

Combining partial Jacobian computation and preconditioning:
New heuristics, educational moduls, and applications

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Combining partial Jacobian computation and

preconditioning: New heuristics, educational

modules, and applications

Mohammad Ali Rostami

Dissertation at Faculty of Mathematics and Computer Science

Friedrich Schiller University Jena, Germany

Reviewers:

Prof. Martin Bücker, FSU Jena, Germany

Prof. Trond Steihaug, University of Bergen, Norway

Defense: 27. September 2017

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet

über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2017

 Zugl.: Friedrich-Schiller-Universität Jena, Univ., Diss., 2017

© CUVILLIER VERLAG, Göttingen 2017

 Nonnenstieg 8, 37075 Göttingen

 Telefon: 0551-54724-0

 Telefax: 0551-54724-21

 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist

es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg

(Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2017

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

 ISBN 978-3-7369-9636-6

 eISBN 978-3-7369-8636-7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Abstract

Solving problems originating from real-world applications is often based on the solution
of a system of linear equations whose coefficient matrix is a large sparse Jacobian matrix.
Hence, there is research to exploit the sparsity structure and to decrease the amount of
storage. In contrast to full Jacobian computation in which all nonzero elements are to be
determined, partial Jacobian computation is looking at a subset of these elements. Partial
Jacobian computation can therefore be faster and more efficient than full Jacobian compu-
tation. Since Jacobian matrix-vector products are needed in iterative solvers, these types
of linear systems can be efficiently solved using automatic differentiation. Determining
these nonzero elements in full or partial Jacobian computations by automatic differentia-
tion techniques can be modeled as graph coloring in the language of graph theory. On the
other hand, preconditioning techniques are used to improve the convergence of iterative
solvers and typically need access to all nonzero elements of the Jacobian matrix. So, a
sparsification is applied to the Jacobian matrix before computing the preconditioner. The
nonzero elements obtained from the sparsification are considered as the required elements
in a restricted coloring. Lülfesmann (PhD thesis, RWTH Aachen University, 2012) in-
troduced a procedure that selects a subset of the remaining nonrequired elements. The
approach then adds this subset to the sparsified matrix such that neither fill-in is created
nor an increase in the number of colors happens. This thesis consists of two parts. In the
first part, we look at different ways to optimize the process of selecting these nonrequired
elements. We introduce three new coloring heuristics and compare them with each other
as well as with existing approaches. Also, we look at a particular case in which we consider
only the diagonal elements as required elements. For this case, we generalize a previous
result and introduce a new coloring heuristic. To evaluate our proposed heuristics in prac-
tice, we apply them to a problem from geoscience. Finally, we describe our new software
package implementing these new heuristics. In the second part of this thesis, we introduce
a collection of interactive educational modules to teach not only graph coloring, but also
other concepts from combinatorial scientific computing in the classroom. These modules
are designed to involve the students more thoroughly in the process of learning. At the
end, we explain the design of this collection and outline its implementation.

v

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Zusammenfassung

Die Lösung von realistischen Anwendungsproblemen basiert oft auf der Lösung von linearen
Gleichungssystemen, deren Koeffizientenmatrizen große dünnbesetze Jacobi-Matrizen sind.
Deshalb gibt es eine Fülle von Forschungsarbeiten mit dem Ziel, die Struktur dieser Ma-
trizen zur Reduktion von Rechenzeit und Speicher auszunutzen. Im Gegensatz zu der voll-
ständigen Berechnung von Jacobi-Matrizen, in der alle Nichtnullelemente bestimmt werden
müssen, wird in einer partiellen Berechnung lediglich eine Teilmenge aller Nichtnullele-
mente bestimmt. Die partielle Berechnung kann daher im Vergleich zu einer vollständigen
Berechnung zu schnelleren und effizienteren Verfahren führen. Da Jacobi-Matrix-Vektor-
Produkte in iterativen Lösern benötigt werden, lassen sich diese Typen von linearen Syste-
men mit Techniken des automatischen Differenzierens effizient lösen. Die Bestimmung von
Nichtnullelementen durch vollständige oder partielle Berechnungen von Jacobi-Matrizen
kann in der Sprache der Graphentheorie als Problem einer Graphenfärbung modelliert wer-
den. Auf der anderen Seite werden Vorkonditionierungstechniken verwendet, um die Kon-
vergenz von iterativen Lösern zu verbessern. Solche Vorkonditionierungstechniken greifen
meist auf alle Nichtnullelemente der Jacobi-Matrix zu. Daher kann es vorteilhaft sein, eine
Ausdünnung auf die Jacobi-Matrix anzuwenden, bevor die Vorkonditionierung berechnet
wird. Die nach der Ausdünnung verbleibenden Nichtnullelemente werden als benötigte
Elemente bezeichnet und in einer eingeschränkten Färbung verwendet. Lülfesmann (Dis-
sertation, RWTH Aachen, 2012) hat ein Verfahren eingeführt, das eine Teilmenge der
nichtbenötigten Elemente auswählt und zu der ausgedünnten Jacobi-Matrix hinzufügt, so
dass weder Füllelemente noch eine Erhöhung der Anzahl der Farben erfolgt. Die nun vor-
liegende Dissertation besteht aus zwei Teilen. Im ersten Teil betrachten wir verschiedene
Möglichkeiten, den Prozess der Auswahl dieser nichtbenötigten Elemente zu optimieren.
Wir stellen drei neue Färbungsheuristiken vor und vergleichen sie sowohl untereinander als
auch mit bisherigen Ansätzen. Wir betrachten auch einen Spezialfall, in dem als benötigte
Elemente nur die Diagonalelemente zu bestimmen sind. Wir verallgemeinern dabei ein
vorheriges Ergebnis und führen eine neue Färbungsheuristik ein. Um unsere vorgeschlage-
nen Heuristiken in der Praxis zu evaluieren, wenden wir sie auf eine Problemstellung aus
den Geowissenschaften an. Schließlich betrachten wir unser neues Softwarepaket, das die
neuen Heuristiken implementiert. Im zweiten Teil dieser Arbeit stellen wir eine Sammlung
von interaktiven Lehrmodulen vor, die nicht nur Graphenfärbung, sondern auch andere
Konzepte aus dem kombinatorischen wissenschaftlichen Rechnen im Klassenzimmer illus-
trieren. Diese Module wurden entwickelt, um die Studierenden noch gründlicher in den
Prozess des Lernens zu involvieren. Schließlich erläutern wir den Entwurf dieser Sammlung
von Lehrmodulen und beschreiben deren Implementierung.

vii

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Acknowledgments

This project would not have been possible without the support of many people. I must
express my first gratitude towards my supervisor Prof. Dr. Martin Bücker for his contin-
uous support during my research, patience, immense knowledge, and attention to details.
I should confess that I can not imagine a better and friendlier supervisor. Prof. Dr. Trond
Steihaug was a good listener to my ideas that we discussed at the Oxford conference on
algorithmic differentiation. I like to thank him for accepting to review my thesis. Besides,
I would like to thank Michael Lülfesmann for his comments on my work. Finally, I wish
to thank my wife Masoumeh Seydi and my best friend Azin Azadi for encouraging me
throughout all my studies at university.

ix

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Contents

1 Introduction 1

2 Known graph models from scientific computing 3
2.1 Determining nonzeros of sparse Jacobian matrices 3

2.1.1 Full Jacobian computation . 3
2.1.2 Partial Jacobian computation . 8

2.2 Combining partial Jacobian computation and ILU 9
2.2.1 Scientific computing problem . 10
2.2.2 Combinatorial model . 11

3 New coloring heuristics 15
3.1 Maximizing the set of additionally required elements 17

3.1.1 Restricted distance-2 coloring . 17
3.1.2 Restricted star bicoloring . 29

3.2 Application in geoscience . 35
3.3 Coloring restricted to diagonal elements . 40
3.4 Implementation details of PreCol . 43

4 Interactive educational modules 45
4.1 Concept and design . 45
4.2 Gamification . 47
4.3 Available modules . 48

4.3.1 Column compression . 48
4.3.2 Full and partial Jacobian computation 50
4.3.3 Nested dissection ordering . 53
4.3.4 Parallel matrix-vector product . 60

4.4 New features in EXPLAIN 2.0 . 64
4.5 Implementation details of EXPLAIN . 66

4.5.1 Version 1.0 . 66
4.5.2 Version 2.0 . 67

5 Conclusion and future work 73

Bibliography 75

Appendix 83
A.1 Comparing the computations of Algorithm 3.1 and Algorithm 3.2 83

i

Contents

A.2 Comparing the computations of Algorithm 3.2 and Algorithm 3.4 88
A.3 Comparing the computations of Algorithm 3.5 with different block sizes . . 90

x

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

In scientific computing, it is common to solve a given problem by using methods from com-
binatorial mathematics. In particular, graphs are ubiquitous in numerical linear algebra if
the underlying matrices are sparse. This thesis consists of two parts. In the first part, we
discuss new coloring heuristics for the partial Jacobian computation. In the second part,
we introduce a set of interactive educational modules teaching these graph problems in
classroom.
This thesis is concerned with the solution of linear equations whose coefficient matrices

are sparse, large, and nonsingular. Furthermore, it is assumed throughout this thesis that
the coefficient matrix is a Jacobian matrix of some mathematical function. This Jacobian
matrix is computed by Automatic Differentiation (AD) [1, 2] without truncation error. AD
computes a product of a Jacobian and another matrix which is called the seed matrix. A
careful choice of the seed matrix will reduce the computational effort as well as the storage.
Different choices can be formulated as different graph problems.
These systems of linear equations are solved using iterative methods which are in practice

accelerated by preconditioning techniques. Most preconditioning techniques need access to
all nonzero elements of the Jacobian matrix which can lead to performance problems when
standard techniques of AD are employed. Therefore, we consider an alternative approach
that first applies a sparsification operator to the Jacobian matrix and then uses standard
preconditioning techniques for the sparsified matrix. This process becomes complete by
adding more nonzero elements to the sparsified matrix without producing more fill-in
elements and without increasing efforts to set up the resulting sparsified matrix. We
introduce new heuristics targeting the careful choice of these extra nonzero elements.
Our work is based on the idea of exploiting the sparsity pattern of a matrix in favor of

reducing the computational efforts. The assumption here is that the sparsity pattern is
known a priori, for example, from the formulation of a physical problem. Curtis, Powell,
and Reid [3] were first to study the determination of a sparse Jacobian matrix based on the
sparsity exploitation. Coleman and Moré [4] transformed this sparse matrix problem into
the problem of vertex coloring in graph theory. The idea is to formulate the compression of
the columns (similarly for rows) such that all the nonzero elements of the Jacobian matrix
are determined. This is called unidirectional compression. There are other studies like [5]
which consider the byproducts of some column compression schemes. Later, a bidirectional
compression is introduced and analyzed in [6] and [7] which can result in larger savings in
computation and storage. Several other graph models are studied further in Hossain and
Steihaug [8, 9] like the pattern graph which keeps the structure of the matrix explicitly.
Also, a recent graph formulation is to group together rows into blocks and partition the
resulting column segments in [10]. On the other hand, rather than computing all nonzero

1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

elements, some other problems from scientific computing target the computation of only
a proper subset of the nonzero elements. These problems are studied under the term
of partial Jacobian computation. Gebremedhin, Manne, and Pothen [11] introduced the
rules of the partial Jacobian computation and its corresponding graph problems. Several
examples in the partial Jacobian computation are studied later in [12] and [13].
Lülfesmann [14] introduced for the first time the idea of combining partial Jacobian

computation and ILU preconditioning. This idea defines a sparsification operator ρ which
is applied to the Jacobian matrix before the ILU preconditioner is computed. The nonzero
elements selected by ρ are called required elements. The remaining elements are called
nonrequired elements. Lülfesmann [14] computes the seed matrix for automatic differenti-
ation by considering a graph coloring restricted to these required elements. Then, a subset
of nonrequired elements is added to the set of required elements such that the number of
colors does not increase and no extra fill-in elements are generated in the ILU precondition-
ing. These elements are called the additionally required elements. In this thesis, we extend
this idea further as follows. First, we define new coloring heuristics (both for distance-2
coloring and star bicoloring) to increase the number of additionally required elements with-
out having a high increase in the number of colors. Then, we apply these new heuristics
to an example from geoscience similar to an application from aerodynamics [15]. Later,
we generalize a previous result from Lülfesmann [14] for the coloring restricted to diagonal
elements. Finally, we introduce a software package to implement these new heuristics.
In the second part of this thesis, we summarize our previous publications [16, 17, 18, 19,

20] as well as discuss some new features to teach the coloring heuristics in classroom. In this
part, we develop a collection of educational modules for teaching purposes. Each module
illustrates side by side the matrix and graph view of a problem in scientific computing and
its equivalent combinatorial problem, respectively. The student can interactively follow the
steps of the algorithms in this module. We first outline the overall design of this collection.
Then, we discuss the graph coloring module as well as the other available modules. We
explain the new unpublished feature in which an animation of the algorithm is visualized.
Finally, we explain the implementation details of this collection.
This dissertation is structured as follows. First, we discuss the known graph models from

scientific computing in Chapter 2. Then, Chapter 3 discusses our new coloring heuristics.
Chapter 4 introduces our interactive educational modules. Finally, the conclusion and
future work are presented in Chapter 5.

2

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific
computing

In this chapter, we briefly discuss known graph formulations and models needed in this
thesis. In each section of this chapter, we provide some references which explain further
these concepts in details. We look at the ideas to determine the nonzeros of sparse Jacobian
matrices in Section 2.1. We look at definitions of combining ILU preconditioning and
partial Jacobian computation in Section 2.2. Throughout this thesis, we consider the
natural ordering of the given matrix for ILU preconditioning.

2.1 Determining nonzeros of sparse Jacobian matrices

There are many references on exploiting the sparsity pattern of Jacobian matrices to im-
prove the performance of automatic differentiation. Here, we look at full and partial
Jacobian computation in Section 2.1.1 and Section 2.1.2.

2.1.1 Full Jacobian computation

Assume a program computes a function f(x) : Rn → R
m at the computational cost t.

Techniques of automatic differentiation (AD) [1, 2] generate computer programs capable
of evaluating the m×n Jacobian matrix J . The forward mode of automatic differentiation
generates a program automatically which computes the product of the Jacobian matrix
with a given seed matrix V , i.e., JV . There is a reverse mode of automatic differentiation
which computes the product WJ where W is another seed matrix. These techniques
of automatic differentiation compute the matrix-matrix products JV and WJ without
assembling the Jacobian J .
Suppose the matrix V has c columns and the matrix W has r rows. The computational

costs of these products using the forward and reverse modes is then given by ct and rt,
respectively. In general, the Jacobian J is computed choosing either c = n and V as the
identity of order n in the forward mode or r = m and W as the identity of order m in
the reverse mode. However, if J is sparse and its sparsity pattern is known, the number
of columns of V in the forward mode or the number of rows of W in the reverse mode can
be reduced to c < n or r < m such that all nonzero entries of J still appear in the product
JV or WJ . This way, the computational cost is decreased using either the forward mode
with an appropriate linear combination of the columns of J or the reverse mode with a
suitable linear combination of the rows of J ; see the survey [11]. Later in this chapter,

3

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

Figure 2.1: (Left) An example of a matrix compressed efficiently by columns. (Middle)
An example of a matrix compressed efficiently by rows. (Right) An example
of a matrix which cannot be compressed efficiently neither by columns nor by
rows.

we formulate problems to compute the minimum values for c and r and the corresponding
combinatorial problem.

Scientific computing problem

Here, we find a seed matrix in which the corresponding number of rows and columns is
smaller than the actual Jacobian matrix which is called compression. A unidirectional
compression is a compression in either rows or columns in contrast to a bidirectional
compression in which both rows and columns are compressed at the same time. The key
idea behind this unidirectional compression is now illustrated for the forward mode. First,
we present a definition as follows.

Definition 1 (Structural Orthogonality) Let J = [c1, c2, . . . , cn] denote the m×n Ja-
cobian matrix in which ci ∈ R

m is the ith column. Two columns ci and cj are called struc-
turally orthogonal if they do not have any nonzero element in a same row. Two columns
are called structurally non-orthogonal if there is at least one row in which both columns, ci
and cj, have a nonzero element. Analogously, two rows are structurally orthogonal if they
do not have any nonzero element in a same column.

We can compute a linear combination of a group of structurally orthogonal columns of the
Jacobian matrix such that this linear combination contains all elements of these columns.
The definition of the structurally orthogonal columns can be similarly adapted to rows. It
follows that the number of structurally orthogonal groups represents the computational cost
either for columns or rows. Figure 2.1 (Left) and Figure 2.1 (Middle) show two examples of
matrices which can be compressed efficiently by columns and by rows, respectively. Now,
consider the matrix in Figure 2.1 (Right) that has neither structurally orthogonal columns
nor structurally orthogonal rows. Therefore, there is no unidirectional compression of the
matrix, neither by columns nor rows. However, the technique of bidirectional compression,

4

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.1 Determining nonzeros of sparse Jacobian matrices

which compresses both columns and rows at the same time, will reduce the computational
cost for that example. This technique uses both forward and reverse modes of automatic
differentiation.
For general sparsity patterns, it is not straightforward to figure out how to linearly com-

bine columns and rows such that the computational cost is minimized. Hence, we introduce
the combinatorial optimization problems 1 and 2 for unidirectional and bidirectional com-
pression to determine the nonzero elements of large Jacobian matrices efficiently.

Problem 1 (Minimum Unidirectional Compression) Let J be a sparse m× n Jaco-
bian matrix with a known sparsity pattern. Find a binary seed matrix V of dimension n×c
whose number of columns is minimized such that all nonzero elements of J also appear in
the matrix-matrix product JV .

The corresponding compression problem for minimizing the number of rows in the matrix-
matrix product WJ is straightforward and omitted here.

Problem 2 (Minimum Bidirectional Compression) Let J be a sparse m× n Jaco-
bian matrix with known sparsity pattern. Find a pair of binary seed matrices V of dimen-
sion n×c and W of dimension r×m in which the number of columns of V and the number
of rows of W sum up to a minimal value, c + r, such that all nonzero elements of J also
appear in the pair of matrix-matrix products JV and WJ .

Combinatorial model

We reformulate the scientific computing problems which we have discussed in Section 2.1.1.
The new formulation is an equivalent problem defined on a carefully chosen graph model.
The survey [11] discusses different methods to exploit the sparsity involved in derivative
computations. We first look at a simple graph model for the unidirectional compression.

Definition 2 (Column Intersection Graph) The column intersection graph G = (V,E)
associated with an n×n Jacobian matrix J consists of a set of vertices V = {v1, v2, . . . , vn}
whose vertex vi represents the ith column J(:, i). Furthermore, there is an edge (vi, vj) in
the set of edges E if and only if the columns J(:, i) and J(:, j) represented by vi and vj are
structurally non-orthogonal.

As we have a graph model associated with our Jacobian matrix in Definition 2, the
grouping of columns can be encoded in the following well-known graph coloring problem.

Definition 3 (Coloring) A coloring of G = (V,E) is a mapping Φ : V → {1, . . . , p} with
the property Φ(vi) �= Φ(vj) if (vi, vj) ∈ E.

Coleman and Moré [4] then showed that Problem 1, which asks for a seed matrix with a
minimal number of columns, is equivalent to the following coloring problem.

Problem 3 (Minimum Coloring) Find a coloring Φ of the column intersection graph
G associated with a sparse Jacobian J with a minimal number of colors.

5

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

Although, this model is convincing for the unidirectional compression, the bidirectional
compression can not be an instance of this model. A bidirectional compression needs the
information of both rows and columns. Therefore, a bipartite graph model is defined for
this purpose as in [6, 21, 7].

Definition 4 (Bipartite Graph Model) In the bipartite graph model, the vertex set
V = Vc ∪ Vr is decomposed into a set of vertices Vc representing columns of J and an-
other set of vertices Vr representing rows. The set of edges E is used to represent the
nonzero elements and it is defined as follows. An edge (ci, rj) ∈ E connects a column
vertex ci ∈ Vc and a row vertex rj ∈ Vr if there is a nonzero element in J at the position
represented by ci and rj. The graph is bipartite indicating that all edges connect vertices
from one set Vc to the other set Vr. That is, there is no edge connecting vertices within the
set Vc or within Vr. Moreover, two vertices that are connected by a path of length two, are
called distance-2 neighbors.

The coloring problem in the column intersection graph can also be represented in this
bipartite graph model. This equivalent coloring is done only in the set of column vertices.
Also, distance-2 neighbors should be considered instead of adjacent vertices.
The overall idea behind transforming Problem 2, Minimum Bidirectional Compres-

sion, into an equivalent problem using the bipartite graph model is as follows. The group-
ing of the columns and rows is expressed by representing each group by a color. Vertices
that belong to the same group of columns/rows are assigned the same color. Formally, this
is represented by a coloring of a bipartite graph. Such a coloring is a mapping

Φ : Vc ∪ Vr → {0, 1, . . . , p}

that assigns to each vertex a color represented by an integer. The coloring Φ also involves
a “neutral” color representing the following “don’t color” situation. A vertex v ∈ Vc ∪ Vr

that is not used in the grouping of columns/rows is assigned the neutral color Φ(v) = 0.
More precisely, if Φ(v) = 0 for a column vertex v then every nonzero represented by an
incident edge of v is determined by a linear combination of rows. Similarly, a nonzero entry
represented by an edge that is incident to a neutrally-colored row vertex is determined by
a linear combination of columns.
To represent the process of finding seed matrices using the bipartite graph model, it is

necessary to consider the underlying properties, which are as follows:

1. The computational cost roughly consists of the number of groups of structurally
orthogonal columns and rows. Since the overall cost is the sum of the costs associated
with the forward mode and the reverse mode, the (non-neutral) colors for the forward
mode and the (non-neutral) colors for the reverse mode need to be different.

2. It may happen that some nonzero elements may be computed twice, by the forward
mode in JV and by the reverse mode in WJ . Therefore, an edge representing such
a nonzero element connects two vertices with two different non-neutral colors. In

6

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.1 Determining nonzeros of sparse Jacobian matrices

general, since the Minimum Bidirectional Compression problem asks for com-
puting all nonzero elements, at least one vertex of every edge has to be colored with
a non-neutral color.

3. Suppose two columns are structurally non-orthogonal and have a nonzero element
in a same row. If this row is not handled by the reverse mode, these two columns
need to be in different column groups. The same argument holds for corresponding
situations with row groups.

4. Consider three nonzero elements in the matrix positions (i, k), (i, �), and (j, k). Sup-
pose that the nonzero at (i, k) is computed by the reverse mode assigning some
(non-neutral) color to the row vertex ri. Then, if (j, k) is also computed via the
reverse mode, a second (non-neutral) color is needed for rj. Now, if (i, �) is already
determined by the reverse mode for the row i the column vertex c� is assigned the
neutral color. However, if (i, �) is computed by the forward mode, a third (non-
neutral) color is needed for c�. A similar argument holds if (i, k) is computed by the
forward mode.

Based on these considerations, the following definition captures these properties.

Definition 5 (Star Bicoloring) Given a bipartite graph G = (Vc ∪ Vr, E), then a map-
ping Φ : Vc ∪ Vr → {0, 1, . . . , p} is a star bicoloring of G if the following conditions are
satisfied:

1. Vertices in Vc and Vr receive disjoint colors, except for the neutral color 0. That is,
for every ci ∈ Vc and rj ∈ Vr, either Φ(ci) �= Φ(rj) or Φ(ci) = Φ(rj) = 0.

2. At least one vertex of every edge receives a non-neutral color. That is, for every
(ci, rj) ∈ E, the conditions Φ(ci) �= 0 or Φ(rj) �= 0 hold.

3. For every path (u, v, w) with Φ(v) = 0, the condition Φ(u) �= Φ(w) is satisfied.

4. Every path of length three with four vertices uses at least three colors (possibly in-
cluding the neutral color).

Using the bipartite graph model and the definition of a star bicoloring, the problem
Minimum Bidirectional Compression is equivalent to the following graph problem.

Problem 4 (Minimum Star Bicoloring) Given the bipartite graph G = (Vr ∪ Vc, E)
associated with a sparse Jacobian matrix J , find a star bicoloring of G with a minimal
number of non-neutral colors.

A unidirectional compression is a special case of a bidirectional compression. More pre-
cisely, a unidirectional compression with respect to columns corresponds to a star bicoloring
in which all the vertices in Vc are colored with a non-neutral color and all row vertices are
colored with the neutral color. This way, the coloring constraint of a star bicoloring reduces

7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

to the coloring of distance-2 neighbors in the bipartite graph using different (non-neutral)
colors. This distance-2 coloring in the bipartite graph model is then equivalent to a color-
ing in the undirected graph model in which all neighbors are colored differently. Finally,
a discussion of the computational complexity of Problem 4 including recent new results is
given in [22].

2.1.2 Partial Jacobian computation

Gebremedhin et al. [11] introduced the concept of partial Jacobian computation in which
only a subset of the nonzero Jacobian entries, the required elements, are to be determined.
Lülfesmann [14] studied this area in more details and introduced some heuristics for partial
computation.

Scientific computing problem

Let R be the set representing required elements. The definition of structural orthogonality
is adapted for partial Jacobian computation as follows.

Definition 6 (Partially Structural Orthogonality) Two columns ci and cj are par-
tially structurally orthogonal with respect to R if and only if they do not have a nonzero
element in a same row where at least one of these nonzero elements is required.

The corresponding combinatorial optimization problem for the unidirectional and bidi-
rectional compression restricted to the required elements can be formulated as follows.

Problem 5 (Minimum Partial Unidirectional Compression) Let J represents a sparse
m× n Jacobian matrix with known sparsity pattern and R be a subset of the nonzero el-
ements of J . Find a binary seed matrix V of dimension n × c whose number of columns
is minimized such that all nonzero elements of R also appear in the matrix-matrix product
JV .

Problem 6 (Minimum Partial Bidirectional Compression) Let J represents a sparse
m× n Jacobian matrix with known sparsity pattern and R be a subset of the nonzero ele-
ments of J . Find a pair of binary seed matrices V of dimension n× c and W of dimension
r × m in which the number of columns of V and the number of rows of W sum up to
a minimal value, c + r, such that all nonzero elements of R also appear in the pair of
matrix-matrix products JV and WJ .

Now, we discuss an equivalent graph-theoretical formulation of this problem.

8

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 Combining partial Jacobian computation and ILU

Combinatorial model

Based on [11, 14], the definitions of full Jacobian coloring are adapted for the restricted
colorings as follows.

Definition 7 (Restricted distance-2 coloring) Given a bipartite graph G = (Vc ∪
Vr, E) and a subset of required edges ER ⊆ E, then a mapping Φ : Vc → {0, 1, . . . , p}
is a distance-2 coloring of G restricted to ER if all column vertices incident to at least one
required edge e ∈ ER get a nonzero color and for every path (ck, ri, cj) with ck, cj ∈ Vc,
ri ∈ Vr, and (ri, cj) ∈ ER, Φ(ck) �= Φ(cj).

Definition 8 (Restricted star bicoloring) Given a bipartite graph G = (Vc ∪ Vr, E)
and a subset of required edges ER ⊆ E, then a mapping Φ : Vc ∪ Vr → {0, 1, . . . , p} is a
star bicoloring of G restricted to ER if the following conditions are satisfied:

1. Vertices in Vc and Vr receive disjoint colors, except for the neutral color 0. That is,
for every ci ∈ Vc and rj ∈ Vr, either Φ(ci) �= Φ(rj) or Φ(ci) = Φ(rj) = 0.

2. At least one end point of an edge in ER receives a nonzero color.

3. For every edge (ri, cj) ∈ ER, ri, rl ∈ Vr, and cj, ck ∈ Vc,

• if Φ(ri) = 0, then for every path (ck, ri, cj), Φ(ck) �= Φ(cj)

• if Φ(cj) = 0, then for every path (ri, cj, rl), Φ(ri) �= Φ(rl)

• if Φ(ri) �= 0 and Φ(cj) �= 0, then for every path (ck, ri, cj, rl), Φ(ck) �= Φ(cj) or
Φ(ri) �= Φ(rl)

Now, the optimization problems are formulated as follows.

Problem 7 (Minimum Restricted Distance-2 Coloring) Given the bipartite graph
G = (Vr ∪ Vc, E) associated with a sparse Jacobian matrix J and a set of required edges
ER, find a distance-2 coloring of G restricted to ER with a minimal number of non-neutral
colors.

Problem 8 (Minimum Restricted Star Bicoloring) Given the bipartite graph G =
(Vr∪Vc, E) associated with a sparse Jacobian matrix J and a set of required edges ER, find
a star bicoloring of G restricted to ER with a minimal number of non-neutral colors.

2.2 Combining partial Jacobian computation and ILU

Given a large sparse nonsingular n× n Jacobian matrix J , we are considering the solution
to the following system of linear equations,

Jx = b,

9

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

in which x and b are n×1 vectors. Iterative solvers are considered to be among the effective
solution techniques [23].
Iterative techniques are typically used in combination with the preconditioning tech-

niques [24, 23]. Rather than solving the previous system, we can solve the preconditioned
system

M−1Jx = M−1b, (2.1)

where the n × n matrix M serves as a preconditioner that approximates the coefficient
matrix,

M ≈ J.

Some preconditioning techniques like ILU preconditioning can generate a preconditioner
which has nonzero at some places in which the Jacobian matrix J has zero elements. These
nonzero elements are called fill-in.

2.2.1 Scientific computing problem

Today, there is no general and established strategy on how to combine automatic differ-
entiation with preconditioning. The reason is that standard preconditioning techniques
typically need access to individual nonzero elements of the coefficient matrix whereas au-
tomatic differentiation gives efficient access to a different level of granularity, namely rows
or columns.
Common approaches to constructing the preconditioner M are based on accessing indi-

vidual nonzero entries J(i, j) of the Jacobian. For instance, diagonal scaling consists of the
diagonal matrix M whose diagonal entries M(i, i) are equal to J(i, i) for all i = 1, 2, . . . , n.
Another option is to compute a decomposition of the form

M = LU

where L is a unit lower triangular matrix and U is an upper triangular matrix resulting from
performing Gaussian elimination on J and dropping out nonzero elements that would be
generated by this process in certain predetermined positions. Similar to diagonal scaling,
this incomplete LU factorization (ILU) needs access to individual nonzero entries of J
or segments of rows/columns of J . In general, accessing an individual nonzero entry via
automatic differentiation is as efficient as accessing a complete column or row. In practice,
an access to some individual nonzero entry is therefore prohibitively expensive regarding
computing time.
Lülfesmann [14] introduced a new approach in which the required elements of the Jaco-

bian matrix J are given in the form of the nonzero elements within k × k blocks on the
main diagonal. Then, the preconditioner is built based on these selected nonzero required
elements instead of the whole Jacobian matrix. Building a preconditioner based on a sub-
set of the nonzero elements is explained in [25]. We call these required elements initially
required elements represented by Ri since they are an initial set for the further process.
Now, the coloring problem can be solved restricted to the set of initially required nonzero
elements Ri.

10

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 Combining partial Jacobian computation and ILU

The result of a coloring algorithm groups columns and rows together. In this process, the
required elements of J are always computed. The remaining nonzero elements of J , which
are called the nonrequired elements, are divided into two sets of elements: the elements
which are computed and the ones which would be eliminated. We can think of these
computed nonrequired nonzero elements as byproducts of the coloring and computing the
matrix-matrix products JV and WJ . Since the number of colors does not change, the
idea is to add these extra byproducts also to Ri. So, we call these byproduct elements the
potentially required elements Rp which are specified by

Rp ⊂ pat(J)−Ri so that |Φ(Ri)| = |Φ(Ri ∪Rp)|,

where pat(J) represents the nonzero pattern of the Jacobian matrix J and |Φ(Ri)| is the
number of colors resulting from the coloring restricted to Ri.
As we have discussed, an ILU preconditioner applied to Ri can produce fill-in. A subset

Ra of potentially required elements, which is called the set of additionally required elements,
is selected such that no new fill-in is generated. These elements can be added to the
initially required elements for further computation. The additionally required elements
are formulated as follows.

Ra ⊂ Rp so that SILU(Ri) ∪Ra = SILU(Ri ∪Ra),

in which SILU means the symbolic ILU factorization.
Now, we formulate two optimization problems in this thesis as follows.

Problem 9 (Maximum Potentially Required Elements) Let J be a sparse m × n
Jacobian matrix with known sparsity pattern and Ri is a set of required elements. Find a
set of potentially required elements Rp with maximal cardinality.

Problem 10 (Maximum Additionally Required Elements) Let J be a sparse m×n
Jacobian matrix with known sparsity pattern and Ri is a set of required elements. Find a
set of additionally required elements Ra with maximal cardinality.

The overall approach applied to a specific problem from aerodynamics is detailed in [15].

2.2.2 Combinatorial model

The bipartite graph model presented in Definition 4 is a suitable model to find new algo-
rithms for the initially, potentially, and additionally required elements. Recall that each
edge in the bipartite graph model is related to a nonzero element in the matrix. Then,
given a bipartite graph G = (V,E), three subsets Ei, Ep, Ea ⊂ E are considered for the
initially, potentially, and additionally required elements, respectively. Given the k×k block
on the diagonal as required elements Ri and the Jacobian matrix J , here is a list of steps
in the computation of additionally required elements and the corresponding algorithm on
the bipartite graph model. More details can be found in [14].

11

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

1 function pot_d2_coloring(G = (Vr ∪ Vc, E),Ei ⊆ E,φ)
2 Ep = ∅
3 for (ri, cj) ∈ E − Ei with Φ(cj) �= 0
4 for ck ∈ N1(ri, G) with j �= k and (ri, ck) /∈ Ei

5 if Φ(cj) = Φ(ck)
6 continue with next edge (ri, cj) ∈ E − Ei

7 Ep = Ep ∪ {(ri, cj)}
8 return Ep

Algorithm 2.1: Find potentially required elements for distance-2 coloring (based on the
algorithm 4.2 from [14]).

• choose the initially required elements Ri.

• setup the bipartite graph G from the Jacobian matrix J and the subset Ei ⊂ E
representing Ri.

• compute the coloring Φ(Ei) of the bipartite graph G restricted to Ei.

• find the set of potentially required elements Ep ⊂ E−Ei such that |Φ(Ei)| = |Φ(Ei∪
Ep)|.

• find the set of additionally required elements Ea ⊂ Ep such that SILU(Ri) ∪ Ra =
SILU(Ri ∪Ra).

Algorithm 2.1 and Algorithm 2.2 show the algorithms to compute the potentially required
elements for the distance-2 coloring and star bicoloring, respectively. In these algorithms,
N1 means the distance-1 neighbors (the adjacent vertices). Given a bipartite graph G, the
required edges Ei, and a distance-2 coloring Φ, Algorithm 2.1 computes a set of potentially
required elements. This algorithm iterates over nonrequired edges (E − Ei) and checks if
such an edge can be added to the set of potentially required elements. Similarly, Algo-
rithm 2.2 computes the potentially required elements when the given coloring φ is a star
bicoloring.
To compute the additionally required elements, a formulation of ILU preconditioning in

the language of graphs is needed. Hysom and Pothen [26] introduced a graph model for
the incomplete LU factorization in which the matrix is the adjacency matrix of this graph.
It should be considered that the graph would be directed if the matrix is not symmetric.
The concept of fill path is defined to characterize the fill-in in ILU preconditioning,

Definition 9 (Fill path) A fill path is a path (vi, ..., vk, ..., vj) with k < min(i, j). It
means the index of all the inner nodes in a given ordering of vertices is smaller than the
indices of the vertices vi and vj.

It follows that a matrix element (i, j) is a fill-in if and only if there is a fill path between
vi and vj. In addition to the concept of fill path, another concept of fill level l is needed
to formulate the level-based incomplete LU factorization [26]. This parameter is used to

12

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 Combining partial Jacobian computation and ILU

1 function pot_star_bicoloring(G = (Vr ∪ Vc, E),Ei ⊆ E,φ)
2 Ep = ∅
3 for (ri, cj) ∈ E − Ei with Φ(ri) �= 0 or Φ(cj) �= 0
4 if Φ(ri) = 0
5 for ck ∈ N1(ri, G) with j �= k and (ri, ck) /∈ Ei

6 if Φ(cj) = Φ(ck)
7 continue with the next edge (ri, cj) ∈ E − Ei

8
9 if Φ(cj) = 0
10 for rl ∈ N1(cj , G) with j �= l and (rl, cj) /∈ Ei

11 if Φ(ri) = Φ(rl)
12 continue with the next edge (ri, cj) ∈ E − Ei

13
14 if Φ(ri) �= 0 and Φ(cj) �= 0
15 for ck ∈ N1(ri, G) with i �= k
16 for rl ∈ N1(cj , G) with j �= l
17 if Φ(cj) = Φ(ck) and Φ(ri) = Φ(rl)
18 continue with the next edge (ri, cj) ∈ E − Ei

19
20 Ep = Ep ∪ {(ri, cj)}
21 return Ep

Algorithm 2.2: Find potentially required elements for star bicoloring (based on Algorithm
4.3 from [14]).

filter the generated fill-in. This parameter is the length of the fill path. In the level-based
incomplete LU factorization, the generated fill-in is allowed to be considered only up to
the level l. We fix this level parameter to 2 throughout this thesis.
Lülfesmann [14] adapted a corresponding bipartite graph model for ILU preconditioning.

The concept of fill path is also redefined for the bipartite graph model in which a path is
replaced by a distance-2 path.

Definition 10 (Fill path in bipartite graph) A path (ri, ck, rk, cl, rl, ..., cj) in the bi-
partite graph model starting from a row vertex is a fill path if and only if all vertices
between ri and cj have a lower index than i and j.

Again, it follows that there is a fill-in (i, j) in the matrix if and only if there is a fill path
between ri and cj in the corresponding bipartite graph.
Based on the bipartite graph models for coloring and the ILU preconditioning,

Lülfesmann [14] proposed two algorithms to compute the additionally required elements:
conservative and sophisticated. We consider the sophisticated algorithm shown in Al-
gorithm 2.3 to compute the additionally required elements throughout this thesis. This
algorithm looks at each potentially required edge. If it is possible that a fill path is gen-
erated by adding this edge, the edge is not considered for the set of additionally required
edges. In this sophisticated approach, the algorithm iterates once again over all potentially
required elements. This process is repeated until no new additionally required edges are
found.

13

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Known graph models from scientific computing

1 function add(G = (Vr ∪ Vc, E),Ei ⊆ E,Ep,EF)
2 Ea = ∅
3 do
4 for (ri, cj) ∈ Ep

5 if i > j
6 for cl ∈ N1(rj , G[Ei ∪ (EF ∪ Ea)]) with l > j
7 if (ri, cl) /∈ Ei ∪ (EF ∪ Ea)
8 continue with next edge (ri, cj) ∈ Ep

9 else if i ≤ j
10 for rk ∈ N1(ci, G[Ei ∪ (EF ∪ Ea)]) with k > i
11 if (rk, cj) /∈ Ei ∪ (EF ∪ Ea)
12 continue with next edge (ri, cj) ∈ Ep

13 Ea = Ea ∪ {(ri, cj)}
14 Ep = Ep − {(ri, cj)}
15 while |Ea| is increased in the last iteration
16 return Ea

Algorithm 2.3: Find additionally required elements (based on Algorithm 4.5 from [14]).

14

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Karp [27] proves that the graph coloring problem is NP-complete for general graphs. Hence,
various coloring heuristics are studied throughout the years with a polynomial complexity.
Greedy coloring is a widely used heuristic which has a low computational complexity and
computes a reasonable coloring (see [28]). The greedy coloring algorithm for the restricted
distance-2 coloring is given in Algorithm 3.1 which is adapted from Lülfesmann [14]. The
computed coloring Φ : Vc → {1, 2, ..., p} on the vertex set Vc = {1, 2, ..., n} is restricted
to the initially required edges Ei. All arrays in all algorithms, like forbiddenColors,
implemented in this thesis start with the index 0. The assignment forbiddenColors[c] = v
means the vertex v can not be colored by the color c. Since this algorithm does not consider
the color 0, the element forbiddenColors[0] is ignored in line 7 of Algorithm 3.1.

In this algorithm, the function N2(v, Ei) finds all distance-2 neighbors of v restricted to
the set of initially required edges Ei. More clearly, the function N2(v, Ei) computes all
vertices on all paths of length 2 from the vertex v such that at least one edge of such a
path is in the set Ei,

N2(v, Ei) = {z ∈ V : there is a path (v, w, z) with (v, w) ∈ Ei or (w, z) ∈ Ei or both.}

To color a vertex v we iterate over all its distance-2 neighbors in N2(v, Ei) which are
already colored. Remember that these assigned colors can not be used to color the vertex
v. After collecting all these forbidden colors, we assign to v the color with the smallest
index different from these forbidden colors. It follows that the computational complexity
of this algorithm is O(nΔ2) in which n and Δ are the number of vertices and the maximum
vertex degree, respectively. Recall from the last chapter that the Jacobian matrices are
sparse. Therefore, n is large and Δ and Δ2 are relatively small.

1

function d2_color(G = (Vr ∪ Vc, E),Ei ⊆ E)
2 Φ ← [0 . . . 0]

3

forbiddenColors ← [0 . . . 0]

4

for v ∈ Vc with ∃r ∈ Vr : (v, r) ∈ Ei

5

for n ∈ N2(v, Ei) with Φ(n) �= 0

6

forbiddenColors[Φ(n)] = v
7 Φ(v) = min{a > 0 : forbiddenColors[a] �= v}

8

return Φ

Algorithm 3.1: The greedy algorithm for the distance-2 coloring restricted to the edge set
Ei for columns.

15

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Matrix Size Nonzeros Symmetric
steam1.mtx 240× 240 2248 false
steam2.mtx 600× 600 5660 false
685 bus.mtx 685× 685 3249 true
nos3.mtx 960× 960 15844 true
ex7.mtx 1633× 1633 46626 false
ex33.mtx 1733× 1733 22189 true

orani678.mtx 2529× 2529 90158 false
cavity16.mtx 4562× 4562 137887 false
crystm01.mtx 4875× 4875 105339 true
rajat01.mtx 6833× 6833 43250 false
gyro m.mtx 17361× 17361 340431 true
ford2.mtx 100196× 100196 544688 true
cage3.mtx 5× 5 19 false
cage4.mtx 9× 9 49 false
cage5.mtx 37× 37 233 false
cage6.mtx 93× 93 785 false
cage7.mtx 340× 340 3084 false
cage8.mtx 1015× 1015 11003 false
cage9.mtx 3534× 3534 41594 false
cage10.mtx 11397× 11397 150645 false
cage12.mtx 130228× 130228 2032536 false

Table 3.1: Throughout this chapter, the numerical experiments are carried out using these
matrices from the Florida sparse matrix collection.

In this algorithm, vertices are colored one at a time. Therefore, the vertex ordering plays
a major role in the greedy algorithm. Hence, there are many publications on how to choose
a suitable ordering for a serial or parallel version of coloring [29, 30]. Various orderings are
studied for coloring heuristics throughout the years. Here are some orderings for coloring
which are applied before doing the coloring: the largest-first ordering (LFO) [31], the
incidence-degree ordering (IDO) [32], the saturation-degree ordering (SDO) [30], and the
smallest-last ordering (SLO) [29].

This chapter is structured as follows. We modify the greedy algorithm in Section 3.1
such that the number of potentially and additionally required elements are increased.
Later, we discuss a better heuristic for the special case of coloring restricted to a diagonal
in Section 3.3. Finally, we introduce our computational package PreCol in Section 3.4 that
computes the unidirectional and bidirectional restricted colorings with different algorithms
as well as the ILU preconditioning.

Throughout this chapter, the numerical experiments are carried out using the matrices
in Table 3.1 from the Florida sparse matrix collection [33].

16

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

3.1 Maximizing the set of additionally required elements

Here, our focus is to solve the optimization Problems 9 and 10. As we have discussed,
there are nonrequired nonzero elements which are also computed as a by-product of the
computation of required elements. The nonrequired elements have a major effect on the
determination of potentially required elements and additionally required elements. The fol-
lowing example illustrates that a modified coloring can increase the number of nonrequired
elements which are determined.⎛

⎝ ∗ ∗ ∗
0 r r
∗ 0 ∗

⎞
⎠

⎛
⎝ ∗ ∗ ∗

0 r r
∗ 0 ∗

⎞
⎠ (3.1)

Here, the symbol r stands for a required element, the symbol ∗ stands for other nonzero
elements (the nonrequired elements), and the number 0 denotes a zero element.
If the first and second columns get the same color as given in the left matrix, we will

get the nonzero at position (3, 1) as a by-product. However, there are certain degrees
of freedom. In this example, one could also assign the same color to columns 1 and 3 as
illustrated in the right matrix in which no nonzero element in the last row will be computed
as a by-product. This idea leads to the problem of maximizing the number of nonrequired
nonzero elements that are computed as a by-product. Here, we introduce a new heuristic
which increases the number of determined nonrequired elements while the number of colors
remains almost the same.

3.1.1 Restricted distance-2 coloring

Our goal here is to increase the number of potentially and additionally required elements.
Given a bipartite graph G = (Vc ∪ Vr, E) and a vertex v ∈ Vc, we define a function
Lv : S ⊆ Vc → N. The function Lv(w) computes the number of nonrequired elements that
are actually determined by the linear combination of the columns corresponding to the
vertices v and w ∈ Vc. We call these elements the determined nonrequired elements. Here,
we focus on the unidirectional compression for columns represented by Vc. However, an
analogous discussion holds for the unidirectional compression for rows.
We modify the greedy algorithm presented in Algorithm 3.1 as follows. For this new

heuristic, we define two operators. Given a function f : A → B and a subset S ⊆ A the
operators argmax and argmin are defined as,

argmax
x∈S

f(x) = {x | ∀y ∈ S : f(y) ≤ f(x)},
argmin

x∈S
f(x) = {x | ∀y ∈ S : f(y) ≥ f(x)}.

Algorithm 3.2 shows this new heuristic. In this algorithm, we iterate over all uncolored
vertices. First, we color the vertex v with a color different form its distance-2 neighbors
restricted to Ei like the previous greedy coloring. Note, however, that there is an additional

17

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Algorithm 3.2: New coloring heuristic for distance-2 coloring considering the nonrequired
elements.

Figure 3.1: An example of a Jacobian and its bipartite graph model in which Algorithm 3.2
does not generate a valid coloring.

condition which ensures that the vertex v has not been previously colored. After the
coloring of v, Algorithm 3.2 finds the set Iv representing the uncolored vertices that can
have the same color as the vertex v. Additionally, we compute Lv(x) for each vertex x ∈ Iv
and color a vertex w �= x with the same color as v if w leads to the maximum value of
Lv(w). The time complexity of this new heuristic is estimated as follows. The outer loop
at most consists of n vertices. For a vertex v, the complexity of coloring in line 5 to 7 is
O(Δ2) as in Algorithm 3.1. The set Iv is computed in O(n). Since the computation of
Lv(w) is O(n), the computation of the set maxs is O(n2). Thus, the general complexity
is given by O(n3).
Although we color a vertex v and another vertex u ∈ Iv in each iteration it does not

always mean that the coloring is valid. Consider the Jacobian and its bipartite graph
model in Figure 3.1 where the required edges are the bold edges in the graph.
Here, we assume that the outer loop is executed in a natural ordering corresponding

to iterate over the columns of the Jacobian from left to right. After the first vertex v1
corresponding to the first column is given some color, the set Iv consists of the columns
2, 3, and 4. Since all these three columns can be compressed with the first column, the
function Lv1(x) is given by the number of nonrequired elements in a column corresponding

18

1 function d2_color_nreq(G = (Vr ∪ Vc, E),Ei ⊆ E)
2 Φ ← [0 . . . 0]
3 forbiddenColors ← [0 . . . 0]
4 for v ∈ Vc with ∃r ∈ Vr : (v, r) ∈ Ei and Φ(v) = 0
5 for n ∈ N2(v, Ei) with Φ(n) �= 0
6 forbiddenColors[Φ(n)] = v
7 Φ(v) = min{a > 0 : forbiddenColors[a] �= v}
8
9 Iv = {z ∈ Vc : z �= v and z /∈ N2(v) and Φ(z) = 0}
10 if Iv �= ∅
11 maxs = argmaxx∈Iv Lv(x)
12 Φ(maxs[0]) = Φ(v)
13 return Φ

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

1 function is_valid(G = (Vr ∪ Vc, E),Ei ⊆ E)
2 for v ∈ Vc and n ∈ N2(v, Ei)
3 if Φ(n) = Φ(v)
4 return false
5 return true

Algorithm 3.3: A function which checks the validation of the coloring.

to x. Thus, the values of Lv1(x) for the columns 2, 3, and 4 are 1, 1, 0, respectively.
Therefore, the first and the second column are colored identically. In the next iteration of
the outer loop, the third column is then colored with the same color as the first column since
the vertex v3 corresponding to the third column does not have any distance-2 neighbors
restricted to Ei. Thus, the array forbiddenColors is not changed in this iteration. So,
the colors of first three columns are the same. Now, the set Iv3 contains the vertex v4
corresponding to the fourth column since the others are already colored. Therefore, the
fourth column gets the color of the third column. However, this is not a valid coloring since
the fourth and second columns can not be compressed. Considering this problem, we check
if the coloring is valid at the end of the algorithm by the function given in Algorithm 3.3.
An observation is that the coloring is valid for all the matrices that are mentioned in this
thesis.

Table 3.2 presents the number of potentially and additionally required elements com-
puted by Algorithm 3.1 and Algorithm 3.2 and for different orderings for coloring. Table 3.2
(Top), (Middle), and (Bottom) are the results for the natural ordering, the LFO ordering,
and the SLO ordering, respectively. The size of the diagonal blocks is fixed to 10. In these
tables, the numbers of both potentially and additionally required elements tend to increase
in the new proposed Algorithm 3.2 regardless of the ordering. An observation is that, for
the matrix pesa.mtx with the ordering LFO, the number of potentially required elements
decreases while the number of additionally required elements increases. Also, both the
numbers of potentially and additionally required elements decrease in Algorithm 3.2 for
ex7.mtx and for all orderings.

Now, we compare the results by changing the block size varying from 1 to 70. We
compute Algorithm 3.1 and Algorithm 3.2 for the matrices ex33 and crystm01 with the
three different orderings: the natural ordering, the LFO ordering, and the SLO ordering.
Additionally, we compute the number of colors in each case too. All figures are illustrated
in Appendix A.1. An observation is that the behavior of the figures of the potentially
required elements and the additionally required elements is similar. Hence, we consider
only the additionally required elements for ex33 now. The number of additionally required
elements computed by Algorithm 3.2 with the ordering SLO is overall larger than Algo-
rithm 3.1 (see Figure 3.2). The number of colors remains almost the same for the both
colorings (see Figure 3.3). Here, Algorithm 3.2 leads to a larger number of colors compared
to Algorithm 3.1. However, there are also orderings where Algorithm 3.2 is not superior for
all block sizes in terms of the number of additionally required elements. For example, Fig-
ure 3.4 shows the number of additionally required elements for the natural ordering. Here,

19

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Matrix (NAT) |Rp| |Ra|
Algorithm 3.1 Algorithm 3.2 Algorithm 3.1 Algorithm 3.2

steam1.mtx 64 786 64 630
steam2.mtx 240 1880 240 1400
nos3.mtx 1638 6756 1106 4296

crystm01.mtx 17822 47556 10388 28318
ex7.mtx 38554 34954 29174 25054
ex33.mtx 7408 8934 4920 5572

coater1.mtx 11722 11558 7684 7448
pesa.mtx 36972 41154 31010 33094

Matrix (LFO) |Rp| |Ra|
Algorithm 3.1 Algorithm 3.2 Algorithm 3.1 Algorithm 3.2

steam1.mtx 64 1048 64 666
steam2.mtx 240 2624 240 1248
nos3.mtx 1880 6882 1246 4442

crystm01.mtx 20326 36634 12256 21194
ex7.mtx 37080 33426 28904 24060
ex33.mtx 10574 10564 7170 6888

coater1.mtx 11312 11512 7410 7536
pesa.mtx 42490 41676 31790 31884

Matrix (SLO) |Rp| |Ra|
Algorithm 3.1 Algorithm 3.2 Algorithm 3.1 Algorithm 3.2

steam1.mtx 64 1294 64 754
steam2.mtx 240 3192 240 1912
nos3.mtx 1682 6772 1132 4382

crystm01.mtx 24478 45166 14252 26782
ex7.mtx 36486 34448 27044 24164
ex33.mtx 8024 10754 5186 7138

coater1.mtx 10476 11702 7004 7878
pesa.mtx 39606 44624 29034 34044

Table 3.2: The comparison between the number of potentially and additionally required
elements computed with Algorithm 3.1 and Algorithm 3.2. The block size is
fixed to 10. The orderings for coloring are (Top) the natural ordering, (Middle)
LFO, and (Bottom) SLO.

20

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

Figure 3.2: The number of additionally required elements computed by Algorithm 3.2 with
the SLO ordering compared with Algorithm 3.1. The computation is carried
out on the matrix ex33.

Algorithm 3.2 tends to perform better for smaller block sizes up to around 40. However,
for larger block sizes, Algorithm 3.1 tends to produce slightly more additionally required
elements. Figure Figure 3.5 shows that the number of colors does not vary significantly.

Now, we modify Algorithm 3.2 further to select a vertex with the minimum number
of required elements among the computed set of vertices with the maximum number of
determined nonrequired elements. This idea facilitates gathering of more nonrequired
elements in the same column since more zero elements remain. These elements might
offer more options for increasing the number of determined nonrequired elements. Let the
function M : Vc → N compute the number of required edges adjacent to a vertex. A new
algorithm is proposed in Algorithm 3.4 which applies this idea. The only new difference
of this algorithm to Algorithm 3.2 is to compute the operator argmin for the function M .
This computation has the same complexity as the computation of argmax. It means the
time complexity is still as before. Figure 3.6 shows how the number of additionally required
elements is increased comparing Algorithm 3.2 and Algorithm 3.4 when the ordering for the
coloring is the LFO ordering. However, this is not the same for all matrices. Appendix A.2
shows the results for different matrices and different orderings for the block size fixed to
10. Except the matrix ex7, a general observation is that the numbers of additionally and
potentially required elements are decreased when the number of colors is decreased. This
brings us to the next topic of balancing the number of colors and the number of additionally
required elements.

21

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.3: The number of colors computed by Algorithm 3.2 with the SLO ordering com-
pared with Algorithm 3.1. The computation is carried out on the matrix ex33.

Figure 3.4: The number of additionally required elements computed by Algorithm 3.2 with
the natural ordering compared with Algorithm 3.1. The computation is carried
out on the matrix ex33.

22

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

Figure 3.5: The number of colors computed by Algorithm 3.2 with the natural ordering
compared with Algorithm 3.1. The computation is carried out on the matrix
ex33.

1 function d2_color_nreq_modified(G = (Vr ∪ Vc, E),Ei ⊆ E)
2 Φ ← [0 . . . 0]
3 forbiddenColors ← [0 . . . 0]
4 for v ∈ Vc with ∃r ∈ Vr : (v, r) ∈ Ei and Φ(v) = 0
5 for n ∈ N2(v, Ei) with Φ(n) �= 0
6 forbiddenColors[Φ(n)] = v
7 Φ(v) = min{a > 0 : forbiddenColors[a] �= v}
8
9 Iv = {z ∈ Vc : z �= v and z /∈ N2(v) and Φ(z) = 0}
10 if Iv �= ∅
11 maxs = argmaxx∈Iv Lv(x)
12 mins = argminx∈maxs M(x)
13 Φ(mins[0]) = Φ(v)
14 return Φ

Algorithm 3.4: A modification of Algorithm 3.2.

23

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.6: The number of additionally required elements is increased comparing Algo-
rithm 3.2 and Algorithm 3.4 when the ordering for the coloring is the LFO
ordering. The computation is carried out on the matrix ex33.

Balancing the number of colors

Here, we modify Algorithm 3.2 and Algorithm 3.4 again to have a control over the balance
between the number of colors and the number of additionally required elements. It means
we define a balance variable α ∈ N such that increasing this variable would decrease both
the number of colors and additionally required elements and vice versa. Algorithm 3.5
presents the new algorithm. Rather than adding a single vertex as in Algorithm 3.4, the
idea is to add more vertices representing columns with the minimum number of required
elements and the maximum number of determined nonrequired elements. This is imple-
mented by coloring all elements of mins with indices from 0 to α− 1 .

Figure 3.7 shows the comparison between the number of colors computed by the three
presented algorithms: Algorithm 3.2, Algorithm 3.4, and Algorithm 3.5. All these algo-
rithms are computed with the LFO ordering. We selected this ordering for this computation
since this ordering gives the best results. The variable α for Algorithm 3.5 is equal to 10.
The block size varies also from 1 to 70. It is clear from this figure that Algorithm 3.5
tends to generate the smallest number of colors particularly in the middle block sizes when
α = 10. However, as illustrated in Figure 3.8, it does not perform well in the case of
additionally required elements.

Table 3.3 compares the number of additionally required elements and the number of
colors using Algorithm 3.5 with different α. Three tables at the top, middle, and the
bottom of Table 3.3 are for the natural ordering, the LFO ordering, and the SLO ordering,

24

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

1 function d2_color_nreq_balance(G = (Vr ∪ Vc, E),Ei ⊆ E,α)
2 Φ ← [0 . . . 0]
3 forbiddenColors ← [0 . . . 0]
4 for v ∈ Vc with ∃r ∈ Vr : (v, r) ∈ Ei and Φ(v) = 0
5 for n ∈ N2(v, Ei) with Φ(n) �= 0
6 forbiddenColors[Φ(n)] = v
7 Φ(v) = min{a > 0 : forbiddenColors[a] �= v}
8
9 Iv = {z ∈ Vc : z �= v and z /∈ N2(v) and Φ(z) = 0}
10 if Iv �= ∅
11 maxs = argmaxx∈Iv Lv(x)
12 mins = argminx∈maxs M(x)
13 for i ∈ {0, 1, ...,min(α− 1, size(mins)− 1)}
14 Φ(mins[i]) = Φ(v)
15 return Φ

Algorithm 3.5: New coloring heuristic with a controller to balance the number of colors
and the number of additionally required elements.

Figure 3.7: The comparison of the number of colors in Algorithm 3.2, Algorithm 3.4,
and Algorithm 3.5. The computation is carried out on the matrix ex33 and
with the LFO ordering.

25

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.8: The comparison of the number of additionally required elements in Algo-
rithm 3.2, Algorithm 3.4, and Algorithm 3.5. The computation is carried out
on the matrix ex33 and with the LFO ordering.

respectively. Regardless of the ordering and except for certain cases, the number of colors
tends to decrease when α grows. Indeed, the number of colors is reduced in most of the
cases. In some cases like the matrix steam2.mtx with the LFO ordering, we need 6 fewer
colors comparing the coloring with α = 0 and α = 10.
On the other hand, except for certain cases, the number of additionally required elements

decreases when α increases in the coloring. However, in this table, the coloring with α = 6
can be a suitable choice in most of the cases since the number of additionally required
elements is relatively high while the number of colors is mainly small. More figures can be
found in Appendix A.3 comparing these values based on varying block sizes.

26

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

Matrix (NAT) Algorithm 3.5
|Ra| |Φ|

α = 0 α = 6 α = 10 α = 0 α = 6 α = 10
steam1.mtx 566 440 370 10 9 8
steam2.mtx 1512 944 1032 13 10 9
nos3.mtx 3416 2778 2348 20 18 17
ex7.mtx 23958 22656 21180 55 49 46
ex33.mtx 5992 5616 5262 19 18 18

crystm01.mtx 28348 28466 28516 22 24 24
coater1.mtx 7896 7562 7538 30 26 25

Matrix (LFO) Algorithm 3.5
|Ra| |Φ|

α = 0 α = 6 α = 10 α = 0 α = 6 α = 10
steam1.mtx 518 456 330 12 10 10
steam2.mtx 1280 660 564 17 13 11
nos3.mtx 3646 2360 2190 20 19 19
ex7.mtx 22532 21444 21576 49 48 47
ex33.mtx 5968 5222 4934 16 17 16

crystm01.mtx 21168 21918 21210 18 18 18
coater1.mtx 7210 7168 6998 23 23 23

Matrix (SLO) Algorithm 3.5
|Ra| |Φ|

α = 0 α = 6 α = 10 α = 0 α = 6 α = 10
steam1.mtx 748 476 390 14 13 13
steam2.mtx 1816 1024 980 17 12 11
nos3.mtx 3998 2620 1978 20 18 17
ex7.mtx 23598 22362 22098 52 50 49
ex33.mtx 6174 5752 4902 19 18 17

crystm01.mtx 27432 26478 27782 22 22 22
coater1.mtx 7668 7624 7570 25 26 24

Table 3.3: The comparison of the additionally required elements and the number of colors
in the computation of Algorithm 3.5 with the different value of α. The orderings
for coloring are (Top) the natural ordering, (Middle) LFO, and (Bottom) SLO.

27

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

OpenMP-parallelized Algorithm 3.1
Threads Time Colors

1 42.8745 47
2 33.9665 47
3 25.2741 48
4 20.6863 48
5 21.4943 47

OpenMP-parallelized Algorithm 3.5
Threads Time Colors

1 96.795 48
2 75.744 47
3 55.605 49
4 49.335 49
5 49.360 47

Figure 3.9: (Left) The results of computation of OpenMP-parallelized Algorithm 3.1.
(Right) The results of computation of OpenMP-parallelized Algorithm 3.5.

Parallelization

For a faster computation, we parallelize the proposed heuristics by OpenMP. There is much
literature to parallelize coloring algorithms. For example, Çatalyürek [34] introduced an
OpenMP parallelized greedy coloring which computes the same number of colors as the
serial version. However, there are two points in each iteration of the algorithm in which
the threads need to be synchronized. Here, our focus is on another algorithm from Rokos
et al. [35] which presents an algorithm in which only a single point of synchronization
is needed. In this algorithm, the number of colors changes with the number of parallel
threads but it remains near to the number of colors in the serial version. We adapt this
parallelization to Algorithm 3.1 and Algorithm 3.5 for the bipartite graph model. These
algorithms first color the vertices greedily with a parallel loop and then correct the false
coloring which can happen.
We color the bipartite graph associated with the matrix Cavity16 from the sparse matrix

collection of the university of Florida. The timing results are all from the computations
carried on an Intel Core i5 with 8 GB RAM with hyperthreading. This means that the
number of available parallel threads is doubled by hyperthreading resulting in 4 threads.
Table 3.9 shows the results of these computations. Here, we change the number of threads
from 1 to 5 shown in the first column. The second column shows the computation time in
milliseconds. The third column is also the number of colors which changes based on the
number of threads. Here, the time decreases by increasing the number of threads up to 4.
Then it decreases as we have only 4 available threads. Also, the number of colors changes
slightly by increasing the number of threads.

28

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

3.1.2 Restricted star bicoloring

Here, we search for a modified version of star bicoloring which increases the number of
potentially and additionally required elements without a high increase in the number of
colors. We can apply the ideas from Algorithm 3.4 and Algorithm 3.5. However, we should
not expect to have a high increase in the number of additionally required elements that is
equal to the sum of the increases in the column compression and row compression.

In [11], there is an algorithm called star bicoloring scheme. Lülfesmann [13] implemented
and evaluated this algorithm. This algorithm closely follows the definition of the star
bicoloring. Complete direct cover bicoloring [7] is another algorithm which is introduced for
bicoloring. According to Calotoiu [12], this algorithm does not perform better than the star
bicoloring scheme. Also, Calotoiu [12] introduces two other algorithms the integrated star
bicoloring and total ordering star bicoloring which perform better than the star bicoloring
scheme for certain matrices and not much worse for other matrices.

We consider the implementation of star bicoloring in Algorithm 3.6 based on the algo-
rithm from Lülfesmann [14]. Here, the notation G[S] means a graph G induced by the edge
set S. Also, the notation Δ(V,G) represents the maximum degree of the vertices from V in
the graph G. In this algorithm, the function next vertex selects first which vertex should
be processed in the next step. Should it be from the column vertices or the row vertices?
This selection is based on the value of a weightening factor ρ (to be explained below) and
a vertex with the maximum degree in each step. After this selection, the conditions of
the star bicoloring are analyzed in the next lines of this algorithm. Two final loops of the
algorithm are just post processing steps. The first one makes the colors distinct for the
column and row vertices. And the second one colors the uncolored vertices with the color
0.

Before introducing our new heuristic, we first do computations to find the influence
of ρ on the number of additionally required elements. The value of ρ is a weightening
factor which is a balance between columns or row vertices. A higher value of ρ makes the
compression mostly in the column vertices and a smaller value of ρ makes the compression
mostly in rows. There are some discussion on how to choose the value of ρ in [11]. Also,
Lülfesmann [14, 13] did some computation for some specific ρ. However, the goal in the
previous literature is to minimize the number of colors. As the Figure 3.10 and Figure 3.11
show, the value of ρ has a direct influence on the number of additionally required elements.
The interesting observation is that a tiny change in the value of ρ can dramatically change
the results. For example, changing the value of ρ from 0.3 to 0.4 in Figure 3.11 would
result in a big change in the number of additionally required elements.

Now, we introduce our new heuristic which is a modification of the function next vertex
of Algorithm 3.6. The other parts of Algorithm 3.6 remain the same as in our new heuristic.
Algorithm 3.7 shows the new function next vertex nreq which should be called instead of
next vertex to get the next vertex in each step. The global variable NonReq switches
between two modes in the new function next vertex nreq. The first mode NonReq = false
selects the vertex based on the variable ρ like Algorithm 3.6. The second mode NonReq =
true selects the next vertex with the maximum number of determined nonrequired elements

29

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

1 function star_bicoloring(G = (Vr ∪ Vc, E),Ei ⊆ E,ρ,next_vertex)
2 Φ ← [−1 . . .− 1]
3 forbiddenColors ← [0 . . . 0]

4 E
′
i = Ei

5 while E
′
i �= ∅

6 v=next_vertex(G,E
′
i,ρ)

7 E
′
i = E

′
i − {(v, w) ∈ E

′
i : w ∈ N1(v,G[E

′
i])}

8 for w ∈ N1(v,G)
9 if Φ(w) ≤ 0
10 for x ∈ N1(w,G) with Φ(x) > 0
11 if (v, w) ∈ Ei or (w, x) ∈ Ei

12 forbiddenColors[Φ(x)] = v
13 else
14 for x ∈ N1(w,G[Ei]) with Φ(x) > 0
15 for y ∈ N1(x,G) with Φ(y) > 0 and y �= w
16 if Φ(w) = Φ(y)
17 forbiddenColors[Φ(x)] = v
18
19 Φ(v) = min({j > 0 : forbiddenColors[j] �= v})
20 for vc ∈ Vc with Φ(vc) > 0
21 Φ(vc) = Φ(vc) + max({Φ(vr) : vr ∈ Vr})
22 for v ∈ Vr ∪ Vc with Φ(v) = −1
23 Φ(v) = 0
24
25 return Φ
26

27 function next_vertex(G = (Vr ∪ Vc, E),E
′
i,ρ)

28 if(Δ(Vr, G[E
′
i]) > ρΔ(Vc, G[E

′
i])

29 v = vr ∈ Vr with maximum degree in G[E
′
i]

30 else
31 v = vc ∈ Vc with maximum degree in G[E

′
i]

32 return v

Algorithm 3.6: Algorithm 3.5 from Lülfesmann [14] for star bicoloring.

1 function star_bicoloring_nreq(G = (Vr ∪ Vc, E),Ei ⊆ E,ρ)
2 NonReq = false
3 star_bicoloring(G,Ei,ρ,next_vertex_nreq)
4

5 function next_vertex_nreq(G = (Vr ∪ Vc, E),E
′
i,ρ)

6 v = next_vertex(G,E
′
i,ρ)

7 if NonReq = false
8 NonReq = true
9 else
10 Iv = {z ∈ Vc : z �= v and z /∈ N2(v) and Φ(z) = 0}
11 if Iv �= ∅
12 maxs = argmaxx∈Iv Lv(x)
13 mins = argminx∈maxs M(x)
14 v = mins[0]
15 NonReq = false
16 return v

Algorithm 3.7: Our new heuristic for star bicoloring considering the determined
nonrequired elements.

30

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

Figure 3.10: The influence of ρ is computed on the additionally required elements with
Algorithm 3.6 for the matrix 685 bus with the LFO ordering.

Figure 3.11: The influence of ρ is computed on the additionally required elements with
Algorithm 3.6 for the matrix orani678 with the LFO ordering.

31

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

and the minimum number of required elements. Consider that v is always computed in
the first line of the function next vertex nreq but it will be modified later when NonReq is
equal to true.
Table 3.4 shows the numbers of potentially and additionally required elements computed

with Algorithm 3.6 and Algorithm 3.7. Except for the matrix coater01 with the natural
ordering, we have an overall increase in both potentially and additionally required elements
using Algorithm 3.7. Also, Figure 3.12 and Figure 3.13 represent the computation of
Algorithm 3.6 and Algorithm 3.7 while the size of blocks is changing from 1 to 70. Again,
an overall increase in the number of additionally required elements is achieved while the
number of colors does not increase dramatically.

32

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.1 Maximizing the set of additionally required elements

Matrix (NAT) |Rp| |Ra|
Algorithm 3.6 Algorithm 3.7 Algorithm 3.6 Algorithm 3.7

steam1.mtx 64 590 64 454
steam2.mtx 240 2352 240 1648
nos3.mtx 4590 4614 2986 3050
ex7.mtx 35690 36486 28028 28796
ex33.mtx 9282 11180 6220 7510

crystm01.mtx 19262 22716 11472 13978
coater1.mtx 14402 14442 8296 8262
pesa.mtx 40572 41460 32728 33956

Matrix (LFO) |Rp| |Ra|
Algorithm 3.6 Algorithm 3.7 Algorithm 3.6 Algorithm 3.7

steam1.mtx 64 802 64 466
steam2.mtx 240 2352 240 944
nos3.mtx 4824 5166 3152 3444
ex7.mtx 36794 37012 28670 28942
ex33.mtx 11070 11426 7380 7708

crystm01.mtx 21420 22714 13012 13992
coater1.mtx 14422 14496 8204 8350
pesa.mtx 42758 42904 32272 34266

Matrix (SLO) |Rp| |Ra|
Algorithm 3.6 Algorithm 3.7 Algorithm 3.6 Algorithm 3.7

steam1.mtx 64 824 64 616
steam2.mtx 240 2320 240 1616
nos3.mtx 4314 4760 2784 3102
ex7.mtx 35690 36450 27814 28568
ex33.mtx 9728 10978 6468 7296

crystm01.mtx 24222 27226 14562 16590
coater1.mtx 14532 14634 8194 8412
pesa.mtx 41128 42112 31114 33744

Table 3.4: The comparison between the number of potentially and additionally required
elements computed with Algorithm 3.6 and Algorithm 3.7. The block size is
fixed to 10. The orderings for coloring are (Top) the natural ordering, (Middle)
LFO, and (Bottom) SLO.

33

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.12: The number of additionally required elements computed with Algorithm 3.7
compared with Algorithm 3.6. The nonsymmetric matrix crystm01 with the
natural ordering is used here.

Figure 3.13: The number of colors computed with Algorithm 3.7 compared with Algo-
rithm 3.6. The nonsymmetric matrix crystm01 with the natural ordering is
used here.

34

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.2 Application in geoscience

3.2 Application in geoscience

Here, we apply our new heuristics to a carbon sequestration example from geoscience.
The geophysics group of RWTH Aachen simulates the injection of CO2 in a reservoir by a
two-phase flow model in porous media. These two phases are a wetting and non-wetting
phase like water and gas. A 2D two-phase flow can be formulated as a system of coupled
nonlinear partial differential equations in which the boundary conditions are Dirichlet and
Neumann. Integrating the time with the implicit Euler method based on [36, 14] results
in the following system of nonlinear equations,

F (u) = 0 with u =

(
pw
Sn

)
∈ R

2MN and F =

(
F1

F2

)
∈ R

2MN ,

where the variable pw ∈ R
MN is the pressure for the wetting phase and Sn ∈ R

MN is the
non-wetting saturation. The Newton’s method solves this system of equations. Hence, the
2MN × 2MN Jacobian matrix

A =

⎛
⎜⎜⎜⎝

∂F1

∂pw

∂F1

∂Sn

∂F2

∂pw

∂F2

∂Sn

⎞
⎟⎟⎟⎠ .

is determined with an AD-transformed version of the original function F . The AD tool
ADiMat [37, 38] is used for this transformation.
This Jacobian matrix is divided into four quadrants: the derivative ∂F1/∂pw in the top

left quadrant, ∂F1/∂Sn in the top right, ∂F2/∂pw in the bottom left, and ∂F2/∂Sn in the
bottom right. Arising from a particular discretization, the sparsity patterns of the 462×462
Jacobian matrix A with 3, 236 nonzeros is depicted in Figure 3.14. The discretization uses
different stencils resulting in different sparsity patterns of quadrants. The Jacobian matrix

A =

(
five-point stencil two-point stencil

five-point stencil five-point stencil

)
.

is based on the five-point stencil in the north west, south east, and south west quadrant.
In the north east, the two-point stencil {(m,n), (m,n− 1)} with the center (m,n) is used.
More details are found in [14].
We solve the resulting systems of linear equations with the coefficient matrix A in

MATLAB using the BICGSTAB iterative solver. The right-hand side is the sum of all
columns and the initial guess is the zero vector. We compute the ILU(2) precondition-
ing on a set of selected elements S instead of the whole Jacobian matrix. We compare
the convergence histories of the BICGSTAB solver on the four different methods of pre-
conditioning: without preconditioning, preconditioning with S = Ri, preconditioning with
S = Ri∪Ra in which the set Ra is computed based on the greedy coloring in Algorithm 3.1,

35

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.14: Sparsity pattern of Jacobian matrix A.

and preconditioning with S = Ri ∪Ra in which the set Ra is computed based on our pro-
posed modified greedy coloring in Algorithm 3.5. In this section, Algorithm 3.5 is always
computed with α = 6.
We do this comparison for the four block sizes 5,10,15, and 20 in Figure 3.15 and Fig-

ure 3.16. In all of these block sizes, the preconditioning, which is computed based on the
new coloring, converges in smaller numbers of matrix-vector products. However, it does
not mean that a bigger block size results always in a better convergence as you can compare
the figures for the block sizes 10 and 20.
Table 3.5 shows the results of the computation of Algorithm 3.1 and Algorithm 3.5 for

the different block sizes and for the Jacobian A. The number of potentially and additionally
required elements once more increases in all block sizes while the number of colors tends
to be the same.

36

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.2 Application in geoscience

Figure 3.15: The history of the residual norms is visualized based on the number of matrix-
vector products comparing four different methods: without preconditioning
(red color), preconditioning with S = Ri (blue color), preconditioning with
S = Ri ∪ Ra in which the set Ra is computed based on the greedy coloring
(black color), and preconditioning with S = Ri ∪ Ra in which the set Ra is
computed based on Algorithm 3.5 (green color). The level parameter of the
ILU preconditioning is 2. (Top) The block size is 5. (Bottom) The block size
is 10.

37

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.16: The history of the residual norms is visualized based on the number of matrix-
vector products comparing four different methods: without preconditioning
(red color), preconditioning with S = Ri (blue color), preconditioning with
S = Ri ∪ Ra in which the set Ra is computed based on the greedy coloring
(black color), and preconditioning with S = Ri ∪ Ra in which the set Ra is
computed based on Algorithm 3.5 (green color). The level parameter of the
ILU preconditioning is 2. (Top) The block size is 15. (Bottom) The block size
is 20.

38

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.2 Application in geoscience

Size Algorithm 3.1 Algorithm 3.5
|Rp| |Ra| |Φ| |Rp| |Ra| |Φ|

1 734 724 6 1212 786 7
2 1670 886 11 1730 990 10
3 1316 776 10 1952 1052 14
4 1838 1016 13 1952 1070 14
5 1524 896 13 1976 1070 15
6 1456 732 13 1828 974 13
7 1596 852 11 1770 942 13
8 1758 928 13 1880 976 13
9 1750 912 13 1826 966 13
10 1704 960 13 1826 992 13
11 1744 904 13 1832 940 13
12 1738 900 13 1760 938 13
13 1712 874 13 1918 1022 13
14 1572 782 13 1572 848 13
15 1728 914 13 1836 928 13
16 1704 870 13 1842 956 13
17 1702 866 13 1812 940 14
18 1696 858 13 1704 874 13
19 1694 860 13 1784 940 13
20 1688 854 13 1810 956 13

Table 3.5: The comparison between the number of potentially and additionally required
elements and the number of colors computed with Algorithm 3.1 and Algo-
rithm 3.5. The computation is carried out on the matrix A. The block size is
from 1 to 20. The ordering is the natural ordering.

39

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.17: (Right) An example of a star bicoloring restricted to diagonal elements trans-
formed to a valid distance-2 coloring.

3.3 Coloring restricted to diagonal elements

Here, we look at a particular example in which the sparsity pattern is restricted to di-
agonal elements. Lülfesmann [14] shows that the minimum number of colors of the star
bicoloring restricted to diagonal elements χsb is equal to the minimal number of colors of
the distance-2 coloring restricted to diagonal elements χd2. It means that the bidirectional
compression restricting to diagonals is not better than a distance-2 coloring restricted to
diagonal elements. This theorem can be written as two lemmas,

• Lemma 1: χsb ≥ χd2

• Lemma 2: χsb ≤ χd2

The proof of Lemma 2 is clear since a given distance-2 coloring with the fewest number of
colors is also a star bicoloring. The proof of Lemma 1 is more tricky. A sketch of the proof
is as follow.
The idea is to transform a valid star bicoloring with the fewest number of colors Φsb to

a valid distance-2 coloring where the number of colors is not larger. This transformation
includes two steps:

1. The minimal star bicoloring Φsb is transformed to the valid star bicoloring Φ∗
sb where

exactly one of both incident vertices of each required edge is colored nonzero.

2. The valid coloring Φ∗
sb is transformed to the valid star bicoloring Φ

′
sb where all row

vertices are colored by zero. This star bicoloring is also a distance-2 coloring.

An example of this transformation can be seen in Figure 3.17. Looking at the proof
of Lemma 3.8 of Lülfesmann [14], this lemma (and consequently Theorem 3.10 of
Lülfesmann [14]) can be generalized by considering any coloring instead of the optimal
coloring. Also, the set of diagonal elements in the theorem can be replaced by any set
of required elements in which each column and row contain only one required nonzero
element. This property is nothing but a matching [39] in a graph. Given a graph and the
vertex and edge set G = (V,E), a matching M ⊆ E contains a list of edges which do not

40

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.3 Coloring restricted to diagonal elements

have any vertex in common. A maximum matching is a matching with a maximum possible
number of edges. Then, the set of all diagonal elements for example in our bipartite graph
is a maximum matching.
Now, we can formulate a new theorem on the comparison of unidirectional and bidirec-

tional coloring as follows.

Theorem 1 Given the bipartite graph G = (Vr ∪ Vc, E) and a matching M ⊆ E repre-
senting the required elements, any valid star bicoloring restricted to M with the number
of colors Xsb can be transformed to a valid distance-2 coloring restricted to M with the
number of colors Xd2 such that Xsb ≥ Xd2. These numbers of colors can be different from
the minimal number of colors.

This theorem is a generalization of Lemma 3.8 of [14]. This lemma discusses only the
mapping with minimal coloring and the coloring restricted to diagonal elements. We
consider any coloring restricted to a matching. The proof for that lemma can be applied
to this new theorem considering the two following points,

• The minimality of colorings is only used to show the equality in the number of colors
which is not the case in our theorem.

• The property of being diagonal elements is used in the proof from [14] only to make
the required edges disjoint from each other which is the definition of a matching in
a graph.

This generalization gives us an idea to find new heuristics for coloring in which we
color the column and row vertices simultaneously. The motivation of this new heuristic
is from the following observation. Next we compare the number of colors computed by
Algorithm 3.1 and Algorithm 3.6 in Table 3.6 for different matrices. The better results are
observed in Algorithm 3.6 for some matrices. These examples also show that the inequality
in Theorem 1 can happen. The second column of this table shows the number of colors
computed by Algorithm 3.6. The third column shows the minimum number of colors
computed by the greedy coloring in Algorithm 3.1 either for rows or columns. It can be
seen that even for a small matrix as the matrix cage3 which has only 5 rows and columns,
the star bicoloring can produce a better result.
More clearly, the idea is that a heuristic for star bicoloring maybe finds a better coloring

than a distance-2 coloring because of the inequality in the theorem. As the proof of the
theorem proposes, every required nonzero element can be determined by either a column or
a row, but not both. Algorithm 3.8 shows our new heuristic. This heuristic iterates over the
required edges. In each iteration, we simultaneously execute a distance-2 coloring for both
incident vertices of the required edge. This greedy approach finds the minimum possible
colors c1 for columns and c2 for rows, each in a separate fashion. Then, the recombination
of these two separate distance-2 colorings into a star bicoloring is given by coloring the
vertex with the corresponding smaller color. In numerical experiments we observe that
the number of colors computed by this new heuristic is equal to Φsb for the matrices from
Table 3.6.

41

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Matrix Φsb min(Φr,Φc)
cage3 3 4
cage4 3 4
cage5 5 7
cage7 7 8
cage8 8 10
cage9 9 11
cage10 10 11
cage12 13 14

Matrix Φsb min(Φr,Φc)
ex7 18 22
nos3 10 10
steam1 6 6
steam2 8 8
rajat01 8 8
gyro m 15 15
ex33 12 11

cavity16 20 18

Table 3.6: The comparison of the number of colors in star bicoloring restricted to diagonals
Φsb computed by Algorithm 3.6 and in distance-2 coloring restricted to diagonals
min(Φr,Φc) (either for rows or for columns) computed by Algorithm 3.1. The
ordering is the natural ordering of the matrix for both colorings.

1 function star_diag(G = (Vr ∪ Vc, E), Ei ⊆ E)
2 Φ ← [0 . . . 0]
3 forbiddenColors1 ← [0 . . . 0]
4 forbiddenColors2 ← [0 . . . 0]
5
6 for e = (v, u) ∈ Ei with v ∈ Vc and u ∈ Vr

7 forbiddenColors1[0] = v
8 forbiddenColors2[0] = u
9
10 for n ∈ N2(v, Ei) with Φ(n) �= 0
11 forbiddenColors1[Φ(n)] = v
12
13 for n ∈ N2(u,Ei) with Φ(n) �= 0
14 forbiddenColors2[Φ(n)] = u
15
16 c1 = min({j > 0 : forbiddenColors1[j] �= v})
17 c2 = min({j > 0 : forbiddenColors2[j] �= u})
18
19 if c1 < c2
20 Φ(v) = c1
21 else
22 Φ(u) = c2
23
24 return Φ

Algorithm 3.8: An improved star bicoloring restricted to diagonal elements. As the theorem
says this coloring generates an equivalent distance-2 coloring.

42

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3.4 Implementation details of PreCol

3.4 Implementation details of PreCol

We develop a piece of software to implement our proposed heuristics. Specifically, the
software is designed employing concepts from object-oriented programming such that it
can be extended further with new coloring heuristics as well as preconditioning algorithms.
The developers can implement new extensions without going into the details of the core
implementation. Two main ingredients, coloring and orderings, can be implemented only
by deriving an interface. For example, a new coloring and ordering can be added as easy
as the following code.

1 class New_Ordering : public Ordering {
2 void order(const Graph &G, vector<unsigned int> &ord, bool restricted)

{...}
3 };
4
5 class New_Coloring : public ColAlg {
6 vector<int> color() {...}
7 };

Here, the computed ordering is saved in the array ord and the coloring is the output of
the function color.
The developer needs to implement these new classes in an only-header fashion [40] since

the goal is to write an extension with little effort. So, the developer should move the
new header file to the corresponding directory which is the ordering directory for this new
ordering and the algs directory for coloring algorithms. Now, building the software will
bring this new ordering into the software execution.
The input matrix is in the format of the matrix market [41]. After reading this matrix,

we convert it to the different graph models like a column intersection graph or a bipartite
graph. Any resulting matrix like the sparsified matrix will also be saved in this file format.
PreCol is developed in C++ using STL (the standard library) and the boost li-

brary [42]. Using concepts of functional programming in the new C++ release (C++11
and C++14) [43], we provide different functions which can be used by a developer to work
on graphs. For example, the iteration on vertices or edges can be as easy as follows.

1 for_each_v(G, f);
2 for_each_v(G, [&](Ver v) {...});
3 for_each_e(G, f);
4 for_each_e(G, [&](Edge e) {...});

in which the variable f is a function which gets an input parameter of a vertex or an edge.
Also, the other syntax is the lambda function from the new C++ functional programming
to implement an unnamed function.
Following a unique solution, we implement all parts of our heuristics with the use of

the standard library of C++ which also improves the readability. This strategy reduces
the code length dramatically. Also, the algorithms of the C++ standard library will
automatically be parallel in C++17 [44].
As it is presented in Figure 3.18, the computations of coloring and ILU preconditioning

43

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3 New coloring heuristics

Figure 3.18: The software PreCol and two user interfaces written in MATLAB and Java.

are in one package available in C++. But, the computation of iterative solvers is carried
out in MATLAB.
To use the software, the user can use a shell command. So, the user needs to specify

different options for coloring algorithms, orderings, the block size, and so on. These options
can be entered directly in the terminal. An example is as follows.

in which the PartialD2RestrictedColumns is the coloring algorithm, the string LFO Nat
containing two strings LFO and Nat are for the coloring and ILU orderings. The next
parameter BlockDiagonal specifies the sparsification method which is followed by the size
of the block. Here, the block size is 30. The next number 2 specifies the level parameter
of ILU. The matrix name is the last parameter.
We develop two user interfaces for PreCol. So that it can be called from within MATLAB

and GraphTea [45, 46]. These user interfaces help to evaluate our proposed heuristics.
Both interfaces execute the binaries of PreCol and process the output files generated by
PreCol. The corresponding commands in both interfaces can be executed by the following
parameters,

in which the input parameters are passed directly to PreCol.

44

1 precol PartialD2RestrictedColumns LFO_Nat BlockDiagonal 30 2 ex33.mtx

1 function (Ri,Rp,Ra,Φ) = precol(coloring,
2 coloring_ordering,ilu_ordering,block_size,
3 ILU_level_parameter,matrix_name,α)
4 ...

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

We develop an extensible collection of educational modules (EXPLAIN) to teach combina-
torial scientific computing in classroom. There is an increasing need for such educational
tools since the connection between the problems from scientific computing and the corre-
sponding combinatorial problem is tricky for the students. This chapter summarizes our
previous publications [16, 17, 18, 19, 20] and also provides some new features.
Since graphs are ubiquitous in computer science, mathematics, and a variety of other

scientific disciplines there are plenty of software tools for teaching graph-theoretical topics
and graph algorithms. However, to the best of the authors’ knowledge, there is no other
software than EXPLAIN that provides the simultaneous visualization of a graph and a
matrix next to each other. This overall layout of EXPLAIN is crucial to better understand
the relationship between the graph problem and the corresponding matrix problem. These
two different views of the same problem are critical for establishing an understanding of
the problem at hand.
Though there is no previous work directly related to that area, we shortly mention the

Gato/CATBox [47] software whose focus is on animation of graph algorithms. Similarly,
the CABRI-Graph [48] software is mainly used for algorithm visualization. There are
also many software tools in the area of information visualization like Tulip [49, 50] that
visualize and analyze graphs. However, all these graph software tools do not involve any
aspects of scientific computing. On the other hand, existing tools with a focus on scientific
computing do not involve any aspects from graph theory. Examples include the interactive
Java applets devoted to the textbook by Heath [51] and the NCM software to be used in
conjunction with the textbook by Moler [52].
During this chapter, we first look at the concept and design of the software in Section 4.1.

Then, we apply the gamification ideas on the software in Section 4.2 to involve the students
more into the usage of EXPLAIN. After looking at the available modules in Section 4.3,
we look at implementation details in Section 4.5. EXPLAIN has two releases 1.0 and 2.0
which we will explain in more detail in Section 4.5. Some of the modules are only available
in the new release. Both releases are available now since they were developed on different
technologies and have pros and cons.

4.1 Concept and design

Throughout the design stage of EXPLAIN, our focus is on the following goals. EXPLAIN
is not a self-study tool. Rather, the connection between the scientific computing and
combinatorial problems is explained by a teacher in classroom. The students can follow

45

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

the algorithm on the graph by either clicking on the vertices or edges. So, neither the matrix
nor its nonzero elements are clickable. Clicking vertices or edges results in modifications
in both graph and matrix. The available modifications on the graph and the matrix can
be one or more actions from the following list,

• Removing, adding, or coloring a vertex

• Removing, adding, or coloring an edge

• Changing the positions of vertices

• Permuting matrix columns or rows or both.

• Coloring any element, column, or row of the matrix

The input to the program is a sparse matrix in the format of the matrix market [41]. We
build the corresponding graph from the matrix. The type of graph can be different based
on the module and the algorithm. A list of possible graph types is as follows.

• Simple graph: an undirected graph without self-loops considering the given matrix
with a symmetric pattern as an adjacency matrix of the graph.

• Directed graph: a directed graph without self-loops considering the given nonsym-
metric matrix as an adjacency matrix of the graph.

• Column intersection graph: the graph model explained in Definition 2.

• Bipartite graph: the bipartite graph model explained in Definition 4.

The matrix and the corresponding graph are visualized side by side. Based on our goal to
visualize the connection of the algorithm on the matrix and graph sides simultaneously, we
design the software to have the four sections and a header as illustrated in Figure 4.1 (Left).
The header contains the textual feedback to the user. For example, the completion of an
algorithm is a textual feedback. The four sections are the graph view, the matrix view, the
control panel, and the feedback diagram. The graph is drawn on the circular layout first.
Other layouts can be selected later in the control panel. The matrix is visualized also at
the right side and its nonzero elements are shown by the notation ×. Figure 4.1 (Right)
shows an actual example of the implemented view of the nested dissection module.
We define a set of predefined colors which can be selected by the corresponding numbers,

for example {1 = green, 2 = turquoise, 3 = orange, 4 = violet, 5 = red, 6 = yellow, ...}.
These colors are selected such that they look perceptually distinct. However, a user can
define any new color by a function that specifies an rgb value. Another aspect of the
design is to use the same colors in the graph and matrix views as well as in the feedback
diagram. This consistent use of colors in the graph view, the matrix view, and in the
feedback diagram makes it easier for the student to understand the algorithm. We will see
examples of this aspect in the different modules which we explain in Section 4.3.

46

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.2 Gamification

Figure 4.1: (Left) EXPLAIN has a fixed layout consisting of four sections and a header.
(Right) An example of the actual implemented view of EXPLAIN.

4.2 Gamification

To engage the students more in the teaching process, we improved EXPLAIN such that the
students get more feedback from the software. This concept is called gamification [53, 54].
The use of elements from game design in the context of computer science education is
not new. In particular, programming assignments can involve implementations of games.
In [55], for instance, an introductory programming course is taught under the common
umbrella of two-dimensional game development. Similarly, a game project is used in a
course on software architecture [56]. Programming assignments can also involve pieces of
software that act as a player in an existing game. Rather than implementing a game, we are
interested in situations where students learn by playing a game. A publication addressing
this aspect of gamification is given in [57] where game-based learning is used to teach a
course in data structures and algorithms. A collaborative game is described in [58] that
aims at improving the teaching quality of a course on mathematical logic.

The gamification of EXPLAIN is based on finding a solution to a combinatorial scientific
computing problem. We interpret each solution to a problem instance as a round. The
feedback diagram reports the results of previous rounds. The idea of gamification is used to
solve a combinatorial minimization problem. For example, the gamification in the nested
dissection ordering consists of minimizing the size of the vertex separator while, at the
same time, balancing the sizes of the remaining components.

47

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

Figure 4.2: The initial layout of EXPLAIN for some given column compression problem.

4.3 Available modules

In EXPLAIN, we have already implemented several modules. After discussing the module
for the full unidirectional Jacobian compression using the column intersection graph, we
explain the modules for the full and partial bidirectional Jacobian computation. Then,
two other modules of nested dissection ordering and parallel matrix-vector product are
presented to see other features of the software.

4.3.1 Column compression

In [16, 17], we presented a module of EXPLAIN which visualizes the coloring algorithm
for the column compression interactively. Figure 4.2 shows a screenshot of the column
compression module. The matrix and the corresponding column intersection graph are
visualized beside each other. In the bottom of the page, different preloaded matrices can
be selected or a new matrix can be uploaded from a file on the file system of the student’s
computer. The tool provides an interactive interface for the student who can control the
algorithm such as returning to previous steps or loading different graphs and matrices.
Selecting the vertices in different orderings generates different colorings corresponding to
different column compressions.
The module allows to select and, thus, color the vertices of a given graph step by step.

The order in which the vertices are colored is interactively selected by the student. In each
step, when the student selects a vertex, the program checks all of its neighbors regarding
the colors. A color of the current step is then greedily selected from the predefined list of
colors such that it differs from the colors of those neighbors that are already colored. To

48

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

(a) Student selected v2 and v6 in that order. (b) Student selected v2, v6, v3, v5, v1, and v4 in that
order.

(c) Student selected vertices as in Figure 4.3(b) and
then jumped back to v2.

(d) Student selected v2, v1, v3, v4, v5, and v6 in that
order.

Figure 4.3: Display of various situations after interactively choosing vertices.

indicate this, we do not color only the vertices in the graph but also the corresponding
columns in the matrix.
Suppose a vertex is selected in the first step. This vertex is then colored using the first

color of the predefined list. Continuing the process of vertex selection, different colors are
chosen and an ordered list of vertices is created which is indicated in the subfigures of
Figure 4.3 marked by ”Ordering of colored vertices.” Each button of this list is clickable,
causing EXPLAIN to return to that step of the algorithm. The process continues until all
vertices are colored. The button labeled by the minus sign will go back to the first step.
Figure 4.3(a) shows a representation of a nonzero pattern of the possible following matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 0 0 0
0 4 5 6 0 0
0 0 7 8 9 0
0 0 0 10 11 12
0 0 0 0 13 14
0 0 0 0 0 15

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.1)

and the related column intersection graph in which the student has already selected the

49

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

two vertices v2 and v6. Both vertices are colored with the same color since they are not
connected by an edge. Figure 4.3(b) represents the final step which shows that four colors
are needed when the vertices are selected in the order (v2, v6, v3, v5, v1, v4) displayed in the
vertex list. The group of columns with the same color is compressed to a single column in
the seed matrix as follows.

J · S = J ·

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 1 0
4 5 0 6
0 7 9 8
12 0 11 10
14 0 13 0
15 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.2)

Furthermore, the coloring of Figure 4.3(b) is the one corresponding to that compressed
Jacobian (4.2).
Since we want to provide the possibility to return to some step of the algorithm, a history

of the selection process is kept in the ordered vertex list. Now, suppose the student selects
to return to the step 1 where the vertex v2 was selected, then the program returns to that
step of the algorithm. The resulting state is depicted in Figure 4.3(c). Notice that the
program keeps the whole history and the student can click on any other buttons in the
history list.
On the other hand, the student can select a completely new selection order from the

current step which can generate a smaller or larger number of colors. Employing the
different ordering (v2, v1, v3, v4, v5, v6) shown in Figure 4.3(d) leads to a reduction of one
color compared to the first ordering given in Figure 4.3(b). In fact, this is the minimum
number of colors needed to color this graph. The corresponding seed matrix is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

4.3.2 Full and partial Jacobian computation

In our publication [19], we design and implement an interactive module to teach bidirec-
tional compression and its connection to star bicoloring. Figure 4.4 shows an overview
of the layout of the new module whose top and bottom part are shown in (a) and (b),
respectively. In the top part, a graph and a matrix are visualized next to each other.
Here, a matrix with a sparsity pattern in the form of an arrow is taken as an example.
The nonzero pattern of the matrix is shown right and the corresponding bipartite graph is
depicted left. A vertex ri, which is placed on the left part of the graph, represents the ith
row of the matrix. Likewise, a vertex on the right part of the graph labeled ci corresponds
to the ith column of the matrix.

50

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

(a) (b)

Figure 4.4: The general layout of the bidirectional compression module. (a) The top part
contains the visualization of the graph and its corresponding matrix. (b) The
bottom part contains the intermediate steps, the input, and the history of
selections.

(a) (b)

Figure 4.5: The graph and the nonzero pattern (a) taken from Fig. 4.4 after the student
interactively selected the vertices r2 and c1. A star bicoloring (b) of that ex-
ample after trying to solve Minimum Star Bicoloring interactively. This
star bicoloring uses 11 colors.

51

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

(a) (b)

Figure 4.6: A star bicoloring (a) of the problem instance from Fig. 4.4 also considered in
Fig. 4.5. This star bicoloring uses 3 colors and is an exact solution of Minimum
Star Bicoloring. A star bicoloring (b) of a different problem instance using
4 colors which is also an exact solution of Minimum Star Bicoloring

Using any web browser, the student can interactively solve Problem 4, Minimum Star
Bicoloring, by clicking on vertices of the bipartite graph. The selection of a vertex
by a click refers to choosing this vertex to be colored next. This coloring is visualized
simultaneously in the graph as well as in the matrix where the neutral color is the color
white. By clicking on a row vertex, the vertex itself and the corresponding row is colored.
This color should obey the rules specified in the definition of a star bicoloring. By clicking
on a column vertex, this vertex and the corresponding column are colored. Recall that a
nonzero element may be in both a colored column as well as in a colored row. In this case,
we divide the square surrounding this element into a triangle and the remaining part. The
triangle part is colored with the row color and the remaining part of the rectangle with
the column color.

We now take the problem with the arrow-shaped nonzero pattern from Fig. 4.4 as an
example. Here and in the following, we zoom into the graph and matrix view of the layout.
The student interactively selects a sequence of row and column vertices to solve Minimum
Star Bicoloring. Figure 4.5 (a) shows the situation after the student selected the
vertices r2 and c1. The interactive selection then goes back and forth until a correct star
bicoloring is found. Recall that the process of computing a solution of Minimum Star
Bicoloring is called a round. The current round number is displayed at the top of the
web page; see Fig. 4.4 (a). When a coloring is found at round number x, the page shows
the message “Round x is completed!”

Selecting vertices in different orders will typically result in different star bicolorings. A
star bicoloring which is interactively chosen will not always have a minimal number of
colors. For example, the order of vertex selection visualized in Fig. 4.5 (b) leads to a star
bicoloring using 11 colors, which is obviously not the minimal number of colors. Here,
all columns and rows are colored differently. In contrast, Fig. 4.6 (a) illustrates an exact
solution of Minimum Star Bicoloring for this problem instance using the minimal

52

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

(a) (b)

Figure 4.7: (a) The initial view of the module when no required edges are selected. (b) The
user selects first the required edges. These required edges and the corresponding
nonzero elements get the red color.

number of 3 colors.
After completing a round, the student can solve the same problem instance once more. In

this case, the round number will be incremented, the colors will be removed, and another
round is started using the initial situation depicted in Fig. 4.4 (a). The history of the
number of non-neutral colors used in previous rounds is displayed below the matrix in a
score diagram as shown in Fig 4.4 (b).
The subtle issues in understanding the connection between bidirectional compression and

star bicoloring are more lucid when considering more irregularly-structured nonzero pat-
terns. Another problem instance with a different nonzero pattern is shown in Fig. 4.6 (b).
Here, it is more difficult to find out that this star bicoloring with 4 colors is indeed an
exact solution to Minimum Star Bicoloring.
We extend this module to support the partial Jacobian computation. Here, the student

should first select the required elements which are edges in bipartite graphs. So, when the
student clicks on an edge, the color of this edge as well as the color of the corresponding
nonzero element will be changed to red. These selected edges and nonzero elements are
added to the required elements as shown in Figure 4.7.
As soon as the student starts to click the vertices, the required elements become fixed,

i.e., no new required element can be added. The process of coloring is completely like the
previous module. Figure 4.8 (a) shows a selection in which the student selects only column
vertices. The result is a star bicoloring restricted to the red edges with 4 colors. A coloring
with a smaller number of colors is shown in Figure 4.8 (b) in which a row vertex is selected
first.

4.3.3 Nested dissection ordering

In our paper [18], we present the nested dissection module to illustrate the connection
between the following scientific computing and combinatorial problems,

53

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

(a) (b)

Figure 4.8: A star bicoloring restricted to the red edges (a) with four colors in which only
column vertices are selected and (b) with three colors in which the user colors
a row vertex first.

Problem 11 (Nested Dissection Ordering) Given a sparse symmetric positive defi-
nite matrix A, find a symmetric permutation P TAP of A in the form of

A′ =

⎡
⎢⎣
A1 0 BT

1

0 A2 BT
2

B1 B2 C

⎤
⎥⎦ , (4.3)

such that the size of the block C is minimized while the sizes of the blocks A1 and A2 are
balanced.

Problem 12 (Small Vertex Separator) Given the graph G associated with a sparse
matrix A, find a disjoint decomposition of the vertices V = V1 ∪ V2 ∪ S with a vertex
separator S such that the size of the vertex separator, |S|, is minimized while the sizes of
the two remaining components, |V1| and |V2|, are balanced.

The graph model of this problem has the simple graph layout considering the matrix as
the adjacency matrix of a graph. The algorithm from [18] searches for a vertex-separator
set corresponding to the block C. Here, a vertex separator S of the given graph G is a
subgraph of G if the removal of S and its adjacent edges from G results in two disconnected
components V1 and V2 of G. Suppose we move rows and columns corresponding to the
vertex separator to the end of the matrix and bring together the corresponding columns
of V1 and V2 by a permutation, then a nested dissection is visualized in the matrix by the
block form (4.3).
In this module representing a bisection, a round consists of finding a vertex separator.

Figure 4.9 shows the initial layout of an example and the selection of the vertex v10 for the
set of vertex separator. The module moves the column corresponding to the selected vertex
to the end of the matrix and both the vertex and its corresponding column get the orange
color. Additionally, the adjacent edges of the vertex are removed for a better visualization
(compare Figure 4.9 (a) and Figure 4.9 (b)).

54

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

(a) (b)

Figure 4.9: (a) Two equivalent representations in terms of a graph and a matrix. (b) Graph
and matrix view after selecting the vertex number 10. The decomposition into
two blocks is still not shown as the graph is not yet decomposed into two
disconnected components.

(a) (b)

Figure 4.10: (a) Graph and matrix view after selecting the vertices number 10 and then
4. The selection is not adequate as the sizes of blocks are not balanced. (b)
Graph and matrix view after selecting the vertices number 10 and then 8. The
block sizes are balanced and the separator size is minimized.

Figure 4.10 shows two scenarios. We have an unbalanced result in Figure 4.10(a) in
which the vertex v4 is selected after the initial selection of v10. However, Figure 4.10(b)
results in a balanced result by only selecting v8 instead of v4. When a vertex separator is
found, the software performs the permutation and colors the two disconnected components
of the graph as well as the distinct blocks on the diagonal with blue and red.

The feedback diagram from different rounds looks like Figure 4.11. Here, the blue and red
curves should have values close to each other since this indicates the balancing condition.
The orange curve should be as small as possible because it represents the minimization of
the separator size. In the last round of this figure, we see a balanced result with minimal
separator size.

Based on the new features of EXPLAIN 2.0, we update the previous bisection to a
recursive bisection algorithm. It contains the bisection itself. So, the student selects the

55

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

Figure 4.11: Score diagram resulting from four different rounds.

Figure 4.12: A selection results in an unbalanced bisection of graph.

vertex separator as before until the graph becomes disconnected. In this new version, the
vertex separator is shown in orange on the bottom of the graph. Also the two remaining
components of the graph are shown separately in two different colored circles at the top
of this figure. In Figure 4.12, the result of a selection is visualized which is not balanced.
Figure 4.13 also shows the results of a more balanced selection.

Now, in contrast to the previous version, the student can click further on the vertices of
each component. This selection would trigger a recursive bisection of the two components of
the matrix as well. Again, this selection goes forward until both graph components become
disconnected. The vertex separators are moved to the bottom of the graph components
as well as the graph components are shown separately. Figure 4.14 and Figure 4.15 illus-
trate an unbalanced result and a better balanced result of nested dissection, respectively.
Figure 4.16 shows how the results can get even more balanced.

The corresponding feedback diagram is modified such that both the size of the vertex
separator as well as the size of the four graph components can be visualized. In this
diagram, the separator size shows the sum of all the vertex separators of all recursion levels.
Figure 4.17 shows a possible selection history. The line chart shows the size history of the
vertex separator and four-bar chart grouped together shows the size history of the graph

56

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

Figure 4.13: A selection results in a more balanced bisection of graph.

Figure 4.14: A complete nested dissection with an unbalanced result.

57

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

Figure 4.15: A complete nested dissection with a better balanced result.

Figure 4.16: A complete nested dissection with an even more balanced result.

58

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

Figure 4.17: The size of four subgraphs, shown as bar charts, resulted from nested dissec-
tion compared in different rounds. The colors of the bars are related to the
colors of the corresponding subgraphs. The curve in orange color shows the
size of the vertex separator.

parts. The colors are also the same colors used in the graph and matrix visualizations.
The goal here is to minimize the size of the vertex separator as well as balancing the size
of the subgraphs. We achieved a balanced results in the fourth round of selection.

59

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

4.3.4 Parallel matrix-vector product

In our paper [20], we present a module for a parallel matrix-vector product to illustrate
the connection between the following scientific computing and combinatorial problems.

Problem 13 (Data Distribution) Given a large sparse matrix A with a symmetric
nonzero pattern and a dense vector x. Suppose we want to compute the sparse matrix-
vector product y ← Ax on a computer with distributed memory. Find a non-redundant
data distribution of the nonzero elements of A in a row-wise fashion and a consistent dis-
tribution of x and y such that the communication between processes is minimized while the
number of arithmetic operations is balanced between the processes.

Problem 14 (Graph Partitioning) Given an undirected connected graph G, find a par-
tition of the vertices V into nonempty disjoint subsets such that the number of edges with
incident vertices in different partitions is minimized while the number of vertices of the
subsets is balanced.

These two problems are connected by letting a row i of A be represented by a vertex vi in
G and the nonzero elements in the positions (i, j) and (j, i) correspond to an edge between
vertices vi and vj. Let P : V → {1, 2, . . . , p} be the vertex partition to p processes that
decomposes the set of nodes V of the graph into p subsets V1, V2, . . . , Vp such that

V = V1 ∪ V2 ∪ · · · ∪ Vp

with Vi ∩Vj = ∅ for i �= j. This decomposition of V represents the distribution of the rows
of A to p processes.
Assuming that the number of nonzeros is roughly the same for each row of A, the

computation is evenly balanced among the p processes if the partition P is ε-balanced
defined as

max
1≤i≤p

|Vi| ≤ (1 + ε)
|V |
p

, (4.4)

for some given ε > 0. The graph partitioning problem consists of minimizing the number of
edges with incident vertices in different partitions (the cut size) of an ε-balanced partition.
It is a hard combinatorial problem [59].
The parameter ε introduced in (4.4) is used to quantify the degree of imbalance allowed

in a data distribution. If ε = 0 all processes are assigned exactly |V |/p rows of A, meaning
that no imbalance is allowed at all. When increasing ε the load balancing condition (4.4)
is relaxed. The larger ε is chosen, the larger is the allowed imbalance. Thus, in some way,
ε quantifies the deviation from a perfect load balance. An equivalent form of (4.4) is given
by

p

|V | max
1≤i≤p

|Vi| − 1 ≤ ε, (4.5)

which can be interpreted as follows. Suppose that you are not looking for an ε-balanced
partition P for a given ε, but rather turn this procedure around and ask: “Given a partition

60

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

Figure 4.18: Overall structure of the sparse matrix-vector multiplication module.

P , how large need ε at least be so that this partition is ε-balanced?” Then the left-hand
side of the inequality (4.5) which we call deviation bound gives an answer to that question.
The extreme cases for the deviation bound are given by 0 if the distribution is perfectly
balanced and p− 1 if there is one process that gets all the data.
Figure 4.18 shows the overall layout of this interactive module for sparse matrix-vector

multiplication. The top of this figure visualizes the representation of the problem regarding
the graph G as well as in terms of the matrix A and the vector x. Below on the left, there
is a panel of colors representing different processes and another panel displaying the order
of selecting vertices of the graph. Next, on the right, there is a feedback diagram recording
values characterizing communication and load balancing.
This figure gives an overall impression of the status of the module after a data distribution

is completed. Here, p = 4 processes represented by the colors blue, green, red, and yellow
get data by interactive actions taken by the student. Figure 4.19 now shows the status of
the module in a phase that is more related to the beginning of that interactive procedure.
For a given matrix, the student can distribute the data to the processes by first clicking
on a color and then clicking on an arbitrary number of vertices. That is, the distribution
of vertices to a single process is determined by first clicking on a color j and then clicking

61

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

Figure 4.19: The intermediate state after the student selected six vertices.

on a particular number of vertices such that these vertices are distributed to the process
j. Then, by clicking on the next color, this procedure can be repeated until all vertices are
interactively colored and, thus, the data distribution P is finally determined.
Figure 4.19 illustrates the situation after the student distributed vertices {v1, v2, v3}

to the blue process and the vertices {v7, v8, v10} to the green process. By interactively
assigning a vertex to a process, not only the vertex is colored by the color representing this
process, but also the row in the matrix as well as the corresponding vector entry of x are
simultaneously colored with the same color. This way, the data distribution is visualized
in the graph and the matrix simultaneously which emphasizes the connection between the
matrix representation and the graph representation of that problem. By inspection of
the panel representing the order of selection in Figure 4.18, we find out that the status
depicted in Figure 4.19 is an intermediate step of the interactive session that led to the
data distribution in Figure 4.18. Any box labeled with the number of the chosen vertex
in that panel is also clickable allowing the student to return to any intermediate state and
start a rearrangement of the data distribution from that state.
In this module, the problem consists of distributing all data needed to compute the

matrix-vector product to the processes. Equivalently, the distribution of all vertices of the
corresponding graph to the processes is a round. Suppose that round 2 is completed as
given in Figure 4.18. Then, the student can explore the data distribution in more detail
by clicking on a color in the panel labeled “Color of processes.” Suppose that the student
chooses the red process, then this action will modify the appearance of the vector x in the
matrix representation to the state given in Figure 4.20. Here, all vector entries that need
to be communicated to the red process are now also colored red. The background color in
the vector still represents the process that stores that vector entry.
After completion of a round, it is also instructive to focus on the quality of the data

distribution P . Recall that the graph partitioning problem aims at minimizing the cut
size of P while balancing the computational load evenly among the processes. Figure 4.21
shows the feedback diagram. For each round, this diagram shows the cut size using the
label “communication volume.” In that feedback diagram, the student can attempt to
minimize the communication volume over some rounds.

62

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.3 Available modules

Figure 4.20: All vector entries xi to be communicated to the red process are drawn in red.

Figure 4.21: The communication volume and the deviation bound versus various rounds.

63

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

The feedback diagram also shows the value of the deviation bound for each round. A low
deviation bound indicates a partition that balances the computational load evenly, whereas
a large deviation bound represents a significant imbalance of the load. The score diagram
helps the student to evaluate the quality of a single data distribution and to compare it
with distributions obtained in previous rounds. This feedback to the student is in the spirit
of computer games, where a score has only a low immediate relevance to the current game.
However, the idea is to achieve a “high score” and try to motivate the player to beat that
score in subsequent rounds, thus offering an extra challenge. For this educational module,
a “high score” would consist of a low communication value together with a small deviation
bound.

4.4 New features in EXPLAIN 2.0

EXPLAIN 2.0 has various features which are discussed in the following paragraphs. The
new major feature is an algorithm editor. In EXPLAIN 2.0, the student can see and edit
the source code of an algorithm beside the visualization of the graph and matrix. There
is a new button in the control button named as Edit Algorithm!. Clicking this button
shows an editor with the source code of the corresponding module. This source code is
written in a simple scripting language. Figure 4.22 illustrates the column compression
module. As it can be seen, an editor with the corresponding source code of the column
compression module is shown in the right part of the figure. Additionally, the student can
see an animation of this algorithm by first selecting and ordering and then clicking the
button named as animate. An animation goes through the vertices and executes each line
of the algorithm one by one to visualize the algorithm when it is executed. The student
can stop the algorithm and select the speed of execution.

Figure 4.23 shows the control panel of EXPLAIN 2.0 for the nested dissection module
in the left figure and the column compression module in the right figure. Compared to
EXPLAIN 1.0, we here have three new buttons for the three functionalities: going to next
round, doing a postprocessing, and editing an algorithm. The first button named as Go to
next round goes to the next round even if the current round is not completed. The second
button is for a postprocessing step. A postprocessing is an action which can be done when
a round is completed. It can be different for each module. For example, Figure 4.23 (Left)
has the postprocessing named as Show edges. This shows the edges between the vertex
separators and the subgraphs which we remove during the selection. Another example is
Figure 4.23 (Right) which does not have any postprocessing. So, the button is disabled.
The third button is to show and hide the algorithm editor. The label of the button is first
Edit Algorithm! and changed to Finish Editing! after clicking.

Another minor change is the reference to a publication which explains the module.
Figure 4.23 (Left) and (Right) shows the two publications [16] and [18] for the nested
dissection and the column compression module and the link to the publishers.

64

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.4 New features in EXPLAIN 2.0

Figure 4.22: The code of the corresponding module is visualized beside graph and matrix.
This code is in a simple scripting language. The user specifies the order and
this code is executed based on that order.

Figure 4.23: The control panel of EXPLAIN 2.0 is visualized. It has three new buttons
for going to the next round, doing a postprocessing step, and editing the al-
gorithm. Additionally, it has a new reference link to a publication for this
module. (Left) The control panel is visualized for the nested dissection mod-
ule. Here, the postprocessing step is to show the missing edges which we
remove during the selection processes. (Right) The control panel is visual-
ized for the column compression module. In this module, we do not have any
postprocessing step. Hence, the button is disabled.

65

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

4.5 Implementation details of EXPLAIN

Lülfesmann et al. [60] first introduced an standalone version of EXPLAIN that needed a
client with administrator privileges to install Python libraries as well as the software itself.
Here, we introduce two new releases of EXPLAIN.

4.5.1 Version 1.0

This section is a summary of the implementation details of EXPLAIN 1.0 in our publi-
cation [16]. In EXPLAIN 1.0, the software is moved to the online platform which means
the student needs just a web browser to work with the software. EXPLAIN 1.0 combines
several Python packages. More precisely, the graph data structure is handled by NetworkX
[61]. It provides different operations like creation and deletion of vertices and edges. It
also allows the programmer to access characteristic graph information such as the neighbor
vertices and the number of vertices. Using this library together with matplotlib [62] covers
the different aspects of visualization. This library produces different layouts of graphs as
well as the properties of vertices and edges. The matrix manipulation and visualization
are handled by Scipy [63], specifically the construction and the visual layout of sparse
matrices.
The conversion from the standalone to the online version needs the Python library

Mod python [64]. It comes from the Apache project including the Python interpreter
in the given Apache web server. Using this library helps to keep the previous program
structure as much as possible.
The libraryMod python assists to implement folder management, user interaction, cookie

handling, and the web interface. Specifically, the Mod python modules like Apache, util,
and PSession are used to migrate the previous version of EXPLAIN to a web version.
As already mentioned, the Python interpreter is embedded into the web server by the
Mod python module.
In the standalone version, an event was handled by a local Python function but, in the

new version, there are two sides: server and client. The web browser at the client side shows
HTML websites with embedded Javascript source code while the server side is a Python
server. Since the buttons are HTML buttons and the events are Javascript functions,
a Javascript function submits a form to the server containing the execution request and
parameters to the related Python function. Then, the called Python function writes the
dynamically generated result as an HTML string to the Apache request. The server sends
back the HTML string and the client shows the string as a web page.
As an example, the basic algorithm of coloring in the column compression module and

keeping the history is shown in the pseudo-codes given in Figure 4.24. The first procedure
represents what happens when a student clicks on a vertex. The second one shows how
the history of matrix and graph images are loaded when the student clicks on one of the
history buttons.
The first procedure, VertexClicked, takes the selected vertex v as an input parameter.

To color this vertex v, it finds the first color from the list ColorList that is different from

66

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.5 Implementation details of EXPLAIN

the colors of the neighbors of v. The coloring of the graph is then changed, shown, and
saved as an image. Also, the vertex v is added to the ordered list, Hist, of selected vertices
for the history.
The second procedure, HistClicked, takes the selected history h. This history will be

used to find and plot the previously stored images of the matrix and the graph. Also, the
variable IsInHist specifies that the program is in the “history mode” which is important
if the user selects a vertex different from the previous order. In this case, the program
overwrites the current history and saves new images.

4.5.2 Version 2.0

In EXPLAIN 2.0, we changed the code such that it becomes more efficient and easier to
extend. In the previous version, the module was mainly based on the Python libraries:
NetworkX [61] for the graph data structure, matplotlib [62] for the visualization aspects,
Scipy [63] for the sparse matrix computation, and Mod python [64] for the web-based
version.
There were two problems with the previous implementation. First, the final visualization

of graph and matrix was always an image. So, the time for saving and loading the image was
always a problem. Second, since the final result was HTML/JS code and the computation
part was in Python, an overhead of the server management for Mod python is always added
to the system.
In the new implementation, we replace all Python parts with the Javascript code. We

choose the Javascript library D3 (Data-Driven Documents) because of its power of control
and visualization. Figure 4.25 shows an illustration of the data structure of adjacency
list for graph which is implemented in Javascript. There is an the array representing the
vertices. Each cell of this array points to another array edges which contains the identity
of the vertices which are neighbors of that vertex. Here, we show that the data structure
contains other properties like colors. Using the object structure of Javascript, it can be
extended dynamically to include any other properties which may be necessary later. For
example, two properties distance and parent are added in the implementation of Breadth-
First Search (BFS).
We consider a model-view-control (MVC) design pattern [65] for our implementation.

An important aspect of our design is the suitable connection of the model and view. A
practical approach enables the direct change in view while it keeps the separation of the
view and model. So, we have unique ids for edges and vertices. The unique ids for vertices
are the concatenation of the string “ver” and the actual id of the vertex. Similarly, the
unique ids for edges are defined as the concatenation of the four strings “edge”, the source
vertex, “-“, and the target vertex. The same idea applies to the matrix view. Each cell of
the matrix is accessible through a unique id combining the strings “cell”, the row index,
”-”, and the column index. Each nonzero of the matrix also gets the unique id that is built
in a similar way as the cell id, but replacing the string ”cell” by the string ”nnz”.
The previous discussion of the view access enables us to select the specific element and

change its behavior and properties. For example, the following code changes the color of

67

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

1: ColorList ← {green, turquoise, orange, violet, ...}
2: Hist ← {} 	 History of selected vertices.
3: WhereInHist ← 0 	 Where in history are we?
4: IsInHist ← False 	 Are we in history mode?
5:

6: procedure VertexClicked(v) 	 User clicks vertex v.
7: ns ← neighbors(v)
8: ColorIndex ← 1 	 Allowed color index
9: for i ← 1 to size(ColorList) do
10: AllowedColor ← True
11: for j ← 1 to size(ns) do
12: if ColorList[i] = color(ns[j]) then
13: AllowedColor ← False
14: if AllowedColor = True then
15: ColorIndex ← i
16: Break
17: Color v with the color ColorList[ColorIndex]
18:

19: if graph and matrix images are not already saved then
20: SaveMatrix() 	 Using a specific name
21: SaveGraph() 	 Using a specific name

22: if IsInHist = True then
23: for i ← WhereInHist+ 1 to size(Hist) do
24: Hist.removeElementAtPosition(i)

25: Hist.add(v)
26: IsInHist ← False
27: else
28: Hist.add(v)

29: Update(Hist) 	 Update history buttons

30:

31:

32: procedure HistClicked(h) 	 User clicks history h.
33: OpenMatrix(h) 	 Plot/load matrix with specific name
34: OpenGraph(h) 	 Plot/load graph with specific name
35: WhereInHist ← find(Hist, h) 	 The location of h
36: IsInHist ← True

Figure 4.24: Pseudocode of the event handling in EXPLAIN

68

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.5 Implementation details of EXPLAIN

Figure 4.25: The graph data structure which is implemented in EXPLAIN 2.0.

the vertex with the id i to the red color and the color of a matrix cell to the blue color,

Another aspect of the implementation is the order of drawing edges and vertices. Since
we do not want to draw the edges on the top of the vertices, the edges should be drawn
first. On the other hand, we draw an edge only by getting the positions of its vertices.
This direct connection helps to avoid the several updates of view for drawing vertices and
edges. To solve this problem, we draw the edges and vertices in order by using the grouping
concepts of D3.

After the first design of the software, we then considered the actual interface for the
developer. Since we do not need all the functionality which the programming language
provides, we design a new scripting language which has particular functions for working
with matrix and graph. Table 4.1 shows some of these functions.

Having such scripting language empowers us to have a dynamic scripting editor together
with EXPLAIN which makes the creation of new modules efficient and fast. The developer
of a new module needs only to write the action command of the vertex click and the
global variables which he/she needs. There are some predefined variables for required
data. As an example, the variable current and colors represents the current vertex and the
list of predefined colors, respectively. The following code shows the code for the column
compression module as an example.

69

1 d3.select("#ver"+i).set_color(red);
2 d3.select("#cell"+i+"-"+j).set_color(blue);

1 var ns = neighbors(current);
2 var col_ns = get_colors(ns);

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Interactive educational modules

neighbors(lv) returns the neighbors of the list lv of vertices
color vertex(v,c) colors the vertex v with the color c
color column(i,c) colors the column i with the color c
color row(j,c) colors the row j with the color c

min(l) and max(l) finds minimum and maximum of the list of integers l
diff(A,B) finds A− B

get colors(lv) returns a list of colors of the list lv of vertices

Table 4.1: A list of functions available in the new scripting language.

3 var new_col = min(diff(colors,col_ns));
4 color_column(current, new_col);
5 color_vertex(current,new_col);

Each module in EXPLAIN 2.0 consists of four functions with particular name conventions.
For example, the following list represents these functions for the column compression mod-
ule. Here, all functions except the one which computes one step of the algorithm have the
ending made up from the first characters of the name of the module.

• column compression: The function which computes one step of the algorithm.

• reference cc: This function defines two strings: a bibliography for a reference (refer-
ence text) and the actual reference url (reference url).

• global cc: This function contains any global variable. Particularly, the user should
define some required variables which we discuss in the following paragraph.

• post processing cc: This is an action to a post processing button. As we discussed,
the postprocessing shows the missing edges in the nested dissection module.

A sample source code showing the previous functions for the column compression algo-
rithm is as follows.

1 var reference_cc = function () {
2 reference_text= "H. M. Buecker, M. A. Rostami, M. Luelfesmann : " +
3 "An interactive educational module illustrating sparse matrix

compression via graph coloring.";
4 reference_url= "10.1109/ICL.2013.6644591";
5 };
6
7 var global_cc = function () {
8 graph_format="cig";
9 colors = range(0,22);
10 chart_yaxis1_text = "Number of colors";
11 chart_group5_text = ’Number of colors’;
12 start_matrix = "nestedDissection3.mtx";
13 animation = true;
14 };

70

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4.5 Implementation details of EXPLAIN

15
16 var column_compression = function() {
17 var ns = neighbors(current);
18 var col_ns = get_colors(ns);
19 var new_col = min(diff(colors, col_ns));
20 color_column(current, new_col);
21 color_vertex(current, new_col);
22 if (get_colored_vertices().length == currentg.vertices.length) {
23 gather_round_data(min(diff(colors, get_colors(get_colored_vertices())))

);
24 round_completed();
25 }
26 };
27
28 var post_processing_cc = function () {
29
30 };

71

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5 Conclusion and future work

This dissertation is to develop the new ideas in combinatorial scientific computing mixing
AD and preconditioning which we explained in Section 2.2. In Chapter 3, we introduce new
coloring heuristics to increase the number of potentially and additionally required elements
while the number of colors remains almost the same. Additionally, in the same chapter,
we discussed a new heuristic for the coloring restricted to the diagonal elements. We
implemented all these heuristics in our software PreCol which is explained in Section 3.4.
In Section 4, we develop an interactive educational module for teaching the concepts of

combinatorial scientific computing. In this chapter, we discussed our previous publications
[16, 17, 18, 19, 20] and also the new features which we have not published yet. There is still
room for new ideas in this software. Beside developing new modules, we need to improve
the usability and extensibility of the software. Also, we need an extensive evaluation of
the software to find the new ways of further developments.
Although we proposed different heuristics, many dimensions of the problem can be im-

proved. We considered only the ILU preconditioning with the natural ordering. A future
work is to replace ILU with other preconditioning techniques. For example, the approx-
imate inverse preconditioning (AINV) [66] might be a suitable candidate which produces
no fill-in. Also, the connection of combinatorial techniques in support theory for precondi-
tioning [67, 68] could be explored. Another future work is to consider blocks of submatrices
for coloring instead of just a complete row or column? Steihaug and Hossain [69] discuss
this idea for blocks of rows and the same column intersection graph as before and show
it has advantages in the unidirectional coloring. A first improvement is to search for a
similar approach in the bidirectional coloring and restricted coloring. Finally, a new area
is to look at the same ideas for the hypergraph model for fine-grained coloring.

73

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[1] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, 2nd ed. Philadelphia, PA: SIAM, 2008.

[2] L. B. Rall, Automatic Differentiation: Techniques and Applications, ser. LNCS.
Berlin: Springer, 1981, vol. 120.

[3] A. Curtis, M. Powell, and J. Reid, “On the estimation of sparse Jacobian matrices,”
IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications),
vol. 13, no. 1, pp. 117–119, 1974.

[4] T. F. Coleman and J. J. Moré, “Estimation of sparse Jacobian matrices and graph
coloring problems,” SIAM Journal on Numerical Analysis, vol. 20, no. 1, pp. 187–209,
1983.

[5] J. J. E. Dennis and T. Steihaug, “On the successive projections approach to
least-squares problems,” SIAM Journal on Numerical Analysis, vol. 23, no. 4, pp.
717–733, 1986. [Online]. Available: https://doi.org/10.1137/0723047

[6] T. F. Coleman and A. Verma, “Structure and efficient Jacobian calculation,” in Com-
putational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof,
G. Corliss, and A. Griewank, Eds. Philadelphia, PA: SIAM, 1996, pp. 149–159.

[7] A. S. Hossain and T. Steihaug, “Computing a sparse Jacobian matrix by rows and
columns,” Optimization Methods & Software, vol. 10, pp. 33–48, 1998.

[8] S. Hossain and T. Steihaug, “Graph models and their efficient implementation for
sparse Jacobian matrix determination,” Discrete Applied Mathematics, vol. 161, pp.
1747–1754, 2013.

[9] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny, DSJM:
A Software Toolkit for Direct Determination of Sparse Jacobian Matrices.
Cham: Springer International Publishing, 2016, pp. 275–283. [Online]. Available:
https://doi.org/10.1007/978-3-319-42432-3 34

[10] S. Hossain and T. Steihaug, “Optimal direct determination of sparse Jacobian matri-
ces,” Optimization Methods and Software, vol. 28, no. 6, pp. 1218–1232, 2013.

[11] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color is your Jacobian? Graph
coloring for computing derivatives,” SIAM Review, vol. 47, pp. 629–705, 2005.

75

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[12] A. Calotoiu, “Bipartite Graph Coloring for Compressed Sparse Jacobian Computa-
tion,” Master’s thesis, University Politehnica of Bucharest, Bucharest, Romania, 2009,
prepared in Department of Computer Science, RWTH Aachen University.

[13] M. Lülfesmann, “Graphfärbung zur partiellen Berechnung von Jacobi-Matrizen,” Mas-
ter’s thesis, Department of Computer Science, RWTH Aachen University, Aachen,
Germany, 2006.

[14] M. Lülfesmann, “Full and partial Jacobian computation via graph coloring:
Algorithms and applications,” Dissertation, Department of Computer Science,
RWTH Aachen University, 2012. [Online]. Available: http://darwin.bth.rwth-aachen.
de/opus3/volltexte/2012/4112/

[15] H. M. Bücker, M. Lülfesmann, and M. A. Rostami, “Enabling implicit time integra-
tion for compressible flows by partial coloring: A case study of a semi-matrix-free
preconditioning technique,” in 2016 Proceedings of the Seventh SIAM Workshop on
Combinatorial Scientific Computing, Albuquerque, New Mexico, USA, October 10–12,
A. H. Gebremedhin, E. G. Boman, and B. Ucar, Eds. Philadelphia, PA, USA: SIAM,
2016, pp. 23–32.

[16] H. M. Bücker, M. A. Rostami, and M. Lülfesmann, “An interactive educational mod-
ule illustrating sparse matrix compression via graph coloring,” in 2013 International
Conference on Interactive Collaborative Learning (ICL), Proceedings of the 16th Inter-
national Conference on Interactive Collaborative Learning, Kazan, Russia, September
25–27, 2013. Piscataway, NJ: IEEE, 2013, pp. 330–335.

[17] M. A. Rostami and H. M. Bücker, “Interactive educational modules illustrating sparse
matrix computations and their corresponding graph problems,” in Informatiktage
2014, Fachwissenschaftlicher Informatik-Kongress, 27. und 28. März 2014, Hasso
Plattner Institut der Universität Potsdam, ser. GI-Edition: Lecture Notes in Informat-
ics (LNI) – Seminars, G. für Informatik, Ed. Bonn: Köllen Druck+Verlag GmbH,
2014, vol. S–13, pp. 253–256.

[18] H. M. Bücker and M. A. Rostami, “Interactively exploring the connection between
nested dissection orderings for parallel Cholesky factorization and vertex separators,”
in IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS
2014 Workshops, Phoenix, Arizona, USA, May 19–23, 2014. Los Alamitos, CA,
USA: IEEE Computer Society, 2014, pp. 1122–1129.

[19] H. M. Bücker and M. A. Rostami, “Interactively exploring the connection between
bidirectional compression and star bicoloring,” in International Conference on Com-
putational Science, ICCS 2015 — Computational Science at the Gates of Nature,
Reykjav́ık, Iceland, June 1–3, 2015, ser. Procedia Computer Science, S. Koziel, L. Leif-
sson, M. Lees, V. V. Krzhizhanovskaya, J. Dongarra, and P. M. A. Sloot, Eds., vol. 51.
Elsevier, 2015, pp. 1917–1926.

76

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[20] M. A. Rostami and H. M. Bücker, “An educational module illustrating how sparse
matrix-vector multiplication on parallel processors connects to graph partitioning,” in
Euro-Par 2015: Parallel Processing Workshops, Euro-Par 2015 International Work-
shops, Vienna, Austria, August 24–28, 2015, Revised Selected Papers, ser. Lecture
Notes in Computer Science, S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci,
M. E. Gómez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes, J. Wei-
dendorfer, and M. Alexander, Eds., vol. 9523. Cham, Switzerland: Springer, 2015,
pp. 135–146.

[21] T. F. Coleman and A. Verma, “The efficient computation of sparse Jacobian matri-
ces using automatic differentiation,” SIAM Journal on Scientific Computing, vol. 19,
no. 4, pp. 1210–1233, 1998.

[22] D. Juedes and J. Jones, “Coloring Jacobians revisited: a new algorithm for star and
acyclic bicoloring,” Optimization Methods & Software, vol. 27, no. 2, pp. 295–309,
2012.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2003.

[24] M. Benzi, “Preconditioning techniques for large linear systems: A survey,” Journal of
Computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

[25] K. J. Cullum and M. Tůma, “Matrix-free preconditioning using partial matrix
estimation,” BIT Numerical Mathematics, vol. 46, no. 4, pp. 711–729, 2006. [Online].
Available: http://dx.doi.org/10.1007/s10543-006-0094-8

[26] D. Hysom and A. Pothen, “Level-based incomplete LU factorization: Graph model
and algorithms,” Lawrence Livermore National Labs, East Lansing, Michigan, Tech.
Rep. Tech Report UCRL-JC-150789, November 2002.

[27] R. M. Karp, “Reproducibility among combinatorial problems,” in Complexity of Com-
puter Computations, R. E. Miller and J. W. Thatcher, Eds. New York: Plenum Press,
1972, pp. 85–103.

[28] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering heuristics
for parallel graph coloring,” in Proceedings of the 26th ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA ’14. New York, NY, USA: ACM, 2014,
pp. 166–177. [Online]. Available: http://doi.acm.org/10.1145/2612669.2612697

[29] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph
coloring algorithms,” J. ACM, vol. 30, no. 3, pp. 417–427, Jul. 1983. [Online].
Available: http://doi.acm.org/10.1145/2402.322385

[30] D. Brélaz, “New methods to color the vertices of a graph,” Commun.
ACM, vol. 22, no. 4, pp. 251–256, Apr. 1979. [Online]. Available: http:
//doi.acm.org/10.1145/359094.359101

77

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[31] D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number of a
graph and its application to timetabling problems,” The Computer Journal, vol. 10,
no. 1, pp. 85–86, 1967.

[32] T. F. Coleman and J. J. Moré, “Estimation of sparse Jacobian matrices and graph
coloring problems,” Numerical Analysis, vol. 20, pp. 187–209, 1983.

[33] T. A. Davis and Y. Hu, “The university of Florida sparse matrix collection,” ACM
Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec. 2011.

[34] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen,
“Graph coloring algorithms for muti-core and massively multithreaded architectures,”
CoRR, vol. abs/1205.3809, 2012. [Online]. Available: http://arxiv.org/abs/1205.3809

[35] G. Rokos, G. Gorman, and P. H. Kelly, A Fast and Scalable Graph Coloring
Algorithm for Multi-core and Many-core Architectures. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 414–425. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-662-48096-0 32

[36] H. Büsing, J. Willkomm, C. H. Bischof, and C. Clauser, “Using exact Jacobians in an
implicit Newton method for solving multiphase flow in porous media,” International
Journal of Computational Science and Engineering, vol. 9, no. 5/6, pp. 499–508,
2014. [Online]. Available: http://dx.doi.org/10.1504/IJCSE.2014.064535

[37] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild, “Combining
source transformation and operator overloading techniques to compute derivatives for
MATLAB programs,” in Proceedings of the Second IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2002). Los Alamitos, CA, USA:
IEEE Computer Society, 2002, pp. 65–72.

[38] J. Willkomm, C. H. Bischof, and H. M. Bücker, “A new user interface for ADiMat:
Toward accurate and efficient derivatives of Matlab programs with ease of use,” In-
ternational Journal of Computational Science and Engineering, vol. 9, no. 5/6, pp.
408–415, 2014.

[39] A. Bondy and U. S. R. Murty, Graph Theory, ser. Graduate Texts in Mathematics.
Springer, 2008.

[40] M. Wilson, Imperfect C++: Practical Solutions for Real-Life Programming. Addison-
Wesley, 2004.

[41] R. F. Boisvert, R. Pozo, and K. Remington, “The matrix market exchange formats:
Initial design,” National Institute of Standards and Technology, Gaithersburg, MD,
USA, Tech. Rep. Technical Report NITSTIR 5935, December 1996.

[42] The Boost Graph Library: User Guide and Reference Manual. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

78

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[43] B. Sutherland, Chapter 2: Modern C++. Berkeley, CA: Apress, 2015, pp. 17–58.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4842-0157-2 2

[44] J. Singler and B. Konsik, “The GNU libstdc++ parallel mode: Software engineering
considerations,” in Proceedings of the 1st International Workshop on Multicore
Software Engineering, ser. IWMSE ’08. New York, NY, USA: ACM, 2008, pp.
15–22. [Online]. Available: http://doi.acm.org/10.1145/1370082.1370089

[45] M. A. Rostami, H. M. Bücker, and A. Azadi, “Illustrating a graph coloring algorithm
based on the principle of inclusion and exclusion using GraphTea,” in Open Learning
and Teaching in Educational Communities, Proceedings of 9th European Conference
on Technology Enhanced Learning, EC-TEL 2014, Graz, Austria, September 16–19,
2014, ser. Lecture Notes in Computer Science, C. Rensing, S. de Freitas, T. Ley,
and P. J. Muñoz Merino, Eds., vol. 8719. Cham, Switzerland: Springer, 2014, pp.
514–517.

[46] M. A. Rostami, A. Azadi, and M. Seydi, “Graphtea: Interactive graph self-teaching
tool,” in Communications, Circuits and Educational Technologies, Proceedings of
the 2014 International Conference on Education and Educational Technologies II
(EET’14), Prague, Czech Republic, April 2–4, 2014, P. Dondon, B. K. Bose, D. S.
Naidu, I. Rudas, and S. Kartalopoulos, Eds. EUROPMENT, 2014, pp. 48–51.

[47] A. Schliep and W. Hochstättler, “Developing Gato and CATBox with Python: Teach-
ing graph algorithms through visualization and experimentation,” Multimedia Tools
for Communicating Mathematics, pp. 291–310, 2002.

[48] Y. Carbonneaux, J.-M. Laborde, and R. M. Madani, “CABRI-Graph: A tool for
research and teaching in graph theory,” in Graph Drawing: Proceedings of the Sym-
posium on Graph Drawing, GD ’95, Passau, Germany, September 20–22, 1995, ser.
LNCS, F. J. Brandenburg, Ed., vol. 1027. Berlin: Springer, 1996, pp. 123–126.

[49] D. Auber et al., “The Tulip 3 framework: A scalable software library for
information visualization applications based on relational data,” Research Centre
Bordeaux–Sud-Ouest, INRIA, Research Report RR–7860, Jan. 2012. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00659880

[50] A. Lambert and D. Auber, “Graph analysis and visualization with Tulip-Python,” in
EuroSciPy 2012 — 5th European meeting on Python in Science, Bruxelles, Belgique,
2012. [Online]. Available: http://hal.archives-ouvertes.fr/hal-00744969

[51] M. T. Heath, Scientific Computing: An Introductory Survey, 2nd ed. McGraw-Hill,
2002.

[52] C. B. Moler, Numerical Computing with MATLAB. Philadelphia, PA, USA: SIAM,
2004.

79

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[53] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon, “Gamification:
Using game-design elements in non-gaming contexts,” in CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA ’11. New
York, NY, USA: ACM, 2011, pp. 2425–2428. [Online]. Available: http:
//doi.acm.org/10.1145/1979742.1979575

[54] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design elements to
gamefulness: Defining ”gamification”,” in Proceedings of the 15th International Aca-
demic MindTrek Conference: Envisioning Future Media Environments, ser. MindTrek
’11. New York, NY, USA: ACM, 2011, pp. 9–15.

[55] S. Leutenegger and J. Edgington, “A games first approach to teaching introductory
programming,” in Proceedings of the 38th SIGCSE Technical Symposium on Computer
Science Education, ser. SIGCSE ’07. New York, NY, USA: ACM, 2007, pp. 115–118.
[Online]. Available: http://doi.acm.org/10.1145/1227310.1227352

[56] A. I. Wang, “Extensive evaluation of using a game project in a software architecture
course,” Trans. Comput. Educ., vol. 11, no. 1, pp. 5:1–5:28, Feb. 2011. [Online].
Available: http://doi.acm.org/1921607.1921612

[57] L. Hakulinen, “Using serious games in computer science education,” in Proceedings
of the 11th Koli Calling International Conference on Computing Education Research,
ser. Koli Calling ’11. New York, NY, USA: ACM, 2011, pp. 83–88. [Online].
Available: http://doi.acm.org/10.1145/2094131.2094147

[58] A. Schäfer, J. Holz, T. Leonhardt, U. Schroeder, P. Brauner, and M. Ziefle, “From
boring to scoring – a collaborative serious game for learning and practicing mathe-
matical logic for computer science education,” Computer Science Education, vol. 23,
no. 2, pp. 87–111, 2013.

[59] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP–Completeness. San Francisco: Freeman, 1979.

[60] M. Lülfesmann, S. R. Leßenich, and H. M. Bücker, “Interactively exploring elimina-
tion orderings in symbolic sparse Cholesky factorization,” in International Conference
on Computational Science, ICCS 2010, ser. Procedia Computer Science, vol. 1(1).
Elsevier, 2010, pp. 867–874.

[61] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics,
and function using NetworkX,” in Proceedings of the 7th Python in Science Conference,
G. Varoquaux, T. Vaught, and J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11–15.

[62] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science En-
gineering, vol. 9, no. 3, pp. 90–95, 2007.

80

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

[63] E. Jones et al., “SciPy: Open source scientific tools for Python,” 2014,
http://www.scipy.org.

[64] Apache Software Foundation, “Mod python module,” 2013,
http://www.modpython.org.

[65] A. Osmani, Learning JavaScript Design Patterns, ser. JavaScript and jQuery
developer’s guide. O’Reilly Media, Incorporated, 2012. [Online]. Available:
https://books.google.de/books?id=JYPEgK-1bZoC

[66] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner for nonsym-
metric linear systems,” SIAM Journal on Scientific Computing, vol. 19, no. 3, pp.
968–994, 1998.

[67] K. Gremban, “Combinatorial preconditioners for sparse, symmetric, diagonally dom-
inant linear systems,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh,
October 1996, cMU CS Tech Report CMU-CS-96-123.

[68] E. G. Boman and B. Hendrickson, “Support theory for preconditioning,” SIAM
Journal on Matrix Analysis and Applications, vol. 25, no. 3, pp. 694–717, 2003.
[Online]. Available: https://doi.org/10.1137/S0895479801390637

[69] T. Steihaug and A. K. M. S. Hossain, “Graph coloring and the estimation of sparse
Jacobian matrices with segmented columns,” Department of Informatics, University
of Bergen, Technical Report 72, 1997.

81

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Appendix

A.1 Comparing the computations of Algorithm 3.1 and
Algorithm 3.2

Here, we illustrate the figures for the comparison of Algorithm 3.1 and Algorithm 3.2.
Each figure contains three computations: potentially required elements in the top figure,
additionally required elements in the middle figure, and the number of colors in the bottom
figure. Figure A.1, Figure A.2, and Figure A.3 are for the computation for the natural
ordering, the LFO ordering, and the SLO ordering, respectively. Also, Figure A.4 shows
this comparison for the matrix crystm01 with the natural ordering.

83

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

Figure A.1: The computation carried out the matrix ex33 and for the natural ordering.

84

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

A.1 Comparing the computations of Algorithm 3.1 and Algorithm 3.2

Figure A.2: The computation carried out the matrix ex33 and for the LFO ordering.

85

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

Figure A.3: The computation carried out the matrix ex33 and for the SLO ordering.

86

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

A.1 Comparing the computations of Algorithm 3.1 and Algorithm 3.2

Figure A.4: The computation carried out the matrix crystm01 and for the natural ordering.

87

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

A.2 Comparing the computations of Algorithm 3.2 and
Algorithm 3.4

Table A.1 shows the comparison of the number of colors and the number of potentially
and additionally required elements produced by Algorithm 3.2 and Algorithm 3.4.

88

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

A.2 Comparing the computations of Algorithm 3.2 and Algorithm 3.4

Matrix (NAT) |Ra| |Rp| |Φ|
Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4

steam1.mtx 630 64 786 64 10 7
steam2.mtx 1400 240 1880 240 17 9
nos3.mtx 4296 1106 6756 1638 19 13
ex7.mtx 25054 29174 34954 38554 55 56
ex33.mtx 5572 4920 8934 7408 18 18

crystm01.mtx 28318 10388 47556 17822 22 14
coater1.mtx 7448 7684 11558 11722 27 28
pesa.mtx 33094 31010 41154 36972 13 12

Matrix (LFO) |Ra| |Rp| |Φ|
Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4

steam1.mtx 666 64 1048 64 12 7
steam2.mtx 1248 240 2624 240 17 9
nos3.mtx 4442 1246 6882 1880 21 16
ex7.mtx 24060 28904 33426 37080 53 59
ex33.mtx 6888 7170 10564 10574 18 19

crystm01.mtx 21194 12256 36634 20326 17 17
coater1.mtx 7536 7410 11512 11312 24 24
pesa.mtx 31884 31790 41676 42490 11 11

Matrix (SLO) |Ra| |Rp| |Φ|
Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4 Alg.3.2 Alg.3.4

steam1.mtx 754 64 1294 64 14 7
steam2.mtx 1912 240 3192 240 17 9
nos3.mtx 4382 1132 6772 1682 21 13
ex7.mtx 24164 27044 34448 36486 55 51
ex33.mtx 7138 5186 10754 8024 20 17

crystm01.mtx 26782 14252 45166 24478 20 16
coater1.mtx 7878 7004 11702 10476 24 21
pesa.mtx 34044 29034 44624 39606 13 10

Table A.1: The comparison between the number of potentially and additionally required
elements as well as the number of colors computed with Algorithm 3.4 and 3.2.
The block size is fixed to 10. The orderings for coloring are (Top) the natural
ordering, (Middle) LFO, and (Bottom) SLO.

89

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Bibliography

A.3 Comparing the computations of Algorithm 3.5 with
different block sizes

Figure A.5 and Figure A.6 show the comparison of the number of colors and the number
of additionally required elements produced by Algorithm 3.5 with different values of α and
the varying block sizes.

Figure A.5: The comparison of the number of colors in Algorithm 3.5 with α ∈ {0, 2, 6, 10}
and the LFO ordering.

Figure A.6: The comparison of the number of additionally required elements in Algo-
rithm 3.5 with α ∈ {0, 2, 6, 10} and the LFO ordering.

90

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	2 Known graph models from scientificcomputing
	3 New coloring heuristics
	4 Interactive educational modules
	5 Conclusion and future work
	Bibliography
	Appendix

