
Philip Axer

Performance of Time-Critical Embedded
Systems under the Influence of Errors
and Error Handling Protocols

Cuvillier Verlag Göttingen
 Internationaler wissenschaftlicher Fachverlag

February 16, 2012 | Jonas Diemer | Modeling of Ethernet AVB | Page 12

Tx Terminal

Switch Packet

Bit error on wire
Tail drop

Tx Terminal

Rx Terminal

Rx Terminal
Output buffers

Performance of Time-Critical Embedded Systems
under the Influence of Errors and Error Handling Protocols

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Performance of Time-Critical Embedded Systems
under the Influence of Errors and Error Handling

Protocols

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der
Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von: Dipl.-Ing. Philip Axer

aus: Henstedt-Ulzburg

eingereicht am: 23.10.2015

mündliche Prüfung am: 30.11.2015

1. Referent: Prof. Dr.-Ing Rolf Ernst
2. Referent: Prof. Dr. rer nat Hermann Härtig
3. Referent: Apl. Prof. Dr.-Ing. Wael Adi (Vorsitzender)

Druckjahr: 2016

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.
1. Aufl. - Göttingen: Cuvillier, 2016
 Zugl.: (TU) Braunschweig, Univ., Diss., 2016

© CUVILLIER VERLAG, Göttingen 2016
 Nonnenstieg 8, 37075 Göttingen
 Telefon: 0551-54724-0
 Telefax: 0551-54724-21
 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages
Ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem

1. Auflage, 2016
Gedruckt auf umweltfreundlichem, säurefreiem Papier
aus nachhaltiger Forstwirtschaft.

 ISBN 978-3-7369-9197-2
 eISBN 978-3-7369-8197-3

Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

Dissertation an der Technischen Universität Braunschweig,
Fakultät für Elektrotechnik, Informationstechnik, Physik

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Acknowledgements

The research presented in this dissertation was a result of six years of
intensive work at the Institute für Datentechnik und Kommunikations-
netze at the Technische Universität Braunschweig. I would like to express
my sincere gratitude to the research group including the administrative
staff and the workshop. Especially, I would like to thank the head of the
group, my advisor, Prof. Ernst for making this possible for me. Prof. Ernst
understands to connect academic research and industry like nobody else
while still thinking one step ahead.

Also I would like to thank the entire research staff including all former
colleagues, be it Post-Docs, Phd students as well as Bachelor and Master
students. Without the numerous technical whiteboard discussions, coffee
rounds, and late-night discussions this work would not have been possible.
It were the people that made IDA a very special place for me.

I would like to express my special gratitude to my best friends who
where always there whenever I needed them. Without the love and support
of my family Ingeborg, Klaus, Steffen, Caroline my academic career and
this work would never have been possible. Finally, I would like to thank
Annemarie for putting joy and happiness in the time of the writing and
beyond.

iii
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Kurzfassung

Sowohl Eingebettete Systeme im Allgemeinen, als auch Sicherheitskriti-
sche Systeme im Speziellen werden zunehmend komplexer. Hinzu kommt,
dass aufgrund der Verkleinerung der Strukturbreite moderner Halbleiter-
prozesse die transiente Fehlerrate deutlich ansteigt. Daher kann nicht von
einem fehlerfreien Betrieb von zukünftigen eingebetteten, sicherheitskriti-
schen Systemen unter nominal Bedingungen ausgegangen werden.

Als Faustregel kann man zusammenfassen, dass die Schlüsselparame-
ter im Entwurfsraum Performance, Preis und Zuverlässigkeit so gut wie
immer widersprüchliche Entwurfsziele sind. Diese Arbeit zielt auf die-
sen Entwurfsraum ab, zeigt die Herausforderungen und diskutiert die
Trade-Offs.

Von besonderem Interesse ist die Zuverlässigkeit unter Echzeitaspek-
ten. Selbstverständlich gibt es Fehlerbehandlungsprotokolle, Fehlercodes
und modulare Redundanz. Allerdings hat die Korrektur von Fehlern im-
mer einen gewissen Einfluss auf das Zeitverhalten des gesamten Systems.
Selbst, wenn ein Fehler korrigiert werden konnte, ist unklar, unter welchen
Situationen das Zeitverhalten eingehalten wird. Dies kann zu der absurden
Situation führen, dass ein Fehler in einem Fahrerassistenzsystem korri-
giert werden kann, dennoch aber das Verpassen einer Deadline zu einem
Systemfehler führt.

In dieser Arbeit stellen wir die ASTEROID Plattform vor, die im Rahmen
einer Kooperation der TU Braunschweig mit der TU Dresden entstanden
ist. Diese Plattform ist speziell im Hinblick auf Echtzeitaspekte, Performan-
ce, Zuverlässigkeit und damit einhergehend Sicherheit entworfen worden.
ASTEROID unterscheidet sich von anderen MPSoC Plattformen durch
seinen Cross-Layer Fehlerbehandlungsansatz. Die eigentliche Hardware-

v
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

plattform implementiert nur das absolute Minimum an Fehlertoleranz,
um das darüber geschaltete Betriebssystem zu unterstützen. Dieses über-
nimmt dann die eigentliche Redundanz und erlaubt damit eine flexible
Mischung von redundanten und nicht-redundanten Anwendungen.

In dieser Arbeit wird die Plattform in Bezug auf die Echtzeitperformanz
unter Fehlern in einer kompositionellen Weise untersucht. Dafür werden
Fehlereffekte in der on-chip und off-chip Kommunikation sowie Fehler im
eigentlichen Rechenkern selbst betrachtet.

Der wissenschaftliche Beitrag dieser Arbeit liegt zum einen in einer
generalisierten kompositionellen Performanz Analyse, die zudem Fehleref-
fekte berücksichtigt. Zum Anderen werden Ende-zu-Ende Protokolle und
redundante Anwendungen modelliert und in Bezug auf ihre Echtzeitfä-
higkeit untersucht. Für viele der genutzten Verfahren wird auch eine
Zuverlässigkeitsabschätzung des Echtzeitverhaltens bei einem gegebenen
Fehlermodell durchgeführt.

vi
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Abstract

As for the entire embedded-systems domain, the complexity of safety-
critical systems is growing rapidly. Additionally, the rate of errors in
such devices also increases for instance due to silicon shrinking. Hence,
error-free operation under in-specification operating conditions cannot be
assumed for next-generation safety-critical devices.

As a rule of thumb the key design parameters for such systems perfor-
mance, price and reliability are almost always contradicting design goals.
This work addresses the related design space, highlights the challenges
and discusses the trade-offs.

Of unique interest is the reliability under real-time aspects. Naturally,
there are error-handling protocols, error-correcting codes, and modular
redundancy available. However, the effect of errors always has an influence
on system timing. Even if an error is handled and corrected, it remains
unclear under which situations timing requirements are met. This leads to
the absurd situation that a device such as an advanced driver assistance
system produces correct data even under errors but fails to deliver service
because hard deadlines are missed.

We present the ASTEROID architecture as a next-generation high-
performance, real-time platform which addresses reliability and thus safety
aspects. ASTEROID differs from other MPSoC platforms in its cross-layer
error handling approach. The hardware implements the bare minimum
to support the operating system with support for redundant computing,
allowing the software to flexibly schedule tasks for redundant or regular
execution. This architecture was joint work between TU Braunschweig
and TU Dresden. In this work, we present the hardware architecture and
discuss the real-time performance under errors in a compositional way.

vii
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Therefore, we consider errors in communication (be it on-chip as well as
off-chip) and errors in the processing core itself.

The scientific contributions are first to extend compositional performance
analysis (CPA) also by covering error effects, second to cover end-to-end
error protocols with CPA, third to provide execution models and analysis for
redundant execution and finally to bound the likelihood of timing violations
in communication and computation under a given error model.

viii
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Role of Safety Standards 2
1.3 Development Process for Safety-Critical Systems 4
1.4 Trends . 6

1.4.1 Architecture Complexity Challenge 6
1.4.2 Cyber-Physical Systems Challenge 9
1.4.3 System of Systems Challenge 9
1.4.4 Adaptability and Software Evolution Challenge . . 10
1.4.5 Resiliency Challenge 11
1.4.6 Mixed-Criticality Challenge 13

1.5 Integration and Verification of Mixed-Criticality Applications 14
1.6 Concepts of Dependable Computing 17
1.7 Summary and Contribution 19
1.8 Outline . 20

2 Building Reliable Computer Systems 21
2.1 Traditional Fault-Tolerance Approaches 21
2.2 ASTEROID Approach . 24

2.2.1 IDAMC Integrated Many-Core 27
2.2.2 Hardware-assisted State Comparison 30

2.3 Comparison and Performance Overview 33
2.4 Summary and Challenges of ASTEROID 35

3 Timing Verification of Safety-Critical Real-Time System 37
3.1 Related Work in System-Level Analyses 39

i
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

CONTENTS

3.2 System Model . 40
3.2.1 Structural Model 40
3.2.2 Timing Model . 42

3.3 Resource Analysis . 45
3.3.1 Generalization and Formalism 46
3.3.2 Strict Priority Preemptive (SPP) 50
3.3.3 Strict Priority Non-Preemptive (SPNP) 51
3.3.4 First In - First Out (FIFO) 53

3.4 System Analysis . 57
3.5 Summary . 59

4 Multi-Master and Point-to-Point Communication 61
4.1 Channel Model . 61
4.2 Error Models . 63

4.2.1 Descriptive Parameters for Lossy Channels 64
4.2.2 Binary Symmetric Channel 66
4.2.3 Two State Gilbert Loss Model 69

4.3 Probabilistic Response-Time Analysis under Errors 71
4.3.1 Related Work . 73
4.3.2 Busy-Period Fixed-Priority Arbitration 74
4.3.3 Busy-Period First-In First-Out Arbitration 78
4.3.4 Probability Computation 80

4.4 Convolution Analysis for Fixed-Priority Arbitration 85
4.4.1 Related Work . 85
4.4.2 Stochastic Busy Window 89
4.4.3 Stochastic Queuing Delay and Response Time . . . 95

4.5 Experiments . 98
4.5.1 Controller Area Network 98
4.5.2 On-Chip Interconnect Arbitration 101

4.6 Summary . 106

5 Switched Networks 109
5.1 Related Work . 110
5.2 Error Control Protocols . 111

5.2.1 Stop and Wait ARQ 111
5.2.2 Go-Back-N . 112

5.3 Performance of Stop and Wait ARQ 114
5.3.1 ARQ Timing Model 114
5.3.2 Latency in the Error-Free Case 115
5.3.3 Stop and Wait Response Time 117
5.3.4 Timing Under Errors 119

5.4 Performance of Go-Back-N 121
5.4.1 Latency in the Error-Free Case 121
5.4.2 Timing under Errors 125

ii
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Contents

5.5 Experiments . 127
5.5.1 Daisy Chain . 127
5.5.2 Two Switches Automotive Setup 130

5.6 Summary . 133

6 Multiprocessor on Chip 135
6.1 Error Detection and Recovery Model 136

6.1.1 Fault-Tolerant Tasks 136
6.1.2 Fork-Join Task Model 138
6.1.3 Failure Modes and Error Handling 141

6.2 Performance of Fork-Join Tasks 143
6.2.1 Related Work . 143
6.2.2 Response-Time of Independent Tasks Under the

Presence of Fork-Join Tasks 144
6.2.3 Response-Time of Fork-Join Tasks 148
6.2.4 Worst-Case Timing Evaluation of Replication . . . 152

6.3 Reliability Prediction of Replication 155
6.3.1 Related Work . 156
6.3.2 Error Model and Metrics 157
6.3.3 Formal Reliability Analysis 159
6.3.4 Experiments . 165

6.4 Summary . 168

7 Conclusion 171

A Publications 175
A.1 Related to the Thesis . 175

A.1.1 Reviewed . 175
A.1.2 Unreviewed . 177

A.2 Unrelated to the Thesis . 177

Bibliography 181

iii
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

CHAPTER 1

Introduction

1.1 Motivation

Embedded systems have penetrated our daily life without many of us
noticing, by that blurring what we mean by an embedded system. Our
day-to-day routine gets into contact with computer systems in all aspects,
and some of these daily encounters depend on the correctness of embedded
computers. Modern, public transportation systems offer a fully automated,
unattended train operation which is capable of handling starting, stopping,
door operation as well as emergency situations. Similarly, modern cars are
equipped with semi-automatic driver assistance features and it is only a
matter of time until autonomous driving will be the common case.

Medical devices such as wearable health technology are predicted to
revolutionize medical care. Gadgets for medical therapy, sports, or just
every-day fitness are capable to track brainwaves, heart rate, blood glucose
level, sleep pattern, and more. Wearable devices cannot only be used to
monitor and track but also to regulate for instance inject medication or
stimulate nerve cells. It is predicted that by end of 2016 more than 100
million wearable medical devices are sold per year. The market for fitness
related products will reach 80 million units by then.

In the context of embedded systems, safety critical systems play an
important role in medical care, commercial aircraft, nuclear power, and
weapons [153]. There are many different definitions of what safety critical
precisely means. A customary meaning is given in [153] which encompasses

“systems whose failure might endanger human life, lead to
substantial economic loss or cause extensive environmental
damage.”

1
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

This is consistent with most readers intuition, which account railway
signaling systems, flight control systems as well as steer by wire as safety
critical. However, a more general definition is also given by [153] which
matches the one of [13] which is based on the notion of consequences.

“If the failure of a system could lead to consequences that are de-
termined to be unacceptable, then the system is safety-critical.”

Traditionally, safety critical systems were closed, self-contained comput-
ers systems with very limited interface to its environment. This includes
systems such as the Ariane 5 rocket of which a crash can result in a fi-
nancial loss of more than US$ 370 million (Cluster spacecraft incident)
as well as the Boeing 777 which is equipped with several computerized
systems which replaced most of the traditional mechanical and hydraulic
equipment. A report by the National Transportation Safety Board to the
Federal Aviation Administration (FAA) [235] describes serious problems
with the glass cockpit displays which replaced the traditional analog dials
and gauges. These problems have led to at least 50 in-flight incidents,
some of these causing the pilots to panic due to blank displays and lost
communication. Such a failure can result in the death of hundreds of
passengers.

However, recently a new specimen of non-traditional safety-critical
systems has emerged. Such systems are not directly linked to catastrophic
hazards, but may indirectly cause them. Nowadays, the cellular phone
network does not only provide a convenient way to communicate with each
other, but is also the backbone for emergency service (i.e. 112/911). In most
countries the cellular network serves a dual use: it is used to signal an
emergency to authorities as well by the authorities themselves, mainly to
coordinate the operation. The importance of the cellular infrastructure
for the greater public good (saving lives, preventing fires, etc.) elevates
the former convenience technology to a safety-critical level. Other non-
traditional sectors include banking, (non-nuclear) electricity generation,
management of water systems (i.e. desalination).

1.2 The Role of Safety Standards

In the last years, we saw a strong trend towards standardization of the
entire safety life cycle. Traditional quality assurance and process manage-
ment guidelines such as ISO 15504 / SPICE [139] or ISO 9001 [138] are
not suitable for the development process of safety critical systems.

This is already known from the conservative avionics industry, in which
software must be developed and tested according to the domain specific stan-
dard DO-178b [224] and hardware components according to DO-254 [223].
The final aircraft will only achieve FAA approval (Type Certificate), if the

2
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.2. The Role of Safety Standards

non-tolerable risktolerable riskresidual risk

actual risk reduction
necessary risk reduction

Figure 1.1: If the risk is not tolerable, additional measures such as fault-
tolerance must be applied.

rules and processes of the required standards are obeyed. A similar pro-
cess is compulsory for industrial plants such as power plants and heavy
machinery [135].

Interestingly, such standards are rather new to the automotive domain
and were not introduced prior to 2011. This has two reasons: Firstly be-
cause the consequences of a car crash are mostly considered as benign
compared to a plane crash and secondly, because automotive manufactur-
ers were keen to provide very high quality products to prevent liability
issues. This changed with the introduction of the ISO 26262 [136] which
is loosely based on its industrial counterpart IEC 61508. However, there
are some differences. IEC 61508 is targeted towards equipment produced
in low quantities, where ISO 26262 addresses volume production of the
automotive market. Since then, industry puts a tremendous effort into
developing a safety culture around their products.

The concept around ISO 26262 is based on risk and, as previously
explained, safety is defined as the absence of unreasonable risk. Although
the concept of risk seems to be very obvious, it is rather complicated to asses
and systematically biased by the limitation of the human mind. The human
mind tends to apply simple heuristics when risk is assessed. People are
bias towards recent news and experiences which leads to a cognitive bias
towards these events. This is called availability heuristic [277]. In order
to systematically assess risk, the combination of likelihood of occurrence
and the severity of the harm of a hazard must be considered. The risk is
tolerable if society can accept it and safety standards guide the designer to
determine and quantify the acceptance.

Figure 1.1 shows the typical case for a safety critical system. After a
particular function is evaluated according to the guidelines dictated by
the standard, it is evident that the risk is non-tolerable. This can be the
case if standard implementations such as commercial of the shelf (COTS)
hardware or software are too error prone. Thus, the actual risk which
emanates from the function must be reduced by applying further measures
covered for instance by using a different technology or fault tolerance

3
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

approaches. Any deployed function which is integrated in a larger system
obviously still exhibits a residual risk - but safety standards guarantee
that this risk remains below a tolerable threshold.

Now, it is interesting to know the additional effort required to be com-
pliant with the state of the art safety standards, their methods and pro-
cesses [244].

• Generally, risk dictates effort.

• Comparison with reference products is required.

• Assessment of known information and data must be carried out.

• Additional research is required for novel features with high risk which
do not origin from previously used ancestor technology.

When designing a traditional safety critical system, the entire system
context must be known. This includes the platform architecture, deployed
software modules and their interaction as well as the physical boundary
conditions such as worst-case environmental conditions (i.e. vibration,
temperature and other stress).

1.3 Development Process for Safety-Critical Systems

To handle and master a successful safety critical embedded system, an
appropriate development process is mandatory [123]. The automotive
industry, especially in Germany, typically applies the V-Model [2, 247, 136].

The V-Model separates the design and specification from implementation
and testing as shown in Figure 1.2. Safety standards such as the ISO 26262
have refined the V-Model and incorporated the safety requirements and
safety verification into the process. This ensures traceable level of design
complexity and intrinsically produces the required assurance level required
by the certification agency.

Contrarily to the standard V-Model as described in [2], the V-Model
as used in ISO 26262 starts with a safety assessment as a starting point.
Here safety functions are identified, the risk is assessed and a high level
functional safety concept is produced. The safety concept is formalized as
a safety requirements specification which is later used for the functional
safety assessment, to validate whether the final system satisfies all safety
concerns. This typically involves a Fault Tree Analysis (FTA) [134], which
is a top-down failure analysis that reveals the root cause for undesirable or
catastrophic events which can be linked to the system under design [171].

In the system design step, the system architecture is specified and
broken down into components with specified interfaces. This includes the
hardware architecture such as communication and processing platforms

4
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.3. Development Process for Safety-Critical Systems

hazard analysis
risk assessment
functional safety concept

specification safety
requirements

system design

component design

implementation

functional
safety assessment

component integration

HW/SW testing

Release
for production

system integration test

component
verification

safety validation

system integration

OEM

Tier 1

design phase
verification

design phase
verification

design phase
verificationSpecification &

Implementation
Integration &
Test

Figure 1.2: Simplified V-Model according to ISO 26262 [136].

as well as the high level software architecture. Here, safety standards
recommend to capture a consistent set of requirements for instance by using
Controlled Requirements Expression (CORE)[188]. Furthermore, tools,
models and languages to reflect functional and non-functional behavior
are strongly advised (e.g. MARTE[203], MATLAB / Simulink, AADL[238],
SysML[204]).

In the component design process, individual components are broken
down into function blocks which are later implemented by a programmer or
hardware designer (bottom of Figure 1.2). For the hardware and software
specification, ISO 26262 demands a continuous evaluation on the impact on
safety. For instance, once the hardware platform is known, fault injection
tests and further reliability tests should be carried out. Otherwise, there
is an unknown risk of exceeding the reliability threshold and missing the
safety goals. These failure tests are performed inline with test automation
such as hardware-in-the-loop (HIL) tests, rest-bus simulations.

The right branch of the V-Model, Integration & Test, is responsible to
verify and test the implemented functions and components against the
specification. Naturally, this includes the error-free behavior as well as the
service in case of errors. When the final safety validation step is completed
successfully, the system can be released for production.

As shown in Figure 1.2, the component design and implementation is
usually performed by the suppliers. To ease this transition step, the auto-

5
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

motive industry has standardized to automotive software and operating
system interfaces in scope of the Automotive Open Systems Architecture
(AUTOSAR) [12]. The concept of AUTOSAR is to focus on portability, com-
posability and extendability where possible. Here AUTOSAR specifies a
Runtime Environment which provides platform as well as communication
abstraction for applications [116]. It implements well defined interfaces to
connect external communication interfaces such as FLEXRAY, Controller
Area Network, Ethernet and others.

AUTOSAR follows a component based design approach in which func-
tions are encapsulated in AUTOSAR Software Components (SW-C). These
components have well defined interfaces according to a standard description
format. Software components are connected to a virtual function bus which
abstracts the physical communication technology and allows application
agnostic message passing. This allows an easy cut of system functionality
into components without large overhead while maintaining a high degree
of flexibility.

1.4 Trends

The industry impact of embedded systems has increased during the last
decades and this trend is predicted to continue. The reason for this is
that embedded computing and electronics are the main driver for features
and the key for product differentiation. According to [217], the embedded
systems market will reach a e1.5 trillion in revenue by 2015. The most
important market segments measured by their compound annual growth
rate (CAGR) are energy (45.4%), communications (13.2%), automotive
(12.2%) as well as healthcare (11.4%). Interestingly the growth of consumer
products is predicted to be only 6.2%. This highlights the importance of the
special requirements and constraints of highly specialized domains with
unique constraints such as low energy, low cost, ultra-high reliability, hard
real-time under extreme environmental conditions. These market segments
have to tackle the following new challenges to continue successfully their
growth.

1.4.1 Architecture Complexity Challenge
There is a rapid technology advancement which enables the designer to
add more and more features and functionality to the system. As a conse-
quence, the size and complexity grows exponentially. This problem is likely
getting worse, if the additional complexity cannot be conquered by composi-
tional model-based design processes. Generally, there are two orthogonal
dimensions to the complexity challenge: architecture as well as software
complexity. The software complexity for a system in the automotive domain

6
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.4. Trends

6

8

10

12

14

16

18

20

1960 1970 1980 1990 2000 2010 2020

Ln
(O

nb
oa

rd
 S

LO
C

)

Year

Estimated Onboard SLOC Growth

Line Fit
Boeing
Airbus
Unaffordable

299M

27M

A330/340: 2M
A320: 800K

A310: 400K

A300FF: 40K

A300B: 4..6K

INS: 0.8K

8M

Slope = 0.17718
Intercept = -338.5
Curve implies SLOC doubles

about every 4 years

134M
61M

B757, B767: 190K
B747: 370K

B777: 4M

B737: 470K

The line fit is pegged at 27M
SLOC because the projected
SLOC sizes for 2010 through
2020 are unaffordable. The
COCOMO II estimated costs
to develop that much software
are in excess of $10B.

$160 B

$7.8 B

$290 M
$81 M
$38 M

Assumed
Affordability
Limit

Figure 1.3: Amount of certified software code and the associated cost.
(Source [285])

increased by two orders of magnitude (106 to 108 object instructions) in only
10 years which is comparable to the growth of the linux kernel during the
same timespan [83]. A similar trend can be observed in the avionics indus-
try [285], where the code size roughly doubles every year. It was estimated
that by 2008 the associated costs including certification according to safety
standards exceed a $ 7.8 billion threshold. This is assumed to be the afford-
ability limit, software which exceeds 17 million lines of code is predicted
to be uneconomical for aircraft designs. A modern A380 aircraft already
has 100 million lines of code [287]. Handling this enormous complexity was
only possible by applying formal methods such as model checking, model
driven engineering on platform level as well as a compositional analysis
on system level. Also standardized and modular software architectures
ease the design process. Examples for such frameworks are AUTOSAR [12]
used in the automotive domain as well as ARINC 653 [6] which is used in
avionics.

Also the hardware platforms become more and more powerful. This ad-
vancement has boosted the data rate and processing performance required
for today’s and tomorrow’s advanced driver assistance. Typical examples
are in-vehicle navigation systems, adaptive cruise control and sophisticated
camera-based precrash detection systems. The integration of multiple

7
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

Perf
Monitor

CoreNet
Trace

Watchpoint
Cross
Trigger

Real Time Debug

Aurora

10-lane 5-GHz SerDes

1GE

1GE

Frame Manager

1GE

1GE

 DMA
Security 4.2

Pattern Match
Engine 2.1

eLBC
Queue

Mgr

Buffer
Mgr

eOpenPIC

Internal

Power Mgmt

eSDHC

eSPI

2x DUART

4x I2C

Clocks/Reset

GPIO

CCSR

BootROM

2x
USB 2.0 PHY

Security
Monitor

PreBoot
Loader

64-bit DDR3/3L
Memory Controller

CoreNet™
Coherency Fabric

PAMU PAMUPAMU PAMU
Peripheral

Access Mgmt Unit

Buffer

Parse, Classify,
Distribute

S
A

T
A

 2
.0

Test
Port/
SAP

1GE
PCIe sRIOPCIe

PCIe
sRIO

Power Architecture®
e500mc Core

32-Kbyte
D-Cache

32-Kbyte
I-Cache

RapidIO Msg
Mgr (RMan)

 DMA

1024--Kbyte
Frontside CoreNet

Platform Cache

P2040

Figure 1.4: Block diagram of Freescale P2040 multi-core processor
(Source [97])

processing elements allows to reduce the frequency, thus power and temper-
ature and are an attractive design target for all computing domains. At first
glance, this sounds promising as it enables the integration of tremendous
complexity in the first place. The vast number of cores can potentially be
used to integrate and partially isolate different functionality on such a plat-
form. However, there is a downside: Processing elements found on multi- as
well as many-core architectures share many common resources such as the
communication infrastructure, caches, memory controllers and I/O ports.
An example for a modern multi-core architecture is shown in Figure 1.4,
a switch fabric connects all cores to shared DMA units, shared platform
cache, a single DDR3 memory controller and various peripherals. This
causes an easily overlooked entanglement of the timing and performance
for the applications running on the platform [159]. Obviously, this inhibits
a straight forward compositional consideration and leads to additional com-
plexity during the verification stage. Compared to traditional architectures,
the behavior of multi-core designs seems unpredictable and afflicted with
complex to grasp timing anomalies. Therefore, traditional design processes
are not applicable to multi- and many-core designs. Also, recent research
has shown that the real-time performance of multi-core architectures does
not necessarily outperform traditional single core designs [27] in all cases.

8
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.4. Trends

1.4.2 Cyber-Physical Systems Challenge
Most systems that we know today such as traffic control, health care,
automotive safety, smart power grids, defense systems, environmental
control and manufacturing have a tight coupling of computing and the
networking infrastructure with physical processes. These systems are
an integral part of the feedback loop where the physical processes affect
computations and the other way around [169]. Sometime in 2008, the
name cyber-physical system (CPS) was coined and serious research in this
domain just started a couple of years ago.

In the physical world, the passage of time is inevitable and processes
(e.g. mechanical, chemical) are concurrent by nature. Contrarily to the
physical world, computation and communication models are intrinsically
sequential and lack the proper abstraction. Timing and predictability was
often neglected in computer science as pipeline design, caches and compiler
design was tweaked to optimize the average-case performance (“make the
common case fast”).

A new level of abstraction must be found [26] which effectively com-
bines computational models with models of the physical process to properly
capture mutual dependencies. Here, traditional software component tech-
nologies failed as they are too software centristic. This includes operating
system design, object oriented programming and service oriented architec-
tures, because they abstract away important part of the system behavior
(i.e. timing) as they try to focus only on the functional aspect of component
design.

1.4.3 System of Systems Challenge
As discussed, new markets emerged such as smart electricity and water
meters used for monitoring which will boost the sales of low-power, low-cost
hardware. The next step is to combine embedded systems in a large scale
global network of data and services. This leads to a new situation [60]:
Systems of Systems (SoS) with a world of high computing density and
drastically increased data rates and traffic volumes. There is no generally
accepted definition for Systems of Systems. However, it is common ground
that SoS are

“themselves comprised of multiple autonomous embedded com-
plex systems that can be diverse in technology, context, opera-
tion, geography and conceptual frame.” [149].

An example for a typical SoS is the Coast Guard Deepwater Program
[206] which is a 25 year program that connects recovery aircrafts, patrol
boats, unmanned aerial vehicles with ground stations such as command,
control and intelligence to replace almost all of today’s US Coast Guard’s

9
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

equipment. Other examples are FAA Air Traffic Management, Army Future
Combat Systems, intelligent transport systems as well as Robotic Colonies.

In scope of the United States national space program new System of
Systems engineering models and frameworks were proposed [65], which
are now being adopted for non-defence related projects. These frameworks
do not only account for the technological challenges but also consider the
political, social and economic factors. SoS ultimately lead to heterogeneous,
distributed architectures and it remains to be seen if such complex systems
can be still be realized, validated and handled, if this trend continues.

1.4.4 Adaptability and Software Evolution Challenge
Today, a typical automotive vehicle design comprises many electronic con-
trol units each implementing distinct functionality (e.g. anti-lock braking
unit, traction control system, emergency break assist). An upgrade of
functionality is only possible through facelift upgrading or a completely
new car design. Upgrading an deployed car is cumbersome and expensive:
For example, the latest engine management configuration cannot be inte-
grated without an expensive recall. On the other hand, customers have
high expectations with respect to the in-vehicle infotainment system. They
are used to the update cycle of entertainment products in the order of a
few month. Google deploys major updates for their smartphone operating
system Android every six to nine months where automotive entertainment
software is never updated at all unless the customer decides to buy a new
car, typically after five to six years.

Also, there is a paradigm shift towards software and network centric
automotive design. New features in the automotive industry are mostly
software driven and could be retrofitted into legacy cars. Such an “app
store” opens up a totally new business model for OEMs and dealers.

However, the concept of software adaptability and evolution is not com-
pletely new [88]. But it has never been considered in the context of em-
bedded as well as cyber physical system, where adaptability is inevitably
linked with two conceptual problems: The first challenge is the competition
of applications for resources. New applications share the same platform,
this includes the communication infrastructure such as busses and switches
as well as processors and memory. And the second challenge is the impact
of platform and architecture change. If new hardware is added (i.e. a head
up display is added to the system), other devices must be aware of the new
functionality (i.e. for signal routing and configuration).

Both effects tightly couple legacy and new functionality. This is ex-
tremely problematic in domains where safety, security and availability
are key constraints as such properties cannot easily be guaranteed after
platform or software changes. Especially when new functionality cannot be
trusted because it is developed by an unknown supplier. Novel mechanisms

10
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.4. Trends

which must be provided at design time must guarantee sufficient isolation,
while not sacrificing flexibility and performance. Examples for such dy-
namic methods are load balancing, integration of quality of service and
dynamic resource management [5]. Additionally these approaches must
be integrated to provide feedback-based resource scheduling, middleware
support for dynamic updates and new dynamic models which can be used
for on-line verification. Otherwise integrity cannot be preserved and new
subsystems cannot be admitted.

1.4.5 Resiliency Challenge
Continuous growth of complexity always reflects on the reliability of a
system caused by nature of statistics. Interestingly, this is not a new
phenomenon in computer technology. In the past, the cause for faults used
to be the manufacturing and development process that impacted the quality
of a product. This was tackled by testing the circuits and sorting out bad
ones. Also the environment in which the device is operated affects the
reliability. For instance, the soft-error rate increases with altitude. Future
semiconductor devices will face new challenges [43, 36]:

• Transistor variability

• Device degradation

• Sensitivity to ionizing rays and particles

This leads to reliability problems of modern and future silicon devices
which is illustrated in Figure 1.5. The graph shows the quality (i.e. speed
grade) of a silicon gate over the time. Each dot represents an instance of the
gate over time. After manufacturing, some devices are faster than others
due to process variability. Thus, some gates are beyond the acceptable
quality threshold (red area). Over time, aging effects lead to consistent
decrease of performance. After some time, the gate operates out of the
specified operating conditions. Also spontaneous, transient effects can occur
(e.g. caused by negative-bias temperature instability). Generally, these
effects are inherent to the silicon process and already existed in previous
generations. However, in next generation devices these characteristics will
appear much more pronounced.

The size of a transistor will, if the trend continues, decrease further -
even beyond todays (2014) 22 nm technology node. At this stage, various
effects become noticeable [184]. The feature sizes will be so small that
different dopant areas will be separated by only a few atom layers. This
causes dopant fluctuation which comes from the discreteness of dopant
atoms in the transistor channel. Thus, because the law of large numbers

11
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

time

quality/speed
of gate

&

process
variability

acceptable quality/speed threshold

aging

transient failure

Figure 1.5: Failures over time. Shown are process variability and quality
decay of a gate (NAND) over time (ageing). Transient effects lead to
spontaneous failures [36].

does not apply anymore, single atomic defects will have more impact on a
transistor than before.

A second source of variability is sub-wavelength lithography [289]. This
is the reason for line edge roughness and other effects resulting in varia-
tion. The consequence is that each transistor will have its own electrical
characteristics which will deviate drastically from the mean. Aside from
these static causes for transistor variability that emerge during fabrication
there are dynamic variations which occur during operation and vary over
time. Different parts of a chip are utilized differently depending on the
application that is executed. Thus, the heat flux will be different across the
microprocessor die. This heat puts more demand into the power supply grid
because the heat results in time-dependent, dynamic supply voltage drops
and impacts the charge mobility. This impacts the path delay of the logic
gates negatively. Additionally, the non-uniform heat distribution causes an
application-dependent aging pattern and heterogeneous degradation.

The third challenge is the sensitivity to ionizing rays and particles. Sin-
gle event upsets (SEU) happen, if ionizing rays strike through a transistor
and change the logic state of parts of the circuitry [114]. Although this is
not a new problem it gets more important if less charge (critical charge
Qcrit) is needed to flip a bit. Interestingly, the error rate increases exponen-
tially with decreased critical charge [275]. The new challenges need to be
tackled in today’s research and call for resilient platforms.

12
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.4. Trends

no time-critical
functions

mostly time-critical
functions

most functions
with safety
requirements

no functions with
safety
requirements

traffic lights with
centralized
control

general purpose
computing entertainment/

multimedia

automotive –
active safety
control

aircraft - cabin
management

avionics – flight
management system

time criticality

sa
fe

ty
 c

rit
ic

al
ity

optical wideband
communication

industrial – process
automation

medical -
pacemaker

mobile
communication

Figure 1.6: Two dimensions of mixed-criticality [14].

1.4.6 Mixed-Criticality Challenge
The previously mentioned advent of multi- and many-core processors offers
the appealing possibility to efficiently consolidate different applications
with a multitude of functionalities onto a single platform.

These applications have mixed-criticality requirements [281]. [28] de-
fines a mixed-criticality platform as one that offers support for multiple
functionalities, of which some will me “more important to the overall wel-
fare” of the system than others. Obviously, they also recognized that the
importance arises of the aforementioned certification problem, in which the
correctness safety critical applications must be certified.

Some applications may have hard real-time constraints or are safety-
critical whereas others are non-critical at all (e.g. best-effort entertainment).
A design-space taxonomy and various examples of application types are
depicted in Figure 1.6. The most interesting area is in the upper right
corner (grey circle), here applications are time critical as well as safety
critical.

An integration of those applications, requires special considerations in
the design of MPSoC platforms and deployment of applications. Further-
more, increasing design costs will force MPSoC manufacturers to offer
more flexible solutions that can target a wider range of applications. This
means that the hardware support required by mixed-critical real-time ap-
plications must be flexible to be adapted for different applications. The
challenging problem is to provide an effective, efficient, yet easy integration
of mixed-criticality applications.

13
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

Also, computer and network systems must be considered to operate
erroneous from time to time [41]. These errors can be single event upsets
(cf. Resiliency Challenge) or bit errors on the communication medium such
as Controller Area Network (CAN) [233], Ethernet (IEEE 802.3), or even
the network on chip links. Here, it must be guaranteed that in case of
transient error or retransmissions, critical communication can still deliver
service according to its specification.

1.5 Integration and Verification of Mixed-Criticality
Applications

The already complex timing behavior of a system which contains solely
critical applications is usually certified by using formal analysis meth-
ods. For critical applications, the software behavior in terms on runtime,
memory accesses as well as cache behavior can be analyzed by static pro-
gram analysis [115]. This is possible, because critical software is designed
and programmed such that loop iterations and call graph are known (no
dynamic jumps) and further dynamic constructs which are offered by to-
day’s programming languages are prohibited (e.g. MISRA C is used [8])
However, for non-critical application, such assumptions cannot be made
and analysis results cannot provided at all or are utterly conservative (cf.
mixed-criticality challenge).

There is a broad body of approaches for formal performance analysis
of systems. Here SymTA/S [120] can be used, which internally relies on
the busy-window approach [172] for component analysis and event-model
interfaces [232]. This approach supports a large variety of semantics such
as register communication [89], various scheduling policies for field-busses
[61], Ethernet [237, 74] as well as shared resource analysis for multicores
[240]. A similar approach is Real-Time Calculus (RTC) [272] which is based
on Network Calculus fundamentals [168] and used min-plus algebra to
derive formal worst-case bounds.

The most important aspect, when integrating mixed-criticality appli-
cations is, that the integration strategy must provide sufficient isolation
which is required by all major safety standards (e.g. [224, 135, 136]). Here,
for instance the IEC 61508 explicitly states:

“Where the software is to implement safety functions of dif-
ferent safety integrity levels, then all of the software shall be
treated as belonging to the highest safety integrity level, un-
less adequate independence between the safety functions of the
different safety integrity levels can be shown in the design.”

Formal analysis, as typically used for safety critical system is not enough
to provide sufficient proof of independence.

14
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.5. Integration and Verification of Mixed-Criticality Applications

time

LO

HI
trigger
execution
preemption

trigger frequency
exceeded

allocated execution
time exceeded

allocated error recovery time
exceeded

Figure 1.7: Typical timing problems, when low (LO) and high (HI) criticality
applications are integrated. Execution time, trigger rate exceedance as
well as error recovery overhead.

Figure 1.7 shows three typical timing problems which arise as a con-
sequence of insufficient independence. A low criticality application (LO)
is to be integrated together with a high criticality application (HI) on a
single-core processor (assuming fixed-priority scheduling). A low criticality
application can lead to starvation of the high criticality application for
three reasons: Due to insufficient testing, the anticipated execution time of
task LO could be exceeded which causes an unintended interference with
task HI. Secondly, the arrival rate (e.g. frequency) of the trigger for task
LO can exceed maximum specified rate. The third reason is introduced as
the consequence of error recovery activities. This can be retransmissions
on the communication medium or re-execution or a restart of task LO.

In general, for the integration of mixed-critical applications, the follow-
ing properties of low critical software must be anticipated:

1. the execution behavior (time and memory) is unknown

2. the interface specification is incomplete

3. the behavior in case of errors is unpredictable

There exist two obvious solutions to a mixed-criticality integration.
First, without considering isolation, the software stack can be considered
holistically and certified according to the highest criticality (SIL lift-up
effect [118]), as proposed by the standard. This approach is non-favorable
as it implies very high certification costs and the overall system utilization
is expected to be poor. This is due to the inherent over-provisioning in high
critical software and its formal models.

Second, architectural isolation approaches can be applied to isolate
software with respect to functional and non-functional behavior. ISO 26262

15
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

refers to this approach as “freedom from interference” [136]. To achieve
this, isolation has to be enforced on two levels. Functionally, tasks must be
isolated with respect to memory by using a hardware memory protection
unit (MPU) or memory management unit (MMU). Additionally, worst-case
timing interference must be bounded.

In this context, we can distinguish traditional approaches which follow
a classical divide and conquer approach as well as recent research that
permits a bounded interference between criticality levels. Traditional ap-
proaches focus on strict isolation, which was coined time orthogonalization
in [242]. Such approaches prevent any dynamic run-time interference be-
tween applications of different criticality levels. If fixed-priority scheduling
is used a criticality as priority assignment (CAPA) scheme can be used [199].
This suppresses any side effects on high criticality applications on single
processor platforms, as long as no shared resources are involved. However,
this may lead to poor responsiveness of low-critical applications[93]. This
can be achieved by providing guaranteed service budgets on busses, proces-
sors and memory for instance by using strict time division multiple access
with statically assigned time slots as used in the Time-Trigger Architecture
approach [157, 201].

A similar approach is used by Time-Triggered Protocol [155], TT-
Ethernet [156] as well as FlexRay [59]. Also avionic systems use this
scheduling approach in their Integrated Modular Avionics (IMA) computer
networks [6]. Such a TDMA scheme is also applicable to multicore plat-
forms. For instance, [99] uses synchronized partitioned scheduling which
guarantees that only memory accesses from one criticality level can occur.
Goosens et al. [105] present a reconfigurable SDRAM memory controller
that uses a TDMA scheme which is configurable with respect to slot sizes
and bandwidth allocations which is suitable for mixed criticality integra-
tion.

Usually, the strict isolation is only required between tasks of differ-
ent criticality levels, not between all tasks. Atacama [54], an Ethernet
framework for mixed-critical communication, also uses time triggering for
safety critical messages. Event-triggered messages are supported on a
best-effort basis. Also Flexray [59] supports time triggering through the
static segment as well as event-triggered messages through the dynamic
segment.

This is similar to hierarchical scheduling as used for instance in virtual
machines. Here a trusted hypervisor distributes a processing time budget
to guest operating systems, which in turn use their internal scheduling
policy. Virtual machines can distribute processing time according to a
TDMA scheme (e.g. as done by ARINC 653 [6]), use round robin [253] or a
server-based approach. Servers (e.g. deferrable server [263] and sporadic
server [37]) were initially designed for scheduling sporadic workload in
hard-real time environment [179], but can also be used to host mixed-

16
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.6. Concepts of Dependable Computing

criticality workload. A server has an assigned budget which is replenished
in regular time intervals.

Contrary to TDMA-based, strict isolation, more efficient integration
approaches have been proposed recently. To enhance the efficiency of low
critical, real-time applications, the typical worst-case analysis [219] can
be used. Low-critical, real-time applications may miss their deadline from
time to time, as long as bounds on the number (i.e. m out of n deadline
hits) can be given. Also monitoring can be used to prevent unpredicted
behavior [50]. In fact, monitors can be used twofold: Execution time
overruns can be detected by using workload-based monitoring approaches
[195]. AUTOSAR for instance proposes program flow checks, execution time
monitors as well as hardware watchdogs [11]. Software interfaces can be
monitored with respect to the activation pattern and stimulus consistency
[128, 196, 165]. Contrary to monitoring, strict isolation schemes such as
TDMA are not able to consume left-over processing time. Monitoring-
based approaches typically allow a better average-case performance for
low-criticality applications, as slack is recognized and efficiently distributed
and consumed. Hence, more dynamic schemes seem to be very well suited
for an efficient integration of workloads with such different requirements.

1.6 Concepts of Dependable Computing

As already motivated in the previous section, a key concern of a depend-
able system is, that it can justifiably be trusted. If the specification of a
component does not satisfy the safety constraints as specified according to
the safety concept (cf. ISO 26262 [136]) additional dependability measures
must be employed.

When speaking about dependability, we first need to establish an ade-
quate terminology [13]. An illustrative example of the relationship between
the key concepts is given in Figure 1.8.

For the following definitions, we assume that the system under consid-
eration consists of multiple components which communicate through well
specified service interfaces (cf. V-Model, Section 1.3).

A system provides correct service when its interface adheres to its
specification at all times. Otherwise we speak of a service failure or simply
failure. This is when the service provided by the system interface deviates
from its specification. A failure can only occur, if the system state is
somehow altered and drifts from a valid state. This state deviation is called
an error. Internally, errors can propagate from one component to another
(active error), stay dormant or even vanish after some time. The ultimate
cause of the error is the fault. This can be internal (e.g. a bit-flip in a
register) or external such as an erroneous stimulus.

17
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

Internal
Dormant

Fault

Error Error Input
error

External
Fault

Error

Component A

Propagation Propagation

Service
Interface

Propagation Propagation

Service
Interface

Component B

Propagation

Service status
of component A

Service status
of component B

Correct service

Failure
Incorrect
Service

Component boundary

Correct service

Failure
Incorrect
Service

Figure 1.8: Error propagation: Fault, error, failure chain according to [13].

In this context it is also important to differentiate between reliability and
availability. Reliability expresses how long a system can operate without
a failure. It is typically measured as mean time to (first) failure (MTTF).
Where availability denotes the time during which a system is operational.
In the context of safety critical system, reliability is typically the important
metric, since the first failure must be considered to be catastrophic.

We can distinguish two service failure classes (failure domain). The first
one is the content (data) failure, here the pure data information provided
by the system is incorrect. If the data provided by the system is correct, but
the result is delivered too late, we speak of a timing failure. Throughout
this thesis, we focus on timing failures as they play an important role in
hard real-time systems.

There are various types of and reasons for faults. If the design and
implementation process is not carried out carefully the system contains
design errors. This can be software bugs or even hardware implementation
bugs (e.g. the infamous Pentium floating point bug). Another class are low-
level hardware faults such as single event effects, stuck at errors caused by
degraded transistors.

It is the scope of fault tolerance to avoid failures through error detection
and recovery [13]. Without an adequate level of fault tolerance each com-
ponent poses a single point of failure. This means, that if a component is
erroneous, a single error will propagate and cause a system failure, leading
to a function failure as observed by the user. This is only permissible to
non-critical functions [170].

18
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1.7. Summary and Contribution

1.7 Summary and Contribution

In this chapter, we motivated the importance of cheap, reliable, high-
performance platforms for future systems. The system engineer has to cope
with problems from different domains (certification, integration, silicon
reliabiltiy). Here, it is important that the right platform trade-offs are fixed
early at design time.

The contribution of this thesis is twofold: We provide a MPSoC platform
design which assumes inherently unreliable silicon components with highly
increased soft-error rates, while providing guaranteed performance and
reliability to the applications. This platform uses operating system sup-
ported redundant execution, as well as hardware assisted state comparison
to boost performance compared to related work.

Furthermore, we present a modeling and analysis framework to evaluate
the performance and reliability very early at design time, when no physical
platform is available. This enables the system engineer to assess multiple
platform trade-offs (such as area, voltage, reliability) by using abstract
models and formal approaches. In particular, this thesis addresses the
following items:

• A Scalable Platform Approach helps to unify multiple design philoso-
phies. Today, there is no unified approach that can host non-critical
applications as well as critical applications. Most systems are either
targeted for the safety-critical domain or a best-effort environment.
We provide ASTEROID which guarantees fault-tolerant execution
where needed and falls back to best-effort execution, if possible. This
fuses the advantages from both worlds.

• A Generalization of CPA is necessary for a broad consideration of er-
rors across different error-handling protocols and arbitration schemes.
We generalize the busy-period approach by stating a universal stop-
ping condition which bounds the number of events which must be
evaluated for a formal consideration.

• Communication’s Performance under Errors can be vastly reduced.
This includes on-chip communication as well as off-chip communica-
tion. Accurate modelling and analysis of error protocols for busses as
well as point-to-point communcation is provided.

• End-to-end Error Protocols as used in switched networks such as
NoCs or switched Ethernet were deemed inapplicable for real-time
applications. Integrating such protocols into CPA helps us to provide
performance bounds for error-free as well as error conditions.

• Execution Models for replicated workloads can also be adapted to high-
performance problems. We show how replicated tasks are modelled

19
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

by Fork-Join task graphs and provide conservative approximations to
capture timing.

• Reliability of Redundant Execution. Dynamic effects such as error
handling and recovery can lead to transient load peaks. We provide
a formal probability analysis to compute the likelihood of deadline
misses caused by error handling overhead (i.e. reexecution). This
direcly yiels a safety integrity level which can be used by the safety
engineer to evaluate the safety goal.

1.8 Outline

This thesis is structured as follows. In Chapter 2, we introduce the concepts
of fault-tolerant (processor) design which are used in the field of safety-
critical embedded systems. We present ASTEROID, a flexible platform
approach which combines hardware and software approaches to increase
reliability. A flexible, dynamic platform comes with some uncertainties
which are modeled and analyzed throughout this thesis.

In Chapter 3, we introduce a consistent view of the compositional perfor-
mance analysis framework which is used to predict the timing of large-scale
embedded systems. A homogeneous set of definitions is given which is ap-
plicable to a large range of scheduling problems.

Then we extend the resource analysis by considering various forms
of error events. This includes errors in point-to-point or multi-master
communication topologies (Chapter 4) which used a broadcasting ARQ
scheme. This captures on-chip AMBA protocol as well as off-chip Controller
Area Network.

The effect of end-to-end protocols used in switched networks (such as
NoCs and Ethernet) is modeled in Chapter 5. Here, a data packet is
sent only if previous packets are acknowledged. Contrary to bus-based
approaches, the timing for end-to-end protocols also depends on round-trip-
times which includes latencies on the return path.

Replicated execution increases the reliability by executing tasks on
multiple cores. However, addional non-functional timing effects such as
inter-core blocking contribute to the task’s response time. In Chapter 6, we
transform the problem of redundant task execution to a fork-join schedula-
bility analysis. Also, we investigate the actual reliability improvement of a
redundant execution since additional recovery time may lead to deadline
misses.

Finally, we summarize this work and draw a conclusion in Chapter 7.

20
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

CHAPTER 2

Building Reliable Computer Systems

New sources of threats and their impact on component and system behavior
were presented in previous chapters. In this chapter, we focus on mitigation
strategies and their implementation aspects. In particular, the main focus
lies on random fault events as the main source of errors.

Most components, small integrated circuits or larger ECUs, do not
have a constant failure rate over time. The failure rate is typically time
dependant and transitions through three phases: Early failure (burn-in)
period, followed by a random failure (useful life) phase as well as wear-out
phase as depicted in Figure 2.1. This bathtub curve, more precisely called a
hazard function, is used in almost all practical reliability considerations
such as to quantify and judge the duration of burn-in tests.

However, there is disagreement to which systems and components the
bathtub cure can be applied. In this scope, [151] discusses these prob-
lems and reasons that most of these problems address early-life failures.
Through the following chapters, unless stated otherwise, we assume com-
ponents and systems in the constant failure rate period. Thus, external
effects such as a radiation is known, device error-rates are available from
manufacturers or suppliers and further sources of error can justifiably be
excluded.

2.1 Traditional Fault-Tolerance Approaches

In all cases, fault tolerance is based on some form of redundancy to detect
or even recover from errors. Redundancy can be implemented on all archi-
tectural levels: hardware, software, time or combinations thereof. There
are three types of redundancy [81]:

21
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS
Fa

ilu
re

R
at

e

Time

Early Infant
Mortality

Observed
Failure Rate

Wear Out

Random Failures
Constant Failure Rate

Figure 2.1: Bathtub curve: the observed failure rate over time resembles
the shape of a bathtub.

1. In passive (or static) redundancy, fault masking (e.g. majority voting) is
used to prohibit error propagation, so further action of an operator or
system is required.

2. Active (of dynamic) redundancy involves a two step process which con-
sists of detection and recovery (e.g. detect the faulty component and
replace it). A prominent example is acceptance tests combined with
system reset.

3. The hybrid is a combination of active and passive approaches.

Absurdly, the added redundancy implies that a fault-tolerant system is
in almost all cases less reliable (with respect to the mean time to failure)
than a simplex (non-hardened) system. This is because a fault-tolerant sys-
tem contains more parts (hardware or software) that can break. However,
the difference is that a fault-tolerant system is aware of the failure and can
act accordingly (e.g. graceful degradation) where the simplex counterpart
will output garbage.

Throughout the following paragraphs we present and summarize the
most common hardware as well as software redundancy approaches as
well as their advantages and drawbacks. One of the most commonly used
strategy is N-modular redundancy [170]. Here, multiple functionally equiv-
alent modules perform the computation in parallel. A voter (or comparator)
checks the results and forwards the correct data or asserts an error de-
tection signal. Figure 2.2 shows triple modular redundancy (TMR) [181]
which is capable to mask one erroneous module (passive redundancy) as
well as dual modular redundancy (DMR) which can only detect errors (ac-
tive redundancy). Thus, for DMR, additional recovery such as a restart
or rollback mechanism [161, 265] is required. The voter always imposes a

22
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.1. Traditional Fault-Tolerance Approaches

Module 2

Module 1

Module 3

Voter
outputinput

(a) Triple modular redundancy:
Three separate modules plus ma-
jority voting.

Module 2

Module 1

=
outputinput

(b) Dual modular redundancy:
two separate modules with a com-
parision stage.

Figure 2.2: Commonly used modular redundancy concepts.

single point of failure and its reliability must be some orders of magnitude
more reliable compared to the modules which are voted on.

Dubrova [81] provides an exhaustive overview of voter design trade-offs
as well as hot and cold standby approaches and their reliability performance
compared to a simplex system. An example for hybrid redundancy is
self-purging redundancy [180]. Here faulty modules are disconnected
(purged) from the voting process, this allows to remove the faulty unit
during operation without any downtime.

Communication infrastructure is typically protected by error correction
or detection codes [175]. Using coding techniques in off-chip communication
is common practice and error-detection codes (EDC) and error-correcting
codes (ECC) are frequently applied together with automatic repeat request
(ARQ) and forward error correction (FEC).

By adding redundancy to the transmitted data, single bit as well as
burst errors can be detected (EDC) or even corrected (ECC). A typically
used family are linear block codes (e.g. Hamming-Code, Reed-Muller-Code,
BCH). There is a large design space with respect to error coding and the
designer must trade-off computational complexity with error correction
capability. Such codes only protect against signal integrity problems, caused
by electro magnetic interference or other noise sources. If the physical wire
is damaged, error coding is not sufficient. Flexray and AFDX offer a
redundancy concept, where multiple spatial distributed wires are used
(like DMR). Such a multi-channel concept is de-facto standard in avionics.
The 777 Dreamliner, for instance, uses a triplex redundant bus architecture
[291].

Fault tolerance can also be implemented in software. Multi-version pro-
gramming [56], for instance, helps to prevent implementation and design
errors. Independent development teams design functionally equivalent
software components and software majority voting checks the results. This
approach is described in DO-178 [224], but rarely used as programmers
are likely to have a common misconception and make similar faults [152].

23
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

Also the added costs of two (or more) development teams are a strong
disadvantage compared to the alternatives.

If transient hardware errors are to be detected by software, simple re-
execution [215] can be used. In case spare processing power is available,
such a software approach is cheaper and more flexible. The re-execution can
be distributed on different physical resources (spatial distribution) or on a
single resource using time multiplex. Such a mapping of redundant replicas
to a multi-core system is a promising approach and will be discussed
throughout the next chapters.

Simple error detection can be implemented as acceptance tests [280,
182, 262, 234]. Here the programmer adds assertions to the program which
evaluate previously identified invariant conditions or plausibility properties
at runtime. Such an approach could have prevented the Ariane 5 crash,
caused by a variable overrun during type conversion [80].

Analogous to coding theory used for communication, redundancy can
be added to data structures and the implemented algorithm. During the
processing, the algorithm is applied to both, real data as well as redundancy
information. After successful termination of the algorithm, a consistency
check is applied as an error detection facility. This is known as Algorithm
Based Fault Tolerance (ABFT) [129]. ABFT has successfully been applied to
matrix multiplication, but also to Fourier transforms and matrix equation
solvers.

Alternatively, assertion points and invariants can be identified and
added by the compiler [145, 279]. A compiler-assisted appraoch uses basic
block signatures. Here, each basic block is augmented with a checksum that
is stored in the beginning and verified in the end to detect whether invalid
control flow has occurred in between. The compiler can also dublicate
computations to detect corrupted operands [229, 230], as well as duplication
of conditional checks in order to detect invalid control flow branches [228,
40].

2.2 ASTEROID Approach

As motivated in the introduction, automotive as well as avionic OEMs
are keen to integrate a set of vastly different applications onto one single
platform. Typically, there are only a few safety-critical functions (active
steering) and a lot of convenience, high performance functions (image-based
road-sign detection). This platform may be unreliable and potentially offers
multiple shared-resource pitfalls. First, let us consider how a fault tolerant
architecture must look like if today’s off-the-shelf architectures are used.

Multi-core systems comprise a set of independent processors which are
connected to a communication fabric. This fabric connects the processors
with main memory and peripherals. For instance, the previously presented

24
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.2. ASTEROID Approach

Replicated AppsUnreplicated Apps

L4 Runtime Environment Romain

L4/Fiasco.OC Kernel

Hardware

User

Kernel

Figure 2.3: ASTEROID system architecture (Source [17]).

Freescale P2040 (cf. Figure 1.4) as well as the Infineon AURIX [132]
implement such an architecture. These multi-core architectures offer the
possibility to use lockstepping (DMR) for fault tolerance in safety-critical
designs, which sounds promising.

However, future many-core chips such as the Intel Single-Chip Cloud
Computer [125], TILERA’s TILE-Gx [4] as well as the Integrated Depend-
able Architecture for Many-Cores (IDAMC) [187] have up to 100 cores.

If DMR is used in these architectures, a lot of processing power would be
wasted. As motivated, only a few functions actually require the additional
fault-tolerance. Best-effort applications would run in the protected environ-
ment unnecessarily. ASTEROID [17] addresses this problem by applying
task-level redundancy to critical tasks only, where other applications are
executed in a simplex fashion. Critical functions are duplicated (or even
triplicated), whereas non-critical functions are not.

This replication approach was implemented by TU Dresden [75] as an
operating system service running on top of the L4/Fiasco.OC microkernel
[276, 112]. Figure 2.3 shows the final ASTEROID software platform. As
in every microkernel system, the software is split into a privileged kernel
as well as additional services such as device drivers which execute as
user-level components. ASTERIOD adds a new component, Romain which
implements task-level voting by redundant multithreading [75]. A major
advantage of this approach is that the replicated application does not need
any additional changes, such as additional operating system calls to control
the redundancy. Almost all software can be executed reliable, as long as
it is guaranteed that the execution of the kernel as well as Romain can be
trusted. Similar to the trusted computing base [166], as known from the
security domain, a reliable computing base must be established.

25
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

On startup, Romain spawns multiple replicas of the user-level applica-
tion which execute independently. The voting process is orchestrated by
the Romain master. It guarantees that the replicas receive the same data
such as inter-process messages as well as memory-mapped I/O. In case of
exceptions (e.g. illegal instructions, unmapped memory) the control flow is
handed to the master process which externalizes a consistent state. Thus a
functional deterministic execution behavior is enforced.

This works in the following fashion: If a processor interrupt is raised,
such as a software trap, the master waits until all replicas have trapped.
Then, the state is compared. Runtime overhead makes it infeasible to
compare the entire process state, including main memory, only the processor
registers are compared. In most cases, they contain parameters for system
calls and other information which is sufficient for a fast voting process.

Once affected by a soft error, an application running on an non-fault-
tolerant processor may fail in multiple ways:

1. No effect. Data corruption was masked by hardware or software.

2. Crash. An exception is raised (e.g. division by zero, illegal memory
access) and the program crashes.

3. Silent Data Corruption. Data is altered but the program terminates.

4. Endless loop (hanging). The program does not terminate (or needs
considerable more time than anticipated).

To assess the likelihood of such events, fault injection is typically used.
The injection can be done in hardware for instance by using an FPGA
[260] or by using the processor debugging interface [117]. Alternatively
software methods by using an architectural simulator [290, 63] can be
used. In contrast to software-level approaches, low-level hardware injection
captures the microarchitectural level of the processor, which is abstracted
in software level simulation (unless explicitly modeled). The abstraction
makes it questionable if software level approaches have sufficient accuracy
[286, 57].

ASTEROID detects any of the previously mentioned failure classes. A
crash is detected and handled by the operating system service, silent data
corruption is detected in the voting process and a timeout mechanism
points out a hanging application.

Further trade-offs which are not in scope of this work such as shared-
memory handling and voting synchronization software implementation
strategies are discussed in [77] and [75].

26
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.2. ASTEROID Approach

N6

N3 N5N4

N8

N1

N7

N0

M
e
m
o
r
y

M
e
m
o
r
y

Peripherals

Peripherals

S

W

N

N2

e
mmmmmmmm
o

W

2
S

N

R

T3

T2T1

E

T4
NI NI

NINI

Figure 2.4: A future many-core design: Integrated Dependable Architecture
for Many-Cores.

2.2.1 IDAMC Integrated Many-Core
As a representative future many core setup and research vehicle, the
IDAMC architecture is used.

The IDAMC architecture is flexible and consists of up to 64 nodes which
are interconnected by a mesh NoC topology. The NoC is based on [160] with
additional Quality of Service (QoS) which provides isolation guarantees
for bandwidth and latency constrained traffic classes [71]. Such traffic
is typically found in embedded data streaming applications (e.g. radar,
network processor) as well as distributed control (e.g. autopilot).

The advantage from a resiliency standpoint is the inherent redundancy
offered by multi- as well as many-core designs. The vast number of cores can
be used for high performance as well as reliable redundant execution. This
is the central theme of ASTEROID (An Analyzable, Resilient, Embedded
Real-Time Operating System Design).

The IDAMC architecture features a mesh-based network on chip archi-
tecture which connects up to 64 nodes. Here, each node can contain up to 4
tiles. Each tile encompasses a modified LEON3 multiprocessor [98] with
optional peripherals such as memory controller, controller area network,
and more.

The actual setup is highly customizable through a synthesis configura-
tion file. This allows to control the number of processors in each tile, type
and size of local scratchpad memory and the instantiation of peripherals.

During runtime, the architecture is controlled by a dedicated trusted
supervisor tile, which has elevated administrative rights. Only software

27
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

0x000
channel | route | base address | protection
channel | route | base address | protection

0x001
…

0xFFF
…

local tile (physical) address

destination tile addressroute to
destination tile

virtual
channel

base address | offset

base address | offset

M
on

ito
rin

g

local tile (virtual)
addressCPU MMU

channel | route | base address | protection

Figure 2.5: Address translation as performed in the network interface.

running on this tile can change the network on chip QoS settings and setup
the memory layout of the user tiles.

The packetization of local tile data into network on chip packets is
performed by the tile’s network interface. The IDAMC network on chip
used source routing where the sending terminal must know and setup the
packet’s route. This allows to reduce the complexity of routers, enables
flexible routing and reduces contention in the network. To speed up the
packetization process, a hardware accelerated memory-mapped I/O scheme,
similar to a TLB (translation lookaside buffer) was designed. To physically
enforce containment across the entire platform, all accesses from a tile to
the network on chip are proxied through and translated by the network
interfaces.

The translation process is shown in Figure 2.5. First, a memory IO
operation issued by a local CPU is processed by the local MMU (if enabled),
then it enters the network interface. The network interface contains a
lookup table of configurable length (typically 64). Each line holds the route
information to the target tile, the base address used at the target as well
as additional protection bits which encode the allowed access type (read,
write, execute). Optionally, monitoring devices [196] are connected to the
address translation which monitor the access pattern such as datarate and
jitter to detect misbehaving software (i.e. babbling idiot).

28
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.2. ASTEROID Approach

#Registers #LUTs #BRAMs
IDAMC 33834 (4%) 52317 (11%) 114 (16%)
NoC 11409 15060 12
Tile 0 5016 11381 79
Tile 1/2 4348 9222 10
Tile 3 2247 3919 3
NI 0/1/2 2610 5395 4
NI 3 1744 3000 2
MON 0/1/2 489 1072 1

NI 2nd Generation 1462 1507 2

Table 2.1: Synthesis results of IDAMC with first generation network in-
terface broken down into hierarchical units. Synthesis results for second
generation network interface are shown for comparison.

All address-translation tables can be programmed by the supervisor
tile during runtime. This has several advantages: First, only a trusted
component can reconfigure the logical communication topology. Second, it
allows to dynamically reconfigure the platform in case of hard errors such
as a broken router or tile.

Table 2.1 shows the synthesis results on a Virtex 6 FPGA. The presented
system comprises a minimal setup used for research and development
purposes, as it allows fast turn-around times with little synthesis times.
The system contains four tiles each connected to a dedicated router. All
routers are connected by a 2x2 mesh network. The address translation
supports 64 entries. Tile 0, the system controller, contains a LEON 3
processor, 256 kB on-chip RAM as well as 1 kB on-chip ROM which contains
bootstrap information. Processing tiles 1 and 2 feature a processor with 1
kB cache (data and instruction) as well as an interrupt controller. Tile 3
connects the system to the external DDR2 memory and contains a memory
controller. Hence, to access the main memory, all processors communicate
with Tile 3.

The synthesis results of the LEON3 internals are not shown as they
are identical to an off-the-shelf LEON system. The target frequency is
set to 80 MHz, except the DDR2 interface which runs at 160 Mhz. The
network interface of Tile 3 occupies less resources compared to the other
tiles because it does not feature a address translation mechanism since no
AMBA Master components are instantiated. A detailed discussion of the
synthesis results are discussed in [187].

The described system features the first generation network interface
used for bring-up only. It includes all functionality but offers poor resource
utilization and performance as it was only targeted for prototyping. A

29
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

Figure 2.6: Illustrative example of an error in the processor pipeline (1)
which causes an erroneous write (2) and leads to an error in the heap state
(3).

second generation network interface implements pipelining, and allows
efficient data streaming with little packetization overhead compared to
the first generation device. The new network interface uses roughly 50%
less registers and 27% of logic resources compared to the previous version,
offering nearly the same functionality 1.

2.2.2 Hardware-assisted State Comparison
The software architecture of ASTEROID as described previously relies on
an efficient voting mechanism to compare the state of the replica processes.
In the following paragraphs we revisit how errors propagate internally and
discuss the voting process in detail. Figure 2.6 shows how pipeline errors
propagate from the processor into the task’s state. Here the task state
consists of the entire virtual memory space as well as the architecturally
visible registers.

For instance an illegal register access causes an erroneous operand fetch
1 . When the content of this register is used later for memory accesses such

as a write 2 the state of the task such as the main memory 3 is modified
illegally. The obvious objective is to identify and signal such alterations.
However, there further design goals:

• Error coverage, which is the fraction of errors which are detectable by
the mechanism, should be as high as possible

1DMA unit not included

30
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.2. ASTEROID Approach

• Error latency, which is the time from error occurrence to error detec-
tion, should be as low as possible.

• Additional overhead (performance penalty, chip area, code size)
should be as low as possible.

To perform the voting, the Romain architecture compares the state on
externalization only (e.g. on system-calls and exceptions). Thus, the error
coverage of Romain is sufficiently high, because all data is eventually sub-
ject to a comparison before it becomes visible. As already discussed, without
further consideration of shared-memory communication the execution time
overhead of the presented approach is reasonably low. But it also comes
with some inherent drawbacks with respect to our requirements: The major
issue is that the error latency is not bounded. An error in the task’s state as
depicted in Figure 2.6 can stay dormant for long time until the erroneous
state is externalized. An arbitrary long detection latency can potentially
render an error recovery mechanism useless if real-time requirements are
involved.

To circumvent this problem hardware assisted fingerprinting is used,
which was introduced in [255]: A dedicated fingerprint unit which resides
in the pipelines of all cores in the processor hashes all retired instructions.
This generates a fingerprint which represents an unique hash for a specific
instruction/data sequence. Since the same code is executed on redundant
cores we can use the fingerprint as a basis for DMR voting. In the original
work from [255], voting between redundant cores is performed when cache
lines become visible on the system bus. However, this approach has some
inherent drawbacks, especially in the field of real-time systems and with
respect to mixed-critical applications. Since the mechanism relies on the
cache coherency protocol as a synchronization primitive for comparison,
the mechanism implicates a high degree of timing uncertainty (e.g. when
comparisons are performed and how often). Also, no differentiation between
task contexts is made, thus all instructions end up in one single fingerprint
and redundancy cannot easily be performed task-wise.

Thus, we propose to use fingerprinting differently and implemented
context-aware fingerprinting, where a fingerprint is generated per context
(if required). We extended the LEON 3 processor [98] with a fingerprint
unit as shown in Figure 2.7. The unit consists of three building blocks: a
instruction counter which counts retired instructions, the data fingerprint
which taps the data path of the pipeline and the instruction fingerprint
which is fed with the retired instruction word. All of these registers are
implemented as ancillary state registers (ASRs) which can be read by
software.

The unit works the following way: Both fingerprint registers continu-
ously hash data and instructions. The hash function can be selected at
synthesis time. We implemented three variants: CRC-32, single CRC-16

31
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

Figure 2.7: Leon 3 pipeline with fingerprinting extensions.

and double CRC-16, which hashes the upper and lower half words indepen-
dently.

In case of interrupts or traps, the processor stores a copy of the recent
fingerprint and the operating system may store the fingerprint in the
task control block. In the same way an old fingerprint can be restored
on a return-from-interrupt instruction. Thereby, per-task fingerprints
can be implemented by the operating system and we are able to handle
asynchronous events.

Data and instruction fingerprint reflect a hash over the task state and
can be used in the Romain master for voting. However, this approach still
exhibits the drawback of an unbounded detection latency, because a task
first needs to raise a CPU exception to trigger comparison.

To artificially increase the voting-frequency in a predictable way, Chunk
Checking is implemented. Chunk checking is a feature which is controlled
by the operating system to control the error detection latency for long-
running workloads. Per se, the operating system has no method to interrupt
two copies at a predictable instant in time (on exactly the same instruction)
in order to compare intermediate results. Here, we use the chunk counter
which is decremented with each executed instruction and causes a trap if it
reaches zero. This enables the operating system to compare intermediate
results without using the highly inefficient single-stepping mode.

A third mode of operation is the signature checking mode. In this mode
we leverage from the fact that we have an individual instruction fingerprint.
By construction it is possible to pre-compute instruction fingerprints for
each basic block. This can be done by the compiler or by dynamic recom-
pilation during runtime as part of an operating system service. Such a
precomputed fingerprint is restricted to a single basic block which has no
data dependency with respect to its control flow. This enables to imple-
ment signature checking for basic blocks: A dedicated match-fingerprint

32
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.3. Comparison and Performance Overview

#Registers (Overhead) #LUTs (Overhead)
CRC32 1503 (22%) 6768 (31%)
Double CRC 16 1508 (22%) 6551 (26%)
Single CRC 16 1496 (21%) 6328 (22%)
Baseline 1230 5170

Table 2.2: Synthesis results of integer unit pipeline with different finger-
printing implementations.

instruction tests the target and the actual fingerprint which may result in
a fingerprint-miss trap.

Table 2.2 shows the synthesis result on a Virtex 6 FPGA platform. The
Fingerprinting adds up to 31 % overhead on top of the integer unit logic.
This is mainly caused by the hashing function. An unpipelined, single cycle
CRC consists of 32 cascaded xor stages. To control the fingerprint logic,
nine additional 32 bit registers (total of 288 bit) were added. Thus, the
hashing algorithm has little influence on the number of required registers.
It must be noted, that little optimization was applied to the fingerprinting.
The fingerprinting unit resides soley in the writeback stage, but could
have been pipelined and distributed among the previous processor pipeline
stages.

For ASTEROID, we decided to only use a CRC-based approach. Other
work such as [183, 52] also consider Fletcher’s Checksum (FC) [95]. FC is
computationally more efficient as a checksum is divided into blocks which
can be processed in parallel. The downside is that FC is not as robust as
CRC with respect to the error detection probability as also highlighted in
[52].

2.3 Comparison and Performance Overview

The ASTEROID approach is similar to the dynamically coupled cores (DCC)
approach presented in [162]. It uses a similar hardware assisted state com-
parision as ASTEROID, which is presented later in more detail. However,
in DCC, the comparison is controlled by hardware only, a modified cache
is used to hold preliminary data. Thus, comparisons are more frequent.
Depending on the checking interval, the overhead is between 3% and 20 %
for selected microbenchmarks.

Dynamic Dual Modular Redundancy (DDMR) as proposed in [103] uses
a configurable ring bus topology to pair cores. Checking is performed using
a CRC fingerprint as done in ASTEROID. The slowdown depends on the
number of paired cores and the checking interval. For a long interval check

33
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

400
perl

401
bzip2

403 gcc 429
mcf

445
gobmk

456
hmmer

458
sjeng

462 lib
quan-
tum

464
h264ref

471
om-

net++

473
astar

1
1.05
1.1

1.15
1.2

1.25
1.3

R
un

ti
m

e
no

rm
al

iz
ed

vs
.

na
ti

ve
ex

ec
ut

io
n

Single DMR TMR

1.45
1.95

Figure 2.8: Overhead for replicating the SPEC INT 2006 benchmarks with
one, two, and three replicas compared to native execution. (Measured by
Döebel et al. [78]).

(thousands of instructions) the overhead is between 4% and 30%. This is
consistent with the performance figures for DCC.

Döbel et al. evaluated the performance of the ASTEROID Romain
Framework in [78, 79, 77]. Here, we will briefly summarize the key findings
and conclusions. For the experiments the SPEC INT 2006 benchmarks
were used [122]. The benchmark 483.calancbmk was left out, as it uses
deprecated C++ STL features that are not supported by L3Re. SPEC INT
2006 is mainly used as a processor benchmark and thus contains processor
bound tasks. This includes a broad field of applications such as compilers,
video processing, and compression algorithms.

All applications ran on a two socket board, each containing an Intel Xeon
X5650 CPU running at 2.667 GHz. The system features a total of 3 GB
RAM running 32-bit executables on a total of 12 processors. All advanced
features such as turbo-boost, dynamic frequency scaling were turned off.

Figure 2.8 shows the performance figures as measured by Döebel et al.
[79]. It shows the normalized execution time overhead for Simplex, DMR
as well as TMR against a non-replicated (normal) execution. For most the
benchmarked kernels, the overhead is in the 2% mark (geometric mean
for TMR is 2.51%). However, outliers are gcc, mc, libquantum and omnet.
This is mostly due to a large number of memory reorganizations (remap,
realloc) which is not a typical use-case in embedded devices that have a
static memory configuration. Also it was shown that the performance can
be further improved by clever replica to core as well as replica to socket
mapping.

34
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2.4. Summary and Challenges of ASTEROID

R

T

TT

T
NI NI

NINI
R

Peripherals

TT

T
NI NI

NINI

R

T

TT

T
NI NI

NINI
R

T

TT

T
NI NI

NINI

CAN or
Ethernet

On-Chip

Other
system(s)

4.

2.

6.

1.
Data

3.

Figure 2.9: Transient errors in the processing and communication infras-
tructure on-chip as well as off-chip lead to timing uncertainty. Subsystems
which are affected by errors are enumerated for reference.

2.4 Summary and Challenges of ASTEROID

The ASTEROID architecture has several advantages over existing ap-
proaches:

1. The platform allows safe sharing of critical shared resources.

2. Monitoring capabilities can be used to enforce bounded contention.

3. Fault-tolerance can be easily implemented by redundancy.

4. Fault-containment is supported as errors never propagate uncontrol-
lable.

ASTEROID shows a competitive performance, compared with related ap-
proaches that use redundancy for safety-critical applications as shown
in [76]. The presented performance values constitute average-case, mea-
surement based values. Obviously, they give a general idea of the perfor-
mance and applicability but conceal the importance of worst-case design as
introduced in the first chapters.

Figure 2.9 shows a bigger picture in which the ASTEROID platform is
integrated in a distributed system. Data is fed into the ASTEROID platform
through a peripheral interface such as Controller Area Network [233] or
Ethernet (e.g. [131]), routed to the target processing tile and eventually
consumed.

ASTEROID is capable to detect and correct most transient errors on this
path. Functional units which could be affected are highlighted in Figure 2.9.

35
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

2. BUILDING RELIABLE COMPUTER SYSTEMS

For instance, CAN messages are retransmitted in case of errors, routers are
fault-tolerant (2) and optionally may include link-level or end-to-end error
coding techniques [227, 189]. The Romain framework will detect errors and
restart or rollback the application in case of errors. Functionally, errors
in these subsystems are covered and the ASTEROID platform is likely to
properly react potential error scenarios.

However, the performance under such error events is not guaranteed
per se. In ASTEROID the timing is vastly influenced by error detection
and correction mechanisms and depends on the actual error scenario.

Subsystems which can be affected by errors and interfere with system
timing are highlighted in Figure 2.9. Data frames which arrive over CAN or
Ethernet can arrive delayed if frames need to be retransmitted 1 . Network
on chip packets must eventually be rerouted due to faulty routers 2 or
corrected 4 . Faulty processors may lead to babbling idiot which imposes
higher (but bounded) load to the communication infrastructure 3 . And
finally timing overhead is added by the error detection and correction
facility which enables the redundant execution 5 . This leads to the
following questions, which are answered through the course of this thesis:

1. What is the timing influence for a given error-scenario?

2. What is the likelihood of such errors?

3. How likely is a system timing failure?

36
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

CHAPTER 3

Timing Verification of Safety-Critical
Real-Time System

In the first chapters, we motivated the importance of verification and testing
in safety-critical systems and presented the ASTEROID architecture as
a prototype. In this chapter, we introduce the mathematical framework
required for a formal consideration of the system timing. First, we discuss
the model, this includes an architectural model as well as a timing model
of the applications. Then we show how individual tasks and resources are
analyzed and timing metrics such as response-time and buffer sizes are
derived. Finally, we show how these results are composed into system view.

The purpose of a timing verification is to prove the non-functional timing
correctness of complex, safety-critical real-time applications such as a
distributed control application (e.g. an anti-lock-braking system). It is most
important that key properties such as jitter, the latency between sensing
and actuation, sampling period, response time, and timing independence
between critical and non-critical parts are guaranteed.

Exhaustive simulation is often not able to reveal corner cases. Due
to the tremendous system complexity (i.e. system size and functional
interactions) even very long simulation runs are not able to reliably detect
critical scenarios. Also assisted simulation, where worst-case patterns
are injected does not help, since a combination of component corner-cases
does not always lead to a system corner case. Another intrinsic problem of
simulation is that very accurate models are required. Often these models
(e.g. binary implementation, cycle-level CPU model) are not available
during early design times when functional integration must be decided.

37
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

sensor

sensor

actuator

actuator

function

function

logical architecture

sensor actuator actuatorECU GW

physical architecture

CAN CAN

mapping ECU

CAN1 GW

CAN2

timing model

EM

tim
in

g
ab

st
ra

ct
io

n

Figure 3.1: From the logical and physical architecture to the timing model.

Here formal verification helps to estimate the timing behavior during early
stages and is able to validate timing during integration.

Formal verification is based on abstraction from the physical and logical
architecture to a timing model domain. Let us recapture the V-Model,
described in Chapter 1. Early during the design process, a functional
architecture is specified. Later, when the physical architecture such as
the network topology, ECU and gateway devices have been decided on, a
mapping from logical functions into the physical domain is crafted. This
includes signal to frame mapping, function to task mapping, task to ECU
mapping as well as task to processor mapping for multicore ECUs.

The left part of Figure 3.1 shows this mapping process. To precisely
model the timing behavior, knowledge from the functional level and the
physical architecture must be known. In almost all cases, timing properties
are derived on a functional behavior level but timing effects are subject to
physical effects.

For instance, the designer wants to know whether the sampling period
of the anti-lock braking system is always met. A logical view is required to
know which actuators, distributed control loops and sensors are involved,
the physical mapping to network segments, CAN frames and gateways is
required to predict the physical behavior.

Thus, the timing model, as shown in the right part of Figure 3.1, is an
abstraction from both domains. The algorithms and model transformation
are based on well-known principles from the real-time community [232,
120, 272, 283]. For the sake of consistency we will introduce the model and
baseline algorithms which are needed throughout this document.

38
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.1. Related Work in System-Level Analyses

3.1 Related Work in System-Level Analyses

As discussed, the purpose of timing verification is to prove that a number of
applications mapped to a hardware platform met their timing requirements
such as deadlines. Also more complex metrics such as output jitter, path
latencies (cf. violet path in the lower left in Figure 3.1), processor utilization
as well as memory utilization can be derived.

System-Level analysis [120, 282, 272, 168], contrary to component
schedulability analysis [297, 61, 172, 39, 29], ensure that communicat-
ing tasks which exchange data over long chain of processor and network
resources meet their timing goals.

As pointed out in [258], proposed approaches for system-level analysis
can be divided into two classes. Holistic approaches capture the system
analysis as a single, complex problem instance. The major concern with
these approaches is the inherent computational complexity involved in
solving the holistic problem. The advantage is that the determined timing
figures are tight, which means that the derived bounds are close or match
the real system’s behavior. However, not infrequently a holistic analysis of
large systems is intractable caused by an exponential growth of complexity
with the number of resources.

Compositional approaches tackle this problem in a divide and conquer
fashion. The system analysis is broken down into sub-problems: the analy-
sis of components. A component is typically a bus, processor, or Ethernet
switch. The analysis results of these sub-problem are coupled using stan-
dardized interfaces. As we will see later, dependencies between subsystems
are resolved by iteration. This has several advantages as each component
analysis needs only a limited view on the entire system. It is easy to evalu-
ate subsystems in isolation and reuse performance results hierarchically.

There is a large body of system-level analyses approaches available to
assist the designer during the design and integration process. Yen and
Wolf [292] proposed holistic approaches to compute the delay through a
task graph mapped to multiple processing resources. This work was later
extended [213, 104]. The holstic framework MAST is freely available [104].
Other groups model complex distributed embedded systems using timed
automata [119, 200] and apply model checking [296] do derive feasibil-
ity guarantees. This concept was also successfully implemented in the
commercial Uppaal tool suite [35].

Compositional Performance Analysis (CPA) [120] adapt existing compo-
nent schedulability analysis [172, 61, 39, 220, 270, 193]. In a second step,
a system-wide analysis is composed by interfacing the behavior by using
generic event-model interfaces as introduced in [232, 168, 272]. Often, sys-
tems have functional and non-functional cycles, where timing behavior of
one component is subject to the behavior of another, and vice versa. Acyclic
graphs can be analyzed by performing component analyses in topological

39
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

order. Cycles are resolved by iteration until a fixed point is found [259, 141].
In case some component analysis expect a parametrized form of the event
model (i.e. jitter and period), conversion functions are available [232]. CPA
is successfully commercialized by Symtavision, also a research focused
implementation is freely available [69, 70].

Another commonly applied compositional approach is Modular Perfor-
mance Analysis (MPA) [282] which is based on Real-Time Calculus (RTC)
[272] which is built upon Network Calculus [168]. The system model is
similar to CPA. A graph represents the application, with nodes being tasks
and edges represent the interface between these tasks. The incoming inter-
face resembles a service curve, which is the guaranteed service provided by
a resource to the task, an arrival curve, which is in fact a generalization
of the previously discussed event-model. On the outgoing interface of the
task, the remaining service, which can be used by other tasks, as well as
the arrival curve of the outgoing event stream. The remaining service and
output event stream of each task is computed using MaxPlus algebra [25].

Comparisons of some of the previously discussed approaches such as
SymTA/S [120], MPA [282], and MAST [104] are presented in [210, 261,
154]. The studies show that the analyses vary in terms of runtime and
analysis accuracy. It was shown that each tool has its strenghts and
weaknesses depending on the actual system’s characteristics.

3.2 System Model

In the course of this chapter, we will introduce the modeling formalism
required for the rest of this thesis. Similar to [194, 258], we differentiate
between two aspects, the structural model, which abstracts the software
and the underlying hardware architecture. The second aspect is the timing
model, which captures the timing properties and interactions between
components and tasks.

3.2.1 Structural Model
The structural system model consists of an application as well as a platform
model. An application is a set of communicating tasks. In this context, tasks
are the smallest entity. The platform model is consisting of a set of resources
and connections abstracts physical processors, buses, Ethernet switches
or network on chip routers. Tasks are mapped to resources according to
a static mapping and consume some amount of service, be it processing
time or network bandwidth. A scheduler (or arbiter for communication
resources) distributes the available service among competing tasks.

40
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.2. System Model

Communication between tasks is modeled by a task graph in which
edges are referred to as event streams. Event streams act as an interface
between tasks and encode the activation pattern of a task.

Hence, a system models the physical architecture, topology information
as well as functional mapping.

Definition 1 (System).
A system S consists of a platform, a set of applications and a mapping.

S = 〈P,A,M〉 (3.1)

Definition 2 (Platform).
A platform P is a directed graph with a set of resources R as vertices and a
set of edges E indicating the connectivity between the resources.

P = 〈R, E〉 (3.2)
E ⊆ {(ra, rb) | ra �= rb, r ∈ R} (3.3)

Definition 3 (Resource).
A resource r consists of the physical entity which provides service together
with a scheduler Ψ which distributes the available service according to a
scheduling policy.

A set of associated functions (cf. Figure 3.1) are captured by an appli-
cation. Special vertices with no incoming edged are referred to as sources
and those with no outgoing edges as sinks. For sources, the event streams
are specified as boundary conditions.

Definition 4 (Application).
An application AP is a directed graph consisting of a set of tasks, sinks
and sources Γ = {τ1, τ2, . . . } and a set of edges ES representing the event
streams which model the task’s communication.

AP = 〈Γ, ES〉 (3.4)

A software task consumes service according to its core execution time,
whereas a CAN frame occupies the bus for the number of bit times required
to transmit the frame under the given protocol.

Definition 5 (Task).
A task τ consumes service provided by a resource.

The mapping of tasks to resources is modeled by the system mapping.

Definition 6 (Mapping).
The mapping M is a function which assigns each task τ ∈ Γ in the system
S to a resource r ∈ R.

M : Γ→ R (3.5)

41
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

3.2.2 Timing Model
The previously introduced structural model resembles architecture, but it
does not capture the timing aspects. In this sense, it must be clarified on
a sufficient abstraction level how data is processed, stored and forwarded.
In a real system, a task is triggered by a timer, external interrupt or
inter-process signal.

In almost all literature on real-time performance analysis, the timing is
abstracted from the underlying data. In this scope, we speak of an event
if “something of interest happens” [242, 258]. An event models the task’s
activation behavior and abstracts from the actual data being transmitted.
Thus throughout this thesis, a task is triggered by an event, where in the
corresponding physical system, the task obviously is triggered by some
incoming data. Hence, in most situations the occurrence of an event can be
understood as data been passed from one entity to another. An event stream
groups events which semantically belong together such as a collection of
events that activate the same task.

The software implementation of a task typically involves multiple, not
always distinct activities: Data is loaded from multiple queues, mailboxes or
external devices, processed and passed around. In CPA a task is associated
with a single input queue of unlimited size and the cyclic execution behavior
consists of three distinct phases:

1. Input event is read from the queue. If no data is available, the task
waits and can be suspended.

2. The event is processed and consumes service in the interval of a best-case
and worst-case execution time [C−, C+].

3. An output event (the result) is produced and optionally fed into the
input queue of the preceding task.

The best-case and worst-case execution times of software tasks can be
obtained by exhaustive simulation which yields a worst-observed execution
time. For safety-critical applications a worst-case execution time analysis
based on call-graph extraction and static program analysis is carried out. A
list and comparison of methods and tools on the worst-case execution time
problem is given in [288]. For bus-based communication, the transmission
time is usually known as it mostly depends on the protocol structure
and the payload size. Some protocols such as CAN use bit-stuffing or
scrambling techniques which add additional bits, however a conservative
approximation is easily possible [61].

Also communication resources such as CAN buses can be modeled us-
ing this task model. Here, input data is consumed and a data frame is
constructed, data is serialized and transmitted, and finally data is re-
constructed and fed into the receiving task. There are multiple possible

42
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.2. System Model

communication semantics such as register communication [89], event trig-
gering and more , but in this work we restrict the communication to event
triggered communication (non-destructive writing, destructive reading).

Forks and joins of event streams (i.e. AND, OR joins) are thoroughly
discussed in [242, 141, 108]. A special case of fork-join topologies, namely
fork-join tasks are studied in Chapter 6, hence, we do not further consider
this special case in this chapter.

Now, that we have introduced the idea of events, we can formalize the
concept of a trace.

Definition 7 (Event Trace).
An event trace σ is a function

σ : N+ → N
+ (3.6)

where σ(n) = t indicates the absolute time at which the n-th event occurs
associated.

Depending on the system uptime, a trace is potentially unbounded. It
follows, that there is an infinite number of possible traces. Depending on
the resource and task behavior, each two pairs of input traces could lead to
different output traces. Exhaustive consideration of all combinations leads
to intractable algorithms.

Event models abstract from the actual trace by only capturing worst
and best-case behavior. Any trace which is in the permissible region of the
event model is said to satisfy the event model. Vice versa, if a given trace
satisfies the event model, any analysis carried out with the event model
representation is valid for this trace.

Definition 8 (Event Model).
An event model EM consists of pair of distance functions

EM = 〈δ+(n), δ−(n)〉 (3.7)

with

δ+ : N+ → R (3.8)

δ− : N+ → R (3.9)

which return an upper / lower bound on the time interval between the first
and the last event of any sequence of n event arrivals.

For the sake of simplicity, we assume that event-models (and otherwise
related functions) are indexed according to their associated task. In this
sense, δi is the input event model for task τi.

43
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Event distance functions are often given as a compact representation
[232] such as the parametrized period (P), jitter (J), minimum-distance
(dmin) model. This model is of particular interest in the automotive domain
where most communication is carried out in a periodic fashion.

δ−(n) = max{(n− 1)P − J, dmin} (3.10)

δ+(n) = (n− 1)P + J (3.11)

Alternatively, an event model can be reverse-engineered from a sufficiently
accurate trace. It must be noted, that this process is only justified in
non safety-critical aspects of the design since it is hard to prove sufficient
accuracy.

The distance functions have a pseudo-inverse counter part [168, 242],
the event arrival functions. The concept is similar to arrival curves, as
known from real-time or network calculus [272, 168].

Definition 9 (Event Arrival Functions).
The upper / lower event arrival function η+ / η− is an upper / lower bound
on the number of events in any half-open time interval of size Δt.

η+(Δt) : R+ → N (3.12)

η−(Δt) : R+ → N (3.13)

Event arrival functions are sub-additive, whereas event distance func-
tions are super-additive. More precisely, as [194] showed, the shifted
function δ(n− 1) is super-additive.

As Schliecker pointed out in [242], event distance functions and event
arrival functions can be derived from each other. Formally, it is sufficient
to specify either a pair η, or δ. Our event model definition (Def. 8) uses
event distance functions because in practical implementations they can be
processed much faster due to the discrete domain and can be implemented
by integer operations. The following equations show how η is obtained from
δ1.

η+(Δt) =

{
0 if Δt = 0

max
∀n∈N+

{
n | δ−(n) < Δt

}
else (3.14)

η−(Δt) = min
∀n∈N+

{
n | δ+(n+ 2) > Δt

}
(3.15)

1We revised Eq. 3.5 - 3.8 as provided by [242]

44
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

0 30 60 90 120 150 180 210 240 270

Δt

0

1

2

3

4

5

6

7

n

η(Δt)

η−(Δt)

η+(Δt)

0 1 2 3 4 5 6 7

n

0

50

100

150

200

250

Δ
t

δ(n)

δ−(n)

δ+(n)

Figure 3.2: Event model for a periodic activation with a period of P = 30
and a jitter of J = 60.

and δ from η, respectively.

δ−(n) = inf
Δt≥0,Δt∈R

{
Δt | η+(Δt) ≥ n

}
(3.16)

δ+(n) = sup
Δt≥0,Δt∈R

{
Δt | η−(Δt) < n

}
(3.17)

The relationship between event distance functions and event arrival
functions is also shown in Figure 3.2. Both domains represent the same
information: A bursty event model with a period P = 30 and a jitter J = 60.

3.3 Resource Analysis

Resource analysis as used in the CPA framework derives local timing
properties such as the task’s response time or backlog which typically
translates to buffer sizes. Today’s analysis approaches emerged from early
schedulability analysis such as [178].

Such early work focuses on periodic tasks and computes schedulability
based on device utilization for tasks with implicit deadline. Later, algo-
rithms to compute the response-time under more expressive event models
(e.g. periodic with jitter) were presented [147, 274, 172]. The approach is to
compute the largest time interval for which a resource is busy processing
tasks, hence the underlying concept was coined the busy period approach.
It is based on the critical instant assumption in which tasks are assumed
to be activated simultaneously.

45
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Most often the critical instant assumption is an over approximation
because event streams are correlated. This is because event streams have
a common source, correlation is imposed by scheduling or offsets are arti-
ficially introduced to improve timing. Analysis support for inter-stream
context is presented in [208, 142, 121, 293, 236]. Also most applications
have state and thus context between activations. A popular example is a
MPEG video decoder in which the I-frames need more processing time than
P and B-frames. Such intra-stream context are discussed in [142] and can
be analyzed using the busy-period approach [185, 31].

As discussed, the primary goal of the resource analysis is to derive the
worst-case / best-case response-time of the task. Throughout the following
paragraphs, we will introduce the definitions and concepts of the local re-
source analysis. The definitions are in-line with [68] and are more generic2

than the ones provided in [232, 242]. The problem with related response-
time formulas is the stopping condition. It can be informally phrased
as “How many events do we need to consider during analysis to find the
worst-case behavior?”. Related work in the field of local resource analysis
answer this question tailored towards specific scheduling policies such as
strict priority preemptive (SPP) and strict priority non-preemptive (SPNP).
However, there is no overarching formalism for the stopping condition
which applies all scheduling policies (e.g. including FIFO, Round-Robin,
and others).

3.3.1 Generalization and Formalism
We only give the main concepts used throughout this thesis, further proofs,
remarks, and discussions (especially regarding the difference to [232, 242])
can be found in [68]. For an intuitive understanding we later give a generic
formulation of the strict priority preemptive (SPP), strict priority non-
preemptive (SPNP) and First In - First Out (FIFO) scheduling policies.
These are later extended by adding protocol specific overhead and consider-
ing errors.

The timing behavior for each scheduling policy can be described fully by
two functions: The multiple-event processing time as well the scheduling
horizon. Other properties such as the response-times and the buffer backlog
can be derived from these functions.

Definition 10 (Scheduler).
The timing behavior of a scheduler is a set of functions

Scheduler = {H,B+, B−} (3.18)

where H is the horizon function and B+, B− are the processing functions.
2The generalization of the local analysis approach is a joint work together with Jonas Diemer

46
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

Definition 11 (Multiple-Event Processing Time).
The maximum and minimum q-event processing time B+(q) / B−(q) return
lower and upper bounds on the time interval between the arrival of the first
event and the completion of the q-th event for any q consecutive events of task
τ assuming that all q but the first activation arrive within the scheduling
horizon of their predecessors. (see [68])

Informally speaking, the multiple event processing time is the time to
process q consecutive events which arrive in the same busy-period. Related
work such as [242] assumed “events arrive sufficient early” without further
constraints. The notion of the scheduling horizon tells us whether two
events (or rather associated task executions) influence each other timing-
wise. Naturally, if two events are spaced very far apart, there is no influence.
That is the execution of the first has no timing impact on the production
of the second. However, if two events arrive very closely (i.e. burst), the
processing of the second event is delayed by the first event.

Definition 12 (Maximum Multiple-Event Scheduling Horizon).
The maximum q-event scheduling horizon H(q) of any sequence of q events
of task τ is a right half-open interval starting with the arrival of the first and
ending just prior to the latest time where a hypothetical q + 1-st activation
would receive ε service.

In this definition, ε service practically means that a q + 1-th activation
would be served an infinitesimal time. We define that an event arriving at
the half-open end of a scheduling horizon will get ε service. This assumption
leads to a bounded scheduling horizon at 100% load and is in practical
designs not of interest.

As we will discuss later, for some schedulers also the queuing delay is of
interest (i.e. strict-priority non preemptive). The exact definition is given
later. However, the interested reader who is familiar with the concept could
now be confused between the difference of the scheduling horizon and the
queuing delay, hence we give a very simplified reasoning in advance. The
queuing delay is the time until at least one full processing cycle is available
for a task. The scheduling horizon is the time until ε service is available,
where ε can be smaller than a processing cycle.

Practically, the scheduling horizon tells us the scope of influence of q-
events to any future events of the same task. Thus, if a q+1-th event arrives
outside of the scheduling horizon (that is after time H(q) has elapsed
measured from the arrival of the first), the execution is unaffected of the
previous events.

For backward compatibility to former methods and approaches, we can
use the scheduling horizon to compute the busy period.

Definition 13 (Busy Period).
The busy period of a task τ is the right half-open interval starting with the

47

arrival of the first and ending with the scheduling horizon of the q+ event

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

busy period

Figure 3.3: The relationship between scheduling horizon Hi(), busy-period
w and maximum number of events q+.

such that all but the first of the q+ events arrive in the scheduling horizon of
the preceding event except the q+ + 1-th event.

From this definition we can directly deduce how the busy period is
constructed from the scheduling horizon.

w = max
q≥1

{
H(q)|H(q) < δ−(q)

}
(3.19)

Also, we can derive the maximum number of events q+ which reside
in the same busy period. This is the maximum number of events which
interfere with each other, as there is ε idle time between the q+ and the
q+ + 1-th event.

q+ = η+(w) (3.20)

This tells us that we can find the worst-case behavior under the first q+

events in the busy period. We can use this fact, and restrict all further
considerations to the first q+ events.

For the rest of the thesis, we will use either the busy-period definition or
the scheduling horizon, depending on which is more intuitive and better
fits the considered problem. As sometimes it is more generic to supply the
scheduling horizon equation and sometimes it is easier to directly supply
the busy-period equation. Generally it is sufficient to derive either the
horizon function or the busy-period function.

The illustrative example shown in Figure 3.3 depicts the relationship
between the busy-period and the scheduling horizon. The busy-period is the
scheduling horizon of the last q+ event that falls in the previous horizon.
In this particular example, the fourth event occurs after the horizon of the
third.

48
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

Bounding the Timing

Now, all functions are introduced and show how we can find the timing
behavior of a task. This includes the response times as well as the timing
uncertainty (jitter).

Definition 14 (Response Time).
The response time of a job of task τ is the time from activation of the task
until it has been fully processed (and the output event is generated).

Theorem 1. The worst-case response-time R+
i is upper bounded by

R+
i = max

∀0<q≤q+
B+

i (q)− δ−i (q) (3.21)

Proof. Here, δ−(q) is by construction a lower bound and B+
i (q) an upper

bound. Thus, the difference is guaranteed to be an upper bound. The
maximum number of events which can mutually interfere is bounded by
q+. The following q + 1-th event will not suffer from interference of the
previous q+ events. If all individual response times for the first q+ events
are maximized, it is guaranteed to find the worst-case response time among
them.

For some scheduling policies such as FIFO, the provided bound is not
tight. The scheduling scenario that leads to the construction of the multiple
event processing time B+ contradicts the assumption that events arrive
as early as possible according to δ−. Hence, Theorem 1 is a valid bound
but it may be possible that the worst-case response time estimation can
further be improved by a scheduling tailored equation. We show this when
we discuss the scheduling equations for the FIFO scheduling policy.

Theorem 2. The best-case response-time R−
i is lower bounded by the best-

case execution time:
R−

i = B−
i (1) = C−

i (3.22)

Proof. The proof is straight forward: An event can never be processed
faster than the best-case execution time of the associated task.

For this it is assumed that the best-case execution time is either fixed
during analysis or monotonically decreasing for each analysis step. Other-
wise, the global fixed point is not guaranteed to be conservative [221].

The uncertainty of the responsiveness of a task is called the jitter.

Definition 15 (Response-Time Jitter).
The response-time jitter is the response-time uncertainty and defined as the
difference between the worst-case scenario and the best-case scenario.

Ji = R+
i −R−

i (3.23)

49
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Bounding the Backlog

Buffer sizes in real implementations are scarce and it must be guaranteed
that the queues do not run over, otherwise data is lost. This can happen
if events arrive in a large burst and cannot be processed sufficiently fast.
Naturally, a lower bound on the backlog is to assume all buffers are empty.
However, the lower bound is usually of no further interest. From the
scheduling functions, we can compute a worst-case buffer backlog for the
queued events.

Theorem 3. The worst-case backlog is upper bounded by

backlog = max
1≤q≤q+

{η+(B+(q))− q + 1} (3.24)

Proof. As shown before, we only must consider the first q+ events, as later
events perform better or equal. An upper bound on the number of events
that arrive during the processing time of the q-th is given by η+(B+(q)),
of these events q − 1 events have already been processed. These can be
subtracted which directly leads to eq. 3.24.

3.3.2 Strict Priority Preemptive (SPP)
We demonstrate how the previous definitions and theorems are applied to
a set of independent tasks scheduled by a strict priority preemptive policy.
In such a scheduling policy, each task has an associated priority level. At
any time, the task in the ready queue with the highest priority is admitted
to run on the resource. If during the execution of one task, another task
with a higher priority arrives the currently running task is preempted,
moved to the ready queue, and the new task is admitted. For the sake of
simplicity we neglect context switch overhead [51] as well as blocking due
to shared resource access [226], although this can easily be integrated in
the following equations. Furthermore, variable execution times is briefly
mentioned in [242]. Is can be supported in the model by replacing the
execution time terms (e.g. q · C) by workload arrival functions which are
able to capture the context through multiple incarnations of the task [185].
The following theorem represents the baseline and is extended in later
chapters.

Theorem 4. The maximum Multiple-Event Processing Time for a SPP
scheduler (neglecting context switch overhead) is upper bounded by

B+(q)SPP = q · C+
i +

∑
∀j∈hp(i)

{
η+

(
B+(q)SPP

)
· C+

j

}
(3.25)

50
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

• hp(i) is the set of all higher priority tasks mapped to the same resource
as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

Proof. The proof was given in [242] and [274]. The argumentation is that
the q-th event is processed, once the accumulated workload of all higher
priority tasks has been processed and all q events of length q · C+

i are
processed.

Also, as mentioned in related work such as [242, 274, 172, 61], B occurs
on both sides of the equation. The ceiling operator introduces discontinu-
ities, thus no simple rearrangement is possible. Due to the monotonicity
of the η function, the right side of the equation is monotonic in B, thus a
fixed point can be found through iteration [147].

Theorem 5. For SPP scheduling, the multiple event scheduling horizon
for SPP scheduling is given by the corresponding maximum multiple-event
processing time.

H(q)SPP = B+(q)SPP (3.26)

Proof. In [172], a proof for the busy period for SPP is presented. As stated
in Definition 13 as well as eq. 3.19 the busy period is the scheduling horizon
for the last activation (q+) that falls into a previous scheduling horizon. As
shown in [68], the proof given in [172] can be generalized to q ≤ q+.

3.3.3 Strict Priority Non-Preemptive (SPNP)
The Strict Priority Non-Preemptive scheduling analysis is frequently used
to analyse fixed priority bus arbitration. If multiple messages are outstand-
ing, the order is determined by the message priority. Once a message is in
transmission it is not preemptable and cannot be canceled. Also the auto-
motive operating system OSEK [207] as well as AUTOSAR [12] support a
non-preemptive scheduling policy in which task switches are only possible
at certain yield points (e.g. task termination). Again, for the following
approach we neglect blocking caused by shared resources as well as context
switching overhead.

For a SPNP scheduler, the processing time is determined through the
queuing delay, which is the time a job of a task is waiting until it receives
service. For non-preemptive systems, we know that once the task receives
service, there will be no further interference for this event.

51
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Theorem 6. The maximum Multiple-Event Processing Time for a SPNP
scheduler is upper bounded by

B+(q)SPNP = Q(q) + C+
i (3.27)

Q(q) = (q − 1) · C+
i +

∑
∀j∈hp(i)

{
η+
j (Q(q) + tcycle) · C+

j

}
(3.28)

• Q(q) is the largest time interval from the arrival of the first event until
the q-th event of τi receives ε service.

• hp(i) is the set of all higher priority tasks mapped to the same resource
as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

• tcycle is the bittime or cycletime, which needs to be considered due to
boundary effects [32].

Proof. The proof was given in [61].

Adding the cycle time tcycle in the argument of the event arrival function
is often neglected. This models the discreteness of service. Let’s consider a
slow bus which runs at a rate of 1/Atcycle. An event arriving ε time after a
bittime has started cannot get served immediately but has to wait for the
start of the next bittime. For processors this effect is usually negligible as
events (e.g. interrupts, software calls) are synchronized to the processor
clock.

Theorem 7. The maximum multiple event scheduling horizon for a SPNP
scheduler (neglecting context switch overhead) is upper bounded by

H(q)SPNP = q · C+
i +

∑
∀j∈hp(i)

{
η+
j

(
H(q)SPNP

)
· C+

j

}
(3.29)

• hp(i) is the set of all higher priority tasks mapped to the same resource
as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

52
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

time

Figure 3.4: Worst-case processing time for FIFO: Interfering jobs from τj
arrive as quickly as possible, last event (violet) from τi arrives just after
the last event of τj arrives.

Proof. The proof for the busy period was given in [61]. The adaption
to multiple events is presented in [68]. The argumentation follows the
one for SPP as given in [274], with the difference that the push through
interference [61] caused by the non-preemptiveness must be considered.

3.3.4 First In - First Out (FIFO)
The possibly easiest to implement scheduling and arbitration policy is
First In - First Out [253]. A single queue is implemented and jobs are
processed in the order they enter the queue. This scheme is often found
in switched networks (e.g. Ethernet, NoC) and bus controllers (e.g. some
CAN controllers as discussed in [62]) where arbitration is implemented in
hardware and resources are scarce.

The analysis of FIFO scheduling is similar to Earliest Deadline First
Scheduling as EDF behaves like FIFO if deadlines are set to D = 0 [257,
208, 111]. Note that this analogy is restricted to modelling and the deadline
does not have the notion of a deadline but rather a scheduling parameter.
In this sense the task will not fail if this deadline of zero is exceeded. An
analysis targeted towards Ethernet AVB [130] is presented in [74]. It
applies to mixed fixed-priority policy with multiple FIFO queues but does
not sufficiently capture non-preemptiveness.

The FIFO analysis is an example for which the previously provided
theorems provide conservative results but can further be improved to
capture the peculiarities of the scheduling policy. Hence, we first present
the set of equations and then explain the problem.

53
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Theorem 8. The maximum Multiple-Event Processing Time for a FIFO
scheduler is upper bounded by

B+(q)FIFO = Q(q) + C+
i (3.30)

Q(q) = (q − 1) · C+
i +

∑
∀j∈fifo(i)

{
η+
j (Q(q) + tcycle) · C+

j

}
(3.31)

• Q(q) is the largest time interval from the arrival of the first event until
the q-th event of τi receives ε service.

• fifo(i) is the set of all tasks mapped to the same queue as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

• tcycle is the bittime or cycletime, which needs to be considered due to
boundary effects [32].

Proof. Under worst-case assumptions, the q-th event arrives ε time after
all previous q − 1 jobs finished and all interfering jobs arrived. If the
interfering jobs arrive as quickly as possible, and the q-th event of task τi
as late as possible, the interference is maximized.

The construction of the worst-case multiple event processing time is also
shown in Figure 3.4. The upper part of the figure in the grey box shows
the earliest arrival times of events which belong to task τi. The Gantt
diagram below, shows the scenario that leads to the worst-case processing
time. Here the q-th event (violet) arrives just after all interferer events
arrived. Note that it is not conservative to assume that events of task τi
arrive as quick as possible (i.e. what is shown in the grey box).

Theorem 9. The maximum multiple event scheduling horizon for a FIFO
scheduler (neglecting context switch overhead) is upper bounded by

H(q)FIFO = q · C+
i +

∑
∀j∈fifo(i)

{
η+
j

(
H(q)FIFO

)
· C+

j

}
(3.32)

• fifo(i) is the set of all tasks mapped to the same queue as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

54
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.3. Resource Analysis

Proof. A worst-case is constructed if all events from all τi as well as all q
events of τi arrive as quickly as possible, generating the highest possible
workload. Then, the scheduling horizon is determined by the time, the
queue busy. After the queue is busy it can provide at least ε service. The
latest time after which the queue has processed all events and thus is
empty again, is after all workload associated with these events is processed.
The workload is the sum of the execution times which arrived during the
processing according to eq. 3.32. When the queue is empty a potential
q + 1-th event would get ε service.

Now, the response time is computed according to eq. 1 by subtracting
the earliest arrival time from the latest processing time. This is also shown
in Figure 3.4. However, in FIFO scheduling, the scenario that leads to the
worst-case processing time is (in some cases) mutual exclusive with the
assumption that events of task τi arrive as quickly as possible. Thus, there
is no consistent scenario that actually leads to the depicted response time
of R+

i (2). For the computation of the response time, we assume an earlier
arrival time of what we assumed for the construction of the processing time.
Again, it must be noted that the result is a conservative safe bound, but we
want to improve the response-time bound as good as possible.

Obviously, in FIFO scheduling the interference depends on the arrival
time of the q-th event. The earlier it arrives, the less interference.

Corollary 1. The response-time of the q-th event of task τi, assuming it
arrives in the scheduling horizon of the (q− 1)-th event is upper bounded by

R+
i (q, a) = Qi(a)− a+ C+

i (3.33)

• a is the arrival time of the q-th event of task τi.

• C+
i is the worst-case execution time of task τi.

• Qi(a) is the queueing delay for the q-th event, assuming it arrives at
time a.

Proof. Eq. 3.33 directly follows the definition of the response time (Defini-
tion 14), it is time from the arrival (a) until the event has been processed.
The latest time, the event is processed is the queueing delay Qi(a) plus the
execution time C+

i .

A graphical interpretation of eq. 3.33 is shown in Figure 3.5. The
queuing delay for some fixed q is shown over a range of values a. The
function Q(q, a) is stepped with respect to a, this is because the interference
arrives in chunks accoring to the η function. For a given value of a the
response-time is the distance from the queuing delay curve to the linear
function a − C+. The queuing delay can be obtained according to the
following theorem.

55
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

aWorst-case workload
Arrival times

Figure 3.5: Graphical interpretation of eq. 3.33. The response time
wcresponse[i]q, a is the distance between the curves Q(q, a) and the lin-
ear function a− C+

i .

Theorem 10. The maximum queuing delay for the q-th event released at
time a and assuming the release is in the scheduling horizon of the preceding
event is bounded by

Qi(q, a) = (q − 1) · C+
i +

∑
∀j∈fifo(i)

{
a+ tcycle) · C+

j

}
(3.34)

• Qi(q, a) is the largest time interval from the arrival of the first event
until the q-th event of τi receives ε service.

• fifo(i) is the set of all tasks mapped to the same queue as task τi.

• C+
i , C+

j is the worst-case execution time of task τi, τj .

• η+
i (Δt) is the maximum number of events of task τi in any half-open

time interval of length Δt.

• tcycle is the bittime or cycletime.

Proof. The proof follows eq. 3.31 with the difference that only interference
which arrives prior to time a must be considered. Events which arrive later,
are queued behind the event of interest and do not interfere. If events
arrive simultaneously at time a, we assume that the q-th event arrives
tcycle after the others, hence the worst-case order is assumed and all events
are added to the interferer set.

The question remains which value of a leads to the worst-case response-
time. A conservative approach is to evaluate all candidates in the interval

56
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.4. System Analysis

bounded by the earliest possible arrival and the latest possible arrival
determined by the scheduling horizon a ∈ [δ−i (q), Hi(q)). This can be a
challenging task and given a ∈ R, the number of candidates is uncountable.
As already mentioned, the queuing delay is a step function in a, with steps
at the earliest event arrival according to δ−j (n). Without further proof, we
can tell that the maximum of the difference of a step function and a linear
function is obtained by only considering the steps.

Theorem 11. The worst-case response time R+
i (q) is found by evaluating

eq. 3.33 at the steps of Qi(q, a).

R+
i (q) = max

∀a∈A
{R+

i (q, a)} (3.35)

A =
⋃

∀j∈fifo(i)

{
δ−j (n) | δ−i (q) ≤ δ−j (n) < Hi(q)

}
(3.36)

Proof. After a step occurs in Q(q, a), the function stays constant, whereas
a−C+ is linearly increasing in a. Thus, the difference between the function
Q(q, a) and a − C+

i is strictly monotonically decreasing to the next step.
Thus, we can conclude that it is sufficient to evaluate the steps to find the
maximum response-time. An illustrative example is shown in Figure 3.5.

Similarly, other scheduling policies or protocols show improvement po-
tential, where a direct response time equation, similar to 3.33 gives tighter
results, than the approximation according to eq. 1. As already mentioned,
earliest deadline first scheduling, which is not discussed in this thesis,
belongs to this class of schedulers. Often, for a first timing assessment the
reader is advised to start with a simple approximation and refine when
really necessary.

3.4 System Analysis

We presented the local resource analysis step which considers resources
and tasks in isolation. In complex system, tasks are cascaded, exchange
data and have complex non-functional interactions. The goal of the system
analysis is to analyse complex application graphs with large task and event
chains. As discussed in [120], there are functional as well as non-functional
dependencies among tasks. Functional dependencies directly arise from
the communication relations, whereas non-functional dependencies are
introduced by scheduling artifacts. A higher priority task for instance will
delay a low priority task on the same resource. Naturally, this affects the
entire communication chain of the low priority task. Also event models

57
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3. TIMING VERIFICATION OF SAFETY-CRITICAL REAL-TIME SYSTEM

Input Event Models

Local
Scheduling Analysis

Output Event Models

Convergence or
Non-Schedulability ?

No

Environment Model

Terminate

Event Model
Propagation

System Model

Figure 3.6: Compositional analysis flow with the major steps local schedul-
ing analysis and event model propagation.

along the task chains are not known a-priori. Also arbitrary complex
cyclic dependencies prevent a simple feed-forward analysis where tasks
are analyzed in isolation. To solve the problem of mutual dependencies,
the system analysis can be formulated as a fixed point problem [210, 232,
242, 258]. This concept is also used in related approaches such as real time
calculus (RTC) [282, 272].

The analysis flow, as shown in Figure 3.6, consists of two interleaved
steps: the local analysis (explained in the previous section) and the prop-
agation of event models. The environment model specifies the boundary
conditions for each stream under which the system is operating. This is
usually given as external event models which describe the characteristics
of external sources (i.e. video cameras, controllers). Other, yet unknown,
event models are initialized with optimistic guesses that are iteratively up-
dated during the analysis. The event models are used for the local resource
analysis during which the local behavior is considered in isolation. Among
other results, the local analysis yields the response-time jitter Jresp. As
shown in [120, 232], given the input event model as δ−in, we can obtain the
output event model δ−out using the following equation:

δ−out(q) = max{(q − 1) · C−, δ−in(q)− Jresp} (3.37)

This output event model is then used as the input event model for the
following task of the chain. More sophisticated approaches to compute a
tighter bound for the output event model is presented in [241] and [222].
These approaches leverage the fact that out of q events, not all events are
delayed by the worst-case response time.

58
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

3.5. Summary

The iteration is stopped and a system fixed point is found, if the worst-
case response times and thus the all event models remain stable.

Often, the latency along a path is of interest. This is the case in automo-
tive systems where signals are transfered across multiple ECUs, buses and
gateways. A simple approach to compute the latency is to add the worst-
case response times along a path. Often, the scenarios that lead to the
worst-case situation on one resource are mutual exclusive with a scenario
that leads to the worst-case response time on another resource. This can
be exploited to improve the path latency bound. A recursive path latency
algorithm which performs better than a simple response-time summation
is presented in [242].

Often data is fragmented over multiple frames [246, 64, 137]. A typical
example for this is Ethernet or NoC communication, where large data
streams are first packetized and then sent in flits and phits. To compute
the latency of the data packet we must compute the latency of multiple
events which are associated with the smallest data entity (e.g. phits or
Ethernet frames). Here, we can use the following equation (cf. [73]):

L(q)i = δ−i (q) +
∑

∀j∈Path(i)

R+
j (3.38)

Here, Path(i) is the set of all tasks, which belong to a path i. The idea is to
predict the injection time of q events and assume the last event observes
the worst-case path latency. By causality, all previously sent events must
have arrived by then.

3.5 Summary

In this chapter, we summarized the state of the art in timing verification
of complex embedded systems. We have shown how larger systems are
decomposed into a functional as well as architecture model. These models
are the starting point for a scalable system analysis concept through which
response-time, path latency and buffer backlog values can be computed by
nested fixed-point iteration.

The building blocks of CPA were harmonized by providing a unified
theory which is valid through a wide range of scheduling policies, where
approaches presented in literature required a formalism tailored towards a
specific scheduling problem. Here, we showed that the busy-period known
from literature is a special case of the presented scheduling horizon. We
proofed the conservativeness of these unified bounds and showed scenarios
where a hand-tailored set of equations (i.e. FIFO) can yield tighter results.

59
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

CHAPTER 4

Multi-Master and Point-to-Point
Communication

This chapter addresses the effects of bit errors, packet errors and error
handling in buses supporting multi-master as well as master-slave commu-
nication. The approaches can be applied to on-chip buses such as AMBA
[7] or large field-buses such as the Controller Area Network [233] and its
successor CAN-FD [113]. In scope of the CPA system analysis approach, the
presented methodologies are resource analyses as they operate on a local
level. In scope of the ASTEROID architecture, the presented methodology
is applied to on-chip communication (AMBA) as well as off-chip communi-
cation (CAN) to interface ASTEROID with the environment.

In the first section, the error models and their properties are presented.
The second and third section focus on the two approaches to obtain a prob-
abilistic response-time bound considering random error effects. Finally,
the approaches are applied to an automotive use-case to obtain the per-
formance bounds and judge the reliability of communication considering
typical environments.

The chapter is partially based on the work published in [21, 15, 16].

4.1 Channel Model

Communication in digital as well as in analog systems take place between
a sending station and one (or multiple) receiving station(s). Data is trans-
mitted over a channel such as a wire, optical or over the air. Errors caused
by electrical surroundings superimpose the actual data stream. There are
external sources for errors such as high power radar stations, but also in-

61
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

source channel sink

Figure 4.1: Channel model: source transmits a data stream ςs, the channel
superimposes an error stream ςe, and a altered data stream ςs is received
at the sink.

ternal sources such as the inductive switching characteristics of an electric
motor. Figure 4.1 shows the channel model. The source (i.e. sending node)
sends a stream which is superimposed by errors and then received at the
sink (i.e. receiving nodes).

If errors occur during the transmission, one (or multiple) receivers
sense the error as an altered symbol (i.e. bitflip). The receiver eventually
recognizes the problem depending on the coding properties and either
corrects the data stream on the fly or signals an error condition on a
return path. For the correction on the fly error-correction codes are used,
whereas error-detection codes are used for the latter approach. However,
the actual mechanism and its resilience is protocol dependent and discussed
throughout the analysis sections.

Now, we formalize the channel model.

Definition 16 (Data Stream).
A data stream of length n ∈ N

+ (the stream length), over field A = F
2 is

defined as ς ∈ An.

For our considerations, we restricted the definition to a binary alphabet
F
2 = {0, 1}, however the following concepts are valid for finite fields of

length m with mod-m addition and multiplication. Since information on
typical field busses is modulated represented as bits (e.g. NRZ coding),
such modeling is natural1.

Definition 17 (Syndrome).
Given a transmitted data stream ςs and a received data stream ςr, the error
syndrome is defined as

ςe = ςs ⊕ ςr (4.1)

with ⊕ being the element-wise mod-m addition.

1Gigabit Ethernet uses 5-PAM with m = 8

62
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.2. Error Models

In binary transmission ⊕ is a xor, thus the syndrome is retrieved as
difference (xor) between the transmitted and received data.

Practically, the syndrome represents the error pattern which occurred
during the transmission.

Definition 18 (Error Event).
An error event is the state in time t ∈ N

+ at which the syndrome is non-zero
ςs(t) �= a0.

Practically, an error event is a discrete time at which an error alters the
transmitted data. Hence, for binary systems, a syndrome is simply a list of
error events.

4.2 Error Models

A vast number of error models have been presented in literature. Error
models can be subdivided into descriptive [1] as well generative [148] error
models. A generative model is used to generate and simulate the error
process, whereas a descriptive model is typically used to assess the statistics
(e.g. bit error rate, variance) of a sampled process. Throughout the rest
of the section, we first introduce key descriptive parameters and then
discuss selected generative models. Although we do not use these models
for simulation purposes, but rather for a formal stochastic consideration.

In signal processing, we must differentiate on which level an error model
is applied. Parametrized models for the analog domain (e.g. voltage level)
have been presented. Here, additive white gaussian noise (AWGN) is one
of the most simple models [202], in which the amplitude follows a normal
distribution. Such a model can be used to describe the effects of thermal
noise in (e.g. in resistors) and simple wireless channels. More sophisticated
error models exist to reflect more complicated effects such as fading in
multipath channels, scattering, interference and other wireless effects. For
instance Rice fading and Rayleigh fading models [209] can be applied to
capture and simulate the analog effects by using MATLAB simulation.

For digital processes, such as bit-level or packet-level transmission,
generative models such as Markov-chains or Hidden Markov Models
(HMM) are used [284]. Of special interest due to their simplicity are the
Gilbert model [100], the Gilbert-Elliot model [85] as well as the Fritchman
model [254].

The task of the error models, which are introduced in the following
sections, is to model the (to be expected) error syndrome with justifiable
accuracy.

Throughout the rest of this section, we introduce two commonly used
bit error models. These models can also be interpreted as packet (or frame)

63
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

error models. We choose two simple error models that can be used as gener-
ators for simulations but also to derive additional statistical information
such as the predicted number of error events in a given time frame.

4.2.1 Descriptive Parameters for Lossy Channels
We will now introduce some key parameters which are typically used to
quantify the error environment. It must be noted that the following metrics
are not directly considered as an error model, as they are of descriptive
nature.

Definition 19 (Bit Error Rate).
The bit error rate (BER) λ of a channel is the ratio of altered symbols of the
received data stream ςr to the total number of transmitted symbols n:

λ =
d(ςs, ςr)

n
(4.2)

with d(ςa, ςb) being the hamming distance between both data streams:

d(ςa, ςb) = |{i | 1 ≤ i ≤ n, ςa(i) �= |ςa(i)}| (4.3)

The hamming distance is the number of bits which are different in both
data streams.

The previous definition of the bit error rate is based on the standpoint
of an external clairvoyant observer, who only sees the transmitted and
received streams. If the syndrome is known (or was derived), a more
straight forward computation of the BER is possible by counting the number
of non-zero symbols in the syndrome.

λ = e/n (4.4)

with
e = |{i | 1 ≤ i ≤ n, ςs(i) �= a0}| (4.5)

where a0 is the additive identity of the field F
m, (i.e. for F

2, a0 = 0).
Another key property is the correlation of the error events. Obviously,

it makes a difference if errors are identically distributed over the entire
transmission time or if they are clustered and errors occur in bursts. There
is no consistent definition of a burst. Figure 4.2 shows an example of a
transmission which is disturbed by errors. There are four clusters of error
events. It is unclear if the two error clusters in the middle of the figure
belong to a single burst or are in fact two individual bursts.

We use the latter interpretation, because this allows to identify bursts
uniquely which are always separated by a at least one correct symbol.

64
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.2. Error Models

burst period

burst length

Figure 4.2: Burst errors and key properties such as burst length and burst
period.

Definition 20 (Burst).
A burst of length b is a syndrome ςs of length b with non-zero elements:

ςs(i) �= a0∀1 ≤ i ≤ b (4.6)

Any syndrome ςs can be decomposed into a sequence of alternations of a
non-zero syndrom (a burst error, nz) and a zero-syndrome (no errors, z).

ςs = . . . , ςnz
1 , ςz

1, ς
nz
2 , ςz

2, . . . (4.7)

The previous definition is a pragmatic model, which fits the needs of this
research. There are also other burst definitions. For instance, in [82] the
distance between the first and the last erroneous bit determines the length
of the burst.

Definition 21 (Burst Length).
For a syndrome ςs with m bursts, the average burst length b̄ is defined as

b̄ =
1

m

m∑
i=1

nnz
i (4.8)

where nnz is the number of symbols in ςnz
i

Definition 22 (Burst Period).
For a syndrome ςs with m bursts, the average burst Period b̄ is defined as

b̄ =
1

m

m∑
i=1

{nnz
i + nz

i } (4.9)

where nnz is the number of symbols in ςnz
i

65
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

0

1

0

1

Figure 4.3: Binary symmetric channel: p denotes the probability of a flipped
bit.

4.2.2 Binary Symmetric Channel
As we do not know the actual pattern of the syndrome a priori, we can
approximate it using a stochastic process. The random variable in this
process is the error over time. This is a common modelling approach [231].

Let Xt be the value of a random variable at discrete time t ∈ N, then
the series of random variables X0, X1, . . . is called a process. We use the
following definition as given in [38]:

Definition 23 (Stochastic Process).
A stochastic process is defined by the collection of random variables {Xt :
t ∈ I} ∈ S on a probability space with a sample space Ω, a set of events
F with the assigned probabilities P . S is called the state space, and I the
index set.

The series ςs can be grasped as a stochastic process with ςs(t) = Xt, and
Ω = {1, 0}. Then S is the set of all possible error scenarios over the mission
time.

The simplest error model for digital transmission over a binary channel
is the binary symmetric channel (BSC) [175] or sometimes called single
bit error model. In this model, error events are uncorrelated and each bit
is considered in isolation. Figure 4.3 shows the conceptual model. The
left side shows what is transmitted and the right what is received. The
transmitted information is distorted with a probability p ∈ [0, 1], and the
receiver receives the correct information with a probability 1 − p. We
assume that the error process is stationary, hence p does not change over
time (or changes so slowly that it is reasonable to assume stationarity).

The channel capacity of a BSC, which is the relative amount of trans-
mitted information per time can be computed as follows:

c = 1 + p log(p) + (1− p) log(1− p) (4.10)

Assuming a CAN bus with a data rate of 500 kbit/s and p = 1e − 6, the
capacity is 0.999985 which results in an “usable” datarate of 499, 992 bits/s.

66
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.2. Error Models

In case each error is independent and identically distributed (i.i.d.) and
the probability of a flipped bit is p for all bits, we can model the channel
behavior using a Bernoulli process[150].

Definition 24 (Bernoulli Process).
A Bernoulli process is a stochastic process with Ω = {0, 1} and I = N where
each random variable Xt obeys

P [Xt = 1] = p

P [Xt = 0] = 1− p (4.11)

Assuming we transmit n symbols over a BSC, we want to compute the
probability that a given error sequence ςs occurs. The probability can be
computed by multiplication, because the random variables are independent:

P [X = ςs] =

n∏
i=0

P [Xi = ςs(i)] (4.12)

Often, it is necessary to know the probability to observe a given number of
errors ne ∈ N during a total transmission of length n.

Theorem 12. The number of errors in a transmission of length n in a BSC
follows a Bernoulli distribution:

P [ne, n] =

(
ne

n

)
pne · (1− p)n−ne (4.13)

Proof. Proof is straight forward (i.e. [266]).

Theorem 13. The distance between error events is a geometric random
variable Nc with the following distribution:

P [Nc = x] = px(1− p) (4.14)

Proof. Proof is straight forward (i.e. [266]).

When we consider large data frames or a long stream of data, the
computation of P [ne, n] for ne � n can become a tedious task because it is
complex to compute the binomial

(
ne
n

)
.

Theorem 14. The probability distribution for a number of errors ne in
a transmission of length n in a BSC can be approximated by a Poisson
distribution:

P [ne, n] ≈ (np)ne

ne!
e−np (4.15)

67
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Proof. Reasoning is given in [266].

As a good rule of thumb, this approximation is valid under the following
conditions [198]:

“The sample size n should be equal to or larger than 20 and
the probability of a single success, p, should be smaller than or
equal to 0.05. If n ≥ 100, the approximation is excellent if np is
also ≤ 10.”

This is the case for almost all further considerations, as typical data frame
sizes are larger than 20 bits and the error probability p is typically in the
order (or below) of p = 10−6.

Practically, the presented approximation transforms the discrete process
into a continuous time domain of infinitesimal symbol time (or bit time
for binary channels) where the time distance between exactly Nc errors is
exponentially distributed:

P [Nc = x] = (np)e−npx (4.16)

It must be highlighted that the geometric distribution as well as the (contin-
uous) exponential distribution are memoryless. That is, the time between
errors equals the time to error. Practically, this means if an observer begins
the observation at time t0, eq. 4.14 and 4.16 can be used to determine the
distribution of when the next error is observed.

Obtaining Model Parameters

The binary symmetric channel model has only one parameter, p. In practical
application p determines the bit error rate. Hence, if measurements (data
traces and syndromes) are available, we can use eq. 4.4 and directly set
p = λ. Often, only the packet error rate is available and a bit error rate
must be derived.

Definition 25 (Packet Error Rate).
The packet error rate λp is the relative number of corrupted packets pc to the
transmitted packets np.

λp = pc/np (4.17)

Hardware controllers, such as CAN and Ethernet controllers are only
capable to count the packet loss and corruptions. There are no further
means available to detect and identify single corrupted bits. For packets of
length n we find that on average a packet is corrupted with probability pp
by applying eq. 4.13.

pp = 1− P [ne = 0, n]

pp = 1− (1− λ)n (4.18)

68
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.2. Error Models

G B

0 1 0 1

Figure 4.4: Two-state Gilbert loss model.

by rearranging the equation for λ, we get

λ = n
√

1− pp (4.19)

4.2.3 Two State Gilbert Loss Model
The previously introduced binary symmetric channel model is not capable
to reflect burst errors which can occur due to fading in wireless channels
but also in wired communication caused by repetitive emission of electro
magnetic interference (EMI) bursts as seen in electric vehicles. In such
environments it is more likely that an error occurs if an error has been
seen in the recent past. This can lead to scenarios where an error spans
multiple symbols or data frames and certain error patterns are more likely
than others. Note that in this section model the occurrence of (burst-) error
events, the effect on packets is part of an analysis which is discussed later
in this thesis.

In this work, we use the two state Gilbert loss model [100], which is a
special case of a Hidden Markov Model (HMM) [86] and is an extension of
a discrete time Markov chain.

The two-state Gilbert loss model is depicted in Figure 4.4. The state G
(good) represents the reception of correct bits whereas the state B (bad)
represents a bit-flip. The conditional transition probabilities are given
as P [G|G] = γ as well as P [B|B] = β, respectively. The probability of
observing the system in the good/bad state g[t + 1] / b[t + 1] at time t + 1
purely depends on the state previous to the observation at time t. In the
context of Markov processes, this property is called memorylessness.

g[t+ 1] = γg[t] + (1− β)b[t] (4.20)
b[t+ 1] = (1− γ)g[t] + βb[t] (4.21)

69
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Similarly, the steady state probabilities of finding the system in the good or
bad state at some given time are given as

gss =
1− β

2− γ − β
(4.22)

bss =
1− γ

2− γ − β
(4.23)

From this, we can conclude that the average bit error rate λ for a Gilbert
loss model is given by λ = bss. Often, we are interested in particular
error patterns and the probability P (ne, n) of observing ne errors in n
transmitted bits.

Theorem 15. The number of erroneous bits ne given a total transmission
of length n and ending in the G/B state follows the distribution given by
P [ne, n,G] / P [ne, n, B] .

P [ne, n,G] =g[0]γn−2ne(1− β)(1− γ)

·
ne−1∑
i=0

(
ne − 1

i

)(
n− ne

i+ 1

)
(βγ)ne−1−i[(1− β)(1− γ)]i

+ b[0]γn−2ne−1(1− γ)

·
ne∑
i=0

(
ne

i

)(
n− ne − 1

i

)
(βγ)ne−i[(1− β)(1− γ)]i (4.24)

P [ne, n, B] =g[0]γn−2ne+1(1− γ)

·
ne−1∑
i=0

(
ne − 1

i

)(
n− ne

i

)
(βγ)ne−1−i[(1− β)(1− γ)]i

+ b[0]γn−2ne(1− β)(1− γ)

·
ne∑
i=0

(
ne

i+ 1

)(
n− ne − 1

i

)
(βγ)ne−i−1[(1− β)(1− γ)]i

(4.25)

where g[0] / b[0] denote the initial conditions that the channel is in the good
/ bad state.

Proof. The closed form as given above as well as a recursive formulation
was provided in [295].

70
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

The probability of ne errors out of n transmitted bits, irrespective of
the final state of the Markov chain is the sum of the previously provided
equations:

P [ne, n] = P [ne, n, B] + P [ne, n,G] (4.26)
Analogous to eq. 4.13, this can be used to obtain the likelihood of observing
a given number of errors, regardless of the actual pattern.

Obtaining Model Parameters

As in most models, the parameters are not directly observable and must
be retrieved from measurements. In [100], a convenient way is described
to derive γ and β by computing P [1] and P [1|1] from a measured error
syndrome. For further considerations, the estimation provided in [100] is
slightly simplified2. This leads to the following estimations:

γ = P [1] (4.27)

β = 1− P [1](1− P [1|1])
1− P [1]

(4.28)

Alternatively, if no measured syndrome is available but other key prop-
erties such as average burst length L and bit error rate λ can be estimated,
we can use these values to obtain γ and β:

γ =
λ(2− β)− 1

λ− 1
(4.29)

β = 1− 1

L
(4.30)

The previous estimations are derived from the associated burst length
distribution b[n|B]:

b[n|B] = βn (4.31)
The mean burst length is obtained as the limit for n→∞ of eq. 4.31 which
forms a geometric series and directly leads to eq. 4.30. In a second step, the
steady state probability eq. 4.23 can be solved for γ which directly leads to
eq. 4.30.

4.3 Probabilistic Response-Time Analysis under
Errors

In the previous section, we discussed the channel model, single bit errors
as well as a simple burst error model. In bus communication and switched

2The error rate in the B state is set to 1.

71
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Device b

channel

Device a

Device c

channel
arbitration

a
b
c

time

Communication model

a
b
c

time

error-free response time

response time with errors

Figure 4.5

networks, data is typically sent in a sender-receiver (e.g. LIN [177], Eth-
ernet) or publisher-subscriber (e.g. CAN [233]) fashion. In case multiple
bus masters try to talk simultaneously, an arbitration process decides on
the order. The communication model, consisting of multiple devices an
arbitration process and the channel model is depicted in Figure 4.5. Data
is transmitted as a data frame which, next to the actual payload, contains
control information. This typically includes a generic identifier, source- or
destination information, as well as a field for an error detection or correc-
tion code. Depending on the protocol and physical layer, the data frame
may be scrambled by adding stuffing bits or using additional encoding (e.g.
8b/10b). Scrambling techniques are used to maintain DC-balance and pro-
vide sufficient change in the signal to allow clock recovery. As motivated in
Chapter 3, a frame is modelled as a task τ with an execution time according
to its transmission time. Throughout this chapter, we reference a frame
belonging to stream i by the associated CPA task τi.

Definition 26 (Frame).
A frame is the smallest entity of data, associated with a unique stream i,
payload and has an associated worst-case / best-case transmission time of
C+

i / C−
i observed on the physical layer.

Let us focus on the dynamic behavior for a fixed-priority arbitration
scheme, which is commonly used in real-time communication (e.g. CAN,
AMBA, Ethernet 802.11q). The right part of Figure 4.5 shows the timing
behavior of frame-based communication in two scenarios. The transmission
of three frames transmitted by device a, b, and c in the error-free case
(top) and the error case (lower part) is shown. Also the response time R of
one exemplary frame is indicated. Obviously, as the frame transmitted by
device b is corrupted (lower part) it must be recovered. In the depicted case

72
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

and throughout the chapter, we assume a retransmission scheme is used
(retransmission is shown as a hatched grey frame) and error signaling is
neglected. This increases the response time Re by the retransmission as
well as by an additional higher priority frame.

Naturally, the response time under errors depends on the number of
errors which have occurred. Unfortunately, the number of error events
cannot be bounded conservatively due to its stochastic nature. It is ex-
tremely unlikely, yet possible, that a very large number of errors affect the
communication which leads to an arbitrary large response time. Hence, a
worst-case bound under errors is not feasible and the response time must
be grasped as a stochastic process.

To quantify the effect of errors, we need to quantify the error associated
overhead. In our communication model, we account the error overhead by
considering a signaling overhead as well the actual recovery.

Definition 27 (Error Signaling Overhead).
The error signaling overhead Os is an upper bound on the time required to
cancel the current transmission and notify all terminals. This includes the
time to bring all devices into a consistent state.

Depending on the protocol, the signaling overhead can be composed of
the transmission of an error frame or the deliberate transmission of invalid
frame.

Definition 28 (Error Recovery Overhead).
The error recovery overhead Or

i for a frame of stream i is an upper bound
on the time to recover the error after all devices are in a consistent state.

For retransmission schemes, the recovery overhead is determined by
the frame transmission Ci, whereas in systems which use forward error
correction, Or

i it is determined by the FEC runtime.
The goal of the following sections is two-fold. First we model the worst-

case impact of errors on the response-time and second, we predict the
likelihood of observing an increased response-time caused by errors. With
reference to the example given in Figure 4.5, we want to obtain worst-
case bounds for R and Re and know the probability that we observe those
response times. The illustrative example shows only one error, however an
arbitrary number of error scenarios can occur and must be considered in a
formal context.

4.3.1 Related Work
A large number of related literature has discussed the effects of errors (e.g.
error signaling and retransmission overhead). One of the first consider-
ations of errors on the response time was presented in [216]. The busy

73
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

period approach was extended to include error overhead which is modeled
as higher priority load with a known minimum inter-arrival time TF . A
reliability value was derived in [49] by calculating the probability that the
distance between two error events is never smaller than TF over a given
mission time.

In [44] the approach was picked up and a tree-based method is presented,
where different error scenarios are evaluated iteratively. In a second step,
these scenarios are translated to probabilities and a worst-case deadline
failure probability is calculated. The approach was extended in [45], and the
tree-based was superseded by a simpler, more accurate approach. However,
both methods [45, 44] allow only deadlines smaller than the periods, which
is a limit for practical use since bursty CAN traffic is not supported. Such
bursts can occur at a Gateways which connect highspeed and lowspeed
communication media such as Ethernet and CAN. Hence, it is especially
important to support queued messages.

Later work [190, 110] also accounted for burst errors where a generalized
Poisson process is used. The authors are then able to compute the worst-
case deadline failure probability. However, the complexity of their burst-
model lead to computational problems such as numerical accuracy of the
presented approach.

In [248], an approach is presented to bound the reliability of periodic,
synchronized messages tightly. Therefore, a reliability metric R(t) is de-
fined which denotes the probability that after time t the packets are trans-
mitted without any deadline misses. Reliability is calculated based on
the hyperperiod, which is the time when the event pattern of a periodic
message set repeats itself. Hence, the complexity of the algorithm depends
on the number of events in the hyperperiod. This algorithm is suitable for
automotive message sets in which periods are typically multiples of 10ms
and deadlines are given implicitly (i.e. period as deadline). However, if
messages are not synchronized, or the relative phasing is unknown or can
change, the approach is not applicable.

The problem of obtaining the response time under the probabilistic
effect of errors is very similar to effects known from variable execution time
research where execution times are modeled by probability mass functions
(pmf). In [67] an algorithm was presented to derive stochastic response
times for individual events of a given trace (e.g. periodic). Based on this
methodology, an average response-time distribution can be derived [66].
As we will show in the following sections, we can adopt the underlying idea.

4.3.2 Busy-Period Fixed-Priority Arbitration
The following analysis is based on [45, 61], generalized to queued frames
and arbitrary event models as introduced in the CPA chapter. The goal is

74
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

E E

B

Figure 4.6: Illustrative example for the response time computation under
k = 2 errors for a fixed priority non-preemptive scheduler.

to derive the response time under the assumption that the transmission is
affected by k error events.

Definition 29 (K-Error Response Time).
The K-Error response time R+

K|i is an upper bound on the response time,
assuming k errors arrived in the scheduling horizon of the affected frame.

The illustrative example from Figure 4.6 shows the response time for k =
0 as well as k = 1. Now we are presenting a method to obtain the response
time under error conditions for an arbitrary value of k systematically. First,
we introduce the necessary definitions which apply for the error-case.

As discussed before, the error penalty from which frame τi suffers in case
of one error event is composed of the protocol overhead of error signaling Os

plus the actual retransmission. Here, we make a worse-case approximation
by assuming the largest frame of equal or higher priority is affected.

Theorem 16. The worst-case overhead for k errors under SPNP scheduling
is upper bounded by

Ei|k = k · (Os +Or
i) (4.32)

• k is the number of errors

• Os is the signaling and detection overhead

• Or
i is the recovery overhead, bounded by the largest execution time of

all tasks of higher or equal priority (hep(i)) than task τi.

Or
i = max

∀j∈hep(τi)
Cj (4.33)

75
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Proof. As stated in [45], under worst-case conditions each error hits a
different packet. In the worst-case the largest packet is hit k times.

Now we can extend the response-time analysis for non-preemptive,
fixed priority scheduling as given in Chapter 3 and incorporate the error
overhead. As for the error-free case, which was presented in Chapter 3, we
must consider all higher priority frames, a lower priority blocker which
arrived shortly before as well as the additional cost caused by the k error
overhead.

The presented response-time equations can easily be adapted by as-
suming that the overhead for k errors is added to all the relevant terms.
An illustrative example is shown as a Gantt chart in Figure 4.6. The
scheduling horizon, processing time and response time are indicated. The
worst-case abstraction assumes that all k errors occur prior to all frame
transmissions. Obviously, this model is not a consistent schedule which
could be observed in reality: Retransmissions appear before the actual
frames are transmitted. Now we establish the formalism which leads to
the results shown in the example.

Definition 30 (k-Error Scheduling Horizon).
The k-error, multiple event scheduling horizon Hi|k(q) of any sequence of q
events of frame τi under SPNP scheduling is the right half-open scheduling
horizon under the assumption k error events occur in this interval.

Theorem 17. Given k errors occur during the transmission of frame τi
with a corresponding error overhead of Ei|k, the k-error, q-event scheduling
horizon Hi|k(q) is upper bounded by

Hi|k(q) = q · Ci + Ei|k +Bi +
∑

j∈hep(τi)

Cj · η+(Hi|k(q)) (4.34)

with

• k is the number of errors

• Ci is the worst-case execution time of task τi

• Ei|k is the error overhead for k errors

• Bi is the execution time of the lower priority blocker

• hep(τi) is the set of higher or equal priority tasks than τi

• η+(Δt) gives an upper bound on the number of events in any time
interval Δt.

76
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

Proof. The proof is analogous to the error-free case. In addition to the
workload from q activations of task τi, lower priority blocking Bi and the
higher priority workload released during the time interval, an additional
error overhead for k errors must be added Ei|k.

Definition 31 (k-Error Multiple Event Queuing Time).
The maximum k-error multiple event queuing time Qi|k(q) of any sequence
of q events of frame τi is the right half-open multiple event queuing time
under the assumption k error events occur in this interval.

Theorem 18. Given k errors occur during the transmission of frame τi
with a corresponding error overhead of Ei|k, the k-error, q-event scheduling
horizon Hi|k(q) is upper bounded by

Qi|k(q) = (q− 1) ·Ci +Ei|K +Bi +
∑

j∈hep(τi)

Cj · η+(Qi|k(q) + tcycle) (4.35)

with

• k is the number of errors

• Ci is the worst-case execution time of task τi

• Ei|k is the error overhead for k errors

• Bi is the execution time of the lower priority blocker

• hep(τi) is the set of higher or equal priority tasks than τi

• η+(Δt) gives an upper bound on the number of events in any time
interval Δt.

• tcycle is the cycle time (bittime) of the bus (processor) which accounts
for boundary conditions.

Proof. The q-th event gets ε service, when all workload consisting of the
lower priority blocker, error overhead caused by k errors, all previously
released q − 1 events and the higher priority events have been processed,
(cf. Theorem 17).

The cycle time tcycle accounts for an event which arrives shortly after
the start of a bittime and has to wait for the next bit slot. The queuing time
is then used to compute the processing time.

Definition 32 (k-Error Multiple Event Processing Time).
The maximum k-error multiple event processing time B+

i|k(q) of any sequence
of q events of frame τi is the right half-open multiple event queuing time
under the assumption that k error events occur prior to the start of the
transmission of th q-th frame.

77
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Theorem 19. The maximum k-error multiple event processing time is upper
bounded by

B+
i|k(q) = Qi|k(q) + Ci (4.36)

Proof. The proof follows the one of Theorem 6. Additional error overhead
of Ei|k is considered in the queuing delay term.

From this we can compute the k-error response time using standard
CPA methodology.

Theorem 20. The k-error response time is upper bounded by

R+
i|k = max

∀0<q≤q+
B+

i|k(q)− δ−i (q) (4.37)

Proof. The proof is analogous to the one of Theorem 1. For each k-error
scenario, it is necessary to evaluate which event leads to the worst-case
response time.

4.3.3 Busy-Period First-In First-Out Arbitration
In First-In-First-Out arbitration, all events are fed into a single queue
and are processed in the order of their arrival. The error recovery pro-
tocol in FIFO bus arbitration is not standardized and is implementation
dependent. We assume that the sending terminal is immediate (or suffi-
ciently early) notified in case of transmission errors. This is typically the
case in broadcast-like bus architectures as well as point to point links (e.g.
NoC). Often standardized protocols do not dictate the scheduling and error
handling explicitly and leave this up the implementation. The AXI [174]
embedded bus standard for instance provides user-defined signals (TUSER)
which can be used to implement parity checking and provide recovery
information.

When the sending terminal recognizes a latent error situation, we
consider only a Greedy retransmission scheme. A greedy retransmission
scheme retries until the frame is received by all terminals. Such a scheme
is for instance used for input queued switches where arbitration happens
at the ingress port and re-arbitration is not easily possible.

Naturally, there are other possible recovery resolution strategies. For
instance a packet can be dropped when a recovery is deemed impossible, for
example after either a number of unsuccessful trials or a timeout interrupt.
Such protocols would then discard the data and eventually inform higher
level software or assume that a higher level protocol takes care. In this
section, we only consider protocols which are guaranteed to make progress

78
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

(data is never dropped) given unlimited time is available. Later in Chap-
ter 5 we lift this assumption and consider higher level protocols which cope
with dropped data.

The general approach is similar to the previously presented fixed priority
analysis. In fact, we give a set of equations which bounds the previously
introduced greedy scheme. Under worst-case assumptions, we can assume
that the task with the largest worst-case execution time is affected by an
error and the entire frame is retransmitted over and over k times. Thus the
worst-case overhead can be computed similarly to the fixed priority case as
presented in Lemma 16, with the difference that all frames mapped to the
same queue have to be taken into consideration.

Corollary 2. The worst-case overhead for k errors under FIFO scheduling
is upper bounded by

Ek = k · (Os +Or) (4.38)

• k is the number of errors

• Os is the signaling and detection overhead

• Or is the recovery overhead, bounded by the largest worst-case execu-
tion time of all tasks that share the queue with task τi.

Or = max
∀j∈fifo(τi)

C+
j (4.39)

Theorem 21. Given k errors occur during the transmission of frame τi
under FIFO arbitration, the k-error, q-event scheduling horizon Hi|k(q) is
upper bounded by

Hi|k(q) = q · Ci + Ek +
∑

j∈fifo(τi)

Cj · η+
j

(
Hi|k(q)

)
(4.40)

• k is the number of errors

• Ek is the signaling and detection overhead

• fifo(τi) is the set of all tasks mapped to the same fifo as τi.

• η+(Δt) is an upper bound on the number of events in the time interval
Δt.

Proof. The proof is analogous to the one of Lemma 3.32. Additionally to
the workload of all released frames, we need to add the total worst-case
workload induced by k errors which is bounded by Ek. As the additional
workload for k errors for both schemes (greedy and requeue) is the same,
the horizon also is.

79
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Corollary 3. The response-time of the q-th event of task τi under k errors,
assuming it arrives in the scheduling horizon of the (q− 1)-th event is upper
bounded by

R+
i|k(q, a) = Qi|k(a)− a+ C+

i (4.41)

• k is the number of errors

• a is the arrival time of the q-th event of task τi.

• C+
i is the worst-case execution time of task τi.

• Qi|k(a) is the queueing delay for the q-th event, assuming it arrives at
time a and k errors arrived prior to a.

Proof. Proof follows the one of eq. 3.33 assuming an increased queuing
delay, caused by workload of k errors.

4.3.4 Probability Computation
The remaining question is to combine the response-time under errors
with the error model and compute the likelihood that a given threshold is
exceeded. The exceedance function as a metric has been used in related
work in the field of response times under errors such as in [44, 45] and is
also adapted as the key metric in this thesis.

Definition 33 (Worst-case Response-Time Exceedance Function).
The worst-case response-time exceedance function is an upper bound on the
probability P [Ri,j > t], that the response-time of some job of task τi exceeds
a given threshold t.

X+
i (t) ≥ max

∀j
P [Ri,j > t] (4.42)

Hence, for any observed frame, the probability of exceeding the response-
time threshold is smaller than X+

i (t). The deadline failure probability
which is for instance used in [190] and [110], is a special case for X+

i (Di),
where Di is the deadline associated with task τi. Also the more sophisti-
cated reliability metric R(t) can be derived from the exceedance function.
The reliability function R gives the probability that the function is still
operational (no missed deadlines) after time t.

Theorem 22. The reliability R(t) of a task τi is lower bounded by

R(t) =
(
1−X+

i (Di)
)η+

i (t) (4.43)

• t is the uptime

• Di is the relative deadline associated with task τi

80
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

• η+
i (Δt) is an upper bound on the number of events in the time interval

Δt.

Proof. By construction the exact reliability function is computed as the
product of the probabilities that a deadline is met under the condition the
previous deadlines were met:

Rexact(t) = P [τi,0] · P [τi,1|τi,0] · · · ·P [τi,n|τi,n−1 ∧ τi,n−2 ∧ · · · ∧ τi,0] (4.44)

here n is the last event which arrives prior the time t. By definition the
exceedance function is an upper bound on any event j, regardless of the
context. Hence, the converse probability is a lower bound on any event and
we can conclude that

P [τi,n|τi,n−1 ∧ τi,n−2 ∧ · · · ∧ τi,0] ≥
(
1−X+

i (Di)
)n (4.45)

It follows that
Rexact(t) ≤

(
1−X+

i (Di)
)n (4.46)

Also by definition, η+
i (t) is an upper bound for n. Since η is an upper bound

and 1−X+
i (t) is a lower bound, the power is a lower bound.

Note that eq. 4.45 also holds for burst errors but is very pessimistic in
such a case. The reason is that X+

i (Di) is a conservative probability that
some event will miss its deadline. This value is derived by assuming that
the burst will affect the frames or computation in the worst-possible way.
The extrapolation made in eq. 4.45 assumes that the worst possible burst
arrival is repeated frame after frame (even if this is very unlikely according
to the used error model).

The remaining question is how to obtain the exceedance function under
the presented error models. Here we follow the approach presented in
[45, 21] and generalize it to arbitrary schedulers for which the k-response
time as well as the k-error scheduling horizon is available.

Single Bit Error Model

A naive approach would be to apply the probability equations directly as
presented in Section 4.2. For a single bit error model, we can use the
Poisson process (eq. 4.15) and feed the scheduling horizon directly into the
Poisson equation:

P [k,Δt] =
(Δt · λ)k

k!
e−Δt·λ (4.47)

Unfortunately, this is not directly possible as it was shown in [44, 45]. The
consequence of an error event on the response time depends on the exact

81
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

k=0 error

k=1 errors

k=2 errors

combination of error events
that lead to

Figure 4.7: Scheduling Horizons Hi|k(q) and busy-period wi|k for values for
k = 0, 1, 2 and the associated busy period shown in green. Black arrows
in-between show one potential error arrival scenario.

arrival time in the scheduling horizon. In the formal scheduling analysis
which was presented earlier, we assumed error events arrive as early as
possible. However in reality they can occur at any time. The problem is
that if errors are spaced too far apart, they will have no effect. Similar to
regular events, they must fall into the scheduling horizon of the previous
error event in order to have a timing impact. This is shown in Figure 4.7.

In order to observe a response time R+
i|k=1, the error must occur in the

associated scheduling horizon Hi|k(q
+). It is a necessary condition but not

sufficient. This is shown in Figure 4.7. Errors must arrive in a specific
pattern. In order to observe a busy-period of length wi|k=1, an error event
must arrive sometime prior to the end of the zero-error busy period wi|k=0.
Otherwise, the error will not affect the timing of events which arrived
previously. In order to observe a two-error busy period wi|k=2, there are
two cases (also indicated in Figure 4.7):

1. Two error events arrive in zero-error window.

2. One error event arrives in the zero-error windows, which leads to a one-
error window and a second error appears in the interval [wi|k=0, wi|k=1).

The number of combinations that lead to a three-error busy period is even
larger. Broster et al. [45] have shown that the number of combinations
forms a Catalan Series and thus an explicit enumeration is not feasible.

Theorem 23. An upper bound for the probability P [≤ wi|k] to observe a
wi|k busy period or smaller and thus a R+(i|k) response-time is given by

P [≤ wi|k] = P [k, wi|k]−
k−1∑
l=0

P [≤ wi|l] · P [k − l, wi|k − wi|l] (4.48)

82
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.3. Probabilistic Response-Time Analysis under Errors

Proof. Given in [45]. The argumentation is that k errors in the time window
wi|k can occur in several ways. Either the errors fall in a “lucky” pattern
and we actually observe a busy period wi|k with probability P [≤ wi|k] or we
observe a smaller busy period of some length wi|l with probability P [≤ wi|l]
and the remaining k − l error events fall in the excess window of length
wi|k − wi|l.

In the worst-case it follows that, if we have seen a busy-period of length
wi|k, it is conservative to assume that the events in this busy period are
delayed and a response-time R+(i|k) is observed.

X+
i (t) ≤ 1−

∑
∀k|Ri|k<t

P [wi|k]] (4.49)

Burst Error Model

In this section, we extend the previously presented single bit probability
analysis to burst errors assuming a Gilbert loss model as introduced in
Section 4.2.3. In order to keep the problem traceable, we make some
conservative approximations. Typically an error-burst most likely hits
bits which belong to one frame. Analogous to the single-bit error case, we
assume that each error event hits a dedicated data frame. This obviously
is a major problem, if the average burst length on a bit-level is large. If the
burst length is in the order of a frame size, then at most two frames are
affected.

This overestimation can be reduced if, instead of a bit-error process as
described in Section 4.1 a packet-error process is used. A method to obtain
a packet error process is described in [109]. But packet error statistics
can also be obtained from channel simulation [143]. Special care must
be taken, since it has been shown [146] that the packet error process for
bursty channels cannot be modeled by a time homogeneous Markov process.
Alternatively, gap error models can be used [90], here the consecutive
number of error-free bits surrounded by error events is modeled.

We adapt the key approach from eq. 4.48 and apply eq. 4.24 and eq. 4.25.
First, we can make the observation that the last bit in any busy-period
must be always correct.

Lemma 1. Under a Gilbert loss error model, a k-error busy-period of wi|k
ends in the GOOD state.

Proof. The proof is by contradiction. Assuming a busy-period of length wi|k
which ends in the bad state. This implies that the last bit must have been
corrupted. If the last bit was corrupted, the entire frame must be recovered
and leads to a retransmission which further increases the busy-period. This
violates the initial assumption that the busy-period is of length wi|k.

83
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Let us use the following notation to reference the probability of observing
k errors in a window w ending in state S and starting with a probability of
g0 in the GOOD state and b0 = 1− g0 in the BAD state, respectively.

P [k, w, S, g0] (4.50)

The actual value can be computed by feeding the parameters in eq. 4.24
and eq. 4.25.

Theorem 24. The probability P [≤ wi|k] to observe a busy-period of length
wi|k or smaller under the Gilbert loss error model is upper bounded by

P [≤ wi|k] = P [k, wi|k, G, gss]−
k−1∑
l=0

P [≤ wi|l] ·P [k− l, wi|k−wi|l, G, 1] (4.51)

• k is the number of errors

• wi|k is an upper bound of the busy-period assuming k error events

• P [≤ wi|k] is the probability to observe a busy window of wi|k or smaller

• P [k, w, S, g0] is the probability to observe k errors in a time interval w
ending in state S.

• gss is the steady state probability to observe the Gilbert model in the
GOOD state.

Proof. The proof is by construction. It is reasonable to assume that the
model is in the steady state at the beginning of a busy-period. k errors in a
time window wi|k can be seen in two ways:

1. In a busy-period that ends in the BAD state.

2. In a busy-period that ends in the GOOD state.

According to Lemma 1, the probability of the first case is zero. Thus only
the latter case must be considered. These k errors in a time window wi|k
under the assumption that we start in the steady state and the last bit is
healthy (GOOD) can lead to the following mutually exclusive scenario:

1. a busy-period of length wi|k,

2. a busy-period of length wi|k−1 assuming one error falls in the window
[wi|k − wi|k−1), starting in the GOOD state,

3. a busy-period of length wi|k−2 assuming the two errors falls in the
window [wi|k − wi|k−2), starting in the GOOD state,
. . .

84
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

4. a busy-period of length wi|0 assuming the k errors falls in the window
[wi|k − wi|0), starting in the GOOD state.

It is not possible to observe a busy-period of length wi|k−j assuming the j
errors falls in the window [wi|k−wi|k−j), starting in the BAD state because
each busy period must end in the GOOD state (Lemma 1). We can put the
previous construction into the following form:

P [k, wi|k, G, gss] = P [≤ wi|k]+
k−1∑
l=0

P [≤ wi|l] ·P [k− l, wi|k−wi|l, G, 1] (4.52)

Simple rearrangement leads to eq. 4.51.

Once the busy-period probabilities are derived, the exceedance function
is computed according to eq. 4.49

4.4 Convolution Analysis for Fixed-Priority
Arbitration

By construction, the previously presented analysis induces additional pes-
simism because recovery overhead is conservatively approximated to be
the worst case recovery overhead among all higher priority tasks. In this
section we present an alternative approach which reduces this pessimism
and trades accuracy with analysis runtime.

4.4.1 Related Work
The problem of obtaining the response time under the probabilistic effect
of errors is very similar to effects known from variable execution time
research. There, execution times are modeled by probability mass functions
(pmf). In [67] an algorithm was presented to derive stochastic response
times for individual events of a given trace (e.g. periodic). Based on this
methodology, an average response-time distribution can be derived [66].
As we will show in the following sections, we can adopt the underlying
idea to cover the behavior under errors. However, the drawback with this
approach is that it relies on the memorylessness of the underlying process,
thus it only works for the single bit error model and not for the Gilbert loss
model. Note that this approach significantly differs from the work in [66]
where the average-case distributions of all events is derived. However, we
apply a similar methodology.

The following stochastic error analysis consists of two steps. First,
the task and error model are transformed into an equivalent variable
execution time problem by using a probability mass function (pmf) instead

85
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

segment with at least one error
segment which is error-free

t
Figure 4.8: An example scenario that leads to k = 3 error recoveries. The
initial transmission of length C must be hit by at least one error (red
bar), the following two recovery attempts consisting of error signaling and
retransmission (C + E) must be hit by at least one error and the final
recovery must remain intact.

of a single worst case execution time. In a second step, similar to [67], we
iteratively apply splitting, convolution and merging of the pmfs to calculate
conservative stochastic response-time bounds.

From Errors to Variable Execution Times

Let us consider a single instance of a τi in isolation. We model the variable
execution time overhead caused by error events by using execution time
probability mass functions (pmfs). This approach assesses the overhead
in a fine grained fashion, rather than using the worst-case error overhead
among all higher priority tasks as done previously. This is possible because
the Poisson error model is memoryless, hence it allows us to examine the
execution time behavior of tasks in isolation. For the following steps it
is necessary to distinguish between error-events (i.e. the bit flip) and the
manifestation (i.e. recovery operation consisting of error signaling and
re-transmission). According to eq. 4.15, and a constant bit error rate λ the
probability to see no errors in a time-interval Δt is given by

P ok[Δt] = e−λΔt (4.53)

and the probability to see at least one error in the window is determined by
the converse probability:

P err[Δt] = 1− e−λΔt (4.54)

86
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

Theorem 25. For an instance of task τi, a lower bound on the probability
Pr[k] for exactly k ≥ 0 recovery operations is given by:

Pr[k] =

{
P ok[C] if k = 0

P err[C] · (P err[C + E])k−1 · P ok[C + E] if k > 0
(4.55)

• k is the number of errors.

• C is the worst-case execution time.

• E is the total worst-case overhead for one error (i.e. Ei|k=1 cf. Theo-
rem 16).

• P ok[Δt] / P err[Δt] is the probability to observe no error / at least one
error in the time Δt.

Proof. The case for k = 0 is trivial and directly obtained by applying
eq. 4.53. In order to see k recoveries, k − 1 previous attempts must have
failed. The first initial transmission does not include additional error
signaling overhead, whereas the other k − 1 recoveries include additional
error signaling of length E. The last final recovery and retransmission
must be intact, otherwise another recovery will take place.

An illustrative example for k = 3 is shown in Figure 4.8. We can obtain
a lower bound on the probability that we observe less or equal than k
recoveries by summation

Pr[≤ k] =

k∑
i=0

Pr[i] (4.56)

In that sense, a lower bound on Pr[k] is conservative because this implies
that the likelihood (1− Pr[k]) for more than k recoveries is higher, which
cause even more recovery overhead.

Now we need to bound the time which is spent by a job of task τi for
handling k recoveries. By using the worst-case execution time C and the
worst-case error signaling overhead E, we can bound the execution time
for error situations with exactly k recoveries by C + k(C + E). This is also
shown in Figure 4.8. By combining the overhead for k recoveries with the
probability for the occurrence, we retrieve an execution-time probability
mass function (pmf).

Definition 34 (Worst-Case Execution Time pmf).
The worst-case execution time pmf e(t) is the probability that the overall
execution time of an instance of a task including errors and recoveries is of
length t.

87
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Figure 4.9: Worst-Case execution time pmf e(t).

Theorem 26. A conservative upper bound for the worst-case execution time
pmf e(t) including error-signaling and recovery operations is given by:

e(t) =

{
Pr[k] if t = C + k(C + E), k ≥ 0

0 otherwise
(4.57)

Proof. The proof is straightforward. An upper bound for the execution
time with exactly k recoveries is given by C + k(C + E) (cf. Figure 4.8).
The probability that a k-recovery situation will occur is bounded by Pr[k]
(Equation 4.55).

Based on the lower-bound notion observed for Pr[k], we can conclude that
the cumulative distribution function

∑t
x=0e(x) is a lower bound that the

observed execution time (including error handling and recovery) of a given
job is less or equal than t. An example for the worst-case execution time
pmf is shown in Figure 4.9. Here, the probability for the task executing for
no longer than time C is given by e(C) which corresponds to the error-free
case, i.e. the case where no recoveries are observed.

The previous consideration assumes that all k retransmissions occur
one after another and are not interleaved with instances of other tasks.
We can lift this implicit assumption and show that under a memoryless
Poisson single bit error model, an arbitrary interleaving is allowed.

Theorem 27. The probability that no error event occurs during the execu-
tion of τi is independent of the number of preemptions and interleaving with
other tasks.

Proof. Assuming the task τi was preempted n ∈ N times and sliced in
arbitrary intervals of length Δtj such that

n∑
j=1

Δtj = C̃i (4.58)

88
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

then the probability that no error event occurs while τi is executing is
calculated through Equation: 4.15

n∏
j=0

e−λΔtj = e−λ
∑

Δtj = e−λC̃i (4.59)

which is independent of n.

4.4.2 Stochastic Busy Window
As discussed in Chapter 3, in the non-stochastic case it was shown that the
critical instant assumption - all events arrive as early as possible - leads to
the worst-case busy-period for fixed-priority scheduling [172]. The worst-
case response time can then be found among all events in the worst-case
busy-period.

Since the busy-period fixed-point equation as presented in previous
sections does not support the concept of probabilistic execution times, we
need to transform the equation in a stochastic domain. As for the non-
stochastic busy-period approach, the critical instant assumption remains
valid also for the case where the execution time is a random variable. The
workload is maximized if all events arrive as early as possible, independent
of their execution time. The remaining question is, what is the likelihood
that a worst-case busy period of length t will occur under errors.

Definition 35 (Level-i Busy-Period pmf).
The level-i busy-period pmf Ωi(t) is the probability that the critical instant
initiates a level-i busy-period of length t. That is, time t after the critical
instant all messages of higher and equal priority than task τi released prior
to time t have been transmitted successfully.

In the following steps we explain, how to determine the worst-case level-i
busy-period pmf.

Obviously, the function approaches zero for t→∞. For practical appli-
cations however, it is sufficient to know Ωi(t) only for a limited co-domain.
Thus, the analysis can be stopped if a sufficient accuracy is reached (i.e
the probability that the busy period exceeds t falls below a predefined
threshold). In the following steps, we use convolution and shift operations
through which it is possible to systematically evaluate candidates.

The idea can be sketched informally as follows: We iterate over the
events released after the start of the critical instant in the order of their
earliest release, pick up their execution time and “add” them up. After a
sufficient number of events has been considered, we know the stochastic
busy window. A sufficient amount has been considered, if the probability of
new events falling in the busy window is sufficiently small.

89
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

0 7 15

n=1

n=2

n=3

n=4

18

n=5

Figure 4.10: Critical-instant scenario of task τ0 and τ1. All events are
numbered according to their release time (i.e. n = 5 is the 5-the event
released at time Δ1(5).)

Starting with the critical instant, we can define a strict total ordering on
all events. That is, Δi(n) denotes the earliest release time of the n-th job
among all jobs of higher and equal priority than τi. In case release times
are equal, events are ordered according to their priority and their event
ordering (events of the same task cannot pass each other). Figure 4.10
shows an example. τ0 has a high priority and a periodic with jitter event
model P = 11, J = 4. Task τ1 has a low priority and a periodic event model
P = 15. Arrows denote the earliest release times of the associated event, n
gives the index with respect to to its release time and priority.

Δi(n) = inf
Δt≥0

{Δt |
∑

∀j∈hp(i)

η+
j (Δt) ≥ n} (4.60)

Accordingly, en(t) is the execution time pmf of the n-th event associated
with Δi(n).

Assuming two messages are released at the same instant at time t0 = 0.
We are now interested in the stochastic execution-time pmf consisting of
both transmissions including error overhead.

Lemma 2. The execution-time pmf including error and recovery overhead
for two messages which are released simultaneously and have execution
time pmf’s of e0 and e1 is obtained by convolution as follows:

esum(t) = (e0 ∗ e1)(t) (4.61)

where

(e0 ∗ e1)(t) =
∞∑

τ=−∞
e0(t− τ)e1(τ) (4.62)

and

• e0, e1 are the execution time pmfs of event 0 and 1.

90
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

Figure 4.11: Illustrative example for constructing the busy-period pmf Ω1.

• esum is the execution time pmf of the combined workload.

Proof. As already motivated, under the single bit Poisson error model, the
execution time variables C1, C2 are independently distributed. According to
[106] (Definition 7.1 for discrete variables, and Theorem 7.1 for continuous
variables), the pmf of the sum of two independently distributed variables is
obtained by convolution of the pmf’s of the individual variables.

91
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Before we formalize the approach, we sketch the algorithm by using the
illustrative critical instant Gantt-chart from Figure 4.10 and derive the
stochastic busy period for the task τ1. It must be noted that there is no low
priority blocker, since there are only two tasks in the system. Individual
steps of the process are shown in Figure 4.11.

Figure 4.11 a) shows the initial input for the algorithm, the execution
time pmfs of task τ0 and τ1 as well as an initial busy period of length zero
which is used as an optimistic starting point. The execution time pmfs e0(t)
and e1(t), are computed by using eq. 4.57. The busy-period pmf Ω1(t) is
retrieved incrementally by iterating over all events of the tasks in order of
their releases and “adding” their execution times.

Like for the non-stochastic analysis, we start with an initial busy period
of length zero. In the stochastic domain, a busy period of length zero Ω0

1(t)
is represented by a pmf with a peak at t = 0 as shown in Figure 4.11 a) on
the right. In the following steps, we consider all 5 events in the order of
their occurence:

n = 1 The first event n = 1 arrives at t = 0 earliest which will increase
the busy-period pmf by “adding” its execution time pmf to Ω0

1(t).
This event arrives at time Δ1(1) = 0 and is associated with task
τ0 (cf. Figure 4.10). The pmf of the sum of the busy-period plus
execution time e0(t) of the new event can be calculated by using
eq. 4.61.
The resulting busy-period pmf Ω1

1(t) is shown in Figure 4.11 b).

n = 2 The second event arrives at t = 0 earliest. We can see in Figure 4.10
that event n = 2 is associated with task τ1, and adds the execution-
time pmf of task τ1 to the busy-period pmf, thus we apply eq. 4.61
a second time to get Ω2

1(t). The busy-period pmf now includes the
first two events.

n = 3 The third event at Δ1(3) = 7 resembles the most interesting case.
It depends on the previously seen workload if the event falls in the
busy period:

a) If the busy period is smaller than Δ1(3) (i.e. < 7), the third
event does not contribute to the busy period at all, since it
arrives after the window ended.

b) If the busy period is larger than Δ1(3) (i.e. ≥ 7), the third event
will further increase the length of the period.

The first case implies that due to causality, event 3 cannot alter the
probability that a busy window is smaller than Δ1(3). Thus, we call
the interval [0,Δ1(3)] of Ω2

1(t) stable (cf. bottom left in Figure 4.11).

92
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

In the other cases where the busy period is larger than Δ1(3), the
execution time of event 3 must be added to the busy period. This
increases the length of the tail of the busy period pmf. Practically,
this is achieved by applying eq. 4.61 only to the tail of Ω2

1(t) as
shown in the bottom part of Figure 4.11 d). Thus, only busy periods
which are larger than Δ1(3) are increased by the execution time of
n = 3. The bottom of Figure 4.11 d) shows how the unstable part of
the busy-period is convolved with the execution time pmf of n = 3
and forms the new tail. After the new tail is merged with the stable
part, we have computed Ω3

1(t).

n ≥ 4 The probability that the 4-th event at time t = 15 falls into a busy
window is sufficiently small, so we stop the iterative process.

To formalize the process, we assume we knew Ωn
i (t) which includes the

first n events. We will show now how to derive Ωn+1
i (t) which includes the

first n+1 events. The n+1-th event will obviously add additional workload
to Ωn

i (t), but in what way does it alter the busy-period? Therefore, we first
introduce the notion of backlog.

Definition 36 (Relative Backlog pmf).
We define the relative backlog pmf bni (t) as the probability that the accu-
mulated workload of events of higher or the same priority than τi released
before event n is processed at time t.

Theorem 28. The relative backlog pmf of event n + 1 can be calculated
using the stochastic busy-period, since it already includes all events released
prior to n+ 1. The relative backlog pmf bn+1(t) of event n+ 1 is given by the
tail of Ωn

i (t).

bn+1
i (t) =

{
Ωn

i (t+Δi(n+ 1)) if t ≥ 0

0 otherwise
(4.63)

Proof. The proof is given in [66] for variable execution time tasks.

Note that the relative backlog pmf does not necessarily sum up to one.
This is because the probability that a new event n+ 1 falls in a previously
busy period can be smaller than one (i.e. n+1 only falls in the busy window
if no or few recoveries were observed).

This operation is called splitting. It divides the busy window pmf in
two parts, a stable and an unstable part. Due to causality, the new event
n+ 1 cannot alter the busy window pmf in the stable interval [0,Δi(n+ 1)].
Vice-versa only the unstable part of the busy window pmf is altered by
event n+ 1.

93
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

In the next step, the relative backlog of the busy-period pmf and the
workload originating from the new event n+ 1 have to be added.

The resulting backlog which includes the old backlog plus additional
execution time en+1(t) is called b̃i(n + 1)(t). It is calculated by applying
eq. 4.61:

b̃n+1
i (t) =

(
bn+1
i ∗ en+1

)
(t) (4.64)

The busy-period function Ωn+1
i which includes the first n + 1 events is

generated by merging the stable busy-period interval and the new busy-
period tail:

Ωn+1
i (t) =

{
Ωn

i (t) if t < Δi(n+ 1)

b̃n+1
i (t) otherwise

(4.65)

The procedure for the next event n + 2 consists of the same three steps:
split (eq. 4.63), convolution (eq. 4.64) and merge (eq. 4.65). The algorithm
terminates if the probability that a new event falls in the busy window is
below a threshold. This threshold is then a bound of the probability that a
larger busy window is seen and can be used as a confidence value for the
analysis.

In the previous steps we have elaborated how to derive Ωn+1
i (t) from

Ωn
i (t). For the starting value of the iterative process, we assume that the

busy-period size is the length of the lower priority blocker as described in
[61]. This allows us to start the algorithm with the following initial busy
period:

Ω0
i (t) =

{
1 if t = Bi

0 otherwise
(4.66)

with
Bi = max

∀j∈lp(i)
Cj (4.67)

Algorithmic Formalization

Algorithm 1 gives a pseudo code implementation of the stochastic busy-
window computation. As described, the individual steps are composed of
splitting which separates the unstable from the stable part of the busy-
window pmf, convolution, which integrates the arrived workload and the
backlog, as well as merging which integrates the new backlog in the busy
window pmf.

It is assumed that Ωi(t) is implemented as a vector and the operation
[t :] slices the vector at the t-th index and returns the right slice. Analogous,
[: t] slices the vector at the t-th index and returns the left slice. Similarly,
[f, c] concatenate vectors f and c.

94
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

Algorithm 1 Discrete Computation of the stochastic busy period

function BUSY WINDOW(τi, Δ, w0
i , set of pmfs e(t))

n⇐ 0
w ⇐ w0

i

while 1−∑Δi(n)−1
t=0 w(t) > ε do

t⇐ Δi(n)
u = w[t :] � split, unstable part
s = w[: t− 1] � split, stable part
c = u ∗ en � convolution
w ⇐ [s, c] � merge
n⇐ n+ 1

end while
return w

end function

4.4.3 Stochastic Queuing Delay and Response Time
Similar to the error-free strict-priority non-preemptive case (cf. Chapter 3),
the response time can be obtained by checking all events in the busy-period
and find the one with the largest response-time. For the stochastic case
this means we need to evaluate the response-time distribution for the first
q+ events and find a worst-case among them. Later we will elaborate on
the number of events to consider q+.

Analogous to the non-stochastic, error-free case, a task τi can start
executing once all previously released events of τi and other higher priority
tasks have executed. Once τi starts executing, it cannot be interrupted.
Additionally, in the error-case we must also wait until all higher and same
priority execution attempts and their recoveries are finished.

Similarly to the busy-period we introduce a probabilistic version of the
queuing delay.

Definition 37 (Queuing Delay pmf).
The queuing delay pmf Ωq,i(t) is the probability that the q-th event is queued
for time t and fully transmits without errors right after.

Analogous, we introduce the stochastic version of the processing time.

Definition 38 (Processing Time pmf).
The queuing delay pmf Bq,i(t) is the probability that the q-th event is fully
transmitted at time t including eventual errors and recovery.

as well as a the stochastic response time:

95
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Definition 39 (Response Time pmf).
The response time pmfRq,i(t) is the probability that the response time under
the critical instant assumptions of the q-th event is time t including eventual
errors and recovery.

The definition implies that all erroneous transmission and recovery
attempts of the q-th event itself have finished before time t, so that the
response time pmf of the q-th event can be calculated as the queuing delay
pmf shifted by the execution time.

The computation of the queuing delay pmf associated with the q-th
event is very similar to the computation of the busy period with minor
modifications: Again, we iterate over the events in order of their release
(Δi(n)). However, for the computation of Ωq,i(t) only the first q events of τi
must be included as well as all events of the tasks of higher priority.

Naturally, the stochastic queuing delay includes execution and recovery
time spend for the first q − 1 transmissions of task under consideration
τi. Only for the q-th event itself the last successfull transmission must not
be included. However potential retransmissions of the q-th event must be
included. Hence, we shift the execution time pmf by Ci. This effectively
subtracts Ci from the total execution time.

eqn(t) = e(t+ Ci) (4.68)

Note that all other tasks have an execution time pmf according to eq. 4.57.
To determine the actual queuing delay pmf we use the same algorithm

as for the busy-period pmf. That is, we apply eq. 4.63, eq. 4.64 and eq.
4.65 to Ωq,i(t) rather than Ωi(t). The starting condition obtained by eq.
4.66 can also be used for Ω0

q,i. For the sake of completeness we provide the
slightly modified equations. Split, to compute the relative backlog pmf (this
resembles eq. 4.63):

bn+1
i (t) =

{
Ωn

q,i(t+Δi(j + 1)) if t ≥ 0

0 otherwise
(4.69)

Convolution, to include the execution time of event n+ 1. Note that this
step is slightly different from eq. 4.64: If the q-th event is encountered, the
modified execution time 4.68 is used.

b̃n+1
q,i (t) =

{(
bn+1
i ∗ eqn+1

)
(t) if j + 1 = τi,q(

bn+1
i ∗ en+1

)
(t) otherwise

(4.70)

Merging of the new backlog in the queuing delay pmf (this resembles
eq. 4.65:

Ωn+1
q,i (t) =

{
Ωn

q,i(t) t < Δi(n+ 1)

b̃q,i(t) otherwise
(4.71)

96
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.4. Convolution Analysis for Fixed-Priority Arbitration

Based on the queuing delay Ωq,i, we can compute the probabilistic
processing time of the q-th event by adding (right-shifting) the execution
time of the q-th event of τi:

Bq,i(t) = Ωq,i(t− Ci) (4.72)

Accordingly, the response time pmf is calculated by subtracting (left-
shifting) the earliest arrival time.

Rq,i(t) = Bq,i(t+ δ−i (q)) (4.73)

At that point we need to evaluate Rq,i(t) for some q, to determine the
worst-case. Theoretically, an infinite number of events must be considered,
since the derived stochastic busy window is infinitely long. In practice, the
evaluation can be stopped when the probability that the q-th event falls in
the busy-period is smaller than a given threshold.

q+ = max
q>0,q∈N

⎧⎨
⎩q |

⎛
⎝1−

δ−i (q)∑
t=0

Ωi(t)

⎞
⎠ < ε

⎫⎬
⎭ (4.74)

In practical cases it is sufficient to set ε to the machine epsilon (i.e. 2−52

on 64-bit floating point machines). It is virtually impossible that a larger
busy-period is observed in real systems.

The exceedance function can be computed by the converse probability of
the response time pmfs.

Theorem 29. The probability that the q-th event exceeds some response-
time t is given as:

Xq,i(t) = 1−
t∑

x=0

Rq,i(x) (4.75)

Proof. The Rq,i(t) is a conservative bound, that a response time less or
equal to t is seen. Hence,

∑t
x=0Rq,i(x) is a conservative bound that a

response time less or equal than t is observed. The converse probability,
thus is a conservative upper bound that the response time t is exceeded.

Thus, for any event q which arrives in the busy-period, we obtain a
unique exceedance function. These functions can be merged to get a conser-
vative view on any event.

Theorem 30. An upper bound to the probability that any event in any
possible busy window exceeds a response time t due to interference and
errors is:

X+
i (t) = max

1≤q≤q+
Xq,i(t) (4.76)

97
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Proof. Individual Xq,i(t) are conservative by construction. Let’s assume
two given functions Xa(t), Xb(t). For a given t0 a larger value exceedance
value implies a higher probability of exceeding the threshold t0. This
obviously holds for any t0. Thus, a piecewise maximum of both functions
Xa(t), Xb(t) yields a conservative exceedance function which approximates
Xa(t) as well as Xb(t) conservatively. This argumentation can be transfered
to q individual functions which yields aforesaid equation.

4.5 Experiments

In the following sections we show the application of the previously pre-
sented approaches to off-chip as well as on-chip communication. Addi-
tionally, we want to evaluate the performance of systems under different
(burst) error rates and compare the tightness of the results. A typical
representative for off-chip automotive communication is Controller Area
Network, CAN [233] and its successor CAN-FD [113]. The standard in
on-chip communication and IP integration is the Advanced Microcontroller
Bus Architecture (AMBA).

4.5.1 Controller Area Network
The Controller Area Network (CAN) [3] is one of the most prominent buses
used in various fields (e.g. automotive, industrial, aerospace) today. Despite
its age, it has been introduced in the 80’s, it is still in use today due to
its cost advantage, versatility and robustness against errors. Due to its
simplistic nature - CAN is a priority driven serial bus - it is often used for
real-time system where the worst-case timing delays of transmissions must
be predictable.

The CAN protocol is a multi-master, differential, serial bus. On the phys-
ical layer, data is Non-Return-to-Zero (NRZ) encoded. The CAN transceiver
output consists of an open-collector or “wired and” circuit, thus the wire
can be driven to two states: dominant (0) or recessive (1). All connected
transceivers may drive the bus at the same time and the state is deter-
mined by the logical AND function of all driver inputs. Thus a CAN bus
subscriber can “overwrite” the bus-line by sending a dominant bit.

Data is transmitted in frame entities which are non-preemptable, where
each frame consists of the following blocks: A start of frame marker, an
11-bit frame identifier, control field, up to eight data bytes, a 15-bit CRC
followed by an acknowledgement field and an end-of-frame marker.

An exact protocol description can be found in the official specification [3].
In 1991, CAN 2.0 introduced extended-frames which allow a 29-bit frame
identifier. The arbitration scheme uses carrier sense multiple access/bitwise
arbitration (CSMA/BA) and is based on the fact that dominant bits “win”

98
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.5. Experiments

the access to the physical medium. Thus, the smaller the CAN bus identifier,
the higher the priority of the frame.

The actual length of one frame for s payload data bytes is not necessarily
fixed due to bit stuffing, where the controller inserts certain bits in order to
avoid long sequences of 1’s and 0’s. In [61] it was shown, that the maximum
length in bit times tbit for one base frame of size s is

C = (55 + 10s) tbit (4.77)

and for extended frames as:

C = (80 + 10s) tbit (4.78)

All receiving nodes constantly check for protocol consistency during
the transmission of frames. If framing rules are violated (e.g. missing
stuffing-bits, missing acknowledgement), or the CRC field does not match
the payload, an error can be signaled by all bus subscribers. The CAN
standard defines two error frames for this purpose: the active error frame
and the passive error frame.

When an error frame is transmitted, other nodes drop the frame and a
retransmission of the broken frame is triggered. The worst-case overhead
for an error frame can be given as

Os = 31 tbit (4.79)

Then, after an error frame has been transmitted, the re-transmission has
to complete in a new arbitration phase.

To evaluate the approach, we use a modified version of the 17-messages
SAE benchmark as presented in [273]. The benchmark includes sporadic
messages, as well as periodic messages. Sporadic messages are modeled
by assuming a minimum interarrival time, also we assume that the CAN
bus is part of a larger distributed, automotive network and the data which
ought to be transmitted has been processed on different ECUs which results
in an increased released jitter (e.g. due to scheduling on upstream ECUs).
Thus, the used message set covers a broader spectrum and may be more
applicable to today’s automotive networks. This is, for some frames we
relaxed the deadline and increased the jitter to 1ms. Besides from that, the
benchmark was used as it is.

Single Bit Errors

We carried out the following experiment using a 125 kbit/s CAN bus and a
single bit error rate of 10−7, which was measured by [91] in an aggressive
environment. We show the accuracy of the following three approaches:

1. Busy-Period approach (cd. Section 4.3.2 and Section 4.3.4).

99
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Table 4.1: SAE CAN Benchmark

Prio DLC C 1 E 2 T D R
(bits) (bits) (ms) (ms) (ms)

17 1 62 13 1000 5 1.416
16 2 72 13 5 5 2.016
15 1 62 13 5 5 2.536
14 2 72 13 5 5 3.136
13 1 62 13 5 5 3.656
12 2 72 13 5 5 4.256
11 6 112 13 10 10 5.016
10 1 62 13 10 10 8.376
9 2 72 13 10 10 8.976
8 2 72 13 10 10 9.576
7 1 62 13 100 100 10.096
6 4 92 13 100 100 19.096
5 1 62 13 100 100 19.616
4 1 62 13 100 100 20.136
3 3 82 13 1000 1000 28.976
2 1 62 13 1000 1000 29.496
1 1 62 13 1000 1000 29.52

1 for standard ID, without intermission space
2 active error frame minus end of frame

2. Convolution-based approach (cf. Section 4.4).

3. Monte Carlo Error Simulation of the Critical Instant.

In the following, we coined the busy-period approach “Broster’s ap-
proach” [44, 45], which we extended to support multiple schedulers as
well as queued events. For the Monte Carlo analysis, we simulated the
critical instant 106 times under the aforementioned single bit error-model
and recorded the worst-case response times. The exceedance function was
computed via the empirical CDF.

Figure 4.12 shows the results for Frames F1 and F9. Note that the
Monte Carlo results are only statistically significant down to 10−5 due to
the sample size. Unsurprisingly, the convolution-based method (c) matches
the Monte Carlo results (m) in which the critical instant under errors is
simulated. This is because not additional pessimism is introduced during
the computation and the model captures all effects without over approxima-
tion. Also unsurprisingly, the convolution-based (c) approach is significantly
tighter than Broster’s.

The results tell us that Frame F1, virtually never exceeds its deadline
of 1000 ms. Even a response time of 140 ms only occurs with a probability
of 10−15. However, for Frame F9, the situation is slightly different. Given
a deadline of D = 10 ms, a deadline miss can be seen in one out of hundred
cases. Whether this is sufficient depends on the actual application. How-

100
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.5. Experiments

0 20 40 60 80 100 120 140 160 180
t[ms]

10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

X
+
(t
)

F1 b
F1 c
F1 m
F9 b
F9 c
F9 m

Figure 4.12: Exceedance functions according to modified Broster (b), convo-
lution based approach (c) and Monte Carlo simulation (m) with 106 samples.
λ = 0.00024 per bit ∼= 30 per sec @ 125kbit/s.

ever, we can also tell that a response time of 20 ms is never exceeded for
one in a million events. Thus, in typical automotive controller applications
these figures are most likely sufficient. Otherwise, better EMI shielding
must be used to decrease the error rate or the critical messages must be
transmitted at a higher priority level.

4.5.2 On-Chip Interconnect Arbitration
In the following experiments, we evaluate the effect of errors in on-chip
communication. Therefore, we consider a typical scenario in which a num-
ber of processing units (PU) are connected to a common, shared memory.
This memory can be external or internal RAM. Each processing unit is an
ARM processor clocked at 1.1 Ghz with a split L1 cache. D$ as well as I$ are
assumed to be 32kB. For the experiments, we assume a 32-bit interconnect
datapath and 64 byte L1 cache lines. Hence, an interconnect transaction
consists of a single cycle address phase and 16 cycles data (write or read)

PU PU PU PU

Shared Memory

Interconnect

Figure 4.13: MPSoC architecture for interconnect experiments. It is implic-
itly assumed that the processing units (PU) include a cache.

101
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

burst. Memory latency is assumed to be constant and four system clock
cycles.

Processing units execute application kernels. For our experiments we
used workload from the EEMBC [211] benchmark suite. In particular,
we used seven automotive kernels such as angle to time conversion, fast
fourier transform, bit manipulation, CAN remote data request, iir filter
and others. For this experiment, we used EEMBC application kernels as
listed in Table 4.2. A full specification of the kernels can be found in [211].

As an input for our timing analysis, we need the access pattern to the
interconnect. Following the approach of [84], we obtained the access pattern
by tracing each PU without external interference, dedicated access to the
memory and cold caches. It is straight forward to obtain the minimum
distance function δ−(n) from an event trace, as explained for instance
in [194, 168]. Therefore, we used the data kindly provided by [84] for our
analysis. This yields a good approximation on a worst-case event model.

The access pattern of almost all kernels consists of alternating phases
of memory bound and CPU bound phases. However, the length of these
phases depends on the benchmark. Large memory bound phases lead to
relatively large busy periods compared to off-chip networks (such as CAN)
where only a few packets are buffered. This is because we conservatively
assume that software is executing as quick as possible, where in fact the
memory path will cause backpressure.

Figure 4.14 depicts the event models obtained from simulation traces
using the timed ARM model of a GEM5 simulator. It can be seen that
the I/O bound phase for task bitmnp01 takes approximately 25,000 cycles.
After this time window little to no requests are performed. However,
benchmark aifft01 consumes more data (1200 accesses) until computation
starts at 40,000 cycles. The initial slope of all event models is roughly one
event in 30 cycles or 17 bit per cycles (each access is 64 bytes). This is

Kernel R+ [us] Memory Burst Size [accesses] Priority
a2time01 122.46 839 7
aiifft01 95.36 1419 6

bitmnp01 79.10 806 5
canrdr01 60.72 936 4
idctrn01 39.73 1067 3
iirflt01 14.49 893 2

ttsprk01 0.35 224 1

Table 4.2: EEMBC kernels mapped to the processing units. Worst-case
respone time (error-free), memory bust size as well as priority level are
indicated.

102
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.5. Experiments

Figure 4.14: Event model obtained by simulation [84].

the maximum throughput of the simulated system under best-case (no-
contention) conditions.

We mapped the applications to individual PUs. This causes contention
in the interconnect. We assumed a fixed priority access arbitration scheme
in which each PU has an assigned priority level. We analyzed the memory
access latency of each application in the system (cf. Figure 4.13). Each
transaction is composed of a single cycle address phase, a 16 cycle data
burst and 4 cycles memory latency. The (error-free) analysis revealed that
the busy-period of the interconnect is extremely large (152,481 cycles).
During this time all kernels fetch their workingset data and instructions.
The number of accesses during this time is also indicated in Table 4.2
(Memory Burst Size). The response times seem large at first glance, but
are only in the order of a few microseconds (at 1.1 Ghz) which is negligible
considering the execution times are in the order of a few milliseconds.

Single Bit Error

There is no reliable number on the transient error rate of today’s 20nm
silicon processes. Thus, we first assume a single bit error distribution with
an soft error rate (SER) of λ = 10−6 errors per cycle. This translates to an
average of 1000 errors per second on a 1 Ghz system. Later we also cover
burst errors.

We assume that an erroneous transaction is detected by parity checks.
The controller schedules a re-arbitration phase as well as a single cycle
error response phase. Then the transaction is restarted and eventually
completes. This leads to a total error overhead which only causes 23

103
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Figure 4.15: Response time R+
i|k over a given number of errors kin the

busy-period .

cycles overhead (including retransmission) per error Figure 4.15 shows
the response time R+

i|k as a function of the number of errors in the busy-
period. The response time naturally increases with the number of errors.
However, the relative increase is small and typically only a few percent of
the response time. This is because data arrives in huge bursts consisting
of many hundreds to thousands of transactions. The overhead by errors
is little compared to the overall number of transactions during the busy
period.

The exceedance function is shown in Figure 4.16. It can be seen that
the function for all applications decays rapidly. There is a considerable
difference, if we compare the results with the experiments carried out for
CAN (cf. Figure 4.12). For CAN the decay is by far not as rapid as for the
on-chip interconnect.

For instance bitmnp01 exhibits an error-free response time of 79 us. We
can see that the memory latency will be in no cases larger than this since
X+(79us) = 1 since the exceedance function sharply drops to values below
10−10. Virtually no response time larger than that will ever be observed.

Generally, we can conclude that the impact of errors naturally is higher
in communication systems with larger transactions and slower links (such
as CAN). For on-chip communication which occurs in large bursts that
leads to long busy-periods, additional errors only add very little overhead
compared to the already existing workload. This leads to the conclusion
that on-chip single bit errors in today’s processors do not cause significant
timing problems if error detection and correction works correctly. However,

104
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.5. Experiments

Figure 4.16: Exceedance funtion for the example taskset. Single bit errors
λ = 10−6 per cycle.

for on-chip communication with larger transaction length such as NoC
communication, this is not necessarily true3.

Burst Error

Now, we assume a burst error process is superimposed to the communica-
tion. A realistic reason for such errors is transient voltage drops caused by
high transient currents. Again, exact parameter values cannot be obtained,
thus we assumed an average burst length of 25 cycles and an average bit er-
ror rate of λ = 10−6. Hence, the long term error rate matches the one from
the single bit error experiment. Since the k-error response times are not
a function of the underlying bit-error process, the k-error response times
match. In this sense, Figure 4.15 is also valid for the burst experiment.

The resulting exceedance function is shown in Figure 4.17. For the
experiment, we computed probabilities considering up to 300 error events.
Beyond this number, the binomial coefficient used in the probability com-
putation are intractable and further approximation is needed. Generally,
it can be seen that the timing impact for burst errors is much larger: the
exceedance functions still decay fast compared to the CAN experiment but
not as fast as for single bit errors. The results for bitmnp01 tell us that
a response-time larger than 85 us can be observed with a probability of
approximately 10−8.

3Under the assumption that the NoC is additionally hardened so that a transient error
never leads to permanent error.

105
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4. MULTI-MASTER AND POINT-TO-POINT COMMUNICATION

Figure 4.17: Exceedance funtion for the example taskset. Burst error,
average burst length of 25 cycles and average long term bit error rate of
λ = 10−6.

One reason for this is that the arrival of a burst will have a larger timing
impact because of the increased overhead (more transactions are affected).
On the other hand, we must also note that the analysis over approximates
this overhead by considering each bit-error as a transaction error. This most
likely does not occur in reality. As discussed, compared to the single bit
error experiment, burst errors have a higher probability to cause deadline
violations. Generally, for all of the analyzed applications the likelihood of
exceeding the error-free worst-case response time by more than 20 us is so
small that such events will never be seen in a running system. Under worst-
case error-conditions (20 us worst-case memory latency overhead), Eq. 3.38
tells us that the overall execution time of the associated application is only
increased by 20us. This is reasonable and allows us the add this margin to
a processor scheduling analysis.

4.6 Summary

In this chapter, we discussed communication aspects of the ASTEROID
system, covering multi-master busses such as Controller Area Network
as well on-chip interconnects (e.g. AMBA). We formalized the underlying
communication channel and presented two commonly used error models:
binary symmetric channel for single bit errors as well as the two state
Gilbert loss model which captures burst errors.

106
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

4.6. Summary

The timing impact of errors on individual messages is modelled and
conservatively approximated. We have presented two approaches to capture
the stochastic nature of errors in a worst-case performance context. First,
we used the busy-period approach and extended related work [45] to reflect
queued activations and bursts. Second, we presented a more accurate
convolution-based approach that can be used for single-bit errors.

The experiments show that the timing impact of errors in off-chip com-
munication is higher compared to on-chip communication. This is because
off-chip transactions (i.e. CAN frames) are larger and the transmission
speed is slower compared to quick, parallel on-chip communication.

107
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

CHAPTER 5

Switched Networks

In the previous chapter, we focused on errors in traditional busses or point-
to-point communication. In this chapter, we consider switched networks
such as Network on Chip or Ethernet-based systems. Contrary to the pre-
vious chapter, we focus on the performance analysis of switched networks
under errors only without deriving reliability bounds.

Depending on the internal switch architecture and the transmission pro-
tocol, a correct packet delivery cannot be guaranteed under all conditions.
There are two reasons for lost packets, both are depicted in the illustrative
example shown in Figure 5.1. The first cause are bit errors on the wire
generated by interference such as crosstalk, noise, or an imprecise sam-
pling point synchronization (cf. Chapter 4). In most on-chip and off-chip
protocols (e.g. Ethernet and QPI [299]), packets are protected by checksums
for instance by a CRC, so it is most likely that bit errors are detected at the
switch or receiver.

Tx Terminal

Switch Packet

Bit error on wire
Tail drop

Tx Terminal

Rx Terminal

Rx Terminal
Output buffers

Figure 5.1: Four terminals connected to a switch. Packets can be dropped
caused by buffer overrun (tail drop) or due to bit errors on the wire.

109
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

The second cause of dropped packets is inherent to non-blocking switches.
Obviously, if multiple packets arrive at different input ports and are tar-
geted towards the same output port, congestion is unavoidable. Packets
are temporarily stored in queues (cf. Figure 5.1) and scheduled for trans-
mission. However, if packets arrive too fast the queues will run over and
packets will eventually be dropped.

Thus, for data transfers which require a reliable in-order delivery, a
higher level transport protocol such as Automatic Repeat ReQuest (ARQ)
[176, 264] is necessary. In scope of the ASTEROID platform (cf Chapter. 2)
this affects the timing of on-chip NoC communication as well as off-chip,
high speed communication.

In this chapter, we first discuss the related work in the field of error
control protocols as well as performance evaluation. In particular we revisit
end-to-end error control protocols such as ARQ and Go-Back-N which take
care of an integer, in-order data transmission in case of dropped packets.
We then present a formal worst-case latency prediction which is used in
ASTEROID to maintain safe timing bounds in on-chip as well as off-chip
communication. We specifically evaluate the off-chip characteristics of
Go-Back-N and Stop and Wait in an automotive Ethernet use-case. The
work presented in this chapter is based on [22].

5.1 Related Work

There are various flavours of ARQ such as Stop-and-wait ARQ as well as
Go-Back-N and Selective Repeat (and further variations thereof) [264]. For
instance, GigE Vision, an Ethernet-based standard for high-performance
industrial cameras, implements a variant of Selective Repeat on top of
UDP. All of these protocols share a similar concept: Successful (or unsuc-
cessful) delivery is signaled back (ACK/NACK) on a return path by the
receiving terminal, so the sending terminal knows when to retransmit
certain packets.

Worst-case, error-free analysis of switched networks without error-
control protocols are broadly available. This included AFDX [33], stan-
dard Ethernet [237, 270], Ethernet AVB [74, 72]. Also standard busy-
period-based approaches for network on chip communication are available
[252, 245, 73]. However, none of these articles discusses the impact of
high-level error control protocols.

A survey of existing end-to-end error-control protocols was presented
in [53]. Further consideration of errors in NoC, associated errors as well
as error-control are summarized in [189]. Approaches that we presented
in Chapter 4 to assess the timing under error effects [44, 45, 248] do not
capture end-to-end error protocols and cannot be applied to these networks.

110
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.2. Error Control Protocols

Although an ARQ-based mechanism is used, these approaches are only
capable to model broadcasting busses or single point-to-point links.

There is a major difference between a bus-based communication and a
switched network: In bus-based systems, a packet corruption is detected by
all terminals simultaneously and the retransmission is immediately sched-
uled. In switched networks, an unsuccessful delivery is noticed only after
an acknowledgement timeout or negative acknowledgement (depending
on the actual protocol). Hence, the methods used for busses as presented
in the previous chapter cannot be applied to switched networks such as
Ethernet or NoCs.

There is a large body of stochastic considerations of ARQ-based schemes
that can be applied to wired and wireless networks [294, 46, 278, 126].
These results were mostly obtained by simulation or queuing theory (e.g.
[167]). The obtained data is typically expressed as probability distributions
on the packet loss, queue length as well as latency. However, probabilistic
(average-case) approaches are not suitable to the problem in scope of this
work since they cannot give hard worst-case bounds. For instance, these
approaches are not capable to deliver hard latency guarantees not even
under the error-free case.

5.2 Error Control Protocols

As previously motivated, dropped or corrupted packets are a common
scenario in most networks. During the following sections, we assume
that all packets are equipped with a checksum of sufficient error-detection
capabilities. Furthermore, we focus on the network and assume that the
sending and receiving terminals are never faulty themselves. That is,
terminals are always capable to detect checksum mismatches, do not crash,
and do not lose packets due to buffer overflows. As already motivated,
switches are allowed to drop packets due to buffer overrun or bit errors. We
furthermore assume that switches never stop operating for an unlimited
time (permanent error). In the following sections we outline the operation
of two popular error control protocols the simple Stop and Wait ARQ as
well as the more complex Go-Back-N ARQ.

5.2.1 Stop and Wait ARQ
The simplest approach to provide a transparent error-free communication
link is the Stop and Wait ARQ protocol [264]. An exemplary sequence chart
of Stop and Wait ARQ is shown in Figure 5.2. The operation is straight
forward. The sender sends the first data packet 1 and upon arrival, the
receiver acknowledges the data 2 . Once the acknowledgment is received
by the sending terminal, the next packet can be send. Sometimes a data

111
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

1

1

2

2

3

E

sender

receiver

3

3

3

3

t
3 2 1 4 5 6

Figure 5.2: Illustrative example for Stop and Wait ARQ. The sending
terminal waits for a positive acknowledgement before sending the next
packet. Errors are detected after a timeout.

packet is corrupted or entirely dropped 3 and the receiving terminal
does not send the ACK. After a timeout, the sender notices the error and
retransmits the data packet 4 . Eventually, an ACK packet is dropped
5 , so the receiving terminal receives an integer data packet but the

sending station nevertheless retransmits the packet after the timer expired.
In this case, it is possible that the receiver 6 has received a duplicate
packet. To eliminate such duplicates, a one-bit sequence number is typically
used [264]. Note, that throughout the following sections we assume no
negative acknowledgment (NACK) is used.

Definition 40 (Round Trip Time).
The best-case / worst-case round trip time RTT− / RTT+ is the lower /
upper bound of the time interval from the start of the transmission of a data
packet at the sending terminal until a positive acknowledgment has been
received by the sending terminal.

Obviously, the achievable throughput for Stop and Wait ARQ is con-
strained by the round-trip time RTT+

i of the network. Under worst-case
conditions, the sustainable datarate can never be higher than Ci/RTT+

i .
Otherwise, more and more packets will arrive at the ARQ buffer which
eventually overflows. Also the latency, especially for bursty traffic, is weak
as packets are held back until acknowledged.

5.2.2 Go-Back-N
Go-Back-N is an extension of the simple Stop and Wait ARQ, which enables
faster transmission by admitting a limited number of packets, while still

112
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.2. Error Control Protocols

1

1

2

2

3

3

sender

receiver

4

4

5

t
3 2 1

6

5 6

7

E

8 9

D D

7 8 9

7 8 9

Figure 5.3: Illustrative example for Go-Back-N ARQ. Sending terminal
sends out nsw packets, then waits for a positive acknowledgement before
sending the next packet. Hence, there can be nsw packets in-flight. In
case of a dropped data packet, a retransmission of at most nsw packets is
scheduled after a timeout tout.

waiting for outstanding acknowledgements. This approach is widely used
for instance in the High-Level Data Link Control (HDLC) as well as X.25
an ITU-T standard protocol for packet switched wide-area network com-
munication. Figure 5.3 shows an illustrative example of the Go-Back-N
operation. Contrary to Stop and Wait ARQ, Go-Back-N immediately sends
out a number of packets 1 . The maximum number of packets which are
allowed in the network pipeline is called send window (nsw). For normal
operation (highest throughput), the send window should be in the order of
the bandwidth-delay product of the network topology. The bandwidth-delay
product is the typical capacity of simultaneous in-flight messages (pipeline
depth) of the network.

At time 2 in Figure 5.3, the ACK of the first four packets were received
and the next packets are transmitted. Packet 7 arrives corrupted (E) at the
receiving node and is not acknowledged. As for Stop and Wait, no negative
acknowledge (NACK) mechanism is used. All packets which arrive later
and are out of sequence (packet 8 and 9) are discarded (D). Thus, for simple
Go-Back-N, the receiver has a receive window of 1, as it accepts only the
next valid packet. After the sending terminal runs into the timeout at time
3 it retransmits all packets that remain unacknowledged.

113
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

ARQ

Higher Layer
Application - TX

ARQ

Higher Layer
Application - RX

AR
Q

 d
el

ay

Network latency
da

ta

da
ta

ackack Network

Figure 5.4: Timing model of an ARQ-based protocol.

5.3 Performance of Stop and Wait ARQ

In the following sections, we derive the worst-case latency of a packet as
well as a sequence of packets for the error-free as well as for the error case
(pathological case) under the Stop and Wait protocol.

5.3.1 ARQ Timing Model
For the sake of simplicity, we assume that an application is associated with
a single stream (stream(i)), thus there is a unique sender, receiver rela-
tionship between nodes. In a communication system which uses no error
control protocol, packets are send immediately by the terminals once data
is ready to be transmitted. Accordingly, packets are immediately scheduled
for transmission once they are assembled by the sending application. As
we have seen in the previous section, this is not the case for Stop and Wait
ARQ, where packets are held back by the sending terminal until a positive
acknowledgement has been received (or a timeout occurred). In this section,
we model this effect and extend CPA accordingly.

Figure 5.4 shows the ARQ timing model which we use throughout the
next steps. The figure depicts the following aspects, which are relevant for
timing considerations:

1. Sending application (Higher Layer Application TX).

2. ARQ protocol stack (ARQ) of the sending terminal.

3. The network topology is simplified as a black box (Network).

4. ARQ protocol stack (ARQ) of the receiving terminal.

5. Receiving application (Higher Layer Application RX).

114
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.3. Performance of Stop and Wait ARQ

Any data exchange between these units is abstracted by event models.
The TX application tries to send data according to the injection event model
ηtx. The data packet is fed into the ARQ module which eventually delays
a packet. The ARQ module then feeds data into the network. The event
stream at this edge is bounded by the ARQ event model ηarq,tx. After
the packets have passed the network, a stream which is characterized by
ηarq,rx arrives at the ARQ unit of the receiving terminal and is passed to
the application ηrx. Intuitively, is seems natural that ηarq,tx = ηtx, however
this is not the case. Unacknowledged data could be held back by the ARQ
unit and queue up. Then, if the network allows this, acknowledgements
arrive as quickly as possible and a large output burst can be seen (best-case
after worst-case).

5.3.2 Latency in the Error-Free Case
For each packet which is sent out by the application, the overall system
latency is composed of two parts: The ARQ delay induced by data link
layer (ARQ) as well as the network latency, which is the worst-case time
a packet travels through the topology until it is received by the receiving
terminal. Unluckily, both the ARQ delay as well as the network delay are
mutually dependent. That is, the ARQ delay is a function of the network
delay, since packets have been held back until an ACK is received. Vice
versa, the network latency depends on the ARQ behavior because the more
packets are injected the more interference occurs.

This dependency is resolved by the CPA fixed-point iteration loop and
the following analysis is interleaved with the CPA analysis. Similarly to
the analysis of shared resources in CPA as presented in [240, 242], we add
an analysis step to the outer CPA fixed-point iteration. This ARQ analysis
step is also depicted in Figure 5.5.

First, we compute the worst-case network latency. Then, we derive the
worst-case ARQ latency and update the ARQ event models accordingly.
These steps are repeated until convergence. Once the fixed-point is found,
the overall latency can be computed by summation over the response times.
We assume, that once the packet is received, it is immediately processed
and handed over to the application with no additional delay. Modelling
protocol stack latencies and jitter is easily possible but omitted for the sake
of clarity.

For the following steps we assume that once ηarq,tx is available, we use
approaches from related work (cf. Section 5.1) to compute the worst-case
latency and worst-case round-trip time through the topology.

So the first step is to derive ηarq,tx/δarq,tx which can be used for the
analysis of the switched network. The ARQ event model is a function of the
application’s event model, specified by δtx and the worst-case / best-case
ARQ delay R+

arq/R
−
arq. For the following analysis steps, we assume that the

115
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

Map input event model

Derive output event model

Until convergence or
Constraint violation

Component analysis

Environment model

Derive final end-to-end
characteristics

ARQ analysis

Extension CPA flow

Figure 5.5: Compositional Performance Analysis Flow (right) and ARQ
extension (left).

round-trip time through the network is significantly smaller than the time
tout. This obviously must be the case in all properly configured networks
(a packet is never assumed to be lost, although it is still in the network
pipeline). As described in Chapter 3, δ can be converted into η, which is
then used for the response-time analysis. Thus, it is sufficient to only derive
δ.

Theorem 31 (ARQ Event Model). The effective ARQ event model δ−arq,tx
which is emitted by the data link layer, if no packets are ever dropped or
corrupted is bounded by

δ−arq,tx(q) = max
{
δ−tx(q)−R+

arq +R−
arq, B

−
arq(q − 1)

}
(5.1)

where

• δ−tx denotes the minimum distance function of packets send out by the
TX application.

• R−
arq/R

+
arq are the best-case/worst-case response times of the ARQ.

• B−
arq(q) is the smallest time interval in which any q packets can ever

pass the ARQ unit.

Proof. For a proof two cases need to be considered. Both are conservative
bounds as we will show later. Accordingly, both cases can be computed
independently and the better case is used (hence the max in the equation).

For the first case, we can model the ARQ unit as a processing element
which delays a packet some time in the interval [R+

arq, R
−
arq]. For this we

can use Eq. 3.37 to derive the output event model for jitter propagation. A
proof for this is given in [243] and is a generalized form of Eq. 3.37.

116
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.3. Performance of Stop and Wait ARQ

On the other hand, packets can never be forwarded faster than they
get acknowledged. Here, B−

arq(q − 1) is used as a valid lower bound on the
distance of any q packets at the output of the ARQ unit. Assuming one
packet is emitted at some time, then the following q−1 packets are emitted
after time B−

arq(q − 1) earliest. Thus, B−
arq(q − 1) is a lower bound on the

distance between any q events at the output.

Throughout the chapter, we assume that the best-case round-trip time
RTT− is computed by adding the best-case transmission times of the
data packet and the corresponding ACK packet along the (forward and
backward) path through the network according to the worst-case latency
equations given in Chapter 3 (cf. eq. 3.38). The component analyses are
carried out and the worst-case response times along the stream (stream(i))
are summed up to derive the network latency:

Li =
∑

∀j∈stream(i)

R+
j (5.2)

Similarly, the worst-case round-trip time RTT+
i can be computed by also

considering the return path of the acks (ackstream(i)).

RTT+
i = Li +

∑
∀j∈ackstream(i)

Rj (5.3)

5.3.3 Stop and Wait Response Time
We are going to show how to derive the worst-case ARQ delay (R+

arq), the
largest time interval which a packet is resting in the ARQ buffer. Similar to
Eq. 3.19 which is used to derive the busy-period for fixed priority arbitration,
we can establish a busy-period equation for the ARQ protocol. We model
the ARQ behavior by a single task which executes for time RTT+

i . This
resembles the behavior that a transmission of a packet starts earliest after
the previous ACK arrives after time RTT+

i .

Theorem 32 (Stop And Wait Busy Period). The largest time interval warq,i

in which packets arrive at the terminal and need to be queued at the ARQ
buffer while the terminal is waiting for ACKs of previous packets is given by

warq,i = ηtx,i(warq,i) ·RTT+
i (5.4)

where

• ηtx,i(Δt) is an upper bound on the number of packets send by the
application.

117
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

• and RTT+
i is the round trip time through the network.

Proof. Similar to the argument as used in [61], the worst-case is seen, if
the queue is empty and packets arrive as fast as possible. It is straight
forward to show that after time warq,i the ARQ protocol immediately trans-
mits the next packet because all previous packets have been sent and the
corresponding ACKs have been received.

The next step is to compute the time is takes the ARQ unit to process q
packets under worst-case conditions:

Theorem 33 (Worst-Case Multiple Packet Forwarding Time). The worst-
Case multiple packet forwarding time is the largest time interval to forward
a sequence of q packets under an error-free, Stop and Wait ARQ. It starts
with the arrival of the first and ends with the transmission of the q-th packet
and all but the first packet arrive before the preceding one is acknowledged.
It is computed by

B+
arq,i(q) = (q − 1) ·RTT+

i (5.5)

where

• q is the number of packets

• RTT+
i is the worst-case round-trip time of a packet through the net-

work.

Proof. The first packet out of the sequence of q packets can be transmitted
right away. Once the ACK of the already in-flight packet is received after
time RTT+, the next packet is transmitted. Hence, by induction the q-th
packet is transmitted at time (q − 1) ·RTT+.

Theorem 34 (Best-Case Multiple Packet Forwarding Time). The minimum
time interval to forward a sequence of q packets under Stop and Wait ARQ
is lower bounded by

B−
arq,i(q) = (q − 1) ·RTT−

i (5.6)

where

• q is the number of packets

• RTT+
i is the worst-case round-trip time of a packet through the net-

work.

Proof. The proof is straight forward: The first packet can pass immediately,
the following packets must wait the best-case round-trip time until they
are dispatched.

118
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.3. Performance of Stop and Wait ARQ

As for fixed-priority scheduling, the worst-case response time can be
found among all packets which arrive during the busy-period.

Theorem 35 (ARQ Worst-Case Response Time). The worst-case response-
time of the ARQ protocol is upper bounded by

R+
arq,i = max

1≤q≤η+
tx,i(warq,i)

{
B+

arq,i(q)− δ−i (q)
}

(5.7)

Proof. See proof of Theorem 1.

Analogously, the best-case response time R−
arq can be assumed to be

zero as packets are forwarded immediately under optimal conditions. In
most situations ARQ is used to transmit a large burst of data (i.e. a large
dataset such as a video frame), which is composed of multiple packets. It is
worthwhile to know the latency of a number of q packets that belong to one
data entity (e.g. the video or LIDAR frame).

Theorem 36 (System Latency). The overall system latency for q data
packets which are to be transfered assuming an error-free Stop and Wait
ARQ channel is given by:

Li(q) = δ−i (q) + Li +R+
arq,i (5.8)

Proof. This is a generalization of the path latency presented in Eq. 3.38.
It takes time δ−(q) to inject q packets into the system. In the worst-

case scenario, the last (q-th) packet experiences the worst-case ARQ delay
(Rarq,i) as well as the worst-case network latency (Li). Due to causality
(FIFO semantics, packets cannot pass each other), we know that all pre-
vious packets must have been received, if the last packet arrives at the
receiver. Thus, Eq. 5.8 is a valid upper bound for the overall system latency
of q packets.

5.3.4 Timing Under Errors
In the previous section, we assumed that all packets were delivered intact.
This naturally includes acknowledgements as well as data packets. We lift
this assumption and evaluate the pathological cases in which either data
or ACK packets are dropped or corrupted. Throughout this section, we
assess the timing under a given number of dropped or corrupted packets
and evaluate the latency under this scenario.

Generally, valid packets can be dropped (i.e. in case of buffer overflow)
or corrupted (in case of bit errors). A store-and-forward switch most likely
detects the bit error and drops the packet. A virtual cut-through switch
forwards the corrupted packet and the receiving terminal notices the er-
ror. Through the rest of the paper we speak of “dropped packets” which

119
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

includes packets dropped caused by buffer overflows as well as bit errors.
Figure 5.2 illustrates how a timeout mechanism detects missing ACKs and
correspondingly triggers retransmission of data.

Throughout the following paragraphs, we extend the previously intro-
duced equations to derive the latency bounds under the assumption of
k-dropped packets. This value then serves as a sensitivity figure for the
consequence of dropped packets.

Let us construct the worst-case timing scenario under the assump-
tion that a single packet is dropped. The drop can occur at any hop
(switch/terminal), however, in the worst-case scenario a packet is lost
at the last hop right at the receiving terminal. Thus, it has imposed the
maximum interference on the network but never arrives healthy at the
destination. Obviously, data as well as ACK packets can be subject to this
problem.

It makes a difference which kind of packet is lost. A lost ARQ packet
is handled differently than a lost data packet. The interested reader is
advised to consult [264]. Timing-wise, it is worse to drop an ACK packet,
right before it reaches the destination tx-terminal. Thus, data as well
as ACK packet fully congest the network but the sender still runs into a
timeout and has to retransmit.

The sending terminal notices the problem after a time tout and resends
the last data packet (cf. Figure 5.2). Hence, similar to the busy period as in-
troduced in the previous section, we can derive the k-error busy period. This
is the busy period under the assumption that k packets have been dropped
during transmission. We extend the previously established equations by
adding the worst-case blocking caused by dropped ACK packets.

Theorem 37 (k-Error Stop and Wait Busy Period). The largest time interval
warq,i(k) in which packets arrive at the terminal and need to be queued at
the ARQ buffer while the terminal is waiting for ACKs of previous packets
under the assumption that k packets were lost is upper bounded by

warq,i(k) = k(tout +RTT+
i) + ηtx,i(warq,i(k)) ·RTT+

i (5.9)

where

• k is the number of errors

• tout is the ARQ timeout and

• RTT+
i is the worst-case round trip time.

Proof. The proof is analogous to the one of Theorem 32 under the assump-
tion that there is an additional worst-case blocking time.

Similarly, we extend the multiple packet forwarding time to include the
overhead caused by errors.

120
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.4. Performance of Go-Back-N

Theorem 38 (k-Error Multiple Event Forwarding Time). The k-error mul-
tiple event forwarding time is upper bounded by

B+
arq,i(q, k) = k(tout +RTT+

i) + (q − 1) ·RTT+
i (5.10)

where

• k is the number of dropped packets

• tout is the ARQ timeout and

• RTT+
i is the worst-case round trip time.

Proof. A packet is admitted to the network if the previous q−1 ACKs where
received assuming k packets where dropped. This leads to a worst-case
overhead of tout +RTT+

i for each retransmission of where there are k.

Finally, we are able to compute the worst-case ARQ latency, assuming
k dropped packets, by substituting the multiple event forwarding time in
Eq. 5.7 by the k-error multiple event forwarding time. This leads us to the
following ARQ response-time bound:

R+
arq,i(k) = max

1≤q≤η+
tx,i(warq,i(k))

{
B+

arq,i(q, k)− δ−tx,i(q)
}

(5.11)

The k-error system latency can be computed by using Eq. 5.8.

5.4 Performance of Go-Back-N

5.4.1 Latency in the Error-Free Case
In this section, we derive the worst-case response time of the Go-Back-N
ARQ scheme assuming that no packets are lost. The steps are similar to
the Stop and Wait ARQ. That is, we compute the worst-case busy period
to evaluate the largest time interval in which the Go-Back-N unit is busy
waiting for outstanding ACKs. Then, we compute the largest multiple
packet forwarding time for each packet in the busy period which leads to
the worst-case response time.

The peculiarity of Go-Back-N is that at any time there can be up to
nsw packets in-flight. Thus, if no packets are queued, the first nsw packets
are transmitted immediately, whereas the (nsw + 1)-th packet must wait
until the first packet is acknowledged and so on. We assume that the send
window is known and does not change over time. In fact, we can color each
arriving packet according to its waiting partners. In Figure 5.3 there are
nsw = 3 groups: we can group {1, 4, 7, . . . }, {2, 5, 8, . . . }, and {3, 6, 9, . . . }.

121
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

Packet arrival

Packet exit

GBN blocking

ACK round trip time

Figure 5.6: Go-Back-N Gantt chart. Packets and the ACK round trip are
colored according to their position in the send window. a(q)/e(q) indicate
arrival and exit time of the q-th packet.

These groups are scheduled independently from each other given sufficient
number of packets to be transmitted are available.

The concept of groups is also illustrated in Figure 5.6 for the first 8 pack-
ets of the stream (under no errors). Here a(q)/e(q) denote the arrival/exit
times of individual packets into and out of the ARQ unit, respectively. Pack-
ets are colored according to their position in the send window. Blue packets
wait for blue ACKs, red packets wait for red ACKs and so on. Note that
packet coloring repeats in a cyclic way. Obviously, the red packet 5 which
arrives at time a(5) only has to wait for acknowledgements of red packets
which have arrived earlier. Someone could argue that a very late arrival
time a(1) could delay the exit time e(5), (i.e., if a(1) > a(2)) but this violates
causality. Vice versa, we can conclude that if packets arrive as quickly as
possible, the interference for later packets is always maximized. Hence,
the critical instant assumption (packets arrive as quick as possible) leads
to a worst-case scenario for Go-Back-N.

To derive the worst-case response time for a Go-Back-N scheduler we
consider the groups independently from each other. As we will see later, it
is a safe approximation to assume that all groups exhibit the same timing
under worst-case conditions, hence, it is sufficient to derive the worst-case
timing for one group (i.e. red in Figure 5.6) and deduce the timing behavior
for all groups (hatched blue and green).

Theorem 39 (q-Packet Group Forwarding Time). The q-packet group for-
warding time Bgbn,i(q) of a stream(i) is given by the time it takes to forward
a sequence of packets which contains precisely q packets of a given group. It
starts with the arrival of the first and ends with the transmission of the q-th
packet of that group, and all but the first packets arrive before the preceding
is acknowledged. The maximum q-packet group forwarding time B+

gbn,i(q)

122
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.4. Performance of Go-Back-N

bounded by
B+

gbn,i(q) = (q − 1) ·RTT+
i (5.12)

• q is the number of (potentially non consecutive) packets which belong
to the same group

• and RTT+
i is the round trip time.

Proof. The last (q-th) packet of that group can be sent out latest when the
ACKs for all previous q − 1 packets of that group are received. Since each
acknowledgment takes at most time RTT+, we obtain Eq. 5.12. Also as the
right hand side of Eq. 5.12 is independent of the actual group (and thus
position in the send window), so we can conclude that also B+

gbn,i is.

Note, that the semantics of the functions Bgbn and Barq are actually
identical as Stop and Wait is a special case of Go-Back-N for nsw = 1. Thus,
a Stop and Wait stream consists of only a single group.

Theorem 40 (Group Busy Period). Given any group G of stream i, the
group busy period is the maximum time interval wgbn,i in which the ARQ
protocol has outstanding ACKs of group G. The maximum group busy
period is upper bounded by

wgbn,i =

⌈
η+
tx,i(wgbn,i)

nsw

⌉
·RTT+

i (5.13)

• nsw is the number of outstanding unacknowledged packets

• RTT+
i is the round trip time

• and η+
tx,i(Δt) is an upper bound on the number of packets send by the

application.

Proof. During any time window Δt, there can be at most � η
+
tx,i(Δt)

nsw
� packets

of group G. Thus, the longest waiting time is bounded by the worst-case
round-trip time RTT+ times the number of packets of group G.

The group busy period starts with the arrival of a packet of group G and
ends with the reception of the acknowledgement of the same group. During
the group busy period, also packets of other groups can arrive and may
have outstanding ACKs at the end of wgbn,i. Again, for the special case
nsw = 1, the group busy period for Go-Back-N matches the busy period of
the Stop and Wait protocol.

123

for Go-Back-N under no errors is independent of the actual group and upper

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

Theorem 41 (Worst-Case Go-Back-N Response Time). The maximum
response time R+

gbn,i of a Go-Back-N terminal of stream i is obtained by

R+
gbn,i = max

1≤q≤η̃+
tx,i(wgbn,i)

{R(q)} (5.14)

with
R(q) = B+

gbn,i(q)− δ−tx,i ((q − 1) · nsw + 1) (5.15)

and

η̃+
tx,i(Δt) =

⌈
η+
tx,i(Δt)

nsw

⌉
(5.16)

where

• R(q) is the response time of the q-th packet of a sequence of q belonging
to the same group

• B+
gbn,i(q) is the time to forward q packets of the same group

• η+
tx,i(Δt) is an upper bound of the number of packets, regardless of the

group

• η̃+
tx,i(Δt) is an upper bound of the number of packets which belong to

the same group

• nsw is maximum number of unacknowledged packets

• δ−tx,i(q) is the minimum distance between any q packets, regardless of
the group.

Proof. The response time is by definition the time interval from the arrival
of the packet at the ARQ unit until it is forwarded to the network. Similar to
the busy-period in fixed-priority scheduling, there are at most η+

tx,i(wgbn,i)
packets which can interfere with each other (cf. Eq. 3.20). However, as we
know, only packets of the same group can interfere. Out of η+

tx,i(w) packets
there are at most η̃+

tx,i(w) packets of the same group. All of these packets
must be checked for their response time.

The response time R(q) of the q-th group packet is maximized, if the
forwarding time is maximized and the arrival time minimized. The latest
forwarding time of the q-th packet is by definition obtained by the maximum
multiple packet forwarding time B+

gbn,i(q).
Now, we need to obtain the minimum distance between any q packets of

the same group. Since the group pattern is repeated in a cyclic fashion (cf.
Figure 5.6), we know that if we start with some group, the next packet of

124
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.4. Performance of Go-Back-N

the same group is seen after time δ−tx,i(nws + 1) earliest, the second after
time δ−tx,i(2nws + 1). If we expand and generalize the sequence we get the
total number of packets which must be observed in any sequence which
contains q packets of the same group, as follows:

n = (q − 1) · nsw + 1 (5.17)

The minimum time window in which n packets can be observed is by
definition δ−tx,i(n). Thus, R+

gbn,i is maximized.

Similarly, we can derive the best-case behavior for any sequence of q
packets, regardless of the group.

Theorem 42 (Best-Case Go-Back-N Multiple Packet Forwarding Time).
The best-case Go-Back-N multiple packet forwarding time B−

gbn,i(q) for a
stream i for any seqeunce of q packets is lower bounded by

B−
gbn,i(q) =

(⌈
q

nsw

⌉
− 1

)
·RTT−

i (5.18)

where

• RTT−
i is the best-case round trip time

• and nsw is maximum number of unacknowledged packets.

Proof. The proof is analogous to the one of Theorem 40.

5.4.2 Timing under Errors
As for Stop and Wait ARQ, we now consider the pathological case for Go-
Back-N ARQ. Since Go-Back-N is more complicated, there are more cases
to consider. At any time there are at most nsw unacknowledged packets
in-flight, so any of those packets can be corrupted. In case the first packet
in the send window is affected (cf. packet 7 in Figure 5.3), up to nsw must be
retransmitted. However, if the last packet is affected and the send window
did not advance because no additional data is available at the sending
terminal, only one packet must be retransmitted. The case of a lost ACK is
more subtle and we have to consider two cases1.

1. An ACK is lost and the associated data packet was the most recent
packet from the sender: In that case, the missing ACK is noticed after
tout time and a retransmission of the recent packet is initiated.

1These cases are not shown in Figure 5.3

125
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

2. Secondly, an ACK is lost but the transmitting terminal has sent further
packets which were correctly acknowledged. In this case the sending ter-
minal can implicitly assume the outstanding ACK because subsequent
packets are confirmed which would remain unacknowledged otherwise.

For the following analysis, we approximate the real protocol behavior
the following way: We assume that all data packets arrive at the receiver
but the associated ACK is dropped on the last hop. As explained previously,
subsequent ACKs implicitly acknowledged all previously sent data. We
assume that this does not happen and the receiving terminal still waits
for the missing ACK. This obviously is an overestimation but captures all
possible effects at once: Data and ACK packets impose the highest load on
the network while still waiting for the timeout.

Theorem 43 (K-Error Group Busy Period). Given any group G, the k-error
group busy period is the maximum time interval wgbn,i(k) in which the
ARQ protocol has outstanding ACKs of group G assuming exactly k dropped
packets of group G during that time. The maximum k-error group busy
period is upper bounded by

wgbn,i(k) = k(tout +RTT+
i) +

⌈
η+
tx,i(wgbn,i(k))

nsw

⌉
·RTT+

i (5.19)

Proof. During any time window Δt, there can be at most � η
+
tx,i(Δt)

nsw
� packets

of group G. Thus, the longest waiting time is bounded by the worst-case
round-trip time RTT+ times the number of packets of group G plus an
additional waiting time for each dropped packet. Under worst-case condi-
tions a dropped packet leads to a timeout and an retransmission, thus the
waiting time per error is upper bounded by tout +RTT+.

Theorem 44 (k-Error, q-Packet Group Forwarding Time). The k-error, q-
packet group forwarding time Bgbn,i(q, k) of a stream(i) is given by the
time it takes to forward a sequence of packets which contains precisely q
packets of a given group under the assumptions of k corruptions in that
group. It starts with the arrival of the first and ends with the transmission
of the q-th valid packet of that group, and all but the first packets arrive
before the preceding is acknowledged. The maximum multiple error packet
forwarding time B+

gbn,i(q, k) for Go-Back-N is independent of the actual
group and bounded by

B+
gbn,i(q, k) = k(RTT+

i + tout) + (q − 1) ·RTT+
i (5.20)

Proof. The proof is analogous to the one of Theorem 39. Additionally,
under worst-case conditions, each error leads to a timeout tout as well as a
retransmission which is acknowledged after time RTT+

i .

126
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.5. Experiments

Correspondingly, we can derive the response time under the assumption
that k packets were dropped.

Theorem 45 (Worst-Case k-Error Go-Back-N Response Time). The maxi-
mum k-error response time R+

gbn,i(k) of a Go-Back-N terminal is obtained
by

R+
gbn,i(k) = max

1≤q≤η̃+
tx,i(wgbn,i(k))

{R(q, k)} (5.21)

with
R(q, k) = B+

gbn,i(q, k)− δ−tx,i((q − 1) · nsw + 1) (5.22)

and

η̃+
tx,i(Δt) =

⌈
η+
tx,i(Δt)

nsw

⌉
(5.23)

Proof. The proof is analogous to the error-free counterpart, but instead
B+

gbn,i(q, k) and wgbn,i(k) are used which are conservative by construction
under the k-error assumption.

5.5 Experiments

In our experiments we evaluate only Go-Back-N as Stop and Wait is a
special case for nsw = 1. Throughout the experiments, we apply the
presented algorithms to off-chip switched Ethernet networks. However,
as already mentioned, the established formalism is also valid for on-chip
switched communication.

We assume a standard store and forward Ethernet switch as depicted
in Figure 5.7. Ethernet frames arrive at the ingress port, and are parsed
and forwarded to the correct egress port. Frames are queued in a first-
in, first-out fashion until they are scheduled for transmission. Switches
can be cascaded in any arbitrary topology. Sophisticated switches are
capable to detect and break cycles (e.g. by using Spanning Tree Protocol
STP), however, we restrict our scope to simple acyclic topologies, which are
common in the embedded domain. For the analysis, we assume a constant
wire delay of 33ns which translates to about 10m wire length (propagation
at the speed of light).

5.5.1 Daisy Chain
At first, we consider a daisy chain topology consisting of five switches as
depicted in Figure 5.8. A sending terminal (TX) sends a datastream using
Go-Back-N to a receiving terminal (RX). Each frame carries 1024 bytes
payload which contains the actual data as well as the Go-Back-N protocol

127
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

egressingress

ingress

……

egress

Figure 5.7: Ethernet frames are received on the ingress port and forwarded
to the appropriate egress port, where they are queued until transmitted.

information. We assume a bursty datastream (e.g. radar data) which can
generate a 20 kb burst (20 frames) with an average rate of 1 Mb/s. ACK
packets are sent from the RX terminal back to the TX terminal using a
minimum sized Ethernet frame which has 32 bytes payload. Piggypacking,
where ACKs are merged with payload data on the return path, is not
considered. Hence, a physical ACK frame is sent for each acknowledgement.
Additional terminals connected to each switch periodically (P = 0.5 ms)
send frames with 1024 bytes payload to the rx terminal.

To evaluate the influence of the send window on the latency, we swept
over an interval nsw ∈ [1, 25]. The results are depicted in Figure 5.9.
For each experiment, we depicted the worst-case end-to-end latency for
transmitting 20kb of data. The latency tends to drop with an increased send
window; this is expected as the limited send window is the major cause for
blocking. Surprisingly, the latency is not monotonically decreasing in nsw.
This is not very obvious, as an increased send window suggest less ARQ
blocking, after all, all terms (i.e. Rarq) are monotonically decreasing in nsw.
However, an increased nsw leads to increased network load because more
packets are admitted in shorter time. This increased transient load leads
to a higher RTT+ which negatively affects the system latency. We can
conclude that for small nsw the ARQ protocol has a self-regulating traffic

Switch Switch Switch SwitchTX

terminal terminal terminal terminal

Switch

terminal

RX

Figure 5.8: Daisy-chain topology. A sending terminal (TX) communicated
with the receiving terminal (RX) using the Go-Back-N protocol. Further
network congestion is generated by additional terminals.

128
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.5. Experiments

Figure 5.9: Formal worst-case latency.

shaping characteristic limited by the network load (higher round-trip times
lead to less congestion).

For completeness, we compare the formal worst-case analysis with a
simulation of the topology. We used a discrete event simulator to trace
the behavior under the previously introduced setup. We directly injected
large bursts (20 kb) into the ARQ unit and ran each experiment for 100 s
of simulated time. The results are depicted in Figure 5.10. Note that the
latency decreases monotonically with nsw contrary to the formal analysis.
It seems that the non-monotonicity, which is seen in formal analysis, is
caused by the worst-case approximations. However, it must be noted that
the simulation shows the observed worst-case and the actual worst-case is
somewhere between the formal analysis results and the simulation.

The overestimation of the formal analysis compared to the simulation
depends on the exact send window size but is in the order of a factor 3.
This is partly due to the complex feedback of overestimations. Worst-case
assumptions are considered in isolation for each hop which makes the line
topology unfavorable. This is a trade-off between accuracy and analysis
complexity. These local worst-case scenarios are partially mutual exclusive
and, thus, the overestimation, as for any CPA analysis, increases with

129
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

Figure 5.10: Simulated latency (worst-observed).

the number of hops. Still the absolute latency figures, obtained by the
formal analysis, of less than 3 ms are promising. These values are still
suitable for hard real-time data communication with very tight end-to-end
constraints. This way, it gives solid, reliable worst-case guarantees which
simulation results cannot provide. Also it must be noted that the runtime
of the simulation (172 min) is 4 orders of magnitude larger than the formal
analysis runtime (4s) on an Intel Core i7 processor.

5.5.2 Two Switches Automotive Setup
In this section, we apply the approach to a more realistic automotive
Ethernet setup. As a realistic automotive use-case, we use a topology and
traffic characteristics from a real in-car setup as presented in [173].

The Ethernet network consists of 14 end nodes which exchange data
with different timing constraints. Two switches provide the interconnect for
all devices as shown in Figure 5.11. A processing unit (HeadUnit) operates
as a data sink for control, camera, and bulk streams. Two side cameras,
as well as a rear camera transmit driver assistance video streams to the
HeadUnit. The unit computes a bird’s eys view from these streams used

130
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.5. Experiments

HeadUnit FCAM PU_FCAM

CAM1 CAM2

CTRL1 CTRL2

AVSink Bulk

CTRL3 CTRL4

AV_Audio AV_VideoCAM3

SW2

SW1

Figure 5.11: Automotive topology with two swiches.

as an input for further applications (i.e. pedestrian detection). The fourth
camera (FCAM) captures a front video which is send to a dedicated front
view processing unit (PU_FCAM).

The rear seats of the car are equipped with an AV entertainment system.
Here, AVSink represents the rear seat entertainment system (RSE) which
operates as the sink for AV_Audio and AV_Video streams. BulkTraffic
resembles best-effort data (e.g. 4G Internet communication) which is send
to the HeadUnit. The authors of [173] argue that all CAN and almost all
Flexray control data can be packaged in 20 bytes UDP frames. They traced
an existing system and found that inter-frame time of CAN and Flexray
messages are between 10 and 100 ms (including event-driven as well as
cyclic frames). As we need a conservative, worst-case approximation for
the traffic classes, we assume an inter-frame time of 10 ms for all control
frames.

It is assumed that driver assistance videos data is MPEG2-TS encoded
with a bitrate of 25 Mbit/s. Each camera transmits an UDP frame each 0.25

Node
Name

UDP/TCP
Payload
[byte]

Ethernet
Payload
[byte]

Period
[ms]

Net
Bandwith

Gross
Bandwith

Ctrl1,...,Ctrl4 20 48 10 16 kbit/s 38.4 kbit/s
CAM1,...,CAM3 786 814 0.25 25.1 Mbit/s 26 Mbit/s
FCAM 786 814 0.25 25.1 Mbit/s 26 Mbit/s
Audio 1472 1500 8.4 1.4 Mbit/s 1.43 Mbit/s
Video 1472 1500 1 11.8 Mbit/s 12 Mbit/s
Bulk Traffic 1400 1440 1 11.2 Mbit/s 11.52 Mbit/s

Table 5.1: Traffic characteristics as used for the automotive setup.

131
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

Figure 5.12: Latency for all streams in the automotive setup. GBN indicate
the forward stream (i.e. CAM to Headunit), where ack indicates the latency
on the acknowledgment path.

ms, with bursts of 5 packets. All camera streams use Go-Back-N to protect
the data against corruptions. Control data such as sensor data is assumed
to be updated and send so frequently that an additional error detection
and correction is not necessary. Similarly, the RSE consists of DVD video
data and 44.1 kHz stereo uncompressed audio (audio CD). In [173], the
BulkTraffic consists of 15 TCP connections to the HeadUnit with up to 11.2
Mbit/s. As our model cannot capture the complex TCP flow-control protocol
accurately, we model the TCP streams by independent frames to capture the
imposed workload. For a detailed description of the traffic characteristics,

132
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5.6. Summary

the interested reader is advised to consult [173]. An overview of the traffic
description is shown in Table 5.1.

The authors of [173] did assume non-prioritzed Ethernet, we assign
reasonable priorities for video and control data, which are in-line with the
overall automotive application. Latency critical traffic such as control data
(CTRL1,2,3) is mapped to the highest priority. Thus, it is guaranteed, that
critical data is forwarded as soon as possible. All video and audio streams
(all CAMs, FCAM, AV_Video and AV_Audio) were mapped to medium
priority. BulkTraffic is mapped to the lowest priority, that way isolation is
guaranteed.

Figure 5.12 shows the latencies of all streams (except best-effort Bulk).
Latencies for Go-Back-N traffic is broken down in forward path (GBN) and
backward path (ack) as indicated. We analyzed the topology using two
different parameters for the send window nsw = 5 and 10. For send-window
sizes of smaller than 4, the analysis was not capable to find a fixed point
and deemed the system unschedulable. Interestingly, the results are still
promising with latencies of below 3 ms in all cases. Generally, a worst-case
latency in the order of 10 ms is considered as low in the automotive domain
and error control protocols seem very well applicable to hard real-time
traffic.

5.6 Summary

In this chapter we have introduced high level error control protocols and
how they detect and correct packet drops. The chapter focused on Stop and
Wait as well as Go-Back-N in particular, as they are the most simple and
well understood concepts. First, we dissected the protocols with respect to
their timing behavior and constructed the worst-case behavior. Then we
formally considered the error-free as well as the error case and derived the
event models, response times and system latencies for aforesaid protocols.
It seems possible to extend the presented approaches to other schemes such
as Selective Repeat or Hybrid schemes.

Contrary to the considerations in previous chapters, we did not derive
reliability figures using error models. In this work we focused on a con-
servative consideration of ARQ protocols - also under errors. Merging this
work with the previously introduced error models remains to be addressed
in future research. A challenge for this is that multiple error models are
involved: one per link and one per device2. This “error-parallelism” needs
to be captures in a reliability analysis.

By using our methodology, contrary to common belief, we could show
that end-to-end error control protocols are generally adequate for hard

2In case the switches are also considered to be faulty.

133
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

5. SWITCHED NETWORKS

real-time systems such as safety-critical high data-rate video applications,
although the application of ARQ protocols leads to increased end-to-end
latencies and higher worst-case transient load. Applied to the ASTEROID
platform, this allows us to conservatively predict the latency of switched
networks under errors be it on-chip or off-chip.

134
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

CHAPTER 6

Multiprocessor on Chip

To maintain a high degree of fault-tolerance, the ASTEROID platform exe-
cutes a task redundantly on multiple cores until a common synchronization
point (voting) is reached. The architectural novelty compared to simple
lock-stepping is that only a subset of all tasks (only the safety-critical
tasks) are replicated. This gives more flexibly and helps to reduce cost (cf.
Chapter 2).

The redundancy protocol Romain is implemented by the research group
of TU Dresden in the operating system Fiasco.OC [276]. The Romain
master waits until all redundant copies have synchronized (or timed out),
compares the intermediate result and, in case of no errors, continues the
execution until the next voting point is reached [17]. In case of errors,
either the correct state is copied over the erroneous (roll forward) or a
recent checkpoint is restored.

Naturally, this has some interesting timing effects which are studied in
this chapter: Since a task is simultaneously executed on multiple cores and
is also subject to voting and checkpointing, previously established timing
and reliability analysis approaches cannot be directly applied to predict
the timing due to synchronization effects.

This chapter is divided into three sections: First, we establish a timing
model of replicated execution. Then we evaluate the worst-case perfor-
mance of fault-tolerant tasks running on ASTEROID. Finally, we establish
an approach to accurately predict the mean time to failure (deadline miss)
under the ASTEROID scheme. The approach and results presented in this
chapter are based on [19, 20]. Geoffrey Nelissen1 kindly pointed out two
problems with the approach presented in [19] which leads to optimism

1grrpn@isep.ipp.pt

135
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

in the response time analysis. We address these shortcomings and pro-
vide a simplified, revised approach which resolves these problems. All
experiments in this chapter were performed using the revised approach.

6.1 Error Detection and Recovery Model

The MPSoC executes an application consisting of replicated tasks as well
as unprotected tasks. This reflects the requirement that some functions are
of higher criticality than others. In ASTEROID, processors communicate
over a local interconnect which is capable to detect and correct errors on its
own. Here the methods and approaches of Chapter 4 can be used.

Tasks are managed by an operating system which uses a fixed-priority
scheduler and are statically mapped to individual cores. In most cases
this is a valid assumption, since partitioned scheduling schemes are widely
used (e.g. AUTOSAR [10]) and well understood [47].

Additional communication overhead such as NoC overhead, cache co-
herency traffic or shared resource accesses is not explicitly modelled. We
assume that any overhead is accounted in the execution times or application
graph as described below.

6.1.1 Fault-Tolerant Tasks
Our system consists of non-fault tolerant (non replicated) task as well as
fault-tolerant (replicated) tasks. A non-fault tolerant task τ behaves like
an independent task as discussed in Chapter 3. Once activated, it occupies
the processor for some time between its best-case and worst-case execution
time, furthermore it is mapped to a single core and has a unique priority.

Fault-tolerant (ft) tasks are extensions of regular tasks which are repli-
cated among several cores to increase reliability.

Definition 41 (Fault-Tolerant Task).
A fault tolerant task is an independent task with an annotated best-case /
worst-case execution time C+/C+, which is executed redundantly (in space
or time) and subject to voting.

We assume that in regular, predefined intervals, the application triggers
the creation of a checkpoint. The checkpoint includes all recently changed
memory regions of the task’s address space, as well as the current regis-
ter contents. When a checkpoint is established, the processor writes the
relevant memory content to a fault-tolerant memory region. This can be
protected main memory (e.g. by using an ECC) as well as dedicated check-
point memory, e.g. as used in the SafetyNet [256] approach. Furthermore,
we assume that the creation of a checkpoint is an atomic transaction and

136
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.1. Error Detection and Recovery Model

PreemptionCreate Checkpoint

Execution

Activation

Recovery

Core 2

Core 1

e1

e2

Deadline

Figure 6.1: Gantt diagram showing non-replicated tasks τ1, τ3, τ4 as well
as replicated task Θ4.

the hardware circuitry (e.g. DMA controller) takes care, that the check-
pointing process itself is fault tolerant. That means, if checkpoint creation
itself is affected by errors it will simply restart until it has completed the
process. Once an error in the program state is detected, the most recent
checkpoint is restored, and task execution is resumed from this point. Gen-
erally, the imposed assumptions are compatible with most of the checkpoint
and rollback approaches which are summarized in [265].

For the error detection, we assume a voting process as introduced in
Chapter 2 which is based on a fast fingerprinting hardware support. An
example of the voting and checkpointing sequence is shown in Figure 6.1.
Here fault-tolerant task Θ2 consists of two checkpoints. First, a checkpoint
is created (red box), then computations are performed (white box). The
state comparisons are performed at intermediate points in computation
(dashed vertical lines). An error hits a non fault tolerant task τ1 at time e1.
This directly leads to a failure associated to the function of that task. An
error event e2 hitting a replicated task Θ2 leads to a state corruption which
is detected at the next state comparison (second dashed line). A recovery
process is initiated and the execution is resumed from the last checkpoint.
In this scenario all deadlines (vertical bars) are met.

To model the overhead of checkpointing and recovery, a fault-tolerant
task is associated with further parameters. Checkpointing and redundancy
imposes additional execution time overhead described by parameters n, tcov
and trov. For a ft-task, the execution time C is divided into n checkpoint
stages of arbitrary length tcp,i so that C =

∑
tcp,i. At the beginning of each

execution interval (stage), a checkpoint is established causing a creation

137
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

stage 1 stage 2 stage 3 stage 4 stage 5

segment 1

segment 2

segment 3

Figure 6.2: A generic fork-join model as used in OpenMP or Romain repli-
cation framework [75] as used in ASTEROID. A fork-join task can be
subdivided into vertical stages and horizontal segments.

overhead of tcov. At the end of each stage, fingerprints of all redundant
execution streams are compared. In case of an error, all replicas re-execute
the recent stage with an additional recovery overhead of trov.

We assume that the time required for detection and recovery for in-
terconnect errors is negligible short. Previously presented results for a
priority-based arbitration scheme confirm such assumptions. Also, to keep
the presented analysis clear, we assume that there is no additional com-
munication overhead which needs to be considered, instead all overhead
is attributed implicitly to the tasks execution time. The operating system
and the processor hardware (MMU) take care that an erroneous task does
not interfere with other tasks in the system. In particular, this implies
that a faulty task cannot write to memory regions not assigned to this task.
However, timing interference is possible when an erroneous task keeps
demanding processing time.

6.1.2 Fork-Join Task Model
The rest of this chapter abstracts from the fault-tolerant task and maps
the problem into the domain of DAG task graphs [42]. Any fault-tolerant
task using replication can be modeled by a directed acyclic graph as shown
in Figure 6.2. A fork-join task Θ is an extension of an independent task
and consists of multiple stages with further data dependency.

Definition 42 (Fork-Join Task).
A fork-join task Θ is a directed acyclic graph with a set of independent
tasks as nodes and edges between these tasks which represent the precedence
relations.

138
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.1. Error Detection and Recovery Model

In any fork-join graph, we can identify segments and stages as annotated
in Figure 6.2. The stages reflect the checkpoint intervals whereas the
segments model the redundancy in space.

In that sense, a segment can only be started once all segments released
in the previous stage have finished their execution. Each segment is
modeled by an independent task, thus it has a worst-case execution time,
priority and unique mapping. Nested forks in which only some segments
have common synchronization points are not modelled (and not supported).

The execution semantics is similar to the ones of independent tasks: We
assume an infinite large fifo queue in front of the fork-join task. Once an
event arrives at this queue, the first stage of the fork-join task is released
and the sub-tasks are spawned. Once all segments of the first stage have
fully executed, the following stage is triggered. The event is processed if the
last stage has fully executed (and all segments have finished). If further
events arrive at the fork-join task during that time, they are queued at the
fifo. Thus, at any time the fork-join task is only processing one event. We
can conclude that the considered fork-join DAG is not pipelined, opposed to
the generic task graph introduced in the SymTA/S approach [120]. For the
sake of simplicity, we do not consider shared resources such as semaphors
(e.g. Multi-processor Priority Ceiling Protocol [225]). However, as our
analysis follows the compositional CPA approach, related approaches in
the field of shared resources can easily be integrated into the presented
formalism.

Now, it is obvious that any fault tolerant task can be represented by an
associated fork-join task. The segments represent the independent execut-
ing replicas, whereas the “join” semantics models the voting mechanism. A
DMR-based replication is modeled using two segments, a TMR approach
features three segments. The number of stages depends on the number of
checkpoints n.

To reference individual nodes in the fork-join DAG, we introduce the
following shorthand notations. A fork-join task Θ is represented by a set of
regular tasks which we call subtasks.

Definition 43 (Fork-Join Subtask).
A subtask τσ,s of a fork-join task Θ is the σ-th segment in the s-th stage,
which has no further data dependency.

Subtasks are shown in Figure 6.2 as circles. Similarly, a fork-join
task is parametrized by a set of execution times and priorities Cσ,s, pσ,s

one for each subtask τσ,s. The execution time depends on the number of
checkpoints n and the total execution time C of the associated fault tolerant
task. Hence, for n checkpoints, there are n stages.

Corollary 4. Assuming, a task is split into n checkpoints of the equal length
(C/n). Under DMR/TMR, there are two/three segments and we get the

139

following subtask execution times.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

stage1 stage2 stage3 stage4 stage5

segment 1

segment 2

checkpoint groups

Figure 6.3: Fork-join model for a fault-tolerant task. Checkpoint groups
are indicated.

∀s ≤ n, σ ≤ 2 : Cσ,s =
C

n
+ tcov (6.1)

Proof. By construction, each subtask executes C/n-th of the workload plus
the additional checkpoint creation time.

For a fault tolerant task Θi, we can group all segments in a given stage
s in a set.

Definition 44 (Checkpoint Group).
A checkpoint group is the set of fork-join subtasks which belong to the s-th
stage of Θi. CGi,j,s is the j-th instance of a checkpoint group associated
with the s-th stage of Θi.

Thus,a checkpoint group contains all segments which (in an error-free
environment) computes the same result and leads to a comparison. An
example of a fork-join model which reflects a fault tolerant task is given in
Figure 6.3. Also the checkpoint groups are indicated.

Without loss of generality, we assume that all subtasks in one segment
are mapped to the same core: This means that tasks in the same row in
Figure 6.2 are mapped to one core. This is the case for redundant execution,
as the segments in the fork-join task graph represent the replicas. Thus,
the segment (σ) encodes implicitly the mapping for fork-join tasks, and we
can say τσ,s is mapped to core σ. In that sense σ can be a segment as well
as a core.

140
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.1. Error Detection and Recovery Model

6.1.3 Failure Modes and Error Handling
An error can affect a task in a number of ways, eventually causing a task
to stop providing service. Unprotected tasks are assumed to fail on the
first error, which is a conservative assumption based on the possible failure
modes of the processor. For tasks which are replicated, error events can
occur during the following execution phases:

1. checkpoint creation

2. regular execution

3. recovery process

For the first case we assume that an error during checkpoint creation
is detected and corrected on-the-fly by Romain. For the second case the
error is detected after all segments have finished. It might happen that
due to errors a task gets stuck in a loop and will not yield processing-time
properly. Romain implements a budgeting (timeout) mechanism which
enforces maximal execution times to detect programs which got stuck. A
similar kind of budgeting is also used in PharOS [55]. Then the recovery
process is triggered with the result that the recent checkpoint group is
re-executed. The third scenario is treated like the second, assuming that
an error during the recovery process does not corrupt the recent checkpoint.
By these means it is possible to detect errors at the end of each task to
avoid error propagation in the system (domino effect). Errors do not have
an effect on tasks when a core is idling.

Figure 6.4 shows an example Gantt chart as a possible execution trace
of a system with two cores and tasks τ1 - τ4 as well as Θ2. Here priorities
are assigned according to the occurrence in the chart, i.e. τ1 has a higher
priority than Θ2 and so on. In this example Θ2 is a fault-tolerant DMR task
with two equally distributed checkpoints (n = 2). Checkpoint groups are
indicated by CG2,1,1, . . . , CG2,2,2. Important events have been numbered
in the order of their occurrence: 1 All tasks activate simultaneously. Both
replicas of Θ2 start creating a checkpoint. 2 An error event e1 affects task
τ1, causing this task to fail. Further activations of τ1 may still dissipate
processor time but have no further value for the service delivered by τ1.
3 The intermediate results of all segments in CG2,1,1 are available and

match. Then, a checkpoint is established. 4 An error event e2 hits Θ2.
A segment in CG2,1,2 is affected. 5 After the execution of segments in
CG2,1,2, the voting mechanism detects a mismatch and a recovery is initi-
ated and a reexecution follows. This is modelled by an additional fork-join
stage indicated by CG

′
2,1,2. 6 The voting after the reexecution CG′

2,1,2

agrees, no further error is detected. First activation of Θ2 successfully

141
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

PreemptionExecution

Create Checkpoint

Recovery

Core 2

Core 1

e1

CG2,1,1 CG2,1,2 CG´2,1,2

Activation

Deadline

e2

CG2,2,1 CG2,2,2

1 3

4

5 6 8 9

2

7

Figure 6.4: Illustrative example: Task Θ2 is mapped redundantly to both
cores and split in n = 2 checkpoints.

completed and deadline met. 7 A second activation of Θ2 arrives, check-
point is established. 8 Intermediate result in CG2,2,1 is available and the
voting data matches, a checkpoint is established. 9 Intermediate result in
CG2,2,2 is available and match. The second activation of Θ2 successfully
completed and deadline met.

In this example, we can see that the effect of an error (recovery and ree-
execution) can be modelled by adding an additional stage. For a single error,
it is a conservative assumption that the stage with the largest execution
time is reexecuted. Thus, a fault-tolerant task representing this behavior
has n+1 stages, n from the original fork-join task graph plus an additional
stage which models one reexecution. This idea can be generalized to k
errors:

Corollary 5. A fault-tolerant task which is affected by k errors during its
execution is conservatively approximated by a fork-join task graph with a
total of n+ k stages.

Proof. A fault-tolerant task in an error-free environment is modeled by n
stages, where n is the number of comparisons (votings). Under worst-case
situations, an error hits the stage with the largest execution time, which
leads to an additional comparison (voting), recovery and reexecution. Again,
in the worst-case scenario, this reexecution is affected by another error
leading to another recovery/reexecution.

In the worst case, each of the k errors hits the worst-case segment. This
leads to a total of n + k stages, with n being the original stages and the

142
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

addional k stages are repetitions of the stage with the largest execution
time.

Corollary 6. If all checkpoints are equally distributed, the execution time
for a subtask which models error recovery and execution time is given by:

∀n > s ≥ n+ k, σ ≤ 2 : Cσ,s =
C

n
+ trov (6.2)

Proof. Each recovery subtask consists of the actual recovery time trov plus
the reexecution time C/n.

6.2 Performance of Fork-Join Tasks

This section discusses the timing implications of redundant multicore exe-
cution in which the workload associated with the application is distributed
on multiple isolated cores and executed in parallel. In particular, we derive
a worst-case bound on the response time for fork-join tasks which are used
to model replicated execution.

The presented methodology is not only restricted to redundant execution
of reliable applications, but can be also applied to predict the timing of
high performance, hard real-time applications which use a state of the art,
parallel computing paradigm.

6.2.1 Related Work
Task-parallel programming models facilitate splitting application logic
into sequential and parallel parts. Toolkits, such as OpenMP [205] and
Intel’s Thread Building Blocks [133] support the programmer by automat-
ing most of the parallelization and synchronization work. Depending on
the scheme, this leads to an unpredictable system, or makes a real-time
analysis challenging.

Parallel task models that support such semantics have been presented
for instance in [163, 218, 34]. Early work in distributed systems in which
events are synchronized was presented in [108]. The fork-join tasks consid-
ered in this work are a special case of directed acyclic graph (DAG) task
models for instance [96, 30, 42].

Holenderski et al. [124] addressed multi-resource scheduling in which
parallel tasks can access local and global resources which can be pre-
emptible as well as non-preemptible. In that scope a generalized shared
resource protocol (Parallel-SRP) was presented. Baruah et al. presented
a generalized parallel task model [30] which also supports fork-join tasks.
They analyze the schedulability under EDF and concludes that EDF has a
speedup bound of 2. Fork-join task models in particular were considered

143
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

in [239], the presented model is compatible with our work. The authors
decomposed fork-join task constraints into a set of sequential deadline
constraints under implicit deadline assumption. Based on this, schedula-
bility bounds for global EDF scheduling were given. Lakshmanan et al.
introduced a task stretch transformation in [163] where parallel workload
is converted into sequential workload which effectively avoids fork-join
structures where possible. The work was extended in [87, 218] (segment
stretch transformation). The resource augmentation bound for SST and
TST was shown to be 3.42. This implies that any taskset, feasible on m
unit speed processors is also schedulable by SST / TST on m processors
that are 3.42 faster.

There exist a large variety of scheduling and mapping techniques to
handle fork-join tasks such as [192]. Here deadlines were assigned to a
fork-join task and an EDF-like scheduler was used to schedule all subtasks
in a fork-join task independently. In [94] a heuristic algorithm (Fisher-
Baruah-Baker First-Fit-Dreceasing) was given to map tasks to cores under
a partitioned multiprocessor scheme. Fork-join decomposition and priority
assignment were put together in [92] in scope of RT-OpenMP.

Most of related work in the field of parallel task graphs only considers
global EDF or variations thereof under implicit deadline assumptions
(i.e. [58, 164, 30, 239, 92]). In this work we show how to predict the
response-time of such applications under a fixed-priority scheduling scheme
conservatively.

This work is based on [19] which discussed a response-time analysis
methodology for fork-join tasks. However Geoffrey Nelissen pointed out
two shortcomings that lead to optimism.

The first problem is related to blocking. A fork-join task behaves in a
way quite similar to two independent tasks mapped to an MPSoC which
block on a single shared resource. For shared resource, the challenge, model
and analysis is discussed in [191]. The same blocking effect can delay the
execution of the fork-join tasks on one processor and artificially causes an
increased input jitter.

The second problem is that the work in [19] assumes a greedy approach
in which interference is assumed as early as possible. This does not always
lead to the worst-case as we will show in a later example. The work
presented in this section still uses the concepts presented in [19] and
revises the approach.

6.2.2 Response-Time of Independent Tasks Under the
Presence of Fork-Join Tasks

Through the course of this section, we strive to obtain the fork-join response
time.

144
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

MappingTaskset

Independent tasks

Figure 6.5: Example taskset and mapping as used for illustrative purposes.
Two cores, one fork-join task Θ2 and some individual tasks.

Definition 45 (Fork-Join Response Time).
The response time R+ of an event of fork-join task Θ is the time interval
defined by the time when the event arrives at a fork-join task until it exits
the last stage.

The worst-case (fork-join) response time R+ is an upper bound to any
response time which can be observed. The goal of the following analysis
steps is twofold: First, we determine the response time of independent
tasks under the interference of fork-join tasks. Then we show how to obtain
the worst-case response time bounds for fork-join tasks.

We now derive the worst-case response time for any independent task
τi which is not part of a fork-join task. Contrary to systems which solely
consist of independent tasks, an independent task τi can be preempted not
only by independent tasks but also by fork-join tasks Θj . The following
analysis includes these timing effects. To illustrate the effects caused by a
fork-join task on an individual task we use the example taskset as shown
in Figure 6.5. In the example we have six independent tasks as well as
one fork-join task mapped to two cores (Core 1, Core 2). The fork-join task
consists of three stages and two segments. We now demonstrate how to
obtain the response time of task τ4 running on Core 1. We choose this task
as an example, since it has a lower priority than all subtasks of Θ2 as well
as τ1.

According to Theorem 1, to compute the worst-case response-time it
is sufficient to bound the multiple event processing time as well as the
scheduling horizon (or busy-period).

145
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

t

Core 1

,

Figure 6.6: Worst-case schedule for independent task τ4 running on core 1.
Queuing delays as well as multiple-event busy times are indicated for the
first two events.

Corollary 7. The multiple event processing time B+
i (q) of an independent

task τi under partitioned, fixed-priority preemptive scheduling is given by

B+
i (q) = q · Ci + Ii,IND(B

+
i (q)) + Ii,FJ(B

+
i (q)) (6.3)

where

• Ci is the worst-case execution time of task τi,

• Ii,IND(Δt) is an upper bound for workload caused by higher priority
independent tasks in any time window of length Δt,

• Ii,FJ(Δt) denotes the interference caused by fork-join (sub-) tasks of
higher priority mapped to the same core.

Proof. To execute q instances of an independent task τi, the workload of
the task itself q ·Ci must be executed as well as all higher priority workload
released during the processing time. The higher priority load consist of
other independent tasks as well as fork-join tasks.

Similarly, we retrieve the queuing delay for the q-th event as follows.

Corollary 8. The multiple event queuing delay Qi(q) of an independent
task τi under partitioned, fixed-priority preemptive scheduling is obtained
by

Qi(q) = (q − 1) · Ci + Ii,IND(Qi(q)) + Ii,FJ(Qi(q)) (6.4)
where

146
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

• Ci is the worst-case execution time of task τi,

• Ii,IND(Δt) is an upper bound for workload caused by higher priority
independent tasks in any time window of length Δt,

• Ii,FJ(Δt) denotes the interference caused by fork-join (sub-) tasks of
higher priority mapped to the same core.

Proof. Analogous to the one of Corollary 7.

Corollary 9. The scheduling horizon for an independent task τi under
partitioned, fixed-priority preemptive scheduling is bounded by the multiple
event processing time B+

i (q).

Hi(q) = B+
i (q) (6.5)

Proof. This follows from the SPP scheduling concepts discussed in Chap-
ter 3. For the proof, we use the queuing delay. By definition the queuing
delay is the time at which the q-th event gets at least a full processor cycle
service. The scheduling horizon of q events is by definition the time after
which the q + 1 event gets ε service. Substituting q by q + 1 in the queuing
delay equation Equation 6.4 yields an upper bound for the scheduling hori-
zon. This substitution leads directly to Equation 6.3, the multiple event
processing time.

The higher priority interference of independent tasks can be classically
computed [172] by considering all tasks that are of higher or equal priority
(denoted by hpind).

Ii,IND(Δt) =
∑

∀τj∈hpind(i)

ηj(Δt) · Cj (6.6)

To compute the interference caused by fork-join tasks, it is necessary to
derive the event model at the input of subtasks.

Definition 46 (Fork-Join Sub Event Model).
A sub event model (ησ,s

i or δσ,si) of a fork-join task Θi describes the worst-case
event arrival at the corresponding subtask τσ,s

i .

Theorem 46. The number of events that arrive in some time interval of
length Δt at the input of a subtask τσ,s

i can be conservatively approximated
by the input event model ηi of the corresponding fork-join task Θi

ησ,s
i (Δt) ≤ ηi(Δt+R+

i) (6.7)

147
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

Proof. Under worst-case assumptions, the fork-join task is blocked on some
other core2. Thus, events queue up at the FIFO. In the worst-case, the
fork-join task is blocked for R+

i , its response-time. Thus, at the start
of the busy-period, we must account for additional events which arrive
during time R+

i . This is analogous to the response-time computation in
multiprocessors under the impact of shared resources. Given a multicore
system and two tasks (τi, τj) mapped to different cores which access the
same shared resource. Under worst-case assumptions task τi acquires the
shared resource and blocks, thus delaying, the execution of the other task
τj . The task starts executing latest when τi releases the shared resource
after its response time. The effect is discussed and a formal analysis is
presented in [240, 191].

Furthermore it is conservative to assume that all stages are activated
simultaneously, hence it is conservative to use the event model of the first
stage for all stages.

This is intuitively shown in Figure 6.6, for each event of Θ2 each subtask
is activated once in a cascading fashion. Note that the effect of inter-core
blocking is not explicitly depicted in the figure. The event arrivals which
are shown are already shifted by R+

i . The interested reader should consult
[240].

From the previous reasoning we can conclude that the interference by
higher priority fork-join tasks is given by

Ii,FJ(Δt) =
∑

∀τσ,s
j ∈hpfj(i)

ηj(Δt+R+
i) · Cσ,s

j (6.8)

Here, hpfj is the set of all higher priority fork-join subtasks which are
mapped to the same core as the task under analysis, τi.

6.2.3 Response-Time of Fork-Join Tasks
Similar to the previously presented analysis of independent tasks, we
also use the busy-window approach to derive the response time for fork-
join tasks. However, previously introduced formulas cannot be applied
directly to fork-join constructs. Mainly, because the behavior of the fork-
join task depends on a complex interaction between multiple cores. That is,
some segments in one stage finish earlier than others, inducing a “waiting
time” in which one or more cores are potentially idle, waiting to finish a
segment on other cores. Before we go into detail, the following analysis
does not support event-pipelining in which a fork-join task is processing

2This effect was not sufficiently considered in [19].

148
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

stage 1 stage 2 stage 3 stage 1 stage 2 stage 3

„winning“

waiting for core 2
Core 1

event

execution

waiting due to
local interference

Figure 6.7: Effect of multiple events (i.e. q=2). Each event cascades through
all three stages. Effects of waiting induced by core 2 is indicated as a red
bar (but core 2 is not explicitly shown). Higher priority interference is
denoted as IIND. Queuing delay as well as the multiple event busy times
are shown for the first two events. Note that B(1) as well as B(2) align
with the end of the stage, since the completion times are delayed by core 2
(red bar).

multiple events in a pipeline fashion and multiple stages are executing
simultaneously. We restrict ourselves to the redundancy case in which the
fork-join task chain must have fully been executed until the following event
is admitted.

Before we go through the analysis, we highlight the relation between
events and stages. An example is shown in Figure 6.7. The Gantt diagram
shows only the behavior on core 1 and core 2 is not shown. IIND denotes the
higher priority interference, abstracting from all other tasks mapped to the
core. Hatched (red) bars denote where core 1 has to wait for core 2 to finish
the previous stage, although the activity on core 2 is not explicitly shown
in this figure.

The first event q = 1 as indicated by the arrow, arrives right at the
start of the busy period. Obviously, this event ripples through all three
stages. The second event (q = 2) cascades through all three stages, thus
the first two events together execute a chain of six stages in total. We can
conclude, that the behavior of two events is equivalent to the behavior of
one event which triggers a fork-join tasks consisting of six stages. Without
loss of generality, we model the behavior of multiple events by repeating
the sequence of stages assuming the initial graph consists of smax stages.
To model the execution of q successive events, an equivalent task graph
with smax · q stages is used. For further notation, we extend the subtask
definition to stages beyond smax the following fashion:

τσ,s ≡ τσ,(s mod smax) (6.9)

149
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

Here, the ≡ operator refers to all task parameters such as priority and
execution time.

Now, similar to the multiple event busy time for independent tasks, we
can define a stage-completion time for fork-join tasks.

Definition 47 (Stage-Completion Time).
The stage-completion time

−→
B s of fork-join task Θ is the largest time interval

from the start of the busy-period until all segments in the s-th stage have
executed fully.

Similarly, we can define the window from the start of a stage to the end
of that stage by using the completion times.

Definition 48 (Stage-Completion Window).
The stage-completion window

←→
B s is defined as the time interval from the

start of the s-th stage until all segments of the s-th stage are fully executed.

The stage-completion time can be used to formulate the multiple event
processing time by evaluating q · smax stages.

B(q) =
−→
B q·smax (6.10)

In every stage, each processor adds to the total window. However, the
total interference naturally depends on the interferer set of the processors
and it is not immediately clear which processor delays the stage of the fork-
join task most. Hence all cases must be considered and can be potential
candidates.

Definition 49 (Stage-Completion Window Candidate).
The stage-completion window candidate

←→
B σ,s

i is the time interval from the
start of the s-th stage of fork-join task Θi until the stage is completed on core
σ.

At this point we can also formalize the concept of maximizing a stage.
A core maximizes a stage if the stage-completion window candidate is the
largest among all others.

Theorem 47. The stage-completion time can be computed from the com-
pletion time of the previous stage plus the largest stage-completion window
candidate of the s-th stage, by computing a candidate for each core and
choosing the largest.

−→
B s

i =
−→
B s−1

i +max
∀σ

(←→
B σ,s

i

)
(6.11)

150
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

Proof. The proof is by induction. The first stage-completion time is conser-
vative by construction as it is analogous to single core scheduling theory.
For the subsequent stages a conservative stage-completion window is added
which is independent of the previous stages. Thus, all stages are maximized
in isolation and then added together.

Theorem 48. The stage-completion window candidate
←→
B σ,s

i of fork-join
task Θi can be computed using the following recurrence relation:

←→
B σ,s

i = Cσ,s
i + Iσ,si,IND(

←→
B σ,s

i) + Iσ,si,FJ(
←→
B σ,s

i) (6.12)

Where Iσ,si,IND is an upper bound on the interference caused by higher prior-
ity interference of independent tasks and Iσ,si,FJ bounds the higher priority
interference of other fork-join tasks3.

Iσ,si,IND(Δt) =
∑

∀τj∈hpind(i)

η+
j (Δt) · Cj (6.13)

Iσ,si,FJ(Δt) =
∑

∀τσ,s
j ∈hpfj(i)

ησ,s
j (Δt+R+

j) · Cσ,s
j (6.14)

Proof. Naturally, the subtask of execution time Cσ,s must be executed plus
all higher priority interference released during

←→
B σ,s

i . The interference
of higher priority tasks (fork-join and independent) is maximized as the
number of events in the s-th stage is maximized by the stage interference
event model. For fork-join tasks, we further must consider the inter-core
blocking as already presented in the previous section. According to [172], it
is assumed that each stage starts with a critical instant regardless of what
happend in previous stages.

Using the established formulas we can compute the multiple event
processing time. From the multiple event processing time we can derive
the response time as shown in Chapter 3. However, we have not discussed
the scheduling horizon which is also required in order to decide how many
events need to be considered under worst-case conditions. For this, we
use the queuing delay as a conservative approximation for the scheduling
horizon:

Theorem 49. The worst-case queuing delay Qi(q + 1) is a safe upper bound
for the worst-case scheduling horizon Hi(q):

Hi(q) ≤ Qi(q + 1) (6.15)

3Here is the difference between the work presented in [19] which used an optimized Stage
Interference Event Model which causes non-conservatism.

151
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

Proof. The worst-case scheduling horizon is by definition the largest time
interval until a q + 1-th event gets at least ε service. The worst-case
scheduling horizon is by definition the largest time interval until a q-th
event gets at least a full processor cycle tcycle. Therefore a q + 1-th event
also gets at least ε service after the queuing delay.

Definition 50 (Stage Queuing Time).
The stage queueing time

−→
Qs

i is the largest time interval from the start of
the busy window until all segments of fork-join task Θi get at least a full
processor cycle service in the s-th stage.

Definition 51 (Stage Queuing Window Candidate).
The stage queuing window candidate

←→
Q σ,s

i is the largest time interval
in which subtask τσ,s

i is blocked in the s-th stage by higher priority task
interference until it gets a full processor cycle service.

To evaluate the queuing delay of the q-th event, we must check the
largest stage queueing time of the first segment of that event. Analogous
to the completion formulas we can derive the stage queuing formulas:

Qi(q) =
−→
Q

smax·(q−1)+1
i (6.16)

−→
Qs

i =
−→
B s−1

i +max
∀σ

(←→
Q σ,s

i

)
(6.17)

←→
Q σ,s

i =Iσ,si,IND(tcycle +
←→
Q σ,s

i) + Iσ,si,FJ(tcycle +
←→
Q σ,s

i) (6.18)

6.2.4 Worst-Case Timing Evaluation of Replication
Here we evaluated the Romain framework with respect to worst-case
timing. Therefore, we map the Romain replication to a fork/join execution
model: One replica acting as the master spawns the other replicas. These
replicas execute user code concurrently. Once they reach a point where
they externalize state, concurrent execution is interrupted and one of
the replicas executes master code in sequential execution mode. After
handling the event in master mode, control is returned to concurrent
replica execution. In a DMR setup, there are two fork-join segments,
whereas a TMR setup yields three parallel segments. The number of
stages depends on the number of comparisons (voting) and is application
dependent. Applications which perform many I/O operations have more
stages than performance bound applications.

We obtained the execution characteristics from a set of benchmarks from
the MiBench benchmark suite [107]. These benchmarks were executed
using the Romain framework. To obtain reasonable timing models, we
executed the benchmarks with one, two, and three replicas respectively

152
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.2. Performance of Fork-Join Tasks

on a state-of-the-art Intel Core i7 processor with 2.6 GHz 4. We measured
their execution times and specifically observed the time spent executing
sequentially (state comparison, system call handling etc.), as well as the
time spent executing concurrently (executing user code) in order to derive
the execution times Cσ,s as used in the analysis. Thus, first the number of
stages is counted and the execution time spent in each stage is traced. The
number of parallel segments is fixed to 2/3 due to the dual/triple modular
redundancy use case.

In total we ran each benchmark 150 times to get a sufficiently large sam-
ple size. Then we removed the first samples which show major transient
anomalies caused by memory layout organization. These where mostly
page faults because the benchmarks did not lock pages, nor mark them
as sticky in advance. These page faults only appear once at the beginning
of the execution trace and vanish in the steady state as the memory is
fully mapped. Also embedded processor without a MMU will not show
such a behavior since the memory layout is fixed at design time. Since
the benchmarks are executed on a live system, we see interference from
interrupt handlers (i.e. timer) from time to time which tamper with the
execution-time measurements. To filter these effects, we choose the execu-
tion times as the 0.9-quantile over the used samples per stage, assuming
that rare outliers are caused by IRQ handlers.

We found that in most cases state comparison is in the order of a few μ
seconds or less and compared to the computation-heavy segments of the
benchmarks it is negligibly small. Additionally, the system calls them-
selves may block due to hard drive access and other hardware interaction
which is not an inherent part of the benchmark unless the operating sys-
tem and hardware performance shall be evaluated which is not the case.
Thus, for the following experiments, we deliberately excluded time spent in
system calls and only focus on usercode which is the intrinsic part of the
benchmark.

Execution Time Measurements

An overview of the benchmark data such as the total execution time and
the number of stages per benchmark can be found in Table 6.1. We see,
that the number of stages differs drastically from benchmark to benchmark
ranging from 8 to 358 stages. This is mostly due to different I/O patterns of
the benchmarks.

In most cases I/O is caused by printfs used to print (intermediate) results.
Figure 6.8b and 6.8a show representative execution time behavior and other
benchmarks show a very similar pattern. The diagram shows the stage

4Romain is only available for x86 architectures

153
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

(a) Execution times of segments in Dijk-
stra benchmark. I/O phases and compu-
tation bound phases alternate.

0 5 10 15 20 25 30
stage #

10-4

10-3

10-2

10-1

100

101

Ex
ec

ut
io

n
tim

e
[m

s]

Sha

Repl. 1
Repl. 2
Repl. 3

computation

I/O calls

(b) Execution times of segments in SHA
benchmark. Most stages prepare I/O (e.g.
printf).

Figure 6.8: Execution characteristics

number on one axis and the execution time on the other. As we traced
replicas independently the execution times is shown per replica.

Worst-Case Evaluation of Romain Configurations

As a replica resembles a segment in a fork-join task, we are able to model
the Romain Framework as well as the benchmarks using the previously
introduced fork-join task model. For the following experiment we use a
dual core with the same clock frequency as the architecture used for the
benchmarking (2.6 GHz).

In these experiments we evaluate the worst-case response time of the
Bitcount and Rijndael (AES) benchmarks in a single core and dual core
setup. Therefore, we mapped 20 independent tasks as well as one fork-join
application on both cores and varied the utilization in order see the effects
on the response time. For the task parameters of the 20 independent tasks
we use UUniFast algorithm [39].

We compare the performance of the parallel setup (dual core) with a
purely sequential execution (single core). Note that we do not explicitly

Table 6.1: Number of stages per Benchmark

Benchmark Stages Total C [ms]
Security/Rijndael 14 4.9
Security/SHA 27 1.53
Automotive/Bitcount 8 271.2
Automotive/QSort 358 18.35
Networking/Dijkstra 233 9.05

154
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

model core to core communication, memory effects. For this experiment,
we assume that a task has the same worst-case execution time on one core
or the other. In the sequential setup all interference tasks and all fork-join
segments are mapped to just one core. So the single core executes the entire
workload which was distributed in the dual-core experiment. In reliability
terms, the sequential mapping resembles a redundancy in time as we still
execute a fault tolerant task twice.

Figure 6.9a and 6.9b show the results. The axes show the load on the
processors and the relative improvement of using a dual core, parallel
approach over a sequential one. Naturally, a single core setup is only
schedulable if the sum of the loads is less than 1. Thus, no improvement
indication can be given for setups where Load1 + Load2 ≥ 1.

The naive assumption would be that a parallel mapping would outper-
form a sequential mapping. Interestingly there is no clear indication of this.
Under worst-case assumptions, the Bitcount benchmark performs clearly
better if mapped to two cores, whereas the Rijndael benchmark exhibits a
worst-case response time twice as large as compared to a sequential setup5.

The reason for this is the number of stages and the execution times in
these stages. The Rijndael benchmark has 14 stages. Of these stages are
13 IO bound stages of only a couple of thousand processor cycles and one
computation driven very long stage. In contrast to this, Bitcount has 8
stages. Three of these stages are IO bound the rest are long computation
bound stages. We can conclude that a parallel setup leads to a real-time
improvement if the fork-join task has an equally distributed stage execution
time.

6.3 Reliability Prediction of Replication

In the previous section we discussed the model and response time analysis
of replicated applications. Intuitively, redundant execution should increase
reliability. However, to evaluate the final safety-intergrity level we need to
obtain the likelihood of a task meeting its deadline.

In this section, we analyze the likelihood that a task misses a deadline
due to transient load caused by recovery of erroneous tasks. This leads
us to a task-wise reliability analysis which allows to validate criticality
constraints (safety integrity level [135]). The goal is to derive the reliability
as tight as possible to reduce over-provisioning to a minimum.

The handling of permanent errors is not considered in this section
and considered as an orthogonal problem which is tackled with other

5These are worst-case considerations under the presented approximation, simulations might
indicate other reasoning but cannot easily capture the worst-case scenario

155
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

(a) Speedup for rijndael benchmark. (b) Speedup for bitcount benchmark.

Figure 6.9: Worst-case time improvement (speedup) single core vs. dual
core mapping.

approaches as explained in Chapter 2. Permanent errors are covered by
e.g. [102, 144, 214].

The detection scheme in ASTEROID is assumed to be perfect, thus,
all errors are detected and the detection mechanism itself is sufficiently
reliable. Here, “sufficient means that the mean time to failure has to be
at least an order magnitude higher than other sources of error. The final
MTTF of the system (or function) is then sufficiently approximated by the
MTTF of the application with the lowest MTTF. First, this is a reasonable
assumption, also done in related work [212, 298]. The error detection
coverage scheme used in ASTEROID is measured in [79] and found to be
100 % and the recovery rate for TMR majority voting is almost 100 %.

6.3.1 Related Work
Related work in the area of fault-tolerant system analysis focus either on
logical or on temporal correctness of systems or components. Whenever
formal techniques are introduced to compute the reliability with respect to
timing constraints, the probability of logical failures is neglected. Similarly
considering fault tolerance mechanisms with respect to logical correctness
does not take timing effects into account. In this section we will focus on
the research of analyzing timing failures.

Baruah et al. describe a method in [28] to account for mixed criticality
in real-time systems. They assume that task characteristics such as the
worst-case execution time (WCET) are annotated with a certain confidence
(criticality level). The response time analysis for a particular task is then
carried out in consideration of the interference based on the criticality level.

156
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

However, fault-tolerance mechanisms and reliability in particular are not
considered.

Izosimov et al. [140, 212] suggest another analysis methodology for
fault-tolerant real-time systems. In this work re-execution and replica-
tion are treated as design alternatives. They assume static execution
order scheduling within a MPSoC. Based on this assumption they derived
the maximum number of tolerable errors that can be corrected in time.
Furthermore, they optimized this number by combining re-execution and
replication corresponding to a heuristic optimization algorithm. The draw-
back is the assumptions of static execution order scheduling which limits
the applicability in real-life systems.

In [48, 49] Burns et al. presented an extension of the worst-case re-
sponse time analysis to incorporate re-execution. This method gives upper
reliability bounds extrapolated from the critical instant, which is the worst-
case activation scenario where all tasks are released simultaneously. Also
in [216] Punnekkat et al. extended this work to derive an optimal check-
pointing strategy.

Timing prediction for erroneous bus communication as presented in
Chapter 4 are partially applicable to rollback and checkpointing. For
instance [44] can be used to model and analyze the exeuction time overhead
for error detection, rollback recovery and re-execution. However, redundant
execution as employed in ASTEROID is not supported.

We extend the work presented in [248], initially targeted towards bus
communication assuming fixed-priority, non-preemptive arbitration. The
authors present a framework to compute the reliabiltiy (mean time to
deadline miss). To bound the reliability as tight as possible a job-wise
analysis approach is introduced, where each job in the hyperperiod, which
is the time in periodic systems after which the activation pattern starts
to repeat itself, is analyzed. In a second step the results are composed to
a task reliability function. We extended this idea to support redundant
execution on multi-core SoCs.

6.3.2 Error Model and Metrics
The occurrence of errors on a core is modelled using Poisson processes with
a given constant error-rate λi per core. A single error rate can be derived
from the errors rate of memory and core components such as ALU and
FPU. The Poisson model is widely used in literature [127, 251, 101, 298]
and generally accepted.

Error events are independent which is a realistic assumption for tran-
sient errors induced by radiation. Most likely the Poisson model is not
suitable for thermally induced errors as these errors are not homogeneous
unless the error rate is conservatively approximated for all environmen-
tal conditions such as frequencies, voltages and workloads. Specifying

157
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

per-core error rates accounts for architectures in which some cores may
be inherently more reliable than others. Error rates can be reduced by
low-level hardware mechanisms (e.g. [9]) or by using more reliable but
low-performance process parameters.

For the Poisson model, the following equations give the probability for
correct execution of the i-th processor during the time interval Δt and the
converse probability that at least one error occurred.

P (no error in time Δt) = e−λiΔt (6.19)

P (errors in time Δt) = 1− e−λiΔt (6.20)

We have used the Poisson model before to model independent errors in
communication (cf. Chapter 4). The first equation is deduced from eq. 4.15
by setting ne to zero, n = Δt and p = λi. The second equation is the
converse probability of the first.

Throughout the rest of the chapter we consider the deadline failure
probability of each job of a task individually. In this scope, we need to recall
that the j-th job of a task τi is denotes as τi,j .

In the error-free case there are exactly n checkpoint groups, one for
each stage of the task. As already mentioned, in case of errors during
the execution, the total number of checkpoint groups for the for task Θi

is increased by the number of affected checkpoint groups (cf. Corollary
5). Naturally, the number of erroneous checkpoint groups is not known a
priori, hence we do not know the actual phenotype of the fork-join model
describing a job Θi,j . But the effects of a given number of errors on a fault
tolerant task can be modeled by using the appropriate precedence model.

For this analysis we restrict our task model to periodic tasks with dead-
lines smaller than their periods. Hence, tasks are periodically activated
every T time units, execute for at most time C and must have finished
execution before their deadline D ≤ T .

Since we focus on hard real-time systems, we are particularly interested
if tasks adhere to their deadline constraint under error scenarios. The
response time Ri,j of a job is the difference between its finishing time and
its release time, which is the time when the job becomes ready and is
computed by the equations presented in the previous sections.

Now, the following question remains: “How reliable is a replicated fault
tolerant task?” We will use the common notion of reliability R as a metric
PracticallyR(t) denotes the probability that a task is still operating without
a deadline failure in the interval [0, t].

R(t) = P (no failure in interval [0, t]) (6.21)

The same metric is used in [248] to evaluate the reliability of periodic data
frames transmitted over a bus.

158
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

The goal of the formal analysis is to derive Ri(t) for each task from
which we can easily calculate other common metrics such as the MTTF:

MTTFi =

∫ ∞

0

Ri(t) dt (6.22)

6.3.3 Formal Reliability Analysis
In this section we present an algorithm which allows to compute Ri(t) ac-
curately for arbitrary values of t. The general approach is similar to [248]
extended to checkpointing and rollback on MPSoCs. For this formal relia-
bility analysis we consider tasks individually. Thus, a reliability per task is
retrieved. This is done by assessing the success of each job individually and
combining these values into a per-task reliability. By this, a more precise
result can be obtained because the interference characteristic of each job
is account. This trades accuracy and flexibility as the presented approach
only works for synchronized systems.

In a periodic taskset, the activation pattern appears repetitively after
the hyperperiod of length lcm(T1, . . . , Tn). For the rest of this analysis
approach, we assume that the response time of each job τi,j as well as Θi,j

can be computed using the previously established approaches. It must be
highlighted that we only presented an approach to compute the worst-case
response time for all jobs, but the equations can easily be used to compute
the response time of individual events (thus jobs). Now we introduce
some important definitions. Let us assume that we want to compute the
reliability of a task τi. This task can be a fault tolerant task as well as a
non fault-tolerant task.

Definition 52 (Success).
The fact that the j-th activation of task τi is logically correct (computes the
correct value) and meets its deadline is referred to as Si,j .

Definition 53 (Success Probability).
The success probability P [Si,j] is the probability that job τi,j succeeds.

It is important to note that it is of no relevance for the response time
of a ft-task which erroneous segment job in a checkpoint group caused
additional delay exactly. The ultimate effect of errors in CGi,j,k is always
the same, regardless of the actual faulty subtask. This can be seen in
Figure 6.4, if e2 would have hit the corresponding job on core 2, the outcome
would have been the same.

For the analysis it is important to know which jobs interfere with an-
other job. The set of tasks and thus the set of jobs can be obtained by
the timing dependency graph6 which indicates the functional and non-

6Not to be confused with the application graph.

159
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

functional dependencies between the tasks in the example from Figure 6.4.
The nodes of the timing dependency graph correspond to the tasks in the
system and the directed edges represent functional and non-functional de-
pendencies between tasks. Functional dependencies are given through the
task graph and non-functional dependencies arise from the local scheduling
on a processor. A particular job τi,j may be delayed by jobs of higher priority
than τi,j which are released prior to τi,j running on the same resource as
τi,j (non-functional dependency). Due to precedence constraints (functional
dependency), a job τi,j can also be delayed by jobs running on another core.
We are not interested in the subtasks which may delay a given job, but
instead in the corresponding checkpoint groups which may delay a job.

Definition 54 (Interference Set).
The interference set ξi,j is the set of all checkpoint groups CG which poten-
tially delay job τi,j .

Note that if τi,j itself is a ft-task its own CGi,j,k are always in ξi,j .
Errors in non-ft tasks have no timing effect on other tasks and therefore
do not need to be considered in the interference set. The cardinality of
ξi,j is arbitrarily large. Practically we limit the set to a given number of
checkpoint groups which have been released time d before the release of
τi,j , thus for large d we gain arbitrarily good estimates of ξi,j . By this,
we exploit that jobs which are released sufficient time before τi,j do not
interfere with τi,j .

Choosing a too small value for d may lead to underestimation, leading to
non-conservative results due to additional interference which is not covered
throughout analysis. By analyzing for increasing values of d the result
converges towards the actual reliability.

Based on the given definitions, we can express the reliability of a task τi
as the probability that all jobs τi,1 . . . τi,j have succeeded their execution
that have been released in the interval [0, t]:

Ri(t) = P [Si,1 ∧ . . . ∧ Si,j] (6.23)

Feasible Error Scenarios

The algorithm we propose consists of two independent steps that are carried
out for each task: In the first step all feasible scenarios for each job of the
task τi throughout the hyperperiod are enumerated. A feasible scenario is
a specific error constellation in which no deadline miss (failure) for the task
τi occurs. In a second step, we transform these scenarios into probabilities
through which it is possible to derive the characteristic reliability function
Ri(t).

Coming back to the example in Figure 6.4, we focus on the scenario
enumeration for job τ4,1. The response time of job τ4,1 depends on the

160
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

Working Set

Non Working Set

Figure 6.10: Working-set for job τ4,1

reexecution pattern of checkpoint groups which are in the interference set of
τ4,1 which is ξ4,1 = {CG2,1,1, CG2,1,2}. For the particular situation depicted,
CG2,1,2 handles one error (re-execution denoted as CG′

2,1,2) without causing
τ4,1 to miss its deadline. Further analysis would reveal that a scenario
where CG2,1,1 is exposed to one error would also lead to a feasible schedule,
whereas an error in both CG2,1,1 and CG2,1,2 causes τ4,1 to miss its deadline.
To formalize this concept we introduce the error scenarios.

Definition 55 (Error Scenario).
An error scenario si,j,k : ξi,j → N0 is a function which specifies the number
of reexecutions including recovery for each checkpoint group CG ∈ ξi,j .

This function can conveniently be expressed as a tuple, where the s-th
component in the tuple denotes the number of errors for the s-th checkpoint
group in the (ordered) interference set ξi,j . The example in Figure 6.4
shows the error scenario s4,1,1 for which the interference set is ξ4,1 =
{CG2,1,1, CG2,1,2}. Now, we can simply specify the scenario as s4,1,1 =
{CG2,1,1 = 0, CG2,1,2 = 1} or more conveniently s4,1,1 = (0, 1).

As discussed, it is possible to construct an equivalent DAG model for
each error scenario. This model can then be fed into a response-time
analysis to verify deadline constraints. Thus, each scenario can either
lead to a feasible schedule or to an infeasible schedule, depending on the
response time analysis of the error scenario model. We can summarize that
τ4,1 meets the deadline for the scenarios {(0, 0), (1, 0), (0, 1)}. Figure 6.10
shows exactly these feasible scenarios which we call working set.

Definition 56 (Working Set).
The working set Wi,j of a job τi,j is the set of error scenarios si,j,k for which
job τi,j is guaranteed to meet its deadline constraint.

Originating from the error-free case as the root node, we can construct
an error graph as shown in Figure 6.10. In this graph, edges are error

161
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

Figure 6.11: Illustrative example of some interference sets for task τ4 which
are mutually overlapping, causing stochastic dependence for scenarios.
Note that the interference sets are truncated to three members to keep the
problem tractable.

events whereas nodes are error scenarios. The graph can be built by using
depth first search: For each node we perform a response time analysis and
evaluate the real-time constraint R+ < D. Each node is then colored with
respect to the schedulability of the error scenario which it presents. In case
the node is schedulable, we recursively evaluate all successor nodes in the
same way until we find all working scenarios. All nodes which are marked
feasible form the working set Wi,j .

Practically, the graph can be arbitrarily large but it is sufficient to
enumerate only a sub-graph. By doing so, we obtain a subset of the real
working set which is conservative because all other nodes are considered
as non-working. A pessimistic approach which only considers the worst-
case activation would only yield to one particular Wi which resembles the
situation with the least number of working scenarios.

The success probability of job τi,j can be expressed as the probability
that one scenario of all working scenarios in Wi,j will actually occur:

P [Si,j] = P [si,j,1 ∨ . . . ∨ si,j,k], si,j,1, . . . , si,j,k ∈ Wi,j (6.24)

Probability Computation

Once we have obtained all working sets for all jobs in the hyperperiod we
can derive success probabilities. It is not sufficient to calculate scenario
occurrence probabilities based on individual working sets alone. The sce-
narios from successive jobs of the same task are not mutually independent.
The reason for this is that consecutive interference sets include common
checkpoint groups: ξi,j ∩ ξi,j+1 �= ∅. This is also depicted in Figure 6.11.
Note that the interference sets are artificially truncated for the sake of
simplicity.

This problem becomes obvious in the following simple example: We
assume that the working sets for τ4,1 and τ4,2 have been determined inde-
pendently in a previous step. Now, since ξ4,1 and ξ4,2 overlap, job τ4,2 will
only see manifestations of CG2,1,2 that led to a feasible schedule for job

162
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

τ4,1, namely zero or one repetitions of CG2,1,2 (cf. Figure 6.10). To express
these mutual dependencies, we introduce conditional success probabilities.

Definition 57 (Conditional Success Probability).
The conditional success probability is the probability that job τi,j meets its
deadline given that previous jobs of τi have already met their deadlines.

P [Si,j |Si,j−1 ∧ . . . ∧ Si,1] (6.25)

By using conditional probabilities, it is possible to express the reliability
function (cf. Equation 6.23) by simple multiplication:

Ri(t) = P [Si,1] · P [Si,2|Si,1] · . . . (6.26)
·P [Si,j |Si,j−1 ∧ . . . ∧ Si,1]

The remaining challenge is to derive the conditional success probabilities
used in equation 6.26. We can be sure that job τi,j will meet its deadline if
the actual error scenario is in Wi,j . Beyond that, it is also necessary that
previously activated jobs of task τi have successfully terminated. Because
all scenarios in Wi,j are mutually exclusive, equation 6.25 can be written
as a sum of conditional scenario probabilities:

P [Si,j |Si,j−1 ∧ . . . ∧ Si,1] =
∑

s∈Wi,j

P [s|Sj−1 ∧ . . . ∧ S1] (6.27)

Remember, we are only interested in the time until the first failure. We
process jobs in the order of their activation. Hence, when we look at an
arbitrary success Si,j this always includes the fact that all jobs released
before τi,j have succeeded. From the perspective of Si,j , the history of work-
ing scenarios forms a complete probability space. Also, when we process
job τi,j to calculate P [Si,j |Si,j−1, . . . , Si,1], we know the conditional proba-
bility of the predecessor job P [Si,j−1|Si,j−2, . . . , Si,1] and the probabilities
of all scenarios in the working set of τi,j−1, because they have already been
evaluated. But as already mentioned in Section 6.3.3, sometimes scenarios
of successive working sets are mutually exclusive. To formalize this we
introduce scenario consistency.

Definition 58 (Consistency).
Two error scenarios sa = si,j,a and sb = si,j−1,b are said to be consistent if
there is no CG ∈ ξi,j∩ξi,j−1 so that sa(CG) �= sb(CG), where s(CG) denotes
the number of errors in checkpoint group CG in scenario s.

Practically, this means that consistent error scenarios may contain the
same checkpoint group CG in the interference set and if so, the number
of repetitions sa(CG) and sb(CG) must be the same, thus sa and sb are

163
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

not contradictory. If two scenarios sa and sb are consistent, we can reduce
one scenario sa and remove those checkpoint groups which are already
contained in sb:

Definition 59 (Reduced Scenario).
Given two consistent scenarios sa and sb, the reduced scenario s̃a is defined
as s̃a : {ξa \ ξb} → N0, where s̃a(CG) = sa(CG) = sb(CG) ∀ CG ∈ {ξa \ ξb}

For the example from Figure 6.11, a reduced scenario s̃4,2,l from W4,2

would not contain checkpoint group CG2,1,2 since this is specified by the
predecessor scenario. By application of consistency and reduced scenarios
we can calculate the conditional scenario probability as follows:

P [si,j,a|si,j−1,b] =

{
P [s̃i,j,a] if si,j,a, si,j−1,b consistent
0 otherwise

(6.28)

Then we can put all building blocks together to obtain the final conditional
success probability, based on the the scenarios from the previous working
set Wi,j which has already been processed in the previous step.

P [si,j,k|Si,j−1 ∧ . . . ∧ Si,1]

=
∑

s∈Wi,j−1

P [si,j,k|s] · P̃ [s|Si,j−2 ∧ . . . ∧ Si,1] (6.29)

Where P̃ is the normalized probability of the scenario s. The probabilites
are normalized because all scenarios in Wi,j−1 form a total probability
space: ∑

s∈Wi,j−1

P̃ [s|Si,j−2 ∧ . . . ∧ Si,1] = 1 (6.30)

The absolute probability for the entire scenario P [s] is a simple multiplica-
tion, since the checkpoint groups in a scenario are independent.

P [s] =
∏

CG∈ξs

P [R = s(CG)] (6.31)

Equation 6.31 only considers timing errors and is only valid for ft-tasks.
Errors which affect and corrupt non ft-tasks are currently not considered.
In order to integrate the fact that non ft-tasks do not only fail in case
of a deadline violation, but also when they are hit by an error event, it
is necessary to extend the equation by a term (cf. Equation 6.20) which
reflects that the job under analysis will not be hit by an error itself.

Pnon-ft[s] = (1− e−λiCi) ·
∏

CG∈ξs

P [R = s(CG)] (6.32)

164
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

Finally, it is trivial to calculate the probability for certain re-execution
patterns by applying Equation 6.19 and 6.20 with appropriate values of Δt.

The probability for exactly s(CGi,j,l) = R repetitions of a checkpoint
group CGi,j,l for a given scenario s can be calculated as follows, where te
is the execution time of the segments in CGi,j,l. For the sake of simplicity
we assume the error rates for all cores are the same λ = λp∀p ∈ P . Here β
denotes the degree of redundancy, i.e. β = 2 implies a DMR setup with two
replica executions in a checkpoint group.

P [R = 0] =
(
1− e−λ(tcov+te)

)β

(6.33)

P [R = 1] = (1− P [R = 0])

·
(
1− e−λ(trov+te)

)β

(6.34)

P [R = r, r > 0] = (1− P [R = 0])

·
(
1−

(
1− e−λ(trov+te)

)β
)r−1

·
(
1− e−λ(trov+te)

)β

(6.35)

For ft-tasks the system tries to recover from errors until one successful re-
execution took place. Thus, for the probability calculation it is known that
all erroneous re-executions are always followed by one correct re-execution.

By inserting the conditional success probabilities in Equation 6.26, it is
possible to obtain Ri(t). Assuming we have job success probabilities for all
jobs in the interval [0, thyper], with thyper = lcm[T1, . . . , Tn], we can compute
the reliability R(thyper) through Equation 6.26. From this we can compute
the reliability for a given number of A hyperperiods:

R(A · thyper) = (R(thyper))
A (6.36)

6.3.4 Experiments
We show the practical applicability and accuracy and analysis speed of
the presented approach by comparing our approach with a Monte-Carlo
reference simulation.

For the evaluation of the presented formal analysis we use Monte-Carlo
simulation as a reference. We assume that tasks are perfectly synchronized,
that means all tasks activate simultaneously at time t = 0 and there is no
drift of the activation pattern. Under these assumptions, it is possible to
calculate the exact response times for each scenario because there are no
uncertainties in scheduling.

165
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

Table 6.2: Mapping (M1) of task-set used throughout evaluation.

Task prio1 prio2 n tcov trov C P D

Θ0 (ft) 3 2 2 10 40 60 300 300
τ1 4 - - - - 50 250 250
τ2 2 - - - - 10 100 100
τ3 - 1 - - - 50 300 300
Θ4 (ft) 1 3 2 10 40 40 600 500

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
el

ia
b

il
it

y
 R

(t
)

time [h]

T0 FA
T0 MC
T1 FA
T1 MC
T2 FA
T2 MC
T3 FA
T3 MC
T4 FA
T4 MC

Figure 6.12: Comparison of formal analysis (FA) accuracy with Monte-Carlo
(MC) reference simulation. λ1,2 = 1/sec, 10.000 samples.

For the following experiments we use the taskset as shown in Table 6.2.
We assigned Θ0 and Θ4 to be fault-tolerant tasks, that means both tasks
execute redundantly on core 1 and core 2 and create two checkpoints with
some additional overhead.

The priority assignment and mapping is chosen in a way that the follow-
ing effects can be observed:

• functional dependencies due to precedence constraints of checkpoint
groups

• non-functional dependencies caused by scheduling of higher priority
tasks

• priority inversion caused by inter-core blocking

166
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.3. Reliability Prediction of Replication

We can observe that the reliability of Θ4 is much better than the one of
Θ0. This is due to the computation time and deadline parameters. Task Θ4

has the chance to accommodate a lot more re-executions until a deadline is
missed compared to Θ0.

By our approach it is now possible to efficiently use one multi-core
processor and replicate only critical tasks where conventional approachs
would replicate the entire system.

For the Monte-Carlo-Simulation, we have implemented a simple static
priority preemptive scheduler that will schedule a given taskset in the
same way, as an operating system scheduler would do. However, we do not
schedule real tasks but only abstract tokens which represent tasks. For
each core in the system, we instantiate one scheduler which is attached to
an event-generator. The event-generator will produce error events with an
exponentially distributed inter-event time with an average of 1/λi.

The response time of each job is monitored, and failure events caused
either by logical incorrectness of regular tasks or timing violations of all
tasks are recorded. The reliability function Ri(t) is then the inverse of
the cumulative distribution function of the failure events. By recording a
sufficient large number of samples it is possible to approximate the exact
reliability with respect to our system and task model.

The comparison of Monte-Carlo approach (MC) and our presented for-
mal analysis (FA) is shown in Figure 6.12. The graph shows the reliability
function R(t) versus time, which gives the probability that a task is still
functioning after time t. The simulation has been carried out for unrealis-
tic error rates to produce a reasonable number of MC simulation runs in
acceptable time. For realistic error rates, Monte-Carlo simulation would
not be operational due to excessive run times. The reason is that the time
per Monte-Carlo run grows with reduced error rates. Unfortunately, er-
ror effects are coupled due to their influence on timing. Coupling makes
advanced MC techniques such as importance sampling complicated or re-
quires approximations, such as adapting event frequencies, which changes
MC results. We use MC simulation only to demonstrate that our approach
has very little pessimism. Already for these high error rate, more than 2
hrs computation time were needed. Since the accuracy of our approach is
generally independent of the error rate, we may conclude that the accuracy
observed in the experiments also holds for realistic error rates.

The reliability analysis was carried out with a search depth value of
d = 12, higher values increase analysis time, because more scenarios
have to be considered and the accuracy improvement is not noticeable. As
mentioned in Section 6.3.3, it is not possible to list all feasible scenarios in
the working set for a practical implementation. Thus, the working set is
artificially truncated, then potentially working scenarios are considered as
non-working which is a pessimistic assumption leading to a conservative
result. For this experiment, the working set was truncated when the

167
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6. MULTIPROCESSOR ON CHIP

occurrence probability of a scenario was below a cut-off probability of 1e−12.
This produces equivalent results compared to the Monte-Carlo approach.
There is a pessimistic derivation of the formal analysis for very small times
t < thyper. The reason for this is that the Monte-Carlo simulator will
start executing tasks at time t = 0 and jobs in the first hyperperiod have
no interference from a previous hyperperiod which could cause deadline
violations. Note that the Monte-Carlo result and the formal analysis result
converge quickly (see Θ0 in Figure 6.12).

However, with 17 sec run time, our analysis framework was significantly
faster than the processing of 10.000 MC runs which took about 2 hrs. For
our approach the run time only depends on the accuracy that shall be
achieved and the number of task activations in a hyperperiod.

6.4 Summary

In this chapter we presented a model for fault tolerant tasks which uses
replication and rollback (or rollforward) recovery. Therefore, we mapped
the fault tolerant task to a timing-wise equivalent fork-join task graph.
A fork-join task graph reflects the redundancy and compare mechanism
through a directed acyclic graph model. Furthermore, we showed how
errors and recovery operations are modeled by adding additional stages to
the fork-join task graph.

In the second section, we presented a worst-case response time analysis
approach which computes the timing of heterogeneous tasksets composed
of independent tasks as well as fork-join tasks. By applying the approach
to the Romain framework, we were able to show that parallel workloads
may behave counterintuitive: In some cases the worst-case response time
is drastically larger compared to a sequentialized execution. This can
be explained by the fact that a fork-join task experiences the worst-case
interference of all cores in a combined fashion. This effect is not due to a
conservative overestimation but is observable in real-world as long as the
correctness of the used event models is guaranteed. We could show that a
parallelization does not decrease the worst-case response time in all cases
and is connected to subtle design decisions such as the number of stages
and prioritization. Fixed-priority scheduling does not seem optimal in case
of redundant workload. In this scope, it would be interesting to see how
other scheduling policies such as synchronized round-robin behave.

In the last section, we presented a formal approach through which we
can analyze reliability constraints for a mixed-critical taskset of which
some tasks are protected by redundant execution including checkpointing
and rollback and others are unprotected. Contrary to other approaches,
we consider a representative hyperperiod and not the worst-case condi-
tion because it allows tighter reliability guarantees. The comparison of

168
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

6.4. Summary

our algorithm with a reference Monte-Carlo simulation shows very good
accuracy with the benefit of significantly shorter analysis time for realistic
parameters compared to simulation.

169
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

CHAPTER 7

Conclusion

Embedded system’s industry calls for even cheaper, high performance
platforms. Traditional fault-tolerance concepts which tackle the reliability
challenge at the hardware level are deemed too expensive and inflexible to
host a variety of applications with opposing constraints.

In the first part of this thesis, we presented a flexible cross-layer re-
siliency approach ASTEROID. We summarized this hardware/software
platform which enables reliable execution by using hardware assisted repli-
cation. Our approach provides a solution tailored towards the needs in
mixed-critical applications: Isolation between applications of different criti-
cality, fault tolerance for critical application and competitive performance
for best-effort services.

Depending on these constraints, low-level hardware, operating system
and the Romain service go hand in hand to provide just the level of service
which is required without massive over provisioning. ASTEROID achieves
this by using dynamic approaches which come with a certain degree of
runtime uncertainty, as errors on all levels (processor, on-chip interconnect
and off-chip communication) influence end-to-end system timing consider-
ably. The key contribution however is not the platform itself, but the design
methodology required to out rule such timing uncertainties and craft a
system which can be certified without much hassle.

In this sense we followed a compositional approach and decomposed
the platform into building blocks. For each of these blocks we provided
modelling and analysis approaches to capture the impact of errors under
different error models. A system analysis in style of the SymTA/S approach
can compose a consistent system picture from individual resource models.
Each resource model is extended by an error model. Thus, we are able to
provide conservative approximations of error-scenarios by using a formal

171
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

7. CONCLUSION

analysis which is several orders of magnitude faster compared to error
injection methods.

For on-chip and off-chip communication existing error models such as
a Single Bit Error Model as well as Gilbert Loss model for bursts were
combined with performance models to obtain probabilistic predictions which
are valid bounds in all system states and can be used for safety certification,
where guaranteed performance is a key requirement. We considered point-
to-point communication with error control as often found in cross-bars but
also multi-master busses such as AMBA as well as distributed off-chip
networks such as Controller Area Network. We found that the effects of
errors in non-switched, on-chip communication (i.e. busses such as AMBA)
play a very little role as the overhead for each error is very little compared
to the number of overall transactions. However, in environments with large
error bursts, the additional latency induced by errors naturally increases.
Our approaches allow a fast and accurate approximation of these effects
under a parametrizable error model.

In larger networks the communication is typically protected using end-
to-end error control protocols such as Stop-And-Wait or Go-Back-N. These
protocols are extremely hard to predict as the performance depends on
contention in the network which affects the actual latency of the data
packets, latency of the (worst-case) round-trip time and number of dropped
packets but also on the error control protocol state machine in the end
nodes. This thesis provides a modelling approach of end-to-end automatic
repeat request effects and incorporated this model in a system analysis
context. A comparison with simulation showed that our approach gives a
good approximation of the expected performance of the network topology
and can be used to optimize latency and throughput.

The operating service Romain, implemented by TU Dresden, provides
a selective redundant execution framework. In this work we modeled
redundant execution by using a fork-join task graph. Furthermore, we
provided a response-time analysis for arbitrary (but non-nested) fork-join
tasks under fixed-priority scheduling. The presented model is capable to
reflect the behavior of replicated execution and error-recovery using rollback
(or rollforward). This allowed us to embed the performance analysis into
a reliability analysis to predict the mean-time-to-failure for synchronized
parallel tasks.

There are multiple open questions which give a direction for future
research in the domain of timing-performance under errors. First, a system
analysis can only capture a certain error constellation. Thus, a maximum
tolerable error limit per resource must be defined in advance, otherwise
a system fixed-point cannot be found. The available error-models for a
processor analysis are not sufficiently expressive, here the error effect of
individual components such as MMU, ALU, cache must be considered closer
to get a more precise understanding of failure-rates and the associated

172
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

failure modes in these components. Also the performance prediction of
redundant execution leaves room for two optimizations: We have drawn the
conclusion that partitioned, fixed-priority scheduling is not a good schedul-
ing policy for this problem. Research of cooperative scheduling solutions
is the suggested next step. Also the analysis itself can be drastically im-
proved by considering best-case behavior. This can lead to a significant
improvement in performance prediction.

173
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

APPENDIX A

Publications

This appendix lists all publications by the author. The list is divided in
thesis related and thesis unrelated publications.

A.1 Related to the Thesis

A.1.1 Reviewed
Philip Axer, Daniel Thiele, and Rolf Ernst. Formal timing analysis of
automatic repeat request for switched real-time networks. In In Proc. of
SIES, Pisa, Italy, June 2014.

In this paper we present a formal approach to predict system latencies
of ARQ-based Ethernet systems. Chapter 5 is based on this work.

Philip Axer, Moritz Neukirchner, Sophie Quinton, Rolf Ernst, Björn
Döbel, and Hermann Härtig. Response-time analysis of parallel fork-join
workloads with real-time constraints. In Proc. of Euromicro Conference on
Real-Time Systems (ECRTS), jul 2013.

This paper presents a response-time analysis for fork-join task graphs.
Chapter 6 is partially based on this work.

Philip Axer and Rolf Ernst. Stochastic response-time guarantee for
non-preemptive, fixed-priority scheduling under errors. In In Proc. of
Design Automation Conference (DAC), jun 2013

A convolution-based approach is presented to derive the response-time
exceedance function. Chapter 4 is partially based on this work. In
particular Section 6.2.

175
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

A. PUBLICATIONS

Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund,
Nan Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine
Rochange, Maurice Sebastian, Reinhard von Hanxleden, Reinhard
Wilhelm, and Wang Yi. Building timing predictable embedded systems.
ACM Transactions on Embedded Computing Systems, 2013. Accepted.

This article presents challenges and sketches solutions for building
time-predictable real-time systems.

Jonas Diemer, Philip Axer, and Rolf Ernst. Compositional performance
analysis in python with pycpa. In Proc. of WATERS. jul 2012.

This paper presents pyCPA, a python implementation of the composi-
tional performance analysis approach. All experiments in this thesis are
done with pyCPA.

Philip Axer, Maurice Sebastian, and Rolf Ernst. Probabilistic re-
sponse time bound for can messages with arbitrary deadlines. In Proc. of
DATE, 2012.

This paper generalizes the approach presented in [45] to arbitrary
activation pattern. Chapter 4 is partially based on this work.

Philip Axer, Rolf Ernst, Björn Döbel, and Hermann Härtig. Design-
ing an analyzable and resilient embedded operating system. In Proc. on
Software-Based Methods for Robust Embedded Systems, Germany, 2012.

This paper presents the ASTEROID platform as described in Chapter 2.
This includes the Romain approach as well as fingerprinting.

Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability analy-
sis for mpsocs with mixed-critical, hard real-time constraints. In Proc.
Intl. Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Taiwan, oct 2011.

This publication presents a reliably analysis for redundant tasks
running on a MPSoC platform. Chapter 6, and in particular Section 6.3 is
based on this work.

Philip Axer, Jonas Diemer, Mircea Negrean, Maurice Sebastian, Si-
mon Schliecker, and Rolf Ernst. Mastering mpsocs for mixed-critical
applications. IPSJ Transactions on System LSI Design Methodology,
4:91–116, aug 2011.

This publication guides the reader through the challenges of designing
hard-real time MPSoCs. Applying formal timing analysis to different
aspects of the system design such as shared resources (NoC and memory)
and redundant execution are addressed.

176
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

A.2. Unrelated to the Thesis

A.1.2 Unreviewed
Philip Axer and Rolf Ernst. Timing of can under the influence of random
error events. In Real-Time Systems: the past, the present, and the future.
CreateSpace Independent Publishing Platform, 2013.

This publication summarizes the error analysis presented in [45] and
generalizes it to arbitrary, non-parametrized event models.

A.2 Unrelated to the Thesis

Daniel Thiele, Philip Axer, and Rolf Ernst. Improving formal timing analy-
sis of switched ethernet by exploiting fifo scheduling. In Design Automation
Conference (DAC), San Francisco, CA, USA, June 2015.

This paper shows how to improve response-time bounds by considering
FIFO inherent inter-stream context.

Daniel Thiele, Johannes Schlatow, Philip Axer, and Rolf Ernst. Formal
timing analysis of can-to-ethernet gateway strategies in automotive
networks. Real-Time Systems, 2015.

This article shows how larger automotive communication systems
consisting of gatways, switches and end nodes can be analyzed.

Daniel Thiele, Philip Axer, Rolf Ernst, and Jan R. Seyler. Improv-
ing formal timing analysis of switched ethernet by exploiting traffic stream
correlations. In Proc. of CODES+ISSS, New Delhi, India, October 2014.

This paper shows how to improve response-time bounds by considering
non-preemptiveness in Ethernet scheduling.

Philip Axer, Daniel Thiele, Rolf Ernst, and Jonas Diemer. Exploit-
ing shaper context to improve performance bounds of ethernet avb
networks. In Proc. of DAC, San Francisco, USA, June 2014.

This paper presents an approach to exploit the AVB shaper characteris-
tics to improve performance predications.

Adam Kostrzewa, Sebastian Tobuschat, Philip Axer, and Rolf Ernst.
Supervised sharing of virtual channels in networks-on-chip. In In Proc. of
SIES, Pisa, Italy, June 2014.

This paper presents a resource broker approach to supervise resource
allocation in NoC communication.

Philip Axer, Daniel Thiele, Rolf Ernst, Jonas Diemer, Simon Schliecker,
and Kai Richter. Requirements on real-time-capable automotive ethernet
architectures. 2014.

177
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

A. PUBLICATIONS

Similar to [268], this article presents problems and derived require-
ments for automotive Ethernet networks.

Moritz Neukirchner, Philip Axer, Tobias Michaels, and Rolf Ernst.
Monitoring of workload arrival functions for mixed-criticality systems. In
RTSS, 2013.

In this paper a workload monitoring approach is presented. This al-
lows to monitor and thus isolate individual criticality levels from each other.

Daniel Thiele, Philip Axer, Rolf Ernst, Jonas Diemer, and Kai Richter.
Cooperating on real-time capable ethernet architecture in vehicles. In Proc.
of Internationaler Kongress Elektronik im Fahrzeug, oct 2013.

This article presents problems and derived requirements for automotive
Ethernet networks. The paper shows where common solutions are required
and how implementers and users can compete using standardized protocols.

Daniel Thiele, Philip Axer, Rolf Ernst, Jonas Diemer, and Kai Richter.
Cooperating on real-time capable ethernet architecture in vehicles. In Proc.
of Internationaler Kongress Elektronik im Fahrzeug, oct 2013.

This paper presents a response-time analysis for Weighted Round Robin
Scheduling which is used in Ethernet switches.

Moritz Neukirchner, Sophie Quinton, Tobias Michaels, Philip Axer,
and Rolf Ernst. Sensitivity analysis for arbitrary activation patterns in
real-time systems. In Proc. of Design Automation and Test in Europe
(DATE), mar 2013.

This paper shows an approach to derive a sensitivity bound on activation
patterns in the form of arrival functions opposed parametrized functions.

Boris Motruk, Jonas Diemer, Philip Axer, Rainer Buchty, and Mladen
Berekovic. Safe virtual interrupts leveraging distributed shared resources
and core-to-core communication on many-core platforms. In In Proc. of
PRDC, 2013.

This work presents a safe, architectural approach to distribute
interrupts in a large tiled many-core processor. The mechanism takes care
that criticality restrictions are obeyed and interrupts are only forwarded to
trusted parties.

Moritz Neukirchner, Tobias Michaels, Philip Axer, Sophie Quinton,
and Rolf Ernst. Monitoring arbitrary activation patterns in real-time
systems. In RTSS, 2012.

This work introduces an algorithm to monitor arbitrary activation
patterns that are modelled through minimum distance functions.

178
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

A.2. Unrelated to the Thesis

Maurice Sebastian, Philip Axer, and Rolf Ernst. Utilizing hidden
markov models for formal reliability analysis of real-time communication
systems with errors. In Proceeding of the 17th IEEE Pacific Rim
International Symposium on Dependable Computing, dec 2011.

This paper describes an approach to analyze burst errors on a CAN bus.
For this a hidden Markov model is used to model the burst behavior.

Maurice Sebastian, Philip Axer, Rolf Ernst, Nico Feiertag, and Marek
Jersak. Efficient reliability and safety analysis for mixed-criticality
embedded systems. SAE System Level Architecture Design Tools and
Methods, April 2011

This article highlights the reliably analysis for a safety-critical network
design. It applies a CAN and MPSoC analysis to a typical automotive
problem.

179
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[1] Channel error profiles for DECT, volume 141. IET, 1994.

[2] Das v-modell. online, 1997.

[3] ISO 11898-1:2003 - Road vehicles – Controller area network (CAN) – Part 1:
Data link layer and physical signalling, 2003.

[4] Anant Agarwal. The tile processor: A 64-core multicore for embedded process-
ing. In Proceedings of HPEC Workshop, 2007.

[5] Richard Anthony, Achim Rettberg, De-Jiu Chen, Isabell Jahnich, Gerrit
de Boer, and Cecilia Ekelin. Towards a dynamically reconfigurable auto-
motive control system architecture. In Achim Rettberg, Mauro Cesar Zanella,
Rainer Dömer, Andreas Gerstlauer, and Franz-Josef Rammig, editors, IESS,
volume 231 of IFIP Advances in Information and Communication Technology,
pages 71–84. Springer, 2007.

[6] ARINC. Arinc 653-3 - avionics application software standard interface, 2010.

[7] ARM Limited. Amba specification (rev. 2). May 1999.

[8] Motor Industry Research Association. MISRA-C: Guidelines for the Use of the
C Language in Critical Systems. 2004.

[9] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making typical silicon matter
with razor. IEEE Computer, 37(3):57–65, 2004.

[10] AUTOSAR GbR. Specification of Multi-Core OS Architecture v1.0.0.
http://www.autosar.org/, November 2009.

[11] AUTOSAR GbR. AUTOSAR: Technical Safety Concept Status Report, 2010.

[12] AUTOSAR GbR. Release 4.1. online, 2014. www.autosar.org.

181
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11 – 33, 2004.

[14] Philip Axer, Jonas Diemer, Mircea Negrean, Maurice Sebastian, Simon
Schliecker, and Rolf Ernst. Mastering mpsocs for mixed-critical applications.
IPSJ Transactions on System LSI Design Methodology, 4:91–116, aug 2011.

[15] Philip Axer and Rolf Ernst. Stochastic response-time guarantee for non-
preemptive, fixed-priority scheduling under errors. In In Proc. of Design
Automation Conference (DAC), jun 2013.

[16] Philip Axer and Rolf Ernst. Timing of can under the influence of random
error events. In Real-Time Systems: the past, the present, and the future.
CreateSpace Independent Publishing Platform, 2013.

[17] Philip Axer, Rolf Ernst, Björn Döbel, and Hermann Härtig. Designing an
analyzable and resilient embedded operating system. In Proc. on Software-
Based Methods for Robust Embedded Systems, Germany, 2012.

[18] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan,
Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice
Sebastian, Reinhard von Hanxleden, Reinhard Wilhelm, and Wang Yi. Build-
ing timing predictable embedded systems. ACM Transactions on Embedded
Computing Systems, 2013. Accepted.

[19] Philip Axer, Moritz Neukirchner, Sophie Quinton, Rolf Ernst, Björn Döbel,
and Hermann Härtig. Response-time analysis of parallel fork-join workloads
with real-time constraints. In Proc. of Euromicro Conference on Real-Time
Systems (ECRTS), jul 2013.

[20] Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability analysis for mpsocs
with mixed-critical, hard real-time constraints. In Proc. Intl. Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Taiwan,
oct 2011.

[21] Philip Axer, Maurice Sebastian, and Rolf Ernst. Probabilistic response time
bound for can messages with arbitrary deadlines. In Proc. of DATE, 2012.

[22] Philip Axer, Daniel Thiele, and Rolf Ernst. Formal timing analysis of automatic
repeat request for switched real-time networks. In In Proc. of SIES, Pisa, Italy,
June 2014.

[23] Philip Axer, Daniel Thiele, Rolf Ernst, and Jonas Diemer. Exploiting shaper
context to improve performance bounds of ethernet avb networks. In Proc. of
DAC, San Francisco, USA, June 2014.

[24] Philip Axer, Daniel Thiele, Rolf Ernst, Jonas Diemer, Simon Schliecker, and
Kai Richter. Requirements on real-time-capable automotive ethernet architec-
tures. 2014.

[25] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat.
Synchronization and linearity, volume 3. Wiley New York, 1992.

182
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[26] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The Impact of
Control Technology, pages 161–166, 2011.

[27] Theodore P. Baker. Comparison of empirical success rates of global vs. parti-
tioned fixed-priority and edf scheduling for hard real time. Technical report,
2005.

[28] S. Baruah, Haohan Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Proc. of Real-Time and Embedded Technology
and Applications Symp., pages 13–22. IEEE, 2010.

[29] Sanjoy Baruah and Theodore Baker. Schedulability analysis of global edf.
Real-Time Systems, 38(3):223–235, 2008.

[30] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen
Stougie, and Andreas Wiese. A generalized parallel task model for recur-
rent real-time processes. pages 63–72, 2012.

[31] Sanjoy K Baruah, Deji Chen, and Aloysius Mok. Static-priority scheduling
of multiframe tasks. In Real-Time Systems, 1999. Proceedings of the 11th
Euromicro Conference on, pages 38–45. IEEE, 1999.

[32] Iain John Bate. Scheduling and timing analysis for safety critical real-time
systems. Citeseer, 1999.

[33] H. Bauer, J. Scharbarg, and C. Fraboul. Worst-case end-to-end delay analysis
of an avionics afdx network. In Proc. of DATE, pages 1220–1224, 2010.

[34] Olivier Beaumont, Vincent Boudet, Yves Robert, et al. A realistic model and
an efficient heuristic for scheduling with heterogeneous processors. 2001.

[35] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL—a tool suite for automatic verification of real-time systems. Springer,
1996.

[36] L. Benini. Designing reliable systems with unreliable devices challenges and
opportunities. In Proc. IEEE Int. Electron Devices Meeting, pages 509–511,
2007.

[37] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In
Real-Time Systems Symposium, 1999. Proceedings. The 20th IEEE, pages
68–78, 1999.

[38] Rabi N Bhattacharya and Edward C Waymire. Stochastic processes with
applications, volume 61. Siam, 2009.

[39] Enrico Bini and Giorgio Buttazzo. Measuring the performance of schedulabil-
ity tests. Real-Time Syst., 30:129–154, 2005.

[40] C. Bolchini, A. Miele, M. Rebaudengo, F. Salice, D. Sciuto, L. Sterpone, and
M. Violante. Software and hardware techniques for seu detection in ip proces-
sors. J. Electron. Test., 24(1-3):35–44, June 2008.

183
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[41] Cristiana Bolchini and Antonio Miele. Reliability-driven system-level synthe-
sis for mixed-critical embedded systems. IEEE Transactions on Computers,
62, 2013.

[42] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese. Feasibility
analysis in the sporadic dag task model. In Real-Time Systems (ECRTS), 2013
25th Euromicro Conference on, pages 225–233, July 2013.

[43] S. Borkar. Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. IEEE Micro, 25(6):10–16,
2005.

[44] I. Broster, A. Burns, and G. Rodríguez-Navas. Probabilistic analysis of CAN
with faults. In Proc. of Real-Time Systems Symposium, pages 269–278. IEEE,
2002.

[45] I. Broster, A. Burns, and G. Rodriguez-Navas. Comparing real-time communi-
cation under electromagnetic interference. In Proc. 16th ECRTS, pages 45–52,
2004.

[46] H. Bruneel and M. Moeneclaey. On the throughput performance of some
continuous arq strategies with repeated transmissions. volume 34, pages
244–249, 1986.

[47] Almut Burchard, Jörg Liebeherr, Yingfeng Oh, and Sang H. Son. New strate-
gies for assigning realtime tasks to multiprocessor systems. IEEE TRANSAC-
TIONS ON COMPUTERS, 44(12):1429–1442, 1995.

[48] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of fault-tolerant
real-time task sets. In Proc. of Euromicro Workshop Real-Time Systems, pages
29–33, 1996.

[49] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. Probabilistic schedul-
ing guarantees for fault-tolerant real-time systems. In Proc. of Dependable
Computing for Critical Applications, pages 361–378, 1999.

[50] Alan Burns and Rob Davis. Mixed criticality systems: A review. Technical
report, 2013.

[51] Alan Burns and Andy J. Wellings. Engineering a hard real-time system: From
theory to practice. Software: Practice and Experience, 25(7):705–726, 1995.

[52] J. Caplan, M.I Mera, P. Milder, and B.H. Meyer. Trade-offs in execution
signature compression for reliable processor systems. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014, pages 1–6, March
2014.

[53] Georg Carle and Ernst W Biersack. Survey of error recovery techniques for
ip-based audio-visual multicast applications. Network, IEEE, 11(6):24–36,
1997.

[54] Gonzalo Carvajal, Miguel Figueroa, Robert Trausmuth, and Sebastian Fis-
chmeister. Atacama: An open fpga-based platform for mixed-criticality com-
munication in multi-segmented ethernet networks. In Proceedings of the 2013

184
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines, FCCM ’13, pages 121–128, Washington, DC, USA, 2013.
IEEE Computer Society.

[55] D. Chabrol, C. Aussagues, and V. David. A spatial and temporal partitioning
approach for dependable automotive systems. In Proc. of Emerging Technolo-
gies & Factory Automation, pages 1–8, 2009.

[56] Liming Chen and A. Avizienis. N-version programminc: A fault-tolerance ap-
proach to rellablllty of software operatlon. In Fault-Tolerant Computing, 1995,
Highlights from Twenty-Five Years., Twenty-Fifth International Symposium
on, pages 113–, Jun 1995.

[57] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A Abraham, and
Subhasish Mitra. Quantitative evaluation of soft error injection techniques
for robust system design. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–10. IEEE, 2013.

[58] Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job par-
allelism in real-time scheduling theory. Information Processing Letters,
106(5):180–187, 2008.

[59] FlexRay Consortium et al. Flexray communications system protocol specifica-
tion version 2.1, 2005.

[60] William A Crossley. System of systems: An introduction of purdue university
schools of engineering’s signature area. In Proceedings of the Engineering
Systems Symposium, 2004.

[61] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (can)
schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, 2007.

[62] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. Controller
area network (can) schedulability analysis with fifo queues. In Real-Time
Systems (ECRTS), 2011 23rd Euromicro Conference on, pages 45–56. IEEE,
2011.

[63] F. de Aguiar Geissler, F. Lima Kastensmidt, and J.E. Pereira Souza. Soft error
injection methodology based on qemu software platform. In Test Workshop -
LATW, 2014 15th Latin American, pages 1–5, March 2014.

[64] Giovanni De Micheli and Luca Benini. Networks on chips: technology and
tools. Academic Press, 2006.

[65] Daniel A DeLaurentis, Oleg V Sindiy, and William Stein. Developing sus-
tainable space exploration via a system-of-systems approach. The American
Institute of Aeronautics and Astronautics, San Jose, 2006.

[66] J. L. Diaz, D. F. Garcia, Kanghee Kim, Chang-Gun Lee, L. Lo Bello, J. M. Lopez,
Sang Lyul Min, and O. Mirabella. Stochastic analysis of periodic real-time
systems. In Proc. 23rd IEEE Real-Time Systems Symp. RTSS 2002, pages
289–300, 2002.

185
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[67] J. L. Diaz, J. M. Lopez, and D. F. Garcia. Probabilistic analysis of the response
time in a real time system. In Proc. of the 1st CARTS Workshop on Advanced
Real-Time Technologies,, 2002.

[68] Jonas Diemer. Informal discussions on predictable complex networks, 2013,
2014. The results of these discussions will partially be published in Jonas
Diemer’s Phd thesis.

[69] Jonas Diemer and Philip Axer. pyCPA - a pragmatic Python implementa-
tion of Compositional Performance Analysis. http://code.google.com/p/
pycpa.

[70] Jonas Diemer, Philip Axer, and Rolf Ernst. Compositional performance analy-
sis in python with pycpa. In Proc. of WATERS. jul 2012.

[71] Jonas Diemer and Rolf Ernst. Back Suction: Service Guarantees for Latency-
Sensitive On-Chip Networks. In The 4th ACM/IEEE International Symposium
on Networks-on-Chip, 2010.

[72] Jonas Diemer, Jonas Rox, and Rolf Ernst. Modeling of ethernet avb networks
for worst-case timing analysis. In Proc. of MATHMOD, Vienna, Austria, 2
2012.

[73] Jonas Diemer, Jonas Rox, Mircea Negrean, Steffen Stein, and Rolf Ernst.
Real-Time Communication Analysis for Networks with Two-Stage Arbitration.
In EMSOFT’11, October 2011.

[74] Jonas Diemer, Daniel Thiele, and Rolf Ernst. Formal worst-case timing
analysis of ethernet topologies with strict-priority and avb switching. In Proc.
of SIES, 6 2012. Invited Paper.

[75] B. Döbel, H. Härtig, and M. Engel. Operating system support for redundant
multithreading. In Proc. of EMSOFT, 2012.

[76] Björn Döbel. Operating System Support for Redundant Multithreading. Dis-
sertation, TU Dresden, 2014.

[77] Björn Döbel and Hermann Härtig. Who watches the watchmen? protecting
operating system reliability mechanisms. In 8th Workshop on Hot Topics in
System Dependability (HotDep’12), 2012.

[78] Björn Döbel and Hermann Härtig. Where have all the cycles gone? - investi-
gating runtime overheads of osassisted replication. In GI-Jahrestagung, pages
2534–2547, 2013.

[79] Björn Döbel, Robert Muschner, and Hermann Härtig. Resource-aware replica-
tion on heterogeneous multicores: Challenges and opportunities. In Workshop
on Resource Awareness and Adaptivity in Multi-Core Computing, RACING’14,
2014.

[80] Mark Dowson. The ariane 5 software failure. ACM SIGSOFT Software
Engineering Notes, 22(2):84, 1997.

[81] Elena Dubrova. Fault-Tolerant Design. Springer, 2013.

186
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[82] J. Dunlop and D.G. Smith. Telecommunications Engineering, 3rd Edition.
Taylor & Francis, 1994.

[83] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Com-
puter, 42(4):42–52, April 2009.

[84] Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A mixed
critical memory controller using bank privatization and fixed priority schedul-
ing. In Proc. of the 20th IEEE International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA), Chongqing, China, August 2014.

[85] EO Elliott. Estimates of error rates for codes on burst-noise channels. Bell
system technical journal, 42(5):1977–1997, 1963.

[86] Robert J Elliott, Lakhdar Aggoun, and John B Moore. Hidden Markov Models.
Springer, 1994.

[87] Frédéric Fauberteau, Serge Midonnet, and Manar Qamhieh. Partitioned
scheduling of parallel real-time tasks on multiprocessor systems. ACM
SIGBED Review, 8(3):28–31, 2011.

[88] Mohamed Fayad and Marshall P. Cline. Aspects of software adaptability.
Commun. ACM, 39(10):58–59, October 1996.

[89] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A compositional frame-
work for end-to-end path delay calculation of automotive systems under dif-
ferent path semantics. Work. on Compositional Theory and Technology for
Real-Time Embedded Systems CRTS, Barcelona (E), 2008.

[90] M.V.S. Fernandes, E.L. Pinto, and M. Grivet. A novel structured markovian
model for burst-error channels. In Wireless and Mobile Communications
(ICWMC), 2010 6th International Conference on, pages 11–15, Sept 2010.

[91] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca. An experiment to assess
bit error rate in can. Proc. of RTN, 2004.

[92] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher Gill,
and Chenyang Lu. A real-time scheduling service for parallel tasks. In Proc.
of RTAS, 2012.

[93] Christoph Ficek, Nico Feiertag, Kai Richter, and M Jersak. Applying the
autosar timing protection to build safe and efficient iso 26262 mixed-criticality
systems. Embedded Real-Time Soft-ware Congress (ERTS2). Toulouse, France,
2012.

[94] N. Fisher, S. Baruah, and T.P. Baker. The partitioned scheduling of sporadic
tasks according to static-priorities. In Proc. on ECRTS, pages 10 pp. –127, 0-0
2006.

[95] J. Fletcher. An arithmetic checksum for serial transmissions. Communications,
IEEE Transactions on, 30(1):247–252, January 1982.

[96] José Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luis Miguel Pinho. A
multi-dag model for real-time parallel applications with conditional execution.
Technical report, 2015.

187
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[97] Freescale. P2040 qoriq communications processor product brief, November
2011.

[98] Jiri Gaisler. A portable and fault-tolerant microprocessor based on the sparc
v8 architecture. In Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, pages 409–415. IEEE, 2002.

[99] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-
criticality applications on resource-sharing multicore systems. In Embedded
Software (EMSOFT), 2013 Proceedings of the International Conference on,
pages 1–15, Sept 2013.

[100] Edgar N Gilbert. Capacity of a burst-noise channel. Bell system technical
journal, 39(5):1253–1265, 1960.

[101] Alain Girault and Hamoudi Kalla. A novel bicriteria scheduling heuristics
providing a guaranteed global system failure rate. Dependable and Secure
Computing, IEEE Transactions on, 6(4):241–254, 2009.

[102] M. Glass, M. Lukasiewycz, F. Reimann, C. Haubelt, and J. Teich. Symbolic
reliability analysis and optimization of ECU networks. In Proc. of Design,
Automation and Test in Europe, pages 158–163, 2008.

[103] A Golander, Shlomo Weiss, and R. Ronen. Ddmr: Dynamic and scalable dual
modular redundancy with short validation intervals. Computer Architecture
Letters, 7(2):65–68, July 2008.

[104] M. Gonzalez Harbour, J.J. Gutierrez Garcia, J.C. Palencia Gutierrez, and J.M.
Drake Moyano. MAST: Modeling and analysis suite for real time applications.
In Real-Time Systems, 13th Euromicro Conference on, 2001., pages 125 –134,
2001.

[105] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfigurable
real-time sdram controller for mixed time-criticality systems. In Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2013 In-
ternational Conference on, pages 1–10, Sept 2013.

[106] Charles Miller Grinstead and James Laurie Snell. Introduction to probability.
American Mathematical Soc., 1998.

[107] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark
suite. In Proc. of WWC, pages 3–14, Washington, DC, USA, 2001. IEEE
Computer Society.

[108] J.J. Gutierrez Garcia, J.C.P. Gutierrez, and M. Gonzalez Harbour. Schedu-
lability analysis of distributed hard real-time systems with multiple-event
synchronization. In Real-Time Systems, 2000. Euromicro RTS 2000. 12th
Euromicro Conference on, pages 15–24, 2000.

[109] Bo Han and Seungjoon Lee. Efficient packet error rate estimation in wire-
less networks. In Testbeds and Research Infrastructure for the Development
of Networks and Communities, 2007. TridentCom 2007. 3rd International
Conference on, pages 1–9. IEEE, 2007.

188
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[110] Hans A Hansson, Thomas Nolte, Christer Norstrom, and Sasikumar Pun-
nekkat. Integrating reliability and timing analysis of can-based systems.
Industrial Electronics, IEEE Transactions on, 49(6):1240–1250, 2002.

[111] M.G. Harbour and J.C. Palencia. Response time analysis for tasks scheduled
under edf within fixed priorities. In Real-Time Systems Symposium, 2003.
RTSS 2003. 24th IEEE, pages 200–209, Dec 2003.

[112] Hermann Härtig and Michael Roitzsch. Ten years of research on l4-based
real-time systems. In Proceedings of the 8th Real-Time Linux Workshop, 2006.

[113] Florian Hartwich. Can with flexible data-rate. In Proc. of ICC, Hambach
Castle, Germany, 2012.

[114] Peter Hazucha and Christer Svensson. Impact of cmos technology scaling on
the atmospheric neutron soft error rate. Nuclear Science, IEEE Transactions
on, 47(6):2586–2594, 2000.

[115] Reinhold Heckmann and Christian Ferdinand. Worst-case execution time
prediction by static program analysis. In In 18th International Parallel and
Distributed Processing Symposium. IEEE Computer Society, 2004.

[116] Harald Heinecke, Klaus-Peter Schnelle, Helmut Fennel, Jürgen Bortolazzi,
Lennart Lundh, Jean Leflour, Jean-Luc Maté, Kenji Nishikawa, and Thomas
Scharnhorst. Automotive open system architecture-an industry-wide ini-
tiative to manage the complexity of emerging automotive e/e-architectures.
Convergence, pages 325–332, 2004.

[117] Andreas Heinig, Ingo Korb, Florian Schmoll, Peter Marwedel, and Michael
Engel. Fast and low-cost instruction-aware fault injection. In GI-Jahrestagung,
pages 2548–2561, 2013.

[118] Günther Heling, Jochen Rein, and Patrick Markl. Silentbsw - silent autosar
basic software for safety-related ecus. Technical report, vector, 2012.

[119] Martijn Hendriks and Marcel Verhoef. Timed automata based analysis of
embedded system architectures. In Parallel and Distributed Processing Sym-
posium, 2006. IPDPS 2006. 20th International, pages 8–pp. IEEE, 2006.

[120] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System
Level Performance Analysis - The SymTA/S Approach. IEE Proc. Computers
and Digital Techniques, 152(2):148–166, March 2005.

[121] Rafik Henia and Rolf Ernst. Improved offset-analysis using multiple timing-
references. In Proceedings of the conference on Design, automation and test
in Europe: Proceedings, pages 450–455. European Design and Automation
Association, 2006.

[122] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[123] Martin Hillenbrand. Funktionale Sicherheit nach ISO 26262 in der Konzept-
phase der Entwicklung von Elektrik/Elektronik Architekturen von Fahrzeugen,
volume 4. KIT Scientific Publishing, 2011.

189
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[124] M. Holenderski, R.J. Bril, and J.J. Lukkien. Parallel-task scheduling on
multiple resources. In Proc. of ECRTS, pages 233–244. IEEE, 2012.

[125] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann,
M. Gries, T. Apel, K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De,
R. Van Der Wijngaart, and T. Mattson. A 48-core ia-32 message-passing
processor with dvfs in 45nm cmos. In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2010 IEEE International, pages 108–109, Feb
2010.

[126] Po-Chin Hu, Zhi-Li Zhang, and Mostafa Kaveh. Channel condition arq rate
control for real-time wireless video under buffer constraints. 2:124–127 vol.2,
Sept 2000.

[127] Jia Huang, Andreas Raabe, Kai Huang, Christian Buckl, and Alois Knoll. A
framework for reliability-aware design exploration on mpsoc based systems.
Design Automation for Embedded Systems, 16(4):189–220, 2012.

[128] Kai Huang, Gang Chen, C. Buckl, and A. Knoll. Conforming the runtime
inputs for hard real-time embedded systems. In Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE, pages 430–436, June 2012.

[129] K.H. Huang and J.A. Abraham. Algorithm-based fault tolerance for matrix
operations. In IEEE Transactions on Computers, 1984.

[130] IEEE. IEEE Standard 802.1AS-2011 - Timing and Synchronization for Time-
Sensitive Applications in Bridged Local Area Networks, September 2011.

[131] IEEE. IEEE P802.3bp 1000BASE-T1 PHY Task Force, September 2014.

[132] Infineon. Aurix - safety joins performance, 2014. retrieved 21.05.2014.

[133] Intel Corporation. Intel® Threading Building Blocks, October 2011.

[134] International Electrotechnical Commission. Fault tree analysis. - iec 61025,
2006. Edition 2, ISBN 2-8318-8918-9.

[135] International Electrotechnical Commission (IEC). Functional safety of elec-
trical / electronic / programmable electronic safety-related systems ed2.0,
2010.

[136] International Organization for Standardization (ISO). Iso/fdis 26262: Road
vehicles – functional safety, 2011.

[137] Internet Engineering Task Force. RFC 791 Internet Protocol - DARPA Inernet
Programm, Protocol Specification, September 1981.

[138] ISO. Iso 9001, quality managment systems, 2008.

[139] ISO/IEC. Iso/iec 15504, 2012.

[140] V. Izosimov, P. Pop, P. Eles, and Zebo Peng. Synthesis of fault-tolerant em-
bedded systems with checkpointing and replication. In Proc. of Int. Workshop
Electronic Design, Test and Applications, 2006.

190
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[141] Marek Jersak. Compositional Performance Analysis for Complex Embedded
Applications. PhD thesis, TU Braunschweig, 2005.

[142] Marek Jersak, Rafik Henia, and Rolf Ernst. Context-aware performance
analysis for efficient embedded system design. In Prof. of DATE, pages 59–72.
Springer, 2008.

[143] Michel C Jeruchim, Philip Balaban, and K Sam Shanmugan. Simulation of
communication systems: modeling, methodology and techniques. Springer,
2000.

[144] D. Jewett. Integrity s2: a fault-tolerant unix platform. In Fault-Tolerant
Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International
Symposium, pages 512–519, June 1991.

[145] Arshad Jhumka, Martin Hiller, Vilgot Claesson, and Neeraj Suri. On system-
atic design of globally consistent executable assertions in embedded software.
SIGPLAN Not., 37(7):75–84, June 2002.

[146] Changli Jiao, Loren Schwiebert, and Bin Xu. On modeling the packet error
statistics in bursty channels. In Local Computer Networks, 2002. Proceedings.
LCN 2002. 27th Annual IEEE Conference on, pages 534–541. IEEE, 2002.

[147] M. Joseph and P. Pandya. Finding response times in a real-time system. The
Computer Journal, 29(5):390–395, 1986.

[148] Laveen N Kanal and ARK Sastry. Models for channels with memory and their
applications to error control. Proceedings of the IEEE, 66(7):724–744, 1978.

[149] Charles Keating, Ralph Rogers, Resit Unal, David Dryer, Andres Sousa-Poza,
Robert Safford, William Peterson, and Ghaith Rabadi. System of systems
engineering. Engineering Management Journal, 15(3), 2003.

[150] Achim Klenke. Probability theory: a comprehensive course. Springer, 2007.

[151] G.A. Klutke, P.C. Kiessler, and M.A. Wortman. A critical look at the bathtub
curve. Reliability, IEEE Transactions on, 52(1):125–129, March 2003.

[152] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption
of independence in multiversion programming. IEEE Trans. Softw. Eng.,
12(1):96–109, January 1986.

[153] J.C. Knight. Safety critical systems: challenges and directions. In Software En-
gineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference
on, pages 547–550, May 2002.

[154] Steffen Kollman, Victor Pollex, Kilian Kempf, Frank Slomka, Matthias Traub,
Torsten Bone, Jurgen Becker, et al. Comparative application of real-time
verification methods to an automotive architecture. In Proceedings of the 18th
International Conference on Real-Time and Network Systems, pages 89–98,
2010.

191
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[155] H. Kopetz and G. Grunsteidl. Ttp - a time-triggered protocol for fault-tolerant
real-time systems. In Fault-Tolerant Computing, 1993. FTCS-23. Digest of
Papers., The Twenty-Third International Symposium on, pages 524–533, June
1993.

[156] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. The
time-triggered ethernet (tte) design. In Object-Oriented Real-Time Distributed
Computing, 2005. ISORC 2005. Eighth IEEE International Symposium on,
pages 22–33. IEEE, 2005.

[157] Hermann Kopetz and G. Bauer. The time-triggered architecture. Proceedings
of the IEEE, 91(1):112–126, Jan 2003.

[158] Adam Kostrzewa, Sebastian Tobuschat, Philip Axer, and Rolf Ernst. Super-
vised sharing of virtual channels in networks-on-chip. In In Proc. of SIES,
Pisa, Italy, June 2014.

[159] Ondrej Kotaba, Jan Nowotsch, Michael Paulitsch, Stefan M Petters, and
H Theilingx. Multicore in real-time systems temporal isolation challenges
due to shared resources. In Proc. of Workshop on Industry-Driven Approaches
for Cost-effective Certification of Safety-Critical, Mixed-Criticality Systems (at
DATE Conf.), 2013.

[160] T. Kranich and M. Berekovic. Noc switch with credit based guaranteed service
support qualified for gals systems. In Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro Conference on, pages 53–59,
Sept 2010.

[161] C.M. Krishna and A.D. Singh. Reliability of checkpointed real-time systems
using time redundancy. Reliability, IEEE Transactions on, 42(3):427 –435,
September 1993.

[162] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar. Utilizing dynamically
coupled cores to form a resilient chip multiprocessor. In Proc. of Int. Conf.
Dependable Systems and Networks, pages 317–326, 2007.

[163] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time
tasks on multi-core processors. In Proc. of. RTSS, pages 259 –268, 30 2010-dec.
3 2010.

[164] Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. Partitioned
fixed-priority preemptive scheduling for multi-core processors. In Proc. of.
ECRTS, pages 239–248, Washington, DC, USA, 2009.

[165] Kai Lampka, Kai Huang, and Jian-Jia Chen. Dynamic counters and the effi-
cient and effective online power management of embedded real-time systems.
In Proceedings of the Seventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’11, pages
267–276, New York, NY, USA, 2011. ACM.

[166] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber. Au-
thentication in distributed systems: Theory and practice. ACM Transactions
on Computer Systems (TOCS), 10(4):265–310, 1992.

192
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[167] L.B. Le, E. Hossain, and M. Zorzi. Queueing analysis for gbn and sr arq
protocols under dynamic radio link adaptation with non-zero feedback delay.
Wireless Communications, IEEE Transactions on, 6(9):3418–3428, September
2007.

[168] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer-Verlag, Berlin,
Heidelberg, 2001.

[169] Edward A. Lee. Cyber physical systems: Design challenges. Technical report,
Center for Hybrid and Embedded Software Systems, EECS, University of
California, Berkeley, 2008.

[170] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 1990.

[171] Wen-Shing Lee, DL Grosh, Frank A Tillman, and Chang H Lie. Fault tree
analysis, methods, and applications - a review. Reliability, IEEE Transactions
on, 34(3):194–203, 1985.

[172] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines. Proc. 11th RTSS, pages 201–209, Dec 1990.

[173] Hyung-Taek Lim, Kay Weckemann, and Daniel Herrscher. Performance study
of an in-car switched ethernet network without prioritization. In Proc. of
international conference on Communication technologies for vehicles, pages
165–175, Berlin, Heidelberg, 2011. Springer-Verlag.

[174] ARM Limited. Amba open specifications. online, 2013.

[175] S. Lin and D. J. Costello, Jr. Error Control Coding: Fundamentals and
Applications. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 2004.

[176] Shu Lin, D. Costello, and M. Miller. Automatic-repeat-request error-control
schemes. Communications Magazine, IEEE, 22(12):5–17, 1984.

[177] LIN Steering Group. LIN Specification Package. Rev. 2.1. online, November
2006.

[178] Chung Laung Liu and James W Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[179] Jane W.S. Liu. Real-time systems. Prentice Hall, 2000.

[180] Jacques Losq. A highly efficient redundancy scheme: self-purging redundancy.
Computers, IEEE Transactions on, 100(6):569–578, 1976.

[181] R.E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to
improve computer reliability. IBM Journal of Research and Development,
6(2):200–209, April 1962.

[182] Aamer Mahmood, Dorothy M Andrews, and Edward J McClusky. Executable
assertions and flight software. Center for Reliable Computing, Computer
Systems Laboratory, Department of Electrical Engineering and Computer
Science, Stanford University, 1984.

193
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[183] T.C. Maxino and P.J. Koopman. The effectiveness of checksums for embedded
control networks. Dependable and Secure Computing, IEEE Transactions on,
6(1):59–72, Jan 2009.

[184] Joseph W McPherson. Reliability challenges for 45nm and beyond. In Pro-
ceedings of the 43rd annual Design Automation Conference, pages 176–181.
ACM, 2006.

[185] Aloysius K Mok and Deji Chen. A multiframe model for real-time tasks.
volume 23, pages 635–645. IEEE, 1997.

[186] Boris Motruk, Jonas Diemer, Philip Axer, Rainer Buchty, and Mladen
Berekovic. Safe virtual interrupts leveraging distributed shared resources
and core-to-core communication on many-core platforms. In In Proc. of PRDC,
2013.

[187] Boris Motruk, Jonas Diemer, Rainer Buchty, Rolf Ernst, and Mladen Berekovic.
Idamc: A many-core platform with run-time monitoring for mixed-criticality.
In High-Assurance Systems Engineering (HASE), 2012 IEEE 14th Interna-
tional Symposium on, pages 24–31. IEEE, 2012.

[188] G. P. Mullery. Core - a method for controlled requirement specification. In
Proceedings of the 4th International Conference on Software Engineering, ICSE
’79, pages 126–135, Piscataway, NJ, USA, 1979. IEEE Press.

[189] S. Murali, T. Theocharides, N. Vijaykrishnan, M.J. Irwin, L. Benini, and
G. De Micheli. Analysis of error recovery schemes for networks on chips.
Design Test of Computers, IEEE, 22(5):434–442, Sept 2005.

[190] Nicolas Navet, Y-Q Song, and Françoise Simonot. Worst-case deadline failure
probability in real-time applications distributed over controller area network.
Journal of systems Architecture, 46(7):607–617, 2000.

[191] Mircea Negrean, Simon Schliecker, and Rolf Ernst. Response-Time Analysis
of Arbitrarily Activated Tasks in Multiprocessor Systems with Shared Re-
sources. In Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), Nice, France, April 2009.

[192] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques optimizing
the number of processors to schedule multi-threaded tasks. In Proc. of ECRTS,
pages 321 –330, july 2012.

[193] M. Neukirchner, M. Negrean, R. Ernst, and T.T. Bone. Response-time analysis
of the flexray dynamic segment under consideration of slot-multiplexing. In In-
dustrial Embedded Systems (SIES), 2012 7th IEEE International Symposium
on, pages 21–30, June 2012.

[194] Moritz Neukirchner. Establishing Sufficient Temporal Independence Effi-
ciently. PhD thesis, TU Braunschweig, 2014.

[195] Moritz Neukirchner, Philip Axer, Tobias Michaels, and Rolf Ernst. Monitoring
of workload arrival functions for mixed-criticality systems. In RTSS, 2013.

194
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[196] Moritz Neukirchner, Tobias Michaels, Philip Axer, Sophie Quinton, and Rolf
Ernst. Monitoring arbitrary activation patterns in real-time systems. In
RTSS, 2012.

[197] Moritz Neukirchner, Sophie Quinton, Tobias Michaels, Philip Axer, and Rolf
Ernst. Sensitivity analysis for arbitrary activation patterns in real-time
systems. In Proc. of Design Automation and Test in Europe (DATE), mar 2013.

[198] NIST/SEMATECH. Engineering statistics handbook, 2003.

[199] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the
scheduling of mixed-criticality real-time task sets. In Proc. of RTSS, RTSS
’09, pages 291–300, Washington, DC, USA, 2009. IEEE Computer Society.

[200] Christer Norstrom, Anders Wall, and Wang Yi. Timed automata as task models
for event-driven systems. In Real-Time Computing Systems and Applications,
1999. RTCSA’99. Sixth International Conference on, pages 182–189. IEEE,
1999.

[201] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz. The time-triggered
system-on-a-chip architecture. In Proc. of Int. Symp. Industrial Electronics
ISIE 2008, pages 1941–1947, 2008.

[202] Jens-Rainer Ohm and Hans Dieter Lüke. Signalübertragung. Springer-Verlag
Berlin Heidelberg, 2007.

[203] OMG. Marte specification, 2008.

[204] OMG. Omg systems modeling language (omg sysml), 6 2012.

[205] OpenMP Architecture Review Board. OpenMP Application Program Interface,
3.1 edition, July 2011.

[206] Ronald O’Rourke. Coast guard deepwater program: Background, oversight
issues, and options for congress. Technical report, Congressional Research
Service, 2007.

[207] OSEK VDX. OSEK VDX: open systems and the corresponding interfaces for
automotive electronics. http://www.osek-vdx.org.

[208] J. C. Palencia and M.G. Harbour. Offset-based response time analysis of
distributed systems scheduled under EDF. In Proc. of ECRTS, pages 3–12,
2003.

[209] Matthias Pätzold, Matthias Patzold, and Mattias Paetzold. Mobile fading
channels. John Wiley England, 2002.

[210] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon
Schliecker, Rafik Henia, Razvan Racu, Rolf Ernst, and Michael González Har-
bour. Influence of different abstractions on the performance analysis of dis-
tributed hard real-time systems. Design Automation for Embedded Systems,
13(1-2):27–49, 2009.

195
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[211] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A
benchmark characterization of the eembc benchmark suite. IEEE Micro,
(5):18–29, 2009.

[212] P. Pop, V. Izosimov, P. Eles, and Zebo Peng. Design optimization of time- and
cost-constrained fault-tolerant embedded systems with checkpointing and
replication. IEEE Trans. on VLSI, 17(3):389–402, 2009.

[213] T. Pop, P. Eles, and Zebo Peng. Holistic scheduling and analysis of mixed
time/event-triggered distributed embedded systems. In Hardware/Software
Codesign, 2002. CODES 2002. Proceedings of the Tenth International Sympo-
sium on, pages 187–192, 2002.

[214] David Powell, Jean Arlat, Ljerka Beus-Dukic, Andrea Bondavalli, Paolo Cop-
pola, Alessandro Fantechi, Eric Jenn, Christophe Rabéjac, and Andy Wellings.
Guards: A generic upgradable architecture for real-time dependable systems.
Parallel and Distributed Systems, IEEE Transactions on, 10(6):580–599, 1999.

[215] L.L. Pullum. Software fault tolerance techniques and implementation. Artech
House Publishers, 2001.

[216] S. Punnekkat and A. Burns. Analysis of checkpointing for schedulability of
real-time systems. In Proc. of Int. Workshop Real-Time Computing Systems
and Applications, pages 198–205, 1997.

[217] Alain Pétrissans, Stéphane Krawczyk, Lorenzo Veronesi, Gabriella Cattaneo,
Nathalie Feeney, and Cyril Meunier. Design of future embedded systems
toward system of systems. Technical report, IDC, 2012.

[218] Manar Qamhieh, Frédéric Fauberteau, Serge Midonnet, et al. Performance
analysis for segment stretch transformation of parallel real-time tasks. In
Proceedings of the 5th Junior Researcher Workshop on Real-Time Computing
(JRWRTC 2011), pages 29–32, 2011.

[219] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic overload in
real-time systems. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2012, pages 515–520, March 2012.

[220] R. Racu, Li Li, R. Henia, A. Hamann, and R. Ernst. Improved response
time analysis of tasks scheduled under preemptive round-robin. In Proc. 5th
IEEE/ACM/IFIP Int Hardware/Software Codesign and System Synthesis
(CODES+ISSS) Conf, pages 179–184, 2007.

[221] Razvan Racu. Performance Characterization and Sensitivity Analysis of Real-
time Embedded Systems. PhD thesis, TU Braunschweig, 2008.

[222] Razvan Racu, Li Li, Rafik Henia, Arne Hamann, and Rolf Ernst. Improved
response time analysis of tasks scheduled under preemptive round-robin. In
Proc. of CODES+ISSS, pages 179–184, 2007.

[223] Radio Technical Commission for Aeronautics (RTCA). Do-254: Design assur-
ance guidance for airborne electronic hardware, 2000.

196
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[224] Radio Technical Commission for Aeronautics (RTCA). Do-178b: Software
considerations in airborne systems and equipment certification, 2001.

[225] R. Rajkumar, L. Sha, and JP Lehoczky. Real-time synchronization protocols for
multiprocessors. Real-Time Systems Symposium, 1988., Proceedings., pages
259–269, 1988.

[226] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, Norwell, MA, USA, 1991.

[227] Eberle A Rambo, Alexander Tschiene, Jonas Diemer, Leonie Ahrendts, and
Rolf Ernst. Failure analysis of a network-on-chip for real-time mixed-critical
systems. In In Proc. of DATE, pages 1–4, March 2014.

[228] M. Rebaudengo, M.S. Reorda, Marco Torchiano, and M. Violante. Soft-error
detection through software fault-tolerance techniques. In Defect and Fault
Tolerance in VLSI Systems, 1999. DFT ’99. International Symposium on, pages
210–218, Nov 1999.

[229] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. Swift:
software implemented fault tolerance. In Code Generation and Optimization,
2005. CGO 2005. International Symposium on, pages 243–254, March 2005.

[230] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.
August, and Shubhendu S. Mukherjee. Software-controlled fault tolerance.
ACM Transactions on Architecture and Code Optimization, 2:366–396, 2005.

[231] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
University Press, 2008.

[232] Kai Richter. Compositional scheduling analysis using standard event models.
PhD thesis, TU Braunschweig, 2005.

[233] Robert Bosch GmbH. CAN Specification version 2.0, 1991. Postfach 30 02 40,
D-70442 Stuttgart.

[234] David S. Rosenblum. A practical approach to programming with assertions.
Software Engineering, IEEE Transactions on, 21(1):19–31, 1995.

[235] Mark V. Rosenker. Safety recommendation a-08-53 through -55. Technical
report, National Transportation Safety Board, 2008.

[236] Jonas Rox and Rolf Ernst. Exploiting inter-event stream correlations between
output event streams of non-preemptively scheduled tasks. In Proc. Design,
Automation and Test in Europe (DATE 2010), mar 2010.

[237] Jonas Rox and Rolf Ernst. Formal timing analysis of full duplex switched
based ethernet network architectures. In SAE World Congress, volume System
Level Architecture Design Tools and Methods (AE318), Detroit, MI, USA, Apr
2010. SAE International.

[238] SAE. As5506 - architecture analysis & design language (aadl)., 9 2012.

197
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[239] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time scheduling
for generalized parallel task models. In Proc. of RTSS, pages 217 –226, 29
2011-dec. 2 2011.

[240] S. Schliecker, M. Negrean, and R. Ernst. Response Time Analysis on Multicore
ECUs with Shared Resources. IEEE Transactions on Industrial Informatics,
5(4):402–413, November 2009.

[241] S. Schliecker, J. Rox, M. Ivers, and R. Ernst. Providing accurate event models
for the analysis of heterogeneous multiprocessor systems. In Proc. of CODES-
ISSS, pages 185–190, October 2008.

[242] Simon Schliecker. Performance Analysis of Multiprocessor Real-Time Systems
with Shared Resources. Cuvillier Verlag, 2011.

[243] Simon Schliecker, Jonas Rox, Rafik Henia, Razvan Racu, Arne Hamann, and
Rolf Ernst. Formal performance analysis for real-time heterogeneous embed-
ded systems. In Model-Based Design of Heterogeneous Embedded Systems,
chapter 3, pages 57–92. CRC Press, nov 2009.

[244] M. Schmidt, M Rau, E Dr. Helmig, and B Dr. Bauer. Funktionale sicher-
heit – umgang mit unabhängigkeit, rechtlichen rahmenbedingungen und
haftungsfragen. Technical report, SGS TÜV Saar, 2011.

[245] Martin Schoeberl. A time-triggered network-on-chip. In Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference on, pages
377–382. IEEE, 2007.

[246] Michael Schulze, Philipp Werner, Georg Lukas, and Jörg Kaiser. Afp-an
adaptive fragmentation protocol supporting large datagram transmissions.
Journal of Communications, 6(3):240–248, 2011.

[247] Jörg Schäuffele and Thomas Zurawka. Automotive Software Engineering.
Vieweg+Teubner, 2010.

[248] M. Sebastian and R. Ernst. Reliability Analysis of Single Bus Communication
with Real-Time Requirements. In Proc. of PRDC, pages 3–10, 2009.

[249] Maurice Sebastian, Philip Axer, and Rolf Ernst. Utilizing hidden markov
models for formal reliability analysis of real-time communication systems with
errors. In Proceeding of the 17th IEEE Pacific Rim International Symposium
on Dependable Computing, dec 2011.

[250] Maurice Sebastian, Philip Axer, Rolf Ernst, Nico Feiertag, and Marek Jersak.
Efficient reliability and safety analysis for mixed-criticality embedded systems.
SAE System Level Architecture Design Tools and Methods, April 2011.

[251] Sol M Shatz and Jia-Ping Wang. Models and algorithms for reliability-oriented
task-allocation in redundant distributed-computer systems. IEEE Transac-
tions on Reliability, 38(1):16–27, 1989.

[252] Zheng Shi and A. Burns. Real-time communication analysis for on-chip
networks with wormhole switching. In Networks-on-Chip, 2008. NoCS 2008.
Second ACM/IEEE International Symposium on, pages 161–170, 2008.

198
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[253] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz.
Operating system concepts, volume 4. Addison-Wesley Reading, 1998.

[254] Jeffrey S Slack. Finite State Markov Models for Error Bursts on the Land
Mobile Satellite Channel. PhD thesis, Brigham Young University, 1996.

[255] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatryk.
Fingerprinting: bounding soft-error-detection latency and bandwidth. IEEE
Micro, 24(6):22–29, 2004.

[256] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet: im-
proving the availability of shared memory multiprocessors with global check-
point/recovery. In Proc. of Int. Computer Architecture Symp., pages 123–134,
2002.

[257] Marco Spuri. Analysis of deadline scheduled real-time systems. 1996. Techni-
cal Report.

[258] Steffen Stein. Allowing Flexibility in Critical Systems: The EPOC Framework.
PhD thesis, TU Braunschweig, 2012.

[259] Steffen Stein, Jonas Diemer, Matthias Ivers, Simon Schliecker, and Rolf Ernst.
On the Convergence of the SymTA/S analysis. Technical report, Technische
Universität Braunschweig, Germany, Nov. 2008.

[260] Luca Sterpone and Massimo Violante. An analysis of seu effects in embedded
operating systems for real-time applications. In Industrial Electronics, 2007.
ISIE 2007. IEEE International Symposium on, pages 3345–3349. IEEE, 2007.

[261] Thilo Streichert and Matthias Traub. Elektrik/Elektronik-Architekturen im
Kraftfahrzeug. VDI-Buch. Springer Berlin Heidelberg, 2012.

[262] R Stroph and T Clarke. Dynamic acceptance tests for complex controllers.
In Euromicro Conference, 1998. Proceedings. 24th, volume 1, pages 411–417.
IEEE, 1998.

[263] J.K. Strosnider, J.P. Lehoczky, and Lui Sha. The deferrable server algorithm for
enhanced aperiodic responsiveness in hard real-time environments. volume 44,
pages 73–91, Jan 1995.

[264] Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Techni-
cal Reference, 4th edition, 2002.

[265] R. Teodorescu, J. Nakano, and J. Torrellas. Swich: A prototype for efficient
cache-level checkpointing and rollback. IEEE Micro, 26(5):28–40, 2006.

[266] George R Terrell. Mathematical statistics: A unified introduction. Springer,
1999.

[267] Daniel Thiele, Philip Axer, and Rolf Ernst. Improving formal timing analysis
of switched ethernet by exploiting fifo scheduling. In Design Automation
Conference (DAC), San Francisco, CA, USA, June 2015.

199
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[268] Daniel Thiele, Philip Axer, Rolf Ernst, Jonas Diemer, and Kai Richter. Co-
operating on real-time capable ethernet architecture in vehicles. In Proc. of
Internationaler Kongress Elektronik im Fahrzeug, oct 2013.

[269] Daniel Thiele, Philip Axer, Rolf Ernst, and Jan R. Seyler. Improving formal
timing analysis of switched ethernet by exploiting traffic stream correlations.
In Proc. of CODES+ISSS, New Delhi, India, October 2014.

[270] Daniel Thiele, Jonas Diemer, Philip Axer, Rolf Ernst, and Jan Seyler. Improved
formal worst-case timing analysis of weighted round robin scheduling for
ethernet. In In Proc. of CODES+ISSS, Montreal, Canada, September 2013.

[271] Daniel Thiele, Johannes Schlatow, Philip Axer, and Rolf Ernst. Formal timing
analysis of can-to-ethernet gateway strategies in automotive networks. Real-
Time Systems, 2015.

[272] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. In Proc. IEEE International Symposium on Circuits
and Systems (ISCAS), volume 4, pages 101–104, 2000.

[273] K. Tindell and A. Burns. Guaranteeing message latencies on control area net-
work (can). In Proceedings of the 1st International CAN Conference. Citeseer,
1994.

[274] K. W. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach for
Analyzing Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6(2):133–
151, 1994.

[275] Yoshiharu Tosaka, Shigeo Satoh, Toru Itakura, Hideo Ehara, Toshimitsu
Ueda, Gary A Woffinden, and Stephen A Wender. Measurement and analysis
of neutron-induced soft errors in sub-half-micron cmos circuits. Electron
Devices, IEEE Transactions on, 45(7):1453–1458, 1998.

[276] TU Dresden OS Group. L4/Fiasco.OC microkernel. http://www.tudos.
org/fiasco, 2012.

[277] Amos Tversky and Daniel Kahneman. Availability: A heuristic for judging
frequency and probability. Cognitive Psychology, 5(2):207 – 232, 1973.

[278] Spyridon Vassilaras. A cross-layer optimized adaptive modulation and coding
scheme for transmission of streaming media over wireless links. Wireless
Networks, 16(4):903–914, 2010.

[279] R. Vemu and J. A. Abraham. Ceda: control-flow error detection through
assertions. In Proc. 12th IEEE Int. On-Line Testing Symp. IOLTS 2006, 2006.

[280] Rajesh Venkatasubramanian, John P Hayes, and Brian T Murray. Low-
cost on-line fault detection using control flow assertions. In On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE, pages 137–143. IEEE, 2003.

[281] S. Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pages 239–243, Dec 2007.

200
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Bibliography

[282] E. Wandeler. Modular performance analysis and interface-based design for
embedded real-time systems. PhD thesis, SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH, 2006.

[283] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance analysis of greedy
shapers in real-time systems. In Proc. of DATE, volume 1, pages 6 pp.–, 2006.

[284] Cheng-Xiang Wang and Wen Xu. Packet-level error models for digital wireless
channels. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 4, pages 2184–2189. IEEE, 2005.

[285] Don Ward. Avsi’s system architecture virtual integration program: Proof of
concept demonstrations. Presentation to the INCOSE MBSE Workshop, 2013.

[286] Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman. Quan-
tifying the accuracy of high-level fault injection techniques for hardware faults.
In Dependable Systems and Networks (DSN), 2014 44rd Annual IEEE/IFIP
International Conference on, 2014.

[287] V. Wiels, R. Delmas, D. Doose, P.-L. Garoche, and G. Durrieu J. Cazin. Formal
verification of critical aerospace software. Aerospace Lab, Issue 4, 2012.

[288] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Rein-
hold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The worst-case execution-time problem-
overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.,
7:36:1–36:53, May 2008.

[289] Shiying Xiong, Jeffrey Bokor, Qi Xiang, Philip Fisher, Ian M Dudley, and Paula
Rao. Gate line-edge roughness effects in 50-nm bulk mosfet devices. In SPIE’s
27th Annual International Symposium on Microlithography, pages 733–741.
International Society for Optics and Photonics, 2002.

[290] Gulay Yalcin, Osman S Unsal, Adrian Cristal, and Mateo Valero. Fimsim: A
fault injection infrastructure for microarchitectural simulators. In Computer
Design (ICCD), 2011 IEEE 29th International Conference on, pages 431–432.
IEEE, 2011.

[291] Y.C. Yeh. Safety critical avionics for the 777 primary flight controls system.
In Digital Avionics Systems, 2001. DASC. 20th Conference, volume 1, pages
1C2/1–1C2/11 vol.1, Oct 2001.

[292] Ti-Yen Yen and Wayne Wolf. Performance estimation for real-time distributed
embedded systems. Parallel and Distributed Systems, IEEE Transactions on,
9(11):1125–1136, 1998.

[293] Patrick Meumeu Yomsi, Dominique Bertrand, Nicolas Navet, and RI Davis.
Controller area network (can): Response time analysis with offsets. In Factory
Communication Systems (WFCS), 2012 9th IEEE International Workshop on,
pages 43–52. IEEE, 2012.

201
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

BIBLIOGRAPHY

[294] M. Yoshimoto, T. Takine, Y. Takahashi, and T. Hasegawa. Waiting time and
queue length distributions for go-back-n and selective-repeat arq protocols.
volume 41, pages 1687–1693, 1993.

[295] Homayoun Yousefi’zadeh and Hamid Jafarkhani. Statistical guarantee of
qos in communication networks with temporally correlated loss. In Global
Telecommunications Conference, 2003. GLOBECOM’03. IEEE, volume 7, pages
4039–4043. IEEE, 2003.

[296] Sergio Yovine. Model checking timed automata. In In European Educational
Forum: School on Embedded Systems, pages 114–152. Springer-Verlag, 1998.

[297] Fengxiang Zhang and Alan Burns. Schedulability analysis for real-time
systems with edf scheduling. Computers, IEEE Transactions on, 58(9):1250–
1258, 2009.

[298] Dakai Zhu and Hakan Aydin. Reliability-aware energy management for
periodic real-time tasks. Computers, IEEE Transactions on, 58(10):1382–1397,
2009.

[299] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. In-
tel® quickpath interconnect architectural features supporting scalable system
architectures. In High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, pages 1–6. IEEE, 2010.

202
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.

Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

	Contents
	Introduction
	Building Reliable Computer Systems
	Timing Verification of Safety-Critical Real-Time System
	Multi-Master and Point-to-Point Communication
	Switched Networks
	Multiprocessor on Chip
	Conclusion
	Publications
	Bibliography

 HistoryItem_V1
 InsertBlanks

 Where: before first page
 Number of pages: 1
 same as current

 1
 1

 D:20150217145518
 1190.5512
 a3
 Blank
 841.8898

 1
 Wide
 762
 601

 CurrentAVDoc

 SameAsCur
 AtStart

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

