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Chapter 1

Introduction

The Stochastic Dynamic Distance Optimal Partitioning (SDDP) problem -
an Operations Research problem - was the motivation for the investigations
presented in this book.

As evident from the name of the problem, investigations in two different
mathematical fields were necessary for its treatment, i.e. in stochastic dy-
namic programming and in combinatorics (”Partitioning”).

This book therefore, apart from the introduction, covers the following
three chapters

2 DA Stochastic Dynamic Programming with Random Disturbances,

3 The Problem of Stochastic Dynamic Distance Optimal Partitioning
(SDDP),

4 Partitions-Requirements-Matrices (PRMs).

DA (”decision after”) stochastic dynamic programming with random dis-
turbances is characterized by the fact that these random disturbances are
observed before the decision is made at each stage.

In the past only very moderate attention was given to problems with this
characteristic (see also Section 1.1).

Examples of DA models are SDDP problems and certain inspection-replacement
problems. (Also refer to connections with k-server problems and metric task
systems at the end of Section 1.2.)
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In Chapter 2 specific properties of DA stochastic dynamic programming
problems are worked out for theoretical characterization and for more effi-
cient solution strategies of such problems.

In order to understand this chapter, and the book altogether, previous
knowledge about stochastic dynamic programming and Markov decision
processes (MDPs) is useful, however not absolutely necessary since the con-
cerned models are developed from scratch. (Basic knowledge can be found
in [7], [12], [28], [16] or [31].)

In Chapter 3 we formulate and discuss in detail the problem of Stochastic
Dynamic Distance Optimal Partitioning (SDDP).

SDDP problems are extremely complex.
Superordinately regarded, SDDP problems are DA stochastic dynamic

programming problems (Stochastic Dynamic DP).
It requires a certain initial effort, however, in order to compute the real in-

put data for the DA stochastic dynamic programming problem (SD Distance
optimal P).

Furthermore, the problem shows combinatorial aspects (SDD Partitioning).
The understanding for the formulation of the problem and the basic meth-

ods of its solution requires knowledge from Section 2.1 (at least from the
beginning of this section) and absolutely from Section 2.3.

However, an important statement concerning certain SDDP problems is
proven at the end of Chapter 4, only after several combinatorial considera-
tions.

Partitions-requirements-matrices (PRMs) (Chapter 4) are matrices of tran-
sition probabilities of SDDP problems which are formulated as Markov de-
cision processes (MDPs).

PRMs ”in the strict meaning” include optimal decisions of certain SDDP
problems, as is shown toward the end of Chapter 4.

PRMs (in the strict meaning) themselves represent interesting (almost
self-evident) combinatorial structures, which are not otherwise found in lit-
erature.

We therefore ensure that the treatise of Chapter 4 can essentially be un-
derstood independent of Chapters 2 and 3.
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if one is only interested in PRMs.

Retrospectively, in relation to the topic of ”optimal dominant policies”
of MDPs, PRMs in the strict meaning include policies of certain SDDP
problems for which the ”condition of dominance” is typically infringed on,
however only to a slight extent such that a generalization of the concept of
”dominant policies” seems possible.

We now discuss the contents of the chapters in more detail.

1.1 Chapter 2 Contents

In Section 2.1 we introduce the DA model of stochastic dynamic program-
ming with random disturbances and give the corresponding functional equa-
tion.

In Section 2.2 a ”certainty equivalence principle” is formulated and also
proven in cases of DA models with linear dynamics and quadratic criteria.

Markov decision processes which result from DA models under appropriate
assumptions (DA MDPs) are investigated in Section 2.3.

In literature the state space, which is used for DA MDPs, is the cross
product set of the origin state space and the disturbance space.

However, such a state space is markedly larger than the original state
space.

Moreover, corresponding matrices of transition probabilities would have
many zeros, in general. An analogous situation is found in linear program-
ming: the classical transportation problem which can be solved by the Sim-
plex algorithm. Special solution methods for this transportation problem
have been developed (for example the ”MODI-method”, refer to [30], Sec-
tion 2.8.9).

In Section 2.3 we keep the origin state space when modelling DA models
as MDPs. In this way special structures of decisions follow.

Relationships to Chapter 3 specifically marked and they can be omitted
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corresponding ”neighbouring” decisions.

An effect of this structure of decisions is that optimal decisions imply
an ”almost-partial order” of the states, if the underlying average one-step
reward functions do not depend on the decisions.

Thus, the solution of a DA MDP by solving a corresponding parameterized
DA MDP in terms of a continuation of the solutions of the parameterized
problem arises as one variant for solving DA MDPs, for which the Howard
algorithm (policy iteration) is adapted (Section 2.3.4). For this, the un-
derlying internal costs and hence the average one-step reward functions are
considered in dependence on one parameter such that these costs do not de-
pend on the decisions for the initial parameter. Then, the adapted Howard
algorithm yields a purposeful computation for the solution. Furthermore,
under certain additional conditions, this solution method is a greedy algo-
rithm.

Section 2.3.3 includes special considerations of DA MDPs with ”distance
properties” and ”dominant policies”.

”Distance properties” can also be found in flow problems, metric task
system or k-server problems. In particular, we use the statements of this
section for SDDP problems.

The ”dominance of Markov chains” can be seen in Daley 68 (see [10]).
We can apply this concept to Markov chains which correspond to policies

of MDPs. However, if we want to transfer this concept to the MDPs them-
selves then convenient properties are also required for the average one-step
reward functions (and for the corresponding policies).

If dominant policies should also be optimal, further strong conditions
(which contain comparisons of any feasible policies with the dominant pol-
icy) are required.

The question which follows is: can we find (useful) MDPs which fulfil all
of these conditions?

A certain kind of equipment replacement models with dominant policies
can be found in Puterman [31]. However, in these models only two different
decisions are possible.

Here, the corresponding decisions are characterized by a ”simple” struc-
ture. The transition probability matrices differ by only two elements for
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The chance of finding MDPs with more than two decisions which fulfil
these conditions is better for MDPs which are based on DA models, due to
their decision structures.

Some SDDP problems have optimal dominant policies (Section 4.6.2.2).
For other SDDP problems we will consider the above-mentioned interest-

ing effect in which the conditions of dominance are infringed on, however
only to a slight extent.

The state spaces of SDDP problems are inherently finite. Therefore, we
will also concentrate our efforts on finite-state models in Chapter 2. Notes
on countable-state models can be found in Puterman [31]; more information
can be found here at the beginning of Section 2.3.

1.2 Chapter 3 Contents

In Chapter 3 the ”Problem of Stochastic Dynamic Distance Optimal Par-
titioning (SDDP)” is described in detail. Possibilities and methods of its
exact or approximate solution are discussed.

A problem in industry, which contains an optimal conversion of moulds,
supplied the origin of investigations.

Essentially, SDDP problems include the following practical facts:

· A fixed number of machines is given. (∗)
(Moulds are also conceivable.)

· Different types of parts can be produced by these machines. For this
purpose the machines have to be converted to states, which in accor-
dance with the types of the parts. Costs are incurred. (∗∗)

· The production takes place in successive stages (periods).

· In a single stage, one part (at most) can be produced by one machine.

· At each stage a requirement of parts (of several types) is to be met.

Initially, probability functions of the requirements are given.
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The realizations of the requirements are known at the beginning of
the stages (before decisions about conversions of machines have to be
made).

· The objective is to minimize the expected cost of the conversions over
all stages (or the average expected cost per stage). (To accomplish
this we must decide which machine should be converted into which
state in each stage.)

Thus, SDDP problems are DA stochastic dynamic programming problems.

More specifically, from a mathematical view point, we could designate this
practical problem as a stochastic dynamic transportation problem, since
throughout the stages feasible solutions of transportation problems must
be determined (see (∗∗)). (We have also used this designation in previous
papers.)

Here, however designating this problem as a stochastic dynamic distance
optimal partitioning problem (SDDP) seems more appropriate. Partitioning
means partitions of the number of machines into numbers of machines which
are in the same state. The number of machines is therefore constant (see
(∗)).

We will thus use this designation in the future.
(In this way we also emphasize the conceptual distinguishment of the des-

ignation of our problem from the typical stochastic dynamic transportation
problems, see Arnold [4].) 1

In this mathematical model, partitions of integers are the ”states” of the
DA stochastic dynamic programming problems (ordered partitions in gen-
eral and unordered partitions in the case of certain reduced SDDP prob-
lems).

Partitioning the integers as ”states” involves the combinatorial aspects
of SDDP problems, which can also be observed in ”matrices of transition
probabilities” and ”average one-step reward functions” of SDDP problems,
modelled as DA MDPs.

It can therefore, only in Chapter 4 by means of combinatorial consider-
ation, be shown that decisions for feasible states with least square sums of

1Further comments in connection with transportation problems and corresponding ref-
erences can be found in the preface of [22].
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their parts are in every case optimal for special SDDP problems.

Partitions of integers as states of DA MDPs require an enormous amount
of storage space for the corresponding computer programs.

Furthermore, many transportation problems have to be solved (see (∗∗))
in order to compute ”average one-step reward functions” for the SDDP
problems, modelled as DA MDPs.

Thus, investigations of inherent characteristic structures of SDDP prob-
lems are also important as a basis for heuristics.

Finally, we refer to connections of SDDP problems with other problems
in operations research and informatics such as stochastic dynamic facility
location problems (refer to [27]) or metric task systems and more specific
k-server problems, see [8], Chapter 10 and [5], for instance.

Since the current request, which is to be fulfilled, is known (and without
knowing the future requests) k-server problems can also be initially labeled
as a certain kind of DA model. Furthermore, distance properties are also
assumed for k-server problems. However, on-line algorithms are often the
center of attraction for consideration of k-server problems.

In contrast, we assume probability functions for requirements of SDDP
problems and consider SDDP problems as stochastic dynamic programming
problems with the aim to minimize the expected cost or the average expected
cost per stage. Typical characteristics of SDDP problems as stochastic dy-
namic programming problems, in particular Markov decision process, are
worked out.

Furthermore, let us note that we consider a number of machines which are
in the same state (in the terms of k-server problems, on the same point), in
general, and many machines must convert at the beginning of each equidis-
tant stage.

1.3 Chapter 4 Contents

Partitions-Requirements-Matrices (PRMs) are the main topic of Chapter 4.

If SDDP problems are modelled as DA MDPs, then the matrices of tran-
sition probabilities are called ”general PRMs”.
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The strict meaning of PRMs assumes that the costs of converting the ma-
chines into different types are identical and the requirements are identically
distributed. Then in every case decisions for feasible states with least square
sums of their components lead to PRMs (in the strict meaning).

The definition of PRMs (in the strict meaning) includes that PRMs can
be initially computed by means of simple enumeration, however a laborious
method. In addition, there is a main difficulty to deal with: No formulas
are known for most of the elements in PRMs. Due to this lack of formulas,
PRMs themselves represent interesting (almost self-evident) combinatorial
structures.

Properties which are associated with SDDP problems (modelled as DA
MDPs), besides the search for effective methods to compute the elements of
PRMs, are in the realm of investigation of PRMs (in the strict meaning) in
this chapter.

Thus in Section 4.6 so-called ”Poisson equations” are considered. That
their solutions are ”monotone” is shown in many cases. This means that,
in every case, decisions for feasible states with least square sums of their
components are optimal for the corresponding SDDP problems.

The above-mentioned SDDP problems, for which the ”condition of dom-
inance” is infringed on, however only to a slight extent, are also in this set
of SDDP problems.

A more detailed specification of the content of Chapter 4 can be found at
the beginning of this chapter.



Chapter 2

DA Stochastic Dynamic
Programming with Random
Disturbances

It is assumed for many concepts in the theory of stochastic dynamic pro-
gramming that random disturbances are observed after the decision is made
at each stage. (For instance, refer to Bertsekas [7], Schneeweiss [33], Dinkel-
bach [11].)

We denote problems for which this is assumed as ”Decision Before” mod-
els (DB models).

Conversely, we call problems where random disturbances are observed be-
fore the decision is made at each stage ”Decision After” models (DA models).

We began to take notice of DA models with our investigation of Stochastic
Dynamic Distance Optimal Partitioning (SDDP) problems 1 (see [19], [20],
[22]).

In general, not much information exists dealing only with DA modelled
problems.
We can find some, however, included in a book by Sebastian and Sieber [34].
Here, situations in which incomplete information is given are described by

1In previous papers, SDDP problems were termed stochastic dynamic transportation
problems, see also Section 1.2.
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with n = 1).
Dreyfus and Law give an example in relation to certainty equivalence

and also an example of a stochastic equipment inspection and replacement
model, where some components of the random vector are observed after the
decision is made (as usual) but some components are observed before (see
[12], pages 189 and 137).

(The k-server problems mentioned at the end of Section 1.3 also show the
”DA” property.)

On the one hand, DA models belong to the extensive group of stochastic
dynamic programming problems, but on the other hand DA models show
peculiarities.

The complexity of such problems (refer here also to the inspection/replacement
problem by Dreyfus and Law) is one aspect of the motivation for the further
consideration of DA models.

An introduction to the extended content of Chapter 2 has already been
given in Section 1.1.

2.1 The DA Model

In the following we use

N ∈ N ∪ {∞} the horizon

t ∈ {1, 2, ..., N} numbers of stages

S state space

s ∈ S states

B disturbance space

w ∈ B random disturbances

A decision space

x ∈ A decisions (or controls)

means of operators as starting points for further investigations (see [34], 2.7
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(Questions of measurability are skipped for the most part. In the beginning,
let S and A be Borel spaces and let the values of w be elements of a Borel
space. Afterward we often assume S ⊆ Zn (or Rn) and so on. We will use
the same notations for the random vectors and their realizations.)

The above data are written with the subscript t in order to attach the
time to the stages t.

Furthermore,

Kt : St × Bt × At → R+ stage - cost (or - return) functions

Gt : St × Bt × At → St+1 transition functions

denote (measurable) functions.

Decision spaces At can depend on previous states and disturbances.

We now introduce the basic problem of the DA model:

(DAP):

Let DA models be closed-loop optimization problems (i.e. feedback con-
trol, refer to [7], I, page 4 or [27], Section 2.4): More precisely, this means
that we postpone making the decision xt until the last possible moment
(time t) when the current state st and (in the case of a DA model) the re-
alization of the random vector wt will be known. We assume that an initial
state s1 ∈ S1 and an initial realization w1 of the random disturbances are
given.

A policy

F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )}
is to be found so that

E
w2,...,wN

(
N∑

t=1
Kt(st, wt, xt)|s1, w1

)
→ min

= K1(s1, w1, x1) + E
w2,...,wN

(
N∑

t=2
Kt(st, wt, xt)|w1, s2

)
→ min
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subject to the constraints

st ∈ St, t = 2, · · · , N,

xt ∈ At(st, wt), t = 1, · · · , N

(dependences At(st, wt) with st = {s1, . . . , st} are also conceivable),

st+1 = Gt(st, wt, xt), t = 1, . . . , N − 1 (dynamic constraints).

(The objective function always exists when Kt ≥ 0, but it may have the value
∞ without some additional assumptions.) We assume that the distribution
functions and the densities of the sequence of disturbances
{wt : t = 1, . . . , N} are known and that all (following) conditional expected
values exist.

Remarks 2.1.1. The dependence of At on wt is a peculiarity of DA models.
In DA models more information is known before the decisions are made at
each stage than in the usual DB models, namely xt ∈ At(st,wt).

a) b)

G
t

x
t

s

w
t

t
G

t

x
t

s

w
t

t

Feedback control Feedback control
DA models DB models

(with analogous symbols)

Figure 2.1.1.
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Of course DA models are also stochastic dynamic programming problems.
When a decision xt is made, then the realizations wt+1, wt+2, · · · of the dis-
turbances at the next stages are not known. The cost of the next stages also
depends on st+1 = Gt(st, wt, xt).

The Optimal Value Function for the Remaining Periods and the
Functional Equation

We use Ft = {xt(st, wt), xt+1(st+1, wt+1), . . . , xN (sN , wN )}, t = 1, ...,N for
any admissible policy F and the symbol wt : = (s1, w1, . . . , wt). (An ad-
missible policy F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )} means
xt′ ∈ At′(st′ , wt′) ∀ st′ ∈ St′ , ∀ t′ ∈ {1, ..., N}.)

The optimal value function for the remaining periods t, . . . , N is

ft(st , wt) = min
Ft

E
wt+1,...,wN

(
N∑

t′=t

Kt′(st′ , wt′ , xt′)|wt

)

= min
Ft

(
Kt(st, wt, xt)+ E

wt+1,...,wN

(
N∑

t′=t+1

Kt′(st′ , wt′ , xt′)|wt

))
(2.1.1)

for t = 1, ..., N − 1,

fN (sN , wN ) = min
FN

KN (sN , wN , xN )

for DA models.

We define
fN+1 ≡ 0. (2.1.2)

The functional equation

ft(st, wt) = min
xt∈At(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1)|wt)
)

,

(2.1.3)
t = N, . . . , 1

follows.
In the case that an optimal policy exists the functional equation can be

proved directly by means of mathematical induction (refer also to Sebastian
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and Sieber [34], general formula (2.188) and the upper remarks on page 147):

Proof.

fN (sN , wN ) := min
FN

KN (sN , wn, xN ) (for t = N).

Step 1.

(beginning of mathematical induction t = N − 1)

fN−1(sN−1, wN−1)

:= min
FN−1

(
KN−1 (sN−1, wN−1, xN−1) + E

wN

(KN (sN , wN , xN ) | wN−1)
)

(see (2.1.1) for t = N − 1)

= min
xN−1∈AN−1(sN−1,wN−1)

xN∈AN (sN ,wN )

(
KN−1(sN−1, wN−1, xN−1)+

E
wN

(KN (sN , wN , xN ) | wN−1)
)

= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

min
xN∈AN (sN ,wN )

(
E
wN

(KN (sN , wN , xN ) | wN−1)
)}

.

(Here min
xN∈AN (sN ,wN )

. . . means, in detail, min
xN (wN )∈AN (sN ,wN )

. . .

∀ wN ∈ BN .)

We now use the relation min
x

E{φ(x)} = E
{

min
x

φ(x)
}

.

= min
xN−1∈AN−1(sN−1,wN−1)

{
KN−1(sN−1, wN−1, xN−1)+

E
wN

(
min

xN∈AN (sN ,wN )
KN (sN , wN , xN ) | wN−1

)}
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= min
xN−1∈AN−1(sN−1,wN−1)

(
KN−1(sN−1, wN−1, xN−1)+ E

wN

(fN (sN , wN ) | wN−1)
)
.

Step N − t∗ :

Let us now assume

ft(st, wt) = min
xt∈A(st,wt)

(
Kt(st, wt, xt) + E

wt+1

(ft+1(st+1, wt+1) | wt)
)

(*)

for t = N, N − 1, . . . , t∗ + 1 (t∗ + 1 > 1).

We will then prove the functional equation for t = t∗ :

ft∗(st∗ , wt∗) := min
Ft∗

(
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

(
N∑

t′=t∗+1

Kt′(st′ , wt′ , xt′) | wt∗)
)

(see (2.1.1))

= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

(
Kt∗(st∗ , wt∗ , xt∗) +

N∑
t′=t∗+1

E
wt′ ,...,wN

(Kt′(st′ , wt′ , xt′) | wt∗)

)

= min
xt∗∈At∗ (st∗ ,wt∗ )

...
xN∈AN (sN ,wN )

{
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1,...,wN

(Kt∗+1(st∗+1, wt∗+1, xt∗+1)

+ E
wt∗+2,...,wN

(Kt∗+2(st∗+2, wt∗+2, xt∗+2)

+ · · · + E
wN

(KN (sN , wN , xN ) | wN−1) | . . . | wt∗+1) | wt∗)
}

= min
xt∗∈At∗ (st∗ ,wt∗ )

{
Kt∗(st∗ , wt∗ , xt∗)+

E
wt∗+1,...,wN

(
min

xt∗+1∈At∗+1(st∗+1,wt∗+1)
(Kt∗+1(st∗+1, wt∗+1, xt∗+1)
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+ · · · + E
wN

( min
xN∈AN (sN ,wN )

KN (sN , wN ) | wN−1) | . . . ) | wt∗
)}

.

Now, we use (*) for t = N,N − 1, . . . , t∗ + 1.

= min
xt∗∈At∗ (st∗ ,wt∗ )

(
Kt∗(st∗ , wt∗ , xt∗) + E

wt∗+1

(ft∗+1(st∗+1, wt∗+1) | wt∗)
)
. �

For subsequent sections we introduce here:

The ”DA Decision Functions” and Additional Definitions
(which are based on DA models)

In DA models the state st+1 is (for given st, wt) completely determined
by the decision (in contrast to DB models). Thus, we can introduce:
the DA decision sets

Ât(st, wt) := {s′ | s′ = Gt(st, wt, xt) with xt ∈ At(st, wt)} (2.1.4)

for given st ∈ St , wt ∈ Bt,

where s′ ∈ Ât(st, wt) are called feasible states,

internal costs

ĉt(st, wt, s
′) := min

{
Kt(st, wt, xt)|xt : s′ = G(st, wt, xt)

}
with s′ ∈ Ât(st, wt)

(2.1.5)

and DA decision functions

d̂t : St × Bt → St+1

with d̂t(st, wt) = s′ ∈ Ât(st , wt).
(2.1.6)

Finally, we use

Definition 2.1.1. The set of DA decision functions is the set

D̂t := {d̂t| d̂t : St × Bt → St+1 with d̂t(st, wt) ∈ Ât(st , wt)}
for given St, Bt, St+1 and DA decision sets Ât.
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In addition, single maps

(st, wt) → s′ (by d̂)

this means d̂t(st, wt) = s′

⎫⎬
⎭ (2.1.7)

for st ∈ St , wt ∈ Bt are called single decisions.

If St and Bt are finite sets, then d̂t will include |St| · |Bt| single decisions
(where |St| and |Bt| denote the numbers of elements in the sets St and Bt,
respectively).

With this in mind Figure 2.1.1 a) can be replaced by

s

w
t

t

dt
^

Figure 2.1.2.

We can see that xt and Gt are combined into d̂t.

(DAP) can then be represented in the following way:

(DAPa):

A policy

{d̂1(s1, w1), d̂2(s2, w2), . . . , d̂N (sN , wN )}
is to be found so that

E
w2,...,wN

(
N∑

t=1
ĉt(st, wt, st+1)|s1, w1

)
→ min
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subject to the constraints

st ∈ St, t = 2, · · · , N,

d̂t(st, wt) ∈ Ât(st, wt), t = 1, · · · , N,

st+1 = d̂t(st, wt), t = 1, . . . , N − 1.

If (DAPa) exists under the following assumptions, we use the symbol:

(DAP̄a).

This indicates (DAPa) with

· stationary properties: the sets and functions Bt, St, Ât, d̂t, ĉt are the
same at each stage and will be written as B, S and so on,

· B and S are finite sets,

· q(w)(q : B → (0, 1)) denote the probabilities of random disturbances
and these q(·) are also the same at every stage.

2.2 The Certainty Equivalence Principle

For many DB models with quadratic cost functionals and linear dynamics
(so-called quadratic linear problems) it is possible to replace the random
disturbances with their expected values and to then solve the yielded de-
terministic problems. The solutions are the same (certainty equivalence
principle). We have found a similar statement for DA models.

Let us begin by considering the following example.

Example 2.2.1. We contemplate the stochastic dynamic programming prob-
lems

E

(
N=3∑
t=1

(
(xt)2 + (st)2

)) → min,

where s1 ∈ R or s1 ∈ R and w1 ∈ R are given

and st+1 = st + wt + xt,
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xt ∈ R.

Here, {wt}t=1,2,3 is a sequence of independent random disturbances with re-
alizations wt ∈ R.

Since the decision spaces (At(st, wt) =)R (at each stage) are independent
of wt, we can classify such stochastic dynamic programming problems as DA
models or as DB models (with the same data, but xt(st,wt) for DA models
and xt(st) for DB models).

The optimal solution of the DB modeled problem is

xN = x3 = 0

xN−1 = x2 = −s2−E(w2)
2

xN−2 = x1 = −3s1−E(w2)−3E(w1)
5 .

(We can calculate this by means of the Bellman-principle or the certainty
equivalence principle.)

The optimal solution of the DA modeled problem is
xN = x3 = 0

xN−1 = x2 = −s2−w2
2

xN−2 = x1 = −3s1−E(w2)−3w1

5 .

(At the beginning we have calculated this by means of the Bellman-principle,
see (2.1.3).)

Obviously, the minimal expected cost for the DA model are not greater
than the cost for the DB model since every policy of the DB model is also
possible for the DA model (At(st, wt) are independent of wt).

Example 2.2.1 demonstrates the strong relationship between the solutions
of the DB and DA models.

We will now generalize the results of the example.
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Quadratic-Linear-Problems
Let us assume for (DAP) that

St = Rn, t = 1, . . . , N,

At = Rq, t = 1, . . . , N.

The dynamic constraints are

st+1 = Φtst + Γtxt + Πtwt for t = 1, . . . , N (2.2.1)

with given matrices Φt, Γt and Πt and a given s1 or given s1 and w1.
(These symbols are taken from the model in Schneeweiss [33], Section 11.3.)
The types of these matrices are determined by the types of the states,
disturbances and decisions.

If zt =
(
wt

1

)
, vt =

(
st

zt

)
, yt =

(
xt

vt

)
and Tt = (Γt, Φt, Πt, 0)

are used, then (2.2.1) has the form

st+1 = Ttyt.

The cost functional is

E

{
N∑

t=1
yT

t Wt,yyyt

}
→ min,

where the matrices Wt,yy have the following structure

Wt,yy =

(
Wt,xx Wt,xv

Wt,vx Wt,vv

)
=

⎛
⎜⎜⎜⎝

Wt,xx Wt,xs Wt,xz

Wt,sx Wt,ss Wt,sz

Wt,zx Wt,zs Wt,zz

⎞
⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Wt,xx Wt,xs Wt,xw Wt,x1

Wt,sx Wt,ss Wt,sw Wt,s1

Wt,wx Wt,ws Wt,ww Wt,w1

Wt,1x Wt,1s Wt,1w Wt,11

⎞
⎟⎟⎟⎟⎟⎟⎠
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with regard to vt, st and yt.

Let Wt,yy be symmetric matrices (without loss of generality) and let Wt,xx

be positive definite. Furthermore, let all matrices Vxx which are calculated
by means of the backward dynamic programming procedure be positive def-
inite.

Quadratic-linear-problems can be classified as DA models or as DB models
with the same data, however xt(st) is used for DB models and xt(st,wt) for
DA models (compare Example 2.2.1).

Theorem 2.2.1. (Certainty equivalence principle)
Let a quadratic-linear DB model and a quadratic-linear DA model with the
same data be given.

In addition, let

xN = 0,

xt = ϕ(E(wt), E(wt+1), · · · , E(wN−1)), t = N − 1, · · · , 1

be a representation of an optimal solution of the quadratic-linear DB model.

Then
xN = 0,

xt = ϕ(wt, E(wt+1), · · · , E(wN−1)), t = N − 1, · · · , 1

is an optimal solution of the quadratic-linear DA model.

Proof. The above symbols and the following representations are taken from
the model in Schneeweiss [33] (see Section 11.3) and they are applied to the
DA models here.

The functional equation for this DA problem is

ft(st, wt) = min
xt

{
yT

t Wt,yyyt+ E
wt+1

{
ft+1(st, wt+1)|wt

}}
t = N, · · · , 1,

fN+1 ≡ 0

(∗1)

(see (2.1.3)).
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Step 1.

(beginning of mathematical induction, t = N)

fN (sN , wN ) = min
xN

(
yT

NWN,yyyN

)
= min

xN

(
xT

NWN,xxxN + 2xT
NWN,xvvN + vT

NWN,vvvN

)
, (∗2)

x∗
N = −(WN,xx)−1WN,xvvN (∗3)

= − (WN,xx)−1 (WN,xssN + WN,xwwN + WN,x1) (∗3a)

is the optimal xN for (*2), since WN,xx is positive definite.

If we (*3) use in (*2), it follows that

fN (sN , wN )

= −vT
NW T

N,xv(WN,xx)−1WN,xvvN + vT
NWN,vvvN

= sT
NQNsN + 2sT

N β̄N + GAN (wN )

with

QN = WN,ss − W T
N,xs(WN,xx)−1WN,xs,

β̃N = (WN,sz − W T
N,xs(WN,xx)−1WN,xz)zN ,

GAN (wN ) = γ̃N = zT
NWN,zzzN − zT

NW T
N,xz(WN,xx)−1WN,xzzN .

Additionally, let βN and γN denote the following:
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βN = E{β̃N |wN−1}

= (WN,sz − W T
N,xs(WN,xx)−1WN,xz)E{zN |wN−1},

γN = E{zT
NWN,zzzN |wN−1} − ẑT

NW T
N,xz(WN,xx)−1WN,xz ẑN

where

ẑN = E{zN |wN−1}.

Step N − t + 2 :
Now, let us assume

ft(st, wt) = sT Qtst−1 + 2sT
t β̃t + GAt(w). (*4)

On the one hand we will prove

ft−1(st−1, wt−1) = sT
t−1Qt−1st−1 + 2sT

t−1β̃t−1 + GAt−1(w) (*5)

for the optimal expected value function at stage t − 1, where

Qt := Vt,ssV
T
t,xs(Vt,xx)−1Vt,xs,

β̃t := (Vt,sz − V T
t,xs(Vt,xx)−1Vt,xs)zt.

In addition, let βt, γ̃t and γt denote the following:

βt = E{β̃t|wt−1},

γ̃t := zT
t Vt,zzzt − zT

t V T
t,xz(Vt,xx)−1Vt,xzzt,

γt := E{zT
t Vt,zzzt|wt−1} − ẑT

t V T
t,xz(Vt,xx)−1Vt,xz ẑt, ẑt = E{zt|wt−1}.

Here the sub-matrices Vt,ij(i, j = x, v, z, w, s, 1) are calculated from
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yT
t Vt,yyyt = yT

t Wt,yyyt + yT
t T T

t Qt+1Ttyt + 2yT
t βt+1 + γt+1,

where it is initially given

QN+1 = 0, β̃N+1 = 0, γN+1 = 0, γ̃N+1 = 0.

We will then show that

x∗
t−1 = − (Vt−1,xx)−1Vt−1,xvvt−1

= − (Vt−1,xx)−1(Vt−1,xsst−1 + Vt−1,xzzt−1)

is an optimal decision at stage t − 1:

(∗1) for t − 1 and (*4) yield

ft−1(st−1, wt−1)

= min
xt−1

{yT
t−1 Wt−1,yyyt−1 + E{ft(Tt−1yt−1, wt)|wt−1}}

= min
xt−1

{yT
t−1 Wt−1,yy yt−1+

E{yT
t−1 T T

t−1 Qt Tt−1 yt−1 + 2yT
t−1 T T

t−1 β̃t + GAt(w) | wt−1}}

= min
xt−1

{yT
t−1 Wt−1,yy yt−1 + yT

t−1T
T
t−1 Qt Tt−1 yt−1 + 2yT

t−1 Tt−1 βt

+E{GAt(w) | wt−1}}

= min
xt−1

{yT
t−1 Vt−1,yy yt−1 − γt + E{GAt (w) | wt−1}}
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= min
xt−1

{xT
t−1 Vt−1,xx xt−1 + 2xT

t−1 Vt−1,xv vt−1 + vt−1 Vt−1,vv vt−1

−γt + E{GAt(w) | wt−1}}. (*6)

x∗
t−1 = −(Vt−1,xx)−1Vt−1,xv vt−1

= −(Vt−1,xx)−1(Vt−1,xszt−1 + Vt−1,xs st−1) (*7)

follows for positive definite Vt−1,xx.

(*7) plugged into (*6) results in

ft−1(st−1, wt−1)

= − vt−1 V T
t−1,xv (Vt−1,xx)−1 Vt−1,xv vt−1 + vT

t−1 Vt−1,vv vt−1

− γt + E{GAt(w) | wt−1}
= sT

t−1 Qt−1 st−1 + 2sT
t−1 β̃t−1 + γt−1 − γt + E{GAt(w) | wt−1}

= sT
t−1 Qt−1 st−1 + 2sT

t−1 β̃t−1 + GAt−1(w).

Now, we compare the optimal decisions (*7) of the quadratic-linear DA mod-
els with the optimal decisions of quadratic-linear DB models, see Schneeweiss
[33], Section 11.3.

The above matrices Vt,yy are the same as the corresponding matrices in
Schneeweiss.

x∗
t corresponds to u∗

k in Schneeweiss with the exception of wt (in vt and
zt). In Schneeweiss we find there E{wt | wt−1}(=̂r̂k) (refer to [33], pages
162 and 163).

This concludes the proof of Theorem 2.2.1. �
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Remarks 2.2.1. .

• We use the denotation ”certainty equivalence principle” above (for DA
models) due to of the relationship between the solutions of DB and DA
models.

• Dreyfus and Law have a differing opinion about certainty equivalence
principle for DA models (see [12], pages 275, 276). The remarks on
page 276 are, however, very short. The calculations and considerations
are not given in sufficient detail.

• Sebastian and Sieber, [34], also deal with quadratic-linear-problems
(refer to 2.8.3.3). However, the disturbances do not take place in the
cost functional and an interpretation of the calculations is not given.

2.3 DA Models as Markov Decision Processes

In Section 2.3.1 some known basic results to Markov decision processes
(MDPs) with average reward criterion which are needed in the following
sections are to be found.

For this we confine ourselves to consider finite-state models since the state
spaces of SDDP problems are finite. Corresponding notes on countable-state
models can be found in Sections 8.10 and 8.11 by Puterman [31] and also in
his Bibliographic Remarks, pages 430 and 431.

In Section 2.3.2 some characteristic properties of the structure of deci-
sions within DA MDPs are considered. There DA MDPs are modelled in
such a way that the original state space is maintained (compare also to the
Introduction 1.1).

Furthermore a specification of the Howard algorithm (policy iteration)
for MDPs (with average reward criterion) leads to an optimality criterion
for DA MDPs.

An ”almost-partial order” of the states, which is based on optimal de-
cisions of DA MDPs with special internal cost, is observed in Section 2.3.2.2.
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In what follows considerations are given to DA MDPs with special prop-
erties.
DA MDPs with distance properties are investigated. (SDDP problems fulfill
distance properties.)

Then, DA MDPs with (optimal) dominant policies are considered.

Finally, ”cost-parametric DA MDPs” are discussed in Section 2.3.4. In
this process, the Howard algorithm can be used to solve DA MDPs, where
the starting decisions for the iterations are the above-mentioned optimal
decisions of DA MDPs with special internal costs.

2.3.1 Markov Decision Processes: Models and Properties

To begin we consider discrete-time MDPs with finite state and decision
spaces. We assume infinite horizons. The average expected cost per stage
will be minimized. In addition we demand stationary properties.

(Detailed representations of MDPs can be found, for example, in books
by Müller and Nollau [28] (see Sections 2.1 and 2.4), by Puterman [31] (see
Chapters 2, 5 and 8), by Hernández-Lerma [17] (see Sections 1.1, 1.2, 3.1,
3.2 and 3.3), by Bertsekas [7] (see Chapter 4), by Neumann [29] (see Section
3.3.2), by Girlich [15] (see Sections 5.2.6 and 5.3.4) or by Girlich, Köchel
and Küenle [16] (see Chapter 5).)

We use the terminology:

N = ∞ horizon

t ∈ {1, 2, . . . } numbers of stages

S finite state space
with m elements s (S = {s1, . . . , sm})

AM sets of finite decision spaces 2 AM (s) (s ∈ S)
with elements (decision functions) d,
where d : S → AM (with d(s) ∈ AM (s)) 3

P d = (p(sl|sf , d)) f=1,...,m
l=1,...,m

=:
(
pd

fl

)
f=1,...,m
l=1,...,m

matrix of transition probabilities for any d
(or markov kernel)
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γd = (γ(sf , d))f=1,...,m =: (γd
f )f=1,...,m

vector of average (one-step) reward functions 4 for any d
with γ(sf , d) ∈ R+ ∀ sf ∈ S, ∀ d ∈ AM .

At every stage t (t = 1, 2, . . . ) with a state st at the beginning of the
stage such decisions d(t)(st) ∈ AM (st) are to be found so that altogether the
average expected cost per stage will be minimal.

The sequence (d(t=1), d(t=2), · · · ) is called policy or strategy.
If d(t=1) = d(t=2) = · · · = d then we have a stationary policy. In this case

the policy is completely determined by the decision function d.

For such MDPs we use the notation: MDP(N = ∞, S, AM , P, γ).

Under the assumption that the stationary distributions (pd,∞
f )f=1,...,m

with

lim
t→∞

(
(pd

fl)(f=1,...,m
l=1,...,m)

)t
=

⎛
⎜⎝ pd,∞

1 . . . pd,∞
m

...
...

pd,∞
1 . . . pd,∞

m

⎞
⎟⎠ (2.3.1)

exist, an optimal stationary policy d is to be found so that

gd := γ(s1, d)pd,∞
1 + · · · + γ(sm, d)pd,∞

m → min (2.3.2)

(refer to Theorem 2.4.7 by Müller and Nollau [28]).

If the condition

pd
fl �= 0 ∀ f ∈ {1, . . . , m}, ∀ l ∈ {1, . . . , m}5 (2.3.3)

2As by Müller and Nollau [28] (and by Hernández-Lerma [17], page 2) we use for our
model only decision spaces, and not decision and action spaces.

3In order to put emphasis on the condition d(s) ∈ AM (s) we sometimes speak about
feasible decision (functions) d.

4More detailed: γ(sf , d(sf )).
5Remark 2.3.7 in Appendix A.2.3 by Müller and Nollau, [28] includes the weaker condi-

tion that all elements of at least one column of a matrix (P d)y (y ∈ N) have to be greater
than 0. However (2.3.3) will be fulfilled for SDDP problems (see Chapter 3).
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is fulfilled, then an ergodic Markov chain is implied by P d and the station-
ary distribution exists (see Remark 2.3.7 in Appendix A.2.3 by Müller and
Nollau, [28]). If (2.3.3) is valid for all stationary policies of the MDP, then
an optimal stationary policy can be found (see Remark 2.3.7 in Appendix
A.2.3 and Theorem 2.4.8 by Müller and Nollau, [28]).

Thus the simple property

γ(sf , d) > 0 for at least one sf ⇒ gd > 0 (2.3.4)

follows.

The Poisson Equation and Properties

If (2.3.3) is valid, then the average expected cost per stage gd satisfies the
linear equation system, which is called the Poisson equation:

g · ε + ν = γd + P dν, ε =

⎛
⎜⎝1

...
1

⎞
⎟⎠ (2.3.5)

(or −g · ε + (P d − I)ν = −γd)
where I is the identity matrix and

g and (νf )f=1,...,m are the variables.

If one variable νf0 is fixed in any way, then the remaining equation system
with the variable g and m − 1 variables νf has an unique solution (refer to
the proof of Theorem 2.4.8 by Müller and Nollau [28]).

Furthermore, a property of the Howard algorithm implies the following
Lemma (see Theorem 2.4.9b) by Müller and Nollau [28]).

Lemma 2.3.1. Let (2.3.3) be valid for all stationary policies of a given
MDP(N = ∞, S, AM , P, γ). In addition, let d∗1 and d∗2 be optimal decision
functions.

Let (g∗l, ν∗l) represent solutions of the Poisson equations

g ε + ν = P d∗l
ν + γd∗l

for l = 1; 2 with ν∗l
m = 0,

then ν∗1
f = ν∗2

f for f = 1, 2, · · · ,m and obviously g∗2 = g∗1.
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In the following sections we also need the simple statement:

Lemma 2.3.2. Let (2.3.3) be valid for any stationary policy d of a given
MDP(N = ∞, S, AM , P, γ). Furthermore, let γ′ be any affine transformation
of γd with

γ′ = α γd + β

⎛
⎜⎝ 1

...
1

⎞
⎟⎠ , α �= 0.

Then, (g0, ν0) ∈ R × Rm is a solution of the Poisson equation (2.3.5) if
and only if (g′ = αg0 + β, ν′ = αν0) ∈ R × Rm is a solution of the linear
equation system

g

⎛
⎜⎝ −1

...
−1

⎞
⎟⎠ + (P d − I)ν = −γ′. (2.3.5’)

(Remark: If α > 0 then it obviously follows that ν0i < ν0j ⇔ ν ′
i < ν′

j .)

2.3.2 DA Models as Markov Decision Processes under Ap-
propriate Assumptions

If the stationary DA model (DAP̄a) with finite sets B and S (see Section
2.1) is transformed into a corresponding model (DAP̄b) with an infinite
horizon N = ∞, where average expected cost per stage will be minimized

then the problem

(DAP̄b):

for given s1 and w1, a policy

{d̂1(s1, w1), d̂2(s2, w2), . . . }

is to be found so that
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lim
n→∞

1
n

E

(
n∑

t=1

ĉ(st, wt, st+1)|s1, w1

)
→ inf,

which is subject to the constraints

st+1 = d̂(st, wt), t = 1, 2 · · ·
d̂(st, wt) ∈ Â(st, wt)(⊆ S), t = 1, 2, · · ·

remains to be solved.

We want to represent this problem as a Markov decision process. We can
do this in two ways.

We could use a method, which can be found by Neumann and Morlock
[30], page 618 or Girlich, Köchel and Kuenle [16], page 36. A state space
S ×B would follow. Obviously, this state space is markedly larger than the
original state space S. Furthermore, corresponding matrices of transition
probabilities would have many zeros, in general. (An analogous situation is
known in linear programming: If the classical transportation problems are
solved by the Simplex algorithm, then many zeros exist in the coefficient
matrices of the restrictions. Special solution methods for the transportation
problem have been developed (for example the ”MODI-method”, which is
based on the Simplex algorithm, see [30], Section 2.8.9).)

Thus, we will directly convert (DAP̄b) into a MDP. The corresponding
state space is then S and in addition peculiarities of the DA model can be
better characterized. In this way special structures of decisions follow (refer
to Sections 2.3.2.1 and 2.3.2.2).

In order to convert (DAP̄b) into a MDP with the original state space S we
use DA decision functions d̂, the set of DA decision functions D̂ (see (2.1.6)),
Definition 2.1.1) and the internal costs ĉ (see (2.1.5)). The disturbance space
B and the probability q merely serve to calculate the transition probabilities
of such a MDP.

AM (s) = {d(s) := (d̂(s, w1), d̂(s, w2), · · · , d̂(s, wIBI))|d̂ ∈ D̂}, s ∈ S
(2.3.6)

(where |B| denotes the number of elements in the set B)
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p(sl|sf , d)(= pd
fl) =

∑
w:sl=d̂(sf ,w)

q(w) (2.3.7)

γ(sf , d)(= γd
f ) =

∑
sl∈S

∑
w:sl=d̂(sf ,w)

ĉ(sf , w, sl)q(w)

=
∑
sl∈S

⎛
⎝ ∑

w:sl=d̂(sf ,w)

ĉ(sf , w, sl)
q(w)

p(sl|sf , d)

⎞
⎠ p(sl|sf , d). (2.3.8)

We define the cost

cd(sf , sl) =
∑

w:sl=d̂(sf ,w)

ĉ(sf , w, sl)
q(w)

p(sl|sf , d)
=: cd

fl. (2.3.9)

The relation

γ(sf , d) =
∑
sl

cd(sf , sl)p(sl|sf , d) (2.3.10)

follows.

From this point on, DA MDP(N = ∞, S, AM , P, γ) denotes a MDP which
is derived from the (DAP̄b) in the above way.

Under the assumption that the stationary distributions (see (2.3.1)) exist,

an optimal policy d is to be found so that

gd = γ(s1, d)pd,∞
1 + · · · + γ(sm, d)pd,∞

m → min. (2.3.11)

We will now characterize:

Two Special Cases for the Cost

((a) is valid for the SDDP problem. (b) includes a more specific case, how-
ever it also leads to initial decisions for policy iteration (Howard algorithm)
in the case of more general DA MDPs.)
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(a) ĉ(sf , w, sl) do not depend on w.
That means

ĉ(sf , w, sl) = ĉ(sf , sl) =: ĉfl for each w with sl ∈ Â(sf , w). (2.3.12)

(2.3.9) then yields

cd(sf , sl) = ĉ(sf , sl)

⎛
⎝ ∑

w:sl=d̂(sf ,w)

q(w)
p(sl|sf , d))

⎞
⎠

= ĉ(sf , sl).

(b) ĉ(sf , w, sl) do not depend on sl.
Thus

ĉ(sf , w, sl) =: ĉ(sf , w) for each sl ∈ Â(sf , w). (2.3.13)

In other words: ĉ(sf , w, ·) are the same for all feasible decisions.

Therefore,

γ(sf , d) =
∑
w

ĉ(sf , w)q(w) also do not depend on d. (2.3.14)

2.3.2.1 The Structure of Decisions within DA Markov Decision
Processes

Definition 2.3.1. d1 ∈ AM , d2 ∈ AM will be called neighbouring if a unique
sf0 ∈ S and a unique w0 ∈ B exist with

d1(s) ≡ d2(s) for each s ∈ S and s �= sf0,

d̂1(sf0 , w) = d̂2(sf0 , w) for each w ∈ B and w �= w0 and

d̂1(sf0 , w0) �= d̂2(sf0 , w0).

(This means d1 and d2 are only different in one single decision (see (2.1.7))).

Lemma 2.3.3. .

I Let d0 ∈ AM and d01 ∈ AM . Then a sequence d0, d1, d2, · · · , dv = d01

of neighbouring decisions di, di+1 (0 ≤ i ≤ v−1) exists with di ∈ AM .
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II Now, let d ∈ AM , d̄ ∈ AM be neighbouring with the different single
decisions:

d̂
(
sf , w

)
= sl,

ˆ̄d
(
sf , w

)
= sl̄

(
l �= l̄

)
.

(2.3.15)

The following relations then hold (in regard to the transition probabil-
ities, the average reward functions and the cost):

a)

pd̄
f l = pd

fl − q(w),

pd̄
f l̄

= pd
f l̄

+ q(w),

pd̄
rv = pd

rv for (f, l) �= (r, v) �= (
f, l̄

)
(see (2.3.7)).

(2.3.16)

Therefore, the transition probability matrices differ only in two ele-
ments (of a row) for corresponding ”neighbouring” decisions!

b)

γ
(
sf , d̄

)
= γ

(
sf , d

)
+ q (w)

(
ĉ
(
sf , w, sl̄

)
− ĉ

(
sf , w, sl

))
,

γ
(
sl, d̄

)
= γ

(
sl, d

)
for l �= f

(2.3.17)

and
c)

cd̄
(
sf , sl

)
=

(
cd

(
sf , sl

)
− ĉ

(
sf , w, sl

)
pd

fl

q (w)

)
pd

fl

pd̄
f l

,

cd̄
(
sf , sl̄

)
=

⎛
⎝cd

(
sf , sl̄

)
+

ĉ
(
sf , w, sl̄

)
pd

f l̄

q (w)

⎞
⎠ pd

f l̄

pd̄
f l̄

,

cd̄ (sr, sv) = cd (sr, sv) for (f, l) �= (r, v) �= (
f, l̄

)
.

(2.3.18)
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Of course, the computation of the stationary distributions of neighbouring
decisions is more complicated. In general pd,∞

r �= pd̄,∞
r for all r, however the

differences between pd,∞
r and pd̄,∞

r are ”greater” for r = l and r = l̄ than for
other r ∈ {1, · · · ,m}. Moreover, we have:

Theorem 2.3.4. Let P d and P d̄ be two stochastic matrices with positive
elements. Let P d differ from P d̄ for only two elements in the following
manner

pd
fl > pd̄

f l and pd
f l̄

< pd̄
f l̄

.

Then, corresponding relations are true for the stationary distributions
pd,∞ and pd̄,∞ belonging to P d and P d̄:

pd,∞
l > pd̄,∞

l and pd,∞
l̄

< pd̄,∞
l̄

.

(See proof and remarks in [22], Section 3.2.3.)

Figure 2.3.1. If d and d̄ are different as in (2.3.15), then the average
expected cost per stage are different, especially, in the bold terms

m∑
v=1

γ(sv, d)︸ ︷︷ ︸ pd,∞
v = · · ·+γ(sf ,d)·pd,∞

f +· · ·+ γ(sl, d)︸ ︷︷ ︸ ·pd,∞
l +· · ·+ γ(sl̄, d)︸ ︷︷ ︸ ·pd,∞

l̄
+ · · ·

= for w �= f = =

m∑
v=1

︷ ︸︸ ︷
γ(sv, d̄)pd̄,∞

v = · · ·+γ(sf , d̄)·pd̄,∞
f +· · ·+

︷ ︸︸ ︷
γ(sl, d̄) ·pd̄,∞

l +· · ·+
︷ ︸︸ ︷
γ(sl̄, d̄) ·pd̄,∞

l̄
+ · · ·

Algorithms for approximate solutions of DA MDPs from this section which
are based on the above structures are conceivable.

Finally, we want to point out a property which is naturally fulfilled for
DA MDPs.

Lemma 2.3.5. Let a DA MDP(N = ∞, S, AM , P, γ) be given. And let
s1, s2, · · · , sm be any ordering of the states.

Then, a decision function d̄ ∈ AM exists, such that
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m̄∑
l=1

pd̄
f l ≤

m̄∑
l=1

pd
fl for m̄ = 1, · · · ,m

f = 1, · · · , m and ∀ d ∈ AM .

Proof. Obviously, d̄ with
ˆ̄d(sf , w) = sl̄, where l̄ = max{l | sl ∈ Â(sf , w)} ∀ sf ∈ S, ∀ w ∈ B

satisfies the condition. �

Remarks 2.3.1. In the above proof, feasible states with largest indices are
chosen by single decisions ˆ̄d in each case.

2.3.2.2 An Optimality Criterion for DA MDP and an ”Almost-
Partial Order” of the States

To begin, an optimality criterion for DA MDP will be derived from the
Howard algorithm (policy iteration). This optimality criterion is associated
with the single decisions.

Then, we show that optimal (single) decisions imply an ”almost-partial
order” of the states if the internal cost do not depend on the decisions.

A detailed description of the Howard algorithm can be found in [28], Sec-
tion 2.4.2.1 (see also [15], Section 5.3.5). In particular, we use the addition
to the Howard algorithm at the end of Section 2.4.2.1 in [28].

In relation to the MDP(N = ∞, S,AM , P, γ), where (2.3.3) is valid for
all stationary policies of the MDP, the Howard algorithm includes:

If (gd, νd) is a solution of the Poisson equation (2.3.5) for a decision
d, then a better decision can be found if a state sf ∈ S and a decision
d̄(sf ) ∈ AM (sf ) exist such that

m∑
l=1

pd̄
f lν

d
l + γ(sf , d̄) <

m∑
l=1

pd
flν

d
l + γ(sf , d) (2.3.19)

(The algorithm terminates after a finite number of iterations.)

d is a optimal decision if



43

m∑
l=1

pd̄
f lν

d
l + γ(sf , d̄) ≥

m∑
l=1

pd
flν

d
l + γ(sf , d) ∀ sf ∈ S, ∀ d̄ ∈ AM . (2.3.19 a)

Now we want to specify (2.3.19) for a DA MDP.
For this reason we assume that the following single decisions of d and d̄

are different:

d̂(sf , wy1) = sl1 , ˆ̄d(sf , wy1) = sl̄1

...
...

d̂(sf , wyz) = slz , ˆ̄d(sf , wyz) = sl̄z ,

Then
m∑

l=1

pd̄
f lν

d
l + γ(sf , d̄)

=
m∑

l=1

pd
flν

d
l +γ(sf , d)+

z∑
i=1

q(wyi)
[
ĉ(sf , wyi , sl̄i) − ĉ(sf , wyi , sli) + νd

l̄i
− νd

li

]
<

m∑
l=1

pd
flν

d
l + γ(sf , d)

follows from (2.3.19), (2.3.8), Lemma 2.3.3 a), b) and (2.3.7).

Thus

z∑
i=1

q(wyi)
[
ĉ(sf , wyi , sl̄i) − ĉ(sf , wyi , sli) + νd

l̄i
− νd

li

]
< 0. (2.3.20)

Since q(wyi) > 0, single decisions d̂(sf , wyi) = sli and ˆ̄d(sl, wyi) = sl̄i

exist such that

ĉ(sf , wyi , sl̄i) − ĉ(sf , wyi , sli) + νd
l̄i
− νd

li
< 0.

We can then modify the Howard algorithm for the DA MDP.
Namely, a better decision can be found if a state sf ∈ S and a single
decision ˆ̄d(sf , w) exist such that
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�Hd(sf , w, sl̄ − sl) := ĉ(sf , w, sl̄) − ĉ(sf , w, sl) + νd
l̄ − νd

l < 0

(where sl̄ = ˆ̄d(sf , w), sl = d̂(sf , w)).
(2.3.21)

(This means (2.3.19) is replaced by (2.3.21).)

The modified Howard algorithm for DA MDPs can be found in Section
2.3.5.

Continuing, an optimality criterion for DA MDPs is established in the
following Lemma.

Lemma 2.3.6. Let (2.3.3) be valid for all stationary policies of a given
DA MDP(N = ∞, S, AM , P, γ). Furthermore, let (gd, νd) be solutions of the
Poisson equations (2.3.5) in relation to a decision d.

d is a optimal decision if and only if the equalities

�Hd(s, w, s̄′ − s′) = ĉ(s, w, s̄′) − ĉ(s, w, s′) + νd(s̄′) − νd(s′) ≥ 0 (2.3.22)

(where s′ = d̂(s, w) and s̄′ = ˆ̄d(s, w))

are valid for all s ∈ S,w ∈ B and all (feasible) single decisions ˆ̄d(s, w).

If , additionally, the internal costs satisfy (2.3.13), then the inequalities
(2.3.22) are simplified

�Hd(s, w, s̄′−s′) = νd(s̄′)−νd(s′) ≥ 0. (2.3.22a)

Theorem 2.3.7. Let (2.3.3) be valid for all stationary policies of a given
DA MDP(N = ∞, S, AM , P, γ).

a) In addition, let d∗1 and d∗2 be optimal decision functions and

(g∗l, ν∗l) are solutions of the Poisson equations
g ε + ν = P d∗l

ν + γd∗l
for l = 1; 2 with ν∗l

m = 0.

If
d̂∗1(sf , w) = sl �= d̂∗2(sf , w) = sl̄ (for some sf ∈ S and some w ∈ B)
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then

�Hd∗1(sf , w, sl̄ − sl) = 0 and �Hd∗2(sf , w, sl − sl̄) = 0.

(where �Hd(sf , w, sl̄ − sl) is defined as in (2.3.21).)

b) Let d∗ be an optimal decision function and (g∗, ν∗) be a solution of the
Poisson equation

g ε+ν = P d∗ν+γd∗. (*1)

If
�Hd∗(sf , w, sl̄ − sl) = 0 for some sf ∈ S, some w ∈ B and

some sl̄ = d̂(sf , w) �= sl = d̂∗(sf , w),

then

d with

d̂(s̄, w̄) =

{
sl̄ if (s̄, w̄) = (sf , w),

d̂∗(s̄, w̄) otherwise
is also an optimal decision function.

Proof:

a) Assumption: �Hd∗1(sf , w, sl̄ − sl) �= 0.

In addition, as a consequence of the optimality criterion (2.3.22),

�Hd∗1(sf , w, sl̄ − sl) > 0

follows.
Since d∗1 and d∗2 are optimal decisions, Lemma 2.3.1 implies

ν∗1 = ν∗2,

hence

�Hd∗2(s, w, sl − sl̄) = ĉ(sf , w, sl) − ĉ(sf , w, sl̄) + ν∗2
l − ν∗2

l̄

= −(ĉ(sf , w, sl̄)−ĉ(sf , w, sl)+ν∗1
l̄
−ν∗1

l ) = −�Hd∗1(s, w, sl̄−sl) < 0.

This is a contradiction to the optimality of d∗2.

(Similarly, �Hd∗2(s, w, sl − sl̄) = 0 can be shown.)

b) We show that (g∗, ν∗) also satisfies the Poisson equation

g ε + ν = P dν + γd. (*2)

The Poisson equations (*1) and (*2) differ only in row f .
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According to (2.3.16) and (2.3.17), row f of (*2) can be represented
as

g + νf = pd
f1ν1 + · · · + pd

fl−1νl−1 + (pd
fl − q(w))νl + pd

fl+1νl+1 + · · ·
+ pd

f l̄−1
νl̄−1 + (pd

f l̄
+ q(w))νl̄ + pd

f l̄+1
νl̄+1 + · · · + pd

fmνm

+ γd
f + q(w)[ĉ(sf , w, sl̄) − ĉ(sf , w, sl)]

= pd
f1ν1 + · · · + pd

fmνm + γd
f

+ q(w)[ĉ(sf , w, sl̄)− ĉ(sf , w, sl)+νl̄ −νl]. (*3)

The assumption

�Hd∗(sf , w, sl̄ − sl) = ĉ(sf , w, sl̄) − ĉ(sf , w, sl) + ν ∗̄
l
− ν∗

l = 0

yields that (g∗, ν∗) satisfies (*3), thus also the Poisson equation (*2).

This means the value g∗ of the objective function for d∗ is the same
as for d. Hence, d is also an optimal decision function.

�

Finally, the relation

�Hd(sf , w, sl1 − sl2) = �Hd(sf , w, sl1 − sl3) + �Hd(sf , w, sl3 − sl2)

(where sli = d̂ li(sf , w) for i = 1, 2, 3)
(2.3.23)

follows easily from the Definition of �Hd(., ., .) (see (2.3.21)).

An ”Almost-Partial Order” of the States

Definition 2.3.2. Let a set M and a corresponding binary relation < be
given.

(i) The relation is called almost-transitive, if

{{x1, x2, x3} ⊂ M ∧ x1 < x2 ∧ x2 < x3} ⇒ {x3 �< x1}.
(x3 �< x1 means either x1 < x3 or x1 and x3 may not be related to
each other in this way 6.)

6This possibility leads to the terminology: ”almost-” transitive.
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(ii) The relation < is called an (strict) almost-partial order (and the set
M an almost-partially ordered set), if < is a irreflexive, asymmetric
and almost-transitive relation.

Theorem 2.3.8. Let a DA MDP(N = ∞, S,AM , P, γ) be given where the
underlying internal costs do not depend on decisions (this means the internal
cost satisfy (2.3.13)). Furthermore, let (2.3.3) be valid for all stationary
policies of this DA MDP.

(i) Then any optimal decision d∗ implies an almost-partial order < of the
states in the following way{

sl < sf
}

:=
{
∃s ∈ S,w ∈ B : d̂∗(s, w) = sf

∧ sl ∈ Â(s, w) ∧ � ∃ optimal d
′∗ : d̂

′∗(s, w) = sl
} (2.3.24)

(In addition, sl is called costlier than sf .)

(ii) In regard to the solutions (g∗, ν∗) of the Poisson equation
g ε + ν = P d∗ν + γd∗ the relations

sl < sf ⇒ ν∗
l > ν∗

f (2.3.25)

are valid.

(iii) If sl ∈ S, sf ∈ S, s ∈ S, w ∈ B and optimal decisions d∗, d′∗ exist so
that d̂∗(s, w) = sf , d̂

′∗(s, w) = sl, then most importantly,

ν∗
l = ν∗

f . (2.3.26)

follows for the solutions of the Poisson equation.

Proof.

(ii) Suppose sl < sf as in (2.3.24).

This also includes

∃s ∈ S, w ∈ B : {sf , sl} ⊂ Â(s, w)
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and d̂∗(s, w) = sf for an optimal decision d∗.

Initially, the optimality criterion (2.3.22 a) from Lemma 2.3.6 leads to

�Hd∗(s, w, sl − sf ) = ν∗
l − ν∗

f ≥ 0,

hence ν∗
l ≥ ν∗

f .

Assumption: ν∗
l = ν∗

f .

We then see that the optimality criterion (2.3.22 a) from Lemma
2.3.6 is also satisfied for the decision d′ with{

d̂′(s′, w′) = d̂∗(s′, w′) for (s′, w′) �= (s, w),

d̂′(s, w) = sl
.

Thus, the decision d′ with d′(s, w) = sl is an optimal decision contra-
dicting (2.3.24).

(i) 1. Asymmetry:

Assumption: sl < sf and sf < sl.

Then (ii) yields

ν∗
l > ν∗

f and ν∗
l < ν∗

f . This is a contradiction to the order of real
numbers.

2. Almost-transitivity:

Assumption: sl < sf , sf < sy and sl > sy.

Then (ii) yields

ν∗
l > ν∗

f , ν∗
f > ν∗

y and ν∗
l < ν∗

y .

This is also a contradiction to the order of real numbers.

(iii) ν∗
l = ν∗

f follows from Theorem 2.3.7a) and (2.3.22a) under the condi-
tion (2.3.13). �

Corollary 2.3.9. Suppose that the assumptions from Theorem 2.3.8 hold.

(i) If Â(s, w) = Â(s′, w′) for {s, s′} ⊆ S; {w, w′} ⊂ B, then
an optimal decision d with d̂(s, w) = sf (sf ∈ Â(s, w)) exists
if and only if an optimal decision d′ with d̂′(s′, w′) = sf exists.
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(ii) If {sf , sl} ⊆ Â(s, w), {sf , sl} ⊆ Â(s′, w′) for {s, s′, sf , sl} ⊆ S,
{w,w′} ⊆ B, d∗ is an optimal decision with d̂∗(s, w) = sf and
no optimal decision d with d̂(s, w) = sl exists it then follows that
no optimal decision d′ with d̂′(s′, w′) = sl exists.

Proof.

(i) If d is optimal it then follows from Lemma 2.3.6, (2.3.22a) that
�Hd(s, w, sl − sf ) = νd

l − νd
f ≥ 0 for each sl ∈ Â(s, w).

Furthermore, this Lemma yields
�Hd(s, w, sl − sf ) = �Hd(s′, w′, sl − sf ) = νd

l − νd
f (under the as-

sumption (2.3.13)).

Thus d′ with{
d̂′(s, w) = d̂(s, w) for (s, w) �= (s′, w′),

d̂′(s′, w′) = sf

is also an optimal decisions.

(ii) sl < sf and ν∗
l − ν∗

f > 0 follow from Theorem 2.3.8(i) and (ii), respec-
tively.

Lemma 2.3.6 in connection with the latter inequality implies that
no optimal decision d′ with d̂′(s′, w′) = sl can exist. �

We additionally now establish the following Definition 2.3.3 and Corollary
2.3.10.

Definition 2.3.3. Let a DA MDP(N = ∞, S, AM , P, γ) be given where the
underlying internal costs do not depend on decisions (this means the internal
cost satisfy (2.3.13)). In addition, let (2.3.3) be valid for all stationary
policies of this DA MDP.

(a) If a partial (almost-partial) order < of the state space S is given, then a
solution of a Poisson equation (2.3.5) or a solution of a linear equation
system (2.3.5’) is called monotone (in ν) with respect to the partial
(almost-partial) order if

sl < sf ⇒ νl > νf .
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(b) Let d be a (feasible) decision. 7

Then a solution of the corresponding Poisson equation (2.3.5) or a
solution of a linear equation system (2.3.5’) is called monotone (in ν)
in relation to d if{

∃s ∈ S, w ∈ B : d̂(s, w) = sf ∧ sl ∈ Â(s, w)

∧ � ∃ d′ mit gd = gd′ : d̂′(s, w) = sl
} (2.3.27)

8 ⇒ νd
l > νd

f .

Corollary 2.3.10. Suppose that the assumptions from Definition 2.3.3 hold.
In addition, let d be a (feasible) decision.

Then the solutions of the corresponding Poisson equation (2.3.5) or the
solutions of the linear equation systems (2.3.5’) are monotone (in ν) in
relation to d if and only if d is an optimal decision.

Proof.

1. Let d be an optimal decision. Then Theorem 2.3.8(i) and (ii) imply
that the solutions of (2.3.5) or (2.3.5’) are monotone (in ν) in relation
to d
(also in relation to the almost-partial order which is induced by d as
in Theorem 2.3.8(i)).

2. If the solutions of (2.3.5) or (2.3.5’) are monotone (in ν) in relation
to d, then the optimality of d follows from Lemma 2.3.6 (under the
assumption (2.3.13)) (and the Howard algorithm).

�

Remarks 2.3.2. Suppose that the assumptions of Theorem 2.3.8 hold. Fre-
quently the relation sl < sf implies the relation γ(sl) > γ(sf ).

7Contrary to Theorem 2.3.8 the decision d is not optimal, at first.
8(2.3.27) is analogous to (2.3.24).
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However, counter-examples also exist:
Let γT = (5, 2, 1)T be a vector of average one-step reward functions

(which fulfills (2.3.14)) and pdi , i = 1, 2, 3 three (feasible) decisions
with the following corresponding matrices of transition probabilities:

P di = 1
6

⎛
⎝ 4 1 1

1 + δ1,i 1 + δ2,i 1 + δ3,i

4 1 1

⎞
⎠ where δj,i =

{
3, if i = j
0, otherwise

for i = 1, 2, 3, j = 1, 2, 3.

Obviously, (2.3.3) is valid in relation to d1, d2 and d3.
The average expected costs per stage can be computed by solving of the

Poisson equations (2.3.5). The results are:

gd1 = 23/6, gd2 = 10/3, gd3 = 7/2.

Thus, d2 is the optimal decision.

If the considered MDP is a DA MDP, which means the foundation is a
(DAP̄b) model, 9 then the relation s3 < s2 follows according to (2.3.24).
However, for the average one-step reward functions the relation
γ(s3) < γ(s2) is valid.

2.3.3 DA Models with Special Properties

2.3.3.1 Notes on DA Models with Distance Properties

In this section we will assume ”distance properties” for DA models. Such
properties can be found, for instance, in flow problems (for example see [1],
near Theorem 3.4), metric task system or k-server problems (see [8], Chap-
ter 10, for instance).

For the SDDP problems (Chapter 3) these distance properties are fulfilled.

The ”distance properties” include a ”triangle-inequality” and an internal
cost of the value 0, if the state does not change at this stage. Here, we
do not assume the ”commutativity of distances” since, for SDDP problems,
the costs can be different if a machine of type i is converted to type j or a
machine of type j is converted to type i, (see Section 1.2 and Chapter 3).

For stochastic dynamic DA models the distance properties have to be for-
mulated in connection with the DA decisions sets (contrary to deterministic

9We do not discuss this here in detail.
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flow problems, k-server problems and so on).

The purpose of the procedural method of this section:
initially, we give the triangle-inequality with an additional equals sign,
which later will do not play a role for optimal decisions, according

to Theorem 2.3.13 will become clear in Chapter 3.
(In Section 3.3 certain decisions, which are not better than others can

be excluded from the outset according to Theorem 2.3.13, see Lemma 3.3.8
and Example 3.3.1. 10)

For DA MDPs a transition probability of a state transitioning to itself
will prove to be constant under the assumption of the distance properties.

In the following consideration we assume (DAP̄a) or (DAP̄b) models for
which

The Distance Properties

1. ĉ(sf , w, sl) = 0 if and only if sf ∈ Â(sf , w) and sl = sf , (2.3.28)

2.

if sv ∈ Â(sl, w2), sv ∈ Â(sf , w1) and sl ∈ Â(sf , w1),

then ĉ(sl, w2, sv) + ĉ(sf , w1, sl) ≥ ĉ(sf , w1, sv)

must follow,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(triangle-inequality)

(2.3.29)

are additionally satisfied.

We will show that states sv are not essential for optimal single decisions
d̂∗

(
sf , w1

)
if we have equality in (2.3.29).

For this purpose we define the smaller DA decision sets.

Definition 2.3.4. Let sf ∈ S,w1 ∈ B be given.
ˆ̂

A
(
sf , w1

)
= {sv ∈ Â

(
sf , w1

)
| ∃ w2 ∈ B :

ĉ
(
sl, w2, sv

)
+ ĉ

(
sf , w1, sl

)
> ĉ

(
sf , w1, sv

)
∀ sl ∈ Â(sf , w1)

10In other words, using ”lazy algorithms” is sufficient in order to compute optimal
solutions of SDDP problems.
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with sv ∈ Â
(
sl, w2

)
, sl �= sf and sl �= sv}

is called the smaller DA decision set of feasible states for the given state sf

and the realized disturbance w1.

Lemma 2.3.11. Let (DAP̄a) or (DAP̄b) be a DA model for which the
distance properties (2.3.28) and (2.3.29) are additionally satisfied. Then
the properties

(i) ˆ̂
A(sf , w1) = {sv} if Â(sf , w1) = {sv},

(ii) sv ∈ ˆ̂
A(sf , w1) if ĉ(sf , w1, sv) = min

sl∈Â(sf ,w1)
ĉ(sf , w1, sl)

and

(iii) ˆ̂
A(sf , w1) �= ∅ for any sf ∈ S, w ∈ B

are valid.

Proof.

(i) We set w2 = w1 in relation to Definition 2.3.4 and see that there exists
no sl �= sv with sl ∈ Â(sf , w1) according to (i). Thus, the inequality

in Definition 2.3.4 is insignificant, however true, and sv ∈ ˆ̂
A(sf , w1)

follows.

(ii) Assume sl ∈ Â(sf , w1), sl �= sv and sv ∈ Â(sl, w2).

According to ĉ(sf , w1, sv) = min
sl∈Â(sf ,w1)

ĉ(sf , w1, sl) (see (ii))

ĉ(sf , w1, sv) ≤ ĉ(sf , w1, sl) (*1)

follows.

Additionally, from (2.3.28) we find that

ĉ(sl, w2, sv) �= 0 for sl �= sv. (*2)

(*1) and (*2) together result in

ĉ(sf , w1, sv) < ĉ(sf , w1, sl) + ĉ(sl, w2, sv),

which means sv ∈ ˆ̂
A(sf , w1).
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(iii) Since (DAP̄a) and (DAP̄b) include finite sets S and B,

sv ∈ ˆ̂
A(sf , w1) as in (ii) exists. �

We will now establish the following lemma and use it in the proof of
Theorem 2.3.13.

Lemma 2.3.12. Let (DAP̄a) or (DAP̄b) be a DA model for which the
distance properties (2.3.28) and (2.3.29) are additionally satisfied. Further-
more, let the condition

{{
sf , sl

} ⊆ Â(s, w) for s ∈ S, w ∈ B
}

⇒
{

Â(sf , w′) = Â(sl, w′) for each w′ ∈ B
} (2.3.30)

be valid.

If sv ∈ Â(sf , w1) however sv /∈ ˆ̂
A(sf , w1) then

∀ w2 ∈ B ∃ sl(�= sv) ∈ ˆ̂A(sf , w1) with sv ∈ Â
(
sl, w2

)
:

ĉ
(
sl, w2, sv

)
+ ĉ

(
sf , w1, sl

)
= ĉ

(
sf , w1, sv

)
.

Proof. (2.3.29) and Definition 2.3.4 yield

{
sv ∈ Â(sf , w1), sv /∈ ˆ̂

A(sf , w1)
}

⇒⎧⎨
⎩

for all w2 ∈ B ∃ sl1( �= sv) ∈ Â(sf , w1) with sv ∈ Â
(
sl1 , w2

)
:

ĉ
(
sl1 , w2, sv

)
+ ĉ

(
sf , w1, sl1

)
= ĉ

(
sf , w1, sv

)
.

⎫⎬
⎭
(*1)

Since ĉ
(
sl1 , w2, sv

) �= 0 according to (2.3.28)

ĉ
(
sf , w1, sl1

)
< ĉ

(
sf , w1, sv

)
(*1 a)

follows from (*1).
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If we suppose that sl1 /∈ ˆ̂
A(sf , w1), then (2.3.29) and Definition 2.3.4

yield⎧⎨
⎩

for all w2 ∈ B ∃ sl2(�= sl1) ∈ Â(sf , w1) with sl1 ∈ Â
(
sl2 , w2

)
:

ĉ
(
sl2 , w2, sl1

)
+ ĉ

(
sf , w1, sl2

)
= ĉ

(
sf , w1, sl1

)
.

⎫⎬
⎭
(*2)

Since ĉ
(
sl2 , w2, sl1

) �= 0 according to (2.3.28)

ĉ
(
sf , w1, sl2

)
< ĉ

(
sf , w1, sl1

)
< ĉ

(
sf , w1, sv

)
(*2 a)

follows from (*2) and (*1 a).

If we iteratively suppose that sl2 /∈ ˆ̂
A(sf , w1), then (2.3.29) and Definition

2.3.4 yield⎧⎨
⎩

for all w2 ∈ B ∃ sl3(�= sl2) ∈ Â(sf , w1) with sl2 ∈ Â
(
sl3 , w2

)
:

ĉ
(
sl3 , w2, sl2

)
+ ĉ

(
sf , w1, sl3

)
= ĉ

(
sf , w1, sl2

)
.

⎫⎬
⎭
(*3)

Since ĉ
(
sl3 , w2, sl2

) �= 0 according to (2.3.28)

ĉ
(
sf , w1, sl3

)
< ĉ

(
sf , w1, sl2

)
< ĉ

(
sf , w1, sl1

)
< ĉ

(
sf , w1, sv

)
(*3 a)

follows from (*3) and (*2 a).

If we suppose that sl3 /∈ ˆ̂
A(sf , w1), then we can iteratively pursue the

above procedural method to:

slj−1 /∈ ˆ̂
A(sf , w1), then (2.3.29) and Definition 2.3.4 yield⎧⎨

⎩
for all w2 ∈ B ∃ slj (�= slj−1) ∈ Â(sf , w1) with slj−1 ∈ Â

(
slj , w2

)
:

ĉ
(
slj , w2, slj−1

)
+ ĉ

(
sf , w1, slj

)
= ĉ

(
sf , w1, slj−1

)
.

⎫⎬
⎭

(*j)
Since ĉ

(
slj , w2, slj−1

) �= 0 according to (2.3.28)

ĉ
(
sf , w1, slj

)
< ĉ

(
sf , w1, slj−1

)
< · · · < ĉ

(
sf , w1, sv

)
(*j a)

follows from (*j) and (*(j-1) a).
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Since S is finite, chains of inequalities such as (*j a) cannot be infinite.

Thus, j ≥ 1 has to exist, so that slj ∈ ˆ̂A(sf ,w1).

We now substitute successively:

(*2) into (*1):

ĉ
(
sl1 , w2, sv

)
+ c

(
sl2 , w2, sl1

)
+ ĉ

(
sf , w1, sl2

)
= ĉ

(
sf , w1, sv

)
.

(*2 b)

sl1 ∈ Â(sf , w1), sl2 ∈ Â(sf , w1) (see (*1), (*2)) and (2.3.30) imply
that Â(sl1 , w2) = Â(sl2 , w2). Since sv ∈ Â(sl1 , w2) (see (*1))

sv ∈ Â(sl2 , w2) (*2 c)

follows.

Now we are in a position to apply (2.3.29) to the first two summands in
(*2 b).

The inequality

ĉ
(
sl2 , w2, sv

)
+ ĉ

(
sf , w1, sl2

)
≤ ĉ

(
sf , w1, sv

)
(*2 d)

follows.

Since sv ∈ Â(sf , w1) we can apply (2.3.29) to the left side of (*2 d):

ĉ
(
sf , w1, sv

)
≤ ĉ

(
sf , w1, sv

)
.

Hence equal signs can only be possible in the last two inequalities.
This means

ĉ
(
sl2 , w2, sv

)
+ ĉ

(
sf , w1, sl2

)
= ĉ

(
sf , w1, sv

)
. (*2 e)

Substituting (*3) into (*2 e) yields

ĉ
(
sl2 , w2, sv

)
+ c

(
sl3 , w2, sl2

)
+ ĉ

(
sf , w1, sl3

)
= ĉ

(
sf , w1, sv

)
.

(*3 b)
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sl2 ∈ Â(sf , w1), sl3 ∈ Â(sf , w1) (see (*2), (*3)) and (2.3.30) imply
that Â(sl2 , w2) = Â(sl3 , w2). Since sv ∈ Â(sl2 , w2) (see (*2 c))

sv ∈ Â(sl3 , w2) (*3 c)

follows.

We can now apply (2.3.29) to the first two summands in (*3 b).
The inequality

ĉ
(
sl3 , w2, sv

)
+ ĉ

(
sf , w1, sl3

)
≤ ĉ

(
sf , w1, sv

)
(*3 d)

then follows.

Since sv ∈ Â(sf , w1) we can also apply (2.3.29) to the left side of (*3 d):

ĉ
(
sf , w1, sv

)
≤ ĉ

(
sf , w1, sv

)
.

Hence equal signs are only possible in the last two inequalities.
This means

ĉ
(
sl3 , w2, sv

)
+ ĉ

(
sf , w1, sl3

)
= ĉ

(
sf , w1, sv

)
. (*3 e)

We can iteratively pursue this procedural method until:

sv ∈ Â(slj , w2) (*j c)

ĉ
(
slj , w2, sv

)
+ ĉ

(
sf , w1, slj

)
= ĉ

(
sf , w1, sv

)
(*j e)

(where slj ∈ ˆ̂
A(sf , w1)).

Thus, the assertion of the lemma is shown for l = lj . �
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The statement of the following theorem seems plausible, however, the
corresponding proof is not trivial.

Theorem 2.3.13. Let (DAP̄a) or (DAP̄b) be a DA model for which the
distance properties (2.3.28) and (2.3.29) are additionally satisfied. In addi-
tion let the condition (2.3.30) be valid.

Then the minimum will not increase, when smaller DA decision sets
ˆ̂

A(s, w) are used instead of Â(s, w).

Proof. Let s1(= s̄1) be some initial state. Furthermore let any sequences
wt, t = 1, 2, . . . with wt ∈ B and s̄t, t = 2, 3 . . . with s̄t+1 ∈ Â(s̄t, wt) for
t = 1, 2, . . . be given.

We will construct a sequence st, t = 2, 3, . . . with st+1 ∈ ˆ̂
A(st, wt) such

that

t∑
t′=1

ĉ(s̄t′ , wt′ , s̄t′+1) ≥
t∑

t′=1

ĉ(st′ , wt′ , st′+1) (2.3.31)

for t = 1, 2, . . . .
(It is possible that the original policy is not stationary. But it is well

known that in the case of an infinite horizon an optimal stationary policy
with the same set of decision spaces also exists.)

Now, we sequentially construct st+1 ∈ ˆ̂
A(st, wt) by

st+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s̄t+1 if s̄t+1 ∈ ˆ̂
A(st, wt),

st+1 ∈ ˆ̂
A(st, wt) :

ĉ(st+1, wt+1, s̄t+1) + ĉ(st, wt, st+1) = ĉ(st, wt, s̄t+1)
with s̄t+1 ∈ Â(st+1, wt+1)

if s̄t+1 �∈ ˆ̂
A(st, wt).

(2.3.32)

Such a st+1 ∈ ˆ̂
A(st, wt) exists in the second case according to Lemma 2.3.12.

(2.3.30) and s1 = s̄1 yield the identity of the sets

Â(s̄t, wt) = Â(st, wt) for t = 1, 2, ... .
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We show that st, t = 1, 2, . . . fulfil (2.3.31) by means of mathematical in-
duction:

Obviously the inequality

ĉ (s1, w1, s̄2) ≥ ĉ (s1, w1, s2)

is valid (see (2.3.32)).

Now, we assume that the inequality (2.3.31) is correct for 1, 2, . . . , t.

In the case that s̄t+1 = st+1, the inequality (2.3.31) for t + 1 follows from

ĉ (s̄t+1 (= st+1) , wt+1, s̄t+2) ≥ c (st+1, wt+1, st+2) ,

compare (2.3.32).
Finally, we consider cases with

s̄t1 = st1 , t1 < t + 1

and
s̄t′′ �= st′′ , t1 < t′′ ≤ t + 1.

In the following computations we alternately use (2.3.32) and
the triangle-inequality:

ĉ(st1 ,wt1 , s̄t1+1) + ĉ(s̄t1+1, wt1+1, s̄t1+2) + ĉ(s̄t1+2, wt1+2, s̄t1+3) + · · ·+

ĉ(s̄t+1, wt+1, s̄t+2)

= ĉ(st1+1,wt1+1, s̄t1+1) + ĉ(st1 ,wt1 , st1+1) + ĉ(s̄t1+1, wt1+1, s̄t1+2)

+ĉ(s̄t1+2, wt1+2, s̄t1+3) + · · · + ĉ(s̄t+1, wt+1, s̄t+2)

≥ ĉ(st1+1,wt1+1, s̄t1+2) + ĉ(st1 , wt1 , st1+1) + ĉ(st1+2, wt1+2, st1+3) + · · ·+

ĉ(s̄t+1, wt+1, s̄t+2)

≥ ĉ(st1+2,wt1+2, s̄t1+2) + ĉ(st1+1,wt1+1, st1+2) + ĉ(st1 , wt1 , st1+1)+

+ĉ(s̄t1+2, wt1+2, s̄t1+3) + · · · + ĉ(s̄t+1, wt+1, s̄t+2)
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≥ ĉ(st1+2,wt1+2, s̄t1+3) + ĉ(st1+1, wt1+1, st1+2) + ĉ(st1 , wt1 , st1+1) + · · ·+
ĉ(s̄t+1, wt+1, s̄t+2)

...
≥ ĉ(st+1,wt+1, s̄t+1) + ĉ(st,wt, st+1) + · · · + ĉ(st1+1, wt1+1, st1+2)

+ĉ(st1 , wt1 , st1+1) + ĉ(s̄t+1, wt+1, s̄t+2)

≥ ĉ(st+1,wt+1, s̄t+2) + ĉ(st, wt, st+1) + · · · + ĉ(st1 , wt1 , st1+1)

≥ ĉ(st+2,wt+2, s̄t+2) + ĉ(st+1,wt+1, st+2) + ĉ(st, wt, st+1) + · · ·+

ĉ(st1 , wt1 , st1+1)

≥ ĉ(st+1, wt+1, st+2) + ĉ(st, wt, st+1) + · · · + ĉ(st1 , wt1 , st1+1).

Since (2.3.31) is valid for any s1 and any sequence wt, t = 1, 2, . . . :

E
w2,...,wN

(
N∑

t=1
ĉt(st, wt, st+1) | s1, w1

)
≤ E

w2,...,wN

(
N∑

t=1
ĉt(s̄t, wt, s̄t+1) | s1, w1

)
for (DAP̄a)

and lim
n→∞

1
n E

(
n∑

t=1
ĉ(st, wt, st+1)

)
≤ lim

n→∞
1
n E

(
n∑

t=1
ĉ(s̄t, wt, s̄t+1)

)
for (DAP̄b)

follow. �

If we want to apply Theorem 2.3.13, then we must first check condition
(2.3.30). This is, however, laborious in general. Therefore, in the following
Theorem 2.3.13a additional properties are assumed so that property (2.3.30)
is satisfied in an effective way.

If (DAP̄b) is represented as a DA MDP(N = ∞, S,AM , P, γ) then it is
useful to give:

A Note on Transition Probabilities

Lemma 2.3.14. Let a DA MDP(N = ∞, S, AM , P, γ) be given where the
underlying internal costs additionally satisfy the distance properties (2.3.28)
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and (2.3.29).
Then the properties

i) s ∈ Â(s, w) ⇒ ˆ̂
A(s, w) = {s},

ii) p(s|s, d) =
∑

w:s∈Â(s,w)

q(w) for d with

d̂(s′, w′) ∈ ˆ̂
A(s′, w′) ∀ s′ ∈ S,w′ ∈ B

(this means p(s|s, d) =: p(s|s) do not depend on d)

are valid.

Proof.

i) Suppose that s ∈ Â(s, w) and s′ ∈ Â(s, w) with s′ �= s.

For sf = sl = s, sv = s′, w1 = w and w2 ∈ B with s′ ∈ Â(s, w2)
the triangle-inequality (2.3.29) has the representation

ĉ
(
s, w2, s′

)
+ ĉ (s, w, s) ≥ ĉ

(
s, w, s′

)
. (2.3.33)

ĉ(s, w2, s′) + ĉ(s, w, s) = ĉ(s, w, s′) follows from ĉ(s, w, s) = 0

(see (2.3.28)). According to Definition 2.3.4 s′ �∈ ˆ̂
A(s, w) and hence

{s} = ˆ̂
A(s, w).

ii) Equation (2.3.7) and property i) yield

p(s|s, d) =
∑

w:s=d̂(s,w)

q(w) =
∑

w:s∈Â(s,w)

q(w) =: p(s|s).

�

We now consider the distance properties, the smaller DA decision set and
Theorem 2.3.13 under the additional assumptions:

ĉ(sf , w, sl)(= ĉ(sf , sl)) do not depend on w (see (2.3.12)),

Â(s, w)(= Â(w)) do not depend on s. (2.3.34)
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It is reasonable for us to assume Â(w) �= ∅ for all w ∈ B.

Obviously, (2.3.34) implies (2.3.30).

(SDDP problems will satisfy these conditions, see Chapter 3.)

Initially we specify the triangle-inequality under these assumptions.

Let be sv ∈ Â(w2), sv ∈ Â(w1), sl ∈ Â(w1)

then ĉ(sl, sv) + ĉ(sf , sl) ≥ ĉ(sf , sv) ∀sf ∈ S

⎫⎬
⎭

has to follow.

(2.3.35)

The representation of the smaller DA decision sets can be simplified in the
following way (in particular, we set w2 = w1):

Definition 2.3.4 a. Let sf ∈ S, w1 ∈ B be given.
ˆ̂

A
(
sf , w1

)
= {sv ∈ Â

(
w1

) | ĉ
(
sl, sv

)
+ ĉ

(
sf , sl

)
> ĉ

(
sf , sv

)
∀ sl ∈ Â

(
w1

)
with sl �= sv and sl �= sf}

is called the smaller DA decision set of feasible states for a given state sf

and a realized disturbance w1 under the additional assumptions (2.3.12) and
(2.3.34).

Finally, we can replace (2.3.30) by (2.3.34) in Theorem 2.3.13:

Theorem 2.3.13 a. Let (DAP̄a) or (DAP̄b) be DA models for which the
distance properties (2.3.28) and (2.3.29) are additionally satisfied. Further-
more, let the condition (2.3.30) be valid.

Then the minimum will not increase, when smaller DA decision sets
ˆ̂

A(s, w) are used instead of Â(s, w).

The following condition corresponds to (2.3.13).

ĉ(s, sl1) = · · · = ĉ(s, slv) for any s ∈ S, w ∈ B

and {sl1 , · · · , slv} = ˆ̂
A (s, w) .

(2.3.36)

Under this special assumption we show:
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Lemma 2.3.15. Let (DAP̄a) or (DAP̄b) be DA models for which the dis-
tance properties (2.3.28) and (2.3.29) are additionally satisfied. Further-
more, let the conditions (2.3.12), (2.3.34) and (2.3.36) be valid. Then the
relations

(i) ĉ(sf , sl) < ĉ(sf , s̄l) for any w ∈ B, sl ∈ ˆ̂
A(sf , w) and s̄l ∈ Â(w)

however s̄l �∈ ˆ̂
A(sf , w),

(ii) c(sf , sl) = min
{

ĉ(sf , s̄l) | s̄l ∈ Â(w)
}

∀ sl ∈ ˆ̂
A(sf , w),

(iii) γ(s, d) do not depend on d for d with

d̂(s′, w′) ∈ ˆ̂
A(s′, w′) ∀s′ ∈ S, ∀w′ ∈ B

hold.

Proof.

(i): Assumption: ĉ(sf , s̄l) ≤ ĉ(sf , sl) for s̄l �∈ ˆ̂
A(sf , w) and sl ∈ ˆ̂

A(sf , w).

According to Lemma 2.3.11(ii), (iii)

s̄ ∈ ˆ̂
A(sf , w) with ĉ(sf , s̄) = min

s′∈Â(w)
ĉ(sf , s′) exists and

furthermore, ĉ(sf , s̄) < ĉ(sf , s̄l) follows.

ĉ(sf , s̄) < (ĉ(sf , s̄l) ≤) ĉ(sf , sl), contradicting (2.3.36).

(ii): (ii) follows from (i) and (2.3.36).

(iii): Substituting (2.3.36) into the first equation of (2.3.8) yields (iii).

�

In [24] surrogate problems are given (these surrogate problems are a kind
of two-stage-problems), which can be used as approximate solutions for the
DA MDP with distance properties. These surrogate problems are to be
used, above all, if the state spaces of the MDPS are very immense.
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2.3.3.2 The Dominant Policy

In this Section we consider ”dominant policies” of MDPs. We will see that
it is easy to analyze MDPs which are based on DA models in the case that
dominant policies exist.

The dominance of Markov chains can be found in Daley 68 (see [10]).

We can apply this denotation to Markov chains which correspond to
policies of MDPs. However, if we want to transfer this denotation to MDPs
themselves, then convenient properties are also required for the correspond-
ing average (one-step) reward functions (Puterman [31], Theorem 8.11.3 and
Hildenbrandt [22], Theorem 3.2 or [20]).

Therefore, the dominance of policies of MDPs includes numerous strong
conditions. Hence, the question is: can we find (useful) MDPs which fulfil
the conditions of dominance?

Specific equipment replacement models with dominant policies can be
found in Puterman [31]. Although in these models only two different de-
cisions are possible (see [31], Example 8.11.1, Section 6.10.4. and Section
8.10.4).

Due to there decision structures the chance of finding MDPs with more
than two decisions which fulfil the conditions of dominance is better for
MDPs which are based on DA models (compare the Sections 2.3.2.1 and
2.3.2.2).

In Section 4.6.2.2 we will characterize SDDP problems with optimal dom-
inant policies.

For other SDDP problems we will consider the interesting effect that con-
ditions of dominance are only partially violated. It then seems possible to
modify these conditions of dominance.

Since in Section 3.3 certain SDDP problems will be reduced, we now in-
clude such a possibility in the following definitions and theorems.

Definition 2.3.5. Let a MDP(N = ∞, S, AM , P, γ) with states s1, · · · , sm

be given and let d̄ ∈ AM be a (stationary) policy for which the stationary
distribution pd̄,∞ exists. Furthermore, the following conditions are assumed
to be fulfilled in relation to the sets of indices
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Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r where
h0 = 0, hv−1 < hv, hr = m :

(C1) (domination)

r̄∑
v=1

∑
l∈Iv

pd̄
h1l ≥

r̄∑
v=1

∑
l∈Iv

pd̄
h2l ≥ · · · ≥

r̄∑
v=1

∑
l∈Iv

pd̄
hrl, ∀ r̄ = 1, · · · , r,

(C2) (reduction)∑
ȳ∈Iy

pd̄
hq−1+1 ȳ =

∑
ȳ∈Iy

pd̄
hq−1+2 ȳ = · · ·=

∑
ȳ∈Iy

pd̄
hq ȳ,

∀ q=1, · · · , r ∀ y = 1,· · ·, r,

(C3) (comparison)

r̄∑
v=1

∑
l∈Iv

pd̄
ȳl ≤

r̄∑
v=1

∑
l∈Iv

pd
ȳl ∀ ȳ ∈ Iy, ∀ r̄ = 1, · · · , r

∀ y = 1, · · · , r and ∀ d ∈ AM .

Additionally, let the one-step reward functions belonging to d̄ fulfil the
conditions

(Cr1) γ(sh1 , d̄) ≥ γ(sh2 , d̄) ≥ · · · ≥ γ(shr , d̄),

(Cr2) γ(shv−1+1, d̄) = γ(shv−2+2, d̄) = · · · = γ(shv , d̄) ∀ v = 1, · · · , r,

(Cr3) γ(sl, d̄) ≤ γ(sl, d) ∀ l = 1, · · · , m and ∀ d ∈ AM .

Then d̄ ∈ AM is called a dominant policy (in relation to the sets of indices).

Remarks 2.3.3. If (C2) and (Cr2) are fulfilled in relation to the sets of
indices Iv, this is used for the reduction of the corresponding MDPs. Of
course, Iv = {v}, v = 1, · · · ,m is also possible in Definition 2.3.5, in the
following Theorem 2.3.17 (and so on).
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Lemma 2.3.16. Let a MDP(N = ∞, S, AM , P, γ) with states s1, · · · , sm be
given and let d̄ ∈ AM be a dominant policy in relation to the sets of indices

Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r where

h0 = 0, hv−1 < hv, hr = m.

(i) Then (C1), (C2) and (C3) (from Definition (2.3.5)) are valid for each
of the powers (P d̄)t of P d̄ and (P d)t of P d (t = 1, 2, · · · ).
(Here, P d̄ and P d are matrices of transition probabilities for d̄ and d,
respectively.)

(ii) Additionally, the condition

pd̄,∞
hq−1+1 = pd̄,∞

hq−1+2 = · · · = pd̄,∞
hq

∀ q=1, · · · , r

which corresponds to (C2) is valid for the stationary distribution pd̄,∞.

(Refer to the proofs of Lemma 3.14 and Theorem 3.17(a) in [22] for (i)
and the proof of Corollary 3.15 for (ii).)

A dominant policy is always an optimal policy:

Theorem 2.3.17. . Let (2.3.3) be valid for all stationary policies of a given
MDP(N = ∞, S, AM , P, γ). In addition, let d̄ ∈ AM be a dominant policy
in relation to the sets of indices

Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r where

h0 = 0, hv−1 < hv, hr = m.

Then the dominant policy d̄ is an optimal policy.

(Refer to the proof of Theorem 3.17(b) in [22].)

In order to check whether a dominant policy exists for a given
MDP(N = ∞, S, AM , P, γ) (where (2.3.3) is valid for all stationary policies),
we first consider the average one-step reward functions in relation to condi-
tion (Cr3):

(In Algorithm 2.3.1 we do not include the possibility of reduction of
MDPs.)

Algorithm 2.3.1. .

1. If we can find d0 such that
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γ(sf , d0) = min{γ(sf , d) | d ∈ AM} for any sf ∈ S

then condition (Cr3) of Definition 2.3.5 is fulfilled.

2. We then number the states in a new way such that

γ(sλ1 , d0) ≥ γ(sλ2 , d0) ≥ · · · ≥ γ(sλm , d0), (2.3.37)

{λ1, · · · , λm} = {1, · · · ,m} (Condition (Cr1)!).

3. Lastly, we check the conditions (C1) and (C3) of Definition 2.3.5.

Either not all conditions are valid or d0 is an optimal dominant policy
(d̄ = d0).

(Clearly, if equals signs exist in (2.3.37) then the numbering of the states is
not unique in step 2.)

Now, let a Markov decision process DA MDP(N = ∞, S, AM , P, γ) be
given, which results from a DA model (where (2.3.3) is valid for all sta-
tionary policies). On the whole we can investigate the existence of (and
construct) a dominant policy as in Algorithm 2.3.1. In step 1 we determine
d0 by means of the internal costs:

(The possibility of reduction of MDPs is included in a supplement after
Algorithm 2.3.1a.)

Algorithm 2.3.1a

1. We compute d0 such that

d̂0(sf , w) = sl, where

ĉ(sf , w, sl) = min{ĉ(sf , w, sl′)|sl′ ∈ Â(sf , w)}
for f = 1, · · · ,m, w ∈ B

⎫⎪⎪⎬
⎪⎪⎭ (2.3.38)

and γ(sf , d0) according to the first equation of (2.3.8).

Then, condition (Cr3) of Definition 2.3.5 is fulfilled
(see the first equations of (2.3.8) and (2.3.17)).

2. as in Algorithm 2.3.1.

3. as in Algorithm 2.3.1.
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We must, however, take into consideration that d0 does not have to be unique
and that equals signs can also be found in (2.3.37).
Therefore we supplement:

(a) If d0 is not unique in the following way:

ĉ(sf , w, sl1) = ĉ(sf , w, sl2) = min {ĉ(sf , w, sl′) | sl′ ∈ Â(sf , w)}
and γ(sl1 , d0) < γ(sl2 , d0)

then d0(sf ) with d̂0(sf , w) = sl1 must be used.

⎫⎪⎪⎬
⎪⎪⎭

(2.3.39)

This is necessary for the validity of (Cr3).

(b) If equals signs are in (2.3.37) the possibility of formation of sets of
indices Iv must be considered. That means that several cases have to
be taken into account when checking the conditions of dominance. (See
also papers pertaining to lumpings of Markov chains such as [6]). ((b)
additionally requires that d0 is not unique.)

Lemma 2.3.18. Let a DA MDP(N = ∞, S,AM , P, γ) be given.

Then condition (Cr3) is valid only for decision functions d0 which are
computed as in (2.3.38).

Proof.

1. Let d0 be computed as in (2.3.38). From the first equation of (2.3.8)
it follows that (Cr3) is valid.

2. Let (Cr3) be valid.

Assumption: d̂0(sf , w) = sv and ∃ sl ∈ Â(sf , w) : ĉ(sf , w, sl) <
ĉ(sf , w, sv).

d̄ with

ˆ̄d(s′, w′) :=

{
d̂0(s′, w′) if (s′, w′) �= (sf , w),

sl if (s′, w′) = (sf , w)

yields γ(sf , d̄) < γ(sf , d0) according to (2.3.17). This inequality is a
contradiction of (Cr3). �
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Remarks 2.3.4. For a DA MDP(N = ∞, S,AM , P, γ) the condition (C3)
includes (single) decisions ˆ̄d for the feasible states whose indices are ele-
ments of indices sets with the largest possible indices.

Hence, an almost-partial order of the states follows:

Lemma 2.3.19. Let a DA MDP(N = ∞, S, AM , P, γ) with states s1, · · · , sm

be given and let the (stationary) policy d̄ ∈ AM satisfy the conditions (C2)
and (C3) of Definition 2.3.5 in relation to the following sets of indices

Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r where

h0 = 0, hv−1 < hv, hr = m.

(i) If ˆ̄d(sf , w) = sl for sl ∈ Â(sf , w) with l ∈ Iv

then no sl′ ∈ Â(sf , w) with l′ ∈ Iv′ and v′ > v exists.

(ii) d̄ implies an almost-partial order < of the states in the way{
sl < sf , l ∈ Iv(l), f ∈ Iv(f)

}
:={

∃ sy ∈ S, w ∈ B and sl′ ∈ Â(sy, w), l′ ∈ Iv(l), sf ′ ∈ Â(sy, w), f ′ ∈ Iv(f)

so that ˆ̄d(sy, w) = sf ′
.
}

Proof.

(i) Assumption: ∃sl′ ∈ Â(sf , w) with l′ ∈ Iv′ and v′ > v.

We set d̄′ with:

ˆ̄
d′(s′, w′) :=

{ ˆ̄d(s′, w′) if (s′, w′) �= (sf , w),

sl′ if (s′, w′) = (sf , w).

From Lemma 2.3.3 IIa)
v∑

v̄=1

∑
l̄∈Iv̄

pd̄′
f l̄ =

v∑
v̄=1

∑
l̄∈Iv̄

pd̄
f l̄ − q(w) <

v∑
v̄=1

∑
l̄∈Iv̄

pd̄
f l̄

follows contradicting (C3).
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(ii) (See Definition 2.3.2 for the almost-partial order.)

Asymmetry:

Let sl < sf as in (ii) and (w.l.o.g) v(l) < v(f) .

Assumption: sl > sf . This means

∃ sy′ ∈ S,w′ ∈ B and sl′′ ∈ Â(sy′
, w′), l′′ ∈ Iv(l), s

f ′′ ∈ Â(sy′
, w′),

f ′′ ∈ Iv(f)

so that ˆ̄d(sy′
, w′) = sl′′ .

Analogously to the proof of (i), we set d̄′ with:

ˆ̄
d′(s′′, w′′) :=

{ ˆ̄d(s′′, w′′) if (s′′, w′′) �= (sy′
, w′),

sf ′′
if (s′′, w′′) = (sy′

, w′)

and from Lemma 2.3.3 IIa)
v(l)∑
v̄=1

∑
l̄∈Iv̄

pd̄′
y′ l̄ =

v(l)∑
v̄=1

∑
l̄∈Iv̄

pd̄
y′ l̄ − q(w′) <

v(l)∑
v̄=1

∑
l̄∈Iv̄

pd̄
y′ l̄

follows contradicting (C3).

Almost-transitivity:

Let sl < sy and sy < sf .

sl ≯ sf can be proven by contradiction, similar to the proof of
asymmetry.

�

Remarks 2.3.5. .

a) For a DA MDP(N = ∞, S, AM , P, γ) it is not difficult to verify whether
a dominant policy exists. In particular, in step 3 of Algorithm 2.3.1,
the extensive condition (C3) is easily analyzed for a DA MDP (see
Lemma 2.3.19).

b) Lemma 2.3.19(ii) and Theorem 2.3.8(i) imply that dominant policies
could exist particularly for DA MDPs if internal costs with special
properties (for example (2.3.13)) are underlain.
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c) MDPs (with more than two decisions) which are not based on DA mod-
els with optimal dominant policies are rarely found.

2.3.4 Cost-Parametric Analysis of DA Markov Decision
Processes

In the main part of this section we consider DA MDPs where the underly-
ing internal costs and hence the average one-step reward functions depend
linearly on one deterministic parameter.

We assume that the internal costs and the average one-step reward func-
tions do not depend on the decisions in regard to the initial parameter (see
(2.3.13) and (2.3.14) in Section 2.3.2).

In this case optimal decisions imply almost-partial orders of the states
(compare Section 2.3.2.2). These almost-partial orders of the states mean
that the complexity of computing optimal decisions can be reduced.

If the parameter increases, then in general the optimality criterion (2.3.22)
is violated for single decisions.

Optimal decisions can therefore be purposefully computed for the increas-
ing parameter (by means of policy iteration, for example). This also means
that an adapted Howard algorithm is a greedy algorithm for cost-parametric
DA Markov decision processes.

(Furthermore, a finite number of optimal policies exist for an infinite set
of parameter values).

In a later part of this section conditions (AC1), (AC2) and (AC3) are
given. If they are valid the complexity of computation of optimal decisions
can be reduced further.

(A remaining problem is to what extent these conditions are fulfilled for
(parametric) SDDP problems.)

On one hand as we carry out the investigation in this Section we will
realize the solutions of the DA MDPs themselves (by a continuation of the
solutions of the parametric DA MDPs) and the motivation of heuristics for
DA MDPs.
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solution behavior of DA MDPs.

2.3.4.1 Some Properties of Parametric Markov Decision
Processes

Let ϑ ∈ Ī ⊆ R be a deterministic parameter, where Ī is one of the following
intervals [ϑ1, ϑ2] or [ϑ1,∞) or (−∞, ϑ2] or (−∞,∞) (with ϑ1 ∈ R, ϑ2 ∈ R).

Now, we introduce a set of MDPs of the type MDP(N = ∞, S, AM , P, γ)
(see Section 2.3.1), where

S, s and AM , d do not depend on ϑ,

γ(s, d, ϑ) and pd
fl(ϑ) are continuous at ϑ for each

s ∈ S, f ∈ {1, · · · ,m}, l ∈ {1, · · · ,m}, d ∈ AM .

(2.3.40)

For the set of such MDPs (which satisfy (2.3.40)) we use the notation

MDPc(N = ∞, S, AM , P (ϑ), γ(ϑ)),

where the subscript index c means that P d(ϑ) and γd(ϑ) are ”continuous”
at ϑ.

Lemma 2.3.20. Let a MDPc(N = ∞, S, AM , P (ϑ), γ(ϑ)) on Ī be given.
In addition, let pd

fl(ϑ) �= 0 ∀ f, l ∈ {1, . . . , m}, ∀ d ∈ AM ,∀ ϑ ∈ Ī.

(i) The average expected cost per stage gd(ϑ) and the other solutions νd(ϑ)
of the Poisson equations

g(ϑ)ε + ν(ϑ) = P d(ϑ)ν(ϑ) + γd(ϑ), ε =

⎛
⎜⎝1

...
1

⎞
⎟⎠

are continuous at ϑ, where (w. l. o. g.) νd
m(ϑ) = 0 ∀ ϑ ∈ Ī

(see (2.3.5)).

(ii) If d is an optimal decision on (ϑ′, ϑ′′) ⊆ Ī, then
d is also an optimal decision on [ϑ′, ϑ′′].

On the other hand, we will work out specific properties in relation to the
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Proof.

(i) If νd
m(ϑ)(= 0) are fixed then the remaining equation systems have

unique solutions and fundamental rules of arithmetic can therefore
be used to solve these equation systems. Hence, the solutions are
continuous at ϑ (if P d(ϑ) and γd(ϑ) are continuous at ϑ).

(ii) �Hd(sf , d̄, ϑ) :=
m∑

l=1

pd̄
f lν

d
l (ϑ)+γ(sf , d̄, ϑ)−(

m∑
l=1

pd
flν

d
l (ϑ)+γ(sf , d, ϑ)).

According to (2.3.19) and (2.3.19 a), respectively,
a decision d is optimal if and only if

�Hd(sf , d̄, ϑ) ≥ 0 ∀ sf ∈ S, ∀ d̄ ∈ AM .

(i) implies that �Hd(sf , d̄, ϑ) are also continuous at ϑ.

If �Hd(sf , d̄, ϑ) ≥ 0 ∀ sf ∈ S, ∀ d̄ ∈ AM and ∀ ϑ ∈ (ϑ′, ϑ′′)
(optimality criterion) then

�Hd(sf , d̄, ϑ′) ≥ 0 and �Hd(sf , d̄, ϑ′′) ≥ 0 follows

since �Hd(sf , d̄, ϑ) are continuous at ϑ.

�

When the optimal decisions change at ϑ0 the solutions of the correspond-
ing Poisson equations fulfil the following property:

Theorem 2.3.21. Let a MDPc(N = ∞, S,AM , P (ϑ), γ(ϑ)) on Ī be given.
In addition, let pd

fl(ϑ) �= 0 ∀ f, l ∈ {1, . . . , m}, ∀ d ∈ AM ,∀ ϑ ∈ Ī be given.

If d∗′ is an optimal decision on [ϑ′, ϑ0] and d∗′′ is an optimal decision
on ϑ ∈ [ϑ0, ϑ

′′] where ϑ′ ≤ ϑ0 ≤ ϑ′′ then

ν∗′(ϑ0) = ν∗′′(ϑ0)

for the solutions (g∗′(ϑ), ν∗′(ϑ)) with ν∗′
m(ϑ) = 0 and (g∗′′(ϑ), ν∗′′(ϑ))

with ν∗′′
m (ϑ) = 0 of the corresponding Poisson equations.

The theorem follows immediately from Lemma 2.3.1.

For further considerations we assume that only the average one-step re-
ward functions γ depend on the parameter ϑ and that γ(ϑ) are linear func-
tions at ϑ.
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Furthermore, γ also depend on (fixed) ξ.
(For DA MDPs ξ will be related to the internal costs):

(LPCl) 11 Let Ī = [0,∞), {ξ0, ξ} ⊆ Rζ
+, 12 Θξ(ϑ) := ξ0 + ϑξ for ϑ ∈ Ī.

Additionally, let γ be a linear function at ϑ:

γd(ϑ) = γd(Θξ(ϑ)) = γd(ξ0 + ϑξ) = γd(ξ0) + ϑγd(ξ) (∀ d ∈ AM ).
(2.3.41)

Since γd ∈ Rm
+ (see Section 2.3), γd(ϑ) is an increasing function according

to (2.3.41).

For the set of corresponding cost-parametric MDPs (which satisfy (LPCl))
we use the notation

MDPl(N = ∞, S, A, P, γ(ξ0) + ϑγ(ξ)),

where the subscript index l means that γd(ϑ) are ”linear” at ϑ (∀ d ∈ AM ).

Lemma 2.3.22. Let a MDPl(N = ∞, S,A, P, γ(ξ0)+ϑγ(ξ)) on Ī = [0,∞)
be given. In addition, let (2.3.3) be valid for all stationary policies.

Then the average expected cost per stage gd(ξ0 + ϑξ) and the other solu-
tions νd(ξ0 + ϑξ) of the Poisson equations

g(ξ0 + ϑξ)ε + ν(ξ0 + ϑξ) = P dν(ξ0 + ϑξ) + γd(ξ0 + ϑξ), ε =

⎛
⎜⎝1

...
1

⎞
⎟⎠

where (w. l. o. g.) νd
m(ξ0) = 0, νd

m(ξ) = 0

are linear functions at ϑ:

gd(ξ0 + ϑξ) = gd(ξ0) + ϑgd(ξ)

νd
f (ξ0 + ϑξ) = νd

f (ξ0) + ϑνd
f (ξ), f = 1, · · · ,m − 1(,m),

where gd(ξ0), νd(ξ0) are solutions of the Poisson equation

g(ξ0)ε + ν(ξ0) = P dν(ξ0) + γd(ξ0), ε =

⎛
⎜⎝1

...
1

⎞
⎟⎠

and gd(ξ), νd(ξ) are solutions of the Poisson equation
11Parametric case where γ is a linear function at ϑ.
12Initially, the type of the set which contains ξ0 and ξ does not play a significant role.
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g(ξ)ε + ν(ξ) = P dν(ξ) + γd(ξ), ε =

⎛
⎜⎝1

...
1

⎞
⎟⎠.

gd(ξ0 +ϑξ) is an increasing function at ϑ and if l with γd
l (ξ) > 0 exists then

gd(ξ0 + ϑξ) is a strictly increasing function at ϑ (see (2.3.4)).

Obviously, this Lemma follows from properties of linear equation systems
in connection with fundamental rules of arithmetic.

Lemma 2.3.23. Let a MDPl(N = ∞, S, A, P, γ(ξ0)+ϑγ(ξ)) on Ī = [0,∞)
be given. In addition, let (2.3.3) be valid for all stationary policies.

(i) If d is an optimal decision at ϑ0 ∈ I and

∃ ϑ′ �= ϑ0 with
{

ϑ′ < ϑ0,
ϑ0 < ϑ′

}
: d is optimal at ϑ′,

then d is optimal on
{

[ϑ′, ϑ0] ,
[ϑ0, ϑ

′]

}
.

(ii) An optimal decision d∗ at ϑ0 = 0 and an ε > 0 exist such that d∗ is
also optimal on [0, ε].

Proof.

(i): From Lemma 2.3.22 it follows that �Hd(sf , d̄, ϑ) (sf ∈ S, d̄ ∈ AM )
are also linear functions at ϑ.

Hence, �Hd(sf , d̄, ϑ0) ≥ 0 and �Hd(sf , d̄, ϑ′) ≥ 0 imply that the
optimality criterion �Hd(sf , d̄, ϑ) ≥ 0 is also fullfiled on the complete

interval
{

[ϑ′, ϑ0] ,
or [ϑ0, ϑ

′]

}
.

(ii): From Lemma 2.3.22 it follows that

�Hd(sf , d̄, ϑ) = �Hd(sf , d̄, ξ0) + ϑ �Hd(sf , d̄, ξ) with

�Hd(sf , d̄, ξ0) =
m∑

l=1

pd̄
f lν

d
l (ξ0)+γ(sf , d̄, ξ0)−(

m∑
l=1

pd
flν

d
l (ξ0)+γ(sf , d, ξ0))

�Hd(sf , d̄, ξ) =
m∑

l=1

pd̄
f lν

d
l (ξ)+γ(sf , d̄, ξ)−(

m∑
l=1

pd
flν

d
l (ξ)+γ(sf , d, ξ)).
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Since AM is a finite set of decision functions, a decision d∗ and an
infinite sequence {ϑi}i=1,2,··· with 0 < ϑi ∀ i = 1, 2, · · · and lim

i→∞
ϑi = 0

exist such that d∗ is optimal at ϑi for i = 1, 2, · · · .

Then, from �Hd∗(sf , d̄, ϑi) = �Hd∗(sf , d̄, ξ0) + ϑi �Hd∗(sf , d̄, ξ) ≥ 0
for i = 1, 2, · · · , the inequalities �Hd∗(sf , d̄, 0) = �Hd∗(sf , d̄, ξ0) ≥ 0
follow. According to (i) we can chose ε = ϑ1 in order to complete the
proof for (ii).

�

Since gd(ξ0 + ϑξ) is an increasing function at ϑ for any d (see Lemma
2.3.22) and the decision space is a finite set the following Lemma is valid
(refer also to Lemma 2.3.20(ii) and Lemma 2.3.23):

Lemma 2.3.24. Let a MDPl(N = ∞, S, AM , P, γ(ξ0) + ϑγ(ξ)) on
Ī = [0,∞) be given. In addition, let (2.3.3) be valid for all stationary poli-
cies.

Then a finite sequence of real numbers 0 = ϑ̄1 < ϑ̄2 < · · · < ϑ̄y−1 and a
corresponding sequence of decisions d∗1 ∈ AM , . . . , d∗(y−1) ∈ AM exist such
that

d∗f are optimal on If := [ϑ̄f , ϑ̄f+1] for f = 1, 2, · · · , y − 2

and d∗(y−1) is optimal on Iy−1 = [ϑ̄y−1,∞).

If d∗f are optimal on If (f < y − 1) however d∗f are not optimal on
If+1\{ϑ̄f+1} then d∗f are also not optimal on Il for l = f+1, f+2, · · · , y−1.
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Figure 2.3.2.
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ϑ

gd∗(y−1)
(ϑ)

gd∗3(ϑ)

gd∗2(ϑ)

gd∗1(ϑ)
gd(ϑ)

0 = ϑ̄1 ϑ̄2 ϑ̄(y−1)ϑ̄3

2.3.4.2 Cost-Parametric DA Markov Decision Processes

Cost-parametric DA MDPs mean that the underlying internal costs and
thus the average one-step reward functions (see (2.3.8)) depend linearly on
a deterministic parameter.

We also assume that internal costs and thus the average one-step reward
functions do not depend on the decisions in regard to the initial parameter
(refer to (2.3.13) and (2.3.14) in Section 2.3.2):

(LPC) Let Ī = [0,∞), {κ0, κ} ⊆ Rn
+ × R|B|

+ × Rn
+ (or {κ0, κ} ⊆ Rn

+ × Rn
+

if (2.3.12) is valid), ϑ ∈ Ī and Θκ(ϑ) := κ0 + ϑκ for ϑ ∈ Ī.

Furthermore, let the internal costs be linear functions at ϑ
and let the internal costs not depend on the decisions in regard to the
initial parameter (see (2.3.13):

ĉ(s, w, s′, ϑ) = ĉ(s, w, s′, Θκ(ϑ)) = ĉ(s, w, s′, κ0 + ϑκ)

= ĉ(s, w, s′, κ0) + ϑ ĉ(s, w, s′, κ) for any s, s′ ∈ S, w ∈ B, ϑ ∈ Ī ,

thus

= ĉ(s, w, κ0) + ϑ ĉ(s, w, s′, κ)

for any s, s′ ∈ S, w ∈ B, and given {κ0, κ}. (2.3.42)
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(Remark: In Section 3.5 the internal costs for SDDP problems have to be
calculated as solutions of classical transportation problems with
costs κ = (kij) i=1,...,n

j=1,...,n
∈ Rn

+ × Rn
+.)

In order to calculate the average one-step reward functions according to
(2.3.8) we set

ξ0 = (ĉ(s, w, κ0)){s,s′}⊆S,w∈B and ξ = (ĉ(s, w, s′, κ)){s,s′}⊆S,w∈B.

(Or ξ0 = (ĉ(s, s′, κ0)){s,s′}⊆S and ξ = (ĉ(s, s′, κ)){s,s′}⊆S

if (2.3.12) is valid.)

(2.3.43)

According to the first equation of (2.3.8)

γd(s, ξ) =
∑

s′∈S

∑
w:s′=d̂(s,w)

ĉ(s, w, s′, κ) q(w),

γd(s, ξ0) =
∑
w

ĉ(s, w, κ0) q(w)

and
γd(s, ϑ) := γd(s, ξ0 + ϑξ) = γd(s, ξ0) + ϑ γd(s, ξ)

follow for any s ∈ S, d ∈ AM and ϑ ∈ [0,∞).

Hence γd(s, ϑ) satisfy (LPCl), if ĉ(s, w, s′, ϑ) satisfy (LPC).

For the set of corresponding cost-parametric DA MDPs (which satisfy
(LPC) and (2.3.43)) we use the notation

DA MDPl(N = ∞, S, AM , P, γ(ϑ)).

In relation to the initial parameter and the increasing parameter the follow-
ing Lemma is valid for such DA MDPs:

Lemma 2.3.25. Let a DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on Ī = [0,∞)
be given. And let (2.3.3) be valid for all stationary policies.

(i) If (2.3.43) is assumed, then γd(s, ξ0) do not depend on d.

(ii) �Hd(sf , w, sl̄ − sl, ϑ) = ĉ(sf , w, sl̄, ϑ)− ĉ(sf , w, sl, ϑ) + νd
l̄
(ϑ)− νd

l (ϑ)

are linear functions at ϑ for any {sf , sl̄, sl} ⊆ S,w ∈ B, d ∈ AM

(νd(ϑ) are solutions of the Poisson equations as in Lemma 2.3.22).
(Refer to (2.3.21) and also the optimality criterion (2.3.22).)
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(iii) Let d∗′ be optimal on [ϑ′, ϑ0] and d∗′′ optimal on [ϑ0, ϑ
′′]

where 0 ≤ ϑ′ ≤ ϑ0 ≤ ϑ′′.

Then{
d̂∗′(sf , w) = sl �= d̂∗′′(sf , w) = sl̄ for an sf ∈ S and a w ∈ B

}
⇒

{
�Hd∗

′
(sf , w, sl̄ − sl, ϑ0) = 0 and �Hd∗

′′
(sf , w, sl − sl̄, ϑ0) = 0

}
.

(iv) Let d∗′ be optimal on [ϑ′, ϑ0] and d∗′′ optimal on [ϑ0, ϑ
′′]

where 0 ≤ ϑ′ < ϑ0 < ϑ′′.
In addition let d̂∗′(sf , w) = sl �= d̂∗′′(sf , w) = sl̄ for an sf ∈ S and a
w ∈ B.

Then

a) �Hd∗
′
(sf , w, sl̄ − sl, ϑ) is decreasing at ϑ and

�Hd∗
′′
(sf , w, sl − sl̄, ϑ) is increasing at ϑ.

b) If, additionally,⎧⎨
⎩ �Hd∗

′′
(sf , w, sl − sl̄, ϑ) is strictly increasing at ϑ,

�Hd∗
′
(sf , w, sl̄ − sl, ϑ) is strictly decreasing at ϑ

⎫⎬
⎭

then optimal decisions{
d∗1 with d̂∗1(sf , w) = sl on (ϑ0, ϑ0 + ε],

d∗2 with d̂∗2(sf , w) = sl̄ on [ϑ0 − ε, ϑ0)

}
do not exist for

any ε > 0

thus{
d∗′ is not optimal on (ϑ0, ϑ0 + ε],

d∗′′ is not optimal on [ϑ0 − ε, ϑ0)

}
for any ε > 0.

Proof.

(i) follows from (2.3.14) under the assumption of (LPC).

(ii) According to the assumptions of (LPC) and Lemma 2.3.22 together
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with (2.3.43) the relations

�Hd(sf , w, sl̄ − sl, ϑ)

= ĉ(sf , w, sl̄, ϑ) − ĉ(sf , w, sl, ϑ) + νd
l̄
(ϑ) − νd

l (ϑ)

= ĉ(sf , w, sl̄, κ0) + ϑĉ(sf , w, sl̄, κ) − (ĉ(sf , w, sl, κ0) + ϑĉ(sf , w, sl, κ))

+ νd
l̄
(ξ0) + ϑ νd

l̄
(ξ) − (νd

l (ξ0) + ϑ νd
l (ξ))

= ϑ [ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ) + νd
l̄
(ξ) − νd

l (ξ)] + νd
l̄
(ξ0) − νd

l (ξ0)
(2.3.44)

are valid. Hd(sf , w, sl̄ − sl, ϑ) are therefore linear functions at ϑ.

(iii) follows from Theorem 2.3.7.

(iv) a) �Hd∗
′
(sf , w, sl̄ − sl, ϑ) and �Hd∗

′′
(sf , w, sl − sl̄, ϑ) are increasing

or decreasing at ϑ on [0,∞) since these terms are linear functions at
ϑ (according to (ii)).

In addition, since d∗′ is optimal on [ϑ′, ϑ0] and according to (2.3.22)
and (iii) the relations

�Hd∗
′
(sf , w, sl̄ − sl, ϑ) ≥ 0 for all ϑ ∈ [ϑ′, ϑ0]

and Hd∗
′
(sf , w, sl̄ − sl, ϑ0) = 0 are valid.

Hence �Hd∗
′
(sf , w, sl̄ − sl, ϑ) is decreasing at ϑ.

That �Hd∗
′′
(sf , w, sl − sl̄, ϑ) is increasing follows similarly.

b) �Hd∗
′
(sf , w, sl̄ − sl, ϑ0) = 0 and �Hd∗

′′
(sf , w, sl − sl̄, ϑ0) = 0

is valid according to (iii).
If, additionally, �Hd∗

′′
(sf , w, sl−sl̄, ϑ) is strictly increasing at ϑ then

�Hd∗
′′
(sf , w, sl − sl̄, ϑ) > 0 on (ϑ0,∞) (*1)

follows.

Assumption: d∗1 with d̂∗1(sf , w) = sl is an optimal decision at ϑ0 + ε′

for some ε′ ∈ (0, ε).

(�Hd∗1(sf , w, sl̄−sl, ϑ0+ε′) = 0 and) Hd∗
′′
(sf , w, sl−sl̄, ϑ0+ε′) = 0

according to (iii) (in relation to ϑ0 + ε′) is in contradiction to (*1).
(The other case can be shown similarly.) �
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Definition 2.3.6. Let a DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on [0,∞) be
given. In addition, let (2.3.3) be valid for all stationary policies.

Furthermore, let d∗ be an optimal decision at ϑ0 however not on the
interval (ϑ0, ϑ0 + ε) for an ε > 0.

If unique sl ∈ S, sl̄ ∈ S and corresponding sf ∈ S, w ∈ B (not necessarily
unique) with d̂∗(sf , w) = sl exist so that

�Hd∗(sf , w, sl̄ − sl, ϑ0) = 0 (*)

and if, additionally, in the case that ϑ0 = 0 the differences
ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ) for sf ∈ S and w ∈ B from (*) are equal to
each other, then the violation of the optimality on (ϑ0, ϑ0 + ε) by d∗ is
called a single violation.

Lemma 2.3.26. Let a DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on [0,∞) be
given. Also, let (2.3.3) be valid for all stationary policies.

Furthermore, a single violation of the optimality on (ϑ0, ϑ0 + ε) by d∗

with
�Hd∗(sf , w, sl̄ − sl, ϑ0) = 0 (*)

is given.

(i) In the case ϑ0 > 0 the differences ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ) for
sf ∈ S and w ∈ B from (*) are equal to each other (as in the case
ϑ0 = 0, according to Definition 2.3.6).

(ii) ε′ > 0 exists such that d∗′ with

d̂∗
′
(sf ′

, w′) =

{
sl̄ if �Hd∗(sf ′

, w′, sl̄ − sl, ϑ0) = 0,

d∗(sf ′
, w′) otherwise

is optimal on [ϑ0, ϑ0 + ε′].
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Proof.

(i) In the case ϑ0 > 0

�Hd∗(sf , w, sl̄ − sl, ϑ0)

= ĉ(sf , w, sl̄, ϑ0) − ĉ(sf , w, sl, ϑ0) + νd∗
l̄

(ϑ0) − νd∗
l (ϑ0)

= ĉ(sf , w, sl̄, κ0) + ϑ0 ĉ(sf , w, sl̄, κ) − (ĉ(sf , w, sl, κ0) + ϑ0 ĉ(sf , w, sl, κ))

+νd∗
l̄

(ϑ0) − νd∗
l (ϑ0)

= ϑ0 [ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ)] + νd∗
l̄

(ϑ0) − νd∗
l (ϑ0) = 0

yields

ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ) = 1
ϑ0

(νd∗
l̄

(ϑ0) − νd∗
l (ϑ0)).

(i) follows since l and l̄ are unique.

(ii) According to Lemma 2.3.25(iii) d∗ (optimal at ϑ0) and an optimal
decision d∗′′ on [ϑ0, ϑ0 + ε′] (see also Lemma 2.3.24) can differ only
in single decisions d̂∗(sf , w) = sl and d̂∗′′(sf , w) = sl̄ if
�Hd∗(sf , w, sl̄ − sl, ϑ0) = 0.

Since d∗ is not optimal on (ϑ0, ϑ0 + ε′), f0 and w0 with
�Hd∗(sf0

, w0, sl̄ − sl, ϑ0) = 0 and d̂∗′′(sf0
, w0) = sl̄ �= sl = d̂∗(sf0

, w0)
exist.

Moreover, that d∗′′ is optimal on [ϑ0, ϑ0 + ε′] means

�Hd∗
′′
(sf0

, w0, sl − sl̄, ϑ)

= ϑ (ĉ(sf0
, w0, sl, κ) − ĉ(sf0

, w0, sl̄, κ)) + νd∗
′′

l (ϑ) − νd∗
′′

l̄
(ϑ)

≥ 0 ∀ ϑ ∈ [ϑ0, ϑ0 + ε′].

According to (i)

ĉ(sf0
, w0, sl, κ) − ĉ(sf0

, w0, sl̄, κ) = c(sf ′
, w′, sl, κ) − ĉ(sf ′

, w′, sl̄, κ)

is valid for any sf ′
, w′ with �Hd∗(sf ′

, w′, sl̄ − sl, ϑ0) = 0.

Thus,

Hd∗
′′
(sf0

, w0, sl−sl̄, ϑ) = Hd∗
′′
(sf ′

, w′, sl−sl̄, ϑ) ≥ 0 ∀ ϑ ∈ [ϑ0, ϑ0+ε′]
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follows.

Hence, d∗′(≡ d∗′′) from (ii) is optimal on [ϑ0, ϑ0 + ε′].

�

We can now solve the cost-parametric DA MDPl(N = ∞, S,AM , P, γ(ϑ)),
where (2.3.3) is valid, in the following way:

Algorithm 2.3.2. .

1. Solve DA MDPl(N = ∞, S, AM , P, γ(ϑ)) for ϑ = 0 (initial parameter)
(by means of the common Howard algorithm, if necessary 13).
Let d∗0 be an optimal decision at ϑ̄1 = 0 and
let, in addition, d∗0 satisfy (ii) from Lemma 2.3.23.

2. Solve DA MDPl(N = ∞, S, AM , P, γ(ϑ)) for ϑ ∈ (0,∞) (or, if suffi-
cient for ϑ ∈ (0, 1]):

For i = 0, 1, 2, · · · :

2.1 Compute ϑ̄i+1 ∈ R+ ∪ {∞}, so that d∗i is an optimal decision on
[ϑ̄i, ϑ̄i+1] however not on (ϑ̄i+1, ϑ̄i+1 + ε) for any ε > 0 in the
case ϑ̄i+1 �= ∞ (see also Lemma 2.3.24):

In greater detail:
Calculate

�Hd∗i
(sf , w, sl̄ − sl, ϑ) according to (2.3.44)

where νd∗i
(ξ0), νd∗i

(ξ) are solutions of the corresponding
Poisson equations (see Lemma 2.3.22),

ϑ̄i+1 = min {ϑ | �Hd∗i
(sf , w, sl̄ − sl, ϑ) = 0 and

�Hd∗i
(sf , w, sl̄ − sl, ϑ′) < 0 for ϑ′ > ϑ,

sf ∈ S, sl̄ ∈ S, sl ∈ S, w ∈ B}.
(ϑ̄i+1 > ϑ̄i follows from step 2.2.)

2.2 Compute d∗(i+1) in the case ϑ̄i+1 �= ∞, so that d∗(i+1) is an opti-
mal decision on [ϑ̄i+1, ϑ̄i+1 + ε) for some ε > 0:

In greater detail:

13Also see the following remarks.
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Case 1: Single violation of the optimality on (ϑ̄i+1, ϑ̄i+1+ε)
by d∗i (refer to Definition 2.3.6)

Set
d̂∗(i+1)(sf , w) :={

sl̄ if �Hd∗i
(sf , w, sl̄ − sl, ϑ̄i+1) = 0,

d̂∗i(sf , w) otherwise

(refer to Lemma 2.3.26 (ii)).
Case 2: No single violation of the optimality on

(ϑ̄i+1, ϑ̄i+1 + ε) by d∗i 14

Use the common Howard algorithm in relation to
ϑ̄i+1 + ε for sufficiently small ε > 0.

Remarks on Algorithm 2.3.2:

Step 1 We have assumed that the internal costs and the average one-step re-
ward functions do not depend on the decisions in regard to the initial
parameter ϑ = 0. The optimal decisions therefore imply an almost-
partial order of the states (see Section 2.3.2.2).

− This almost-partial order of the states means that the complex-
ity of computation of optimal decisions in regard to the initial
parameter can be reduced (refer also to Corollary 2.3.9).

− In some cases theoretical investigations yield the almost-partial
order of the states and the optimal decisions in regard to the initial
parameter. As a result computation is then not required.

(For instance, see Sections 3.4, 3.5 and 4.7.)

− It is possible that the consideration of the objective function (scalar
product) (refer to (2.3.2) or (2.3.11)) can help to find optimal de-
cisions if the average one-step reward functions do not depend on
these decisions.

(Increase pd
fl and thus pd,∞

l (Theorem 2.3.4) if γ(sl) is small.)

14See also the following remarks.
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Step 2

− If the parameter increases then the violations of optimality are
single violations (Definition 2.3.6) in general and the optimal de-
cisions can be purposefully computed for the increasing parameter
(see Case 1 in the above algorithm). Step 2 of the algorithm is
a greedy algorithm for the cost-parametric DA Markov decision
process in this case.

− Only single decisions d̂∗i(sf , w) with
�Hd∗i

(sf , w, sl̄ − sl, ϑ̄i+1) = 0 would have to be perhaps changed
in Case 2 (refer to Lemma 2.3.25 (iii)).

− A finite number of optimal policies exists for an infinite set of
parameter values (refer to Lemma 2.3.24).

In addition to step 2 of Algorithm 2.3.2, we will deal with the following two
topics in relation to an increasing parameter:

− The meaning of the internal cost in relation to the optimality criterion,

− Changes of optimal single decisions and monotonicity of the functions
�Hd(sf , w, sl̄ − sl, ϑ) at ϑ.

Meaning of the Internal Cost in relation to the Optimality
Criterion

Remarks 2.3.6. Violations of the optimality criterion (see Lemma 2.3.6
and (2.3.44))

�Hd(sf , w, sl̄ − sl, ϑ)

= ϑ [ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ)]+

νd
l̄
(ξ0) − νd

l (ξ0) + ϑ [ νd
l̄
(ξ) − νd

l (ξ)]

< 0 (ϑ > 0)

seem to occur especially if

ĉ(sf , w, sl̄, κ) − ĉ(sf , w, sl, κ) < 0.
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Therefore we formulate a corresponding additional condition for
DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on [0,∞), where (2.3.3) is valid for all
stationary policies:

(AC1) Let an almost-partial order of the states be implied by the optimal de-
cision at the initial parameter ϑ = 0.
Optimal decisions (for ϑ > 0) for costlier states (refer to Theorem
2.3.8 (i)) can occur only if the corresponding internal cost are lower.

(AC1) is always valid at least for sufficiently small values:

Theorem 2.3.27. Let a DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on [0,∞) (or
on [0, 1]) be given. In addition, let (2.3.3) be valid for all stationary policies.

Then, some ϑ′ > 0 exists such that optimal decisions at any ϑ ∈ [0, ϑ′]
satisfy the additional condition (AC1).

Proof. Let d∗ be an optimal decision with respect to ϑ = 0.

If a state sl̄ is costlier than a state sl (meaning sl̄ < sl) (see Theorem
2.3.8(i)), then

νd∗
l̄

(ϑ = 0) − νd∗
l (ϑ = 0) > 0 (*1)

is valid for solutions of the corresponding Poisson equation (see Theorem
2.3.8(ii)).

We show that (AC1) is true on [0, ϑ′] for some ϑ′ > 0 in such a way that
no change of an optimal single decision for a costlier state for any ϑ ∈ (0, ϑ′]
occurs.

Since

ĉ(sf , w, sl̄, ϑ = 0) − ĉ(sf , w, sl, ϑ = 0) = 0

for sf , w with {sl, sl̄} ⊆ Â(sf , w) according to (LPC) and (*1)

�Hd∗(sf , w, sl̄ − sl, ϑ = 0)

= ĉ(sf , w, sl̄, ϑ = 0) − ĉ(sf , w, sl, ϑ = 0) + νd∗
l̄

(ϑ = 0) − νd∗
l (ϑ = 0) > 0

(*2)
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follows.

If d∗ is not optimal on (0, ε) for any ε > 0, then some real number ϑ′ > 0
and a decision function d∗′ exist such that d∗′ is optimal on [0, ϑ′] according
to Lemma 2.3.23(ii).

d∗′ and d∗ can be different only in relation to single decisions
d∗′(sf ′

, w′) = sl̄′ and d∗(sf ′
, w′) = sl′ if �Hd∗

′
(sf ′

, w′, sl′ − sl̄′ , ϑ = 0) = 0
and �Hd∗(sf ′

, w′, sl̄′ − sl′ , ϑ = 0) = 0 (see Lemma 2.3.25(iii))).

Thus, according to (*2) sl̄′ cannot be costlier than sl′ . �

Changes of Optimal Single Decisions and Monotonicity of the
Functions �Hd(sf ,w, sl̄ − sl, ϑ) at ϑ

If a change of an optimal single decision at ϑ0 > 0 occurs, then property
(iv), a) from Lemma 2.3.25 is valid.

A stronger property is contained in the following additional condition for
the DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on I = [0,∞) (or ϑ ∈ I = [0, 1]),
where (2.3.3) is valid for all stationary policies:

(AC2) In accordance with Lemma 2.3.24, let a finite sequence of real numbers
0 = ϑ̄1 < ϑ̄2 < · · · < ϑ̄y−1 (with ϑy−1 < 1, if I = [0, 1]) and
a corresponding sequence of decisions d∗1 ∈ AM , . . . , d∗(y−1) ∈ AM be
given so that

d∗i are optimal on Ii := [ϑ̄i, ϑ̄i+1] for i = 1, 2, · · · , y − 2

and d∗(y−1) is optimal on Iy−1 = [ϑ̄y−1,∞) (or Iy−1 = [ϑ̄y−1, 1]).

If

d̂∗(i0−1)(sf , w) = sl

for certain i0 ∈ {2, 3, · · · , y}, {sf , sl} ⊆ S, w ∈ B and

d̂∗i0(sf , w) = sl̄ if i0 < y (sl̄ ∈ S, sl̄ �= sl)

then

�Hd∗i
(sf , w, sl̄ − sl, ϑ) are decreasing at ϑ for all i = 1, · · · , i0 − 1

and
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�Hd∗i
(sf , w, sl − sl̄, ϑ) are increasing at ϑ for all i = i0, · · · , y − 1,

if i0 < y.

If (AC2) is valid, then the complexity of computation in step 2 of Algorithm
2.3.2 can be estimated in the following way:

Theorem 2.3.28. Let a DA MDPl(N = ∞, S, AM , P, γ(ϑ)) on [0,∞) (or
on [0, 1]) be given where (2.3.3) is valid for all stationary policies.

If (AC2) is valid, then at most
∑

sf∈S;w∈B

|Â(sf , w)| single decisions have

to be changed (in relation to d∗1) in step 2 of Algorithm 2.3.2 in order to
compute optimal decisions on (0,∞) (or (0, 1]).

Proof. Let us note that d∗1 optimal at ϑ = 0.

1. Initially, we construct d
′∗i for i = 1, 2, · · · , y − 1 such that

d
′∗1 := d∗1

and

d̂
′∗i(sf , w) :=

{
d̂

′∗(i−1)(sf , w) if �Hd∗i
(sf , w, sl̄ − sl′ , ϑ) ≡ 0,

d̂∗i(sf , w) otherwise
(∗1)

(where sl′ = d̂
′∗(i−1)(sf , w) and sl̄ = d̂∗i(sf , w))

for i = 2, 3, · · · , y − 1, sf ∈ S, w ∈ B.

Successively using Theorem 2.3.7b) yields that d
′∗i are also optimal

on Ii := [ϑ̄i, ϑ̄i+1] for i = 2, 3, · · · , y − 1.

2. Next, we will show that �Hd∗i
(sf , w, sl

′ − sl̄, ϑ) are also increasing at
ϑ for i ≥ i0. (The proof that �Hd∗i

(sf , w, sl̄ − sl′ , ϑ) are decreasing
at ϑ for i < i0 is analogous.)

Let

d̂∗i(sf , w) = sl1 , d̂
′∗i(sf , w) = sl1 for i = 1, · · · , i1 − 1,

d̂∗i(sf , w) = sl2 , d̂
′∗i(sf , w) = sl1 for i = i1, · · · , i2−1, (sl2 �= sl1),

case a)

d̂∗i(sf , w) = sl3 , d̂
′∗i(sf , w) = sl3 for i = i2, (sl1 �= sl3 �= sl2)
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case b)

d̂∗i(sf , w) = sl2 , d̂
′∗i(sf , w) = sl2 for i = i2.

Then,

�Hd∗i
(sf , w, sl1 − sl2 , ϑ) are increasing at ϑ for i ≥ i1 and

�Hd∗i
(sf , w, sl2 − sl3 , ϑ) are increasing at ϑ for i ≥ i2 (case a)

according to (AC2).

Since

�Hd∗i
(sf , w, sl1 − sl3 , ϑ)

= �Hd∗i
(sf , w, sl1 − sl2 , ϑ) + �Hd∗i

(sf , w, sl2 − sl3 , ϑ)

according to (2.3.23)

�Hd∗i
(sf , w, sl1 − sl3 , ϑ) is also increasing at ϑ for i ≥ i2.

If we use the denotation l1 = l′, l2 = l and l3 = l̄, we then see that

�Hd∗i
(sf , w, sl′ − sl̄, ϑ) is increasing at ϑ for i ≥ i2.

(In case b it follows immediately, according to (AC2) that
�Hd∗i

(sf , w, sl′ − sl̄, ϑ) are increasing at ϑ for i ≥ i2(≥ i1) (where
l1 = l′, l2 = l̄).)

If we successively continue the above consideration the more general
relationship follows:

If

d̂∗(i0−1)(sf , w) = sl, d̂
′∗(i0−1)(sf , w) = sl′ ,

d̂∗i0(sf , w) = sl̄ and d̂
′∗i0(sf , w) = sl̄

then

�Hd∗i
(sf , w, sl′ − sl̄, ϑ) are increasing at ϑ for i ≥ i0. (*2)

3. Now, let d̂
′∗(i0−1)(sf , w) = sl′

and d̂
′∗(i0)(sf , w) = d∗(i0)(sf , w) = sl̄. (*3)

We can then show that

�Hd∗i
(sf , w, sl′ − sl̄, ϑ) > 0 on Ii \ {ϑ̄i0} for i = i0 or (*4)
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on Ii for i = i0 + 1, i0 + 2, · · · , y − 1.

Initially,

�Hd
′∗(i0−1)

(sf , w, sl̄ − sl′ , ϑ̄i0) = �Hd∗i0 (sf , w, sl′ − sl̄, ϑ̄i0) = 0 (*5)

is valid according to Lemma 2.3.25(iii).

Furthermore,

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ) ≥ 0 on Ii0

according to the optimality criterion (Lemma 2.3.6).

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ) is a linear function at ϑ (refer to Lemma
2.3.25(ii)) and together with (*2)

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ) ≥ 0 on [ϑ̄i0 ,∞) (or ϑ ∈ I = [ϑ̄i0 , 1])

follows.

If �Hd∗i0 (sf , w, sl′ − sl̄, ϑ) = 0 for some ϑ > ϑi0 ,

then �Hd∗i0 (sf , w, sl′−sl̄, ϑ) ≡ 0 (refer to (*5) and Lemma 2.3.25(ii)).

d̂
′∗i0(sf , w) = sl′ would then follow according to (*1) which is in

contradiction to (*3).

Thus,

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ) > 0 for ϑ > ϑi0 .

and in particular,

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ̄i0+1) > 0.

Since d∗i0 and d∗(i0+1) are optimal at ϑ̄i0+1, the relation

�Hd∗i0 (sf , w, sl′ − sl̄, ϑ̄i0+1) = Hd∗(i0+1)
(sf , w, sl′ − sl̄, ϑ̄i0+1)(> 0)

is valid according to the definition of �Hd(., ., .) (see (2.3.21)) and
Theorem 2.3.21.

Hd∗(i0+1)
(sf , w, sl′ − sl̄, ϑ) > 0 for ϑ ≥ ϑ̄i0+1

follows since Hd∗(i0+1)
(sf , w, sl′ − sl̄, ϑ) is increasing at ϑ according to

(*2).

If we continue these considerations, successively, in relation to
i0 + 2, i0 + 3, · · · , y − 1, then (*4) is shown.
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4. We now show that if

d̂
′∗(i0−1)(sf , w) = sl′ (i0 < y) and d̂

′∗i0(sf , w) = sl̄, sl̄ �= sl′ (*6)

then there exists no decision d∗ with d̂∗(sf , w) = sl′ which is optimal
at some ϑ > ϑ̄i0 :

Assumption: d∗ with d̂∗(sf , w) = sl′ is optimal at some ϑ′ ∈ Ii′

where i′ ≥ i0, ϑ
′ �= ϑ̄i0 .

(*6) together with (*1) means

d̂∗i0(sf , w) = sl̄ (*7)

and

�Hd∗i′
(sf , w, sl′ − sl̄, ϑ′) > 0

follows from (*4).

However,

�Hd∗(sf , w, sl̄ − sl′ , ϑ′)

= �Hd∗i′
(sf , w, sl′ − sl̄, ϑ′) = 0

follows from (*7), the previous assumption and Lemma 2.3.25(iii).

The statement of 4 means that after a change of a single decision
d̂

′∗i(sf , w) = sl′ , this single decision can not be repeatedly optimal.

5. In step 2 of Algorithm 2.3.2 single decisions are changed only if viola-
tions of the optimality occur in d

′∗i. Thus, at most,
∑

sf∈S;w∈B

|Â(sf , w)|

single decisions have to be changed (in relation to d∗1) in order to com-
pute optimal decisions on (0,∞) (or on (0, 1]).

�

The complexity of computation of optimal decisions on (0,∞)
(or on (0, 1]) can be reduced further if the following strong additional con-
dition is satisfied:

(AC3) Let d∗0 be an optimal decision at ϑ = 0 (refer to step 1 of Algorithm
2.3.2).
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Single decisions d̂∗0(sf , w) have to be changed at most once in order
to compute optimal decisions on (0,∞) (or on (0, 1]).

Thus, at most |S| ∗ |B| single decisions have to be changed (in relation to
d∗0) in order to compute optimal decisions on (0,∞) (or on (0, 1]) if (AC3)
is valid.

In addition, step 2 of Algorithm 2.3.2 is a greedy algorithm in relation to
the DA MDP itself, which corresponds to the cost-parametric DA MDP at
ϑ = 1.

The SDDP problem from Example 3.5.1, Section 3.5 satisfies (AC1),
(AC2) and (AC3).

2.3.4.3 Remarks on the Parametrization of DA Markov Decision
Processes

If we want to attempt to use Algorithm 2.3.2 for solving of a given DA MDP
(in terms of a continuation of the solutions of the parameterized problem)
then the internal cost should be parameterized in a logical way.

The parameterized internal costs at ϑ = 0 and the given internal costs of
the DA MDP should not differ greatly (*)

so that the almost-partial order of the states at ϑ = 0 (refer to Theorem
2.3.8) does not completely change.

(Since the parameterized internal costs at ϑ = 0 have to satisfy (2.3.13)
(see (LPC)), the demand (*) can be met only to a certain degree).

Example 2.3.1. Let a DA MDP be given where, in particular,

S = {s1, s2}, B = {w1, w2, w3}, q(wi) = 1
3 for i = 1, 2, 3,

the DA decision sets Â(s1, w1) = Â(s2, w2) = {s1, s2},
Â(s1, w2) = Â(s2, w3) = {s1} and Â(s2, w1) = Â(s1, w3) = {s2}
(hence (2.3.3) is valid for all stationary policies of this DA MDP)

and the internal costs (ĉ(sf , sl)) f=1;2
l=1;2

=
(

25 26
30 14

)
(which satisfy (2.3.12)).

Then, the parametrization
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P1: (ĉ(sf , sl, ϑ)) f=1;2
l=1;2

=
(

25(+0ϑ) 25 + ϑ
14 + 16ϑ 14(+0ϑ)

)
, ϑ ∈ [0, 1]

is better than

P2: (ĉ(sf , sl, ϑ)) f=1;2
l=1;2

=
(

1 + 24ϑ 1 + 25ϑ
2 + 28ϑ 2 + 12ϑ

)
, ϑ ∈ [0, 1].

(s1 < s2 is valid (at ϑ = 0 under the terms of Theorem 2.3.8) in relation to
P1 contrary to s2 < s1 in relation to P2.)

For certain DA MDP a parametrization of the internal costs arises in
”natural” way (compare SDDP problems, Section 3.5).

2.3.5 Remarks on the Solutions of DA Markov Decision
Processes

• In principle, DA MDP(N = ∞, S, AM , P, γ) can be solved by means
of the Howard algorithm (policy iteration).

Here, the computation of a better decision at a step of the iteration
can be formulated using the definition of single decisions (see (2.3.21)):

Algorithm 2.3.3. .

1. Let a (feasible) decision d0 be given.

Set νi
m := 0 for i = 0, 1, · · · ,

i := 0.

2. Compute the solution (gi, (νi
f )f=1,...,m) (with νi

m := 0) of the
Poisson equation

g

⎛
⎜⎝ −1

...
−1

⎞
⎟⎠ + (P di − I) ν = −γdi

(where I is the identity matrix).

3. Compute single decisions d̂∗i(sf , w) = sl̄ according to

min
sl̄εÂ(sf ,w)

�Hdi
(sf , w, sl̄ − sl)

(= min
sl̄εÂ(sf ,w)

(ĉ(sf , w, sl̄) − ĉ(sf , w, sl) + νi
l̄
− νi

l ).
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(where sl = d̂i(sf , w))
for sf ∈ S,w ∈ B.

Set

d̂i+1(sf , w) =

{
sl̄ if �Hdi

(sf , w, sl̄ − sl) < 0,

sl = di(sf , w) otherwise.

4. If di+1 �= di then set i := i + 1 and go to step 2,
otherwise di+1(= di) is an optimal decision function.

If DA MDP(N = ∞, S, AM , P, γ) can be parameterized in sensible way
(*)

(refer the remarks at beginning of Section 2.3.4.3), then the optimal
decision d∗0 of the parameterized problem at ϑ = 0 can be recom-
mended as d0 in the above Howard algorithm.

• On the other hand, we can compute an optimal decision of a DA
MDP itself (under the assumption (*)) by solving the parameterized
DA MDP on [0, 1] by way of a continuation of the solutions of the
parameterized problem.

Often the violations of the optimality, if the parameter is increasing,
are single violations (Definition 2.3.6):

− advantage: purposeful computation,

− disadvantage: Poisson equations have to be solved, repeatedly
if only single decisions are changed.

(However, in Algorithm 2.3.3 it can also occur that changes
of single decisions are, in the end, not optimal and further
changes of such single decisions are necessary.)

Consideration of Simple Heuristic Solutions of DA MDPs

Let us assume that a DA MDP can be parameterized in sensible way.

The optimal decision d∗0 of the parameterized problem at ϑ = 0 implies
an almost-partial orders of the states (see Section 2.3.2.2).
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(Sometimes theoretical investigations yield the almost-partial order and
no computation is required.)

If the parameter increases, the (different) internal costs have an effect on
optimal decisions.

Often, cheaper internal costs imply cheaper average expected cost per
stage (see Remarks 2.3.6), especially if (AC1) is valid.

If almost-partial order and internal costs in relation to single decisions
are ”balanced”, simple heuristic solutions d∗ follow. In greater detail this
means:

If d̂∗0(sf , w) = sl, in principle, we set

d̂∗(sf , w) =

⎧⎪⎪⎨
⎪⎪⎩

sl̄ if sl̄ ∈ Â(sf , w) and

ĉ(sf , w, sl̄) � ĉ(sf , w, sl),

sl = d∗0(sf , w) otherwise.

Such considerations are very important if the state space of a DA MDP is
extremely large and exact methods of stochastic dynamic programming are
not practical.





Chapter 3

The Problem of Stochastic
Dynamic Distance Optimal
Partitioning (SDDP)

In Section 3.1, we initially make a few statements about non-balanced trans-
portation problems, which we will then need in the following sections.

The SDDP problem is introduced in Section 3.2 from the view of a pos-
sible practical application.

Formulation of the mathematical model then follows as a DA stochastic
dynamic programming problem with random disturbances and afterwards
more specific as a DA MDP (see Sections 2.1 and 2.3).

Additional properties of the SDDP problem and its characteristic param-
eters are addressed in Section 3.3.

In particular the SDDP problem proves to be a DA MDP with distance
properties.

In this section, we will also introduce the idea of the ”conversion number”
and show that optimal decisions with a minimal conversion number always
exist.

Special cases of the SDDP problem are the focus of interest in Section
3.4.

Under the assumption of identical ”basic costs” (in other words of ”unit

97
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distances”), formulas for the average one-step reward functions are derived
and a conjecture of optimal solutions of corresponding SDDP problems are
given.

Under the assumptions of identical ”basic costs” and independent and
identically distributed requirements, the corresponding SDDP problems can
be reduced. However, the conjecture for optimal decisions in certain cases
can only be proven after several combinatorial considerations, which are dis-
cussed in Section 4.6.

In Section 3.5 we will discuss possibilities of exact and approximate solu-
tion methods for SDDP problems. For this purpose we orientate ourselves in
addition by Section 2.3.5, whereby we also use the special cases from Section
3.3 for the initial solutions.

3.1 Preliminary Notes on Non-Balanced Transporta-
tion Problems

In this section we make a few statements about non-balanced transportation
problems (TPs) in order to understand the following SDDP problems.

We use the following variables and symbols

a - availabilities, a ∈ Zn
+,

n∑
i=1

ai = su, su ∈ Z+,

b - requirements, b ∈ Zn
+,

(kij) i=1,...,n
j=1,...,m

- basic cost, (kij) i=1,...,n
j=1,...,m

∈ Rn
+ × Rn

+

(or in other words ”distances”)

and

C[b, su] - denotes the case
n∑

j=1
bj ≤

n∑
i=1

ai = su (surplus-situation,

the requirements can be completely fulfilled),

C[su, b] - denotes the case
n∑

j=1
bj ≥

n∑
i=1

ai = su (scarcity-situation,

the requirements can not be completely met,
however they should be met as much as possible)
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and

Xf(easible)(a, b) - set of feasible solutions:

Xf (a, b) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ Zn

+ × Zn
+

∣∣∣∣∣∣∣∣
n∑

j=1
xij ≤ ai ∀i,

n∑
i=1

xij = bj∀j in C[b, su],

n∑
i=1

xij ≤ bj ∀j,
n∑

j=1
xij = ai∀i in C[su, b]

⎫⎪⎪⎬
⎪⎪⎭

(3.1.1)
1

⎛
⎜⎜⎜⎜⎜⎝

hence if C[b, su] and C[su, b] are valid it is immediately seen that

Xf (a, b) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ Zn

+ × Zn
+

∣∣∣∣∣∣∣∣
n∑

j=1
xij = ai ∀i,

n∑
i=1

xij = bj∀j

if
n∑

i=1
bi =

n∑
i=1

ai = su

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎠ .

(3.1.1a)
Then,

TP ∗(a, b) - denotes the transportation problem:
n∑

i=1

n∑
j=1

kij xij → min, x ∈ Xf (a, b), where

the basic costs (kij) i=1,...,n
j=1,...,m

still have to satisfy the distance properties:

kii = 0 ∀ i, kij > 0 ∀ i �= j,

kij + kjl > kil ∀i �= j �= l (triangle-inequality).
(3.1.2)

Established statements are that Xf (a, b) �= ∅ and TP ∗(a, b) is solvable (see
Sections 2.8.7 and 3.1.2 in [30], for example).

If x ∈ Xf (a, b), then we can also define slack-variables

1In case C[su, b], the scarcity-situation, the relations secure that in no case are the
availabilities dissipated.



100

⎧⎪⎪⎨
⎪⎪⎩

xi n+1 := ai −
n∑

j=1
xij , i = 1, 2, · · · , n in case C[b, su],

xj n+1 := −(bj −
n∑

i=1
xij), j = 1, 2, · · · , n in case C[su, b],

xn+1 := (xj n+1)j=1,··· ,n.

(3.1.3)

We will later use the following definition:

Definition 3.1.1. Let a transportation problem TP ∗(a, b) and a feasible so-
lution x ∈ Xf (a, b) with the corresponding slack-vector xn+1 be given.

Then, TP ∗(a, b + xn+1) is called balanced transportation problem with
respect to TP ∗(a, b) and x ∈ Xf (a, b).

Lemma 3.1.1. Let a transportation problem TP ∗(a, b) and a feasible solu-
tion x ∈ Xf (a, b) be given.

(i) If the relationship

xii = min{ai, bi} for i = 1, 2, · · · , n (3.1.4)

is not valid, then a feasible solution x̃ ∈ Xf (a, b) with lower cost:
n∑

i=1

n∑
j=1

kij x̃ij <
n∑

i=1

n∑
j=1

kij xij (and with b + x̃n+1 = b + xn+1 in case

C[b, su]) exists.

(ii) The relation (3.1.4) is true for optimal solutions x of TP ∗(a, b).

(iii) Let TP ∗(a, b+xn+1) be the balanced transportation problem with respect
to TP ∗(a, b) and x ∈ Xf (a, b).

Then x̂ with

x̂ij =

{
xii + xi n+1 = ai −

∑
l:i�=l

xil if i = j

xij if i �= j
in case C[b, su]

and

x̂ = x in case C[su, b]

is a feasible solution of TP ∗(a, b + xn+1).
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Proof.

(i)
Case C[b, su] and bi0 ≤ ai0 :

Assumption: xi0i0 �= bi0 .
xi0i0 < bi0

follows from (3.1.1).
If bi0 ≤ ai0 , then

∃ j0 �= i0 : xi0j0 > 0 (j0 ∈ {1, · · · , n + 1}).
Furthermore, (3.1.1) yields:

∃ y0 �= i0 : xy0i0 > 0 (y0 ∈ {1, · · · , n}).

We now define x̃ as:

x̃ij =

⎧⎪⎨
⎪⎩

xij + 1 if (i, j) = (i0, i0) or (i, j) = (y0, j0),

xij − 1 if (i, j) = (i0, j0) or (i, j) = (y0, i0),

xij otherwise.

Obviously, x̃ ∈ Xf (a, b) and x̃n+1 = xn+1 thus b + x̃n+1 = b + xn+1.

Using the distance properties (3.1.2)
n∑

i,j=1
kij x̃ij =

n∑
i,j=1

kij xij + ki0i0 + ky0j0 − ki0j0 − ky0i0

=
n∑

i,j=1
kij xij + ky0j0 − ki0j0 − ky0j0

<
n∑

i,j=1
kij xij

follows.

If bi0 > ai0 in case C[b, su], then (i) can be proven analogously to the
above statement.

It is now necessary to discuss a set of subcases corresponding to
case C[su, b]. These are either carried out exactly as case C[b, su], or
with slight modifications, as shown in the following subcase example.
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Case C[su, b] with bi0 ≤ ai0 :

Assumption: xi0i0 �= bi0 .
Assumption (subcase): xi0i0 < bi0 and � y0 �= i0 with xy0i0 > 0.

Since xi0i0 < bi0 ≤ ai0 (3.1.1) yields:
∃ j0 �= i0 : xi0j0 > 0.

We now define x̃ as:

x̃ij =

⎧⎪⎨
⎪⎩

xij + 1 if (i, j) = (i0, i0),

xij − 1 if (i, j) = (i0, j0),

xij otherwise.

Obviously, x̃ ∈ Xf (a, b).

Using the distance properties (3.1.2)

n∑
i,j=1

kij x̃ij =
n∑

i,j=1
kij xij + ki0i0 − ki0j0

=
n∑

i,j=1
kij xij − ki0j0

<
n∑

i,j=1
kij xij

(3.1.5)

follows.

(ii) follows from (i).

(iii)
In case C[b, su]:

n∑
j=1

x̂ij =
n∑

j:j �=i

xij + xii + xi n+1 =
n∑

j:j �=i

xij + ai −
∑

j:i�=j

xij = ai,

n∑
i=1

x̂ij =
n∑

i:i�=j

xij + xjj + xj n+1 = bj + xj n+1,

is valid. This means x̂ ∈ Xf (a, b + xn+1).
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In case C[su, b], x̂ ∈ Xf (a, b + xn+1) follows directly from x̂ = x.�

Lemma 3.1.2. Let a transportation problem TP ∗(a, b) and b̃ ∈ Zn
+ be given.

x ∈ Xf (a, b), which additionally satisfies (3.1.4), with b̃ = b+xn+1 exists
if and only if

bi ≤ b̃i ≤ max{ai, bi} for i = 1, · · · , n in case C[b, su] and

min{ai, bi} ≤ b̃i ≤ bi for i = 1, · · · , n in case C[su, b].

Proof.

1. (⇒) : Let an x ∈ Xf (a, b), which additionally satisfies (3.1.4), be
given.

Case C[b, su]: xn+1 ≥ 0 is valid according to (3.1.3),

thus bi ≤ b̃i = bi + xi n+1 for i = 1, 2, · · · , n.

Subcase ai ≤ bi: xii = ai follows according to (3.1.4).

Utilizing (3.1.3) we find:

b̃i = bi + xi n+1 = bi + ai −
n∑

j=1

xij , (3.1.6)

b̃i = bi + xi n+1 = bi −
∑

j:j �=i

xij ≤ bi = max{ai, bi}.

Subcase ai ≥ bi: xii = bi follows according to (3.1.4).

According to (3.1.6)

b̃i = bi + xi n+1 = ai −
∑

j:j �=i

xij ≤ ai = max{ai, bi}.

Case C[su, b]: xn+1 ≤ 0 is valid according to (3.1.3),

thus bi ≥ b̃i = bi + xi n+1 for i = 1, 2, · · · , n is also valid.

Subcase ai ≤ bi: xii = ai follows according to (3.1.4).

Utilizing (3.1.3) we find:

b̃i = bi + xi n+1 = bi − (bi −
n∑

j=1

xji) =
n∑

j=1

xji, (3.1.7)
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b̃i = bi + xi n+1 = ai +
∑

j:j �=i

xji ≥ ai = min{ai, bi}.

Subcase ai ≥ bi: xii = bi follows according to (3.1.4).

According to (3.1.7)

b̃i = bi + xi n+1 = bi +
∑

j:j �=i

xji ≥ bi = min{ai, bi}.

2. (⇐) : Let b̃, which satisfies the corresponding relationships of the
Lemma, and an x̃ ∈ Xf (a, b̃), which additionally satisfies (3.1.4), be
given.

Case C[b, su]: ( b ≤ b̃ is implied in this case):

We set x, so that

xij =

{
x̃ii − (b̃i − bi) if i = j,

x̃ij if i �= j.

Together with x̃ ∈ Xf (a, b̃), the relations
n∑

j=1
xij ≤

n∑
j=1

x̃ij ≤ ai and

n∑
i=1

xij =
n∑

i=1
x̃ij − (b̃i − bi) = b̃i − (b̃i − bi) = bi,

follow. Thus, x ∈ Xf (a, b).

Furthermore,

max{ai, bi} = ai and, according to (3.1.4), x̃ii = min{ai, b̃i} = b̃i

follow

if b̃i > bi.

Thus, xii = x̃ii − (b̃i − bi) = b̃i − (b̃i − bi) = bi.

xii = x̃ii = min{ai, b̃i} = min{ai, bi} follows directly if b̃i = bi.

x also additionally satisfies (3.1.4).

In case C[su, b] we set x = x̃, then it is yielded in a simple way that
x ∈ Xf (a, b) and x additionally satisfies (3.1.4).

�
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In the subsequent sections we use the following extension of the set of feasible
solutions Xf(easible)(a, b):

Xfe(a, b) =

⎧⎪⎪⎨
⎪⎪⎩x ∈ Zn

+ × Zn
+

∣∣∣∣∣∣∣∣
n∑

j=1
xij ≤ ai ∀i,

n∑
i=1

xij ≥ bj ∀j in C[b, su],

n∑
i=1

xij ≤ bj ∀j,
n∑

j=1
xij = ai ∀i in C[su, b]

⎫⎪⎪⎬
⎪⎪⎭

(3.1.8)

From a theoretical point of view it is necessary to consider SDDP problems
with extended sets of feasible solutions initially, in order to not lose the
generality.

(In relation to the objective function of the TP ∗(a, b), obviously, the in-
equality

n∑
i,j=1

kij xij ≥
n∑

i,j=1
kij x∗

ij is valid,

where x∗ is an optimal solution of TP ∗(a, b) and x ∈ Xfe(a, b) \ Xf (a, b).)

3.2 Model Formulation

Before we formulate the mathematical models of SDDP problems, we
discuss the SDDP problems from a practical point of view. Nevertheless,
we will proceed with the introduction of the symbols of the mathematical
models. (Refer also to [22] or [20].)

Parts of different types are produced by means of machines. For this pur-
pose, the machines have to be converted into states, which are in accordance
with the types of the parts. 2 Thereby, costs are incurred.

(It would also be conceivable to repeatedly place a fixed number of work-
ers in different factories or buildinge sites.)

Each machine can be converted into each state.

2One may think, for example, of concrete moulds, see [19] and [22], Section 1.2.
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The number of machines is denoted by su and the number of types of parts
by n.

If a machine is converted from a state i (i ∈ {1, 2, · · · , n}) into a state
j (j ∈ {1, 2, · · · , n}) (which are in accordance with the types i and j of the
parts), then the incurred cost are denoted by kij . Without loss of generality
we can suppose that (kij) i=1,...,n

j=1,...,n
satisfy the distance properties (see (3.1.2)).

Finally, xij is the number of the machines which are converted from state
i into state j.

The production takes place in successive (equidistant) stages (periods).
In one stage one part can be produced (at most) by one machine.

In each stage a requirement of parts (of several types) is to be met.
At first, probability functions (denoted by qi (i ∈ {1, 2, · · · , n})) of the

requirements are given.
The realizations of the requirements for a stage are known at the begin-

ning of the stages (before the decision of conversions of machines has to be
made).

The maximum number of produced parts in a stage of type i
(i ∈ {1, 2, ..., n}) is denoted by k0i .

The stages are numbered by subscript t, t = 1, 2, · · · (as in Section 2.1).

We use the same notations wt, wt ∈ Zn
+ for the random requirements of

parts of different types and their realizations at stage t.

Principally, two cases in relation to the requirements (which correspond
to the cases C[b, su] and C[su, b] from Section 3.1) have to be considered at
each stage:

− C[wt, su] : denotes the case
n∑

i=1
wt,i ≤ su, (3.2.1)

which means the requirements can be completely fulfilled.

− C[su,wt] : denotes the case
n∑

i=1
wt,i ≥ su 3 (3.2.2)

3In this instance it is not necessary to distinguish the case
n∑

i=1

wt,i = su.
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in which the requirement wt cannot be completely met, if ′′ >′′ is valid.
In this case the machines su are not sufficient. However, in no case
should availabilities be dissipated. 4

The objective is to minimize the expected cost of the conversions of the ma-

chines over the stages altogether (E(
N∑

t=1

n∑
i,j=1

kijxt,ij)) (or in the case of an in-

finite horizon, the average expected cost per stage lim
N→∞

1
N E

(
N∑

t=1

n∑
i,j=1

kijxt,ij

)
).

(Therefore it must be decided which machine is to be converted to which
state in each stage.)

Thus, SDDP problems are DA stochastic dynamic programming prob-
lems. 5

The su machines in the different states correspond to a partition of su.

Let s̃i denote the number of machines in state i.

Thus, the states of SDDP problems modelled as DA stochastic dynamic
programming problems are (in general restricted ordered) partitions of in-
tegers which are written as vectors:

s̃ = (s̃1, s̃2, · · · , s̃n) where
n∑

i=1
s̃i = su. 6

The cost
n∑

i,j=1
kij xt,ij , which are accrued if the machines in states s̃t at the

beginning of stage t are converted into states s̃t+1 at the end of stage t (and
at the beginning of stage t + 1) in order to satisfy the requirement wt of
stage t, are denoted by ĉ(s̃t, wt, s̃t+1) (adapted from Sections 2.1 and 2.3.2).

Obviously, x̂t, s̃t and s̃t+1 (with x̂t,ij = xt,ij for i �= j and

4If a possibility for the storage of parts would be given, then the mathematical model
could be extended as follows. In periods where case C[w, su] (with a ”<”-sign) is present,
additional parts could be produced as reserve for periods where the production capacity
is not sufficient. However, the extension of the mathematical model would be determined
by the concrete aims of the production process and the detailed storage possibilities.

5For dynamic models, where the requirements are deterministic, see [35].
6s as a denotation of the states is used in adaption of Chapter 2. The additional symbol

” ˜ ” is attached to s in order later to differentiate ordered from unordered partitions.
Unordered partitions will be states of certain reduced SDDP problems (compare Section
3.4.2).
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x̂t,ii = min {s̃t,i, s̃t+1,i}) are correlated in such a manner that x̂t is an opti-
mal solution of TP ∗(s̃t, s̃t+1).

We therefore use the phrase ”distance optimal partitioning”.

If s̃t+1 has been chosen (such that the requirement wt has been met) then
ĉ(s̃t, wt, s̃t+1) itself does not directly depend on wt. This means
ĉ(s̃t, wt, s̃t+1) = ĉ(s̃t, s̃t+1) (thus, (2.3.12) from Section 2.3.2 is valid).

Contrary to (xt,ij) i=1,...,n
j=1,...,n

∈ Xfe(s̃t, wt)) (see (3.1.8)), the conditions

(xt,ij) i=1,...,n
j=1,...,n

∈ Xf (s̃t, wt) (see (3.1.1)) and (3.1.4) with t = 1, 2, · · · mean

that the machines are not converted if they are not needed to produce parts
for the requirements of stage t. 7 It seems plausible that under these con-
ditions the expected cost of the stages altogether will not become higher.

However, we do not show the proof for this until later (see Lemma 3.3.8).

We will consider stationary models. This means (kij) i=1,...,n
j=1,...,n

and the

probability functions qi of the requirements are the same in all stages.

The corresponding mathematical models are now formulated as DA
stochastic dynamic programming problems with random disturbances (as
already mentioned above):

At first, let

n ∈ N, n ≥ 3, k0 = (k01 , k02 , . . . , k0n) with k0i ∈ N and

su ∈ N with su <
n∑

i=1
k0i

(3.2.3)

and

(kij) i=1,...,n
j=1,...,n

∈ Rn
+ × Rn

+ - the so-called ”basic costs” (3.2.4)

(or in other words ”distances”)

be given. Thereby, let the basic costs satisfy the distance properties (3.1.2):

kii = 0 ∀ i, kij > 0 ∀ i �= j,

kij + kjl > kil ∀i �= j �= l (triangle-inequality).

7Corresponding algorithms with this property are called ”lazy algorithms”, see Section
10.2.3 in [8].
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(Refer also later to (3.3.1), (3.3.1a) and Lemma 3.3.1.)

SDDP Problems as DA Stochastic Dynamic Programming
Problems with Random Disturbances as in Section 2.1

Since we now want to consider a stationary model, we do not need the sub-
script t to indicate the state space, the disturbance space and the decision
space.

Instead, we use the inferior indices n, k0 and su as characteristics of the
concrete SDDP problems.

Furthermore, we use the following symbols:

S̃n;su;k0 =
{

s̃ ∈ Zn
+ | 0 ≤ s̃ ≤ k0,

n∑
i=1

s̃i = su

}
- the state space (3.2.5)

(sets of the ordered restricted partitions with at most n parts,
whereby the elements are written as vectors),

r̃ := |S̃n;su;k0 |, (3.2.5a)

Bn;k0 =
{
w ∈ Zn

+ | 0 ≤ w ≤ k0

}
- the disturbance space, (3.2.6)

8

q : Zn
+ → [0, 1] - probability functions

with

q(w) �= 0 ⇔ w ∈ Bn;k0 (3.2.7)

and

8We use the same notation for random vectors and their realizations.
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An;su;k0(s̃, w)=⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x ∈ Zn

+ × Zn
+

∣∣∣∣∣∣∣∣∣∣

n∑
j=1

xij≤s̃i ∀i,
n∑

i=1

xij=wj ∀j in C[w, su],

n∑
j=1

xij=s̃i ∀i ,

n∑
i=1

xij≤wj ∀j in C[su, w],
xii = min {s̃i, wi} ∀i

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

- the decision sets.
(3.2.8)

(x ∈ An;su;k0(s̃, w) are thus feasible solutions of the transportation
problems TP ∗(s, w) which additionally satisfy (3.1.4).)

We now consider the DA model (refer to Section 2.1):

A stationary policy

F = {x1(s1, w1), x2(s2, w2), . . . , xN (sN , wN )}
(or

F = {x1(s1, w1), x2(s2, w2), . . . })
is to be found so that

E

⎧⎨
⎩

N∑
t=1

n∑
i,j=1

kijxt,ij

⎫⎬
⎭ → min

in the case of a finite horizon or

lim
N→∞

1
N

E

⎧⎨
⎩

N∑
t=1

n∑
i,j=1

kijxt,ij

⎫⎬
⎭ → inf,

in the case of an infinite horizon

subject to the constraints

xt ∈ An;su;k0(s̃t, wt),
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s̃t+1,i = s̃t,i −
n∑

j=1

xt,ij + wt,i for i = 1, · · · , n in C[wt, su] (3.2.9)

s̃t+1,j =
n∑

i=1

xt,ij for j = 1, · · · , n in C[su, wt]. (3.2.10)

(In reference to (3.2.9) and (3.2.10) compare (3.1.6) and (3.1.7) in the proof
of Lemma 3.1.2, where b̃i = s̃t+1,i, ai = s̃t,i and bi = wt,i.

According to (3.2.8) and (3.2.9) or (3.2.10):
n∑

i=1
s̃t+1,i =

n∑
i=1

(s̃t,i −
n∑

j=1
xt,ij + wt,i) = su −

n∑
j=1

n∑
i=1

xt,ij +
n∑

i=1
wt,i

= su −
n∑

j=1
wt,j +

n∑
i=1

wt,i = su in the case C[wt, su] or

n∑
j=1

s̃t+1,j =
n∑

j=1
(

n∑
i=1

xt,ij) =
n∑

i=1
(

n∑
j=1

xt,ij) =
n∑

i=1
s̃t,i = su in the case

C[su,wt]

are valid, of course.)

Remarks 3.2.1. The ”certainty equivalence principle” (see Section 2.2,
Theorem 2.2.1) is not valid for SDDP problems. The objective function is
not quadratic and the different kind of restrictions (3.2.9) and (3.2.10) in
the cases C[wt, su, wt] and C[su,wt] cannot be brought into a standardized
form (2.2.1).

We can convert the above problem into a stationary DA Markov decision
process for N = ∞ as in Section 2.3.2:

SDDP Problems as DA Markov Decision Processes as in
Section 2.3.2
The state space is of course S̃n;su;k0 from (3.2.5).

In order to construct AM , P and γ of the DA MDP the DA decision sets
Ân;su;k0(s̃, w), the DA decision functions d̂ and the internal costs ĉ(s̃, w, s̃′)
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(see (2.1.4), (2.1.5), (2.1.6) at the end of Section 2.1) have to be used (as in
Section 2.3.2).

The DA decision sets Ân;su;k0(s̃, w) include the states s̃′ (see (2.1.4)),
which follow from (3.2.9) or (3.2.10) for x ∈ An;su;k0(s̃, w) and given
s̃ ∈ S̃n;su;k0 , w ∈ Bn;k0 .

Lemma 3.1.2 (with a = s̃, b = w and b̃ = s̃′) yields:

Ân;su;k0(s̃, w)

=

⎧⎨
⎩s̃′ ∈ S̃n;su;k0

∣∣∣∣∣∣
wi ≤ s̃′i ≤ max{s̃i, wi}, i = 1, · · · , n, in C[w, su]

min{s̃i, wi} ≤ s̃′i ≤ wi, i = 1, · · · , n, in C[su,w]

⎫⎬
⎭

(3.2.11)
for s̃ ∈ Sn;su;k0 , w ∈ Bn;k0 .

(In Section 3.3 we will also see investigations of the DA decision sets.)

DA decision functions d̂t, which are based on the DA decision sets, follow
according to (2.1.6). (In addition, the set of DA decision functions is the set
D̂t according to Definition 2.1.1.)

The internal costs (see (2.1.5)) are calculated in the following way:
Let s̃′ ∈ Ân;su;k0(s̃, w) be determined by a DA decision function for

given s̃ ∈ S̃n;su;k0 and realized w ∈ Bn;k0 .
Then, as mentioned above, the internal cost can be compute as the opti-

mal value of the (balanced) transportation problem TP ∗(s̃, s̃′):

ĉ(s̃, s̃′) = min

⎧⎨
⎩

n∑
i,j=1

kij x̂ij

∣∣∣ n∑
j=1

x̂ij = s̃i,
n∑

i=1

x̂ij = s̃′j , x̂ij ∈ Z+

⎫⎬
⎭ . (3.2.12)

(The symbol ” ˆ ” is used in order to formally differentiate between (op-
timal) solutions x̂ of the balanced transportation problems TP ∗(s̃, s̃′) (see
(3.2.12)) and (feasible) solutions x of the non-balanced transportation prob-
lems TP ∗(s̃, w), which additionally satisfy (3.1.4) (see also (3.2.8)).

Thereby, x̂ij and xij for i �= j express the number of machines which are
converted from state i into state j for the production of w parts of type j.
That means xij = x̂ij for i �= j.
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For the rest, as is easily seen, x̂ yields a feasible x in the following way:

xij =

{
x̂ij if i �= j

x̂ii − max {(s̃′i − wi), 0} if i = j
in the case C[w, su] or

x = x̂ in the case C[su,w].)

(Further properties of the internal costs can be found in Section 3.3.)

Now, the sets of decision spaces AM (S̃), the matrices of transition proba-
bilities P and the average (one-step) reward functions γ of the DA Markov
decision processes can be constructed by means of d̂ and ĉ - as in Section
2.3.2 (see (2.3.6), (2.3.7) and (2.3.8)).

Whereby the matrices of transition probabilities are called (general)
partitions-requirements-matrices (PRM).

For SDDP problems as DA MDPs optimal policies always exist, since
(2.3.3) is valid:

If w = s̃′ (∈ S̃n;su;k0 ⊆ Bn;k0) then, obviously, Ân;su;k0(s̃, s̃
′) = {s̃′}

according to (3.2.11) and

p(s̃′|s̃, d) =
∑

w:s̃′=d̂(s̃,w)

q(w) ≥ q(s̃′) �= 0 (3.2.13)

(q(s̃′) �= 0 according to (3.2.7))

follows according to (2.3.7) for any d.

The computation of average (one-step) reward functions γ is also labo-
rious since transportation problems have to be solved in order to calculate
the internal costs ĉ(s̃, s̃′) (s̃ ∈ S̃n;su;k0 , s̃′ ∈ S̃n;su;k0), which are needed for
the computation of γ (see the first equation of (2.3.8)).

In Section 3.3 (Lemma 3.2.10) we will see that SDDP problems are DA
MDPs with distance properties.
9

9A representation of SDDP problems as linear programming problems can be found in
[22], Appendix A 1.
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3.3 Properties of SDDP Problems and their Char-
acteristic Quantities and Conversion Numbers

In reference to the Possibility of the Restriction of the Basic
Costs

Without loss of generality, it is sufficient for SDDP problems modelled as
DA MDPs to assume basic costs (kij) i=1,...,n

j=1,...,n
which satisfy (3.1.2) with either

0 < kij ≤ 1 for i �= j (3.3.1)

or
kij ≥ 1 for i �= j. (3.3.1a)

This statement follows from Lemma 3.3.1 with α = 1
max

i,j:i �=j
kij

or α′ = 1
min

i,j:i�=j
kij

.

Lemma 3.3.1. If two SDDP problems (modelled as DA MDPs) are only
different in the basic cost k′ and k′′ in such a way that k′′ = α · k′ for some
α > 0, then the optimal policies of the SDDP problems are the same.

Proof. Obviously, ĉ′′fl = α ĉ′fl for any f and l and furthermore
γ′′(s̃f , d) = α γ′(s̃f , d) for any s̃f and d according to (2.3.8) (first equation).

Consideration of the objective function (2.3.2) completes the proof. �

The Conversion Number
Carrying on,

U(s̃f , s̃l) :=
n∑

i,j=1
i �=j

x̂ij (3.3.2)

denote the numbers of all (real) conversions (in a stage), if s̃f are converted
into s̃l by means of x̂ ∈ Xf (s̃f , s̃l), which also satisfy (3.1.4).

The following Lemma shows that U(s̃f , s̃l) for all such x̂ are identical.

Lemma 3.3.2. Let {s̃f , s̃l} ⊆ S̃n;su;k0, basic costs (kij) i=1,...,n
j=1,...,n

(satisfying

the distance properties (3.1.2)) and any x̂ ∈ Xf (s̃f , s̃l) which additionally
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satisfies (3.1.4), be given. (In particular, an optimal x̂ ∈ Xf (s̃f , s̃l) satisfies
(3.1.4), according to Lemma 3.1.1(ii)).

Then,

(a) U(s̃f , s̃l) = 1
2

n∑
i=1

| s̃f
i − s̃l

i |=
n∑

i=1
max {0, s̃l

i − s̃f
i }

= −
n∑

i=1
min {0, s̃f

i − s̃l
i},

(b) U(s̃f , s̃l) = U(s̃l, s̃f ).

Proof. Initially,

U(s̃f , s̃l) =
n∑

i,j=1
i�=j

x̂ij =
n∑

i,j=1
x̂ij −

n∑
i=1

x̂ii =
n∑

i=1
s̃f
j −

n∑
i=1

x̂ii = su −
n∑

i=1
x̂ii,

and
1
2

n∑
i=1

| s̃f
i − s̃l

i |= 1
2

n∑
i=1

(s̃f
i − min{s̃f

i , s̃l
i} + s̃l

i − min{s̃f
i , s̃l

i})

= 1
2

n∑
i=1

(s̃f
i + s̃l

i) −
n∑

i=1
min{s̃f

i , s̃l
i} = su −

n∑
i=1

min{s̃f
i , s̃l

i}

are valid. Then (a) follows from (3.1.4)

n∑
i=1

x̂ii =
n∑

i=1

min{s̃f
i , s̃l

i}.

(b) is shown by U(s̃f , s̃l) = 1
2

n∑
i=1

| s̃f
i − s̃l

i |= U(s̃l, s̃f ). �

Lemma 3.3.3. Let {s̃f , s̃l} ⊆ S̃n;su;k0 be given.
Then

U(s̃f , s̃l) =
∑
i

max{0, wi− s̃f
i } ∀ s̃l ∈ Ân;su;ko(s̃

f , w) in the case C[w, su],

U(s̃f , s̃l) =
∑
i

max{0, s̃f
i −wi} ∀ s̃l ∈ Ân;su;ko(s̃

f , w) in the case C[su,w].

Proof. In the case C[w, su]
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U(s̃f , s̃l) =
∑
i

max{0, s̃l
i − s̃f

i } =
∑

i:s̃f
i <wi

(s̃l
i − s̃f

i )

=
∑

i:s̃f
i <wi

(wi − s̃f
i ) =

∑
i

max{0, wi − s̃f
i }

follows from Lemma 3.3.2 and (3.2.11).
The proof in case C[su,w] is analogous. �

Regarding the Internal Costs

• The internal costs of SDDP problems fulfil (2.3.12) from Section 2.3.2
as is discussed in Section 3.2 (see also (3.2.12)).

Theorem 3.3.4. Let S̃n;su;k0 = {s̃1, s̃2, · · · , s̃r, } and the basic costs (kij) i=1,...,n
j=1,...,n

which satisfy the distance properties (3.1.2) be given.

Then, the internal costs (ĉfl) f=1,...,r
l=1,...,r

:= (ĉ(sf , sl) f=1,...,r
l=1,...,r

(see (3.2.12)) ful-

fil the following corresponding distance properties (with an additional equals
sign)

ĉff = 0 for f = 1, ..., r,

ĉfl + ĉlv ≥ ĉfv for f �= l �= v.

Proof. Initially, let TP ∗(a, b) be a balanced transportation problem with

availabilities a, requirements b and
n∑

i=1
bi =

n∑
i=1

ai.

Along with the symbol

Xf (a, b) =
{

x ∈ Zn
+ × Zn

+

∣∣∣∣ n∑
j=1

xij = ai ∀i,
n∑

i=1
xij = bj∀j

}
(3.3.3)

for the set of feasible solutions, as in Section 3.1, we use also the symbol

Xopt(a, b) ={
x ∈ Xf (a, b)

∣∣∣ n∑
i,j=1

kijxij ≤
n∑

i,j=1
kijx

′
ij for any x′ ∈ Xf (a, b)

}
(3.3.4)
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for the set of optimal solutions.

Now, let x̂1 ∈ Xopt(s̃f , s̃l) and x̂2 ∈ Xopt(s̃l, s̃v). (Thus, ĉfl =
n∑

i,j=1
kij x̂

1
ij

and ĉlw =
n∑

i,j=1
kij x̂

2
ij .)

Then,

s̃f
i =

∑
y

x̂1
iy, (*1)

s̃v
j =

∑
y

x̂2
yj , (*2)

and s̃l
y =

∑
i

x̂1
iy =

∑
j

x̂2
yj . (*3)

Furthermore, optimal solutions (�iyj) i=1,...,n
j=1,...,n

of the n transportation prob-

lems with availabilities
(
x̂1

iy

)
i=1,...,n

and requirements
(
x̂2

yj

)
j=1,...,n

(y = 1, ..., n) exist because of (∗3).

These solutions also fulfil

∑
j

�iyj = x̂1
iy (*4)

∑
i

�iyj = x̂2
yj . (*5)

We set

x̂3
ij :=

∑
y

�iyj .

∑
j

x̂3
ij =

∑
y

∑
j
�iyj =

∑
y

x̂1
iy = s̃f

i ,∑
i

x̂3
ij =

∑
y

∑
i
�iyj =

∑
y

x̂2
yj = s̃v

j

follow from (∗4), (∗1), (∗5) and (∗2).
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This means x̂3 ∈ Xf (s̃f , s̃v).

(3.1.2) then leads to

kiy + kyj > kij (i �= y �= j)∑
i,y,j

kiy �iyj +
∑
i,y,j

kyj�iyj ≥ ∑
i,y,j

kij �iyj (∗6)∑
i,y

kiy x̂1
iy +

∑
j,y

kyj x̂2
yj ≥ ∑

i,j
kij x̂3

ij

ĉfl+ĉlv ≥ ∑
i,j

kij x̂3
ij ≥ ĉfv. (*7)

Thereby, the equals signs in (*6) and in the first inequality of (*7) are
valid if and only if �iyj > 0 with i �= y �= j do not exist (refer also to the
following Example 3.3.1). �

Since the internal costs of SDDP problems fulfil (2.3.12), Lemma 3.3.4
implies the following statement.

Lemma 3.3.5. SDDP problems (modelled as DA MDPs) satisfy the dis-
tance properties (2.3.28) and (2.3.29).

The following Lemma is needed in Section 3.5 with regard to cost-
parametric considerations of SDDP problems.

Lemma 3.3.6. Let S̃n;su;k0 and basic costs with (w. l. o. g.)
kij ≥ 1 for i �= j (see (3.3.1a)) be given. Let (kij) i=1,...,n

j=1,...,n
satisfy (3.1.2) and

let (kij − δij) i=1,...,n
j=1,...,n

, where δij =
{

1 if i �= j,
0 if i = j

satisfy modified distance

properties in such a way that additional equals signs are also allowed in the
inequalities of (3.1.2).

Then,
ĉ(s̃, s̃′, (δij + ϑ (kij − δij)) i=1,...,n

j=1,...,n
)

= ĉ(s̃, s̃′, (δij) i=1,...,n
j=1,...,n

) + ϑ ĉ(s̃, s̃′, (kij − δij) i=1,...,n
j=1,...,n

)

= U(s̃, s̃′) + ϑ ĉ(s̃, s̃′, (kij − δij) i=1,...,n
j=1,...,n

)

are valid for ϑ ∈ [0; 1], where ĉ(s̃, s̃′, (kij) i=1,...,n
j=1,...,n

) denotes the optimal value
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of the transportation problem with availabilities s̃, requirements s̃′ and with
costs (kij) i=1,...,n

j=1,...,n
and so on.

Proof. At first, we show that an optimal solution x0 of the transportation
problem TP ∗(s̃, s̃′) with costs (kij − δij) i=1,...,n

j=1,...,n
, which additionally satisfies

(3.1.4), exists:
If x is an optimal solution of this transportation problem which does

not satisfy (3.1.4), then we apply the construction step from the proof of
Lemma 3.1.1(i) (w.l.o.g. case C[b, su]) to x, where an equation instead of
the inequality in (3.1.5) is right. If neccessary, repeatedly applying this con-
struction step will finally yield the optimal solution x0 of the transportation
problem, which satisfies (3.1.4).

Now, let x be a feasible solution of the transportation problem with
availabilities s̃, requirements s̃′ and costs (kij−δij) i=1,...,n

j=1,...,n
, which additionally

satisfies (3.1.4).

ĉ(s̃, s̃′, (kij − δij) i=1,...,n
j=1,...,n

) =
∑
i,j

x0
ij (kij − δij) ≤

∑
i,j

xij (kij − δij),

U(s̃, s̃′) + ϑ
∑
i,j

x0
ij (kij − δij) ≤ U(s̃, s̃′) + ϑ

∑
i,j

xij (kij − δij)

follow and furthermore, by means of (3.3.2),∑
i,j

x0
ij δij + ϑ

∑
i,j

x0
ij (kij − δij) ≤

∑
i,j

xij δij + ϑ
∑
i,j

xij (kij − δij),∑
i,j

x0
ij (δij + ϑ (kij − δij)) ≤

∑
i,j

xij (δij + ϑ (kij − δij)) .

Hence, (and with attention to Lemma 3.1.1(ii)) x0 is also an optimal de-
cision of transportation problems TP ∗(s̃, s̃′) with cost (δij + ϑ (kij − δij))
where ϑ ∈ [0; 1]. Since the objective function of a transportation problem is
also linear in the costs

ĉ(s̃, s̃′, (δij + ϑ (kij − δij)) i=1,...,n
j=1,...,n

)

= ĉ(s̃, s̃′, (δij) i=1,...,n
j=1,...,n

) + ϑ ĉ(s̃, s̃′, (kij − δij) i=1,...,n
j=1,...,n

)

= U(s̃, s̃′) + ϑ ĉ(s̃, s̃′, (kij − δij) i=1,...,n
j=1,...,n

)

is valid (for the last equation see also (3.3.2)). �
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Regarding the DA Decisions Sets

As already mentioned in Section 3.2, contrary to (xt,ij) i=1,...,n
j=1,...,n

∈ Xfe(s̃t, wt)

(the extended set, see (3.1.8)), (xt,ij) i=1,...,n
j=1,...,n

∈ Xf (s̃t, wt) and additionally

satisfying (3.1.4), means that machines are not converted if they are not
needed to produce parts for the requirements of a stage t (see also the fol-
lowing Lemma 3.3.7 and (3.2.11)).

In Theorem 3.3.8 we will show that the expected cost of the conversions of
the machines over the stages altogether (or in the case of an infinite horizon,
the average expected cost per stage) do not become smaller if
(xt,ij) i=1,...,n

j=1,...,n
∈ Xfe(s̃t, wt), t = 1, 2, · · · are allowed in place of

(xt,ij) i=1,...,n
j=1,...,n

∈ Xf (s̃t, wt) and which additionally satisfy (3.1.4).

Initially, we make relationships with corresponding decision sets (see
(3.2.11)):

Let s̃ ∈ S̃n;su;k0 and w ∈ Bn;k0 . Obviously, for s̃′ ∈ S̃n;su;k0 an

(xij) i=1,...,n
j=1,...,n

∈ Xfe(s̃, w) with s̃′i =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

xij + s̃i −
n∑

j=1
xij in C[w, su],

n∑
j=1

xji in C[su,w]

exists if and only if s̃′ is an element of the following set:

Â′
n;su;k0(w) =

⎧⎨
⎩s̃′ ∈ S̃n;su;k0

∣∣∣∣∣∣
s̃′ ≥ w in C[w, su],

s̃′ ≤ w in C[su, w]

⎫⎬
⎭ . (3.3.5)

10

Together with (3.2.11)

Ân;su;k0(s̃, w) ⊆ Â′
n;su;k0(w) for any s̃ ∈ S̃n;su;k0 , w ∈ Bn;k0 (3.3.6)

follows.

Thus, Â′
n;su;k0(w) are extensions of DA decision sets Ân;su;k0(s̃, w).

10s̃′ = w follows in the special case that w ∈ S̃n;su;k0 .
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Lemma 3.3.7. Let s̃ ∈ S̃n;su;k0 and w ∈ Bn;ko be given.
If s̃′′ ∈ Â′

n;su;k0(w) \ Ân;su;k0(s̃, w) then U(s̃, s̃′′) > U(s̃, s̃′) for any
s̃′ ∈ Ân;su;k0(s̃, w).

Proof. Initially, we consider the case
∑

wj < su.

For s̃′′ ∈ Â′
n;su;k0(w) \ Ân;su;k0(s̃, w) an i0 exists so that

s̃′′i0 > max{s̃i0 , wi0}, according to (3.2.11) and (3.3.5).
s̃′′i0 − s̃i0 > max{0, wi0 − s̃i0} follows.

Lemma 3.3.2 and Lemma 3.3.3 then yield:

U(s̃, s̃′′) =
n∑

i=1
max {0, s̃′′i − s̃i} >

n∑
i=1

max {0, wi − s̃i} = U(s̃, s̃′)

for any s̃′ ∈ Ân;su;k0(s̃, w).

The case
∑

wj > su is proved analogously.

In the case that
∑

wj = su, no s̃′′ ∈ Â′
n;su;k0(w) \ Ân;su;k0(s̃, w) exists

since Â′
n;su;k0(w) = Ân;su;k0(s̃, w) = {w} (see (3.2.11) and (3.3.5)). �

We now consider the following simple example:

Example 3.3.1. Let a SDDP problem with

n = 2, k0 = (3, 3), su = 4, (kij) i=1,2
j=1,2

=
(

0 1
1 0

)
be given.

Â2;4;3(s̃, w) = {s̃′ =
(

2
2

)
} for s̃ =

(
1
3

)
, w =

(
2
1

)
(see (3.2.11)).

Furthermore, s̃′′ =
(

3
1

)
∈ Â′

2;4;3(w) (see (3.3.5)), for example.

U(s̃, s̃′) = 1 and U(s̃, s̃′′) = 2 are the corresponding conversions numbers
(see Lemma 3.3.2).

It seems intuitively evident that a transition from s̃ and w to s̃′′ could not
be a decision of an optimal solution. More is done for the concerned stage
than is necessary. (This statement is proved in the following Lemma.)
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If we compute the internal cost (according to (3.2.12)): ĉ(s̃, s̃′) = 1,
ĉ(s̃, s̃′′) = 2 and ĉ(s̃′, s̃′′) = 1, then

ĉ(s̃′, s̃′′) + ĉ(s̃, s̃′) ≥ ĉ(s̃, s̃′′)

is valid in conformance with Theorem 3.3.4 and moreover

ĉ(s̃′, s̃′′) + ĉ(s̃, s̃′) = ĉ(s̃, s̃′′).

This shows that a transition from s̃ and w to s̃′′ is in reality not necessary
for optimal solutions according to Theorem 2.3.13. 11

(Thus, the exclusion of the ”=” sign after Theorem 2.3.13a leads to the
exclusion of an entire set of non-essential decisions.)

This is also generally correct for SDDP problems:

Theorem 3.3.8. Let a SDDP problem, as in Section 3.2, be given and let
SDDP’ be the corresponding ”extended” SDDP problem. This means that
the extended decision sets Â′

n;su;k0(wt) are used in place of Ân;su;k0(s̃t, wt)
for any s̃t, wt and t.

(a) The extended SDDP problem satisfies the distance properties (2.3.28)
and (2.3.35).

Ân;su;k0(s̃, w) are smaller DA decision sets (see Definition 2.3.4).

(b) An optimal policy of the SDDP problem is also an optimal policy of
the corresponding SDDP’.

Proof.

(a) That the distance properties (2.3.28) and (2.3.35) are fulfilled follows
directly from Theorem 3.3.4.

If we apply Definition 2.3.4a to Â′
n;su;k0(w), (w ∈ Bn;k0) then

ˆ̂
An;su;k0(s̃

f , w1) = {s̃v ∈ Â′
n;su;k0(w

1) | ĉfl + ĉlv > ĉfv ∀ s̃l ∈ Â′
n;su;k0

(
w1

)
with s̃l �= s̃v}

are the smaller DA decision sets, where s̃f ∈ S̃n;su;k0 , w
1 ∈ Bn;k0 .

We will now prove:
11Corresponding algorithms are so-called ”lazy algorithms”, see Section 10.2.3 in [8].
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Ân;su;k0(s̃f , w1) = ˆ̂
An;su;k0(s̃

f , w1) for any s̃f ∈ S̃n;su;k0 , w
1 ∈ Bn;k0 .

1. We show

s̃v ∈ Â′
n;su;k0

(
w1

) \ Ân;su;k0(s̃
f , w1) ⇒ s̃v /∈ ˆ̂

An;su;k0(s̃
f , w1).

Case:
n∑

i=1
w1

i < su:

Let x̂v ∈ Xopt(s̃f , s̃v).

Since s̃v ∈ Â′
n;su;k0

(
w1

) \ Ân;su;k0(s̃
f , w1)

∃ j0 : s̃v
j0

> max {s̃f
j0

, w1
j0
} (see (3.2.11) and (3.3.5)), thus

∃ i0 �= j0 : x̂v
i0j0

> 0.

We set

x̂l : x̂l
ij =

⎧⎪⎨
⎪⎩

x̂v
ij − 1 if (i, j) = (i0, j0),

x̂v
ij + 1 if (i, j) = (i0, i0),

x̂v
ij otherwise,

s̃l : s̃l
i =

⎧⎪⎨
⎪⎩

s̃v
i − 1 if i = j0,

s̃v
i + 1 if i = i0,

s̃v
i otherwise.

Obviously,

s̃l ∈ Â′
n;su;k0

(
w1

)
, s̃l �= s̃v and furthermore

ĉfl ≤ ĉfv − ki0j0 .

Together with ĉlv = ki0j0

ĉfl + ĉlv ≤ ĉfv

follows.
According to Theorem 3.3.4 that means

ĉfl + ĉlv = ĉfv, hence

s̃v /∈ ˆ̂
An;su;k0(s̃

f , w1).
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The case
n∑

i=1
w1

i > su is proved analogously.

2. We show by contradiction:

s̃v ∈ Ân;su;k0(s̃
f , w1) ⇒ s̃v ∈ ˆ̂

An;su;k0(s̃
f , w1).

Assumption:

s̃v ∈ Ân;su;k0(s̃f , w1) and s̃l ∈ Â′
n;su;k0

(w1) with s̃l �= s̃v exist,

so that ĉfl + ĉlv = ĉfv.

(That means s̃v /∈ ˆ̂
An;su;k0(s̃

f , w1).)

Let x̂1 ∈ Xopt(s̃f , s̃l) and x̂2 ∈ Xopt(s̃l, s̃v) (see (3.3.4)).

Case:
n∑

i=1
w1

i < su:

s̃l �= s̃v ⇒ ∃ j0 : s̃v
j0

> s̃l
j0

,

⇒ ∃ y0 �= j0 : x̂2
y0j0

> 0. (*1)

Since x̂2 is optimal
⇒ s̃v

y0
= x̂2

y0y0
≤ s̃l

y0
− x̂2

y0j0

thus s̃v
y0

< s̃l
y0

.

In the considered case

w1
y0

(≤ s̃v
y0

) < s̃l
y0

(*2)

and 0 < s̃l
y0

(*2a)

follow.

Since x̂1 is optimal (see also Lemma 3.1.1(ii))

⇒ 0 < x̂1
y0y0

if s̃f
l > 0; (*3)

otherwise, y2(�= y0) exists such that 0 < x̂1
y2y0

.

Since s̃v
j0

> s̃l
j0

, s̃l ∈ Â′
n;su;k0

(w1) and s̃v ∈ Ân;su;k0(s̃f , w1)

(that means s̃v
j0

≤ max {w1
j0

, s̃f
j0}, see (3.2.11))

w1
j0

≤ s̃l
j0

< s̃v
j0

≤ s̃f
j0

and thus s̃l
j0

< s̃f
j0

(*3a)
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follow. Furthermore,

⇒ ∃ y1 �= j0 : x̂1
j0y1

> 0, (*4)

⇒ x̂1
j0j0

< s̃f
j0

. (*5)

Now, we go on to distinguish between the three cases: a) y1 �= y0 and
0 < x̂1

y0y0
, b) y1 = y0 and c) y1 �= y0 and 0 < x̂1

y2y0
where y2 �= y0.

Case: a) y1 �= y0 and 0 < x̂1
y0y0

:

See Figure 3.3.1.

We set (see also (*3a) and (*2a)):

s̃′l : s̃′ly =

⎧⎪⎨
⎪⎩

s̃l
y + 1 if y = j0,

s̃l
y − 1 if y = y0,

s̃l
y otherwise,

x̂′1 : x̂′1
iy =

⎧⎪⎨
⎪⎩

x̂1
iy + 1 if (i, y) = (j0, j0) or (i, y) = (y0, y1),

x̂1
iy − 1 if (i, y) = (j0, y1) or (i, y) = (y0, y0),

x̂1
iy otherwise

(*6)

(see also (*5), (*3) and (*4)).

Obviously, x̂′1 ∈ Xf (s̃f , s̃′l).

��
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��
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��

��
��
��
��
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�
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������

j0

yo

y1

−1

−1

−1

+1+1
+1

−1
+1

s̃f s̃l s̃v

Figure 3.3.1.
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x̂′2 : x̂′2
yj =

⎧⎪⎨
⎪⎩

x̂2
yj + 1 if (y, j) = (j0, j0),

x̂2
yj − 1 if (y, j) = (y0, j0),

x̂2
iy otherwise

(see also (*6) and (*1)).

Obviously, x̂′2 ∈ Xf (s̃′l, s̃v).

Using Theorem 3.3.4 and the distance property ky0y1 < kj0y1 + ky0j0 , see
(3.1.2),

ĉfv ≤ ĉ(s̃f , s̃′l) + ĉ(s̃
′l, s̃v) ≤ ∑

i,y
kiy x̂′1

iy +
∑
y,j

kyj x̂′2
yj =

∑
i,y

kiy x̂1
iy +

∑
y,j

kyj x̂2
yj + ky0y1 − kj0y1 − ky0j0 < ĉfl + ĉlv

follows.

ĉfv < ĉfl + ĉlv means that the assumption was false in case a).

Case: b) y1 = y0:

We set s′l and x̂′2 as in case a) but:

x̂′1 : x̂′1
iy =

⎧⎪⎨
⎪⎩

x̂1
iy + 1 if (i, y) = (j0, j0),

x̂1
iy − 1 if (i, y) = (j0, y0),

x̂1
iy otherwise

(see also (*5) and (*4) with y1 = y0).

Obviously, x̂′1 ∈ Xf (s̃f , s̃′l) and x̂′2 ∈ Xf (s̃′l, s̃v).

Using Theorem 3.3.4 and 0 < kj0y0 + ky0j0 , see (3.1.2),

ĉfv ≤ ĉ(s̃f , s̃′l) + ĉ(s̃
′l, s̃v) ≤ ∑

i,y
kiy x̂′1

iy +
∑
y,j

kyj x̂′2
yj =

∑
i,y

kiy x̂1
iy +

∑
y,j

kyj x̂2
yj − kj0y0 − ky0j0 < ĉfl + ĉlv

follows.

ĉfv < ĉfl + ĉlv means that the assumption was false in case b).
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Case: c) y1 �= y0 and 0 < x̂1
y2y0

where y2 �= y0:

We set s′l and x̂′2 as in case a) and

x̂′1 : x̂′1
iy =

⎧⎪⎨
⎪⎩

x̂1
iy + 1 if (i, y) = (j0, j0) or (i, y) = (y2, y1),

x̂1
iy − 1 if (i, y) = (j0, y1) or (i, y) = (y2, y0),

x̂1
iy otherwise.

Similarly to case a)

ĉfv ≤ ĉ(s̃f , s̃′l) + ĉ(s̃
′l, s̃v) ≤ ∑

i,y
kiy x̂′1

iy +
∑
y,j

kyj x̂′2
yj =

∑
i,y

kiy x̂1
iy +

∑
y,j

kyj x̂2
yj + ky2y1 − ky2y0 − kj0y1 − ky0j0 < ĉfl + ĉlv

follows.

The case
n∑

i=1
w1

i > su is proved analogously.

(The case
n∑

i=1
w1

i = su is not relevant

since Â′
n;su;k0

(
w1

)
= Ân;su;k0(s̃

f , w1) = w1 (∈ S̃n;su;k0)).

(b) follows directly from Theorem 2.3.13a. �

Finally, conditions that two states are elements of one decision set are
given in the following theorem.

Theorem 3.3.9. .

(i) For given states s̃1 ∈ S̃n;su;k0 and s̃2 ∈ S̃n;su;k0, a state s̃ ∈ S̃n;su;k0

and requirements w ∈ Bn;k0 exist so that {s̃1, s̃2} ⊆ Ân;su;k0(s̃, w) if
and only if at least one of the following inequalities is valid:

(a)
∑

i:s̃1
i =s̃2

i

s̃1
i ≥ 1

2

∑
i:s̃1

i �=s̃2
i

| s̃1
i − s̃2

i |= 1
2

∑
i
| s̃1

i − s̃2
i |,

(b)
∑

i:s̃1
i =s̃2

i

(k0i − s̃1
i ) ≥ 1

2

∑
i:s̃1

i �=s̃2
i

| s̃1
i − s̃2

i |= 1
2

∑
i
| s̃1

i − s̃2
i | .



128

(ii) For given s̃1 and s̃2, an s̃ ∈ S̃n;su;k0 and a w ∈ Bn;k0 exist so that
{s̃1, s̃2} = Ân;su;k0(s̃, w) if and only if U(s̃1, s̃2) = 1 and
∃j : s̃1

j = s̃2
j .

Proof.

(i) :

1. (⇒): Let {s̃1, s̃2} ⊆ Ân;su;k0(s̃, w).

In case C[w, su], the conditions of (3.2.11) and∑
i

s̃1
i =

∑
i

s̃2
i =

∑
i

s̃i yield

∑
i:wi≥s̃i

(s̃l
i − s̃i) =

∑
i:wi≤s̃i

(s̃i − s̃l
i) for l = 1; 2.

According to (3.2.11)∑
i:s̃1

i =s̃2
i

s̃l
i ≥

∑
i:wi≥s̃i

s̃l
i ≥

∑
i:wi≥s̃i

(s̃l
i−s̃i) =

∑
i:wi<s̃i

(s̃i−s̃l
i) =

∑
i:wi<s̃i

| s̃i−s̃l
i |

for l = 1, 2 follows.

Finally, using the last inequality for l = 1 and l = 2
and | s̃i − s̃1

i | + | s̃i − s̃2
i |≥| s̃1

i − s̃2
i |,∑

i:s̃1
i =s̃2

i

s̃1
i = 1

2(
∑

i:s̃1
i =s̃2

i

(s̃1
i +s̃2

i )) ≥ 1
2

∑
i:wi<s̃i

| s̃1
i −s̃2

i |= 1
2

∑
i
| s̃1

i −s̃2
i |

can easily be seen.

In the case C[su,w] we come to a similar conclusion. The
inequality (b) results in:∑
i:s̃1

i =s̃2
i

(k0i − s̃l
i) ≥

∑
i:s̃i≥wi

(k0i − s̃l
i) ≥ ∑

i:s̃i≥wi

(s̃i − s̃l
i)

=
∑

i:s̃i<wi

(s̃l
i − s̃i) ≥ 1

2

∑
i
| s̃1

i − s̃2
i | .

2. (⇐): Let (a) be valid in relation to s̃1 ∈ S̃n;su;k0 and s̃2 ∈ S̃n;su;k0 .

We set

w : wi

{
= s̃1

i if s̃1
i = s̃2

i ,

≤ min{s̃1
i , s̃

2
i } otherwise



129

and

s̃ :

⎧⎪⎪⎨
⎪⎪⎩

s̃i ≤ s̃1
i if s̃1

i = s̃2
i ,

s̃i ≥ max{s̃1
i , s̃

2
i } if s̃1

i �= s̃2
i ,∑

i
s̃i = su.

Thereby, w satisfies the condition
∑

i wi ≤ su. In addition, an s̃
which fulfils the above conditions exists, since on the one hand

∑
i:s̃1

i �=s̃2
i

max{s̃1
i , s̃

2
i } =

∑
i:s̃1

i �=s̃2
i

(s̃1
i +

1
2
| s̃1

i − s̃2
i |) ≤

∑
i

s̃1
i = su

because
∑
i

s̃1
i =

∑
i

s̃2
i and (a) and on the other hand

∑
i:s̃1

i �=s̃2
i

max{s̃1
i , s̃

2
i } +

∑
i:s̃1

i =s̃2
i

s̃1
i ≥ su.

According to the construction of w and s:

s̃1
i = s̃2

i = wi ≥ s̃i for i with s̃1
i = s̃2

i ,

wi ≤ min {s̃1
i , s̃

2
i } < max {s̃1

i , s̃
2
i } ≤ s̃i for i with s̃1

i �= s̃2
i

are valid. Hence,

s̃1 and s̃2 are elements of Ân;su;k0(s̃, w) (see (3.2.11)).

Now, let (b) be valid in relation to s̃1 ∈ S̃n;su;k0 and s̃2 ∈ S̃n;su;k0 .

We set

w : wi

{
= s̃1

i if s̃1
i = s̃2

i ,

≥ max{s̃1
i , s̃

2
i } otherwise

and

s̃ :

⎧⎪⎪⎨
⎪⎪⎩

k0i ≥ s̃i ≥ s̃1
i if s̃1

i = s̃2
i ,

s̃i ≤ min{s̃1
i , s̃

2
i } if s̃1

i �= s̃2
i ,∑

i
s̃i = su.
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Thus, w satisfies the condition
∑
i

wi > su. The continuation of

this proof for (b) is analogous to the proof of case (a).

(ii) :

1. (⇐): Let U(s̃1, s̃2) = 1 and ∃j : s̃1
j = s̃2

j .

According to (3.3.2) and Lemma 3.3.2(a) indices i0 and i1 exist
so that

s̃1 = s̃2[i0; i1] =

⎧⎨
⎩

s̃2
i + 1 for i = i0,

s̃2
i − 1 for i = i1,

s̃2
i otherwise.

s̃ with s̃i =

⎧⎪⎨
⎪⎩

min{s̃1
i , s̃

2
i } if i = i0, i = i1,

s̃1
i + 1 = s̃2

i + 1 if i = j,

s̃1
i = s̃2

i if i /∈ {i0, i1, j}

and w with wi =

{
max{s̃1

i , s̃
2
i } if i = i0, i = i1,

s̃1
i = s̃2

i if i0 �= i �= i1

satisfy the condition {s̃1, s̃2} = Ân;su;k0(s̃, w) if s̃1
j = s̃2

j < k0.

s̃ with s̃i =

⎧⎪⎨
⎪⎩

max{s̃1
i , s̃

2
i } if i = i0, i = i1,

s̃1
i − 1 = s̃2

i − 1 if i = j,

s̃1
i = s̃2

i if i /∈ {i0, i1, j}

and w with wi =

{
min{s̃1

i , s̃
2
i } if i = i0, i = i1,

s̃1
i = s̃2

i if i0 �= i �= i1

can be used for the proof if k0 = s̃1
j = s̃2

j (> 0).

2. (⇒): The other direction of the proof for (ii) can easily be seen
by using the definition of Ân;su;k0(s̃, w) as proof by contradiction.

�
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(For example, s̃1 = (0, 1, 0, 1) and s̃2 = (0, 1, 1, 0), where n = 4,
k0 = (1, 1, 1, 1) satisfy (a) as well as (b).)

Regarding the Transition Probabilities

As already mentioned, if the SDDP problems are modelled as MDPs the cor-
responding matrices of transition probabilities are called (general) partitions-
requirements-matrices (PRMs) and the condition (2.3.3), which requires
that pd

fl > 0 for all f, l and d, is fulfilled (see (3.2.13)).

We now show that the elements of the main diagonal pd
ff of PRMs are

independent of d (see also Lemma 2.3.14) and that they can be computed
in a straight forward way:

Lemma 3.3.10. Let s̃l ∈ S̃n;su;k0 , s̃
f ∈ S̃n;su;k0 with s̃l �= s̃f be given.

Then,

a) | {w | Ân;su;ko(s̃
l, w) = s̃l} | = | {w | Ân;su;ko(s̃

l, w) ⊇ {s̃l}} |
=

∏
i
(s̃l

i + 1) +
∏
i
(k0 − s̃l

i + 1) − 1,

b) pll =
∑

w:0≤w≤s̃l

q(w) +
∑

w:s̃l≤w≤k0

q(w) − q(s̃l)

(independent of d).

Proof.

a) s̃l ⊆ Ân;su;k0(s̃
l, w) is valid if and only if the inequality 0 ≤ wi ≤ s̃l

i for
all i or the inequality k0i ≥ wi ≥ s̃l

i for all i are fulfilled (see (3.2.11)).
Then, s̃l = Ân;su;k0(s̃

l, w) and the equalities from a) follow.

b) results from (2.3.7) and the proof of a). �

3.4 Characterization of Special Cases of SDDP
Problems

Throughout this Section we investigate SDDP problems where ”identical
basic costs” (in other words, unit distances) are supposed. Without loss of
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generality (see Lemma 3.3.1) we can set kij = 1 for i �= j (kii = 0 have to
be valid according to (3.1.2)).

Optimal decisions of such problems can be used as approximate solu-
tions of corresponding SDDP problems, in which the basic costs differ only
slightly from each other. Such optimal decisions can also be used as starting
decisions if corresponding SDDP problems are solved by iterative methods,
such as the Howard algorithm, for example.

However, we will also see that is not simple to solve even such special
cases of SDDP problems or to prove that optimally conjectured decisions of
these problems are infact optimal.

Moreover, the corresponding PRMs (in the strict meaning) themselves
lead to interesting combinatorial problems (see Chapter 4). Some conjec-
tures of special SDDP problems can then only be proven in Chapter 4 (see
Section 4.7).

Throughout this section we suppose, as discussed above,

kij = 1 ∀ i �= j,
kii = 0 ∀ i

}
. (3.4.1)

Then, the internal costs correspond to the conversion numbers and

kij = 1 ∀ i �= j,
kii = 0 ∀ i

}
⇒ ĉfl =

⎧⎨
⎩

∑
i

max{0, wi − s̃f
i } in case C[w, su],∑

i
max{0, s̃f

i − wi} in case C[su,w]

(3.4.2)
for all s̃l ∈ Ân;su;k0(s̃

f , w)
follows (see Lemma 3.3.3).

Thus, the internal costs fulfill not only (2.3.12) (as discussed in Sections
3.2) but also (2.3.13) (see Section 2.3.2) in the case of identical basic costs.

Hence, the corresponding average one-step reward functions are indepen-
dent of the decisions (see (2.3.14)).

(Comparisons of the average reward functions are possible simply by us-
ing the formulas from the following theorem 3.4.1.)
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According to Theorem 2.3.8, an almost-partial order of the states exists
which means that the complexity of computing optimal decisions can be
reduced (refer to Corollary 2.3.9).

Furthermore, the average one-step reward functions are equivalent to the
expected conversion numbers of a stage.

We can now make the following conjecture:

Decisions for feasible states s with minimum γ(s)
are optimal, if (3.4.1) is supposed

(Con3.1)

(without further conditions for the probability functions.)

(Such solutions would not be obvious for MDPs. We can think of the
demanding conditions of the matrices of transition probabilities in the case
of dominance (see Section 2.3.3.2).)

Weaker conjectures follow with additional conditions for the probability
functions.

Let wi, i = 1, 2, · · · , n be independent and let

qi : Z+ → [0, 1], i = 1, · · · , n

with

qi(z) �= 0 ⇔ z ∈ {0, 1, · · · , k0i} and
k0i∑
z=0

qi(z) = 1

be the corresponding probability functions.

Then, q(z) =
n∏

i=1
qi(zi) for z ∈ Zn

+ follows (see (3.2.7)).

In particular, we designate the two cases:

qi(wi) = 1
k0i

+1 , i = 1, 2, · · ·n (3.4.3)

(this means wi are discrete uniformly distributed)

and

wi, i = 1, 2, · · ·n are independent and identically distributed,

where k01 = k02 = · · · = k0n is assumed.
(3.4.4)
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Then, the corresponding conjectures are:

Decisions for feasible states s with minimum γ(s)
are optimal if (3.4.1) and (3.4.3) are assumed

(Con3.2)

and

decisions for feasible states s with minimum γ(s)
are optimal if (3.4.1) and (3.4.4) are supposed.

(Con3.3)

Furthermore, we will see that conjecture (Con3.3) is equivalent to:

Decisions for feasible states with least square sums of their
components are optimal if (3.4.1) and (3.4.4) are supposed.

(Con3.3a)

(See Lemma 4.2.2 and Definition 4.1.1(a), (c) in Chapter 4.)

At this point, we have dealt in detail with conjecture (Con3.3) and have
proven this conjecture for many cases.

SDDP problems involve combinatorial aspects (in particular) if (3.4.1)
and (3.4.4) are assumed. Therefore, several considerations for special SDDP
problems can only be found in Chapter 4.

Whether the conjectures (Con3.1) and (Con3.2) are true seems more
questionable. (They are true for specific examples.) Otherwise, these con-
jectures have not been further investigated.

At the very least, the almost-partial order of the states mentioned above
exists, which means that the complexity of computing of optimal decisions
can be reduced if (3.4.1) is supposed (see the following Section 3.5 also).

In Section 3.4.1. we give formulas for computation of the average one-step
reward functions under condition (3.4.1).

In addition, in Section 3.4.2 we will see that special SDDP problems can
be reduced. This will also prepare us for Chapter 4.



135

3.4.1 Average Reward Functions of SDDP Problems with
Identical Basic Costs

Theorem 3.4.1. Let a SDDP problem (modelled as MDP) with identi-
cal basic costs ((3.4.1) is therefore fulfilled) be given, (where S̃n;su;k0 =
{s̃1, s̃2, · · · , s̃r}).

Then, the average one-step reward functions γ = (γ1, · · · , γr)T are inde-
pendent of (feasible) decisions and the following formulas are valid:

(a) γ(s̃f ) =
∑

w∈Bn;k0

(
n∑

i=1
max{0, s̃f

i − wi}
)

q(w) + R(n, su, k0, q),

(b) if, in addition, wi, i = 1, 2, · · ·n are independent (this also means

q(w) =
n∏

i=1
qi(wi))

γ(s̃f ) =
n∑

i=1

s̃f
i∑

wi=0
(s̃f

i − wi) qi(wi) + R(n, su, k0, q),

(c) if, in addition, (3.4.4) is supposed and q0 :≡ q1 ≡ q2 ≡ · · · ≡ qn

γ(s̃f ) =
n∑

i=1

s̃f
i∑

wi=0
(s̃f

i − wi) q0(wi) + R(n, su, k0, q),

(d) if, in addition, (3.4.3) is supposed

γ(s̃f ) = 1
2

n∑
i=1

s̃f
i (s̃f

i +1)
k0i

+1 + R(n, su, k0, q) and

(e) if (3.4.3) and (3.4.4) are additionally supposed
k0 := k01 = k02 = · · · = k0n

γ(s̃f ) = 1
2

1
k0+1

n∑
i=1

(s̃f
i )2 + R1(n, su, k0)

where R(n, su, k0, q) =
∑

w∈Bn;k0
:C[w,su]

q(w)(
n∑

i=1
wi − su) and

R1(n; su; k0) = 1
(k0+1)n

∑
w∈Bn;k0

:C[w,su]

(
n∑

i=1
wi − su) + su

2(k0+1)

are independent of sf .
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Remarks 3.4.1. In Section 4.2.2 we will see that

γ(s̃f ) > γ(s̃l) ⇔
n∑

i=1
(s̃f

i )2 >
n∑

i=1
(s̃l

i)
2

if s̃l is a successor of s̃f (see Definition 4.1.1(a), (c)) and (3.4.1) and
(3.4.4) are assumed (see Lemma 4.2.2(a)).

Proof of Theorem 3.4.1: According to (2.3.8) (first equation), the average
one-step reward functions of DA MDPs are computed as follows

γ(s̃f , d) =
∑
s̃l

∑
w:s̃l=d̂(s̃f ,w)

ĉfl q(w).

Together with (3.4.2)

γ(s̃f ) := γ(s̃f , d) =
∑

w∈Bn;k0
:C[w,su]

(
n∑

i=1
max{0, wi − s̃f

i }
)

q(w)

+
∑

w∈Bn;k0
:
∑

i wi>su

(
n∑

i=1
max{0, s̃f

i − wi}
)

q(w)

for any d with d(s̃f , w) ∈ Ân;su;k0(s̃
f , w)

and

γ(s̃f ) =
∑

w∈Bn;k0

(
n∑

i=1
max{0, s̃f

i − wi}
)

q(w)

+
∑

w∈Bn;k0
:C[w,su]

(
n∑

i=1

(
max{0, wi − s̃f

i } − max{0, s̃f
i − wi}

))
q(w)

(*1)

follow.
Since

n∑
i=1

(
max{0, wi − s̃f

i } − max{0, s̃f
i − wi}

)
=

n∑
i=1

(
wi − s̃f

i

)
=

n∑
i=1

wi − su,
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the relation

γ(s̃f ) =
∑

w∈Bn;k0

(
n∑

i=1
max{0, s̃f

i − wi}
)

q(w) + R(n, su, k0, q) (*2)

where

R(n, su, k0, q) =
∑

w∈Bn;k0
:C[w,su]

q(w)(
n∑

i=1

wi − su) (*3)

is valid and (a) is thus proved.

If, in addition, wi, i = 1, 2, · · ·n are independent, then using the defini-
tion of Bn;k0 the equation (*2) can be transformed into:

γ(s̃f ) =
k01∑

w1=0

k02∑
w2=0

· · ·
k0n∑

wn=0

(
n∑

i=1
max{0, s̃f

i − wi}
)

n∏
i=1

qi(wi)

+R(n, su, k0, q).

Step by step, we now move the sum ”
n∑

i=1
” to the left (outside):

γ(s̃f ) =
k01∑

w1=0

k02∑
w2=0

· · ·
k0n−1∑

wn−1=0

[(
n−1∑
i=1

max{0, s̃f
i − wi}

)
n−1∏
i=1

qi(wi)

(
k0n∑

wn=0
qn(wn)

)

+
n−1∏
i=1

qi(wi)
k0n∑

wn=0

(
max{0, s̃f

n − wn} qn(wn)
)]

+ R(n, su, k0, q).

Since
k0n∑

wn=0
qn(wn) = 1, the last equation can be slightly simplified.

We then continue the transposition of the sums:
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γ(s̃f ) =
k01∑

w1=0

k02∑
w2=0

· · ·
k0n−2∑

wn−2=0

[(
n−2∑
i=1

max{0, s̃f
i − wi}

)
n−2∏
i=1

qi(wi)

(
k0n−1∑

wn−1=0
qn−1(wn−1)

)

+
n−2∏
i=1

qi(wi)
k0n−1∑

wn−1=0

(
max{0, s̃f

n−1 − wn−1} qn−1(wn−1)
)

+
n−2∏
i=1

qi(wi)

(
k0n−1∑

wn−1=0
qn−1(wn−1)

)
k0n∑

wn=0

(
max{0, s̃f

n − wn} qn(wn)
)]

+ R(n, su, k0

k0n−1∑
wn−1=0

qn−1(wn−1) = 1 can be repeatedly used to simplify the equation:

γ(s̃f ) =
k01∑

w1=0

k02∑
w2=0

· · ·
k0n−2∑

wn−2=0

[(
n−2∑
i=1

max{0, s̃f
i − wi}

)
n−2∏
i=1

qi(wi)

+
n−2∏
i=1

qi(wi)
k0n−1∑

wn−1=0

(
max{0, s̃f

n−1 − wn−1} qn−1(wn−1)
)

+
n−2∏
i=1

qi(wi)
k0n∑

wn=0

(
max{0, s̃f

n − wn} qn(wn)
)]

+ R(n, su, k0, q)

The summation of the middle two terms yield:

γ(s̃f ) =
k01∑

w1=0

k02∑
w2=0

· · ·
k0n−2∑

wn−2=0

[(
n−2∑
i=1

max{0, s̃f
i − wi}

)
n−2∏
i=1

qi(wi)

+
n−2∏
i=1

qi(wi)
n∑

i=n−1

k0i∑
wi=0

(
max{0, s̃f

i − wi} qi(wi)
)]

+ R(n, su, k0, q)

Iteratively, we move the ”
n−2∑
i=1

” to the left (outside):

γ(s̃f ) =
n∑

i=1

k0i∑
wi=0

(
max{0, s̃f

i − wi} qi(wi)
)

+ R(n, su, k0, q).

The following is equivalent to this equation:
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γ(s̃f ) =
n∑

i=1

s̃f
i∑

wi=0
(s̃f

i − wi) qi(wi) + R(n, su, k0, q)

and (b) is thus proved.

(c) follows directly from (b).

In the case of discrete uniformly distributed requirements, we set
qi(wi) = 1

k0i
+1 (i ∈ {1, 2, · · · , n}, wi ∈ {0, 1, · · · , k0i}) in the last equation:

γ(s̃f ) =
n∑

i=1

s̃f
i∑

wi=0
(s̃f

i − wi) 1
k0i

+1 + R(n, su, k0, q)

=
n∑

i=1

1
k0i

+1

s̃f
i∑

wi=0
(s̃f

i − wi) + R(n, su, k0, q)

=
n∑

i=1

1
k0i

+1(s̃f
i (s̃f

i + 1) − 1
2 s̃f

i (s̃f
i + 1)) + R(n, su, k0, q)

= 1
2

n∑
i=1

s̃f
i (s̃f

i +1)
k0i

+1 + R(n, su, k0, q).

Thus, (d) is proved.

In order to prove (e) we use k0i = k0 for i = 1, 2, · · · , n and:

γ(s̃f ) = 1
2

n∑
i=1

s̃f
i (s̃f

i +1)
k0+1 + R(n, su, k0, q)

= 1
2

1
k0+1

n∑
i=1

(
(s̃f

i )2 + s̃f
i

)
+ R(n, su, k0, q)

= 1
2

1
k0+1

n∑
i=1

(s̃f
i )2 + su

2(k0+1) + R(n, su, k0, q)

= 1
2

1
k0+1

n∑
i=1

(s̃f
i )2 + R1(n; su; k0)

where R1(n; su; k0) = 1
(k0+1)n

∑
w∈Bn;k0

:C[w,su]

(
n∑

i=1
wi − su) + su

2(k0+1)
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follows. �

3.4.2 Reduction of SDDP Problems with Identical Basic Costs
and Independent and Identically Distributed
Requirements

To begin, we discuss the possibility of reduction of DA MDPs in general.

Definition 3.4.1. Let a matrix A = (afl) f=1,··· ,m
l=1,··· ,m

be given. If sets of indices

Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r with h0 = 0,
hv−1 < hv, hr = m and a matrix AR exist so that

AR = (�yv) y=1,··· ,r
v=1,··· ,r

and∑
l∈Iv

afl = �yv ∀ f ∈ Iy ∀y = 1, · · · , r, ∀ v = 1, · · · , r, (3.4.5)

then A is called reducible (in relation to the sets of indices) and AR is the
reduced matrix corresponding to A.

Lemma 3.4.2. Let a MDP(N = ∞, S, AM , P, γ) (as in Section 2.3.1), a
decision function d with the corresponding matrix of transition probabilities
P d and the vector of average (one-step) reward functions γd be given, where
P d satisfies (2.3.3). Furthermore, let a set of indices as in Definition 2.1.1
and a reduced matrix P d

R corresponding to P d in relation to these sets of
indices exist and let

γd
hv−1+1 = γd

hv−1+2 = · · · = γd
hv

∀ v = 1, · · · , r (3.4.6)

be valid for the average (one-step) reward functions γd.
γd

R ∈ Rr
+ with γd

Rv
:= γd

hv
∀ v = 1, · · · , r is the reduced vector corre-

sponding to γd in relation to the sets of indices.

Then, P d
R also satisfies (2.3.3). The solution (gR, νR) ∈ R × Rr with

νRr = 0 of the Poisson equation (2.3.5) for P d
R and γd

R then yields the solu-
tion (g, ν) ∈ R × Rm of the Poisson equation (2.3.5) for P d and γd in the
following way
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g = gR and
νhv−1+1 = νhv−1+2 = · · · = νhv = νRv ∀ v = 1, · · · , r
(with νm = 0).

(3.4.7)

This Lemma can be simply shown using (3.4.5).

Definition 3.4.2. Let a DA MDP(N = ∞, S̃, AM , P, γ) (as in Section
2.3.2) be given, which is constructed by means of DA decision functions d̂,
DA decision sets Â(s̃, w) and internal costs ĉ which satisfy (2.3.13), (where
S̃ = {s̃1, s̃2, · · · , s̃m}). Furthermore, let Iv = {hv−1 +1, hv−1 +2, · · · , hv},
v = 1, 2, · · · , r with h0 = 0, hv−1 < hv, hr = m be sets of indices.

Then,

S̃v := {s̃hv−1+1, s̃hv−1+2, · · · , s̃hv}, v = 1, 2, · · · , r (3.4.8)

are subspaces of states related to the sets of indices.

S = {s1, s2, · · · , sr} is called reduced state space where

sv := s̃hv−1+1 (3.4.9)

are representatives of the sets S̃v (v = 1, 2, · · · , r).

Â(sv, w) = {sy1 , sy2 , · · · , syz(v)} is called the reduced DA decision set (in
relation to the sets of indices), if wα ∈ B for α = 1, 2, · · · , hv − hv−1

with w1 = w and S̃
yβ
α ⊆ S̃yβ for β(= β(v)) = 1, 2, · · · , z(v) exist so

that

Â(s̃hv−1+α, wα) = {S̃y1
α , S̃y2

α , · · · , S̃
yz(v)
α },

q(w1) = q(w2) = · · · = q(whv−hv−1) and

ĉ(s̃hv−1+1, w1) = ĉ(s̃hv−1+2, w2) = · · · = ĉ(s̃hv , whv−hv−1)

⎫⎪⎪⎬
⎪⎪⎭ . (3.4.10)

ĉ(sv, w) := ĉ(s̃hv , whv−hv−1) (3.4.11)

is defined.

The set of DA decision sets {Â(s̃, w) | s̃ ∈ S̃, w ∈ B} is called reducible
if reduced DA decision sets exist for all v = 1, 2, · · · , r, w ∈ B.
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If the set of DA decision sets is reducible, then a DA decision function
d̂ with

d̂(s̃hv−1+α, wα) ∈ S̃yβ(v) , ∀ α = 1, 2, · · · , hv − hv−1, (v = 1, 2, · · · , r)
(3.4.12)

is also called reducible (in relation to given the sets of indices).
In addition,

d̂(sv, w = w1) = sy
β(v)(:= s̃

hyβ(v)−1+1), v = 1, 2, · · · , r, w ∈ B (3.4.13)

is the reduced DA decision function.

Lemma 3.4.3. Let a DA MDP(N = ∞, S̃, AM , P, γ) (as in Definition
3.4.2) be given where the set of DA decision sets is reducible with respect
to the sets of indices Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r
with h0 = 0, hv−1 < hv, hr = m.

If a DA decision function d̂ is reducible (in relation to the sets of
indices), then a reduced matrix of transition probabilities P d

R which corre-
sponds to P d and a reduced vector of average (one-step) reward functions
γd

R corresponding to γd exist.

Proof. That P d is reducible follows simply from (2.3.7) together with
(3.4.12) and the second equations of (3.4.10).

This along with the first equation from (2.3.8) and the third equations
from (3.4.10) show the reducibility of the average (one-step) reward func-
tions. �

Lemma 3.4.4. Let a DA MDP(N = ∞, S̃, AM , P, γ) (as in Definition
3.4.2) be given where the set of DA decision sets is reducible with respect
to the set of indices Iv = {hv−1 + 1, hv−1 + 2, · · · , hv}, v = 1, 2, · · · , r
with h0 = 0, hv−1 < hv, hr = m. Furthermore, let (2.3.3) be valid for all
stationary policies.

Then, an optimal DA decision function exists which is reducible.

Proof. Based on the given DA MDP we construct a new corresponding
reduced DA MDP, whose state space is the reduced state space (see Defini-
tion 3.4.2).
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Further characteristic quantities of the reduced DA MDP are constructed
by means of the reduced DA decision sets, the reduced DA decision func-
tions and the internal costs from (3.4.11), as in Section 2.3.2.

According to Lemma 3.4.3, a reduced matrix of transition probabilities
P d

R corresponding to P d and a reduced vector of average (one-step) reward
functions γd

R which corresponds to γd (in relation to the given sets of indices)
exist for any reducible DA decision function d̂.

Now, let d̂∗ be a reducible DA decision function whose reduced DA
decision function is an optimal decision function of the reduced DA MDP.

Then the optimality criterion (2.3.22) is satisfied in relation to this re-
duced DA decision function and the reduced DA MDP.

Solutions of the Poisson equation (2.3.5) with respect to the reducible
DA decision function follow from solutions of the Poisson equation for the
optimal reduced DA decision function, as in Lemma 3.4.2.

Since the third equations of (3.4.10) are valid for the internal costs
and (3.4.7) for solutions of the Poisson equations, the optimality criterion
(2.3.22) is also satisfied in relation to the reducible DA decision function d̂∗

and the given DA MDP. �

We now discuss:

The Reduction of SDDP Problems with Identical Basic Costs
and Independent and Identically Distributed Requirements

Under the conditions of (3.4.1), the internal costs satisfy (2.3.13) (as dis-
cussed at the beginning of Section 3.4).

If s̃ (ordered partition of su) is a state of the state space S̃n;su;k0 ,
then all permutations of s̃ are also elements of this state space since
k01 = k02 = · · · = k0n (see (3.4.4)).

Hence, we use the set Sn;su;k0 of the unordered partitions of su with at
most n parts with summands not greater than k0, (where the elements of
Sn;su;k0 are expressed as n-dimensional vectors, meaning s = (s1, s2, · · · , sn))
as the reduced state space corresponding to S̃n;su;k0 if (3.4.1) and (3.4.4) are
supposed.

(Let r := |Sn;su;k0 | be the number of the restricted partitions.)
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That implies that the sets of indices (see Definition 3.4.2) are determined
such that each corresponding subspace of states which is related to the set
of indices includes all permutations of a state from the original state spaces.

Since wi, i = 1, 2, · · ·n are independent and identically distributed,
the probabilities of permutations wπ of w are equal: q(wπ) = q(w).

(Thus, the second equations of (3.4.10) are fulfilled.)

If

Ân;su;k0(s̃, w) = {s̃y1 , s̃y2 , · · · , s̃yz̃} (3.4.14)

is a DA decision set, s̃π a permutation of s̃ and wπ an analogous permutation
of w then the DA decision set Ân;su;k0(s̃π, wπ) is:

Ân;su;k0(s̃π, wπ) = {s̃y1
π , s̃y2

π , · · · , s̃yz̃
π },

where s̃
yβ
π (β = 1, 2, · · · , z̃) are permutations of s̃yβ , which are analogous to

the permutation s̃π of s̃.

Furthermore, (3.4.1) yields

ĉ(s̃, w) = ĉ(s̃π, wπ)

for a permutation s̃π of s̃ and an analogous permutation wπ of w.

Hence, Ân;su;k0(s̃, w) are reducible for any s̃ ∈ S̃n;su;k0 , w ∈ Bn;k0 (see
Definition 3.4.2).

Corresponding reduced DA decision sets are Ân;su;k0(s, w) = {sy1 , sy2 , · · · , syz}
(s ∈ Sn;su;k0 , w ∈ Bn;k0) if (3.4.14) is assumed.

Together with (3.2.11) this implies

Ân;su;k0(s, w)

=

⎧⎪⎪⎨
⎪⎪⎩s′ ∈ Sn;su;k0

∣∣∣∣∣∣∣∣
∃ s′π permutation of s′ :

wi ≤ s̃′πi ≤ max{si, wi}, i = 1, · · · , n, in C[w, su],

min{si, wi} ≤ s′πi ≤ wi, i = 1, · · · , n, in C[su,w]

⎫⎪⎪⎬
⎪⎪⎭ .

(3.4.15)
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According to Lemma 3.4.4, optimal reducible DA decision functions for
SDDP problems exist if (3.4.1) and (3.4.4) are supposed. These optimal
reducible DA decision functions can be completely described by means of
optimal DA decision functions of the corresponding reduced SDDP problems
and corresponding permutations.

Average one-step reward functions for reduced SDDP problems can be
computed by means of the formula from Theorem 3.4.1(c) (consider also
(3.4.6) and Lemma 3.4.3). 12

In Section 4.7 we will show that the conjecture (Con3.3) is true for SDDP
problems (with identical basic costs and discrete uniformly distributed re-
quirements) with arbitrary but fixed number of states, with exeption of
perhaps a finite number of such problems (see Corollary 4.7.1).

Here we also introduce the symbol d∗:

Under the conditions (3.4.1) and (3.4.4), let a reduced SDDP problem be
given.

d∗ denotes the DA decision functions with decisions for feasible states
with minimum average one-step reward functions.

(3.4.16)

3.5 Notes on the Solution Methods of SDDP
Problems

To begin we discuss possibilities to compute exact solutions of SDDP prob-
lems.

However, if the number of states is very large, then the computation of
exact solutions is hardly realizable. Therefore, we deal in the final part of

12This cannot be more simply computed for the following reasons: The internal costs of
(not reduced) SDDP problems fulfil (2.3.12) (as discussed in Sections 3.2 and 3.3), which
means ĉ(s̃f , w, s̃l) = ĉ(s̃f , s̃l) where s̃l ∈ Ân;su;k0(s̃

f , w).
However, (2.3.12) is not satisfied for reduced SDDP problems (with identical basic costs

and independent and identically requirements) since different permutations of sl fulfil the
inequalities of (3.4.15) for differing w, in general.
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this section with heuristics.

In principle, we can use all of this for the solution methods of SDDP
problems (modelled as DA MDPs), as was generally stated in Section 2.3.5
for the solution methods of DA MDPs.

SDDP problems can therefore be exactly solved by means of the Howard
algorithm prepared for DA MDPs (see Section 2.3.5).

In addition, all decision sets Ân;su;k0(s̃, w) must be determined according
to (3.2.11) and the internal costs (ĉ(s̃f , s̃l)) f=1,...,r

l=1,...,r
(as a basis for average

(one-step) reward functions, see (2.3.8)) must first be computed according
to (3.2.12).

Decisions as in Section 3.4, thus also optimal decisions of corresponding
SDDP problems with identical basic costs, may come into consideration as
initial decisions for the Howard algorithm.

If one would like to solve SDDP problems as cost-parametric DA MDPs
according to Algorithm 2.3.2 (Section 2.3.4.2), or theoretically investigate

in this way, then the following specifications should be applied to Algorithm
2.3.2:

Regarding the step 1 of Algorithm 2.3.2, suggesting a parameterization
of the costs (as described in Section 2.3.4.3) is to be made here on the basis
of the basic cost, for instance in the following way:

ki0j0 + ϑ(kij − ki0j0) with

ki0j0 = min{kij | i, j ∈ {1, 2, ..., n}, i �= j}, ϑ ∈ [0, 1] .

Without loss of generality, according to Lemma 3.3.5 and Lemma 3.3.1,
we can set:

1 = min{kij | i, j ∈ {1, 2, ..., n}, i �= j} (= ki0j0)

and the parameterization 1 + ϑ(kij − 1)
(3.5.1)

follows.

This means (3.4.1) and thus (2.3.13) are valid in relation to the initial
parameter ϑ = 0.

Then, (considering Lemma 3.3.6) the assumptions for (LPC) and (2.3.42)
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are also fulfilled for the resulting cost-parametric DA Markov decision pro-
cess, where

{κ0, κ} ⊆ Rn
+ × Rn

+, κ0 =

(
δij =

{
1 if i �= j,

0 if i = j

)
i=1,...,n
j=1,...,n

,

κ = (kij − δij) i=1,...,n
j=1,...,n

.

In relation to step 1 of Algorithm 2.3.2 (where ϑ = 0) and its application to
SDDP problems with the above parameterization of the costs, we find that:

- either decisions for states with minimal average (one-step) reward func-
tions are already optimal (refer to the Conjectures (Con3.1), (Con3.2)
and (Con3.3) and Corollary 4.7.1 in Section 4.7)

- or the the complexity of computing the optimal decisions can be re-
duced (see Theorem 2.3.8 and Corollary 2.3.9) since in this case an
almost-partial order of the states exists (as discussed in detail follow-
ing Algorithm 2.3.2 in Section 2.3.4.2).

If the parameter ϑ increases, then the violations of the optimality are sin-
gle violations (Definition 2.3.6) in general and the optimal decisions can be
purposefully computed for the increasing parameter ϑ > 0 (as discussed in
detail in Algorithm 2.3.2).

It is possible that the additional conditions (AC1), (AC2) and (AC3)
from Section 2.3.4.2 are satisfied for SDDP problems or for certain subsets of
such problems. If (AC3) is valid, then step 2 of Algorithm 2.3.2 is a greedy
algorithm as discussed in Section 2.3.4.2.

For the following Example 3.5.1 this is indeed the case.

Proofs of such statements have, however, not yet been completed. These
could be just as complicated as the proof of Conjecture (Con3.3) in Chapter
4.

Example 3.5.1. We consider SDDP problems with

n = 3, su = 5, k0 = (3, 3, 3),

wi (i = 1, 2, 3) discrete uniformly distributed random variables,
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(kij) i=1,2,3
j=1,2,3

=

⎛
⎝0 1 k

1 0 k
k k 0

⎞
⎠ , k ∈ [1,∞)

(thus the distance properties (3.1.2) are valid for all k ∈ [1,∞)).

Let the SDDP problems be modelled as DA MDPs (for k ∈ [1,∞)).

Initially, the state spaces include 12 states. However the SDDP problems
can be reduced, so that the state spaces of the reduced problems include only
7 states:

s1 =

⎛
⎝3

2
0

⎞
⎠ , s2 =

⎛
⎝3

0
2

⎞
⎠ , s3 =

⎛
⎝2

0
3

⎞
⎠ , s4 =

⎛
⎝3

1
1

⎞
⎠ , s5 =

⎛
⎝1

1
3

⎞
⎠ ,

s6 =

⎛
⎝2

2
1

⎞
⎠ , s7 =

⎛
⎝2

1
2

⎞
⎠ ,

by reason of the given basic costs (kij) i=1,2,3
j=1,2,3

and the discrete uniformly

distributed requirements wi (i = 1, 2, 3).

We can consider the SDDP problems (with k ∈ [1,∞)) as cost-parametric
SDDP problems (where k = 1 + ϑ).

Calculations by means of a computer led to the following results:

Decisions for feasible states with minimal average one-step reward func-
tions are indeed optimal for k = 1 (thus for ϑ = 0).

If the parameter ϑ increases, then the violations of the optimality are sin-
gle violations (see Definition 2.3.6) and the following single decisions have
to be changed for optimal solutions:

A: d̂(sf , w) = s7 to d̂(sf , w) = s4

for f = 1, 4, 6 and certain calculated w ∈ B,

B: d̂(sf , w) = s6 to d̂(sf , w) = s1

for f = 1 and certain certain calculated w ∈ B,

C: d̂(sf , w) = s4 to d̂(sf , w) = s2

for f = 2, 3, 5, 7 and certain certain calculated w ∈ B,

D: d̂(sf , w) = s7 to d̂(sf , w) = s5
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for f = 3 and certain certain calculated w ∈ B,

E: d̂(sf , w) = s7 to d̂(sf , w) = s3

for f = 3, 5 and certain certain calculated w ∈ B,

more detailed:

ϑ : 0, 272 0, 466 1, 276 2,393 5, 101

Change: C A D E B.

(Single decisions with corresponding minimal internal costs are optimal for
ϑ ≥ 5, 101.)

In addition, we note initially that
3∑

i=1
(s1

i )
2 =

3∑
i=1

(s2
i )

2 =
3∑

i=1
(s3

i )
2 = 13 >

3∑
i=1

(s4
i )

2 =
3∑

i=1
(s5

i )
2 = 11

>
3∑

i=1
(s6

i )
2 =

3∑
i=1

(s7
i )

2 = 9 and the changes C, A,D (for smaller ϑ)

include the differences of square sums of the corresponding states:

2 = 13 − 11 for C and 2 = 11 − 9 for A and D contrary to the changes

B and E (for greater ϑ) with differences 4 = 13 − 9.

Furthermore, the additional conditions (AC1), (AC2) and (AC3) from
Section 2.3.4.2 are definitely valid for this example.

However the validity of (AC3) seems to only be based on the the small
variation between the states s1, s2, · · · , s9.

A great difficulty of computing exact solutions of SDDP problems is:

The number of states of the state spaces can grow rather large for in-
creasing n and k0. For example, state spaces with more than fifty billion
states exist only for n = 10, k01 = · · · = k010 = 19.

Then, obviously, Bn;k0 has 2010 elements. Integers from 1 to 10 ∗ 19 ≈
200 are possible for su (see (3.2.3)). Thus, the average size of correspond-
ing state spaces is approximately 2010

200 ≈ 5 ∗ 1010 states.

These considerations demonstrate the usefulness of theoretical investiga-
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tions of SDDP problems and of the possibilities for rough estimations of the
quality of feasible solutions and of approximation methods.

We will now discuss a few different approaches for approximation meth-
ods.

The first approach includes only small reductions of state spaces. Parts
which are to be produced and are nearly equal, will be regarded as equal for
the mathematical modelling.

Moreover, the basic costs matrix (kij) i=1,...,n
j=1,...,n

can be simplified in such a

manner that it only includes low and high costs kij , i �= j. (Thus, without
loss of generality, kij = 1 (low) and kij = k > 1 (high).) Then, (as in
Example 3.5.1) the state space can be reduced to a certain extent. For the
resulting problem an exact solution must then be found.

Further theoretical investigation, for instance with regard to the validity
of the additional conditions (AC1), (AC2) and (AC3) from Section 2.3.4.2,
seems interesting for these approximation methods.

Another approach for heuristics diverts from the deductive conception
which includes all feasible transitions immediately.

In each stage such approaches use the present state sf , the present real-
ization w of requirements, the DA decision set Â(sf , w), the internal costs
ĉ(sf , w, sl) with sl ∈ Â(sf , w) and quantities, which are depend on proba-
bilities in a simple way.

The method at the end of Section 2.3.5 can be used in order to find
roughly approximate solutions (see this section).

Additionally, the relation sl̄ < sl (which is implied by the almost-partial
order, see Theorem 2.3.8) can be replaced by relations such as

γ(sl̄) =
∑

w′∈Bn;k0

(
n∑

i=1
max{0, sl̄

i − w′
i}
)

q(w′) + R(n, su, k0, q)

> γ(sl) =
∑

w′∈Bn;k0

(
n∑

i=1
max{0, sl

i − w′
i}
)

q(w)+R(n, su, k0, q),

thus ∑
w′∈Bn;k0

(
n∑

i=1
max{0, sl̄

i − w′
i}
)

q(w′) >
∑

w′∈Bn;k0

(
n∑

i=1
max{0, sl

i − w′
i}
)

q(w)
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(see Section 3.4, Theorem 3.4.1).

Furthermore, the condition ĉ(sf , w, sl̄) � ĉ(sf , w, sl) (see the method at
the end of Section 2.3.5) for changes of the single decision d∗(sf , w) could
be connected with the differences of the states sl and sl̄ expressed by the
corresponding square sums of these states (see also the note corresponding
to Example 3.5.1).

Another heuristic of this type can be found in [22], Chapter 2 or [24],
Section 4.1. The probabilities of ”optimum domains” are maximized as sur-
rogate problems for SDDP problems. These surrogate problems are a kind
of two stage problem and are suitable for SDDP problems with log-concave
distributed disturbances.

Finally, we note that another origin for heuristics is the on-line optimiza-
tion. At the end of Section 1.2 we have referred to connections with k-server
problems. Several ideas from on-line algorithms for k-server problems could
be included in heuristics for SDDP problems. Among other things and also
concerning probabilities, kij themselves would be used in order to determine
heuristic solutions. cij would play a role if the states of SDDP problems
modelled as DA MDPs (which means partitions) are considered as states of
metric task systems. (However, keep in mind that probability functions are
given for the requirements of SDDP problems as noted in Section 1.2.)

Investigations with regard to useful heuristics for SDDP problems are far
from being finished.





Chapter 4

Partitions-Requirements-
Matrices

Partitions-requirements-matrices (PRMs) are on the one hand matrices of
transition probabilities for certain SDDP problems which are modelled as
DA MDPs. On the other hand, PRMs themselves represent interesting
(almost self-evident) combinatorial structures, which have not yet been dis-
cussed in literature.

General PRMs are constructed on the basis of ordered restricted parti-
tions of integers and PRMs (”in the strict meaning”) on the basis of un-
ordered restricted partitions of integers.

PRMs (in the strict meaning) are matrices of transition probabilities
for reduced SDDP problems (see Section 3.4.2) and for decisions for feasible
states with least square sums of their components. In Section 4.7 it is shown
that these decisions are optimal for a great (infinite) number of SDDP prob-
lems.

In Chapter 4 we dealt primarily with PRMs in the strict meaning.

Special consideration was taken to ensure that the treatise of Chapter 4
can be essentially understood independent of Chapters 2 and 3. Relation-
ships to Chapter 3 are marked extra. They can be omitted if one is only
interested in PRMs.
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As a partial order on (un/)ordered restricted partitions of integers we
use dominance (or majorization) ordering (see Section 4.1) which can, for
instance, be found by Marshall, A.W. and Olkin, I. (see [26]).

The definition of PRMs (in the strict meaning) includes that PRMs can
initially be computed by means of simple enumeration. However this is a
laborious method. To date no formulas are known for most of the elements
of PRMs.

In Section 4.3 it is demonstrated that by making use of the definition of
”perturbed partitions” elements of PRMs can be computed more effectively
(in comparison to the enumeration). However, permutations with certain
characteristics must additionally be determined. This section, as also Sec-
tion 4.5 may be skipped by readers, which are only interested in results that
have meaning for SDDP problems.

Limits of elements of certain PRMs are computed in Section 4.4. In order
to accomplish this, sets of (unordered) restricted partitions of integers must
be classified before hand.

In Section 4.5 (partial) results of PRM elements are given.
A polynomial, and sometimes an exponential, dependence of the ele-

ments of PRMs on the parameters, which determines the restrictions of the
partitions, will be shown in the case of discrete uniformly distributed re-
quirements by means of perturbed partitions.

Formulas for the elements of the last row and the last column of certain
PRMs are also given.

Poisson equations which are based on PRMs are considered in Section
4.6. The ”monotonicity of their solutions” is proven in many cases. This
implies that the decisions for feasible states with least square sums of their
components are optimal for the corresponding reduced SDDP problems.

The solutions of the Poisson equations, with regard to the limits of PRMs,
have an elegant structure, in contrast to the formulas for the limits of PRMs.
These solutions include in relation to the distribution of requirements gen-
eralized harmonic numbers.

We use the symbol ”s” from here on for the denotation of the partitions
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in agreement with the denotation of the states in the previous chapters. An
s with the additional symbol ˜ signifies an ordered partition and serves as
distinction from the unordered partitions.

4.1 Arrangement of the Partitions

This section serves as basis for what follows.

As a partial order on (un/)ordered restricted partitions of integers we
use the dominance or majorization ordering (see [26], Marshall, A.W. and
Olkin, I.,Chapter 1. A., B. and Chapter 5. D.).

In relation to the reduced SDDP problems (see Section 3.4.2), we will
see later that the above mentioned partial order includes the almost-partial
order of the states of the reduced SDDP problems. According to Theorem
2.3.8 and Corollary 2.3.9 this is implied by optimal solutions. (This will be
proven for most cases).

The dominance or majorization (ordering) includes that

- the ”difference” between neighbouring partitions is as small as possi-
ble,

- the square sums of the parts of the partitions become smaller.
(See also the following Definition 4.2.3 of PRMs (in the strict
meaning).)

The dominance (ordering) implies that sets of restricted partitions of inte-
gers are lattices.

In particular the terminology ”main minimum chain” will be introduced,
which is important for the dominance of corresponding SDDP problems (see
Section 4.6.2.2).

As usual, we introduce ordered and unordered partitions first. Then we
will consider only the unordered (in general restricted) partitions.
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A more detailed representation of the topic in this section can be found
in [21].

Initially, for y ∈ Zn we define the vector y[i1; i2] with

yi[i1; i2] =

⎧⎨
⎩

yi + 1 for i = i1,
yi − 1 for i = i2,
yi otherwise.

(4.1.1)

Furthermore, let

• n ∈ N, n ≥ 3 (or 2), su ∈ N

• either k0 ∈ Z+ with

k0 ≤ su < n k0 (4.1.2)

or k0 ∈ Zn
+ with

( max
i∈{1,··· ,n}

k0i ≤) su <
n∑

i=1

k0i (4.1.3)

• S̃n;su;k0 = {s̃ ∈ Zn
+ | 0 ≤ s̃i ≤ k0i for i = 1, · · · , n,

n∑
i=1

s̃i = su} 1

- the set of the ordered partitions of su into at most n parts, each not
greater than k0i :

In this book the elements of S̃n;su;k0 are expressed as n-dimensional
vectors, meaning that s̃ = (s̃1, s̃2, · · · , s̃n) (with s̃i ≤ k0i).

An element of S̃n;su;k0 is called an ordered restricted partition (of
su) and s̃i a part or component.

r̃ := |S̃n;su;k0 | is the number of the restricted ordered partitions.

• Sn;su;k0 - the set of the (unordered) partitions of su into at most n
parts, each not greater than k0:

The elements s of Sn;su;k0 are also expressed as n-dimensional
vectors, meaning that s = (s1, s2, · · · , sn). ((Unordered) partitions s

1We will continue to use the symbol ”s” for the denotation of the partitions in agreement
with the denotation of the states in the previous chapters.
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and s′ are equal if s′ is a permutation of s.)
An element of Sn;su;k0 is called a restricted partition (of su).

r := |Sn;su;k0 | is the number of the restricted partitions. 2

Definition 4.1.1. .

(a) The restricted partitions sf ∈ Sn;su;k0 and sl ∈ Sn;su;k0 are called neigh-
bouring if there permutations sf

π of sf and sl
π of sl exist such that

1
2

∑
i

| sf
πi − sl

πi
| = 1.

If
∑
i
(sf

i )2 >
∑
i
(sl

i)
2, then sf is called a direct predecessor of sl

and sl a direct successor of sf (with symbols: sf .→ sl).

(b) A sequence of partitions sf1 , sf2 , · · · , sfz is called a chain 3 if sfj is a
direct predecessor of sfj+1 for each j ∈ {1, · · · , z−1}. In this case sf1

is called the least element and sfz the greatest element of the chain.

(c) sf is called a predecessor of sl and sl successor of sf if there is a chain
with least element sf and greatest element sl (with symbols: sf → sl).

(d) Let SP be a subset of Sn;su;k0. A restricted partition sf ∈ SP is called
the least element of SP if sf → s for each s ∈ SP (s �= sf ). More-
over, sl ∈ SP is called the greatest element of SP if s → sl for each
s ∈ SP (s �= sl).

An equivalent definition of neighbouring partitions is yielded by

Lemma 4.1.1. Let sf ∈ Sn;su;k0 , sl ∈ Sn;su;k0 be given with
sy
1 ≥ sy

2 ≥ · · · ≥ sy
n for y = 1, 2.

Then, sf is a direct predecessor of sl if and only if
∃ i1, i2 : (sl

i1
≥ sl

i2
) ∧ (sl = sf [i2; i1]).

2The theory of (unordered) partitions is complicated and presents a number of inter-
esting problems, see [3].

3In the following we use the above definition of the chain, which varies slightly from
the usual definition of a chain.
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Proof.

1. (⇒): Let sf
1 ≥ sf

2 ≥ · · · ≥ sf
n and let sf be a direct predecessor of sl

according to Definition 4.1.1(a).
Since 1

2

∑
i
| sf

i − sl
πi
| = 1 for a permutation sl

π of sl, the partitions

sf and sl are different in only two parts:

sl
πi

= sf [j0; i0] with i0 > j0 and sf
i0

> sf
j0

+ 1 because∑
i
(sf

i )2 >
∑
i
(sl

i)
2.

If sf
i0

= sf
i0+1 = · · · = sf

i0+α > sf
i0+α+1 then sl

πi0
= sf

i0
− 1 should be

exchanged with sl
πi0

+α(= sf
i0+α).

If sf
j0

= sf
j0−1 = · · · = sf

j0−β < sf
j0−β−1 then sl

πj0
= sf

j0
+ 1 should

be exchanged with sl
πj0

−β (= sf
j0

).

Then, the coordinates of sl
π are also ordered monotonically increas-

ing and the condition from Lemma 4.1.1 is satisfied.

2. (⇐): If the condition from Lemma 4.1.1 is fulfilled, then it immediately
follows from Definition 4.1.1(a) that sf is a direct predecessor of sl.

�

Lemma 4.1.2. Sn:su;k0 has a least and a greatest element (s1 and sr, respec-
tively). Furthermore, for any s ∈ Sn;su;k0 a chain with s, the least element
being s1 and the greatest element sr, exists.

(The proof can be found in [20], Lemma 4.6.)

Example 4.1.1. Let Sn;su;k0 with n = 3, su = 9 and k0 = 5 be given:

S3;9;5 =

⎧⎨
⎩s1 =

⎛
⎝ 5

4
0

⎞
⎠ , s2 =

⎛
⎝ 5

3
1

⎞
⎠ , s3 =

⎛
⎝ 5

2
2

⎞
⎠ , s4 =

⎛
⎝ 4

4
1

⎞
⎠ ,

s5 =

⎛
⎝ 4

3
2

⎞
⎠ , s6 =

⎛
⎝ 3

3
3

⎞
⎠
⎫⎬
⎭ .
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The relations: direct predecessor .→ direct successor are represented in the
following diagram:

⎛
⎝ 5

2
2

⎞
⎠

⎛
⎝ 5

3
1

⎞
⎠ ��

�
�
�
��

�

�
�

�
��

�

�����������

�

	
	

	
	

	
	


�

⎛
⎝ 5

4
0

⎞
⎠

⎛
⎝ 4

4
1

⎞
⎠

⎛
⎝ 4

3
2

⎞
⎠

⎛
⎝ 3

3
3

⎞
⎠�� �� ��

s1 is the least element and s6 is the greatest element of S3;9;5.

Definition 4.1.2. A chain with the least element sf and the greatest ele-
ment sl is called a minimal chain if no other chain with the same least and
greatest elements and fewer partitions exits.

Definition 4.1.3. A chain sf1 , sf2 , · · · , sfz (where, without loss of generality
s
fy

1 ≥ s
fy

2 ≥ · · · ≥ s
fy
n for y = 1, · · · , z) with the property

sfy = sfy−1 [jy; iy] where s
fy−1

iy
= max{sfy−1

i | s
fy−1

i > sfz

i }
and s

fy−1

jy
= min

i
{sfy−1

i | s
fy−1

i < sfz

i }
for y = 2, · · · , z is called main minimal chain.

In Example 4.1.1 the chains s1, s2, s5 and s1, s4, s5 are minimal chains with
the least element s1 and the greatest element s5. The latter chain is also a
main minimal chain.

Lemma 4.1.3. .

a) A main minimal chain is also a minimal chain.

b) A minimal chain with the least element sf1 and the greatest element
sfz includes
1
2

n∑
j=1

| sf1
j −sfz

j | +1 partitions, where sl
1 ≥ sl

2 ≥ · · · ≥ sl
n for l = f1, fz.

sfy is an element of a minimal chain with the least element sf1 and
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the greatest element sfz if and only if a permutation s
fy
π of sfy exists

so that
sf1
j ≤ s

fy
πj ≤ sfz

j if sf1
j ≤ sfz

j

and sf1
j ≥ s

fy
πj ≥ sfz

j if sf1
j ≥ sfz

j .

Proof. Obviously, the number 1
2

∑
j

| sf2
j − sfz

j | + 1 corresponding to sf2 ,

a direct successor of sf1 , is at most one less than the number
1
2

∑
j

| sf1
j − sfr

j | + 1 corresponding to sf1 . Analogous to Lemma 4.1.1

we can suppose here that the components of sf2 are ordered monotonically
increasing. Hence, consideration can be successively applied.

Thus, chains with the least element sf1 and the greatest element sfz in-
clude at least 1

2

∑
j

| sf1
j − sfz

j | + 1 partitions. Clearly, the main minimal

chain includes this number of partitions. Therefore, the main minimal chain
is a minimal chain and a) and the first statement of b) are proven.

Now, let sfy satisfy the condition from Lemma 4.1.3b) and without loss
of generality let s

fy

1 ≥ s
fy

2 ≥ · · · ≥ s
fy
n . If we combine a minimal chain with

the least element sf1 and the greatest element sfy and a minimal chain with
the least element sfy and the greatest element sfz then a chain with

1
2

∑
j

| sf1
j − s

fy

j | + 1 + 1
2

∑
j

| s
fy

j − sfz

j | = 1
2

∑
j

| sf1
j − sfz

j | + 1 (*)

partitions follows which is thus a minimal chain with the least element sf1

and the greatest element sfz .

If sfy does not satisfy the conditions from Lemma 4.1.3b), then simple
computations with absolute values show that in place of the equals sign a
>-sign is correct in (*). Thus no chain with the least element sf1 , the great-
est element sfz , the element sfy and 1

2

∑
j

| sf1 − sfz | + 1 partitions exists.

�

Whether a partition is a predecessor or a successor of another can also
be confirmed by the following Lemma in place of Definition 4.1.1.

Lemma 4.1.4. (Muirhead 1903, see Section 5.D. in [26])
Let sf1 , sf2 be different partitions where (without loss of generality)



161

sl
1 ≥ sl

2 ≥ · · · ≥ sl
n for l = f1, f2.

Then sf1 → sf2 is valid if and only if
n̄∑

j=1
sf1
j ≥

n̄∑
j=1

sf2
j for n̄ = 1, · · · , n

(thus
n̄∑

j=1
(sf1

j − sf2
j ) ≥ 0 for n̄ = 1, · · · , n).

Lemma 4.1.5. (See [26], Section 1.B.)
If the relation from Definition 4.1.1(c) is supplemented in such a way

that each partition 4 bears the relation ”→” to itself, then the relation
”→” implies a partial order 5 on sets of restricted partitions (with sym-
bols: (Sn;su;k0 ,→)).

Theorem 4.1.6. Partially ordered sets (Sn;su;k0 ,→) are lattices. 6 7

Proof.
(See, for instance, [36] for detailed explanations of the terms lattice, in-

fimum and supremum.)

Let sf1 , · · · , sfz be given, where sfl
1 ≥ sfl

2 ≥ · · · ≥ sfl
n for l = 1, · · · , z.

Obviously, s with

s1 : = max{sfl
1 | l = 1, · · · , z} and

sj : = max{
j∑

k=1

sfl
k | l = 1, · · · , z} −

j−1∑
k=1

sj for j = 2, · · · , n

is a predecessor of sfl for l = 1, 2, · · · , z (see Lemma 4.1.4).

Since any predecessor s (where s1 ≥ s2 ≥ · · · ≥ sn) of all partitions
sfl (l = 1, · · · , z) must satisfy the condition

j∑
k=1

sk ≤ max{
j∑

k=1

sfl
k | l = 1, · · · , z} =

j∑
k=1

sj for j = 1, · · · , n

4A single partition is also a chain.
5This is the ”ordering of dominance or majorization”, see [26], Section 1.B.
6For the term lattice, see [36], for instance.
7In [9] Brylawski has shown such a statement for sets of partitions, whose parts are

not restricted by a k0.
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the partition s is the infimum of {sf1 , · · · , sfz}.

Analogously, s̄ with
s̄1 : = min{sfl

1 | l = 1, · · · , z} and

s̄j : = min{
j∑

k=1

sfl
k | l = 1, · · · , z} −

j−1∑
k=1

s̄j for j = 2, · · · , n.

is the supremum of {sf1 , · · · , sfz}. �

Properties of the Lattices (Sn;su;k0 ,→)

a) First characteristic properties of these lattices can be found in Lemma
4.1.3.

b) The Jordan-Dedekind-Condition (see [36] or [14], Definition 2.1.12) is
not valid for these lattices, in general (see Example 4.1.1).

c)

If the infimum s of two partitions sf1 and sf2 is a direct
predecessor of sf1 and sf2 , then the supremum of sf1 and sf2

is a direct successor of sf1 and sf2 , and vice versa.
(4.1.4)

Proof of property c): Let the components of s, sf1 and sf2 be or-
dered monotonically increasing (see also Lemma 4.1.1).

Since s is a direct predecessor of sf1 and sf2 , indices α, β, γ, δ exist
so that sα > sβ + 1, sγ > sδ + 1 and sf1 = s[β; α], sf2 = s[δ; γ].

In the case that the indices α, β, γ, δ are pairwise different, the par-
tition s̄ with s̄ = sf1 [δ; γ] = sf2 [β;α] is the supremum and obviously a
direct successor of sf1 , sf2 .

The cases α = γ (β �= δ) and β = δ (α �= γ) are not possible, since
in these cases sf1 or sf2 itself, however not s, is the infimum of sf1 and
sf2 .

In the case β = γ (analogously, δ = α) the partition s̄ with
s̄ = s[δ; α] = sf1 [δ; β] = sf2 [β; α] is the supremum and a direct succes-
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the proof of Theorem 4.1.6).

If the supremum is a direct successor of sf1 and sf2 , the statement
that the infimum is a direct predecessor of these partitions can be
proved analogously. �

4.2 Definitions of Partitions-Requirements-Matrices
and Initial Properties and Results

General PRMs are constructed on the basis of ordered restricted partitions
of integers and PRMs (in the strict meaning) on the basis of unordered re-
stricted partitions of integers.

PRMs are uniquely determined contrary to general PRMs.

As noted in the introduction of Chapter 4, PRMs are matrices of tran-
sition probabilities of certain SDDP problems, which are modelled as MDPs
(see Chapter 3).

To ensure that the treatise of Chapter 4 can be, essentially, understood
independent of Chapters 2 and 3, the definitions of PRMs from Chapter 3
are restated in Section 4.2.1 and Section 4.2.2.

In Section 4.2 initial simple statements are noted beside the definitions
of PRMs.

In particular, PRMs for ”equivalent sets of partitions” are considered in
Section 4.2.3.

Let us use:

• n, k0, su, S̃n;su;k0 , Sn;su;k0 - as in Section 4.1

• Bn;k0 :=
{
w ∈ Zn

+ | 0 ≤ w ≤ k0

}
, which is called the set of

requirements.

sor of sf1 and sf2 (compare with the method of computation of s̄ in
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• We assume that the requirements w are random vectors 8 with a
probability function q (with

∑
w∈Bn;k0

q(w) = 1).

From Section 4.2.2 on we assume, in addition, that the require-
ments wi, (i = 1, · · · , n) are independent and identically distributed
for PRMs (in the strict meaning). This implies

q(w) =
n∏

i=1

q0(wi), (4.2.1)

where the marginal or ”single” probabilities q0(wi) are such that

q0(wi) > 0 for wi ∈ {0, 1, · · · , k0} and
k0∑

j=0

q0(j) = 1. (4.2.2)

• Let C[w, su] denote the case
n∑

i=1
wi ≤ su and C[su,w] the case

n∑
i=1

wi ≥ su. 9

4.2.1 General Partitions-Requirements-Matrices

Definition 4.2.1. Let s̃ ∈ S̃n;su;k0 and w ∈ Bn;k0.

Then,

Ân;su;k0(s̃, w)

=

⎧⎨
⎩s̃′ ∈ S̃n;su;k0

∣∣∣∣∣∣
wi ≤ s̃′i ≤ max{s̃i, wi}, i = 1, · · · , n, in C[w, su]

min{s̃i, wi} ≤ s̃′i ≤ wi, i = 1, · · · , n, in C[su,w]

⎫⎬
⎭

(4.2.3)
is called the set of feasible (ordered) partitions with respect to s̃ and
w and s̃′ = s̃′(s̃, w) ∈ Ân;su;k0(s̃, w) are feasible (ordered) partitions with

8We use the same notation for random vectors and their realizations.

9In this way it is not necessary to distinguish the case
n∑

i=1

wi = su.

Regarding the meaning of the cases for SDDP problems refer to the explanations in (3.2.1)
and (3.2.2).
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respect to s̃ and w.

Furthermore s̃′ = s̃′(s̃, w) is also called a feasible transition from s̃ to s̃′

for w.

((4.2.3) corresponds to (3.2.11) from Section 3.2. Regarding SDDP
problems refer also to the explanation above (3.2.11).)

The elements pfl of general PRMs are now defined as the sum of the
probabilities of the w, for which feasible transitions from s̃f to s̃l are given:

Definition 4.2.2. Let S̃n;su;k0 = {s̃1, s̃2, · · · , s̃r̃}, Bn;k0 and feasible
partitions s̃′(s̃, w) ∈ Ân;su;k0(s̃, w) with respect to every f = 1, 2, ..., r̃ and
w ∈ Bn;k0 be given.

P = Pn;su;k0 = (pfl) f=1,...,r̃
l=1,...,r̃

with elements

pfl = p(s̃l|s̃f ) =
∑

w:s̃l=s̃′(s̃f ,w)

q(w) for f = 1, · · · , r̃, l = 1, · · · , r̃ (4.2.4)

is called a general partitions-requirements-matrix.

Computation of Maximal Values of Elements of General PRMs

Computation of maximal values (max pfl) of pfl is simple. (Clearly, not
all elements of general PRMs can be simultaneously equal to their maximal
values.)

For the computation of max pfl, let ordered partitions s̃f ∈ S̃n;su;k0 and
s̃l ∈ S̃n;su;k0 be given.

In the case C[w, su]

wi ∈ {0, 1, · · · , s̃l
i} if s̃f

i ≥ s̃l
i and

wi = s̃l
i if s̃f

i < s̃l
i

follows from (4.2.3) for requirements w, which satisfy (4.2.3).
The set of requirements w, which fulfil these relations is denoted by B1.
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In case C[su,w]

wi ∈ {s̃l
i, s̃

l
i + 1, · · · , k0i} if s̃f

i ≤ s̃l
i and

wi = s̃l
i if s̃f

i > s̃l
i

follows from (4.2.3) and the corresponding set of requirements is denoted by
B2.

From this

max pfl =
∑

w∈B1

q(w) +
∑

w∈B2

q(w) − q(s̃l)

follows if we note that w = s̃l satisfies (4.2.3) in case C[w, su] and in case
C[su,w].

4.2.2 Partitions-Requirements-Matrices

PRMs (in the strict meaning) are constructed on the basis of lattices of
unordered restricted partitions of integers and feasible partitions with least
square sums of their parts (later referred to as ”feasible balanced parti-
tions”).

PRMs corresponding to given lattices of partitions are uniquely deter-
mined.

Following the definition of feasible balanced partitions an iterative method
of their computation will be given. From this it will be clear that PRMs
corresponding to given lattices of partitions are uniquely determined.

At the end of this section, difficulties with effective computations of PRMs
will be mentioned in an example.

Relationships to Chapter 3: PRMs (in the strict meaning) are matrices
of transition probabilities for reduced SDDP problems if (3.4.1) and (3.4.3)
are supposed (see Section 3.4.2) and for decisions for feasible states (un-
ordered restricted partitions of integers) with minimum average one-step re-
ward functions. These decisions are identical to transitions into feasible
partitions with least square sums of their parts (later referred to as feasible
balanced partitions), which is shown in the following Lemma 4.2.2. See also
Lemma 4.2.3.
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Definition 4.2.3. Let s ∈ Sn;su;k0 with (without loss of generality)
s1 ≥ s2 ≥ · · · ≥ sn and w ∈ Bn;k0 be given.

(a) Then

Ân;su;k0(s, w)

=

⎧⎪⎪⎨
⎪⎪⎩s′ ∈ Sn;su;k0

∣∣∣∣∣∣∣∣
∃ s′π permutation of s′ :

wi ≤ s′πi ≤ max{si, wi}, i = 1, · · · , n, in C[w, su],

min{si, wi} ≤ s′πi ≤ wi, i = 1, · · · , n, in C[su,w]

⎫⎪⎪⎬
⎪⎪⎭

(4.2.5)
10

is called the set of feasible (unordered) partitions with respect
to s and w and s′ = s′(s, w) ∈ Ân;su;k0(s, w) are feasible (unordered)
partitions with respect to s and w.

Furthermore, s′ = s′(s, w) is also called a feasible transition from s
to s′ for w.

(b) A feasible partition s∗ = s∗(s, w) ∈ Sn;su;k0 with respect to s and w is
called the feasible balanced partition with respect to s and w
if s∗ is an optimal solution of the problem

n∑
i=1

(s∗i )
2 → min

subject to

s∗ ∈ Ân;su;k0(s, w)

and s∗ = s∗(s, w) is also called a feasible balanced transition from s to
s∗ for w.

In addition, B∗
n,k0

(s, s∗) = {w ∈ Bn,k0 | s∗ = s∗(s, w)} is the set of
balancing requirements.

An Iterative Method for the Computation of Feasible Balanced
Partitions - Enumeration

Feasible balanced partitions for given s ∈ Sn;su;k0 and w ∈ Bn,k0 can be

10(4.2.5) corresponds to (3.4.15) from Section 3.4.
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computed by the following iterative method.11

Case C[w, su] :

Set s∗′ = s.

If (4.2.5) is satisfied, then s∗
′
is the desired partition (end) else: (*)

Determine a component s∗′j of s∗′ with s∗′j = max{s∗′i | s∗′i > wi} and

a component s∗′y with s∗′y < wy.

Set s∗′j = s∗′j − 1 and s∗′y = s∗′y + 1.

Go to (*).

Case C[su,w] :

Set s∗′ = s.

If (4.2.5) is satisfied, then s∗
′
is the desired partition (end) else: (**)

Determine a component s∗′j of s∗′ with s∗′j = min{s∗′i | s∗′i < wi} and

a component s∗′y with s∗′y > wy.

Set s∗′j = s∗′j + 1 and s∗′y = s∗′y − 1.

Go to (**).

(For the proof see [18].)

Lemma 4.2.1. Let Sn;su;k0 = {s1, s2, · · · , sr} and Bn;k0 be given.

(a) The feasible balanced partition s∗ = s∗(s, w) with respect to s and w
is uniquely determined.

(b) If s̄ ∈ Ân;su;k0(s, w) (feasible partition), then the feasible balanced
partition s∗ = s∗(s, w) is a successor of s̄.

11This section is taken from [18], Section 2.3.
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Proof.
(a) follows from the iterative method for the considered unordered parti-

tions.

(b) We consider the case C[w, su]. (In the other case the proof is
analogous.)

According to (4.2.5) a permutation s̄π of s̄ exists so that

si ≥ s̄πi ≥ wi for i with si ≥ wi. (∗1)

s∗ is constructed step-by-step over s = s∗1, s∗2, · · · , s∗l = s∗ by the
iterative method (above).

It remains to be shown that s∗ is a successor of s̄.
For this purpose unordered partitions s̄f ∈ Sn;su;k0 are to be determined

for each s∗f (f = 1, · · · , l) so that s̄f = s̄f−1 or s̄f is a direct successor
of s̄f−1 (see Definition 4.1.1) and s̄l = s∗ in the following way:

Without loss of generality, let s̄i = s̄πi, for i = 1, · · · , n.

s̄1 := s̄,

s̄f with

s̄f
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s̄f−1
i0

− 1 if s∗fi0
< s

∗(f−1)
i0

and s
∗(f−1)
i0

= s̄f−1
i0

for i = i0,

s̄f−1
i1

+ 1 for i = i1 with s̄f−1
i1

= min{s̄f−1
i | s̄f−1

i < s
∗(f−1)
i }

if an i0 exists which satisfies the above condition,

s̄f−1
i otherwise

(∗2)

for f = 2, · · · , l.

Let i be given with si ≥ wi, then s∗1i = si ≥ s̄i = s̄1
i according to (∗1)

and (∗2).
If, in addition, i = i0 satisfies the first condition from (∗2) then

s∗fi0
≥ s̄f

i0
for i0 with si0 ≥ wi0 (∗3)

follows successively from (∗2).

∑
i:si>wi

s̄f
i = su −

∑
i:si≤wi

wi <
∑

i:si>wi

s∗fi (≤
∑

i:si>wi

si)

is then valid for any f ∈ {1, · · · , l − 1} because of s̄1 = s̄, (∗2) and the
iterative method.
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Thus i1, which satisfies the desired condition in (∗2), in fact exists.

Since s
∗(f−1)
i0

= max{s∗(f−1)
j | s

∗(f−1)
j > wj} for s

∗(f−1)
i0

> s∗fi0
according to the iterative method

s
∗(f−1)
i1

≤ s
∗(f−1)
i0

follows and furthermore

s̄f−1
i1

< s
∗(f−1)
i1

≤ s
∗(f−1)
i0

= s̄f−1
i0

(this means (s̄f−1
i1

)2 + (s̄f−1
i0

)2 ≥ (s̄f
i1

)2 + (s̄f
i0

)2). Consequently s̄f is a

successor of s̄f−1 or s̄f = s̄f−1 (if s
∗(f−1)
i1

= s
∗(f−1)
i0

, s̄f−1
i1

+ 1 = s̄f−1
i0

or
s̄f
i1

= s̄f−1
i0

).
Finally, s̄l = s∗ follows from s∗l = s∗ and (∗3). �

In the following Lemma connections with the average one-step reward
functions and the decision function d∗ of the reduced SDDP problem from
Section 3.4 are shown.

Lemma 4.2.2. Let Sn;su;k0 = {s1, s2, · · · , sr} and Bn;k0 be given and
let the requirements wi, (i = 1, · · · , n) be independent and identically dis-
tributed, where (4.2.2) is additionally assumed.

(a) If sl ∈ Sn;su;k0 is a successor of sf ∈ Sn;su;k0 (sf �= sl), then the
inequality γ(sf ) > γ(sl) is valid for the average one-step reward func-
tions (which can be computed according to the formula from Theorem
3.4.1(c)).

(b) If s̄ ∈ Ân;su;k0(s, w) (feasible partition) then γ(s̄) > γ(s∗) follows
for the feasible balanced partition s∗ = s∗(s, w) with respect to s and
w if s̄ �= s∗.

Thus d∗ (see (3.4.16)) is identical to decisions for feasible balanced
partitions.

Proof.
(a) We initially show the conjecture for a direct successor sl of sf from

which (a) then follows.
See Lemma 4.1.1:
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Let sl be such that sl
i[i1; i2] =

⎧⎪⎨
⎪⎩

sf
i + 1 for i = i1,

sf
i − 1 for i = i2,

sf
i otherwise,

where sf
i2

> sf
i1

+ 1.

Let s ∈ Sn;su;k0 . The corresponding average one-step reward function
γ(s) can be computed according to Theorem 3.4.1(c)) for independent and
identically distributed requirements:

γ(s) =
n∑

i=1

si∑
wi=0

(si − wi) q0(wi) + R(n, su, k0, q).

And

γ(sf ) − γ(sl) =
sf
i2∑

wi2
=0

(sf
i2
− wi2) q0(wi2) +

sf
i1∑

wi1
=0

(sf
i1
− wi1) q0(wi1)

−
⎛
⎝sf

i2
−1∑

wi2
=0

(sf
i2
− 1 − wi2) q0(wi2) +

sf
i1

+1∑
wi1

=0
(sf

i1
+ 1 − wi1) q0(wi1)

⎞
⎠

=
sf
i2
−1∑

wi2
=0

q0(wi2) −
sf
i1∑

wi1
=0

q0(wi1)

=
sf
i2
−1∑

w=sf
i1

+1

q0(w) > 0

follow.

(b) is yielded by Lemma 4.2.1(b) and (a) of this Lemma.

�

Now, the elements of PRMs p∗fl are defined as sum of the probabilities
of the requirements w, for which feasible balanced transitions from sf to sl

are given:

Definition 4.2.4. Let Sn;su;k0 = {s1, s2, · · · , sr} and Bn;k0 be given
and let the requirements wi, (i = 1, · · · , n) be independent and identically
distributed, where (4.2.2) is additionally assumed.

P ∗ = P ∗
n;su;k0

= (p∗fl) with elements
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p∗fl = p∗(sl|sf ) =
∑

w:sl=s∗(sf ,w)

q(w) for f = 1, · · · , r, l = 1, · · · , r (4.2.6)

is called the partitions-requirements-matrix.

Obviously, since p∗fl > q(w = sl),

p∗fl > 0. (4.2.7)

Relationships to reduced SDDP problems:

Lemma 4.2.3. PRMs are matrices of transition probabilities of reduced
SDDP problems for decisions d∗ (see (3.4.16) in Section 3.4.2).

Proof. PRMs are matrices of transition probabilities of reduced SDDP
problems, since sets of feasible partitions (see (4.2.5)) and DA decisions
sets of reduced SDDP problems (see (3.4.15)) are the same, and also due
to Definition 4.2.4 (and to (2.3.7)). That PRMs are matrices of transition
probabilities for decisions d∗ follows from (3.4.16), Lemma 4.2.2(b) and Def-
inition 4.2.3(b). �

Example 4.2.1. Let n = 3, k0 = 3, su = 6 and q0(wi) = 1
1+k0

= 1
4 for

wi = 0, 1, 2, 3 be given (hence q(w) =
(

1
4

)3 = 1
64 for all w ∈ B3;3).

Then the set S3;6;3 includes the elements

s1 =

⎛
⎝ 3

3
0

⎞
⎠ , s2 =

⎛
⎝ 3

2
1

⎞
⎠ , s3 =

⎛
⎝ 2

2
2

⎞
⎠ .

Feasible balanced partitions are, for instance,

s∗

⎛
⎝s1 =

⎛
⎝ 3

3
0

⎞
⎠ , w =

⎛
⎝ 0

0
2

⎞
⎠
⎞
⎠ =

⎛
⎝ 2

2
2

⎞
⎠(

= s3
)
,



173

s∗

⎛
⎝s1 =

⎛
⎝ 3

3
0

⎞
⎠ , w =

⎛
⎝ 3

2
3

⎞
⎠
⎞
⎠ =

⎛
⎝ 3

2
1

⎞
⎠(

= s2
)
.

However, in order to compute the partitions-requirements-matrix we need to
know all of the r · (k0 + 1)n feasible balanced partitions (with respect to all
s ∈ Sn;su;k0 , w ∈ Bn;k0).

For example, p∗13 can be computed by means of s3 = s∗(s1, w) for

w ∈ B∗
3;3(s

1, s3) =

⎧⎨
⎩
⎛
⎝ 0

0
2

⎞
⎠ ,

⎛
⎝ 1

0
2

⎞
⎠ ,

⎛
⎝ 0

1
2

⎞
⎠ ,

⎛
⎝ 1

1
2

⎞
⎠ ,

⎛
⎝ 2

0
2

⎞
⎠ ,

⎛
⎝ 0

2
2

⎞
⎠ ,

⎛
⎝ 2

2
2

⎞
⎠ ,

⎛
⎝ 1

2
2

⎞
⎠ ,

⎛
⎝ 2

1
2

⎞
⎠ ,

⎛
⎝ 2

2
3

⎞
⎠
⎫⎬
⎭

and we obtain

p∗13 =
∑

w∈B∗
3;3(s

1,s3)

q(w) = 10
64 .

Further enumerations yield

P ∗ = 1
64

⎛
⎝ 21 33 10

3 49 12
3 27 34

⎞
⎠ .

4.2.3 Partitions-Requirements-Matrices for Equivalent
Lattices of Partitions

In this section relationships between certain lattices of partitions are given
and equalities of corresponding PRMs are shown if the probability functions
of the requirements are suitable.
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Definition 4.2.5. Let Sn;su;k0 , Sn;su;k0
and kc ∈ Z+ be given such that

kc ≥ k0, kc ≥ k0 and su = n kc − su.

(a) s ∈ Sn;su;k0 and s̄ ∈ Sn;su;k0
are called complementary partitions if

permutations sπ of s and s̄π of s̄ exist with sπ + s̄π = (kc, ..., kc)T .

(b) If | Sn;su;k0 | = | Sn;su;k0
|, then Sn;su;k0 and Sn;su;k0

are called
equivalent (with respect to the partial order) (see also the following
Lemma 4.2.4).

(c) If kc = k0 = k0, (then (b) is fulfilled, see the following Lemma
4.2.4(ii)) and Sn;su;k0 and Sn;su;k0

are called equivalent with regard
to the Poisson equation. 12

Lemma 4.2.4. Let Sn;su;k0 , Sn;su;k0
and kc ∈ Z+ be given such that

kc ≥ k0, kc ≥ k0 and su = n kc − su.

(i) If | Sn;su;k0 | = | Sn;su;k0
|, then a one-to-one correspondence of the

partitions of Sn;su;k0 and Sn;su,k0
is yielded by sπ + s̄π = (kc, ..., kc)T

for permutations sπ of s ∈ Sn;su;k0 and s̄π of s̄ ∈ Sn;su;k0
.

sf ∈ Sn;su;k0 is a direct predecessor of sl ∈ Sn;su;k0 if and only if
s̄f = (kc, ..., kc)T − sf (∈ Sn;su;k0

) is a direct predecessor of
s̄l = (kc, ..., kc)T − sl (∈ Sn;su;k0

).

(ii) If kc = k0 = k0 then | Sn;su;k0 | = | Sn;su;k0
| follows and (i) is valid.

13

Proof.

(i) The one-to-one correspondence of the partitions is obvious.
The relationship concerning the direct predecessors follows from the

one-to-one correspondence sπ + s̄π = (kc, ..., kc)T , (4.1.1) and Lemma
4.1.1.

12This denotation follows from Lemma 4.6.2 in the subsequent Section 4.6.2.1.
13| Sn;su;k0 | = | Sn;su;k0

| can also be found in Andrews [3], Theorem 3.10, page 47.
The corresponding proof is time consuming.
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(ii) Clearly, s̄ = (k0, ..., k0)T − s implies a one-to-one correspondence
between all elements of the set Sn;su;k0 and all elements of the set
Sn;su;k0 , from which the statement directly follows.

�

Theorem 4.2.5. Let Sn;su;k0 , Sn;su;k0 with su = n k0 − su and Bn;k0

be given and let the requirements wi, (i = 1, · · · , n) be independent and
identically distributed where, (4.2.2) is additionally assumed. Furthermore,
let

q0(wi) = q0(k0 − wi) for i = 1, 2, ..., n, w ∈ Bn;k0 (4.2.8)

also be valid. Then, the corresponding partitions-requirements-matrices
P ∗

n;su;k0
and P ∗

n;su;k0
are equal.

Proof. Initially we show:
s ∈ Sn;su;k0 satisfies (4.2.5) with respect to a given s′ ∈ Sn;su;k0 and
w ∈ Bn;k0 if and only if s̄ ∈ Sn;s̄u;k0 satisfies (4.2.5) with respect to
s̄′ ∈ Sn;s̄u;k0 and w̄ ∈ Bn;k0 where s and s̄ are complementary partitions
as well as s′ and s̄′ and w + w̄ = (k0, ..., k0)T :

Obviously, if C[w, su] is present for w ∈ Bn;k0 , then C[s̄u, w̄] is present for
w̄ = (k0, ..., k0)T − w (and vice versa).

In the case C[w, su]
wi ≤ sπi ≤ max{s′i, wi} (see (4.2.5)) implies

min{s̄′i, w̄i} = min{k0 − s′i, k0 − wi} ≤ s̄πi = k0 − s′πi
≤ k0 − wi = w̄i

(and vice versa).

Case C[su,w] is handled analogously.

Simple computations with respect to the square sums of components of s
and s̄ then yield: s is the feasible balanced partition with respect to s′ and
w if and only if s̄ is the feasible balanced partition with respect to s and w
(refer to Definition 4.2.3).

That the PRMs P ∗
n;su;k0

and P ∗
n;su;k0

are equal then follows from
Definition 4.2.4 and (4.2.8). �



176

Example 4.2.2. .

a) S3;4;3 and S3;5;3 are equivalent with regard to the Poisson equation
(thereby kc = k0 = k̄0 = 3).

b) S3;4;4 and S3;17;7 are equivalent (with respect to the partial order)
(thereby kc = 7).

4.3 The Computation of PRMs by means of
Permutations of Perturbed Partitions

Based on the definition of ”perturbed partitions” elements of PRMs can be
computed more effectively than by enumeration.

If we use the iterative method from Section 4.2.2 for the computation
of feasible balanced partitions with respect to a given sf ∈ Sn;su;k0 and
w ∈ Bn;k0 , then the complete row f of the corresponding PRM is computed
by these enumerations.

In contrast single elements of PRMs can be computed by means of the
method of ”perturbed partitions”. However, permutations with certain char-
acteristics must additionally be determined.

Perturbed partitions are otherwise used in Section 4.5 in order to show
a polynomial and sometimes an exponential dependence of the elements of
PRMs on the variables n and k0 in the case of discrete uniformly distributed
requirements (and similar relationships for other distributions).

This section can be skipped by readers, which are interested only in Sec-
tions 4.4 and 4.6.

If a single element p∗fl of a PRM is to be computed according to Definition
4.2.4 as sum

p∗fl =
∑

w:sl=s∗(sf ,w)

q(w)

then a substantial difficulty is the fact that a w together with various per-
mutations sl

π of sl can satisfy the inequalities (4.2.5):
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If

sf =

⎛
⎜⎜⎝

6
4
2
2

⎞
⎟⎟⎠ and sl =

⎛
⎜⎜⎝

5
4
3
2

⎞
⎟⎟⎠

are given, for instance, then the inequalities in (4.2.5) are satisfied by

w =

⎛
⎜⎜⎝

3
2
5
5

⎞
⎟⎟⎠ and the permutations s

l(1)
π =

⎛
⎜⎜⎝

3
2
5
4

⎞
⎟⎟⎠ or s

l(2)
π =

⎛
⎜⎜⎝

3
2
4
5

⎞
⎟⎟⎠ ,

for example (and sl = s∗(sf , w) is of course valid).

If, now, w are determined for each permutation sl
π of sl so that (4.2.5)

is fulfilled, then one w could satisfy (4.2.5) together with different permuta-
tions of sl (see above). However, the corresponding q(w) may only include
in the sum

∑
w:sl=s∗(sf ,w)

q(w) one time in order to compute p∗fl!

Instead of the permutations s
l(1)
π and s

l(2)
π we will use the ”perturbed par-

tition”.

⎛
⎜⎜⎝

3
2
4
4

⎞
⎟⎟⎠

in this section (see the following Definitions 4.3.3 and 4.3.7).

The reversed situation considered:
If s∗(sf , w) is computed by the iterative method from Section 4.2.2 for

given sf and w, then different permutations of s∗(sf , w) may be possible in
the last iterations if i0 with s∗′i0

= max{s∗′i | s∗′i > wi} is not unique in case
C[w, su] or i0 with s∗′i0

= min{s∗′i | s∗′i < wi} is not unique in case C[su,w].

In addition, we use the following terminology:

Let us assume in this section that (without loss of generality) the compo-
nents of the partitions sf ∈ Sn;su;k0 and sl ∈ Sn;su;k0 are initially ordered
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monotonically decreasing:

sf
1 ≥ sf

2 ≥ · · · ≥ sf
n and sl

1 ≥ sl
2 ≥ · · · ≥ sl

n

and furthermore we use the notation and symbols:

F: the number of components of sf which are not equal to 0,

L: the number of components of sl which are not equal to 0.
(4.3.1)

sf : sf
1 = · · · = sf

F1
> sf

F1+1 = · · · = sf
F2

> · · · > sf
Fz−1+1 = · · · = sf

Fz
> 0(

sf
i = 0 for i ≥ Fz + 1 if Fz < n

)
(4.3.2)

(with F1 < F2 < · · · < Fz = F (< Fz+1 = n for Fz < n)),

sl : sl
1 = · · · = sl

L1
> sl

L1+1 = · · · = sl
L2

> · · ·
> sl

LJo−2+1 = · · · = sl
LJo−1

> sl
LJo−1+1 = · · · = sl

LJo
> sl

LJo+1 =

· · · = sl
LJo+1

> · · · > sl
Ly−1+1 = · · · = sl

Ly
> 0

(0 = sl
Ly+1 = · · · = sl

Ly+1
= sl

n if Ly < n)
(4.3.3)

(with L1 < L2 < · · · < Ly = L(< Ly+1 = n for Ly < n), further-
more L0 := 0).

Moreover, we define

σl
J := sl

LJ
for J = 1, 2, . . . , y (or y + 1 for Ly < n).

σl
1 > σl

2 > · · · > σl
Jo−1 > σl

Jo
> σl

Jo+1 > · · · > σl
y (> σl

y+1 = 0
for Ly < n)

(4.3.4)
follows.

δ(sf , sl) = δfl :=

{
1 if sf = sl,

0 if sf �= sl.
(4.3.5)



179

We now compute the requirements w with s∗(sf , w) = sl in the cases
C[su, w] and C[w, su] by means of sets of perturbed partitions.

The elements p∗fl of the PRMs are then calculated in the following way

p∗fl = p∗2fl + p∗1fl − p∗1,2
fl

with p∗2fl =
∑

C[su,w],w:sl=s∗(sf ,w)

q(w), p∗1fl =
∑

C[w,su],w:sl=s∗(sf ,w)

q(w)

and p∗1,2
fl =

∑
C[su,w]

⋂
C[su,w],w:sl=s∗(sf ,w)

q(w) =
∑

sl
π: permutation of sl

q(sl
π).

(4.3.6)

Case C[su, w] (the requirements cannot be completely fulfilled):

Let a partition sf ∈ Sn;su;k0 and a permutation sl
π of a partition sl ∈ Sn;su;k0

be given. We then compare the components of sf with the components of
sl
π in order of decreasing sl

πi
.

Definition 4.3.1. Let Jo ∈ {1, 2, . . . , y}, jo ∈ {1, 2, . . . , LJo − LJo−1}.
If

sf
i ≥ sl

πi
for any sl

πi
≥ σl

Jo−1, (d1)

sf
i ≥ sl

πi
for LJo − LJo−1 − jo of the sl

πi
= σl

Jo
, (d2)

and sf
i < sl

πi
for jo of the sl

πi
= σl

Jo
, (d3)

then we refer to a (Jo, jo)-perturbation of the relation ”≥” between
sf and slπ.

Formally, we define the (Jo, jo)-perturbed partition ŝl of sl.
Contrary to sl, the (Jo, jo)-perturbed partition ŝl has exactly jo compo-

nents which are reduced from σl
Jo

by 1 to σl
Jo

− 1:

Definition 4.3.2. Let Jo, jo be given with Jo ∈ {1, 2, . . . , y},
jo ∈ {1, 2, . . . , LJo − LJo−1}.

ŝl :

⎧⎨
⎩

ŝl
j = sl

j for j ∈ {1, 2, · · · , LJo − jo}
and for j ∈ {LJo + 1, · · · , n} (d4)

ŝl
j = sl

j − 1(= σl
Jo

− 1) for j ∈ {LJo − jo + 1, · · · , LJo} (d5)

is called the (Jo, jo)-perturbed partition of sl.
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Thus,
n∑

j=1

ŝl
j = su − jo follows. (4.3.7)

Definition 4.3.3. Let a (Jo, jo)-perturbation of the relation ”≥” between sf

and sl
π be given. Furthermore, let j1 denote the number of i’s with:

sf
i ≤ sl

πi
= σl

Jo
− 1. (d6)

(Obviously, j1 ∈ {0, 1, · · · , LJo+1 − LJo} if σl
Jo

− 1 = σl
Jo+1 and

j1 = 0 if σl
Jo

− 1 > σl
Jo+1.) (d7)

Then ŝl
π with

ŝl
πi

=

⎧⎨
⎩

sl
πi

− 1 for sf
i < sl

πi
= σl

Jo
(d8)

(see (d3) from Definition 4.3.1),
sl
πi

otherwise (d9)

is called a (Jo, jo, j1)-perturbed permutation of the (Jo, jo)-perturbed
partition ŝl with respect to sf .

Ŝf ,l
π (Jo, jo, j1) is the set of all (Jo, jo, j1)-perturbed permutations ŝl

π of
permutations sl

π of sl, for which a (Jo, jo)-perturbation of the relation ”≥”
between sf and sl

π is present.

(See also Remarks 4.3.1 following Definition 4.3.4.)

Lemma 4.3.1. A permutation ŝl
π of a (Jo, jo)-perturbed partition ŝl is an

element of a set Ŝf,l
π (Jo, jo, j1) if and only if ŝl

π fulfils the following conditions
regarding sf :

sf
i ≥ ŝl

πi
if ŝl

πi
≥ σl

Jo
, (d10)

sf
i >ŝl

πi
for LJo+1 − LJo − j1 components ŝl

πi
= σl

Jo
− 1

if σl
Jo

− 1 = σl
Jo+1, (d11)

sf
i ≤ ŝl

πi
for jo + j1 components ŝl

πi
= σl

Jo
− 1. (d12)

Proof.
1. (⇒): Let sl

π ∈ Ŝf,l
π (Jo, jo, j1) be given.

(d10) is valid for ŝl
πi

≥ σl
Jo−1 according to (d1)
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and for ŝl
πi

= σl
Jo

according to (d2) and (d8).

The condition (d11) is fulfilled for the remaining LJo+1 − LJo − j1

components ŝl
πi

= σl
Jo

− 1 according to the Definition of j1 (see (d6)).

(d12) is valid according to (d3) together with (d8) (j0 components for
this case),

and to (d6) (j1 components).

2. (⇐): Now, let ŝl
π be a permutation of ŝl satisfying (d10), (d11) and (d12).

A permutation sl
π of sl may then be constructed in the following way:

sl
πi

=

⎧⎪⎨
⎪⎩

ŝl
πi

+ 1 for jo components ŝl
πi

= σl
Jo

− 1 ≥ sf
i

(which thus also satisfies (d12)),

ŝl
πi

otherwise.
(4.3.8)

We show that sl
π fulfils the conditions from Definition 4.3.1:

(d1) follows from (d10) (specifically for ŝl
πi

≥ σl
Jo−1(> σl

Jo
)).

(d2): According to Definition 4.3.2 (and (4.3.3)) ŝl
πi

= σl
Jo

is valid for
LJo − LJo−1 − j0 components. Only (d10) can be present in Lemma 4.3.1
for these components, which means sf

i ≥ ŝl
πi

(see also (4.3.8)). (d2) then
follows.

(d12) (and (4.3.3)), Definition 4.3.2 (see (d5)) and (4.3.8) yield (d3).

Vice versa, the permutation sl
π leads to ŝl

π, according to (d8) and (d9).
Keep in mind (d12) and (d11) then, ŝl

π is an element of the set Ŝf,l
π (Jo, jo, j1).

�

Definition 4.3.2 and Lemma 4.3.1 obviously yield:

Lemma 4.3.2. . Let Ŝf,l
π (J1

o , j1
o , j1

1) and Ŝf,l
π (J2

o , j2
o , j2

1) (with respect to sf )
be given with J1

o �= J2
o or j1

o �= j2
o or j1

1 �= j2
1 .

Then, Ŝf,l
π (J1

o , j1
o , j1

1)
⋂

Ŝf,l
π (J2

o , j2
o , j2

1) = ∅ follows.
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Proof.

Case J1
o �= J2

o : σl
J1

o
and σl

J2
o
, which were reduced by 1 for perturbed permu-

tations of Ŝf,l
π (J1

o , j1
o , j1

1) or Ŝf,l
π (J2

o , j2
o , j2

1) (see Definition 4.3.2), are
different.

Case J1
o = J2

o and j1
o �= j2

o : Perturbed permutations of Ŝf,l
π (J1

o , j1
o , j1

1) and
Ŝf,l

π (J2
o , j2

o , j2
1) then have different numbers of components with the

value σl
J1=2

o
, since different numbers of components were reduced by 1

(see Definition 4.3.2).

Case J1
o = J2

o , j1
o = j2

o and j1
1 �= j2

1 : Perturbed permutations of Ŝf,l
π (J1

o , j1
o , j1

1)
and Ŝf,l

π (J2
o , j2

o , j2
1) have different numbers of components for which

(d11) or (d12) from Lemma 4.3.1 is valid.

�

Definition 4.3.4. Let a permutation ŝl
π of a (Jo, jo)-perturbed partition ŝl

from the set Ŝf,l
π (Jo, jo, j1) (with respect to sf ) be given.

The set of requirements w ∈ Bn,k0 which fulfils the properties:

wi ∈ {ŝl
πi

, ŝl
πi

+ 1, . . . , ko} if sf
i = ŝl

πi
≥ σl

Jo
(d13)⎧⎨

⎩
wi ∈ {ŝl

πi = σl
Jo

− 1, ŝl
πi

+ 1, . . . , k0}
with at most j1 coordinates wi = σl

Jo
− 1,

if sf
i ≤ ŝl

πi
= σl

Jo
− 1, (d14)

wi = ŝl
πi

otherwise (d15)

is denoted by B2
n;k0

(sf , ŝl
π).

Remarks 4.3.1. (d14) (and (d13)) shows that the reduction of components
of the value σl

Jo
by 1 in order to determine a (Jo, jo)-perturbed partition

and corresponding permutations for B2
n;k0

(sf , ŝl
π) is in fact not necessary in

the case σl
Jo

− 1 > σl
Jo+1, which means j1 = 0 (see (d7)). However, this

method leads to clearer and more uniform representations of the Definitions
4.3.2, 4.3.3, 4.3.4 and so on, where then distinctions in certain cases for
the representations are not necessary.
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Lemma 4.3.3. Let a permutation ŝl
π of a (Jo, jo)-perturbed partition ŝl

from a set Ŝf,l
π (Jo, jo, j1) (with respect to sf ) be given. In addition, let

w ∈ B2
n;k0

(sf , ŝl
π).

Then, in Definition 4.3.4 the case ”otherwise” with wi = ŝl
πi

is valid if

sf
i > ŝl

πi
or (d16)

sf
i ≤ ŝl

πi
<

{
σl

Jo+1 if σl
Jo

− 1 = σl
Jo+1,

σl
Jo

if σl
Jo

− 1 > σl
Jo+1.

(d17)

Proof.

Case ŝl
πi

≥ σl
Jo

: The equality sf
i ≥ ŝl

πi
follows according to (d10) from

Lemma 4.3.1.
sf
i = ŝl

πi
(≥ σl

Jo
) can be found in (d13) of Definition 4.3.4.

sf
i > ŝl

πi
belongs to ”otherwise” in this definition.

Case ŝl
πi

= σl
Jo

− 1: sf
i ≤ ŝl

πi
(= σl

Jo
− 1) can be found in (d14) of Definition

4.3.4.
sf
i > ŝl

πi
belongs to ”otherwise” in this definition.

Case ŝl
πi

< σl
Jo

− 1: This means ŝl
πi

<

{
σl

Jo+1 if σl
Jo

− 1 = σl
Jo+1,

σl
Jo

if σl
Jo

− 1 > σl
Jo+1.

If in addition sf
i ≤ ŝl

πi
, then (d17) is valid and if sf

i > ŝl
πi

, then
(d16).

�

Lemma 4.3.4. Let a set B2
n;k0

(sf , ŝl
π) as in Definition 4.3.4 be given.

Then exactly
(

jo + j1

jo

)
requirements w ∈ B2

n;k0
(sf , ŝl

π) exist, which satisfy

the cases C[su, w] and C[w, su] simultaneously.

(Probabilities of w from Lemma 4.3.4 are added in order to compute p∗1fl

and also p∗2fl . Therefore, these probabilities must be subtracted once from
p∗1fl + p∗2fl for the determination of p∗fl (see (4.3.6)).
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Proof.
Case σl

Jo
−1 = σl

Jo+1 : (j1 > 0 is possible in this case, see Definition 4.3.3).

If the components of sl
π and of the permutation ŝl

π of a (Jo, jo)-perturbed
partition ŝl from Ŝf,l

π (Jo, jo, j1) (with respect to sf ) are compared, then

ŝl
πi

< sl
πi

may only be possible if sf
i ≤ ŝl

πi
= σl

Jo
− 1 (*1)

(see also Definition 4.3.4)

is valid according to (d3) of Definition 4.3.1 and (d5) of Definition 4.3.2.

The condition (d14) from Definition 4.3.4:

sf
i ≤ ŝl

πi
= σl

Jo
− 1 is valid for exactly jo + j1 components ŝl

πi
(*2)

according to Lemma 4.3.1, (d12).

In relation to (d14) from Definition 4.3.4 let:

wi = σl
Jo

− 1 for j2 coordinates wi where j2 ≤ j1. (*3)

From (*3) and (*1) (refer also to (*2))
n∑

i=1
wi ≥ j2(σl

Jo
− 1) + [jo + (j1 − j2)]σl

Jo
+

∑
i: if not sf

i ≤ŝl
πi

=σl
Jo

−1

sl
πi

=
n∑

i=1
sl
πi

+ (j1 − j2) = su + (j1 − j2) ≥ su. (*4)

follows. In (*4) the left side of ”= su” is only correct, if j2 = j1 and wi

are as small as possible, according to Definition 4.3.4. This means that, in
relation to (d14) from Definition 4.3.4, j1 coordinates wi = σl

Jo
− 1 and j0

coordinates wi = σl
Jo

(see also (*2)).

Thus, exactly
(

jo + j1

jo

)
different requirements w satisfy the cases C[su,w]

and C[w, su] simultaneously.

Case σl
Jo

− 1 > σl
Jo+1 : j1 = 0 follows according to Definition 4.3.3.

Hence, in relation to (d14) from Definition 4.3.4, the possibility that
wi = σl

Jo
− 1 (for any i with sf

i ≤ ŝl
πi

= σl
Jo

− 1) does not exist.

Since
(

jo + 0 = jo

jo

)
= 1, there is only one possibility, in which all coor-

dinates wi from Definition 4.3.4 are as small as possible, which then implies
n∑

i=1
wi = su. �
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Theorem 4.3.5. Let sf ∈ Sn;su;k0 and sl ∈ Sn;su;k0 be given. In the case
C[su, w] the following relationship is valid:

s∗(sf , w) = sl ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w ∈ B2
n;k0

(sf , ŝl
π) where ŝl

π is an element of a
set Ŝf,l

π (Jo, jo, j1) (with respect to sf ),

or w ∈ {w ∈ Bn;k0 | wi ≥ sf
i , i = 1, ..., n}

if sf = sl.

Proof.

1. (⇒): Let a requirement w ∈ Bn;k0 with
n∑

i=1
wi > su and s∗(sf , w) = sl be

given.
The trivial case in which wi ≥ sf

i for i = 1, ..., n, so that a permutation
sl
π of sl, sf and w satisfy (4.2.5), is only possible if sf

i = sl
πi

for i = 1, ..., n.

Now, let sl
π �= sf be a permutation of sl such that sl

π, sf and w satisfy
(4.2.5).

wi ≤ sf
i ⇒ sl

πi
= wi (thus also sl

πi
≤ sf

i ) (*1)

follow from (4.2.5), case C[su,w].

We next consider the iterative method from Section 4.2.2, case C[su, w]:

Since s∗′j = s∗′j + 1 for s∗′j = min{s∗′i | s∗′i < wi},
components of different permutations of sl which, together with sf and w,
satisfy (4.2.5), differ by at most 1.

(This can be possible only if j with s∗′j = min{s∗′i | s∗′i < wi} is not
unique in the final iteration steps).

Explained in greater detail, sl
πi0

can be different if:

sl
πi0

= max{sl
πi

| sf
i < sl

πi
≤ wi} (*2)

and if i1 exists so that

sf
i1
≤ sl

πi1
= sl

πi0
− 1 < wi1 . (*3)

(Then sl′
πi1

could be increased by 1 instead of sl′
πi0

in the final iteration steps
if the iterative method from Section 4.2.2 (case C[su, w]) is used.)

Other relationships between sf
i , wi, s

l
πi

and sl
πi0

from (*2) (in relation to
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(*1)) can be:

sf
i = sl

πi
= sl

πi0
< wi, (*4)

sf
i2

< sl
πi2

= sl
πi0

− 1 = wi2 for i = i2. (*5)

If sf
i < wi, then the relationship

sf
i < sl

πi
= wi < sl

πi0
− 1 (*6)

between sf
i , wi, s

l
πi

and sl
πi0

as in (*2) remains possible, in addition to the
previous (*2),(*3),(*4) or (*5), according to the iterative method from Sec-
tion 4.2.2, case C[su, w].

With regard to Definition 4.3.1, we now use

sl
πi0

(from (*2)) as σl
Jo

,

and the number of i0, for which (*2) is satisfied, as j0.

(Jo, jo) is then a perturbation of the relation ”≥” between sf and sl
π,

according to (*1), ..., (*5) :

(d1): sl
πi

≥ σl
Jo−1(> σl

Jo
) can only be possible if (*1) is valid,

from which (d1) follows,

(d2) and (d3): sl
πi

= σl
Jo

is only valid if (*2) and (*4) are valid,

then (d3) follows from (*2) and (d2) from (*4).

Now, ŝl
π with

ŝl
πi

=

{
sl
πi

− 1 if (*2) is satified for i = i0,

sl
πi

otherwise
is a permutation of the (Jo, jo)-perturbed partition ŝl of sl.

With regard to Definition 4.3.3, we set

j1 equal to the number of i2’s for which (*5) is satisfied.

Obviously, ŝl
π ∈ Ŝf,l

π (Jo, jo, j1).

Finally, we show that the considered w is an element of B2
n;k0

(sf , ŝl
π) (see

Definition 4.3.4):

(d13): follows, in particular, from (*4) and (*1) with sl
πi

= sf
i ≥ sl

πi0
,



187

(d14): follows, in particular, from (*2), (*3) and (*5)

(considering the previous determination of ŝl
π),

(d15): follows, in particular, from (*1) and (*6).

2. (⇐): Let w ∈ B2
n;k0

(sf , ŝl
π).

If wi ≥ sf
i for i = 1, ..., n, then s∗(sf , w) = sf (= sl) follows immediately.

Now, let i exist with wi < sf
i .

We will show that the iterative method from Section 4.2.2, case C[su, w],
initially leads to ŝl

π (from this theorem), and then to a sl
π (as in (4.3.8)).

This means that s∗(sf , w) = sl.

At first, we note that

∑
i:sf

i >wi

(sf
i − wi) =

∑
i:sl

πi
>sf

i

(sl
πi

− sf
i ) (*7)

is a necessary condition for s∗(sf , w)(= sl
π) = sl since according to the

iterative method from Section 4.2.2, case C[su, w] (together with (4.2.5)),
differences between sf

i and wi, in the cases that sf
i > wi, are used in order

to increase sf
i to a certain sl

πi
in the cases that sf

i < wi (where sl
π is a

permutation of sl = s∗(sf , w)).

We prove that the necessary condition is valid:

sf
i > wi is only possible in the case (d15) of Definition 4.3.4 where wi = ŝl

πi
.

Then

∑
i:sf

i >wi

(sf
i − wi) =

∑
i:sf

i >ŝl
πi

(sf
i − ŝl

πi
) (*8)

follows.

According to (d8) (together with (d3)), and since
n∑

i=1
sf
i =

n∑
i=1

sl
i = su,

∑
i:sf

i >ŝl
πi

(sf
i − ŝl

πi
) =

∑
i:ŝl

πi
>sf

i

(ŝl
πi

− sf
i ) + jo (*9)

is valid.
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∑
i:ŝl

πi
>sf

i

(ŝl
πi

− sf
i ) + jo =

∑
i:sl

πi
>sf

i

( sl
πi

− sf
i ) (*10)

follows for sl
π as in (4.3.8).

Now, (*8), (*9) and (*10) imply (*7).

Lastly, the consideration of the following cases shows that the iterative
method from Section 4.2.2, case C[su, w], indeed initially leads to ŝl

π (from
this theorem) and then to a sl

π (as in (4.3.8)):

Case sf
i > wi:

According to the iterative method (and also according to (4.2.5))
wi = ŝl

πi
(= sl

πi
) follows in this case which corresponds to (d15).

Case sf
i = wi:

The relationship sf
i = sl

πi
remains according to the iterative method and

also as in the relevant case of Definition 4.3.4 (sf
i = sl

πi
(= ŝl

πi
)).

Case sf
i < wi <

{
σl

Jo+1 if σl
Jo

− 1 = σl
Jo+1,

σl
Jo

if σl
Jo

− 1 > σl
Jo+1

:

sf
i are increased up to wi using the iterative method. This means

sl
πi

= wi(= ŝl
πi

) which corresponds to (d17) (partial case of (d15)).

Case sf
i < wi and wi ≥

{
σl

Jo+1 if σl
Jo

− 1 = σl
Jo+1,

σl
Jo

if σl
Jo

− 1 > σl
Jo+1

≥ sf
i :

Initially, sf
i are increased up to σl

Jo
− 1 using the iterative method (which

corresponds to ŝl
πi

from (d14)) of Definition 4.3.4. j0 units then remain,
which can be used in order to further increase the j0 parts of the value
σl

Jo
− 1 by 1 (if wi ≥ σl

Jo
) (which corresponds to ŝl

πi
from Definition 4.3.4,

(d13) with sf
i = σl

Jo
), according to the iterative method.

Case sf
i < wi and wi > sf

i >

{
σl

Jo+1 if σl
Jo

− 1 = σl
Jo+1,

σl
Jo

if σl
Jo

− 1 > σl
Jo+1

:

A further increase of parts is no longer possible according to the iter-
ative method (see also (*7), (*8), (*9) and (*10)). Only the relationship
sl
π = sf

i (= ŝl
π) remains possible, as also in (d13). �
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Theorem 4.3.6. Let ŝl,1
π ∈ Ŝf,l

π (J1
o , j1

o , j1
1) and ŝl,2

π ∈ Ŝf,l
π (J2

o , j2
o , j2

1)
(with respect to sf ) be given with

ŝl,1
π �= ŝl,2

π . (*1)

(J1
o = J2

o , j1
o = j2

o , j1
1 = j2

1 are also possible. In the case
Ŝf,l

π (J1
o , j1

o , j1
1) �= Ŝf,l

π (J2
o , j2

o , j2
1), the relation ŝl,1

π �= ŝl,2
π follows

from Lemma 4.3.2.)

Then,
B2

n;k0
(sf , ŝl,1

π )
⋂

B2
n;k0

(sf , ŝl,2
π ) = ∅.

(Furthermore, B2
n;k0

(sf , ŝl
π)

⋂ {w ∈ Bn;k0 | wi ≥ si, i = 1, ..., n} = ∅ is

valid in the case sf = sl where ŝl
π ∈ Ŝf,l

π (Jo, jo, j1) (with respect to sf ).)

Proof. Let w1 be any element of the set B2
n;k0

(sf , ŝl,1
π ) and w2 of B2

n;k0
(sf , ŝl,2

π ).
Furthermore, let

ŝl,1
πio

�= ŝl,2
πio

according to (*1).

In order to show that w1 �= w2 we consider 3 cases.

Case 1: Let ŝl,1
πio

< sf
io

.

According to Definition 4.3.4

w1
πio

= ŝl,1
πio

(in particular, see (d15)and (d10)),

w2
πio

⎧⎨
⎩

= ŝl,2
πio

if ŝl,2
πio

< sf
io

,

≥ ŝl,2
πio

if ŝl,2
πio

≥ sf
io

follows. Thus, w1
πio

�= w2
πio

.

Case 2:
Let sf

io
≤ ŝl,2

πio
< ŝl,1

πio

and σl
J1

o
≤ σl

J2
o
.

(*2)

The relationship
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ŝl,1
πio

≥ σl
J1

o

is not possible according to (*2), Definition 4.3.4 and Lemma 4.3.1
(in particular, see (d10)).

Hence the relationship

ŝl,1
πio

≤ σJ1
o
− 1

remains to consider.

w1
πio

≥ ŝl,1
πio

follows for requirements w1 ∈ B2
n;k0

(sf , ŝl,1
π )

and with regard to (*2)

ŝl,2
πio

< (ŝl,1
πio

≤ σJ1
o
− 1 ≤) σJ2

o
− 1

is valid.
Thus,

w2
πio

= ŝl,2
πio

is valid according to Definition 4.3.4 (see (d15) together with (d17)),

hence w1
πio

�= w2
πio

.

Case 3:
Let sf

io
≤ ŝl,2

πio
< ŝl,1

πio

and σl
J1

o
> σl

J2
o
.

(*3)

Now,

∃ i1 : sf
i1

< sl,1
πi1

= ŝl,1
πi1

+ 1 = σl
J1

o
(*4)

according to (d3) and (d8).

In relation to ŝl,2
π and i1 either

sl,2
πi1

≤ σl
J2

o
(*5a)

or

σl
J2

o
< sl,2

πi1
≤ sf

i1
(see also (d1)) (*5b)

is valid.
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(*4),(*5a) and σl
J1

o
> σl

J2
o

or (*4) and (*5b), respectively yield

sl,2
πi1

≤ σl
J2

o
< σl

J1
o

= ŝl,1
πi1

+ 1 = sl,1
πi1

(*6a)

or

sl,2
πi1

≤ sf
i1

< ŝl,1
πi1

+ 1 = sl,1
πi1

= σl
J1

o
. (*6b)

From (*6a) and (*6b) together

sl,2
πi1

< sl,1
πi1

= σl
J1

o
(*7)

follows (where io = i1 is possible).

Since sl,2
π is a permutation of sl,1

π

∃ i2 (i2 �= i1) : sl,2
πi2

= sl,1
πi1

(= σl
J1

o
≥ σl

J2
o

+ 1). (*8)

Furthermore,

sf
i2
≥ ŝl,2

πi2
= sl,2

πi2
(*9)

is valid (see also (d1)).

If ŝl,1
πi2

< ŝl,2
πi2

(≤ sf
i2

) then w1
i2

= ŝl,1
πi2

< ŝl,2
πi2

≤ w2
i2

follows according to Definition 4.3.4 and Lemma 4.3.3. Thus

w1
i2
�= w2

i2
. (*10)

In addition, if ŝl,1
πi2

≥ ŝl,2
πi2

(= sl,2
πi2

= sl,1
πi1

) (see also (*8) and (*9)),

then we can conclude similarly in the two possible subcases

sl,1
πi2

= sl,2
πi2

and sl,1
πi2

> sl,2
πi2

again, with sl,2
π as a permutation of sl,1

π :

∃ i3 (i3 �= i2 ∧ i3 �= i1) : sl,2
πi3

= sl,1
πi2

(≥ σl
J1

o
≥ σl

J2
o

+ 1) and so on.

Since the numbers of parts of sl,2
π and sl,1

π are finite, w1
im

�= w2
im

follows any times for a certain m analogous to (*10).

(Finally, the Definition 4.3.4 of B2
n;k0

(sf , ŝl
π) and Lemma 4.3.3 directly yields

B2
n;k0

(sf , ŝl
π)

⋂ {w ∈ Bn;k0 | wi ≥ si, i = 1, ..., n} = ∅ if sf = sl.) �
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Example 4.3.1. Let n = 11, su = 37, k0 = 8 and

sf = (6, 5, 5, 4, 4, 4, 3, 2, 2, 2, 0),

sl = (5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2)

(this means σl
1 = 5, σl

2 = 4, σl
3 = 3, σl

4 = 2 (compare to the beginning of
Section 4.3, (4.3.4))

and (for example)

sl
π = (5, 5, 4, 4, 3, 2, 3, 4, 3, 2, 2)

be given.

(a) • According to Definition 4.3.1 a (Jo = 2, jo = 1)-perturbation (with

σl
Jo

= σl
2 = 4) of the relation ′′ ≥′′ between

sf = (6, 5, 5, 4, 4, 4, 3, 2, 2, 2, 0)
and
sl
π = (5, 5, 4, 4, 3, 2, 3, 4, 3, 2, 2)

⎫⎬
⎭ (*1)

is valid, since

sf
i ≥ sl

πi
for any sl

πi
≥ 5,

sf
3 ≥ sl

π3
and sf

4 ≥ sl
π4

(where sl
π3

= sl
π4

= 4 = σl
2 = σl

Jo
)

and sf
8 < sl

π8
= 4 = σl

Jo
.

• Formally,

ŝl = (5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2)

is a (2, 1)-perturbed partition of sl according to Definition 4.3.2.

• In relation to Definition 4.3.3 we find that

j1 = 2, since sf
i ≤ sl

πi
= 3 = σl

2 − 1 for the two indices
i = 7 and i = 9.

Then, according to (d8) and (d9)

ŝl
π = (5, 5, 4, 4, 3, 2, 3, 3, 3, 2, 2)

is an element of the set Ŝf,l
π (2, 1, 2).
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• Continuing our example the set B2
11,8(s

f , ŝl
π) is (see Definition 4.3.4):

B2
11,8(s

f , ŝl
π)

= {w| w = (5, w2, 4, w4, 3, 2, w7, w8, w9, 2, 2)

with w2 ∈ {5, 6, 7, 8}, w4 ∈ {4, 5, . . . , 8}, wj ∈ {3, 4, . . . , 8}
for j = 7, 8, 9 and with at most 2 coordinates

wj = 3, j ∈ {7, 8, 9}}.

(b) • Altogether Ŝf,l
π (2, 1, 2) includes 360 = 3 · 12 · 10 elements:

According to Lemma 4.3.1 the components

- 5; 5 (of ŝl) must be under the first 3 components of the elements

of Ŝf,l
π (2, 1, 2) (see (d10)), (=

(
3
2

)
= 3 possibilities),

- 4; 4; 3 (of ŝl) must be under the first 6 components of the

elements of Ŝf,l
π (2, 1, 2) (see (d10) and (d11)),

(this means: ∗
(

6 − 2
3

)
· 3 = ∗12 possibilities),

- 3; 3; 3 (of ŝl) must be under the last 5 components of the

elements of Ŝf,l
π (2, 1, 2) (see (d12)) (=

(
5
3

)
= 10 possibilities).

(c) • We now return to our discussion about the motivation for the
concept of perturbed partitions based on this example:

If we use the iterative method from Section 4.2.2, case C[su, w],
in relation to the given partition sf and a requirement w ∈ B2

11,8(s
f , ŝl

π)
(with w7,8,9 > 3), then this method yields exactly one s∗′ in the
second to last iteration step:

s∗
′
= ŝl

π.

In the last iteration step three possibilities for s∗′ follow :
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(5, 5, 4, 4, 3, 2, 4, 3, 3, 2, 2)

or (5, 5, 4, 4, 3, 2, 3, 4, 3, 2, 2)

or (5, 5, 4, 4, 3, 2, 3, 3, 4, 2, 2)

(as permutations of sl).

Sets B2
n,k0

(sf , ŝl
π) of requirements, which imply transitions from sf

to sl (see Theorem 4.3.5), are disjunct for different permutations
ŝl
π of perturbed partitions (see Theorem 4.3.6). An analogon for

permutations of partitions sl themselves would not be valid.

Now, we want to determine all requirements w with
n∑

i=1
wi ≥ su and sl = s∗(sf , w) (∗)

for given sf and sl in order initially to compute p∗2fl and later the elements
p∗fl =

∑
w:sl=s∗(sf ,w)

q(w) of PRMs.

For this purpose we can determine the perturbed permutations ŝl
π of all

permutations sl
π of sl (see Definition 4.3.3). If identical ŝl

π follow for differ-
ent sl

π then these ŝl
π are naturally used only once in order to compute the

corresponding B2
n,k0

(sf , ŝl
π), according to Definition 4.3.4.

Then the set⋃
ŝl
π

B2
n,ko

(sf , ŝl
π) (

⋃ {w ∈ Bn;k0 | wi ≥ si, i = 1, ..., n} if sf = sl)

includes all requirements w, which satisfy (*) (see Theorems 4.3.5 and 4.3.6).

A slightly different method would be for Jo ∈ {1, 2, . . . , y},
jo ∈ {1, 2, . . . , LJo − LJo−1} and

j1 ∈
{ {0, 1, . . . , LJo+1 − LJo} when σl

Jo
− 1 = σl

Jo+1,

{0} when σl
Jo

− 1 > σl
Jo+1

to determine all

ŝl
π from sets Ŝf,l

π (Jo, jo, j1) (as in Example 4.3.1(b)) if it is possible.
(Sets Ŝf,l

π (Jo, jo, j1) are disjunct for various (Jo, jo, j1), see Lemma 4.3.2.)

According to Definition 4.3.4, Theorem 4.3.5 and Theorem 4.3.6
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p∗2fl =
∑

Ŝf,l
π (Jo,jo,j1)(�=∅)

∑
ŝl
π∈Ŝf,l

π (Jo,jo,j1)

∑
w∈B2

n;k0
(sf ,ŝl

π)

q(w)

+ δfl ∗ ∑
w∈{w∈Bn;k0

| wi≥si, i=1,...,n}
q(w)

(4.3.9)

or, in more detail

p∗2fl =
y∑

Jo=1

LJo−LJo−1∑
jo=1

∑
j1∈

⎧⎨
⎩ {0, 1, . . . , LJo+1 − LJo} when σl

Jo
− 1 = σl

Jo+1,

{0} when σl
Jo

− 1 > σl
Jo+1∑

ŝl
π∈Ŝf,l

π (Jo,jo,j1)

∑
w∈B2

n;k0
(sf ,ŝl

π)

q(w) + δfl ∗ ∑
w∈{w∈Bn;k0

| wi≥si, i=1,...,n}
q(w)

(4.3.10)
follows.

In the case of discrete uniformly distributed requirements, Definition 4.3.4
yields:

∑
w∈B2

n;k0
(sf ,ŝl

π)

q(w) = 1
(k0+1)n

⎡
⎣ ∏

i:ŝl
πi

=sf
i ≥σl

Jo

(k0 + 1 − ŝl
πi

)

(
(k0 − σl

Jo
+ 2)jo+ji −

(
jo + j1

j1 + 1

)
(k0 − σl

Jo
+ 1)jo−1 − · · · −

(
jo + j1

jo + j1

)
(ko − σl

Jo
+ 1)0

)]
,

δfl ∗ ∑
w∈{w∈Bn;k0

| wi≥si, i=1,...,n}
q(w) = δfl ∗ 1

(k0+1)n

n∏
i=1

(k0 + 1 − sf
i ).

(4.3.11)

Remarks 4.3.2. If ŝl
πi

�= 0 ⇒ sf
i = 0, then Ŝf,l

π (Jo, jo, j1) �= ∅ at most for
Jo = 1, jo = L2 − L1 and j1 ≤ L3 − L2, if σ1 − 1 = σ2 (otherwise j1 = 0).
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Case C[w, su] (the requirements can be completely fulfilled):

The considerations are analogous to the case C[su, w]. By that reason we
present only definitions, lemmas and theorems in this part of the section
however no corresponding proofs, which would be very similar to the proofs
in the other case.

Let a partition sf ∈ Sn;su;k0 and a permutation sl
π of a partition

sl ∈ Sn;su;k0 be given. We then compare the components of sf with the
components of sl

π in order of increasing sl
πi

.

Definition 4.3.5. Let Jo ∈ {1, 2, . . . , y (or y + 1 for Ly < n)} (see (4.3.3))
and j3 ∈ {1, 2, . . . , LJo − LJo−1}.

If
sl
πi

≥ sf
i for any sl

πi
≤ σl

Jo+1, (d18)

sf
i ≤ sl

πi
for LJo − LJo−1 − j3 of the sl

πi
= σl

Jo
(d19)

and sf
i > sl

πi
for j3 of the sl

πi
= σl

Jo
, (d20)

then we refer to a (Jo, j3)-perturbation of the relation ”≤” between
sf and slπ.

Formally, we define the (Jo, j3)-perturbed partition ŝl of sl.
Contrary to sl the (Jo, j3)-perturbed partition ŝl has exactly j3 compo-

nents which are increased from σl
Jo

by 1 to σl
Jo

+ 1:

Definition 4.3.6. Let Jo and j3 be given with
Jo ∈ {1, 2, . . . , y (or y + 1 for Ly < n)} and j3 ∈ {1, 2, . . . , LJo − LJo−1}.

ŝl :

⎧⎨
⎩

ŝl
j = sl

j for j ∈ {1, 2, · · · , LJo−1}
and for j ∈ {LJo + j3 + 1, · · · , n} (d21)

ŝl
j = sl

j + 1(= σl
Jo

+ 1) for j ∈ {LJo−1 + 1, · · · , LJo−1 + j3} (d22)

is called the (Jo, j3)-perturbed partition of sl.

Thus,
n∑

j=1

ŝl
j = su + j3 follows. (4.3.12)
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Definition 4.3.7. Let a (Jo, j3)-perturbation of the relation ”≤” between sf

and sl
π be given. Furthermore, let j4 denote the number of i’s with:

sf
i ≥ sl

πi
= σl

Jo
+ 1. (d23)

(Obviously, j4 ∈ {0, 1, · · · , LJo−1 − LJo−2} if σl
Jo

= σl
Jo−1 − 1 and

j4 = 0 if σl
Jo

< σl
Jo−1 − 1.) (d24)

Then ŝl
π with

ŝl
πi

=

⎧⎨
⎩

sl
πi

+ 1 for sf
i > sl

πi
= σl

Jo
(d25)

(see (d20) from Definition 4.3.5),
sl
πi

otherwise (d26)

is called a (Jo, j3, j4)-perturbed permutation of the (Jo, j3)-perturbed
partition ŝl with respect to sf .

Ŝf ,l
π (Jo, j3, j4) is the set of all (Jo, j3, j4)-perturbed permutations ŝl

π of
permutations sl

π of sl, for which a (Jo, j3)-perturbation of the relation ”≤”
between sl

π and sf is present.

(See also Remarks 4.4.1 following Definition 4.3.5.)

Lemma 4.3.7. A permutation ŝl
π of a (Jo, j3)-perturbed partition ŝl is an

element of a set Ŝf,l
π (Jo, j3, j4) if and only if ŝl

π fulfils the following condi-
tions regarding to sf :

sf
i ≤ ŝl

πi
if ŝl

πi
≤ σl

Jo
, (d27)

sf
i <ŝl

πi
for LJo−1 − LJo−2 − j4 components ŝl

πi
= σl

Jo
+ 1

if σl
Jo

+ 1 = σl
Jo−1, (d28)

sf
i ≥ ŝl

πi
for j3 + j4 components ŝl

πi
= σl

Jo
+ 1, (d29)

Definition 4.3.6 and Lemma 4.3.7 obviously yield:

Lemma 4.3.8. Let Ŝf,l
π (J1

o , j1
3 , j1

4) and Ŝf,l
π (J2

o , j2
3 , j2

4) (with respect to sf )
be given with J1

o �= J2
o or j1

3 �= j2
3 or j1

4 �= j2
4 .

Then, Ŝf,l
π (J1

o , j1
3 , j1

4)
⋂

Ŝf,l
π (J2

o , j2
3 , j2

4) = ∅ follows.

Definition 4.3.8. Let a permutation ŝl
π of a (Jo, j3)-perturbed partition ŝl

from a set Ŝf,l
π (Jo, j3, j4) (with respect to sf ) be given.

The set of requirements w ∈ Bn,k0 which fulfils the properties:

wi ∈ {0, 1, . . . , ŝl
πi
} if sf

i = ŝl
πi

≤ σl
Jo

(d30)
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⎧⎨
⎩

wi ∈ {0, 1, . . . , ŝl
πi

= σl
Jo

+ 1}
with at most j4 coordinates wi = σl

Jo
+ 1

if sf
i ≥ ŝl

πi
= σl

Jo
+ 1, (d31)

wi = ŝl
πi

otherwise (d32)

is denoted by B1
n;k0

(sf , ŝl
π).

Remarks 4.3.3. (d31) (and (30)) shows that the increase of components
of the value σl

Jo
by 1 in order to determine a (Jo, j3)-perturbed partition

and corresponding permutations for B1
n;k0

(sf , ŝl
π) is in fact not necessary in

the case σl
Jo

+ 1 < σl
Jo−1, which means j4 = 0 (see (d24)). However, this

method leads to clearer and more uniform representations of the Definitions
4.3.6, 4.3.7, 4.3.8 and so on, where then distinctions in certain cases in the
representations are not necessary.

Lemma 4.3.9. Let a permutation ŝl
π of a (Jo, j3)-perturbed partition ŝl

from a set Ŝf,l
π (Jo, j3, j4) (with respect to sf ) be given. In addition, let

w ∈ B1
n;k0

(sf , ŝl
π).

Then, in Definition 4.3.8 the case ”otherwise” with wi = ŝl
πi

is valid if

sf
i < ŝl

πi
or (d33)

sf
i ≥ ŝl

πi
>

{
σl

Jo−1 if σl
Jo

+ 1 = σl
Jo−1,

σl
Jo

if σl
Jo

+ 1 < σl
Jo−1.

(d34)

Theorem 4.3.10. Let sf ∈ Sn;su;k0 and sl ∈ Sn;su;k0 be given. In the case
C[w, su] the following relationship is valid:

s∗(sf , w) = sl ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w ∈ B1
n;k0

(sf , ŝl
π) where ŝl

π is an element of a
set Ŝf,l

π (Jo, j3, j4) (with respect to sf ),

or w ∈ {w ∈ Bn;k0 | wi ≤ sf
i , i = 1, ..., n}

if sf = sl.

Theorem 4.3.11. Let ŝl,1
π ∈ Ŝf,l

π (J1
o , j1

3 , j1
4) and ŝl,2

π ∈ Ŝf,l
π (J2

o , j2
3 , j2

4)
(with respect to sf ) be given with

ŝl,1
π �= ŝl,2

π .
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(J1
o = J2

o , j1
3 = j2

3 , j1
4 = j2

4 are the possible. In the case
Ŝf,l

π (J1
o , j1

3 , j1
4) �= Ŝf,l

π (J2
o , j2

3 , j2
4), the relation ŝl,1

π �= ŝl,2
π follows from

Lemma 4.3.8.)

Then,
B1

n;k0
(sf , ŝl,1

π )
⋂

B1
n;k0

(sf , ŝl,2
π ) = ∅.

(Furthermore, B1
n;k0

(sf , ŝl
π)

⋂ {w ∈ Bn;k0 | wi ≤ si, i = 1, ..., n} = ∅ is

valid in the case sf = sl where ŝl
π ∈ Ŝf,l

π (Jo, j3, j4) (with respect to sf ).)

We now compute the probability of requirements w with s∗(sf , w) = sl in
the case C[w, su]:

p∗1fl =
∑

Ŝf,l
π (Jo,j3,j4)( �=∅)

∑
ŝl
π∈Ŝf,l

π (Jo,j3,j4)

∑
w∈B1

n;k0
(sf ,ŝl

π)

q(w)

+ δfl ∗ ∑
w∈{w∈Bn;k0

| wi≤si, i=1,...,n}
q(w)

(4.3.13)

or, in greater detail:

p∗1fl =
y∑

Jo=1

LJo−LJo−1∑
j3=1

∑
j4∈

⎧⎨
⎩ {0, 1, . . . , LJo−1 − LJo−2} when σl

Jo
+ 1 = σl

Jo−1,

{0} when σl
Jo

+ 1 < σl
Jo−1∑

ŝl
π∈Ŝf,l

π (Jo,j3,j4)

∑
w∈B1

n;k0
(sf ,ŝl

π)

q(w) + δfl ∗ ∑
w∈{w∈Bn;k0

| wi≤si, i=1,...,n}
q(w)

(4.3.14)

follows according to Definition 4.3.8, Theorem 4.3.10 and Theorem 4.3.11.

In the case of discrete uniformly distributed requirements, Definition 4.3.8
yields:
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∑
w∈B1

n;k0
(sf ,ŝl

π)

q(w) = 1
(k0+1)n

⎡
⎣ ∏

i:ŝl
πi

=sf
i ≤σl

Jo

(ŝl
πi

+ 1)

(
(σl

Jo
+ 2)j3+j4 −

(
j3 + j4

j4 + 1

)
(σl

Jo
+ 1)j3−1 − · · · −

(
j3 + j4

j3 + j4

)
(σl

Jo
+ 1)0

)]
,

δfl ∗ ∑
w∈{w∈Bn;k0

| wi≤si, i=1,...,n}
q(w) = δfl ∗ 1

(k0+1)n

n∏
i=1

(sf
i + 1).

(4.3.15)

Theorem 4.3.12. Elements p∗fl of PRMs can be calculated by:

p∗fl = p∗1fl + p∗2fl − p∗1,2
fl ,

where p∗1fl is computed as in (4.3.13) or in (4.3.14), p∗2fl as in (4.3.9) or in
(4.3.10) and p∗1,2

fl =
∑

sl
π: permutations of sl

q(sl
π).

In the case of discrete uniformly distributed requirements (4.3.15) and
(4.3.11) can be used in particular to compute elements p∗fl.

4.4 Limits of Partitions-Requirements-Matrices

In this section limits of elements of PRMs are determined as n → ∞ and
k0 → ∞ if the numbers of rows and columns of the corresponding PRMs
are fixed. (Only limits as su → ∞ are not possible since su is limited by
n k0, see (4.1.2).)

At first, we classify the sets of (restricted) partitions in order to find
classes with an infinite number of sets Sn;su;k0 where all sets Sn;su;k0 have
the same number of partitions so that the corresponding PRMs all have the
same numbers of rows and columns. We use such classes in this section and
in Section 4.6.
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4.4.1 Classification of the Lattices of the Restricted
Partitions

Let the sets of restricted partitions be arranged in a 3-dimensional lattice
with respect to n, su, k0 with

n = 2, 3, · · · ; su = 1, 2, · · · ; k0 = �su

n
�, �su

n
� + 1, · · · , su. (4.4.1)

(See Figure 4.4.1). The arrangement in relation to k0 (dimension 3) is also
found in the plane:

�

�

n

su

�

�

k0

k0� � � � � �

�

�

�
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Figure 4.4.1. .
( 1 0

)
⎛ ⎝1 0 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 0 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
�

�
�

�
�

�
�

( 1 1

)
⎛ ⎝1 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
�

�
�

( 1 1

)
⎛ ⎝1 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
( 2 0

)
⎛ ⎝2 0 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 0 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��
��

��

�

�
�

�

�

⎛ ⎝1 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
�

�
�

( 2 1

)
⎛ ⎝1 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎝2 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��
��

( 2 1

)
⎛ ⎝1 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
( 3 0

)
⎛ ⎝2 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��
��

��
⎛ ⎝3 0 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝3 0 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��
��

�
�

�
�

�
�

⎛ ⎜ ⎜ ⎝1 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� � � � � � � � � � � � � � � � � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� � � � � � � � � � � � � � � � � � � � � � � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

� � � � � � � � �
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( 2 2

)
⎛ ⎝2 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎝2 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝2 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

⎛ ⎝2 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠

���
�

� � ���

���
�

� � ���

���
�

� � ���

( 2 2

)
⎛ ⎝2 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
( 3 1

)
⎛ ⎝3 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

��

⎛ ⎝2 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠

���
�

� � ���

���
�

� � ���

���
�

� � ���

( 2 2

)
⎛ ⎝2 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝1 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
( 3 1

)
⎛ ⎝3 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
( 4 0

)
⎛ ⎝4 0 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝4 0 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝4 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

��

��

��

��

��

⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 1

⎞ ⎟ ⎟ ⎟ ⎠
�

�
�

�

�
�

�
�

�
�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
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⎛ ⎝2 2 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 1

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝2 2 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

⎛ ⎝3 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝3 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠

����
�

� � � ���

����
�

� � � ����
�

�
�

��

�

����
�

� � � ����
�

�
�

��

�

( 3 2

)
⎛ ⎝2 2 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 1

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎝3 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 2 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

��

⎛ ⎝3 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 2 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

����
�

� � � ����
�

�
�

��

�

����
�

� � � ���

����
�

� � � ���

����
�

� � � ���

����
�

� � � ���

( 3 2

)
⎛ ⎝2 2 1

⎞ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 1

⎞ ⎟ ⎟ ⎟ ⎠
( 4 1

)
⎛ ⎝3 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎝4 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝4 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝4 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

��

��

��

⎛ ⎝3 2 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 2 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 2 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝3 2 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 2 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

����
�

� � � ����
�

�
�

��

�

����
�

� � � ���

����
�

� � � ���

����
�

� � � ���

����
�

� � � ���

( 3 2

)
⎛ ⎝2 2 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝2 1 1 1

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝1 1 1 1 1

⎞ ⎟ ⎟ ⎟ ⎠
( 4 1

)
⎛ ⎝3 1 1

⎞ ⎠
⎛ ⎜ ⎜ ⎝3 1 1 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝2 1 1 1 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎝4 1 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝3 1 1 0 0

⎞ ⎟ ⎟ ⎟ ⎠
( 5 0

)
⎛ ⎝4 1 0

⎞ ⎠
⎛ ⎜ ⎜ ⎝5 0 0 0

⎞ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎝4 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
⎛ ⎝5 0 0

⎞ ⎠
⎛ ⎜ ⎜ ⎜ ⎝5 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎠
��

��

��

��

��

��

��

��

��

��

��

��
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We now classify the sets (lattices) of partitions in the following way:
(See also the remarks at the end of this section.)

C1) Sets of ”sparse” partitions: Sn;su;k0 with n > su.

� � �

�

�

�

� � �

�

�

�

� � �

�

�

�

� � �

�
�

��

(See Figure 4.1: These sets can be found above the staircase-line.
In general, many 0’s are in the vectors of these sets.
In this case 2 ≥ �2su

n � follows. Hence k0 ≥ �2su
n � is valid for 2 ≤ k0.)

C2) Sets: Sn;su;k0 with n ≤ su and k0 ≥ �2su
n �.

(See Figure 4.1: These sets can be found in each case below the
interrupted line

(−−−−−
↗

)·)
Only a finite number of such sets with any fixed number r of

partitions exists! (See the following Theorem 4.4.4.)

C3) Sets: Sn;su;k0 with n ≤ su and k0 < �2su
n �.

(See Figure 4.1: These sets can be found in each case above the
interrupted line

( ↙
−−−−−−

)
and below the stair-case-line.)

These sets can be further classified as follows:

C3a) Sets: Sn;su;k0 with n ≤ su, k0 < �2su
n � and ∃ i : s1

i = 0 (where s1 is
the least element of Sn;su;k0).

These sets are, with regard to the Poisson equation, equivalent to
sets of sparse partitions (see C1)) or to sets from C2), see Definition
4.2.5 and the following Lemma 4.4.2(ii), (iii).

C3b) Sets of ”heavy” partitions:
Sn;su;k0 with n ≤ su, k0 < �2su

n � and s1
i > 0 for i = 1, · · · , n.

(An equivalent characterization can be found in the following Lemma
4.4.1.)

These sets are subsequently subclassified as follows:
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C3b.1) Sets of ”non-truncated” heavy partitions:
Sn;su;k0 with n ≤ su, k0 < �2su

n �, s1
i > 0 for i = 1, · · · , n

and sr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0
...

k0

k0 − 1
...

k0 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(that is, ∃ i : sr
i = k0)

(where sr is the greatest element of Sn;su;k0).

C3b.2) Sets of ”truncated” heavy partitions:
Sn;su;k0 with n ≤ su, k0 < �2su

n �, s1
i > 0 for i = 1, · · · , n and

sr
i < k0 for i = 1, · · · , n.

(Example: S2;2k0−3;k0 with k0 > 3.)

In the last example su is given as 2k0 − 3. It can also be useful, in general,
to present su for sets of heavy partitions as su = nk0 − su where

0 < su ≤ nk0 − k0 = (n − 1)k0 (4.4.2)

according to (4.1.2):

Lemma 4.4.1. Let Sn;su=nk0−su;k0 be a set of (restricted) partitions.

(a) Sn;su;k0 is a set of heavy partitions if and only if su < k0.

(b) Sn;su;k0 is a set of non-truncated heavy partitions if and only if
su < k0 and su < n.

(c) Sn;su;k0 is a set of truncated heavy partitions if and only if
su < k0 and su ≥ n.

Proof. We initially consider the first two inequalities from C3b):
su = nk0 − su implies that n ≤ su is equivalent to

su ≤ n(k0 − 1) (*1)

and k0 < �2su
n � to
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k0 < �2(nk0−su)
n � = 2k0 − �2su

n �,
and �2su

n � < k0. (*2)

(a) s1
i > 0 for i = 1, · · · , n from C3b) is equivalent

to � su
k0
� ≥ n

and furthermore (together with su = nk0 − su) to:

�nk0−su
k0

� ≥ n,

�n − su
k0
� ≥ n,

n − � su
k0
� ≥ n,

0 ≥ � su
k0
�,

su < k0. (*3)

If we conversely suppose that (*3) is valid, then

(*1) and (*2) clearly (for n ≥ 2) follow.

(b) The condition: ∃ i : sr
i = k0 from C3b.1) is equivalent to

n(k0 − 1) < su and furthermore to

su < n.

(c) The condition: sr
i < k0 for i = 1, · · · , n from C3b.2) is equivalent to

n(k0 − 1) ≥ su and additionally to

su ≥ n.

�

Now, we will prove (see (iii) from the following Lemma) that sets of par-
titions Sn;su;k0 which satisfy the conditions from C3a) are equivalent with
regard to the Poisson equation to sets of sparse partitions (see C1)) or to
sets which satisfy the conditions from C2).

For this purpose we will use the denotation Sn;su;k0 for sets which satisfy
the conditions from C3a) and then show that corresponding sets Sn;su;k0 with
su = n · k0 − su fulfil the conditions from C1) and C2) according to Defini-
tion 4.2.5(c).

Lemma 4.4.2. Let Sn;su;k0 with n ≤ su and k0 < �2su
n � (which also means

2su > n·k0) be given (see classification C3)). In addition let su = n·k0−su.
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(i) Then Sn;su;k0 and Sn;su;k0
with k0 = k0 − max {0, su − (n − 1)k0} are

equivalent with respect to the partial order (see Definition 4.2.5(b))
and the inequality k0 ≥ �2su

n � is correct.

(ii) Furthermore, the relationship
k0 = k0 ⇔ ∃ i : s1

i = 0
in relation to the least element s1 of Sn;su;k0 is valid.

If k0 = k0, then Sn;su;k0 and Sn;su;k0 are also equivalent with regard
to the Poisson equation.

(iii) If Sn;su;k0 satisfies the conditions from C3a), then Sn;su;k0 is a set from
C1) or C2).

Proof.

(i) Initially, we note that
k0 = k0 − max {0, su − (n − 1)k0} ≤ k0.

We set kc = k0 (see Def. 4.2.5(b))
and s̄ = (k0, ..., k0)T − s for s ∈ Sn;su;k0 .
Then

n∑
i=1

s̄i =
n∑

i=1
(k0 − si) = nk0 − su = s̄u

is valid and also

s̄i = k0 − si ≤ k0 − max {0, su − (n − 1)k0} = k̄0

since si ≥ max {0, su−(n−1)k0} for s ∈ Sn;su;k0 and i ∈ {1, 2, · · · , n}.
Thus, s̄ ∈ Sn;su;k0

.

Analogously s = ((k0, ..., k0)T − s̄) ∈ Sn;su;k0 is correct for s̄ ∈ Sn;su;k0
.

Furthermore, s̄ = (k0, ..., k0)T − s and s = (k0, ..., k0)T − s̄ ∈ Sn;su;k0

are one-to-one maps such that | Sn;su;k0 | = | Sn;su,k0
| follows.

Hence Sn;su;k0 and Sn;su;k0
with su = n ·k0−su are equivalent with

respect to the partial order.

Now, we show the inequality k0 ≥ �2su
n � :

n ≤ su and k0 < �2su
n � (which means 2su > n · k0) imply
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s̄u = n · k0 − su < 2su − su = su

at first and additionally

k̄0 =
{

k0 if su − (n − 1)k0 ≤ 0,
nk0 − su if su − (n − 1)k0 ≥ 0

=
{

k0 if su − (n − 1)k0 ≤ 0,
s̄u if su − (n − 1)k0 ≥ 0

≥
{ � s̄u+nk0−su

n � if su − (n − 1)k0 ≤ 0,
s̄u if su − (n − 1)k0 ≥ 0

≥ �2s̄u
n �.

(ii) k̄0 = k0 is equivalent to su − (n − 1)k0 ≤ 0

since k̄0 = k0 − max {0, su − (n − 1)k0}.
su− (n− 1)k0 ≤ 0 if and only if the least element s1 of Sn;su;k0 (see

Definition 4.1.1(b)) has at least one part s1
i = 0 and vice versa .

(iii) follows from k̄0 = k0 ≥ �2s̄u
n � (see (i)) together with (ii). �

We will use the simple facts from the following lemma in the subsequent
discussions.

Lemma 4.4.3. Let n and su be given. Then

(i) | Sn;su;k0 | < | Sn;su;k0+1 | for k0 = � su
n �, � su

n � + 1, · · · , su − 1 and

(ii) | Sn;su;k0 | < | Sn+1;su;k0 | for n = 1, 2, · · · , su − 1 .

(Note: In dependence on the variable su (if n; k0 are given) it seems that
the number |Sn;su;k0 | initially increases and decreases again later. See [3],
Theorem 3.10: |Sn;su;k0 | ≥ |Sn;su−1;k0 | for 0 < su ≤ nk0

2 .)

Proof.

(i) Obviously, s ∈ Sn;su;k0+1 follows for partitions s ∈ Sn;su;k0 .
Furthermore, Sn;su;k0+1 includes partitions (with components of the

value k0 + 1) which are not elements of Sn;su;k0 .

(ii) (s1, . . . , sn) ∈ Sn;su;k0 imply that (s1, . . . , sn, 0) ∈ Sn+1;su;k0 .
Furthermore, all parts of the greatest element of Sn+1;su;k0

(n ∈ {1, 2, · · · , su − 1})(see Definition 4.1.1(d)) are nonzero. Thus,
this greatest element can not be included in Sn;su;k0 . �
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The following Theorem implies that only a finite number of sets which
satisfy the conditions from C2) with any fixed number r of partitions
exists.

Theorem 4.4.4. For a given ρ ∈ Z+ a su0 exists so that
| Sn;su;k0 | > ρ for all Sn;su;k0 with su > su0 and (su ≥) k0 ≥ �2su

n �.

We use su0 = 6(ρ− 1) for the following proof in the case n ≥ 3. A sharp
bound would most likely be su0 = 2(ρ − 1).

Proof. Initially, n = 2 which implies k0 = su and | S2;su;su | = su + 1 is a
simple case and su0 = ρ − 1 satisfies the demand of the theorem.

Now let su0 = 6(ρ − 1).

We first show that |Sn;su;k0= 2su
n

�| > ρ for n with 2 < n ≤ su.

|Sn;su;k′
0
| > ρ for k′

0 > k0 or/and n > su follow from Lemma 4.4.3i)
and the obvious relation |Ssu;su;k0 | = |Sn;su;k0 | for n > su.

The partition s1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
1
...

s1
n

2
�−1

s1
n

2
�

s1
n

2
�+1

...
s1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2su
n �
...

�2su
n �

su − �2su
n �(�n

2 � − 1)
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭�n

2 � − 1

⎫⎬
⎭�n

2 �

is the least element (see Definition 4.1.1(d)) of Sn;su;k0 with k0 = �2su
n �.

There are also, at least, the following partitions, each of which are ele-
ments of Sn;su;k0 with k0 = �2su

n �:
Uniformly 1’s are initially subtracted from the first �n

2 �−1 (or �n
2 �) upper

components of the least element and with the value k0 = �2su
n � and one by

one the remaining �n
2 � lower components are increased (with these 1’s) until

equality with the upper components is reached. The procedure is continued
analogously up to the greatest element. This demonstrated here in detail:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
1−1
s1
2
...

s1
n

2
�−1

s1
n

2
�+1

s1
n

2
�+1 = 0

...
s1
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
1−1

s1
2−1
...

s1
n

2
�−1

s1
n

2
�+2

s1
n

2
�+1 = 0

...
s1
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sl2
1

sl2
2
...

sl2
n

2
�−1

sl2
n

2
�

sl2
n

2
�+1 = 0

...
sl2
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with sl2
i = � su

n
2
�� or sl2

i = � su
n

2
�� + 1 for i = 1, 2, ..., �n

2 � and

(without loss of generality) sl2
1 ≥ sl2

2 ≥ · · · ≥ sl2
n

2
� > 0,

or ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sl2
1 −1
sl2
2
...

sl2
n

2
�

sl2
n

2
�+1 = 1

sl2
n

2
�+2 = 0

...
sl2
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sl2
1 −1

sl2
2 −1
...

sl2
n

2
�

sl2
n

2
�+1 = 2

sl2
n

2
�+2 = 0

...
sl2
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sl3
1

sl3
2
...

sl3
n

2
�

sl3
n

2
�+1

sl3
n

2
�+2 = 0

...
sl3
n = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with sl3
i = � su

n
2
�+1� or sl3

i = � su
n

2
�+1� + 1 for i = 1, 2, ..., �n

2 � + 1

and so on.

There are (with s1) at least

ρ′ = 1+
(
� su

�n
2 �

� −
(

su − �2su

n
�
(
�n

2
� − 1

)))
+� su

�n
2 � + 1

�+� su

�n
2 � + 2

�+· · ·+�su

n
�

partitions at least. A rough estimation yields

ρ′ ≥ 1 + �su

n
� · �n

2
� ≥ 1 + �su

n
�n − 1

2
. (*1)

Now, let j ∈ N so that

j · n ≤ su < (j + 1)n.
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(j ≥ 1 is valid since n ≤ su are assumed above.)

su

n
≥ j and su · 1

2
j

j + 1
· n − 1

n
<

n − 1
2

· j (*2)

follow.

Combining (*1) and (*2) we get

ρ′ ≥ 1 + j
n − 1

2
> 1 +

su

2
· j

j + 1
· n − 1

n
≥ su

6
+ 1 for n > 2.

Thus,

|Sn;su;k0= 2su
n

�| ≥ ρ′ >
su

6
+ 1 >

su0

6
+ 1 = ρ

for su0 = 6(ρ − 1).

|Sn;su;k0 | ≥ ρ′ >
su

6
+ 1 >

su0

6
+ 1 = ρ

follows for su > su0 and k0 ≥ �2su
n � according to Lemma 4.4.3i) (and since

|Ssu;su;k0 | = |Sn′;su;k0 | for n′ > su).
�

Remarks 4.4.1. According to Lemma 4.4.2(iii) and Theorem 4.4.4 sets of

- sparse partitions (see C1)),

- non-truncated heavy partitions (see C3b.1)) and

- truncated heavy partitions (see C3b.2))

are of interest when dealing with the computation of limits of PRMs.

These sets include an infinite number of sets of restricted partitions with
arbitrary but fixed number r of partitions.

This means that the corresponding PRMs are all of the same size, r by r.
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4.4.2 Limits of Partitions-Requirements-Matrices with
regard to Sets of Sparse Partitions

Sets of sparse partitions with k0 = 1 have only one partition. As this is a
trivial situation, the solution is straightforward. If k0 ≥ 2 then k0 ≥ �2su

n �
(see classification C1)). We can then use Theorem 4.4.4.

An infinite number of sets of sparse partitions with a given fixed number
of partitions r is obtained only when n → ∞ since, obviously, |Ssu;su;k0 | =
|Sn;su;k0 | for n ≥ su and according to Theorem 4.4.4.

Let us begin by considering an example:

Example 4.4.1. PRMs with regard to sets of partitions

Sn;4;3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
1
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
2
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1
1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(n > 4) and with

discrete uniformly distributed requirements are:

P ∗(n) = 1
4n ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4n−1 + n2 2n2 − 4n + 4 4n−1 + 13
3 n3 2 · 4n−1 − 13

3 n3

−n + 6 −21n2 + 110
3 n − 28 +18n2 − 95

3 n + 18

n2 4n−1 + 2n2 2 · 4n−1 + 13
3 n3 4n−1 − 13

3 n3

−2n + 4 −30n2 + 200
3 n − 56 +27n2 − 194

3 n + 52

n2 2n2 − 2n 2 · 4n−1 + 13
3 n3 2 · 4n−1 − 13

3 n3

−21n2 + 89
3 n − 6 +18n2 − 83

3 n + 6

n2 2n2 − 2n 13
3 n3 − 12n2 + 26

3 n 4n − 13
3 n3 + 9n2

−20
3 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The enumeration of P ∗(n) is carried out laboriously and it yields:



214

lim
n→∞P ∗(n) = 1

4

⎛
⎜⎜⎝

1 0 1 2
0 1 2 1
0 0 2 2
0 0 0 4

⎞
⎟⎟⎠ .

In this section we compute limits of PRMs P ∗(n) with regard to sets of
sparse partitions as n → ∞ in the general case.

This will yield triangular matrices with supplementary zeroes (see also
lim

n→∞ p∗12(n) = 0, Example 4.4.1).

With this in mind, we introduce the concepts of monotone successors,
and principle parts of partitions.

Definition 4.4.1. .

(a) Let s ∈ Sn;su;k0 be a partition with n >
(=)su and (w. l. o. g.)

s1 ≥ s2 ≥ · · · ≥ sn.
Then sH = (s1, · · · , sη) with si > 1 for i = 1, · · · , η and si ∈ {0, 1}

for i = η + 1, · · · , n is called the principal part of s.

(b) Let sl
H be the principal parts of the partitions sl ∈ Snl;sul;k0l

(where nl
>

(=)sul, sl
1 ≥ sl

2 ≥ · · · ≥ sl
nl

) for l = 1, 2.
Then s2 is called a monotone successor of s1 if η1 ≥ η2 and

s1
i ≥ s2

i for i = 1, · · · , η2(η1).

Lemma 4.4.5. .

(a) If {sf , sl} ⊆ Sn;su;k0 (where n >
(=)su) and sl is a monotone successor

of sf , then sl is also a successor of sf (see Definition 4.1.1).

(b) Let s′ be any monotone successor of s, s ∈ Sn;su;k0 and s′ ∈ Sn′;su′;k0′ .
Then s′′ ∈ Sn;su;k0 exists so that the principal parts of s′ and s′′ are

equal. (This means s′′ is a monotone successor of s.)

(The proof is obvious.)
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Theorem 4.4.6. (Limits of PRMs with regard to sets of sparse partitions)
Let n >

(=)su and {sf (n), sl(n)} ⊆ Sn;su;k0 with (w. l. o. g.)

sλ(n)1 ≥ sλ(n)2 ≥ · · · ≥ sλ(n)n for λ = f, l.

(This means, in particular, sλ(n)su+1 = sλ(n)su+2 = · · · = sλ(n)n = 0
for λ = f, l.)

Furthermore, let sλ := (sλ(n)1, · · · , sλ(n)su)T ∈ Ssu;su;k0 for λ = f, l.
Then,

lim
n→∞ p∗(sl(n)|sf (n))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if sl is not a monotone successor of sf ,

(q0(0) + q0(1))ηf−ηl
∑

sl
π∈Sl

ηf

∏
i:sf

i >sl
πi

≥2

q0(sl
πi

)
∏

i:sf
i =sl

πi
≥2

(q0(s
f
i ) + · · · + q0(k0))

if sl is a monotone successor of sf

where ηf and ηl are defined as in Definition 4.4.1(b) and

Sl
ηf

=
{
sπ ∈ Z

ηf

+ | sπ is a permutation of (sl
1, s

l
2, · · · , sl

ηl
, 0, · · · , 0)T ∈ Z

ηf

+

with sf
i ≥ sπi for i = 1, · · · , ηf

}
.

Proof. Let us denote

p∗(sl(n)|sf (n)) =
∑

w:s∗(sf (n),w)=sl(n)

q(w) =
∑

w∈B1

q(w) +
∑

w∈B2

q(w)

where

B1 = {w ∈ Bn;k0 | C[w; su] ∧ s∗(sf (n), w) = sl(n)}
and
B2 = {w ∈ Bn;k0 | C[su; w] ∧ s∗(sf (n), w) = sl(n)}.

Now, we consider w ∈ B1 :
C [w; su] implies that at least (n − su) coordinates of w are equal to 0.

The simple inequality relation
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∑
w∈B1

q(w) ≤
( n

su

)
q0(0)n−su (*1)

follows and furthermore

lim
n→∞

∑
w∈B1

q(w) ≤ lim
n→∞

( n

su

)
q0(0)n−su = 0 (*2)

since ( n
su) is a polynomial (of the degree su) and q0(0) < 1 (see (4.2.2)).

Thus,

lim
n→∞ p∗(sl(n) | sf (n)) = lim

n→∞
∑

w∈B2

q(w)

remains to be considered:

Case 1: Let sl not be a monotone successor of sf .
This means ∃i : sl(n)i > sf (n)i ∧ sl(n)i > 1.

Thus, at least (n− su) coordinates of w ∈ B2 must be equal to 0 accord-
ing to the iterative method from Section 4.2.2, case C[su, w]. Otherwise in
certain iteration steps 0’s would needlessly be increased to 1 and the above
sl(n)i could then not be obtained by the iterative method.

Analogously to (*1) and (*2)

lim
n→∞ p∗(sl(n)|sf (n)) = lim

n→∞
∑

w∈B2

q(w) = 0

follows in case 1.

Case 2: Let sl be a monotone successor of sf .
We partition B2 = B2a ∪ B2b where

B2a = {w ∈ B2 | ∀ permutations sl
π(n) of sl(n) satisfying (4.2.5)

∃i : sl
π(n)i > sf (n)i ∧ sl

π(n)i > 1},
B2b = {w ∈ B2 | ∃ a permutation sl

π(n) of sl(n) satisfying (4.2.5) :
sl
π(n)i ≤ sf (n)i for i = 1, · · · , ηf and

sl
π(n)i ∈ {0, 1} for i = ηf + 1, · · · , n}.

We see at first, analogous to case 1, that lim
n→∞

∑
w∈B2a

q(w) = 0 follows.

Finally, let sl
π(n) be a permutation of sl(n) with sl

π(n)i ≤ sf (n)i for
i = 1, · · · , ηf and sl

π(n)i ∈ {0, 1} for i = ηf + 1, · · · , n.
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Then s∗(sf (n), w) = sl(n), where sl
π(n) together with w and sf (n) fullfil

(4.2.5), is only valid for w ∈ Bn;k0 with

sf
i ≤ wi ≤ k0 if sl

π(n)i = sf
i (= sf (n)i) ≥ 2,

wi = sl
π(n)i if sf

i > sl
π(n)i ≥ 2,

wi ∈ {0, 1} if sf
i ≥ 2 ∧ sl

π(n)i ∈ {0, 1},
0 ≤ wi ≤ k0 if i > ηf

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.4.3)

where, additionally,
n∑

i=1
wi ≥ su.

If w fullfils (4.4.3) however
n∑

i=1
wi < su that implies that at least (n− su)

coordinates of w are equal to 0. Analogous to (*1) and (*2) the relation-
ship

lim
n→∞

∑
w:

∑
i

wi<su

q(w) ≤ lim
n→∞

( n

su

)
q0(0)n−su = 0 (*3)

follows.

If sl
π(n) corresponds to w as in B2b then, obviously,

sl
π ∈ Sl

ηf
, where sl

πi
=

{
sl
π(n)i if sl

π(n)i ≥ 2,

0 otherwise
for i = 1, · · · , ηf .

Different sl
π imply different w which together with the corresponding

sl
π(n) satisfy (4.4.3). This in conjunction with (*3) yields

lim
n→∞

∑
w∈B2b

q(w)

=
∑

sl
π∈Sl

ηf

(q0(0)+q0(1))ηf−ηl
∏

i:sf
i >sl

πi
≥2

q0(sl
πi

)
∏

i:sf
i =sl

πi≥2

(q0(s
f
i )+· · ·+q0(k0))

= lim
n→∞ p∗(sl(n)|sf (n)). �

(See also Example 4.4.1.)

Corollary 4.4.7. Let su and k0 (su ≥ k0) be given and let the numbering
of the partitions of the sets Sn;su;k0 = {s1(n), · · · , sr(n)}, n >

(=)su be so that
{sf (n) → sl(n)} ⇒ {f < l}.

Then the matrix lim
n→∞P ∗(n) is a triangular matrix.
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4.4.3 Limits of Partitions-Requirements-Matrices with
regard to Sets of Non-Truncated Heavy Partitions

Sets of non-truncated heavy partitions can be represented in the form of
Sn;nk0−s̄u;k0 with s̄u < k0, s̄u < n, (n ≥ 2, k0 ≥ 2) (see Lemma 4.4.1(b)). In
particular, this means that we use the representation

su = nk0 − s̄u (4.4.4)

for su.

Example 4.4.2. Example sets of non-truncated heavy partitions with one
or two partitions are

Sn;nk0−1;k0 , n ≥ 2, k0 ≥ 2 and Sn;nk0−2;k0 , n ≥ 3, k0 ≥ 3.

In greater detail,

(a) Sn;nk0−1;k0 , n ≥ 2, k0 ≥ 2{(
2
1

)}
, · · · ,

{(
k0

k0 −1

)}
, · · ·

...
...⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

2
...
2
1

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , · · · ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

k0
...
k0

k0 − 1

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , · · ·

...
...

(b) (Sn;nk0−2,k0 ,→), n ≥ 3, k0 ≥ 3⎧⎨
⎩
⎛
⎝ 3

3
1

⎞
⎠ →

⎛
⎝ 3

2
2

⎞
⎠
⎫⎬
⎭ , · · · ,

⎧⎨
⎩
⎛
⎝ k0

k0

k0 − 2

⎞
⎠ →

⎛
⎝ k0

k0 − 1
k0 − 1

⎞
⎠
⎫⎬
⎭ , · · ·

...
...⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

3
...
3
3
1

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

3
...
3
2
2

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, · · · ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

k0
...
k0

k0

k0 − 2

⎞
⎟⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

k0
...
k0

k0 − 1
k0 − 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, · · ·
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...
...

Lemma 4.4.8. Sets of non-truncated heavy partitions

Sn;nk0−s̄u;k0 (s̄u < k0, s̄u < n, n ≥ 2, k0 ≥ 2) are equivalent to sets

of sparse partitions Sn;s̄u;k̄0
with k̄0 = s̄u with respect to to the partial order.

A corresponding relation between the partitions is

s̄ =

⎛
⎜⎝ k0

...
k0

⎞
⎟⎠− s, s ∈ Sn;su;k0(su = nk0 − s̄u), s̄ ∈ Sn;s̄u;k̄0

.

Furthermore, the least element of Sn;s̄u;k̄0
is (s̄u, 0, . . . , 0)T .

The proof is obvious. (See also Lemma 4.4.2.)

In Example 4.4.2
{(

2
1

)}
, · · · ,

{(
k0

k0 − 1

)}
are equivalent to{(

1
0

)}
and so on.

Lemma 4.4.8 and Theorem 4.4.4 lead to the following remarks:

Remarks 4.4.2. An infinite number of sets of non-truncated heavy parti-
tions with a given fixed number of partitions is yielded by k0 → ∞ or n → ∞.

(See also Example 4.4.2.)

The case n → ∞
can be discussed analogously to Section 4.4.2 if we pay attention
to the equivalence from Lemma 4.4.8!

Here we consider the case k0 → ∞.

This requires additional properties of the probability functions q:
Let qk0 denote probability functions corresponding to Bn;k0 (where n is
fixed). Then we assume

lim
k0→∞

qk0
0 (wi) = 0 for wi = 0, 1, . . . (4.4.5)

and
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∃ c(k0) (real numbers with 1 > c(k0) > 0) :

∃ lim
k0→∞

q
k0
0 (wi)
c(k0) �= 0 for wi = 0, 1, . . . .

(4.4.6)

( lim
k0→∞

(qk0
0 (wi))l

c(k0)
= 0 for l ≥ 2 and wi = 0, 1, . . . . (4.4.7)

follows from (4.4.5) and (4.4.6).)

(The limits lim
k0→∞

q
k0
0 (·)
c(k0) are unique, however can differ by a constant mul-

tiple (in relation to c(k0)).)

Definition 4.4.2. .

(a) Let s ∈ Sn;su;k0 be a non-truncated heavy partition with (w. l. o. g.)
s1 ≥ s2 ≥ · · · ≥ sn.

Then sH = (sη, · · · , sn) with si < k0 − 1 for i = η, · · · , n and
si ∈ {k0, k0 − 1} for i = 1, · · · , η− 1 is called the principal part of s.

(b) Let sl
H be the principal parts of non-truncated heavy partitions

sl ∈ Snl;sul;k0l
(where sl

1 ≥ sl
2 ≥ · · · ≥ sl

nl
) for l = 1, 2.

Then s2 is called a restricted monotone successor of s1 if
n1 − η1 ≥ n2 − η2, and s1

n1−i ≤ s2
n2−i for i = 0, · · · , (n1 − η1)n2 − η2

and

a permutation s2
π of s2 exists such that

s1
n1−i �= s2

π(n2−i) for at most one i ∈ {0, · · · , n1 − η1}. (4.4.8)

(This also implies n1 − η1 = n2 − η2 or n1 − η1 = n2 − η2 + 1.)

Remarks 4.4.3. We cannot derive Definition 4.4.2(b) completely from Def-
inition 4.4.1(b) by using the equivalence of sets with non-truncated heavy
partitions and certain sets with sparse partitions (see Lemma 4.4.8) because
of condition (4.4.8)!

Lemma 4.4.9. .

(a) Let Sn;su;k0 be a set of non-truncated heavy partitions and
{sf , sl} ⊆ Sn;su;k0. If sl is a restricted monotone successor of sf then
sl is also a successor of sf (see Definition 4.1.1).
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(b) Let Sn;su;k0 , Sn′,su′,k′
0

be sets of non-truncated heavy partitions and
s ∈ Sn;su;k0, s′ ∈ Sn′;su′;k′

0
.

If s′ is a restricted monotone successor of s, then s′′ ∈ Sn;su;k0

exists such that the principal parts of s′ and s′′ are equal.
(This means, s′′ is a restricted monotone successor of s.)

(The proof is obvious.)

Theorem 4.4.10. (Limits of PRMs with regard to sets of non-truncated
heavy partitions)

Let Sn;su;k0 be sets of non-truncated heavy partition where su is rep-
resented by su = nk0 − s̄u (see Lemma 4.4.2) with fixed n and s̄u (and
n ≥ 2, k0 ≥ 2).

Furthermore, let {sf (k0), sl(k0)} ⊆ Sn;su;k0 with (w. l. o. g.)
sλ(k0)1 ≥ sλ(k0)2 ≥ · · · ≥ sλ(k0)n for λ = f ; l.

(In particular, that means sλ(k0)1 = · · · = sλ(k0)n−s̄u = k0 for
λ = f ; l.)

In addition let sλ = (sλ
1 , · · · , sλ

s̄u)T := (sλ(k0)n−s̄u+1, · · · , sλ(k0)n)T ∈ Ss̄u,su,k0

(where
∑
i

sλ
i = s̄uk0 − s̄u).

Finally, let given probability functions qk0 fulfill (4.4.5) and (4.4.6) for
certain c(k0) and

q0
0(wi) := lim

k0→∞
q

k0
0 (wi)
c(k0) .

Then,

lim
k0→∞

1
c(k0)(p

∗(sl(k0)|sf (k0)) − δ(sl(k0), sf (k0)))
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if sl is not a restricted monotone successor of sf ,

− ∑
i:sf

i ≤k0−2 13
(q0

0(s
f
i + 1) + · · · + q0

0(k0)) if sf = sl,

∑
sl
π∈Sl

ηf

|{j|sf
j = sf

i0
< sl

πi0
|

⎧⎪⎨
⎪⎩

q0
0(s

l
πi0

) for sl
πi0

< k0 − 1,

(q0
0(k0 − 1) + q0

0(k0)) for sl
πi0

= k0 − 1

if sl is a restricted monotone successor of sf and sl �= sf

where δ(sl(k0), sf (k0)) =
{

1 if sf (k0) = sl(k0)
0 if sf (k0) �= sl(k0)

,

Sl
ηf

=
{

sπ ∈ Z
n−ηf+1
+ | sπ is a permutation

of
{

(sl
ηl

, · · · , sl
n)T if ηf = ηl,

(k0 − 1, sl
ηl

, · · · , sl
n)T if ηf = ηl − 1

with sf
i ≤ sπi for i = ηf , · · · , n

}
and ηf , ηl are as in Definition 4.4.2(b).

Formally, the proof is analogous to the proof of Theorem 4.4.6, however
the roles of the cases C[w, su] and C[su,w] are reversed. In detail the con-
siderations are somewhat different.

We demonstrate this for
∑

w∈B2

qk0(w)

(where B2 = {w ∈ Bn;k0 | C[su; w] ∧ s∗(sf (k0), w) = sl(k0)}).
(4.2.5), case C[su;w] implies that an sl

π(k0), a permutation of sl(k0), exists
with w ≥ sl

π(k0). Hence, at least one coordinate of w is equal to k0 and at
least one is either also equal to k0 or is equivalent to k0 − 1 (since sl

π(k0) is
a non-truncated heavy partition).

The simple inequality relation

1
c(k0)

∑
w∈B2

qk0(w) ≤ 1
c(k0)

(
n
2

)
(qk0

0 (k0) + qk0
0 (k0 − 1))2

follows and furthermore (4.4.7) yields

13This is a finite number of i since s̄u is fixed.
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∑
w∈B2

q0
0(w) ≤ lim

k0→∞
1

c(k0)

(
n
2

)
(qk0

0 (k0) + qk0
0 (k0 − 1))2 = 0.

Corollary 4.4.11. Let sets of non-truncated heavy partition Sn;su;k0 as in
Theorem 4.4.10 be given and let the numbering of the partitions of the sets
Sn;su;k0 = {s1(k0), · · · , sr(k0)} be such that {sf (k0) → sl(k0)} ⇒ {f < l}.

Then, the matrix lim
k0→∞

1
c(k0)

(P ∗(k0) − I) is a triangular matrix.

Example 4.4.3. Let us begin with

Sn;4;4 (n > 4) − sets of sparse partitions and
S5;5k0−4;k0 (k0 > 4) − sets of non-curtailed heavy partitions.

Such sets are equivalent with respect to the partial order (see Lemma 4.4.8).

Now, we compare some limits of elements of the corresponding PRMs:

lim
n→∞ p∗(s3(n)|s3(n))−1 = (q0(2)+· · ·+q0(k0))2−1 = (1−q0(0)−q0(1))2−1

(s3(n) = (2, 2, 0, · · · , 0)T ; see Theorem 4.4.6)

with

lim
k0→∞

1
c(k0)(p

∗(s3(k0)|s3(k0)) − 1) = −2(q0
0(k0) + q0

0(k0 − 1))

(s3(k0) = (k0, k0, k0, k0 − 2, k0 − 2)T ; see Theorem 4.4.10))

and

lim
n→∞ p∗(s4(n)|s3(n)) = (q0(0) + q0(1)) 2 (q0(2) + · · · + q0(k0))

= 2(q0(0) + q0(1))(1 − q0(0) − q0(1))

(s4(n) = (2, 1, 1, 0, · · · , 0)T ; see Theorem 4.4.6)

with

lim
k0→∞

1
c(k0)p

∗(s4(k0)|s3(k0)) = 2(q0
0(k0 − 1) + q0

0(k0))

(s4(k0) = (k0, k0, k0−1, k0−1, k0−2)T , see Theorem 4.4.10)).

These limits as well as the formulas for limits of PRMs with regard to sets
of sparse partitions (Theorems 4.4.6) and of PRMs with regard to sets of
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non-truncated heavy partitions (Theorems 4.4.10) are very different. In con-
trast to that, solutions of Poisson equations with regard to limits of corre-
sponding PRMs will have similar structures, see the Theorems 4.6.8 and
4.6.12 in Section 4.6.)

4.5 Further Results from Elements of Partitions-
Requirements-Matrices

PRMs depend on the variables n, su and k0. Of these, it seems most difficult
to find formulas which place the dependence on su.

In Section 4.5.1 we will show, by means of the concept of perturbed parti-
tions, that with regard to the variables n and k0, elements of PRMs are sums
of probabilities over subsets of requirements whose numbers of elements are
described by polynomials in k0 and/or either polynomials or sums of expo-
nential functions and polynomials in n.

Hence, the elements of PRMs themseves (multiplied by (k0+1)n) are poly-
nomials or sums of such exponential functions and polynomials in the case
of discrete uniformly distributed requirements. (See also Example 4.4.1.)

Thereby the exponential functions can be determined similarly to the
limits of elements of PRMs in Section 4.4. The determination of the poly-
nomials however appears more difficult. The degree of such polynomials and
the corresponding leading terms are given in Section 4.5.1.

Remarks on the methods of the corresponding proofs follow, in particular
for the use of the concept of disturbed partitions.

Finally, in Section 4.5.2 the elements of the last row and the last column
of PRMs (in the case that n ≥ su) are computed.

In this section we also use the terminology from Section 4.3.
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4.5.1 Elements of PRMs in Dependence on Variables n
and k0

Theorem 4.5.1. Let s̄f ∈ Sn̄;su;k0 and s̄l ∈ Sn̄;su;k0 be given with
(w. l. o. g.) s̄f

1 ≥ s̄f
2 ≥ · · · ≥ s̄f

n̄ and s̄l
1 ≥ s̄l

2 ≥ · · · ≥ s̄l
n̄ and where

n̄ ≥ max{F,L} (F, L as in (4.3.1)) and (su ≥) k0 ≥ max{sf
max, sl

max},
sf
max = s̄f

1 , sl
max = s̄l

1.

Furthermore, let sλ = (s̄λ
1 , · · · , s̄λ

Λ, 0, · · · , 0) ∈ Sn;su;k0 for λ = f, l,
Λ = F, L and any n ≥ max{F, L}.

Then the following statements are valid:

(i) The number of elements in the sets

B
∗(f,l)
n;k0

:= B∗
n;k0

(sf , sl) =
{
w ∈ Bn;k0 | sl = s∗(sf , w)

}
(see Defini-

tion 4.2.3(b))

(with n ≥ max{F, L} and su ≥ k0 ≥ max{sf
max, sl

max})
is a polynomial in k0 and/or either a polynomial or a sum of an expo-
nential function and a polynomial in n.

(ii) In the case of discrete uniformly distributed requirements, the elements
of the corresponding PRMs multiplied by (k0 + 1)n are polynomials in
k0 and/or either polynomials or sums of exponential functions and
polynomials in n.

The degree of the polynomial part of (k0 + 1)n ∗ p∗fl, as function
of n, is L (the number of parts of sl which are not equal to 0) for
sl �= (1, ..., 1, 0, ..., 0) and su − 1 for sl = (1, ..., 1, 0, ..., 0).

The coefficient of the leading term 14 of the polynomial in the case
that sl �= (1, ..., 1, 0, ..., 0) is:

1
L! ∗

(
L
L∗

2

)
∗ C∗ ∗

[
L∗

2∑
j=L1

(
L∗

2

j

)(
k0 + 1 − sl

max

)j

]

with sl
max := sl

1 = ... = sl
L1

(L1 as in (4.3.3)) the maximum of the
components of sl,

L∗
2 =

{
L2 if sl

L1
= sl

L2
+ 1,

L1 otherwise
14See also [18].
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and C∗ is the number of permutations of the L − L∗
2 components

of sl which are smaller than sl
max − 1.

In the case that sl = (1, ..., 1, 0, ..., 0), the coefficient of the leading
term of the polynomial is:

− 1
(su−1)! ∗ (ksu−1

0 − 1).

For n >
(=)su all corresponding PRMs are of the same type and the

polynomial parts of the elements multiplied by (k0 + 1)n as functions
of n, which are in the same column, must have the same leading term.

Proof. We use ”perturbed partitions” (see Section 4.3) in the following
proof.

The results with respect to k0 follow directly from Section 4.3:
Thereby we can confine ourselves to the case C[su,w], since k0 does not

play a role in the case C[w, su].
With regard to determination of corresponding sets of perturbed parti-

tions, the possibilities of (Jo, jo, j1) with Ŝf,l
π (Jo, jo, j1) �= ∅ and the elements

of Ŝf,l
π (Jo, jo, j1) depend directly on sf and sl however not on k0. (See Def-

initions 4.3.1 and 4.3.3 and also Lemma 4.3.1.)
Only sets B2

n;k0
(sf , ŝl

π) depend on k0 (see Definition 4.3.4). That
|B2

n;k0
(sf , ŝl

π)| are polynomials in k0 follows from (4.3.11) and also that the
elements of the corresponding PRMs multiplied by (k0+1)n are polynomials
in k0 in the case of discrete uniformly distributed requirements.

In relation to variable n we also use perturbed partitions for the proof.
The formulas (4.3.9) and (4.3.10) or (4.3.13) and (4.3.14) are therefore

not directly suitable for a proof since in these formulas the sums
· · · ∑

ŝl
π∈Ŝf,l

π (Jo,jo,j1)

· · · or · · · ∑
ŝl
π∈Ŝf,l

π (Jo,j3,j4)

· · · are included and the

numbers of elements ŝl
π in the sets Ŝf,l

π (Jo, jo, j1) and Ŝf,l
π (Jo, j3, j4) can de-

pend on n.
For this reason we will construct certain subsets of Ŝf,l

π (Jo, jo, j1) and
Ŝf,l

π (Jo, j3, j4).

Furthermore, we will have to consider four cases, or five cases if sf = sl.

For this proof we also define that products over sets are equal to 1 if the
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sets are empty!

Case: In C[su; w] a (Jo, jo)-perturbation of the relation ”≥” between
sf and sl

π is considered. (see Definition 4.3.1)

Furthermore, let ŝl be a (Jo, jo)-perturbed partition of sl

(see Definition 4.3.2).

Subcase: σl
Jo

> 1. (σl
Jo

as from Definition 4.3.1)

We split non-empty sets Ŝf,l
π (Jo, jo, j1) (see Definition 4.3.3) into the dis-

junct subsets:

Ŝ
2,(f,l)
πξ (Jo, jo, j1), ξ = 1, · · · , Ξ(= Ξ(Jo, jo, j1))

where Ŝ
2,(f,l)
πξ include elements ŝl

π with certain fixed components ŝl
πi

. In
greater detail:

LJo − jo components ŝl
πi

≥ σl
Jo

of ŝl
π are fixed for i where

ŝl
i ≥ σl

Jo
so that sf

i ≥ ŝl
πi

(4.5.1)

(see (d10) in Lemma 4.3.1),

and if σl
Jo

− 1 = σl
Jo+1 then in addition LJo+1 − LJo − j1 components

ŝl
πi

= σl
Jo

− 1 of ŝl
π are fixed for i where

ŝl
i = σl

Jo
− 1 so that sf

i > ŝl
πi

(4.5.2)

(see (d11) in Lemma 4.3.1).

Furthermore, we use the symbols

I
2,(f,l)
πξ (Jo, jo, j1) for the set of indices i for which
the components ŝl

πi
of ŝl

π are fixed above,
(4.5.3)

n1 = n1(Jo, jo, j1) =

{
LJo+1 − jo − j1 if σl

Jo
− 1 = σl

Jo+1,

LJo − jo if σl
Jo

− 1 > σl
Jo+1,

(4.5.4)

n2 = n2(Jo, jo, j1) = n − n1, (4.5.5)
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n3 = n3f,l
ξ (Jo, jo, j1) = n2 −

∣∣∣{sf
i | sf

i ≥ σl
Jo

∧ i /∈ I
2,(f,l)
πξ (Jo, jo, j1)

}∣∣∣ .
(4.5.6)

(Obviously,
∣∣∣I2,(f,l)

πξ (Jo, jo, j1)
∣∣∣ = n1 and n −

∣∣∣I2,(f,l)
πξ (Jo, jo, j1)

∣∣∣ = n2.)

We now want to compute the numbers of elements in the sets
Ŝ

2,(f,l)
πξ (Jo, jo, j1), ξ = 1, · · · , Ξ. These numbers are equal to the numbers of

possibilities that the remaining n2 components ŝl
i, i /∈ I

2,(f,l)
πξ (Jo, jo, j1) of

ŝl can be permuted under certain restrictions.

In greater detail, at first, the jo + j1 components ŝl
i with size σl

Jo
− 1,

which were not taken into consideration in (4.5.2), can only be permuted in
such a way that

sf
i ≤ ŝl

πi

(see (d8) in Lemma 4.3.1).
That means, these components ŝl

i can only be permuted with respect to n3
positions.

Thus,
(

n3
jo + j1

)
possibilities follow.

Then, n2−(jo+j1) positions remain for the L−n1−(jo+j1) components
ŝl
i of ŝl with 0 < ŝl

i < σl
Jo

− 1.

That yields
(

n2 − (jo + j1)
L − n1 − (jo + j1)

)
(L−n1−(jo+j1))!∏

i: 1≤σl
i
<σl

Jo
−1

(Li−Li−1)! possibilities.

Finally, the positions still remaining are occupied with ŝl
i = 0.

In summary, a set Ŝ
2,(f,l)
πξ (Jo, jo, j1), ξ ∈ {1, · · · ,Ξ} has
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Z1f,l
ξ (Jo, jo, j1) :=

(
n3

jo + j1

)(
n2 − (jo + j1)

L − n1 − (jo + j1)

)
(L−n1−(jo+j1))!∏

i: 1≤σl
i
<σl

Jo
−1

(Li−Li−1)!

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n3

jo + j1

)(
n − LJo+1

L − LJo+1

)
(L−LJo+1)!∏

i: 1≤σl
i
<σl

Jo
−1

(Li−Li−1)!

if σl
Jo

− 1 = σl
Jo+1,(

n3
jo

)(
n − LJo

L − LJo

)
(L−LJo )!∏

i: 1≤σl
i
<σl

Jo
−1

(Li−Li−1)!

if σl
Jo

− 1 > σl
Jo+1,

(4.5.7)
elements, where Z1 only depends on ξ as n3.

Now, we consider the sets

B
2,(f,l)
ξ (Jo, jo, j1) :=

⋃
ŝl
π∈Ŝ

2,(f,l)
πξ

(Jo,jo,j1)

B2
n;k0

(sf , ŝl
π), ξ = 1, · · · , Ξ, (4.5.8)

with B2
n;k0

(sf , ŝl
π) as in Definition 4.3.4.

According to (4.5.7) and Definition 4.3.4, a set B
2,(f,l)
ξ (Jo, jo, j1) contains

the following number of elements:

∣∣∣B2,(f,l)
ξ (Jo, jo, j1)

∣∣∣ = Z1f,l
ξ (Jo, jo, j1) ∗ Z2f,l

ξ (Jo, jo, j1) ∗ Z3f,l(Jo, jo, j1),
(4.5.9)

where

Z2f,l
ξ (Jo, jo, j1) =

∏
i:sf

i =ŝl
πi

≥σl
Jo

(k0 + 1 − ŝl
πi

) (4.5.10)

(see also Definition 4.3.4, (d13) and (4.5.1))

and
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Z3f,l(Jo, jo, j1) =
(
k0 + 2 − σl

Jo

)jo+j1 −
jo−1∑
j=0

(
jo + j1

j

)(
k0 + 1 − σl

Jo

)j

=
jo+j1∑
j=jo

(
jo + j1

j

)(
k0 + 1 − σl

Jo

)j

(4.5.11)
(see Definition 4.3.4, (d14)) and thereby

”−
jo−1∑
j=0

(
jo + j1

j

)(
k0 + 1 − σl

Jo

)j” includes that w with more than j1

coordinates wi = σl
Jo
−1 are not feasible according to Definition 4.3.4, (d14).

Thus,
∣∣∣B2,(f,l)

ξ (Jo, jo, j1)
∣∣∣ are polynomials in n!

The consideration, in particular, of Z1f,l
ξ (Jo, jo, j1) implies that the degree

of such a polynomial is

jo + j1 + L − LJo+1 if σl
Jo

− 1 = σl
Jo+1,

and jo + L − LJo if σl
Jo

− 1 > σl
Jo+1.

(4.5.12)

Now, let

p
2,(Jo,jo,j1,ξ)
fl :=

∑
w∈B

2,(f,l)
ξ (Jo,jo,j1)

q(w). (4.5.13)

If the coordinates wi, i = 1, · · · , n of the requirements w ∈ Bn;k0 are inde-
pendent and identically distributed, where (4.2.1) and (4.2.2) are fulfilled,
then

p
2,(Jo,jo,j1,ξ)
fl

= Z1f,l
ξ (Jo, jo, j1) ∗ ZP2f,l

ξ (Jo, jo, j1) ∗ ZP3f,l(Jo, jo, j1) ∗ ZP1f,l(Jo, jo, j1),
(4.5.14)

follows, where
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ZP2f,l
ξ (Jo, jo, j1) =

∏
i:sf

i =ŝl
πi

≥σl
Jo

(
k0∑

wi=ŝl
πi

q0(wi))

∏
i:sf

i >ŝl
πi

≥σl
Jo

q0(ŝl
πi

)) q0(σl
Jo

− 1)((LJo+1−LJo−j1)∗δ)
(4.5.15)

with δ =
{

1 if σl
Jo

− 1 = σl
Jo+1,

0 otherwise

(see (4.5.1), (4.5.2) and Definition 4.3.4, (d13), (d15)),

ZP3f,l(Jo, jo, j1) =

⎛
⎝ k0∑

wi=σl
Jo

−1

q0(wi)

⎞
⎠jo+j1

−
jo−1∑
j=0

(
jo + j1

j

)
q0(σl

Jo
− 1)jo+j1−j

⎛
⎝ k0∑

wi=σl
Jo

q0(wi)

⎞
⎠j

=
jo+j1∑
j=jo

(
jo + j1

j

)
q0(σl

Jo
− 1)jo+j1−j

⎛
⎝ k0∑

wi=σl
Jo

q0(wi)

⎞
⎠j

(4.5.16)
(see Definition 4.3.4, (d14)),

(thereby ”−
jo−1∑
j=0

(
jo + j1

j

)
q0(σl

Jo
−1)jo+j1−j

⎛
⎝ k0∑

wi=σl
Jo

q0(wi)

⎞
⎠j

”

includes that w with more than j1 coordinates wi = σl
Jo
−1 are

not feasible according to Definition 4.3.4, (d14))

and
ZP1f,l(Jo, jo, j1) =

∏
i:ŝl

πi
<σl

Jo
−1

q0(ŝl
πi

)) (4.5.17)

(see Definition 4.3.4, (d15)).

Finally, in the case of discrete uniformly distributed requirements, (4.5.9)
or (4.5.14) implies
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p
2,(Jo,jo,j1,ξ)
fl = 1

(k0+1)n

∣∣∣B2,(f,l)
ξ (Jo, jo, j1)

∣∣∣
= 1

(k0+1)n ∗ Z1f,l
ξ (Jo, jo, j1) ∗ Z2f,l

ξ (Jo, jo, j1) ∗ Z3f,l(Jo, jo, j1).
(4.5.18)

Subcase: σl
Jo

= 1 (σl
Jo

as from Definition 4.3.1)
which means Jo = y, see (4.3.3)

(Then and only then is sl a monotone successor of sf , according to Defi-
nition 4.4.1(b)!)

Initially,

j1 = n −
∣∣∣{i | sf

i �= 0
}∣∣∣− jo = n − F − jo (4.5.19)

follows for σl
Jo

= 1 according to Definition 4.3.3, (d6),
where F (= Fz) as in (4.3.1) and (4.3.2).

We now use in principle methods similar to those in the subcase σl
Jo

> 1:

Ŝ
2,(f,l)
πξ (y, jo, j1), B

2,(f,l)
ξ (y, jo, j1), p

2,(y,jo,j1,ξ)
fl ξ = 1, · · · ,Ξ have the same

meaning as in the subcase σl
Jo

> 1 (see (4.5.8) and (4.5.13) among other
things).

However, we will see that a set Ŝ
2,(f,l)
πξ (y, jo, j1) contains only one element.

Sets Ŝ
2,(f,l)
πξ (y, jo, j1) are characterized by certain fixed components ŝl

πi

of their elements ŝl
π. Similar to (4.5.1) and (4.5.2) and using σl

y = 1 and
(4.5.19):

L − jo components ŝl
πi

≥ 1 of ŝl
π are fixed for i where

ŝl
i ≥ 1 so that sf

i ≥ ŝl
πi

(4.5.20)

(see (d10) in Lemma 4.3.1),
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and if n > L then n − L − j1 = F + jo − L (see (4.5.19)) additional
components of ŝl

πi
of ŝl

π are fixed for i where

sf
i > 0 so that ŝl

πi
= 0 (4.5.21)

(see (d11) in Lemma 4.3.1).

For the remaining positions i, the relationship sf
i = 0 is valid and,

hence, sf
i ≤ ŝl

πi
= 0 (see (d8) in Lemma 4.3.1).

Thus, all components ŝl
πi

have been fixed, Ŝ
2,(f,l)
πξ (y, jo, j1) only include one

element and

B
2,(f,l)
ξ (y, jo, j1) = B2

n;k0
(sf , ŝl

π), with
{
ŝl
π

}
= Ŝ

2,(f,l)
πξ (y, jo, j1)

follows, where B2
n;k0

(sf , ŝl
π) is defined as in Definition 4.3.4.

Specifying Z2f,l
ξ (Jo, jo, j1) and Z3f,l(Jo, jo, j1) from (4.5.10) and (4.5.11),

the number of elements of such a set of requirements is∣∣∣B2,(f,l)
ξ (y, jo, j1)

∣∣∣
=

∏
i:sf

i =ŝl
πi

≥1

(k0 + 1 − ŝl
πi

) ∗
[
(k0 + 1)n−F −

jo−1∑
j=0

(
n − F

j

)
kj

0

]

⎛
⎝=

∏
i:sf

i =ŝl
πi

≥1

(k0 + 1 − ŝl
πi

) ∗
[

n−F∑
j=jo

(
n − F

j

)
kj

0

]⎞⎠
(4.5.22)

(where
{
ŝl
π

}
= Ŝ

2,(f,l)
πξ (y, jo, j1)).

Obviously,
∣∣∣B2,(f,l)

ξ (y, jo, j1)
∣∣∣ is a sum of an exponential function and a poly-

nomial in n. The degree of the polynomial is then

jo − 1. (4.5.23)

If the coordinates wi, i = 1, · · · , n of the requirements w ∈ Bn;k0 are inde-
pendent and identically distributed, where (4.2.1) and (4.2.2) are fulfilled,
then a specification of ZP2f,l

ξ (Jo, jo, j1) and ZP3f,l(Jo, jo, j1) from (4.5.15)
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and (4.5.16) yields
(ZP1f,l(Jo, jo, j1) is not relevant here since ŝl

πi
< σl

Jo
− 1 = 0 is not

possible):

p
2,(y,jo,j1,ξ)
fl =

∏
i:sf

i =ŝl
πi

≥1

(
k0∑

wi=ŝl
πi

q0(wi))
∏

i:sf
i >ŝl

πi
≥1

q0(ŝl
πi

) q0(0)((F+jo−Ly)

∗
[

n−F∑
j=jo

(
n − F

j

)
q0(0)n−F−j (1 − q0(0))j

]
,

(4.5.24)
(where

{
ŝl
π

}
= Ŝ

2,(f,l)
πξ (y, jo, j1)).

Finally, in the case of discrete uniformly distributed requirements, (4.5.22)
implies the following analogous to (4.5.18)

p
2,(y,jo,j1,ξ)
fl

= 1
(k0+1)n ∗ ∏

i:sf
i =ŝl

πi
≥1

(k0 + 1 − ŝl
πi

) ∗
[
(k0 + 1)n−F −

jo−1∑
j=0

(
n − F

j

)
kj

0

]

= 1
(k0+1)n ∗ ∏

i:sf
i =ŝl

πi
≥1

(k0 + 1 − ŝl
πi

) ∗
[

n−F∑
j=jo

(
n − F

j

)
kj

0

]
.

(4.5.25)

Case: In C[w; su] a (Jo, j3)-perturbation of the relation ”≤” between
sf and sl

π is considered. (see Definition 4.3.5)

Furthermore, let ŝl be a (Jo, j3)-perturbed partition of sl

(see Definition 4.3.6).

Subcase: σl
Jo

> 0. (σl
Jo

as from Definition 4.3.5)

We later split non-empty sets Ŝf,l
π (Jo, j3, j4) (see Definition 4.3.7) into

disjunct subsets:
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Ŝ
1,(f,l)
πξ (Jo, j3, j4), ξ = 1, · · · , Ξ(= Ξ(Jo, j3, j4)).

At first, the n−L components of sl and ŝl with value 0 can only be permuted
in such a way that

ŝl
πi

= 0 ⇒ sf
i = 0 and

sl
πi

= 0 ⇒ sf
i = 0

since sf
i ≤ ŝl

πi
= 0 follows from Lemma 4.3.7, (d27) for ŝl

πi
= 0 and σl

Jo
> 0.

This yields (
n − F
n − L

)
=

(
n − F
L − F

)
(4.5.26)

possibilities.

ŝl
πi

= 0 into consideration, certain other components ŝl
πi

of the elements

ŝl
π of Ŝ

1,(f,l)
πξ (Jo, j3, j4) are fixed. More specifically:

L − LJo−1 − j3 components 0 < ŝl
πi

≤ σl
Jo

of ŝl
π are fixed for i where

0 <ŝl
i ≤ σl

Jo
so that sf

i ≤ ŝl
πi

(4.5.27)

(see (d27) in Lemma 4.3.7),

and if σl
Jo

+ 1 = σl
Jo−1 then LJo−1 − LJo−2 − j4 additional components

ŝl
πi

= σl
Jo

+ 1 of ŝl
π are fixed for i where

ŝl
i = σl

Jo
+ 1 so that sf

i < ŝl
πi

(4.5.28)

(see (d28) in Lemma 4.3.7).

Furthermore, we use the symbols

I
1,(f,l)
πξ (Jo, j3, j4) for the set of indices i for which the
components ŝl

πi
of ŝl

π (ŝl
πi

= 0 included) are fixed above,
(4.5.29)

n4 = n4(Jo, j3, j4) =

{
n − LJo−2 − j3 − j4 if σl

Jo
+ 1 = σl

Jo−1,

n − LJo−1 − j3 if σl
Jo

+ 1 < σl
Jo−1,

(4.5.30)
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n5 = n5(Jo, j3, j4) = n − n4 =

{
LJo−2 + j3 + j4 if σl

Jo
+ 1 = σl

Jo−1,

LJo−1 + j3 if σl
Jo

+ 1 < σl
Jo−1,

(4.5.31)

n6 = n6f,l
ξ (Jo, j3, j4) = n5 −

∣∣∣{sf
i | sf

i ≤ σl
Jo

∧ i /∈ I
1,(f,l)
πξ (Jo, jo, j1)

}∣∣∣ .
(4.5.32)

(Obviously,
∣∣∣I1,(f,l)

πξ (Jo, j3, j4)
∣∣∣ = n4.)

We now want to compute the numbers of elements in the sets

Ŝ
1,(f,l)
πξ (Jo, j3, j4), ξ = 1, · · · ,Ξ. These numbers are equal to

(
n − F
L − F

)
(see (4.5.26)) multiplied by the numbers of the possibilities the remaining
n5 components ŝl

i, i /∈ I
1,(f,l)
πξ (Jo, j3, j4) of ŝl have to permute under certain

restrictions.

More specifically, at first, the j3 + j4 components ŝl
i with value σl

Jo
+ 1,

which were not taken into consideration in (4.5.28), can only be permuted
in such a way that

sf
i ≥ ŝl

πi

(see (d29) in Lemma 4.3.7).
This means, these parts ŝl

i can only be permuted with regard to n6 posi-
tions.

Thus,
(

n6
j3 + j4

)
possibilities follow.

Then n5 − (j3 + j4) = n − n4 − (j3 + j4) positions remain for the
n − n4 − (j3 + j4) parts ŝl

i of ŝl with ŝl
i > σl

Jo
+ 1.

That yields (n5−(j3+j4))!∏
i: σl

i
>σl

Jo
+1

(Li−Li−1)! possibilities.

In summary, it follows that a set Ŝ
1,(f,l)
πξ (Jo, j3, j4), ξ ∈ {1, · · · , Ξ} has
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Z4f,l
ξ (Jo, j3, j4) :=

(
n − F
L − F

) (
n6

j3 + j4

)
(n5−(j3+j4))!∏

i: σl
i
>σl

Jo
+1

(Li−Li−1)!

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n − F
L − F

) (
n6

j3 + j4

)
LJo−2!∏

i: σl
i
>σl

Jo
+1

(Li−Li−1)!

if σl
Jo

+ 1 = σl
Jo−1,(

n − F
L − F

) (
n6
j3

)
LJo−1!∏

i: σl
i
>σl

Jo
+1

(Li−Li−1)!

if σl
Jo

+ 1 < σl
Jo−1

(4.5.33)
elements.

Now we consider the sets

B
1,(f,l)
ξ (Jo, j3, j4) :=

⋃
ŝl
π∈Ŝ

1,(f,l)
πξ

(Jo,j3,j4)

B1
n;k0

(sf , ŝl
π), ξ = 1, · · · , Ξ (4.5.34)

with B1
n;k0

(sf , ŝl
π) as in Definition 4.3.8.

According to (4.5.33) and Definition 4.3.8, a set B
1,(f,l)
ξ (Jo, j3, j4) includes

the following number of elements:

∣∣∣B1,(f,l)
ξ (Jo, j3, j4)

∣∣∣ = Z4f,l
ξ (Jo, j3, j4) ∗ Z5f,l

ξ (Jo, j3, j4) ∗ Z6f,l(Jo, j3, j4)
(4.5.35)

where

Z5f,l
ξ (Jo, j3, j4) =

∏
i:sf

i =ŝl
πi

≤σl
Jo

(ŝl
πi

+ 1) (4.5.36)

(see also Definition 4.3.8, (d30)) and (4.5.27))
and
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Z6f,l(Jo, j3, j4) =
(
σl

Jo
+ 2

)j3+j4 −
j3−1∑
j=0

(
j3 + j4

j

)(
σl

Jo
+ 1

)j

=
j3+j4∑
j=j3

(
j3 + j4

j

)(
σl

Jo
+ 1

)j

(4.5.37)

(see Definition 4.3.8, (d31)) and thereby

”−
j3−1∑
j=0

(
j3 + j4

j

)(
σl

Jo
+ 1

)j” includes that w with more than j4 coor-

dinates wi = σl
Jo

+ 1 are not feasible according to Definition 4.3.8, (d31).

Obviously,
∣∣∣B1,(f,l)

ξ (Jo, j3, j4)
∣∣∣ is a polynomial in n (for any k0)

of the degree L − F.
(4.5.38)

Now, let
p
1,(Jo,j3,j4,ξ)
fl :=

∑
w∈B

1,(f,l)
ξ (Jo,j3,j4)

q(w). (4.5.39)

If the coordinates wi, i = 1, · · · , n of the requirements w ∈ Bn;k0 are inde-
pendent and identically distributed, where (4.2.1) and (4.2.2) are fulfilled,
then

p
1,(Jo,j3,j4,ξ)
fl = Z4f,l

ξ (Jo, j3, j4) ∗ ZP5f,l
ξ (Jo, j3, j4) ∗ ZP6f,l(Jo, j3, j4)

∗ZP4f,l(Jo, j3, j4)
(4.5.40)

follows, where

ZP5f,l
ξ (Jo, j3, j4) =

∏
i:sf

i =ŝl
πi

≤σl
Jo

(
ŝl
πi∑

wi=0
q0(wi))

∏
i:sf

i <ŝl
πi

≤σl
Jo

q0(ŝl
πi

) q0(σl
Jo

+ 1)((LJo−1−LJo−2−j4)∗δ)
(4.5.41)
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with δ =
{

1 if σl
Jo

+ 1 = σl
Jo−1,

0 otherwise,

(see (4.5.27), (4.5.28) and Definition 4.3.8, (d30), (d32)),

ZP6f,l(Jo, j3, j4)

=

⎛
⎝σl

Jo
+1∑

wi=0
q0(wi)

⎞
⎠j3+j4

−
j3−1∑
j=0

(
j3 + j4

j

)
q0(σl

Jo
+ 1)j3+j4−j

⎛
⎝ σl

Jo∑
wi=0

q0(wi)

⎞
⎠j

=
j3+j4∑
j=j3

(
j3 + j4

j

)
q0(σl

Jo
+ 1)j3+j4−j

⎛
⎝ σl

Jo∑
wi=0

q0(wi)

⎞
⎠j

(4.5.42)
(see Definition 4.3.8, (d31)),

”−
j3−1∑
j=0

(
j3 + j4

j

)
q0(σl

Jo
+ 1)j3+j4−j

⎛
⎝ σl

Jo∑
wi=0

q0(wi)

⎞
⎠j

”

includes that w with more than j4 coordinates wi = σl
Jo

+1 are
not feasible according to Definition 4.3.8, (d31))

and

ZP4f,l(Jo, j3, j4) =
∏

i:ŝl
πi

>σl
Jo

+1

q0(ŝl
πi

) (4.5.43)

(see Definition 4.3.8, (d32)).

Finally, in the case of discrete uniformly distributed requirements, (4.5.35)
or (4.5.40) implies

p
1,(Jo,j3,j4,ξ)
fl = 1

(k0+1)n

∣∣∣B1,(f,l)
ξ (Jo, j3, j4)

∣∣∣
= 1

(k0+1)n ∗ Z4f,l
ξ (Jo, j3, j4) ∗ Z5f,l

ξ (Jo, j3, j4) ∗ Z6f,l(Jo, j3, j4).
(4.5.44)



240

Subcase: σl
Jo

= 0 (σl
Jo

as from Definition 4.3.5)
which means Jo = y + 1, see (4.3.3)

We now use similar methods, in principle, to those in the subcase σl
Jo

> 0:

Ŝ
1,(f,l)
πξ (y + 1, j3, j4), B

1,(f,l)
ξ (y + 1, j3, j4), p

1,(y+1,j3,j4,ξ)
fl ξ = 1, · · · , Ξ have

the same meaning as in the subcase σl
Jo

> 0 (see (4.5.34) and (4.5.39) among
other things).

We will later also split non-empty sets Ŝf,l
π (y + 1, j3, j4) (see

Definition 4.3.7) into disjunct subsets: Ŝ
1,(f,l)
πξ (y + 1, j3, j4),

ξ = 1, · · · , Ξ(= Ξ(y + 1, j3, j4)).

Initially, the n−L− j3 components with value 0 of sl and ŝl can only be
permuted in such a way that

ŝl
πi

= 0 ⇒ sf
i = 0 and

sl
πi

= 0 ⇒ sf
i = 0

since sf
i ≤ ŝl

πi
= 0 follows from Lemma 4.3.7, (d27) together with (d29) for

ŝl
πi

= 0 and σl
Jo

= 0. This yields

(
n − F

n − L − j3

)
=

(
n − F

L − F + j3

)
(4.5.45)

possibilities.

If now additional components ŝl
πi

are set analogous to (4.5.27) and (4.5.28),
then (4.5.27) is not relevant here since σl

y+1 = 0. It remains:
if σl

Jo
+ 1 = σl

y+1 + 1 = σl
y = σl

Jo−1, which means 1 = σl
Ly

, then
Ly − Ly−1 − j4 additional components ŝl

πi
= 1 of ŝl

π are fixed for i where

ŝl
i = 1 so that sf

i < ŝl
πi

= 1, hence sf
i = 0 (4.5.46)

(see (d28) in Lemma 4.3.7).

Specifying σl
Jo

= 0 and Jo = y + 1 in (4.5.29) to (4.5.33), the number of

elements in a set Ŝ
1,(f,l)
πξ (y + 1, j3, j4), ξ ∈ {1, · · · ,Ξ} is equal to
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Z4f,l
ξ (y + 1, j3, j4) :=

(
n − F

L − F + j3

) (
n6

j3 + j4

)
(n5−(j3+j4))!∏

i: σl
i
>1

(Li−Li−1)!

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n − F

L − F + j3

) (
n6

j3 + j4

)
Ly−1!∏

i: σl
i
>1

(Li−Li−1)!

if 1 = σl
L,(

n − F
L − F + j3

) (
n6
j3

)
Ly!∏

i: σl
i
>1

(Li−Li−1)!

if 1 < σl
L.

(4.5.47)

Further specifications in (4.5.35) to (4.5.37) yield the number of elements in
a set B

1,(f,l)
ξ (y + 1, j3, j4) to be:

∣∣∣B1,(f,l)
ξ (y + 1, j3, j4)

∣∣∣ = Z4f,l
ξ (y + 1, j3, j4) ∗

(
2j3+j4 −

j3−1∑
j=0

(
j3 + j4

j

))

= Z4f,l
ξ (y + 1, j3, j4) ∗

j3+j4∑
j=j3

(
j3 + j4

j

)
.

(4.5.48)

Hence, (see Z4f,l
ξ (y + 1, j3, j4), in particular)∣∣∣B1,(f,l)

ξ (y + 1, j3, j4)
∣∣∣ is a polynomial in n (for any k0)

of the degree L − F + j3.

(4.5.49)

If the coordinates wi, i = 1, · · · , n of the requirements w ∈ Bn;k0 are in-
dependent and identically distributed, where (4.2.1) and (4.2.2) are fulfilled,
then a specification of ZP5f,l

ξ (Jo, j3, j4), ZP6f,l(Jo, j3, j4) and ZP4f,l(Jo, j3, j4)
(see (4.5.40) to (4.5.43)) yields:
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p
1,(y+1,j3,j4,ξ)
fl = Z4f,l

ξ (y + 1, j3, j4) ∗ ZP5f,l
ξ (y + 1, j3, j4)

∗ZP6f,l(y + 1, j3, j4) ∗ ZP4f,l(y + 1, j3, j4),
(4.5.50)

where

ZP5f,l
ξ (y + 1, j3, j4) = q0(0)

∣∣∣{i:sf
i =ŝl

πi
=0

}∣∣∣
, (4.5.51)

ZP6f,l(y + 1, j3, j4)

= (q0(0) + q0(1))j3+j4 −
j3−1∑
j=0

(
j3 + j4

j

)
q0(1)j3+j4−j q0(0)j

=
j3+j4∑
j=j3

(
j3 + j4

j

)
q0(1)j3+j4−j q0(0)j ,

(4.5.52)

ZP4f,l(y + 1, j3, j4) =
∏

i:ŝl
πi

>1

q0(ŝl
πi

)). (4.5.53)

Finally, in the case of discrete uniformly distributed requirements,
(4.5.48) or (4.5.50) implies

p
1,(y+1,j3,j4,ξ)
fl = 1

(k0+1)n

∣∣∣B1,(f,l)
ξ (y + 1, j3, j4)

∣∣∣
= 1

(k0+1)n ∗ Z4f,l
ξ (y + 1, j3, j4) ∗

(
2j3+j4 −

j3−1∑
j=0

(
j3 + j4

j

))

= 1
(k0+1)n ∗ Z4f,l

ξ (y + 1, j3, j4) ∗
(

j3+j4∑
j=j3

(
j3 + j4

j

))
.

(4.5.54)

If sf = sl then the
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Case: sf = sl
π(= sl)

remains to be considered since in this case neither a (Jo, j1)-perturbation
of the relation

”≥” nor a (Jo, j3)-perturbation of the relation ”≤” between sf and
sf
π, respectively, are given.

Obviously, sf = s∗(sf , w) is valid for w ∈ Bn;k0 where (0, · · · , 0)T ≤ w ≤
sf (case C[w, su]; see also Theorem 4.3.10) or where sf ≤ w ≤ (k0, · · · , k0)T

(case C[su, w]; see Theorem 4.3.5).
(See also the Theorems 4.3.11 and 4.3.6.)

Thus, we set

B
(f,f)
spec =

{
w ∈ Bn;k0 | (0, · · · , 0)T ≤ w ≤ sf ∨ sf ≤ w ≤ (k0, · · · , k0)T

}
(4.5.55)

and

|B(f,f)
spec | =

n∏
i=1

(sf
i + 1) +

n∏
i=1

(k0 − sf
i + 1) − 1

=
F∏

i=1
(sf

i + 1) +
F∏

i=1
(k0 − sf

i + 1)(k0 + 1)n−F − 1

(4.5.56)

follows (refer to Lemma 3.3.10).

Obviously, |B(f,f)
spec | is a sum of an exponential function and a constant in n.

If the coordinates wi, i = 1, · · · , n of the requirements w ∈ Bn;k0 are
independent and identically distributed, then we compute
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pspec
ll :=

∑
w∈B

(f,f)
spec

q(w)

=
∑

w:(0,··· ,0)T≤w≤sf

q(w) +
∑

w:sf≤w≤(k0,··· ,k0)T

q(w) − q(sf )

=
F∏

i=1

⎛
⎝ sf

i∑
wj=0

q0(wj)

⎞
⎠ q0(0)n−F +

F∏
i=1

⎛
⎝ k0∑

wj=sf
i

q0(wj)

⎞
⎠

−
F∏

i=1
q0(s

f
i )q0(0)n−F .

(4.5.57)

In the case of discrete uniformly distributed requirements

pspec
ll = 1

(k0+1)n

∣∣∣B(f,f)
spec

∣∣∣
= 1

(k0+1)n

(
F∏

i=1
(sf

i + 1) +
F∏

i=1
(k0 − sf

i + 1)(k0 + 1)n−F − 1
) (4.5.58)

follows.

Finally, (4.5.56) in the case that sf = sl together with the summation
of (4.5.9) and (4.5.22) over (Jo, jo, j1) and ξ and with the summation of
(4.5.35) and (4.5.48) over (Jo, j3, j4) and ξ yield the number of all elements
in a set B

∗(f,l)
n;k0

:=
{
w ∈ Bn;k0 | sl = s∗(sf , w)

}
.

Since the possibilities for (Jo, jo, j1), ξ and (Jo, j3, j4), ξ do not depend
on n (and k0) (for sufficiently large n), |B∗(f,l)

n;k0
| is either a polynomial or a

sum of an exponential function and a polynomial in n according to (4.5.12),
(4.5.23), (4.5.38) and (4.5.49).

Hence, (i) and the first part of (ii) have been proven.

Now, we will determine the degrees and the corresponding leading terms
of elements of PRMs multiplied by (k0 + 1)n as polynomials in n.
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Initially, (4.5.12), (4.5.23), (4.5.38) and (4.5.49) imply that the degree of
a (k0 + 1)n ∗ p∗fl as a polynomial (in n) is not greater than L.

Case sl �= (1, ..., 1, 0, ..., 0):

According to (4.5.12) and (4.5.49) (only)

the subcase: C[su;w], σl
Jo

> 1
if the additional condition{

jo + j1 = LJo+1 if σl
Jo

− 1 = σl
Jo+1,

or jo = LJo if σl
Jo

− 1 > σl
Jo+1

is valid or

the subcase: C[w; su], σl
Jo

= 0, Jo = y + 1
if the additional condition F = j3

is valid

imply that the degree of an element p∗(sf |sl) = p∗fl, sl �= (1, ..., 1, 0, ..., 0) of
a PRM multiplied by (k0 + 1)n as a polynomial in n is equal to L.

In order to compute the corresponding leading term we must determine
the corresponding set of requirements.

At first, we will see that it is sufficient to consider only the above first
subcase:

In the (second) subcase, C[w; su], σl
Jo

= 0, the additional condition
F = j3 implies that

sf
i > 0 ⇒ sl

πi
(= ŝl

πi
) = 0

(see Definition 4.3.5, (d20), in particular);
(this also implies n ≥ F + L).

Furthermore, j4 = 0 follows
(see Definition 4.3.7, (d23), in particular).

Then only w = sl
π (for certain sl

π) are elements of the sets
B

1,(f,l)
ξ (y + 1, j3 = F, j4 = 0) according to Definition 4.3.8.

Of course, w = sl
π also satisfy the case C[su;w]. Thus, it is sufficient to

only consider the above first subcase.
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In the (first) subcase: C[su; w], σl
Jo

> 1 the additional condition{
jo + j1 = LJo+1 if σl

Jo
− 1 = σl

Jo+1,

or jo = LJo if σl
Jo

− 1 > σl
Jo+1

implies

Jo = 1, jo = L1

and

{
j1 = L2 − L1 if σl

Jo
− 1 = σl

Jo+1

j1 = 0 if σl
Jo

− 1 > σl
Jo+1

(refer, in particular, to Definitions 4.3.1, (d3) and 4.3.3, (d7)).

Furthermore,

sl
πi

= σl
Jo=1 ⇒ sf

i < sl
πi

(= σl
Jo=1) (4.5.59)

and if σl
1 − 1 = σl

2,

sl
πi

= σl
2 ⇒ sf

i ≤ sl
πi

(= σl
2)

(4.5.60)

follows (for sufficiently large n)
(refer, in particular, to Definitions 4.3.1, (d3) and 4.3.3, (d6)).

If we now apply the methods from the case C[su; w], σl
Jo

> 1 at the
beginning of the proof in the case that the additional condition is supposed
then

(4.5.1) and (4.5.2) are initially not relevant

according to (4.5.59) and (4.5.60), respectively.

Hence

Ξ(1, L1, j1) = 1,

I
2,(f,l)
πξ=1 (1, L1, j1) = ∅,

n1 = 0,

n2 = n,

n3 = n −
∣∣∣{sf

i | sf
i ≥ σl

1 = sl
1

}∣∣∣.
Using the symbol
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L∗
2 =

{
L2 if sl

L1
= sl

L2
+ 1, meaning σl

1 − 1 = σl
2,

L1 otherwise

specifications from (4.5.7) and some corresponding subsequent relationships
yield

Z1 :=
(

n3
L∗

2

)(
n − L∗

2

L − L∗
2

)
(L−L∗

2)!∏
i: 1≤σl

i
<σl

1−1

(Li−Li−1)! ,

Z2 is not relevant since (4.5.1) and (4.5.2) are not relevant
under the additional condition,

Z3 =
L∗

2∑
j=L1

(
L∗

2

j

)(
k0 + 1 − sl

1

)j .

Thus (see (4.5.9)),∣∣∣B2,(f,l)
ξ=1 (1, L1, j1)

∣∣∣
=

(
n3
L∗

2

)(
n − L∗

2

L − L∗
2

)
(L−L∗

2)!∏
i: 1≤σl

i
<σl

1−1

(Li−Li−1)!

[
L∗

2∑
j=L1

(
L∗

2

j

)(
k0 + 1 − sl

1

)j

]
.

Thereby
(

n3
L∗

2

)(
n − L∗

2

L − L∗
2

)
=

(
n −

∣∣∣{sf
i | sf

i ≥ σl
1 = sl

1

}∣∣∣
L∗

2

)(
n − L∗

2

L − L∗
2

)
is also a polynomial in n with the degree L∗

2 +L−L∗
2 = L and the coefficient

1
L∗

2!
1

(L−L∗
2)! = 1

L!
L!

L∗
2! (L−L∗

2)! = 1
L!

(
L
L∗

2

)
of its leading term.

Hence, the degree of
∣∣∣B2,(f,l)

ξ=1 (1, L1, j1)
∣∣∣ as a polynomial in n is also equal

to L and the coefficient of the corresponding leading term is

1
L!

(
L
L∗

2

)
(L−L∗

2)!∏
i: 1≤σl

i
<σl

1−1

(Li−Li−1)!

[
L∗

2∑
j=L1

(
L∗

2

j

)(
k0 + 1 − sl

1

)j

]

where C∗ := (L−L∗
2)!∏

i: 1≤σl
i
<σl

1−1

(Li−Li−1)! is the number of permutations of the L−L∗
2

components sl
i which are smaller than sl

1 − 1.

The corresponding formula in relation to p∗(sl|sf ) follows by means of
the first equation from (4.5.18) in the case of discrete uniformly distributed
requirements.
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That the degrees and the leading terms for every p∗(sl|sf ), f = 1, 2, ..., r
multiplied by (k0 + 1)n as polynomials in n ( n >

(=)su ) in a column l are
the same is now easily seen from the above formulas.

Case sl = (1, ..., 1, 0, ..., 0):

Sn;su;k0 includes, for n >
(=)su,

only one partition sl with L = su, namely sl = sr = (1, ..., 1, 0, ..., 0), and

only one partition sl′ with L′ = su−1, namely sl′ = sr−1 = (2, 1, ..., 1, 0, ..., 0).

According to the above results for sl �= (1, ..., 1, 0, ..., 0), the degrees of
(k0 + 1)n ∗ p∗fr−1, f = 1, 2, ..., r as polynomials in n are su − 1 and the
coefficients of the corresponding leading terms are

1
(su−1)!

(
su − 1
su − 1

) [
su−1∑
j=1

(
su − 1

j

)
(k0 + 1 − 2)j

]

= 1
(su−1)! ∗ (ksu−1

0 − 1).

The above considerations together with the fact that the sum of the ele-
ments of a row of a PRM is equal to 1 (= n0) yield that the degrees of
(k0 + 1)n ∗ p∗fr, f = 1, 2, ..., r as polynomials in n are also su − 1 and the
coefficients of the corresponding leading terms are

− 1
(su−1)! ∗ (ksu−1

0 − 1). �

Remarks 4.5.1. The use of perturbed partitions is not necessary in order
to compute the exponential functions mentioned in Theorem 4.5.1 or the
leading terms of the corresponding polynomials in n. For example, the ex-
ponential functions follow from the limits of elements of PRMs computed
in Section 4.4.2. Using such direct methods, the computations are shorter
and not as technical as when the concept of the perturbed partitions would
be applied.

However, in order to prove that subsets of requirements B
∗(f,l)
n;k0

, as in The-
orem 4.5.1, and elements of the corresponding PRMs multiplied by (k0 +1)n

in the case of discrete uniformly distributed requirements are polynomials in
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k0 and/or either polynomials or sums of exponential functions and polyno-
mials in n, it seems inevitable that we must use a concept such as that of
the perturbed partitions!

4.5.2 The Elements of the Last Row and the Last Column
of PRMs in the Case that n ≥ su

Elements of the Last Row

Theorem 4.5.2. Let a set of partitions Sn;su;k0 = {s1, s2, · · · , sr} 15 with
n ≥ su be given where sr : sr

1 = 1 = · · · 1 = sr
su > sr

su+1 = 0 = · · · 0 = sr
n.

Furthermore, let sl ∈ Sn;su;k0 , l �= r 16 with (w. l. o. g.)
sl
1 ≥ sl

2 ≥ · · · ≥ sl
n.

Then,

sl = s∗(sr, w) ⇔
⎧⎨
⎩ w ∈ B

1,(r,l)
n;k0

in case C[w, su],

w ∈ B
2,(r,l)
n;k0

in case C[su,w],

where

B
1,(r,l)
n;k0

is the subset of requirements w with coordinates⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sl
1, . . . , s

l
L and n − L zeroes (L as in (4.3.1)) if sl

L > 1

or

sl
1, . . . , s

l
Ly−1

and n − Ly−1 coordinates equal to 0 or 1,

where at most L − Ly−1 coordinates can
be equal to 1 (Ly−1 as in (4.3.3)) if sl

L = 1

and

B
2,(r,l)
n;k0

is the subset of requirements w with coordinates

15The partitions are arranged here in order of (partial) dominance, see Section 4.1.
However, only the last element sr is important for this section, see below.

16The case l = r will be considered in Theorem 4.5.4.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sl
L1+1, . . . , s

l
L, sl

L−1 and n − L zeroes
and L1 coordinates wi : sl

L1
≤ wi ≤ k0 if σl

1 > σl
2 + 1

(σl as in (4.3.4))

or

sl
L2+1, . . . , s

l
L, sl

L−1 and n − L zeroes
and L2 coordinates wi : sl

L2
≤ wi ≤ k0, where

at most L2 − L1 coordinates can
be equal to sl

L2
if σl

1 = σ2
l + 1.

Furthermore,

p∗rl =
∑

w∈B1,(r,l)

q(w) +
∑

w∈B2,(r,l)

q(w) − ∑
w: w permutation of sl

q(w), l �= r

are the elements of the last rows in the corresponding PRMs.

Concerning the proof. Using the iterative method for the computation
of feasible balanced partitions from Section 4.2.2 and the sets B1,(r,l) and
B2,(r,l) given in the theorem, the statements of the theorem are simple to
prove. We omit the detailed proof here.

In the case of discrete uniformly distributed requirements the above the-
orem yields the following formulas:

Corollary 4.5.3. Let a set of partitions Sn;su;k0 = {s1, s2, · · · , sr} be given
where sr : sr

1 = 1 = · · · 1 = sr
su > sr

su+1 = 0 = · · · 0 = sr
n and let the

requirements w ∈ Bn;k0 be discrete uniformly distributed.
Furthermore, let sl ∈ Sn;su;k0 , l �= r with (w. l. o. g.)

sl
1 ≥ sl

2 ≥ · · · ≥ sl
n.

Then the elements of the last row of the corresponding PRM can be com-
puted by means of

p∗rl = p∗1rl + p∗2rl − p∗1,2
rl (l �= r),

where, using the symbols from (4.3.3) and (4.3.4),

p∗1rl = 1
(k0+1)n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
n
L

)
L!

L1!(L2−L1)!...(L−Ly−1)! if sl
L > 1,

L−Ly−1∑
j=0

(
n

Ly−1 + j

)
(Ly−1+j)!

L1!(L2−L1)!...(Ly−1−Ly−2)! j! if sl
L = 1
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(here j is the number of wi from the corresponding w which are equal to
1, if sl

L = 1),

p∗2rl = 1
(k0+1)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n
L

)
L!

L1!(L2−L1)!...(L−Ly−1)!

(
k0 + 1 − σl

1

)L1 if σl
1 > σl

2 + 1

(
n
L

)
L!

L2!(L3−L2)!...(L−Ly−1)!∗
L2−L1∑

j=0

(
L2

j

)
(k0 + 1 − σl

1)
L2−j if σl

1 = σl
2 + 1

(here j is the number of wi from the corresponding w which are equal to sl
L2

,
if σl

1 = σl
2 + 1)

and

p∗1,2
rl = 1

(k0+1)n

(
n
L

)
L!

L1!(L2−L1)!...(L−Ly−1)! .

Elements of the Last Column

Theorem 4.5.4. Let a set of partitions Sn;su;k0 = {s1, s2, · · · , sr} with
n ≥ su be given, where sr : sr

1 = 1 = · · · 1 = sr
su > sr

su+1 = 0 = · · · 0 = sr
n.

Furthermore, let sf ∈ Sn;su;k0 with (w. l. o. g.)
sf
1 ≥ sf

2 ≥ · · · ≥ sf
n.

Then
sr = s∗(sf , w) ⇔ w ∈ Ba \ Bb

where

Ba =

{
w ∈ Bn;k0

∣∣∣∣ w :
{

wi ∈ {0, 1} for i ≤ ηf ,
wi ∈ {0, 1, · · · , k0} for i > ηf

}
(ηf as in Definition 4.4.1(a)),

Bb = {w ∈ Ba | w with more than n − su coordinates equal to 0,

except for the w of this type consisting of only zeroes and ones

and with at least H =
ηf∑
i=1

sf
i − ηf coordinates wi = 1 where

sf
i = 0 }.
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Furthermore,
p∗fr =

∑
w∈Ba

q(w) − ∑
w∈Bb

q(w)

are the elements of the last columns of corresponding PRMs.

Concerning the proof. Using the iterative method for the computation
of feasible balanced partitions from Section 4.2.2 and the sets Ba and Bb

given in the theorem, the statements of the theorem are simple to prove.
We omit the detailed proof here.

Corollary 4.5.5. Let a set of partitions Sn;su;k0 = {s1, s2, · · · , sr} be
given, where sr : sr

1 = 1 = · · · 1 = sr
su > sr

su+1 = 0 = · · · 0 = sr
n and let the

requirements w ∈ Bn;k0 be discrete uniformly distributed.
Furthermore, let sf ∈ Sn;su;k0 with (w. l. o. g.)

sf
1 ≥ sf

2 ≥ · · · ≥ sf
n.

Then the elements of the last column of the corresponding PRM can be
computed by means of

p∗fr = 1
(k0+1)n

[
2ηf

(k0 + 1)n−ηf − |Bb|
]

(ηf as in Definition 4.4.1(a)),

where, using F from (4.3.1) and H from Theorem 4.5.4,

|Bb| =
ηf∑

β=0

(
ηf

β

)[
su−1−β∑

ε=0

min{F−ηf ,ε}∑
μ=max{0,ε−(n−F )}

(
F − ηf

μ

)(
n − F
ε − μ

)
∗

(
(k0)ε −

{
1 if ε − μ ≥ H
0 otherwise

)]

=
ηf∑

β=0

(
ηf

β

)[
su−1−β∑

ε=0

(
n − ηf

ε

)
(k0)ε −

su−1−β∑
ε=H

min{F−ηf ,ε−H}∑
μ=max{0,ε−(n−F )}(

F − ηf

μ

)(
n − F
ε − μ

)]
.

Concerning the proof. It is obvious that |Ba| = 2ηf
(k0 + 1)n−ηf

.
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That the number of elements of Bb can be computed according to the
formula from the corollary will be evident by an explanation of the indices
and bounds of the summations and the corresponding binomial coefficients.
Here, however, we only discuss the fundamental ideas.

The indices of the summations initially include the following numbers of
certain coordinates of w ∈ Bb:

β: the number of wi = 1 where i ∈ {1, 2, · · · , ηf},
ε: the number of wi ≥ 1 where i ∈ {ηf + 1, ηf + 2, · · · , n},
μ: the number of wi ≥ 1 where i ∈ {ηf + 1, ηf + 2, · · · , F}.

The upper bound su−1−β of the summation with the index ε implies that
ε + β ≤ su − 1, which means,

fewer than su coordinates of w are not 0.

Hence, more than n − su coordinates of w are equal to 0.

Thus, the first condition in the definition of Bb (see Theorem 4.5.4) is sat-
isfied.

ε − μ is the number of wi ≥ 1 where i > F which means sf
i = 0.

If ε−μ ≥ H then the (k0)ε possibilities corresponding to the ε coordinates
wi : 1 ≤ wi ≤ k0 are reduced by one possibility with all such wi = 1:

(k0)ε −
{

1 if ε − μ ≥ H
0 otherwise

.

Thus, the second condition in the definition of Bb (see Theorem 4.5.4) is
also satisfied.

The lower bound min{F − ηf , ε − H} and the upper bound
max{0, ε− (n−F )} of the sum over μ guarantee the compatibility between
the indices μ and ε and the characteristic quantities F, n, ηf of sf .

The binomial coefficients in the formula for |Bb| include, of course, all
choices of i where wi ≥ 1.

The second equation for |Bb| follows from the first equation (among other
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things) by means of the Vandermonde’s identity 17 for binomial coefficients.

4.6 Poisson Equations for PRMs and the
Monotonicity of their Solutions

In this section we will initially give the central definition of Poisson equa-
tions for PRMs and the definition of the monotonicity of their solutions
(independent of Chapters 2 and 3).

In relation to PRMs as matrices of transition probabilities of reduced
SDDP problems, the monotonicity of the solutions of the corresponding Pois-
son equations means that the decisions for feasible states with least square
sums of their components are optimal for the corresponding reduced SDDP
problems. (See also the notes on the connections with Chapters 2 and 3,
below.)

We conjecture that the solutions of all Poisson equations for PRMs are
monotone.

It is simple to prove the conjecture for a small number of Poisson equa-
tions where the corresponding PRMs and the right sides of the equations
satisfy the conditions of dominance (see also Section 2.3.3.2).

This proof and considerations of several other special cases can be found
in Section 4.6.2.

The main results of this section are the proofs of the conjecture in rela-
tion to PRMs, which are based on sets of sparse partitions with sufficiently
great n or on sets of non-truncated heavy partitions with sufficiently great
k0, given in the Subsections 4.6.3 and 4.6.4. Limits of PRMs with regard
to sets of sparse partitions and sets of non-truncated heavy partitions from
Sections 4.4.2 are 4.4.3 are used for these proofs.

The solutions of the Poisson equations with regard to limits of PRMs

17Vandermonde’s identity:

(
r + s

n

)
=

n∑
k=0

(
r
k

)(
s

n − k

)
where n is a non-negative in-

teger.
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have an elegant structure, in contrast to the formulas of the limits of PRMs
themselves. The solutions are vectors which include, in relation to the dis-
tribution of requirements, generalized harmonic numbers.

Notes on the connections with Chapters 2 and 3:

The Poisson equations were initially introduced in (2.3.5) in Section 2.3.1.
Such an equation include a matrix of transition probabilities and average
(one-step) reward functions, which corresponds to a decision function of a
MDP.

For example, Poisson equations are used in the Howard algorithm, by
which optimal solutions of MDPs are computed (see the last part of Section
2.3.2.2).

Monotonicity of the solutions of Poisson equations was introduced in Def-
inition 2.3.3 for DA MDPs, where the underlying internal costs and the av-
erage (one-step) reward functions did not depend on the (feasible) decisions.
Also, in Corollary 2.3.10 the relationship between the monotonicity of the
solutions of Poisson equations and the optimality of the corresponding deci-
sions has been shown.

PRMs are matrices of transition probabilities of reduced SDDP problems
(where identical basic cost and independent and identically distributed re-
quirements are assumed) for decisions d∗ for feasible states (unordered par-
titions) with least square sums of their components (see the second part of
Section 3.4.2).

The Poisson equations for PPMs are the Poisson equations of reduced
SDDP problems and decisions d∗ where, in addition, certain affine transfor-
mations of the right side of the equations are allowed. Such affine transfor-
mations have no effect on the monotonicity of the solutions of the Poisson
equations (see also Lemma 2.3.2). However, such affine transformations
are useful since, among other things, no useful formulas are known for the
additive remainder terms in the formulas of the average (one-step) reward
functions for reduced SDDP problems (see Theorem 3.4.1).

If a solution of a Poisson equation for a PRM is monotone, then decisions
d∗ for feasible states (unordered partitions) with the least square sums of
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their components are optimal for the corresponding reduced SDDP problems
(see also the proof of Corollary 4.7.1)!

Another aspect of the importance of the results of this section involves the
dominance of MDPs (see Section 2.3.3.2).

As mentioned above, the conditions of dominance are only satisfied for
a small number of PRMs (as matrices of transition probabilities of reduced
SDDP problems). The conditions are typically infringed on for ”most” of
the PRMs - however only to a slight extent. This also induces the questions,
whether and in which way the concept of dominance could be generalized.

4.6.1 Poisson Equations for PRMs

Definition 4.6.1. Let a partially ordered set of restricted partitions
(Sn;su;k0 ,→) = ({s1, s2, · · · , sr},→), as in Definition 4.1.1(a), (c) and Lemma
4.1.5, and a corresponding set of requirements Bn;k0 be given and let the
requirements wi, (i = 1, · · · , n) be independent and identically distributed,
where (4.2.2) is additionally assumed.

Furthermore, let P ∗ = (p∗fl) be the the corresponding PRM.

The vector equations (with the variables (g, ν) ∈ R × Rr)

g

⎛
⎜⎝ −1

...
−1

⎞
⎟⎠ + (P ∗ − I)ν = −γ′ (4.6.1)

are called the Poisson equations for the PRM P ∗,

where I is the identity matrix,

γf (= γ(sf )) =
n∑

i=1

sf
i∑

wi=0

(sf
i − wi) q0(wi)18 for f = 1, 2, · · · , r (4.6.2)

and γ′ any affine transformation of γ :

γ′ = α γ + β

⎛
⎜⎝ 1

...
1

⎞
⎟⎠ with α > 0. (4.6.3)

18See Theorem 3.4.1(c).
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It is well-known that if one variable νf0 is fixed in any way, then under
the condition (4.2.7), for example, the remaining equation system has an
unique solution. (See the proof of Theorem 2.4.8 by Müller and Nollau [28],
for instance, and Lemma 2.3.2).

Definition 4.6.2. A solution of a Poisson equation for a PRM, as in
Definition 4.6.1, is called monotone (in ν) (with respect to the partial order)
if

sf .→ sl ⇒ νf > νl

(consequently sf → sl ⇒ νf > νl).

(If a solution of a Poisson equation is monotone, then the solutions of
a the corresponding Poisson equations with another affine transformation
(with α > 0 ) of γ are also monotone according to Lemma 2.3.2.)

We expect that the statement of following conjecture is true:

Conjecture: Solutions of all Poissons equation for PRMs are monotone!

(Referring to Chapter 3, this conjecture means that decisions for feasible
unordered partitions with least square sums of their components are
optimal for the corresponding reduced SDDP problems!)

4.6.2 Partial Results

4.6.2.1 PRMs for Sets of Restricted Partitions which are Equiv-
alent with regard to the Poisson Equation

In Section 4.2.3 PRMs (among other things) are considered for sets of re-
stricted partitions Sn;su;k0 and Sn;s̄u,k0 with s̄u = n k0 − su, which are
equivalent with regard to the Poisson equation (see Definition 4.2.5(c)).

According to Theorem 4.2.5 such PRMs are identical if q0 satisfies (4.2.8).

The following Lemma 4.6.1 also implies the equivalence of the correspond-
ing γf from (4.6.2) (except for perhaps certain additive remainder terms),
so that the solutions of the corresponding Poisson equations are either the
same or are affine transformations of each other (see the following Lemma
4.6.2).
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Lemma 4.6.1. Let sets of restricted partitions Sn;su;k0 = {s1, s2, · · · , sr}
and Sn;s̄u;k0 = {s̄1, s̄2, · · · , s̄r} be given, where s̄u = n k0 − su, and let sf

and s̄f be complementary partitions for f = 1, · · · , r as in
Definition 4.2.5(a) with kc = k0.

Furthermore, let Bn;k0 be the corresponding set of requirements and let
wi, (i = 1, · · · , n) be independent and identically distributed. In addition,
let the conditions (4.2.2) and (4.2.8)

q0(wi) = q0(k0 − wi) for i = 1, 2, ..., n, w ∈ Bn;k0

be satisfied. Then

γ(sl) − γ(sf ) = γ(s̄l) − γ(s̄f ) for any {f, l} ⊆ {1, 2, .., r}.

Proof. According to (4.6.2) we have

γ(s) =
n∑

i=1

si∑
wi=0

(si − wi) q0(wi), s ∈ Sn;su;k0

and

γ(s̄) =
n∑

i=1

s̄i∑
w̄i=0

(s̄i − w̄i) q0(w̄i), s̄ ∈ Sn;s̄u;k0 .

Now, we replace s̄ by (k0, k0, · · · , k0)T − s in the second equation above
and according to Definition 4.2.5(a) where kc = k0 :

γ(s̄) =
n∑

i=1

k0−si∑
w̄i=0

(k0 − si − w̄i) q0(w̄i)

results.

The substitution w̄i = k0 − wi yields

γ(s̄) =
n∑

i=1

k0−si∑
k0−wi=0

(k0 − si − k0 + wi) q0(k0 − wi).

Using (4.2.8)

γ(s̄) =
n∑

i=1

k0∑
wi=si

(−si + wi) q0(wi)
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follows.

Finally, the computation of the difference:

γ(s) − γ(s̄) =
n∑

i=1

k0∑
wi=0

(si − wi) q0(wi)

=
n∑

i=1
si

k0∑
wi=0

q0(wi) −
n∑

i=1

k0∑
wi=0

wi q0(wi)

= su − n E(wi) (since wi are independent
and identically distributed)

shows that such a difference does not depend on s or s̄.

Hence,
γ(sl) − γ(sf ) = γ(s̄l) − γ(s̄f ).

�

The above lemma together with Theorem 4.2.5 yields:

Lemma 4.6.2. Let the same assumption as in Lemma 4.6.1 be valid and
let the corresponding PRMs with regard to Sn;su;k0 and Sn;s̄u;k0 be given.

Then, the solutions of the corresponding Poisson equations are either the
same or are affine transformations of each other.

4.6.2.2 The Dominance Condition and PRMs with regard to
m-Totally Ordered Sets of Partitions

In this subsection we will see that solutions of the Poisson equations are
monotone if the corresponding PRMs satisfy the following dominance con-
dition.

We will also see that PRMs with regard to ”m-totally” ordered sets of
partitions fulfil this dominance condition.

Definition 4.6.3. Let the numbering of the elements of a given set of
restricted partitions Sn;su;k0 = {s1, s2, · · · , sr} be such that

l < f ⇒ γ(sl) ≥ γ(sf ).
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(This numbering also implies partial order as in Definition 4.1.1(a), (c) and
Lemma 4.1.5 according to Lemma 4.2.2(a).)

Furthermore, let P ∗ = (p∗fl) be the corresponding PRM.

Then the condition

l̄∑
l=1

p∗1l ≥
l̄∑

l=1

p∗2l ≥ · · · ≥
l̄∑

l=1

p∗rl for l̄ = 1, 2, · · · , r (4.6.4)

is called the dominance condition.

Corollary 4.6.3. If a PRM satisfies the dominance condition (4.6.4), then
the solutions of the corresponding Poisson equations are monotone (with re-
spect to the partial order).

Definition 4.6.3 and the above corollary are formulated independent of
Chapters 2 and 3. However, this corollary is proven most simply by means
of statements from Chapters 2 and 3.

Proof of Corollary 4.6.3. We consider reduced SDDP problems (see
the second part of Section 3.4.2) with decisions d∗ (keep (3.4.16) and
Lemma 4.2.2(b) in mind) for feasible unordered partitions with least square
sums of their parts where the corresponding matrices of transition probabil-
ities (which are PRMs) satisfy the dominance property (4.6.4).

Below we show that the conditions in Definition 2.3.5 are fulfilled for
the reduced SDDP problems mentioned above. The decisions d∗ are then
optimal according to Theorem 2.3.17.

Note that (2.3.13) and (2.3.14) are valid for the reduced SDDP problems
(see Section 3.4.1) and then Theorem 2.3.8 can be applied with regard to
d∗.

If sf .→ sl then sf < sl, as with the almost-partial order from Theo-
rem 2.3.8(i) based on d∗, and Theorem 2.3.8(ii) hence yields νf > νl which
results in the monotonicity of the solutions of the corresponding Poisson
equations.

Checking of the conditions from Definition 2.3.5:

(C1), (Cr1): are valid according to (4.6.4),
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(C2), (Cr2): follow from the construction of reduced SDDP problems
(Section 3.4.2),

(C3), (Cr3): follow from the Definition of d∗ (see (3.4.16)) together
with the numbering of the elements of Sn;su;k0 in
Definition 4.6.3.

�

In general, PRMs do not satisfy the dominance property (4.6.4).
(See also the 3rd relationship of the following Lemma 4.6.4.)

However, in relation to main minimal chains (Definition 4.1.3) the domi-
nance property is valid for all PRMs (see the following Theorem 4.6.5).

Hence, the dominance property is satisfied by PRMs whose corresponding
sets of restricted partitions Sn;su;k0 are themselves main minimal chains
(see the following Definition 4.6.4 and Corollary 4.6.6).

Lemma 4.6.4. Let w ∈ Bn;k0 , sf1 ∈ Sn;su;k0 and sf2 ∈ Sn;su;k0 be given
so that sf2 is a direct successor of sf1 . Furthermore, let sl1 = s∗(sf1 , w)
and sl2 = s∗(sf2 , w).

Then, in general, the following relationships are possible:

1. sl2 is a direct successor of sl1 or

2. sl2 = sl1 . Regardless of 1. and 2.,

3. sl2 is a direct predecessor of sl1 , is also possible.

(See Lemma 3.25 and the proof in [22], pages 107, 108 for the proof.)

Theorem 4.6.5. Let a partially ordered set of restricted partitions
(Sn;su;k0 , →) = ({s1, s2, · · · , sr}, →) and the corresponding PRM
P ∗ = (p∗fl) l=1,··· ,r

f=1,··· ,r
be given. Furthermore, let sf1 , sf2 , · · · , sfq be a main

minimal chain (see Definition 4.1.3).

Then the dominance condition is fulfilled in relation to the main minimal
chain, which means

r̄∑
l=1

p∗f1l ≥
r̄∑

l=1

p∗f2l ≥ · · · ≥
r̄∑

l=1

p∗fql ∀ r̄ = 1, · · · , r.
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(See Lemma 3.26 and the proof in [22], page 109 for the proof. Thereby,
the 3rd relationship from Lemma 4.6.4 is not possible in relation to main
minimal chains.)

Definition 4.6.4. If a main minimal chain of a set of restricted partitions
(Sn;su;k0 ,→) = ({s1, s2, · · · , sr}, →) includes all partitions, then this set of
restricted partitions is called m-totally ordered.

Theorem 4.6.5 and Corollary 4.6.3 then imply:

Corollary 4.6.6. Let Sn;su;k0 be a m-totally ordered set of partitions.

Then the dominance condition is fulfilled for the corresponding PRM and
the solutions of the corresponding Poisson equations are monotone (with
respect to the partial order).

Examples:

• The dominance property is fulfilled for P ∗ from Example 4.2.1.

• All S2;su;k0 are m-totally ordered sets.

4.6.2.3 PRMs with regard to Sets of Restricted Partitions with
at most 4 Partitions

We initially list sets of restricted partitions with at most 4 partitions (with-
out detailed proofs):

Sets with 2 partitions:

- are, obviously, m-totally ordered sets (see Definition 4.6.4).

(Thus, the dominance condition is fulfilled for corresponding PRMs
according to Corollary 4.6.6.)

Sets with 3 partitions:

- m-totally sets,
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- S3;4;3,

- S3;5;3 this set is equivalent to S3;4;3 with regard to the Poisson
equation (if the probability functions of w are in corres-
pondence).

Sets with 4 partitions:

- m-totally ordered sets,

- S3;4;4, S3;5;4, S4;5;3, S4;4;3 (see C2) of the classification in
Section 4.4.1),

- Sn;4;3 with n > 4 (see C1) of the classification in Section 4.4.1),

- S3;3k0−4;k0 with k0 > 4 (see C3) of the classification in
Section 4.4.1),

- sets which are equivalent to S3;4;4 or to other above mentioned sets
with regard to the Poisson equations (where the probability functions
of w are in correspondence).

Since we have computed PRMs for

- S3;4;3 (S3;5;3) for any probability function of w and

- S3;4;4, · · · for discrete uniformly distributed requirements

and the solutions of corresponding the Poisson equations, we can give the
following partial result (here without detailed computations).
(See also Example 4.4.1.)

Theorem 4.6.7. Solutions of Poisson equations are in general monotone
for PRMs with regard to sets of restricted partitions with at most 3 partitions
and with regard to sets with 4 partitions in the case of discrete uniformly
distributed requirements.
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4.6.3 The Poisson Equations with regard to Sets of Sparse
Partitions with Sufficiently Large n

Sets of sparse partitions were characterized in Section 4.4.1, see classification
C1). Limits of corresponding PRMs were computed in Section 4.4.2.

Example 4.6.1. (Continuation of Example 4.4.1)
Let the sets of partitions Sn;4;3 (n > 4) and the corresponding sets of re-
quirements Bn;3 be given and let wi, (i = 1, · · · , n) be independent and
identically distributed. The corresponding PRMs P ∗(n) can be found in
Example 4.4.1.

γ′ can be calculated by means of (4.6.2) and (4.6.3) (see also Theorem
3.4.1(e)). γ′ = (3, 2, 1, 0)T results from such a calculation for any n > 4 .

It should be noted that the Poisson equations have monotone solutions.
The limits of the variables ν = ν(n) are:

v1 → 14
3

v2 → 4
v3 → 2
v4 → 0

for n → ∞, if v4(n) := 0, for all n > 4.

In this section we consider equation systems similar to the Poisson equations
where PRMs with regard to sets of sparse partitions are initially replaced
by the limits of such matrices, as n approaches infinity. The solutions of
such equation systems will be vectors which include, in relation to the dis-
tribution of requirements, generalized harmonic numbers. The solutions are
also monotone, from which the monotonicity of the solutions of the Poisson
equations themselves, with regard to sets of sparse partitions for sufficiently
great n, follows.

In the considerations in this subsection, we also use the definition of
monotone successors and principle parts of partitions (Definition 4.4.1) as
we have used these for the computation of the limits of PRMs with regard
to sets of sparse partitions in Section 4.4.2. Since monotone successors and
principle parts do not directly depend on su and k0 we can include all equa-
tion systems (in relation to different su and k0) in one proof.
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Now, we give a affine transformation of γ, which directly depends only on
the principal parts of the partitions and the distribution of the requirements:

γ(s) =
n∑

i=1

si∑
wi=0

(si − wi) q0(wi) (see (4.6.2))

=
η∑

i=1

si∑
wi=0

(si − wi) q0(wi) + (su −
η∑

i=1
si) q0(0)

=
∑

i:si≥2

si∑
wi=1

(si − wi) q0(wi) + su q0(0),

(4.6.5)

with η as in Definition 4.4.1(a) and su q0(0) is independent of s.

We define
γ′(s) :=

∑
i:si≥2

si∑
wi=1

(si − wi) q0(wi)

=
∑

i:si≥2

si−1∑
wi=1

(si − wi) q0(wi),

(4.6.6)

in particular,

γ′((1, · · · , 1, 0, · · · , 0)T ) := 0

and

γ′(si) :=
si∑

wi=1

(si − wi)q0(wi) for si ≥ 2. (4.6.6a)

If we now consider the equation systems

g

⎛
⎜⎝ −1

...
−1

⎞
⎟⎠ + ( lim

n→∞P ∗(n) − I) ν = −γ′

with γ′ from (4.6.6),

(4.6.7)

then g = 0 initially follows from the last equation (see also Corollary 4.4.7),
and we see in the following theorem that the solutions
ν (= ν(s), s ∈ Sn;su;k0) only depend on the principal parts of the partitions
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and the distributions of the requirements. The sets Sn;su;k0 themselves are
therefore insignificant for the calculations.

Theorem 4.6.8. Let Sn;su;k0 , n = (su, ) su+1, su+2, · · · be sets of sparse
partitions, each of these sets with r partitions19, and with the partial order
as in Definition 4.1.1(a), (c) and Lemma 4.1.5.

Let Bn;k0 be corresponding sets of requirements with the same marginal
probability functions q0 for all n and where the requirements
wi, (i = 1, · · · , n) are independent and identically distributed and where
(4.2.2) is additionally assumed. Furthermore, let P ∗(n) be the the corre-
sponding PRMs.

Then,

ν((1, 1, · · · , 1, 0, 0, · · · , 0)T ) := 0

ν(s) =
∑

i:si≥2

(
q0(1)

q0(0)+q0(1) + q0(1)+q0(2)
q0(0)+q0(1)+q0(2) + · · · + q0(1)+q0(2)+···+q0(si−1)

q0(0)+q0(1)+···+q0(si−1)

)
,

s ∈ Sn;su;k0 , s �= (1, 1, · · · , 1, 0, 0, · · · , 0)T

=
∑

i:si≥2

(
si − q0(0)

(
1

Q0(0) + 1
Q0(1) + · · · + 1

Q0(si−1)

))
where

Q0(ω) = q0(0) + q0(1) + · · · + q0(ω)

together with a corresponding value of g are solutions of the equation system
(4.6.7).

Briefly, we note that 1
Q0(0) + 1

Q0(1) + · · ·+ 1
Q0(Si−1) are, in relation to the

distribution of requirements, generalized harmonic numbers.

Proof.
1. We use the following notations and definitions

Q0(ω) := q0(0) + q0(1) + · · · + q0(ω),

Q1(ω) := q0(1) + · · · + q0(ω) (= Q0(ω) − q0(0)),

Q̄0(ω) := q0(ω) + q0(ω + 1) + · · · + q0(k0) (= 1 − Q0(ω − 1)),

ν(si) :=
si−1∑
ω=1

Q1(ω)
Q0(ω) for si ≥ 2, ν(0) := 0, ν(1) := 0

19See Remarks 4.4.1.
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(hence ν(s) =
∑

i:si≥2
ν(si) =

n∑
i=1

ν(si)),

℘ (M) − the power set of a set M

℘ := ℘({1, 2, · · · , η}),
℘− := ℘\{1, 2, · · · η},
℘j := ℘({1, 2, · · · , η}\{j}),

MS(s) := {s2 ∈ Sn;su;k0 | s2 is a monotone successor of s}.

Furthermore, we note that
if Ī ∈ ℘ then {1, 2, · · · , η}\Ī := {j1, j2, · · · , jh} with h = η − |Ī|.

2. Now, we give 4 relationships which are employed in the following proof:
Without loss of generality, let be si ≥ 2 for i = 1, 2, · · · , η
and sj ∈ {0, 1} for j = η + 1, η + 2, · · · , n.

1 =
r∑

l=1

lim
n→∞ p∗(sl|s)

=
∑

s2∈MS(s)

(q0(0)+q0(1))η−η2
∑

s2
π∈S2

π

(
∏

i:si>s2
πi

≥2

q0(s2
πi

)) (
∏

i:si=s2
πi

≥2

Q̄0(si))

(see Theorem 4.4.6)
These summations over all monotone successors of s can
however be realized in the following way:

=
∑̄
I∈℘

(
∏
i∈Ī

Q̄0(si))
sj1

−1∑
s2
πj1

=0

· · ·
sjh

−1∑
s2
πjh

=0

h∏
h′=1

q0(s2
πjh′ )

(which means si = s2
πi

≥ 2 for i ∈ Ī and
sj > s2

πj
∧ sj ≥ 2 for j ∈ {1, 2, · · · , η}\Ī)

=
∑̄
I∈℘

(
∏
i∈Ī

Q̄0(si)) (
∏
j /∈Ī

Q0(sj − 1)) (*1)

where
∏
i∈Ī

Q̄0(si) : = 1 for Ī = ∅,

∏
j /∈Ī

Q0(sj − 1) : = 1 for Ī = {1, 2, · · · , η}.



268

∑
Ī∈℘−

(
∏
i∈Ī

Q̄0(si))

[∑
j /∈Ī

(
∏

j′ /∈Ī∪{j}
Q0(sj′ − 1))γ′(sj)

]

=
η∑

j=1

[
γ′(sj)

∑
Ī∈℘j

(
∏
i∈Ī

Q̄0(si)) (
∏

j′ /∈Ī∪{j}
Q0(sj′ − 1))

]

=
η∑

j=1
γ′(sj) · 1 (see (*1), applied to s with the principal

parts (s1, · · · , sj−1, sj+1, · · · , sη))

= γ′(s). (*2)

lim
n→∞ p∗(s|s) =

∏
i:si≥2

(q0(si) + · · · + q0(k0)) =
∏

i:si≥2
Q̄0(si) (*3)

(see Theorem 4.4.6).

γ′(si) =
si∑

ω=1
(si − ω) q0(ω) (see (4.6.6a))

=
si−1∑
β=1

β∑
ω=1

q0(ω) (reorganization of the sum)

=
si−1∑
β=1

(
β∑

ω=0
q0(ω)

)
Q1(β)
Q0(β)

=
(

si−1∑
ω=0

q0(ω)
)

si−1∑
β=1

Q1(β)
Q0(β) −

si−2∑
β=1

(
si−1∑

ω=β+1

q0(ω)

)
Q1(β)
Q0(β)

= Q0(si − 1) ν(si) −
si−1∑
ω=2

q0(ω) ν(ω) (*4)

(reorganization of the last sums; ν(·) as in this theorem).

3. The proof of the Theorem

(4.6.7) together with Corollary 4.4.7 yields

ν(s) = 1
1− lim

n→∞ p∗(s|s)

(
γ′(s) +

∑
s2∈MS(s)\{s}

lim
n→∞ p∗(s2|s) ν(s2)

)
.
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An equivalent equation is

0 = γ′(s) − ν(s) +
∑

s2∈MS(s)

lim
n→∞ p∗(s2|s) ν(s2).

Further equivalent transformations, using the summation over all
monotone successors as in the derivation of (*1), yield

0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

) ⎡
⎣sj1

−1∑
s2
j1

=0

· · ·
sjh−1

−1∑
s2
jh−1

=0

sjh
−1∑

s2
jh

=0

(
h∏

h′=1

q0(s2
jh′ )

)(∑
i∈Ī

ν(si) +
h∑

h′=1

ν(s2
jh′ )

)⎤
⎦

((q0(0) + q0(1))η−η2 from Theorem 4.4.6 is realized by
s2
jh′ = 0; 1 for h′ = 1, · · · , h)

where
∏
i∈Ī

Q̄0(si) := 1 for I = ∅.

We now apply (*4) in the form of

sjh′−1∑
s2
jh′ =0

q0(s2
jh′ ) ν (s2

jh′ ) = −γ′(sjh′ ) + Q0(sjh′ − 1) ν (sjh′ )

(with ν(·) as in this theorem)

to the above equation (at first for h′ = h):

0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

)⎡
⎣sj1

−1∑
s2
j1

=0

· · ·
sjh−1

−1∑
s2
jh−1

=0[(
h−1∏
h′=1

q0(s2
jh′ )

)
Q0(sjh

− 1)

(∑
i∈Ī

ν(si) +
h−1∑
h′=1

ν(s2
jh′ )

)
+

h−1∏
h′=1

q0(s2
jh′ )(−γ′(sjh

) + Q0(sjh
− 1)ν(sjh

))
]]
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0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

)⎡
⎣sj1

−1∑
s2
j1

=0

· · ·
sjh−1−1∑
s2
jh−1

=0[(
h−1∏
h′=1

q0(s2
jh′ )

)
Q0(sjh

− 1)

( ∑
i∈ĪU{jh}

ν(si) +
h−1∑
h′=1

ν(s2
jh′ )

)

−
h−1∏
h′=1

q0(s2
jh′ )γ

′(sjh
)
]]

.

The repeated application of (*4) (for h′ = h − 1) yields

0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

)⎡
⎣sj1

−1∑
s2
j1

=0

· · ·
sjh−2−1∑
s2
jh−2

=0

[(
h−2∏
h′=1

q0(s2
jh′ )

)

h∏
h′=h−1

Q0(sjh′ − 1)

( ∑
i∈ĪU{jh}

ν(si) +
h−2∑
h′=1

ν(s2
jh′ )

)

−
h−2∏
h′=1

q0(s2
jh′ )Q0(sjh−1

− 1)γ′(sjh) +
h−2∏
h′=1

q0(s2
jh′ )Q0(sjh

− 1)(−γ′(sjh−1
)

+Q0(sjh−1
− 1)ν(sjh−1

))
]]

0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

)⎡
⎣sj1

−1∑
s2
j1

=0

· · ·
sjh−2−1∑
s2
jh−2

=0

[(
h−2∏
h′=1

q0(s2
jh′ )

)

h∏
h′=h−1

Q0(sjh′ − 1)

( ∑
i∈ĪU{jh,jh−1}

ν(si) +
h−2∑
h′=1

ν(s2
jh′ )

)

−
h−2∏
h′=1

q0(s2
jh′ )Q0(sjh−1

− 1)γ′(sjh
) −

h−2∏
h′=1

q0(s2
jh′ )Q0(sjh

− 1)γ′(sjh−1
)
]]

...
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0 = γ′(s) − ν(s) +
∑̄
I∈℘

(∏
i∈Ī

Q̄0(si)

) ∏
j /∈Ī

Q0(sj − 1)ν(s)−

∑
Ī∈℘−

(
∏
i∈Ī

Q̄0(si))

[∑
j /∈Ī

(
∏

j′ /∈ĪU{j}
Q0(sj′ − 1))γ′(sj)

]
.

Finally, (*1) implies

0 = γ′(s) − ∑
Ī∈℘−

(
∏
i∈Ī

Q̄0(si))

[∑
j /∈Ī

(
∏

j′ /∈ĪU{j}
Q0(sj′ − 1))γ′(sj)

]
.

This is a valid equation, as seen by (*2).

Thus, the assertion of the Theorem is confirmed since we have only
used equivalent transformations of the equations. �

Corollary 4.6.9. Let the same assumptions as in Theorem 4.6.8 be valid.
Furthermore, let sl be a successor of sf , where {sf , sl} ⊆ Sn;su;k0 for any
n >

(=)su and sf �= sl.

Then, ν(sl) < ν(sf ) is valid for solutions of the equation system (4.6.7).
This means that the solutions of the equation systems (4.6.7) are monotone
(with respect to the partial order).

This statement results from simple computations using the formulas from
Theorem 4.6.8 for ν(sl) and ν(sf ), where the inequality is initially shown if
sl is a direct successor of sf .

Corollary 4.6.10. Let the same assumptions as in Theorem 4.6.8 be valid.

Then, the solutions of the Poisson equations (see (4.6.1)) with regards to
sets Sn;su;k0 of sparse partitions are monotone for sufficiently large n.

This result follows from the solution behavior of linear equation systems
for cases of passing to the limits in the coefficient matrices and Corollary
4.6.9 (where it is used in particular that the inequalities ν(sl) < ν(sf ) are
strict inequalities).
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Corollary 4.6.11. Let the same assumptions as in Theorem 4.6.8 be valid.
This means, in particular, that sets Sn;su;k0 , n >

(=) su of sparse partitions,
each of these sets with r partitions, are considered.

The corresponding Poisson equations, with exception of perhaps a finite
number of them, then have monotone solutions.

4.6.4 The Poisson Equations with regard to Sets of
Non-Truncated Heavy Partitions with Sufficiently Large
n or k0

Sets of non-truncated heavy partitions were characterized in Section 4.4.1,
see classification C3b.1) and Lemma 4.4.1(b). Limits of corresponding PRMs
were computed in Section 4.4.3.

Formally, we proceed as in Section 4.6.3. Differences are found in the
following:

In Section 4.6.3 we used lim
n→∞P ∗(n) in order to show the monotonicity

of νf (for large n), which are solutions of the equation systems (4.6.1) (see
Theorem 4.6.8 and Corollary 4.6.10).

We now begin with

g′

⎛
⎜⎝ −1

...
−1

⎞
⎟⎠ + lim

k0→∞
1

c(k0)
(P ∗(k0) − I) ν = − lim

k0→∞
1

c(k0)
γ′ (4.6.8)

(with g′ = lim
k0→∞

1
c(k0) g, g = g(k0))

by reason of (4.4.5).

The definition of the restricted monotone successor (Definition 4.4.2(b))
includes an additional property in comparison with Definition 4.4.1(b).

Although lim
n→∞P ∗(n) − I �= lim

k0→∞
1

c(k0)(P
∗(k0) − I) (see Example 4.4.3)

the solutions ν of the equations systems (4.6.7) and (4.6.8) are analogous
(see Theorem 4.6.8 and Theorem 4.6.12).
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As in Section 4.6.3, we initially give a affine transformation of γ (see
(4.6.2)):

γ(s) =
n∑

i=1

si∑
wi=0

(si − wi) q0(wi)

=
n∑

i=1

k0∑
wi=0

(si − wi) q0(wi)

−
n∑

i=η

k0∑
wi=si+1

(si − wi) q0(wi) + (s̄u −
n∑

i=η
(k0 − si)) q0(k0)

(see Definition 4.4.2 for η; s̄u := n k0 − su),

=
n∑

i=1
si

k0∑
wi=0

q0(wi) −
n∑

i=1

k0∑
wi=0

wi q0(wi)

+
n∑

i=η

k0−1∑
wi=si+1

(wi − si) q0(wi) +
n∑

i=η
(k0 − si) q0(k0)

+ s̄u q0(k0) −
n∑

i=η
(k0 − si) q0(k0)

= su −
n∑

i=1

k0∑
wi=0

wi q0(wi)

+
n∑

i=η

k0−1∑
wi=si+1

(wi − si) q0(wi) + s̄u q0(k0)

=
∑

i:si≤k0−2

k0−1∑
wi=si+1

(wi − si) q0(wi) + R̄(n, su, k0, q),

where R̄(n, su, k0, q) = su −
n∑

i=1

k0∑
wi=0

wi q0(wi) + s̄u q0(k0) is

independent of s.
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We define

γ′(s) :=
∑

i:si≤k0−2

k0−1∑
wi=si+1

(wi − si) q0(wi) (4.6.9)

(=
∑

i:s̄i≥2

s̄i or (s̄i−1)∑̄
wi=1

(s̄i − w̄i) q0(k0 − w̄i) (4.6.9a)

where s̄i := k0 − si)
and in particular,

γ′((k0, · · · , k0, k0 − 1, · · · , k0 − 1)T ) := 0.

Using γ′(s) from (4.6.9) in the equation system (4.6.8), g′ = 0 follows from
the last equation (the equation with
γ′(sr = (k0, · · · , k0, k0 − 1, · · · , k0 − 1)T ) on the right side) where
Corollary 4.4.11 is kept in mind.

If we fix ν(sr) = 0, the following system remains

r−1∑
l=1

lim
k0→∞

1
c(k0)

(p∗(sl|sf ) − δ(sl, sf )) ν(sl) = − lim
k0→∞

1
c(k0)

γ′(sf ), (4.6.10)

f = 1, · · · , r − 1.

Example 4.6.2. (Continuation of Example 4.4.3)
Let us consider

Sn;4;4 (n > 4) − sets of sparse partitions and

S5;5k0−4;k0 (k0 > 4) − sets of non-truncated heavy partitions.

Limits of elements of the corresponding PRMs can be completely different
(see Example 4.4.3).

However corresponding ν - solutions of the equation systems (4.6.7) and
(4.6.8) - are analogous:

For instance,

ν(s4(n)) = q0(1)
q0(0)+q0(1) and ν(s4(k0)) = q0

0(k0−1)

q0
0(k0)+q0

0(k0−1)

and
ν(s3(n)) = 2q0(1)

q0(0)+q0(1) and ν(s4(k0)) = 2q0
0(k0−1)

q0
0(k0)+q0

0(k0−1)
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(where q0
0(wi) := lim

k0→∞
q

k0
0 (wi)
c(k0) for corresponding c(k0), see (4.4.6)).

This is yielded by Theorem 4.6.8 and the following Theorem 4.6.12.

Theorem 4.6.12. Let Sn;su=nk0−s̄u;k0 , k0 = (s̄u, ) s̄u + 1, s̄u + 2, · · ·
(s̄u < n) be sets of non-truncated heavy partitions20, each of these sets
with r partitions, and with the partial order as in Definition 4.1.1(a), (c)
and Lemma 4.1.5.

Furthermore, let Bn;k0 be the corresponding sets of requirements, where
for any k0, the requirements wi, (i = 1, · · · , n) are independent and identi-
cally distributed and where (4.2.2) is assumed. In addition, let corresponding
given probability functions qk0 fulfill (4.4.5) and (4.4.6) for certain c(k0).
Finally, let P ∗(k0) be the the corresponding PRMs.

Then,

ν((k0, · · · , k0, k0 − 1, · · · , k0 − 1)T ) := 0

ν(s) =
∑

i:si≤k0−2

( q0
0(k0−1)

q0
0(k0)+q0

0(k0−1)
+ q0

0(k0−1)+q0
0(k0−2)

q0
0(k0)+q0

0(k0−1)+q0
0(k0−2)

+ · · ·

+ q0
0(k0−1)+q0

0(k0−2)+···+q0
0(si+1)

q0
0(k0)+q0

0(k0−1)+···+q0
0(si+1)

)

(where q0
0(wi) := lim

k0→∞
q

k0
0 (wi)
c(k0) )

=
∑

i:si≤k0−2

(
k0 − si − q0

0(k0)( 1
Q0

0(k0)
+ 1

Q0
0(k0−1)

+ · · · + 1
Q0

0(si+1)
)
)

where Q0
0(w) = q0

0(k0) + q0
0(k0 − 1) + · · · + q0

0(w)

are solutions of the equation systems (4.6.8) with γ′ from (4.6.9).

Proof. We use the following notations in relation to partitions:

s(k0) = (k0, · · · , k0, k0 − 1, · · · , k0 − 1, k0 − s̄η, · · · , k0 − s̄n)

with 2 ≤ s̄η ≤ s̄η+1 ≤ · · · ≤ s̄n ≤ k0 − 1 (*1)
(see Definition 4.4.2(a) for η)

and additionally
s̄hj

= s̄hj+1
= · · · = s̄hj+1−1, j = 1, 2, · · · , α

20See Remarks 4.4.1.
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where η = h1 < h2 < · · · < hα ≤ n := hα+1 − 1.

Furthermore, we note

ν(si) := q0
0(k0−1)

q0
0(k0)+q0

0(k0−1)
+ · · · + q0

0(k0−1)+q0
0(k0−2)+···+q0

0(si+1)

q0
0(k0)+q0

0(k0−1)+···+q0
0(si+1)

for si ≤ k0 − 2, ν(k0 − 1) := 0, ν(k0) := 0,

γ′(si) :=
k0−1∑

wi=si+1
(wi − si) q0(wi) for si ≤ k0 − 2

(this means i ≥ η) (see (4.6.9)).

Since ν((k0, · · · , k0, k0 − 1, · · · , k0 − 1)T ) = 0, we have to prove the identity
(see (4.6.10))

r−1∑
l=1

lim
k0→∞

1
c(k0) [p∗(sl(k0)|s(k0)) − δ(sl(k0), s(k0))] ν(sl(k0))

= − lim
k0→∞

1
c(k0) γ′(s(k0)) (*2)

(where γ′(·) is from (4.6.9) and ν(·) from this theorem)

for any partitions s(k0) �= (k0, · · · , k0, k0 − 1, · · · , k0 − 1)T .

Here, lim
k0→∞

1
c(k0)p

∗(sl(k0)|s(k0)) = 0 if sl(k0) is not a restricted monotone

successor of s(k0) (see Theorem 4.4.10).

Hence, we can replace the sum over l = 1, · · · , r − 1 in (*2) with a sum
over the narrow monotone successors of s(k0).

sl(k0) are restricted monotone successors of s(k0)

if sl(k0)i ∈ {k0, k0 − 1} for i = 1, · · · , η − 1,

sl(k0)i0 = k0 − s̄′i0 ≥ k0 − s̄i0 = s(k0)i0 for one i0 ∈ {η, · · · , n} and

sl(k0)i = s(k0)i for i ∈ {η, · · · , n} \ {i0}
(see Definition 4.4.2(b)).

This implies the summation
α∑

i=1

s̄hi∑
s̄′hi

=1

· · · as realization of the summation

over the restricted monotone successors of s(k0).
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Here the summand

lim
k0→∞

1
c(k0) (p∗(s(k0)|s(k0)) − 1) ν(s(k0))

= −
n∑

i=η
(q0

0(k0 − s̄i + 1) + · · · + q0
0(k0)) ν(s(k0)) (see Theorem 4.4.10)

is separately noted down.

The summations
α∑

i=1

s̄hi
−1∑

s̄′hi
=1

· · · then remain.

With this method, we can then give an equation equivalent to equation (*2)
(where, additionally, the formula from Theorem 4.4.10 is used for the re-
maining limits):

−
n∑

i=η
(q0

0(k0 − s̄i + 1) + · · · + q0
0(k0)) ν(s(k0))

+
α∑

i=1
(hi+1−hi)

⎡
⎣shi

−1∑
s̄′hi=1

q0
0(k0 − s̄′hi)

(
ν(s(k0)) − ν(k0 − s̄hi) + ν(k0 − s̄′hi)

)
+q0

0(k0) (ν(s(k0)) − ν(k0 − s̄hi) + 0)
]

= − lim
k0→∞

1
c(k0) γ′(s(k0)), (* 3)

where according to the formulas for ν(s) (from this theorem) and ν(si)
(from the above proof):

ν(s(k0)) − ν(k0 − s̄hi) + ν(k0 − s̄′hi) = ν(sl(k0)) for sl(k0) with

sl(k0)hi
= k0 − s̄′hi

and sl(k0)j = s(k0) for j �= hi

and thus, in particular,

ν(s(k0)) − ν(k0 − s̄hi
) = ν(sl(k0)) if s̄′hi

= k0 − 1.

A simple reorganization of the sums yields{
−

n∑
i=η

(q0
0(k0 − s̄i + 1) + · · · + q0

0(k0))
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+
α∑

i=1
(hi+1 − hi)

s̄hi
−1∑

s̄′hi
=0

q0
0(k0 − s̄′hi

)

⎫⎬
⎭ ν(s(k0))

+
α∑

i=1
(hi+1 − hi)

s̄hi
−1∑

s̄′hi
=1

q0
0(k0 − s̄′hi

) (−ν(k0 − s̄hi
) + ν(k0 − s̄′hi

))

+
α∑

i=1
(hi+1 − hi) q0

0(k0) (−ν(k0 − s̄hi
))

= − lim
k0→∞

1
c(k0) γ′(s(k0)). (* 4)

Since
α∑

i=1
(hi+1 − hi) · · · can be replaced with

n∑
i=η

· · · , the term in the

parentheses {· · · } yields 0 and the following equivalent equation remains:

n∑
i=η

s̄hi
−1∑

s̄′hi
=1

q0
0(k0− s̄′hi

) (−ν(k0− s̄hi
)+ν(k0− s̄′hi

))+
n∑

i=η
q0
0(k0) (−ν(k0− s̄hi

))

= − lim
k0→∞

1
c(k0) γ′(s(k0)).

Finally,

−
n∑

i=η

⎧⎨
⎩

s̄hi
−1∑

s̄′hi
=0

q0
0(k0 − s̄′hi

) ν(k0 − s̄hi
) −

s̄hi
−1∑

s̄′hi
=1

q0
0(k0 − s̄′hi

) ν(k0 − s̄′hi
)

⎫⎬
⎭

= −
n∑

i=η

{
lim

k0→∞
1

c(k0) γ′(s(k0)i)
}

.

Here {· · · } = {· · · } is valid. This relationship is analogous to (*4) from
the proof of Theorem 4.6.8 and could be proven in an analogous way.

Thus, the assertion of the Theorem is confirmed since we have only used
equivalent transformations of the equations. �

Similar to Corollary 4.6.9, in relation to sets of sparse partitions, Theorem
4.6.12 implies here:

Corollary 4.6.13. Let the same assumptions as in Theorem 4.6.12 be valid.
Furthermore, let sl be a successor of sf , where {sf , sl} ⊆ Sn;su;k0 for any



279

k0
>

(=) s̄u and sf �= sl.

Then, ν(sl) < ν(sf ) is valid for solutions of the equation system (4.6.8).
This means that the solutions of the equation systems (4.6.8) are monotone
(with respect to the partial order).

Corollary 4.6.14. Let the same assumptions as in Theorem 4.6.12 be valid.
Then, the solutions of the Poisson equations (see (4.6.1)) with regard to

sets Sn;su;k0 of non-truncated heavy partitions, are monotone for sufficiently
large n and k0.

(See also Remarks 4.4.2.)

In order to prove this corollary we use considerations analogous to those for
the case of sets of sparse partitions, refer to Corollary 4.6.10.

We must additionally note that γ′ (see (4.6.9)), the limits of PRMs
P ∗(k0), as k0 tends to infinity, and the solutions ν of the corresponding
equation systems depend on the principal parts of the partitions, however
not on n.

Corollary 4.6.15. Let the same assumptions as in Theorem 4.6.12 be valid.
This means, in particular, that sets Sn;su=nk0−s̄u;k0 , k0

>
(=) s̄u of non-

truncated heavy partitions, each of these sets with r partitions, are consid-
ered.

The corresponding Poisson equations, with exception of perhaps a finite
number of them, then have monotone solutions.

Remarks: We have answered several important questions regarding PRMs
and the corresponding Poisson equations in Chapter 4. There are, however,
other problems which still remain, for instance:

- formulas for (most of) the elements of PRMs,

- the proof of the monotonicity of solutions of the Poisson equations with
regard to sets of truncated heavy partitions for large k0,

- the proof of the the monotonicity of the solutions of Poisson equations
for small n and k0 in the case where the PRMs do not fulfil the
dominance condition.
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4.7 Conclusion for SDDP Problems with Identical
Basic Cost and Independent and Identically
Distributed Requirements

Corollary 4.7.1. .

(i) Let reduced SDDP problems, as in Section 3.4.2, with

a) m-totally ordered state spaces or
b) state spaces with at most 4 partitions and discrete uniformly dis-

tributed requirements in the case of exactly 4 partitions

be given.

Then, decisions d∗ for feasible states (unordered partitions) with
least square sums of their components are optimal for such reduced
SDDP problems.

(ii) Let reduced SDDP problems, as in Section 3.4.2, with state spaces

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sn;su;k0 , n = (su, ) su + 1, su + 2, · · · (sets of sparse partitions,
su and k0 arbitrary but fixed) or

Sn;su=nk0−s̄u;k0 , k0 = (s̄u; ) s̄u + 1, s̄u + 2, · · · (s̄u < n) (sets of

non-truncated heavy partitions,
s̄u arbitrary but fixed)

each of these sets with
{

r1

r2
partitions, be given. Furthermore, let the

probability functions of the requirements of the corresponding sets of
requirements be as in Theorem 4.6.8 or Theorem 4.6.12, respectively.

Then, decisions d∗ for feasible states with least square sums of their
components are optimal for such reduced SDDP problems, with excep-
tion of perhaps a finite number of them.
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Proof. Matrices of transition probabilities of reduced SDDP problems for
decisions d∗ are PRMs (see Lemma 4.2.3).

Thus, the Poisson equations for PRMs (see Definition 4.6.1 and (2.3.5))
are the Poisson equations for reduced SDDP problems and decisions d∗,
where in addition certain affine transformations of the right hand side of the
equations are allowed (see Theorem 3.4.1(c) and (4.6.2)).

However, such affine transformations (with α > 0) have no effect on the
monotonicity of the solutions of the Poisson equations (see Lemma 2.3.2).

According to Corollary 4.6.6 or to Theorem 4.6.15 the Poisson equations
then have monotone solutions (with respect to the partial order, see Defini-
tion 4.6.2) in case (i).

In case (ii), the Poisson equations, with exception of perhaps a finite
number of them, have monotone solutions, which here follow from Corollar-
ies 4.6.11 and 4.6.15.

If d̂∗(s, w) = s∗ and s′ ∈ Ân;su;k0(s, w), s′ �= s∗ (see (3.4.15) and (4.2.5))
then s∗ is a successor of s′ according to Lemma 4.2.1(b) and monotone
solutions imply ν(s′) < ν(s∗) (see Definition 4.6.2). Hence, the optimality
criterion (2.3.22a) from Lemma 2.3.6 is fulfilled and d∗ are optimal decisions
for the corresponding reduced SDDP problems. �
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Final observations on SDDP
problems

SDDP problems are extremely complex.

The formulation of distance properties for DA stochastic dynamic pro-
gramming problems in Chapter 2 and corresponding statements in this chap-
ter and Chapter 3 led to the fact that the use of lazy algorithms is sufficient
in order to compute optimal solutions of SDDP problems (Theorem 3.3.8).

Under the assumptions of identical basic costs (in other words, of unit
distances), the average one-step reward functions of SDDP problems mod-
elled as DA MDPs do not depend on the decisions. According to Section
2.3.2, optimal decisions then imply an ”almost-partial order” of the states
and the complexity of computing optimal decisions can be reduced.

In the case that in addition to identical basic costs, identically distributed
requirements are also assumed, decisions for feasible states with least square
sums of their components are optimal for ”most” of such SDDP problems.
This was shown in Chapter 4 by means of combinatorial considerations.

Based on the last facts, the question of how the optimal decisions vary if
the (initially identical) basic cost change is of interest. This means a para-
metric analysis should be utilized in relation to variable cost. For this the
cost are considered to be linearly dependent on one parameter.

If the parameter increases, then the violations of the optimality are single
violations (see Definition 2.3.6) in general. This also means that an adapted
Howard algorithm is a greedy algorithm for cost-parametric SDDP problems.

Moreover, the additional conditions (AC1), (AC2) and (AC3) have been
formulated in Section 2.3.4. They are satisfied for Example 3.5.1. Whether
the additional conditions are valid for SDDP problems in general, or only
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for certain subsets of SDDP problems, remains to be investigated. Never-
theless, they substantiate basic heuristic methods for finding of approximate
solutions of SDDP problems.

However, investigations with regard to SDDP problems and useful heuris-
tics for SDDP problems are far from being finished.
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kenntnisse zu Partitionen-Bedarfs-Matrizen. Facharbeit - Mathematik,
Goethegymnasium, Ilmenau 2002.

[19] R. Hildenbrandt, Kostengünstige Belegung von Formen im Hinblick
auf Bedarfsschwankungen, Wiss. Zeitschrift der TH Ilmenau, 34, Heft
4 (1988).

[20] R. Hildenbrandt, A special stochastic decision problem, Optimization
28 (1993) pp. 95-110.

[21] R. Hildenbrandt, Eine Verbandsstruktur für Partitionen ganzer
Zahlen, Preprint No. M 14/94, TU Ilmenau 1994.
http : //www.db−thueringen.de/servlets/DerivateServlet/Derivate−
8547/IfM Preprint M 94 14.PDF

[22] R. Hildenbrandt, Methoden aus ganzzahliger Optimierung und Ver-
bandstheorie zur Behandlung eines stochastischen dynamischen Trans-
portproblems, Habilitationsschrift, TU Ilmenau 1995, (Libri BoD
2000).

[23] R. Hildenbrandt, Partitions-requirements-matrices, Symposium on
Operations Research, Duisburg 9/2001 (Proceedings, Springer, Berlin,
Heidelberg, ..., (2002) pp. 303 - 311).

[24] R. Hildenbrandt, Stochastic dynamic programming with random dis-
turbances, Discussiones Mathematicae Probability and Statistics, 23
(2003) pp. 5-44.

[25] P. Kumar and R.P. Varaiya, Stochastic Systems: Estimation, Identi-
fication, and Adaptive Control, Prentice Hall, New Jersey 1986.



286

[26] A.W. Marshall and I. Olkin, Inequalities: Theory of majorization and
its applications, Mathematics in Science and Engineering, Vol. 143.
Academic Press, New York 1979.

[27] Maßmann, Matthias, Ein Ansatz zur kapazitierten stochastisch-
dynamischen Facility-Location-Planung, Dissertation, Deutscher Uni-
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Glossary of Symbols and Abbreviations

N the set of positive integers

R the set of real numbers

Rn
+ the set of n-dimensional real vectors

- with nonnegative coordinates

Z the set of integers

Z+ the set of nonnegative integers

Zn
+ the set of n-dimensional integer vectors

- with nonnegative coordinates

x ≤ y for x ∈ Zn
+, y ∈ Zn

+

means xi ≤ yi for i = 1, ..., n

δ Kronecker’s symbol

|M | number of elements in the finite set M

�x
y
� (x ∈ Z+, y ∈ N)

the integer with x
y
− 1 < �x

y
� ≤ x

y
,

�x
y
� (x ∈ Z+, y ∈ N)

the integer with x
y
≤ �x

y
� < x

y
+ 1

y[i1; i2] (y ∈ Zn)

yi[i1; i2] =

⎧⎨
⎩

yi + 1 for i = i1,
yi − 1 for i = i2,
yi otherwise

w. l. o. g. without loss of generality

essential
locations

.→, → Section 4.1

a availabilities Section 3.1

A decision space Section 2.1
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AM set of finite decision spaces Section 2.3
Section 2.3.2
Section 3.2

Ât(st, wt) DA decision set Section 2.1
Section 2.3.2
Section 2.3.3.1

An;su;k0(s̃, w) decision set Section 3.2

Ân;su;k0(s̃, w) DA decision set/ set of feasible Section 3.2
ordered partition Section 3.3

Section 4.2.1

Ân;su;k0(s, w) reduced DA decision set/ set Section 3.4.2
of feasible (unordered) partitions Section 4.2.2

Â′
n;su;k0(w) extended DA decision set Section 3.3

ˆ̂
A(s, w) smaller DA decision set Section 2.3.3.1

ˆ̂
An;su;k0(s̃, w)(= Ân;su;k0(s̃, w))

smaller DA decision set Section 3.3

Â(w) Section 2.3.3.1

(AC1) additional condition Section 2.3.4.2

(AC2) additional condition Section 2.3.4.2

(AC3) additional condition Section 2.3.4.2

b requirements Section 3.1

B disturbance space Section 2.1
Section 3.2

Bn;k0 disturbance space/set of requirements Section 3.2
Section 4.2

B∗
n,k0

(s, s∗), B
∗(f,l)
n;k0

Section 4.2.2
set of balancing requirements Section 4.5.1

B
1/2
n;k0

(sf , ŝl
π) certain subsets of Bn;k0 Section 4.3

B
1/2,(r,l)
n;k0

certain subsets of Bn;k0 Section 4.5.2
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ĉt(st, wt, s
′) internal costs Section 2.1

Section 3.2

cd(sf , sl) = cd
fl Section 2.3.2

ĉ(sf , sl) = ĉfl internal costs Section 2.3.2
Section 3.2

ĉ(sf , w) Section 2.3.2

C[b, su] surplus-situation Section 3.1

C[w, su] surplus-situation Section 3.2
Section 4.2.1

C[su, b] scarcity-situation Section 3.1

C[su, w] scarcity-situation Section 3.2
Section 4.2.1

d decision (function) Section 2.3

d̂t DA decision function Section 2.1
Section 2.3.2
Section 3.2

d̂t(st, wt) single decision Section 2.1
Section 2.3.2
Section 3.2

d∗ DA decision function with decisions for Section 3.4.2
feasible states with minimum average Section 4.2.2
one-step reward functions/ for Section 4.6
feasible partitions with least square sums
of their parts/ optimal decision

D̂t the set of DA decision functions Section 2.1
Section 3.2

DA ”decision after” Section 2.1

(DAP) basic problem of a DA model Section 2.1

(DAPa) basic problem of a DA model Section 2.1
in another representation

(DAP̄a) (DAPa) under appropriate assumptions Section 2.1
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(DAP̄b) DA model with infinite horizon and Section 2.3.2
under appropriate assumptions

DA MDP(N = ∞, S, AM , P, γ)
DA Markov decision process Section 2.3.2

DAMDPl(N = ∞, S, AM , P, γ(ϑ))
cost-parametric DA Markov decision process Section 2.3.4.2

DB ”decision before” Section 2.1

E expected value

η determines the dimension of the Section 4.4.2
”principal part” Section 4.4.3

Section 4.5.2

F policy Section 2.1
Section 3.2

F (Sections 4.3/5) Section 4.3
the number of components of sf Section 4.5
which are nonequal 0

Fz Section 4.3
Section 4.5

ft(st , wt) the optimal value function for the remaining Section 2.1
periods

Gt transition function Section 2.1

gd average expected cost per stage Section 2.3

γd/γ vector of average (one-step) reward functions/ Section 2.3
right hand side of the Poisson equations Section 3.4.1
in Section 4.6 Section 4.2.2

Section 4.6

�Hd(sf , w, sl̄ − sl) Section 2.3.2.2

�Hd(sf , d̄, ϑ) Section 2.3.4.1

�Hd(sf , w, sl̄ − sl, ϑ) Section 2.3.4.2

I identity matrix Section 2.3.1

Iv sets of indices Section 2.3.3.2
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Section 3.4.2

Ii intervals Section 2.3.4.2

(Jo, jo) -perturbation Section 4.3
Section 4.5.1

(Jo, j3) -perturbation Section 4.3
Section 4.5.1

(Jo, jo)-perturbed partition Section 4.3
Section 4.5.1

(Jo, j3)-perturbed partition Section 4.3
Section 4.5.1

(Jo, jo, j1)-perturbed permutation Section 4.3
Section 4.5.1

(Jo, j3, j4)-perturbed permutation Section 4.3
Section 4.5.1

k0 bounds Section 3.2
Chapter 4

(kij) i=1,...,n
j=1,...,m

basic costs (or distances) Chapter 3

Kt stage - cost (or return) function Section 2.1

L the number of components of sl

which are nonequal 0 Section 4.3
Section 4.5

Ly Section 4.3
Section 4.5

(LPC) Section 2.3.4.2

(LPC1) Section 2.3.4.1

MDP Markov decision process Section 2.3

MDP(N = ∞, S, AM , P, γ)
Markov decision process with Section 2.3.2
average reward criterion

MDPc(N = ∞, S, AM , P (ϑ), γ(ϑ))
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parametric Markov decision process Section 2.3.4.1

MDPl(N = ∞, S, A, P, γ(ξ0) + ϑγd(ξ))
cost-parametric Markov decision process Section 2.3.4.1

n number of types/components Section 3.2
Chapter 4

N ∈ N ∪ {∞} horizon Section 2.1
Section 2.3.1
Section 3.2

P d = (p(sl|sf , d)) f=1,...,m
l=1,...,m

=
(
pd

fl

)
f=1,...,m
l=1,...,m

matrix of transition probabilities for d Section 2.3
Section 3.2

(pd,∞
f )f=1,...,m stationary distribution Section 2.3

Pn;su;k0 general partitions-requirements-matrix Section 4.2.1

P ∗ = P ∗
n;su;k0

= (p∗fl)
partitions-requirements-matrix Section 4.2.2

to Section 4.6

PRM partitions-requirements-matrix Section 3.3
Chapter 4

q probabilities of the random disturbances Section 2.3.2
Section 3.2
Section 3.4.1
Section 4.2
· · ·

q0(wi) single probabilities Section 4.2
Section 4.4

q0
0 limit with regard to probabilities Section 4.4.3

Section 4.6.4

r number of states/ of (unordered) Section 3.4.2
restricted partitions Section 4.1

Section 4.4

r̃ number of states/ of ordered Section 3.2
restricted partitions Section 4.1
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R(n, su, k0, q), R1(n; su; k0)
additive remainder terms Section 3.4.1

S state space Section 2.1
Section 2.3.1
Section 3.4.2

s state/(unordered) partition Section 2.1
Section 3.4.2
Section 4.1

s̃ state; number of machines in a state/ Section 3.2
ordered partitions Section 4.1

s̃[i0; i1] direct successor Section 3.3
Section 4.2.1

Sn;su;k0 state space/ set of (unordered) partitions Section 3.4.2
Section 4.1
Section 4.2
Section 4.4

(Sn;su;k0 ,→) lattice of restricted partitions Section 4.1
Section 4.4

S̃n;su;k0 state space/ set of ordered partitions Section 3.2
Section 4.1
Section 4.2

s∗(s, w) feasible/feasible balanced transition Section 4.2.2
Section 4.3

s̃′(s̃, w) feasible transition Section 4.2.1
Section 4.2.2

σl
y representatives of components Section 4.3

of states Section 4.5

SDDP problem
problem of stochastic dynamic distance Chapter 3
optimal partitioning Section 4.6

SDDP’ problem
extended SDDP problem Section 3.3
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Ŝf,l
π (Jo, jo, j1)

the set of (Jo, jo, j1)-perturbed permutations Section 4.3
Section 4.5.1

Ŝf,l
π (Jo, j3, j4)

the set of (Jo, j3, j4)-perturbed permutations Section 4.3
Section 4.5.1

sH = (s1, · · · , sη)
principal part of a sparse partition Section 4.4.2

sH = (sη, · · · , sn)
principal part of a non-truncated Section 4.4.3
heavy partition

su sum/ number of machines /integer Section 3.2
which should be partitioned Chapter 4

t numbers of stages Section 2.1
Section 2.3
Section 3.2

ϑ parameter Section 2.3.4
Section 3.5

TP transportation problem Section 3.1

TP ∗(a, b) transportation problem with distance Section 3.1
properties Section 3.2

U(s̃f , s̃l) conversion number Section 3.3

w ∈ B random disturbances or their Section 2.1
realizations Section 3.2

Section 4.2

wt : = (s1, w1, . . . , wt) Section 2.1

x ∈ A decisions (or controls) Section 2.1

x ∈ Xf (a, b) feasible solutions (of the TP) Section 3.1

x, x̂ Section 3.1
Section 3.2

xi n+1, xj n+1 slack-variables Section 3.1
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Xf (a, b) set of feasible solutions (of the TP) Section 3.1
Section 3.2
Section 3.3

Xfe(a, b) extended set of feasible solutions Section 3.1
Section 3.2
Section 3.3

Xopt(a, b) set of optimal solutions (of the TP) Section 3.3
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(Jo, j3)-perturbation, 196
(Jo, j3, j4)-perturbed permutation,

197
(Jo, jo)-perturbation, 179
(Jo, jo, j1)-perturbed permutation,

180
(Jo, j3)-perturbed partition, 196
(Jo, jo)-perturbed partition, 179

action space, 33
additional condition (AC1), 86, 95,

147, 282
additional condition (AC2), 87, 147,

282
additional condition (AC3), 91, 147,

282
almost-partial order, 10, 42, 47, 69,

84, 94, 133, 147, 155, 282
average expected cost per stage,

33, 34, 36, 95, 107
average one-step reward function,

34, 40, 77, 84, 113, 132,
135, 145, 170, 255

basic cost, 106, 108, 114
basic costs, 98

certainty equivalence principle, 9,
24, 111

chain of partitions, 157, 159

complementary partitions, 174
conversion number, 114, 121, 132
cost-parametric DA Markov deci-

sion process, 10, 71, 77, 94,
118, 146

cost-parametric SDDP problem, 118,
146, 282

costlier, 47

DA decision function, 22, 37, 112
DA decision sets, 22, 112, 120, 150
DA Markov decision process, 9, 32,

38, 71, 93, 111, 141, 146,
255

DA models, 7, 9, 15, 17, 36, 107,
108

decision function, 33
decision space, 16, 33
direct predecessor, 157, 174, 261
direct successor, 157, 261, 271
distance properties, 10, 13, 51, 52,

61, 97, 99, 106, 108, 118,
282

distances, 98, 108
disturbance space, 16, 37
dominance condition, 259, 262
dominance of Markov chains, 64
dominant policy, 9, 10, 64, 66, 254,

256

296
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elements of the last column of a
PRM, 251

elements of the last row of a PRM,
249

equivalent (with respect to the par-
tial order), 174, 208

equivalent with regard to the Pois-
son equation, 174, 208, 257

feasible balanced partition, 166, 167,
170

feasible partition, 166, 167
feasible state, 22
functional equation, 19

general partitions-requirements-ma-
trices, 113, 131, 163–165

greatest element, 157
greedy algorithm, 71, 85, 92, 147,

282

harmonic numbers, generalized, 154,
255, 264, 266, 275

heavy partitions, 205, 206
horizon, 16, 33, 107
Howard algorithm, 35, 38, 42, 83,

93, 132, 146

identical basic cost, 97, 131, 143,
146, 255

independent and identically distri-
buted requirements, 134, 143,
170, 171, 175, 255

internal cost, 22, 37, 47, 51, 77, 85,
95, 107, 112, 116, 132, 255

Jordan-Dedekind-Condition, 162

k-server problems, 10, 13, 16, 151

lattices of restricted partitions, 155,
161, 166

lazy algorithm, 52, 108, 122, 282
least element, 157, 208
least square sum, 134, 166, 167,

254, 280
limits of PRMs, 200, 213, 218, 248,

254, 264, 272

m-totally ordered set of partitions,
259, 262

main minimal chain, 159, 261
Markov decision process, 33, 37,

140, 255
matrix of transition probabilities,

33, 40, 113, 131
metric task system, 13, 151
minimal chain, 159
monotone solution, 14, 49, 254, 257,

260, 262–264, 271, 279
monotone successor, 214, 264

neighbouring decisions, 39
neighbouring partitions, 157
non-truncated heavy partitions, 206,

218, 254, 272, 279, 280

optimal value function, 19
optimality criterion for DA MDPs,

44, 85
ordering of dominance or majoriza-

tion of partitions, 155, 161

parametric Markov decision process,
72

partitions of integers, 143, 155, 156,
200
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partitions-requirements-matrices, 8,
13, 113, 131, 153, 163, 166,
172, 175, 176, 224

perturbed partition, 154, 176, 224,
248

Poisson equation, 14, 35, 45, 49,
73, 154, 254, 256, 271, 279

policy, 17, 34
policy iteration, 38, 42, 93
predecessor of a partition, 157, 160
principal part of a non-truncated

heavy partition, 220
principal part of a sparse partition,

214, 264

quadratic-linear-problem, 26

reduced DA MDP, 142
reduced SDDP problem, 143, 166,

172, 254, 260, 280
reduction of DA MDPs, 140
restricted monotone successor, 220,

272

SDDP problem, 7, 11, 78, 97, 105,
109, 111, 121, 145, 282

set of (Jo, j3, j4)-perturbed permu-
tations, 197

set of (Jo, jo, j1)-perturbed permu-
tations, 180

set of DA decision functions, 22
set of feasible ordered partitions,

164
set of feasible partitions, 167
single decision, 23, 39, 42, 69, 87,

93
single violation, 81, 84, 85, 147,

282

slack-variable, 99
smaller DA decision set, 53, 58, 61
sparse partitions, 205, 213, 254, 264,

271, 280
state space, 16, 33, 37, 149
stationary distribution, 34, 41
stationary problem, 24, 34
stochastic dynamic facility location

problems, 13
stochastic dynamic transportation

problem, 12
strategy, 34
successor of a partition, 157, 160,

168, 170, 278

transportation problem, 98, 108,
112, 116

triangle-inequality, 52, 62, 99, 109
truncated heavy partitions, 206

unit distances, 98, 282






