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Insofern sich die Sätze der
Mathematik auf die Wirklichkeit
beziehen, sind sie nicht sicher,
und insofern sie sicher sind,
beziehen sie sich nicht auf die
Wirklichkeit.

Albert Einstein1

1Albert Einstein, “Geometrie und Erfahrung”, Festvortrag am 27. Januar 1921 in der preußischen
Akademie der Wissenschaften in Berlin
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5.1 Equivalent notation for a TFN Ã = (a, la, ra). . . . . . . . . . . . . . . 117

6.1 Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f0, ˆ̃f1 and ˆ̃f2.141
6.2 Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f3, ˆ̃f4 and ˆ̃f5.142
6.3 Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f6, ˆ̃f7 and ˆ̃f8.143
6.4 Left and right spreads as well as the fitted exponential functions by

log-linear regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Tables

2.1 Overview of formulas for tangent and secant approximation. . . . . . . . 34

4.1 Claims development triangle with individual development factors Fi,j :=
Ci,j+1
Ci,j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Claims development triangle with assumed logarithmized average claim

costs in the model of Andrés Sánchez (2007). . . . . . . . . . . . . . . . 95
4.3 Logarithmized incremental claims cost ln X̃i,j in a development triangle

under the assumptions of the model by Andrés Sánchez (2012). . . . . . 100

5.1 Observed cumulative claims Ci,j. . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Fuzzy chain-ladder factors ˆ̃fj for j = 0, . . . , J − 1. . . . . . . . . . . . . . 125
5.3 Filled run-off-triangle with observed cumulative claims Ci,j (i + j ≤ I)

and predicted cumulative claims ˆ̃Ci,j (i + j > I). . . . . . . . . . . . . . 126
5.4 Predicted reserves ˆ̃Ri for i = 0, . . . , I. . . . . . . . . . . . . . . . . . . . . 126
5.5 Expected values of the reserves ˆ̃Ri, i = 0, . . . , I, for different choices of

the “decision-maker risk parameter” β and corresponding chain-ladder
reserves R̂i, i = 0, . . . , I. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Prediction uncertainty UncK( ˆ̃Ci,J | DI) for each accident year i = 0, . . . , I
for different choices of K ∈ R+. . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 An α-pattern α∗ = (α0, . . . , α8). . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Calculated FCL-factors for α∗ = (0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8). . . . . . . 139
6.3 Filled run-off-triangle for α = (0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8). . . . . . . . . 145
6.4 Estimated reserves ˆ̃Ri for i = 0, . . . , I. . . . . . . . . . . . . . . . . . . . 146
6.5 Expected values of the reserves ˆ̃Ri (i = 0, . . . , I) for different choices of

the “decision-maker risk parameter” β and corresponding chain-ladder
reserves R̂i (i = 0, . . . , I). . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Estimation uncertainty UncK( ˆ̃Ci,J | DI) for each accident year i, i =
0, . . . , I, for a choice of K = 1. . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 Observed cumulative claims payments Ci,j. . . . . . . . . . . . . . . . . 161
7.2 Given a priori information ν̃i = (νi, lνi, rνi). . . . . . . . . . . . . . . . . . 161

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



xvi List of Tables

7.3 Estimated FCL factors ˆ̃fj and parameters ˆ̃γj of the FBF method for
j = 0, . . . , J − 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4 Filled run-off triangle with observed cumulative claims Ci,j (i + j ≤ I)
and predicted cumulative claims ˆ̃Ci,j (i + j > I). . . . . . . . . . . . . . 163

7.5 Predicted FCL and FBF reserves for individual accident years i ∈
{0, . . . , I} and for aggregated accident years. . . . . . . . . . . . . . . . . 164

7.6 Expected reserves for different choices of the “decision-maker risk para-
meter” β ∈ [0, 1] and the uncertainty of the predicted aggregated ultimate
claims. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Symbols

⊕ Fuzzy addition
� Fuzzy subtraction
⊗ Fuzzy multiplication
� Fuzzy division
0k×l Zero matrix with k rows and l columns
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1 | Introduction

Inaccuracies are omnipresent in our every day life ranging from our daily language to
sketchy decision criteria to errors of measurement. Already Oskar Morgenstern2 pointed
out that all economic decisions are characterized by the fact that both quantitative
and non-quantitative information influence the act of decision-making (cf. Morgenstern
1965, p. 1). Even emotions and mainly intuition can be of central importance in the
process (cf. Holtfort 2011, p. 507).

Intuition can be regarded in different ways, one of which is considering it as knowledge
gained by experience. Players knowingly and unknowingly gather information and keep
them in mind. That is why they make decisions “from the gut” instead of employing a
process of weighing up different alternatives (cf. Holtfort 2011, p. 508). Also economic
theory deals with contents which are e.g. obtained from personal experiences or other
“non-constructional” ways (cf. Morgenstern 1965, p. 88). Hence, subjective judgment
can be an important factor.

Another matter that needs to be raised concerning impreciseness are linguistic inaccura-
cies which are present in our daily language. People speak of something being “likely” or
“unlikely”, that a “large” claim occurred, that an event will happen in the “near” future,
etc. Usually, the terms are not precisely mathematically described and implemented in
the decision-making process or mathematical models but remain vague.

An actuary at an insurance company is faced with similar situations. On the one hand,
his/her calculations and the underlying models need to be as precise as possible and
should correspond to the given data whether it is in the field of pricing, claims reserving,
product controlling or other. At the same time, he/she should form an opinion or
assessment to what extent his/her calculations express a realistic view of (future) reality.

2Oskar Morgenstern, ∗ 1902, † 1977, was an Austrian-US-American economist.
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Adjustments due to personal opinions are necessary or common in various situations:
Circumstances are thinkable in which the given data is not sufficient or does not reflect
a realistic view. Whether the derived consequences are too optimistic or pessimistic –
in comparison to personal experience – adjustments in one or the other direction are
possible.
Moreover, personal assessment can be found in the context of risk classification. “De-
termining the significant factors [...] however, may involve some subjective judgment”
(cf. Outreville 1988, p. 150). Risks are often clustered in risk classes. If a risk can
be seen as part of one class or another, an actuary will decide to which class the risk
belongs. The presence of subjective judgment can also be seen in connection to pricing
within the use of expert systems e.g. when historical data and/or information is not
available (cf. Culp 2006, p. 164). In claims reserving subjective judgment is also present
when estimating loss reserves on a single case basis (cf. Lemaire 1988, p. 396). In this
particular case, actuaries often do not employ mathematical models but set up reserves
according to the information they have at hand as well as their personal opinion and
experience.

In practice, the actuary tends to adjust particular data (or parts of it) solely based on
his/her intuition. This also applies in the field of claims reserving on which the present
work will focus. This subdiscipline of insurance mathematics provides (stochastic)
methods which are methodically advanced and diverse. The literature on claims
reserving deals with various models which differ in a lot of facets: whether they are
purely computational or make use of a stochastic framework, employ credibility theory
or the Kalman filter, refer to paid or incurred data, etc. In addition, regulatory
frameworks set more legal requirements in order to determine the reserve.

Nevertheless, the methods presented in the literature do not generally comprise a
formalized approach to consider these subjective judgments. From a methodological
point of view, the theory of fuzzy set seems to be appropriate. Fuzzy sets represent
an approach to describe vagueness and imprecision. Particularly, it aims to depict
limitations on knowledge and inaccuracies in context with numerical descriptions
of problems. Thereby, it emanates from subjective judgments and not from global
assumptions. Since its introduction in the seminal paper of Lotfi A. Zadeh (cf. Zadeh
1965) it underwent a continuous further development. It provides means to compute
with vague expressions and a whole “computing tool box” has been developed. It took
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years till the theory found its way into claims reserving.

In view of the above, the present work pursues two main goals. On the one hand, it
aims to give an overview of existing methodical approaches for depicting subjective
judgment in claims reserving. In this context, all necessary basics of the two branches of
research, i.e. claims reserving and fuzzy set theory, are summarized. On the other hand,
the present work will show in what way subjective judgment can be implemented in the
two most popular claims reserving methods, i.e. the chain-ladder (CL) (cf. Section 4.3)
and the Bornhuetter Ferguson (BF) (cf. Section 4.4) method. Therefore, three new
approaches – two based on CL and one based on BF – are developed in the scope of
this dissertation.

As already mentioned, subjective judgment can arise in the field of claims reserving. This
is addressed in Chapter 5 of which an earlier version has been published in Insurance:
Mathematics & Economics (cf. Heberle and Thomas 2016). The fundamental idea of the
fuzzy chain-ladder (FCL) model is to model the observation that actuaries might adjust
previously calculated development factors according to their subjective judgment in
the context of the CL method using fuzzy numbers and their corresponding arithmetic.
To the best of our knowledge, the CL method has not been the center of studies within
fuzzy applications in spite of its popularity. The method aims to model the development
factors with the help of triangular shaped fuzzy numbers with equal spreads as they
are easy to implement. Moreover, the derived reserve has been fuzzy as well in earlier
models, i.e. not a specific value has been derived but a range of possible values. Since a
reserve is a figure in the balance sheet of an insurance company it needs to be specified
as a crisp number. Therefore, our method will apply a defuzzification method and also
will make an attempt to quantify the uncertainty of the prediction.

This idea shall be further pursued in the second approach (see Chapter 6) by applying
a fuzzy regression method which assumes a functional relation described with fuzzy
coefficients to the CL method in its linear model representation. In fact, a regression
“tube” will be derived in which all data points lie. Methods of fuzzy regression partially
provide possibilities to subjectively assess the scattering of the data around the regression
line which describes a functional relationship. This fact shall be additionally taken into
consideration, such that actuaries can subjectively assess the informative value of the

about 20 years until the first applications in insurance were discussed and another 20
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depending on the data – in this model compared to the FCL model.

An additional idea is pursued in the third approach (see Chapter 7): The considered BF
method utilizes a priori information which is given either by an external source (market
statistics, expert knowledge, organizational data, etc.) or internally. In case a priori
information is available the BF method is a popular alternative to the CL method.
Depending on its origin the information can be afflicted with vagueness. The fuzzy
Bornhuetter Ferguson (FBF) model aims to map this with the help of fuzzy numbers.
Development factors as well as the a priori information shall be modeled with fuzzy
numbers. Again, the goal is to derive predictions for the reserves.

The structure of the work is as follows: Subsequent to the general introduction the
theory of fuzzy sets is introduced in Chapter 2. The basic concepts are presented and
all necessary theory for the later chapters is provided. Moreover, a distinction between
the theory of fuzzy sets and probability theory is drawn. The comparison is followed
by a literature survey of applications of fuzzy methods in insurance in Chapter 3. It
is classified by the field of application: underwriting, risk classification, pricing and
claims reserving. The latter point is only mentioned briefly since it is discussed in
detail in Chapter 4. Here the problem of claims reserving as well as an overview of
reserving methods is addressed. Subsequently, the FCL method which makes use of
fuzzy numbers and their corresponding arithmetic is presented in Chapter 5. The model
is motivated and examined followed by a numerical example. As a further utilization
a model of fuzzy regression is applied to the CL method in Chapter 6, in particular
the representation as a sequence of linear models. The description of the methodology
is followed by an example for which the same data base as before is used in order to
draw a comparison. The FBF method is introduced in Chapter 7 and additionally
takes into account a priori information. Within this model framework reserves and
their corresponding uncertainty are deduced. A short summary is given and questions
for further research are raised in Chapter 8.

data. For this approach we will model the fuzzy coefficients with triangular shaped
fuzzy numbers of different spreads. The aim is to reduce the prediction uncertainty –
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In reality we often face situations in which we cannot decide precisely whether an
object belongs to a certain class or not. We might consider classes like “all tall men” or
“all damages much higher than 10,000 e”. In these cases it is not always possible to
distinguish between objects which are members of those classes and those which are
not. A class like e.g. “all good students” is not a set in the mathematical sense as the
word “good” is not described in a mathematically precise manner. A first approach to
even consider those sets has been introduced by Zadeh (cf. Zadeh 1965).
The aim of this chapter is to give an introduction to the theory of fuzzy sets, fuzzy
numbers and fuzzy regression. Firstly, we give a motivation for the introduction of
this theory and outline the historic development in Section 2.1.1. Subsequently, a
presentation of fuzzy sets according to Zadeh is given. In Section 2.2 fuzzy numbers as
a special case of fuzzy sets are introduced and the corresponding arithmetic is defined.
Finally, the basic concepts of fuzzy regression are presented in Section 2.3.

2.1 Fuzzy Sets

2.1.1 Historical Development

For a long time the scholars in philosophy taught that logic is a two-valued science.
Therefore a proposition or statement is either e.g. “true” or “false”, “0” or “1”. Aristotle
(384 BC – 322 BC), a student of Plato, was one of the founders of this school. Aristotle’s
law of non-contradiction, the second law of “The Three Laws of Thought”, states that
a proposition cannot be true and false at the same time. Additionally, his law of
the excluded middle says that an object either possesses an attribute or its opposite.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 2 Fuzzy Theory

Aristotle forbids that a proposition “in the middle” holds true, i.e. that an object only
possesses an attribute to a certain extent (cf. Eberhart and Shi 2011, p. 284).

Scientists at the beginning of the twentieth century began to argue that not everything
is two-valued. In mathematics a theory is developed for “perfect” objects. If objects
fulfill these assumptions the proposition holds true, otherwise not. As objects in reality
usually are not “perfect”, the mathematical findings are – strictly speaking – not
applicable. Therefore, Black proposes to introduce a symbolism for vagueness, i.e. for
the case if requirements are not completely fulfilled (cf. Black 1937, pp. 427-429).

In one of his lectures Bertrand Russell pursues a similar idea. “I propose that all
language is vague and that therefore my language is vague” (cf. Russell 1923, p. 84).
Language is often a source of problems in modeling. As an example the following
situation could be considered: If a person tells his friend to be at his house shortly after
five p.m., this can be perceived by his friend in another way than it was actually meant.
In one understanding this might be the time interval from 5:00 to 5:10 p.m. whereas
another person could be of the opinion that this is the time interval from 5:00 to 5:15
p.m. In order to cope with the problem of imprecise language Black proposed the use
of so-called consistency-profiles to picture this vagueness (cf. Black 1937, pp. 430ff.).

A first idea of a set theory which allows for a multi-valued logic came up from Menger.
His ensembles flous are the French counterpart to fuzzy sets (cf. Menger 1951). In fact,
the work of Lotfi A. Zadeh laid the foundation of the further research on fuzzy sets
(cf. Zadeh 1965) and his theory is closer to the idea of Black’s consistency-profiles (cf.
Dubois and Prade 1980, p. 4).

After the publication of Zadeh’s pioneer article a fast development in research took place.
A survey about the early works can be found in Kaufmann (1975). For further literature
see e.g. Dubois and Prade (1980), Bandemer and Gottwald (1993), Zimmermann (2001)
or Dubois and Prade (2000). Nonetheless, the reactions to Zadeh’s publication were
divided. While the responses in the United States were quite cautious or there were harsh
critics3, scientists and technicians in Europe and Japan jumped onto the bandwagon.
The use of fuzzy logic succeeded in Europe for the first time with the regulation of a
steam raising unit in a power plant (cf. Altrock 1995, p. 7). Further applications in
Japan were the regulation of a metro in which fuzzy technologies allowed for smooth

3For a collection of citations of critics see e.g. Altrock (1995, p. 7) and Dubois and Prade (2000, p. 3).
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2.1 Fuzzy Sets 7

driveaways and slowdowns as well as implementations in camcorders, microwaves and
washing machines (cf. Altrock 1995, pp. 8f.).

2.1.2 Basic Notations

The representation in this section basically relies on Bandemer and Gottwald (1993),
Dubois and Prade (1980), Kruse et al. (1995) and Zimmermann (2001).
According to Cantor (1895) a set is “any collection M into a whole of definite, distinct
objects m (which are called the “elements” of M) of our perception or of our thought”
(cf. Cantor 1895, p. 481). In the following we will speak of a crisp set whenever we
consider a set in the sense of Cantor. There are several ways to mathematically describe
a set. Either every single element is listed or (for readability) the set is denoted with
the help of descriptive characteristic traits, or the set is described with an indicator
function (cf. Merz and Wüthrich 2013b, pp. 32ff.). As the objects are distinguishable
in the case of crisp sets it is always possible to define an indicator function. Let Ω be a
basic set and A a subset of Ω, i.e. A ⊂ Ω. The function

1A : Ω −→ {0, 1}, ω 
→
⎧⎪⎪⎨⎪⎪⎩

1 if ω ∈ A

0 if ω /∈ A

is called indicator function (or characteristic function) of A.

As stated before, there are linguistic inaccuracies in our everyday life as well as in
business or scientific contexts. Indicator functions do not allow for gradual memberships
to a certain set. In order to cope with that impreciseness Zadeh has defined the concept
of fuzzy sets according to which we can specify the grade of membership for all elements
x ∈ X to a fuzzy set Ã (cf. Zadeh 1965, p. 339). The idea was to enlarge the image set
of a characteristic function and to permit grades of membership in the interval [0, 1].

Definition 2.1 (Fuzzy set)
Let X �= ∅ be a collection of objects. A fuzzy set Ã in X is defined by

Ã =
{
(x, μÃ(x)) | x ∈ X

}
.

where μÃ : X −→ [0, 1] is called membership function. We refer to μÃ(x) as the
grade of membership of an element x in X with respect to Ã. Furthermore, we
consider FP(X) as the fuzzy power set of X, i.e. the set of all fuzzy sets in X.
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8 2 Fuzzy Theory

The membership function μ specifies to which extent an element belongs to a fuzzy
set Ã. Consequently, the closer the grade of membership to one, the higher the grade
of membership of x in Ã. Usually, those elements are assigned grade of membership
of one which definitely belong to a set. The membership function is not necessarily
bounded by zero and one. Nevertheless, it is a preferable setting. In fact, a fuzzy set is
defined by its membership function.

An example of a membership function is shown in Figure 2.1. Dubois and Prade (1980)
even refer to this kind of representation as extended Venn diagram. A classical Venn
diagram cannot be drawn for fuzzy sets but an extended form can be used to visually
verify set theoretic operations (cf. Dubois and Prade 1980, p. 14).

μÃ(x)

X

1

Figure 2.1: An example of a membership function of a fuzzy set Ã.

One criticism to fuzzy set theory often is the assignment of the grades of membership.
In fact, they do not exist but are assigned to elements by an individual or a group.
Therefore, it is a subjective assignment. There even might be fields of interest in which
the mapping might be more controversial than in others. E.g. there might be more
consensus in the field of “age” than in “smartness”.

Remarks 2.2
a) The use of the interval [0, 1] as the image set of the membership function allows

for a convenient interpretation of the grade of membership.
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2.1 Fuzzy Sets 9

b) Definition 2.1 ensures that every crisp set A ∈ P(X), where P(X) denotes the
power set of X, can be considered as a fuzzy set since {0, 1} ⊆ [0, 1].

c) Even though the membership function might be seen as a fuzzy analogon to
a density function in probability theory there are remarkable differences which
support that those two concepts should not be mixed up. Normally, the area
enclosed by the membership function and the abscissae, i.e. the axis referring to
the elements of the basic set X, is not necessarily one. The interpretation differs
as the value of a membership function μÃ(x) expresses the grade of membership
of a certain element x to a fuzzy set Ã. In contrast, a density function specifies
probabilities of subsets of a basic set Ω where (Ω, A, P ) is a probability space.

The difference between a crisp and a fuzzy set is also visualized in Figure 2.2. While it is
easy to verify whether an element x ∈ X belongs to the crisp set C ⊂ X in Figure 2.2a
an element x of a fuzzy set Ã cannot be identified clearly in all cases in Figure 2.2b.
The lighter the color in Figure 2.2b, the lower is the grade of membership. This comes
along with Zadeh’s interpretation who pointed out that fuzziness stands for diffuse, i.e.
fuzzy, boundaries (cf. Kruse et al. 1995, p. vi).

X

C

(a) A crisp set C ∈ P(X).
X

Ã

(b) A fuzzy set Ã ∈ FP(X).

Figure 2.2: Illustration of a crisp and a fuzzy subset of a basic set X.

In the following some characteristics of fuzzy sets are presented in order to describe
them.
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10 2 Fuzzy Theory

Definition 2.3 (Height of a fuzzy set)
Let Ã be a fuzzy set. We call

hgt(Ã) := sup
x∈X

μÃ(x)

height of a fuzzy set Ã.

Definition 2.3 states that the height of a fuzzy set Ã specifies the least upper bound of
the membership function μÃ. Consequently, it indicates the largest grade of membership
of a fuzzy set. If the height is one, normal fuzzy sets are being considered which are
defined in the following Definition 2.4.

Definition 2.4 (Normal fuzzy set and core)
Let Ã be a fuzzy set. Ã is called normal if hgt(Ã) = 1. Moreover, the crisp set of
elements having a degree of membership of one is refered to as the core of Ã, i.e.
core(Ã) = {x ∈ X | μÃ(x) = 1}.

Remarks 2.5
a) Fuzzy sets Ã of which the basic set is nonempty with a height strictly between

zero and one, i.e. 0 < hgt(Ã) < 1, are called unnormal.

b) A nonempty fuzzy set Ã can always be normalized by division of μÃ(x) by
supx∈X μÃ(x) for all x ∈ X.

c) Definition 2.4 states that a fuzzy set Ã is normal if the core is nonempty.

For convenience sake we will always consider normal fuzzy sets if not explicitly stated
otherwise. Referring to Definition 2.1, the concept of fuzzy sets and its associated
membership function is a generalization of a set and its indicator function in the
classical sense (cf. Zimmermann 2001, p. 14). While considering fuzzy sets it is possible
that a set also comprises elements with grade of membership zero. Consequently, one
is interested in those elements with a grade of membership unequal to zero.

Definition 2.6 (Support of a fuzzy set)
Let Ã be a fuzzy set. The crisp set

supp(Ã) := {x ∈ X | μÃ(x) > 0}
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2.1 Fuzzy Sets 11

is called support of Ã.

This issue can be generalized by the concept of an α-level set. So far only a representation
with the help of a membership function has been considered. There exists an alternative
representation via α-level sets, α ∈ R. We consider X = R. Then, they denote unions
of intervals [a, b] ⊆ X in which the elements are assigned a grade of membership of at
least α. This issue is sometimes referred to as horizontal representation of a fuzzy set
(cf. Kruse et al. 1995, p. 16).4 As we are mostly considering fuzzy sets on the basic set
X = R we are restricting ourselves to that case if not explicitly stated otherwise.

Definition 2.7 (α-level set)
Let Ã be a fuzzy set and α ∈ [0, 1]. The set

Ãα := {x ∈ X | μÃ(x) ≥ α}

is called α-level set or α-level (cut). The set Ã′
α := {x ∈ X | μÃ(x) > α} is called

strong α-level set or strong α-level (cut).

The concept of an strong α-level set and support of a fuzzy set is visualized in Figure 2.3.
All elements x ∈ X having a membership grade exceeding the threshold α belong to the
strong α-level set. A strong α-level set is a subset of the support where for a choice of
α = 0 the support is given, i.e. Ã′

0 = supp(Ã). In fact, this concept allows us to form a
family of crisp sets out of a fuzzy set if we build an α-level set for every α ∈ [0, 1]. The
notation α-level cut yields from the fact that the prescription for composing α-level
sets divides up an originally fuzzy set into several crisp sets.

Moreover, every fuzzy set can be characterized by its α-cuts due to the following
Proposition 2.8.

Proposition 2.8
Let Ã be a fuzzy set over a basic set X and μÃ denotes the corresponding membership
function. We then have

μÃ(x) = sup
α∈[0,1]

{
min

(
α, 1Ãα

(x)
)}

.

4Kruse et al. denote the representation via membership functions analogously as vertical representa-
tion.
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μÃ(x)

X

α

Strong α-level set

support supp(Ã)

Figure 2.3: Strong α-level set Ã′
α and support supp(Ã) of a fuzzy set Ã.

Proof. Let x ∈ X and α ∈ [0, 1]. It holds

min
(
α, 1Ãα

(x)
)

=

⎧⎪⎪⎨⎪⎪⎩
α if x ∈ Ãα ⇔ μÃ(x) ≥ α

0 if x /∈ Ãα ⇔ μÃ(x) < α
.

We yield

μÃ(x) = sup{α | α ≤ μÃ(x)}
= sup

α∈[0,1]

{
min

(
α, 1Ãα

(x)
)}

.

Another important concept in the theory of fuzzy sets is convexity. In crisp set theory
convexity is defined with the help of the support whereas fuzzy set theory makes use of
the membership function. This definition will be of use later on in order to define fuzzy
numbers.

Definition 2.9 (Convex fuzzy set)
Let Ã be a fuzzy set. A fuzzy set Ã is called convex if

μÃ(λx1 + (1 − λ)x2) ≥ min(μÃ(x1), μÃ(x2)), x1, x2 ∈ X, λ ∈ [0, 1].
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Remark 2.10
We also speak of a convex fuzzy set if all α-level sets are convex (cf. Zimmermann
2001, p. 15). As α-level sets are crisp sets here the definition of convexity for crisp sets
applies.

An illustration of a convex and a non-convex fuzzy set is given in Figure 2.4. In plain
English a fuzzy set is convex if the graph of its membership function does not possess
any “valleys”.

μÃ(x)

X

(a) A convex fuzzy set Ã.

μB̃(x)

x

(b) A non-convex fuzzy set B̃.

Figure 2.4: Convex and non-convex fuzzy sets

Like for crisp sets set operations can be also defined for fuzzy sets. Generally they are
stated as defined in Definition 2.11 (cf. Zimmermann 2001, pp. 16ff.).

Definition 2.11
Let Ã and B̃ be fuzzy sets and μÃ and μB̃ denote their corresponding membership
functions. We then define the following:

a) Two fuzzy sets Ã and B̃ are said to be equal if

μÃ(x) = μB̃(x) for all x ∈ X.

b) The membership function μÃ∩B̃ of the intersection Ã ∩ B̃ is defined for every
x ∈ X by

μÃ∩B̃(x) := min{μÃ(x), μB̃(x)}.
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14 2 Fuzzy Theory

c) The membership function μÃ∪B̃ of the union Ã ∪ B̃ is defined for every x ∈ X by

μÃ∪B̃(x) := max{μÃ(x), μB̃(x)}.

d) The membership function μÃC of the complement ÃC of a normalized fuzzy set Ã

for every x ∈ X is defined by

μÃC (x) = 1 − μÃ(x).

Remark 2.12
The definition of the membership function of the union and intersection is not intuitively
at first hand. Bellman and Giertz came up with a justification for the definition with
the help of the min- and max-operators (cf. Bellman and Giertz 1973).

2.1.3 The Extension Principle

The aim of this section is to present one of the most applied propositions in fuzzy set
theory, the extension principle, which was firstly stated by Zadeh in a rather simple
form (cf. Zadeh 1965, p. 346). The form which is used nowadays has been firstly shown
in Zadeh (1975a,b,c).

The objective has been to transfer familiar operations like e.g. addition and multiplica-
tion to fuzzy sets. These will be used in Section 2.2. The definition will be stated in
the sense of a generalization. Therefore, it is intended that the well-known operations
are equivalent in the case of crisp sets. With the help of Definition 2.13 we can allow
for fuzzy sets in a mapping instead of crisp elements.
We follow the presentations by Hanss (2005, pp. 44f.) and Zimmermann (2001, pp. 55f.).

Definition and Proposition 2.13 (Extension principle)
Let X1, . . . , Xn, X be non-empty sets and

f : X1 × . . . × Xn −→ X

be a mapping. Let Ã1 ∈ FP(X1), . . . Ãn ∈ FP(Xn) be fuzzy sets with corresponding
membership functions
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2.1 Fuzzy Sets 15

μÃ1
: X1 −→ [0, 1], . . . , μÃn

: Xn −→ [0, 1].

We yield the membership function μf(Ã1,...,Ãn) : X −→ [0, 1] of a fuzzy set
f(Ã1, . . . , Ãn) ∈ FP(X) by

μf(Ã1,...,Ãn)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
x=f(x1,...,xn)

min
(
μÃ1

(x1), . . . , μÃn
(xn)

)
if there exist x1, . . . , xn

with x =f(x1, . . . , xn)

0 otherwise

(2.1)

and therefore a mapping

f̃ : FP(X1) × . . . × FP(Xn) −→ FP(X).

We say that f : X1 × . . . × Xn −→ X has been extended to f̃ : FP(X1) × . . . ×
FP(Xn) −→ FP(X) by means of the extension principle.

Remarks 2.14
a) Every n-tuple (x1, . . . , xn) ∈ X1 × . . . × Xn is mapped to an element x ∈ X

via the mapping f . First, the minimal grades of membership are determined
component-wise. Then, the supremum of these grades of membership is taken as
the grade of membership of the element x to the fuzzy set f(Ã1, . . . , Ãn).

b) If there exist no inverse images in (2.1) we use the common convention that
sup ∅ = 0.

2.1.4 Relationship between Probability Theory and Fuzzy Set
Theory

This section aims to highlight the differences between classical probability theory and
fuzzy set theory. The prevailing discussion exists since the emergence of fuzzy set
theory with the seminal paper of Lotfi A. Zadeh in 1965 (cf. Zadeh 1965). In the course
of controversial discussions about the differences and similarities Kosko wonders: “Is
uncertainty the same as randomness? If we are not sure about something, is it only up
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to chance?” (cf. Kosko 1990, p. 211). According to Forschner (1998) the conceptions
differ widely: On the one hand probability theory is referred to as a special case of fuzzy
set theory whereas on the other hand fuzziness is declared as “disguised” probability
(cf. Forschner 1998, pp. 59f.). Nevertheless, Zadeh described fuzzy sets as “completely
non statistical in nature” (cf. Zadeh 1965, p. 340) when introducing them. A small
collection of criticism of fuzzy set theory is e.g. assembled in Dubois and Prade (2000,
p. 3). Likewise, there are many publications of the advocators of fuzzy set theory whose
publications provide critical comparisons of those two theories (cf. among others Zadeh
1995; Dubois and Prade 1994; Kosko 1990).5

There are differences considering the definitions as well as in the areas of application.
The original aim of fuzzy set theory has been to model imprecision which can be hardly
modeled with existing methods and vagueness especially in human language. Nowadays,
a widely used method is e.g. “Computing with words” (CWW) (cf. Zadeh 1996).6

According to Zadeh (1995), fuzzy set theory does not only provide an opportunity to
compute with words but also circumvents some drawbacks of probability theory which
might not be useful in describing all kinds of imprecision and vagueness. Among others
the following observations can be noted:7

Firstly, problems can occur when modeling a fuzzy event. In an insurance context there
could be statements as e.g. “Tomorrow occurs a large claim.” or “Many claims will be
settled in the near future.” which cannot be depicted properly with probability theory.
Moreover, quantifiers as e.g. “many”, “most”, “several” or “few” cannot be modeled in
an adequate way. A similar observation can be made for fuzzy occurrence probabilities.
For instance, there exists no framework to map fuzzy event risks such as “likely”,
“unlikely” or “not very likely”. Furthermore, there might be trouble if data is described
with fuzzy expressions like e.g. “The portfolio consists of approximately 10,000 insured.”.
All in all Zadeh holds the view that probability theory cannot be properly applied
in all areas in which dependencies between variables cannot be described precisely,
probabilities are imprecise or human reasoning as well as perceptions and emotions of
human beings are of great importance (cf. Zadeh 1995, p. 274). Zadeh concludes:

5In fact, Dubois and Prade (1994) and Dubois et al. (2000) also point out the links of those two
theories especially regarding possibility distributions. The concept of possibility distributions will
not be considered in the course of this work.

6A extensive background to fuzzy set theory and historical abstract can be found e.g. in Seising
(2005).

7The not necessarily exhaustive list is based on Zadeh (1995, pp. 274f.).
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2.1 Fuzzy Sets 17

“The core of the position put forth [. . . ] is that probability theory by itself is
not sufficient and that it must be used in concert with fuzzy logic to enhance
its effectiveness. In this perspective, probability theory and fuzzy logic are
complementary rather than competitive.” (cf. Zadeh 1995, p. 271)

In the course of comparison of both methods two different approaches in probability
theory need to be considered. On the one hand there is the axiomatic approach
according to Kolmogorov, on the other hand there are interpretations regarding the
description. The latter can be further subdivided into the frequentists’ view and the
subjective view of probability theory.

The frequentists assume that an experiment is conducted arbitrarily many times. Then,
the occurrence probability of an event is defined as the limit of its relative frequency.
When contrasting fuzzy set theory and probability theory often only the frequentists’
view is taken into account. One much cited argument is that economic problems are
usually irreproducible and, thus, probabilities – considered as relative frequencies – are
not suitable (cf. Bosch 1993, p. 61).

In subjective probability theory a probability is a measure for the available information
about an event (cf. Finetti 1981). As in Bayesian statistics subjective probabilities can
be derived from expert opinions, market statistics, . . . Hence, a clear separation as
in the frequentist approach is not possible. However, Carlsson is of the opinion that
“fuzziness is neither uncertainty in the sense of subjective probability – because it does
not use its axioms” (cf. Carlsson 1984, p. 18).

Nowadays, probability theory is usually based on the axioms of Kolmogorov which were
introduced in 1933 (cf. Kolmogorov 1933).

Definition 2.15 (Probability measure and probability space)
Let Ω be a set and A be a σ-algebra over Ω. Then a function P : A → [0, 1] is called
probability measure P if the following axioms of Kolmogorov are fulfilled:

i) P (A) ≥ 0 for all A ∈ A
ii) P (Ω) = 1

iii) Let Ai ∈ A, i ∈ N, be disjunct, i.e. Ai ∩ Aj = ∅ for all i �= j. Then

P (∪i∈NAi) =
∑
i∈N

P (Ai)
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18 2 Fuzzy Theory

holds true (σ-additivity).

Then (Ω, A, P ) is called probability space.

When comparing probability measures and membership functions (cf. Definitions 2.1
and 2.15) some differences become apparent. While the domain of a membership
function is the universe X, the domain of a probability measure is the σ-algebra A.
Furthermore, the values of a membership function do not need to sum up to one (see
also Zimmermann 2001, p. 137). Hence, the axioms in fuzzy set theory are considered
as not as strict as in probability theory. The same becomes apparent when comparing
the characteristics of a probability density function and a normalized membership
function. While the integral of the probability density function yields one neither the
grades of membership do sum up to one nor the integral of the membership function
yields one.

As presented in this section there are various differences between the underlying theory
as well as the areas of applications. Thus, this work does not aim to present replacements
of applications of probability theory and statistics in actuarial science and especially
in claims reserving, but rather intends to show complementary suggestions to model
fuzziness and imprecision in these fields. Zimmermann remarks that “Decision models
might contain probabilistic as well as possibilistic components.” (cf. Zimmermann
1983, p. 205) – a statement which cannot be limited to decision models. In fact, there
are also attempts to bring together both concepts as e.g. fuzzy random variables or a
cooperation under the guise of soft computing (cf. Zadeh 1995, p. 275).

Therefore we go in line with Dubois and Prade who state:

“[. . . ] we certainly do not believe that there exists a single theory that
provides ’a complete and uniquely optimal means for solving problems and
managing uncertainty’. Each concerned theory, whenever it is mathematically
consistent (as is the case with probability theory, fuzzy set and possibility
theory,8 and several others), is only a convenient and appropriate means
for solving a particular type of problem and grasping a particular facet of
uncertainty.” (cf. Dubois and Prade 1994, p. 20)

8Possibility theory is a subfield of fuzzy set theory.
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2.2 Fuzzy Numbers 19

2.2 Fuzzy Numbers

Fuzzy sets can be defined over various sets as there are no strict requirements. Of
particular interest are fuzzy sets over the real numbers R. There has been a demand
for the investigation of fuzzy sets over R since in science or in practice there might be
data which should be examined but is only approximately known or the data is sparse.
The concept of a fuzzy number aims to make it possible to work with this kind of data
by assigning an interval of numbers grades of membership. Therefore, every value is
attached with a grade of plausibility.

Fuzzy numbers have been investigated since the mid 1970s. Overviews are e.g. given in
Dubois and Prade (1993) and Hanss (2005). They are among others also considered in
the textbooks Dubois and Prade (1980, pp. 26ff.), Zimmermann (2001, pp. 59ff.) and
Bandemer and Gottwald (1993, pp. 29ff.).

2.2.1 Definitions and Types of Fuzzy Numbers

We follow the definition of a fuzzy number according to Hanss (cf. Hanss 2005, p. 45).

Definition 2.16 (Fuzzy number)
A fuzzy set ã over the real numbers R is called a fuzzy number (FN) if it satisfies
the following conditions:

a) ã is convex.

b) There exists exactly one x0 ∈ R for which μã(x0) = 1, i.e. the fuzzy set ã is normal
and core(ã) = {x0}.

c) The membership function μã is piecewise continuous.

In the following we will call x0 modal value or mode of a fuzzy number ã. In the
literature it is also referred to as peak value, center value or mean value. A FN can be
interpreted as an imprecisely defined range of values. The support states an interval or
a set of values which are plausible with the mode being the most plausible (cf. Dubois
and Prade 1993, p. 118). It needs to be kept in mind that membership functions of
FNs are often build solely by subjectivity as a source of information.
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A general example of a fuzzy number can be seen in Figure 2.5 but it could be of a
completely different shape as well.

μã(x)

X

1

0 x0

Figure 2.5: An example of a fuzzy number ã.

A fuzzy number as defined in Definition 2.16 can possess the following characteristics:

Definition 2.17
Let ã be a fuzzy number with mode x0 ∈ R.

a) ã is called symmetric if

μã(x0 + x) = μã(x0 − x) ∀x ∈ R.

b) ã is called positive, i.e. ã > 0, if

supp(ã) ⊆ (0, ∞).

c) ã is called negative, i.e. ã < 0, if

supp(ã) ⊆ (−∞, 0).

d) ã is called a (fuzzy) zero if 0 ∈ supp(ã).

According to Definition 2.16 there are no requirements towards the graph, resp. the
shape, of a fuzzy number except for the convexity, unimodality and piecewise continuity.
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In fact, there exist various types of fuzzy numbers which differ in shape but also in the
way they can be explicitly calculated under arithmetical operations. Some are much
easier to handle than others.
In the following we introduce several different types of fuzzy numbers and their mem-
bership functions. We follow the presentation of Hanss (cf. Hanss 2005, pp. 46ff.).

Some of the most used fuzzy numbers are triangular fuzzy numbers (TFNs). The
name derives from the graph of the membership function. An example is visualized in
Figure 2.6. One of their advantages is their simple representation as their membership
functions are piecewise linear.

Definition 2.18 (Triangular fuzzy number (TFN))
Let ã ∈ FP(R) and αl, αr ≥ 0. A fuzzy number ã ∈ FP(R) with mode x0 ∈ R is
called triangular fuzzy number if its membership function can be written in the
form

μã(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ x0 − αl

1 + (x − x0)/αl for x0 − αl < x < x0

1 − (x − x0)/αr for x0 ≤ x < x0 + αr

0 for x ≥ x0 + αr

.

As before, x0 is the mode of the fuzzy number and αl and αr are referred to as left
and right spread, respectively. If the spreads are of equal length we will speak of a
symmetric TFN (STFN) and we will denote a STFN by b̃ = (b, lb).

Another type of fuzzy numbers is given by Gaussian fuzzy numbers. In contrast to the
piecewise linear membership function leading to TFNs, the membership function in this
case is characterized by a normalized Gaussian function. The functions describing the
left and right spread can have the same “standard deviation” resulting in a symmetric
fuzzy number but they do not need to be. In the latter case an asymmetric fuzzy
number is on hand.
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1

X00

μã(x)

mode x0

left spread αl right spread αr

supp(ã)

Figure 2.6: Example of a membership function of a triangular fuzzy number.

fuzzy number if its membership function can be written in the form

μã(x) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− (x−x0)2

2σ2
l

)
for x < x0

exp
(

− (x−x0)2

2σ2
r

)
for x ≥ x0

.

As in the previous settings x0 refers to the mode and σl and σr lead to the left and
right spreads. Contrary to the situations of TFNs σl and σr do not denote the complete
spread but correspond to the standard deviation of a Gaussian distribution. An example
of a membership function of a Gaussian fuzzy number can be found in Figure 2.7.
Along the lines of the definition of a fuzzy number with a piecewise linear membership
function fuzzy numbers with a piecewise quadratic membership function are defined.
Those are named quadratic fuzzy numbers.

Definition 2.20 (Quadratic fuzzy number)
Let ã ∈ FP(R) and βl, βr ∈ R. A fuzzy number ã with mode x0 ∈ R is called

Definition 2.19 (Gaussian fuzzy number)
Let ã ∈ FP(R) and σl, σr ≥ 0. A fuzzy number ã with mode x0 ∈ R is called Gaussian

quadratic fuzzy number if its membership function can be written in the form
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μã(x)

Xx0

1

σl σr

Figure 2.7: Example of a membership function of a Gaussian fuzzy number.

μã(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x ≤ x0 − βl

1 − (x−x0)2

β2
l

for x0 − βl < x < x0

1 − (x−x0)2

β2
r

for x0 ≤ x < x0 + βr

0 for x ≥ x0 + βr

.

An example of a fuzzy number with quadratic membership function is given in Fi-
gure 2.8.

As in the cases before, x0 is the mode and βl and βr refer to the left and right spread.
Membership functions of an exponential type lead to an exponential fuzzy number.

Definition 2.21 (Exponential fuzzy number)
Let ã ∈ FP(R) and τl, τr ∈ R. A fuzzy number ã with mode x0 ∈ R is called
exponential fuzzy number if its membership function can be written in the form

μã(x) =

⎧⎪⎪⎨⎪⎪⎩
exp(−(x − x0)/τl) for x < x0

exp(−(x − x0)/τr) for x ≥ x0
.

The concept of an exponential fuzzy number is visualized in Figure 2.9.
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μã(x)

Xx0

1

βl βr

Figure 2.8: Example of a membership function of a quadratic fuzzy number.

μã(x)

Xx0

1

Figure 2.9: Example of a membership function of an exponential fuzzy number.
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2.2 Fuzzy Numbers 25

We introduced fuzzy sets as a generalization of the concept of crisp sets. In particular,
the set of all crisp sets is a subset of the set of all fuzzy sets. Analogously, the set of
crisp numbers in R can be seen as a subset of the set of all fuzzy numbers over R. In
fact, a fuzzy number ã over R given by the membership function

μã =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 for x < x0

1 for x = x0

0 for x > x0

(2.2)

refers to the crisp number x0 (cf. Figure 2.10). When considering crisp numbers in the
context of fuzzy numbers they are called fuzzy singletons.

1

X00

μã(x)

x0

Figure 2.10: An example of a membership function of a fuzzy singleton.

A special type of fuzzy numbers has been presented by Dubois and Prade (cf. Dubois
and Prade 1978). They introduced so-called fuzzy numbers of LR-type (or LR-fuzzy
numbers) as a way to quickly compute operations on fuzzy numbers. They will be used
in Section 2.2.2 and in particular in applications in Chapters 5 and 7. Their idea is to
decompose a fuzzy number into two parts, i.e. one part to the left of the modal value
and one to the right. For this definition functions describing the membership function
on the left and right spread are needed.

Definition 2.22 (Reference function)
Let L, R : R+

0 −→ [0, 1] be mappings with the following properties:

a) L(0) = R(0) = 1.

b) L, R are strictly monotonically decreasing.
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c) L(1) = 0 if min
x∈[0,∞)

L(x) = 0

lim
x→∞ L(x) = 0 if L(x) > 0 for all x ∈ R+

0

and
R(1) = 0 if min

x∈[0,∞)
R(x) = 0

lim
x→∞ R(x) = 0 if R(x) > 0 for all x ∈ R+

0 .

Then L, R are called reference functions.

This leads to the following definition in which several types of fuzzy numbers can be
comprised (cf. Hanss 2005, p. 54).

Definition 2.23 (Fuzzy number of LR-type)
Let L, R be reference functions. A fuzzy number ã is called fuzzy number of LR-type
if the membership function can be represented as

μã(x) =

⎧⎪⎪⎨⎪⎪⎩
L
(

a−x
la

)
for x < a, la > 0

R
(

x−a
ra

)
for x ≥ a, ra > 0

. (2.3)

The mappings L and R are called left and right reference and we refer to la > 0 and
ra > 0 as the left and right spread. The value a is called mode or modal value.

Remarks 2.24
a) As an abbreviation of notation fuzzy numbers of LR-type ã will be denoted as

ã := (a, la, ra)L,R .

b) If the reference functions L and R are identical, the fuzzy number of LR-type will
be called semisymmetric. Moreover, if also the spreads are equal, i.e. la = ra, it is
designated as symmetric fuzzy number of LR-type.

c) In Definition 2.22 conditions a) and b) ensure that there exists exactly one modal
value and that the resulting FN is convex. Since the functions L and R are
mappings into the unit interval [0, 1] the membership function can only take on
values between zero and one. Condition c) requires that the membership values of
the left and right spread approach zero (or at least approximately).
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d) Many types of FNs can be conceived as FNs of LR-type, e.g. TFNs, Gaussian,
quadratic and exponential FNs. Examples are given in Hanss (cf. 2005, p. 55).

Definition 2.25 (Opposite of a LR-fuzzy number)
Let ã = (a, la, ra)L,R be a fuzzy number of LR-type. The opposite −ã is defined as

−ã := − (a, la, ra)L,R := (−a, ra, la)R,L .

Remark 2.26
In accordance with the definition of the negative of a crisp number we obtain the
opposite of a fuzzy number of LR-type via mirroring along the grade of membership
axis (y-axis).

Remark 2.27
When considering a function g̃ of two fuzzy numbers of LR-type the result g̃

(
ã, b̃

)
may

not be obtained in all situations (cf. Dubois and Prade 1993, p. 131). Dubois and
Prade (1993) propose to use Taylor’s expansion in order to deduce an approximation
which is given by a fuzzy number of LR-type (see also Dubois 1983, pp. 188f.).
Let g : R2 −→ R be a function and ã = (a, la, ra)L,R and b̃ = (b, lb, rb)L,R two fuzzy
numbers of LR-type. An approximation of g(ã, b̃) is given by

g∗ :=
(

g(a, b), ∂g(a, b)
∂a

la + ∂g(a, b)
∂b

lb,
∂g(a, b)

∂a
ra + ∂g(a, b)

∂b
rb

)
.

2.2.2 Fuzzy Arithmetic

In the same way as we are interested in operations of crisp numbers there is also
an interest in appropriate definitions for elementary operations such as addition,
subtraction, multiplication (of two fuzzy numbers and with a scalar) and division for
fuzzy numbers.9 Therefore, the prior objective of fuzzy arithmetic is to specify the
membership function of the resulting fuzzy number after an operation is applied. It
turns out that not all operations are closed, i.e. that not all operations of FNs of the
same type yield a FN of the identical type (e.g. operations of TFNs do not necessarily
yield a TFN). Our objective is to determine the membership functions of the resulting

9In the following we will stick to these notations for fuzzy operations and will use +, −, · and ÷ in
the crisp case.

fuzzy numbers for
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ã1 ⊕ ã2

ã1 � ã2

ã1 ⊗ ã2

ã1 � ã2

where ã1, ã2 are fuzzy numbers and ⊕, �, ⊗ and � stand for fuzzy addition, fuzzy
subtraction, fuzzy multiplication and fuzzy division, respectively.

As a general approach we yield the membership function of the resulting fuzzy number
with the help of the extension principle proposed by Zadeh (see Proposition 2.1). Fuzzy
numbers are a special case of fuzzy sets and, thus, can be considered as such. Therefore,
we use the corresponding membership functions as arguments in Equation (2.1), i.e. in
the extension principle.
We denote by O : FP(R)×FP(R) → FP(R) a binary operation which can be one of
the following: fuzzy addition, fuzzy subtraction, fuzzy multiplication or fuzzy division.
The membership function of the resulting fuzzy number b̃ := O(ã1, ã2), ã1, ã2 ∈ FP(R),
is achieved by the extension principle:

μb̃(z) := sup
x1,x2∈R:O(x1,x2)=z

min {μã1(x1), μã2(x2)} (2.4)

In Definition 2.23 fuzzy numbers of LR-type have been introduced. They have been
presented in Dubois and Prade (1978) in the late 1970’s to develop easy-to-compute
formulas for arithmetic operations.10

Proposition 2.28 (Addition of LR-fuzzy numbers)
Let ã1 = (a1, la1, ra1)L,R and ã2 = (a2, la2, ra2)L,R be two fuzzy numbers of the same
LR-type. Let a1, a2 ∈ R, la1, la2, ra1, ra2 > 0. Their sum b̃ is given by

b̃ = ã1 ⊕ ã2 = (a1 + a2, la1 + la2, ra1 + ra2)L,R .

Proof. In case of the addition of two fuzzy numbers of the same LR-type the extension

10First results on operations of fuzzy numbers are shown in Dubois and Prade (1978). The work has
been continued in Dubois and Prade (1979). A summary is provided by the authors in Dubois and
Prade (1980) as well as by Hanss (2005).

principle in Equation (2.4) gets:
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μã1⊕ã2(z) = sup
x1,x2∈R:x1+x2=z

min{μã1(x1), μã2(x2)}

We derive the membership function μã1⊕ã2 on the left hand side of the modal value
first. For each z ≤ a1 + a2 there exist x∗

1, x∗
2 ∈ R with

x∗
1 := a1 − la1

(
a1 + a2 − z

la1 + la2

)
≤ a1

and
x∗

2 := a2 − la2

(
a1 + a2 − z

la1 + la2

)
≤ a2.

The corresponding values of their membership functions are equal (cf. Equation (2.3)):

μã1(x∗
1) = L

(
a1 + a2 − z

la1 + la2

)
= μã2(x∗

2)

Hence, their minimum is given by

min{μã1(x∗
1), μã2(x∗

2)} = L

(
a1 + a2 − z

la1 + la2

)
=: μ∗(z).

For all ε ≥ 0 the inequation

μã2(x∗
2 − ε) ≤ μã2(x∗

2) = μ∗(z)
and for all ε ≤ 0 the inequation

μã1(x∗
1 + ε) ≤ μã1(x∗

1) = μ∗(z)

hold true since the membership functions are increasing for all x1 ≤ a1 and x2 ≤ a2.
Therefore, the minimum is bounded by μ∗(z) for all ε ∈ R:

min{μã1(x∗
1 + ε), μã2(x∗

2 − ε)} ≤ μ∗(z)

Hence, the extension principle yields for the left hand side of the membership function

μã1⊕ã2(z) = sup
x1,x2∈R:x1+x2=z

min{μã1(x1), μã2(x2)} = μ∗(z) = L

(
a1 + a2 − z

la1 + la2

)

for all z ≤ a1 + a2. The proof for the right hand side of the membership function μã1⊕ã2

is done analogously and we yield
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μã1⊕ã2 = μ∗(z) = R

(
z − (a1 + a2)

ra1 + ra2

)

for all z ≥ a1 + a2.

Remarks 2.29
a) The sum of two fuzzy numbers of LR-type is again a fuzzy number of LR-type

with the same reference functions L and R. The modal value is given by a1 + a2

and the left and right spreads by la1 + la2 and ra1 + ra2, respectively.

b) The addition of fuzzy numbers of LR-type is commutative and associative since
for arbitrary ã1 := (a1, la1, ra1)L,R , ã2 := (a2, la2, ra2)L,R , ã3 := (a3, la3, ra3)L,R of
LR-type with a1, a2, a3 ∈ R and la1, la2, la3, ra1, ra2, ra3 > 0 holds:

ã1 ⊕ ã2 = (a1 + a2, la1 + la2, ra1 + ra2)L,R

= (a2 + a1, la2 + la1, ra2 + ra1)L,R = ã2 ⊕ ã1

(ã1 ⊕ ã2) ⊕ ã3 = (a1 + a2, la1 + la2, ra1 + ra2)L,R ⊕ (a3, la3, ra3)L,R

= ((a1 + a2) + a3, (la1 + la2) + la3, (ra1 + ra2) + ra3)L,R

= (a1 + (a2 + a3), la1 + (la2 + la3), ra1 + (ra2 + ra3))L,R

= ã1 ⊕ (ã2 ⊕ ã3)

The properties of the fuzzy addition are inherited by the properties of the addition
of real numbers R.

c) The set of all fuzzy numbers of LR-type in conjunction with the fuzzy addition
(FP(R))L,R, ⊕) is not an algebraic group. The neutral element is given by the
fuzzy singleton 0̃ := (0, 0, 0)L,R so that for every ã ∈ FP(R))L,R we have ã⊕ 0̃ = ã.
However, there exists no inverse element for a given element ã ∈ FP(R)L,R. If
looking for an element ã′ ∈ FP(R)L,R which satisfies ã ⊕ ã′ = 0̃ the resulting
system of equations would lead to negative spreads.

Proposition 2.30 (Subtraction of LR-fuzzy numbers)
Let ã1 = (a1, la1, ra1)L,R, ã2 = (a2, la2, ra2)R,L be two fuzzy numbers where the functions
l and R are identical. Let a1, a2 ∈ R and la1, la2, ra1, ra2 > 0. Their difference is given
by
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b̃ = ã1 � ã2 = (a1, la1, ra1)L,R � (a2, la2, ra2)R,L = (a1 − a2, la1 + ra2, ra1 + la2)L,R .

Proof. The proof uses the same technique as in Proposition 2.28. We yield the mem-
bership function of the subtraction of two fuzzy numbers with the help of the extension
principle as in Equation (2.4):

μã
ã2(z) = sup
x1,x2∈R:x1−x2=z

min{μã1(x1), μã2(x2)}

We derive the left hand side of the membership function first. Let z ∈ R. For z ≤ a1−a2

there exist x∗
1 and x∗

2 with

x∗
1 = a1 − la1

(
a1 − a2 − z

la1 + ra2

)
≤ a1

and
x∗

2 = a2 + ra2

(
a1 − a2 − z

la1 + ra2

)
≥ a2.

The corresponding values of their membership functions are identical since

μã1(x∗
1) = L

(
a1 − a2 − z

la1 + ra2

)
= μã2(x∗

2).

Consequently the minimum is given by

min{μã1(x1), μã2(x2)} = L

(
a1 − a2 − z

la1 + ra2

)
=: μ∗(z).

For all ε ≥ 0 the inequality

μã2(x∗
2 + ε) ≤ μã2(x∗

2) = μ∗(z)

holds true since the membership function μã2 is decreasing for all x2 > a2. For all ε ≤ 0
the inequality

μã1(x∗
1 + ε) ≤ μã1(x∗

1) = μ∗(z)

holds true since the membership function μã1 is increasing for all x1 ≤ a1. Hence, the
minimum of the considered values of the membership functions is bounded by μ∗(z) in
the following way:
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min{μã1(x∗
1 + ε), μã2(x∗

2 + ε)} ≤ μ∗(z)

Therefore, we yield for the membership function with the extension principle

μã1⊕ã2(z) = sup
x1,x2∈R:x1+x2=z

min{μã1(x1), μã2(x2)} = L

(
a1 − a2 − z

la1 + ra2

)

for all z ≤ a1 − a2. The proof for the right hand side of the membership function of
the subtraction of two fuzzy numbers is done analogously.

A formula for the multiplication of two fuzzy numbers of LR-type cannot be derived in
the same way as for the addition. By doing so it emerges that the multiplication is
not closed, i.e. the product of two fuzzy numbers of LR-type does not need to be of
LR-type as well.
Let ã1 = (a1, la1, ra1)L,R and ã2 = (a2, la2, ra2)L,R be two fuzzy numbers of LR-type.
Note that again we consider two fuzzy numbers with the same reference functions. We
take on the assumption that both ã1 and ã2 are positive. The membership functions of
the left references are given by

μL,ã1(x1) = L

(
a1 − x1

la1

)
and μL,ã2(x2) = L

(
a2 − x2

la2

)
,

x1, x2 ∈ R, x1 ≤ a1, x2 ≤ a2.

Let again μ∗ ∈ [0, 1] be arbitrary but fixed. The grade of membership μ∗ is attained by
the elements x∗

1 and x∗
2 with

x∗
1 = a1 − la1L

−1(μ∗) and x∗
2 = a2 − la2L

−1(μ∗).

As a consequence the product of these two values

z∗ := x∗
1x∗

2 = a1a2 − (a1la2 + a2la1)L−1(μ∗) + la1la2(L−1(μ∗))2 (2.5)

takes on the same grade of membership. Therefore, it results in a quadratic equation
which possible solutions are given by
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(
L−1(μ∗)

)
1,2 = a1la2 + a2la1

2la1la2

±
√√√√(a1la2 + a2la1)2

4l2a1l
2
a2

− a1a2 − z∗

la1la2

.

Due to the quadratic term the operation is not closed and normally no LR-fuzzy number
results. That is the reason why Dubois and Prade proposed to omit the quadratic term
(cf. Dubois and Prade 1980, p. 55). As the spreads are often small compared to the
modal values this is a comprehensible approach. By neglecting the quadratic term in
(2.5) we yield:

z∗ ≈ a1a2 − (a1la2 + a2la1)L−1(μ∗)

⇔ μ∗ = L

(
a1a2 − z∗

a1la2 + a2la1

)

With the same arguments the right reference can be derived. Therefore, we get an
approximation for the multiplication of two fuzzy numbers of LR-type by

(a1, la1, la2)L,R ⊗ (a2, la2, ra2)L,R ≈ (a1a2, a1la2 + a2la1, a1ra2 + a2ra1)L,R . (2.6)

This formula is referred to as tangent approximation (Hanss 2005, p. 58).

Another approximation is given by the so-called secant approximation. If the spreads
are not comparatively small to the modal values omitting the quadratic term is not
reasonable. In this case a solution might be given by approximating the quadratic term
by a linear one, i.e. replacing (L−1(μ∗))2 by L−1(μ∗). Then, the reference function for
the left side can be derived by:

z∗ = a1a2 − (a1la2 + a2la1)L−1(μ∗) + la1la2L
−1(μ∗)

⇔ μ∗ = L

(
z∗ − a1a2

−a1la2 − a2la1 + la1la2

)
= L

(
a1a2 − z∗

a1la2 + a2la1 − la1la2

)

With the same arguments for the right reference another approximation is deduced
such that we yield the following approximation which is referred to as secant approx-
imation:

(a1, la1, ra1)L,R ⊗ (a2, la2, ra2)L,R

≈ (a1a2, a1la2 + a2la1 − la1la2, a1ra2 + a2ra1 + ra1ra2)L,R

(2.7)
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Tangent approximation
Factors Approximated product
(a1, la1, ra1)L,R > 0, (a1a2, a1la2 + a2la1, a1ra2 + a2ra1)L,R(a2, la2, ra2)L,R > 0
(a1, la1, ra1)L,R < 0, (a1a2, −a1ra2 − a2ra1, −a1la2 − a2la1)R,L(a2, la2, ra2)L,R < 0
(a1, la1, ra1)R,L < 0, (a1a2, a2la1 − a1ra2, a2ra1 − a1la2)R,L(a2, la2, ra2)L,R > 0

Secant approximation
Factors Approximated product
(a1, la1, ra1)L,R > 0, (a1a2, a1la2 + a2la1 − la1la2, a1ra2 + a2ra1 + ra1ra2)L,R(a2, la2, ra2)L,R > 0
(a1, la1, ra1)L,R < 0, (a1a2, −a1ra2 − a2ra1 − ra1ra2, −a1la2 − a2la1 + la1la2)R,L(a2, la2, ra2)L,R < 0
(a1, la1, ra1)R,L < 0, (a1a2, a2la1 − a1ra2 + la1ra2, a2ra1 − a1la2 − ra1la2)R,L(a2, la2, ra2)L,R > 0

Table 2.1: Overview of formulas for tangent and secant approximation (adapted from
Hanss 2005, p. 60).

So far only approximation formulas for the case of two positive fuzzy numbers have
been deduced. Table 2.1 gives an overview of the formulas for other cases.

The following observations can be remarked.

Remarks 2.31
a) With the multiplication of two fuzzy numbers of LR-type the fuzziness increases,

i.e. the spreads of the resulting product broaden.

b) As for the addition the set of all fuzzy numbers of LR-type equipped with the
fuzzy multiplication (FP(R)L,R, ⊗) is not a group.

c) Wagenknecht et al. (2001) investigated upper and lower bounds for the exact mul-
tiplication of two non-negative TFNs ã := (a, la, ra)L,R and b̃ := (b, lb, rb)L,R. The
derived lower bound is given by (ã⊗ b̃)lower := (ab, alb + bla − lalb, arb + bra)L,R and
the upper bound can be stated as (ã ⊗ b̃)upper := (ab, alb + bla, arb + bra + rarb)L,R.
The left spread of the lower bound and the right spread of the upper bound repre-
sent the left and right spread of the secant approximation, respectively. In the
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following Chapters 5, 6 and 7 fuzzy multiplication (with secant approximation) will
be used to derive predictions of reserves. Then, the chosen fuzzy multiplication is
rather conservative. In this context conservative means that the resulting reserves
are (slightly) overestimated.

Example 2.32
Let ã = (3, 1, 2)L,R and b̃ = (2, 2, 1)L,R be two TFNs. The aim of this example is to
derive the product of these TFNs c̃ = ã ⊗ b̃ with the help of tangent approximation
as defined in Equation (2.6) and secant approximation as defined in Equation (2.7).
Moreover, the membership function for the exact multiplication is deduced. All three
cases are visualized in Figure 2.11.

μc̃(x)

x

1

6 150−2 13

Figure 2.11: Comparison of tangent approximation (green line), secant approximation
(red line) as well as the exact product (black line) of TFNs ã = (3, 1, 2)L,R

and b̃ = (2, 2, 1)L,R.

The black line is showing the resulting membership function for the exact multiplication.
The red line refers to the secant approximation and the green line stands for tangent
approximation. One observes that the support for the product resulting from exact
multiplication and the secant approximation is identical. Moreover, the red line for
the right spread is slightly above the black line which visualizes the fact mentioned in
Remark 2.31c). The support of the product deduced by tangent approximation and
the exact multiplication differ. Moreover, there are greater deviations in the “outer”
spreads in this example.

The remaining part of the section is devoted to the definition of the quotient of two
FNs of LR-type. In order to define the quotient of two fuzzy numbers of LR-type ã

and b̃ one makes use of the following relation using the above defined multiplication
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ã � b̃ = ã ⊗ b̃−1. (2.8)

Hence, only the definition of the inverse is needed. According to Hanss (2005, pp. 60f.)
it can be stated in the following way.

Proposition 2.33 (Inverse of a LR-Fuzzy Number)
Let ã = (a, la, ra)L,R be a fuzzy number of LR-type which is either positive or negative.
Then, the fuzzy inverse can be approximated by either

ã−1
tan ≈

(1
a

,
ra

a2 ,
la
a2

)
R,L

tangent approximation

or
ã−1

sec ≈
(1

a
,

ra

a(a + ra) ,
la

a(a − la)

)
R,L

secant approximation. (2.9)

Remark 2.34
a) The approximations given in Proposition 2.33 are more precise, the closer the

considered value is to the mode of the FN (cf. Dubois and Prade 1979, p. 341).

b) As for the exact multiplication, Wagenknecht et al. (2001) also investigated
upper and lower bounds for the exact inverse of a TFN ã = (a, la, ra)L,R (see Re-
mark 2.31c)). These are given by (ã−1)lower =

(
1
a , ra

a(a+ra) ,
la
a2

)
R,L

and (ã−1)upper =(
1
a , ra

a2 , la
a(a−la)

)
R,L

. Comparing to Proposition 2.33 the left spread of the lower
bound and the right spread of the upper bound refer to the left and right spread
of the fuzzy inverse with secant approximation. With the same arguments as in
Remark 2.31c) the approximation of the inverse is rather conservative.

Using the relation in Equation (2.8) the quotient of two fuzzy numbers of LR-type can
be deduced with the help of Proposition 2.33. An overview of formulas for the fuzzy
quotient is e.g. given in Hanss (2005, p. 61).

In the following Chapters 5, 6 and 7 we are dealing with TFNs which are by definition
of LR-type. As the reference functions are all of the same type in that case, i.e. linear
functions, we will drop the subscript “LR” and “RL”, respectively, of the FNs in the
following and write ã = (a, la, ra) for a TFN ã. Moreover, for the sake of readability we
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will omit the approximation symbol “≈” in the fuzzy multiplication and for the fuzzy
inverse and write “=” instead.

2.2.3 Defuzzification Methods

The use of fuzzy sets and methods for modeling and describing issues yields fuzzy
quantities. In fact, many procedures need a single crisp outcome and cannot handle
e.g. a linguistic value or vague magnitude. For instance, in control theory even though
the basis for decision is fuzzy a controller requires a crisp input. As a further example
non-life actuaries have to set up a crisp reserve when using fuzzy methods as the balance
sheet asks for crisp values. Therefore, there is a need for defuzzification methods which
reduce a fuzzy set to a crisp value.

Definition 2.35 (Defuzzification operator)
Let X be a basic set. The mapping

D : FP(X) → X, A 
→ D(A)

is called defuzzification operator.

Since we are mainly dealing with fuzzy numbers which are fuzzy sets over the real
numbers R in the present work we are restricting the underlying set in Definition 2.35
to the case of X = R.

In literature various defuzzification procedures are presented. A helpful overview is
given in Leekwijk and Kerre (1999), Runkler and Glesner (1993) and Zimmermann
(2001, pp. 232 – 239). According to Leekwijk and Kerre (1999) the techniques can be
generally classified into three main groups: maxima, distribution and area methods.11

The maxima procedures take one of the elements with the highest grade of membership
as they follow the principle that a high grade of membership indicates that an element is
suitable. Distribution methods consider the membership function as a density function
as in probability theory and then calculate the expected value. Some of them also take
11Leekwijk and Kerre (1999) do not only classify many of the used defuzzification methods but also

present a catalog of desirable properties the procedures aim to possess. Subsequently, they examine
which characteristics the stated defuzzification techniques have. A similar approach is done in
Runkler and Glesner (1993) whereas they postulate a little different properties.
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into account different weighting functions. Whereas the area methods as the third class
consider the area under the membership function to define the defuzzified value. Due
to the variety of defuzzification methods we only state those used in the present work
and alternatively refer to the literature.

One procedure using a weighted average is given by the center of gravity.

Definition 2.36 (Center of Gravity)
Let X̃ ∈ FP(R) and X ⊆ R. The center of gravity is given by

COG(X̃) =

∫
supp(X̃)

xμX̃(x) dx

∫
supp(X̃)

μX̃(x) dx

or
COG(X̃) =

∑n
i=1 xiμX̃(xi)∑n

i=1 μX̃(xi)
in the finite case, i.e. if X = {x1, . . . , xn}.

Referring to a statistical point of view the center of gravity complies with the expected
value. From a geometrical view point it calculates the center of mass (cf. Zimmermann
2001, p. 234).

Remarks 2.37
a) For a triangular fuzzy number ã = (a, la, ra) with a membership function as given

in Definition 2.18 COG(ã) can be calculated as

COG(ã) = a + −1
6 l2a + 1

6r2
a

1
2 la + 1

2ra
.

Thus, for symmetric triangular fuzzy numbers the COG is the mode a.

b) The center of gravity does not necessarily yield a result which is an element of
the support of the fuzzy set. However, when considering fuzzy numbers which are
normal and convex fuzzy sets we can omit this problem: In that case, the support
and all α-cuts are compact intervals.

c) The center of gravity has some desirable properties in addition to b) (cf. Leekwijk
and Kerre 1999, pp. 173, 175–176; Zimmermann 2001, pp. 237f.):

– For a fuzzy singleton it yields the only element with positive grade of mem-
bership.
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– When the elements are translated in x-direction by b ∈ R, i.e. b̃ = ã ⊕ (b, 0, 0),
the relative position of the defuzzified value should stay the same. The
corresponding membership function μb̃ : R −→ [0, 1], x 
→ μã(x − b), leads to
COG(b̃) = COG(ã) + b. Hence, the COG moves the same width in the same
direction.

– Rescaling the x-axis with a constant factor c ∈ R \ {0} should not change the
relative position of the defuzzified value. For the COG this property is fulfilled,
because the membership function μb̃ : R −→ [0, 1], x 
→ μã

(
x
c

)
, c ∈ R \ {0},

yields COG(b̃) = c COG(ã).

– On the other hand rescaling the degree of membership with a constant factor
c ∈ R+ should be irrelevant to the defuzzified value. The membership function
μb̃ : R −→ [0, 1], x 
→ cμã(x), c ∈ R+, leads to COG(b̃) = COG(ã). Hence,
the property is fulfilled by the COG.

Many applications of fuzzy methodologies in the field of claims reserving in actuarial
science make use of the following defuzzification method proposed by Campos Ibáñez
and González Muñoz (1989) for fuzzy numbers.12,13 As fuzzy numbers are convex fuzzy
sets, the α-cuts are compact intervals. Hence, we will write for a fuzzy number ã the
α-cuts as Aα = [Aα, Aα], Aα, Aα ∈ R. The procedure is defined in the following way:

Definition 2.38
Let ã be a fuzzy number and β ∈ [0, 1]. Let Aα = [Aα, Aα] denote the α-cuts of ã for
all α ∈ [0, 1]. The expected value Eβ(ã) of a fuzzy number ã is defined as

Eβ(ã) := (1 − β)
∫ 1

0
Aα dα + β

∫ 1

0
Aα dα.

Remarks 2.39
a) The methods introduced in Chapters 5, 6 and 7 yield TFNs. The concept of an

expected value of a TFN does not only offer a means to defuzzify the resulting
values but the parameter provides an opportunity to assess the considered data.

12In fact, Campos Ibáñez and González Muñoz (1989) present a further approach to rank fuzzy
numbers by an index introduced which can be also seen as a defuzzification technique.

13For the sake of comparison we choose the method by Campos Ibáñez and González Muñoz as recent
publications concerning applications of fuzzy methods in claims reserving as e.g. Andrés Sánchez and
Terceño Gómez (2003) and Andrés Sánchez (2006, 2007, 2012) use this defuzzification procedure.
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With the help of the parameter β a decider can assess if he/she focuses more on
Aα or Aα. We refer to the parameter as “decision-maker risk parameter”.

b) For a triangular fuzzy number ã = (a, la, ra) the above definition simplifies to

Eβ(ã) = (1 − β)
(

a − la
2

)
+ β

(
a + ra

2

)

= a − 1 − β

2 la + β

2 ra.

This results directly when considering the functions to be integrated as depicted
in Figure 2.12. For higher values of β more weight is put on the right spread.

c) Let b̃, c̃ be TFNs. Eβ(ã | ·) denotes the expected value given a prior information.
If the prior information is given by a set of TFNs {b̃, c̃, . . .}, the TFNs shall be
considered as crisp, i.e. {(b, 0, 0), (c, 0, 0), . . .}.
It is assumed that there is no more uncertainty in the sense of fuzziness about the
given information.

d) The expected value of a triangular fuzzy number ã = (a, la, ra) possesses the
following properties:

– The expected value of a fuzzy number ã is always an element of the support
of ã since

Eβ(ã) ∈
[
a − la

2 , a + ra

2

]
⊂ supp(ã).

– For a crisp number a ∈ R the expected value yields the number itself, i.e.
Eβ(a) = a.

– It is translation-invariant, i.e. when a constant b ∈ R is added to a triangular
fuzzy number ã the expected value is shifted by this value in the direction of
the x-axis, precisely

Eβ(ã ⊕ (b, 0, 0)) = a + b − (1 − β) la
2 + β

ra

2 .
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x

α

a

a− la

0 1

(a) Function describing the lower
bounds of the α-cuts of a tri-
angular fuzzy number.

x

α

a+ ra

a

0 1

(b) Function describing the upper
bounds of the α-cuts of a tri-
angular fuzzy number.

Figure 2.12: Functions to be integrated when calculating the expected value of a
triangular fuzzy number.

mentioned which has been introduced by Chang (2001)14. It can be interpreted as a
kind of mean value of a result of a fuzzy arithmetic operation (cf. Chang 2001, p. 226).
The method is defined for normalized, asymmetric triangular membership functions.
In case a normalized membership function is not at hand, it will be normalized.

Let ã = (a, la, ra) and b̃ = (b, lb, rb) be asymmetric TFNs. Then, the α-cuts for a degree
of membership α ∈ [0, 1] can be represented as15

αã := [αal,
αar] := [a − (1 − α)la, a + (1 − α)ra]

and
αb̃ := [αbl,

αbr] := [b − (1 − α)lb, b + (1 − α)rb].

With these notations weighted fuzzy addition and subtraction is defined in the following
way (cf. Chang 2001, p. 226).

14Even though the name of the method suggests that it is a matter of arithmetical operations it is in
fact a defuzzification procedure.

15In contrast to Definition 2.7 the notation of an α-cut is slightly changed for the sake of a better
readability.

Weighted fuzzy arithmetic
As another defuzzification method the concept of weighted fuzzy arithmetic shall be
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and the weighted fuzzy difference of ã and b̃ are defined as

ã ⊕w b̃ :=
∫ 1
0 (αal +αbl) α dα + ∫ 1

0 (αar +αbr) α dα

2 ∫ 1
0 α dα

=
∫

α
(αal +αbl) α dα +

∫
α

(αar +αbr) α dα

and

ã �w b̃ :=
∫ 1
0 (αal +αbl) α dα − ∫ 1

0 (αar +αbr) α dα

2 ∫ 1
0 α dα

=
∫

α
(αal +αbl) α dα −

∫
α

(αar +αbr) α dα.

In Definition 2.40 the sum of the left borders and the sum of the right borders of the
α-cuts are weighted with their grade of membership and integrated. The sum of both
is put in relation to the integral of all values of α-cuts which is one because TFNs are
normal.

Chang (2001) also defines weighted fuzzy operations for the multiplication and division
of two TFNs (cf. Chang 2001, p. 227). As they are not used in the progress of this
work we leave out their definitions.
Chang (2001) shows that Definition 2.40 can be simplified in the following way.

Proposition 2.41 (Weighted fuzzy addition)
Under the assumptions of Definition 2.40 the weighted fuzzy addition and subtraction
can be represented as

ã ⊕w b̃ = (a + b) + 1
6(ra + rb − (la + lb))

and
ã �w b̃ = (a + b) + 1

6(ra − rb − (la − lb)).

Proof. See Chang (2001, p. 227).

Similar simplifications can also be derived for the other arithmetic operations (cf. Chang
2001, p. 227).

Definition 2.40 (Weighted fuzzy addition and subtraction)
Let ã = (a, la, ra) and b̃ = (b, lb, rb) be asymmetric TFNs. The weighted fuzzy sum
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2.2.4 Measures of Fuzziness

The membership function is a measure which states the degree of membership for every
single element of a fuzzy set. Nevertheless, there might be situations in which the user
is not only interested in the vagueness of a single element but the total uncertainty
of the fuzzy set. In order to further implement fuzzy sets in the analysis of situations
dealing with vagueness a measure to compare the fuzziness of different sets is required.
Moreover, an instrument to differentiate between varying severities of fuzziness is needed.
While probability theory uses, among others, the variance as a measure to quantify the
mean squared deviation to the mean and the mean squared error of prediction (MSEP,
cf. Section 4.2) to specify the uncertainty of a prediction these means are not applicable
here.

One of the first measures of fuzziness has been introduced by De Luca and Termini
(cf. De Luca and Termini 1972).16 A helpful overview of the most popular measures is
given in Pal and Bezdek (1994).

In the following measures of fuzziness will be defined and preferable properties are
detected. Subsequently, examples will be discussed. According to Pal and Bezdek
(1994, p. 108) the definition of a measure of fuzziness is as follows.

Definition 2.42
A mapping

M : FP(X) → [0, ∞)

is called measure of fuzziness.

Remarks 2.43
• The higher the value M(X̃) for a given fuzzy set X̃ ∈ FP(X) the higher is the

degree of fuzziness assigned to X̃.

• Some measures of fuzziness are motivated by the fact that the measure should
quantify the deviation to a crisp set (cf. De Luca and Termini 1972). For a crisp
set Y the measure of fuzziness yields zero, i.e. M(Y ) = 0.

16Measures of fuzziness should not be mixed up with fuzzy measures.
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Ebanks postulates a list of desirable properties a measure of fuzziness of a fuzzy set
X̃ = {(x, μX̃(x)) | x ∈ X} should fulfil (cf. Ebanks 1983, p. 25). Let Z̃ = {(x, μZ̃(x)) |
x ∈ Z} be also a fuzzy set. Then these properties17 are:

(P1) Sharpness M(X̃) = 0 if and only if μX̃(x) ∈ {0, 1} for all x ∈ X,
i.e. if X̃ is a crisp set.

(P2) Maximality If μX̃(x) = 1
2 for all x ∈ X, the function M attains its

maximum.
(P3) Resolution When μZ̃(x) ≤ μX̃(x) if μX̃(x) ≤ 0.5 and μZ̃(x) ≥ μX̃(x)

if μX̃(x) ≥ 0.5, i.e. Z̃ is a sharpened version of X̃, then
M(X̃) ≥ M(Z̃).

(P4) Symmetry (to 1
2) M(X̃) = M(X̃C) holds true where μX̃C (x) := 1 − μX̃(x)

for all x ∈ X.
(P5) Valuation The mapping M is called a valuation on FP(X) if

M(X̃ ∪ Z̃) + M(X̃ ∩ Z̃) = M(X̃) + M(Z̃).

Remarks 2.44
• (P1) states that only for a crisp set the fuzziness is zero.

• The highest fuzziness is obtained for a fuzzy set in which all elements have a grade
of membership of 0.5 as noted in (P2). In this case, the degree of membership of
belonging or not-belonging to the set is identically high.

• If all grades of membership of elements are either closer to zero or one in comparison
to another fuzzy set, the vagueness is reduced as there is less ambiguity about
the membership to the set. Hence, Z̃ is called sharpened version in (P3) and it
explains why sharpened versions should assign smaller fuzziness.

• Property (P4) means that a fuzzy set and its complement have the same grade of
membership.

• According to property (P5) two fuzzy sets can exchange fuzziness (cf. Ebanks
1983, p. 26). However, the total fuzziness is given by the sum of the measures of
fuzziness of the two sets.

17In fact, Ebanks (1983) states a further property (P6). Ebanks himself argues that property (P6)
cannot be motivated intuitively and that it might be questionable. Therefore, we omit property
(P6) here as it is not relevant for the further progress.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.2 Fuzzy Numbers 45

In the further progress of this work we need a measure of uncertainty for a fuzzy number,
i.e. a measure of uncertainty for a fuzzy set with a piecewise continuous membership
function over an interval of the real numbers R. In order to do so we need to classify
those measures which fulfill properties (P1)-(P5). In a first step this is done for the
discrete finite setting as shown in Ebanks (1983).

Theorem 2.45 (Characterization of measures of fuzziness)
Let X := {x1, . . . , xn} and M : FP(X) → [0, ∞) be a measure of fuzziness. Then
M fulfills the properties (P1)-(P5) (cf. p. 44) if and only if M can be represented as
M(Ã) = ∑n

i=1 g(μÃ(xi)), Ã ∈ FP(X), with a function g : [0, 1] → R+
0 for which holds:

i) g(0) = g(1) = 0 and g(t) > 0 ∀t ∈ (0, 1)

ii) g(t) < g(0.5) ∀t ∈ [0, 1] \ {0.5}
iii) g is monotonically increasing on the interval [0, 0.5) and monotonically decreasing

on the interval (0.5, 1]

iv) g(t) = g(1 − t) ∀t ∈ [0, 1]

Proof. See Ebanks (1983, p. 28).

With the help of Theorem 2.45 measures of fuzziness which fulfill properties (P1)-(P5)
can be characterized. There exists a broad literature on those measures with various
characteristics. An overview is given in Pal and Bezdek (1994) which also states which
measure of fuzziness fulfils all (or parts) of the desirable properties (P1)-(P5) (cf. Pal
and Bezdek 1994, Table 1, p. 111). Furthermore, Pal and Bezdek (1994) define two
classes of measures of fuzziness whose members satisfy (P1)-(P5), the multiplicative
and additive class. In the following we restrict ourselves to the multiplicative class
because the measure of fuzziness which is used in the recent literature on applications
of fuzzy methods in actuarial science, i.e. the expected value by Campos Ibáñez and
González Muñoz (1989), belongs to that class.

Definition 2.46 (Multiplicative class)
Let f : [0, 1] → R+

0 be a differentiable, concave and increasing function, i.e. f ′(t) ≥ 0
and f ′′(t) ≤ 0 for all t ∈ [0, 1], X be a finite set and K ∈ R+18. A measure of fuzziness

18Obviously, the constant K is not obligatory for the definition of the multiplicative class. Without
any restrictions setting K = 1 also works. However, this definition is used in literature. By doing
so different approaches of decision-makers can be incorporated.

M belongs to the multiplicative class if a representation
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Mmult = K
n∑

i=1
g(μA(xi)) for A ∈ FP(X)

exists where

g(t) := ĝ(t) − min
0≤t≤1

ĝ(t) (2.10)
and

ĝ(t) := f(t)f(1 − t). (2.11)

Since measures of fuzziness with a representation as in Definition 2.46 satisfy the
requirements of Theorem 2.45 they possess the desired properties (P1)-(P5).

Proposition 2.47
Measures of fuzziness which belong to the multiplicative class fulfill properties (P1)-(P5)
(cf. p. 44).

Proof. See Pal and Bezdek (1994, p. 110).

Pal and Bezdek (1994) extend the multiplicative class to fuzzy sets over intervals of
real numbers.

Definition 2.48 (Multiplicative continuous class)
Let X ⊂ R and consider the same assumptions as in Definition 2.46. A measure of
fuzziness belongs to the multiplicative continuous class if there exists a representa-
tion

Mmult,c(A) = K
∫

X
g(μA(x))dx for A ∈ FP(X)

where the function g is given as in (2.10)-(2.11).

Proposition 2.49
Measures of fuzziness which belong to the multiplicative continuous class fulfill properties
(P1)-(P4) (cf. p. 44).

Proof. See Pal and Bezdek (1994, p. 113).

In the following we will define a measure of uncertainty for triangular fuzzy numbers
since this is necessary in the progress of the work. We consider a triangular fuzzy number

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



2.2 Fuzzy Numbers 47

ã = (a, la, ra) with corresponding membership function as given in Definition 2.18. Let
f : [0, 1] → R+

0 , f(t) = t exp(1 − t). Then f satisfies the assumption in Definition 2.46
since f ′(t) = (1 − t) exp(1 − t) ≥ 0 for all t ∈ [0, 1) and f ′′(t) = (t − 2) exp(1 − t) ≤ 0
for all t ∈ [0, 1]. Consequently, we have

ĝ(t) = f(t)f(1 − t) = t exp(1 − t)(1 − t) exp(1 − (1 − t)) = t(1 − t)e

and min0≤t≤1 ĝ(t) = 0. Hence, the functions g and ĝ are equal, i.e. g = ĝ. Let K ∈ R+

then we yield a measure of fuzziness which fulfills properties (P1)-(P4) by:

Mmult,c(Ã) = K
∫

X
g(μA(x))dx

= K
∫

x
μA(x)(1 − μA(x))e dx

= K

( ∫ a

a−la
e

(
1 + x − a

la

)(
1 − 1 − x − a

la

)
dx

+
∫ a+ra

a
e

(
1 − x − a

ra

)(
1 − 1 + x − a

ra

)
dx

)

= K

(
− e

l2a

∫ a

a−la
(la + x − a)(x − a)dx + e

r2
a

∫ a+ra

a
(ra − (x − a))(x − a)dx

)

= K

(1
6e(la + ra)

)

= K
1
3e︸ ︷︷ ︸

=:K∗

1
2(la + ra)

= K∗ 1
2(la + ra)

This motivates the following definition of a measure of uncertainty for triangular fuzzy
numbers.19 Furthermore, a definition for the case when previously known information
is available is given. This will be of interest in the following Chapters 5, 6 and 7.

Definition 2.50 (Uncertainty of a TFN)
a) Let ã = (a, la, ra) and b̃ be TFNs and K ∈ R+. The uncertainty UncK(ã) of the

19The definition is used in chapters 5, 6 and 7 and can be also found in Heberle and Thomas (2014).

TFN ã is given by:
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UncK(ã) = 1
2K(la + ra)

b) Unc(ã | ·) denotes the uncertainty of a TFN ã given a prior information. If the
prior information is given by a set of TFNs {b̃, c̃, . . .}, the TFNs shall be considered
as crisp, i.e. {(b, 0, 0), (c, 0, 0), . . .}.

Remarks 2.51
• The uncertainty of a TFN ã = (a, la, ra) is independent of the mode a and depends

only on the support of ã.

• The uncertainty of a TFN ã can be interpreted as the (weighted) area between the
x-axis and the membership function μã. In fact, it is K times the area between the
membership function and the x-axis. Thus, the larger the enclosed area, the larger
the uncertainty UncK of a TFN ã. In the same way a small area corresponds to a
TFN with little uncertainty.

• In the context of the later chapters, the parameter K can be interpreted as follows:
On the one hand larger values of the parameter K argue for little trust of the
actuary whereas on the other hand smaller values of K stand for greater trust an
actuary has in the data.

• The conditional uncertainty is motivated in analogy to the conditional expected
value that there is no more uncertainty about known information in a fuzzy sense
(cf. Definition 2.50b)).

2.3 Fuzzy Regression

In statistics and econometrics the classical linear regression model (see Appendix A) is
used in a variety of applications. It sometimes might be applied even though some of
the assumptions might be disturbed or the compliance might be difficult to verify. A
classical linear regression model is of the form as presented in Definition A.1.

Classical linear regression methods are a collection of various estimation procedures
and statistical tests in order to examine a relationship between a dependent variable
and one (or more) independent variables. It is assumed that the relationship does not
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apply exact but might be a bit “noisy”. Therefore, an error term is added. In this
way random errors are described but no systemic ones or imprecision in the data.20

Moreover, the relationship between the dependent and the independent variables might
be vague. These are situations which motivated the introduction of fuzzy regression
techniques. In the literature there exist various different types of fuzzy regression
models depending on the kind of fuzziness they like to address:

• fuzzy relationship in the data

• fuzzy input data

• fuzzy output data

Furthermore, the estimation methods divide the models in two parts. While in one
part the estimation problem is transferred into a linear program, it is solved in others
by a least squares approach.

An overview of fuzzy regression methods is given e.g. in Petry (1998), the miscellany of
Kacprzyk and Fedrizzi (1992) and a discussion of the methods used in recent publications
can be found in Shapiro (2006).

Considering the abundance of different fuzzy regression models only an assortment –
chosen due to the progress of this work – is presented. The stated models differ in
their estimation methods: the aim of the earlier published methods is to minimize the
total fuzziness of the model. Their estimation problems can be reduced to a linear
program (LP) and these methods are introduced in Section 2.3.1. A presentation of
models using a L2-distance measure to draw an analogy to classical regression can be
found in Section 2.3.2.

2.3.1 Possibilistic Regression

A first model of fuzzy regression has been introduced by Tanaka et al. (1982) whose
initial motivation is that the discrepancy between the observations and the estimated
values “are assumed to depend on the indefiniteness of the system structure” (cf. Tanaka

20A description of possible sources of errors is presented in Schneeweiss and Mittag (1986, Introduction).
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et al. 1982, p. 903).21 They presume that the input data is crisp and the output data
is fuzzy and that there exists a linear structure between that data.

Definition 2.52 (Fuzzy linear model)
Let x = (x1, . . . , xn)T ∈ Rn, ã1, . . . , ãn ∈ FP(R) be triangular and symmetric,
ã := (ã1, . . . , ãn)T and n ∈ N. The mapping

f : Rn −→ FP(R)
ỹ := f(x) := ã1x1 + . . . + ãnxn = ãT x

is called fuzzy linear model.

Remarks 2.53
a) The fuzzy function f is defined and the membership function of ỹ in Definition 2.52

can be derived with the extension principle (cf. Section 2.1.3).

b) The fuzzy linear model can be extended by adding a fuzzy intercept ã0 ∈ FP(R)
as it is done in later publications.

c) The fuzzy vector ã shall be understood here component-wise, i.e. a vector containing
fuzzy numbers as entries.

The fuzzy linear regression model for crisp input and output data has been introduced
in Tanaka et al. (1980). In their 1982 model Tanaka et al. assume that the data can be
represented by a fuzzy linear model and that the output data is fuzzy. Therefore, let
X ∈ Rn×m a matrix of observations, m, n ∈ N, y ∈ Rn. xi := (xi1, . . . , xim) refers to
the i-th row vector. Let ỹi := (yi, ei, ei) ∈ FP(R),ei ∈ R, i = 1, . . . , n, be triangular
and symmetric and ỹ = (ỹ1, . . . , ỹn). The vagueness in the relationship between input
and output data shall be expressed by fuzzy coefficients ã1, . . . ãm ∈ FP(R), triangular
and symmetric.
Given the above assumptions the authors assume that the data can be described by a
fuzzy linear model

ỹi = ã1xi1 + . . . + ãmxim for all i = 1, . . . , n.

21The model as well as the following model by Tanaka (1987) were initially proposed for fuzzy numbers
of LR-type as coefficients. Since in this work all models are based on triangular fuzzy numbers the
methods are presented only for these special cases.
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Figure 2.13: Simplified visualization of estimated fuzzy output ˆ̃yi and observed fuzzy
output ỹi for a fuzzy regression model.

We refer to ˆ̃yi, i = 1, . . . , n, as the estimated output of the i-th input vector xi and ˆ̃ak,
k = 1, . . . , m, as the estimations of the fuzzy coefficients, where ˆ̃ak := (ak, ck, ck), and
a = (a1, . . . , am)T , c = (c1, . . . , cm)T . Since the idea of this model is to minimize the
total fuzziness by minimizing the sum of the spreads of the coefficients ˆ̃ak, k = 1, . . . , m,
the estimators of the fuzzy coefficients solve the following linear programming problem
where α ∈ [0, 1].

min
c1,...,cm

c1 + . . . + cm (2.12a)
s.t.

aT xT
i + (1 − α)

m∑
j=1

cj|xij| ≥ yi + (1 − α)ei, i = 1, . . . , n (2.12b)

aT xT
i − (1 − α)

m∑
j=1

cj|xij| ≤ yi − (1 − α)ei, i = 1, . . . , n (2.12c)

c1, . . . , cm ≥ 0 (2.12d)

The first two constraints (2.12b)-(2.12c) assure that the given output is contained in
the estimated output adjusted by the factor (1 − α), i.e. the α-cuts are considered.
Tanaka et al. refer to the value α as H-value.22 Choosing a reasonable value for α is of
high interest and is extensively studied in Moskowitz and Kim (1993). Its interpretation
22In other publications it is also called h-certain factor.
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is that the observed fuzzy output ỹi should lie within the support of the estimated
fuzzy output ˆ̃yi with a grade of membership of at least α. Values for the H-value range
between zero and 0.9 (cf. Moskowitz and Kim 1993, p. 305).

An alternative model has then been proposed by Tanaka (1987) in which not the total
spread of the coefficients as in (2.12) but the total width of the estimated output should
be minimized. The linear problem here takes the form as shown in (2.13) (cf. Tanaka
1987, p. 367). The constraints (2.13b)-(2.13d) take the same form as in (2.12).

min
c1,...,cm

n∑
i=1

m∑
j=1

cj|xij| (2.13a)

s.t.
aT xT

i + (1 − α)
m∑

j=1
cj|xij| ≥ yi + (1 − α)ei, i = 1, . . . , n (2.13b)

aT xT
i − (1 − α)

m∑
j=1

cj|xij| ≤ yi − (1 − α)ei, i = 1, . . . , n (2.13c)

c1, . . . , cm ≥ 0 (2.13d)

Both models by Tanaka et al. (1982) and Tanaka (1987) describe a fuzzy relationship
between dependent and independent variables without contemplating classical stochastic
methods. The concept of the model of Tanaka (1987) is visualized in Figure 2.13. The
observed fuzzy output ỹi should lie within the estimated fuzzy output ˆ̃yi adjusted by
the H-value. That is, the condition should hold for a grade of membership of at least
α.

After publication of the first possibilistic regression models some criticism has arisen.
Possibilistic regression models refer to these fuzzy regression models which are only
using optimization methods as the two methods described before. Peters (1994) points
out that the proposed methods are sensitive to outliers. Moreover, not all of the
constraints in (2.12) and (2.13) are binding. In fact, most of them are obsolete and
the bounds of the fuzzy regression interval are determined by the largest and smallest
value, respectively (cf. Peters 1994, p. 94).23 Wang and Tsaur (2000) criticize that
there exists no convenient interpretation of the fuzzy regression interval.

23Ishibuchi and Nii (2001, p. 278) also argue that fuzzy linear models are only specified by a couple of
data points. They also give an example of two data sets which are completely distributed differently
but the four “outer” data points which are taken into account by the binding constraints are equal.
Therefore the resulting fuzzy linear models are the same whereas the OLS estimates are different.
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Since symmetric triangular fuzzy numbers are employed in those models they lack of
variability. If the fuzziness in the relationship is more distinct to one side, i.e. either a
stronger upward deviation or a downward one, this cannot be depicted by them.
Moreover, the fuzzy coefficients are determined by a linear program. Thus, there not
necessarily exists a unique solution but all linear combinations of the basis solution
also solve the problem.24 In addition to that Bárdossy (1990) points out that the
estimations are highly dependent on the “point-of-reference” of the input data. By
ways of example he states the consideration of the difference of the data points and
their mean value instead of the data points themselves. Beyond that Bárdossy extends
the model to the use of different measures of vagueness.
Savic and Pedrycz (1991) highlight the fact that Tanaka et al. do not mention the issue
of forecasting. Moreover, Diamond (1988) addresses the issue that the authors do not
elaborate on the interrelation to classical linear models even though the title of the
publication suggests something different (cf. Diamond 1988, pp. 141f.).25

In order to resolve some of the disadvantages of the early possibilistic regression models
Ishibuchi and Nii (2001) proposed a model with asymmetric coefficients especially to
eliminate those drawbacks caused by symmetric coefficients. It can be regarded as an
extension of the model presented by Tanaka et al. (1982). In contrast to their model
the modes of the coefficients are here estimated by OLS.26 The coefficients are supposed
to be asymmetric triangular fuzzy numbers, i.e. ãi := (ai, lai, rai) ∈ FP(R), triangular,
i = 0, . . . , m. Then ã = (ã0, . . . , ãm)T ∈ FP(Rm+1) denotes the fuzzy coefficient vector.
Let

X =

⎛⎜⎜⎜⎜⎝
1 x11 · · · x1m

...
...

1 xn1 · · · xnm

⎞⎟⎟⎟⎟⎠ ∈ Rn×(m+1)

a matrix of observations and ỹ ∈ FP(Rn) a fuzzy output vector which can be either
fuzzy, i.e. represented by an interval, or crisp. Ishibuchi and Nii consider the following

24Petry (1998, pp. 84ff.) gives examples in which the variety of solutions is shown.
25A comparison of the two presented methods with OLS has been conducted by Redden and Woodall

(1994) and Chang and Ayyub (2001). They also point out the drawbacks of the 1980 and 1982
methods of Tanaka et al.

26The same approach of determining the center by OLS is pursued by Savic and Pedrycz (1991).

fuzzy linear model:
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ỹi = (yi, lyi, ryi)
= ã0 ⊕ ã1xi1 ⊕ . . . ⊕ ãmxim

= (a0, la0, ra0) ⊕ (a1, la1, ra1)xi1 ⊕ . . . ⊕ (am, lam, ram)xim

= (a0, la0, ra0) ⊕
⎛⎜⎜⎝a1xi1,

⎧⎪⎪⎨⎪⎪⎩
la1xi1 if xi1 ≥ 0

ra1|xi1| if xi1 < 0
,

⎧⎪⎪⎨⎪⎪⎩
ra1xi1 if xi1 ≥ 0

la1|xi1| if xi1 < 0

⎞⎟⎟⎠+ . . .

+

⎛⎜⎜⎝amxim,

⎧⎪⎪⎨⎪⎪⎩
lamxim if xim ≥ 0

ram|xim| if xim < 0
,

⎧⎪⎪⎨⎪⎪⎩
ramxim if xim ≥ 0

lam|xim| if xim < 0

⎞⎟⎟⎠ , i = 1, . . . , n

Thus, we yield for the mode yi and the left and right spread lyi and ryi, respectively:

yi = a0 +
m∑

j=1
ajxij

lyi = la0 +
m∑

j=1
xij≥0

laj xij +
m∑

j=1
xij<0

raj |xij|

ryi = ra0 +
m∑

j=1
xij≥0

raj xij +
m∑

j=1
xij<0

laj |xij|

We refer to the estimated output as ˆ̃yi and denote the mode by ŷi and the estimated left
and right spreads as lŷi and rŷi, respectively. An α-cut (cf. Definition 2.7), α ∈ [0, 1],
of the estimated output is determined by

(
ˆ̃yi

)
α

= [ŷi − (1 − α)lŷi, ŷi + (1 − α)rŷi].

Ishibuchi and Nii propose a two-step procedure in their estimation method. First, the
modes of the coefficients a0, . . . , am are estimated with OLS. They are denoted in the
following by â0, . . . , âm. Then, we yield the left and right spreads of the estimated
coefficients by solving the following linear model (2.14) which aims to minimize the
total spread of the estimated output.

min
l̂a0 ,...,l̂am ,r̂a0 ,...,r̂am

⎛⎝ m∑
j=0

n∑
i=1

l̂aj |xij| + r̂aj |xij|
⎞⎠ (2.14a)
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s.t.

â0 +
m∑

j=1
âjxij −

⎛⎜⎜⎜⎝l̂a0 +
m∑

j=1
xij≥0

l̂aj |xij| +
m∑

j=1
xij<0

r̂aj |xij|

⎞⎟⎟⎟⎠ (1 − α) ≤ yi, (2.14b)

i = 1, . . . , n

â0 +
m∑

j=1
âjxij +

⎛⎜⎜⎜⎝r̂a0 +
m∑

j=1
xij≥0

r̂aj |xij| +
m∑

j=1
xij<0

l̂aj |xij|

⎞⎟⎟⎟⎠ (1 − α) ≥ yi, (2.14c)

i = 1, . . . , n

l̂a0, . . . , l̂am, r̂a0, . . . , r̂am ≥ 0 (2.14d)

The constraints (2.14b)-(2.14c) assure that the observed output is contained in the
estimated one. Hereby Ishibuchi and Nii (2001) assume that the observed output
data yi is crisp.27 Constraint (2.14d) ensures that the left and right spreads are
non-negative.

2.3.2 Fuzzy Least Squares Regression

A second large part of fuzzy regression models can be classified as fuzzy least squares
regression models. Following the idea of ordinary least squares in classical statistics the
method is based on a distance measure between the fuzzy or non-fuzzy input variables
and the fuzzy output. The aim is to derive parameters by minimizing the quadratic
distance.

One of the most popular representatives of this class is the model by Diamond and
Kloeden (1994) which has also been regarded in Diamond (1992). Further considerations
can be found among others in Diamond and Tanaka (1998) and Petry (1998). The
presentation of the model of Diamond and Kloeden (1994) in this section is based on the
latter. This technique comprises both non-fuzzy and fuzzy input data. Merely, the fuzzy
data needs to be in the form of triangular fuzzy numbers. As a difference to other parts
of this work we will denote TFNs ã = (a, la, ra) in the form ã =: [a− la, a+ra] =: [al, ar]

27Their model can be extended to the case with observed fuzzy output data by replacing yi by the
terms yi − (1 − α)lyi and yi + (1 − α)ryi , respectively, in analogy to their symmetric case (cf.
Ishibuchi and Nii 2001, pp. 276f.).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



56 2 Fuzzy Theory

in this section, i.e. not the width of the spreads are being denoted but the lower and
upper bound of the support.

The goal is to minimize the distance between the observed values – either fuzzy or
non-fuzzy– and fuzzy values which are given by a parametrical model (Diamond and
Tanaka 1998, p. 353). This metric on the space of TFNs is defined as

D2(ã, b̃) = D2
(
[al, ar], [bl, br]

)
:=
√

(al − bl)2 + (ar − br)2

in Diamond and Kloeden (1994, p. 115) where ã and b̃ are TFNs.

Fuzzy Least Squares approach by Diamond and Kloeden (1994)
The following fuzzy linear regression model will be considered: Let ã, b̃ be TFNs,
ỹi = (yi, lyi, ryi), i = 1, . . . , n, be fuzzy output and xi, i = 1, . . . , n, non-fuzzy input
data.28

ỹi = ã ⊕ b̃xi

⇔ [yl
i, yr

i ] = [al, ar] ⊕ [bl, br]xi (2.15)

That is, the notation [yl
i, yr

i ] as well describes the upper and lower bound of the support.
For the model as stated in Equation (2.15) it is required that the slope parameter b̃

is either positive or negative, i.e. the support of b̃, supp(b̃), does not contain zero.29

There are no restrictions for the parameter ã.

Following the idea of OLS in classical statistics estimators for the fuzzy coefficients ã

and b̃ of the model as stated in Equation (2.15) are derived by minimizing the quadratic
distances between the fuzzy regression line and the observed data, i.e.

min
ã,b̃

0/∈supp(b̃)

n∑
i=1

D2
(
[al, ar] ⊕ [bl, br]xi, [yl

i, yr
i ]
)2 (2.16)

28The input data can be also given as fuzzy data. For an easier readability we will stick to the crisp
case here but keep in mind that it can be defined for fuzzy input data as well.

29This fact is in detail discussed in Diamond and Kloeden (1994, pp. 117f.) and Petry (1998, pp. 94f.).
It is required for the uniqueness of the solution of the minimization problem.
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In Diamond (1992) and Diamond and Kloeden (1994) the existence and uniqueness of
the solution of the minimization problem as stated in Equation (2.16) is shown (see
Diamond and Kloeden (1994, pp. 117f.), a plausibility check is also given in Petry
(1998, pp. 94f.)).30

Early publications in the field of fuzzy least squares regression can be found in Celmin, š
(1987a) and Celmin, š (1987b). The presented model by Diamond and Kloeden (1994)
then picks up the idea of OLS in classical statistics and transfers it to fuzzy regression.
The thought is further pursued in Körner and Näther (1998) who investigated fuzzy
random variables (for a short introduction see Section 2.4) in the context of fuzzy linear
regression. A least squares approach with fuzzy random variables is also considered in
Wünsche and Näther (2002).

A further fuzzy regression model making use of a least squares approach which came up
during the course of years is given by Chang (2001). Chang (2001) introduces a hybrid
fuzzy least squares regression method making use of weighted fuzzy arithmetic (cf.
p. 41). The fuzzy regression method is defined both for a bivariate and a multivariate
model. As we are only dealing with the bivariate model in Section 4.6.5 we restrict
ourselves to that case.

Hybrid Fuzzy Least Squares Regression Model by Chang (2001)
A bivariate fuzzy regression model of the following manner is considered

ỹi = ã0 ⊕ ã1xi, i = 1, . . . n,

where the fuzzy coefficients are TFNs, i.e. ã0 := (a0, la0, ra0) and ã1 := (a1, la1, ra1). ỹi

denotes the fuzzy output and xi, i = 1, . . . , n, the crisp input variable. Consequently,
the fuzzy dependent variable can be displayed in the following form:

ỹi = (a0, la0, ra0) ⊕ (a1, la1, ra1)xi = (a0 + a1xi, la0 + la1xi, ra0 + ra1xi)

30Diamond and Kloeden (1994) goes into detail with cohesive data which corresponds to the requi-
rements for the uniqueness of the regression model’s solution (cf. Diamond and Kloeden 1994,
p. 117). This view is also described in detail in Petry (1998). Vividly speaking, the constraint for
the uniqueness of the solution means that the lines describing the left and right spread of the fuzzy
regression tube do not intersect. In that case the fuzzy numbers would not be defined (cf. Petry
1998, p. 95). If the data is not cohesive a solution does also exist and is unique.
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which are referred to as αŷi,l and αŷi,r are given by

αŷi,l = a0 + a1xi − (1 − α)(la0 + la1xi)
and

αŷi,r = a0 + a1xi + (1 − α)(ra0 + ra1xi).

In the following we will denote by ỹi = (yi, lyi, ryi), i = 1, . . . , n, the observed values
of the dependent variable for which the lower and upper borders of the corresponding
α-cuts αỹi,l and αỹi,r are given by

αỹi,l = yi − (1 − α)lyi

and
αỹi,r = yi + (1 − α)ryi.

The idea of the hybrid regression model by Chang (2001) is to minimize the sum of
squared residual errors in analogy to the procedure in OLS. Hence, the objective is to
minimize the subsequent term:

n∑
i=1

(ŷi �w ỹi)2 =
n∑

i=1

∫ 1
0 (αŷi,l −α ỹi,l) α dα + ∫ 1

0 (αŷi,r −α ỹi,r) α dα

2 ∫ 1
0 α dα

,

where the operation �w denotes the subtraction according to the definition of weighted
fuzzy arithmetic (cf. Definition 2.40). Chang shows that the sum of squared residual
errors can be represented as (cf. Chang 2001, pp. 228ff.):

n∑
i=1

(ŷi �w ỹi)2 =
n∑

i=1

[
(a0 + a1xi − yi)2

+ 1
3(a0 + a1xi − yi)

(
(ra0 + ra1xi − ryi) − (la0 + la1xi − lyi)

)
+ 1

12

(
(la0 + la1xi − lyi)2 + (ra0 + ra1xi − ryi)2)]

=: F (a0, a1, la0, la1, ra0, ra1)

In order to determine the set of coefficients {a0, a1, la0, la1ra0, ra1} which minimize the
function F the partial derivatives of F need to be derived and subsequently set to zero.
Chang demonstrates that instead of solving the resulting linear system of equations
with six equations and six unknowns the following three linear systems of equations

Then, the lower and upper borders of the α-cuts, α ∈ [0, 1], of the estimated values ŷi
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(2.17)-(2.19) with two equations and two unknowns each can be solved (cf. Chang 2001,
pp. 230 ff.).

∣∣∣∣∣∣ na0 + a1
∑n

i=1 xi = ∑n
i=1 yi

a0
∑n

i=1 xi + a1
∑n

i=1 x2
i = ∑n

i=1 xiyi

∣∣∣∣∣∣ linear system of equa-
tions for a0 and a1

(2.17)

∣∣∣∣∣∣ nla0 + la1
∑n

i=1 xi = ∑n
i=1 lyi

la0
∑n

i=1 xi + la1
∑n

i=1 x2
i = ∑n

i=1 xilyi

∣∣∣∣∣∣
linear system of equa-
tions for la0 and la1

(2.18)

∣∣∣∣∣∣ nra1 + ra1
∑n

i=1 xi = ∑n
i=1 ryi

ra0
∑n

i=1 xi + ra1
∑n

i=1 x2
i = ∑n

i=1 xiryi

∣∣∣∣∣∣
linear system of equa-
tions for ra0 and ra1

(2.19)

In case of symmetric fuzzy regression coefficients and symmetric fuzzy output variables
only the first two systems of equations (2.17) and (2.18) need to be solved since the
third one is obsolete.

2.4 Fuzzy Random Variables

Univariate or multivariate random variables in its classical sense are mappings from a
probability space (Ω, A, P ) into R or Rk, respectively, which are measurable. Again, in
this approach solely stochastic randomness is taken into account (see Section 2.1.4).
The concept of fuzzy random variables allows for modeling both stochastic randomness
and fuzziness, e.g. emerging from linguistic uncertainty.

The idea came up in the works of Kwakernaak (1978, 1979) and Puri and Ralescu
(1986). Kruse and Meyer (1987) later on specified the ideas of Kwakernaak (1978, 1979).
It has also been considered by Diamond and Kloeden (1994) with a different approach.
An attempt of a unification of those different views and definitions has been made by
Krätschmer (2001). An overview – with an emphasis on insurance – can be found in
Shapiro (2009) and a presentation of the development as well as further interpretations
are given in Gil et al. (2006). The presentation in this section is based on Shapiro
(2009).

As an example of a fuzzy random variable we will briefly state the definition of
Kwakernaak’s view of a fuzzy random variable who sees them as “[...] random variables
whose values are not real but fuzzy numbers [...]” (cf. Kwakernaak 1978, p. 1). In
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this case they are modeled as a fuzzy conception of a crisp random variable which is
unobservable.

Definition 2.54 (Fuzzy Random Variable (Kwakernaak))
Let (Ω, A, P ) be a probability space and FP(R) the set of all fuzzy numbers. That is,
FP(R) comprises all normal and convex fuzzy sets whose α-cuts are compact, α ∈ [0, 1].
Specifically, this is the class of mappings ζ : R −→ [0, 1] for which we define

ζα :=

⎧⎪⎪⎨⎪⎪⎩
{x ∈ R | ζ(x) ≥ α} if α ∈ (0, 1]

supp(ζ) if α = 0
,

where supp(ζ) denotes the closure of the support of ζ. A fuzzy random variable ξ is a
mapping ξ : (Ω, A, P ) −→ FP(R) such that for all ω ∈ Ω and α ∈ [0, 1] the mappings

inf ξα : (Ω, A, P ) −→ R, inf ξα(ω) := inf(ξ(ω))α

and
sup ξα : (Ω, A, P ) −→ R, sup ξα(ω) := sup(ξ(ω))α

are real-valued random variables, i.e. measurable functions.
The above conditions on the boundaries of the fuzzy random variable can also be
written as

ξα(ω) = [inf(ξ(ω))α, sup(ξ(ω))α].

Remark 2.55
The requirement for measurable functions in Definition 2.54 ensures that the theory of
well examined random variables can be applied to investigate fuzzy random variables.
The mapping ξ goes into the space of all fuzzy numbers which are normal by definition.
This assures that the image is not empty. According to Petry (1998, p. 30) the definition
depends on the idea that there exists a “real” random variable describing an experiment
which cannot be perceived precisely. The grades of membership are then interpreted as
a grade of acceptance that the value is the “true” realization of the random variable.
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3 | Applications of Fuzzy
Theory in Insurance

It is an essential characteristic of the insurance industry that it is exposed to many
sources of randomness and imprecision. For example this may involve the fields of
pricing, underwriting, risk classification and reserving. A key goal has always been to
quantify the related uncertainty in order to e.g. price an insurance product adequately
or to set up an appropriate reserve.

While classical stochastic methods have been used for decades it took more than 15
years since the appearance of the first article in fuzzy set theory by Zadeh (1965)
that the methodology of fuzzy sets has found its way into insurance related fields.
To our best knowledge, the first article was published in 1982 by Wit. Derrig and
Ostaszewski (1999) try to find answers why it took so long for researchers to find suitable
implementations. Their answer is mainly valid for the USA as the authors mention
that the situation in e.g. Europe is slightly different (cf. Derrig and Ostaszewski 1999,
p. 534). Strict regulations have led to the situation that actuarial calculations were
conducted following the guidelines (cf. Derrig and Ostaszewski 1999, p. 534) and other
techniques have not necessarily been considered in those times. Since then numerous
articles in various areas of application in insurance have been published. The use of
fuzzy set theory ranges from different product lines as property-liability to health and
life insurances, from underwriting and reinsurance decisions to financial analyses, from
the mere fuzzy logic to fuzzy clustering methods and fuzzy regression.

A survey can among others be found in Shapiro (2004), Shapiro (2007) or Yakoubov
and Haberman (1998). An overview is also given in the introductions of the articles by
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Andrés Sánchez and Terceño Gómez (2003) and Andrés Sánchez (2006) as well as in
Shapiro and Jain (2003, Chapter 1).

In the following four sections applications of fuzzy techniques in the fields of underwriting,
pricing, risk classification and claims reserving are presented. We have exemplarily
chosen underwriting, pricing and risk classification as these are adjacent fields to
claims reserving. Hereby we focus on those publications considering non-life insurance
applications. However, the publications dealing with life insurances applications which
have been important in the development are also mentioned. The chosen fields of
application are not extensive. Additionally, fuzzy methods are used in e.g. fraud
detection and insurer surveillance (cf. Berry-Stölzle et al. 2010). Moreover, asset
allocation can be of great interest in an insurance context. Also the overview by Shapiro
(2004) refers mainly to finance literature when considering asset allocation so that we
will exclude it in this dissertation. The summary in the following sections does not aim
to be comprehensive but rather gives an impression of how different applications of
fuzzy methods in insurance are.

3.1 Underwriting

Underwriting in an insurance company deals with the selection of risks which will be
signed by the insurer as well as the conditions and shares of signed risks. The superior
goal is to have a profitable portfolio of risks.

The – to our knowledge – first publication of an application of fuzzy methods at all
considers an application in underwriting and was published in the early 1980’s (cf. Wit
1982). The author’s motivation is that the underwriting process is subjective when
assessing risks. In case a rating system is at hand, employees in the underwriting
department might use it; but maybe according to the underwriter’s intuition. For
an underwriter human factors play an important role such that they make use of
their intuition and also utilize incomplete information (cf. Wit 1982, p. 278). Wit
assigned membership functions by defining membership grades for linguistic terms for
several areas. Then, the combination of the assigned fuzzy values is considered in order
to derive the underwriting decision. This particular idea of using fuzzy methods in
underwriting is further pursued by Young (1993).
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Young (1996) applies a model to group health insurance. As the investigation is so
general the findings can be applied to any kind of LoB and, thus, it is also incorporated
in the overview. The aim of the publication is to show a way to consider vague or
linguistic objectives as well. Fuzzy constraints are used to adjust insurance premiums.
With the help of this means premiums can be altered even if experience data is not
available. For doing so, fuzzy rules are applied. These rules can be operations that
correspond to the linguistic connectors “and” and “or” as well as the modifier “not”.
Young sees a major advantage of her work in the fact that an investigation can start
off with verbal rules (cf. Young 1996, p. 482). Subsequently, fuzzy sets describing the
hypotheses are constructed (cf. Young 1996, p. 469). Then, solutions are derived and
an option of fine-tuning of the fuzzy logic models is also discussed.

The publication of Lemaire (1990) aims to give an adaptable definition of a preferred
policy holder in a life insurance context. The author takes into account blood pressure,
cholesterol level, weight and the status whether the policy holder is a smoker or non-
smoker. For each criteria a membership function is defined (cf. Lemaire 1990, p. 38).
For example for weight, the membership function describes a weight which is between 85
% and 130 % of the recommended one. A preferred policy holder is then the intersection
of the fuzzy sets which are described by the membership functions. Moreover, Lemaire
extends the literature by broadening the definition of the intersection.

The first application of fuzzy methods in underwriting outside academia is to our best
knowledge by a Canadian team who used among others fuzzy techniques to develop an
automated underwriter (mentioned e.g. in Erbach and Seah 1993). Horgby et al. (1997)
derive an application to medical underwriting in life insurance in the case of applicants
suffering from diabetes mellitus. The authors utilize a fuzzy inference system. One of
the reasons for doing so is that it is practicable for physicians to assess a symptom
being mild or severe but it might be not so useful to quantify the severity.

The work of Bonissone (2004) deals with the process of underwriting insurance applica-
tions and considers the problem of risk classification. He provides a design methodology
for a fuzzy knowledge-based classifier. Bonissone (2003) as well describes applications
for the underwriting process. The author considers the whole process with particular
regard to the maintenance of a model. The work of Bonissone et al. (2005) extends
previous publications by providing a model for the underwriting process in a dynamic
environment which shows a better performance than static ones. It is presented for
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an example of a fleet selection problem. The process of underwriting in the context of
workers compensation insurance for construction workers is addressed in Imriyas et al.
(2006, 2007) and Imriyas (2009).

3.2 Pricing

Pricing is the process of assigning an adequate price for a given risk. The classical
approach is to calculate the claims expectancy. Nowadays, there is a wide range of
methods – even including ideas from behavioral economics (cf. Schmidt-Gallas 2014).

As elaborated on before, Young (1996) showed how fuzzy logic could be used in insurance
questions. Moreover, the designed model can be of use in pricing matters. The extension
of the article is shown in Young (1997). The publication makes use of two sources of
information: data on claims (experience data) and additional information which can be
financial or marketing data as well as documents showing the actuary’s or company’s
philosophy. Starting off from linguistic rules Young develops a fuzzy inference system
to adjust premiums (cf. Young 1997, p. 735) – including a step to fine-tune the model.
The earlier model only takes into account constraints. Her model is then applied to a
workers compensation data set.

Cummins and Derrig (1997) use fuzzy set theory in the context of financial pricing of
property-liability insurance contracts. Especially, the authors apply fuzzy methods to
the Myers-Cohn model, a discrete-time discounted-cash-flow model (cf. Cummins and
Derrig 1997, p. 21). According to Cummins and Derrig fuzzy set theory allows for an
approach to comprise vague, fuzzy or incomplete information (cf. Cummins and Derrig
1997, p. 22). In pricing this might be the case for information on cash flows, future
economic conditions, risk premiums or other aspects concerning the pricing decision.
The authors derive numerical examples and come to the conclusion that considering
fuzzy premiums offers other information than taking into account crisp ones. In fact,
fuzzy set theory allows to incorporate vagueness and uncertainty “bottom up” instead
of “top down” (cf. Cummins and Derrig 1997, p. 37).

Carretero and Viejo (2000) introduce a fuzzy Bonus Malus system for automobile
insurance. Their study is based on a data set of 48,666 policy holders of an insurance
company in Spain. Bonus Malus systems recompense drivers for claims-free years and

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3.2 Pricing 65

add an extra premiums for years with at least one claim. The investigation makes use
of fuzzy methods in a decision-making process. The objective function is to maximize
earnings from premiums while the principle is that every insured pays a premium
proportional to his/her claim frequency. Moreover, the system is supposed to be
financially balanced in a way that premiums can cover expected claims and there is
no big cluster in a highly discounted class. In comparison to the crisp case the fuzzy
Bonus Malus system introduces qualitative constraints, i.e. constraints with linguistic
variables and, therefore, yields more flexibility.

A recent publication of Luukka and Collan (2015) deals with the pricing of large projects’
insurances, especially large industrial investments. In order to model the investment’s
profitability the authors employ possibility theory which is a subfield of fuzzy set theory.
Based on these considerations they develop an approach for the pricing of the project’s
insurance. The accessible information for the planning and analysis phase is often vague
(cf. Luukka and Collan 2015, p. 23). That is the reason why again possibility theory is
utilized for pricing giga-investments’ insurances by considering the pay-off distributions
of the projects (cf. Luukka and Collan 2015, p. 28). Furthermore, the effects of risk
aversion in the setting of giga-investments is investigated in Collan et al. (2016).

Yao and Qin (2015) present an application to risk processes with uncertain factors which
are estimated by subjective factors and assessment. Lai (2006) fits fuzzy triangular
numbers to the ICAPM model which is a variation of the well-known CAPM model for
property-liability insurers.

The publications mentioned before all focus on the supply side of the relationship
between an insurer and the insured. In the following articles taking into consideration
the demand side are presented. Nonetheless, considering the demand side also has an
impact for those who set the price. Liu et al. (2015) model the potential loss of an
insured in an optimal insurance problem as fuzzy random variable. Not only upper and
lower bounds on premiums are derived but an uncertain optimal insurance problem is
set up taking into account two sources of uncertainty. Abdullah and Rahman (2012)
take advantage of a fuzzy inference system to study the likelihood of acquiring a health
insurance. They investigate risk factors which might influence the possibility of buying
a health insurance in order to identify potential customers (cf. Abdullah and Rahman
2012, p. 116).
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decision-making process referring to pricing. Not only information on cost structures
and the actuarial premium is considered but the method also enables us to implement
expert knowledge e.g. referring to the strategic vision.

The work Gençtürk et al. (2011) presents an application of fuzzy set theory for the
pricing of high excess of loss layers in a reinsurance context. The authors aim to provide
a fuzzy price which is an interval referring to “reasonable” prices instead of just a crisp
premium. Therefore, the parameters of a general Pareto distribution are considered as
fuzzy numbers (cf. Gençtürk et al. 2011, pp. 24f.).

3.3 Risk Classification

The technique of risk classification aims to distinguish insurable risks. Hereby, risks are
categorized according to their severity (claim size) and their frequency (probability) of
occurrence (cf. Ebanks et al. 1992). These classifications are needed for underwriting
as well as for pricing purposes. If relevant findings with respect to an appreciate
classification were ignored within the pricing this might lead to non-risk-adequate
premiums and therefore potentially effects of anti-selection. Hence risk classification
can be understood as an early fundamental step of actuarial analysis.

Ebanks et al. (1992) propose a fuzzy classification method. They consider an ideal risk
as a point of reference. It is assumed that this risk can be described by a number of
different risk characteristics. Now each other individual risk is assessed by regarding to
which extent it corresponds to the risk characteristics of the ideal risk. This assessment
is measured with the help of membership functions. Based on this, they present an
approach to identify and evaluate sets of preferred risks with the help of three different
measures of fuzziness (Additionally they gave an example from a life insurance context
following Lemaire (1990)).

Ostaszewski (1993) illustrates that in the case of risk classification it is often not sensible
to apply strict criteria. Some boundaries (of strict criteria) might be accumulated with
“bad” risks. Therefore, there might be an incentive to terminate existing contracts and,
consequently, there are phenomena of antiselection (cf. Ostaszewski 1993, p. 60). Thus,
Lemaire (1990) and other publications move on to make vague statements used for risk

Casanovas et al. (2015) provides a method to implement expert knowledge in the
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classification. The use of fuzzy sets may be a good idea in this case as these aim to
model imprecise human reasoning (cf. Ostaszewski 1993, p. 59).

Ostaszewski (1993) points out that classical approaches of classification are based on
assumptions stating which are the relevant variables to describe the risk. This can lead
to situations in which information – that is generally available – is not analyzed because
it was not selected due to hazard or a missing corresponding intuition. Hence, he is
interested in developing a less restrictive method that enables the actuary to detect
the relevant pattern for classification (cf. Ostaszewski 1993, pp. 50ff.). His solution is
based on the technique of the c-means algorithm (cf. Bezdek 1981). This algorithm
is a fuzzy method of data clustering. It differs from crisp clustering approaches as it
allows data elements to be part of several different clusters (each with a certain degree
of membership, cf. Zimmermann et al. 1999, pp. 226ff.).

His concept (of the c-means algorithm) is applied by Derrig and Ostaszewski (1995) to
a car insurance data set. Their objective is to define rating territories in order to group
policies according to cities regional risk profiles. The classification itself is allowed to be
fuzzy in the sense that a city could be “partial” member in different clusters.31 Verrall
and Yakoubov (1999) transfer the c-mean clustering method by Derrig and Ostaszewski
(1995) to the problem of defining appropriate groupings by policyholder age. They give
an extensive numerical example how this method could be used in practice.

Although Horgby (1998)’s work on risk classification refers to life insurance we would
like to mention it as well because we are convinced that his method is transferable to
the non-life sector. He shows in a three step approach how risks that are characterized
by multiple fuzzy risk factors can be combined and, hence, classified. What makes
his work interesting for use in practice is that his method is a fuzzy extension of a
numerical rating approach. In a first step (fuzzification), various vague and imprecise
information on the health status are modeled as different fuzzy sets (e.g. “mild level of
cholesterol”). The next step is concerned with merging these fuzzy prognostic factors.
Corresponding rules are exemplarily defined. This results in a fuzzy evaluation of
necessary risk loadings. In his third step (defuzzification) he transfers this fuzzy number
to a crisp premium loading. Consequently, his work could have been as well mentioned
within the class of papers on pricing.
31A second part of their work deals with a fuzzy clustering based expert system to rank claims with

respect to their potential being fraudulent.
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Başer et al. (2011) apply an adaptive network based fuzzy inference system for risk
classification in life insurance. Policyholders are classified by their cardiovascular risk
characteristics, namely blood pressure, cholesterol level, obesity and smoking behavior.
Also a comparison of the results of the proposed model using adaptive network models
with results obtained from fuzzy regression is conducted.

3.4 Claims Reserving

A further conceivable and interesting area of application is without question the field
of claims reserving. Claims reserving deals with the quantification of outstanding loss
liabilities and, likewise, with the quantification of the liabilities’ risk. An introduction
to claims reserving as well as an overview of popular reserving methods is presented in
Chapter 4.

Presenting a summary of applications of fuzzy methods in claims reserving is one of
the main goals of this work. That is why we devote a separate section in the chapter
dealing with claims reserving methods to the summary and the discussion of the
fuzzy claims reserving methods (cf. Section 4.6). Before doing so, the most important
claims reserving methods – both deterministic and stochastic – which are used in
the progress of this work are presented in Chapter 4 (cf. Sections 4.1-4.5). The most
important publications in this area are Andrés Sánchez and Terceño Gómez (2003),
Andrés Sánchez (2006, 2007, 2012), and Başer and Apaydin (2010). The methods
presented in Chapters 5, 6 and 7 can be classified in the same field of application and
utilize similar approaches. The findings in Chapter 5 are based on the publication
of Heberle and Thomas (2014) whereas the results in Chapter 7 are based on the
publication of Heberle and Thomas (2016). The model presented in Chapter 6 is
developed within the scope of this dissertation.
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4 | Methods of Claims Reser-
ving

In the past years the field of claims reserving in the insurance industry has got a growing
importance. Claims reserving refers to the prediction of outstanding loss liabilities for
not finally settled insurance claims as well as the quantification of the corresponding risk
and is an important field in non-life insurance mathematics. For this purpose, future
insurance technical obligations need to be quantified and assessed. The claims reserve,
i.e. the predicted outstanding loss liabilities, refers to a large position on the liabilities
side of an insurance company’s balance sheet. Hence, neither over- nor underestimating
of the outstanding loss liabilities is appropriate. If they are overestimated, this would
temporarily reduce the insurance company’s earnings and thus its equity capital. Since
the reserves can serve as a basis for pricing calculations, too high premiums might turn
out. Likewise, the reserve needs to be high enough to settle all future loss liabilities.
If it is not high enough, unexpected run-off losses might occur in later years and / or
premiums for new business of an insurance company might be possibly too low.

The size of the outstanding loss liabilities is estimated with the help of mathematical
models. On the one hand there are algorithmic models like e.g. the chain-ladder- (CL),
Bornhuetter Ferguson- (BF) or the additive method. On the other hand outstanding
loss liabilities can be e.g. estimated by distributional and Bayesian models as well as
by generalized linear models (GLMs) and Bootstrap methods. Surveys on methods of
claims reserving are e.g. given in Wüthrich and Merz (2008), Taylor (2000), Kaas et al.
(2008, Chapter 10), and Mack (2002, Chapter 3). Those methods can be classified into
distribution-free and distributional ones wherein the ones presented here belong to the
former. A generalization of distribution-free reserving methods as linear stochastic
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reserving methods (LSRMs) is considered in Dahms (2012). Distributional methods are
among others regarded in England and Verrall (2002) and Merz and Wüthrich (2010).
In this context often not only the first two moments but a predictive distribution can
be deduced. Moreover, the paid-incurred chain (PIC) claims reserving method also
allows for the incorporation of two sources of information, i.e. paid and incurred data
(cf. Merz and Wüthrich 2010).32

In this chapter notations and conventions are presented at first in Section 4.1. Subse-
quently, several common claims reserving methods are stated with a particular emphasis
on those methods used in the proceeding of this work. It begins with a presentation of
the CL-method in Section 4.3 and the BF-method in Section 4.4. Section 4.5 serves as a
provision of those claims reserving methods which are used in the following Section 4.6.
A survey on applications of fuzzy methods in claims reserving is given in Section 4.6
comprising a corresponding discussion in Section 4.6.7.

4.1 Notations and Definitions

An insurance policy is a contract between an insurer and the insured. The insured pays
a premium to the insurer to assure against an uncertain loss. In case of a covered claim
the insurer will compensate for it (at least partly). In this work we will only consider
situations in a non-life insurance setting. The situation for life insurance contracts
is different and is not subject of this dissertation. Many life insurance contracts are
fixed-benefit insurances and their calculation differs from the non-life case.
At the end of a business year not all claims which occurred during this year are usually
settled. For the outstanding loss liabilities of these not completely regulated claims a
“suitable” reserve needs to be set up. We distinguish two types of claims for which the
claims amount is not finally known (cf. Wüthrich and Merz 2008, p. 3):

• IBNR-claims (incurred but not reported): The claim has occurred but has not
been reported yet. For these claims an IBNR-reserve needs to be set up as these
claims might only be reported many years after they have taken place. As examples
for IBNR-claims one can regard an engineer’s fault in construction of a bridge
which might be only realized during special wind conditions or when an earthquake

32As a further example for the incorporation of both paid and incurred data the work of Quarg and
Mack (2004) can be mentioned.
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takes place. Considering claims with bodily injuries there might be (psychological)
long-term effects which might not be diagnosed at first sight.

• IBNER-claims (incurred but not enough reserved): The claim has been reported
but the final claims amount is not certain yet. Therefore, the reserves might not
be precisely specified and, particularly, possibly not large enough. An example for
an IBNER-claim is a long lasting judicial proceeding as e.g. the Contergan law
suit in the 1960’s.

The field of claims reserving offers models and methods to predict outstanding liabilities.
This includes the challenge of predicting the ultimate claims.

Figure 4.1: Typical development of a non-life insurance claim (adapted from Wüthrich
and Merz 2008, p. 2).

A typical development of a claim is depicted in Figure 4.1. During the insurance period
an accident (claim) happens to the insured. Depending on the type of loss it can take
several years until the claim is reported (e.g. asbestos, fault in construction that is
only obvious under certain circumstances, . . . ). Subject to the line of business (LoB)
it can take some years until the claim is settled. Examples for LoBs are third party
liability, Motor third party, health, fire, private and commercial property, . . . Claims
in property insurance are usually settled quickly whereas the settlement of liability
claims might take a long period of time. A settlement does not necessarily need to be
a final settlement. Referring to the example of the fault in construction at a bridge it
might happen that the constructional flaw is not removed completely. Consequently,
the claim needs to be reopened again and after another payment the claim is closed a
second time (cf. Wüthrich and Merz 2008, p. 2).

Considering claims reserving, mostly common is the use of claims development trapezoids
(or run-off trapezoids) (see Figure 4.2). By i we denote the relative accident year (year
of occurrence of the claim) and j stands for the relative development year. Random
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I

I − 1

I − 2
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1

0

i 0 1 2 3 4 · · · j · · · J

j

Ci,j

(i+ j ≤ I)

Ci,j

(i+ j > I)

Figure 4.2: Claims development triangle (adapted from Wüthrich and Merz 2008, p. 10)

variables Ci,j represent cumulative claims made in relative accident year i and relative
development year j. We assume i ∈ {0, . . . , I} and j ∈ {0, . . . J} (cf. Wüthrich and
Merz 2008, p. 11). The set of observations at time I, i.e. the upper left part of the
triangle, is given by

DI := {Ci,j | i + j ≤ I, 0 ≤ j ≤ J} (4.1)

and the lower right part of the triangle needs to be predicted. We refer to Ci,J as
the ultimate claim for accident year i. Furthermore, it is assumed throughout this
dissertation that the number of development years equals the number of accident years,
i.e. I = J . Therefore, we are only considering claims development triangles throughout
this work. It aims to simplify the notation even though all formulas can be extended
to development trapezoids. Beyond that, we assume that claims are settled after J

years. Otherwise so-called tail factors need to be taken into consideration. This is e.g.
examined in Mack (1999) and Merz and Wüthrich (2013a).

The magnitudes in Figure 4.2 are not necessarily cumulative figures but it is also
common to consider e.g. incremental data.33 By

Xi,j := Ci,j − Ci,j−1

33Depending on what claims reserving method is being considered in the progress of this work the
underlying data base can differ. Therefore, we will always explicitly state what figures are considered
whether it is paid, incurred, cumulative, incremental, etc.
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4.2 Mean Square Error of Prediction 73

we denote increments which describe the variation from one development year to the
next one in relative accident year i. They are related to the cumulative figures in the
following way:

Ci,j =
j∑

k=0
Xi,k

Then at time I, the claims reserve for a single accident year for the outstanding loss
liabilities, for accident year i is given by

Ri := Ci,J − Ci,I−i, i ∈ {0, . . . , I}. (4.2)

Thus, the aggregated reserve is given by

R :=
I∑

i=0
Ri.

At time I the outstanding loss liabilities are not observable and, thus, the reserve for a
single accident year Ri as well as the aggregated reserve R are not observable and need
to be predicted. We refer to their predictions as R̂i or R̂, respectively, and they are
yielded by

R̂i := Ĉi,J − Ci,I−i, i ∈ {0, . . . , I},

i.e. the difference of the predicted ultimate claim and the last observation, and

R̂ :=
I∑

i=0
R̂i.

There exist numerous methods for the prediction of the reserves and a selection is
presented in the following Sections 4.3-4.5. Depending on the data and the structure of
the given information different methods are advisable.

4.2 Mean Square Error of Prediction

As elaborated on before, the task of claim reserving does not only lie in deriving
predictions for the outstanding liabilities but also in the quantification of their risk. As
the reserves often take on high amounts this is of vital interest.
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One of the most popular risk measures is the (conditional) mean square error of
prediction (MSEP). It can be stated as follows (cf. Wüthrich and Merz 2008, p. 33):

Definition 4.1 (Mean square error of prediction (MSEP))
Let X be a random variable, DI a set of observations and X̂ a DI-measurable predictor
for X. Then, the conditional mean square error of prediction is defined as

MSEPX|DI
(X̂) := E

[
(X̂ − X)2 | DI

]
.

For the MSEP the following decomposition holds:

MSEPDI
(X̂) = Var(X | Di)︸ ︷︷ ︸

(conditional) process variance

+
(
X̂ − E[X | DI ]

)2

︸ ︷︷ ︸
(conditional) estimation error

(4.3)

In the decomposition in Equation (4.3) the process variance characterizes the variance
within a stochastic model, i.e. pure randomness, and the estimation error addresses the
uncertainty in the parameter estimation.

4.3 Chain-Ladder Method

The most widely used method in practice is the chain-ladder method. Due to its
simplicity it is easy to implement and still delivers rather good results. According
to Taylor (2000) it was first mentioned by Harnek (1966). Although the classical
CL-method used to be a solely algorithmic reserving procedure it can be set into a
stochastic framework. An overview of stochastic models for the CL-method is given in
Hess and Schmidt (2002). The distribution-free derivation of the CL-method has been
firstly presented by Mack (1993) and can be stated as follows (cf. Wüthrich and Merz
2008, p. 37).

Model Assumptions 4.2 (Distribution-free Chain-Ladder)
We assume for the cumulative claims Ci,j:

a) Cumulative claims Ci,j of different accident years i are independent.
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b) There exist development factors f0, . . . , fJ−1 > 0 and variance parameters σ2
0, . . . ,

σ2
J−1 > 0 such that

E [Ci,j | Ci,0, . . . , Ci,j−1] = fj−1Ci,j−1 (4.4)
Var(Ci,j | Ci,0, . . . , Ci,j−1) = σ2

j−1Ci,j−1

holds true for all i ∈ {0, . . . , I} and j ∈ {1, . . . , J}.

Remark 4.3
The development factors f0, . . . , fJ−1 are also referred to as age-to-age- or chain-ladder-
factors (CL-factors).

Under Model Assumptions 4.2 we can derive the following properties for the CL
estimators.

Lemma 4.4
Assume that Model Assumptions 4.2 hold true. Then we have

E [Ci,J | DI ] = E [Ci,J | Ci,I−i] = Ci,I−ifI−i · · · fJ−1

for all i ∈ {1, . . . , I}.

Proof. According to Equation (4.1) the set of observations is given by DI = {Ci,j |
i + j ≤ I, 0 ≤ j ≤ J}. With the independence assumption on different accident years
and the tower property for conditional expectations we get:

E [Ci,J | DI ] = E [Ci,J | Ci,0, . . . , Ci,I−i]
= E [ E[Ci,J | Ci,J−1, . . . , Ci,0] | Ci,0, . . . , Ci,I−i]

(4.4)= E [fJ−1Ci,J−1 | Ci,0, . . . , Ci,I−i]
= fJ−1 E [Ci,J−1 | DI ]
= . . .

= fJ−1 · · · fI−i E [Ci,I−i | Ci,0, . . . , Ci,I−i]
= Ci,I−ifI−i · · · fJ−1

The proof is conducted analogously for E [Ci,J | Ci,I−i].
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I
I − 1

i
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i 0 1 2 · · · k · · · J

j

Bk

Figure 4.3: The set Bk of all observed cumulative claims up to development year k.

Therefore, the expected ultimate claim given the observations DI is derived by succes-
sively multiplying the last observation for a given accident year with the CL-factors.
Usually the CL-factors are not known. In these cases the unknown factors fj need to
be estimated as well. They are estimated by

f̂j :=
∑I−j−1

i=0 Ci,j+1∑I−j−1
i=0 Ci,j

=
I−j−1∑

i=0

Ci,j∑I−j−1
k=0 Ck,j

Ci,j+1
Ci,j

, j ∈ {0, . . . , J − 1}. (4.5)

A predictor for the ultimate claim is hence given by

Ĉi,J = Ci,I−if̂I−i · · · f̂J−1, i ∈ {1, . . . , I}. (4.6)

The set of all observed cumulative claims up to development year k is given by
Bk := {Ci,j | i + j ≤ I, 0 ≤ j ≤ k} ⊆ DI . An illustration of the set Bk is given in
Figure 4.3. For k = J we have BJ = DI .

For the CL-estimators f̂j the following properties can be derived.

Lemma 4.5
Let Bk := {Ci,j | i + j ≤ I, 0 ≤ j ≤ k} ⊆ DI . If Model Assumptions 4.2 hold true we
have:

a) Given Bj the estimator f̂j is unbiased, i.e. E
[
f̂j | Bj

]
= fj.

b) f̂j is unconditionally unbiased, i.e. E
[
f̂j

]
= fj.
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c) The estimators f̂0, . . . , f̂J−1 are uncorrelated and it holds E
[
f̂0 · · · f̂j

]
=

E[f̂0] · · · E[f̂j] for all j ∈ {0, . . . , J − 1}.

Proof. See Wüthrich and Merz (2008, p. 19).

Remarks 4.6
a) The CL-estimators f̂j, j ∈ {0, . . . , J −1}, are uncorrelated even though they partly

take into account the same data.

b) The CL-estimator f̂j is unbiased, i.e. on average it yields the true parameter.

Besides Mack’s distribution-free chain-ladder model which puts the method into a
stochastic framework there have been other attempts to establish a connection to
statistical methods such as linear models. According to Brosius (1993) the idea of
modeling age-to-age-factors with the help of regression techniques started off in the
1950’s. Brosius (1993) referred to the development factors as link-ratios. Barnett and
Zehnwirth (2000) argue that a link-ratio is a trend which can be modeled by a straight
line through the origin (cf. Barnett and Zehnwirth 2000, p. 249). They show that
several link-ratio techniques can be considered as weighted regression without intercept
and introduce the “Extended Link Ratio Family” which comprises e.g. the CL and
Cape Cod reserving methods.34 A survey on the use of linear models in claims reserving
is as well given in Ludwig et al. (2009).

The CL-factors can be understood as slope parameters of linear models. Precisely, the
CL-estimators turn out as estimators for the slope in a weighted linear regression model
without intercept, i.e. to determine the CL-factors a weighted linear regression model
is considered for every factor.

For the estimation of the CL-factors f̂j, j = 0 . . . , J − 1, the following weighted linear
model (cf. Definition A.235)

yj = Xjβj + εj

34Results for link-ratio techniques considered as a regression with or without intercept are also shown
in Murphy (1994). A presentation of the Cape Cod method can be found e.g. in Wüthrich and
Merz (2008, pp. 95 ff.).

35A short introduction and the notation concerning linear models used throughout this work are given
in the appendix (see Appendix A).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



78 4 Methods of Claims Reserving

where

yj :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0,j+1

C1,j+1
...

CI−1−j,j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(I−j), Xj :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0,j

C1,j

...

CI−1−j,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(I−j),

Wj :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0,j 0 · · · 0

0 C1,j

...
...

. . . 0
0 · · · 0 CI−1−j,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(I−j)×(I−j) and εj :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0

ε1
...

εI−1−j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(I−j)

(4.7)

is regarded. In the further progress of this work we are considering cumulative claims
such that the matrix Wj is positive definite. We yield the estimator for the regression
coefficient βj with the Aitken estimator (cf. Equation (A.1)):

β̂j =
(
XT

j W−1
j Xj

)−1
XT

j W−1
j yj

=
((

1 1 · · · 1
)

Xj

)−1 (
1 1 · · · 1

)
yj

=
∑I−j−1

i=0 Ci,j+1∑I−j−1
i=0 Ci,j

= f̂j, j ∈ {0, . . . , J − 1} (4.8)

Comparing Equations (4.5) and (4.8) shows that both approaches lead to the same
estimators for the CL-factors. By regarding

y∗
j := W− 1

2
j yj =

⎛⎜⎜⎜⎜⎜⎜⎝

C0,j+1

C
1/2
0,j

...
CI−1−j,j+1

C
1/2
I−1−j,j

⎞⎟⎟⎟⎟⎟⎟⎠ , X∗
j := W− 1

2
j Xj =

⎛⎜⎜⎜⎜⎝
C

1/2
0,j

...

C
1/2
I−1−j

⎞⎟⎟⎟⎟⎠ (4.9)

and

ε∗
j := W− 1

2
j εj =

⎛⎜⎜⎜⎜⎜⎜⎝

ε0
C

1/2
0,j

...
εI−1−j

C
1/2
I−1−j,j

⎞⎟⎟⎟⎟⎟⎟⎠ (4.10)

the resulting model

y∗
j = X∗

jβj + ε∗
j (4.11)
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fulfills the requirements of a multiple linear model (cf. Appendix A). That is the reason
why the CL-factors can also be derived with OLS when considering the transformed
linear model (4.11). Thus, the Gauß-Markov theorem yields that the resulting estimator
possesses the BLU-property. In order to determine all CL-factors for a given development
triangle a sequence of general multiple linear models needs to be fitted to the data.

The CL-method has been considered in various scientific publications: the corresponding
mean square error of prediction is e.g. subject in Mack (1993) as well as in Buchwalder
et al. (2006). As an extension of the model, the additional incorporation of a priori
information with the help of a credibility approach is regarded in Gisler and Wüthrich
(2008). A multivariate version, i.e. a version in which several portfolios are examined
simultaneously, is considered e.g. in Pröhl and Schmidt (2005) and the corresponding
prediction error for the multivariate model is addressed in Merz and Wüthrich (2008).

Remark 4.7
The CL method has a number of advantages since it is distribution-free, easy to
implement and can be interpreted intuitively. Moreover, it can be stated as a linear
model and, thus, methods of well examined linear regression can be used.
As disadvantage it has to be stated that only the last observation for a given accident
year is taken into account to predict the ultimate claims and, thus, the reserve (cf.
Equation (4.6)). Consequently, the CL method is sensitive to outliers or zeros on the
diagonal. In addition, the homogeneity characteristics should be fulfilled, i.e. among
others no trend in the development factors should be existent.

In contrast to the CL-method, the BF-method presented in the next section can also
incorporate additional information. Subsequent to a definition both methods are
compared.

4.4 Bornhuetter Ferguson Method

The BF method has also been introduced as a purely computational reserving method
which can comprise a priori information in the form of external and/or internal infor-
mation as well. The a priori information derives from market statistics, business plans,
expert knowledge, organizational data, etc. The method has been firstly presented
by Bornhuetter and Ferguson (cf. Bornhuetter and Ferguson 1972). Summaries are
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given e.g. in Wüthrich and Merz (2008, pp. 21ff.), Schmidt and Radtke (2004, pp. 37ff.)
and Mack (2000). The development triangle and the given a priori information are
presented in Figure 4.4.

i

0

i

I

j

0 . . . j . . . J

Ci,j

νi

ν0

νi

νI

Figure 4.4: Development triangle at time t = I with observable cumulative claims Ci,j

in the upper left part and given a priori information νi deriving from e.g.
expert knowledge on the right.

As before, the upper left part of the triangle contains the observations at time I and
the lower right part needs to be predicted. The right column in Figure 4.4 represents
the a priori information νi which are a priori estimates for the ultimate claims.

The BF method can also be put into a stochastic framework and there are multiple
ways to formalize it (cf. e.g. Mack (2008) or Verrall (2004)). We stick to the following
definition (cf. Wüthrich and Merz 2008, p. 21).

Model Assumptions 4.8 (Bornhuetter Ferguson (BF) method)
We assume for cumulative claims Ci,j, i ∈ {0, . . . , I}, j ∈ {0, . . . , J}:

a) Cumulative claims Ci,j of different accident years i are independent.

b) There exist parameters ν0, . . . , νI > 0 and a pattern γ0, . . . , γJ > 0 with γJ = 1
such that for all i ∈ {0, . . . , I}, j ∈ {0, . . . , J − 1} and k ∈ {1, . . . , J − j} we have:

E[Ci,0] = γ0νi

E[Ci,j+k | Ci,0, . . . , Ci,j] = Ci,j + (γj+k − γj) νi
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With Model Assumptions 4.8 we yield

E[Ci,j] = γjνi and E[Ci,J ] = νi. (4.12)

In particular, the expected ultimate claim E[Ci,J ] for accident year i is given by the a
priori information νi. The sequence (γj)j∈{0,...,J} is referred to as claims development
pattern and for cumulative claims payments it is called payout pattern. Moreover, we
speak of the factors (1 − γI−i) as still-to-come factors which specify the share of claims
not being settled yet. In addition, we can conclude

E[Ci,I | Ci,0, . . . , Ci,I−i] = Ci,I−i + (1 − γI−i)νi.

This observation motivates the following predictor for ultimate claims Ci,J given by

Ĉi,J
BF = Ci,I−i + (1 − γ̂I−i) ν̂i for all i ∈ 1, . . . , I. (4.13)

From Equation (4.13) we see that a higher weight is put on the a priori estimates
νi for earlier development years whereas the influence for later development years is
decreasing. Moreover, if both a priori estimates γ̂I−i and ν̂i originate externally, the
predictor only depends on the last observation and does not use any more information
from the development triangle.

We can derive a predictor for the outstanding claims from Equation (4.13) as

R̂BF
i = (1 − γ̂I−i) ν̂i for all i ∈ 1, . . . , I. (4.14)

In Equations (4.13) and (4.14) the a priori estimates γ̂I−i and ν̂i can be both given
externally. Then, the BF method is applied in its pure form as it has been intended.
These estimates originate e.g. from plan values of business plans or expert knowledge
and need to be given in advance. In practice, actuaries sometimes diverge from the
BF method in its pure form and derive estimates with the help of CL-estimators, i.e.
information given in the development triangle. Then, we observe the following.

Model Assumptions 4.2 yield with the tower property for conditional expectations

E[Ci,j] = E[ E[Ci,j | Ci,j−1]] = E[fj−1Ci,j−1] = fj−1 E[Ci,j−1] = . . . = E[Ci,0]
j−1∏
k=0

fk
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and

E[Ci,J ] = E[Ci,0]
J−1∏
k=0

fk

⇐⇒ E[Ci,0] =
J−1∏
k=0

f−1
k E[Ci,J ].

Thus, we have the following representation of an expected cumulative claim in the
context of the CL method:

E[Ci,j] =
J−1∏
k=j

f−1
k E[Ci,J ] (4.15)

There is a similarity between the CL and BF method since in Equation (4.15) the
factor ∏J−1

k=j f−1
k has taken the place of γj (cf. Equation (4.12)). Consequently, we can

deduce a sequence (γj)j∈{j,...,J} if the CL-factors are known and vice versa. Thus, the
factors γj, j ∈ {0, . . . , J} can be estimated from the development triangle by

γ̂CL
j := γ̂j :=

J−1∏
k=j

f̂−1
k . (4.16)

Applying the estimator γ̂CL
j for γj leads to the following predictor for the ultimate

claim in the BF method:

Ĉi,J
BF = Ci,I−i +

(
1 − γ̂CL

I−i

)
ν̂i

The predictor for the ultimate claim in the CL method can be represented as (cf.
Equation (4.6))

Ĉi,J
CL = Ci,I−i

J−1∏
j=I−i

f̂j

= Ci,I−i + Ci,I−i

⎛⎝ J−1∏
j=I−i

f̂j − 1
⎞⎠

= Ci,I−i + Ĉi,J
CL

∏J−1
j=I−i f̂j

⎛⎝ J−1∏
j=I−i

f̂j − 1
⎞⎠

= Ci,I−i +
⎛⎝1 − 1∏J−1

j=I−i f̂j

⎞⎠ Ĉi,J
CL

.
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Thus, as a difference between the predictors for the ultimate claims in the BF and
CL method we see that the BF method uses an a priori information ν̂i whereas the
CL method applies the prediction Ĉi,J

CL. Consequently, we can identify the claims
development patterns of the BF and CL method when taking the estimates γ̂CL

j as
given in Equation (4.16). The expected ultimate claims E[Ci,J ] for both methods differ
since the BF method relies on an a priori information ν̂i and the prediction Ĉi,J

CL in
the CL method is based solely on observations.

The mean square error of prediction of the BF method in a generalized linear model
(GLM) framework using an overdispersed Poisson model is presented in Alai et al. (2009)
and Alai et al. (2011). It has been investigated in a more general context concerning
the underlying idea of the BF method in Saluz et al. (2011).

Remark 4.9
One advantage of the BF method is that it not only provides a mean to comprise a
priori information in a claims reserving context but is also very robust. Depending on
the available data there might be instabilities in the settlement of earlier development
years. The use of a priori estimates νi of the expected ultimate claims counteracts these
instabilities.
However, the BF method does not use all available information since it only applies
the claims made in calendar year I, i.e. the observations Ci,I−i on the last observed
diagonal in the development triangle DI .

4.5 Other Claims Reserving Methods

In this section a number of other distribution-free claims reserving methods are presented.
We focus on those methods that have been used in combination with fuzzy theory so far
(see Section 3.4). In this way, this section is not intended to be an extensive overview
of distribution-free claims reserving methods.

4.5.1 Claims Reserving with London Chain Approach

In their 1986 work Benjamin and Eagles investigated claims reserving with a special
focus on Lloyd’s and the London market (cf. Benjamin and Eagles 1986)). They pursuit
a regression approach by adapting straight lines to the given data. This idea is also
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seized and discussed in Straub (1988, pp. 109ff.). Andrés Sánchez and Terceño Gómez
(2003) tie into this suggestion with a fuzzy approach (see Section 4.6.1).

Benjamin and Eagles (1986) regard paid loss ratios, i.e. claims payments set in proportion
to earned premiums. In order to predict the ultimate loss ratio they plot all observed
paid loss ratios for several development years of a given accident year. The authors fit
a line to the loss ratios and, thereby, presume a linear relationship (cf. Benjamin and
Eagles 1986, pp. 214ff.).

The idea of considering a linear relationship is picked up by Straub and referred to as the
“London Chain” approach (cf. Straub 1988, p. 110). Let Zi,j, i, j ∈ {0, . . . , I}, i + j ≤ I,
be claims payments for claims occurred in accident year i and development year j.
Then, the following linear relationship for paid claims for each development year is
assumed:

Zi,j+1 = aj + bjZi,j, i ∈ {0, . . . , I − j − 1}, j ∈ {0, . . . , I − 1}

where aj, bj ∈ R. The coefficients aj and bj are then determined with a least squares
approach, i.e.

arg min
aj ,bj

I−j−1∑
i=0

(Zi,j+1 − aj − bjZi,j)2
.

Hence, the coefficients are specified in the way that the quadratic distance is minimized.
We refer to the estimates of the coefficients as âj and b̂j. Thus, the ultimate claim for
each accident year i can be predicted by

Ẑi,J = âJ−1 + b̂J−1

(
. . . âj+2 + b̂j+2

(
âj+1 + b̂j+1(âj + b̂jZi,j)

))
. (4.17)

4.5.2 Claims Reserving with a Smoothing Approach by Sherman

The method to which Andrés Sánchez applied fuzzy regression methods makes use of
individual development factors and a smoothing approach presented in Sherman (1984).
According to Andrés Sánchez (2006) the method is conducted in four steps. As a first
step, the individual claims development factors are calculated, i.e.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4.5 Other Claims Reserving Methods 85

accident- development year j
year 0 1 · · · j · · · J − 1 J

0 F0,0 := C0,1
C0,0

F0,1 := C0,2
C0,1

· · · F0,j := C0,j+1
C0,j

· · · F0,J−1 := C0,J

C0,J−1

1 F1,0 := C1,1
C1,0

F1,1 := C1,2
C1,1

· · · F1,j := C1,j+1
C1,j

· · ·
...

... . .
.

i Fi,0 := Ci,1
Ci,0

Fi,1 := Ci,2
Ci,1

· · ·
...

...
. .

.

I − 1 FI−1,0 := CI−1,1
CI−1,0

I

Table 4.1: Claims development triangle with individual development factors Fi,j := Ci,j+1
Ci,j

Fi,j := Ci,j+1
Ci,j

, j ∈ {0, . . . , J − 1}, i ∈ {0, . . . , I − j − 1},

as shown in Table 4.1.

In a second step, a representative development factor for each development year j,
j ∈ {0, . . . , J − 1}, is chosen. The author refers to the Claims Reserving Manual by the
Institute of Actuaries in which taking an average of the factors is proposed (cf. Institute
of Actuaries 1997, p. B.7.1). Therefore, we calculate for each development year j

f j := 1
I − j

I−j−1∑
i=0

Fi,j, j ∈ {0, . . . , J − 1}.

As a next step, the author relies on Sherman and conducts a similar approach (cf.
Sherman 1984, p. 126). In order to reduce the complexity of the estimation problem a
curve is fitted to the development factors f j:

f j = 1 + ea(j + 1)b

⇔ f j − 1 = ea(j + 1)b, j ∈ {0, . . . , J − 1}, a, b ∈ R (4.18)

By doing so, only two instead of J parameters need to be estimated. Equation (4.18)
can be conveyed into a linear equation by taking logarithms:

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



86 4 Methods of Claims Reserving

ln
(
f j − 1

)
= a + b ln(j + 1)

⇔ F log = a + b ln(j + 1), j ∈ {0, . . . , J − 1}, (4.19)

where F log := ln
(
f j − 1

)
. In order to employ OLS estimation techniques (see Appen-

dix A) an error term εj is added, εj ∼ N (0, σ2), σ2 ∈ R+, i.e. we regard

F log
j = a + b ln(j + 1) + εj, j ∈ {0, . . . , J − 1}.

With the help of OLS estimation methods the parameters a and b are estimated
where F log

j is taken as dependent variable and ln(j + 1) is the independent variable,
j ∈ {0, . . . , J − 1}. Subsequently, a retransformation to the magnitudes considered at
the beginning using Equations (4.19) and (4.18) leads to estimates for the development
factors. Thus, the unknown values in the lower right part of the development triangle
can be predicted and the reserves can be calculated.

4.5.3 Taylor’s Geometric Separation Method

The geometric separation method dates back to Taylor (1977, 1978) and assumes a
multiplicative structure for the entries of the claims development triangle.36

Let Xi,j, i, j ∈ {0, . . . , I}, i+j ≤ I, be incremental claims payments for claims occurred
in accident year i and paid in development year j in this section. By Ni we denote
the number of claims occurred in accident year i. Then, Si,j := Xi,j

Ni
describes average

incremental payments per claim for accident year i and development year j. The
geometric separation method assumes that Si,j can be separated into two factors, i.e.

Si,j ≈ Pjλi+j, (4.20)

where Pj, λi+j ∈ R. Thus, the average incremental payments per claim in a claims
development triangle can be split into a factor Pj standing for the share of claims
payments settled in development year j and a second factor λi+j describing calendar

36Separation models can be classified in geometric and arithmetic separation models. The latter
presumes an additive structure and has been studied e.g. in Taylor (1978). We will restrict our
analysis to the geometric one.
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year effects, i.e. effects on the diagonal of the triangle (cf. Kaas et al. 2008, p. 273).
When additionally assuming that ∑J

j=0 Pj = 1 the parameters can be estimated with
the help of linear regression techniques. We consider the logarithm of Equation (4.20)
and assume an additional error term to yield a linear structure:

ln Si,j = ln Pj + ln λi+j + εi,j, i, j ∈ {0, . . . , J}, i + j ≤ J, (4.21)

where εi,j is an error term. The linear model in Equation (4.21) can be stated in matrix
notation as

Y = Xβ + ε, (4.22)
where

Y := (ln S0,0, . . . , ln S0,J , ln S1,0, . . . , ln S1,J−1, . . . , ln SI,0)T

β := (ln P0, . . . , ln PJ , ln λ0, . . . , ln λJ)T

ε := (ln ε0,0, . . . , ln ε0,J , ln ε1,0, . . . , ln ε1,J−1, . . . , ln εI,0)T

and

X :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I(J+1) I(J+1)

IJ 0J×1 0J×1 IJ

...
...

...
...

IJ−i+1 0(J−i+1)×i 0(J−i+1)×i IJ−i+1
...

...
...

...

I1 01×J 01×J I1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here In, n ∈ {1, . . . , J}, denotes the identity matrix with n rows and columns and 0k×l,
k, l ∈ {1, . . . , J}, indicates a zero matrix with k rows and l columns. Consequently, the
vector Y contains 1

2(J + 1)(J + 2) elements and 2J + 2 parameters in the parameter
vector β need to be estimated. The parameter vector can then be estimated with OLS
(see Appendix A). However, the linear model given in Equation (4.22) does not lead
to a unique solution as XT X is singular. In order to overcome this problem, one fixes
one parameter by setting it to a fix value and, consequently, leaves out one column in
the design matrix X (cf. Goovaerts et al. 1990, p. 274; Taylor 1978, p. 49). Thus, the
remaining 2J + 1 parameters need to be estimated.
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4.5.4 Reserving with Kremer’s Two Way Model of ANOVA

Kremer (1982) proposes a model which aims to take advantage of results of linear models,
especially the analysis of variance (ANOVA). The model emanates from a multiplicative
structure similar to those of the geometric separation method (see Section 4.5.3).

As before, Ci,j denotes cumulative claims payments made in accident year i and
development year j. Here, incremental claims payments Xi,j are considered. We
assume that the incremental claims payments are strictly positive, i.e. Xi,j > 0 for all
i, j ∈ {0, . . . , I}, i + j ≤ I.37 The underlying model for incremental claims payments is
stated as follows:

Xi,j = Eipjei,j (4.23)

where Ei := E[Ci,J ] is the expected ultimate claim for accident year i, pj denotes the
expected share describing the increase of expected claims amounts in development year
j and ei,j refers to a random variable with mean one, i.e. E[ei,j] = 1. Additionally, it is
required that all factors pj add up to one over all development years, i.e. ∑J

j=0 pj = 1.

In order to yield a linear structure to employ results of linear models the logarithm of
Equation 4.23 is considered. Therefore, we obtain

ln Xi,j = η + ai + bj + εi,j (4.24)

where εi,j := ln ei,j, ai := ln Ei − 1
n

∑J
k=0 ln Ek, bj := ln pj − 1

n

∑J
k=0 ln pk and η :=

1
n

∑J
k=0 (ln Ek + ln pk). In addition, it is assumed that the random variables εi,j, i + j ≤

I, are uncorrelated with mean zero and a constant variance, i.e. E[εi,j] = 0 and
Var(εi,j) = σ2 ∈ (0, ∞). With these assumptions estimators for the parameters η, ai

and bj can be derived in a linear regression context with the help of the Gauß-Markov
theorem (cf. Kremer 1982, pp. 49 f.).38 In order to get predictions for the ultimate

37The assumption of strictly positive incremental claims is not a limitation to the model. In case of
negative increments, a constant x ∈ R is chosen with x < min

(i,j)∈{0,...,I}×{0,...,J}
i+j≤I

Xi,j . Then, we consider

strictly positive incremental claims shifted by the constant x, i.e. X ′
i,j := Xi,j − x (cf. Kremer 1982,

p. 48).
38The assumptions made here are chosen in the way that they resemble those of the two-way model

of ANOVA. We will concentrate on the model stated in Equation (4.24) as it is sufficient for the
further analysis in our case.

claims and, thus, the reserves, the transformations made above need to be reversed.
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4.6 Applications of Fuzzy Methods

While first applications of fuzzy set theory in actuarial and insurance science date back
to the early 1980’s (see Section 3.1) there are only a few publications in the field of
claims reserving. To our best knowledge, the first article has been published in the
year 2003 (cf. Andrés Sánchez and Terceño Gómez 2003). This section aims to give an
overview of the published fuzzy claims reserving methods up to present.

Models in claims reserving can be commonly divided into

• purely computational (cf. e.g. CL and BF method in their original form)

• stochastic (cf. e.g. CL, BF, PIC, LSRM, . . . ) and

• Bayesian/Credibility (cf. e.g. Bayes CL, Conditional LSRM), which are a particular
subset of stochastic methods,

models.39 Stochastic and Bayesian models have in common that they model stochastic
randomness whereas Bayesian and Credibility models also allow to incorporate external
data e.g. if the data is scarce.

All methods presented in this section are applications of fuzzy set theory and, thus,
model vagueness (cf. Section 2.1.4). According to the current state of research models
can be classified in the following way: While to our knowledge earlier models are all
based on the application of FR (cf. e.g. Andrés Sánchez and Terceño Gómez 2003;
Andrés Sánchez 2006, 2007; Başer and Apaydin 2010) the fuzzy chain-ladder and the
fuzzy Bornhuetter Ferguson method comprise FNs (cf. Chapters 5 and 7). The reserving
method presented in Chapter 6 is an application of FR as well and is on the basis
of the CL method. In the following we will present the applications of FR in claims
reserving in chronological order. Subsequently, we will discuss the methods regarding
the appropriateness in claims reserving.

39This classification is not exhaustive since claims reserving methods can e.g. also be considered in a
time series context or with applications of the Kálmán filter. Nonetheless, we stick to the rougher
classification as it is sufficient in our case.
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4.6.1 Fuzzy London Chain-Ladder Method by Andrés Sánchez and
Terceño Gómez

Among the first utilizations of fuzzy methods has been the approach by Andrés Sánchez
and Terceño Gómez to apply a FR method by Tanaka and Ishibuchi (1992) to a claims
reserving method described in Straub (1988, pp. 109f.) which has been motivated by
Benjamin and Eagles (1986) (see Section 4.5.1).40 The regression model presented in
Tanaka and Ishibuchi (1992) is the same as the Tanaka (1987) model as presented in
Equations (2.13a)-(2.13d) (see p. 52).

The authors mention as their incitement to incorporate FR that OLS regression is
only suitable if there is a good data basis available in the sense that there are enough
observations to conduct OLS. Depending on the LoB this is not necessarily the case in
claims reserving. Therefore, the authors propose the use of FR.

Andrés Sánchez and Terceño Gómez assume that a cumulative claim C̃i,j+1 is a STFN,
i.e. C̃i,j+1 := (Ci,j+1, lCi,j+1), and can be represented as

C̃i,j+1 = ãj ⊕ b̃jCi,j, j = 0, . . . , J − 1

where ãj and b̃j are STFN of the form ãj := (aj, laj) and b̃j := (bj, lbj). Then, a
cumulative claim can be written as

C̃i,j+1 = (Ci,j+1, lCi,j+1)
= (aj, laj ) ⊕ (bj, lbj )Ci,j

= (aj + bjCi,j, laj + lbj Ci,j). (4.25)

As the FNs ãj and b̃j are not observable in general they need to be estimated. We will
denote the corresponding estimators by ˆ̃aj = (âj, l̂aj ) and ˆ̃bj = (b̂j, l̂bj ), respectively. In
analogy to the non-fuzzy reserving method the estimates of the ultimate claims C̃i,J ,
i ∈ {0, . . . , I}, can be denoted by (cf. Equation (4.17))

ˆ̃Ci,J = ˆ̃aJ−1 ⊕ ˆ̃bJ−1

(
. . . ˆ̃aI−i+2 ⊕ ˆ̃bI−i+2

(
ˆ̃aI−i+1 ⊕ ˆ̃bI−i+1

(
ˆ̃aI−i ⊕ ˆ̃bI−iCi,I−i

)))
.

40The main focus of the publication of Andrés Sánchez and Terceño Gómez (2003) lies on the estimation
of the term structure of interest. However, they mention further applications of FR in actuarial
science, among which is the considered claims reserving method.
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The reserve for each accident year i, i ∈ {0, . . . , I}, is then given by

R̃i = C̃i,J � Ci,I−i

and we yield a predictor for the reserve by

ˆ̃Ri = ˆ̃Ci,J � Ci,I−i.

Analogously to the crisp case, the total reserve R̃ is given by R̃ = ⊕I
i=0 R̃i. The

parameters are estimated by solving the resulting optimization problem yielded by FR.
Here, the total spreads of the fuzzy output is minimized under certain constraints (cf.
(2.13a)-(2.13d)). Considering (4.25) the parameters ˆ̃aj and ˆ̃bj, j ∈ {0, . . . , J − 1}, can
be determined with the following linear problem. Setting up the linear problem in this
way acts on the assumption that all cumulative claims Ci,j are positive:

min
I−1∑
i=0

(
laj + lbj Ci,j

)
(4.26a)

s.t.
aj + bjCi,j − (laj + lbj Ci,j)(1 − α∗) ≤ Ci,j+1 i = 1, . . . , I − j (4.26b)
aj + bjCi,j + (laj + lbj Ci,j)(1 − α∗) ≥ Ci,j+1 i = 1, . . . , I − j (4.26c)
laj , lbj ≥ 0 (4.26d)

Equations (4.26b) and (4.26c) assure that the observed values fall into the estimated
values. The above linear program needs to be solved J times to derive all development
parameters ˆ̃aj and ˆ̃bj. Equation (4.26d) ensures that the spreads are non-negative.

4.6.2 Fuzzy Version of Sherman’s Scheme by Andrés Sánchez

A further application of FR methods is conducted in Andrés Sánchez (2006) to a
reserving scheme proposed by Sherman (1984). In this approach development factors
are being determined with the help of fuzzy regression techniques as well. The author
claims as motivation that OLS only yields reasonable estimations if the data base is
sufficiently large. As this usually might not be the case (depending on the LoB) he
suggests the use of FR. In particular, he chooses the method mentioned in Ishibuchi
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and Nii (2001) (cf. pp. 53ff.). The approach is geared to the procedure as described in
Section 4.5.2.

Firstly, for cumulative claims in the development triangle individual development factors
are computed (cf. Table 4.1). For each development year j ∈ {0, . . . , J − 1} we consider
the set of individual development factors {F0,j, . . . , FI−j−1,j}. Instead of taking the
average of the individual development factors for a development year the maximum and
minimum is considered. In analogy to the non-fuzzy case we define F log

i,j := ln(Fi,j − 1)
and, thus,

F j := ln (max(F0,j, F1,j, . . . , FI−j−1,j) − 1)
F j := ln (min(F0,j, F1,j, . . . , FI−j−1,j) − 1) , j ∈ {0, . . . , J − 1}.

Hence, the following FR model is considered

F̃j := (Fj, lFj , rFj ) = ã ⊕ b̃ ln(j + 1)

where ã and b̃ are TFNs of the form ã := (a, la, ra) and b̃ := (b, lb, rb). The estimated
output is given by

(Fj, lFj , rFj ) = (a, la, ra) ⊕ (b, lb, rb) ln(j + 1)
= (a + b ln(j + 1), la + lb ln(j + 1), ra + rb ln(j + 1)).

For the estimation of the parameters estimates of the mode and both the left and right
spread are needed. According to Ishibuchi and Nii (2001) the modes are estimated with
OLS in the same way as in Section 4.5.2 and we denote the estimated mode of the FN
ã by â and the estimated mode of the parameter b̃ by b̂. The spreads of the estimated
parameters are determined with the help of the following linear program.

min
la,lb,ra,rb

Jla + lb
J−1∑
j=0

ln(j + 1) + Jra + rb

J−1∑
j=0

ln(j + 1) (4.27a)

s.t.
â + b̂ ln(j + 1) − (la + lb ln(j + 1))(1 − α∗) ≤ F j

j = 0, . . . , J − 1
(4.27b)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4.6 Applications of Fuzzy Methods 93

â + b̂ ln(j + 1) + (ra + rb ln(j + 1))(1 − α∗) ≥ F j

j = 0, . . . , J − 1
(4.27c)

la, lb, ra, rb ≥ 0 (4.27d)

After determining the parameters ã and b̃ they are converted back to development
factors by

f̃j := 1 + eã(j + 1)b̃, j ∈ {0, . . . , J − 1}. (4.28)

Equation (4.28) not necessarily yields a TFN such that Andrés Sánchez proposes to
make use of Taylor’s expansion as described in Remark 2.27. The development factor f̃j

can be approximated by a TFN f̃ ′ = (fj, lfj , rfj ) considering the function g : R2 → R,
(x, y) 
→ g(x, y) := 1 + ex(j + 1)y, where

fj = 1 + eâ(j + 1)b̂

lfj = ∂g(â, b̂)
∂x

la + ∂g(â, b̂)
∂y

lb

= eâ(j + 1)b̂la + eâ(j + 1)b̂ ln(j + 1)lb = eâ(j + 1)b̂ (la + lb ln(j + 1))

rfj = ∂g(â, b̂)
∂x

ra + ∂g(â, b̂)
∂y

rb

= eâ(j + 1)b̂ra + eâ(j + 1)b̂ ln(j + 1)rb = eâ(j + 1)b̂ (ra + rb ln(j + 1)) .

With the approximated development factors f̃ one can fill up the unobserved part of
the claims development triangle by successively multiplying the last observation with
the estimated TFN-development factors f̃ ′.41 Furthermore, the predictions for the
reserve can be deduced.

4.6.3 Fuzzy Taylor’s Separation Method by Andrés Sánchez

The claims reserving method presented in Andrés Sánchez (2007) is a combination of
the fuzzy regression method by Ishibuchi and Nii (2001) (cf. also the presentation on
41Andrés Sánchez (2006) makes an intermediate step by first calculating so-called “projection rates”

f̃j,s =
∏s−1

h=j r̃h, j, s = 0, . . . , J − 1, s > j, to specifically predict certain values in the claims C̃i,s,
i = 0, . . . , I, in the development triangle.
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pp. 53ff.) and Taylor’s geometric separation method (see Section 4.5.3). A comparable
approach in a shortened version is pursued in Bahrami and Bahrami (2015).

Taylor’s method is extended in the way that the number of claims is assumed to be a
TFN Ñi := (ni, lni, rni). By Zi,j, i, j ∈ {0, . . . , J}, i < j, we denote paid claims made
in accident year i and development year j. Then, the average cost per claim also is
a TFN, i.e. S̃i,j := Zi,j

Ñi
. Since the procedure presented is based on Taylor’s geometric

separation method which is using logarithmized magnitudes, the logarithmized average
cost per claim need to be considered. Buckley and Qu (1990) proposed to make use of
α-cuts in order to derive a function of a TFN. Then, the average cost per claim can be
represented as

(
ln S̃i,j

)
α

:=
[
ln Si,j(α), ln Si,j(α)

]
:=
[
ln
(

Zi,j

ni + rni(1 − α)

)
, ln

(
Zi,j

ni − lni(1 − α)

)]

(cf. Andrés Sánchez (2007, p. 152) and Buckley and Qu (1990, pp. 309f.)). In analogy to
Taylor’s model it is assumed that the average costs S̃i,j are determined by two factors

S̃i,j = P̃jΠ̃i+j (4.29)

where P̃j, j ∈ {0, . . . , J}, and Π̃i+j, i, j ∈ {0, . . . , J}, i < j, are assumed to be FNs.
Analogous to the crisp case, the factor Π̃i+j represents the inflation effect in calendar
year i + j and P̃j quantifies the share of claims being settled in development year j. A
linear expression is yielded by applying logarithms to Equation (4.29), i.e.

ln
(
S̃i,j

)
= ln

(
P̃j

)
+ ln

(
Π̃i+j

)
.

The author assumes that both summands ln
(
P̃j

)
:= (ln pj, lln pj , rln pj) and

ln
(
Π̃i+j

)
:= (ln πi+j, lln πi+j , rln πi+j) are TFNs. Consequently, ln

(
S̃i,j

)
is a TFN as

well as a sum of two TFNs. Therefore, we have

ln
(
S̃i,j

)
:=
(
ln si,j, lln si,j , rln si,j

)
=
(
ln pj, lln pj , rln pj

)
⊕
(
ln πi+j, lln πi+j , rln πi+j

)
=
(
ln pj + ln πi+j, lln pj + lln πi+j , rln pj + rln πi+j

)
.

According to the FR technique proposed by Ishibuchi and Nii the modes of the
coefficients are estimated with OLS and denoted by ln p̂j and ln π̂i+j. The spreads are
estimated by solving the following linear program given in Equations (4.30a)-(4.30d).
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Hence, an estimator for the logarithmized average cost per claim ln(S̃i,j) is given by
ln
( ˆ̃Si,j

)
:=

(
ln ŝi,j, lln ŝi,j , rln ŝi,j

)
. The factor ln P̃0 is assumed to be a crisp zero, i.e.

ln P̃0 := (0, 0, 0). Here, minimizing the total spreads means taking the sum over all
observations in the claims development triangle (cf. Table 4.2).

accident- development year j
year i 0 1 · · · j · · · J − 1 J

0 ln p̃0 + ln π̃0 ln p̃1 + ln π̃1 · · · ln p̃j + ln π̃j · · · ln p̃J−1 + ln π̃J−1 ln p̃J + ln π̃J

1 ln p̃0 + ln π̃1 ln p̃1 + ln π̃2 · · · ln p̃j + ln π̃j+1 · · · ln p̃J−1 + ln π̃J

...
... . .

.

i ln p̃0 + ln π̃i ln p̃1 + ln π̃i+1 · · ·
...

...
. .

.

I − 1 ln p̃0 + ln π̃I−1 ln p̃1 + ln π̃J

I ln p̃0 + ln π̃J

Table 4.2: Claims development triangle with assumed logarithmized average claim costs
in the model of Andrés Sánchez (2007).

There are J + 1 − j terms ln pj in each column j (starting from column one) and
the term ln πk occurs k + 1-times in the k-th diagonal (counting the diagonals from
the upper left corner starting with k = 0). This leads to the following minimization
problem:

min
lln pj

,rln pj
,lln πk

,rln πk

J∑
j=1

(J + 1 − j)
(
lln pj + rln pj

)
+

J∑
k=0

(k + 1) (lln πk
+ rln πk

) (4.30a)

s.t.
Aiv∗ ≤ ln Si i = 0, 1, . . . , I (4.30b)
Aiv∗ ≥ ln Si i = 0, 1, . . . , I (4.30c)
lln pj , rln pj , lln πk

, rln πk
≥ 0 j = 1, . . . , J, k = 0, 1, . . . , J (4.30d)

where

01×J

0(J+1−i)×i I(J+1−i)×(J+1−i)

I(J−i)×(J−i) 0(J−i)×i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ai :=
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and

v∗ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln p̂1 − lln p1(1 − α∗)
ln p̂2 − lln p2(1 − α∗)

...

ln p̂J − lln pJ
(1 − α∗)

ln π̂0 − lln π0(1 − α∗)
ln π̂1 − lln π1(1 − α∗)

...

ln π̂J − lln πJ
(1 − α∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v∗ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln p̂1 + rln p1(1 − α∗)
ln p̂2 + rln p2(1 − α∗)

...

ln p̂J + rln pJ
(1 − α∗)

ln π̂0 + rln π0(1 − α∗)
ln π̂1 + rln π1(1 − α∗)

...

ln π̂J + rln πJ
(1 − α∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ln Si :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln Si,0(α∗)
ln Si,1(α∗)

...

ln Si,J−i(α∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ln Si :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln Si,0(α∗)
ln Si,1(α∗)

...

ln Si,J−i(α∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ii×j is an identity matrix with i rows and j columns, 0i×j ∈ Ri×j is a matrix containing
only zeros with i rows and j columns and α∗ ∈ (0, 1). The matrix A0 yields the
conditions for row 0 in the claims development triangle, the matrix A1 for the first row
and so on. Precisely speaking, the observed values should lie within the support of the
estimated TFN, i.e. it is required that the difference of the estimated mode and the
estimated left spread is less or equal than the α-cut of the observed average cost per claim
and that the sum of the estimated mode and estimated right spread is greater or equal
than the α-cut of the observed average cost per claim (cf. Equations (4.30b)-(4.30c)).
Equation (4.30d) technically requires that both spreads are positive or zero.

With the above stated procedure estimators for the fuzzy parameters ln p̃j, j ∈
{1, . . . , J}, and ln Π̃k, k = 0, . . . , J are yielded which belong to the model describing
the upper left part of the triangle. In order to predict the ultimate claims estimators
for ln Π̃k, k = J + 1, . . . , 2J are also needed. Again, Andrés Sánchez consults the FR
technique by Ishibuchi and Nii (2001). It is assumed that the inflation factors can be
represented in the following way

ln Π̃i+j = Ã ⊕ B̃(i + j), i + j ≤ J, (4.31)
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where ln Π̃i+j := (ln Πi+j, lln Πi+j , rln Πi+j), Ã := (a, la, ra) and B̃ := (b, lb, rb) are TFNs.
Consequently, Equation (4.31) can be written as

ln Π̃i+j = (ln Πi+j, lln Πi+j , rln Πi+j ) = (a, la, ra) ⊕ (b, lb, rb)(i + j)
= (a + b(i + j), la + lb(i + j), ra + rb(i + j)). (4.32)

In this model this leads to a spread of la + ra + (i + j)(lb + rb) for one point in time.
When fitting condition (4.31) to the observations ln Πi+j, i + j = 0, . . . , J , the total
spread of the output is (with c := i + j)

J∑
c=0

(la + ra + c(lb + rb)) = (J + 1)(la + ra) + (lb + rb)
J∑

c=0
c

=(J + 1)(la + ra) + (lb + rb)
J(J + 1)

2 = (J + 1)
(

la + ra + (lb + rb)
J

2

)
.

As a consequence the linear problem in order to determine the spreads is formulated
according to Andrés Sánchez (2007, pp. 154f.) in the following way.42 Within this the
OLS estimates for the modes are denoted by â and b̂.43

min
la,ra,lb,rb

la + ra + J

2 (lb + rb) (4.33a)
s.t.

â − la + (b̂ − lb)(i + j)(1 − α∗) ≤ ln Π̂i+j − lln Πi+j (1 − α∗)
i + j = 0, 1, . . . , J

(4.33b)

â + ra + (b̂ + rb)(i + j)(1 − α∗) ≥ ln Π̂i+j + rln Πi+j (1 − α∗)
i + j = 0, 1, . . . , J

(4.33c)

la, ra, lb, rb ≥ 0 (4.33d)

42The multiplicative constant can be left out in the minimization problem.
43Within the constraints of the linear problem it is surprising that the author does not multiply the

spreads resulting form Equation (4.32) by the factor (1 − α∗) but the estimator b̂. It seems worth
considering to replace constraints (4.33b) and (4.33c) by

â + b̂(i + j) − (la + lb(i + j)) (1 − α∗) ≤ ln Π̂i+j − lln Πi+j (1 − α∗), i + j = 0, 1, . . . , J

and
â + b̂(i + j) + (ra + rb(i + j)) (1 − α∗) ≥ ln Π̂i+j + rln Πi+j (1 − α∗), i + j = 0, 1, . . . , J,

respectively.
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claims payments ln ˆ̃Si,j, i ∈ {1, . . . , J}, j ≥ J − i + 1, are derived by calculating

ln ˆ̃Si,j =
(
ln ŝi,j, lln ŝi,j , rln ŝi,j

)
=
(
ln pj + ln Π̂i+j, lln pj + lln Π̂i+j

, rln pj + rln Π̂i+j

)
.

Retransformating these values leads to the predicted average claims payments

ˆ̃Si,j = exp
(

ln ˆ̃Si,j

)
= exp

(
ln
(
P̃j

)
⊕ ln

( ˆ̃Πi+j

))
.

In general, the predicted values ˆ̃Si,j are not TFNs but can be approximated by a TFN
ˆ̃Sapprox

i,j using the approximation presented in Remark 2.27 considering the function
g : R2 → R, (x, y) 
→ exp(x + y). With ˆ̃Sapprox

i,j := (ŝi,j, lŝi,j , rŝi,j ) they get:

ŝi,j = exp(ln ŝi,j) = exp(ln pj + ln Π̂i+j)

lŝi,j = ∂g(ln ŝi,j)
∂x

lln ŝi,j = exp(ln ŝi,j)lln ŝi,j = exp(ln pj + ln Π̂i+j)
(
lln pj + lln Π̂i,j

)
rŝi,j = ∂g(ln ŝi,j)

∂y
rln ŝi,j = exp(ln ŝi,j)rln ŝi,j = exp(ln pj + ln Π̂i+j)

(
rln pj + rln Π̂i,j

)

This step is followed by calculating the predicted claims payments ˆ̃Zi,j by using the
relation ˆ̃Zi,j ≈ ˆ̃Si,j ⊗ Ñi. This yields

ˆ̃Ci,j ≈ (ŝi,jni, ŝi,jlni + nilŝi,j , ŝi,jrni + nirŝi,j ).

4.6.4 Application of Fuzzy Regression to Kremer’s Two Way of
ANOVA by Andrés Sánchez

A further application of the FR method by Ishibuchi and Nii (2001) is presented in
Andrés Sánchez (2012). The procedure is based on a reserving technique proposed by
Kremer (1982) (see Section 4.5.4).

In order to get a similar structure as in Kremer (1982) it is assumed that the incremental
claims X̃i,j can be written as (cf. Equation (4.23))

X̃i,j = Z̃i ⊗ p̃j,

Subsequent to determining the inflation factors the predicted logarithmized average
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and p̃j denotes the ratio of claims payments done in development year j. Then, the
following linear structure is assumed for the logarithmized incremental claims

ln X̃i,j = ã ⊕ b̃i ⊕ c̃j (4.34)

where ã := (a, la, ra), b̃i := (bi, lbi, rbi) and c̃j := (cj, lcj , rcj) are TFNs. Consequently,
ln X̃i,j is a TFN as sum of TFNs as well and from Equation (4.34) they yield:

ln X̃i,j = (ln Xi,j, lln Xi,j , rln Xi,j )
= (a, la, ra) ⊕ (bi, lbi, rbi) ⊕ (cj, lcj , rcj )
= (a + bi + cj, la + lbi + lcj , ra + rbi + rcj )

Then, the modes are estimated by means of OLS whereas the spreads are yielded
with the help of the following linear program (cf. Andrés Sánchez 2012, p. 2438). The
estimates of the modes of the estimated parameters ˆ̃a, ˆ̃bi and ˆ̃cj are denoted by â, b̂i

and ĉj. Let α∗ ∈ (0, 1).

min
la,lbi

,lcj ,ra,rbi
,rcj

(J + 1)2 + (J + 1)
2 (la + ra) +

I∑
i=1

(J + 1 − i) (lbi + rbi)

+
J∑

j=1
(I + 1 − j)

(
lcj + rcj

)

=(J + 2)(J + 1)
2 (la + ra) +

I∑
i=1

(J + 1 − i) (lbi + rbi)

+
J∑

j=1
(I + 1 − j)(lcj + rcj )

(4.35a)

s.t.
â + b̂i + ĉj −

(
la + lbi + lcj

)
(1 − α∗) ≤ ln Xi,j,

i = 1, . . . , I, j = 1, . . . , J − i
(4.35b)

â + b̂i + ĉj +
(
ra + rbi + rcj

)
(1 − α∗) ≥ ln Xi,j,

i = 1, . . . , I, j = 1, . . . , J − i
(4.35c)

â + b̂i + ĉj −
(
la + lbi + lcj

)
≥ 0,

i = 1, . . . , I, j = 1, . . . , J − i
(4.35d)

la, lbi, lcj , ra, rbi, rcj ≥ 0, i = 1, . . . , I, j = 1, . . . , J (4.35e)

where again tildes indicate FNs. Z̃i stands for total claims payments in accident year i
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accident- development year j
year 0 1 · · · j · · · J − 1 J

0 ã ã ⊕ c̃1 · · · ã ⊕ c̃j · · · ã ⊕ c̃J−1 ã ⊕ c̃J

1 ã ⊕ b̃1 ã ⊕ b̃1 ⊕ c̃1 · · · ã ⊕ b̃1 ⊕ c̃j · · · ã ⊕ b̃1 ⊕ c̃J−1
...

... . .
.

i ã ⊕ b̃i ã ⊕ b̃i ⊕ c̃1 · · ·
...

...
. .

.

I − 1 ã ⊕ b̃J−1 ã ⊕ b̃I−1 ⊕ c̃1
I ã ⊕ b̃I

Table 4.3: Logarithmized incremental claims cost ln X̃i,j in a development triangle
under the assumptions of the model by Andrés Sánchez (2012).

In Equation (4.35a) the total spreads (over the run-off triangle) are minimized. The
linear factor ã occurs (J+2)(J+1)

2 times, the linear factor b̃i, i = 1, . . . , I appears (J +1−i)
times in every row beginning from row one and the linear factor c̃j turns up (I + 1 − j)
times in every column beginning from column one (see Table 4.3). Conditions (4.35b)
and (4.35c) ensure that the estimated values (adjusted by the h-certain factor) comprise
the observed values. Equation (4.35d) requires that the sum of the linear factors is
non-negative and Equation (4.35e) yields that the linear factors are non-negative.

As an extension to the fuzzy ANOVA model presented above Andrés Sánchez (2014)
propose a first attempt to model inflation in fuzzy claims reserving methods.44 The
interest rate is assumed to be a TFN ρ̃ given by ρ̃ := (ρ, lρ, rρ). Andrés Sánchez points
to the Institute of Actuaries and assumes that claims payments are done at mid-year.
Then the present value of a predicted reserve is calculated by

s̃i,j ⊗ e
ρ̃
(

J+1
2−(i+j)

)
.

Subsequently, the present value is defuzzified with the help of the concept of the
expected value of a FN in order to determine a reserve.

44We do not dedicate a separate section to the presentation of the work by Andrés Sánchez (2014)
since to our understanding the only new aspect in comparison to Andrés Sánchez (2012) is the
extension to the incorporation of interest rates.
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4.6.5 Hybrid Fuzzy Least-Squares Regression Analysis for the
Geometric Separation Method

In their 2010 work Başer and Apaydin claim that there might be a loss of reliability
of statistical methods in “the presence of real world factors” (cf. Başer and Apaydin
2010, p. 113). The authors make use of the fuzzy regression method as proposed by
Chang (2001) whose goal is to consider both randomness and fuzziness and apply it
to the geometric separation method by Taylor (see Section 4.5.3). Furthermore, the
confidence intervals of the parameter estimates in a regression context are utilized to
construct TFNs.

As a first step, average losses Si,j := Zi,j

Ni
for every observation in the upper left part

of the triangle consisting of paid losses are calculated where Ni denotes the number
of claims in accident year i and Zi,j denote claims payments in accident year i and
development year j.45 According to the geometric separation method a multiplicative
structure is assumed, i.e.

Si,j = rjλi+j, , ∀i, j, i + j ≤ J, (4.36)

where λi+j is a inflation factor for calendar year i + j and the factor rj describes the
share of claims being settled in development year j. To get a linear additive structure
logarithms are applied to Equation (4.36), i.e.

ln Si,j = ln rj + ln λi+j, ∀i, j, i + j ≤ J. (4.37)

An error term ln εi,j is added to the right side of Equation (4.37) in order to apply
OLS.

ln Si,j = ln rj + ln λi+j + ln εi,j, ∀i, j, i + j ≤ J, (4.38)

where the error terms ln εi,j are assumed to be i.i.d. and following a normal distribution.
Assuming the linear structure as in Equation (4.38) estimations ̂ln rj and l̂n λi−j of
the parameters ln rj and ln λi+j are derived with OLS. For better readability they
are in the following denoted by ln r̂j and ln λ̂i+j. Subsequently, the coefficients of

45Başer and Apaydin (2010) write that they consider incurred losses. However, we assume that paid
losses are being considered.
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102 4 Methods of Claims Reserving

the regression model are fuzzified by using the confidence intervals of the parameter
estimators deduced before. According to the multiple linear regression model the
t-statistics follows a t-distribution with 1

2(J2 − J − 2) degrees of freedom46, i.e. this
leads to

ln r̂j − ln rj

se(ln r̂j)
∼ t

(
1
2(J2 − J − 2)

)
and ln λ̂i+j − ln λi+j

se(ln λ̂i+j)
∼ t

(
1
2(J2 − J − 2)

)
.

Consequently, a (1 − γ)-confidence interval can be constructed for the regression
coefficients ln r̂j and ln λ̂i+j for a fix γ ∈ (0, 1). These are given by

[
ln r̂j − t1

2(J2−J−2),1−γ/2se (ln r̂j) , ln r̂j + t1
2(J2−J−2),1−γ/2se (ln r̂j)

]
and [

ln λ̂i+j − t1
2(J2−J−2),1−γ/2se

(
ln λ̂i+j

)
, ln λ̂i+j + t1

2(J2−J−2),1−γ/2se
(
ln λ̂i+j

)]
.

With the help of the confidence intervals STFNs ln ˆ̃rj and ln ˆ̃λi+j are constructed:47 the
centers of the symmetrical confidence intervals mark the modes and half of the width of
the support specifies the left and right spread, respectively. Consequently, we yield

ln ˆ̃rj =
(
ln r̂j, lln r̂j

)
:=
(

ln r̂j, t(J2−J−2)1
2 ,1− γ

2
se(ln r̂j)

)
and

ln ˆ̃λi+j =
(
ln λ̂i+j, lln λ̂i+j

)
:=
(

ln λ̂i+j, t(J2−J−2)1
2 ,1− γ

2
se(ln λ̂i+j)

)
.

As a means to predict future incurred claims a similar approach as in Andrés Sánchez
(2007) (cf. Section 4.6.3) is applied. Hybrid fuzzy least squares regression (cf. p. 57ff.)
is used to fit a fuzzy regression model with symmetrical coefficients to the logarithmized

46Başer and Apaydin claim that the t-statistics are follow a t-distribution with J − 2 degrees of
freedom (cf. Başer and Apaydin 2010, p. 118). However, we adapted the model in the way that the
degrees of freedom are changed. In Taylor’s geometric separation method we have 1

2(J + 1)(J + 2)
observations in the triangle and (2J + 1) unknown parameters. Thus, the t-statistic is t-distributed
with 1

2(J + 1)(J + 2) − (2J + 1) − 1 = 1
2(J2 − J − 2) degrees of freedom.

47This follows the idea of Buckley (2006) where TFNs are being built from confidence intervals for a
binomially distributed random variable (cf. Buckley 2006, 21f.). Moreover, fuzzy coefficients are
constructed from confidence intervals of the regression coefficients in a simple linear regression
model (cf. Buckley 2006, 171f.).

inflation parameters. Hence, we consider
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4.6 Applications of Fuzzy Methods 103

ln ˆ̃λi+j = ã ⊕ b̃(i + j), i + j ≤ J,

where ã := (a, la) and b̃ := (b, lb) are STFNs. Therefore, the predicted values can be
represented as

ln ˆ̃λi+j =
(
ln λ̂i+j, lln λ̂i+j

)
= (a, la) ⊕ (b, lb)(i + j) (4.39)

= (a + b(i + j), la + lb(i + j)) , i + j = J + 1, . . . , 2J.

According to the hybrid fuzzy least squares method (cf. Equations (2.17) and (2.18))
the modes and spreads of the fuzzy coefficients are determined with the help of the two
following linear systems of Equations (4.40) and (4.41).

a(J + 1) + b
∑J

i+j=0(i + j) = ∑J
i+j=0 ln λ̂i+j

a
∑J

i+j=0(i + j) + b
∑J

i+j=0(i + j)2 = ∑J
i+j=0(i + j) ln λ̂i+j

(4.40)

(J + 1)la + lb
∑J

i+j=0(i + j) = ∑J
i+j=0 lln λ̂i+j

la
∑J

i+j=0(i + j) + lb
∑J

i+j=0(i + j)2 = ∑J
i+j=0(i + j)lln λ̂i+j

(4.41)

Using Equation (4.39) the estimated parameters ln ˆ̃λi+j, i + j = J + 1, . . . , 2J , are
obtained. Applying the estimated coefficients ln ˆ̃rj, j = 1, . . . , J , and ln ˆ̃λi+j, i + j =
J + 1, . . . , 2J , the lower right part of the triangle is predicted, i.e.

ln ˆ̃Si,j =
(
ln Ŝi,j, lln Ŝi,j

)
= ln ˆ̃rj ⊕ ln ˆ̃λi+j =

(
ln r̂j + ln λ̂i+j, lln r̂j + lln λ̂i+j

)

The average claims are obtained by retransformation of the logarithmized average
claims, i.e.

ˆ̃Si,j = exp
(

ln ˆ̃Si,j

)
.

In order to do so Başer and Apaydin make use of a defuzzification method following
weighted fuzzy arithmetic as introduced by Chang (2001) (cf. Başer and Apaydin 2010,
p. 116). By this means, crisp predictions of the average claims in the lower right part
of the development triangle are yielded (cf. Başer and Apaydin 2010, p. 119)
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Ŝi,j = exp
(
ln Ŝi,j

)⎛⎜⎝exp(lln Ŝi,j
) + exp(−lln Ŝi,j

) − 2
l2ln Ŝi,j

⎞⎟⎠ .

Utilizing the relation Ẑi,j = Ŝi,jNi predictions for the outstanding claims payments are
obtained. Then, the reserves for single and aggregated accident years are derived.

4.6.6 Further Methods

In addition to the methods presented before some more models and fuzzy approaches
in claims reserving techniques have been published. The aim of this section is to give a
short overview of these methods.

The publications by Kerkez (2013a,b) join earlier articles in the way that fuzzy regression
is presented as a means to predict the reserves if information is vague or insufficient.
Both methods apply the fuzzy regression model by Tanaka et al. (1982) with symmetric
coefficients.48

Kerkez assumes that the average development of the claims from one development year
to the next can be described with the help of a linear model, i.e.

Ci,j+1 = aj + bjCi,j + εi,j,

where aj, bj ∈ R and ε ∼ N (0, σ2), σ2 > 0. Then, the model is transferred to a fuzzy
one by choosing fuzzy symmetrical coefficients ãj := (aj, laj ) and b̃j := (bj, lbj ). In this
way, the fuzzy linear model is given by

C̃i,j+1 = ãj + b̃jC̃i,j, i = 0, . . . , I − j − 1.

The estimated modes and the spreads of the fuzzy coefficient and fuzzy intercept are
determined with the model of Tanaka et al. (1982) (cf. Equations (2.12a)-(2.12d)). The
estimated values are referred to as ˆ̃aj and ˆ̃bj. With these notations a prediction of the

48Both publications – to our state of view – do not substantially enhance the state of literature and,
therefore, are only briefly mentioned here. However, they do address a related problem to that
studied in Chapter 6. That is the reason why we include it in the overview.

ultimate claim can de deduced with the following recursive formula:
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ˆ̃Ci,J = ˆ̃aJ−1 ⊕ ˆ̃bJ−1

(
. . . ˆ̃aj+1 ⊕ ˆ̃bj+1

(
ˆ̃aj ⊕ ˆ̃bjCi,j

))
(4.42)

The prediction of the ultimate claim in Equation (4.42) does not necessarily lead
to a STFN. Therefore, the approximation by Dubois is used to derive a STFN (cf.
Remark 2.27).

To allow for a comparison between the classical CL-model and a fuzzy counterpart
Kerkez fits a regression model without and with intercept to a given data set in a
numerical example.49 The proposed procedure finishes with a deduction of a fuzzy
reserve.

Onoghojobi and Olewuezi (2015) aim to use a fuzzy regression model combined with
the CL reserving method. Closer examination shows that the authors indeed calculate
reserves based on the CL method. Moreover, they do a fuzzy regression on a given
data set of settled claims. However, a fuzzy regression in combination with the CL
method is not investigated.50

The publication of Kim and Kim (2014) introduces a method using a fuzzy version of
the Hoerl curve. The Hoerl curve is introduced e.g. in Kaas et al. (2008, p. 276). They
extend the method of Andrés Sánchez (2006) (see also Section 4.6.2) by also taking
into account a calendar year effect.
In order to calculate development year factors a fuzzy log Hoerl curve is considered, i.e.
the incremental claims are fit to the following model:

Z̃i,j = c̃ + α̃i + β̃ log(j) + γ̃j,

where c̃, α̃i, β̃, γ̃j are FNs. In order to deduce the fuzzy parameters a fuzzy version of
the analysis of covariance is presented (cf. Kim and Kim 2014, pp. 352f.). It makes use
of OLS as well as fuzzy regression techniques. Taking into account the approximations
of the incremental claims with the help of the Hoerl curve the development factors are

49A more thorough explanation of a fuzzy version of the CL-model is given in Section 6.2.
50The article lacks some explanation on the chosen data and interpretation. E.g. the CL-reserves

are calculated on a calender year basis and compared with reserves for an occurence year (cf.
Onoghojobi and Olewuezi 2015, p. 21). Moreover, the transition from a fuzzy regression model
with asymmetric spreads to one with symmetric spreads is not comprehensible in our opinion (cf.
Onoghojobi and Olewuezi 2015, p. 22).

deduced. In the following, fuzzy reserves are determined.
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4.6.7 Discussion

To our best knowledge there are still few applications of fuzzy methods in the context
of claims reserving. This is surprising since subjective judgment and intuition is also
present in this field. Further reasons for the incorporation of fuzzy methods in this field
have been mentioned in Chapter 1. Comparing the applications in claims reserving
leads to the observation that most applications so far are utilizations of FR (see
Andrés Sánchez and Terceño Gómez (2003), Andrés Sánchez (2006, 2007, 2012, 2014),
Başer and Apaydin (2010), and Kerkez (2013a,b) as presented in Sections 4.6.1-4.6.6).
However, some stochastic reserving methods employ regression techniques (see e.g.
Taylor (1978) and Benjamin and Eagles (1986)) but a large part within the set of
stochastic reserving methods does not.51 According to the present status of knowledge
the use of fuzzy methods in claims reserving resorts to FR:

The method proposed by Andrés Sánchez and Terceño Gómez has been the first
approach in 2003 even though there are good reasons which allow for the use of fuzzy
methodologies in claims reserving. They present a simple model making use of the
FR technique as presented in Tanaka and Ishibuchi (1992). Consequently, the fuzzy
regression parameters are symmetric such that large deviations in only one direction
can not be captured by the model. This may lead to large total spreads of the regression
parameters and, thus, to an overestimation of the reserves. Moreover, the proposed
method asks for a specification of the h-certain factor with the choice of the factor h

not being elaborated on.52 Furthermore, the reserves are only specified as TFNs, even
though “fuzzy” reserves can not be set up by an actuary. Additionally, the uncertainty
of the prediction is not quantified.

The subsequent publication by Andrés Sánchez (2006) makes use of FR as suggested
by Ishibuchi and Nii (2001) to avoid the disadvantages of Tanaka’s 1987 model. The
use of asymmetric TFNs circumvents the drawbacks of symmetric parameters. The
author brings up as a motivation that the cardinality of the observed data set might
be too small to reasonably conduct OLS estimates. However, he chooses the method

51Applications of fuzzy methods not using FR will be discussed in Chapters 5 and 7.
52The choice of the h-certain factor is discussed in Moskowitz and Kim (1993).
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by Ishibuchi and Nii which uses OLS as an estimation method for the mode of the
parameters.

The same applies for the article by Andrés Sánchez (2007). Additionally, the procedure
presented here can be divided into two parts: First, fuzzy parameters are adjusted with
the help of FR regression and the given development triangle. As a second step the
inflation parameters are adjusted to a fuzzy regression model. In particular, not all
information is used as the authors employs only the modes of the fuzzy inflation factors.
Consequently, the information about the spreads gets lost at this point. However, it is
the first approach to include inflation effects in the field of fuzzy claims reserving.

Andrés Sánchez (2012) (as well as the extension presented in Andrés Sánchez (2014))
employ similar techniques as the publications discussed before and also fall back on the
fuzzy regression model by Ishibuchi and Nii (2001). Başer and Apaydin (2010) follow
new paths with an approach to consider both randomness and fuzziness as their model
makes use of the hybrid fuzzy least squares regression. By choosing the confidence
interval the variability and, hence, the fuzziness, can be chosen by the user as they are
used to construct TFNs. Moreover, they apply a defuzzification method by Chang and
Ayyub (2001).

For the fuzzy reserving methods by Kerkez (2013a,b) the before discussed drawbacks of
symmetrical coefficients occur by means of the usage of the fuzzy regression method
by Tanaka and Ishibuchi (1992). Nevertheless, it represents an approach to consider
the most popular reserving method, i.e. the CL method, within the “fuzzy” world
which has been not regarded before (except for the special case in the London Chain).
Onoghojobi and Olewuezi (2015) aim to use fuzzy regression methods in a CL context.
However, closer examination shows that it is not conducted.

The concentration on regression approaches is a major difference to other existing claims
reserving methods among which a large part is not based on regression approaches.
In the later chapters 5 and 7 this gap will be closed with the presentation of two
regression-free fuzzy claims reserving methods.
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5 | The Fuzzy Chain-Ladder
Model – An Approach
with Fuzzy Numbers

This chapter is based on a joint work with Jochen Heberle of which an earlier version is
published in Insurance: Mathematics & Economics (cf. Heberle and Thomas 2014).53

Firstly, in Section 5.1 motives for making use of fuzzy set theory are given and the basic
notation is introduced. In the subsequent Section 5.2 the fuzzy chain-ladder model
is presented and basic results are shown. Section 5.3 then deals with the resulting
reserves in our proposed method and the uncertainty of the ultimate claims is derived
in Section 5.4. In Section 5.5 an example is presented. Lastly, a discussion of the
presented method is given in Section 5.6.

5.1 Motivation and Notation

As pointed out in Chapter 4 non-life actuaries need to predict the claims reserves in an
appropriate way. There exists a variety of models in claims reserving which are either
purely computational or of stochastic nature and make use of so-called development
factors which aim to model the average increase from one development year to another.
Both classes of claims reserving methods yield crisp magnitudes. However, non-life
actuaries might tend to adjust development factors due to their subjective judgment.
53Parts of this paper were presented at the ASTIN Colloquium in The Hague, The Netherlands,

2013, at the IFSA World Congress/NAFIPS Annual meeting in Edmonton, Canada, 2013 and the
APRIA Conference in New York, USA, 2013.
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110 5 The Fuzzy Chain-Ladder Model

In the case of the popular chain-ladder method (cf. Section 4.3) this means that the
CL-factors are modified subsequently. More precisely, if the calculated value of a
development factor is c, the adapted value can be perceived as approximately c. In this
way, vagueness is included in the considered magnitudes which can not be captured
by ordinary stochastic methods. Hence, we here propose a fuzzy chain-ladder model
in which no subsequent alteration of the CL-factors is needed, and, nevertheless, the
development factors are flexible and include uncertainty.

The use of fuzzy set theory for applications in insurance is not new but started off in
the 1980’s. A detailed overview is given in Chapter 3 where it can be seen that the
field of loss reserving has not received much attention. In contrast to the publications
as elaborated on in Chapter 3 our model is not an application of fuzzy regression but
makes use of fuzzy numbers and its corresponding arithmetic.54 Furthermore, we make
an attempt to quantify the prediction uncertainty and not only give a prediction for
the ultimate claim.

The results in the fuzzy chain-ladder model are yielded by using triangular fuzzy
numbers which can be classified as a special case of L-R FNs. With the help of FNs no
information about the uncertainty of a CL-factor is lost. In this chapter one possibility
to estimate the development factors is presented and we conduct the analysis with this
choice. As we use TFNs for modeling the CL-factors the mode as well as the left and
right spread need to be estimated.

Even though there exists a number of claims reserving methods the CL method is
the most widely used method in practice due to its simplicity and nonetheless good
results. As in the previous chapters we denote by Ci,j cumulative claims made in
relative accident year i ∈ {0, . . . , I} and development year j ∈ {0, . . . , J}. At time
t = I (calendar year) we have the following set of observations (cf. Equation (4.1)):

DI = {Ci,j | i + j ≤ I}

The set of observations is given in the upper left part of a development triangle as
depicted in Figure 4.2. As the CL-factors fj are not observable in practice they are

54An application of fuzzy regression methods to the CL procedure is presented in Chapter 6.

estimated in the following way (cf. Equation (4.5)):
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f̂j =
∑I−j−1

i=0 Ci,j+1∑I−j−1
i=0 Ci,j

, j = 0, . . . , J − 1

The core idea in this chapter is to model the CL-factors fj which are fraught with
vagueness due to subjective judgment by fuzzy numbers. For simplicity’s sake triangular
fuzzy numbers (cf. Definition 2.18) are taken since they are both easy to handle
arithmetically and to interpret. As fuzzy multiplication the secant approximation as
deduced in Equation (2.7) is applied. Moreover, we make use of the defuzzification
methods, i.e. the expected value of a TFN (cf. Definition 2.38), and uncertainty
measures, i.e. the uncertainty of a FN (cf. Definition 2.50), as described before.

5.2 The Model

Our objective is to develop a predictor for the ultimate claims Ci,J , i = 1, . . . , I, using
the classical chain-ladder method in combination with fuzzy numbers. In this way we
derive a model which copes with the vagueness in the CL-factors due to subjective
judgment. We use the notations as introduced in Section 5.1. Furthermore we derive
in Section 5.4 an estimator for the uncertainty of the predicted ultimate claims on the
basis of Model Assumptions 5.1.

In the case of adjustment of the CL-factors vagueness is added to them. Hence, we
propose TFNs to model the development factors. In this situation the width of the left
and right spread represents the vagueness.

Model Assumptions 5.1 (Fuzzy chain-ladder (FCL) model)
• There exist triangular fuzzy numbers f̃j (j = 0, . . . , J − 1) so that the cumulative

claims can be expressed as

C̃i,j+1 = f̃jC̃i,j

for all i = 0, . . . , I and j = 0, . . . , J − 1.

• The sums of incremental claims
I−j−1⊕

i=0
X̃i,j+1 with X̃i,j+1 = C̃i,j+1 � C̃i,j for all

j ∈ {0, . . . , J − 1} are non-negative.55

55In the original publication Heberle and Thomas (2014) it is assumed that incremental claims X̃i,j+1
are non-negative. However, this assumption can be relaxed as stated in Model Assumptions 5.1.
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Remarks 5.2
• According to Equation (2.2) we can perceive a real number as a fuzzy number.

In the special case of TFN a real number a ∈ R can be denoted as ã := (a, 0, 0).
Thus, we can write all observable cumulative claims C̃i,j, i.e. if i + j ≤ I holds, as
C̃i,j = (Ci,j, 0, 0).

• In comparison to the Model Assumptions for the classical CL method e.g. given
in Merz and Wüthrich (2007) our model does not have an error term εj.56 This
is due to the fact that in the FCL model the uncertainty, i.e. the vagueness, is
completely contained in the fuzzy numbers. As pointed out in Section 2.1.4, in a
fuzzy environment vagueness is modelled but no randomness in a stochastic sense.

With Model Assumptions 5.1 we can achieve the following result regarding the expected
value and uncertainty of a cumulative claim C̃i,j+1 given an observation C̃i,j. We make
use of the notations and definitions as introduced in Definition 2.38, Remark 2.39a)
and b) as well as Definition 2.50.

Lemma 5.3
For all 0 ≤ i ≤ I and 0 ≤ j ≤ J − 1 let C̃i,j and f̃j = (fj, lfj , rfj) be positive fuzzy
numbers. Let β ∈ [0, 1] and K ∈ R+. For i + j ≤ I the cumulative claims C̃i,j are
observable and, hence, crisp, i.e. C̃i,j = (Ci,j, 0, 0). Then, we have for i, j, i + j ≤ I,

Eβ[C̃i,j+1 | C̃i,j] = Ci,j

(
fj − 1 − β

2 lfj + β

2 rfj

)
(5.1)

and
UncK(C̃i,j+1 | C̃i,j) = 1

2KCi,j(lfj + rfj ). (5.2)

Proof. We have

Eβ[C̃i,j+1 | C̃i,j] = Eβ[f̃jC̃i,j | C̃i,j]
= Eβ[(fj, lfj , rfj ) ⊗ (Ci,j, 0, 0)]
= Eβ[(fjCi,j, lfj Ci,j, rfj Ci,j)]

56The same model is also considered in e.g. Gisler and Wüthrich (2008) and Peters et al. (2010).
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= fjCi,j − 1 − β

2 lfj Ci,j + β

2 rfj Ci,j

and

UncK(C̃i,j+1 | C̃i,j) = UncK(f̃jC̃i,j | C̃i,j)
= UncK((fj, lfj , rfj )(Ci,j, 0, 0))
= UncK((fjCi,j, lfj Ci,j, rfj Ci,j))
= 1

2KCi,j(lfj + rfj ).

Remark 5.4
The model assumptions in the classical chain-ladder model are (cf. Model Assumpti-
ons 4.2 and Wüthrich and Merz (2008, p. 37)):

E[Ci,j+1 | Ci,0, . . . , Ci,j] = fjCi,j = E[Ci,j+1 | Ci,j]
Var(Ci,j+1 | Ci,0, . . . , Ci,j) = σ2

j Ci,j = Var(Ci,j+1 | Ci,j) (5.3)

For β = 0.5 and equal spreads, i.e. lfj = rfj , Equation (5.1) results in Eβ[C̃i,j+1 |
C̃i,j] = fjCi,j. In Equation (5.2) 1

2K(lfj + rfj ) plays a similar role as σ2
j in (5.3). In the

previous case it is a measure for uncertainty whereas in the latter case it is the variance
parameter. Hence, the defined expected value and uncertainty in this model deal with
uncertainty e.g. due to subjective judgment while the variance parameter considers
randomness as in classical statistics / probability theory (cf. Section 2.1.4).

In the following an estimator for the fuzzy chain-ladder factors f̃j, j = 0, . . . , J − 1, is
proposed. As these factors are TFNs, estimators for the mode, left and right spread
are needed. Throughout this chapter estimators are denoted with a “hat”.

An actuary will choose the width of the spreads according to the confidence he/she has
in the given data. The more reliable the data is, the narrower he/she will choose the
spreads due to higher confidence. In the same way, if he/she has less trust in the data,
he/she will assess broader spreads. The spreads do not necessarily be equal but can be
of different length. However, a nice result is yielded when choosing the estimator as in
Estimator 5.5. The definition of the estimator is based on the following consideration:
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The estimator of the mode is given by the classical one as it might be adjusted. If
there is no profound knowledge available about the data, an actuary will prefer wider
spreads. Model Assumptions 5.1 lead to a limiting case as the sum of incremental
claims is assumed to be non-negative. In the following Definition 5.5 the left spreads
cannot go further down as one since

∑I−j−1
i=0 Ci,j+1∑I−j−1

i=0 Ci,j

−
∑I−j−1

i=0 Xi,j+1∑I−j−1
i=0 Ci,j

=
∑I−j−1

i=0 (Ci,j+1 − Ci,j+1 + Ci,j)∑I−j−1
i=0 Ci,j

= 1.

For simplicity reasons an symmetrical approach is used.

Estimator 5.5 (FCL estimator for the TFNs f̃j)
The fuzzy chain-ladder factors f̃j = (fj, lfj , rfj), j = 0, . . . , J − 1, as introduced in
Model Assumptions 5.1 are estimated by ˆ̃fj = (f̂j, l̂f̂j

, r̂f̂j
) with

f̂j :=
∑I−j−1

i=0 Ci,j+1∑I−j−1
i=0 Ci,j

l̂f̂j
:= r̂f̂j

:=
∑I−j−1

i=0 Xi,j+1∑I−j−1
i=0 Ci,j

(5.4)

where Xi,j are incremental claims for i = 0, . . . , I and j = 0, . . . , J − 1.

Remarks 5.6
• The fuzzy chain-ladder f̃j factor can attain a value of one and a little above with

low positive grade of membership. The mode f̂j assumes a degree of membership
of one.

• The second postulation in Model Assumptions 5.1 assures that the spreads of the
estimators are non-negative because the numerator in (5.4) is non-negative.

• Since we are choosing l̂f̂j
= r̂f̂j

for all j = 0, . . . , J − 1 the estimator yields
symmetric TFNs. This definition is not mandatory but it leads to simpler results.
By doing so, we assume that up-/downward variations in fj are equally likely.

• The total spread of ˆ̃fj given by l̂f̂j
+ r̂f̂j

can be considered as the “uncertainty” of
the FN ˆ̃fj. The broader the whole spread l̂f̂j

+ r̂f̂j
, the more uncertain the factor

ˆ̃fj.
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5.3 Claims Reserves 115

• The modes and expected values Eβ( ˆ̃fj), j = 0, . . . , J − 1, are equal to the classical
chain-ladder estimators (cf. Wüthrich and Merz 2008, p. 38).

As an analogue to the predictor in the classical case we are capable of predicting the
ultimate claims C̃i,J (i = 1, . . . , I) by

̂̃
Ci,J := C̃i,I−i ⊗

J−1⊗
j=I−i

ˆ̃fj. (5.5)

In the above predictor the cumulative claims Ci,I−i, i = 1, . . . , I are observable. Hence,
they are crisp.

5.3 Claims Reserves

In Equation (5.5) a predictor for the ultimate claim is given. With the help of that
definition we can derive a predictor for outstanding loss liabilities, i.e. a predictor for
the claims reserve for single accident years (cf. Equation (4.2) for the crisp case). The
fuzzy claims reserve R̃i for a fixed accident year i = 1, . . . , I can be determined by

R̃i = C̃i,J � C̃i,I−i

where C̃i,I−i is observable, i.e. C̃i,I−i = (Ci,I−i, 0, 0). At time t = I the ultimate claims
C̃i,J are not observable and therefore, need to be predicted. With Equation (5.5) a
predictor for the reserve R̃i is given by

ˆ̃Ri = ˆ̃Ci,J � C̃i,I−i = C̃i,I−i

⎛⎝ J−1⊗
j=I−i

ˆ̃fj − 1
⎞⎠

for i = 1, . . . , I.

The aggregated outstanding loss liabilities for all accident years are given by

R̃ =
I⊕

i=1
R̃i =

I⊕
i=1

(
C̃i,J − C̃i,I−i

)
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116 5 The Fuzzy Chain-Ladder Model

and we yield a predictor for the aggregated outstanding loss liabilities by

̂̃
R =

I⊕
i=1

̂̃
Ri =

I⊕
i=1

⎛⎝C̃i,I−i

⎛⎝ J−1⊗
j=I−i

ˆ̃fj − 1
⎞⎠⎞⎠ .

Since actuaries cannot set up a fuzzy value in the balance sheet one needs to make use of
defuzzification methods as e.g. the expected value of a fuzzy number (cf. Definition 2.38)
for a given decision maker risk parameter.

5.4 Prediction Uncertainty

In this section we quantify the prediction uncertainty of the ultimate claim as given
in Equation (5.5). In Section 5.4.1 single accident years are considered whereas in
Section 5.4.2 aggregated accident years are regarded.

5.4.1 Single Accident Years

In the classical chain-ladder model the conditional mean square error of prediction
(MSEP) is a popular means for quantifying the prediction uncertainty (cf. Defini-
tion 4.1).

As shown in Wüthrich and Merz (2008, p. 45) the MSEP can be computed in different
ways using conditional and unconditional resampling methods. Since the fuzzy chain-
ladder framework differs from the classical one the calculation is done in a different
way.

Due to the model set-up the last observation for a given accident year i ∈ {1, . . . , I}
is multiplied with at least one TFN f̃j, j = 0, . . . , J − 1, to yield the ultimate claim.
Considering the multiplication of fuzzy numbers the vagueness increases for the product
as the spreads (cf. Equation (2.7) for the secant approximation). Hence, the uncertainty
for increasing accident years rises as well, because more fuzzy chain-ladder factors need
to be multiplied.

Thus, a representation for the product of several fuzzy chain-ladder factor estimators ˆ̃fj,
j = 0, . . . , J −1, is needed prior to deriving an estimator for the prediction uncertainty.
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5.4 Prediction Uncertainty 117

Lemma 5.7 (Fuzzy product of several chain-ladder factor estimators)
Let ˆ̃fk, k = 0, . . . , J − 1, be estimators of the fuzzy chain-ladder factors f̃k, k =
0, . . . , J − 1. Then, we have

j⊗
k=I−i

ˆ̃fk =
(

F̂ j
I−i, l̂F̂ j

I−i
, r̂F̂ j

I−i

)
, j = I − i, . . . , J − 1,

with

F̂ j
I−i :=

j∏
k=I−i

f̂k

l̂F̂ j
I−i

:= F̂ j
I−i − 1

r̂F̂ j
I−i

:=
j∏

k=I−i

(
2f̂k − 1

)
− F̂ j

I−i

for i = 1, . . . , I.

Proof. Let Ã = (a, la, ra) and B̃ = (b, lb, rb) be two fuzzy numbers. Another representa-
tion Ã′ for Ã is given if the entries in Ã do not denote the mode, left and right spread
but the position on the x-axis, i.e.

Ã′ := (a − la, a, a + ra)′ =: (d, e, f)′.

An illustration is given in Figure 5.1. In the same way we write B̃ as B̃′ = (b − lb, b, b +
rb)′ =: (g, h, i)′. The equivalent notation is always denoted with an apostrophe. With

x

μÃ(x)

1

a− la
=: d

a + ra

=: f
a

=: e

Figure 5.1: Equivalent notation for a TFN Ã = (a, la, ra).

the approximated multiplication as defined in Equation (2.7) (i.e. secant approximation)
we yield in the equivalent representation
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118 5 The Fuzzy Chain-Ladder Model

Ã′ ⊗ B̃′ = (ab − (alb + bla − lalb), ab, ab + (arb + bra + rarb))′

= (gd, eh, if)′.

Every estimator ˆ̃fj (j = 0, . . . , J − 1) can be represented as (cf. Estimator 5.5):

ˆ̃fj = (f̂j, f̂j − 1, f̂j − 1) = (1, f̂j, 2f̂j − 1)′

Therefore, we get:

j⊗
k=I−i

ˆ̃fk =
j⊗

k=I−i

(
1, f̂k, 2f̂k − 1

)′

=
⎛⎝1,

j∏
k=I−i

f̂k,
j∏

k=I−i

(
2f̂k − 1

)⎞⎠′

=
⎛⎝ j∏

k=I−i

f̂k,
j∏

k=I−i

f̂k − 1,
j∏

k=I−i

(
2f̂k − 1

)
−

j∏
k=I−i

f̂k

⎞⎠

Remark 5.8
An iterative representation of the right spread r̂F̂ j+1

I−i
is given by the recursion

r̂F̂ j+1
I−i

=
(
f̂j+1 − 1

)
F̂ j

I−i + f̂j+1rF̂ j
I−i

+ rF̂ j
I−i

(
f̂j+1 − 1

)
(5.6)

since
(

F̂ j
I−i, l̂F̂ j

I−i
, r̂F̂ j

I−i

)
⊗
(
f̂j+1, f̂j+1 − 1, f̂j+1 − 1

)
=
(

F̂ j+1
I−i , F̂ j+1

I−i − 1, F̂ j
I−i

(
f̂j+1 − 1

)
+ f̂j+1r̂F̂ j

I−i
+ r̂F̂ j

I−i

(
f̂j+1 − 1

))
.

Depending on the focus of consideration either the representation in Lemma 5.7, the
following Corollary 5.9 or the recursion given in Equation (5.6) should be used.

Corollary 5.9
Another representation of the product of FCL factors as in Lemma 5.7 is given by

(
f̂I−i, f̂I−i − 1, f̂I−i − 1

)
⊗ . . . ⊗

(
f̂j, f̂j − 1, f̂j − 1

)
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5.4 Prediction Uncertainty 119

=
( j∏

k=I−i

f̂k,
j∏

k=I−i

f̂k − 1,
(
2j−(I−i)+1 − 1

) j∏
k=I−i

f̂k

+ (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s − (−1)j−(I−i)
)

.

Proof. The proof is conducted via complete induction.
Base case:
Multiplication with one factor results in

(
f̂I−i, f̂I−i − 1, f̂I−i − 1

)
=
⎛⎝ I−i∏

k=I−i

f̂k,
I−i∏

k=I−i

f̂k − 1, (2 − 1)f̂I−i + 0 − 1
⎞⎠

=
(

I−i∏
k=I−i

f̂k,
I−i∏

k=I−i

f̂k − 1,
(
2I−i−(I−i)+1 − 1

) I−i∏
k=I−i

f̂k

+ (−1)I−i−(I−i)+1
I−i−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i}

|A|=k

∏
s∈A

f̂s − (−1)I−i−(I−i)
)

.

Induction hypothesis (IH):
The proposition holds true for multiplication with j − (I − i) + 1 factors, i.e.

(
f̂I−i, f̂I−i − 1, f̂I−i − 1

)
⊗ . . . ⊗

(
f̂j, f̂j − 1, f̂j − 1

)
=
( j∏

k=I−i

f̂k,
j∏

k=I−i

f̂k − 1,
(
2j−(I−i)+1 − 1

) j∏
k=I−i

f̂k

+ (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s − (−1)j−(I−i)
)

.

Inductive step:
We show that the proposition also holds for j + 1 − (I − i) + 1 factors.

j+1⊗
k=I−i

(
f̂k, f̂k − 1, f̂k − 1

)

=
j⊗

k=I−i

(
f̂k, f̂k − 1, f̂k − 1

)
⊗
(
f̂j+1, f̂j+1 − 1, f̂j+1 − 1

)
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(IH)
=

( j∏
k=I−i

f̂k,
j∏

k=I−i

f̂k − 1,
(
2j−(I−i)+1 − 1

) j∏
k=I−i

f̂k

+ (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s − (−1)j−(I−i)
)

⊗
(
f̂j+1, f̂j+1 − 1, f̂j+1 − 1

)

We have a look at the centre, left and right spread of the resulting fuzzy number
separately. For the centre we get

j∏
k=I−i

f̂k · f̂j+1 =
j+1∏

k=I−i

f̂k.

The left spread results in

j∏
k=I−i

f̂k(f̂j+1 − 1) + f̂j+1

⎛⎝ j∏
k=I−i

f̂k − 1
⎞⎠−

⎛⎝ j∏
k=I−i

f̂k − 1
⎞⎠ (f̂j+1 − 1)

=
j+1∏

k=I−i

f̂k − 1.

For the right spread we yield:

j∏
k=I−i

f̂k(f̂j+1 − 1) + f̂j+1

( (
2j−(I−i)+1 − 1

) j∏
k=I−i

f̂k

+ (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s − (−1)j−(I−i)
)

+
( (

2j−(I−i)+1 − 1
) j∏

k=I−i

f̂k

+ (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s − (−1)j−(I−i)
)

(f̂j+1 − 1)

=
(
2 · 2j−(I−i)+1 − 1

) j+1∏
k=I−i

f̂k + 2f̂j+1(−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s

− (−1)j−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s
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− 2j−(I−i)+1
j∏

k=I−i

f̂k − 2f̂j+1(−1)j−(I−i) − (−1)j+1−(I−i)

=
(
2j+1−(I−i)+1 − 1

) j+1∏
k=I−i

f̂k + (−1)j+1−(I−i)+1
j−(I−i)∑

k=1
(−2)k+1 ∑

A⊆{I−i,...,j}
|A|=k

f̂j+1
∏
s∈A

f̂s

+ (−1)j+1−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s

− 2j+1−(I−i)
j∏

k=I−i

f̂k + (−1)j+1−(I−i)+1(−2)f̂j+1 − (−1)j+1−(I−i)

=
(
2j+1−(I−i)+1 − 1

) j+1∏
k=I−i

f̂k + (−1)j+1−(I−i)+1
j−(I−i)∑

k=1
(−2)k+1 ∑

A⊆{I−i,...,j}×{j+1}
|A|=k+1

∏
s∈A

f̂s

+ (−1)j+1−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s

− 2j+1−(I−i)
j∏

k=I−i

f̂k + (−1)j+1−(I−i)+1(−2)f̂j+1 − (−1)j+1−(I−i)

=
(
2j+1−(I−i)+1 − 1

) j+1∏
k=I−i

f̂k + (−1)j+1−(I−i)+1
j+1−(I−i)∑

k=2
(−2)k

∑
A⊆{I−i,...,j}×{j+1}

|A|=k

∏
s∈A

f̂s

+ (−1)j+1−(I−i)+1
j−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j}

|A|=k

∏
s∈A

f̂s (5.7)

+ (−1)j+1−(I−i)+1(−2)j+1−(I−i)
j∏

k=I−i

f̂k + (−1)j+1−(I−i)+1(−2)f̂j+1 − (−1)j+1−(I−i)

=
(
2j+1−(I−i)+1 − 1

) j+1∏
k=I−i

f̂k

+ (−1)j+1−(I−i)+1
j+1−(I−i)∑

k=1
(−2)k

∑
A⊆{I−i,...,j+1}

|A|=k

∏
s∈A

f̂s − (−1)j+1−(I−i)
(5.8)

The third line in (5.7) holds true since

(−1)j+1−(I−i)+1(−2)j+1−(I−i) = (−1)j+1−(I−i)+1(−1)j+1−(I−i)2j+1−(I−i)
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= (−1)2(j+1)−2(I−i)+12j+1−(I−i)

= −2j+1−(I−i).

In (5.7) the first sum comprises all k-fold products where 2 ≤ k ≤ j + 1 − (I − i)
and (j + 1) is always a factor. The second sum contains all k-fold products where
1 ≤ k ≤ j − (I − i) but the factors are elements of {I − i, . . . , j}. Together with the
product ∏j

k=I−i f̂k and the 1-fold product of the factor f̂j+1 (and its respective factors)
this results in the sum in (5.8).

With the help of Lemma 5.7 a predictor for the uncertainty of the predicted ultimate
claims given the observations can be deduced. We make use of the notation in
Definition 2.50.

Predictor 5.10 (Uncertainty of the ultimate claim)
Given the observations DI and a parameter K ∈ R+ the uncertainty of the prediction
of ultimate claims ˆ̃Ci,J for each accident year i = 1, . . . , I is given by

UncK

( ˆ̃Ci,J | DI

)
= 1

2KC̃i,I−i

(
l̂F̂ J−1

I−i
+ r̂F̂ J−1

I−i

)

where C̃i,I−i := (Ci,I−i, 0, 0).

Proof. Let K ∈ R+. Given the observations DI the predictor for the ultimate claims is
known to be (cf. Equation (5.5))

ˆ̃Ci,J = C̃i,I−i

J−1⊗
j=I−i

ˆ̃fj.

At time t = I all cumulative claims C̃i,I−i are known and observable. Therefore, they
can be perceived as crisp numbers. Hence, the uncertainty of the predicted ultimate
claims is given by:

UncK

( ˆ̃Ci,J | Di

)
= UncK

⎛⎝C̃i,I−i

J−1⊗
j=I−i

ˆ̃fj | Di

⎞⎠
= UncK

(
(Ci,I−i, 0, 0) ⊗

(
F̂ J−1

I−i , l̂F̂ J−1
I−i

, r̂F̂ J−1
I−i

))
= UncK

((
Ci,I−iF̂

J−1
I−i , Ci,I−il̂F̂ J−1

I−i
, Ci,I−ir̂F̂ J−1

I−i

))
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= 1
2KCi,I−i

(
l̂F̂ J−1

I−i
+ r̂F̂ J−1

I−i

)

The above-mentioned predictor takes into account single accident years while in
Section 5.4.2 aggregated accident years are considered.

5.4.2 Aggregated Accident Years

The uncertainty of the predictor for aggregated ultimate claims ⊕I
i=1

ˆ̃Ci,J given the
observations DI is derived in a different way as in the classical CL-method since we
are not dealing with random variables. The methods used here are equal to those in
Section 5.4.1.

As a start we compute the sum of the ultimate claims over all accident years given the
observations DI . As the observations in the claims development triangle are already
known, we consider these as crisp numbers in the following Lemma 5.11.

Lemma 5.11
Given the observations DI the sum of the predicted ultimate claims is given by

I⊕
i=1

ˆ̃Ci,J =
⎛⎝ I∑

i=1
Ci,I−iF̂

J−1
I−i ,

I∑
i=1

Ci,I−il̂F̂ J−1
I−i

,
I∑

i=1
Ci,I−ir̂F̂ J−1

I−i

⎞⎠ .

Proof. The sum of the predicted ultimate claims, given the observations DI , can be
derived as:

I⊕
i=1

ˆ̃Ci,J =
I⊕

i=1

⎛⎝C̃i,I−i

J−1⊗
j=I−i

ˆ̃fj

⎞⎠
=

I⊕
i=1

(Ci,I−i, 0, 0) ⊗
(

F̂ J−1
I−i , l̂F̂ J−1

I−i
, r̂F̂ J−1

I−i

)

=
I⊕

i=1

(
Ci,I−iF̂

J−1
I−i , Ci,I−il̂F̂ J−1

I−i
, Ci,I−ir̂F̂ J−1

I−i

)

=
⎛⎝ I∑

i=1
Ci,I−iF̂

J−1
I−i ,

I∑
i=1

Ci,I−il̂F̂ J−1
I−i

,
I∑

i=1
Ci,I−ir̂F̂ J−1

I−i

⎞⎠
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With the help of Lemma 5.11 the uncertainty of the sum of the ultimate claims can be
derived.

Estimator 5.12 (Uncertainty of the aggregated ultimate claims)
Given the observations DI and a parameter K ∈ R+, the uncertainty of the aggregated
ultimate claims ⊕I

i=1
ˆ̃Ci,J is given by:

UncK

⎛⎝ I⊕
i=1

ˆ̃Ci,J | DI

⎞⎠ =
I∑

i=1
UncK

( ˆ̃Ci,J | DI

)

Proof. With the notations as given in Lemma 5.7 we yield:

UncK

⎛⎝ I⊕
i=1

ˆ̃Ci,J | DI

⎞⎠ = UncK

⎛⎝ I∑
i=1

Ci,I−iF̂
J−1
I−i ,

I∑
i=1

Ci,I−il̂F̂ J−1
I−i

,
I∑

i=1
Ci,I−ir̂F̂ J−1

I−i
| DI

⎞⎠
= 1

2K

⎛⎝ I∑
i=1

Ci,I−il̂F̂ J−1
I−i

+
I∑

i=1
Ci,I−ir̂F̂ J−1

I−i

⎞⎠
= 1

2K
(
C1,I−1l̂F̂ J−1

I−1
+ C1,I−1r̂F̂ J−1

I−1
+ . . .

+ CI,0l̂F̂ J−1
0

+ CI,0r̂F̂ J−1
0

)
=

I∑
i=1

UncK

( ˆ̃Ci,J | DI

)

Thus, the uncertainty of ultimate claims for aggregated accidents is the sum of the
uncertainty of ultimate claims for single accident years.

5.5 Example

In the following we apply the FCL method and investigate the run-off triangle given in
Taylor and Ashe (1983). The triangle is presented in Table 5.1.
For this specific example we compute the fuzzy chain-ladder factors as given in Ta-
ble 5.2.

The fuzzy development factors are written down in three lines. The first one indicates
the mode which is in fact the classical CL-factor due to the chosen estimator. The
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accident- development year j
year i 0 1 2 3 4 5 6 7 8 9

0 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
1 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085
2 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315
3 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268
4 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311
5 396,132 1,333,217 2,180,715 2,985,752 3,691,712
6 440,832 1,288,463 2,419,861 3,483,130
7 359,480 1,421,128 2,864,498
8 376,686 1,363,294
9 344,014

Table 5.1: Observed cumulative claims Ci,j.

second and third line show the left and right spread, respectively. Since the estimator
in this method is chosen as a symmetrical triangular fuzzy number they are equal.

development year
ˆ̃fj 0 1 2 3 4 5 6 7 8

f̂j 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177
l̂f̂j

2.4906 0.7473 0.4574 0.1739 0.1038 0.0863 0.0539 0.0766 0.0177
r̂f̂j

2.4906 0.7473 0.4574 0.1739 0.1038 0.0863 0.0539 0.0766 0.0177

Table 5.2: Fuzzy chain-ladder factors ˆ̃fj for j = 0, . . . , J − 1.

With the help of the computed fuzzy development factors we are able to predict the
unobservable right part of the run-off triangle as shown in Table 5.3. The grey shaded
part of the table indicates the observations which are crisp magnitudes. For each
accident year i and development year j we write down the predicted cumulated claims
in three lines. The first stands for the mode, and the second and third ones for the left
and right spread of the cumulative figures, respectively. The first line for each accident
year is equal to the results in the classical CL method. As the fuzzy multiplication is
not a closed operation we use an approximation which again yields triangular fuzzy
numbers that are not necessarily symmetrical. Hence, the values in the second and
third line in Table 5.3 differ. In fact, the right spread is increasing more rapidly.

The estimated reserves for this specific example are derived with the methods as
presented in Section 5.3 and given in Table 5.4. As the estimator for the FCL method
is chosen according to Estimator 5.5 the left spread of the fuzzy development factor
reaches to one (cf. Table 5.2). Therefore, the reserve in the FCL method can amount to
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126 5 The Fuzzy Chain-Ladder Model

development year j
ˆ̃Ci,j 0 1 2 3 4 5 6 7 8 9

Ĉ0,j 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
l̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0
r̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0

Ĉ1,j 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,719
l̂Ĉ1,j

0 0 0 0 0 0 0 0 0 94,634
r̂Ĉ1,j

0 0 0 0 0 0 0 0 0 94,634

Ĉ2,j 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,285,148 5,378,826
l̂Ĉ2,j

0 0 0 0 0 0 0 0 375,833 469,511
r̂Ĉ2,j

0 0 0 0 0 0 0 0 375,833 482,834

Ĉ3,j 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 4,835,458 5,205,637 5,297,906
l̂Ĉ3,j

0 0 0 0 0 0 0 247,190 617,369 709,638
r̂Ĉ3,j

0 0 0 0 0 0 0 247,190 655,217 770,712

Ĉ4,j 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,207,459 4,434,133 4,773,589 4,858,200
l̂Ĉ4,j

0 0 0 0 0 0 334,148 560,822 900,278 984,889
r̂Ĉ4,j

0 0 0 0 0 0 334,148 596,826 1,027,662 1,148,703

Ĉ5,j 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,074,999 4,426,546 4,665,023 5,022,155 5,111,171
l̂Ĉ5,j

0 0 0 0 0 383,287 734,834 973,311 1,330,443 1,419,459
r̂Ĉ5,j

0 0 0 0 0 383,287 800,966 1,125,746 1,655,241 1,802,935

Ĉ6,j 440,832 1,288,463 2,419,861 3,483,130 4,088,678 4,513,179 4,902,528 5,166,649 5,562,182 5,660,771
l̂Ĉ6,j

0 0 0 0 605,548 1,030,049 1,419,398 1,683,519 2,079,052 2,177,641
r̂Ĉ6,j

0 0 0 0 605,548 1,155,789 1,744,557 2,196,651 2,928,515 3,130,917

Ĉ7,j 359,480 1,421,128 2,864,498 4,174,756 4,900,545 5,409,337 5,875,997 6,192,562 6,666,635 6,784,799
l̂Ĉ7,j

0 0 0 1,310,258 2,036,047 2,544,839 3,011,499 3,328,064 3,802,137 3,920,301
r̂Ĉ7,j

0 0 0 1,310,258 2,491,628 3,517,799 4,591,416 5,402,700 6,703,982 7,059,799

Ĉ8,j 376,686 1,363,294 2,382,128 3,471,744 4,075,313 4,498,426 4,886,502 5,149,760 5,544,000 5,642,266
l̂Ĉ8,j

0 0 1,018,834 2,108,450 2,712,019 3,135,132 3,523,208 3,786,466 4,180,706 4,278,972
r̂Ĉ8,j

0 0 1,018,834 3,040,506 4,701,269 6,100,587 7,541,250 8,617,067 10,330,671 10,795,153

Ĉ9,j 344,014 1,200,818 2,098,228 3,057,984 3,589,620 3,962,307 4,304,132 4,536,015 4,883,270 4,969,825
l̂Ĉ9,j

0 856,804 1,754,214 2,713,970 3,245,606 3,618,293 3,960,118 4,192,001 4,539,256 4,625,811
r̂Ĉ9,j

0 856,804 3,034,848 6,770,961 9,656,884 12,034,794 14,453,088 16,242,272 19,076,387 19,839,189

Table 5.3: Filled run-off-triangle with observed cumulative claims Ci,j (i + j ≤ I) and
predicted cumulative claims ˆ̃Ci,j (i + j > I).

accident- ˆ̃Ri = (R̂i, l̂R̂i
, r̂R̂i

)
year i R̂i l̂R̂i

r̂R̂i

0 0.00 0.00 0.00
1 94,633.81 94,633.81 94,633.81
2 469,511.29 469,511.29 482,834.38
3 709,637.82 709,637.82 770,712.24
4 984,888.64 984,888.64 1,148,703.01
5 1,419,459.46 1,419,459.46 1,802,935.09
6 2,177,640.62 2,177,640.62 3,130,917.40
7 3,920,301.01 3,920,301.01 7,059,798.97
8 4,278,972.26 4,278,972.26 10,795,153.00
9 4,625,810.69 4,625,810.69 19,839,189.18∑

18,680,855.61 18,680,855.61 45,124,877.08

Table 5.4: Predicted reserves ˆ̃Ri for i = 0, . . . , I.
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zero. Since the spreads of the reserves are relatively wide the slope of the membership
function for the left spread is very small. As a result, values close to zero are possible
but only with a small grade of membership.

accident- Eβ( ˆ̃Ri) chain-ladder
year i β = 0.1 β = 0.25 β = 0.5 β = 0.75 β = 0.9 reserve R̂i

0 0.00 0.00 0.00 0.00 0.00 0.00
1 56,780.29 70,975.36 94,633.81 118,292.27 132,487.34 94,633.81
2 282,372.93 353,798.85 472,842.06 591,885.27 663,311.20 469,511.29
3 428,836.41 539,862.67 724,906.43 909,950.18 1,020,976.44 709,637.82
4 599,123.90 759,143.28 1,025,842.23 1,292,541.19 1,452,560.56 984,888.64
5 870,849.46 1,112,529.05 1,515,328.37 1,918,127.68 2,159,807.27 1,419,459.46
6 1,354,248.21 1,752,390.06 2,415,959.81 3,079,529.57 3,477,671.42 2,177,640.62
7 2,509,155.51 3,332,663.00 4,705,175.50 6,077,688.00 6,901,195.50 3,920,301.01
8 2,893,192.39 4,023,751.79 5,908,017.45 7,792,283.11 8,922,842.50 4,278,972.26
9 3,536,155.34 5,371,030.33 8,429,155.31 11,487,280.30 13,322,155.29 4,625,810.69∑ 12,530,714.44 17,316,144.39 25,291,860.98 33,267,577.57 38,053,007.52 18,680,855.61

Table 5.5: Expected values of the reserves ˆ̃Ri, i = 0, . . . , I, for different choices of the
“decision-maker risk parameter” β and corresponding chain-ladder reserves
R̂i, i = 0, . . . , I.

Actuaries cannot set up a fuzzy magnitude as a reserve. Thus, expected values for
the estimated reserves Eβ( ˆ̃Ri), i = 0, . . . , I, for different choices of the decision-maker
risk parameter β, β = 0.1, 0.25, 0.5, 0.75, 0.9, are given in Table 5.5. The classical
CL method and the fuzzy one proposed here cannot be compared, because the first
considers uncertainty due to stochastic randomness whereas the latter takes into account
vagueness due to subjective judgement. Nevertheless, the resulting reserves are shown
in the very right column of Table 5.5. In fact, the “same value” of the estimated
reserve for both the classical and the fuzzy method results for a choice of β ≈ 0.27.57

The higher the parameter β, the more weight is on the right spread resulting in a
higher expected reserve for each specific accident year. Since the expected reserve for
aggregated accident years is the sum of the expected reserves for single accident years
the same observation holds true there.
The definition of Estimator 5.10 is chosen carefully due to the fact that the estimators
are symmetrical and the left border is given by one. This leads to risk-averse and careful
predictions of the estimated reserves. Beyond that, the use of secant approximation
leads to more conservative predictions (cf. Remark 2.31c)).

57Note that a direct comparison is actually not applicable here.
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accident- UncK( ˆ̃Ci,J | DI)
year i K = 0.5 K = 1 K = 2 K = 5 K = 10

0 0.00 0.00 0.00 0.00 0.00
1 47,316.91 94,633.81 189,267.63 473,169.07 946,338.15
2 238,086.42 476,172.84 952,345.67 2,380,864.18 4,761,728.35
3 370,087.51 740,175.03 1,480,350.06 3,700,875.15 7,401,750.29
4 533,397.91 1,066,795.82 2,133,591.65 5,333,979.12 10,667,958.25
5 805,598.64 1,611,197.27 3,222,394.55 8,055,986.36 16,111,972.73
6 1,327,139.50 2,654,279.01 5,308,558.02 13,271,395.05 26,542,790.09
7 2,745,025.00 5,490,049.99 10,980,099.98 27,450,249.96 54,900,499.92
8 3,768,531.32 7,537,062.63 15,074,125.26 37,685,313.16 75,370,626.32
9 6,116,249.97 12,232,499.94 24,464,999.87 61,162,499.68 122,324,999.35∑

15,951,433.17 31,902,866.35 63,805,732.69 159,514,331.73 319,028,663.46

Table 5.6: Prediction uncertainty UncK( ˆ̃Ci,J | DI) for each accident year i = 0, . . . , I
for different choices of K ∈ R+.

The variety of the computed ultimate claims is given in Table 5.6 for several choices
of the parameter K, K = 0.5, 1, 2, 5, 10. Due to the definition of the uncertainty (cf.
Definition 2.50) the values are proportional to each other. For each accident year the
ultimate claim is given by a triangular fuzzy number of which we find the area between
the membership function and the x-axis for K = 1. The sum of the areas of the fuzzy
numbers for each particular K is given in the bottom line. Intuitively, the uncertainty
dependent on K is increasing for an increasing choice of the parameter K which is a
weight factor of the computed areas as well as later accident years come along with
higher uncertainty values since more fuzzy numbers need to be multiplied. Moreover,
for rising i the predicted values are farer away from the present. This leads to an
increasing uncertainty in the predictions.

We finish the chapter with a concluding discussion of the presented claims reserving
method.

5.6 Discussion

The claims reserving method presented in the present chapter is an addition to the
classical reserving techniques. While previous applications of fuzzy set theory to the
field of loss reserving only made use of fuzzy regression (cf. Section 4.6). Hence, the FCL
method can be seen as a first attempt to apply fuzzy numbers and its corresponding
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arithmetic to the field of claims reserving. It goes back to the roots of the CL method
which initially has been a purely deterministic reserving principle.

As elaborated on in Section 5.1 chain-ladder factors are sometimes modified retrospecti-
vely in practice due to the personal experience of the reserving actuary. This action
adds vagueness and imprecision to the development factors which is here captured by
the triangular fuzzy numbers. Thus, no later alteration is needed. Furthermore, with
the uncertainty measure UncK a means to quantify the vagueness of the calculated
reserves is given.

The choice of the FCL factors as triangular fuzzy numbers is rather simple but leads
to easy to conduct computations. The selection results in predicted reserves with a
relatively wide spread. Needless to say, the presented method is not limited to the use
of triangular fuzzy numbers. Membership functions with e.g. an exponential shape
(cf. Definition 2.21) are also thinkable here. They would assign a higher grade of
membership to the values close to the classical CL estimate.
Additionally, Estimator 5.5 leads to a left spread ranging to one, but this is not
mandatory. Another possible extension might be the use of asymmetric FN in order
to cope with stronger deviations in only one direction. One possible application is
presented in Chapter 6 in combination with fuzzy regression.

On the other hand, the FCL model only considers fuzziness whereas stochastic rand-
omness is not regarded. Hence, classical and fuzzy methods should not be compared
without taking into account that it is dealt with different sources of uncertainty (cf.
Section 2.1.4). A possible solution could be given by an application of fuzzy random
variables which can handle both sources of uncertainty (cf. Section 2.4).

The values of the uncertainty measure for increasing accident years as well as for a
higher choice of the parameter K seem to go up rapidly. At this point of research
there is no proper interpretation of these quantities on their own. It is only possible
to compare uncertainties of the ultimate claims for different run-off triangles among
themselves. By the use of fuzzy numbers there is no balancing of the uncertainty of the
ultimate claims over several accident years.
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6 | Another Fuzzy Chain-
Ladder Model –
An Application of Fuzzy
Regression Techniques

In this chapter an application of fuzzy regression methods to the chain-ladder method
is presented. Firstly, a motivation as well as a description of the notation and setting
is given in Section 6.1. In Section 6.2 we propose another fuzzy chain-ladder model
making use of fuzzy regression as presented by Ishibuchi and Nii (2001). Subsequently,
an example is conducted in Section 6.3 where the results are shown in Section 6.3.1
and are then compared to those of the FCL method (cf. Chapter 5) in Section 6.3.2.
Finally, the proposed model is discussed in Section 6.4.

6.1 Introduction

6.1.1 Motivation

As elaborated on in Chapter 1 there are many facts which justify the utilization of
fuzzy set theory in claims reserving. As one of the main reasons subjective judgment
can be argued.

Depending on the line of business (LoB) there may be only small datasets available in
order to determine the claims reserve. Moreover, while determining the development
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132 6 Another Fuzzy Chain-Ladder Model

factors with the classical chain-ladder method the cardinality of the set of observations
which underlie the calculation decreases with increasing development years. In the same
way as in the FCL method (cf. Chapter 5) the vagueness is expressed by triangular
fuzzy numbers which are advantageous since they are easy to handle arithmetically and
convey major parts of the uncertainty. The use of symmetrical fuzzy numbers can come
along with some disadvantages as seen in the FCL method. In the latter procedure
the estimation of the CL-factors is chosen in a manner that the left spread adjoins one
(cf. Remarks 5.6). As the left and right spreads are chosen to be of equal length, this
might result in a large total spread. As a consequence, the result is rather conservative.
In order to circumnavigate this drawback we here utilize asymmetrical fuzzy numbers
which allow for an individual adaptation of the left and right spread depending on the
situation.

The classical chain-ladder method can be perceived as a sequence of weighted regres-
sions from one development year to the next one (cf. p. 78). Then, the CL-factors
are yielded with the help of the Aitken-estimator (cf. Equation (A.1)). Hence, the
sequence of weighted linear regressions can also be transferred to a sequence of ordinary
linear regressions by multiplying the dependent and independent variables with the
corresponding weighing matrix. Thus, the CL-factors are simply the Gauß-Markov
estimators in this case.

Fuzzy regression techniques often make use of a H-value (or h-certain factor) which
can be interpreted as the confidence the user has in the data (cf. Section 2.3). An
extensive discussion of the usage of this value can be found in Moskowitz and Kim
(1993). Thus, we propose a model in which the h-certain factor can be adjusted for
every single regression in the sequence of regressions. By providing a pattern which is a
vector of h-certain factors the trust in the data for each single regression is specified. As
the data situation is better for earlier development years we propose smaller values of
the h-certain factor for earlier development years. The data situation is understood to
be better in the sense that more observations are available for earlier development years.
Often one can argue that the values in the pattern will be monotonically increasing.

So far, fuzzy regression techniques have seldom been applied to the chain-ladder
reserving method in the literature though CL is still the most popular method. As
stated in Section 4.6 fuzzy regression models have been used as a modification of
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and Kremer’s two ways of ANOVA.

One of the rare publications considering the CL-method in a fuzzy setup by Kerkez
propose a reserving model in which a fuzzy regression method by Tanaka et al. (1982)
is applied to the chain-ladder method (cf. Section 4.6.6). Kerkez sketches that some
reserving methods (among others CL) can be perceived as linear regression models
which is the motivation for her model. The author makes use of symmetrical fuzzy
numbers as coefficients such that a large deviation in only one direction results in the
same width of the spread in the other direction. An example of the reserving method is
conducted both with and without intercept where the latter case serves as a comparison
for the chain-ladder method. Kerkez does not make use of a defuzzification method
in order to determine a crisp reserve. In fact, the model yields fuzzy reserves.58 The
publication by Andrés Sánchez and Terceño Gómez (2003) obtains the CL method as a
special case.

Some of the earlier published fuzzy regression models have some serious drawbacks
(cf. Section 2.3). E.g. the fuzzy regression coefficients are chosen to be symmetrical
and, thus, a strong deviation in one direction results in a large total spread of the
coefficients. In order to avoid these disadvantages Ishibuchi and Nii proposed a model
with asymmetric coefficients (cf. Section 2.3.1 and Ishibuchi and Nii 2001).

Even though the CL method is the most popular reserving method it has not been
in the core of research for fuzzy applications. The goal of this chapter is to define a
fuzzy CL-model which counterbalances some of the drawbacks. Therefore, the fuzzy
regression model of Ishibuchi and Nii (2001) with asymmetric coefficients is applied.
Then, the total spread of the fuzzy coefficients is not needlessly large. Compared to
the FCL model as introduced in Chapter 5, the model goes without strong restrictions
on the spreads of the development factors whose supports are bounded below by one.
This results in smaller total spreads here since deviations are captured in a better way
and, thus, a smaller uncertainty of the predicted reserve.

58Onoghojobi and Olewuezi (2015) also apply fuzzy regression techniques to the CL method. As
elaborated on before (cf. p. 105) we will not present the findings of the publication in detail.

Sherman’s scheme, the method of Benjamin and Eagles, Taylor’s separation method
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134 6 Another Fuzzy Chain-Ladder Model

6.1.2 Notation and Methods

The model is based on a development triangle as shown in Figure 4.2 which contains
cumulative claims Ci,j, i ∈ {0, . . . , I}, j ∈ {0, . . . , J}, made in relative accident year i

and relative development year j. We assume that it is a real development triangle, i.e.
I = J , and that the cumulative claims are strictly positive.

The method presented here makes use of TFNs as introduced in Definition 2.18, their
corresponding arithmetic and the fuzzy regression model by Ishibuchi and Nii (2001)
(see Section 2.3.1). The secant approximation (cf. Equation (2.7)) is used for the
multiplication of TFNs. As defuzzification method the expected value as defined in
Definition 2.38 is used. In order to quantify the prediction uncertainty the measure of
uncertainty as defined in Definition 2.50 is applied.

6.2 The Model

In Chapter 5 it has been pointed out that there might be situations in which actuaries
adjust the development factors calculated by the CL-method according to their sub-
jective judgment. This observation is also taken into account in this chapter. Precisely
speaking, the proposed model here is not a means to picture stochastic randomness
but deals with vagueness.

The goal is to predict claims reserves. Hereby, the claims development is considered
with the help of development factors. Those shall be estimated here in the context
of a fuzzy CL-method based on a fuzzy regression model. Therefore, the fuzzy CL-
factors f̃AFCL

j =
(

fAFCL
j , lfAFCL

j
, rfAFCL

j

)
, j ∈ {0, . . . , J − 1}, are estimated with fuzzy

regression methods. Hereby, the modes of the estimated development factors ˆ̃fAFCL
j =(

f̂AFCL
j , l̂f̂AFCL

j
, r̂f̂AFCL

j

)
, j ∈ {0, . . . , J − 1}, are estimated with OLS. The CL-method

can be stated in the context of linear models. In fact, every single development factor
is derived as the estimated regression coefficient in a general multiple linear regression
model without intercept (cf. p. 78). By choosing appropriate vectors y∗, X∗ and ε∗

the weighted multiple linear model can be transformed in a classical one with the help
of a weighting matrix W (cf. Equations (4.9)-(4.11)). In order to apply the regression
method by Ishibuchi and Nii (2001) we are here regarding the transformed data y∗, X∗
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and ε∗ as defined in Equations (4.9)-(4.10) to derive estimators for the fuzzy CL-factors
f̃AFCL

j , j ∈ {0, . . . , J − 1}.

According to the definitions in Ishibuchi and Nii (2001) (see also Section 2.3.1) we
propose the following fuzzy regression model without intercept.

Model Assumptions 6.1 (Fuzzy Chain-Ladder Regression Model)
Let f̃AFCL

j , j ∈ {0, . . . , J − 1}, be a triangular fuzzy number given by f̃AFCL
j =

(
fAFCL

j ,

lfAFCL
j

, rfAFCL
j

)
, Ỹ∗ = (ỹ∗

0, . . . , ỹ∗
J−j−1)T a fuzzy output and X∗ = (x∗

0, . . . , x∗
J−j−1)T a

non-fuzzy input vector with x∗
0, . . . , x∗

J−j−1 being strictly positive. Then, the fuzzy
chain-ladder regression model for the j-th development factor is given by

Ỹ∗ = f̃AFCL
j ⊗ X∗.

We refer to f̃AFCL
j as the fuzzy coefficient and the multiplication needs to be understood

component wise.

Remarks 6.2
a) We assume that cumulative figures are being used in the development triangle

which are strictly positive. Then, the weighting matrix W (cf. Equation (4.7)) is
positive definite and, thus, invertible. That way it is assured that W−1/2 exists
and thereby the transformed variables can be calculated.

b) When considering the above fuzzy regression model line by line we yield for a
single entry in the estimated fuzzy output vector:

ˆ̃y∗
i = ˆ̃fAFCL

j ⊗ xi

=
(

f̂AFCL
j , l̂fAFCL

j
, r̂fAFCL

j

)
⊗ xi

=
⎛⎝f̂AFCL

j xi,

⎧⎪⎪⎨⎪⎪⎩
l̂fAFCL

j
|xi|, if xi ≥ 0

r̂fAFCL
j

|xi|, if xi < 0
,

⎧⎪⎪⎨⎪⎪⎩
r̂fAFCL

j
|xi|, if xi ≥ 0

l̂fAFCL
j

|xi|, if xi < 0

⎞⎠
=
(

f̂AFCL
j xi, l̂fAFCL

j
xi, r̂fAFCL

j
xi

)
, i = 0, . . . , I − j − 1

The simplification in the last above equation is due to the fact that strictly positive
figures are assumed.
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136 6 Another Fuzzy Chain-Ladder Model

coefficient go in line with the proposition of Ishibuchi and Nii (2001) (cf. the estimation
method described on p. 54 and especially the linear program in Equation (2.14)). The
mode fAFCL

j is specified by using OLS and we refer to the estimation of fAFCL
j as f̂AFCL

j .
The estimated left and right spreads l̂fAFCL

j
and r̂fAFCL

j
, respectively, are determined by

an optimization problem in which the total fuzziness of the model is minimized. Let
α∗ = (α∗

0, . . . , α∗
J−1) be a vector where α∗

j ∈ (0, 1) for all j ∈ {0, . . . , J − 1}. Then, the
linear program for the determination of the spreads of a single estimated development
factor ˆ̃fAFCL

j for a specific j is given by:

min
l̂
fAFCL
j

,r̂
fAFCL
j

I−j−1∑
i=0

l̂fAFCL
j

xi +
I−j−1∑

i=0
r̂fAFCL

j
xi (6.1a)

s.t.
f̂AFCL

j xi − l̂fAFCL
j

xi(1 − α∗
j) ≤ yi, i = 0, . . . , I − j − 1 (6.1b)

f̂AFCL
j xi + r̂fAFCL

j
xi(1 − α∗

j) ≥ yi, i = 0, . . . , I − j − 1 (6.1c)

l̂fAFCL
j

, r̂fAFCL
j

≥ 0 (6.1d)

Constraints (6.1b) and (6.1c) ensure that the – in this case – crisp output lies within
the support of the estimated fuzzy output vector whereas constraint (6.1d) ensures
that the spreads of the fuzzy coefficient are non-negative.

Literature on fuzzy regression suggests that the above linear program (6.1) can be
solved with methods of linear optimization like e.g. the simplex algorithm. However, the
linear program can be simplified in the following way when keeping in mind that only
two of the equations listed in Equations (6.1b) and (6.1c) are binding. Equations (6.1b)
and (6.1c) can be rewritten as follows:

(6.1b) ⇔ l̂fAFCL
j

≥ f̂AFCL
j

(1 − α∗
j) − yi

xi(1 − α∗
j) , i = 0, . . . , I − j − 1

⇔ l̂fAFCL
j

≥ max
i=0,...,I−j−1

⎛⎝ f̂AFCL
j

(1 − α∗
j) − yi

xi(1 − α∗
j)

⎞⎠ (6.2)

= max
i=0,...,I−j−1

1
(1 − α∗

j)

(
f̂AFCL

j − yi

xi

)

(6.1c) ⇔ r̂fAFCL
j

≥ yi

xi(1 − α∗
j) − f̂AFCL

j

(1 − α∗
j) , i = 0, . . . , I − j − 1

The determinations of the mode as well as the left and right spread of the fuzzy
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⇔ r̂fAFCL
j

≥ max
i=0,...,I−j−1

⎛⎝ yi

xi(1 − α∗
j) − f̂AFCL

j

(1 − α∗
j)

⎞⎠ (6.3)

= max
i=0,...,I−j−1

1
(1 − α∗

j)

(
yi

xi
− f̂AFCL

j

)

Consequently, the restrictions are only binding for the largest and smallest individual
development factor yi

xi
. Solely the difference between the largest (respectively smallest)

individual development factor and the estimated CL-factor is considered.
By choosing the elements of the vector α∗ which are the H-values for every single
fuzzy regression model the actuary expresses his/her confidence in the data. In the
special case of selecting a h-certain factor α∗

j as zero the definition of the applied model
leads to the interpretation that those data points which mark the left and right spread,
i.e. which refer to the binding equations in the minimization problem (6.1a)-(6.1d),
are of less importance since they are assessed with a grade of membership of zero. If
an actuary is of the opinion that these “more extreme” cases should be considered as
well he/she can attach more importance to them by choosing a higher value for α∗

j .
Therefore, the elements of the vector α∗ can be as well interpreted as an assessment of
the actuary if the usual scope of values regarding their variability (with respect to the
considered LoB) is covered by the regression “tube” or not.

While there normally is sufficient data in earlier development years, the data is getting
sparser for increasing development years due to the triangular structure. This results
in the extreme that there is only one single data point available when calculating the
FCL-factor ˆ̃fJ−1. Whereas the mode can still be determined with OLS there are no
reasonable results for the spreads. Generally, the width of the left and right spread
possess a decreasing behavior. This is due to the fact that for higher development
years more claims are finally settled. Accordingly, the CL-factor approaches one and
the variability generally decreases. In this way they resemble the characteristics of the
variance parameters in the classical CL-method. Hence, we propose to extrapolate
likewise the left and right spread of the last FCL-factor by log-linear regression as
mentioned in Mack (1993, p. 217).59

We consider the sequence of the logarithms of the spreads ln l̂fAFCL
0

, . . . , ln l̂fAFCL
J−2

as

59There exists a broad literature on the estimation/extrapolation of variance parameters. Other
approaches like e.g. by assuming that the ratios of the two previous variance parameters are alike,
i.e. σ̂J−3

σ̂J−2
= σ̂J−2

σ̂J−1
, can be equally transferred.

dependent and the sequence of development years 0, . . . , J − 2 as independent variables,
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138 6 Another Fuzzy Chain-Ladder Model

i.e. in the notation of OLS y := (ln l̂fAFCL
0

, . . . , ln l̂fAFCL
J−2

)T and x := (0, . . . , J − 2)T . We
fit a line to the given data points, i.e.

y = a0 + a1x

with unknown coefficients a0, a1 ∈ R whose estimates â0 and â1 are derived with OLS
(cf. Appendix A). Thus, an estimate of the left spread of the fuzzy chain-ladder factor
for the development year J −1 is given by l̂fJ−1 = exp (â0 + â1(J − 1)) by extrapolation.
With the same procedure an estimation of the right spread of the (J −1)-th development
factor is derived.

As previously elaborated on in Chapter 5 the determination of the prediction for the
ultimate claims is carried out by gradually fuzzy multiplying the last observation for
a given accident year with the estimated fuzzy development factors. Beyond that,
predictions for the reserves for both single and aggregated accident years can be deduced
with the help of fuzzy arithmetic as well.

6.3 Example

For the sake of comparison we consider the same data set as in Section 5.5 given in
Table 5.1. We also apply the same measure of uncertainty as in Chapter 5. In this
section we will firstly present the results derived with the proposed method in this
chapter.60 Subsequently, the findings will be compared to those of the FCL method (cf.
Section 5.5) in Section 6.3.2.

6.3.1 Presentation of Results

We consider the development triangle as given in Table 5.1. For the parameter vector
α∗ = (α0, . . . , α8) we assume the following pattern as shown in Table 6.1. The value
of the h-certain factor increases for later development years. Therefore, in this case,

60The left and right spreads are calculated directly using Equations (6.2) and (6.3). The same results
(for this particular example) are derived when the optimization problems are solved using the
library “linprog” of the R-package “LPsolve” for linear problems in R. R is an open source statistics
software.
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there is higher confidence that the data for earlier development years already show a
sufficient picture of the development factors to estimate whereas the information of
the development years six and higher is judged as not sufficient. Hence, the actuary
chooses a “safety margin” in form of parameters αj others than zero for development
years six and higher, i.e. αj > 0, j = 5, . . . , 8.

development year j
0 1 2 3 4 5 6 7 8

αj 0 0 0 0 0 0.2 0.4 0.6 0.8

Table 6.1: An α-pattern α∗ = (α0, . . . , α8).

The modes of the estimated fuzzy chain-ladder factors are the estimated CL-factors (cf.
Table 5.2).

A pattern of this particular type is picked in situations in which the actuary has high
confidence in the data. From the optimization problem’s point of view it means that
the minimal spread such that all data points are included is calculated for the first five
development years. For development years six and higher an addition to the spread
is warranted. This could be due to the fact that there are less data points available
and in the actuary’s eyes these might not reflect a comprehensive picture of possible
spreads. This impression could be even reinforced for higher development years such
that increasing values for αj are chosen in this particular case. In this situation, we
yield the following results as displayed in Table 6.2.

accident- development year j
year i 0 1 2 3 4 5 6 7 8
ˆ̃fAFCL
1 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

l̂fAFCL
j

0.926 0.205 0.179 0.101 0.067 0.053 0.023 0.034 0.013
r̂fAFCL

j
1.077 0.268 0.254 0.064 0.105 0.052 0.011 0.025 0.008

Table 6.2: Calculated FCL-factors for α∗ = (0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8).

Again, we write down the fuzzy chain-ladder factors in three lines. The first line
indicates the mode whereas in the second and third line the left and right spread,
respectively, is given. Due to the estimation procedure the modes coincide with the
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140 6 Another Fuzzy Chain-Ladder Model

classical chain-ladder factors. In contrast to the values given in Table 5.2 the estimates
of the left and right spread in Table 6.2 are not equal since asymmetric coefficients
are assumed. As anticipated, the left and right spreads show a decreasing behavior
with only slight variations. While for the development factor zero the left and right
spreads are given by 0.926 and 1.077 the width of the spreads go down for increasing
development years with only one exception (development year seven) and are given by
0.034 and 0.025 for the seventh development factor. Therefore, this example confirms
the anticipated behavior. The exception in development year 7 is due to the fact that
the individual CL-factors are higher for that specific development year. The spreads
of the eighth development factor are yielded by extrapolation by means of log-linear
regression (see Table 6.2). The plotted spreads as well as the fitted exponential functions
to the data points are shown in Figure 6.4. The case of the left spreads is visualized
in Figure 6.4a whereas Figure 6.4b depicts the right spreads. Both figures show that
the estimated exponential function fits well the data points for higher development
years. This is supported by the fact that the conducted regression gives a coefficient of
determination of R2 ≈ 0.8924 and an adjusted value of R2

a ≈ 0.8745. For the left and
right spreads there are a little greater deviations for earlier development years between
the data points and the fitted exponential function, but the discrepancies diminish for
later development years. For the right spreads the regression still yields R2 ≈ 0.8677
and R2

a ≈ 0.8456 and therefore it militates in favor of a good fit.

Figures 6.1, 6.2 and 6.3 show the regression “tubes” which result with the fuzzy
regression approach. For illustration the transferred cumulated claims are plotted.
Then, the red line is the regression line yielded by OLS of which the slope parameter is
the chain-ladder factor. The blue lines are derived by the optimization problem for the
vector α∗ as given in Table 6.1 where the slope parameter are the left and right spread,
respectively.

The fuzzy regression of the development year 0 to 1 , i.e. the column 0 to the first
column of the run-off triangle, is visualized in Figure 6.1a. As there are greater upward
deviations, the regression “tube” has a larger right spread (shown by the upper blue
straight line). This fact is captured by the asymmetric coefficient. For the earlier
development years the h-certain factors are chosen as zero. In this case, the blue lines
(for development years one to five) always pass through those data points which have
the maximal distance to the regression line derived by OLS. For later development
years another factor is chosen as e.g. α6 = 0.4. This results in larger spreads of the
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(a) Fuzzy regression of zero to first development year.
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(b) Fuzzy regression of first to second development year.
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(c) Fuzzy regression of second to third development year.

Figure 6.1: Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f0, ˆ̃f1 and ˆ̃f2.
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Transformed independent variable
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(a) Fuzzy regression of third to fourth development year.
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(b) Fuzzy regression of fourth to fifth development year.
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(c) Fuzzy regression of fifth to sixth development year.

Figure 6.2: Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f3, ˆ̃f4 and ˆ̃f5.
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Transformed independent variable
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(a) Fuzzy regression of sixth to seventh development year.
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(b) Fuzzy regression of seventh to eighth development year.
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(c) Fuzzy regression of eighth to ninth development year.

Figure 6.3: Illustration of regression lines for fuzzy chain-ladder factors ˆ̃f6, ˆ̃f7 and ˆ̃f8.
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144 6 Another Fuzzy Chain-Ladder Model

fuzzy coefficients which allow for a higher variability (cf. Figure 6.3b). As seen in
Table 6.2 the spreads decrease for increasing development years. Figure 6.3c shows the
regression “tube” for which the left and right spreads are yielded by extrapolation by
means of log-linear regression as there are too few data points.

Development years

0
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1
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1
.5

0 2 4 6 8

(a) Extrapolation of left spread.

Development years

0
.0

0
.5

1
.0

1
.5

0 2 4 6 8

(b) Extrapolation of right spread.

Figure 6.4: Left and right spreads as well as the fitted exponential functions by log-linear
regression.

The filled development triangle with the help of the fuzzy chain-ladder factors as given
in Table 6.2 is shown in Table 6.3. As in the previous Chapter 5 all cumulative claims
as well as the predicted cumulative claims are written down in three lines for each
specific accident and development year. The observed magnitudes are displayed with a
gray background whereas the predicted magnitudes are shown with a white one.

The estimated reserves ˆ̃Ri for accident years i, i ∈ {0, . . . , I}, are given in Table 6.4. For
increasing accident years the modes as well as the left and right spreads of the predicted
reserves are apparently rising. The aggregated reserve adds up to approximately 18.7
million with a left and right spread of approximately 10.7 million and approximately
16.8 million, respectively.

The reserves need to be specified as a crisp number. Therefore, Table 6.5 gives an
overview of the expected values for several choices of the “decision-maker risk parameter”
β, β ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. If one keeps in mind that the classical method and the
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development year j
ˆ̃Ci,j 0 1 2 3 4 5 6 7 8 9

Ĉ0,j 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
l̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0
r̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0

Ĉ1,j 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,719
l̂Ĉ1,j

0 0 0 0 0 0 0 0 0 68,019
r̂Ĉ1,j

0 0 0 0 0 0 0 0 0 42,374

Ĉ2,j 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,285,148 5,378,826
l̂Ĉ2,j

0 0 0 0 0 0 0 0 166,254 234,415
r̂Ĉ2,j

0 0 0 0 0 0 0 0 122,010 167,086

Ĉ3,j 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 4,835,458 5,205,637 5,297,906
l̂Ĉ3,j

0 0 0 0 0 0 0 103,238 271,399 339,071
r̂Ĉ3,j

0 0 0 0 0 0 0 51,255 176,627 222,474

Ĉ4,j 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,207,459 4,434,133 4,773,589 4,858,200
l̂Ĉ4,j

0 0 0 0 0 0 204,271 305,349 468,547 531,697
r̂Ĉ4,j

0 0 0 0 0 0 202,557 262,733 399,577 447,716

Ĉ5,j 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,074,999 4,426,546 4,665,023 5,022,155 5,111,171
l̂Ĉ5,j

0 0 0 0 0 247,211 470,407 584,765 767,710 835,519
r̂Ĉ5,j

0 0 0 0 0 389,046 656,058 748,180 939,990 1,003,969

Ĉ6,j 440,832 1,288,463 2,419,861 3,483,130 4,088,678 4,513,179 4,902,528 5,166,649 5,562,182 5,660,771
l̂Ĉ6,j

0 0 0 0 352,959 639,762 899,230 1,037,752 1,257,023 1,334,150
r̂Ĉ6,j

0 0 0 0 222,460 699,879 1,032,877 1,154,826 1,400,340 1,480,419

Ĉ7,j 359,480 1,421,128 2,864,498 4,174,756 4,900,545 5,409,337 5,875,997 6,192,562 6,666,635 6,784,799
l̂Ĉ7,j

0 0 0 513,072 973,323 1,337,358 1,667,479 1,852,008 2,140,782 2,236,385
r̂Ĉ7,j

0 0 0 728,647 1,168,492 1,929,386 2,479,615 2,706,543 3,134,909 3,268,265

Ĉ8,j 376,686 1,363,294 2,382,128 3,471,744 4,075,313 4,498,426 4,886,502 5,149,760 5,544,000 5,642,266
l̂Ĉ8,j

0 0 278,830 783,100 1,191,694 1,508,518 1,796,339 1,962,646 2,220,828 2,302,528
r̂Ĉ8,j

0 0 365,797 1,232,111 1,746,740 2,541,641 3,129,071 3,387,189 3,858,662 4,001,680

Ĉ9,j 344,014 1,200,818 2,098,228 3,057,984 3,589,620 3,962,307 4,304,132 4,536,015 4,883,270 4,969,825
l̂Ĉ9,j

0 318,697 737,287 1,318,296 1,723,773 2,027,685 2,304,640 2,473,791 2,733,010 2,808,846
r̂Ĉ9,j

0 370,639 1,069,280 2,364,107 3,121,408 4,152,715 4,935,346 5,304,448 5,955,093 6,146,665

Table 6.3: Filled run-off-triangle for α = (0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8).

reserves, they equal each other for β ≈ 0.389.

For a choice of the parameter K of K = 1 the uncertainty UncK( ˆ̃Ci,J | DI) of the
ultimate claims for all accident years given the observations DI is calculated and
displayed in Table 6.6. The aggregated uncertainty amounts up to approximately
13.7 million. Uncertainties for other choices of the parameter K can be derived by
multiplying by the constant factor.61

61As stated before, the constant K is not obligatory in the definition of fuzzy uncertainty (cf. p. 45).
Without any restrictions the constant K can be set to one. With the help of this constant different
approaches of decision-makers can be incorporated.

fuzzy one try to model different uncertainties but still likes to compare the aggregated

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



146 6 Another Fuzzy Chain-Ladder Model

accident- ˆ̃Ri = (R̂i, l̂R̂i
, r̂R̂i

)
year i R̂i l̂R̂i

r̂R̂i

0 0.00 0.00 0.00
1 94,633.81 68,019.12 42,373.78
2 469,511.29 234,415.09 167,086.40
3 709,637.82 339,070.76 222,474.12
4 984,888.64 531,697.41 447,716.23
5 1,419,459.46 835,518.82 1,003,969.45
6 2,177,640.62 1,334,149.99 1,480,419.03
7 3,920,301.01 2,236,385.01 3,268,264.96
8 4,278,972.26 2,302,528.34 4,001,679.81
9 4,625,810.69 2,808,845.71 6,146,664.83∑ 18,680,855.61 10,690,630.25 16,780,648.61

Table 6.4: Estimated reserves ˆ̃Ri for i = 0, . . . , I.

6.3.2 Comparison with FCL Method

This section deals with the comparison of the examples of the FCL method as presented
in Chapter 5 and the one proposed in this chapter. As a first obvious structural
difference the appearance of asymmetric fuzzy development factors can be mentioned.

Comparing Tables 6.2 and 5.2 shows that the total spreads of the development factors
in the FCL method is larger than in the AFCL one. For example, for the development
factor ˆ̃f1 the total spread is 4.981 in the FCL method versus 2.003 in the AFCL one.
Moreover, the support of the estimators in this chapter is not bounded below to one.

Likewise, this has an impact on the predictions of the ultimate claims. As these are
derived by successively multiplying the last observation of an accident year with the
estimated development factors the total spread of predictions of the ultimate claims
is smaller for the AFCL method. As an example the prediction of the ultimate claim
for accident year nine shall be considered for which the total spread is obviously the
largest because the most multiplications need to be conducted. Compared to the FCL
method the total spread of the ultimate claim for accident year nine can be reduced
from over 24 million to approximately 9 million (cf. Tables 6.3 and 5.3).

The reserves are calculated as difference of the prediction of the ultimate claims and
the last observations. Thus, the observation made above has an immediate influence on
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6.3 Example 147

accident- Eβ( ˆ̃Ri) chain-ladder
year i β = 0.1 β = 0.25 β = 0.5 β = 0.75 β = 0.9 reserve R̂i

0 0.00 0.00 0.00 0.00 0.00 0.00
1 66,143.90 74,423.37 88,222.48 102,021.59 110,301.06 94,633.81
2 372,378.82 402,491.43 452,679.12 502,866.80 532,979.42 469,511.29
3 568,179.68 610,295.55 680,488.66 750,681.77 792,797.63 709,637.82
4 768,010.62 841,466.64 963,893.34 1,086,320.05 1,159,776.07 984,888.64
5 1,093,674.46 1,231,636.08 1,461,572.12 1,691,508.15 1,829,469.77 1,419,459.46
6 1,651,294.08 1,862,386.75 2,214,207.88 2,566,029.01 2,777,121.69 2,177,640.62
7 3,077,341.00 3,490,189.75 4,178,271.00 4,866,352.25 5,279,200.99 3,920,301.01
8 3,442,918.50 3,915,734.11 4,703,760.13 5,491,786.15 5,964,601.76 4,278,972.26
9 3,669,163.37 4,340,826.66 5,460,265.47 6,579,704.29 7,251,367.58 4,625,810.69∑ 14,709,104.43 16,769,450.35 20,203,360.20 23,637,270.06 25,697,615.98 18,680,855.61

Table 6.5: Expected values of the reserves ˆ̃Ri (i = 0, . . . , I) for different choices of the
“decision-maker risk parameter” β and corresponding chain-ladder reserves
R̂i (i = 0, . . . , I).

accident- UncK( ˆ̃Ci,J | DI)
year i K = 1

0 0.00
1 55,196.45
2 200,750.75
3 280,772.44
4 489,706.82
5 919,744.14
6 1,407,284.51
7 2,752,324.99
8 3,152,104.08
9 4,477,755.27∑ 13,735,639.43

Table 6.6: Estimation uncertainty UncK( ˆ̃Ci,J | DI) for each accident year i, i = 0, . . . , I,
for a choice of K = 1.
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148 6 Another Fuzzy Chain-Ladder Model

the uncertainty of the predictions of the reserves which is reduced as well (cf. Tables 6.4
and 5.4). Especially the right spread of the aggregated reserve in the AFCL method is
by approximately 28 million lower than in the FCL method. Hence, with the help of
the AFCL method the actuary is able to describe a more precise picture of the situation
he/she evaluates as appropriate.

This also becomes apparent in the defuzzified reserves, i.e. their expected values, shown
in Tables 6.5 and 5.5. Whereas the expected value of the reserves is higher in the
AFCL-model for a choice of β = 0.1 it is lower for all other choices presented. The
differences are up to approximately 12 millions for a choice of β = 0.9. This means that
if the actuary is interested in a conservative prediction of the reserves (shown by the
high choice of β) the AFCL method indicates the actuary that already smaller reserves
compared to the FCL are sufficient. Contrastingly, the FCL method would lead to
higher reserves which could by costly for the insurer. This observation with the AFCL
method also runs through to the estimated uncertainties given in Tables 6.6 and 5.6.
For K = 1 the estimated uncertainties are higher in the FCL method for all accident
years. It results in a difference for the uncertainty of aggregated ultimate claims of
approximately 18 million.

6.4 Discussion

The model presented in this chapter shows another application of fuzzy methods to
the CL reserving method. To our knowledge the implementation of fuzzy regression
techniques is one of the rare publications which use linear optimization practices in
claims reserving. In comparison to the FCL method the asymmetric coefficients allow
to model a wide range of different claims development behaviors. It is possible to depict
a more differentiated assessment of the actuary. If the data points diverge only either
upward or downward (or with a strong trend in one direction) asymmetric spreads do
not necessarily lead to a large total spread. This results in the advantage that the
left spreads are not inevitably that large that the range of shown reserves has to go
down to zero. Even though in the FCL method small values of the reserves are only
assumed with small grades of membership this disadvantage can be circumvented. The
AFCL method can hence depict a more precise (in the sense that the spreads of the
reserves are more narrow) picture of the observed claims development behavior. In case
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6.4 Discussion 149

of smaller spreads – which we assume the common situation in comparison to the FCL
method – this reduces the uncertainty in the reserves. Of much greater significance is,
however, the much lower reserve a conservative actuary (represented by a choice of a
high parameter β) will set up according to the AFCL method in comparison to the
FCL method without changing his or her attitude to uncertainty.

In practice the actuary sometimes deals with the problem that the estimated deve-
lopment factors do not represent the whole scope of what he or she thinks is realistic.
Maybe, there are too less variations in the observations for a specific LoB. The presented
method allows to react in these situations by choosing an additional positive “margin”
αj in the vector α∗, i.e. αj > 0. As a consequence, the spreads of the estimated
AFCL-factors will increase and, thus, the spreads of the predicted reserves.

The usage of asymmetric coefficients is also a clear distinction from the models of
Andrés Sánchez and Terceño Gómez (2003) and Kerkez (2013a,b). This also cushions the
effect that the total spread is unnecessarily large. Furthermore, the introduced method
provides an opportunity to defuzzify the reserves and measure the uncertainty.

Although TFNs are fitted here according to the procedure, the model is not restricted
to them. The coefficients can be as well adapted to other representatives of the family of
L-R FNs. If the data does not justify the utilization of triangular membership functions
e.g. a Gaussian one (cf. Definition 2.19) can be also thinkable.
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7 | The Fuzzy Bornhuetter
Ferguson Method

This chapter is based on a joint work with Jochen Heberle (cf. Heberle and Thomas
2016).62

Firstly, a motivation for the fuzzy Bornhuetter Ferguson method is given in
Section 7.1. The model is described in Section 7.2. The chapter proceeds with a
deduction of the claims reserve in Section 7.3 and a quantification of the prediction
uncertainty for single and aggregated accident years in Section 7.4. An example of
the presented method is given in Section 7.5 and the chapter concludes with a critical
discussion in Section 7.6.

7.1 Motivation

The classical BF method is a purely computational claims reserving method. Purely
computational means that there is no underlying stochastic framework. The method
makes use of external information which can be given by expert knowledge, market
statistics, organizational data, reinsurance data, etc. Depending on the source of
information the data is likely to be vague or not. The more reliable the source is,
the more one can assume that the data is not vague. On the contrary, if the data is
influenced by subjective knowledge of an individual it might be assumed to be vague.
In classical computational or stochastic models vagueness is not modeled at all.

62Parts of this paper were presented at the 18th International Congress on Insurance: Mathematics &
Economics in Shanghai, China, 2014.
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152 7 The Fuzzy Bornhuetter Ferguson Method

The BF method is a popular claims reserving method and is presented in detail in
Section 4.4. A possibility to comprise vague information is given by the methodology
of fuzzy sets (cf. Chapter 2). We follow a similar approach as in the fuzzy chain-ladder
method (cf. Chapter 5 or Heberle and Thomas (2014)) and propose a method in which
all a priori information is modeled by triangular fuzzy numbers (cf. Definition 2.18) in
order to incorporate vagueness. Arithmetic operations with TFNs are easy to conduct
and TFNs can still map a large part of the actuary’s intuition of the uncertainty. Both
the a priori estimates for the ultimate claims and the claims development pattern
are modeled with TFNs. In the case that the parameters of the claims development
pattern are estimated with the help of the inverse of the chain-ladder factors (cf.
Equation (4.16)), one can also argue for the use of the theory of fuzzy sets as those
development factors might be adjusted retrospectively due to subjective judgment.

In Chapter 5 TFNs are applied to the CL method in the way that the development
factors are modeled as TFNs. Moreover, an estimator for the mode as well as for the
left and right spread are proposed and an attempt is made to quantify the uncertainty.
In contrast to the BF method the classical CL-method and the FCL model can not
utilize a priori information.

The aim of this chapter is to take into consideration both a priori and vague information.
Accordingly, the BF method is enhanced with fuzzy methods. It appears in the numerical
example that the FBF method in contrast to the FCL method can lead to results
in which the vagueness of the predicted reserve is considerably lower. Therefore, the
method may give the actuary a better intuition about the predicted reserves if a priori
information is available.

The starting point is the classical BF method as defined in Section 4.4. For the fuzzy
part we use TFNs as defined in Definition 2.18 and the secant approximation for the
fuzzy multiplication (cf. Equation (2.7)) and for the fuzzy inverse (cf. Equation (2.9)).
As defuzzification method the concept of an expected value of a TFN as defined in
Definition 2.38 is applied and as measure of fuzziness we use the uncertainty of a TFN
as defined in Definition 2.50.
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7.2 The Model 153

7.2 The Model

In this section the classical BF method is extended to a fuzzy Bornhuetter Ferguson
method with the help of fuzzy set theory. In particular, FNs are applied, i.e. we
assume that both the a priori information for the ultimate claims νi, i ∈ {0, . . . , I},
and the parameters γj, j ∈ {0, . . . , J}, are TFNs. Therefore, these can be written as
ν̃i = (νi, lνi, rνi) and γ̃j = (γj, lγj , rγj ), respectively. We aim to derive predictors for the
ultimate claims C̃i,J , i ∈ {1, . . . , I}, for the outstanding loss liabilities for single accident
years R̃i, i ∈ {1, . . . , I} as well as for aggregated accident years R̃ and estimators for the
uncertainty of the predicted ultimate claims for single accident years UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)
,

i ∈ {1, . . . , I} and for aggregated accident years UncK

(
I⊕

i=1
ˆ̃CFBF

i,J

∣∣∣∣∣ DI

)
.

As a clarification, the FBF method models fuzziness and not randomness. As the a
priori information often derives from subjective knowledge in form of expert knowledge
fuzziness is also present in claims reserving.
Thus, we make the following model assumptions:

Model Assumptions 7.1 (Fuzzy Bornhuetter Ferguson (FBF) model)
For the fuzzy Bornhuetter Ferguson model we assume:

• There exist positive TFNs ν̃i, i ∈ {0, . . . , I}, and also positive TFNs γ̃j,
j ∈ {0, . . . , J}, such that

C̃i,0 = γ̃0 ⊗ ν̃i (7.1)
C̃i,j+k = C̃i,j ⊕ (γ̃j+k � γ̃j) ⊗ ν̃i (7.2)

holds true for all i = 0, . . . , I, j = 0, . . . , J − 1 and k = 1, . . . , J − j.

• The sums of incremental claims
I−j−1⊕

i=0
X̃i,j+1 are non-negative with X̃i,j+1 :=

C̃i,j+1 � C̃i,j for all j ∈ {0, . . . , J − 1}.

Remarks 7.2
• Since the real numbers can be embedded in the set of fuzzy numbers, i.e. every

real number a ∈ R can be denoted as a TFN ã = (a, 0, 0), observable cumulative
claims (i + j ≤ I) can be written as C̃i,j = (Ci,j, 0, 0).
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154 7 The Fuzzy Bornhuetter Ferguson Method

• There is no need for an error term in Equations (7.1) and (7.2) as the uncertainty
is included in the fuzzy numbers in this model.

• The sum of incremental claims is assumed to be non-negative due to technical
reasons (cf. the choice of the following Estimator 7.3). However, individual
incremental claims can be either negative or positive so that adjustments of the
reserves in both directions are possible. This assumption is generally but not
necessarily fulfilled in practice.

On the one hand the a priori information for the estimates of the ultimate claims
ν̃i, i ∈ {0, . . . , I}, and the estimates of the parameters of the claims development
pattern can be both given externally, or on the other hand the parameters of the claims
development pattern can be estimated with the help of development factors. The latter
case leads to an estimator for the parameters γ̃j, j ∈ {0, . . . , J} with γ̃J = (1, 0, 0) as
given in the following Estimator 7.3. With the help of these estimators the ultimate
claims C̃i,J , i ∈ {1, . . . , I} can be predicted by

ˆ̃Ci,J = Ci,I−i ⊕
(
ˆ̃γJ � ˆ̃γI−i

)
⊗ ˆ̃νi. (7.3)

In the FBF method the parameters are assumed to be TFNs such that we need
estimators for the mode as well as for the left and right spreads. The more vague the
available data is, the wider spreads an actuary will choose. Likewise, he/she will opt
for a narrower width in the opposite situation.

In practice actuaries tend to modify the estimated parameters in the claims development
pattern due to subjective judgment. With the help of the FCL estimators as given
in Estimator 5.5 we choose Estimator 7.3 as motivated by Equation (4.16). Hence,
estimators for the mode and both spreads are given in Equation (7.4). In this case, the
choice of the estimator does not necessarily lead to symmetric spreads.

Estimator 7.3 (FBF Estimator for the TFNs γ̃j)
The TFNs γ̃j = (γj, lγj , rγj ), j = 0, . . . , J , introduced in Model Assumptions 7.1 can be
estimated by ˆ̃γj = (γ̂j, l̂γ̂j , r̂γ̂j ) with

ˆ̃γj =
J−1⊗
k=j

ˆ̃f−1
k
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for j = 0, . . . , J − 1 and

ˆ̃γJ = (1, 0, 0). (7.4)

Here, ˆ̃fk =
(
f̂k, l̂f̂k

, r̂f̂k

)
is an estimator for the fuzzy chain-ladder factor f̃k = (fk, lfk

, rfk
),

k ∈ {0, . . . , J − 1}, and is given by

f̂k =

I−k−1∑
i=0

Ci,k+1

I−k−1∑
i=0

Ci,k

and

l̂f̂k
= r̂f̂k

=

I−k−1∑
i=0

Xi,k+1

I−k−1∑
i=0

Ci,k

where Xi,k+1 = Ci,k+1 − Ci,k for i = 0, . . . , I and k = 0, . . . , J − 1 (cf. Estimator 5.5).

Remarks 7.4
• The FCL factors f̃k = (fk, lfk

, rfk
), k ∈ {0, . . . , J − 1}, have been introduced in

Estimator 5.5 and in Heberle and Thomas (2014). Here, the sum of incremental
claims are assumed to be non-negative (cf. Model Assumptions 7.1) due to
technical reasons of the choice of the FCL-estimators.

• Generally, the FBF estimates ˆ̃γj are not symmetric (except for ˆ̃γJ = (1, 0, 0)), even
though the FCL estimates ˆ̃fk are so, i.e. l̂f̂k

= r̂f̂k
holds true for all k = 0, . . . , J −1.

• Similarly to the FCL model the total spread of ˆ̃γj given by l̂γ̂j + r̂γ̂j can also be
interpreted as “uncertainty” of the FN γ̃j.

• The FCL estimators ˆ̃fk, k ∈ {0, . . . , J − 1}, are TFNs which are bounded below
to 1 (cf. Remarks 5.6). Obviously, this does not hold true in the FBF model for ˆ̃γj.
However, this is not necessary and it can be shown that the left-border γ̂j − l̂γ̂j of
the support for j ∈ {0, . . . , J} is not smaller than zero.
We relax the conditions in the way that we assume that the support of the
considered TFNs, i.e. of the FCL factors, is not bounded below to one but to zero.
We show that the support of the estimators ˆ̃γj is bounded below to zero even in
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156 7 The Fuzzy Bornhuetter Ferguson Method

this case. Therefore, let ã = (a, la, ra) and b̃ = (b, lb, rb) be non-negative TFNs, i.e.
a − la ≥ 0 and b − lb ≥ 0. Then, we have for the product of the inverses of those
two TFNs:

c̃ := (c, lc, rc) := ã−1 ⊗ b̃−1

=
(1

a
,

ra

a(a + ra) ,
la

a(a − la)

)
⊗
(1

b
,

rb

b(b + rb)
,

lb
b(b − lb)

)

=
( 1

ab
,

rb

ab(b + rb)
+ ra

ab(a + ra) − rarb

ab(a + ra)(b + rb)
,

lb
ab(b − lb)

+ la
ab(a − la) + lalb

ab(a − la)(b − lb)

)

Here we get for the lower bound of the support

c − lc = 1
ab

−
(

rb

ab(b + rb)
+ ra

ab(a + ra) − rarb

ab(a + ra)(b + rb)

)

= 1
ab

(
1 − rb

b + rb
− ra

a + ra
+ rarb

(a + ra)(b + rb)

)

= 1
ab

(a + ra)(b + rb) − rb(a + ra) − ra(b + rb) + rarb

(a + ra)(b + rb)

= 1
ab

ab

(a + ra)(b + rb)

= 1
(a + ra)(b + rb)

> 0

As the support of the resulting product c̃ is also bounded below to zero we yield
the proposition by induction.

• In the FCL model the expected values E0.5( ˆ̃fj) for j = 0, . . . , J −1 and a parameter
β = 0.5 equal the classical CL estimators (cf. Remarks 5.6). Here, we do not yield
an equivalent result for ˆ̃γj as the fuzzy product and fuzzy inverse do not maintain
the symmetric structure of the FCL estimators ˆ̃fj.

7.3 Claims Reserves

The goal of the FBF method is to yield a predictor for the outstanding loss liabilities
with the help of fuzzy methods. In Equation (7.3) a predictor for cumulative claims for
accident years i = 1, . . . , I is given and used to derive a predictor for the outstanding
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loss liabilities for single accident years. The claims reserves R̃i, i ∈ {1, . . . , I}, are given
by

R̃i = C̃i,J � C̃i,I−i (7.5)

where C̃i,I−i is observable, i.e. C̃i,I−i = (Ci,I−i, 0, 0). At time t = I only the observations
DI are observable so that the ultimate claims C̃i,J , i ∈ {1, . . . , I}, are unobservable.
Hence, the claims reserves for single accident years need to be predicted. By substituting
the quantities in Equation (7.5) by their estimates we yield a predictor for the claims
reserves, i.e.

ˆ̃Ri = ˆ̃Ci,J � C̃i,I−i, i = 1, . . . , I. (7.6)

For a given set of observations DI the ultimate claims ˆ̃Ci,J for accident year i = 1, . . . , I

can be presented as

ˆ̃Ci,J = Ci,I−i ⊕
(
(1, 0, 0) � ˆ̃γI−i

)
⊗ ˆ̃νi

(cf. Equation (7.3)). Thus, we can identify the predictor given in Equation (7.6) by

ˆ̃Ri = ˆ̃Ci,J � C̃i,I−i

= Ci,I−i ⊕
(
(1, 0, 0) � ˆ̃γI−i

)
⊗ ˆ̃νi � C̃i,I−i

=
(
(1, 0, 0) � ˆ̃γI−i

)
⊗ ˆ̃νi.

We remark that since at time t = I the cumulative claim C̃i,I−i is observable and
therefore crisp, we do not yield a fuzzy zero but a crisp zero in the last above equation.

7.4 Prediction Uncertainty

Actuaries are not only interested in the prediction of the outstanding loss liabilities but
also in the prediction’s accuracy. Therefore, we derive an estimator for the ultimate claim
uncertainty in Section 7.4.1 as well as for aggregated accident years in Section 7.4.2.
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158 7 The Fuzzy Bornhuetter Ferguson Method

7.4.1 Single Accident Years

In classical reserving methods the prediction uncertainty is often measured with the
mean square error of prediction (MSEP) – an approach which cannot be applied
here since we are dealing with fuzzy methods. Hence, we use a similar method as in
Section 5.4.1 which makes use of Definition 2.50. An estimator for the ultimate claim
uncertainty is yielded as given in Estimator 7.5.

Estimator 7.5 (Ultimate claim uncertainty)
Given the observations DI and a scalar K ∈ R+, the uncertainty of the ultimate claim
ˆ̃Ci,J for accident year i ∈ {1, . . . , I} in the FBF model can be represented as

UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)
= 1

2K
(

(1 − γ̂I−i)
(
l̂ν̂i + r̂ν̂i

)
+
(
l̂γ̂I−i

+ r̂γ̂I−i

)
ν̂i

+ l̂γ̂I−i
r̂ν̂i − r̂γ̂I−i

l̂ν̂i

)
.

Proof. Assuming that the observations DI are given we can state the ultimate claims
ˆ̃Ci,J for accident years i ∈ {1, . . . , I} in the following way:

ˆ̃Ci,J = C̃i,I−i ⊕
(
(1, 0, 0) � ˆ̃γI−i

)
⊗ ˆ̃νi

= (Ci,I−i, 0, 0) ⊕
(
(1, 0, 0) �

(
γ̂I−i, l̂γ̂I−i

, r̂γ̂I−i

))
⊗
(
ν̂i, l̂ν̂i, r̂ν̂i

)
= (Ci,I−i, 0, 0) ⊕

(
1 − γ̂I−i, r̂γ̂I−i

, l̂γ̂I−i

)
⊗
(
ν̂i, l̂ν̂i, r̂ν̂i

)
= (Ci,I−i, 0, 0) ⊕

(
(1 − γ̂I−i)ν̂i, (1 − γ̂I−i)l̂ν̂i + ν̂ir̂γ̂I−i

− r̂γ̂I−i
l̂ν̂i,

(1 − γ̂I−i)r̂ν̂i + ν̂il̂γ̂I−i
+ l̂γ̂I−i

r̂ν̂i

)
=
(
Ci,I−i + (1 − γ̂I−i) ν̂i, (1 − γ̂I−i) l̂ν̂i + r̂γ̂I−i

ν̂i − r̂γ̂I−i
l̂ν̂i,

(1 − γ̂I−i) r̂ν̂i + l̂γ̂I−i
ν̂i + l̂γ̂I−i

r̂ν̂i

) (7.7)

We can derive the uncertainty UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)
by applying Definition 2.50 to the

representation of the ultimate claim shown in Equation (7.7).

UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)
= 1

2K
(

(1 − γ̂I−i) l̂ν̂i + r̂γ̂I−i
ν̂i − r̂γ̂I−i

l̂ν̂i + (1 − γ̂I−i) r̂ν̂i

+ l̂γ̂I−i
ν̂i + l̂γ̂I−i

r̂ν̂i

)
= 1

2K
(

(1 − γ̂I−i)
(
l̂ν̂i + r̂ν̂i

)
+
(
l̂γ̂I−i

+ r̂γ̂I−i

)
ν̂i

+ l̂γ̂I−i
r̂ν̂i − r̂γ̂I−i

l̂ν̂i

)
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With help of Estimator 7.5 a representation for the ultimate claim uncertainty for
aggregated accident years is deduced in the following section.

7.4.2 Aggregated Accident Years

The concern does not only lie in the prediction uncertainty for single accident years
but also in the aggregated ones. Therefore, we derive an estimator for the prediction
uncertainty of the aggregated ultimate claim

I⊕
i=1

ˆ̃Ci,J given the observations DI . The
aggregated ultimate claim can be perceived as the sum of the individual ultimate claims,
i.e.

I⊕
i=1

ˆ̃Ci,J =
I⊕

i=1

(
(Ci,I−i, 0, 0) ⊕

(
(1, 0, 0) � ˆ̃γI−i

)
⊗ ˆ̃νi

)

=
I⊕

i=1

(
Ci,I−i + (1 − γ̂I−i) ν̂i, (1 − γ̂I−i) l̂ν̂i + r̂γ̂I−i

ν̂i − r̂γ̂I−i
l̂ν̂i,

(1 − γ̂I−i) r̂ν̂i + l̂γ̂I−i
ν̂i + l̂γ̂I−i

r̂ν̂i

)
, (7.8)

That is why we can immediately state an estimator for the uncertainty of the aggregated
ultimate claims as given in Estimator 7.6.

Estimator 7.6 (Uncertainty of the aggregated ultimate claims)
Given the observations DI and a parameter K ∈ R+, the uncertainty of the aggregated

ultimate claims
I⊕

i=1
ˆ̃Ci,J in the FBF model can be represented as

UncK

⎛⎝ I⊕
i=1

ˆ̃CFBF
i,J

∣∣∣∣∣∣ DI

⎞⎠ =
I∑

i=1
UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)
. (7.9)

Proof. Based on Equation (7.8) we compute the uncertainty with the help of Defini-
tion 2.50 and Estimator 7.5:

UncK

⎛⎝ I⊕
i=1

ˆ̃CFBF
i,J

∣∣∣∣∣∣ DI

⎞⎠ = UncK

( I⊕
i=1

(
Ci,I−i + (1 − γ̂I−i) ν̂i,

(1 − γ̂I−i) l̂ν̂i + r̂γ̂I−i
ν̂i − r̂γ̂I−i

l̂ν̂i,

(1 − γ̂I−i) r̂ν̂i + l̂γ̂I−i
ν̂i + l̂γ̂I−i

r̂ν̂i

))

= UncK

( I∑
i=1

(Ci,I−i + (1 − γ̂I−i) ν̂i) ,
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I∑
i=1

(
(1 − γ̂I−i) l̂ν̂i + r̂γ̂I−i

ν̂i − r̂γ̂I−i
l̂ν̂i

)
,

I∑
i=1

(
(1 − γ̂I−i) r̂ν̂i + l̂γ̂I−i

ν̂i + l̂γ̂I−i
r̂ν̂i

) )

=
I∑

i=1

1
2K

(
(1 − γ̂I−i)

(
l̂ν̂i + r̂ν̂i

)
+
(
l̂γ̂I−i

+ r̂γ̂I−i

)
ν̂i

+ l̂γ̂I−i
r̂ν̂i − r̂γ̂I−i

l̂ν̂i

)
=

I∑
i=1

UncK

( ˆ̃CFBF
i,J

∣∣∣∣ DI

)

Remark 7.7
In comparison to the MSEP for aggregated accident years in classical reserving methods
there are no covariance terms in Equation (7.9). In fact, the uncertainties of different
accident years cannot offset each other. One opportunity to model dependencies among
different accident years as well would be to go over to the theory of fuzzy random
variables.

7.5 Example

In the following we apply the FBF method to a given run-off triangle. We consider
the paid run-off triangle as given in Dahms (2008, p. 15) which is shown in Table 7.1.
As a priori estimates we use the last observed diagonal in the incurred run-off triangle
also given in Dahms (2008, p. 15). This last diagonal can be found again in the first
column in Table 7.2. We like to keep in mind that the example presented in Dahms
(2008) regards randomness whereas fuzziness is addressed here. Thus, the results can
not be compared.

The FBF method asks for fuzzy a priori estimates, that is why we assume that the
given information consists of fuzzy and not crisp values. In this way, vagueness is added.
The a priori estimates are given in Table 7.2.

The a priori information often originates from expert knowledge and the spreads need
to be chosen by the actuary. The actuary will choose the spreads under different
considerations: On the one hand vagueness rises the more values for a given accident
year need to be predicted (cf. Model Assumptions 7.1 and Estimator 7.3), on the other
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accident development year j
year i 0 1 2 3 4 5 6 7 8 9

0 1,216,632 1,347,072 1,786,877 2,281,606 2,656,224 2,909,307 3,283,388 3,587,549 3,754,403 3,921,258
1 798,924 1,051,912 1,215,785 1,349,939 1,655,312 1,926,210 2,132,833 2,287,311 2,567,056
2 1,115,636 1,387,387 1,930,867 2,177,002 2,513,171 2,931,930 3,047,368 3,182,511
3 1,052,161 1,321,206 1,700,132 1,971,303 2,298,349 2,645,113 3,003,425
4 808,864 1,029,523 1,229,626 1,590,338 1,842,662 2,150,351
5 1,016,862 1,251,420 1,698,052 2,105,143 2,385,339
6 948,312 1,108,791 1,315,524 1,487,577
7 917,530 1,082,426 1,484,405
8 1,001,238 1,376,124
9 841,930

Table 7.1: Observed cumulative claims payments Ci,j.

i νi lνi rνi

0 3,921,258 0 0
1 2,919,955 100,000 100,000
2 3,257,827 200,000 200,000
3 3,413,921 300,000 300,000
4 3,298,998 400,000 400,000
5 3,702,427 500,000 500,000
6 3,704,113 600,000 600,000
7 4,408,097 700,000 700,000
8 4,132,757 800,000 800,000
9 3,045,376 900,000 900,000

Table 7.2: Given a priori information ν̃i = (νi, lνi, rνi).

hand large absolute values can accommodate a higher vagueness. The left and right
spreads of the a priori information given in Table 7.2 are increasing for later accident
years i ∈ {1, . . . , 9}. The way of assigning a membership function to the given a priori
estimates is just an example. It is driven by the fact that vagueness rises the more
values need to be predicted. For simplicity’s sake we assume the membership functions
to be symmetric. For accident year zero (i = 0) no ultimate claim needs to be predicted
so that we assign no spread, i.e. for i = 0 the a priori information is a crisp number.

In Table 7.3 the estimated FCL factors ˆ̃fj =
(
f̂j, l̂f̂j

, r̂f̂j

)
, j ∈ {0, . . . , J − 1} as well

as the estimated parameters ˆ̃γ =
(
γ̂j, l̂γ̂j , r̂γ̂j

)
, j ∈ {0, . . . , J}, of the FBF method are

given. Both are written down in three lines, in the first line the mode and in the second
and third line, the left and right spread, respectively, are given.
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development year j

0 1 2 3 4 5 6 7 8 9

f̂j 1.2343 1.2904 1.1918 1.1635 1.1457 1.1013 1.0702 1.0760 1.0444 –
l̂f̂j

0.2343 0.2904 0.1918 0.1635 0.1457 0.1013 0.0702 0.0760 0.0444 –
r̂f̂j

0.2343 0.2904 0.1918 0.1635 0.1457 0.1013 0.0702 0.0760 0.0444 –

γ̂j 0.2984 0.3683 0.4753 0.5664 0.6590 0.7550 0.8315 0.8898 0.9574 1
l̂γ̂j 0.1928 0.2132 0.2301 0.2272 0.2088 0.1737 0.1324 0.0926 0.0391 0
r̂γ̂j 0.7016 0.6317 0.5247 0.4336 0.3410 0.2450 0.1685 0.1102 0.0426 0

Table 7.3: Estimated FCL factors ˆ̃fj and parameters ˆ̃γj of the FBF method for j =
0, . . . , J − 1. The parameter for j = J is given by ˆ̃γJ = (1, 0, 0).

tion (7.2). The development triangle with predicted lower right part is shown in
Table 7.4.

In Table 7.5 the predicted FBF reserves ˆ̃RFBF
i , i ∈ {0, . . . , I}, as well as the aggregated

FBF reserve ˆ̃RFBF are presented on the right hand side. On the left side, the FCL
reserves ˆ̃RFCL

i , i ∈ {0, . . . , I}, and the aggregated FCL reserve ˆ̃RFCL are shown. In the
first column for each procedure the mode of the fuzzy reserve is given and in the second
and third column the left and right spread, respectively, are written down. The support
of the fuzzy reserves ranges from R̂i − l̂R̂i

to R̂i + r̂R̂i
. Thus, reserves for both methods

can amount down to zero as the difference of the mode and the left spread yields zero
for all accident years. However, small values for the reserve only have a little grade
of membership as the slope of the left part of the membership function is low. The
modes of the FBF reserves are higher except for accident years two and three. The
same can be observed for the left spreads. The right spreads of the FBF reserves are
much narrower with an exception for accident year one. The total right spread of the
aggregated FBF reserve is only about 45% of the total right spread of the FCL reserve.
This is due to the underlying arithmetic operations: In contrast to the FBF method we
yield the FCL reserve by various fuzzy multiplications which lead to larger spreads.

The expected values of the FBF reserves ˆ̃RFBF
i , i ∈ {0, . . . , I}, for different values of the

decision-maker risk parameter and the uncertainty of these predictions are presented in
Table 7.6. As one might expect, the expected aggregated reserve is higher, the more
conservative the actuary is in the sense of a high parameter β. The reason is that
the expected value puts more weight on the right spread, the higher the parameter

By means of the calculated factors the run-off triangle can be filled up using Equa-
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development year j

ˆ̃Ci,j 0 1 2 3 4 5 6 7 8 9

Ĉ0,j 1,216,632 1,347,072 1,786,877 2,281,606 2,656,224 2,909,307 3,283,388 3,587,549 3,754,403 3,921,258
l̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0
r̂Ĉ0,j

0 0 0 0 0 0 0 0 0 0

Ĉ1,j 798,924 1,051,912 1,215,785 1,349,939 1,655,312 1,926,210 2,132,833 2,287,311 2,567,056 2,691,304
l̂Ĉ1,j

0 0 0 0 0 0 0 0 0 124,248
r̂Ĉ1,j

0 0 0 0 0 0 0 0 0 122,268

Ĉ2,j 1,115,636 1,387,387 1,930,867 2,177,002 2,513,171 2,931,930 3,047,368 3,182,511 3,402,877 3,541,502
l̂Ĉ2,j

0 0 0 0 0 0 0 0 469,974 358,990
r̂Ĉ2,j

0 0 0 0 0 0 0 0 480,982 342,357

Ĉ3,j 1,052,161 1,321,206 1,700,132 1,971,303 2,298,349 2,645,113 3,003,425 3,202,572 3,433,496 3,578,763
l̂Ĉ3,j

0 0 0 0 0 0 0 830,740 684,258 575,338
r̂Ĉ3,j

0 0 0 0 0 0 0 918,446 687,522 542,255

Ĉ4,j 808,864 1,029,523 1,229,626 1,590,338 1,842,662 2,150,351 2,402,587 2,595,030 2,818,181 2,958,558
l̂Ĉ4,j

0 0 0 0 0 0 1,124,603 1,032,680 904,473 808,206
r̂Ĉ4,j

0 0 0 0 0 0 1,296,392 1,103,948 880,798 740,421

Ĉ5,j 1,016,862 1,251,420 1,698,052 2,105,143 2,385,339 2,740,732 3,023,814 3,239,791 3,490,230 3,647,773
l̂Ĉ5,j

0 0 0 0 0 1,696,126 1,602,149 1,503,996 1,366,302 1,262,434
r̂Ĉ5,j

0 0 0 0 0 1,955,127 1,672,045 1,456,068 1,205,628 1,048,085

Ĉ6,j 948,312 1,108,791 1,315,524 1,487,577 1,830,534 2,186,089 2,469,300 2,685,375 2,935,928 3,093,543
l̂Ĉ6,j

0 0 0 0 2,049,617 1,998,085 1,915,813 1,827,402 1,701,737 1,605,966
r̂Ĉ6,j

0 0 0 0 2,500,861 2,145,306 1,862,096 1,646,020 1,395,467 1,237,852

Ĉ7,j 917,530 1,082,426 1,484,405 1,886,218 2,294,356 2,717,486 3,054,522 3,311,663 3,609,835 3,797,406
l̂Ĉ7,j

0 0 0 2,851,831 2,848,685 2,785,518 2,685,958 2,579,367 2,428,119 2,313,000
r̂Ĉ7,j

0 0 0 3,453,681 3,045,544 2,622,414 2,285,378 2,028,236 1,730,064 1,542,493

Ĉ8,j 1,001,238 1,376,124 1,818,115 2,194,830 2,577,475 2,974,175 3,290,159 3,531,238 3,810,786 3,986,641
l̂Ĉ8,j

0 0 2,957,493 3,020,729 3,033,720 2,993,348 2,916,928 2,831,094 2,706,712 2,610,516
r̂Ĉ8,j

0 0 3,725,537 3,348,822 2,966,178 2,569,478 2,253,493 2,012,413 1,732,866 1,557,011

Ĉ9,j 841,930 1,054,861 1,380,559 1,658,155 1,940,121 2,232,444 2,465,289 2,642,937 2,848,932 2,978,517
l̂Ĉ9,j

0 2,025,490 2,157,918 2,233,720 2,277,732 2,288,701 2,268,946 2,236,152 2,182,128 2,136,587
r̂Ĉ9,j

0 3,315,686 2,989,988 2,712,392 2,430,426 2,138,103 1,905,258 1,727,609 1,521,614 1,392,029

Table 7.4: Filled run-off triangle with observed cumulative claims Ci,j (i + j ≤ I) and
predicted cumulative claims ˆ̃Ci,j (i + j > I).
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accident FCL reserves ˆ̃RFCL
i FBF reserves ˆ̃RFBF

i

year i R̂i l̂R̂i
r̂R̂i

R̂i l̂R̂i
r̂R̂i

0 0.0 0.0 0.0 0.0 0.0 0.0
1 114,086.3 114,086.3 114,086.3 124,248.2 124,248.2 122,268.8
2 394,120.9 394,120.9 415,624.9 358,990.7 358,990.7 342,357.1
3 608,749.5 608,749.5 684,079.9 575,338.4 575,338.4 542,255.1
4 697,741.6 697,741.6 850,872.8 808,206.9 808,206.9 740,421.2
5 1,234,156.7 1,234,156.7 1,678,973.3 1,262,434.2 1,262,434.2 1,048,085.3
6 1,138,623.3 1,138,623.3 1,758,326.0 1,605,966.4 1,605,966.4 1,237,852.2
7 1,638,793.4 1,638,793.4 2,930,186.1 2,313,000.8 2,313,000.8 1,542,493.7
8 2,359,938.9 2,359,938.9 5,134,598.4 2,610,516.5 2,610,516.5 1,557,011.7
9 1,979,400.9 1,979,400.9 5,149,050.9 2,136,587.4 2,136,587.4 1,392,029.4∑ 10,165,611.6 10,165,611.6 18,715,798.7 11,795,289.5 11,795,289.5 8,524,774.5

Table 7.5: Predicted FCL and FBF reserves for individual accident years i ∈ {0, . . . , I}
and for aggregated accident years.

parameter FCL FBF

β Eβ( ˆ̃RFCL) Eβ( ˆ̃RFBF)
0.1 6,526,876 6,913,648
0.25 8,692,982 8,437,653
0.5 12,303,158 10,977,661
0.75 15,913,335 13,517,669
0.9 18,079,440 15,041,674

K UncK

(
I⊕

i=1
ˆ̃CFCL

i,J

∣∣∣∣∣ DI

)
UncK

(
I⊕

i=1
ˆ̃CFBF

i,J

∣∣∣∣∣ DI

)
1 14,440,705 10,160,032

Table 7.6: Expected reserves for different choices of the “decision-maker risk parameter”
β ∈ [0, 1] and the uncertainty of the predicted aggregated ultimate claims.
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β. Furthermore, beginning at least at β = 0.25 the FBF method leads to smaller
expected reserves (than with the FCL method) for this example. Apparently, the total
spread of the aggregated reserve for the FBF method is narrower and, therefore, the
corresponding uncertainty is lower (see Table 7.6). Hence, the presented method leads
to more stable results in this example. This allows the conservative actuary (choice of
a higher β) to choose a more optimistic prediction of the reserves than with the FCL
method.

7.6 Discussion

Fuzzy set theory offers means to model uncertainty, but no stochastic randomness.
Since a priori information can originate from expert knowledge, market statistics,
organizational data, etc. they can be tainted with vagueness. The presented FBF
method does not only provide an opportunity to model the a priori estimates for the
ultimate claims, but also to model uncertainties with the parameters in the claims
development pattern.

Here, we take a similar approach as for the FCL method (cf. Chapter 5) which also
offers a possibility to model uncertainty in a claims reserving context. In this connection
the following advantages of the FBF method over the FCL model can be highlighted. If
a priori information is available, it should be used and the presented FBF method offers
an opportunity to implement it. Moreover, the predictions are more precise due to the
underlying arithmetic operations. A disadvantage of the FCL method is the rapidly
rising prediction uncertainty for later accident years. This drawback can be overcome
here as the presented method uses more fuzzy sums and less fuzzy multiplications which
leads to a slighter increase in the spreads.

This chapter deals with modeling a priori information. However, a different approach
as e.g. with the Bayes approach is conducted here. An advantage lies in the fact that
the FBF method is easy to implement and e.g. no a priori distribution is needed.

In contrast to the FCL method the symmetry of the parameters cannot be maintained.
The presented methods only deal with the modeling of uncertainty. In order to also map
stochastic randomness one needs to go over to fuzzy random variables (cf. Section 2.4).
Then, both sources of uncertainty, vagueness and randomness, can be implemented.
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166 7 The Fuzzy Bornhuetter Ferguson Method

Moreover, dependencies within different accident or calendar years could be considered.
However, the presented FBF method offers a first step in modeling vagueness in a BF
reserving context.

In this method TFNs are utilized as the computational effort is low and they are easy
to interpret. Of course, there might be situations in which other shapes of membership
functions are more suitable as e.g. Gaussian or exponential ones (cf. Definitions 2.19
and 2.21).
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8 | Conclusion

Estimating outstanding loss liabilities is one of the crucial tasks of an actuary in a
non-life insurance company. As it amounts to a huge position on the liabilities side of
the balance sheet of an insurance company neither overestimating nor underestimating
is reasonable. If the reserve is too low, claims might not be paid. Moreover, reserves
serve as a basis for pricing calculations. In the case of low premiums due to the reserve
calculations, it might result in non-profitable business. Concerning too high reserves,
this can lead to a lower stated profit and, thus, the equity base is smaller. Taking into
account pricing considerations, higher reserves can cause higher premiums, especially
in long-tail LoBs, and, therefore, maybe result in less new business for the insurance
company. Therefore, over the last decades a number of stochastic methods in the field
of claims reserving have been evolved. Beyond that, methods incorporating credibility
and Bayes theory, Bootstrapping methods, Kalman filter, etc. exist. These methods –
except for the purely computational ones – take into account stochastic randomness.
What has been left out in these considerations is the uncertainty due to vagueness
which can arise e.g. due to subjective judgment of the reserving actuary. A means to
model vagueness is given by fuzzy set theory. The object of this work is the presentation
of applications in claims reserving modeling vagueness. A systematic approach with the
help of fuzzy methods is shown to model intuitive decisions by an actuary or methods
involving expert knowledge. In the latter case not only a crisp specification but a range
of possible values can be depicted.

As a first step a general introduction to the topic is given (cf. Chapter 1). Motives
and reasons for the utilizations are mentioned and possible gaps in the current state of
literature are pointed out. Fuzzy methods serve as a means to model vagueness which
can comprise e.g. subjective judgment, linguistic inaccuracies and data tainted with
errors. The necessary definitions and concepts are provided in Chapter 2.
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The present work provides an overview of publications of fuzzy methods in actuarial
science (cf. Chapter 3 and Section 4.6). A special emphasis is put on applications in
the field of claims reserving. With this particular survey as well as a discussion of the
advantages and disadvantages of those applications – to our best knowledge – a first
structured review is accomplished.

Proceeding from the observation that development factors derived with the CL method
might be altered at a later stage by an actuary the FCL model in Chapter 5 is set
up. When comparing with earlier publications in this field, it distinguishes by its use
of fuzzy numbers and arithmetic instead of fuzzy regression. Since claims reserving
methods are not all regression models by nature this is an obvious enhancement of the
current literature. In accordance to the classical CL-model assumptions are made. In
comparison to the stochastic framework, estimators for the mode and both spreads
are needed. This is directly related to the prediction of the ultimate claims which are
deduced from successively fuzzy multiplying the last observation with the estimated
fuzzy development factors. Subsequently, predictions for the outstanding loss liabilities
are derived and defuzzification methods serve as a means to determine a crisp reserve.
A real number is required since the reserve is a figure in the balance sheet. Regulatory
frameworks ask for a crisp determination and not the specification of a range of values.
Unlike previous articles concerning fuzzy claims reserving the prediction uncertainty is
quantified.

Taking up an idea from the current literature a fuzzy regression model is used for
predicting reserves in the context of the CL-model (cf. Chapter 6). Its representation as
a weighted multiple linear regression model is used to apply the fuzzy regression model
by Ishibuchi and Nii (2001). A regression “tube” is derived which contains all data
points. The width of the tube can be adjusted subjectively by the assessment of the
actuary. Reasons for this can be the validation of the tube in the sense that the “usual”
(in the view of the actuary) scope of values is covered or the reliability of the data.
Besides the statement of the fuzzy reserving method, predictions for the ultimate claim
are derived. As this procedure as well as the FCL model utilize the CL method the
results of an numerical example are critically compared with regard to the predictions
of the ultimate claims and reserves as well as of the prediction uncertainty.

The third presented approach ties in with the classical BF method (cf. Section 4.4).
The classical BF method is especially useful if a priori information for the ultimate
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claims’ estimates is available. Often this information arises from expert knowledge.
The FBF method allows for the application of BF even if the a priori estimates are
liable to subjective judgment. Hence, it combines the advantages of the classical BF
method with fuzzy set theory. Following the classical approach model assumptions are
being made. Consequently, estimators for the development factors are chosen in order
to derive predictions for the ultimate claims and, thus, the reserves. In accordance
with the methods in previous chapters the prediction uncertainty is quantified. The
consideration finishes with a critical discussion of the introduced method.

As a result of the present work fuzzy set theory can be seen as a means to encounter
the question how to model vagueness due to subjective judgment in the field of claims
reserving. Various approaches from the current state of literature as well as new ones
are discussed. Still, there is room for further research and improvements.

First of all, TFNs are applied in the methods described in Chapters 5 and 7 as well as
fuzzy coefficients in the model presented in Chapter 6. As elaborated on before, the
use of differently shaped membership functions as e.g. Gaussian, exponential, quasi-
exponential, could be a suitable extension depending on the situation. For example in
the case of a highly reliable data source, an actuary opts for an exponential membership
function such that values close to the calculated development factor possess a high
grade of membership and then the function decreases rapidly for the left and right
spread, respectively. The utilization of other members of the family of L-R FNs is to
the detriment of the manageability of the model. That is the reason why TFNs are
applied which can be also interpreted intuitively.

The models shown in Chapters 5, 6 and 7 all have in common that they are univariate.
A further field for research is the generalization to the multivariate case, i.e. the
simultaneous consideration of several correlated run-off portfolios. This can be motivated
by the fact that multiple LoB are taken into account or that a portfolio needs to be
subdivided into smaller portfolios for homogeneity assumptions in order to reasonably
apply reserving methods like e.g. the multivariate CL-model.

From a global point of view, more fields of applications in actuarial science can be
identified in which one can come across vagueness. Many problems can be very well
described with the help of stochastic methods but may not cover fuzziness. For example,
the point in time when an amendment will be implemented can be fuzzy. In terms
of claims reserving the “fuzzification” of the volume in the additive method could be
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thinkable. The nature of this additional information is externally given information like
e.g. from experts or information from comparable portfolios, market statistics, strategic
business plan, premiums or number of contracts (cf. Wüthrich and Merz 2008, p. 23).

Up to now, reserving methods take into account either stochastic randomness or vague-
ness/fuzziness. Therefore, a next step should be the consideration of the combination
of both sources of uncertainty. This problem might be solved with the help of fuzzy
random variables. That concept may also allow for modeling dependencies between
calendar years which have been left out when applying FNs. So far, fuzzy random
variables only found their way into life insurance. Because of their ability to consider
randomness and fuzziness they can be attractive for non-life insurance mathematics as
well.

According to the requirements of Solvency II and the Swiss Solvency Test (SST) the
one-year reserve risk needs to be quantified. The one-year reserve risk has not been
reflected so far in the fuzzy literature. Besides that, the consideration of inflation effects
(except for a first approach by Andrés Sánchez (2014), cf. Section 4.6.4) has been left
out.

Current reserving methods like the PIC model (cf. Merz and Wüthrich 2010) incorporate
two sources of data, i.e. paid and incurred data. As both data is often available it
is reasonable to use all accessible useful information. Developing a procedure which
allows for the incorporation of both paid and incurred data as well as fuzzy methods
might be of interest.
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This chapter deals with the representation of the statistical basics and notations used
throughout the work, especially the multiple linear regression model and the important
results are provided.

The classical multiple linear regression model is defined in the following way (cf. Fahrmeir
et al. 2007, p. 62).

Definition A.1 (Classical multiple linear regression model)
Let y := (y1, . . . , yn)T ∈ Rn, xi = (1, xi,1, . . . , xi,k)T ∈ Rk+1, β = (β0, β1, . . . , βk)T ∈
Rk+1, X = (xT

1 , . . . , xT
n )T ∈ Rn×(k+1), ε = (ε1, . . . , εn)T ∈ L2(Rn), n ≥ k + 1 and

i = 1, . . . , n. That is, ε is a square-integrable random variable. The matrix X is called
design matrix and β is referred to as vector of regression coefficients.
The linear model

y = Xβ + ε

is called classical multiple linear regression model if the following assumptions are
fulfilled:

(i) E[ε] = 0

(ii) Cov(ε) = E[εεT ] = σ2I, where σ2 > 0

(iii) rg(X) = k + 1, i.e. X has full rank

Under the additional assumption that the error term ε is normally distributed, i.e.
ε ∼ N (0, σ2I), we speak of a classical normal regression model.
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To estimate the regression coefficients β and the variance parameter σ2 the method of
ordinary least squares (OLS) is applied. In this method, the sum of squared residuals
is minimized, i.e. the following function is considered (cf. Fahrmeir et al. 2007, p. 90)

OLS(β) := (y − Xβ)T (y − Xβ) =
n∑

i=1
(yi − xT

i β)2 =
n∑

i=1
ε2

i = εT ε.

Then, the OLS-estimator β̂ = (β̂0, . . . , β̂k) is defined as

β̂ = arg min
β∈Rk+1

OLS(β).

Solving the minimization problem yields the representation (cf. Fahrmeir et al. 2007,
p. 92)

β̂ = (XT X)−1XT y.

The OLS-estimator β̂ is unbiased (cf. Fahrmeir et al. 2007, p. 101) and the Gauß-
Markov-Theorem yields that it has least variances among all affine linear estimators
(cf. Fahrmeir et al. 2007, p. 103). Thus, we speak of β̂ as a BLU (Best Linear
Unbiased)-estimator.

For the construction of a confidence interval for a single regression coefficient βj under
the assumption of a normal distribution the t-statistics t = β̂j−βj

se(β̂j) is used which follow a
t-distribution with n − (k + 1) degrees of freedom. Then, a (1 − α)-confidence interval,
α ∈ (0, 1), is given by

[β̂j − tn−(k+1),1− α
2
se
(
β̂j

)
, β̂j + tn−(k+1),1− α

2
se
(
β̂j

)
],

where tn−(k+1),1− α
2

is the (1 − α
2 )-quantile for a t-distributed random variable with

n − (k + 1) degrees of freedom (cf. Fahrmeir et al. 2007, pp. 119 ff.).

In the classical multiple linear model uncorrelated and homoscedastic error terms ε

are assumed. In case correlated and heteroscedastic errors are also allowed, one is in
the context of the general multiple linear regression model (cf. Fahrmeir et al. 2007,
p. 125).
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Rk+1, β = (β0, β1, . . . , βk)T ∈ Rk+1, X = (xT
1 , . . . , xT

n )T ∈ Rn×(k+1), ε = (ε1, . . . , εn)T ∈
L2(Rn), n ≥ k + 1 and i = 1, . . . , n. The linear model

y = Xβ + ε

is called general multiple linear model if the following assumptions are satisfied:

(i) E[ε] = 0

(ii) Cov(ε) = E[εT ε] = σ2W

(iii) rg(X) = k + 1

Under the additional assumption that the error term ε is normally distributed, i.e.
ε ∼ N (0, σ2I), we speak of a general normal regression model.

The linear model as specified in Definition A.2 is also called weighted linear regression
(with “weighting” matrix W). Let W−1

2 denote the root of the matrix W−1, i.e.
W−1

2 W−1
2 = W−1. By defining

y∗ := W−1
2 y

X∗ := W−1
2 X

ε∗ := W−1
2 ε

a general multiple linear model can be transformed to a classical multiple linear model

y∗ = X∗β + ε∗

(cf. Fahrmeir et al. 2007, pp. 125 f.). Hence, an estimator for the regression coefficient
β is given by

β̂ = (XT W−1X)−1XT W−1y (A.1)

and called Aitken-estimator (cf. Fahrmeir et al. 2007, p. 126).

Definition A.2
Let W ∈ Rn×n be positive definite, y := (y1, . . . , yn)T ∈ Rn, xi = (1, xi,1, . . . , xi,k)T ∈
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Anwendung der Theorie unscharfer
Mengen (fuzzy set theory) in der Schadenreservierung, einem Teilgebiet der Aktuarwis-
senschaften.

Aktuare innerhalb der Schadenreservierung befassen sich u.a. mit den folgenden zwei
Aufgabenstellungen: der Prognose der Rückstellungen für zukünftige ausstehende
Schadenzahlungen sowie der Quantifizierung von deren Risiko. Die Schadenreserve bildet
einen großen Posten auf der Passivseite der Bilanz eines Versicherungsunternehmens,
so dass aus Solvenz- und Ergebnisgründen weder eine Unter- noch eine Überschätzung
empfehlenswert ist. Innerhalb der Schadenreservierung existieren eine Vielzahl von
Verfahren: rein rechnerische, stochastische, verteilungsfreie, verteilungsgebundene,
etc. Hierunter sind das Chain-Ladder- sowie das Bornhuetter Ferguson-Verfahren als
populäre Verfahren zu nennen.

Unberücksichtigt bei den Verfahren bleibt häufig die Betrachtung von möglicher Vagheit
und subjektiven Einschätzungen. Vagheit ist auch im Alltag, wie beispielsweise in
der Sprache, allgegenwärtig. Die Theorie der unscharfen Mengen, welche im Jahre
1965 von Lotfi A. Zadeh begründet wurde, bietet einen formalen Ansatz subjektive
Einschätzungen abzubilden. Erste Anwendungen in der Versicherungswissenschaft sind
unseres Wissens nach seit den 1980er Jahren zu finden.

In der Dissertation werden zwei Ziele verfolgt: Zum Einen wird ein Überblick über
die Anwendung von unscharfen Methoden in der Schadenreservierung dargestellt.
Darüber hinaus werden in drei Kapiteln Wege aufgezeigt, wie subjektives Ermessen
in Anwendungsmethoden in der Schadenreservierung in das Chain-Ladder- sowie das
Bornhuetter Ferguson-Verfahren implementiert werden können.

Dem ersten Ansatz, dem Fuzzy Chain-Ladder-Verfahren, liegt die Beobachtung zu
Grunde, dass es Fälle in der Praxis geben kann, in der Aktuare möglicherweise dazu
tendieren, zuvor berechnete Abwicklungsfaktoren auf Grund ihrer subjektiven Ein-
schätzungen anzupassen. Hierzu werden unscharfe Zahlen und deren Arithmetik
herangezogen. Im zweiten Ansatz wird die Eigenschaft des Chain-Ladder Modells
genutzt, dass es als Folge von linearen Modellen dargestellt werden kann. Hier wird
eine Darstellung mit Hilfe von fuzzy Regressionsmodellen aufgezeigt, die Aktuaren die
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Möglichkeit gewährt, den Informationsgehalt der Daten einzuschätzen und subjektiv zu
bewerten. Der dritte Ansatz bezieht sich auf das Bornhuetter Ferguson-Verfahren. Diese
Methode verwendet zusätzlich a priori-Informationen, welche entweder einer externen
Datenquelle entstammen oder intern gegeben sind. Je nachdem welche Datenquelle den
a priori Daten zu Grunde liegt, können diese mit Vagheit behaftet sein. Das vorgestellte
Fuzzy Bornhuetter Ferguson-Verfahren, bietet einen Ansatz diese Vagheit mit Hilfe von
unscharfen Zahlen abzubilden.
Allen Ansätzen ist gemein, dass sie nicht nur die ausstehenden Schadenzahlungen prog-
nostizieren, sondern ebenso einen Ansatz zur Defuzzifikation sowie zur Quantifizierung
der Unsicherheit der Prognose bieten.
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Summary

This dissertation covers applications of fuzzy set theory in claims reserving, a field in
actuarial science.

Actuaries working in claims reserving are faced, among others, with the following two
tasks: the prediction of future outstanding loss liabilities, as well as the quantification of
their risk. The claims reserve is a huge figure on the liabilities side of an insurer’s balance
sheet. Therefore, neither underestimating nor overestimating is advisable due to its
impact on either solvency or profit. Within claims reserving there exist various methods
whether they are only computational, stochastic, distribution-free, distributional, etc.
Among those the chain-ladder and the Bornhuetter Ferguson method are probably the
most common ones.

Often vagueness and subjective judgments have not been considered within these
approaches. However, vagueness is omnipresent in our daily lives, e.g. in spoken
language. The methodology of fuzzy sets has been introduced by Lotfi A. Zadeh in his
seminal paper in 1965. It offers a formal approach to implement subjective assessments.
To our best knowledge first applications of fuzzy set theory in insurance have been
published in the 1980’s.

This dissertation pursues two goals: First, an overview of applications of fuzzy set
theory in claims reserving is presented. Moreover, three chapters present ways of how
subjective assessment can be implemented in the chain-ladder as well as the Bornhuetter
Ferguson method.

The first approach is the fuzzy chain-ladder method. It is based on the observation
that there might be situations in practice in which actuaries tend to adjust previously
calculated development factors due to their subjective judgment. For this method fuzzy
numbers and their corresponding arithmetic are used. The second approach makes use
of the representation of the chain-ladder model as a sequence of linear models. Here, a
presentation using fuzzy regression models is shown. The advantage of this method for
actuaries is the possibility to assess the information contained in the data as well as
the feasibility for subjective adjustments. The third approach refers to the Bornhuetter
Ferguson method. This technique additionally uses a priori information which can
originate from an external or internal source. Depending on the source of the data they
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can be afflicted with vagueness. The presented fuzzy Bornhuetter Ferguson method
offers an approach to implement vagueness with the help of fuzzy numbers.

All approaches have in common that they not only yield predictions for the claims
reserve, but also attempt to defuzzify the reserve and to quantify the predictions’
uncertainty.
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