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Abstract

This thesis was written within the Rhineland-Palatinate Research Program for Universities
Wissen schafft Zukunft. Two-channel microarray experiments for different organisms and un-
der different treatments were run in cooperation with the departments Biology and Chemistry
of the University of Technology in Kaiserslautern, the Center for Nanostructure Technol-
ogy and Biomolecular Technology Kaiserslautern, the Institute of Biotechnology and Drug
Research Kaiserslautern (IBWF) and the Fraunhofer Institute for Industrial Mathematics
Kaiserslautern (ITWM). The task of the ITWM and thus the task of the PhD work was the de-
sign and the analysis of the experiments as well as the mathematical modeling of the resulting
data.

The thesis is based on the experiments of the IBWF concerning the rice blast disease fungus
Magnaporthe grisea, whose gene expression patterns during host infection and the �rst 24
hours of growth shall be ascertained.

After presenting the basics of genetics and microarray technology as well as a short overview
of the considered organism, sources of variance during the data generation are described.
Since there was nearly no data for Magnaporthe available in literature at the beginning of the
project, a two-step-concept for design of experiments is presented.

Therefore, one run of microarray experiments was made as a �rst screening. Thereafter
additional experiments are made in mature time periods in which a large number of changes
in gene expressions occurred. Normalization techniques for reducing technical variances are
described and applied to the data. The resulting, adjusted data is analyzed using the non-
parametric Fisher-Pitman-Test, since a normal distribution of the data was not assumed. Fur-
thermore, the minimal sample size for detecting signi�cantly differentially expressed genes at
all is calculated.

As a next step the interpolation of the microarray time course data using cubic smoothing
splines is proposed. Again, as for the statistical analysis, the medians of the single measure-
ments are used as an estimator for the interpolation, since no normal distributed data was
assumed. The estimator accuracy, needed for spline smoothing, is calculated using an exact
version of the bootstrapping method.

Thereafter several clustering methods as well as distance measures suitable for gene expres-
sion data are presented and applied to the Magnaporthe data. The results are evaluated using
internal validity indices. For later needs in the gene interaction modeling step, several ways
for calculating the average time course of a cluster based on its elements are described.

A discrete, linear time-invariant state space system is taken as model for the gene interac-
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tion network. It is �tted to the data using linear regression. The result is evaluated concerning
system theoretical attributes as autonomy and stability. Furthermore, the robustness with re-
spect to the discretization step width is tested. Finally, potentials and limits of the presented
methods are discussed.
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1 Introduction

If you try and take a cat apart to see how it works, the �rst thing you have on your
hands is a non-working cat.

— Douglas Adams, British author and satirist (1952-2001)

1.1 History and Appetizer

Aristotle (384 BC – 322 BC), perhaps the most famous pioneer of biological science, described
the analysis of growth and development of live in his work On the Generation of Animals
[Ari]. He opened fertilized chicken eggs at several mature times for observing, when the
visible organs were generated. However, Aristotle and many of his successors did empirical
research based on macroscopic observations, and the results are often in�uenced by religious
or spiritual beliefs. This held up to the Middle Ages.

During the scienti�c revolution the research abandoned supernatural argumentation and
started to collect facts and involve mathematics. Many important inventions and developments
paved the way to modern biology and especially genetics. The invention and enhancements of
the microscope enables the view onto living cells. In 1676, the Dutch tradesman Antonie van
Leeuwenhoek (1632 - 1723) observed microorganisms for the �rst time which established the
�eld of microbiology.

About 200 years later, in 1865, the Augustinian Gregor Johann Mendel (1822 - 1884) pub-
lished at two meetings of the Brünn Natural History Society his research results concerning
systematical breeding experiments with pea plants, which laid the foundation for the biologi-
cal �eld of genetics. He suggested the existence of genes, basic units carrying the traits from
parents to offspring. His report also contained several mathematical formulas for the laws of
heredity [Men66].

Thomas Hunt Morgan (1866 – 1945) was able to prove the existence of genes and that
these are situated on inner cellular structures which were called chromosomes. In 1933 he was
awarded the Nobel Prize in Physiology or Medicine for these results.

Several discoveries as gene mutations and the deoxyribonucleic acid (DNA) led to the cen-
tral dogma of molecular biology articulated by the British molecular biologist Francis Crick
(1916 – 2004) in 1958 [Cri58]:

“Once information has got into a protein it can’t get out again.”

1



1 Introduction

This transfer as well as the involved elements will be described in detail in chapter 2.

Finally, the microarray technology was invented in the late eighties of the last century and
a gene expression pro�ling using miniaturized cDNA microarrays was presented for the �rst
time in 1995 by Mark Schena, Dari Schalon et al. [SSDB95].

Figure 1.1: Genetic information �ow

Although huge steps in biological science were made since Aristotle, this work describes
the analysis of experiments which are very similar. However, due to the developments and
inventions of the scientists mentioned above as well as many others the analysis could be
done using more mathematics. Whereas the chicken mature experiment was mainly based on
visible changes of the organism, this work will use subjective visual inspection only in the
very �rst step. Thereafter microarray experiments were set up and evaluated using appropriate
mathematical methods.

This skip from biology to mathematics should be used to introduce also some of the math-
ematicians, whose work were essential for the microarray analysis presented in this thesis,
sorted by the usage of their methods during the analysis.

The Briton Sir Ronald Aylmer Fisher (1890-1962) was one of the most famous biologists
and statisticians of the 20th century. He especially contributed to statistical design of experi-
ments and analysis.

In 1979, the statistician Bradley Efron (born 1938) published the bootstrap technique for
computer-based calculation of estimator accuracies [Efr79]. This method is essential for the
time course interpolation of the microarray measurements which was done in this work.

This leads to the Romanian Isaac Jacob Schoenberg (1903-1990) who became famous for
the development of interpolating splines [Sch46].

Last but not least George David Birkhoff (1884-1944) who formulated the modern dynami-
cal system, but representing all mathematicians who contributed to systems and control theory
which will be needed as �nal step in the analysis and modeling of the gene interaction network.

2



1.2 Task and Work �ow

1.2 Task and Work flow

This work focuses on experiments made by the Institute of Biotechnology and Drug Research
in Kaiserslautern for analyzing the genetic expression time courses during the growth of the
fungus Magnaporthe grisea. All steps from experimental design up to the generation of a gene
interaction network had to be mathematical well-founded.

However, two bottlenecks hampered the work:

When the project started in 2005 there was exactly one microarray data set published com-
paring dormant and germinated fungus spores. In fall 2007 the Magnaporthe grisea Oryza
sativa interaction database (www.mgosdb.org) was set up to allow web-based submission
and publishing of microarray data. [WV09]

So the complete experiments and the analysis had to be made from scratch. And even today
there are only few suitable data sets freely available. The public repository Gene Expression
Omnibus of the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/geo/)
contains eleven microarray data sets in the beginning of 2010.

Secondly the budget of the project restricted the number of microarrays to be available.
While many qualitatively impressing results are presented in literature, the own sight had to
be lowered with respect to this boundary. Methods as for example Bonferroni-techniques for
handling the statistical signi�cance of gene family-wise test statements had to be neglected
since they would result in an increase of the needed sample size and thus the needed microar-
rays.

Based on these guidelines, the experimental �ow was as follows (cf. �gure 1.2):

First of all the growth of the fungus was visually inspected for detecting phenotypical
changes, which gave rise to the �rst time points for the measurements. Microarray experiments
were made and the resulting data was statistically analyzed. In the time intervals exhibiting
the most and highest changes in gene expression levels additional time knots were inserted. A
second run of microarrays was used to hybridize all chosen time points of the fungus growth
in a balanced and even manner.

The resulting data was normalized and the gene expression levels were statistically esti-
mated. Thereafter the discrete time measurements were interpolated to receive a continuous
gene expression time course. These time courses were clustered into large sets of simultane-
ously expressed genes before they are �tted by a mathematical model.

Anyhow, all these working stages and the mentioned keywords will be explained more
precise and step by step in the following chapters.

1.3 Structure of the Thesis

Chapter 2 contains biological and technical basics which are essential for readers without
appropriate background knowledge to understand the following analysis methods. A short

3



1 Introduction

Figure 1.2: Work �ow presented in this thesis
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1.3 Structure of the Thesis

introduction into genetics is given and the functionality of microarray chips is presented. Es-
pecially sources of variances during the experiments are pointed out. Furthermore, the test
organism Magnaporthe grisea, its growth and relevance in agriculture is described.

In chapter 3 all methods used for the design of experiments, the normalization, and data
extraction of microarray measurements are presented. Light is shed on the key elements
and main in�uences for experimental design before the �nally used design is given. There-
after several normalization steps for handling different error sources of microarray experi-
ments are shown. The chapter is completed by the statistical analysis of the data using the
non-parametric Fisher-Pitman-Test and the calculation of the minimal number of microarrays
needed for a speci�c experiment.

Chapter 4 deals with the interpolation of the microarray measurements during time. There-
fore, the interpolation points and its accuracies are calculated. For the latter one an exact
variant of the bootstrap method is introduced. Based on these values a smoothing splines are
�tted to the data resulting in continuous estimations of the expression time courses of each
gene.

Due to the fact, that the calculation of a full-genome interaction network is not possible
– Magnaporthe grisea has more than 15000 genes – the genes had to be clustered. This is
done in chapter 5. Therefore, several appropriate distance measures of gene time courses as
well as three common clustering methods are discussed. The resulting clusters were validated
using quality indices. Finally, methods for estimating the overall time course of clusters are
presented.

Chapter 6 shows the calculation of the cluster interaction network. Interestingly a linear
model �ts well to the data while more complex models as recurrent neural networks which
take non-linear effects as saturation into account did not yield comparable results or did not
converge at all. Neither classical neural network training algorithms as the backpropagation
through time [RHW86], [Wer90] nor Bayesian particle �lter methods [Hau08] did satisfying
jobs �tting non-linear models to the data. Thus this chapter focuses a discrete linear time-
invariant state space model, its �tting to the data and the evaluation of the result based on
system theoretical properties.

In chapter 7 �nally the complete procedure from design of experiments up to the gene
interaction model is reviewed and summarized.

Please note also the extensive bibliography with many books and articles containing alter-
native approaches and possible extensions depending on the available data records.

This work is a mixture of many �elds of mathematical application. Unfortunately each �eld
has its own notation, which results in several overlaps in the usage of letters in the different
chapters. Nevertheless, the common notation is kept, such that each mathematical chapter
(i.e. the chapters 3-6) is written in its own private variable context. At the end of each of
these chapters the results are summarized, applied to the given data example. Additionally,
the resulting parameters, variables, and formulas which will be used in the following chapters

5
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2 Biological and Technical
Background

The moment one give close attention to anything, even a blade of grass,
it becomes a mysterious, awesome, indescribably magni�cent world in itself.

— Henry Miller, American writer (1891-1980)

2.1 Genes and DNA

It is not just fate that organisms look as they look and do as they do. The central statement
of the biological �eld of genetics is that everything is controlled by a large amount of factors,
inherited from the organisms parent or parents, called the genes. These bunches of biological
information are situated as distinguishable units in each cell of each living being. The whole
set of genes, called genome, contains every piece of information needed for a fully functional
individual of a species. Everything said for the organism holds for its single cells, too. Most
organic cells also do not do nothing - they interact. Whenever in�uences like nutrients, hor-
mones, toxicities etc. reach them from neighbor cells or from the outer environment, the genes
determine the cell responses.

There are many school books about the biochemical background of genes, their interaction
and control of cells’ behavior containing much more detailed information than it is possible
to write here in this chapter. This work also does not take all mechanisms into account gene
regulation exhibits - this would truly go beyond the scope of it. Thus, if desired the gently
reader may refer to [Hen98] or [Bro93].

The genes are encoded into the deoxyribonucleic acid (abbr.: DNA), which is a polymer
of nucleotides. Each of those nucleotides is a molecule of the sugar deoxyribose, a phos-
phate group and one of four different nucleobases: adenine (A), cytosine (C), guanine (G)
and thymine (T). Sugar and phosphate build the backbone of the polymer, whereas the nu-
cleobases, or better the sequence of these bases determine the genetic information. Between
the bases a different number of hydrogen bonds can be formed and therefore for each base a
complementary one exists: Adenine and thymine are coupled by two, cytosine and guanine by
three hydrogen bonds (cf. �gure 2.1). Thus, a DNA strand �ts exactly to another, its inverse
copy (lock and key principle).

In eukaryotic cells the gene encoding DNA (called sense) and its complementary DNA

7



2 Biological and Technical Background

Figure 2.1: Piece of a DNA double strand
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2.2 Information Flow in Biological Cells

(called antisense) form a double-stranded compound twisted to a double helix and coiled
around proteins forming structures called chromosomes as shown in �gure 2.2. In the ma-
jority of cases, these chromosomes exist diploid, i.e. in a twin set, one set from each parent,
and are situated in the cell nucleus.

Figure 2.2: Structure of chromosomes

To give an idea of the size of DNA, imagine that the largest human DNA strand is composed
of more than 200 million base pairs building a �ber of 8.4 cm length. The complete haploid
(single, contrary to diploid) set of human chromosomes consist of approximately 3.2 billion
base pairs, from which only a small amount encodes the genes. The human genome comprises
about 25.000 genes, depending on the source [LLB+01], [Ste04], [Con04].

A single gene is encoded in sequences between some hundreds up to tens of thousands of
bases. Most of the DNA, about 2.1 billions of base pairs, do not encode genetic informa-
tion. This so-called extragenic DNA contains sequences needed for gene expression (cf. next
section 2.2), for DNA stability and replication during cell divisions as the telomeres at the
chromosome endings, or remainders of the evolutionary process.

2.2 Information Flow in Biological Cells

The basal regulation of the cells behavior is done by the so-called gene expression, where
proteins for needed purposes are built from the genetic information. Whenever a special pro-

9



2 Biological and Technical Background

tein is needed as a response of environmental in�uences or simply for the upkeep of the cell
metabolism, a gene corresponding to this protein has to be activated. Therefore, other proteins,
known as transcription factors, bind to an extragenic part of the DNA called promoter which
enables an enzyme called RNA polymerase to read the desired gene information following to
the promoter region. A small part of the DNA in front of the RNA polymerase is uncoiled and
an inverse version of the antisense strand is produced (cf. �gure 2.3).

Figure 2.3: RNA polymerase and transcription

This inverse copy is again a nucleic acid, but unlike DNA it contains another base called
uracil (U) as complement to adenine and the sugar ribose instead of deoxyribose, and there-
fore these are called ribonucleic acids (RNA). Besides this molecular biological difference
the RNA coincides the sense sequence corresponding to the desired gene. When the RNA
polymerase reaches the extragenic section behind the genetic information, the so-called tran-
scription terminator, it releases the synthesized RNA strand and detaches itself from the DNA.
This transfer, the so-called transcription, takes place in the nucleus. The RNA molecules
produced by transcription can be divided into three main classes: ribosomal RNA (rRNA),
transfer RNA (tRNA) and pre-messenger RNA (pre-mRNA). The �rst two types are relatively
persistent and are needed for protein synthesis without encoding the protein structure itself as
the more short-lived pre-mRNA does.

As the name indicates, the pre-mRNA has to be further processed. Between gene coding
sections, called exons, there are still non coding parts called introns. The introns are removed
and the remaining exons are combined to the mature mRNA by a catalytic structure called
spliceosome. This process called splicing allows the coding of multiple different protein iso-
forms by one gene, if exons are extended or skipped or introns are kept. This phenomenon
called alternative splicing and is regulated again by special proteins.

Once the mature mRNA is built, it is transported from the nucleus to special organelles

10



2.2 Information Flow in Biological Cells

2nd base
U C A G

1s
t

ba
se

U UUU Phenylalanine
UUC Phenylalanine
UUA Leucine
UUG Leucine

UCU Serine
UCC Serine
UCA Serine
UCG Serine

UAU Tyrosine
UAC Tyrosine
UAA Stop
UAG Stop

UGU Cysteine
UGC Cysteine
UGA Stop
UGG Tryptophan

C CUU Leucine
CUC Leucine
CUA Leucine
CUG Leucine

CCU Proline
CCC Proline
CCA Proline
CCG Proline

CAU Histidine
CAC Histidine
CAA Glutamine
CAG Glutamine

CGU Arginine
CGC Arginine
CGA Arginine
CGG Arginine

A AUU Isoleucine
AUC Isoleucine
AUA Isoleucine
AUG Methionine*

ACU Threonine
ACC Threonine
ACA Threonine
ACG Threonine

AAU Asparagine
AAC Asparagine
AAA Lysine
AAG Lysine

AGU Serine
AGC Serine
AGA Arginine
AGG Arginine

G GUU Valine
GUC Valine
GUA Valine
GUG Valine

GCU Alanine
GCC Alanine
GCA Alanine
GCG Alanine

GAU Aspartic acid
GAC Aspartic acid
GAA Glutamic acid
GAG Glutamic acid

GGU Glycine
GGC Glycine
GGA Glycine
GGG Glycine

Table 2.1: The genetic code

in the cytoplasm, the so-called ribosomes. Those ribosomes consist of rRNA molecules and
proteins and are the main location for the protein biosynthesis called translation. Proteins
are polymers of amino acids, which develop special functional shapes, depending on their
sequence which is de�ned by the nucleobase sequence of the generating mRNA strand. Each
base triplet called codon maps to exactly one of twenty possible amino acids or acts as start
or stop codon for the translation. Table 2.1 shows this codon-protein mapping, the so-called
genetic code.

Note that the mRNA sequence can be read in three different ways, depending on which base
is used as start of a codon. These three possibilities are called reading frames. For preventing
ambiguousness a special triplet AUG (marked with * in table 2.1) is perceived as start codon
in addition to encoding the amino acid methionine. This means that the translation begins at
one of the �rst AUG codons on the mRNA strand. Which start codon on the mRNA actually
initializes the protein synthesis depends on the sequence of adjacent codons.

The colors of the amino acids in table 2.1 denote physical properties of the amino acids:
The red marked amino acids are nonpolar (hydrophobic), which means they prefer contact
to other nonpolar molecules and solvents. They are especially repelled by water. The other
colors denote hydrophilic amino acids. The green amino acids are polar but electrical neutral,
while the blue ones are basic and thus positive chargeable and the magenta ones are acidic and
negative chargeable. The importance of the difference in physical behavior will be explained
later on.
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2 Biological and Technical Background

The tRNA is a short RNA sequence with two functional sites: The anticodon, an triplet of
nucleobases which is the inverse of a codon on the mRNA and an acceptor arm which carries
the amino acid corresponding to the codon. At the ribosome a mRNA codon and the adequate
anticodon of a tRNA �t together and the tRNA releases its amino acid which is bound to
the end of the in this way generated amino acid chain (cf. �gure 2.4). Once translated the
mRNA is released from the ribosome and might be read again or denature after a while. The
degeneration ensures that a speci�c mRNA is only present, when it is needed.

Figure 2.4: Translation at a ribosome

The electrical charges and the ability or inability of the amino acids to develop hydrogen
bonds let the protein fold to a speci�c three-dimensional shape, depending on the order of
amino acids. The resulting structure usually has a hydrophobic core and a hydrophilic surface,
gaps and binding sites for building larger compounds with other proteins or molecules. These
protein compounds �nally are capable to do the job which was desired, when its gene was
read. They might be enzymes catalyzing some biochemical reaction, transport proteins carry-
ing important molecules through the cell membrane, regulatory proteins which again control
metabolic reactions or might have several other functions. Finally, the protein degrades after
a certain amount of time, differing by the protein type.

The genes whose DNA sequences are currently translated into proteins are called expressed
genes.

But how does a cell know, which gene is needed to be expressed?
Any step of the information �ow from DNA to proteins can be modulated by regulatory fac-
tors. Repressors inhibit the transcription of genes while activating transcription factors may
initiate it. Environmental conditions might change the structure of regulatory proteins which

12



2.2 Information Flow in Biological Cells

Figure 2.5: mRNA transcription and translation in a cell

causes the expression of genes which will generate an adequate respond to these in�uences.
In this manner a special piece of genetic information is only read and translated to proteins
when it is needed.

The amount of mRNA corresponding to a currently expressed gene shows saturation ef-
fects. Obviously, the concentration of mRNA in the cytoplasm is bound from below by zero,
whereas a upper saturation is caused by two effects. Firstly the degradation rate of mRNA is
concentration based, which causes together with a constant production a ordinary differential
system of �rst order. Secondly produced proteins might act as inhibitors for the their own
corresponding transcription.

As already hinted, in the majority of cases more than one special protein is needed for an
appropriate reaction to environmental in�uences. A whole bunch of proteins work together
in parallel or serial interaction pathways. Thus, genes are often expressed simultaneously in
clusters.

Furthermore, some proteins act as regulatory factors for others resulting in a network of
dependencies. This so-called gene interaction networks are expected as sparse, which means
each gene is regulated only by a few others.

For scienti�c research of cell processes it is important to obtain information about the tran-
scriptional activity of all involved genes as extensive as possible. Measuring the amount of
mRNA in the cytoplasm and thus of the expression level of corresponding genes yield an
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2 Biological and Technical Background

Especially time course experiments, where the gene expression levels are measured at sev-
eral time steps during some treatment period, give conclusions concerning the gene to gene
interaction and gene clustering. Such analysis allows a systematic manipulation of speci�c
components of the physiological network.

2.3 Two-Channel DNA Microarrays

”Microarrays” is a collective name for molecular biological multiplex assay technologies,
which allow parallel analysis of a large number of individual features of a small amount of
biological sample materials. Therefore, an arrayed series of many thousands of diminutive
spots of biological material as DNA or antibodies is imprinted on a glass slide, each spot
dedicated for one feature.

In the last decade the usage of microarray techniques became a very popular method for
high-throughput screenings. From 1998 to 2001 the technology became more an more in-
tegrated in everyday research and the publications concerning microarrays quadrupled each
year. Thus, referring to single articles or books is nearly impossible, however [Bla03] and
[HKL+05] should be mentioned, since these books overview microarray techniques and an-
alysis very well. Many other papers about functionality, pros and cons of microarrays are
listed in the bibliography.

In the following let the term ”microarray” denote the special type of full-genome two-
channel DNA microarrays used for gene expression pro�ling, described below.

These microarrays allow for the parallel measurement of the full transcriptional activity of
cells or cell compounds and thus they are a powerful biomolecular tool for measuring the
activity of thousands of genes up to the entire genome.

For that purpose gene corresponding DNA strands are spotted and �xed in a microscopic
grid on a slide of size of an object holder. Each probe spot position can be mapped to one
special gene of the organism which shall be examined. In addition to spots containing DNA
strands of the organism to be analyzed there is a small amount of control spots, showing a
special behavior which will be described below.

The typical microarray experiment takes course as follows (cf. �gure 2.6):
First of all two cell cultures are generated and hold under different conditions or taken from
different tissues, e.g. one healthy, the other one diseased. Each culture lives and grows by
activating the genes appropriate for its own environmental conditions. The needed gene in-
formation is transcribed into messenger RNA and released into the cytoplasm where it is
translated into proteins as explained in the previous section. This mRNA is extracted from the
cells of each culture and puri�ed. If the mRNA ful�lls requirements in quality and quantity
it is converted back to a more stable complementary DNA (cDNA) by a reverse transcription.
During this procedure different �uorescent markers, typically the green Cyanine 3 (Cy3) and
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the red Cyanine 5 (Cy5), are bound to the cDNA strands of the two samples, such that they
can be distinguished by their emitted light. Thereafter the solutions of color-labeled cDNA of
both cultures are mixed and incubated with the microarray chip where the cDNA can attach
to the spots of its inverse DNA strands by base pairing. This procedure, called hybridization,
runs under bene�cial, as constant as possible conditions such that the technical variation is
as minimal as possible, i.e. the percentage of bound cDNA is comparable between different
experiments. After some time, usually several hours, an equilibrium is reached, when the ratio
of bound cDNA of both samples coincides approximately with the ratio in the solution.

The control spots behave different. They are made such that genetic material binds depend-
ing on the embedded dye. Thus, none, one particular, or both color channels bind to them
strongly, depending on the control spot type.

Figure 2.6: Microarray hybridization

After the hybridization step the solution containing the remaining unbound cDNA is washed
off and the microarray chip is ready for scanning. Therefore, the microarray is irradiated
by a laser exciting at the characteristic wavelength of one of the dyes. The light emitted
by the concordant �uorescent markers is caught in a photomultiplier tube and quanti�ed by
the scanner. Afterwards the procedure is repeated using the characteristic wavelength of the
other dye. That way at each spot of the microarray the intensity of excited light emission is
measured. An example result of the scanning process is shown in �gure 2.7, where green
and red spots indicate the expression of the corresponding genes in the green respectively red
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2 Biological and Technical Background

Figure 2.7: Scanning result of a microarray hybridization. Greener spots indicate a higher
amount of bound Cy3-labeled cDNA, redder spots have more Cy5-labeled cDNA
bound while yellow spots are close to an even amount of Cy3- and Cy5-labeled
cDNA

The intensity values allow the calculation of the amount of bounded cDNA of each sample,
which can be used for reconstructing the expression level of the genes, i.e. the amount of
mRNA, in the cell cultures. The disparity between both intensities at one spot yields an up- or
down-regulation of the associated gene in one sample compared to the other.

2.3.1 Multi- and Time Course Experiments

Often there is not only one special comparison between one test group and one control group
desired, but a whole set of comparisons of different cell states, be they different tissues, or-
ganisms or treatments. From now on, let a set of microarrays for an analysis comparing more
than two samples be called multi-experiment.

A special case of multi-experiments are so-called time course experiments.
This setup compares the changes in gene expression of a tissue under a constant or after

an initial treatment during time. Growth processes and long-run stress response studies are
common examples. Time course experiments are nothing else than a bunch of single microar-
rays comparing the gene expression states of the tissue at several times. The resolution of
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time points is bounded from below due to some variance sources. First of all, biological in-
dividuals and even each single cell of an individual differ in their reaction time. Thus, the
mRNA extracted from the tissue is no snap-shot of an exact particular time, but an average
over a small time interval. Secondly, the extracting of the tissue and its mRNA might take
some time. Especially this fact will be the restricting factor for the microarray time course
experiments considered in this work as described in section 2.5.

2.4 Error Sources during Microarray Experiments

Unfortunately microarray measurements are very noisy. Besides the biological variance, the
variation of expression levels between single individuals of the same kind, there are many
technical sources of errors and variance.

Chip Dependent Errors

Each spot differs in the amount of genetic material plotted onto it during the chip fabrication.
Furthermore, the binding reaction of the cDNA to the spots might have proceeded more fully
to the equilibrium in one array than in another. Thus, the overall �uorescence of a designated
spot might differ between the different chips although exactly the same probes are applied to
them. Nevertheless, this chip dependent variation holds for both, the red and the green labeled
cDNA on the chip. Therefore, the ratio between the color intensities is not changed by this
type of error source.

Sample Dependent Errors

Even if the genetic material is extracted as accurate as possible from the tissue, the quantities of
obtained mRNA of the samples for the the microarray experiment differ. The biased reverse
transcription into cDNA as well as different build-in rates of the dye labels into the cDNA
strands cause further variance. This results in differences in the ratio of dye labeled cDNA in
the probes compared to the pristine amount of mRNA in the tissues.

Dye Dependent Errors

The two colors show different �uorescent behaviors. Due to frequency dependent differences
in the emission responses to the excitation laser and measurements in the photomultiplier
tube, the red dye (Cy5) tends to be brighter as the same amount of the green dye (Cy3), but
depending on the overall intensity of the measured spot. The logarithmic ratio of the intensities
of the two color channels plotted against the spot’s overall brightness shows a characteristic
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curvilinear shape (cf. �gure 2.8). This systematic dependence of the ratio from the overall
intensity is not reasonable by any biological process.

Figure 2.8: Typical curvilinear shape in plots comparing brightness and color ratio of microar-
ray spots

Furthermore, environmental in�uences affect the dyes in different ways (e.g. ozone de-
grades Cy5, while it does not affect Cy3 in a comparable manner) which results in a systematic
chip-wide bias.

Scanner Dependent Errors

Due to the technical properties of the laser scanning mechanism a microarray spot appears
brighter if the area around it is bright. Additionally to the spot-speci�c intensity informa-
tion the photomultiplier tube also catches light emitted by the labeled cDNA, which was not
completely washed off and remains on the slide around the real spots.

Upper boundaries for measurement values of the photomultiplier are reached at very bright
spots resulting in wrong ratios of measured dye intensities.

Uncertainties during the spot detection of the scanner cause further variance.
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2.5 Magnaporthe grisea

Work flow Dependent Errors

Slight differences in the handling of the test subjects and microarray slide might also result in
noticeable technical variation. Organisms are sensitive to time of day, the way of handling (and
thus sensitive to the practitioner) and so on. Unevenly exhaustive washing of the chips let the
amount of remaining unbound cDNA differ within as well as in between chips. Finally, white
noise during all working steps causes an additional variation in each single measurement.

2.5 Magnaporthe grisea

The organism, analyzed in this work, is the plant-pathogenic fungus Magnaporthe grisea,
which is probably the most destructive pathogen of rice in the world and thus one of the
worldwide most devastating threats to food production. Rice is the most important food crop,
being the primary source of food for more than half of the world’s population. The rice blast
disease caused by Magnaporthe grisea is known as rice fever in China since 1637. It spread
over more than 85 countries worldwide and destroys nowadays hundreds of millions of tons
of rice grain each year – enough to feed about 60 million people. Solely in China 5.7 million
hectares of rice were lost to the blast disease between 2001 and 2005. The importance of the
fungus is even increased by the fact, that the rice production has to be increased signi�cantly
to ensure the feeding of the growing world population. Recent studies of the International
Food Policy Research Institute indicate a need of an increase of 38% up to 2030. [WT09],
[CSC+09], [PL09], [WV09]

Due to its importance to the world agriculture but also because of advantageous properties
as model organism for host-parasite interactions Magnaporthe grisea became subject of many
biological studies. [Ebb07]

The airborne spores of the fungus may infect all aboveground parts of rice plants and other
cereals at any growth stage. The spread of the fungus in the host causes white to dark gray
lesions at diseased leaves, stems or panicles from which the fungus sporulates again to infect
new plants. While younger plants die, an infection of older rice plants causes the loss of the
grain set.

Magnaporthe grisea has seven chromosomes which are sequenced, i.e. its DNA base se-
quence is identi�ed, except for about 3%. These gaps cause that up to now still 159 so-called
supercontigs exist (www.broadinstitute.org). These supercontigs are identi�ed parts of chro-
mosomal DNA which cannot be linked together. For understanding, if Magnaporthe would
be fully sequenced, only seven supercontigs would remain, one for each chromosome. The
genome of Magnaporthe grisea contains more than 11000 protein-encoding genes. [DTEF05]

The data used in this work was generated using Magnaporthe grisea grown in vitro on
an appropriate culture medium under favorable conditions. For time 0 mRNA was taken
from dormant spores, which were not applied to the culture medium. Additional times were
1/2, 1, 2, 4, 8, 12, 18, and 24 hours after application (post-inoculation, abbr.: p.i.) of the
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Figure 2.9: Blast disease lesions on rice leaf, collar, node, and neck (l. to r.)

Figure 2.10: Scanning electron micrography of a Magnaporthe spore (conidium, CO) devel-
oping an appressorium (AP) on a rice leaf; scale bar 10�m
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spores. Therefore, the fungi of the different growth stages were scrapped from the culture
medium, shock-frosted and their mRNA was extracted for the further steps of the microarray
experiments. The scrapping and frosting took about half an hour, which was the delimiting
factor of time resolution for the time course experiment. The times 2, 4, 8, and 24 hours were
taken due to visible physiological changes of the fungus, which are described below, while the
selection of the other times will be explained in section 3.1.

Figure 2.11: The infection cycle of Magnaporthe grisea

Immediately after the arrival of the Magnaporthe grisea conidium (spore) on a rice leaf, i.e.
at 0 hours p.i., it releases a drop of mucilage, a gluey substance which sticks the spore to the
leaf surface (�g. 2.11, A) At 2 hours p.i. the conidium germinates by generation a short germ-
tube which forms a hook (�g. 2.11, B). By 4 hours p.i. an immature appressorium, a pressing
organ at the end of the germ-tube, is formed (�g. 2.11, C). The appressorium matures at 8-24
hours p.i. by embedding a thick melanin layer in the inner appressorial cell wall for resisting
the pressure. The turgor pressure is generated by glycerol which is built and transferred to the
appressorium time-delayed with respect to the melanin production (�g. 2.11, D). At 30 hours
p.i. the pressure is high enough to force a penetration peg into the rice leaf (�g. 2.11, E).
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Thereafter the fungus grows in the host and 4-5 days p.i. new conidia are produced (�g. 2.11,
G).

Figure 2.12: Growth of Magnaporthe grisea conidia; 1/2h p.i. (top left), 1h (top right), 2h
(middle left), 4h (middle right), 9h (bottom left), 18h (bottom right)

The used microarray architecture was the Agilent Magnaporthe Gene Expression Microar-
ray consisting of 15170 spots containing Magnaporthe grisea DNA, 6325 spots with DNA of
the host plant rice and 1080 control spots.

A last comment concerning the nomenclature of Magnaporthe. While Magnaporthe oryzae
is the scienti�cally correct name of the fungus, which prefers rice (scienti�c name: Oryza)
as host, the old name Magnaporthe grisea is still used in many communities [CK02]. So this
thesis refer to this old but more common name.
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3 Preprocessing of Microarray
Measurement Data

It is not enough to put thumbscrews on nature.
One has to understand when she testi�es.

— Arthur Schopenhauer, German philosopher (1788-1860)

When making measurements, two main questions arise inevitably:
How to make them? and How to use them?

Rather than addressing the technical realization of the measurement procedure (this task
should already be solved), the �rst question deals with the problem is, how to set up a good
strategy for producing meaningful data. There is nothing worse than running many expensive
experiments and collecting data which is not capable of generating signi�cant results. A so-
called design of experiments has to be made to ensure that the resulting data yields as much
information as possible. Thus, in the �rst section of this chapter design strategies for the
microarrays are presented.

Furthermore, the raw data drawn from experiments is as the name promises: raw. Many
error sources as already seen in section 2.4 falsify the measurements. Errors have to be iden-
ti�ed and removed or at least reduced, since a complete elimination is hardly ever possible.
Section 3.2 presents methods for error reduction.

The remaining in�uence of errors give rise to the second question: how to use measurement
data. For separating the “true data” from noise, the measurements have to be repeated. Then
statistical methods allow the estimation of the desired values. Section 3.3 yields a statistical
test appropriate for evaluating microarrays. Furthermore, this section closes the circle, since a
design of experiments could not be done before de�ning the needs of the statistical methods.
Here especially a formula for the number of needed measurement replications is presented.

3.1 Microarray Design of Experiments

Now knowing what microarrays are and that two different subjects are hybridized on them, the
question arises how to select the sample pair for each chip for getting a cheap but statistically
meaningful experiment. This selection is known as design of experiments.
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In this �eld many articles and books present different design approaches. Many of them are
designated as optimal - which might be correct for the special tasks they presented. A very
good overview to existing designs is given in [Chu02] and [KVLB09].

The selection has to be driven by statistical reasoning which Blalock divides appositely in
four factors: control, balance, randomization and replication. [Bla03]

“Control” denotes the structure of sample groups to be analyzed. Is there a dedicated control
group from which differences to other samples have to be discovered, or are all the subjects
equal and every comparison of note?

Considerations of all possible technical error sources are subsumed under the keyword “bal-
ance”. The general guideline is to distribute sources of variation equally to all samples. Those
variations might be time of day, speed of preparation and many others, the practitioner would
not even think of (cf. section 2.4). In two-channel microarrays one of the most important
design rules is the usage of so-called dye-swaps. Since the dye-labeling in�uences the mea-
sured data strongly, in addition to all normalization methods it is recommended to hybridize
each sample equally often with both colors. It would complicate the analysis, if one treatment
sample would have been hybridized solely with Cy5, another solely with Cy3. Then obviously
changes in gene expression levels can not be distinguished from dye in�uences.

While balance considers technical error sources, “randomization” handles biological ones.
Many biological factors (e.g. age, gender, weight) might have unknown in�uences to the
experiment, causing a biased result, if these factors are not equally distributed to the treatment
groups.

Finally, “replication” covers the number of repeated experiments and the number of indi-
viduals in one treatment group. The dye-swap mentioned already under balance shows the
importance of repeated measurements, called replicate. Additionally to the reduction of tech-
nical variances replicates allow statistical estimation of variances in the �rst place. In this
context one has to distinguish technical and biological replicates. Technical replicates (also
known as duplicates) are copies of the extracted genetic material prepared for hybridization,
while biological replicates are samples taken from different individuals of the same organism
under the same treatment. Thus, the technical replicates enable the measurement of technical
variances during the hybridization and scanning process, whereas biological replicates also
take biological variance into account, but intermixing it with the technical variance. Having
more than one individual in a treatment group is known as pooling. Interestingly the com-
munity, practitioners as well as statisticians, differs about the usefulness of pooling. Fact is,
that pooling reduces the variance of the treatment group, since a pool of n individuals has a
variance of

�2
pool =

�2

n
(3.1)

where �2 denotes the variance of the individuals.
This variance reduction would be helpful for distinguishing data distributions from microar-

ray experiments by many statistical tests. Expectedly pooling has also a drawback, since (3.1)
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holds only for normally distributed data and approximately for distributions similar to it. Of-
ten gene expression levels in treatment groups are not approximately normally distributed but
exhibit signi�cant outliers. These might be caused by many unknown and uncontrolled error
sources like diseases and unusually high stress responses. While individual hybridizations
would easily allow for the detection of those outliers pooling blurs its in�uence distorting the
average expression level of the treatment group. However, often the species to be examined
already implicates the decision if pooling should be used. Obviously, in the case considered
in this work, the fungus Magnaporthe grisea, a single spore would not yield enough mRNA
for the microarray machinery and thus pooling is inevitable.

Before selecting one of the standard designs, these principles have to be regarded to deter-
mine an appropriate one. Using the words of Sir Ronald A. Fisher:
“To call in the statistician after the experiment is done may be no more than asking him to

perform a postmortem examination: he may be able to say what the experiment died of.”
For the design of multi-experiments there are two main standard designs known in literature:

the common-reference and the loop design (also known as balanced design). Most of other
designs are special cases or mixtures of those.

The Common-Reference Design

For this design a common control group is de�ned as reference. This might be the untreated
organism, a dormant spore or a tissue of a speci�c age or at a speci�c time. cDNA from this
control group is hybridized against the cDNA of treated organisms at the desired time points
(cf. �gure 3.1, left). This yields a large number of control data but only one measurement
of a treated tissue per microarray chip. The common-reference design is expedient whenever
no comparison between the treatment groups but only the direct comparison of treatment to
control group is desired. So the statistical analysis of each comparison takes advantage of
the strongly represented control data, yielding usable results with a low number of necessary
chips. Even if a reference is not desired for examination and only the different treatments have
to be compared to each other, the common-reference design is chosen frequently. In that case,
each microarray has only one color channel of interest reducing the yield of data per chip,
but the experiment is less sensitive to biases and variances, since each sample to be analyzed
is handled in the same manner: Equally often hybridized in the same color channel and the
same reference. A further bene�t of the reference design is the easy expandability by adding
additional experiments with new treatment groups.

The Loop Design

Loop designs need no de�nite control group. Each test group is considered as equal and thus
hybridized equally often (cf. �gure 3.1, middle). This yields a common data size for all statis-
tical analyses and thus it is the preferable design whenever all test groups shall be compared to
each other. Furthermore, this design allows the usage of both color channels of the microarray
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for groups to be examined - which is not always the case in the common-reference design. The
drawbacks are �rstly that each treatment group is hybridized with different others, resulting in
a less comparable situation than the common-reference design. Secondly, this kind of design
is hardly expendable for additional treatment groups.

A variant of the loop design is the saturated design where each test group combination is
hybridized equally often (cf. �gure 3.1, right). If the saturated design demands that each
combination is hybridized twice with interchanged colors (dye-swap), the number of needed
microarrays for n test groups is at least n(n−1). Due to the polynomial growth of this variant
of the well-known handshake-problem this design results already for small numbers of test
groups in large numbers of necessary microarrays.

Figure 3.1: Left: Common-reference design. Middle: Loop design. Right: Saturated design

The Mixed Design

Even if no dedicated control group exists, often a mixture of both described design types is
used for microarray experiments, pro�ting from the advantages of both methods.

The experiment in this work was made in a two-step design (cf. �gure 3.2):
The dormant Magnaporthe grisea spore at time 0 was used as control group. Further spores
applied to the culture medium and grown for different maturing times became the test groups.
The �rst run of microarrays was made using the common-reference design, comparing a low
number of test groups to the control. This yielded knowledge about the genetically most active
time intervals. In these intervals additional times were added to the test groups for the second
phase. The additional microarrays needed for the new test groups were used to balance the
design. This resulted in a design with a higher weight on the control group due to the �rst
phase, but less experiments as needed for a common-reference design with the same number
of test group hybridizations.

The selection of times for the �rst phase were based on the visible physiological states of
the fungus growth (cf. section 2.5), and differs obviously for other organisms or treatments.
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Figure 3.2: Two-step design of the microarray experiment used in this work; each arrow (1st
phase: green, 2nd phase: red) represents an microarray experiment, its direction
determines the color labeling

Besides the general concept of “who-with-whom” the question arises how many measure-
ments have to be done to ensure a statistically meaningful result. The answer will be given
in section 3.3. But since the minimal sample size depends on the used statistical method and
there are several steps necessary before a statistical evaluation can be done.

3.2 Data Preprocessing and Normalization

Since Microarray experiments are quite expensive and especially for animal experiments the
number of individuals should be kept as small as possible, the data preprocessing and analysis
have to be very effective. Even an optimal design would not remove all sources of variances
and thus technical variation has to be distinguished from the biological one and reduced by
appropriate methods. Besides the Lowess-transformation method which will be presented
below, there exist many techniques and variants for data normalization as e.g. the method
of Workman et al. [WJJ+02] using smoothing B-splines on quantiles calculated from the
complete experimental data. Other approaches are available in many articles and books as e.g.
[YDLS01], [SS03], [BIAS03], [WBHW03], [Edw03], [SPT+04], [BHJ+04].

The main assumption for microarray normalization procedures is that the bulk of genes is
transcribed at a relatively constant level which does not differ under the treatment, during the
time course or between the compared tissues. Only a minority shows differences in their levels
of gene expression.

A second often used assumption is the existence of so called housekeeping genes, which
always belong to the constant transcribed genes. Their corresponding proteins are typically
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involved in the general maintenance of the cells. Nevertheless, it is a matter of dispute if genes
exist which possess the housekeeping property under all circumstances. Thus, the normaliza-
tion methods presented in this section will only use the �rst assumption.

3.2.1 Microarray Background Subtraction

Now let us assume that a microarray hybridization was run and the �uorescence data of the
hybridized chip was measured. The �rst step to reduce the in�uence of technical variation on
the microarray measurements is the subtraction of the background. Due to different amount
of labeled cDNA or an uneven distribution of the cDNA on the microarray slide, chips might
show a spatial or overall bias in the two color channels (cf. �gure 3.3).

Figure 3.3: Left: Spatial bias - the lower part shows a band of locally greener (Cy3) back-
ground. Right: Systematic bias - the complete chip shows a much higher Cy3
concentration throughout

This bias can be reduced by subtracting the intensities of the areas around the spots from
the measured spot brightnesses, separately for each color. In this connection literature distin-
guishes between three methods: overall, local or per-spot. But in fact, two are special cases
of the third. The local background correction calculates the average background brightness
in a window of prede�ned size around a spot. This average is subtracted from the brightness
of that spot. The overall background correction uses the complete chip as window, whereas
the per-spot correction sets the window size to a value small enough that it contains only the
direct neighborhood of the current spot, but no other adjacent spots.

The average of the background is calculated via arithmetic mean, trimmed mean, or median.
Remark that the background subtraction causes that especially dark spots, not much brighter

than the background become very noisy: While the difference of means is near to zero the
variation of the two intensities add up resulting in a high relative variance. Thus, all spots
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3.2 Data Preprocessing and Normalization

darker than a background-depending bound have to be removed for further analyses - their
values are to uncertain.

Further description and examples of microarray background subtraction are available in
[Bla03].

From now on assume that the background correction was done and thus the spatial errors
are removed as far as possible which will allow to disregard the spatial information in the
following chapters.

3.2.2 Between Chip Brightness Normalization

The background subtraction removed only the brightness differences caused by remaining
unbound cDNA. Independent of that, microarrays differ in their spot brightness due to hy-
bridization time and spot qualities. Dye-swaps reduce the color in�uences on the data of the
test groups due to the balance principle, but they do not cancel it completely and thus the chip
brightness has to be normalized. Because of the main assumption, that only a comparatively
small amount of genes shows a different behavior in the experiments, each slide should have
the same average brightness.

The control spots, which show very high or nearly no intensities, partly differing with re-
spect to the two color channels, as described in section 2.3, have to be disregarded during the
following normalization steps because they do not ful�ll the assumption of equal distribution
in both color channels (cf. �gure 3.4).

So let N ∈ N denote the number of the remaining spots at a microarray chip, mappable
to the genes of the corresponding organism. Further let Ri and Gi denote the background-
corrected �uorescence intensity of the red (Cy5) respectively green dye (Cy3) at a given spot
i ∈ {1, . . . ,N} measured by the photo multiplier.

Now let

Mi = log2

(
Ri
Gi

)
= log2Ri− log2Gi (3.2)

be the logarithmic ratio of the color channels at spot i ∈ {1, . . . ,N}, the so-called M-value,
and

Ai = log2

√
Ri Gi =

1
2

(log2Ri+ log2Gi) (3.3)

denote the logarithmic intensity average of spot i ∈ {1, . . . ,N}, the so called A-value.

Two typical MA-plots, plotting the M- and A-values of one microarray experiment, look as
shown in �gure 3.4.

Remark four obvious and very often occurring properties of microarray experiments:

1. The right plot of �gure 3.4 shows a higher overall intensity (A-value 7.45 average, com-
pared to 6.79 of the left one).
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3 Preprocessing of Microarray Measurement Data

Figure 3.4: MA-Plots; magnaporthe conidia before (Cy5) and 4 resp. 8 hours after application
to a culture medium (Cy3)

2. The scatter plot seems not to be evenly distributed around the log-ratio of 0, which
means that one dye is stronger all in all (mean M-value -0.97 on the left plot, -1.12 on
the right).

3. On the right side, the plots have a wedge-shaped boundary with 45° angles with respect
to the line M = 0.

4. The plots have curvilinear shapes, showing that M-value at low intensities tends notedly
towards the green color channel.

The differences in the color channels as well as the local artifacts of items 3 and 4 will be
discussed in the next section. Prior to that, the global brightness differences between chips
will be handled.

Due to the basic assumption, besides the in comparison few up- oder down-regulated genes
there is no biological reason for a higher overall brightness in one color channel or in one
duplicated microarray experiment. Differences have to be caused technically. Deviations in
the general intensity of the �uorescence, a varying build-in rate of the dyes or differences in
the amount of applied labeled cDNA of the two samples are possible reasons as argued in
section 2.4. Also the brightness differences between microarrays are caused by chip errors
and environmental in�uences as described in the place cited. Thus, these technical artifacts
have to be removed by an adequate data normalization.

Therefore, let P be the permutation function on {1, . . . ,N} such that the spot brightnesses
are sorted in an ascending order:

AP(i) ≤ AP(i+1) for all i ∈ {1, . . . ,N−1} . (3.4)
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3.2 Data Preprocessing and Normalization

The trimmed arithmetic mean value (TAM) of the set A = {Ai}i∈{1,...,N} is given by the
arithmetic mean, where the lowest and highest quantile of the scores are discarded. It is used
instead of the standard arithmetic mean to discard outliers, be they artifacts or caused by
strongly expressed genes.

Therefore let q ∈ [0,0.5) denote the size of the upper and lower quantile which shall be
neglected and

IQRq ({1, . . . ,N}) = {i ∈ {1, . . . ,N} | i > qN ∧ i < (1−q)N} (3.5)

be the corresponding interquantile range. Further let

Ñ =
∣∣IQRq ({1, . . . ,N})∣∣= N−�qN�−�qN� (3.6)

denote the size of the interquantile range.
This yields the trimmed arithmetic mean

TAMq (A) =
1

Ñ �
i∈IQR

AP(i) (3.7)

The trimmed arithmetic mean can be used to normalize the brightness of the chip with
respect to other microarrays hybridized with cDNA coming from the same experiment setup.
Therefore, let the scaled A-value be given by

Ashi f tedi = Ai−TAMq (A)+avTAMq (3.8)

where avTAMq denotes the average of the trimmed means of all microarrays within the exper-
iment set.

3.2.3 Within Chip Normalization by Lowess

Obviously, the point cloud in the MA-plot showing Mi vs. Ashi f tedi is the same as the original
one, just moved along the abscissa. The ratio offset as well as curvilinear shape still exist. As
expected this is an artifact, which can be proven easily by a so called dye-swap:
The probes are technically replicated and dye-labeled inversely to the original experiment.
If the banana-shape would be caused by the gene expression, it should now bend into the
other direction. But in fact the direction is again the same, which reasons that this shape is
color-based (cf. �gure 3.5).

Here again, the main assumption can be applied. The majority of spots has to be distributed
equally around the the log-ratio of 0. This can be achieved by the point-by-point subtraction
of a regression curve which �ts to the central axis of the banana shape.

An appropriate regression curve can be calculated by the locally weighted polynomial re-
gression method “Lowess” (LOcally WEighted Scatterplot Smoothing). This method calcu-
lates a least square regression polynomial of a low degree � (almost always � = 1 or � = 2)
in a local sliding window of the data. Higher degree polynomials tend to over�tting.
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3 Preprocessing of Microarray Measurement Data

Figure 3.5: MA-Plots of a dye-swap: Magnaporthe grisea conidia before and 0.5 hours after
application to the culture medium

For each spot in the scatter plot the n = � f N� nearest neighbors along the A-axis are used

for the estimation. Here, f ∈
(
�+1
N ,1

)
denotes the so called smoothing parameter. The lower

bound is needed to ensure the minimal number of data points to calculate the regression poly-
nomial. f is typically set to a value between 0.2 and 0.5, which lies surely in the interval of
allowed values, since normally thousands of gene spots are situated on microarrays. [Bla03],
[NIS09]

Let the sliding window

Wn (k) ⊂ {1, . . . ,N} (3.9)

be the index set of the n data spots, which are nearest to the actually considered spot k with
respect to the A-axis.

In addition to the selection of a local window, the in�uence of the M-values of the contained
data spots to the regression is weighted by a function of their A-value distance to the actually
considered spot. Therefore, let

Dk = max
{∣∣∣Ashi f tedi −Ashi f tedk

∣∣∣ ∣∣∣ i ∈ Wk

}
(3.10)

denote the maximal possible distance in the window.

The traditionally selected function is the tri-cube weight function is given by

wk :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wn (k) −→ [0,1]

i �−→
⎡
⎣1−

(∣∣∣Ashi f tedi −Ashi f tedk

∣∣∣
Dk

)3
⎤
⎦3

(3.11)
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With this weightening the following error function has to be minimized for every spot k:

Ek (a1, . . . ,a� ) = �
i∈Wn(k)

wk (i)
[
Mi− pk

(
Ashi f tedi ; ak1, . . . ,ak�

)]2
(3.12)

where p is a polynomial of degree � and ak1, . . . ,ak� its coef�cients.
Now de�ne the value of the global regression curve F at point Ashi f tedk by

F
(
Ashi f tedk

)
= pk

(
Ashi f tedk ; ak1, . . . ,ak�

)
(3.13)

Doing this for each data spot yields the function values of the regression curve F at Ashi f tedi

for all i ∈ {1, . . . ,N}, which allows the normalization of all data spots by

Mlowess
k = Mk−F

(
Ashi f tedk

)
for all k ∈ {1, . . . ,N} (3.14)

and reduces the brightness-dependence on the intensity ratio (cf. �gure 3.6).

Figure 3.6: MA-Plot of the Lowess-transformed data of �gure 3.5

The brightness-ratio-data is back-transformed to absolute values in the two color channels
by

Rnormk = Ashi f tedk + Mlowess
k
2

Gnorm
k = Ashi f tedk − Mlowess

k
2

(3.15)

keeping the logarithmic scale for further computations presented in the next sections.
Now, the dye dependence of the measured expression levels at one chip is reduced as far

as possible. Thus, the dye information can be discarded and the measurements are treated
equally, no matter which label they had (cf. section 3.4).
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3 Preprocessing of Microarray Measurement Data

One technical artifact type remains: the wedge-shape on the right side of the MA-plots.
This is due to the bounded maximal brightness detectable by the scanner. Along the straight
boundary one color channel reached that maximum. In the half-plane M > 0, this is the red
channel, for M < 0 the green channel is maximal. However, this error is not removable, since
there is no possibility to determine the true value of a spot with maximal brightness in one
or both channels. Thus, there are two ways to deal with this artifact: Either remove all data
with at least one color channel exhibiting the maximal value or “ignore” the problem. In this
work the latter solution is chosen. The limiting of a high expression level in one channel
causes that the color ratio is less extreme than the underlying mRNA ratio. This means, taking
this arti�cially disturbed data into account during the statistical analysis would only increase
the number of false negatives, namely whenever the reduced ratio yields a non-signi�cant
difference in gene expression. In contrast, removing the data before applying the statistical
test results in a too low sample size for several genes for detecting expression differences at
all. Thus, the slight decrease of statistical power for genes exhibiting maximal expression
levels has to be accepted.

3.3 Statistical Analysis and Design of Experiments
(cont.)

Statistical testing methods are multitudinous and the selection of the one test to be used seems
often to be some kind of educated guess as well as a little bit luck. A vast overview of the
most common testing scenarios and suitable statistical tests is given in [BLB00] or [NIS09].

However, for the selection of an appropriate statistical testing procedure and later on for the
design of the experiments, there are some crucial points which shall be taken into account:

• First, in spite of the data preprocessing, microarray data seems not to be normally dis-
tributed, neither in the linear nor in the logarithmic scale. Here again, the microarray
community is not agreed and many microarray experiments are evaluated using para-
metric hypothesis tests like the two-sample t-test, which does not keep the desired sig-
ni�cance level if the assumption of normal distribution is not ful�lled. Due to the very
low number of measurements a test for normally distributed data is insigni�cant as well.
Therefore, a nonparametric statistical test, which is independent of underlying distribu-
tions, has to be chosen for the detection of differentially expressed genes.

• Because of the high costs of microarrays, the size of the sample sets usable for statisti-
cal analysis is quite low, which allows the selection of computational highly expensive
randomization tests.

• From the biological point of view a change in gene expression is not noteworthy until
it rises beyond twice the level as normal or falls below half the level. This is a rule
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3.3 Statistical Analysis and Design of Experiments (cont.)

of thumb. Other organisms and treatments might cause thresholds different from two.
Nevertheless, all genes whose fold-change in expression do not exceed this speci�c
factor will be neglected in the further statistical analysis.

• Finally, for a gene-wise hypothesis testing a �-risk of 5% holds for most needs, since
microarrays are often used as a �rst whole-genome search for candidate genes, whose
expression levels are then examined separately by other, more exact and much cheaper
methods as the so-called qualitative Real Time Polymerase Chain Reaction (qRT-PCR).
This second examination method is additionally recommended, because the high num-
ber of gene spots at a full-genome microarray either increases the number of false posi-
tives to an unacceptable high value or raises the needed signi�cance level by a Bonfer-
roni correction method. The later one again demands much more microarray experi-
ments to ensure the detection of differentially expressed genes at all. Thus, from now
on, lets only consider a hypothesis testing for each gene separately, being aware of the
fact, that this would also yield many false positives under the tens of thousands genes for
(nearly) sure. More about Bonferroni correction and adjustment of signi�cance levels
can be found in [Bla03].

3.3.1 Fisher-Pitman-Test

The nonparametric Fisher-Pitman Test detects differences in mean values of two independent
sample sets ful�lling the demands in the outset. It is based on resampling of the data which
shall be examined and thus closely related to bootstrapping methods like the one presented in
section 4.1. The underlying theory was developed by Sir Ronald A. Fisher, who was already
quoted in this chapter and the Australian mathematician Edwin J. G. Pitman, in the 1930s.

The test goes as follows:
Let X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} be two independent samples, in our case microarray
data sets for two different treatments or tissues which shall be compared. Let X respectively
Y denote the corresponding arithmetic means.

Furthermore, let D= X−Y be the difference of the mean values. For simplicity and without
loss of generality, let D≥ 0, else exchange the sets X and Y .

Now assume, as null hypothesis H0, both sets X and Y were drawn at once from the same
distribution. Then the question arises, how probable is a split into sets of size m and n that
that a mean value difference greater or equal as D arises. If only relatively few possibilities
exist, the null hypothesis can be refuted and the sets X and Y are assumed to be samples from
distributions with different means, i.e. the gene expression levels differ.

More precise, calculate the number of dichotomies of X ∪Y into sets of size m and n which
causes a difference of at least D and compare it to the overall number of possible dichotomies.

From the computational point of view, its faster, if the sum of one sample set Sx =
m
�
i=1

xi is
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D=
m+n
mn

Sx− 1
n
S (3.16)

where S denotes the sum of all values in X and Y .
Thus, the probability P for choosing m elements out of X ∪Y with a sum of at least Sx

has to be calculated. Since the sample set sizes are quite small counting the number of these
possibilities, call it k, is not computational involving at all. The probability for selecting one
of those extreme dichotomies is consequently

P =
k(m+n
m

) (3.17)

If P is not greater than the desired �-risk the null hypothesis H0, no existing difference in the
tested gene between both treatment types, is rejected. The gene is detected as over-expressed
in the �rst sample.

An algorithm for calculating the probability P is given in appendix B.
Because of the dichotomy (X ,Y), which obviously ful�lls the demands, k is always at least

one and thus the probability is bound from below by

P≥ P− =
1(m+n
m

) (3.18)

Hence there is a need for P− ≤ � to have a chance to detect anything at all, which yields a
lower bound for the sample sizes m and n.

This leads to the minimal design of experiments as calculated in the next chapter.

3.3.2 Minimal Sample Sizes

In this section a way to calculate the minimal sample size for a microarray common reference
design is presented. Treat a loop design as a common reference design with only one treatment
group. Then the resulting minimal sample size holds obviously for all test groups in a loop or
some mixed design.

For a common reference design, let the �-risk, a control population C and k treatment
populations Ti, i ∈ {1, . . . ,k} be given. Find the minimal number of microarrays experiments
such that differential expressed genes are detectable under optimal, noise-free conditions, i.e.:(

c+ ti
ti

)
≥ 1

�
(3.19)

where the control population is hybridized c times and the treatment population Ti is hy-
bridized ti times. Obviously, due to the constant � and c, t = ti is constant for all i∈ {1, . . . ,k},
too.
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Thus, the optimization problem is given by

Minimize c+ kt

subject to c, t ∈ N(c+t
t

) ≥ 1
�

(3.20)

However, for �-risks about 1-5% the numbers are quite small, such that simply trying all
possible combinations gives the solution even faster than highly involved algorithms.

For � = 1, 2 and 5% table 3.1 shows the necessary number of hybridizations under optimal
conditions. Nevertheless, it is recommended to hybridize each population equally often in
both color channels to decrease the in�uence of the dyes further. This allows only even num-
bers for the optimization problem, which are given in parentheses whenever the optimization
yields odd numbers. In this case c and t stay constant also for k larger than 8. Keep in mind
that the numbers specify the minimal amount of chips to detect anything at all and are calcu-
lated for optimal conditions. However, in the majority of cases only some of the differential
expressed genes are sought-after, with no special weighting. Therefore, these low numbers
of experiments yield �rst statistical results which can be enhanced by hybridizing additional
microarrays containing the relevant probes or by running more precise gene-speci�c methods
as qRT-PCR.

3.4 Results

In this chapter the raw data taken from the microarrays was normalized and the error in�u-
ences were reduced. MA-plots of all microarray data, both in raw format and normalized, are
available in appendix A. The smoothing parameter f was set to 0.2.

As already said, the dye information can be neglected after this chapter. For further calcu-
lations collect the data of all measurement of each gene under a certain treatment in a set, no
matter on which microarray and with which dye-label it was hybridized.

Therefore, put the values of Rnormg respectively Gnorm
g from (3.15) into the set Mg,t if the

red respectively green channel of the microarray was made from the genetic sample under
treatment t.

In the following these sets will be denoted by

Mg,t =
{
m(1)
g,t , . . . ,m

(ng,t)
g,t

}
(3.21)

where ng,t ∈ N is the number of measurements of gene g under treatment t taken from a
treatment set T = {t1, . . . , t�} (� ∈ N). The genes are numbered serially g ∈ {1, . . . ,�} with
� ∈ N.

Since this work is based on a microarray time course experiment of the growth of Mag-
naporthe grisea, the treatments are the post-inoculation (p.i.) times, i.e. the hours passed
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�-risk
k 1% 2% 5%
1 c = 5 (6) c= 4 c= 3 (4)

t = 5 (4) t = 4 t = 3 (4)
2 c = 6 c= 4 c= 4 (6)

t = 4 t = 4 t = 3 (2)
3 c = 7 (6) c= 5 (4) c= 3 (6)

t = 3 (4) t = 3 (4) t = 3 (2)
4 c = 8 (6) c= 6 (10) c= 6

t = 3 (4) t = 3 (2) t = 2
5 c = 7 (14) c= 5 (10) c= 6

t = 3 (2) t = 3 (2) t = 2
6 c = 8 (14) c= 10 c= 6

t = 3 (2) t = 2 t = 2
7 c = 7 (14) c= 10 c= 6

t = 3 (2) t = 2 t = 2
8 c = 14 c= 10 c= 6

t = 2 t = 2 t = 2

Table 3.1: Necessary number of microarray hybridizations of control (c) and treated (t) sam-
ples

between application of the spores to the nutrient medium and the extraction of its mRNA.
Thus, the treatment set or time set is given by

T = {0,0.5,1,2,4,8,12,18,24} (3.22)

For the usage in indexed sums the elements of ti ∈ T , i ∈ {1, . . . ,9}, are sorted in ascending
order, i.e. ti < ti+1.

The design of experiments was set up such that each p.i. period besides 0 was hybridized
4 times, i.e. ng,ti = 4 for all i ∈ {2, . . . ,9}. The dormant spores were hybridized 12 times, i.e.
ng,t1 = 12.

The used microarray chips have 15170 data spots with Magnaporthe grisea genes, 6325
spots with rice genes, and 1080 control spots.

For signi�cance analysis only data spots g were considered, which exhibit a fold change of
at least 2 at any time ti, i ∈ {2, . . . ,9}, with respect to the dormant spore t1, i.e.∣∣log2

(
Mg,ti −Mg,t1

)∣∣≥ 1 (3.23)

where Mg,t denotes the arithmetic mean of set Mg,t .
The expression levels of all these data spots were compared using the Fisher-Pitman-Test

with � = 5%. More precise, the microarray data of the growing fungus and the dormant
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Differentially expressed genes
ti Magnaporthe Rice Control

0.5 up: 1550 up: 1 up: 0
down: 760 down: 6 down: 1

1 up: 1497 up: 23 up: 0
down: 1048 down: 16 down: 2

2 up: 1672 up: 14 up: 0
down: 1200 down: 82 down: 1

4 up: 1498 up: 18 up: 1
down: 1653 down: 76 down: 3

8 up: 1193 up: 10 up: 0
down: 1936 down: 23 down: 1

12 up: 2222 up: 10 up: 0
down: 1865 down: 942 down: 3

18 up: 2018 up: 157 up: 0
down: 1551 down: 10 down: 1

24 up: 1670 up: 45 up: 0
down: 2067 down: 9 down: 1

Table 3.2: Signi�cantly differentially expressed genes

spores was tested for differences. Therefore, Mg,t1 was compared to Mg,ti for all i ∈ {2, . . . ,9},
which resulted in detecting differential gene expressions as given in table 3.2. A gene sig-
ni�cantly differentially expressed at time ti is said to be up-regulated, if Mg,ti > Mg,t1, and
down-regulated, if Mg,ti < Mg,t1.

This results in the detection of a differential gene expression in 7174 Magnaporthe grisea
genes, 1171 rice genes, and at 7 control spots.

For further calculations all genes with no detected differential expression levels at any time
were discarded, which results in � = 8352.
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4 Interpolation of Time Course
Data

Forever is composed of nows.

— Emily Dickinson, American poet (1830-1886)

In this section the interpolation of time-discrete expression level measurements of a single
gene g is presented. Therefore, let a time course microarray experiment be run and the data
be normalized using the methods of section 3.2, which results in data sets Mg,t from (3.21)
with time t from the time set T of equation (3.22). Figure 4.1 shows the measurements of an
exemplary gene time courses.

Figure 4.1: Measurements of an exemplary gene time course

Due to the low number of measurements at a speci�c time and the consequential sensi-
tivity to measurement outliers the arithmetic mean is no meaningful estimator for the gene
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yi = med(Mg,ti) (4.1)

denote the expression level at time ti estimated by the median.
This results in a interpolation set

{(t1,y1) , . . . ,(t� ,y�)} (4.2)

with ti < ti+1 for all i ∈ {1, . . . ,�−1}.
There are many possibilities to interpolate these data points, starting with a simple con-

necting polygon up to more complex structures as wavelets. Since no further information of
the true gene expression pathway is available, there is no right or even unique way for in-
terpolation. However, in this chapter the concept of smoothing splines will be presented as
interpolation method for microarray time course data and its advantages will be stated. Be-
sides the usage of smoothing splines for time course interpolation presented below, they were
also successfully used in several other tasks of microarray analysis as normalization [WJJ+02]
or clustering [MCZL06].

In contrast to normal splines, smoothing splines do not force the interpolation curve exactly
through the data points. Instead the curve only approaches the points depending on their
quality.

This “quality” will be calculated in the �rst section of this chapter. While the common
quality measure for the arithmetic mean of a set is its standard deviation, the median does
not have a corresponding accuracy measure. Motivated by bootstrapping, a stochastic method
able to estimate the accuracy of a median, an alternative method will be deduced. Due to its
origin and properties the oxymoron exact bootstrapping is chosen as name for this method.

4.1 Accuracy Estimation by Bootstrapping

Besides the estimation of the gene expression level a measure of its accuracy is needed. While
there exists a common and easily computable estimator for the standard deviation of the arith-
metic mean, there is no such formula for an accuracy measure of the median. This section
presents shortly the general bootstrap approach for accuracy estimations of statistics, which
will be used afterwards for the median.

Bootstrapping is a statistical method based on a repeated calculation of statistics based
on a sample to estimate this statistic of the underlying unknown population. Bradley Efron
presented it for the �rst time in 1979. However, the basic idea behind the bootstrap goes back
at least two centuries. While the high number of recalculations was obviously problematic at
that time, the increased computing power nowadays allows the extensive usage method in few
minutes.

A detailed introduction into bootstrapping methods is given in [ET93].
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Now the accuracy of a statistic based on a sample set shall be estimated by bootstrapping.
Let therefore n ∈ N,

X (n) = (x1, . . . ,xn) ∈ X
n (4.3)

be the sample of a population set X, and

S : X
n → R (4.4)

the statistic, whose accuracy shall be estimated.

A corresponding bootstrap sample B(n) = (b1, . . . ,bn)∈X
n is generated by sampling n times

randomly from X with replacement. The statistic S
(
B(n)

)
applied to the bootstrap sample is

the bootstrap replicate of S.

This procedure is repeated obtaining a set of bootstrap samples B(n)
1 , . . . ,B(n)

m of m ∈ N and

its corresponding bootstrap replicates S
(
B(n)
i

)
for i ∈ {1, . . . ,m}. An usual choice of m is

between 50 to 200. [ET93]

Now estimate the accuracy of the statistic by the standard deviation w of the bootstrap
replicates:

w(S,m) =

√
1

m−1

m

�
i=1

[
S
(
B(n)
i

)
−S

(
X (n)

)]2
(4.5)

This yields an estimation of root mean squared error (abbr.: rmse) w(S,m) for any statistic
S.

4.1.1 Exact Bootstrapping

The bootstrapping method is an obvious and straight forward approach to solve the problem
concerning the accuracy of the median. However, one should not forget two things: Firstly
microarray measurements often are only few. Secondly, the median depends only on one (in
the case of an odd sample size) or two (if the sample size is even) central values of the sample.
Both properties can be used to calculate the average exactly by considering each possible
bootstrap replicate. [GPSB84]

While there are nn possibilities for drawing n times out of n values with replacement, this
number can be dramatically reduced if X is ordered and the statistic S is order-independent,
i.e.

S
(
B(n)

)
= S

(
	
(
B(n)

))
(4.6)

for any bootstrap sample B(n) and any permutation function 	 : X
n → X

n.

For example the accuracy of the median of a sample set of size 4 can be calculated exactly
with 35 steps instead of the recommended lower bound of 50 bootstrap replicates, which will
be shown below.
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4 Interpolation of Time Course Data

Lemma 4.1:
Let X be a non-empty set and X (m) = (x1,x2, . . . ,xm) ∈ X

m. Then there exist

Pn,m =
m

�
an=1

an

�
an−1=1

· · ·
a2

�
a1=1

1 (4.7)

different samples B(n) = (b1, . . . ,bn) ∈ X
n of X (m), drawn with replacements, ful�lling the

order condition for all i ∈ {1, . . . ,n} and k ∈ {1, . . . ,m}

bi = xk ⇒ b j ∈ {x1, . . . ,xk} for all j ∈ {1, . . . , i} (4.8)

The lemma especially holds for the bootstrapping case m= n.

Proof. by induction over sample size n.
Basis (n = 1):

There are obviously

P1,m =
m

�
a1=1

1 = m (4.9)

different possibilities to chose one out of m values.
Inductive step (n→ n+1):

Let bn+1 = xan+1 for an an+1 ∈ {1, . . . ,m}. Because of (4.8) holds that bn,bn−1, . . . ,b1 can only
be chosen out of an+1 possible values (x1,x2, . . . ,xan+1). In that case, there exist

Pn,an+1 =
an+1

�
an=1

an

�
an−1=1

· · ·
a2

�
a1=1

1 (4.10)

possibilities ful�lling the order condition (4.8), due to the induction hypothesis.
Adding up all possibilities for an+1 yields the desired formula

Pn+1,m =
m
�

an+1=1
Pn,an+1

=
m
�

an+1=1

an+1

�
an=1

· · ·
a2

�
a1=1

1
(4.11)

which �nalizes the proof.

While the lemma above shows the origin of the equation quite demonstratively and can be
immediately used for deriving a corresponding algorithm for generating all these possibilities,
it is is very unhandy for the calculation. However, on can observe that

• P1,m =
(m

1

)
is nothing else than m

• P2,m =
(m+1

2

)
is the sum of the �rstm natural numbers (m-th triangular number, 2-simplex

number)
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4.1 Accuracy Estimation by Bootstrapping

• P3,m =
(m+2

3

)
is the sum of the �rst m triangular numbers (m-th tetrahedral number,

3-simplex number)

• P4,m =
(m+3

4

)
is the sum of the �rst m tetrahedral numbers (m-th 4-simplex number)

• ...

This allows a faster calculation of Pn,m as the following lemma shows.

Lemma 4.2: Number of Ordered Samples
Let Pn,m be de�ned as in (4.7), then the following holds

Pn,m =
(
m+n−1

n

)
(4.12)

Proof. It is already known from the proof of lemma 4.1 that

Pn+1,m =
m

�
i=1

Pn,i (4.13)

thus the statement of the lemma is proven, if(
m+(n+1)−1

n+1

)
=

m

�
i=1

(
i+n−1

n

)
(4.14)

holds.
This will be shown by induction over m:

Basis (m= 1): (
1+(n+1)−1

n+1

)
= 1 =

1

�
i=1

(
i+n−1

n

)
(4.15)

Inductive step (m→ m+1):
The right hand side of (4.14) becomes

m+1
�
i=1

(i+n−1
n

)
=

(m+n
n

)
+

m
�
i=1

(i+n−1
n

)
=

(m+n
n

)
+
(m+n
n+1

)
=

(m+n+1
n+1

) (4.16)

where the penultimate equality is due to the induction hypothesis and the last one is Pascal’s
equality.

Knowing the number of ordered possibilities of bootstrap samples, the question arises how
many unordered versions of each of them exist.

More precise: Let X, X (m) be given as in lemma 4.1. Let B(m) = (b1, . . . ,bm) be a bootstrap

sample of X (m) ful�lling the order condition 4.8. Find N
(
B(m)

)
given by

N
(
B(m)

)
=
∣∣∣{	(

B(m)
)
|	 is a permutation on X

m
}∣∣∣ (4.17)

This can be easily calculated by an combinatorial consideration:
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4 Interpolation of Time Course Data

Lemma 4.3:
Let X = (x1,x2, . . . ,xm) and its bootstrap sample be B(m). Then

N
(
B(m)

)
=

m!
m


i=1

�B (xi)
(4.18)

where �B (x) denotes the multiplicity of x in B.

Together with lemma 4.1 there is an exact bootstrap estimator for the accuracy of the statis-
tic S by adding up the accuracy of each possible bootstrap replicate:

Theorem 4.1: Exact Bootstrapping
Let X (m) = (x1,x2, . . . ,xm) ∈ X

m. Then the accuracy of the statistic S : X
m → R can be calcu-

lated by

w
(
S,X (m)

)
=

m

�
am=1

am

�
am−1=1

· · ·
a2

�
a1=1

N ((xa1 ,xa2 , . . . ,xam)) ·w
(
S,X (m),(xa1 ,xa2 , . . . ,xam)

)
(4.19)

where

w
(
S,X (m),B(m)

)
=

√
1

m−1

m

�
i=1

[
S
(
B(m)

)−S
(
X (m)

)]2
(4.20)

Proof. Construction using lemma 4.1 and lemma 4.3

While this result holds for any order-independent statistic the median allows for further
reduction of calculation steps. Remark that the median depends only on the middle value (if
the length of the data vector is odd) or the two middle values (if the length is even). The exact
values of the other vector components do not matter, it is only important that one half is less,
the others greater than the middle values. This fact can be used as the theorem below shows:

Theorem 4.2: Exact Bootstrapping for the Median of a Sample of Even-Numbered Size
Let m ∈ 2N, X (m) = (x1,x2, . . . ,xm) ∈ R

m sorted in ascending order and v = m
2 −1. Then the

accuracy of the median can be calculated by

w
(
X (m)

)
=

√√√√ 1
mm−1

m

�
b=1

m

�
c=b

P(b,c)
(

med
(
X (m)

)− xb+ xc
2

)2

(4.21)

where

P(b,c) =
v

�
i=0

v

�
j=0

(b−1)v−i (m− c)v− j
(

m
v− i

)(
v+ i+2
v− j

)(
i+ j+2(

1−�b,c
)
(i+1)

)
(4.22)

is the number of all different bootstrap samples of X (m) having b and c as middle values.
(For convenience, in that equation let 00 = 1.)
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4.1 Accuracy Estimation by Bootstrapping

Proof. If (4.22) is proven, the equation (4.21) becomes quite obvious.
Therefore, assume �rstly the indices b and c of the two middle values of a sample of X (m)

with b≤ c. Then there are v indices of the sample less than or equal to b, call them a1, . . . ,av,
and v indices greater than or equal to c, call them d1, . . . ,dv (since the data set was sorted).

Now have a look onto the vector (a1, . . . ,av,b):
Let B =

{
 |a = b

}
and ¬B = {1, . . . ,v} \B. The vector

(
a
)
∈¬B with a ∈ {1, . . . ,b−1}

can take
Nval
|B| = (b−1)v−|B| (4.23)

different values.
The same argument for (c,d1, . . . ,dv) and C =

{
�|d� = c

}
results in

Nval
|C| = (n− c)v−|C| (4.24)

different possibilities for the vector
(
d�
)
�∈¬C with d� ∈ {c, . . . ,n}.

In the case of b < c this yields four vectors whose components can be distributed to the
n = 2v+2 components of the complete sample vector:

i) v−|B| values less than b,

ii) 1+ |B| values equal to b,

iii) 1+ |C| values equal to c, and

iv) v−|C| values greater than c.

Thus, there are

Ndist =
(

2v+2
v−|B|

)(
v+ |B|+2
v−|C|

)(|B|+ |C|+2
1+ |B|

)
(4.25)

different possibilities for that distribution.
In the case b= c there are three vectors

i) v−|B| values less than b,

ii) 2+ |B|+ |C| values equal to b = c,

iii) v−|C| values greater than c.

and therefore

Ndist =
(

2v+2
v−|B|

)(
v+ |B|+2
v−|C|

)
(4.26)

different possibilities for that distribution.
The two equations (4.25) and (4.25) can be combined using the fact that

(n
0

)
= 1 and the

Kronecker symbol

Ndist =
(

2v+2
v−|B|

)(
v+ |B|+2
v−|C|

)( |B|+ |C|+2(
1−�b,c

)
(1+ |B|)

)
(4.27)
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4 Interpolation of Time Course Data

The product of the number of possible values and its distribution of the sample vector yields
the number of all possible sample vectors with

N|B|,|C| = Nval
|B|N

val
|C|N

dist (4.28)

Finally, for getting all sample possibilities with middle values b and c with b≤ c all possible
numbers for i = |B| and j = |C| have to be added up

P(b,c) =
v

�
i=0

v

�
j=0

(b−1)v−i (m− c)v− j
(

m
v− i

)(
v+ i+2
v− j

)(
i+ j+2(

1−�b,c
)
(i+1)

)
(4.29)

which is exactly equation (4.22) in the theorem.

Corollary 4.1: Exact Bootstrapping for the Median of a Sample of Odd-Numbered Size
Let m ∈ 2N−1, X (m) = (x1,x2, . . . ,xm) ∈ R

m and v = m−1
2 . Then the accuracy of the median

can be calculated by

w
(
X (m)

)
=

√
1

mm−1

m

�
b=1

P(b)
(
med

(
X (m)

)− xb
)2

(4.30)

where

P(b) =
v

�
i=0

v

�
j=0

(b−1)v−i (m−b)v− j
(

m
v− i

)(
v+ i+1
v− j

)
(4.31)

is the number of all different bootstrap samples of X (m) having b as middle value.
(For convenience, in that equation let 00 = 1.)

Proof. Similar to b = c in theorem 4.2.

Summarizing, the calculation of the accuracy of the median by theorem 4.1 needs the eval-
uation of

(2n−1
n

)
summands, where n is the size of the underlying vector X (n). The calculation

by theorems 4.2 or corollary 4.1 has
(n+1

2

)n2

4 summands for even n respectively n(n+1)2

4 for odd
n. For comparison, there are nn possibilities for bootstrap samples of X (n), which have to be
considered for an exact and straight forward calculation. These values for n = {1,2, . . . ,10}
are shown in table 4.1.

4.2 Smoothing Splines

Using either the bootstrap algorithm or one of the presented exact methods, for each time point
ti, i∈ {1, . . . ,�}, �nally two values are obtained: the gene expression level yi, estimated by the
data median, and its rmse, the accuracy wi (cf. �gure 4.2).

Now the question arises, how to connect the time discrete measurements yi to get a continu-
ous time course. Obviously, the trajectory should be closer to the yi, which are more accurate,
i.e. those which have a small corresponding wi.
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4.2 Smoothing Splines

n
Summands to calculate

considering all possibilities by thm. 4.1 by thm. 4.2 and cor. 4.1
1 1 1 1
2 4 3 3
3 27 10 12
4 256 35 40
5 3125 126 45
6 46656 462 189
7 823543 1716 112
8 16777216 6435 576
9 387420489 24310 225

10 10000000000 92378 1375

Table 4.1: Complexity of exact accuracy calculation

Figure 4.2: Gene time course of �gure 4.1 with medians and root mean squared errors

49



4 Interpolation of Time Course Data

In mathematical terms let the gene time course � follow the equation

� : [t1, t� ] → R

yi = �(ti)+ �i
(4.32)

where i ∈ {1, . . . ,n} and the �i are random errors satisfying

E (�i) = 0
E
(
�i� j

)
= �i jw2

i �2 (4.33)

Here E denotes expectation, �i j is the Kronecker delta, being 1 if i = j and 0 otherwise, and
�2 is an unknown common variance factor.

Unfortunately there is no additional knowledge about the true pathway of the gene expres-
sion besides the few measurements, which would allow nearly every function type for � one
can imagine. But in the following lets assume, that high oscillations or overshoots occur quite
unlikely, which sounds reasonable from the biological point of view. Thus, the time course
should be modeled by a curve ful�lling two con�icting objectives, being close to the data
points, i.e. having a small squared interpolation error, weighted by the corresponding rmse wi

Ew (�) =
1
�

�

�
i=1

(
yi−�(ti)

wi

)2

(4.34)

and being as smooth as possible, i.e. having a low roughness

R(�) =
∫ t�

t1

[
�′′ (t)

]2
dx (4.35)

which leads to the concept of smoothing spline interpolation.
A spline is a piecewise polynomial function with smooth junctions, more precise:

De�nition 4.1: Splines
Let m,n ∈ N, m,n ≥ 2. Let a set {t1, . . . , tn} ⊂ R with ti < ti+1 for all i ∈ {1, . . . ,n−1} be
given. Let 	� denote the set of polynomials mapping R into R with a degree equal to or less
than � ∈ N0.
Then S is called spline of order m (or degree m−1) with knot set {t1, . . . , tn} if the following

holds

i) S ∈ C m−2, S : R → R

ii) S|[ti,ti+1) ∈	m−1 for all i ∈ {1, . . . ,n−1}.
iii) S has an (m− 1)th derivative which is a step function having its jumps at the knots

t1, . . . , tn.

Let S m (t1, . . . , tn) denote the set of splines of order m with knots t1, . . . , tn.
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4.2 Smoothing Splines

Lemma 4.4: Space of Splines
Let m,n ∈ N. Let a set {t1, . . . , tn} ⊂ R with ti < ti+1 for all i ∈ {1, . . . ,n−1} be given. Let the
plus-function ( )+ : R → [0,�) be de�ned by

(x)+ =
{

x x > 0
0 otherwise

(4.36)

Then the following two are equivalent

a) S ∈ S m (t1, . . . , tn)

b) There are a0, . . . ,am−1,b1, . . . ,bn ∈ R such that

S (t) =
m−1

�
i=0

ait
i+

n

�
j=1

b j
(
t− t j

)m−1
+ (4.37)

Furthermore, S m (t1, . . . , tn) is a vector space over the reals with dimension m+n.

Proof. Obviously, (4.37) ful�lls i) - iii) in the de�nition of splines, thus it only remains to
prove the implication from b) to a).

Therefore, de�ne intervals

T0 = (−�, t1)
Tj =

[
t j, t j+1

)
for j ∈ {1, . . . ,n−1}

Tn = [tn,�)
(4.38)

Note, that iii) implies together with i) that a spline R of order m coincides with a polynomial
of degree (m−1) or lower in the intervals T0 respectively Tn.

Thus, a spline S ∈ S m (t1, . . . , tn) can be represented by its polynomial pieces

S j (t) =
m−1

�
i=0

c j,it
i if t ∈ Tj (4.39)

with c j,i ∈ R for all i ∈ {1, . . . ,m−1} and j ∈ {0, . . . ,n}.
Furthermore, the spline pieces can also be de�ned recursively by using appropriate updates

for the monomials:

S j (t) = S j−1 +
m−1

�
i=0

 j,i
(
t− t j

)m−1

︸ ︷︷ ︸
�S j

if t ∈ Tj

S j (t) = S j−1 +
m−1
�
i=0

 j,i
(
t− t j

)m−1
+ if t ∈ Tj

(4.40)

for j ∈ {1, . . . ,n}.
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4 Interpolation of Time Course Data

Due to i) the following holds

lim
t↗t j

S(i)
j−1 (t) = S(i)

j

(
t j
)

(4.41)

for all i ∈ {0, . . . ,m−2} and j ∈ {1, . . . ,n}, where S(i) denotes the i-th derivative of the func-
tion S.

Using (4.40) this becomes

�S(i)
j

(
t j
)

= 0 for i ∈ {0, . . . ,m−2} (4.42)

which yields  j,0 = · · · =  j,m−2 = 0 for all j ∈ {1, . . . ,n}.
Setting

ai = c0,i for i ∈ {0, . . . ,m−1}
b j =  j,m−1 for j ∈ {1, . . . ,n} (4.43)

results in the desired representation (4.37) which proves the implication from b) to a).
Using this representation shows immediately, that the set of splines S m (t1, . . . , tn) is closed

with respect to addition and multiplication with real scalars, concluding that S m (t1, . . . , tn) is
a vector space over the reals. The spanning function set

B =
{

1, t, . . . , tm−1,(t− t1)
m−1
+ , . . . ,(t− tn)

m−1
+

}
(4.44)

is obviously linearly independent, becoming a basis of the spline space which proves �nally
the dimension to be m+n.

More important than the general concept of splines is are the so-called natural splines, which
exhibit the minimizing property we desire for the time course approximation.

De�nition 4.2: Natural Splines
Let m ∈ N. A spline S ∈ S 2m (t1, . . . , tn) is called natural spline of order 2m if it satis�es the
additional property

iv) S|(−�,t1),S|(tn,�) ∈	m−1

Let N 2m (t1, . . . , tn) denote the set of natural splines of order 2m having knots at t1, . . . , tn.

Remark 4.1:
The name natural is due to the fact, that a spline S ful�lling iv) has a natural boundary prop-
erty:

S( j) (t) = S( j) (t) = 0 for all t ∈ R\ [t1, tn] and j = m, . . . ,2m−1 (4.45)

Note that N 2m (t1, . . . , tn) is a subspace of S 2m (t1, . . . , tn) with dimension n. For proof please
refer [Sch07].
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4.2 Smoothing Splines

Notation 4.1:
In the following let [a,b] ⊂ R be a �nite interval and Wm

2 [a,b] denote the Sobolev space of
order m:

Wm
2 [a,b] =

{
w|w( j) is absolutely continuous for all j = 0, . . . ,m−1 and w(m) ∈ L2 [a,b]

}
(4.46)

With the basic de�nition and properties of natural splines, we have the tools to solve the
minimization task at the outset of this chapter.

Theorem 4.3: Spline Interpolation (Schoenberg, 1964)
Let m ∈ N, n ∈ N, m < n and a set of pairs Y = {(ti,yi) |i ∈ {1, . . . ,n}} ⊂ [a,b]×R with
ascending ti, i.e. a≤ t1 < t2 < · · ·< tn≤ b, be given. For a function f ∈Wm

2 [a,b] the roughness
is given by

R( f ) =
∫ b

a

(
f (m) (x)

)2
dx (4.47)

The minimization problem: Find f ∈Wm
2 [a,b] ful�lling

f (ti) = yi for all i ∈ {1, . . . ,n}
R( f ) = minimum

(4.48)

has an unique solution f (t) = S (t,�) ∈ N 2m (t1, . . . , tn).

Proof. See theorem 4.5 with � → 0 and w1 = · · · = wn = 1.

Theorem 4.4: Smoothing Spline Interpolation (Schoenberg, 1964)
Let m, n, Y, and R( f ) be de�ned as in theorem 4.3. Let � ∈ R

+. Further de�ne the squared
interpolation error

E ( f ) =
n

�
i=1

(yi− f (ti))
2 (4.49)

Then the minimization problem: Find f ∈Wm
2 [a,b] ful�lling

E ( f )+�R( f ) =minimum (4.50)

has an unique solution f (t) = S (t,�) ∈ N 2m (t1, . . . , tn).

Proof. See theorem 4.5 with w1 = . . . ,wn = 1.

Remark 4.2:
The design parameter � ∈ R

+
0 represents the relative weight of the two competing objectives,

being close to the data knots and having a low roughness.
� → 0 results in a normal interpolating spline corresponding to theorem 4.3 connecting

exactly the data points, while � → � leads to linear regression.
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4 Interpolation of Time Course Data

Before the �nal theorem for the time course approximation is presented and proven, a tech-
nical lemma has to be stated:

Lemma 4.5: (Lyche and Schumaker, 1973)
Let x1, . . . ,xn be a basis of N 2m (t1, . . . , tn).
Then there are coef�cients a0, j . . . ,am−1, j,b1, j, . . . ,bn, j ∈ R such that

x j (t) =
m−1

�
i=0

ai, j t
i+

n

�
i=1

bi, j (t− ti)2m−1
+ (4.51)

If S (t) = �n
i=1ixi (t) and f ∈Wm

2 [a,b] then

b∫
a

f (m) (t)S(m) (t)dt = (−1)m (2m−1)!
n

�
i=1

[
f (ti)

n

�
j=1

 jbi, j

]
(4.52)

Proof. The proof is available in [Eub88].

Theorem 4.5: Weighted Smoothing Spline Interpolation
Let m, n, Y, and R( f ) be de�ned as in theorem 4.3. Let � ∈ R

+. For weights wi ∈ R
+ for

i = 1, . . . ,n the weighted squared interpolation error is de�ned by

Ew ( f ) =
n

�
i=1

wi (yi− f (ti))
2 (4.53)

Then the minimization problem: Find f ∈Wm
2 [a,b] ful�lling

Ew ( f )+�R( f ) = minimum (4.54)

has an unique solution f (t) = S (t,�) ∈ N 2m (t1, . . . , tn).

Proof. (Extension of the proof in [Eub88] for the unweighted case)
De�ne for f1, f2 ∈Wm

2 [a,b] the functional

�( f1, f2,� ) =
1
2

[Ew ( f1 +� f2)+�R( f1 +� f2)] (4.55)

and

�( f1, f2) =
d�( f1, f2,� )

d�

∣∣∣∣
�=0

(4.56)

2�( f1, f2) is called the Gâteaux derivative of (4.54) at f1 in direction f2. Since the Gâteaux
derivative has to vanish in an extremum as ordinary derivatives do

�( f1, f2) = 0 (4.57)

is a necessary condition for f1 being a minimizer of (4.54).
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4.2 Smoothing Splines

With this knowledge take f1, f2 ∈Wm
2 [a,b] and calculate

�( f1, f2) = −
n

�
i=1

wi f2 (ti) [yi− f1 (ti)]+�
b∫
a

f (m)
1 (t) f (m)

2 (t)dt (4.58)

Thus, for being a minimizer f1 has to ful�ll

n

�
i=1

wi f2 (ti) [yi− f1 (ti)] = �
b∫
a

f (m)
1 (t) f (m)

2 (t)dt (4.59)

for all f2 ∈Wm
2 [a,b].

Now let x1, . . . ,xn be a basis of N 2m (t1, . . . , tn) and f1 =
n
�
i=1

ixi, then using preliminary

lemma 4.5 the equation (4.59) becomes

n

�
i=1

wi f2 (ti)

[
yi−

n

�
j=0

 jx j (ti)

]
= � (−1)m (2m−1)!

n

�
i=1

[
f (ti)

n

�
j=1

 jbi, j

]
(4.60)

Since f2 is arbitrary inWm
2 [a,b] this transforms to

n

�
j=1

[
x j (ti)+� (−1)m (2m−1)!w−1

i bi, j
]
 j = yi (4.61)

which becomes
(X +�G) = y (4.62)

in matrix notation, where
X =

{
x j (ti)

}n
i, j=1

G =
{
x j (ti)

}n
i, j=1

 = (1, . . . ,n)′

y = (y1, . . . ,yn)
′

(4.63)

A system of equations Ax = b has an unique solution if Ax = 0 has the unique solution x = 0.
Thus, set y = 0 in (4.62) for a moment. Obviously,  = 0 solves the system, thus one has
only to show its uniqueness. In the case y = 0, and f2 = f1 which is admissible since the
minimizing f1 ∈Wm

2 [a,b] equation (4.58) becomes

�( f1, f1) =
n

�
i=1

wi f1 (ti)
2 +�

b∫
a

f (m)
1 (t)2dt = 0 (4.64)

This means f (m)
1 (t) = 0 almost everywhere and f1 (ti) = 0 for i = 1, . . . ,n. Thus, f1 has to be

a polynomial with degree less than m which vanishes at n > m points, which holds only for
f1 ≡ 0.
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4 Interpolation of Time Course Data

Since x1, . . . ,xn is a basis of N 2m (t1, . . . , tn), f1 =
n
�
i=1

ixi implies that 1 = · · · = n = 0

concluding that  = 0 is the only solution of (X +�G) = 0.
We have proven the uniqueness of a natural spline ful�lling (4.59) which is a necessary

condition for a minimizer of (4.54). For existence we show that f1 =
n
�
i=1

ixi with i got from

(4.62) actually is the minimizer sought-after. Therefore, take again f2 ∈Wm
2 [a,b] and calculate

Ew ( f2)+�R( f2) =
n
�
i=1

wi (yi− f2 (ti))
2 +�

∫ b
a f (m)

2 (t)2 dt

=
n
�
i=1

wi (yi− [ f1 + f2 − f1] (ti))
2 +�

∫ b
a [ f1 + f2 − f1]

(m) (t)2 dt

(4.65)
Applying the binomial theorem yields

Ew ( f2)+�R( f2) =
n
�
i=1

wi (yi− f1 (ti))
2

−2
n
�
i=1

wi (yi− f1 (ti))( f2 (ti)− f1 (ti))

+
n
�
i=1

wi ( f2 (ti)− f1 (ti))
2

+�
∫ b
a f (m)

1 (t)2dt

+2�
∫ b
a f (m)

1 (t)[ f2 − f1]
(m) (t)dt

+�
∫ b
a [ f2 − f1]

(m) (t)2dt

(4.66)

Using the notation of Gâteaux derivative the equation becomes

Ew ( f2)+�R( f2) =
n
�
i=1

wi (yi− f1 (ti))
2 +�

∫ b
a f (m)

1 (t)2dt

+2�( f1, f2 − f1)

+
n
�
i=1

wi ( f2 (ti)− f1 (ti))2 +�
∫ b
a [ f2 − f1]

(m) (t)2dt

≥
n
�
i=1

wi (yi− f1 (ti))
2 +�

∫ b
a f (m)

1 (t)2dt

= Ew ( f1)+�R( f1)

(4.67)

due to �( f1, f2 − f1) = 0 because f1 ful�lls (4.57) and f2 − f1 ∈Wm
2 [a,b]. This proves that

f1 is actually a minimizer.
Now one last step is missing. We have shown that a minimizer is unique in the space of

natural splines. To �nalize the proof the uniqueness has to be expanded to the spaceWm
2 [a,b].

Therefore, assume f2 in (4.67) is a minimizer, too. Then the equation yields that

n

�
i=1

wi ( f2 (ti)− f1 (ti))
2 = 0 (4.68)

and

�
∫ b

a
[ f2 − f1]

(m) (t)2 dt = 0 (4.69)
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4.3 Results

Equation (4.68) shows that f2− f1 vanishes in n points while (4.69) yields that them-derivative
of f2 − f1 equals zero almost everywhere, i.e. f2 − f1 ∈ 	m−1. This �nally concludes to
f2 − f1 ≡ 0, since n > m.

Corollary 4.1: Cubic Spline Interpolation
Let n > 2, � ∈ R

+, Y = {(ti,yi) |i ∈ {1, . . . ,n}} ⊂ R
2 with ti < ti+1 for all i ∈ {1, . . . ,n−1}.

Let wi ∈ R
+ for i ∈ {1, . . . ,n}. Then

Ew ( f )+�R( f ) =
n

�
i=1

(
yi− f (ti)

wi

)2

+�
∫ tn

t1

(
f ′′ (x)

)2
dx= minimum (4.70)

has an unique solution f (x) = S (x,�) ∈ N 4.

Now its proven that natural cubic splines, i.e. splines of degree 3 (or order 4), with natural
ending conditions are the correct choice for the initial interpolation problem of microarray
time course data (4.34) and (4.35).

An algorithm for the construction of the cubic smoothing splines minimizing (4.70) is avail-
able in [Spä73]. In addition the Matlab routine csaps is recommended, which solves exactly
the minimization task.

4.3 Results

In this chapter smoothing splines were presented as method for interpolating gene expression
time courses. Since microarray measurements often are few in number and susceptible to
outliers the median

y(g)i = med(Mg,ti) (4.71)

of the measurements of each gene g at each time ti was taken instead of the arithmetic mean
as representative for the data.

This gave rise to another quality measure as the standard deviation as default choice. The
presented exact bootstrapping yields an accuracy estimation of the median in a ef�cient way
of calculation. This accuracy measure of the median of gene g at time ti is denoted by

w(g)
i = w(Mg,ti) (4.72)

where the function w is given in theorem 4.2 and corollary 4.1.
In addition the exact bootstrapping for calculating the accuracy of any statistic S was given

in theorem 4.1, if another statistic than the median is desired. However, the generality of that
theorem reduces the ef�ciency, especially if larger data sets are considered. The gentle reader
might improve the theorem with respect to her/his statistic in the same way as it was done for
the median in this work.
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4 Interpolation of Time Course Data

After calculating a statistic and its accuracy these values were used for calculating a cubic
smoothing spline. This type of splines only approximates the interpolation set, but reduces
the curvature and overshoots of the resulting interpolation. The approximation quality of each
point depends on its accuracy measure, the lower the closer to that point the spline is.

Therefore, a linear combination of the weighted squared approximation errors and the spline
curvature is minimized. The error weights were given by the accuracy estimation of each data
point.

Figure 4.3: Gene time course of �gure 4.1 with medians, rmse and corresponding smoothing
spline (� = 0.43)

In the following chapters let the interpolating cubic smoothing spline Sg : [t1, t� ] → R of
gene g be represented piecewise by polynomials:

Sg (t) =
�−1

�
i=1

�i (t) a
(g)
i,3 (t− ti)

3 +a(g)
i,2 (t− ti)

2 +a(g)
i,1 (t− ti)+a(g)

i,0 (4.73)

where

�i (t) =
{

1 t ∈ [ti, ti+1)
0 t /∈ [ti, ti+1)

for i ∈ {1, . . . ,�−2}

��−1 (t) =
{

1 t ∈ [t�−1, t� ]
0 t /∈ [t�−1, t� ]

(4.74)

denote the characteristic functions of the according intervals.
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5 Clustering of Time Course Data

Like and equal are two entirely different things.

— Madeleine L’Engle, American writer (1918-2007)

Recall the main goal of this work, to develop a dynamical system which reproduces the
behavior and interaction of the gene expression level time courses. But as already mentioned
in the biological introduction, genes accumulate to functional groups and thus their expression
level dynamics coincide except for biological or technical noise. This precludes the determi-
nation of one special activating or inhibiting gene out the set of genes having similar time
courses. Thus, a dynamical system can only handle clusters, whose generation is topic of this
chapter.

At �rst an overview to clustering is given where its usage and its types are shortly intro-
duced.

Thereafter a data standardization technique is presented. The standardization removes in-
formation of the data which is not desired as data feature for clustering. More precise, the time
courses will be clustered with respect to their relative changes in expression level, no matter
how large the absolute values are. Thus, the values will be standardized to a common level,
but keeping their time course shape. While common methods as the standardization of random
variables do not yield the desired behavior for the concrete case, an appropriate alternative is
given.

The de�nition of “close” and “far” is one main setscrew in clustering. Thus, the next sec-
tions deal with different distance measures, which are applicable to the time course clustering
task. First distance measures between single time courses are presented, while the subsequent
one considers distance between sets of time courses, i.e. clusters. The latter one is also known
as linkage method.

After this, three clustering methods are presented and its properties are discussed. For each
technique also an algorithm is provided.

Finally, several measures for the quality of clusterings are given. Since no additional in-
formation about the true gene correlations is available, these measures use only the properties
of the clusterings themselves. They validate clusters by their within densities and their in-
between separation.

In the next sections assume that a microarray time course experiment has been run and the
resulting measurement data has been normalized using the methods of section 3.2. Let the
Fisher-Pitman-Test be applied to each time course data set and every gene be discarded if it
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5 Clustering of Time Course Data

has not at least one time point where the measurements differ signi�cantly from those at the
starting time. Finally, let cubic smoothing splines (4.73) be calculated, interpolating the time
course data sets.

5.1 A Short Introduction to Clustering

Clustering is a �eld of unsupervised learning for �nding intrinsic structures in unlabeled data
sets. Therefore, a set is divided in sub-classes containing similar elements, called clusters,
having high dissimilarity to members of the other classes. Because there are many different
types of clustering, we restrict to the so called exclusive clustering, which implies that after
the separation each element of the original set has to belong to exactly one cluster.

In mathematical terms:

X =
k⋃
i=1

Ci

Ci∩Cj = /0 for all i, j ∈ {1, . . . ,k} , i �= j
Q(C1, . . . ,Ck) = minimum

(5.1)

HereCi is called i-th cluster andQ is the partition quality measure of the clustering (C1, . . . ,Ck).
There is no “best” or general rule for within-cluster similarity and in-between-clusters dis-

similarity - but some are quite common and will be shortly presented in the next section 5.3.
The same holds for the algorithms for �nding clusters, there is also a vast amount of cluster-
ing techniques and related variants using different approaches for distinction and separation
of similarity groups. Many of them were also successfully tested and compared on the basis
of microarray data and gene expression levels [ESBB98], [YMB03], [MCZL06], [YK06].

Clustering methods can be separated in �ve categories:

1.) Partitioning Clustering
These methods generate different partitions and modify them using an iterative control
strategy to optimize a prede�ned quality criterion. The K-Means Algorithm described in
section 5.5.1 belongs to this category.

2.) Hierarchical Clustering
Hierarchical algorithms generate a decomposition tree, where the complete data set is used
as root and is divided step by step into sub-classes until having singletons as leafs. Such
algorithms are called agglomerative (or bottom-up) when they start with the singletons
and combine them to larger sets, or divisive (or top-down) if they start with the complete
data set and split it. After setting up the decomposition tree (completely or only partially),
a quality prerequisite de�nes a cut through the tree yielding the desired clustering. An
agglomerative hierarchical clustering method is given in section 5.5.2.
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5.2 Data Standardization

3.) Density-based Clustering
These clustering methods are based on local density criteria, identifying elements of the
data set which are near to each other according to a given distant measure. The method
DBSCAN which will be presented in section 5.5.3 is density-based.

4.) Grid-based Clustering
Grid-based algorithms use a partition of the complete data space, where the given data
points are distributed. Thereafter the data space cells containing points are merged to
clusters following a cluster quality rule.

5.) Model-based Clustering
These methods use a cluster model hypothesis, which implies that additional knowledge
about the structure of the clusters in the data set is necessary. Having such cluster models,
the clustering itself is “simply” an optimization searching for the best �tting distribution
of the data. Neural network approaches as the well-known Self-Organizing-Map method
(SOM) belong to this category.

5.2 Data Standardization

For biological analyses often the absolute gene expression level itself is not as important than
its relative change caused by the treatment. Therefore, the ratio of expression levels between
test and control group will be used for clustering. Time course experiments lack a dedicated
control group which implies some degree of freedom in selecting the standardization.

A common method in statistics is known under the name of standardization itself. For distin-
guishing it from other data standardization techniques this work keeps with the nomenclature
chosen in [Kre08]:

De�nition 5.1: 0-1-Standardization
Let X ∈ R

n be a sample of real numbers. The corresponding 0-1-standardized sample X∗ is
given by

X∗
i = �−1

X (Xi−�X ) (5.2)

where �X and �X denote the arithmetic sample mean respectively the empirical standard
deviation

�X = n−1
n
�
i=1

Xi

�X = (n−1)−1 n
�
i=1

(Xi−�X )2
(5.3)

The name 0-1-standardization is due to the fact that �X∗ = 0 and �X∗ = 1.

It can be easily shown that the samples X and Y = �X have the same 0-1-standardized
representation Y ∗ = X∗, independently of � ∈ R \ {0}, which seems to result exactly in the
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5 Clustering of Time Course Data

Xi
Xj

=
Yi
Yj

for all i, j ∈ {1, . . . ,n} , Xj �= 0 (5.4)

However, the shift by the mean value yields an undesired side effect. Two samples X ,
Y having a constant offset a ∈ R \ {0} in each component Yi = Xi + a also have the same
0-1-standardized value X∗ = Y ∗. In this case only the absolute but not the relative differences
within the components of X and Y coincides:

Xi−Xj =Yi−Yj for all i, j ∈ {1, . . . ,n} (5.5)

Thus, the mean shift should be neglected, which results in a standardization called consis-
tently 1-standardization.

De�nition 5.2: 1-Standardization
Let X ∈ R

n be a sample of real numbers. The corresponding 1-standardized sample X∗ is
given by

X∗ = s−1
X X (5.6)

where sX ∈R\{0} denotes a statistic of X appropriate for the standardization (cf. remark 5.1).

Remark 5.1:
Microarray time course data as generated in this work give rise to two meaningful choices for
the statistic sX . The division by the value at the beginning of the experiment

sX = X1 (5.7)

or the division by the mean value over all time points

sX = �X (5.8)

Both choices yield the desired focus on the relative changes, i.e. X∗ = Y ∗, where Y = �X ,
� ∈ R\{0}, and allow an easy interpretation of the standardized sample values. (5.7), which
is obviously only applicable if X1 �= 0, results in a sample which components directly show the
ratio to the �rst value of the original data sample. That means for microarray time course data
the standardized value at time tn denotes exactly the factor of up- or down-regulation with re-
spect to the gene expression level at the beginning. The drawback is the strong dependency of
the standardized sample on the �rst value of the original one, which causes a higher sensitivity
to outliers and errors in the measurements at the �rst time point.

This sensitivity can be reduced by taking the sample mean for standardization (5.8), but this
in turn means that the components of the standardized sample give the change in gene expres-
sion level with respect to the mean over time, which might be less useful for interpretation.

Since the microarray experiment in this work has a suf�ciently large number of replicates at
the starting time, the 1-standardization using (5.7) will be used as data standardization method.
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Therefore, remember that the data is in logarithmic scale which transforms the quotient to a
difference resulting in the standardized gene expression time course using the notations of
section 4.3:

y(g)∗i = y(g)i − y(g)1 for all i ∈ {1, . . . ,�} (5.9)

This offset of the expression levels also results in a shift of the splines, which can be easily
done due to its piecewise polynomial representation. The standardized spline corresponding
to gene g is given by

S∗g (t) =
�−1

�
i=1

�i (t) a
(g)
i,3 (t− ti)

3 +a(g)
i,2 (t− ti)

2 +a(g)
i,1 (t− ti)+a(g)∗

i,0 (5.10)

where

a(g)∗
i,0 = a(g)

i,0 − y(g)1 for all i ∈ {1, . . . ,�−1} (5.11)

5.3 Distance Measures

For any clustering method a measure of dissimilarity of data points is essential. In our case,
having quantitative data, dissimilarity coincides with distance. However, even the distance
of clusters is not uniquely de�ned. Many different dissimilarity measures, especially those
applicable to microarray time course data are presented in [Kre08].

For completeness, two of the most frequently used measures as well as one task-speci�c
one are stated below.

5.3.1 p-Minkowski Metric

De�nition 5.3: p-Minkowski metric
Let (Rn,‖ ‖p) be the normed vector space where the norm is de�ned by

‖x‖p =

(
n

�
i=1

|xi|p
) 1

p

(5.12)

with x ∈ R
n, p ∈ R and p≥ 1.

The induced metric is called p-Minkowski metric:

d(x,y) = ‖x− y‖p =

(
n

�
i=1

|xi− yi|p
) 1

p

(5.13)

where x,y ∈ R
n.
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5 Clustering of Time Course Data

The special cases Manhattan metric (p = 1), Euclidean distance (p = 2), and Chebyshev
metric (p→�) are well-known and quite obvious and intuitive choices for a distance measure
between two points in the real vector space.

Using the notation of the microarray data set the distance between gene g1 and gene g2

becomes

dp (g1,g2) =

(
�

�
i=1

∣∣∣y(g1)∗
i − y(g2)∗

i

∣∣∣p
) 1

p

(5.14)

Please note, that the p-Minkowski metric uses only the average gene expression y(g)∗i , ne-

glecting its accuracy w(g)
i . The advantage of the combination with the median as average is its

insensitivity to outliers. The drawback is the loss of information, which might be useful for
the clustering.

5.3.2 Pearson’s Product-Momentum Correlation Coefficient

Another approach to measure the distance between data vectors is the statistical concept of
correlation. The correlation measures the degree of linear dependency of two samples. In
the following the idea is explained by means of Pearson’s product-momentum correlation
coef�cient.

But before de�ning the correlation coef�cient, one should give credit where credit is due. In
1885, the English polymath Sir Francis Galton developed the statistical concept of correlation
to which Karl Pearson assigned his index eleven years later. The issue of correlation itself was
already broached by Carl Friedrich Gauss in 1823, the French astronomer Auguste Bravais in
1846, and also Galton’s half-cousin, the founder of the evolutionary theory Charles Darwin in
1868 [RN88].

However, the index itself became generally known as Pearson’s product-momentum corre-
lation coef�cient or shortly Pearson’s r.

De�nition 5.4: Pearson’s product-momentum correlation coef�cient
Let two samples X ,Y ∈ R

n be given. Its product-momentum correlation coef�cient is given by
dividing the sample covariance by the product of the standard deviations:

r (X ,Y) =

n
�
i=1

(Xi−�X )(Yi−�Y )√
n
�
i=1

(Xi−�X )2
√

n
�
i=1

(Yi−�Y )2
(5.15)

where Xi and Yi denote the i-th component of the vectors X respectively Y while �X and �Y
are the corresponding arithmetic means (cf. equation 5.3).

For any samples X and Y Pearson’s r lies in the interval [−1,1]. In the case of maximal
positive correlation (r = 1) the samples show a perfectly linear, positive relationship, i.e.

X = �Y (5.16)
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for an � ∈ R
+, while r = −1 denotes a perfectly linear, negative relationship, i.e. (5.16)

with � ∈ R
−. r = 0 signi�es that no linear relationship exist between the samples at all (cf.

�gure 5.1).

Figure 5.1: Correlation of data sets

For the search for common gene expression pro�les, it does not matter if the linear rela-
tionship between genes is positive or negative. The knowledge of the factor � ∈ R suf�ces
to reconstruct the genes from the cluster representative. (Please note that � = 0 is not possi-
ble due to the removal of non-signi�cant gene time courses.) Thus, an appropriate distance
measure for the genes g1 and g2 using Pearson’s r is

dPearson (g1,g2) = 1 − |r (g1,g2)|

= 1 −
∣∣∣∣ n
�
i=1

(
y
(g1)∗
i −�

y(g1)∗

)(
y
(g2)∗
i −�

y(g2)∗

)∣∣∣∣√
n
�
i=1

(
y
(g1)∗
i −�

y(g1)∗

)2
√

n
�
i=1

(
y
(g2)∗
i −�

y(g2)∗

)2
(5.17)

where

�y(g)∗ =
1
�

�

�
i=1

y(g)∗i (5.18)

is the arithmetic mean of the standardized expression levels at times t1, . . . , t� of gene g.

5.3.3 Lp-Metric

Since they are simply working on real vectors, the p-Minkowski metric as well as Pearson’s r
neglect the fact that a time course measurement contains additional information:

1. The order of the values:
Both methods ignore that the time course data is not only a vector, but its components
are ordered with respect to time.

2. The intervals between the time points of measurements:
All components are treated equally. However, if the time points T are not distributed
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5 Clustering of Time Course Data

in an equidistant manner, some components have higher in�uences on the interpolated
time course trajectory.

A distance measure using the spline interpolation would include both items into the clustering.

De�nition 5.5: Lp-metric
Let Lp = Lp ([t1, tn] ,R) be the space of measurable and p-th power absolute integrable func-
tions mapping from [t1, tn] into R. The corresponding norm of f ∈ Lp is given by

‖ f‖p =
(∫

[t1,tn]
| f (t)|p d� (t)

) 1
p

(5.19)

where � denotes the Lebesgue-measure.
The metric induced by ‖ ‖p is given by

dLp ( f1, f2) = ‖ f1 − f2‖p (5.20)

The most common choice is p = 2, which allows the transformation of the integral into a
�nite sum if applied to splines by using its piecewise polynomial structure.

Lemma 5.1: Spline metric
Let Sg,Sh ∈N 4 be two natural splines according to notation 4.73. Its L2-distance is given by

dN 4 (g,h) = dL2 (Sg,Sh)

=

√
3
�
j=0

3
�
k=0

(
a(g)
i, j −a

(h)
i, j

)(
a(g)
i,k −a

(h)
i,k

)
j+k+1

�−1
�
i=1

(ti+1− ti)
j+k (5.21)

Proof.

(dL2 (Sg,Sh))
2 =

t�∫
t1

∣∣∣S(g) (t)−S(h) (t)
∣∣∣2 dt

=
�−1
�
i=1

ti+1∫
ti

(
3
�
j=0

(
a(g)
i, j −a(h)

i, j

)
(t− ti)

j

)2

dt

=
�−1
�
i=1

ti+1∫
ti

3
�
j=0

3
�
k=0

(
a(g)
i, j −a(h)

i, j

)(
a(g)
i,k −a(h)

i,k

)
(t− ti) j+k dt

=
3
�
j=0

3
�
k=0

(
a(g)
i, j −a(h)

i, j

)(
a(g)
i,k −a

(h)
i,k

)
j+k+1

�−1
�
i=1

(ti+1− ti)
j+k

(5.22)

5.4 Linkage Methods

No matter which distance measure is selected, it just provides the distance between single
genes, not between clusters. This cluster distance is known under the nomenclature linkage
and is needed by some clustering methods as the hierarchical clustering (see section 5.5.2).

A few common choices for linkage are presented in this work, for more methods please
refer [Kre08].

66



5.4 Linkage Methods

5.4.1 Complete and Single Linkage

These methods are the easiest ways to derive a cluster distance from the distances of its ele-
ments. Therefore, the extrema of distances between the elements of the two sets are taken to
de�ne the distance of the sets themselves. More precise:

De�nition 5.6: Complete Linkage
Let V be a vector space, X1,X2 ⊂ V be two �nite and non-empty sets and let d : V 2 → R

+
0 be

a metric on V . Then the complete linkage distance of X1 and X2 is de�ned as

dCL (X1,X2) = min
x1∈X1,x2∈X2

d (x1,x2) (5.23)

The complete linkage is the probable most restricting meaningful linkage method, because
the worst of the distances between all possible element combinations is taken for the cluster.
Thus, an iterative merging of clusters with low distances - as it is done in agglomerative
hierarchical clustering - results in clusters, which are quite spherical with respect to d.

De�nition 5.7: Single Linkage
Let V be a vector space, X1,X2 ⊂ V be two �nite and non-empty sets and let d : V 2 → R

+
0 be

a metric on V . Then the single linkage distance of X1 and X2 is de�ned as

dSL (X1,X2) = max
x1∈X1,x2∈X2

d (x1,x2) (5.24)

While the complete linkage the is most restrictive, the single linkage is the loosest linkage
method. Here the best combination of elements of the two clusters yields the cluster distance.
Thus, the iterative merging might cause arbitrary widespread clusters as long as it contains a
suf�ciently dense chain between the elements.

Both methods, complete and single linkage, are easily computable. Once the distances be-
tween the individual elements are known, every cluster distance can be calculated simply by
applying the minimum or maximum to all distances between the cluster elements. Alterna-
tively, the cluster distances are also easily obtainable by recursion, which will be useful for an
iterative merging:

Lemma 5.2: Update Formulas for Single Linkage and Complete Linkage
Let V be a vector space, X1,X2,X3 ⊂ V be �nite and non-empty sets and let d : V 2 → R

+
0 be

again a metric on V . Then the following holds

dCL (X1,X2 ∪X3) = max(dCL (X1,X2) ,dCL (X1,X3))
dSL (X1,X2 ∪X3) = min(dSL (X1,X2) ,dSL (X1,X3))

(5.25)

5.4.2 Average and Centroid Linkage

Between the very loose single linkage and the very tight complete linkage there are various
suggestions to calculate distances of clusters.
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5 Clustering of Time Course Data

Two very intuitive approaches are the average and the centroid linkage.
The average linkage is the arithmetic mean of all possible distances between elements of

the two clusters:

De�nition 5.8: Average Linkage
Let V be a vector space, X1,X2 ⊂ V be two �nite and non-empty sets and let d : V 2 → R

+
0 be

a metric on V . Then the average linkage distance of X1 and X2 is de�ned as

dAL (X1,X2) =
1

|X1| |X2| �x1∈X1

�
x2∈X2

d (x1,x2) (5.26)

Lemma 5.3: Update Formula for Average Linkage
Let V be a vector space, X1,X2,X3 ⊂ V be �nite and non-empty sets and let d : V 2 → R

+
0 be

again a metric on V . The average linkage can be calculated recursively by

dAL (X1,X2 ∪X3) =
|X2|

|X2|+ |X3| dAL (X1,X2)+
|X3|

|X2|+ |X3| dAL (X1,X3) (5.27)

Proof. see [Kre08].

Alternatively the distance between the means of the cluster can be used, which is known as
centroid linkage.

De�nition 5.9: Centroid Linkage
Let X1,X2 ⊂ V be two �nite and non-empty sets and let d : V 2 → R

+
0 be a metric on V . The

centroids are given by the arithmetic means of the elements �X1 and �X1 . Then the centroid
linkage distance of X1 and X2 is de�ned as

dCenL (X1,X2) = d (�X1 ,�X2) (5.28)

For the centroid linkage the cluster centroid has to be compatible to the distance measure.
This is not always the case as it can easily be seen in the following example.

Example 5.1:
Consider the two vectors

a =

⎛
⎝2

1
1

⎞
⎠ b =

⎛
⎝ −2
−0.9
−1

⎞
⎠ (5.29)

Their distance based on Pearson’s r is

dPearson (a,b) = 1−|r (a,b)|
= 1−|−0.997|
= 0.003

(5.30)

The centroid yields distances

dPearson
(
a, a+b2

)
= 0.5

dPearson
(
b, a+b2

)
= 0.43

(5.31)
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which means that the sets X1 = {a} and X2 = {a,b} have a centroid linkage distance of 0.5,
although the elements themselves are very close to each other having a distance of at most
0.003.

The recommended distance measure for the centroid linkage is the Euclidean distance.
However, the centroid might also be generalized to be compatible to other distance measures.

Lemma 5.4: Update Formula for Centroid Linkage
Let X1,X2,X3 ⊂ R

n be �nite and non-empty sets and let d be the Euclidean distance on R
n.

The centroid linkage can be calculated recursively by

dCenL (X1,X2∪X3)
2 = |X2|

|X2|+|X3| dCenL (X1,X2)
2

+ |X3|
|X2|+|X3| dCenL (X1,X3)

2

− |X2|·|X3|
(|X2|+|X3|)2 dCenL (X2,X3)

2

(5.32)

Proof. see [Kre08].

5.5 Clustering Methods

Out of the vast variety of clustering methods, three common ones are presented below. For
further clustering techniques please refer to the citations in this chapter or the bibliography at
the end of this work.

5.5.1 K-Means

For the �rst time the term k-means appeared in 1967 in a work of MacQueen, while the idea
itself as well as a corresponding algorithm existed already for about ten years. [Mac67]

The goal of k-means is the generation of at most k ∈N clusters which have minimal within-
cluster variance. More precise:
Let X ⊂ R

N , n = |X | with 0 < n < � and let ‖‖2 denote the Euclidean norm.
Find clustersC1,C2, . . . ,Ck ⊂ X , with k ≤ n such that the following holds:

Ci∩Cj = /0 for all i �= j
k⋃
i=1

Ci = X

E (C1,C2, . . . ,Ck) =
k
�
i=1

�
x∈Ci

‖x− ci‖2
2

= minimum

(5.33)

where ci = 1
|Ci| �

x∈Ci
x is the center of mass of clusterCi and an empty sum, i.e. if there exist an

Ci = /0, is set to 0.
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5 Clustering of Time Course Data

A heuristic hill-climbing algorithm for calculating a local minimum of optimization task
was invented by Stuart Lloyd in 1957. Even today, more than half a century later, it is one of
the most popular k-means clustering algorithms [ORSS06].

Algorithm 5.1: Lloyd’s Algorithm for K-Means Clustering
Let X ⊂ R

N be the nonempty and �nite set, which shall be clustered.

1) Choose maximal number of clusters k ∈ N

2) Choose k initial cluster centers c1, . . . ,ck ∈ R
N . (see remark 5.2)

3) For i ∈ {1, . . . ,k},
setCi := /0.

4) For all x ∈ X ,
Ci :=Ci∪{x}, where i = argmin

j∈{1,...,k}

∥∥x− c j
∥∥

2.

(If i is not unique, take the lowest i yielding the minimum.)

5) For i ∈ {1, . . . ,k},
ifCi �= /0 set ci := 1

|Ci| �
x∈Ci

x.

6) If the exit condition is not ful�lled goto Step 3. (see remark 5.2)

Remark 5.2:

• Being a hill-climbing method, the Lloyd algorithm terminates in a local minimum de-
pending on the initial seeding. Thus, the complete algorithm should be run more than
once with different initializations. The clustering with lowest local minimum of the
error measure E (C1,C2, . . . ,Ck) is taken as �nal k-means clustering result.

• There is a variety of suggestions for selecting the initial cluster centers available in
literature. In the following the seeding procedure proposed in [ORSS06] is presented.
Exchange step 2 of Lloyds algorithm by

2a) As �rst two seed centers ĉ1 and ĉ2 choose randomly two elements x,y ∈ X with
probability proportional to ‖x− y‖2

2.

2b) For i ∈ {2, . . . ,k−1}
take as next seed center ĉi+1 randomly an element x ∈ X with probability propor-
tional to min

j∈{1,...,i}
∥∥x− ĉ j

∥∥2
2.

2c) For i ∈ {1, . . . ,k}
let di = min

j �=i
∥∥ĉi− ĉ j

∥∥
2 and

Bi = X ∩
{
x ∈ R

n | ‖x− ĉi‖2 <
di
3

}
(5.34)
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The �nal centers for the initialization of Lloyds algorithm are given as center of
mass of the balls Bi (called Ball-k-means):

ci =
1
|Bi| �x∈Bi

x (5.35)

• Let Ei denote the error measure of the clustering in the i-th iteration of Lloyds algorithm.
Then the following holds:

Ei+1 ≤ Ei for all i ∈ N (5.36)

and
Ei+1 = Ei ⇒ Ei+ j = Ei for all j ∈ N (5.37)

This yields two facts: Lloyds algorithm does not cycle and terminates after a �nite
number of steps.

The Lloyd algorithm is relatively ef�cient having a complexity of O (kmn), where k is the
number of clusters as above, n = |X | and m is the number of iteration steps of the algorithm,
which is pretty low compared to n as experience has shown [HS05].

However, the k-means clustering has two notable �aws: Firstly the number of clusters has
to be prede�ned. If it is unknown the complete algorithm has to be run with different numbers,
reducing its effectiveness signi�cantly. Secondly the assignment of a data point to the nearest
center is equivalent to the usage of a Voronoi diagram. Each cluster is contained in the Voronoi
cells of its center, which means that all clusters are convex. Thus, non-convex cluster shapes
cannot be detected and outliers are assigned to the cluster of a boundary Voronoi cell - ignoring
the distance to the corresponding center.

Closing this section it shall be mentioned that many variants of k-means are available in
literature, as e.g. the k-medoids clustering method which uses elements from the data set X
instead of the arithmetic centers of mass as cluster centers.

5.5.2 Hierarchical Clustering

Most hierarchical clustering methods are agglomerative, which means they start with atomic
clusters merging to larger ones until a quality criterion is met.

Therefore, let (V,d) be a metric space and X ⊂ V with n = |X |, 0 < n < �, the data set to
be clustered. Furthermore, let dL be a linkage method (cf. 5.4) compatible to d.

Then the hierarchical clustering algorithm is as follows:

Algorithm 5.2: Hierarchical clustering algorithm

1) Let � = {X1, . . . ,Xn} the set of all atomic clusters of X , i.e.:

|Xi| = 1

S =
k⋃
i=1

Xi
(5.38)
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5 Clustering of Time Course Data

2) Find i, j ∈ {1, . . . ,n}, i �= j, such that

dL
(
Xi,Xj

)≤ dL (Xk,Xl) for all k, l ∈ {1, . . . ,n} , k �= l (5.39)

3) Update � by
� := �\{Xi,Xj

}∪{Xi∪Xj
}

(5.40)

4) If the exit condition is not ful�lled goto Step 2. (see remark 5.3)

Remark 5.3:

• The hierarchical clustering needs no prede�ned number of clusters, which has an im-
portant advantage. Instead of stopping the algorithm when a quality criterion is met, it
can be run until �= {X}. If the values of i, j and dL

(
Xi,Xj

)
are stored in each iteration,

this yields a hierarchy tree, called dendrogram (cf. �gure 5.2). Once this hierarchy is
calculated, the number of clusters or the quality criterion can be selected without any
recalculation.

• Note that the hierarchical clustering has no undo. Once clusters are merged, they cannot
be separated anymore, even if it seems advisable in later iterations. This causes a lack
of robustness.

• The only step which is expensive with respect to calculation time is the initialization.
For the �rst iteration step the distances between each two elements of the data set S have
to be computed. The results are stored in a triangular distance matrix D ∈ R

n×n, where
Di j = dL

(
Xi,Xj

)
where 1 ≤ i < j ≤ n. Using D, step 2 of the algorithm becomes

2a) {i, j} = argmin
i< j

Di j

(If {i, j} is not unique, take the smallest i and j yielding the minimum.)

2b) Update D by deleting the j-th row and column.

2c) Update the i-th row and column ofD using the appropriate recursive linkage update
(cf. lemma 5.2, 5.3 and 5.4)

• The calculation of the distance matrix has an complexity of O
(
n2
)
, which is usually

signi�cantly more than the complexity of the k-means.

5.5.3 Density-Based Spatial Clustering of Applications with
Noise

This density-based method, abbreviated as DBSCAN, was developed by Martin Ester et al.
in 1996. [EKSX96] It uses a slightly different notion of clusters: A cluster is a maximal
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Figure 5.2: Dendrogram of the hierarchical clustering with complete linkage (abscissa: genes,
no labeling for clarity reasons; ordinate: cluster dissimilarity)
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(�,�)-density-connected set, which will be de�ned in the following. This will allow the de-
tection of arbitrary shaped clusters.

Let again (V,d) be a metric space and X ⊂ V be the set to be clustered, n = |X | with
0 < n < �.

De�nition 5.10: Direct (�,�)-Density Reachability
Let � ∈ R

+ and � ∈ N. A point y ∈ X is directly (�,�)-density reachable from x ∈ X if

(1) y ∈ B� (x)

(2) x is a core point, i.e. |B� (x)∩X | ≥ �

where B� (x) = {v ∈V |d (v,x) < �} is the open �-neighborhood of x.
De�nition 5.11: (�,�)-Density Reachability
A point y ∈ X is (�,�)-density reachable from x ∈ X if there exists a chain

x = p0, p2, . . . , pk = y (5.41)

with k ∈ N, such that pi is directly (�,�)-density reachable from pi−1 for all i ∈ {1, . . . ,k}.
Let

R�,� (x) = {y ∈ X |y is (�,�)-density reachable from x} (5.42)

De�nition 5.12: (�,�)-Density Connectivity
A point y∈X is (�,�)-density connected to x∈X if there exists a z∈X such that x,y∈R�,� (z).

Please note that (�,�)-density reachability is not symmetric, because of the core-condition
(2) in de�nition 5.10. This condition will ensure that density connected sets have a certain
data concentration and thin connecting paths, so-called single links, are ignored as �gure 5.3
shows.

Figure 5.3: DBSCAN for � = 2 (left) and � = 5 (right, solid black dots denote noise); linkage
line added arti�cially

Using the notion of (�,�)-density connectivity, the terms cluster and noise can be de�ned:
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De�nition 5.13: (�,�)-Cluster
A subset C ⊂ X is called cluster if

(1) For all x,y ∈ X holds:
If x ∈C and y ∈ R�,� (x), then y ∈C. (Maximality)

(2) For all x,y ∈C holds:
x is (�,�)-density connected to y. (Connectivity)

Due to the de�nition of (�,�)-density reachability each cluster contains at least one core
point and thus at least � data points. So there might remain points which neither have � or
more �-neighbors nor have any �-neighbor which is a core point itself. That means these
points are not (�,�)-density reachable from any point and thus do not belong to any cluster,
which gives rise to an additional subset of X collecting all those points:

De�nition 5.14: (�,�)-Noise
Let C1,C2, . . . ,Cm ⊂ X be all (�,�)-clusters of X. Then

N = X \
(

m⋃
i=1

Ci

)
(5.43)

is called (�,�)-noise of X.

Having these de�nitions it is not immediately obvious that the (�,�)-clusters of X are well-
de�ned and even though how to generate them. Both is shown by the following lemma.

Lemma 5.5: Generation of (�,�)-Clusters
Let C ⊂ X be a (�,�)-cluster and x ∈C a core point. Then

C = R�,� (x) (5.44)

Proof. The inclusion R�,� (x) ⊂C holds due to the maximality of (�,�)-clusters.
Now let y ∈C. Using the connectivity property of (�,�)-clusters there exists a z ∈C such that
x,y ∈ R�,� (z). That means there are chains

z = p0, p1, . . . , pk = x (5.45)

and
z = q0,q1, . . . ,qm = y (5.46)

where k,m ∈ N, pi,q j ∈ X with pi is directly (�,�)-density reachable from pi−1 and q j is
directly (�,�)-density reachable from q j−1 for i ∈ {1, . . . ,k} and j ∈ {1, . . . ,m}. The directly
(�,�)-density reachability is symmetric if both points are core points. Thus, pi−1 is also
directly (�,�)-density reachable from pi, for all i ∈ {1, . . . ,k}, since pk = x is a core point,
too. That means that the following is a chain of directly (�,�)-density reachable points:

x = pk, pk−1, . . . , p1, p0 = z= q0,q1, . . . ,qm = y (5.47)

Thus, y ∈ R�,� (x), which yields the inclusionC ⊂ R�,� (x), �nishing the proof.
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5 Clustering of Time Course Data

Please note that the proof also has shown that (�,�)-density reachability is transitive and
additionally symmetric if both points are core points.

The lemma shows that a cluster is uniquely de�ned by any of its core points, which will be
used by the clustering algorithm.

Algorithm 5.3: DBSCAN
Let X be the non-empty, �nite set to be clustered. Let � ∈ R

+ and � ∈ N.

1) D= /0 (set of visited points)
m= 0 (number of clusters)

2) Take x ∈ X \D

3) If |B� (x)∩X | ≥ �
m :=m+1
Cm := R�,� (x)\D
D :=D∪Cm

else
D :=D∪{x}

4) If D �= X goto step 2.

5) N = X \
(

m⋃
i=1

Ci

)
Remark 5.4:

• The calculation of the set R�,� (x) goes as follows:

a) Rx := {x} (set of found reachable points)
Dx := /0 (set of visited points)

b) Take y ∈ Rx \Dx.
Dx :=Dx∪{y}
If |B� (y)∩X | ≥ �

Rx := Rx∪ (B� (y)∩X)

c) If Rx �= Dx goto 2.

d) R�,� (x) = Rx

• Note that it might happen, that two different clusters have common points, which are
border points (i.e. no core points) of both clusters. In this case the points are assigned to
the cluster with the lower index. Besides this rare case, the algorithm is deterministic.

• The selection of the two parameters � and � is the crucial point for this method. Zhou
et al. propose � = 2d, where d denotes the dimension of the data space. [SAW+00]
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Ester et al. propose a visual inspection method for choosing � by plotting the values of
the distances between each point and its �-nearest neighbor and selecting manually a
change point in the value series.

• The average runtime of DBSCAN is O (n logn). [EKSX96], [SB05]

Figure 5.4: Clustering using DBSCAN, � = 0.4, � = 4 (solid black dots denote noise)

The advantage of DBSCAN to �nd arbitrary shaped clusters also causes problems for the
task of clustering gene time courses. For example, an expansion of a cluster along one dimen-
sion would give hints about the differentiation at one time point of otherwise parallel expressed
genes. Furthermore, the freedom to exclude noise genes from the clustering is very helpful
in detecting gene pathways and functional groups. The risk of genes which were accidentally
assigned to a cluster, “just because no better one was available”, is reduced.

However, the parameters have to be chosen carefully to ensure, that the clusters are not
to widespread along one or more dimensions. Finally, the genes put into the noise set stay
separated from the others, which would increase the dimension and thus the complexity of the
model which shall be calculated in the next chapter.

Therefore, for the special task of generating a gene interaction network, these methods will
not be further examined.

5.6 Quality Measures and Cluster Validation

Most clustering algorithms need a decision how many clusters shall be taken (e.g. k-Means)
or where the cluster tree shall be cut (e.g. hierarchical clustering). The determination of the
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correct number of clusters is one of the crucial points, as important as the selection of the
method itself.

The estimation of a good cluster number can be aided by using validity indices.
There are two types of cluster validity indices, internal and external ones. While the latter

ones need additional knowledge of the data and a prior clustering for comparison, the internal
indices are based solely on the cluster structures. In this work it is assumed that no prior
knowledge about gene clusters, e.g. metabolic pathways, is given, thus only internal validity
indices are applicable.

A clustering has to meet two quality requirements. Firstly a cluster should be in some
way dense and well-separated from others. Secondly the clustering itself should be robust to
small changes in the data set. Both properties are quite imprecise providing suf�cient room
for subjective interpretation. In this section mathematically formulated quality measures are
presented. These are taken from [Kre08] where several more are available.

5.6.1 Separation Indices

These indices always compare within-cluster and in-between-cluster structures, but they do it
in quite different ways. In the following two indices are presented exemplary.

Therefore, let � = {C1, . . . ,Ck} be a clustering of the set X with n = |X |, 0 < n < �.

De�nition 5.15: Dunn Index
The Dunn index is the ratio between the smallest inter-cluster and the largest intra-cluster
distance, given by

�Dunn =
min
i �= j

dSL
(
Ci,Cj

)
max

i∈{1,...,k}
D(Ci)

(5.48)

where dSL denotes the single linkage distance and D(Ci) = max
x,y∈Ci

d (x,y) is the diameter of the

cluster Ci with respect to the metric d.

The Dunn Index takes values from the interval [0,�], the larger the better is the clustering.
However, please note that it has two drawbacks: Due to the the diameter in the denominator,
the Dunn index prefers clusters which are spherical with respect to d. Furthermore, the def-
inition yields a singularity when the clustering is atomic, i.e. each data point builds is own
cluster, which is obviously not desired.

De�nition 5.16: Connectivity Index
Let X = {x1,x2, . . . ,xn} and � j (xi) denote the j-th nearest neighbor of xi in X. The connectivity
index is given by

�Con =
n

�
i=1

p

�
j=1

[
1−�C

(
xi,� j (xi)

)] 1
j

(5.49)
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where

�C (x,y) =
{

1 if there exist an i ∈ {1, . . . ,k} such that x,y ∈Ci
0 otherwise

(5.50)

The parameter p ∈ N denotes the number of nearest neighbors taken into account.

The connectivity index mapping into [0,�) checks if each data point and its nearest neigh-
bors are put to the same clusters and increases if that is not the case. Thus, the lower the index
is, the better is the clustering.

5.6.2 Robustness Indices

These indices measure the robustness of the clustering with respect to deletion of experimental
conditions. One robustness index, the Adjusted Figure of Merit is presented below.

The adjusted �gure of merit was constructed by Yeung et al. in 2000 [YHR00]. For its
calculation a clustering is run after one experimental condition (in this work: a time point)
was removed from the data, i.e.: Let X = {x1, . . . ,xn} ⊂R

d be the data set to be clustered. The
e-th component of a x ∈ X contains the value of this data point under the e-th experimental
condition, call it x(e). Now let Xe =

{
xe1, . . . ,x

e
n

} ⊂ R
d−1 where xei coincides xi with its e-th

component deleted. Furthermore, let �e =
{
Ce

1, . . . ,C
e
k

}
be a clustering of Xe.

De�nition 5.17: Figure of Merit
Let I

e
m be the index set of cluster Ce

m, i.e.:

i ∈ I
e
m ⇔ xei ∈Ce

m (5.51)

Then the �gure of merit is de�ned to be

FOM (e,k) =

√√√√1
n

k

�
m=1

�
i∈Iem

[xi (e)−�m (e)]2 (5.52)

where

�m (e) =
1

|Ce
m| �i∈Iem

xi (e) (5.53)

denotes the arithmetic mean of the deleted e-th experimental condition of all data points of the
cluster Ce

m.
The aggregate �gure of merit is given by

FOM (k) =
d

�
e=1

FOM (e,k) (5.54)

Then the aggregate �gure of merit is an estimator of the robustness and thus for the pre-
dictive power of the clustering algorithm. However, due to the sums of squared errors in the
formula, an increase of the number of clusters k will often result in a decrease of the FOM,
which demands a adjustment. Therefore, Yeung et al. de�ned the adjusted �gure of merit in a
way ,which amends the index:
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De�nition 5.18: Adjusted Figure of Merit
The adjusted �gure of merit is given by

ad jFOM (k) =
FOM (k)√

n−k
n

(5.55)

This index maps into [0,�). The lower the adjusted �gure of merit is, the higher is the
predictive power of the clustering algorithm with respect to the given data set.

5.7 Time Course of Clusters

After achieving a clustering � = {C1, . . . ,Ck} the question remains, how to de�ne their time
course behavior based on their corresponding elements.

5.7.1 Cluster Medoid

A �rst possibility is the selection of one element as representative of the complete cluster.
Obviously, this element should exhibit the lowest dissimilarity to the elements of C. More
precise, given a clusterC take a representative ĝ ∈C such that

ECĝ≤ ECg for all g ∈C (5.56)

where EC denotes an error function with respect toC. A common choice for this error function
is a least squared sum based on the distance measure d used for the clustering itself:

ECg = �
c∈C

d (g,c)2 (5.57)

Then the element ĝ is called medoid of C with respect to E. This method has the advantage,
that the time course of the representative is already available. However, please note, that the
medoid is not necessarily unique, which can be easily seen considering a cluster consisting of
two disjoint elements.

5.7.2 Cluster Centroid

This method is related to the medoids, but does not force to choose the representative from
the cluster set itself. Therefore, assume that C is a subset of a complete metric space X with
metric d. The centroid ĝ ∈ X shall ful�ll

ECĝ≤ ECg for all g ∈ X (5.58)

where again EC denotes an error function with respect to C. Also for the centroid a common
choice is the least squared sum based on the distance measure d used for the clustering itself:

ECg = �
c∈C

d (g,c)2 (5.59)
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If d is the Euclidean distance the centroid becomes the arithmetic mean of the cluster elements.
Please note again, that the centroid is not necessarily unique. As example consider the distance
measure based on Pearson’s r (5.17) and a one-elemental clusterC= {g}. Then ĝ=�g ful�lls
(5.58) for any � ∈ R\{0} (cf. (5.16)). Furthermore, the centroid has to be meaningful in the
sense, that its time course has to be determinable.

5.7.3 Cluster Smoothing Spline

The concept of smoothing splines gives an additional opportunity for calculating a cluster
time course. Having a �nite number of genes in the clusterC their corresponding standardized
measurements may be collected and treated as measurements of one single “meta gene” ĝ.

Mĝ,t :=
⋃
g∈C

M∗
g,t (5.60)

where
M∗
g,t =

{
s−1
m m |m ∈Mg,t

}
(5.61)

denotes the data standardized with respect to the statistic s−1
m (cf. de�nition 5.2).

This data can be interpolated using median, bootstrapping and a smoothing spline as it was
done for each single gene. However, if the number of genes in a cluster is large the presented
exact bootstrapping method becomes too expensive and the conventional method has to be
used.

5.8 Results

A detailed analysis of the quality of clustering algorithms, distance measures and internal
validity indices on the basis of the considered Magnaporthe time course data is available in
[Kre08]. Thus, in this section these results will be shortly summarized.

The validity indices do not identify clearly a correct number of clusters. Therefore, a trade-
off between the decrease of clustering errors and the increase of expected model complexity,
due to a growing number of clusters, has to be made.

Figures 5.5 and 5.6 shows a large gain in predictive power by additional clusters up to about
100 clusters. Then the slope of the indices approaches to zero. The hierarchical clustering is
run using all described linkage methods: single linkage (SL), average linkage (AL), complete
linkage (CL) and centroid linkage (CenL). The initialization of k-means and k-medoids was
made using the results of the hierarchical clustering. These methods provide the best separa-
tion as well the most robust results. The same holds for clusterings using the spline distance
as it is shown in appendix C.

Thus, for further computation the clustering result of the setup given in table 5.1 is taken.
The resulting clusters are plotted in Appendix D.
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5 Clustering of Time Course Data

Figure 5.5: Adjusted Figure of Merit of hierarchical and k-means clustering using the Eu-
clidean distance

Figure 5.6: Connectivity index of hierarchical and k-means clustering using the Euclidean dis-
tance
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5.8 Results

Algorithm k-means
Initialization hierarchical clustering with complete linkage

Distance measure euclidean distance
Cluster number 65

Table 5.1: Setup of the clustering taken for further calculation

For the following chapter, let � =
{
C1, . . . ,C�

}
, � ∈ N, with

X =
�⋃
i=1

Ci

Ci∩Cj = /0 for all i, j ∈ {1, . . . ,�} , i �= j
(5.62)

denote the clustering of the gene set X .
Let ĝi, i ∈ {1, . . . ,�}, be the representative of clusterCi and its time course Sĝi : [t1, t� ] → R

shall be denoted by

Sĝi (t) =
�−1

�
j=1

� j (t) a
(ĝi)
j,3

(
t− t j

)3 +a(ĝi)
j,2

(
t− t j

)2 +a(ĝi)
j,1

(
t− t j

)
+a(ĝi)

j,0 (5.63)

with � j (t) as in (4.74).
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6 Calculation of a Gene Interaction
Network

Frustra �t per plura quod potest �eri per pauciora.
(It is futile to do with more things that which can be done with fewer.)

— William of Ockham, Franciscan monk (ca. 1285-1349)

In the last chapter genes of similar behavior were detected and bundled to clusters. Now the
interaction of genes of different behavior respectively their clusters will be regarded.

Literature provides many differently complex models covering a full bandwidth (without
this list being claimed to be exhaustive):

• Boolean or continuous with respect to the data

• Discrete or continuous in time

• Deterministic or stochastic

• Linear, piecewise linear or non-linear

• Regression, Neural Networks, Genetic Algorithms or Bayesian Methods

e.g. [D’h00], [JC04], [GHL05], [HMC+01], [JGHP03]
Knowing effects of the gene expression processes it seems obvious to chose a non-linear

structure having the ability to model properties as e.g. saturation of the inner cellular mRNA
concentration. However, as already mentioned in the introduction these non-linear approaches
did not yield comparable results as the ßimplellinear approach does. The standard linear and
time-invariant state space system turned out to approximate the data very well which will be
shown in the following.

Therefore, let a clustering � =
{
C1, . . . ,C�

}
be calculated and the cluster time courses Sĝi

for i ∈ {1, . . . ,�} be given as in (5.63).
Accumulate these time courses as components to a vector-valued spline function

S :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[t1, t� ] −→ R
�

t �−→

⎛
⎜⎝Sĝ1 (t)

...
Sĝ� (t)

⎞
⎟⎠ (6.1)
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6 Calculation of a Gene Interaction Network

The task of this chapter will be the calculation of a linear and time-invariant state space
model, which generates S as trajectory vector.

6.1 Discrete Linear Time-Invariant State Space
Model

In this section a discrete linear and time-invariant model for the interaction network will be
generated. This network will have the standard state space representation which is de�ned as
follows:

De�nition 6.1: Discrete Linear Time-Invariant State Space Model
Let n, p,q,K ∈ N. A discrete linear and time-invariant dynamical system in state space form
is given by

xk+1 = Axk + Buk
yk = Cxk + Duk

}
for k ∈ {1, . . . ,K} (6.2)

mapping an input sequence

u :

{ {1, . . . ,K} −→ R
p

k �−→ uk
(6.3)

to an output sequence

y :

{ {1, . . . ,K} −→ R
q

k �−→ yk
(6.4)

The matrices A ∈ R
n×n, B ∈ R

n×p, C ∈ R
q×n, D ∈ R

q×p are called state matrix, input
matrix, output matrix, and feed-through matrix. The sequence

x :

{ {1, . . . ,K+1} −→ R
n

k �−→ xk
(6.5)

is called state sequence of the system.

Using the notation of the de�nition, the modeling task becomes:
Find matrices A, B, C, D of appropriate sizes, an initial state x1, and an input sequence u such
that the output y approximates a discretization of the vector-valued spline function S given in
6.1.

The values for these discretized trajectories are calculated by dividing the time interval
[t1, t� ] equidistantly with step size h:

h =
t� − t1
K−1

(6.6)

Then the sequence s to be approximated by the discrete state space model by

sk = S (t1 +(k−1)h) for k ∈ {1, . . . ,K} (6.7)

Before the calculation of the state space system is done, the model is re�ned by the follow-
ing additional assumptions:
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6.1 Discrete Linear Time-Invariant State Space Model

1. The state of the fungus is given by the gene expression levels. Here, the representatives
of the clusters have to be taken due to the indistinguishableness of the members in each
cluster. Beside the cluster expression level, no further internal states will be assumed.
Thus, q = n = � , the output matrix C becomes the identity, and the initial state x1 is
given by s1 = S (t1).

2. An external stimulus of the fungus does not cause an immediate reaction. This will be
modeled by claiming, that the delay has to be at least one time step. Therefore, the
dynamical system has to be strictly causal, i.e. if two input sequences applied to the
system coincide up to a time k ∈ N then the corresponding outputs coincide up to time
k+1, independent of the values of the inputs at that time. Thus, the feed-through matrix
D has to vanish.

3. The only external stimulus of the fungus is the initial application of the spores to the
culture medium, where the fungus grows without any disturbances until it is taken for
the mRNA extraction. This results in the assumption of a constant stimulus due to the
nutrient supply, which will be modeled by a constant input û ∈ R

p. By de�ning b = Bû
the dynamical equation can be transformed as follows

xk+1 = Axk + Bû
= Axk + b ·1 (6.8)

Thus, the assumption of a constant input allows for the simpli�cation p = 1 and uk = 1,
for all k ∈ {1, . . . ,K}. Therefore, the input matrix will be replaced by the column vector
b ∈ R

� and the input function is scalar and constant: u≡ 1.

Taken all this together results in the following model:

xk+1 = Axk + b ·1 + �k
yk = xk

}
for k ∈ {1, . . . ,K} (6.9)

where �k denotes the approximation error of the system in time step k.
The dynamical equation can be compressed further to

xk+1 = [ A | b ] x̂k + �k for k ∈ {1, . . . ,K} (6.10)

with x̂k =
(
xk
1

)
for all k ∈ {1, . . . ,K}.

Because of the measurement errors the matrix has to be estimated by regression, which
means: Find the matrix [ A | b ] such that the sequence of approximation errors � is minimal
in the least square sense

E (�) =
1
K

K

�
k=1

(‖�k‖2)
2 → minimum (6.11)
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6 Calculation of a Gene Interaction Network

Therefore, transform (6.10) into the matrix notation

Y = [ A | b ]X +E (6.12)

where the states are collected in X ,Y ∈ R
n×K , given by

X = [ x̂K | . . . | x̂1 ]
Y = [ xK+1 | . . . | x2 ] (6.13)

and the error matrix E contains the approximation error �

E = [ �K | . . . | �1 ] (6.14)

Each single row of equation (6.12) is a multiple linear regression task:[
x̂(i)K | . . . | x̂(i)1

]
= [ Ai· | bi ]X +

[
�(i)
K | . . . | �(i)

1

]
(6.15)

The sum of error squares can be expressed by∥∥∥[ �(i)
K | . . . | �(i)

1

]∥∥∥2

2
=
([

x̂(i)K | . . . | x̂(i)1

]
− [ Ai· | bi ]X

)([
x̂(i)K | . . . | x̂(i)1

]
− [ Ai· | bi ]X

)T
(6.16)

The solution of the minimizing problem is achieved by setting the derivative with respect to
[ Ai· | bi ] to zero, which results in:

[ Ai· | bi ] =
[
x̂(i)K | . . . | x̂(i)1

]
XT (XXT)−1

(6.17)

Further explanation will be skipped here, since several textbooks deal with multiple linear
regression. Sachs et al. [SH09] presents the geometric interpretation as well as a complete
algorithm for the calculation of the solution. However, the matrix division of Matlab does
exactly the desired job, thus in following the regression will be done by just using the right
matrix division ( / ) of Matlab. Therefore, the solution [ A | b ] of the regression can calculated
by

[ A | b ] =Y/X (6.18)

For discussing the resulting dynamical system, several notions have to be de�ned:

De�nition 6.2: Autonomy
A standard state space system given as in (6.2) autonomous if the system output y is indepen-
dent of the input u.

Remark 6.1:
The system (6.2) is autonomous if and only if the following holds:

Let an initial system state x0 ∈ R
n and two input sequences u(1) and u(2) be given. Let y(i)

denote the output corresponding to the initial state x0 and the input u(i), for i ∈ {1,2}. Then

y(1) ≡ y(2) (6.19)
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6.2 Results

This means autonomy is equivalent to

B = 0
D = 0

(6.20)

De�nition 6.3: Stability
Consider the state space system (6.2).
Let two initial system states x(1)

0 ,x(2)
0 ∈R

n and an input sequences u be given. Let x(i) denote

the system state sequence corresponding to the initial state x(i)0 and the input u (for i ∈ {1,2}).
Then the state space system is called stable if there exist an M ∈ R

+ such that∥∥∥x(1)
k − x(2)

k

∥∥∥<M for all k ∈ N (6.21)

The system is called asymptotically stable if additionally

lim
t→�

∥∥∥x(1)− x(2)
∥∥∥= 0 (6.22)

Lemma 6.1: Stability of a Discrete Linear Time-Invariant State Space Model
An autonomous system represented by

xk+1 = Axk (6.23)

is stable if and only if all eigenvalues of A have modulus less than or equal to 1 and each
eigenvalue � with |� | = 1 is semi-simple, i.e. its algebraic multiplicity equals its geometric
multiplicity.
It is asymptotically stable if and only if all eigenvalues of A have modulus less than 1.

Proof. [Zer02]

6.2 Results

The quality of the results depends strongly on the step size - as it also might be expected.
Table (6.1) shows the main properties of resulting state space systems. The approximation
of all cluster trajectories by the state space system generated with step size 1/40h is given in
Appendix E.

Some interesting aspects of the results will be discussed below.

6.2.1 Autonomy

The �rst noteworthy fact is the autonomy of the resulting system. The matrix [ A | b ] cal-
culated by (6.18) has a zero column in the last position and thus b as well as the in�uence
of the input function chosen in the beginning of the last section vanishes. This fact is quite
interesting, since it yields no control possibility for the system behavior. The genes follow
their trajectories without any external trigger as if the spore contains all energy needed for the
gene activities during the fungus maturation. This matter should be followed up but not be
overstated, since it remains a result of this concrete modeling approach.
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6 Calculation of a Gene Interaction Network

step size number of system auto- largest
stable? error

(in hours) nodes dimension nomous? eigenvalue
h K n �max E (�)
1 25 21 X 1.0001 35.701

1/2 49 25 X 1.0000 + 0.0065i X 55.026
1/3 73 27 X 1.0097 22.225
1/4 97 29 X 1.0083 55.720
1/5 121 30 X 1.0039 13.237
1/6 145 31 X 1.0036 28.867
1/7 169 31 X 1.0000 66.316
1/8 193 31 X 1.0000 + 0.0027i 17.568
1/9 217 31 X 1.0025 103.25

1/10 241 31 X 1.0000 23.522
1/20 481 31 X 1.0013 0.9470
1/30 721 31 X 1.0016 35.399
1/40 961 31 X 1.0000 + 0.0012i 0.2614
1/50 1201 31 X 1.0004 19.023
1/60 1441 31 X 1.0000 + 0.0002i 38.723
1/70 1681 30 1.0000 + 0.0003i 3.11·1015

1/80 1921 31 X 1.0000 51.287
1/90 2161 31 X 1.0003 203.55

1/100 2401 31 X 1.0002 6.3580
1/200 4801 31 X 1.0001 + 0.0012i 2363.5
1/300 7201 31 X 1.0000 + 4.8·10−8i X 4.2784
1/400 9601 31 X 1.0000 327.02
1/500 12001 31 X 1.0000 50.873
1/600 14401 29 X 1.0000 + 2.7·10−8i 37.874
1/700 16801 30 X 1.0000 + 4.8·10−8i X 251.50
1/800 19201 31 X 1.0000 3.2995
1/900 21601 30 X 1.0000 99.985

1/1000 24001 31 X 1.0000 1.8427

Table 6.1: Some results of the linear regression
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6.2 Results

6.2.2 Additional Dimension Reduction

The resulting system matrix A∈R
65×65 is singular. Well approximating systems in table (6.1),

i.e. those having an error E (�) less than 10, exhibit a system matrix with rank 31. Even those
systems which approximate worse do not exceed that value. This yields a further reduction
of system dimension. Therefore, assume without loss of generality that the last row of the
resulting system matrix A is a linear combination the �rst r rows (r ∈ N):

An· =
r

�
i=1

�iAi· (6.24)

Denoting the i-th component of the state vector at time k by x(i)k yields

x(n)k = An·xk−1
= (�r

i=1�iAi·)xk−1
= �r

i=1�i (Ai·xk−1)
= �r

i=1�ix
(i)
k

(6.25)

Additionally, de�ne �n = −1 and �i = 0 for all i ∈ {r+1, . . . ,n−1}. This results in

x( j)k+1 = Aj·xk
= �n

j=1Ajix
(i)
k

= Ajnx
(1)
k +�n−1

i=1 Ajix
(i)
k

= Ajn

(
�r
i=1�ix

(i)
k

)
+�n−1

i=2 Ajix
(i)
k

= �n
i=1

(
Ajn�i+Aji

)
x(i)k

(6.26)

for all j ∈ {1, . . . ,n}. Using the matrix notation and the row vector �T = (�1, . . . ,�n) the
equation becomes

xk+1 =
(
A+A·n�T)︸ ︷︷ ︸

Â

xk (6.27)

That means there exists an equivalent dynamical equation which has only zeros in the last
column, i.e. the in�uence of the linear dependent state component is removed. Which in
turn allows the reduction of the dimension of the system matrix Â by reintroducing the output
matrix C. Therefore, let Â¬n ∈ R

(n−1)×(n−1) be the matrix Â where the n-th row and column
was deleted and �T¬n ∈R

n−1 be the vector �T where the n-th value was removed. Furthermore,
let

C =
(

I
�T¬n

)
∈ R

n×(n−1) (6.28)

This yields a state space system which generates the same trajectories as xk+1 =Axk but having
one dimension less:

�k+1 = Â¬n �k
xk = C �k

(6.29)
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6 Calculation of a Gene Interaction Network

step size Approximation error E (�) after deleting cluster no.
(in hours) 1 2 3 4 5

1/10 10.942 23.063 9.587 35.274 23.114
1/20 0.944 242.18 55.516 6.757 0.938
1/30 35.146 34.814 108.92 15.446 34.795
1/40 0.259 0.258 10.393 18.347 0.257
1/50 18.873 4.243 32.347 2.851 18.714
1/60 38.385 38.156 1.102 0.108 38.097
1/70 2.87·1015 2.76·1015 3.35·1015 3.48·1015 3.11·1015

1/80 39.496 50.406 2.378 261.27 50.428
1/90 184.62 82.104 3.9 44.254 86.341

1/100 6.323 54.859 200.9 24.568 6.256

Table 6.2: Results of linear regression after deleting clusters

Applying this method to all linear dependent rows of the calculated system matrix A the
system dimension can be boiled down to 31. This is especially noteworthy since the data was
not easily separable and the correct number of clusters was not clearly determinable. Thus,
selecting a too large number of clusters might be emended by this method.

6.2.3 Robustness with Respect to the Step Size

The step sizes yielding a good approximation are not completely data inherent, which can
be seen if the same regression procedure is done after removing one cluster. In table 6.2 the
approximation errors after deleting the �rst �ve clusters are exempli�ed in detail.

Several step sizes do not yield good approximations after deleting any cluster (especially
1/70 hours did not converge in any calculation), but some step sizes which did not cause good
approximations in the original setting do �ne after removing a cluster (e.g. 1/60 after removing
cluster 4).

6.2.4 System Stability

A last comment should be given to the stability of the solutions. Only a few number of step
sizes result in stable systems, i.e. system having a system matrix with eigenvalues inside
the unit disc. Even fewer ones additionally exhibit an acceptable approximation, e.g. step
size 12 seconds (=1/300 hours). Most of the results have one up to four instable eigenvalues.
However, the absolute values of the largest eigenvalues �max of good approximating systems
differ marginally from 1. |�max| of the best approximation found (step size 90 seconds = 1/40
hours) is 1+2.0 ·10−6.
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7 Summary and Outlook

In nature we do not �nd words, but only the initial letters of words,
and if we then attempt to read them we �nd that the new so-called words are again
merely the initial letters of other words.

— Georg Christoph Lichtenberg, German scientist and satirist (1742-1799)

This work described a complete experimental work �ow for analyzing the �rst 24 hours of
growth of Magnaporthe grisea starting from the design of experiments up to the resulting math-
ematical model of the gene interaction. In the following, each step will be shortly reviewed by
recalling all assumptions and decisions made and summarizing the results. Additionally, pegs
for further or re�ning work are discussed.

7.1 Design of Experiments

A two-step design was taken for the microarray measurements. In the �rst phase the gene
expression levels of differently matured Magnaporthe grisea conidia were compared to the ex-
pression levels of dormant spores and signi�cant differences were detected using the Fisher-
Pitman-Test. In the time intervals, where the most changes in differently expressed genes
occurred, additional time knots were inserted and the design was balanced with respect to all
mature times.

Decisions and Assumptions

• The selection of the time knots of the �rst experiment phase was driven by visual in-
spection of the fungus growth. The knots of the second phase were taken such that they
divide the corresponding intervals in an approximately equidistant manner. The �nal
selection of the mature times was up to the biologists and their expertise, where more
changes might occur. Obviously, this choice might be wrong and better time points
might exist. However, assuming that only few genes exhibit a short-time expression,
most genes with expression changes should be detected.

• The generation of mRNA for the microarray experiments took about half an hour. Thus,
in fact each measurement at a speci�c mature time is an average behavior in this time
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period, which means that fast regulating genes might disappear by blurring over time.
Here again, long-term expressions in most of the relevant genes had to be assumed.

• The number of replicates of each mature time was set to 4 such that the Fisher-Pitman-
Test was able to detect at least the most signi�cant expression differences and the bal-
ance requirement was met, i.e. dye-swaps were hybridized equally often.

Results

The design of experiments is easily expandable, as the second phase of the two-step design has
shown. Thus, experiments for new time points as well as additional microarrays for enhancing
the data at existing time points can be embedded into this design. Furthermore, the minimal
sample size for control and treatment groups needed for statistical analysis of time course
experiments was calculated.

Possible further Work

Additional measurement data is the main requirement for all enhancements of the system
analysis and modeling. An increase of the data for each time point allows for other statistical
methods as e.g. a Bonferroni correction. New mature time points yield additional knots for the
spline smoothing. Furthermore, measurements under different environmental conditions may
result in differences of the expression level of genes which are indistinguishable up to now.
This new information for the clustering procedure will increase the number of differentiated
clusters.

7.2 Data Processing

The microarray data was normalized using within and in-between chip normalization tech-
niques as e.g. the Lowess method. The resulting corrected data were statistically evaluated
using the Fisher-Pitman-Test.

Decisions and Assumptions

• The normalization methods are well-known and the needed parameters were set to com-
mon values taken from literature.

• The Fisher-Pitman-Test was chosen since no assumption of normal data distribution
was made. Four replicates and thus four data values were too few for a reliable well-
founded decision of the distribution type. Furthermore, microarrays are known for their
liability to exhibit outliers. Thus, a non-parametric hypothesis test was required. The
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low number of values allowed a computational expensive, but more precise test which
gave rise to the Fisher-Pitman-Test.

• An alpha risk of 5% was taken as suf�cient and no Bonferroni-correction was applied
due to the limited microarray resources. Thus, it should be kept in mind that the signi�-
cance of each gene detected by the test should be veri�ed using cheaper methods as the
qRT-PCR before further analysis or biological work is done based on this single gene.

• In addition to the signi�cance of the distribution differences obtained from the hypoth-
esis test, a fold-change of at least factor 2 was taken as condition for a relevant change
in expression.

Results

Using the Fisher-Pitman-Test as well as the fold-change condition yielded the following:
Nearly one half of all Magnaporthe grisea genes (7174 out of 15170), about one sixth of
the rice genes (1171 out of 6325), and 7 out of 1080 control genes are detected as expressed
differently at least at one time point compared to time 0.

Possible further Work

As already mentioned, additional measurements are needed for further improvements of the
statistical analysis. In this work, the control of false positives was mainly addressed, since for
�rst screenings this error category is even more important than normally. Thus, enhancements
should focus the decrease of false negatives, i.e. the increase of the statistical power.

7.3 Estimation of Gene Expression Time Courses

The normalized gene expression data were interpolated to generate continuous time courses.
This was done by using cubic smoothing splines. The data points and their accuracy weights
needed for this type of splines were derived from the replicated data using the median and an
accuracy measure calculated via the exact bootstrap method, which is computationally cheaper
than the standard bootstrap approach.

Decisions and Assumptions

• Since no normal distribution was assumed and outliers are suspected, the median was
chosen instead of the arithmetic mean for values to be interpolated. This also gave
rise to the bootstrap method for calculating the estimation accuracy, since the standard
deviation is no adequate quality measure for the median.
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• There are many possible interpolation methods for the data. Since no further knowledge
about the shape of the gene expression time courses existed, the common approach
using cubic splines was chosen. The fact that the data points are only estimates led to
the concept of smoothing splines allowing interpolation weights based on the estimation
accuracy. Additionally, standard splines interpolating exactly the data points generate
more overshootings than smoothing splines. Not knowing the true time course, the
assumption of more steady trajectories without arti�cially ampli�ed peaks was made.

Results

In addition to yielding the exact accuracy of the median, the exact bootstrap technique is
computationally less expensive than the standard bootstrap for normal microarray settings.
The smoothing spline interpolation generates a well-founded and easily interpretable image
of the gene time courses. Due to the polynomial character of the splines, the usage in further
calculation steps, e.g. for the Lp-metric, is exceptionally simple.

Possible further Work

The exact bootstrap technique is given for any statistic. However, if another one is chosen, it
should be checked, whether the algorithm for general statistics can be improved as it is done
for the median in this work.

The interpolation quality of the smoothing splines increases if further time knots are added.
Especially time course peaks which might be �attened due to the smoothing would be higher,
if they are supported two or more adjacent knots.

7.4 Data Clustering and Modeling of the Interaction
Network

The genes are clustered with respect to expression time course similarities. The resulting clus-
ters were taken to be approximated by the dynamical system. That means, in fact, the gene
interaction network is only a cluster interaction network. Based on the data and no additional
information available, there was no possibility to distinguish parallel expressed genes as reg-
ulatory factors or other genes.

Decisions and Assumptions

• Based on the cluster validation indices, the K-Means/K-Medoid clustering method per-
formed best. The distance measures did not in�uence the results signi�cantly, thus, the
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Euclidean distance was chosen. The optimal number of clusters was not clearly deriv-
able from the indices, but a number below 100 could be assumed. Finally, it was set to
65.

• The discrete linear and time-invariant state space system for modeling the interaction
network was taken.

• No hidden states, a constant input, and strict causality were assumed due to biological
and simplicity reasons.

Results

The clustering yielded �rst impressions of gene correlations and common expression pathways
which entailed useful information for further biological experiments. However, the genes were
not clearly separable as the validity indices had shown.

The discrete linear time-invariant state space system approximated the cluster time courses
very well. Three properties of the resulting state space systems which yielded good approxi-
mations were robust with respect to the step size:

1. The systems are autonomous. The states follow the desired trajectories without any
additional input. The dormant spores already carry all energy and information for their
normal growth and maturation. Even if this interpretation is comprehensible, it should
be remembered that it is a result of the modeling approach.

2. The system matrices have rank 31. This especially quali�es the selection of the number
of clusters.

3. Only few systems are stable, but the others exhibit a spectral radius of nearly 1. More
precise, the modulus of the largest eigenvalue does not exceed 1 by more than a magni-
tude of 10−4.

The system matrix of the state space system shows the dynamical interaction of the sys-
tem states among each other. Since these states model the clusters, it also provides hints of
activating or inhibiting regulatory interaction between cluster elements.

Possible further Work

Many genes cluster in common pathways which result in comparable time courses and there-
fore an indistinguishableness between them. Thus, there is no possibility to model the complex
gene interaction but only the interaction of clusters. Gene expression measurements under dif-
ferent environmental conditions might separate several clusters. Especially treatments as e.g.
drug stress, which are more severe in�uences than the simple growth might expose non-linear
properties of the gene interaction. Then the more complex models as neural networks should
be fetched again.
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7 Summary and Outlook

7.5 Epilogue

The task motivating this work was the understanding of relations between genes and their
relevance during the mature process of Magnaporthe grisea.

Due to the number of genes and the complexity of their interaction, the results are far away
from a complete gene interaction network. However, each analysis and modeling presented in
this work yields additional knowledge about the genetic activity of Magnaporthe grisea during
the maturation.

Thus, we did one step – one mathematical step – of a long journey to understand the gene
activity of Magnaporthe grisea. Hopefully, there will be others running further experiments,
measurements, and analysis settings to reveal the functionality of the fungus and stop the
threat by the rice blast disease.
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A Appendix: MA-Plots

In the following the MA-plots of all microarrays made for the time course experiment are
given.

Figure A.1: MA-plots of raw microarray data (left) and its normalization (right)
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A Appendix: MA-Plots

Figure A.2: MA-plots of raw microarray data (left) and its normalization (right)
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Figure A.3: MA-plots of raw microarray data (left) and its normalization (right)
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A Appendix: MA-Plots

Figure A.4: MA-plots of raw microarray data (left) and its normalization (right)
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Figure A.5: MA-plots of raw microarray data (left) and its normalization (right)
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A Appendix: MA-Plots

Figure A.6: MA-plots of raw microarray data (left) and its normalization (right)
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Figure A.7: MA-plots of raw microarray data (left) and its normalization (right)
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A Appendix: MA-Plots

Figure A.8: MA-plots of raw microarray data (left) and its normalization (right)
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B Appendix: An Algorithm for the
Fisher-Pitman-Test

In the following an algorithm for calculating the Fisher-Pitman-Test for two non-empty real-
valued data sets set1 and set2 is given using the the statistical programming language R.

fisher.pitman.test <- function(set1,set2) {
if (length(set1) > length(set2)) {
tmp <- set1
set1 <- set2
set2 <- tmp

}
if (median(set2) < median(set1)) {
set1 <- - set1
set2 <- - set2

}
set1 <- sort(set1,decreasing=TRUE)
set2 <- sort(set2,decreasing=TRUE)
nr.of.combs <- 1
for (i in 1:length(set1)) {
new.combs <- build.swap.set(set1,set2,i)
if (new.combs == 0) {

break
} else {

nr.of.combs <- nr.of.combs + new.combs
}

}
P <- 1 - nr.of.combs/choose(length(set1)+length(set2),length(set1))
P

}

The �rst two conditional statements ensure that set1 is not longer than set2 and contains the
higher values (at least the higher median). This is done to reduce the number of needed steps
during the search for extreme dichotomies (c.f. section 3.3.1).
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B Appendix: An Algorithm for the Fisher-Pitman-Test

These dichotomies are counted systematically by substituting elements of set1 by elements
from set2 which is done by the function build.swap.set. In the �rst run of the for-loop only
one element of set1 is exchanged, in the next run two, and so on. If no substitution of i ∈ N

elements yields an extreme dichotomy, there is also none with a higher number of substitutes
which can easily be seen as follows:

Lemma B.1:
Let m,n ∈ N with m < n, X = {x1, . . . ,xm} ⊂ R, and Y = {y1, . . . ,yn} ⊂ R. Let further
Sx = �m

j=1 xi and Pc denote the set of all permutations of the {1, . . . ,c}.
Assume that there exists an i ∈ N with i < m such that for any permutations Px ∈ Pm and
Py ∈ Pn holds

i

�
j=1

yPy( j) +
m

�
j=i+1

xPx( j) < Sx for all Px ∈ Pm,Py ∈ Pn (B.1)

Then this equation holds also for any k ∈ N with i < k ≤m.

Proof. Without loss of generality let the sets X and Y be sorted in descending order, i.e.
xa ≥ xa+1 and yb ≥ yb+1 for all a ∈ {1, . . . ,m−1} and b ∈ {1, . . . ,n−1}.

It has to be proven, that even substituting the lowest k elements of X by the largest elements
of Y does not improve the sum, more precise:

k

�
j=1

y j +
m

�
j=k+1

xm− j+1 < Sx (B.2)

or equally
k

�
j=1

y j <
k

�
j=1

xm− j+1 (B.3)

Using B.1 it holds especially that

i

�
j=1

y j +
m

�
j=i+1

xm− j+1 < Sx (B.4)

which again reduces to
i

�
j=1

y j <
i

�
j=1

xm− j+1 (B.5)

Since the sets are ordered this can be transformed to

iyi < ixm−i+1 (B.6)

Dividing by i and using again the order of the sets it holds that

y j < xm− j+1 for all j ∈ N with i < j ≤ k (B.7)

Together with (B.5) this proves (B.3)
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build.swap.set <- function(set1,set2,set.length,sel.elements=numeric(0)) {
len <- length(sel.elements)
if (len == set.length) {
ret <- get.higher.combinations(set1,set2[sel.elements])

} else {
if (len > 0) {

last.el <- sel.elements[len]
} else {

last.el <- 0
}
ret <- 0
for (i in (last.el+1):(length(set2)-set.length+len+1)) {

combs <- build.swap.set(set1,set2,set.length,c(sel.elements,i))
if (combs == 0) {
break

} else {
ret <- ret + combs

}
}

}
ret

}

build.swap.set counts the number of possible substitutions of the length given by the pa-
rameter set.length resulting in a higher sum. Therefore, it generates recursively a substitution.
This generation is made systematically, which means the highest values of set2 and the lowest
elements of set1 are chosen �rst. Thus, if the current substitution does not yield a higher sum,
the later ones would not yield any either. So, the search can be stopped. This can be proven
by simply applying lemma B.1 to the appropriate subsets.

get.higher.combinations <- function(set1, subset2, sum.diff=0) {
pivot <- subset2[1]
if (length(subset2) == 1) {
ret <- length(set1[set1 <= pivot+sum.diff])

} else if (length(set1) < length(subset2)) {
ret <- 0

} else {
ret <- 0
for (i in length(set1):2) {

gain <- pivot - set1[i] + sum.diff
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B Appendix: An Algorithm for the Fisher-Pitman-Test

if (gain < 0) {
break

}
higher <- get.higher.combinations(set1[1:(i-1)],

subset2[2:length(subset2)],gain)
ret <- ret + higher

}
}
ret

}

The input of the function get.higher.combinations is the complete set1 and a subset2 which
shall be substitute the same number of elements from set1. This function counts the possible
choices of subsets of set1, having the same number of elements as subset2 and a lower sum
than subset2. Therefore, the highest element of subset2, call it E, substitutes the lowest ele-
ment of set1, call it e. The recursive call get.higher.combinations(set1\E, subset2\e, E− e)
searches for substitutions in the remaining elements, which cause a loss of at most E−e which
ensures that the overall sum of the substitution is not lower than the sum of set1. After that
run, the highest element of subset2 substitutes the secondary lowest element of set1, and so
on.
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C Appendix: Validation of
Clusterings using the Spline
Distance

In the following the connectivity index as well as the Adjusted Figure of Merit for the cluster-
ing results based on the spline distance are shown.

Figure C.1: Adjusted Figure of Merit of hierarchical and k-means clustering using the spline
distance

111



C Appendix: Validation of Clusterings using the Spline Distance

Figure C.2: Connectivity index of hierarchical and k-means clustering using the spline dis-
tance
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D Appendix: Clustering Results

In the following the plots of all clusters and their corresponding 1-standardized and logarith-
mic gene trajectories are given.
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Figure D.1: Gene trajectories of clusters 1-4
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D Appendix: Clustering Results
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Figure D.2: Gene trajectories of clusters 5-10
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Figure D.3: Gene trajectories of clusters 11-16
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D Appendix: Clustering Results
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Figure D.4: Gene trajectories of clusters 17-22
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Figure D.5: Gene trajectories of clusters 23-28
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D Appendix: Clustering Results
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Figure D.6: Gene trajectories of clusters 29-34
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Figure D.7: Gene trajectories of clusters 35-40
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D Appendix: Clustering Results
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Figure D.8: Gene trajectories of clusters 41-46
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Figure D.9: Gene trajectories of clusters 47-52
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D Appendix: Clustering Results
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Figure D.10: Gene trajectories of clusters 53-58
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Figure D.11: Gene trajectories of clusters 59-64
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D Appendix: Clustering Results
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Figure D.12: Gene trajectories of cluster 65
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E Appendix: Approximation of the
Clusters

In the following the plots of all cluster time courses (solid blue) and their approximation by
the standard state space system (dash-dotted red) are given.

0 5 10 15 20
5.5

6

6.5

7

7.5

8

8.5
Cluster 1

E
xp

re
ss

io
n 

le
ve

l

Time [h]
0 5 10 15 20

8

8.5

9

9.5

10

10.5

11

11.5

12
Cluster 2

E
xp

re
ss

io
n 

le
ve

l

Time [h]

0 5 10 15 20
8

8.5

9

9.5

10

10.5

11

11.5

12
Cluster 3

E
xp

re
ss

io
n 

le
ve

l

Time [h]
0 5 10 15 20

10

10.5

11

11.5

12

12.5

13

13.5

14
Cluster 4

E
xp

re
ss

io
n 

le
ve

l

Time [h]

Figure E.1: Model trajectories of cluster representatives 1-4
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Figure E.2: Model trajectories of cluster representatives 5-10
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Figure E.3: Model trajectories of cluster representatives 11-16
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Figure E.4: Model trajectories of cluster representatives 17-22
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Figure E.5: Model trajectories of cluster representatives 23-28
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Figure E.6: Model trajectories of cluster representatives 29-34
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Figure E.7: Model trajectories of cluster representatives 35-40
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Figure E.8: Model trajectories of cluster representatives 41-46
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Figure E.9: Model trajectories of cluster representatives 47-52
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Figure E.10: Model trajectories of cluster representatives 53-58
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Figure E.11: Model trajectories of cluster representatives 59-64
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Figure E.12: Model trajectories of cluster 65
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Notations

Sets and Spaces

N the set natural numbers {1,2,3, . . .}
N0 the set natural numbers including 0

2N the set of even natural numbers

2N−1 the set of odd natural numbers

R the set of real numbers

R
+ the set of positive real numbers

R
+
0 the set of non-negative real numbers

R
− the set of negative real numbers

R
n the n-dimensional real vector space

R
m×n the set of all real m by n matrices

C 0 the set of continuous functions

C n the set of n-times continuously differentiable functions

{ai}i∈I the set {ai|i ∈ I} where I ⊂ N is the index set

X×Y the Cartesian product of the sets X and Y

Xn n-th Cartesian power of the set X , n ∈ N

Pn the set of all permutations of {1, . . . ,n}, with n ∈ N

	� the set of real-valued polynomials with degree equal to or
less than � ∈ N0

S m (t1, . . . , tn) the set of splines of order m ∈ N with knot set
{t1, . . . , tn} ⊂ R, n ∈ N

N m (t1, . . . , tn) the set of natural splines of order m ∈ 2N with knot set
{t1, . . . , tn} ⊂ R, n ∈ N

Lp [a,b] the Lebesgue space on [a,b]⊂R containing the measurable
and p-th power absolute integrable functions on [a,b] ⊂ R
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Notations

Functions and Operators

|x| the absolute value of x ∈ R

‖x‖p the p-norm of vector x ∈ R
n

‖ f‖p the p-norm of function f ∈ Lp

|X | the number of elements of the �nite set X

X the arithmetic mean of the �nite set X

med(X) the median of the �nite set X

minX the minimum of the �nite set X

maxX the maximum of the �nite set X

min
x∈X

f (x) the minimum of the �nite set { f (x) | x ∈ X}
max
x∈X

f (x) the maximum of the �nite set { f (x) | x ∈ X}
argmin
x∈X

f (x) the value x∈X where f (x) becomes minimal, with |X |<�.

(if not unique, an additional rule is given.)

�x� the largest integer not greater than x

�x� the lowest integer not smaller than x

log2 the binary logarithm

f |[a,b] the function f restricted to the interval [a,b]

f (k) the k-th derivative of the function f
(for convenience let f (0) ≡ f )

�i j Kronecker delta function, being 1 if i = j and 0 otherwise

lim
x↗x0

f (x) the one-sided limit of the function f from below

144

Wm
2 [a,b] the Sobolev space of order m ∈ N on [a,b] ⊂ R

O (h(x1, . . . ,xn)) Bachmann-Landau notation,
set of all functions f : R

n → R with
∃c,m∈R

+∀x1, . . . ,xn >m | f (x1, . . . ,xn)| ≤ c |h(x1, . . . ,xn)|



Notations

Modeling Notations
Mg,t set of normalized measurements of gene g under treatment

t

m(i)
g,t i-th normalized measurement of gene g under treatment t

ng,t number of measurements of gene g under treatment t

T set of treatments

� number of treatments

� number of genes

y(g)i median of the measurements of gene g at time ti

w(g)
i accuracy measure of the median of the measurements of

gene g at time ti

Sg interpolating cubic smoothing spline of gene g

� =
{
C1, . . . ,C�

}
clustering of the underlying gene set

� number of clusters

ĝi representative of clusterCi

Sĝi interpolating cubic smoothing spline of clusterCi
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Miscellaneous

xi the i-th component of the vector i ∈ R
n, n ∈ N

A′ the transpose of A ∈ R
m×n

Ai j the entry in the i-th row and j-th column of matrix A

Ai· the i-th row of matrix A

A· j the j-th column of matrix A

∧ logical AND(n
k

)
binomial coef�cient; n choose k
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