin α)2+y2

)
2yẏ
)2

+(L1 + L4 sin α) cos
(

arctan
(

y
L1+L4 sin α

))
·
[(

− (L1+L4 sin α)
((L1+L4 sin α)2+y2)2 (2yẏ)2

)
+
(

(L1+L4 sin α)
(L1+L4 sin α)2+y2

) (
2ẏ2 + 2yÿ

)] ]
+ eeer

[
− 1

4
[
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2]−3/2 4y2ẏ2

+1
2
(
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2)−1/2 (2ẏ2 + 2yÿ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
r̈̈r̈r′

AP,S′
R

+(−ωωω × (−ωωω × eeeϕ))
[
(L1 + L4 sin α) sin

(
arctan

(
y

L1+L4 sin α

))]
+(ωωω × (ωωω × eeer))

[
(x cos α + z sin α)

+
[√

(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2 − (L1 + L4 sin α)
]]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ωωω × (ωωω × rrr′

AP )

+(−ω̇ωω × eeeϕ)(L1 + L4 sin α) sin
(

arctan
(

y
L1+L4 sin α

))
+(ω̇ωω × eeer)

[
(x cos α + z sin α)

+
[√

(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2 − (L1 + L4 sin α)
]]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ω̇ωω × rrr′

AP

+2(−ωωω × eeeϕ)
[
(L1 + L4 sin α)

· cos
(

arctan
(

y
L1+L4 sin α

))(
(L1+L4 sin α)

(L1+L4 sin α)2+y2

)
2yẏ
]

+2(ωωω × eeer)
[
(ẋ cos α − ż sin α)

+
[

1
2
[
(L1 + L4 sin α)2 + y2 + (H − L4 cos α)2]−1/2 2yẏ

] ]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
2(ωωω × ṙ̇ṙr′

AP,S′
R

).
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7.5. The system of CenCon in the simulation

where term r̈̈r̈r′
AP,S′

R
describes the second derivation in time of rrr′

AP in system S ′
R. The second

expression of the velocity vector uuu′
AP stated in (7.4.39) was reformulated with help of the

angular velocity vector ωωω and equation (7.4.2) as well as equation (7.4.18). The above
term ṙ̇ṙr′

AP,S′
R

describes the derivation in time of rrr′
AP in system S ′

R seen from SI (see also
eq. (7.4.36)) and it is

uuu′
AP |SI

= ṙ̇ṙr′
AP,S′

R
+ ωωω × rrr′

AP . (7.4.40)

The second order derivation in time of vector rrr′
AP (in equation (7.4.38)) is the acceler-

ation vector aaa′
AP valid for point P formulated in equation (7.4.39) (seen from SI). This

expression can be summarised as

aaa′
AP |SI

= r̈̈r̈r′
AP,S′

R
+ ωωω × (ωωω × rrr′

AP ) + ω̇ωω × rrr′
AP + 2(ωωω × ṙ̇ṙr′

AP,S′
R
) . (7.4.41)

All terms which are subsumed in term 2 (ωωω × ṙ̇ṙr′
AP ) in (7.4.41) describe the Coriolis ac-

celeration which acts in system S ′
R at the fluid particle in point P . All terms which are

subsumed in the expression ωωω × (ωωω × rrr′
AP ) stand for the centrifugal acceleration acting in

system S ′
R at point P . The formulation in eq. (7.4.41) can now be used to describe the

vector aaaP in (7.4.37).

The above formulations were presented as an illustrative example how the additional ac-
celerations, which have to be considered in the conservation of momentum in equation
(7.3.13), can be described in the observed system of test case CenCon for an arbitrary
fluid particle in point P .

7.5. The system of CenCon in the simulation

7.5.1. Configuration of CenCon and its boundary conditions

Figure 7.16 shows the computational setup of CenCon (left picture) and a scheme of its
computational mesh partition (right picture). Note that the test case is also presented
shortly in [Zimmermann14b]. To analyse the influence of the Coriolis acceleration on the
turbulent flow structures inside the container, two different modes are investigated in the
simulation as well as in the experimental study, as it was mentioned before. First, the
test case is investigated in a non-rotation mode like it was the case before for test case
RayCon. Second, the test case is analysed while it is uniformly rotating in the large-scale
centrifuge.

Differences between both modes will be observed. The additional accelerations of the
rotational movement are considered in the numerical simulation with help of the modified
governing equations in section 7.3.1, eq. (7.3.13). The computational geometry of the
container has the same dimensions and properties as the experimental cell. Note that the
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

origin of the coordinate system is in the centre position of the container and that the
z-axis is this time the vertical axis.

As mentioned before, the experimental setup is filled with air. The walls are smooth. The
two horizontal walls are heated homogeneously with a constant temperature difference
between the lower hot and upper cold wall, ΔT = Thot − Tcold. In the simulation, the
lateral walls are modelled with an idealistic boundary condition of adiabatic walls.

Figure 7.16.: Left: Computational configuration of CenCon. Right: Scheme of the computa-
tional geometry with its mesh resolution of (200 × 200 × 110) cells (see also [Zimmermann14b]).

Hence, the normal temperature gradient at the side walls is zero. The index w stands for
lateral wall in the following. For the side walls and the front/back wall it is

∂T

∂y

∣∣∣∣
w

= 0, for y = −0.29 m and y = 0.29 m, with − 0.29 ≤ x ≤ 0.29 m, −0.1 ≤ z ≤ 0.1 m,

∂T

∂x

∣∣∣∣
w

= 0, for x = −0.29 m and x = 0.29 m, with − 0.29 ≤ y ≤ 0.29 m, −0.1 ≤ z ≤ 0.1 m.

The velocity field at all walls is zero due to a non-slip-condition (u ≡ 0). The boundary
condition of the total pressure p is taken with a zero gradient-option at all walls, as
it was the case before for VerCon in chapter 5. The initial field of p is assumed to be
constant at 1 · 105 Pa inside the computational geometry. The boundary condition of the
dynamic pressure prgh is realised by the option buoyantPressure (for the description see
also chapter 5). Inside the box an almost atmospheric pressure condition is generated.
The hot wall has a maximum heating power amount of 1.17 kW.

A possible heat loss through the side walls has to be considered in the experimental
setup which is neglected in the numerical study (s. A, section A.2.1, on page 278). The
initial inner temperature field can be assumed as constant in the experiment as well as
in the simulation. This temperature field is chosen equally to the temperature at the
cold wall, because it approximates the ambient temperature in the centrifuge, hence it is
TIF = Tcold = 293.15 K.

The simulation does not use a Boussinesq-approximation (s. chapter 1, section 1.7, on
page 18). Consequently, temperature dependent fluid properties are calculated by the
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7.5. The system of CenCon in the simulation

Sutherland model from chapter 1, section 1.9 from page 24 on. The turbulent Prandtl
number Prsgs is taken with Prsgs = 0.4 (s. chapter 3, section 3.3.2).

The realised Rayleigh-numbers in the simulation and experiment
The Rayleigh number is determined by the mean temperature

Tmean = (Thot − Tcold)/2 + Tcold (7.5.1)

between the hot and cold wall and its depending fluid properties (s. chapter 1, section 1.9
on page 24, equation (1.9.7)). The cold wall temperature is always regulated constant at
293.15 K, due to the layout of the temperature controlling in the experiment.

Figure 7.17.: Rayleigh number distribution for different temperatures.

With help of the regulation at the hot wall Thot, different mean temperatures Tmean and
hence several Rayleigh numbers can be realised in the experiment as well as in the sim-
ulation. This is illustrated in figure 7.17 for a temperature range of 290 K − 340 K. If
the Rayleigh number Ra exceeds a critical value, turbulent structures are generated in
the convective flow which increase with an increasing Rayleigh number (s. chapter 3,
section 3.5 on page 76). Thus, a as high as possible Rayleigh number should be realised
in the experiment. As figure 7.17 shows, the Rayleigh number does not rise any more
significantly between a temperature range of 320 K − 338.15 K.

To obtain a mean temperature of Tmean = 338.15 K in the setup, the temperature at the
hot wall has to be at 383.15 K which cannot be realised in the experiment. The peak
temperature at the hot wall is limited to Thot = 353.15 K due to the layout of the tem-
perature controlling. This implies a maximum mean temperature of Tmean = 323.15 K
and a maximal Rayleigh number of Ramax = 3.06 × 107. Thus, Rayleigh numbers in the
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

range of 2.33 × 106 ≤ Ra ≤ 3.06 × 107 can be realised in the experiment and thus in
the simulation. Table 7.1 lists the temperature boundary conditions at the hot and cold
wall for the mentioned Rayleigh numbers in the non-rotation mode rotoff. Note that the
effective gravitational force geff is about 1.4 times higher in the rotation mode than in
the non-rotation mode (s. equation 7.4.21 on page 219). As a result, the Rayleigh number
rises with a higher effective gravitational force geff (s. chapter 1, section 1.9 on page 24,
equation (1.9.7)). The modified Rayleigh numbers for geff = 1.4 g in the rotation-mode
roton are listed in table 7.2. The values lie this time between 3.29×106 ≤ Ra ≤ 4.32×107.
The deviations between the effective Rayleigh numbers of both modes could have been
compensated by adapted temperature conditions. But the intention of the experiment was
to realise the same temperature conditions in both modes.

Rayleigh number ΔTΔTΔT [K] Tmean [K] T [K] T [K]
Ra cold wall hot wall

2.33 × 106 3 294.65 293.15 296.15
3.83 × 106 5 295.65 293.15 298.15
6.33 × 106 8.5 297.4 293.15 301.65
1.06 × 107 15 300.65 293.15 308.15
1.80 × 107 28 307.15 293.15 321.15
3.06 × 107 60 323.15 293.15 353.15

Table 7.1.: Rayleigh numbers and temperature conditions at the hot and cold wall of CenCon,
non-rotation mode rotoff, geff = 1g.

Rayleigh number ΔTΔTΔT [K] Tmean [K] T [K] T [K]
Ra cold wall hot wall

3.29 × 106 3 294.65 293.15 296.15
5.39 × 106 5 295.65 293.15 298.15
8.93 × 106 8.5 297.4 293.15 301.65
1.50 × 107 15 300.65 293.15 308.15
2.54 × 107 28 307.15 293.15 321.15
4.32 × 107 60 323.15 293.15 353.15

Table 7.2.: Rayleigh numbers and temperature conditions at the hot and cold wall of CenCon,
rotation mode roton, geff = 1.4g.

7.5.2. Computational mesh of CenCon

Because the design of the computational geometry of CenCon is similar to the compu-
tational geometry of RayCon from chapter 6, the computational mesh is constructed as
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7.5. The system of CenCon in the simulation

before as a Cartesian-structured mesh with twenty-seven sub-blocks. The number of grid
cells is chosen based on the number of cells of RayCon, but it is adjusted to the new
dimensions. The mesh resolution contains of (200 × 200 × 110) cells, as it is indicated in
figure 7.16 in the right scheme. Figure 7.18 on page 229 displays a snapshot of the mesh
resolution for the side and top/bottom walls of the computational geometry. Because of
symmetry aspects, it is sufficient to present only a quarter of the mesh resolution of the
particular walls.

Figure 7.18.: Mesh resolution of the computational geometry of CenCon in figure 7.16,
(200 × 200 × 110) cells. Top: Quarter of the top/bottom (heated) wall. Bottom: Quarter of the

side walls.

As before, the mesh composition allows an exterior zone in vicinity to all walls, where the
resolution is clustered and the cell ratios decrease in direction to the walls to resolve the
boundary layers which lie in the first sub-block near the walls. This partition of the mesh
enables in the exterior zone a finer resolution which can easily be chosen independently off
the other blocks. The first layer of cells is cubical formed. In this way, all relevant turbulent
scales can be resolved and no wall functions have to be considered in the numerical model.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

The first grid point is located at yw1 = 3.06 · 10−4 m in vertical distance from the heated
walls. The size of one cell is nowhere bigger than ten-times of the size of the Kolmogorov
length which is important for a successful LES. As mentioned before, the Kolmogorov is
length a scale for the smallest turbulent eddies which have to be resolved in a DNS by the
computational grid (s. chapter 3, section 3.1, on page 66, equation (3.1.9)). According to
equation (5.2.4) on page 100 in chapter 5, it is

ηkL
≈ L(

1
0.71 · 2.5Ra

)3/8 . (7.5.2)

Table 7.3 lists the Kolmogorov length for the realised Rayleigh numbers in the non-
rotation mode, according to eq. (7.5.2). The Rayleigh numbers in the rotation-mode roton

are higher than in the non-rotation mode rotoff. Hence, the resulting Kolmogorov lengths
are smaller. Therefore, only the non-rotation mode is discussed at this point. The smallest
cell in the mesh is cubical formed, it is Δx/Δy/Δz = 6.1 · 10−4 m.

Rayleigh number Kolmogorov length
Ra (geff = 1g) ηkL

2.33 × 106 1.02 · 10−3

3.83 × 106 8.43 · 10−4

6.33 × 106 6.98 · 10−4

1.06 × 107 5.75 · 10−4

1.80 × 107 4.72 · 10−4

3.06 × 107 3.87 · 10−4

Table 7.3.: Kolmogorov length ηkL
for several Rayleigh numbers according to eq. (7.5.2), non-

rotation mode rotoff, geff = 1g.

As table 7.3 shows, the Kolmogorov length is in case of the three first Rayleigh-numbers
bigger than the size of the smallest cell. In the last three cases, the smallest cell size is
bigger than the Kolmogorov length which was the intention of the chosen mesh resolution.
Because the Kolmogorov length decreases with higher Rayleigh numbers the mesh was
designed concerning the highest Rayleigh number. Table 7.4 lists the non-dimensional
wall distance y+ in the first cell midpoint yw1 for all realised Rayleigh numbers in the
fully turbulent flow in the non-rotation mode rotoff (s. chapter 3, section 3.5, 3.5.3.2,
eq. (3.5.26) on page 84). Table 7.5 gives analogously an overview of the non-dimensional
wall distance y+ in the first cell midpoint yw1 in the rotation mode roton. The values of
the rotation mode are higher than the values in the non-rotation mode rotoff due to the
higher velocities reached close to the heated walls. For all values it is y+ < 1 in yw1(see
also chapter 5, section 5.1, 5.2).
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Rayleigh number (200 × 200 × 110)(200 × 200 × 110)(200 × 200 × 110)
(geff = 1g) y+

t = 200s Δt = 200 s − 400 s
2.33 × 106 y+ = 0.071 ȳ+ = 0.073
3.83 × 106 y+ = 0.129 ȳ+ = 0.153
6.33 × 106 y+ = 0.112 ȳ+ = 0.113
1.06 × 107 y+ = 0.164 ȳ+ = 0.154
1.80 × 107 y+ = 0.115 ȳ+ = 0.158
3.06 × 107 y+ = 0.106 ȳ+ = 0.182

Table 7.4.: Non-dimensional distance y+ estimated in the first cell midpoint yw1 in the fully
turbulent flow at t = 200 s and as averaged value over Δt = 200 s − 400 s, non-rotation mode

rotoff, geff = 1g.

Rayleigh number (200 × 200 × 110)(200 × 200 × 110)(200 × 200 × 110)
(geff = 1.4g) y+

t = 200s Δt = 200 s − 400 s
3.29 × 106 y+ = 0.239 ȳ+ = 0.201
5.39 × 106 y+ = 0.239 ȳ+ = 0.239
8.93 × 106 y+ = 0.232 ȳ+ = 0.237
1.5 × 107 y+ = 0.227 ȳ+ = 0.231
2.54 × 107 y+ = 0.223 ȳ+ = 0.227
4.32 × 107 y+ = 0.229 ȳ+ = 0.220

Table 7.5.: Non-dimensional distance y+ estimated in the first cell midpoint yw1 in the fully
turbulent flow at t = 200 s and as averaged value over Δt = 200 s − 400 s, rotation mode roton,

geff = 1.4g.

7.6. Simulation results of CenCon

7.6.1. Convection cell structures in the test case visualised by the
mean velocity distribution

7.6.1.1. Non-rotation mode

Scheme of the convection cells
In the following, the arrangement of the convection cells inside the container in the simu-
lation is discussed for the non-rotation mode rotoff as well as for the rotation mode roton

(see also [Zimmermann14b]). Figure 7.19 and figure 7.20 show schemes of the convection
cell arrangement in the non-rotation mode rotoff for a front as well as for a top view of
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

the setup of CenCon. The arrows should only clarify the opposite circulation movements.
For ΔT = 3 K, 5 K and ΔT = 8.5 K, 28 K one convection cell can be detected (figure 7.19,
top row, left sketch). In the case of ΔT = 60 K, the location of the cells is similar to the
previously cases. But the circulation direction is inverted, as it is indicated in figure 7.19,
right picture, top row. For ΔT = 15 K two convection cells appear in the front view, as
the picture in the bottom row in figure 7.19 shows. Both cells are extended to the depth
of the container and reach until its end.

ΔT === 3, 5, 8.5, 28 K, front view ΔT === 60 K, front view

ΔT === 15 K, front view

Figure 7.19.: Schemes of the convection cell arrangement in the container, non-rotation
mode rotoff, front view. Top: ΔT = 3 K, 5 K, 8.5 K, 28 K (left), ΔT = 60 K (right).

Bottom: ΔT = 15 K.

ΔT === 3, 5, 8.5, 28 K, top view ΔT === 60 K, top view

Figure 7.20.: Schemes of the convection cells in the container, non-rotation mode rotoff,
top view, Left: ΔT = 3 K, ΔT = 5 K, 8.5 K, 28 K. Right: ΔT = 60 K.

Figure 7.20 demonstrates schemes of the convection cells in a top view of the container.
The left sketch illustrates the cell composition for for ΔT = 3 K, 5 K, 8.5 K, 28 K. The right
sketch shows the one for ΔT = 60 K. The points stand for a vertical circulation direction
which goes from the bottom to the top wall of the container. The crosses denote an inverse
vertical circulation from the top to the bottom wall. For ΔT = 3 K, 5 K, 8.5 K, 28 K and
ΔT = 60 K four convection cells arise in the container.
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ΔT === 3 K, top view ΔT === 5 K, top view

ΔT === 8.5 K, top view ΔT === 15 K, top view

ΔT === 28 K, top view ΔT === 60 K, top view

ΔT === 15 K, back view

Figure 7.21.: Instantaneous snapshots of the convection cell structures in CenCon, non-
rotation mode rotoff, top view. Top to bottom: ΔT = 3K ([Zimmermann14b]), ΔT = 5K,

ΔT = 8.5K, ΔT = 15K, ΔT = 28K, ΔT = 60K, ΔT = 15K, t = 400 s, simulation results.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

For ΔT = 60 K, the orientation of the circulation has changed as it was seen before in
the front view pictures (right picture in figure 7.19). For ΔT = 15 K only two convection
cells can be seen next to each other which are extended over the whole container depth,
see also figure 7.21 bottom picture.

Snapshots of the convection cells in the simulated process
The following cell arrangements are illustrated on the basis of the instantaneous mag-
nitude of the mean velocity distribution. Each of the following plots show the velocity
values which were time-averaged to the point of the presented time-step. The snapshots
in each figure were made with help of the visualisation software ParaView, version 3.11.

The snapshot of ΔT = 15 K in figure 7.21 shows the arising cells at t = 400 s in the
simulated process and the non-rotation mode rotoff. A large circulation movement can be
detected in horizontal x-direction. Figure 7.21 presents also the convection cell arrange-
ment of the other cases in a top view. The typical convection cell structures of a RB
problem, as it was seen before in the results of RayCon in chapter 6, appear. In con-
sequence to the square base layout of CenCon, four convection cells arise in the setup,
except in case of ΔT = 15 K. Two cells are located each parallel to the one side wall of the
test case, respectively front/back wall. All four cells contact each other near the container
middle. This point of contact is marked exemplary for case ΔT = 3 K by two black lines
in figure 7.21 (left picture, top row). Table 7.6 lists the different positions of this point
for each case. The cell size and the location of the contact-point vary in each ΔT -case.

Case Location
ΔT = 3K x = 0.07 m, y = −0.1 m
ΔT = 5K x = 0.02 m, y = 0.03 m
ΔT = 8.5K x = −0.01 m, y = 0.03 m
ΔT = 28K x = −0.02 m, y = −0.01 m
ΔT = 60K x = 0.02 m, y = 0.04 m

Table 7.6.: Point of contact between the convection cells near the container middle, concerning
the coordinate origin (x, y, z) = (0, 0, 0), t = 400 s, non-rotation mode rotoff.

7.6.1.2. Rotation mode

In the rotation mode roton of the test case, a changed convection cell arrangement is
expected due to the effect of the Coriolis accelerations. [Alonso1967] (chapter 6, 6.4)
describes theoretically a displacement of a falling body in the Earth’s atmosphere affected
by the Coriolis force caused by the Earth’s rotation. The resulting conclusions can be
adapted to the rotating system of the container in the centrifuge of this study. This
aspect is also discussed similarly in [Zimmermann14b].
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Scheme of the convection cells
Figure 7.22 on page 236 illustrates a possible displacement of a moving fluid particle in the
container. If the movement of the particle is parallel relative to the rotation axis z of the
centrifuge system SI , no Coriolis effect can be detected in the container. In all other cases
a Coriolis acceleration affects the particles movement. If the rotation axis in SI is turned
by a known angle relative to the direction of the particles motion in the rotating system
S ′

R, the resulting Coriolis force can be estimated by equation (7.4.26) in section 7.4.2 on
page 220.

The left sketch in figure 7.22 on page 236 pictures a displacement of a particle which is
moving along the z′-axis in S ′

R. Due to the given layout, the vector ωωω × uuu′
S′

R
points in di-

rection of the positive y′-axis. The vector of the Coriolis acceleration −2
(
ωωω × uuu′

S′
R

)
points

then in the negative direction of the y′-axis. The moving particle will also be displaced
in this direction. Combining this effect with the centrifugal effect, the particle will also
be displaced additionally in direction of the negative x′-axis (see [Alonso1967], chapter 6,
6.4).

The right sketch in figure 7.22 shows a displacement of a particle which moves in the
x′y′-plane. The vector uuu′

S′
R

points perpendicular relative to the angular velocity vector ωωω.
Therefore, the Coriolis acceleration −2ωωω × uuu′

S′
R

is perpendicular relative to the vectors
of ωωω and uuu′

S′
R
. It makes an angle α with the horizontal x′y′-plane. The resulting Coriolis

acceleration consists of a vertical component (marked by ac,V in figure 7.22) and a hor-
izontal component (marked by ac,H in figure 7.22). The horizontal component displaces
the particle from a straight line to the right in direction of the negative x′-axis. Due to
this component, hurricanes or whirlwinds are generated in the atmosphere. The vertical
component is small compared to the acceleration of the effective gravity (see [Alonso1967],
chapter 6, 6.4). This theoretically described displacement of fluid particles in the container,
is now illustrated on the basis of the velocity distributions in the simulation results.

Snapshots of the convection cells in the simulated process
The snapshots in figures 7.23 - 7.25 on pages 236 - 237 show the instantaneous vertical and
horizontal velocity structures in the container at t = 400 s in the simulated process for
different views and the cases of ΔT = 3 K as well as ΔT = 60 K. For a better presentation,
the pictures of case ΔT = 5 K, 8.5 K, 15 K and ΔT = 28 K are placed in the appendix A,
section A.2.2, figures A.3 - A.4 from page 282 on. Due to the Coriolis acceleration, the
coherent structures in the container have to change in comparison to the ones in the non-
rotation mode. The label Urel in figures 7.23 - 7.26 denotes the relative velocity values in
the rotating system S′

R which consider the additional accelerations in the container. The
velocity Urel correspond to the before mentioned velocity uuuS′

R
in equation (7.3.14) - (7.3.16)

on page 214.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Figure 7.22.: Coriolis acceleration aaac and a possible resulting displacement of a moving fluid
particle, rotation mode roton (as seen in [Alonso1967]). Left: Movement along the z′-axis. Right:

Movement in the x′y′-plane (see also [Zimmermann14b]).

rot. on, z′y′-plane, side view

ΔT === 3 K ΔT === 60 K

Figure 7.23.: Instantaneous snapshots of the mean vertical velocity structures in the z′y′-plane,
rotation mode roton, side view, t = 400 s. Left: ΔT = 3K. Right: ΔT = 60K.

rot. on, z′x′-plane, side view

ΔT === 3 K ΔT === 60 K

Figure 7.24.: Instantaneous snapshots of the mean vertical velocity structures in the z′x′-plane,
rotation mode roton, side view, t = 400 s. Left: ΔT = 3K . Right: ΔT = 60K.
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rot. on, x′y′-plane, top view

ΔT === 3 K, u′
x ΔT === 3 K, u′

y

ΔT === 60 K, u′
x ΔT === 60 K, u′

y

Figure 7.25.: Instantaneous snapshots of the mean horizontal velocity structures in the x′y′-
plane, rotation mode roton, top view, t = 400 s. Left: ux′-component. Right: uy′-component.

Top row: ΔT = 3K (as in [Zimmermann14b]). Bottom row: ΔT = 60K.

rot. on, velocity magnitude, top view

ΔT === 3 K, top view ΔT === 60 K, top view

Figure 7.26.: Instantaneous snapshots of the mean velocity magnitude, rotation mode roton,
top view, t = 400 s. Left: ΔT = 3K. Right: ΔT = 60K.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

to the non-rotation mode. The before mentioned displacement caused by the Coriolis
force, produces this time several convection cells which are mixed which each other. The
convection cells are located next to each other along the container’s depth. In figure 7.24
on page 236 an additional side view of the z′x′-plane for ΔT = 3 K is shown. The snapshot
reveals large scale structures. This is also the case for ΔT = 5 K, 8.5 K, 15 K, 28 K. In all
cases these structures have the same circulation orientation.

The visible structures for ΔT = 3 K are distorted compared to the non-rotation mode
due to the Coriolis acceleration. An up and down movement and wave-like structures of
the flow can be seen. Figure 7.23 reveals also large circulation structures for ΔT = 60 K.
Figure 7.24 on page 236 (right picture) illustrates a side view of the z′x′-plane for the case
ΔT = 60 K. The cell structures seemed to be more mixed than in case of ΔT = 3 K.

The cell arrangement has been changed in comparison to the non-rotation mode due
to the Coriolis acceleration. The above described arrangement of convection cells for
ΔT = 3 K and ΔT = 60 K can also be seen in a visualised top view of the horizontal
velocity components at t = 400 s in the simulated process in figure 7.25 on page 237. The
snapshots in figure 7.26 on page 237 show additionally the instantaneous structures of the
velocity magnitude seen in a top view for ΔT = 3 K, ΔT = 60 K at t = 400 s.

Especially for the small temperature difference of ΔT = 3 K and a small effective Rayleigh
number, the displacement of the convection cells is clearly visible. In the container exist
turbulent and mixed up structures. The flow structures seemed to be larger for higher
Rayleigh numbers. Vortex structures can clearly be seen in case of ΔT = 3 K. It is also
visible that the cells are distorted and drifted to one side of the container in comparison
to the non-rotation mode due to the Coriolis acceleration and the deflection angle relative
to the rotation axis of the centrifuge.

In comparison to smaller ΔT , the flow structures reveal in case of ΔT = 15 K, ΔT = 28 K
larger spatial scales. For ΔT = 15 K and ΔT = 28 K, vortexes can also clearly be seen
in the left bottom corner in the top view pictures in figure A.5 in the appendix A.2.2
(marked by the red coloured circle). For ΔT = 60 K, the flow structures seem to become
bigger than in case of ΔT = 15 K and of ΔT = 28 K.

The large scale structures in case of ΔT = 60 K reach almost over the whole container
length. Possible vortex structures cannot be detected in this case. It is assumed that the
vortexes would exceed the dimensions of the container. Hence, no vortex structures are
developed in this case due to the restriction of the side walls of the setup. This aspect
should be investigated in future studies by a modification of the aspect ratios.

All simulation results show significantly a displacement of the flow structures caused
by the Coriolis acceleration. Furthermore, vortex structures arise in the test case. In the
atmosphere, these observed vortexes would possibly become whirlwinds or cyclones due to
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the significantly higher velocities as well as bigger spatial scales. It has also to be regarded
that no cyclones could be generated in both studies because the aspect of evaporation
was not realised which drives cyclones or whirlwinds in the atmosphere.

Even if it is not possible to reach as high Reynolds and Grashof numbers as in a fully
developed twister in the atmosphere, it could be seen in this study that the Coriolis
acceleration implies turbulent rotational flows with visible arising vortex structures. The
flow structures differ significantly from the structures in the non-rotation mode.

7.6.2. Fluid properties profiles estimated in the simulation

7.6.2.1. Time- and area-averaged fluid properties estimated at the heated
walls - Nusselt number, temperature wall gradient and wall heat flux
density

ΔTΔTΔT [K] eff. Ra heat flux dens. [W/m2] ∇T∇T∇T [K/m] Nusselt number
hot cold hot cold hot cold

roton, 1 K 1.11 × 106 0.37 0.35 13.84 13.24 2.77 2.65
rotoff, 1 K 7.89 × 105 0.97 0.96 36.46 36.10 7.29 7.72
roton, 3 K 3.29 × 106 2.78 2.79 103.63 104.67 6.91 6.98
rotoff, 3 K 2.33 × 106 3.79 3.81 141.20 143.23 9.41 9.55
roton, 5 K 5.39 × 106 6.13 6.11 227.11 229.60 9.084 9.18
rotoff, 5 K 3.83 × 106 7.30 7.21 270.39 270.97 10.82 10.84

roton, 8.5 K 8.93 × 106 13.14 13.14 482.66 493.47 11.36 11.61
rotoff, 8.5 K 6.33 × 106 14.06 14.16 515.26 531.92 12.15 12.52
roton, 15 K 1.50 × 107 28.41 28.38 1026.21 1065.94 13.68 14.21
rotoff, 15 K 1.06 × 107 28.54 28.65 1030.78 1076.21 13.74 14.35
roton, 28 K 2.54 × 107 65.29 65.28 2283.64 2451.79 16.31 17.51
rotoff, 28 K 1.80 × 107 62.45 62.55 2184.30 2349.25 15.60 16.78
roton, 60 K 4.32 × 107 177.10 177.69 5761.36 6673.98 19.20 22.25
rotoff, 60 K 3.06 × 107 162.90 162.98 5299.48 6121.27 17.66 20.40

Table 7.7.: Time- and area-averaged values of fluid properties estimated at the hot and cold
wall for different effective Rayleigh numbers, non-rotation mode rotoff (geff = 1g) and rotation

mode roton (geff = 1.4g). Results of the simulation.

In the experiment, no measured data of any fluid property could be gained inside the
container due to restricted financial circumstances of the project. Thus, the main intention
of the first test series concerning the analysed experiment was to gain visualised data of
flow structures. Measured values of fluid properties inside the container may be a possible
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

step in future works. Note that the Nusselt number behaviour is also discussed similarly
in [Zimmermann14b]. Table 7.7 lists therefore only the simulation results of the fluid
properties wall heat flux density, wall temperature gradients and Nusselt number values
estimated at the hot and cold wall for all temperature boundary conditions in both modes.
The values are time-averaged as well as area-averaged over the whole cold/hot wall. The
time-averaging interval was chosen as Δt = 200 s − 400 s in the simulated process (with
respect to a settlement of the system) with an intermediate steps size of Δt = 1 s.

In the DNS study of [Horn11] slightly increasing Nusselt number values are observed
in a rotating RB convection cell compared to a non-rotating RB cell regarding a non-
Boussinesq fluid in both cases. As table 7.7 shows, the values estimated in the non-rotation
mode rotoff exceed the ones estimated in the rotation mode roton until a temperature
difference of ΔT = 8.5 K. With higher ΔT this relation becomes vice versa. Further, the
deviations between both modes decrease with higher ΔT .

Complementary to the results of ΔT = 3 K and ΔT = 60 K, additional simulations were
performed for ΔT = 1 K in both modes. The realised effective Rayleigh numbers are
in these cases Raeff/rot-off = 7.89 × 105 and Raeff/rot-on = 1.11 × 106. Both temperature
conditions were not investigated in the experiment. The additional simulations should
only clarify the following results of the estimated fluid properties.

Due to the different realised effective Rayleigh numbers in both modes, one has to compare
rather the results of ΔT = 3 K in the rotation mode roton with the results of ΔT = 5 K
in the non-rotation mode rotoff to obtain statements of the fluid properties behaviour
depending on the Rayleigh number. Therefore, the results of the fluid properties are
discussed in the following on the basis of the effective Rayleigh numbers Raeff and not on
the basis of the temperature difference.

Figure 7.27 displays the dependence of the reached Nusselt number values on the effective
Rayleigh numbers (top row) for the analysed Prandtl-number of Pr = 0.71. Further, the
dependence of the wall temperature gradient (middle row) and wall heat flux density
(bottom row) on the effective Rayleigh numbers are displayed. The right plot illustrates
the values estimated at the cold wall, while the left plot displays the results estimated at
the hot wall. The results of the non-rotation mode rotoff are marked by the solid black
line with crosses. The results of the rotation mode roton are plotted by the dashed black
line with pluses.

In case of the Nusselt numer, higher values of the non-rotation mode rotoff are reached
than in case of the rotation mode roton at both heated walls. At the hot wall, the results of
both modes converge to each other for a effective Rayleigh number of Raeff = 3.06 × 107.
Slightly higher Nusselt number values in the rotation mode roton cannot be observed, as
it is the case in the study of [Horn11]. The Nusselt number values are than in the rotation
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mode and and converge to the result of the non-rotation mode only for higher effective
Rayleigh numbers.

cold wall hot wall

Figure 7.27.: Top: Nu-Raeff correlation. Middle: Correlation of time- and area-averaged wall
temperature gradient and effective Rayleigh number Raeff. Bottom: Correlation of time- and
area-averaged wall heat flux density and effective Rayleigh number Raeff. Left: Cold wall. Right:
Hot wall. In all pictures: × − × (black solid line with crosses): non-rotation mode rotoff,
− − + − −+ (black dashed line with pluses): rotation mode roton. Results of the simulation.

Pr = 0.71 (s. also [Zimmermann14b]).

The results of the time- and area-averaged wall temperature gradient as well as of the wall
heat flux density are plotted complementary in figure 7.27. Both results show an inverted
relation as in case of the Nusselt number values, as it was expected. With smaller effective

241

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Rayleigh numbers both modes lie close to each other. With increasing effective Rayleigh
numbers, the results of both modes diverge more from each other. Higher Nusselt number
values were not necessarily expected in the rotation mode roton. Due to the rotational
movement, the turbulence production is indeed higher, but the turbulent structures and
vortexes are also smaller and more irregular than in the non-rotation mode rotoff, as
we will discuss in the following. Hence, the heat flux inside the container has not to be
necessarily more intensive than in the non-rotation mode rotoff.

7.6.2.2. Time-averaged fluid properties estimated at constant
planes normal to the heated walls - maximum velocities values

Complementary to the plots in figure 7.27 on page 241, the absolute time-averaged max-
imum values of the velocity are plotted in relation to the effective Rayleigh numbers in
figure 7.28 on page 243.

The plots show the maximum values estimated at constant planes normal to the heated
walls at two depth positions, x2(x′

2) = −0.1 m, x3(x′
3) = −0.2 m. The results are estimated

in both modes. The values of the non-rotation mode rotoff are marked by the black solid
line with pluses. The values of the rotation mode roton are displayed by the black dashed
line with crosses.

The uz-component in the non-rotation mode rotoff reaches its maximum value at position
x2(x′

2) = −0.1 m for ΔT = 5 K, Raeff = 3.83 × 106. At position x3(x′
3) = −0.2 m the

maximum value is reached for ΔT = 28 K, Raeff = 1.06 × 107. The maximum value of ux

at position x2(x′
2) = −0.1 m is reached for the non-rotation mode rotoff at ΔT = 60 K,

Raeff = 3.06 × 107. In case of position x3(x′
3) = −0.2 m, the maximum value is reached for

ΔT = 15 K, Raeff = 1.06 × 107.

The highest value of the uy-component in the non-rotation mode rotoff is reached at both
positions for ΔT = 60 K and Raeff = 3.06 × 107, as it was expected due to the convec-
tion cell distribution. The significant decreasing values at both positions in case of the
non-rotation mode rotoff and ΔT = 15 K, Raeff = 1.06 × 107 are caused by the different
convection cell distribution.

The values of the uy-component reveal an increasing tendency, except of the visible low
value for ΔT = 15 K and Raeff = 1.06 × 107. In the rotation mode roton, the maximum
velocity values lie beneath the ones of the non-rotation mode rotoff. The highest values are
reached for both positions in case of the component uy′ and the highest effective Rayleigh
number. The profile of uy′ shows an increasing tendency. Both other components ux′ and
uz′ are similar to each other. The highest values are reached for both components at both
estimated x′-positions for ΔT = 28 K, Raeff = 2.54 × 107.
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plane x2(x′
2) = −0.1 m plane x3(x′

3) = −0.2 m

Figure 7.28.: Time-averaged absolute maximum velocities in relation to the effective Rayleigh
number estimated at plane x2(x′

2) = −0.1 m (left) and x3(x′
3) = −0.2 m (right). Pr = 0.71.Top:

uz(z′)-component. Middle: ux(x′)-component. Bottom: uy(y′)-component. In all pictures: +−
+ (black solid line with pluses): non-rotation mode rotoff, · · + · ·+ (black dashed line with

crosses): rotation mode roton.
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7.6.2.3. Time-averaged profiles between the heated walls - temperature, density,
velocity and Coriolis acceleration, estimated along the vertical z(z′)z(z′)z(z′)-axis
and different depth positions

Before the results of different fluid properties profiles between the heated walls are dis-
cussed, the distribution of the horizontal centrifugal acceleration component ax′ is plotted
in figure 7.29. It is estimated between the side walls of the test case along the horizontal
x′-axis at y′ = 0 m and three different heights z′

1 = −0.1 m (black dashed line), z′
2 = 0 m

(black solid line) and z′
3 = 0.1 m (black dotted line).

The centrifugal acceleration is dependent on the radius rrr between the rotation axis and
the position of the fluid particle as well as the angular velocity ωωω (see also equation (7.4.19)
in section 7.4.2 on page 219). Because the angular velocity ωωω is constant in this case, a
linear distribution is expected which varies only with the radius rrr.

Figure 7.29.: Distribution of the time-averaged horizontal centrifugal acceleration component
ax′ between the side walls of the container, estimated along the x′-axis at different heights of

the vertical z′-axis. Left: Estimation positions. Right: Results of the simulation.

Figures 7.32 - 7.37 on pages 246 - 252 present the time-averaged profiles of temperature
T , velocity uuu, density ρ and Coriolis acceleration components between the heated walls
estimated along the z(z′)-axis at y(y′) = 0 m at different depth x(x′)-positions. The results
are estimated in both modes in the simulation. They are time-averaged over an interval
of Δt = 200 s − 400 s in the simulated process. Note that the origin of both coordinate
systems lies in the container centre.

The estimated positions are x(x′) = −0.2 m - (black solid line), x(x′) = −0.1 m (red
solid line), x(x′) = 0 m (blue solid line), x(x′) = 0.1 m (black dashed line), x(x′) = 0.2 m
(red dashed line), and x(x′) = 0.25 m (blue dashed line). Figure 7.30 gives a sketch of
the locations of the evaluation positions in the container CenCon. Only the results of
ΔT = 3 K and ΔT = 60 K are presented at this point for a better presentation. The
results of the other cases can be found in the appendix A, section A.2.2.2, figures A.6 -
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A.13 on pages 285 - 293. Due to a better presentation, the legend of the plots is presented
separately in the below figure 7.31.

Figure 7.30.: Location of the estimation positions between the heated walls along the z(z′)-axis
at y(y′) = 0 m.

Thermophysical properties - temperature and density
Note that the values of the properties components of the rotation mode roton are related
this time to the coordinate system in S ′

R. Because the components of the estimated fluid
properties were related to the coordinate system of SI in the simulation software, the com-
ponents had to be transformed component-by-component related to system S ′

R according
to equation (7.4.6) on page 216 in section 7.4.2, because the coordinate system in S ′

R is
rotated about the angle α relative to the coordinate system SI .

As before in case RayCon in chapter 6, the temperature profiles of the non-rotation mode
rotoff reveal asymmetrical profiles, as it was expected, because the observed flow is also a
NOB convection. In the non-rotation mode rotoff all profiles lie very close to each other
in the bulk region, except in the case of ΔT = 15 K.

Each profile in the rotation mode roton shows also an asymmetry which is this time even
more distinctive. In comparison to the non-rotation mode rotoff, the bulk temperature is
not constant, but shows a linear distribution along the container middle. The temperature
distribution in the cell centre differs from the mean temperature Tmean and lies at some
positions over the reached values of the non-rotation mode rotoff.

All profiles of the rotation mode roton reveal differences along the container middle be-
tween the particular estimated positions. This aspect becomes more significant with higher
temperature differences ΔT . It is noteworthy, that the profiles at x(x′) = −0.2 m (black
line) reveal the smallest values in all cases of the rotation mode roton. This aspect could
possibly be caused by the influence of the side wall at this position.

The profiles of the non-rotation mode rotoff reveal steeper gradients at the heated walls
and hence smaller boundary layers as in case of the rotation mode roton for all chosen tem-
perature differences. From ΔT = 15 K on, the gradients become steeper in the rotation
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mode roton and the boundary layers decrease, but still not as steep as in the non-rotation
mode. The density profiles are mirror-inverted to the temperature distributions, as it was
expected due to the relation between both properties.

Figure 7.31.: Legend of the fluid properties profiles in figures 7.32 - 7.37.

Temperature
rot. on, ΔT === 3 K rot. off, ΔT === 3 K

rot. on, ΔT === 60 K rot. off, ΔT === 60 K

Figure 7.32.: Time-averaged temperature profiles. Left: Rotation mode roton. Right: Non-
rotation mode rotoff. Top row: ΔT = 3K. Bottom row: ΔT = 60K. Estimated at y(y′) = 0 m

(centre position) along the vertical axis z(z′) at different positions: - (black solid line)
x(x′) = −0.2 m, - (red solid line) x(x′) = −0.1 m, - (blue solid line) x(x′) = 0 m, - - (black

dashed line) x(x′) = 0.1 m, - - (red dashed line) x(x′) = +0.2 m, - - (blue dashed line)
x(x′) = 0.25 m.
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Density
rot. on, ΔT === 3 K rot. off, ΔT === 3 K

rot. on, ΔT === 60 K rot. off, ΔT === 60 K

Figure 7.33.: Time-averaged density profiles. Left: Rotation mode roton. Right: Non-rotation
mode rotoff. Top row: ΔT = 3K. Bottom row: ΔT = 60K. Estimated at y(y′) = 0 m (centre
position) along the vertical axis z(z′) at different positions: - (black solid line) x(x′) = −0.2 m,

- (red solid line) x(x′) = −0.1 m, - (blue solid line) x(x′) = 0 m, - - (black dashed line)
x(x′) = 0.1 m, - - (red dashed line) x(x′) = +0.2 m, - - (blue dashed line) x(x′) = 0.25 m.

Velocity profiles
The velocity distributions are exhibit in figures 7.34 - 7.36 on pages 248 - 250. For the
locations of the estimated positions see figure 7.30 on page 245 and the legend in the top
of each following figure 7.34 - 7.36. Again, a small asymmetry can be seen in all profiles and
both modes. Note that the values of the profiles in the rotation mode roton are related to
the coordinate system of S ′

R. The components are transformed component-by-component
to system S ′

R according to equation (7.4.6) on page 216 in section 7.4.2. Only the results
of case ΔT = 3 K and case ΔT = 60 K are presented at this point. The results of the other
cases can be found in the appendix A, section A.2.2.2, figures A.9 - A.11 on pages 288 -
290. In the non-rotation mode rotoff, the vertical component uz reflects well the convection
cell structure from figure 7.19 on page 232. The highers values are reached for all depths
positions at the centre position z = 0 m. For all cases the positions x = 0 m (blue solid
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

line), x = −0.1 m (red solid line) and x = 0.1 m (black dashed line) reveal the highest
values.

Velocity, u′
z/uz

rot. on, ΔT === 3 K rot. off, ΔT === 3 K

rot. on, ΔT === 60 K rot. off, ΔT === 60 K

Figure 7.34.: Time-averaged profiles of the vertical velocity component u′
z/uz. Left: Rotation

mode roton. Right: Non-rotation mode rotoff. Top row: ΔT = 3K. Bottom row: ΔT = 60K.
Estimated at y(y′) = 0 m (centre position) along the vertical z′-axis at different positions:

- (black solid line) x(x′) = −0.2 m, - (red solid line) x(x′) = −0.1 m, - (blue solid line)
x(x′) = 0 m, - - (black dashed line) x(x′) = 0.1 m, - - (red dashed line) x(x′) = +0.2 m, - - (blue

dashed line) x(x′) = 0.25 m.

The only exception is the case of ΔT = 15 K, there the highest values are reached for
position x = −0.1 m (red dashed line) and x = 0.1 m (black solid line) due to the changed
convection cell structure. The values of uz are smaller at the outer x-positions, near to
the side walls (see figure 7.34). The mentioned displacement of fluid particles which is
caused by the Coriolis acceleration can clearly be seen in the vertical velocity u′

z profile
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in all cases.
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7.6. Simulation results of CenCon

Along the vertical z′-axis an up and down movement of air layers can be detected for each
position in all profiles. Ascending hot air layers are displaced by descending cold layers.
The movements can clearly be seen for higher ΔT . Due to the high velocity values of u′

z

near the heated walls, also the profile of the Coriolis acceleration component aCy′ is high
at these positions (see figure 7.37 on page 252). Hence, the flow particles are strongly
displaced at these positions.

Velocity, u′
x/ux

rot. on, ΔT === 3 K rot. off, ΔT === 3 K

rot. on, ΔT === 60 K rot. off, ΔT === 60 K

Figure 7.35.: Time-averaged profiles of the velocity component u′
x/ux. Left: Rotation mode

roton. Right: Non-rotation mode rotoff. Top row: ΔT = 3K. Bottom row: ΔT = 60K.
Estimated at y(y′) = 0 m (centre position) along the vertical z′-axis at different positions:

- (black solid line) x(x′) = −0.2 m, - (red solid line) x(x′) = −0.1 m, - (blue solid line)
x(x′) = 0 m, - - (black dashed line) x(x′) = 0.1 m, - - (red dashed line) x(x′) = +0.2 m, - - (blue

dashed line) x(x′) = 0.25 m.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Velocity, u′
y/uy

rot. on, ΔT === 3 K rot. off, ΔT === 3 K

rot. on, ΔT === 60 K rot. off, ΔT === 60 K

Figure 7.36.: Time-averaged profiles of the velocity component u′
y/uy. Left: Rotation mode

roton. Right: Non-rotation mode rotoff. Top row: ΔT = 3K. Bottom row: ΔT = 60K.
Estimated at y(y′) = 0 m (centre position) along the vertical z′-axis at different positions:

- (black solid line) x(x′) = −0.2 m, - (red solid line) x(x′) = −0.1 m, - (blue solid line)
x(x′) = 0 m, - - (black dashed line) x(x′) = 0.1 m, - - (red dashed line) x(x′) = +0.2 m, - - (blue

dashed line) x(x′) = 0.25 m.

The results of the horizontal velocity component ux conform at all positions with the loca-
tion of the four convection cells along the container midplane (s. figure 7.21 on page 233).
Due to the arrangement of the four cells, only small values of the horizontal velocity
component ux are reached at the midplane y = 0 m compared to both other velocity
components. The obtained results at all x-positions lie close to each other for smaller
temperature differences. The results show higher values close to the heated walls and
close to the centre position for each ΔT -case. With higher ΔT , the reached peak values
rise and the particular results differ more from each other (see also appendix A, sec-
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tion A.2.2.2, figures A.9 - A.11 on pages 288 - 290).
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7.6. Simulation results of CenCon

The results of the horizontal velocity component ux and ΔT = 15 K differs from the other
results due to the different arrangement of the convection cells. u′

x reflects the profiles
of u′

y in all ΔT cases at all positions with lower peak values, as it was expected due to
the symmetric layout of the container and the symmetric arrangement of convection cells.
Thus, a similar displacement of the fluid can be detected in direction of the x′-axis (see
figure 7.23 - 7.26 from page 236 on). High values are reached near the heated walls which
increase with higher temperature differences. In the profiles of the second horizontal ve-
locity component uy one can clearly see the circulation direction of the four convection
cells. High values are reached near the heated walls. Directly in the centre position this
velocity component is zero. The profiles show positive or negative values depending on
the circulation direction of the particular convection cell. The only exception is again case
ΔT = 15 K.

Likewise to the profiles of the other horizontal velocity component u′
x, the u′

y component
reveals a similar structure in its profiles, but with slightly higher values. Like in the u′

x-
profiles, high values are reached near the heated walls which increase with higher ΔT .
But the results of the non-rotation mode rotoff show higher peak values in each ΔT case.
Compared to both other velocity components of both modes, u′

x/ux and u′
z/uz, the com-

ponent u′
y/uy has the highest values in the rotation mode roton, respectively non-rotation

mode rotoff.

Coriolis acceleration profiles
Figure 7.37 on page 252 presents the time-averaged results of the Coriolis acceleration
components estimated along the vertical z′-axis at the centre position y′ = 0 m and dif-
ferent depth x′-positions. For the locations of the estimated positions see figure 7.30 on
page 245 and the legend in the top left plots in figure 7.37.

Note that the estimated values in the rotation mode roton are related to the coordinate
system of S ′

R. The values of each component are transformed component-by-component
to system S ′

R according to equation (7.4.6) on page 216 in section 7.4.2. Only the results
of ΔT = 3 K and ΔT = 60 K are presented at this point. The results of the other cases
can be found in the appendix A, section A.2.2.2, figures A.12 - A.13 on pages 292 - 293.

According to equation (7.4.26) on page 220, the Coriolis force and also the Coriolis ac-
celeration is dependent on the velocity vector uuu′

S′
R

and the angle α which arises relative
between the direction of the velocity vector and the direction of the angular velocity vec-
tor ωωω, thus the rotation axis. Due to the relative rotated coordinate system in S ′

R, aCy′

and aCz′ show a different relative angle between their movement plane and the rotation
axis in SI .
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Coriolis acceleration, rot. on, ΔT === 3 K
aCz′

aCx′ aCy′

Coriolis acceleration, rot. on, ΔT === 60 K
aCz′

aCx′ aCy′

Figure 7.37.: Time-averaged profiles of the Coriolis acceleration components. Top box:
ΔT = 3K. Bottom box: ΔT = 60K. Rotation mode roton. Clockwise direction in each
box, starting left top: Legend, aCz′ , aCx′ and aCy′ . Estimated at y′ = 0 m (centre position)

along the vertical z′-axis at different positions, see legends in the top left plots.
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7.7. Simulation results versus experimental data

The profiles of the aCx′-component show higher values than the ones of the aCy′-component
at most of the estimated locations, despite higher velocity values of u′

y. The aCy′ compo-
nent has its peak values near the heated walls which increase with increasing ΔT .

The values of the aCz′-component resemble the ones of the aCx′-component with slightly
higher values and a mirrored profile. Both components reveal the same relative angle be-
tween their movement plane and the rotation axis of the system (see also equation (7.4.6)
on page 216 in section 7.4.2). The highest values can be observed for both components in
the case of ΔT = 60 K, thus in this case the flow particles are affected by the strongest
displacement

7.7. Simulation results versus experimental data

Note that some of the following presented contents of the next sections 7.7.1 and 7.7.2
are also discussed in the study of [Zimmermann14b].

7.7.1. Experimental setup of the light-section and camera
installation

To record the flow structures in the experiment with help of a camera, the fluid has to be
visualised by tracer particles of magnesium carbonate (MgCO3) (s. section 7.1). The flow
is monitored by the video camera in front of the container at position K (s. section 7.1,
figure 7.7, page 207). The camera is fixed parallel to the longitudinal side of the container
and rotates with it. The moving tracer particles are illuminated at different planes parallel
to the camera by a movable light-section which is installed at the right sidewall of the
container (s. figure 7.1 page 201 and figure 7.9 on page 208, section 7.1).

Note that it was not possible to obtain quantitative measured data from the experiment.
Only visualised data could be obtained at this point of the study due to restricted finan-
cial circumstances of the project. Measured values of fluid properties inside the container
may be a possible step in future works.

To obtain information of the whole flow profile in the experimental setup, different planes
were observed by the camera intending a uniform distribution of the illuminated planes.
The 2-dimensional velocity field is investigated at the several illuminated planes in the
experiment as well as in the simulation. The velocity field in the simulation is estimated
in the same regions as the experiment.

Because the influence of the walls play an important role in the turbulence production,
the first plane, which should be observed, was chosen close to the side wall. The locations
of the investigated planes are located at the positions: x1(x′

1) = 0 m (centre position),
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

x2(x′
2) = −0.1 m, x3(x′

3) = −0.2 m and x4(x′
4) = −0.25 m (in distance to the centre po-

sition x(x′) = 0 m). Due to symmetry effects of the setup only one half of the container
in y(y′)-direction is recorded by the camera, as it is indicated in figure 7.38 (see also
figure 7.9 on page 208 in section 7.1).

Unfortunately, an analyse of the videos revealed, that no sharp records were recorded of
plane x1(x′

1) = 0 m and plane x4(x′
4) = −0.25 m during the experimental series. This as-

pect was caused by a fixed camera focus which could not be changed during one rotation
mode period. In one period all planes had to be recorded due to restrictions in the cen-
trifuge. In possible future works, the installation of the camera-light-section-combination
has to be modified to solve this problem.

To evaluate the flow structures on the basis of the recorded videos, a Particle Image Ve-
locimetry (PIV) is performed with help of the computing software MATLAB R©Version
R2011a. For further details to the used PIV algorithm it is referred to [Mori02]. The PIV
method calculates the movement of one tracer particle on the basis of an inter-correlation
function using its coordinates in two sequentially following pictures. The result is a 2-
dimensional velocity vector which describes the movement of the observed tracer particle
between both sequentially following pictures. Subsequently, the algorithm estimates the
2-dimensional velocity vectors of all tracer particles between both sequentially following
pictures and subsequently in the whole sequence of pictures. The estimated regions in
both methods are shown in figure 7.38 with help of a snapshot of the container inside.

Figure 7.38.: Region of the estimated 2-dimensional velocity field in the experiment (PIV
method) and in the simulation (as in [Zimmermann14b]). Green dashed rectangle: Estimated
region in the simulation results. Red dashed rectangle: Estimated region in the experimental

results.

Figure 7.38 illustrates the estimated region on basis of plane x2(x′
2) = −0.1 m. The green

dashed rectangle marks the region which was estimated in the simulation results. The red
dashed rectangle stands for the region which was estimated in the experimental results
(PIV method). The tape, which is glued to the bottom hot wall in the experimental setup,
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7.7. Simulation results versus experimental data

marks the middle of the container length. Note that the left- and right-side-border of the
estimated region in the simulation data coincide with the side-boarders of the estimated
region in the PIV method, as it is displayed in figure 7.38. But the top- and bottom-border
of the estimated region in the simulation (green dashed rectangle) are higher than the
top- and bottom-border of the estimated region in the experiment (red dashed rectangle).

The simulation results show the whole container height of 0.2 m between the top cold and
bottom hot wall. Because the degree of image contrast varies strongly at the right side of
the container (due to the light-slit-section), only a smaller region could be estimated with
help of the PIV method. The estimated region in the simulation has a height of 0.2 m and
a width of 0.12 m. In the experimental results the estimated region has a height of 0.15 m
and a width of 0.12 m.

7.7.2. Visualisation of velocity structures in the simulation and in
the experiment

In this section, the information of the 2-dimensional velocity field obtained at plane
x2(x′

2) = −0.1 m and x3(x′
3) = −0.2 m are presented. The figures 7.39 -7.42 on pages 256 -

259 display the results of the time-averaged velocity field. The results of the simulation
are illustrated by time-averaged 2-dimensional direction vectors. The results of the PIV
method show for all cases the same estimated region, as it was displayed in figure 7.38.
Only the number of detected particles varies from case to case. Each entry in the 2-
dimensional flow field stands for one mean velocity direction vector of one detected par-
ticle at the particular location. In some results, the PIV method detected more particles
for the same estimated region than in case of others. Thus, one obtains in these cases a
more “compact” velocity field distribution. It has to be regarded that only visualised data
could be estimated with help of the PIV method. Unfortunately, it was not possible to
obtain values of the velocity rate.

Each figure displays the simulation data versus the PIV results from the experimental
data. At this point, only the results of ΔT = 3, 5, 28 K and ΔT = 60 K are displayed to
emphasis the obtained conclusions. The results of the cases ΔT = 8.5, 15 K are placed in
the appendix A.2.3.1 in figures A.14 - A.15 on pages 295 - 296. In each figure, four plots
are displayed for each plane. In this way the results of both modes and both estimation
types can be compared directly. The red coloured arrows in figures 7.39 -7.42 (respec-
tively, figures A.14 - A.15 in the appendix A.2.3.1) are added additionally in all results
as visualisation additives to clarify the main flow directions. It is not expected, that the
results of the simulation show the exact same flow structures as the experiment, because
the estimation is only a statistical analysis of a turbulent flow. At each plane, the results
show clearly that the simulation and the experiment reveal both similar flow structures.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

plane x2(x′
2) = −0.1 m , ΔT === 3 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 3 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure 7.39.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 3 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m (as

in [Zimmermann14a]).256
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7.7. Simulation results versus experimental data

plane x2(x′
2) = −0.1 m , ΔT === 5 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 5 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure 7.40.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 5 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m.
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plane x2(x′
2) = −0.1 m , ΔT === 28 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 28 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure 7.41.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 28 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m.
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plane x2(x′
2) = −0.1 m , ΔT === 60 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 60 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure 7.42.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 60 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m (as

in [Zimmermann14a]). 259
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

In the non-rotation mode rotoff large scale structures, which are typical for a RB configu-
ration, can be seen in both results in the same way. In the simulation and both rotation
modes, it is visible, that the reached velocities at plane x3(x′

3) = −0.2 m are higher than
at plane x2(x′

2) = −0.1 m. This aspect could possibly be caused by the influence of the
wall. The velocity magnitude is increasing with higher temperature differences ΔT .

In the non-rotation mode rotoff large scale structures, which are typical for a RB configu-
ration, can be seen in both results in the same way. In the simulation and both rotation
modes, it is visible, that the reached velocities at plane x3(x′

3) = −0.2 m are higher than
at plane x2(x′

2) = −0.1 m. This aspect could possibly be caused by the influence of the
wall. The velocity magnitude is increasing with higher temperature differences ΔT .

In the non-rotation mode rotoff higher velocity values can be seen than in the rotation
mode roton until up to and including a temperature difference of ΔT = 28 K. The flow
structures at both planes seem to be similar to each other in the non-rotation, respectively
rotation, mode. In the rotation mode roton, the increase of turbulent structures, which are
caused by the Coriolis force, can clearly be seen in the simulation as in the PIV results
for all ΔT -cases in the same way.

For smaller temperature differences ΔT = 3 K, ΔT = 5 K, (and hence small effective
Rayleigh numbers Raeff) the turbulence production seems to be lower than in case of a
higher ΔT , as ΔT = 28 K and ΔT = 60 K. Smaller spatial scales of flow structures and
smaller vortexes are the result in both last mentioned cases.

With higher temperature differences ΔT , the turbulent flow structures become smaller,
due to the increasing effective Rayleigh number Raeff. This relation can be seen in both
results in the same way. The turbulent structures seem also to be more irregular as in
case of ΔT = 3 K or ΔT = 15 K.

It is noteworthy, that the simulation results of ΔT = 3 K, ΔT = 5 K display not only
the same flow direction as in the PIV results, but show also similar flow structures and
vortexes. However, these structures are not exact at the same positions, which was not
expected. The results of case ΔT = 5 K at plane x2(x′

2) = −0.1 m display in both studies
similar velocity structures and flow directions (s. figure 7.40 on page 257).

7.7.3. Vortex regions estimated in the simulation

To analyse the turbulent structures and especially the observed vortex regions further, a
criterion has to be found to identify these regions in the simulation.

Hunt et. al characterise these regions in [Hunt1988] by zones where the irrotational strain
rate is smaller than the vorticity ∇ × uuu. This definition is restated in [Hossain12], where
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specified by (in terms of the in this study used LES)

Q = 1
2
(
Ω̃ijΩ̃ij − S̃ijS̃ij

)
= −1

2
∂ũi

∂xj

∂ũj

∂xi
= 1

2

(
‖Ω̃̃Ω̃Ω‖2 − ‖S̃̃S̃S‖2

)
> 0 . (7.7.1)

The unit of Q is
[Q] = 1

s2 = Hz2. (7.7.2)

In equation (7.7.1) S̃ij is the filtered strain rate tensor

S̃ij = 1
2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
(7.7.3)

which is the symmetric part of the velocity gradient ∇ũ̃ũu (s. chapter 3, section 3.3.2). Ωij

is the rotational tensor
Ω̃ij = 1

2

(
∂ũi

∂xj

− ∂ũj

∂xi

)
(7.7.4)

which is the antisymmetric part of the velocity gradient ∇ũ̃ũu. The vortex regions can then
be identified by zones, where the vorticity is greater than the strain rate tensor. Thus, the
second invariant of the velocity gradient ∇ũ̃ũu and therefore criterion Q have to be positive
in these zones according to [Hossain12].

The criterion Q is used in the following to detect and visualise the vortex regions in
the simulation in the rotation and non-rotation mode. The criterion Q is only a mea-
surement for the outcome of turbulent structures and not for their cause. The generated
vortex structures are illustrated in figure 7.43 on page 262 for the cases of ΔT = 3 K and
ΔT = 60 K. The snapshots in figure 7.43 show the instantaneous iso-surfaces of criterion
Q in the last time step of the simulated process at t = 400 s for both modes.

The iso-surfaces envelope the regions where Q reaches a particular value. Each snap-
shot shows the iso-surfaces inside one half of the container. In the appendix A.2.3.2, the
results of the other ΔT -cases and different values of criterion Q can be found in the fig-
ures A.16 - A.17, from page 297 on. The number of vortex regions is significantly raising
with increasing ΔT and increasing effective Rayleigh numbers for both modes.

This aspect was also visible in the case of the 2-dimensional velocity profiles (see fig-
ures 7.39 -7.42 on pages 256 - 259). In both modes different frequencies appear. The form
of the vortex structures in the rotation mode roton differ from the ones in the non-rotation
mode rotoff. They seem to be more compact and mixed up than in case of the non-rotation
mode rotoff. They show also a more irregular structure. The structures in the non-rotation
mode rotoff seem to be more smooth. They reveal also larger spatial scales as the ones
in the rotation mode roton. The vortex structures seemed to be smaller with increasing
effective Rayleigh numbers in the rotation mode.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

ΔT === 3 K, Q = 1
rot. on rot. off

ΔT === 3 K, Q = 4
rot. on rot. off

ΔT === 60 K Q = 1
rot. on rot. off

ΔT === 60 K, Q = 30
rot. on rot. off

Figure 7.43.: Instantaneous vortex structures in the simulation (iso-surfaces of criterion Q),
t = 400 s, rotation mode roton (left), non-rotation mode rotoff (right). Q = 1, Q = 4 and Q = 30.

Top box: ΔT = 3 K. Bottom box: ΔT = 60 K.262
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The vortex structures in the rotation mode roton reveal a significant drift pointing in
direction of the x′ axis which is distinctive for smaller effective Rayleigh numbers and
can be clearly seen in figure 7.43. This drift is caused by the rotational movement of
the test case. The structures are axially aligned to the rotation axis of the centrifuge.
With an increasing Rayleigh number this drift is superposed by an increasing turbulence
production inside the container.

Relation between criterion Q and the effective Rayleigh-number
The number of vortex regions is rising with an increasing temperature difference ΔT in
both modes. Further, higher values of Q are reached for higher ΔT . Table 7.8 lists the
positive maximum values of Q which were reached in one half of the container. Addi-
tionally, the maximum values of Q are listed which were reached in the whole container
setup.

ΔTΔTΔT [K] eff. Ra QmaxQmaxQmax [1/s2] QmaxQmaxQmax [1/s2]
half of the setup whole setup

roton, 1 K 1.11 × 106 1 1
rotoff, 1 K 7.89 × 105 3 3.29
roton, 3 K 3.29 × 106 17 134.073
rotoff, 3 K 2.33 × 106 10 16.980
roton, 5 K 5.39 × 106 30 135.36
rotoff, 5 K 3.83 × 106 30 21.734

roton, 8.5 K 8.93 × 106 70 134.465
rotoff, 8.5 K 6.33 × 106 40 40.223
roton, 15 K 1.50 × 107 100 133.649
rotoff, 15 K 1.06 × 107 48 49.038
roton, 28 K 2.54 × 107 520 512.654
rotoff, 28 K 1.80 × 107 340 354.935
roton, 60 K 4.32 × 107 580 613.506
rotoff, 60 K 3.06 × 107 650 654.5

Table 7.8.: Positive maximum values of criterion Q, estimated in the simulated process at
t = 400 s. Non-rotation mode rotoff and rotation mode roton. Estimated in one half of
the container setup (s. figure 7.43 on page 262 (respectively figures A.16 - A.17 in the ap-

pendix A, A.2.3.2, on page 297 - 298)) and in the whole container setup of CenCon.

The dependence between the maximum values of Q from table 7.8 and the realised effective
Rayleigh numbers is plotted in figure 7.44 for a Prandtl number of Pr = 0.71. The values
which were reached in the rotation mode roton are plotted by the black dashed line with
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

pluses. The values which were reached in the non-rotation mode rotoff are plotted by the
black solid line with crosses. For smaller effective Rayleigh numbers, higher frequencies
appear in the rotation mode roton than in the non-rotation mode rotoff. This relation is
inverted beyond a Rayleigh number of Raeff = 1.5 × 107. Then, higher frequencies appear
in the non-rotation mode rotoff.

Figure 7.44.: Relation between the positive maximum values of criterion Q (estimated in the
whole setup) and the effective Rayleigh number, t = 400 s. Pr = 0.71. · · + · ·+ (black dashed
line with pluses): rotation mode roton, × − × (black solid line with crosses): non-rotation mode

rotoff. Results of the simulation.

7.8. Concluding comments
In this section, a non-Boussinesq, compressible LES was performed for a RB convection
inside an air-filled enclosed container where both horizontal walls were heated isother-
mally. In contrast to the previously presented study of RayCon, this setup performed
additionally a uniform-rotational movement in a large-scale centrifuge to investigate a
possible influence of Coriolis accelerations on the development of flow structures inside
the test cell.

Besides a numerical study, also an experimental study was performed. The realised ef-
fective Rayleigh numbers lied between 2.33 × 106 ≤ Ra ≤ 4.32 × 107 with a Prandtl
number of Pr = 0.71. To investigate the influence of the mentioned Coriolis acceleration
on the fluid two different modes were analysed in both studies, a rotation mode and a
non-rotation mode. The following aspects were discussed and described in this chapter

1) construction and realisation of an applicable experimental setup,

2) modification and implementation of the governing equations describing the rotating
system of CenCon,

264

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



7.8. Concluding comments

3) construction and implementation of an equivalent simulation geometry,

4) location of the existing convection cells in the simulation visualised by the mean
velocity distribution in the test cell,

5) relation between Nusselt number, temperature gradient, heat flux density and the
realised effective Rayleigh numbers for Pr = 0.71, estimated at constant planes
parallel to the heated walls, simulation results,

6) estimation of Nusselt number, temperature, density, velocity and Coriolis accelera-
tion profiles between the heated walls, estimated along the vertical axis, simulation
results,

7) visualisation of velocity structures in the simulated process and the experiment (PIV
method), comparison of both results,

8) investigation of vortex regions in the simulated process.

The coherent structures in the numerical study showed well the influence of the Coriolis ac-
celeration and a resulting displacement of the fluid particles, as it was expected according
to theoretical reasoning for the observed angular velocity of this study and the resulting
deflection angle between the container axis and the rotation axis of the centrifuge. This
displacement and its influence could also be seen significantly in the estimated profiles of
the analysed fluid properties.

In the numerical study of [Horn11] slightly increased Nusselt number values were observed
in a rotating RB convection cell compared to a non-rotating cell for non-Boussinesq flu-
ids. In the performed simulations of this thesis increased Nusselt number values could not
be determined in the rotation mode roton. The Nusselt number values were smaller and
converged with higher effective Rayleigh numbers Raeff to the results of the non-rotation
mode rotoff. Further, the temperature gradients diverged from the gradients of the non-
rotation mode rotoff. This aspect became more significant with higher effective Rayleigh
numbers Raeff.

The turbulence production was indeed higher in the rotation mode roton due to the Cori-
olis force, but the produced turbulent structures were also smaller and more irregular.
Therefore, the heat flux inside the container had not to be necessarily higher than in the
non-rotation mode rotoff.

From the experimental setup only visualised data of the flow structures inside the con-
tainer could be gained. Unfortunately, no measured data of any fluid property could be
gained inside the container in the experimental study due to restricted financial circum-
stances of the project. A comparison between simulation and experimental results of the
2-dimensional velocity field revealed similar tendencies of flow structures and vortexes.
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7. Case studies - Test case CenCon, a RB problem affected by Coriolis force

Further, both studies showed large scale structures in the non-rotation mode rotoff as
they are typical for a RB configuration. The increase of turbulent structures which were
caused by the Coriolis force in the rotation mode roton could be seen in the same way in
the simulation as well as in the experiment. With increasing temperature differences ΔT ,
and hence increasing effective Rayleigh numbers Raeff, the turbulent structures seemed to
be smaller and the number of appearing vortexes grew in both studies. The identification
of vortex regions in the simulation showed an increasing number of vortexes with a rising
ΔT , in the non-rotation mode rotoff as well as in the rotation mode roton. Moreover, with
higher ΔT , higher values of the identification criterion Q were reached in both modes.
Smaller frequencies appeared in the rotation mode than in the non-rotation mode.

The Coriolis acceleration produced structures which were more irregular and mixed up
compared to the ones in the non-rotation mode. The turbulent structures in the rota-
tion mode seemed to become smaller with higher effective Rayleigh numbers. The vortex
structures were axially aligned to the rotation axis of the centrifuge which could be seen
by a drift of these structures to one side of the container, especially in case of smaller
effective Rayleigh numbers.

Summarising, the compressible, non-Boussinesq Large-Eddy simulation was applicable to
model a RB convection in the presented setup of CenCon with and without a rotational
movement of the setup. The experimental setup operated correctly in both modes and
a fully-turbulent convective flow could be generated inside the container. The obtained
simulation results of the 2-dimensional velocity field approximated well the results of the
experimental study and conformed to related theoretical assumptions. These assumptions
were also confirmed by the investigated fluid properties profiles in the simulation.
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8. Summary and conclusions

This thesis dealt with the numerical and in one case also experimental analysis of turbu-
lent natural convection in air inside different configured test case setups. The numerical
studies were performed by a compressible, non-Boussinesq Large-Eddy Simulation (LES)
considering a Sutherland-model. “Compressible” referred in this case to density changes
in the fluid caused by temperature differences and not a definition in terms of the Mach
number.

The first part of this thesis outlined the required theory to describe a natural convection
and to formulate the resulting system of governing equations. Furthermore, the required
computational methods (especially the numerical method of a LES) were presented which
were used to solve the before stated governing equations. In the second part of this thesis,
which was also the main part, the investigated test cases were presented in detail and
the obtained results were discussed. The main focus of all numerical studies lied on the
fluid properties profiles estimated between the heated walls. It was important to discuss
especially the profiles in the near wall region to understand the structure and dynamic of
the whole flow.

The flows were investigated in three different test case configurations which consisted in
each case of an enclosed, air-filled, rectangular container. All three test cases were based
upon each other. The setups varied in the choice of the two isothermally heated walls
and their aspect ratios. The orientation of these walls relative to the effective direction
of gravity effected significantly the profile of the main flow field. To reduce a dispensable
complexity of the setups, the container properties were chosen simplified in each case.
Nevertheless, the setups were still sufficient and commonly used regarding the fundamen-
tal investigations of a turbulent natural convection.

Because in the test case of VerCon two of the vertical walls were the heated, a quasi-steady
state flow was reached in the fluid inside the container. This configuration of a turbulent
natural convection represented the basis for both other test cases. After the information
of test case VerCon were gained and the performed LES was validated, the information
and the numerical model were used to study both other test cases.

RayCon based directly on VerCon with its by 90◦ rotated heated walls. CenCon and
RayCon were both build as a Rayleigh-Bénard (RB) problem. In contrast to RayCon, a
rotational movement was impressed on the setup of CenCon, which generated Coriolis
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8. Summary and conclusions

accelerations effecting the fluid inside the container. Regarding the non-rotating state,
CenCon based directly on RayCon regarding its its flow dynamic as well as its fluid prop-
erties. Therefore, it was essential to analyse and to understand first the flow dynamic and
fluid properties profiles of RayCon, before CenCon was analysed as the last step of this
thesis.

Test case VerCon
In the first test case, VerCon, a convection cell in form of a rectangular, air-filled container
was investigated numerically. Two of the vertical walls were isothermally heated with a
constant temperature difference between both walls. The container had aspect ratios of
Γx = L

H
= 1, Γz = D

L
= 2. The realised Rayleigh number lied at Ra = 1.58 × 109 and

the Prandtl number at Pr = 0.71. Lateral walls of the setup were designed with different
boundary conditions to analyse possible influences on the flow field.

The numerical results were compared to an analogous experimental setup from [Tian00a]
and [Tian00b]. The experimental setup consisted of conducting later walls, while four dif-
ferent related boundary conditions were tested in the numerical study. Additionally to a
3-dimensional simulation, also a 2-dimensional simulation was executed for each boundary
condition to obtain possible information on the in [Tian00a] stated two-dimensional main
flow field and on grid dependencies.

Taking the different boundary conditions and the non-Boussinesq fluid assumption of
the simulation into consideration, all 3-dimensional simulation cases approximated very
well the experimental data of [Tian00a]. The results showed similar profile tendencies of
the main fluid properties as in [Tian00a], [Tian00b]. Between the 2-dimensional and 3-
dimensional simulation cases similar profiles were observed, but especially the velocity and
temperature fluctuations profiles revealed significant deviations between both simulation
types. Certainly, grid dependencies had an influence here. The deviations could also be
connected to the interaction between the chosen numerical methods and the coarse grid
resolution.

To analyse these aspects further, another studies have to be performed in possible future
works. In comparison to the results of [Tian00a], [Tian00b], the convection cells were
dislocated in all simulation results. Moreover, in the adiabatic bc case two additional cir-
culation zones could be detected in the top hot and bottom cold corner which showed an
inverted circulation direction to the ones in [Tian00a], [Tian00b].

To analyse the 2-dimensional main flow field assumed by [Tian00a], the vertical velocity
component was evaluated at different depth positions in the container. The profiles re-
vealed small differences to each other close to the horizontal walls. This aspect indicated
a 2-dimensional main flow field as observed by [Tian00a]. The additionally investigated
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profile of the transversal velocity component demonstrated indeed low peak values at dif-
ferent heights at the xy-midplane, but showed also a distinctive flow boundary layer near
the heated walls. This aspect objected the assumption of a 2-dimensional main flow field
and might be seen as an indicator for a 3-dimensional flow profile. To obtain a detailed
explanation, this subject should be further investigated in possible future studies.

The chosen LES was qualified to model the flow and its properties in this configuration
of a turbulent natural convection. The results of the 3-dimensional simulations approxi-
mated very well the experimental data of [Tian00a], [Tian00b], considering the different
boundary conditions. On the basis of the, at this point validated, performed LES and the
gained information of VerCon, test case RayCon was analysed next.

Test case RayCon
In the second setup, RayCon, a turbulent natural convection in air in an enclosed container
was analysed. This time both horizontal walls were isothermally heated. This configura-
tion is also called a RB problem. In comparison to VerCon, the heated walls were rotated
by 90◦. The aspect ratios of the container were in this case Γx = L

H
= 5, Γy = H

D
= 1.

Rayleigh numbers of Ra = 6.16 × 107, Ra = 1.92 × 108 and Ra = 4.1 × 108 were re-
alised with a Prandtl number of Pr = 0.71 which represented the chosen temperature
intervals of the working fluid, air. For the numerical simulation the same compressible,
non-Boussinesq LES was performed which was validated beforehand in the study of Ver-
Con.

To observe possible influences of the mesh resolution on the numerical results, two differ-
ent grid resolutions were chosen which influenced the results mainly in close distance to
the heated walls. The time- and in most cases also area-averaged profiles of fluid prop-
erties revealed an asymmetry which is typical for a non-Boussinesq convection (NOB) in
this configuration. Asymmetrical profiles were also reported by [Ahlers06] for a NOB con-
vection in water an by [Wu1991] for a NOB in cryogenic helium as well as by [Zhang1997]
for a NOB convection in glycerol. The asymmetries were caused by non-Boussinesq effects
of density changes which were caused by temperature differences inside the fluid. These
asymmetries were also detected in the global heat flux structure and its dependent fluid
properties profiles.

Major grid dependencies arose which were caused by different quasi-stable states in the
container. These states were visible on the basis of the temperature profiles estimated
at two mirrored positions near the container middle. This aspect was confirmed on the
basis of the convection cell arrangement. The different coherent structures revealed oppo-
site circulation directions. Thus, the reproducibility of the results was destroyed by these
structures existing at the mirror-imaged positions.
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8. Summary and conclusions

The non-dimensional temperature profile estimated in the thermal boundary layer at the
xy-midplane approximated the analytical function of [Hölling06]. The simulation results
matched well with the Nusselt- and Rayleigh-number-correlation of [Grossmann00]. The
deviations between the dynamic viscosity profiles of both chosen grid resolutions were
caused by grid dependencies.

In comparison to an analogous experimental setup in [Ebert08], the results in the simula-
tion differed significantly from the measured experimental data. The deviations between
the anti-symmetrical profiles in the experiment and the asymmetrical profiles in the sim-
ulation were caused by non-Boussinesq-effects in the simulation. [Horn11] determined in
a DNS of a non-Boussinesq convection an asymmetrical temperature profile compared to
an anti-symmetrical profile in a DNS of a Boussinesq convection. The investigated fluid in
this study was water. Furthermore, Horn et al. observed an increased bulk temperature as
well as different boundary layer thicknesses in the non-Boussinesq convection compared to
the Boussinesq convection. These aspects could also be seen in the simulations compared
to the experimental study of [Ebert08].

Higher temperature gradients and consequently higher Nusselt numbers were observed in
the experiment compared to the simulation. These deviations might possibly be caused
by a higher heat flux in the experiment. A further determination of this aspect on the
basis of other fluid properties was not possible regarding the limited presented results
in [Ebert08]. But, the experimental results differed also significantly from the analytical
theory of [Grossmann00] as well as of [Hölling06], which were both well approximated by
the numerical study of this thesis. This aspect confirmed also the possibility of a higher
heat flux in the experiment of [Ebert08].

The chosen LES was qualified also in this case to model the configuration of a RB problem.
The obtained results approximated very well the theoretical assumptions and measured
data in [Grossmann00] as well as in [Hölling06]. The in [Ahlers06] and in [Horn11] stated
asymmetrical profiles of fluid properties could be confirmed by the simulation data. The
comparison between the results of the coarse and fine grid resolution showed that a well-
resolved mesh is essential to obtain good results, especially in the near wall region when
no wall-function is used in the numerical model.

Test case CenCon
In the study of the third test case, CenCon, not only a turbulent RB problem in air was
analysed, but also a turbulent RB problem which was additionally affected by a Coriolis
force. Besides a numerical study, also an experimental study was performed for this con-
figuration. The setup of CenCon consisted of an air-filled enclosed container. This time
both horizontal walls were isothermally heated. Thus, the test case was similar to the
layout of RayCon.

270

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



In comparison to RayCon, the experimental setup was additionally influenced by Corio-
lis accelerations which were generated by a rotational movement of the test case under
hyper-gravity in a large-scale centrifuge. These additional accelerations affected the ver-
tical convective flow which was generated between the heated, horizontal walls. To model
the accelerations in the simulation, a modified system of governing equations compared
to the governing equations used for RayCon was considered.

While CenCon was rotating with a constant angular velocity, possible influences on the
flow structures, the turbulence production and the fluid properties were observed in both
studies. The conditions in the experiment were comparable to the conditions in the at-
mosphere in the beginning of a twister or hurricane, disregarding the different dimensions
between the experiment and atmosphere. The aspect ratios of the test case setup were in
both studies Γx = D

H
= 2.9 and Γy = L

D
= 1. The realised Rayleigh numbers lied between

2.33 × 106 ≤ Ra ≤ 4.32 × 107 with a Prandtl number of Pr = 0.71.

A comparison of the time-averaged 2-dimensional velocity field between simulation and
experiment revealed similar tendencies of flow structures and vortexes in the rotation
mode as well as in the non-rotation mode in both studies. Large-scale structures, as they
are typical for a RB problem, were visible in the non-rotation mode in both studies in the
same way.

The Coriolis force increased significantly the development of turbulent structures. Smaller
scales of flow structures and vortexes appeared in the rotation mode in both studies.
With increasing effective Rayleigh numbers, these turbulent structures became smaller
and seemed to be more irregular than in case of smaller effective Rayleigh numbers. The
number of vortex regions (investigated only in the simulation) rose also with higher ef-
fective Rayleigh numbers in both modes. Moreover, higher frequencies were reached with
increasing effective Rayleigh numbers in both modes. Altogether, smaller frequencies ap-
peared in the rotation mode than in the non-rotation mode.

The rotational movement of the setup produced mixed flow structures inside the container
which were drifted in direction of the rotation axis of the centrifuge. The influence of the
Coriolis acceleration and the resulting displacement of the flow could clearly be seen in
the numerical study in the profiles of the fluid properties and in the axially aligned (to the
rotation axis) arrangement of the coherent structures. Slightly increased Nusselt number
values as in a similar numerical study of [Horn11] could not be determined in the rotation
mode in the simulation.

The Nusselt number values were smaller and converged with higher effective Rayleigh
numbers to the results of the non-rotation mode. The temperature gradients diverged
significantly from the gradients of the non-rotation mode with higher effective Rayleigh
numbers. Due to the rotational movement, the turbulence production was higher inside
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the setup. But the generated turbulent structures were also smaller and more irregular as
in the non-rotation mode. Therefore, the heat flux inside the container had not necessarily
to be higher in the rotation mode than in the non-rotation mode.

The performed compressible, non-Boussinesq LES was qualified to model a RB problem
in the presented configuration of CenCon with and without a rotational movement. The
experimental test case operated correctly in both modes and a fully turbulent natural
convection was generated in the container. The obtained results of the time-averaged 2-
dimensional velocity profile in the simulation approximated well the obtained results of
the experiment. The profiles of the fluid properties, estimated only in the simulations,
conformed in both modes well to related theoretical assumptions. The results of the non-
rotation mode were similar to the results of RayCon, as it was expected due to the similar
RB problem configuration of both cases.

The Coriolis acceleration had a significantly influence on the turbulent structures inside
the fluid. Besides a displacement of the flow and a distortion of the convection cells, the
rotational movement caused also an increase of the turbulence production inside the fluid.
A stabilising effect of the Coriolis force could not have been observed directly. The Coriolis
force was a source of smaller scale structures, which seemed to be mixed up compared
to the non-rotating mode, as well as of vortexes in case of the observed angular velocity
of this study and the deflection angle between the container and the rotation axis of the
centrifuge. With increasing effective Rayleigh numbers the flow structures became smaller
and seemed to be more irregular. Further the number of vortex regions rose and smaller
frequencies appeared.

Conclusion and Outlook
It was shown that all performed numerical studies of a compressible, non-Boussinesq LES
in this thesis were very qualified to model a turbulent natural convection in each investi-
gated configuration. Asymmetrical fluid properties profiles were revealed in each test case
which were caused by non-Boussinesq effects in the fluid. The estimated fluid properties
profiles approximated well comparable analytical, experimental as well as numerical data
from different studies.

The Coriolis acceleration in test case CenCon had, as expected, a significantly influence
on the turbulent structures inside the fluid. But a stabilising effect of the Coriolis force
could not have been observed. It was rather a source of irregular and highly mixed flow
structures as well as vortexes.

It is noteworthy, that the reproducibility and comparability of the statistical analysed
results in case of the temperature profiles of test case RayCon were questioned. Although
the obtained results were time-averaged over an sufficient large time-interval, major grid

272

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



dependencies as well as different quasi stable-states were revealed in the test case. Con-
sequently, deviations appeared between the temperature profiles estimated at mirrored-
imaged positions near the container centre, although similar profiles were expected due
to symmetry aspects of the test case. These different quasi stable-states of the coherent
structures destroyed the reproducibility of the temperature profiles.

Regarding the results of this thesis, it could be said, that the choice of a compressible
dynamic Smagorinsky model as turbulence model or the performance of different numer-
ical schemes would be worth an investigation in future studies. Future work could also
consider different approaches of the subgrid scale thermal diffusivity model. Regarding the
centrifuge-setup and CenCon, hydrodynamic stability aspects of the flow, as for example
the influence of disturbing particles (e. g. smaller clumps) placed in the container, would
be an interesting topic. Besides the performance of local temperature measurements and a
micro LDA, a modification of the setup aspect ratios or a varying angular velocity during
the rotational movement would be further important topics.
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A. Appendix

A.1. Mathematical formulations

A.1.1. Cartesian tensors

The following definitions are based on the information in ([Spurk07], appendix, A.2). In
this thesis we deal with Cartesian tensors which consists of components and basis vectors.
The depending tensor space is defined by the number of linear independent basis vectors,
which span the coordinate system of the tensor space. In case of R3, these basis vectors
are the constant unit vectors eeei, i = 1, 2, 3 which span the Cartesian coordinate system
with the axes xi, i = 1, 2, 3. A tensor can be written only in its components, if the position
of the coordinate system is known. A zero order tensor is called a scalar. A first order
tensor is, for example, the position vector

xxx = xjeeej =
3∑

j=1
xjeeej . (A.1.1)

A second order tensor can be expressed by the not commutative dyadic product

TTT = aaabbb =
3∑

j=1

3∑
i=1

ajbieeejeeei = ajbieeejeeei (A.1.2)

or
TTT = tjieeejeeei . (A.1.3)

Two basis vectors eeej , eeei ∈ R
3 belong to each component of a second order tensor.

A.1.2. Einstein notation

In this thesis the Einstein notation is used for quantities in index notation. The following
definitions are based on the information in ([Spurk07], appendix, A.1). In a term, in which
repeated indices appear, this notation implies a summation over all possible values of these
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xxx = xieeei =
3∑

i=1
xieeei , (A.1.4)

ti = τjinj =
3∑

j=1
τjinj . (A.1.5)

The index, over which is summed, is called summation index. The double appearing
indices are the dummy indices, because they vanish after the summation is done. Each
index must appear only once.

A.1.3. Matrix properties

The following definitions are based on the information in [Fischer10], chapter 2 and
in [Dahmen06], chapter 3. A (m × n)-matrix A ∈ R

m,n

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

... ... . . . ...
am1 am2 · · · amn

⎞⎟⎟⎟⎟⎟⎠ (A.1.6)

is said to be symmetric, if the matrix equals its transposed matrix, AT = A. If a matrix
A has the same number of columns as of rows, it is said to be square. A square (n × n)-
matrix A, A ∈ R

n,n, is said to be diagonal, if only the diagonal elements are not equal
zero, aij = 0 if i �= j and aij �= 0, if i = j. A square (n × n)-matrix A, A ∈ R

n,n, is called
upper triangular, if aij = 0 for j < i = 1...n

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n

0 a22 · · · a2n

... ... . . . ...
0 0 · · · ann

⎞⎟⎟⎟⎟⎟⎠ . (A.1.7)

A square (n×n)-matrix A, A ∈ R
n,n, is called lower triangular, if aij = 0 for j > i = 1...n.

A symmetric, square (n × n)-matrix, A ∈ R
n,n, is said to be positive definite, if for all

vectors xxx ∈ R
n with xxx �= 0, it is xxxT Axxx > 0.

A symmetric square (n × n)-matrix A, A ∈ R
n,n, is said to be diagonal dominant, if it is

for the diagonal elements aii ≥∑
j

|aij| for i, j = 1...n.

Let the elements of p secondary diagonals of a symmetric matrix A, A ∈ R
n,n be not equal
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zero, besides the diagonal elements aii, so has the matrix A a band structure of width p.
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Let be m, l ∈ N with m, l ≥ 0, so has the symmetric matrix A, A ∈ R
n,n a band width of

p = m + l − 1, if it is aij = 0 for j + m < i or i + l < j⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 . . . a1,m 0 . . . . . . . . . 0
... . . . . . . . . . ...

al,1
. . . . . . . . . ...

0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . . . . . . . an−m+1,n

... . . . . . . . . . ...
0 . . . . . . . . . 0 an,n−l+1 . . . ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1.8)

For a funded description of these subjects and further details it is referred to [Fischer10],
chapter 2 and to [Dahmen06], chapter 3.

A.1.4. Angular velocity
The rotational movement of a mass particle can be formulated with help of the angular ve-
locity ωωω. The angular velocity ωωω can be described in 2-dimensional cylindrical coordinates
on the basis of figure A.1.

Figure A.1.: Rotation of a mass particle (as seen in [Nolting13]).

The following information are described analogously to [Nolting13], chapter 2, 2.1. It is

rrr(t) = Reeer , vvv(t) = Rϕ̇̇ϕ̇ϕeeeϕ ,

aaa(t) = areeer + aϕeeeϕ , ar = −Rϕ̇̇ϕ̇ϕ2, aϕ = Rϕ̈̈ϕ̈ϕ (A.1.9)

with the angular velocity ωωω

ωωω = ϕ̇̇ϕ̇ϕ , (A.1.10)
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where ϕ̇̇ϕ̇ϕ(t) denotes the change in time of the angle ϕ. It is further

v = Rω absolute value of velocity,

ar = −Rω2 absolute value centripetal acceleration, (A.1.11)
aϕ = Rω̇ absolute value tangential acceleration.

Translated to a 3-dimensional coordinate system, where the angular velocity is allocated
to an axial vector which points in direction of a third axis, the rotation axis, it is

vvv(t) = ωωω × rrr(t) = ωReeeϕ. (A.1.12)

A.2. Case studies - CenCon, a Rayleigh-Bénard problem
affected by the Coriolis force

A.2.1. Supplementary notes

Complementary to chapter 3, section 3.5, 3.5.2, the heat transmission in the setup of
CenCon is discussed in the following. The following estimations are done exemplary on the
basis of the maximal temperature values in the non-rotation mode rotoff only. Therefore,
the following statements are only approximations for test case CenCon.

In the experiment, a maximal temperature of Thot = 353.15 K can be realised at the
heating wall. The temperature at the cooling wall is always regulated constantly at a
value of Tcold = 293.15 K. The temperature difference between both heating walls is in
this case ΔT = 60 K. In the beginning of the heating process, the temperature inside the
container is taken to be at Tair,in = 293.15 K which is equivalent to the temperature at
the cold wall.

The surface area of the hot wall is given by AP = L · D = 0.58 m · 0.58 m = 0.3364 m2.
To calculate the maximal convective heat flux from the hot wall to the first air layer
above the hot wall, the thermal heat transfer coefficient α̃ has to be known, according to
equation (3.5.12) from chapter 3, section 3.5.2 on page 79. According to [VDI06] (page
Fa 4), the coefficient can be estimated by the Nusselt number over

Nu = α̃l

λ
. (A.2.1)

The Nusselt number concerning a natural convection as in case of CenCon can be ap-
proximated by the following expression (see [VDI06], page Fa 4)

Nu = 0.15 [Ra · f(Pr)]1/3 , (A.2.2)
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where f(Pr) is a function of the Prandtl number. The Rayleigh number is defined with
help of the Grashof number by

Gr = gl3ΔTβ

ν2 = Ra/Pr. (A.2.3)

The temperature difference between the hot wall and the first air layer above the hot
wall is ΔT = Thot − Tair,in = 353.15 K − 293.15 K = 60 K. Regarding a mean temperature
between the hot wall and the first air layer above the hot wall with Tmean,air = 323.15 K,
one can give an estimation of the Nusselt number and heat transfer coefficient by the
following properties

β = 1
Tair

= 1
293.15

1
K , λ(323.15) = 0.0281 W

Km , (A.2.4)

ν(323.15) = 1.822 · 10−5 m2

s , l = L · D

2(L + D) = 0.145 m. (A.2.5)

The characteristic length l is corresponding to the surface area of the hot wall. The
particular properties can be found in [VDI06] (section Dbb). The resulting Grashof and
Rayleigh number are then

Gr = 1.84 × 107 ⇒ Ra = 1.31 × 107. (A.2.6)

For Pr = 0.71, function f(Pr) in equation (A.2.2) is given by f(Pr) = 0.401, according
to [VDI06] (page Fa 4). Hence, one obtains the following Nusselt number and heat transfer
coefficient α̃

Nu = 26.07 ⇒ α̃ = 5.05 W/(Km2) . (A.2.7)

According to equation (3.5.17) (s. chapter 3, section 3.5, 3.5.2, page 80), the maximum
convective heat flux Q̇hot from the hot wall into the container becomes

Q̇hot = AP α̃(Thot − Tair) = 101.93 W. (A.2.8)

The heat flux density q̇ is then

q̇ = Q̇/AP = 303 W/m2. (A.2.9)

Note, that this is the heat flux for the maximal chose-able temperature Thot = 353.15 K
at the hot wall. For smaller temperatures or other considered temperatures inside the
container, the heat flux has to be adapted.

Because the side walls of the experimental setup are not adiabatic, a possible heat loss
through these walls has to be considered. The PMMA side walls have all a thickness of
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δ = 0.01 m, a temperature dependent mean thermal conductivity of λw = 0.19 W/(Km)
and a coefficient of heat transmission of k = 4.4 W/(Km2). The temperature inside the
container directly at the side wall is assumed to be on average at TIF, fluid = 323.15 K,
regarding a settlement of the system and case Thot = 353.15 K. Outside the container,
the temperature is assumed to be at Touts = 293.15 K. The area of one side wall is
AS = L · H = 0.58 m · 0.2 m = 0.116 m2. According to equation (3.5.18) (s. chapter 3,
section 3.5, 3.5.2 on page 80), the heat flux trough one side wall can be calculated as

Q̇sideW = kAS(T1 − T2) = kAS(TIF, fluid − Touts)
= 4.4 W/(Km2) · (0.58 m · 0.2 m) · 30K = 15.31 W. (A.2.10)

Then the maximal possible heat flux density is

q̇sideW = Q̇sideW/AS = 131.98 W/m2. (A.2.11)

For all side walls together it is Q̇allsideW = 61.24 W. But this value is only a possible
maximum value valid in case of Thot = 353.15 K and Touts = 293.15 K with a on average
temperature inside the container of TIF, fluid = 323.15 K. Therefore, a high power rating
of the heating wall is chosen. For the case of of the smallest temperature difference and
Thot = 296.15 K, a possible heat flux trough one side wall is calculated as

Q̇sideW = kAS(T1 − T2) = kAS(TIF, fluid − Touts)
= 4.4 W/(Km2) · (0.58 m · 0.2 m) · 1.5K = 0.77 W (A.2.12)

and
q̇sideW = Q̇sideW/AS = 6.6 W/m2. (A.2.13)

For all side walls it is Q̇allsideW = 3.08 W. The above stated properties of the PMMA side
walls can be found in the technical data sheet [Evonik].

A.2.2. Simulation results of CenCon

A.2.2.1. Convection cell structures in the test case visualised by the mean velocity
distribution, rotation mode

Complementary to chapter 7, section 7.6.1.2, the following figures A.2 - A.5 on pages 281 -
283 display the convection cell arrangement in the simulation for ΔT = 5 K, ΔT = 8.5 K,
ΔT = 15 K, ΔT = 28 K and the rotation mode roton. The convection cells reveal a changed
structure compared to the non-rotation mode. The in chapter 7, section 7.6, 7.6.1.2 men-
tioned displacement caused by the Coriolis force, generated this time several convection
cells which are mixed which each other. The convection cells are located next to each

280

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



A.2. Case studies - Test case CenCon, a RB problem affected by Coriolis force

other in the x′y′-plane along the container’s depth. This can be seen in all of the results.
This displacement is also indicated in figure A.2 by the up and down movements and
in figure A.5 on page 283 by the wave-like structures. The snapshots in figure A.4 on
page 282 show additionally the instantaneous structures of the velocity magnitude for a
top view of all cases.

Vortex structures can be seen in the case of ΔT = 5 K, ΔT = 15 K and ΔT = 28 K.
in the left bottom corner (marked by the red coloured circle). For higher temperature
differences, as ΔT = 15 K and ΔT = 28 K, the visible convection cell structures reveal
larger spatial scales in case of lower effective Rayleigh numbers.

rot. on, z′y′-plane, side view

ΔT === 5 K ΔT === 8.5 K

ΔT === 15 K ΔT === 28 K

Figure A.2.: Instantaneous snapshots of the mean vertical velocity structures in the z′y′-plane,
rotation mode roton, side view, t = 400 s. Clockwise direction, starting left top:

ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.

In figure A.3 on page 282 an additional side view of the z′x′-plane is shown. The snapshots
reveal large structures in all cases. The cells reveal in all cases the same orientation.
Especially in case of the smaller temperature differences of ΔT = 5 K and ΔT = 8.5 K
(and hence smaller effective Rayleigh numbers), the visible structures seem to be more
turbulent and mixed up than in cases with a higher temperature difference.
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rot. on, z′x′-plane, side view
ΔT === 5 K ΔT === 8.5 K

ΔT === 15 K ΔT === 28 K

Figure A.3.: Instantaneous snapshots of the mean vertical velocity structures in the z′x′-plane,
rotation mode roton, side view, t = 400 s. Clockwise direction, starting left top:

ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.

rot. on, velocity magnitude

ΔT === 5 K, top view ΔT === 8.5 K, top view

ΔT === 15 K, top view ΔT === 28 K, top view

Figure A.4.: Instantaneous mean velocity magnitude structures in the container, rotation
mode roton, top view, t = 400 s. Clockwise direction, starting left top:

ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.
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rot. on, x′y′-plane, top view

ΔT === 5 K, u′
x ΔT === 5 K, u′

y

ΔT === 8.5 K, u′
x ΔT === 8.5 K, u′

y

ΔT === 15 K, u′
x ΔT === 15 K, u′

y

ΔT === 28 K, u′
x ΔT === 28 K, u′

y

Figure A.5.: Instantaneous snapshots of the mean horizontal velocity structures in the x′y′-
plane, rotation mode roton, top view, t = 400 s. Left: u′

x. Right: u′
y. Top to bottom:

ΔT = 5K, ΔT = 8.5K, ΔT = 15K and ΔT = 28K.
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A.2.2.2. Fluid properties between the heated walls - temperature, density, velocity
and Coriolis acceleration, estimated along the vertical z(z′)z(z′)z(z′)-axis and
different depth positions

Figures A.6 - A.13 show complementary to chapter 7, section 7.6, 7.6.2, the time-averaged
profiles of temperature T , velocity uuu, density ρ and Coriolis acceleration components
between the heated walls estimated along the z(z′)-axis at y(y′) = 0 m at different depth
x(x′)-positions. The results are estimated in both modes in the simulation. They are time-
averaged over an interval of t = 200 s−400 s in the simulated process. Note that the origin
of both coordinate systems lies in the container centre.

The estimated positions are x(x′) = −0.2 m (black solid line), x(x′) = −0.1 m (red solid
line), x(x′) = 0 m (blue solid line), x(x′) = 0.1 m (black dashed line), x(x′) = 0.2 m (red
dashed line), and x(x′) = 0.25 m (blue dashed line). For an overview of the estimation
positions see also figure 7.30 on page 245 in chapter 7, section 7.6.2.3. For a detailed view
of the legend see figure 7.31 on page 246 in chapter 7, section 7.6.2.3. The following figures
present the results for the temperature differences of ΔT = 5 K, ΔT = 8.5 K, ΔT = 15 K
and ΔT = 28 K. Note that the estimated values in the rotation mode roton are related to
the coordinate system of S ′

R. The values of each component are transformed component-
by-component to system S ′

R according to equation (7.4.6) on page 216 in section 7.4.2.

Thermophysical properties - temperature and density
Figures A.6 - A.7 on pages 285 - 286 show the time-averaged profiles of temperature T and
density ρ. As mentioned before in chapter 7, section 7.6.2, the temperature profiles of the
non-rotation mode rotoff reveal asymmetrical profiles, as it was expected, due to NOB
effects (s. chapter 6, section 6.3.2 from page 162 on).

In the non-rotation mode rotoff all profiles lie very close to each other in the bulk region,
except in the case of ΔT = 15 K. Each profile in the rotation mode roton shows also an
asymmetry which is this time even more distinctive. In comparison to the non-rotation
mode rotoff, the bulk temperature is not constant, but shows a linear distribution along
the container middle. The temperature distribution in the cell centre differs from the mean
temperature Tmean and lies at some positions over the reached values of the non-rotation
mode rotoff. All profiles of the rotation mode roton reveal differences along the container
middle between the particular estimated positions. This aspect becomes more significant
with higher temperature differences ΔT .

It is noteworthy, that the profiles at x(x′) = −0.2 m (black line) reveal the smallest
values in all cases of the rotation mode roton. This aspect could possibly be caused by the
influence of the side wall at this position.
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Temperature
rot. on, ΔT === 5 K rot. off, ΔT === 5 K

rot. on, ΔT === 8.5 K rot. off, ΔT === 8.5 K

rot. on, ΔT === 15 K rot. off, ΔT === 15 K

rot. on, ΔT === 28 K rot. off, ΔT === 28 K

Figure A.6.: Time-averaged temperature profiles. Left: Rotation mode roton. Right: Non-
rotation mode rotoff. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.
Estimated at y(y′) = 0 m (centre position) along the vertical axis z(z′) at different positions (see

figure 7.31 on page 246 and the legend in the both top plots).
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Density
rot. on, ΔT === 5 K rot. off, ΔT === 5 K

rot. on, ΔT === 8.5 K rot. off, ΔT === 8.5 K

rot. on, ΔT === 15 K rot. off, ΔT === 15 K

rot. on, ΔT === 28 K rot. off, ΔT === 28 K

Figure A.7.: Time-averaged density profiles. Left: Rotation mode roton. Right: Non-rotation
mode rotoff. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K. Estimated at
y(y′) = 0 m (centre position) along the vertical axis z(z′) at different positions (see figure 7.31

on page 246 and the legend in the both top plots).
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The profiles of the non-rotation mode rotoff reveal steeper gradients at the heated walls
and hence smaller boundary layers as in case of the rotation mode roton for all chosen
temperature differences.

From ΔT = 15 K on, the gradients become steeper in the rotation mode roton and the
boundary layers decrease, but still not as steep as in the non-rotation mode. The density
profiles are mirror-inverted to the temperature distributions, as it was expected due to
the relation between both properties.

Velocity profiles
Figures A.9 - A.11 on pages 288 - 290 show the time-averaged velocity profiles at the mid-
plane at y(y′) = 0 m along the vertical z(z′)-axis between both temperatured walls at
different x(x′)-locations. Due to a better presentation, the legend of the plots is presented
separately in the below figure A.8. For an overview of the estimation positions see also
figure 7.30 on page 245 in chapter 7, section 7.6.2.3.

The profiles show positive or negative values depending on the circulation direction of the
particular convection cell. The only exception is again case ΔT = 15 K. Likewise to the
profiles of the other horizontal velocity component u′

x, the u′
y component reveals a similar

structure in its profiles, but with slightly higher values. Compared to both other velocity
components of both modes, u′

x/ux and u′
z/uz, the component u′

y/uy has the highest values
in the rotation mode roton, respectively non-rotation mode rotoff.

Figure A.8.: Legend of the fluid properties profiles in figures A.9 - A.11.

In the non-rotation mode rotoff, the vertical component uz reflects well the convection
cell structure from figure 7.19 on page 232. The highers values are reached for all depths
positions at the centre position z = 0 m. For all cases the positions x = 0 m (blue solid
line), x = −0.1 m (red solid line) and x = 0.1 m (black dashed line) reveal the highest
values. In case ΔT = 15 K, the highest values are reached for x = 0.2 m (red dashed line)
and x = −0.2 m (black solid line) due to the changed convection cell structure.

The mentioned displacement of fluid particles which is caused by the Coriolis acceleration
can clearly be seen in the vertical velocity u′

z profile in all cases. Along the vertical z′-axis
an up and down movement of air layers can be detected for each position in all profiles.
Ascending hot air layers are displaced by descending cold layers.
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Velocity u′
z(uz)

rot. on, ΔT === 5 K rot. off, ΔT === 5 K

rot. on, ΔT === 8.5 K rot. off, ΔT === 8.5 K

rot. on, ΔT === 15 K rot. off, ΔT === 15 K

rot. on, ΔT === 28 K rot. off, ΔT === 28 K

Figure A.9.: Time-averaged velocity profiles u′
z(uz). Left: Rotation mode roton. Right: Non-

rotation mode rotoff. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.
Estimated at y(y′) = 0 m (centre position) along the vertical axis z(z′) at different positions (see

figure A.8 on page 287).
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Velocity u′
x(ux)

rot. on, ΔT === 5 K rot. off, ΔT === 5 K

rot. on, ΔT === 8.5 K rot. off, ΔT === 8.5 K

rot. on, ΔT === 15 K rot. off, ΔT === 15 K

rot. on, ΔT === 28 K rot. off, ΔT === 28 K

Figure A.10.: Time-averaged velocity profiles u′
x(ux). Left: Rotation mode roton. Right: Non-

rotation mode rotoff. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K. Estimated
at y(y′) = 0 m (centre position) along the vertical axis z(z′) at different positions (see figure A.8

on page 287).
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Velocity u′
y(uy)

rot. on, ΔT === 5 K rot. off, ΔT === 5 K

rot. on, ΔT === 8.5 K rot. off, ΔT === 8.5 K

rot. on, ΔT === 15 K rot. off, ΔT === 15 K

rot. on, ΔT === 28 K rot. off, ΔT === 28 K

Figure A.11.: Time-averaged velocity profiles u′
y(uy). Left: Rotation mode roton. Right: Non-

rotation mode rotoff. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K. Estimated
at y(y′) = 0 m (centre position) along the vertical axis z(z′) at different positions (see figure A.8

on page 287).
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Due to the arrangement of the four cells, only small values of the horizontal velocity
component ux are reached at the midplane y = 0 m compared to both other velocity
components. The obtained results at all x-positions lie close to each other for smaller
temperature differences. The results show higher values close to the heated walls and
close to the centre position for each ΔT -case. With higher ΔT , the reached peak values
rise and the particular results differ more from each other. The results of the horizontal
velocity component ux and ΔT = 15 K differs from the other results due to the different
arrangement of the convection cells.

u′
x reflects the profiles of u′

y in all ΔT cases at all positions with lower peak values, as it was
expected due to the symmetric layout of the container and the symmetric arrangement of
convection cells. High values are reached near the heated walls which increase with higher
temperature differences. In the profiles of the second horizontal velocity component uy

one can clearly see the circulation direction of the four convection cells. High values are
reached near the heated walls. Directly in the centre position this velocity component is
zero.

Coriolis acceleration profiles
Figures A.12 - A.13 on pages 292 - 293 display the time-averaged profiles of the Coriolis
acceleration components estimated between both temperatured walls at the midplane at
y(y′) = 0 m along the vertical z(z′)-axis and different x(x′)-locations. For an overview of
the estimation positions see also figure 7.30 on page 245 in chapter 7, section 7.6.2.3. For
a detailed view of the legend see the top left plots in figures A.12 - A.13 or the legend in
figure A.8 on page 287.

According to equation (7.4.26) on page 220, the Coriolis force and also the Coriolis ac-
celeration is dependent on the velocity vector uuu′

S′
R

and the angle α which arises relative
between the direction of the velocity vector and the direction of the angular velocity vec-
tor ωωω, thus the rotation axis. Due to the relative rotated coordinate system in S ′

R, aCy′

and aCz′ show a different relative angle between their movement plane and the rotation
axis in SI . The profiles of the aCx′-component show higher values than the ones of the
aCy′-component at most of the estimated locations, despite higher velocity values of u′

y.
The aCy′ component has its peak values near the heated walls which increase with in-
creasing ΔT .

The values of the aCz′-component resemble the ones of the aCx′-component with slightly
higher values and a mirrored profile. Both components reveal the same relative angle be-
tween their movement plane and the rotation axis of the system (see also equation (7.4.6)
on page 216 in section 7.4.2). The highest values can be observed for both components in
the case of ΔT = 60 K, thus in this case the flow particles are affected by the strongest
displacement.
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Coriolis acceleration , rot. on, ΔT === 5 K
aCz′

aCx′ aCy′

Coriolis acceleration, rot. on, ΔT === 8.5 K
aCz′

aCx′ aCy′

Figure A.12.: Time-averaged profiles of the Coriolis acceleration components. Top box:
ΔT = 5K. Bottom box: ΔT = 8.5K. Clockwise direction in each box, starting left top:
Legend, aCz′ , aCx′ and aCy′ . Estimated at y(y′) = 0 m (centre position) along the vertical axis

z(z′) at different positions (see the legends in the top left plots).
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Coriolis acceleration, rot. on, ΔT === 15 K
aCz′

aCx′ aCy′

Coriolis acceleration, rot. on, ΔT === 28 K
aCz′

aCx′ aCy′

Figure A.13.: Time-averaged profiles of the Coriolis acceleration components. Top box:
ΔT = 15K. Bottom box: ΔT = 28K. Clockwise direction in each box, starting left top:
Legend, aCz′ , aCx′ and aCy′ . Estimated at y(y′) = 0 m (centre position) along the vertical axis

z(z′) at different positions (see the legends in the top left plots).
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A. Appendix

A.2.3. Simulation results versus experimental data
A.2.3.1. Visualisation of velocity structures in the simulation and in the

experiment

Analogously to chapter 7.1, section 7.7.2, the figures A.14 - A.15 on pages 295 - 296 illus-
trate the time-averaged 2-dimensional velocity field estimated in the simulation as well as
in the experiment (PIV method). For an overview of the estimated region see figure 7.38
on page 254 in chapter 7.1, section 7.7.2. It is not expected, that the results of the sim-
ulation reveal exact the same flow structures as the results of the experiment, due to the
statistical analysis of the turbulent flow. But the results of both cases show similar ten-
dencies of flow structures. In the non-rotation mode rotoff, large-scale structures as they
are typical for a Rayleigh-Bénard configuration can be seen in both studies. It is note-
worthy, that the simulation results of ΔT = 8.5 K at plane x2 = −0.2 m display the same
main flow directions as in the PIV results. However, the flow structures are not exact at
the same positions in both results, which was not expected. As in chapter 7.1 mentioned,
the presented results confirm that the turbulence production seems to be higher in case
of increasing temperature differences. Smaller spatial scales of flow structures and smaller
vortex regions are the result. This relation can be seen in both studies in the same way.

A.2.3.2. Vortex regions estimated in the simulation

The following figures A.16 - A.17 on pages 297 - 298 display complementary to chapter 7,
section 7.7.3, the vortex regions in the simulation in the rotation mode roton and the non-
rotation mode rotoff visualised by the criterion Q for ΔT = 5 K, ΔT = 8.5 K, ΔT = 15 K,
ΔT = 28 K. For the definition of criterion Q and detailed information see chapter 7, sec-
tion 7.7.3. The criterion Q is only a measurement for the outcome of turbulent structures
and not for their cause. Each snapshot in figures A.16 - A.17 show the instantaneous iso-
surfaces of criterion Q in the last time step of the simulated process at t = 400 s for both
modes. The iso-surfaces envelope the regions where Q reaches a particular value. Each
snapshot shows the iso-surfaces inside one half of the container. For the exact values of
criterion Q it is referred to table 7.8 in chapter 7, section 7.7.3 on page 263. The number
of vortex regions is significantly raising with increasing ΔT and an increasing effective
Rayleigh number. In both modes appear different frequencies. The vortex structures in
the rotation mode roton reveal a significant drift pointing in direction of the x′ axis which
is distinctive for smaller effective Rayleigh numbers. This drift is caused by the rotational
movement of the test case. The form of the vortex structures in the rotation mode roton

seem to be more compact and mixed than in case of the non-rotation mode rotoff. The
vortexex show a more irregular structure and seemed to become smaller with increasing
effective Rayleigh numbers. The structures in the non-rotation mode rotoff seem to be
more smooth and show larger spatial scales.
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A.2. Case studies - Test case CenCon, a RB problem affected by Coriolis force

plane x2(x′
2) = −0.1 m , ΔT === 8.5 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 8.5 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure A.14.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 8.5 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m.
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A. Appendix

plane x2(x′
2) = −0.1 m , ΔT === 15 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

plane x3(x′
3) = −0.2 m , ΔT === 15 K

rot. off, simulation rot. off, PIV

rot. on, simulation rot. on, PIV

Figure A.15.: Time-averaged 2-dim. velocity field. Simulation vs. experiment (PIV method).
ΔT === 15 K. Top box: Plane x2(x′

2) = −0.1 m. Bottom box: Plane x3(x′
3) = −0.2 m.
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A.2. Case studies - Test case CenCon, a RB problem affected by Coriolis force

ΔT === 5 K, Q = 2

rot. on rot. off

ΔT === 8.5 K, Q = 2

rot. on rot. off

ΔT === 15 K, Q = 2

rot. on rot. off

ΔT === 28 K, Q = 2

rot. on rot. off

Figure A.16.: Instantaneous vortex structures in the simulation (iso-surfaces of criterion Q),
t = 400 s, Q = 2. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K. Left:

Rotation mode roton. Right: Non-rotation mode rotoff.
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ΔT === 5 K, Q = 10

rot. on rot. off

ΔT === 8.5 K, Q = 30

rot. on rot. off

ΔT === 15 K, Q = 30

rot. on rot. off

ΔT === 28 K, Q = 30

rot. on rot. off

Figure A.17.: Instantaneous vortex structures in the simulation (iso-surfaces of criterion Q),
t = 400 s, Q = 10 and Q = 30. Top to bottom: ΔT = 5K, ΔT = 8.5K, ΔT = 15K, ΔT = 28K.

Left: Rotation mode roton. Right: Non-rotation mode rotoff.
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