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Pe . . . . . . . . . . . . . . . Peclet number
Re . . . . . . . . . . . . . . . Reynolds number
We . . . . . . . . . . . . . . Weber number
L . . . . . . . . . . . . . . . . Characteristic length scale
u∞ . . . . . . . . . . . . . . . Characteristic velocity scale

Operators

tr . . . . . . . . . . . . . . . Trace of an operator matrix
Δ . . . . . . . . . . . . . . . . Laplace operator
Λi . . . . . . . . . . . . . . . Multiplier∇⋅ . . . . . . . . . . . . . . . Divergence∇× . . . . . . . . . . . . . . Curl operator∇ . . . . . . . . . . . . . . . . Gradient∇(s)⋅ . . . . . . . . . . . . . Surface divergence
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xviii Nomenclature

∇(s) . . . . . . . . . . . . . . Surface gradient
P s . . . . . . . . . . . . . . . Surface projection tensorEuj . . . . . . . . . . . . . . Euler operator
Di . . . . . . . . . . . . . . . Total derivative

Symbols

η(i) . . . . . . . . . . . . . Dynamic viscosity of phase i

p(i) . . . . . . . . . . . . . Pressure of phase i(ϕ, θ, r) . . . . . . . . . . Spherical coordinate system{{⋅}} . . . . . . . . . . . . Average operator
u . . . . . . . . . . . . . . . . Dependent variables
z . . . . . . . . . . . . . . . . Independent variables, including time where applicable
F ∗(Φ+h,Φ−h) . . . . . . Numerical flux function
d
dt . . . . . . . . . . . . . . . . Total time derivative
B(1) . . . . . . . . . . . . . Part of the domain occupied by the inner phase
B(2) . . . . . . . . . . . . . Part of the domain occupied by the outer phase
S . . . . . . . . . . . . . . . . Phase Interface
γ(s) . . . . . . . . . . . . . . Excess surface physical quantity
HeunC . . . . . . . . . . . Heun’s confleunt function given by

HeunC(a1, a2, a3, a4, a5, s) = ∑∞n=0 vn(a1, a2, a3, a4, a5)sn
�⋅� . . . . . . . . . . . . . . . Jump operator(⋅ , ⋅) . . . . . . . . . . . . Inner productF . . . . . . . . . . . . . . . . Arbitrary smooth functionG . . . . . . . . . . . . . . . . Arbitrary smooth function
C . . . . . . . . . . . . . . . . Intersection of the interface with the boundary of the domain
A . . . . . . . . . . . . . . . Coefficient matrix
I . . . . . . . . . . . . . . . . Identity matrix
M . . . . . . . . . . . . . . . Mass matrix
ME . . . . . . . . . . . . . Cell-face mass matrix
Ω . . . . . . . . . . . . . . . . Problem domain
Ωh . . . . . . . . . . . . . . . Computational domain
∂Ω . . . . . . . . . . . . . . Boundary of the domain
Φ . . . . . . . . . . . . . . . . Level Set function
Σγ

h . . . . . . . . . . . . . . . Narrow band tube around the interface
n(s) . . . . . . . . . . . . . . Unit normal vector
w(s) . . . . . . . . . . . . . Speed of the interface S

τ . . . . . . . . . . . . . . . . Penalty parameter
Θ . . . . . . . . . . . . . . . . Conservation law density
u(i) (i = 1,2) . . . . . Material velocity of the subdomain B(i) (i = 1,2)
Ψ . . . . . . . . . . . . . . . Conservation law spatial fluxes
n . . . . . . . . . . . . . . . . Outward unit normal vector of ∂Ω
nj . . . . . . . . . . . . . . . Normal vector to the jth grid cell
s . . . . . . . . . . . . . . . . Unit normal to the curve C, tangent to the interface
D . . . . . . . . . . . . . . . Dimension of the domain
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h . . . . . . . . . . . . . . . . Characteristic grid size
Iγ . . . . . . . . . . . . . . . Set of cells included in the Narrow Band
Kj . . . . . . . . . . . . . . . jth grid cell
L2 (Ω) . . . . . . . . . . . Equivalent classes of measurable, squarely integrable functions on

Ω up to null sets
lji . . . . . . . . . . . . . . . . Langrange polynomials
P k(K) . . . . . . . . . . . Polynomials on cell K whose order is at most k
S(c,x, t) . . . . . . . . . Source term
Sd . . . . . . . . . . . . . . . Differentiation matrix in d-th spatial component
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1

1 Introduction

1.1 Motivation

In various applications, it is important to model, simulate and compute processes
on surfaces, curves or on more general submanifolds. Most of these processes are
governed by partial differential equations (PDEs) on surfaces, or on submanifolds,
respectively. Depending on the application, the problem domain is either steady, or
deforming, or moving and deforming at the same time. These distinct cases imply an
increasing complexity of the problem. Areas of interest range from fluid mechanics,
bio-chemistry and medical imaging to image processing.

For example, in image processing, surface differential equations on steady surfaces
are involved when smoothing and regularizing images (Diewald, Preußer, Rumpf,
and Strzodka, 2001). Denoising (Bertalmı́o, Cheng, Osher, and Sapiro, 2001) as well as
deblurring (Cheng, 2000) of images is achieved by solving surface diffusion equations,
for instance, in brain imaging (Mémoli, Sapiro, and Thompson, 2004).

In biochemistry, the interaction of pairs of chemicals, called morphogenes, in the
epithelial, i.e. outer, layer of growing organisms is modelled by reaction-diffusion
equations on the organisms’ surface (Leung and Berzins, 2003a). Morphogenes have
been used in modelling spatial pattern formation and the regeneration of body cells
such as receptor cells in the eye of a Drosophila (Koch and Meinhardt, 1994). Coat
markings of mammals as well as the formation of skeletal pattern are assigned to
morphogenes (Maini, Painter, and Nguyen Phong Chau, 1997). These morphogenesis
processes are goverended by differential equations on deforming surfaces.

In fluid mechanics, the transport of mass, energy or momentum on phase interfaces is
a topic of increasing importance. Here, interfacial transport is modelled by PDEs on
the phase interface and therefore, on moving and deforming interfaces. In particular, it
is often inevitable to examine the transport of surface active substances on the moving
interface, such as emulsifiers or detergents. For their surface active behavior, these
compounds are known as surface active agents, or shortly surfactants (Schramm, 2000).
The transport of these substances on two-phase interfaces is governed by convection-
diffusion equation defined on evolving surfaces. These surfaces may change rapidly
with respect to geometry or topology.
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Because their structure includes both a part which has affinity to nonpolar media
and one part that has an affinity to polar media, surfactants absorb at interfaces that
separate media of different polarity. During adsorption, the surfactant molecules form
a monolayer on the interface between the immiscible phases, destroying the cohesive
forces between the polar and non-polar molecules and replacing them. While the
hydrophilic head of the adsorbed surfactant molecule orients itself towards the polar
phase, the hydrophobic tail lies either flat on the interface, or aligns itself to the less
polar liquid (Gecol, 2007), if the interface is sufficiently occupied. As a consequence of
the adsorption process, most types of surfactants reduce the interfacial free energy, i.e.
the surface tension (Tricot, 1997a). This implies that the surface tension of a surfactant
covered interface is lower than the one of a clean interface. Furthermore, the interfacial
tension is comparatively lower in interfacial regions of high surfactant concentration.
When the surfactant is not uniformly distributed, a Marangoni force is introduced by
the gradient that exists in surfactant concentration. This Marangoni force is directed
from regions of high surfactant concentration to regions of low surfactant concentration
along the interface (Kas-Danouche, Papageorgiou, and Siegel, 2004).

Numerous industrial processes that involve two-phase or free surface flows require
controlling mechanisms of the surface tension. Fur this purpose, surfactants are usually
added to either of the phases.

Silicone surfactants are used as stabilizing agents for polyetherane foam by reducing
interfacial tension and, consequently, promoting the formation of a coherent interfacial
film (Snow, Pernisz, and Braun, 2006). They function as stabilizer of foams, for instance,
in enhanced oil recovery or drilling operations.

Surfactants are used to control the formation of small droplets in industrial emulsifi-
cation processes by lowering the surface tension, and hence facilitating the droplet
breakup and preventing coalescence (Janssen, Boon, and Agterof, 1994; Eggleton, Tsai,
and Stebe, 2001). Surfactants are commonly added to stabilize emulsions, i.e. mixtures
of two or more immiscible fluids, such as oil and water. Emulsions are present not only
in food, cosmetic and pharmaceutical products, but they are also frequently applied
in technical processes. For instance, emulsions are used as cooling lubricants in order
to minimize both frictional effects and temperature during machining processes, for
instance, in metal fabrication (Doll and Sharma, 2011). Emulsified fuels, where water
droplets are dispersed in the fuel and stabilized by a surfactant additive, are used in
automotive technology in order to minimize emissions. For example, water in diesel
dispersions have been investigated as direct fuel substitutes that can be utilized with
little or no modifications in existing diesel engines by Nadeem, Rangkuti, Anuar, Haq,
Tan, and Shah (2006). They were reported to significantly reduce the emissions of NOx,
CO, SOx as well as particle matter.

Coating forms an important aspect of numerous industrial manufacturing processes in
order to protect, functionalize and lubricate surfaces. Surfactants are often employed
as additives to facilitate coating processes by reducing the surface tension (Tricot,
1997b). At the same time, several processes involve coating liquids that are surfactant
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solutions, and surface and bulk rheology of these solutions naturally impacts the
coating properties.

From the numerical perspective, evolving interfacial physical quantities along a mov-
ing deformable surface is a highly challenging task. The surface differential operators
involved require a thoughtful approximation that is distinct from the available dis-
cretizations of standard differential operators. Depending on the method applied,
tracking or capturing an interface also requires great expertise. In most research works
a Lagrangian grid is used to track the phase interface and employed to discretize
interfacial equations, implying that these equations are only solved on the interface,
see e.g. Ceniceros (2003), James and Lowengrub (2004), Kruijt-Stegeman, van de Vosse,
and Meijer (2004), Lai, Tseng, and Huang (2008), Lee and Pozrikidis (2006), Muradoglu
and Tryggvason (2008) or Zhang, Eckmann, and Ayyaswamy (2006).

In the present work, a numerical framework for solving interfacial convection-diffusion
problems is established. In contrast to these traditional approaches, the method pre-
sented here does not treat interfacial transport problems by establishing a Lagrangian,
i.e. interfacial grid, but instead, it is founded on maintaining the Eulerian grid. Up to
now, considerably fewer works on numerical simulations of interfacial equations are
based on such an Eulerian approach. Several limited examples are given by Bertalmı́o,
Cheng, Osher, and Sapiro (2001), Greer (2006), Greer, Bertozzi, and Sapiro (2006),
Burger (2009) as well as Dziuk and Elliott (2009) for various interfacial differential
equations. Especially when the a surface moves and deforms quickly, as in the case of
a fluidic interface, an Eulerian representation of the surface differentials has favorable
properties. Beyond, the method can be easily combined with an interface capturing
technique that presumes an implicit representation of the interface.

For this purpose, the Discontinuous Galerkin (DG) method is employed, which incor-
porates favorable features of both Finite Element (FE) and Finite Volume (FV) methods.
The DG method has become increasingly popular in the past decades, as it combines
polynomial approximations of arbitrary order with the use of numerical fluxes to
approximate integrals over the cell boundaries. Consequently, the DG approach is
highly convenient for hyperbolic problems. At the same time, it is flexible with respect
to the domain’s geometry and achieves O(hp) order of convergence. Importantly, the
use of numerical fluxes establishes a local block structure of the discretization, which
supports parallel computing, and allows to incorporate boundary conditions easily.
The treatment of surface convection-diffusion equations by the DG method highly
benefits from these features, and to the author’s knowledge, it is the first published
work that pursues an Eulerian approach for resolving surface differential operators in
the context of a DG method.

A parallelized and modular package for the numerical simulation of interfacial trans-
port problems is designed. The library, developed in C#, discretizes both interfacial
convection and convection-diffusion equations by a DG method, and is integrated in
the existing software framework BoSSS initiated by Kummer (2012). Here, the surface
convection-diffusion equation is extended into the underlying three-dimensional space
by identifying the surface gradient with the projection of the standard gradient to
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its tangential part. In this way, the interfacial transport problem can be discretized
based on the existent Eulerian grid, at the same time admitting an implicit interface
representation as the zero-isocontour of a Level Set function. In contrast to the Lan-
grangian approach, this Eulerian approach is highly suitable for moving and deforming
interfaces and allows for an accurate resolution of the interface.

1.2 Thesis Outline

The present work is structured as follows.

The surface differential equations under consideration focus on the general case of
interfacial transport in fluid mechanical applications. For this reason, in chapter 2,
starting from the standard postulates of continuum mechanics, the derivation of local
mass balance laws for the bulk phases and for the phase interface for some arbitrary
physical quantity are provided, following Wang and Oberlack, 2011. The resulting
equations are then employed to derive the equations of the physical model under
consideration, i.e. the Navier–Stokes equations for two phases, including interfacial
jump conditions, and the interfacial convection–diffusion equation describing material
transport at a two–phase interface.

Chapter 3 gives a comprehensive overview of existing numerical research on surface
and interfacial transport. Available methods are classified as traditional Lagrangian
approaches, where the submanifold itself is resolved by a Lagrangian grid, or as Eule-
rian approaches, where the interfacial problem is extended into the underlying three–
dimensional domain and discretized on basis of the given Eulerian grid. Special
attention is paid to existing works dealing with interfacial transport in fluid mechan-
ical applications. In this context, the method selected for the treating the interfacial
equations highly depends on the approach employed for tracking or capturing the
interface. Therefore, numerical methods that are available for representing the phase
interphase are additionally outlined in chapter 3.

The solver developed within the context of this work is based on a Discontinuous
Galerkin (DG) discretization of the transport problem. For this reason, the fundamen-
tals of the DG method are explained in chapter 4 with a particular focus on the PDEs
relevant to the subsequent work. Its characteristic features are underlined, pointing
out to the motivation for founding the subsequent approximations on a DG scheme.
Against this background, chapter 4 further motivates the design of the method pre-
sented, incorporating an interface capturing approach by a Level Set function and an
Eulerian approach for resolving the surface differentials.

In the Eulerian formulation, however, the conserved form of the interfacial balance
law is destroyed by the extension of the interfacial differential equation to the three-
dimensional domain. This fact has been identified as an obstacle at the initial project
phase. From the viewpoint of numerical accuracy, the conserved form of a differential
equation is always favorable to reduce numerical errors and preserve the quantity
numerically. In chapter 5, infinite sets of conservation laws have been discovered
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by using the direct construction method, i.e. by applying local conservation law
multipliers (Kallendorf, Cheviakov, Oberlack, and Wang, 2012). These conserved
forms constitute a well-suited basis for discretizing the interfacial transport equation
by a DG scheme, while maintaining an implicit representation of the interface. The
obtained results are also applicable to the construction of more general balance laws
for other excess surface physical quantities. The system of governing equations is
subsequently rewritten in a fully conserved form in the three-dimensional domain.

In chapter 6, general exact solutions to the interfacial transport of a solute on the
spherical surface with both convective and diffusive terms are developed (Kallendorf,
Fath, Oberlack, and Wang, 2015). The transport of insoluble surfactant in a Stokes
flow setting is investigated, where a spherical shaped inner phase is dispersed in an
outer phase. The model is simplified by assuming that the impact of the surfactant on
surface tension is negligible. Its investigation has been motivated by the lack of exact
solutions to the interfacial transport problem. The general solutions derived involve
Heun’s confluent functions, and for the steady case, it is shown that these solutions
collapse to a simple exponential form. Furthermore, for the purely diffusive problem,
exact solutions are constructed using Legendre polynomials.

The embedded interfacial transport problem is discretized on a small subdomain of
the original domain only, which is given by a Narrow Band tube of few cells thickness
around the interface. As this narrow band changes position and structure in accordance
with the interface, it is not created as an independent physical grid, but rather induced
from the full grid through selective storage allocation and extraction of the relevant
entries, or coordinates, respectively. Chapter 7 describes how such a coordinate based
Narrow Band is implemented within the software framework BoSSS (Kummer, 2012).
Furthermore, a method for extending values to newly acquired cells of this subdomain
is developed and analysed in chapter 8. This tool, which is based on employing a
pseudo-timestepping scheme, is essential when discretizing problems on a dynamically
moving Narrow Band.

Chapter 8 describes the Eulerian DG scheme that is established in the present work
for discretizing interfacial transport equations. This implementation is based on sim-
plest forms of the conservation laws that have been developed in chapter 5. The
convection-diffusion equation is discretized by a simple operator splitting scheme,
which motivates to solve the purely convective and the purely diffusive parts of the
conserved form independently. Computational examples of all of the three forms of sur-
face transport equation are developed and solved for both two-and three-dimensional
underlying domains. Based on exact solutions to the two-dimensional examples, a
study of convergence is presented, where the purely convective equation, both on a
steady and on a moving surface, as well as the purely diffusive equation on a steady
surface are considered. Illustrations of sample problems are provided for problems
of all mentioned complexities, i.e. for steady, but complex, moving as well as moving
and deforming surfaces.
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To conclude, chapter 9 summarizes the results achieved within the context of the
present thesis. This chapter concludes with an outlook of further improvements and
ideas for continued research.
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2 Equations of the Physical Model

2.1 Transport Equations in Two-Phase Flow

In this section, starting from the standard postulates of continuum mechanics, local
mass balance laws for the bulk phases and for the phase interface are derived for some
arbitrary physical quantity. The derivation presented here is adopted from Wang and
Oberlack (2011), who established, in addition to the classical mass balance laws for
the bulks in a three-phase setting, local mass balance laws for phase interfaces and
contact lines. The resulting equations are then employed to derive the equations of
the physical model under consideration, i.e. the Navier – Stokes equations for two
phases, including interfacial jump conditions, and the material transport equations at
a two-phase interface and in the bulks.

2.1.1 Mass Balance Laws in a Two-Phase Setting

Let Γ denote a physical variable charaterizing a partial aspect of a state of a body
at time t. A material domain Ω (t) of the body under consideration is chosen with
respect to which the physical variable is evaluated. For this purpose, a setting with two
immiscible phases is assumed, considering a material domain Ω which is decomposed
into two disjoint subdomains B(1) and B(2) occupied by the distinct phases. The
two phases are separated by a curved surface S, the phase interface, which can be
identified with a two-dimensional, moving, orientable and mathematically singular
surface in the three-dimensional Euclidian space. This surface is singular in the sense
that a vanishing interface thickness is considered, across which the physical quantities
may be discontinuous.

In fact, in multiphase systems, an interface is rather given by a thin transition layer of
only few molecular layers thickness, across which physical quantities, such as mass or
momentum, change smoothly but rapidly. But as the thickness of this interfacial transi-
tion zone ranges at the nanometer scale, the interface is infinitely thin as compared
to the dimensions of the adjacent bulks and can be considered as a two-dimensional
continuum, with its own material properties, for instance, surface tension.

The material domain Ω is bounded by an outer boundary ∂Ω = ∂B(1) ∪ ∂B(2) ∪ C in
Lagrangian representation, where the curve C denotes the intersection of the interface
S with the domain’s boundary ∂Ω. As depicted in figure 2.1, n denotes the outward
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B(1)

B(2)

C

S s

n

n(s)

∂Ω

Figure 2.1: Control volume that is occupied by two phases, separated by an interface.

unit normal vector of ∂Ω and n(s) the unit normal of the interface S, pointing from
B(1) into B(2). In addition, the unit normal s to the curve C, which is tangent to the
interface and oriented outward from the system, is needed in the following derivations.

Denoting the total time derivative by d
dt , the time rate of change of the physical variable

Γ of the body per unit time can be decomposed into

dΓ

dt
= F + P + S, (2.1)

destinguishing the flux F of the variable from outside into the body through the surface
∂Ω, its production P within the domain as well as its supply S, or source by action, at
a distance from outside of the body. The physical variable can be specified by means
of densities γ(i), in each subdomain B(i), i = 1,2, and density γ(s), on the interface S,
repectively, in Eulerian representation, i.e.

Γ = 2∑
i=1

∫
B(i)

γ(i) dv + ∫
S
γ(s) da. (2.2)

On the interface, densities of the respective surface excess amounts are employed.
The surface excess N

(s)
l of a component l corresponds to the difference between its

actual amount present in the real system, and its amount in a reference system if its
concentration within the adjacent bulks is extended to a chosen geometrical dividing
surface (Mitropoulos, 2008). The dividing surface, i.e. singular interface, is usually
located where the surface excess of the solvent is zero, as depicted in figure 2.2.
Likewise, the terms on the right hand side can be expressed in integral form employing

● the non-convective bulk flux densities of Γ (per unit surface area), φ(i) (i = 1,2),
through the material outer surfaces ∂B(i) of the bulk phases B(i),

● the non-convective surface flux density of Γ (per unit line length), φ(s), through
the outer boundary curve C of the phase interface S,
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Figure 2.2: Surface excess concentration in a two-component system according to
Mitropoulos (2008). The concentration profile is given as a function of distance normal
to the phase boundary. The surface excess is the sum of shaded areas above and below
of the dividing surface. Usually, the dividing surface is chosen as the zero surface
excess of the solvent.

● the bulk and surface production densities, π(i) (in the bulk phases B(i), i = 1,2)
and π(s) on the phase interface, respectively,

● as well as the bulk and surface supply rate densities ζ(i) (in the bulk phases B(i),
i = 1,2) and ζ(s), on the interface, respectively.

Using these densities, one immediately obtains

P = 2∑
i=1

∫
B(i)

π(i) dv + ∫
S
π(s) da (2.3)

S = 2∑
i=1

∫
B(i)

ζ(i) dv + ∫
S
ζ(s) da. (2.4)

With respect to the non-convective fluxes, one assumes that the surface flux vector φ(s)C

per unit length at the curve C depends on the coordinate xC of C, the time t and the
line normal s and has the form

φ
(s)
C = φ

(s)
C (xC, t,s) = −φ(s) ⋅ s. (2.5)

The equality on the right hand side results from the Cauchy lemma for the line flux
density, which implies a linear dependence if the line flux density φ

(s)
C depends on the

normal at the line s. In sum,

F = − 2∑
i=1

∫
∂B(i)

φ(i) ⋅n da − ∫
C
φ(s) ⋅ s dl. (2.6)
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As the partial volume B(i) is enclosed by the set ∂B(i) ∪S, Gauss’ divergence theorem
can be applied to the surface density integrals in identity (2.6), i.e.

∫
∂B(i)

φ(i) ⋅n da = ∫
B(i)

∇ ⋅φ(i) dv − ∫
S
φ(i) ⋅n(s) da , i = 1,2.

Inserting density integrals (2.3), (2.4) and (2.6) into equation (2.1) yields a mass balance
statement in a setting with two phases in integral form:

2∑
i=1

d

dt ∫B(i)(t)
γ(i) dv + d

dt ∫S
γ(s) da

= 2∑
i=1

∫
B(i)

(π(i) + ζ(i) −∇ ⋅φ(i)) dv
+ ∫

S
(π(s) + ζ(s)) da + 2∑

i=1
∫
S
φ(i) ⋅n(s) da − ∫

C
φ(s) ⋅ s dl. (2.7)

2.1.2 The Geometric Surface

With respect to the subsequent considerations, the notions of a parametric surface
representation and of surface differentials will be needed. An evolving surface that
is oriented by the normal field n(s) can be represented by a local mapping x

(s)
i =

x̂
(s)
i (ξ(s), t), i = 1, . . . ,D, introducing a set of parameters ξ(s) = (ξ(s)1 , ξ

(s)
2 ) in a three-

dimensional setting, or a single parameter ξ(s) = ξ(s), in the two-dimensional case,
which is denoted as a one-dimensional vector here. As one important property, the
local velocity field of the interface is given by the local time derivative of this mapping,

w(s)(x, t) = ∂x̂(s)

∂t
∣
ξ(s)

. (2.8)

Furthermore, a curvilinear coordinate system can be introduced on the surface based on
the parametric form. The partial derivatives of the local mapping define its tangential
vectors f i, i.e.

f i(ξ(s), t) = ∂x̂(s)

∂ξ
(s)
i

(ξ(s), t) , i = 1, . . . ,D − 1,

which correspond to the tangent base vectors of a curvilinear coordinate system on the
surface, provided that the mapping is sufficiently smooth. The normalization

ei(ξ(s), t) = 1∥f i∥f i(ξ(s), t) , i = 1, . . . ,D − 1

yields a set of orthonormal basis vectors with scale factors

hi = 











∂x̂(s)

∂ξ
(s)
i












 , i = 1, . . . ,D − 1.
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Figure 2.3: The surface projection of a given vector w is indicated in blue.

These vectors span an orthogonal curvilinear coordinate system which allows to
introduce surface differentials defined on the surface only. The interfacial normal
vector is obtained through

n(s) = e3 = e1 × e2∣e1 × e2∣ ,
in case D = 3, or by a vector orthonormal to e1, in case D = 2, respectively. Within this
context, the surface gradient of a scalar function c is given by

∇(s)c = e1
1

h1

∂c

∂ξ
(s)
1

+ e2
1

h2

∂c

∂ξ
(s)
2

,

for D = 3, or

∇(s)c = e1
1

h1

∂c

∂ξ
(s)
1

,

when D = 2, respectively. The surface divergence of a vector field v(s) = v(s)(ξ(s)1 , ξ
(s)
2 )

in parametric coordinates is a divergence given in curvilinear coordinates in a lower-
dimensional domain, i.e. for the case D = 3,

∇(s) ⋅ v(s) = 1

h1 h2

∂ (h2v
(s)
1 )

∂ξ
(s)
1

+ 1

h1 h2

∂ (h1v
(s)
2 )

∂ξ
(s)
2

.

For a bulk field that is well defined and smooth up to the surface from at least one side,
the surface differentials may be identified with the tangential parts of the standard
differential operators in Cartesian form. Parts tangential to the interface of a vector or
vector field are obtained by the surface projection tensor

P (s) ≡ I −n(s) ⊗n(s), (2.9)

which involves only the surface (or interfacial) normal vector n(s). In this manner, the
surface gradient of a scalar field c is given by

n(s)w

P sw
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12 Equations of the Physical Model

∇(s)c = P s∇c = ∇c − (∇c ⋅n(s))n(s), (2.10)

and the surface divergence of a vector field u by

∇(s) ⋅u = tr (P s∇u) = ∇ ⋅u −n(s) ⋅ (∇u ⋅n(s)) , (2.11)

where tr(A) denotes the trace of a matrix A. In fact, the resulting expressions as well
as the solution of the extended equations on the surface, or interface, respectively, are
independent of the chosen extension, see also Delfour and Zolésio (2011).

2.1.3 Transport Theorems for the Bulks

In order to achieve local forms of the balance laws on the bulks and on the interface,
an extended form of Reynold’s transport theorem can be applied to exchange time
derivatives and integration over the bulks on the left hand side of equation (2.7). For
this purpose, it is assumed that all quantities are continuous in each of the subdomains.

Introducing the material velocities in the subdomains, u(i) (i = 1,2) in addition to the
speed w(s) of the interface S, the transport theorem then yields, for the bulks,

d

dt ∫B(i)
γ(i) dv = ∫

B(i)

∂γ(i)
∂t

dv + ∫
∂B(i)

γ(i) (u(i) ⋅n) da

+ (−1)i−1∫
S
γ(i) (w(s) ⋅n(s)) da , i = 1,2. (2.12)

Here, Gauss divergence theorem may be applied. Taking into account that each volume
B(i) is enclosed by the surface ∂B(i) ∪S, equation (2.12) may be rewritten as

d

dt ∫B(i)
γ(i) dv = ∫

B(i)

∂γ(i)
∂t

dv + ∫
B(i)

∇ ⋅ (γ(i)u(i)) dv

+ (−1)i−1∫
S
γ(i) ((w(s) −u(i)) ⋅n(s)) da , i = 1,2. (2.13)

The sum of identities (2.13) for both of the bulk phases then results in

2∑
i=1

d

dt ∫B(i)
γ(i) dv = 2∑

i=1
∫
B(i)

∂γ(i)
∂t

dv + 2∑
i=1

∫
B(i)

∇ ⋅ (γ(i)u(i)) dv

+ ∫
S
�γ (w(s) −u) ⋅n(s)� da, (2.14)

where the integrals over S can be restated by the interfacial jump operator

�γ� = γ(2) − γ(1).
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2.1.4 Transport and Divergence Theorems for the Interface

The contour and surface integrals in equation (2.7) can be rewritten and summarized
in a similar fashion as the integrals over the bulks by employing specific transport
and divergence theorems. Petryk and Mróz (1986) established a transport theorem for
surface integrals, which can be applied to treat the integral over the interface S with
normal vector n(s) that moves with velocity w(s) and is enclosed by the curve C:

d

dt ∫S
γ(s) da = ∫

S
(δsγ(s)

δst
+ γ(s) (w(s) ⋅n(s))Hs) da + ∫

C
γ(s) (w(s) ⋅ s) dl, (2.15)

where Hs = ∇s ⋅n(s) is twice the mean curvature. Here, δs

δst denotes the normal time
derivative which is the time derivative for a given point on the surface following the
normal trajectory of the surface.

Equation (2.15) is then applied to the last term of the left hand side of equation (2.7).
In order to eliminate the contour integrals from equation, the surface divergence
theorem (see, for instance, Ecker (2004)) can be used. Employing the material velocity
component tangent to the surface as the tangential surface velocity, i.e. w(s)t = (w(s) ⋅ s)⋅
s = (u(s) ⋅ s) ⋅ s, one has

∫
C
γ(s) (w(s) ⋅ s) dl = ∫

C
γ(s) (w(s)t ⋅ s) dl = ∫

C
γ(s) (u(s) ⋅ s) dl

= ∫
S
(∇(s) ⋅ (γ(s)u(s)t ) − γ(s)H(s) (u(s)t ⋅n(s))) da

= ∫
S
∇(s) ⋅ (γ(s)u(s)t ) da. (2.16)

Altogether, inserting identities (2.16) into (2.15) and replacing the resulting identity in
(2.14), the left hand side of equation can be decomposed into volume integrals over
the bulks and surface integrals over the interface as follows

dΓ

dt
= 2∑

i=1
∫
B(i)

∂γ(i)
∂t

dv + 2∑
i=1

∫
B(i)

∇ ⋅ (γ(i)u(i)) dv + ∫
S
�γ (w(s) −u) ⋅n(s)� da

+ ∫
S
(δsγ(s)

δst
+ γ(s) (w(s) ⋅n(s))Hs) da + ∫

S
∇(s) ⋅ (γ(s)u(s)t ) da. (2.17)

Furthermore, on the right hand side of equation (2.7), the surface divergence theorem
can be employed to replace the contour integral by surface integrals, yielding

∫
C
φ(s) ⋅ s dl = ∫

S
(∇(s) ⋅φ(s) −H(s) (φ(s) ⋅n(s))) da. (2.18)
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14 Equations of the Physical Model

2.1.5 Mass Balance Laws of the Bulks and of the interface

Employing the transport and divergence theorems as indicated in subsections 2.1.3
and 2.1.4, the integral form of the mass balance law (2.7) can be stated by surface and
volume integrals only:

2∑
i=1

∫
B(i)

(∂γ(i)
∂t

+∇ ⋅ (γ(i)u(i) +φ(i)) − π(i) − ζ(i)) dv

+ ∫
S
(δsγ(s)

δt
+∇(s) ⋅ (γ(s)u(s)t ) − (π(s) + ζ(s)) − �γ (w(s) −u) ⋅n(s) −φ ⋅n(s)�) da

= ∫
S
(∇(s) ⋅φ(s) +H(s) (φ(s) ⋅n(s)) − γ(s)H(s) (w(s) ⋅n(s))) da. (2.19)

Due to the arbitrary choice of the integration domains, both in the volume and in
the surface integrals appearing in the above equation, the integrands must vanish
identically. For each phase i = 1,2, one obtains the local balance equations

∂γ(i)
∂t

+∇ ⋅ (γ(i)u(i)) + ∇ ⋅Φ(i) − π(i) − ζ(i) = 0 in B(i) , i = 1,2. (2.20)

For a material surface, the local form of the general balance law on the interface S, in
turn, is given by

δ(s)γ(s)
δt

+∇(s) ⋅ (γ(s)u(s)t ) + γ(s)H(s) (u(s) ⋅n(s)) + ∇(s) ⋅φ(s)
−H(s) (φ(s) ⋅n(s)) − π(s) − ζ(s) + [[φ ⋅n(s)]] = 0 on S. (2.21)

Surface integrals in equation (2.19) are often rearranged by using the additional identity

∫
S
(∇(s) ⋅ (γ(s)u(s)) − γ(s)H(s) (u(s) ⋅n(s))) da = ∫

S
∇(s) ⋅ (γ(s)u(s)t ) da. (2.22)

When the surface is material, the normal time derivative is related to the total and
partial time derivatives by the equation

dγ(s)
dt

= δsγ(s)
δst

+u
(s)
t ⋅ ∇sγ(s) = ∂γ(s)

∂t
+u(s) ⋅ ∇sγ(s), (2.23)

where u
(s)
t is the tangential part of the surface velocity field and the surface differential

operators are defined as in subsection 2.1.2.
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2.2 Conservation of Mass and Linear Momentum

The Navier – Stokes equations for a setting with two phases can be derived from
equations (2.19) and (2.21). In the two - phase system, the identities

γ(i) = ρ(i) , γ(s) = ρ(s) , φ(i) = φ(s) = 0 , ζ(i) = ζ(s) = 0 , π(i) = π(s) = 0 (2.24)

are employed for the balance of mass, where ρ(i), i = 1,2 denote the bulk densities and
ρ(s) the surface density, respectively. As a result, one obtains the continuity equation

∂ρ(i)
∂t

+∇ ⋅ (ρ(i)u(i)) = 0 in B(i) (2.25)

and the interfacial mass balance yields the classical jump balance equation:

�ρ (w(s) −u) ⋅n(s)�(i) = 0 on S, (2.26)

when the surface density is neglected. It should be remarked that this condition always
holds for material interfaces, which is assumed in the present work.

The balance of linear momentum is implied by using the identities

γ(i) = ρ(i)u(i) , γ(s) = ρ(s)u(s) , φ(i) = −T (i) , φ(s) = −T (s) ,
ζ(i) = ρ(i)g , ζ(s) = ρ(s)g , π(i) = 0 , π(s) = 0,

where g denotes the gravitational force per unit mass and T (i) and T (s) the stress
tensors. The stress tensors are commonly decomposed into istropic and dynamic
parts, which yields T (i) = −p(i)I + (T (i))D, i = 1,2 for the Cauchy stress, where p(i)
is the hydrostatic pressure in the respective phase i = 1,2. The surface dynamic
stress is neglected within this context, i.e. only the surface tension σ(s) remains and
T (s) = σ(s)I(s). Inserting the above identities in the bulk and interfacial balance laws
yields the balance of linear momentum in the bulks

∂ (ρ(i)u(i))
∂t

+∇ ⋅ (ρ(i)u(i) ⊗u(i)) = −∇p(i) +∇ ⋅ (T (i))D + ρ(i)g in B(i)

and on the interface

δs (ρ(s)u(s))
δt

+∇(s) ⋅ (ρ(s)u(s) ⊗u
(s)
t ) + ρ(s)u(s)H(s) (w(s) ⋅n(s))

= �ρu (w(s) −u) ⋅n(s) +T ⋅n(s)�(i) + ρ(s)g +∇(s)σ(s) −H(s)σ(s)n(s) on S.

Taking into account the continuity equation (8.3), the usual form of the bulk equations
is obtained

ρ(i)∂u
(i)

∂t
+ ρ(i)u(i) ⋅ ∇u(i) = −∇p(i) +∇ ⋅ (T (i))D + ρ(i)g in B(i) (2.27)
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16 Equations of the Physical Model

Likewise, by applying equation (2.26), the interfacial balance collapses to the classic
jump conditions on the interface

�ρ (u −u(s)) (w(s) −u) − pI + (T )D�(i) ⋅n(s) +∇(s) ⋅ σ(s) −H(s) (σ(s) ⋅n(s)) = 0 on S,

when the interfacial density and the surface dynamic stress is neglected. For material
interfaces, the first term in the jump condition vanishes, as the material velocity and
the local velocity of the surface coincide. This leads to the simplified condition

�−pI + (T )D�(i) ⋅n(s) = −∇(s) ⋅ σ(s) +H(s) (σ(s) ⋅n(s)) on S. (2.28)

Additionally, the balance laws of angular momentum in the bulks and on the interface
can be derived from the balance laws (2.20) and (2.21), see, for instance, Wang and
Oberlack (2011). One important implication is the fact that the Cauchy stress tensor
must be symmetric for non-polar continua. The present work assumes a setting
with an incompressible two-phase flow with constant densities ρ(i), i = 1,2. In the
incompressible flow system, the deformation tensor is given by the identity

(T (i))D = η(i) (∇u(i) +∇(u(i))T) (2.29)

where MT denotes the transpose of the matrix M . Identity (2.29) is inserted into equa-
tions (2.28) and (2.27). In addition to the jump condition (2.28), the interface requires
further coupling conditions. Condition (2.26) requires continuity of the velocity field
in normal direction across the interface,

�u ⋅n(s)� = 0 on S, (2.30)

which, combined with a no slip condition, yields continuity of the velocity field across
the interface

�u� = 0 on S, (2.31)

as the phases are viscuous, immiscible and no phase transition takes place. The
characteristic velocity scale u∞, the characteristic length scale L and the Reynolds
number Re(i) = ρ̃ L u∞/η(i) are employed to introduce the non-dimensional variables,

xi = xi

L
, t = t

L/u∞ , u(i) = u(i)
u∞

, p(i) = p(i)
ρ̃u2∞

,g = Lg

u2∞
(2.32)

with a parameter ρ̃ yet to be specified. The introduction of non-dimensional variables
yields the non-dimensional Navier - Stokes equations for an incompressible two -
phase flow setting:

∇ ⋅u(i) = 0 in B(i), (2.33)

ρ(i)
ρ̃

(∂u(i)
∂t

+ (u(i) ⋅ ∇)u(i)) = −∇p(i) + 1

Re(i)
∇ ⋅ (∇u(i) +∇(u(i))T) in B(i), (2.34)
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Surfactant Transport Equations 17

where ∇ denotes the nabla operator with respect to the non-dimensional coordinate
system. The non-dimensional interfacial continuity conditions are given by

�u� = 0 on S, (2.35)

and in normal direction off the interface,

�u ⋅n(s)� = 0 on S, (2.36)

as n(s) = n(s). Furthermore, employing the surface tension σ0 of a clean interface to
establish σ(s) = σ(s)/σ0 and the Weber number

We = ρ̃ L u2∞
σ0

,

condition (2.28) transforms to

�−pI +∇u +∇uT �(i) ⋅n(s) = −∇(s) ⋅ σ(s) +H
(s) (σ(s) ⋅n(s)) on S,

with the assumption that the temperature remains constant. At this point, it is impor-
tant to note that a common parameter ρ̃ has been introduced for both of the densities,
which may be, for instance, identical to ρ̃ = (ρ(1) + ρ(2))/2.

2.3 Surfactant Transport Equations

In many applications, one is interested in the transport process of a solute whose
concentration is small and whose influence on the flow field is negligible. Such a solute
is considered as a passive constituent which is convected by the fluid flow and whose
relative motion to the fluid flow is modeled by a diffusive flux. More specifically, in
the present work interest focusses on the transport of surface active agents, or shortly,
surfactants. Denote by c(i), i = 1,2, the concentration of surfactant in each of the bulks
and by cs the surface excess density of surfactant. In the bulks and on the interface, the
densities of the physical variable are provided by the surfactant concentration, i.e.

γ(i) = c(i) and γ(s) = cs. (2.37)

It is assumed that no chemical reactions take place within or outside of the domain or
the interface, i.e. no further solute is created within Ω, implying

π(i) = 0, π(s) = 0, ζ(i) = 0, ζ(s) = 0. (2.38)

Furthermore, let D(s) denote the diffusion coefficient on the interface, and D(i), i = 1,2

the diffusion coefficients in the bulks, respectively. For each bulk phase, Fick’s first law
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18 Equations of the Physical Model

can be applied for the diffusive flux, i.e. j(i) = −D(i)∇c(i), establishing the convection-
diffusion equation of surfactant concentration in each bulk

∂c(i)
∂t

+∇ ⋅ (c(i) u(i)) −D(i)∇ ⋅ ∇c(i) = 0 in B(i) , i = 1,2. (2.39)

Similarly, the mass balance equation of the solute on the interface S can be established
by the general local balance equation (2.21) by means of the identifications (2.38) and
Fick’s first law for the diffusive flux,

φ(s) = −D(s)∇(s)cs on S, (2.40)

resulting in the interfacial transport equation of surfactant

δ(s)cs
δt

+∇(s) ⋅ (csu(s)t ) +H(s)cs(n(s) ⋅u(s)) −D(s)∇(s) ⋅ ∇(s)cs = S on S, (2.41)

where the flow of mass from and to the bulks is summarized by the source term S,

S =D(1)∇c(1)∣S ⋅n(s) −D(2)∇c(2)∣S ⋅n(s). (2.42)

In equation (2.41), identities (2.22) and may be (2.23) employed, yielding

dcs

dt
+ cs∇(s) ⋅u(s) −D(s)∇(s) ⋅ ∇(s)cs = S on S. (2.43)

At the same time, the bulk equations (2.39) are coupled to the surface equations by

(−1)(i)D(i)∇c(i)∣S ⋅n(s) = k
(i)
ad c

(i)
s (cs∞ − cs) − k

(i)
de c

s on S. (2.44)

Here, cs∞ is the upper bound of the surfactant concentration that can be accommo-
dated at the interface, c(i)s is the bulk concentration of surfactant immediately adjacent
to the interface and k

(i)
ad and k

(i)
de denote adsorption and desorption coefficients of

each phase, respectively. In addition to the non-dimensional variables introduced in
equations (2.32), the maximal packing number c∞ of the interface and total surfactant
concentration in the bulks C∞ as well as the Péclet numbers for the bulks and for the
interface

Pe(i) = u∞L
D(i) and Pe(s) = u∞L

D(s) ,

are used for establishing a non-dimensional form of the surfactant transport equations.
By employing the non-dimensional concentrations

c(s) = c(s)
c∞

, c(i) = c(i)
C∞

,
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one obtains the non-dimensional form of equations

∂c(i)

∂t
+∇ ⋅ (c(i) u(i)) − 1

Pe(i)
∇ ⋅ ∇c(i) = 0 in B(i), i = 1,2 and (2.45)

∂c(s)

∂t
+ (u ⋅ ∇) c(s) + c(s)∇(s) ⋅u − 1

Pe(s)
∇(s) ⋅ ∇(s)c(s) = S on S, (2.46)

where the source term S in non-dimensional form is given by

S = 1

Pe(1)
∇c(1)∣S ⋅n(s) − 1

Pe(2)
∇c(2)∣S ⋅n(s). (2.47)

A number of non-dimensional parameters is commonly employed for the adsorption
and desorption terms in boundary condition (2.44),

La(i) = C∞k(i)ad

k
(i)
de

, Ha(i) = Lk
(i)
adC∞
u∞

, k = c∞
C∞L

,

where La is the Langmuir number, that characterizes the ratio between adsorption and
desorption kinetics, Ha is the Hatta number, that indicates the ratio between the mass
flux and the advective flux on the interface, and k is the non-dimensional adsorption
length. By means of these parameters, one obtains

(−1)(i)∇c(i)∣S ⋅n(s) = −k Ha(i) Pe(i) (c(i)s (1 − c(s)) − 1

La(i)
c(s)) (2.48)

Due to the hydrophobic effect, the presence of surfactants may have a significant
impact on the surface tension, i.e. on the surface free energy per unit area. When an
interface of a surfactant solution is freshly formed, its surface tension σ is close to the
surface tension of a clean surface, σ0, and decays to its equilibrium value during the
adsorption of surfactants. Therefore, it is usually termed dynamic surface tension in
presence of surfactants. Gibb’s derived a thermodynamic relationship between the
surface excess concentration, the bulk concentrations and a change in surface tension,
and a variety of adsorption isotherms may be employed to relate the surface excess
conentration adsorbed at the interface and bulk concentrations, see e.g. Eastoe and
Dalton (2000). Langmuir’s isotherm is probably the most commonly used non-linear
isotherm, based on the assumptions that the change of surfactant concentration that
is due to adsorption is proportional to both the bulk concentration and the number
of vacant sites on the surface while the change caused by desorption is proportional
to the number of adsorbed species. The resulting surface equation of state is often
employed when considering the impact of surfactant adsorption

σ0 − σ = −RTcs∞ ln(1 − cs

cs∞
), (2.49)

where R is the ideal gas constant and T the absolute temperature. As pointed out
previously, in the present work, the influence of surfactant on the surface tension as
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well as an exchange with the bulks are not considered. Therefore, equations (2.49),
(2.48), (2.45) and (2.47) are not taken into account in the discretization presented.
Throughout the subsequent work, equations will be presented in non-dimensional
form and overlines are omitted, unless stated otherwise.
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3 State of the Art
of Numerical Methods

The numerical simulation of the transport of mass at fluidic interfaces constitutes a
major challenge, as such processes are modelled by equations defined on moving and
deforming submanifolds of the original domain. Commonly, one has to deal with
interfacial convection-diffusion equations which involve differential operators defined
on the submanifolds. These differential operators are usually represented in curvilinear
coordinates. Alternatively, they may be identified with those parts of the standard
differential operators that are tangential to the interface. The choice of an adequate
numerical method for treating these equations highly depends on the representation of
the surface or interface. This chapter provides a brief overview of numerical methods
which have been employed until today for representing fluidic interfaces and of
numerical approaches for dealing with surface and interfacial equations. Additionally,
existing works which include interfacial surfactant transport are outlined.

3.1 Treatment of Fluidic Interfaces

Over the past 50 years, several distinct approaches for the numerical treatment of
fluidic interfaces have been developed. Those methods that are most important in
order to understand the numerical treatment of interfacial equations are recapitulated
in this section.

3.1.1 Particle Methods

In early approaches, sets of massless markers have been introduced which are em-
ployed to locate and track the position of the interface. An Eulerian grid is maintained,
requiring additional storage of the coordinates of these virtual particles which are
evolved with the (interpolated) velocity field. However, in cases of topology changes
such as droplet breakup or coalescence, markers may accumulate in one region or
get lost in others, requiring a redistribution. These methods originate in the Marker
and Cell method (MAC) first introduced 1965 by Harlow and coworkers at the Los
Alamos Laboratories for the treatment of free surfaces in viscous incompressible flows
by Finite Difference schemes (Welch, Harlow, Shannon, and Daly, 1965; Harlow and
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Welch, 1965). This method was developed from their earlier Particle in Cell method
(PIC). While the original MAC method used the massless markers only to determine
if grid cells contained fluid or not, de Sousa, Mangiavacchi, Nonato, Castelo, Tomé,
Ferreira, Cuminato, and McKee (2004) incorporate the computation of surface normals
and curvature and on this basis, the resolution of the interface. The MAC method uses
markers in the whole liquid domain, so-called volume markers. As a simplification, a
restriction of markers located on the surface only, so-called surface markers, has been
suggested by Aulisa, Manservisi, and Scardovelli, 2004; Chen, Johnson, Raad, and
Fadda, 1997 in later works.

3.1.2 Volume of Fluid Methods

In Volume of Fluid methods (VOF), commonly attributed to Noh and Woodward
(1976), marker particles were then replaced by a marker function which is constant
in each fluid, i.e. the characteristic function χi of each fluid i. Here, the advection
equation of the marker function is approximated in an integral sense as a conservation
law

∂

∂t ∫Vi

χi dx + ∫
∂Vi

χi (u ⋅ni) dσ,
where Vi denotes the volume occupied by fluid i and ni denotes its outer normal.
In this way, mass conservation can be achieved while discontinuities at the interface
are taken into account at the same time. A so-called color function is established
through a normalization by cell volume, providing volume fractions, or area fractions,
respectively, in each computational cell. The advection of the color function requires
a location of the interface in order to be able to approximate the volume boundary
integral. For this purpose, volume or area fraction data is used locally to reconstruct a
discontinuous interface. Here, fractions in a defined neighbourhood of cells intersected
by the interface are employed. Although is is robust and vastly mass conserving, the
VOF method struggles with numerical diffusion, which causes the interface to become
spread throughout more than one cell width. Furthermore, interface reconstruction is
rather tedious and constitutes the focus of research. One of the earliest algorithms in-
troduced by Noh and Woodward (1976) is the well known SLIC (Simple Line Interface
Calculation) algorithm, later improved by Chorin (1980), which assumes the interface
to be parallel to either of the coordinate axes, always perpendicular to the direction of
the advection.

In an algorithm proposed by Hirt and Nichols Hirt and Nichols (1981), the interface is
also aligned with the coordinate axes but in depends on the interfacial normal which
is reconstructed from volume fractions of neighbouring cells. A method proposed by
Youngs (1984) takes up this idea, and the interface is reconstructed as straight lines in
each computational cell whose orientation is determined through its normal vector.
This method is known today as the PLIC (Piecewise Linear Interface Calculation)
method. As one remarkable feature, by this linear reconstruction scheme second order
accuracy could be achieved.
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Level Set function Φ

x-y-plane

S = {x ∶ Φ (x) = 0}

Figure 3.1: The three-dimensional Level Set function that embeds a circle.

3.1.3 Level Set Methods

In Level Set methods, devised by Osher and Sethian (1988), an auxiliary smooth (or
at least Lipschitz continuous) function Φ ∶ R+ ×RD → R is introduced, which embeds
the fluid interface at each point of time into the higher, D-dimensional domain. The
interface is represented implicitly as the zero-isocontour of this so-called Level Set
function, i.e.

S = {x ∈ RD ∶ Φ (t,x) = 0} , (3.1)

which is advected by the flow field according to the Level Set advection equation (see
Osher and Fedkiw (2003), Osher and Sethian (1988), or Peng, Merriman, Osher, Zhao,
and Kang (1999))

∂Φ

∂t
+ (u ⋅ ∇Φ) = 0 in Ω. (3.2)

In fact, the Level Set function can be considered as a special marker function which
is advected with the flow. With evolving time, however, the function Φ may become
undesirably flat or steep near the interface, in this way imposing shocks and severe
inaccuracies. Commonly, it is then replaced by a signed distance function d(x), i.e.
a function that maps each point to its signed distance onto the zero-isocontour and
thus, assures a normalized gradient. A signed distance function whose zero Level Set
is identical to the original zero isocontour can be constructed by the Fast Marching
Method that goes back to Chopp (1993). In a first step, called initialization phase, a
signed distance function is reconstructed on all vertices that are cut by the interface.
This can be achieved either by means of a geometric approach or scaling of the original
Level Set function on the vertices. In a second step, known as extension phase, the
approximated signed distance function is successively extended to neighbouring cells
(Gross and Reusken, 2011).

Alternatively, the re-initialization of the Level Set function can be achieved through
a PDE based pseudo-timestepping procedure. In a pseudo-timestepping approach
proposed, for instance, by Peng, Merriman, Osher, Zhao, and Kang (1999) as well as
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Sussman, Smereka, and Osher (1994) a virtual time variable is introduced and the
initial value problem

∂Φ̃

∂τ
+ sign(Φ̃0) (∣∣Φ̃∣∣ − 1) = 0

Φ̃0(x) = Φ̃(0,x) = Φ(x)
is solved until a steady state solution Φ̃ is attained. This stationary solution yields the
desired signed distance function and replaces the original Level Set function.

3.1.4 ALE Methods

In arbitrary Lagrangian-Eulerian (ALE) methods, accredited to Franck and Lazarus
(1964), Noh (1964) and Hirt, Amsden, and Cook (1974), the most favorable features
of Eulerian and Lagrangian approaches are coupled by allowing arbitrarily moving
grids. The nodes of the computational mesh may be associated with material points,
being moved with the continuum in a Lagragian fashion, or may be held fixed in an
Eulerian manner, or advanced with an arbitrary grid velocity. Usually, both approaches
are combined, employing a Lagrangian description in the neighbourhood of moving
boundaries or interfaces, while maintaining an Eulerian description in more distant
regions. In this way, one strives to achieve a higher resolution than in an Eulerian
approach, still being able to handle more severe distortions as in a purely Lagrangian
approach. As one essential aspect, ALE approaches employ suitable remeshing tech-
niques, using mesh regularization or mesh adaptation such as mesh refinement at
high distortions. The equations are treated in a fixed reference domain, consisting of
reference coordinates. Both mesh and material are moved with respect to this reference
domain. Correspondingly, the reference domain requires an adaptation both of the
differential quantities and of integral expressions. Here, the convective velocity which
is the relative velocity between the mesh and the material, plays an important role
and indicates the Eulerian or Lagrangian character of the method. Although ALE
methods have been mainly employed to treat problems in structural mechanics and
fluid-structure interactions, they have been applied to compressible and incompress-
ible flow problems, and have been used to treat free surface flows by Hughes, Liu, and
Zimmermann (1981) as well as Ramaswamy and Kawahara (1987).

3.2 Treatment of Surface Problems

Traditionally, the discretization of surface or interface problems is based on a La-
grangian approach, employing curvilinear coordinates. In this case, the interface has
to be approximated numerically, implying that for unsteady surfaces, a resolution
has to be available in each time step. The computational domain is reconstructed
and is used to discretize the problem on the surface, or interface, respectively. More
recently, few authors have attempted to treat surface (or interface) transport problems
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Figure 3.2: Examples of surface meshes employed in Lagrangian approaches.

by constructing an adequate extension into the underlying domain, and employ an
Eulerian approach for discretizing the problem.

3.2.1 Lagrangian Approaches

Finite Element Methods have already been applied to surface problems in the late
80s by Dziuk (1988) with surfaces specified by splines. Their application to arbitrary,
possibly moving surfaces, however, is a fairly new area of research. Most commonly,
the surface S is approximated by a triangulated mesh Sh with vertices residing on
the original surface. An example of a surface mesh is given by figure 3.2. On these
grids suitable finite element spaces of sufficiently smooth functions are constructed,
usually consisting of continuous polynomials that are affine linear on the simplices, for
instance by Dziuk and Elliott (2007b). In this way, weak forms of the surface differential
equations are generated easily. In case of dynamic, i.e. moving or deforming interfaces,
Dziuk and Elliott (2007a) developed a method where the nodes of the interfacial
triangulation are advected by the motion velocity, requiring space-time finite element
spaces of basis polynomials. This method is commonly referred to as the Surface Finite
Element Method (SFEM) in applications with stationary surfaces (Dziuk and Elliott,
2007b) or Evolving Surface Finite Element Method (ESFEM) (Dziuk and Elliott, 2007a),
on instationary geometries, respectively.

Calhoun, Helzel, and LeVeque (2008) as well as Wu, Deng, and Chen (2008) adopted
similar approaches in Finite Volume schemes, using surface triangulations as grid
cells for the Finite Volume schemes. Using Finite Volume schemes on interfacial grids,
however, requires a fairly high effort with respect to the regularity of the grid cells.
In particular, the ratio of the sizes of the cells influences the CFL condition (Calhoun,
Helzel, and LeVeque, 2008). Lenz, Nemadjieu, and Rumpf (2008) have used evolving
simplicial meshes, similar to Dziuk and Elliott (2007a), when treating the interfacial
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equations by Finite Volume methods. The grid discretization suggested by Nemadjieu
(2010) is founded on a polygonial mesh where the cell vertices lie on motion trajectories
with respect to the initial polygonal surface. In research presented by J. Li (2006), the
interface is tracked by a series of marker points based on which the grid cells are
generated. Tukovic and Jasak (10-12 June 2008), in turn, use a computational mesh that
moves and deforms with the motion of the interface, i.e. an ALE method where the
grid boundaries yield the interface in two-phase flow problems. Here, all cell faces of
the polyhedral control volumes that coincide with the interface constitute the mesh
which their face centered Finite Area method (FAM) is based on.

3.2.2 Eulerian Approaches

In case of moving or deforming interfaces, however, the above approaches are less
adequate, since they require an adaptation in every time step and re-meshing after
certain periods of time (Dziuk and Elliott, 2007a; Elliott and Eilks, 2008; Lenz, Nemad-
jieu, and Rumpf, 2008). A better representation of the interfacial differential operators
may then be given extrinsically, based on the Eulerian grid. This is achieved by an
orthogonal projection of the standard operators onto parts tangential to the interface.
Here, an implicit representation of the interface, for instance, by means of a Level Set
function, yields the orthogonal projection without any difficulties (Dziuk and Elliott,
2008). A weak formulation of a corresponding Eulerian convection-diffusion equation
is provided by Dziuk and Elliott (2009). In this manner, the interfacial equations are
embedded into a subset of the higher dimensional domain. Now all computations
can be performed on the fixed Eulerian grid of the three-dimensional domain. Here,
to restrict computational costs and guarantee regularity of the Level Set function up
to a certain extent, a small neighborhood of the interface – a narrow band around the
interface – is used as the new computational domain, typically consisting of few grid
cells in the normal direction to the interface only (Bertalmı́o, Cheng, Osher, and Sapiro,
2001; Greer, 2006; Greer, Bertozzi, and Sapiro, 2006; Burger, 2009). Within this context,
Deckelnick, Dziuk, Elliott, and Heine (2010) propose an unfitted FE discretization to
mimic curved boundaries. This method, however, is restricted to first order basis
polynomials, as the unfitted finite elements lead to ill-conditioned mass matrices. As
another approach, each point can be mapped to one of its closest points on the surface.
Following this approach developed by Ruuth and Merriman (2008) and Macdonald
and Ruuth (2008), all standard differential operators only consist of tangential compo-
nents and replace the surface differential operators. As an alternative to embedding the
problem into a formulation in the higher dimensional domain, Olshanskii, Reusken,
and Grande (2009) introduce a method that builds on the restriction of a Finite El-
ement space defined on a triangulation of the outer domain. Here, the PDE on the
surface is discretized by time-independent Finite Element spaces that are induced by
triangulations of the higher-dimensional domain.
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Cartesian mesh on the x-y-plane

Extended concentration on
Level Set isocontours

S = {x ∶ Φ (x) = 0}

Figure 3.3: An extension of the surface concentration cs = cos2(ϕ) to isocontours of the
Level Set function.

3.3 Interfacial Transport in Two-Phase Flows

The coupling of interfacial transport of substances, for instance surfactants, to flow
problems is a very recent area of research and only few related works exist. Its challenge
does not only lie in the numerical treatment of the interfacial equations on moving and
deforming submanifolds, but also in the fact that three interdependent problems have
to be solved simultaneously. First of all, the Navier Stokes equations need to be solved
for the flow field, respecting the surface tension force (and possibly, the Marangoni
force,) determined by the position and geometry of the interface, on the one hand, and
by the distribution of interfacial substances, on the other hand. Second, the interface
that is advected by the flow field has to be tracked or captured. Third, the interfacial
transport equation, depending both on the flow field and the interfacial properties, has
to be evolved.

In this section, a brief overview of existing works is provided. The transport of
surfactants has been included in various low Reynolds number settings, for instance
by Stone and Leal (1990a), Milliken, Stone, and Leal (1993), Li and Pozrikidis (1997),
Pozrikidis (2004), Yon and Pozrikidis (1998), Blyth and Pozrikidis (2004a), Pawar and
Stebe (1996), Eggleton, Pawar, and Stebe (1999) and Eggleton, Tsai, and Stebe (2001).
Here, the flow field is obtained by a boundary integral method which is generally
limited to Stokes and inviscid flow settings. As one of the first works published in this
context, Stone and Leal (1990a) numerically studied moderate and large deformations
of drops in axisymmetric extensional flows that are due to the presence of insoluble
surfactants. Using a linear surface tension model, they investigated the effect of
variations in interfacial tension on the deformation and breakup of drops. These
numerical investigations have been extended by Milliken, Stone, and Leal (1993) who
replaced the equations of state by a nonlinear model and additionally addressed the
effect of the viscosity ratio between the drop and the surrounding fluid. The method
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of Stone and Leal (1990a) has been adopted by Pawar and Stebe (1996), and Eggleton,
Pawar, and Stebe (1999) and Eggleton, Tsai, and Stebe (2001) to study effects of surface
saturation and surfactant interaction for a drop in axisymmetric extensional flow when
insoluble surfactants are present. Linear equations of state have been used by Pawar
and Stebe (1996) and non-linear equations of state by Eggleton, Pawar, and Stebe (1999)
and Eggleton, Tsai, and Stebe (2001). Special attention is paid to stagnant cap effects
(Eggleton, Pawar, and Stebe, 1999) that may eventually cause the breakup of droplets
(Eggleton, Tsai, and Stebe, 2001). The setting introduced by Stone and Leal (1990a) was
further generalized by Li and Pozrikidis (1997) who considered three-dimensional
non-axisymmetric flows.

The interfacial equation describing the transport of surfactants has been treated in
these boundary integral frameworks by Finite Difference methods (FDM) in orthogonal
(Stone and Leal, 1990a; Milliken, Stone, and Leal, 1993) or non-orthogonal (Li and
Pozrikidis, 1997) curvilinear coordinates, based on unstructured interfacial grids.

In subsequent works, the FDM has been replaced by FVM or FEM. Yon and Pozrikidis
(1998) have used interfacial marker points to create an unstructed grid on the interface
and to establish a Finite Volume scheme. Within this context, the authors investigated
the deformation of a droplet in the presence of surfactants on shear flow. Further-
more, simulations of a perdiodic two-layer channel flow are employed by Blyth and
Pozrikidis (2004a) to examine the influence of surfactants on Marangoni instabilities.
Pozrikidis (2004) creates a surface grid of curved triangular elements based on which
a FEM approximation is established. The grid is constructed from a set of marker
points that are transported with the normal component of the flow field, i.e. in an ALE
fashion. On this basis, the transport of surfactants in an axisymmetric tangential Stokes
flow around a droplet and the impact of surfactants on the deformation of a drop in
shear flow are computed numerically. Additionally, Pozrikidis (2004) compares the
FEM approximation with their previously used FVM scheme.

A combined application of a Cartesian mesh for solving the Navier Stokes equations by
FDM and of Lagrangian marker particles to treat the interfacial transport is presented
by Lai, Tseng, and Huang (2008). Here, the interface, represented by a parametric
form, is treated as an immersed boundary that moves with the flow field and exerts
an interfacial force to the fluids (Lai, Tseng, and Huang, 2008). This method does not
require an interpolation of interfacial values to couple the equations. Specific to this
approach is the reformulation of the interfacial convection-diffusion that takes interfa-
cial stretching into account (Huan, Lai, and Tseng, 2008). However, a redistribution of
the Lagrangian markers becomes necessary by interfacial deformation.

Drumright-Clarke and Y.Y.Renardy (2004) as well as Renardy, Renardy, and Cristini
(2002) present a VOF approach to treat the effect of insoluble surfactants on drop
deformation and breakup, approximating the Navier Stokes equations by FDM on
a Cartesian rectangular grid. The position of the interface is reconstructed using
a PLIC method. Here, the volume of surfactant is computed in each grid cell and
divided by the respective interfacial area to reconstruct the interfacial concentration. A
coupling of the flow field and surfactant transport is achieved by a continuous surface
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stress formulation, however, with a restriction to a linear equation of state. Another
approach that combines the treatment of insoluble surfactants with a VOF method is
presented by James and Lowengrub (2004). In contrast to other works, the surfactant
concentration is not tracked directly, but expressed by surfactant mass and surface
area. These quantities are evolved independently by means of a FV scheme. The
surfactant concentration is then recovered by the ratio of surfactant mass per surface
area. This approach is unique in the sense that an exact conservation of surfactant
mass can be easily achieved, as it is tracked directly. The surfactant concentration can
be related to the surface tension by arbitrary, possibly non-linear equations of state.
Simulations of drops in extensional flow are used as test cases, focussing particularly
on drop retraction and breakup. The idea of tracking surfactant mass and surface area
separately has been taken up by Yang (2007) and applied to an ALE appraoch, i.e.
the equations are discretized on basis of moving, unstructured, triangular grids. In a
very distinct approach that was first introduced by Xu and Zhao (2003), the interfacial
surfactant transport equation is treated globally by Eulerian differential operators
where the interfacial differential operators are identified with the tangential parts of
standard differential operators. This idea has been motivated by using an implicit
representation of the interface by means of a Level Set function. In a subsequent paper
Xu, Li, Lowengrub, and Zhao (2006) coupled this method to an immersed interface
approach for solving Stokes problems is presented.
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4 An Introduction to DG Methods

The next chapter provides a brief introduction to Discontinuous Galerkin (DG) meth-
ods. Especially, it focusses on the DG discretization of first and second order PDEs
that are involved in the subsequent work. Its most characteristic features are outlined,
motivating the use of the DG method. This chapter concludes with an account for the
design of the numerical method presented in this thesis.

4.1 Discontinuous Galerkin methods –
A Selected Overview

4.1.1 The Discontinuous Galerkin Discretization

The Discontinuous Galerkin (DG) method was originally introduced by Reed and
Hill (1973). Motivated by the neutron transport equation, the authors suggested to use
discontinuous basis functions in the Galerkin discretization of hyperbolic equations.
Instead of linking the element variables through a continuity requirement as in Finite
Element methods (FEM), a coupling between neighbouring elements is achieved
through numerical fluxes that are employed in the boundary integrals. These numerical
fluxes, or slope limiters, are adopted from Finite Volume methods (FVM). At the same
time, DG schemes allow for an approximation of convection dominated problems by
polynomials of arbitrary order. Thus, in principle, the DG approach can be seen as a
hybrid method that strives to combine elements of FEM and FVM, although it is often
assigned to either of them. Source terms and time derivatives, in contrast, remain fully
decoupled between elements.

Starting from a simple hyperbolic equation in a scalar variable Φ,

∂Φ

∂t
+∇ ⋅ (Φ u) = 0 in Ω × (0, T ) , (4.1)

Φ∣t=0 = Φ0 in Ω

for some given constant velocity vector u, the DG discretization is briefly reviewed in
this section. In fact, the above equation (4.1) corresponds to the Level Set advection
equation in an incompressible flow setting. More detailed information on DG and
its numerical aspects are given in Hesthaven and Warburton (2008), Cockburn (2004),
Cockburn, Karniadakis, and Shu (2000) and B. Q. Li (2006). For a thorrow review of
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numerical analysis on the DG method, the interested reader may refer to Di Pietro and
Ern (2012).

As a starting point, the problem domain Ω is approximated by a computational domain
Ωh ≈ Ω that is discretized by a structured or unstructered grid. The grid consists of a
set of a set of J cells Th = {Kj ∶ j = 1, . . . , J}, i.e.

Ωh = ⋃
j=1,...,J

Kj ,

with characteristic cell size h. In the present work, the vectors that are normal to the
cells’ edges, pointing away from cell Kj , are denoted by nj , where the edge indices are
omitted.

In the DG approach, the solution of equation (4.1) is approximated by a function Φh in
the finite element space

V k
h = {v ∈ L2 (Ωh) ∶ v∣K ∈ P k(K), K ∈ Th} .

Within this context, P k(K) denotes the set of all polynomials on K whose order is at
most k. The space L2 (Ωh) is the space of measurable, squarely integrable functions
(up to null sets) on Ωh, equipped with the inner product

(f, g) = ∫
Ωh

f (x) g (x) dx.

For this purpose, for each j-th cell, a set of basis polynomials,{ϕj
i ∶ i = 1, . . . ,Np}, of

arbitrary polynomial order N , is defined locally. All field variables are then approx-
imated by piecewise N -th order polynomials, i.e. by a linear combination of basis
polynomials. For instance, the Level Set variable Φ is approximated by

Φh (t,x) = J∑
j=1

Np∑
i=1

Φj,i (t)ϕj
i (x) ,

where the coefficients {Φj,i (t) ∶ j = 1, . . . , J ; i = 1, . . . ,Np} form the set of discrete DG
coordinates. The basis polynomials are chosen such that their support contains only
one element, yielding local approximations

Φj
h (t,x) = Np∑

i=1
Φj,i (t)ϕj

i (x) for x ∈Kj. (4.2)

Hence, the global approximation of each field is given by the direct sum of these J

local approximations

Φh (t,x) = J⊕
j=1

Φj
h (t,x) .

Likewise, uh denotes the DG approximation of the velocity field. The dimension of
the computational domain determines the relation between the number Np of local
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basis functions and the polynomial order of the scheme. In fact, if D = 1, it holds that
Np = N + 1, if D = 2, Np = (N + 1)(N + 2)/2 and in three dimensions,

Np = (N + 1) (N + 2) (N + 3)
6

.

A Galerkin formulation is given by discretizing equation (4.1) in this manner, multi-
plying by a test function and integrating over each cell. The equation is then required
to be satisfied in a Galerkin sense, i.e.

∫
Kj

∂Φh

∂t
v dx + ∫

Kj

∇ ⋅ (Φh uh) v dx = 0

for all test functions v ∈ V k
h . As the space V k

h is spanned by the set of basis polynomials,
it is sufficient to demand

∫
Kj

∂Φh

∂t
ϕj
i dx + ∫

Kj

∇ ⋅ (Φh uh) ϕj
i dx = 0

for all basis polynomials i = 1, . . . ,Np, in each cell Kj ∈ Th. Finally, Gauss’ integral
theorem yields the weak form:

∫
Kj

∂Φh

∂t
ϕj
i dx − ∫

Kj

(Φhuh) ⋅ ∇ϕj
i dx + ∫

∂Kj

Φh uh ⋅nj ϕj
i ds = 0, i = 1, . . . ,Np. (4.3)

Assuming discontinuity, the limits

lim
y→x;y∈Kj

Φh (y) = Φ+h, lim
y→x;y∉Kj

Φh (y) = Φ−h

at the cell boundaries generally differ. Therefore, the flux at the boundary integrals is
modelled by numerical flux functions F ∗(Φ+h,Φ−h) that are borrowed from FV schemes.
As a result, in each cell Kj , equation (4.3) is discretized by

∫
Kj

∂Φh

∂t
ϕj
i dx−∫

Kj

(Φhuh)⋅∇ϕj
i dx+∫

∂Kj

F ∗ (Φ+h,Φ−h)⋅nj ϕj
i ds = 0, i = 1, . . . ,Np. (4.4)

For stability and well – posedness of the method, the numerical fluxes are required to
be conservative, i.e. single-valued on each edge, consistent with the orginal flux, i.e. in
this example,

F ∗(Φ, Φ) ⋅nj = Φ u ⋅nj

and monotone, meaning nondecreasing in its first argument and nonincreasing in the
second (Hesthaven and Warburton, 2008). The definition of numerical fluxes most
commonly involves the jump operator

�c� = c+nj − c−nj and �u� = u+ ⋅nj −u− ⋅nj
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and the average operator

{{c}} = c+ + c−
2

and {{u}} = 1

2
(u+ +u−)

for some scalar c and some vector u. A variety of numerical fluxes is readily available
from FVM. As examples, consider the central Lax Friedfrichs flux which is often
employed when the flux has no specified direction. In contrast, an upwinding flux
scheme

F ∗ (Φ+h,Φ−h) ⋅nj = lim
s↓0 Φh (x − su) u ⋅nj

selects the upstream values at the elements’ edges. In this way, it accounts for the fact
that information is transported along the characteristics of a simple advection equation,
such as (4.1), or in other words,

F ∗ (Φ+h,Φ−h) ⋅nj = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ+h u ⋅nj if nj ⋅u ≥ 0

Φ−h u ⋅nj if nj ⋅u < 0 .

Only the DG modes of the discretization are dependent on time, resulting in

∂Φj
h

∂t
(t,x) = Np∑

i=1
dΦj,i

dt
(t)ϕj

i (x) for x ∈Kj. (4.5)

Therefore, the global approximation is the solution to the discrete problem

J∑
j=1

Np∑
i=1

dΦj,i

dt ∫
Kj

ϕj
i ϕ

j
i dx − J∑

j=1

Np∑
i=1

Φj,i∫
Kj

ϕj
i uh ⋅ ∇ϕj

i dx (4.6)

+ J∑
j=1

∫
∂Kj

F ∗ (Φ+h,Φ−h) ⋅nj ϕj
i ds = 0, i = 1, . . . ,Np (4.7)

with suitable boundary fluxes, where an adequate time stepping scheme is employed.

4.1.2 Discrete Quantities

To develope a matrix based representation of the discretization of a simple advection
equation, for instance equation (4.1), the mass matrix M with entries

M j
i,k = ∫

Kj

ϕj
i (x)ϕj

k (x)dx i, k = 1, . . . ,Np ; j = 1, . . . , J

and the differentiation matrix Sd in each dimensional component d = 1, . . . ,D,

Sd,j
i,k = ∫

Kj

ϕj
i

∂ϕj
k

∂xd

dx i, k = 1, . . . ,Np ; j = 1, . . . , J,
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(a) Approximation by zero order polyno-
mials

(b) Approximation by higher order poly-
nomials

Figure 4.1: The discontinuous Galerkin discretization of a one-dimensional function.
Higher order approximation with discontinuities, as compared to a zero-order approx-
imation.

are introduced. Furthermore, the insertion of numerical fluxes in discretization (4.6)
requires an approximation of traces on the element’s edges, i.e. a cell - face mass matrix
ME for each edge ej ⊂ ∂Kj, j = 1, . . . , J

M j,E
i,k = ∫

ej
ϕj
i (σ)ϕj

k (σ)nj
e dσ i, k = 1, . . . ,Np ; j = 1, . . . , J.

In case of a constant flow field u, the DG discretization of equation can expressed in
matrix form by

M ⋅ dΦ
dt

+ME ⋅Φ − D∑
d=1

ud S
d ⋅Φ = 0,

where Φ = {Φj,i (t) ∶ j = 1, . . . , J ; i = 1, . . . ,Np}. In principal, a simple monomial basis
may be employed for the above approximation. However, a monomial basis usually
yields ill conditioned matrices. For this reason, it is commonly orthogonalized, for
instance, by a Gram-Schmidt procedure, with respect to the inner product space
L2 (Ωh).
In this way, the mass matrix attains a diagonal form. Identity (4.2) represents the modal
approximation of the variables which is also employed in the present work. It should
be pointed out that alternatively, based on a set of Np local quadrature points

{xj
i ∶ i = 1, . . . ,Np} ,

one can also define a nodal approximation

Φh (t,x) = Np∑
i=1

Φ̂j,i (xj
i , t) lji (x) for x ∈Kj,
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(a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0

Figure 4.2: The rotation of Enzensberger’s Stern surface around its z-axis, represented
by a Level Set function. The DG method supports an easy discretization of the advec-
tion equation, a high resolution by fifth order polynomials and its numerical solution
on multiple cores.

where interpolating Lagrange polynomials {lji ∶ lji (xj
n) = δin, i, n = 1, . . . , J} are used to

express the polynomials in each j-th element. The modes of the modal approximation
can be transformed to nodal values by means of a generalized Vandermonde matrix.

In the discrete forms of the equation considered, any suitable time stepping procedure,
implicit or explicit, may be employed for treating the time derivative. Regarding linear
hyperbolic equations, the use of explicit time stepping schemes is uncritical, as the
DG discretization follows the characteristics of the equation. It should be mentioned
that in case of nonlinear hyperbolic equations, however, special attention needs to be
paid to both stability and accuracy of the method. Within this context, Runge-Kutta
DG methods that were devised by Cockburn and Shu (1989), Cockburn, Hou, and
Shu (1990) and Cockburn and Shu (1998b) have become well-established. Combining
total variation diminishing (TVD) Runge-Kutta solvers with local projection limiters,
the authors achieve convergence in regions where shocks occur while maintaining
accuracy in smooth regions. Finally, the discretization in time defines the system of
discrete equations which needs to be solved for the DG coefficients.

4.1.3 DG Methods for Second Order PDEs

Within a DG scheme, higher order PDEs are generally not as straightforward to
implement as in FEM. For further illustration, a diffusion problem, equipped with
mixed boundary conditions, is employed. The boundary of the domain ∂Ω is assumed
to partitioned into a region ∂ΩD, where a Dirichlet boundary condition is imposed, and
a region ∂ΩN , where a Neumann boundary condition holds, such that ∂Ω = ∂ΩD ∪∂ΩN .
The problem under consideration is given by
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∂c

∂t
−∇ ⋅ (A (x, t) ⋅ ∇c) = 0 in Ω × (0, T ) (4.8)

c∣∂ΩD
= cD and (A (x, t) ⋅ ∇c) ∣∂ΩN

= gN ,

c∣t=0 = c0 in Ω,

where the coefficient matrix A is always assumed to be symmetric and positive semidef-
inite and the functions gN ,cD are sufficiently smooth. The coefficients may be constant,
or variable in space and time.

In the simplest case of the Laplacian operator, i.e. where A = I , the diffusion equation
(4.8) was initially treated as a first order equation with central fluxes, where the vari-
able’s gradient was replaced by the differentiation matrix. Although being numerically
stable, this intuitive approach prove to be inconsistent, generating incorrect solutions,
as shown by Zhang and Shu (2003). A new strategy is pursued by Bassi and Rebay
(1997a) who treat equation (4.8) by breaking it down to a system of two first order
equations. To each of these equations, a weak Galerkin formulation with suitable
numerical fluxes is applied.

In other words, for each partial derivative, an auxiliary variable qih, i = 1, . . . ,D is
introduced, corresponding to a weak derivative in variational form. An approximate
solution (ch,qh) ∈ V k

h ×W k
h is then sought, where qh belongs to the vector valued finite

element space

W k
h = {w ∈ (L2 (Ωh))D ∶ v∣K ∈ P k(K)D, K ∈ Th} ,

and solves the system of equations

∫
Kj

∂ch
∂t

ϕj
i dx + ∫

Kj

qh ⋅ ∇ϕj
i dx − ∫

∂Kj

F ∗q (c+h, c−h,qh
+,qh

−)nj ϕj
i ds = 0 (4.9)

∫
Kj

qh ϕ
j
i dx + ∫

Kj

ch ⋅ ∇ϕj
i dx − ∫

∂Kj

F ∗c (c+h, c−h,qh
+,qh

−)nj ϕj
i ds = 0 (4.10)

∀ i = 1, . . . ,Np, j = 1, . . . , J

in a Galerkin sense.

The respective boundary conditions are included within the flux functions in an
adequate manner, implying they are imposed in a weak sense. The choice of the
most convenient fluxes constitutes the challenge of this formulation, as stability and
accuracy of the scheme highly depend on the fluxes. But also the structure of the
stiffness matrices is determined to a great extent by the fluxes, for instance, with
respect to symmetry or the number of non-zero entries. By now, a wide range of
methods has emerged for treating equation system (4.9) optimally, which is reviewed
by Castillo (2006) and Arnold, Brezzi, Cockburn, and Marini (2000).
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DG method F ∗c F ∗q
Bassi and Rebay (1997a) {{ch}} {{qh}}
LDG by Cockburn and Shu (1998a) {{ch}} −β�ch� {{qh}} − τ�ch� +β�qh�

Brezzi et al.(1999) {{ch}} {{qh}} − τ�ch�

IP by Douglas and Dupont (1976) {{ch}} {{∇ch}} − τ�ch�

Table 4.1: Selected DG methods for second order PDEs and their numerical fluxes

DG methods developed for second order PDEs are not only characterized by the
formulation of fluxes. Another important aspect is given by the fact that the auxiliary
variables are not necessarily maintained. Instead, they can be successively eliminated
from the system. As indicated, the numerical fluxes may depend on the traces of
both of the approximations ch and qh in the considered cell and its neighbouring
cell. Additionally, a dependency on ∇ch , i.e. on the derivatives of ch as specified
through the differentiation matrix, may be given. In fact, the fluxes exclusively depend
either on qh or on ∇ch. The latter case is not of interest in the present work, and is
generally combined with a definition of the fluxes that allow for an elimination of
the auxiliary variables. Examples of these methods are the Interior Penalty method
given by Douglas and Dupont (1976) or the approach proposed by Baumann and Oden
(1999a).

In the Local DG (LDG) scheme, originally presented by Cockburn and Shu (1998a), as
well as the method introduced by Brezzi, Manzini, Marini, Pietra, and Russo (1999),
numerical fluxes depend on qh only. As one characteristic feature, these schemes are
local in the sense that the approximation qh allows for a local resolution in terms of
ch (Cockburn and Shu, 1998a). This claim may be achieved by choosing the fluxes
in the second equation to depend only on the interior and exterior values of ch. The
aforementioned numerical fluxes are indicated in table 4.1 above. An extension of
LDG methods to diffusion problems with space-and time-dependent, symmetric and
positive definite tensors A is suggested by Cockburn and Dawson (2000), based on an
approach that has been presented by Arbogast, Wheeler, and Yotov (1997).

Cockburn and Dawson (2000) introduce an additional set of auxiliary variables,
θh = (θkh, k = 1, . . . ,D) representing the coefficient matrix applied to the computational
variable. Equations (4.9) are then replaced by the Galerkin formulation

∫
Kj

∂ch
∂t

ϕj
i dx + ∫

Kj

θh ⋅ ∇ϕj
i dx − ∫

∂Kj

F ∗θ (c+h, c−h,θh
+,θh

−)nj ϕj
i ds = 0

−∫
Kj

qh ϕ
j
i dx − ∫

Kj

ch ⋅ ∇ϕj
i dx + ∫

∂Kj

F ∗c (c+h, c−h,qh
+,qh

−)nj ϕj
i ds = 0

∫
Kj

θh ϕ
j
i dx = ∫

Kj

A(x, t) ⋅ qh ϕ
j
i dx ∀ i = 1, . . . ,Np, j = 1, . . . , J.
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4.2 Hamilton-Jacobi Equations

LDG methods have proved to be valuable for treating a wider range of PDEs that are
not in conserved form. One class of first order PDEs which are no conservation laws is
given by Hamilton-Jacobi equations. Hamilton-Jacobi equations involve a Hamiltonian
function H , which may be nonlinear and variable in space, and their general form is

∂Φ

∂t
+H ( ∂Φ

∂x1

, . . . ,
∂Φ

∂xD

, x1, . . . , xD) = 0 in Ω × (0, T ) , (4.11)

Φ∣t=0 = Φ0 in Ω.

Typical examples of Hamilton-Jacobi equations are the Burgers equation without
viscosity, or the Eikonal equation that can be employed in a pseudo-timestepping
procedure to re-initialize the Level Set function. As DG methods rely on a conserved
form of the equations in order to apply the discretization scheme, initial value problems
of type (4.11) require a suitable workaround.

Beyond, problems of type (4.11) often do not admit classical, i.e. sufficiently smooth so-
lutions, but rather general solutions which fulfill the Hamilton-Jacobi equation almost
everywhere. This class of solutions is Lipschitz continuous, but may include discon-
tinuous derivatives, independent of the smoothness of the initial value or boundary
conditions. In fact, generalized solutions of problem (4.11) are not necessarily unique,
requiring the numerical scheme to select the solutions that are relevant to the under-
lying problem. Fur this purpose, Crandall and Lions (1983) introduced the notion of
viscosity solutions. By now, two approaches for treating the above problem can be
destinguished.

First, Hu and Shu (1998) introduced a Runge Kutta DG discretization of the nonlinear
problem if the Hamiltonian depends only on the partial derivatives. Differentiation of
the equation yields a system of D conservation laws in the derivatives.

∂v

∂t
+∇H (v1, . . . , vD) = 0 in Ω × (0, T ) (4.12)

∇u = v in Ω × (0, T ) (4.13)

Here, the original variable is determined by a least squares procedure where the
integration constant remains to be specified. Later, this method was reinterpreted
by Li and Shu (2005) who suggested to refine the space of test and Ansatz functions
such that they are curl free in each element. Nevertheless, determining the practically
relevant solution is an intricate issue when following this approach.

The second idea, which goes back to Yan and Osher (2011), relies on a smart application
of the LDG approach. A pair of variables (pl, ql) is introduced for each of the derivatives
∂Φ/∂xl, l = 1, . . . ,D, while the Hamiltonian is replaced by a monotone, consistent
numerical flux function H∗. A system of 2D additional first order equations needs to
be solved to determine derivatives in the Galerkin sense, using an upwinding and a
downwinding scheme each.
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In summary, this leads to the following DG formulation of the above equation:

∫
Kj

∂Φh

∂t
ϕj
i dx + ∫

Kj

H∗ (p1, . . . , pD, q1, . . . , qD) ϕj
i dx = 0 (4.14)

∫
Kj

pl ϕ
j
i dx − ∫

Kj

Φh

∂ϕj
i

∂xl

dx + ∫
∂Kj

Φ+h n
j
l ϕ

j
i ds = 0

∫
Kj

ql ϕ
j
i dx − ∫

Kj

Φh

∂ϕj
i

∂xl

dx + ∫
∂Kj

Φ−h n
j
l ϕ

j
i ds = 0

for i = 1, . . . ,Np , l = 1, . . . ,D , j = 1, . . . , J

which is further discretized by a suitable time-stepping scheme. Within this context, the
DG approach does not only offer far more flexibility with respect to the Hamiltonian
H , which may be variable in space, non-convex, nonlinear. More importantly, as Yan
and Osher (2011) point out, this LDG approximation grasps complete information
of the partial derivatives, making it possible to catch their characteristics. In this
manner, the scheme accounts for points of discontinuity of the derivatives where
values of the up - and downwinding fluxes are usually distinct. As the authors claim,
for piecewise constant approximations, series of approximate solutions converge to a
viscosity solution of the problem.

4.3 Choice of Method

4.3.1 The DG Method for Fluid Applications

The numerical method designed in the present thesis for treating interfacial transport
is based on the DG Method. The newly developed software library is integrated in an
existing DG code, which is currently extended to two – phase flow problems. But for
which reasons has this method been chosen over others, such as the FVM?

This chapter has underlined that the DG approach has some remarkable advantages
over other numerical methods for solving purely convective, or convection dominated
problems. Being able to use an arbitrary polynomial degree for the approximation of
the problem, an arbitrarily high order of accuracy can be achieved. Thus, as Cockburn
(2004) points out, high order approximations of smooth solutions can be generated,
while high resolutions of non – smooth solutions can be obtained. Simultaneously,
complex geometries can be handled, as the discontinuous approximation allows for
elements of arbitrary shapes (Cockburn, 2004). Boundary values are easily incorpo-
rated in boundary fluxes of the DG formulation. Due to the local block structure of
operator matrices and block diagonal structure of the mass matrices, DG methods are
particularly suitable for parallelization. In times of emerging supercomputers and
multiple processor architectures, this is a very important issue. Benefitting from these
features, the DG method enjoys increasing popularity in various areas and recently, in
fluid mechanics.
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An existing number of other established numerical solvers that implement the DG
method has also been used for applications in fluid mechanics. The most well – known
is probably the nudg code by Hesthaven and Warburton (2008), based on the nodal
DG method and available both in Matlab and C++. The Fluid Dynamics group of
TU Darmstadt started to develop its own DG solver Bounded Support Spectral Solver
(BoSSS ) in 2009, pursuing an object oriented design in a five-layered library (Kummer,
2012). In contrast to other solvers, BoSSS was coded in C# for the .NET and mono
framework and hence, can be easily run on Linux/UNIX and supercomputers/clusters
(x86, x86 64, IA-64 architectures), requiring only a single compilation. The code
implementation is fully MPI parallel and a parallel database for storing application
data is provided. In addition, core routines for large linear systems have been written
for GPUs.

In the past decade, DG methods have been increasingly applied to single phase flows.
Following the development of methods for treating higher order PDEs, simulations
of the steady Stokes problem were presented, for instance, by Schötzau, Schwab, and
Toselli (2003) as well as Cockburn, Kanschat, Schötzau, and Schwab (2002). The treat-
ment of incompressible Navier – Stokes equations is provided, for example, by Cock-
burn, Kanschat, and Schötzau (2005), Shahbazi (2007), Girault, Rivière, and Wheeler
(2010) as well as Baumann and Oden (1999b). Compressible Navier – Stokes equations
are considered in Bassi and Rebay, 1997a, Baumann and Oden (1999b), Cockburn
and Shu (1997) and Bassi and Rebay (1997b). Applications range from simulations
of the Taylor vortex problem (Shahbazi, 2007), of laminar viscous flow around the
NACA0012 airfoil (Bassi and Rebay, 1997a), to mechanical heart valves simulations
(Shahbazi, 2007). An incorporation of free surfaces is attempted by Grooss and Hes-
thaven (2006) as well as Grooss (2005).

4.3.2 The Level Set Method for Representing Fluidic Interfaces

The method that is developed in the context of this work assumes an implicit represen-
tation of the interface by a zero-level isocontour of a Level Set function. The critical
reader may wonder why this may be a suitable choice when attempting to discretize
an equation on the interface itself.

It is a well-known fact that several numerical approaches for computing the fluid
interface are available. Fundamentally, a choice between an interface tracking approach,
where the interface is tracked through the trajectories of fluid particles, or an interface
capturing approach, where the interface is captured implicitly through a marker
function, has to be made.

Interface tracking approaches, most prominently, MAC and ALE methods, are gener-
ally more intricate in multi-flow applications where interface moves and deforms. In
particular, large interface deformations require tedious remeshing or re-distribution
of markers. Relevant geometric quantities, such as the surface normal or curvature,
need to be reconstructed with high effort. Additionally, topology changes, for instance,
disconnecting interfaces, impose severe limitations to these methods.
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In contrast, interface capturing methods, such as the VOF and Level Set method,
provide more flexibility with respect to interfacial dynamics and are very well able to
handle changing topologies, making them particularly attractive for fluid mechanical
problems. At the same time, their implementation is based on the underlying Eulerian
grid and they are claimed to be robust. VOF methods enjoy high popularity for their
excellent conservation properties. Nevertheless, they are usually only first or second
order accurate. For this reason, VOF methods appear to be less adequate in a DG
context where high order accuracy should be exploited. The Level Set approach, in
turn, supports high order interface resolution and the DG method is well-suited for
solving the hyperbolic differential equation, by which the smooth marker function is
advected. In fact, the method has been adopted by a number of other authors using
DG schemes, such as Owkes and Desjardins (2013), or Chen, Zhao, Yang, and Sai
(2011), or Marchandise, Geuzaine, Chevaugeon, and Remacle (2007), or Marchandise
and Remacle (2006).

The discretization of the Level Set equation, however, may lead to numerical dissi-
pation, that can be usually observed by a loss of mass in areas of high curvature or
areas which are underresolved. Re-initialization and mass loss are frequently men-
tioned as the major shortcomings of the Level Set approach. However, only little mass
loss was reported when employing the Level Set approach within the context of DG
discretizations.

The Level Set approach offers another imminent advantage. Although the interface is
represented only implicitly, several geometric quantities can be directly obtained. As
the gradient of the Level Set function is always perpendicular to its isocontours, the
surface normal is given by the normalized gradient,

n(s) = ∇Φ∥∇Φ∥ . (4.15)

4.3.3 An DG based Extension Approach for the Interfacial Transport
Equation

The objective of the present work is the development of a numerical solver for in-
terfacial transport that is based on a DG scheme. At the same time, an implicit
representation of the interface by means of a Level Set function should be supported
and maintained. Two distinct strategies for resolving all interfacial quantities and
approximating surface differential operators can now be pursued: either a Lagrangian
or an Eulerian approach.

In a Lagrangian approach, the interface itself yields the domain that is to be discretized.
In order to enable an explicit discretization of variables and operators on the iterface
itself, however, an explicit representation of the interface is necessary. When capturing
the interface implicitly, for instance, by means of a Level Set function, however, a
Lagrangian method requires to locate points on the interface in every single time step.
Then, a grid structure needs to be established based on these points, requiring a tedious
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sorting procedure. Especially in three-dimensional problems, a number of degenerate
cases has to be considered. Additionally, the number of interfacial nodes degree needs
to be sufficiently high such that the accuracy of the interfacial representation, achieved
by the implicit method, can be maintained. For these reasons, a Lagrangian approach
was not considered to be the most adequate choice for disretizing in the present context.

The second option is given by an Eulerian approach, where all computational quantities
are extended to the underlying computational domain and all differential operators
are embedded into the higher dimensional space. The interfacial transport problem
can be discretized based on the existent Eulerian grid, at the same time admitting an
implicit interface representation. In addition, the underlying numerical scheme can
be easily applied, making results for numerical analysis and order of convergence
available. An Eulerian approach has been applied in few other works, and is still
not fully developed, motivation its use also from a research perspective. Against this
background, an Eulerian approach is the focus of this thesis.

In summary, the algorithm consists of three steps. First, all quantities such as initial
or boundary values, need to be extended in a reasonable manner. In this way, the
interfacial surfactant concentration c(s) ∶S→ R, and the initial surfactant concentration,
respectively, are replaced by a variable c ∶ Σ→ R such that c∣S = c(s). Both for reasons of
efficiency and regularity, the extension is limited to a subset Σ of Ω only, where S ⊂ Σ.

Second, the embedding of the interfacial differential operators can be achieved by
identifying them with the tangential parts of standard differential operators, employing
the projection tensor (2.9). The surface gradient is then replaced by tangential part
of the standard gradient (2.10) and the surface divergence, respectively, by the trace
of the tangential gradient (2.11). Using a Level Set function for the capturing the
interface, the interfacial normal is obtained by the normalized Level Set gradient, i.e.
by identity (4.15). Alternatively, it is possible to apply standard differential operators,
if all quantities are extended by mapping each node to its closest point on the interface.
As a mapping to closest points is always orthogonal, the differential operators attain
only tangential parts in this case and an application of the tangential projection becomes
redundant. Closest points could be easily determined if the Level Set function attains
signed distance property. In the present context, however, this is not guaranteed and a
mapping to closest points is not considered. Finally, in a third step, the reformulated
equation is solved on Σ ⊂ Ω. Using the above identities, extended formulation of the
surfactant transport equation (2.46) is given by

∂c

∂t
+ (u ⋅ ∇) c + c tr (P s∇u) − α tr (P s∇(P s∇c)) = S in Σ, (4.16)

where the coefficient is either given by α = 1/Pe(s), or in the particular case of no
diffusion, α = 0.
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5 New Conservation Laws of Surface
Transport Equations

Until recently, surface, or interfacial differential equations have most commonly been
treated numerically by Lagrangian approaches. However, as pointed out in chapter
3, Lagrangian methods reach their limits when the interface moves or deforms. The
present work, in contrast, focusses on the development of a new Eulerian approach for
treating interfacial transport equations based on a DG method. An Eulerian approach
requires to re-write all equations in an extended form that embeds the interfacial quan-
tities in the underlying three-dimensional domain. In order to employ a DG scheme
properly, conserved forms of these extended surface transport equations are necessary.
Such conservation laws are constructed in the following chapter and have been devel-
oped by Kallendorf, Cheviakov, Oberlack, and Wang (2012). Equations of the interfacial
convection and convection-diffusion describing the transport of surfactants, and more
general interfacial balance laws, in the context of a three-dimensional incompressible
two-phase flow are considered. In both convection and convection-diffusion settings,
infinite families of conservation laws that essentially involve surfactant concentration
are derived, using the direct construction method. The obtained results are also appli-
cable to the construction of the general balance laws for other excess surface physical
quantities. The system of governing equations is subsequently rewritten in a fully
conserved form in the three-dimensional domain.

5.1 Motivation for Constructing Conservation Laws

The present work assumes an implicit representation of the interface by a Level Set
function. When the interface is implicitly defined, interfacial differential operators
may be given extrinsically based on the Eulerian grid. Here, an orthogonal projection,
as defined by (2.9), of the standard operators onto parts tangential to the interface is
used. An implicit representation of the interface, for instance, by means of a Level Set
function, yields the orthogonal projection without any difficulties, see also Dziuk and
Elliott (2008). In contrast to the local parametric form, this representation of interfacial
operators is always available.

The following analysis assumes a setting where numerically, the closed interface S

is represented by an implicit approach using a Level Set function Φ ∶ R3 → R , i.e.
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46 New Conservation Laws of Surface Transport Equations

S = {x ∈ Ω ∶ Φ(x) = 0}. The Level Set function Φ is transported by the flow field u

according to
Φt +u ⋅ ∇Φ = 0 in Ω, (5.1)

where the index t indicates the local time derivative ∂/∂t. Incompressibility of the flow
yields the continuity equation ∇ ⋅u = 0 in Ω, (5.2)

implying that the above equation can simply be given in the conserved form by

Φt +∇ ⋅ (uΦ) = 0 in Ω (5.3)

when multiplying (5.2) by Φ and adding equation (5.1). Identifying the interfacial
differential operators with interfacial projection of the differential operators to their
tangential parts, one obtains the extended convection-diffusion surfactant transport
equation

ct +u ⋅ ∇c + c tr (P s∇u) − α tr (P s∇(P s∇c)) = 0 in Ω, (5.4)

or more generally, the extended general interfacial balance law without the source
term (S = 0),

γ
(s)
t +u ⋅ ∇γ(s) + γ(s) tr (P s∇u) − α tr (P s∇(P sθ)) = 0 in Ω (5.5)

in the form to be investigated below.

A weak formulation of a corresponding Eulerian convection-diffusion equation is
provided by Dziuk and Elliott (2009). Still, this formulation is a major obstacle for
numerical methods that split up any differential terms by Gaussian product rule and
thus, require equations in divergence form. Discontinuous Galerkin methods are just
one example. Here, a projection of differential operators onto their tangential parts can
only be implemented by incorporating aggravating source terms.

Nevertheless, conservation laws can be constructed algorithmically using the di-
rect construction method described by Anco and Bluman (2002a),Anco and Bluman
(2002b),Bluman, Cheviakov, and Anco (2009) and Bluman, Cheviakov, and Anco (2010).
The direct construction method does not require the use of Noether’s theorem, and, in
fact, supersedes it for equations that do not admit a variational formulation (Bluman,
Cheviakov, and Anco, 2009; Bluman, Cheviakov, and Anco, 2010). The method has
been implemented in the symbolic software package GeM for Maple (Cheviakov, 2007)
and successfully used to compute conservation laws of many nonlinear models, such
as the equations of magnetohydrodynamics equilibria (Cheviakov and Anco, 2008)
and the G-equation for premixed combustion (Oberlack and Cheviakov, 2010). Many
other examples can be found in Bluman, Cheviakov, and Anco (2010).

Here, a conserved form of both the interfacial convection and the convection-diffusion
equations is provided, describing the transport of surfactants in incompressible two-
phase flow based on a Level Set formulation of the interface. The transport of sur-
factants is taken only as an illustrative example of a much wider class of interfacial
balance laws. The direct construction method of conservation laws is briefly outlined
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in Section 5.2. In Section 5.3, the direct construction method is used to derive infi-
nite families of conservation laws for the considered interfacial surfactant transport
equations, both in the convection and the convection-diffusion settings, as well as for
more general interfacial balance equations. The derived families of conservation laws
involve arbitrary functions. Using the obtained conservation laws for the surfactant
transport equation, the corresponding systems of partial differential equations are
written in fully conserved forms, which form the basis for the following numerical
implementation within a DG scheme. Here, the remaining equations of the system are
provided in a conserved form as they stand.

5.2 Construction of Conservation Laws using the Direct
Method

For a given system of partial differential equations, it is often important to find its
divergence-type conservation laws, i.e., expressions of the form

∂Θ

∂t
+∇ ⋅Ψ = 0 (5.6)

that hold on the solutions of the given system. In (5.6), the conservation law density
Θ and the spatial fluxes Ψi, i = 1,2,3, can depend on independent and dependent
variables of the given equations, as well as their partial derivatives, and possibly on
nonlocal (integral) quantities.

Conservation laws of the form (5.6) provide the mathematical expression of basic
conservation principles holding for a given model, such as conservation of mass,
energy, momentum, charge, etc.. They are also used for multiple other purposes,
such as existence, uniqueness, and global solution behavior analysis or linearisation
mappings. An important application, which is in the focus of the current contribution,
is the formulation of a given system of equations in a fully conserved form, which makes
the application of many modern numerical methods straightforward, as discussed
above.

An algorithmic way to seek local conservation laws (5.6) of a given system of PDEs
is provided by the direct construction method (Anco and Bluman, 2002a; Anco and
Bluman, 2002b; Bluman, Cheviakov, and Anco, 2009; Bluman, Cheviakov, and Anco,
2010). Existence of conservation laws is often associated with symmetries through the
famous Noether’s theorem. However, this only holds for equations that follow from
a variational principle, which is often not the case for equations arising in applica-
tions. Even when equations are variational, it turns out that Noether’s theorem is not
the optimal way for conservation law computations. On the other hand, the direct
construction method is practically efficient whether or not the given equations are
variational.
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48 New Conservation Laws of Surface Transport Equations

The direct construction method is now briefly overviewed in application to a general
PDE system

Rσ = 0, σ = 1, . . . ,N (5.7)

of N partial differential equations, with independent variables z = (z1, . . . , zn), one of
which can be time, and m dependent variables u = (u1, . . . , um). The intention is to find
conservation laws

∑
i=1,...,n

∂Ψi

∂zi
= 0 (5.8)

of the PDE system (5.7). Expressions (5.8) coincide with (5.6) when one of the indepen-
dent variables is time and others are spatial variables xi, i = 1, . . . ,D.

Consider an Euler operator with respect to each dependent variable uj , written as

Euj = ∂

∂uj
−Di

∂

∂uj
i

+⋯+ (−1)sDi1 . . .Dis

∂

∂uj
i1...is

+ . . . (5.9)

in terms of the total derivative operators

Di = ∂

∂zi
+ uj

i

∂

∂uj
+ uj

ii1

∂

∂uj
i1

+ uj
ii1i2

∂

∂uj
i1i2

+ . . . , (5.10)

where uj
i1...is

≡ ∂suj/∂zi1 . . . ∂zis and uj
ii1...is

≡ ∂s+1uj/∂zi∂zi1 . . . ∂zis are partial deriva-
tives of order s and s + 1, respectively.

The idea of the direct construction method is based on the fact that any divergence
expression is annihilated by an Euler operator with respect to each uj :

Euj ( ∑
i=1,...,n

∂Ψi

∂zi
) ≡ 0, j = 1, . . . ,m. (5.11)

Vice versa, if an expression is annihilated by all Euler operators, then it is a divergence
expression (5.8).

One seeks conservation laws as linear combinations of given equations Rσ with un-
known multipliers Λσ:

ΛσRσ ≡ ∑
i=1,...,n

∂Ψi

∂zi
= 0. (5.12)

The unknown multipliers may be chosen by a user to depend on independent and
dependent variables and perhaps partial derivatives of dependent variables up to
some prescribed order. Due to (5.11), the multipliers Λσ are found from the determining
equations Euj(ΛσRσ) = 0, j = 1, ...,m. (5.13)

After the linear determining equations (5.13) are solved and multipliers Λσ are found,
one proceeds to finding conservation law density and fluxes by means of (5.12). Meth-
ods of flux computation are reviewed in Cheviakov, 2010. In particular, one of these
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methods requires the knowledge of point symmetries (Bluman, Cheviakov, and Anco,
2010) of a given system of equations. For completeness, point symmetries of the
equations (5.1), (5.2), (5.4) considered in the current chapter are given in Appendix
A.1.

The direct construction method is implemented in the symbolic software package GeM
for Maple (Cheviakov, 2007) which has been used for the computations in the present
work.

In Section 5.3 below, the direct construction method is used to discover infinite families
of conservation laws of the system of equations (5.2), (5.3), and (5.4) and in particular,
to write all those equations in the conserved form. This is done for the cases of both
zero and nonzero diffusion coefficient α.

It is important to note that the majority of PDE systems arising in applications can be
written in a solved form with respect to some leading derivatives. It has been proven
that for such systems, all of their local conservation laws follow from some multipliers
through linear combinations (5.12) see, e.g. Bluman, Cheviakov, and Anco (2010). The
equations considered below, in both convection and convection-diffusion settings, can
be written in a solved form.

In seeking conservation laws, one naturally avoids trivial conservation laws like ∇×(⋅) ≡
0, or those whose fluxes and density vanish on solutions of the given system. For
details, see Bluman, Cheviakov, and Anco (2010).

5.3 Conserved Form of the Equations

In this section, it is assumed that sets of initial values and boundary conditions are
provided where necessary; they will not be stated explicitly. These conditions will
neither influence nor be influenced by the construction of the conserved form of the
considered differential equations.

5.3.1 Conservation Laws of Surfactant Transport without Diffusion

In the case of no surface diffusion (α = 0), the governing equations (5.2), (5.3), (5.4) in
the index notation can be written as

R1 = ∇ ⋅u = 0 in Ω, (5.14a)

R2 = Φt +∇(u ⋅Φ) = 0 in Ω, (5.14b)

R3 = ct +u ⋅ ∇c − c n(s) ⋅ (∇u ⋅n(s)) = 0 in Ω. (5.14c)
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50 New Conservation Laws of Surface Transport Equations

Equations (5.14a) and (5.14b) are in the conserved form as they stand. Now the
objective is to seek multipliers Λ1,Λ2,Λ3 of conservation laws for the equations (5.14)
such that the linear combination

Λ ⋅R = ∂Θ

∂t
+∇ ⋅Ψ = 0. (5.15)

yields a conservation law and the conserved density Θ involves the surfactant concen-
tration c. Consequently, one must take Λ3 ≠ 0.

The first step is to choose the dependence of the multipliers Λi for the direct construc-
tion method.

It can be shown that choosing multipliers independent of second-order derivatives
does not yield any solution of the equations determining the multipliers (5.13). Hence
to construct any conservation form (5.15) with Λ3 ≠ 0, a dependence of the multipliers
on the second-order spatial derivatives of physical quantities is necessary (Bluman,
Cheviakov, and Anco, 2010).

One is successful when using the multiplier ansatz

Λi = Λi(t,x,Φ, c,u, ∂Φ, ∂c, ∂u, ∂2Φ, ∂2c, ∂2u), (5.16)

where
∂Φ ≡ { ∂Φ

∂xk
, k = 1,2,3} , ∂2Φ ≡ { ∂2Φ

∂xj∂xk
, j, k = 1,2,3}

are sets of first-order and second-order derivatives of Φ, or c and components of u,
respectively. In (5.16), one may additionally include time derivatives of components of
u but does not need to include time derivatives of Φ and c, since the latter are defined
by spatial derivatives through the equations (5.14b), (5.14c).

Requiring that the conservation law (5.15) holds and solving the multiplier determining
equations (5.11), one obtains an infinite set of admitted conservation law multipliers
Λ1,Λ2,Λ3. Importantly, the multiplier Λ3 can be nonzero. It has a general form

Λ3 = ∥∇Φ∥ K(Φ, c ∥∇Φ∥), (5.17)

where K is an arbitrary sufficiently smooth function of its arguments. The form of the
multipliers Λ1, Λ2 is highly complicated; however, a rather simple explicit form of an
equivalent conservation law can be found. The following statement holds.
Principal Result 1. (a) The system of surfactant transport equations in the absence of

surface diffusion (5.14a),(5.14b) and (5.14c) admits an infinite family of conservation
laws given by

∂

∂t
G(Φ, c ∥∇Φ∥) + ∇ ⋅ (u G(Φ, c ∥∇Φ∥)) = 0 in Ω, (5.18)

where G is an arbitrary sufficiently smooth function of its arguments.
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(b) Each of the conservation laws (5.18) with G ≠ 0 is a conserved form of the dynamic
equation (5.14c) for the surfactant concentration.

(c) The conservation laws (5.18) can be written in the material form as

d

dt
G(Φ, c ∥∇Φ∥) = 0, (5.19)

where
d

dt
= ∂

∂t
+u ⋅ ∇

denotes the material derivative. This means that the quantity G is invariant to a fixed
particle.

(d) The arbitrary functions K and G are related by

K(Φ, c ∥∇Φ∥) = ∂G
∂ξ

(Φ, ξ)∣ξ=c∥∇Φ∥. (5.20)

Remark 1. To preserve the number of independent equations in the rewritten system,
as compared to the equation system (5.14), G has to be chosen as an invertible function
in its second argument. With this restriction, the surfactant transport equation without
diffusion, (5.14c), can be replaced by the conserved form (5.18).

Statement (b) follows from the observation that, since Λ3 given by (5.17) is generally
nonzero, the linear combination (5.15) essentially involves the surfactant transport
equation (5.14c). Statement (c) is a direct consequence of the incompressibility condi-
tion (5.2). This indicates that in the pure convection case, G(Φ, c ∥∇Φ∥) is a material
conservation quantity.

The statement (a) follows from the direct construction method. A straightforward way
to verify that (5.18) holds on solutions of (5.14) is as follows. Denote the differential
consequences of equation R2 = 0 (5.14b) with respect to spatial coordinates xj by

R2
j = ∂

∂xj
Φt + ∂

∂xj
(u ⋅ ∇Φ) = 0, j = 1,2,3, (5.21)

and denote G(Φ, c ∥∇Φ∥) = G̃(Φ, c2 ∥∇Φ∥2) = G̃ for simplicity of notation. Then a direct
computation yields

∂

∂t
(G(Φ, c ∥∇Φ∥)) + ∇ ⋅ (uG(Φ, c ∥∇Φ∥))

≡ ∂

∂t
G̃ + ∇ ⋅ (u G̃)

= {G̃ −ΦD1G̃ − 2c2 ∥∇Φ∥2D2G̃} R1 + {D1G̃} R2

+ {2c ∥∇Φ∥2D2G̃} R3 + 3∑
j=0

{2c2D2G̃ ∂Φ

∂xj
} R2

j

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



52 New Conservation Laws of Surface Transport Equations

where D1G̃, D2G̃ denote the partial derivatives of G̃ by its first and second argument
respectively. Consequently, the divergence expression (5.18) is indeed a linear combi-
nation of the equations R1 = 0, R2 = 0, R3 = 0 (5.14) and the differential consequences
R2

j = 0 (5.21) with multipliers given in the curly brackets, and the Principal Result 1 is
fully established.
Remark 2. In the case where G(Φ, c ∥∇Φ∥) = 1, formula (5.18) reduces to the incom-
pressibility condition (5.14a). Simplest concentration-dependent conservation laws
in the family (5.18) can be obtained, for example, by setting G(Φ, c ∥∇Φ∥) = (c ∥∇Φ∥)p,
p ∈ N, and are given by

∂

∂t
[(c ∥∇Φ∥)p] + ∇ ⋅ [u (c ∥∇Φ∥)p] = 0. (5.22)

In particular, when p is an even number, the density and the fluxes in (5.22) do not
involve square roots which are due to ∣∇Φ∣.
Another possible case of interest for applications is the separated form G(Φ, c∣∇Φ∣) =
F1(Φ)F2(c ∥∇Φ∥), where F1 and F2 are suitable arbitrary functions.

5.3.2 Conservation Laws of Surfactant Transport including Diffusion

In the presence of diffusion, i.e.α = 1/Pe, the extended surfactant dynamic equations
take the form

R̃1 = ∇ ⋅u = 0 in Ω, (5.23a)

R̃2 = Φt +∇ ⋅ (u ⋅Φ) = 0 in Ω, (5.23b)

R̃3 = ct +u ⋅ ∇c − cn(s) ⋅ (∇u ⋅n(s)) − 1

Pe
tr (P s∇(P s∇c)) = 0 in Ω. (5.23c)

Similar to the purely convective case, for the system (5.23), there exist no conservation
laws where the multipliers depend only on independent and dependent variables
as well as first order derivatives of the dependent variables. Hence, no c-dependent
conservation law can be constructed (Cheviakov, 2007).

If the multiplier dependence is further generalized to include second order derivatives
of Φ, then one finds an infinite family of sets of local conservation law multipliers
corresponding to c-dependent conservation laws. Such multipliers are given by

Λ1 = ΦF(Φ) ∥∇Φ∥−1 ∑
i=1,...,n

∑
j=1,...,n

( ∂

∂xj
(c ∂Φ

∂xj
) − cninj

∂2Φ

∂xi∂xj
) ,

Λ2 = −F(Φ) ∥∇Φ∥−1 ∑
i=1,...,n

∑
j=1,...,n

( ∂

∂xj
(c ∂Φ

∂xj
) − cninj

∂2Φ

∂xi∂xj
) ,

Λ3 = F(Φ) ∥∇Φ∥ , (5.24)

where F is an arbitrary sufficiently smooth function. The conservation law density Θ

and the fluxes Ψi are again found directly using the flux determining equation (5.15).
The following result holds.
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Principal Result 2. (a) The system of surfactant transport equations (5.23a), (5.23b) and
(5.23c) in the case of a nonzero surface diffusion (α ≠ 0) admits an infinite family of
conservation laws given by

∂

∂t
(cF(Φ) ∥∇Φ∥) + ∇ ⋅ (AF(Φ) ∥∇Φ∥) = 0 in Ω, (5.25)

where
A = c u − 1

Pe
P (s)∇c (5.26)

and F is an arbitrary sufficiently smooth function of its argument, cf. (5.24).

(b) Each of the conservation laws (5.25) with F ≠ 0 is a conserved form of the dynamic
equation (5.23c) for the surfactant concentration. In this case (5.23c) can be replaced by
(5.25).

The simplest concentration-dependent conservation law of the family (5.25) is obtained
by setting F(Φ) = 1, and has the form

∂

∂t
(c ∥∇Φ∥) + ∇ ⋅ (u c ∥∇Φ∥) = 1

Pe
∇ ⋅ (∥∇Φ∥ P (s)∇c) in Ω. (5.27)

Remark 3. As it is expected, one can observe that when α = 0, formulas (5.25) collapse
to a subfamily of conservation laws (5.18) for the no-diffusion case, with

G(Φ, c ∥∇Φ∥) = F(Φ)c ∥∇Φ∥ .
Remark 4. Conservation laws (5.25), as well as conservation laws (5.18) for the no-
diffusion case, are dimensionally consistent for any choice of dimension units for the
arbitrary functions F and G.
Remark 5. The extended surface excess concentration scaled by the surface area ele-
ment is a conserved quantity of the interfacial transport equation, i. e. the extended
concentration variable is conserved on each level set isocontour. This fact also implies
that the speed of interfacial diffusion depends on the streching of the interface.

The surface area element of a parametrisable (and sufficiently smooth) interface is
given by the norm of its normal vector. When the interface is embedded by the level
set function, its surface normal is given by the gradient of the level set variable, i.e.
its surface area element is ∥∇Φ∥. Therefore, the extended surface excess concentration
scaled by the surface area element is given by the expression c ∥Φ∥, which is the
conserved quantity of the respective equations.

5.3.3 Conservation Laws of General Interfacial Balance Laws

Conserved forms of the surfactant transport equation (5.4) in the convection-diffusion
setting were constructed in Section 5.3.2 above. The equation (5.4) follows from a
surface extension of the Fick’s law, i.e., identity (2.40). However, it is easy to see that
neither the obtained multipliers (5.24), nor the conservation laws (5.25) themselves
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depend on the choice of the surface diffusion law. This allows for the following
generalization.

Let γ(s) be some excess surface physical quantity on the surface S whose non-convective
flux can be expressed as the surface projection of an arbitrary vector in the form
φ(s) = P s ⋅ θ. The balance law for γ(s) in the absence of the source term is given by (5.5),
which is almost identical to the surfactant transport equation (5.4), (5.23c). It follows
that the analysis of Section 5.3.2 can be carried over to a system of equations (5.23a),
(5.23b), (5.5), to obtain an infinite family of conservation laws

∂

∂t
(γ(s)Fγ(Φ) ∥∇Φ∥) + ∇ ⋅ (Aγ Fγ(Φ) ∥∇Φ∥) = 0, (5.28)

where
Aγ = γ(s)u +φ(s) = γ(s)u +P sθ, i = 1,2,3, (5.29)

for any excess surface physical quantity γ(s). In (5.28), Fγ is an arbitrary sufficiently
smooth function.

5.3.4 Conservation Laws in the Presence of Source Terms

So far, only surfactant transport equations and balance laws that do not involve source
terms have been considered. In many cases the source terms may occur, e.g. for the
surfactant transport equation when adsorption or desorption from both the adjoining
bulk phases to the interface or chemical production on the interface take place.

Generally, when a transport equation contains a source term, it may not be written in a
fully conserved form, except for some special cases. However, using the previously
derived conserved forms for the no-source case, one can rewrite a transport equation
with sources in a more compact form. As an example, consider a surfactant transport
equation with sources. It can be written in the form

R3∗ = R̃3 − S(c,x, t)= ct + c tr (P s∇u) − α tr(P s∇(P s∇c) − S(c,x, t)= 0 in Ω. (5.30)

A linear combination of (5.23a), (5.23b) and the above equation (5.30) by the multipliers
(5.24) yields

Λ1R̃1 +Λ2R̃2 +Λ3R3∗

= Λ1R̃1 +Λ2R̃2 +Λ3R̃3 −Λ3S(c,x, t)
= ∂

∂t
(cF(Φ) ∥∇Φ∥) + ∇ ⋅ (AF(Φ) ∥∇Φ∥) −Λ3S(c,x, t) = 0.
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Consequently, the interfacial convection-diffusion equation with sources can be rewrit-
ten as

∂

∂t
(cF(Φ) ∥∇Φ∥) + ∇(AF(Φ) ∥∇Φ∥) = F(Φ) ∥∇Φ∥S(c,x, t) in Ω.

Similarly, the purely convective surfactant dynamics equation can be rewritten as

∂

∂t
G(Φ, c ∥∇Φ∥) + ∇ ⋅ (uG(Φ, c ∥∇Φ∥))

= ∥∇Φ∥ ∂G
∂ξ

(Φ, ξ)∣ξ=c∥∇Φ∥(Φ, c ∥∇Φ∥)S(c,x, t) in Ω.
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6 Exact Solutions to the Interfacial
Surfactant Transport Equation

Sets of exact solutions to interfacial convection-diffusion equations, which describe
the interfacial transport of insoluble surfactants in a two-phase flow, are derived in
the following chapter. The results presented have been achieved by Kallendorf, Fath,
Oberlack, and Wang (2015) in collaboration. The investigated model is based on a
Stokes flow setting where a spherical shaped inner phase is dispersed in an outer phase.
Neglecting the influence of surface tension, general exact solutions to the surfactant
conservation law on the spherical surface with both convective and diffusive terms
are provided by means of Heun’s confluent function. For the steady case, it is shown
that these solutions collapse to a simple exponential form. Furthermore, for the purely
diffusive problem, exact solutions are constructed using Legendre polynomials. The
present analytical study can be considered as a first step towards a more general
investigation in which the Marangoni number is small but the Marangoni effect may
be not negligible. For such cases, perturbative solutions in small Marangoni number
or small inverse Biot number (rapid exchange of surfactants to the bulk phases) up
to a certain order may be obtained, in which the analytical solutions obtained in the
present study is employed as the base state.

6.1 Motivation

Existing research on exact solutions to interfacial transport problems is still sparse
and mainly focussed on the transport without the diffusive part. The numerical
treatment of interfacial surfactant transport, however, motivates the development of
exact solutions to the convection-diffusion problem, primarily as a mean to validate
the numerical method.

A setting of a Stokes flow past a bubble or drop is commonly assumed as the basis
when investigating interfacial transport analytically, for admitting exact solutions to
the flow problem. In case the Peclet number is high, interfacial diffusion may be
neglected and the interfacial equation reduces to a purely convective problem. For
this case, stationary solutions of the surfactant transport for a Stokes flow past bubbles
or drops have been analytically derived by Sadhal and Johnson (1983), Johnson and
Sadhal (1983) and Harper (1982). This setting is commonly referred to as the stagnant
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58 Exact Solutions to the Interfacial Surfactant Transport Equation

cap model. Here, the adsorbed surfactants are swept to the rear end of the drop or
bubble. A diffusion boundary-layer theory for the distribution of surfactant within the
bulks around the stagnant cap bubble is presented by Harper (2004) and Harper (1974),
where the surface excess is assumed to be related linearly to the bulk concentration
and provides the boundary condition to the transport problem in the bulks. Wang,
Papageorgiu, and Maldarelli (1999) investigate convection-diffusion in the bulk phases
along with the convective transport at the interface as well as the Marangoni force
created by the surfactants present. Furthermore, the effect of insoluble surfactants
on small drop deformations in linear flows is theoretically derived by Vlahovska,
Bławzdziewicz, and Loewenberg (2009). All these analytical solutions are obtained
with various simplifications and are available only for steady cases. There exists no
exact analytical solution of the unsteady surfactant transport equation including the
effects of both convection and diffusion.

In the present chapter, steady and special unsteady analytical solutions of interfacial
surfactant transport on a spherical droplet in a Stokes flow are provided, where the
deformation of the droplet surface and the dependence of the surface tension on the
surfactant concentration are neglected, corresponding to the assumptions of both the
small capillary number and the small Marangoni number, respectively. This chapter is
structered as follows. The governing equations that describe the Stokes flow around a
spherical droplet, and the interfacial transport of insoluble surfactants on a spherical
surface, are presented in section 6.2. In section 6.3, solutions to the general interfacial
transport problem are derived in subsection 6.3.1, and in particular, its steady state
solution, is discussed in subsection 6.3.2. In addition, in subsection 6.3.3, unsteady
solutions to the initial value problem, which is dominated by diffusion, are constructed.
In section 6.4, the results are summarized and discussed.

The present analytical study can be considered as a first step towards a more general
investigation in which the Marangoni number is small but the Marangoni effect may
be not negligible. For such cases, perturbative solutions in small Marangoni number
or small inverse Biot number (rapid exchange of surfactants to the bulk phases) up
to a certain order may be obtained, in which the analytical solutions obtained in the
present study is employed as the base state.

6.2 Governing Equations

The present chapter is focussed on an axisymmetric fluid flow problem with a uniform
inflow velocity U along the z-axis. A setting with two immiscible incompressible
phases is considered, where a droplet shaped inner phase B(i) is dispersed in an outer
phase B(o) with different dynamic viscosities ηi, and ηo, respectively. The droplet
is assumed to maintain a rigid spherical shape of radius r0. It corresponds to the
assumption of the small capillary number. The flow is dominated by the viscous forces
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such that inertia can be neglected and additionally, it is assumed to be stationary.
Consequently, the flow field is governed by the Stokes equations

η(k)Δu(k) = ∇p(k) and ∇ ⋅u(k) = 0 (6.1)

in each of the phases B(k) with k = i, o, where u(k) and p(k) are the velocity and
the pressure of phase k. In a spherical coordinate system (ϕ, θ, r), the problem is
independent of ϕ due to the symmetry with respect to the z-axis, θ = 0,Π. A stream
function Ψ(k) is introduced that is valid in both of the phases k = i, o. It yields the
divergence - free velocity field by the identities

u
(k)
ϕ = 1

r2 sin(θ) ∂Ψ
(k)

∂θ
and u

(k)
r = − 1

r sin(θ) ∂Ψ
(k)

∂r
for k = i, o.

Applying the curl operator to the moment equation in (6.1) reduces the problem to
requiring

0 = ∇ × (∇ × (∇ ×u(k))) = 1

r sin(θ)L2 (L2Ψ(k))eϕ,

where the operator L2Ψ(k) is defined by

L2Ψ ∶= ∂2Ψ(k)
∂r2

+ sin(θ)
r2

∂

∂θ
( 1

sin(θ) ∂Ψ
(k)

∂θ
) .

Thus, the moment equation reduces to the equation L4Ψ(k) = 0 which is solved by
choosing Ψ(k) = rn sin2(θ), n ∈ N. The remaining constants are determined by requiring
regularity, the uniform inflow condition far distant from the sphere and further condi-
tions on the spherical interface S that separates the phases, including the continuity of
the tangential velocity field as well as vanishing radial components

u
(o)
r (r0) = u

(i)
r (r0) = 0 and �uθ(r0)� = 0

and the continuity of the stress,

ηo
∂uo

r

∂r
∣
r=r0

= ηi
∂ui

r

∂r
∣
r=r0

and

ηo (r ∂

∂r
(uo

θ

r
) + 1

r

∂uo
r

∂θ
)∣

r=r0
= ηi (r ∂

∂r
(ui

θ

r
) + 1

r

∂ui
r

∂θ
)∣

r=r0
,

where the Marangoni effect is neglected, corresponding to the assumption of the small
Marangoni number. In this manner, the well-known solution for the velocity field, also
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Figure 6.1: Stokes flow around a spherical droplet.

known as the Hadamard-Rybczynski solution (Hadamard, 1911; Rybczynski, 1911), is
obtained, in the outer phase

uo
r = cos (θ)U ⎛⎜⎜⎜⎝−

r0
2

2 + 3
ηi

ηo

1 + ηi

ηo

1

r
+ 1 + r30

2

ηi

ηo

1 + ηi

ηo

1

r3

⎞⎟⎟⎟⎠
uo
θ = − sin (θ)U

⎛⎜⎜⎜⎝−
r0
4

2 + 3
ηi

ηo

1 + ηi

ηo

1

r
+ 1 − r30

4

ηi

ηo

1 + ηi

ηo

1

r3

⎞⎟⎟⎟⎠ , (6.2)

and the inner phase

ui
r = cos (θ)U ⎛⎜⎜⎜⎝−

1

2

1

1 + ηi

ηo

+ 1

2r20

1

1 + ηi

ηo

r2
⎞⎟⎟⎟⎠

ui
θ = − sin (θ)U

⎛⎜⎜⎜⎝−
1

2

1

1 + ηi

ηo

+ 1

r20

1

1 + ηi

ηo

r2
⎞⎟⎟⎟⎠ . (6.3)

For illustration, the streamlines of the solution are depicted in figure 6.1.

In addition, the interfacial convection-diffusion equation of surfactant excess concen-
tration c(s) will be investigated in the form

∂c(s)
∂t

+u ⋅ ∇c(s) + c(s)∇(s) ⋅ut + c(s)V (s)∇(s) ⋅n(s) −D(s)∇(s) ⋅ ∇(s)c(s) = 0, (6.4)

with constant diffusion coefficient D(s) and normal velocity of the interface V (s) = u⋅n(s)
and tangential velocity ut.
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Here, the investigation of the interfacial transport of surfactant is restricted to ap-
plications in the absence of adsorption and desorption from both of the adjoining
bulks to the interface. The differential operator ∇(s) denotes the surface gradient. In a
curvilinear coordinate system, spanned by the vectors

eϕ =
⎛⎜⎜⎜⎜⎝
− sin(ϕ)
cos(ϕ)

0

⎞⎟⎟⎟⎟⎠
and eθ =

⎛⎜⎜⎜⎜⎝
cos(θ) cos(ϕ)
cos(θ) sin(ϕ)

− sin(θ)
⎞⎟⎟⎟⎟⎠

with respect to spherical surface parameters (ϕ, θ), the surface gradient of a scalar
function c is given by

∇(s)c = 1

r sin(θ) ∂c∂ϕeϕ + 1

r

∂c

∂θ
eθ,

while the surface divergence of a tangential vector field ut may be expressed by

∇(s) ⋅ut = 1

r2 sin(θ) ∂(uϕ r)
∂ϕ

+ 1

r2 sin(θ) ∂(uθ r sin(θ))
∂θ

.

Applying these identities and inserting the specification of the flow field on the inter-
face for r = r0 from (6.2) and (6.3), i.e.

us
θ = ui

θ(r0) = uo
θ(r0) = − U

2 (1 + ηi

ηo) sin (θ) and us
ϕ = 0, (6.5)

equation (6.4) can be rewritten as

∂cs

∂t
− sin (θ)
2 (1 + ηi

ηo)U
∂cs

∂θ
− U cos (θ)
(1 + ηi

ηo)
cs

r0

=D(s) ( 1

r0 tan (θ) ∂c
s

∂θ
+ ∂2cs

∂θ2
+ 1

r0 sin
2 (θ) ∂

2cs

∂ϕ2
) . (6.6)

The velocity U , radius r0, and a surface reference concentration cs∞ are employed to
non-dimensionalize equation (6.6) by introducing c̃s = cs/cs∞ as well as t̃ = t U/r0 . In
this manner, one obtains

Pe(s) ((1 + ηi

ηo
) ∂c̃s

∂t̃
− sin(θ)

2

∂c̃s

∂θ
− cos(θ)c̃s) = 1

tan(θ) ∂c̃
s

∂θ
+ ∂2c̃s

∂θ2
+ 1

sin2 (θ) ∂
2c̃s

∂ϕ2
, (6.7)

where the Péclet number is defined by

Pe(s) = Ur0

D(s) (1 + ηi

ηo) .
In the following, all tildes denoting the non-dimensional quantities are omitted and
the surfactant transport equation in non-dimensional form is used.
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6.3 Exact Solutions

In this section, three cases are investigated to obtain the corresponding exact solutions
of the differential equation (6.7).

6.3.1 Unsteady Solution

Separation of variables yields a solution of the unsteady transport equation (6.7).
Assuming that the solution takes the form

cs(θ,ϕ, t) = Σk,lSk,l(θ)Tk(t)Wl(ϕ), (6.8)

one obtains a system of ordinary differential equations for an enumerable set of
predefined λk and μk ∈ R, k ∈ N:

dTk(t)
dt

= − λ2
k

Pe(s) (1 + ηi

ηo)Tk(t), (6.9)

d2Wl(ϕ)
dϕ2

= −μ2
lWl(ϕ), (6.10)

d2Sk,l(θ)
dθ2

= ( μ2
k

sin2(θ) − (λ2
k +Pe(s) cos(θ)))Sk,l(θ) (6.11)

− (Pe(s) sin(θ)
2

+ 1

tan(θ)) dSk,l(θ)
dθ

. (6.12)

Obviously, the solution of Tk(t) of equation (6.9) is given by

Tk(t) = exp
⎛⎜⎝−

λ2
k

Pe(s) (1 + ηi

ηo)t
⎞⎟⎠ , (6.13)

and
Wl(ϕ) = B1

l sin(μl ϕ) +B2
l cos(μl ϕ) (6.14)

is the solution of equation (6.10) with suitable constants B1
l and B2

l . More specifically,
the set of functions Wl forms a basis of the continuous, periodic functions in [0,2π] for
integers μl = l ∈ N.

In order to transform the trigonometrical coefficients into polynomial coefficients, we
apply the transformations Sk,l(θ) = Ŝk,l(s) ⋅ exp(Pe(s) /2 cos(θ)) and s = 1/2 cos(θ) + 1/2.
Hence, (6.12) reduces to the following equation:

d2Ŝk,l

ds2
+ Pe(s) s2 + s(2 −Pe(s)) − 1

s(s − 1) dŜk,l

ds
− ( λ2

k

s(s − 1) + l2

4s2(s − 1)2) Ŝk,l = 0. (6.15)
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The computer algebra system Maple17 (Waterloo Maple Inc. 2013) yields the solution

Ŝk,l(s) = C1
k,l (s(s − 1)) l

2 exp(Pe(s) s)HeunC(Pe(s), l, l,−Pe(s),−λ2
k + l2

2
+ Pe(s)

2
, s)

+C2
k,l s

− l
2 (s − 1) l

2 exp(Pe(s) s)HeunC(Pe(s),−l, l,−Pe(s),−λ2
k + l2

2
+ Pe(s)

2
, s)
(6.16)

to equation (6.15), where HeunC denotes Heun’s confluent function , see also Olver,
Lozier, Boisvert, and Clark (2010).

Within this context, the general Heun’s confluent function (Olver, Lozier, Boisvert, and
Clark, 2010) HeunC(a1, a2, a3, a4, a5, s) can be given by a series

HeunC(a1, a2, a3, a4, a5, s) = ∞∑
n=0

vn(a1, a2, a3, a4, a5)sn,
where the coefficients are defined recursively by the equations

Anvn = Bnvn−1 +Cnvn−2, n = 1,2, . . . (6.17)

with

An = 1 + a2
n
,

Bn = 1 + a2 + a3 − 1 − a1
n

+ a5 − (−a1 + a2 + a3) /2 + a1a2/2 + a2a3/2
n2

,

Cn = a1
n2

(a4
a1

+ a2 + a3
2

+ n − 1) ,
and v−1 = 0, v0 = 1, and its radius of convergence for s equals one.

With respect to the solution under consideration, the short denotation

HeunCk,l (θ) ≡ HeunC (Pe(s), l, l,−Pe(s),−λ2
k + l2/2 +Pe(s) /2, s)

is introduced for Heun’s confluent function with the coefficients

An = 1 + l

n
,

Bn = 1 + 2 l −Pe(s) −1
n

+ −Pe(s) λk
2 + l2 +Pe(s) −l + 1/2 lPe(s)

n2
, (6.18)

Cn = Pe(s) (−2 + l + n)
n2

.

The remaining constants of solution (6.16) need to be specified from the following
available conditions. First, one infers C2

k,l = 0, k, l ∈ N, from the smoothness condition

dS(s)
ds

∣
θ=0,θ=π

= 0. (6.19)
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Second, the remaining constants for each λk and μl, k, l ∈ N, are provided either by the
initial distribution or by the conservation of mass

∫
∂A

cs0(θ,ϕ)dA = ∫
∂A

cs(t, θ, ϕ)dA, (6.20)

where cs0(θ,ϕ) is the initial mass distribution.

It is noted that for an axisymmetric initial distribution, i.e. in the case of l = 0, the
solution (6.16) is no longer valid, as both parts are linearly dependent. In this case, the
solution of (6.15) takes the form

Ŝk(θ) = C1
k HeunCk,0 (θ) +C2

k HeunCk,0 (θ)∫ θ exp(−Pe(s)

2 cos(σ))
HeunCk,0 (σ)2 (sin(σ)) dσ.

Nevertheless, due to the smoothness condition (6.19), the second constant C2
k must be

zero and this solution collapses to an identical set of functions as (6.16) for the case of
l = 0.

It is important to note that the given set of Heun functions, however, does not yield
sets of finite polynomial series allowing for a partitioning of arbitrary initial values.
Nevertheless, initial value problems can be designed when restricting initial distribu-
tions to the form cs0(θ) = Σk,lck,lSk(θ)Wl(ϕ) where the functions Sk and Wl are defined
as above, yielding

cs(θ, t) = ∑k,l ck,l (− sin2(θ)4 ) l
2
Wl (ϕ)HeunCk,l(θ) exp (Pe(s) cos(θ)+1

2 ) exp⎛⎝ −λ2
kt

Pe(s)(1+ ηi

ηo
)
⎞⎠ . (6.21)

Consider, for instance, an axisymmetric problem with initial distribution

cs0(θ) = exp(Pe(s)
2

cos(θ))−1
2
exp(Pe(s)

2
cos(θ))HeunC(Pe(s),0,0,−Pe(s),−4 + Pe(s)

2
,
1

2
cos(θ) + 1

2
) .

Then the solution is given by the function

cs(θ, t) = exp(Pe(s)
2

cos(θ))
− 1

2
exp

⎛⎜⎝
−4t

Pe(s) (1 + ηi

ηo) +
Pe(s)

2
cos(θ)⎞⎟⎠HeunC(Pe(s),0,0,−Pe(s),−4 + Pe(s)

2
,
1

2
cos(θ) + 1

2
) ,

which is illustrated in figure 6.2.
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(a) An unsteady problem
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Figure 6.2: An unsteady problem and the steady state solution for Pe(s) = 0.5. In the
unsteady case, the surfactant accumulates at the rear end of the droplet. In the steady
state, which is depicted on the right, the maximum of surfactant accumulates at the
rear end of the droplet, while a minimum is attained at the inlet.

6.3.2 Steady solution

Due to the axi-symmetry of the flow field, the steady solution of equation (6.7) is also
axisymmetric. For this case, its solution can be expressed as a more simplistic function.
For this purpose, we consider the steady and axisymmetric case of equation (6.7),

d2cs

dθ2
+ 1

tan (θ) dc
s

dθ
+Pe(s) sin (θ)

2

dcs

dθ
+Pe(s) cos (θ) cs = 0,

which reduces, after integration, to the first order ODE:

sin (θ) dcs
ds

+ Pe(s)

2
sin2 (θ) cs = C, (6.22)

with an unknown constant C. The general solution of the above equation (6.22),
composed of the general solution of the homogeneous equation and a particular
solution of the inhomogeneous equation, is given by

cs(θ) = C1 exp(Pe(s)
2

cos (θ)) +C exp(Pe(s)
2

cos (θ))∫ θ

0

exp (−Pe(s)

2 cos (σ))
sin (σ) dσ .
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Again, due to the smoothness condition (6.19), the constant C must be zero. The
remaining coefficient C1 can be obtained, e.g. from the total dimensionless initial
concentration cs0 due to mass conservation on the surface:

ms = 2π r20 ∫ π

0
cs0(θ) sin(θ) dθ = ∫ 2π

0
∫ π

0
C1 exp(Pe(s)

2
cos (s)) r20 sin(θ)dθdϕ

= C1 2π r20 ∫ π

0
exp(Pe(s)

2
cos (θ)) sin(θ)dθdϕ

= C1 r
2
0

π

Pe(s)
(exp(Pe(s)

2
) − exp(−Pe(s)

2
)) ,

which yields

C1 = ms Pe(s)

2π r20 sinh(Pe(s) /2) . (6.23)

Thus, with a given initial mass ms, the stationary solution to the interfacial surfactant
transport equation is

cs(θ) = ms Pe(s)

2π r20 sinh(Pe(s) /2) exp(Pe
(s)

2
cos (θ)) . (6.24)

This distribution has been mentioned by Blyth and Pozrikidis, 2004b without any
theoretical derivation. An exemplary surfactant distribution in the steady state is
depicted in figure 6.2b.
Remark 6. Solution (6.24) coincides with the general unsteady solution (6.21) of the
evolution equation (6.7) for the axisymmetric case l = 0 and for the mode k = 0, λ0 = 0, as
for this mode, HeunC0 (θ) ≡ 1. This can be easily proven using the expansion formula.
Following identities (6.18), for λ0 = 0 one has An = 1,Bn = 1−(1+Pe(s))/n+Pe(s) /n2, Cn =
Pe(s)(n − 2)/n2. By means of (6.17) and v−1 = 0 and v0 = 1, these equations yield

v1 = (1 − (1 +Pe(s)) +Pe(s))1 + 0 = 0

v2 = 0 + Pe(s)(2 − 2)
n2

1 = 0,

. . .

vi = 0, i > 0.

Thus, if the general unsteady solution (6.21) includes the mode λ0 = 0, it converges to
the steady solution for t→∞.

6.3.3 Solution of unsteady surfactant transportation without con-
vection

In this section, a setting with an extremely slow inflow or high diffusivity of the
surfactant is investigated, such that the diffusion is dominant and the convective term
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is negligible. Without convection, the unsteady problem can be completely solved by a
combination of polynomials. In particular, any initial distribution can be decomposed
by polynomials and an unsteady concentration may be deduced. Within this context,
equation (6.7) reduces to

Pe(s) (1 + ηi

ηo
) ∂c

∂t
= ∂2c

∂θ2
+ 1

tan (θ) dcdθ + 1

sin2 (θ) ∂
2c

∂ϕ2
. (6.25)

Applying again a separation Ansatz (6.8), requires the three sets of functions to satisfy
a system of ODEs which consists of equations (6.9), (6.10) and in addition

d2Sk,l (θ)
dθ2

+ λ2
k Sk,l (θ) + cos (θ)

sin (θ) dSk,l (θ)
dθ

− μ2
l(sin (θ))2Sk,l (θ) = 0, (6.26)

where the sets of constants λk and μl are determined by the initial value of the problem.
The solutions for Tk(t) and Wk(ϕ), i.e. (6.13) and (6.14), remain unchanged for the
present case of pure diffusion. Employing a transformation variables s = cos(θ), the
solution to equation (6.26) can be obtained, for instance, by Maple17 (Waterloo Maple
Inc. 2013) and is given by a linear combination of Legendre functions of the first (Pm

n (s))
and second kind (Qm

n (s)),
Sk,l(θ) = C1

k,lP
m
n (cos(θ)) +C2

k,lQ
m
n (cos(θ)) (6.27)

with m = μl and

n = 1

2

√
1 + 4λ2

k − 1

2
. (6.28)

As the Legendre functions of the second kind are singular in s = ±1, i.e. θ = 0, π, the
smoothness condition across the poles again implies that C2

k,l = 0. If n as defined by
equation (6.28) and m = μl = l are non - negative integers, the corresponding Legendre
functions of first the kind are orthogonal. Due to the identity

Pm
n (s) = (1 − s2)m/2

n! 2n
dm+n
dsm+n

(s2 − 1)n
arbitrary polynomials in cos(θ) and sin(θ) can be obtained from these Legendre func-
tions. In this way, solutions of the diffusion problem can be generated for arbitrary
initial distributions.
Remark 7. For Pe(s) ≪ 1, equation (6.12) simplifies to equation (6.26). Then, for non-
negative integers m = μl = l and n such that λk satisfies equation (6.28), and the solution
simplifies to Legendre functions of the first kind, Pm

n (s). Consequently, the solution
of the purely diffusive problem coincides with the solution of equation (6.7) when
assuming that Pe(s) ≪ 1.
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Figure 6.3: A diffusion dominated problem for the initial distribution of cs0(θ) = cos2(θ).
For axisymmetric initial distributions, μl = 0, and by the restriction of n as defined by
(6.28) to positive integers, Legendre functions of the first kind simply coincide with
regular Legendre polynomials

Pn(s) = 1

n! 2n
dn

dsn
(s2 − 1)n .

and form a complete orthonormal basis of L2([0, π]). Using eigenvalues that satisfy
k = 1

2

√
1 + 4λ2

k − 1
2 for all k ∈ N0, a solution corresponding to any axisymmetric initial

distribution can be constructed and the limit is a continuous as well as continuously
differentiable function. For instance, the initial distribution cs0(θ) = cos2(θ) implies that
only the two modes λ0 = 0 as well as λ2 = √

6 are not equal zero, and the unsteady
surfactant concentration is given by

cs(θ, t) = 1

3
+ (cos2 (θ) − 1

3
) exp⎛⎜⎝

−6 t
Pe(s) (1 + ηi

ηo)
⎞⎟⎠ .

This allows for the determination the surface excess concentration throughout the full
time scale, as depicted in figure 6.3. Here, the surfactant equally distributes on the
spherical surface, reaching the well-known equal distribution cs(θ) = 1/3.

6.4 Discussion and Conclusions

In the present chapter, general solutions to interfacial convection-diffusion equations
on a spherical surface have been constructed. The obtained solutions represent the
surface excess concentration of a solute, such as surfactants, on a spherical droplet in
a two-phase immiscible incompressible Stokes flow. In the present investigation, the
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deformation of the droplet, the Marangoni effect as well as surfactant exchange with the
bulks have been neglected. In contrast to known previous results, unsteady surfactant
transport on the interface that includes diffusion, or is even dominated by diffusion,
is covered. With respect to the most general form of the equation, the surface excess
concentration derived here combines exponential functions with Heun’s confluent
functions. Consequently, general properties can be concluded, as, in particular, the
steady state solution to the problem. Furthermore, solutions to the purely diffusive
equation can be constructed using Legendre polynomials. Such analytical solutions
are of great importance for numerical simulations of interfacial transport problems as
benchmark solutions.

In a potential further investigation, when the Marangoni effect, i.e. the influence of
surfactant on surface tension and thereby on the flow field, is taken into account, the
set of solutions to the unsteady interfacial transport obtained in the present study can
be employed as the base state. In a setting with large Biot numbers, i.e. when the
ratio of surfactant exchange with the bulk phases is high, or when the Marangoni
number is small, approximative analytic solutions can be achieved by a perturbation
analysis. In this context, the base order concentration distribution is obtained from the
interfacial transport equation governed by the given Hadamard-Rybczynski flow, as
indicated. The first order correction of the Hadamard-Rybczynski terminal velocity
can then be performed based on the present base-order surfactant concentration, which
has been applied to non-diffusive surfactants, for instance by Stone and Leal (1990b).
Provided that the deformation of the drop is small, it is possible to regard the surfactant
transport by projecting the surfactant concentration back onto a sphere, which has
been presented by Vlahovska, Bławzdziewicz, and Loewenberg (2009).
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7 A Narrow Band Method for the
Eulerian Approach

The embedded interfacial transport equation is discretized on a small subdomain of
the original domain only, which is called the Narrow Band. In this way, the number of
degrees of freedom and consequently, the computational effort, are reduced. At the
same time, well-posedness of the embedded equation can be assured because regions of
singularities in the gradient of the Level Set function are excluded. This Narrow Band
is a dynamic computational domain that changes position and structure in accordance
with the Level Set function. For this reason, it is not created as an independent physical
grid. Instead it is induced from the full computational domain through selective
storage allocation and extraction of all relevant entries, or coordinates, respectively. In
particular, this approach takes advantage of the local band structure of the matrices
in a DG approximation. This chapter describes how such a coordinate based Narrow
Band is implemented within the software framework BoSSS. Furthermore, a method
is developed which extrapolates quantities to new Narrow Band cells and at the same
time, accurately preserves them on the interface. This method is necessary for treating
problems on a dynamically moving Narrow Band.

7.1 A Coordinate Based Narrow Band Approach

The subgrid The embedding of the interfacial transport problem into higher – di-
mensional space is solved only on a small extract of the original Eulerian grid. This
subgrid consists of cells close to the interface. In this way, computational effort is
optimized, while guaranteeing well – posedness of the Eulerian formulation. This
subgrid is formed by all cells that include isocontours of the Level Set function up to a
constant, depending on the grid resolution h and a constant γ > 0:

Σγ
h = ⋃

j∈Iγ
Kj , I

γ = {j = 1, . . . , J ∶ ∃ x ∈Kj ∶ ∣Φ(x)∣ ≤ γh} .
It can be considered as a narrow band tube around the interface and for this reason,
it is called the Narrow Band. Figure 7.1 illustrates Narrow Band structures in a two
-dimensional Cartesian domain with respect to a circle, an eccentric circle, an ellipse
and Zalesak’s notched disk, which will be used within the subsequent test cases. In
the software framework BoSSS, the implementation of the Narrow Band is based
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Figure 7.1: Examples of a Narrow Band

on the class SubGrid 1 by Kummer (2012). It provides both a quadrature execution
mask for the Narrow Band and a bit array which verifies whether a cell belongs to the
subgrid or not. The Narrow Band is a subgrid delivered from the LevelSetTracker
of the Level Set variable. It comprises all cells that include the subdomain located
between the zero isocontours of two level sets which are parallel to the original one.
The cell mask of the subgrid is used to determine which quadrature nodes form
part of the Narrow Band. These nodes are then utilised for numerical integration
when computing operator matrices. Otherwise, only a bit entry is stored, i.e. the
matrix entry remains sparse. The cells of the subgrid receive their own local cell
indices, in descending order for odd, and in ascending order for even rows, in the
same fashion as the full grid. An example is given by figure 7.2 which illustrates
both global subgrid indices and local subgrid indices on two processors for the simple
case of a circle. Mappings between the local subgrid cells and the local cells of the

1BoSSS.Foundation.SubGrid
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full grid are established by the methods LocalCellIndex2SubgridIndex 2 and
SubgridIndex2LocalCellIndex 3. On this basis, local matrix and coordinate
blocks can be extracted from the full grid quantities, and can be sorted back to the
respective quantities in the full spatial domain.

0
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4

8
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(a) Global indices on Ωh
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(b) Local indices on
processor 1

0

1

(c) Local indices of Σγ
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processor 1

0

1
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2

(d) Global subgrid indices
on Σγ

h

0

1

2

3

7

6

5

4

(e) Local indices on
processor 2

0

1

(f) Local indices of Σγ
h

on processor 2

Figure 7.2: Mapping of local coordinates of the full grid and of the Narrow Band with
respect to two processors.

Coordinate mappings in the subgrid Variables on the subgrid are provided by the
class SubgridCoordinateMapping 4 developed by the author, which extends the
standard class CoordinateMapping 5 . It manages all entries of the mapping that fall
within the range of the subgrid, SubGridValues 6 , by their indices, SubGridIndices
7. In the method Compress, the corresponding entries of the local coordinates
are extracted to the local array of subgrid values. The counterpart of this method,

2BoSSS.Foundation.SubGrid.LocalCellIndex2SubgridIndex
3BoSSS.Foundation.SubGrid.SubgridIndex2LocalCellIndex
4BoSSS.Foundation.SubgridCoordinateMapping
5BoSSS.Foundation.CoordinateMapping
6BoSSS.Foundation.SubgridCoordinateMapping.SubGridValues
7BoSSS.Foundation.SubgridCoordinateMapping.SubGridIndices
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Decompress, copies all entries of the subgrid values to their respective positions in
the coordinate mapping. All other entries are then filled with zeros.

Operator matrices in the subgrid As all entries of the operator matrix outside of
the Narrow Band are allocated as sparse entries, the part of the operator matrix that is
relevant to the Narrow Band needs to be determined and extracted. Taking advantage
of the local block structures of the DG scheme, this operation can be performed
blockwise. Each cell block that is associated with a grid cell of the Narrow Band is
extracted. Likewise, cell blocks are selected which are linked to any neighbouring
cell included in the Narrow Band. In multiprocessing, this procedure requires both
local coordinate indices, for accessing matrix rows, and global coordinate indices, for
accessing matrix columns. Local coordinate indices are provided by the subgrid indices
of the associated subgrid coordinate mapping. In order to construct global coordinate
indices, a global index array of the subgrid cells and a global array of their subgrid
neighbours need to be computed by looping over all processors. Then, the intial row

. . . 6 7 8 9 10 11 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

4 . . . 0 0 0 0 N4,10 N4,11 . . .

5 . . . N5,6 0 0 N5,9 N5,10 N5,11 . . .

6 . . . D6 N6,7 N6,8 N6,9 N6,10 0 . . .

7 . . . N7,6 D7 N7,8 N7,9 0 0 . . .

(a) Full grid matrix, processor 1

0 1 2 3

0 D6 N6,5 N6,10 N6,9

1 N5,6 D5 N5,10 N5,9

(b) Subgrid matrix, processor 1

Figure 7.3: Matrices associated with the full grid and with the Narrow Band with
respect to the example illustrated by figures 7.2. On top, selected matrix blocks for the
local grid cells with indices 4 − 7 are shown. Diagonal blocks Di are indexed by the
local cell index i, neighbour blocks with the global cell neighbour k are equipped with
both indices, Ni,k. At the bottom, the compressed matrix with the excerpted matrix
blocks of the original matrix is shown for the local subgrid cells 0,1.

position of the diagonal matrix block which should be extracted is determined by the
local cell index multiplied by the DOFs per cell. These diagonal blocks are transferred
to the next free diagonal block of the compressed matrix in ascending order. Next,
the blocks corresponding to the neighbouring cells in the full grid matrix are accessed
through the global cell indices per cell. If the respective cell forms part of the Narrow

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



The Pseudo-timestepping Method for Extending Data 75

Extrapolated
concentration

S = {x ∶ Φ (x) = 0}

∇c̃ = const

Figure 7.4: Illustration of an extrapolated concentration on level set isocontours

Band, the block is copied to the compressed matrix and positioned by means of the
global subgrid indices that have been gathered initially.

7.2 The Pseudo-timestepping Method
for Extending Data

When employing an Eulerian approach to treat interfacial problems, it is first neces-
sary to construct a representation of all relevant surface quantities on the underlying
Eulerian grid. In each time step, a meaningful extension of the density variable to
the updated Narrow Band has to be performed which, at the same time, conserves
this quantity on the interface at a high level of accuracy. This method is particularly
important when the subgrid changes position and structure in accordance with the
Level Set function. Greer, Bertozzi, and Sapiro (2006) have recommended to start off
with variables that are constant in normal direction with respect to the interface. This
means, an extension c̃ of a given variable c that solves the boundary value problem

∇c̃ ⋅n(s) = 0 in Σγ
h (7.1)

c̃ = c on S.

as illustrated by figure 7.4 is employed. In this way, numerical errors that are caused
by the degeneration of the diffusion operator in normal direction off the interface can
be reduced.

The extension c̃ may be constructed explicitly by mapping each quadrature node in
the Narrow Band Σγ

h to its closest point on the interface S. In the following, this
method is referred to as the Closest Point method (CPM). Although this approach is
fast with respect to performance, its parallelization is an intricate issue, since the closest
interfacial point may be located on a different processor than the original quadrature
node.
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For this reason, in the present work, a distinct method is adopted, called the pseudo-
timestepping method (PTM). Here, an extension c̃ of given data c is achieved by solving
the pseudo-timestepping equation

∂c̃

∂τ
+ sign(Φ) ∇c̃ ⋅ ∇Φ = 0 in Σγ

h , τ > 0 (7.2)

c̃(0,x) = c (x)
with respect to the artificial parameter τ until reaching a steady state. The steady state
solution c̃ then provides the extended quantity. As the zero-isocontour of the Level Set
function Φ is also a zero-isocontour of its signum function, c̃ identical with c on the
interface.

This method has been suggested by Greer, Bertozzi, and Sapiro (2006) and mimics
a pseudo-timestepping scheme developed by Zhao, Chan, Merriman, and Osher
(1996) for re-initializing Level Set functions in multiphase problems. This approach
is furthermore employed to regularize data by performing a limited small number of
pseudo-timesteps after solving the interfacial advection-diffusion for some time steps.

Equation (7.2) is a linear Hamilton-Jacobi equation. It can be approximated by a special
type of an LDG scheme that has been previously outlined in section 4.2, resulting in:

∫
Kj

∂c̃h
∂t

ϕj
i dx + ∫

Kj

Φh∇Φh ⋅ p ϕj
i dx = 0 (7.3)

∫
Kj

p ϕj
i dx − ∫

Kj
c̃h∇ϕj

i dx + ∫
∂Kj

F ∗(c+h, c−h) ⋅nϕj
i ds = 0

for i = 1, . . . ,Np , j = 1, . . . , J ∈ Σγ
h.

The novel idea of the scheme proposed here lies in the modification of numerical
fluxes. Originally, when LDG schemes are applied to Hamilton-Jacobi equations, weak
formulations of partial derivatives are introduced in pairs, employing a standard
upwinding and downwinding flux each. However, in problem (7.2), information is
transported along with the interfacial normal n(s) instead of the cell normal. Beyond,
information is always directed away from the interface. Thus, only a form that utilizes
an upwinding scheme is necessary.

For this reason, the author of this thesis employs the following numerical flux, when
approximating the partial derivatives of c̃:

F ∗(c+h, c−h) ⋅n = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
c+h el ⋅n if n(s) ⋅n ≥ 0

c−h el ⋅n if n(s) ⋅n < 0 .

For stability, in the discrete equation (7.3), the sign function is replaced by the Level
Set function itself.
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Within the BoSSS framework, extension methods are provided within the namespace
Extension 8 . A single instance of the class LDGExtension9 , for the PTM, performs
the extension and replaces the coordinates of the respective mapping. Alternatively,
the static method AnsatzConstruction provided by the class ClosestPoint10

determines and assigns the closest points to the mapping’s coordinates. By standard,
it is recommended to use the PTM, as the CPM is restricted to usage on a single
processing unit only.

7.3 Numerical performance

The pseudo-timestepping approach requires the user to fix a meaningful end time T

which is somehow minimal with respect to performance. In fact, a limited number of
timesteps is usually sufficient in order to achieve a meaningful extension of a given
variable to new grid cells, even if this extension is not precisely constant in normal
direction off the interface.

Most importantly, the original concentration function needs to be conserved on the
interface. This aspect is investigated in the following. Three of the two-dimensional
examples presented at the beginning of this chapter in figure 7.1, i.e. a circle, an
ellipse and a deformed circle are employed for an analysis of the surface error. As
a benchmark, results of the CPM are employed for comparing the quality of the
attained solution. It must be remarked that the CPM cannot be applied to constant
basis polynomials and that the respective results for the PTM are only enlisted for
completeness.

In all of the three cases, the pseudo-timestepping scheme is performed up to an end
time 0.2 for at least 200 timesteps. Numerical tests indicate that for these examples, the
resulting solutions of both methods are similarly close to a function that is constant in
normal direction off the interface when chosing this end time. The relative L2-error is
computed on the Level Set isocontour with respect to the original, unaltered variable

eΓh
= ∥c̃ − c∥L2(Γh)∥c∥L2(Γh)

and is constructed using hierarchical moment fitting quadrature rules of order eight
which have been provided by Müller, Kummer, and Oberlack (2013).

The surface errors on a circle, a deformed circle and an ellipse when performing the
pseudo-timestepping method on the set of cells intersected by the surface are illustrated
by figure 7.5. The resulting slopes of regression lines in comparison with the CPM
are given by table 7.1 and are nearly identical for both methods. With respect to an
accurate conservation of the surface variable, the PTM is as suitable as the CPM.

8BoSSS.Application.Extension
9BoSSS.Application.Extension.LDGExtension

10BoSSS.Application.Extension.ClosestPoint
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Circle Ellipse Deformed circle

p CPM PTM CPM PTM CPM PTM

0 - 0.88 - 0.97 - 1.01

1 2.01 2.03 1.92 1.95 1.98 2.00

2 2.88 2.87 2.87 3.06 2.96 2.96

Table 7.1: Surface mass loss of the CPM and PTM for different test problems in
comparison.

The selected test cases show nearly identical slopes of regression lines for both methods.
The resulting slopes of the regression lines are enlisted in table 7.1. In the test cases
shown, optimal convergence rates of nearly p + 1 that may be expected from a DG
scheme are achieved.

From the viewpoint of numerical accuracy, none of the methods needs to be preferred.
However, the only PTM can be applied when the discretization is based on a polyno-
mial basis of order 0 or when the numerical computation is performed on multiple
processors. Beyond, in contrast to the CPM, the PTM is easily implemented for grids
formed by more cells than simply the cut cells. To conclude, figures 7.6 and 7.7 illus-
trate the effect of the PTM. Figure 7.6 shows the extended subgrid variable on the
Narrow Band in a two-dimensional domain and its extrapolation to newly acquired
grid cells when the interface is moved. Here, a deformed circle rotates around the
origin. When the induced subgrid loses or gains cells, the PTM is performed until
T = 0.3, i.e. for few time steps only. Figure 7.7 underlines that the PTM may as well
be used for applications where the surface undergoes topological changes, such as
the collision or break up of drops. Here, an initial surface concentration has been
prescribed on a Narrow Band that includes all cut cells and their next neighbouring
cells. With the evolving surface, the Narrow Band changes structure and position, and
the surface concentration is moved accordingly, by applying the PTM.
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Figure 7.5: Error of mass loss on the interface when applying the pseudo-timestepping
method up to an pseudo-end time of T = 0.2. At this end time, the obtained solution is
close to the extrapolation generated by the closest point method.
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Figure 7.6: Repeated extrapolation of an initial concentration of c (x) = x2 onto a
moving Narrow Band around a deformed circle. The PTM is used to extend data to
new subgrid cells when the surface is rotated around the origin.
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Figure 7.7: Extension by the pseudo - timestepping based method on a surface that
represents the breakup of a droplet.
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8 The Eulerian DG Algorithm and
Numerical Results

The objective of the present work is the numerical approximation and solution of
the interfacial transport problem by a DG scheme. As it provides excellent mass
conservation properties when combined with DG methods and as it is flexible for
capturing interfaces with distortions and topological changes, the Level Set method
was required for representing the interface. Against this background, an Eulerian
approach has been chosen for the interfacial transport problem. Here, the interfacial
equation is approximated based on the existing Eulerian grid, instead of traditional
Lagrangian approaches, similar to the Level Set approach for capturing the interface.
The use of Eulerian methods for the discretization of interfacial equations is not
very common, but still promising. In particular, tedious interface reconstruction and
remeshing can be avoided.

The resulting numerical scheme for discretizing and solving the interfacial transport
problem is described in this chapter. It is based on an Eulerian DG method and employs
conserved forms of the underlying transport equations that have been developed
in chapter 5. As the convection-diffusion equation can be treated by a first order
differential operator splitting scheme, diffusive and convective parts of the equation
are discretized separately. Various test scenarios are developed in a two-dimensional
setting which are used to verify the respective discretizations and analyse the order of
convergence. Examples in three-dimensional domains illustrate how surface problems
can be successfully solved numerically by the method presented.

8.1 Discretization of surface transport equations

The interfacial transport equation is numerically discretized by a DG scheme in Eule-

rian form, based on the given Cartesian mesh. All surface differential operators are
extended to the underlying higher dimensional domain and identified with tangential
parts of the standard differential operators. This is achieved by employing the surface
projection tensor P s according to equations (2.10) and (2.11).

The resulting form of the interfacial transport equation is then given by equation (5.4).
Furthermore, the phase interface is represented implicitly as the zero-isocontour of a
Level Set function Φ which is advected by the flow field in an incompressible setting
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according to equation (3.2). In the Eulerian formulation, all transport equations are
extended to a Narrow Band Σγ

h of level set isocontours up to a defined width around
the interface, as devised in chapter 7.

Sets of conservation laws (5.27) derived in chapter 5 (see also Kallendorf, Cheviakov,
Oberlack, and Wang (2012)) enhance a DG discretization of the interfacial transport
equation in the Eulerian formulation. Simple forms of these conservation laws are em-
ployed in the method presented. In summary, the aim of this chapter is the numerical
discretization and solution of the following system of equations

∂

∂t
Φ +∇ ⋅ (uΦ) = 0 in Ω×]0, T ] (8.1)

Φ(x,0) = Φ0 (x) in Ω

∂

∂t
(c ∥∇Φ∥) + ∇ ⋅ (u c ∥∇Φ∥) = 1

Pe(s)
∇ ⋅ (∥∇Φ∥ P (s)∇c) in Σγ

h×]0, T ] (8.2)

c(x,0) = c0 (x) in Σγ
h

where P (s)∇c = ∇c − (∇c ⋅n(s))n(s) in Σγ
h

and n(s) = ∇Φ∥∇Φ∥ in Σγ
h

and ∇ ⋅u = 0 in Ω × [0, T ]. (8.3)

Equation (8.2) is treated by a first order operator splitting scheme. For this purpose,
assume a discretization by N timesteps of the temporal horizon,{0 = t0 < . . . tk < tk+1 < . . . < tN = T}, and denote the solution at time tk by ck. Roughly
speaking, in each timestep the convective part of equation (8.2) given by

∂

∂t
(c ∥∇Φ∥) + ∇ ⋅ (u c ∥∇Φ∥) = 0 in Σγ

h×]tk, tk+1/2] (8.4)

is solved for ck+1/2 at an intermediate time tk+1/2, using ck as an initial value. Next, the
solution ck+1/2 is employed as the initial value when computing the solution ck+1 of the
purely diffusive equation, i.e.

∂

∂t
(c ∥∇Φ∥) = 1

Pe(s)
∇ ⋅ (∥∇Φ∥ P s∇c) in Σγ

h×]tk+1/2, tk+1], (8.5)

which is then the solution of equation (8.2) at time tk+1 for the initial value ck. It is
important to note that the conservation laws of the convective and the diffusive part of
the extended equation (5.4), i.e. equations (8.4) and (8.5), correspond to the convective
and the diffusive parts, respectively, of conservation law (8.2) which has been derived
in chapter 5.

All of these conservation laws are treated by a common algorithmic structure. The
equations are discretized in the density variable Ψ ≡ c ∥∇Φ∥ and require a coupling
to the Level Set advection equation. The concentration ck can be obtained from the
density variable Ψk at time tk by division through the surface area element ∥∇Φk∥,
which is computed from the updated Level Set variable Φk.
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When initiating the solution process, the initial surface excess concentration cs0 is
extended to an initial variable c0 that is defined in the Narrow Band around the initial
Level Set function Φ0. By a pointwise multiplication by the surface area element, the
initial value Ψ0 of the density variable is obtained. At the beginning of each time step,
the evolution of the Level Set function is performed first. Within this context, the
Level Set equation is discretized by using an upwinding scheme for the numerical
fluxes and a third order Runge-Kutta TVD time-stepping scheme. In case the evolved
level set isocontours up to the specified bandwidth intersect additional Cartesian grid
cells, the Narrow Band is amplified. All quantities are then extrapolated using the
pseudo-timestepping method introduced in chapter 7. Next, the transport equation as
an equation in Ψ, is solved. Finally, the extended surface concentration ck at time step
tk is generated from Ψk by a pointwise division through the surface area element. The
structure of this algorithm is outlined in algorithm 1.

Algorithm 1 Solve Interfacial Transport Problem
Input: Level Set function Φ0, surface excess concentration cs, grid Ωh,
temporal discretization {t0 = t0 < . . . tn < tn+1 < . . . < tN = T}
Output: Extended concentration cN

for tn ≤ tN do
if t0 = t0 then

Compute subgrid Σ0

Extend cs0 to c0 on Σ0

Compute ∥∇Φ0∥ from Φ0

Ψ0 ← c0 ∥∇Φ0∥
else

Solve Level set advection for Φn

Compute subgrid Σn

if Σn /⊆ Σn−1 then
Extend Ψn−1 onto Σn

end if
end if
Solve extended surface transport problem for Ψn

tn+1 ← tn

end for
cN ← ΨN/ ∥∇ΦN∥
return cN

The computational structure for discretizing and solving the surface transport problems
is integrated in the existent code framework BoSSS in various projects. The software
code developed is fully MPI parallel. Numerical results presented in the following
sections are computed utilizing two to four nodes of an Intel® Xeon® Processor E5-4650
on Lichtenberg cluster (TU Darmstadt) with a node memory expansion 128 GByte per
node.

Numerical errors are provided for the concentration variable c and are measured on the
surface Γh with respect to exact solutions cex of the surface concentration on the surface.
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As the solution of the extended equation on the surface, or interface, respectively, is
analytically independent of the chosen extension (see also Delfour and Zolésio (2011)),
accuracy of the numerical solution needs to be investigated on the surface. Here, L2

error estimates on the Level Set isocontour are constructed using hierarchical moment
fitting quadrature rules of order eight, which have been provided by Müller, Kummer,
and Oberlack (2013). In order to account for the influence of errors in quadrature,
relative errors i.e.

eΓh
= ∥cex − c∥L2(Γh)∥cex∥L2(Γh)

(8.6)

are computed.

8.2 Surface Transport Equations without Diffusion

This section treats the interfacial problem without diffusion, i.e. the system of equations
(8.1),(8.2) and (8.3) is considered where the second equation replaced by equation (8.4).
Solving the convective part of equation (8.2) only is necessary for a simple operator
splitting scheme, and represents the case where the surface diffusion is negligible. The
purpose of the following test problems is not the simulation of a physical problem, but
exclusively the numerical analysis of the method presented.

8.2.1 Numerical Results

In the following, for convenience, the jump and average operators on all outer edges
of the Narrow Band Σγ

h are simply given by

{{ch}} = c+h , �ch� = c+hnj,

where nj denotes the normal vector oriented outward of the border edge of the Narrow
Band and c+h is the value of the boundary cell located inside of the Narrow Band. The
density variable Ψ is approximated by a linear combination of DG polynomials

Ψh(t, x) = J∑
j=1

Np∑
i=1

Ψj,i (t)ϕj
i (x) (8.7)

such that for each point tk in the temporal discretization

Ψh(tk) ∈ V p
h = {v ∈ L2 (Σγ

h) ∶ v∣K ∈ P p(K),∀K ∈ Ih,γ} . (8.8)

Here, Ih,γ ⊂ Th denotes the set of all cells contained in the Narrow Band Σγ
h that is

associated with the Level Set function Φh at time tk.
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Figure 8.1: Code structure of the BoSSS application by which the surface transport
problem without diffusion is discretized and solved.

The numerical objective is determining a function (8.7), which satisfies requirement
(8.8) and solves the DG formulation

∫
Kj

∂Ψh

∂t
ϕj
i dx − ∫

Kj

(Ψhuh) ⋅ ∇ϕj
i dx

+ ∑
e∈Ej

∫
e
({{uh ch}} + ∣nj ⋅uh∣ �ch�

2
) ⋅njϕj

i ds = 0 (8.9)

for all cells Kj ∈ Ih,γ and all basis polynomials ϕj
i ∈ V p

h for the given initial value (in
Ψ). Here, Ej denotes the set of all edges of cell j. The numerical flux employed in
the respective edge integrals is an upwinding flux. Equation (8.9) is discretized by a
Runge-Kutta TVD3 scheme in time. The degree of basis polynomials is always one
lower than the basis degree used for the Level Set function. A rough overview of the
code structure that implements the approximation and solution of the respective initial
value problem is provided by figure 8.1, which outlines the functionality of the new
classes.
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(a) Φ(x, y) = 1.0 −√x2 + y2
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Figure 8.2: Relative error and order of convergence of the interfacial convection prob-
lem with respect to a circular surface. The extended equation is discretized by poly-
nomial degrees 0, 1 and 2, starting with an initial concentration of x2/(x2 + y2). The
Narrow Band embraces all cells that include Level Set isocontours up to the absolute
value 2h.

Investigation of steady 2D problems Numerical errors of the Eulerian discretiza-
tion of the interfacial transport problem without diffusion are considered by means
of two simple test settings. In both cases, the underlying flow field is tangential with
respect to the initial surface, implying a configuration with a steady geometry. It
should be remarked that the results presented solely focus on the performance of the
numerical solver, without assuming any physical background, i.e. the flow field is not

subject to an incompressible two-phase flow with interfacial jumps.

As a first example, a unit circle exposed to a rotational field u(x, y) = (−y, x) is consid-
ered. In polar coordinates the surface transport equation without diffusion is given
by

∂cs

∂t
+ r

r0

∂cs

∂ϕ
= 0 on S, (8.10)

i.e. for r = r0. For a given initial concentration the solution of equation (8.10) is obtained
from the method of characteristics. When transformed to Cartesian coordinates, for an
initial concentration cs0(x, y) the solution is given by

cs(x, y, t) = cs0(x cos (t) + y sin (t) , x sin (t) − y cos (t)).
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Figure 8.2 illustrates the relative error after 200 time steps, evaluated at time T = 0.2, for
polynomial degrees 0, 1 and 2, when starting with an initial concentration of x2/(x2+y2).
The Narrow Band is defined by the level set isocontours of absolute value 2h. On the
left, results for the case of a Level Set function with signed distance property are shown.
The slopes of the resulting linear regression lines are 0.92 for a zero order discretization,
1.88 for a first order discretization, and 2.88 for second order polynomials. On the right,
in contrast, a polynomial Level Set function is applied, yielding linear fits with idential
slopes.

In a similar fashion, solutions to the convection problem on an ellipse can be derived,
employing elliptic coordinates to the convection problem on an ellipse in parametric
form,

x̂(s) (ϕ, r, μ0) = ⎛⎜⎝
r cosh(μ0) cos(ϕ)
r sinh(μ0) sin(ϕ)

⎞⎟⎠ ,
where r cosh(μ0) = a and r sinh(μ0) = b are the semi-minor and semi-major axes of the
fixed elliptic surface.

Again assuming a tangential velocity field u(x, y) = (−a
by,

b
ax), one obtains the surfac-

tant transport equation without diffusion in elliptic coordinates:

∂cs

∂t
+ r

r0

sin (ϕ) cos (ϕ)(cosh (μ0))2 − cos2 (ϕ)cs + r

r0

∂cs

∂ϕ
= 0. (8.11)

For a prescribed initial distribution cs0(ϕ) the solution of the surface transport equation
on an ellipse in elliptic coordinates is given by

cs(ϕ, t) = cs0(t −ϕ)(b2 (cos(ϕ) cos(t) + sin(ϕ) sin(t))2 + a2 (cos(ϕ) sin(t) − sin(ϕ) cos(t))2
b2 cos2(ϕ) + a2 sin2(ϕ) )1/2 .

Hence, after a transformation to Cartesian coordinates, the initial distribution cs0(x, y)
yields the solution

cs(x, y, t) = (cs0 ∥∇Φ∥) (x cos(t) + a
by sin(t), y cos(t) − b

ax sin(t))∥∇Φ(x, y)∥ .

Figure 8.3 illustrates the relative surface error and order of convergence for a setting
with an initially constant surface excess concentration at value 1.0, which is extended
by the constant value to the Narrow Band. Parameters of the ellipse are given by a = 0.8

and b = 1.2. The error is computed at T = 0.25, which is discretized by 500 equidistant
timesteps. The Narrow Band is defined by the level set isocontours of absolute value
1h and 3h in order to investigate the influence of the width of the Narrow Band. In fact,
computations on Narrow Band structures have been performed by other authors, but
the configuration of the Narrow Band has not been addressed.
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Figure 8.3: Relative error and order of convergence of the interfacial convection prob-
lem with respect to an ellipse. The extended equation is discretized by polynomial
degrees 0, 1 and 2, starting with an initially constant concentration c (x) ≡ 1.0. The
Narrow Band embraces all cells that include Level Set isocontours up to the absolute
value 1h and 3h.

Nearly optimal results are achieved on a Narrow Band of width 3h, depicted on the
left, where the computed slopes of the regression lines are 0.73 for a zero order dis-
cretization, 1.83 for a first order discretization, and 3.15 for second order polynomials.
Computing the same test case on a thinner band tube of (critical) width 1h around
the surface only, results in slopes of the regression lines of 0.41 for a zero order dis-
cretization, 1.28 for a first order discretization, and 2.37 for second order polynomials.
In addition, the computation has been performed on a Narrow Band is defined by
the level set isocontours of absolute value 2h. In this case the slopes of the resulting
linear regression lines are 0.59 for a zero order discretization, 1.57 for a first order
discretization, and 2.98 for second order polynomials.

These numerical results allow for the following interpretations. The discretization
by a DG scheme enables the numerical approximation and discretization of purely
convective interfacial transport problems by polynomials of arbitrary order. The order
of convergence has been investigated for discretizations using up to second order
polynomials for the computational variable, and up to third oder polynomials for the
Level Set variable, respectively. Results are summarized in table 8.1.

In both of the test cases that include steady surfaces, for different configurations,
convergence rates are close to p + 1, when the width of Narrow Band is chosen with at
least 2h. In summary, the expectation of a DG scheme are met. Convergence for zero
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Circle,
signed
distance

Circle, poly-
nomial

Ellipse, polynomial

���������p
width

2h 2h 1h 2h 3h

0 0.92 0.92 0.41 0.59 0.73

1 1.88 1.88 1.28 1.56 1.83

2 2.88 2.88 2.37 2.98 3.15

Table 8.1: Summary of computed slopes of regression lines for different two-
dimensional scenarios and distinct polynomial degrees p. Different widths of the
Narrow Band and different structures of the Level Set function are considered.

order basis polynomials, however, is slightly suboptimal. This may be explained by
the strong dependence on boundary values in this case.

When using the Eulerian approach presented for the numerical computation of the
interfacial transport problem, the width of the narrow band tube around the interface
needs to be parametrized, identifying those cells of the underlying computational
domain which are used for the discretization of the equation. Test cases on an ellipse
have been run for three different configurations, i.e. band widths 1h, 2h and 3h.
Numerical results indicate that an increase of the width of the Narrow Band may
improve the order of convergence. This behaviour can be viewed to be natural because
the degrees of freedom with respect to the discretization of the interface remain fixed,
while the degrees of freedom employed for the approximation of the extended problem
increase.

Furthermore, numerical errors have been investigated for different underlying Level
Set functions because the Level Set function is coupled to the transport equation
through the surface area element. For this purpose, both polynomial and irrational
functions have been used, such that signed distance property has been attained only
in some of the test settings. In the studies performed, no negative impact of different
structures of the Level Set function could be observed. In contrast to diffusion problems,
this behaviour has actually been anticipated, as the surface area element affects the
solution only by a pointwise multiplication or division, and not the numerical scheme
itself.

Investigation of unsteady problems Next, an example of the purely convective
problem on an unsteady surface is investigated, which is given by a counter-clockwise
rotation of an ellipsoid around the z-axis. Figure 8.4 illustrates the three-dimensional
problem for a quarter rotation, when combining the solution of the Level Set equation,
followed by an extension of the density variable onto the new subgrid and the solution
of the interfacial transport equation without diffusion in conserved form given by the
method presend.
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Figure 8.4: Quarter rotation of an ellipsoid around the z-axis, starting with an initial
concentration function c0 (x) = y2. The computed solution is obtained by solving the
surface transport equation without diffusion and the Level Set equation. Values are
extrapolated to new Narrow Band cells by utilizing the pseudo-timestepping method.

The problem in two dimensions, i.e. the rotation of an ellipse by a field u(x, y) = (−y, x),
is employed for analysing the error when the solution of the Level Set equation and an
extrapolation to new Narro Band cells by a pseudo-timestepping scheme are combined
with the solution of the convection equation. As a remark, interfacial jumps and the
impact of exchange with the bulk phases are not considered in this investigation.
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Within this context, a conserved form of the interfacial convection problem proves to
be a powerful tool for determining exact solutions as follows. The initial Level Set
function that describes an ellipse in Cartesian coordinates (x, y) is given by

Φ0(x, y) = x2

a2
+ y2

b2
− 1.0.

Its advection by the rotational field results in the Level Set function

Φ(x, y, t) = x̃2

a2
+ ỹ2

b2
− 1.0

with x̃ = x cos(t) + y sin(t), ỹ = y cos(t) − x sin(t),
which embeds the rotated elliptic surface. For each time step the resulting surface line
element is given by

∥∇Φ(x, y, t)∥ = 2(( x̃

a2
+ ỹ

b2
)2)1/2 .

Inserting the Ansatz
c(x, y, t) = F(x, y, t) ∥∇Φ(x, y, t)∥−1 (8.12)

into equation 8.4, the remaining equation in F is solved by functions

F (x, y, t) = ∥∇Φ(x, y, t)∥−1 c0(x̃, ỹ).
Equation (8.12) then yields the concentration function for the initial value problem. The
resulting L2-surface error after 760 timesteps with timestep size 0.001, after performing
a rotation by 90°, is given in table (8.2).

With an exception of the first data point, all computed erros decrease notably with
increasing polynomial degree. Computed slopes of the resulting regression lines are
0.7 for zero order polynomials, 2.03 for first order polynomials and 2.58 for the case
of a second order discretization. These convergence rates nearly meet the expecta-
tions of the DG scheme, but are still slightly suboptimal. In this respect, the result
convenes with the numerical performance of the convection problem on a steady sur-
face. Furthermore, for this problem the decrease of numerical errors with decreasing
edge length is not as steep as expected, which is probably originated in the lack of
optimization with respect to the number of pseudo-timesteps and the width of the
Narrow Band.

8.3 Surface Transport Equations dominated by Diffusion

In this section, the diffusive part (8.5) of the surface transport equation (5.27) is investi-
gated. Physically, the purely diffusive form of the equation is relevant to two-phase
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h p = 0 p = 1 p = 2

0.425 6.692482E-001 1.590755E+000 4.172316E+000

0.2125 3.907067E-001 3.046398E-002 1.221666E-002

0.10625 2.365996E-001 1.061694E-002 5.143001E-003

0.053125 1.365673E-001 6.457332E-003 2.833721E-003

0.0265625 1.010066E-001 3.095253E-003 1.144462E-003

Table 8.2: Surface error terms for the purely convective problem when imposing a
quarter rotation on an ellipse.

flow settings with an extremely slow inflow or high diffusivity of the surfactant, where
the diffusion is dominant and the convective term is negligible. Further applications
are settings with steady surfaces, such as heat conduction on a rigid surface. The pur-
pose of the test problems presented here is not the simulation of the physical problem,
but exclusively the introduction and numerical investigation of the method presented
for the diffusive form of the equation.

The discretization of the extended diffusion equation (8.5) by a DG method is signifi-
cantly more elaborate than the discretization of the conserved form of the convective
transport. The discretization scheme needs to be able to handle variable coefficients
given by the variable surface area element. Furthermore, a tensor product of the
gradient given by the extended surface gradient replaces the standard gradient. The
LDG scheme developed by Cockburn and Dawson (2000), which is described in detail
in section 4.1.3, is suitable for these characteristics of the diffusive term in equation
(8.5).

From the numerical point of view, the solution of the extended diffusion equation (8.5),
equipped a suitable initial value, requires the specification of additional boundary
conditions. However, on closed surfaces (or interfaces), the surface diffusion problem
is not exposed to any boundary conditions.

Due to the lack of physical boundary conditions, artificial boundary conditions need to
be introduced for treating the extended problem numerically. The fact that the surface
gradient of the solution is always perpendicular to interface, i.e. condition

∇(s)cs ⋅n(s) = 0 on S (8.13)

needs to hold, has been employed by Dziuk and Elliott (2009) as a natural boundary

condition. The above condition may be generalized to the embedded surface gradient
which is perpendicular to isocontours of the Level Set function, i.e.

(P (s)∇c) ⋅n(s) = 0 in Σγ
h. (8.14)
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Equation (8.5) is considered as an equation in the density variable Ψ, which is dis-
cretized by a linear combination of DG polynomials

Ψh(t, x) = J∑
j=1

Np∑
i=1

Ψj,i (t)ϕj
i (x)

such that for each discrete point in time tk

Ψh(tk) ∈ V p
h = {v ∈ L2 (Σγ

h) ∶ v∣K ∈ P p(K),∀K ∈ Ih,γ} , (8.15)

where Ih,γ ⊂ Th denotes the set of all cells contained in the Narrow Band Σγ
h associated

with the Level Set function Φh at time tk. Utilizing a set of auxiliary variables

qh ∈W k
h = {w ∈ (L2 (Σγ

h))D ∶ v∣K ∈ P k(K)D, K ∈ Ih,γ} ,
one seeks to find Ψh which solves a modified Brezzi scheme

∫
Kj

∂Ψh

∂t
ϕj
i dx − 1

Pe(s) ∫Kj

∥∇Φh∥θh ⋅ ∇ϕj
i dx + 1

Pe(s) ∫∂Σγ
h

Fθ (θ+h,θ−h, c+h, c−h) dx = 0

∫
Kj

θh ⋅ τ j
i dx = ∫

Kj

P s
hqh ⋅ τ j

i dx

∫
Kj

qh ⋅ τ j
i dx = −∫

Kj

ch∇ ⋅ τ j
i dx + ∫

∂Σγ
h

Fqh(c+h, c−h) nj ⋅ τ j
i ds

holds for all cells Kj ∈ Ih,γ and all basis polynomials

ϕj
i ∈ V p

h and τ j
i ∈W k

h i = 1, . . . ,Np

and where ch is replaced by identity

ch = 1∥∇Φh∥Ψh.

The scheme uses a central flux in P s
hqh, penalized by ch, and a central flux in ch for the

auxiliary differential equations as follows

∫
∂Σγ

h

Fθ (θ+h,θ−h, c+h, c−h) dx = −∫
Γh

c−h ϕ
j
i ds − ∑

e∈Ej
∫
e
(τ �ch� − {{θh}}) ⋅n(s) ϕj

i ds

∫
∂Σγ

h

Fqh(c+h, c−h) nj ⋅ τ j
i ds = ∑

e∈Ej
∫
e
{{ch}} nj ⋅ τ j

i ds + ∫
Γh

c+h nj ⋅ τ j
i ds

Furthermore, the initial value has to be fulfilled for t0 = 0.

8.3.1 Details of the numerical method

When the boundaries’ normal vector coincides with the normal vector to the level set
isocontours n(s) boundary condition (8.14) is incorporated weakly in the scheme and
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Figure 8.5: Illustration of inner and outer boundaries of a Narrow Band around a circle
in 2D and a sphere in 3D, respectively. The cells of the Narrow Band are marked in
grey.

only the surface integrals depending on ch need to be discretized. This requires the use
of curved boundaries that are aligned with isocontours of the Level Set function when
designing the Narrow Band. An example of curved boundaries for the case of a circle
and a sphere is illustrated by figure 8.5. The blue isocontour marks the outer boundary,
while the red isocontour gives the inner boundary. As another important aspect, when
employing curved boundaries, the boundary of the Narrow Band does not include
cusps and corners, which would restrict the order of convergence. However, the
numerical treatment of curved boundaries is a highly complex topic that is a separate
field of research. Recently, it has become increasingly popular to embed complex
domains in fixed, usually structured grids. Ficticious domain methods, generally
attributed to Glowinski, Pan, and Periaux (1994), form the most original class of these
methods as well as its variants, the immersed boundary (Peskin, 2002) or immersed
interface methods (LeVeque and Li, 1994). One also refers to unfitted methods, when
the underlying mesh does not resolve the considered subdomain and its boundaries.
The use of unfitted elements has by now been introduced both in the context of FE
by Hansbo and Hansbo (2002) as well as DG by Bastian and Engwer (2009). On a
Cartesian structured mesh, a cut cell method is used to cut out complex subdomains
and derive suitable quadrature rules. In order to avoid any explicit representation and
approximation of the curved boundaries, a DG approach based on unfitted elements
is employed, exploiting suitable quadrature rules. Within the context of DG, Müller,
Kummer, and Oberlack (2013) have derived highly accurate quadrature rules for
implicit domains, using simplified moment fitting equations.

Quadrature rules for implicit domains (Müller, Kummer, and Oberlack, 2013)
Considering a convex, D-dimensional polytope Kj in a very general grid Ωh, quadra-
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ture rules for integrating over zero-isocontours Ij = {x ∈Kj ∶ Φ (x) = 0} and partial
volumes

Aj = {x ∈Kj ∶ Φ (x) < 0} or Bj = {x ∈Kj ∶ Φ (x) > 0} respectively,

are constructed hierarchically. In the one-dimensional case, the roots of the Level Set
function Φ are determined on the line element Kj . A standard Gaussian quadrature
rule of order N is then applied to each of the induced subsections, assuming the integral
to be given by a polynomial basis of order N . In the two-dimensional case, surface
integrals are deduced from the intersected line integrals by means of a divergence-free
basis, yielding a simplified system of moment fitting equations. Integrals over partial
volumes, in turn, can be reconstructed by means of defining anti-derivatives of the
polynomial basis functions in a similar fashion. Finally, the three-dimensional case is
reduced to two-dimensional boundary elements. The interested reader may refer to
Müller, Kummer, and Oberlack (2013) for further details.

Dealing with partial cell volumes Integration over partial cell volumes leads to
ill-conditioned mass and operator matrices if cells contain relatively small volume
fractions only, i.e. within this context small fractions of the Narrow Band. In fact, this
case becomes inevitable when moving the interface and simultaneously the boundaries
of the Narrow Band.

Numerical tests indicate that by preconditioning only, this problem cannot be resolved.
However, a method developed by Kummer (2016) is adopted here, by which criti-
cal cells are agglomerated to neighbouring cells and cells with critical volumes are
eliminated. Defining the fractional species volume by

fA(Kj) = ∫Kj∩A 1dx∫Kj
1dx

,

and setting a treshhold 0 ≤ α < 1 for critical cells, a list Aα of cell-pairs to agglomerate
is identified according to the following algorithm (Kummer, 2016):

Algorithm 2 Cell agglomeration algorithm (Kummer, 2016)

set Aα ∶= {}
for all cells Kj ∈ Σγ

h, with fA(Kj) > 0 do

if fA(Kj) < α then

select cell Le
max from all edge-neighbors Le

j of Kj , where fA(Le
j) is maximal.

Aα ← Aα ∪ {{Kj, Le
max}}, i.e. add the pair {Kj, Le

max} to Aα

end if

end for
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The polynomial space for discretizing the diffusion problem is modified on the respec-
tive pairs of cells such that the discretization is based on the finite element space

V k
h,α = {v ∈ L2 (Ωh) ∶ v∣K ∈ P k(K), K ∈ Th, v∣K∪L ∈ P k(K ∪L) for (K,L) ∈ Aα} .

Due the above requirements, the modified polynomials can be obtained by a linear
combination of original basis polynomials, i.e.

ϕi = ϕ̃i + q(x) ̃̃ϕi, where ϕ̃i ∈ P k(L), ̃̃ϕi ∈ P k(K).
Thus, for linear operators, changing to the modified basis is a purely algebraic oper-
ation. Furthermore, it should be remarked that the given polynomial basis does not
form an orthonormal set with respect to partial cell volumes. Kummer (2016) showed
that, with respect to the linear case, a transformation to an orthonormal basis can be
achieved by a simple Jacobi preconditioning.

Within the present work the extended transport equation without diffusion in con-
served form (8.5) is discretized by an Eulerian DG scheme on a Narrow Band with im-
plicitly defined boundaries. The constructed method takes advantage of the aforemen-
tioned elements when creating and processing operator and mass matrices. Quadrature
rules for partial cell volumes based on hierarchical moment fitting (Müller, Kummer,
and Oberlack, 2013) are exploited when implementing artificial boundary conditions
on these implicit boundaries. Cells with critical volumes are eliminated by the cell
agglomeration algorithm. In this way, operator matrices achieve condition numbers
that admit the solution of the matrix system.

A code library for discretizing and solving the extended form of the surface diffusion
problem has been developed within this thesis and is integrated in the software
framework BoSSS. Figure 8.6 gives and overview of the structure and funcionality of
the new classes.

8.3.2 Numerical Results

This section accounts for numerical results of solving the interfacial diffusion equation
by the Eulerian algorithm developed in this work.

In the two-dimensional problems that are analysed, the polynomial basis that is used
for discretizing the Level Set function Φ is always chosen one degree higher than
the polynomial basis used to approximate the density variable Ψ. Tests are given for
polynomial orders 1 and 2, as for zero-order polynomials, the boundaries cannot be
accurately resolved,

The subsequent computations are based on different polynomial degrees on equidistant
Cartesian meshes. Numerical errors are computed for the actual concentration variable
c with respect to exact solutions cex of the surface concentration by formula (8.6). Here,
both L2 error estimates on the Level Set isocontour as well as the surface integrals on
the inner and outer boundary isocontours are constructed using hierarchical moment
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Figure 8.6: Structure of the BoSSS application by which the diffusion problem is solved
and discretized.

fitting quadrature rules of order eight, which have been provided by Müller, Kummer,
and Oberlack (2013).

As the curved domain of the extended problem is resolved by a cut cell approach,
small fractions of the cells at the boundaries of the Narrow Band lead to severely high
condition numbers of the mass and operator matrices, in particular for a second order
polynomial basis. Condition numbers are improved by employing a cell agglomeration
treshhold of five percent. But nevertheless, it is a trade off by which accurary is lost with
eliminated quadrature nodes. Finally, the resulting matrix system is preconditioned by
a Jacobi preconditioner and solved by means of the sparse direct solver Schenk and
Gärtner (2014).

The penalty parameter τ is chosen dependent on the grid size h:

τ = κ/h,κ > 0,
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which is suggested for example by Arnold, Brezzi, Cockburn, and Marini (2002).
Numerical experiments indicated an optimal perfomance for κ = 10.0 for the following
computations presented.

For a given initial concentration, sets of solutions to the purely diffusive equation can
be generated in a similar fashion as in the three-dimensional case. In polar coordinates(r,ϕ) the surface diffusion equation in non-dimensional form on a circle of radius r0 is
given by

∂c

∂t
− 1

Pe(s)
∂2c

∂ϕ2
= 0. (8.16)

Applying separation of variables, it is assumed that

c (t, ϕ) = ∑
k

Tk (t)Fk (ϕ) , (8.17)

where Tk and Fk are solutions of the ODEs

T ′k (t)
Tk (t) = −λ2

k = 1

Pe(s)
F ′′k (ϕ)
Fk (ϕ) . (8.18)

In fact, the functions Fk represent Eigenfunctions of the surface Laplacian. Their
general form is, on r0,

Fk(ϕ) = C1,k sin(λk

√
Pe(s)ϕ) +C2,k cos(λk

√
Pe(s)ϕ) , (8.19)

with suitable constants C1,k and C2,k. The functions Tk are simply provided by

Tk(t) = exp (−λ2
k t). Requiring that λk

√
Pe(s) is an integer, one can apply angular

summation rules to the trigonometric functions which yields a polynomial basis on the
circle. For this reason, arbitrary initial values can be decomposed by a set of suitable
eigenfunctions Fk.

An initial (dimensionless) distribution provided by c(ϕ) = cos2(ϕ) can be decomposed
using the Eigenfunctions

F1(ϕ) = C1,1 and F2(ϕ) = C2,2 cos (2ϕ) = C2,2 (cos2 (ϕ) − sin2 (ϕ))
with λk

√
Pe(s) = 2 and requiring C1,1 = C2,2.

This yields the solution

c(ϕ, t) = C1,1

2
+ C1,1

2
(cos2 (ϕ) − sin2 (ϕ)) exp (−4 t/Pe(s))

with a constant to be determined from the total saturation as follows:

∫ 2π

0
c(ϕ, t)r0 dϕ = r0 πC1,1

!= π r0 ⇒ C1,1 = 1.
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Figure 8.7: Relative surface L2-errors and order of convergence for the diffusion on
a circle without signed distance property. The initial extended concentration is x2,
the error is measured after 10000 timesteps of size 0.00001. On the left, the same
polynomial basis has been used for both the density variable and its derivatives of the
concentration variable. On the right, the derivatives of c are resolved by polynomials
of one degree less. The width of the Narrow Band is 3 h.

This sample problem has been employed to compute the order of convergence of the
method developed, when the Level Set function is polynomial and the Narrow Band
defined as suggested above. The upper row in figure 8.7 illustrates the relative errors,
evaluated at time T = 0.1, for polynomial degrees 1 and 2, when starting with an initial
concentration of x2.

On the left, the same polynomial order has been employed both for the density variable,
and for the derivatives of the original concentration. This choice has been motivated
by the fact that the derivative is linked to the density variable by scaling with the
surface area element, which is not necessarily polynomial. The slopes of the resulting
linear regression lines are 1.67 for a first order discretization, and 2.53 for second order
polynomials. Results for mixed order polynomials are displayed on the right, and the
slopes of regression lines are 1.62 for first order polynomials, and 2.6 for second order
polynomials. As a second test case, the diffusion of a constant initial concentration on
an ellipse is investigated, i.e. a problem with a steady solution over all time steps. The
problem is discretized by polynomial bases of degree 1 and 2 and the Narrow Band
has width 3 h.

The relative errors after 1000 time steps of size 0.0001 are depicted by figure 8.8. The
diagram illustrates the numerical error when the initial concentration is given by the
Level Set function itself, i.e. by a second order polynomial c0 = 2.0 − x2/a2 − y2/b2. The
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Figure 8.8: Results of the diffusive problem on an ellipse for the steady solution
c0 = 2.0 − x2/a2 − y2/b2. The width of the Narrow Band is given by 3 h.

resulting slopes of the computed regression lines are 1.44 for polynomial degree 1, and
3.62 for degree 2. To conclude, some examples of three-dimensional computations of
unsteady surface transport without convection are illustrated by figures 8.10 and 8.9.

Figure 8.10 depicts the numerical solution of the unsteady transport problem without
convection on a slightly modified Enzensberg star surface, showing how the developed
method can be easily applied to topologically more complex surfaces. The surface is
embedded by the Level Set function

Φ = 75 (x2y2 + y2z2 + x2z2) − (0.5 − x2 − y2 − z2)3 − 40,

scaled by a factor 0.01. The density variable is discretized by first order polynomials,
while the Level Set function is resolved by fifth order polynomials. Starting with an
initial distribution of c0 (x) = x2/(x2 + y2 + z2), with evolving time, the solution diffuses
uniformly on the surface, as expected.

Figure 8.9 illustrates the numerical solution of the purely diffusive problem on a
cube for various timesteps, indicating that the presented method is even suitable
for surfaces with edges. The implicit time stepping scheme starts from an initial
distribution that is given by the Level Set function of the previous problem, i.e. c0 =
75 (x2y2 + y2z2 + x2z2) − (0.5 − x2 − y2 − z2)3 − 40, and generates a concentration that
diffuses uniformly with proceeding time.

The presented results show that the diffusive surface transport problem is successfully
discretized and numerically solved by the method developed in the context of the
present work. The method has been investigated for first and second order polynomial
bases with respect to the density variable. The method has also proven suitable for the
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numerical solution of the diffusive transport on complex surfaces and surfaces with
corners. With respect to accuracy, in the two-dimensional results presented, raising the
polynomial degree by one results in an increase of the order of convergence by one,
which meets the expectations of a DG scheme.

Orders of convergence of most of the computed numerical errors are suboptimal,
though. This can be explained by different influence factors.

First, numerical accuracy is of interest on the surface itself where the grid refinement
imposes a proportional increase in degrees of freedom. Correspondingly, L2-errors on
the surface itself have been considered in the present investigation. On the Narrow
Band, however, where the extended equation is solved numerically, a grid refinement
does not impose the same proportional increase. For this reason, convergence rates
based on the error on the surface may be lower than errors measured in the Narrow
Band cells. In fact, the contraction of the Narrow Band for each grid size influences the
band width and condition number of the computational matrix. The impact factor both
of cells with partial volumes and of artifical boundaries increases. At the same time,
the relation of the total number of degrees of freedom employed in the computation to
the degrees of freedom that can be associated with the zero-isocontour of the Level Set
decreases.

Second, the cell agglomoration introduces a certain inaccuracy with all of the test
problems. As the boundaries of the Narrow Band are distinct for each grid partition-
ing, this inaccuracy is unevenly distributed for different grid sizes, in particular for
second order polynomials. This fact causes a notable deviation of data points from the
regression lines. The presence of partial cell volumina has another negative impact.
The penalty parameter employed in the Brezzi scheme depends on the grid size, which
cannot be accurately determined for cells with partial volumina.

Futhermore, when approximating the problem by second order polynomials, accuracy
is notably higher for the steady settings. This behavior may be attributed to the
simple first order time stepping scheme. A second order multistep method ought
to raise accuracy for the unsteady case. Nevertheless, in the presence of variable
coefficients and an alternating and evolving computational domain, multistep methods
are intricate to implement.

8.4 Surface Transport Equations including both Convec-
tion and Diffusion

The complete convection-diffusion equation is treated by a first order differential
operator splitting scheme. Its implementation is based on the simplest form of the
conservation laws constructed in Chapter 5, i.e. on equation (5.27), given by

∂

∂t
(c ∥∇Φ∥) + ∇ ⋅ (u c ∥∇Φ∥) = 1

Pe(s)
∇(∥∇Φ∥ (P (s)∇c)) in Σγ

h. (8.20)
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The operator splitting discretizes the diffusive part by an implicit scheme, and the
convective part by an explicit scheme. Both methods presented in the previous sections
are essential to the operator splitting, as they constitute the fundamental tools for
treating the split equation. The algorithm for performing timestep k + 1, i.e. computing
the numerical solution at time tk+1 is structured as follows:

1. The Level Set equation is solved first, yielding Φh(tk+1) from Φh(tk). Based on
the updated Level Set function Φh(tk+1) of the interface, the Level Set functions
embedding the implicit boundaries, ΦIn

h (tk+1),ΦOut
h (tk+1) are computed, by shift-

ing the function Φh(tk+1) by the band width. In this way, the new Narrow Band
is obtained.

2. As the underlying curved domain of the diffusive part of the equation has been
updated within the current timestep, an extension of the density variable Ψh(tk)
is necessary. Values in the outer cells of the Narrow Band are deleted before
performing an extension of the interfacial values to the entire Narrow Band. The
extension is obtained by performing a suitable number of pseudo-timesteps in
the PTM.

3. The convective part of the equation, given by equation (8.4), discretized by an
explicit scheme, is solved for the density variable Ψh(tk+1/2) by applying the
scheme presented in Section 8.2 and using Ψ(tk) as an initial value. Note that,
for the temporal discretization, the time step size is still given by dt = tk+1 − tk.

4. The diffusive part, given by equation (8.5), is discretized in time by an implicit
scheme, is solved for the density variable Ψ(tk+1) by the algorithm presented in
Section 8.3. The density variable yields the concentration variable c(tn+1) of the
current timestep. As a remark, note that the Level Set function of the surface, as
well as quantities depending on the Level Set function are not updated in the
intermediate step, as only the diffusion operator depends on the updated Level
Set function.

This chapter on numerical results is rounded off by some 2D-examples of the convection-
diffusion problem. The first example is illustrated by figure 8.11. A tangential velocity
field imposes a counterclockwise rotation of the circle, i.e. the surface remains steady.
The computation starts with an initial concentration

c(x, y) = 4.0 x y
(x2 − y2)(x2 + y2) ,

with a diffusion coefficient of 0.1 and 50 pseudo-timesteps of re-extension after each
timestep. With proceeding time, the concentration profile is rotated in counterclockwise
direction and diffuses continuously.

In a second example illustrated by figure 8.12 a small deformation is imposed on the
initially circular surface by the velocity field u = (cos(x), y sin(x)). The computation
starts from the initial concentration
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c(x, y) = r − 0.75 + (8.0 x y(x2 − y2)((x2 − y2)2 − 4.0 x2 y2)
r8

) sin(1.0)(r − 0.5)(1.0 − r),
where r = √x2 + y2 and is performed 150 timesteps of size dt = 0.001. The underlying
domain is discretized by a Cartesian mesh consisting of 30 × 30 grid cells, the density
variable by third order polynomials and the Level Set function by forth order polynomi-
als. After the computation of each time step, a re-extension is achieved by performing
10 timesteps. This example shows that the method also supports the use of polynomial
bases of degrees higher than two. Furthermore, the method may indeed applied to
problems that include convection and diffusion on an unsteady, deforming surface. A
numerical error analysis has not been performed yet and should be employed in order
to investigate the influence of different factors, such as width of the band, choice of the
penalty parameter and the influence of the pseudo-timestepping scheme.
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(a) Initial setting (b) Solution at t = 0.5

(c) Solution at t = 1.0 (d) Solution at t = 1.5

Figure 8.9: The purely diffusive problem on a cube is solved by the Eulerian DG
approach, indicating that the presented method is even suitable for surfaces with edges.
Starting from an initial distribution c0 = 75 (x2y2 + y2z2 + x2z2)−(0.5 − x2 − y2 − z2)3−40,
the concentration diffuses uniformly on the non-smooth surface. The cube itself is
represented by a Level Set function, resolved by polynomials of degree five. The
illustrated solution is based on first order polynomials, a grid resolution given by 2700
cells.
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(a) Initial setting (b) Solution at t = 0.1

(c) Solution at t = 0.2 (d) Solution at t = 0.5

Figure 8.10: The purely diffusive problem on Enzensberg’s stern surface is numerically
solved by the Eulerian DG approach. For the discretization of the density variable,
first order polynomials are employed, the Level Set function is resolved by fifth order
polynomials. The computational grid given by 2700 cells and a diffusion coefficient
equal to one. Starting with an initial distribution of x2/(x2 + y2 + z2), with evolving
time, the solution diffuses uniformly on the surface, as expected.
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(a) Initial concentration (b) Concentration after 50 timesteps

(c) Concentration after 100 timesteps (d) Concentration after 150 timesteps

(e) Concentration after 200 timesteps (f) Concentration after 250 timesteps

Figure 8.11: Solution of the surface convection-diffusion problem on a Narrow Band
around a circle, which is indicated by the isocontour in black. The tangential velocity
field causes a counter-clockwise rotation, the diffusion coefficient is given by 0.1. The
equation is discretized by second order polynomials for the density variable on 900
grid cells.
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(a) Initial concentration (b) Concentration after 30 timesteps

(c) Concentration after 60 timesteps (d) Concentration after 90 timesteps

(e) Concentration after 120 timesteps (f) Concentration after 150 timesteps

Figure 8.12: Solution of the surface convection-diffusion problem on a Narrow Band
around a circle, which is indicated by the isocontour in black. The velocity field causes
a slight deformation of the circle, the diffusion coefficient is given by 0.05. The equation
is discretized by third order polynomials for the density variable on 900 grid cells.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



110 The Eulerian DG Algorithm and Numerical Results

8.5 Interfacial transport Stokes flow around a spherical
droplet

To conclude this work, the presented forms of interfacial surfactant transport equations
are solved numerically for a Stokes flow around a spherical bubble. This corresponds
to the setting described in chapter 6. In the results presented, a steady flow field is
prescribed, i.e. the problem is not coupled to any numerical solution of the Stokes
equations. Both the exchange of surfactant with the bulks and the influence on surface
tension are neglected, i.e. the flow field given by identities (6.3) and (6.2) is assumed to
remain unchanged. The viscosities have been chosen to present an air bubble in water
(at a temperature of 20○ and a pressure of 1 bar), i.e. ηi = 0.018mPa s and ηo = 1.0mPa s.

8.5.1 Purely diffusive transport

The first numerical example is given by the diffusion-dominated form of the interfacial
transport problem. A diffusion coefficient equal to one is assumed. Figure 8.13
illustrates a numerical solution at different time steps which has been obtained by a
first order polynomial approximation on a computational computational grid of 2700
Cartesian cells. Figure 8.13 visualizes the evolution of the surfactant concentration
profile along the θ-coordinate for a fixed value of the azimuthal angle ϕ = 0. The
numeric solution for an initial distribution of cos(θ)2 is plotted in blue, while the black
dotted line indicates the numerical solution presented in section 6.3.3.

The numeric solution remains symmetric with respect to the axis given by θ = 0, i.e.
the equator of the sphere, where it assumes its minimum. The curves of the exact and
the numerically computed solutions appear to be nearly identical for different time
steps. With evolving time, the curve flattens and the numerical solution approaches
the neighbourhood of 1/3, which is the exact steady solution derived in section 6.3.3.

8.5.2 Surfactant transport including advection

Next, the interfacial transport problem is considered for large Péclet numbers due to a
low diffusion coefficient. In this case, the diffusivity of the surfactant can be neglected
and the transport equation is purely convective.

This is a setting characteristically assumed in stagnant cap models, considered, for
instance, by Sadhal and Johnson (1983), Johnson and Sadhal (1983), or Harper (1982).
The transport problem is numerically discretized by the scheme presented in section
8.4, using second order polynomials in a domain of 30 × 30 × 30 Cartesian grid cells.

Figure 8.14 illustrates how the surfactant is driven to the cap opposed to the inflow,
starting with a uniform and constant initial distribution. For illustration, the surface of
the drop is colored by the computed surface excess concentration. More in detail, figure
8.15 depicts the evolution of the surfactant concentration profile along the θ-coordinate
for a fixed value of the azimuthal angle ϕ = π/4.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Interfacial transport Stokes flow around a spherical droplet 111

cs(θ)

θ
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.0

0.6

0.8

1.0

(a) Initial setting

cs(θ)

θ
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.0

0.6

0.8

1.0

(b) Solution at t = 0.05
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(d) Solution at t = 0.2

Figure 8.13: The purely diffusive problem is solved by the Eulerian DG approach
presented in this thesis, starting with an initial distribution of cos(θ)2. The numerical
solution along the θ-coordinate is represented by the blue plot. It fits well with the
exact solution derived in section 6.3.3, which is indicated by the black dotted line for
comparison.

The concentration develops a profile which is also characteristic in stagnant cap models.
Surfactant molecules are swept from the inlet to the back of the droplet, i.e. its
minimum is found at the inlet (θ = π). It accumulates around the rear end of the drop
(i.e. θ = 0) where it obtains its maximum. This setting is computationally important
when intending to solve the stagnant cap model by considering additional surfactant
exchange with the bulks. To conclude, the surface diffusion coefficient is modified
with a resulting Péclet number of 0.2, such that the interfacial surfactant transport
including both advection and diffusion is solved numerically. The problem has been
discretized by first order polynomials in a domain of 30 × 30 × 30 grid cells and second
order polynomials for the Level Set function. A re-extension of 10 pseudo-timesteps
(with a step size of 0.001) is performed after each time step.

The numerical solution is depicted by figure 8.16 illustrates the characteristic surfactant
distribution in the given setting which has been described in 6. As in the previous
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Figure 8.14: Surfactant transport without diffusion on a rigid sphere in a Stokes flow
setting without exchange with the bulks. Characteristically, starting from a uniform
distribution, the surfactant is driven to the pole opposed to the inlet of the flow. The
problem has been discretized by second order polynomials in a domain of 30 × 30 × 30
grid cells.
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Figure 8.15: Numerical solution of the interfacial transport on a rigid sphere in a
creeping flow setting without diffusion. The plot shows the profile of the surface
excess concentration at ϕ = π/2, along the polar angle using a cubic interpolation.

example, starting from a uniform distribution, the surfactant molecules are swept to
the rear end of the droplet, i.e. to the pole opposed to the inlet of the flow, where
surfactant concentration attains its maximum. With evolving time, it approaches the
steady solution that has been derived in Chapter 6, marked by the black dotted line.

Comparing this setting (Pe = 50) with the previously shown case of Pe = 0, it can be
clearly noticed that the extremal points of surface excess concentration of the surfactant
are less distant from the curve, which is attributed to the effects of diffusion.
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Figure 8.16: Numerical solution of the interfacial transport on a rigid sphere in a
creeping flow setting without exchange with the bulks. The plot shows the profile
of the surface excess concentration at ϕ = π/2, along the polar angle using a cubic
interpolation.
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9 Conclusion

Processes that are governed by PDEs on surfaces, or on more general submanifolds,
appear in various areas of research. The need to numerically simulate these processes
motivates the computational solution of surface differential equations, and hence, the
subject of this work. Examples may be found in image processing, biochemistry, and
fluid mechanics and other fields of research. With a focus on fluid mechanics, the
interest of the present work is motivated by transport processes on phase interfaces,
for instance, the transport of surface active substances, such as soaps or emulsifiers.

The transport of solute on two-phase interfaces requires a specific numerical treatment
of convection-diffusion equations defined on surfaces that may change rapidly with
respect to geometry or topology. In the numerical context, this is the most complex
type of surface differential equation, as the problem domain may be both moving
and deforming. The surface differential operators involved in the interfacial trans-
port equation require a thoughtful approximation that is distinct from the available
discretizations of standard differential operators. Evolving interfacial physical quanti-
ties, such as surfactant concentration, along a moving deformable surface is a highly
challenging task.

For some decades, numerical algorithms for discretizing and solving surface differen-
tial equations have mimicked the numerical algorithms available for the solution of
standard differential equations in topologically simple domains. Surfaces have been
tracked by Lagrangian grids and surface differential equations resolved in a locally
parametric form by all standard methods ranging from finite differences over finite
volume to finite element methods. However, it has been realized that algorithms based
on Lagrangian methods reach their limits in fluid mechanical applications. Against
this background, in recent years, research on solving surface or interfacial problems
has entered new paths, attempting to pursue an Eulerian discretization. As a striking
advantage of this Eulerian approach, an implicit representation of the interface by a
Level Set function can be maintained. Traditional Lagrangian methods, in contrast,
require a tedious reconstruction of the interfacial mesh and, when considering addi-
tional exchange with the bulk phases, a resolution of an adapted mesh for the bulk
phases that is aligned with the interface.

The method developed in the present thesis does not hold on to traditional Lagrangian
approaches and does not treat interfacial transport problems by establishing an inter-
facial grid. Instead, it is inspired by these novel ideas and attempts to treat interfacial

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



116 Conclusion

problems on the basis of the given Eulerian grid. To the author’s knowledge, in this
context, it is the first Eulerian method that uses a Discontinuous Galerkin (DG) scheme
for solving interfacial convection-diffusion equations. In this way, it incorporates fa-
vorable features of both the Finite Element (FE) and the Finite Volume (FVM) methods
by combining polynomial approximations of arbitrary order with the use of numerical
fluxes to approximate integrals over the cell boundaries.

In the Eulerian approach employed here, surface differential operators are expressed
in terms of global derivatives. The surface differential operators are identified with
the parts of standard differential operators tangential to the surface, or interface,
respectively, using the surface projection tensor. All interfacial physical quantities,
such as the surfactant concentration, which are only defined along the interface, are
extended off the interface into a higher dimensional domain. The interface S itself is
captured implicitly as the zero-isocontour of a Level Set function Φ, which is advected
by the fluid flow. In this context, the surface normal n(s) is obtained by the normalized
gradient of the Level Set function.

To reduce the amount of computational cost caused by the additional dimension,
computations are restricted to a small subgrid only. These selected cells form a tube
around the interface, which is called the Narrow Band. In this way, sufficient regularity
of the Level Set function (∇Φ ≠ 0) is assured. The extended physical quantities are then
evolved in this Narrow Band. Thus, the evolution of the physical quantity investigated
along the interface (zero level-set contour) is embedded in the evolution of the extended
quantity in the Narrow Band. As an advantage of this approach, the evolution of the
extended physical quantity can be easily performed using standard numerical methods
on the same Eulerian grid that is used for the computation of the flow field. No further
explicit discretization of the interface is necessary.

The Narrow Band itself continuously moves or deforms along with the Level Set
function, and therefore, it is not created as an independent physical grid, but it is rather
induced from the full computational domain. In the method presented, the restriction
of discrete quantities is achieved through a selective storage allocation and extraction
of the degrees of freedom associated with the cells that are included in the Narrow
Band. In particular, this approach takes advantage of the local band structure of the
matrices in a DG approximation. Provided that numerical fluxes are suitably defined,
for each cell in the Narrow Band, only those matrix blocks of the operator matrix need
to be considered that are associated with the cell itself, or with its neighbouring cells.

In the Eulerian formulation, however, the conserved form of the interfacial balance
law is destroyed by the extension of the interfacial differential equation to the three-
dimensional domain. This fact has been identified as an obstacle at the initial project
phase. From the viewpoint of numerical accuracy, the conserved form of a differential
equation is always favorable to reduce numerical errors and preserve the quantity
numerically. As one achievement of the present work, infinite sets of conservation
laws have been discovered by using the direct construction method, i.e. by applying
local conservation law multipliers (Kallendorf, Cheviakov, Oberlack, and Wang, 2012).
The obtained families of conservation laws yield a fully conserved form of the system
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of equations under consideration. This involves the continuity equation and the Level
Set equation, which are naturally in conserved form for incompressible flows, and
the surface transport equation in extended form, both with and without diffusion. In
particular, each equation becomes a divergence-type conservation law. The conserved
forms obtained for surfactant transport dynamics equations were further generalized
in section 5.3.3 to provide conserved forms of the source-free transport equation (5.5)
of any excess surface physical quantity, where the non-convective flux is tangential to
the surface.

These conserved forms constitute a well-suited basis for discretizing the interfacial
transport equation by a DG scheme, while maintaining an implicit representation
of the interface. Within the scope of this work, simplest forms of the conservation
laws discovered replace the interfacial transport problem and are then treated by an
Eulerian DG approach. The convection-diffusion equation is discretized by a simple
operator splitting scheme, which motivates to solve the purely convective and the
purely diffusive parts of the conserved form independently. In fact, both the convective
and the diffusive part of the conservation law correspond to the conserved forms of
the purely convective and purely diffusive interfacial equations.

In the present work, an MPI parallelized and modular package for the numerical
simulation of interfacial transport problems has been designed. The library, developed
in C#, discretizes interfacial convection, diffusion as well as convection-diffusion
equations by a DG method, and is integrated into the existing software framework
BoSSS Kummer (2012).

Subsequently, computational examples of all of the three forms of surface transport
equation are developed and solved for both two-and three-dimensional underlying
domains. Based on exact solutions to the two-dimensional examples, a study of con-
vergence is presented for first and second order polynomial bases, where the purely
convective equation, both on a steady and on a moving surface, as well as the purely
diffusive equation on a steady surface are considered. In addition, in the case without
diffusion, a study of convergence is also provided for zeroth order polynomials. Illus-
trations of sample problems are provided for problems of all mentioned complexities,
i.e. for steady, but complex, moving as well as moving and deforming surfaces.

Against the background of the numerically computed results, the constructed Eulerian
DG method can be assessed in detail as follows.

New opportunities have opened to treat purely convective surface transport problems
easily, by discretizing a plain convection equation on the basis of the Eulerian grid.
The concentration is then linked to the computed density variable by scaling with the
surface area element, obtained from the Level Set function. The purely convective
interfacial transport is of practical relevance in applications where diffusion is generally
neglected, for instance, in case of the stagnant cap model. Furthermore, operator
splitting techniques generally require the solution of the convective part of the problem
in the explicit time step. The DG method, in contrast, is not only able to handle purely
convective equations, but also supports using polynomial bases of arbitrarily high
polynomial degrees. Errors computed for the test cases considered indicate that the
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presented scheme achieves optimal order of convergence (O(hp+1)) for zero, first and
second order polynomial bases.

The implementation of the diffusive part, in contrast, is a more challenging task.
For one part, the constructed conservation laws additionally involve the tangential
gradient of the concentration, which requires a treatment of variable coefficients in a
second order problem and additionally causes the problem to degenerate in normal
direction. Furthermore, the lack of physical boundary conditions constitutes a clear
challenge. Inspired by a method presented by Dziuk and Elliott (2009), the author
utilised a natural boundary condition, demanding that the tangential gradient does
not yield any flow in orthogonal direction to the Level Set isocontours. This simple
requirement, however, involves curved boundaries, given by isocontours of the Level
Set function, parallel to the actual surface, or interface, respectively. The solution of the
purely diffusive problem has been discretized by basis polynomials up to second order.
It needs to be remarked that, in a similar fashion, Dziuk and Elliott (2009) use unfitted
finite elements that adapt with a moving, three-dimensional Narrow Band around
the interface for discretizing the Eulerian form of the interfacial transport equation.
Deckelnick, Dziuk, Elliott, and Heine (2010), however, fail to generalize their approach
to polynomial degrees greater than one. The authors point out to the fact that the
degenerate conditioning of the matrices can be removed by diagonal preconditioning
only for piecewise linear basis polynomials, while it is not as easily treated in the
case of higher order unfitted elements. In this respect, the method developed within
the present work constitutes a significant improvement. Furthermore, although both
approaches employ the same boundary conditions, the discretization by unfitted finite
elements presented by Elliott and Dziuk approximates the boundaries of the Narrow
Band only linearly, while arbitrary polynomial orders may be used for resolving
boundaries in the method presented in this thesis. When discretizing by first order
polynomials, numerical tests indicate optimal order of convergence, while for some of
the examples, an approximation by second order polynomials is slightly suboptimal.
It may be concluded that in this case, further effort needs to be invested in order
to optimize condition numbers of the operator matrix in presence of the partial cell
volumina. Nevertheless, it should be pointed out that a second order discretization of
the surface transport is an accomplishment not achieved by other authors. Beyond,
it is illustrated that the method can be applied to surfaces with kinks, such as a cube,
and surfaces of more intricate topology.

Finally, the complete convection-diffusion equation can be treated by employing a first
order differential operator splitting, where the diffusive and convective parts of the
equation are discretized by the previous schemes. Some 2D-examples are given for
the performance of the method; an error analysis is yet to be performed. As the Level
Set function moves and deforms with each time step, both the implicit boundaries of
the curved, computational domain and the Narrow Band move and deform. For this
reason, the computational, i.e. the density, variable, needs to be extrapolated to new
grid cells in the Narrow Band, or re-extended within the boundary cells, respectively,
while being conserved on the interface itself. For this purpose, a pseudo-timestepping
scheme is adopted, and a new LDG fashioned DG discretization is presented. In con-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



119

trast to a constructive extrapolation of interfacial values, for instance, by a closest point
approach, this method is suitable in a multi-processing environment. With respect
to the conservation of the variable on the interface, numerical experiments indicate
a nearly optimal order of convergence for zero, first and second order polynomial
bases with respect to the conservation of the variable on the interface. The pseudo-
timestepping scheme achieves a slightly better order of convergence than a Closest
Point approach. In contrast, it is suitable for variable widths of the Narrow Band,
and most importantly, it can be easily applied in a multi-processing computation.
Numerical results are concluded by a simulation of the interfacial convection-diffusion
transport on a spherical surface in a two-phase immiscible incompressible Stokes flow
are developed.

Within this context, exact solutions are developed (Kallendorf, Fath, Oberlack, and
Wang, 2015). In the present investigation, the deformation of the droplet, the Marangoni
effect as well as surfactant exchange with the bulks have been neglected. In contrast to
known previous results, unsteady surfactant transport on the interface that includes
diffusion, or is even dominated by diffusion, is covered. With respect to the most
general form of the equation, the surface excess concentration derived here combines
exponential functions with Heun’s confluent functions. Consequently, general prop-
erties can be concluded, as, in particular, the steady state solution to the problem.
Furthermore, solutions to the purely diffusive equation can be constructed using Leg-
endre polynomials. In a potential further investigation, when the Marangoni effect, i.e.
the influence of surfactant on surface tension and thereby on the flow field, is taken
into account, the set of solutions to the unsteady interfacial transport obtained in the
present study can be employed as the base state. In a setting with large Biot numbers,
i.e. when the ratio of surfactant exchange with the bulk phases is high, or when the
Marangoni number is small, approximative analytic solutions can be achieved by a
perturbation analysis.

Like other research works pioneering a new method, the present work is focussed on
the construction and performance of the numerical algorithm and cannot cover the
application that has motivated its development. From the practical point of view, inter-
facial transport equations, for instance, of surfactant, can be successfully discretized
and solved by the Eulerian DG method introduced. For physical relevance, a coupling
to a two-phase DG solver by considering a surfactant dependent surface tension is
still necessary. In fact, the numerical simulation of two-phase flows by a Level Set
DG method is still a topic of on-going research. In a first step towards the physical
model, the present method may be applied to models of soluble surfactants, i.e. by
coupling the interfacial transport equation (2.46) to the transport equation in the bulks
(2.45) through the source term (2.47) and identity (2.48). The transport problem in the
bulk itself can be discretized by standard DG methods (i.e. LDG or IP-methods for
the diffusive part), while boundary condition (2.48) on the Level Set isocontour can be
incorporated in the same fashion as condition (8.14) on the boundary of the Narrow
Band.

Other processes which are governed by surface PDEs have been stated in the intro-
duction, such as denoising, deblurring and smoothing in image processing or mor-
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phogenesis in biochemistry. Processing image data obtained from 3D scans involves
the solution of surface differential equations. For instance, smoothing of image data
can be achieved by solving a surface diffusion equation, which describes the gradient
descent flow of harmonic energy. In recent years, there has been some research on
this topic based on a Level Set representation of the interface, for example, in brain
imaging, see also Mémoli, Sapiro, and Thompson (2004). In this context, the present
method may be applied. Models of morphogenesis have been used to investigate
the growth of distinct organisms’ structures. In the simplest model developed by
Cummings (1989), an axisymmetric growth, starting from an initial spherical shape is
considered and has been further developed by Leung and Berzins (2003b). The surface
evolution of the pair of morphogenes is given by surface reaction-diffusion equations
with linear source terms. These equations can be treated by the method presented here,
as the simplest conservation law of the purely diffusive problem holds for unsteady
surfaces, even in absence of the convective term. Changes in the concentration of these
chemical compounds then induce a growth of the surface structure because Gauss and
mean curvatures are assumed to be functions of the morphogene concentrations. With
respect to the present method, the surface evolution needs to be resolved by finding an
intelligent way for constructing a Gauss and mean-curvature dependent Level Set.
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FERREIRA, V. G., . . . MCKEE, S. (2004). A front-tracking/front-capturing method
for the simulation of 3D multi-fluid flows with free surfaces. Journal of Compu-
tational Physics, 198 (2), 469–499. doi:10.1016/j.jcp.2004.01.032

DECKELNICK, K., DZIUK, G., ELLIOTT, C. M., & HEINE, C.-J. (2010). An h–narrow band
finite–element method for elliptic equations on implicit surfaces. IMA Journal of
Numerical Analysis, 30 (2), 351–376. doi:10.1093/imanum/drn049
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A Appendix

A.1 Point Symmetries of the Surfactant Transport Equa-
tions

In the current section, standard notation is used to denote symmetries. For details,
see Bluman, Cheviakov, and Anco, 2010 or any text on symmetries of differential
equations. These results have been given by A.Cheviakov in Kallendorf, Cheviakov,
Oberlack, and Wang, 2012.

1. The case of no diffusion, α = 0. In this case, the surfactant transport equations
(5.14) have an infinite set of point symmetries spanned by the following families of
infinitesimal generators.

● Translations in space and time:

Xj = ∂

∂xj
, j = 1,2,3; X4 = ∂

∂t
.

● Dilations
X5 = t

∂

∂t
+ xi ∂

∂xi
.

● Generalized scalings

X6 = h1(Φ) ∂

∂Φ
, X7 = h2(Φ)c ∂

∂c
, X8 = f(t) ∂

∂t
− f ′(t)ui ∂

∂ui
.

● The Galilean group

X9 = g1(t) ∂

∂x1
+g′1(t) ∂

∂u1
, X10 = g2(t) ∂

∂x2
+g′2(t) ∂

∂u2
, X11 = g3(t) ∂

∂x3
+g′3(t) ∂

∂u3
.

● The generalized rotation around the x3 axis , given by

X12 = k1(t)(x2 ∂

∂x1
− x1 ∂

∂x2
+ u2 ∂

∂u1
− u1 ∂

∂u2
) + k′1(t)(x2 ∂

∂u1
− x1 ∂

∂u2
) ,
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and the corresponding generalized rotations around the axes of x1, x2 given by
X13,X14 involving arbitrary functions k2(t), k3(t) and cyclic index permutations
1 → 2 → 3 → 1. [The generalized rotations X12,X13,X14 include usual rotations
when the corresponding ki(t) = 1, i = 1,2,3.]

In the above generators, f(t), gi(t), hi(t), ki(t) are arbitrary functions.

2. The case of nonzero diffusion, α ≠ 0.

In the case when the surface diffusion is present, 1/Pe = α ≠ 0, the surfactant transport
equations (5.23) also have an infinite set of point symmetries, spanned by the following
infinitesimal generators:

X1,X2,X3,X4,X6,X7,X9,X10,X11,X12,X13,X14,

from above, and an additional scaling symmetry

X15 = 2t
∂

∂t
+ xi ∂

∂xi
− ui ∂

∂ui
.

[Note that symmetries X5 and X8 hold when α = 0 but do not hold when α ≠ 0.]
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