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Abstract

Simulations and optimizations are carried out to investigate real-world problems
in science and engineering. For instance, solving systems of linear equations with
sparse Jacobian matrices is mandatory when using a Newton-type algorithm. The
sparsity of Jacobian matrices is exploited and only a subset of the nonzero elements
is determined to successfully reduce the usage of the restricting resources—memory
and computational effort. This reduction is crucial to investigate real-world problems.
The determination of all nonzero elements is denoted as full Jacobian computa-

tion, opposed to the partial Jacobian computation where only a subset of the nonzero
elements is computed. Reducing the computational effort to determine nonzero ele-
ments with automatic differentiation is modeled by graph coloring problems. Beside
the bipartite graph model for general Jacobian matrices, regular Cartesian grids are
a graph class arising from stencil-based computations. In this thesis, graph coloring
algorithms for full and partial Jacobian computation are introduced, for both rep-
resentations. Furthermore, for regular grids, the presented algorithms even result in
minimal colorings. Thereafter, several classes of Jacobian matrices are considered to
assess which coloring method should be employed for which class.
Iterative solvers for systems of linear equations are matrix-free and require solely

access to (transposed) Jacobian matrix-vector products. These products are effi-
ciently provided by automatic differentiation without storing the nonzero elements
of the Jacobian matrix. However, when using standard preconditioning techniques
to speed up the solution of the linear systems, the access to these nonzero elements
is necessary. In this thesis, the preconditioning technique is restricted to a subset
of the Jacobian elements which are determined using partial Jacobian computation.
The bipartite graph model is employed to determine a coloring but also to carry out
the symbolic factorization for the preconditioning. An initial set of nonzero elements
is given; further nonzero elements are chosen without exceeding the computational
effort and the available memory. A classification for these nonzero elements is intro-
duced. Strategies and algorithms to select these elements are given.
Finally, the coloring algorithms as well as the combination of preconditioning and

partial Jacobian computation are applied to several applications from science and
engineering. It is shown that the demands of memory and computational effort are
successfully reduced.
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Zusammenfassung

Simulationen und Optimierungen werden genutzt, um anwendungsnahe Fragestel-
lungen in den Natur- und Ingenieurwissenschaften zu untersuchen. Das Lösen von
linearen Gleichungssystemen mit dünnbesetzten Jacobi-Matrizen ist zum Beispiel für
das Newton-Verfahren zwingend erforderlich. Speicherverbrauch und Berechnungs-
aufwand werden durch das Ausnutzen der Dünnbesetztheit dieser Matrizen und die
Berechnung einer Teilmenge der Nichtnullelemente verringert. Diese Reduktion ist
für die Untersuchung von anwendungsnahen Fragestellungen entscheidend.
Das Bestimmen aller Nichtnullelemente einer Jacobi-Matrix wird als vollständige

Berechnung bezeichnet. Bei der partiellen Berechnung hingegen wird nur eine Teil-
menge der Nichtnullelemente bestimmt. Die Nichtnullelemente werden mit Hilfe
des automatischen Differenzierens berechnet. Das Verringern des Berechnungsauf-
wands wird als Graphfärbungsproblem modelliert. Neben dem bipartiten Graphmo-
dell für Jacobi-Matrizen mit beliebiger Struktur werden auch reguläre kartesische
Gitter betrachtet. In dieser Arbeit werden Graphfärbungsalgorithmen sowohl für die
vollständige als auch für die partielle Berechnung von Jacobi-Matrizen eingeführt.
Für die regulären Gitter sind die Färbungen sogar minimal. Abschließend wird für
verschiedene Matrixklassen das Färbungsverfahren, das zur geringsten Farbanzahl
führt, gesucht.
Zum Lösen linearer Gleichungssysteme mit Hilfe eines iterativen Verfahrens ist die

Berechnung von (transponierten) Jacobi-Matrix-Vektor-Produkten ausreichend. Eine
explizite Aufstellung der Jacobi-Matrizen ist nicht erforderlich. Durch das automa-
tische Differenzieren werden Jacobi-Matrix-Vektor-Produkte effizient zur Verfügung
gestellt, wobei das Speichern der Nichtnullelemente der entsprechenden Jacobi-Matrix
nicht erforderlich ist. Der Zugriff auf die Nichtnullelemente ist jedoch notwendig, um
den Lösungsprozess mit Hilfe von Standardtechniken der Vorkonditionierung zu be-
schleunigen. In dieser Arbeit werden die Vorkonditionierer aufgrund einer Teilmenge
der Nichtnullelemente bestimmt. Das bipartite Graphmodell wird nicht nur verwen-
det, um eine Färbung zu berechnen, sondern auch, um das symbolische Faktorisieren
für die Vorkonditionierung durchzuführen. Nachdem eine anfängliche Teilmenge von
Nichtnullelementen gegeben ist, werden weitere Nichtnullelemente ausgewählt, oh-
ne dass der Berechnungsaufwand und der verfügbare Speicher überschritten werden.
Nach der Klassifizierung der Nichtnullelemente werden Auswahlstrategien und ent-
sprechende Algorithmen eingeführt.
Sowohl die Färbungsalgorithmen als auch die Kombination von Vorkonditionierung

und partieller Berechnung von Jacobi-Matrizen werden in Anwendungen der Natur-
und Ingenieurwissenschaften angewendet. Dadurch wird gezeigt, dass die Anforde-
rungen an den Speicher und den Berechnungsaufwand erfolgreich verringert werden.
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1 Introduction

Simulations using partial differential equations (PDE) and PDE-constrained opti-
mizations are employed to attack real-world problems in scientific computing. In both
areas, solving systems of linear equations with Jacobian matrices as coefficient matri-
ces is mandatory. To solve these linear systems, sparse Jacobian matrices demand a
matrix-free iterative solver with access to (transposed) Jacobian matrix-vector prod-
ucts. Automatic differentiation is a technique to provide not only Jacobian matrices
but also these products. The great benefit of these Jacobian matrix-vector products
is that there is no need to store the nonzero elements of the Jacobian matrix. If a
Jacobian matrix exceeds the main memory, it is essential to use matrix-free itera-
tive solvers. Memory consumption and computational effort are restricting resources
in simulation and optimization. In this thesis, the sparsity of Jacobian matrices is
exploited to decrease both resources.
Exploiting the sparsity of Jacobian matrices is important to decrease the compu-

tational effort. Determining all nonzero elements is denoted as full Jacobian com-
putation, opposed to the partial Jacobian computation where only a subset of the
nonzero elements is computed. Determining such a subset is important for employing
the preconditioning techniques in the second part of this thesis.
Nonzero elements may be determined row- or column-wise with automatic differ-

entiation. Either rows or columns can be combined to linear combinations to reduce
the computational effort. There are special classes of matrices for which the number
of linear combinations can be reduced further. Therefore, the nonzero elements can
be determined by rows and columns. These rows and columns are combined to linear
combinations of rows and linear combinations of columns. The arrow-shaped matrix
is a good example for this matrix class. These reductions of linear combinations can
be modeled as combinatorial optimization problems, in particular, graph coloring
problems. That is, each linear combination is associated to a color. Combining ei-
ther rows or columns is denoted as one-sided coloring, whereas combining rows and
columns is denoted as two-sided coloring.
Reducing the number of colors for full and partial Jacobian computation is stud-

ied in the first main part of this thesis. In particular, algorithms to solve the re-
sulting graph coloring problems are developed. Regular Cartesian grids are a graph
class occurring in stencil-based computations. A sub-exponential exact coloring al-
gorithm is introduced to determine minimal colorings for full and partial Jacobian
computation. This algorithm takes advantage of the grid and stencil properties by
employing a divide-and-conquer scheme and separators derived from Lipton-Tarjan
separators. Thereafter, since the runtime depends directly on the grid size, a grid
size-independent approach with linear time complexity is invented. A small grid is

1
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1 Introduction

colored and, then, a coloring information—if available—is extracted which is suf-
ficient to color a larger grid of arbitrary size with the smallest number of colors.
Although this approach is not universal, it works for all considered stencils. Follow-
ing one-sided colorings to exploit Jacobian matrices in stencil-based computations,
the next topic is two-sided colorings for general graphs. An algorithm for partial
Jacobian computation is introduced. Thereafter, several classes of Jacobian matrices
are considered to assess whether there is a two-sided coloring with less colors than a
minimal one-sided coloring.
For matrix-free iterative solvers, the access to Jacobian matrix-vector products is

sufficient without assembling the full matrix. Unfortunately, standard precondition-
ing techniques expect that all nonzero elements of a Jacobian matrix are available.
Using preconditioners increases the convergence behavior and speeds up solving sys-
tems of linear equations. If the available memory is a limiting resource, storing all
these elements is often impossible. Cullum and Tuma [21] proposed to restrict the
input for the preconditioning method to a subset of the nonzero elements of a Jaco-
bian matrix. However, they do not address how to choose this subset. Gebremedhin,
Pothen, and Manne [27] introduced the coloring definition for the partial Jacobian
computation and mentioned its usage for preconditioning. When a subset of the Ja-
cobian elements—solely for preconditioning purposes—is determined, these nonzero
elements may be stored and, afterwards, the preconditioning techniques are restricted
to these elements.
Combining preconditioning techniques with the partial Jacobian computation is

the topic of the second half of this thesis. It is assumed that the sparsity pattern
of the Jacobian matrix is available. This information is employed to determine a
preconditioner. A set of nonzero elements is suggested by domain experts and, then,
additional nonzero elements are chosen to speed up solving systems of linear equa-
tions. When these elements are chosen, the limited memory and the computational
effort must be taken into account. To determine the initial nonzero elements, a col-
oring with a specific number of colors is needed. Additional nonzero elements are
chosen without increasing this number of colors and without exceeding the available
memory. The nonzero elements are categorized to different classes. Several algorithms
are developed to choose nonzero elements. At the end, a couple of additional nonzero
elements are omitted to obtain a structure which is beneficial for solving the precon-
ditioned system of linear equations in parallel. The aim is to reduce the degree of
dependence between the employed processors.
The main contributions of this thesis are in the fields of coloring algorithms for

sparsity exploitation of Jacobian matrices as well as the combination of precondi-
tioning and partial Jacobian computation. In the first part, a sub-exponential exact
coloring algorithm and a linear-time algorithm which is independent of the original
grid size are introduced for full and partial Jacobian computation in stencil-based
computations. For general graphs, a two-sided coloring algorithm for partial Jacobian
computation is given. Thereafter, several classes of Jacobian matrices are considered
to assess whether there is a two-sided coloring with less colors than a minimal one-
sided coloring. In the second part, the combination of preconditioning and the partial

2
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Jacobian computation is a completely new approach. It includes the categorization
of nonzero elements and choosing specific nonzero elements for preconditioning.
This thesis is structured as follows: Already known graph models associated to

sparse Jacobian matrices are described in Chap. 2. These models comprise a bi-
partite graph model for general Jacobian matrices and a regular Cartesian grid for
Jacobian matrices arising from stencil-based computations. Furthermore, the opti-
mization problems concerning the exploitation of Jacobian matrices and a first in-
troduction to graph coloring algorithms is given. Moreover a consistent notation for
the thesis is introduced. In Chap. 3, an exact sub-exponential coloring algorithm on
regular grids for full and partial Jacobian computation in stencil-based computation
is presented. Another new coloring algorithm to compute minimal colorings is pre-
sented to reduce the complexity of the previous algorithm. The determination of the
coloring information is independent of the original grid size. For general graphs, a
coloring algorithm for the partial Jacobian computation is described which is also
applicable for the full Jacobian computation. Thereafter, for some matrix classes,
the reduction in the number of colors by using two-sided colorings compared to one-
sided colorings is evaluated. In the following chapter, a preconditioning technique
is combined with the partial Jacobian computation. The preconditioning for solving
systems of linear equations is introduced and motivated. Afterwards, the nonzero el-
ements of Jacobian matrices are classified. For every class, algorithms are introduced
to determine different subsets of required nonzero elements. At the end, solving pre-
conditioned systems of linear equations in parallel is considered. The usage of the
required elements for preconditioning is evaluated by the number of matrix-vector
products, number of nonzero elements, and number of colors. In Chap. 5, several
applications from science and engineering are considered to show the practical rele-
vance for using the previously described techniques, in particular, the graph coloring
and preconditioning. This thesis closes with a concluding summary.

3
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2 Exploiting sparsity in Jacobian
computation

Before describing the progress in coloring algorithms and partial Jacobian computa-
tion for preconditioning, we give a short survey of the state of the art in exploiting
the sparsity of Jacobian matrices. After presenting the Jacobian computation for all
nonzero elements, we explain how to reduce the computational effort when only a
subset of these nonzero elements is determined. Thereafter, these exploitation tech-
niques are modeled as graph coloring problems. Finally, the focus is on Jacobian
matrices occurring from discretizing domains with stencil-based methods. In con-
trast to general graphs, regular grids are employed.

2.1 Full Jacobian computation

Given a program implementing some mathematical function

f(x) : Rn → Rm, (2.1)

the derivative of the vector-valued function f with respect to some vector x ∈ Rn in
the direction of a vector s ∈ Rn is defined by

∂f

∂x
s = lim

h→0

f(x+ hs)− f(x)

h
. (2.2)

Let A := ∂f/∂x denote the m× n Jacobian matrix whose columns are given by

A = [a1a2 · · · an].
Then, by choosing s ∈ {0, 1}n as a binary vector, any sum of columns aj can be
computed where the jth entry of s is nonzero, i.e.,

As =
∑

j with sj=1

aj.

Moreover, the product of the Jacobian matrix A and some n× p seed matrix S can
be approximated by p + 1 evaluations of the function f using divided differencing.
Similarly, the forward mode of automatic differentiation is capable of computing that
product, A ·S, without truncation error using p+1 times the time needed to evaluate
f . Therefore, p indicates a rough measure of the time needed to compute the Jacobian
matrix.

5
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2 Exploiting sparsity in Jacobian computation
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Figure 2.1: (a) Sparsity pattern of Jacobian matrix A with p = 5 column groups
({1}, {2,3}, {4}, {5}, {6}). (b) Seed matrix S corresponding to column
groups in (a). (c) Bidirectional partition of A with p = 4 groups (row:
{1}, column: {1}, {2,. . . ,5}, {6}).

Automatic differentiation (AD) [31,55] comprises a set of techniques to transform
the function f into another function which computes the derivative. The two major
modes of AD are the forward mode to compute linear combinations of the columns
of a Jacobian matrix and the reverse mode to compute linear combinations of the
rows. Using AD in a näıve way in the forward or reverse mode, we need p = n or
p = m directional derivatives, respectively.

The sparsity pattern of a Jacobian matrix A can be determined beforehand or is
known due to the discretization of the underlying physical model. This information
can be used to decrease the number of directional derivatives p by combining several
columns to a linear combination without losing values. This technique is called column
compression. The idea to reduce p—and hence the time to compute all nonzero
elements of a sparse Jacobian matrix—consists of partitioning the columns of the
Jacobian matrix into groups of those columns whose sum contains all the nonzero
elements of the columns in that group [22]. The definition and the corresponding
problem for row groups is straightforward. The property characterizing such a column
group is introduced in the following definition:

Definition 2.1. Two columns ai and aj are structurally orthogonal if and only if
they do not have any nonzero element in the same row, i.e.,

ai ⊥ aj :⇐⇒ �k : ak,i �= 0 ∧ ak,j �= 0.

In the example given in Fig. 2.1(a), the columns a2 and a3 are structurally orthog-
onal since there is no row in which both columns have a nonzero element. So, the sum
a2 + a3 contains all nonzero elements of these two columns. The columns a1 and a2
are not structurally orthogonal, so-called structurally non-orthogonal, because both
have nonzero elements in rows 1 and 2. The combinatorial optimization problem to
find a minimal p is formulated as follows:

6
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2.2 Partial Jacobian computation

Problem 2.2. Given a Jacobian matrix A, partition its columns into a minimal
number of groups of structurally orthogonal columns. More precisely, find a binary
n×p matrix S such that all nonzero elements of A are contained in the matrix-matrix
product A · S and the number of columns p, representing the number of groups, is
minimized.

A solution to that problem, a so-called unidirectional partition, may not be unique.
For the illustrating example in Fig. 2.1(a), a solution is indicated by using different
colors. This unidirectional partition consists of p = 5 column groups {1}, {2, 3},
{4}, {5}, and {6}. Compared to the näıve way, this is a reduction of one directional
derivative. The corresponding seed matrix is given in Fig. 2.1(b).
A further reduction is possible using a combination of rows and columns, a so-

called bidirectional partition. This is beneficial if there is at least one column and
one row which are pretty dense, i.e., there are a lot of nonzero elements in this
column or row, respectively. An obvious example for the bidirectional partitioning is
the arrow shaped matrix with one full row, one full column, and a full diagonal. The
combinatorial optimization problem to find a minimal number of groups is formulated
as follows:

Problem 2.3. Given a Jacobian matrix A, find a binary pr × m matrix Sr and
a binary n × pc matrix Sc such that all nonzero elements of A are contained in
the matrix-matrix products Sr · A and A · Sc, and the number of rows and columns
p = pr + pc, representing the number of groups, is minimized.

An illustrating example for the bidirectional partitioning is depicted in Fig. 2.1(c).
All nonzero elements in the first row are covered by the row group {1}. Now, the
column groups can be determined without taking the nonzero elements of the first
row into account. The columns a2 and a4 can be part of the same column group,
although the values of the elements a1,2 and a1,4 are destroyed. The reason is that
these elements are determined by the row group {1}. The bidirectional partition
consists of the row group {1} and the column groups {1}, {2, . . . , 5}, and {6}. That
is, the bidirectional partition consists of p = pr+pc = 1+3 groups. This is a reduction
of one group compared to the unidirectional partition.

2.2 Partial Jacobian computation

Rather than computing all nonzero elements of the Jacobian matrix A, only a proper
subset of the nonzero elements should be determined. Computing such a set of
required nonzero elements R is called partial Jacobian computation as opposed to
full Jacobian computation where all nonzero elements are computed. The remain-
ing nonzero elements are called non-required elements. Gebremedhin, Manne, and
Pothen [27] introduced the rules for the partial Jacobian computation. In [40–42],
the assumption was validated that the partial Jacobian computation reduces the
number of groups p compared to the full Jacobian computation.
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2 Exploiting sparsity in Jacobian computation

1

2

3

4

5

6

1 2 3 4 5 6

× × × × × ×
× ×
× ×
× ×
× ×
× × ×

(a)

1

2

3

4

5

6

1 2 3 4 5 6

× × × × × ×
× ×
× ×
× ×
× ×
× × ×

⊗ ⊗ ⊗
⊗

⊗ ⊗
⊗

⊗ ⊗

(b)

Figure 2.2: (a) Full Jacobian computation for Jacobian matrix with p = 6 column
groups. (b) Partial Jacobian computation for Jacobian matrix from (a)
with p = 4 column groups with required elements denoted by symbol ⊗
and non-required elements by symbol ×.

For the unidirectional partitioning, the property how to combine columns is intro-
duced in the following definition:

Definition 2.4. Two columns ai and aj are partially structurally orthogonal with
respect to the required elements R if and only if they do not have a nonzero element
in the same row where at least one nonzero element is required, i.e.,

ai ⊥R aj :⇐⇒ �k : ak,i �= 0 ∧ ak,j �= 0 ∧ (ak,i ∈ R ∨ ak,j ∈ R).

We consider the following Jacobian matrix to explain the column compression in
partial Jacobian computation: Let the sparsity pattern of the 6×6 Jacobian matrix A
be given by an arrow-shaped structure with an additional nonzero element a6,5. This
pattern is depicted in Fig. 2.2(a). All columns of this Jacobian matrix are struc-
turally non-orthogonal due to row 1 which is full of nonzero elements. Six column
groups are needed for the full Jacobian computation. This changes when we define a
subset R with the required elements indicated by the symbol ⊗ in Fig. 2.2(b). The
required elements in the first row are a1,1, a1,3, and a1,5. The non-required elements
are indicated by the symbol ×. Due to the fact that we are not interested in the
non-required elements a1,2 and a1,4, the columns a2 and a4 are partially structurally
orthogonal and can be combined into one column group. The column a6 does not
contain a required element and therefore is not part of any column group.

The adaption of the optimization problems 2.2 and 2.3 for the full Jacobian compu-
tation to the partial Jacobian computation is straightforward regarding the modified
definition of partial structural orthogonality. We skip the definition of the bidirec-
tional partitioning for partial Jacobian computation in this section and refer to the
explanation in the next section with the corresponding graph model.
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r1
r2
r3
r4
r5
r6

c1
c2
c3
c4
c5
c6

(a)

r1
r2
r3
r4
r5
r6

c1
c2
c3
c4
c5
c6

(b)

r1
r2
r3
r4
r5
r6

c1
c2
c3
c4
c5
c6

(c)

r1
r2
r3
r4
r5
r6

c1
c2
c3
c4
c5
c6

(d)

Figure 2.3: (a) Unidirectional partition and (b) bidirectional partition of the bipar-
tite graph associated to Jacobian matrix in Fig. 2.2 for full Jacobian
computation. (c) Unidirectional partition and (d) bidirectional partition
for partial Jacobian computation with required edges indicated in black
and non-required edges in gray.

2.3 Graph representation

Coleman and Moré [18] were the first authors who modeled the computation of
sparse Jacobian matrices by graphs. In particular, they introduced the column inter-
section graph. Since then, various graph models have been used to describe different
sparsity-exploiting derivative computations [16, 17, 33–35]. Coleman and Verma [19]
introduced a bipartite graph model. In contrast to the other graph models, this model
is sufficient for the bidirectional partitioning in full and partial Jacobian computa-
tion. Therefore, we mainly consider the bipartite graph throughout this thesis.
The sparsity pattern of a Jacobian matrix A can be represented as an undirected

bipartite graph G = (Vr � Vc, E) which consists of m vertices in Vr to represent the
rows and n vertices in Vc to represent the columns. The symbol � indicates that
the sets Vr and Vc are disjoint. The vertex ri ∈ Vr corresponds to row i and the
vertex cj ∈ Vc to column j. There is an edge (i, j) ∈ E if and only if a nonzero
element ai,j �= 0 exists. The bipartite graph G associated to the matrix in Fig. 2.2(a)
consists of 6 vertices in Vr to represent the rows, 6 vertices in Vc to represent the
columns, and 17 edges connecting vertices from Vr and Vc representing the nonzero
elements. The graph G is depicted in Fig. 2.3.
The unidirectional partitioning of columns can be modeled as a graph coloring

problem on the bipartite graph. The following definition is used to partition the
column vertices into different groups.

Definition 2.5. Two column vertices ci and cj are structurally orthogonal if and
only if they are not connected by a path of length 2, i.e.,

ci ⊥ cj :⇐⇒ �rk ∈ Vr : (rk, ci) ∈ E ∧ (rk, cj) ∈ E.

Two vertices are distance-k neighbors, if they are connected by a path of length k.
For column compression, all column vertices have to be colored so that different colors
are assigned to any pair of distance-2 neighbors. This rule is given more precisely in
the following definition:
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2 Exploiting sparsity in Jacobian computation

Definition 2.6 (Distance-2 coloring). Let G = (Vr�Vc, E) be a bipartite graph.
A mapping Φ: Vc → {1, . . . , p} is a distance-2 coloring of G if the following condition
holds:

• for every path (ci, rk, cj) with ci, cj ∈ Vc and rk ∈ Vr, Φ(ci) �= Φ(cj).

This coloring is also denoted as one-sided coloring due to its restriction to column
vertices. An illustration of this definition is given in Fig. 2.3(a) where a group of
structurally orthogonal vertices is indicated using the same color. This distance-2
coloring Φ corresponds to the unidirectional partitioning in Fig. 2.2(a). For example,
the vertices c1 and c2 are colored differently, because they are distance-2 neighbors.
Gebremedhin, Manne, and Pothen [27] denote this as a partial distance-2 coloring.
The term partial is left out in the following to avoid confusion in connection with
the term partial Jacobian computation. The field of one-sided coloring algorithms
for full Jacobian computation is well-known. There are several notes [18, 22, 27, 34]
describing algorithms and underlying graph models.
Minimizing the number of colors p of the coloring Φ means to minimize the com-

putational effort. The combinatorial optimization problem in terms of the bipartite
graph is then as follows:

Problem 2.7. Given a bipartite graph G = (Vr�Vc, E), partition its column vertices
into a minimal number of groups of structurally orthogonal vertices. More precisely,
find a distance-2 coloring of Vc such that the number of colors p, representing the
number of groups, is minimized.

The distance-2 coloring and the optimization problem for the row vertices are
defined analogously to the column vertices. The bidirectional partitioning can be
modeled as a graph coloring problem, too. The rules for such a two-sided coloring of
the bipartite graph are given in the following definition:

Definition 2.8 (Star bicoloring [27]). Let G = (Vr � Vc, E) be a bipartite graph.
A mapping Φ: [Vr � Vc] → {0, 1, . . . , p} is a star bicoloring of G if the following
conditions are met:

1. Vertices in Vc and Vr receive disjoint colors, except for color 0; i.e., for every
ri ∈ Vr and cj ∈ Vc, either Φ(ri) �= Φ(cj) or Φ(ri) = Φ(cj) = 0.

2. At least one endpoint of every edge receives a nonzero color; i.e., for every
(ri, cj) ∈ E, Φ(ri) �= 0 or Φ(cj) �= 0.

3. For every path (u, v, w) with Φ(v) = 0, Φ(u) �= Φ(w).
4. Every path of length three with four vertices uses at least three colors.

Here, the mapping Φ assigns the colors {0, 1, . . . , p} to vertices such that certain
vertices receive different colors. The “neutral” color zero is distinguished from the
remaining colors. A coloring of the form Φ(v) = 0, which assigns the color zero to the
vertex v, indicates that no color is actually assigned to this vertex. A star bicoloring
according to Def. 2.8 is given in Fig. 2.3(b). This star bicoloring corresponds to the
bidirectional partitioning given in Fig. 2.1(c). The optimization problem for the star
bicoloring is then as follows:
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2.3 Graph representation

Algorithm 2.1: Determine a distance-2 coloring of a bipartite graph G when
restricted to ER.
1 function D2ColoringRestricted(G = (Vr � Vc, E), ER)
2 coloring Φ ← [−1 . . .− 1]; forbiddenColors ← [0 . . . 0]
3 foreach ci ∈ Vc with ∃rk : (rk, ci) ∈ ER do
4 foreach cj ∈ N2(ci, G,ER) with Φ(cj) > 0 do
5 forbiddenColor[Φ(cj)] ← i

6 Φ(ci) ← min{k > 0: forbiddenColor[k] �= i}
7 return Φ

Problem 2.9. Given a bipartite graph G = (Vr � Vc, E), find a star bicoloring of Vc

and Vr such that the number of colors p = pc+pr, representing the number of column
and row groups, is minimized.

Following [27,41,42], we adapt the Definitions 2.6 and 2.8 to definitions for the par-
tial Jacobian computation on bipartite graphs. Therefore, an additional edge set ER

for the required edges corresponding to required elements is necessary. We note that
the full Jacobian computation is a special case of the partial Jacobian computa-
tion when ER = E holds for the following Definitions 2.10 and 2.12. The following
definition is concerned with the unidirectional partitioning by columns.

Definition 2.10 (Restricted distance-2 coloring [27]). Let G = (Vr � Vc, E)
be a bipartite graph and let ER ⊆ E denote the set of required edges. A map-
ping Φ: Vc → {0, 1, . . . , p} is a distance-2 coloring of G when restricted to ER if the
following conditions hold for every edge (ri, cj) ∈ ER, where ri ∈ Vr and cj ∈ Vc:

1. Φ(cj) �= 0, and
2. for every path (ck, ri, cj) with ck ∈ Vc, Φ(ck) �= Φ(cj).

A bipartite graph with a restricted distance-2 coloring is depicted in Fig. 2.3(c).
The required edges are indicated in black and the non-required edges in gray. This
restricted distance-2 coloring corresponds to the unidirectional partition of the Ja-
cobian matrix in Fig. 2.2(b). The optimization problem for the restricted distance-2
coloring is as follows:

Problem 2.11. Given a bipartite graph G = (Vr�Vc, E), partition its column vertices
into a minimal number of groups of partially structurally orthogonal vertices. More
precisely, find a distance-2 coloring of Vc when restricted to ER such that the number
of colors p, representing the number of groups, is minimized.

This NP-hard problem [26, 40] is solved by heuristics. A heuristic to compute a
restricted distance-2 coloring is given in Alg. 2.1. All vertices ci which are incident
to a required edge obtain a color which is not assigned to a distance-2 neighbor cj
before. The function N2(v,G) returns the distance-2 neighbors of the vertex v. The
function N2(v,G,Er) yields the distance-2 neighbors restricted to ER. The index of
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2 Exploiting sparsity in Jacobian computation

vertex ci is stored in the entry of the array forbiddenColors which corresponds to the
color of a distance-2 neighbor cj of vertex ci, Φ(cj). When all distance-2 neighbors
have been visited, the heuristic assigns the smallest valid color to vertex ci.
In contrast to the previous definition addressing partial Jacobian computation

for the unidirectional partitioning, the following definition is concerned with the
bidirectional partitioning.

Definition 2.12 (Restricted star bicoloring [27]). Let G = (Vr � Vc, E) be a
bipartite graph and let ER ⊆ E denote the set of required edges. A mapping Φ: [Vr�
Vc] → {0, 1, . . . , p} is a star bicoloring of G when restricted to ER if the following
conditions are met:

1. Vertices in Vc and Vr receive disjoint colors, except for color 0; i.e., for every
ri ∈ Vr and cj ∈ Vc, either Φ(ri) �= Φ(cj) or Φ(ri) = Φ(cj) = 0.

2. At least one endpoint of an edge in ER receives a nonzero color; i.e., for every
(ri, cj) ∈ ER with ri ∈ Vr and cj ∈ Vc, Φ(ri) �= 0 or Φ(cj) �= 0.

3. For every edge (ri, cj) ∈ ER, ri, r� ∈ Vr, and cj, ck ∈ Vc,

a) if Φ(ri) = 0, then, for every path (ck, ri, cj), Φ(ck) �= Φ(cj);
b) if Φ(cj) = 0, then, for every path (ri, cj, r�), Φ(ri) �= Φ(r�);
c) if Φ(ri) �= 0 and Φ(cj) �= 0, then for every path (ck, ri, cj, r�), either Φ(ck) �=

Φ(cj) or Φ(ri) �= Φ(r�).

The corresponding minimization problem in terms of the bipartite graph is given
as follows:

Problem 2.13. Given a bipartite graph G = (Vr � Vc, E), find a star bicoloring of
G when restricted to ER such that the number of colors p = pc + pr, representing the
number of column and row groups, is minimized.

The vertices of a bipartite graph can be colored in different vertex orderings. These
orderings have a deep impact on the result. That is, due to the greedy characteristic
of the algorithm, differently ordered vertices result in a different number of colors.
Certain preorderings are often better than the natural ordering v1, . . . , vn in terms
of number of colors. Examples for preordering algorithms are: largest-first ordering
(LFO) [62], smallest-last ordering [44], and incident-degree ordering (IDO) [10].
These orderings are carried out before applying the coloring heuristic. Furthermore,
there are dynamic orderings which are determined during the coloring. That is, a
vertex is immediately colored after its selection. Then, the next vertex is chosen
and colored. For example, the dynamic largest-first ordering (DLFO) [28] is such an
ordering method.

2.4 Grid representation

In the previous sections, the graph coloring problems are described for general Ja-
cobian matrices. In this section, we focus on a special case of the graphs, regular
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2.4 Grid representation

Cartesian grids. These grids can be employed together with stencil-based methods to
discretize partial differential equations and, in addition, to approximate the partial
derivatives. Surveys about several representations for exploiting the sparse Jacobian
computation in this context are given in [13,14]. The function

f : RMN −→ RMN , (2.3)

which is a special case of (2.1), is computed by a stencil operation on a regular
M×N grid. That is, the value of a quantity on a grid point is updated by the weighted
values of the quantity on neighboring grid points. We consider only neighbors in space
rather than in time. The neighborship relation for a grid point (m,n) is defined by
the stencil N (m,n), the set of all neighboring grid points whose values influence
the new value at (m,n). We assume that the update of a grid point involves its old
value so that (m,n) ∈ N (m,n). The grid point (m,n) is called the center of the
stencil N (m,n). An example for a five-point stencil is

N5pt(m,n) = {(m+ 1, n), (m− 1, n), (m,n), (m,n+ 1), (m,n− 1)} (2.4)

for any center (m,n) that is not located on the boundary of the grid. That is, the
neighbors of the center in N5pt are immediately adjacent in the north, south, west,
and east directions. A center on the boundary has less neighbors in N5pt. To avoid
excessive case-by-case analyses of grid points whose neighborship intersects with the
boundary, we informally use (2.4) to denote the neighborhood relationship for all
points (m,n) with 1 ≤ m ≤ M and 1 ≤ n ≤ N . The five-point stencil N5pt is
illustrated in Fig. 2.4(a). To this end, let ψ(m,n) denote the one-dimensional index
used for the grid point (m,n) in a certain numbering scheme. We assume a natural
ordering where the grid points are numbered starting from left to right and from
bottom to top:

ψ(m,n) = m+ (n− 1)M.

The numbering scheme for the five-point stencil N5pt, for example, is

ψ(1, 1) = 1, ψ(2, 1) = 2, . . . , ψ(M, 1) = M, ψ(1, 2) = M + 1, . . . , ψ(M,N) = MN.

This one-dimensional numbering is indicated in Fig. 2.4(b). This figure illustrates
the nine-point stencil defined by

N9pt(m,n) = N5pt(m,n) ∪ {(m+ 2, n), (m− 2, n), (m,n+ 2), (m,n− 2)}.
Given a regular M × N grid and a stencil N (m,n) describing the neighborhood

relationship for all grid points 1 ≤ m ≤ M and 1 ≤ n ≤ N , the sparsity pattern of
the MN ×MN Jacobian matrix A defined by the function f in (2.3) is determined
and given as follows. A nonzero Jacobian element is characterized by

ai,j �= 0 ⇐⇒ i = ψ(m,n), j = ψ(k, l), and (k, l) ∈ N (m,n).

An example of a nonzero pattern is illustrated in Fig. 2.4(c) for the five-point sten-
cil N5pt on a 3×3 grid. The row 5 and column 5 are associated to the grid point (2, 2)
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Figure 2.4: (a) Five-point stencilN5pt, (b) nine-point stencilN9pt for a regularM×N
grid. (c) Nonzero pattern of Jacobian matrix resulting from the five-
point stencil N5pt using a natural ordering of grid points on a 3× 3 grid.
Background padding indicates p = 5 groups of structurally orthogonal
columns.

with 5 = ψ(2, 2). In this example, the only non-boundary grid point (2, 2) of this
small grid induces five nonzero elements in row ψ(2, 2) = 5 of the nonzero pattern.
For every grid point j = ψ(k, l), (k, l) ∈ N5pt(2, 2), there is a nonzero element a5,j in
row 5. Hence, the nonzero elements are a5,2, a5,4, a5,5, a5,6, and a5,8. Further stencils
are depicted in Appendix A.1.1.
Rather than considering Jacobian matrices, we now focus on the underlying regular

M ×N grid and some general stencil N (m,n). The combinatorial problem can then
be reformulated in terms of the underlying grid. Since a grid point corresponds to a
row/column of the Jacobian matrix, we get the following definition that characterizes
the property needed to partition the grid points into groups.

Definition 2.14. Two grid points (i, j) and (k, l) are structurally orthogonal if and
only if their stencils do not have a grid point in common, i.e.,

(i, j) ⊥ (k, l) : ⇐⇒ �(m,n) : (i, j) ∈ N (m,n) ∧ (k, l) ∈ N (m,n)

⇐⇒ N (i, j) ∩N (k, l) = ∅.
To illustrate this definition, we resume the example of the five-point stencil N5pt.

The centers of all stencils depicted in Fig. 2.5(a) are structurally orthogonal. A group
of structurally orthogonal center grid points is called a cover. In general, there are
grid points that are not structurally orthogonal so that multiple covers are needed
to contain all grid points. Therefore, the corresponding combinatorial optimization
problem is given as follows:

Problem 2.15. Given a grid, partition its grid points into a minimal number of
groups of structurally orthogonal grid points. More precisely, find a sequence of covers
containing all grid points such that stencils within a cover do not overlap and the
number of covers p, representing the number of groups, is minimized.
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2.4 Grid representation

(a) (b)

Figure 2.5: (a) Cover corresponding to a group of structurally orthogonal center
points for the five-point stencil N5pt on a 9 × 7 grid. (b) Sequence of
covers obtained from using p = 5 covers of the form given in (a).

In Fig. 2.5(b), a solution is shown that was constructed by taking p = 5 covers
of the form shown in Fig. 2.5(a) and shifting them so as to contain all grid points.
The different covers are depicted in that figure using different background padding.
Since the stencil involves five grid points, there is no solution with p < 5. Hence,
the sequence of covers shown in Fig. 2.5(b) is indeed an optimal solution to the
combinatorial optimization problem. For this five-point stencil, the open literature
[29, 46, 48] gives the explicit formula to construct the sequence of covers given in
Fig. 2.5(b).

15

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3 Colorings for full and partial
Jacobian computation

In Sect. 3.1, a sub-exponential exact coloring algorithm for stencil-based computa-
tions is introduced to determine minimal colorings for partial and full Jacobian com-
putation. This algorithm takes advantage of the grid and stencil properties. For the
full Jacobian computation, this algorithm is given in [43]. Since the runtime depends
directly on the grid size, a grid size-independent approach with linear complexity is
introduced in Sect. 3.2. The minimal colorings in the first two sections are distance-2
colorings in terms of the bipartite graph. After considering these one-sided colorings
to exploit the sparsity pattern of Jacobian matrices in stencil-based computations,
we move on to two-sided colorings for general graphs and introduce an algorithm for
partial Jacobian computation in Sect. 3.3. In the last section, we consider several
classes of Jacobian matrices to assess if there is a two-sided coloring with less colors
than a minimal one-sided coloring.

3.1 Exact sub-exponential coloring algorithm for
regular grids

3.1.1 Full Jacobian computation

The optimization problem 2.15 given in terms of the grid can also be formulated as a
coloring problem [13,14]. That is, all grid points belonging to a cover receive the same
color. Unfortunately, the distance-1 coloring of the grid, i.e., all adjacent grid points
are colored differently, is not sufficient to address the structural non-orthogonality of a
center to the non-directly connected grid points. To demonstrate this relationship, we
transform the optimization problem to a distance-1 coloring problem on a graph. The
vertices represent the grid points and there is an edge between the grid points (m,n)
and (i, j) if and only if (m,n) and (i, j) are structurally non-orthogonal. Due to
Def. 2.14, between the grid point (m,n) and its structurally non-orthogonal grid
points (i, j), the edges

{((m,n), (i, j)) | ∀(i, j) : (m,n) �⊥ (i, j)}

must be added. In order to clarify this relationship, we consider the center (m,n)
of the six-point stencil N6pt(m,n) in Fig. 3.1(b). The grid point (m,n) is not only
center of N6pt(m,n), but also part of the stencils N6pt(m,n − 1), N6pt(m − 2, n),
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Figure 3.1: (a) Six-point stencil N6pt. (b) Six-point stencil N6pt(m,n), highlighted
with bold edges, with all structurally non-orthogonal grid points to center
(m,n).

N6pt(m− 1, n), N6pt(m+ 1, n), and N6pt(m,n+ 1). Therefore, there is an edge from
(m,n) to each grid point (i, j) ∈ N6pt(m,n) ∪ N6pt(m,n − 1) ∪ N6pt(m − 2, n) ∪
N6pt(m− 1, n) ∪ N6pt(m+ 1, n) ∪ N6pt(m,n+ 1). The original grid is planar, i.e., it
can be drawn so that no edges cross each other. The introduced graph is usually not
planar.

The distance-1 coloring problem for general graphs is NP-hard [26]. Using a color-
ing algorithm implementing an exhaustive search yields an optimal solution indeed,
but is barely applicable for graphs occurring in real-world applications. Therefore, in
practice, this problem is often tackled using linear-time greedy heuristics. The result
can be determined in reasonable time, but the number of colors ranges between the
optimal solution, the chromatic number χ, and the maximum degree of the graph
plus one, Δ+ 1, depending on the ordering in which the vertices are colored [24,62].
A comparison of different orderings together with a greedy heuristic for regular grids
is given in [13,14]: For various combinations of grid size and stencil, the colorings are
never optimal, and the number of colors can be up to twice the chromatic number.

The planar separator theorem and some applications are introduced by Lipton and
Tarjan [38, 39]. A planar separator, also called vertex separator, is a set of vertices
whose removal splits a planar graph into two non-connected components, also denoted
as subgraphs. The idea for using this theorem is to recursively separate the graph
into subgraphs of sufficiently small size. For these subgraphs, the given problem can
be exactly solved, e.g., using the exhaustive search, with reasonable computational
effort. For a planar graph with n vertices, the theorem of Lipton and Tarjan states
that the two separated subgraphs contain at most 2/3n vertices each. Furthermore,
the separator consists of at most 2

√
2
√
n vertices and can be found in O(n) time.

This separator is denoted as (2
√
2
√
n, 2/3)-separator. Vertex separators are known

from various applications like nested dissection or independent set computations.
Lipton and Tarjan [39] state that this theorem can be used to solve the distance-1
graph coloring problem on planar graphs.
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3.1 Exact sub-exponential coloring algorithm for regular grids

(a) (b)

Figure 3.2: (a) Original 8 × 6 grid is divided into two subgrids using the sepa-
rator {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}. (b) The subgrids from (a)
are divided once more into four smallest subgrids, each containing at
most n0 = 12 grid points, using the separators {(6, 3), (7, 3), (8, 3)} and
{(1, 4), (2, 4), (3, 4), (4, 4)}.

The planar separator theorem was originally introduced solely for planar graphs,
including regular grids in two dimensions. Later, the theorem was extended to certain
classes of non-planar graphs [1, 37] and non-planar regular grids G in one or more
dimensions [25]. The upper bound for the size of a separator in d-dimensional, regular
grids G with n grid points and d ≥ 2 is given in [47] by

O(n(d−1)/d),

i.e.,
√
n for d = 2 and n2/3 for d = 3. Thus, a separator can at most consist of the

grid points of a complete row or column for two-dimensional regular grids. In three
dimensions, the vertices of a separator can at most form a plane in one of the three
directions. To divide the grid in two rather equal-sized subgrids we use a separator
whose number of grid points is the given upper bound. In two dimensions, a separator
that consists of all grid points of a column is denoted as column separator, and a
separator that consists of all grid points of a row is denoted as row separator.
An example for separators in a two-dimensional grid is given in Fig. 3.2. The

set of grid points {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)} forms the separator on the
first level in Fig. 3.2(a). This column separator contains six grid points and is smaller
than any row separator which would contain eight grid points. This column separator
divides the original grid into the subgrids G[A] and G[B] which are induced by the
grid point sets A and B. The subgrid G[A], a rectangular area, is spanned by the grid
point (1, 1) in the south west corner and the grid point (4, 6) in the north east corner,
and the subgrid G[B] is spanned by the grid points (6, 1) and (8, 6). As a result of
the planar separator theorem, a hierarchy of separators can be built by recursively
applying this theorem to both subgrids G[A] and G[B] arising on the previous level.
On the second level in our example in Fig. 3.2(b), the subgridsG[A] andG[B] are split
using the separators S = {(1, 4), (2, 4), (3, 4), (4, 4)} and S = {(6, 3), (7, 3), (8, 3)},
respectively. If a subgrid contains less than a previously specified number of vertices,
n0, we stop applying the separator scheme.
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3 Colorings for full and partial Jacobian computation

Algorithm 3.1: Compute a minimal coloring of regular grid G with n grid
points and stencilN using separators. The set CSall

contains colorings of already
colored grid points in separators on higher levels and is initialized as the empty
set. The function colorExhS is given in Alg. 3.3.

1 function colorVSep(G,N , CSall
)

2 if n < n0 then
3 return colorExhS(G,N , ’single’) not violating coloring CSall

� First coloring

4 else
5 Find an (n(d−1)/d · k, 1/2)-separator S so that G = G[A � S �B]
6 foreach cS ∈ colorExhS(G[S],N , ’all’) not violating coloring CSall

do
7 cA ← colorVSep(G[A],N , CSall

∪ cS)
8 cB ← colorVSep(G[B],N , CSall

∪ cS)
9 if cA �= ∅ and cB �= ∅ then

10 return (cA, cS , cB) � First coloring

Exact coloring algorithm using vertex separators

To solve the optimization problem 2.15 on regular grids with n grid points, a sub-ex-
ponential coloring algorithm using a divide-and-conquer method is introduced. Sub-
exponential time complexity is used in the sense that our algorithm grows slower
than every function f(n) = cn, ∀c = const, i.e., our algorithm is in co(n). Although
this algorithm is mainly described for two dimensions, it can also be applied to grids
in higher dimensions. Nevertheless, the time complexity is given for d-dimensional
grids. This algorithm is based on the planar separator theorem and given as func-
tion colorVSep in Alg. 3.1. The input parameters are a grid G with n grid points,
a stencil N , and the set CSall

which stores the colorings for the already colored grid
points in the separators on the higher levels. Thus, the latter parameter is initial-
ized with CSall

= ∅. The result is a coloring which represents a partition of the grid
points. At first, the function determines an (n(d−1)/d ·k, 1/2)-separator in line 5 using
the neighborhood relation given by the stencil N . The separator contains n(d−1)/d · k
grid points, where n(d−1)/d is the number of grid points to cut the grid and k is
the maximum of the height and width between the center and its farthest struc-
turally non-orthogonal grid point. The width between the center (m,n) and the grid
point (i, j) is |m− i| and the height between (m,n) and (i, j) is |n− j|. Hence, the
largest k of a center (m,n) to another structurally non-orthogonal grid point (i, j) is

k = max
(i,j)

(i,j) �⊥(m,n)

{|m− i|, |n− j|}. (3.1)

An illustrating example is the six-point stencilN6pt(m,n) in Fig. 3.1(b). The maximal
width between two structurally non-orthogonal grid points, e.g., grid points (m,n)
and (m+3, n), is three, and maximal height between two structurally non-orthogonal
grid points, e.g., (m,n) and (m,n− 2), is two. So, the maximum of height and width
is k = 3.
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3.1 Exact sub-exponential coloring algorithm for regular grids

Lemma 3.1. Given a regular, d-dimensional grid G with n grid points, a stencil
whose largest distance of its center to a structurally non-orthogonal grid point is k,
and an (n(d−1)/d · k, 1/2)-separator which splits the grid G into the subgrids G[A] and
G[B], a grid point in one of the subgrids is structurally orthogonal to all grid points
in the other subgrid.

Proof. We assume that a grid point (m,n) in one of the subgrids is structurally
non-orthogonal to a grid point in the other subgrid. The distance between the cen-
ter (m,n) and all structurally non-orthogonal grid points is at most k. Due to the
choice of our separator, its width is k. That is, in two dimensions, the separator con-
sists of k rows or columns of the grid. Hence, the distance between two grid points
in the different subgrids is at least k + 1. This is a contradiction.

Due to this lemma, on each level, the colorings for both subgrids can be indepen-
dently computed in the function colorVSep. First, the separator is colored. Then,
for every minimal coloring of the separator (line 6), we recursively call this func-
tion for the subgrids G[A] and G[B]. The recursive calls also include the employed
stencil N and the colorings for the already colored grid points in the separators on
the higher levels, CSall

. These already colored grid points, which are stored in CSall
,

must be considered on the lower levels of the hierarchy to be sure to obtain valid
colorings. If the number of grid points in a subgrid falls below the threshold n0, a
minimal coloring is determined using the exhaustive search. If the minimal colorings
for G[A] and G[B] are not empty (line 9), both colorings form a valid coloring for
G[A�S�B] together with the coloring for the separator S. This combined coloring is
valid, because the colorings of the already colored grid points in the separators were
taken into account. If there is no valid coloring, the function proceeds to the next
minimal coloring for the separator. Furthermore, to ensure that a minimal coloring is
found, the algorithm tries to determine a minimal coloring with p = 1 color. If there
is no such coloring, the algorithm looks for a minimal coloring with p = 2 colors. This
step is repeated as long as a minimal coloring with p colors is determined. Finally,
the result for the original grid G, and also every subgrid, is a minimal coloring.
There are at most pn

(d−1)/d·k minimal colorings for the (n(d−1)/d · k, 1/2)-separator
where p states the minimal number of colors for grid G. For every minimal coloring,
there are recursive calls for the subgrids G[A] and G[B]. Both subgrids contain at
most n/2 grid points; and the separator can be determined with an explicit formula
in O(1). The original grid is much larger than the smallest subgrids. Therefore, the
runtime for the exhaustive search is negligible; thus, the complexity is O(1). Hence,
the theoretical complexity of Alg. 3.1 is governed by the recursion:

t(n) =

{
O(1) n < n0

O(1) + 2 · pn(d−1)/d·k · t(n/2) n ≥ n0

As argued in [38] by using an inductive proof, the overall complexity is O(pn
(d−1)/d·k).

Our implementation of the coloring algorithm, depicted in Alg. 3.2, is slightly
different from Alg. 3.1. To better exploit the structure of the hierarchy and to be able
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3 Colorings for full and partial Jacobian computation

Algorithm 3.2: Compute all minimal colorings of regular grid G with n grid
points and stencil N using separators.

1 function colorVSepAll(G,N )
2 if n < n0 then
3 return colorExhS(G,N , ’all’) � All colorings

4 else
5 C ← ∅
6 Find an (n(d−1)/d, 1/2)-separator S so that G = G[A � S �B]
7 CA ← colorVSepAll(G[A],N )
8 CB ← colorVSepAll(G[B],N )
9 CS ← colorExhS(G[S],N , ’all’)

10 foreach cA ∈ CA, cS ∈ CS , cB ∈ CB do
11 if (cA, cS , cB) is valid coloring then
12 C ← C ∪ (cA, cS , cB)

13 return C � All colorings

to improve the runtime, we proceed as follows: The separator is only of size n(d−1)/d.
That is, there are grid points in one subgrid which are structurally non-orthogonal to
grid points in the other subgrid. This separator is a factor k smaller than the separator
used in Alg. 3.1. Thus, it is less expensive to compute colorings for this separator with
the exhaustive search. Instead of coloring the grid points in the separator first, we
start determining all minimal colorings for the smallest subgrids without considering
structurally non-orthogonal grid points in other subgrids. Hence, we must check for
all minimal colorings cA ∈ CA and cB ∈ CB of G[A] and G[B], respectively, as well
as the minimal colorings cS ∈ CS of G[S] whether the colorings cA, cB, and cS form
a valid coloring for G[A � S � B] (lines 10 and 11). Each valid coloring is added to
set C. At the end, all encountered minimal colorings C for the original grid G are
returned.
As already mentioned, the coloring algorithm is not only applicable for two-di-

mensional regular Cartesian grids, but also for regular Cartesian grids in higher
dimensions. Further grids are given in the Bravais’ lattice classification, in partic-
ular, the hexagonal grid in two dimensions as well as the face-centered cubic and
body-centered cubic in three dimensions. Our coloring algorithm could probably be
modified to compute hexagonal tilings [32] for these grids.

Implementation

After presenting the scheme of our divide-and-conquer coloring algorithm using sepa-
rators and its theoretical complexity, in the following, we describe the implementation
of colorVSepAll in more detail and explain further improvements to reduce the
runtime for practical reasons. First, we discuss the three phases of the algorithm—
divide, color smallest subgrids, and conquer. In the second part, we explain techniques
which are implemented in the algorithm to reduce the runtime and the memory con-
sumption.
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3.1 Exact sub-exponential coloring algorithm for regular grids

Algorithm 3.3: Compute a minimal coloring Φ with p colors of a regular
grid G with n grid points and stencil N in a given ordering ψ1, ψ2, . . . , ψn

using the exhaustive search. Using mode=’single’, the first minimal coloring
is returned, otherwise all minimal colorings. Initialize ψi = ψ1 and coloring
Φ = [0 . . . 0] if not given.

1 function colorExhS(G,N , p,mode, ψi,Φ)
2 foreach c ∈ {1, . . . , p} \ {Φ(ψj) : ψj ∈ N (ψi)} do
3 C ← ∅
4 if i < n then
5 Φ(ψi) ← c
6 C ← C ∪ colorExhS(G,N , p,mode, ψi+1,Φ)
7 if mode = ’single’ and C �= ∅ then return C � First coloring

8 else
9 C ← C ∪ Φ

10 if mode = ’single’ then return C � First coloring

11 Φ(ψi) ← 0
12 return C

Divide: Starting with the original grid, the algorithm builds up a grid hierarchy
by recursively splitting every (sub-)grid G into the subgrids G[A] and G[B] using
a separator S. As described in the previous section, this separator can be easily
determined due to the regular grid structure. Therefore, the number of grid points
in the horizontal (rows) and the vertical (columns) dimension are compared. Then
either the grid points in a row or a column are chosen as separator depending on
which one contains fewer grid points. Afterwards, the row or column separator in
the middle of the grid is selected to get two rather equal-sized subgrids G[A] and
G[B]. If the number of grid points in a subgrid falls below the threshold n0, we stop
splitting that subgrid and continue with coloring the subgrids on the lowest level of
the hierarchy.

Color subgrids on the lowest level: The exhaustive search for coloring the
grid points of the subgrids on the lowest level is implemented by a recursive depth-
first search illustrated in Alg. 3.3. At the beginning, we execute the coloring func-
tion colorExhS restricted to p colors where p is the lower bound given by the
number of grid points belonging to the stencil. If no valid coloring is found, this
function is started once more with an additional color, i.e., p = p + 1. This step
is repeated until a valid coloring is determined. Hence, we have a new number of
colors p.

The function colorExhS—not using the mode ’single’—colors the grid points of
grid G using stencil N in a given ordering ψ starting at the first grid point ψ1. The
coloring is initialized with zeros. It assigns the first color in the range {1, . . . , p} to the
grid point ψ1 and recursively proceeds to the next grid point ψ2. This grid point ψ2 is
colored with a color c which is not already assigned to any structurally non-orthogonal
grid point. This step is repeated for the grid points in the ordering ψ. The process
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3 Colorings for full and partial Jacobian computation

stops if either there is no valid color c in {1, . . . , p} left or all grid points are colored:
In the first case, the function moves back to the previous grid point ψi−1. If there is
another valid color c, the function proceeds once again to grid point ψi. Otherwise,
the function goes back in the ordering and uncolors all grid points as long as there
is a grid point ψj, j < i, for which another valid color c can be chosen. The function
chooses this color and repeats the coloring step for the next grid point ψj+1 in the
ordering and so on. In the second case, where a valid coloring is found, the function
stores this minimal coloring in C and goes backwards to the first grid point ψj which
can be colored with another c and continues with coloring the next grid point ψj+1.
Thus, all minimal colorings are enumerated and a minimal coloring is guaranteed to
be found.
Conquer: The algorithm combines the minimal colorings cA ∈ CA and cA ∈ CA

of subgrids G[A] and G[B], respectively, together with minimal colorings for the
separator S to determine the minimal colorings for G[A�S�B] on every level of the
hierarchy. The function colorVSepAll starts at the smallest subgrids and yields
all minimal colorings for the original grid G.
Valid colorings of G[A] and G[B] may exclude each other if structurally non-

orthogonal grid points in G[A] and G[B] have the same color. The colorings for
G[A], G[B], and G[S] have already been determined before the check for validity
occurs in lines 10–11 in Alg. 3.2. We improve the implementation to decrease the
computational effort: Therefore, before determining colorings for the separator, the
function checks if the colorings cA and cB can be combined—without considering the
grid points in the separator. If two colorings do not exclude each other, there is a
chance to find a valid coloring cS for the grid points of the separator to obtain a
coloring of the grid G[A � S � B]. To get those colorings, the exhaustive search is
used to compute all minimal colorings for the grid points in the separator. All grid
points in G[A] and G[B] which are structurally non-orthogonal to grid points in the
separator are taken into account. These grid points are located near the separator
depending on the underlying stencil N . On the highest level, solely one minimal
coloring for the original grid G is required. Therefore, the function terminates after
determining the first minimal coloring while combining the colorings of G[A], G[B],
and G[S].
The check for all pairs of colorings of G[A] and G[B] and the coloring of the sepa-

rator S can proceed independently. Since we are concerned with shared-memory ar-
chitectures, we employ OpenMP to distribute the corresponding computational work
among multiple threads. Recall the function colorVSepAll depicted in Alg. 3.2
where the validity check of the colorings is schematically given in lines 10–11. The
computational effort for the tasks differs: On the one hand, the check can be im-
mediately stopped after detecting two structurally non-orthogonal grid points with
the same color. On the other hand, all structurally non-orthogonal grid points of
the subgrids G[A], G[B] and G[S] located in different subgrids are checked if their
colorings form a minimal coloring for G[A�S�B]. Therefore, we choose the dynamic
scheduling strategy of OpenMP. After all OpenMP threads have finished this foreach
loop, the algorithm moves on to the next higher level of the hierarchy.
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3.1 Exact sub-exponential coloring algorithm for regular grids

Next, we explain the techniques which result in major improvements, decreasing
the computational effort and the memory usage:
Coloring table In the separator hierarchy, two or more subgrids with the same

height and width can occur. The minimal colorings for these subgrids are identical.
Rather than computing these colorings several times, the algorithm stores them in the
coloring table and repeatedly reuses them. Therefore, before splitting a subgrid using
a separator or coloring a subgrid on the lowest level, the algorithm checks whether
the minimal colorings for this subgrid size are already stored in the coloring table. In
this case, these colorings are reused. Otherwise, we descend to the next level in the
hierarchy by separating the current subgrid once more or color the subgrid on the
lowest level by the exhaustive search. If the colorings for a subgrid are not required
anymore, those colorings are removed from the coloring table to free memory.
Precoloring Recall from Sect. 2.4 that all � grid points belonging to a stencil are

pairwise structurally non-orthogonal and, hence, must be colored differently. For a
stencil consisting of � grid points including the center, there exist �! different color-
ings. That is, there are � possibilities to color the first grid point, �−1 possibilities for
the second grid point and so on. All these �! colorings are minimal. The precoloring
technique works as follows: We color a chosen stencil with � colors and determine
all minimal colorings for the remaining uncolored grid points. To compute this sub-
set of the minimal colorings, the exhaustive search in the coloring phase computes
all remaining minimal colorings taking the already colored � grid points into ac-
count. All other minimal colorings of the grid can be obtained by permuting the
� colors assigned to the grid points of the chosen stencil. In Fig. 2.5(b), the sten-
cil N5pt(2, 2) = {(2, 1), (1, 2), (2, 2), (3, 2), (2, 3)} is an illustrating example for the
precoloring technique. These grid points are colored and, afterwards, the exhaustive
search colors the remaining uncolored grid points.
The number of minimal colorings for G is �! multiplied with the number of mini-

mal colorings of the remaining grid points. The number of minimal colorings of the
remaining grid points is independent of how the stencil is colored. When we em-
ploy the precoloring technique, instead of determining all colorings by the exhaustive
search algorithm and storing them, the number of minimal colorings to compute
is reduced by �!. If the algorithm requires access to all colorings, these colorings are
computed by permuting the stored one. We consider the stencil N5pt in Fig. 2.5(b) as
an illustrating example. This example contains a precolored stencil and one minimal
coloring for the remaining grid points. It can be shown that there are two minimal
colorings for the remaining grid points. Hence, the number of determined colorings
is reduced from 2 · 5! to 2. For the stencil N9pt, we determine four colorings instead
of 4 · 9! colorings. During the conquer phase, every minimal coloring is recovered by
permuting the computed colorings. It is enough to check all colorings of G[A] (with-
out permutations) against all colorings of G[B] including all permutations on every
level of the hierarchy. This principle is an extension of the precoloring technique to
all subgrids which are not on the lowest level of the hierarchy. Using this technique,
we reduce the computational effort in the coloring phase and the overall memory
consumption as well.
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3 Colorings for full and partial Jacobian computation

Stencil Algorithm t N
9 19 39 79 159 2,559 5,119 10,239 20,479

N5pt

colorExhS ε 165 � � � � � � �

colorVSepAll

1 ε ε ε ε ε ε 2 6 23
2 ε ε ε ε ε ε 2 6 16
4 ε ε ε ε ε ε 1 7 24
8 ε ε ε ε ε ε 1 4 47

16 ε ε ε ε ε ε 2 8 55

N6pt

colorExhS ε 638 � � � � � � �

colorVSepAll

1 ε ε ε ε 1 18 38 81 167
2 ε ε ε ε ε 12 25 53 124
4 ε ε ε ε ε 6 15 29 63
8 ε ε ε ε ε 4 9 19 52

16 ε ε ε ε ε 2 8 17 56

N9pt

colorExhS 1 � � � � � � � �

colorVSepAll

1 1 215 756 1,543 2,810 32,036 62,961 � �
2 1 144 492 960 1,698 17,976 35,086 71,733 �
4 1 74 247 489 847 9,061 17,807 36,017 �
8 1 39 126 245 430 4,620 8,953 18,677 83,780

16 1 24 67 125 217 2,255 4,406 19,659 68,358

Table 3.1: Runtime in seconds to compute one minimal coloring using the exhaustive
search and the algorithm colorVSepAll for different N×N grids using
t threads. The smallest subgrids are of size 9×9 (n0 = 81). Runtime below
1s is denoted by ε, exceeding 24h (86,400s) by �.

Results

After describing the sub-exponential algorithm colorVSepAll, we evaluate this
coloring algorithm. Therefore, we compare colorVSepAll with the exhaustive
search coloring algorithm colorExhS and the standard CPR (coloring) heuris-
tic [22]. The coloring heuristic D2ColoringRestricted in Alg. 2.1 can be ap-
plied to the bipartite graph associated with Jacobian matrix resulting from the
stencil-based computation. At first, we compare the runtime of both algorithms,
colorVSepAll and colorExhS, determining minimal colorings and explain the
major impact factors which influence the runtime. Thereafter, we look at the algo-
rithms colorVSepAll and D2ColoringRestricted using several (grid point)
orderings to address the runtime and the number of additional colors required by
D2ColoringRestricted. For the evaluations, we choose three different two-di-
mensional stencils: the five-point stencil N5pt from Fig. 2.4(a), the six-point sten-
cil N6pt from Fig. 3.1(a), and the nine-point stencil N9pt from Fig. 2.4(b).

The algorithms are implemented in the programming language C++ and use the
Boost Graph Library. The OpenMP model is used for the shared-memory paral-
lelization. All computations are carried out on an AMD Barcelona cluster node with
4 processors, 16 cores, and 32GB main memory provided by the Center for Comput-
ing and Communication of the RWTH Aachen University. Thus, it does not make
sense to employ more than 16 threads for colorVSepAll.
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3.1 Exact sub-exponential coloring algorithm for regular grids

In Table 3.1, we compare the algorithms colorExhS and colorVSepAll for
two-dimensionalN×N grids using the stencils mentioned above. Recall that the algo-
rithm colorVSepAll employs t threads. In contrast, the algorithm colorExhS is
a serial implementation with t = 1. The grid size is varied from N = 9 to N = 20,479
by doubling the number of grid points in the horizontal and the vertical direction,
i.e., quadrupling the number of grid points, and adding an additional row and col-
umn as separator. The number of grid points varies from 81 to 420 million. In our
setting, all smallest subgrids considered in the coloring phase of colorVSepAll

are 9 × 9 grids. As an illustrating example we consider a grid with N = 39. The
colorings for this grid are combined from the colorings of two 19 × 39 grids and
the separator in between. The colorings for the 19× 39 grid are combined from the
colorings of two 19 × 19 grids and the separator, and so on. Instead of computing
these colorings several times, the algorithm determines the colorings for all subgrids
of the same size only once; otherwise the colorings for the 19 × 39 grid would be
computed twice, for the 19 × 19 grid four times, for the 9 × 19 grid eight times,
and for the 9 × 9 grid sixteen times. For all three stencils, colorVSepAll has al-
ways a lower runtime than colorExhS. For stencil N5pt, colorExhS needs 165s
to compute a coloring for a 19× 19 grid and more than 24h for a 39× 39 grid. The
algorithm colorVSepAll colors a 20,479× 20,479 grid in 23s using only 1 thread.
In comparison, colorExhS takes more time to color a 19 × 19 grid. This trend
can be recognized for the stencils N6pt and N9pt as well. For the latter stencil the
runtimes for colorExhS and colorVSepAll are both much larger than for the
stencils N5pt and N6pt. The phenomenon is discussed two paragraphs later.
As described in the previous section, the algorithm colorVSepAll is designed for

parallel computing using OpenMP. All computations of this algorithm are also per-
formed with 2, 4, 8, and 16 threads, as shown in Table 3.1. Due to the short runtime
of colorVSepAll for N5pt, even for the largest considered grid, we do not benefit
from using more than two threads. The number of colorings and the neighborship
of the centers are too small for dividing the conquer phase to several threads. The
runtime grows by increasing the number of OpenMP threads due to the synchroniza-
tion and scheduling overhead. For stencil N6pt, the runtime is decreased from 167s
to 56s using 16 threads for the 20,479× 20,479 grid, i.e., a speedup of 167s/56s=2.98
is observed. The runtime for the stencil N9pt is quite different. Using only 1 thread,
it is not possible to compute a minimal coloring for N × N grids with N = 10,239
and N = 20,479 in 24h. For determining a minimal coloring with colorVSepAll

using 16 threads, the runtime can be reduced to 19,659s and 68,358s, respectively.
For stencil N9pt and the 5,119×5,119 grid, the largest considered grid with a runtime
smaller than 24h using 1 thread, we obtain a speedup of 62,961s/4,406s=14.29 using
16 threads.
Why is there such a big difference between the runtime of stencil N9pt and the

other stencils? There are two factors with a strong impact on the runtime of the
algorithm colorVSepAll: First, the number of grid points in the neighborship of
a center. This number has a direct influence on how many times a coloring must
be permuted during the conquer phase. There are 5! permutations for stencil N5pt
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3 Colorings for full and partial Jacobian computation

Stencil Algorithm N
9 20 40 80 160 2,560 5,120 10,240 20,480

N5pt
colorExhS ε 527 � � � � � � �
colorVSepAll ε ε ε ε ε 3 8 27 71

N6pt
colorExhS ε 2570 � � � � � � �
colorVSepAll ε ε 1 3 6 86 170 357 742

N9pt
colorExhS 1 � � � � � � � �
colorVSepAll 1 538 3,338 8,274 14,736 � � � �

Table 3.2: Runtime in seconds to compute one minimal coloring using the exhaustive
search and the algorithm colorVSepAll for different N×N grids using
1 thread. The smallest subgrids are of size 9×9 (n0 = 81). Runtime below
1s is denoted by ε, exceeding 24h (86,400s) by �.

and 9! for stencil N9pt; the difference is a factor of 3,024. Furthermore, the size of
the neighborship determines how many different structurally non-orthogonal grid
points must be considered while coloring a center. The number of structurally non-
orthogonal grid points for the centers of our considered stencils are:

N5pt N6pt N9pt

11 19 31
.

Second, the structure of the stencil has an impact on the runtime. The number of
different colorings (without permutations) depends directly on this structure. There
are two colorings for stencil N5pt and four colorings for stencil N9pt, i.e., the number
of combinations is at least doubled.
In Table 3.1, the grid size is chosen such that the structure is exploited by reusing

each computed minimal coloring at least two times, usually more than two times.
In Table 3.2, the grid size is varied by adding only one additional column and row,
i.e., for all instances, the N × N grid is extended to an (N + 1) × (N + 1) grid.
This small variation leads to a grid which cannot be divided in two equal-sized
subgrids, but only in mostly equal-sized subgrids. The runtime of colorVSepAll

to compute a minimal coloring for those grids with slightly different sizes is significant
higher. An explanation is the number of subgrids which must be colored. Recall from
Table 3.1 that the runtime is 23s for N5pt and 167s for N6pt on the N × N grid for
N = 20,479. The corresponding runtimes increase to 71s and 742s, respectively, on
the (N+1)×(N+1) grid. For those grids and also for the smaller grids the difference
in runtime is roughly a factor of 4 to 5 comparing the grids with size N and N + 1.
However, the runtime for the largest grid is still smaller than determining a minimal
coloring for the 19×19 or 20×20 grid using colorExhS. For stencilN9pt, the factor is
slightly higher due to the bigger neighborship of each center. Computing a minimal
coloring for the 2,560 × 2,560 grid takes longer than 24h. Here, we compute the
colorings only with 1 thread. However, by using parallelization, we expect comparable
reductions of runtime as in Table 3.1.
After demonstrating that colorVSepAll is faster than colorExhS for all in-

stances, we want to compare colorVSepAll with D2ColoringRestricted us-
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3.1 Exact sub-exponential coloring algorithm for regular grids

Stencil χ Ordering N
19 39 79 159 2,559 5,119 10,239 20,479

N5pt 5

NO
p 7 7 7 7 7 7 7 7
s ε ε ε ε 6 25 101 411

LFO
p 7 7 7 7 7 7 7 7
s ε ε ε ε 15 64 334 1,204

IDO
p 6 6 6 6 ? ? ? ?
s ε ε ε 2 � � � �

N6pt 7

NO
p 9 10 10 10 10 10 10 10
s ε ε ε ε 9 37 148 603

LFO
p 10 10 10 10 10 10 10 10
s ε ε ε ε 22 87 349 1,616

IDO
p 10 10 10 10 ? ? ? ?
s ε ε ε 3 � � � �

N9pt 10

NO
p 15 16 17 17 17 17 17 17
s ε ε ε ε 15 62 244 1,007

LFO
p 16 16 17 17 17 17 17 17
s ε ε ε ε 33 135 539 2,400

IDO
p 14 14 14 14 ? ? ? ?
s ε ε ε 3 � � � �

Table 3.3: Runtime in seconds, s, and number of colors, p, for stencilsN5pt,N6pt,N9pt

and N × N grids using coloring heuristic (D2ColoringRestricted)
with different preorderings. For the exact coloring algorithms, p is the
chromatic number χ. Runtime below 1s is denoted by ε, exceeding 24h
(86,400s) by �.

ing different orderings in terms of number of colors and runtime. Remember that
both exact algorithms yield a minimal coloring whose number of colors is the chro-
matic number χ. For all three stencils, this number and the results for the heuristic
D2ColoringRestricted are given in Table 3.3. For every stencil, the first row
contains the number of colors computed by D2ColoringRestricted using the
natural ordering (NO) and the second row the corresponding runtime. The following
rows are obtained by D2ColoringRestricted with two different preordering al-
gorithms: largest-first ordering (LFO) [62] and incident-degree ordering (IDO) [10].
A more extensive discussion about using D2ColoringRestricted for grids is
given in [13, 14]. Furthermore, D2ColoringRestricted is evaluated using sev-
eral preorderings. First, the colorings determined by D2ColoringRestricted—
independent of the chosen preordering—are never minimal in our illustrating ex-
amples. For stencil N5pt, at least 20% more colors are required (χ = 5 compared
to p = 6), for N6pt at least 28.6%, and for N9pt at least 40%. In the worst case,
70% more colors are needed for N9pt (χ = 10 compared to p = 17). Second, for
stencils N5pt and N6pt, colorVSepAll is almost always faster than the heuristic
D2ColoringRestricted—independent of the used ordering. For the stencil N9pt,
the algorithm D2ColoringRestricted is much faster using the natural order-
ing or the LFO preordering. Using the IDO preordering, colorVSepAll is only
faster for larger grid sizes. A coloring for the 2,559 × 2,559 grid and larger grids
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3 Colorings for full and partial Jacobian computation
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Figure 3.3: (a) Stencil N5,1pt(m,n) is a combination of N5pt(m,n) and N1pt(m,n).
(b) Sparsity pattern of Jacobian matrix with p = 2 groups of partially
structurally orthogonal columns resulting from N5,1pt using a natural or-
dering of grid points on a 3×3 grid. (c) Sequence of covers obtained from
using p = 2 covers each corresponding to a group of partially structurally
orthogonal grid points for N5,1pt on a 9× 7 grid.

cannot be determined in 24h using the heuristic with IDO. In general, the heuris-
tic D2ColoringRestricted yields the best colorings with the IDO preordering.
However, the runtime is worse than using the natural ordering or LFO, and the
number of colors are still worse than χ.
In summary, the algorithm colorVSepAll computes exact solutions without the

need for an explicit formula. The runtime is significantly shorter compared to the
exhaustive search. Although the runtime of our algorithm can be shorter or longer
than the heuristic depending on the structure of the stencil, the solution of the greedy
heuristic in terms of the colors p is always worse, sometimes dramatically.

3.1.2 Partial Jacobian computation

The stencil-based Jacobian computation is transferred to the principle of determin-
ing a subset of the nonzero elements of a Jacobian matrix. Rather than determining
arbitrary nonzero elements of the Jacobian matrix, we introduce an additional sten-
cil Nreq which specifies the required elements. This stencil has the same center as
the original stencil Norg, and its grid points are a subset of the original stencil. The
stencil Nreq specifies the required elements of the Jacobian matrix, and the sten-
cil Norg specifies the original vicinity. For such stencil combinations, the algorithm
colorVSepAll (Alg. 3.2) is adapted to compute minimal colorings.
An illustrating example is the stencil combination of the original stencil Norg =

N5pt(m,n) and the stencil Nreq = N1pt(m,n) = {(m,n)}. That is, we are only
interested in the value of the center and not the values of the grid points in the
neighborship. This stencil combination, which is depicted in Fig. 3.3(a), is denoted as
stencilN5,1pt(m,n). All grid points belong to stencilN5pt, and the grid point indicated
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3.1 Exact sub-exponential coloring algorithm for regular grids

(m,n)

(m,n−1)
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(m+2, n)(m−1, n)

(a)

(m−3, n) (m+3, n)

(m,n)
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Figure 3.4: (a) Stencil N6,3pt(m,n). (b) Stencil N6,3pt(m,n) with partially struc-
turally non-orthogonal grid points to center (m,n).

in gray is part of the stencil N1pt. We resume the example in Fig. 2.4(c). The sparsity
pattern of the Jacobian matrix results from the five-point stencil N5pt on a 3×3 grid.
The sparsity pattern of the Jacobian matrix defined by the stencil N5,1pt is depicted
in Fig. 3.3(b). Therefore, the required elements ⊗ are the main diagonal elements
specified by stencil N1pt, the remaining elements are the non-required elements ×.
Instead of p = 5 column groups for the full Jacobian computation, p = 2 column
groups are sufficient to determine the required nonzero elements. A 9 × 7 grid with
a minimal coloring for the stencil N5,1pt is depicted in Fig. 3.3(c).
After explaining the partial Jacobian computation in terms of the grid, we describe

how to modify the implementation for the full Jacobian computation to apply it
to the partial one. The main difference is switching from considering structurally
orthogonal grid points to partially structurally orthogonal grid points. There is the
following dependency between these grid points:

Definition 3.2. Two grid points (m,n) and (i, j) are partially structurally orthogonal
if and only if the original stencil Norg(m,n) and the stencil Nreq(i, j) as well as the
stencils Nreq(m,n) and Norg(i, j) do not have a grid point in common, i.e.,

(m,n) ⊥R (i, j) :⇐⇒ Norg(m,n) ∩Nreq(i, j) = ∅ ∧ Nreq(m,n) ∩Norg(i, j) = ∅.
This definition usually causes less partially structurally non-orthogonal grid points

to every center compared to the full Jacobian computation. Recall that the cen-
ter (m,n) of stencil N6pt(m,n) is structurally non-orthogonal to 18 grid points. These
grid points are depicted in Fig. 3.1(b). The partially structurally non-orthogonal grid
points for the stencil N6,3pt(m,n) are given in Fig. 3.4. The three-point stencil N3pt,
i.e., the center (m,n) and its two neighbors in the horizontal (m,n−1) and (m,n+1),
specifies the required elements. There are only 12 partially structurally non-orthog-
onal grid points to a center.
We have to employ the modified neighborship relation to compute a coloring for

the partial Jacobian computation with the function colorVSepAll (Alg. 3.2).
Therefore, the grid G remains unchanged, but as stencil N a stencil combination
is taken into account. Recall that the grid points of the stencil Nreq are a proper
subset of the grid points of the stencil Norg defining the original vicinity. Due to the

31

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3 Colorings for full and partial Jacobian computation
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Figure 3.5: (a) Stencil N5,3pt(m,n). (b) Sparsity pattern of Jacobian matrix with
p = 4 groups of partially structurally orthogonal columns resulting from
stencil N5,3pt using a natural ordering of grid points on a 3× 3 grid. (c)
Sequence of covers obtained from using p = 4 covers each corresponding
to a group of partially structurally orthogonal grid points for N5,3pt on a
9× 7 grid.

smaller number of partially structurally non-orthogonal grid points, we usually need
fewer colors to determine the required elements of the Jacobian matrix instead of all
nonzero elements.

The precoloring technique must be modified to be consistent with the partial struc-
tural orthogonality. Recall that all grid points of a stencil are pairwise structurally
non-orthogonal for full Jacobian computation. For partial Jacobian computation,
the grid points of the original stencil Norg are in general not partially structurally
non-orthogonal. In contrast, the grid points of the stencil Nreq are pairwise par-
tially structurally non-orthogonal. A minimal coloring for the grid points of the
stencil N5,3pt(2, 2) is given in Fig. 3.5(c) to clarify the dependencies between the grid
points: The grid points in stencil Nreq = {(1, 2), (2, 2), (3, 2)} are pairwise colored
differently. The grid points (2, 1) and (2, 3) are also partially structurally non-orthog-
onal to the grid points in the Nreq. Thus, these grid points are differently colored
from the grid points in Nreq. Otherwise, the values of the corresponding required
elements would be lost. Due to Def. 3.2, the grid point (2, 1) is partially structurally
orthogonal to grid point (2, 3). Therefore, both grid points are colored with the same
color. Regarding the partial structural orthogonality, we obtain this precoloring by
applying the algorithm colorExhS solely to the grid points of one stencil.

Results

Before considering the runtime of colorExhS (Alg. 3.2) and colorVSepAll

(Alg. 3.3), we evaluate the smallest number of colors for several stencil combinations,
which are depicted in Appendix A.1.2. These results are given in Table 3.4. We use
the five-point stencil N5pt, the six-point stencil N6pt, and the nine-point stencil N9pt
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3.1 Exact sub-exponential coloring algorithm for regular grids

Norg Nreq

N1pt N3pt N5pt N6pt N9pt

N5pt 2 4 5
N6pt 3 4 7 7
N9pt 3 6 8 10 10

Table 3.4: Number of minimal colors p = χ for partial Jacobian computation using
stencil combinations of original stencil Norg and stencil Nreq.

as original stencils Norg. The one-point stencil N1pt, the three-point stencil N3pt, and
the five-point stencil N5pt are employed as stencil Nreq. The number of colors is re-
duced for all combinations with |Nreq| < |Norg|—except for stencils N6,5pt and N9,6pt.
A larger difference between |Nreq| and |Norg| causes a smaller number of colors. Tak-
ing N5,1pt instead of N5pt, we reduce the number of colors from p = 5 to p = 2; for
N5,3pt, the number of colors is reduced to p = 4. Using the stencils N9,1pt or N9,3pt,
p = 3 colors or p = 6 colors, respectively, instead of p = 10 colors for N9pt are needed.
If the difference between the number of grid points of the original stencil Norg and the
stencil Nreq is too small, e.g., stencil N6,5pt, the number of colors is not reduced com-
pared to the full Jacobian computation. There is no difference between computing
the stencil combinations N5,5pt, N6,6pt, and N9,9pt with partial Jacobian computation
and the stencils N5pt, N6pt, and N9pt with full Jacobian computation. Hence, the full
Jacobian computation is a special case of the partial Jacobian computation.

The algorithms colorExhS and colorVSepAll are evaluated for two-dimen-
sional N × N grids using various stencil combinations. The grid size is varied—as
for the full Jacobian computation—from N = 9 to N = 20,479 by doubling the
number of grid points in the horizontal and the vertical direction. The runtimes
are given in Table 3.5. Opposed to the results for the full Jacobian computation,
interpreting these runtimes is more challenging. For stencils N5,1pt, N5,3pt, N6,3pt,
and N9,1pt, the algorithm colorVSepAll is significantly faster than the exhaustive
search. The runtime is at most 42s for an N × N grid with N = 20,479. Using the
algorithm colorExhS to color a grid exceeds 24h starting with N = 79 for N5,3pt

and N = 2,559 for the other three stencil combinations. A comparison of the run-
time for N6,1pt is impossible, because the memory usage of colorVSepAll exceeds
the available main memory of 32GB for each grid with N ≥ 39. For stencil N9,3pt

and grid size N = 19, our algorithm colorVSepAll requires only 9s compared
to the exhaustive search using 470s. For N9,5pt, the algorithm colorExhS is faster
than colorVSepAll for small grid sizes. However, the sub-exponential complexity
of colorVSepAll ensures that there is a smallest grid size for which this algo-
rithm outperforms colorExhS. Next, we compare the algorithm colorVSepAll

for full and partial Jacobian computation. When using the five-point stencil N5pt as
original stencil and the stencils N1pt and N3pt as stencil Nreq, the runtimes are com-
parable to the runtime for full the Jacobian computation with stencil N5pt. For the
20,479× 20,479 grid, the runtime for the stencil N5pt is 23s (cf. Table 3.1) compared
to the runtimes for N5,1pt and N5,3pt with 9s and 11s, respectively. The runtimes for
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3 Colorings for full and partial Jacobian computation

Stencil Algorithm N
9 19 39 79 159 2,559 5,119 10,239 20,479

N5,1pt
colorExhS ε ε ε ε ε � � � �
colorVSepAll ε ε ε ε ε ε ε 3 9

N5,3pt
colorExhS ε ε 8,729 � � � � � �
colorVSepAll ε ε ε ε ε ε 2 3 11

N6,1pt
colorExhS ε ε ε ε 1 � � � �
colorVSepAll ε ε – – – – – – –

N6,3pt
colorExhS ε ε ε ε 2 � � � �
colorVSepAll ε ε ε ε ε ε ε 4 42

N9,1pt
colorExhS ε ε ε ε 1 � � � �
colorVSepAll ε ε ε ε ε ε ε 3 13

N9,3pt
colorExhS ε 470 � � � � � � �
colorVSepAll ε 9 � � � � � � �

N9,5pt
colorExhS ε 8,517 � � � � � � �
colorVSepAll ε � � � � � � � �

Table 3.5: Runtime in seconds to compute one minimal coloring using the exhaustive
search and the vertex separator algorithm for different N ×N grids using
1 thread. The smallest subgrid is of size 9×9 (n0 = 81). Runtime below 1s
is denoted by ε, exceeding 24h (86,400s) by �. Memory usage exceeding
32GB is denoted by –.

stencil N6pt and N6,3pt are in the same order with 167s to 42s. The runtime for sten-
cil combination N9,1pt is reduced to 13s compared to the stencil N9pt using 1 thread
where the runtime exceeds 24h for a grid with N = 20,479. For stencils N9,3pt and
N9,5pt, as counterpart, minimal colorings can only be determined for very small grid
sizes in less than 24h using colorVSepAll, i.e., N9,3pt with N ≤ 19 and N9,5pt

with N = 9. Using the stencil N9pt for full Jacobian computation in comparison, the
runtimes of colorVSepAll are less than 756s for an N × N grid with N ≤ 39.
In summary, restricting the original stencil Norg = N9pt by the stencil Nreq = N1pt,
the runtime for the partial Jacobian computation is significantly reduced compared
to the full Jacobian computation. For stencils N5,1pt, N5,3pt, and N6,3pt, at most half
of the runtime for the full Jacobian computation is needed. Finally, the runtime of
colorVSepAll is reasonably faster than using the exhaustive search for stencils
N5,1pt, N5,3pt, N6,3pt, and N9,1pt.

The reason for the huge differences in the runtime are not only the number of
partially structurally non-orthogonal grid points, but, above all, the number of min-
imal colorings of the subgrids. All combinations of these colorings are processed by
colorVSepAll in lines 10–11 in Alg. 3.2. Thus, the higher the number of colorings,
the higher is the runtime. The number of minimal colorings—without permutations—
for the grids on the lowest levels of the hierarchy—9 × 9, 9 × 19, and 19 × 19—are
given in Table 3.6. For the stencils N5,1pt, N5,3pt, N6,3pt, and N9,1pt the number of
colorings on these levels are reduced compared to the original stencil for the full
Jacobian computation. For the other stencils with runtimes exceeding 24h, there are
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3.2 Size-independent exact coloring algorithm for regular grids

M ×N Stencil
N5pt N5,1pt N5,3pt N6pt N6,1pt N6,3pt N9pt N9,1pt N9,3pt N9,5pt

9× 9 2 1 1 2 64 1 4 1 32 186,368
9× 19 2 1 1 2 16,384 1 4 1 68 –
19× 19 2 1 1 2 16,384 1 4 1 8192 –

Table 3.6: Number of minimal colorings (without permutations) using algorithm
colorVSepAll for different M × N grids. Symbol – denotes unknown
number of colorings due to runtime exceeding 24h (86,400s).

a lot of different colorings. For stencil N9,3pt, there are 32 minimal colorings for the
9× 9 grid, 68 colorings for the 9× 19 grid, and 8,192 colorings for the 19× 19 grid.
Thus, there are a lot of combinations to check in colorVSepAll. For the stencils
N6,1pt and N9,5pt, there are also a lot of minimal colorings. Comparing the number
of minimal colorings to the runtimes in Table 3.5 uncovers the deep impact of the
number of colorings on the runtime: A higher number of minimal colorings leads to
an increased runtime. For the stencils N5,1pt, N5,3pt, N6,3pt, and N9,1pt, the number
of minimal colorings is only one on every level in the hierarchy, and the runtime is
at most 42s for a grid up to N = 20,479. For the other stencils where the number of
colorings is significant higher, the algorithm cannot compute a minimal coloring for
most considered grid sizes in 24h.

In summary, using stencil combinations for partial Jacobian computation, the run-
time is much faster than using the original stencil for full Jacobian computation or
is slower. Although the algorithm colorExhS seems to be better than the algo-
rithm colorVSepAll for stencil N9,5pt, there will be a smallest grid size for which
colorVSepAll outperforms colorExhS due to the sub-exponential complexity.
Using colorVSepAll, the huge number of minimal colorings arising on all levels
of the hierarchy leads to high runtimes exceeding 24h. To overcome this issue, a
new size-independent method to compute a coloring for a grid of arbitrary size is
introduced in the next section.

3.2 Size-independent exact coloring algorithm for
regular grids

The algorithms colorVSepAll (Alg. 3.2) and colorExhS (Alg. 3.3) compute
minimal (restricted) colorings for regular grids depending on the (partial) structural
orthogonality of the given stencil. Unfortunately, the runtime depends—beside the
stencil itself—directly on the grid size. Explicit solutions to color regular grids are
known for various special stencils. Investigating a formula for every single stencil is
time consuming and, above all, complex in more than two dimensions. By observing
the colorings in Fig. 2.5(b), Fig. 3.3(c), and Fig. 3.5(c), we realize that these colorings
have a quite regular, repeating structure. Given a small-sized grid G and a minimal
coloring Φ, we search for a subgrid, a so-called tile, whose coloring information is
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3 Colorings for full and partial Jacobian computation
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Figure 3.6: The 7×7 subgrid is a detail of an M ×N grid with a minimal coloring Φ
for the five-point stencil N5pt. The rectangular regions at the border are
indicated by black boxes with background shading and the 5×5 tile with
coloring information by a magenta box.

sufficient to color a larger grid of arbitrary size. Therefore, this colored tile is placed
several times next to each other. Thus, a regular grid of arbitrary size can be colored
in linear time. Currently, we cannot show that this approach works in general for all
stencils. In the following, our approach is explained for two-dimensional grids, but
it is also applicable for grids in higher dimensions. In three dimensions, the result is
a rectangular cuboid instead of a tile. To avoid excessive distinguishing between full
and partial Jacobian computation, without loss of generality, our approach is only
explained for full Jacobian computation.
For a given grid G with a minimal coloring Φ, we look for a subgrid with four

rectangular regions. These regions are at the left, right, bottom, and top inside the
subgrid. The regions on the opposite sides, i.e., left and right as well as bottom and
top, are of the same height and width. An illustrating example is given in Fig. 3.6.
The regions are indicated with background shadings in gray. The maximum width
or height between a center (m,n) and a structurally non-orthogonal grid point (i, j)
is given in (3.1) without taking the orientation into account. Here, we distinguish
between the width in the horizontal direction and the height in the vertical direction

kw = max
(i,j)

(i,j) �⊥(m,n)

{|m− i|} and kh = max
(i,j)

(i,j) �⊥(m,n)

{|n− j|}.

The rectangular regions at the left and right have a width of kw and the rectangular
regions at the bottom and top have a height of kh. The regions are so high or wide,
depending on the orientation, that two structurally non-orthogonal grid points cannot
be on the different sides outside such a rectangular region.
The region at the left is spanned by the grid points (i, j) and (k, l) and at the

right by the grid points (i+ d, j) and (k + d, l) for some distance d. This distance is
independent from the width kw. Two grid points, one in each region, form a pair if
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3.2 Size-independent exact coloring algorithm for regular grids

both grid points are in the same row and the distance d between these grid points
is the same as for all other pairs of grid points. Each pair of grid points is colored
identically, i.e.,

Φ(ψ(i, j)) = Φ(ψ(i+ d, j)), . . . ,Φ(ψ(k, l)) = Φ(ψ(k + d, l)).

Considering the rectangular regions at the bottom and top is analogous except for the
orientation. The relation between two regions is introduced in the following definition:

Definition 3.3. Two rectangular regions are consistent if both have the same height
and width and the corresponding grid points are colored identically, i.e.,

• for the left and right regions, Φ(ψ(i, j)) = Φ(ψ(i+ d, j)), and
• for the bottom and top regions, Φ(ψ(i, j)) = Φ(ψ(i, j + d)).

We look for consistent left and right regions as well as consistent bottom and top
regions. If we detect four pairwise consistent regions, we obtain a tile with coloring
information. An illustrating example for such a tile is emphasized by the magenta
box in Fig. 3.6.
The four-point stencil N4pt in Fig. 3.7 is studied to illustrate the idea of our ap-

proach. All structurally non-orthogonal grid points to the center (m,n) are depicted
in Fig. 3.7(b). The horizontal width is kw = 1 and the vertical height is kh = 2. A
3 × 4 subgrid with pairwise consistent rectangular regions is indicated by a black
box with a solid line in Fig. 3.7(c). This subgrid is spanned by the grid point (1, 2)
in the south west corner and by the grid point (3, 5) in the north east corner. The
rectangular region at the left with width kw is spanned by the grid points (1, 2)
and (1, 5) in the south west and north east. The region at the right is spanned
by the grid points (3, 2) and (3, 5). The regions at the left and right are consis-
tent, i.e., Φ(ψ(1, 2)) = Φ(ψ(3, 2)), Φ(ψ(1, 3)) = Φ(ψ(3, 3)), Φ(ψ(1, 4)) = Φ(ψ(3, 4)),
Φ(ψ(1, 5)) = Φ(ψ(3, 5)). The regions at the bottom and top—both of height kh—
are spanned by the grid points (1, 2) and (3, 3) as well as the grid points (1, 4) and
(3, 5). These regions are also consistent, i.e., Φ(ψ(1, 2)) = Φ(ψ(1, 4)), Φ(ψ(2, 2)) =
Φ(ψ(2, 4)), . . . , Φ(ψ(3, 3)) = Φ(ψ(3, 5)). Finally, the right and top rectangular re-
gions of this subgrid are pruned to get the so-called colored tile. Afterwards, the
coloring information can be used to color a grid of arbitrary size. An example for a
9× 5 grid using the 2× 2 colored tile from Fig. 3.7(c) is depicted in Fig. 3.7(d). This
tile is repeatedly placed next to each other in the horizontal and vertical direction.
Another way to think about coloring a larger grid is to use the resulting subgrid and
place it on the grid with overlapping the left and right region as well as the bottom
and top region. That is, the right region of a subgrid is overlapped with the left region
of the next subgrid in horizontal direction and the top region of a subgrid with the
bottom region of the above subgrid. This resulting coloring is minimal, because the
given coloring Φ is minimal and no extra color is added.
In the following lemma, it is shown that the coloring from the previous example

and other colorings created using colored tiles are valid.
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3 Colorings for full and partial Jacobian computation

(m,n)

(m−1, n−1)

(m,n+1)

(a)

(m,n)

(b)

kw kw

kh

kh

(c) (d)

Figure 3.7: (a) Four-point stencil N4pt. (b) Stencil N4pt(m,n) with structurally non-
orthogonal grid points to center (m,n). (c) Colored tile, indicated by a
magenta box, found in a coloring using p = 4 colors each corresponding
to a group of structurally orthogonal center points for N4pt on a 6 × 5
grid. (d) Sequence of covers obtained by repeatedly placing the colored
tile from (b) on a 9× 5 grid.

Lemma 3.4. Given a regular grid G containing a colored tile with the smallest
number of colors, this colored tile can be repeatedly placed next to each other in the
horizontal and vertical direction. The result is a minimal coloring Φ′ for a grid G′ of
arbitrary size.

Proof. Instead of considering the colored tile, we look at the original subgrid whose
rectangular regions at the right and top are not pruned. We distinguish between
two different kinds of grid points in the subgrid: grid points which are part of the
rectangular regions and grid points which are not part of the rectangular regions. It
might be that there are no grid points of the second kind. We show for both kinds
of grid points that the resulting coloring Φ′ is valid.
First, the grid points which are not part of the rectangular regions are considered.

To each grid point, there is no structurally non-orthogonal grid point outside the
subgrid, because the regions with width kw or height kh are chosen in an appropriate
way. Thus, each segment of the coloring Φ′—corresponding to the colored subgrid—is
valid, because the given coloring Φ is minimal.
Second, we consider the grid points which are contained in the rectangular regions

and their structurally non-orthogonal grid points. In the coloring Φ′, such a grid
point is part of the regions in the overlap of two (or four) subgrids. That is, each
grid point and its structurally non-orthogonal grid points are already in the given
minimal coloring Φ. Thus, the coloring Φ′ cannot be invalid.
In summary, due to the width and height of the rectangular regions, the tile can

be placed next to each other in the horizontal and vertical direction, and the corre-
sponding coloring Φ′ is valid and minimal.

The algorithm getTile takes an already computed minimal coloring Φ for a
grid G and determines a subgrid, if available, whose coloring can be used to color a
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3.2 Size-independent exact coloring algorithm for regular grids

Algorithm 3.4: Determine a tile restricted by grid point (i, j) and grid
point (k − kw, l − kh) for a given M × N grid G, stencil N and minimal (re-
stricted) coloring Φ (Def. 2.6 or 2.10). The stencil N states width kw and
height kh.

1 function getTile(G,N ,Φ)
2 foreach (i, j) ∈ G do � south west corner

3 foreach (k, l) ∈ G with k − i+ 1 ≥ 2kw and l − j + 1 ≥ 2kh do � ne corner

4 if Φ(ψ(i+ h, v)) = Φ(ψ(k − kw + h, v)), ∀h, ∀v : 0 ≤ h ≤ kw, j ≤ v ≤ l and
5 Φ(ψ(h, j + v)) = Φ(ψ(h, l − kh + v)), ∀h, ∀v : i ≤ h ≤ k, 0 ≤ v ≤ kh then
6 return (i, j), (k − kw, l − kh) � tile found

7 return (0, 0), (0, 0) � no tile found

larger grid by placing the colored tiles next to each other. This algorithm is given in
Alg. 3.4. The algorithm searches for a subgrid where the rectangular regions at the
left and right as well as at the bottom and top are consistent. Therefore, the algorithm
compares subgrids which are spanned by the grid points (i, j) and (k, l). Due to the
conditions k − i + 1 ≥ 2kw and l − j + 1 ≥ 2kh, these subgrids are large enough
to cover the four rectangular regions. The colorings of the regions at the left and
right as well as at the bottom and top are compared if these regions are consistent.
Therefore, all pairs of grid points with the same distance are checked. The distance
in the horizontal direction is k− i−kw+1 and in the vertical direction l− j−kh+1.
If all compared grid points are colored identically, an appropriate subgrid is found.
The regions at the right and top of this subgrid are pruned. The result is the tile
restricted by the grid points (i, j) and (k − kw, l − kh). This tile is possibly not the
smallest tile available. Furthermore, this approach does not guarantee to determine
a tile. It depends on the given coloring Φ if a tile exists.

Lemma 3.5. Given a regular grid G with n grid points and a minimal (restricted)
coloring Φ, the algorithm getTile determines the size of a colored tile, if available,
in O(n3).

Proof. We assume that a solution, a colored tile, exists. The algorithm getTile

iterates over all pairs of grid points (i, j) and (k, l). These grid points span the
subgrids to be checked. Each subgrid is spanned by the grid point (i, j) in the south
west direction and by the grid point (k, l) in the north east direction. The horizontal
and vertical distance between both grid points, 2kw and 2kh, is big enough to cover
the four rectangular grids at the border. The algorithm checks if the regions at the
bottom and top as well as at the left and right are consistent. If there exists such a
subgrid, the corresponding tile is the result of the algorithm.
The algorithm getTile iterates over all pairs of grid points (i, j) and (k, l). For

each subgrid spanned by these grid points, the grid points at equal distance in the
regions belonging together must be checked. Therefore, at most 2 ·n grid points must
be visited. Thus, the complexity is O(n3).
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3 Colorings for full and partial Jacobian computation

When the colored Q×R tile is determined, the color given by the explicit formula

(((i− 1) mod Q) + 1, ((j − 1) mod R) + 1) (3.2)

can be assigned to the grid point (i, j) of a grid with arbitrary size. To color the grid
in Fig. 3.7(d), the coloring information for the tile in Fig. 3.7(c) is used. For example,
if the grid point (2, 4) should be colored, the color

Φ(ψ(((2− 1) mod 2) + 1, ((4− 1) mod 2) + 1)) = Φ(ψ(2, 2))

is assigned.
We cannot prove that our approach works for all stencils or stencil combinations.

If the algorithm does not return a tile with coloring information, there are two pos-
sibilities to continue: On the one hand, another minimal coloring for grid G with the
same grid size can be employed. On the other hand, the grid size can be increased
and a minimal coloring for this grid can be used as input for getTile. If we do not
obtain a tile with coloring information by employing one or both possibilities, the
last change is to use the algorithm colorVSepAll (Alg. 3.2) to compute a minimal
coloring.

Results

Our approach is evaluated by considering several stencils for the full Jacobian com-
putation and stencil combinations for the partial Jacobian computation on two-di-
mensional N × N grids. We start with considering a 9 × 9 grid. For this grid, a
minimal (restricted) coloring is computed by the algorithm colorVSepAll. This
coloring is the input for the algorithm getTile. This algorithm immediately stops
if a (Q + kw) × (R + kh) subgrid—and the corresponding Q × R tile—is found. If
such a subgrid does not exist, we switch to the 19× 19 grid and a suitable minimal
coloring.
For each considered stencil, the minimal coloring for the 9 × 9 or 19 × 19 grid is

sufficient to obtain a tile. That is, for every stencil or stencil combination, a colored
tile is found. The results are given in Table 3.7. For stencil N4pt, a 2 × 2 tile in the
colored 9×9 grid is found. The width and height for this stencil are kw = 1 and kh = 2.
The coloring of the 9×9 grid with colorVSepAll using 1 thread together with the
determination of the tile takes less than one second. For stencilN9pt, there is no tile in
the coloring of the 9×9 grid. Thus, a 19×19 grid is colored and a 10×10 tile is found
in 214 seconds. Most tiles are computed in less than 1s including the determination of
the colorings with colorVSepAll using 1 thread. For most stencils—in particular,
stencils N4pt, N5pt, N5,1pt, N5,3pt, N6,1pt, N6,3pt, and N9,1pt—the minimal coloring of
the 9×9 grid contains a tile. For the remaining three stencils, the minimal coloring of
the 19× 19 grid is appropriate to obtain a tile. Recall from the previous section that
the runtime for computing a minimal coloring with the algorithm colorVSepAll

depends on the grid size. In some cases, no coloring could be determined in 24h,
still for small grid sizes. Using the approach introduced in this section, we obtain the
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3.3 Two-sided coloring algorithm for general graphs

Stencil kw kh N Q×R s

N4pt 1 2 9 2× 2 ε
N5pt 2 2 9 5× 5 ε
N6pt 3 2 19 7× 7 ε
N9pt 4 4 19 10× 10 214

(a)

Stencil kw kh N Q×R s

N5,1pt 1 1 9 2× 2 ε
N5,3pt 2 1 9 4× 2 ε
N6,1pt 3 2 9 3× 2 ε
N6,3pt 3 2 9 4× 2 ε
N9,1pt 2 2 9 3× 3 ε
N9,3pt 3 2 19 4× 3 9

(b)

Table 3.7: Overall runtime s in seconds to determine a colored Q×R tile on an N×N
grid with N = 9 or N = 19. The minimal coloring Φ of an N ×N grid is
computed by colorVSepAll. Runtime below 1s is denoted by ε.

colorings in at most 214s and are able to color a grid point of an arbitrarily sized grid
using a colored tile and equation (3.2). The corresponding colored tiles are depicted
in Appendix A.2.

Although we are not able to prove that this approach can be used in general, it
works for all considered stencils and stencil combinations. This open issue could be
considered for further work.

3.3 Two-sided coloring algorithm for general graphs

After introducing coloring algorithms exploiting the sparsity pattern of Jacobian
matrices occurring in stencil-based computations, we move on to coloring heuris-
tics for bipartite graphs associated to general Jacobian matrices. Given a bipartite
graph G = (Vr � Vc, E) corresponding to a Jacobian matrix and the set of required
elements ER for the partial Jacobian computation, we introduce a coloring algorithm
which determines a star bicoloring of G when restricted to ER. Recall that the star
bicoloring is a special case of the restricted star bicoloring where every edge is a
required edge, ER = E. Therefore, an explicit version of the star bicoloring algo-
rithm for the full Jacobian computation is omitted. A star bicoloring is also denoted
as two-sided coloring, because the row and column vertices of a bipartite graph are
colored.

There are several papers concerning two-sided colorings for the full Jacobian com-
putation [19, 27, 33]. Although the coloring definition Def. 2.12 for the partial Ja-
cobian computation and the idea for an algorithm arises in [27], the first algorithm
to compute restricted star bicolorings was given in [40] and extended in [15]. The
partial Jacobian computation in general and, in particular, the implementation of
this algorithm was first evaluated in [40, 41] by choosing the nonzero elements on
the main diagonal as required elements. It was demonstrated that determining only
the main diagonal elements, instead of all nonzero elements, reduces the number of
colors p significantly. Calotoiu investigated further modifications of the implementa-
tion and vertex orderings in [15]. He evaluated the partial Jacobian computation for
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3 Colorings for full and partial Jacobian computation

several patterns, including the block diagonal with 1000× 1000 blocks. In the mean-
time, Calotoiu and I made further progress with trying different vertex orderings
and evaluated different techniques for star bicoloring algorithms in a joint work. In a
more recent work, the two-sided coloring was given as an integer linear programming
(ILP) formulation [30]. Due to the NP-hardness of this optimization problem, solv-
ing this ILP formulation exactly is limited to small matrices. One algorithm variant
for the restricted star bicoloring from the joint work with Calotoiu is given in this
section. Going beyond this joint work, block diagonals with different block sizes are
considered in the results section.
Our coloring heuristic comprises several techniques introduced in other two-sided

coloring approaches for full Jacobian computation [19, 27, 33]. These techniques are
adapted to obtain a coloring heuristic for the restricted star bicoloring. We show that
there are matrices for which a star bicoloring is better than a distance-2 coloring.
Furthermore, our implementation is compared to the up-to-date software package
ColPack [28] to show that the results are comparable in the number of colors for the
full Jacobian computation. Thereafter, we continue with the partial Jacobian compu-
tation and compute restricted star bicolorings to obtain the nonzero elements of block
diagonals with different block sizes. We consider matrices and patterns employed in
the next chapter to show the benefit of the partial Jacobian computation.
For star bicolorings, with reference to condition 2 of Def. 2.12, solely a subset of

the vertices must be colored with nonzero colors. The remaining vertices receive the
”neutral” color zero. That is, the corresponding rows and columns are not determined
and thus do not affect the computational effort. The vertices which must be colored
with nonzero colors are chosen. This selection process can be considered as explicitly
or implicitly determining a vertex cover or its complement, the independent set [27].
The minimum vertex cover problem as well as the maximum independent set problem
are NP-hard [26]. Rather than computing an (almost) minimum vertex cover, it is
more important to compute a vertex cover so that the contained vertices can be
colored with a number of colors as small as possible. The star bicoloring scheme
given in [27] computes a vertex cover first and colors the selected vertices afterwards.
In contrast, the algorithm introduced in [33] computes a vertex cover implicitly and
colors a vertex immediately after being selected. Our algorithm comprises the implicit
choice of the vertex cover [33] combined with a weighting function for the row and
column vertices [20]. The vertices are colored by employing the coloring algorithm
proposed for the full Jacobian computation [27] adapted to the partial Jacobian
computation.
The algorithm StarBicoloringRestricted, depicted in Alg. 3.5, chooses the

vertices one after another from the vertex set Vr�Vc regarding the required edges ER.
In line 5, the next vertex is chosen by the function getNextVertex which is given
in Alg. 3.6. A weighting factor for preferring row over column vertices or the other
way around is used. This factor ρ is employed while comparing the maximum degrees
of the sets of row and column vertices of the bipartite subgraph induced by the
required edges ER, i.e., Δ(Vr, G[ER]) and Δ(Vc, G[ER]). Depending on the maximum
degrees and ρ, the algorithm chooses a row vertex vr or column vertex vc with the
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3.3 Two-sided coloring algorithm for general graphs

Algorithm 3.5: Determine a star bicoloring of G when restricted to ER

1 function StarBicoloringRestricted(G = (Vr � Vc, E), ER, ρ)
2 forbiddenColors ← [0 . . . 0]; coloring Φ ← [−1 . . .− 1]
3 E′

R ← ER

4 while E′
R �= ∅ do

5 v ← getNextVertex(G,E′
R, ρ) � Dynamic selection on subgraph

6 E′
R ← E′

R\{(v, w) ∈ E′
R : w ∈ N1(v,G[E

′
R])}

7 foreach w ∈ N1(v,G) do
8 if Φ(w) ≤ 0 then
9 foreach x ∈ N1(w,G) with Φ(x) > 0 do

10 if (v, w) ∈ ER or (w, x) ∈ ER then
11 forbiddenColors[Φ(x)] ← v

12 else
13 foreach x ∈ N1(w,G[ER]) with Φ(x) > 0 do
14 foreach y ∈ N1(x,G) with Φ(y) > 0 and y �= w do
15 if Φ(w) = Φ(y) then
16 forbiddenColors[Φ(x)] ← v

17 Φ(v) ← min{j > 0: forbiddenColors[j] �= v}
18 foreach vc ∈ Vc with Φ(vc) > 0 do Φ(vc) ← Φ(vc) + max{Φ(vr) : vr ∈ Vr}
19 foreach v ∈ Vr � Vc with Φ(v) = −1 do Φ(v) ← 0
20 return Φ

highest degree, i.e., d(vr, G[ER]) or d(vc, G[ER]). In [20], the weighting factor is hard
coded with ρ = 2. A more general suggestion for weighting the vertices is given
in [27]. The resulting vertex ordering influences the number of colors obtained by the
algorithm. An additional edge set E ′

R is introduced to memorize for which required
edges no incident vertex is colored yet. After choosing a vertex v, the algorithm
removes the incident edges in E ′

R and determines the colors which are not allowed.
The smallest nonzero color allowed is then assigned to the vertex v. Therefore, for
every vertex v the distance-1, -2 and -3 neighbors—w = N1(v,G), x = N2(v,G), and
y = N3(v,G)—regarding the required edges are visited in lines 7–16. Each color that
cannot be assigned to the vertex v, due to restrictions from Def. 2.12, is marked as
forbidden in lines 11 and 16. Therefore, the index of vertex v is stored in the entry
of the array forbiddenColors corresponding to the color of the distance-2 neighbor x
of vertex v. In line 17, the smallest color not marked as forbidden is assigned to the
vertex v. The nonzero colors for the row and column vertices are separated by adding
the highest color assigned to a row vertex to the nonzero color of each column vertex
in line 18. At the end, the algorithm assigns the color zero to all vertices not yet
colored.

Lemma 3.6. Given a bipartite graph G = (Vr � Vc, E), the required edges ER, and
the parameter ρ, the algorithm StarBicoloringRestricted computes a star bi-
coloring Φ of G when restricted to ER in O(|Vr � Vc| ·Δ3(Vr � Vc)).
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3 Colorings for full and partial Jacobian computation

Algorithm 3.6: Determine a vertex of G[ER] with the maximum degree of
the row and column vertices weighted by ρ.

1 procedure getNextVertex(G = (Vr � Vc, E), ER, ρ)
2 if Δ(Vr, G[ER]) > ρ ·Δ(Vc, G[ER]) then
3 return vr ∈ Vr : d(vr, G[ER]) = Δ(Vr, G[ER])
4 else
5 return vc ∈ Vc : d(vc, G[ER]) = Δ(Vc, G[ER])

Proof. The first condition in Def. 2.12 requires separate colors for row and column
vertices—except color zero. This is automatically enforced by adding the highest
color assigned to a row vertex to the nonzero colors of the column vertices in line 18.
Hence, the colors for the row and column vertices are distinguishable. During the
coloring phase the row and column vertices can be colored identically, because no
nonzero color assigned to a row vertex is ever compared to a nonzero color assigned
to a column vertex.
As long as the edge set E ′

R is not empty, the next vertex v is chosen and colored.
After selecting the vertex v, the algorithm removes all incident edges to v in E ′

R.
Thus, for all edges in E ′

R at least one incident vertex is colored with a nonzero color;
and the condition 2 in Def. 2.12 is not violated.
For each path (v, w, x) with Φ(w) = 0 and (v, w) ∈ ER or (w, x) ∈ ER, the

vertices v and x must be colored differently, i.e., Φ(v) �= Φ(x). Depending on whether
the vertex v is a row or column vertex, i.e., v ∈ Vr or v ∈ Vc, either the condition 3a
or the condition 3b is applicable. In lines 8–11, the already assigned nonzero colors
to distance-2 neighbors x of vertex v are forbidden if the vertex w is either colored
with the color zero or not yet colored. Thus, condition 3a and condition 3b cannot
be violated.
In consequence of the condition 3c, for each path (v, w, x, y) with (w, x) ∈ ER,

Φ(w) > 0, and Φ(x) > 0, the vertices v and x or the vertices w and y must be
colored differently, i.e., Φ(v) �= Φ(x) or Φ(w) �= Φ(y). These paths are considered in
lines 13–16. If the vertices w, x, and y are already colored with nonzero colors and
the vertices w and y are colored identically, i.e., Φ(w) = Φ(y), the color assigned to
vertex x is forbidden for vertex v. There is no need to check paths where the vertex y
is colored with the color zero, i.e., Φ(y) = 0, because vertex v can be assigned an
arbitrary nonzero color due to Φ(w) > 0. Thus, the condition 3c is valid.
At most all vertices in Vr �Vc are visited in line 5. For every vertex v all N2(v,G)-

paths (v, w, x) and N3(v,G)-paths (v, w, x, y) are considered. Thus, the complexity
of this algorithm is O(|Vr � Vc| ·Δ3(Vr � Vc)).

Results

In this section, we carry out three comparisons to assess the star bicoloring and
especially our algorithm StarBicoloringRestricted. First, distance-2 colorings
determined by D2ColoringRestricted (Alg. 2.1) are compared to star bicol-
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3.3 Two-sided coloring algorithm for general graphs

Matrix n nnz d �n/32� �n/16� �n/8� Δ(Vr) Δ(Vc)

685 bus 685 3,249 0.69 85 42 21 13 13
crystm01 4,875 105,339 0.44 609 304 152 27 27
hor 131 434 4,182 2.22 54 27 13 32 26
memplus 17,758 99,147 0.03 2219 1109 554 353 353
msc00726 726 34,518 6.55 90 45 22 88 88
nos3 960 15,844 1.72 120 60 30 18 18
nos7 729 4,617 0.87 91 45 22 7 7
orsirr 2 886 5,970 0.76 110 55 27 14 14
poisson3Da 13,514 352,762 0.19 1689 844 422 110 110

Table 3.8: Properties of the chosen n × n matrices from the University of Florida
Sparse Matrix Collection [23]: number of columns n, number of nonzero
elements nnz, density (in %) d (nnz/n2 · 100), and block sizes �n/32�,
�n/16�, �n/8� as well as maximum degree of row vertices Δ(Vr) and col-
umn vertices Δ(Vc) of the associated bipartite graph.

orings computed by StarBicoloringRestricted. When the full Jacobian com-
putation is considered, the required elements for both algorithms are the nonzero
elements of the Jacobian matrix. Second, we compare the results computed by our
algorithm StarBicoloringRestricted with the results computed by the recent
software package ColPack [28]. We show that our algorithm is comparable in the
number of colors. Finally, for the partial Jacobian computation, we compare re-
stricted distance-2 colorings and restricted star bicolorings for the nonzero elements
of block diagonals with different block sizes. The chosen matrices are taken from the
University of Florida Sparse Matrix Collection [23]. These matrices are also used in
the next chapter to consider partial Jacobian computation for preconditioning. The
main properties of the matrices, which are the number of columns, the number of
nonzero elements, and the density, are given in Table 3.8. Further properties are the
block sizes k = �n/32�, k = �n/16�, and k = �n/8� as well as the maximum degree
of the row vertices Δ(Vr) and the column vertices Δ(Vc) of the associated bipartite
graph G = (Vr � Vc, E).

Besides using a star bicoloring or a restricted star bicoloring, the orderings in
which the vertices are colored have a significant impact on the result. Due to the
greedy characteristic of the algorithm, these orderings result in a different number of
colors. This topic goes beyond the scope of this thesis. More details for full Jacobian
computation and references to other articles are presented in [27]. For the partial
Jacobian computation, in particular, for the main diagonal elements, the vertex or-
derings are addressed in [40]. In theory, a minimal distance-2 coloring cannot need
fewer colors than a minimal star bicoloring, because every distance-2 coloring is also
a star bicoloring. If a distance-2 coloring is better than a star bicoloring, another
vertex ordering for the two-sided coloring algorithm should be employed.

Before evaluating the coloring heuristics in terms of the number of colors, we discuss
the choice of the parameter ρ for the algorithm StarBicoloringRestricted. This
parameter has an impact on the vertex ordering and thus on the number of colors. For
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Figure 3.8: Accumulated number of colors determined by the coloring heuristic
StarBicoloringRestricted for varied parameter ρ normalized to
ρ = 1.0. The test matrices are the same as in Table 3.9.

the full Jacobian computation, ER = E, and for the partial Jacobian computation
with the required elements in the block diagonals, in particular, blkDiag(A, k) with
k = 1, k = 10, and k = �n/32�, (restricted) star bicolorings are computed by
StarBicoloringRestricted. The parameter ρ is varied from 1.0 to 3.0 in steps
of 0.5. For the test matrices, the number of colors for different required elements and
choices of ρ are determined but these values are not presented in detail. Instead, the
numbers of colors for all matrices are accumulated for each combination of required
elements and ρ and afterwards normalized to ρ = 1.0 for the same required elements.
These results are given in Fig. 3.8. The parameter ρ has been assessed in [40] for the
full Jacobian computation with different test matrices. Although the parameter ρ =
3.0 has been the best choice in that work, we cannot identify that this choice is
beneficial for the considered required elements and test matrices in this thesis. If we
consider the full and partial Jacobian computation with k = �n/32� for the given
matrices, the choices of ρ = 1.0 and ρ = 1.5 lead to fewer colors than the remaining
values. For the partial Jacobian computation with k = 1 and k = 10, the choices of
ρ = 1.0 and ρ = 1.5 result in more colors than the remaining choices of ρ. Thus, for
every selection of the required elements and even for each matrix, an individual choice
of ρ can be beneficial. To avoid excessive distinguishing between different choices for
parameter ρ, we set the parameter to ρ = 1.5 for the rest of this thesis. In general, we
cannot suggest a specific parameter ρ for all matrices. Therefore, the default value for
parameter ρ is given as ρ = 1.0 if there is no specific ρ evaluated for the considered
matrix.
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3.3 Two-sided coloring algorithm for general graphs

pd2 psb
Matrix NO ORD SBRes ColPack

685 bus 14 13 16 13
crystm01 27 27 34 27
hor 131 34 32 26 32
memplus 353 353 89 205
msc00726 160 135 152 135
nos3 18 18 30 18
nos7 12 12 11 11
orsirr 2 18 14 16 17
poisson3Da 112 110 79 78

Table 3.9: Number of colors pd2 to determine the Jacobian matrix computed by func-
tion D2ColoringRestricted for natural ordering (NO) and smallest
number among orderings (ORD) NO, LFO, and IDO; and psb computed
by function StarBicoloringRestricted (SBRes) with ρ = 1.5 and the
minimum of several two-sided coloring algorithms included in ColPack.

The number of colors pd2 computed by function D2ColoringRestricted, the
number of color psb computed by StarBicoloringRestricted with ρ = 1.5, and
the number of color psb computed by ColPack are compared. For the algorithm
D2ColoringRestricted different number of colors pd2 are given in Table 3.9:
the number of colors computed using the natural ordering (NO) and the smallest
number of colors determined using the orderings NO, largest-first ordering (LFO),
and incidence-degree ordering (IDO). The function StarBicoloringRestricted

does not use an explicit ordering, but an ordering by employing getNextVertex.
For comparing the results of StarBicoloringRestricted to ColPack, differ-
ent two-sided coloring algorithms included in ColPack are employed: ImplicitCov-
eringStarBicoloring, ExplicitCoveringStarBicoloring, ExplicitCoveringModifiedStar-
Bicoloring, and ImplicitCoveringGreedyStarBicoloring. Furthermore, also different
vertex orderings are assessed: NO, LFO, dynamic largest first-ordering (DLFO),
smallest-last ordering (SLO), and random ordering. For every matrix, the small-
est number of colors for all combinations of coloring algorithms and vertex orderings
is given. That is, a lot of different coloring and ordering strategies of ColPack are
compared to one coloring and one ordering strategy implemented in our algorithm
StarBicoloringRestricted.

For the matrices memplus, poisson3Da, hor 131, and nos7, a computed star bicol-
oring is better than the distance-2 colorings. The distance-2 colorings are determined
by using the vertex orderings NO, LFO, and IDO. For the matrices poisson3Da and
memplus, the number of colors are respectively reduced by 28% and 75%. Thus, sig-
nificant savings in the number of colors are possible by using a star bicoloring algo-
rithm. We compare the two-sided coloring algorithm StarBicoloringRestricted

and the algorithms included in ColPack. For the matrices memplus, hor 131, and or-
sirr 2, our algorithm is better; for the matrix nos7, there is no difference; and for the
remaining matrices, at least one algorithm in ColPack computes smaller numbers of
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3 Colorings for full and partial Jacobian computation

Matrix k = 1 k = 10 k = �n/32�
pd2 psb pd2 psb pd2 psb

685 bus 6 7 12 11 12 13
crystm01 8 9 13 14 22 24
hor 131 15 15 27 18 28 19
memplus 22 23 37 40 146 88
msc00726 25 24 61 56 82 73
nos3 10 10 12 21 18 21
nos7 4 4 10 10 11 10
orsirr 2 5 6 12 12 14 14
poisson3Da 16 17 28 31 42 68

Table 3.10: Number of colors pd2 and psb to determine the required elements, specified
by blkDiag(A, k), computed by function D2ColoringRestricted

and function StarBicoloringRestricted with ρ = 1.5.

colors. Recall that, depending on the vertex ordering, the result of a star bicolor-
ing algorithm can also be a distance-2 coloring. In summary, there are matrices for
which two-sided coloring algorithms determine a better result than the distance-2
algorithm. In practice, there are also matrices, for which the distance-2 algorithm
results in the smaller number of colors. Currently the best option is to try different
vertex orderings and coloring algorithms before computing a Jacobian matrix.

After showing that the star bicoloring can be beneficial for the full Jacobian com-
putation and that our algorithm is comparable to the two-sided coloring algorithms of
ColPack, we consider required elements included in the k×k blocks of the block diago-
nal of n×n Jacobian matrices A. These elements are specified by blkDiag(A, k). By
determining the colorings for different block sizes—k = 1, k = 10, and k = �n/32�—
and employing solely the natural ordering, there are some matrices for which the
number of colors of the restricted star bicoloring is smaller than the number of col-
ors of the restricted distance-2 coloring. The results are given in Table 3.10. For
k = 1, the star bicoloring is better than the distance-2 coloring only for the matrix
msc00726. The difference is one color (25 to 24) or 4%. For k = 10, there are three
matrices with a better star bicoloring. The reduction for 685 bus as well as msc00726
is by 8% and for hor 131 by 33%. For k = �n/32�, there are four matrices with a
better star bicoloring: memplus with a reduction by 40%, hor 131 by 32%, msc00726
by 11%, and nos7 by 9%. With a larger block size k, it is more likely that the star
bicoloring is better than the distance-2 coloring. Overall, the reductions are between
4% and 40%. That is, there are combinations of matrices and block sizes for which a
star bicoloring should be chosen.
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3.4 Are two-sided colorings better than one-sided colorings?

3.4 Are two-sided colorings better than one-sided
colorings?

In this section, we evaluate for different matrix structures if these may benefit from
(restricted) star bicolorings compared to minimal (restricted) distance-2 colorings
measured in the number of colors. In the first part, partial Jacobian computation for
general Jacobian matrices is considered where a block diagonal specifies the required
nonzero elements. We investigate if the star bicoloring reduces the number of colors
compared to a distance-2 coloring. The special case of the main diagonal is considered
in more detail. Keep in mind that in this section exact colorings are considered instead
of non-minimal results computed by greedy coloring heuristics. In the second part, we
look at colorings concerning regular grids for full and partial Jacobian computation.
First, we assess if a minimal star bicoloring needs less colors than a minimal dis-
tance-2 coloring for full Jacobian computation. Thereafter, we study this also for the
partial Jacobian computation.

3.4.1 Main diagonal

For partial Jacobian computation, the numbers of colors for minimal distance-2
colorings—rows and columns—and for a minimal star bicoloring are compared when
restricted to the main diagonal. The bipartite graph G = (Vr�Vc, E) with |Vr| = |Vc|
represents the square Jacobian matrix. Suppose that there are no zero elements in
the main diagonal. We show that a minimal star bicoloring needs the same number
of colors as a minimal distance-2 coloring, χd2 = χsb, when restricted to the diagonal
elements, i.e., ED = {(ri, ci) ∈ E : 1 ≤ i ≤ |Vr|}. For the computation of ER = ED,
let χc and χr denote the smallest numbers of colors for distance-2 colorings of G on
Vc and Vr, respectively. In the following theorem, we prove that χc = χr holds.

Theorem 3.7. The mapping Φr : Vr → {0, . . . , pd2} is a distance-2 coloring of G
when restricted to ED, iff Φc : Vc → {0, . . . , pd2} is a distance-2 coloring of G when
restricted to ED with Φr(ri) = Φc(ci), ri ∈ Vr, ci ∈ Vc, and 1 ≤ i ≤ |Vr|.

Proof. We show that the vertices ci, cj ∈ Vc are distance-2 neighbors, iff a vertex ri ∈
Vr is a distance-2 neighbor of a vertex rj ∈ Vr. If ci and cj are distance-2 neighbors,
there is a path (ci, rj, cj) with (rj, cj) ∈ ED or a path (ci, ri, cj) with (ri, ci) ∈ ED.
The three possible path combinations are given in Fig. 3.9. From Def. 2.10 follows
that the distance-2 neighbors ci and cj are colored differently, i.e., Φc(ci) �= Φc(cj).
Because of the existence of the edges (rj, ci) or (ri, cj) and the diagonal elements

in ED, there are the paths (ri, ci, rj) and (ri, cj, rj), respectively. Thus, the vertices ri
and rj are also distance-2 neighbors and Φr(ri) �= Φr(rj) follows directly.

As a result, the distance-2 coloring of G on Vr when restricted to ED can also be
applied as a distance-2 coloring of G on Vc when restricted to ED. Thus, there is no
difference in the minimal number of colors for both colorings, i.e., χc = χr.
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Figure 3.9: Distance-2 neighbors ri, rj ∈ Vr as well as ci, cj ∈ Vc connected by paths
(a) (ri, ci, rj) or (ci, rj, cj), (b) (ri, cj, rj) or (ci, ri, cj), and (c) (ri, ci, rj)
and (ri, cj, rj) or (ci, rj, cj) and (ci, ri, cj).

For a minimal distance-2 coloring of G—either on Vc or on Vr—when restricted
to ED, let χd2 denote the smallest number of colors. For a minimal star bicoloring
of G when restricted to ED, let χsb denote the number of colors. Let pd2 and psb
denote the numbers of colors for distance-2 colorings of G and for star bicolorings
of G, respectively. In the following lemmas, we prove that χsb ≥ pd2 and χd2 ≥ psb.
Using these results, the relation χd2 = χsb is shown.

Lemma 3.8. Given a mapping Φsb : [Vr � Vc] → {0, 1, . . . , χsb} which is a mimimal
star bicoloring of G when restricted to ED with the smallest number of colors χsb,
there is a mapping Φc : Vc → {0, 1, . . . , pd2} which is a distance-2 coloring of G when
restricted to ED with the number of colors pd2 not exceeding χsb. That is, the property
χsb ≥ pd2 holds.

The proof for the Lem. 3.8 is given in Appendix A.3.

Lemma 3.9. Let the mapping Φc : Vc → {0, 1, . . . , χd2} be a minimal distance-2
coloring of G when restricted to ED with the smallest number of colors χd2. This
mapping is also a star bicoloring Φsb : [Vr � Vc] → {0, 1, . . . , psb = χd2} of G when
restricted to ED with Φsb(ri) = 0 and Φsb(ci) = Φc(ci), 1 ≤ i ≤ |Vr|. That is, the
property χd2 ≥ psb holds.

Proof. The row vertices ri are colored with the color zero, i.e., Φsb(ri) = 0, 1 ≤
i ≤ |Vr|. Thus, the conditions 1, 3b, and 3c of Def. 2.12 cannot be violated. The
condition 2 of Def. 2.12 holds due to condition 1 of Def. 2.10. As a consequence,
solely the condition 3a is a candidate for a violation. This condition is identical to
condition 2 in Def. 2.10. Thus, every minimal restricted distance-2 coloring is also a
restricted star bicoloring.

Theorem 3.10. From Lem. 3.8 with χsb ≥ pd2 ≥ χd2 and Lem. 3.9 with χd2 ≥ psb ≥
χsb, the statement χsb = χd2 follows directly, i.e., the smallest number of colors is the
same for a minimal star bicoloring and a minimal distance-2 coloring both restricted
to the edges corresponding to the diagonal elements of a Jacobian matrix.

Thus, the number of colors to determine the diagonal nonzero elements of the Jaco-
bian matrix is the same for a minimal restricted distance-2 coloring and a minimal
restricted star bicoloring.
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Figure 3.10: (a) Sparsity pattern of n × n Jacobian matrix A with k × k diagonal
blocks which are completely filled with required elements ⊗. The non-
required elements are indicated by symbol ×. (b) Table with (smallest)
number of colors χd2 and psb for A with n = 1000 and varying k.

3.4.2 Block diagonal

With the Theorem 3.10 in mind, one could assume that there is no conceptual dif-
ference in the number of colors between the block diagonal and, its special case, the
main diagonal. We show by a counterexample that this assumption is wrong. Our
example is an n × n Jacobian matrix with k × k blocks placed next to each other
on the main diagonal. We assume that these k × k blocks are completely filled with
required elements. In each kth row and column, non-required elements are placed
to the right and below of the blocks. We suppose that n/k is even. An illustrating
example is given in Fig. 3.10(a). Solely blocks with k ≥ 2 are considered in the
following, because the special case, k = 1, has already been covered in this section.
First, the minimal number of colors of the restricted distance-2 coloring, χd2, is given.
Afterwards, the number of colors of a restricted star bicoloring, psb, is described.

We explain the number of colors for a minimal distance-2 coloring when restricted
to the block diagonal elements by considering the structure of the Jacobian matrix A
instead of a corresponding graph. The colors are composed as follows: Consider two
columns with required elements in the same k × k block. These columns cannot be
combined to a column group, because both have required elements in more than one
row. Therefore, for each block k colors are required. In addition, the non-required
elements outside the blocks avoid the combination of columns with required elements
in different blocks. While combining two columns, the non-required elements in the
intersecting region of two blocks would sum up required elements inside the blocks.
Let us consider two blocks on the diagonal in Fig. 3.10(a) with the intersecting region
indicated by a green background padding. In the row 2k, there are non-required
elements from column 2k + 1 to n. If a column ai with required elements in the

51

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3 Colorings for full and partial Jacobian computation

second block and a column aj with required elements in the last block are combined
to a column group, the required element a2k,i in column ai and the non-required
element a2k,j in column aj would be summed up. Thus, there is no pair of columns
which can be combined to a column group and the smallest number of colors for a
distance-2 coloring is the number of columns, χd2 = n. Combining rows to groups,
instead, is analogous due to the symmetric structure of the matrix.

There is a star bicoloring when restricted to the block diagonal elements which
needs psb = 2 · n/k + k − 2 colors: The rows k, 2k, . . . , (n/k − 1) · k, which contain
non-required elements, are determined row-wise without combining them to a row
group. Therefore, n/k − 1 colors are required. With this prerequisite, the columns
1, k + 1, 2k + 1, . . . , (n/k − 1) · k + 1 can be combined to a column group and the
columns 2, k + 2, 2k + 2, . . . , (n/k − 1) · k + 2 to another column group. Thus, all
columns, except the last column in each block, can be combined to k − 1 column
groups. The required elements in the last column of each block are left over. These
columns must be separately determined. Otherwise, required elements in two of these
columns would be summed up. To determine these required elements, n/k column
groups are needed. In summary, n/k − 1 row groups and (k − 1) + (n/k) columns
groups are required and, hence, we need psb = 2 · n/k + k − 2 colors.

Rather than using χd2 = n colors for determining the required elements, a re-
stricted star bicoloring reduces the number of colors to psb = 2 · n/k + k − 2. By
increasing the block size k, the number of colors for the restricted star bicoloring is
reduced. We consider the number of colors for an n×n Jacobian matrix and vary the
block size k to illustrate this behavior: For k = 2, the restricted star bicoloring needs
as much colors as the restricted distance-2 coloring; and for k ≥ 3, the restricted star
bicoloring needs fewer colors, because the factor n/k is reduced. For a 1000 × 1000
Jacobian matrix, the number of colors χd2 and psb are given in Table 3.10(b) for
block size k from 2 to 10 if n/k is even. In summary, the star bicoloring needs less
colors than the minimal distance-2 coloring for block size k ≥ 3.

3.4.3 Stencils

Considering stencil-based computations, we assess whether a (restricted) star bicol-
oring potentially reduces the number of colors compared to a minimal (restricted)
distance-2 coloring. Lower bounds for the number of colors needed by the (restricted)
star bicoloring are introduced. These bounds are compared to the chromatic num-
bers of minimal (restricted) distance-2 colorings, χd2. The gap between the lower
bounds and χd2 indicates whether a minimal (restricted) star bicoloring potentially
reduces the number of colors. First, a lower bound for minimal colorings for the full
Jacobian computation is considered. Thereafter, we move on to the partial Jacobian
computation.
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Figure 3.11: Bipartite subgraphs induced by the grid points of the five-point stencil
N5pt with edges incident to (a) the center i = ψ(m,n) and (b) to all
grid points. The numbering scheme of the one-dimensional index ψ is
the natural ordering.

Full Jacobian computation

The bipartite graph G = (Vr � Vc, E) is employed for stencil-based computations
on M × N grids [13, 14] to address star bicolorings. To this end, we once more
use a numbering scheme to map a two-dimensional index of a grid point to a one-
dimensional index. To every grid point (m,n) with i = ψ(m,n), a row vertex ri and
a column vertex ci are associated leading to the vertex sets

Vr = {ri | 1 ≤ i ≤ MN} and Vc = {ci | 1 ≤ i ≤ MN}.

There are the edges (ri, cj) ∈ E and (rj, ci) ∈ E if the grid point j = ψ(k, l) belongs
to the stencil with center i = ψ(m,n), i.e.,

(ri, cj), (rj, ci) ∈ E ⇐⇒ i = ψ(m,n), j = ψ(k, l), and (k, l) ∈ N (m,n). (3.3)

The five-point stencil N5pt is used as an illustrating example for the minimal num-
ber of colors. The bipartite subgraph induced by the grid points of this stencil is
depicted in Fig. 3.11(a). The divide-and-conquer algorithm colorVSepAll using
separators computes a minimal distance-2 coloring with the smallest number of col-
ors, χd2. We examine whether there is a star bicoloring with a smaller number of
colors. Therefore, another bipartite graph is considered as illustrating example. The
vertices correspond to grid points which belong to a stencil whose center is not at
the boundary of the grid. For each pair of distance-2 neighbors the connecting edges
are added. This graph is given in Fig. 3.11(b).
Five colors are required for the minimal distance-2 coloring, because the grid points

are pairwise structurally non-orthogonal. That is, all column vertices are pairwise
distance-2 neighbors and all row vertices are pairwise distance-2 neighbors. The row
vertices as well as the column vertices must be colored differently depending on
whether the vertices in Vr or Vc are colored. A minimal coloring for the column
vertices is depicted in Fig. 3.11(a). Due to the condition 2 of the star bicoloring in
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3 Colorings for full and partial Jacobian computation

Def. 2.8, every edge must be incident to a vertex colored with a nonzero color, i.e.,
either Φ(rj) �= 0 or Φ(cj) �= 0, ∀j ∈ {i−M, i−1, i, i+1, i+M}. Recall that all column
vertices are distance-2 neighbors and all row vertices are distance-2 neighbors. The
vertices can be colored as follows:

• Assign nonzero colors to the column vertices and the color zero to the row
vertices. This coloring is not only a star bicoloring, but also a distance-2 coloring
on the column vertices.

• Assign nonzero colors to the row vertices and the color zero to the column
vertices. This coloring is also a distance-2 coloring on the row vertices.

• Assign nonzero colors to the vertices ri and ci and, in addition, assign nonzero
colors either to vertex rj or cj for the remaining indices j ∈ {i −M, i − 1, i +
1, i + M}. There are five distance-2 neighbors, either row or column vertices,
and a vertex in the opposite set which must be colored with a different color.
That is, nonzero colors are assigned to at least six vertices. Hence, six colors
are needed.

There is no further star bicoloring due to the following reason: It is not possible
to color the vertices by assigning either the color zero to the vertex ri and to a
vertex cj, j ∈ {i − M, i − 1, i + 1, i + M} or the color zero to the vertex ci and a
vertex rj, j ∈ {i − M, i − 1, i + 1, i + M}, because at least one edge would not be
incident to a vertex colored with a nonzero color. Thus, the only possibility to color
the row and column vertices with five nonzero colors is a minimal distance-2 coloring
which is also a minimal star bicoloring.
For the stencil N5pt, the number of colors and the number of grid points are

identical. We generalize this observation for arbitrary stencil. Recall that the center
is part of the neighborship relation, i.e., (m,n) ∈ N (m,n).

Lemma 3.11. Given a regular grid G and a stencil N , the number of colors of a
minimal star bicoloring is at least the number of grid points of the stencil, |N |.
Proof. We consider the bipartite graph associated to the given stencil N . At least
one incident vertex of every edge (ri, ci), 1 ≤ i ≤ |Vr|, must be colored with a nonzero
color. As a consequence of Def. 2.14, the grid points in stencil N are pairwise struc-
turally non-orthogonal. That is, due to (3.3), if the vertices cj and ck are distance-2
neighbors of vertex ci, the vertex ck is also a distance-2 neighbor of vertex cj. The
corresponding row vertices ri, rj, and rk are also pairwise distance-2 neighbors. If all
column vertices as well as all row vertices in the subgraph corresponding to a stencil
are pairwise distance-2 neighbors and the edges (ri, ci) ∈ E, 1 ≤ i ≤ |Vr| exist, at
least |N | grid points must be colored with different nonzero colors.

The coloring behavior for the six-point stencil N6pt and the nine-point stencil N9pt

is quite similar. However, as already described in [14,29], a minimal distance-2 color-
ing consists of seven or ten colors, respectively. For both stencils, there is one extra
color compared to the number of grid points. All remaining, not colored vertices ob-
tain this seventh or tenth color. Here, there is a difference of one color between the
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3.4 Are two-sided colorings better than one-sided colorings?

N5,1pt N5,3pt N6,1pt N6,3pt N9,1pt N9,3pt N9,5pt

|Nreq| 1 3 1 3 1 3 5
χd2 2 4 3 4 3 6 8
χsb 2 4 3 4 3 – –

Table 3.11: Lower bound |Nreq| for a minimal star bicoloring; the number of colors
χd2 for a minimal distance-2 coloring and χsb for a minimal star bicoloring
on an M ×N grid. Symbol – denotes unknown number of colorings due
to a runtime exceeding 5 days.

minimal coloring and the number of grid points. However, it is most unlikely that
this extra color can be exploited using a star bicoloring.

We conclude that the star bicoloring cannot be beneficial if the number of colors
of the minimal distance-2 coloring is the same as the number of grid points in the
stencil. Hence, the distance-2 coloring is a minimal coloring for the stencil N5pt. If
there is a gap between the chromatic number χd2 for the distance-2 coloring and
the lower bound with the number of grid points, there can be a better minimal star
bicoloring. For the stencils N6pt and N9pt, where the gap is only one color, a reduction
by the star bicoloring is most unlikely. Consideration of further stencils in detail is
beyond the scope of this thesis.

Partial Jacobian computation

For the partial Jacobian computation, combinations of an original stencil Norg and a
stencilNreq are considered. Recall that the stencilNreq specifies the required elements
of the Jacobian matrix. Minimal distance-2 colorings for stencil combinations can be
computed by the algorithm colorVSepAll. In the following, we study the lower
bound for the minimal number of colors for restricted star bicolorings.

In contrast to the full Jacobian computation, the grid points in stencil Norg are not
necessarily pairwise partially structurally non-orthogonal. Therefore, the number of
grid points of stencil Norg, |Norg|, is not a lower bound for a minimal star bicoloring.
Instead, we consider the stencil Nreq. The grid points of such a stencil are pairwise
partially structurally non-orthogonal. Therefore, the number of the grid points, |Nreq|,
is a lower bound. The lower bound for a star bicoloring is the number of grid points
of the stencil Nreq because of Lem. 3.11.

By taking some of the stencil combinations from Sect. 3.1.2, we evaluate whether
star bicolorings are better than distance-2 colorings. For these combinations, the
lower bound |Nreq| and the number of colors for a minimal distance-2 coloring are
given in Table 3.11. There is a smallest width m and a smallest height n so that the
minimal number of colors p is identical for all M ×N grids with M ≥ m and N ≥ n.
For the stencilsN5,1pt,N6,1pt, andN9,1pt, the required elements in the Jacobian matrix
are the nonzero elements on the main diagonal. We proved in Theorem 3.10 that the
minimal restricted star bicoloring is never better than the minimal restricted dis-
tance-2 coloring for this special case. For the stencil combinations with stencil Nreq =

55

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3 Colorings for full and partial Jacobian computation

N3pt or Nreq = N5pt, the gap between the lower bound and the number of colors of a
minimal distance-2 coloring is at most three. We use an exhaustive search algorithm
to compute minimal star bicolorings. For N5,3pt and N6,3pt, there is no benefit in
using a star bicoloring. For N9,3pt and N9,5pt, the runtime of the exhaustive search
exceeds several days. Thus, we do not obtain minimal star bicolorings and have no
indication whether a two-sided coloring is better.
In summary, the lower bound is the number of grid points in the stencil Nreq. For

the chosen test matrices, there is no minimal star bicoloring for the considered stencil
combinations with a smaller number of colors than a minimal distance-2 coloring.
The higher the difference in the number of grid points between Norg and Nreq, a
better minimal star bicoloring is more likely.
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4 Preconditioning using partial
Jacobian computation

This chapter addresses the combination of preconditioning techniques for iterative
solvers and the partial Jacobian computation. In Sect. 4.1, iterative solvers and pre-
conditioning techniques are described. These techniques are then discussed in the
context of automatic differentiation in Sect. 4.2. Using the block diagonal elements
of a Jacobian matrix for preconditioning is motivated in Sect. 4.3. Due to limitations
of the memory the full Jacobian matrix cannot be computed. Thus, only the spar-
sity pattern of the Jacobian matrix is known. This pattern is employed to determine
a preconditioner. A subset of nonzero elements of the Jacobian matrix is selected,
the so-called initially required elements. Next, further nonzero elements are chosen
to speed up solving preconditioned systems of linear equations. The potentially re-
quired elements enlarge the initially required elements and are determinable with
the same coloring. The additionally required elements are a subset of the potentially
required elements which do not cause any fill-in element while obtaining the precon-
ditioner. The classification of these nonzero elements is introduced in Sect. 4.4. While
these nonzero elements are chosen, the computational effort and the limited memory
are taken into account. Algorithms to determine these elements are introduced. The
Sect. 4.4 is closed by restricting these elements so that it is beneficial for solving
systems of linear equations in parallel. The results of this chapter are summarized in
the last section.

4.1 Iterative solvers using preconditioning techniques

In the field of scientific computing, solving systems of linear equations

A · x = b (4.1)

is an essential ingredient, where the coefficient matrix A ∈ Rn×n is a large, regular
and sparse Jacobian matrix, the vector b ∈ Rn denotes the right-hand side and the
vector x ∈ Rn is the vector of unknowns. Such systems occur, for example, during the
numerical solution of non-linear systems. Rather than computing an exact solution
of the sparse linear system (4.1) with a direct solver, in this thesis an iterative non-
symmetric solver is selected to compute an approximative solution of the system.
Compared to the direct solver, the iterative solver often uses less operations and
memory. Examples for iterative solvers are the generalized minimal residual method
(GMRES) [58] and the biconjugate gradients stabilized method (Bi-CGSTAB) [61].
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4 Preconditioning using partial Jacobian computation

In contrast to direct solvers, iterative solvers are matrix-free. Hence, these solvers do
not require the full Jacobian matrix, but the Jacobian matrix-vector product A·v and
the transposed Jacobian matrix-vector product AT ·v are sufficient. Compared to the
full Jacobian computation, computing these products with automatic differentiation
requires less computational effort and memory because the Jacobian matrix is never
explicitly assembled and the number of colors is p = 1.
Preconditioning [4, 57] is a technique to speed up solving a system of linear equa-

tions, i.e., the preconditioner, a matrixM ∈ Rn×n, is used to increase the convergence
rate of the iterative solver. Furthermore, without preconditioning some ill-conditioned
iterative systems may diverge. For the (left) preconditioning, both sides of the system
are multiplied on the left by a matrix M−1 yielding the system

M−1 A · x = M−1 b.

The preconditioner M is an approximation of the Jacobian matrix A. There are two
extreme cases: First, the identity matrix In is chosen as preconditioner, i.e., M = In.
In this case, there is no computational effort to determine the matrix M . However,
the preconditioned linear system is identical to the original system. Second, the full
Jacobian matrix A is chosen as preconditioner, i.e., M = A. Here, the computational
effort to invertM is very high. Nevertheless, the preconditioned system is solved after
the first iteration step. In practice, the preconditioner M is something in between
In and A, i.e., the choice is a trade-off between increasing the convergence rate of
the iterative solver and the computational effort to solve a system with matrix M
as coefficient matrix. Most importantly, the preconditioning should not be more
computationally expensive than the benefit from an increased convergence rate. The
additional computational effort of carrying out the preconditioning arises from

• determining the matrix M ,
• solving systems of linear equations with matrix M as coefficient matrix, and/or
• computing matrix-vector products with matrix M .

Hence, it is important that the computational effort to solve these system of linear
equations and these matrix-vector products is small. The incomplete LU factorization
[45] is an example for a method to determine a preconditioner.

4.2 Preconditioning and automatic differentiation

In numerical simulations, the size of the main memory and also the computational
resources are often limiting factors. Therefore, it is often infeasible to store and com-
pute all nonzero elements of a large Jacobian matrix. Instead of the fully assembled
Jacobian matrix including all nonzero elements, iterative solvers necessitate only the
Jacobian matrix-vector product or the transposed Jacobian matrix-vector product.
However, while using preconditioning techniques, a common assumption to determine
a preconditioner M is that every element of the Jacobian matrix is accessible. Cur-
rently, there is no efficient technique to access nonzero Jacobian elements at specific
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4.2 Preconditioning and automatic differentiation

A

M ≈ A

Ã

M̃ ≈ Ã

determine

ρ

determine

Figure 4.1: Commonly used approach: Determine the preconditioner M with access
to all nonzero elements of Jacobian matrix A. New approach: Determine
the preconditioner M̃ with access to a subset of A using the sparsification
operator ρ.

positions. The efficient access is only provided for (full) rows and columns. The finite
differencing enables to estimate all elements of a column. With AD, all elements of
a column or a row can be determined. As already described, the nonzero elements of
several columns or rows can be obtained as a single linear combination.

Cullum and Tuma [21] proposed a preconditioner M which can be assembled by
selecting only a subset of the nonzero elements of a Jacobian matrix A. This selection
technique is denoted as sparsification. For this purpose, it suffices to solely determine
the nonzero elements in this subset. Preliminary work has been presented in [40–42]
based on this idea. The partial Jacobian computation is considered in this context;
more precisely, a graph coloring is computed to determine only the nonzero elements
on the main diagonal of a Jacobian matrix A. In those works, the main diagonal
elements are taken as a simple preconditioner, denoted as diagonal scaling. A related
approach [59] is the probing which approximates the diagonal elements of the inverse
of a sparse matrix A by computing matrix-vector products with A. We do not further
consider this approach due to its restriction on the main diagonal elements. Another
approach [2] is the computation of a subset of the inverse elements of a sparse matrix.
However, in contrast to our approach employing automatic differentiation, the inverse
elements are selected and not the nonzero elements of the Jacobian matrix. For this
reason, we do not follow this method.

The difference between the common approach and our approach is illustrated in
Fig. 4.1. Assuming that all nonzero elements of Jacobian matrix A are accessible is
currently the most common way of determining a preconditioner. Hence, the pre-
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4 Preconditioning using partial Jacobian computation

(a) (b)

Figure 4.2: (a) Discretization of a NACA0012 profile in the adaptive flow solver
Quadflow [9]. (b) Sparsity pattern of the Jacobian matrix correspond-
ing to (a).

conditioner M is directly approximated from the Jacobian matrix A. Our approach
introduces a sparsification operator ρ. This operator selects a subset of the nonzero
elements of A and yields a sparsified matrix Ã. The preconditioning techniques de-
termine the preconditioner M̃ from matrix Ã instead from A. Hence, the precondi-
tioner M̃ contains most likely less nonzero elements than the preconditioner M . Our
technique reduces the memory consumption since the number of nonzero elements
of Ã and also of M̃ is decreased. The main questions are how to choose the nonzero
elements of the Jacobian matrix Ã using the sparsification operator ρ and whether
the iterative solver better converges employing preconditioner M̃ .

4.3 Motivation: Block diagonal

The block diagonal preconditioner is an extension of the diagonal scaling. This pre-
conditioner is generated by accessing k×k blocks on the diagonal of the Jacobian ma-
trix A. The special case of the diagonal preconditioner, k = 1, is evaluated in [41,42].
To assess the block diagonal preconditioner, we vary the block size k and evaluate
the number of nonzero elements to be stored, the number of colors to determine these
nonzero elements, and the number of iterations needed by the iterative solver. We
next consider a non-linear system which arises from a two-dimensional, adaptive dis-
cretization around an airfoil, taken from the flow solver Quadflow [9]. The NACA0012
airfoil discretization and the nonzero pattern of the corresponding Jacobian matrix
are given in Fig. 4.2.

We want to solve the system of linear equations (4.1) where the coefficient matrix A
is a 1600 × 1600 Jacobian matrix, taken from a Quadflow simulation. Furthermore,
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4.3 Motivation: Block diagonal

1 2 3 4 5 6 7 8 9 10 11
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k

i
p

(a)

k nnz(M̃) p i

0 – – 176
1 1,600 8 51
2 3,200 8 35
3 4,266 18 38
4 6,400 8 30
5 6,400 23 34
6 7,464 22 29
7 8,240 27 29
8 12,800 28 23
9 10,046 27 28
10 11,008 28 25
11 11,694 29 27
12 12,992 28 22
13 13,088 30 25
14 13,864 30 23

1,600 30,720 36 9

(b)

Figure 4.3: Number of iterations i for solving a system of linear equations using
GMRES and preconditioner M̃ = ILU(Ã, 0) as well as number of colors p
determining Ã, specified by blkDiag(A, k), varying the block size k.
Number of nonzero elements nnz(M̃) is included in (b).

the matrix contains 30,720 nonzero elements, and the right-hand side b is the sum
of all columns, i.e., the exact solution x = [1, . . . , 1]T is known. The iterative solver
GMRES is used to solve the system of linear equations in the MATLAB environment.
Therefore, we need the Jacobian matrix-vector product A ·v. As a preconditioner M̃ ,
we apply the incomplete LU factorization with level 0, ILU(0), i.e., no fill-in elements
occur during the factorization. A fill-in element is a zero element which becomes a
nonzero element in the matrices resulting from ILU. In Fig. 4.3(a), the number of
colors and the number of iterations of the iterative solver are shown for the block
size k varied from k = 1 to k = 11. The iterative solver stops after iteration i if the
relative residual norm is less than a threshold ε, i.e.,

||b− Axi||2
||b||2 < ε, ε = 10−6,

where xi is the solution vector after iteration i. This figure shows that the number of
iterations of GMRES tends to be smaller and the number of colors goes up if the block
size k increases. In addition to this figure, the number of nonzero elements nnz(M̃)
for M̃ = ILU(Ã, 0) and Ã specified by blkDiag(A, k) are given in Table 4.3(b). In
this table, the block size k is varied up to k = 14, plus k = 1,600. The colorings,
which are necessary to exploit the structure of matrix Ã, are computed using the
partial distance-2 algorithm restricted to the block diagonal. This algorithm is given
as D2ColoringRestricted in Alg. 2.1. With increasing block size k, the number

61

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4 Preconditioning using partial Jacobian computation

of nonzero elements of the preconditioner M̃ increases as well. Due to a possible
misalignment of the blocks using different k, the number of nonzero elements is not
monotonically increasing (cf. k = 8 and k = 9). Up to block size k = 6, the iteration
number i decreases noticeably. In the interval of k between 7 and 14, the number of
iterations is between 22 and 29.
At last, two additional cases are considered in Fig. 4.3(b): First, the system of linear

equations is solved without preconditioning. The number of iterations is i = 176 in
comparison to i = 51 when selecting the nonzero elements in the main diagonal
(k = 1) for preconditioning. Second, the system of linear equations is solved using
all nonzero elements in A to determine the preconditioner. The number of iterations
is reduced to i = 9, but the computational effort for p = 36 colors and the storage
for 30,720 nonzero elements are required. In contrast to this example where the
Jacobian matrix contains only 30,720 nonzero elements, Jacobian matrices of real-
world applications may be too large to fit into the main memory. As expected, taking
all nonzero elements of the Jacobian matrix for the preconditioner is better than
the sparsified Jacobian matrix. But, having the computational effort and memory
limitations in mind, the approach is superior compared to using no preconditioning
at all.
In summary, it seems valuable to pursue this approach, especially if we run out

of memory or cannot afford too much computational effort. In the next section, the
selection of nonzero elements for preconditioning is introduced more generally.

4.4 Choosing elements for preconditioning

As already mentioned, not all numerical values of the Jacobian matrix are accessible
if there is not enough memory to store all nonzero elements. However, we assume that
the pattern of this matrix is known due to the problem structure or can be deter-
mined with reduced memory consumption compared to storing all nonzero elements.
During the sparsification, the nonzero elements which are required for computing the
preconditioner M are selected. Furthermore, depending on the method to determine
the preconditioner, fill-in elements may occur at positions originally containing a zero
element. The crucial issues for choosing the required elements are

• computational effort to compute them,
• availability of memory to store them, and
• obtaining a pattern of them which is beneficial for parallel computing.

The initially required elements Rinit are chosen by the sparsification operator ρ
applied to the Jacobian matrix A. More precisely, Rinit ⊆ pat(A) is the set which
contains the positions of the initially required elements. Here, pat(A) is the set con-
taining the positions of all nonzero elements of the Jacobian matrix A. An example
for the initial choice are the nonzero elements in the block diagonal. The potentially
required elements Rpot ⊆ pat(A)\Rinit are nonzero elements of the Jacobian matrix
which are not already chosen for preconditioning. The selection of these elements is
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4.4 Choosing elements for preconditioning

Rinit

Rpot

Radd

F

pat(A)

Figure 4.4: Relation between required element sets Rinit, Rpot, and Radd and the fill-
in set F , induced by Rinit, concerning the nonzero elements of Jacobian
matrix A, pat(A).

Algorithm 4.1: Determine additionally required elements Radd

require: Sparsity pattern of Jacobian matrix A and level � if using ILU

1 Compute Rinit = pat(Ã) where Ã = ρ(A)
2 Compute Rinit � F = SILU(Rinit, l)
3 Compute coloring ΦRinit

4 Compute Rpot ⊆ pat(A)\Rinit so that |ΦRinit | = |ΦRinit�Rpot |
5 Compute Radd ⊆ Rpot so that SILU(Rinit, l) ∪Radd = SILU(Rinit �Radd, l)

based on the number of colors required to determine them. The additionally required
elements Radd ⊆ Rpot are elements which do not lead to any additional fill-in. The
set Radd forms—together with Rinit—the set of required elements which are the input
for the incomplete LU factorization. The relation among the sets Rinit, Rpot, and Radd

and the set of fill-in elements F induced by Rinit is depicted in Fig. 4.4.
In the preceding paragraph, the first part of our new preconditioning approach has

been introduced. In this phase, the required elements are selected from the sparsity
pattern of the Jacobian matrix without knowing their numerical values. Thereafter,
the required elements Rinit �Radd are determined by using automatic differentiation,
and the preconditioner is computed by carrying out the numerical incomplete LU
factorization on these numerical values. In the following, we carry on with gradually
describing the determination of the initially, potentially, and additionally required
elements, which is schematically given in Alg. 4.1, in more detail:

1. Given the sparsity pattern of a Jacobian matrix A, all nonzero elements of
the matrix Ã = ρ(A) are the initially required elements Rinit chosen by the
sparsification operator ρ. At this point, it is decided which nonzero elements
of A are assumed for preconditioning. An illustrating example for the Jacobian
matrix A is given in Fig. 4.5(a) and for the matrix Ã in Fig. 4.5(b). The
matrix A is the selection (1:100,1:100) of the matrix given in Fig. 4.2(b). The
elements in Rinit are indicated in green.

2. The initially required elements in Rinit are the input for the symbolic incomplete
LU factorization (SILU) with level �. The result of this factorization is Rinit�F ,
i.e., the sets Rinit and F are disjoint. The set F contains the fill-in elements.
The level of the SILU has a strong impact on the number of fill-in elements.
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4 Preconditioning using partial Jacobian computation

(a) pat(A) (b) Rinit = pat(Ã), Ã = ρ(A) (c) pat(A)\Rinit

(d) Rpot ⊆ pat(A)\Rinit (e) Radd ⊆ Rpot (f) Rinit �Radd

Figure 4.5: Determining the potentially and additionally required elements of the
selection (1:100,1:100) of the matrix in Fig. 4.2(b) using ILU(1) and the
sparsification is characterized by blkDiag(A, 14).

For level � = 0, the set F is empty and for higher levels it is most likely that
fill-in elements occur. Since the nonzero elements in Rinit form a coefficient
matrix of a system of linear equations, the minimal set Rinit contains at least
the diagonal elements.

3. A coloring ΦRinit
for the Jacobian matrix A when restricted to Rinit is deter-

mined by using coloring algorithms corresponding to the graph coloring defini-
tions introduced in Chap. 2. The resulting row and column groups are needed
to select the potentially required elements Rpot in the following.

4. From the elements in pat(A)\Rinit, which are exemplified in Fig. 4.5(c), the
potentially required elements Rpot are chosen. These elements are nonzero el-
ements of the matrix A which are not already chosen. The elements in Rpot

are chosen so that the elements in Rinit �Rpot can be computed with the same
number of colors compared to the elements in Rinit. In Fig. 4.5(d), the elements
in Rpot are indicated in red. Selecting extra nonzero elements without increas-
ing the number of colors limits the computational effort of determining these
elements with AD.

5. A potentially required element is only added to the additional required elements
Radd ⊆ Rpot if this nonzero does not cause an extra fill-in element in addition
to the already computed fill-in elements in F . Thus, the result of SILU(Rinit)
combined with the nonzero elements in Radd contains nonzero elements at the

64

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4.4 Choosing elements for preconditioning

same positions as the result of SILU(Rinit �Radd). In this step, the number of
required elements are restricted due to the limiting memory size. The nonzero
elements in Radd together with the nonzero elements in Rinit are respectively
indicated in blue and green in Fig. 4.5(f).

After having determined the set Radd in the symbolic part, we pass on to the nu-
merical part. Therefore, the numerical values of the nonzero elements Rinit � Radd

are computed using automatic differentiation where the sparsity pattern is exploited
by the coloring ΦRinit

or ΦRinit�Rpot . Afterwards, the numerical incomplete LU fac-
torization (NILU) is performed to obtain a lower triangular matrix L and an upper
triangular matrix U for preconditioning. The iterative solver employs the matrices L
and U to solve the system of linear equations with coefficient matrix A.
In the following sections, the selection of initially, potentially and additionally

required elements is described in more detail. Keep in mind that these required
elements are chosen by taking the computational effort and the available memory
into account.

4.4.1 Initially required elements

The initially required elements Rinit result from applying a sparsification operator ρ
to the nonzero pattern of a Jacobian matrix A. In this section, these elements are used
to compute a preconditioner. The potentially and additionally required elements are
not considered. The following two assumptions are made for choosing the sparsifica-
tion operator ρ. First, the values of the nonzero elements near the main diagonal are
more important than nonzero elements farther away. This is motivated by diagonal
dominant coefficient matrices. Second, a larger number of nonzero elements usually
causes a better preconditioner. In this thesis, the employed sparsification operator ρ,
characterized by blkDiag(A, k), yields the nonzero elements in the block diago-
nal with variable block size k. As a consequence of these assumptions, the number
of initially required elements near the diagonal is increased by enlarging the k × k
blocks. Unfortunately, more nonzero elements involve more colors for determining
these elements using AD. Hence, the choice of the block size k depends—as already
mentioned—on the admitted computational effort, which is measured in the num-
ber of colors, and the available memory. In general, the domain specialists have a
good understanding of their simulation software and the occurring Jacobian matri-
ces. Thus, they have an intuition which nonzero elements could be important for
the preconditioning. Therefore, the specialists can help to find a better sparsification
operator than the block diagonal. The target is to obtain a better convergence rate
by determining a preconditioner with less or at least the same number of nonzero
elements. This topic goes beyond the scope of this thesis and we continue with using
the block diagonal.
In the next step, a coloring algorithm computes a coloring Φ when restricted to

the initially required elements Rinit. Two convenient algorithms are the heuristic
D2ColoringRestricted in Alg. 2.1 for restricted distance-2 colorings and the
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4 Preconditioning using partial Jacobian computation

heuristic StarBicoloringRestricted in Alg. 3.5 for star bicolorings. Further-
more, the coloring algorithms from Sect. 3.1 can be used for regular grids. The
coloring Φ is needed to exploit the sparsity pattern of the Jacobian matrix and to
compute the initially required elements as efficiently as possible.
Several matrices from the University of Florida Sparse Matrix Collection [23] are

selected to test the approach using the initially required elements Rinit to determine
a preconditioner. The main properties of the matrices, which are the number of
columns n, the number of nonzero elements nnz and the density d (nnz/n2 · 100),
are given in Table 3.8. There are further properties which are used later on in this
chapter: block sizes k = �n/32�, k = �n/16�, and k = �n/8� as well as maximum
degree of the row vertices Δ(Vr) and the column vertices Δ(Vc) of the associated
bipartite graph G = (Vr � Vc, E).
To meet the practical considerations, we assume that the matrix elements are not

directly accessible but in the form of Jacobian matrix-vector products. The general
assumption is that the nonzero elements of the coefficient matrices cannot be stored
due to storage limitations. In the practical implementations, however, we use the
number of nonzero elements as a (generous) upper limit for the storage. The test
matrices are employed as coefficient matrices A and the linear system is solved using
the iterative solver Bi-CGSTAB with the threshold ε = 10−6. The right-hand sides
are the sum of all columns because there are no right-hand sides provided by the
matrix collection for the selected matrices.
The computational effort is measured in the number of matrix-vector products.

Therefore, instead of evaluating the number of iterations which are required to solve
the system of linear equations, we consider the number of matrix-vector products.
For Bi-CGSTAB, in every iteration two matrix-vector products are carried out. For
different block sizes k, the number of matrix-vector products is evaluated. In addi-
tion, the number of nonzero elements in Rinit and the number of colors required to
determine these elements with AD are considered. The number of matrix-vector prod-
ucts mvp without preconditioning and using ILU(2) for preconditioning are given in
Table 4.1. The ILU preconditioning technique is carried out on several block diag-
onals with block size k = 1, 10, �n/32�, �n/8�. Furthermore, the number of initially
required elements Rinit and occurring fill-in elements F , nnz = |Rinit � F | are pre-
sented. The number of colors pd2 for a restricted distance-2 coloring to determine the
initially nonzero elements Rinit is given.
All systems of linear equations, except matrices crystm01 and nos3, cannot be

solved without using at least the diagonal scaling for preconditioning. If a linear
solver is not convergent, this is denoted by the symbol – in the column mvp. The
diagonal scaling for matrix crystm01 is much better than using no preconditioner. In
the last two rows of the table, nv � and nv, the numbers of matrix-vector products,
nonzero elements, and colors are accumulated and normalized. More precisely, in the
first row indicated by the symbol nv �, all values mvp, nnz, and pd2 are normal-
ized by the values for the main diagonal elements chosen as initially required ele-
ments Rinit = blkDiag(A, 1). The values of the matrices are accumulated and their
average is taken. For block size k = 10, the normalized values are (180/301+ 25/9+
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4.4 Choosing elements for preconditioning

Matrix A k = 1 k = 10 k = �n/32� k = �n/8�
mvp mvp nnz pd2 mvp nnz pd2 mvp nnz pd2 mvp nnz pd2

685 bus – 301 685 6 180 1,649 11 138 2,351 12 – – –
crystm01 81 9 4,875 8 25 11,181 13 15 48,893 22 – – –
hor 131 – 210 434 15 101 2,260 29 131 2,468 29 – – –
msc00726 – 98 726 25 175 5,280 63 177 8,084 72 132 30,068 110
nos3 394 346 960 10 206 4,942 12 210 5,312 12 – – –
nos7 – 170 729 2 148 2,287 10 140 4,017 11 – – –

nv � – 1.00 1.00 1.00 1.18 4.24 2.35 1.00 6.89 2.71 – – –
nv – 1.00 1.00 1.00 0.74 3.28 2.09 0.72 8.46 2.39 – – –

Table 4.1: Systems of linear equations are solved without preconditioning and with
ILU(Rinit, 2), Rinit = pat(Ã) = blkDiag(A, k): number of matrix-vector
products mvp, number of nonzero elements nnz = |Rinit�F |, and number
of colors pd2 to determine Rinit using the AD forward mode. Values not
available are denoted by –.

101/210+175/98+206/346+148/170)/6 = 1.18 for the matrix-vector products and
(1,649/685+11,181/4,875+2,260/434+5,280/726+4,942/960+2,287/729)/6 = 4.24
for the nonzero elements. If we consider the normalized value of the matrix-vector
products 1.18 for k = 10, it seems that choosing the block size k = 10 is worse com-
pared to k = 1. However, with increasing block size, the number of matrix-vector
products for the matrices 685 bus, hor 131, nos3, and nos7 becomes smaller. Solely
for the remaining two matrices, crystm01 and msc0076, the number of matrix-vector
is strongly increased. Thus, one or two matrices can strongly influence the normal-
ized value. We are more interested in the overall number of matrix-vector products.
Therefore, we consider an additional normalization without taking the average. In the
last row in Table 4.1, indicated by nv, all accumulated values mvp, nnz, and pd2 are
normalized by the accumulated values for main diagonal elements chosen as initially
required elements Rinit = blkDiag(A, 1), i.e., mvp/mvp(Rinit), nnz/nnz(Rinit),
and pd2/pd2(Rinit) with Rinit = blkDiag(A, 1). The values required for the nor-
malization are mvp(Rinit) = 301 + 9 + 210 + 98 + 346 + 170 = 1,134; nnz(Rinit) =
685+4,875+434+726+960+729 = 8,409; and pd2(Rinit) = 6+8+15+25+10+2 = 66.
Hence, for block size k = 1, the factor is 1.00 for the number of matrix-vector prod-
ucts, the number of nonzero elements, and the number of colors. By increasing the
block size from k = 1 to k = �n/32�, the number of matrix-vector products is reduced
to 0.72, i.e., there is a reduction to 72% compared to using the initially required ele-
ments for block size k = 1. The number of colors increases by a factor of 2.39 and the
number of nonzero elements by roughly eight times. Both normalizations are given
in the next sections. Nevertheless, we discuss only the normalization without taking
the average. For most test matrices, the number of matrix-vector products decreases
by using more initially required nonzero elements, e.g., the number of matrix-vector
products mvp is reduced from 301 to 138 for matrix 685 bus if the block size is in-
creased from k = 1 to k = �n/32�. But sometimes the diagonal scaling, k = 1, is the
best approach among the preconditioners based on more nonzero elements, e.g., for
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4 Preconditioning using partial Jacobian computation

matrix crystm01. If the initially required elements Rinit are taken from eight large
blocks, k = �n/8�, these elements and the fill-in elements can solely be stored for the
matrix msc00726. For all other matrices, the nonzero elements exceed the assumed
memory capacity, the number of nonzero elements of the considered matrix. This is
denoted by the symbol – in columns mvp, nnz, and pd2.
In every iteration of the solver, at least one Jacobian matrix-vector product is

evaluated. The system of linear equations is solved using preconditioning techniques.
To determine the preconditioner M , a coloring with p colors is needed. Hence, the
preconditioning is beneficial if the number of matrix-vector products mvp and the
number of colors p, mvp + p, is less than the number of matrix-vector products
using no preconditioning. In this thesis, we neglect the time to compute a coloring
and assume that this computation is less expensive than evaluating a few Jacobian
matrix-vector products. The matrix bus 685 is considered as an illustrating example.
Determining the preconditioner M̃ using the initially required elements in blocks
of size k = 1 requires p = 6 colors and mvp = 301 matrix-vector products, i.e., a
rough measure of the cost is 6 + 301 = 307. Increasing the block size to k = 10, we
require p = 11 colors and mvp = 180 matrix-vector products. Thus, the overall costs,
11 + 180 = 191, are much lower than 307. The block size k = �n/32� reduces the
costs to 12+138 = 150. Hence, by increasing the block size from k = 1 to k = �n/32�
the costs are reduced from 307 to 150. However, the number of nonzero elements is
increased from nnz = 685 to nnz = 2,351.
In Table 4.1, only the number of colors for restricted distance-2 colorings is given.

The number of colors for star bicolorings can be found in Table 3.10 in the preceding
chapter. In Table 3.10, there are examples for which the star bicoloring heuristic
StarBicoloringRestricted saves colors in comparison to the distance-2 coloring
heuristic D2ColoringRestricted, e.g., the matrices hor 131 and msc00726.

4.4.2 Potentially required elements

In the previous subsection, the coloring Φ is computed for a given set of initially
required elements Rinit. Using this coloring Φ, there are most likely nonzero elements
in pat(A)\Rinit which can be computed in addition to the elements in Rinit without
extra costs, i.e., no extra color is needed. Thus, the aim is to determine more nonzero
elements without increasing the number of colors. Hopefully, this approach improves
the preconditioner so that the computational effort of solving (4.1)—measured as
number of matrix-vector products mvp—is reduced. In summary, more nonzero el-
ements, the potentially required elements Rpot, are determined without using an
additional color. This approach consists of two parts, which are given in lines 3 and 4
in Alg. 4.1: First, a distance-2 coloring or star bicoloring Φ for the bipartite graph G
restricted to the edges in the set ERinit

is computed. The edges in ERinit
correspond

to the initially required elements Rinit and are denoted as initially required edges.
Second, the potentially required edges of the set ERpot are detected concerning the
coloring Φ, i.e., non-required elements are turned into potentially required elements
without making use of an extra color.
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Figure 4.6: (a) Sparsity pattern of Jacobian matrix A with initially required ele-
ments ⊗ and column groups {1, 4}, {2, 6}, {3}, and {5}. (b) Bipartite
graph G(A) with initially required edges indicated in green. (c) Bipar-
tite graph G(A) with initially and potentially required edges (in red). (d)
Jacobian matrix A with initially and potentially required elements ⊗.

Before explaining the computation of Rpot in detail, we consider this approach
using an illustrating example in Fig. 4.6. The sparsity pattern of a Jacobian matrix
with initially required elements and non-required elements is given in Fig. 4.6(a).
The required elements are indicated by symbol ⊗ and the non-required elements
by symbol ×. The columns c1 and c4 form a column group to determine the ini-
tially required elements a1,1, a2,1, a3,4, a4,4 ∈ Rinit. The column c4 contains also the
non-required element a5,4 ∈ pat(A)\Rinit. The corresponding bipartite graph with
the initially required edges and the non-required edges is given Fig. 4.6(b). The ini-
tially required edges are indicated in green and the non-required edges in gray. The
edge (r5, c4), which corresponds to the non-required element a5,4, is a candidate to
become a potentially required edge without violating the given coloring Φ. To verify
this, we have to check all paths of length 2 where the edge (r5, c4) is included, i.e., the
paths (c4, r5, c3), (c4, r5, c5), and (c4, r5, c6). If the outer vertices of the paths are col-
ored differently, e.g., Φ(c4) �= Φ(c3), the edge (r5, c4) does not violate the coloring Φ.
In terms of the matrix, the columns c1 and c4 are in the same column group and
the non-required element a5,4 can be determined because there is no nonzero element
at position (5, 1). Hence, the edge (r5, c4) is added to the set ERpot in Fig. 4.6(c)
and the corresponding element a5,4 is added to the set Rpot in Fig. 4.6(d). Another
column group comprises the columns c2 and c6. The non-required elements a4,2 and
a4,6 exclude each other and, hence, neither of both elements can be added to the
set Rpot.

The algorithm detPotReqElemD2 in Alg. 4.2 determines the potentially re-
quired edges ERpot regarding a distance-2 coloring Φ restricted to ERinit

. The in-
put parameters for this algorithm are the bipartite graph G, the initially required
edges ERinit

and the coloring Φ. The function considers paths of length 2, (ck, ri, cj),
depending on to which edge sets the edges belong. Therefore, the function iterates
over all edges (ri, cj) ∈ E\ERinit

with Φ(cj) �= 0 and checks for each non-required
edge whether it can be added to ERpot . Without loss of generality, the vertex v
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4 Preconditioning using partial Jacobian computation

Algorithm 4.2: Determine potentially required elements for a distance-2 col-
oring Φ of G when restricted to ERinit

(Def. 2.10)

1 function detPotReqElemD2(G = (Vr � Vc, E), ERinit
,Φ)

2 ERpot ← ∅
3 foreach (ri, cj) ∈ E\ERinit with Φ(cj) �= 0 do � cond 1

4 foreach ck ∈ N1(ri, G) with j �= k and (ri, ck) /∈ ERinit
do � cond 2

5 if Φ(cj) = Φ(ck) then � path (ck, ri, cj)
6 Continue with next edge (ri, cj) ∈ E\ERinit

7 ERpot
← ERpot

∪ {(ri, cj)} � valid edge

8 return ERpot

at the first position of an edge (v, w) in the undirected bipartite graph is located
in Vr and vertex w at the second position in Vc. For every vertex ri, the func-
tion visits all neighbors ck in the bipartite graph, i.e., the algorithm considers all
paths (ck, ri, cj). The edge (ri, cj) is considered as required edge because this edge
should become a potentially required edge. For every distance-2 neighbor ck of ver-
tex cj with edge (ri, ck) /∈ ERinit

, the property Φ(cj) �= Φ(ck) must be checked. This
check is only carried out for edges (ri, ck) /∈ ERinit

. For the other edges (ri, ck), i.e.,
edges (ri, ck) ∈ ERinit

, the vertices cj and ck are colored differently due to condi-
tion 2 in Def. 2.10. If there is a combination of cj and ck where the same color is
assigned to both vertices, the edge (ri, cj) cannot be added to set ERpot . Otherwise,
the condition 2 in Def. 2.10 would be violated, i.e., the element corresponding to the
edge (ri, cj) would be summed up by another nonzero element. Therefore, the algo-
rithm stops considering this edge and continues with the next edge. If the vertex cj
is colored differently to its distance-2 neighbors ck, the edge (ri, cj) is added to ERpot .

Lemma 4.1. Given a bipartite graph G = (Vr � Vc, E), initially required edges
ERinit, and a distance-2 coloring Φ restricted to ERinit, the maximum number of
potentially required edges are computed by the algorithm detPotReqElemD2 in
O(|E| ·Δ(Vr)).

Proof. We will prove the correctness by contradiction. Therefore, we assume that
the edge (ri, cj) ∈ Rpot determined by the algorithm detPotReqElemD2 violates
the coloring Φ. Thus, there must be a path (ck, ri, cj) with Φ(cj) = Φ(ck). This is
impossible because, in this case, the algorithm would not add this edge to ERpot , but
it would jump to the next edge.
Furthermore, we show that the maximum number of potentially required elements

is chosen from E\ERinit
regarding the coloring Φ. We assume that the edge (ri, cj) ∈

ERpot excludes another edge (ri, ck) /∈ ERpot to become also part of ERpot . To exclude
this edge, the condition Φ(cj) = Φ(ck) must hold. The contradiction is that even
edge (ri, cj) would not be added to ERpot if there is any neighbor ck of vertex ri
which is identically colored to vertex cj. Thus, if no edge is excluded by another
edge, the maximum number of potentially required edges is computed.
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4.4 Choosing elements for preconditioning

The algorithm detPotReqElemD2 iterates over all edges (ri, cj) and visits the
distance-1 neighbors of the vertices ri. The neighbors can be estimated by the max-
imum degree-1 in the vertex set Vr. Thus, the complexity is O(|E| · Δ(Vr)). This
complexity is the same as for the heuristic D2ColoringRestricted.

Continuing the example from above, we assume that the column groups given
in Fig. 4.6(a) are the result of the algorithm D2ColoringRestricted, which is
given as coloring Φ. The bipartite graph G, the set of initially required edges ERinit

,
and the coloring Φ are the input parameters for the function detPotReqElemD2.
This function detects the potentially required edges as follows: There are seven edges
which are in E\ERinit

. Suppose that, at first, the edge (r4, c2) ∈ E\ERinit
is consid-

ered. The vertex c6 is adjacent to vertex r4 and the condition in line 4 holds. The
edge (r4, c2) cannot be added to ERinit

because the vertices c2 and c6 are identically
colored. Otherwise, condition 2 of Def. 2.10 would be violated. Hence, we jump to
the next edge (r1, c3) ∈ E\ERinit

. The edges (r1, c1), (r1, c2), and (r1, c5) are inci-
dent to vertex r1. The vertex c3 is differently colored than vertices c1, c2, and c5.
Thus, the edge (r1, c3) is added to ERpot . We repeat this step for the edges (r5, c3),
(r5, c4), (r1, c5), (r2, c5), and (r4, c6). All these edges, except edge (r4, c6), are added
to ERpot . This function yields the potentially required edges ERpot ⊆ E\ERinit

as
given in Fig. 4.6(c). These edges are indicated in red. The corresponding Jacobian
matrix is depicted in Fig. 4.6(d). In this example only two elements are not in the
set ERinit

� ERpot .

The counterpart for star bicolorings is the algorithm detPotReqElemSB in
Alg. 4.3. Its principle is similar to algorithm detPotReqElemD2, but the con-
ditions are modified to the restricted star bicoloring in Def. 2.12. All non-required
edges are candidates for the potentially required edges, but, following condition 2 of
Def. 2.12, at least an incident vertex must be assigned a nonzero color. Furthermore,
the subconditions of condition 3 must be checked. If a condition is not fulfilled,
the algorithm skips the considered edge and moves on to check the next possible
edge. If no condition is violated, the edge is added to the potentially required edges
set ERpot . Proving the correctness follows the same idea as for detPotReqElemD2

in Lem. 4.1. The algorithm visits all edges and the neighbors of the incident vertices.
The complexity is O(|E| ·Δ2(Vr � Vc)).

Results

After describing how the potentially required elements Rpot can be determined, we
evaluate this approach in terms of the convergence rate. Therefore, the configuration
from the last subsection is used again, i.e., the same matrices are taken from the
University of Florida Sparse Matrix Collection, the iterative solver Bi-CGSTAB is
employed, the right-hand side is the sum of all columns, and the stopping criterion
is ε = 10−6. The initially required elements Rinit and the potentially required el-
ements Rpot are used to compute the ILU(Rinit � Rpot, 2) preconditioner. That is,
fill-in elements are allowed with respect to Rpot or, in other words, as many elements

71

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4 Preconditioning using partial Jacobian computation

Algorithm 4.3: Determine potentially required elements for a star bicolor-
ing Φ of G when restricted to ERinit

(Def. 2.12)

1 function detPotReqElemSB(G = (Vr � Vc, E), ERinit
,Φ)

2 ERpot ← ∅
3 foreach (ri, cj) ∈ E\ERinit with Φ(ri) �= 0 or Φ(cj) �= 0 do � cond 2

4 if Φ(ri) = 0 then � cond 3a

5 foreach ck ∈ N1(ri, G) with j �= k and (ri, ck) /∈ ERinit
do � path (ck, ri, cj)

6 if Φ(cj) = Φ(ck) then
7 Continue with next edge (ri, cj) ∈ E\ERinit

8 if Φ(cj) = 0 then � cond 3b

9 foreach r� ∈ N1(cj , G) with j �= � and (r�, cj) /∈ ERinit
do � path (ri, cj , r�)

10 if Φ(ri) = Φ(r�) then
11 Continue with next edge (ri, cj) ∈ E\ERinit

12 if Φ(ri) �= 0 and Φ(cj) �= 0 then � cond 3c

13 foreach ck ∈ N1(ri, G) with i �= k do
14 foreach r� ∈ N1(cj , G) with j �= � do � path (ck, ri, cj , r�)
15 if Φ(cj) = Φ(ck) and Φ(ri) = Φ(r�) then
16 Continue with next edge (ri, cj) ∈ E\ERinit

17 ERpot
← ERpot

∪ {(ri, cj)} � valid edge

18 return ERpot

as possible are chosen for a fixed number of colors p. Both described heuristics,
detPotReqElemD2 and detPotReqElemSB, are used to compute the poten-
tially required elements Rpot.
The results when using ERpot = detPotReqElemD2 are given in Table 4.2. The

number of matrix-vector products mvp and the number of nonzero elements nnz for
Rinit from Table 4.1 are repeated to make the comparison easier. The last row (nv)
contains the accumulated values normalized to Rinit with block size k = 1 without
taking the average as in Table 4.1. For k = 10 and k = �n/32�, the number of matrix-
vector products is not available for all matrices. In particular, the number of nonzero
for Rinit, Rpot, and the fill-in elements exceeds the number of nonzero elements of the
matrix, i.e., |Rinit� (F ∪Rpot)| > |A|. Thus, an accumulation is not possible for both
the number of matrix-vector products and the number of nonzero elements. Using the
potentially required elements in addition to the initially required elements is better
for preconditioning: For the normalization without taking the average (row nv),
the overall number of matrix-vector products for k = 1 can be reduced to 92% (0.92
compared to 1.00). More precisely, the number of matrix-vector products decreases for
the matrices 685 bus, hor 131, and nos3. Increasing the block size to k = 10 and using
the potentially required elements in addition to the initially required elements leads
to a reduction in the number of matrix-vector products for the matrices crystm01 and
nos3. Increasing the size to k = �n/32�, for matrices crystm01 and nos3, the number
of matrix-vector products is decreased in comparison to using solely Rinit. Thus, for
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4.4 Choosing elements for preconditioning

Matrix k = 1 k = 10 k = �n/32�
Rinit Rinit �Rpot Rinit Rinit �Rpot Rinit Rinit �Rpot

mvp nnz mvp nnz mvp nnz mvp nnz mvp nnz mvp nnz

685 bus 301 685 193 1,793 180 1,649 – – 138 2,351 – –
crystm01 9 4,875 23 8,505 25 11,181 17 25,567 15 48,893 11 85,011
hor 131 210 434 192 1,799 101 2,260 – – 131 2,468 – –
msc00726 98 726 164 7,248 175 5,280 – – 177 8,084 – –
nos3 346 960 304 2,953 206 4,942 172 6,905 210 5,312 172 6,905
nos7 170 729 170 729 148 2,287 – – 140 4,017 – –

nv � 1.00 1.00 1.28 3.76 1.18 4.24 – – 1.00 6.89 – –
nv 1.00 1.00 0.92 2.74 0.74 3.28 – – 0.72 8.46 – –

Table 4.2: Systems of linear equations are solved with ILU(2) using Rinit =
blkDiag(A, k) and Rinit � Rpot, Rpot = detPotReqElemD2: number
of matrix-vector products mvp when using Rinit and Rinit � Rpot as well
as number of nonzero elements nnz for |Rinit � F | and |Rinit � (F ∪Rpot)|
including the fill-in elements. Values not available are denoted by –.

Matrix k = 1 k = 10 k = �n/32�
Rinit Rinit �Rpot Rinit Rinit �Rpot Rinit Rinit �Rpot

mvp nnz mvp nnz mvp nnz mvp nnz mvp nnz mvp nnz

685 bus 301 685 213 1,972 180 1,649 – – 138 2,351 – –
crystm01 9 4,875 25 9,471 25 11,181 21 30,223 15 48,893 12 93,330
hor 131 210 434 185 1,972 101 2,260 – – 131 2,468 – –
msc00726 98 726 190 8,559 175 5,280 – – 177 8,084 – –
nos3 346 960 308 3,379 206 4,942 166 11,665 210 5,312 166 11,665
nos7 170 729 170 729 148 2,287 – – 140 4,017 – –

nv � 1.00 1.00 1.37 4.28 1.18 4.24 – – 1.00 6.89 – –
nv 1.00 1.00 0.96 3.10 0.74 3.28 – – 0.72 8.46 – –

Table 4.3: Evaluate Rpot with algorithm detPotReqElemSB for star bicolorings
instead of distance-2 colorings as in Table 4.2.

each matrix and k = 10 or k = �n/32�—if the values are available—the number of
matrix-vector products is reduced by using the potentially required elements Rpot.
The number of nonzero elements |Rinit � (F ∪ Rpot)| is increased compared to not
using the potentially required elements. In the normalized result for k = 1 without
taking the average, this number is more or less increased threefold with 2.74. For
the matrix crystm01 with k = 10 and k = �n/32�, the difference is roughly factor 2
(25,567/11,181 and 85,011/48,893). In summary, we obtain a better convergence
behavior by employing more nonzero elements.

The considered potentially required elements Rpot are obtained by using distance-2
colorings. We now switch to star bicolorings and evaluate if there are benefits using
the method detPotReqElemSB instead of detPotReqElemD2. The results are
given in Table 4.3. For block size k = 1, the number of matrix-vector products can
be reduced for matrix hor 131 from 192 (Table 4.2) to 185 (Table 4.3) by switching
to a star bicoloring. For matrix nos3 with k = 10 and k = �n/32�, the number

73

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.
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of matrix-vector products is always lower than using distance-2 colorings. The al-
gorithm StarBicoloringRestricted determines a coloring with less number of
colors compared to D2ColoringRestricted for matrices hor 131 and msc00726
with block sizes k = 10 and k = �n/32�. These results have already been given in
Table 3.10 in the previous chapter. For matrix hor 131, the number of colors can be
reduced from pd2 = 27 to psb = 18 for block size k = 10 and from pd2 = 28 to psb = 19
for block size k = �n/32�. Unfortunately, the number of nonzero elements exceeds
the memory; thus, the number of matrix-vector products and the number of nonzero
elements cannot be compared. However, we may benefit from the reduced number
of colors when considering the additionally required elements in the following sec-
tion. Using StarBicoloringRestricted instead of D2ColoringRestricted

decreases not only the number of colors, but also yields different potentially required
elements Rpot. Using a star bicoloring for the considered matrices, the number of
nonzero elements is always greater than using a distance-2 coloring.

4.4.3 Additionally required elements

After introducing the computation of the potentially required elements Rpot, in this
subsection, we consider the memory consumption. It is possible to use the elements
in Rpot for preconditioning. However, a lot of fill-in elements could occur which are
not already in the fill-in set F . The memory restriction can be violated by these
elements. Only a subset of the elements in Rpot is added to the additionally required
elements Radd based on some rules. These nonzero elements can be used for precon-
ditioning without getting that many fill-in elements compared to Rpot. After defining
the fill-in elements and integrating this definition into our categorization of nonzero
elements, we explain how to choose additionally required elements and evaluate their
usage for preconditioning.

Fill-in elements

Hysom and Pothen [36] introduced a graph model for the incomplete LU factorization
(ILU). In comparison to the (complete) LU factorization, this incomplete factoriza-
tion leads to no fill-in elements or solely to a predetermined subset of fill-in elements.
The underlying graph is identical to the adjacency graph used for the LU factoriza-
tion [56]. The so-called fill path in the incomplete LU factorization is adapted from
the fill path theorem for the LU factorization. A fill path characterizes a possible
fill-in edge. Recall that a fill-in element is originally a zero element which becomes a
nonzero element during the factorization. A fill path in terms of the adjacency graph
of a matrix is a path (vi, . . . , vk, . . . , vj) with k < min(i, j), i.e., the indices of all
intermediate vertices are smaller than the indices of the vertices vi and vj. A fill-in
element occurs at position (i, j) in the matrix if there is a fill path from vertex vi
to vertex vj and the edge (vi, vj) does not exist. The adjacency graph in Fig. 4.7(b)
corresponds to the sparsity pattern of a Jacobian matrix A given in Fig. 4.7(a). The
edges of the adjacency graph are directed, and there is an edge (vi, vj) iff the nonzero
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Figure 4.7: (a) Sparsity pattern of Jacobian matrix A. (b) Adjacency graph of A
with fill paths (v4, v2, v3), (v4, v2, v3, v5) and fill-in edges (v4, v3), (v4, v5).
(c) Bipartite graph G(A) with fill paths (r4, c2, r2, c3), (r4, c2, r2, c3, r3, c5)
and fill-in edges (r4, c3), (r4, c5) indicated by color cyan.

element ai,j exists. We consider two existing fill paths. The fill path (v4, v2, v3) causes
the fill-in element a4,3 during the factorization due to the ordering specified by the
indices 2, 3, and 4. The fill path (v4, v2, v3, v5) leads to the element a4,5. The fill
level � is an input for the ILU factorization and is used to restrict the number of
fill-in edges. The length of a fill path indicates the level of a fill-in element ai,j. More
precisely, the level of the fill-in element ai,j equals the length of the shortest fill path
between the vertices vi and vj decreased by one. In Fig. 4.7(b), the fill path (v4, v2, v3)
of length 2 is depicted. Thus, the level of the fill-in edge (v4, v3) is 1. The second fill
path (v4, v2, v3, v5) is of length 3 and hence the fill-in edge (v4, v5) has level 2. During
the incomplete LU factorization, solely fill-in elements up to level � are allowed. If
level � = 0 is chosen, no fill-in elements are allowed during the factorization.
For a common graph model throughout this thesis, the definition of the fill path

is adapted to the bipartite graph model. The fill path (ri, ck, rk, c�, r�, . . . , cj) in the
bipartite graph corresponds to the fill path (vi, vk, v�, . . . , vj) in the adjacency graph.
Each fill path starts with a row vertex to define these paths in a consistent way.
An intermediate vertex vk of the fill path in the adjacency graph represents the
row k as well as the column k. Every intermediate vertex is doubled to transform
the fill path to the (undirected) bipartite graph because there are separate vertices
for rows and columns. A path (ri, ck, rk, c�, r�, . . . , cj) is a fill path from ri to cj, iff
all vertices between ri and cj have a lower index than i and j. There is a fill-in
edge (ri, cj) with level � in the bipartite graph, iff there is a shortest fill path of
length 2l + 1 between the vertices ri and cj. The fill-in edges are part of the edge
set EF and correspond to the fill-in elements in F . Two fill paths are indicated in
Fig. 4.7(c). The fill path (r4, c2, r2, c3) corresponds to (v4, v2, v3) in Fig. 4.7(b) and
the fill path (r4, c2, r2, c3, r3, c5) to (v4, v2, v3, v5).
We consider a sequence of bipartite graphs to determine the fill-in edges. There-

fore, it is sufficient to look at paths of length 3 to determine the fill-in edges. This
approach is described for the adjacency graph in [36]. We start with the bipartite
graph corresponding to the adjacency graph without fill-in edges. The fill-in edges
caused by fill paths of length 3 are added. After this step, there is a modified graph
including all fill-in edges of level � = 1. For every level, we repeat this step on the bi-

75

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4 Preconditioning using partial Jacobian computation

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

(a)

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

(b)

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

(c)

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

(d)

Figure 4.8: Adding edge (r1, c2) to ERadd
would lead to fill-in edges (a) (r3, c2),

(b) (r5, c2, ), and (c) (r5, c2, ) due to fill path (r5, c1, r1, c2). (d) Adding
edge (r1, c2) to ERadd

is fine due to both fill paths are closed because
edges (r3, c2), (r5, c2) ∈ ERinit

� EF .

partite graph including the already computed fill-in edges as long as the given level �
is reached or no new fill path occurs. We exemplify this procedure with the bipartite
graph in Fig. 4.7(c). In the first step, the fill path (r4, c2, r2, c3) is considered and the
fill-in edge (r4, c3) is added. This graph is the second graph in the sequence and the
starting point to determine the fill-in edges on level 2. Therefore, we consider the
fill-in paths introduced by the fill-in edges with level � = 1. In our example, it is the
path (r4, c3, r3, c5) and the new fill-in edge (r4, c5) with level 2 is added. The final
graph in the sequence is used to compute the additionally required elements.

Determining the additionally required elements

The incomplete LU factorization is originally defined for nonzero patterns. In con-
trast, the model introduced in Sect. 4.4 distinguishes between different kinds of
nonzero elements: the initially required elements Rinit, the potentially required el-
ements Rpot, the additionally required elements Radd, the fill-in elements induced by
Rinit, and the remaining (non-required) nonzero elements. We consider the bipartite
graph G[ERinit

�(EF∪ERpot)] to determine additionally required elements. This graph
is induced by the edges (ri, cj) ∈ ERinit

� ERpot and the fill-in edges EF induced by
ERinit

already added. The non-required edges (ri, cj) ∈ E\(ERinit
� (EF ∪ERpot)) are

not included. We decide for each edge in ERpot if this edge can be added to ERadd

without getting a fill-in element during the factorization. By adding an edge (ri, cj) ∈
ERpot to the set ERadd

, a fill path, which does not exist before, can occur. The main
question is whether there exists an edge which extends an occurring fill path to be-
come closed, i.e., the first and the last vertex of the path are identical. In graph
theory, this is denoted as a cycle. In this situation, no fill-in edge occurs due to the
edge which already exists at that position. To illustrate this question, we look at sev-
eral examples in Fig. 4.8 where the edges in ERinit

are colored with green, the edges
in ERpot with red, the fill-in edges in EF with cyan, and the non-required edges with
gray. The non-required edges are not determined and considered during the factoriza-
tion. Therefore, fill-in edges may arise at their positions. The fill path (r3, c1, r1, c2)
in Fig. 4.8(a) is considered first. The edge (r1, c2) ∈ ERpot cannot be added to ERadd
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Figure 4.9: (a) Fill path (ri, cj, rj, c�). (b) Fill path (rk, ci, ri, cj). (c) + (d) Bipartite
graphs with fill paths.

since the fill path is not closed and thus results in an extra fill-in element. Other-
wise, the fill-in edge (r3, c2) would appear. In Fig. 4.8(b), the fill path (r5, c1, r1, c2)
seems to be closed due to the non-required edge (r5, c2). But it is not closed be-
cause the edge (r5, c2) ∈ E is not part of ERinit

� (EF ∪ ERpot). In Fig. 4.8(c), the
edge (r1, c2) creates two fill paths. The fill path (r3, c1, r1, c2) does not matter be-
cause it is closed due to the edge (r3, c2) ∈ ERinit

. The second fill path (r5, c1, r1, c2)
causes the fill-in edge (r5, c2). In the last illustrating example in Fig. 4.8(d), when
the edge (r1, c2) ∈ ERpot is considered, there occur two fill paths. Both fill paths
are closed due to the edges (r3, c2) ∈ ERinit

and (r5, c2) ∈ EF . In summary, an edge
(ri, cj) ∈ ERpot can be added to ERadd

if this edge does not yield a fill-in element.
Thus, this edge can be additionally used for determining a preconditioner.

In the following subsection, a conservative strategy for choosing additionally re-
quired elements is introduced. Thereafter, a more sophisticated approach is described
in which more information is taken into account. Thus, the decision whether a fill-
in occurs can be made more accurately. In principle, one would expect that this
approach leads to more edges in ERadd

.

Conservative approach

In the first approach, for every edge (ri, cj) ∈ ERpot the fill paths (ri, cj, rj, c�) or
(rk, ci, ri, cj) are respectively considered depending on the indices i and j. At first,
we study the case i > j. Therefore, the fill path (ri, cj, rj, c�), which is given in
Fig. 4.9(a), is considered. This fill path exists, if a neighbor c� of vertex rj has a
larger index, � > j, and possibly leads to a fill-in edge. Therefore, we do not add
(ri, cj) to Radd. An illustrating example is given in Fig. 4.9(c): Adding the edge (r2, c1)
to ERadd

would generate the fill path (r2, c1, r1, c3) due to the indices 3 > 1. If the
condition � < j holds for all neighbors, there cannot be any fill path. A corresponding
example is the path (r5, c4, r4, c3) in Fig. 4.9(c). This path is not a fill path due to
3 < 4. The symmetric case j > i with the fill path (rk, ci, ri, cj) in Fig. 4.9(b) is
analogous: If k > i holds, there could occur a fill-in element. Otherwise, k < i, this is
no fill path; thus, no fill-in edge will occur during the factorization. If the edge (ri, cj)
does not involve a fill path, this edge can be added to ERadd

and the corresponding
entry ai,j to Radd. An algorithm following this principle is given in Alg. 4.4. This
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Algorithm 4.4: Determine additionally required elements ERadd

1 function detAddReqElem(G = (Vr � Vc, E), ERinit
, EF , ERpot)

2 ERadd
= ∅

3 foreach (ri, cj) ∈ ERpot do
4 if i > j then � path (ri, cj , rj , c�)
5 if ∃c� ∈ N1(rj , G[ERinit

� (EF ∪ ERadd
)]) with � > j then

6 Continue with next edge (ri, cj) ∈ ERpot

7 else if j > i then � path (rk, ci, ri, cj)
8 if ∃rk ∈ N1(ci, G[ERinit

� (EF ∪ ERadd
)]) with k > i then

9 Continue with next edge (ri, cj) ∈ ERpot

10 ERadd
= ERadd

∪ {(ri, cj)}
11 return ERadd

algorithm iterates over all edges (ri, cj) in ERpot . Depending on the relation between
the indices i and j, the fill path (ri, cj, rj, c�) or (rk, ci, ri, cj) is considered. If a fill
path and, possibly, a fill edge occurs, the edge (ri, cj) is not added to ERadd

and the
algorithm jumps to the next edge in ERpot .

Lemma 4.2. Given a bipartite graph G = (Vr � Vc, E), the initially required edges
ERinit, the fill-in edges EF induced by ERinit, and the potentially required edges ERpot,
the algorithm detAddReqElem computes a set of additionally required edges ERadd

in O(|E| ·Δ(Vr � Vc)).

Proof. We will prove the correctness by contradiction. Therefore, the algorithm
detAddReqElem adds the edge (ri, cj) ∈ ERpot to ERadd

. We assume that this
edge leads to a fill-in edge during the factorization. In the case i > j, the index �
must be larger than j to get a fill path (ri, cj, rj, c�). If this case occurs in line 5, the
edge (ri, cj) is not added to ERadd

and the algorithm jumps to the next edge in ERpot .
In the other case, j > i, a fill path (rk, ci, ri, cj) exists if the index k is larger than
index i. Due to line 8 this cannot occur. Thus, there is no edge added to ERadd

which
would yield a fill-in edge.
The algorithm detAddReqElem iterates over all edges (ri, cj) and visits the dis-

tance-1 neighbors of either the vertex ri or the vertex cj. Therefore, the complexity
of the algorithm is O(|E| ·Δ(Vr � Vc)).

Sophisticated approach

As already mentioned, the previously described strategy is quite conservative. Let
us consider the edge (r3, c2) ∈ ERpot in Fig. 4.9(d) as an illustrating example. The
algorithm detAddReqElem does not add this edge to ERadd

because it would lead
to the fill path (r3, c2, r2, c4) and, hence, the fill-in edge (r3, c4) could occur. However,
since the edge (r3, c4) already exists in ERinit

, this fill-in edge does not occur. There-
fore, before adding an edge (ri, cj) to ERadd

, we check for all fill paths (ri, cj, rj, c�),
i > j, if the edge (ri, c�) is already in ERinit

�EF . For the other fill paths (rk, ci, ri, cj),
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Algorithm 4.5: Determine additionally required elements ERadd

1 function detAddReqElemCycle(G = (Vr � Vc, E), ERinit
, EF , ERpot)

2 ERadd
= ∅

3 do
4 foreach (ri, cj) ∈ ERpot do
5 if i > j then
6 foreach c� ∈ N1(rj , G[ERinit

� (EF ∪ ERadd
)]) with � > j do

7 if (ri, c�) /∈ ERinit
� (EF ∪ ERadd

) then � path (ri, cj , rj , c�)
8 Continue with next edge (ri, cj) ∈ ERpot

9 else if j > i then
10 foreach rk ∈ N1(ci, G[ERinit

� (EF ∪ ERadd
)]) with k > i do

11 if (rk, cj) /∈ ERinit
� (EF ∪ ERadd

) then � path (rk, ci, ri, cj)
12 Continue with next edge (ri, cj) ∈ ERpot

13 ERadd
= ERadd

∪ {(ri, cj)}; ERpot = ERpot − {(ri, cj)}
14 while |ERadd

| is increased in last iteration
15 return ERadd

j > i, we have to verify whether the edge (rk, cj) already exists. If all fill paths are
closed, the edge (ri, cj) can be added to ERadd

. This improved approach, which is given
as algorithm detAddReqElemCycle in Alg. 4.5, iterates over the edges (ri, cj) in
ERpot , which can be potentially added to ERadd

. The paths (rk, ci, ri, cj) with j > i
and k > i or (ri, cj, rj, c�) with i > j and � > j are respectively considered. If the
edges (rk, cj) or (ri, c�) are already in ERinit

� (EF ∪ERadd
), no new fill-in edges occur.

Therefore, the edge (ri, cj) can be added to ERadd
.

The edges which are already in ERadd
influence which edges in ERpot can be

added to ERadd
. Let us consider the edges (r1, c2), (r3, c2) ∈ ERpot as well as the

fill paths (r3, c1, r1, c2) and (r3, c2, r2, c4) in Fig. 4.9(d). If we check the edge (r1, c2)
first, this edge cannot be added to ERadd

because the fill path (r3, c1, r1, c2) is not
closed. The edge (r3, c2) is considered next. The fill path (r3, c2, r2, c4) is closed by
the edge (r3, c4) ∈ ERinit

. Thus, the edge (r3, c2) can be added to ERadd
. By changing

the order in which the edges are checked, the edge (r3, c2) is added to ERadd
before

checking the edge (r1, c2). Therefore, the fill path (r3, c1, r1, c2) is closed and the
edge (r1, c2) can also be added to ERadd

. Hence, more additionally required edges can
be determined by changing the ordering. Instead of this modification, we again check
the remaining edges in ERpot . To increase the number of additionally required edges,
the algorithm detAddReqElemCycle is repeated until a fix-point for ERadd

is
reached, i.e., there is no edge added to ERadd

in the last iteration. The correctness of
the algorithm is shown in the following lemma:

Lemma 4.3. Given a bipartite graph G = (Vr � Vc, E), the initially required edges
ERinit, the fill-in edges EF induced by ERinit, and the potentially required edges ERpot,
the algorithm detAddReqElemCycle determines a set of additionally required
edges ERadd

in O(|E|2 ·Δ(Vr � Vc)).
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Proof. We will prove the correctness by contradiction. Therefore, the edge (ri, cj) ∈
ERpot is added to ERadd

. We assume that this edge leads to a fill-in edge. In the case
i > j, the index � must be larger than j to have one or more fill paths (ri, cj, rj, c�). In
this case, the algorithm checks for every vertex c� in line 7 whether the edge (ri, c�) is
present. If one of these edges does not exist, the edge (ri, cj) is not added to ERadd

and
the algorithm jumps to the next edge in ERpot . The other case, j > i, is analogous.
Thus, there is no edge added to ERadd

which would yield a fill-in edge.
The algorithm detAddReqElemCycle iterates at most |ERpot | times over all

edges (ri, cj) ∈ ERpot as long as a fix-point for ERadd
is reached. In every iteration,

it visits the distance-1 neighbors of either the vertex ri or the vertex cj. Hence, with
|ERpot | ≤ |E|, the complexity of the algorithm is O(|E|2 ·Δ(Vr � Vc)).

For both algorithms holds: Adding edges to ERadd
does not lead to new fill-in edges

neither with a level higher nor with a level lower than �.

Results

Instead of evaluating the number of matrix-vector products using the initially and
potentially required elements to determine a preconditioner, we substitute the po-
tentially required elements Rpot by the additionally required elements Radd. There-
fore, the number of nonzero elements is decreased due to Radd ⊆ Rpot. The con-
figuration from the preceding subsections is adopted to evaluate the number of
matrix-vector products with preconditioners based on Radd. In Table 4.4, the ad-
ditionally required elements computed by the algorithms detAddReqElem and
detAddReqElemCycle are compared to the results from the last subsection for
the block sizes 10 and �n/32�. The additionally required elements computed by the
algorithms detAddReqElem and detAddReqElemCycle are once more indi-
cated by the symbols � and ◦, respectively.
Both sets, the potentially and additionally required elements, are considered to-

gether with the initially required elements and the fill-in elements. Instead of the
nonzero elements Rinit � (F ∪ Rpot), it is enough to store the nonzero elements in
Rinit � (F ∪ Radd). For the block sizes k = 10 and k = �n/32�, by employing the
potentially required elements, the number of nonzero elements exceeds the avail-
able memory for most matrices. The additionally required elements can be stored,
instead. Furthermore, for block size k = �n/32�, the normalized number of accumu-
lated matrix-vector products without taking the average (nv), mvp� = 0.62 is better
than the number of matrix-vector products mvp = 0.72 for the initially required
elements Rinit given in Table 4.1. In summary, our target to decrease the number of
nonzero elements is fulfilled. The number of matrix-vector products needed with Radd

exceeds the matrix-vector products needed with Rpot due to the reduced number of
nonzero elements. Most important, the number of matrix-vector products is reduced
when employing Rinit �Radd compared to using solely Rinit.
For block sizes k = 10 and k = �n/32�, the number of matrix-vector prod-

ucts is reduced for the matrices nos3 and nos7 if the preconditioner is based on
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Matrix k = 10 k = �n/32�
Rinit �Rpot Rinit �Radd� Rinit �Radd◦ Rinit �Rpot Rinit �Radd� Rinit �Radd◦
mvp nnz mvp� nnz� mvp◦ nnz◦ mvp nnz mvp� nnz� mvp◦ nnz◦

685 bus – – 185 1,989 181 2,093 – – 124 2,564 131 2,644
crystm01 17 25,567 22 14,029 22 16,502 11 85,011 14 49,398 14 50,220
hor 131 – – 77 2,474 85 2,552 – – 86 2,646 104 2,725
msc00726 – – 180 6,154 184 6,681 – – 155 8,622 164 8,951
nos3 172 6,905 206 5,105 198 5,512 172 6,905 201 5,374 194 5,520
nos7 – – 178 2,500 152 2,515 – – 122 4,100 116 4,125

nv � – – 1.15 4.78 1.13 5.12 – – 0.88 7.18 0.90 7.36
nv – – 0.75 3.84 0.72 4.26 – – 0.62 8.65 0.64 8.82

Table 4.4: Systems of linear equations are solved using Rinit � Rpot or Rinit � Radd

with Rinit = blkDiag(A, k) for preconditioning: number of matrix-vector
products mvp when using Rinit �Rpot and mvp� when using Rinit �Radd�,
Radd� = detAddReqElem, or mvp◦ when using Rinit � Radd◦, Radd◦ =
detAddReqElemCycle; number of nonzeros nnz = |Rinit�(F ∪Rpot)|,
nnz� = |Rinit � (F ∪Radd�)|, and nnz◦ = |Rinit � (F ∪Radd◦)|. Values not
available are denoted by –.

Rinit � Radd with Radd determined by the algorithm detAddReqElemCycle in-
stead of detAddReqElem. For the matrix 685 bus, it depends on the block size
whether the preconditioning based on the additionally required elements selected
by detAddReqElem or detAddReqElemCycle leads to a reduced number of
matrix-vector products. For matrices hor 131 and msc00726, the additionally re-
quired elements determined by detAddReqElem leads to a smaller number of
matrix-vector products. For matrix crystm01, there is no difference in the number of
matrix-vector products between both sets of additionally required elements.

A preconditioner determined by using the potentially required elements Rpot to-
gether with the initially required elements Rinit can often not be stored due to memory
restrictions. Using the additionally required elements Radd instead of Rpot, a precon-
ditioner is successfully determined and carried out to increase the convergence rate
of the iterative method.

4.4.4 Parallelism and required elements

Today’s simulations are often computed on several machines with distributed mem-
ory. One of the main challenges is to reduce the communication between the pro-
cessors. Therefore, the preconditioner should be modified so that the structure can
be exploited to solve the preconditioned system of linear equations in parallel. The
block structure of the initially required elements employed in the previous sections is
beneficial for parallel solving because the blocks and the corresponding parts of the
right-hand side can be partitioned and divided between the processors. Afterwards,
one or more blocks belong to a processor, and each processor can solve its subsys-
tems of linear equations independently without communicating intermediate results.
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(b) Rinit �R|r×r
add

Figure 4.10: Given Rinit = blkDiag(A, k), k = 16, the set Radd is determined using
ILU(2): (a) without restrictions and (b) restricted to larger r× r blocks
indicated by gray background padding.

Unfortunately, the additionally required elements Radd as well as the induced fill-in
elements F are possibly outside of the blocks and destroy this beneficial structure.

In general, the order of the Jacobian matrices is much larger than the number of
processors available for solving the systems of linear equations in parallel. Therefore,
in addition to the block diagonal with k × k blocks, another level of r × r blocks
with r > k is introduced. Instead of the k × k blocks, these larger r × r blocks are
scattered among the processors. In Fig. 4.10, we consider an illustrating example.
The k × k blocks of the block diagonal with k = 16 are indicated by the initially
required elements colored in green. The r × r blocks with r = 48 are indicated by
gray background padding. The additionally required elements are restricted to the
larger blocks. That is, solely the larger blocks contain the elements of Radd and the
fill-in elements induced by Rinit and Radd. Due to the factorization strategy of ILU,
there does not occur any fill-in element outside of these blocks. Before selecting an
additionally required element, it is checked whether its position is outside of the r×r
blocks. Hence, additionally required elements outside of these blocks are discarded. To
determine the additionally required elements, bipartite graphs associated to the r×r
blocks of the Jacobian matrix are the input for the algorithms detPotReqElemD2

(Alg. 4.2) and detAddReqElem (Alg. 4.4).

For solving preconditioned systems of linear equations in parallel, the structure
with the larger r × r blocks is beneficial. However, discarding additionally required
elements may involve a worse convergence rate of solving the preconditioned systems
by iterative solvers compared to non-discarding any elements. There is no data de-
pendency between the r×r blocks distributed among different processors. That is, no
information must be exchanged while solving a linear system. With this modification,
not only this linear system can be solved in parallel, but also the preconditioner M̃
can be constructed in parallel. Therefore, every processor builds its part of M̃ .
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Matrix k = 10, r = n k = 10, r = �n/16� k = 10, r = �n/8�
mvp� nnz� mvp◦ nnz◦ mvp� nnz� mvp◦ nnz◦ mvp� nnz� mvp◦ nnz◦

685 bus 185 1,989 181 2,093 156 1,795 152 1,838 155 1,853 159 1,917
crystm01 22 14,029 22 16,502 22 13,722 21 15,904 22 13,962 21 16,356
hor 131 77 2,474 85 2,552 96 2,323 97 2,336 86 2,340 88 2,353
msc00726 180 6,154 184 6,681 188 5,564 174 5,795 182 5,653 160 5,963
nos3 206 5,105 198 5,512 209 5,069 191 5,393 206 5,100 196 5,504
nos7 178 2,500 152 2,515 136 2,407 143 2,417 148 2,430 158 2,443

nv � 1.15 4.78 1.13 5.12 1.12 4.51 1.08 4.71 1.12 4.57 1.07 4.81
nv 0.75 3.84 0.72 4.26 0.71 3.67 0.69 4.01 0.70 3.73 0.69 4.11

Table 4.5: Systems of linear equations are solved using Rinit � Radd with Rinit =
blkDiag(A, k) for preconditioning: number of matrix-vector products
mvp when using Rinit � Radd and number of nonzero elements nnz =
|Rinit � (F ∪ Radd)| with R

|r×r
add� = detAddReqElem and R

|r×r
add◦ =

detAddReqElemCycle both restricted to r × r blocks.

Results

The described approach is evaluated by solving systems of linear equations. The
additionally required elements Radd restricted to the r× r blocks are denoted by the
symbol R

|r×r
add . These elements are determined by the functions detAddReqElem

and detAddReqElemCycle independent of the r × r blocks. Recall that both
functions determine these elements differently. The number of nonzero elements and
the number of matrix-vector products for solving system of linear equations are
compared to using the additionally required elements Radd introduced in Sect. 4.4.3,
i.e., without deleting elements in Radd. No additionally required element is omitted
if there is only one large r × r block with r = n comprising the whole matrix. For
the evaluation, the block size of the k × k blocks is chosen with k = 10. The results
for r = n have already been given in Table 4.4 and are repeated in Table 4.5 to ease
the comparison. Two particular block sizes for the larger blocks, r = �n/16� and
r = �n/8�, are considered. These blocks are beneficial if the matrix is stored on 8 or
16 computing nodes with distributed memory.

The number of nonzero elements is reduced by eliminating the additionally re-
quired elements outside of the larger r × r blocks. Furthermore, no additionally
required element is located outside of these blocks; thus, no fill-in element can oc-
cur outside. If the additionally required elements are determined with the func-
tion detAddReqElem, the number of nonzero elements is reduced from a fac-
tor 3.84—normalized to the initially required elements Rinit and their induced fill-
in elements F—to 3.67 and 3.73 for r = �n/16� and r = �n/8�, respectively.
The results are depicted in Table 4.5. The factors which are given in row nv are
normalized without taking the average. The normalized number of nonzero ele-
ments is reduced from 4.26 to 4.01 and 4.11, respectively, when using the function
detAddReqElemCycle. The normalized number of accumulated matrix-vector
products decreases from 0.75 to 0.71 or 0.70 by using the initially and additionally
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4 Preconditioning using partial Jacobian computation

required elements Rinit � R
|r×r
add , R

|r×r
add = detAddReqElem, for preconditioning.

In other words, the number of matrix-vector products decreases from 75% to 71%
or 70%. For R

|r×r
add = detAddReqElemCycle with r = �n/16� and r = �n/8�,

69% of the matrix-vector products are needed. For matrix hor 131, the number of
nonzero elements is reduced from nnz� = 2,474 for k = 10, r = n to nnz� = 2,323
for k = 10, r = �n/16� and the number of matrix-vector products increases from
mvp� = 77 to mvp� = 96. There are matrices for which a smaller number of nonzero
elements yields a reduced number of matrix-vector products. For matrix 685 bus,
for example, a reduction from nnz� = 1,989 for k = 10, r = n to nnz� = 1,795 for
k = 10, r = �n/16� yields mvp� = 185 to mvp� = 156. Although the reduction of the
number of matrix-vector products by discarding of additionally required elements is
not expected, it confirms that this approach works and is better than using only the
initially required elements.

4.5 Results

After describing the determination of the potentially and additionally required ele-
ments for preconditioning, we conclude this chapter with a selection of the results.
First, the convergence history is shown for the matrix hor 131, i.e., the relative resid-
ual norm for every matrix-vector product of the iterative solver. Second, the conver-
gence history is compared for the matrix memplus employing a distance-2 coloring
and a star bicoloring. Third and finally, the most important results are again sum-
marized with respect to the limited computational effort and memory. Therefore, the
matrices from the previous sections are employed once more to keep the summary
coherent. In particular, we evaluate the relation between the number of nonzero el-
ements nnz and the number of matrix-vector products mvp. Although we suppose
that the initially required elements Rinit are given by domain experts, we again start
with the nonzero elements in the block diagonal blkDiag(A, k) of the matrices.
In the previous sections, we give the numbers of matrix-vector products needed

for solving systems of linear equations without considering the convergence rate. The
matrix hor 131 is an illustrating example to show the convergence rates when using
no preconditioning and different sets of required elements. These rates are measured
in terms of the relative residual norm

||b− A · xmvp−1||2/||b− A · x0||2
and are plotted over the number of matrix-vector products in Fig. 4.11. That is,
the relative residual norm is calculated after determining each matrix-vector prod-
uct mvp. Using the iterative solver GMRES without restart, one matrix-vector prod-
uct is computed in each iteration. We do not mind the memory consumption of the
iterative solver. The right-hand side b is once more the sum of all columns. The thresh-
old for the convergence is ε = 10−6 and the level for ILU is � = 2, i.e., we employ
ILU(2). The system of linear equations with the matrix A is solved without using pre-
conditioning and by using the initially required elements Rinit = blkDiag(A, 10),
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Figure 4.11: Relative residual norms for solving a system of linear equations with
coefficient matrix hor 131. The system is solved without preconditioning
(woPC) and using Rinit, Rinit � Rpot, and Rinit � Radd◦ with Rinit =
blkDiag(A, 10) for preconditioning.

Rinit � Rpot, or Rinit � Radd◦ for preconditioning. The sets Rpot and Radd◦ are de-
termined by the algorithms detPotReqElemD2 and detAddReqElemCycle,
respectively. The matrix hor 131 contains 4,812 nonzero elements. For this example,
to compare the number of nonzero elements and number of matrix-vector products
for the potentially required elements Rpot, we relax the assumption from the previ-
ous sections that we cannot store more than |A| nonzero elements. The number of
nonzero elements, already given in Table 4.1 and 4.4, are repeated to have it at a
glance together with |Rinit � (F ∪Rpot)|

|Rinit � F | |Rinit � (F ∪Rpot)| |Rinit � (F ∪Radd◦)|
2,260 8,943 2,552

.

The numbers of matrix-vector products are different from the previous sections be-
cause of using the iterative solver GMRES instead of Bi-CGSTAB. This substitution
shows that preconditioning with different required elements improves the conver-
gence rate for solving systems of linear equations not only for Bi-CGSTAB. The
convergence behavior can be identified in Fig. 4.11. The convergence rate for solving
the system of linear equations without preconditioning is the slowest. For a con-
verged solution, mvp = 408 matrix-vector products are needed. The plot is cut after
mvp = 100 matrix-vector products. The convergence rates for Rinit and Rinit �Radd◦
are faster than for Rinit�Rpot until mvp = 39. Thereafter, the behavior changes com-
pletely such that Rinit � Rpot induces the fastest convergence rate. Preconditioning
with Rinit ∪ Radd◦ always outperforms the preconditioning with Rinit. Employing a
preconditioner which is determined by using the initially required elements Rinit, the
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Figure 4.12: Relative residual norms for solving a system of linear equations with
matrix memplus. The system is solved without preconditioning (woPC)
and using Rinit � Radd◦ with Rinit = blkDiag(A, �n/32�) for pre-
conditioning and Radd◦ determined by D2ColoringRestricted and
StarBicoloringRestricted.

iterative solver computes a converged solution of the system with mvp = 81 matrix-
vector products. Only mvp = 55 matrix-vector products are needed if the potentially
required elements Rpot are used in addition. However, the number of nonzero elements
increases from 2,260 to 8,943. Using the additionally required elements Radd instead,
the solution convergences with mvp = 69 slower than using Rpot, but the number of
nonzero elements decreases to 2,552. Nevertheless, it is still faster than using only the
initially required elements Rinit. In summary, the convergence rate up to mvp = 39 is
similar for the different preconditioners. For mvp > 39, the convergence rates behave
as expected, i.e., Rinit �Rpot needs less matrix-vector products for convergence than
Rinit �Radd◦ which in turn needs less than Rinit.
Before giving a general summary for the initially, potentially, and additionally re-

quired elements, we show that determining additionally required elements can ben-
efit from two-sided colorings compared to one-sided colorings. Therefore, we com-
pare additionally required elements determined with a distance-2 coloring and a star
bicoloring for matrix memplus. The configuration for the iterative solver GMRES
and the ILU preconditioner are not varied compared to solving the system of lin-
ear equations with the coefficient matrix hor 131 in the preceding paragraphs. The
only difference is that a given right-hand side from the matrix collection is used.
Once more, we relax the assumption that we cannot store more than |A| nonzero
elements. In Fig. 4.12, the convergence rates are given when using no precondition-
ing and when using Rinit � Radd◦ for preconditioning. The elements of Rinit � Radd◦
are determined with both a distance-2 coloring and a star bicoloring. Recall that
one of our primary concerns is the computational effort. The computational effort
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comprises the number of colors to obtain the initially and additionally required el-
ements Rinit � Radd◦ and the number of matrix-vector products needed to solve a
system of linear equations. Recall that a color respresents a matrix-vector prod-
uct in automatic differentiation. Thus, increasing the number of colors by one in-
creases the computational costs by one matrix-vector product. Recall from Table 3.10
that the distance-2 coloring determined with algorithm D2ColoringRestricted

(Alg. 2.1) comprises pd2 = 146 colors and the star bicoloring determined with al-
gorithm StarBicoloringRestricted (Alg. 3.5) comprises only psb = 88 colors.
Although the number of colors are different, the convergence rates are compara-
ble. The number of matrix-vector products is mvp = 58 when using the distance-2
coloring and mvp = 66 for the star bicoloring. Overall, the computational costs mea-
sured in matrix-vector products (cf. Sect. 4.4.1) are p + mvp = 146 + 58 = 204 and
88+66 = 154, respectively. In comparison, for solving the system of linear equations
without preconditioning, 371 matrix-vector products are needed. For the distance-2
coloring, nnz = 127,994 nonzero elements are determined and, for the star bicoloring,
nnz = 127,985. Thus, using a star bicoloring to determine Rinit � Radd◦ is superior
over using a distance-2 coloring in this example.
After describing the convergence behavior for the matrix hor 131 and assessing

the benefit of a star bicoloring for the matrix memplus, we evaluate the relation
between the initially, potentially, and additionally required elements more generally
by using the matrices from the previous sections. Recall from Table 4.1 that for most
matrices using a preconditioner is necessary to solve the system of linear equations
by Bi-CGSTAB. For the remaining matrices, the number of matrix-vector products
is at least reduced compared to using no preconditioner. By increasing the number
of nonzero elements, the solution of a system of linear equations, generally, converges
faster. Recall that the iterative solver Bi-CGSTAB is used with threshold ε = 10−6

and level � = 2 for ILU to solve the systems of linear equations. We look at the
number of nonzero elements and matrix-vector products for block size k = �n/32�.
These numbers are already given in the previous sections.
The numbers of nonzero elements in Fig. 4.13(a) are normalized to the numbers of

nonzero elements occurring while using the initially required elements for precondi-
tioning, nnz(Rinit) = |Rinit � F |. Using potentially required elements, in addition to
the initially required elements Rinit, increases the number of nonzero elements nnz,
obviously. In this figure, these nonzero elements, |Rinit� (F ∪Rpot)|, are given even if
they exceed the number of nonzero elements of the matrix. The amount of nonzero
elements which can be stored is indicated by the red part of the bar. The nonzero el-
ements exceeding the memory are indicated by the gray color on top of the red color.
In Fig. 4.13(a), the nonzero elements Rinit � (F ∪ Rpot) can be stored only for the
matrices crystm01 and nos3. The factor nnz/nnz(Rinit),nnz = |Rinit � (F ∪ Rpot)|,
is between 1.95 and 15.50 compared to the initially required elements and their in-
duced fill-in elements, nnz(Rinit). The plot is cut when the bars exceed the value 4.5.
Using additionally required elements Radd in addition to the initially required ele-
ments Rinit yields significantly less nonzero elements for all matrices than using Rpot.
The factor is between 1.03 and 1.09. The additionally required elements that lead
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Figure 4.13: Systems of linear equations are solved with ILU(2) using Rinit =
blkDiag(A, k) with k = �n/32�, Rinit�Rpot, and Rinit�Radd: number of
nonzero elements |Rinit�F |, |Rinit�(F∪Rpot)|, and |Rinit�(Radd∪F )| nor-
malized to nnz(Rinit) as well as number of matrix-vector products mvp
normalized to mvp(Rinit).

to less matrix-vector products are plotted instead of both the additionally required
elements determined by detAddReqElem and detAddReqElemCycle. Addi-
tionally required elements determined by the algorithms detAddReqElem and
detAddReqElemCycle are respectively indicated with the symbols � and ◦ on
top of the corresponding bar.

The number of matrix-vector products needed to solve the systems of linear equa-
tions are given in Fig. 4.13(b). For each matrix, these numbers are normalized to
the number of matrix-vector products occurring while using the initially required
elements Rinit for preconditioning. The number of matrix-vector products is re-
duced by using the potentially and additionally required elements together with
the initially required elements Rinit instead of solely using Rinit. If the nonzero ele-
ments Rinit � (F ∪ Rpot) exceed the available memory, the corresponding number of
matrix-vector products is not given. For evaluating the number of nonzero elements
and the matrix-vector products, the same additionally required elements Radd as in
Fig. 4.13(a) are considered. The initially and potentially required elements Rinit�Rpot

can only be stored for the matrices crystm01 and nos3. The number of matrix-vector
products increases for these matrices if the additionally required elements Radd are
used for preconditioning instead of the potentially required elements Rpot. Most im-
portant, less required elements must be stored. As already stated in the previous

88

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4.5 Results

68
5
bu
s

cr
ys
tm
01

ho
r
13
1

m
sc
00
72
6

no
s3

no
s7

0.5

1

1.5

2

� ◦ � � ◦ ◦� ◦ � � ◦ ◦

Rinit �Rpot Rinit �Radd Rinit �R|r×r
add

(a) nnz/nnz(Rinit)

68
5
bu
s

cr
ys
tm
01

ho
r
13
1

m
sc
00
72
6

no
s3

no
s7

0.6

0.7

0.8

0.9

1

�
◦

�

�

◦

◦

�

◦

�

�

◦

◦

Rinit �Rpot Rinit �Radd Rinit �R|r×r
add

(b) mvp/mvp(Rinit)

Figure 4.14: Systems of linear equations are solved with ILU(2) using Rinit � Rpot,
where Rinit = blkDiag(A, �n/32�), Rinit � Radd, and Rinit � Radd re-
stricted to r × r blocks, r = �n/16�, for parallel computing: number
of nonzero elements nnz including the fill-in elements and number of
matrix-vector products mvp both normalized to Rinit.

sections, the general tendency in Fig. 4.13 is as follows: The higher the number of
nonzero elements, the lower is the number of matrix-vector products. For all matrices,
employing the additionally required elements reduces the number of matrix-vector
products mvp compared to using solely Rinit.

If systems of linear equations are solved in parallel, the block diagonal structure
is beneficial. Determining additionally required elements Radd by applying the al-
gorithms detAddReqElem or detAddReqElemCycle to the Jacobian matrix
does not preserve this structure. Therefore, another block structure with larger r× r
blocks is introduced in Sect. 4.4.4. There are no nonzero elements outside of these
blocks. The required elements are restricted to these larger blocks. Otherwise, these
elements could occur at every position where the matrix contains a nonzero element
or a fill-in element which is induced while factorizing Rinit. The number of nonzero
elements is given in Fig. 4.14(a). The plot is cut when the bars exceed the value
2.0. The number of matrix-vector products and the number of nonzero elements are
again normalized to Rinit, and the additionally required elements—determined by
the same algorithm as in Fig. 4.13—are considered. The employed algorithm is once
more indicated by the symbols � and ◦ given on top of the bars. The number of
matrix-vector products is shown in Fig. 4.14(b). The numbers are again normalized
to Rinit as in Fig. 4.13.
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4 Preconditioning using partial Jacobian computation

For all matrices except nos7, the number of matrix-vector products, when employ-
ing R

|r×r
add , is lower or equal compared to using Rinit. The number of nonzero elements

is always lower when using R
|r×r
add compared to employing Radd. The matrices can be

divided into two classes depending on the number of matrix-vector products: The
first class contains the matrices hor 131 and nos3. For these matrices, using the ad-
ditionally required elements R

|r×r
add leads to less matrix-vector products compared to

the additionally required elements Radd originally determined. For the remaining ma-
trices, the additionally required elements Radd lead to less matrix-vector products. In
summary, using the block diagonal structure for solving systems of linear equations
in parallel is successfully applied. That is, for most matrices, using the additionally
required elements restricted to the r × r blocks, R

|r×r
add , for preconditioning is better

than employing only the initially required elements.
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5 Case studies in science and
engineering

After describing our new coloring algorithms and our approach to combine partial
Jacobian computation with preconditioning, we verify their practical relevance by
considering several applications from science and engineering. In contrast to the test
matrices in the previous chapters, the Jacobian matrices are provided as matrix-
vector products and the right-hand sides are also available in these applications. In
Sect. 5.1, the partial Jacobian computation is employed to determine sensitivities
occurring in a distillation column in process engineering. This sparsity exploitation
is already published in [50]. In Sect. 5.2, the full Jacobian computation for stencil-
based computations and the partial Jacobian computation for preconditioning are
assessed in carbon sequestration. In Sect. 5.3, the flow around an airfoil in aero-
nautical engineering is investigated. A preconditioned system of linear equations is
solved by employing partial Jacobian computation to provide initially, potentially,
and additionally required elements. In Sect. 5.4, we consider preconditioned systems
while simulating blood flow in biomedical engineering.

5.1 Distillation in process engineering

A model of an industrial distillation column is considered by the institute Aachener
Verfahrenstechnik–Process System Engineering at RWTH Aachen University. This
model is formulated in CapeML [60], a domain-specific XML-based language used
in process engineering. This CapeML model is transformed into another CapeML
model using a prototype automatic differentiation tool called ADiCape [6, 49]. The
new model is capable of evaluating derivatives of the original model. ADiCape is
designed to be a part of the DyOS framework [11] for dynamic optimization in process
engineering. This framework is developed by Aachener Verfahrenstechnik–Process
System Engineering. Here, we are interested in computing a (proper) subset of the
nonzero elements of a sparse Jacobian matrix. The partial Jacobian computation is
employed to reduce the computational effort if only a subset is interesting.
Computational models in process engineering are often built up from a number

of smaller components, the so-called sub-models, which are connected together to
create a more complex structured model. The final compound model is often a sub-
ject for further investigations and optimization schemes. Only a subset of the whole
system, e.g., one of its sub-models, needs to be investigated in more detail. The
nonzero elements of Jacobian matrices illustrate the dependence and sensitivity of
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Figure 5.1: (a) Scheme of an industrial distillation column. (b) Nonzero pattern of
the Jacobian matrix where three different subsets of required elements
are denoted by case 1 to case 3.

the system output variables. The sensitivity analysis can act as a first attempt to
validate the implemented model. The behavior of a model might be not controllable
if large sensitivities in the simulation’s output are caused by small variations on
model parameters. However, to preserve the actual behavior of the whole system,
the component of interest may not be regarded separately from the rest of the model
description. For such a task, it is sufficient to compute certain parts of the Jacobian
matrix rather than all its nonzero elements.
The illustrating example is a computational model arising from an industrial pro-

cess engineering problem. The model represents a hierarchically built distillation
column for separating fluid mixtures of two pure liquids with different boiling points.
The model of the distillation column is schematically depicted in Fig. 5.1(a). The
distillation column consists of a number of column trays connected with a so-called
swamp and a condenser. The mixture is heated so that one fluid boils and is trans-
formed into vapor. The vapor is collected at the condenser and the liquid fluid remains
in the swamp. Here, we are interested in investigating three different components sep-
arately: the connection component (case 1), the swamp (case 2), and the condenser
(case 3). Conceptually, we ask for the influence of selected model parameters on
the physical quantities representing the connection component, the swamp, or the
condenser.
We are interested in selected nonzero elements of the Jacobian matrix associated

with an instance of the distillation column given in Fig. 5.1(a). The sparsity pattern
of this 206 × 237 Jacobian matrix A is shown in Fig. 5.1(b). If the sparsity is not
exploited, pd2 = 237 colors are needed to compute all nonzero elements of A. The
bipartite graph corresponding to the Jacobian matrix was exploited in [51] by using
the heuristic D2ColoringRestricted (Alg. 2.1) to compute all nonzero elements,
i.e., ER = E. This exploitation reduces the number of colors to pd2 = 14. We are

92

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5.2 Carbon sequestration in geosciene

now interested in the following three partial Jacobian computations where the re-
quired elements consist of all nonzero elements in specified blocks [50]. These blocks
are emphasized in Fig. 5.1(b) using different shadings. The number of colors are as
follows:

case block pd2
1 (1:55,1:237) 2
2 (56:78,1:38) 11
3 (79:110,39:81) 10

.

Compared to computing all nonzero elements by D2ColoringRestricted with
pd2 = 14, the partial Jacobian computation reduces the number of colors pd2 further
to pd2 = 2 for case 1, pd2 = 11 for case 2, and pd2 = 10 for case 3.

5.2 Carbon sequestration in geosciene

The Institute for Applied Geophysics and Geothermal Energy (GGE) at RWTH
Aachen University investigates the injection of CO2 in the underground. The practical
relevance arises from storing CO2 in a reservoir. The injection is simulated by a two-
phase flow model in porous media, e.g., sandstone. The two phases are a wetting
and a non-wetting phase; in particular, water and gas. Before implementing a code
in Fortran for high-performance computing, a prototype for three space dimensions
created in MATLAB is investigated. However, the illustrating test instance is a two-
dimensional simulation.
A system of coupled non-linear partial differential equations formulates the two-

phase flow. These equations are semi-discretized in space using a stencil-based ap-
proach on an M × N grid. The boundary of the domain is specified by Dirichlet or
Neumann boundary conditions. The time integration with the implicit Euler method
leads to a system of non-linear algebraic equations

F (u) = 0 with u =

(
pw
Sn

)
∈ R2MN and F =

(
F1

F2

)
∈ R2MN ,

where the variable pw ∈ RMN is the pressure for the wetting phase and Sn ∈ RMN

is the non-wetting saturation. In every time step, this system is solved by Newton’s
method. Therefore, in every Newton iteration a 2MN × 2MN Jacobian matrix

A =

⎛
⎜⎜⎜⎝

∂F1

∂pw

∂F1

∂Sn

∂F2

∂pw

∂F2

∂Sn

⎞
⎟⎟⎟⎠

is determined with a transformed version of the original function F . For this trans-
formation, the AD tool ADiMat [7] is applied.
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Figure 5.2: Sparsity pattern of Jacobian matrices A1 and A2 differently discretized
by five-point stencil N5pt and two-point stencil N2pt.

This Jacobian matrix is divided into four quadrants: the derivative ∂F1/∂pw in
the top left quadrant, ∂F1/∂Sn in the top right, ∂F2/∂pw in the bottom left, and
∂F2/∂Sn in the bottom right. The sparsity patterns of two illustrating examples are
depicted in Fig. 5.2. These examples arise from two different discretizations resulting
in 462× 462 Jacobian matrices A1 and A2. In A1, there are 3,236 nonzero elements
whereas there are 2,666 nonzero elements in A2. The four quadrants are indicated
by crossed black lines. In these quadrants different stencils are used: the five-point
stencil N5pt and stencils for an upwind scheme whose grid points are a subset of
the grid points of the stencil N5pt. The actually employed stencil is influenced by
the input parameters. The Jacobian matrix A1 in Fig. 5.2(a) is based on the five-
point stencil N5pt in the north west, south east, and south west quadrant. In the
north east, the two-point stencil N2pt = {(m,n), (m,n−1)} with the center (m,n) is
used. In Fig. 5.2(b), the stencil N2pt is also employed in the south east quadrant of
Jacobian matrix A2 instead of stencil N5pt. In particular, this leads to the following
discretizations of the quadrants

A1 =

( N5pt N2pt

N5pt N5pt

)
and A2 =

( N5pt N2pt

N5pt N2pt

)
.

This application is used to study both full Jacobian computation and partial Ja-
cobian computation for preconditioning: First, we suppose that all nonzero elements
of the Jacobian matrix can be stored. In this setting, we assess the number of col-
ors required to compute all nonzero elements of the Jacobian matrices. Second, we
suppose that we are not able to store all nonzero elements and evaluate the pre-
conditioning techniques, which are introduced in the previous chapter, with different
stencil combinations.
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5.2 Carbon sequestration in geosciene

In the first part, the structure of Jacobian matrices is exploited for full Jacobian
computation. Before using a coloring algorithm for stencil-based computation, we
apply the coloring heuristic D2ColoringRestricted (Alg. 2.1) with ER = E to
the bipartite graphs corresponding to the Jacobian matrices. This coloring heuristic
determines a coloring with pd2 = 13 colors for the Jacobian matrix A1 in Fig. 5.2(a)
and pd2 = 11 colors for the Jacobian matrix A2 in Fig. 5.2(b). For the stencil-
based computation, rather than using the vanilla exploitation described in Sect. 3.1,
we employ a hierarchical approach to reduce the number of colors. Therefore, the
Jacobian matrices are sub-divided into a left part from column 1 to 231 and a right
part from column 232 to 462. Moreover, it is enough for both halves to compute a
coloring for the top left and bottom right quadrants, respectively. That is, using the
coloring for the top left quadrant of the Jacobian matrix is sufficient to compress the
left half of the matrix because the sparsity pattern in the top left and bottom left
quadrants are identical. For the right half, coloring only the bottom right quadrant
is sufficient since a coloring for a stencil is always suitable for a sub-stencil. The
algorithms colorVSepAll and getTile are separately employed to the top left
and bottom right quadrant. By accumulating the number of colors for the top left
and bottom right quadrants, the minimal coloring needs only pd2 = 5 + 5 = 10
colors to determine all nonzero elements of A1 instead of pd2 = 13. We consider
the Jacobian matrix A2 in Fig. 5.2(b). In the lower and upper quarter of the right
half the two-point stencil is used. Rather than employing the five-point stencil N5pt

to discretize the bottom right quadrant of the Jacobian matrix in Fig. 5.2(a), the
simulation code employs the two-point stencil. If the neighborship relation is given as
the two-point stencil N2pt, a minimal coloring consists of pd2 = 2 colors. Therefore,
the number of colors can be reduced to pd2 = 5+ 2 = 7. The differences between the
minimal colorings and the colorings computed by a heuristic are 10 to 13 colors and
7 to 11 colors. Moreover, the same minimal coloring can be used to color a grid with
increased grid size.
In the second part, the combination of preconditioning and partial Jacobian com-

putation is evaluated. We suppose that not all nonzero elements of the Jacobian
matrix can be stored. Hence, the access to the Jacobian matrix A is provided as a
matrix-vector product A · v. This Jacobian matrix is the coefficient matrix of the
system of linear equations A · x = b. The iterative solver Bi-CGSTAB is employed
to solve this system. This solver stops if the relative residual norm is less than the
threshold ε = 10−7 or if the number of matrix-vector products exceeds mvp = 200.
To reduce the runtime, we determine a preconditioner using the incomplete LU fac-
torization with level � = 0, ILU(0), i.e., no fill-in elements occur during the factoriza-
tion. We consider the Jacobian matrix whose sparsity pattern is given in Fig. 5.2(a).
The initially required elements Rinit are specified in the top left and bottom right
quadrants by the stencil combinations N5,1pt and N5,3pt for the full Jacobian ma-
trix. Recall that the stencil combination N5,1pt specifies the nonzero elements of the
main diagonal and the stencil combination N5,3pt the nonzero elements of the main
diagonal and the diagonals above and below. We assume that these initially required
elements can be stored.
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Figure 5.3: Convergence history of Bi-CGSTAB while solving a system of linear equa-
tions without preconditioning (woPC) and with the initially required el-
ements Rinit specified by stencil combinations N5,1pt and N5,3pt.

The simulation of the CO2 injection in the underground consists of several time
steps. The convergence history for solving a system of linear equations arising in the
first Newton iteration of the first time step is depicted in Fig. 5.3. The plot is cut
after mvp = 100 matrix-vector products. The system is solved without precondition-
ing and using the nonzero elements specified by N5,1pt and N5,3pt for preconditioning.
Solving the system of linear equations, the solution is divergent without using pre-
conditioning. Using the stencil combination N5,3pt leads to a better convergence rate
than usingN5,1pt. To obtain the same relative residual norm, mvp = 54 matrix-vector
products are needed using N5,1pt and mvp = 46 using N5,3pt. Recall from Sect. 3.1.2
that pd2 = 2 and pd2 = 4 colors are needed to determine Rinit specified by N5,1pt

and N5,3pt, respectively. Comparing the overall number of matrix-vector products,
mvp = 54 + 2 = 56 are needed for N5,1pt and mvp = 46 + 4 = 50 for N5,3pt. Thus,
there is a small reduction of matrix-vector products by using more nonzero elements
for preconditioning.
For general graphs, it was possible to obtain a lot of potentially and additionally

required elements without increasing the number of colors. For our example, these
elements do not occur in the top left and bottom right quadrant. That is, the min-
imal coloring consists of the smallest number of colors; thus, in this example, no
extra nonzero element can be determined in these quadrants of the Jacobian matrix.
Potentially and additionally required elements occur only in the top right and bot-
tom left quadrant. These elements do not lead to a solution with less matrix-vector
products. For this reason, we do not consider these elements further.
Finally, we compare how many Newton iterations ni and, especially, matrix-vector

products mvp are needed to compute several time steps of the simulation. This com-
parison is carried out to evaluate the advantage of combining the preconditioning
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5.3 Flow field around an airfoil in aeronautical engineering

t = 1 t = 2 t = 3 t = 4 t = 5 t = 1 . . . 5
ni mvp ni mvp ni mvp ni mvp ni mvp ni mvp

woPC 12 1,712 12 1,968 14 2,192 15 2,231 13 2,029 66 10,132
N5,1pt 5 244 6 299 6 303 5 278 5 293 27 1,417
N5,3pt 5 197 6 253 5 208 5 220 5 239 26 1,117

Figure 5.4: Number of Newton iterations ni and accumulated number of matrix-
vector products mvp in time step t by applying the iterative solver with-
out preconditioning and using the nonzero elements specified by N5,1pt

and N5,3pt. Accumulated numbers for all five time steps are given in the
last columns.

with the partial Jacobian computation. Newton’s method in time step t stops if the
relative residual ||uni − uni−1||2 is less than the threshold 10−6 or if the number of
Newton iterations ni exceeds ni = 20. The settings for the iterative solver remain un-
modified compared to solving systems of linear equations in the previous paragraphs.
The number of Newton iterations and the accumulated number of matrix-vector
products are compared using the iterative solver with and without preconditioning.
Therefore, we consider the time steps t = 1 to t = 5 in Table 5.4. Solving the systems
of linear equations without preconditioning, the number of matrix-vector products
is significantly higher than using the described preconditioning methods. For time
step t = 1, the number of matrix-vector products is reduced from 1,712 to 244 and
197, respectively. For time step t = 2 to t = 5, the relation is comparable. In the
last two columns, the number of Newton iterations and matrix-vector products are
accumulated for all five time steps. The reduction of matrix-vector products for time
steps t = 1 . . . 5 is from 10,132 to 1,417 when the required elements are specified by
N5,1pt, i.e., a reduction to 14%. When the required elements are specified by N5,3pt,
there is a further reduction to mvp = 1,117 or 11%.

Using full Jacobian computation for the stencil-based computation, the number of
colors is reduced. Carrying out preconditioning and partial Jacobian computation,
the number of matrix-vector products is significantly decreased using specific stencil
combinations.

5.3 Flow field around an airfoil in aeronautical
engineering

Recall the motivating example in Sect. 4.3 from the field of aeronautical engineering.
The flow field around an airfoil—for instance, the velocity and pressure distribution—
is simulated by the flow solver Quadflow [9]. This solver is developed at the Depart-
ment of Mechanics and the Institute of Geometry and Practical Mathematics at
RWTH Aachen University within the collaborative research centre CRC 401 (”Flow
Modulation and Fluid-Structure Interaction at Airplane Wings”). This simulation
code solves Euler and Navier-Stokes equations for compressible fluid flows in two or
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5 Case studies in science and engineering

three dimensions. The flow field is computed in a steady flow simulation using an
adaptive approach. Before solving non-linear systems by an approximate Newton’s
method, the outer part of the considered NACA0012 airfoil is discretized by an adap-
tive finite volume method. The coefficient matrices of the systems of linear equations
are Jacobian matrices. More details about employing automatic differentiation to
obtain Jacobian matrices in Quadflow are given in [5]. The size of the Jacobian ma-
trices occurring in two-dimensional flow simulations around the NACA0012 airfoil
are small enough, but shifting to a three-dimensional airfoil can exceed the available
memory. Therefore, reducing the number of nonzero elements is mandatory.

The reduction in the number of colors using partial Jacobian computation for
determining the main diagonal elements is evaluated in [42]. It was demonstrated
that computing solely a subset of the nonzero elements reduces the number of colors
in practice. The number of iterations for solving systems of linear equations was not
studied in that work. We continue on these first results and study the approach for
choosing the required elements as described in the previous chapter. In Quadflow,
the Jacobian matrix is composed of local Jacobian matrices, each corresponding to
a volume cell. In the following, the test instance is a 1600 × 1600 Jacobian matrix
with 30,598 nonzero elements. A system of linear equations A · x = b is solved,
where the coefficient matrix A is this Jacobian matrix. The iterative solver GMRES
is used without restart to solve the system of linear equations, and it stops if the
relative residual norm is less than the threshold ε = 10−6. To reduce the runtime, we
determine a preconditioner using the incomplete LU factorization with level � = 0,
ILU(0), i.e., no fill-in elements occur during the factorization.

We assess the combination of preconditioning and partial Jacobian computation.
To solve the system of linear equations without preconditioning with a relative resid-
ual norm smaller than the threshold ε = 10−6, mvp = 416 matrix-vector products
are needed. The relative residual norm is plotted versus the matrix-vector products
in Fig. 5.5. The plot is cut after matrix-vector product mvp = 100. For precondi-
tioning, we start with using the initially required elements Rinit = blkDiag(A, 10),
i.e., the initially required elements are the nonzero elements of the 10 × 10 blocks
on the block diagonal. The coloring to determine Rinit is computed by heuristic
D2ColoringRestricted (Alg. 2.1) and consists of pd2 = 28 colors. Using Rinit

for preconditioning, the iterative solver computes a solution after mvp = 76 matrix-
vector products. Due to the extension of the required elements with the potentially
required elements Rpot determined by detPotReqElemD2 (Alg. 4.2), the num-
ber of matrix-vector products is significantly reduced to mvp = 31. The number of
nonzero elements is given at a glance:

|Rinit � F | |Rinit � (F ∪Rpot)| |Rinit � (F ∪Radd�)| |Rinit � (F ∪Radd◦)|
10,991 22,726 12,338 17,006

.

When the preconditioner is created from Rinit � Rpot instead of solely from Rinit,
the number of nonzero elements is doubled from 10,991 to 22,726. If Rpot is substi-
tuted by Radd, the number of matrix-vector products is increased to mvp = 66 or
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Figure 5.5: Relative residual norms for solving a system of linear equations plotted
over matrix-vector products mvp. The system is solved without precondi-
tioning (woPC) and using Rinit, Rinit�Rpot, Rinit�Radd�, and Rinit�Radd◦
with Rinit = blkDiag(A, 10) for preconditioning.

mvp = 49, depending on the employed algorithm for determining Radd. The algo-
rithm detAddReqElem computes the additionally required elements denoted by
the symbol Radd� and detAddReqElemCycle the additionally required elements
Radd◦. The number of nonzero elements is reduced to 12,338 or 17,006, respectively. In
summary, the number of matrix-vector products is decreased by using the initially,
potentially, and additionally required elements for preconditioning. Especially, the
additionally required elements cause a good reduction of the matrix-vector products
without increasing the number of nonzero elements too much.

5.4 Blood flow in biomedical engineering

The finite element flow solver XNS [3] is developed for large-scale simulations by the
Chair for Computational Analysis of Technical Systems (CATS) at RWTH Aachen
University. XNS uses a stabilized space-time Galerkin/least-squares discretization.
Among other areas in science and engineering, XNS is able to model viscoelastic fluids
such as blood. Under some assumptions the motion of blood can be described by the
incompressible Navier-Stokes equations. The iterative solver GMRES is employed to
solve the systems of linear equations.

In a previous project, we carried out sensitivity analyses for blood flow in artificial
bypasses [52–54] by applying automatic differentiation to XNS. In particular, the AD
tool Adifor2 [8] was employed. Here, the blood flow through the human aorta is sim-
ulated as non-steady state. Computing the full Jacobian matrix is based on previous
work and was part of the interdisciplinary project ”Towards a Computational Model
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Figure 5.6: Relative residual norms for solving a system of linear equations plotted
over matrix-vector products mvp. The system is solved without precondi-
tioning (woPC) and using Rinit, Rinit �Rpot with Rinit = blkDiag(A, 1),
and Rinit �Rpot with Rinit = blkDiag(A, 4) for preconditioning.

of Blood Flow in the Left Human Heart, Aorta and Connecting Vessels” funded
by JARA-HPC. Rather than performing a sensitivity analysis, we compute Jacobian
matrices for Newton’s method. We assume that there is not enough memory available
to store all nonzero elements of the Jacobian matrix. First, while solving a system
of linear equations, we assess the benefit of using initially and potentially required
elements for preconditioning. Second, we consider the convergence rate while solving
a non-linear system using Newton’s method.

A system of linear equations A · x = b is solved where the coefficient matrix A is a
290,392 × 290,392 Jacobian matrix with 31,191,872 nonzero elements. The iterative
solver GMRES is used without restart to solve this system. This solver stops if the
relative residual norm is less than the threshold ε = 10−8 or if the number of matrix-
vector products exceeds mvp = 500. To reduce the runtime, we determine a precon-
ditioner using the incomplete LU factorization with level � = 0, ILU(0). The initially
required elements are either the main diagonal elements, Rinit = blkDiag(A, 1), or
the nonzero elements in the 4×4 blocks on the block diagonal, Rinit = blkDiag(A, 4).
The convergence plot with the relative residual norms is given in Fig. 5.6. These
norms are plotted over the matrix-vector products in steps of 10. If the system
of linear equations is solved without preconditioning, the convergence rate is quite
slow. A preconditioner determined by using the initially required elements Rinit =
blkDiag(A, 1) improves the convergence rate of the solver. Although this rate of
the iterative solver is quite slow compared to the other case studies, the difference of
the relative residual norms is more than a factor of 10. Rather than pd2 = 272 colors
to determine the full Jacobian matrix, pd2 = 80 colors are needed to compute Rinit.
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5.4 Blood flow in biomedical engineering

Next, the 4× 4 blocks on the diagonal are considered as initially required elements,
Rinit = blkDiag(A, 4). The number of colors does not increase due to the structure
of the Jacobian matrix. This matrix consists of full 4 × 4 blocks. Computing the
diagonal elements of such a block is as costly as computing all nonzero elements of
this block. Unfortunately, the nonzero elements on the main diagonal of the Jacobian
matrix seem to be very dominant so that there is only a small difference in the conver-
gence rate starting with mvp = 100 between the initially required elements for block
size k = 1 and k = 4. Due to the structure of the matrix, the potentially required
elements Rpot for both sets of initially required elements, the main diagonal elements
and the nonzero elements in the 4 × 4 blocks, are identical. That is, Rinit � Rpot,
Rinit = blkDiag(A, 1), is identical to Rinit �Rpot, Rinit = blkDiag(A, 4). With the
considered Jacobian matrix, the use of Rinit�Rpot causes a slightly worse convergence
rate than just using Rinit. We do not consider additionally required elements, because
it seems most unlikely that their use improves the convergence behavior compared to
Rpot. The number of nonzero elements in Rinit is nnz = 290,392 for block size k = 1
and nnz = 1,161,568 for k = 4. The number of nonzero elements in Rinit � Rpot for
block size k = 1 and k = 4 is nnz = 7,358,912. Recall that ILU(0) is employed; thus,
no fill-in elements occur during the factorization.
After considering the convergence rate for solving the system of linear equations

using preconditioning, we continue with the enclosing non-linear systems F (u) = 0.
These non-linear systems are solved using Newton’s method. The employed iterative
solver GMRES for solving the systems of linear equations is used without precondi-
tioning and with the already described preconditioners. We do not change the orig-
inally provided settings for the simulation; therefore, GMRES is used with restart
100. The iterative solver stops if the relative residual norm is less than the thresh-
old ε = 10−8 or if the number of matrix-vector products exceeds mvp = 500. In every
of the six considered time steps, the iterative solver always stops after reaching the
maximum number of matrix-vector products. That is, the number of matrix-vector
products is the same for solving each system of linear equations—with and without
preconditioning. However, the convergence behavior changes depending on the pre-
conditioning. The convergence behavior is given in Fig. 5.7. Using no preconditioner,
Newton’s method stagnates after ni = 3 Newton iterations in the first time step. In
the following time steps, it stagnates after ni = 4. When Rinit = blkDiag(A, 1),
Rinit = blkDiag(A, 4), or Rinit � Rpot, Rinit = blkDiag(A, 1) are used, the conver-
gence rate is faster. Up to ni = 6 Newton iterations, there is no stagnation in any
time step. The preconditioners lead to quite similar convergence rates. In time steps
t = 1, t = 3, and t = 4, the preconditioner which is based on Rinit = blkDiag(A, 1)
leads to the best convergence, and, in the other time steps, it is the preconditioner
which is based on Rinit �Rpot.
In summary, solving the non-linear systems and the systems of linear equations

while simulating the blood flow through the aorta, the convergence behavior is im-
proved by using at least the main diagonal elements for preconditioning.
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Figure 5.7: Absolute residual per iteration ni of Newton’s method while solving non-
linear systems in time steps t = 1, . . . , 5. The systems of linear equations
are solved without preconditioning (woPC) and using Rinit, Rinit � Rpot

with Rinit = blkDiag(A, 1), and Rinit�Rpot with Rinit = blkDiag(A, 4)
for preconditioning.
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6 Concluding summary

Memory consumption and computational effort are limiting factors in simulation and
optimization. To address these challenges, in a first step, the computational effort
to determine nonzero elements of a sparse Jacobian matrix is reduced using full
and partial Jacobian computation. In a second step, for solving systems of linear
equations, preconditioning is combined with the partial Jacobian computation to
reduce the number of Jacobian matrix-vector products and the number of nonzero
elements employed for preconditioning.
To reduce the computational effort for full and partial Jacobian computation, sev-

eral new coloring algorithms are introduced in Chap. 3. For stencil-based computa-
tions, the sparsity of Jacobian matrices has been exploited to date in an unfavorable
way by using either coloring algorithms for general graphs or explicit coloring formu-
lae whose development is time-consuming. Instead, an exact sub-exponential divide-
and-conquer coloring algorithm using separators is introduced. This new algorithm
exploits the properties of the employed stencils and the regular grid. The runtime
of this algorithm is much lower than using the exhaustive search, and the resulting
colorings are again minimal. Compared to a coloring heuristic for general graphs, the
runtime of this algorithm is often better and the number of colors is always mini-
mal. To overcome the sub-exponential complexity of the divide-and-conquer coloring
algorithm, a grid-size independent algorithm with linear complexity is presented.
Although this approach is not proved to be applicable in general, it is successfully
employed on all considered stencils. For general graphs in partial Jacobian compu-
tation, a two-sided coloring heuristic is introduced to combine rows and columns to
linear combinations. It is demonstrated that this algorithm is comparable to state-of-
the-art coloring heuristics for full Jacobian computation and its two-sided colorings
for partial Jacobian computation are better than one-sided colorings. Using suitable
vertex orderings for coloring heuristics is really important to decrease the number
of colors. In this thesis, the influence of these vertex orderings is only sketched in
brief. For specific matrix structures, the benefit of two-sided colorings compared to
minimal one-sided colorings is assessed in terms of the number of colors. First, com-
puting block diagonal elements of general Jacobian matrices is considered. Using the
partial Jacobian computation for this structure, the number of colors may be reduced
by using two-sided colorings. However, for the special case of the main diagonal, it
is shown that two-sided colorings are not better than a minimal one-sided coloring.
For stencil-based computations, a lower bound on the number of colors for two-sided
colorings is introduced. There are stencils for which two-sided colorings cannot be
better than minimal one-sided colorings. For other stencils, the existence of such a
two-sided coloring seems unlikely.
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6 Concluding summary

In Chap. 4, the interplay between the partial Jacobian computation and precondi-
tioning is evaluated. That is, opposed to currently employed methods for precondi-
tioning, only a subset of the nonzero elements is used to determine a preconditioner.
These elements are classified as initially, potentially, and additionally required ele-
ments. First, the initially required elements are selected, and a coloring is computed
which is sufficient to determine these elements. Next, new algorithms are introduced
to select further nonzero elements which are determinable with the same coloring.
These elements are denoted as potentially required elements. The additionally re-
quired elements are a subset of the potentially required elements which do not cause
any fill-in element while obtaining the preconditioner. Thus, these additionally re-
quired elements can be stored in memory. These elements are further restricted to
obtain a beneficial block structure which is good for solving systems of linear equa-
tions in parallel. Overall, the additionally required elements do not cause any extra
fill-in element, and the number of colors is not increased compared to the initially
required elements. The number of colors to determine the nonzero elements and the
number of matrix-vector products to solve a (preconditioned) system of linear equa-
tions are evaluated. In summary, the preconditioning is successfully combined with
partial Jacobian computation to save computational effort and manage the limited
memory.
The practical relevance of the previously described approaches is verified in Chap. 5

using application-oriented simulations. The partial Jacobian computation is useful
to carry out a sensitivity analysis for a distillation column in process engineering. In
carbon sequestration in applied geophysics, the new coloring algorithms for stencil-
based computations and the combination of the partial Jacobian computation with
preconditioning are successfully applied to decrease the computational effort. Fluid
dynamic applications in aeronautical and biomedical engineering are used to show
that the computational effort to solve systems of linear equations is decreased by
using the initially, potentially and additionally required elements for preconditioning.
There are still some open issues which could be considered for further work. The

universal applicability of the linear-time coloring algorithm for regular grids could
be verified. The coloring algorithms for grids could be extended to cover non-regular
grids and adaptivity. For the two-sided coloring algorithm for general Jacobian matri-
ces, the influence of vertex orderings could be studied in more detail. The combination
of preconditioning and partial Jacobian computation with respect to automatic dif-
ferentiation provides a lot of opportunities for further investigations. Currently, a
coloring for the initially required elements is determined, and then the additionally
required elements are chosen. Instead, an approach for simultaneously combining the
coloring and the selection employing the bipartite graph could be developed.
In summary, the sparsity of Jacobian matrices is successfully exploited using graph

models and algorithms to decrease the computational effort. Furthermore, a standard
preconditioning technique is adapted to deal with the available memory and over-
come the excessive memory consumption. These approaches enable to simulate and
optimize large-scale applications previously exceeding the resources.
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Appendix

A.1 Overview of stencils

The stencils and stencil combinations which are employed in this thesis are given at
a glance. Each center is highlighted by an arrow.

A.1.1 Full Jacobian computation

N4pt N5pt N6pt N9pt

A.1.2 Partial Jacobian computation

N5,1pt N5,3pt

N6,1pt N6,3pt N6,5pt

N9,1pt N9,3pt N9,5pt
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A.2 Colored tiles

The given colored tiles are computed by the algorithm getTile (Alg. 3.4). These
colored tiles correspond to the entries in the Tables 3.7(a) and 3.7(b).

A.2.1 Full Jacobian computation

N4pt N5pt N6pt N9pt

A.2.2 Partial Jacobian computation

N5,1pt N5,3pt N6,1pt N6,3pt N9,1pt N9,3pt
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A.3 Proof of Lemma 3.8

A.3 Proof of Lemma 3.8

Proof. Given a minimal restricted star bicoloring Φsb, this mapping Φsb is trans-
formed into a restricted distance-2 coloring Φc where the number of colors does not
increase. Therefore, two steps are carried out: First, the mapping Φsb is transformed
into a restricted star bicoloring Φ�

sb where one of both incident vertices of each edge
in ED is colored with a nonzero color and the other vertex with color zero. Second,
the coloring Φ�

sb is transformed into a restricted star bicoloring Φ′
sb where all ver-

tices ri ∈ Vr are colored with color zero, Φ′
sb(ri) = 0, 1 ≤ i ≤ |Vr|. We show that the

mapping Φ′
sb is also a restricted distance-2 coloring of the column vertices.

1. The coloring Φsb is transformed into another star bicoloring Φ�
sb where for each

edge (ri, ci) ∈ ED, 1 ≤ i ≤ |Vr|, holds either Φ�
sb(ri) �= 0 and Φ�

sb(ci) = 0 or
Φ�

sb(ri) = 0 and Φ�
sb(ci) �= 0. Therefore, we iterate over all edges (ri, ci) ∈ ED

with Φsb(ri) �= 0 and Φsb(ci) �= 0 and recolor one of both vertices with color
zero. To show the correctness of the new star bicoloring Φ�

sb, we have to consider
four cases based on the paths (ci, ri, cj), ∀cj ∈ N2(ci, G), and (ri, ci, rk), ∀rk ∈
N2(ri, G):

• The vertex ri is differently colored from its distance-2 neighbors rk; the
vertex ci is differently colored from its distance-2 neighbors cj. In this
scenario, the condition 3a and the condition 3b from Def. 2.12 hold re-
gardless if either vertex ri or vertex ci are colored with color zero, i.e,
either Φ�

sb(ri) = 0 or Φ�
sb(ci) = 0. An example for this setting is given in

Fig. A.1(a).
• The vertex ri is differently colored from its distance-2 neighbors rk; there
is a distance-2 neighbor cj of the vertex ci with Φsb(ci) = Φsb(cj). This
case is illustrated in Fig. A.1(b). The vertex ri must keep the nonzero
color, otherwise condition 3a would be broken, because a path (ci, ri, cj)
with Φ�

sb(ri) = 0 and Φ�
sb(ci) = Φ�

sb(cj) would occur. However, the vertex ci
can be assigned the color zero without generating an invalid coloring.

• There is a distance-2 neighbor rk of the vertex ri with Φsb(ri) = Φsb(rk);
the vertex ci is differently colored from its distance-2 neighbors cj. That is
analogous to the previous case by swapping the row and column vertices.

• The vertex ri is identically colored to a distance-2 neighbor rk; the vertex ci
is identically colored to a distance-2 neighbor cj. This case is depicted in
Fig. A.1(c). The vertices ri or ci cannot be colored with the color zero
without breaking condition 3a or condition 3b of Def. 2.12. This does not
matter, because this case is not a valid restricted star bicoloring due to
condition 3c and cannot exist.

During this transformation step, the number of colors is not increased, because
the transformation does not assign any nonzero color.

2. This valid restricted star bicoloring Φ�
sb with either Φ�

sb(ri) �= 0 and Φ�
sb(ci) = 0

or Φ�
sb(ci) �= 0 and Φ�

sb(ri) = 0 is the starting point for the next transformation
step. This coloring is transformed into another restricted star bicoloring Φ′

sb

113

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Bibliography

ri ci

(a)

ri ci

(b)

ri ci

(c)

Figure A.1: Star bicolorings Φsb for vertices ri ∈ Vr and ci ∈ Vc and its distance-2
neighbors.

with Φ′
sb(ri) = 0, 1 ≤ i ≤ |Vr|. The transformation works as follows: We iterate

over the edges (ri, ci) ∈ ED with Φ�
sb(ri) �= 0 and Φ�

sb(ci) = 0 and swap Φ�
sb(ci)

and Φ�
sb(ri). Hence, we obtain the restricted star bicoloring Φ′

sb. The condition 1
of Def. 2.12 holds due to the different colors used for coloring the vertices in Vr

and Vc. The condition 2 is also not violated, because every edge (ri, ci) ∈ ED has
an incident vertex ci with Φ′

sb(ci) �= 0. The condition 3b is not active anymore,
because every vertex in Vc is colored with a nonzero color. The condition 3c is
as well not active anymore, because every vertex in Vr is colored with color zero.
Finally, the path (ci, ri, cj) is considered to show that the condition 3a is not
violated. This path is extended to (ci, ri, cj, rj), because the color swapped from
vertex rj to vertex cj is relevant to show that this condition is valid. We consider
the edge (ri, ci) before swapping the colors. A coloring with Φ�

sb(ri) = 0 and
Φ�

sb(ci) �= 0 cannot violate condition 3a, because the colors are not swapped.
For a coloring with Φ�

sb(ri) �= 0 and Φ�
sb(ci) = 0, there are two cases how the

vertices rj and cj can be colored.

• Φ�
sb(rj) = 0 and Φ�

sb(cj) �= 0: The nonzero colors for rows and columns are
different. Thus, the vertices ri and cj are colored with different nonzero
colors. After swapping the colors, the vertices are colored as follows:
Φ′

sb(ci) �= Φ′
sb(cj) with Φ′

sb(ci) �= 0 and Φ′
sb(cj) �= 0. Hence, condition 3a is

not violated.
• Φ�

sb(rj) �= 0 and Φ�
sb(cj) = 0: In this case, we swap not only Φ�

sb(ci)
and Φ�

sb(ri) but also Φ�
sb(cj) and Φ�

sb(rj). Before swapping the colors, the
vertices ri and rj are colored with different nonzero colors due to Φ�

sb(cj) =
0 and condition 3b. After swapping the colors, the vertices ci and cj are
colored with different nonzero colors. The condition 3a is not violated.

Hence, by swapping the nonzero colors from the row vertices to the column
vertices, the condition 3a cannot be violated. Furthermore, the number of colors
does not change.

Lastly, we consider a special case: The vertices ri and ci are isolated. That is, the
vertices do not have any distance-2 neighbor. The condition 3 does not affect in this
situation. There are two possible colorings: either Φ�

sb(ri) = 0 and Φ�
sb(ci) �= 0 or

Φ�
sb(ri) �= 0 and Φ�

sb(ci) = 0. In the first case, this is already a valid coloring for
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Φ′
sb. In the second one, the colors of the vertices ri and ci must be swapped to get a

correct coloring Φ′
sb. In both cases the condition 1 and condition 2 hold.

After coloring all vertices in Vr with the color zero and all vertices in Vc with
nonzero colors, we show that the restricted star bicoloring Φ′

sb is also a restricted
distance-2 coloring. Therefore, we compare condition 1 of Def. 2.10 with condition 2
of Def. 2.12 and condition 2 with condition 3a. We can directly observe that the
coloring Φ′

sb does not violate the conditions of the restricted distance-2 coloring.
Hence, the property χsb ≥ pd2 holds.
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