

Design and Scheduling Problems in Planning Optical Networks

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Design and Scheduling Problems in
Planning Optical Networks

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
–Dr. rer. nat.–

im Fachbereich Mathematik
der Universität Kassel

vorgelegt von
Dipl. Math. Olaf Maurer

Promotionsausschuss

Erstgutachter : Prof. Dr. Andreas Bley
Zweitgutachter : Prof. Dr. Ir. Arie M.C.A. Koster

Tag der wissenschaftlichen Aussprache: 11.10.2016

Kassel 2016

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
über http://dnb.d-nb.de abrufbar.
1. Aufl. - Göttingen: Cuvillier, 2016
 Zugl.: Kassel, Univ., Diss., 2016

© CUVILLIER VERLAG, Göttingen 2016
 Nonnenstieg 8, 37075 Göttingen
 Telefon: 0551-54724-0
 Telefax: 0551-54724-21
 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist
es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg
(Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 2016
Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

 ISBN 978-3-7369-9387-7
 eISBN 978-3-7369-8387-8

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Contents

Introduction 7

1 Technical andMathematical Background 13

1.1 Planning Optical Networks . 13
1.1.1 Network configurations . 14
1.1.2 Hierarchical network structure . 15
1.1.3 Optical access networks . 16
1.1.4 Collision avoidance . 17

1.2 Technical Background . 18
1.2.1 Hardware components . 21
1.2.2 Physical limits of optical networks . 26

1.3 Mathematical background . 27
1.3.1 Linear algebra . 28
1.3.2 Graph theory . 29
1.3.3 Computational complexity . 29
1.3.4 Linear and Integer Programming . 36
1.3.5 Algorithms for LPs and ILPs . 38
1.3.6 Modelling network problems . 41

2 Passive Optical Network Design 49

2.1 The Two-Layer FTTX Network Design problem 49
2.1.1 Introduction . 49
2.1.2 Problem setting . 49
2.1.3 Related work . 51

2.2 MIP model . 52
2.2.1 Problem input and constraints . 52
2.2.2 Valid inequalities for the aggregated MIP model 56

2.3 Lagrangian Decompositions . 57
2.3.1 Feeder-Distribution Decomposition 58
2.3.2 Fixedcharge-Flow Decomposition . 60
2.3.3 Generic Lagrangian Framework . 64

2.4 Computational results . 66
2.4.1 Branch&Cut algorithms . 66
2.4.2 Benchmark instances . 70
2.4.3 Computations . 72

2.5 Conclusions . 74

3 Node-Weighted Steiner Problems 81

3.1 The Node-Weighted Dominating Steiner problem 81

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1.1 Introduction . 81
3.1.2 Problem setting . 81
3.1.3 Related work . 82

3.2 Integer programming formulation . 85
3.3 Polyhedral investigations . 86

3.3.1 Basic properties . 86
3.3.2 Model inequalities . 88

3.4 Partition inequalities . 92
3.4.1 Lifted Partition inequalities . 95
3.4.2 A complete description of P on a cycle 96
3.4.3 Indegree inequalities . 110

3.5 Computational experiments . 111
3.5.1 Instances . 111
3.5.2 Implementation . 111
3.5.3 Results . 112

3.6 Conclusions . 113

4 Incremental Facility Location 115

4.1 The incremental UFL problem . 115
4.1.1 Introduction . 115
4.1.2 Problem setting . 117
4.1.3 Two-phase algorithm . 118

4.2 Analysis . 119
4.3 Lower bound . 121
4.4 Computational experiments . 122
4.5 Conclusions . 122

5 Incremental Connected Facility Location 125

5.1 The Incremental Connected UFL problem . 125
5.1.1 Introduction . 125
5.1.2 Problem setting . 125
5.1.3 Related work . 126

5.2 MIP models . 127
5.2.1 Valid inequalities . 129

5.3 Separation Algorithms . 131
5.4 Experiments . 132
5.5 Conclusions . 136

6 Frequency Assignment in Optical Networks 137

6.1 Spectrum Assignment problem . 137
6.1.1 Introduction . 137
6.1.2 Problem setting . 138
6.1.3 Computational complexity . 138
6.1.4 Related work . 139

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.2 Phase I: Articulation Point Heuristic . 140
6.2.1 Lower bounds . 141
6.2.2 Heuristic algorithm . 141
6.2.3 Hopcroft-Tarjan algorithm . 143

6.3 Phase II: Multicoloring formulation . 144
6.4 Phase III: Exact models . 146

6.4.1 Constraint Programming model . 147
6.4.2 Binary model . 147
6.4.3 Conflict-Graph Orienting model . 148
6.4.4 Branch&Price model . 149

6.5 Computational experiments . 153
6.5.1 Test instances . 153
6.5.2 Computational experiments . 153

6.6 Conclusions . 157

7 Online Scheduling 161

7.1 Online Scheduling problems . 161
7.1.1 Introduction . 161
7.1.2 Problem Setting . 162
7.1.3 Related work . 163

7.2 General simplifications and techniques . 165
7.2.1 Simplification within intervals . 166
7.2.2 Irrelevant history . 170

7.3 Abstraction of online algorithms . 177
7.4 Extensions to other settings . 182

7.4.1 Non-preemptive scheduling . 182
7.4.2 Scheduling on related machines . 188

7.5 Conclusions . 191

Bibliography 193

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Symbol Index

⊆ subset or equal
⊂ subset and not equal
� subset and not equal, highlighting non-equality
A \ B relative complement of set B in set A
A ∪̇ B disjoint union of the sets A and B

N0 natural numbers, starting from 0
N natural numbers, starting from 1
Z integer numbers
Q rational numbers
Q+ nonnegative rational numbers

hippo
R real numbers
FE set of all maps f : E → F

[n] the set {1, . . . ,n}
χS characteristic {0, 1}-vector of subset S ⊆ E

rank(X) linear rank of a set X of vectors
arank(X) affine rank of a set X of vectors
δout(v) arcs in a graph having v as source node
δin(v) arcs in a graph having v as target node
Γ∗v neighborhood of the node v without v
Γv neighborhood of the node v including v

{0, 1}∗ set of binary strings
|x| length of a binary string x

|I| encoding length of an instance I

δ(S) the cut induced by the node subset S of a graph
R+ positive real numbers
R0
+ nonnegative real numbers

R�0 set of all f : E → R+
0

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Introduction

The topics of this thesis are mathematical optimization methods for the design, rollout and
operating phases of optical networks. The work presented here was begun while the author was
a member of the DFG1-Forschungszentrum “MATHEON:Mathematik für Schlüsseltechnologien”
at the Technische Universität Berlin as part of the project B21: Optical Access Networks. It was
continued and completed as a research assistant at the Universität Kassel, partially as a member
of the “Safe and Secure European Routing” (SASER) project, subproject SASER-Siegfried which
was led by Nokia and NSNManagement International GmbH.

Focus of the thesis

This thesis focuses on different aspects of the design of optical networks:

• efficient design, i.e. cost minimization with a provable quality guarantee

• rollout, i.e. how to build the network when the design is complete

• how to operate the network, e.g. assigning the available spectrum to lightpaths when the
physical network is established and traffic needs to be routed.

As this thesis is motivated by fundamental questions, we consider mainly the “big” aspects
of planning and take an abstract view. In this spirit we try to tackle the main questions, while
often ignoring some technical details in the process, as the latter can usually still be addressed
once the general network design is already fixed.

Motivation

In the last decades, more and more communication services that were traditionally carried
out using specialized platforms (e.g. mail, telephony, fax) have been converging towards the
Internet. Until the early 1990s, voice traffic was the predominant cause of traffic in worldwide
telecommunication networks, with a very predictable growth mainly driven by demographics.
Then, non-voice data traffic began to surge and supersede the traditional voice traffic, mainly
due to the emergence of the Internet.
Nowadays, the amount of data generated by voice traffic has long been overtaken by data

traffic, which is now the predominant kind and shapes the worldwide traffic demands. There are
a large range of applications ranging from high-definition video streaming to video telephony

1The Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) is an important German research
funding organization which supports research in science, engineering and the humanities. It is based in Bonn
and is itself financed by the German states as well as the federal government.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

8

that will keep requiring more and more bandwidth as more and more users in the world get
connected (Cisco [2015]).
To cater for this ever-increasing demand, network technologies which provide very high

bandwidth capacities are urgently needed.
One of the main technologies used for this purpose are optical networks. Their main ad-

vantages are the following: they can be used to send information across very long distances,
they are insusceptible to electromagnetic radiation and allow transmission of large amounts of
data due to their high bandwidth capacities. While due to physical reasons it is very difficult
to exceed speeds of 10 gigabits per second using electrical transmission, transmission speeds
exceeding one petabit per second across a distance of more than 50km have already been reached
using optical technology (Takara et al. [2012]) and the current limits are still only based on the
currently available technology, not on physical barriers.

Nowadays, optical technology is broadly employed in modern telecommunication networks.
After optical technology was invented and made available commercially, it rapidly penetrated
communication networks which had to handle large traffic loads. As research went on and
the high physical capacities of optical fibers could be better exploited, usage of these networks
increased even more.

While yielding lucrative investment opportunities for network providers, some hard to solve
planning problems arise in the design and configuration of these networks. The problems arising
in this context usually exhibit a high combinatorial complexity. There is a long-standing history
of mathematical methods being applied to all kinds of different network design problems. The
common difficulty among those optimization problems is the combination of several problem
aspects, where the desired solution of one aspect depends on the outcome of one or even of
all of the others. An example for this phenomenon is the dimensioning problem of links for
a given network, while certain traffic requirements between endpoints are known and the
routes between the endpoints have not yet been fixed. This results in a problem combining the
dimensioning aspects of the network as well as the problem of fixing the traffic routing, where
good solutions for the subproblems each depend on the other one. Often, these problems are
even more complex. Building on the previous example, there is also the aspect of assigning
intervals in the optical spectrum to chosen routes in such a way that routes using the same
optical fiber do not occupy the same part of the spectrum. To not complicate these problems
and models even further, in this thesis, we only consider the more or less high-level abstractions
as described here and in the individual chapters and not the lots of intricate additional details
coming into play when actually implementing these networks with real-world technology.

Another aspect that comes into play in the planning of these networks are the hard-to-predict
traffic demands of modern usage scenarios. Unlike traditional voice traffic which causes a
continous low-bandwidth stream, modern applications, for example large file transfers, typically
cause bursts of high demand, followed by a period of almost no traffic. Networks employing
traditional optical time-division multiplexing technology usually dedicate bandwidth to connec-
tions even when there is no traffic, which can lead to inefficient usage of the available bandwidth
and result in unnecessary delays. To deal with these problems, infrastructure providers are
also interested in ways to reconfigure the network on-the-fly to meet these rapidly changing
demands.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

9

telecommunication networks into physical networks quickly. These networks need to be embed-
ded in such a way that the demands (such as inter-node connection speeds, computing power
or locality requirements) specified by the entity requesting the network can be satisfied.
In general, network planning problems can be further subdivided into the planning of final

networks and the creation of rollout plans that specify in what order the network should be
constructed. If the network is built in stages and is already usable at an intermediate stage, it can
already start serving customers which reduces the total cost to the network provider. Efficient
algorithms are needed to solve these sometimes very large problems. We call these problems
incremental network design problems. This thesis also devotes two chapters to them.

Contributions and Outline of the Thesis

This thesis consists of seven chapters that cover different topics from problems in access networks
to problems in core networks, ranging from rather theoretical to more applied topics as well
as from problems related to the design phase to problems related to the rollout phase. We
also investigate some theoretical problems that are motivated by the aforementioned network
embedding problems. Except for Chapter 1, the different mathematical optimization problems
are grouped into one problem per chapter. We now provide a short outline of the contents of
the thesis.

Chapter 1: Technical and Mathematical Background In Chapter 1, we introduce the
basic concepts of this thesis. We introduce the basic notations, explain the technical aspects as
well as the mathematical aspects and backgrounds of the considered problems.

Chapter 2: Passive Optical Network Design In Chapter 2, we begin with a problem
belonging to the design phase of a passive optical access network. The problem consists of
simultaneously optimizing the placement and dimensioning of an access network such that a
two-level tree-like network architecture is obtained. To obtain meaningful solutions, we have
to deal with both topological questions and routing questions at the same time. We call this
problem the Two-Layer FTTX Network Design problem. The problem is quite challenging from
a computational point of view, so to reduce the complexity involved in the solution process, we
introduce two novel decomposition approaches based on Lagrangian Decomposition. These
lead to very good solutions very quickly compared to non-decomposed approaches.

Chapter 3: Node-weighed Steiner problems In Chapter 3, we consider the previous
problem from a more abstract point of view. The chapter is concerned with a problem where a
network has to be built to connect the core network to some aggregation points of lower networks.
The problem has connections to the famous Steiner Tree problem. We introduce a model based
on Integer Linear Programming that only uses node-based variables. We analyze the structure
of the related polytope and identify several large classes of facet-defining inequalities.

This variability is connected to the need of solving planning problems of embedding virtual

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

10

approach that solves a variant of the so-called Facility Location problem. In this incremental
version of the Facility Location problem, we not only want to design a network, but also consider
all the stages in which the network is rolled out. We provide a polynomial algorithm that
computes an incremental solution which has a guaranteed quality in the competitive sense
compared to a nonincremental optimal solution.

Chapter 5: Incremental Connected Facility Location In Chapter 5, we consider a vari-
ant of the problem from Chapter 4 with an additional connectivity requirement, called the
Incremental Connected Facility Location problem. Here, the fundament again are Integer Linear
Programming techniques. We introduce several MIP models for the problem as well as some
valid inequalities and present a Branch&Cut algorithm to solve the problem and compare these
approaches in a computational study.

Chapter 6: Frequency assignment in optical networks In Chapter 6, we present solution
methods for the frequency assignment problem of a certain type of network called a FlexGrid
network. The problem we solve is called the Spectrum Assignment problem. In this problem, we
are given some demands that have already been routed on fixed paths between endpoints in a
network and we would like to assign frequency intervals to these paths such that crossing paths
do not have overlapping frequency ranges. Due to its mathematical connection to scheduling
problems, it is also called the Chromatic Scheduling problem. We present a three-stage approach,
where the first stage consists of combinatorial algorithms only, which are already able to solve
many of our instances. The second stage uses LP lower bounding techniques, while the third
stage builds an exact mathematical programmingmodel, if the previous stages were unsuccessful.
One of these third stage models has exponential size and is solved by a tailored Branch&Price
algorithm.

Chapter 7: Online Scheduling In Chapter 7, we present a general framework for com-
petitively optimal algorithms for online scheduling problems. In previous approaches for
competitive online scheduling problems, worst-case instances and competitive algorithms were
usually provided for each problem by hand. We show that it is at least theoretically possible
to algorithmically find a competitive algorithm for the considered scheduling problem whose
competitive performance guarantee is not worse than the best possible up to a factor that can
be chosen to be arbitrarily close to 1. We present our algorithmic framework with a focus on
online scheduling for minimizing the average weighed completion time. We do not apply the
techniques in this chapter directly to optical networks, but we point out the connections to
online embedding problems of virtual networks into physical architecture.

Chapter 4: Incremental Facility Location In Chapter 4, we deal with an incremental
problem stemming from the rollout planning phase of networks. We consider a combinatorial

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

11

Acknowledgements

This thesis would not have been possible without many people which supported me throughout
writing and who I wish to mention here so that their influences will not be forgotten.

First of all, I would like to thank my advisor, Andreas Bley, for all the guidance and en-
couragement through the years. Your advice really was invaluable and our discussions on all
kinds of subjects were always enjoyable. I am greatly indebted for your patience and for all the
understanding you gave me.
Next, I would like to mention my coauthors Ashwin Arulselvan, Andreas Bley, Stefan Gol-

lowitzer, Ivana Ljubić, Elisabeth Lübbecke, Nicole Megow, Martin Skutella and Andreas Wiese
with whom I worked on different parts of this thesis. My work has greatly benefited from their
influences.
The COGA group at TU Berlin has also made the whole time in Berlin a wonderful one. I

would like to thank especially my office mate Ashwin Arulselvan and former COGA member
Torsten Gellert for our almost daily discussions on all kinds of things. The friendships I found
at the group are still strong and I would like to thank the whole group for this experience.
While the move to Kassel University was not one I very much looked forward to in the

beginning, my time in Kassel was shaped by the nice people I met there, some of whom became
good friends as well. I enjoyed the time there more than I thought, especially in the summer,
and learned about lots of different ways to spend time apart from work (thank you Jörn!). I
especially would like to thank my office mate Frank Fischer for all the things he put up with and
the many, many convenient rides in his car.

For proof-reading parts of the thesis and thereby helping me greatly improve the presentation,
I would like to thank Anja Fischer, Frank Fischer, Martin Groß and Ute Skambraks. Their
comments were invaluable for the clarity and readability of this thesis.

I would like to thank my partner Ute for all the love and encouragement through this some-
times also difficult time—coincidentally, our relationship started almost at the same time as the
work on this thesis—and of course all our little friends, without whom this journey would have
been quite different and much less enjoyable.
Lastly, I would like to thank my parents for their continued support, love and especially

patience. Without them, this thesis would have never seen the light of day.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Technical andMathematical Background

1.1 Planning Optical Networks

In a general networking planning problem, we have some locations, possibly of different types,
and would like to connect these in some specified way using a network. Usually, some locations
have some form of demand. In optical networks, these locations are usually called the customers.
There are many different kinds of networks, for example telecommunication networks, transport
networks and road networks. In the telecommunications setting, reasons for the building of
a network can be manifold and include access to the Internet, telephony, fax or specialized
applications like dedicated, highly tolerant or high-speed networks.
Because the building of telecommunication networks usually involves high investments

incurred by the deployment of network infrastructure, a careful planning of these networks is
very important to minimize the potential waste of resources.

In network planning problems, we distinguish between greenfield and brownfield planning.
The former means the planning for areas where no infrastructure exists so far. In brownfield
planning, we have to consider the infrastructure already in place and account for any problems
resulting from the technological migration.
In this thesis, we only explicitly consider greenfield planning problems, but the presented

techniques can also be adapted for brownfield problems. Also, we usually assume for the purpose
of simplification that we know exactly which customers want to connect to our network and
how much bandwidth they need.
In real planning scenarios, the latter assumption is of course somewhat unrealistic. Here,

stochastic and robust methods come into play, where one can consider wide ranges of possible
customer scenarios and try to build a network that performes reasonably well in all the likely
settings. While this also leads to interesting questions, we concentrate on exploring other aspects
of the planning problems in greater detail. Therefore, we assume that no uncertainty in data is
involved.
The goal of network planning is to find an appropriate network configuration, where ap-

propriate refers to the fact that the resulting network should be feasible for the given traffic
requirements. Configuration is a term encompassing the arrangement of hardware, the rout-
ing inside the network and also several other aspects which become especially important for
optical networks. These include the problem of assignining some part of the optical spectrum
to connections in the network, so called lightpaths, and possibly solving network embedding
problems, depending on the structure of the bandwidth requests.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

14 Technical and Mathematical Background

1.1.1 Network configurations

From the planning perspective, finding a network configuration for an optical network consists
of two tasks depending on one another. One task is to place hardware devices with sufficient
capacities at allowed locations. The other task is the establishment of lightpaths inside the optical
network. This has to be done in such a way that the requested traffic can be transferred through
the network while observing the capacity limits implied by the hardware limitations and actual
routing. We now explain these tasks in some more detail.

Hardware configuration

From a somewhat abstract point of view, a physical network consists of a set of nodes and a set
of links connecting pairs of nodes. The nodes can be used as pure transit nodes or represent
access points of the network, where access points in this context refer to nodes where there
is a connection to some other network or network layer and the node serves as a connection
between them.
For the technical realization of a network, hardware devices need to be installed mainly on

the nodes of the optical network.1 Links in the network consist of optical fibers between nodes.
Some hardware components are also necessary to enable transmission through the optical links.
The hardware configuration of the network encompasses all decisions about which hardware
devices should be installed at which locations. These devices include transmitters, receivers,
fibers, switches, regenerators, splitters, couplers and filters. The number of transmitters and
receivers is usually fixed in our problems as it is determined by the bandwidth requests. Installed
devices offer transmission capacity on the links and the ability to switch, regenerate, convert or
split at the nodes.
All these hardware components determine the available capacity; this part of the planning

is called the dimensioning part. Sometimes, we express bandwidth demands as the number of
optical channels assigned, usually when the channel size is fixed. In more dynamic networks
like Flexgrid networks, we also describe them as widths of frequency intervals.

Lightpath configuration

Channel 1

Channel 2

Channel 3

Figure 1.1.1: Lightpaths in a network

1Regenerator devices may also be placed on the links.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. Planning Optical Networks 15

Connections in optical networks are realized by lightpaths, compare also Figure 1.1.1 on the
previous page. The routing of the lightpaths determines the paths in the physical network. If we
use optical technology that employs different wavelengths, a wavelength assignment has to be
carried out as well, that is, a transmission wavelength needs to be assigned to each lightpath.

If the hardware configuration is fixed, the establishment of lightpaths is a pure software task
since the hardware components can be reconfigured remotely. The problem of routing lightpaths
through the network is called the traffic engineering part of the network planning problem.

1.1.2 Hierarchical network structure

Core network

Distribution network

Feeder network

Figure 1.1.2: Hierarchical structure of a network

Network layers

Optical networks usually have a hierarchical structure, see also the example in Figure 1.1.2.
Subnetworks at certain geographical regions constitute partially autonomous networks and
are interconnected to other subnetworks at certain access points. From the lower to higher
levels, more and more traffic is aggregated. The network with the highest level of aggregation is
called the core or backbone network. Because highly aggregated traffic in telecommunication
networks typically needs very high bandwidth capacities, the core networks especially tend to
be constructed using optical technology. The network layer with the lowest aggregation levels is
called the access network. Because of the technical breakthroughs in the last decades, optical
technology is now available and cheap enough to be also used in access networks. The business
acronyms for these technologies include Fiber-to-the-Home (FTTH), Fiber-to-the-Building

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

16 Technical and Mathematical Background

(FTTB) and Fiber-to-the-Curb / Cabinet (FTTC), depending on where the optical connection
is terminated. From this termination point, some other technology is employed to connect to
the customer on this so-called “last mile”.

Virtual network layers

In telecommunication networks, a link generally corresponds to some kind of connection
between nodes, for instance optical fibers or copper cables. This generally means some cables
buried in the ground, so connections cannot be changed quickly or cheaply. To be able to
provide computing networks with arbitrary topology quickly and flexibly, network virtualization
introduces a virtual layer into the network.
This virtual layer corresponds to an overlay network on top of existing physical hardware.

This reduces cost, because advanced network functionality can be moved to the overlay net-
work, while using off-the-shelf switches and routers in the underlying physical network. These
software-based solutions are typically much more portable and cost-effective than hardware-
based implementations.
Using this construction, links in the overlay layer could correspond to paths in the physical

network, for example. If a physical node providing the resources for a virtual node fails, the
network might be reconfigured to simply use another physical node without propagating the
failure to the overlay network, which leads to more fault-tolerant networks.

1.1.3 Optical access networks

In a typical access network architecture, the connections originate at one end from the Central
Offices (COs) where optical transmitters are placed. The connections pass along optical fibers
and through intermediate nodes we call Distribution Points, where optical splitters and also
other devices may be installed. These networks typically use a Point-to-Multipoint (P2MP)
architecture. The termination points at the other end of the network are called the customers.
We distinguish between two types of optical access networks, the Active and the Passive

Optical Access Networks.

Active Optical Networks (AONs) Active Optical Networks require optical-electro-optical
conversion and Medium Access Control (MAC) switching in the distribution points. Their
real-world use is quite limited, as they have higher operating expenses due their active use
of electricity than their passive cousins. From a lightpath point-of-view, they are based on
single-wavelength point-to-point links.
AONs can also be used without distribution points by deploying fiber links from the CO to

each customer. As no part of the physical infrastructure is then reused for other connections,
this is a very costly approach. While AONs are technologically feasible, the usage of Passive
Optical Networks (PONs) is usually more cost-effective.

Passive Optical Networks (PONs) In contrast to the previously described AONs, no active
components are used in the distribution points of PONs, so there is no need for electricity at
intermediate points of the network. Therefore, they create less operational expenditure.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. Planning Optical Networks 17

Central OfficeBackbone
Network

OLTOLT

OLTOLT

OLTOLT

DP

Feeder Network Distribution Network

DP

ONU

ONU

ONU

ONU

ONU

ONU

Figure 1.1.3: A passive optical network (PON)

In a typical PON architecture, an Optical Line terminal (OLT) at the Central Office (CO)
is connected to several Optical Networks Units (ONUs) located at the customer end of the
network. This is accomplished by splitting the lightpath at some Distribution Points (DPs). The
connection between Optical Line Terminals and Distribution Points is called the Optical Feeder
Network (OFN), while the connection between the Distribution Points and the Optical Network
Units is called the Optical Distribution Network (ODN) or simply the Distribution Network. In
the Central Office, each OLT services the OFN. To avoid collisions by frames sent by different
ONUs in the Distribution Network at the same time, a protocol needs to be established to only
allow one ONU to transmit, while the others have to wait for its transmission to complete.
Since the great advantage of PONs is the reuse of architecture, signals for and from each

user need to be combined through multiplexing techniques in downstream and multiple access
techniques in upstream. Time-Division Multiplexing (TDM) and Time-Division Multiple
Access (TDMA) are the most commonly adopted solutions for these tasks. Wavelength-Division
Multiplexing (WDM) accomplishes conflict avoidance by using different wavelengths, but also
creates the need for more expensive hardware, as we will see later.

1.1.4 Collision avoidance

We now go into more detail concerning the collision avoidance techniques. While presented
here for access networks, these techniqes are also employed in the other network layers. We
concentrate on the most common approaches and thus distinguish between Time-Division
Multiplexing andWavelength-Division Multiplexing. While the former is based on sharing the
available transmission time, the latter is based on sharing the available wavelength spectrum.

Time-Divisionmultiplexing (TDM) This method of multiplexing was originally used for
telegraphy and then employed for digital telephony, but is now also a prevalent way of sharing

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

18 Technical and Mathematical Background

Splitter

Figure 1.1.4: Standard WDM-PON architecture

an optical fiber between several parties. In TDM networks, time is divided into periodic time
slots of fixed length, one for each transmission channel. For each channel, there is some time
slot at which information for this channel can be transmitted.

On the upstream connections, Time-Division Multiple-Access (TDMA) is employed, which
is a similar technology, but the signals come from different senders, multiple customers in our
case. With synchronous TDMA, each sender gets a fixed time slot – more flexible approaches are
called asynchronous. One asynchronous method, Dynamic TDMA, uses a scheduling algorithm
that reserves a variable number of time slots in each transmission frame depending on the
current traffic demand.

Wavelength-divisionmultiplexing (WDM) In WDM networks, several optical signals
may be transmitted on the same fiber. Conflict is avoided by using different wavelengths of light.
This method is very popular because it allows the network provider to increase the capacity

without making changes to the fibers. This can be carried out simply by using better multiplexing
hardware. On the other hand, additional costs are incurred by expensive equipment like tunable
lasers which allow for transmission at varying frequencies of light.
As mentioned, an important advantage of PONs is that by splitting, less parallel fibers are

needed to connect different customers; fibers can be reused, as long as the signals are not in
conflict with each other. In WDM-PONs, these signals might use different wavelengths and
could then be transmitted simultaneously on the same fiber. This also decreases the amount of
optical fibers needed to achieve the same bandwidth capabilities compared to TDM-PONs.

1.2 Technical Background

In the first part of this section, we explain the physical basics of optical networks. We discuss
some key hardware components used in optical telecommunication systems and identify the
principle physical limits of optical communication. For further details and more in-depth

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Technical Background 19

explanations of the used technology and physical phenomena, we recommend the books by
Mukherjee [2006] and Kazovsky [2011].

A prototypical optical network In a fiber-optical network, light waves are used to con-
vey information between endpoints. The simplest prototype of a fiber-optical network, com-
pare also Figure 1.2.1, consists of three components: an optical transmitter to convert some
information-carrying electrical signal into an optical one, an optical fiber through which the
signal is then sent and an optical receiver at the other end of the fiber to reconvert the signal to
an electrical one. In this way, the information can be recovered after the transmission.
In this prototypical network, the optical transmitter and receiver are responsible for the

conversion between the electrical and the optical signal, while the fiber-optic cable acts as an
optical waveguide, in which the light is trapped and forced to move along the cable. We now
explain the physical background of optical waveguides.

Optical reflection The refractive index of a material is defined as

n =
c

v
,

where c is the speed of light in a vacuum and v is the phase velocity of light in the material,
which is a material constant. The phase velocity is given in terms of the wavelength λ and period
T as vP = λ

T
. When a light wave reaches the boundary between two materials with different

refractive indices, a part of the wave will be refracted, while another part will be reflected. The
angle of refraction is determined by Snell’s law, which states that if θ1, θ2 denote the angles
measured from the normal directions of the surface boundary and n1,n2 denote the respective
refractive indices of the materials, we have that

sin θ1
sin θ2

=
n2
n1

.

If n1 � n2 and sin θ1 is close to one, we have
n1
n2

sin θ1 = sin θ2 > 1

which cannot be fulfilled. In that case, a phenomenon called Total Internal Reflection occurs, in
which the signal is not refracted, but totally reflected back into the original medium. The angle

Optical

Transmitter

Signal Input Fiber-Optic Cable Optical

Receiver

Signal Output

Figure 1.2.1: A prototypical optical network

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

20 Technical and Mathematical Background

Figure 1.2.2: Optical reflection phenomena

at which this begins to occur is called the critical angle and can be found as θc = arcsin n2
n1
. An

illustration of these phenomena can be found in Figure 1.2.2.
Optical fibers work by utilizing this phenomenon to guide the light inside themselves.

Encoding information on optical signals

While a regular sine wave does not carry information, it can be modified or more precisely
modulated to encode digital signals. There are several basic methods to encode information on
electromagnetic waves.

1 1 1 0 1 00

Amplitude Modulation

Frequency Modulation

Phase Modulation

Figure 1.2.3: Signal modulation methods

In principle, modulation can be imposed on the phase, frequency, amplitude or polarization
of the light beam, but most commonly, phase modulation is used. Amplitude modulation can
be created via phase modulation with a device called a Mach-Zehnder interferometer, where
the beam is split into two beams, one of them is phase-modulated and the beams are then
recombined. By controlling the phase of the phase-modulated beam, interference will happen
and can be constructive or destructive, thereby controlling the amplitude.

θ1

θ2

n1

n2

θc

Critical
Angle

θ1 θ1

Total internal
Reflection

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Technical Background 21

We do not go into any detail concerning these methods, but the ideas of these methods can
be seen in a basic form in Figure 1.2.3 on the previous page.

1.2.1 Hardware components

We now introduce the main hardware components used to construct optical networks.

Optical fibers

Core Cladding

Coating

Figure 1.2.4: Cross section of an optical fiber

An optical fiber consists of a transparent core surrounded by a dielectric claddingmaterial that
is itself surrounded by a polymer buffer coating for protective purposes, compare Figure 1.2.4.
The core and the cladding are most commonly made of silica glass, but are also available as
plastics or a combination of both materials. Plastic fibers usually lead to higher attenuation
compared to glass fibers and therefore limit the possible transmission distance. In contrast,
silica fibers exhibit low attenuation over a wide range of wavelengths. Advantages of silica also
include that they are relatively easy to splice and that they offer more resistance against pulling
and bending than plastic fibers, making them more resilient and thus easier to place.

To trap the light waves inside the core and make the fiber act as a waveguide, a material with
a lower refractive index than the one of the core is used for the cladding, utilizing the Total
Internal Reflection phenomenon described earlier.

We distinguish between two main types of optical fibers, Single-Mode Fibers andMulti-Mode
Fibers. We now explain their main characteristica.

Single-Mode Fibers have a diameter comparable to the wave length of an optical signal. The
most common type has a core diameter between 8− 10 micrometers and is used in the near-
infrared part of the spectrum. It supports only one optical signal at a time, but keeps the signal
intact over a longer distance than a multi-mode fiber can. While the equipment needed to use
single-mode fibers is more expensive than the equipment used for multi-mode fibers, the fibers
themselves are cheaper to manufacture.

Due to less severe distortion phenomena, they support higher bandwidths and because of that,
they are usually used for wide-area and metropolitan-area networks. Passive optical networks
also employ them, achieving high data rates and long-distance transmission capabilities.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

22 Technical and Mathematical Background

Multi-Mode Fibers are usually found in local area networks and have the advantage that they
can carry many modes of light simultaneously. In this context, a mode of a a signal refers to
the way it takes through the fiber. While a single-mode fiber is relatively narrow and can be
approximated as a one-dimensional guide, a multi-mode fiber is much thicker and therefore
light rays can take a rather direct route through the fiber or zigzag off the cladding that has a
different refractive index. The transition between the core and the cladding is either realized as
a step-index profile or a graded-index profile. Step-index profilesmean uniform refractive index
in the core and a sharp decrease in the cladding. They are more common in single-mode fibers.
In contrast, Graded-index profiles are usually used for multi-mode fibers. This implies that the
parts of the core that are closer to the fiber axis have a higher refractive index than the parts
near the cladding. Most commonly, a nearly parabolic index profile is created that decreases
modal dispersion and continuously refocuses rays.

Optical transmitters

Optical transmitters convert electrical signals carrying information into optical signals. A key
component of these devices is a light source, most commonly a semiconductor laser. There
are two ways of encoding information in the light signal. One variant is to use the laser as a
continuous laser, on which an optical modular encodes a signal. A cheaper alternative is to
direcly modulate the light source.

Optical modulators exploit electro-optic effects, by which the optical properties of a material
can be changed by the application of an electric field. The changes in the optical properties are
caused by forces resulting from the electric field that change the position, shape or orientation of
molecules inside the modulator material. A very important effect in this context is the so-called
Pockels effect or Linear Electro-Optic Effect. In crystals exhibiting this effect, the refractive index
can be modified in a way that is proportional to the strength of the electric field. These materials
then exhibit Birefringence, where the refractive index depends on the polarization and direction
of light.
A widely used optical modulator type uses a lithium niobate crystal. As described, the

refractive index can be changed by changing the strength of the electrical field – using a stronger
field will make light travel slower through the crystal. As the phase of the light leaving the crystal
is determined by the length of time it takes the light to pass the crystal, this can be used to create
phase modulation.

Optical receivers

After the optical transmitter has performed an electro-optic conversion and the signal has
travelled through the network, the task of the Optical Receiver is to convert the optical signal
back into an electrical one. In that way, the transmitted information can be recovered. The main
components of an optical receiver are a photodetector that generates an electrical current that is
proportional to the optical power, several amplifiers and an electrical circuit that recovers the
information.
Photodetectors absorb photons and generate electrical current proportional to the power of

the optical signal. In optical systems, this job is usually executed by photodiodes. They can be
classified into PN and PIN diodes.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Technical Background 23

Photodiodes are like regular semiconductor diodes in the sense that they conduct current in
only one direction and offer a high resistance against conducting into the other direction. The
difference between photodiodes and regular semiconductor diodes is that the sensitive area of
the diode is exposed in such a way that light can reach it.

Figure 1.2.5: Schematic view of a p-n junction in an equilibrium state

Between resistant materials and insulators, there is a class of conducting materials called
semiconductors, which can be crystalline or amorphous solids. They have the useful property
that their conducting properties can be modified by introducing impurities into their highly
pure base material, a process called doping.

The properties of semiconductors are explained using the movement of charge carriers inside
a crystal lattice. Charge carriers can be electrons or the absence of an electron, where one could
exist inside an atom or atomic lattice. The absense of an electron is called a hole, so there are
two types of charge carriers in a semiconductor, electrons and holes.

The doping process increases the number of charge carriers. A semiconductor is said to be of
p-type if its hole concentration is larger than its electron concentration, otherwise it is said to be
of n-type.

The boundary area between a p-type and a n-type semiconductor is called a p-n junction. PN
diodes are photodiodes based on p-n junctions, compare also Figure 1.2.5.
If no external voltage is applied, a p-n junction goes into an equilibrium state that exhibits

a potential difference across the junction. This happens by the diffusion of electrons from the
n-region into the p-region forming negatively charged ions in the p-region, while leaving behind
positively charged ions in the n-region. This leaves no free charge carriers in the area of the
junction, making it non-conductive. The area of non-conductivity is called the “depletion layer”.
By the resulting potential difference, an electric field is created, counteracting the diffusion

movement, until an equilibrium state is reached.

p-doped n-dopedpp-ddoooopeedd nn--ddopppeeedd

free electrons
holes
positive donor ion
negative donor ion

depletion layer

electrical field

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

24 Technical and Mathematical Background

By applying a current that is positive at the p-region and negative at the n-region, the non-
conductive layer will be minimized. If we apply a current in the other direction, it will be
enhanced, prohibiting the flow of current. This way, we have a diode phenomenon, where
electrical current can only flow in one direction.
When a photon with sufficient energy arrives in the depletion layer or near it, it creates an

electron-hole pair by the photoelectric effect. The hole moves to the anode and the electron to
the cathode, producing a photo current.

While PN diodes are based on p-n junctions, PIN diodes use a similar construction known as
a PIN junction. These junctions consist of an undoped semiconductor layer sandwiched in the
center of a p-n junction. The advantage of this construction is a higher sensitivity to incoming
photons, as the created depletion area is larger. This construction also strengthens the resulting
electrical field, making PIN diodes operate much faster than PN diodes.
For long-haul communication systems, another type of diode is used, a so-called avalanche

photodiode. They have the advantage of providing a larger photocurrent by themselves, because
a certain amount of amplification is already taking place inside the diode.

Optical amplifiers and regenerators

Due to fiber loss, see also Section 1.2.2, the optical signal loses in strength during propagation.
To successfully recover the signal after its journey, the optical power needs to exceed the receiver
sensitivity.
A simple way of strengthening the signal at intermediate points is to convert it back to

electrical form, amplify it electronically and then convert it back to an optical signal. With digital
communication, this can remove all noise and distortion, but is expensive and introduces at least
some amount of delay. The device used for this purpose is called an Optical communications
repeater or simply an OEO (optical-electrical-optical). These devices can only be used for one
wavelength, so in WDM systems, one device per wavelength has to be employed.

A more cost-efficient means of boosting the signal power without conversion is an Optical
Amplifier. It can be located at an arbitrary point in the transmission path: either somewhere
along the path or directly after the transmitter to boost its power or even as a preamplifier in
front of the receiver. It is completely transparent to the data format and can be used to amplify
several signals on different wavelengths simultaneously.

The most common kind of optical amplifiers are so-called Doped Fiber Amplifiers (DFAs), one
prominent example of them being Erbium-Doped Fiber Amplifiers (EDFAs). In these devices, a
pump laser and the signal are multiplexed into a doped fiber. The pump laser excites the doping
ions into a higher energy, from which they decay via stimulated emission of photons at the
signal wavelength. Characteristics of optical amplifiers are determined by the dopants. In an
EDFA, the core of the silica fibre is doped with trivalent erbium ions.
As the signals weakens, it becomes more susceptible to noise, which is also amplified every

time the signal is amplified. This sets a practical limit on the distance that can be reached using
optical amplifiers only without OEO conversion.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Technical Background 25

Fiber-optic couplers / Optical splitters

A Fiber-Optic Splitter is used to spread an input signal into several output signals. In most
common applications, apart from monitoring purposes, the signal power will be spread evenly
onto the output fibers.
Splitting and Coupling devices function in both directions, meaning that in the reversed

direction, an optical signal entering the common port will also appear on each of the branches
with its signal strength divided by the number of branches. One then usually talks about Fiber-
Optic Splitters. These are mainly used in Passive Optical Networks, connecting the distribution
network cable and the drop wire to the customer premises.

We can differentiate between two different architectures for these devices, the Fused Biconical
Taper (FBT) and the Planar Lightwave Circuit (PLC).

Fused Biconical Taper This is the most common architecture for splitters, but is also the
older architecture. To construct these devices, two or more fibers are placed next to each other
and then thermally fused. While this is already a highly mature technology and is quite cost-
effective, PLC splitters are more accurate in the splitting ratio and exhibit even smaller losses.
Also, FBT splitters are sensitive to wavelengths, which presents one of their most significant
disadvantages. To achieve different splitting ratios, these splitters can be cascaded.

Planar Lightwave Circuit While more expensive to produce, the PLC splitters offer different
splitting ratios more easily. These devices are constructed by using lithographic techniques on a
silica glass substrate, which allows accurately selecting percentages of light that will appear on
the waveguides. In that way, especially higher splitting ratios can be constructed more easily.
They are also less sensitive to temperature fluctuations.

Power Losses In the downstream direction, the cost of doubling the split ratio is a 3 decibel
loss in power, equalling roughly a halving of the input signal strength. Additional losses can
occur due to the imperfect construction of splitter devices.

Bandpass filters

An optical filter is basically a bandpass filter through which only certain wavelengths can pass,
while other wavelengths are rejected or at least heavily reduced in signal strength. Filters can be
used inWDM systems to separate signals with different wavelengths as there might be unwanted
signals on the fiber resulting from the splitting process. They are also used to suppress noise.
A common variant of an optical filter is called an Etalon or Fabry-Péron interferometer. It

consists of two parallel highly reflective mirrors. An optical signal entering the area between
the mirrors will be reflected back and forth. Everytime this happens, some part of the signal
makes it through the output mirror. Between the mirrors, interference occurs. If the beams are
out of phase, destructive interference occurs, destroying unwanted parts of the signal.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

26 Technical and Mathematical Background

1.2.2 Physical limits of optical networks

Due to imperfections in manufacturing and other kinds of defects and necessities, there are
some limitations as to the distance and bandwidth available using optical fibers. We discuss
some of the limiting factors in this section.

Fiber loss

An optical signal in a network is attenuated in several ways throughout its journey. Although
it takes a very long distance for the signal to disappear completely, optical receivers do need a
minimum amount of optical power to recover the transmitted information. This fundamentally
limits the possible transmission distance in such a network. Even though there are certain
methods to mitigate that problem, for example OEOs, these also amplify spontaneous noise.
Because the signal strength of an optical signal decays exponentially by attenuation, optical
communications were not possible in a modern sense before the introduction of low-attenuation
fibers.
Attenuation is caused by three major components: Material absorption, Rayleigh scattering

and waveguide imperfections.

Material absorption Material absorption is caused mainly by imperfections in the optical
fiber. This includes both fused silica and other impurities such as water and metals. Fused
silica leads to strong absorption peaks in the ultraviolet region, while metal impurities lead to
absorption in the wavelengths from 0.8 to 1.6μm.
Due to physical reasons, material absorption could not be avoided even in the complete

absence of impurities.

Rayleigh Scattering As the propagation of light through the core of an optical fiber is based
on total internal reflection, irregular surfaces can cause light rays to be reflected in random
directions. This is called scattering. Variations in the refractive index of the fiber material caused
by micro-structural defects cause Rayleigh-type scattering. It behaves inversely proportional to
the fourth power of the optical wavelength and is therefore a much more significant factor for
shorter wavelengths. This is one reason why infrared light is often used in optical networks.

Waveguide imperfections Radiative losses occur due to waveguide imperfections like
bending of the fiber and variations in the core radius. While an optical fiber is ideally a perfect
cylinder with constant core radius, this is not the case in practice. Small bends lead to a part of
the optical signal being scattered into the cladding layer.

Fiber dispersion

Apart from the loss of signal strength, there are other phenomena limiting the possible trans-
mission bandwidth at long distances. While a signal might still be strong enough to be picked
up by the receiver, it might be unrecoverable due to a phenomenon called Fiber dispersion. This
describes the effect of parts of the optical signal traveling at different speeds. In a multi-mode

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 27

fiber, this can mean the different modes, but it also happens in single-mode fibers, where differ-
ent frequency components travel at different speeds. Also, different polarizations of light can
exhibit different speeds due to non-uniformity of the fiber.

Modal dispersion Modal dispersion is significant mainly in multi-mode fibers. The fiber can
carry many light waves simultaneously, but they enter the fiber with different angles respective
to the fiber axis. If the angle is shallower, the path to travel is shorter. In this way, different
components of the signal arrive at different times. This effect is structurally similar to multipath
propagation in a radio signal.

Intramodal dispersion In multi-mode fibers, the phenomenon of intramodal dispersion
does not play a significant role, as the effects created by modal dispersion far outweigh it. But
in single-mode fibers, modal dispersion is effectively eliminated and intramodal dispersion
becomes significant. This is the phenomenon of different frequency components of a single
optical signal travelling at different speeds. This has two causes and can therefore be classified
into two different subphenomena: Material dispersion is caused by the frequency-dependence
of the speed of light in a medium. Waveguide dispersion is caused by differences in the refractive
index of the core and cladding of the fiber, which in turn leads to different speeds of the signal
in the core and in the cladding of the fiber.

PolarizationModeDispersion In an ideal fiber, signals with orthogonal polarization follow
the same propagation path. However, due to imperfections in the fiber, the mode indices and
propagation constants can exhibit a slight difference. This phenomenon is known as polarization
mode dispersion. It is relatively weak compared to intramodal dispersion, but can become
significant in high-speed systems over a long distance, especially at wavelengths where the other
dispersion phenomena are minimized.

Nonlinear effects

Even though silica is not a highly nonlinear medium, nonlinear effects can be observed even at
low power levels in single-mode fibers. We distinguish between nonlinear scattering effects and
nonlinear refraction effects.

Because these effects are usually outweighted by other physical effects, we will skip a detailed
physical description of these effects and they will also be ignored in our models.

1.3 Mathematical background

In this section, we review the basic definitions and concepts in linear algebra, graph theory,
computational complexity and mathematical programming used throughout the thesis. This
section is not meant as an introduction to these concepts—we assume familiarity with the
presented topics. It is rather meant as a reference for definitions and notations in the later
chapters.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

28 Technical and Mathematical Background

For an introduction to linear algebra and integer linear programming, we recommend the
books of Bertsimas and Tsitsiklis [1997] and Grötschel et al. [1993]. The concepts of graph
theory are can be found for example in Diestel [2010]. For the discussed topics of computational
complexity theory, we recommend the books by Papadimitriou [1993] and Arora and Barak
[2009]. Finally, on the topic of approximation algorithms for computationally hard problems,
we recommend the book by Vazirani [2003].

1.3.1 Linear algebra

Numbers

We write N and N0 to denote the set of natural numbers excluding or including the number
zero. The sets of integer, rational and real numbers will be denoted by Z, Q and R, respectively.
The largest natural number n with n � x will be written as �x�, while 	x
 denotes the smallest
natural number n with n � x. For x ∈ N0, we therefore have 	x
 = �x�.

Vectors

Let F be a base set and E a finite index set. By FE we denote the set of vectors consisting of |E|
components with values in F. For E = [n] := {1, . . . ,n}, we simply write Fn. Given a set S ⊆ E,
we define the vector χS ∈ {0, 1}E with

χS
f =

{
1 f ∈ S

0 f ∈ E \ S

and call χS the characteristic vector of the subset S.
The notation {0, 1}∗ is used for the set of finite tuples whose elements are all 0 or 1. This set is

also called the set of binary strings.

Operations on Vectors

By default, vectors will be considered as column vectors. We use the superscript T to denote the
transposed vector. For any finite index set E, the sets RE and QE naturally possess the structure
of a vector space over their respective fields. We say that a vector v ∈ RE is a linear combination
of the vectors x1, . . . , xk if there are coefficients λ = (λ1, . . . , λk)T , λi ∈ R such that v = λTx. If
all λi are nonnegative, we have a conic combination. If the sum of the coefficients is equal to 1,
we have an affine combination. A combination that is both conic and affine is called a convex
combination.

A set X ⊆ RE is called linearly (affinely) independent if none of its elements can be written as
a linear (affine) combination of the other elements.
The linear (resp. affine) rank of a set X ⊆ RE, denoted by rank(X) resp. arank(X), is the

maximum number of linearly (resp. affinely) independent vectors in X.
We define the dimension dim(X) of a set X ⊆ RE as

dim(X) := arank(X) − 1.

If dim(X) = |E|, X is called full-dimensional.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 29

1.3.2 Graph theory

A pair G = (V ,E) of finite sets V ,E with E ⊆ V2 and E ∩ { (vi, vi) | vi ∈ V } = ∅ is called a
simple directed graph on V or a simple digraph. By default, we assume digraphs are simple and
just talk about digraphs. If the set E is symmetric in the sense that for all (u, v) ∈ E, we also
have (v,u) ∈ E, G is called undirected or simply a graph. In that case, elements of E will also be
denoted as {u, v}.

The elements of V are called nodes, the elements of E edges. The two nodes an edge consists
of are called its endpoints. In digraphs, we use the terminology of arcs instead of edges and if
a = (u, v) is an arc, we call the node u its source and the node v its target. For a fixed node v, we
use the notation δout(v) to denote the arcs that have v as their source and δin(v) for the arcs that
have v as their target.

Concerning the number of nodes and edges, we usually use the notation n := |V | andm := |E|.
Vertices and edges are by default denoted by lowercase letters, while sets are denoted by capital
letters.

G ′ = (V ′,E ′) is called a subgraph of G = (V ,E), if G ′ is a graph and V ′ ⊆ V , E ′ ⊆ E.
We will write G ′ ⊆ G to say that G ′ is a subgraph of G. G ′ is called an induced subgraph, if
E ′ = E ∩ (V ′)2, that is, G ′ contains exactly those edges whose endpoints lie in V ′.

A node v is called incident to an edge e = {w1,w2} if v = w1 or v = w2. Two nodes u, v ∈ V

are called adjacent if there is an edge that has bothu and v as endpoints. The set of nodes adjacent
to a node v ∈ V is called the neighborhood of v and is denoted by Γ∗v . We set Γv := Γ∗v ∪ {v}.
A path in G is a tuple (v0, v1, . . . , vk) with (vj, vj+1) ∈ E for all j ∈ {0, . . . ,k − 1}. The path

begins at v0 and ends at vk. It is called simple if no nodes appear twice in the path. The number
k is called the length of the path.

A cycle C in G is a path whose end node is the same as its beginning node. It is called simple
if no nodes are repeated, except for the beginning and end node. The length of a simple cycle is
the number of its edges, or equivalently, the number of its nodes.

A graph is called connected if for each pair of nodes u, v ∈ V ,u �= v, there is a path beginning
at u and ending at v. Furthermore, a graph is called d-connected, if the removal of any d − 1
nodes and their adjacent edges from the graph always leaves a connected graph.

1.3.3 Computational complexity

Turingmachines To speak of the runtime of algorithms and the complexity of problems, we
need to formally define these concepts. We begin with the definition of a Turing machine, which
is a basic computing device that we use to execute prespecified instructions.

The type of Turing machine we consider here is a three-tape Turing machine. While there are
many variants of Turing machines we could consider, we now concentrate on this one. Later,
we will see that the precise variant of Turing machine we consider does not matter, as they still
yield the same complexity classes.

We begin with an informal description. A three-tape Turing machine consists of three tapes,
a state register, tape heads and a transition function. The three tapes are the input tape, working
tape and output tape, see also Figure 1.3.1 on the following page. A tape consists infinitely many
cells lying next to each other.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

30 Technical and Mathematical Background

Input tape

Working tape

Output tape

1010111011011

Read-Only Head

Read-Write Head

011101

Read-Write Head

State register

11

Figure 1.3.1: A three-tape Turing machine

Each cell on the tapes contains a symbol from some finite set which we call the alphabet of
the Turing machine and denote by Γ . The alphabet contains at least one special symbol which
we call the blank symbol and which we denote by b. The working tape and output tape will be
filled with the blank symbol at all positions at the start of a computation, while the input tape
has a finite segment where non-blank symbols are allowed and which we call the input to the
computation.

Additionally, the Turing machine has headswhich it uses for both writing to and reading from
the tapes. While the input tape is assumed to be read-only, both the working and output tape
can be written to. It also has a state register which stores the internal state of the Turing machine.
There are only finitely many states the machine can be in, among them two special states. These
are the state qstart which is the state the machine is in at the beginning of its computation and
the state qhalt which means that the machine has terminated its computation process. We will
denote the set of possible states by Q.
The computation is guided by the so-called transition function δ which takes as input the

symbols currently on the tapes at the head positions as well as the internal state of the machine
specified in its state register. It specifies the symbol the heads will write on the tape at the
current position, how the heads should move on the tape (“left”, “stay” or “right”) and what the
next internal state of the machine will be. While other machine models like Random Access
Machines may allow accessing data in an arbitrary order, the Turing machine only allows each
head to move by at most one cell at every executed instruction.
We now give a formal definition of the previous concepts. A Turing machine is given by a

tupleM = (Γ ,Q, δ) consisting of the alphabet set Γ , the state set Q and the transition function
δ. We assume that Γ is a set of at least one element, thatQ contains at least the states qstart and
qhalt and the transition function δ is a function

δ : Q× Γ 3 → Q× Γ 2 × {L,S,R}3.

Any computational device acting to these rules is called a (three-tape) Turing machine.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 31

Computing functions We now define what it means for a Turing machines to compute a
function.
Let f : {0, 1}∗ → {0, 1}∗ and T : N → N be functions and M be a Turing machine. If M is

initialized in state qstart and the tape head of the input tape is at the beginning of some string
x ∈ {0, 1}∗, assume that the Turing machine halts with f(x) written on its output tape. If that
property is true for every x ∈ {0, 1}∗, we say that M computes f.
We also say thatM computes f in T(n)-time if its computation on every input x requires at

most T(|x|) steps, where |x| denotes the length of the input string x.

Universal Turingmachine As we mentioned earlier, we could have used a different variant
of a Turing machine. We could for example argue that three tapes are not really necessary,
because intermediate results of a computation could also be saved on the input tape if it used a
Read-Write Head, eliminating the need for the working tape.
Well-known results in computational complexity theory show that the standard complexity

classes, which we begin to define in the next paragraph, are very robust against changes in the
exact computing machines used to define them. One very important idea in these theorems is
called the simulation argument, which is the following. For any Turing machine, we can write
down a description of its inner workings on paper. This description can then be encoded using
a binary string. We then can construct a so-called Universal Turing machine in the sense that
given this binary description of another Turing machine, it can simulate the execution of any
other Turing machine, taking not much longer for the computation than the original machine;
see e.g. Arora and Barak [2009] for more details.

Decision problems Different functions can be grouped according to the time it takes to
compute them using Turing machines. We call these groups complexity classes. For the purpose
of their definition, we pay special attention to boolean functions, by which we mean functions
having only one bit of output.

Many interesting computational questions can be reduced to whether for some input, which
can always be assumed to be a binary string, a certain boolean function f has the value 0 or
1. In this way, functions f : {0, 1}∗ → {0, 1} define decision problems or languages L ⊆ {0, 1}∗ by
x ∈ L :⇔ f(x) = 1. We say that a Turing machine decides a decision problem if it computes the
corresponding function f.
We define a language or decision problem L to be in DTIME(T(n)) if there is a Turing

machineM that decides L and runs in time cT(n) for some constant c > 0.
For any fixed n, the worst-case running time of a Turing machine M is the longest time it

runs on an input of size n. We use the worst-case running time of Turing machines and later
of algorithms to compare the efficiencies of different approaches. We define a polynomial-time
Turing machine as a Turing machine with a polynomial worst-case running time.

The class P We define P, the class of all problems decidable in polynomial time, as

P :=
⋃
c�1

DTIME(nc).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

32 Technical and Mathematical Background

While it is not immediately clear that our definition of P does not depend on the choice of
Turing machine, it can be shown that for all known standard models of computation, including
other types of Turing machines, Random-Access Machines or the λ-calculus, polynomial is
well-defined as it means the same for each of them.

In fact, the famous Church-Turing thesis states that every practically realizable computation
device can be simulated by a Turing machine. This implies that the set of computable languages
is the same. It does not imply that the set of problems that can be decided in polynomial time is
the same for any of these machines. The strong form of the Church-Turing thesis even states
that the other computation devices can be simulated with only polynomial overhead, but this is
rather controversial, because quantum computers seem to violate this claim.

The complexity class NP Another important complexity class apart from P is the class NP.
While P in some sense contains the problems that can be solved efficiently, NP contains the
problems which may or may not be solvable in polynomial time, but given a solution to them,
its correctness can be verified in polynomial time. The precise definition is as follows:

A language L ⊆ {0, 1}∗ is in NP if there exists a polynomial p : N → N and a polynomial-time
Turing machine M, called the verifier for L, such that for every x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u ∈ {0, 1}p(|x|) such that M(x,u) = 1,

whereM(x,u) denotes the output of the Turing machineM on its output tape, given x and u as
input.
If x ∈ L and u ∈ {0, 1}p(|x|) satisfyM(x,u) = 1, we call the binary string u a certificate for x

with respect to L and M.
We directly observe that P ⊆ NP as u can be an empty string and x can be trivially verified,

as the problem can be solved in polynomial time.

Nondeterministic computation We can also define the class NP using so-called nondeter-
ministic Turing machines. The difference is that a nondeterministic Turing machine has two
transition functions δ1 and δ2 and a special state qaccept. When it computes a function, it makes
an arbitrary decision at each step about which of the transition functions it uses. We defineM(x)

to be 1 for an input x and a nondeterministic Turing-machine M if and only if there is some
sequence of these arbitrary decisions that makes the machine reach qaccept. If every sequence of
choices makesM halt without reaching the accept state, we define M(x) to be 0. The class NP
can then alternatively be defined as the class of languages such that there is a polynomial-time
nondeterministic Turing machine deciding the language, which also explains the name of the
class NP.

NP-hardness andKarp-reductions It turns out that there are some problems inNP that are
at least as hard as any other problem in NP. This can be seen by showing that if these problems
can be solved in polynomial time, then so can every other problem in NP, because every other
problem can be reduced to them. These problems are called NP-complete. The formal definition
uses Karp-reductions, which we will now define.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 33

A language L ⊆ {0, 1}∗ is polynomial-time Karp-reducible to a language L ′ ⊆ {0, 1}∗ if there is
a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that

x ∈ L ⇔ f(x) ∈ L ′ ∀x ∈ {0, 1}∗.

We then write L �p L ′, because this implies that the complexity of L is not higher than the
complexity of L ′.

A problem L ′ is said to beNP-hard if L �p L ′ for every L ∈ NP. We say that L ′ isNP-complete
if L ′ is NP-hard and L ′ ∈ NP.
As there might be no decision problem in NP to which every other problem in NP can be

reduced, it is not clear by the previous arguments that a NP-complete problem exists. But we
will now state such a problem.

First, we need to define what we mean by a boolean CNF-formula. We assume that we have
some variables ui that take values in the set {0, 1}. A literal is a variable xi or its negation x̄i. A
disjunction of literals is called a clause. A boolean CNF-formula is then a conjunction of clauses.
A boolean CNF-formula is satisfiable if there is an assignment of the truth values true and false
to its variables such that the whole formula is true.

Fixing some efficient binary coding of boolean CNF-formulae, we denote the language of all
satisfiable CNF formulae by SATISFIABILITY. The decision problem for this language is then to
decide whether some given formulation is satisfiable or not.

One of the most famous results in the area of computational complexity is the following:

Theorem 1.3.1 (Cook-Levin ’71). SATISFIABILITY is NP-complete.

This means that every problem in NP can be reduced to the SATISFIABILITY problem. We
will only sketch the proof here. We know that any decision problem in NP can be solved in
polynomial time by a nondeterministic Turing machine. LetM be such a machine. For any input,
we can construct a boolean CNF-formula whose truth value corresponds to the truth value of
the statement “Given this input, the machineM runs correctly, halts and answers yes”. Then,
the boolean CNF-formula is satisfiable if and only if the machineM runs correctly and gives a
positive answer with respect to this specific input.

Concerning the relationship between the classes P and NP, a major open question in compu-
tational complexity is whether these are really different classes or whether P equals NP. Due to
the aforementioned reductions, it would suffice to give a polynomial algorithm for any of the
many well-known NP-complete problems (see Garey and Johnson [1979]) to show the equality
of these classes.

Optimization problems A related class of problems that we consider most of the time in
this thesis are optimization problems. An NP-optimization problem Π can be defined, see e.g.
Vazirani [2003], as a tuple consisting of

• a set of valid instances DΠ that is recognizable in polynomial time. We assume that all
input numbers are rationals and denote for any instance I ∈ DΠ the number of bits
needed to write down I by |I|, assuming that binary encoding is used for the numbers,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

34 Technical and Mathematical Background

• a set of feasible solutions SΠ(I) for each instance I ∈ DΠ with SΠ(I) �= ∅. We assume
that the encoding length of every solution s ∈ SΠ(I) is upper-bounded by a polynomial
in |I| and furthermore that there is a polynomial time algorithm that, given a pair (I, s),
decides whether s ∈ SΠ(I),

• a polynomial time computable objective function objΠ that assigns a nonnegative rational
number to each pair (I, s) for instances I and s ∈ SΠ(I) that is also called the cost of a
solution,

• the specification whether the optimization problem is a minimization or maximization
problem.

An optimal solution for anNP-optimization problem is a feasible solution that achieves the best
possible objective value according to whether the problem is a minimization or maximization
problem. Such a solution will be denoted by OPTSOLΠ(I) or just by OPTSOL, if the context is
clear. We denote the best possible solution value by OPTΠ(I) or OPT(I), respectively.
To each NP-optimization problem we can naturally associate a decision version for the

purpose of classifying its complexity. The associated decision problem for a minimization
problem is the question "Given an instance I and a rational number B, is there a solution
s ∈ SΠ(I) with objΠ � B?". For a maximization problem, the question is constructed in the
same way with the relation sign reversed.

A polynomial algorithm for the optimization problemΠ can help solve the decision version by
computing the cost of an optimal solution and comparing it with B. We call a NP-optimization
problem NP-hard if the associated decision problem is NP-hard.

As the complexity of computing optimal solutions to NP-hard optimization problem is often
too high to be feasible for practical purposes, it is useful to consider solutions that are non-
optimal, but have some other provable quality guarantee, for example being only some constant
factor more expensive than an optimal solution. While no polynomial algorithms are known for
NP-hard problems, many of them allow polynomial algorithms with a provable approximation
guarantee.

Approximation algorithms Let Π be a minimization (resp. maximization) problem and
let δ be a map δ : N → Q+ with δ � 1 (resp. δ � 1 for maximization). An algorithm A is said
to be a δ−factor approximation algorithm for Π if for each instance I ∈ DΠ, the algorithm A

produces a feasible solution s for I such that

objΠ(I, s) � δ(|I|) ·OPT(I)

in the minimization case resp.

objΠ(I, s) � δ(|I|) ·OPT(I)

in the maximization case and has a worst-case running time bounded by a polynomial in |I| for
all instances.
Instead of single approximation algorithms, we can also consider families of algorithms

with increasing running time and constantly improving approximation guarantees. Let Π be a

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 35

NP-hard optimization problem with objective fΠ. An algorithm A is an approximation scheme
forΠ if on input (I, ε), where I is an instance ofΠ and ε is a desired degree of accuracy, it outputs
a solution with

objΠ(I, s) � (1+ ε) ·OPT
in the minimization resp.

objΠ(I, s) � (1− ε) ·OPT
in the maximization case. A is called a polynomial time approximation scheme (PTAS), if for
each fixed ε > 0, its running is bounded by a polynomial in the size of the instance I.

Note that in the definition of PTAS, the running time of the algorithmmay depend arbitrarily
on ε. A is called a fully polynomial approximation scheme (FPTAS) if the running time is bounded
polynomially in the size of the instance I and in 1/ε.

Nonapproximability Not all problems that are NP-hard can be approximated equally well.
While some problems for example allow a PTAS, other problems cannot be approximated better
than a constant depending only on the problem. The latter problems are called APX-hard,
where APX is the class of problems that allow an approximation algorithm with a constant
approximation ratio.
We now introduce the techniques that are used to show that some problem cannot be ap-

proximated arbitrarily well unless P = NP. The basic idea is to construct a reduction from
the SATISFIABILITY problem and show that such an approximation algorithm can be used to
distinguish between satisfiable and nonsatisfiable instances.

In this sense, a gap-introducing reduction from SATISFIABILITY to a minimization problem
Π has two parameter functions f and α. Given an instance I of SATISFIABILITY, it works in
polynomial time to give an instance x of Π such that

• if φ is satisfiable, OPT(x) � f(x) and

• if φ is not satisfiable, OPT(x) > α(|x|)f(x)

Assume we have used a gap-introducing reduction to show the hardness of approximating
some minimization problem Π1. We then can transfer the nonapproximability result using a
gap-preserving reduction to a maximization problem Π2. This kind of reduction can be defined
for all optimization senses for Π2 and Π2, but we only mention this one, the other cases are
similar. This kind of reduction comes with four parameter functions, f1,α, f2,β. Given an
instance x of Π1, it runs in polynomial time and outputs an instance y of Π2 such that

• OPT(x) � f1(x) =⇒ OPT(y) � f2(y)

• OPT(x) > α(|x|)f1(x) =⇒ OPT(y) < β(|y|)f2(y)

with α(|x|) � 1 and β(|y|) � 1.
We remark that this reduction only preserves the existence of an approximability gap, not its

size.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

36 Technical and Mathematical Background

Landau Symbols As we often want to speak about polynomial running times of algorithms
and would like to ignore the polynomial terms of lower order, it is useful to introduce the
so-called Landau Notation. Let f,g : R → R be two functions. We define the property of f not
growing faster than g by an order of magnitude, written f ∈ O(g), as

f ∈ O(g) as x → ∞ :⇐⇒ lim sup
x→∞

∣∣∣∣ f(x)g(x)

∣∣∣∣ < ∞
An equivalent definition is that f ∈ O(g) if and only if there exists a real number M > 0 and

a real number x0 such that

|f(x)| � M|g(x)| for all x � x0.

An algorithm then has a polynomial worst-case running time f(x) if and only if there is a
k ∈ N0 such that f ∈ O(nk).

1.3.4 Linear and Integer Programming

Half-spaces and hyperplanes Given any non-zero vector a ∈ Rn and a scalar α ∈ R, we
consider the sets defined by the linear inequality aTx � α or the linear equality aTx = α. The
set of points satisfying such a linear inequality is called a half-space, for an equality it is called a
hyperplane. The vector a is then a normal vector of the defined hyperplanes for all values of α.

Solutions of linear inequality systems Combining inequalities into matrices, we can write
systems of linear inequalities as Ax � b,A ∈ Rm×n,b ∈ Rm with m,n ∈ N, where m is the
number of rows and n the number of columns of the matrixA. The solution set PA,b of such an
inequality system is called a polyhedron. If it is bounded, it is called a polytope.

An inequality aTx � α is valid for a polyhedron P if P is a subset of the half-space defined by
the inequality. We define the face of P induced by the inequality aTx � α by

F(P,a,α) :=
{
x ∈ P

∣∣ aTx = α
}

If F(P,a,α) �= ∅, the inequality aTx � α is called tight for P. If dim(F(P,a,α)) = dim(P) − 1,
we call the inequality aTx � α facet-defining and the induced face a facet of P. The induced face
is called a vertex of P if dim(F(P,a,α)) = 0.

The goal in Linear Programming is tominimize a linear objective function inside a polyhedron.
This way, some combinatorial optimization problems can be solved efficiently with a unified
method. But for many problems, no compact, linear model is known and is unlikely to exist.
A more general approach is called Integer Linear Programming, where feasible solutions not

only have to satisfy the constraints given by the model, but also have to take integer values. The
feasible solution set thus consists of the solution set of a linear program intersected with the
high-dimensional grid Zn. For this problem, no general polynomial method is known and does
not exist unless P = NP.

The feasible solutions in Integer Linear Programming consist of the integer points lying inside
the convex polyhedron defined by the model constraints. The solution set is therefore only given

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 37

implicitly. This description is also not unique since there are infinitely many different linear
descriptions that have the same set of feasible integer points.
The Integer Linear Programming (ILP) can be defined formally as follows. Given a ma-

trix A ∈ Qm×n, a vector b ∈ Qm and a scalar c ∈ Q, find a vector x ∈ Qn such that
x = argmin{c�x | Ax � b, x ∈ Zn}.
Given some candidate solution S, we can verify in polynomial time2 that S satisfies the

constraints of the model and also compute the solution value in polynomial time. Therefore,
one of the first observations we make is that the general problem ILP lies in the set NP.
Restricting the integer variable range to the interval [0, 1], we can interpret 0 and 1 as the

boolean values true and false and reduce the NP-complete problem SATISIFIABILITY to ILP.
The logical constraints can easily be translated to linear inequalities. This way, we can prove that
the general ILP problem is NP-hard.

Duality in Linear Programming A linear program in so-called standard form with A, b
and c as above is written as

(P) max
{
cTx

∣∣ x ∈ Rn,Ax � b, x � 0
}

With every such linear program, we can associate its dual program

(D) min
{
bTy

∣∣ y ∈ Rm,yTA � cT ,y � 0
}

These programs are called the primal and the dual programs. A simple observation, called
weak duality, is that the optimal value of the primal program is upper-bounded by the optimal
value of the dual program, if both programs have feasible solutions. This can be seen quite
easily, as for a feasible solution x ∈ Rn for the primal and a feasible solution y ∈ Rm of the dual
problem, we get that

cTx � yTAx � bTy,

where the first inequality comes from the dual, the second from the primal feasibility combined
with the factor that both x and y are nonnegative vectors. A stronger statement is the Strong
Duality Theorem that makes the relation between the primal and dual program more precise,
compare any textbook on linear optimization, e.g. Papadimitriou [1982]:

Theorem 1.3.2 (LP strong duality theorem). Let A ∈ Rm×n,b ∈ Rm, c ∈ Rn and consider the
primal and dual programs (P) and (D) as defined above.

1. If both (P) and (D) have feasible solutions, there is a common value k ∈ R that is the
solution value of optimal solutions for both programs.

2. If one the programs has no feasible solution, then the other program is either infeasible or
unbounded.

2One first needs to show upper bounds on the encoding length of feasible solutions to preserve the efficient
verifiability, see for example Kannan and Monma [1978] or Papadimitriou [1981].

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

38 Technical and Mathematical Background

3. If one of the programs is unbounded, then the other does not have a feasible solution.

As feasible solutions to the dual problem yield valid bounds on the best possible values of the
primal problem, the dual problem plays an important problem in practically solving linear and
integer linear programs.

1.3.5 Algorithms for LPs and ILPs

Linear Programming

There are two major methods known for the solution of linear programs. These are the Basis
exchangemethod and the Interior Point method. The Basis exchangemethod works by finding an
initial vertex solution and then moving along the edges of the feasible polyhedron to an optimal
vertex. The most famous Basis exchange method is known as the Simplex Method.

The Interior point method is based onmoving through the interior of the polytope, as the name
implies. There are many algorithms following this basic method. These include the Ellipsoid
Method which was the first polynomial method for the Linear Programming problem, which
suffers from bad numerical problems. Another famous method is the Barrier function method,
which follows a path through the interior of the polytope and which uses a function that has
small values inside the polyhedron and large values outside, called a Barrier function.

The Simplex method We first describe a geometric interpretation of the simplex method.
As the simplex method operates on linear programs in standard form, the feasible region is a
pointed polyhedron, meaning it has at least one vertex. For any linear objective function, there
is an optimal solution to the linear program that is a vertex of the feasible region, which has
only finitely many vertices. This way, we can restrict ourselves to a finite subset of solutions,
making the problem a discrete one.

In the first phase, a feasible vertex solution is constructed. Given a polyhedron, its 1-skeleton
is constructed by taking the vertices and edges of the polyhedron and forming an undirected
graph from them. By the well-known theorem of Balinski [1961], the 1-skeleton of a convex
d-dimensional polyhedron is d-vertex-connected. Therefore, for any two vertices of the feasible
region, there is a path consisting of polyhedral edges connecting these two vertices. This idea is
exploited in the simplex algorithm: In the second phase, we move along edges of the feasible
region in directions where the objective function improves.
These vectors x∗ of such vertices correspond to so-called basic feasible solutions which are

characterized by the property that there are n constraints satisfied with equality in the inequality
system Ax∗ � b, where n denotes the number of variables. The switch from one vertex to an
adjacent vertex works in the matrix form in such a way that we move from one basis to another,
where a basis is subset of the columns that has full rank. Variables corresponding to a basis are
called basic variables and the other non-basic variables. The basis gives rise to a basic solution,
which is created by setting all non-basic variables to 0. As the basis columns have full rank, the
basic variables suffice to solve the matrix inequalities. A basic solution is called a basic feasible
solution if it also satisfies the nonnegativity constraints. We move from one basis to another
by the following process. First, we select one non-basic column. This non-basic column then

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 39

enters the new basis and we remove another column in a process called pivoting. The way we
select this non-basis column is most important, because different bases can yield the same basic
solution. This leads to the problem of cycling, where we could move from one basis to the next
and then end up with the same basis after a while, not making any progress in the solutions.

The rule by which we select the next non-basis column is called the pivoting rule. To avoid the
problem of cycling, we can use rules that guarantue that we never have the same basis twice, for
example the rule by Bland [1977]. The simplex method then can find an optimal vertex solution
to the linear program in a finite amount of time.

While it usually runs very efficiently in practice, there is no known pivoting rule that makes
it run in polynomial worst-case time.

Interior Point Methods Interior point methods move through the interior of the polytope
instead of following the edges. This is accomplished by introducing a barrier function that has
small values inside the feasible region and grows very quickly outside it. By creating a weighted
linear combination of the barrier and the objective function, we can make sure to stay inside
the polyhedron.

Interior-point methods follow the so-called central path which is a curve through the feasible
polyhedron arising from linear constraints and quadratic constraints implied by the comple-
mentary slackness conditions. By using some form of Newton’s method, the algorithms follows
a piecewise-linear approximation to this central path until it reaches an optimal point of the
desired accurateness.
By doing a so-called crossing over step, we can then find a vertex solution to the original

problem.

Integer Linear Programming

While Linear Programs can be solved in polynomial time, there is no known method for the
general ILP problem, which is known to be NP-hard.

Solving Integer Linear Programs optimally is usually accomplished by applying some variant
of the Branch&Bound-Algorithm, which is basically a full enumeration of all possible solutions.
The search space can be seen as a search tree. The “bound” part refers to the fact that we try
to cut off branches off this search tree as early as possible by bounding the values of solutions
that still exist in the remaining search tree. We use speeding up techniques like cutting plane
methods, decomposition techniques, lower bounding, heuristics and integrate them into one
algorithm.
While the Branch&Bound method works also in its most general form, one would like to

make it fast in practice; this is accomplished by tailoring the generic method to the specific
needs. For some problems, some techniques work a lot better than other techniques, but this is
sometimes hard to tell in advance. In chapters 2, 3, 5 and 6, we use this procedure to find a good
solution method. Usually, the end result uses one of these techniques as a major factor, but also
employs other strategies at the same time.

If Branch&Bound is used together with the generation of cuts, it is usually called Branch&Cut,
while in combination with column generation, it is called Branch&Price. One can also combine
all of these techniques and get a Branch&Cut&Price approach.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

40 Technical and Mathematical Background

Strong formulations For any polyhedron in Rn, the minimal number of inequalities needed
to fully describe it is equal to its number of facets. Up to multiplication with scalar factors, this
gives rise to a canonical representation as a linear inequality system, where no inequality can be
removed without changing the polytope.
If we consider the solution sets of Integer Linear Programs, the description is given more

implicitly. We describe some polyhedron and then intersect it with the Zn. Let P∗ be the
smallest convex set containing this intersection, P∗ = conv{Ax � b, x ∈ Zn}, where the convex
hull conv of a set A is defined as the intersection of all convex sets containingA. We call this
construction the integer hull of a polyhedron P.

Given a full description of the integer hull, we can solve the ILP problem as a Linear Program
– it is therefore not possible in most cases to get a complete description. The models we consider
are more or less exact descriptions of the integer hull combined with the integrality constraint.
Different models can then yield the same integer points.
By relaxing the integrality constraint, we get the so-called LP relaxation of a model. To use

it to get a bound on optimal solution values of the ILP, it is useful to compare different LP
relaxations. We say that a model M is stronger than another model N if the polyhedron defined
by the LP relaxation of M is contained in the polyhedron defined by the LP relaxation of N.

Big-M constraints A common type of constraint causing weak LP relaxations, usually used
to link integer to binary variables, is called a big-M type constraint. For a binary variable xb and
an integer variable xi, this constraint often has a form likeM ·xb � xi. It models an implication
in the integer model: if we want the integer variable to have a strictly positive value, we need to
set the binary variable to the value 1, allowing the integer variable to range in the interval [0,M].
The problem with this type of constraint is that in the LP relaxation, solutions are feasible even if
xb only takes the value xi/M. This commonly leads to solutions with values that are factor ofM
away from any feasible integer solution. There are techniques to avoid using big-M constraints,
for example the technique of disassocation. In the current example, we could introduce binary
variables xik for k = 1, . . . ,M and use the constraints

xi =

M∑
k=1

xik

and
xb � xik ∀k = 1, . . . ,M.

This leads to a stronger variable linking in the LP, but also increases the size of the model.

Valid inequalities Given an ILP model, there are some techniques to improve the model.
Improvement here refers to changes that make the LP relaxation stronger so that it yields better
bounds. The basic idea is to add additional inequalities that do not remove any integer solution,
but remove fractional solutions. Such an inequality is called a valid inequality.
This can also be done while running a Branch&Bound search for the optimal solution. At a

node of the search tree, we consider the so-called node LP that results from the LP relaxation by
also incorporating the branching decisions that led to this node. Solving it optimally will usually

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 41

still yield a fractional solution, which we then can exclude by finding a valid inequality that this
solution violates. The process of finding such an inequality is called separation as the resulting
inequality separates the feasible polyhedron from this point by a cutting hyperplane such that
the fractional point lies on one side of the hyperplane, while all integer feasible solutions lie on
the other side.

1.3.6 Modelling network problems

In this section, we introduce some standard models for the most famous network optimization
problems. These models and variants of them will be used in later chapters to model various
extensions of the optimization problems presented here.

Uncapacitated Facility Location problem (UFLP)

In the Uncapacitated Facility Location problem (UFLP), we are given two sets of nodes, the
facilities F and the customers C. The objective function is a sum of two kinds of costs, the facility
opening costs f : F → R+ and the service costs c : F×C → R+. The goal is to find a set of facilities
which we open and to assign each of the customers to some open facility, minimizing the total
cost incurred. We denote c(i, j) as cij and f(i) as fi.

Closed Facilities

Customers

Open Facilities

Figure 1.3.2: An exemplary solution of a facility location instance

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

42 Technical and Mathematical Background

An exemplary solution of a facility location instance can be seen in Figure 1.3.2 on the previous
page. A standard ILP formulation for this problem is the following:

(UFLP): min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijxij

subject to xij � yi ∀ i ∈ F, j ∈ C (1.3.1)∑
i∈F

xij � 1 ∀ j ∈ C (1.3.2)

xij,yi ∈ {0, 1} ∀ i ∈ F, j ∈ C

Relaxing to a linear program, we can write down the dual problem:

(UFLP-D): max
∑
j∈C

vj

subject to
∑
j∈C

wij � fi ∀ i ∈ F (1.3.3)

vj −wij � cij ∀ i ∈ F, j ∈ C (1.3.4)
wij, vj � 0 ∀ i ∈ F, j ∈ C

The dual has an economic interpretation as prices the customers have to pay. The numberwij

then represents the amount customer j contributes to the opening of facility i. The constraints
imply that no more money can be put into opening a facility than the facility costs (1.3.3) and
no customer pays more than its contribution to the opening of a facility plus the service cost he
has to pay to reach the facility (1.3.4).

In the Set Cover problem, we are given a ground set and a family of subsets with weights and
ask for a weight-minimal selection of these subsets such that every element of the ground set is
contained in at least one of the chosen subset. The Set Cover problem can easily be formulated
as a special case of the UFLP. In this instance of the UFLP, the set C is identified with the ground
set of the Set Cover problem, each facility corresponds to a subset of the ground set with the
same cost as in the Set Cover problem and the assignment cost is 0 or∞ depending on whether
the subset contains the corresponding element.
Because the Set Cover problem cannot be approximated better than O(logn) (Lund and

Yannakakis [1994]; Feige [1998]) unless P = NP, the same is true for the Uncapacitated Facility
Location problem.

Metric Facility Location problem In the metric facility location problem, we assume that
the distances are part of a metric on F∪C, which has to satisfy the triangle inequalities. For this
variant of the problem, an 1.488-approximation algorithm is known due to Li [2011].

Steiner Tree problem

The original form of the Steiner Tree problem lives in the realm of Euclidean geometry. We call
that problem the Euclidean Steiner Tree problem. In it, we are given n points in the Euclidean

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 43

plane and wish to connect them via straight line segments. Points can be connected directly or
via other line segments and points. We can also use arbitrary additional points as endpoints of
the line segments. An example instance of this problem can be seen in Figure 1.3.3.

To distinguish the original from the additional nodes, the original nodes are called terminals
and the additional points Steiner points.

BA

S1

S2

C D

Figure 1.3.3: An optimal solution to the Euclidean Steiner Tree problem with 4 terminals
A,B,C,D, using two Steiner points S1,S2

In the graph setting, we are given a graph G = (V ,E), a subset T ⊆ V of terminals and a cost
function c : E → R+. We look for a cost-minimal tree inG that spans all terminals. An example
can be found in Figure 1.3.4.

Terminal
Steiner node
Non-selected Edge
Selected Edge

Figure 1.3.4: An instance of the Graph Steiner Tree problem. A possible solution is highlighted
in green.

We now describe a standard, exponentially sized ILP model of the problem. This description
is called the undirected model. For a node subset S ⊆ V , we denote by δ(S) the edges having one
endpoint in S, the other in V \ S. This set of edges is also called the cut induced by the node
subset S. A subset S ⊂ V satisfying S ∩ T �= T and S ∩ T �= ∅ is called a terminal-separator. We
denote the set of terminals-separators as ST .

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

44 Technical and Mathematical Background

(ST-UNDIR): min
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe � 1 S ∈ ST (1.3.5)

xe ∈ {0, 1} ∀e ∈ E

We also describe two additional formulations for the problem which are stronger than the
simple undirected formulation.
The first one is the so-called partition formulation, compare also Chopra [1989] and the

exposition in Bertsimas and Weismantel [2005].
We call a collection V1, . . . ,Vp of subsets of V a partition of V if the following three conditions

are satisfied:

1. Each Vi contains at least one terminal,

2. Vi and Vj are disjoint for i �= j and

3. all nodes of V are contained in some Vi.

We denote the set of edges whose endpoints lie in different partition sets of the partition as
δ(V1, . . . ,Vp). Then, we can write down the Steiner Partition Formulation:

(ST-PART): min
∑
e∈E

cexe

subject to
∑

e∈δ(V1 ,...,Vp)

xe � p− 1 for all partitions (V1, . . . ,Vp) of V (1.3.6)

xe ∈ {0, 1} ∀e ∈ E

It can easily be seen that the partition formulation is at least as strong as the undirected
formulation, as any terminal-separator also defines a partition of V .

An even stronger formulation for this problem is the directed formulation. For this formulation,
we change the undirected graph G = (V ,E) into a bidirected graph G = (V ,A) by inserting
each edge in both directions. The cost will be on both arcs. We choose an arbitrary root node
r ∈ T ; then, we need to connect it to all other terminals.
The formulation is as follows:

(ST-DIR): min
∑

(i,j)∈A

cijyij

subject to
∑

(i,j)∈δ+(S)

yij � 1 ∀S ⊂ V : r ∈ S, T ∩ S �= T (1.3.7)

yij + yji � 1 ∀e = {i, j} ∈ E (1.3.8)
yij ∈ {0, 1} ∀e = {i, j} ∈ E

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 45

The partition inequalities can be shown to be implied by the directed formulation by summing
the inequalities in ST-DIR with the proper coefficients. Therefore, this formulation is at least as
strong as the partition formulation.
The best LP relaxation for the Steiner Tree problem that is known is based on directed

components of the graph and has an approximation ratio of 1.55, see Byrka et al. [2013].

Connected Facility Location problem (CFLP)

A variant of the Facility Location problem is the Connected Facility Location problem which
combines aspects of the UFL problem and the Steiner Tree problem.
In the standard formulation, we are given an undirected graph G = (V ,E), edge costs

c : E → Q+, a set of facilities F ⊆ V with opening costs fi ∈ R+, i ∈ F, a set of customers C ⊆ V

with demands d(j) ∈ Q+ and a parameter M � 1. The goal is to determine a subset of the
facilities F ⊆ V to be opened, to assign each customer j ∈ C to some open facility σ(j) and also
build a Steiner tree T connecting the open facilities, while minimizing the total cost∑

i∈F

fiyi +M
∑
e∈T

ce +
∑
i∈F

∑
j∈C

d(j)(j,σ(j))

where (j,k) denotes the length of a shortest path between the customer j and its assigned
facility k = σ(j) with respect to the edge costs ce.

A standard ILP for CFL is the following, see also Swamy and Kumar [2004]. For the following
formulation, we assume that one fixed facility v is open. As every solution has to open at least
one facility and we can try all possible facilities in F as the one that is fixed to be open, we can
use the model to find an optimal solution for the problem.
Note that we can modify the graph by replacing the shortest paths between facilities and

customers with direct edges of the same cost. For this reason, we write cij from now instead of
the explicit shortest path length (i, j).

(CFLP): min
∑
i∈F

fiyi +
∑
j∈C

dj

∑
i∈F

cijxij +M
∑
e∈E

ceze

subject to xij � yi ∀ i ∈ F, j ∈ C (1.3.9)∑
i∈F

xij � 1 ∀ j ∈ C (1.3.10)

yv = 1 (1.3.11)∑
i∈S

xij �
∑

e∈δ(S)

ze ∀S ⊆ V : v �∈ S, ∀ j ∈ C (1.3.12)

xij,yi ∈ {0, 1} ∀ i ∈ F, j ∈ C

Swamy and Kumar [2004] used this formulation for an 8.55−approximation algorithm. More
recently, a 4-approximation algorithm for this problem was given by Eisenbrand et al. [2010]. In
chapter 5, we consider an ILP formulation of an incremental version of this problem.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

46 Technical and Mathematical Background

Minimum (Connected) Dominating Set problem

In the Minimum Dominating Set problem (MDSP), we are given a graph G = (V ,E) and a cost
function c : V → R+ on the nodes of the graph. The goal is to find a node subsetD such that
each node of v is either inD or is adjacent to a node inD. We remind the reader that we denote
the set of all nodes adjacent to v including the node v itself by Γv. A simple ILP formulation of
the MDS problem is as follows:

(MDSP): min
∑
v∈V

cvxx

subject to
∑
w∈Γv

xw � 1 ∀v ∈ V (1.3.13)

xv ∈ {0, 1} ∀v ∈ V

A related problem is the Minimum Connected Dominating Set problem (MCDSP). In that
problem, we additionally require the set D to induce a connected subgraph of V . An example
for this problem can be seen in Figure 1.3.5.

Non-selected Node

Non-selected Edge

Selected Edge

Selected Node

Figure 1.3.5: An instance of the MCDS problem. A possible solution is highlighted in green.

A branch-and-cut algorithm for the node-weighted MCDS problem is given by Gendron et al.
[2014]. We now consider the ILP formulation their work is based on:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Mathematical background 47

(MCDSP-ext): min
∑
i∈V

yi

subject to
∑
e∈E

xe =
∑
i∈V

yi − 1 (1.3.14)

∑
e∈E(S)

xe �
∑

i∈S\{j}

yi ∀S ⊆ V , j ∈ S (1.3.15)

∑
j∈Γi

yj � 1 ∀ i ∈ V (1.3.16)

xe � 0 ∀e ∈ E

yi ∈ {0, 1} ∀ i ∈ V

A polyhedron Q is called an extended formulation of the polyhedron P if there is a projection
mapping the variables of Q to the variables of P in such a way that feasibility is preserved in
both directions. In this sense, the MCSDP-ext formulation can be considered an extended
formulation of the following formulation MCDS-node that uses node variables only.

For this purpose, we call a subset S of V a separator if the graph induced by the node set V \ S

is disconnected. We denote the set of all separators by S. We can then formulate the problem
using node variables only:

(MCDS-node): min
∑
i∈V

ciyi

subject to
∑
v∈S

yv � 1 ∀S ∈ S (1.3.17)

∑
w∈Γv

yw � 1 ∀v ∈ V (1.3.18)

yv ∈ {0, 1} ∀v ∈ V

We use a node-based formulation similar to this one in chapter 3 for a mix of a Steiner Tree
problem and a MCDS problem, called the Dominating Steiner problem.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Passive Optical Network Design

2.1 The Two-Layer FTTX Network Design problem

In this chapter, we introduce the 2FTTx-model that is used for modeling the network design
problem for passive optical access networks. The work presented is joint work with Andreas
Bley and Ivana Ljubić and has been published in “EURO Journal on Computation” (Bley et al.
[2013]).

2.1.1 Introduction

We consider a network design problem for Passive Optical Networks (PONs) which is an
architecture usually reserved for access network: these kinds of networks are typically used on a
metropolitan scale to build connections between households or buildings and the backbone
network of the service provider, compare also Chapter 1, especially Section 1.1.2 and Section 1.1.3.
Depending on the endpoint of the fiber network and the technology used on the last mile,

these networks are also called Fiber-to-the-x networks, where x can stand for home, curb,
building and so on. From an optimization point of view, this specification mainly changes the
size of the demands. This has no significant impact on the model we introduce and therefore,
we use the same optimization model for all of these variants.

2.1.2 Problem setting

We now introduce the problem setting, beginning with a description of the network architecture
we consider. The endpoints of the network which connect the PON to another, more highly
aggregated network are called the Central Offices (COs). Depending on the size of the PON,
several central offices might be used to feed the access network. We are given some fixed CO
locations and we need to decide which are the ones we open. The problem input also contains a
graph where an edge corresponds to optical fibers connecting the potential CO locations to the
customers. In this graph, we have intermediate aggregation points called distribution points
(DPs), which are the locations in which passive optical splitters can be installed. These take the
incoming signal and distribute it to several outgoing optical fibers, usually with a ratio of (1 : 2)
or (1 : 16). This way, one optical terminal in a central office can serve multiple premises.

Optical Line Terminals (OLTs) are placed in the Central Offices andOptical Networking Units
(ONUs) at the end premises which house the optical transceivers. For simplicity, we will call the
end premises in this network the customers. We need to determine both the locations and the
capacities of ONUs and DPs. Also, we need to determine which of the possible fiber connections
will be built. The building of these connections incurs a very significant cost because trenching
is quite expensive compared to the hardware costs.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

50 Passive Optical Network Design

(a) Example of the input graph (b) A feasible solution

Figure 2.1.1: 2FTTx example instance. Triangles represent customers, squares represent DPs,
pentagons represent COs and circles represent remaining nodes

Themodel weworkwith is called theTwo-Level FTTxNetworkDesign problem (2FTTx). While
capturing some important optimization aspects, we also simplify some real-world difficulties.
For example, we disregard the existence of different cable types which lead to buy-at-bulk non-
linear costs depending on the capacity needed. Instead, we assume that a fixed price has to
be paid for each single fiber installed on an edge. Also, we ignore fiber dispersion and power
budget limits.
The subnetwork containing the routing paths between COs and DPs is called the feeder

network (FN), and the subnetwork containing the routing paths between DPs and customers is
called the distribution network (DN).
In our setting, we assume that both the feeder network and the distribution network must

have tree1 topologies. Although there are no technological reasons for this restriction, this
requirement is typically imposed by the network operator for practical reasons. With a tree-like
network structure, deployment, upgrade and maintenance of a PON become much simpler and
less error-prone in practice. For the same reason, operators usually also forbid to use the same
cable (fiber bundle) for both feeder network and distribution network fibers, for fibers heading
into different directions, or for fibers heading towards different COs.

Figure 2.1.1 illustrates an example instance.
Our main goal is to develop computational methods that enable practitioners to (approxi-

mately) solve very large instances of the 2FTTx problem with very little computing time. Such
methods are of particular interest in the early stages of the long-term strategic network planning,
when numerous planning scenarios with varying technological assumptions and demand, cost,
or revenue predictions are evaluated. These are then used to identify the most important param-
eters and make the global strategic decisions concerning technology vendors, the use of existing
or the building of new infrastructures, or the long-term evolution of the network, for example.
These case studies require methods that are able to solve the 2FTTx network design problem
for very large network regions consisting of several PON areas very fast and with a sufficiently
small optimality gap, but not necessarily to optimality. The proposed Lagrangian decomposition
approaches perfectly meet these requirements. They are also very useful to quickly compute

1or more precisely, forest

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.1. The Two-Layer FTTX Network Design problem 51

good bounds and approximate solutions in later planning stages. For the final network and
hardware configuration planning, which is typically performed only once for each of the much
smaller single PON areas, it is however advisable and computationally feasible to use a more
accurate model of the various technical elements (such as the different duct and cable types) in
order to fully exploit all potential savings.

2.1.3 Related work

There are several problems studied in the literature that deal with the design of FTTx networks.
Connected Facility Location, for example, considers the design of a tree-star network, where
facilities (e.g., splitters) are connected to customers in a star-like fashion. There are no splitter-
or edge-capacities and fiber costs are discarded, so that the optimization goal consists of deter-
mining the network topology that minimizes the facility opening plus edge set-up costs. This
problem has been studied in Eisenbrand et al. [2010]; Gollowitzer and Ljubić [2011]; Leitner and
Raidl [2011], to mention a few recent references.
A related problem combining network design and facility location aspects is the Two Level

Network Design (TLND) problem. There, we are given two technologies and two types of nodes
that need to be served by them, and the goal consists of building a tree-tree network such that
facilities are installed at the transition points between the two technologies (see Gollowitzer et al.
[2013]). In Balakrishnan et al. [1994], the two-level network design problem without facilities is
studied. The 2FTTx can be seen as a generalization of the TLND problem: if sufficiently large
splitter- and edge-capacities are assumed, and the fiber costs are zero, the 2FTTx reduces to the
TLND problem.

The Local Access Network Design (LAN) problem is a problem that combines the topological
design of the network with the decisions on routing the fibers in order to serve customer
demands, while respecting edge capacities (see, e.g. Salman [2000]; Putz [2012]). This problem
captures the capacity aspects of our problem, but assumes that there are no splitters installed on
the way between the COs and the end premisses.

Finally, we point out that there are other works in the literature focusing on design aspects of
FTTx networks. For example, in recent works presented in Gualandi et al. [2010a,b]; Kim et al.
[2011]; Chardy et al. [2012], the authors concentrate on splitter location and dimensioning aspects
by assuming that the routing paths are given, and therefore can be replaced by assignment arcs.
A few more problems that model FTTx deployment as variants of the facility location problems
have been studied recently. In Chardy et al. [2012], the authors study a three-level FTTH network
design problem in which splitters have to be located and fibers need to be routed from a CO to
the end customers. Thereby, only edges of an existing infrastructure (with limited capacities) can
be used, and the main optimization goal consists of placing two types of splitters at two different
layers, connecting customers to a CO and routing the fibers without violating edge capacities so
that customer demands are satisfied. The network topology is already given and it only remains
to decide on the splitter locations, their numbers and the routings of fibers. A similar problem
has been studied by Kim et al. [2011] where the authors assume that the input graph is a tree.
Both single- and double-splitting schemes are studied. The goal consists of deciding on the
splitter locations and their number and on the cable types to be installed along the tree edges so

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

52 Passive Optical Network Design

use Mixed-Integer Programming and heuristic techniques for solving the problems.
More practice-oriented approaches have been studied in Martens et al. [2009]. By using a

two-step approach with suitableMIP formulations, it is possible to optimize fiber-optic networks
in realistic scenarios (seeMartens et al. [2010]). Orlowski et al. [2011] conducted various practice-
oriented case studies that originated from planning scenarios by a German telecommunications
provider.

Our contributions

We first propose an integrated MIP model (Section 2.2) and present families of strengthening
valid inequalities for it. To handle the size and complexity of the problem, we then propose two
Lagrangian decomposition approaches for solving the 2FTTx problem (Subsection 2.3.1 and
Subsection 2.3.2). The first approach decomposes the problem based on the network structure
and the second approach decomposes the problem based on the cost structure. The subproblems
are solved using MIP techniques. A combination of heuristic ideas based on the Lagrangian
Decompositions (presented in Section 2.3.3 and Section 2.3.3) and MIP techniques allows us to
solve some real-world network planning instances within a few percent of optimality. Detailed
computational results are shown in Section 2.4.

Follow-upWork

Since the release of the journal version, several authors have considered extensions of the model
and problems. In Grötschel et al. [2013], the authors discuss modeling alternatives for different
extensions and present a unified model for all the extensions. In Gouveia et al. [2015], the
topology of the splitting, meaning splitting ratios and the number of splitting stages, is not
fixed, but decided in the model. The authors present different formulations for this problem
and provide computational experiments. In Żotkiewicz et al. [2015], an integrated platform
for solving PON planning problems is presented that allows much flexibility and aims for a
practically relevant implementation.

2.2 MIPmodel

2.2.1 Problem input and constraints

We now define the 2FTTx problem formally. In the 2FTTx problem, we are given an undirected
graph G = (V ,E) with the set of nodes V partitioned into

• customers (VC),

• potential distribution points (VD),

• potential central offices (VCO) and

• remaining nodes (VO).

that all customers are served, but not necessarily with a single-splitter assignment. The authors

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2. MIP model 53

At least one central office has to be opened, and each customer v ∈ VC has to be provided with
at least dv � 0 fibers. Fiber connections begin at a CO, follow a path through exactly one DP
and continue until they reach an end customer. Splitters are installed at DPs so that every single
fiber can be split into a given ratio. The set T denotes all available splitter types, st is the splitter
ratio for each t ∈ T and Jt,v is the maximal number of the splitter-type t available at the DP
v ∈ VD. Along each edge (trail) e ∈ E at most ue fibers can be installed in the feeder and the
distribution network, independently. Finally, uv is the capacity of a DP or CO v, that is, the
maximal number of the downstream-fibers or transceivers, respectively. In total, DPs and COs
are allowed to be installed in at most ND andNCO locations, respectively. The following costs
are associated to the input parameters of our network:

cv ∀v ∈ VD ∪ VCO : opening costs for v being a DP or CO
ct,v ∀t ∈ T , v ∈ VD : cost for the installation of a splitter of type t at the DP v

ce ∀e ∈ E : installation cost for an edge e

cfe ∀e ∈ E : cable cost along edge e in the feeder network
cge ∀e ∈ E : cable cost along edge e in the distribution network

The optimization goal consists of deciding which COs and which DPs to open, which splitters
to install at the DPs, and how to route paths in the FN and the DN so that demands of all cus-
tomers are satisfied at minimum cost. The DP and CO locations can be traversed as intermediate
nodes, in which case no opening costs need to be paid for them. In addition, even if the feeder
and the distribution network both use the same edge, the fixed-charge cost ce is paid for only
once. Moreover, FN and DN are usually required to have tree topologies, i.e. paths between an
end-customer and a DP and between a DP and a CO are required to be unique.

We now describe how the costs and constraints are incorporated into the MIP model.
Let A be the set of arcs obtained by bidirecting edges from E. We will use binary variables

xv ∈ {0, 1} for each v ∈ VD to indicate whether splitters are installed at location v or not.
Similarly, binary variables zv ∈ {0, 1} will indicate whether a central office v ∈ VCO is opened or
not. The number of splitters of type t installed at the DP location v ∈ VD will be counted using
integer variables yt,v. Finally, for each edge e ∈ E, binary variableswe will indicate whether the
edge e is used or not, and the number of fibers in the DN and the FN installed along arc a ∈ A

is counted using variables ga and fa, respectively. Using these variables, our objective function
can be described as follows:

Objective function

min
∑

v∈VCO

cvzv +
∑

v∈VD

cvxv +
∑
e∈E

cewe +
∑

v∈VD

∑
t∈T

ct,vyt,v +
∑
a∈A

(cfafa + c
g
aga)

The first two terms are the installation costs for COs and DPs, followed by the installation
costs for the edges, followed by the splitter installation costs. The last summation corresponds
to the total fiber costs installed in the DN and the FN.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

54 Passive Optical Network Design

Bounds on splitter installations, DPs and COs The bounds regarding the total number
of allowed DPs and COs are expressed using constraints (2.2.1) and (2.2.2), respectively, and
the bounds regarding the maximal number of splitters of type t at the DP node v are expressed
using (2.2.3): ∑

v∈VD

xv � ND (2.2.1)

∑
v∈VCO

zv � NCO (2.2.2)

yt,v � Jt,vxv ∀v ∈ VD, t ∈ T (2.2.3)

Before we present the remaining constraints of our MIP model, we introduce the following
notation: Each splitter installed at a DP location requires a single fiber from a CO (where a
transceiver needs to be placed). The overall number of splitters installed at a DP determines
its upstream-fiber demand. The overall number of fibers available in the DN and obtained after
splitting at a certain DP location determines its downstream-fiber supply. The following set of
auxiliary variables is now introduced to simplify the notation further:

Fv ∈ Q ∀v ∈ VD : the number of upstream-fibers at the DP v

Gv ∈ Q ∀v ∈ VD : the number of downstream-fibers at the DP v

Hv ∈ Q ∀v ∈ VCO : the number of transceivers installed at the CO v

wf
a ∈ {0, 1} ∀a ∈ A : 1 if the arc a is used by the f-flow (feeder)

wg
a ∈ {0, 1} ∀a ∈ A : 1 if the arc a is used by the g-flow (distribution)

Flow conservation in distribution and feeder network In order to ensure a feasible
routing in the distribution network, the flow-preservation constraints (2.2.4) are used. They also
state that the total customer demand has to be satisfied using the supply of downstream-fibers
available at distribution points. Constraints (2.2.5) ensure that the g-flow is routed along edge e

only if edge e is actually installed. Constraints (2.2.6) restrict the solution space to solutions that
sent flow along arcs only in one direction. This is no restriction, since otherwise we can reduce
flow in both directions simultaneously without violation of the flow conservation constraints
until one of them disappears. We denote the incoming arcs of a node v by δin(v), while δout(v)

denotes the outgoing arcs.

∑
a∈δin(v)

ga −
∑

a∈δout(v)

ga =

⎧⎪⎨
⎪⎩

dv v ∈ VC

−Gv v ∈ VD

0 else
∀v ∈ V (2.2.4)

gij � uew
g
ij ∀e = {i, j} ∈ E (2.2.5)

w
g
ij +w

g
ji � we ∀e = {i, j} ∈ E (2.2.6)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2. MIP model 55

At the first glance, one might think that the variables wg
a could be omitted. They are, however,

used later on to derive cuts that will strengthen the LP relaxation. Also, they can be used in
in-degree constraints to enforce tree topologies in the subnetworks. To make sure that the
routing between COs and DPs is feasible, we consider constraints (2.2.7). These constraints
also make sure that the overall upstream-demand at distribution points (expressed using Fv

variables) is satisfied by installing a sufficient number of transceivers at the corresponding COs
(Hv variables). Constraints (2.2.8) make sure that the f-flow is routed along edge e only if edge
e is actually installed. Constraints (2.2.9) ensure that f−flow is sent along an edge in only one
direction, as has been explained above for the g-flow.

∑
a∈δin(v)

fa −
∑

a∈δout(v)

fa =

⎧⎪⎨
⎪⎩

Fv v ∈ VD

−Hv v ∈ VCO

0 else
∀v ∈ V (2.2.7)

fij � uew
f
ij ∀e = {i, j} ∈ E (2.2.8)

wf
ij +wf

ji � we ∀e = {i, j} ∈ E (2.2.9)

Note that in this model, since f and g define single-commodity flows, the flows of opposite
directions cancel out. However, it might happen that along an edge e = {i, j}, f sends flow in
direction (i, j) and g sends flow in direction (j, i).

Moreover, if FN and DN are required to have tree topologies, this can be enforced using the
following in-degree constraints:∑

a∈δin(v)

wf
a � 1 and

∑
a∈δin(v)

wg
a � 1 ∀v ∈ V (2.2.10)

Upstream-demand and downstream-capacity at DPs. For each installed splitter at a DP
v ∈ VD, a single fiber in the FN is required, and the total upstream-demand at v is calculated
using constraints (2.2.11). The number of downstream-fibers available at the DP v is bounded
by the total number of installed splitters and their capacity, see (2.2.12). Finally, the number of
available downstream fibers at DPs and COs v is also upper-bounded by uv.

Fv =
∑
t∈T

yt,v ∀v ∈ VD (2.2.11)

Gv �
∑
t∈T

styt,v ∀v ∈ VD (2.2.12)

Gv � uvxv ∀v ∈ VD (2.2.13)
Hv � uvzv ∀v ∈ VCO (2.2.14)

We assume that the upper bounds imposing the maximal capacity of a distribution point are
non-trivial, that is

uv �
∑
t∈T

stJt,v

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

56 Passive Optical Network Design

The set of feasible 2FTTx solutions is completely described using constraints (2.2.1)–(2.2.14).
This MIP model will be called the aggregated MIP model. It contains a large number of variables
and constraints, and therefore, it is quite unrealistic that using this model one will be able to
solve instances arising in the practical application. Besides, the lower bounds obtained by this
model may be quite weak, due to the involved constraints of big-M type. Specifically, wemention
the constraints (2.2.5), (2.2.8),(2.2.13) and (2.2.14). To overcome the problems with the weak
lower bounds, in the following subsection we will first present families of strengthening valid
inequalities. In the second half we will propose two Lagrangian decomposition approaches.
These will enable us to solve some real-world network planning instances very close to optimality.

2.2.2 Valid inequalities for the aggregatedMIPmodel

Connectivity constraints in the DN We already observed that the flow conservation
constraints (2.2.4) together with the capacity constraints (2.2.5) define a single-commodity flow
problem in the distribution network. For the problem to be feasible, for each customer v ∈ VC,
dv units of flow need to be transported from the active (xk = 1,k ∈ VD) distribution points to v.
This also implies that the distribution network has to be connected. The following connectivity
constraints in the DN are therefore valid for our problem:∑

k∈W∩VD

xk +
∑

(i,j)∈δin(W)

w
g
ij � 1 W ⊆ V ,W ∩ VC �= ∅ (2.2.15)

These constraints basically state that for each customer i there has to exist an open DP k ∈ VD

such that they can be connected by a directed path from k to i in the subgraph of G induced by
thewg variables. These inequalities are not implied by the previous model and can be used to
strengthen the LP bounds (see e.g. Ljubić et al. [2012]).

Connectivity constraints in the FN We can again observe that the flow conservation
constraints (2.2.7) together with the capacity constraints (2.2.8) define a single-commodity flow
problem in the feeder network. In a feasible solution, we have that for each distribution point
k ∈ VD, there need to be Fk flow units that are transported from the active central offices to k.
As above, the following connectivity constraints in the FN are therefore valid for our problem:∑

�∈W∩VCO

z� +
∑

(i,j)∈δin(W)

wf
ij � xk W ⊆ V ,k ∈ W ∩ VD (2.2.16)

They ensure that open COs and open DPs belong to a connected network, and even more, that
for each open DP k there has to exist an open CO such that they can be connected by a directed
path from to k in the subgraph of G induced bywf variables. Also these inequalities are not
implied by the previous model and can be used to strengthen the LP bounds.

Global connectivity constraints These constraints are based on the observation that the
overall solution has to be connected. Furthermore, since the edges e ∈ E can be oriented in one
or the other direction, and the costs for the installation are paid only once, no matter if the same

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3. Lagrangian Decompositions 57

edge is used twice (once in the FN, and once in the DN), the following directed connectivity
cuts are valid and are not implied by the previously introduced cuts:∑

�∈W∩VCO

z� +
∑

(i,j)∈δin(W)

wf
ij � 1 W ⊆ V ,W ∩ VC �= ∅ (2.2.17)

These inequalities make sure that for each customer i ∈ VC there is a directed path between an
open CO and i in the subgraph induced bywf variables. That way, the variableswf, originally
intended to model only the arcs of the FN, are used to push up the capacities of fractional edge
variables in the DN.

Lemma 2.2.1. Constraints (2.2.15), (2.2.16) and (2.2.17) can be separated in polynomial time.

Proof. We will explain how to separate (2.2.15), the remaining separation algorithms follow the
same idea. Given the values x̃ and w̃g of a fractional LP solution to the aggregated MIP, we can
separate constraints (2.2.15) in an auxiliary graph Gg = (Vg,Ag) that is generated as follows.
An additional node r is added to V and it is connected to all distribution points v ∈ VD, i.e.,
Vg = {r} ∪ V , Ag = A ∪ {(r,k) | k ∈ VD}. In the resulting digraph Gg, for each v ∈ VC, there
has to be a flow of value not less than 1 from r to v. We treat the values of w̃g

ij as the capacity on
the arc (i, j) and x̃k as capacity on the arc (r,k). If the value of the maximum flow is less than
one, the associated minimum cut, projected into the space of x and wg variables, corresponds
to a violated (2.2.15) inequality.

In the following, let

G :=
{

z=(g,G,wg,w) ∈ R
|A|+|VD|
+ × {0, 1}|A|+|E|

∣∣∣ z satisfies (2.2.4)-(2.2.6),(2.2.15) }
and

F :=
{
z=(f,H, F,wf,w) ∈ R

|A|+|VCO|+|VD|
+ × {0, 1}|A|+|E|

∣∣∣ z satisfies (2.2.7)-(2.2.9),(2.2.16)}
In Subsection 2.3.1, we illustrate how the problem can be decomposed in such a way that the
subproblems associated to G and F can be treated separately.

2.3 Lagrangian Decompositions

A short introduction to Lagrangian Decomposition

We now describe the technique of Lagrangian Decomposition with a focus on solving Integer
programs. The setting inwhich this technique is applied is usually the following. Wehave amodel
for an optimization problem that has some standard well-known combinatorial constraints,
like flow constraints, knapsack constraints – we call these constraints the simple constraints.
Additionally, we have some more constraints that destroy the simple combinatorial structure of
the others – these, we call the complicating constraints.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

58 Passive Optical Network Design

Our model has the following structure:

(P) min cTx

subject to Ax � b (2.3.1)
Cd � d (2.3.2)
xj ∈ N0 i ∈ I (2.3.3)

Here, Ax � b will be the complicating constraints, while Cx � d are the simple constraints.
We define the Lagrangian Relaxation for some nonnegative vector λ ∈ Qm by

(L(λ)) min cTx+λ(b−Ax)

subject to Cd � d (2.3.4)
xj ∈ N0 i ∈ I (2.3.5)

For this decomposition to give fruitful results, L(λ) should be much easier to solve than (P).
For λ = 0, we end up with the relaxation that we get by just removing the constraints Ax � b.
The program L(λ) is also a relaxation for other, nonnegative values for the vector λ in the sense
that for any λ, the optimal solution value for the program is a lower bound on the optimal
solution value of (P).
The question is how λ should be chosen. The optimal value of λ corresponds to the optimal

solution of the concave program

max
λ�0

v(L(λ))

where v denotes the optimal solution value. This program corresponds to the formal Lagrangian
Dual of (P) with respect toAx � b. Standard theorems imply that solution value for the optimal
choice of Lagrangian dual multipliers λ is at least as good as the LP relaxation. The value of L(λ)
for an optimal choice of λ can be strictly better than the value of the LP relaxation of (P). It is
equal to the value of the LP relaxation in the case that L(λ) has the integrality property, which
states that the value of an optimal solution is unchanged if we drop the integrality constraints,
or in other words, if the optimal solution value of its LP relaxation is attained by an integral
solution.
We now introduce our Lagrangian Decompositions. We later explain how we solve the

Lagrangian dual optimization problems in Subsection 2.3.3.

2.3.1 Feeder-Distribution Decomposition

Our first Lagrangian decomposition approach decomposes the problem in the most intuitive
way: the design of the FN and the design of the DN. To obtain this decomposition, we have to
relax constraints that couple both networks. We proceed as follows:

1. Duplicate yt,v variables: introduce a copy of yt,v variables (denoted by y ′
t,v) and then

replace yt,v by y ′
t,v in equations (2.2.11).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3. Lagrangian Decompositions 59

2. Duplicate xv variables: Introduce a copy denoted by x ′
v and introduce a copy of constraint

(2.2.3) with both xv and yt,v substituted.

3. Duplicatewe variables: Introduce a copy denoted byw ′
e and then replacewe byw ′

e in
(2.2.7)-(2.2.9),(2.2.16).

4. Extend the previous model with the following inequalities, associate dual variables λ, α
andβ to them and relax them in a Lagrangian fashion. The corresponding dual multipliers
are denoted after the inequality.∑

t∈T

y ′
t,v �

∑
t∈T

yt,v ∀v ∈ VD . . . (λv)

we = w ′
e ∀e ∈ E . . . (αe)

xv = x ′
v ∀v ∈ VD . . . (βv)

The whole problem decomposes into two subproblems that will be referred to as the Feeder
Network problem (F) and theDistribution Network problem (D).This decomposition is illustrated
in Figure 2.3.1.

(a) (b)

Figure 2.3.1: Lagrangian Decomposition into the Feeder and Distribution Part: (a) Distribution
network (DN), and (b) Feeder network (FN). Triangles represent customers, squares
represent DPs, pentagons represent COs and circles represent remaining nodes

The Feeder Network problem

After substituting Fv :=
∑

t∈T yt,v for each v ∈ VD, the feeder network subproblem is given as:

(F) min
∑

v∈VCO

cvzv−
∑

v∈VD

λvFv +
∑
a∈A

cfafa −
∑

v∈VD

βvx
′
v−

∑
e∈E

αew
′
e

subject to Hv � uvzv ∀v ∈ VCO (2.3.6)
Fv �

∑
t∈T

Jt,vx
′
v ∀v ∈ VD (2.3.7)

∑
v∈VCO

zv � NCO (2.3.8)

(z, x ′) ∈ {0, 1}|VCO|+|VD|, (f,H, F,wf,w ′) ∈ F

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

60 Passive Optical Network Design

The Distribution Network problem

(D) min
∑

v∈VD

(cv + βv)xv +
∑
e∈E

(ce + αe)we +
∑

v∈VD

∑
t∈T

(ct,v+λv)yt,v +
∑
a∈A

c
g
aga

subject to Gv � min{uvxv,
∑
t∈T

styt,v} v ∈ VD (2.3.9)

yt,v � Jt,vxv v ∈ VD (2.3.10)∑
v∈VD

xv � ND (2.3.11)

(x,y) ∈ {0, 1}|VD| × Z
|T ||VD|
+ , (g,G,wg,w) ∈ G

Observe that both problems, (F) and (D), areNP-hard. However, from a structural point of view,
they are significantly simpler than the original problem, and also easier to solve from the practical
perspective. The problems are generalizations of the capacitated network design problem with
single source. We solve these problems using a Branch&Cut (B&C) approach whose main
ingredients are outlined in Section 2.4. One of the advantages of the B&C approaches is that
warm start features (i.e., initializations of upper bounds and valid inequalities) can be re-used
from iteration to iteration (via solution pools and cut pools, respectively).
When solving this decomposition, we extend the model (F) with the global connectivity

cuts (2.2.17) that make sure that customers are connected with open COs. These constraints
restrict the set of feasible solutions for the (F) model, but they do not cut off globally optimal
solutions. In addition, these constraints strengthen the Lagrangian bounds obtained by this
decomposition. Finally, to make sure that global connectivity cuts are also associated to edge
set-up costs, Lagrangian multipliers are initialized as αe := −ce, for all e ∈ E. The remaining
Lagrangian multipliers are initialized with zero values. We will refer to this decomposition as
the FD decomposition approach or the (F)+(D) decomposition.

2.3.2 Fixedcharge-Flow Decomposition

In this subsection we propose an alternative Lagrangian decomposition approach in which we
decompose the problem according to the classification of variables by cost types. In other words,
we decompose the problem into a Fixed-Charge and a Flow subproblem. The Fixed-Charge
subproblem captures all set-up costs associated to fixed-charge variables,we, xv and zv. These
costs will dominate the total costs on our instances. On the other hand, the Flow subproblem
captures all flows costs associated to the splitter-installation variables yt,v and the flow variables
fa and ga.
To constraints that contain variables of both types we associate dual variables λ, μ and ν.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3. Lagrangian Decompositions 61

(a) (b)

Figure 2.3.2: Lagrangian Decomposition into (a) Fixed-Cost and (b) Variable-Cost. In a), only
the topological considerations remain. In b), we can see the flows in the two
sub-networks marked in orange and blue.

Then, we relax them in Lagrangian fashion:

yt,v � Jt,vxv t ∈ T , v ∈ VD . . . (λt,v)
Gv � uvxv v ∈ VD . . . (μv)

Hv � uvzv v ∈ VCO . . . (μv)

gij � uew
g
ij {i, j} ∈ E . . . (νg

a)

fij � uew
f
ij {i, j} ∈ E . . . (νf

a)

Basically, we obtain two subproblems, one which decides which part of the network we use
and another which decides how the demands are routed within the resulting network. We
basically have relaxed every constraint that couples the flow variables to the network design
variables.

As one easily observes, all the relaxed constraints are of big-M type, so one can hope to end up
with good subproblems and fix the violation of the coupling restrictions through the Lagrangian
multipliers. Interestingly, these constraints are less likely to be violated the larger the inherent
constants are, so one can expect that many of them are already fulfilled even without a long
search for the correct dual multipliers.
The two subproblems we obtain will be refered to as the fixed-charge subproblem (FC) and

the Flow subproblem (FP). Figure 2.3.2 illustrates the decomposition approach.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

62 Passive Optical Network Design

The Fixed-Charge subproblem (FC)

(FC) min
∑

v∈VCO

(cv − μvuv)zv +
∑

v∈VD

(cv − (
∑
t∈T

λt,vJt,v + μvuv))xv+

+
∑
e∈E

cewe −
∑
a∈A

ua

(
νf
aw

f
a + νg

aw
g
a

)
subject to

∑
v∈VD

xv � ND (2.3.12)

∑
v∈VCO

zv � NCO (2.3.13)

wf
ij +wf

ji � we e = {i, j} ∈ E (2.3.14)
w

g
ij +w

g
ji � we e = {i, j} ∈ E (2.3.15)

(x, z,w,wf,wg) ∈ {0, 1}|VD|+|VCO|+|E|+2|A|

The Flow subproblem (FP)

(FP) min
∑

v∈VD

∑
t∈T

(ct,v + λt,v)yt,v +
∑

v∈VD

μvGv +
∑

V∈VCO

μvHv+

+
∑
a∈A

(cfa + νf
a)fa +

∑
a∈A

(c
g
a + νg

a)ga

subject to

∑
a∈δin(v)

ga −
∑

a∈δout(v)

ga =

⎧⎪⎨
⎪⎩

dv v ∈ VC

−Gv v ∈ VD

0 v ∈ VCO ∪ VO

v ∈ V (2.3.16)

∑
a∈δin(v)

fa −
∑

a∈δout(v)

fa =

⎧⎪⎨
⎪⎩

Fv v ∈ VD

−Hv v ∈ VCO

0 v ∈ VC ∪ VO

v ∈ V (2.3.17)

Fv =
∑
t∈T

yt,v v ∈ VD (2.3.18)

Gv �
∑
t∈T

styt,v v ∈ VD (2.3.19)

(f,g, F,G,H,y) ∈ (R2|A|+2|VD|+|VCO|
+ , Z|T ||VD|

+)

Observe that (FC) is a trivial subgraph selection problem: edge selections can simply be
made by looking at the sign of the coefficient. Similarly, we can select the nodes with the
largest negative coefficients greedily until we reach the bounds on the total number of DPs

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3. Lagrangian Decompositions 63

and COs. Intuitively, there is not much improvement if the problem is decomposed into one
hard and one trivial subproblem, as either the hard problem is as hard as the original one or
the easy problem does not capture the difficulties properly, which leads to either many dual
steps or a weak relaxation. To strengthen the models, we insert the connectivity constraints
(2.2.15)-(2.2.17) in the original MIP model. After the Lagrangian relaxation, these end up in
the (FC) subproblem. For this reason, we can strengthen the fixed-charge subproblem using
valid inequalities which ensure connectivity. Due to the large number of constraints, these are
separated as lazy constraints, meaning that we only add them to the model when our current
solution violates them. That way, we end up with a non-trivial FC-subproblem which makes
this decomposition approach useful.

Despite the fact that also in this decomposition both subproblems, (FC) and (FP), areNP-hard,
they are significantly simpler than the original problem. The problem (FP) is NP-hard since the
packing subproblem has to be solved at each of the installed distribution points. After adding the
connectivity constraints, the problem (FC) becomesNP-hard, since it combines the structure of
the cardinality constrained Steiner arborescence problem with node and arc weights. To solve
the subproblem (FC), we develop a Branch&Cut algorithm (see Section 2.4) in which solution-
and cut-pools are used as warm start features. The subproblem (FP) is solved as a compact MIP
model by a black-box MIP solver with the additional advantage that solution pools are used to
initialize starting solutions in each Lagrangian iteration. We will refer to this decomposition as
the Fixedcharge-Flow decomposition approach or the (FC)+(FP) decomposition.

Valid Inequalities

When solving the (FC) subproblem, notice that the only way more than one DP/CO is opened
is if the costs of the DPs/COs become negative due to the setting of the corresponding dual
multipliers. Therefore, the bounds obtained by solving the (FC) subproblem can further be
strengthened by additional inequalities that make sure that the capacity of open DPs/COs
is sufficient to service customer demands. These inequalities can also reduce the number of
iterations of the Lagrangian decomposition. The following inequalities are used for this purpose:∑

v∈VD

uvxv �
∑
v∈VC

dv (2.3.20)

∑
v∈VCO

{
max
t∈T

st

}
uvzv �

∑
v∈VC

dv (2.3.21)

∑
v∈VCO

uvzv +
∑

v∈VD

xv
∑
t∈T

(st − 1)Jt,v �
∑
v∈VC

dv (2.3.22)

Constraints (2.3.20) make sure that a sufficient number of downstream fibers is provided,
and the slightly weaker constraints (2.3.21) make sure that a sufficient number of transceivers
is installed at COs, so that customer demands can be satisfied (assuming the highest possible
splitting ratio). Finally, constraints (2.3.22) combine the latter two using the fact that each
splitter requires exactly one fiber coming from a CO (and therefore we have term (st − 1) in the
second summation).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

64 Passive Optical Network Design

Strengthening by Splitter-Counting One can aggregate variables yt,v as follows:∑
v∈VD

yt,v = yt t ∈ T

These newly introduced integer variables yt count the number of splitters of type t ∈ T

installed across all DPs. Adding the latter equality into the aggregated MIP yields no benefits.
However, in the context of our second Lagrangian relaxation, it helps in solving the (FC)
subproblem. After associating dual multipliers πt and relaxing these constraints, the new
variables are added to (FC) and an additional term of −

∑
t∈T πtyt is added in the objective

function.
Then, the following inequalities are used to strengthen the (FC) subproblem:

∑
t∈T

styt �
∑
v∈VC

dv (2.3.23)

∑
v∈VCO

uvzv +
∑
t∈T

(st − 1)yt �
∑
v∈VC

dv (2.3.24)

∑
v∈VD

Jt,vxv � yt ∀t ∈ T (2.3.25)

∑
v∈VCO

uvzv �
∑
t∈T

yt (2.3.26)

2.3.3 Generic Lagrangian Framework

We now describe the generic Lagrangian decomposition framework that is applied to both
approaches. In this framework, lower bounding and upper bounding procedures are incor-
porated. Lower bounding procedures are based on solving lower bounds of associated MIP
models, and upper bounding procedures are heuristics that we describe below. For each of
the proposed decomposition approaches, we develop appropriate heuristics. They solve each
of the subproblems independently, using the current Lagrangian multipliers in the objective
function. Hence, in all the following heuristics, solving the subproblem always refers to the
Lagrangian-modified objective functions, unless it is stated differently.

Relaxing the constraints linking the feeder and the distribution network part as described in
Subsection 2.3.1, we obtain the Lagrangian function

L(Λ) := LF+D(Λ) = LF(Λ) + LD(Λ),

where Λ := (λ,α,β) ∈ R
VD
+ × RE × RVD is the vector of Lagrangian dual multipliers for the

(in)equalities linking the variables y,w, and x to their copies y ′,w ′, and x ′, respectively. The two
functions LF(Λ) and LD(Λ) yield the optimal solution value of the two integer linear problems
(F) (augmented with global connectivity cuts (2.2.17)) and (D), respectively, for the given dual
multipliers Λ.

Analogously, the decomposition into fixed-charge and flow cost dependent variables described
in Subsection 2.3.2 yields the Lagrangian function

L(Λ) := LFC+FP(Λ) = LFC(Λ) + LFP(Λ),

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3. Lagrangian Decompositions 65

with dual multipliers Λ := (λ,μ,ν,π) ∈ R
2|VD|+2|T |+|VCO|+2|E|
+ (assuming we introduce the

extra splitter count variables yt as described in Section 2.3.2). Here, LFC(Λ) represents the
optimal solution value of (FC) after adding constraints (2.2.15)-(2.2.17) and (2.3.20)-(2.3.26),
while LFP(Λ) represents the optimal solution value of (FP).

It is well known that for each dual vector Λ the value L(Λ) is a lower bound for the optimal
value of original aggregated model (2.2.1)–(2.2.14) and, hence, also L∗ := maxΛ L(Λ) is a valid
lower bound. As there are only finitely many (basic) solutions to the original model and to each
of the subproblems (D), (F), (FC), and (FP), the corresponding dual functions LF, LD, LFC and
LFP are piece-wise linear and concave in Λ. Hence, convex function optimization techniques
can be applied in order to find dual multipliers Λ∗ that yield the best possible lower bound L∗.

Finding the dual vectors

In our implementation, we employ a bundle method to determine the dual vectors.
Bundle methods typically converge relatively fast requiring only a few evaluations of the dual

function(s), which is very attractive in our application, where each evaluation (in principle)
requires the solution of an integer linear program. Furthermore, they permit the use of an
independent bundle of subgradients for each of the two sub-functions LF and LD or LFC and
LFP involved in the respective Lagrangian function, potentially leading to a further reduction
in (sub-)function evaluations. Finally, general purpose implementation of these methods are
available, such as ConicBundle (Helmberg and Kiwiel [2002]; Helmberg [2012]), which has
already proved its practicability and efficiency in the solution of large-scale problems (see e.g.
Helmberg [2009]).
The basic theory of bundle methods is explained in Hiriart-Urruty and Lemaréchal [1993]

and Bonnans et al. [2003]. In principle, given a starting point for the dual multipliers, the bundle
method iteratively determines the next candidate as an optimizer of a quadratic model with
the current point as a stability center and dual constraints stemming from a set (bundle) of
previous optimal solutions. If the value of the optimal solution of this quadratic model improves
sufficiently over the value at the stability center, themethod performs a descent step and proceeds.
Otherwise, a null step not changing the stability center but improving the quadratic model with
the new subgradient is performed.

For the initial dual multipliers and after each descent step of the bundle algorithm, we apply
one of the heuristics described in the following sections to compute feasible primal solutions for
the overall problem.

Solving the evaluation subproblems

In order to reduce the run time of the two proposed Lagrangian relaxation approaches in practice,
we also decided to avoid the solution of the integer linear programs (F), (D), (FC), and (FP) via
Branch&Bound in the evaluation of the corresponding (sub-)functions. Instead, we stop after
processing the root node of the corresponding Branch&Bound trees. Conceptually, this also
can be regarded as the solution of an (appropriately defined) linear relaxation of the respective
subproblems, namely a relaxation that includes all those constraints that are implicitly enforced
via the simple preprocessing techniques and cutting planes of the ILP solver at the root node

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

66 Passive Optical Network Design

and that relaxes all other integrality constraints. Unfortunately, however, it was necessary to
disable most of the heuristic preprocessing and cutting plane generation techniques that are
implemented in the ILP solver in order to avoid inconsistencies in their application and resulting
numerical instabilities in the bundle algorithm. The resulting bounds will, of course, be weaker
than those that can be obtained by optimally solving the integer programming subproblems.
Yet, the bounds are very satisfactory from a practical point of view and much faster to compute.

FDF Heuristic

For the first decomposition approach, we develop a heuristic that we refer to as the Feeder-
Distribution-Feeder (FDF) Heuristic. Pseudo-code of this heuristic is given in Algorithm 1 on
the following page. The heuristic consists of three stages: in the first stage we solve the feeder
subproblem (F) extended by global connectivity cuts (2.2.17). That way, we obtain a preliminary
topology of our network that makes sure that all customers are connected to each other and
to at least one open CO. In the second stage, the edges of this network are used without cost
(compare Step 7) for solving the distribution subproblem. The last stage is a transition from
the distribution subproblem into the feeder subproblem. The Solution of (D) is denoted by SD.
Edges that belong to SD are now taken in the solution of (F). In addition, open DPs and their
demands are uniquely determined by SD and the values for Fv and x ′

v are used as inputs for the
feeder subproblem (F). If the last stage returns a feasible solution for (F), after merging it with
SD, we obtain a feasible 2FTTx solution. The advantage of calling the (F) subproblem at the
beginning is that by incorporating the global connectivity requirements, it provides a global
view of the problem.

Each of the subproblems in this procedure is solved as a Branch&Cut reusing the cuts and
feasible solutions from the previous iterations. Since these B&C algorithms are called as heuristic
procedures, we do not search for the optimal solution, but we stop the execution of these
frameworks as soon as two feasible solutions are found.

FCF Heuristic

Pseudo-code of this heuristic is given in Algorithm 2 on page 68. This heuristic first solves
the fixed-charge subproblem (FC), including all connectivity constraints (2.2.15)-(2.2.17), and
inequalities (2.3.20)-(2.3.26). That way, the topology of the network is determined, and it only
remains to make capacity and routing decisions. In order to do so, we create a subgraph G̃ of G,
induced by the given topology, and resolve the whole aggregated MIP on it. This aggregated
MIP also contains constraints (2.2.15)-(2.2.17) and (2.3.20)-(2.3.22), but solving it is usually
much faster than solving the original aggregated MIP, due to the fixing of variables.

2.4 Computational results

2.4.1 Branch&Cut algorithms

The aggregatedMIP with connectivity constraints (2.2.15)-(2.2.17), the distribution subproblem
(D), the feeder subproblem (F) and the fixed-charge subproblem (FC) are all solved using

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.4. Computational results 67

Algorithm 1 Feeder-Distribution-Feeder Heuristic.
1: Solve the feeder subproblem (F) (incl. global connectivity cuts (2.2.17))
2: if (F) has no incumbent then
3: End heuristic
4: else
5: Let SF be the best solution of (F)
6: end if
7: Initialize distribution subproblem (D) with edge costs set to zero for all e ∈ SF
8: Solve the distribution subproblem (D)
9: if (D) has no incumbent then
10: End heuristic
11: else
12: Let SD := (g̃, G̃, w̃g, w̃, ỹ, x̃) be the best solution of (D)
13: end if
14: Solve the feeder subproblem (F) with edge costs set to ce for all e ∈ E and:
15: w ′

e � w̃e, e ∈ E, Fv :=
∑

t∈T ỹt,v and x ′
v := x̃v, v ∈ VD.

16: if (F) has no incumbent then
17: End heuristic
18: else
19: Let SF2 be the best solution of (F)
20: end if
21: Returnmerged solution: SF2 plus SD.

Branch&Cut algorithms. In this section we explain the main ingredients of these algorithms.

Separation of Connectivity cuts

Connectivity constraints are separated using maximum flows, as explained in the proof of
Lemma 2.2.1. The maximum flow is calculated using the push-relabel procedure (see, for
example Cherkassky and Goldberg [1997]). To speed-up the separation, we exploit the idea of
backward cuts in order to detect more diverse cuts, further away from the artificial root node.
The idea, applied to constraints (2.2.15), for example, is as follows:

In a first step, the arcs of the original graph are reversed. Then, the maximum flow from a
customer towards the artificial root node is calculated. If violated, the arcs of the associated
minimum cut are reversed and the corresponding connectivity cut is added to the model. We
enforce generation of sparse cuts by adding an ε value to each edge, and use nested cuts to
generate more cuts in fewer iterations (see e.g. Ljubić et al. [2006]). At each call of the separation
callback, we generate a new random ordering of the customers in order to avoid separating the
same customers over and over. The cut separation is not executed for another customer during
a run if the number of already generated cuts exceeds 100. The cut separator is called at the root
node of the Branch&Bound tree and at every further node with quadratic index. It is also used
to check feasibility of integral solutions, in the course of which lazy constraints are generated.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

68 Passive Optical Network Design

Algorithm 2 FixedCharge-Flow Heuristic
1: Solve the Fixed-Charge subproblem (FC)
2: if (FC) has no incumbent then
3: End heuristic
4: else
5: Let SFC be the best solution of (FC)
6: end if
7: Let G̃ be a subgraph of G induced by the edges of SFC
8: Solve aggregated MIP on G̃ with we := 1, for all e ∈ SFC.
9: if aggregated MIP has no incumbent then
10: End heuristic
11: else
12: Return the best aggregated MIP solution
13: end if

Cut pools and warm start

Since B&C algorithms are called in each iteration of the Lagrangian decomposition approach,
for the implementations of the (F), (D) and (FC) model we use cut pools to store previously
detected violated cuts and reuse them in each new iteration in a warm-start fashion. This is
possible because from iteration to iteration, only the objective function changes due to the new
dual multipliers, and the polytopes associated to feasible solutions remain the same. Hence,
connectivity cuts (2.2.15)-(2.2.17) detected in earlier iterations are still valid.

Regarding the initialization of upper bounds at the beginning of the B&C execution, we use
the CPLEX MIPstart feature - the best solution among the ones found in previous iterations is
set as the initial feasible solution.

Primal heuristics

CPLEX default heuristics were activated. For the Branch&Cut calls within the Lagrangian
heuristics, the emphasis is set to finding feasible solutions. In addition, we enhance the search
for upper bounds of the (FC) model by our own upper bounding procedure. This procedure is a
LP-rounding heuristics based on the following idea:

i) A set of terminals is determined, depending on the fractional values of the x- and z-variables.

ii) A Steiner tree is built to connect those terminals.

iii) The values of the remaining variables are calculated using an auxiliary MIP in which the
Steiner tree edges are fixed to one (we := 1), and the remaining edges are fixed to zero
(we := 0).

To determine the subset of terminals, we apply an LP-rounding technique: Terminals are
customers plus all nodes v ∈ VD ∪ VCO whose corresponding LP-values xv and zv are greater
or equal to a given threshold π. In the default implementation, π is set to 1/2.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.4. Computational results 69

To calculate the Steiner tree on a given set of terminals, we apply the distance network heuristic
(see e.g. Mehlhorn [1988]): First, a distance network is built which is a complete graph containing
terminals and whose edge weights are the lengths of the shortest paths between them. These
shortest paths are calculated with respect to the weights associated to we variables. Then, a
minimum spanning tree (MST) on the distance network is found, the paths are mapped back
in the original network, one more MST is built to avoid cycles, and finally leaves that are not
terminals are pruned from the tree.

MIP initialization

All valid inequalities mentioned for models (F), (D), (FC), and the aggregated MIP, are added
at the very beginning to the MIP, except the connectivity constraints (2.2.16)-(2.2.17) that
are dynamically separated. In addition, to speed-up the separation, we add some more valid
inequalities. The models (D) and the aggregated MIP models are additionally initialized with:∑

(i,j)∈A,i �=k

w
g
ij + xj � w

g
jk, for all (j,k) ∈ A, j ∈ VD

∑
(i,j)∈A,i �=k

w
g
ij � w

g
jk, for all (j,k) ∈ A, j �∈ VD

∑
(i,j)∈δin(j)

w
g
ij � 1, for all j ∈ VC

Themodels (F), (FC) and the aggregated MIP models are additionally initialized with:∑
(i,j)∈A,i �=k

wf
ij + zj � wf

jk, for all (j, k) ∈ A, j ∈ VCO

∑
(i,j)∈A,i �=k

wf
ij � wf

jk, for all (j,k) ∈ A, j �∈ VCO

∑
(i,j)∈δin(j)

wf
ij � xj, for all j ∈ VD

∑
(i,j)∈δin(j)

wf
ij � 1, for all j ∈ VC

Implementation details

The B&C algorithms were implemented in C++ using the CPLEX™ 12.4 callable library. All the
experiments were performed on AMD 6-core-machines with 8GB RAM. Our cut separators are
thread-safe and we run CPLEX in a multi-threaded way to exploit the parallel computational
power of newer processors. For the separation of constraints (2.2.15)-(2.2.17), we use the
max-flow implementation by Goldberg [2012]. The ConicBundle algorithm of Helmberg and
Kiwiel [2002], available at Helmberg [2012], is used to solve the convex optimization problem of
finding the optimal Lagrangian dual multipliers. In both decomposition approaches, we use two
independent bundles of subgradients to describe the dual functions corresponding either to the
two problems (F) and (D) in the (F)+(D)-Decomposition or to the two problems (FC) and (FP)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

70 Passive Optical Network Design

in the (FC)+(FP)-Decomposition. In order to keep the number of function evaluations small,
we use a large maximum bundle size of 100 for both dual functions in both decomposition
approaches.

2.4.2 Benchmark instances

We consider a set of nine benchmark instances of different sizes originating from the German
research project FTTx-Plan [2012]. These instances correspond to typical regional fiber deploy-
ment planning problems – both FTTH and FTTB – in mostly urban regions that can be covered
by 1 to 15 central offices. Some of our benchmark instances correspond to real-world planning
problems provided by industry partners. For the other instances, the underlying networks are
generated from publicly available street network information by considering realistic scenarios
of potential customers, distribution points, and central offices in a region of typical size and
creating potential connections along one or both sides of street segments depending on the
street type, from the customer locations to the closest streets, and appropriate interconnection
points and edges at crossings and joins. Figure 2.4.1 and Figure 2.4.2 on page 76 show exemplary
instances E1 and E3 embedded in Google Maps. Costs and capacities are obtained by mapping
the very complex real-world network component costs, parameters, and installation costs of a
typical PON system to the simpler cost and capacity model used in our optimization model.

Figure 2.4.1: An example instance. Squares, triangles and circles represent potential COs, poten-
tial DPs and customers, respectively. Maps courtesy of Google Maps.

Table 2.1 on the following page provides the most important parameters of these benchmark
instances. The number of customer locations to be served ranges from 36 in the smallest instance
to 3862 in the largest one. The average fiber demand per customer location ranges from 2.0 to
13.5. The total number of edges, which correspond to the trails or street segments that may be

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.4. Computational results 71

inst |V | |E| |VD| |VCO| |VC|
∑

dv ce cDP cCO

E1 637 826 97 4 36 488 5878 4600 418670
E2 1315 1434 143 5 88 278 5341 4576 509750
E3 1675 1730 99 5 552 2290 637 3433 413156
E4 2271 1419 494 4 349 717 1039 1500 418670
E5 6750 7352 520 11 571 5006 672 3186 305454
E6 6750 7352 520 11 571 5006 672 3186 300000
E7 4110 4350 224 6 1072 4164 635 3512 466927
E8 4227 4484 314 5 1379 5542 3483 3417 477505
E9 11544 12478 875 15 3862 14088 3326 3274 522729

Table 2.1: Overview of basic instance properties.

used by the network, ranges from approximately 800 in the smallest instance to approximately
12,500 in the largest one.

The benchmark instances used in our experiments correspond to so-called greenfield planning
problems, where edges, DPs, and COs (mostly) need to be build from scratch. Accordingly, the
fixed-charge costs associated with the installation of an edge, of DPs, or of COs also contain the
cost for trenching and installing ducts, cabinets, or underground closures. Table 2.1 also shows
the average values of these fixed setup costs in our instances. The fixed setup costs for COs and
DPs depend on the device type (underground closure vs. street cabinet DP, for example) and on
its location and vary only moderately among the different potential CO and DP locations. The
fixed setup cost of the edges, on the other hand, also depends linearly on the length of the edges
and varies a lot within each instance, ranging from 0 for edges connecting co-located nodes to
45 times the average (instance E4) or 20% of the average setup cost a CO (instances E8, E9). In
general, the average fixed-charge setup cost of an edge is of the same order as the average setup
cost of a DP.
The fiber installation costs depend linearly on the length of the edges in all instances. In

the distribution network a fiber installation typically uses a larger number of smaller cables
and ducts with a higher fraction of dead (i.e., unused) fibers than this is the case in the feeder
network. In order to account for this fact, the fiber installation costs in the distribution network
are larger than those in the feeder network in our instances. For the smaller instances E1, E2 and
E4, distribution fibers cost approximately 5.3 times as much as feeder fibers per kilometer. In the
other instances, they cost approximately 1.3 times as much. The fixed-charge setup costs of the
edges, however, highly dominate the costs for installing fibers along the edges in our greenfield
planning problems. The fixed setup cost of an edge is approximately 3,000 times the cost of a
single feeder fiber installed on this edge.
In all instances, we consider the same 5 splitter types with splitting ratios of 2, 4, 8, 16, and

32, and cost 161, 272, 352, 427, and 890 per device, respectively. Thus, the cost of a 1:32 splitter
ranges between 450 and 4, 000 times the average feeder fiber cost and between 20% and 60% of
the average DP setup cost.

In the solutions found by our algorithms, the total fixed-charge setup costs for the edges, DPs,
and COs clearly dominate the total flow dependent cost for installing feeder and distribution

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

72 Passive Optical Network Design

fibers and splitters. The ratio between fixed-charge costs to flow dependent costs ranges from
approximately 18:1 in instances E5 and E6 to 150:1 in instance E2. More details on the consid-
ered technical and managerial aspects and the methodology for the generation of the original
benchmark instances can be found in Martens et al. [2009, 2010] and Orlowski et al. [2011].

2.4.3 Computations

InTable 2.2 on the following page, we provide a comparison of the two decomposition approaches
against the two variants of the aggregated model, one that is implemented as a Branch&Cut
approach with cuts (2.2.15)-(2.2.17), denoted by Aggr.MIP+Cuts, and one that is a compact
aggregated MIP formulation, denoted by Aggr.MIP. A time limit of two hours has been imposed
to all four approaches. However, the Lagrangian decomposition approaches typically converged
much faster. The column Best UB shows the objective value of the best solution found among all
four approaches. For the two decomposition approaches (denoted by (F)+(D) Decomp. and
(FC)+(FP) Decomp., resp.), we report the final gap obtained at the end of the last iteration
(gap[%]), the gap of the final lower bound with respect to the global upper bound reported
as Best UB (gapUB[%]), the total number of Lagrangian iterations (#It), the total number of
subproblem evaluations within the bundle method (#Ev), and the total running time (t [s]).
Asterisk next to the running time denotes that the approach did not converge within two hours,
and the reported values are obtained in the last iteration within this time limit. For the two
variants of the aggregated model, instead of the number of iterations, we report the total number
of Branch&Cut nodes explored within the given time limit (#Nodes). For comparison, we also
report in the column gapL the relative gap obtained with the Aggr.MIP+Cuts-approach within
the time required by (FC)+(FP) Decomp. to terminate and in column tL the time needed by
Aggr.MIP+Cuts to reach the same gap as the (FC)+(FP) decomposition at termination.

Comparing the results provided in Table 2.2 on the following page, we find that none of the
two aggregated MIP approaches completed within two hours. For instance E8, the aggregated
MIP approach without cuts even failed exceeding the available memory. Furthermore, we
observe that the aggregated MIP approach without cuts exhibits the worst performance. For
three out of nine instances, no feasible solution is found within two hours, and for three out
of remaining six, the upper bounds were above 30%. We find that in these cases the gaps are
mainly caused by the poor quality of the bounds produced by this approach. For all instances,
the number of explored Branch&Bound nodes is at least a six-figure number (except for the
instance E8 that exceeds the memory limit).
The addition of connectivity cuts clearly improves the performance of the aggregated MIP

model: The number of explored Branch&Bound nodes reduces by one to two orders of magni-
tude, and both the gaps and the solutions obtained after two hours are significantly improved.
However, for the large instances E5, E6 and E9 with more than 5,000 edges, no feasible solutions
are found using the approach Aggr.MIP+Cuts.
In contrast to the aggregated MIP approaches, both decomposition approaches terminate

much earlier with strong lower and upper bounds. The overall gaps remain below 4% in all cases.
Comparing the running times of the two decomposition approaches, we observe that (FC)+(FP)
performs slightly better. Its average resp. median running time is 2369.89 resp. 1779 seconds,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.4. Computational results 73

(F)+(D) Decomp. (FC)+(FP) Decomp.
Inst Best UB gap[%] gapUB[%] #It #Ev t [s] gap[%] gapUB[%] #It #Ev t [s]
E1 1638530.00 0.98 0.98 1 10 444 0.97 0.97 8 10 576
E2 2104409.50 0.65 0.65 8 78 ∗6872 0.51 0.51 4 12 430
E3 1321696.90 1.67 1.67 5 49 4888 1.65 1.65 6 10 512
E4 741505.59 1.31 1.27 2 8 917 1.23 1.18 7 10 273
E5 2153458.28 3.57 3.33 1 10 2365 3.34 3.34 9 19 4776
E6 2173096.57 3.37 3.15 1 16 4150 3.25 3.25 5 13 3362
E7 2299736.60 2.14 2.14 3 20 2160 2.36 2.35 8 10 2435
E8 10857507.77 0.63 0.53 1 10 1478 0.56 0.56 6 10 1779
E9 29992128.83 0.97 0.83 2 12 ∗7149 0.73 0.73 3 4 ∗7186

Aggr.MIP+Cuts Aggr.MIP
Inst Best UB gap[%] gapUB[%] #Nodes gapL[%] tL[s] gap[%] gapUB[%] #Nodes
E1 1638530.00 0.24 0.23 51283 0.72 206 33.73 33.73 1294596
E2 2104409.50 0.05 0.05 75182 0.34 107 35.46 35.39 1225815
E3 1321696.90 1.15 1.05 124355 1.46 238 3.07 2.74 989764
E4 741505.59 0.93 0.93 103538 1.10 166 5.35 4.54 712821
E5 2153458.28 — 2.88 2952 — >30h — 26.52 214674
E6 2173096.57 — 2.76 2199 — >30h 33.01 26.38 190280
E7 2299736.60 2.70 1.75 35673 2.92 13393 8.20 6.66 367052
E8 10857507.77 0.54 0.44 35938 — 3478 — 12.52 ∗33733
E9 29992128.83 — 3.13 0 — >30h — 10.45 120503

Table 2.2: Comparison of the two decomposition approaches, the Branch&Cut for the aggregated
model and the compact aggregated model.

quality of the solutions obtained with the two approaches is similar.
For the smaller instances, where the Aggr.MIP+Cuts-approach was able to find feasible solu-

tions, the final gaps obtained with this approach are slightly smaller than the ones obtained by
the decomposition approaches. In these cases, the aggregated approach benefits from solving a
single global model of the problem, which permits to fully exploit all optimization potentials
via branching, while both decomposition approaches operate on pairs of two independent sub-
models that are coupled only rather loosely via Lagrangian multipliers. However, we emphasize
that the main purpose of the proposed Lagrangian decomposition approaches is to compute
strong valid lower and upper bounds for large problem instances. This means that embedding
these decomposition approaches into a (coordinated) Branch&Bound framework would further
improve the obtained bounds and solutions.

To take a closer look at the performance of the proposed approaches, Figure 2.4.3 on page 77
and Figure 2.4.4 on page 78 and Figure 2.4.5 on page 78 show the progress of the lower and the
upper bounds for instances E4, E5 and E6, respectively. We observe that both decomposition
approaches already reach very strong lower and upper bounds within only several minutes. In
the remaining time, there is only a little progress in these values until the ConicBundlemethod
converges (in which case the Lagrangian multipliers remain unchanged and the algorithm

compared to an average (median) running time of 3380.33 resp. 2365 seconds for (F)+(D). The

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

74 Passive Optical Network Design

terminates). The two aggregatedMIPmodels, on the other hand, improve the bounds constantly
but very slowly as more Branch&Cut nodes are explored. Also, we observe that there is a
significant improvement in the quality of both lower and upper boundswhen adding connectivity
constraints. If Aggr.MIP+Cuts happens to find feasible solutions, it finds them relatively early in
the exploration in the Branch&Bound tree. For the aggregated MIP approach without cuts, on
the other hand, good solutions are found either relatively late in the Branch&Cut process, or are
not found at all.

When analyzing the performance of the (F)+(D) decomposition, we came to the conclusion
that its convergence and the overall performance strongly depend on the initial values of
Lagrangian multipliers. This can be seen from Figure 2.4.6 on page 79, which shows the progress
of lower and upper bounds for the instance E1 with three different initializations of Lagrangian
multipliers αe:
i) the edge installation costs are fully charged to feeder subproblem (αe = −ce, e ∈ E),

ii) the edge installation costs are fully charged to the distribution subproblem (αe = 0, e ∈ E),

iii) half of the edge installation costs charged to both the feeder and to the distribution sub-
problem (αe = −ce/2, e ∈ E).

All other Lagrangian multipliers are initialized to zero. The presented results indicate that a bad
initialization of the Lagrangian multipliers can drastically slow down the overall performance.

The success of the (FC)+(FP) decomposition over the (F)+(D) decomposition can be explained
by the global connectivity constraints added to the fixed-charge subproblem. This can be seen
from Figure 2.4.7 on page 79, where we show the progress of lower and upper bounds of
the (FC)+(FP) decomposition with and without adding global connectivity constraints to the
fixed-charge subproblem.

The results indicate that the global cuts are not only crucial for obtaining high quality lower
bounds, but also for obtaining feasible solutions. When global cuts are turned off, no upper
bound was found within 800 seconds, whereas a high quality solution is obtained in less than
100 seconds, otherwise. Similar behaviors to the ones reported in Figure 2.4.6 on page 79
and Figure 2.4.7 on page 79 were also observed for the remaining instances.
Recall at this point that all benchmark instances considered in this study stem from green-

field planning problems, where the setup costs of the edges include trenching costs and, thus,
constitute the dominant share of the overall network cost. The impact of the global connectivity
constraints may be smaller for instances stemming from planning problems where (mostly)
existing edges can be used without or with only very small setup costs. Thus, the overall efficiency
of the (FC)+(FP) decomposition approach observed in our experiments for greenfield planning
instances may deteriorate for instances where the fixed setup cost incurred by trenching, placing
closures and cabinets, opening central offices, and performing the setup activities no longer
dominate the flow dependent hardware costs for fibers and splitters in the networks.

2.5 Conclusions

In this chapter, we have proposed a new combinatorial optimization problem that models a
detailed deployment of passive optical networks. To solve the problem, four mixed-integer-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.5. Conclusions 75

programming approaches were proposed: two of them consider a MIP model and solve it either
as a compact MIP, or by a Branch&Cut algorithm (by adding additional valid inequalities to
model connectivity). The remaining two approaches are Lagrangian decompositions whose
subproblems are stillNP-hard to solve, but can be efficiently tackled by Branch&Cut approaches.
Our computational study has shown that the decomposition approaches outperform the aggre-
gated MIP approaches, both with respect to the running time, and with respect to the quality of
the obtained lower and upper bounds.
Among the two decomposition approaches, a slight preference is given to the one that de-

composes the problem according to its cost structure, into the fixed-charge and variable-cost
subproblems. The reason for this is the global view of this approach, which is ensured by global
connectivity constraints added into the fixed-charge subproblem. These constraints guide the
topology of the network throughout Lagrangian iterations. Both decomposition approaches are
capable of solving realistic instances (with almost 5000 nodes and 12500 edges) with final gaps
of only a few percents. The obtained results indicate that these decomposition approaches could
be even further improved by embedding them into a Branch&Bound framework. It might also
be interesting to compare other techniques of solving the 2FTTx, like Benders decomposition,
column generation, or to study heuristic approaches or approximation algorithms.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

76 Passive Optical Network Design

Figure 2.4.2: An example instance: squares, triangles and circles represent potential COs, poten-
tial DPs and customers, respectively. Maps courtesy of Google Maps.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.5. Conclusions 77

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6 ·105

t/sec

ob
j.
va
lu
e

LB: Aggr. MIP
LB: Aggr. MIP + Cuts
UB: Aggr. MIP
UB: Aggr. MIP + Cuts

(a) two aggregated MIP approaches: lower and upper bounds

0 200 400 600 800 1,000
6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6 ·105

t/sec

ob
j.
va
lu
e

LB: (F)+(D) Decomp.
LB: (FC)+(FP) Decomp.
UB: (F)+(D) Decomp.
UB: (FC)+(FP) Decomp.

(b) two decomposition approaches: lower and upper bounds

Figure 2.4.3: Progress of lower and upper bounds for the instance E4

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

78 Passive Optical Network Design

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

0.5

1

1.5

2

·106

t/sec

ob
j.
va
lu
e

LB: Aggr. MIP
LB: Aggr. MIP + Cuts
LB: (F)+(D) Decomp.
LB: (FC)+(FP) Decomp.
UB: (F)+(D) Decomp.
UB: (FC)+(FP) Decomp.

Figure 2.4.4: Progress of lower and upper bounds of four approaches on the instance E5.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

0

1

2

3

4

·106

t/sec

ob
j.
va
lu
e

LB: Aggr. MIP
LB: Aggr. MIP + Cuts
LB: (F)+(D) Decomp.
LB: (FC)+(FP) Decomp.
UB: Aggr. MIP
UB: (F)+(D) Decomp.
UB: (FC)+(FP) Decomp.

Figure 2.4.5: Progress of lower and upper bounds of four approaches on the instance E6.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.5. Conclusions 79

0 500 1,000 1,500 2,000 2,500

1.2

1.3

1.4

1.5

1.6

·106

evaluation

ob
j.
va
lu
e

init-feeder-costs
init-distrib-costs
init-half-half

Figure 2.4.6: Comparison of subproblem evaluations for different settings of Lagrangian multi-
pliers for the (F)+(D) decomposition in instance E1.

0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 ·106

t/sec

ob
j.
va
lu
e

LB: (FC)+(FP) with global cuts
LB: (FC)+(FP) without global cuts
UB: (FC)+(FP) with global cuts

Figure 2.4.7: Comparison of the (FC)+(FP) decomposition with and without global cuts in
instance E1.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 Node-Weighted Steiner Problems

3.1 The Node-Weighted Dominating Steiner problem

In this chapter, we introduce the Node-weighted Dominating Steiner problem (NWDSTP). The
work presented is joint with Andreas Bley and Ivana Ljubić and has been submitted to “Networks”,
where it is currently pending review.

3.1.1 Introduction

TheNWDST problem arises in several practical applications related to the design of telecommu-
nication or logistics networks. Such networks typically consist of two or more administrative or
technology levels representing a core part of higher aggregation and an access network part that
is less aggregated. Nodes of the higher-level network must be equipped with higher-level tech-
nology or provide some features which require additional setup costs. Customer traffic enters
the network at the lower access network level and is sent to a core node, where it is aggregated
with the traffic of other customers. This is done because it can be transported through the core
network more efficiently this way. After traversing the core network, the traffic is disaggregated
and sent to its destination through the access network level.
In many applications, transportation within the access network is restricted to use direct

connections between customers and core/hub nodes. In situations where the overall network
costs consist only of or are strongly dominated by the costs of setting up core/hub nodes, the
task of finding a minimum-cost network naturally leads to the Node-weighted Dominating
Steiner problem. In the area of telecommunications, this cost structure appears in the planning
of virtual networks, in virtual function placement in the context of cloud services and in the
planning of optical overbuilds for existing copper-based access networks. Customer nodes then
represent the set of terminals T in the NDWSTP and the node subset corresponding to the
optimal NWDSTP solution provides the optimal location for core/hub nodes.

3.1.2 Problem setting

We consider the Node-Weighted Dominating Steiner problem, denoted by NWDSTP, which is
defined as follows. Given a connected graph G = (V ,E), a set of terminal nodes T ⊆ V , |T | � 2
and a weight function c : V → R on the nodes of G, we seek a connected subgraph of minimum
weight such that each terminal is contained in the chosen subgraph or adjacent to a node in
the subgraph. Another way to express this problem is to say that we look for a Steiner tree that
minimizes the weight of the inner nodes, as in a tree (with |V | � 3), any leaf of the tree has an
edge to an inner node.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

82 Node-Weighted Steiner Problems

(a) Input Graph (b) A feasible solution

Figure 3.1.1: An exemplary instance. Terminal nodes are shown as squares, steiner nodes as
circles. Filled nodes are selected to be part of the T-dominating set.

We use the notation n := |V |, m := |E| and k := |T |. The nodes of G = (V ,E) that are
dominated by a node v ∈ V are defined as the node v itself and all of its neighbors. Hence, we
can also express the NWDST problem as the search for a least expensive connected subset of
V that dominates T . We will also refer to a solution of the NWDST problem as a connected
T-dominating subset.

We assume implicitly that the input graph G is connected throughout the rest of this chapter.
Note that, due to the nature of the objective function, we are only interested in the node

set of the optimal solution. In terms of the characteristics of this node set, it is sufficient to
look for a subgraph induced by these nodes that satisfies the following side constraints: (1) the
induced subgraph must be connected and (2) it has to dominate the set of terminals. Figure 3.1.1
illustrates an input graph and its feasible solution.

3.1.3 Related work

There are several related problems studied in the literature that deal with related questions.

GroupSteinerTreeproblem In theGroup Steiner Tree problem, we are given several groups
of nodes and seek for a tree that contains at least one node from each group, minimizing the
total edge weight. One easily verifies that the node-weighted variant of the Group Steiner Tree
problem, where we seek for a tree that minimizes the weight of the nodes contained in the tree,
is polynomially equivalent to the NWDST problem. Any given instance of the NWDST problem
can be transformed into an equivalent instance of the Group Steiner Tree problem by replacing
each terminal node t by the terminal group consisting of t and all its neighbors. Reversely, an
instance of the Group Steiner Tree problem can be reduced to an NWDSTP instance which is
obtained by adding for each terminal group Ti one additional node i connected to all nodes
in Ti to the graph, replacing the requirement to contain one node from the terminal group Ti
by the requirement to dominate this individual node i, and setting the cost of the added nodes
to a value that is larger than the sum of the costs of all original nodes. This ensures that no
optimal solution will actually contain any of the added nodes. Instead, they will be dominated by
one of their neighbors from the given terminal group and, hence, the solution contains a valid

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1. The Node-Weighted Dominating Steiner problem 83

solution for the Group Steiner tree problem within the original graph. Garg et al. [2000] gave
a polylogarithmic approximation algorithm for the problem. Demaine et al. [2013] improved
the ratio in the special case where the graph is planarly embedded and each group is the set of
nodes on a face. A fault-tolerant version of the problem is considered by Khandekar et al. [2012].
Lower bounds for the approximability of the problem are studied by Halperin and Krauthgamer
[2003].

Minimum (Connected) Dominating Set problem Another problem closely related to
NWDSTP is the Minimum Dominating Set problem (MDS). In this problem, the goal is to find
a minimum-cost node set that dominates the entire graph. This problem is one of the classical
problems considered in Garey and Johnson [1979]. There, the authors show the MDS problem
as well as its connected version MCDS, where the dominating set must induce a connected
subgraph, to be NP-complete. Furthermore, Bar-Yehuda and Moran [1984] showed that the
MDS problem is polynomially equivalent to the Set Cover problem. Thus, the strong logarithmic
inapproximability threshold for the Set Cover problem shown by Feige [1998] carries over
in a straightforward way to the MDS problem. Finally, Hedetniemi et al. [1986] proposed a
linear-time algorithm for the special case where G is a cactus graph, which is a graph in which
any two simple cycles have at most one node in common.
In the Minimum Connected Dominating Set problem (MCDS) we seek for a least-cost

connected subset of nodes that dominates the whole graph. Therefore, the MCDS is the special
case of the NWDSTP where all nodes in the graph are terminals. Recently, Gendron et al. [2014]
proposed a Branch&Cut algorithm, a Benders decomposition approach, and a hybridization of
the two for solving the problem to optimality. Strong logarithmic inapproximability bounds
hold for the MCDS as well. Guha and Khuller [1998] presented a (3 lnn)-approximation
algorithm for the node-weighted MCDS, which they improved in Guha and Khuller [1999b] to
a ((1.35+ ε) lnk)-approximation algorithm for any constant ε > 0. A (lnΔ+ 2)-approximation
algorithm, where Δ denotes the maximum node degree in the graph, is presented in Ruan et al.
[2004]. For a more comprehensive literature overview on the MCDS and its relation to the
Maximum Leaf Spanning Tree problem—a useful relation which unfortunately does not carry
over to the NWDSTP— see Gendron et al. [2014].

The classical and the node-weighted Steiner Tree problem Finally, the classical Steiner
Tree problem and its node-weighted variant are very closely related to NWDSTP. In these
problems, we are given a graph G = (V ,E) and a subset T ⊆ V of terminals and wish to find
a tree of minimum weight that includes all terminals. The classical edge-weighted problem
version, where the weight of an edge is defined by its metric length, is known to be NP-hard for
many metrics. The node-weighted version was considered by Klein and Ravi [1995], where the
authors developed a (2 lnk)-approximation algorithm and proved that the problem is as hard to
approximate as the Set Cover problem. Finally, a (1.5 lnk)-approximation for the problem was
described in Guha and Khuller [1999b].

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

84 Node-Weighted Steiner Problems

Our contributions

We are interested in Integer Linear Programming (ILP) formulations for the NWDST problem
that use only O(n) variables, where n = |V |. Many well established ILP formulations for Steiner
trees and related problems are based on variables representing undirected or directed edges and
constraints modelling a multi-commodity flow or ensuring connectivity. Such models typically
lead to a very large number of variables in the resulting formulations. However, for applications
where costs arise only at the nodes or even only at the internal transit nodes contained in the
solutions (as it is the case for NWDST problem), edge variables introduce an unnecessary
modeling overhead that may harm the computational performance. These variables are not
necessary for modelling the problem, although they are quite convenient from a modelling
perspective.

We propose a formulation that uses node variables only and that models connectivity through
node-cut inequalities that can be separated in polynomial time. The resulting model contains a
substantially smaller number of variables than the commonly used edge based models. Thus,
our model is expected to lead to a better computational performance when solving very large
problem instances using cutting plane approaches. We should mention that only very recently,
node-based ILP models gained in popularity for modeling Steiner trees and related problems.

One example where this phenomenon can be observed is the so-called Prize-Collecting Steiner
Tree problem. The problem is similar to the basic Steiner Tree problem, but in this variant,
there are no terminals, but the cost-function is allowed to take negative values, enabling so-
called prizes for including certain nodes in the resulting solution. Node-based models for the
prize-collecting Steiner Tree problem where were one of the most important ingredients of
the implementation of Fischetti et al. [2015]. There, the authors managed to solve some long-
standing unsolved benchmark instances from the publicly available instance libraries to provable
optimality. Node-based models have also been used in forestry applications (Carvajal et al.
[2013]) and in bioinformatics (Álvarez-Miranda et al. [2013]). Finally, a polyhedral study for the
related connected subgraph polytope based on node-variables is given in Wang et al. [2015].
The remainder of this chapter is organized as follows. In Section 3.2 we introduce the basic

notation, our node variable based integer linear programming formulation of NWDSTP, and the
polyhedron P defined by all feasible solutions. The fundamental properties of feasible solutions
and the NWDSTP polyhedron P are discussed in Subsection 3.3.1. In the rest of Section 3.3, we
study under which conditions the original model inequalities define facets of P. In Section 3.4,
we introduce and analyze partition inequalities based on node-separators, which can be added
to the original model in order to strengthen its linear relaxation. We show that these inequalities
are valid for P and in fact do strengthen the linear relaxation of the model. For the special
case where the underlying graph is a cycle and no two terminals are adjacent, we prove that a
formulation containing all partition inequalities yields an exact description of P, that is, already
the linear programming relaxation of such a formulation yields integer optimal solutions.

In Section 3.5, we evaluate the effectiveness of the presented partition inequalities. Finally, we
draw our conclusions in Section 3.6.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.2. Integer programming formulation 85

3.2 Integer programming formulation

Before we can formally define the model considered in this chapter, we need to introduce some
basic notation.
For a node set U ⊆ V , we denote by G[U] the subgraph induced by U. A subset S ⊂ V is

called a separator of G if G[V \ S] is disconnected. A node subset S ⊂ V is called a k, -separator
if k, ∈ V \ S and the nodes k and lie in different components of G[V \ S]. The set of all
k, -separators is denoted by Sk�.

For notational simplicity, we typically writeG \ S for G[V \ S]. A separator or a k, -separator
S is calledminimal if no proper subset S ′ � S is a separator or k, -separator, respectively. Given
a separator S and v ∈ V \ S, we denote by Cv ⊆ V the nodes of the connected component of
G \ S that contains v.
We repeat some notation from Section 1.3.6 for the convenience of the reader. For a node

v ∈ V , we denote by Γ∗v the set of all nodes adjacent to v. Furthermore, we let

Γv := Γ∗v ∪ {v}

be the set of all neighbors of v and v itself.
We are now ready to introduce an integer programming formulation for NWDSTP. Our

model uses only the binary node variables yv ∈ {0, 1}, v ∈ V . These are interpreted as

yv =

{
1 if v is contained in the dominating Steiner tree
0 otherwise.

Note that the set Iy := {v ∈ V | yv = 1} of nodes contained in the chosen dominating Steiner
tree is not required to contain all terminals in T , but only to be a dominating set for T . Given
a vector y ∈ RV and a set S ⊆ V , we typically write y(S) :=

∑
v∈S yv in order to simplify

notation.
Using these variables, we can formulate NWDSTP as follows:

(NWDSTP): min
∑
v∈V

cvyv

subject to y(S) � yk + y� − 1 ∀k, ∈ V \ T , k �= , S ∈ Sk� (3.2.1)
y(S) � yk ∀k ∈ V \ T , ∈ T , S ∈ Sk� (3.2.2)
y(S) � 1 ∀k, l ∈ T , S ∈ Skl (3.2.3)
y(Γv) � 1 ∀v ∈ T (3.2.4)

yv ∈ {0, 1} ∀v ∈ V

One easily verifies that (NWDSTP) is a correct integer linear programming model for the node-
weighted dominating Steiner tree problem. Clearly, all inequalities (3.2.1)–(3.2.4) are valid for
all incidence vectors of T-dominating Steiner trees and the objective function properly models
the node weight. To see that the given constraints are sufficient, let I = Iy := {v ∈ V | yv = 1}
be the set of nodes defined by a solution of (NWDSTP). Inequalities (3.2.3) ensure that for each
terminal node pair k, ∈ T and each k, -separator S with k and in different components of

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

86 Node-Weighted Steiner Problems

(a) feasible solution without (3.2.1) (b) feasible solution without (3.2.2)

(c) feasible solution without (3.2.3) (d) feasible solution without (3.2.4)

Figure 3.2.1: Necessity of model inequalities. Red circles are Steiner nodes that are part of the
solution, green triangles are terminals, filled nodes are terminals that are part of
the solution.

G \ S at least one node from S is contained in I. This implies that I intersects each terminal
separator. So, for all k, ∈ T that are not direct neighbors, I contains a neighbor of k, a neighbor
of , and both are connected within I. Similarly, inequalities (3.2.1) and (3.2.2) require that I
intersects each k, -separator for any node pair k, ∈ T ∪ I. Together with inequalities (3.2.3)
this implies that the chosen nodes I induce a connected subgraph of G. Finally, inequalities
(3.2.4) imply that each terminal node i ∈ T is itself contained or has a neighbor in I. Thus, I
forms a connected set dominating T , a dominating Steiner tree. Figure 3.2.1 illustrates infeasible
cases that may occur by leaving out some of the constraints (3.2.1)–(3.2.4).

The convex hull of all integer solutions of (NWDSTP) defines the polyhedron

P := conv
{
y ∈ {0, 1}V

∣∣ y satisfies (3.2.1)–(3.2.4)
}
.

Clearly, P is nothing but the convex hull of the characteristic vectors of all connected sets I ⊆ V

that dominate the terminal set T . We call P the NWDSTP polyhedron.

3.3 Polyhedral investigations

3.3.1 Basic properties

First, we discuss some basic properties of P and of separators which will be helpful for the
polyhedral studies that follow.

We begin with a simple observation on the dimension of the polytope P:

Lemma 3.3.1. If G is 2-connected, then dim(P) = n.

Proof. Obviously, we have dim(P) � n. To see that dim(P) � n, we now construct n+ 1 affinely
independent vectors in P.
Let v ∈ V be arbitrary. As G is 2-connected, G \ {v} is connected. Clearly, all nodes in V are

either contained in V \ {v} or adjacent to a node in V \ {v}. Thus, for each v ∈ V , the vector xv
with

xvu :=

{
1 u �= v

0 u = v
, u ∈ V

is a feasible solution of (NWDSTP) and hence contained in P. The same trivially holds for the
vector 1n of all-ones. Since 1n − xv is the characteristic vector of the node v, the n+ 1 vectors
1n and xv, v ∈ V , are affinely independent. Thus dim(P) � n.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.3. Polyhedral investigations 87

We assume throughout the remainder of this chapter that G is 2-connected. This can be
done without loss of generality. If the underlying graph is not 2-connected, we can easily
decompose the problem on the overall graph into the corresponding problems on its 2-connected
components, the blocks, and consider each of them separately.

Next, assumewe are given a separator or a k, -separator S that is notminimal and consider the
corresponding separator inequality (3.2.1)-(3.2.3). As S is not minimal, there exists a smaller (in
fact, even a minimal) separator or k, -separator S ′ � S. Obviously, the corresponding separator
inequality (3.2.1)-(3.2.3) for S ′ dominates the one for S: The inequality for S can be obtained
by the inequality for S ′ by adding the nonnegativity constraints for all v ∈ S \ S ′. Hence, only
minimal separators can induce facet-defining inequalities of P.
In order to characterize which minimal separators actually do induce facets of P, we need

some further properties.

Lemma 3.3.2. LetG be 2-connected, S be aminimal separator and v ∈ S. Then there is a spanning
tree B on G such that v is the only inner (i.e. non-leaf) node of B that is contained in S.

N

v

Figure 3.3.1: Illustration for Lemma 3.3.2: A possible tree B ′ is shown in red

Proof. As S is minimal,G ′ := G \ (S \ {v}) is connected, whileG \S is not. Let B ′ be a spanning
tree in G ′, compare also Figure 3.3.1. Since G \ S is not connected, v cannot be a leaf node of B ′

but must be an inner node. Otherwise B ′ − v would be a spanning tree of G \ S.
As S is a minimal separator, each i ∈ S \ {v} is contained in an edge leaving S. Now pick one

such edge for each i ∈ S \ {v} and denote it by ei. Finally, set

B := B ′ ∪
⋃

i∈S\{v}

ei.

With this construction, every node i ∈ S \ {v} has degree 1 with respect to B and, as B ′ spans
G \ (S \ {v}), B also spans G. Hence, B has the claimed properties.

Finally, we observe that each node in a minimal separator S contains edges to all connected
components of G \ S.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

88 Node-Weighted Steiner Problems

Lemma 3.3.3. Let S be a minimal separator and let C1, . . . ,Ck be the connected components of
G \ S. Then, for each v ∈ S and each j ∈ {1, . . . ,k}, there is an edge uv with u ∈ Cj.

Proof. Assume the claim is wrong. Then there is a node v ∈ S and a componentCj ofG\S such
that uv �∈ E for all u ∈ Cj. Letw ∈ Cj. As Cj is a component ofG \ S withw ∈ Cj, v �∈ Cj, and
uv �∈ E for all u ∈ Cj, the set S ′ := S \ {v} is aw, v-separator. This contradicts the minimality
of S.

3.3.2 Model inequalities

We now investigate under which conditions the model inequalities (3.2.3) and (3.2.4) define
facets of P. Note that inequalities of type (3.2.2) and (3.2.1) are lifted variants of inequalities of
the same type as (3.2.3), but for the case where only one or none of the components of G \ S

contains a terminal node, with corresponding right-hand side constants of 0 and−1, respectively.
Conditions for these inequalities to be facet-defining can be derived from those for inequality
(3.2.3) for the same separator S and terminal set T ′ = T ∪ {k} or T ′ = T ∪ {k, }, respectively.

In the case that every node in G is a terminal, conditions for (3.2.3) to be facet-defining were
given inTheorem 3.9 of Fujie [2004]. We now discuss the conditions for the general case.

Recall that, given a separator S and v ∈ V \ S, Cv denotes the connected component of G \ S

that contains v. A node v ∈ V \ S is called S-replaceable if there exists a node j ∈ S such that the
subgraphG[(Cv \ {v})∪ {j}] induced by nodes of Cv without v but with j added is connected. In
other words, the connected component Cv remains connected if we replace node v ∈ Cv by
j ∈ S.

Theorem 3.3.4. Let G be 2-connected and S be a minimal separator. Furthermore, let each
v ∈ V \ S be S-replaceable. Then, (3.2.3) is a facet of P.

Proof. Let FS := {y ∈ P | y(S) = 1} be the face of P that is induced by the inequality (3.2.3) for
S. Assume that FS is contained in a facet F induced by some valid inequality

∑
i∈V αiyi � α0

for P, i.e.,

FS ⊆ F :=

{∑
i∈V

αiyi = α0

}
.

We will show that this implies

αv =

{
α0 v ∈ S

0 v �∈ S
,

which, in turn, implies that FS = F and FS is a facet.
Our proof consists of two parts: First, we show that αv = 0 for all v �∈ S. Then, in the second

part, we show that for all v ∈ S we have αv = α0. Throughout this proof we will often interpret
binary vectors y ∈ {0, 1}V as node sets Iy := {v ∈ V | yv = 1} ⊆ V and node sets I ⊆ V as their
characteristic vectors yI ∈ {0, 1}V . Given a binary vector y ∈ P, the set Iy then corresponds to
the chosen connected dominating set. For a given binary vector y that is not necessarily in P,
we say that y or its node set Iy dominates all nodes in the neighborhood of I, i.e., all nodes in
{v ∈ V | v ∈ I or uv ∈ E for some u ∈ I}.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.3. Polyhedral investigations 89

Clearly, for any spanning tree B ⊆ E of G, the set I(B) ⊆ V of inner (non-leaf) nodes of B
defines a connected dominating set. Using this observation, we will now construct different
spanning trees in G, whose inner node sets define vectors proving our claims.
To show the first claim, namely that αv = 0 for all v �∈ S, it suffices to construct a spanning

tree that has exactly one inner node in S and node v as a leaf. So, let v ∈ V \ S. We denote
the node sets of the connected components of G \ S by C1, . . . ,Cr. Without loss of generality
we may assume v ∈ C1. Let j ∈ S be a replacement node for v, i.e., a node j ∈ S such that
G[(Cv ∪ {j}) \ {v}] is connected. LetM := |S|− 1.
We choose an arbitrary spanning tree B1 = (V1,E1) within G[C1 ∪ {j} − {v}] and arbitrary

spanning trees B2 = (V2,E2), . . . ,Br = (Vr,Er) within the connected components C2, . . . ,Cr,
respectively. Lemma 3.3.3 implies that there exists an edge from j to each component Ck,
k = 2, . . . , r, because S is minimal. For each componentCk, k = 2, . . . , r, we choose one of these
edges and denote it by ck.

c2

c3

f1

v

j

(C1 \ {v}) ∪ {j}

C2 C3

S

Figure 3.3.2: Illustration for proof of Theorem 3.3.4

Next, we choose edges f2, . . . , fM such that each n ∈ S \ {j} is part of at least one edge to some
component Ci. Finally, we set

E ′ :=
r⋃

i=1
Ei ∪ {ci | i = 1 . . . r} ∪ {fi | i = 2 . . .M}.

Figure 3.3.2 illustrates this construction.
One easily verifies that E ′ is a tree that spans all nodes in V except for v. Hence, the set

I = I(E ′) ∪ {V1 \ v} consisting of all inner nodes I(E ′) of E ′ plus all nodes in C1 except v is a
connected dominating set. Consequently, its characteristic vector yI belongs to P. As all nodes
in S \ {j} are leaf nodes in E ′, yI also satisfies the equality yI(S) = 1, and hence yI ∈ FS.
As v is adjacent to a node in I, also J := I ∪ {v} is a connected dominating set and its

characteristic vector yJ satisfies yJ ∈ P and yJ(S) = 1.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

90 Node-Weighted Steiner Problems

Consequently, both vectors yI and yJ are contained in FS ⊆ F, which implies∑
i∈V

αi(y
I
i − yJ

i) = αv = 0 .

This concludes the first part of the proof.
To prove the second claim, namely αv = α0 for all v ∈ S, let v ∈ S. Note that S is inclusion-

wise minimal. Thus, Lemma 3.3.2 implies that there exists a spanning tree B of G such that
v is the only inner node of B within S. Let yI be the characteristic vector of the inner nodes
I := I(B) of B. Clearly, I defines a connected dominating set, so we have yI ∈ P. Since there
is only one inner node within S, we have

∑
i∈S yI

i = 1, which implies yI ∈ FS ⊆ F. Finally,
I ∩ S = {v} implies

∑
i∈S αiy

I
i = αv = α0, which concludes the proof of the second claim.

Consequently, any inequality inducing F has the form
∑

i∈S α0yi = α0 and, hence, FS = F is
a facet.

Next, we study the inequalities of type (3.2.4).
Consider inequality (3.2.4) for some terminal node r ∈ T and assume there exists another

terminal node j ∈ V \ Γr. If Γ∗r is not a minimal separator, then inequality (3.2.4) for r is trivially
dominated by the separator inequality (3.2.3) for any minimal separator S which is a (proper)
subset of Γ∗r and, hence, (3.2.4) cannot define a facet of P. If, on the other hand, Γ∗r is a minimal
separator, a sufficient condition for inequality (3.2.3) and thus also for (3.2.4) to be facet-defining
is given inTheorem 3.3.4.
In the following, we thus assume that V \ Γr does not contain any terminal. This case may

occur if the set of terminals forms a highly connected cluster in the underlaying graph, for
example. For this special case, a complete characterization of the cases when inequalities of
type (3.2.4) define facets of P is given by the following two theorems. In the first theorem, we
define the conditions that must be satisfied and prove that these are sufficient for inequality
(3.2.4) to be facet-defining (Theorem 3.3.5). The necessity of the constraints is then shown in
Theorem 3.3.6.

Theorem 3.3.5. Let G be 2-connected, r ∈ T , and T ⊆ Γr. For each node j ∈ V \ Γr, let Cj denote
the component of G \ Γr that contains node j. Then inequality y(Γr) � 1 defines a facet of P if both
conditions (C1) and (C2) hold:

(C1) For all j ∈ V \ Γr, the graph G contains a tree B that
(i) spans all terminals,
(ii) contains at least one node from the component Cj,
(iii) does not use j as an inner node, and
(iv) uses exactly one node from Γr as an inner node.

(C2) For all j ∈ Γr, the graph G contains a tree B that
(i) spans all terminals,
(ii) contains j, and
(iii) uses j and only j as an inner node in Γr.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.3. Polyhedral investigations 91

Note that condition (C1-ii) is equivalent to the condition that node j itself is used as a leaf-node
in the tree B.

Proof. Let Fr = {y ∈ P | y(Γr) = 1} be the face of P induced by the inequality y(Γr) � 1. Let
furthermore F be a facet of P containing Fr and assume that F is induced by the inequality∑

i∈V αiyi � α0, i.e., Fr ⊆ F =
{
y ∈ P |

∑
i∈V αiyi = α0

}
. We show that the two conditions

(C1) and (C2) imply

αj =

{
α0 j ∈ Γr

0 j �∈ Γr
,

which, in turn, implies that inequality
∑

αiyi � α0 is a multiple of inequality y(Γr) � 1. As P
is bounded and full-dimensional, it then follows that Fr = F is a facet.

The proof consists of two parts: In the first part, we show that αj = 0 for j ∈ V \ Γr. Then, in
the second part, we show that αj = α0 for each j ∈ Γr.

For the first part, we let j ∈ V \ Γr and choose a tree B = (Vj,Ej) that satisfies condition (C1).
With (C1-i), we clearly have T ⊆ Vj. Due to (C1-iii), B does not use j as an inner node.

If j ∈ B, then node j is a leaf of B. Otherwise, we need to modify the tree B. Let R =

(r1, f1, r2, f2, . . . , fk−1, rk = j) be a shortest path within component Cj that connects some
arbitrary node of B to j, where ri denote the nodes and fi denote the edges of R. Such a path
exists, because (C1-ii) implies that B contains at least one node from Cj, and Cj is a connected
component. As we chose a shortest path, r1 ∈ B and r2, . . . , rk �∈ B. Now we add the path R to
B. Clearly, this yields a new tree B that contains j as a leaf node. Also note that we did not add
any node from Γr to B.
Next, let I = I(B) be the set of all internal nodes of B. Because B spans all terminals, I is a

connected dominating set for T and its characteristic vector yI defines a feasible point in the
polyhedron P. Because B uses exactly one node in Γr as an inner node, we also have |Γr ∩ I| = 1.
Thus, yI ∈ Fr ⊆ F.

Note that yI
j = 0, because j was a leaf node in the tree B. Thus, j is adjacent to some node

in I and J := I ∪ {j} defines a connected dominating set for T as well. Consequently, also the
characteristic vector yJ is contained in P. As j �∈ Γr, yJ also satisfies yJ(Γr) = 1 and, consequently,
also

∑
i∈V αiy

J
i � α0.

Subtracting the two equalities for yI and yJ, we obtain our first claim∑
i∈V

αi(y
J
i − yI

i) = αj = 0.

To prove the second claim, let j ∈ Γ∗r . By condition (C2), there exists a tree B spanning j and
all terminals, whose only inner node in Γr is j. We choose one such tree B and let I := I(B)

again be the set of its inner nodes. As B spans all terminals, I is a connected dominating set for
T and its characteristic vector yI is contained in P. As j is the only inner node of B within Γr, we
also have yI ∈ Fr ⊆ F, which implies our second claim αj = α0 and concludes the proof.

We now show that the conditions (C1) and (C2) of Theorem 3.3.5 are also necessary.

Theorem 3.3.6. Let G be 2-connected, r ∈ T , and T ⊆ Γr. If the inequality y(Γr) � 1 defines a
facet of P, then both conditions (C1) and (C2) must hold.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

92 Node-Weighted Steiner Problems

Proof. Assume that there exists a node j that violates either condition (C1) or condition (C2),
depending on whether j ∈ Γr or not. We show that then the stronger inequality

y(Γr) � 1+ yj (3.3.1)

holds for all y ∈ P. As the polyhedron P is full-dimensional and inequality (3.3.1) clearly
dominates y(Γr) � 1, this implies that the latter inequality is not a facet of P.

Since P is defined as the convex hull of all integer solutions of (NWDSTP), it suffices to show
that (3.3.1) holds for all integer solutions y of (NWDSTP), that is, for all characteristic vectors
of connected dominating sets.
Clearly, (3.3.1) holds for all integer solutions y ∈ P with yj = 0, for which it is equivalent

to the model inequality y(Γr) � 1. So, we may restrict our attention to integer solutions y ∈ P

with yj = 1.
First, we consider the case j ∈ Γr, which means that condition (C2) is violated for j. If there

was a connected dominating set I with j ∈ I and I ∩ Γr = j, one easily obtains a tree B with
internal nodes I that spans T and j and contains only j as an internal node within Γr by extending
a spanning tree on I with edges from I to the terminals T . As (C2) is violated and, thus, such a
tree does not exist, there exists no connected dominating set I with j ∈ I and I ∩ Γr = j. Hence,
any connected dominating set I with j ∈ I contains at least two nodes in Γr. Consequently, any
integer solution y ∈ P with yj = 1 for j ∈ Γr satisfies y(Γr) � 2 and, thus, (3.3.1).

Now, assume j ∈ V \ Γr, which means that condition (C1) is violated for j. Let N := {v ∈ V |

uv ∈ E for some u ∈ Cj} be the set of nodes that are adjacent to some node in Cj. Note that
any connected dominating set that also dominates the node j must contain at least one node of
N. Otherwise,N would separate j from r.

Analogously to the previous case we now observe that there exists no connected dominating
set I with j �∈ I, I ∩N �= ∅, and |I ∩ Γr| = 1, because any such set I would result in a tree B that
meets the requirements of constraint (C1). Hence, any connected dominating set I with j �∈ I

and I ∩N �= ∅ contains at least two nodes in Γr, implying that any integer solution y ∈ P with
yj = 1 for j ∈ V \ Γr satisfies y(Γr) � 2 = 1+ yj.

Hence, if node j violates the corresponding constraint (C1) or (C2), then all integer solutions
y ∈ P satisfy (3.3.1). As discussed above, this conflicts with the assumption that the inequality
y(Γr) � 1 defines a facet of P.

3.4 Partition inequalities

In this section, we show how the well-known Steiner partition inequalities studied by Chopra
[1989]; Chopra and Rao [1994] for edge-based formulations of the classical Steiner tree problem
can be adapted to our setting. The classical edge-based Steiner partition inequalities are based
on the observation that, given a partition of the node set of the graph, any feasible solution must
contain at least as many edges between different components of the partition as are needed to
connect all those components that contain terminals.
In order to apply this observation to our node-based setting, we consider separator node

sets whose removal partitions the remaining graph into several components, instead of edge

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 93

sets. Given a graph G = (V ,E) and a subset S ⊆ V , we denote by C(S) the set of connected
components of G \ S. This set consists of the subsets

C(S) = T(S) ∪̇N(S),

where T(S) denotes the set of components containing terminals and N(S) denotes the subset
of components without terminals. For simplicity, we will refer to the components in T(S) as
terminal-components and to those in N(S) as terminal-free components. We also let tS := |T(S)|

and nS := |N(S)|.
Instead of simply counting the number of edges between different components, as in the

classical edge-based Steiner partition inequalities, we must take care of the fact that the nodes
in S may actually connect more than two components of G \ S and S in a solution. Clearly, any
Steiner tree B that spans all terminals must contain at least tS − 1 many edges between S and the
different components of G \ S in order to connect all terminal-components. Each node v ∈ S,
however, is adjacent only to a certain number of components, and it provides connectivity to
those components only if it is chosen to be in the solution. Furthermore, any Steiner tree B

defines a forest withinG[S]. Hence, the number of edges that B contains within each component
of G[S] is bounded by the size of this component minus one, and this bound reduces if some
nodes of the component are not contained in the solution. The latter two observations allow us
to bound the total contribution of a single node v ∈ S to the overall connectivity of any Steiner
tree B and motivate the following definitions.

Definition 3.4.1. Let G = (V ,E), S ⊂ V , and s ∈ S. Denoting the connected component of s
in G[S] by Cs, we call

qS(s) :=
|Cs|− 1
|Cs|

the tree quotient of the node s with respect to the separator S.

Definition 3.4.2. Let G = (V ,E), S ⊂ V , and C(S) = T(S) ∪̇N(S) as defined above. For v ∈ S,
we define its S-degree as

δS(v) := |{C ∈ C(S) | uv ∈ E for some u ∈ C}|+ qS(v)

Note that δS(v) is exactly the number of components of G \ S that v is adjacent to if v is
not adjacent to any other node in S. Otherwise, if v also has neighbors in S, its S-degree is the
number of adjacent components in G \ S plus a certain fraction pertaining to the number of
edges it needs to use to build connections inside S.
Using this notation, we can formulate the basic Steiner partition inequalities for our node-

based ILP model.

Theorem 3.4.3. For each subset S ⊂ V , the following Steiner partition inequality is valid for P:∑
v∈S

(δS(v) − 1)yv � tS − 1 (3.4.1)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

94 Node-Weighted Steiner Problems

Proof. Consider any subset S ⊂ V and a feasible solution y. We would like to show that y
satifies inequality (3.4.1).

In any feasible solution y, the set Iy := {v ∈ V | yv = 1} forms a single connected component
dominating all terminals. Let now B be a Steiner tree that spans the nodes of Iy and all terminal
nodes. To simplify the calculations, we assume w.l.o.g. that any terminal component of G \ S

only contains the terminal. Otherwise, we can contract these components to single terminals.
The tree B then contains at least |T |+

∑
i∈S yi many nodes. Now, we bound the number of

edges of B.
For s ∈ S, let δ+S (s) := |{ (s, t) ∈ E | t �∈ S }| denote the out-degree of the node s with respect

to S, that is, the number of edges whose other endpoint lies outside S. The number of edges in
B between S and components of G \ S clearly is upper-bounded by∑

i∈S

δ+S (i)yi.

Furthermore, a tree or a forest on n nodes can contain at most n − 1 edges. Denoting the
connected components of G[S] by S1, . . . ,Sk, this implies that B contains at most |Si|− 1 edges
within each Si. Hence, the total number of edges of B with both end-nodes in S cannot exceed∑

i∈S

qS(i)yi.

As the number of nodes cannot be higher than the number of edges plus one, we get∑
i∈S

(δ+S (i) + qS(i))yi � −1+ |T |+
∑
i∈S

yi ,

which implies ∑
i∈S

(δS(i) − 1)yi � |T |− 1 .

Thus, any y ∈ P must satisfy the Steiner partition inequality (3.4.1).

Note that, given a minimal k, -separator S ∈ Sk,� for arbitrary distinct terminals k, ∈ T , its
associated Steiner partition inequality (3.4.1) is implied by the minimal separator inequality
(3.2.3): Due to minimality of S, Lemma 3.3.3 implies that all nodes in S are adjacent to all
components in C(S) and, hence, (δS(v) − 1) � tS − 1. Multiplying (3.2.3) with tS − 1, one
obtains a stronger inequality than (3.4.1).
However, there are graphs and families of separators S ⊂ V for which the Steiner partition

inequalities are not implied by the inequalites of (NWDSTP) and where they actually strengthen
the linear relaxation of this formulation.

Example 3.4.4. Consider the example shown in Figure 3.4.1 on the following page. The values
shown next to the nodes correspond to the LP relaxation values of the model (3.2.1)-(3.2.4)
for the objective function cv = 1 for all v ∈ V . Notice that each minimal separator is a subset
S ′ ⊂ V of cardinality two, hence all minimal separator inequalities are satisfied. Consider now
an arbitrary subset S of three non-terminal nodes such that the number of terminal-components
in G \ S is tS = 3, for example S = {2, 4, 6}. Then the Steiner partition inequality (3.4.1)
associated to S is violated by the depicted fractional solution.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 95

5

4

32

1

10

9

8 7

6

Terminal

Non-Terminal

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1

2

1
2

1
2

Figure 3.4.1: A valid solution for the NWDSTP relaxation (3.2.1)-(3.2.4) that is cut off by the
Steiner partition inequalities (3.4.1).

Increasing the length of the cycle graph in Example 3.4.4 to 2k nodes, one easily verifies that
the ratio between the linear relaxation value obtained with the original formulation (NWDSTP)
and the formulation with additional Steiner partition inequalities can be as large as 2 − 1

k
for

any k > 2. More precisely, the solution y ′ with y ′
v = 1/2 for all v ∈ V is an optimal solution

for the LP relaxation of (NWDSTP) for the objective function c = 1, with objective value equal
to k. On the other hand, the solution ỹ with ỹv = (k− 1)/k is an optimal LP-solution for the
relaxation including the Steiner partition inequalities, with the objective value of 2(k− 1).
In those cases where some components of G \ S contain no terminals, the corresponding

Steiner partition inequality can be strengthened easily.

3.4.1 Lifted Partition inequalities

Let N(S) = {N1(S), . . . ,NnS
(S)}, Ni(S) ⊂ V be the set of terminal-free components of G \ S

and consider ordered nS-tuples (v1, . . . , vnS
) of nodes such that vi ∈ Ni(S) for i = 1, . . . ,nS.

The set of all such nS-tuples is denoted byN(S). Lifting the variables corresponding to one such
nS tuple into the Steiner partition inequality for S, we obtain a stronger inequality.

Theorem 3.4.5. For each subset S ⊂ V and each tuple (v1, . . . , vnS
) ∈ N(S), the following lifted

Steiner partition inequality is valid for P:

∑
v∈S

(δS(v) − 1)yv −

nS∑
i=1

yvi
� tS − 1 (3.4.2)

Proof. The validity of lifted Steiner partition inequalities (3.4.2) can be shown analogously to
the validity of the Steiner partition inequalities (3.4.1). Note that the tuple (v1, . . . , vnS

) contains
one representative node for each terminal-free component Ni(S) of G \ S. If yvi

= 1 for one

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

96 Node-Weighted Steiner Problems

such representative node vi, then the component containing vi needs to be connected to the
rest of the solution. In this case, this component can be treated as if it contained a terminal.
Consequently, the number of components that need to be connected by the solution y increases
to tS for the terminal-components plus

∑nS

i=1 yvi
for the terminal-free components that contain

chosen nodes. Hence, inequality (3.4.2) holds.

There exist problem instances where the addition of lifted Steiner partition inequalities (3.4.2)
strengthens the linear relaxation of (NWDSTP), even when compared to the relaxation obtained
after adding the basic Steiner partition inequalities (3.4.1).

Example 3.4.6. Consider the example shown in Figure 3.4.2. In the figure, we see an example
of a valid solution for the NWDSTP relaxation. As one easily verifies, this solution is not
cut away by the inequalities given in the (NWDSTP) formulation including Steiner partition
inequalities (3.4.2). Consider now the separator S = {1, 3, 6, 9}. The lifted partition inequality
for this separator is

y1 + y3 + y6 + y9 − y10 − y2 � 1,

which the given solution violates.

5

4

32

1

10

9

8 7

6

Terminal

Non-Terminal

1

1

1

1
2

1

1

S
1
2

1
2

1
2

1
2

Figure 3.4.2: A valid solution for the NWDSTP relaxation. The solution values are marked inside
the circle, the separator S = {1, 3, 6, 9} is depicted in black.

In the remainder of this section we show that in the special case where G is a cycle, the lifted
Steiner partition inequalities (3.4.1) combined with the model constraints (3.2.1)-(3.2.4) are
sufficient to describe the dominant of P.

3.4.2 A complete description of P on a cycle

Throughout this section we assume thatG = (V ,E) is a cycle.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 97

Definition 3.4.7. Let G = (V ,E) be a cycle, S ⊂ V and C(S) = T(S) ∪̇N(S) as defined above.
For v ∈ S, we define its circular S-degree as

δCS (v) := |{C ∈ C(S) | uv ∈ E for some u ∈ C}|+

{
1 if {u ∈ S | uv ∈ E} �= ∅
0 otherwise

.

We switch to this weaker definition instead of the S-degree because this simplifies the proofs
and yields the same results in cycle graphs.
We begin by studying the case where G consists of alternating terminal and non-terminal

nodes. So, in the following let V = {0, . . . , 2k − 1}, E = {{i, i + 1} | i = 0, . . . , 2k − 1}, and
T = {v0, v2, . . . , v2k−2} for k � 2.

To simplify notation, we assume that the node index 2k is equivalent to the node index 0, or
in other words, all calculations with node indices are to be understood as being executed in
Z/2kZ.

We consider the linear programming relaxation of (NWDSTP) that is defined by the set of all
lifted Steiner partition inequalities (3.4.2) and the variable boundary constraints only, i.e.,

(PART*): min cTy

subject to
∑
v∈S

yv −

nS∑
i=1

yni
� tS − 1 ∀ S ∈ S, (n1, . . . ,nnS

) ∈ N(S)

1 � yv � 0 ∀ v ∈ V

It is easy to verify that all inequalities (3.2.1)-(3.2.4) of (NWDSTP) are implied by the in-
equalities of (PART*) if G is a cycle of alternating terminals and non-terminals. Hence, the
linear relaxation of (NWDSTP) is a relaxation of (PART*). On the other hand, the (PART*) is a
relaxation of P, because all lifted Steiner partition inequalities (3.4.2) are valid for P.
In the following, we show that the polytope defined by (PART*) is integral, that is, for each

objective c there exists an integer optimal solution y∗ for (PART*). This then directly implies
that (PART*) is a complete description of P.
First, we observe that the lifted partition inequalities corresponding to non-stable sets S are

redundant.

Lemma 3.4.8. Let S ∈ S and (n1, . . . ,nnS
) ∈ N(S). If S is not a stable set, then inequality (3.4.2)

is redundant in (PART*).

Proof. Since S is a separator and G is a cycle, S consists of at least two connected components.
If S is not a stable set, then at least one of these components contains more than one node. As G
is a circle, this component is a path P in G. Without loss of generality we assume that the nodes
are numbered in such a way that P = (i, i+ 1, . . . , i+). Let S ′ := S \ {i, . . . , i+ − 1}. In words,
S ′ is the separator obtained from S by replacing all nodes of P with the single node i+ .

Clearly, G \ S ′ contains exactly as many components as G \ S. Furthermore, all components
of G \ S that are not adjacent to i are also components of G \ S ′. Only the one component C of
G \ S that is adjacent to i increases in G \ S ′ to a component C ′ = C ∪ {i, . . . , i+ − 1}.

If C is a terminal component, then C ′ is a terminal component too. In this case, consider the
lifted Steiner partition inequality (3.4.2) defined by S ′ and (n1, . . . ,nnS

). As the terminal-free

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

98 Node-Weighted Steiner Problems

components ofG\S are exactly the terminal-free components ofG\S ′, we have (n1, . . . ,nnS
) ∈

N(S) = N(S ′). Hence, the lifted partition inequality defined by S ′ and (n1, . . . ,nnS
) is valid

and contained in the system (PART*). As S ′ � S, the inequality for S ′ clearly dominates the
one for S.
If C is a terminal-free component, then the larger C ′ must be a terminal component. In

this case, we have nS ′ = nS − 1 and tS ′ = tS + 1. Let w.l.o.g. C denote the last terminal-free
component of G \ S, i.e., nnS

∈ C. As all other terminal-free components of G \ S remain
terminal-free in G \ S ′, we have (n1, . . . ,nnS−1) ∈ N(S ′). Hence, the lifted Steiner partition
inequality (3.4.2) defined by S ′ and (n1, . . . ,nnS−1) is valid and contained in the system (PART*).
Together with the inequalities ynnS

� 1 and yv � 0 for v = i, . . . , i + − 1, this inequality
implies the lifted Steiner partition inequality for S and (n1, . . . ,nnS

).
Consequently, inequality (3.4.2) is redundant if S contains a path.

Due to Lemma 3.4.8, wemay instead of PART* consider the formulation PART, which contains
lifted Steiner partition inequalities only for stable sets S. This relaxation then defines the same
polytope as PART*.

(PART): min cTy

subject to
∑
v∈S

yv −

nS∑
i=1

yni
� tS − 1 ∀ stable S ∈ S, (n1, . . . ,nnS

) ∈ N(S)

1 � yv � 0 ∀ v ∈ V

In our next step, we show that, for any nonnegative objective function c, there exists an
optimal solution for (PART) that satisfies the additional equalities

yi = yi−1 + yi+1 − 1 ∀ i ∈ T , (3.4.3)

To facilitate this, we introduce the notion of an irreducible solution.

Definition 3.4.9. A solution y ∈ RV of (PART) is called irreducible if there is no solution
y ′ ∈ RV of (PART) with y ′ � y and y ′ �= y.

Clearly, for any nonnegative objective function c, an optimal and irreducible solution y of
(PART) exists. In the following two lemmas we show that irreducible solutions satisfy (3.4.3).

Lemma 3.4.10. Let c ∈ QV
�0 be a nonnegative objective function and y ∈ RV be an irreducible,

optimal solution of (PART). Then we have

yi � yi−1 + yi+1 − 1 ∀ i ∈ T . (3.4.4)

Proof. Assume the claim was wrong. We have yi < yi−1 + yi+1 − 1 for some i ∈ T . To simplify
notation, let u := i− 1, v := i, and w := i+ 1. Then

ε := yu + yw − 1− yv > 0 . (3.4.5)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 99

We will show that ȳ ∈ RV defined as

ȳi :=

{
yi −

ε
2 if i ∈ {u,w}

yi otherwise
for i ∈ V (3.4.6)

satisfies (PART). As ȳ � y and ȳ �= y, this implies that y is not irreducible for (PART), which
contradicts the preconditions of the lemma.

Obviously, ȳ satisfies all boundary constraints 0 � yi � 1 of (PART). It remains to show that
ȳ also satisfies all non-redundant lifted Steiner partition inequalities (3.4.2).

So, let S ∈ S, (n1, . . . ,nnS
) ∈ N(S), and consider the lifted Steiner partition inequality defined

by S and (n1, . . . ,nnS
).

We now distinguish several cases, depending on which nodes belong to S.

Case 1: u,w ∈ S

Due to Lemma 3.4.8, we may assume v �∈ S. Otherwise, the lifted Steiner partition inequality
defined by S and (n1, . . . ,nnS

) is redundant (as S would then contain a path between u and w).
Let S ′ := (S \ {u,w}) ∪ {v}, as illustrated in Figure 3.4.3.

v

u

w

z

x

S v

u

w

z

x

S’

Figure 3.4.3: Lemma 3.4.10, Case 1

If S ′ is not a separator, we must have S = {u,w}. In this case G \ S contains two terminal-
components (one is {v}, and the other contains all the remaining terminals of T \{v}). The (lifted)
Steiner partition inequality defined by S then reads

yu + yw � 1 .

With (3.4.5) and (3.4.6), this inequality is trivially satisfied by ȳ.
If S ′ is a separator, the terminal-free components in G \ S ′ and G \ S are equal. Therefore,

also the lifted Steiner partition inequality for S ′ and (n1, . . . ,nnS
) ∈ N(S) = N(S ′) is part of

the system (PART) and holds for y, i.e.,

∑
x∈S ′

yx −

nS∑
i=1

yni
� t ′S − 1 .

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

100 Node-Weighted Steiner Problems

On the other hand, the number tS ′ of terminal-components inG\S ′ is one less than the number
tS of terminal-components in G \ S, as the terminal component {v} disappears. This implies

yu + yw − ε+
∑

i∈S ′,i �=v

yi −

nS∑
i=1

yni
� tS − 1

and, together with (3.4.5) and (3.4.6),

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . ,nnS
).

Case 2: u �∈ S, w �∈ S

As u,w are not in S, the only way they can be involved in the lifted Steiner partition inequality
is as one of the lifted non-terminal variables yni

. As these variables have a negative coefficient,
however, the inequality trivially holds for ȳ if it holds for y.

Case 3: u ∈ S, w �∈ S (or, analogously, u �∈ S, w ∈ S)

v

u

w

z

x

S

v

u

w

z

x

S’

Figure 3.4.4: Lemma 3.4.10, Case 3

Let z be the neighbor of w which is not v and x be the neighbor of u which is not v, as
illustrated in Figure 3.4.4. By Lemma 3.4.8 we may assume that v �∈ S and x �∈ S.

We consider the separator S ′ := (S \ {u}) ∪ {v} obtained by replacing node u by node v in S.
If S is a separator, then S ′ is as well, becausew �∈ S. Replacing u by v enlarges the component
containing x, reduces the component containingw, and leaves all other components ofG \ S

unchanged. While the component containing x will be a terminal component in both G \ S

and G \ S ′, the component containing w is a terminal component in G \ S, but the reduced
component in G \ S ′ might be a terminal-free component.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 101

If z �∈ S, then the component that contains w also contains the terminal x and is a terminal-
component in both G \ S and G \ S ′. Thus, the number of terminal-components and node sets
of terminal-free components are the same forG\S andG\S ′. In this case, also the lifted Steiner
partition inequality for S ′ and (n1, . . . ,nnS

) ∈ N(S) = N(S ′) is part of the system (PART) and
holds for y, i.e., ∑

i∈S ′
yi −

nS∑
i=1

yni
� tS ′ − 1 = tS − 1 .

Adding (3.4.5) and 1 � yw to this inequality, we obtain

∑
i∈S

yi −

nS∑
i=1

yni
� tS − 1+ ε ,

and, with (3.4.6),

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 .

Otherwise, if z ∈ S, then the number tS ′ of terminal-components inG\S ′ is one less than the
number tS of terminal-components inG \S. Also,G \S ′ contains the terminal-free component
{w}, which has not been a terminal-free component in G \ S. In this case, the lifted Steiner
partition inequality for S ′ and (n1, . . . ,nnS

,w) ∈ N(S)× {w} = N(S ′), namely

∑
i∈S ′

yi −

nS∑
i=1

yni
− yw � tS ′ − 1 = tS − 2

is part of the system (PART) and holds for y. Together with (3.4.5) this implies

∑
i∈S ′

yi + yu − yv −

nS ′∑
i=1

yni
− yw + yw � tS − 2+ 1+ ε ,

and with (3.4.6) finally

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . ,nnS
) also in this case,

which concludes the proof.

The validity of the reverse inequalities is shown in the following lemma.

Lemma 3.4.11. Let c ∈ QV
�0 be a nonnegative objective function and y ∈ RV be an irreducible

optimal solution of (PART). Then we have

yi � yi−1 + yi+1 − 1 ∀ i ∈ T . (3.4.7)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

102 Node-Weighted Steiner Problems

Proof. Assume the claim was wrong and that there is some i ∈ T with yi > yi−1 + yi+1 − 1.
Denoting again u := i− 1, v := i, and w := i+ 1, this means

ε := yv − yu − yw + 1 > 0 . (3.4.8)

Similar to the proof of Lemma 3.4.10, we will show that ȳ ∈ RV defined as

ȳi :=

{
yi − ε if i = v

yi otherwise
for i ∈ V (3.4.9)

satisfies (PART), which cannot be the case if y is an irreducible solution of (PART).
Note that (PART) contains the lifted Steiner partition inequalityyu+yw � 1 corresponding to

S = {u,w}. With (3.4.8) this implies 1 � yv−ε = yu+yw−1 � 0 and thus 1 � ȳv = yv−ε � 0.
Hence, ȳ satisfies all boundary constraints 0 � yi � 1 of (PART).

To show that ȳ also satisfies all lifted Steiner partition inequalities (3.4.2) of (PART), let S ∈ S

and (n1, . . . ,nnS
) ∈ N(S) define a non-redundant lifted Steiner partition inequality. We may

assume that S is a stable set, because otherwise the lifted Steiner partition inequality would be
redundant.

If v �∈ S, then the lifted Steiner partition inequality trivially holds for ȳ, because it holds for y
and, as v ∈ T , the coefficient of variable yv is 0. Hence, we may assume v ∈ S for the rest of the
proof.

Again, we distinguish several cases depending on S.

Case 1: x, z ∈ S

Let S ′ := S− {v}, as illustrated in Figure 3.4.5. Note that u,w �∈ S, because S is assumed to be
a stable set.

v

u

w

z

x

S v

u

w

z

x

S’

Figure 3.4.5: Lemma 3.4.11, Case 1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 103

If S ′ is not a separator, we must have x = z, S = {x, v}, and V = {x,u, v,w}. Otherwise, S
would not be a stable set or not be a separator. In this case, the inequality belonging to S is

yv + yx − yu − yw � −1 .

which is trivially satisfied by ȳ.
If S ′ is a separator, thenG \S ′ contains one more terminal component thanG \S, namely the

component {u, v,w}, while the two terminal-free components {u} and {w} ofG \ S are no longer
components ofG \ S ′. All other components ofG \ S are also components ofG \ S ′. As the two
components {u} and {w} ofG\S contain only a single node each, the two non-terminal variables
yu and yw necessarily occur in the lifted Steiner partition inequality for S and (n1, . . . ,nnS

)

with a coefficient of −1. We may assume w.l.o.g. that the terminal-free components of G \ S are
numbered in such a way that u = nnS−1 and w = nnS

. As all other terminal-free components
remained unchanged, we haveN(S) = N(S ′)× {u}× {w}. Thus, S ′ and (n1, . . . ,nnS−2) ∈ N(S ′)
define the lifted Steiner partition inequality

∑
i∈S ′

yi −

nS ′∑
i=1

yni
� tS ′ − 1 ,

which is part of the system (PART) and hence valid for y. Adding (3.4.8), we get

∑
i∈S ′

yi + yv −

nS ′∑
i=1

yni
− yu − yw � tS ′ − 2+ ε = tS − 1+ ε .

With (3.4.9) this implies

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 .

In other words, ȳ satisfies the lifted Steiner partition inequality for S and (n1, . . . ,nnS
).

Case 2: z ∈ S, x �∈ S (or, analogously, z �∈ S, x ∈ S)
In this case, we let S ′ := S \ {v} ∪ {u}, as shown in Figure 3.4.6 on the following page. Since S

is assumed to be a stable set, we have u,w �∈ S.
Replacing v by u in the separator, the terminal-free component {w} of G \ S becomes a

terminal component {v,w} inG\S ′, and the terminal component containing x inG\S becomes
smaller in G \ S ′, as node u is removed from this component. All other components of G \ S

remain unchanged in G \ S ′. As {w} is a single node terminal-free component of G \ S, the
variable yw must occur in the lifted Steiner partition inequality for S and (n1, . . . ,nnS

) with
a coefficient of −1. Assuming thatw = nnS

corresponds to the last terminal-free component
in N(S), we have (n1, . . . ,nnS−1) ∈ N(S ′). Thus, lifted Steiner partition inequality for S ′ and
(n1, . . . ,nnS−1) ∑

i∈S ′
yi −

nS−1∑
i=1

yni
� tS ′ − 1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

104 Node-Weighted Steiner Problems

v

u

w

z

x

S v

u

w

z

x

S’

Figure 3.4.6: Lemma 3.4.11, Case 2

is part of (PART) and holds for y. Adding (3.4.8), we get

∑
i∈S ′

yi + yv − yu −

nS−1∑
i=1

yni
− yw � tS ′ − 2+ ε = tS − 1+ ε .

With (3.4.9) this implies

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 ,

so the lifted Steiner partition inequality for S and (n1, . . . ,nnS
) holds for ȳ.

Case 3: x, z �∈ S

Because S is a stable set, we have u,w �∈ S in this case. We let S ′ := (S \ {v}) ∪ {u,w}, as
illustrated in Figure 3.4.7 on the following page. Note that S ′ must be a separator in this case,
because x and z must belong to different components of G \ S ′ as S is a separator.

Note that G \ S ′ contains one terminal component more than G \ S, namely the component
{v}, and that the terminal-free components of G \ S and of G \ S ′ are exactly the same. Hence,
the lifted Steiner partition inequality for S ′ and (n1, . . . ,nnS

)

∑
i∈S ′

yi −

nS∑
i=1

yni
� tS ′ − 1 = tS

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 105

v

u

w

z

x

S v

u

w

z

x

S’

Figure 3.4.7: Lemma 3.4.11, Case 3

is contained in (PART) and satisfied by y. Adding (3.4.8) and plugging in (3.4.9) we obtain first

∑
i∈S ′

yi + yv − yu − yw −

nS∑
i=1

yni
� tS − 1+ ε and then

∑
i∈S

ȳi −

nS∑
i=1

ȳni
� tS − 1 .

Hence, ȳ fulfills the lifted Steiner partition inequality for S and (n1, . . . ,nnS
) also in this case,

which concludes the proof.

Together, Lemma 3.4.10 and Lemma 3.4.11 imply that the equalities (3.4.3) hold for all irre-
ducible optimal solutions of (PART) for all nonnegative objective functions. This now allows us
to prove the main result of this section.

Theorem 3.4.12. LetG = (V ,E) be a cycle with V = {v0, . . . , v2k−1, v2k = v0}, E = {vivi+1 | i =

0, . . . , 2k− 1}, and T = {v0, v2, . . . , v2k−2} for k � 2. Then the lifted Steiner partition inequalities
(3.4.2) and the nonnegativity constraints yv � 0 for all v ∈ V completely describe the dominant of
P. In other words, for each nonnegative objective function c ∈ RV

�0 there exists an optimal solution
of (PART) that is integer.

Proof. For each nonnegative objective function c, there exists an optimal solution of (PART) that
is irreducible. As we have seen in the previous two lemmata, any irreducible optimal solution
satisfies yvi

= yvi−1 + yvi+1 − 1 for all terminal nodes vi ∈ T . Hence, it suffices to show that
the linear program (PARTE) obtained by adding these equalities to (PART) has integer optimal
solutions. This system reads

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

106 Node-Weighted Steiner Problems

(PARTE): min cTy

subject to
∑
v∈S

yv −

nS∑
i=1

yni
� tS − 1 ∀ S ∈ S, (n1, . . . ,nnS

) ∈ N(S) (3.4.10)

yt −
∑
v∈Γ∗

t

yv = −1 ∀ t ∈ T (3.4.11)

1 � yv � 0 ∀v ∈ V (3.4.12)

To prove that this formulation has integer optimal solutions, we show how the associated
polyhedron is obtained from the minimum spanning tree polytope of a smaller graph. To this
end, we consider the graph G ′ = (V ′,E ′) with

V ′ := {v0, v2, . . . , v2k−2} = T and
E ′ := {e1, e3, . . . , e2k−1} with ei = vi−1vi+1 for i = 1, . . . , 2k− 1.

This graph G ′ is a cycle on the k terminals of G, whose edges correspond to the non-terminal
nodes. This allows us to associate each edge ei with the corresponding non-terminal vi. On
this graph G ′, we define the edge-based objective function c ′ ∈ RE ′ as

c ′
ei

:= cvi−1 + cvi
+ cvi+1 for all ei ∈ E ′.

Obviously, c ′ � 0.
It is not hard to see that there is a simple correspondence between irreducible solutions

for the NWDST problem on G and minimum spanning trees in G ′: Any given spanning
tree B ′ ⊆ E ′ in G ′ defines a connected dominating Steiner tree I = I(B ′) := {vi | ei ∈

B

′} ∪ {vi | both ei−1, ei+1 ∈ B ′} with objective c(I) = c ′(B ′) − c(T). Reversely, the set I ⊂ V of
internal nodes of any irreducible connected dominating Steiner tree in G defines a spanning
tree B ′ = B ′(I) := {ei | vi ∈ I \ T } with objective c ′(B ′) = c(I) + c(T). Note that the objective
values c(I) and c ′(B ′) of a connected dominating Steiner tree and its corresponding spanning
tree differ by c(T), which is constant for any given problem instance. This allows us to derive
the polyhedral description of the irreducible connected dominating Steiner trees in G from the
polyhedral description of the minimum spanning trees in G ′.
Given a partition V1 ∪̇ . . . ∪̇ Vk = V of the nodes of some graph G = (V ,E), we denote by

δ

(V1, . . . ,Vk) := {uv ∈ E | u ∈ Vi, v ∈ Vj for i �= j} the set of edges between different node
sets of the partition. It has been shown in Chopra [1989] that the minimum spanning tree
polytope for any graph G is completely described by the boundary constraints 1 � xe � 0
for all e ∈ E and the Steiner partition inequalities

∑
e∈δ(V1 ,...,Vk)

xe � k − 1 for all partitions
V1 ∪̇ . . . ∪̇ Vk = V . In fact, it is sufficient to consider so-called valid partitions, where each
component Vi is connected. Partition inequalities corresponding to non-valid partitions are
redundant. Applying this result to our graphG ′, we find that the following linear program is
integral, i.e., has an integer optimal solution for each objective function:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 107

min
∑
e∈E ′

c ′
eye

∑
e∈δ(V ′

1 ,...,V ′
k)

ye � k− 1 ∀ valid partitions V ′
1 ∪̇ . . . ∪̇ V ′

k = V ′

1 � ye � 0 ∀ e ∈ E ′

Interpreting the edges ei of G ′ as non-terminal nodes vi in G, valid partitions V ′
1 ∪̇ . . . ∪̇ V ′

k

of the nodes of G ′ can be interpreted as separator node sets S ⊆ V \ T in G. Given a valid
partition V ′

1 ∪̇ . . . ∪̇ V ′
k = V ′, the corresponding separator is S := {vi | ei ∈ δ(V ′

1 , . . . ,V ′
k)}

and the number of resulting components is k. Note that each of the resulting components is
a terminal component and that each (terminal) node set V ′

i is fully contained in one of these
components. Reversely, any subset S ⊆ V \ T defines a partition V ′

1 ∪̇ . . . ∪̇V ′
k of V ′ with k = tS.

Hence, we can equivalently write the above linear program as follows:

min
∑

v∈V\T

c ′
vyv

∑
v∈S

yv � tS − 1 ∀ S ⊆ V \ T

1 � yv � 0 ∀ v ∈ V \ T

Clearly, also this linear program is integer. However, it only contains the variables for the
non-terminal nodes v ∈ V \ T . Introducing the missing variables yt for the terminal nodes
t ∈ T together with the equalities yt −

∑
v∈Γ∗

t
yv = −1 linking them to the variables of their

neighboring non-terminal nodes and adding the constant −c(T) to the objective, we obtain the
following linear program:

(MT) min
∑

v∈V\T

c ′
vyv − c(T)

(
=

∑
v∈V

cvyv

)
(3.4.13)

∑
v∈S

yv � tS − 1 ∀ S ⊆ V \ T (3.4.14)

yt −
∑
v∈Γ∗

t

yv = −1 ∀ t ∈ T (3.4.15)

1 � yv � 0 ∀ v ∈ V

Note that the newly introduced variables yt for t ∈ T neither occur in the objective function
(with respect to c ′) nor in the partition inequalities (3.4.14). In fact, the variable yt for terminal
node t ∈ T only occurs in its boundary constraints and in the equality (3.4.15) linking it to its
two neighboring non-terminals. Given integer values for the variables yv for v ∈ V \ T , one can
thus set the values of the yt for t ∈ T in such a way that (3.4.15) and the boundary constraints
are satisfied. Hence, also the linear program (MT) has an integer optimal solution for each
objective function c ′.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

108 Node-Weighted Steiner Problems

For nonnegative objective functions c, also c ′ is nonnegative. Hence, as shown in the previous
lemmata, the irreducible solutions y of (PARTE), which coincide with the irreducible solutions
of (MT), satisfy the additional equalities (3.4.3), i.e., we have yv = yv−1 + yv+1 − 1 for all v ∈ T .
This immediately implies that these solutions y also satisfy

∑
v∈V\T c ′

vyv =
∑

v∈V cvyv+c(T).
Hence, (MT) has integer optimal solutions also for the objective cTy if c is nonnegative.
To conclude the proof, we now show that (MT) and (PARTE) are equivalent and define the

same set of feasible solutions. Obviously, both models contain the same boundary constraints
and the same equalities (3.4.11) and (3.4.15), respectively. Furthermore, the inequalities of type
(3.4.14) are a subset of the larger class of lifted Steiner partition inequalities (3.4.10), which
implies that (MT) is a relaxation of (PARTE). Hence, it suffices to show that all lifted Steiner
partition inequalities (3.4.10) are implied by the constraints of (MT).
So, let S ∈ S and (n1, . . . ,nnS

) ∈ N(S) and consider the lifted Steiner partition inequality
(3.4.10) defined by S and (n1, . . . ,nnS

). Due to Lemma 3.4.8 we may assume without loss of
generality that S is a stable set, as otherwise the inequality would be redundant.
Let S+ := {v ∈ Γ∗t | t ∈ S ∩ T } be the set of nodes that are adjacent to a terminal node in S.

Since S is stable, we have S+∩S = ∅. BecauseG is a cycle, nodes in S+ may be neighboring either
one or two terminal nodes in S. For simplicity, we denote by S+2 := {vi ∈ S+ | vi−1, vi+1 ∈ S}

the set of nodes that are adjacent to two terminal nodes is S.
Finally, let S ′ := S \ (S ∩ T) ∪ S+ be the separator obtained by replacing all terminals in S by

their two neighbors. Obviously, we have t ′S = tS + |S∩ T |. Also, as terminals and non-terminals
alternate on the cycle G, the terminal-free components of G \ S must be exactly the single
nodes in S+2 , i.e., (n1, . . . ,nnS

) is just some ordering of the nodes in S+2 . Since S ′ ⊆ V \ T , the
corresponding partition inequality (3.4.14)∑

v∈S ′
yv � t ′S − 1

is part of (MT). Adding the equalities (3.4.15) for all t ∈ S ∩ T , one obtains∑
v∈S ′

yv −
∑

vi∈S∩T

(yi − yi−1 − yi+1) � t ′S − 1− |S ∩ T | = tS − 1 .

Rearranging terms, we get
(∑
v∈S ′

yv +
∑
v∈S+

yv −
∑

v∈S∩T

yv

)
−

∑
v∈S+

2

yv � tS − 1 ,

which finally leads to

∑
v∈S

yv −

nS∑
i=1

yni
� tS − 1 .

Hence, the lifted Steiner partition inequality for S and (n1, . . . ,nnS
) is implied by the constraints

of (MT).
Consequently, both (MT) and (PARTE) describe the same set of solutions and, as (MT) has

integer optimal solutions, so does (PARTE).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4. Partition inequalities 109

We can extend the characterization to instances in circles where more than one non-terminals
form a path. We say that a non-terminal v lies between the terminals t1 and t2 if walking along
the circle in both possible diretions, beginning at the node v, these are the first terminals we
encounter.

Lemma 3.4.13. Let G = (V ,E) be a cycle and let T ⊂ V be a terminal set that forms a stable set
inG, that is, no two terminals are adjacent. Let c ∈ QV

�0 be nonnegative. Then, for any component
C of G \ T and any irreducible integer solution y, all nodes v ∈ C have the same value yv.

Proof. Note that the components of G \ T consist of non-terminal nodes only. Furthermore,
any terminal node t ∈ T is adjacent to exactly two components of G \ T . Clearly, an integer
solution y must choose all nodes of all but one component of G \ T in order to be feasible.
Otherwise, at least two nodes of two different components of G \ T would not be chosen, and
these non-chosen nodes would define a terminal separator. With this observation, one easily
verifies that an integer solution y is irreducible if and only if it chooses all nodes ofG except for
those of one component C of G \ T and the two terminal nodes adjacent to this component C.
Hence, the variables of all non-terminals in the same component are either all equal to 1 or all
equal to 0.

5

4

3

2

1

Terminal

1
2

1
2

1
2

1
2

1
2

Figure 3.4.8: A valid basic solution for P that is not cut away by the lifted Steiner partition
inequalities

In cycles where terminals are adjacent, the lifted partition inequalities are insufficient to fully
describe the dominant of P. A simple example is given in Figure 3.4.8. In this example, the
inequality

∑
x∈V xi � 3 is needed in the description of the dominant of P, but it is not implied

by the (lifted) Steiner partition inequalities.
However, for instances where terminals are adjacent, the solutions do not change structurally

if we insert non-terminals with zero cost between every adjacent terminal-pair. One easily
verifies that the optimal irreducible solutions for the modified instance including these extra

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

110 Node-Weighted Steiner Problems

non-terminals exactly correspond to optimal irreducible solutions of the original problem: An
artificial non-terminal will be chosen if and only if one of its adjacent terminals is chosen.

Hence, we immediately get a complete description for the case with adjacent terminals using
an extended formulation with at most twice as many variables.

Theorem 3.4.14. The dominant of P is completely described by the lifted partition inequalities
and the variable bounds in the case where the underlying graphG is a cycle and no two terminals
are adjacent.
In the case where adjacent terminals exist, these inequalities yield a complete description of

an extended formulation, where we lift in one artificial non-terminal variable for each adjacent
terminal pair.

In the case where adjacent terminals exist, one can construct a complete description in the
original variable space by projecting this extended description back onto the original variable
space in a straightforward way, using Fourier-Motzkin-Elimination for example.

3.4.3 Indegree inequalities

In this subsection, we will derive a connection between the lifted Steiner partition inequalities
and the indegree inequalities. The well-known indegree inequalities are valid for the description
of connected subgraphs. Let V = {1, . . . ,n} and d ∈ Rn. We call d an indegree-vector if there is
an orientationO of G such that for this orientation, di is the vector of indegrees of G oriented
by O. For each such vector d, the corresponding indegree inequality∑

i∈V

(1− di)yi � 1

is then valid. Korte et al. [1991] have shown that these inequalities induce all nontrivial facets
of the connected subgraph polytope when G is a tree. Further conditions under which these
inequalities are facet-defining for the connected subgraph polytope have been studied by Wang
et al. [2015].

For the NWDSTP polytope P on a cycle graph, we will now show that the indegree inequalities
are implied by lifted Steiner partition inequalities.

Theorem 3.4.15. If G = (V ,E) is a simple cycle, the indegree inequalities are implied by the lifted
Steiner partition inequalities (3.4.2).

Proof. Let G = (V ,E) denote a simple cycle and let O be an orientation of G. Let d denote the
indegree vector corresponding toO. Let V := V0 ∪̇ V1 ∪̇ V2, where Vi := { v ∈ V | dv = i }. We
set S := V2, and, as above, let tS be the number of terminal-components in G− S. Because G

is a simple cycle, every component of G− S contains exactly one node from V0. We set these
nodes as the ni. Let T(S) be the terminal-components from G \ S. The resulting lifted partition
inequality is given as: ∑

i∈V2

yi �
∑

i∈V0\T(S)

yni
+ tS − 1.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.5. Computational experiments 111

After adding
∑

i∈V1∪V2
yi to both sides, we obtain:∑

i∈V2

2yi +
∑
i∈V1

yi �
∑

i∈V1∪V2

yi +
∑

i∈V0\T(S)

yni
+ tS − 1.

Finally, after rewriting, we have:∑
i∈V

diyi =
∑
i∈V2

2yi +
∑
i∈V1

yi +
∑
i∈V0

0 · yi �
∑

i∈V1∪V2∪(V0\T(S))

yi + tS − 1 �
∑
i∈V

yi − 1

which concludes the proof.

3.5 Computational experiments

In this section we evaluate the effectiveness of the partition inequalities in comparison to the
pure model inequalities. We solve the corresponding linear programs and then compare their
values to the optimal solution determined by a branch-and-cut approach.

3.5.1 Instances

Our test instances are based on benchmark instances for the traditional Steiner tree problem
taken from the well-known SteinLib (Koch et al. [2000]) library. To create the node costs for our
models, we take for every node the average of the costs of the adjacent edges and scale and round
them to integer values. Because the partition inequalities are expected to be especially effective
in highly sparse graphs with lots of terminals, we also generate some extended instances based
on the SteinLib instances by replacing every original edge with a path of length 4 introducing
two terminals and one non-terminal intermediate nodes and distributing the original edge costs
evenly to these new nodes. Additionally, we also included the instance alt10 defined on a cycle of
length 10 with alternating terminals and non-terminals to verify that the partition inequalities
indeed close the integrality gap on such instances.

3.5.2 Implementation

We implemented two cutting plane approaches, one which generates the model inequalities
and another one in which we also separate the lifted partition inequalities described above.
Furthermore, we implemented a straightforward single-commodity arc-variable based flow
formulation to verify the optimal integer solution values. We omit themodel details, butmention
that it is very similar to models used in Fernandes and Gouveia [1998]. All linear and integer
programs are solved using Gurobi. The optimal solution values are then used to evaluate the
quality of the LP relaxation of the node-based formulation with and without lifted partition
inequalities.

To separate the model inequalities, we use the well-known HIPR code for max-flow problems
by Andrew Goldberg (Goldberg [2012]) and employ the standard transformation from a max-
flow solution to find a s − t−minimum cut by performing a graph search like BFS along
non-saturated edges, taking all reached as one part of the cut.Note that the separating set in

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

112 Node-Weighted Steiner Problems

inequalities (3.2.1), (3.2.2) and (3.2.3) is not an s − t−cut, but a separating set disjoint from
{s, t}. To find this set using s− t−cuts, we solve the min s− t−cut problem in in a transformed
instance, where every node v is replaced by two nodes v+, v− connected by an arc from v+ to
v− with a capacity coming from equal to the fracional value of the corresponding binary node
variable in the LP solution. An arc in the original graph from some v to somew becomes an arc
from v− to w+ of infinite capacity. As the capacity of these arcs is infinite, these will not be part
of the min-cut, resulting in a separating set corresponding to a node set in the original graph.
As the partition inequalities turn out to be computationally difficult to separate, we use a

greedy heuristic approach to separate them instead of an exact separation routine. Thus, the
presented improvements by using the partition inequalities are only lower bounds with respect
to their true effect.

Our heuristic works as follows: First, given an LP solution, we consider the set S∗ := V \T . We
remove from S∗ all nodes whose fractional value in the LP solution is equal to 1. The resulting
set induces a (lifted) partition inequality. We define the neighborhood of a separator S as the
set of subsets of V that result from either removing a non-terminal node from S or adding
a terminal node to S. To strengthen the inequality, we then generate every separator in its
neighborhood and check how much the corresponding partition inequality is violated. We then
continue with the most violated inequality we found and the separator belonging to it and again
try to strengthen it by enumerating its neighborhood. This process is then continued until the
separator is the set T .

We then add the most violated of the considered partition inequalities to the LP and resolve.
If there are several partition inequalities with the same violation, we use one with minimal
support.

3.5.3 Results

We present the results of our computational experiments in Table 3.1. The columns contain
the instance name (“Instance”), the number of nodes (“n”), the number of edges (“m”), the
average cycle length (“cycle”), the gap for the Steiner relaxation (“gap St”) and the gap for
Steiner+partition relaxation (“gap ST+P”). The average cycle length is the length of a shortest
cycle containing a particular edge e, averaged over all edges e of the graph.
The instances b01, b02, b03, b05, b08 and b10 were already completely solved by the LP

relaxation without the partition inequalities. We therefore omitted the computational results for
these instances.

We remark that we use the computational experiments only to estimate the qualitative effect
of the partition inequalities on the LP bounds and gaps for some benchmark instances. We
believe that it is possible to extend the computational results to a full-fledged computational
study employing many algorithmic tools to make the separation of our inequalities effective in a
Branch&Cut-framework, but this will not be done here.
As can be seen in Table Table 3.1, the partition inequalities are useful for improving some

of the gaps in the original instances. For the extended instances, the rather large gaps of the
Steiner-only relaxation are almost or completely closed in all test cases. As expected, the lifted
partition inequalities are rather effective in highly sparse graphs, especially with many terminals,
while they are much less effective in graphs graphs with higher density or fewer terminals.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.6. Conclusions 113

This might be because extremely sparse graphs with many terminals very likely contain large
cycles with many terminals, on which the lifted partition inequalities have been proven to be
effective. Note that the extended instances we created by replacing every original edge with a
path of length 4 have these special properties by construction. Graphs with these properties
also arise in several real-world applications, for example, when many clients distributed along
street networks need to be connected.

3.6 Conclusions

We introduced the Node Weighted Dominating Steiner Tree problem, a generalization of the
Minimum Connected Dominating Set problem in graphs, in which a least-cost subset of nodes
is to be found such that the given set of terminals is dominated. We provided an integer
programming model that uses node variables only and that requires polynomial separation of an
exponential number of connectivity cuts. For the underlying polytope, we gave the conditions
under which these inequalities are facet-defining. In the second half, we introduced a new
family of Steiner partition inequalities and showed how to lift them to provide stronger linear
programming relaxation bounds. For the special case when the input graph is a cycle, we showed
that the dominant of the underlying polytope is either integral, or can be lifted and projected to
easily obtain integral solutions.

Finally, we believe that for this new and challenging problemwhich is of particular importance
in the design of communication networks dealing with cloud services, much more studies need
to be done. On the one hand, exact methods for handling the large-scale instances are needed.
The practical relevance and computational strength of the minimal node-separator inequalities
studied in this chapter have been demonstrated in Fischetti et al. [2015], where these inequalities
are shown to play an important role for the related Steiner Tree problems. However, for the
new families of (lifted) Steiner partition inequalities, it remains an open question how they can
influence the performance of Branch&Cut algorithms. On the other hand, further polyhedral
studies could support the development of exact methods by the investigation of other families
of valid inequalities that strengthen the LP relaxation bounds.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

114 Node-Weighted Steiner Problems

Table 3.1: Comparison of the LP relaxation gaps for the model with Steiner inequalities only and
the model with both Steiner and lifted partition inequalities.

Instance n m t cycle gap St[%] gap St+P[%]
alt10 10 20 5 10.00 28.57 0.00
b04 50 200 9 4.00 3.75 3.75
b06 50 200 25 3.99 2.25 2.25
b07 75 188 13 4.15 0.40 0.27
b09 75 188 38 4.07 0.97 0.97
b11 75 300 19 4.58 2.42 2.42
b12 75 300 38 4.49 8.50 8.50
b13 100 250 17 4.14 0.92 0.92
b14 100 250 25 4.14 1.63 1.25
b15 100 250 50 4.98 1.36 0.44
b16 100 400 17 4.66 6.63 6.63
b17 100 400 25 4.49 4.52 4.52
b18 100 400 50 4.27 3.41 3.41
c01 500 1250 5 5.68 8.69 7.62
c02 500 1250 10 5.42 12.30 12.05
c03 500 1250 83 5.54 6.55 5.42
c04 500 1250 125 5.78 2.91 2.19
c05 500 1250 250 5.22 1.32 0.71
c06 500 2000 5 5.53 0.57 0.57
c08 500 2000 83 5.58 4.76 4.76
c10 500 2000 250 5.52 1.70 1.70
b01-ext 239 504 126 11.30 11.05 0.00
b02-ext 239 504 126 18.35 29.11 0.00
b03-ext 239 504 126 14.29 11.80 0.00
b04-ext 350 800 200 16.00 15.57 0.00
b05-ext 350 800 200 15.68 10.40 0.00
b06-ext 350 800 200 15.96 19.28 0.00
b07-ext 357 752 188 16.60 18.98 0.00
b09-ext 357 752 188 16.30 8.27 0.06
b11-ext 525 1200 300 18.32 14.64 0.00
b12-ext 525 1200 300 17.95 3.46 0.00
b13-ext 475 1000 250 16.58 17.42 0.00
b14-ext 475 1000 250 16.54 13.68 0.00

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Incremental Facility Location

4.1 The incremental UFL problem

In this chapter, we consider the incremental UFL problem. The research presented here is joint
work with Ashwin Arulselvan and Martin Skutella and has and has appeared in “Networks”
(Arulselvan et al. [2015]).

4.1.1 Introduction

In this chapter, we consider a problem concerning the incremental building of networks, that is,
the network is built in a longer some time period due to financial, technical or other resource
constraints. The overarching goal is to have a good network not just when it is completely built,
but also at intermediate points in time. This involves a decision which customers to ignore at a
certain point in time and which ones to service and then how to keep incrementally building
these sets. We consider what could be seen as a more abstract version of the 2FTTx-problem
from Chapter 2, called the Uncapacitated Facility Location problem (UFLP). We introduced this
problem earlier in Section 1.3.6. In the context of optical networks, the facility opening cost
can be understood as the cost of installing physical devices at certain junction points, while the
assignment cost could be seen as the installation cost of optical cables.

Given an UFLP instance, we can also ask for a cost-minimal solution that only covers k < n

of the original customers. This problem has been introduced in Charikar et al. [2001], they call
it the Robust Facility Location problem (RFLP). The robustness here does not refer to robustness
in the sense of Bertsimas and Sim [2003]; it is meant in the sense that optimality of a solution is
quite indifferent to the shifting of outlier customers that lie very far away, as these can be chosen
to be ignored.

We consider a variant of the RFLP called the -RFLP. In this variant, we are given an additional
input � n and we would like to construct a cost-minimal solution of the UFLP that connects
an arbitrary subset of size of the n customers to open facilities such that the total cost is
minimized.

Because we are allowed to ignore the remaining n− customers, the presence of a very small
fraction of customers who are far away has no effect on the solution.

As already stated above, we study here an incremental version of the aforementioned problem.
To be more specific, we study the Incremental Facility Location problem (IncFLP). A solution of
the problem amounts to a sequence of facilities and customers and an assignment of customers
to facilities. Here, the customer sequence defines the order in which the customers will be
served and the facility sequence defines the order in which the facilities will be opened. We
can understand the sequence as consecutive events happening in time, either the opening of
a facility or the servicing of a new customer. We disallow assigning customers to non-open

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

116 Incremental Facility Location

facilities and also forbid reassignment of customers. In this sense, the solution we seek for will
be strictly incremental.
For every intermediate time point in the sequence, we compare the cost of the solution

incurred by the incremental sequence up to this point to the optimal cost of the -RFLP. We will
make these definitions more precise in the next section.
A planner or network builder could choose a specific point in the sequence depending on

the resource availability and choose to serve that many customers in the sequence at that point.
Subsequent service could be provided for the remaining customers in the sequence at later time
periods. Because we compare the cost of serving the first customers in the sequence with the
cost of optimally serving any customers, we make sure that the sequence will be cost effective
at every intermediate point.

Related work

The Uncapacitated Facility Location problem (UFLP) with metric assignment cost has a long
line of research (see e.g. Byrka and Aardal [2010]; Chudak and Shmoys [2003]; Cornuéjols et al.
[1990]; Shmoys et al. [1997]). The best approximation guarantee known for this problem is 1.488
(Li [2011]) and there can be no polynomial time algorithm to approximate it within a ratio of
1.463 unless NP ⊆ DTIME(nO(log logn)) (Guha and Khuller [1999a]). The problem has also
been studied in incremental settings (Lin et al. [2010]; Plaxton [2003]) but prior work involves
different settings than the one considered in our work.
Plaxton [2003] is interested in a nested sequence of facilities and a threshold sequence for

the scaling of the assignment costs. A solution in the sequence is a solution corresponding to
a specific scaling factor, which could be inferred from the threshold sequence. Each solution
in the sequence serves all customers. The nested sequence of facilities gives a near optimal
solution for every possible scaling factor. Lin et al. [2010] provided a framework for solving
several incremental problems and solved the problem studied in Plaxton [2003] under the same
settings. The framework proposed by them uses a black box algorithm to iteratively augment
partial competitive solutions to reach subsequent competitive solutions that eventually become
complete. Chrobak et al. [2008] obtained competitive deterministic and randomized algorithms
for the Incremental k-median problem through a reduction to the Online Bidding problem.
We follow the doubling technique proposed in the above works. This involves incrementally
building a solution by comparing it with the optimal solution to ensure competitiveness and
refining it when it is necessary. Since we are required to produce a sequence of customers and
facilities in our solution, we deviate slightly by saving the partially refined solutions and delay
the construction of incremental solutions. We follow up with a second phase to construct the
incremental solution from the partially saved refined solutions.
In Fotakis [2006], the authors are interested in an incremental solution when the demand

points arrive one at a time assuming we have complete knowledge of the network. A constant
factor competitive algorithm is proposed assuming uniform facility cost. In this algorithm,
merging of existing clusters is allowed. This is in contrast to an online algorithm in Meyerson
[2001], where the decision to be served by a facility is irrevocable. An O(logn)-competitive
algorithm was proposed for this version of the online problem. This was later improved to
O(

logn
log logn) in Fotakis [2008]. In both works, the algorithm is compared against an offline

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.1. The incremental UFL problem 117

algorithm that is aware of the arrival order of the customers and the competitive ratio is calculated
for all possible arrival orders.
The robust version of the facility location problem (RFLP) was first studied by Charikar

et al. [2001]. They gave a 3-approximation algorithm using the primal-dual technique. This
approximation guarantee was later improved to 2 by Jain et al. [2003]. We will be using their
algorithm as a black box algorithm in our framework.

Our contributions

We provide an algorithm that produces a sequence that is within a factor of 8 from the optimal
-RFLP for = 1, . . . , |R|, where |R| denotes the total number of customers in the given UFLP
instance. We then present the computational results of our implementation of the framework
on a set of benchmark instances for the UFLP. For each instance, we give the worst-case and
average-case bounds of our incremental sequence (for = 1, . . . ,n) constructed by the algorithm
when compared against the optimal cost of the -RFLP.

We begin in Subsection 4.1.2 with some basic notation and the formal problem definition.
In Subsection 4.1.3, we provide the algorithmic framework and explain it. The analysis of the
algorithm which shows it to be 8-competitive is given in Section 4.2. Concerning lower bounds,
we present an example restricting the best possible factor that could be achieved by any algorithm
in Section 4.3. In Section 4.4, we present our computational results. Finally, we conclude with a
summary and notes on future extensions in Section 4.5.

4.1.2 Problem setting

We are given a set F of potential facility locations and a set R of customers. Also, we are given
metric service costs cS : F × R → Q+ and facility opening costs cF : F → Q+. Let m = |F|

be the number of potential facilities and n = |R| the number of customers. We seek nested
sets of facilities, customers and assignment edges between them for = 1, . . . ,n. We call an
approximation algorithm to this problem k-competitive if the costs of the induced solutions
of the -RFLPs are not more than a factor of k away from the costs of optimal solutions to the
-RFLPs, where k does not depend on and also not on the instance.

We need additional notation to make this precise. For a subset of facilities F ′ ⊆ F, we denote
the total facility cost of this set by cF(F

′). We denote the service cost incurred by serving a set of
customers R ′ ⊆ R by a set of facilities F ′ ⊆ F by cS(F

′,R ′) =
∑

j∈R ′ cS(F
′, j), where cS(F

′, j) is
the cost of the cheapest assignment of customer j to a facility in F ′. For a number r less than |R ′|,
let cS(F ′,R ′, r) denote the cost of the cheapest assignment of r customers from R ′ to a facility in
F ′. To provide shorter notation, we also set c(F ′,R ′) := cF(F

′) + cS(F
′,R ′). In the IncFLP, we

seek a sequence to serve customers

∅ = R0 � R1 � R2 � · · · � Rn = R

where |R�| = and a sequence to open facilities

F1 ⊆ F2 ⊆ · · · ⊆ Fn

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

118 Incremental Facility Location

such that the customers inR�\R�−1 can be assigned to facilities in F�. The objective is tominimize
the competitive ratio of the sequence. The competitive ratio of a sequence is defined as

max
�=1,...,n

cF(F�) +
∑�

k=1 cS(Fk,Rk\Rk−1)

OPT�
,

where OPT� is the optimal cost of the -RFLP.

4.1.3 Two-phase algorithm

Let A be any approximation algorithm for the RFLP. We will use A as a black-box. We write
(Z,M) = A(F,R,) and mean that A takes as input the set of potential facility locations F, the
set of customers R and an integer � n, where is the number of customers to be served. It
produces the output (Z,M), where Z ⊆ F is the set of facilities opened and M ⊆ R, |M| = ,
is the set of customers served by the facilities in Z. Given a set of customers and the set of
open facilities, an optimal assignment could be easily computed greedily by assigning each
customer in the given set to its closest open facility. We now provide our incremental framework
FacInc(F,R).
We start with a solution to the UFLP obtained from A with := n. Let F ′ ⊆ F be the set of

facilities opened in this solution. Our algorithm runs in two phases, the refinement phase and
the incremental phase. The refinement phase constructs and collects solutions to the -RFLP.
These solutions are not necessarily incremental. In the incremental phase, these partial solutions
are glued together to construct an incremental solution. The point at which we collect a new
partial solution in the refinement phase is called a refinement point. The initial complete solution
for the UFLP will be the first refinement point solution we collect. We iteratively reduce the
value of from |R| to 1 and check if the last collected refinement point solution cost exceeds twice
the cost of the solution A(F,R,). If it does, then we collect the A(F,R,) as a new refinement
point solution.

Algorithm 3 Refinement phase
1: Initialize: Fc := F ′, Rc := R, P := {n}

2: for = (n− 1) to 1 do
3: (FA,RA) := A(F,R,)
4: if c(Fc,Rc) � 2(cF(FA) + cS(FA,RA)) then
5: F� := Fc := FA
6: R� := Rc := RA

7: P := P ∪ {}

8: end if
9: end for

The elements in the set P correspond to the points at which refinement took place. Let their
total number |P| = K. We shall now index the refinement point solutions from 1 to K in the
increasing order of the number of customers they are serving. This helps us in presenting the
analysis with clarity. Let us denote the solutions as (F1,R1), (F2,R2), . . . , (FK,RK); notice that
FK = F ′ and RK = R.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.2. Analysis 119

For k = 1, . . . ,K, let rk := |Rk| be the number of customers served in the kth refinement
point solution. We call the time between the service commencement of customer (rk−1 + 1)
and rk as the kth period (with r0 := 0). We also say this period belongs to the solution (Fk,Rk).
From a solution (Fk,Rk) at a refinement point, we can construct solutions with a constant
approximation ratio for its period.
In the incremental phase, we glue these partial refined solutions together to construct an

incremental solution. We will do this by opening all facilities belonging to a period at its
beginning.

Algorithm 4 Incremental phase

1: Initialize: F̃1 := F1,k := 2
2: for = 2 to n do
3: if (− 1) ∈ P then
4: F̃� := F̃�−1 ∪ Fk
5: k := k+ 1
6: else
7: F̃� := F̃�−1
8: end if
9: end for

Notice that F̃rk =
⋃k

j=1 Fj and we now have our incremental sequence of facilities:

F̃1 ⊆ F̃2 ⊆ · · · ⊆ F̃n−1 ⊆ F̃n =

K⋃
k=1

Fk .

As for customers, we can pick an incremental sequence greedily by adding in every step the
current non-served customer with cheapest service cost with respect to the currently open
facilities. This yields a sequence

∅ = R̃0 � R̃1 � · · · � R̃n−1 � R̃n = R .

4.2 Analysis

We first show that, at refinement points, the cost of our incremental solution is at most twice
the cost of the solution provided by the black-box Algorithm A.

Theorem 4.2.1. For all refinement points k = 1, . . . ,K, the cost of the incremental solution for rk
customers that is found by our algorithm is at most 2cF(Fk) + 2cS(Fk,Rk).

To this end, we first show the following lemma, which bounds the increase in cost from one
refinement point to the next.

Lemma 4.2.2. For all refinement points k = 2, . . . ,K,

2c(Fk−1,Rk−1) + cF(Fk) + cS(Fk,Rk \ R̃rk−1 , rk − rk−1) � 2c(Fk,Rk).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

120 Incremental Facility Location

Proof. Our refinement condition at step 4 of the incremental phase implies

2c(Fk−1,Rk−1) < c(Fk,Rk).

This yields

2c(Fk−1) + 2cS(Fk−1,Rk−1) + cF(Fk) + cS(Fk,Rk \ R̃rk−1 , rk − rk−1)

< 2cF(Fk) + cS(Fk,Rk \ R̃rk−1 , rk − rk−1) + cS(Fk,Rk)

� 2cF(Fk) + 2cS(Fk,Rk) .

We are now ready to bound the additional cost incurred by the solution being incremental.

Lemma 4.2.3. For all refinement points k = 1, . . . ,K,

2c(F1,R1) +
k∑

j=2

(
cF(Fj) + cS(Fj,Rj \ R̃rj−1 , rj − rj−1)

)
� 2c(Fk,Rk).

Proof. For k = 1, the statement is trivial. For k = 2, the statement follows directly from
Lemma 4.2.2. We proceed by induction on k. Assume the statement is true for k− 1. Then we
get

2cF(F1) + 2cS(F1,R1) +
k∑

j=2

(
cF(Fj) + cS(Fj,Rj \ R̃rj−1 , rj − rj−1)

)

= 2cF(F1) + 2cS(F1,R1) +
k−1∑
j=2

(
cF(Fj) + cS(Fj,Rj \ R̃rj−1 , rj − rj−1)

)
+cF(Fk) + cS(Fk,Rk \ R̃rk−1 , rk − rk−1)

� 2cF(Fk−1) + 2cS(Fk−1,Rk−1) + cF(Fk) + cS(Fk,Rk \ R̃rk−1 , rk − rk−1)

� 2cF(Fk) + 2cS(Fk,Rk) ,

where the last inequality follows from Lemma 4.2.2 again.

We are now ready to proveTheorem 4.2.1.

Proof of Theorem 4.2.1. Since F̃rk =
⋃k

j=1 Fj we can bound the facility opening costs by

cF(F̃rk) �
k∑
j=1

cF(Fj) � 2cF(F1) +
k∑

j=2
cF(Fj) .

Moreover, by the greedy construction of the sequence of customers, we can bound the connection
cost by

cS(F1,R1) +
k∑

j=2
cS(Fj,Rj \ R̃rj−1 , rj − rj−1) .

The desired bound thus follows from Lemma 4.2.3.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3. Lower bound 121

It remains to analyze the performance of our incremental solution for an arbitrary number
of customers , where is not necessarily a refinement point. The next theorem is an easy
consequence of Theorem 4.2.1 and the refinement condition at Step 4 of the refinement phase.

Theorem 4.2.4. For = 1, . . . ,n, the cost of the incremental solution for customers is at most

4c(A(F,R,)),

where c(A(F,R,)) denotes the cost of the solution found by Algorithm A.

Theorem 4.2.4 implies that our algorithm yields an 8-competitive incremental solution if we
plug in the best known 2-approximation algorithm of Jain et al. [2003] for the Robust Facility
Location problem. If we are willing to spend more computational effort and solve the RFLP
exactly, we obtain a 4-competitive incremental solution with our framework.

4.3 Lower bound

We describe an instance for which no incremental solution can be better than 3-competitive.
More precisely, we give a family of instances with more than 200 facilities which yield a lower
bound of at least 2.99. The ratio for this construction does not seem to exceed a value of 3.
Let there be m facilities. Each facility i = 1, . . . ,m has zero-cost-connections to a set Ri of

2i−1 customers. The sets Ri are mutually disjoint. Additionally, every facility j is connected to
every customer in the set Ri, for all i �= j, with a very high assignment costM � 0; note that the
connection costs would still induce a metric. We refer to the facility together with its customers
of zero service cost as a cluster.

Let x1, . . . , xm be the facility opening costs. Consider the following system of linear inequali-
ties:

xi+1 +
i−1∑
j=1

xj � α · xi for i = 1, . . . ,m− 1.

Here, α is the achieved minimal competitive ratio by these inequalities. As an example, for
m = 4 this system is feasible for α = 2.246, but infeasible for α = 2.247. By setting the facility
costs to a solution of this system, we get a lower bound of 2.246.
The intuitive explanation behind these inequalities is the following. Suppose one looks at a

point in any sequence that gives a solution serving 2i−1 customers. To keep the competitive
ratio of the sequence below α for serving just one customer, one needs to first open facility 1 and
serve the single customer in R1, as cluster 2 is α times as expensive. By proceeding with such an
inductive reasoning, the above inequalities give an incentive to open the clusters one by one in
the order of their size, as the competitive ratio for the sequence is immediately as bad as α as
soon as one skips a cluster. On the other hand, the optimal solution to serve 2i−1 customers is
to open facility i and serve customers in the set Ri. α should now be chosen carefully, so that
the ratio between the solution provided by the sequence in opening all facilities from 1, . . . , i to
that of opening facility i alone is at least α for some i, i.e., α � maxi=1,...,m

∑i
j=1 xj

xi
. An example

form = 4,α = 2.246 can be seen in Figure 4.3.1 on the following page. As we increase the value

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

122 Incremental Facility Location

of m, the value of α increases as well and it numerically converges to 3. For a value ofm = 200,
we get α ≈ 2.99. Using an optimal solution for these lower bound instances, our incremental
algorithm would achieve a competitive factor of 4.

1.0 2.246 4.044516 5.837982936

Figure 4.3.1: Lower bound example form = 4, α = 2.246. Blue circles depict the facilities, while
the red squares are customers. All assignment costs are equal to zero.

4.4 Computational experiments

We tested the quality of the incremental solution produced by our algorithm against the optimal
non-incremental solution. We present the maximum and average gap over all = 1 . . .n for
every instance. We also report the running time of the algorithms. The experiments were carried
out on a i7-4771 machine with 16GB of RAM. We used GUROBI 5.6 to obtain the optimal
solution of -RFLP. The instances were the set of benchmark instances for the uncapacitated
facility location problem from the UflLib library provided by Hoefer [2007]. All instances are
complete bipartite graphs and in all instances, the number of facilities equals the number of
customers.
The results from our computational study are presented in Table 4.1 on page 124. For each

instance, we provide the size of the instance and the worst-case gap for some = 1, . . . ,n and
the average gap over all customers. Note that we are comparing our solution against the optimal
solution of serving any customers and this is not an incremental solution. As pointed out in
Section 4.3, we need to pay a price for obtaining an incremental solution. In almost all instances,
the worst-case gap is about 50% (corresponding to a factor of 1.5 from the optimal) and the
average gap is less than 15% for all instances. We also report the running time (in seconds) of
our implementation. All instances took less than an hour.

4.5 Conclusions

In this chapter, we presented an incremental framework to provide a sequence of facilities
to be opened and customers to be served along with their fixed assignments that provides a
constant-factor competitive guarantee. We proved a lower bound of 2.99 through a family of
examples. We gave an implementation of the algorithm and the competitive factor on a set

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.5. Conclusions 123

of benchmark instances was computed and presented. A number of questions are still open:
Is the analysis tight for the provided algorithm or can the worst-case guarantee be improved?
Can the lower bound be increased? Another interesting direction of future research is to study
our incremental setting for other variations of the facility location problem that arise in other
practical settings, such as the Buy-At-Bulk Network Design problem and the Connected Facility
Location problems.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

124 Incremental Facility Location

Instance # Fac/Cust Max gap (%) Ave Gap (%) Time[sec]
c10-mp1 200 59.50 15.88 286.25
c10-mp2 200 50.65 13.73 315.34
c10-mq1 300 40.06 13.41 2048.95
c10-mq2 300 40.06 11.38 2057.54
c15-mp1 200 59.50 15.88 284.62
c15-mp2 200 50.65 13.73 316.19
c15-mq1 300 40.06 13.41 2076.61
c15-mq2 300 40.06 11.38 2077.86
c20-mp1 200 59.50 15.88 289.52
c20-mp2 200 50.65 13.73 319.90
c20-mq1 300 40.06 13.41 2052.22
c20-mq2 300 40.06 11.38 2061.86
c5-mp1 200 59.50 15.88 287.77
c5-mp2 200 50.65 13.73 316.01
c5-mq1 300 40.06 13.41 2058.01
c5-mq2 300 40.06 11.38 2060.26
d10-mp1 200 59.50 15.88 285.44
d10-mp2 200 50.65 13.73 316.20
d10-mq1 300 40.06 13.41 2059.18
d10-mq2 300 40.06 11.38 2071.02
d15-mp1 200 59.50 15.88 285.26
d15-mp2 200 50.65 13.73 315.42
d15-mq1 300 40.06 13.41 2049.25
d15-mq2 300 40.06 11.38 2058.37
d20-mp1 200 59.50 15.88 287.47
d20-mp2 200 50.65 13.73 317.52
d20-mq1 300 40.06 13.41 2216.26
d20-mq2 300 40.06 11.38 2080.21
d5-mp1 200 59.50 15.88 286.38
d5-mp2 200 50.65 13.73 316.51
d5-mq1 300 40.06 13.41 2054.96
d5-mq2 300 40.06 11.31 2079.71

Table 4.1: Results of computational experiments

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5 Incremental Connected Facility Location

5.1 The Incremental Connected UFL problem

In this chapter, we analyzeMIPmodels for the Incremental Connected Facility Location problem.
This part of the work is joint work with Ashwin Arulselvan, Andreas Bley, Stefan Gollowitzer
and Ivana Ljubić and appeared in Lectures Notes in Computer Science, volume 6701 “Network
Optimization” (Arulselvan et al. [2011]).

5.1.1 Introduction

Theproblem under consideration is how to design an optimal network topology in the context of
a multi-period planning of local access networks. In this setting, a telecommunication company
wants to increase the speed of broadband connections by combining fiber-optic technology with
existing copper connections, i.e., by means of the Fiber-to-the-Curb (FTTC) technology. Street
segments along which fiber optic cables can be installed, determine the core network. Potential
optical and existing copper cables intersect at locations where potential multiplexor devices
need to be installed. Between a multiplexor and a customer, the existing copper connection is
used. The existing copper paths are preprocessed and in this process, an assignment network
is constructed whose edges are assignment links between potential multiplexor locations and
customers. To build an FTTCnetwork, one has to decide onwhich locations to installmultiplexor
devices so that each customer is assigned to a multiplexor, and each multiplexor is connected to
the Central Office (CO) by a fiber-optic path.
Due to the huge investments needed to build an FTTC network, the deployment is done

in several stages. The company takes the strategic decision of fixing a minimal percentage of
customer demands that should be served at each of the stages. Thereby, demand of a customer is
defined as the number of end-subscribers (e.g., offices and/or households) behind the customer’s
address. The coverage of customer demands needs to be increased over time.

5.1.2 Problem setting

We define the Incremental Connected Facility Location problem, denoted as the INCCFL problem,
as follows. The input consists of three disjoint sets of nodes: a set of facilities F, a set of customers
R, and a set of Steiner nodesM. We denote S = F∪M and V = S∪R. The potential connections
among the nodes in S build the core network and are given as the undirected edge set ES. The
corresponding directed arc set is AS = {(i, j), (j, i) | ij ∈ ES}. Possible connections between the
facilities F and the customers R are given by the edges ER ⊆ F× R, which define the directed arc
set AR = {(i, j) ∈ F× R | ij ∈ ER}. Note that it is sufficient to consider only arcs directed from
facilities to customers here. We let A = AS ∪AR and E = ES ∪ ER. The considered planning

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

126 Incremental Connected Facility Location

horizon is given as a discrete set of (not necessarily equally long) time periods T = {1, . . . ,T},
T > 1. In addition, we are given fixed costs for edges c : E → R+ and facilities g : F → R+ for
opening the edge or facility for the first time, and maintenance costs for edges m : E → R+

and facilitiesmf : F → R+ that arise for each period an edge or a facility is actually used. The
pre-period revenue for serving the customers is given by p : R → R+. Finally, we are given
customer demands d : R → Z+ and a minimum coverage requirement Dt for each time period
t ∈ T .
We wish to construct a schedule that describes at each point in time the partial network we

have built up to that point. For each time step, it needs to describe which subset of facilities are
in use, which set of customers are served by these facilities, how served customers are assigned
to the open facilities and how the core network is constructed in order to connect the open
facilities to the network. We require that in each time step, the total demand of the served
customers satisfies the minimum coverage requirements and the chosen edges ES in the core
network connect the open facilities. Furthermore, a customer must be served in all periods
after it has been served for the first time. The goal is to maximize the net present value of the
network, which is a standard objective function that takes into account the discounted value of
money that will be received in the future.

5.1.3 Related work

Multi-Period optimization problems Facility location problem over time is a well-studied
problem. A recent survey is given in Owen and Daskin [1998]. In a recent work, Albareda-
Sambola et al. [2009] consider aMulti-period Incremental Facility Location problem, where the
coverage of customer demand needs to be increased over time. The authors combine subgradient
optimization and a Lagrangian approach and generate feasible solutions with a Lagrangian
based heuristic.

Multi-period Network Design problems There has been intense research on multi-period
network design problems since publication of the seminal articles by Christofides and Brooker
[1974], Doulliez and Rao [1975] and Zadeh [1974]. Optimization methods have been used
for designing networks for telecommunication, transportation (Ukkusuri and Patil [2009]),
distribution of gas or water (Suhl and Hilbert [1998]) and many others.

Most of the literature on applications in the telecommunications sector consider capacitated
problems. Recent contributions are, e.g., Bienstock et al. [2006] and Lardeux and Nace [2007].
Much less literature is available on the Connected Facility Location problem (CFL).

Single-Period Connected Facility Location Early work on the CFL problem mainly in-
cludes approximation algorithms. The problem can be approximated within a constant ratio and
the currently best-known approximation ratio is provided by Eisenbrand et al. [2010]. Ljubić
[2007] describes a hybrid heuristic combining Variable Neighborhood Search with a reactive
tabu search method. The author compares it with an exact Branch&Cut approach. In Tomazic
and Ljubić [2008], a Greedy Randomized Adaptive Search Procedure (GRASP) for the unrooted
CFL problem is presented. The authors also provide a transformation that enables solving CFL
as the Steiner arborescence problem. Bardossy and Raghavan [2010] develop a dual-based local

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5.2. MIP models 127

search (DLS) heuristic for a generalization of the CFL problem. The presented DLS heuristic
computes lower and upper bound using a dual-ascent and then improves the solution with a
local search procedure. Gollowitzer and Ljubić [2011] study Mixed-Integer Programming (MIP)
formulations for CFL both theoretically and computationally. The authors provide a complete
hierarchy of ten MIP formulations with respect to the quality of their LP bounds.

Our contributions We consider the Incremental Connected Facility Location problem (IN-
CCFLP), in which we are given a set of potential facilities, a set of interconnection nodes, a set
of customers with demands, and a planning horizon. For each time period, we have to select a
set of facilities to open, a set of customers to be served, the assignment of these customers to the
open facilities, and a network that connects the open facilities. Once a customer is served, it
must also be served in subsequent periods. Furthermore, in each time period the total demand
of all customers served must be at least equal to a given minimum coverage requirement for
that period. The objective is to maximize the net present value of the network, which is given
by the discounted revenues of serving the customers and by the discounted investments and
maintenance costs for the facilities and the network.

In Section 5.2 we present integer programming formulations for the Incremental CFL problem
and discuss a class of valid inequalities that may be used to strengthen these formulations.
Section 5.3 provides a description of the separation subroutines that we implemented in order
to solve these models. In Section 5.4 we describe the benchmark data sets, details of our
implementation of the Branch&Cut algorithm and the results of our computational experiments.

5.2 MIPmodels

In this subsection we present two alternative integer programming formulations for the Incre-
mental CFL problem.
For modeling purposes, we assume that one of the facilities, denoted as root r, is open and

used in all time periods. In a physical network, this node corresponds to the central office with
an uplink to the backbone network serving the physical area modeled by this instance.

In order to ensure the connectivity among the open facilities, it is sufficient to ensure that all
other open facilities in F are connected to the root r (compare also the approach in Gollowitzer
and Ljubić [2011]). For notational simplicity, we let F denote the set of all facilities except r
throughout the remainder of this chapter. Furthermore, we denote δin(W) := {(i, j) ∈ A | i �∈
W, j ∈ W} for all W ⊆ V and F(j) := {i ∈ F | (i, j) ∈ AR} for all j ∈ R.
In order to describe which customers and facilities are served and used at each time period,

we introduce binary variables yt
j ∈ {0, 1} for all j ∈ R and t ∈ T , and zti ∈ {0, 1} for all i ∈ F and

for all t ∈ T . These two variable sets are interpreted as

yt
j =

{
1 if customer j is served in time period t,
0 otherwise,

zti =

{
1 if facility i is used in time period t,
0 otherwise.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

128 Incremental Connected Facility Location

The assignment of the served customers to the open facilities and the network connecting the
open facilities to the root node are modeled by the arc variables xtij ∈ {0, 1} for all directed arcs
(i, j) ∈ A and for all time periods t ∈ T , which are interpreted as

xtij =

{
1 if arc (i, j) is used in time period t,
0 otherwise.

To describe the initial opening of facilities and edges, we also introduce the facility variables
z̃ti ∈ {0, 1} for all i ∈ F and all t ∈ T and the aggregated edge variables x̃te ∈ {0, 1} for all e ∈ E

and all t ∈ T , which are interpreted as

z̃ti =

{
1 if facility i is opened for the first time in time period t,
0 otherwise,

x̃te =

{
1 if edge e is opened for the first time in time period t,
0 otherwise.

Observe that the variables x̃te are associated to edges instead to arcs of the core network for
the following reason. In the general case, a facility i ∈ F may be opened in period t ∈ T , and
closed in period t+ k ∈ T (k > 0). Consequently, an arc that was oriented like (i, j) in period t,
may be used in the opposite direction in period t+ k. Since the edge opening costs need to be
payed only once, we have to leave the direction of set-up variables x̃ unspecified.
With these variables and notations, the objective function of the incremental CFL problem

can be formulated as follows:

f(x,y, z) =
T∑

t=1
(1+ α)−t

⎡
⎣∑
j∈R

pjy
t
j −

∑
e∈E

cex̃
t
e −

∑
(i,j)∈A

mijx
t
ij −

∑
i∈F

giz̃
t
i −

∑
i∈F

miz
t
i

]

This construction using exponentially decreasing factors is called the net present value, which
takes the time-dependent value of money into account.
For each period t ∈ T , the objective function comprises the collected profit for customers

served in period t decreased by the investment (maintenance) costs that need to be paid for each
edge and facility that are opened (used) in this period. The followingmixed integer programming
formulation models the Incremental CFL problem:

The model is presented in Figure 5.2.1 on the following page. We now explain its constraints
one by one.
Constraints (5.2.1) model the fact that a customer is served only if there is a facility con-

nected to it. Constraints (5.2.2) enforce that a facility is open if it is used to serve a customer.
Inequalities (5.2.3) and (5.2.4) ensure that we open edges and facilities as soon as they are
used. Constraint set (5.2.5) expresses the minimum demand coverage requirement for each
time period. Inequalities (5.2.6) enforce the continuance of service for each customer (i.e., if
customer j was served in period t ∈ T , it also needs to remain served in all consecutive periods).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5.2. MIP models 129

(CUTF): max f(x,y, z)
subject to

∑
i∈F(j)

xtij = yt
j ∀ j ∈ R, t ∈ T (5.2.1)

xtij � zti ∀(i, j) ∈ AR, t ∈ T (5.2.2)

xtij + xtji �
t∑

k=1
x̃ke ∀(i, j) = e ∈ E, t ∈ T (5.2.3)

zti �
t∑

k=1
z̃ki ∀ i ∈ F, t ∈ T (5.2.4)

∑
j∈R

djy
t
j � Dt ∀t ∈ T (5.2.5)

yt
j � yt−1

j ∀ j ∈ R, t ∈ T (5.2.6)∑
(u,v)∈δin(W)

xtuv � ztj ∀W ⊆ S \ {r}, j ∈ W ∩ F �= ∅, t ∈ T (5.2.7)

xtkl,yt
j , zti ∈ {0, 1} ∀(k, l) ∈ A, j ∈ R, i ∈ F, t ∈ T (5.2.8)

x̃te, z̃ti ∈ {0, 1} ∀e ∈ E, i ∈ F, t ∈ T (5.2.9)

Figure 5.2.1: ILP model for the Incremental CFL problem

Finally, the exponentially large constraint set (5.2.7) ensures that, in each time period, all open
facilities are connected to the root node. The inequalities in constraint set (5.2.7) enforce that for
every subsetW ⊆ S that includes a facility j and does not include the root node r, at least one of
the arcs in the set of all incoming arcs in W must be used if facility j is open. These inequalities
correspond to the directed cutset inequalities in the Steiner tree formulations used in Ljubić
[2007] and Gollowitzer and Ljubić [2011].

Instead of enforcing at least one arc in each directed cut that separates a chosen facility from
the root node, as done by constraints (5.2.7), we may model the connectivity constraints by
enforcing at least one arc in every directed cut that separates a chosen customer from the root
node. This leads to the following alternative formulation for the Incremental CFL problem:

(CUTR) : max f(x,y, z)
(x,y, z) satisfies (5.2.1) – (5.2.6)∑
(u,v)∈δin(W)

xtuv � yt
j ∀W ⊆ V \ {r}, j ∈ W ∩ R, t ∈ T (5.2.10)

5.2.1 Valid inequalities

In this subsection we provide two new families of valid inequalities that can strengthen the pre-
vious two models. The third group of constraints presented here are several degree-inequalities
that were very useful throughout our computations.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

130 Incremental Connected Facility Location

Cover inequalities: Theminimum coverage constraints (5.2.5) imply a set of cover inequali-
ties that can be defined for each single period t ∈ T . We call a subset of facilities It ⊆ F a cover
if its complement, Īt = F \ It, cannot serve enough customers to satisfy the minimal demand
requirements for the time period t. We denote by COVt ⊆ 2F the family of all covers for period
t. An inclusion-wise minimal such facility set It is called aminimal cover. In other words, It is
a minimal cover if Īt cannot satisfy the minimum demand requirement of period t even if all
the facilities in Īt are open, but for any i ∈ It the facility set J = Īt ∪ {i} would allow serving
enough customers to meet the minimum coverage constraint. In such a case, obviously at least
one facility from It needs to be opened. Consequently, the following set of cover inequalities are
valid for all solutions of (CUTF) and (CUTR):∑

i∈It

zti � 1 ∀t ∈ T , It ∈ COVt (5.2.11)

It is easy to verify that the cover inequality for any non-minimal cover It is dominated by the
cover inequality for any minimal cover Itmin ⊆ It. Furthemore, any non-minimal cover It can
be easily turned into a minimal cover by iteratively removing all those facilities, whose removal
still results in a cover.

It is also not difficult to construct examples where the addition of cover inequalities (5.2.11)
strengthens the LP relaxations of (CUTF) and (CUTR). These inequalities are similar to the
cover inequalities studied for knapsack constraints.
We note that one could also consider cover inequalities at the customers, which should be

especially effective if the coverage requirement for the current period is very high.
The separation of cover inequalities is a modified version of the knapsack problem. We

describe our separation approach for these inequalities in Section 5.3.

Cut-Set-Cover inequalities: The set of cover inequalities (5.2.11) also implies the following
exponentially large family of cut-set inequalities, that we will refer to as cut-set-cover inequalities:∑

uv∈δin(W)

xtuv � 1 ∀t ∈ T , It ∈ COVt, W ⊆ S \ {r}, It ⊆ W (5.2.12)

These inequalities state that, in each period t ∈ T , we have to establish a path between the
root and at least one of the facilities from the set It. Once the corresponding covers It become
known, the separation of these new inequalities can be done in polynomial time by means of a
maximum flow algorithm, see Section 5.3.
Again, it is not difficult to show that the addition of the cut-set-cover inequalities (5.2.12)

strengthens the LP relaxations of (CUTF) and (CUTR).

In-Arc inequalities: The requirement that, in each time period, the root node is connected
to any open facility, implies the following in-arc inequalities:

zti �
∑

(j,i)∈δin(i)

xtji ∀ i ∈ F, t ∈ T (5.2.13)

xtik �
∑

(j,i)∈δin(i):j�=k

xtji ∀(i, k) ∈ AS, i �= r, t ∈ T (5.2.14)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5.3. Separation Algorithms 131

Inequalities (5.2.13) imply that there is at least one arc entering any chosen facility from the
time it is opened. Inequalities (5.2.14) ensure that there is at least one arc entering any facility
or Steiner node if there is an arc leaving that node.
Note that these inequalities are implied by the cut inequalities (5.2.7) or (5.2.10), but not

vice versa. However, there is only a polynomial number of inequalities of type (5.2.13) and
(5.2.14), so they can easily be added at the beginning of the computations without any separation
algorithm. This fact makes these inequalities very useful in practical computations (Gollowitzer
and Ljubić [2011]; Koch and Martin [1998]).

Furthermore, we add the inequalities

∑
(j,i)∈δin(i)

xtji � 1 ∀ i �= r, t ∈ T (5.2.15)

to the LP relaxations of (CUTF) and (CUTR), which ensure that the indegree of every node
except the root node is at most 1. While these constraints may cut off feasible solutions, there
always exists an optimal solution of the Incremental CFL problem that satisfies these inequalities,
as there are no capacity constraints associated with the facilities and edges. Adding these
inequalities to the formulations substantially reduced the solution times in our experiments.

5.3 Separation Algorithms

In this section, we explain separation algorithms for the cover inequalities and the three groups
of cut-set inequalities described above.

Separation of Cut-Set inequalities

We now present the separation routine to generate cut inequalities of type (5.2.7) which is
similar to the one used in Chapter 2, see Lemma 2.2.1 there. Let x̂t and ẑt be the values of
the arc variables and of the facility variables of the current optimal LP solution. In order to
find a violated inequality of type (5.2.7), we compute for each time period t ∈ T and each
facility node j ∈ F a minimum r-j-cut in the digraph G(S,AS) with arc capacities x̂t, solving
the corresponding maximum flow problem. Let Γ(r, j) be the set of arcs in the minimum cut
obtained from this maximum flow computation. If the corresponding maximum flow value is
less than ẑti , the corresponding cut inequality∑

(u,v)∈Γ(r,j)
xtuv � ztj (5.3.1)

is violated and we add this inequality to the current formulation.
The separation of the customer based cutset inequalities (5.2.10) is carried out analogously.

We now consider the entire digraph G(V ,A) with capacities x̂t given by the LP solution’s arc
variable values and solve the maximum flow problem with the root node r as the source and the
customer node j as the sink for each customer j ∈ R and each time period. Again, let Γ(r, j) be

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

132 Incremental Connected Facility Location

the arcs of the corresponding minimum cut. If the maximum flow value is less than yt
i , we add

the violated cut ∑
(u,v)∈Γ(r,j)

xtuv � yt
i . (5.3.2)

Separation of Cover and Cut-Set-Cover inequalities

Let t ∈ T and let ẑt be the values of the facility variables in the current LP solution. In order to
find a cover It for which the corresponding cover inequality (5.2.11) is violated, we introduce
variables αi ∈ {0, 1} for all i ∈ F indicating which facilities are contained in It and βj ∈ {0, 1} for
all j ∈ R indicating which customers can be served by any of the facilities not in It. Clearly, a
cover It that maximizes the violation of inequality (5.2.11) corresponds to an optimal solution
of the following integer program:

min
∑
i∈F

ẑtiαi (5.3.3)

subject to
∑
j∈R

djβj � Dt − ε (5.3.4)

βj � 1− αi ∀(i, j) ∈ AR (5.3.5)
αi,βj ∈ {0, 1} ∀ i ∈ F, j ∈ R (5.3.6)

Inequalities (5.3.5) guarantee that all clients that have at least one neighboring facility not in
It are served, while constraint (5.3.4) ensures that the total demand of all served clients is strictly
less than the demand required to meet the coverage constraint. Together, these constraints
ensure that, for any integer solution of (5.3.3) - (5.3.6), the set of facilities i with αi = 1 forms
a cover. Note that the objective value of a solution of (5.3.3) - (5.3.6) is equal to the left hand
side of the corresponding cover inequality for the current LP solution. Finding a violated cover
inequality thus is equivalent to finding a time period t ∈ T and a solution of (5.3.3) - (5.3.6)
with objective value strictly less than 1. In our implementation, we solve this integer program
for all t ∈ T .
To separate the cut-set-cover inequalities for a given cover It, we create an artificial sink

node l and connect the nodes in It to l. We then compute a maximum r-l flow in the graph
G(S∪ {l},AS ∪ It × {l}) with capacities x̂t for the arcs in AS and capacity 1 for the artificial arcs
in It × {l}. If the maximum flow value is less than 1, we add the violated cut-set-cover inequality∑

(u,v)∈Γ(r,l)
xtuv � 1 (5.3.7)

where Γ(r, l) is the arc set of a corresponding minimum cut.

5.4 Experiments

Benchmark Instances In Gollowitzer and Ljubić [2011], a set of instances for Connected
Facility Locationwas generated by combining a set of benchmark instances for theUncapacitated

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5.4. Experiments 133

Facility location (UFL) problem from the UflLib Hoefer [2007] with instances of the Steiner tree
problem (STP) from the OR-library Beasley [2013]. The CFL input graphs are generated in the
following way: first f nodes of the STP instance are selected as potential facility locations (where
f denotes the number of facilities in the corresponding UFL instance), and the node with index
1 is selected as the root. The number of facilities, the number of customers, opening costs and
assignment costs are provided in UFL files. STP files provide edge-costs and additional Steiner
nodes.
We consider a set of 32 instances obtained by combining four UFL instances mp1,mp2 and

mq1,mq2 (of the size 200× 200 and 300× 300, respectively) with eight STP instances {c,d}n,
for n ∈ {5, 10, 15, 20}. These instances define the core networks with between 500 and 1000 nodes
and with up to 25,000 edges.
We extend these instances to include demands and time periods. We generate demands

uniformly between 20 and 40 for each customer and we consider a time horizon T = 5. In
the test instances generated in Gollowitzer and Ljubić [2011], the facility set F and customers R
induce a complete bipartite graph. We desire a more sparse setting for our demand satisfaction
and the cover set inequalities. Therefore, we only considered the connections of the first 20
closest facilities for each customer. Such obtained instances contain up to 1300 nodes and 45,000
edges. Finally, the minimum coverage required for time period t is defined as

Dt =

∑
j∈R dj

1.25(T − t)
for t ∈ {0, 1, 2, 3, 4} and T = 5.

The experiments were performed on an Intel Core2 Quad 2.66 Ghz systems with 2GB RAM.
Each run was carried out on a single processor.

Branch&Cut Implementation

To test the effectiveness of the presented formulations and inequalities, we implemented a
Branch&Cut algorithm using CPLEX 12.2 and Python API, a commercial integer programming
solver with a Branch&Cut framework.

The integer linear programs initially contain all variables and the constraints (5.2.1) – (5.2.6).
The cut inequalities (5.2.7) and (5.2.10), the cover inequalities (5.2.11), and the cut-set-cover
inequalities (5.2.12) are applied in a standard cutting plane approach, iteratively adding those
inequalities that are violated by the current fractional solution.
We add all indegree constraints (5.2.15) to the initial LP formulation. We generate a cut

pool with all the in-arc inequalities (5.2.13) and (5.2.14), which are added at the root node
if they are violated. Then, the maximum flow separation routine is called that generates the
inequalities (5.2.7). This separation consists of randomly selecting 50 terminals at every time
period and generating the violated cuts. We restrict the number of calls to the separation routine
at every node by 10, to enable branching and avoid multiple calls to the separation routines.
In addition to the above, the separation routine is called at node depth of multiples of 10 and
at every occasion an incumbent is rejected. The intuition behind this scheme is that it would
provide us with a balance between the time spent in generating the cuts and branching, as
branching helps us reduce the search space (due to the priority strategies described below). The
enhanced cuts and customer cuts are combined in the same separation routine. Each test run

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

134 Incremental Connected Facility Location

was limited to 2000 CPU seconds and the optimality gap at this point of time is reported in the
results.

Branching: The assignment variables xtij, when branched (set to 0 or 1), does not affect the
search space as much as the facility variables zti . So we give them the highest priority in the
branching. This was also observed in Ljubić [2007], but unlike the Connected Facility Location
problem, in our incremental version of the problem, we also have uncertainty in determining
the set of customers to be served at each time period. So, we provide them with the next highest
priority in branching.

Separation routine: We observed that the cuts generated by the maximum flow algorithm
when the root is treated as source tend to generate cuts that are closer to the root node and there
will be edges repeated in the various minimum cuts generated for various terminals. In order to
avoid this, we treat the root as the sink and the facilities as the source. This was appropriately
captured in the primal heuristic and the in-arc inequalities as well. We also perform nested
cuts, wherein we resolve maximum flow for the same facility by setting the capacity of the edges
in current minimum cutset to 1. The cover (5.2.11) and cut-set-cover inequalities (5.2.12) rely
on solving an integer program at every call of the separation routine, which is run for every
time period. The integer program terminates if the elapsed running time is over 100 seconds
or if the objective value drops below 1. We use this exact separation to test the impact of these
inequalities on the lower bound.

Primal Heuristics: We also implemented and tested a naive primal heuristic. After our initial
runs we decided to turn off the CPLEX heuristics as this was leading to poor performance. The
primal heuristic rounds up all the z variables that indicate the usage of a facility as well as the
y variables, which indicate the service to a customer. We run a minimum cost flow algorithm
with a linear cost estimator with the open facilities (rounded up values) as sinks and the root
node as source to generate our Steiner tree.

Results

Our preliminary computational study has shown that the CUTR formulation is not competitive
against the CUTF model, due to the size of the support graph and the large number of cut-
set inequalities that need to be separated. This is also consistent with the results obtained
by Gollowitzer and Ljubić [2011] for the single-period CFL.
Therefore, in our computational study, we compared the performance of the following two

Branch&Cut settings:

• CUTF formulation,

• CUTF+ formulation extended by cover inequalities (5.2.11) and cut-set-cover inequali-
ties (5.2.12).

For each of the two settings, we report on the following values given in Table 5.1 on the
following page: the overall percentage gap obtained after the time limit of 2000 seconds calculated

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5.4. Experiments 135

as Gap = (UB − LB)/LB, where UB is the best obtained upper bound, and LB is the global
lower bound; the number of all constraints separated throughout the execution of the algorithm,
denoted by “Cuts”; the number of Branch&Bound nodes, denoted by “B&B”.

CUTF CUTF + (5.2.11) + (5.2.12)
Instance best LB best UB Gap[%] cuts B&B best UB Gap[%] cuts B&B
c10-mp1 164,136 166,691 1.53 2103 170 166,670 1.52 695 104
c10-mp2 160,278 168,347 4.79 1781 99 168,258 4.74 297 20
c10-mq1 346,866 386,409 10.23 457 11 386,054 10.15 161 0
c10-mq2 348,929 387,501 9.95 559 14 387,088 9.86 136 0
c15-mp1 165,004 166,900 1.14 1539 107 166,985 1.19 212 15
c15-mp2 161,333 168,487 4.25 1508 56 168,525 4.27 299 16
c15-mq1 352,583 386,520 8.78 567 15 386,326 8.73 140 0
c15-mq2 348,640 387,614 10.05 422 10 387,452 10.02 138 0
c20-mp1 155,919 167,227 6.76 334 6 167,184 6.74 121 0
c20-mp2 154,157 168,658 8.60 360 3 168,656 8.60 137 0
c20-mq1 349,075 386,640 9.72 298 0 386,540 9.69 55 0
c20-mq2 348,628 387,792 10.10 311 0 387,681 10.07 60 0
c5-mp1 162,521 166,466 2.37 1927 190 166,320 2.28 590 75
c5-mp2 158,230 168,042 5.84 1630 45 167,892 5.76 347 19
c5-mq1 346,924 386,236 10.18 869 15 385,491 10.00 133 0
c5-mq2 348,453 387,330 10.04 817 15 386,744 9.90 143 0
d10-mp1 164,160 166,945 1.67 2008 45 166,706 1.53 126 10
d10-mp2 155,885 168,381 7.42 1902 21 168,167 7.30 291 15
d10-mq1 342,278 386,234 11.38 508 6 385,844 11.29 121 0
d10-mq2 348,389 387,584 10.11 642 9 387,062 9.99 110 0
d15-mp1 158,402 167,103 5.21 813 15 167,005 5.15 176 6
d15-mp2 158,835 168,398 5.68 1103 15 168,468 5.72 193 1
d15-mq1 346,494 386,579 10.37 407 0 386,258 10.29 95 0
d15-mq2 346,129 387,683 10.72 415 6 387,458 10.67 118 0
d20-mp1 155,821 167,168 6.79 256 0 167,208 6.81 139 0
d20-mp2 154,141 168,661 8.61 291 0 168,675 8.62 175 0
d20-mq1 348,738 386,621 9.80 180 0 386,580 9.79 62 0
d20-mq2 348,365 387,801 10.17 135 0 387,772 10.16 16 0
d5-mp1 163,074 166,680 2.16 2666 50 166,216 1.89 1387 225
d5-mp2 163,182 167,967 2.85 2495 104 167,634 2.66 1172 165
d5-mq1 346,120 386,141 10.36 1230 15 385,396 10.19 185 0
d5-mp1 344,089 387,304 11.16 1541 15 386,517 10.98 166 0

Table 5.1: Comparison of two Branch&Cut settings: plain CUTF model vs. CUTF extended by
cover and cut-set-cover inequalities.

Comparing the number of inserted cuts by the two approaches, we observe that the inclusion
of coverage-related cuts (i.e., (5.2.11) and (5.2.12)) reduces the overall number of cuts generated
within a given time limit. This can easily be explained by the large separation times needed to
solve the integer program (5.3.3)-(5.3.6). Despite the reduced number of separated inequalities,
in 27 out of 32 instances we obtained reduced duality gaps when the coverage-related inequalities

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

136 Incremental Connected Facility Location

were used. This indicates the strength of the coverage-related cuts, but also the trade-off between
their strength and their separation time.
We also observe that due to the branching and separation strategies that we choose, there

is no direct correlation between the usage of coverage-related constraints and the number of
branch and bound nodes.

5.5 Conclusions

In this chapter we introduced a combinatorial optimization problem that models the design of
fiber-to-the-curb networks over time. The problem is a multi-period version of the connected
facility location problem that has been intensively studied in the literature in the last decade.
Besides two mixed integer programming models, we also introduced two new families of
valid inequalities derived from the incremental coverage constraints over time. We provided
separation algorithms needed to detect the new coverage-related inequalities within a cutting
plane framework. The problemwas then solved bymeans of a Branch&Cut algorithm that makes
use of the cut-set inequalities and the new coverage-related constraints. In the preliminary
computational study we show that the new inequalities are useful for small and/or sparser
instances, where the obtained duality gaps can be significantly reduced. For larger instances, it
turns out that the there is a trade-off between the separation time of the coverage-related family
of inequalities and the obtained improvement of the quality of lower bounds.

One of the problems addressed by our computational results is the computational inefficiency
of the integer program needed to separate the coverage-related inequalities. To overcome
this problem, one should aim to develop more efficient exact or heuristic approaches for the
separation. Finally, it would be also interesting to compare decomposition based approaches
(e.g. Lagrangian or Benders decomposition) with the proposed Branch&Cut framework.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6 Frequency Assignment in Optical

Networks

6.1 Spectrum Assignment problem

In this chapter, we consider MIP models for the Spectrum Assignment problem. The research
presented is joint work with Andreas Bley, Benjamin Müller and Mohsen Rezapour.

6.1.1 Introduction

One of the challenging optimization problems in optical telecommunication networks is the
Routing andWavelength Assignment problem (RWA) which is the following. We are given a graph
G = (V ,E) and a set of endpoints that need to communicate with each other through paths
in the graph G. With respect to a total number of available wavelengths, we must determine
the paths through which the connections should be set up and determine the frequency slots
that should be assigned to these paths to maximize the number of connections that can be
established.

Channel 1

Channel 2

Channel 3

Figure 6.1.1: Lightpaths in a network. Different colors correspond to different paths, which
establish connections between their endpoints using the same frequencies on all
their edges.

While a simple heuristic could route the traffic on shortest paths between the endpoints, it
may be advisable to also allow longer paths to avoid wavelength conflicts. There is a tradeoff
between the number of allowed paths and thus the flexibility in the wavelength assignment
part and the increasing complexity of the problem incurred by considering multiple paths. A
standard multicommodity flow formulation for the RWA problem can be found in Ramaswami
and Sivarajan [1995]. An exemplary solution of the RWA problem can be seen in Figure 6.1.1.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

138 Frequency Assignment in Optical Networks

An important assumption in theRWAproblem is that the frequency slots we assign correspond
to intervals of some fixed size in the spectrum. For technical reasons, these fixed-size intervals
include guard bands at both ends of the interval, which are used to ensure non-interlapping
frequency ranges between different lightpaths. Networks employing this kind of allocation are
called Fixed grid networks. In these networks, one must assign several frequency slots to paths
whose demands exceed the provided capacity by just one slot. In that case, a path uses several
guard bands, leading to a waste of usable resources; this problem is avoided in a more variable
Flexgrid architecture (see for example Gerstel et al. [2012]).

In this chapter, we consider the Routing and Spectrum Assignment (RSA) problem, which
arises in the planning of flexgrid Wavelength-Division Multiplexing (WDM) networks and is
an extension of the Routing and Wavelength Assignment problem. In contrast to the RWA
problem, the RSA problem allows using more flexible wavelength assignments: we allow the
assignment of intervals of varying size, depending on the amount of traffic demand for the path.
Instead of only assigning one fixed-size interval, in the RSA we allow assigning a contiguous
interval in the frequency spectrum of variable size to a path.

Wedonot consider the full RSAproblem, but focus on the subproblemof SpectrumAssignment,
when the paths are already fixed. The solution methods for this subproblem could then be used
in a decomposition approach for the full RSA problem.
Given a set P of paths in a network, with a specified spectral demand for each of them, our

task therefore is to assign to each of them a spectral frequency interval of sufficient size to serve
the demands. Also, paths sharing edges require disjoint frequency intervals.

6.1.2 Problem setting

We now give a formal definition of the Spectrum Assignment problem. We are given a simple
graph G = (V ,E). The frequency spectrum is discretized into finitely many slots [T] = {1, ..., T }.
Furthermore, we have a set of fixed paths P = {P1, ...,P�} with Pi ⊆ E ∀ i = 1, . . . , . A spectral
demand di ∈ N is associated to each path Pi ∈ P. We can assume without generality that there
are no paths with zero demand.
The task is to assign to each path Pi a frequency interval [si, si + di − 1] ⊆ [T], si ∈ N such

that each pair of paths with shared edges have disjoint intervals, that is we have

[si, si + di − 1] ∩ [sj, sj + dj − 1] = ∅ ∀ i, j, i �= j such that Pi ∩ Pj �= ∅.

We assume that the frequency slots are ordered in such a way that slot 1 corresponds to the
lowest, slot T to the highest frequency slot. We consider the objective of minimizing the slot with
the highest frequency that is used by any path. This value will be referred to as themakespan of
a solution. In a sense, we treat the problem as a feasibility problem and try to decide for which
values of T the problem has indeed a feasible solution. Our solution method can then be used in
a Parametric Pruning approach to minimize T , for example by a binary search.

6.1.3 Computational complexity

The Spectrum Assignment problem isNP-hard. This can be seen in the following way. Given
an instance of the problem, we can consider the corresponding conflict graph. In this graph,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.1. Spectrum Assignment problem 139

the nodes represent the lightpaths in the original network. Two nodes in the conflict graph are
connected by an edge if and only if the corresponding paths in the fiber network share an edge.
If we assume unit demands for all paths, i.e. di = 1 for all i = 1, . . . , , each path only gets

exactly one color and therefore, the Spectrum Assignment problem on the original graph is
then equivalent to the graph coloring problem on the conflict graph. As any simple graph can
be realized as the conflict graph of some instance of the Spectrum Assignment problem (Boyacı
et al. [2016]), this implies NP-hardness even for the unit demand case.
If we relax the requirement that the set of slots assigned to each path has to be a contiguous

interval, the Spectrum Assignment problem reduces to solving the multicoloring problem on
the conflict graph, a fact which is exploited later in a simple ILP lower bounding model.

6.1.4 Related work

Graph Coloring problem The graph coloring problem and its variants have been studied
widely in the literature. In particular, several IP based approaches have been proposed for these
problems so far. One of the first IP formulations for the coloring problemwas proposed in Aardal
et al. [1996] where the authors presented a compact formulation with variables corresponding to
the assignment of different colors to the nodes. Since then this formulation has been strengthened
by a series of papers (e.g. Coll et al. [2002]; Méndez-Díaz and Zabala [2006]; Lee and Margot
[2007];Méndez-Díaz and Zabala [2008]) by adding strong valid inequalities in order to eliminate
the symmetry of the formulation and improve its integrality gap. In fact, the symmetry involved
in these models is the main obstacle for IP solvers (Méndez-Díaz and Zabala [2006, 2008]).
A less symmetric formulation for the coloring problem was considered by Mehrotra and

Trick [1996]. The authors introduced an exponential-sized IP formulation for the problem,
using one variable associated with each maximal stable set of the graph. To deal with the
exponential number of variables, they developed a Branch&Price algorithm based on the stable
set formulation. In Mehrotra and Trick [2007] they show that their approach can be extended
to the multicoloring problem. It is worth noting that a different formulation for the coloring
problem that is also based on stable sets, called the set packing formulation, is considered by
Hansen et al. [2009]. In this formulation, the condition that two stable sets cannot have a vertex
in common is expressed as a constraint in the model. They showed that this formulation is
equivalent to the stable set formulation in terms of the LP relaxation lower bound and that both
formulations are equally efficient when used in a Branch&Price algorithm.

Other related problems For the bandwidth allocation problem in point-to-multipoint
wireless systems similar polytopes arise as in our problem; facets of these polytopes have been
analyzed in a series of papers (Marenco and Wagler [2006], Marenco and Wagler [2009a]
and Marenco and Wagler [2009b]). Heuristics for the RSA problem have been proposed in
Klinkowski and Careglio [2011] and Olszewski [2014]. For the spectrum assignment problem
on a single path, a heuristic based on finding a good processing order for the classical First-Fit
algorithm (Johnson [1974]) has been proposed in Peters [2015].

Dynamic Storage Allocation problem Furthermore, the Spectrum Assignment problem
on a path is equivalent to the Dynamic Storage Allocation problem that has a long-standing line

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

140 Frequency Assignment in Optical Networks

of research; we only mention a few selected results. The problem can succinctly be described
as the problem of “packing given axis-aligned rectangles into a horizontal strip of minimum
height by sliding the rectangles vertically but not horizontally” (Buchsbaum et al. [2004]). Of
course, the rectangles in the described strip may not overlap.

The sum over the heights of all rectangles at a fixed x-coordinate is called the maximum load
of the given instance. Polynomial algorithms that find solutions which are not more than a
multiplicative constant away from the maximum load were given by Kierstead [1988] (factor
80), Kierstead [1991] (factor 6), Gergov [1996] (factor 5) and Gergov [1999] (factor 3). The first
constant-factor approximation algorithms for the problem with approximation guarantees of
O(2+ ε) for any ε > 0 were given by Buchsbaum et al. [2004]. Newer research mainly focuses
on generalizations or modifications and on the online variant of the problem.

Our contributions

In this chapter, we devise a three-stage exact algorithm to solve the Spectrum Assignment
problem. In the first stage presented in Section 6.2, we use a lower bound and a very fast
combinatorial heuristic based on so-called critical paths. The clique bound is already tight for
most instances we have and corresponding solutions can be found for most instances using this
simple heuristic.

If the first stage was unsuccessful in solving the problem optimally, we now use an IP formu-
lation of the multi-coloring relaxation of the problem. This stage is presented in Section 6.3.
This model is still a simplification of the full problem and we aim to provide promising lower
and upper bounds using the information provided by the relaxed model. We employ several
heuristics to obtain good feasible solutions and also exploit the easy solvability of the relaxed
model to improve the lower bounds.
If the second stage again fails to prove optimality, we then run our devised Branch&Price

algorithm exploiting the information obtained in the first two stages. This stage is described in
Subsection 6.4.4. We also compare the Branch&Price-approach with several compact formula-
tions.
In Section 6.5, we provide the results of our computational experiments, showing that the

described three-stage approach is computationally efficient and we often manage to avoid
entering the third phase.

6.2 Phase I: Articulation Point Heuristic

Definition 6.2.1 (Conflict Graph). Given a set of routing paths P, we define Gconf (P) := (V ,E)
to be the conflict graph of the set of paths, where the nodes v ∈ V represent the paths, that
is, V = P, and each edge e = (i, j) ∈ E between two nodes of the graph represents a conflict
between the two corresponding paths, i.e. e = (i, j) ∈ E ⇔ Pi ∩ Pj �= ∅. We usually drop the
argument (P) from the notation if the context is clear.

We assume that the nodes of the conflict graph Gconf are ordered, that is, V = {v1, . . . , vn}. By
a reordering, we mean a bijective function σ : [n] → [n].

We first present a very important combinatorial lower bound.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.2. Phase I: Articulation Point Heuristic 141

6.2.1 Lower bounds

First, we define what we mean by a clique:

Definition 6.2.2. A subgraph C = (W, F) of a graph G = (V ,E) is called a clique if

∀w1,w2 ∈ W,w1 �= w2 =⇒ {w1,w2} ∈ F.

In other words, every two nodes in a clique are connected by an edge. In the conflict graph,
this means that we cannot assign the same frequency slots to any of the elements of a clique.
From this, a simple combinatorial lower bound, called the clique bound, follows:

Definition 6.2.3. Let C be the maximum node-weighted clique in Gconf with respect to the
demands d. We define the clique bound as

Tclique :=
∑
i∈C

di.

Due the previous considerations, the clique bound is a valid lower bound for any feasible
solution of the Spectrum Assignment problem.

Remark 6.2.4. Tclique is a lower bound, that is Tclique � Topt, where Topt denotes the frequency
range of an optimal solution.

Proof. LetO = (s1, ..., s�) be the frequency assignment corresponding to the optimal range Topt.
Since each i �= j ∈ C are in a conflict, we have

Topt � max
i∈C

{si + di} � max
i∈C

{si + di}−min
i∈C

{si} �
∑
i∈C

di = Tclique.

6.2.2 Heuristic algorithm

One basic idea for creating a feasible assignment of the paths to frequency slots is to use a greedy
approach. We consider some ordering of the paths and try to assign them in this order to the
lowest frequency interval that does not cause a conflict. We employ different initial job orders
in the heuristic, including ordering jobs nondecreasingly or nonincreasingly by size or numbers
of conflicts and randomly generated orders. A formal description of the greedy approach, based
on the classical First-Fit algorithm for the Bin Packing problem, is given in Algorithm 5 on the
following page.

This approach is also a standard approach for scheduling problems called List-scheduling. For
scheduling problems with conflicts, it has been introduced and analyzed by Garey and Graham
[1975]. It has also been similarly employed for other wavelength assignment problems, see for
example Koster and Zymolka [2003].
We remind the reader that we use the notation Γ∗i for all neighbors of the node i in a graph

G = (V ,E). Also, we set Γi := Γ∗i ∪ {i}.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

142 Frequency Assignment in Optical Networks

Algorithm 5 First-Fit Assignment

Input: conflict graph Gconf = (V ,E),V = {v1, . . . , v�}; demands di ∈ N, i = 1, . . . ,
Output: starting frequency slots = (s1, ..., s�) for paths Pi, i = 1, . . . , ;
1: for i := 1, . . . , do
2: si := 0
3: for all j = 1, . . . , i− 1 with j ∈ Γ∗i do
4: if [si, si + di] intersects]sj, sj + dj] then
5: si := sj + dj

6: continue
7: end if
8: end for
9: end for
10: return (s1, ..., s�);

After determining an initial assignment using First-Fit, we compare the best found solution
to the clique bound, as introduced in Subsection 6.2.1, and terminate execution if they already
match.
Given an assignment created by the First-Fit algorithm, no job can be assigned to a lower

frequency slot interval without creating a conflict. Due to this fact, we know that a critical path
in the assignment has to exist.

Definition 6.2.5. Let A = (s1, ..., s�) be a feasible assignment, [0, TA] be the frequency range
used by A, and P = (i1, ..., im) be an ordered subset of nodes of the conflict graph Gconf , or in
other words, an ordered subset of the routing paths P. Let path ik be in conflict with path ik+1
for all k = 1, . . . ,m− 1. We call the path set P a critical path set if

• si1 = 0,

• si1 + di1 = si2 , ..., sik−1 + dik−1 = sik ,

• sim + dim = TA.

From the definition, it is immediately clear that without changing the assignment of at least
one path in the critical path set, all attempts to reduce the makespan of the solution must fail.

Given a solution, there might actually be several critical paths. Obviously, we need to change
at least one assignment in every one of them to be able to decrease the solution value.

To do this efficiently, we compute the critical network for the assignment. This network has a
node for each path that is in a critical path subset. Every node in the critical network has edges
to all conflicting paths that end directly before it or start directly after it.
This critical network could be created as a graph with as many nodes as we have jobs by

inserting an edge between two nodes whenever two jobs that are in conflict are scheduled
directly after one another. This approach has the disadvantage of putting edges in the graph that
are on no critical path. One way to avoid this problem is to run a Breadth-First Search (BFS) as a
second step, beginning at an artificial sink node and ending at an artificial source node, while not

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.2. Phase I: Articulation Point Heuristic 143

exploring from the artifical source node. All edges that are never in the seen in the breadth-first
search can then be removed, leaving only the critical network.

The alternative approach we choose is to generate the network from back to front, in a sense
creating the network by the breadth-first search described above.

As we have observed earlier, any modification of the solution that can improve the makespan
has to interfere with all critical paths. We now describe how we can find such a modification.
This is based on the following idea: In order to destroy all critical paths, we would like to modify
some assignments such that none of the critical paths still exist. What we are looking for is
set of nodes in the critical network whose removal would disconnect the artificial sink and
source from one another. Denoting the artificial source and sink by s and t, such a set is called
s-t-node cut. The most simple form of node cuts are articulation nodes of the network, if they
exist. Therefore, by changing the assignment of the articulation nodes, we are able to interrupt
all critical paths of the assignment.
A simple way to achieve this is to use the classical algorithm due to Hopcroft and Tarjan

[1973] which finds all articulation nodes in O(|E|) using a special variant of depth-first search
(DFS) and which we will describe next.

6.2.3 Hopcroft-Tarjan algorithm

We now describe the basic ideas underlying the algorithm, see also Hopcroft and Tarjan [1973].
For the description of the algorithm, we follow Cormen et al. [2000].

The setting is as follows. We have a connected, undirected graphG = (V ,E) and want to find
its articulation points.
The algorithm is based on depth-first search. Let r ∈ V be an arbitrarily chosen root of the

graph G and let T be a tree resulting from a depth-first search starting in r.
Considering the root of the DFS tree, we know that r is an articulation point of G if and only

if r has at least two children in T . This is due to the fact that we do a DFS, so another edge
adjacent to r is used only if a whole component of G− v has been completely explored.

This idea could already be used to find the articulation points in quadratic time by running a
DFS on every node of the graph and checking each root. But there is another useful property
that can be used to speed up this method: We can also find a necessary and sufficient criterion
for a nonroot node of T to be an articulation point.
In a standard depth-first search, the distance inside the tree from each node to the root v

is usually maintained. This is also called the depth of a node v. We can also maintain another
useful information during the DFS, the so-called lowpoint of a node v. The nodew is called a
descendant of v in T if v lies on the unique path in T from r to w. The node v ∈ V is called a
proper ancestor of w if it is a descendant of v and v �= w. Looking at all descendants of a node v

in T , we define its lowpoint (v) as the minimum depth of all descendants of v. During a DFS,
this information is quite easy to maintain—for any node, it can be computed at the moment
when it is removed from the stack in the DFS, as we have considered all its descendants by then.
The lowpoint is then the minimum of the depth of v, the lowpoints of all its children and the
depth of all neighbors of v, excluding its parent.
If for a node v, we then have a child s of v with the property that (s) � depth(v), we have

found an articulation point. This is based on the following observation:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

144 Frequency Assignment in Optical Networks

Lemma 6.2.6. Let v ∈ V , v �= r. Then v is an articulation point of G if and only if v has a child s

in T such that there is no edge from s or any descendant of s to a proper ancestor of v.

Using the articulation points of the critical network

Algorithm 6 Articulation Point Heuristic

Input: conflict graph Gconf = (V ,E),V = {v1, . . . , v�}; demands di ∈ N, i = 1, . . . , , K ∈ N

Output: starting frequency slots = (s1, ..., s�) for paths Pi, i = 1, . . . ,
1: (s1, . . . , s�) := First-Fit(Gconf , (d1, . . . ,d�))
2: for i := 1, . . . ,K do
3: Gcrit := critical-network((s1, . . . , s�), (d1, . . . ,d�),Gconf)

4: (v1, . . . , vk) := articulation-points(Gcrit)
5: Σ = (σ(1), . . . ,σ(k)) := random-permutation(v1, . . . , vk)
6: Π = (π1, . . . ,π�) := Σ applied to (1, . . . ,)
7: Reorder nodes of Gconf according to Π

8: (s1, . . . , s�) :=First-Fit(Gconf , (d1, . . . ,d�))
9: end for
10: return A = (s1, ..., s�);

Having found all articulation points using the algorithm described above, we modify the
initial order that was used to compute this scheduling by randomly permuting the articulation
points within it. We then again use the greedy scheduling approach described above and find a
new solution. This process can, in principle, be iterated indefinitely, or until nomore articulation
points exist (in that case, we could employ other methods to find node cuts as described above).
The full heuristic algorithm is given in Algorithm 6 – there, the iteration is run K times.

The heuristic yields good solutions very fast, as we will show in the computational experiments
in Section 6.5.

6.3 Phase II: Multicoloring formulation

We now propose an exponentially-sized relaxed formulation for the problem based on stable
sets of the conflict graph. To solve it, we use a Column generation approach to try to avoid having
to generate exponentially many variables. This approach was initially introduced by Dantzig
and Wolfe [1960]. For a more recent description of Column generation techniques, compare
Desaulniers et al. [2005].

Column generation

Column generation techniques are normally applied when we have a master problem that
contains exponentially many variables, which can lead to memory problems and also very long
running times for solving the subproblems.

The idea of column generation is to begin work with a small, promising subset of the variables.
This variable-restricted problem is called the restricted master problem (RMP).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.3. Phase II: Multicoloring formulation 145

The black-box plan for column generation goes approximately like this: We solve the RMP,
which gives a current optimal objective value z̄ and dual multipliers π, proving the optimality of
the solution with the currently available variables. Because we want to solve the master problem,
not the RMP, we then generate additional variables in such a way that they change the current
optimal solution. This is accomplished by looking for variables with negative reduced costs
which could be used to further improve the LP solution, if only they were part of the RMP.They
can be found by solving another subproblem which we call the pricing problem. This consists of
solving an LP whose objective is to minimize the reduced cost of not yet generated variables. We
continue this process until there is no longer such a variable – then, we have solved the master
problem optimally. Of course, this method works as described only for linear programs. To
solve exponentially-sized ILPs using this method, it has to be embedded in a Branch&Bound
framework; column generation is then used in every node of the search tree. This can lead to
complications depending on the exact formulation of the problem, as the branching decisions
by the Branch&Bound framework now interact with the pricing problem. For example, it could
happen that in the pricing problem, one keeps generating some variable that can no longer enter
the LP basic solution because some branching decision forbids using it.
If we simply use an ILP to solve the pricing subproblem, the branching decisions can be

incorporated into the formulation of the pricing problem. More care needs to be taken if the
subproblem is a combinatorial problem which can be solved more efficiently using a specialized
algorithm. In that case, the branching decisions might destroy the structure of the subproblem,
making the specialized algorithm useless. This is often a problem one would like to avoid by
branching on variables that change the subproblem in such a way that its structure remains
intact.

Themulticoloring formulation

We now consider an exponentially-sized relaxed formulation for the multicoloring problem
based on stable sets of the conflict graph that was proposed by Mehrotra and Trick [2007].

First, we observe that due to its construction, stable sets inGconf correspond to sets of paths
that are mutually not in conflict. Therefore, we can assign the same frequency slots to all paths
inside such a stable set without creating a conflict. Let S be the set of all maximal stable sets
of Gconf = (P,E). We assume without loss of generality that we have an upper bound T for
the optimal value. If we relax the requirement that frequency slots assigned to paths must be
intervals, our problem reduces to the multicoloring problem.
We use nonnegative integer variables xS in the ILP model for each stable set S ∈ S. These

indicate the number of slots in which this stable set is used.

(IP-MC) min
∑
S∈S

xS

subject to
∑

S∈S:i∈S

xS � di ∀ i ∈ P (6.3.1)

xS ∈ N0 ∀S ∈ S

Constraints (6.3.1) ensure that we pick enough stable sets and hence, enough frequency slots to
satisfy the demand of each path.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

146 Frequency Assignment in Optical Networks

An optimal solution to (IP-MC) provides us with a lower bound for the SpectrumAssignment
problem. We refer to this lower bound as Tmcol.
To illustrate the lower bounds, consider the example depicted in Figure 6.3.1. While an

optimal frequency assignment needs at least Topt = 6 frequency slots, the clique bound Tclique is
equal to 4 and an optimal solution of the multicoloring model for the instance has a value of
Tmcol = 5.

Gconf di ≡ 2 ∀ i
1

2

34

5

optimal solution to (IP-MC):
1
4

1
3

2
4

2
5

3
5

optimal solution:

6

1
3

2
4 5

Figure 6.3.1: Tclique < Tmcol < Topt

In the next section, we discuss how a solution to the multicoloringmodel can not only provide
a good lower, but can be used to create good feasible solutions as well.

Upper Bounds

In order to solve the (IP-MC) model, we use the column generation model described as is, where
we solve the pricing subproblem by a specialized Branch&Bound method available in SCIP
(Achterberg [2009]).

Given an optimal solution to (IP-MC), let A = {S1, ...,Sk} be the set of all stable sets picked
by this optimal solution. In general, we may not be able to generate an optimal solution to our
problem just by assigning frequency ranges to these stable sets, as there might be no way to
assign them in such a way that the resulting frequency ranges form intervals. However, the
stable sets picked can be used to provide some information about the problem structure to the
heuristic described as Algorithm 5 on page 142. Any ordering of the stable sets can be used to
generate a job reordering that may improve the solution found by that heuristic.

6.4 Phase III: Exact models

Wenowpresent several variants ofmodelling the problem exactly. We beginwith several compact
formulations and then present our Branch&Price-Approach that is, like the multicoloring model
from the previous section, based on stable sets of the conflict graph.

We remind the reader that P denotes the set of paths, di are the path demands, [T] is the set
of available frequencies and E are the edges in the input graph.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.4. Phase III: Exact models 147

6.4.1 Constraint Programmingmodel

We begin with a constraint programming model. In this model, our objective is represented by
an integer variable 0 � makespan � T that is to be minimized.
For each path i ∈ P, we introduce an integer variable zi that determines the lowest fre-

quency assigned to this path. To model the requirement that conflicting paths must have
non-overlapping frequency intervals, we use a well-known constraint from the field of Con-
straint Programming known as the cumulative constraint. This constraint was introduced by
Aggoun and Beldiceanu [1993] for resource-constrained scheduling problems. It models the
condition that at no point in time, a set of jobs that is processed at the same time can exceed
the resource bound. That is, if job j starts at time Sj, is processed for a time of pj and uses rj of
some resource that has an upper bound of C, the condition∑

j:Sj�t<Sj+pj

rj � C

has to be true for all times t.
The cumulative constraint appears here for every edge of the original graph. Any path that

uses this edge has to use a frequency interval disjoint from all other paths using this edge. This
can be expressed as a cumulative constraint with C = 1, rj = 1 and a processing time of pj=dj.

Finally, we have the constraint thatmakespan � maxi∈P zi+di, linearized into one constraint
for each path.

Let Pe ⊆ P denote the set of paths containing the edge e ∈ E.

(CP-SA) min makespan
subject to cumulative (Pe, (zp)p∈Pe

, (dp)p∈Pe
, r = 1,C = 1) ∀e ∈ E (6.4.1)

makespan � zp + dp ∀p ∈ P (6.4.2)
zp ∈ N0 ∀p ∈ P

6.4.2 Binary model

The binary model is a linearization of the constraint programming model—we simply express
the constraints using binary variables and linear constraints on them.

For this, we have variables xi,t and zi,t for each i ∈ P and t ∈ [T], all of them binary.
The zi,t variable is an indicator variable determining the lowest frequency assigned to a path.

Let t(i) denote the index t of the lowest zi,t with a non-zero value, then the constraints will
ensure that the necessary subsequent frequeny slots are used as well: xi,j = 1 for all j with
j ∈ [t(i), t(i) + di − 1].

The zi,t variables for a fixed path i ∈ P form a so-called special ordered set of type 1, meaning
that only one of them can be non-zero. This is not forced by an explicit constraint in the model,
but the objective function ensures this property for any optimal solution.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

148 Frequency Assignment in Optical Networks

(BM): minmax
i∈P

(
∑
t∈[T]

t · zit+di)

subject to
∑

t̃∈{0,T−di}

zi,t̃ � 1 ∀ i ∈ P

∑
t̃∈[max{t−di+1,0},t]

zi,t̃ � xi,t ∀ i ∈ P, t ∈ [T]

xi,t + xj,t � 1 ∀(i, j) ∈ E(Gconf), t ∈ [T]

xi,t, zi,t ∈ {0, 1}

While the objective function is not linear, we can use a simple reformulation to linearize it.
We introduce an integer variable y and write y �

∑
t∈[T] t · zit + di for each path i ∈ P as a

constraint. The objective function is then miny, which is now linear.

6.4.3 Conflict-Graph Orientingmodel

The Conflict-Graph Orienting model, introduced by Borndörfer et al. [1998], is based on the
idea that any valid assignment of frequencies to paths determines an order for each pair {i, j} of
conflicting paths. This is because in the assignment, one of i and j has to be assigned to lower
frequencies than the other. This way, any solution defines a partial order1 for the conflict graph.
In the ILP model, we introduce integer variables li and ri that define the borders of the

frequency interval assigned to path i. For each conflict edge, we have a variable xij and a
variable xji that determine an orientation of the conflict graph.

The objective function is expressed as the maximum over all ri and can again be linearized
like in the previous model.

(CGO): minmax
i∈P

ri

subject to li + di � ri ∀ i ∈ P (6.4.3)
lj + Txji � ri ∀ ij ∈ Econf (6.4.4)
li + Txij � rj ∀ ij ∈ Econf (6.4.5)
xij + xji = 1 ∀ ij ∈ Econf (6.4.6)

xij ∈ {0, 1}

One can see immediately that the linking constraints (6.4.4) and (6.4.5) are of big-M type
and because of this, the linear relaxation of this model will be quite weak.

1Partial means here that not all pairs of objects are comparable.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.4. Phase III: Exact models 149

6.4.4 Branch&Price model

Our Branch&Price model is based on the idea of using stable sets as we already saw earlier in
Phase II. In contrast to phase II, we will also enforce that the spectral ranges assigned to paths
will be intervals.

The basic idea of the model will be the assignment of stable sets to frequency slots. The stable
sets consist of nonconflicting paths, which therefore can all be assigned to the same frequency.
Of course, if we use a stable set S containing a certain path i ∈ P and the demand of path i is
larger than 1, then several consecutive frequencies will have to use stable sets also containing
path i, thereby restricting the possible choices of stable sets.

Similar ideas have previously been used for wireless frequency assignment problems, see for
example Jaumard et al. [2001]. There, co-channel constraints are incorporated into variables
that corresponds to sets that can be assigned to the same channel. These variables are then
created in a column generation scheme. On the other hand, the “Adjacent Channel Interference
Constraints” are explicitly expressed in the model, again restricting the possible choices for sets.

We now give a formal description of the model. For every S ∈ S, t ∈ [T], we introduce binary
variables xS,t ∈ {0, 1} that indicate if stable set S is used in slot t; that is, if the frequency slot t is
assigned to paths corresponding to the nodes in S. For every Pi ∈ P and t ∈ [T], we consider
binary variables zi,t ∈ {0, 1} that indicate if the contiguous set of slots assigned to path Pi starts
at slot t. Finally, we use binary variables ut, t ∈ [T] that indicate whether slot t is used at all.
Using the notation above, our ILP formulation is as follows.

(IP-BP): min
∑
t∈T

ut

subject to
∑

S∈S:i∈S

xS,t �
∑

t̃∈[max{t−di+1,0},t]

zi,t̃ ∀ i ∈ P, t ∈ [T] (6.4.7)

−
∑
S∈S

xS,t � −ut ∀t ∈ [T] (6.4.8)
∑

t̃∈[0,T−di]

zi,t̃ � 1 ∀ i ∈ P (6.4.9)

ut−1 � ut t ∈ [T] (6.4.10)
xS,t ∈ {0, 1} ∀S ∈ S, t ∈ [T]

zi,t ∈ {0, 1} ∀ i ∈ P, t ∈ [T]

ut ∈ {0, 1} ∀t ∈ [T]

Theobjective is to minimize the number of slots used. As the slot ordering constraints (6.4.10)
actually lead to a contiguous slot usage, this corresponds to minimizing the total length of the
spectrum range used by the routing paths.

Constraints (6.4.7) enforce that a slot t must be assigned to some stable set containing path i

if the set of slots assigned to path Pi has already started at frequency slot t̃ ∈ {t− di + 1, . . . , t}.
This ensures that the frequency assignment for any path in some optimal solution to (IP-BP) is
an interval. Constraints (6.4.8) impose that we do not use more than one stable set for each slot.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

150 Frequency Assignment in Optical Networks

Finally, constraints (6.4.9) forbid to start a path so late that its frequency interval does not fit
anymore within the range bound.

Note that it is possible that we get a solution to (IP-BP) in which the set of used frequencies
for some paths is not an interval. In this case however, intermediate slots are unused. To alleviate
this problem, we can simply shift the assignment to the left, thereby removing the unused slots,
to get a contiguous interval.

Solving the B&P-model

The proposed formulation (IP-BP) contains an exponential number of variables. Therefore, the
solution procedure we devise is based on the column generation technique. We consider as
the restricted master problem the continuous relaxation of the (IP-BP) model including all the
constraints and the z variables, but only the x variables corresponding to a subset S ′ ⊆ S of the
maximal stable sets of Gconf .

Initialization

We enrich the restricted master problem with solutions obtained in the first stage. Given an
assignment A returned by Algorithm 2. We extract stable sets corresponding to this assignment
as described in Algorithm 3; and then add them to S ′.

Algorithm 7 extract_stable_sets(A)
Require: assignment A
Ensure: family of stable sets A
1: Let B(t) be the set of path in S using slot t
2: A := ∅ , t := 0
3: while B(t) �= ∅ do
4: add B(t) to A

5: increase t until B(t) changes
6: end while
7: return A

Column generation

We iteratively solve the restricted master problem and search for new columns with negative
reduced cost. This can be computed using an optimal dual solution as follows. Let the dual
variables corresponding to constraints (6.4.7) be πi,t � 0, for all i ∈ P, t ∈ [T]. We also
refer to the dual variables corresponding to constraints (6.4.8) as μt � 0, for all t ∈ [T]. The
corresponding pricing problem looks as follows.

min
t∈{0,1,...,T}

{
1+ μt −max

S∈S

{∑
i∈S

πi,t
}}

(6.4.11)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.4. Phase III: Exact models 151

We observe that, for a fixed slot t, this corresponds to solving a maximum-weight stable set
problem on the conflict graph, while a weight πi,t is associated with each node i in P. So our
pricing subroutine works as follows. Given a solution to the restricted master problem, we
solve the corresponding maximum-weight stable set problem for every t independently. If the
solution to the maximum-weight stable set problem has value less than 1 + μt for all t, there
is no additional variable with negative reduced cost and the solution to the restricted master
problem is therefore optimal. Otherwise, the variable xS,t corresponding to the stable set and
frequency attaining the optimal value in (6.4.11) will be added to the RMP. To speed up the
column generation process, we add this variable for more than just this frequency. Let j be the
path in S with the highest demand. We then add the variables corresponding to this stable set in
the range [t−dj, t+dj] immediately to our restrictedmaster problem. The new restrictedmaster
problem is resolved and the process is iterated until the master problem has been completely
solved.

Branching strategies

The optimal solution obtained at the end of the above pricing loop might not be integral. We
hence apply the Branch&Bound technique (see Wolsey [1998], compare also Subsection 1.3.5) to
handle integrality. Note that this technique when used together with column generation is called
Branch&Price (see Lübbecke and Desrosiers [2005]). For this end, we propose and evaluate two
branching rules.
We also remark that branching on the z variables is sufficient, as the x-variables can always

be set to integral values without any loss. This is due to the fact that if in a certain solution the
z-variables are fixed to integral values and we choose a fixed t, a certain subset of the constraints
(6.4.7) are active enforcing certain nodes to be in the stable set S chosen for the slot t by the
x-variables. We can choose any stable set that contains all the enforced nodes and set the
corresponding x-variable to 1, fixing all other x-variables to zero, without losing any objective
value, as this change has no influence on the ut-variables.

Median-based spectrum range branching. We determine the z variable with the most
fractional value, that is, if v(z) denotes the fractional value of variable z, we choose one that
maximizes min{v(z), 1− v(z)}. Let Pi be the path it corresponds to. We define the partial sum
S� =

∑�
t=0 zi,t. Let m be the first slot among the spectrum range [T] for which Sm � 1

2 . We
define tbreak to be m, if Sm � 17

20 ; max{m − 1, 0}, otherwise. The heuristic idea behind this is
the following: If Sm > 17

20 , the value assigned to slotm is greater than 7
20 , so close to

1
2 (as this

was the first slot where the partial sum exceeds 1
2). To get the branches as equal as possible, we

should then assign m to the upper interval, as only a small part is left to get to 1. On the other
hand, if Sm � 17

20 , we can assign m to the lower interval, as at least 3
20 of fractional value can be

assigned to the upper interval, hopefully even more. We create two branches, by imposing

tbreak∑
t=0

zi,t = 0

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

152 Frequency Assignment in Optical Networks

in one child node and
T∑

t=tbreak+1
zi,t = 0

in the other one.

Naivespectrumrangehalving. In this branching rule, we again identify themost fractional
z variable as well as the path Pi it belongs to. We identify the first and the last slot among [T],
namely tbegin and tend, whose zi,t variable is not yet upper bounded by zero (by constraints im-
posed in the parent nodes of the current branch-and-bound tree). We compute an intermediate
point tinter := 	tbegin+tend

2
. Then, two branches are created by imposing
∑tinter−1

t=tbegin
zi,t = 0 in

one child node, and
∑tend

t=tinter
zi,t = 0 in the other one.

Fractional fatness branching Let v be some branching candidate, that is, one of the z

variables. We now introduce a score s(v). Our branching rule then selects a branching candidate
with maximum score.

For this purpose, let jv denote the job and tv denote the spectral slot belonging to the variable
v. Let

f(v) := min

⎧⎨
⎩2 ·

∑
t∈[tv+1]

z∗i,t, 1−
∑

t∈[tv+1]
z∗i,t

⎫⎬
⎭ .

Furthermore, we set
w(v) = d(jv) · e(jv),

where d(jv) denotes the spectral demand of the job jv and ej(v) denotes the path length of
jv. We set c(v) := log(n) + 1, where n denotes the number of zj(v),t variables currently set to
non-zero.

We define the branching score as

sv := fv ·wv · cv.
These are some heuristic ideas to avoid symmetries in the branching process and to favor

paths in the branching that have not been restricted very much in the previous branching
decisions. If a lot of paths are restricted early in the branch-and-bound tree, the hope is that
strong cuts can be generated early using the model inequalities.
We remark that the branching decisions require no changes in the basic structure of the

pricing problem, which remains a maximum-weight stable set problem.

Rounding heuristic

In order to improve the overall performance of our Branch&Price algorithm, it is helpful to
generate good primal solutions during the solution procedure. Given an optimal, fractional
solution (x∗, z∗) of some current node of the Branch&Bound-tree, we can use it to generate
a job order to run the First-Fit heuristic. This is done by determining, for different threshold
values h ∈ [0, 1], the lowest integer th at which the sum

∑th
t=0 z

∗
i,t exceeds the value h. For every

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.5. Computational experiments 153

chosen threshold value this yields a value th(p) for every path, which we use to generate a job
order by comparing these values. Then, the First-Fit Assignment Heuristic, Algorithm 5 on
page 142, is called to determine a feasible assignment using this ordering.

Reusing previous information

To be able to finish each stage as quickly as possible, we try to reuse as much information as
possible. From the first to the second stage, the clique bound and the best found solution are kept.
The best solution is then transformed into a representation by stable sets and the corresponding
columns are part of the starting variable set of the restricted master problem.
We also keep the best solution found in stage II and reuse the corresponding stable sets to

initialize Phase III.

6.5 Computational experiments

Computational details

For our implementation, we used the Mixed-Integer Programming Solver SCIP (Achterberg
[2009]) in version 3.1.1 with the LP solver SoPlex. The tests were run on an Intel i7-4771 CPU
with 3.5 GHz and with 16GB of memory.

6.5.1 Test instances

We have 20 test instances. Of these, instances a-l are based on the data of the Eibone project (Bley
et al. [2008]), while instances m-t are based on the SNDLib (Orlowski et al. [2010]). The routing
is constructed manually via shortest path computations in the original network (distributing
the load on two edge-disjoint paths if they exist), demands are based on the original demands
downscaled to realistic values for our considered problem.

More information on properties of the test instances can be found in Table 6.1 on the following
page. We denote the instance name, the number of nodes, the number of edges and the number
of demand-pairs. In column density, we denote the percentage of edges the conflict graph has
compared to a complete graph on the same number of nodes. It is followed by the minimum
demand value, the maximum demand value and the average and median demand. In the last
column, we mark the standard deviation of the demand values.

6.5.2 Computational experiments

Results

A time limit of 2 hours was used in all computations.
First, we explain the table for the Articulation Point Heuristic and theMulticoloring approach,

compare Table 6.2 on page 155. Column I denotes the instance name. In columns UB∗ and
LB∗, the best results for these instances that we know are marked. We remark that all the lower
bounds in the table match the clique bound explained earlier. So for all but one instance, we
know the optimal solution values equals the clique bound.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

154 Frequency Assignment in Optical Networks

inst |V | |E| |P| density dmin dmax d dmedian σ(d)

a 17 17 16 0.16 3 12 7.31 7 2.59
b 17 16 60 0.46 3 3 3.00 3 0
c 17 16 25 0.27 3 12 7.32 8 1.67
d 17 16 33 0.49 3 3 3.00 3 0
e 17 16 26 0.22 3 3 3.00 3 0
f 17 16 47 0.35 3 12 5.64 4 2.19
g 17 16 59 0.42 3 12 5.10 5 1.30
h 17 16 18 0.27 3 12 3.50 3 2.06
i 17 16 31 0.30 3 12 5.10 5 2.10
j 17 17 99 0.45 3 12 4.23 4 0.97
k 17 17 97 0.41 3 12 4.10 4 0.92
l 17 16 63 0.44 3 12 3.62 3 1.50
m 12 15 132 0.47 3 12 3.53 3 1.42
n 15 22 210 0.44 3 12 4.11 4 1.32
o 37 57 1332 0.30 3 12 4.25 4 0.96
p 10 45 90 0.06 3 12 4.31 4 1.95
q 11 42 44 0.12 3 3 3.00 3 0.00
r 25 45 600 0.22 3 12 4.43 4 1.59
s 50 88 1324 0.17 3 3 3.00 3 0.00
t 40 89 1560 0.20 3 12 8.15 9 1.64

Table 6.1: Overview of basic instance properties. Instances a-l are based on the Eibone project,
while instances m-t are based on the SNDLib.

In the following columns, we present the results for the Articulation Point Heuristic. By v(S),
we denote the best value the heuristic found. By gap[%], we compare the best value found
against the clique bound. In the column gapUB[%], we compare the best solution value found
by the heuristic against the best overall upper bound. The number of iterations is denoted
in the column #It. Finally, we mark the running time in seconds in the column t[s]. For the
Multicoloring + StableSet-FirstFit approach, the same values are presented in the table.

We now explain the tables for the Constraint Programming and the Binarymodel, compare Ta-
ble 6.3 on page 156. The main difference to the previous approaches is that these approaches
generate their own lower bounds that increase throughout the computation. So in column
gap[%], wewrite the final gap that was reported by the solver. In column gapLB∗ , we report the gap
between the solution this approach generated and the best lower bound we know. Furthermore,
in column #BB, we report the Branch&Bound-nodes processed by the solver.
In the last table of computational results, see Table 6.4 on page 158, we present the results

for the Conflict-Graph Orienting model and the full column generation model using the last
of the described branching rules. We do not present the exact results for the other branching
rules, but remark that empirically, the branching rule presented here worked best among the
three described. The selected branching rule has no influence on the largest few of the instances
in these computations as the time limit is already exceeded before the branching process even
begins.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.5. Computational experiments 155

Articulation Point Heuristic Multicoloring + StableSet-FirstFit
I UB∗ LB∗ v(S) gap[%] gapUB[%] #It t[s] v(S) gap[%] gapUB[%] #It t[s]
a 41 41 41 0.00 0.00 1 <1 41 0.00 0.00 1 <1
b 78 78 78 0.00 0.00 1 <1 78 0.00 0.00 1 <1
c 62 62 62 0.00 0.00 6 <1 62 0.00 0.00 2 <1
d 45 45 45 0.00 0.00 9 <1 45 0.00 0.00 1 <1
e 24 24 24 0.00 0.00 1 <1 24 0.00 0.00 1 <1
f 108 108 108 0.00 0.00 1 <1 108 0.00 0.00 1 <1
g 137 137 137 0.00 0.00 1 <1 137 0.00 0.00 3 1
h 30 30 30 0.00 0.00 1 <1 30 0.00 0.00 1 <1
i 65 65 65 0.00 0.00 1 <1 65 0.00 0.00 1 <1
j 134 134 134 0.00 0.00 63 <1 140 4.29 4.29 14334 7200
k 110 110 110 0.00 0.00 16103 94 111 0.90 0.90 21133 7200
l 87 87 87 0.00 0.00 17 <1 87 0.00 0.00 16 8
m 153 153 153 0.00 0.00 3065 45 153 0.00 0.00 12486 7007
n 310 310 310 0.00 0.00 30 1 318 2.52 2.52 6927 7200
o 1044 1026 1049 2.19 0.48 841 7198 1108 7.40 5.78 9 7179
p 49 49 49 0.00 0.00 3 <1 49 0.00 0.00 1 <1
q 24 24 24 0.00 0.00 1 <1 24 0.00 0.00 1 <1
r 462 462 462 0.00 0.00 4 3 467 1.07 1.07 2168 7200
s 396 396 396 0.00 0.00 33 145 — — — — —
t 2333 2333 2333 0.00 0.00 11 106 2338 0.22 0.22 47 7030

Table 6.2: Computational results for Articulation Point and Multicoloring Heuristic

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

156 Frequency Assignment in Optical Networks

Constraint program+FirstFit Binary model+FirstFit
Inst UB∗ LB∗ v(S) gap[%] gapLB∗ #BB t[s] v(S) gap[%] gapLB∗ #BB t[s]
a 41 41 41 0.00 0.00 1 <1 41 0.00 0.00 1 6
b 78 78 78 0.00 0.00 1 1 78 92.30 0.00 400 7082
c 62 62 66 27.27 6.06 228500 7195 62 0.00 0.00 9 87
d 45 45 51 66.66 11.76 156200 7192 45 82.22 0.00 32600 7200
e 24 24 24 0.00 0.00 1 <1 24 0.00 0.00 1 5
f 108 108 108 0.00 0.00 176 <1 113 78.76 4.42 1400 7198
g 137 137 137 0.00 0.00 335 4 151 88.08 9.27 1 7198
h 30 30 30 0.00 0.00 1 <1 30 0.00 0.00 20900 91
i 65 65 65 0.00 0.00 177 <1 65 0.00 0.00 2600 367
j 134 134 155 16.78 13.59 270100 7198 155 87.74 13.55 1 7200
k 110 110 110 0.00 0.00 21121 544 138 87.68 20.29 1 7199
l 87 87 87 0.00 0.00 501 8 93 79.57 6.45 200 7199
m 153 153 153 0.00 0.00 1642 39 170 87.06 10.00 1 7200
n 310 310 310 0.00 0.00 2465 63 330 92.73 6.06 1 7219
o 1044 1026 1155 12.29 11.17 214500 7197 — — — — 374
p 49 49 56 14.29 12.50 160800 7197 49 6.12 0.00 19500 7200
q 24 24 24 0.00 0.00 1 1 24 0.00 0.00 1 10
r 462 462 465 11.83 0.65 255400 7199 465 — 0.65 0 7200
s 396 396 411 98.05 3.65 210800 7196 — — — — 735
t 2333 2333 2462 49.59 5.24 219800 7198 — — — — 628

Table 6.3: Computational results for the Constraint Programming and the Binary model ap-
proach

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.6. Conclusions 157

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

110

112

114

116

118

120

122

t/sec

ob
j.
va
lu
e

Best multicol solution
Best AP heuristic solution

clique bound

Figure 6.5.1: Multicoloring approach vs Articulation Point Heuristic on instance k

For the column generation model, we have two additional columns in the table, #PC and #PV ,
detailing the number of the times the pricer was called and the number of variables it generated
in these calls. For the larger instances, the running time of the pricer is not a significant factor,
as it takes much longer to solve the increasingly larger LP relaxations.

Results of the experiments

For the considered models, we conclude that the heuristic approaches work best in finding
good solutions quickly. Also, for these instances it is simple to prove the optimality of heuristic
solutions, because the clique bound equals the value of an optimal solution in all but one instance,
and for the remaining instance, it might still be true, but we do not know, as a provably optimal
solution for this instance seems to be out of reach with our methods.

Concerning the compact exact ILP models, we can see that while the small models get solved
quickly, partly due to the additional FirstFit-Heuristic, for the larger instances, the gaps are very
large. The gaps are quite a bit better in the Constraint Programming approach, but still are not
very good. While the column generation approach managed to solve every instance optimally
where it made any progress at all, it could not even solve the root node relaxation for the larger
instances within the given time bound.

6.6 Conclusions

We introduced a combinatorial optimization problem for the spectrum assignment to optical
lightpaths. We studied two heuristic approaches, one of them based on a relaxation, and four

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

158 Frequency Assignment in Optical Networks

Conflict-Graph Orienting model Exact-ZSM
I UB∗ LB∗ v(S) gap[%] gapLB∗ #BB t[s] v(S) gap[%] #BB #PC #PV t[s]
a 41 41 41 0.00 0.00 1 <1 41 0.00 1 2 540 1
b 78 78 78 87.18 0.00 250300 7195 78 0.00 1 5 793 5
c 62 62 62 6.45 0.00 5068000 7200 62 0.00 1 2 1049 3
d 45 45 45 71.11 0.00 5603000 7200 45 0.00 1 7 693 2
e 24 24 24 0.00 0.00 16900 26 24 0.00 1 3 134 <1
f 108 108 108 62.04 0.00 4630000 7200 108 0.00 1 3 3488 33
g 137 137 137 81.02 0.00 2320000 7200 137 0.00 1 3 3929 89
h 30 30 30 0.00 0.00 2300 3 30 0.00 1 2 128 <1
i 65 65 65 0.00 0.00 2253000 48 65 0.00 1 2 839 4
j 134 134 155 86.45 13.55 396500 7200 134 0.00 5 16 5069 5697
k 110 110 128 86.72 14.06 505400 7200 118 — 1 19 9936 7199
l 87 87 90 74.44 3.33 1193000 7200 87 0.00 1 7 3422 51
m 153 153 170 87.65 10.00 119800 7198 — — 0 6 7547 7200
n 310 310 330 92.72 6.06 27300 7190 — — 0 0 0 7200
o 1044 1026 1155 98.96 11.16 1 31 — — 0 0 0 7200
p 49 49 49 0.00 0.00 138900 3601 49 0.00 1 3 2086 35
q 24 24 24 0.00 0.00 13300 21 24 0.00 1 4 139 1
r 462 462 465 96.56 0.65 1 7154 — — 0 0 0 7200
s 396 396 411 99.27 3.65 3 411 — — 0 0 0 7200
t 2333 2333 2462 99.51 5.24 12 28 — — 0 0 0 7200

Table 6.4: Computational results for the Conflict-Graph Orienting model and the column gen-
eration model

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6.6. Conclusions 159

0 10 20 30 40 50 60

135

140

145

150

155

Iteration

ob
j.
va
lu
e

Clique bound
Best heuristic solution

Figure 6.5.2: Articulation Point Heuristic performance on instance j. The total runtime was less
than one second.

mathematical programming approaches, one of them based on Constraint Programming and
one based on column generation techniques. In the computational study, we showed that the
heuristic approaches are able to find good, often even optimal solutions quickly. For the two
compact ILP models, we remarked that the lower bounds implied by the node relaxations are
quite weak. The column generation model was shown to work quite well, but quickly runs out
of time or memory given a time limit of 2 hours, often even without having solved the root node
relaxation. One interesting follow-up question would be about the compact ILP models. The
lower bounds are very weak, but there might be a way to improve them by separating additional
cuts. The clique bound is easily computable, so could maybe also be used to provide additional
strengthening inequalities. Another way to deal with the weakness of the lower bounds might
involve extended formulations. As we saw in the computational study, the column generation
model presented is strong, but also too large to be solved within a timeframe of hours and often
even at all, because it uses too much memory. There might be a formulation of intermediate
size that works better. Finally, it would be interesting to examine the Constraint Programming
approach in more detail and maybe find some way to improve its lower bounds.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7 Online Scheduling

In this chapter, we introduce the concept of Competitive-Ratio Approximation Schemes and
apply them to the problem of online scheduling to minimize the weighted average completion
time. The work presented in this chapter is joint work with Elisabeth Lübbecke, Nicole Megow
and Andreas Wiese. An extended journal version is currently pending review.

7.1 Online Scheduling problems

7.1.1 Introduction

The basic question in scheduling is how to allocate limited resources over time. The resources
are usually calledmachines and the resource requests jobs. A basic example is the following. We
have a set of jobs J that have to be processed on some machines. Each job has a processing time
pj and has to be assigned to one machine for this time. Usually, a machine can only process
one job at a time and we try to minimize some property of the resulting schedule, for example
themakespan which is defined as the last point in time at which one of the jobs is completed.
Other common examples of objective functions include the flowtime, the weighted average
completion time and variants thereof.

NotationofSchedulingproblems For a given scheduling problem, the number ofmachines
is denoted by m, while n denotes the number of jobs. Each job j ∈ J has some running time pj.
In weighted variants, we also assign a weight wj to each job. Jobs may not by available at the
beginning of a schedule, but only be released at some release date rj, which is a lower bound on
their allowed starting time.
If we allow a schedule to interrupt a running problem and pick it up at a later time or on a

different machine, we are in the setting of Preemptive Scheduling, otherwise Non-preemptive
Scheduling, If we do not explicitly specify the setting, preemption will be not be allowed.

Online scheduling In Offline Scheduling, the entire input instance is known in advance. The
goal usually is to find a polynomial-time algorithm that is able to create a good schedule, for
example only worse than an optimal schedule by a constant factor.
In contrast, in Online Scheduling, jobs only become known when they arrive, that is, at

their release date. The online algorithm then has to make decisions based only on the partial
knowledge it possesses about previous jobs and the current situation.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

162 Online Scheduling

7.1.2 Problem Setting

We consider here the online setting with three different machine environments: identical parallel
machines (denoted by P), related machines (Q) where each machine i has associated a speed si
and processing a job j on machine i takes pj/si time and unrelated machines (R) where the
processing time of a job j on each machine i is explicitly given as a value pij. The main problem
considered in this chapter is to schedule the jobs on the given set of machines so as to minimize∑

j∈J wjCj, where Cj denotes the completion time of job j.
We consider the problem with and without preemption. Using standard scheduling no-

tation (Graham et al. [1979]), we denote the non-preemptive (resp. preemptive) problems
that we consider in this chapter by (Pm| rj, (pmtn) |

∑
wjCj), (Qm| rj, (pmtn) |

∑
wjCj) and

(Rm| rj,pmtn |
∑

wjCj).

Relations to embedding problems of virtual networks The online scheduling problems
considered in this chapter have some connections to online network embedding problems.

For example, consider a network embedding problem where all requests only require single
nodes. In that case, the nodes in the substrate network can be interpreted as the machines
of a scheduling problem. The network requests correspond to jobs that need to be scheduled
online on a number of machines. These could be unrelated machines or even parallel, identical
machines if the machines in the nodes of the substrate network are all equivalent. If we consider
the weighted sum of completion times as the objective function, we might interpret it in the
network embedding setting as rewards for not making a request wait to be embedded. The
earlier we embed the request into the network the earlier it will be completed. If we consider
a makespan objective function, we are asking for the shortest possible timeframe we need to
embed all the requests.
If we want to allow reconfiguration of jobs to other machines while they are running, the

corresponding setting in the online scheduling is to allow preemption of jobs. Reconfiguration
can also be a desirable property of substrate networks, as it allows for a better utilization of
resources.

Competitive analysis Given a minimization problem, a deterministic online algorithm A is
called ρ-competitive if, for any problem instance I, it achieves a solution of value

A(I) � ρ ·OPT(I),
where OPT(I) denotes the value of an optimal offline solution for the same instance I. The
competitive ratio ρA of A is the infimum over all ρ such that A is ρ-competitive. The minimum
competitive ratio ρ∗ achievable by any online algorithm is called optimal. Note that there
are no requirements on the computational complexity of competitive algorithms. Indeed, the
competitive ratio measures the best possible performance under the lack of information given
unbounded computational resources.
Competitive analysis (Sleator and Tarjan [1985]; Karlin et al. [1988]) is the most popular

method for studying the performance of online algorithms. It provides an effective framework
to analyze and classify algorithms based on their worst-case behavior compared to an optimal
offline algorithm.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.1. Online Scheduling problems 163

Scheduling for Weighted Average Completion Time A classical well-known problem
is online scheduling to minimize the weighted average completion time. It has received a lot
of attention in the past two decades. For different machine environments, a long sequence of
papers (see below) emerged, introducing new techniques and algorithms, improving upper and
lower bounds on the competitive ratio of particular algorithms as well as on the best possible
competitive ratio that any online algorithm can achieve. Still, unsatisfactory gaps remain. As for
most online problems, a provably optimal online algorithm with respect to competitive analysis
among all online algorithms is only known for very special cases.

7.1.3 Related work

The offline variants of nearly all scheduling problems under consideration are NP-hard, but in
most cases polynomial-time approximation schemes have been developed. The corresponding
online settings have been a highly active field of research in the past fifteen years. A whole
sequence of papers appeared introducing new algorithms, new relaxations and analytical tech-
niques that decreased the gaps between lower and upper bounds on the optimal competitive
ratio (Goemans et al. [2002]; Schulz and Skutella [2002a]; Hall et al. [1997]; Sitters [2010b,a];
Anderson and Potts [2004]; Chekuri et al. [2001]; Hoogeveen and Vestjens [1996]; Correa and
Wagner [2009]; Goemans [1997]; Megow and Schulz [2004]; Megow [2007]; Chung et al. [2010];
Schulz and Skutella [2002b]; Liu and Lu [2009]; Lu et al. [2003]; Stougie and Vestjens [2002];
Phillips et al. [1998]; Chakrabarti et al. [1996]; Seiden [2000]; Epstein and van Stee [2003]).
Despite the considerable effort, optimal competitive ratios are hardly known while generally
unsatisfactory, even quite significant gaps remain. We give more details on the state of the art
for the different problem classes under consideration in the subsections below. Before we do so,
we discuss other previous work on computing techniques for competitive ratios.

To the best of our knowledge, there are only very few problems in online optimization
for which an optimal competitive ratio can be determined, bounded, or approximated by
computational means. Lund and Reingold [1994] present a framework for upper-bounding the
optimal competitive ratio of randomized algorithms by a linear program. For certain cases, e.g.,
the 2-server problem in a space of three points, this yields a provably optimal competitive ratio.
Ebenlendr et al. [2009] and Ebenlendr and Sgall [2011] study various online and semi-online
variants of scheduling preemptive jobs on uniformly relatedmachines tominimize themakespan.
In contrast to our model, they assume the jobs to be given one by one (rather than over time).
They prove that the optimal competitive ratio can be computed by a linear program for any given
set of speeds. In terms of approximating the best possible performance guarantee, Augustine
et al. [2008] is closest to ours. They show how to compute a nearly optimal power-down strategy
for a processor with a finite number of power states.

Sum of weighted completion times. The offline variants of scheduling to minimize the
total weighted completion time are NP-hard, in many cases even for the special case of a single
machine (Labetoulle et al. [1984]; Lenstra et al. [1977]). Two restricted single-machine variants
can be solved optimally in polynomial time. Smith’s Rule solves the problem (1| |

∑
wjCj)

to optimality by scheduling jobs in non-increasing order of weight-to-processing-time ratios
(Smith [1956]). Furthermore, scheduling by shortest remaining processing times yields an

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

164 Online Scheduling

optimal schedule for (1| rj,pmtn |
∑

wjCj) (Schrage [1968]). However, for the other settings
polynomial-time approximation schemes have been developed (Afrati et al. [1999]), even when
the number of machines is part of the input.

We do not intend to give a detailed history of developments in online scheduling; instead, we
refer the reader to overviews, e.g., in Megow [2007]; Correa and Wagner [2009]. Interestingly,
despite the considerable effort, optimal competitive ratios are knownonly for (1| rj,pmtn |

∑
Cj)

(Schrage [1968]) and for non-preemptive single-machine scheduling (Anderson andPotts [2004];
Stougie and Vestjens [2002]; Hoogeveen and Vestjens [1996]; Chekuri et al. [2001]).

Our contributions

In this chapter, we close the aforementioned gaps, at least theoretically, by finding algorithmic
methods to determine nearly optimal online scheduling algorithms. We provide what we call
competitive-ratio approximation schemes that compute algorithms with a competitive ratio that
is at most a factor 1+ ε larger than the optimal ratio for any ε > 0. To that end, we introduce a
new way of designing online algorithms. Apart from structuring and simplifying input instances,
we find an abstract description of online scheduling algorithms which allows us to reduce the
infinite-size set of all online algorithms to a relevant set of finite size, which is the key for allowing
an enumeration scheme like the one we present.

Besides improving on previous algorithms, our method also provides an algorithm to deter-
mine the competitive ratio of the designed algorithm, and even the best possible competitive
ratio, up to any desired accuracy. We are aware of only very few online problems for which a
competitive ratio, or even the optimal competitive ratio, are known to be computable by some
algorithm— at least for a not inherently finite problem. Typically, there are no means of enumer-
ating all possible input instances and all possible online algorithms – even for only one given
algorithm, usually one cannot compute its competitive ratio simply due to difficulties like the
halting problem.

We believe that our concept of abstraction for online algorithms can be applied successfully
to some other problems. We show this for other scheduling problems with jobs arriving online
over time. Our techniques are presented focussing on the problems

1. (Pm| rj, (pmtn) |
∑

wjCj) and

2. (Qm| rj, (pmtn) |
∑

wjCj),

under the assumption of a constant range ofmachine speeds in the relatedmachines case without
preemption. For any ε > 0, we show that the competitive ratios of our new algorithms are by at
most a factor 1+ ε larger than the respective optimal competitive ratios.

To achieve our results, we present a novel abstraction in which online algorithms are formal-
ized as algorithm maps. Such a map receives as input a set of unfinished jobs together with the
schedule computed so far. Based on this information, it returns a schedule for the next time
instant. This view captures exactly how online algorithms operate under limited information.
The total number of algorithm maps is unbounded. However, we show that there is a finite
subset which approximates the entire set. More precisely, for any algorithm map there is a
map in our subset whose competitive ratio is at most by a factor 1 + ε larger. To achieve this

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 165

reduction, we first apply several standard techniques, such as geometric rounding, time-stretch,
and weight-shift, to transform and simplify the input problem without increasing the objective
value too much; see, e.g., Afrati et al. [1999]. The key, however, is the insight that it suffices for an
online algorithm to base its decisions on the currently unfinished jobs and a very limited part of
the so far computed schedule—rather than the entire history. This allows for an enumeration of
all relevant algorithmmaps (see also Manasse et al. [1988] for an enumeration routine for online
algorithms for a fixed task system with finitely many states). For randomized algorithms we
even show that we can restrict to instances with only constantly many jobs. As all our structural
insights also apply to offline algorithms for the same problems, they might turn out to be useful
for other settings as well.

Although the enumeration scheme for identifying the nearly optimal online algorithm heavily
exploits unbounded computational resources, the resulting algorithm itself has polynomial
running time. As a consequence, there are efficient online algorithms for the considered prob-
lems with almost optimal competitive ratios. Hence, the granted additional, even unbounded,
computational power of online algorithms does not yield any significant benefit here.

In Section 7.2 we introduce several general transformations and observations that simplify the
structural complexity of online scheduling in the (Pm| rj,pmtn |

∑
wjCj) setting. Based on this,

we present our abstraction of online algorithms and develop a competitive-ratio approximation
scheme in Section 7.3. Finally, we sketch in Section 7.4 how to extend these techniques to the
non-preemptive setting and also the setting of related machines.

Follow-up work

Soon after the first publication of our results, there has been follow-up work that extends
our methods. Kurpisz et al. [2013] presented competitive-ratio approximation schemes for
minimizing the makespan on unrelated machines (in the non-preemptive case), for the job
shop problem, and for scheduling on a single machine with delivery times. Chen et al. [2015]
presented such a scheme for the problem of scheduling jobs one by one on unrelated machines,
the objective function being to minimize the makespan or the Lp-norm of the machine loads.
For the case of identical machines and the makespan objective they even bound the running
time by a polynomial in the number of machines. Independently, for the same online model
Megow and Wiese [2013] found a competitive-ratio approximation scheme for minimizing the
makespan on identical and related machines. They do not provide a polynomial bound on the
running time, but their construction is more compact than the one by Chen et al. [2015]. Finally,
Mömke [2013] provided a competitive-ratio approximation scheme for the k-server problem in
fixed finite metrics.

7.2 General simplifications and techniques

In this section, we discuss several transformations that simplify the input and reduce the
structural complexity of online schedules for (Pm| rj,pmtn |

∑
wjCj). Later, we outline how

to adapt these for more general settings. Our construction combines several transformation
techniques known for offline PTASs (see Afrati et al. [1999] and their references) and a new
technique to subdivide an instance online into parts which can be handled separately.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

166 Online Scheduling

We will use the terminology that at 1+O(ε) loss we can restrict to instances or schedules with
certain properties. This means that we lose at most a factor 1+ O(ε), as ε → 0, by limiting our
attention to those. We bound several relevant parameters by constants. If not stated differently,
any mentioned constant depends only on ε and m.

To begin with, we use the standard simplification technique of geometric rounding introduced
in Afrati et al. [1999]. For the sake of completeness, we prove the required properties in the
following lemma.

Lemma 7.2.1. At 1+O(ε) loss we can restrict to instances where all processing times, release dates,
and weights are powers of 1+ ε, no job is released before time t = 1, and rj � ε · pj for all jobs j.

Proof. We prove that any given schedule can be adapted at 1+O(ε) loss such that the required
properties can be assumed for the corresponding instance. Obviously, weights can be rounded
up to the next power of 1+ ε by increasing the cost of a given schedule by at most a factor 1 + ε.

Within a given preemptive schedule, the job volume of each job j is assigned to a set of time
intervals onmachines (such that their lengths sum up to pj). Multiplying the boundary values of
each interval by (1+ ε) results in time intervals assigned to each j with a total length of (1+ ε)pj.
Hence, we get a feasible schedule even when rounding up all processing times to the next powers
of (1+ ε). The total completion time does not increase by more than a factor of (1+ ε).

Consider now a schedule with rounded processing times. We again multiply each boundary
value of the intervals by (1+ε) and shift the processing volume of each job j to the latest possible
time intervals within its assigned intervals. Then, job j completes at time (1 + ε)Cj, and the
earliest point in time at which j is processed increases from Sj to Sj + εpj. Hence, by losing at
most a factor (1+ ε) we may assume that each job j ∈ J has a release date rj � εpj. If necessary,
the parameters of all jobs can be scaled by some power of (1+ ε) such that the earliest release
date is at least one, since jobs with rj = pj = 0 can be ignored.

With a similar reasoning, we can finally round at a loss of (1+ ε) each release date to the next
power of (1+ ε).

The geometric rounding procedure allows us to see intervals of the form Ix := [Rx,Rx+1), x ∈
N with Rx := (1+ ε)x as atomic entities. Note that |Ix| = ε · Rx. An online algorithm can define
the corresponding schedule at the beginning of an interval since no further jobs are released
until the next interval. Moreover, we make, at (1+ ε) loss, the simplifying assumption that each
job j finishing within the interval Ix contributes wj · Rx+1 to the objective function, i.e., we
pretend that j finishes exactly at time Rx+1.

7.2.1 Simplification within intervals

The goal of this section is to reduce the number of situations that can arise at the beginning of
an interval. For each ε we identify constantly many relevant inputs per interval. And for a given
input, we reduce the number of relevant algorithmic actions within each interval to a constant.
To do so, we use the techniques of time-stretching and partitioning jobs released at time Rx

into large and small jobs, see Afrati et al. [1999]. In an online interpretation of time-stretching,
we shift the work assigned to any interval Ix to the interval Ix+1. When doing this operation

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 167

once we speak of one time-stretch. This can be done at a loss of 1+ ε and we obtain free space of
size ε · |Ix| in each interval Ix+1. For each x � 0 we define

Lx =
{
j ∈ J

∣∣ rj = Rx,pj > ε2|Ix|
}

to be the set of large jobs released at Rx and

Sx =
{
j ∈ J

∣∣ rj = Rx,pj � ε2|Ix|
}

to be the set of small jobs released at Rx.
We first take care of the small jobs. Since they are small, there is a lot of flexibility in scheduling

them. We show that we can, at a small loss, fix in advance the order in which the jobs in each Sx

are processed. This enables us to group very small jobs to job packs. Treating each pack as a
single job we then get a lower bound on the processing time of the released jobs.

We denote wj/pj as the Smith ratio of a job j. A non-increasing ordering by the Smith ratios
is an ordering according to Smith’s rule (Smith [1956]). We say that a job is partially processed
at some point in time if it has been processed, but not yet completed. For a set of jobs J we
define p(J) :=

∑
j∈J pj and w(J) :=

∑
j∈J wj.

Lemma 7.2.2. At 1 + ε loss we can restrict to schedules such that for each interval Ix the small
jobs scheduled within this interval are chosen by Smith’s rule from the set S�x :=

⋃
x ′�x Sx ′ and

no small job is preempted or only partially processed at the end of an interval. Therefore, we can
restrict to instances with p(Sx) � m · |Ix| for each interval Ix.
Proof. Consider some schedule S and apply one time-stretch. The resulting schedule S ′ has a
free space of ε|Ix| units in each interval Ix+1, and its total cost is within a factor (1+ ε) of the
cost of S. Remove now all small jobs from each interval Ix+1. Denote by Px,i the amount of
removed processing time of small jobs from machine i in interval Ix of S ′ and let Px :=

∑
i Px,i.

We denote by Ax the set of removed small jobs from Ix in S ′. Now, we apply for each x � 0 the
following procedure consecutively. First, we remove all large jobs from the interval Ix. Denote
those jobs by Lx. We now schedule the jobs in Lx on the first |Ix| units of processing time
machine-wise, that is, we fill the machines consecutively and with preemption until we run
out of large jobs. By this procedure, we do not lose any cost and as p(Lx) � m · |Ix|, we can
fit the large jobs there. We refer to this type of schedule as a McNaughton-type schedule, see
also McNaughton [1959]. We now have a number of k � 0 machines in Ix whose first |Ix| units
of processing time is completely filled andm− k machines where this is not the case.
Now, fill the idle time of each machine i = k + 1, . . . ,m with unscheduled jobs from S�x

chosen in the order of their Smith ratio without preemption until an amount of Px,i is achieved
or no further small job is available. This procedure increases the processing time on the latter
machines by at most ε2|Ix|, the maximum size of small jobs, which is smaller than the created
extra space of ε|Ix−1| for sufficiently small ε. Denote by Bx the set of small jobs assigned to Ix

in this step.
Inductively, we can prove that for each Ix the total weight of jobs from S�x that are completed

before the end of Ix has not decreased compared to S ′. For the first interval Ix1 with Px1 > 0
it holds that w(Ax1) � w(Bx1) since the jobs of Bx1 are assigned according to Smith’s rule
and p(Bx1) � Px1 = p(Ax1). This proves the base case since each job of Bx1 is completed before

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

168 Online Scheduling

the end of Ix1 . For the induction step we use thatw(A�x) � w(B�x) with A�x :=
⋃

x ′�x Ax ′

and B�x respectively for some x. Assume by contradictionw(A�x̃) > w(B�x̃) for the next x̃ >

x with Px̃ > 0. This implies that

w(Ax̃) > w(B�x) −w(A�x) +w(Bx̃).

Intuitively, the total weight of jobs in Ax̃ is higher than the surplus weight gained in the earlier
intervals together with the total weight of Bx̃. This contradicts the fact that we assigned for
each x ′ � x̃ jobs with a total processing time of p(B�x ′) � p(A�x ′) via Smith’s rule. Hence, we
get w(A�x̃) � w(B�x̃). The induction hypothesis follows since each job in Bx̃ is completed
before the end of Ix̃. Recall that we modified the objective function by rounding up the comple-
tion times of jobs to the end of the respective interval. Consequently, the observation on the
completed weights before each interval end yields that the objective value is not increased by
the described reassignment. Furthermore, the procedure ensures that no small job is preempted
and that any small job finishes in the same interval where it started.
Since we can now assume that the jobs of each Sx are chosen to be scheduled within Ix

in non-increasing order of their Smith ratios—completely and without preemption— we can
conclude the last claim of the lemma. Note that the total processing time in interval Ix is m|Ix|.
Pick the jobs of Sx in the respective order until the total processing time of picked jobs just
exceedsm|Ix|. The remaining jobs of Sx cannot be scheduled within Ix and hence, by the above
argument, we can safely move their release dates to Rx+1.

Lemma 7.2.3. At 1 + O(ε) loss we can restrict to instances such that pj � ε2

4 · |Ix| for each job
j ∈ Sx. In these instances, the number of distinct processing times of each set Sx is bounded from
above by log(1+ε) 4.

Proof. We call a job j ∈ Sx tiny if pj � ε2

4 · |Ix|. Let Tx = {j1, j2, ..., j|Tx|} denote all tiny jobs
released atRx. W.l.o.g. assume that they are ordered non-increasingly by their Smith ratioswj/pj.
Let be the largest integer such that

∑�
i=1 pi � ε2

2 · |Ix|. We define the pack P1
x := {j1, ..., j�}.

We define the processing time of pack P1
x to be

∑�
i=1 pi and its weight to be

∑�
i=1 wi. We

continue iteratively until we assigned all tiny jobs to packs. By definition of the processing time
of tiny jobs, the processing time of all but possibly the last pack released at time Rx is in the
interval

[
ε2

4 · |Ix|, ε2

2 · |Ix|
]
.

We apply one time-stretch. In any schedule that assigns small jobs according to Smith’s rule
to intervals there is for each Ix at most one partially processed job pack per machine from each
of the previous release dates Rx ′ � Rx. Since

∑
x ′<x ε2|Ix ′ | � ε|Ix|, we can schedule all of them

in the newly created space. This also includes space to increase the processing time of the very
last pack of each Sx ′ to ε2

4 · |Ix ′ |, if necessary. Therefore, we can enforce that at 1+O(ε) loss all
tiny jobs of the same pack are scheduled in the same interval on the same machine. Hence, we
can treat each pack as a single job whose processing time and weight matches the respective
values of the pack.

Finally, at 1+O(ε) loss we can ensure that the processing times and weights of the new jobs
(which still remain small) are powers of 1+ ε. Consequently, the processing times of jobs in Sx
are of the form (1+ ε)y within the following range:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 169

e3

4 · (1+ ε)x � (1+ ε)y � ε2|Ix| = ε3(1+ ε)x.

The number of integers y satisfying these inequalities is bounded from above by log(1+ε) 4.

For the large jobs released at the beginning of an interval we obtain an upper bound on their
length by their relation of release date and processing time by Lemma 7.2.1. This induces a
constant upper bound on the number of occurring processing times.

Lemma 7.2.4. The number of distinct processing times of jobs in each set Lx is bounded from
above by 4 log(1+ε) ε

−1.

Proof. Let j ∈ Lx be a large job released at Rx with processing time pj = (1+ ε)y > ε2|Ix| for
some integer y. By Lemma 7.2.1, we know that pj � 1

ε
rj =

1
ε
(1+ ε)x and hence,

ε3 (1+ ε)x = ε2|Ix| < (1+ ε)y � ε−1 (1+ ε)x .

The number of integers y which satisfy the above inequalities is upper-bounded by the constant
claimed in the lemma.

We say that two large jobs are of the same type if they have the same processing time and
the same release date. By an exchange argument, we can restrict ourselves without any loss to
schedules in which at each point in time at mostm large jobs of each type are partially scheduled.
Since the amount of work that can be processed within each interval is bounded, the number of
large jobs of the same type can also be bounded.

Lemma 7.2.5. Without loss, we can restrict to instances with

|Lx| � (m/ε2 +m)4 log(1+ε) ε
−1

for each set Lx.

Proof. Let Lx,p ⊆ Lx denote the set of jobs in Lx with processing time p, i.e., they are of the
same type. Since pj > ε2|Ix| for each job j ∈ Lx, at most m/ε2 +m jobs in Lx,p can be started
before Ix+1. By an exchange argument we can assume that they are among the m/ε2 +m jobs
with the largest weight in Lx,p. Hence, the release date of all other jobs in Lx,p can be moved
to Rx+1 without any cost. By Lemma 7.2.4, there are at most 4 log(1+ε)

1
ε
distinct processing

times p of large jobs in Lx and, thus, the claim follows.

As we simplified the objective function by pretending all jobs to complete at the end of an
interval, the only information needed for computing the objective function value is the interval
in which a job completes. The only part that has not been bounded yet is the amount that large
jobs are processed within the single intervals.

Lemma 7.2.6. There is a constant μ ∈ N such that at 1 +O(ε) loss we can restrict to schedules
such that at the end of each interval, each large job j is processed to an extent which is an integer
multiple of pj/μ.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

170 Online Scheduling

Proof. We apply one time-stretch and choose μ ∈ N to be a constant such that 1/μ is smaller
than ε4/(8 log(1+ε)

1
ε
). Consider now an interval Ix and the jobs that are scheduled in Ix before

the time-stretch. For each job j ∈ Lx ′ , x ′ � x that was partially processed at time Rx+1 we must
extend the amount of time the job j is processed within the interval Ix+1 by at most pj/μ to
achieve the stated property. Using Lemma 7.2.1 this value can be bounded by

pj

μ
� Rx ′

ε
· ε4

8 log(1+ε) ε
−1 =

ε2|Ix ′ |

2 · 4 log(1+ε) ε
−1 .

Recall that we can assume without any loss that at the end of each interval at most one large
job per job type is partially processed on each machine. Since the number of job types of Lx ′ is
bounded by 4 log(1+ε) ε

−1 (compare Lemma 7.2.4), the space of ε2|Ix ′ |/2 is sufficient to handle
each job type of Lx ′ . Applying ∑

x ′<x

ε2|Ix ′ | � ε|Ix|,

we see that this amount of free space was created by the time-stretch.

To summarize, we get the following simplifications within intervals concerning input and
scheduling decisions. Recall that we can calculate the value of μ that depends only on ε. Fur-
thermore, we define Δ to be a constant upper bound on the number of released jobs in each
interval, so we set

Δ :=

⌈
4m
ε2

+ (
m

ε2
+m)4 log(1+ε) ε

−1
⌉
.

Corollary 7.2.7. At 1+ O(ε) loss we can assume that for each interval Ix,

1. for each job j released at time Rx there is some integer k such that j has a processing time of

pj = (1+ ε)k ∈ [
ε3

4 Rx,
1
ε
Rx],

2. there are at most log(1+ε)(4/ε4) distinct processing time values of jobs released at Rx,

3. at most Δ jobs are released at Rx,

4. each small job starting in Ix completes in Ix without preemption, and

5. at the end of Ix, each job j is processed to an extent of x,j · pj/μ for some x,j ∈ {0, . . . ,μ}.

7.2.2 Irrelevant history

The schedule for an interval returned by an online algorithm may depend on the set of currently
unfinished jobs and possibly the entire schedule computed so far. In the remainder of this
section we show why we can assume that an online algorithm only takes a finite amount of
history into account when taking its decisions, namely, the jobs with relatively large weight
released in the last constantly many intervals.

Firstly, we show that we may assume that each job completes within constantly many intervals
after its release.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 171

Lemma 7.2.8. There is a constant s such that at 1 + O(ε) loss we can restrict to schedules such
that for each interval Ix there is a subinterval of Ix+s−1 which is large enough to process all jobs
released at Rx and during which only those jobs are executed. We call this subinterval the safety
net of interval Ix. We can assume that each job released at Rx finishes before time Rx+s.

Proof. By using Lemma 7.2.1, Lemma 7.2.2, and Lemma 7.2.5 we get

p(Sx) + p(Lx) � m · |Ix|+ (m/ε2 +m) · ·ε−1 (1+ ε)x · 4 log(1+ε) ε
−1

� m · (1+ ε)x
(
ε+ 8ε−3 log(1+ε) ε

−1
)

= ε · |Ix+s−2|

for a suitable constant s, depending on ε andm. Stretching time once, we gain enough free space
at the end of each interval Ix+s−1 to establish the safety net for each job set p(Sx) + p(Lx).

Given the bound on the number of intervals between release and completion times of jobs, we
partition the time horizon into periods such that no job is “alive” for more than two periods. For
each integerk � 0, we define periodQk to consist of the s consecutive intervals Ik·s, ..., I(k+1)·s−1.
We add an artificial period Q−1 for the interval [0, 1) in which no job is released. Hence, we
can assume by Lemma 7.2.8 that each job released in period Qk is completed by the end of
period Qk+1. For ease of notation, we will treat a period Q as the set of jobs released in that
period. For a set of jobs J we denote by

rw(J) :=
∑
j∈J

rjwj

their release weight. Note that rw(J) forms a lower bound on the quantity that these jobs must
contribute to the objective value in any schedule. Due to Lemma 7.2.8, we also obtain an upper
bound of (1+ ε)s · rw(J) for the latter quantity.

Wewill now determine at the end of each period how important its released jobs are compared
to the previous periods. If the job weights released in a series of periods grow large enough from
period to period, we will see that the overall objective value is dominated by the contribution of
the constantly many last periods. If otherwise the job weights of a period are too low compared
to the preceding ones and its jobs can be moved to their safety net with a small loss, we will
see that the following periods can be treated independently. To this end, we define that p > 0
consecutive periodsQk, ...,Qk+p−1 are a sequence of significant periods if

rw(Qk+�) >
ε

(1+ ε)s
·
�−1∑
i=0

rw(Qk+i)

for each = 1, . . . ,p− 1. This implies exponential growth for the series of partial sums of release
weights and we can prove the dominance of a few of the last periods.

Lemma7.2.9. There is a constantK such that for each sequenceQk,Qk+1, ...,Qk+p−1 of significant
periods, the following inequality is valid:

p−K−1∑
i=0

(1+ ε)s rw(Qk+i) � ε ·
p−1∑

i=p−K

rw(Qk+i).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

172 Online Scheduling

Proof. Let δ := ε(1+ ε)−s. Since we consider a sequence of significant periods, we get

rw(Qk+�) > δ ·
�−1∑
i=0

rw(Qk+i) ∀ = 1, . . . ,p− 1.

This implies that

(1+ δ) rw(Qk+�) > δ ·
�∑

i=0
rw(Qk+i) ∀ = 1, . . . ,p− 1.

Hence, we get∑�−1
i=0 rw(Qk+i)∑�
i=0 rw(Qk+i)

= 1− rw(Qk+�)∑�
i=0 rw(Qk+i)

< 1− δ

1+ δ
=

1
1+ δ

< 1 ∀ = 1, . . . ,p− 1

which implies

�−1∑
i=0

rw(Qk+i) <
1

1+ δ

�∑
i=0

rw(Qk+i) ∀ = 1, . . . ,p− 1. (7.2.1)

In other words, if we remove Qk+� from
⋃�

i=0 Qk+i, the total release weight of the set
decreases by a factor of at least 1/(1+ δ) < 1. Recursively applying (7.2.1) we get for any K

p−1−K∑
i=0

rw(Qk+i) <
1

(1+ δ)K

p−1∑
i=0

rw(Qk+i)

=
1

(1+ δ)K

⎛
⎝p−K−1∑

i=0
rw(Qk+i) +

p−1∑
i=p−K

rw(Qk+i)

⎞
⎠

and hence
(
1−

(
1

(1+ δ)K

)) p−K−1∑
i=0

rw(Qk+i) <
1

(1+ δ)K

p−1∑
i=p−K

rw(Qk+i).

To ensure that

(1+ ε)s
p−K−1∑
i=0

rw(Qk+i) < ε ·
p−1∑

i=p−K

rw(Qk+i),

we choose K sufficiently large such that

(1+ δ)−K

1− 1
(1+δ)K

=
1

(1+ δ)K − 1 < δ =
ε

(1+ ε)s
.

Hence, K is some constant integer larger than log(1+δ)(1/δ+ 1) and depends only on ε.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 173

Using the safety net (Lemma 7.2.8), the above lemma implies that an ε-fraction of the weighted
completion time of the last K− 1 periods of a sequence of significant periods yields an upper
bound on the weighted completion time of the previous periods of this sequence. Therefore, the
objective value is essentially dominated by the contribution of the last K− 1 periods. We will
need this later to show that at 1 + O(ε) loss we can assume that an online algorithm bases its
decisions only on a constant amount of information.

To that end, we consider a sequence of significant periodsQk, . . . ,Qk+p−1 and an interval Ix
of periodQk+p where the newly released jobs are just revealed to an online algorithm. Recall that
the online algorithmdoes not know the release weight of the current periodQk+p unless Ix is the
last interval of Qk+p. Nevertheless, we know by Lemma 7.2.9 that the costs of Qk, . . . ,Qk+p−1
are dominated by the last K− 1 periods. Hence, the costs until interval Ix are dominated by the
last important Γ := Ks intervals including Ix. In addition to the jobs that have been released
very early, also the jobs with very small weight in comparison to at least one other job can be
almost neglected for the total costs. Therefore, we partition the jobs into relevant and irrelevant
jobs using these two criteria.

Definition 7.2.10. Let J be a set of jobs. A job j ∈ J with rj � Rx is called recent at time Rx

if Rx−Γ � rj. Otherwise, it is called old at time Rx.
Job j is called dominated at time Rx if it is dominated at time Rx−1 or if there is a job j ′ ∈ J

being recent and not dominated at time Rx such that

wj <
ε

Δ · Γ · (1+ ε)Γ+s
wj ′ .

Now, job j is irrelevant at time Rx if it is old or dominated at time Rx and otherwise relevant at
time Rx. We denote the respective subsets of a job set J by Recx(J), Oldx(J), Domx(J), Irx(J),
and Relx(J).

The subsequent lemma states that the irrelevant jobs can almost be ignored for the objective
value of a schedule even when scheduled in their safety nets. This implies that we can restrict at
1+O(ε) loss to online algorithms which schedule the remaining part of a job in its safety net,
once it has become irrelevant.

Lemma 7.2.11. Let Qk, . . . ,Qk+p−1 be a sequence of significant periods and let J be the jobs
of Qk, . . . ,Qk+p released until the beginning of an interval Ix ∈ Qk+p. Then

(1+ ε)s rw(Irx(J)) � 6ε · rw(Relx(J)).

Proof. By definition, an irrelevant job at time Rx is either old or dominated. Hence, Irx(J) is the
disjoint union of Oldx(J) and Domx(J) ∩ Recx(J).
We start by giving a bound on the recent but dominated jobs and define

rwmax := max{rw(j) | j ∈ Relx(J) ∪Oldx(J)}.

Consider a job j ∈ J that is dominated and recent at time Rx. By definition, there is a time rj �
Rx ′ � Rx at which another job j ′ that is relevant at time Rx ′ dominates j. Choose Rx ′ to be
as late as possible. As j ′ is recent at time Rx ′ , we get by Rx ′(1 + ε)−Γ � rj ′ that rj � Rx ′ �

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

174 Online Scheduling

(1+ ε)Γ rj ′ . Because we have chosen Rx ′ to be as late as possible, we can assume that j ′ is not
dominated at time Rx. Hence, j ′ is either relevant or old at time Rx. Therefore, there is for
each j ∈ Domx(J) ∩ Recx(J) a job j ′ in Relx(J) ∪Oldx(J) such that

wjrj �
ε

Δ · Γ · (1+ ε)Γ+s
wj ′rj

� ε

Δ · Γ · (1+ ε)Γ+s
wj ′rj ′(1+ ε)Γ

� ε

Δ · Γ · (1+ ε)s
rwmax .

Since at most Δ jobs are released at the beginning of each interval (Corollary 7.2.7) and rwmax
is the release weight of a job in Relx(J) ∪Oldx(J) we get:

(1+ ε)s rw(Domx(J) ∩ Recx(J)) = (1+ ε)s
∑

j∈Domx(J)∩Recx(J)
wjrj

� (1+ ε)sΔ · Γ ε

Δ · Γ · (1+ ε)s
rwmax

= ε · rwmax

� ε (rw(Relx(J)) + rw(Oldx(J))) .

Moreover, Lemma 7.2.9 implies for the old jobs at time Rx that

(1+ ε)s rw(Oldx(J)) � ε · rw(Recx(J))
= ε · (rw(Relx(J)) + rw(Domx(J) ∩ Recx(J)) .

Combining all these arguments yields

(1+ ε)s rw(Irx(J)) = (1+ ε)s (rw(Oldx(J)) + rw(Domx(J) ∩ Recx(J))
� ε · rw(Relx(J)) + 2ε · (rw(Relx(J)) + rw(Oldx(J)))
� 3ε · rw(Relx(J)) + 2ε · rw(Irx(J)).

With ε < 1
3 we obtain the bound (1+ ε)s rw(Irx(J)) � 6ε · rw(Relx(J)).

With the preceding lemmas, we have identified for each point in time a subset of jobs that is
relevant at this time, but only under the assumption that we consider a sequence of significant
periodsQk, . . . ,Qk+p−1. We now consider the case where the immediately following period
Qk+p is not significant. We then know that

(1+ ε)s rw(Qk+p) � ε ·
p−1∑
i=0

rw(Qk+i).

Hence, completing all unfinished jobs ofQk+p in their safety nets costs only an ε-fraction of
the costs caused by the preceding significant periods. And since an online algorithm is allowed
to preempt these jobs, it can now schedule the succeeding periods independently. However, in

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.2. General simplifications and techniques 175

the following we will state a more general result which will be useful for eventually proving that
online algorithms can forget all irrelevant jobs.

We define the consecutive periodsQk, . . . ,Qk+p, for some p > 0, to be a part if the sequence
Qk, . . . ,Qk+p−1 consists only of significant periods and

(1+ ε)s rw(Qk+p) � 8ε ·
p−1∑
i=0

rw(Qk+i).

In this case, we callQk+p insignificant, even though it is possible thatQk, . . . ,Qk+p is a sequence
of significant periods.
We now consider a partitioning of a given instance I into parts Pi, i = 0, ..., , and denote

the insignificant period of each part Pi byQa(i+1) . With a0 := −1 each part Pi consists of the
periods Qai+1, ...,Qa(i+1) , i = 0, ..., . Again, we identify with Pi all jobs released in this part.
With the possibility to preempt jobs, we now treat each part Pi of a partition as a separate

instance that we feed into a given online algorithm. For the final output, we concatenate
the computed schedules for the different parts. By the following lemma, it then suffices to
bound A(Pi)/OPT(Pi) for each part Pi.

Lemma 7.2.12. At 1+O(ε) loss we can restrict to instances which consist of only one part.

Proof. Consider an online algorithm A, some instance I and a partition of I into parts Pi, i =
0, ..., − 1. We define an adapted version A ′ that applies A(Pi) to each part Pi and moves all
jobs of Pi that are unfinished at the end of Pi to their respective safety nets. Recall that due to
Lemma 7.2.8, these unfinished jobs must be released within the last period Qa(i+1) of part Pi

and this period is insignificant. Hence, these jobs contribute at most

�+1∑
i=1

(1+ ε)s rw(Qai
) �

�+1∑
i=1

8ε ·
ai−1∑

p=ai−1+1
rw(Qp) �

�∑
i=0

O(ε) ·OPT(Pi)

to the objective value. Therefore, we get that

A ′(I) � (1+ O(ε))

�∑
i=0

A(Pi).

Applying
∑�

i=0 OPT(Pi) � OPT(I) we can bound the competitive ratio of A ′ as follows:

A ′(I)
OPT(I) � (1+ O(ε))

∑�
i=0 A(Pi)∑�

i=0 OPT(Pi)
� (1+ O(ε)) max

i=1,...,�

A(Pi)

OPT(Pi)
.

Note that there might be different partitions of one instance into parts since it is possible that
a part is at the same time a sequence of significant periods. In the following section, we will
consider online algorithms that work in principle only on relevant jobs while forgetting irrelevant
jobs after they have been moved to their safety net. Hence, we need a partition into parts that
can be determined regardless of the irrelevant jobs. To that end, we define x(a) := (a+ 1)s− 1
for a period Qa to be the index of the last interval of period Qa.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

176 Online Scheduling

Lemma 7.2.13. For a given instance I, let a0 := −1 and let a1 < ... < a�+1 be all indices such that

(1+ ε)s rw(Relx(ai)(Pi−1) ∩Qai
) �

(
ε+

6ε2
(1+ ε)s

) ai−1∑
p=ai−1+1

rw(Relx(ai)(Pi−1) ∩Qp),

(7.2.2)
where each Pi−1 consists of all periods

Qa(i−1)+1, . . . ,Qai

for i = 1, . . . , + 1.Then, each Pi is a part of I for i = 0, . . . , .
Proof. We first prove that the periods betweenQai

andQa(i+1) build a sequence of significant
periods. To that end, we can inductively apply Lemma 7.2.11 and get for each ai−1 < a < ai:

(1+ ε)s rw(Qa) � (1+ ε)s rw(Relx(a)(Pi−1) ∩Qa)

(7.2.2) > ε ·
(
1+ 6ε

(1+ ε)s

) a−1∑
p=ai−1+1

rw(Relx(a)(Pi−1) ∩Qp)

= ε ·
(
1+ 6ε

(1+ ε)s

)
rw(Relx(a)(Pi−1) ∩

a−1⋃
p=ai−1+1

Qp

(Lemma 7.2.11) � ε ·
a−1∑

p=ai−1+1
rw(Qp).

That is why we can now apply Lemma 7.2.11 to each complete Pi−1 and get that eachQai
is

insignificant. Let A denote the interval [ai−1 + 1,ai − 1]. We get:

(1+ ε)s rw(Qai
) = (1+ ε)s rw(Relx(ai)(Pi−1) ∩Qai

) + (1+ ε)s rw(Irx(ai)(Pi−1) ∩Qai
)

�
(
ε+

6ε2
(1+ ε)s

) ∑
p∈A

rw(Relx(ai)(Pi−1) ∩Qp) + 6ε·rw(Relx(ai)(Pi−1))

� ε ·
(
1+ 6ε

(1+ ε)s
+ 6

)
·
∑
p∈A

rw(Relx(ai)(Pi−1) ∩Qp)+

6ε · rw(Relx(ai)(Pi−1) ∩Qai
)

� ε ·
(
7+ 6ε

(1+ ε)s

)
·
∑
p∈A

rw(Relx(ai)(Pi−1) ∩Qp)+

6ε2
(1+ ε)s

(
1+ 6ε

(1+ ε)s

)
·
∑
p∈A

rw(Relx(ai)(Pi−1) ∩Qp)

� 8ε ·
∑
p∈A

rw(Qp).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.3. Abstraction of online algorithms 177

We conclude this section by summarizing those consequences of our considerations that we
need in the following section. To that end, we denote the maximum ratio between weights of
relevant jobs at any point in time by W =

Δ·Γ ·(1+ε)Γ+s

ε
. Recall that the values of μ,Δ, s,K, Γ ,

and henceW depend only on ε andm. Furthermore, for some given schedule we denote by ox,j
the amount of a job j that is processed within an interval Ix.

Corollary 7.2.14. At 1 + O(ε)-loss we can assume for each instance I with job set J and each
interval Ix that

1. pj ∈ {(1+ ε)k | ε3

4 (1+ ε)−ΓRx � (1+ ε)k � 1
ε
Rx} for each j ∈ Relx(J),

2. rj ∈ {(1+ ε)k | (1+ ε)−ΓRx � (1+ ε)k � Rx} for each j ∈ Relx(J),

3. wj ∈ {(1+ ε)k | wx � (1+ ε)k � W ·wx} for some value wx and each j ∈ Relx(J),

4. ox,j ∈ { · pj/μ | ∈ {0, . . . ,μ}} for each j ∈ Relx(J),

5. the cardinality of Relx(J) is bounded by Γ · Δ, and

6.
∑

j∈Irx(J)
wjCj � O(ε) ·OPT(Relx(J)).

Note that the respective sets of relevant processing times, release dates, weights and processing
time fractions have constant size.

7.3 Abstraction of online algorithms

In this section we show how to construct a competitive-ratio approximation scheme based on
the simplifications of Section 7.2. To do so, we restrict ourselves to such simplified instances
and schedules. The key idea is to characterize the behavior of an online algorithm by a map:
For each interval, the map gets as input the schedule computed so far and all information about
the currently unfinished jobs. Based on this information, the map outputs how to schedule the
available jobs within this interval.

More precisely, we define the input by a configuration and the output by an interval-schedule.

Definition 7.3.1. An interval-schedule S for an interval Ix is defined by

• the index x of the interval,

• a set of jobs J(S) available for processing in Ix together with the properties rj,pj,wj of
each job j ∈ J(S) and its already finished part oj < pj up to Rx,

• for each job j ∈ J(S) the information whether j is relevant at time Rx, and

• for each job j ∈ J(S) and each machine i a value qij specifying for how long j is processed
by S on machine i during Ix.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

178 Online Scheduling

An interval-schedule is called feasible if there is a feasible schedule in which all values for the
jobs of J(S) in the interval-schedule fit to the corresponding values of the schedule within the
interval Ix. Denote the set of feasible interval-schedules as S.

Definition 7.3.2. A configuration C for an interval Ix consists of

• the index x of the interval,

• a set of jobs J(C) released up to time Rx together with the properties rj,pj,wj,oj of each
job j ∈ J(C),

• an interval-schedule for each interval Ix ′ with x ′ < x.

A configuration is called feasible if there is a feasible schedule in which all values for the jobs
of J(C) in the configuration (including each interval-schedule) fit to the corresponding values
of the schedule. The set of all feasible configurations, respecting the adaptations of Section 7.2,
is denoted by C. An end-configuration is a feasible configuration C for an interval Ix such that
at time Rx, and not earlier, all jobs have been released and all relevant jobs have completely
finished processing.

We say that an interval-schedule S is feasible for a configuration C if the set of jobs in J(C)

which are unfinished at time Rx matches the set J(S) with respect to release dates, total and
remaining processing time, weight and relevance of the jobs.
Instead of online algorithms we work from now on with algorithm maps, which are defined

as functions f : C → S. An algorithm map determines a schedule f(I) for a given scheduling
instance I by iteratively applying f to the corresponding configurations. W.l.o.g. we consider
only algorithm maps f such that f(C) is feasible for each configuration C and f(I) is feasible for
each instance I. Call these algorithm maps feasible. Like for online algorithms, we define the
competitive ratio ρf of an algorithm map f by ρf := maxI f(I)/OPT(I). Due to the following
observation, algorithm maps are a natural generalization of online algorithms.

Proposition 7.3.3. For each online algorithm A there is an algorithm map fA such that when A is
in configuration C ∈ C at the beginning of an interval Ix, algorithm A schedules the jobs according
to fA(C).

Recall that we restrict our attention to algorithm maps describing online algorithms which
obey the simplifications introduced in Section 7.2. The essence of such online algorithms are the
decisions for the relevant jobs. To this end, we define equivalence classes for configurations and
for interval-schedules. Intuitively, two interval-schedules (configurations) are equivalent if we
can obtain one from the other by scalar multiplication with the same value, while ignoring the
irrelevant jobs.

Definition 7.3.4. Let S,S ′ be two feasible interval-schedules for two intervals Ix, Ix ′ . Let σ : J̃ →
J̃ ′ be a bijection from a subset J̃ ⊆ J(S) to a subset J̃ ′ ⊆ J(S ′) and let y an integer. The interval-
schedules S,S ′ are called (σ,y)-equivalent if for all j ∈ J̃ and i = 1, . . . ,m, the following
conditions are satisfied:

• rσ(j) = rj(1+ ε)x
′−x,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.3. Abstraction of online algorithms 179

• pσ(j) = pj(1+ ε)x
′−x,

• oσ(j) = oj(1+ ε)x
′−x,

• qiσ(j) = qij(1+ ε)x
′−x and

• wσ(j) = wj (1+ ε)y.

Denote by JRel(S) ⊆ J(S) and JRel(S
′) ⊆ J(S ′) the jobs of J(S) relevant at time Rx and of J(S ′)

relevant at time Rx ′ . The interval-schedules S,S ′ are equivalent (denoted by S ∼ S ′) if a bijection
σ : JRel(S) → JRel(S

′) and an integer y exist such that they are (σ,y)-equivalent.

Definition 7.3.5. Let C,C ′ be two feasible configurations for two intervals Ix, Ix ′ . Denote
by JRel(C), JRel(C ′) the jobs which are relevant at times Rx,Rx ′ in C,C ′, respectively. The
configurations C,C ′ are equivalent (denoted by C ∼ C ′) if there is a bijection σ : JRel(C) →
JRel(C

′) and an integer y such that for all j ∈ JRel(C)

• rσ(j) = rj(1+ ε)x
′−x,

• pσ(j) = pj(1+ ε)x
′−x,

• oσ(j) = oj(1+ ε)x
′−x and

• wσ(j) = wj (1+ ε)y

and if the interval-schedules of Ix−k and Ix ′−k are (σ,y)-equivalent for each k ∈ N.

The restriction of equivalence to relevant jobs allows a reasonable measurement of the perfor-
mance of end-configurations contained in the same equivalence class. On the one hand we get
equal performance ratios for equivalent configurations. On the other hand we can approximate
the actual competitive ratio of the complete solution since relevant jobs dominate the objective
value. Consider therefore an end-configuration C. We denote the objective value of a subset J̃ ⊆
J(C) in the history of C by valC(J̃). We further define ρ(C) := valC(JRel(C))/OPT(JRel(C)) to
be the achieved competitive ratio of C when restricted to the relevant jobs.

Lemma 7.3.6. For each end-configuration C ∈ C we have that

1. (1+ O(ε))−1ρ(C) � valC(J(C))/OPT(J(C)) � (1+ O(ε)) · ρ(C) and

2. ρ(C) = ρ(C ′) for any C ′ ∈ C with C ∼ C ′.

Proof. The first property follows from Lemma 7.2.11 via

valC(J(C))

OPT(J(C)) � valC(J(C))

OPT(JRel(C))
� (1+ O(ε))

valC(JRel(C))

OPT(JRel(C))
= (1+ O(ε))ρ(C).

Similarly, we get

ρ(C) =
valC(JRel(C))

OPT(JRel(C))
� valC(J(C))

OPT(JRel(C))
� (1+ O(ε))

valC(J(C))

OPT(J(C)) .

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

180 Online Scheduling

For the second property, denote the job weights and the resulting completion times of C (C ′)
bywj (w ′

j) and Cj (C ′
j). SinceC ∼ C ′ there is an integer y and a bijection σ : JRel(C) → JRel(C

′)
such that

valC ′(JRel(C
′)) =

∑
j∈JRel(C ′)

w ′
jC

′
j =

∑
j∈JRel(C)

w ′
σ(j)C

′
σ(j)

=
∑

j∈JRel(C)

(1+ ε)y wj (1+ ε)x
′−x

Cj

= (1+ ε)y+x ′−x
valC(JRel(C)).

If we transform the solution OPT(JRel(C)) by scaling weights by a factor of (1+ ε)y and scaling
all time values by a factor of (1+ ε)x

′−x using the map σ, we get a solution for JRel(C ′) with
value

(1+ ε)y+x ′−xOPT(JRel(C)).

Vice versa, applying the inverse transformation to the solution OPT(JRel(C ′)) yields a solution
for JRel(C) with value

(1+ ε)x−x ′−yOPT(JRel(C ′)).

By

OPT(JRel(C ′)) � (1+ ε)y+x ′−xOPT(JRel(C))

� (1+ ε)y+x ′−x (1+ ε)x−x ′−yOPT(JRel(C ′)) = OPT(JRel(C ′))

we can conclude equality. This finally yields

ρ(C ′) =
valC ′(JRel(C

′))
OPT(JRel(C ′))

=
(1+ ε)y+x ′−x

valC(JRel(C))

(1+ ε)y+x ′−xOPT(JRel(C))
= ρ(C).

The following lemma shows that we can restrict the set of algorithm maps under consid-
eration to those which treat equivalent configurations equivalently. We call algorithm maps
obeying this condition in addition to the restrictions of Section 7.2 simplified algorithm maps. A
configuration C is called realistic for an algorithm map f if there is an instance I such that if f
processes I then at time Rx it is in configuration C.

Lemma 7.3.7. At 1+O(ε) loss we can restrict to algorithm maps f such that f(C) ∼ f(C ′) for any
two equivalent configurations C,C ′.

Proof. Let f be an algorithm map. We now construct a new algorithm map f̄ which is simplified
and has competitive ratio ρf̄ � (1 + O(ε))ρf almost as good as f. Therefore, we pick for each
equivalence class Ce ∈ C/∼ of the set of configurations a representativeCe (i.e. [Ce] = Ce) which
is realistic for f. For each configuration C ∈ [Ce] which is equivalent to Ce with bijection σ and
integer y, we define f̄ by setting f̄(C) to be the interval-schedule for C which is (σ,y)-equivalent
to f(Ce). One can show by induction that f̄ is always in a configuration such that an equivalent

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.3. Abstraction of online algorithms 181

configuration is realistic for f. Hence, equivalence classes without realistic configurations for f
are not relevant.

Consider now an instance Ī. We show that there is an instance I such that

f̄(Ī)/OPT(Ī) � (1+ O(ε))f(I)/OPT(I)

which implies the claimed competitive ratio for f̄. Let C̄ for interval Ix̄ be the end-configuration
obtained when f̄ is applied iteratively on Ī. Let Ce be the representative of the equivalence class
of C̄, which was chosen above and which is realistic for f (Ce is also an end-configuration).
Therefore, there is an instance I such that Ce is reached at time Rx when f is applied on I. Hence,
by Lemma 7.3.6 and Ce ∼ C̄ we get that I is the required instance.

Lemma 7.3.8. There are only constantly many simplified algorithm maps. Each simplified algo-
rithm map can be described using finite information.

Proof. Assuming the simplifications introduced in Section 7.2 we can apply Corollary 7.2.14.
Therefore, the domain of the algorithm maps under consideration contains only constantly
many equivalence classes of configurations. Also, the target space contains only constantly
many equivalence classes of interval-schedules. For an algorithm map f which obeys the
restrictions of Section 7.2, the interval-schedule f(C) is fully specified when knowing only C and
the equivalence class which contains f(C) (since the irrelevant jobs are moved to their safety
net anyway). Since f(C) ∼ f(C ′) for a simplified algorithm map f if C ∼ C ′, we conclude that
there are only constantly many simplified algorithm maps. Finally, each equivalence class of
configurations and interval-schedules can be characterized using only finite information, and
hence the same holds for each simplified algorithm map.

The next lemma shows that up to a factor 1 + ε, worst case instances of simplified algorithm
maps span only constantly many intervals. Using this property, we will show in the subse-
quent lemmas that the competitive ratio of a simplified algorithm map can be determined
algorithmically up to a 1+ ε factor.

Lemma 7.3.9. There is a constant E such that for any instance I and any simplified algorithm
map f there is a realistic end-configuration C̃ for an interval Ix̃ with x̃ � E which is equivalent to
the corresponding end-configuration when f is applied to I.

Proof. Consider a simplified algorithm map f. For each interval Ix, denote by Cf
x the set of

realistic equivalence classes for Ix, i.e., the equivalence classes which have a realistic represen-
tative for Ix. Since there are constantly many equivalence classes and thus constantly many
sets of equivalence classes, there must be a constant E independent of f such that Cf

x̄ = Cf
x̄ ′ for

some x̄ < x̄ ′ � E. Since f is simplified it can be shown by induction that Cf
x̄+k = Cf

x̄ ′+k for any
k ∈ N, i.e., f cycles with period length x̄ ′ − x̄.

Consider now some instance I. LetCwith interval Ix be the corresponding end-configuration
when f is applied to I. If x � E, we are done. Otherwise, there must be some k � x̄ ′− x̄ such that
Cf
x̄+k = Cf

x, since f cycles with this period length. Hence, by definition of Cf
x̄+k there must be a

realistic end-configuration C̃which is equivalent toC for the interval Ix̃ with x̃ := x̄+k � E.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

182 Online Scheduling

Lemma 7.3.10. Let f be a simplified algorithm map. There is an algorithm which approximates ρf
up to a factor 1+ ε, i.e., it computes a value ρ ′ with ρ ′ � ρf � (1+O(ε))ρ ′.

Proof. According to Lemma 7.3.6 and Lemma 7.3.9, it suffices to construct the sets Cf
0, ...,Cf

E

in order to approximate the competitive ratio of all end-configurations in these sets. Due to
Corollary 7.2.14, we know all possible values for all parameters of jobs explicitly with lower
and upper bounds. Due to Lemma 7.2.13 we can additionally ensure that each equivalence
class of configurations corresponds to at most one part. So the enumeration can be done in a
finite amount of time. We start with Cf

0 and determine f(Ce) for one representative Ce of each
equivalence class [Ce] ∈ Cf

0. Based on this we determine the set Cf
1 . We continue inductively to

construct all sets Cf
x with x � E.

We define ρmax to be the maximum ratio ρ(C) for an end-configuration C ∈ ∪0�x�EC
f
x. Due

to Lemma 7.3.9 and Lemma 7.3.6 the value ρmax implies the required ρ ′ satisfying the properties
claimed in this lemma.

Our main algorithm works as follows. We first enumerate all simplified algorithm maps. For
each simplified algorithm map f, we approximate ρf using Lemma 7.3.10. We output the map f

with the minimum (approximated) competitive ratio. Note that the resulting online algorithm
has polynomial running time: All simplifications of a given instance can be done efficiently and
for a given configuration, the equivalence class of the schedule for the next interval can be found
in a look-up table of constant size.

Theorem 7.3.11. (Pm| rj,pmtn |
∑

wjCj) admits a competitive-ratio approximation scheme for
any m ∈ N.

7.4 Extensions to other settings

Certain arguments in Section 7.2 do not transfer directly to more complex scheduling settings. In
this section, we argue how to overcome the increased complexity. If we are able to obtain similar
statements as for Corollary 7.2.7 and Corollary 7.2.14 for the extended settings competitive-ratio
approximation schemes are also possible.

7.4.1 Non-preemptive scheduling

In this section we review which statements or proofs of Section 7.2 make use of the possibility
to preempt jobs and explain how to proceed in the non-preemptive case. One difference is that
a schedule can be defined by a start time Sj for each job j with a resulting completion time
of Cj = Sj + pj on its assigned machine ij. Nevertheless, Lemma 7.2.1 can be proven similarly.
We adapt the definition of time-stretch to this setting: when applying a time-stretch, we now
shift each completion time Cj ∈ Ix to the next interval while keeping the offset with respect to
the beginning of the interval, so

C ′
j = Rx+1 + (Cj − Rx).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.4. Extensions to other settings 183

For two completion time values C1 < C2 with C1 ∈ Ix1 and C2 ∈ Ix2 we observe that the
difference after a time-stretch is

(C ′
2 − C ′

1) = (C2 − C1) +
∑

x1�x<x2

ε|Ix|.

Hence, idle time is inserted right before each job that is partially processed at some interval
bound. Therefore, the proof of Lemma 7.2.2 needs the small adaptation that we place the idle
time for the small jobs on eachmachine respectively. Lemma 7.2.3, Lemma 7.2.4 and Lemma 7.2.5
of Subsection 7.2.1 are not affected and remain valid as they are stated. Since splitting of jobs
into small atoms as in Lemma 7.2.6 is not applicable here, we give a variant of this technique
using start times. For each job j we define s(j) and c(j) to be interval indices such that

Sj ∈ Is(j),Cj ∈ Ic(j).

Recall that with our adapted objective function, each ordering of jobs with s(j) = c(j) assigned
to one machine yields the same objective value. Hence, we only have to take care of the exact
start times of those jobs with s(j) < c(j) since they determine the amount of processing time
assigned to each interval.

Lemma 7.4.1. There is a constant μ ∈ N such that at 1+ ε loss we can restrict to schedules where
each large job j with s(j) < c(j) has a start time of the form

Sj = Rs(j) + j · |Is(j)|/μ

with j ∈ {0, . . . ,μ− 1}.

Proof. We apply one time-stretch on a considered schedule yielding a new start time Sj for each
job j ∈ J. Choose μ ∈ N to be a constant integer such that 1/μ is smaller than ε2.

Consider now each interval Ix. For each machine i there is at most one job j with x = s(j) <

c(j) running on i. Due to the time-stretch there is idle time of at least (1+ε)|Ix−1| before the start
of j. We now set j = �(Sj − Rx)μ/|Ix|� and decrease the start time of j to S ′

j = Rx + j|Ix|/μ.
This yields

S ′
j � Rx + ((Sj − Rx)

μ

|Ix|
− 1) |Ix|

μ
= Sj −

|Ix|

μ
� Sj − ε2|Ix| � Sj − ε|Ix−1|.

Hence, we get a feasible schedule of the required form with costs increased by at most a factor
of (1+ ε).

Therefore, a similar variant of Corollary 7.2.7 with a restatement of its item 5 holds in the
non-preemptive setting.
The conclusion that also in the non-preemptive case only a constant amount of history is

relevant demands a bitmore work. First, the definition of the safety net (Lemma 7.2.8) needs to be
adjusted since it might be that all machines are executing jobs during the entire interval Ix+s−1.
However, with the adapted definition of time-stretching we know that there is reserved space
on one machine in [Rx,Rx+s) to process all jobs released at time Rx. It remains to verify

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

184 Online Scheduling

that an online algorithm (that does not know the future) can determine the beginning of this
reserved space before it actually happens. Let j be the job scheduled to cover Rx+s on the last
empty machine at this time. Denote its start and completion times before the time-stretch
by Sj ∈ Is(j),Cj ∈ Ic(j). From the above observation on time-stretches we can additionally
conclude that

C ′
j − pj −

∑
s(j)�x<c(j)

ε|Ix| � Rs(j)+1.

Hence, the safety net can be scheduled within interval Is(j)+1 by our online algorithm since it
decides about the complete schedule of an interval at its beginning.
Having the existence of the safety net established, we can consider similar periods and the

proof of Lemma 7.2.9 that only counts release weights of periods remains valid. For the following
we need the small adaptation of Γ := (K+1)·s. This adjusted value is then used inDefinition 7.2.10
about recent, old, dominated, irrelevant and relevant jobs at time Rx.
The proof of Lemma 7.2.11 still holds. This is unfortunately not true for Lemma 7.2.12. Since

some remaining jobs at the end of a part may have already started processing, we cannot simply
move them to their safety net. Hence, parts cannot be treated independently. Therefore, we
switch back to consider complete instances. If we can no longer assume that an instance is
mainly a sequence of significant periods, we lose the premise of Lemma 7.2.9. We cannot simply
use that only a constant amount of history is relevant.
To solve this problem we will consider only special instances, where the weights after each

insignificant period are sufficiently high such that they dominate the complete past until this
period. The following lemma states the exact condition for these instances and proves again for
each point in time that the relevant history of an instance with constant length dominates the
irrelevant past even in the presence of insignificant periods. In a second step, we will reason
why it is sufficient to consider only those instances satisfying the given condition. To state the
first lemma, we need the following definitions.

For a given instance I, let a1 < · · · < a�+1 be again all indices satisfying Condition (7.2.2) of
Lemma 7.2.13 (and a0 := −1). Recall that the periods between Qai−1 and Qai

build a sequence
of significant periods for each i = 1, . . . , . Let

first(i), i = 1, . . . ,

denote the job that is released first after periodQai
at release time Rxi

. Without loss of generality,
we can assume that Ixi

∈ Qai+1 since we can otherwise split the instance again after an empty
period. For a given algorithm A we denote by

A(I|i)

the contribution of the jobs in Pi =
⋃a(i+1)

p=ai+1 Qp to the objective value of the solution A(I). We
denote by

I(i) :=
⋃
k�i

Pk

the instance up to period Qa(i+1) . Note that Ix(�+1) denotes the first interval after Qa(�+1) .

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.4. Extensions to other settings 185

Since we increased Γ by the length of one period and Ixi
∈ Qai+1, we can use Lemma 7.2.9 to

extend Lemma 7.2.11 such that

(1+ ε)s · rw(Irx(Pi−1)) � 6ε · rw(Relx(Pi−1))

actually holds for each x(i−1) � x < xi, i = 1, . . . , + 1.

Lemma 7.4.2. Let I be an instance such that for each i = 1, . . . , it holds that

rw(Relxi−1(I(i− 1))) � ε

(1+ ε)s (1+ 7ε) · rw(first(i)) and (7.4.1a)

max{wj | j ∈ Relxi−1(I(i− 1))} � wfirst(i). (7.4.1b)

Then, for each i = 1, . . . , + 1 and each xi−1 � x < xi, we have

(1+ ε)s rw(Irx(I(i− 1))) � 7ε · rw(Relx(I(i− 1))). (7.4.2)

Proof. We prove this by induction and start with the base case i = 1. Consider some x0 � x < x1.
By definition, all periods before Qa1 are significant. By Lemma 7.2.11 we get

(1+ ε)s rw(Irx(I(0))) � 7ε · rw(Relx(I(0))).
For the inductive step consider some i = 2, . . . , + 1 and assume that (7.4.2) holds for i− 1 and
each x(i−2) � x < x(i−1). Observe that I(i − 1) = I(i − 2) ∪ Pi−1. Due to condition (7.4.1b),
we know that Domx(I(i− 1)) ∩ Pi−1 = Domx(Pi−1) for each xi−1 � x < xi which yields:

rw(Irx(I(i− 1))) = rw(Irx(I(i− 1)) ∩ I(i− 2)) + rw(Irx(I(i− 1)) ∩ Pi−1)

� rw(I(i− 2)) + rw(Irx(Pi−1))

(7.4.2) � (1+ 7ε) rw(Relx(i−1)−1(I(i− 2))) + rw(Irx(Pi−1))

(7.4.1) � ε

(1+ ε)s
· rw(first(i− 1)) + rw(Irx(Pi−1)))

(Lemma 7.2.11) � ε

(1+ ε)s
· rw(first(i− 1)) + 6ε

(1+ ε)s
· rw(Relx(Pi−1)))

� 7ε
(1+ ε)s

· rw(Relx(I(i− 1))),

which proves the hypothesis.

Consider now some online algorithm A with competitive ratio ρA that performs with ra-
tio ρA := max{A(I)/OPT(I) | I satisfies (7.4.1)} � ρA on our desired instances where the first
released job after each insignificant period dominates the complete instance up to this period.
We now want to find a new online algorithm A ′ that modifies the weights of each given ar-
bitrary instance I to an instance I ′ satisfying (7.4.1) and creates a solution A(I ′) that yields a
schedule A ′(I) for the original instance with

A ′(I)
OPT(I) � (1+ O(ε))max

i

A(I ′(i))
OPT(I ′(i)) � (1+ O(ε))ρA � (1+ O(ε))ρA.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

186 Online Scheduling

Therefore, an online algorithm that proves to be good on only these instances yields an online
algorithm for general instances with almost the same competitive ratio. Hence, it is sufficient to
consider only these instances for the enumeration of simplified algorithm maps.

Lemma 7.4.3. At (1+ O(ε)) loss, we can restrict to instances satisfying (7.4.1).

Proof. For a considered online algorithm Awe define a new algorithm A ′ that creates for a given
instance I the new instance I ′ and applies A on I ′ as follows:
At the beginning we set I ′(0) = I(0). After periodQ ′

ai
we add for each further i = 1, . . . ,

and for each job j ∈ Pi of instance I a new job j ′ to I ′ with equal processing time and release
date but new weightwj ′ := vi ·wj such thatwj ′ � wfirst(i) ′ for each j ′ ∈ Relxi−1(I ′(i− 1)) and

rw(Relxi−1(I
′(i− 1))) � ε

(1+ ε)s (1+ 7ε) · rw(first(i)
′).

Hence, I ′ satisfies (7.4.1). The schedules for A ′(I(i)) are then defined by applying A(I ′(i)).
We then observe that

A ′(I|i) · vi = A(I ′|i) � A(I ′(i))

and by Lemma 7.4.2,

OPT(I ′(i)) � OPT(I|i) · vi + (1+ ε)s rw(I ′(i− 1))

(7.4.2) � OPT(I|i) · vi + (1+ ε)s (1+ 7ε) rw(Relxi−1(I
′(i− 1)))

(7.4.1) � OPT(I|i) · vi + ε · rw(first(i) ′)

� (1+ ε)vi ·OPT(I|i).

The combination finally yields

A ′(I)
OPT(I) � max

i

A ′(I|i)
OPT(I|i) � max

i

(1+ ε)vi · A(I ′(i))
OPT(I ′(i)) · vi � (1+ ε)max

i

A(I ′(i))
OPT(I ′(i))

Hence, we get ρA ′ � (1+ O(ε))ρA � (1+ O(ε))ρA.

To conclude, even without treating parts independently, we can restrict to instances where
only a constant amount of history is relevant. Therefore, we can state an adapted version of
Corollary 7.2.14 for the non-preemptive setting:

Corollary 7.4.4. At 1 + O(ε) loss we can assume for each instance I with job set J and each
interval Ix that

1. pj ∈ {(1+ ε)k | ε3

4 (1+ ε)−ΓRx � (1+ ε)k � 1
ε
Rx} for each j ∈ Recx(J),

2. rj ∈ {(1+ ε)k | (1+ ε)−ΓRx � (1+ ε)k � Rx} for each j ∈ Recx(J),

3. wj ∈ {(1+ ε)k | wx � (1+ ε)k � W ·wx} for some value wx and each j ∈ Relx(J),

4. s(j), c(j) ∈ {x− Γ , . . . , x+ s} for each j ∈ Recx(J) and
Sj ∈ {Rs(j) + j · |Is(j)|/μ | j ∈ {0, . . . ,μ− 1}} if s(j) < c(j),

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.4. Extensions to other settings 187

5. the cardinality of Recx(J) ⊇ Relx(J) is bounded by Γ · Δ, and

6.
∑

j∈Irx(J)
wjCj � O(ε) ·OPT(Relx(J)).

We now continue with adaptations for Section 7.3. Since schedules are defined in the non-
preemptive case via assigned machines and start times we discard the values of oj and qij

from the definitions of interval-schedules and configurations (compare Definition 7.3.1 and
Definition 7.3.2). Instead, each interval-schedule S for interval Ix knows in addition to all
properties of J(S) for each already running job j with s(j) < x � c(j) the values Sj and ij and
assigns these two values to each job j scheduled to start within Ix (i.e. s(j) = x). Also each
configurationC for interval Ix contains additionally the values Sj and ij for each job j ∈ P(C) =

{j ∈ J(C) | s(j) < x � c(j)} that is partially processed at time Rx.
In Definition 7.3.4 of two (σ,y)-equivalent interval-schedules S,S ′, we replace the oj- and qij-

conditions by:
iσ(j) = ij

and
x− x ′ = s(j) − s(σ(j)) = c(j) − c(σ(j))

for each j ∈ J̃ and
Sσ(j) = Sj(1+ ε)x

′−x

for each j ∈ J̃ with s(j) < c(j).
In the non-preemptive setting it is possible that jobs running at the beginning of an interval

are also dominated and hence irrelevant at that time. Nevertheless, configurations with different
dominated jobs partially processed at time Rx must be treated differently. To deal with this
circumstance we have to extend the definition of equivalent configurations appropriately:

Definition 7.4.5. Two feasible configurations C,C ′ for the intervals Ix, Ix ′ are called equivalent

• if they are equivalent in the sense of Definition 7.3.5 without the oj-conditions

• and if there is a bijection ψ : P(C) → P(C ′) such that for each j ∈ P(C),
– rψ(j) = rj(1+ ε)x

′−x,

– pψ(j) = pj(1+ ε)x
′−x,

– iσ(j) = ij and

– Sσ(j) = Sj(1+ ε)x
′−x.

This extension allows a similar proof of Lemma 7.3.7 since for any feasible algorithm-map f,
a (σ,y)-equivalent interval schedule of f(Ce) for any configuration C ∈ [Ce] equivalent to
the representative Ce has enough idle time where the running dominated jobs of P(C) can be
feasibly continued. Also, Lemma 7.3.6 is still valid.

Note that each job of P(C) is recent at time Rx since no job remains unfinished for more than
one period. Corollary 7.4.4 explicitly takes care of which statements are valid not only for the
set of relevant jobs, but also for the set of recent jobs at any point in time. Therefore, we can

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

188 Online Scheduling

use Corollary 7.4.4 in the proof of Lemma 7.3.8 instead of Corollary 7.2.14 to conclude again
that there are only constantly many simplified algorithm maps. With this, the implications
for Lemma 7.3.9 and Lemma 7.3.10 apply similarly and we can construct a competitive-ratio
approximation scheme as in Section 7.3.

Theorem 7.4.6. (Pm| rj |
∑

wjCj) admits a competitive-ratio approximation scheme for any
m ∈ N.

7.4.2 Scheduling on relatedmachines

We now consider the setting of scheduling related machines, where each machine i has a certain
speed si associated to it. Processing job j on machine i takes pj/si time units.
We review the statements and proofs of Section 7.2 and discuss where adjustments need to

be made. Without loss of generality we can assume that the slowest machine has unit speed.
Let smax denote the maximum speed in an instance and denote by s∑ the sum of the processing
speeds of all machines. We use the following adjusted version of Lemma 7.2.1:

Lemma 7.4.7. At 1+O(ε) loss we can restrict to instances where all processing times, release dates,
and weights are powers of 1+ ε, no job is released before time t = 1, and rj � ε · pj/smax for all
jobs j.

Proof. Everything but the last statement follows exactly as in the proof of Lemma 7.2.1. For
the last claim, let A1 = [1,u1), . . . ,Ak = [k,uk) be the time intervals during which job j is
being processed in an optimal schedule that satisfies the other properties. Let tε denote the
time where exactly an ε

1+ε
-fraction of j has been processed. We multiply every time event by a

factor of (1+ ε). Then we have enough processing time reserved that we can shift the starting
time of j to r ′j := (1+ ε)tε. If j started at time 1(1+ ε), then at time (1+ ε)tε we would already
have processed an ε-fraction of j. Therefore, r ′j �

εpj

smax
is true even if j was processed on the

fastest machine up to time r ′j.

We define
Lx =

{
j ∈ J

∣∣∣∣ rj = Rx,pj >
ε2|Ix|

smax

}
to be the set of large jobs released at Rx and

Sx =

{
j ∈ J

∣∣∣∣ rj = Rx,pj �
ε2|Ix|

smax

}

to be the set of small jobs released at Rx.

Lemma 7.4.8. At 1 + ε loss we can restrict to schedules such that for each interval Ix the small
jobs scheduled within this interval are chosen by Smith’s rule from the set

⋃
x ′�x Sx ′ and no small

job is preempted or only partially processed at the end of an interval. Therefore, we can restrict to
instances with p(Sx) � m · |Ix| · s∑ for each interval Ix.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.4. Extensions to other settings 189

The proof of Lemma 7.4.8 works the same way as the proof of Lemma 7.2.2, except that after
shifting the large jobs to the beginning of the interval, we fill the machines with small jobs in
some nonincreasing order of their speeds. Also, the bound on processing times now includes a
factor of s∑.
For Lemma 7.2.3, we have a slight modification:

Lemma 7.4.9. At 1+ O(ε) loss we can restrict to instances such that pj � ε2

4smax
· |Ix| for each job

j ∈ Sx. In these instances, the number of distinct processing times of each set Sx is bounded from
above by log(1+ε) 4.

Proof. We call a job j ∈ Sx tiny if

pj �
ε2

4smax
· |Ix|.

Let be the largest integer such that

�∑
i=1

pi �
ε2

2smax
· |Ix|.

We construct the packs in the same way as in Lemma 7.2.3. Then, the processing time of all but
possibly the last pack released at time Rx is in the interval[

ε2

4smax
· |Ix|, ε2

2smax
· |Ix|

]
.

We apply one time-stretch and the rest of the argumentation holds. Each processing time of a
job in Sx then equals (1+ ε)y for some integer y such that

ε3

4smax
· (1+ ε)x � (1+ ε)y � ε2|Ix|

smax
=

ε3

smax
· (1+ ε)x.

The number of integers y satisfying these inequalities is bounded from above by the claimed
constant.

Possible processing times of large jobs fall in the range
[

ε2

smax
· |Ix|, rjsmax

ε

]
and therefore, we

get an upper bound on the number of distinct processing times of large jobs of 8 log(1+ε) ε · smax.

Lemma 7.4.10. Without loss, we can restrict to instances with

|Lx| � (m/ε2 +m)8s2max log(1+ε)

1
ε

for each set Lx.

Lemma 7.4.11. There is a constant μ ∈ N such that at 1+O(ε) loss we can restrict to schedules
such that at the end of each interval, each large job j is processed to an extent which is an integer
multiple of pj/μ.

Proof. We choose μ ∈ N such that 1/μ is smaller than ε4/(s2max · 8 log(1+ε)
1
ε
). The remainder

of the proof is identical to the argumentation in the proof of Lemma 7.2.6.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

190 Online Scheduling

The following corollary summarizes the simplifications that we need for the setting of related
machines.

Corollary 7.4.12. At 1+ O(ε) loss we can assume that for each interval Ix,

1. for each job j released at time Rx exists some integer k such that j has a processing time

pj = (1+ ε)k ∈
[
ε3 · Rx

4smax
, Rx · smax

ε

]
,

2. there are at most
8s2max log(1+ε)

1
ε
+ log(1+ε) 4

distinct processing time values of jobs released at Rx,

3. at most Δ jobs are released at Rx,

4. each small job started in Ix is completed in Ix without preemption, and

5. at the end of Ix, each job j is processed to an extent of x,j · pj/μ for some x,j ∈ {0, . . . ,μ}.

We establish the safety net for the jobs of each release date Rx only on the fastestmachine
and thereby ensure the condition of Lemma 7.2.8 in the related machine setting. For the non-
preemptive setting, we incorporate the adjustments introduced in Subsection 7.4.1. At 1 + ε

loss we can round the speeds of the machines to powers of 1+ ε. Thus, for a constant number
of machinesm, there are only constantly many possible vectors s characterizing the speeds of
the machines if the machine speeds lie in a constant range. Assuming the latter, we apply our
enumeration scheme to each of these speed vectors of the machines and obtain a competitive-
ratio approximation scheme for this case.

Theorem 7.4.13. For any m ∈ N, we obtain competitive-ratio approximation schemes for

(Qm| rj,pmtn |
∑

wjCj)

and
(Qm| rj |

∑
wjCj),

assuming that the speeds of any two machines differ by at most a constant factor.

In the preemptive setting we can strengthen the result and give a competitive-ratio approxi-
mation scheme for the case that machine speeds are part of the input, that is, we obtain a nearly
optimal competitive ratio for any speed vector. The key is to bound the variety of different
speeds. To that end, we show that at 1+ ε loss a very fast machine can simulate m− 1 very slow
machines.

Lemma 7.4.14. For (Qm| rj,pmtn |
∑

wjCj), we can at 1 + O(ε) loss restrict to instances in
which smax is bounded by m/ε.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7.5. Conclusions 191

Proof. Given a schedule on related machines with speed values s1, ..., smax, we stretch time twice.
Thus, we gain in each interval Ix free space of size εIx on the fastest machine. For each machine
whose speed is at most ε

m
smax, we take its schedule of the interval Ix and simulate it on the

fastest machine. Thus, those slow machines are not needed and can be ignored. The remaining
machines have speeds in [ε

m
smax, smax]. Assuming the slowest machines have unit speed then

yields the desired bound.

As speeds are geometrically rounded, we also have for each value m only finitely many speed
vectors. Our enumeration scheme finds a nearly optimal online algorithm with a particular
routine for each speed vector.

Theorem 7.4.15. For any m ∈ N, we obtain a competitive-ratio approximation scheme for

(Qm| rj,pmtn |
∑

wjCj) .

7.5 Conclusions

We introduced the concept of competitive-ratio approximation schemes that compute online
algorithms with a competitive ratio arbitrarily close to the best possible competitive ratio. We
provided such schemes for various problem variants of scheduling jobs online to minimize the
weighted sum of completion times.

The techniques derived in this chapter provide a new and interesting view on the behavior
of online algorithms. We believe that they contribute to the understanding of such algorithms,
possibly open a new viewpoint for understanding them, and open a new line of research which
yields even further insights. In particular, recent results show that our methods can also be
applied to other scheduling objective settings (Kurpisz et al. [2013]), other online models (Chen
et al. [2015]; Megow andWiese [2013]) and also to different online problems such as the k-server
problem (Mömke [2013]).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[Aardal et al. 1996] Aardal, K. I. ; Hipolito, A. ; Hoesel, C.P.M. v. ; Jansen, B. ;
Roos, C. ; Terlaky, T.: A branch-and-cut algorithm for the frequency assignment
problem. In: Research Memorandum 96/011, Maastricht University (1996). – http:

//pub.maastrichtuniversity.nl/196b6d6f-4d2b-4ee7-a235-23f14f5e27e3

[Achterberg 2009] Achterberg, Tobias: SCIP: Solving constraint integer programs. In:
Mathematical Programming Computation 1 (2009), Issue 1, pp 1–41. – http://mpc.zib.de/

index.php/MPC/article/view/4

[Afrati et al. 1999] Afrati, Foto N. ; Bampis, Evripidis ; Chekuri, Chandra ; Karger,
David R. ; Kenyon, Claire ; Khanna, Sanjeev ; Milis, Ioannis ; Queyranne, Maurice ;
Skutella, Martin ; Stein, Clifford ; Sviridenko, Maxim: Approximation Schemes for
Minimizing Average Weighted Completion Time with Release Dates. In: Proceedings of
the 40th IEEE Symposium on the Foundations of Computer Science (FOCS), 1999, pp 32–43. –
https://dx.doi.org/10.1109/SFFCS.1999.814574

[Aggoun and Beldiceanu 1993] Aggoun, Abderrahmane ; Beldiceanu, Nicolas: Extending
chip in order to solve complex scheduling and placement problems. In: Mathematical
and Computer Modelling 17 (1993), Issue 7, pp 57–73. – https://dx.doi.org/10.1016/

0895-7177(93)90068-A

[Albareda-Sambola et al. 2009] Albareda-Sambola, M. ; Fernández, E. ; Hinojosa, Y. ;
Puerto, J.: The multi-period incremental service facility location problem. In: Computers &
Operations Research 36 (2009), May, pp 1356–1375. – https://dx.doi.org/10.1016/j.

cor.2008.02.010

[Álvarez-Miranda et al. 2013] Álvarez-Miranda, E. ; Ljubić, I. ; Mutzel, P.: TheMaximum
Weight Connected Subgraph Problem. In: Facets of Combinatorial Optimization: Festschrift
for Martin Grötschel. Springer, 2013, pp 245–270. – https://dx.doi.org/10.1007/

978-3-642-38189-8_11

[Anderson and Potts 2004] Anderson, Edward J. ; Potts, Chris N.: Online Scheduling of a
Single Machine toMinimize TotalWeighted Completion Time. In:Mathematics of Operations
Research 29 (2004), pp 686–697. – https://dx.doi.org/10.1287/moor.1040.0092

[Arora and Barak 2009] Arora, Sanjeev ; Barak, Boaz: Computational Complexity: A
Modern Approach. Cambridge University Press, 2009

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

194 Bibliography

[Arulselvan et al. 2011] Arulselvan, Ashwin ; Bley, Andreas ; Gollowitzer, Stefan ;
Ljubić, Ivana ; Maurer, Olaf: MIP modeling of incremental connected facility loca-
tion. In: Network Optimization (2011), pp 490–502. – https://dx.doi.org/10.1007/

978-3-642-21527-8_54

[Arulselvan et al. 2015] Arulselvan, Ashwin ; Maurer, Olaf ; Skutella, Martin: An
incremental algorithm for the uncapacitated facility location problem. In: Networks 65 (2015),
Issue 4, pp 306–311. – https://dx.doi.org/10.1002/net.21595

[Augustine et al. 2008] Augustine, John ; Irani, Sandy ; Swamy, Chaitanya: Optimal
Power-Down Strategies. In: SIAM Journal on Computing 37 (2008), Issue 5, pp 1499–1516. –
https://dx.doi.org/10.1137/05063787X

[Balakrishnan et al. 1994] Balakrishnan, A. ; Magnanti, T.L. ; Mirchandani, P.: Modeling
and heuristic worst-case performance analysis of the two-level network design problem. In:
Management Science 40 (1994), Issue 7, pp 846–867. – https://dx.doi.org/10.1287/

mnsc.40.7.846

[Balinski 1961] Balinski, Michel L.: On the graph structure of convex polyhedra in n-space.
In: Pacific Journal of Mathematics 11 (1961), Issue 2, pp 431–434. – https://dx.doi.org/

10.2140/pjm.1961.11.431

[Bar-Yehuda and Moran 1984] Bar-Yehuda, R. ; Moran, S.: On approximation problems
related to the independent set and vertex cover problems. In: Discrete Applied Mathematics 9
(1984), pp 1–10. – https://dx.doi.org/10.1016/0166-218X(84)90086-6

[Bardossy and Raghavan 2010] Bardossy, M. G. ; Raghavan, S.: Dual-Based Local Search for
the Connected Facility Location and Related Problems. In: INFORMS Journal on Computing
22 (2010), Issue 4, pp 584–602. – https://dx.doi.org/10.1287/ijoc.1090.0375

[Beasley 2013] Beasley, J. E.: OR-Library. 2013. – http://people.brunel.ac.uk/

~mastjjb/jeb/orlib/steininfo.html

[Bertsimas and Tsitsiklis 1997] Bertsimas, D. ; Tsitsiklis, J.N.: Introduction to linear
optimization. Athena Scientific, 1997. – ISBN 978-1-886529-19-9

[Bertsimas and Sim 2003] Bertsimas, Dimitris ; Sim, Melvyn: Robust discrete optimization
and network flows. In: Mathematical programming 98 (2003), Issue 1, pp 49–71. – https:

//dx.doi.org/10.1007/s10107-003-0396-4

[Bertsimas andWeismantel 2005] Bertsimas, Dimitris ; Weismantel, Robert: Optimization
over Integers. Dynamic Ideas, 2005. – ISBN 0-9759146-2-6

[Bienstock et al. 2006] Bienstock, D. ; Raskina, O. ; Saniee, I. ; Wang, Q.: Combined
Network Design and Multiperiod Pricing: Modeling, Solution Techniques, and Computation.
In: Operations Research 54 (2006), Issue 2, pp 261–276. – https://dx.doi.org/10.1287/

opre.1050.0259

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 195

[Bland 1977] Bland, Robert G.: New Finite Pivoting Rules for the Simplex Method. In:
Mathematics of Operations Research 2 (1977), Issue 2, pp 103–107. – https://dx.doi.org/

10.1287/moor.2.2.103

[Bley et al. 2013] Bley, Andreas ; Ljubić, Ivana ; Maurer, Olaf: Lagrangian decompo-
sitions for the two-level FTTx network design problem. In: EURO Journal on Computa-
tional Optimization 1 (2013), Issue 3-4, pp 221–252. – https://dx.doi.org/10.1007/

s13675-013-0014-z

[Bley et al. 2008] Bley, Andreas ; Menne, Ullrich ; Klaehne, Roman ; Raack, Christian ;
Wessaely, Roland: Multi-layer network design – A model-based optimization approach. In:
Proceedings of the PGTS 2008, Berlin, Germany, 2008, pp 107 – 116

[Bonnans et al. 2003] Bonnans, J.F. ; Gilbert, J.C. ; Lemaréchal, C. ; Sagastizaábal, C.A.:
Numerical Optimization. Springer, 2003

[Borndörfer et al. 1998] Borndörfer, Ralf ; Eisenblätter, Andreas ; Grötschel, Martin ;
Martin, Alexander: The Orientation Model for Frequency Assignment Problems. 1998. –
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/562

[Boyacı et al. 2016] Boyacı, Arman ; Ekim, Tınaz ; Shalom, Mordechai ; Zaks, Shmuel:
Graphs of Edge-intersecting and Non-splitting Paths. In: Theor. Comput. Sci. 629 (2016), May,
Issue C, pp 40–50. – https://dx.doi.org/10.1016/j.tcs.2015.10.004

[Buchsbaum et al. 2004] Buchsbaum, Adam L. ; Karloff, Howard ; Kenyon, Claire ;
Reingold, Nick ; Thorup, Mikkel: OPT Versus LOAD in Dynamic Storage Allocation. In:
SIAM Journal on Computing 33 (2004), Issue 3, pp 632–646. – https://dx.doi.org/10.

1137/S0097539703423941

[Byrka and Aardal 2010] Byrka, Jarosław ; Aardal, Karen: An Optimal Bifactor Approxima-
tion Algorithm for the Metric Uncapacitated Facility Location Problem. In: SIAM Journal on
Computing 39 (2010), Issue 6, pp 2212–2231. – https://dx.doi.org/10.1137/070708901

[Byrka et al. 2013] Byrka, Jarosław ; Grandoni, Fabrizio ; Rothvoss, Thomas ; Sanità,
Laura: Steiner Tree Approximation via Iterative Randomized Rounding. In: Journal of the
ACM 60 (2013), February, Issue 1, pp 6:1–6:33. – https://dx.doi.org/10.1145/2432622.

2432628

[Carvajal et al. 2013] Carvajal, R. ; Constantino, M. ; Goycoolea, M. ; Vielma, J. P. ;
Weintraub, A.: Imposing Connectivity Constraints in Forest Planning Models. In: Opera-
tions Research 61 (2013), pp 824–836. – https://dx.doi.org/10.1287/opre.2013.1183

[Chakrabarti et al. 1996] Chakrabarti, Soumen ; Phillips, Cynthia A. ; Schulz, Andreas S. ;
Shmoys, David B. ; Stein, Clifford ; Wein, Joel: Improved algorithms for minsum criteria. In:
Meyer, Friedhelm (ed.) ; Monien, Burkhard (ed.): Automata, Languages and Programming:
23rd International Colloquium, ICALP ’96 Paderborn, Germany, July 8–12, 1996 Proceedings
vol. 1099, 1996, pp 646–657. – https://dx.doi.org/10.1007/3-540-61440-0_166

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

196 Bibliography

[Chardy et al. 2012] Chardy, M. ; Costa, M.-C. ; Faye, A. ; Trampont, M.: Optimizing
splitter and fiber location in a multilevel optical FTTH network. In: European Journal of
Operational Research 222 (2012), Issue 3, pp 430–440. – https://dx.doi.org/10.1016/

j.ejor.2012.05.024

[Charikar et al. 2001] Charikar, Moses ; Khuller, Samir ; Mount, DavidM. ; Narasimhan,
Giri: Algorithms for facility location problems with outliers. In: Proceedings of the twelfth
annual ACM-SIAM Symposium on Discrete Algorithms, 2001 (SODA ’01), pp 642–651. –
https://dl.acm.org/citation.cfm?id=365555

[Chekuri et al. 2001] Chekuri, Chandra ; Motwani, Rajeev ; Natarajan, B. ; Stein,
Clifford: Approximation Techniques for Average Completion Time Scheduling. In:
SIAM Journal on Computing 31 (2001), pp 146–166. – https://dx.doi.org/10.1137/

S0097539797327180

[Chen et al. 2015] Chen, Lin ; Ye, Deshi ; Zhang, Guochuan: Approximating the Optimal
Algorithm for Online Scheduling Problems via Dynamic Programming. In: Asia-Pacific
Journal of Operational Research 32 (2015), Issue 01. – https://dx.doi.org/10.1142/

S0217595915400114

[Cherkassky and Goldberg 1997] Cherkassky, B.V. ; Goldberg, A.V.: On Implementing
the Push-Relabel Method for the Maximum Flow Problem. In: Algorithmica 19 (1997),
pp 390–410. – https://dx.doi.org/10.1007/PL00009180

[Chopra 1989] Chopra, Sunil: On the Spanning Tree Polyhedron. In: Operations Research
Letters 8 (1989), Issue 1, pp 25–29. – https://dx.doi.org/10.1016/0167-6377(89)

90029-1

[Chopra and Rao 1994] Chopra, Sunil ; Rao, M.R.: The Steiner tree problem I: Formulations,
compositions and extension of facets. In: Mathematical Programming 64 (1994), Issue 1-3,
pp 209–229. – https://dx.doi.org/10.1007/BF01582573

[Christofides and Brooker 1974] Christofides, Nicos ; Brooker, P.: Optimal expansion
of an existing network. In: Mathematical Programming 6 (1974), pp 197–211. – https:

//dx.doi.org/10.1007/BF01580236

[Chrobak et al. 2008] Chrobak, Marek ; Kenyon, Claire ; Noga, John ; Young, Neal:
Incremental Medians via Online Bidding. In: Algorithmica 50 (2008), Issue 4, pp 455–478. –
https://dx.doi.org/10.1007/s00453-007-9005-x

[Chudak and Shmoys 2003] Chudak, FabianA. ; Shmoys, David B.: ImprovedApproximation
Algorithms for the Uncapacitated Facility Location Problem. In: SIAM Journal on Computing
33 (2003), Issue 1, pp 1–25. – https://dx.doi.org/10.1137/S0097539703405754

[Chung et al. 2010] Chung, Christine ; Nonner, Tim ; Souza, Alexander: SRPT is 1.86-
Competitive for Completion Time Scheduling. In: Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2010, pp 1373–1388. – https:

//dx.doi.org/10.1137/1.9781611973075.111

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 197

[Cisco 2015] Cisco: Cisco Visual Networking Index: Forecast and Methodology,2014− 2019.
2015. – Cisco White Paper, available online at www.cisco.com

[Coll et al. 2002] Coll, Pablo ; Marenco, Javier ; Díaz, Isabel M. ; Zabala, Paula: Facets of
the graph coloring polytope. In: Annals of Operations Research 116 (2002), Issue 1-4, pp 79–90.
– https://dx.doi.org/10.1023/A:1021315911306

[Cormen et al. 2000] Cormen, T. H. ; Leiserson, C. E. ; Rivest, R. L. ; Stein, C.: Introduction
to Algorithms, 2nd edition. MIT Press, McGraw-Hill Book Company, 2000

[Cornuéjols et al. 1990] Cornuéjols, Gérard P. ; Nemhauser, George L. ; Wolsey, Lau-
rence A.: The uncapacitated facility location problem. In: Mirchandani, P. (ed.) ; Francis,
R. (ed.): Discrete Location Theory. John Wiley and Sons, Inc., New York, 1990, pp 119–171. –
dx.doi.org/10.1002/net.3230240212

[Correa and Wagner 2009] Correa, José R. ; Wagner, Michael R.: LP-Based online schedul-
ing: from single to parallel machines. In: Mathematical Programming 119 (2009), pp 109–136.
– https://dx.doi.org/10.1007/s10107-007-0204-7

[Dantzig and Wolfe 1960] Dantzig, George B. ; Wolfe, Philip: Decomposition principle for
linear programs. In: Operations research 8 (1960), Issue 1, pp 101–111. – https://dx.doi.

org/10.1287/opre.8.1.101

[Demaine et al. 2013] Demaine, Erik D. ; Hajiaghayi, Mohammadtaghi ; Klein, Philip N.:
Node-Weighted Steiner Tree and Group Steiner Tree in Planar Graphs. In: ACM Transactions
on Algorithms 10 (2013), Issue 3, pp 13:1–13:20. – https://dx.doi.org/10.1145/2601070

[Desaulniers et al. 2005] Desaulniers, Guy ; Desrosiers, Jacques ; Solomon, Marius M.:
Column Generation. Springer US, 2005. – https://dx.doi.org/10.1007/b135457. –
ISBN 978-0-387-25485-2

[Diestel 2010] Diestel, Reinhard: Graph Theory. 4th. Springer, 2010. – ISBN 978-3-642-
14278-9

[Doulliez and Rao 1975] Doulliez, P. J. ; Rao, M. R.: Optimal Network Capacity Planning:
A Shortest-Path Scheme. In: Operations Research 23 (1975), Issue 4, pp 810–818. – https:

//dx.doi.org/10.1287/opre.23.4.810

[Ebenlendr et al. 2009] Ebenlendr, Tomáš ; Jawor, Wojciech ; Sgall, Jiří: PreemptiveOnline
Scheduling: Optimal Algorithms for All Speeds. In: Algorithmica 53 (2009), pp 504–522. –
https://dx.doi.org/10.1007/s00453-008-9235-6

[Ebenlendr and Sgall 2011] Ebenlendr, Tomáš ; Sgall, Jiří: Semi-Online Preemptive
Scheduling: One Algorithm for All Variants. In: Theory of Computing Systems 48 (2011),
Issue 3, pp 577–613. – https://dx.doi.org/10.1007/s00224-010-9287-2

[Eisenbrand et al. 2010] Eisenbrand, Friedrich ; Grandoni, Fabrizio ; Rothvoss, Thomas ;
Schäfer, Guido: Connected facility location via random facility sampling and core detouring.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

198 Bibliography

In: Journal of Computer and System Sciences 76 (2010), Issue 8, pp 709–726. – https:

//dx.doi.org/10.1016/j.jcss.2010.02.001

[Epstein and van Stee 2003] Epstein, Leah ; Stee, Rob van: Lower Bounds for On-line
Single-Machine Scheduling. In: Theoretical Computer Science 299 (2003), pp 439–450. –
https://dx.doi.org/10.1016/S0304-3975(02)00488-7

[Feige 1998] Feige, Uriel: AThreshold of lnn for Approximating Set Cover. In: Journal of the
ACM 45 (1998), Issue 4, pp 634–652. – https://dx.doi.org/10.1145/285055.285059

[Fernandes and Gouveia 1998] Fernandes, Lucinda M. ; Gouveia, Luis: Minimal spanning
trees with a constraint on the number of leaves. In: European Journal of Operational Re-
search 104 (1998), Issue 1, pp 250–261. – https://dx.doi.org/10.1016/S0377-2217(96)
00327-X

[Fischetti et al. 2015] Fischetti, M. ; Leitner, M. ; Ljubić, I. ; Luipersbeck, M. ; Monaci,
M. ; Resch, M. ; Salvagnin, D. ; Sinnl, M.: Thinning out Steiner trees: A node based model
for uniform edge costs. (2015). – Submitted

[Fotakis 2006] Fotakis, Dimitris: Incremental algorithms for Facility Location and k-
Median. In: Theoretical Computer Science 361 (2006), Issue 2-3, pp 275–313. – https:

//dx.doi.org/10.1016/j.tcs.2006.05.015

[Fotakis 2008] Fotakis, Dimitris: On the Competitive Ratio for Online Facility Loca-
tion. In: Algorithmica 50 (2008), Issue 1, pp 1–57. – https://dx.doi.org/10.1007/

s00453-007-9049-y

[FTTx-Plan 2012] FTTx-Plan: Kostenoptimierte Planung von FTTx-Netzen. 2012. – http:

//www.fttx-plan.de/

[Fujie 2004] Fujie, Tetsuya: The maximum-leaf spanning tree problem: Formulations and
facets. In: Networks 43 (2004), Issue 4, pp 212–223. – https://dx.doi.org/10.1002/

net.20001

[Garey and Graham 1975] Garey, M. R. ; Graham, R. L.: Bounds for Multiprocessor
Scheduling with Resource Constraints. In: SIAM Journal on Computing 4 (1975), Issue 2,
pp 187–200. – https://dx.doi.org/10.1137/0204015

[Garey and Johnson 1979] Garey, Michael R. ; Johnson, David S.: Computers and Intractabil-
ity - A Guide to the Theory of NP-Completeness. New York : W.H. Freeman and Company,
1979. – ISBN 0-7167-1045-5

[Garg et al. 2000] Garg, Naveen ; Konjevod, Goran ; Ravi, R.: A Polylogarithmic Approxi-
mation Algorithm for the Group Steiner Tree Problem. In: Journal of Algorithms 37 (2000),
Issue 1, pp 66–84. – https://dx.doi.org/10.1006/jagm.2000.1096

[Gendron et al. 2014] Gendron, Bernard ; Lucena, Abilio ; Cunha, Alexandre S. da ;
Simonetti, Luidi: Benders Decomposition, Branch-and-Cut, and Hybrid Algorithms for the

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 199

Minimum Connected Dominating Set Problem. In: INFORMS Journal on Computing 26
(2014), Issue 4, pp 645–657. – https://dx.doi.org/10.1287/ijoc.2013.0589

[Gergov 1996] Gergov, Jordan: Algorithms — ESA ’96: Fourth Annual European Symposium
Barcelona, Spain, September 25–27, 1996 Proceedings. Chap. Approximation algorithms for
dynamic storage allocation, pp 52–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. –
https://dx.doi.org/10.1007/3-540-61680-2_46. – ISBN 978-3-540-70667-0

[Gergov 1999] Gergov, Jordan: Algorithms for Compile-time Memory Optimization. In:
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia,
PA, USA : Society for Industrial and Applied Mathematics, 1999 (SODA ’99), pp 907–908. –
http://dl.acm.org/citation.cfm?id=314500.315082. – ISBN 0-89871-434-6

[Gerstel et al. 2012] Gerstel, O. ; Jinno, M. ; Lord, A. ; Yoo, S.J.B.: Elastic optical networking:
a new dawn for the optical layer? In: Communications Magazine, IEEE 50 (2012), February,
Issue 2, pp s12–s20. – https://dx.doi.org/10.1109/MCOM.2012.6146481

[Goemans 1997] Goemans, Michel X.: Improved Approximation Algorithms for Scheduling
with Release Dates. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), Society for Industrial and Applied Mathematics, 1997, pp 591–598. –
https://dl.acm.org/citation.cfm?id=314161.314394

[Goemans et al. 2002] Goemans, Michel X. ; Queyranne, Maurice ; Schulz, Andreas S. ;
Skutella, Martin ; Wang, Yaoguang: Single machine scheduling with release dates. In:
SIAM Journal on Discrete Mathematics 15 (2002), pp 165–192. – https://dx.doi.org/10.

1137/S089548019936223X

[Goldberg 2012] Goldberg, A.: Andrew Goldberg’s Network Optimization Library. 2012. –
http://www.avglab.com/andrew/soft.html

[Gollowitzer et al. 2013] Gollowitzer, Stefan ; Gouveia, Luis ; Ljubić, Ivana: Enhanced
formulations and branch-and-cut for the two level network design problem with transition
facilities. In: European Journal of Operational Research 225 (2013), Issue 2, pp 211–222. –
https://dx.doi.org/10.1016/j.ejor.2012.09.040

[Gollowitzer and Ljubić 2011] Gollowitzer, Stefan ; Ljubić, Ivana: MIP models for con-
nected facility location: A theoretical and computational Study. In: Computers & Operations
Research 38 (2011), Issue 2, pp 435–449. – https://dx.doi.org/10.1016/j.cor.2010.

07.002

[Gouveia et al. 2015] Gouveia, Luís ; Lopes, Maria J. ; Sousa, Amaro de: Single PON network
design with unconstrained splitting stages. In: European Journal of Operational Research 240
(2015), Issue 2, pp 361 – 371. – https://dx.doi.org/10.1016/j.ejor.2014.07.006

[Graham et al. 1979] Graham, Ronald L. ; Lawler, Eugene L. ; Lenstra, Jan K. ; Rinnooy
Kan, Alexander H. G.: Optimization and Approximation in Deterministic Sequencing and
Scheduling: a Survey. In: Annals of Discrete Mathematics 5 (1979), pp 287–326. – https:

//dx.doi.org/10.1016/S0167-5060(08)70356-X

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

200 Bibliography

[Grötschel et al. 1993] Grötschel, Martin ; Lovász, Lászlo ; Schrijver, Alexander: Al-
gorithms and Combinatorics. vol. 2: Geometric Algorithms and Combinatorial Optimization.
Second corrected edition. Springer, 1993. – ISBN 3-540-56740-2, 0-387-56740-2 (U.S.)

[Grötschel et al. 2013] Grötschel, Martin ; Raack, Christian ; Werner, Axel: Towards
optimizing the deployment of optical access networks. In: EURO Journal on Compu-
tational Optimization 2 (2013), Issue 1, pp 17–53. – https://dx.doi.org/10.1007/

s13675-013-0016-x

[Gualandi et al. 2010a] Gualandi, Stefano ; Malucelli, Federico ; Sozzi, Domenico L.:
On the Design of the Fiber To The Home Networks. In: Faigle, U. (ed.) ; Schrader, R.
(ed.) ; Herrmann, D. (ed.): 9th CTWWorkshop, Cologne, Germany, 2010. Extended Abstracts,
2010, pp 65–68. – http://www.zaik.uni-koeln.de/AFS/conferences/CTW2010/CTW%
202010%20Band/PDFs/16-(P73-76)-25-ftth-ctw.pdf

[Gualandi et al. 2010b] Gualandi, Stefano ; Malucelli, Feredico ; Sozzi, Domenico L.: On
theDesign of theNextGenerationAccessNetworks. In: Lodi, Andrea (ed.) ; Milano, Michela
(ed.) ; Toth, Paolo (ed.): Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems vol. 6140. Springer, 2010, pp 162–175. – https:

//dx.doi.org/10.1007/978-3-642-13520-0_20

[Guha and Khuller 1998] Guha, Sudipto ; Khuller, Samir: Approximation algorithms
for connected dominating sets. In: Algorithmica 20 (1998), Issue 4, pp 374–387. – https:

//dx.doi.org/10.1007/PL00009201

[Guha and Khuller 1999a] Guha, Sudipto ; Khuller, Samir: Greedy Strikes Back: Improved
Facility Location Algorithms. In: Journal of Algorithms 31 (1999), Issue 1, pp 228–248. –
https://dx.doi.org/10.1006/jagm.1998.0993

[Guha and Khuller 1999b] Guha, Sudipto ; Khuller, Samir: Improved Methods for
Approximating Node Weighted Steiner Trees and Connected Dominating Sets. In: In-
formation and computation 150 (1999), Issue 1, pp 57–74. – https://dx.doi.org/doi:

10.1006/inco.1998.2754

[Hall et al. 1997] Hall, Leslie A. ; Schulz, Andreas S. ; Shmoys, David B. ; Wein, Joel:
Scheduling To Minimize Average Completion Time: Off-line and On-line Approximation
Algorithms. In: Mathematics of Operations Research 22 (1997), Issue 3, pp 513–544. – https:

//dx.doi.org/10.1287/moor.22.3.513

[Halperin andKrauthgamer 2003] Halperin, Eran ; Krauthgamer, Robert: Polylogarithmic
inapproximability. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, 2003, pp 585–594. – https://dx.doi.org/10.1145/780542.780628

[Hansen et al. 2009] Hansen, Pierre ; Labbé, Martine ; Schindl, David: Set covering and
packing formulations of graph coloring: Algorithms and first polyhedral results. In: Discrete
Optimization 6 (2009), Issue 2, pp 135–147. – https://dx.doi.org/10.1016/j.disopt.

2008.10.004

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 201

[Hedetniemi et al. 1986] Hedetniemi, S. T. ; Laskar, Renu ; Pfaff, John: A linear algorithm
for finding a minimum dominating set in a cactus. In: Discrete Applied Mathematics 13 (1986),
pp 287–292. – https://dx.doi.org/10.1016/0166-218X(86)90089-2

[Helmberg 2009] Helmberg, C.: Network Models with Convex Cost Structure like Bundle
Methods. In: Barnhart, C. (ed.) ; Clausen, U. (ed.) ; Lauther, U. (ed.) ; Möhring, R.H.
(ed.): Models and Algorithms for Optimization in Logistics. Dagstuhl, Germany : Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009 (Dagstuhl Seminar Proceedings
09261). – http://drops.dagstuhl.de/opus/volltexte/2009/2190. – ISSN 1862-4405

[Helmberg 2012] Helmberg, C.: The ConicBundle Library for Convex Optimization. 2012. –
http://www-user.tu-chemnitz.de/~helmberg/ConicBundle/

[Helmberg and Kiwiel 2002] Helmberg, C. ; Kiwiel, K.C.: A Spectral Bundle Method with
Bounds. In: Mathematical Programming 93 (2002), Issue 2, pp 173–194

[Hiriart-Urruty and Lemaréchal 1993] Hiriart-Urruty, J.B. ; Lemaréchal, C.: Convex
Analysis and Minimization Algorithms. In: Volume 306 of Grundlehren der mathematischen
Wissenschaften. Springer, 1993

[Hoefer 2007] Hoefer, Martin: UflLib. UFLP-benchmarks, optimization code and bench-
mark generators. 2007. – http://www.mpi-inf.mpg.de/departments/d1/projects/

benchmarks/UflLib/

[Hoogeveen and Vestjens 1996] Hoogeveen, Han ; Vestjens, Arjen P. A.: Optimal On-
Line Algorithms for Single-Machine Scheduling. In: Cunningham, William H. (ed.) ;
McCormick, S. T. (ed.) ; Queyranne, Maurice (ed.): Integer Programming and Combinatorial
Optimization: 5th International IPCO Conference Vancouver, British Columbia, Canada, June
3–5, 1996 Proceedings vol. 1084, 1996, pp 404–414. – https://dx.doi.org/10.1007/

3-540-61310-2_30

[Hopcroft and Tarjan 1973] Hopcroft, John ; Tarjan, Robert: Algorithm 447: Efficient
Algorithms for Graph Manipulation. In: Communication of the ACM 16 (1973), June, Issue 6,
pp 372–378. – https://dx.doi.org/10.1145/362248.362272

[Jain et al. 2003] Jain, Kamal ; Mahdian, Mohammad ; Markakis, Evangelos ; Saberi,
Amin ; Vazirani, Vijay V.: Greedy facility location algorithms analyzed using dual fitting
with factor-revealing LP. In: Journal of the ACM 50 (2003), Issue 6, pp 795–824. – https:

//dx.doi.org/10.1145/950620.950621

[Jaumard et al. 2001] Jaumard, Brigitte ; Marcotte, Odile ; Meyer, Christophe ; Vovor,
Tsevi: Comparison of column generation models for channel assignment in cellular networks.
In: Discrete Applied Mathematics 112 (2001), Issue 1–3, pp 217–240. – https://dx.doi.org/

10.1016/S0166-218X(00)00317-6

[Johnson 1974] Johnson, David S.: Fast algorithms for bin packing. In: Journal of Computer
and System Sciences 8 (1974), Issue 3, pp 272–314. – https://dx.doi.org/10.1016/

S0022-0000(74)80026-7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

202 Bibliography

[Kannan and Monma 1978] Kannan, Ravindran ; Monma, Clyde L.: Optimization and
Operations Research: Proceedings of a Workshop Held at the University of Bonn, October 2–8,
1977. Chap. On the Computational Complexity of Integer Programming Problems, pp 161–172.
Berlin, Heidelberg : Springer Berlin Heidelberg, 1978. – https://dx.doi.org/10.1007/

978-3-642-95322-4_17. – ISBN 978-3-642-95322-4

[Karlin et al. 1988] Karlin, Anna R. ; Manasse, Mark S. ; Rudolph, Larry ; Sleator,
Daniel D.: Competitive snoopy caching. In: Algorithmica 3 (1988), pp 79–119. – https:

//dx.doi.org/10.1007/BF01762111

[Kazovsky 2011] Kazovsky, Leonid: Broadband optical access networks : emerging technologies
and optical-wireless convergence. Hoboken, N.J : Wiley-Interscience, 2011. – ISBN 978-0-470-
18235-2

[Khandekar et al. 2012] Khandekar, Rohit ; Kortsarz, Guy ; Nutov, Zeev: Approximating
fault-tolerant group-Steiner problems. In: Theoretical Computer Science 416 (2012), pp 55–64.
– https://dx.doi.org/10.1016/j.tcs.2011.08.021

[Kierstead 1988] Kierstead, H. A.: The Linearity of First-Fit Coloring of Interval Graphs.
In: SIAM Journal on Discrete Mathematics 1 (1988), Issue 4, pp 526–530. – https://dx.doi.

org/10.1137/0401048

[Kierstead 1991] Kierstead, H.A.: A polynomial time approximation algorithm for dynamic
storage allocation. In: Discrete Mathematics 88 (1991), Issue 2, pp 231 – 237. – https:

//dx.doi.org/10.1016/0012-365X(91)90011-P

[Kim et al. 2011] Kim, Y. ; Lee, Y. ; Han, J.: A splitter location-allocation problem in designing
fiber optic access networks. In: European Journal of Operational Research 210 (2011), Issue 2,
pp 425–435. – https://dx.doi.org/10.1016/j.ejor.2010.10.003

[Klein and Ravi 1995] Klein, P. ; Ravi, R.: A nearly best-possible approximation algorithm
for node-weighted Steiner trees. In: Journal of Algorithms 19 (1995), pp 104–115. – https:

//dx.doi.org/10.1006/jagm.1995.1029

[Klinkowski and Careglio 2011] Klinkowski, Miroslaw ; Careglio, Davide: A routing and
spectrum assignment problem in optical OFDM networks. In: First European Teletraffic
Seminar, 2011. – http://hdl.handle.net/2117/13505

[Koch and Martin 1998] Koch, T. ; Martin, A.: Solving Steiner tree problems in graphs
to optimality. In: Networks 32 (1998), pp 207Ð232. – https://dx.doi.org/10.1002/

(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O

[Koch et al. 2000] Koch, T. ; Martin, A. ; Voss, S.: SteinLib: An Updated Library on Steiner
Tree Problems in Graphs / Konrad-Zuse-Zentrum für Informationstechnik Berlin. Takustr. 7,
Berlin, 2000 (ZIB-Report 00-37). – Technical Report. – http://elib.zib.de/steinlib

[Korte et al. 1991] Korte, B. H. ; Lovász, L. ; Schrader, R.: Greedoids. Springer-Verlag, 1991
(Algorithms and Combinatorics)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 203

[Koster and Zymolka 2003] Koster, Arie M. ; Zymolka, Adrian: Minimum Converter
Wavelength Assignment in All-Optical Networks / Konrad-Zuse-Zentrum für Information-
stechnik Berlin. Takustraße 7, 14195 Berlin, December 2003 (ZIB-Report 03-45). – Technical
Report. http://nbn-resolving.de/urn:nbn:de:0297-zib-7673

[Kurpisz et al. 2013] Kurpisz, Adam ; Mastrolilli, Monaldo ; Stamoulis, Georgios: Approx-
imation and Online Algorithms: 10th International Workshop, WAOA 2012, Ljubljana, Slovenia,
September 13-14, 2012, Revised Selected Papers. Chap. Competitive-Ratio Approximation
Schemes for Makespan Scheduling Problems, pp 159–172. Berlin, Heidelberg : Springer Berlin
Heidelberg, 2013. – https://dx.doi.org/10.1007/978-3-642-38016-7_14

[Labetoulle et al. 1984] Labetoulle, Jacques ; Lawler, Eugene L. ; Lenstra, Jan K. ; Rin-
nooy Kan, Alexander H. G.: Preemptive scheduling of uniform machines subject to release
dates. In: Progress in Combinatorial Optimization. Academic Press Canada, 1984, pp 245–261.
– http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-1832

[Lardeux and Nace 2007] Lardeux, B. ; Nace, D.: Multi-Period Network Design of Optical
Transmission Networks. In: 12th IEEE Symposium on Computers and Communications (ISCC
2007), 2007, pp 935–940. – https://dx.doi.org/10.1109/ISCC.2007.4381618

[Lee and Margot 2007] Lee, Jon ; Margot, François: On a binary-encoded ILP coloring
formulation. In: INFORMS Journal on Computing 19 (2007), Issue 3, pp 406–415. – https:

//dx.doi.org/10.1287/ijoc.1060.0178

[Leitner and Raidl 2011] Leitner, M. ; Raidl, G.R.: Branch-and-Cut-and-Price for Capaci-
tated Connected Facility Location. In: Journal of Mathematical Modelling and Algorithms 10
(2011), pp 245–267. – https://dx.doi.org/10.1007/s10852-011-9153-5

[Lenstra et al. 1977] Lenstra, Jan K. ; Rinnooy Kan, Alexander H. G. ; Brucker, Peter:
Complexity of machine scheduling problems. In: Annals of Discrete Mathematics 1 (1977),
pp 243–362. – https://dx.doi.org/10.1016/S0167-5060(08)70743-X

[Li 2011] Li, Shi: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, Luca (ed.) ; Henzinger, Monika (ed.) ; Sgall, Jiří (ed.): Automata,
Languages and Programming: 38th International Colloquium, ICALP 2011, Zurich, Switzerland,
July 4-8, 2011, Proceedings, Part II vol. 6756, 2011, pp 77–88. – https://dx.doi.org/10.

1007/978-3-642-22012-8_5

[Lin et al. 2010] Lin, Guolong ; Nagarajan, Chandrashekhar ; Rajaraman, Rajmohan ;
Williamson, David P.: AGeneral Approach for Incremental Approximation andHierarchical
Clustering. In: SIAM Journal on Computing (2010), pp 3633–3669. – https://dx.doi.

org/10.1137/070698257

[Liu and Lu 2009] Liu, P. ; Lu, X.: On-line scheduling of parallel machines to minimize
total completion times. In: Computers and Operations Research 36 (2009), pp 2647–2652. –
https://dx.doi.org/10.1016/j.cor.2008.11.008

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

204 Bibliography

[Ljubić 2007] Ljubić, Ivana: Lecture Notes in Computer Science. vol. 4771: A hybrid VNS for
connected facility location. pp 157–169. In: Bartz-Beielstein, Thomas (ed.) ; Aguilera,
Maria José B. (ed.) ; Blum, Christian (ed.) ; Naujoks, Boris (ed.) ; Roli, Andrea (ed.) ;
Rudolph, Günter (ed.) ; Sampels, Michael (ed.): Hybrid Metaheuristics vol. 4771, Springer,
2007. – https://dx.doi.org/10.1007/978-3-540-75514-2_12

[Ljubić et al. 2012] Ljubić, Ivana ; Putz, Peter ; Salazar-González, Juan-José: Exact
Approaches to the Single-Source Network Loading Problem. In: Networks 59 (2012), Issue 1,
pp 89–106. – https://dx.doi.org/10.1002/net.20481

[Ljubić et al. 2006] Ljubić, Ivana ;Weiskircher, René ; Pferschy, Ulrich ; Klau, GunnarW. ;
Mutzel, Petra ; Fischetti, Matteo: An Algorithmic Framework for the Exact Solution
of the Prize-Collecting Steiner Tree Problem. In: Mathematical Programming 105 (2006),
pp 427–449. – https://dx.doi.org/10.1007/s10107-005-0660-x

[Lu et al. 2003] Lu, Xiwen ; Sitters, René A. ; Stougie, Leen: A class of on-line scheduling
algorithms to minimize total completion time. In: Operations Research Letters 31 (2003),
pp 232–236. – https://dx.doi.org/10.1016/S0167-6377(03)00016-6

[Lübbecke and Desrosiers 2005] Lübbecke, Marco E. ; Desrosiers, Jacques: Selected
topics in column generation. In: Operations Research 53 (2005), Issue 6, pp 1007–1023. –
https://dx.doi.org/10.1287/opre.1050.0234

[Lund and Reingold 1994] Lund, Carsten ; Reingold, Nick: Linear programs for randomized
on-line algorithms. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). Philadelphia, PA, USA : Society for Industrial and AppliedMathematics, 1994
(SODA ’94), pp 382–391. – http://dl.acm.org/citation.cfm?id=314464.314574. –
ISBN 0-89871-329-3

[Lund and Yannakakis 1994] Lund, Carsten ; Yannakakis, Mihalis: On the Hardness of
Approximating Minimization Problems. In: Journal of the ACM 41 (1994), September, Issue 5,
pp 960–981. – https://dx.doi.org/10.1145/185675.306789

[Manasse et al. 1988] Manasse, M. ; McGeoch, L. ; Sleator, D.: Competitive algorithms for
on-line problems. In: Proceedings of the 20th annual ACM Symposium onTheory of Computing
(STOC), ACM, 1988, pp 322–333. – https://dx.doi.org/10.1145/62212.62243

[Marenco and Wagler 2006] Marenco, Javier ; Wagler, Annegret: On the combinatorial
structure of chromatic scheduling polytopes. In: Discrete Applied Mathematics 154 (2006),
Issue 13, pp 1865–1876. – https://dx.doi.org/10.1016/j.dam.2006.03.032

[Marenco and Wagler 2009a] Marenco, Javier ; Wagler, Annegret: Cycle-based facets
of chromatic scheduling polytopes. In: Discrete Optimization 6 (2009), Issue 1, pp 51–63. –
https://dx.doi.org/10.1016/j.disopt.2008.08.004

[Marenco and Wagler 2009b] Marenco, Javier ; Wagler, Annegret: Facet-inducing inequal-
ities for chromatic scheduling polytopes based on covering cliques. In: Discrete Optimization
6 (2009), Issue 1, pp 64–78. – https://dx.doi.org/10.1016/j.disopt.2008.09.002

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 205

[Martens et al. 2010] Martens, M. ; Orlowski, S. ; Werner, A. ; Wessäly, R. ; Bentz, W.:
FTTx-PLAN: Optimierter Aufbau von FTTx-Netzen. In: Breitbandversorgung in Deutschland
vol. 220, VDE-Verlag, March 2010

[Martens et al. 2009] Martens, M. ; Patzak, E. ; Richter, A. ; Wessäly, R.: Werkzeuge zur
Planung und Optimierung von FTTx-Netzen. In: 16. ITG-Fachtagung Kommunikationskabel-
netze, Köln, Germany vol. 218, VDE-Verlag, 2009, pp 37–41

[McNaughton 1959] McNaughton, Robert: Scheduling with deadlines and loss functions.
In: Management Science 6 (1959), Issue 1, pp 1–12. – https://dx.doi.org/10.1287/mnsc.

6.1.1

[Megow 2007] Megow, Nicole: Coping with incomplete information in scheduling—stochastic
and online models, Technische Universität Berlin, Germany, PhDThesis, 2007

[Megow and Schulz 2004] Megow, Nicole ; Schulz, Andreas S.: On-line scheduling to
minimize average completion time revisited. In: Operations Research Letters 32 (2004),
pp 485–490. – https://dx.doi.org/10.1016/j.orl.2003.11.008

[Megow and Wiese 2013] Megow, Nicole ; Wiese, Andreas: Competitive-Ratio Approxima-
tion Schemes forMinimizing theMakespan in the Online-List Model. In: CoRR abs/1303.1912
(2013). – http://arxiv.org/abs/1303.1912

[Mehlhorn 1988] Mehlhorn, K.: A faster approximation algorithm for the Steiner problem
in graphs. In: Information Processing Letters 27 (1988), Issue 3, pp 125–128. – https:

//dx.doi.org/10.1016/0020-0190(88)90066-X

[Mehrotra and Trick 1996] Mehrotra, Anuj ; Trick, Michael A.: A column generation
approach for graph coloring. In: INFORMS Journal on Computing 8 (1996), Issue 4, pp 344–
354. – https://dx.doi.org/10.1287/ijoc.8.4.344

[Mehrotra and Trick 2007] Mehrotra, Anuj ; Trick, Michael A.: A branch-and-price
approach for graph multi-coloring. In: Extending the horizons: Advances in computing,
optimization, and decision technologies (2007), pp 15–29. – https://dx.doi.org/10.

1007/978-0-387-48793-9_2

[Méndez-Díaz and Zabala 2006] Méndez-Díaz, Isabel ; Zabala, Paula: A branch-and-cut
algorithm for graph coloring. In: Discrete AppliedMathematics 154 (2006), Issue 5, pp 826–847.
– https://dx.doi.org/10.1016/j.dam.2005.05.022

[Méndez-Díaz and Zabala 2008] Méndez-Díaz, Isabel ; Zabala, Paula: A cutting plane
algorithm for graph coloring. In: Discrete Applied Mathematics 156 (2008), Issue 2, pp 159–179.
– https://dx.doi.org/10.1016/j.dam.2006.07.010

[Meyerson 2001] Meyerson, Adam: Online Facility Location. In: 42nd IEEE Symposium
on Foundations of Computer Science (FOCS), Proceedings, 2001, pp 426–431. – https://dx.

doi.org/10.1109/SFCS.2001.959917

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

206 Bibliography

[Mömke 2013] Mömke, Tobias: A Competitive Ratio Approximation Scheme for the k-Server
Problem in Fixed Finite Metrics. In: CoRR abs/1303.2963 (2013). – http://arxiv.org/

abs/1303.2963

[Mukherjee 2006] Mukherjee, Biswanath: Optical WDM networks. New York : Springer,
2006. – ISBN 978-0-387-29188-8

[Olszewski 2014] Olszewski, Ireneusz: Routing and Spectrum Assignment in Spectrum
Flexible Transparent Optical Networks. pp 407–417. In: S. Choras, Ryszard (ed.): Image
Processing and Communications Challenges 5. Heidelberg : Springer International Publishing,
2014. – https://dx.doi.org/10.1007/978-3-319-01622-1_46

[Orlowski et al. 2011] Orlowski, S. ; Werner, A. ;Wessäly, R. ; Eckel, K. ; Seibel, J. ; Patzak,
E. ; Louchet, H. ; Bentz, W.: Schätze heben bei der Planung von FTTx-Netzen: optimierte
Nutzung von existierenden Leerrohren – eine Praxisstudie. In: Breitbandversorgung in
Deutschland vol. 227, VDE-Verlag, March 2011

[Orlowski et al. 2010] Orlowski, S. ; Wessäly, R. ; Pióro, M. ; Tomaszewski, A.: SNDlib
1.0—Survivable Network Design Library. In: Networks 55 (2010), Issue 3, pp 276–286. –
https://dx.doi.org/10.1002/net.20371

[Owen and Daskin 1998] Owen, S.H. ; Daskin, M.S.: Strategic facility location: A review.
In: European Journal of Operational Research 111 (1998), Issue 3, pp 423–447. – https:

//dx.doi.org/10.1016/S0377-2217(98)00186-6

[Papadimitriou 1982] Papadimitriou, Christos: Combinatorial optimization : algorithms and
complexity. Englewood Cliffs, N.J : Prentice Hall, 1982. – ISBN 978-0486402581

[Papadimitriou 1981] Papadimitriou, Christos H.: On the complexity of integer program-
ming. In: Journal of the ACM 28 (1981), Issue 4, pp 765–768. – https://dx.doi.org/10.

1145/322276.322287

[Papadimitriou 1993] Papadimitriou, Christos H.: Computational Complexity. Addison
Wesley, 1993

[Peters 2015] Peters, Simon: TheMinimum Interval Coloring Problem. Germany, Universität
Kassel, Bachelor’s Thesis (Studienarbeit), December 2015

[Phillips et al. 1998] Phillips, Cynthia ; Stein, Clifford ; Wein, Joel: Minimizing average
completion time in the presence of release dates. In: Mathematical Programming 82 (1998),
pp 199–223. – https://dx.doi.org/10.1007/BF01585872

[Plaxton 2003] Plaxton, Charles G.: Approximation Algorithms for Hierarchical Location
Problems. In: Proceedings of the 35th Annual ACM Symposium On Theory of Computing,
ACM, 2003, pp 40–49. – https://dx.doi.org/10.1145/780542.780549

[Putz 2012] Putz, Peter: Fiber ToThe Home, Cost Optimal Design of Last-Mile Broadband
Telecommunication Networks, University of Vienna, PhDThesis, 2012

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography 207

[Ramaswami and Sivarajan 1995] Ramaswami, Rajiv ; Sivarajan, Kumar N.: Routing and
wavelength assignment in all-optical networks. In: IEEE/ACM Transactions on Networking
(TON) 3 (1995), Issue 5, pp 489–500. – https://dx.doi.org/10.1109/90.469957

[Ruan et al. 2004] Ruan, L. ; Du, H. ; Jia, X. ; Wu, W. ; Li, Y. ; Ko, K.: A greedy approximation
for minimum connected dominating sets. In: Theoretical Computer Science 329 (2004),
pp 325–330. – https://dx.doi.org/10.1016/j.tcs.2004.08.013

[Salman 2000] Salman, F.S.: Selected Problems in Network Design: Exact and Approximate
Solution Methods, Carnegie Mellon University, Pittsburgh, PhDThesis, 2000

[Schrage 1968] Schrage, Linus: Letter to the Editor — A Proof of the Optimality of the
Shortest Remaining Processing Time Discipline. In: Operations Research 16 (1968), pp 687–
690. – https://dx.doi.org/10.1287/opre.16.3.687

[Schulz and Skutella 2002a] Schulz, Andreas S. ; Skutella, Martin: The Power of α-Points
in Preemptive Single Machine Scheduling. In: Journal of Scheduling 5 (2002), pp 121–133. –
https://dx.doi.org/10.1002/jos.93

[Schulz and Skutella 2002b] Schulz, Andreas S. ; Skutella, Martin: Scheduling Unrelated
Machines by Randomized Rounding. In: SIAM Journal on Discrete Mathematics 15 (2002),
pp 450–469. – https://dx.doi.org/10.1137/S0895480199357078

[Seiden 2000] Seiden, Steven S.: A guessing game and randomized online algorithms. In:
Proceedings of the 32nd ACM Symposium on the Theory of Computing (STOC), ACM, 2000,
pp 592–601. – https://dx.doi.org/10.1145/335305.335385

[Shmoys et al. 1997] Shmoys, David ; Tardos Éva ; Aardal, Karen: Approximation al-
gorithms for facility location problems. In: Proceedings of the twenty-ninth annual ACM
symposium onTheory of computing (STOC), ACM, 1997, pp 265–274. – https://dx.doi.

org/10.1145/258533.258600

[Sitters 2010a] Sitters, René: Competitive analysis of preemptive single-machine scheduling.
In: Operations Research Letters 38 (2010), pp 585–588. – https://dx.doi.org/10.1016/

j.orl.2010.08.012

[Sitters 2010b] Sitters, René: Efficient Algorithms for Average Completion Time Scheduling.
In: Eisenbrand, Friedrich (ed.) ; Shepherd, F. B. (ed.): Integer Programming and Combinato-
rial Optimization: 14th International Conference, IPCO 2010, Lausanne, Switzerland, June 9-11,
2010. Proceedings vol. 6080, Springer, 2010, pp 411–423

[Sleator and Tarjan 1985] Sleator, Daniel D. ; Tarjan, Robert E.: Amortized Efficiency of
List Update and Paging Rules. In: Communications of the ACM 28 (1985), Issue 2, pp 202–208.
– https://dx.doi.org/10.1145/2786.2793

[Smith 1956] Smith, Wayne E.: Various optimizers for single-stage production. In: Naval
Research Logistics Quarterly 3 (1956), Issue 1-2, pp 59–66. – https://dx.doi.org/10.

1002/nav.3800030106

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

208 Bibliography

[Stougie and Vestjens 2002] Stougie, Leen ; Vestjens, Arjen P. A.: Randomized algorithms
for on-line scheduling problems: how low can’t you go? In: Operations Research Letters 30
(2002), Issue 2, pp 89–96. – https://dx.doi.org/10.1016/S0167-6377(01)00115-8

[Suhl and Hilbert 1998] Suhl, U.H. ; Hilbert, H.: A branch-and-cut algorithm for solving
generalized multiperiod Steiner problems in graphs. In: Networks 31 (1998), Issue 4, pp 273–
282

[Swamy and Kumar 2004] Swamy, Chaitanya ; Kumar, Amit: Primal–Dual Algorithms for
Connected Facility Location Problems. In: Algorithmica 40 (2004), Issue 4, pp 245–269. –
https://dx.doi.org/10.1007/s00453-004-1112-3

[Takara et al. 2012] Takara, Hidehiko ; Sano, Akihide ; Kobayashi, Takayuki ; Kubota,
Hirokazu ; Kawakami, Hiroto ; Matsuura, Akihiko ; Miyamoto, Yutaka ; Abe, Yoshiteru ;
Ono, Hirotaka ; Shikama, Kota ; Goto, Yukihiro ; Tsujikawa, Kyozo ; Sasaki, Yusuke ;
Ishida, Itaru ; Takenaga, Katsuhiro ; Matsuo, Shoichiro ; Saitoh, Kunimasa ; Koshiba,
Masanori ; Morioka, Toshio: 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed
Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency. In: European Conference and
Exhibition on Optical Communication, Optical Society of America, 2012, ppTh.3.C.1. – https:

//www.osapublishing.org/abstract.cfm?URI=ECEOC-2012-Th.3.C.1

[Tomazic and Ljubić 2008] Tomazic, Alessandro ; Ljubić, Ivana: A GRASP Algorithm for
the Connected Facility Location Problem. In: Internal Symposium on Applications and the
Internet (SAINT), Proceedings, IEEE, 2008, pp 257–260. – https://dx.doi.org/10.1109/

SAINT.2008.64

[Ukkusuri and Patil 2009] Ukkusuri, Satish V. ; Patil, Gopal: Multi-period transportation
network design under demand uncertainty. In: Transportation Research Part B:Methodological
43 (2009), Issue 6, pp 625–642. – https://dx.doi.org/10.1016/j.trb.2009.01.004

[Vazirani 2003] Vazirani, Vijay V.: Approximation Algorithms. Springer, 2003

[Wang et al. 2015] Wang, Y. ; Buchanan, A. ; Butenko, S.: On imposing connectivity
constraints in integer programs. 2015. – Submitted

[Wolsey 1998] Wolsey, Laurence A.: Integer programming. vol. 42. Wiley-Interscience, 1998. –
ISBN 978-0-471-28366-9

[Zadeh 1974] Zadeh, N.: On building minimum cost communication networks over time. In:
Networks 4 (1974), Issue 1, pp 19–34. – https://dx.doi.org/10.1002/net.3230040104

[Żotkiewicz et al. 2015] Żotkiewicz, Mateusz ; Mycek, Mariusz ; Tomaszewski, Artur:
Profitable areas in large-scale FTTH network optimization. In: Telecommunication Systems
61 (2015), Issue 3, pp 591–608. – https://dx.doi.org/10.1007/s11235-015-0016-7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

	Contents
	Symbol Index
	Introduction
	Acknowledgements
	1 Technical and Mathematical Background
	2 Passive Optical Network Design
	3 Node-Weighted Steiner Problems
	4 Incremental Facility Location
	5 Incremental Connected Facility Location
	6 Frequency Assignment in Optical Networks
	7 Online Scheduling
	Bibliography

