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Abstract

Modeling and prediction of the mechanical part failure under cyclic loading conditions
are of great importance. With the development of technology, damage tolerance design
becomes compulsory and fatigue crack propagation life is a necessary design case, e.g.
in aerospace industry. For elastic-plastic fatigue crack propagation the failure process is
generally ductile, material failure is accompanied with a large amount of elastic unloading
and plastic reloading, which cannot be described by the known Paris’ law. In the ductile
metallic material, this problem becomes especially significant for fatigue crack propagation
in low cycle fatigue (LCF) assessment.
In past decades, the cohesive zone model (CZM) has been popular in computational

fracture mechanics community. Material behavior in the cohesive zone is described by
a cohesive law. Parameter studies on the effects of the cohesive law on ductile crack
simulation show that to obtain realistic crack propagation, one has to further increase the
stiffness of the cohesive zone. The fracture energy release rate in crack simulation using
CZM differs from the cohesive energy.
The investigation of constraint effects has confirmed that cracking depends on the applied

load intensity and the load configuration. Computational modeling of three-dimensional
ductile crack propagation under significant constraint effects is still a challenge in computa-
tional fracture mechanics. In the present work, a new stress-triaxiality-dependent cohesive
zone model (TCZM) is proposed to describe the elastic-plastic fracture process. Both co-
hesive energy and cohesive strength are assumed to be dependent on the stress triaxiality
and the correlations are identified according to the experiments. Three-dimensional com-
putational predictions show good agreement with experimental results. The model gives a
realistic elastic-plastic fracture process.
In fatigue crack growth simulation, cyclic cohesive zone models (CCZM) are investigated

extensively, which accounts for the damage evolution under cyclic loading and, thus, can
predict fatigue crack growth. Numerous proposed CCZMs can only describe the Paris’
law like behavior. To achieve a more realistic damage evolution, a new damage variable
is proposed which can be decomposed into monotonic damage and cyclic damage. The
parameters in the cohesive zone model are identified from the fatigue tests of the cracked
specimens. Computations confirm that the present model may provide a uniform descrip-
tion for the whole fatigue crack growth regimes.
By considering the influence of the stress-state effect on the proposed CCZM, a new

stress-triaxiality-dependent cyclic cohesive zone model (TCCZM) is developed. The stress
triaxiality affects both the cohesive law and the damage evolution equation. Three-
dimensional fatigue crack predictions are performed in the C(T) specimen and the cracked
rod bar. Numerical results indicate that TCCZM can predict the three-dimensional fatigue
crack appropriately. However, the limitations of present models are due to the only consid-
eration of the normal failure, the predictions show deviation in the area of the dominance of
mode III failure. Present study confirms the applicability of the stress-triaxiality-dependent
cohesive zone model to fatigue crack prediction as a general extended model.
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Zusammenfassung

Die Modellierung und Vorhersage des Bauteilversagens unter zyklischen Lastbedingun-
gen ist von großer Bedeutung. Bei der Entwicklung von Technologien ist die Bewertung
der Beschädigungstoleranz (Damage tolerance assessment) obligatorisch. Ebenso ist die
Einschätzung der Lebensdauer im Hinblick auf eine Rissausbreitung durch Ermüdung ein
notwendiger Aspekt der Konstruktion, z. B. in der Luftfahrtbranche. Für die elastisch-
plastische Ermüdungsrissausbreitung ist der Schädigungsprozess im Allgemeinen duktil.
Das Materialversagen wird von einer großen Menge an elastischem Entlastung und plas-
tischer Belastung begleitet, was durch das Pariser Gesetz nicht beschrieben werden kann.
Besonders bei duktilem metallischem Material stellt die Ermüdungsrissausbreitung bei der
elastisch plastischen Ermüdungsanalyse (LCF) eine besondere Herausforderung dar.
In den vergangenen Jahrzehnten war das Kohäsivzonenmodell (CZM) in der numerischen

Bruchmechanik populär. Das Materialverhalten in der kohäsiven Zone wird durch ein
Kohäsivgesetz beschrieben. Parameterstudien über die Auswirkungen des Kohäsionsge-
setzes auf die duktile Risssimulation zeigen, dass um eine reale Rissausbreitung zu er-
halten die Steifigkeit der Kohäsionszone weiter erhöht werden muss. Die Bruchenergie,
die bei der Risssimulation mithilfe von CZM ermittelt wurde, unterscheidet sich von der
Kohäsionsenergie.
Die Untersuchung von Einschränkungseffekten hat bestätigt, dass das Rissbild von

der angewandten Lastintensität und der Lastkonfiguration abhängt. Die rechner-
ische Modellierung der dreidimensionalen duktilen Rissausbreitung unter signifikan-
ten Einschränkungseffekten stellt in der numerischen Bruchmechanik nach wie vor
eine Herausforderung dar. In der vorliegenden Arbeit wird ein neues spannungs-
dreiachsigkeitsabhängiges Kohäsivzonenmodell (TCZM) vorgeschlagen, um den elastisch-
plastischen Bruchprozess zu beschreiben. Sowohl die Kohäsivenergie als auch die
Kohäsivkraft werden von der Spannungsdreiachsigkeit abhängig gemacht und die Korrela-
tionen werden anhand der Experimente identifiziert. Dreidimensionale Berechnungsvorher-
sagen zeigen eine gute Übereinstimmung mit experimentellen Ergebnissen des elastisch-
plastischen Bruchprozesses.
In der Ausbreitungssimulation von Ermüdungsrissen werden zyklische Kohäsivzonen-

modelle (CCZM) intensiv untersucht, was die Schadensentwicklung unter zyklischer
Belastung berücksichtigt und somit das Ermüdungsrissausbreitung vorhersagen kann.
Zahlreiche vorgeschlagene CCZMs können nur das Verhalten nach dem Pariser Gesetz
beschreiben. Um eine realistischere Schadensentwicklung zu erreichen, wird eine neue
Schadensvariable vorgeschlagen, die in monotone Schäden und zyklische Schäden unterteilt
wird. Die Parameter im Kohäsivzonenmodell werden aus den Ermüdungstests der angeris-
senen Proben identifiziert. Berechnungen bestätigen, dass das vorliegende Modell eine
einheitliche Beschreibung für das gesamte Ermüdungsrisswachstumsregime liefern kann.
Unter Berücksichtigung des Einflusses des Spannungszustandes auf das vorgeschlagene

CCZM wird ein neues spannungsdreiachsigkeitsabhängiges zyklisches Kohäsivzonenmodell
(TCCZM) entwickelt. Die Spannungsdreiachsigkeit beeinflusst sowohl das Kohäsivgesetz
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Zusammenfassung

als auch die Schadensentwicklungsgleichung. Dreidimensionale Ermüdungsrissvorhersagen
werden in der C(T)-Probe und dem gerissenen Stab durchgeführt. Numerische Ergebnisse
zeigen, dass das TCCZM den dreidimensionalen Ermüdungsriss in geeigneter Weise vorher-
sagen kann. Allerdings ist das entwickelte Modell nur für das Normalversagen begrenzt.
Die Vorhersagen zeigen eine Abweichung im Bereich mit der Modus-III-Dominanz. Die
vorliegende Studie bestätigt die Anwendbarkeit des spannungsdreiachsigkeitsabhängiges
Kohäsivmodells zur Ermüdungsrissvorhersage als ein allgemeines erweitertes Modell.

VDieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Nomenclature

Symbols of CZM

T traction tensor

δ separation tensor

T0 cohesive strength

δ0 critical separation
(the separation when the traction reaches the maximum)

δu ultimate separation
(the separation when the traction vanishes)

Γ0 cohesive energy

Tmax(η) stress-triaxiality-dependent cohesive strength

Γ(η) stress-triaxiality-dependent cohesive energy

δu(η) stress-triaxiality-dependent ultimate separation

D Damage variable

Dm monotonic damage

Dc cyclic damage

Dm(η) stress-triaxiality-dependent monotonic damage

Dc(η) stress-triaxiality-dependent cyclic damage

T0 cyc the current cohesive strength, T0 cyc = T0(1−D)

dΣ accumulative length

n damage controlling parameter
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Nomenclature

δacc separation accumulation

k un/reloading stiffness

k(η) stress-triaxiality-dependent un/reloading stiffness

ζ characteristic length of the cohesive zone

Symbols of Mechanics

σ stress tensor

ε strain tensor

E Young’s modulus of the bulk material

ν Poisson’s ratio

σy initial yield stress

σu ultimate stress

εf elongation

n strain hardening exponent

rp plastic zone size

G energy release rate

K stress intensity factor

Kc fracture toughness

Kth threshold stress intensity

R loading ratio

ΔK stress intensity range

ΔF cyclic loading range

σa stress amplitude

σm mean stress
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Nomenclature

C constant parameter in Paris’ law

m constant parameter in Paris’ law

σ22 tensile stress

Ψ material stiffness

J J-integral

Ji J-integral at crack initiation

Jm average J-integral

η stress triaxiality

ηm average stress triaxiality

a crack length at the middle plane

Δa crack extension at the middle plane

s crack length at the free surface

Δs crack extension at the free surface

vLL load line displacement

δ5 CTOD defined by Schwalbe

N loading cycles

u displacement tensor

B specimen thickness

BN specimen net thickness

W specimen width

D specimen diameter

da/dN fatigue crack growth rate

le finite element length
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Nomenclature

Abbreviations

LEFM linear elastic fracture mechanics

EPFM elastoplastic fracture mechanics

LCF low cycle fatigue

CZM cohesive zone model

CCZM cyclic cohesive zone model

TCZM stress-triaxiality-dependent cohesive zone model

TCCZM stress-triaxiality-dependent cyclic cohesive zone model

GTN Gurson-Tvergaard-Needlman model

C(T) compact tension specimen

CTS compact tension shear specimen

CTOD crack tip opening displacement

UEL user subroutine to define an element in ABAQUS

UMAT user subroutine to define a material behavior in ABAQUS
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1 Introduction

1.1 Background

Fracture accidents are serious problems that human society has faced for a long time.
Generally speaking, all components contain certain kinds of defects and micro-cracks,
regardless of manufacturing and machining processes. A stress engineer confronts with an
important question which kinds of defects, which size of defects, which loads and which
environmental influence will affect the life of the designed components. Fracture mechanics
is used to evaluate the strength of a structure or component in the presence of a crack
or flaw. Development of fracture mechanics is helpful to eliminate some of the potential
dangers due to increasing components complexity.

1.1.1 Fundamental of fracture mechanics

The typical process of solving fracture mechanics problem is to evaluate characteristic
parameters of crack based on fracture criteria. The critical values of the characteristic
parameters will be experimentally determined as a function of the crack length, specimen
geometry and loading configurations.

The first successful analysis of a fracture problem was laid in 1920 by Griffith [1], who
considered the propagation of brittle cracks in glass. He showed that the product of the
far field stress, the square root of the crack length, and material properties governed crack
extension. This product was shown to be related to the energy release rate, G, which
represents the elastic energy per unit crack surface area required for crack extension.

Irwin [2, 3] later made significant advances by showing that the energy approach is
equivalent to the stress intensity factor K. The fracture occurs when a critical stress
distribution ahead of the crack tip is reached. The material property governing fracture
may therefore be stated as a critical stress intensity, Kc, or in terms of energy as a critical
value Gc. Demonstration of the equivalence of G and K provided the basis for development
of the discipline of linear elastic fracture mechanics (LEFM).

Since no material could carry the infinite stresses derived by the elasticity assumption,
a plastification extending from the crack tip must take place. The plastic deformations
will cause stress redistribution and the elastic solution will be no longer valid for the whole
inelastic zone. The concept of elastoplastic fracture mechanics (EPFM) is developed.
Under assumption of an elastic-perfectly plastic material, Irwin [4] presented a simplified

model for determination of the plastic zone attending the crack tip under small-scale
yielding (SSY). He argued that the plasticity at the crack tip causes the crack to behave
as if it were longer than its true physical size. It means that the plastification reduce the
structure carrying capacity. A cracked specimen with a plastic zone size rp corresponds to
a specimen with crack length aeff = a + rp. Correspondingly, the effective stress intensity
factor Keff is evaluated.

1Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
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1 Introduction

Wells [5] proposed a fracture criteria related to the displacement between crack sur-
faces which separate associated with plastic deformation. The separation distance led to
the development of a new parameter which is known as crack tip opening displacement
(CTOD). A standardized method firstly developed by Schwalbe [6] measures the CTOD
on the specimen surface at the fatigue precrack tip over an original gauge length of 5 mm
(δ5).

In 1968, Rice [7] introduced an elastic-plastic fracture parameter to characterize non-
linear material behavior of crack tip, J-integral. It is the generalization of the energy
release rate for nonlinear elastic materials. For stationary crack problems, if the remote
applied load is only assumed monotonic, the J-integral is path-independent. It was firstly
proposed as a fracture parameter by Begley and Landes [8].

Hutchinson [9], Rosengren and Rice [10] used J as a single parameter to characterize
crack tip stress fields under SSY condition in nonlinear materials (HRR solution). Shih [11]
demonstrated a correlation between J-integral and CTOD, implying that both parameters
are equally valid for characterizing fracture.

The J-integral and the HRR solution provide the basis to consider the crack-tip field
of the nonlinear fracture problems, however, the limitation arises due to high constraint
crack geometries.

1.1.2 Constraint effect in ductile fracture

It has been known that the resistance against initiation of ductile crack growth and crack
propagation depends on the geometry and the load configuration of the respective specimen
of structural component [12–20]. The geometry dependence of the crack growth resistance
in ductile materials arises due to the competition between two dissipations, i.e. the plastic
deformation around the crack tip and the energy spent in the actual creation of new surface
due to microseparation processes [13, 21]. The J-integral is insufficient to characterize a
crack, even in a two-dimensional specimen.

In order to account for different triaxial stress-states in influencing crack tip fields,
O’Dowd and Shih [22, 23] proposed the two-parameter J-Q theory. In this case, Q repre-
sents the constraint at the crack tip.

Yuan and Brocks [18] considered the plastic zone size in three-dimensional cracked spec-
imens. The computations confirm that the out-of-plane constraint is not directly related
with the in-plane constraint, which is mainly a manifest of the loading configuration to the
crack tip field. This knowledge implies that the computational crack model has to include
more details about the crack field besides the stress intensity, such as K and J et al. The
constraint around the crack tip has to be represented in a more suitable way.

In characterization of three-dimensional cracks Brocks and Künecke [24] found the stress
triaxiaity is a meaningful crack parameter besides the J-integral, defined as the ratio of
hydrostatic stress over the effective stress, η = σh/σe. In fact η is directly related to crack
field, while Q evaluate the difference between the real crack stresses and the plane strain
reference crack field.

The constraint effects make the crack assessment methodology based on the conventional
crack parameters too complex to apply for engineering. The transferability problem, which
means transferring the crack growth resistance data as measured on laboratory specimens
to assessing the defects in components, is a real practical concern.
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1.1 Background

1.1.3 Fatigue crack growth

The strength of a component or structure can be significantly reduced by the presence of a
crack or discontinuity. However, in most engineering cases, the initial crack or discontinuity
size is not critical to cause catastrophic failure. More commonly, subcritical crack growth
occurs from the existing crack or discontinuity until a critical crack size is reached, causing
fracture. Then, the major question would be how fast the crack grows from an initial
length to the critical crack size.

Figure 1.1: Schematic demonstration of fatigue crack growth rate versus ΔK.

Applying the concepts LEFM or EPFM under SSY condition, the stress intensity factor
K can characterize the stress field around the crack tip involving the applied stress, crack
size and the material geometry. Paris and Erdogan [25] firstly suggested that for a cyclic
variation of the imposed stress field, the rate of fatigue crack growth (da/dN) should be
based on the stress intensity factor range (ΔK). The well-known Paris equation can be
denoted as

da

dN
= C(ΔK)m, (1.1)

where C and m are material specific parameters. Many fatigue crack growth data can be
obtained under constant load amplitude test condition using sharp cracked specimens. The
typical log-log plot of da/dN vs.ΔK shown schematically in Fig. 1.1 has a sigmoidal shape
that can be divided into three major regions. Region I is the near threshold (ΔKth) region
which indicates the early development of a fatigue crack and the crack growth rate. The
threshold value is on the order 10−10∼10−9 m/cycle. Fatigue crack should not propagate
below the threshold value. Region II represents a stable crack propagation zone under
small-scale yielding condition. The data follows a linear relation between log(da/dN) and
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log(ΔK) which corresponds to Paris equation. Region III shows a very high crack growth
rate which is near the final failure. Unstable crack growth would occur when approaches
the fracture toughness Kc, which in turn depends on the microstructure, the mean stress
and the environment.

Forman et al. [26] improved Paris’ law by suggesting a new model which is capable
of describing Regime III of the fatigue crack growth curve and including the stress ratio
effect. Further modifications of the Forman’s expression by Erdogan and Ratwani [27] to
represent region I, II and III have been accomplished by including the threshold stress
intensity parameter ΔKth.

Based on the experimental observations, a fatigue crack can close at a remotely applied
tensile stress due to a zone of compressive residual stresses left in the crack tip. Therefore,
many closure models were proposed based on the effective stress intensity factor range
ΔKeff . Elber [28, 29] introduced the crack closure concept to analyze crack propagation
under variable amplitude loading. Newman [30, 31] used a crack closure approach for
predicting the fatigue crack growth life. The crack opening stress, σop, as a function of
crack length and load history was calculated by an iterative solution procedure for a cycle-
by-cycle closure calculation using detailed FE programs. Although the estimation of plastic
zone size suggested by Irwin is very elementary, the engineering application confirms a high
accuracy of this method.

Despite the use of K-based models have been an enormously successful engineering
theory, it is important to recall that most engineering estimates of fatigue crack growth
rely on K under the assumption that the plastic behavior of the material around the crack
tip will not affect the crack growth process. However, for low cycle fatigue problems,
the material is locally plastic, especially around cracks. Due to a large amount of plastic
zone, fatigue crack propagation is very complex and conventional K-based models cannot
describe the crack propagation behavior appropriately. Predicting elastoplastic fatigue
crack growth life remains one of the most challenging problems in fracture mechanics.

1.2 Cohesive zone model

1.2.1 Numerical damage models

The advent of numerical damage models is providing an approach to structural assessment
in that these models deal with the damage events in the near-crack tip process zone which
are embedded in the global FE model of the component. This way the global FE model
prescribes the loading conditions and the component is under onto the damage zone [32].

Analytical and macroscopic approaches used in fracture mechanics have some limitations
with respect to the amount of plasticity allowed at the crack tip, constraint and geometry
dependency. As Siegmund and Brocks [33] pointed out, to the present, ”local approach”
is the only really successful methods for prediction of crack growth resistance. In this
kind of approach, one can simulate ductile fracture either by employing a micromechanical
model of damage, which represents the micromechanism of void initiation, growth and
coalescence, or by using a phenomenological model for material separation and coupling it
to the surrounding undamaged elastoplastic material [34].

In a micromechanical model, a representative volume element (RVE) or ”unit cell” is
considered to study the respective mechanism. Such a micromechanical porous plastic-
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ity model was originally proposed by Gurson [35] and later extended by Tvergaard and
Needlman [36] which is so called GTN model.
In a phenomenological model, ductile crack growth in metals can be modeled by intro-

ducing a process zone ahead of the crack tip where material degradation and separation
occur. This zone is embedded in an elastoplastic surrounding. Within the concept of the
energy release rate, a ”cohesive zone model” is introduced.

1.2.2 Cohesive zone model formulation

The cohesive zone model (CZM) removes the crack tip singularity and represents physics
of the fracture process at the atomic scale. It regards fracture as a gradual phenomenon in
which material separation takes place across an extended crack tip (cohesive zone) and is
resisted by cohesive forces. A cohesive law (traction vs. separation) governs the constitu-
tive behavior of crack opening in addition to the bulk stress-strain relation of surrounding
material. No additional criterion is needed for fracture to occur. New crack surfaces are
created as a natural result of constitutive evolvement, thus maintaining continuity condi-
tions mathematically despite the physical separation [37].
Generally, in crack propagation simulation, cohesive zone can be treated as the pre-

scribed crack extension path, as shown in Fig. 1.2. The locations where material damage
may occur have to be provided either from experimental observations, experienced data or
numerical analyses. Within the framework of extended finite element methods (XFEM),
the potential of CZM for arbitrary crack propagation has been exploited [38–42]. How-
ever, by applying XFEM in elastic-plastic problems, numerical difficulties arise significantly
which leads to inevitable limitation.

Figure 1.2: Schematic representation of the concept of cohesive/volumetric finite elements
model [37].

Stress components within the cohesive zone no longer follow the constitutive law of
the bulk material. Considering the contribution of the cohesive traction, the mechanical
equilibrium statement of the cohesive zone in the form of the principle of virtual work can
be written as

∫
V

(σ : dε)dV +

∫
Sint

(T · dδ)dS =

∫
Sext

(t · du)dS, (1.2)
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where σ and ε are the Cauchy stress and strain tensor. V and Sext represent the specimen
volume and the external surface. t means the traction vector at the external boundary
and u is the displacement vector. The integral term,

∫
Sint

(T ·dδ)dS, over the crack surface
and its prolongation in the process zone, Sint, represents the cohesive surface contribution
of the cohesive zone ahead of the crack tip. T denotes the cohesive traction components
and δ is the separation of the two adjacent cohesive surfaces.
Comparing with the conventional stress-strain relations of bulk material, the evolution

of local traction vs. separation behavior within the cohesive zone can be defined as a
constitutive law for the special field between the virtual crack surfaces.

1.2.3 Cohesive laws

The cohesive law is responsible for material degradation under different loading configu-
ration. In general cases, both traction and separation are vectors, so that the cohesive
law is defined in a vector equation. For a mode I crack, only normal traction vs. normal
separation play a role in material failure, that is, the cohesive law expression reduces to a
scalar traction-separation function, T (δ).
Within the cohesive zone, the damage increases when the traction is reduced. Complete

failure is assumed when the separation is greater than an ultimate value. Common to all
cohesive law shapes, the cohesive strength T0 and the ultimate separation δu where the
final failure occurs, are sufficient for modeling the separation process.
Fracture mechanics is built on energy balance around the crack tip and during crack

propagation. The energy release rate should calibrate crack initiation and propagation in
fracture mechanics methodology. In cohesive zone modeling, the crack should initiate and
propagate based on the energy dissipation to separate the cohesive zone, which is defined
as the cohesive energy Γ0, as

Γ0 =

∫ δu

0

T (δ)dδ. (1.3)

1.2.4 Overview of the application of CZM

The early pioneering work on CZM can be traced back to 1960s. Dugdale [43] assumed an
elastic-perfect plastic material behavior to avoid the unrealistic stress singularity around
the crack tip. A narrow strip plastic zone ahead of the crack tip can be considered as
cohesive zone. Barenblatt [44] later assumed cohesive force distribution in a sufficient large
process zone along the crack ligament and the plastic strength is replaced by a cohesive
law. The strip yield models of Dugdale and Barenblatt form the fundamental idea for
CZM.
The first application of CZM to simulate the fracture behavior of a material was per-

formed by Hillerborg et al. [45], as early as in 1976. The authors indicated that the
cohesive stress at the crack tip has a linear descending relationship with the crack opening
to describe the damage behavior of concrete. Needleman [46, 47] firstly induced CZM to
investigate non-linear failure. The inclusion debonding in micro and macro scales were
simulated by applying an exponential cohesive law.
In 1990, Yuan and Cornec [48] firstly employed CZM to investigate the crack extension

in ductile materials. The ductile crack growth in an aluminium alloy was simulated by
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using a constant cohesive law. Tvergaard and Hutchinson [13] computed the crack growth
and subsequent resistance for an elastic-plastic solid through introducing a multilinear
form cohesive law. Later, Scheider and Brocks [49] probed with most different function
forms and studied influences on fracture process simulation. Goyal et al. [50] formulated an
exponential form cohesive law by including a ”brittleness” parameter, so that the flexibility
of the cohesive law was enhanced.
In order to find more hints about the CZM, Krull and Yuan [51] investigated the atom-

istic separation with help of molecular dynamics and concluded the similarity between the
exponential cohesive law of the normal failure process in the nano-scale.

Figure 1.3: Schematic demonstration of different sharps cohesive law.

Various sharps of cohesive laws are shown in Fig. 1.3. Scheider and Brocks [52] showed
that the shape of cohesive law has a significant influence on the results of crack extension of
ductile materials. Different cohesive law sharps can make the same results in one specimen
with different cohesive parameters. But the results might be significant different in another
fracture specimen. Vossen et al. [53] denoted that cohesive zone elements generally do not
satisfy rotational equilibrium for arbitrary cohesive laws. The error in the nodal forces
can be neglected if the ratio of the ultimate separation to the length of the process zone
is small. Yuan and Li [54] revealed that the initial stiffness of the cohesive law can induce
significant errors into simulation if it is assumed improperly. Furthermore, the cohesive
energy is generally smaller than the J-integral from FEM computation, caused by elastic
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unloading around the crack tip. Based on such observations determining parameters of the
CZM needs detailed special experiments. More detailed classification of different kinds of
cohesive laws can refer to the literatures [55–60].

1.2.5 Constraint dependence of the cohesive parameters

Investigation has confirmed that the stress-state plays a crucial role in the damage growth
till failure. Only a model which can account for the variations in stress-state in prediction
of initiation and propagation of macroscopic crack would facilitate the transfer of fracture
model parameters from a simple laboratory test to real complex structures [61].
However, up to now almost all studies using CZM to describe ductile crack growth assume

the cohesive parameters to be material constants. Therefore, the effect of stress-state on
the cohesive law has not been accounted for.
An early evidence for constraint dependence of the cohesive parameters can be found in

the work of Yuan et al. [62]. The crack extension of thin-walled fracture specimens failing
in a slanted manner was controlled by adjusting the cohesive energy in each element by
experimental vLL −Δa curves. By reproducing the experimental data it turned out that
the crack initiates with a Γ0 value, which is equal to the crack initiation Ji for normal
fracture, and then reduces to significantly lower values during the transition to the slanted
fracture mode. After reaching the fully slanted region, the values remain almost constant
again [32]. The result is shown in Fig. 1.4.

Figure 1.4: Development of the cohesive energy in the transition region from flat to slant
fracture [62].

Ivankovic [63] measured a cohesive law in polyethylene using novel experimental method
by notched tensile specimens. These results showed that both fracture energy and cohesive
strength must be functions of the loading intensity and specimen geometry. It implies
different cohesive laws for plane strain and plane stress.
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For aforementioned reasons, recently, several papers on relationships between constraint
effects and CZM were published. Unfortunately, most published works were mainly on
in-plane constraint effects. Detailed discussions on existing models and formulation of a
stress-triaxiality-dependent cohesive zone model (TCZM) will be presented systematically
in Chapter 4.

1.3 Cyclic cohesive zone model

Cohesive zone modeling provides an alternative way to predict crack growth in ductile
materials under elastoplastic loading conditions. Application of the cohesive zone model
for fatigue crack propagation has to consider damage accumulation which is significant
different from monotonic fracture. In order to simulate crack growth under cyclic loading,
two aspects have to be taken into account additionally: the cyclic loading path and the
damage evolution.

Within the cohesive zone, the constitutive behavior is exactly specified by correlation
of the relative opening displacement and the corresponding traction. For the monotonic
loading, the cohesive law is uniquely defined and is independent of the loading history,
without un/reloading behaviors being considered. Under cyclic loading, in order to ac-
count for the irreversibility of the damage process, one has to introduce the un/reloading
behaviors. Thus, the damage accumulation in fatigue is determined by the loading path
and the material responding in the cohesive zone behaves loading history dependent. The
correlation of traction and separation has to be be reformulated to entail amount of the
damage accumulation.

(a) (b)

Figure 1.5: Cohesive law with un/reloading path for (a) elastic damage. (b) elastic-plastic
damage.

Two types of unloading behaviors have been presumed for brittle and ductile failure
respectively, as shown in Fig. 1.5. For an elastic damaged solid, Camacho and Ortiz [64]
employed a linear unloading behavior towards the origin. For an elastic-plastic material
under the consideration of damage, Chaboche et al. [65] suggested that unloading occurs
with the initial stiffness at the origin, and after a completed loading cycle there exists the
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possibility for the presence of a residual displacement. In this case, the irreversibility of
the inelastic deformation could be taken into account.
Various approaches have been proposed regarding the application of cyclic cohesive zone

model (CCZM). The state of art of proposed models will be reviewed in Chapter 5. To
the knowledge of the author, most proposed CCZMs can only describe the Paris’ law like
behavior. The capabilities of CCZM to predict low cycle fatigue crack growth with severe
plastification need further development.

1.4 Outline of the dissertation

Present work concerns the stress-state effect on the cohesive zone model and the application
of the cohesive zone model for three-dimensional low cycle fatigue crack growth predictions.
The contents of present thesis are performed by the following chapters:

1. In chapter 2, a special cohesive element is developed to study effects of the cohesive
law. The influence of the initial stiffness of the cohesive law and the energy balance
in crack simulation are investigated by using cohesive zone models. Interdependence
among the threshold value of the cohesive laws, the cohesive stiffness, the cohesive
strength and the fracture energy of the cohesive zone is considered systematically.

2. In chapter 3, to validate the efficiency and the predictability of the cohesive zone
model in three-dimensional computations, the LCF crack growth behavior of S460
specimens is investigated experimentally under mode I loading condition. Fatigue
tests are carried out on the cracked rod bars to examine the surface crack evolution.
Furthermore, to quantify the geometry effect on fatigue cracks, the fatigue tests are
performed on C(T) specimens with different thicknesses. The failure mechanisms are
analysed by comparing the local crack profiles and the fatigue crack growth rates.

3. In chapter 4, a new stress-triaxiality-dependent cohesive zone model (TCZM) is
proposed to allow to transfer the cohesive parameters between specimen geometries.
The stress-state effect is significant on ductile crack growth, which must influence
the cohesive parameters as well. The correlations of the stress triaxiality and the
cohesive parameters are obtained based on the experiments, which are performed for
quantifying the in-plane and the out-of-plane constraint in three-dimensional cracks.
Furthermore, the proposed TCZM is applied for three-dimensional crack propagation
simulation.

4. In chapter 5, a new cyclic cohesive zone model (CCZM) is constructed which can
characterize the fatigue damage with severe plastic deformation and can predict the
fatigue crack growth in Regime III. The experimental fatigue crack growth data of
the ductile materials are used for calibrating the new model.

5. In chapter 6, the proposed CCZM is extended to consider the stress-state effect,
which can be named as the stress-triaxiality-dependent cyclic cohesive zone model
(TCCZM). The influence of the stress-state effect are considered on the cohesive
law as well as on the damage evolution equation. The predictions are performed in
different specimens for three-dimensional low cycle fatigue crack growth. Numerical
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results, i.e. the crack growth rate and the local crack profiles, are verified with the
experimental three-dimensional cracks.

6. Finally, in chapter 7, the main results are summarized and some suggestions are
recommended for the possible future work.
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2 Effects of the cohesive law for ductile
crack simulation

2.1 Introduction

Material failure is often accompanied by elastic unloading and plastic reloading round the
crack tip. This problem becomes especially significant for elastic-plastic crack propagation
under low cycle fatigue conditions, where the Paris’ law cannot be applied due to large scale
of non-proportional inelastic deformations. Recently, the cohesive zone model is popular
in computational fracture mechanics’ community. One of key advantages of the cohesive
zone model is in separating the material deformation from material failure in computations
[55]. That is, material deformation in a cracked specimen is described by the continuum
plasticity, whereas material damage is predicted by the cohesive zone model. The fracture
process zone is simplified into a strip ahead of the crack tip. Obviously, the accuracy of
the cohesive zone modeling is influenced by constitutive description of the cohesive zone.
Quantification of effects of different cohesive zone models is still an open issue.

2.1.1 Rigid cohesive zone

At very low loading level of a cracked specimen, the fracture process zone is vanishingly
small, the material around the crack is not damaged and the cohesive zone should not exist.
It follows that the cohesive zone initiates only if the traction ahead of the crack tip exceeds
a critical value, i.e. the threshold value of the traction. In this case, the initial stiffness of
the cohesive zone is infinite, a rigid cohesive zone [39–42]. An illustration of rigid cohesive
zone is shown in Fig. 2.1.This cohesive zone model formulation leads to a discontinuous
cohesive law T (δ) and is numerically difficult to handle. The conventional FEM element
cannot take such discontinuous traction-separation law into account. Therefore, most
published cohesive laws prefer to assume a continuous traction-separation relation starting
from zero traction. That means, the cohesive zone exists even without loading, a soft
cohesive zone. The size of the soft cohesive zone is affected by the cohesive stiffness. The
question here is how the cohesive stiffness would influence the computational results.

The soft cohesive zone model is physically contradictory to continuum mechanics, but
numerically necessary if one uses the conventional finite element method. On the other
hand, the rigid cohesive zone model needs special numerical algorithm and encountered
major problems with the convergence in simulation of fatigue crack, as XFEM. Elices et
al. [56, 66] studied effects of the cohesive law to crack simulation and discussed initial
shapes of the cohesive law, however, did not quantify effects of the cohesive stiffness.
Quantification of the initial cohesive stiffness to the crack simulation is of importance for
further development of the cohesive zone models.
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Figure 2.1: The cohesive zone ahead of the crack tip described by a cohesive law with thresh-
old, Tth. The cohesive energy Γ0 denotes the area under the cohesive curve.

2.1.2 Motivation

Fracture mechanics is built on energy balance around the crack tip and during crack
propagation. The energy release rate should calibrate crack initiation and propagation
in fracture mechanics methodology. In cohesive zone modeling, the crack should initiate
and propagate based on the energy dissipation in the cohesive zone, which is defined in
Eq. (1.3). Commonly, the cohesive energy Γ0, is assumed to equal the energy release
rate in fracture mechanics [13, 47–49, 67, 68]. Yuan et al. [62] studied variations of the
cohesive energy in crack initiation and subsequent crack propagation. It was found that
the cohesive energy for crack initiation is significantly larger than Γ0 for steady-state crack
propagation. Computational results [69] show the cohesive energy seems smaller than the
far-field J-integral, almost by factor 2. Schwalbe et al. [59] reported differences between
fracture energy and cohesive energy. Both cohesive law and cohesive energy can affect the
computational prediction. Based on these observations, it is interesting to re-examine the
correlation between the cohesive energy and the energy release rate of fracture.
In this section, a special cohesive element is developed to study effects of the cohesive

law, so that both rigid and soft cohesive zones can be considered accurately. The influence
of the initial stiffness of the cohesive law and the energy balance in crack simulation are
investigated by using cohesive zone models. Interdependence among the threshold value
of the cohesive laws, the cohesive stiffness, the cohesive strength and the fracture energy
of the cohesive zone is considered systematically.
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2 Effects of the cohesive law for ductile crack simulation

2.2 Formulation of the cohesive element with a threshold
traction

The rigid cohesive zone model requires creating a new surface into the computational
model, which cannot be realized by the conventional finite element and continuum formu-
lation. For this reason, a new element is necessary to create new cracks. For general mixed
mode cracks, one has to use the XFEM. Under mode I loading conditions, the crack tip
field is symmetric to the crack plane and only a half of the specimen has to be discretized
[70]. The cohesive zone initiates and propagates along the symmetric plane. If the cohesive
law contains a threshold value, the cohesive zone initiates only if the traction ahead of the
crack tip exceeds the threshold value. In the present work, only mode I cracks will be
considered, so that a crack lies in the symmetric plane of the specimen. One may use the
node release technique to simulate crack propagation combined with the cohesive law [62].
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Figure 2.2: The schematic representation of the cohesive element and its algorithm in
ABAQUS [71].

The representation of the cohesive element with threshold traction is illustrated in Fig.
2.2. Fig. 2.3 shows the flow chat of the computational algorithm. The solid element takes
the conventional FEM formulation if the traction is less than the threshold value. The
potential cohesive zone is located at the edge of the element with zero separation. The
traction is determined from the equilibrium equation. If the element stress does not exceed
the threshold of cohesive law, the element works like a conventional continuum element.
The element boundary is fixed due to symmetry and enforced to close using the penalty
method [72]. However, as soon as the stress in the element exceeds the threshold value, the
node will be loaded by a nodal force and the fixed element boundary will be replaced by
the cohesive zone. An increment of the cohesive zone is formed. Variations of the traction
at the element edge follow the cohesive law as a function of the separation. In the following
steps the nodal force of the element surface will be released gradually, in accordance with
the cohesive law. If the ultimate separation is reached, the node is totally free and a crack
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2.2 Formulation of the cohesive element with a threshold traction

increment is generated. To improve accuracy of the computations, the stress in the element
ahead of the crack tip will be averaged following the algorithm in [42].
The present element can also be applied for the soft cohesive zone modeling by setting

Tth = 0. In this case, the cohesive zone exists in the whole uncracked ligament. The
traction varies with the separation.
The three-dimensional finite element formulation above has been implemented into the

general purpose commercial FEM code, ABAQUS, via the user-defined element (UEL)
[71]. Extensive verifications have been performed for the programming.

Conventional continum 

solid element. 

Boundary condition 

implemented by 

penalty approach. 

Check 

threshold value  

Calculate maxium 

principle stress. 

maximum principle stress  

> 

threshold value 

Boundary condition replaced 

by cohesive zone. 

Variations of the traction 

follow the cohesive law. 

No

Yes 

>0 

=0 
Error! Exit 

<0 

Figure 2.3: The flow chat of the cohesive element algorithm.

In the past, various cohesive laws have been suggested in different forms. Basically, the
cohesive strength and the cohesive stiffness can significantly affect computational results.
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2 Effects of the cohesive law for ductile crack simulation

To study effects of the cohesive stiffness in crack simulation, the cohesive law with constant
cohesive strength, T0, is used in the current section, as shown in Fig. 2.4. The function is
to jot as [49, 59]

T = T0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
δ

δ1
) δ � δ1

1 δ1 < δ � δ2

2(
δ − δ2
δu − δ2

)3 − 3(
δ − δ2
δu − δ2

)2 + 1 δ2 < δ � δu

. (2.1)

In the cohesive law above there are four parameters, the cohesive strength, T0; the
separation for the initial linear hardening stage, δ1; the separation to end the constant
cohesive strength, δ2, and the ultimate separation for failure, δu. δ1 is introduced to vary
the cohesive stiffness of the cohesive zone. The specific stiffness of the cohesive zone can
be quantified by

Ψ =
T0

δ1
ζ. (2.2)

Above ζ denotes the characteristic length of the cohesive zone and is introduced to
simplify representation of the cohesive zone model in continuum mechanics. In the present
work ζ = 1 mm is set for all computations.

Figure 2.4: Cohesive laws in Eq. (2.1) to study effects of the cohesive zone stiffness. All
curves contain the same cohesive energy Γ0.

Systematic changes of δ1 by keeping constant T0 lead to various cohesive stiffnesses of
the cohesive zone. Should δ1 be zero, i.e. the cohesive stiffness Ψ becomes infinite, the
cohesive zone is rigid before T0 is reached, and the cohesive law is discontinuous. The rigid
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2.3 Effects of the cohesive stiffness

cohesive zone model was used to investigate the applicability of the cohesive zone model
concept for ductile crack propagation. The cohesive energy defined in Eq. (1.3) can be
re-written as

Γ0 =
1

2
T0δ1 + T0(δ2 − δ1) +

1

2
T0(δu − δ2). (2.3)

The total cohesive energy consists of elastic cohesive energy, Γel, the cohesive dissipation
energy, Γpl, and the cohesive damaging energy, Γsf , defined as

Γel =
1

2
T0δ1, Γpl = T0(δ2 − δ1), Γsf =

1

2
T0(δu − δ2), (2.4)

respectively. The elastic cohesive energy is reversible and vanishes if load is removed. The
plastic cohesive energy can dissipate even if unloading occurs [42], e.g. in simulation of fa-
tigue crack growth. The damaging energy describes ductility during material degradation.
For the current investigation, we assume a constant cohesive strength, T0 = 4σy, and

the cohesive energy, Γ0 = 100 N/mm. To ensure the same softening behavior for all cases,
the cohesive damaging energy is assumed as Γsf =

1
2
T0(δu − δ2) = 25%Γ0. The cohesive

stiffness Ψ varies from infinite (the rigid cohesive zone) to very soft cohesive zone with
Ψ = E/4.
The J2 plasticity with the Ramberg-Osgood hardening law is applied for the elastic-

plastic material,

Eε = σ + ασy(
σ

σy

)
1
n . (2.5)

The material parameters are set in accordance with aluminum alloy with Young’s mod-
ulus E = 80 GPa, Poisson’ratio ν = 0.3, initial yield stress σy = 250 MPa, α = 1 and
n = 0.1.

2.3 Effects of the cohesive stiffness

To illustrate effects of the cohesive stiffness, a standard compact tension (C(T)) specimen
with initial crack length of 25 mm is computationally investigated under plane strain
conditions with a constant cohesive energy Γ0, as shown in Fig. 2.4. Fig. 2.5 shows the
force vs. load line displacement curves from computations with various cohesive stiffnesses.
Ψ varies from E/4 to infinite (the rigid cohesive zone). Generally speaking, the stiffness
of the cohesive law raises the specimen resistance and causes higher loading capacity.
The results confirm, however, that the global reaction of the specimen is not sensitive to
the cohesive stiffness. For Ψ > E, the load-load line displacement curve is numerically
independent of the cohesive stiffness. The maximum deviation is less than 3%. Variations
of the cohesive stiffness influence local deformations around the crack tip, but the overall
behavior is hardly affected by the local deformations. The load vs. load line displacement
curve is mainly determined by the fracture energy and the cohesive strength.
One would expect the crack tip opening displacement (CTOD) should be more sensitive

to the cohesive stiffness. In Fig. 2.6 the crack tip opening displacement after Schwalbe
et al. [6], δ5, is plotted as a function of the load line displacement for various cohesive
stiffnesses. As expected, the δ5 value from a softer cohesive law becomes larger. Crack
initiation of all computations approximately occurs at the loading ca. vLL = 5 mm, at
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2 Effects of the cohesive law for ductile crack simulation

Figure 2.5: Load vs. loading line displacement for C(T) specimen using various cohesive laws.

which the discrepancy between different cohesive stiffnesses does not seem large enough
for correction. The maximal difference is limited by δu, which is much smaller than the
final fracture separation. For Ψ > E, the difference of δ1 for various Ψ is less than 0.1
mm, which is much smaller than the CTOD at crack initiation. Therefore, the effect of Ψ
becomes negligible. With crack propagation, the discrepancy is accumulated and grows.
Deviations of the fracture parameters are, however, limited to 5% if Ψ > E.

More quantified results about the δ5 discrepancy are presented in Fig. 2.7. In the figure,
the deviations of the δ5 values for vLL = 1.5 mm, 3 mm, 4.5 mm and 6 mm are summarized
as functions of E/Ψ. δ5 of the rigid cohesive zone is taken as reference, denoted as δ50.
Obviously, the crack tip opening displacement grows, as the cohesive stiffness decreases,
and the deviation increases linearly with E/Ψ. For the cohesive stiffness Ψ � E, however,
the difference is less than 5%.

The cohesive law influences crack propagation. Fig. 2.8 shows crack growth vs. load
line displacement for various cohesive stiffnesses. Significant differences of crack growth
are found in Fig. 2.8. The lower cohesive stiffness leads to more rapid crack growth. This
trend is similar to the δ5 curves, but shows much larger discrepancy. More results are
shown in Fig. 2.9 with crack growth difference as a function of the cohesive stiffness. The
reference crack growth Δa0 s taken from the rigid cohesive zone modeling. The figure
shows crack growth at three different loading stages: vLL = 3 mm, 4.5 mm and 6 mm. The
results confirm that the predicted crack growth is very sensitive to the cohesive stiffness.
For the case with the cohesive stiffness Ψ = E, the predicted crack propagation deviates
more than 35% from the rigid cohesive model. For Ψ � 5E, the deviation is less than
1%. Generally, the soft cohesive zone model will delay crack propagation, compared to the
rigid cohesive zone model.
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2.3 Effects of the cohesive stiffness

Figure 2.6: The CTOD δ5 vs. loading line displacement for various cohesive stiffnesses.

Figure 2.7: Influence of the cohesive stiffness to the fracture parameter δ5.
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2 Effects of the cohesive law for ductile crack simulation

Figure 2.8: Δa vs. load line displacement for the various cohesive stiffnesses.

Figure 2.9: Influence of the cohesive stiffness on crack propagation Δa.
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2.4 Energy balance in crack propagation with a cohesive zone

2.4 Energy balance in crack propagation with a cohesive
zone

In nonlinear fracture mechanics the energy release rate is introduced as fracture parameter,
which can be evaluated based on the J-integral. The fracture energy for crack initiation
is equal to the energy input from the applied load represented by the far field J-integral
due to its path-independence. In FEM, the J-integral is calculated using the virtual crack
extension technique [71]. The fundamental condition for the energy consideration is the
conservative mechanics field in the cracked specimen. Only energy dissipation is caused
by the crack propagation. Under this condition, the J-integral can be evaluated as

J =

∫
S

Wdy − tiui,1dS, (2.6)

where W denotes the strain energy density, ti is the traction vector along the integration
path S, ui is the displacement vector. The illustration of integral path for J-integral is
shown in Fig. 2.10. For a crack field under deformation theory of plasticity, the J-integral
is independent of S and is related with the energy dissipation in the fracture process zone,

J =

∫
Sc

Wdy −T · du
dx

dS = −
∫
Sc

T · du
dx

dS = Jtip. (2.7)

Figure 2.10: Integral paths for the J-integral.
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2 Effects of the cohesive law for ductile crack simulation

Since the integration is conducted along the surfaces of the cohesive zone, the vertical
height of the integration path is zero and thus the first integral in Eq. (2.7) over y vanishes.
Jtip denotes the energy dissipation for crack growth.
The condition for the path-independent J-integral is the existence of a potential function

W , that is, the stress field in an elastic-plastic material may not allow non-proportional
loading and elastic unloading [73]. Eq. (2.7) is valid only for nonlinear elastic behavior
around the crack tip. In simulation of crack propagation in elastic-plastic materials, the
crack field is accompanied by significant elastic unloading, so that the J-integral becomes
path-dependent. The distribution of the path-dependent J-integral is an increasing func-
tion of the path size [74]. The energy input from the applied load is absorbed by both
creating new crack surface and plastification of material surrounding the crack tip,

J = Jtip + Jpl, (2.8)

with Jpl > 0. Only if the crack tip field is a potential field, Jpl vanishes. Since both energy
amounts, Jtip and Jpl, are positive, the J-integral representing the total energy input from
the applied load is generally larger than the fracture energy for creating crack surface, Jtip.
If the cohesive zone exists ahead of the crack tip, the integration (2.7) runs along the

cohesive zone borders, Sc. The traction, T, in Eq. (2.7) denotes the cohesive traction of
the cohesive zone and is a function of separation of the cohesive zone, [u]. It follows

Jtip =

∫ u+

u−
T · du = Γ0. (2.9)

The crack tip J-integral equals the cohesive energy, Γ0. If no elastic unloading occurs
around the cohesive zone, Γ0 = Ji. Here Ji denotes the J-integral in the far field, or the
critical fracture energy release rate for crack initiation.
Recalling the cohesive zone modeling, the ductile fracture process should be considered

in the nonlinear traction-separation curve, the cohesive law. The cohesive energy, Γ0,
represents the fracture energy for creating a unit crack surface. During crack blunting,
the material around the cohesive zone is severely plastified and absorbs mechanical energy.
The absorbed energy in the plastic zone dissipates during elastic unloading induced by
the cohesive damage, that is, the cohesive strength decreases with separation. Since the
cohesive zone model describes a continuous damage process, the critical energy release
rate varies with the cohesive law. Due to cohesive damage, crack tip field becomes non-
proportionally loaded or even unloaded. The J-integral loses its path-independence even
before crack initiates.
Figure 2.11 shows variations of the J-integral at crack initiation, Ji, with the specific

cohesive stiffness, E/Ψ, by keeping constant cohesive strength, T0, and constant cohesive
energy, Γ0 (as shown in Fig 2.4). Understandably, Ji is larger than the cohesive energy
Γ0, but decreases monotonically with E/Ψ. Since the cohesive strength is generally higher
than yield stress of the bulk material, the plastic zone size decreases with E/Ψ. When the
material is damaged, the cohesive traction diminishes and, that is, the bulk material around
the crack tip is elastically unloaded, it leads to plastic energy dissipation and Jpl increases.
For a soft cohesive zone (smaller Ψ), the plastic dissipation energy is less than that of a
rigid or hard cohesive zone. The fracture energy difference between a rigid cohesive zone
and a cohesive zone with the stiffness Ψ = E is 6.25%. It implies that the cohesive stiffness
affects the critical energy release rate slightly, for a high cohesive strength T0 = 4σy.
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2.4 Energy balance in crack propagation with a cohesive zone

Figure 2.11: The energy release rate at crack initiation as a function of the cohesive stiffness
with T0 = 4σy.

5σy

2σy

Figure 2.12: Different cohesive laws used for studying fracture energy at crack initiation. The
solid curves are described by Eq. (2.1), whereas the dashed curves are from Eq. (2.10).
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2 Effects of the cohesive law for ductile crack simulation

Furthermore, the cohesive strength and the curve form may affect the fracture energy in
crack simulation. To study effects of the cohesive law more systematically, a polynomial
cohesive law is additionally defined as

T =

⎧⎪⎪⎨
⎪⎪⎩

27

4
T0

δ

δu
(1− δ

δu
)2 δ � δu

0 otherwise

. (2.10)

The significant difference of the polynomial law from Eq. (2.1) is in the cohesive stiffness,
as shown in Fig. 2.12. The rigid cohesive zone model of Eq. (2.1) contains a constant
traction after cohesive zone initiation, whereas the model of Eq. (2.10) is a soft cohesive
zone model. The cohesive strengths are assumed to be 2σy and 5σy, respectively. δu is
determined by the constant cohesive energy. All curves contain the same cohesive energy
of Γ0 = 100 N/mm.
Fig. 2.13 illustrates dependence of the fracture energy at crack initiation on the cohesive

law. Only fracture energy release rate for crack initiation is considered. Each point in the
figure is an independent computation. For the case with T0 = σy, the whole specimen is
purely elastic and no plastic dissipation exists, i.e. Ji = Γ0.

Figure 2.13: Effects of the cohesive law to the fracture energy at crack initiation.

The plastic zone around the crack tip grows with T0 and elastic unloading becomes
more severe. It follows larger plastic dissipation and higher fracture energy since more
mechanical energy flows into plastification, that is, the ratio Ji/Γ0 increases. For high
enough T0, however, the plastic energy dissipation reaches a plateau since the plastic zone
size becomes constant determined by Γ0, as predicted in fracture mechanics. The plastic
zone size is related to

rp = α
Ji
σy

, (2.11)
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2.5 Summary

with α as dimensionless factor. It follows that, Ji/Γ0 becomes constant for further increas-
ing T0. The critical value of T0 should be sufficiently high to avoid its influence on the
energy balance in crack initiation, although it is difficult to be determined analytically.
Obviously, the critical value of T0 depends on the cohesive law. The present computations
reveal that the critical value of T0 is approximately 3σy for constant Ji/Γ0 in both types
of the cohesive laws.
Generally speaking, the difference between fracture energy and cohesive energy is sub-

stantial. For plane strain computations with T0 > 3σy, the deviations become stable and
reach 30% for the rigid cohesive zone model and 40% for the polynomial soft cohesive zone
model, which is influenced by the cohesive stiffness in combining with T0. Due to its higher
cohesive stiffness, the energy dissipation in the rigid CZM rises more quickly and stabi-
lizes at a lower T0 value. The polynomial CZM generates higher energy dissipation for its
lower cohesive stiffness and stabilizes at a higher T0. Generally, to perform a quantitative
simulation of the cracked specimen, one has to note the difference between the cohesive
energy and Jc. The cohesive energy is smaller than the fracture energy release rate for
crack initiation.

2.5 Summary

Two fundamental issues about the cohesive law have been studied from computational
aspects: the cohesive stiffness and the fracture energy balance in using the cohesive zone
model. For this purpose, a special cohesive element has been developed and implemented
into the commercial FEM code ABAQUS. Computational results confirm the following
conclusions:

• Effects of the initial cohesive stiffness are negligible in the load vs. load line displace-
ment curve, but limited up to 5% for the fracture parameter, such as δ5. The soft
cohesive zone model generates the higher δ5 value.

• In predicting the crack propagation amount the cohesive stiffness becomes more
sensitive. The Δa deviations among models reach 35%, even for a stiffer cohesive
zone model (Ψ = E). The over-estimate of the crack growth increase linearly with
E/Ψ. To obtain a realistic crack propagation, one has to further increase the stiffness
of the cohesive zone to Ψ = 5− 10E.

• The fracture energy release rate from the cohesive zone model computation is gen-
erally not equal to the cohesive energy, Γ0. The J-integral for crack initiation is
significantly larger than Γ0. The difference depends on the cohesive law and disap-
pears only in an elastic specimen. With increasing cohesive strength, the discrepancy
grows and becomes stable for T0 > 3σy under plane strain loading conditions. The
maximum deviation exceeds 40%.

25Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3 Experimental investigation on fatigue
cracks

3.1 Introduction

The cohesive zone model has been particularly attractive for practical application since
it is very computation effective. To verify the efficiency and the predictability of CZMs,
the experimental data are desired under both monotonic and cyclic loading conditions.
Experiments should be carried out to provide the material response associated with crack
growth. In addition, the applications of CZM with cyclic loading need to quantify the
crack growth rate under different loading conditions. In the present study, experimental
works will contain three major topics:

• In the metallic structure, most failure occurs often developing from the surface cracks
propagation. It is well known that the stresses near a crack tip have a square-root
singularity and are characterized by the stress intensity factor (SIF). However, for
the structural components with a round cross section, the problem is complex since
the SIF varies along the crack front and its closed solution is not always available.
Furthermore, the shapes of the surface crack vary during the fatigue crack propaga-
tion of a rod bar. Experimental tests and numerical studies will be performed in the
present study to examine the fatigue crack growth behavior of a rod bar. Backtrack-
ing technique is applied to record the surface crack evolution and the actual surface
crack is represented by an elliptical arc.

• For the ductile fracture, the variables influencing the fracture resistance include the
microstructural properties, the continuum properties of the solid, and the crack tip
constraint. The crack tip constraint influences both the amount of plastic deforma-
tion and the material degradation process in the fracture process zone. In the low
cycle fatigue regime, the similar mechanism will dominate the fatigue crack growth,
which must depends on the stress-state as well. Therefore, it would be interesting
to quantify the fatigue cracks under different constraint conditions. In the present
study, the geometry effect on fatigue cracks will be examined by performing the fa-
tigue tests on C(T) specimens with different thicknesses. The failure mechanisms are
analysed by comparing the local crack profiles and the fatigue crack growth rates.

• Since the CZM is a phenomenological model, the identification of the damage evo-
lution within the cohesive zone based on the experimental evidences is still an open
issue. In the present work, special compact-tension-shear (CTS) specimens with dif-
ferent notch heights are designed to model the fracture process zone. By performing
the tension tests under monotonic and cyclic loading conditions, the development
of the damage within the process zone can be identified, which could represent the
feature of the cohesive law.
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3.2 Material and C(T) loading tests

3.2 Material and C(T) loading tests

S460 steel is chosen for the current investigation. Its chemical composition is given in Tab.
3.1. The mechanical properties are obtained through uniaxial tests which are performed
on smooth round tensile bars with the diameter of 6 mm, as shown in Fig. 3.1(a). Tensile
tests are carried out with the strain rate 10−4/s at room temperature in MTS 809 servo
hydraulic dynamic tension-torsion testing machine. The gauge length of the extensometer
used is 12 mm. The monotonic stress-strain curve for S460 steel is shown in Fig. 3.1(b).
The mechanical properties are summarized as follows: initial yield strength σy = 460 MPa,
ultimate strength σu = 580 MPa, reduction of area ϕ = 77%, elongation εf = 48%, Young’s
modulus E = 208 GPa and Poisson’s ratio ν = 0.3.

Table 3.1: Chemical composition of S460

C Si Mn P S Cr Ni Fe

0.18 0.45 1.48 0.03 0.03 0.12 8.1 bal.

(a)

(b)

Figure 3.1: (a) Smooth round tensile bar for the uniaxial test; (b) Monotonic stress-strain
curve for S460 steel.
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3 Experimental investigation on fatigue cracks

The mode I fatigue crack tests are carried out by using C(T) specimens. The C(T)
specimens are fabricated according to ASTM standard E647 [75]. The dimensions of the
specimen are illustrated in Fig. 3.2(a). The thickness of C(T) specimens for fatigue crack
tests is B=12.5 mm with a width of W=50 mm. All fatigue pre-cracks of specimens are
generated under the constant mode I loading using a high frequency testing machine at the
loading frequency of approximate 90 Hz. The principles during the process of the fatigue
pre-cracking follow ASTM standard E647 [75]. The fatigue pre-crack length Δa shall not
be less than 0.1B or 1 mm, whichever is greater. The final stress intensity factor Kmax

corresponding to a +Δa should not exceed the initial value of Kmax for the fatigue crack
growth test. The stress intensity factor of the C(T) specimen could be calculated based
on the following equation,

K =
F

B
√
W

(2 + α)

(1− α)3/2
[0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4], (3.1)

where F is the applied force, B is the specimen thickness, W is specimen width, α = a/W
and a is the crack length. Eq. (3.1) is valid for α � 0.2. The fatigue pre-cracking is carried
out with the initial ΔK = 23.5 MPa

√
m at the loading ratio R = 0.1.

(a) (b)

Figure 3.2: (a) The dimensions of C(T) specimens. (b) Fatigue crack growth rate measure-
ment of a C(T) specimen by using the COD method in MTS 809 servo-hydraulic testing system.

The fracture and fatigue tests are carried out by a MTS 809 servo-hydraulic testing sys-
tem which consists of load frame, load cell, grips, hydraulic actuator and digital controller
etc. The load path of the machine should be calibrated such that each load components
should lie on the center line of the load path system. The compliance method (COD
method) is used for measuring the crack length which is based on the dependence between
the compliance and the crack length of the specimen, as shown in Fig. 3.2 (b).
All fatigue tests are performed at room temperature with the constant force spectrum

with sine waveform at the frequency of 10 Hz. The fatigue crack growth rate is measured
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3.2 Material and C(T) loading tests

by using the compliance method at the intermediate loading level for C(T) specimens.
The MTS 632.02 clip-on displacement gage is adopted to measure the COD of specimens.
Fatigue crack growth are conducted under different loading ratios, R=0.0, 0.1, 0.4 and 0.7.
With growing the crack length, the stress intensity factor K increases under the constant
force amplitude. The normalized gradient of K is defined as [75],

C =
1

K

dK

da
=

1

Kmax

dKmax

da
=

1

ΔK

dΔK

da
. (3.2)

This expression is valid for a constant loading ratio. In K-increasing tests, the gradient
C should be positive and the value is set to 0.08 in all experiments. Fig. 3.3 shows the
fatigue crack growth of C(T) specimens with various loading ratios. The experimental
results of loading ratio R = 0.1 from the beach marking method are also plotted. The
beach marking method would be explained in detail in the following sections.

Figure 3.3: Experimental fatigue crack growth under various loading ratios for S460 steel.

The linear elastic or the SSY condition is required by using Eq. (3.1) or COD method.
The crack tip plastic zone size rp for plane strain conditions [3] can be estimated by

rp =
1

6π
(
K

σy

)2 for monotonic loading

rp =
1

24π
(
ΔK

σy

)2 for cyclic loading

. (3.3)

An approximate suggested restriction without significant violation of SSY principles is
8rp � a [76]. The initial tensile stress of S460 has been determined as σy = 460 MPa.
Accordingly, the experimental results shown in Fig. 3.3 are valid for the fatigue crack
growth stages.
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3 Experimental investigation on fatigue cracks

During engineering applications, the K-based model, e.g. Erdogan and Ratwani [27] is
often used to correlate the experimental data. The model considers all three regimes by
introducing the threshold value ΔKth and the fracture toughness Kc as,

da

dN
=

C(ΔK −ΔKth)
m

(1−R)Kc −ΔK
. (3.4)

In the present study, the fracture toughness Kc is estimated through the monotonic load-
ing tests. The C(T) specimens are the same as those used in the fatigue tests. Specimens
are firstly pre-cracked until the initial crack length around 30 mm. The initial crack length
is measured by using the COD method. During the monotonic loading, the corresponding
critical force for the crack initiation is recorded. Then, the stress intensity is calculated
according to Eq. (3.1) and this value is taken as Kc. In fact, due to the high ductility of
S460, the geometrical dimensions of C(T) specimen for present study dissatisfy the ASTM
standards E399 and E1820 [77, 78]. Accordingly, the value obtained is only a rough esti-
mation, which is applied only for fitting the Erdogan model. The estimated Kc for present
study is approximately 120 MPa

√
m.

The threshold value ΔKth is determined empirically. According to Forman et al. [79],
for present study, ΔKth is taken 7.5 MPa

√
m.

In Erdogan model, two calibrated parameters C and m are required. The algorithms
proposed by Li [80] are adopted for the fitting. Using Log function on Eq. 3.4 is given by,

lg(
da

dN
) + lg[(1−R)Kc −ΔK] = mlg(ΔK −ΔKth) + lgC. (3.5)

Define that

Xi = lg(ΔK −ΔKth),

Yi = lg(
da

dN
) + lg[(1−R)Kc −ΔK],

u = m,

w = lgC,

(3.6)

consequently the total square deviation I and the systems of equations for parameters u
and m are,

I =
n∑

i=1

(uXi + w − Yi)
2, (3.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u
n∑

i=1

X2
i + w

n∑
i=1

Xi =
n∑

i=1

(XiYi)

u
n∑

i=1

Xi + w
n∑

i=1

1 =
n∑

i=1

Yi

. (3.8)

With the known values of ΔKth and Kc, the calibrated parameters C and m can be
determined by solving Eq. 3.8. The corresponding model parameters are C = 10−4.38 and
m = 1.82. The correlations of experimental data according to the fitting curves are shown
in Fig. 3.4. For material S460, the curves can fit the experimental data for R=0.0, R=0.1
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3.3 Surface fatigue crack tests under cyclic axial loading

and R=0.4 successfully. However, for the experimental data R=0.7, the fitting curve shows
significant deviation. With the loading ratio R=0.7, the fatigue crack growth rate da/dN
presents only a small shift, which was also reported by Vormwald [81].

Figure 3.4: The fitting curves of experimental data of C(T) specimen through Erdogan model.

3.3 Surface fatigue crack tests under cyclic axial loading

In engineering, critical cracks exist mainly on surfaces of mechanical components. To
predict fatigue crack growth life, characterization and verification of a surface crack through
the conventional fracture mechanics specimen, such as C(T) specimen, are of interesting.
From fracture analysis it is known that the stress field in a 3D surface crack differs from the
conventional plane strain tip field. The stress intensity factor (SIF) depends additionally
on crack front curvature, crack edge to free surface and structure configuration. Especially,
SIF may vary non-proportionally with crack growth. Predictability and accuracy of the
fracture mechanics to 3D surface crack are still interesting issue for many mechanical parts
under complex loading conditions.

3.3.1 Rod specimen with a straight-front surface crack

The straight-fronted surface crack is often used in experiments due to easy manufacturing.
Such a crack can be considered as an extreme shape of either the part-circle or part-elliptic
surface crack. The outer geometry configuration of a specimen is shown in Fig. 3.5. The
diameter D is 12 mm and the length L is 25 mm in the test section. Using a linear cutting
machine, straight-edge surface cracks are cut with the initial flaw depths a0 = 1.5 mm.

The geometry parameters in the test section of a specimen and those to describe the
crack growing process are shown in Fig. 3.6. An equivalent elliptical-arc edge flaw is used
to replace the actual part-through crack after some steps of crack growth. In the figure,
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3 Experimental investigation on fatigue cracks

Figure 3.5: Details of the rod specimen with a straight-front surface crack.

a denotes the current crack depth. The crack front may be approximated by an elliptical
curve with semi-minor axes a and semi-major axes b. Noted that the length b of the semi-
major axes of the assumed ellipse is only an estimated value. For a certain crack depth,
the crack shape can be controlled by an aspect ratio α = a/b. A straight-front crack can
be obtained in case of α = 0 whereas α = 1 represent a part-circular crack [82–86]. The
intersection point C of the crack front with the surface can be measured by the axes of the
elliptical curve a and b, and the diameter of the rod specimen, D. The distance from the
point C to the axis of symmetry OY is m. The location of the points on the crack front
can be described by the location ratio parameter x/m. The crack length in the surface
direction can be obtained by the arc length s.

Figure 3.6: Illustration of surface crack geometry parameters.
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3.3 Surface fatigue crack tests under cyclic axial loading

3.3.2 Crack growth monitoring

All tests are performed on a MTS809 servo-hydraulic tension-torsion test machine and
are carried out at 15 Hz at room temperature. For the simple cyclic tension tests, three
different applied stress amplitudes with the same stress ratio R = 0.1 are used to study
the effects of loading. The loading form is sinusoidal and the tests are performed in load
control. To reduce the experimental error, two specimens are tested in the same condition
and it is shown that the test results have good repeatability. The shape and depth growth
of fatigue cracks are monitored using a zoom microscope and beach marking [85, 87].

Figure 3.7: Loading curve and marked curve for the cyclic tension.

Instantaneous crack fronts are recorded by creating beach marking using a waveform
that the mean load will keep constant but the load amplitude will reduce to 50% for
several cycles. A sketch of the loading curve and marked curve is shown in Fig. 3.7. By
comparing successive crack profiles obtained after loading for designated cycle numbers of
each interval, the crack growth rate at different points on the crack front can be evaluated.
The typical beach markers are shown in Fig. 3.8 (a). The markers on the cross-section of
different specimens are clear, and it is possible to use these markers to fit elliptical-arc as
shown in Fig. 3.8 (b). From the shape features of the specimen cross-sections, the relations
of the crack depth a and surface crack arc length s can be measured using a comparison
microscope.

3.3.3 Experiment results

The shape evolution of the straight-fronted surface cracks during the tests is determined
using beach marks and the microscope measurements. The results are observed for several
different tension amplitudes. An example of the shape developments is shown in Fig. 3.8
(a). The photograph is for the specimen with the initial crack depth of 1.5 mm and for
cyclic tension loading of 24 kN. As is shown in the figure, crack propagation appears first
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3 Experimental investigation on fatigue cracks

(a)

(b)

Figure 3.8: Fatigue crack growth process with initial crack depth 1.5 mm and 24 kN cyclic
tension loading. (a) Photograph of the cross-section of a specimen with beach markers. (b)
The sketch of the elliptical-arc fitting corresponding to each beach marker.

in the deepest point of the cylinder bar. At the beginning of crack growth, the growth
rate in the central point of the crack front is faster than that at the intersection with
the external surface. Consequently, a straight-fronted crack tends to become curved, and
the flaw aspect ratio a/b increases. When a/b gets to some value, the deepest point and
the external surface points on the crack front have almost the same stress intensity factor
(SIF). After that, the crack growth rate at the intersection of the crack with the external
surface is higher than that at the deepest point and the curve tends to flatten. Detailed
calculations of the SIF for the surface crack are presented in following sections.
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3.3 Surface fatigue crack tests under cyclic axial loading

The developments of crack growth in depth direction a/D and surface direction s/D
under three different applied stress amplitudes are summarized in Fig. 3.9. The results are
also compared with the results from [86]. It is shown that the effect of the tension loading
amplitudes on the shape evolution is not large, the sketch of the crack growth curves may
be collected from several tested specimens. For the specimens with different notch depth,
the crack propagation paths differ for different initial flaws, but they tend to converge to
the same configuration. For the material S45 (hollow dots), the crack depth is equal to
about 0.5. For the material S460 (solid dots), the crack depth is equal to about 0.55.

Figure 3.9: Relationship of crack growth in depth and surface directions.

3.3.4 Virtual crack closure technique (VCCT)

The virtual crack closure technique is widely applied in computing energy release rates
based on results obtained from finite element analysis. The method is based on the crack
closure integral [3] and mainly required two analysis steps. In the model the crack gets
extended for a finite length prior to the second analysis. Consider a 2D crack problem
with a thickness of t under mode I case, the crack is assumed to extend by Δa from a to
a + Δa. The method provides the energy release rate GI based on the work to be done
by the nodal force Fy,i(a) against the relative nodal point displacement Δuy,i(a + Δa) in
order to close the crack by Δa [88, 89]. The nodal force Fy,i(a) can be obtained from the
first step analysis where the crack is closed. The nodal point displacement can be obtained
from the second step analysis where the crack has been extended to its full length a+Δa,
as illustrated in Fig. 3.10,

ΔEy =
1

2
Fy,i(a) ·Δuy,i(a+Δa), (3.9)

ΔG2D
I = − ΔEy

t ·Δa
. (3.10)
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(a) (b)

Figure 3.10: Illustration of two steps VCCT. (a) First step-crack closed. (b) Second step-crack
extend.

Figure 3.11: Cross section of a 3D finite element model of arbitrary crack shape.

Equation (3.10) has been derived under the assumption that the crack front is straight.
For an arbitrary shaped front the mode definition constantly changes along the counter. A
local crack tip coordinate system is necessary to be defined at each nodal point along the
front [89]. Fig. 3.11 denotes crack front cross section of a 3D solid element model. ΔA1

and ΔA2 represent the areas of contributing element surfaces of point i. Assume a 3D
model under mode I case and the remote tension in z direction, an expression of energy
release rate GI yields:

ΔEz =
1

2
Fz,i(a) ·Δuz,i(a+Δa), (3.11)

ΔG3D
I = − ΔEz

ΔA1 +ΔA2

. (3.12)

In linear elastic fracture mechanics (LEFM), the conversion equation of energy release
rate G to stress intensity factor K can be expressed as:

K =
√
G · E ′ , (3.13)
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3.3 Surface fatigue crack tests under cyclic axial loading

where E
′
= E for plane stress conation and E

′
= E/1 − ν2 for plane strain conation. In

above equations, E denotes the Young’s modulus and ν denotes the Poisson’s ratio.

3.3.5 Stress intensity factor (SIF) analysis of surface crack

The geometry parameters in the test section of a rod specimen and those to describe the
crack growing process have been shown in Fig. 3.6. An equivalent elliptical arc curve is
used to indicate the actual crack after certain number cycles of crack growth. To obtain
the SIF distribution along the actual crack, 3D FE model which is in compliance with the
crack configurations is generated with symmetric boundary conditions applied, as shown
in Fig. 3.12.

Figure 3.12: Element meshes of the cross section in compliance with the crack configurations.

In the FE model, the equivalent elliptical arc curve is dispersed into 13 elements. The
element length near the free surface is about 0.25 mm and the element length near the
middle plane is about 0.45 mm. In the crack propagation direction, the smallest element
length around the crack is about 0.05 mm. In the vertical direction, the element height of
the first layer is 0.1 mm. Algorithms of the VCCT for different element types may refer
to the work of Richard [90] and Krueger [89]. It is general accepted that there is a small
dependence on element size through the VCCT.
According to the geometrical dimensions defined, a simplified model of SIFKI for surface

crack under fatigue tension loading can be expressed as:

KI = F · σ√πa, (3.14)

where σ is the tension stress and a is the crack depth at internal deepest point A. F is
considered as a geometric factor. For one point on the crack front, F is a function of the
elliptic semi axes a and b and the location ratio x/m.
To verify the computation of surface crack analysis, the geometry factor F is plotted

as a function of the crack depth a/D, as shown in Fig. 3.13. Present results confirm
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3 Experimental investigation on fatigue cracks

(a) (b)

Figure 3.13: Results comparison of the geometry factor F with the crack growth for the
surface point C and deepest point A.

that VCCT provides reliable results at the surface point as well as at the deepest point
in comparing with [82, 85]. In general, the FE solution by Carpinteri [82] seems higher,
whereas the FE results from Shin [85] are nearly coincident with the results of VCCT.

(a) (b)

Figure 3.14: (a) Geometry factor F along the crack front with crack growth. (b) Development
of the geometry factor F for the surface point C and deepest point A with the crack growth.

Figure 3.14(a) shows variations of F along the crack front during crack shape evolution
in the rod specimen and Fig. 3.14(b) shows geometry factor F for Points A and C as a
function of crack growth. For the initial notch, a straight crack front with the crack aspect
ratio α = 0 reveals the maximum SIF in the specimen middle and the SIF decreases with
the distance x/m. It implies that the crack propagation starts at Point A and the crack
front tends to become curved. With the crack developed α increases, the distribution of
SIF reaches gradually constant in the whole crack front. In this region the crack front
attains a uniform growth rate. Due to varying geometry of the circular rod, the stationary
crack growth cannot maintain long. The SIF at the crack front near rod surface increases
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3.3 Surface fatigue crack tests under cyclic axial loading

and becomes maximal in the SIF distribution. It follows that the crack propagation near
the rod surface is quicker than elsewhere. The curvature of the crack front decreases with
crack growth. Variations of the geometry factor F agree with experimental observation,
as shown in Fig. 3.8.

It should be noted that for the application of VCCT, the plastic zone ahead of the crack
tip must be small enough so that the crack tip stress field can be expressed by the stress
intensity factor. The stress intensity along the surface crack front is non-uniform and the
plane stress conditions dominate near the free surface. Eq. (3.3) is valid for the plane
strain condition, generally, the plane stress plastic zone size is usually taken as three times
of the plane strain value [76]. Therefore, considering the crack length of the rod bar is
smaller in comparing with the value of C(T) specimen, the restriction is violated of the
final two cracks near the free surface, where ΔK � 80 MPa

√
m. However, VCCT is valid

for the most surface crack growth stages.

A typical crack growth feature of the external surface point and the internal deepest
point is clearly illustrated in Fig. 3.15. The crack growth behavior base line is obtained
from C(T) specimens. It implies that at lower ΔK values, the crack growth at the internal
point is faster than the surface point, as shown in Region I. With the crack developed
and ΔK increases, crack growth behavior at two locations merge together, as shown in
Region II. This phenomenon is also reported by Shin [85]. Experiments confirm that the
fatigue crack growth in surface cracked specimens can be described by the crack growth
behavior identified in conventional C(T) specimens. The predictions are rather precisely
at lower ΔK. Deviation emerges with the loading range is getting higher. The mainly
reason would be the plastic zone effect occurs with higher ΔK, due to the differences of the
geometries and loading configurations of the surface cracked specimen and C(T) specimen,
which leads to the deviation.

Figure 3.15: Crack growth behavior of rod specimen.
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3 Experimental investigation on fatigue cracks

3.4 Fatigue crack propagation of C(T) specimens with
different thicknesses

Figure 3.16: Illustration of the crack profile fitting with elliptical arc.

It is known that the plastic deformation at the tip of a crack inhibits the build-up of high
stresses, and in turn governs the initiation and growth of cracks in structural materials.
According to the conventional concept, the crack-tip plastic zone across the thickness of the
specimen is given by the so called ”dog-bone” model, which assumes a state of plane strain
inside the specimen (centre) and a state of plane stress on the surface of the specimen. The
crack growth is therefore effected by the in-plane and out-of-plane constraints mixed. In
the present work, experiments are performed to examine the geometrical effect on fatigue
crack growth.
C(T) specimens with the same geometrical dimension but different thicknesses are de-

signed for the investigation. The geometrical dimension is shown in Fig. 3.2(a). Three
different thicknesses, B=12.5 mm, B=8 mm and B=4 mm are carried out with the same
width W=50 mm. As specified previously, the high frequency testing machine is used
for the fatigue pre-cracking. Fatigue tests are performed in load control with the sinu-
soidal loading form at the frequency of 10 Hz. Two load amplitudes with the loading ratio
R = 0.1 are carried out. Due to different thicknesses, for each loading level, the value of

F
B
√
W

would keep constant for all specimens.
Beach marking method is used for tracing the crack profiles. The method has been

introduced in detail. Since the fatigue pre-crack is generated at very low stress intensity
level with high frequency, the whole specimen should experience pure mode I failure case.
This way, the plastic deformation of the whole specimen can be neglected. Nevertheless
for the fatigue crack growth tests, the dominance of plane stress conditions near the free
surface would be obvious, the fatigue crack profiles of C(T) specimen would be no longer
straight but curved with crack propagation. Accordingly, similar to the surface crack, an
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3.4 Fatigue crack propagation of C(T) specimens with different thicknesses

Figure 3.17: The fatigue crack surface of specimen B=12.5 mm, Fmax=10 kN.

Figure 3.18: The fatigue crack surface of specimen B=12.5 mm, Fmax=18.75 kN.
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3 Experimental investigation on fatigue cracks

Figure 3.19: The fatigue crack surface of specimen B=8.0 mm, Fmax=6.4 kN.

Figure 3.20: The fatigue crack surface of specimen B=8.0 mm, Fmax=12 kN.
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3.4 Fatigue crack propagation of C(T) specimens with different thicknesses

Figure 3.21: The fatigue crack surface of specimen B=4.0 mm, Fmax=3.2 kN.

Figure 3.22: The fatigue crack surface of specimen B=4.0 mm, Fmax=6.0 kN.
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3 Experimental investigation on fatigue cracks

equivalent elliptical-arc with semi-minor axes a and semi-major axes b, is used to fit the
actual beach marking. A diagrammatic drawing is shown in Fig. 3.16. Obviously, a small
value of a/b denotes a flat crack and a constant value of the curvatures should indicate a
homogeneous crack growth. In this case, the crack growth rates at the free surface and
the middle plane are the same. It is noted that the horizontal axis is along the initial flaw
and the length of the initial flaw is 20 mm for all specimens.
The fatigue crack surfaces of specimens with different thicknesses are shown from Fig.

3.17 to Fig. 3.22. Note that due to the significant plastic deformation, the crack surfaces
obtained from high loading level are very rough. Smooth crack surfaces are generated
with low loading level, obvious rough area occurs only near the end of the crack surface.
For each specimen, the elliptical-arc fitting lines corresponding to the beach markers are
also illustrated. More detailed evolutions of the crack profiles with crack propagation for
different thickness specimens are shown in Fig. 3.23. For all C(T) specimens, the stress
intensity is calculated according to the middle crack length through Eq. (3.1).

Figure 3.23: Comparisons of the crack profile variation with crack propagation for different
thickness specimens.

The evolutions of the fatigue crack profiles show significant geometry dependent. For the
thickest specimen of B/W = 0.25, the curvature of the crack profiles keeps nearly constant
during stable crack propagation. This would imply that a nearly identical crack growth
rate is performed at the free surface and at the middle plane. An important point should be
noted that during elastoplastic fatigue crack propagation, area of the dominance of plane
stress conditions should be contributed by the mode I and mode III failure simultaneously.
Accordingly, the driven force near the free surface should beKI+KIII. Although the plastic
deformation accumulates near the free surface during fatigue crack growth, experimental
results reveal a homogeneous crack growth. In addition, the experimental results also
indicate that the failure mechanism near the free surface varies during crack growth. For
the specimen of B/W = 0.25, at low stress intensity level which is approximately K � 70

44 Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3.4 Fatigue crack propagation of C(T) specimens with different thicknesses

MPa
√
m, no obvious plastic deformation occurs. In this case, it is reasonable to believe

that the driven force of KI should dominate near the free surface. At high stress intensity
level where the crack growth rate is approaching the region III, severe plastic deformation
occurs. Therefore, the driven force of KIII should be the major effect.

For the specimen of B/W = 0.16, the curvature of the crack profiles is larger. Obviously,
with the same value of F

B
√
W
, the percentage of the plane stress areas in the thinner

specimen is larger in comparing with the value in the thicker specimen. The retardation
near the free surface is therefore more obvious. The evolution of the crack profiles shows a
nearly constant curvature until the stress intensity is approximately 80 MPa

√
m. With a

further crack propagation, the crack profiles seem getting flatter. The failure mechanism
for obtaining an identical crack growth rate at the free surface and the middle plane has
been specified. However, for a thinner specimen, the plastic deformation during crack
growth should be more serious. Eventually, the specimen would get fully-yielded at high
stress intensity level. In this case, the crack growth rate at the middle plane is also slow
down due to the effect of plastic deformation. It has been specified that with large plastic
deformation, the crack propagation near the free surface should be mainly controlled by
KIII, whereas the failure at the middle plane should be pure mode I case. This way, with a
fully-yielded state, the crack growth rate at the free surface would be larger in comparing
with the crack growth rate at the middle plane. Finally, the crack profiles would be getting
flatter which leads to a smaller curvature.

For the thinnest specimen of B/W = 0.08, the largest curvature of the crack profiles
is obtained due to the largest percentage of the plane stress areas in the specimen. Ac-
cordingly, experimental results denote that with crack propagation, the specimen gets
fully-yielded when the stress intensity is approximately 60 MPa

√
m. As specified previ-

ously, with a further crack growth, the crack growth rate at the middle plane would be
seriously retarded whereas the failure at the free surface would be mainly effected by the
mode III case. Therefore, the curvature of the crack profiles would decrease continuously.

Figure 3.24: Comparison of the fatigue crack growth rate for different thickness specimens.
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Detailed comparisons of the fatigue crack growth rates of different thickness specimens
are shown in Fig. 3.24. The crack growth rates are measured according to the middle crack
length. Note that before the thinner specimens getting fully-yielded, the crack growth rates
of all specimens are coincident. Deviation emerges at high stress intensity level. Due to
the effect of plastic deformation of the middle plane, the crack growth rate shows obviously
retardation.

3.5 Cohesive law identification based on special CTS
specimens

The cohesive model was introduced into finite element computations for simulating crack
initiation and propagation along interfaces. Details of the cohesive constitutive relation,
which is referred as the cohesive law, are particularly important. Various cohesive laws
have been introduced as shown in Fig. 1.3. However, all known cohesive laws will be
empirically assumed, which are derived by a hypothetical potential function. No effective
method has been yet found to derive the cohesive law by experimental measurement.
In the present investigation, plate specimens with different notch heights are designed.

Obviously, the notch area could represent the fracture process zone. Note that the cohesive
zone model assumes the material response in the fracture process zone is represented by
a cohesive law, which is describing the loss of load bearing capacity. Accordingly, the
development of damage in the fracture process zone should characterize the feature of the
cohesive law.

3.5.1 Specimen design and experimental procedures

AISI304 stainless steel is selected for the tests and its composition is given in Tab. 3.2.
Before the manufacture of testing specimens, the material is annealed to eliminate the
residual stress of the original material. The heat treatment method for the raw material
is heating in a vacuum at 1100 ◦C for one hour following by quick cooling in air. The
mechanical properties of AISI304 are obtained through uniaxial tests performed smooth
round tensile bars as shown in Fig. 3.1(a). The mechanical properties are summarized as
follows: initial yield strength σy = 230 MPa, ultimate strength σu = 650 MPa, elongation
εf = 100%, Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3.

Table 3.2: Chemical composition of AISI304

C Si Mn P S Cr Ni Fe

0.04 0.41 1.05 0.035 0.03 17.1 8.1 bal.

The loading configuration of the plate specimen is similar to that of the compact-
tension-shear (CTS) specimen. The specimens are designed with two different heights of
the damage zone, h=0.2 mm and h=2 mm. The midsection area of both specimens is the
same. To distinguish, the specimen with the thinner zone is named as CTS crack specimen
whereas the specimen with the thicker zone is called CTS notch specimen. The dimensions
of the specimens are shown in Fig. 3.25 and Fig. 3.26 respectively. The damage zone is
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3.5 Cohesive law identification based on special CTS specimens

Figure 3.25: The dimensions of CTS crack specimen. The height of the damage zone is 0.2
mm with a thickness of 2 mm.

Figure 3.26: The dimensions of CTS notch specimen. The height of the damage zone is 2
mm with a thickness of 2 mm.
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3 Experimental investigation on fatigue cracks

generated by using wire-electrode cutting and the effects of machining on the damage zone
are neglected.
According to Lemaitre’s suggestion [91], material damage can be expressed by diminish-

ing of the elastic modulus

D = 1− E(ε)

E0

, (3.15)

where E0 denotes the initial elasticity modulus of the material without damage and E
depending on deformations stands for actual elasticity modulus. With developing material
damage, the stiffness of the material decreases. In present investigation, the stiffness of
the damage zone can be defined as the ratio of force F versus the opening displacement
uopen, which can be written as

ψ = F/uopen. (3.16)

Note that the opening displacement of the damage zone is measured at the position
approximately 2.5 mm away from the edges of the zone. Due to symmetry, the positions
should locate along the center line of the specimen. The value of the opening displacement
is evaluated by the laser extensometer. In current work, only the damage from mode I case
is investigated., Tension tests are performed to quantify the effect of damage evolution. The
stiffness is determined from unloading which is controlled by the force to avoid compression.
Under uniaxial tension condition, the stiffness is the slope of the elastic unloading line.

3.5.2 Monotonic loading test

(a) (b)

Figure 3.27: Loading-unloading for determining damage evolutions in mode I tension tests.
(a) Force vs. opening displacement curves. (b) Evolutions of damage.

Under monotonic loading condition, the experiments are performed at room temperature
on a MTS servo hydraulic universal testing machine and the cross head displacement is 0.05
mm/min for the tests to result in a quasi-static material response. Fig. 3.27(a) illustrates
the loading-unloading force versus opening displacement curves of both specimens. The
corresponding damage evolutions are shown in Fig. 3.27(b). Generally, the CTS crack
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3.5 Cohesive law identification based on special CTS specimens

specimen responds higher resistance whereas the CTS notch specimen experiences larger
deformation until final rupture. Due to the same midsection area of both specimens, the
thinner zone would generate higher stress concentration which leads to higher reaction
force, whereas the deformation within the thicker zone would be more homogeneous which
requires larger deformation for the damage initiation. For both specimens, final failure
occurs when the damage accumulation reaches approximately 5%.
To understand the deformation within the damage zone in detail, numerical calculations

are performed. Three-dimensional elastic-plastic finite element computations are carried
out and no damage model is applied in present analysis. Due to symmetry, only one-
eighth of the geometry needs to be analysed. For all FE models, 20-noded quadratic
elements (C3D20R) with 8 reduced integration points are used in the calculations. For both
specimens, the critical displacement uc, at which the final failure happens, will be recorded
from the experiments. In FE computations, the models are displacement controlled and
are applied to the corresponding displacement.
To make the numerical results can be compared, all results are obtained at the top of

the damage zone. Fig. 3.28(a) shows the tensile displacement distributions of the free
edge and the symmetric plane in thickness direction. Numerical results confirm that at
the final failure, the deformation of CTS notch specimen is larger in comparing with the
deformation of CTS crack specimen. Note that this result is agreed with the experimental
observation as shown in Fig. 3.27(a). For both specimens, the deformation of the free edge
is larger and more homogeneous than the deformation of the symmetric plane. At the
symmetric plane, the largest deformation occurs at the free surface then decreases towards
the middle plane. Numerical results indicate that both specimens should experience a
same failure process. During monotonic loading, the damage should initiate at the free
edge firstly, then the micro cracks/voids at the free surface would nucleate and finally, the
macro cracks would extend from the free surface to the middle plane.

(a) (b)

Figure 3.28: At the top of the damage zone, numerical results of the distributions of tensile
displacement. (a) In thickness direction, at the free edge and the symmetric plane. (b) At the
free surface, from the free edge to the symmetric plane.

In addition, Fig. 3.28(a) also indicates that the differences of the tensile displacement
at the free surface are much smaller in comparing with the differences at the middle plane.
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3 Experimental investigation on fatigue cracks

Accordingly, the deformation at the free surface should show no significant gradient. The
tensile displacement distributions of the free surface are shown in Fig. 3.28(b). Since
the damage initiates at the free surface, the average displacements of the free surface are
calculated to represent the deformations of both damage zones respectively.
The computed stress-displacement curves are included in Fig. 3.29(a). Since the stable

crack extension is not simulated in the analysis, the agreement of the computation and the
experiment is good only up to the crack initiation point. The nominal stress σnominal is cal-
culated according to the reaction force and the midsection area. Note that both specimens
contain the same midsection area. As specified previously, due to stress concentration, the
nominal stress obtained from CTS crack specimen should be higher.

(a) (b)

Figure 3.29: (a) Comparisons of the simulated and experimental dimensionless stress-
displacement curves. (b) Evolutions of damage versus dimensionless displacement.

Should the opening displacements be divided by the deformations, a very similar damage
process is shown in Fig. 3.29(b). Fig. 3.29(b) denotes that for both damage zones,
damage initiates at a same value. This result should be significant which indicates that
the damage evolution in the damage zone could be described uniquely, from the viewpoint
of phenomenological damage mode, i.e. by a cohesive law. The damage initiation point
can be considered where the maximum traction is achieved, after that, the load bearing
capacity loses. In this case, the experimental result also confirms that the monotonic
damage should be taken into account in constructing a cohesive law.
However, due to the too fast damage evolution of the material, the shape of the cohesive

law could not be identified directly according to the present experimental results. To es-
tablish the characteristic features of the macroscopic response of the cohesive law, requires
more detailed experimental investigations and taking into account the damage evolution
in the FE computations, which is a motivation for the future work.

3.5.3 Cyclic loading test

Experiments are also performed to identify the damage evolution of the damage zone
under cyclic loading condition. The specimen would be firstly monotonic loaded. After
the maximum force is achieved, the specimen is further tested by the cyclic loading. The
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3.5 Cohesive law identification based on special CTS specimens

frequency of the cyclic loading tests is 10 Hz. As specified in the monotonic loading test,
the damage evolution is determined according to the decreasing of the stiffness of the
damage zone.
Figure 3.29(a) shows the force versus opening displacement curve of CTS notch

specimen. The cyclic loading is force controlled with the load ratio R = 0.1. No significant
diminishing of the stiffness is obtained from the experiment. Fig. 3.29(b) shows the cor-
responding damage evolution with different maximum forces. Under force controlling, the
damage evolution shows no accumulation during cyclic loading. It seems the final failure
happens abruptly. The reason would be mainly due to the force controlling, the significant
fast damage evolution of the material. For each loading cycle, the maximum force keeps

(a) (b)

Figure 3.30: Experimental results of CTS notch specimen. (a) Force vs. opening displacement
curve. The cyclic loading is force controlled with the load ratio R = 0.1. (b) The damage
evolutions as functions of the loading cycles.

(a) (b)

Figure 3.31: Experimental results of CTS crack specimen. (a) Force vs. opening displacement
curve. The cyclic loading is displacement controlled with the load ratio R = 0.72. (b) The
damage evolution as functions of the loading cycles in mode I , mode II and mix mode cases.
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3 Experimental investigation on fatigue cracks

the the same. In this case, once the damage initiates, the force would not be allowed to
decrease which leads to the damage increasing continuously. The final rupture would occur
in one cycle and thus, the stiffness decreasing cannot be detected.
Displacement controlled cyclic loading tests are performed with CTS crack specimens.

The tests are carried out with a high load ratio R = 0.72 to avoid the compression. Under
displacement controlling, the maximum displacement would keep constant for each loading
cycle. In this case, with the developing of the damage, the loading bearing capacity of the
material decreases which leads to the decreasing of the force. This way, the stiffness of the
damage zone is diminished and the evolution of damage can be identified. Force versus
opening displacement curve of CTS crack specimen is shown in Fig. 3.31(a) and the
corresponding damage evolution in different loading modes are illustrated in Fig. 3.31(b).
Experimental results confirm that cyclic damage develops very slowly at the initial stage.
Then the damage accelerates with cycles increasing, following with a rapid increasing
until the final failure. Mix mode fatigue tests are also performed using the loading device
proposed by Richard et al. [92]. Experimental results show that with the same loading
condition, the damage accumulation in tensile loading case (mode I) is the fastest whereas
the slowest damage accumulation occurs in shear loading case (mode II).

3.6 Summary

In the present work, the fatigue crack growth behavior of material S460 steel has been
investigated systematically. The focus is primarily on the surface crack growth behavior
and the geometrical effect on fatigue crack growth. The experimental results confirm the
following conclusions:

• The stress intensity factor along the surface crack front non-uniformly varies with
the crack growth. The crack growth rate is proportional to the stress intensity factor
distribution in the three-dimensional cracked specimen. After the crack grows up
over the crack front, the maximum of the stress intensity factor appears near the free
surface of the tensile rod, so that the crack front curvature becomes smaller.

• The fatigue crack growth in surface cracked specimens can be described by the crack
growth behavior identified in conventional C(T) specimen at low stress intensity
level. With the crack propagation, due to the effect of plastic zone, the surface crack
growth rate is slower in comparing with that of C(T) specimen.

• The fatigue crack profiles show obvious geometrical dependence. Larger curvature
of the crack profiles is obtained from the thin specimen than that from the thick
specimen. Furthermore, severe plastification occurs with the high rate of fatigue
crack growth approaching Regime III. The thin specimen would be fully-yielded so
that the crack growth rate at the middle plane shows obviously retardation.

• The damage evolution of the notch area of the CTS specimen has been investigated
to find the experimental evidence to derive the cohesive law. Numerical results of
the deformation of the notch area indicate that the damage initiates at the free
edge firstly, then the macro cracks extend from the free surface to the middle plane.
The damage evolution of the notch area manifests the macroscopic response of the
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3.6 Summary

cohesive law. However, one cannot identify the cohesive law directly based on present
experimental results. More detailed experimental results and the extension of the FE
computations with proper damage models should be provided in the further research.
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4 Stress-triaxiality-dependent cohesive
zone model

4.1 Introduction

4.1.1 State of art of constraint dependent CZM

Studies have shown that fracture mechanisms in ductile metals are strongly influenced by
the state of stress. To quantify this effect, a measure of the triaxiality of the stress-state
is defined as the ratio between the hydrostatic stress and the effective stress: η = σh/σe.
In the development of cohesive zone model, the importance of triaxiality was first dis-

cussed a decade ago by Siegmund and Brocks [33]. In their study, a plane strain unit cell
model with degradation of material properties represented through GTN model was sub-
jected to a state of stress with a in-plane stress ratio, β = σ11/σ22. The stress ratio β varied
between 0 and 1. Thus, the triaxiality parameter η under the assumption of incompress-
ible plastic deformation could be calculated as η = 1+β√

3(1−β) . During the loading process,

the perpendicular elongation of the element, ucell, showed a relationship with the applied
stress, σappl. The authors directly used this relationship as the cohesive law. Numerical
results from the GTN model showed that the cohesive parameters were strongly influenced
by the stress triaxiality condition, as Fig. 4.1. Later, the similar idea was adopted by
Scheider for the axisymmetric element [93]. Under plane strain conditon, the approach
was extended to include the effect of strain rates by Anvari et al. [34].

(a) (b)

Figure 4.1: The dependence of cohesive parameters on the stress triaxiality from tension test
for one cell element by using the GTN model. (a) In plane strain condition [33]. (b) In
axisymmetric condition [93].
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Accounting for the dominant effect of the stress-state on the ductile fracture process,
Banerjee and Manivasagam [61] proposed a cohesive zone model for prediction of ductile
fracture in different stress-states. The model described therein for plane strain mode I
ductile fracture is formulated by using basic elastic-plastic constitutive equations combined
with two stress-state independent new model parameters, which capture the triaxiality
dependent failure strain. Later, Banerjee et al. developed procedures for estimation of
model parameters of the high-ductility mild steel [94] as well as the low-ductility aluminum
alloys [95].
It should be noted that, despite the methodologies of identifying the correlations of the

stress triaxiality and cohesive parameters from GTN model as well as Banerjee model can
reproduce the experimental data successfully, there still exist some inevitable limitations of
both models: (i) Extending the stress-state dependent law to the scope of CZM still relies
on the porous metal plasticity model for establishing the cohesive parameters, thereby
requiring the determination of the GTN parameters first; (ii) There is a significant limit
in discussions based on the GTN model, which considered damage cases only with high
stress triaxiaity [96]; (iii) Banerjee et al. [95] adopted a two-dimensional FE model which
is predominantly composed of plane stress elements and a very narrow zone around the
crack plane has plane strain elements, this kind of FE model may lead to unrealistic
approximation in numerical computations.
Recently, Mahler and Aktaa [97] presented experiments and simulations of notched ten-

sile specimens. The cohesive strength was obtained by fitting the whole stress vs. triaxiality
information over specimen cross section and generating extrapolated values for higher tri-
axialities. The verification was shown on SEB and C(T) specimens by applying constant
cohesive energy and the results were in very good agreement to the experimental data.

4.1.2 Motivation

Following the work of Yuan and Brocks [18], the systematic understanding of structural
obstacle against the plastic deformation requires a detailed study of crack-tip plastic de-
formation in three-dimensional to distinguish between in-plane constraint and the out-of-
plane constraint. In fact, in most of the cases the in-plane and out-of-plane constraints
are mixed in such a way that their effects cannot be separated. Integration of the stress
triaxiality into the cohesive zone model becomes a necessary step to apply it for quan-
tifying out-of-plane constraint in three-dimensional cracks. Most published works were
mainly on in-plane constraint effects, the formulation of the stress-triaxiality-dependent
cohesive zone model (TCZM) and the identification of the cohesive parameters are still to
be investigated.
In the present work, a new TCZM with constraint effects for three-dimensional cracks

is introduced and implemented based on the technique discussed in [98]. The correlations
of the stress triaxiality and cohesive parameters are discussed and identified based on
experiments. Furthermore, the proposed TCZM is applied for three-dimensional crack
propagation simulation.
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4.2 Stress-triaxiality-dependent cohesive zone model

In cohesive zone modeling, material failure is described by a cohesive law. For a mode I
crack, the cohesive model describes only normal failure, so that only the normal traction
T and the separation δ on the separation surface are active. The focus of the cohesive
zone model research is in formulation and identification of the cohesive law. For three-
dimensional elastic-plastic cracks the cohesive law can generally be written as

T = T (δ, η;T0, δ0, δu) , (4.1)

where δ denotes the normal separation of the cohesive zone. η is the current stress tri-
axiality. Generally the cohesive law is a function of the two variables, δ and η. Cohesive
zone models contain the known parameters, such as the cohesive strength against material
failure, T0, the separation for the hardening stage, δ0, the ultimate separation for failure,
δu and so on. The shape of cohesive law taken for present study is shown in Fig. 5.1. The
cohesive law’s function and the cohesive energy are defined in Eq. (5.4) and Eq. (5.5)
respectively. It is confirmed that the model above contains three model parameters, T0,
δ0 as well as δu, and can properly reproduce both monotonic and fatigue crack growth in
metals under mode I and mixed-mode loading conditions [98].
To formulate a cohesive law depending on both δ and η explicitly, one can generalize Eq.

(5.4) directly and assume the model parameters to be dependent on the stress triaxiality.
From fracture mechanics it is known that the fracture energy increases with decreasing of
the specimen thickness, that is, the cohesive energy should be a decreasing function of η.
Furthermore, tensile test shows that the ultimate stress of material increases with the stress
triaxiality [33, 61, 93], it implies the cohesive strength must be an increasing function of η.
These experimental observations reveal that both cohesive energy and cohesive strength are
affected by the constraint. Therefore, the cohesive parameters Γ0 and T0 in conventional
CZM should be substituted by Γ(η) and Tmax(η) in TCZM respectively.
As Yuan and Li [54] pointed out, the initial cohesive stiffness has to be large enough,

to avoid computational deficit and δ0 seems to influence computational results hardly. In
this sense δ0 should be independent of η. For ductile metals generally δ0 � δu, and the
ultimate separation in the cohesive zone can be expressed in terms of the cohesive energy
and the cohesive strength as

δu(η) = 2

[
Γ(η)

Tmax(η)
− δ0(e− 2)

]
+ δ0. (4.2)

In summary both cohesive energy and cohesive strength depend on the stress triaxiality
explicitly and have to be determined from experimental data.
In the present work, finite element computations are performed by using the general

purpose commercial code ABAQUS. The cohesive model is implemented in ABAQUS by
use of the cohesive element coupled with UMAT subroutine [71]. The stress triaxiality is
computed accessing the solid elements via the UVARM subroutine. In three-dimensional
finite element computations the cohesive zone is introduced as an interface between two
solids. The stress triaxiality at the interface are achieved from adjacent solid elements. The
value of the stress triaxiality at the integration points are averaged and transferred to the
nodes building the cohesive zone, as shown in Fig. 4.2. In ABAQUS, the field quantities
can be transferred to the user defined subroutine only for the converged increment step,
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that means, the cohesive parameters in the current step are determined based on the result
of the previous increment step. The errors induced by this algorithm become negligible, if
the time increment is small enough.

Figure 4.2: Schematic illustration of triaxiality value being transferred to a cohesive element
from the adjacent continuum element [33].

4.3 Identification of the cohesive parameters

4.3.1 Material and specimens

To investigate the cohesive zone model presented in the previous section, a German con-
struction steel S460 is chosen for experiments. Since the cohesive zone model is computa-
tional and cannot directly be measured, the experiments should provide evidences about
material failure for identifying model parameters.

The mechanical properties are obtained through uniaxial tests which has been specified
in Chapter 3. The initial tensile stress σy=460 MPa, the ultimate stress σu=580 MPa,
Young’s modulus E=208 GPa. The plastic behavior of the material is described by a
power-law as

εpt =
(σt

K

) 1
n
, (4.3)

with bulk modulus K=866 MPa and the strain hardening exponent n=0.15.

The dimensions of fracture mechanics specimens, the C(T) specimen and the cracked
rod bar, have been illustrated in Fig. 3.2(a) and Fig. 3.5. Both specimens are pre-
cracked to form an initially sharp crack tip. To obtain different triaxiality conditions at
crack initiation, a series of C(T) specimens with different thicknesses was fabricated. The
thickness of the smooth C(T) specimens varies from B=2 mm, 4 mm, 8 mm, 12.5 mm, 20
mm and 25 mm. The in-plane dimension is the same as the smooth C(T) specimen (Fig.
3.2(a)). Additionally, a side-grooved C(T) specimen was fabricated for studying fracture
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4 Stress-triaxiality-dependent cohesive zone model

process and diminishing effects of the specimen surfaces. The thickness of the side-grooved
C(T) is B=12.5 mm and the net thickness is BN=9 mm.

For fracture tests, all specimens are fatigue pre-cracked to ensure an initially sharp
crack tip. By using a high frequency testing machine at the loading frequency of ca. 90
Hz, the fatigue pre-cracking is generated under the constant mode I loading with a very
low load intensity. All fracture tests have been performed at room temperature on an MTS
servo hydraulic universal testing machine. To ensure the experimental results loading rate
independent, the cross head displacement is limited to 0.05 mm/min for all experiments.
The initial crack front is straight in all specimens.

4.3.2 Correlation between the cohesive energy and η

The detailed study in [54] reveals that the J-integral does not equals Γ. For elastic-
plastic materials Γ0 is generally smaller than Ji and the discrepancy increases with the
applied load intensity, that is, to the plastic zone size. However, one may image that the
correlation between the cohesive energy and the specimen geometry is affected by Ji, the
J-integral value at crack initiation in given specimens. From fracture tests, one knows
that Ji is sensitive to the specimen thickness. For a given material, the ductility of the
C(T) specimen decreases with specimen thickness. Therefore, one can find the correlation
between the fracture energy, i.e. Ji, and η by means of FE computation in combining with
fracture tests.

Distributions of local J-integral and the stress triaxiality η at crack initiation are cal-
culated using the three-dimensional FE method, as shown in Fig. 4.3. The initial crack
length and the critical force for crack initiation are measured from the experiment. In all
computations, 8-nodal isoparametric elements with full integration are used. The results
represent the distributions under crack initiation load, within the conventional J2 theory.
The element length in the crack extension direction and the height direction is 0.1 mm,
i.e. 0.4% of the crack length. The values of J-integral are calculated by using the contour
integral algorithm implemented in ABAQUS [71].

(a) (b)

Figure 4.3: Variations of (a) J-integral and (b) η at r/(Jm/σy) = 1 along the crack front
from center to surface at crack initiation of C(T) specimens with different thicknesses.
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4.3 Identification of the cohesive parameters

The distribution of the J-integral for different specimens is summarized in Fig. 4.3(a)
at the crack initiation load. In the figure Jm25 stands for the average J value of the C(T)
specimen with B = 25 mm. In three-dimensional crack analysis, the J-integral depends
generally on the z-coordinate in the thickness direction and describes the local energy
release rate against crack propagation [99]. The results show that the local J-integral
value varies along the crack front significantly. The maximum appears at the middle of the
specimens, whereas J at specimen surfaces is a fraction of the average J-integral, which
implies much smaller crack propagation speed at the specimen surface. Such variations
were observed many years ago, as reported in [18, 24]. As discussed in [18], the plane
stress state dominates the crack front field in a thin specimen and the J-integral at surface
becomes much smaller than that of the specimen middle. In the side-grooved specimen, J
is numerically uniform over a large portion of the crack front and decreases only slightly
towards the surface.

Additionally, the J distribution shows significant influence of the thickness. With de-
creasing specimen thickness, the distribution of the J-integral becomes extremely inhomo-
geneous (Fig. 4.3(a)). The average J-integral, Jm, at crack initiation decreases with the
specimen thickness B dramatically, which implies significant changes in Ji as a function
of B. It should be noted that experimental measured Ji is effectively the average J value,
Jm. According to [12], the average J is defined as

Jm =
1

Bnet

∫
J(b)db. (4.4)

The stress triaxiality η characterizes the stress-state ahead of crack front, which depends
on the distance to the crack tip in the finite element computations. The element size effect
on triaxiality distribution along the ligament is shown in Fig. 4.4. The distributions are
calculated through two specimen thicknesses. Numerical results of both thicknesses show
that mesh size dependence is obvious inside the area of r/(Jm/σy) = 0.5. The peak value
obtained from the calculation with larger element size is lower. Computations denote that
the distributions of different element sizes merge together at the positions r/(Jm/σy) > 0.5.
In accordance with the crack tip field analysis [10, 18, 24], the stress triaxiality for a crack
tip is evaluated at a distance r/(Jm/σy)=1, to avoid influence of finite strains and finite
element size.

As shown in Fig. 4.3(b), variations of the local η shows the same tendency as J . The
highest value occurs at the specimen middle and decreases towards the surface. For a given
specimen the average η is meaningful for characterizing crack front state, which is defined
as

ηm =
1

Bnet

∫
η(b)db. (4.5)

As shown in Fig. 4.3, the mean η value increases significantly with the specimen thick-
ness, while Jm decreases. The correlation between Jm and ηm can be obtained from Fig. 4.3
and is plotted in Fig. 4.5. The symbols are taken from Fig. 4.3 and represent correlation
between Jm and ηm at crack initiation. It is known that Ji depends on the specimen thick-
ness and decreases with B monotonically, which can be represented by the stress triaiality,
as observed in [33, 61, 63, 93]. The present test series shows a linear relation between Ji
and η, that is,
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4 Stress-triaxiality-dependent cohesive zone model

Figure 4.4: With the specimen thickness B = 4 mm and B = 12.5 mm, element size effect
on stress triaxiality distribution along the ligament coordinate.

Figure 4.5: Jm with the corresponding cohesive energy Γ0 verse ηm.
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4.3 Identification of the cohesive parameters

Ji(η) = Jm25(a− b · η), (4.6)

where Jm25 denotes the lower limit of Ji obtained from the thick specimen with B=25 mm
and characterizes fracture energy release rate under plane strain conditions. a and b are
fitting parameters.
As discussed in [54], Ji is generally larger than the cohesive energy Γ0 due to elastic

unloading around the cohesive zone. If the plastic zone is negligibly small, Ji is equal to
Γ0. Since plastic energy dissipation varies with specimen geometry, one cannot formulate
a unique relation between Ji and Γ. If the cohesive energy shares the same correlation to
η and can be approximately expressed as

Γ(η) = Γ0(A− B · η), (4.7)

where Γ0 is the reference cohesive energy for the plane strain specimen, approximated by
the specimen with B=25 mm, by neglecting the influence of plastic deformations [54]. In
the present study, Γ0 takes the value of Jm with B=25 mm.
Obviously, the fitting parameters A and B differs from a and b. Computational exper-

iments confirmed that Γ is hardly affected by the bending-tension loading configuration,
i.e. the in-plane constraint [49, 97, 100]. Due to decreasing plastic deformation with η,
one may image the cohesive energy will be not strongly sensitive to η as the J-integral.
The maximum cohesive energy in the cohesive zone model should be less than 2Γ0. That
means, the Jm − η relation cannot be adopted for the cohesive zone modeling directly.
From numerous computational experiments, the coefficients in Eq. (4.7) are assumed as
A=1.4 and B=0.2, which gives the best approximation to the experimental results.

4.3.3 Correlation between the cohesive strength and η

The cohesive strength represents the ultimate tensile strength of the cohesive zone model.
From tensile tests on notched specimens one knows that the maximum tensile stress at the
notch root of a notched specimen decreases with the notch radius. That is, the ultimate
strength is not constant and varies with specimen geometry as well as loading configura-
tion. In the present work the ultimate strength should be determined experimentally from
cracked specimens.
To obtain the correlation between the cohesive strength and the stress triaxiality,

Tmax(η), monotonic crack propagation tests were performed on the side-grooved C(T) spec-
imen and the cracked rod bar shown in Fig. 4.6. During the tests, the stabilized crack
profiles in specimens are recorded, together with the applied load, Fc. In steady-state
crack growth, the local stress and the stress triaxiality along the crack front are stable
and the axial stress represents the critical tensile strength depending on η. As known, η
varies along the crack front. Hence, the correlation of the local tensile strength and the
stress triaxiality can be obtained, with help of detailed finite element computations. It is
noted that the local tensile strength distribution is the critical stress-state for stable crack
growth. Accordingly, the local tensile strength is the cohesive strength for the varying
stress triaxiality.
The fatigue crack propagation with lower loading amplitudes creates rather smooth

crack surface. For the S460 steel, a large amount of plastic deformation is associated with
monotonic crack propagation, containing significant plastic strains identified from very
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4 Stress-triaxiality-dependent cohesive zone model

(a) (b)

Figure 4.6: The fracture surfaces of both cracked specimens. (a) C(T) specimen; (b) cracked
rod bar.

rough fracture surfaces. Changes between fatigue crack growth and monotonic fracture
create obvious crack contours, which imply steady-state crack profiles under given loads,
as shown in Fig. 4.6(a) for the side-grooved C(T) specimen. In finite element computations,
special meshes are generated in accordance with the crack profiles, as shown in Fig. 4.6,
for the given load Fc. With help of finite element computations one can find the stress
distributions around a growing steady-state crack front.

Variations of the crack front in the cracked rod bar are non-uniform since the geometry
of the uncracked ligament changes with crack growth. In contrast to the side-grooved C(T)
specimen, slant fracture is clearly observed near the free surface of the cracked rod bar.
Thereby, a critical crack front should be obtained after the onset of significant tearing
crack extension, which is referred as the final crack as shown in Fig. 4.6(b).

(a) (b)

Figure 4.7: Variation of (a) the local tensile stress σ22 and (b) the stress triaxiality η along
the crack front from center to surface of the initial crack of side-grooved C(T) specimen and
the final crack of rod bar specimen.
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The local tensile stress σ22 at the uncracked ligament x/(Jm25/σy)=1 is assumed to be
the cohesive strength, together with the stress triaxiality η. Both σ22 and η change along
the crack front. Both maximum tensile stress and η occur in the specimen middle and
decreases towards the surface, as show in Fig. 4.7. It is obvious that the cohesive strength
determined from the crack front stress is proportional to η. Generally, the tensile stress
and the triaxiality of the cracked rod bar are smaller than those of the side-grooved C(T)
specimen. It implies different cohesive strengths in the two specimens.

Figure 4.8: Correlation between the tensile stress and the stress triaxiality during steady-state
crack growth in a side-grooved C(T) specimen and a cracked rod bar.

The correlation between the tensile stress σ22 and the triaxiality η is summarized in Fig.
4.8, for both specimens. During stable crack growth one may assume that the relation
between the local tensile stress and the triaxiality is characteristic for the material and
can be applied for cohesive zone modeling. As shown, the tensile stress increases with
the triaxiality significantly, representing relation between the cohesive strength and stress
triaixality. The correlation can be approximated as a linear function, as

Tmax(η) = T0(C +D · η), (4.8)

with T0 as the reference traction in the cohesive zone model. Since the reference cohesive
energy Γ0 is taken from Jm with B=25 mm, T0 is determined for the thick specimen with
3.45 σy. The fitting parameters are identified as C=0.33 and D=0.31.

4.4 Computations and Discussions

To verify the proposed stress-triaxiality-dependent cohesive zone model, three-dimensional
finite element computations are conducted on the side-grooved C(T) and the cracked rod
bar. Cohesive elements are arranged on the ligament plane to simulate the crack extension.
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4 Stress-triaxiality-dependent cohesive zone model

Due to symmetry, only one quarter of the specimens needs to be simulated. The inelastic
behavior of the material is described by theJ2 plasticity of ABAQUS. The true stress-
strain curve was determined from tensile tests. The cohesive parameters for CZM and
the correlations between the cohesive parameters and the stress triaxiality for TCZM have
been specified in the previous sections.
In cohesive zone modeling, material degradation occurs with softening in traction-

separation. To improve convergence, the cohesive parameters are adjusted with the stress
triaxiality only before δ0 is reached. That is, damage process in the softening stage is not
further affected by the stress triaxiality and the parameter values will be inherited from
the last increment as a function of the stress triaxiality.

4.4.1 Crack growth simulation in the side-grooved C(T) specimen

In the side-grooved C(T) specimen, the initial crack front is straight. The FE mesh was
generated with a straight crack front. Eighteen element layers were implemented in the
thickness direction, with a bias ratio of 5.0. The groove notch radius of 0.1 mm was
included in the model. Five extra element layers were generated for the side-grooved part
of the specimen. The smallest element length is 0.1 mm in both crack extension and height
directions.

(a)

(b) (c)

Figure 4.9: Comparison between experimental and computational predictions of the side-
grooved C(T) specimen using different cohesive zone models. (a) The predicted fracture
surfaces. (b) Crack profiles. (c) Load-line displacement curves.

The side-grooved C(T) specimen was computed based on different cohesive model param-
eters, i.e. CZM for the conventional cohesive zone model, TCZM for the stress-triaxiality-
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dependent cohesive zone model as well as TCZM(Ji) for the TCZM correlated by the
experimental Ji − η curve. Comparison between computations and experiment is plotted
in Fig. 4.9(c), in which curves of the load versus load line displacement are illustrated.
Agreement between the TCZM/CZM simulations and the experiment is obvious. Both
load-load line displacement curves from TCZM and CZM computations seem not sensitive
to stress triaxiality dependence in the modeling. They give generally good agreement to
the experiment.

Significant difference from computations is observed in crack profile development. Fig.
4.9(a) shows the predicted fracture surfaces. Curves in Fig. 4.9(b) represent compu-
tational and experimental crack fronts in the side-grooved C(T) specimen, which is no
longer straight after crack initiation. Due to additional stress concentration from the side
groove, the crack near the surface grows more quickly than that in the specimen middle.
This behavior can be caught by the TCZM correctly, while the CZM model gives a different
profile from the reality. Due to constant cohesive strength and fracture energy, the crack
under higher triaxiality is much quicker than the crack with lower triaxiality. It results in
a extremely difference in specimen middle and near the notch root, while the crack below
the notch extends too little. The TCZM model provides a reasonable prediction in both
global and local fracture parameters.

In Fig. 4.9 an additional computation is documented for comparison, under the symbol
TCZM(Ji), which denotes the computation with the experimental correlation of Jm vs.
ηm, Eq. (4.6), for the stress triaxiality dependence of the fracture energy. That is, the
experimental relation is directly used for Γ(η). The computation reveals that, due to the
extremely high fracture energy applied near the free surface, no crack extension is observed
near the notch root, even with the middle crack extension up to 1 mm. In addition, the
excess fracture energy leads to overestimate in the load-displacement curve. From such
observation Eq. (4.6) is not adequate for crack growth simulation.

Figure 4.10(a) shows development of the crack fronts of the side-grooved C(T) specimen
from both CZM and TCZM. As observed, the crack near the grooved surface extends

(a) (b)

Figure 4.10: Comparison of computational predictions from different cohesive zone models on
the side-grooved C(T) specimen. (a) Development of the crack front. (b) Crack extension vs.
load-line displacement.
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4 Stress-triaxiality-dependent cohesive zone model

faster than the middle plane one after crack initiation. With crack growth, however, both
models predict acceleration in the middle plane crack. The difference between the surface
crack length and the middle plane crack disappear with crack growth and the crack front
is approaching a straight line again. TCZM predicts a flatter crack front than that from
CZM. The comparisons of the crack extension at the free surface and the middle plane
vs. load-line displacement from both models are shown in Fig. 4.10(b). The predicted
crack extension from TCZM is always smaller in comparing with the result from CZM.
The discrepancy in the numerical results can be explained from stress triaxiality evolution
with crack extension.

(a) (b)

Figure 4.11: Stress triaxiality variations along uncracked ligament at various loading stages in
the side-grooved C(T) specimen. (a) Middle plane. (b) Free surface.

Figure 4.11 shows stress triaxiality variations along uncracked ligament at various loading
stages in the middle plane and the free surface, respectively. With crack extension, the
peaks of the stress triaxiality shift. The peak values from the TCZM modeling depend on
cohesive strength and are generally higher than the triaxiality from Eq. (4.8) for constant
cohesive strength T0. This implies that the cohesive strength in TCZM at the middle plane
is always higher than T0, it results in slower crack growth predicted from the TCZM.
At the free surface of side-grooved specimen, the fracture energy is dominant for crack

extension [68]. As shown in Fig. 4.11(b), the triaxiality values at the free surface are
much lower in comparing with the values at the middle plane. According to Eq. (4.7),
a larger cohesive energy in TCZM is needed for a crack increment, which leads to slower
crack growth prediction at the free surface. Consequently, the predicted crack extension
predicted from TCZM is retarded in comparing with CZM.

4.4.2 Crack growth simulation for the cracked rod bar

In the rod bar the crack front is generally a curve. The fatigue crack front is obtained from
the specimen for EF meshing for the stress intensity factor distribution. The FE meshes
are generated in compliance with the initial crack profile. The thickness of the region near
the free surface is partitioned about 1.5 mm. Ten layers of elements are used through this
region. Each layer has the same thickness. Fifteen layers of elements are used through the
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rest region of the cross section till the middle plane. The layer thickness in this region has
a bias ratio of 3.0. The smallest element length near the crack front in crack extension
direction and the height direction is 0.1 mm.

(a)

(b) (c)

Figure 4.12: Comparison between experimental and computational predictions of the cracked
rod bar using different cohesive zone models. (a) The predicted fracture surfaces. (b) Crack
profiles. (c) Load-line displacement curves.

Predictions from cohesive zone models are illustrated in Fig. 4.12, together with exper-
imental records. With the same initial crack profile, computations were conducted under
displacement controlling. CZM denotes the conventional cohesive zone model with con-
stant model parameters, while TCZM is from the stress-triaxiality-dependent model. The
computation of CZM shows much higher loading capacity if the cohesive parameters iden-
tified in the side-grooved C(T) specimen are applied, as shown in Fig. 4.12(c). The reason
can be explained in Fig. 4.7. It shows that due to the geometric effect, the tensile stress
and the triaxiality values of the cracked rod bar are much smaller in comparing with the
values of the side-grooved C(T) specimen.
Figure 4.12(b) shows the comparison of the crack profiles between experimental result

and predictions. The crack growth near the specimen center predicted from the TCZM
seems to give more accurate results than that from the const CZM. It can be explained
based on the triaxiality dependence, as observed in the C(T) specimen.
The results near the free surface, however, that the computations do not approach the

experimental front. As shown in Fig. 4.6(b), the crack front near the free surface is influ-
enced by shear failure mode, so that the crack surface becomes locally not plain. Present
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4 Stress-triaxiality-dependent cohesive zone model

discussions of cohesive zone model can only simulate normal failure and the predictions
from TCZM gives too low crack growth velocity. No crack extension at the free surface
was predicted by the CZM.

(a) (b)

Figure 4.13: Comparison of the numerical results from different cohesive zone models of the
cracked rod bar. (a) Variation of the predicted crack fronts for various loading stages. (b) The
predicted crack extension vs. load-line displacement.

Figure 4.13(a) shows the predicted crack fronts corresponding to various loading stages
of both models. The comparisons of the crack extension at the free surface and the middle
plane vs. load-line displacement from both models are shown in Fig. 4.13(b). Similar
to the numerical result of the side-grooved C(T) specimen, the predicted crack extension
at the center of the specimen from TCZM is always slower in comparing with the result
from CZM. In addition, with crack propagation, crack extension at the free surface is
predicted from TCZM, although the simulated result is much smaller in comparing with
the experimental result.

(a) (b)

Figure 4.14: The triaxiality distribution in the uncracked ligament at various loading stages
of the cracked rod bar. (a) Middle plane; (b) Free surface.
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Figure 4.14(a) shows the triaxiality distributions along the ligament coordinate at the
middle plane. Note that the peak values of the triaxiality distributions are higher in
comparing with the triaxiality value of the constant cohesive strength. Higher triaxiality
value should correspond to higher cohesive strength. This way, the resistibility of crack
extension in TCZM would be obvious which leads to slower crack extension prediction. Fig.
4.14(b) shows the triaxiality distributions at the free surface. Note that the peak values are
much lower in comparing with the values at the middle plane. For the smooth specimens,
it has been confirmed that the cohesive strength would influence the computational results
primarily. Thus, excessive lower cohesive strength applied in TCZM makes the possibility
of crack extension at the free surface.

4.5 Summary

The formulation and validation of a stress-triaxiality-dependent cohesive zone model is
presented. It is confirmed that cohesive parameters, cohesive strength and cohesive en-
ergy, are not material constants as they depend on the triaxiality of the stress-state. The
correlations of the stress triaxiality and cohesive parameters are identified based on the
experimental results. Proposed TCZM and conventional CZM have been applied to model
three-dimensional crack extension, which were represented by the side-grooved C(T) spec-
imen and the cracked rod bar containing a semi-elliptical surface crack. Experiments on
these specimens were carried out to validate the simulation results. The present results
confirm the following conclusions:

• Experiments reveal that the cohesive parameters are stress triaxiality dependent. The
linear triaxiality dependence in the cohesive zone model significantly improves three-
dimensional crack growth computation. Generally, the cohesive strength increases
with the stress triaxiality is higher, whereas the cohesive energy decreases.

• The cohesive traction seems more sensitive to the stress triaxiality than the cohesive
energy. The correlation of cohesive strength vs. stress triaxiality, Tmax(η), can be
determined by calculating a critical stress-state at the onset of stable crack growth
over the whole crack profile.

• The correlation of cohesive energy vs. stress triaxiality, Γ(η), can be determined
according to the tendency of the values of J-integral at crack initiation under different
stress triaxiality conditions. However, due to the dominance contribution of Ji from
plastic dissipation energy at lower stress triaxiality condition, the value of Ji would
be significant larger than Γ0. Consequently, the precisely determination of Γ(η) has
to verify the predictions with the experimental results.

• Present study can only consider normal failure simulation. For the rod bar spec-
imen, tearing crack extension is observed near the free surface. Predictions show
significant deviation with the experimental result in predicting mix mode (mode
I+III) crack. The quantification of the effect of the stress-state requires the Lode
parameter apart from the triaxiality parameter [101–103]. Extension of the present
correlations Tmax(η) and Γ(η), and prediction of the crack growth for different cracks
in different ductile metals are required to further substantiate the versatility of the
model.
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5 A uniform CZM for both fatigue and
fracture crack simulation

5.1 Introduction

5.1.1 Sate of art of cyclic cohesive zone model

Cohesive zone modeling provides an alternative way to predict crack growth in ductile
materials under elastoplastic loading conditions. The applicability of cohesive zone model
for fatigue crack propagation, which is denoted as cyclic cohesive zone model (CCZM), has
been introduced in Chapter 1. Here, the representative milestones in the development of
CCZM are summarized.

a. de-Andrés model

The attempts have been made to use CCZM to describe fatigue failure since the end of
20th century. de-Andrés et al. [104] simulated the fatigue crack propagation by adding
a linear un/reloading path towards the origin to the exponential cohesive law. A damage
variable D which varies between zero to unity, is introduced to describe damage process.
However, the damage evolution is not included in the formulation of the cohesive law as
an intrinsic variable. In this way, the unloading and subsequent reloading would coincide,
cyclic damage accumulation is not considered. The cohesive zone eventually stabilizes
which causes shake down effects and crack arrest under cyclic loading [105]. To prevent
this problem, the hysteretic un/reloading as well as the damage evolution in the cohesive
zone should be introduced.

b. Nguyen model

Nguyen et al. [105] developed a linear cohesive law that incorporates the un/reloading
hysteresis to predict fatigue life under several loading conditions. The loading stiffness
is chosen as an internal variable in the spirit of damage theories and the damage evolu-
tion equation is governed by the loading path direction, the current stiffness value and
the normalized separation rate. The unloading path is linear towards the origin, but the
reloading stiffness evolves in accordance with the evolution equation and degrades steadily.
The accumulation of damage within the cohesive zone is accounted for on a cycle-by-cycle
basis and eventually leads to complete decohesion and crack extension. In a parallel devel-
opment, Yang et al. [106] proposed a similar model by defining the un/reloading stiffness
in a general polynomial expansion. The evolution law of the stiffness is attached to the
displacement jump between crack faces and the model also allows for damage accumulation
during unloading.
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5.1 Introduction

In a further application of Nguyen model, Maiti and Geubelle [107] simulated the fatigue
crack growth of polymers and then to investigate the effect of fatigue crack retardation
induced by crack closure [108]. Eliáš and Le [109] investigated fracture behaviors of quasib-
rittle structures under compressive fatigue. In combination with an exponential cohesive
law, Serebrinsky and Ortiz [110] showed the ability of the model to predict the fatigue-crack
nucleation. Later, Arias et al. [111] extended the model to study the electro-mechanical
ferroelectric fatigue.
It should be noted that consideration of un/reloading hysteresis has the important con-

sequence of preventing shakedown, thus allowing for steady crack growth. Moreover, re-
garding the damage evolution equation, the cohesive behavior of the material under cyclic
loading is independent of specification of the monotonic cohesive law.

c. Roe-Siegmund model

The paper about the CCZM attracted many researchers was published by Roe and Sieg-
mund [112] for simulating the interface fatigue crack growth. Based on the concepts of
continuum damage mechanics by Lemaitre [91], a damage variable is supplemented by an
evolution law to account for the accumulation of damage. The description of the damage
evolution is defined in the form of Ḋc = Ḋc(T, δ,Dc), with Ḋc � 0. Within the cyclic
loading process, the accumulative damage makes the degradation of cohesive law by sub-
stituting the initial cohesive strength, T0, by the current one, T0 cyc = (1 − D)T0. The
damage evolution law includes the material endurance limit and damage initiation condi-
tion. Originally, Roe and Siegmund [112] assumed the un/reloading path follows a linear
relationship with a stiffness equal to that of the current cohesive law at zero separation,
which leads to residual separation.
The model has been applied to investigate the fatigue crack growth in various condi-

tions and can reproduce many basic characteristics which are similar to the experimental
phenomena, i.e. the shield of crack bridging [113], the multi-layer structures with different
constraint conditions [114, 115], the mismatched bi-material interfaces [116] and the effect
of strain gradient plasticity [117]. In addition, Abdul-Baqi et al. [118] described the fatigue
damage process in a solder bump. Jiang et al. [119] predicted the influence of overload
and loading mode on three-dimensional fatigue crack growth. Liu et al. [120–122] utilized
the model to investigate the influence of shot peening on the fatigue crack growth and
relaxation of residual stress under cyclic load.

d. Extensive damage evolution equations

The key feature in CCZM is the description of cyclic damage accumulation and its com-
bination with the general cohesive law. Common for all the considered methods is that
the development of damage is described by an evolution equation. One can find a large
variety of realisations.
In the framework of XFEM combined with CCZM, Xu and Yuan [39, 40] proposed

a new evolution equation for the damage variable, which neglected the damage induced
by the shear stress based on the experimental observation that the crack propagation is
dominated by mode I mechanism [123]. In this model, nucleation of damage once the
nonlocal equivalent principal stress, σeq, ahead of the cohesive zone tip is greater than
the material fatigue limit f0. Numerical predictions successfully obtained linear curves
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5 A uniform CZM for both fatigue and fracture crack simulation

comparable to the Goodman formulation. Li and Yuan [124] extended the model to include
the effect of stress ratio R on the accumulated cohesive length.
Bouvard et al. [125] formulated a damage evolution equation in a thermodynamic frame-

work. The thermodynamic force associated with the damage variable is employed as the
driven force for damage evolution. The incremental damage evolution is expressed as
ΔDc = ΔDc(Dc, Y, δ) with the following features: (i) damage only begins if the thermo-
dynamic force Y is higher than a threshold Y0; (ii) the damage increment is related to
the opening increment; (iii) damage occurs only under loading conditions. In the work of
Bouvard et al. [125], a creep damage was defined additionally to take into account the
time effect observed in loadings at low frequency. An enhancement of Bouvard model was
proposed by Moriconi et al. [126] to study the fatigue crack propagation in a hydrogenous
environment. Sun et al. [127] adopted the creep damage variable to study the intergranular
crack growth in a nickel-based superalloy.
Ural et al. [128] used a damage degradable cohesive stiffness and a damage evolution

law which considered the possibility of damage healing if the surface traction falls below
a threshold. In this way, fatigue crack growth retardation effects due to overload could be
modeled. Moreover, a damage-accumulation scaling function is adopted through scaling
the cohesive parameters in predicting high cycle fatigue.
Gong et al. [129] presented a CCZM for interface fatigue problems. The cumulative

damage is related to the average opening displacement across the interface δavg and the
cohesive ultimate separation δu. The cohesive properties of the cohesive zone gradually
reduce as the opening displacement increases for each loading cycle.
Cycle-by-cycle calculation can be applied in the low or very low cycle fatigue regime.

For high cycle fatigue, it would be more efficient to formulate fatigue damage growth
relations in cycle-based format by assuming the damage increment per cycle to be very
small. Different formulations of the damage evolution rate aimed at high cycle fatigue
simulation have been published, i.e.

• Turon et al. [130] combined damage mechanics and the Paris’ law to establish damage
evolution in terms of the fatigue crack growth rate. A cycle jump strategy was
implemented in the calculation. This CZM was applied for fatigue crack growth
analysis in composites.

• Khoramishad et al. [131–133] proposed a strain based fatigue damage rate function,
wherein the strain is defined using the interface separation of cohesive elements with
non-zero initial thickness.

5.1.2 Motivation

The CCZMs published have been applied for predicting the fatigue crack growth behavior
and many fatigue features can be captured. However, most proposed models only consider
cyclic damage accumulation without full interactions with monotonic damage. That is, the
contribution of the material rupture mechanism is negligible. In this case, these models can
only generate the essential fatigue features, especially for fatigue crack growth in Regime
II. Regime III associated with the high rate of fatigue crack growth and severe plastifi-
cation cannot be represented. Furthermore, the CCZM needs more detailed experimental
verification.
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In the present work, a new CCZM is developed for predicting fatigue crack growth in
both Regime II and Regime III. Experiments of fatigue cracks are performed to establish
and verify the model. Much emphasis are put on examining the performance of the CCZM
with plastic unloading.

5.2 A new cyclic cohesive zone model

The cohesive model is introduced to characterize localized material failure around the
crack-tip. In simulation of fatigue crack growth the CCZM has to be able to consider
both ductile failure and accumulative damage due to cyclic fatigue loading, which builds
the significant difference from the conventional CZM for rupture. The CCZM should
characterize different damage evolution mechanisms for fatigue crack growth in metallic
materials: monotonic damage due to high plastic deformations and cyclic damage from
repeated accumulative stresses/strains. Since both damage mechanisms are so different
that two damage evolution equations become necessary. In the present work, it is assumed
that the total damage evolution is decomposed as

Ḋ = Ḋm + Ḋc, (5.1)

where the damage variable D =
∫
t
Ḋdt stands for the material degradation and represents

failure if D = 1.

5.2.1 Damage evolution for monotonic loading

Under monotonic loading condition, following the feature of traction-separation behavior
in the cohesive zone, cohesive traction increases/keeps constant with accrued separation
until a critical separation δ0 is reached. Therefore, no damage accumulation is assumed for
the ascending stage. Once δ0 is exceeded, the traction decreases towards zero with further
separation. For the descending stage, the constitutive equations of traction-separation re-
lation can be expressed with the incorporated damage evolution mechanism. The cohesive
traction degrades with increased monotonic damage accumulation, as

T = T0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(δ) 0 � δ � δ0

(1−Dm) δ0 < δ � δu

0 δu < δ

. (5.2)

In above, g(δ) is a monotonic function which experiences an ascending tendency with
respect to δ. The expression of the monotonic damage variable Dm is related to δ0 and
δu, for the conditions of Dm = 0 at δ = δ0 and Dm = 1 at δ = δu. For instance, a linear
monotonic damage can be defined by,

Dm =
δ − δ0
δu − δ0

. (5.3)

The monotonic function between δ0 and δu ensures that Ḋm is always a positive value.
Should g(δ) take an exponential function which suggested by Needleman [47], a cohesive
law can be formulated for the monotonic loading case, as
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5 A uniform CZM for both fatigue and fracture crack simulation

T = T0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

exp(1− δ

δ0
)(

δ

δ0
) 0 � δ � δ0

(1− δ − δ0
δu − δ0

) δ0 < δ � δu

0 δu < δ

. (5.4)

According to Eq. (1.3), the cohesive energy for material separation can be obtained
from Eq. (5.4) as

Γ0 = T0(δ0(e− 2) +
1

2
(δu − δ0)), (5.5)

where e = exp(1) is the Euler′s number. An illustration of monotonic damage evolution
with the corresponding cohesive law is shown in Fig. 5.1.

Figure 5.1: Illustration of monotonic damage evolution with corresponding cohesive laws.

5.2.2 Damage evolution for cyclic loading

a. Cyclic damage evolution equation

Fatigue failure under cyclic loading has to be described by a varying damage accumula-
tive process. For present study, the fatigue damage evolution equation suggested in [112]
reasonably reflects the accumulative damage for ductile materials, which reads

Ḋc =
δ̇

dΣ
(

T

T0(1−D)
− n)H(δacc − δ0), Ḋc � 0. (5.6)

Here, the total damage variable D which covers both monotonic damage Dm and cyclic
damageDc is applied to describe the current maximum cohesive traction, T0(1−D). Ḋc � 0
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5.2 A new cyclic cohesive zone model

represents the irreversibility of cyclic damage accumulation. δ̇ is the separation increment,
with δ̇ = δt − δt−Δt. δacc is defined as the separation accumulation and δacc =

∫ | δ̇ | dt.
The Heaviside step function H(δacc − δ0) implies that the cyclic damage will not start to
evolve until the current accumulated separation is greater than the critical separation δ0.

The cyclic damage evolution Ḋc is also dependent on two additional parameters. The
accumulative length dΣ is used to scale the increment of the material separation. Normally,
it is a multiple of δ0. n is the material dependent damage controlling parameter.

b. Un/reloading path

To properly describe fatigue crack propagation under cyclic loading, the definition of un-
loading and reloading paths is indispensable. The present study focuses on the low cycle
fatigue regime, hence, the ductile unloading mechanism is applied in the current CCZM,
as shown in Fig. 1.5(b). Following the suggestions in [40, 65, 112], for ductile material, the
unloading and reloading processes are assumed to proceed along with a current computed
stiffness

k =
T0(1−D)e

δ0
. (5.7)

For the case no damage accumulation, D = 0, the slope equals to the initial cohesive
stiffness at zero separation. This assumption leads to that after a completed unloading,
there exists the possibility for the presence of residual separation within the cohesive zone.
Correspondingly, the traction-separation behavior follows a linear relationship, as

Tt = Tt−Δt + kδ̇, (5.8)

where Tt and Tt−Δt are the cohesive traction in the different time increments. During
numerical simulation, a single progress of unloading or reloading consists of several incre-
ments so that the loading force is removed or added gradually. Within an increment, the
stiffness is modified according to the current value of total damage, D. As a result, the
path for a single unloading or reloading is a multi-linear line.

After the cohesive element is broken, to prevent adjacent continuum elements from
penetrating each other during the unloading or compression period, a contact condition
should be considered in the normal direction. A high penalty stiffness A is introduced to
prevent the overlapping of cohesive elements. The penalized equation is given by

T = A · T0 · exp(1)( δ
δ0
), δ < 0. (5.9)

c. Envelop curve

As specified previously, proposed suggestion of the constitutive relation for CCZM is
through deteriorating the peak traction due to the evolution of cyclic damage variable.
The cohesive law in monotonic case provides an envelop line when cyclic loading occurs.
With evolutions of both damage variables, Dm and Dc, the interaction of rupture and
fatigue can be considered in the cohesive law, which is effectively the current degraded
cohesive envelope, which can be expressed as
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CD =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T0 cycexp(1− δ

δ0
)(

δ

δ0
) δ � δ0

T0 cyc δ0 < δ � δc

T0(1− δ − δ0
δu − δ0

) δc < δ � δu

, (5.10)

with δc = δ0+D(δu−δ0) and the current cohesive strength of the material T0 cyc = T0(1−D).
For the application of Eq. (5.8), the inequality must be satisfied that,

T � CD. (5.11)

5.2.3 Operating mechanism of the cyclic cohesive zone model

(a) (b)

(c) (d)

Figure 5.2: Illustration of cyclic process of CCZM. (a) Load spectrum. (b) No damage accu-
mulation. (c) Damage accumulation with unloading point before δ0. (d) Damage accumulation
with unloading point after δ0.

The damage process of the present model should be noted. Generally, it is assumed that
the reloading path should not exceed the monotonic cohesive envelop. Once the reloading
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curve intersects the envelop, loading is bounded to remain on the envelop and no damage
is accounted [105, 106, 112]. Present model suggests a continuous damage accumulation
within the whole loading process. Once the reloading path intersects the envelop line, with
a further loading, damage accumulates successively according to Eq. (5.6) based on the
separation increment δ̇. In this step, Eq. (5.8) will provide a trial traction response firstly.
Then, the equality condition of Eq. (5.11) should be fulfilled and the trial traction response
will be mapping to the current maximum load bearing capacity CD. A detailed illustration
of the correlation between the un/reloading path and the cyclic process of CCZM is shown
in Fig. 5.2. Detailed numerical comparison of those two models will be presented in the
following section.
Figure 5.2(a) denotes a load spectrum. The loading path O→ A is assumed as the first

loading step. Obviously, the response of the cohesive zone in the first loading step should
comply with the monotonic cohesive law which is defined in Eq. (5.4).
Following by a loading path A → B → C → D, which denotes one cyclic loading cycle.

Fig. 5.2(b) illustrates the case that no damage accumulates after a completed load cycle.
If DD = 0, which means no cyclic damage accumulation contributes to the maximum load
bearing capacity of the cohesive zone. Eq. (5.10) goes back to Eq. (5.4). Therefore, the
cohesive response for a further loading (D→ E) follows the initial monotonic cohesive law.
Figure 5.2(c) and (d) denote the case that cyclic damage accumulation exists after a

completed load cycle. Within the unloading and reloading process, to update the traction
at current time step, a trial traction increment is chosen which is given according to Eq.
(5.8). Should the condition of Eq. (5.11) be fulfilled, current traction is then updated based
on the trial traction increment. Otherwise, the trial current traction should be mapping to
the cohesion CD and the equality of Eq. (5.11) is true. The point D denotes the condition
that the equality holds in Eq. (5.11). The next loading path D → E represents a further
loading case. If DD > 0, as shown in Fig. 5.2(c) and (d), the damage evolution for next
time increment is accounted continuously and the evolution equation is following Eq. (5.6).
The FE software package ABAQUS [71] offers a library of cohesive elements for 2D and

3D modeling. The separation behaviors of the cohesive elements can be defined within
the constitutive relations for the cohesive zone. The aforementioned CCZM has been
implemented via the user definite subroutine UMAT.

5.3 Validation of the cyclic cohesive zone model

To verify the proposed model, numerical experiments are performed. The material prop-
erties are taken to be in accordance with high strength steel alloy with Youngs’ modulus
E = 208 GPa, Poisson’ratio ν = 0.3. The initial yield strength σy = 1200 MPa and the
plastic behavior can be described in Eq. (4.3) with the bulk modulus K = 1500 MPa and
the strain hardening exponent n = 0.015. The bulk material for the continuum elements
is described by the classical J2 theory.
For the current investigation, the cohesive properties are assumed as: the cohesive

strength T0 = 3900 MPa, the critical separation δ0 = 0.0032 mm and the ultimate sepa-
ration δu = 0.016 mm. Under the cyclic loading case, the two additional parameters are
determined as dΣ = 10δ0 and n = 0.2 respectively.
The simulation is carried out by using C(T) specimen through the 2D FE model as

shown in Fig 5.3. Under mode I loading conditions, the crack tip field is symmetric to

77Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5 A uniform CZM for both fatigue and fracture crack simulation

the crack plane and only a half of the specimen has to be discretized. The width and
height of the model is 50 mm and 30 mm, respectively. The thickness of the model is
12.5 mm. The initial crack length a0 is 25 mm, as is the ligament length. The distance
between the loading point and the top surface of the specimen is 10 mm. The type of
continuum element is a CPE4 plane strain element. The cohesive elements are located
along the ligament, and the size of the single element is 0.1 mm.

Figure 5.3: Finite element model of simulated compact tension specimen. The point A denotes
the initial crack tip with a crack length a0=25 mm. The point B has a distance with point A
of 3 mm. The cohesive degradation and traction-separation response of those two points are
compared.

In order to trace the local response of the material point along the crack growth path,
the constant force-controlled loading condition is applied to ensure that the fatigue crack
growth rates always increase. With the same loading ratio R = 0.1, two different force
amplitudes are performed with Fmax = 26 kN and Fmax = 17.5 kN respectively. These two
loading levels are corresponding to the initial stress intensity factor ranges ΔKini = 80.86
MPa

√
m and ΔKini = 54.42 MPa

√
m separately.

5.3.1 Traction response of high loading level

Figure 5.4 shows the traction-separation responses and the damage process of point A and
point B with the loading level Fmax = 26 kN. Fig. 5.4(a) shows the relations between
the traction and separation and Fig. 5.4(b) shows variation of local damage growth. The
variation of the traction with the rising applied cycles are plotted in Fig. 5.4(c) and (d)
for both points. Both axes are nondimensionalized.
Initially damage accumulates only at the initial crack tip (point A) where the combi-

nation of accumulated separation as well as the traction level is the largest. For the first
loading segment, the traction-separation response follows the envelope curve as shown in
Fig. 5.4(a). Due to a high applied load, the separation at the initial crack tip (point A)
exceeds the critical separation δ0. Consequently, the monotonic damage starts to accumu-
late at the first loading segment, which is according to Eq. (5.3). As shown in Fig. 5.4(a)
and (b), for the point A, the damage accumulation is D = 0.23 at the first loading segment
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5.3 Validation of the cyclic cohesive zone model

(a) (b)

(c) (d)

Figure 5.4: With the loading level Fmax = 26 kN: (a) the traction-separation responses for
both points; (b) the local damage evolution as functions of the loading cycles for both points;
(c) the traction evolution as function of the loading cycles for point A; (d) the traction evolution
as function of the loading cycles for point B.

and the cohesive traction is T = 0.77T0. Comparing with Fig. 5.4(c) and (d), point A ex-
periences the highest peak traction at the first loading segment while the traction of point
B is still small, e.g. the traction of point B is only 12.8%T0 at the first loading segment.
Since the damage accumulation already sets in the first cycle, all subsequent cycles result
in lower T values at point A, as shown in Fig. 5.4(c). For present cohesive parameters,
point A loses its stress carrying ability completely after 50 cycles.

Point B experiences both lower accumulated separation and traction level which below
the endurance limit, thus no damage accumulates at first 75 cycles. After total failure
happens at the initial crack tip, a redistribution of traction occurs at the successive points
as cycling progresses. Point B thus experiences increased traction. Finally, the traction
surpasses the endurance limit and allows damage to initiate. The damage initiation of
point B starts from the 76th loading cycle after which the maximal value of the achieved
traction firstly increases up to 77%T0 and then decreases with the increasing of the loading
cycles until rupture. The final failure occurs at point B after 273 cycles. With increasing
the loading cycle, the material separation increases. The final separation of point A is
approximately 0.7δu while the value of final separation of point B is very close to δu.
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5 A uniform CZM for both fatigue and fracture crack simulation

5.3.2 Traction response of low loading level

Figure 5.5 shows the traction-separation responses and the damage process of point A
and point B with the loading level Fmax = 17.5 kN. The material separation processes are
similar to the one occurring with the high loading level, only that damage accumulation
sets in at a higher number of loading cycles. The traction of point A in all subsequent
cycles is lower then the traction achieved at the first loading segment while the traction of
point B increases firstly, after a maximal value achieved then decreases, as shown in Fig.
5.5(c) and (d). The separation of the final failure at point B is 0.53δu which is greater than
the value at point A, 0.27δu, as shown in Fig. 5.5(a).

(a) (b)

(c) (d)

Figure 5.5: With the loading level Fmax = 17.5 kN: (a) the traction-separation responses for
both points; (b) the local damage evolution as functions of the loading cycles for both points;
(c) the traction evolution as function of the loading cycles for point A; (d) the traction evolution
as function of the loading cycles for point B.

For both loading levels, the cyclic traction-separation responses is always restricted
within the envelope curve. The reason has been explained in section 4.3. A significant
different of the traction-separation responses is that due to a lower loading level, the
separation at the initial crack tip (point A) is smaller than δ0, thus no monotonic damage
accumulation occurs at the first loading segment. The damage initiates always at the
initial crack tip (point A). For the low loading level, the damage accumulation starts from

80 Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



5.3 Validation of the cyclic cohesive zone model

the 4th cycle. The similarity in the separation processes for both loading levels clearly
indicates that material separation processes are distinctly different during crack initiation
and crack propagation for which a steady state is reached.

With the high loading level, the final failure of the two points are at the 50th cycle and
at the 273th cycle. With the low loading level, the final failure of the two points are at
the 79th cycle and at the 696th cycle. The interval between the final failure of the two
points is shorter with the high loading level than with the low loading level, as shown in
Fig. 5.4(b) and 5.5(b). This implies that the crack grows at a faster rate with the high
loading. The Δa vs. N curves for the two loading cases are depicted in Fig. 5.6(a). The
da/dN vs. ΔK are presented in Fig. 5.6(b).

5.3.3 Fatigue crack growth rate (da/dN vs. ΔK) prediction

(a) (b)

Figure 5.6: With two loading levels, (a) the fatigue crack extension curves (Δa vs. N); (b)
the fatigue crack growth rate curves (da/dN vs. ΔK).

In Fig. 5.6(a), the crack extension Δa is plotted as a function of number of applied load
cycles, N . The larger the applied load requires the smaller number of cycles for crack
initiation. The corresponding da/dN vs. ΔK curves are presented in Fig. 5.6(b) in
which the complete crack growth rate curve is assembled through high and low loading
levels. The stress intensity factor can be calculated according to Eq. (3.1). The fatigue
crack growth rate da/dN is approximately by the slope of Δa vs. N curves. To avoid
”numerical noise”, crack growth rate da/dN is obtained by the interval of every four points
on the crack extension curves (Δa vs. N), in terms of (Δai+5−Δai)/(Ni+5−Ni) with (Ni,
Δai) is the coordinate of the point on the crack extension curve. The minimal difference
of (Δai+5 − Δai) is limited by the cohesive element length. Several convergence studies
[98, 112, 124] have been performed to investigate the dependence of the predicted CCZM
on the size of cohesive elements. The results convince that the influence of the element
size is negligible. With increment of the crack length, the fatigue crack growth rate is
accelerated and enters into Regime III progressively.
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5 A uniform CZM for both fatigue and fracture crack simulation

5.3.4 Parametric study

(a) (b)

Figure 5.7: With the loading level Fmax = 17.5 kN, the effect of (a) the accumulative length
dΣ with n = 0.2 and (b) n with dΣ = 5δ0 on the fatigue crack extension curves (Δa vs. N).

(a) (b)

Figure 5.8: With the loading level Fmax = 17.5 kN, the effect of (a) the accumulative length
dΣ with n = 0.2 and (b) n with dΣ = 5δ0 on the fatigue crack growth rate curves (da/dN vs.
ΔK).

The identification of the effects of the model parameters are also performed under the
constant force amplitude at the loading ratio R = 0.1 with the loading level Fmax = 17.5
kN. Fig. 5.7(a) shows the effect of the accumulative length dΣ for the crack extension
curves and Fig. 5.8(a) presents the corresponding fatigue crack growth rate curves. In
Fig. 5.7(a), under a given crack growth length Δa, the fatigue growth life increases with
rising the value of dΣ. The larger value of dΣ slows down the crack growth rate da/dN at
a given ΔK with the same value of n. As shown in Fig. 5.8(a), the general trend appears
that dΣ-based curves are parallel to each other when other parameters remain unchanged.
The accumulative length dΣ acts like the intercept coefficient C operates in Paris’ equation
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5.3 Validation of the cyclic cohesive zone model

of Eq. (1.1). Fig. 5.7(b) shows the effect of n for the crack extension curves and Fig. 5.8(b)
are the corresponding fatigue crack growth rate curves. The higher value of n correlates
with the lower crack growth rate da/dN under the same loading condition. In contrast,
the slope of the da/dN vs. ΔK curves becomes steeper while increasing the value of n, as
shown in Fig. 5.8(b). The effect of n acts like the power value m in Paris’ equation. The
crack growth rate are accelerated inevitable as the loading level approaches the critical
value at failure.

5.3.5 Excluding the monotonic damage variable

(a)

(b) (c)

Figure 5.9: Include and exclude the monotonic damage, (a) the local damage evolution as
functions of the loading cycles for both points; (b) the traction-separation responses for point
A; (c) the traction-separation responses for point B;

Figure. 5.9 shows the differences of damage accumulation process including and excluding
the monotonic damage. For the point A, due to the high applied load, the traction has
exceeded the maximum traction at the first loading segment. Should the monotonic damage
is not considered, final failure happens when the damage accumulation is even smaller
than 0.1. The reason would be mainly due to the high initial stiffness and no damage
accumulation on the envelop curve. Since the monotonic damage is excluded, the unloading
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5 A uniform CZM for both fatigue and fracture crack simulation

stiffness at the first loading segment is the same as the initial stiffness. In this case, due
to the endurance limit, the damage accumulation at initial loading cycles is very small.
However, at the first loading segment, the separation at point A already exceeds the critical
separation δ0. Consequently, the separation of point A reaches the ultimate separation δu
in very few loading cycles. In this case, the final rupture occurs suddenly even with very
low damage accumulation. Should the monotonic damage is not considered, the damage
accumulation process at point B also shows discontinuity. Since no damage accumulates on
the envelop curve, the separation of point B increases with cyclic loading but the damage
increment is small. Finally, when the separation of point B reaches δu, the damage is still
smaller that 1.0 and a sudden failure happens. Numerical results shown in Fig. 5.9 denote
that including the monotonic damage variable in CCZM is essential especially for low cycle
fatigue predictions.

5.4 Verification based on fatigue experiments

After the model validation have been examined, the crack propagation analyses are per-
formed based on the experimental data. Both fracture tests and fatigue tests are used
for determination of cohesive model parameters under monotonic and cyclic loading. Two
materials, S460 and AISI304 are applied for the tests. The stress-strain curves for both
materials are according to Fig. 5.10(a) and 5.12(a) respectively. The material properties of
S460 have been introduced in section 4. The material properties of AISI304 are as follows:
Young’s modulus E = 200 GPa, Poisson ratio ν = 0.3, the initial yield strength σy = 230
MPa and the ultimate strength σu = 650 MPa, according to Eq. (4.3) the bulk modulus
K = 1558 MPa and the strain hardening exponent n = 0.87.

The monotonic cohesive law can be constructed through the cohesive strength T0, the
critical separation δ0 and the cohesive energy Γ0. To obtain cohesive energy Γ0, the value
of J-integral at crack initiation Ji has to be determined. According to the experimental
results, the corresponding Ji values under plane strain conditions of those two materials
are Ji = 270.1 N/mm for S460 and Ji = 728.9 N/mm for AISI304 [98]. For those two
metallic materials which are with high ductility, severe plastic deformation occurs at crack
initiation.

The cohesive strength T0 and the critical separation δ0 are determined according to
the load-line displacement curves of notched tensile specimens or cracked specimens. The
relation between the cohesive strength T0 and the critical separation δ0 can be attributed to
the effect of the initial cohesive stiffness k, which is defined in Eq. (6.3). The choice related
to k should guarantee that the cohesive zone does not influence the overall compliance
before the damage initiation, normally a higher k is recommended [54].

Fracture simulations are performed in C(T) specimens to determine the cohesive
strength. Due to symmetry, only one half of the specimen is modeled. The cohesive
zone is predefined along the crack growth path through the specimen ligament with the
cohesive element length of 0.1 mm. The CPE4 elements are used for the continuum el-
ements. For both materials, several C(T) specimens with different initial crack lengths
around 25 mm are tested. After a series numerical experiments, the cohesive parameters
for both materials are determined as following: for S460, the cohesive strength T0 = 1585
MPa, the critical separation δ0 = 0.014 mm, the ultimate separation δu = 0.164 mm of Eq.
(5.5) for half FE model and the corresponding cohesive stiffness k ∼= 3.0× 105 N/mm3; for
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AISI304, the cohesive strength T0 = 1330 MPa, the critical separation δ0 = 0.018 mm, the
ultimate separation δu = 0.468 mm of Eq. (5.5) for half FE model and the corresponding
cohesive stiffness k ∼= 2 × 105 N/mm3. The computations from the cohesive model give
reasonable predictions with the experiments.

(a) (b)

Figure 5.10: Material S460, (a) stress-strain curve; (b) experimental and simulated load-line
displacement curves of side-grooved C(T) specimens for determination the monotonic cohesive
parameters.

(a) (b)

Figure 5.11: Material S460, (a) the fatigue crack extension curves (Δa vs. N) with two
different initial stress intensity factor under R = 0.1; (b) comparison between the experimental
and simulated fatigue crack growth rate curves (da/dN vs. ΔK) relating to two different
initial stress intensity factor under R = 0.1.

With the monotonic cohesive parameters, the cyclic cohesive model parameters can be
identified according to the fatigue crack growth rate test results. Erdogan model [27] as
defined in Eq. (3.4) is presented additionally to compare with the experimental results for
both materials. The material constants for S460 have been determined in Chapter 3, see
Fig. 3.4. The material constants for AISI304 are C = 10−5.763, m = 2.72, with the fracture
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5 A uniform CZM for both fatigue and fracture crack simulation

toughness Kc = 110 MPa
√
m and the threshold value ΔKth = 7.0 MPa

√
m [98]. For

S460, two constant force amplitude with the initial stress intensity ΔKini = 59.6 MPa
√
m

and ΔKini = 71.5 MPa
√
m are performed respectively. For AISI304, three constant force

amplitude with the initial stress intensity ΔKini = 52.48 MPa
√
m, ΔKini = 66 MPa

√
m

and ΔKini = 75.81 MPa
√
m are performed. For both materials, the loading ratio is R = 0.1

and the constitutive relation governing the deformation behavior of the bulk material is
based on the J2 Mises plasticity. Numerical trials show that for S460, the cyclic parameters
are dΣ = 40δ0 and n = 0.33; for AISI304, the cyclic parameters are dΣ = 36δ0 and n = 0.35.
Fig. 5.11(b) and 5.13(b) denote that the simulated fatigue crack growth rate curves give
good predictions with the experimental data.

(a) (b)

Figure 5.12: Material AISI304, (a) stress-strain curve; (b) experimental and simulated
load-line displacement curves of C(T) specimens for determination the monotonic cohesive
parameters.

(a)

(b)

(b)

Figure 5.13: Material AISI304, (a) the fatigue crack extension curves (Δa vs. N) with three
different initial stress intensity factor under R = 0.1; (b) comparison between the experimental
and simulated fatigue crack growth rate curves (da/dN vs. ΔK) relating to three different
initial stress intensity factor under R = 0.1.
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5.5 Summary

For both materials, the simulated fatigue crack growth rate curves under different loading
ranges have an overlapping part. This is reasonable based on the Paris’ law. Although the
simulated fatigue crack growth rate curve shows a good accordance with the experimental
results, varying crack growth rate occurs during the lower loading case for both materials.
In Fig. 5.11(b) and 5.13(b), for the lower loading case, the simulated crack growth rate
is initially fast, after which it shows down to a normal level. No direct evidence shows
the exact reason. One possibility is that the crack driving force is not stable initially.
After this, the fatigue crack growth becomes increasingly fast until the fracture toughness
range of the material is approached. The fatigue crack growth rate is accelerated before
approaching the critical ΔKc = (1 − R)Kc. The simulation results are assembled with
the lower loading level and the higher loading level. The computational results agree with
experimental data in Regime III. The new cyclic cohesive zone model provides reliable
computational prediction very near to Kc, so that the present cyclic cohesive zone model
builds a uniform model for both fatigue and fracture crack simulation.

5.5 Summary

In the present work, a new CCZM for monotonic and cyclic crack growth is introduced. The
major concern of the present work is attempting to establish a cohesive model to describe
fatigue crack growth with both low and high growth rates, especially fatigue cracks in
Regime III. For characterizing material degradation, a scalar damage variable is defined
based on both monotonic damage as well as cyclic damage. Interactions of the monotonic
damage and cyclic accumulative damage are considered in the damage evolution.
The material degradation under monotonic loading is represented by softening in the

cohesive law, whereas the cyclic damage is described by an additional damage evolution
equation. Both damage evolutions have been verified by experiments and can characterize
material damage around the crack-tip properly. The monotonic model parameters include
the cohesive energy Γ0 and the cohesive strength T0, which are determined from the mono-
tonic fracture tests. The experimental data obtained from fatigue tests are used to identify
the cyclic model parameters.
Detailed finite element computations confirm that the proposed CCZM is able to describe

both rupture and fatigue crack growth properly. The model gives a uniform characteriza-
tion of Regime II and Regime III in the fatigue crack diagram.
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6 Stress-triaxiality-dependent cyclic
cohesive zone model

6.1 Introduction

Monotonic ductile fracture mechanism involves micro-cracks or micro-voids nucleation,
leading to failure by cleavage, inter-granular cracking or coalescence. It has been dis-
cussed in Chapter 4 that the resistance against initiation of ductile crack growth and crack
propagation depends on the geometrical constraint. The stress-state is characterized by a
triaxiality parameter, η, which is defined as the ratio between the hydrostatic stress and
the effective stress. The stress-state plays a key role in the damage growth till failure. In
the low cycle fatigue regime, the material damage process also behaves similar to those
of ductile fracture. Corresponding mechanisms under cyclic loads involve the repetitive
blunting and resharpening of crack tip driven by localized plastic deformation and therefore
must depend on the stress-state as well.

Extensive discussions of the geometrical effect on fatigue crack propagation have been
proposed in Chapter 3. The experiments were performed on C(T) specimens with different
thicknesses. Experimental results show obvious geometrical dependence during elastoplas-
tic fatigue crack growth. According to the beach marking, larger curvature of the crack
profiles is obtained from the thin specimen (i.e. B/W = 0.08) than that from the thick
specimen (i.e. B/W = 0.25). Furthermore, severe plastification occurs with the high rate
of fatigue crack growth approaching Regime III. In that case, the thin specimen would
be fully-yielded so that the crack growth rate at the middle plane shows obviously retar-
dation. The deviation of da/dN curves of different thickness specimens emerges at high
stress intensity level, as shown in Fig. 3.24. Experimental evidence which showed that the
stress-state has a significant effect on fatigue crack propagation also reported in [134].

The application of cyclic cohesive zone model (CCZM) in predicting fatigue crack growth
in ductile materials has been introduced in Chapter 5. Since the low cycle fatigue crack
growth depends on the geometrical constraint, it would be essential to account for the
effect of stress-state on the CCZM.

6.1.1 State of art of constraint dependent CCZM

so far, very few literatures have been reported concerning the constraint effect on cyclic
cohesive zone modeling. Jha and Banerjee [135] introduced the triaxiality dependent be-
havior of cohesive parameters, which was proposed in [61], combining with Roe-Siegmund
model for fatigue life analysis. In the model, the influence of triaxiality was only on the
cohesive envelop but not involved in the damage evolution law. Two-dimensional simula-
tions were performed under two kinds of stress-state conditions. Numerical results revealed
that initiation and growth of damage is more rapid with increasing constraint. It should
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6.2 Stress-triaxiality-dependent cyclic cohesive zone model

be noted that in the work of [135], the numerical results only provided some fatigue failure
trends, and no experimental comparison was included.

Cao and Vormwald [136] proposed a triaxiality dependent CCZM. The correlations be-
tween the cohesive parameters and the stress triaxiality were obtained from GTN model,
as presented in [93]. The model was used to reproduce the fatigue crack initiation and
fatigue crack growth in two-dimensional case. The predictive simulations of the model
were implemented to investigate C(T) and M(T) specimens, which represent different tri-
axiality conditions. However, by using an unique set of parameters, the predictive results
of M(T) specimen show obvious deviation from the experimental data. In addition, the
triaxiality dependent cohesive parameters were obtained based on the numerical results
from the GTN model. It is not legal to identify material model parameters from another
models.

6.1.2 Motivation

As discussed in Chapter 4, for a three-dimensional cracked specimen, the ratio of the plas-
tic zone size to the specimen thickness plays an important role, which can be interpreted as
the effect of the specimen thickness to the crack front field, i.e. the out-of-plane constraint.
It has been confirmed that the out-of-plane constraint is mainly a manifest of the loading
configuration to the crack tip field. To study the details of these in-plane and out-of-plane
constraint effects, it is required to conduct detailed three-dimensional FE analysis of frac-
ture specimen. Moreover, numerical results obtained in three-dimensional computations
would give a detailed understanding of the local failure process.

In the present work, by considering the influence of the stress-state effect on the cohesive
law and the damage evolution equation, a stress-triaxiality-dependent cyclic cohesive zone
model (TCCZM) is proposed. The TCCZM is an extended work following the proposed
CCZM for both fatigue and fracture in Chapter 5. The stress triaxiality dependent cohesive
paramters involved in the model are obtained based on the experimental results which have
been presented in Chapter 4. Furthermore, the new TCCZM is applied to reproduce the
fatigue crack growth of different specimens in three-dimensional FE computations.

6.2 Stress-triaxiality-dependent cyclic cohesive zone
model

The overall mechanical behavior and the corresponding cohesive properties for monotonic
stress-state dependence of the cohesive law have been discussed. As presented in Chapter
4, the correlations of the stress triaxiality and the cohesive parameters, Γ(η) and Tmax(η),
are suggested in Eq. (4.7) and Eq. (4.8) respectively.

The cohesive law in monotonic case provides an envelop line when cyclic loading occurs.
In the fatigue process, the material load carrying capacity will degrade gradually with
damage accumulation. In the CCZM, this feature is related to the cohesive strength
and the normal stiffness. The constitutive behavior of the CCZM has been proposed in
Chapter 5. The extension of the CCZM is including the stress triaxiality effect, therefore,
the influence of the stress triaxiality on the damage evolution needs to be considered.
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6 Stress-triaxiality-dependent cyclic cohesive zone model

6.2.1 Monotonic damage evolution

As specified in Chapter 5, the total damage is contributed by two parts, the monotonic
damage and the cyclic damage. The expression of the monotonic damage variable, Dm,
is related to δ0 and δu. Note that by integrating the stress triaxiality effect, the ultimate
separation in the cohesive zone can be expressed in terms of Γ(η) and Tmax(η), as defined
in Eq. (4.2). Should δ0 be independent of η, following Eq. (5.3), the stress triaxiality
dependent monotonic damage variable can be thus defined as

Dm(η) =
δ − δ0

δu(η)− δ0
. (6.1)

6.2.2 Cyclic damage evolution

The cyclic damage variable is included in the CCZM to describe the local deterioration
of the material. As defined in Eq. (5.6), the current cohesive strength decreases with
the damage indicator which represents the material degradation. Eq. (4.8) has denoted
that the cohesive strength is stress triaxiality dependent. Therefore, one can formulate the
stress triaxiality dependent cyclic damage variable directly by substituting the constant
cohesive strength, T0, with Tmax(η), as

Ḋc(η) =
δ̇

dΣ
(

T

Tmax(η)(1−D)
− n)H(δacc − δ0), Ḋc(η) � 0. (6.2)

The two cyclic cohesive parameters, the accumulative length dΣ and the damage con-
trolling parameter n, have been discussed in Chapter 5. In the present investigation, those
two parameters are assumed to be stress triaxiality independent.
Furthermore, under cyclic loading process, the un/reloading stiffness can be defined as

k(η) =
Tmax(η)(1−D)e

δ0
. (6.3)

The loading path for a ductile material follows a linear correlation as defined in Eq.
(5.8), by substituting k with k(η).

6.2.3 Operating mechanism of the TCCZM

a. Stress triaxiality influence in the un/reloading process

An important point should be noted that the application of the stress triaxiality dependent
behavior in the CCZM is a crucial aspect. The stress triaxiality dependent correlations
obtained in Chapter 4 are appropriate only for the monotonic loading condition. If the
correlations are applied for the cyclic loading, the first problem is how to consider the stress
triaxiality influence in the un/reloading process. In fact, in the un/reloading process, it is
still an open topic how the stress triaxiality influences the cohesive parameters.
According to Eq. (4.2), the ultimate separation δu(η) changes with the stress triaxiality.

In the un/reloading process, the absolute separation δ and the ultimate separation δu(η)
will vary simultaneously, which may induce severe numerical problems. Therefore, in the
present work, a simple method is suggested. The stress triaxiality will affect the envelop
curve only. This assumption should be reasonable since the envelop curve in the CCZM

90 Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.
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describes the monotonic failure process, whereas the un/reloading path in the CCZM
characterizes the cyclic failure process. It is believable that the ductile failure of the whole
damage process should be mainly contributed by the monotonic failure. In this case, the
stress triaxiality effect also should be mainly on the monotonic failure, which is represented
by the envelop curve in the CCZM. The stress triaxiality value is assumed to keep constant
in the un/reloading process.

b. Stress triaxiality effect zone

However, another problem has to be considered in predicting fatigue crack growth. The
response of the cohesive zone in the first loading step will comply with the monotonic
cohesive law. Then, the stress triaxiality value is assumed to keep constant in the following
un/reloading process. How to include the stress triaxiality variation during fatigue crack
propagation is unclear. Here, to consider the stress triaxiality variation, one has to define
a stress triaxiality effect zone before applying the TCCZM, as shown in Fig. 6.1.

Triaxiality effect zone

Initial crack, aini, ηini(t)

Final crack, afinal, ηfinal(t)

t

Figure 6.1: Illustration of the stress triaxiality effect zone.

Generally, for a pre-cracked specimen, the initial crack position is known. Then, the
length of the stress triaxiality effect zone can be considered as the expected crack prop-
agation length in the prediction. In this case, the expected final crack position can be
determined. By applying the maximum load (i.e. maximum force/displacement) of the
cyclic loading amplitude, the stress-state of the initial crack and the final crack can be
evaluated respectively through FE computations, as specified in Chapter 4. It would be
simple for two-dimensional computations since the crack positions can be identified easily
in a planar FE model. For the three-dimensional FE model, it is necessary to firstly pre-
sume the final crack front in the thickness direction. Note that the FE models adopted
in calculating the stress-state should not consider the crack propagation, which means the
cohesive elements are not included. Since the stress triaxiality values of the initial crack
and the final crack are known, if the fatigue crack propagation is controlled by constant
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6 Stress-triaxiality-dependent cyclic cohesive zone model

force/displacement loading amplitude, one can evaluate the corresponding stress triaxiality
value of an arbitrary position within the effect zone through interpolating. Therefore, it is
important that the size of the effect zone should be adequate to ensure a constant cyclic
loading amplitude within the zone. Otherwise, it would be inaccurate to obtain the stress
triaxiality value of an arbitrary position through interpolating.
According to the aforementioned method, for each position within the effect zone, an

unique stress triaxiality value can be calculated under the condition of applying the maxi-
mum load. Obviously, it is reasonable to use this unique stress triaxiality value to identify
the stress triaxiality dependent cohesive parameters for each position.
In sum, the stress triaxiality effect zone is considered as the expected fatigue crack prop-

agation area in the prediction; the stress triaxiality variation during fatigue crack prop-
agation is carried out through calculating the corresponding stress triaxiality dependent
cohesive parameters for each position within the effect zone. Following this suggestion,
for each position, the corresponding stress triaxiality dependent cohesive parameters are
applied in the TCCZM.

6.3 Model verification

The TCCZM has been implemented in the commercial finite element code ABAQUS [71]
by using of the cohesive element coupled with UMAT subroutine. The fatigue damage
is calculated for every time increment. To verify the proposed model, three-dimensional
fatigue crack propagation analysis will be performed. The predicted local crack growth
rates and the crack profiles will be verified with the experimental data. As presented in
Chapter 3, the beach markings and the curvatures of the crack profiles during fatigue crack
propagation have been obtained from the fatigue tests.
Considering the computational cost of three-dimensional cyclic loading analysis, present

investigation will only focus two adjacent crack profiles. One beach marking from the
experiment is taken as the initial crack profile. The expected crack propagation is until the
subsequent beach marking which is referred as the final crack profile. The region between
the two beach markings can be considered as the stress triaxiality effect zone. Numerical
predictions of the fatigue crack propagation will be terminated when the predicted middle
crack extension reaches the final crack position.
Material S460 was used in the experiments and the stress-strain response has been

described in Eq. (4.3). In all computations, 8-nodal isoparametric elements with full
integration are used for the continuum elements. Due to symmetry in mode I loading
conditions, only one-quarter of each specimen is modeled. The cohesive elements are
arranged on the ligament plane to simulate the crack extension. The bulk material for the
continuum elements is described by the classical J2 theory. The correlations between the
stress triaxiality and the cohesive parameters of S460 has been identified in Eq. (4.7) and
Eq. (4.8) respectively. The two cyclic parameters in Eq. (6.2) have been determined in
2D plane strain case in chapter 5, with dΣ = 40δ0 and n = 0.33 respectively.

6.3.1 Verification based on C(T) fatigue crack propagation

The model will be verified based on the fatigue experiments of C(T) specimens. For a
stable crack propagation, experimental results (i.e. Fig. 3.23) showed similar crack growth
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6.3 Model verification

rate at the free surface and the middle plane for C(T) specimen with B/W = 0.25. The
average stress intensity value, which is defined as ΔKavg = (ΔKini +ΔKfinal)/2, is used to
represent the stress intensity range between the two adjacent cracks. The stress intensity
factor is calculated according to Eq. (3.1) with the length of the middle crack.

a. The loading configuration and the FE model

The dimensions of the C(T) specimen have been illustrated in Fig. 3.2(a). The specimen
thickness is B = 12.5 mm with a width of W = 50 mm. With the same loading ratio
R = 0.1, two constant force amplitudes are performed with Fmax = 10 kN and Fmax = 18.75
kN respectively.
Requirements of applying TCCZM include to obtain the corresponding stress triaxiality

values within the effect zone. With the maximum force applied, the distributions of the
stress triaxiality along the initial crack and the final crack are calculated firstly. Three-
dimensional FE models without cohesive elements are carried out for the computations.
The element meshes are in compliance with the beach markings. At the crack front,
the smallest element length in the crack extension direction and the height direction is
0.01 mm. It has been confirmed in Chapter 3 that the SSY conditions are valid for the
most fatigue crack growth stages. Accordingly, the J-integral is evaluated according to
J = (1 − ν2)K2/E. The stress triaxiality values along the crack front are taken at a
distance of r = J/σy. Then, the corresponding stress triaxiality value of an arbitrary
position within the effect zone is evaluated through interpolating.
Three-dimensional FE configurations for predicting fatigue crack propagation of C(T)

specimens are generated in compliance with the initial crack front. The size of the regular
small elements in crack extension direction is 0.04 mm. Fifteen layers of elements with a
bias ratio of 20.0 are used through the half section thickness.

b. Predictions at low loading level

For the loading level Fmax = 10 kN, the beach markings of the initial crack and the final
crack are shown in Fig. 6.2(a). The middle crack extension is Δa = 1 mm and the surface
crack extension is Δs = 1.06 mm. The corresponding average stress intensity range is
ΔKavg = 47.4 MPa

√
m and the interval cycles obtained from the experiment between the

two cracks are ΔN exp = 1339.

• Numerical results

Figure 6.2(b) shows the detailed final crack profile comparisons between the numerical
predictions with the experiments. The numerical result from CCZM shows agreement with
the experiment only in 50% of the thickness from center to surface. Then the predicted
crack profile decreases significantly towards the surface. However, with the consideration
of stress triaxilitiy effect, the numerical result from TCCZM shows much better agreement
with the experiment of the whole crack profile.
According to the predicted crack profiles, the local crack growth rates can be calculated,

as shown in Fig. 6.3(a). At the middle plane, due to the dominance of the plane strain
conditions, the predicted crack growth rates from both models agree with the experimental
result. At the free surface, the predicted crack profile from TCCZM is coincident with the
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6 Stress-triaxiality-dependent cyclic cohesive zone model

(a)

(b)
Figure 6.2: Crack profile comparisons of the predictions from both models with the experiment
of C(T), with the loading ΔKavg = 47.4 MPa

√
m.
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6.3 Model verification

(a) (b)

Figure 6.3: (a) Comparisons between the predicted and the experimental fatigue crack growth
rate of C(T), with the loading ΔKavg = 47.4 MPa

√
m. (b) Distributions of η along the initial

crack and the final crack from center to surface of C(T) with the loading F=10 kN, the middle
crack lengthes are aini = 30.45 mm and afinal = 31.45 mm.

(a) (b)

Figure 6.4: With the loading ΔKavg = 47.4 MPa
√
m, comparisons of the traction evolution

of both models. (a) Initial crack; (b) Final crack.
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6 Stress-triaxiality-dependent cyclic cohesive zone model

beach marking, therefore the predicted crack growth rate also agrees well with the experi-
mental result, which is identical with the crack growth rate at the middle plane. No crack
growth is simulated from CCZM.
The distributions of the stress triaxiality along the initial crack and the final crack with

the loading level Fmax = 10 kN are shown in Fig. 6.3(b). Note that the distributions along
both cracks show only slightly differences. For both cracks, the stress triaxiality values
keep nearly constant in 55% of the thickness from center to surface. Then the values
decrease towards the surface.

• Traction response

The numerical results can be further specified by tracing the local response of the mate-
rial points along the crack growth path. As specified in Chapter 5, the value of T/Tmax(η)
in the damage evolution equation may dominant the cyclic damage accumulation process.
For both cracks, the comparisons of the traction evolution at the free surface and the mid-
dle plane from both numerical models are illustrated in Fig. 6.4. The local responses of
the material points at the initial crack (Fig. 6.4(a)) and the final crack (Fig. 6.4(b)) show
similar feature. Significant differences of the computational results from both models are
mainly at the free surface.
Due to the dominance of plane stress conditions near the free surface, the local tensile

stress near the free surface is lower. For the CCZM, an identical high cohesive strength
T0 are applied at the free surface as well as at the middle plane. Accordingly, at the first
loading segment, the value of T/T0 at the free surface is lower. According to Eq. (6.2),
lower T/T0 would lead to significant small damage increment. Therefore, the damage
accumulation at the free surface is much slower in comparing with that at the middle
plane. At the final crack, the value of T/T0 at the free surface is too small to surpass the
endurance limit which leads to no damage initiation.
For the TCCZM, due to the lower stress triaxiality at the free surface, the cohesive

strength Tmax(η) applied at the free surface should be also lower according to Eq. (4.8).
Consequently, at the first loading segment, the value of T/Tmax(η) increases which is nearly
identical with the value at the middle plane. Then, the material points at the free surface
and the middle plane experience similar damage accumulation process. Note that with the
different cohesive strengthes applied at the free surface and the middle plane, the corre-
sponding failure cycles obtained at the final crack are also close. Therefore, homogeneous
crack growth rate is predicted, which shows very close agreement with the experiments.

c. Predictions at high loading level

For the loading level Fmax = 18.75 kN, the beach markings of the initial crack and the
final crack are shown in Fig. 6.5(a). The middle crack extension is Δa = 0.742 mm and
the surface crack extension is Δs = 0.786 mm. The corresponding average stress inten-
sity range is ΔKavg = 72.36 MPa

√
m. The interval cycles obtained from the experiment

between the two cracks are ΔN exp = 235.

• Numerical results

Figure 6.5(b) shows detailed final crack profile comparisons of the numerical predictions
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with the experiment. Numerical results from both models show obvious deviation with
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(a)

(b)
Figure 6.5: Crack profile comparisons of the predictions from both models with the experiment
of C(T), with the loading ΔKavg = 72.36 MPa

√
m.
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6 Stress-triaxiality-dependent cyclic cohesive zone model

(a) (b)

Figure 6.6: (a) Comparisons between the predicted and the experimental fatigue crack growth
rate of C(T), with the loading ΔKavg = 72.36 MPa

√
m. (b) Distributions of η along the initial

crack and the final crack from center to surface of C(T) with the loading F=18.75 kN, the
middle crack lengthes are aini = 27.91 mm and afinal = 28.65 mm.

(a) (b)

Figure 6.7: With the loading ΔKavg = 72.36 MPa
√
m, comparisons of the traction evolution

of both models. (a) Initial crack; (b) Final crack.
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the experiment. Numerical result from CCZM shows agreement with the experiment only
in 21% of the thickness from center to surface. No crack extension is predicted in 25%
of the thickness near the free surface. Numerical result from TCCZM shows improvable
prediction. The agreement of the predicted crack profile with the experiment in 30% of
the thickness from center to surface. Although crack extension is predicted from TCCZM
at the free surface, the predicted crack length is only ΔsTCCZM = 0.07 mm. In comparing
with the experimental result, the deviation is significant.

Figure. 6.6(a) shows the comparisons of the predicted crack growth rates with the
experimental result. Note that at the middle plane, the numerical results from both models
agree well with the experiments. However, in contrast to the numerical results of the low
loading level, due to a much smaller predicted crack extension from TCCZM at the free
surface, the deviation between the prediction and the experimental result is over 7 times.

Figure 6.6(b) shows the distributions of the stress triaxiality along the initial crack and
the final crack with the loading level Fmax = 18.75 kN. Note that due to higher loading level,
the plastic deformation is more obvious during fatigue crack propagation. Accordingly, the
stress triaxiality value is smaller in comparing with the value obtained at the low loading
level. Aside from the average value, the distributions do not show significant differences
with different loading levels. The stress triaxiality values keep nearly constant in 55% of
the thickness from center to surface, then the values decrease towards the surface. The
distributions are reasonable according to the experimental observation in Chapter 3. For
the C(T) specimen with B/W = 0.25, the curvature of the crack profile is nearly constant
during the stable fatigue crack propagation, which denotes that the areas of plane strain
conditions are nearly unchanged.

• Traction response

The local traction responses of both cracks are shown in Fig. 6.7. For the initial crack,
as shown in Fig. 6.7(a), the feature of the traction evolution is the same as that at the low
loading level. Numerical results from CCZM show a much slower damage accumulation
process at the free surface than that at the middle plane, whereas a homogeneous damage
accumulation process of the whole crack is obtained from TCCZM.

For the final crack, however, the damage accumulation process from TCCZM is no more
similar at the free surface and the middle plane, as shown in Fig. 6.7(b). At the free
surface, although the value of T/Tmax(η) from TCCZM is higher in comparing with the
value of T/T0 from CCZM, it is still lower than the value at the middle plane. As a result,
the damage accumulation process at the free surface is excessive slower, which leads to a
significant deviation between the prediction and the experimental data.

It should be noted that due to the high loading level, the effect of plastic deformation
is more severe. As discussed in Chapter3, in this case, the drive force of KIII would be the
major effect in the area of the dominance of plane stress conditions. Therefore, to describe
the damage evolution more precisely, some other aspects, i.e. the damage contributed from
the mode III effect, should be also taken into account in the damage evolution equation.
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6 Stress-triaxiality-dependent cyclic cohesive zone model

6.3.2 Verification based on surface fatigue crack propagation

The TCCZM will be further verified based on the experiments of surface fatigue crack
propagation. The experimental procedures and results have been specified in Chapter 3.
In contrast to the fatigue crack propagation of the C(T) specimen, the stress field in a 3D
surface crack differs from the conventional plane strain tip field. The stress intensity factor
depends additionally on the crack front curvature and may vary non-proportionally with
crack growth. Numerical results confirm that the maximum stress intensity is attained at
the deepest point for the initial straight-front crack, therefore, the straight-fronted crack
tends to become curved. With the crack developed, the maximum stress intensity appears
at the surface point so that the crack front curvature becomes smaller.

a. The loading configuration and the FE model

The geometrical dimensions of the rod bar specimen have been shown in Fig. 3.5 and
the specimen diameter is D=12 mm. With the loading ratio R = 0.1, constant force
amplitude Fmax = 24 kN is performed. Present study will only focus on two adjacent crack
profiles for each three-dimensional FE model, therefore, the corresponding FE models
should be adopted according to different initial crack lengthes. The region between the
two adjacent cracks is defined as the stress triaxiality effect zone. The method to obtain
the corresponding stress triaxiality values within the effect zone has been explained in
detail. It has been known that the stress intensity factor along the surface crack front is
non-uniform, therefore, the average stress intensity ranges are evaluated at the free surface
and the middle plane respectively, defined as ΔKS

avg and ΔKM
avg. The stress intensity factor

along the surface crack front is evaluated by the virtual crack closure technique.
The FE configurations for predicting fatigue crack propagation of the rod bar specimen

are generated in compliance with the initial crack front. The region near the free surface
is partitioned with a thickness of 1.0 mm. Ten layers of elements are used through this
region with a bias ratio of 5.0. Ten layers of elements are used through the rest region of
the cross section till the middle plane with a same bias ratio. The regular small element
length in crack extension direction is 0.01 mm.

b. Predictions at low stress intensity

Figure 6.8(a) shows the beach markings with the middle crack length aini = 5.53 mm of the
initial crack and afinal = 5.86 mm of the final crack. Accordingly, the middle crack extension
is Δa = 0.33 mm and the surface crack extension is Δs = 0.48 mm. The corresponding
average stress intensity ranges are ΔKM

avg = 40.6 MPa
√
m and ΔKS

avg = 53.98 MPa
√
m.

Note that the stress intensity at the free surface is higher. The interval cycles obtained
from the experiment between the two cracks are ΔN exp = 750.

• Numerical results

Figure 6.8(b) shows detailed final crack profile comparisons of the numerical predictions
with the experiment. Numerical result from CCZM shows agreement with the experiment
in 60% of the thickness from center to surface. Then the predicted crack extension decreases
towards the surface. Numerical result from TCCZM shows better agreement, only the crack
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(a)

(b)
Figure 6.8: Crack profile comparisons of the predictions from both models with the experiment
of rod bar, with the loading ΔKM

avg = 40.6 MPa
√
m and ΔKS

avg = 53.98 MPa
√
m.
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6 Stress-triaxiality-dependent cyclic cohesive zone model

(a) (b)

Figure 6.9: (a) Comparisons between the predicted and the experimental fatigue crack growth
rate of rod bar, with the loading ΔKM

avg = 40.6 MPa
√
m. (b) Distributions of η along the

initial crack and the final crack from center to surface of rod bar with the loading F=24 kN,
the middle crack lengthes are aini = 5.53 mm and afinal = 5.86 mm.

(a) (b)

Figure 6.10: With the loading ΔKM
avg = 40.6 MPa

√
m and ΔKS

avg = 53.98 MPa
√
m, com-

parisons of the traction evolution of both models. (a) Initial crack; (b) Final crack.
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extension at the free surface is predicted slightly longer. Note that this result should be
reasonable due to higher stress intensity at the free surface. More detailed comparisons
would be presented by tracing the local traction responses.
The comparisons of the predicted crack growth rates from both numerical models with

the experimental results are shown in Fig. 6.9(a). Similar to the results of the low loading
level of C(T) specimen, at the middle plane, the predictions from both models show ac-
ceptable agreement with the experimental result. At the free surface, no crack extension is
predicted from CCZM, whereas the result from TCCZM agrees well with the experiments.
Figure 6.9(b) shows the distributions of the stress triaxiality along both cracks. The

stress triaxiality values keep nearly constant in 60% of the thickness from center to sur-
face. Considering the distributions of the C(T) specimen with B/W = 0.25, numerical
results (Fig. 6.3(b) and Fig. 6.6(b)) confirm a constant stress triaxiality distribution in
approximately 55% of the thickness. This implies that with the conditions of the respec-
tive geometrical dimensions, at current stress intensity level, the areas of the dominance of
plane strain conditions of the rod bar are more or less the same with the areas of the C(T)
specimen. Therefore, at current stress intensity level, the crack growth rate at the middle
plane of the rod bar can be identified by the conventional C(T) crack growth behavior.
Nevertheless, due to the geometrical effect, the crack growth rate at the free surface of the
rod bar is below the C(T) crack growth base line.

• Traction response

The differences of the local traction responses from both numerical models have been
explained in detail in the computations of the C(T) specimen. Note that for the rod bar,
higher stress intensity is obtained at the free surface, which leads to a higher T/Tmax(η)
value from TCCZM at the first loading segment of the initial crack. Accordingly, the total
failure occurs earlier at the free surface, as shown in Fig. 6.10(a).
For the final crack, as shown in Fig. 6.10(b), due to a redistribution of traction at the

subsequent material points, an identical value of T/Tmax(η) from TCCZM is obtained at
the free surface and the middle plane. With the load bearing capacity decreasing, due to
higher stress intensity at the free surface, the damage accumulation process is also faster.
Note that present computations are terminated when the predicted middle crack extension
reaches the final crack position, therefore, the predicted crack extension at the free surface
would be slightly longer.

c. Predictions at high stress intensity

With the crack extension, Fig. 6.11(a) shows the beach markings with the middle crack
lengthes aini = 6.77 mm of the initial crack and afinal = 6.94 mm of the final crack. Between
the two cracks, the middle crack extension is Δa = 0.17 mm and the surface crack extension
is Δs = 0.27 mm. The corresponding average stress intensity ranges are ΔKM

avg = 67.18
MPa

√
m and ΔKS

avg = 80.55 MPa
√
m. The interval cycles obtained from the experiment

between the two cracks are ΔN exp = 131.

• Numerical results

Similar to the computations of the C(T) specimen with high loading level, due to more
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6 Stress-triaxiality-dependent cyclic cohesive zone model

(b)

(a)

Figure 6.11: Crack profile comparisons of the predictions from both models with the experi-
ment of rod bar, with the loading ΔKM

avg = 67.18 MPa
√
m and ΔKS

avg = 80.55 MPa
√
m.
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(a) (b)

Figure 6.12: (a) Comparisons between the predicted and the experimental fatigue crack
growth rate of rod bar, with the loading ΔKM

avg = 67.18 MPa
√
m. (b) Distributions of η

along the initial crack and the final crack from center to surface of rod bar with the loading
F=24 kN, the middle crack lengthes are aini = 6.77 mm and afinal = 6.94 mm.

(a) (b)

Figure 6.13: With the loading ΔKM
avg = 67.18 MPa

√
m and ΔKS

avg = 80.55 MPa
√
m, com-

parisons of the traction evolution of both models. (a) Initial crack; (b) Final crack.
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CCZM shows agreement with the experiment only in 25% of the thickness from center
to surface. Furthermore, the predicted crack profile from TCCZM also shows obvious
deviation at the free surface, as shown in Fig. 6.11(b). The predicted crack extension is
much shorter in comparing with the experimental data. Note that for the initial crack,
total failure happens earlier at the free surface due to higher stress intensity, therefore, the
predicted crack growth rate would show significant retardation. As shown in Fig. 6.12(a),
at the free surface, the deviation between the predicted crack growth rate from TCCZM
with the experimental result is over 3.5 times.
Figure 6.12(b) illustrates the distributions of the stress triaxiality along both cracks.

Note that with a reduction of the areas of plane strain conditions, the constant stress
triaxiality values are only in 27% of the thickness from center to surface. As a result, at
current stress intensity level, the fatigue crack growth rates at the free surface and the
middle plane of the rod bar are slower in comparing with the conventional C(T) crack
growth behavior.

• Traction response

The traction responses of the initial crack are shown in Fig. 6.13(a), the feature of the
damage accumulation process is the same as that at low stress intensity. However, for the
final crack, as shown in Fig. 6.13(b), the value of T/Tmax(η) from TCCZM of the first
loading segment is smaller at the free surface in comparing with the value at the middle
plane. As a result, although with higher stress intensity at the free surface, the damage
accumulation process is excessive slow.
The main reasons have been discussed in the computations of the C(T) specimen with

high loading level. Due to severe influence of the dominance of plane stress conditions,
the cyclic damage accumulation contributed by tearing failure is not considered in present
damage evolution equation, which retards the damage accumulation.

6.4 Summary

By including the stress-state effect in the proposed cyclic cohesive zone model, a new
stress-triaxiality-dependent cyclic cohesive zone model is developed. The cyclic damage
evolution accounts for the stress triaxiality explicitly by adopting the stress triaxiality
dependent cohesive parameters, Tmax(η) and Γmax(η), which have been identified experi-
mentally. Three-dimensional fatigue crack predictions are performed by applying TCCZM
and CCZM in the C(T) specimen and the cracked rod bar. Numerical results including
the crack growth rate and the crack profiles are verified with the experimental data.
Numerical predictions substantiate the validation of the stress triaxiality effect on the

cyclic loading process. Present model adopts the stress triaxiality dependent cohesive
parameters within the effect zone. With the unique set of the cyclic parameters in the
damage evolution equation, which have been determined under 2D plane strain condition,
three-dimensional computations from both models (CCZM & TCCZM) perform coincident
results of the crack growth rate at the middle plane. Generally, no crack growth is predicted
at the free surface from CCZM. The predictions of the crack profile from TCCZM at low
stress intensity level show excellent agreement with the experiments.
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6.4 Summary

At high stress intensity level, the predicted crack profiles from TCCZM show significant
deviation with the experiments at the free surface. In the damage evolution equation,
although the value of T/Tmax from TCCZM is higher in comparing with the value of T/T0

from CCZM, it is still too low for the damage accumulation. It has been discussed that due
to the obvious plastification, the drive force of KIII would be the major effect in the area of
the dominance of plane stress conditions. Accordingly, the cyclic damage contributed from
mode III effect should be taken into account in the cyclic damage evolution equation. The
damage evolution equation requires a further extension to include the failure mechanism
of the shear-dominated stress state.
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7 Conclusions and outlook

7.1 Conclusions

Fatigue failure is one of the commonest failure modes in engineering. In LCF assessment,
the material is locally plastic, especially around cracks. The material plasticity will change
the fatigue performance and the fatigue crack growth can no longer be described by the
Paris-like models. Cohesive zone modeling provides an alternative way to predict crack
growth in ductile materials under elastoplastic loading conditions. Investigations have
confirmed that the stress-state plays a crucial role in ductile failure. Integration of the
stress triaxiality into the cohesive zone model becomes a necessary step, especially for
quantifying the three-dimensional crack. The major goal of the present dissertation is to
formulate the stress-triaxiality-dependent cohesive zone model and to predict the three-
dimensional fatigue crack propagation.

To quantify the influence of the cohesive law on crack simulation, a special cohesive
element has been developed. Numerical results under plane strain condition show that one
has to increase the specific cohesive stiffness to diminish the artificial influence of the cohe-
sive law. Additionally, the difference between the cohesive energy and the critical energy
release rate vanishes only in an elastic specimen and exceeds 40% for ductile materials.

Experiments reveal that the cohesive parameters are stress triaxiality dependent. Gen-
erally, the cohesive strength increases with the stress triaxiality is higher, whereas the
cohesive energy decreases. The correlation of Tmax(η) can be determined by calculating a
critical stress-state at the onset of stable crack growth over the whole crack profile. The
correlation of Γ(η) can be estimated according to the tendency of Ji under different stress
triaxiality conditions. However, due to the dominance contribution of Ji from plastic dis-
sipation energy at low stress triaxiality condition, the precisely determination of Γ(η) has
to verify the predictions with the experimental results. The stress-triaxiality-dependent
cohesive zone model is developed by applying Tmax(η) and Γ(η). Numerical results from
TCCZM significantly improve the three-dimensional crack growth prediction.

By introducing an overall damage variable which is decomposed into monotonic part and
cyclic part, a new CCZM for monotonic and cyclic crack growth is proposed. The material
degradation under monotonic loading is represented by softening in the traction-separation
law, whereas the cyclic damage is described by an additional damage evolution equation.
Detailed finite element computations confirm that the new CCZM is able to describe both
rupture and fatigue crack growth properly. The model gives a uniform characterization of
Regime II and Regime III in the fatigue crack diagram.

The proposed cyclic cohesive zone model is extended to include the stress-state effect
by adopting the correlations of Tmax(η) and Γ(η). Numerical predictions substantiate the
validation of the stress triaxiality effect on the cyclic loading process. Generally, numeri-
cal results of the three-dimensional crack from CCZM do not agree with the experiments.
The predictions from TCCZM at low stress intensity level show very well agreement with
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7.2 Outlook

the experiments. At high stress intensity level, however, the predictions at the free surface
show significant deviation with the experimental results. Experiments have confirmed that
due to severe plastification at the high rate of fatigue crack growth, mode III failure would
dominate in the area of plane stress conditions. Accordingly, to describe the damage evo-
lution more precisely, extension of the present models should include the shear-dominated
stress state, which remains a motivation for the future work.

7.2 Outlook

Throughout the present investigation, the further studies are suggested as following:

• With the consideration of the stress triaxiality effect on CZM, three-dimensional
predictions show close agreement with the experiments. However, deviations occur
at the free surface when tearing failure is observed, i.e. under monotonic loading
condition or cyclic loading with high stress intensity. Several studies of void growth
reveal that triaxiality alone is insufficient to characterize important growth and co-
alescence features. A second measure of stress state, such as the Lode parameter,
is required to discriminate between axisymmetric and shear-dominated stress states
[101–103]. Extension of the present models and prediction of the crack growth for
different cracks in different ductile metals are suggested for the further investigation.

• The assessment of component life includes two aspects: fatigue crack initiation and
fatigue crack growth. Present study only focused on the predictions of fatigue crack
growth. To verify the application of CCZM in life assessment, further work should
be carried out to simulate the fatigue crack initiation and the crack growth with an
unique set of damage parameters. Additionally, the life prediction at different stress
triaxiality conditions should validate the predictability of TCCZM.

• Present study only considered constant loading ratio with R = 0.1. It would be
interesting to perform the simulations in different loading ratios. Li and Yuan [124]
have discussed a cyclic cohesive model combined with XFEM in 2D plane strain case.
The loading ratio effect is included into the damage evolution equation. The further
work are recommended to examine the loading ratios effect on three-dimensional
computations with TCCZM and to verify the effect with more experimental results.

• The application of CCZM to high cycle fatigue simulation should be developed. In
the degradation process of the cohesive zone, the calculation of the damage evolution
should use a cycle jump technique to improve the computational cost.

• Present studies have been carried out at room temperature. The fatigue crack growth
would be totally different with different temperature conditions. The temperature
effect on the fatigue crack growth behavior is an important topic for the further
work. Numerical models should be modified by integrating the temperature influence.
Additionally, for the case of fatigue crack propagation at high temperature, to predict
the crack growth more precisely, i.e. the creep damage, should be also taken into
account in the numerical models.
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[90] M. Schöllmann, M. Fulland, and H.A. Richard. Development of a new software for
adaptive crack growth simulation in 3D structures. Engineering Fracture Mechanics,
70:249–268, 2003.

[91] J.A. Lemaitre. A Course on Damage Mechanics. Springer-Verlag, Berlin, 1996.

[92] H.A. Richard and K. Benitz. A loaing device for the creation of mixed mode in
fracture mechanics. International Journal of Fracture, 22:55–58, 1983.

[93] I. Scheider. Derivation of separation laws for cohesive models in the course of ductile
fracture. Engineering Fracture Mechanics, 76:1450–1459, 2009.

[94] F.Md. Rashid and A. Banerjee. Implementation and validation of a triaxiality depen-
dent cohesive model: experiments and simulations. International Journal of Fracture,
181:227–239, 2013.

[95] F.Md. Rashid and A. Banerjee. Simulation of fracture in a low ductility aluminum
alloy using a triaxiality dependent cohesive model. Engineering Fracture Mechanics,
179:1–12, 2017.

[96] T. Pardoen and J.W. Hutchinson. An extended model for void growth and coales-
cence. Journal of the Mechanics and Physics of Solids, 48:2467–2512, 2000.

[97] M. Mahler and J. Aktaa. Approach for J-R curve determination based on sub-
size specimens using a triaxiality dependent cohesive zone model on a (ferritic-
martensitic) steel. Engineering Fracture Mechanics, 144:222–237, 2015.

[98] H. Li, H. Yuan, and X. Li. Assessment of low cycle fatigue crack growth under mixed-
mode loading conditions by using a cohesive zone model. International Journal of
Fatigue, 75:39–50, 2015.

[99] W. Brocks and J. Olschewski. On J-dominance of crack-tip fields in largely yielded
3D structures. International Journal of Solids and Structures, 22:693–708, 1986.

[100] I. Scheider, M. Rajendran, and A. Banerjee. Comparison of different stress state de-
pendent cohesive zone models applied to thin walled structures. Engineering Fracture
Mechanics, 78:534–543, 2011.

[101] Y. Bao and T. Wierzbicki. On fracture locus in the equivalent strain and stress
triaxiality space. International Journal of Mechanical Sciences, 46:81–98, 2004.

[102] I. Barsoum and J. Faleskog. Rupture mechanisms in combined tension and shear-
experiments. International Journal of Solids and Structures, 44:1768–1786, 2007.

[103] K. Nahshon and J.W. Hutchinson. Modification of the gurson model for shear failure.
European Journal of Mechanics A/Solids, 27:1–17, 2008.

116 Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Bibliography
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