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Abstract

Genetic studies have utilized the Transmission Disequilibrium Test (TDT) to investi-

gate the effect of genes and their interactions (epistasis) on complex diseases such as

diabetes mellitus, Alzheimer’s disease, ischaemic heart disease and cancer. The TDT

has been frequently used as a statistical method to analyze genetic effects in family

studies due to its robustness to population stratification. The original TDT method

by Spielman et al. (Am J Hum Genet, 1993) was designed for qualitative traits (e.g.

disease classification: affected / unaffected) but variations have been developed for

its application in quantitative traits (QTs) such as blood sugar level, radiation sen-

sitivity and measures of coronary artery calcification. However, the occurrence of

nonnormally distributed quantitative traits in candidate gene analysis poses difficul-

ties for statistical methods that are sensitive to distributional assumptions.

This study introduces the Generalized Quantitative Transmission Disequilibrium

Test (GQTDT) - a statistical method for quantitative traits based on generalized

additive models incorporating parental mating type (parental genotype combination)

indicator and different parameters of the distribution of the QT response variable in

the statistical model. It aims to determine genetic effects (i.e. main effects and epis-

tasis) affecting QTs in family-based studies. The method is based on the Generalized

Additive Model for Location, Scale and Shape (GAMLSS, Rigby and Stasinopoulus,

Appl Stat, 2005) which allows not only the mean but also other parameters of the

conditional distribution of the quantitative trait to be included in the model. The

power and type I error of the GQTDT to detect genetic main effects and epistasis

were investigated in simulation studies. It has also been applied to real data to de-

termine its applicability in different settings and compare its findings with existing

biological data. Genotype data from family trios (parents and one offspring) as well as

phenotype data of the offspring were used in the analysis. In the simulation studies,

two unlinked biallelic loci and QTs influenced by one or two loci and epistasis were

created. The QTs were simulated either as normally distributed or skewed to the
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Abstract

right which are commonly encountered in genetic data. Different scenarios such as

presence of population stratification and other covariates were also simulated in the

data to determine its possible effects in the GQTDT analysis of genetic main effects

and epistasis.

The performance of the GQTDT in determining genetic main effects is satisfac-

tory both in the normally distributed and skewed quantitative traits. When a fitted

distribution is specified in the analysis, higher power can be achieved. In terms of

detecting epistasis, good power is noted when the distribution of the quantitative

trait is normal. When detecting epistasis in skewed traits, the power is not as high as

the power in the normally distributed traits but higher compared to the benchmark

method, the Quantitative Transmission Disequilibrium Test with parental mating type

indicator (QTDTM; Gauderman, Genet Epi, 2003). The power of the GQTDT is also

higher with higher minor allele frequencies, correctly assumed analysis genetic model,

larger ”true” effect size and bigger sample size. Slightly elevated type I error may

be observed in analyzing skewed quantitative traits but like other TDT-like tests, the

GQTDT is also robust to the effects of population stratification which causes spurious

association. Its application to real data detected genetic main effects and epistasis

with known biological evidence.

Keywords: quantitative trait, family-based studies, transmission disequilibrium

test, generalized quantitative transmission disequilibrium test, candidate genes, epis-

tasis, genetic effects
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1 Introduction

1.1 Background and rationale

Complex diseases such as diabetes mellitus, Alzheimer’s disease, ischaemic heart

disease and cancer are diseases that are influenced by more than one factor. Usu-

ally, the interactions between genetic and environmental factors play a role in com-

plex disease outcome and treatment. It is also an accepted fact that individual gene

effects and epistasis (interaction between genes) may play an important biological

role in complex diseases. Genetic studies on complex diseases have utilized different

statistical tests to determine genetic factors that may affect disease characteristics or

traits. Traits can be any qualitative or quantitative (measurable) characteristic of

an organism. In genetics, trait is often used synonymously with the term phenotype.

One of the statistical tests in family-based studies that had become popular for the

identification of genes affecting diseases or traits is the Transmission Disequilibrium

Test (TDT).

The TDT is a statistical test introduced into genetic epidemiology by Spielman et

al. (1993) to identify the effects of genetic factors on disease outcome using family

data. The advantages of the TDT have been shown by several studies in the past

(e.g. Laird and Lange, 2006). It had become a popular test due to its robustness to

population stratification. In genetic association studies, population stratification or

the presence of several subpopulations in the data may lead to spurious association

results. Ewens and Spielman (1995) have explicitly shown that the TDT is robust

against this effect of population stratification. Different forms of the TDT have been

used for detecting genetic effects of candidate genes or genes that are thought of to

affect a trait on the basis of their physiological and biological pathway functions.

Originally, the TDT has been designed for the investigation of qualitative traits (e.g.

disease status, that is whether a person is affected or unaffected by a disease). Analy-

sis using the original TDT utilizes data from family trios consisting of the mother,
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father and one disease-affected child to determine the frequency of transmission of

genetic characteristics from parents to offspring. Variations of the TDT or TDT-like

tests have been proposed to enhance its efficiency and applicability in different set-

tings. One example is the method called conditioning on parental genotypes (CPG)

(Cordell et al., 2004). This method involves constructing a sample of cases (disease-

affected individuals) and matched pseudocontrols from a sample of family trios. An

appealing feature of this approach is that it allows family data to be analyzed like

matched case-control design using conditional logistic regression. The TDT has also

been extended to accommodate different structures of families. Some extensions ap-

ply to only one gene while others consider two or more genes and their interactions.

With the importance of epistasis in mind, Wilson (2001) proposed a method to deter-

mine the effect of two interacting genes on a dichotomous disease outcome. However,

since the method considered known disease genes, other genes with weak marginal

effects but with a stronger epistatic effect will escape such investigation. To address

this issue, Kotti, Bickeböller and Clerget-Darpoux (2007) investigated the TDT for a

dichotomous disease outcome in the context of detecting disease genes with weak or

no marginal effect. Other extensions of the TDT and TDT-like tests have been intro-

duced to accommodate broader scenarios such as inclusion of maternal genetic factors

(Weinberg et al., 1998), analysis using siblings (Spielman and Ewens, 1998), handling

of errors in genotyping (Gordon et al., 2001) and parental-genotype reconstruction

(Knapp, 1999). Another TDT-based method is the Family-Based Association Tests

(FBAT). This unified approach to family-based tests of association was introduced

by Rabinowitz and Laird (2000) and Laird et al. (2000). The FBAT test statistic is

based on the distribution of the offspring genetic characteristics conditional on any

trait information and on the parental genetic characteristics. It follows the original

TDT approach by conditioning on the trait and the parental genetic characteristics.

If the parental data are not available, the test statistic is conditioned on the sufficient

statistics for the offspring distribution (Laird, 2007). This approach makes the FBAT

applicable even if parental data are missing.

The earlier variations and extensions of the TDT focus on qualitative trait or cate-

gorical variables as an outcome. However, the TDT has also been modified to analyze

quantitative traits such as blood pressure, blood glucose levels and radiation sensi-

tivity. Quantitative traits (QTs) have continuous distribution and have quantitative

or numeric values. They might be more direct and hence more informative mea-
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sures than qualitative traits. This idea gave rise to the application of the TDT to

quantitative traits. Earlier Quantitative Transmission Disequilibrium Tests (QTDTs)

include the works of Allison (1997), Rabinowitz (1997), Fulker et al. (1999), Lunetta

et al. (2000), and Abecasis et al. (2000) which are described in chapter 3. Gauder-

man (2003) looked into previous QTDT methods and proposed one which he called

QTDTM (Quantitative Transmission Disequilibrium Test with mating type indicator).

It was specifically designed for continuous quantitative traits and family trio (father,

mother, child) data. This statistical method is based on linear regression incorporating

parental mating types as fixed effects. The parental mating type is the combination

of the genetic characteristics of the mother and the father. The QTDTM incorporates

this parental mating type information in the regression equation to test for genetic

main effects and epistasis. The method can also be extended to include one or more

environmental factors and gene-environment interaction. It has been shown to ex-

hibit good power in detecting genetic effects compared to previous methods dealing

with quantitative traits in family studies. Another recent approach called quanti-

tative conditioning on parental genotypes (QCPG) by Wheeler and Cordell (2007)

has also been compared to the QTDTM. Comparison of the QTDTM, QCPG and

simple linear regression using simulated data showed that the QTDTM was the only

method suitable for estimation of effects under the alternative hypothesis with popu-

lation stratification (Wheeler and Cordell, 2007). In the case of nonnormal data, the

nonparametric FBAT approach will have an advantage over parametric tests like the

QTDTM, but the issue of testing for epistasis or gene-gene interaction effect still re-

mains a challenge with the FBAT approach. In general, analyzing epistasis is still not

properly addressed in statistical genetics. However, we cannot just disregard the ef-

fect of epistasis or gene-gene interaction especially in complex diseases. Moore (2003)

provided explanations supporting that interactions can be more important than the

independent main effects of common disease genes. This may not be true in all dis-

eases, but it may be observed in situations where the individual effects of several

candidate genes are weak but their interaction contributes a lot to the manifestation

of the disease. Knowing if epistasis is a significant factor in any disease may provide

a clue in understanding the biological mechanism of the disease. It can also give

us better predictions on who might develop the disease for future prevention strate-

gies. However, determining epistasis will require both computational and biological

approaches. Using a biological approach alone might prove to be very difficult con-
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sidering that there is a gigantic number of gene-gene interactions possible in humans.

A good statistical method hand-in-hand with biological methods is a better tandem

to detect epistasis in genetic studies. Unfortunately, currently available statistical

tests for family-based studies, especially those applicable for detecting epistasis using

quantitative traits are not well developed (Li et al., 2007). This does not imply that

there are only limited efforts done in investigating epistasis. In fact, there are many

investigators who explored the topic but up to now there are still issues left unsolved

especially in dealing with quantitative traits and family data. Chapter 3 gives details

and issues of the TDT and TDT-like methods currently used in family-based studies.

While much effort has been given to the issues of population stratification and find-

ing efficient statistical methods to determine genetic main effects and epistasis, the

problem of nonnormal distribution in the analysis of quantitative traits does not get

much attention. The currently existing methods (e.g. Abecasis et al., 2000; Gauder-

man, 2003) for quantitative trait analysis in family-based studies which consider both

genetic main effects and epistasis are often based on linear regression. Gross devia-

tions from the normality assumption create problems for this type of analysis. Other

methods may handle nonnormal data but did not consider epistasis in the analysis.

Although many statistical tests have been designed for nonnormally distributed data

in general, the application of these tests in genetic family-based studies is still limited.

1.2 Objectives

In lieu of the existing challenges in the analysis of candidate genes in family-based

studies, this dissertation aims to provide an improved statistical method for analyzing

genetic main effects and epistasis that can be applied to family data and quantitative

traits. Specifically, the following are the main objectives of this work:

• To introduce the Generalized Quantitative Transmission Disequilibrium Test

(GQTDT) for determining genetic effects (i.e. main effects and epistasis) of

candidate genes for diseases. The new method is applicable to normally dis-

tributed and nonnormally distributed quantitative traits commonly encountered

in genetics. It has been used here in few selected distributions but it can also

be applied to other types of distributions.

• To investigate the power and type I error of the GQTDT in the presence of

population stratification and unknown environmental covariates; and
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• To apply the GQTDT to the Genetic Analysis Workshop (GAW) 16 data and

to a sub-project of the Lung Cancer in the Young (LUCY) study. The GAW

data have both real data and simulated data based on a heart disease study.

The LUCY data contain real information on lung cancer patients diagnosed at

age 50 or younger.

1.3 Organization of succeeding chapters

The next two chapters of this dissertation present a review of the literature about

genetic concepts and statistical methods in genetics. Basic information about the

human genome and modes of inheritance are presented in chapter 2. The Mendelian

inheritance, Hardy-Weinberg equilibrium, genetic models, segregation, linkage associ-

ation studies and epistasis are also discussed in the same chapter. The third chapter

is about statistical methods used in genetic studies. It focuses mainly on tests for

family-based studies, specifically the TDT and TDT-like tests.

Chapter 4 describes the Generalized Quantitative Transmission Disequilibrium

Test, its theoretical concept, development and characteristics. Chapter 5 presents

the results of simulation studies while chapter 6 contains the results of the analysis of

the GAW and LUCY data.

Finally, chapter 7 gives a summary and outlook for future research directions.
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2 Genetic Concepts

Basic knowledge of genetic concepts is necessary to analyze genetic factors and deter-

mine the involvement of epistasis in complex diseases. This chapter reviews the basic

principles of genetics and other concepts needed for the statistical analysis of genetic

factors. A separate section about epistasis or gene-gene interaction is also included.

Unless otherwise specified, the details in this chapter are based on the textbooks

written by Vogel and Motulsky (1986), Khoury et al. (1993) and Sham (1998).

2.1 The genetic code

The genome is the total hereditary information of an organism. In humans and other

cellular life forms, this information is encoded in the DNA (deoxyribonucleic acid).

The DNA can be imagined as a very long, tightly coiled string of information in every

cell of the organism. Typically, the term genome refers to the complete set of DNA

found in the nucleus of the cell (i.e., the ”nuclear genome”). However, it can also be

applied to genetic information within cell organelles that contain their own DNA, as

with the mitochondrial genome or the chloroplast genome.

In humans, the genome consists of 23 pairs of DNA molecules called chromosomes ,

22 of which are autosomal chromosomes and 1 pair are sex-specific chromosomes

located in the cell nucleus. Males have one X and one Y chromosome (as shown in

figure 2.1), while females have a pair of X chromosomes.

Two chromosomes forming a pair are called homologous chromosomes . The somatic

cells of humans contain a diploid set of chromosomes (i.e. 23 pairs or 46 chromosomes)

with the exception of the sex chromosomes in males. During normal cell division

called mitosis , these chromosomes are duplicated to form new cells. On the other

hand, the mature sex cells (ovum and sperm) contain only half of the set i.e. 23

chromosomes. These sex cells are also known as gamete or germline cell . All humans
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Figure 2.1: Karyogram of a human male

Source: National Library of Medicine (US), NCBI; http://www.ncbi.nlm.nih.gov/

are formed from the union of gametes (ovum and sperm) from the parents in a type of

cell division called meiosis . During sexual reproduction, each parent contributes one

gamete to form a single cell called zygote. Since each gamete has a haploid (single)

set of 23 chromosomes, the zygote receives a diploid (double) set of 46 chromosomes.

During meiosis, exchange of genetic materials can occur between the two homologous

chromosomes from the parents. This results in alternating segments or blocks of

inherited DNA from the mother and father.

In a chromosome, there is a special location somewhere in the middle called cen-

tromere which plays a role in the cell division process. Each chromosome is composed

of two arms extending on either side of the centromere. The shorter arm is known as

the p-arm, while the longer arm is known as the q-arm. The endpoints of the chromo-

some are called telomeres . Chromosomes can be observed during cell division under

the microscope as elongated molecules that show coloured bands after staining. The

chromosome was discovered in 1953 by Watson and Crick as strands of DNA consist-

ing of two chains of nucleotides arranged in a double-helix structure. The four types of

nucleotides are Adenine, Cytosine, Guanine and Thymine, which are conventionally

represented by the letters A, C, G, and T, respectively. Each nucleotide only pairs with

a specific nucleotide. Adenine pairs always with Thymine while Cytosine pairs always
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with Guanine. The nucleotide pairs are also called base pairs . The whole genome can

be envisioned as a string of ”letter codes” of these different nucleotides. According to

the IHGSC (International Human Genome Sequencing Consortium, 2004) who com-

pleted sequencing the human genome in 2003, the genome has about 2.85 x 109 base

pairs. Figure 2.2 shows a schematic representation of a double-helix DNA with the

nucleotide pairs.

Figure 2.2: Schematic representation of the DNA

Source: U.S. Department of Energy Human Genome Programs,

http://genomics.energy.gov

Genes are parts of chromosomes that perform biological function by encoding for

proteins. They are considered as the basic units of hereditary information. A chromo-

some may contain several thousand genes. The overall exact number of genes encoded

by the human genome is still unknown but the IHGSC reported an estimate of 20,000

- 25,000 protein genes in the human genome. Genes influence human traits such as

blood type, insulin level, ability to digest lactose, baldness, polydactyly (having extra

fingers) and many more. Many diseases have also been identified as genetic diseases

because they are caused by abnormalities in the genome. One of these is Hemophilia

which has gained recognition because it has afflicted the descendants of Britain’s

Queen Victoria. Hemophilia is a bleeding disorder where blood does not clot properly

due to a shortage of a clotting factor. There are three reported types of hemophilia —

types A, B and C. These types of bleeding disorders are due to abnormalities in the

genes encoding for the functional blood clotting factors VIII, IX and XI, respectively

(Bolton-Maggs and Pasi, 2003; Zivelin et al., 2004). Other known examples of genetic

disorders are color blindness, sickle cell anemia and cystic fibrosis. Color blindness is
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more common in males than in females because many of the genes involved in color

vision are on the X chromosome. In sickle cell anemia, gene mutations are reported on

chromosome 11 while mutations in the CFTR gene on chromosome 7q were reported

to be associated with cystic fibrosis, an inherited disease of the mucus glands that

results to progressive damage to the respiratory system and chronic digestive system

problems. Complex diseases such as type 1 or insulin-dependent diabetes mellitus,

autism and certain cancers (e.g. breast cancer, familial neuroblastoma) have been re-

lated also to certain genes. Type 1 diabetes mellitus is affected by many genes which

are mostly located on chromosomes 6, 11 and 18 while autism has been linked to

chromosome 7. BRCA1 and BRCA2 are the major genes related to hereditary breast

cancer and susceptibility genes on chromosome 6p22 have been associated with the

childhood cancer, neuroblastoma (OMIM, 2009).

The terms gene and locus are sometimes used interchangeably. A locus (plural:

loci) is a specific position along a chromosome. It can denote the position of a gene

or a genetic marker. A combination of several loci on a single chromosome strand

(not necessarily adjacent) is called a haplotype. There are genes that usually occur at

the same position in the genome so that the gene and its locus are sometimes used

synonymously. Genes can exist in different forms or states. These different forms of a

gene are called alleles . Every individual carries two copies of an autosomal gene which

may be different or similar alleles. Individuals with two different alleles at a certain

gene are said to be heterozygous , while individuals with two copies of the same allele

are referred to as homozygous . Some alleles may be associated with certain diseases

while others just contribute to the population’s normal genetic variation. Genes can

be polymorphic. ”Poly” means many, and ”morph” means form. A polymorphism

exists when the most frequent allele occurs in less than 99% in the population.

Individuals may be characterized by their genetic make-up. The genotype of an

individual refers to its genetic composition at a locus. It is the pair of alleles at a

particular gene. For instance, if a trait is influenced by a biallelic gene (let’s say that

the two alleles of the gene are A1 and A2), then the three possible genotypes are A1A1,

A1A2, and A2A2. The genes influence the observable characteristic or the phenotype

of an individual and usually, the environment also plays an important role in the

resulting phenotype. Examples of phenotypes, some of which have been mentioned

already are stature, blood type, insulin level, polydactyly, intelligence quotient (IQ),

affection by a disease such as diabetes mellitus, glucose-6-phosphate dehydrogenase
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(G6PD) deficiency etc. To illustrate the distinction between genotype and phenotype,

consider the gene that determines the ABO blood types which has three alleles: IA,

IB, and i. The possible genotypes and the observed phenotypes during blood typing

are shown in table 2.1.

Table 2.1: Genotypes and ABO Blood Types

Genotypes Blood Type Phenotypes

IAIA or IAi A

IBIB or IBi B

IAIB AB

ii O

Note that the observed blood type A can arise from two genotypes, IAIA or IAi.

Carrying at least one IA allele without the presence of IB allele gives rise to blood

type A. The same is true for blood type B. Carrying at least one IB allele without

the IA allele will give rise to blood type B. The presence of both IA and IB alleles

results to blood type AB while the absence of both alleles (i.e. genotype ii) results to

blood type O. Alleles IA and IB are said to be codominant to each other and both

are dominant over allele i. More about genetic patterns of inheritance is discussed in

the section Genetic Models.

In the study of genetic factors, another important information to note is the term

genetic marker . Genetic markers are used to determine which inherited genes are

associated or linked with certain diseases. DNA segments that lie near each other

on a chromosome tend to be inherited together. A marker can therefore be used to

track or map genes that have not yet been identified. A genetic marker can be a

gene or a DNA segment that can be easily determined and whose location on the

chromosome is known. It needs to be variable so that the alleles will be more likely

different among unrelated individuals. Restriction fragment length polymorphisms

(RFLPs) were one of the earliest molecular markers. An RFLP is a variation in the

DNA sequence that is detected by cutting the DNA into segments with restriction

enzymes and analyzing the resulting lengths of fragments by electrophoresis. RFLPs

are also simply known as restriction polymorphisms. Another type of marker is called

microsatellite. Microsatellites are used to detect variable numbers of DNA sequences
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that are repeated. A common example of a microsatellite is a CA repeat where the

C and A nucleotide are repeated in the DNA sequence n number of times. At the

moment, the most commonly used markers are the single-nucleotide polymorphisms

(SNPs). These polymorphisms are characterized by a variation occurring in a single

nucleotide - A, C, G, or T - in the genome. Figure 2.3 shows an illustration of a pair of

homologous chromosomes which differs in a single nucleotide in the sequenced DNA

fragments. One of the pair has a DNA sequence of CCTTCGAAAC while the other

has CCTTTGAAAC. The difference is only in the fifth nucleotide. One has allele

C and the other has allele T. Nowadays, biallelic SNP markers are commonly used

because they are frequent in the genome and can be easily assayed in the laboratory.

In this dissertation only biallelic SNP markers are considered.

Figure 2.3: Homologous chromosomes with C/T polymorphism

2.2 Mendelian principles

How are traits inherited? In the 1860s, a monk named Gregor Johann Mendel (1822

- 1884) developed a concept about the inheritance of traits based on his experiments

in breeding pea plants at the Augustinian Abbey of St. Thomas in Brno, Czech

Republic. At that time when there was no evidence yet for genes, Mendel concluded

that pairs of unseen ”factors” were responsible for observable traits in individuals.

His work was at first not widely accepted, ignored and was rediscovered only after he

died. He is now known as the ”father of modern genetics” for his Laws of Inheritance.

His results can be summarized in two basic principles described below.

The law of segregation

Humans, being diploid organisms, normally carry a pair of alleles in a specified gene.

In the formation of the sex cells or gametes, the pair of alleles segregate or separate so
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that each of the resulting gamete carries only half of the pair to be passed on to the

next generation. At conception, one gamete (sperm) from the father randomly unites

with a gamete (ovum) from the mother to form the zygote which becomes the child or

offspring. The probability that each parent passes on a copy of one of the two alleles

to the offspring is 0.5. Mendel’s first law simply states that an individual receives

with equal probability one of the segregating alleles from each parent. This law of

segregation has been described by Sham (1998) using a ”box model”. If we imagine

a parent’s genotype is composed of two marbles in a box, the law of segregation says

that the offspring will randomly get one of the two marbles from each of the parent’s

box. In statistics, this is similar to the Bernoulli process which is a discrete-time

stochastic process consisting of a sequence of independent random variable Xi, where

i = 1,2,...,n, such that for each i, the value of Xi is either 0 or 1.

Using Mendel’s first law, we can make a segregation table (usually termed as Pun-

nett Square) for alleles. This table illustrates the possible genotypes of children given

the genotypes of the parents. If we take as an example a biallelic gene with alleles

A1 and A2, the segregation for the mating of a heterozygous father (A1A2) and a

homozygous mother (A1A1) is as shown in table 2.2. In this mating type, the result-

ing genotype segregation ratio is 1:1:0 which means that the probabilities of having a

child with genotype A1A1 or A1A2 are both 1/2 and the probability of a child with

genotype A2A2 is zero.

Table 2.2: Possible genotypes of offsprings for a biallelic Mendelian locus

Father’s gametes

A1 A2

Mother’s gametes

A1 A1A1 A1A2

A1 A1A1 A1A2

According to Mendel’s Law of Segregation, when both parents are heterozygous

(as illustrated in figure 2.4), the distribution of the children’s genotypes given the

parents’ genotypes are P (A1A1|A1A2 x A1A2) = 1/4; P (A1A2|A1A2 x A1A2) = 1/2

and P (A2A2|A1A2 x A1A2) = 1/4.
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Figure 2.4: Probability distribution of genotypes of children with heterozygous parents

Some hereditary diseases follow a Mendelian mode of inheritance and are caused by

just a single major gene. Known examples are cystic fibrosis and Chorea Huntington.

The law of independent assortment

The second law of Mendel says that the segregation of alleles in a gene during repro-

duction is independent of the segregation of alleles in other genes. Let’s say we have

two genes, A and B. Based on the law of independent assortment, the segregation of

alleles in gene A is independent from that of gene B. This means that the segregation

in gene A does not affect the probability of the segregation event in gene B and vice

versa.

However, this law of independent assortment is not true for all gene pairs. Some

genes do not segregate independently and are said to be linked because they tend

to stay together. As a consequence, some haplotypes would be more likely observed

to be passed on from parents to offsprings. The observed deviations from the law

of independent assortment are the biological basis of gene mapping (Balding et al.,

2001).

2.3 Hardy-Weinberg equilibrium

The theoretical prediction of the genotype distribution in a population was inde-

pendently developed by the English mathematician, G.H. Hardy and the German

physiologist, W. Weinberg in 1908. The Hardy-Weinberg equilibrium (HWE) simply

defines the mathematical relationship between the genotype frequencies and the allele

frequencies in a population. Given the case of a biallelic gene, with alleles A1 and A2,
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and with allele frequencies p1 and p2 respectively (p1+ p2 = 1), the frequencies of the

possible genotypes which sum up to 1 are given by:

Genotype: A1A1 A1A2 A2A2

Frequency: p21 2p1p2 p22

A population is said to be in Hardy-Weinberg equilibrium if the two alleles at the

considered gene of a randomly chosen individual are stochastically independent and

identically distributed. Therefore, given a gene with alleles A1,...,Ak occurring with

frequencies p1,...,pk in the population, the ordered pair of alleles (Ar,As) at the given

gene of a randomly chosen individual has the probability prps where r, s = 1,...,k.

The most important implication of the Hardy-Weinberg equilibrium is the constancy

of allele frequency by the mechanism of Mendelian inheritance. Constancy means that

the allele frequency in the population after one generation remains the same in the

absence of specific evolutionary forces. This also implies that the genotype frequencies

are constant and thus genetic variation is preserved.

Genetically, the Hardy-Weinberg equilibrium assumes random mating in the po-

pulation with respect to the gene of interest. Random mating describes the situation

where mating is done between randomly chosen individuals. Deviations from ran-

dom mating as a result of inbreeding or preferential selection of partners (assortative

mating) can create correlations between uniting gametes in the population. This

results in lower frequency of heterozygotes than what is expected in a population

under Hardy-Weinberg equilibrium. Other assumptions of the HWE are as follows:

no migration in and out of the population, no selective survival among genotypes, no

genetic mutation, absence of other factors that can change the allele frequencies and

large population size to avoid loss of alleles due to sampling. If all these assumptions

are met, the allele frequencies can be directly calculated from the observed genotype

frequencies in the population. Despite the restrictive assumptions of the HWE model,

it is very relevant in practice. It has provided the foundation for experimental inves-

tigations in population genetics. It has been used as a reference model and became a

baseline for comparison with realistic models in which evolutionary forces (e.g. muta-

tion, natural selection) are considered to change allele frequencies (Hartl and Clark,

1997). It is important to check Hardy-Weinberg Equilibrium in population-based

studies to avoid false positive association results. In family-based designs, HWE is

not an issue in the analysis of genetic factors. However, testing for deviations from
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HWE in the parents or unaffected sibling data is useful in detecting genotyping errors

(Li and Leal, 2009).

2.4 Genetic models

A genetic model describes the mode of inheritance or the manner in which a particular

genetic trait or disease is passed on from generation to generation. In statistical

analysis, the genetic model specifies the parameters for the number of genes, their

relationship with the trait of interest and the magnitude of their contributions. The

simplest genetic model is the Mendelian single locus model . A single locus can be

passed on from one generation to another following the principle of Mendelian segre-

gation. The commonly used Mendelian modes of inheritance are dominant, recessive,

multiplicative and additive genetic models. These genetic models are described below.

Consider for example a disease phenotype which is influenced by a single locus with

k alleles. An individual can become affected or unaffected by the genetic disease

depending on the genotype at the said locus. The conditional probability that an

individual with a given genotype or pair of alleles will become affected by the disease

is termed penetrance:

fArAs
= P (affected|ArAs), r, s = 1, ..., k (2.1)

where Ar is the allele from the father and As is the allele from the mother.

In the classical Mendelian model, monogenic diseases are caused by a single major

gene and usually have a penetrance of either 0 or 1. Let us assume that our locus

has only two types of alleles — A1 and A2, where A1 is the ”susceptibility” allele

(mutated allele type) and A2 is the ”normal” allele (wild type). It is often assumed

that the parental origin of an allele has no influence on the disease. It is also assumed

in general that the probability to manifest the disease increases with the number of

susceptibility alleles. Not considering the parental origin of the alleles, there are three

possible genotypes for a biallelic locus. In a case-control study where the recruited

subjects or participants are cases (individuals affected with the disease) and controls

(not affected with the disease), the data can be presented in a contingency table as

follows:

n1 to n6 are the genotype counts observed among cases and controls.
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Table 2.3: Genotype distribution of a biallelic locus

Genotype

Disease status A2A2 A1A2 A1A1

Case n1 n2 n3
Control n4 n5 n6

Dominant Genetic Model

In a dominant genetic model, an individual carrying a susceptibility allele is affected

by the disease unless there is incomplete penetrance. When there is incomplete pene-

trance, it is possible that the disease does not manifest in an individual who has the

susceptibility allele. In the case of complete penetrance, carrying at least one copy

of the susceptibility allele is all that matters to manifest the disease in a dominant

genetic model. Many disease susceptibility alleles affecting humans are not fully pene-

trant. Some have high penetrance, while others have low penetrance. An example of a

highly penetrant, autosomal dominant susceptibility gene has been identified by Hall

et al. (1990) among high-risk families for breask cancer and is now termed BRCA1.

In the dominant mode of inheritance, the homozygous A1A1 and heterozygous A1A2

individuals have the same risks to inherit the disease but they have higher risks than

the individual with the wild type A2A2 genotype. The disease risk in a case-control

study can be estimated by the odds ratio (OR). In a dominant genetic model, the

OR is the ratio of susceptability allele carriers to non-carriers in cases compared with

that in controls. An odds ratio of 1 indicates that the odds of having the disease are

the same regardless of the presence of the susceptibility allele. Rewriting the previous

contingency table, a dominant genetic model where allele A1 is the susceptibility allele

is depicted in table 2.4. In this situation, the individuals with genotypes containing

the A1 allele are grouped together since they have the same risk of having the disease.

In the given table, the OR = [(n2 + n3)n4] / [n1(n5 + n6)] .

Table 2.4: Genotype table for a dominant genetic model with susceptibility allele A1

Genotype

Disease status A2A2 A1A2 + A1A1

Case n1 n2 + n3
Control n4 n5 + n6
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Recessive Genetic Model

Recessive genetic models are also commonly specified in genetic analysis. In this

model, only the homozygotes with two copies of the susceptibility allele manifest the

disease if there are no other factors involved. Table 2.5 is a revised table 2.3 showing

a recessive genetic model where the A1A1 genotype is required for disease risk.

Table 2.5: Genotype table for a recessive genetic model with susceptibility allele A1

Genotype

Disease status A2A2 + A1A2 A1A1

Case n1 + n2 n3
Control n4 + n5 n6

Cystic fibrosis (CF) is an example of an autosomal recessive disease affecting the

mucus lining of the lungs leading to breathing problems and other difficulties. It

has an incidence of 1 in 2000 - 3000 newborns in Europe (WHO, 2004). Typically,

only those individuals with two copies of the susceptibility allele, will manifest the

disease in a recessive genetic model. However, there can be cases of phenocopies where

individuals without the susceptibility allele can become affected.

Multiplicative Genetic Model

Another genetic model is the multiplicative genetic model. In this model, the risk of

developing a disease increases by a factor r for a heterozygous carrier of the suscep-

tibility allele (i.e. A1A2) and r2 for a homozygous (i.e. A1A1) (Lewis, 2002). This

model is frequently used for quantitative trait analysis.

Additive Genetic Model

The other frequently used genetic model is the additive model. In an additive model,

the risk conferred by a disease allele is increased r-fold for heterozygotes A1A2, and

increased 2r-fold for homozygotes A1A1. In this model the heterozygotes have half

the risk of the A1A1 homozygotes (Lewis, 2002). An example of this genetic model is
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seen in the study of Talmud et al. (2002) where some polymorphisms have been found

to have additive effects on plasma triglyceride levels which are major independent risk

factors for coronary heart disease. This additive genetic model is also frequently used

in the analysis of continuous traits.

There are other modes of inheritance such as those controlled by the sex chromo-

somes that are not discussed in this dissertation.

Mixed Model

For continuous or quantitative traits, one can utilize a linear regression model to relate

the random variable Yi, which represents the quantitative phenotype, to the genotype,

such as:

Yi = μ+ βGGi + εi (2.2)

where i = 1,...,N study subjects, μ is the population mean, βG the regression

coefficient for the genotypic effect and the residual εi is commonly assumed to be

normally distributed, with mean zero and variance σ2. The covariate Gi quantifies

the genotype and is coded depending on the assumed mode of inheritance.

In statistical genetics, models that are more complex than equation 2.2 are often

used to accommodate other risk factors that may affect the phenotypic trait or disease

phenotype of interest. For quantitative traits, the so-called mixed model is commonly

used. This model contains a major locus, a polygenic component (small additive

effects of many genes) and an environmental effect. Usually, the random variable

Y representing the quantitative trait is assumed to be a linear function of the three

independent sources. Following Morton and MacLean’s (1974) representation, the

mixed model can be roughly written as:

Y = G+H + E (2.3)

where G is the effect due to a major locus, H is the polygenic effect due to an

indefinitely large number of small additive genetic factors, and E is the environmental

contribution which also includes the error term.
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frequencies p1 and p2, respectively, where p2 = 1−p1. The characteristic of the major

locus is shown in figure 2.5 and can be summarized as:

Genotype at the major locus: A2A2 A1A2 A1A1

Frequency based on HWE: p22 2p1p2 p21

Effect of the major locus: μ0 = g μ1 = g + td μ2 = g + t

The notation t refers to the displacement at the major locus, d is the so-called degree

of dominance and g is a parameter which is used to estimate the mean of the major

locus. The major locus has mean E(G) = g + p21t+ 2p1p2td which is denoted here as

μ. Since μ which is equal to E(G) is more easily estimated than g, we can use μ instead

of g. By substituting E(G) with μ, then g = μ−p21t−2p1p2td. The parameter t is taken

here to be greater than zero so that the subsitution of an A1 allele for A2 represents a

positive contribution to the trait Y . This means that d = 0 corresponds to a recessive

contribution, d = 1 to a dominant one and d = 1/2 to an additive contribution. The

variance of the major locus is σ2G = p21(g + t)2 + 2p1p2(g + td)2 + (1 − p1)
2g2 − μ2.

In figure 2.5, the mean effects of three different genotypes A2A2, A1A2 and A1A1 are

denoted by μ0, μ1 and μ2 respectively. The μ, t, p1 and d are the parameters of the

major locus that need to be estimated.

Figure 2.5: The mixed model for a quantitative trait

Based on Morton and Maclean (1974)

The polygenic effect H in Equation 2.3 is normally distributed with mean zero and

variance σ2H , which is to be estimated. The environmental effect E can be partitioned
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into two parts, E = Ec+Er, where Ec is the common environment and Er is random.

Each effect is assumed independently normal with mean zero and variances σ2c and σ2r

respectively, which are also to be estimated. It follows that the total environmental

effect is also normal with mean zero and σ2E = σ2c + σ2r .

In complex segregation analysis which aims to detect a major locus effect, the mixed

model is usually applied. In the model, we assume that the quantitative trait is related

to disease affection through a liability and a threshold which yields disease affection.

Therefore, an underlying liability-threshold model is assumed. This underlying liabi-

lity is modelled like a quantitative trait. Individuals with the disease have a liability

above a certain threshold and individuals without the disease have a liability below

the threshold. The single locus model is regarded as a submodel of the mixed model

without the polygenic component. On the other hand, the polygenic model is also a

submodel of the mixed model but without the major locus. To test if a major locus is

associated with the quantitative trait, a likelihood ratio test may be applied (Sham,

1998).

Other genetic models such as the general transmission model, unified model and re-

gressive models have been applied to quantitative traits (see Sham (1998) for details).

Extensions of these models have also been proposed to accommodate two or more

loci, gene-gene interaction and gene-environment interaction. In the analysis of the

effect of gene-environment interaction on the phenotypic trait, several models have

been used to take into account the various ways in which genetic effects can be modi-

fied by environmental exposures. Gene-environment interactions have been shown to

play a role in many diseases such as skin cancer, myocardial infarction and asthma

(Hunter, 2005). Detecting gene-environment interactions is oftentimes difficult. En-

vironmental data are not always easy to measure and collect even in well-designed

studies. This dissertation recognizes the importance of studying gene-environment

interaction. However, the focus of the thesis is on genetic main effects and gene-gene

interaction which is also a significant source of variation in many phenotypic traits.

A detailed discussion of analyzing and modelling gene-gene interaction or epistasis is

included in this chapter as a separate section.

In most cases, the underlying genetic model is not known. This makes the analysis

of genetic factors more difficult especially in complex diseases such as depression,

diabetes, cancer and ischemic heart disease. Complex diseases are usually caused by

multiple genetic and environmental factors including their interactions. Knowing the
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2.5 Analysis methods in genetic epidemiology

Genetic epidemiology resulted from the interaction of two scientific disciples: Genetics

and Epidemiology. Its main aim is to investigate genetic components and risk factors

that influence diseases and other phenotypic traits in families and or populations.

Analysis methods in genetic epidemiology may be descriptive or analytic in nature

using either family or population data. Descriptive studies characterize the distribu-

tion of genetic traits and diseases, while analytic studies usually investigate the factors

affecting the distribution of genetic traits and their role in health and disease in fa-

milies and populations. The following is an overview of research strategies commonly

used in genetic epidemiology.

2.5.1 Segregation analysis

Studies in genetic epidemiology are usually motivated by observed clustering or aggre-

gation of diseases in families. Familial aggregation of diseases may indicate biologically

inherited susceptibility or common environmental exposure of family members. To

further investigate diseases that cluster within families, a segregation analysis may

be carried out. This analysis tests explicit modes of inheritance on family data. The

strategy relies on fitting genetic models that could best explain the data and identify

major genes that may control traits associated with the disease or contribute to the

disease risk. Segregation analysis was initially designed to test whether an observed

mixture of phenotypes among offsprings follows Mendelian segregation ratios.

A basic approach in performing segregation analysis can be illustrated by a simple

discrete phenotype e.g. affected versus nonaffected by a disease. Let us assume that

there is only one mating type or combination of the father and mother’s genetic cha-

racteristic. The goal of the analysis is to estimate the probability of any given offspring

being affected (denoted by PD) and test for departure from Mendelian expectations.

Assuming that the children within a sibship are independent observations, the bino-

mial distribution that describes the probability of observing M affected offspring from
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P (M ;n, PD) =

(
n

M

)
(PD)

M (1− PD)
n−M (2.4)

Equation 2.4 serves as the likelihood function for one sibship. For a sample involv-

ing N independent sibships from different families with the same mating type, the

likelihood of the total sample is the product of the above binomial function over all

sibships:
N∏
i=1

(
ni
Mi

)
(PD)

Mi(1− PD)
ni−Mi (2.5)

where i = 1, ..., N sibships of size ni with Mi affected sibs.

Consider for example a locus of interest with two alleles A1 and A2, where A1 is

the susceptibility allele. For a rare autosomal dominant disease (with complete pe-

netrance and no etiologic heterogeneity), a mating between an affected heterozygous

(A1A2) individual and a nonaffected homozygous (A2A2) individual has an expected

segregation ratio of 0.5 for affected and unaffected offsprings, according to Mendel’s

law. If we consider only families of this mating type, a test based on the binomial

distribution can be applied considering the null hypothesis that the probability for

a single child to be affected is 0.5. If this null hypothesis is not rejected, it may be

concluded that the data are consistent with an autosomal dominant disease model. In

general, the probability distribution for all possible mating types can be constructed.

However, families are usually sampled or ascertained based on some recruitment cri-

teria and not by random method. In most cases, there is an oversampling of families

prone to have the disease. Therefore the test procedure should be corrected for this

ascertainment bias . If we assume for example that families that are ascertained to

participate in a study are those with ”at least one affected offspring”, the binomial

distribution for the number of affected offspring could be corrected for ascertainment

by considering a truncated binomial distribution assuming at least one affected off-

spring per family. However, this could mean that families with more affected children

have a higher probability to be ascertained as part of the sample. (See Sham (1998)

for other test procedures to correct for ascertainment bias).

In the case of extended pedigrees which encompass individuals in several

generations, Elston and Stewart (1971) proposed a pedigree likelihood (denoted here

as L) which is expressed as a multiple sum of products of penetrance, population and
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transmission parameters over all possible combinations of genotypes of the pedigree

members. This Elston-Stewart algorithm which is widely used in segregation analysis

is written as:

L =
∑
g1

∑
g2

...
∑
gnt

nt∏
1

f(Yi|Gi)
n1∏
1

P (Gi)
n2∏
1

ϕ(Gi|GifGim) (2.6)

where g1 represents all possible genotypes of individual 1 and g2 all the possible geno-

types of individual 2 and so on. nt is the total number of individuals in the pedigree,

n1 the number of founder individuals (those without specified parents in the pedigree)

and n2 the number of non-founder individuals (n2 = nt − n1). Gi, i = 1, ..., nt, is

the genotype of the ith individual in the pedigree, while f(Yi|Gi), i = 1, ..., nt, is the

penetrance which denotes the conditional probability that an individual i has an ob-

served discrete phenotype Yi given the genotypeGi or an analogous conditional density

function for the genotype if the observed phenotype is a continuous variable. P (Gi),

i = 1, ..., n1, is the genotype distribution for the founders which is determined by

population parameters and often assuming Hardy-Weinberg equilibrium. The trans-

mission probability which is the probability of an individual having a certain genotype

given the parents genotypes is given by ϕ(Gi|GifGim), i = 1, ..., n2, where GifGim

are the genotypes of the parents of the ith non-founding individual. The transmission

probabilities are specified for all non-founder individuals in the pedigree and it is as-

sumed that genetic transmissions to each offspring are independent of each other and

that transmission of one parent to an offspring is also independent of the transmission

of the other parents. The Elston-Stewart algorithm is sometimes known as ”peeling”

or ”clipping” because it deals with large multi-generational pedigrees by considering

one family at a time. It was designed to deal with large pedigrees but not with large

number of loci. For an approach that considers multipoint likelihood that combines

information from many loci, one can use the Lander-Green algorithm (Lander and

Green, 1987).

One example of a successful application of segregation analysis for complex diseases

is seen in breast cancer. The result of the segregation analysis of Newman et al. (1988)

provided basis for the linkage study of Hall et al. (1990) which led to the identification

of a rare autosomal dominant breast cancer gene with high penetrance. The gene for

early-onset familial breast cancer has been identified on chromosome 17q21.
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2.5.2 Linkage analysis

Genetic linkage or cosegregation is the tendency for genes or segments of DNA to be

inherited together. Normally, during meiosis, homologous chromosomes pair up and

partly overlap. Chromosome breakage and exchange of DNA segments can also occur

during meiosis. This exchange of DNA segments between homologous chromosomes

is called chromosomal crossing overs or crossovers. The process of crossover can

result in genetic recombination between loci which is seen when the resulting gamete

exhibit a different combination of DNA segments other than that of the parents.

Consider the example in figure 2.6 showing two loci: A and B. Two homologous

chromosomes form pairs resulting in a tetrad (stage II). Then crossover happens in

stage III at the position between locus A and B resulting in recombination in the two

middle chromosome strands. Exchange of alleles happen at locus B. In the end, each

gamete will receive one of the chromosome strands. Two out of the four gametes are

recombinants . It is possible to have multiple number of crossovers. However, if there

are even number of crossovers, one sees no recombinant when genotyping the loci A

and B.

Figure 2.6: Crossover and recombination during meiosis

This information on recombination is used in linkage analysis to infer the relative

positions of genes for different traits and diseases. In linkage studies, data from fa-

mily members or related families (pedigree) are examined to determine the patterns of

allele transmission from parents to offsprings, or the patterns of allele sharing among

relatives. For linkage analysis, one parent must be a double heterozygote for both
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the marker and the hypothesized disease locus being studied. The probability of the

marker being informative for linkage analysis is thus a function of the frequency of

heterozygotes. Linkage analysis is based on measuring the cosegregation of loci or

genes by determining the recombination fraction in the family data. The recombi-

nation fraction, θ, is the ratio of the number of recombinant gametes to the total

number of gametes formed. Consider two loci: A (the putative disease locus) with

possible alleles A1, ..., A4 and B (the marker locus) with possible alleles B1, ..., B4.

Figure 2.7 shows an example family with their genotype data on the two loci. In this

case, we know the phases of the individuals in the second and third generation of the

pedigree. The phase refers to the information on the location of alleles at different

loci. Two alleles at two different loci are said to be in phase when they are located

in the same haplotype or belonging to the same chromosome, otherwise they are not

in phase. In figure 2.7 one can see that the second offspring in the last generation

of the example family has one recombination. The haplotype A1B4 must have been

a result of a crossover in the mother (circle figure in the middle level). In the last

generation of the given family, there are 11 non-recombinants and 1 recombinant out

of the 12 observed informative meioses. This information is used in the computation

of the likelihood of the recombination fraction.

Figure 2.7: Recombination in the last generation of an example family
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The aim of linkage analysis is to find evidence for linkage and to estimate recombi-

nation fractions. In the classical linkage analysis, the null hypothesis H0 : θ = 1
2 (no

linkage) is tested against the alternative hypothesis H1 : θ < 1
2 (linkage). The usual

statistical approach to linkage analysis is through the computation of the likelihood

of odds (LOD) score (Morton, 1955) which tests for linkage between a susceptibility

disease locus and a marker locus. The LOD score determines the likelihood of the

two loci being linked given a recombination fraction versus the likelihood that they

are unlinked. The likelihood of a given recombination fraction, θ is :

L(θ) =

(
l + u

u

)
(1− θ)lθu (2.7)

where u is the number of recombinants and l the number of non-recombinants from the

observed informative meioses. To get the likelihood ratio, the likelihood for linkage at

a given recombination fraction θ is divided by the likelihood for no linkage (i.e. θ = 1
2).

Then the maximum LOD score for linkage is computed as follows:

max
0≤θ≤ 1

2

LOD(θ) = max
0≤θ≤ 1

2

log(L(θ)/L(1/2)) (2.8)

which is the maximum of the logarithm (base 10) of the ratio of likelihoods (Balding

et al., 2001).

There are cases when the meiosis is uninformative or the phase is unknown. As a

result, it is not possible to tell whether the offsprings’ haplotypes are recombinants

or non-recombinants. This happens when grandparental genotypes are not available

or parental genotypes are not heterozygous for both loci concerned. In this case,

the analysis becomes a little complicated because the inheritance pattern needs to be

estimated based on the available insufficient information. The reader is referred to

Sham (1998) or Bickeböller and Fischer (2007) for details on this. Using LOD score

analysis, how can one assess if a marker is linked to a disease locus? Conventionally,

a LOD score of 3 or higher is considered as evidence for linkage at any value of θ

between 0 and 1
2 , while a LOD score of less than -2 is evidence against linkage. These

values were computed by (Morton, 1955) on the basis of the sequential probability

ratio test by (Wald, 1945). In large samples, a maximum LOD score of 3 is associated

with the significance level of 0.0001 (Sham, 1998).
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2.5.3 Association analysis

Another analysis method used in genetic studies is association analysis. Tradition-

ally, association studies are conducted not using families but using unrelated group of

subjects affected with a disease (cases) and a group of unaffected subjects (controls).

In genetics, case-control studies compare marker allele frequencies between group of

unrelated affected individuals and unrelated unaffected individuals to assess the con-

tribution of genetic variants to the trait or disease of interest (Laird and Lange, 2006).

An association between marker alleles and alleles of susceptibility gene will show that

certain marker alleles will be present more often in cases than in controls. Association

studies in genetics aim to show evidence for association or linkage disequilibrium in a

population. The term linkage disequilibrium needs to be distinguished from the term

linkage. While linkage is the co-inheritance at two loci observed in families, linkage

disequilibrium is the relationship between alleles at two loci in a population. Linkage

is independent of the allele frequencies but linkage disequilibrium is affected by the

frequencies of alleles in the population.

To describe the concept of linkage disequilibrium, consider for example a putative

disease locus A with k alleles A1, A2, ..., Ak occurring in the population at frequencies

p1, p2, ..., pk and a marker locus B with m alleles B1, B2, ..., Bm with allele frequencies

q1, q2, ..., qm. We can test if the susceptibility allele Ai is associated with marker allele

Bj by determining the probability of their joint occurrence and the product of their

individual occurrence. If the occurrence of allele (Ai) is independent of the occurrence

of allele (Bj), then the frequency of their joint occurrence in a haplotype (denoted by

h0) is equal to the product of their individual allele frequencies. This independence

can be denoted by:

h0i,j = P (AiBj) = P (Ai)P (Bj) = piqj , i = 1, ...k; j = 1, ...,m (2.9)

If equation 2.9 does not hold, then the two alleles, (Ai) and (Bj) from the two

different loci are associated. This case is a deviation from Mendel’s law of independent

assortment (Section 2.2.2). When there is tight linkage of loci in a large, closed,

randomly mating population, allelic associations are maintained from generation to

generation. Take for example the same loci A and B given above with their cor-

responding alleles and population frequencies. Let the recombination fraction between

the two loci be θ and the frequencies of the joint occurrence of alleles (Ai) and (Bj)
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(i.e. the haplotype (AiBj) in the current and next generation be (h0) and (h1),

respectively. For simplicity of notation, the indeces are omitted from (h0) and (h1).

Each haplotype in the next generation is either a recombinant (with probability θ)

or a non-recombinant (with probability 1 - θ) with respect to loci A and B. A non-

recombinant haplotype (AiBj) will have a probability of (h0) while a recombinant

haplotype will have a probability of (piqj). The total probability (h1) that a haplotype

(AiBj) is transmitted to the next generation is :

h1 = h0(1− θ) + piqj(θ) (2.10)

The difference in haplotype frequencies from the current generation to the next

generation is therefore :

h1 − h0 = θ(piqj − h0) (2.11)

It is evident from the above equation that if the change in haplotype frequency

(h1 − h0) is zero, there is no allelic association (i.e. h0 = piqj). It can also be de-

duced that the change in the haplotype frequency is proportional to the recombination

fraction θ. When there is no change in haplotype frequencies from generation to ge-

neration, the considered loci are said to be in linkage equilibrium. Otherwise, they

are in linkage disequilibrium (LD). Another term used to mean linkage disequilibrium

is gametic disequilibrium.

If we denote the coefficient of linkage disequilibrium as δij , it can be defined as:

δij = P (AiBj)− P (Ai)P (Bj) (2.12)

If δij is zero, then the probability of the joint occurrence of Ai and Bj is equal to

the product of their individual probabilities. If δij on the other hand is not equal to

zero, then the marker and the disease locus are not independently occurring and we

say that they are associated. When an association is found, it could mean that the

associated allele is the susceptibility allele itself or it is in linkage disequilibrium with

the susceptibility allele at the disease locus. In the latter case, the disease locus and

the marker locus are very close to each other.

The term linkage disequilibrium may be somehow misleading since it may be taken

to imply that the loci involved are linked. As previously defined, LD and linkage are

two different concepts. Although LD may indicate linkage, LD may not be necessarily
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due to linkage. It can be affected by the presence of two or more subpopulations with

different allele frequencies resulting into population stratification (Devlin et al., 2001a,

2001b). This is further explained in the next section. Among other factors, population

association studies can give a false positive association result when there is population

heterogeneity or stratification (Freedman, et al., 2004). Population stratification also

leads to increased type-1 error and/or decreased power (Laird and Lange, 2006).

Effect of Population Stratification in Association Studies

To show the effect of population stratification in association studies, Devlin et al.

(2001b) illustrated the following example. Let us assume Q is an indicator of mem-

bership in a subpopulation and K = 1, ...,m subpopulations. Let G be the genotype

of locus A which is simply defined as 0 or 1, where 1 indicates the presence of a sus-

ceptibility allele A1 and 0 the absence of it. Let also D define the presence or absence

of the disease (i.e. D=1 if the individual is affected by the disease and D=0 if the

individual is not affected). In a case-control setting, the case-control effect can be

defined by:

Δ = P (G = 1|D = 1)− P (G = 1|D = 0) (2.13)

Under the null hypothesis of no association between the disease status and the

genotype, Δ will only be nonzero if there is confounding effect. Confounding can be

due to unobserved variables such as membership in an ethnic group which creates

spurious correlations between variables. A confounding variable is associated with

both the probable explanatory variable and the outcome variable. To illustrate the

effect of confounding due to population stratification, let us assume under the null

hypothesis that the genotype G and the disease status D are independent, conditional

on the membership to a subpopulation. In addition, let us define the probability of

having the susceptibility allele given the subpopulation K as ωK = P (G = 1|Q =

K). Let us also define νK = P (Q = K|D = 1)− P (Q = K|D = 0). Summing up the

product of ωK and νK in all subpopulations K will give:

∑
K

ωKνK =
∑
K

[P (G = 1|Q = K)][P (Q = K|D = 1)− P (Q = K|D = 0)] (2.14)

Equation 2.14 will actually lead us to the case-control effect Δ across all subpopula-

tions:
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∑
K

ωKνK

=
∑
K

[P (G = 1|Q = K)P (Q = K|D = 1)]− [P (G = 1|Q = K)P (Q = K|D = 0)]

=
∑
K

P (G = 1|D = 1)− P (G = 1|D = 0) (2.15)

The Δ can be positive or negative for any locus of interest even under the null

hypothesis. If there were only two subpopulations and the disease and the genotype

1 is more prevalent in one subpopulation, one can see from Equation 2.14 that the

resulting Δ would be positive. In case-control studies, it is therefore important that

cases and controls come from the same homogeneous source population. If individu-

als come from subpopulations with different allele frequencies, linkage disequilibrium

can be detected even without linkage. Population stratification can also result from

admixture of subpopulations through immigration and non-random mating or mating

according to some social caste, religion or ethnic orientation. When there is popu-

lation stratification or heterogeneity in a population-based study (e.g. case-control

study), false positive result or spurious association can arise. Because of this, family-

based tests of association, which are robust to population stratification have become

a popular approach in detecting genes affecting diseases.

One of the most widely known tests of association in family-based studies is the

Transmission Disequilibrium Test (TDT), introduced by Spielman et al. (1993). The

TDT procedure was initially designed to test for linkage between a genetic marker

and a disease locus when an association had been found between the two. The TDT

is also valid as a test for association when the families considered are all simplex i.e.

consisting of parents and one affected child. The effect detected by the TDT is the

combined presence of linkage and association (Ewens and Spielman, 2005). The TDT

and its extensions will be discussed in detail in the succeeding chapter.
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2.6 Epistasis

The term epistasis generally means interaction between genes, a phenomenon where

the effects of one gene are modified by one or several other genes. Frequently, genes

interact with one another making the nature of genetic inheritance more complicated.

It is an accepted fact that interaction of genetic factors plays an important biological

basis in complex diseases and phenotypic variation (Barton and Keightley, 2002; Flint

and Mott, 2001; Kroymann and Mitchell-Olds, 2005; Lander and Schork, 1994; Lou

et al., 2008). However, in many studies that attempt to determine the genetic basis

of complex traits, epistasis is often ignored (Carlborg and Haley, 2004). Eventhough

the involvement of epistasis in many complex traits is not known, Carlborg and Haley

(2004) argued that it should be routinely explored. Moore (2003) also had a similar

opinion about the importance of epistasis in determining susceptibility to common

human diseases such as essential hypertension. An example of a statistically significant

interaction has been identified by Ritchie et al. (2001) among four SNPs from three

estrogen metabolism genes for sporadic breast cancer. This interaction was detected

in the absence of independent main effects for any of the four SNPs.

The idea that epistasis is important can be traced back to the observation of devia-

tions from Mendel’s law. However, the issues of its definition and measurement hinder

many scientists to routinely consider it in genetic studies. The following presents dif-

ferent definitions of epistasis in the literature.

Biological definition of epistasis

Epistasis in the biological sense can be defined in many ways. Earlier, it has been used

to refer to situations in which a variant of one locus masks or suppresses the effects of

a variant in another locus (Cordell, 2002). This is actually based on Bateson (1909)

who introduced the term epistatic when DNA and genes were not yet discovered.

Bateson used the term epistatic factors to describe factors which prevent other factors

from manifesting their effects in the plant and animal genetic experiments he has

observed. He noted that the phenotypic differences in the coloring in animals and

plants is affected by pigment factors. However, whiteness or absence of colors in them

is not only due to the absence of these pigment factors but it can also be due to the

suppression of the pigment factors caused by an epistatic factor.
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To describe epistasis according to Bateson’s definition, consider two biallelic loci,

A and B, affecting hair color in rabbits. Locus A has alleles A1 and A2 while locus B

has alleles B1 and B2. The possible genotypes and phenotypic outcomes (white, black

or brown hair) are shown in table 2.6. It can be noted that regardless of genotype

at locus A, individuals with any copies of the B1 allele at locus B have brown hair,

i.e., at locus B, allele B1 is dominant to allele B2, effectively masking any effect of

allele B2. If the genotype at locus B is B2B2 an individual with a copy of the A1

allele is observed to have black hair. Therefore, at locus A, allele A1 is dominant to

A2. However, if the genotype at locus B is not B2B2, the effect at locus A cannot

be seen. Individuals with any copies of the B1 allele have brown hair regardless of

genotype at locus A. One can say that the effect at locus A is masked by that of locus

B. Specifically, allele B1 at locus B is epistatic to allele A1 at locus A or in general,

locus B is epistatic to locus A.

Table 2.6: Example of phenotype table for two epistatic loci under Bateson’s definition

Genotype at locus B

B1B1 B1B2 B2B2

Genotype at Locus A

A1A1 Brown Brown Black

A1A2 Brown Brown Black

A2A2 Brown Brown White

Similarly, in physiological genetics which uses physiological and molecular genetic

approaches to facilitate gene identification and to study gene function, epistasis is

also defined based on the phenotypic differences among individuals. Physiological

epistasis occurs when the phenotypic trait differences among individuals with various

genotypes at one gene or locus depend on their genotypes at other genes (Cheverud

and Routman, 1995).

What is meant by biological epistasis is not always exactly the same for all fields. In

a biomolecular perspective, biological epistasis can be defined as the physical interac-

tions among proteins or other molecules that affect the phenotype or trait of interest

(Moore and William, 2005). Therefore, the effect of a gene on a trait is a result of

the physical interaction of its biomolecules with the biomolecules of another gene(s)
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within the regulatory network and biochemical pathways. The interaction can occur

when transcription factors physically interact with each other or when enzymes inter-

act through a metabolic pathway. A popular example of biological epistasis is seen

in sickle cell anemia. It is an inherited blood disorder that affects hemoglobin, the

protein in the red blood cells which helps carry oxygen throughout the body. Sickle

cell anemia is a product of pleiotropic genes (genes affecting multiple phenotypic traits

by coding for a product used by various cells or has a signaling function on different

targets) and epistatic genes (Nagel, 2001). Individuals with sickle cell anemia have

β-globin molecules with a neutral amino acid on the outer surface of the red blood

cells. This neutral amino acid increases physical interaction via intermolecular adhe-

sion which leads to increased deoxyhemoglobin and causes deformed red blood cells

(Moore and William, 2005). It has also been reported that genetic variants in the

haptoglobin gene interact with the S allele of the hemoglobin β-chain gene (Giblett,

1969).

In general, biological epistasis usually refers to a situation where the mechanism

of action of one factor is influenced by the presence or absence of another factor.

Biological epistasis can be assessed using laboratory methods. For example, protein-

protein interaction can be detected using the yeast two-hybrid system which dates as

early as 1987 with the works of Stanley Fields at the State University of New York

at Stony Brook (Bartel and Fields, 1997). This system uses two different proteins,

one acts as a binding domain (the ”bait”) and the other as an activation domain (the

”prey”). The proteins are expressed in two different haploid yeast strains which are

mated to determine if the two proteins interact. Mating of the yeast strains results

in fusion of the two haploid yeasts to form a diploid yeast strain. The interaction can

then be determined by measuring in the diploid strain the activation of a two-hybrid

reporter gene. There are other laboratory strategies that confirm protein-protein

interactions. These strategies have been very successful in model organisms but are

quite complicated in humans due to the fact that there are much more interactions in

humans than other model organisms (Moore and William, 2005). Bork et al. (2004)

estimated roughly 10,000 - 30,000 pairwise interactions among yeast proteins and up

to 200,000 or more protein interactions in humans. However, there are high hopes for

detecting more biological epistasis with the rapid technological advances in laboratory

assays.
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Statistical definition of epistasis

Statistics has been used in many instances to complement results in the biological

and medical fields. In the field of statistics, the term epistacy had earlier been used

by Fisher (1918) to describe deviations from additivity. This implies that variation

of genetic traits in the population is not predictable based only on the individual

actions of the genes. Fisher considered a linear model to determine the contribution

of different loci to a quantitative trait and subdivided the hereditary variance into

additive effects (resulting from average effects of genes), dominance effects (allelic

interaction in a gene) and epistatic effects (interaction between genes). From its

earliest use by Fisher, the term epistasis in statistical genetics typically means that the

effects of different loci are not additive. Falconer (1989) also defined epistatic deviation

as the ”deviation of multilocus genotypic values from the additive combination of their

single-locus components” .

Other ways to describe the mathematical models for epistasis focus on the pene-

trance or genotype values to make it more relevant to real biological situation. To

illustrate the concept, consider again two biallelic loci, A and B, affecting a disease

trait. Locus A has genotypes A1A1, A1A2, and A2A2 while locus B has genotypes

B1B1, B1B2 and B2B2. Alleles A1 and B1 are the susceptibility alleles. A two-locus

disease model on two biallelic loci can be specified by 9 genotypes (see table 2.7)

which may cause different genetic effects. These effects are termed genotype values

by Hallgŕımsdóttir and Yuster (2008). Table 2.7 shows the genotype values gij , where

i, j = 0,1,2 refers to the number of susceptibility alleles at the first and second locus,

respectively. For a dichotomous phenotype, the genotype value can be the penetrance

associated with the genotype, the logarithm of the penetrance or the logarithm of

the odds ratio. In the case of a quantitative trait, the genotype value gij can be the

expected phenotype of an individual with genotype ij.

Suppose that the trait of interest is a dichotomous trait and that a susceptibility

allele is required at both loci to exhibit the trait. This means that one or more copies

of allele A1 and B1 leading to complete penetrance are required. Then, we obtain

the example penetrance table shown in table 2.8 when the effects of the two loci are

considered.

In table 2.8, the effect of allele A1 can only be observed when allele B1 is also

present. Without B1, the effect of A1 is not observable. The effect at the first locus
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Table 2.7: Genotype values in a two-locus disease model

Genotype at 2nd locus

B1B1 B1B2 B2B2

Genotype at 1st Locus

A1A1 g00 g01 g02
A1A2 g10 g11 g12
A2A2 g20 g21 g22

Table 2.8: Example of penetrance table for two epistatic loci

Genotype at 2nd locus

B1B1 B1B2 B2B2

Genotype at 1st Locus

A1A1 1 1 0

A1A2 1 1 0

A2A2 0 0 0

(A) appeared to be ’masked’ by the effect at the second locus (B). Locus B is said

to be epistatic to locus A because when the genotype is B2B2 at locus B, the effect

of the alleles at locus A cannot be seen. It can also be said that locus A is epistatic

to locus B because when the genotype at locus A is A2A2, the effect of the alleles

at locus B is not observable. This situation is not precisely similar to the original

concept of Bateson that if a factor B is epistatic to factor a A, then factor A cannot

be expected to also be epistatic to factor B. This is evident by the lack of symmetry

in table 2.6.

The absence of epistasis has been often represented by a heterogeneity model

wherein the two loci are independent causes of the disease and an individual be-

comes affected through having a predisposing genotype at either of the loci (Risch,

1990). This is illustrated in table 2.9. The biologically motivated definition, however,

has some problems. If we consider a recessive disease model (i.e. two copies of allele

B1 are required to cause the disease) then having two copies of allele A1 at locus A

is enough to ’mask’ the effect of B1. With genotype A1A1 at locus A, one cannot

observe the effect at locus B. Locus B acts differently depending on the genotype at

locus A. This makes the heterogeneity model a case of interaction.

The confusing definitions of epistasis make it difficult to analyze it in practice. In

statistical testing, we can only take into account mathematical models such as those
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Table 2.9: Example of penetrance table for two loci in a heterogeneity model

Genotype at 2nd locus

B1B1 B1B2 B2B2

Genotype at 1st Locus

A1A1 1 0 0

A1A2 1 0 0

A2A2 1 1 1

described by Fisher and the likes. In modelling quantitative traits, the phenotypic

value Y is often decomposed into additive (a1 and a2) and dominance (d1 and d2) main

effects at the first and second locus respectively, and four epistatic effects: additive x

additive (iaa), additive x dominance (iad), dominance x additive (ida), and dominance

x dominance (idd). The general genetic model for a quantitative trait involving two

loci is given by the following linear model notation of Cordell (2002):

Y = μ+ a1w1 + d1z1 + a2w2 + d2z2

+iaaw1w2 + iadw1z2 + idaz1w2 + iddz1z2 (2.16)

where μ is the population mean and wi and zi are dummy variables related to the

genotype at locus i = 1,2. We can set w1 = 1 and z1 = -0.5 for an individual with

genotype A1A1, w1 = 0 and z1 = 0.5 for genotype A1A2 and w1 = -1 and z1 = -0.5

for genotype A2A2. The dummy variables w2 and z2 for the second locus are defined

similarly. Without epistasis, the interaction coefficients iaa, iad, ida, idd become zero,

reducing equation 2.16 to a simple additive model or non-epistatic model:

Y = μ+ (a1w1 + d1z1) + (a2w2 + d2z2) (2.17)

What has been described so far are the classic methods used in detecting epistasis.

In the past years, other statistical methods have been proposed by several authors. In

the context of high dimensional data, there are combinatorial partitioning and data-

mining methods (Nelson et al., 2001; Ritchie et al., 2001; Cook et al., 2004) which

may be applicable in many situations (e.g. presence of covariates). However, they

usually require intensive computations and in addition to the lack of clear biological

interpretation, the power to detect epistasis in these methods may depend on the

structure of the data (Zhao et al., 2006). With these limitations in mind, Zhao and
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colleagues proposed a test for epistasis that uses the easily-computed linkage disequi-

librium in the cases. They examined how the interaction of two loci produces linkage

disequilibrium in disease-affected individuals and used linkage disequilibrium to mea-

sure gene-gene interaction between two unlinked loci. They showed mathematically

that their new definition of gene-gene interaction of two loci is similar to the linkage

disequilibrium of the said loci. Their method is equivalent to testing for departure

from additivity of the log penetrance values. The approach claims to have more power

than the traditional logistic regression under the two-locus disease model. However,

like all methods that test for departure from additivity on a particular scale, they

provide no information on the type of interaction present if the additive model is

rejected. The issue of scale is a long time challenge in detecting epistasis statistically.

With Fisher’s definition of epistasis as deviation from additivity, the choice of scale

becomes important because one can actually remove or induce epistasis by simply

changing the scale. It has been emphasized in the summary paper of An et al. (2009)

that epistasis is a relative concept that should be carefully interpreted with respect

to the particular scale of reference.

The traditional four types of epistatic effects described by Cockerham (1954) were

supplemented by Hallgŕımsdóttir and Yuster (2008) who described a complete clas-

sification of epistatic two-locus models. Following the works of Li and Reich (2000)

who enumerated two-locus disease models for a dichotomous trait, the authors pro-

vided a classification that considers continuous quantitative traits. Their approach

is geometric, showing that there are 387 distinct types of epistatic two-locus models.

The comprehensive list of epistatic two-locus model provided by Hallgŕımsdóttir and

Yuster (2008) can aid in classifying the type of epistasis. However, its role in deter-

mining genetic variability in populations is not addressed in the study. In this thesis,

only the traditional epistatic effects are considered.

Specific methods that are applicable to characterize epistasis for quantitative traits

in family-based designs are not well developed (Li et al., 2007). The significance of

studying epistasis, especially in complex diseases, prompted many authors to try dif-

ferent methods of statistical analysis. There are new methods that use interaction

testing framework in two stages (Millstein et al. 2005, 2006). Other authors tried a

unified model to determine both functional (also known as physiological) and statisti-

cal epistasis (Alvarez-Castro and Carlborg, 2007). In the Genetic Analysis Workshop

16, there are also several other methods proposed to detect epistasis, but the lack of
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consistency of results indicates that the challenge is still on in solving this analysis

problem. Despite the many statistical methods available in the literature, there are

still some gaps in knowledge that require further research. The next chapter presents

some common statistical methods used in family-based genetic studies, focusing on the

transmission disequilibrium test (TDT) and TDT-like tests. Most of these methods

also consider testing for gene-gene interaction.
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In genetic studies, family-based designs offer a unique advantage over population-

based designs in terms of its robustness against population admixture and stratifica-

tion (Laird and Lange, 2006; Lewinger and Bull, 2006; Thomson et al., 1989). This

chapter first introduces the original version of Spielman and colleagues’ statistical test

for a family-based design — the Transmission Disequilibrium Test (TDT). Some of

the commonly used extensions and modifications of the test are also presented in this

chapter.

3.1 History and description of the TDT

The TDT was introduced by Spielman, McGinnis and Ewens in 1993 in their investi-

gation of genes that contribute to the susceptibility for type 1 diabetes mellitus (also

known as ’IDDM’ or insulin dependent diabetes mellitus). At that time, there were

already studies showing that variation in the HLA region of chromosome 6 influences

susceptibility to IDDM. However, there were discrepancies in the results between as-

sociation and linkage studies. This became one of the motivations for the authors

to devise a method that would provide a valid test for linkage in the presence of

association or vice-versa (Ewens and Spielman, 2005).

The test evaluates the frequency of transmission of alleles from heterozygous pa-

rents to the affected offspring. In its original form, the TDT uses genotype data

from a sample of N random individuals from the population of affected individuals

and their parents. The main advantage of the TDT is its robustness to population

admixture as shown by several authors, e.g. McKeigue (1997) and Li et al. (2008).

By using the nontransmitted marker alleles of the parents as the ”control” alleles,

the ”within-parental” matching overcomes population stratification in the TDT. For

a dichotomous trait and a biallelic locus, the test is actually equal to the conventional

McNemar test (McNemar, 1947). For simplicity of illustration, let us consider only

41



Chapter 3. Transmission Disequilibrium Test (TDT)

families with one child. Let us assume that we are interested in a disease locus A.

To test for this disease locus, we use a known biallelic marker locus B, with alleles

B1 and B2. We genotype the families with regard to the marker locus B. After

laboratory testing, some individuals may be homozygous at the said marker (i.e.

B1B1 or B2B2), while others may be heterozygous (i.e. B1B2). Using the genotype

results from the laboratory, we can now determine which of the parental alleles have

been transmitted to the child and which are not. Under the null hypothesis of no

linkage, the transmissions from two parents of an affected child are independent. A

data example of a single family is shown in figure 3.1.

Figure 3.1: Transmitted and nontransmitted alleles in a family

In the given example, the heterozygous father transmits his B1 allele and the he-

terozygous mother also transmits her B1 allele. Therefore, the child’s genotype at

the marker B is B1B1. If we have a sample of N single-child families, there will be

a total of 4N parental alleles. Half of these come from the fathers and the other

half from the mothers. From the available 4N alleles, 2N are transmitted and 2N

are not transmitted. Table 3.1 shows the set-up of the data on the marker alleles of

the families. Each parent has an unordered genotype B1B1, B1B2 or B2B2 at the
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marker, and is counted in one of the four cells in the table. For a homozygous parent,

transmitted and nontransmitted alleles are identical. These parents are included as

counts in cells N11 or N22. A heterozygous parent with genotype B1B2 is counted

in cell N21 if he or she transmits allele B2 and is counted in cell N12 if he or she

transmits allele B1. This gives a total count of N11+N12+N21+N22 = 2N parents.

Table 3.1: TDT table of marker alleles among 2N parents of N affected children

Nontransmitted Allele

B1 B2 Total

Transmitted Allele

B1 N11 N12 N11 +N12

B2 N21 N22 N21 +N22

Total N11 +N21 N12 +N22 2N

Example data and counts of parents corresponding to the cells in table 3.1 are

presented in table 3.2. For a two-allele locus, there are six possible parental mating

types or genotype combinations of the parents: B1B1 x B1B1, B1B1 x B1B2, B1B1

x B2B2, B1B2 x B1B2, B1B2 x B2B2 and B2B2 x B2B2. In the first row of table

3.2, both homozygous parents transmit one of their B1 alleles to the child and do not

transmit their other B1. Therefore, the parents contribute two counts for the cell N11

of the TDT table 3.1. If the father, mother and child are all heterozygous (B1B2), then

the appropriate cell cannot be resolved for the parents individually unless parental

origin of the alleles can be established. However, such a trio does contribute a count

of one in each cell N12 and N21. Hence, the father and mother can be arbitrarily

assigned to either cell (see 4th row of table 3.2).

3.2 Derivation of the test statistic

The counts of transmitted and nontransmitted alleles depend both on the frequencies

of the marker alleles B1 and B2 in the population and the relationship between the

disease locus and the marker locus. If the marker locus has nothing to do with the

disease, then we would expect that heterozygous B1B2 parents will transmit a B1
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Table 3.2: Parental mating types and scoring of parents for the TDT table

Father Mother Child N11 N12 N21 N22

B1B1 B1B1 B1B1 2 0 0 0

B1B1 B1B2 B1B1 1 1 0 0

B1B1 B2B2 B1B2 1 0 0 1

B1B2 B1B2 B1B2 0 1 1 0

B1B2 B2B2 B1B2 0 1 0 1

B2B2 B2B2 B2B2 0 0 0 2

allele or B2 allele with equal probability to an affected child. Therefore, the expected

number of entries in the off-diagonal cells N12 and N21 of table 3.1 will be equal.

In constructing the test statistic, Spielman and colleagues used the probabilities

derived by Ott (1989) for the cells in table 3.1 as a function of genetic model para-

meters. The linkage disequilibrium (δ) and the recombination fraction (θ) between the

genetic marker and the disease loci were used in the calculation of probabilities. To

understand the concept, let us consider a biallelic marker locus and N families with

a single affected child. The total number of transmissions to the children in these

families is 2N and under the null hypothesis of no linkage, all such transmissions

are independent including those from the two parents of the same child. Suppose

that our disease locus A has alleles A1 (the susceptibility allele) and A2 (the normal

allele) with population frequencies p1 and (1 − p1) respectively. The genetic marker

B that we used for laboratory testing is as previously defined with alleles B1 and B2

with population frequencies q1 and (1− q1). The coefficient of linkage disequilibrium

between A1 and B1 is δ= P (A1B1) − p1q1. Table 3.3 shows the joint probabilites

of transmitted and nontransmitted alleles of the parents from the derivation of Ott

(1989).

The TDT was originally designed to test for the null hypothesis of no linkage

(θ = 1
2). However, it is also a valid test when one wants to test for the association of

a disease with a susceptibility locus. It means testing not only for the null hypothesis

H0 : θ = 1
2 (no linkage), but also for H0 : δ = 0 (no association). Relating tables 3.1

to 3.3, the data values that contain both θ and δ are only the cells N12 and N21. This

implies that only data from heterozygous B1B2 parents are useful for the test statis-

tic. Table 3.3 also shows that under the null hypothesis of (θ = 1
2), the expectations

of N12 and N21 are equal. Thus the contributions from two heterozygous parents are

independent when θ = 1
2 . This knowledge was used to derive the test statistic. The
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Table 3.3: Probabilities of transmitted and nontransmitted marker alleles among 2N

Parents of affected children

Nontransmitted Allele
B1 B2 Total

Trans-
mitted
Allele

B1 q21 + q1δ/p1 q1(1− q1) + (1− θ − q1)δ/p1 q1 + [(1− θ)δ/p1]
B2 q1(1− q1) + (θ − q1)δ/p1 (1− q1)

2 − (1− q1)δ/p1 1− q1 − [(1− θ)δ/p1]

Total q1 + (θδ/p1) 1− q1 − (θδ/p1) 1

final form of the statistic which was termed ”transmission/disequilibrium” or ”TDT”

is:

χ2
tdt = (N12 −N21)

2/(N12 +N21) (3.1)

The test statistic which is asymptotically chi-square distributed with one degree of

freedom is of the same form as the McNemar test (McNemar, 1947).

The TDT does not assume any mode of inheritance of the disease or trait of interest.

It is applicable whatever the population stratification may be. The stratification

does not affect the test because the transmitted and untransmitted alleles from each

parent are matched with respect to the population of origin. As a test of association,

the original TDT is valid provided that all families are simplex (i.e. with only one

affected child). In the case of families with multiple affected children, using more than

one affected child in the test will create a problem because as a test of association

it assumes independent observations for the data, and data sampled from related

affected individuals are not usually independent. As a test of linkage, the advantage

of the TDT is that unlike the conventional tests for linkage, it does not require data

either on multiple affected family members or on unaffected sibs. However, since it

depends on both linkage and linkage disequilibrium (δ > 0), it is useful only as a test

for linkage when there is disequilibrium between the loci. Or it means that, the TDT

is a test of linkage with power only if the disease and marker loci are associated. In

general, conclusions from a TDT analysis apply to disease association studies where

genetic markers are closely linked to candidate genes.
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3.3 Extensions and modifications of the test

One of the earlier extensions of the TDT is its generalization to more than two marker

alleles (Bickeböller and Clerget-Darpoux, 1995). In the previous sections, the given

examples focus on marker B having only two alleles B1 and B2. Often, there can be

more than two alleles at a marker locus such as shown in table 3.4. Schaid (1996)

illustrated a general framework for the development and computation of score statis-

tics that can be used for testing both linkage and linkage disequilibrium when there

are multiple marker alleles. Among others, he had introduced the generalized TDT

(or GTDT) test statistic.

Table 3.4: Combinations of marker alleles B1, B2,...,Bm among parents of N affected

children

Nontransmitted Allele

B1 B2 ... Bm Total

Transmitted Allele

B1 N11 N11 ... N1m N1.

B2 N21 N22 ... N2m N2.

...

Bm Nm1 Nm2 ... Nmm Nm.

Total N.1 N.2 ... N.m 2N

Another variation of the TDT is the ”sib TDT” (or S-TDT). The method was

proposed by Spielman and Ewens (1998) to overcome the problem of missing parental

data. They used marker data from affected and unaffected children, thus allowing the

application of TDT to sibship data without parental data. The S-TDT determines

whether the genetic marker allele frequencies among the affected sibs differ signi-

ficantly from the frequencies among their unaffected sibs while conditioning on the

families. In implementing the test, the authors adopted a within-family Monte Carlo

permutation procedure because the chi-square test is not valid in the non-independent

observations on sibs. They have further recommended a procedure to combine the

TDT and the S-TDT into an overall test.

Knapp (1999) introduced an RC-TDT (Reconstruction-Combined Transmission

Disequilibrium Test) which employs parental-genotype reconstruction and corrects
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for the biases resulting from the reconstruction of parental genotypes. The bias in

reconstructing parental genotypes was shown by Curtis (1997) to inflate the type I

error rate of the TDT. There are other extensions of the TDT such as the TDT-AE

(allow for error in genotyping) which was proposed by Gordon et al. (2001). Other

than the above-mentioned, there is also the unbiased TDT for multilocus haplotypes

(Dudbridge et al., 2000), TDT with covariates (Rice et al., 1995) and many more.

This dissertation focuses on TDTs applicable for quantitative traits (QTs). Com-

monly used methods for quantitative traits are described in the following section.

3.4 Quantitative Transmission Disequilibrium Test

(QTDT)

The original TDT and its earlier modifications have been applied to dichotomous

traits. However, quantitative traits (e.g. blood sugar level, body-mass-index, blood

pressure, radiation sensitivity, etc.) are also common measures and often more infor-

mative than categorized characteristics. Several authors have explored the TDT in

the analysis of genetic factors affecting quantitative traits. There are two types of ap-

proaches in analyzing genetic factors affecting quantitative traits, namely, prospective

or retrospective approaches. Some methods have only been developed for the one-locus

model. To adopt previous notations, the quantitative trait will be represented by Y.

For the the genotypes of the loci, assuming that they are biallelic, A1A1, A1A2 and

A2A2 are assigned as the possible genotypes of locus A while B1B1, B1B2 and B2B2

are the genotypes of locus B. The alleles A1 and B1 are the susceptibility alleles.

3.4.1 Prospective QTDTs

Usually, the statistical approach in QTDT is using a prospective model. This in-

volves modelling the quantitative phenotype as a function of the genotypes. Selected

methods of this type of approach are described below.
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TDTQ5 (Allison, 1997)

Some of the early TDT methods for quantitative traits were proposed by Allison

(1997). He developed several tests taking as units of observation the parent-child

trios. Among the five tests he proposed, the TDTQ5 is the one that is reasonably

powerful regardless of the underlying genetic model.

Let us consider a random variable Y that represents the quantitative trait. The

TDTQ5 uses data of family trios with at least one heterozygous parent. In addition,

only those trios in which Y > ZU (the upper cutoff on the quantitative phenotype)

or Y < ZL (the lower cutoff) are selected, where ZU ≥ ZL. This is because the

method is based on extreme sampling from both tails of the offspring phenotypic

distribution. Setting ZU = ZL reduces this to the case of random sampling. In a

single-locus model, the number of A1 alleles (0, 1, or 2) that the offspring have is

signified by X. The event of a heterozygous parent transmitting the A1 susceptibility

allele (the allele associated with higher values of the trait) is denoted by T = 1, and

the absence of transmission as T = 0. The null hypothesis has two components:

μT = P (T = 1) = 1/2 and/or E(Y |T = O)=E(Y |T = 1). The first is a test of no

linkage. It tests if the recombination fraction between the marker and disease locus

is 1/2. The second component tests if μA1A1
= μA1A2

= μA2A2
. Under the alternative

hypothesis, the recombination fraction is < 1/2 and the three genotypic means at the

disease locus are not all equal.

The first step in the analysis is to regress Y on the dummy codes for the three

parental mating types with at least one heterozygote parent: (1) A1A2 x A1A1 (or

A1A1 x A1A2); (2) A1A2 x A1A2; or (3) A1A2 x A2A2 (or A2A2 x A1A2) to obtain the

R2 for the regression which is termed ”R2
1”. By conditioning on parental mating type,

confounding due to admixture is eliminated. Additionally, the number of susceptibility

alleles, X and X2, are added to the model as predictor variables, and the R2 for this

”full” regression is obtained which is termed ”R2
2”. The R

2s are used to compute the

F-ratios in the usual way to test for the joint additive and dominance effects of the

locus.

The method TDTQ5 can accommodate families with more than one child. However,

it is complicated to extend the method in this way (Zhu and Elston, 2001). In addition,

it assumes that the residual distribution is normally distributed or that the sample size

is large enough to be able to rely on the Central Limit Theorem. In some cases, the
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A Unified Approach to Adjusting Association Test for Population Admixture

(Rabinowitz and Laird, 2000)

Rabinowitz and Laird (2000) developed an approach which is not only applicable to

quantitative traits but to other phenotypic traits as well. The method was probably

referred to as a unified approach because it can accommodate multiple allelic markers,

all pedigree structures, covariates and all patterns of missing marker allele informa-

tion. The approach is also valid regardless of the type of underlying genetic model,

sampling strategy and population admixture. The approach is based on conditioning

on sufficient statistics for the null hypothesis which is described later. For a set of

models, the conditional distribution given the sufficient statistics is the same for all

models in the set. Thus, the p-values computed conditionally on the sufficient statis-

tics for the models in the null hypothesis will lead to the same result of rejecting the

null hypothesis regardless of which model is true. The authors further justified the

statement by saying that if two different realizations of the marker alleles and observed

traits, Y and Y ′ have the same value of the observed minimal sufficient statistic, then

for any value of the full minimal sufficient statistic, x, either the conditional proba-

bilities of Y and Y ′ given x, P (Y |x) and P (Y ′|x), are both equal to zero, or the ratio

P (Y |x)/P (Y ′|x) is invariant to the choice of x.

In the proposed approach, the p-values are computed by comparing the test statistic

to its conditional distribution given the minimal sufficient statistic under the null hy-

pothesis for population admixture, the sampling plan and the genetic model. Through

conditioning on a sufficient statistic, the approach results in correct type I error rates

regardless of the patterns of population admixture, the sampling plan, and the genetic

model. In using the method, it is assumed that phenotypic traits and genotyping in-

formation are available for some members of the family pedigrees. It is also assumed

that a test statistic that is sensitive to association between traits and marker alleles is

defined. The test statistic can be as simple as counting a particular marker allele or a

score statistic from a joint likelihood for quantitative traits. No assumption is made

on the ascertainment of study subjects except for the notion that they should have

been included in the study without considering their marker alleles. The application

of the approach differs in two settings. The first setting is in using association me-

thods to search for evidence of linkage. The null hypothesis here is that the marker is
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not linked to any trait locus. In the second setting, linkage has been established in a

region and association methods are being used for more precise gene mapping. In this

case, the null hypothesis is that there is independence between alleles of the marker

and the alleles of any trait locus that is linked to the marker. In each setting, the

full minimal sufficient statistic differs. In the case of testing for linkage, the observed

traits in all pedigree members and the marker alleles in the founders (member of the

pedigree without parental information) are necessary. On the other hand, in test-

ing for association in the presence of linkage established by classical linkage analysis,

the full minimal sufficient statistic is the observed traits, the marker alleles in the

founders and the identity-by-descent (IBD) relationships. The IBD relationships are

the patterns of allele sharing due to descent. When two alleles at a certain locus are

said to be identical by descent, it means that the alleles are identical copies of the

same allele in some earlier generation. The difficulty in this type of method is that

the determination of the IBD status may not be possible in some genetic markers and

candidate genes (Waldman et al., 1999).

Family-Based Test of Association and Linkage (Lunetta et al., 2000)

From other previous extensions and modifications of the TDT, Lunetta and colleagues

constructed a score statistic using likelihoods for the distribution of the phenotype,

given the genotype. They evaluated the distribution of the test statistic by using

the appropriate permutation distributions for the offspring allele values such as those

described in the previous section by Rabinowitz and Laird (2000). The score is com-

puted based on the offspring genotypes, conditional on parental genotypes and trait

values for offspring and parents. The method extends the TDT to quantitative phe-

notypes and to multiple genes or environmental factors allowing also for interactions.

To illustrate the method, assume that there are N independent families indexed by i,

each having ni offspring indexed by j=1,...ni. The phenotype of the j th offspring in

the ith family is denoted by Yij and μij=E(Yij). Consider a biallelic marker whose

genotype is coded in the variable Xij . Given the susceptibility allele A1, for the

additive model, Xij counts the number of A1 alleles in the ij th individual. In a re-

cessive model, Xij=1 if the ij th individual has genotype A1A1 and is 0 otherwise.

Using a generalized linear model, the method assumes a link function Lij , which is a
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Lij = β0 + βXXij (3.2)

For dichotomous phenotypes (e.g. disease vs. no disease), the natural link function

is the logit:

Lij = logit(μij) = log[μij/(1− μij)] = β0 + βXXij (3.3)

where μij = E(Yij), the disease prevalence.

For quantitative traits, the natural link is the identity, i.e. Lij = μij , so that the

association model is the linear regression model Lij = μij = β0 + βXXij .

To obtain the score statistic, the prospective likelihood of phenotype Yij condition-

ing on the genotype Xij is computed. The siblings are treated as independent, given

the genotype. Then the adjustment for admixture is done by computing the mean

and the variance of the score statistic using the distribution of genotype in offspring,

conditional on parental genotypes and on offspring phenotypes. The log likelihood for

the model is written as:

log L(β0, βX) =
∑
ij

[YijLij − a(Lij)] (3.4)

where a(Lij) is a function of Lij with ∂a(Lij)/∂Lij = μij when Lij is the canonical

link function. To test the null hypothesis of no association (H0 : βX = 0), the first

derivative of the log likelihood with respect to βX is computed: (∂ logL)/∂βX =∑
ij Xij(Yij − μij). Then βX is set to 0 in the resulting equation yielding the score

statistic S =
∑

ij Xij(Yij − μ), where under the null hypothesis, μ is constant for all

subjects. The score statistic depends on the nuisance parameter μ which is not a

function of the genotype, so that misspecification of μ will not bias the test. However,

a good choice of μ can improve the test efficiency. The distribution of the test statistic

is evaluated using permutation distributions for the offspring allele values based on

the algorithm of Kaplan et al. (1997) for nuclear families (i.e. consisting of parents

and children) and on the algorithm of Rabinowitz and Laird (2000) in the case of

missing parental genotype. The test is unbiased even when the associated model

or phenotype distribution is misspecified. It is also unbiased even when there is

population admixture because the distribution of the test statistic is computed under

the correct conditional distribution of the transmitted alleles. The method can be
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extended to include covariates and interactions. The covariates include environmental

exposures and also genotype at a gene known to affect the trait, provided that the

gene is not linked to the one being tested. It is also assumed that the covariates are

not affected by any gene linked to the tested locus. The incorporation of covariates

in the association model is not really necessary. However, including covariates in

the analysis may increase efficiency if the covariates are strongly predictive of the

phenotype. The extension of the association model considering a covariate Eij and

interaction between the locus and the covariate can be written as:

Lij = β0 + βXXij + βEEij + βXEXijEij (3.5)

To test for gene-environment interaction, we normally set βXE = 0. However, the

reference distribution of the test statistic under H0 is always computed under the

assumption of no linkage and no linkage disequilibrium which means that βX is also

0. Therefore the testable null hypothesis is H0 : βX = βXE = 0 and the test statistics

obtained by differentiating the log likelihood with respect to the β parameters are

S1 =
∑

ij Xij(Yij − μij) and S2 =
∑

ij XijEij(Yij − μij), where under under the null

hypothesis, μij is given as the antilink of equation 3.2. The 2-df test is insensitive to

the way the covariate is coded. However, rejection of the null hypothesis of no linkage

and no linkage disequilibrium may not imply interaction. If the test has enough power,

the test should reject the null hypothesis even if there is no interaction, as long as a

main effect is detected.

For the test of epistasis, equation 3.5 can be used if the second locus is not linked

to the first locus being tested. The null hypothesis in this case is H0 : βX = βE =

βXE = 0 since the reference distribution of the test statistic under H0 is computed

under the assumption of no linkage and no linkage disequilibrium for either locus. The

statistic is S3 =
∑

ij Eij(Yij − μij) where μij = μ is a constant given by the antilink

of Lij = β0.

QTDT of Abecasis et al. (2000)

Several authors worked on a revised regression model. Abecasis et al. (2000) for

instance, extended the method of Fulker et al. (1999) which partitioned the association

effect into two variables quantifying between- and within-family information. The

extended method can accommodate any number of offspring, with or without parental
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genotypes. The test statistic is calculated using the likelihood ratio test assuming a

normal distribution for the trait. An empirical p-value based on the permutation

of patterns of allelic transmission is computed to protect against possible deviations

from normality or selection on the trait.

Consider a biallelic marker locus B with alleles B1 and B2. Let the frequencies of

the alleles be denoted by q1 and q2 = 1− q1, respectively. The additive genetic value

is denoted by a. When the marker locus is in linkage disequilibrium with the disease

locus or is the disease locus itself, a �= 0 . In the absence of linkage disequilibrium,

a = 0. Given a set of i = 1, ..., N nuclear families, each with ni children, the total

number of offsprings is
∑

i ni. We define the marker phenotype Xij as equal to the

number of B1 alleles at the marker locus and the genotype score Gij = Xij − 1 for

the jth offspring (j = 1, ..., ni) in the ith family. If both parental genotypes are

available, the genotype scores for the father and mother can be denoted as Gif and

Gim, respectively. Assuming that the expected mean of the residual resemblance and

the unique environmental effects are zero, the model for the quantitative phenotypic

trait Y can be written as:

E(Yij) = E(μ+Gija) = μ+ (q1 − q2)a (3.6)

where μ is the overall mean. For the offspring in each family, the ni x ni variance-

covariance matrix, Ωi has elements:

Ωijk =

{
σ2a + σ2s + σ2e if j = k

πijkσ
2
a + σ2s if j �= k

(3.7)

where:
πijk denotes the proportion of alleles shared identical-by-descent between

siblings j and k in family i

σ2a the additive genetic variance of the major gene

σ2s the residual sibling resemblance

σ2e the residual environmental variance component

It should be noted that the above expectations do not include dominance variance.

In this variance-components approach, all the information in a set of related indivi-

duals is used to construct a test of association by simultaneous modelling of the means
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Ŷij = μ+ βaGij (3.8)

and for estimates of all the variances in Ωi, the likelihood of the data for the complete

set of parameters, ϑ = [μ, βa, σ
2
a, σ

2
s , σ

2
e ] is

L =
∏
i

(2π)−nj/2|Ω̂ij |−1/2e−1/2[(Yi−Ŷi)
′Ω̂−1

i (Yi−Ŷi)] (3.9)

The maximum likelihood test of association can be done by maximizing the likelihood

of equation 3.9 under the null and alternative hypothesis. The null-hypothesis likeli-

hood, L0, is computed by setting the regression coefficient of the additive genetic effect

βa = 0 while the alternative-hypothesis likelihood L1 is computed by maximizing the

same equation with no constraints on the parameters. Then the likelihood ratio test

is given by 2[ln(L1)− ln(L0)] which is χ2 distributed with df equal to the difference

in number of parameters estimated. In the absence of population admixture, this is

a valid test of linkage disequilibrium because E(βa) = a, the additive genetic effect.

To account for population admixture, Abecasis and colleagues adopted the method

of Fulker et al. (1999) of decomposing the genotype score Gij into orthogonal between-

family (b) and within-family (w) components. The b component is sensitive to popu-

lation stratification but the w component is significant only in the presence of linkage

disequilibrium. Thus the means model in equation 3.8 can be rewritten as:

Ŷij = μ+ βbbi + βwwij (3.10)

where bi and wij are the orthogonal between- and within- family components of Gij .

To accommodate any number of offspring with or without parental genotypes, bi and

wij are defined as follows:

bi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
i

Gij

ni if parental genotypes are unknown

Gif +Gim
2 if parental genotypes are available

(3.11)
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wij = Gij − bi (3.12)

Thus bi is the expectation of each Gij conditional on family data and wij is the

deviation from this expectation for offspring j. An offspring who inherits more copies

of the susceptibility allele than expected would have positive values of wij , whereas

excess inheritance of the other allele would have negative values of wij . The regression

coefficient, βw is a direct estimate of the additive genetic value a, while βb accounts

for all other ”spurious” association between the genotype score and the quantitative

phenotype.

QTDTM of Gauderman (2003)

The earlier QTDT methods focused on testing genetic main effects and most of these

methods can be extended to accommodate gene-environment and gene-gene interac-

tions. In 2003, Gauderman introduced the Quantitative Transmission Disequilibrium

Test with Mating Type Indicator (QTDTM) for the analysis of candidate genes us-

ing parent-offspring trios. The focus of the method was not only on tests of genetic

main effects, but also on gene-environment interaction and epistasis. To illustrate the

QTDTM, let us consider an observed response variable Yi which represents the quan-

titative trait and the variable Gi that quantifies the genotype at a candidate locus

of N individual study subjects. The study subjects together with their parents are

assumed to have been randomly selected from the population. The candidate locus is

assumed to be biallelic with alleles denoted as A1 and A2. The susceptibility allele A1

is further assumed to have a population frequency p1 and genotypes formed by the

alleles affect some biological process resulting to the quantitative trait Yi. To deter-

mine whether variation in Gi is associated with variation in Yi, the QTDTM model

is constructed based on a linear regression model with multiple parental mating type

specific intercepts (denoted as αM ). The parental mating type which is the combi-

nation of the genotype of the mother and the father is treated as a fixed effect. The

basic QTDTM model for a single locus can be written as:

Yi = αM + βGGi + εi (3.13)
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where:
Yi the observed random response or the quantitative phenotype

of the ith study subject; i = 1,...,N

αM the parental mating type specific intercept; M = 1,...,6

Gi a covariate that quantifies the genotype of the study subject

βG regression coefficient for the covariate Gi

εi residual, ∼ N(0, σ2)

Note that unlike the method of Allison (1997), there are 6 parental mating types

in the QTDTM because even those mating types without a heterozygote parent are

considered. The covariate Gi is assigned a value 0.0 if the genotype of the study

subject (the offspring) is A2A2 (the wildtype or reference genotype). If the genotype

is A1A1, it is assigned a value of 1.0. For the heterozygous genotype (i.e., A1A2), Gi

takes on a value of 0.0, 0.5 or 1.0 if the assumed genetic model is recessive, additive

or dominant, respectively. There are scoring methods that only count the number of

susceptibility alleles while others (e.g. Abecasis et al., 2000) also consider parental

genotype information and assign -1, 0 and 1 as possible scores. The genotype scoring

adopted by Gauderman allows for assumption about the possible genetic model or

mode of inheritance of the trait being investigated.

The null hypothesis of no association between Yi and Gi (i.e., H0 : βG = 0) is tested

using a likelihood ratio test (LRT). The LRT of βG is based on the model in equation

3.13 applied to family trios from all six mating types. It has the form 2(L1 − L0),

where L0 and L1 are the values of the maximized log-likelihood under the null and

alternative hypotheses, respectively. The test statistic is chi-square distributed with

1 degree of freedom under a dominant, recessive or additive genetic model.

The QTDTM can be extended to accommodate epistasis or gene-gene interaction.

Let us denote the alleles in the second locus as B1 and B2. Considering only main

gene effects and epistasis, the model can be written as:

Yi = αM + βGGi + βHHi + βGHGiHi + εi (3.14)

where:
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Yi the observed random response or quantitative phenotype

of the ith study subject; i = 1,...,N

αM the parental mating type specific intercept; M = 1,...,36

Gi covariate that quantifies the genotype of the subject at locus 1

Hi covariate that quantifies the genotype of the subject at locus 2

βG, βH , βGH regression coefficients

εi residual, ∼ N(0, σ2)

For two loci that are both biallelic, there are 36 possible parental mating types.

The covariates Gi and Hi are coded similarly as the Gi covariate in equation

3.13. A likelihood ratio test is used to test for gene-gene interaction, comparing

L1 = max log[L(αM , βG, βH , βGH , σ)] to L0 = max log[L(αM , βG, βH , βGH = 0, σ)].

If one would consider gene-environment interaction, then the Hi representing the

other locus can just be replaced with a covariate for the environmental effect.

Gauderman compared the models proposed by Lunetta et al. (2000), Fulker et al.

(1999), Abecasis et al. (2000), and Liu et al. (2002) with the standard linear regression

and his QTDTM model in a simulated population. In his paper, Gauderman referred

to the method of Fulker et al. and Abecasis et al. as HQTDT (Hierarchical QTDT),

the method of Liu et al. as RQTDT (Retrospective QTDT; see the next section)

and Lunetta’s method as the regular QTDT. Only one population was assumed in

the simulation to simplify the comparison and avoid bias due to stratification which

is known to confound the effect of the standard linear regression model. The result

showed that in determining genetic main effects, the simple standard linear regression

model performed the best. This was of course expected since no racial or ethnic stra-

tification was included in the data. However, Gauderman (2003) was also able to show

that the standard linear model can lead to substantial bias in genetic effect estimates

and high type I error rates in the presence of ethnic confounding. The HQTDT and

the QTDTM performed similarly or slightly better than the other QTDT methods.

In terms of testing for gene-environment interaction and also gene-gene interaction,

the QTDTM was more efficient than the previous QTDT approaches. The use of the

covariate for the locus main effect which captures both between- and within-mating

information contribute to the estimation of the interaction effects. However, one

drawback of the QTDTM is when there is only one or very few individuals belonging

to a specific mating type. The author specified that at least two trios of a given

mating type are needed to contribute to the test for gene-gene interaction. Having
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only one family trio for a mating type will not contribute any information to the test

for epistasis and the corresponding intercept for the specific mating type with only

one family trio will explain all the trait variation for the offspring in that mating

type. This might have a big implication in the power of the test to detect epistasis,

especially in cases when the sample size is not big enough or if some mating types

have low frequency in the dataset being analyzed.

3.4.2 Retrospective QTDTs

Another approach used in quantitative genetics is the retrospective approach, where

the genotypes of the study subjects are modelled as a function of their phenotypes

and the parental genotypes. In this case, the genotypes are the outcome variables

while the quantitative traits and other covariates are the independent variables.

FBAT for Quantitative Traits (Lange et al., 2002)

One of these retrospective methods was introduced in a unified approach to family-

based tests of association by Rabinowitz and Laird (2000) and (Laird et al., 2000).

The method builds on the original TDT method by Spielman et al. (1993) and was

generalized to accommodate quantitative traits by Lange et al. (2002). The unified

approach to Family-Based Association Tests is termed FBAT. It uses a score-based

test statistic to measure the association between the phenotype and the genotype. Its

distribution is computed based on the offspring genotype which is treated as a random

variable, conditional on the offspring phenotypes and the parental genotypes for each

offspring. The approach is applicable to many scenarios such as multi-allelic marker,

dichotomous or quantitative phenotypes, multiple offspring per family and missing

parental information. It is adjusted for population admixture and allows additive,

dominant and recessive genetic models in the analysis.

For simplicity of equations in describing the FBAT, let us consider one biallelic

marker locus with alleles A1 and A2. Further assume that this marker locus is also

the disease locus and the allele frequency of the susceptibility allele A1 is denoted by

p1. There are N independent families and each ith family (i=1,...,N) has ni offspring.

The variable that translates the genotype of the j th offspring (j=1,...,ni) in the ith

family to a numeric value is denoted by Gij , and the quantitative trait is denoted by
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Yij . The concept of the minimal sufficient statistic by (Rabinowitz and Laird, 2000)

was adopted by the FBAT method. The minimal sufficient statistics is denoted here

as S and the null hypothesis of no association, H0 : βw = 0 is tested using a score

statistic. The general FBAT is a score test based on the mean model (equation 3.10)

and the phenotypic variance. The phenotypic variance is given for the ith family by

Var(Yi) = Vi, where Vi is an ni x ni variance matrix. With Gij as the random

variable of interest, the FBAT is implemented as follows:

1. Compute the normal score S for βw based on the mean model and the phenotypic

variance.

2. Then, setting bi = E(Gij) and βw = 0, we have

S =
∑

ij Sij where Sij = [Gij − E(Gij)](tij) and tij = (zij − τij). The zij and τij are

defined by:

zi = (zi1, ..., zini) = V−
i Yi (3.15)

τ i = (τi1, ..., τini) = V−
i μi (3.16)

where μi is an ni-dimensional offset vector of offset values (μi1, ..., μini) which may

depend on other predictor variables for the phenotype. For illustration, a simple

structure of Vi is considered here, where Vi depends only on i through its dimension

ni. The diagonal elements σ2 = V ar(Yij) are all equal, and the off-diagonal elements

σ2r = Cov (Yij , Yij′) are exchangeable.

3. The general quantitative FBAT is computed as:

FBAT =
S2

Var (S)
(3.17)

where

Var (S) =
∑
ijj′

tijtij′Cov (Gij , Gij′) (3.18)

The power of the general quantitative FBAT (Lange et al., 2002) has been compared

to the QTDT of Abecasis et al. (2000) and the pedigree disequilibrium test (PDT) by

Monks and Kaplan (2000). The PDT is a method similar to FBAT which can also be

used on family data containing parent and offspring genotypes, with offspring geno-

types only, or a combination of these types of families, with no size restrictions. They

only differ in two aspects. First, in the computation of the phenotypic residuals:
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PDT assumes the offset to be the phenotypic mean, μ, while FBAT permits any value

for the offset and can use phenotypes that are adjusted for within-family correlation.

Second difference is in the variance computation. The PDT estimates the variance

of the marker scores on the basis of the empirical variance while the quantitative

FBAT computes the variances on the basis of Mendelian transmissions. It is only

when linkage is present under the null hypothesis that FBAT computes the variance

in the same way as the PDT. In the absence of population structures and ascertain-

ment bias, the QTDT of Abecasis, the PDT and the general FBAT show virtually the

same power. When there is extreme ascertainment (e.g. only offsprings in the upper

10% are included), the score-based statistics (PDT and FBAT) perform better than

the QTDT of Abecasis. With a good offset choice under this condition, the FBAT

can perform better than the other two methods. The flexibility of choosing the offset

to be adapted to the ascertainment condition of the study is an advantage of the

FBAT but a bad choice of offset may result in lower power. As a rule of thumb, the

observed sample mean is always a powerful offset choice when analyzing total popu-

lation samples. However, in the case when only ”affected” offsprings (e.g. offsprings

with phenotypes in the upper the upper 10% tail of the distribution) are ascertained,

the quantitative FBAT becomes sensitive to the offset choice within the phenotypic

range. For example, if the offset choices are close to the phenotypic mean, the power

of FBAT is virtually 0. But for offset choices outside the phenotypic range (e.g. offset

smaller than the minimum value for the ascertainment condition), the power of the

quantitative FBAT is identical to the power of the dichotomous FBAT. Generally, an

offset outside the ascertainment condition should be specified when using quantitative

FBAT. This is discussed in detail in Lange et al. (2002).

The flexibility of the offset choice, the model-free phenotype and the flexibility

of modelling or not modelling the phenotypic correlation within the family are the

main advantages of the FBAT. However, the method is not designed for the analy-

sis of quantitative traits considering gene-gene interactions. A software, also called

FBAT, is available for implementing the method. In addition, an integrated soft-

ware package called PBAT which contains tools for power and sample size cal-

culation is also available. It also contain tools for the data analysis of univari-

ate, multivariate and time-to-onset statistics for nuclear families as well as for ex-

tended pedigrees. PBAT can also include covariates and gene-covariate interac-

tions in all computed FBAT-statistics. The FBAT and PBAT software packages
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are the two components of the FBAT-Toolkit which can be accessed freely at the

http://www.biostat.harvard.edu/ fbat/default.html (Laird, 2007; Lange et al., 2004).

Unified Framework for TDT Analysis of Discrete and Continuous Traits (Liu et

al., 2002)

The method of Liu and colleagues also computes a score statistic S using an estimate

of the mean of the offsprings’ quantitative trait Yi. Their test statistic is based on

a conditional score test that can be applied to both discrete and continuous traits

with normal or non-normal distributions. The genetic and environmental effects are

modelled using a generalized linear model.

The score statistic is approximated by:

Ŝ = ÛTV ar(Û)−1Û (3.19)

where:

Ûi =
n∑

i=1

[Yi − Ê(Yi)]Ji (3.20)

Ji = zi − E(zi) (3.21)

zi =
∂f(Gi, a)

∂a
|a=0 (3.22)

a is a vector of parameters modelling the effect of the offspring’s genotype Gi, f is

a function that specifies the genetic model, and

Var(Û) =
n∑

i=1

[Yi − Ê(Yi)]
2V ar(Ji) (3.23)

In general, the method can be extended to analyze gene-gene interaction by in-

corporating the product of the loci effect in the zi vector. The complete details can

be found in the publication. Analysis of gene-environment interaction, multiple-sib

families and extreme sampling can also be handled by the method. Liu and colleagues

compared their retrospective approach to the TDTQ5 (Allison, 1997) and the logis-

tic regression based extension of the TDT (Waldman et al., 1999). Waldman and
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colleagues extended the TDT for continuous and categorical traits using logistic re-

gression. Their approach is also retrospective because it models the probability of

transmission of disease alleles versus non-disease alleles from heterozygous parents to

their children as a function of a set of continuous or categorical predictor variables

that are the traits of interest and other covariates. The result of the Liu et al. (2002)

simulation study showed that in samples of single-child families, their approach has

higher power than the TDTQ5 and the logistic regression based extension of the TDT

when an offset is included in the model. However, Gauderman (2003) showed that

the prospective QTDTM has better power than this retrospective method of Liu et

al. (2002).

Quantitative Polytomous Logistic Method (Kistner and Weinberg 2004, 2005)

The retrospective approach has been further explored by Kistner and Weinberg (2004,

2005). Their quantitative polytomous logistic (QPL) method is an extension of the

log-linear model by Weinberg et al. (1998) which is based on maximum likelihood

with stratification on parental mating type. QPL also conditions on parental mating

type to control for possible population stratification. It treats the offspring’s value of

the quantitative trait as the independent variable while conditioning on the parents’

genotypes. The probabilities of the child’s genotype are modelled with the generalized

logistic regression method, using the parental mating type and quantitative trait as

predictors. Like the QTDT of Abecasis et al. (2000), it is a family-based approach,

and not really a transmission-based approach like the original TDT. Like the FBAT,

the method does not require a normally distributed phenotypic trait.

Consider a biallelic marker locus B with alleles B1 and B2, a quantitative trait value

Y and a family trio genotype data. Let Xi be equal to 0,1 or 2, quantifying the child’s

genotype depending on the number of copies of the susceptibility allele (say allele B1)

that the child carries. Let Xif and Xim be the number of copies of susceptibility

allele for the father and mother, respectively. Assuming mating symmetry in the

population (i.e. the probability of Xif = xif and Xim = xim equals the probability

that Xif = xim and Xim = xif ), the parental genotype pairs can fall into one of the six

mating types similarly described by Gauderman (2003). The QPL method is based on

multinomial distribution and the authors’ basic idea is to reverse the true causality.

Biologically, the offspring’s genotype may influence the value of the phenotype or

quantitative trait but the QPL models the offspring’s genotype, conditioning on the
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trait Y and the parents’ genotypes. The model considers Y as fixed and known and

C, the child’s genotype, is the only random variable. Using generalized logistic, the

probabilities that the child’s genotype Xi is equal to 0,1 or 2 are modelled with the

parental mating type and Y as predictors. For example, given a parental mating

type B1B2 x B1B2, then both Xif and Xim are equal to 1. The probability that an

offspring with a quantitative trait value of Y has genotype (Xi) equals 0, 1 or 2 is

modelled as:

P [Xi = 0|Xif = 1, Xim = 1, Y ] =
exp(β0Y + α110)

1 + exp(β0Y + α110) + exp(β2Y + α112)
(3.24)

P [Xi = 1|Xif = 1, Xim = 1, Y ] =
1

1 + exp(β0Y + α110) + exp(β2Y + α112)
(3.25)

P [Xi = 2|Xif = 1, Xim = 1, Y ] =
exp(β2Y + α112)

1 + exp(β0Y + α110) + exp(β2Y + α112)
(3.26)

The parameters β0 and β2 are assumed to be the same across different mating

types. β0 accounts for the change in the quantitative trait if the child did not inherit

a copy of the susceptibility allele relative to the quantitative trait for an offspring who

inherited one copy. On the other hand, β2 accounts for the change in the quantitative

trait if the child inherited two copies of the susceptibility allele, again relative to the

quantitative trait for offspring with one copy. The intercept parameters α110 and α112

depend on the parental mating type and the child’s genotype. The intercept α110

refers to a family where the father and the mother have one susceptibility allele and

the offspring has none, while the intercept α112 refers to a family where the father

and the mother have one susceptibility allele and the offspring has two. The intercept

parameters allow the model to account for non-Mendelianism and possibly different

distributions of the quantitative trait across the parental mating types. Thus, even if

Mendelian transmission is violated, the test remain valid. The null hypothesis of no

association or no linkage between the marker and the QT means that the parameters

β0 and β2 are both equal to zero.

The authors applied QPL in complete and incomplete trios and compared it with the

methods proposed by Allison (1997), Abecasis et al. (2000), Monks and Kaplan (2000),
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Sinsheimer et al. (2000) and the FBAT of Laird et al. (2000). The QPL demonstrated

good power and robustness under various scenarios of the genotype effect, distribution

of the quantitative trait and population stratification. It has more power over the

other methods when the true genotypic effect is recessive and when the variance of

the quantitative trait differed across subpopulations. However, in situations where

the genetic effect is dominant or additive, the QPL either had similar or slightly less

power than the other methods (Kistner and Weinberg, 2004). A further strength of the

method is in its application for missing parental genotype data through expectation-

maximization (EM) approach which allows recovery of almost all lost power due to the

missing information. Assumptions of Hardy-Weinberg equilibrium, random mating,

or even Mendelian transmission is not necessary here because the marginal model for

the parental mating types is an unconstrained multinomial. The method has been

extended to allow for multiple offsprings, maternal effects and parent-of-origin effect

(Kistner and Weinberg, 2005). However, application to gene-gene interaction was not

explored by the authors.

Quantitative Conditioning on Parental Genotypes (Wheeler and Cordell, 2007)

The apparent advantage of the retrospective approach lies in the absence of explicit

assumptions about the distribution of the quantitative trait of interest. Wheeler and

Cordell (2007) proposed a method closely related to the retrospective approach of

Kistner and Weinberg (2004, 2005). The method involves constructing a sample of

cases and matched pseudocontrols from a sample of case-parent trios. The approach

was derived from the case/pseudocontrol method of Cordell and Clayton (2002) and

Cordell et al. (2004). The method also used ”conditioning on parental genotypes”

(CPG) and generates pseudocontrols conditional on the mother’s and the father’s

genotypes. Since it was applied to quantitative trait, the method has been called

QCPG or ”quantitative conditioning on parental genotypes”.

Consider again a biallelic locus B with alleles B1 and B2. Let Yi be the offspring’s

quantitative trait and let Xi, Xif , Xim be the genotypes quantifying the number of

susceptibility allele (B1) of the offspring, father and mother of family i, respectively.

Assume also that the set of possible offspring genotypes for a mating typeM is denoted

by OM and let
∑

X∗
i
be the summation over all possible offspring genotypes and∑

X∗
i ∈O′

M
the summation over all possible offspring genotypes that could have been
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transmitted to the offspring given the parental genotypes. The O′
M is a restricted

subset of the set OM for a given mating type. In contrast to the QPL method,

the QCPG distinguishes between the two possible heterozygote offspring genotype

(i.e. B1B2 and B2B1). The probability of the offspring genotype given the parental

genotypes and the quantitative trait is given by:

P (Xi|Xif , Xim, Yi) =
P (Xi, Xif , Xim, Yi)

P (Xif , Xim, Yi)

=
P (Xi, Xif , Xim, Yi)∑
X∗

i
P (X∗

i , Xif , Xim, Yi)

=
P (Yi|Xi, Xif , Xim)P (Xi|Xif , Xim)P (Xif , Xim)∑
X∗

i
P (Yi|X∗

i , Xif , Xim)P (X∗
i |Xif , Xim)P (Xif , Xim)

=
P (Yi|Xi)P (Xi|Xif , Xim)∑

X∗
i ∈O′

M
P (Yi|X∗

i )P (X∗
i |Xif , Xim)

(3.27)

The above likelihood can be calculated via conditional logistic regression. Wheeler

and Cordell (2007) compared their QCPG approach with the QPL and the QTDTM.

All the methods were extended to allow for the analysis of multilocus haplotypes,

maternal genotype and parent-of-origin effects. However, gene-gene interaction was

not considered in the investigation. Simulation results showed that with randomly as-

certained families, with or without population stratification, the prospective QTDTM

approach is the most efficient, requiring smaller sample sizes to achieve convergence

and asymptotic behavior. In addition, the QTDTM was the only method among the

three which suitably estimates the genetic effect under the alternative hypothesis with

population stratification. Covariates are also easily incorporated in the QTDTM and

the parameter estimates can be easily interpreted as direct effect on the trait. With

regard to nonnormally distributed traits, the investigation of power and Type I er-

ror showed that both QTDTM and QCPG are suitable for the analysis of traits that

slightly deviates from normality. However, neither of the methods was found suitable

for the analysis of highly nonnormally distributed traits.

Some retrospective approaches presented in this section can also incorporate covari-

ates and interaction in the analysis. However, it may entail more steps and subsequent

analysis. Specifically, incorporating gene-gene interaction (if applicable) may not be

easy. Compared to the prospective approaches, another draw back of retrospective

approaches is that, they are somehow counter intuitive because the idea of true causal-
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ity is reversed. In actual situations, the individual’s genes may influence the value of

the phenotype and not the other way around.

3.5 Synthesis of the literature

Current statistical methods in determining evidence for genetic effects are vast and

varied. In the context of family-based designs, several methods have been devised

extending and modifying the simple TDT introduced by Spielman et al. in 1993.

Not all available TDT and TDT-like methods are detailed here. However, based on

current literature, no single method can be considered most suitable in the analysis of

epistasis or gene-gene interaction in nonnormally distributed quantitative phenotypes

in parent-offspring trios. Table 3.5 compares selected statistical methods discussed in

this thesis that are used in the analysis of quantitative traits in family-based studies.

Table 3.5: Comparison of selected methods used in the analysis of quantitative traits

in family-based studies

Characteristics QTDTM FBAT QCPG

Approach prospective retrospective retrospective

Robustness to population

stratification yes yes no

Analysis of epistasis yes no yes

Inclusion of covariates yes yes yes

Applicable to nonnormal QT * yes *
* The method is suitable when the quantitative trait only slightly deviates from normality

In most of the quantitative approaches, normality of the quantitative trait is as-

sumed. In case of possible deviations from normality or selection on the trait, some

programs implement permutation procedures on the genotypes to produce empirical

p-values. Other methods have claimed to be robust in the deviations of the trait from

the normality assumption, but unfortunately considered gene-gene interaction only in

theory. In practice, the incorporation of covariates, gene-environment and gene-gene

interaction may require more complicated steps and calculations.

Among the different methods enumerated, the QTDTM has several merits in ana-

lyzing quantitative traits, genetic main effects and gene-gene interactions. Compared
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with the current available methods in genetic analysis for family-based designs, the

prospective QTDTM approach has been shown to have more advantages in terms

of fast convergence and smaller sample size requirement. The method can also be

easily extended to accommodate covariates, gene-environment and gene-gene inter-

actions. However, the approach is most appropriate when the quantitative trait of

interest is normally distributed. It is not suitable for the analysis of very nonnormally

distributed traits (Wheeler and Cordell, 2007). It also requires enumeration of the

mating types which could become sparse in frequency especially if multiallelic markers

or multiple haplotypes will be used in the analysis. Needless to say, there is still a

need for a TDT or TDT-like method that will address the issues concerning genetic

main effects’ analysis, gene-gene interaction and nonnormality of the data distribu-

tion in quantitative trait analysis. In addition, the effect of population stratification

should not be taken for granted even if TDTs are known to be robust to it. In a

recent study by Li et al. (2008), it has been shown that the presence of population

admixture can influence the power of the TDT in different ways. The next chapter

describes the proposed new method for analyzing quantitative traits in family-based

genetic studies.
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4 Generalized Quantitative

Transmission Disequilibrium Test

The occurrence of nonnormally distributed traits in genetic studies poses difficulties in

the statistical analysis of genetic main effects and epistasis in complex diseases. Many

approaches exist in statistics to deal with nonnormally distributed data. To mention

a few, one can transform the data, use nonparametric tests, permutation tests or

implement bootstrap approaches. Each of these methods has its own advantages and

disadvantages. The previous chapter covered several TDT and TDT-like methods to

determine genetic effects in quantitative traits. However, it has been shown in the

review of the literature that existing methods have not yet properly addressed the

issues in genetic analysis of quantitative traits in family-based studies. This chapter

introduces the generalized quantitative transmission disequilibrium test (GQTDT) -

a statistical analysis method that combines the concept of the previously described

QTDTM regression method and the generalized additive model for location, scale and

shape (GAMLSS) which is described later. The GQTDT draws its advantage from the

flexibility of the GAMLSS method in statistical testing and modeling both categorical

and quantitative variables. It can be used to detect both genetic main effects and

epistasis in many types of distributions of the outcome variable.

4.1 Theoretical background

To describe the principle behind the generalized QTDT method, it is inevitable to

review first some regression models in the context of genetic analysis.

Linear model

One of the conventional methods applied in the analysis of quantitative genetic traits

is linear regression. As seen in some of the previously described methods in Chapter
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3 (e.g. QTDT of Abecasis et al., QTDTM of Gauderman), one can use a linear

regression model to relate the response or outcome quantitative phenotype to the

genotype to determine genetic effects.

Suppose that we have a continuous random variable Y which represents the quan-

titative phenotype, and a predictor variable G which represents the genotype values,

and we wish to explain the variability in Y due to G. The simple regression model

has the form:

Yi = β0 + βGGi + εi (4.1)

where i=1,...n, the β0 and βG are the regression parameters and εi is the residual

effect. The variable Gi is commonly defined as a score or ordinal variable based on

the known genotype of the ith individual which has been randomly chosen from some

population. It is also commonly assumed that the residual εi is normally distributed

with mean zero and variance σ2. The aim is to test the null hypothesis that there

is no association between Y and G or that H0:βG=0. The hypothesis can be tested

using a likelihood ratio test equal to 2(L1 − L0), where L0 and L1 are the values of

the maximized log-likelihood under the null and alternative hypotheses, respectively.

The model 4.1 is easy to extend to accommodate more than one genetic factors and

even other non-genetic or environmental factors. To account for possible confound-

ing effects of population stratification, some regression methods (e.g. Abecasis and

Gauderman’s methods; see Chapter 3) incorporated parental genotypes in addition

to the offspring’s genotype in the regression model. The use of the parent-offspring

design is to eliminate the problem of ethnic confounding effects. However, the linear

regression method is not always applicable to all types of quantitative traits. Many

complex traits in genetic studies are nonnormally distributed. This often implies that

the residuals are also nonnormally distributed (Beasley et al., 2009). It is a common

practice in statistics to transform the data to achieve an approximately normal distri-

bution. Often, log transformation, shifted log (adding a constant before taking logs

to retain zeros in the data) and inverse normal transformations (e.g. Blom transfor-

mation) are employed in the analysis. In particular, the use of rank-based inverse

normal transformations (INTs) has become quite popular in recent genetic researches

(Beasley et al., 2009). Rank-based INTs uses a modified rank variable and computes

a new transformed value of the phenotype, Y t
i , for the ith subject. Following the
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Y t
i = Φ−1

(
ri − c

N − 2c+ 1

)
(4.2)

where ri is the ordinary rank of the phenotype of the ith subject among the N ob-

servations, Φ−1 the standard normal quantile (or probit) function and c, a constant.

In Blom transformation, the recommended value of c is 3/8 (Blom, 1958). One issue

concerning INTs is that the normality is assured for the wrong distribution. Most

parametric tests assume that residuals from a model are normally distributed. In the

case of INTs, the phenotypes and not the residuals are transformed to have a nor-

mal distribution. This is in contrast to some other transformations like the Box-Cox

transformation which maximizes the normality of the sample residuals (Box and Cox,

1964). It has been shown in the study of Beasley et al. (2009) that INTs do not al-

ways maintain proper type I error and in some situations have also reduced statistical

power.

In some cases, transformation of nonlinear data is not appropriate when compa-

rison of arithmetic means is necessary (Barber and Thompson, 2000). In terms of

detecting epistatic effect, several studies have shown many disadvantages of data

transformation. Nonlinear transformation on the data or changing the scale can re-

move the interaction effect or artificially induce an interaction effect regardless of the

underlying model (Thompson, 1991; An et al., 2009). Interaction and main effect re-

lationships are usually not maintained after rank transformations (Blair et al., 1987).

Poor performance has been noted in parametric tests for interaction applied to ranks

due to lack of an invariance property which produces distorted type I and II error

rates (Salter and Fawcett, 1993; Toothaker and Newman, 1994; Mansouri and Chang,

1995). In mathematics, invariance property is a property of mathematical objects,

e.g. parameter spaces, that remains unchanged even after a given transformation. For

example, maximum likelihood estimators (mle’s) have invariance property. Given that

Θ̂ is an mle of Θ and f is a certain function, the theorem on mle’s invariance property

states that f(Θ̂) is the mle of f(Θ). Interaction tests for transformed variables also

performed poorly for a variety of other designs such as polynomial and response sur-

face regression, analysis of covariance and repeated measures designs (Conover and

Iman, 1981; Akritas, 1990; Thompson, 1991; Thompson, 1993; Headrick and Rotou,

2001; Headrick and Sawilowsky, 2000; Headrick and Vineyard, 2001; Beasley, 2002).
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In addition, the use of rank-based transformations does not result in an adequate test

for interaction (i.e. non-additivity) causing problems in evaluating epistasis and also

gene-environment interactions (Hora and Conover, 1984).

Generalized Linear Model (GLM)

The linear model was extended by Nelder and Wedderburn (1972). They introduced

the generalized linear model (GLM) to allow the response variable Y to be a member

of any of the exponential family of distributions such as the binomial, Gaussian and

Poisson distributions. Generalized linear models also relax the requirement of equality

or constancy of variances that is required for hypothesis tests in traditional linear

models. The exponential family of distributions take the general form:

f(Y |Θ,Ψ) = exp

[
Y (Θ)− b(Θ)

a(Ψ)
+ c(Y,Ψ)

]
(4.3)

The canonical parameter , Θ, represents the location, while the dispersion para-

meter , Ψ, represents the scale of the distribution. The functions a, b, and c can be

specified depending on the type of exponential distribution being defined.

The GLM models the monotone link function of the response variable as a linear

function of the covariates. Given a random variable, Y , and a set of genetic predictors

G1, G2, ..., Gp which may include genotypes at two unlinked loci and their interaction,

the linear predictor can be expressed as:

η = g(E(Y |G1, G2, ...Gp)) = β0 +

p∑
k=1

βkGk (4.4)

where β0 is the overall mean and the link function, g, describes how the mean response,

E(Y ) = μ is linked to the covariates through the linear predictor. In the Gaussian

linear model, the link is the identity, i.e. η = μ. For the Poisson GLM, the link is

η = log(μ). Logistic regression is a binomial GLM using a logit link, η = log(μ/1−μ).

Many statistical models in genetics can be cast into a GLM form.

For estimation and testing, the parameters in a GLM can be estimated using maxi-

mum likelihood method. The maximum likelihood estimates of the parameters βk can

be obtained by iterative re-weighted least squares (IRLS). Analogous to the residual
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sum of squares in linear regression, the goodness-of-fit of a generalized linear model

can be measured by the so called scaled deviance (Nelder and Wedderburn, 1972).

Generalized Additive Model (GAM)

In real life, many measured effects are generally not linear. Even the generalized linear

models may be too restrictive to identify and characterize nonlinear regression effects.

To transcend the limitations of traditional linear regressions, Hastie and Tibshirani

(1990) introduced the methods of generalized additive models (GAM). Like the GLM,

the GAM also assumes an exponential family distribution for the response variable.

However, in the linear predictor, the linear term η is replaced by a more general

functional form:

β0 +

p∑
k=1

fk(Xk) (4.5)

where fk, k=1,...,p, is a smooth function of a covariate. Examples of smooth functions

can be local polynomial regression, kernel method or smoothing splines. The GAM

uses a backfitting procedure in conjunction with a maximum likelihood or a maximum

partial likelihood algorithm. Backfitting is an iterative procedure that estimates each

fk using previous estimates. The specification of the fk functions makes GAMs much

more flexible than linear regression models and GLMs. In genetics, the GAM has

been applied in the analysis of microarray gene expression data (Tsai et al., 2004), in

mapping cancer incidence rates (French, 2004), in genome-wide linkage and association

studies (Rosenberger et al., 2005) and many more. However, it is also limited to

the exponential family of distribution and usually allows only the modelling of the

parameter mean of the distribution of the response variable as a function of the

explanatory variables. The succeeding section describes a more general method that

overcomes some of the limitations of both GLM and GAM.
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Generalized Additive Model for Location, Scale and Shape (GAMLSS)

The GAMLSS is a general class of regression models introduced by Rigby and

Stasinopoulos (2001, 2005) and Akantziliotou et al. (2002) for a univariate response

variable. The method has more flexibility than the GLM or GAM. In the GAMLSS

method, the exponential family assumption is replaced by a more general distribution

family. The method can be very well adapted to genetic data where the response

variables are highly skewed or kurtotic continuous. Real-valued response variables

can be positively skewed (skewed to the right), a case where the tail on the right

side of the distribution is longer than the left side. It can also be negatively skewed

(skewed to the left). In this case, the tail on the left side of the distribution is longer

than the right. Variables with a probability distribution exhibiting higher kurtosis

may indicate that the variance is a result of extreme deviations. The systematic part

of the GAMLSS model enables the mean and also other parameters of the condi-

tional distribution of the random variable Y to be included in the statistical model as

parametric and/or additive smooth nonparametric functions of explanatory variables

and/or random effects terms. Adopting the authors’ notation, the model is defined

as follows:

Let Yi, where i = 1,2,...,N , be independent observations with probability density

function f(Yi|θi) conditional on θi where θi = (θi1, θi2, ..., θip) is a vector of p para-

meters related to the explanatory variables. Let also Yt be the N length vector of

the response variables Y1, Y2, ..., YN . For k = 1,2,...,p, let gk(.) be a known monotonic

link function relating the vector of distribution parameters (θk) to the explanatory

variables and random effects through the additive model:

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Zjkγjk (4.6)

where

j = 1,2,...,Jk (a vector of length N)

θk and ηk are vectors of length N , e.g. θt
k = (θ1k, θ2k, ..., θNk),

βt
k = (β1k, β2k, ..., βJ ′

kk
) is a parameter vector of length J ′

k,

Xk is a known design matrix of order N x J ′
k,

Zjk is a fixed known N x qjk design matrix and

γjk is a qjk-dimensional random variable.
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Model 4.6 is referred to as the GAMLSS. The model is comprised of a parametric

component Xkβk and additive components Zjkγjk. The parametric component can

include linear and interaction terms for explanatory variables and factors, polynomials,

fractional polynomials and piecewise polynomials for variables. Non-linear parameters

can also be incorporated. The additive components can accommodate terms such as

smoothing and random-effect terms as well as terms for time-series analysis. If Jk =

0 for k = 1,2,...,p, then model 4.6 reduces to a fully parametric model:

gk(θk) = ηk = Xkβk (4.7)

If Zjk = IN , where IN is an N x N identity matrix, and γjk = hjk = hjk(xjk) for

all combinations of j and k, then model 4.6 becomes:

gk(θk) = ηk = Xkβk +
Jk∑
j=1

hjk(xjk) (4.8)

where

xjk for j=1,2,...,Jk and k = 1,2,...,p are explanatory vectors (assumed known)

of length N ,

hjk is an unknown function of the explanatory variable Xjk, and

hjk = hjk(xjk) is the vector which evaluates the function hjk at xjk.

Model 4.8 is a special case of model 4.6 and is called semi-parametric GAMLSS.

Usually, the maximum number of distribution parameters is four (i.e. p = 4). In

general, the vector θi can have more than four distribution parameters. The current

implementation of GAMLSS in the R software can accommodate up to four distri-

bution parameters, i.e. μ, σ, ν and τ referring to the location, scale, skewness and

kurtosis parameters, respectively. The skewness and kurtosis parameters are usually

referred to as shape parameters. For distributions characterized by four parameters
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g1(μ) = η1 = X1β1 +
J1∑
j=1

Zj1γj1,

g2(σ) = η2 = X2β2 +
J2∑
j=1

Zj2γj2,

g3(ν) = η3 = X3β3 +
J3∑
j=1

Zj3γj3,

g4(τ ) = η4 = X4β4 +
J4∑
j=1

Zj4γj4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

One example cited by the authors on the flexibility of the GAMLSS is shown in a

model used in their blood flow study (Rigby and Stasinopoulos, 2006):

Yi ∼ TF [(μ = h1(x), log(σ) = h2(x), log(ν) = 1)] (4.10)

where the response variable Yi has a t-distribution with parameters μ, σ and ν, each

related to the explanatory variable x. They modelled the location parameter μ by a

non-linear model h1(x) = x[1 + β11exp(−β12/x)]. The log of the scale parameter σ is

modelled using a quadratic polynomial model h2(x) = β20+ β21x+ β22x
2 and the log

of the shape parameter ν was set to a constant 1. In the study, other distributions

were also tried to determine the best fitted model for the data.

One of the main advantages of the GAMLSS method is its flexibility to define

different types of distributions. Aside from the conventional families of distributions,

specific distributions with more than two parameters can be defined. One example is

the Box-Cox normal family for Y > 0 which was used by Cole and Green (1992). The

distribution is a reparameterized distribution of Box and Cox (1964). The Box-Cox

distribution by Cole and Green has three parameters (μ, σ, ν) and assumes that a

transformed variable z obtained from Y has a standard normal distribution N(0, 1)
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where

z =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

σν

{(
Y

μ

)ν

− 1

}
, if ν �= 0

1

σ
log

(
Y

μ

)
, if ν = 0

(4.11)

Another distribution that has three parameters is the power exponential distribution

for −∞ < Y < ∞ (Nelson, 1991). It is a modification of the Box and Tiao (1973)

method which assumes that z has a gamma GA(1,ν) distribution where

z =
ν

2

∣∣∣Y − μ

σ c(ν)

∣∣∣ν (4.12)

and

c(ν) =

{
2−2/ν Γ(1/ν)

Γ(3/ν)

}1/2

(4.13)

Rigby and Stasinopoulos (2004) modified the Box-Cox distribution to a four-

parameter (μ, σ, ν, τ) Box-Cox-t (BCT) distribution. It assumes that the z in equation

4.11 has standard t-distribution with τ degrees of freedom. In addition to the BCT,

they also introduced the Box-Cox power exponential distribution (BCPE) for Y > 0.

The distribution is defined by assuming that z in equation 4.11 also has a standard

power exponential distribution with four parameters (μ, σ, ν, τ). The distribution can

be used to model skewness combined with kurtosis in quantitative outcomes.

Investigators sometimes encounter data in which the continuous outcome variable

has a lower bound. In medical data, zero is often the lower bound as in the case of

coronary artery calcification (CAC) scores (Agatston et al., 1990). A sizeable fraction

of sample observations with ”true” zeros as values can give rise to extreme right

skewness of the data and can create problems in conventional regression methods. In

this respect, the data can be modelled using mixed discrete-continuous distributions:

a continuous, right-skewed distribution mixed with a single probability mass at zero.

The zero-adjusted inverse Gaussian (ZAIG) distribution by Heller et al. (2006) can

be used. The model is defined as:
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f(Yi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− π∗i if Yi = 0

π∗i
1√

2πY 3
i σi

exp

[
− 1

2Yi

(
Yi − μi
μiσi

)2
]

if Yi > 0

(4.14)

where E(Yi) = π∗i μi, Var(Yi) = π∗i μ
2
i (1 − π∗i + μiσ

2
i ) and π∗i is the probability of a

non-zero Yi.

There are other types of distributions for continuous and discrete variables that

can be implemented in the GAMLSS framework (see Rigby and Stasinopoulos, 2005;

Stasinopoulos 2007). What have been previously enumerated are distributions that

are commonly encountered in genetic studies. Table 4.1 lists some of the continuous

distributions supported in R software while figure 4.1 shows graphs of selected distri-

butions. Currently, there are more than 40 distributions supported by the GAMLSS

package in R.

In the GAMLSS framework (Equation 4.6), the random-effects vectors γjk are as-

sumed to have independent prior normal distributions with γjk ∼ Nqjk(0,G
−
jk), where

G−
jk is the generalized inverse of a qjk x qjk symmetric matrix Gjk. The matrix Gjk

may depend on a vector of hyperparameters λjk (e.g. degrees of freedom for smooth-

ing terms and/or non-linear parameters). This implies that Gjk = Gjk(λjk) and if

singular, then γjk is taken to have an improper prior density function proportional

to exp(-12γ
T
jkGjkγjk). For fixed λjk, the βk and the λjk are estimated by maximizing

the penalized likelihood function lp:

lp = l − 1

2

p∑
k=1

Jk∑
j=1

γTjkGjkγjk (4.15)

where l =
∑N

i=1 log {f(Yi|θi} = log {f(Y|β, γ)} is the log-likelihood function of the

data given θi for i=1,2,...,N .

Maximizing lp can be achieved by two basic algorithms - the CG and RS algorithms

which are based on the Newton-Raphson or Fisher scoring algorithm. The CG or Cole

and Green (1992) algorithm uses a backfitting algorithm and the first and (expected

or approximated) second and cross derivatives of the likelihood function with respect

to the distribution parameters θi. (A cross derivative of a smooth function is a

mixed partial derivative obtained by differentiating at most once with respect to each

78



4.1 Theoretical background

Table 4.1: Selected continuous distributions with default link functions in GAMLSS

in R

Distribution R Name μ σ ν τ
Box-Cox Cole and Green BCCG() identity log identity -
Box-Cox power exponential BCPE() identity log identity log
Box-Cox-t BCT() identity log identity log
exponential EXP() log - - -
inverse Gaussian IG() log log - -
logistic LO() identity log - -
log normal LOGNO() log log - -
log normal (Box-Cox) LNO() log log fixed -
normal NO() identity log - -
power exponential PE() identity log log -
skew power exponential type 1 SEP1() identity log identity log
skew power exponential type 2 SEP2() identity log identity log
skew power exponential type 3 SEP3() identity log log log
skew power exponential type 4 SEP4() identity log log log
skew t type 1 ST1() identity log identity log
skew t type 2 ST2() identity log identity log
skew t type 3 ST3() identity log log log
skew t type 4 ST4() identity log log log
skew t type 5 ST5() identity log identity log
t family TF() identity log log -
Weibull WEI() log log - -
zero adjusted inverse Gaussian ZAIG() log log logit -

Note: μ, σ, ν and τ refer to the location, scale, skewness and kurtosis distribution

parameters, respectively.

variable). On the other hand, the RS or Rigby and Stasinopoulos (1996) algorithm fits

mean and dispersion additive models and does not use the cross derivatives. It is more

appropriate for probability density functions with parameters θi that are information

orthogonal, i.e. the expected values of the cross derivatives of the likelihood function

are zero. Examples of distributions with parameters that are information orthogonal

are the normal, logistic, gamma, inverse Gaussian and negative binomial distributions.

The details of the CG and RS algorithms are described in Rigby and Stasinopoulos

(2005).

79



Chapter 4. Generalized Quantitative Transmission Disequilibrium Test (GQTDT)

Figure 4.1: Example graphs of selected probability distributions
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4.2 The GQTDT model

Using the framework of GAMLSS combined with the concept of the QTDTM (see

page 55), a generalized quantitative transmission disequilibrium test (GQTDT) model

can be constructed to determine the main effects of genes and their epistasis in family-

based genetic studies.

Let again Yi, where i = 1,2,...,N , be random observations of a continuous quantita-

tive trait. In this thesis, the investigation focuses on two candidate biallelic loci and

their interaction as the main explanatory variables affecting the response variable Yi.

The control for the confounding effect of population stratification is also necessary

in this case. It has been illustrated by Gauderman (2003) that using standard linear

regression (see equation 4.1) can lead to bias in estimates of the genetic effect and

alarmingly high type I errors (>50%) when there is stratification in the population.

Therefore, the GQTDT, considering possible presence of stratification in the study

population adopted the idea from previous studies of including an indicator of the

parental mating types in the analysis to guard against spurious association resulting

from stratification. Aside from Gauderman (2003), other investigators (Weinberg et

al., 1998; Fulker et al., 1999; Li and Fan, 2000; Abecasis et al., 2000) have also applied

the approach of using parental mating type indicators in analyzing family data. The

GQTDT model for the analysis of two candidate loci and their interaction is expressed

as:

Yi = β0 + βMMi + βGGi + βHHi + βGHGiHi + εi (4.16)

where Mi, Gi and Hi refer to the random explanatory variables corresponding to the

categorical mating type of the parents and genotype scores of the subject at locus 1 and

at locus 2, respectively. The betas are the unknown model parameters that must be

estimated and εi is the error term. Compared to the QTDTM which treats the mating

type as fixed effect, equation 4.16 considers the mating type as a random variable and

uses a general intercept rather than mating-type specific intercepts. Treating the

mating type as random has the advantage of fewer parameters to estimate. Instead of

estimating a parameter for each possible mating type, only one parameter for all the

mating types needs to be estimated if mating type is considered as a random variable.

One may be able to account for differences across mating types when it is used as a

fixed variable. However, as noted in the description of the QTDTM in the previous

chapter, the use of mating type as fixed effect has its disadvantage. Very few subjects
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within a mating type contribute very few information or none at all in the test for

epistasis. In practice, it is not uncommon to encounter very few subjects in certain

mating types. Even if only two biallelic loci which can have up to 36 possible mating

types are involved in the study, scarcity of subjects in certain mating types can be

observed.

To complete the definition of the GQTDT model, it should be added that the

response variable Yi can be from a distribution other than the normal distribution.

The distribution can be characterized by one or more parameters. In general, the

response variable Yi in the GQTDT model is distributed as:

Yi ∼ f(g1(θ1) = t1, g2(θ2) = t2, ..., gp(θp) = tp) (4.17)

where:

f is the distribution of Yi,

θ1, ..., θp are the parameters of f ,

g1, ..., gp are the link functions and

t1, ..., tp are the model formulae for the explanatory terms and/or random effects in

the predictors.

For Yi that fits a normal distribution, only two distribution parameters : μ and σ

are needed. Therefore, Yi ∼ N(μ, σ). Considering equation 4.16 as the predictor of

μ and the log(σ) as a constant 1, the distribution of Yi involving two candidate loci

and their interaction can be completely characterized by:

Yi ∼ N(μ = (β0 + βMMi + βGGi + βHHi + βGHGiHi), log(σ) = 1) (4.18)

In some cases, a different distribution such as Box-Cox-t distribution might fit

better the response variable Yi. In this case, one can characterize the distribution

using four parameters such that Yi ∼ BCT (μ, σ, ν, τ), where μ, σ, ν and τ are the

BCT distribution parameters.

4.3 Model selection

A crucial detail in the analysis using GQTDT is the specification of the type of distri-

bution (e.g. Gaussian, Box-Cox-t, t-family etc.). Plotting first the data would be very
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helpful to determine the most appropriate distribution. Deciding which distribution to

use will require the criteria for model selection as suggested in the GAMLSS. Model

selection in GAMLSS compares different competing models containing its different

components. The components of the GQTDT model (see equation 4.17) include its

distribution, parameters, link functions and predictor variables. Model selection in

GAMLSS for nested parametric models also involves the use of the deviance. The

usual deviance is defined as minus 2 times the log-likelihood of the reduced model

compared to the full model. In GAMLSS, the deviance is termed global deviance,

GD = -2l(θ̂), where l(θ̂) =
∑N

i=1 log f(Yi|μ̂, σ̂, ν̂, τ̂). The global deviance is exactly

minus twice the fitted log-likelihood function with all constant terms in the log-

likelihood. The usual deviance in GLM is calculated as a deviation from the full

model and the constant terms are not included in the fitted log-likelihood. Therefore,

the usual deviance cannot be used to compare different distributions.

Two nested parametric GAMLSS models can be compared by the generalized like-

lihood ratio test statistic, GLRT = GD0 - GD1, where GD0 and GD1 are the global

deviances of the models referring to the null and alternative hypothesis and with

error degrees of freedom dfe0 and dfe1, respectively. The GLRT has an asymptotic χ2-

distribution under the null model, with degrees of freedom df = dfe0 - dfe1. For each

model, dfe = n -
∑p

k=1 dfθk, where dfθk are the degrees of freedom in the predictor

model for parameter θk for k=1,...,p.

Models that are not nested, including those with smoothing terms can be compared

using the generalized Akaike information criterion (GAIC). To penalize overfitting, a

fixed penalty ”#” for each effective degree of freedom is added. The GAIC(#) = GD

+ #df , where df denotes the total effective degrees of freedom used in the model and

GD is the global deviance. The model with the smallest GAIC(#) is recommended.

Other model selection strategies are also possible using GAMLSS. Rigby and

Stasinopoulos (2008) emphasized that good model selection requires specific know-

ledge of the topic and that ”the determination of the model adequacy should always

be carried out with respect to the substantive questions of interest and not in isola-

tion”.
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4.4 Data layout for analysis

In this work, the case of analyzing genetic main effects and interaction will be pre-

sented. The dependent quantitative variable is hypothesized to be affected only by

two biallelic loci and their interaction. The family data needed for the GQTDT ana-

lysis are the quantitative trait of the subject and the genotypes of the subject and

the subject’s parents at the two loci of interest.

Using the same notations as in equation 4.16, the description and corresponding

coding of the random dependent variable Yi and the random explanatory variables,

Gi, Hi and Mi are detailed below:

Yi the continuous quantitative trait of the ith study subject; i = 1,...,N

Gi genotype score of the study subject at locus 1; coded as 0, 0.5 or 1.0

Hi genotype score of the study subject at locus 2; coded like Gi

Mi the parental mating type; categorical variable based on parents’ genotype;

coded as 1,2,...,36 as there are 36 possible combination of parental

genotypes for two biallelic loci

The genotype data for each locus consist of pairs of alleles. The candidate locus 1 is

assumed to be biallelic with possible alleles denoted as A1 and A2. This implies that

the three possible genotypes at locus 1 are A1A1, A1A2 and A2A2. Candidate locus

2 is also assumed to be biallelic with alleles B1 and B2. Therefore, the three possible

genotypes at locus 2 are B1B1, B1B2 and B2B2. It is further assumed that A1 and B1

are the susceptibility alleles. Like in the QTDTM(Gauderman, 2003), the variable Gi

is assigned a value 0.0 if the genotype of the study subject is A2A2. If the genotype

is A1A1, it is assigned a value of 1.0. For the heterozygous genotype (i.e., A1A2),

Gi takes on a value of 0.0, 0.5 or 1.0 if the assumed underlying genetic model during

testing is recessive, additive or dominant, respectively. Similar coding is applied

for the covariate Hi. The assumption about the underlying genetic model depends

on prior biological knowledge or previous genetic data, but if data are unavailable,

investigators can do the statistical testing under different genetic model assumptions.

The covariate Mi which represents the mating type of the parents is defined as a

categorical variable based on the genotypes of both mother and father. If only one

locus is considered, six different mating types are possible without considering the

order of alleles (see table 4.2). Considering two biallelic loci, there are 36 possible

mating types as shown in table 4.3.
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Table 4.2: Mating types for one locus

Genotype of the mother

A1A1 A1A2 A2A2

Genotype of the father

A1A1 M1 M2 M3

A1A2 M2 M4 M5

A2A2 M3 M5 M6

Table 4.3: Mating types considering two loci

Locus 1 Mating Type

M1 M2 M3 M4 M5 M6

Locus 2

Mating Type

M1 M11 M12 M13 M14 M15 M16

M2 M21 M22 M23 M24 M25 M26

M3 M31 M32 M33 M34 M35 M36

M4 M41 M42 M43 M44 M45 M46

M5 M51 M52 M53 M54 M55 M56

M6 M61 M62 M63 M64 M65 M66

Sample data for the analysis of two loci and their epistasis are shown in table 4.4.

Table 4.4: Sample Data for GQTDT Analysis

Genotype at Locus 1 Genotypes at Locus 2 Variables for Analysis*

Father Mother Child Father Mother Child Yi Gi Hi Mi

A1A1 A1A1 A1A1 B1B1 B1B1 B1B1 50.3 1.0 1.0 1

A1A1 A1A2 A1A1 B1B1 B1B2 B1B1 49.7 1.0 1.0 8

A1A1 A2A2 A1A2 B1B1 B2B2 B1B2 52.5 0.5 0.5 9

A1A2 A1A2 A1A2 B1B2 B1B2 B1B2 51.2 0.5 0.5 22

A1A2 A2A2 A2A2 B1B2 B2B2 B1B2 48.6 0.0 0.5 29

A2A2 A2A2 A2A2 B2B2 B2B2 B2B2 46.9 0.0 0.0 36

*Gi and Hi are coded assuming additive genetic model, e.g. Gi=1 if A1A1, Gi=0.5 if A1A2,

Gi=0 if A2A2 (for more description about additive genetic model, see page 18); values for

Mi are based on tables 4.2 and 4.3; M11 = 1, M21 = 2,...,M12 = 7, M22 = 8,...,M66 = 36.
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4.5 Testing for genetic main effects and epistatic

effects

In a two-locus setting, to test the null hypothesis of no genetic main effect, i.e.

H0: βG = βH = 0, the generalized likelihood ratio test can be applied to com-

pare the global deviances of the model with genetic main effects (β0 + βMMi +

βGGi + βHHi) and the model without genetic main effects (β0 + βMMi). For test-

ing epistasis or gene-gene interaction, i.e. H0: βGH = 0, the model with epistasis

(β0 + βMMi + βGGi + βHHi + βGHGiHi) is compared to the model without epista-

sis (β0 + βMMi + βGGi + βHHi). Usually, the model with more parameters will fit

better (i.e. have a greater log-likelihood). Whether it fits significantly better can be

determined by using the GLRT which means computing the probability or p-value

of the obtained difference in the global deviances. This procedure of model selection

using the GLRT is as previously discussed in page 82.

In the test for genetic main effects, a p-value less than or equal to a set alpha error

(usually 0.05) rejects the null hypothesis of no genetic main effects and concludes the

alternative. The same is true for the test for epistasis. Rejection of the null model

without epistatic effect favors the conclusion of having statistical epistasis between the

two loci tested. As in any other statistical test in genetic analysis, the results may not

necessarily mean presence of biological effects. Although the use of candidade genes

in the analysis give higher chance of getting results with biological meaning, the need

for biological experiments to confirm the statistical results cannot be overemphasized.

The described generalized quantitative transmission disequilibrium test or GQTDT

can of course be extended to determine the effects of other non-genetic and environ-

mental factors.
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The objective of these simulation studies is to investigate the power and type I er-

ror of the GQTDT in determining genetic main effects and epistasis associated to

quantitative traits (QTs) in a family-based study design. Datasets of families based

on realistic situations were simulated. Different simulation scenarios were created to

investigate the performance of the statistical test in normally distributed and nonnor-

mally distributed QTs. Other scenarios such as presence of population stratification,

different allele frequencies, different genetic models and presence of other covariate

effects were also simulated. Detection rates, i.e. the percentage of datasets where ge-

netic main effects and epistasis were significant were noted in the different simulation

schemes. The R software, Version 2.10.0 (R Development Core Team, 2009) was used

for all simulations and numerical work.

5.1 The simulation scheme

5.1.1 The simulation model

The simulated datasets contain phenotype and genotype data from simulated family

trios. A family trio includes one offspring and its parents. The phenotype data are the

quantitative traits (observed random responses) of the offsprings (or study subjects),

while the genotype data are genotypes of all offsprings and parents on two candidate

loci. In reality, complex traits studied in genetics are not just affected by genes and

their epistasis but other environmental covariates as well. However, the emphasis of

the simulations is on determining the genetic main effects and epistasis and not on the

effect of the environmental covariates on the quantitative trait. The environmental

covariates were only included in some of the simulation schemes to create a complex

quantitative trait and to determine in which way it influences the result of the test for
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genetic main effects and epistasis. The general model used to simulate the quantitative

traits is:

Yi = β0 + βGGi + βHHi + βIIi + (
∑
j

βEj
Eji) + βεεi (5.1)

where:
Yi the observed random response or quantitative trait of the

ith offspring; i = 1,...,N independent observations

β0 the intercept

Gi explanatory variable representing the effect of locus A

Hi explanatory variable representing the effect of locus B

Ii explanatory variable representing the epistatic effect of

locus A and B

Eji explanatory variable representing the effect of the jth

environmental covariate of offspring i

βG, βH , βI , βEj
, βε regression coefficients

εi residual effects, ∼ N(0, σ2) or ∼ ln(0, σ2)

Each random explanatory variable in Equation 5.1 is a value that was independently

simulated. The details of which are described in the succeeding sections. The random

component εi which represents unmeasured environmental and genetic effects was

drawn from either a normal or lognormal distribution. QTs that are approximately

normally distributed or skewed to the right were simulated. Different types of QTs

were created using modified models based on Equation 5.1. Figure 5.1 illustrates

one type of QT that is influenced by two loci, age, gender, smoking habit and their

interactions. Other datasets have less complex QT, i.e. are only influenced by a single

locus and no interaction and other covariate effects. Still, other datasets were created

without the influence of any locus at all.

The simulation of datasets was started by creating three different types of popula-

tions - PopA, PopB and PopMix. The population type is defined by the minor allele

frequencies of the loci. The details of this are explained later. PopA and PopB are

both homogenous population while PopMix is a 50:50 mixture of subjects from PopA

and PopB. In each type of population, different datasets were created considering the

distributional type of the QT and the covariates affecting it. In general, there are

30 different main simulation schemes corresponding to 30 different types of datasets.
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Figure 5.1: A quantitative trait affected by genetic and non-genetic variables and their

interactions

Each type of dataset was created in 1000 replicates. An overview of the major criteria

for creating the datasets is shown in table 5.1.

Table 5.1: Major criteria for creating the simulated datasets

Type of Distribution of the Type of the QT according to the
Population QT response variable explanatory variables affecting it
PopA Normal QTN , QTL, QTLL, QTLLI or QTAll

Skewed QTN , QTL, QTLL, QTLLI or QTAll

PopB Normal QTN , QTL, QTLL, QTLLI or QTAll

Skewed QTN , QTL, QTLL, QTLLI or QTAll

PopMix Normal QTN , QTL, QTLL, QTLLI or QTAll

Skewed QTN , QTL, QTLL, QTLLI or QTAll

QTN refers to a quantitative trait without any locus or genetic effect. The modified

equation 5.1 that was used to create the quantitative trait contains only non-genetic

covariates. QTL is influenced by a single locus while QTLL is influenced by 2 loci.

QTLLI is generated from two-locus main effects and their epistasis. QTAll is similar

to QTLLI with the addition of other covariate effects. The details of the simulation

of each type of QT are also explained later. Other than the population type and the

QT, additional covariates such as the type of genetic model and also the number of

families in a dataset were also considered. Thus, increasing the types of datasets to

more than 30 in some simulation schemes.
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As mentioned before, the first step in the simulation is to create the different popu-

lations. Initially, genotypes of individuals are needed to create each population type.

The parents’ genotype data were first simulated. From these, the offspring’s genotypes

were generated. Afterwards, genetic main effects, epistatic effect and covariate effects

were created. Then finally, from the different genetic and/or non-genetic variables,

the quantitative trait Yi was generated. The details of the simulations are as follows:

5.1.2 Creating the genotypes

The genotypes or pairs of alleles for the parents and the offsprings are the first ex-

planatory variables created. Let us define two independent (unlinked) biallelic loci, A

and B. Locus A has alleles A1 and A2 with population frequencies p1 and p2, respec-

tively. Locus B has alleles B1 and B2 with population frequencies denoted by q1 and

q2, respectively. Alleles A1 and B1 are marked as the susceptibility alleles and in this

case also the minor allelles. The three possible genotypes (pairs of alleles) for Locus

A are: A1A1, A1A2 and A2A2. On the other hand, the possible genotypes for Locus

B are: B1B1, B1B2 and B2B2. Assuming Hardy-Weinberg equilibrium (see Chap-

ter 2, page 14), the specific allele frequencies were used to calculate the frequencies

of the three possible genotypes for each locus. Using this calculated distribution of

genotypes, the genotypes of male and female individuals were randomly generated for

each locus. Assuming that the population is randomly mating and that any parental

pairs or mating types are possible, the male and female individuals were randomly

paired to form the parents. Datasets with 1000 pairs and 2000 pairs of parents were

created. Three types of populations based on the minor allele frequencies (MAF) were

simulated. PopA was created using MAFs of p1=0.1 and q1=0.2 which refer to the

minor allele frequencies of alleles A1 and B1, respectively. For PopB, the minor allele

frequencies specified are p1=0.3 and q1=0.4. The third type of population (PopMix)

contains a 50:50 mixture of the first two types to create a population with admixture.

Table 5.2 shows a summary of the types of populations created.

After creating the pairs of parents, the mating type Mi was determined for each set

of parents. Considering two biallelic loci, there are 36 possible mating types as shown

in table 4.3 in page 85.

The genotype of the offspring is then created by randomly sampling from the possi-

ble genotype distribution given the parents’ genotypes. The probability of the possible
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Table 5.2: Types of simulated populations

Locus A Locus B Number of
Population MAF (p1) MAF (q1) parental pairs
PopA 0.10 0.20 1000

2000
PopB 0.30 0.40 1000

2000
PopMix 0.10 & 0.30 0.20 & 0.40 1000

2000

MAF (Minor Allele Frequency); p1 - frequency of allele A1; q1 - frequency of allele B1

genotype of the child is defined by the usual Mendelian law of inheritance (see page 13).

In locus A for example, if both parents are heterozygous (A1A2), the probability of a

heterozygous child is 50%, while the probabilities of a homozygous (A1A1 or A2A2)

child are both 25%.

5.1.3 Creating the genetic main effects (Gi and Hi)

The genetic main effect of each locus is a certain value contributed to the total value of

the QT of interest. The contributed effect was created by drawing a value from a given

distribution conditional on the assumed genetic model (i.e. additive, dominant and

recessive; see also page 16) and the genotype of the offspring. For creating a dataset

with normally distributed QT, the distribution where the genetic main effect was

drawn was also specified as normal. For creating a dataset with skewed to the right

QT distribution, the genetic main effect was drawn from a lognormal distribution.

Table 5.3 specifies the parameters used in creating the distributions where the locus

main effects were drawn. The values of the parameter means are assumed according

to the magnitude of effect differences desired to be seen conditional on the genetic

model. The standard deviations are fixed to 1. The parameter means used for the

lognormal distribution are also based on the values used for the normal distribution

which are either zero or the log scale equivalent of the non-zero mean used in the

normal distribution. This is to achieve a relatively similar magnitude of effect. Under

the dominant genetic model assumption, the parameter mean used to simulate the

genetic effect is higher with the presence of at least one susceptibility allele (i.e. A1

or B1) in the genotype. In the additive genetic model, the parameter mean increases
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with the number of the susceptibility allele while in the recessive genetic model, both

alleles in the genotype should be susceptibility alleles to exhibit a genetic effect. Locus

A’s main effect, Gi, was simulated either under a dominant or recessive genetic model

while locus B’s main effect, Hi, was simulated only under an additive genetic model

assumption. For example (see table 5.3), under an assumed dominant genetic model,

the genetic main effect contribution of the genotype A1A1 to a normally distributed

QT is randomly drawn from a distribution ∼ N(μ = 1.5 , σ = 1). Ideally, one

can create both locus A and locus B under different genetic models. However, just

one example of each type of genetic model would suffice for simulation purposes.

Also for simplicity, the genetic main effect of locus A under the recessive genetic

model was generated only from a normal distribution. So in the case of the recessive

genetic model, both normal and skewed QTs have locus A genetic main effect taken

from a normal distribution. It is not only the genetic main effects that controls the

distribution of the resulting QT. Other variables described later also contribute to the

QT value. The generation of the final QT was based on testing several values of the

different parameters in the generating model to achieve a QT distribution similar to

what is encountered in practice. The distribution of the QT in all simulation schemes

was checked so that it satisfies the desired normal or skewed to the right characteristic.

Table 5.3: Simulation scheme used in creating the genetic main effects

Assumed Genotype of Parameters* used in
Genetic Model offspring simulating the genetic effects
Dominant (D) A1A1 μ = 1.5 , σ = 1

A1A2 μ = 1.5 , σ = 1
A2A2 μ = −2.5 , σ = 1

Additive (A) B1B1 μ = 2.5 , σ = 1
B1B2 μ = 0 , σ = 1
B2B2 μ = −2.5 , σ = 1

Recessive (R) A1A1 μ = 2.5 , σ = 1
A1A2 μ = 0 , σ = 1
A2A2 μ = 0 , σ = 1

*For creating the genetic main effects contributing to a normally distributed QT. Example

graph for the distribution with μ = 1.5 and σ = 1 is shown on page 80.
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5.1.4 Creating the epistatic effects (Ii)

Epistasis or gene-gene interaction effect (Ii) was simulated considering genetic models

and not simply multiplying the two genetic main effects. The locus A was defined

to have either dominant or recessive main effect while locus B was defined to have

additive main effect. The epistatic effect was simulated either from a normal of

lognormal distribution conditional on the genotype at both loci. Table 5.4 shows the

parameter means used in simulating epistatic effects for a normally distributed QT.

For skewed QT, a lognormal distribution was used. The parameter means for the

lognormal distribution are either zero or the log scale equivalent of the non-zero mean

shown in table 5.4). The standard deviation used in the simulations is 1. Based on the

table below, an individual subject with A1A1 genotype at locus A and B1B2 genotype

at locus B will have an epistatic effect drawn from a distribution that is ∼ N(μ = 0,

σ = 1).

Table 5.4: Parameter means used in simulating normal distributions for the epistatic

effects of two loci with individual genetic main effects

Genotype at Locus B

B1B1 B1B2 B2B2

Genotype at Locus A

A1A1 -2.5 0 2.5

A1A2 1.5 0 -1.5

A2A2 -2.5 0 2.5

From the values shown in table 5.4, one can say that the genotype in locus B

can invert the effect of the genotype in locus A. On the other hand, locus A also

influences the effect of locus B. The interaction pattern shown in the table is based

on a simulation study of Kraja et al. (2009). This is just one type of ”biological”

epistasis or interaction between two biallelic loci. In the study of Hallgŕımsdóttir

and Yuster (2008), 387 distinct types of epistatic patterns have been described to

characterize a two-locus model.
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5.1.5 Creating the covariates (Eji)

Complex traits or diseases are usually affected by other environmental covariates in

addition to genetic effects and gene-gene interactions. Several non-genetic variables of

the offspring (i.e. age, gender and smoking status) were also created. These variables

were used in these simulation studies to create quantitative traits without genetic ef-

fects and also quantitative traits influenced by both genetic and non-genetic variables.

The age of the offspring was randomly sampled from a normal distribution with

mean age 46 years ± 5.0 years. The age distribution was truncated so that the

youngest age will not be below 18 years old and the oldest is 51 years old. Age 18 was

used as the lower age limit because most studies among adults are conducted from age

18 and above. The maximum of 51 years old was chosen after a genetic study on lung

cancer. Many genetic traits or diseases are usually expressed at a younger age. It is

therefore common for many genetic studies to put a younger maximum age limit. In

addition, recruiting study participants belonging to older age groups can increase the

probability of the trait or disease being investigated to be influenced by environmental

covariates rather than genetic factors. For the gender, equal proportions of male and

female offsprings were created in the dataset. This was done by randomly sampling

from a binomial distribution using a probability of 0.50. The smoking status of the

offspring was also created using a binomial distribution with a probability of 0.3 for

smokers. This is to create datasets with roughly 30% smokers and 70% non-smokers.

The choice of the smoking proportion was based on the key figures of adult daily

smoking prevalence in Europe which are between 20% to 44%. In Germany, current

tobacco smoking prevalence among males is 32% and 22% among females (WHO,

2009b).

Thus, three covariates affecting the quantitative trait were created, i.e. age ef-

fect, gender-smoking effect and locus-smoking effect, the latter constituting a gene-

environment interaction. To create the age effect, a value was randomly sampled

from a normal distribution with standard deviation of 1 and a mean which is de-

pendent on the age group of the offspring. There are six normal distributions of age

effects corresponding to six age groups. Older offsprings have higher mean age ef-

fect contributing to the quantitative trait. The specific parameter means used in the

simulation of the age effects are shown in table 5.5.

Gender-smoking effect was created by sampling from a normal distribution condi-
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5.1 The simulation scheme

Table 5.5: Parameter means for simulating the age effect

Age Group in years Mean age effect

18-30 1

31-35 2

36-40 3

41-45 4

46-50 5

= 51 6

in such a way that smoking males have higher mean contributing value to the response

variable while in females the value is lower and does not vary between smokers and

non-smokers. See table 5.6 for the parameter means used in the simulation of the

gender-smoking effect. The standard deviation used in the simulation is also 1.

Table 5.6: Parameter means for simulating the gender-smoking effect

Gender Smoker Mean gender-smoking effect

Male No 2

Yes 4

Female No 1

Yes 1

The last covariate, the locus-smoking effect, was also drawn from a normal distri-

bution conditional on the genotype at locus A and the smoking status. Offsprings

carrying more susceptibility alleles at locus A and at the same time smokers have

the highest mean contribution to the QT value compared to the other subgroups (see

table 5.7). Similar to the first two covariates, the standard deviation used in the sim-

ulation of the locus-smoking effect is also 1. The first two covariates are considered

non-genetic covariates.

5.1.6 Creating the other environmental effects or residuals (εi)

The residuals were simulated from a normal distribution or a lognormal distribution

with mean zero and standard deviation of 1.

95



Chapter 5. Simulation Studies

Table 5.7: Parameter means for simulating the locus-smoking effect

Genotype at Locus A Smoker Mean locus-smoking effect

A1A1 No 1

Yes 3

A1A2 No 1

Yes 2

A2A2 No 1

Yes 1

5.1.7 Creating the quantitative traits (Yi)

The final quantitative traits, Yi, are either approximately normally-distributed or

skewed to the right. These distributions are commonly encountered in genetics and

medical data. Different QTs were created according to the following scenarios:

1. QTs without locus effect (QTN)

The first quantitative traits simulated are those without genetic effects. In this si-

mulation scheme, only non-genetic covariates (i.e. age and gender-smoking effects)

and the residual were used to create the QT of the offsprings belonging to different

types of population as shown in table 5.8. Population PopA has lower minor allele

frequencies than PopB. PopMix consists of two populations (i.e. mixture of PopA and

PopB). Normally distributed and skewed traits were created in all simulation schemes.

In addition, all simulations were done in sample sizes of 1000 or 2000 family trios.

Equation 5.1 was used to generate Yi using previously calculated non-genetic

covariate effects and the following regression parameters: β0 = 50, βEage
= 0.1,

βEgender−smoke
=0.01, and βε = 0.89. The other regression parameters were set to 0.

Therefore,

Yi = 50 + 0.10Eage + 0.01Egender−smoke + 0.89εi (5.2)

As previously explained, the residual or random error εi is ∼ N(0, 1) for QTs

intended to be approximately normal in distributional shape. For skewed QTs, the εi

is ∼ ln(0, 1). Graphs of the distributions of the created QTs are shown in Figure 5.2.

The mean of the QT for normally distributed data in the figure is 50.5 ± 0.9. For the
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Table 5.8: No-locus effect simulation scenarios

Locus A Locus B Distribution Sample
Population MAF (p1) MAF (q1) of the QT size (n)
PopA 0.10 0.20 normal 1000

2000
skewed 1000

2000
PopB 0.30 0.40 normal 1000

2000
skewed 1000

2000
PopMix 0.10 & 0.30 0.20 & 0.40 normal 1000

2000
skewed 1000

2000

MAF (Minor Allele Frequency); p1 - frequency of allele A1; q1 - frequency of allele A1

skewed data, the mean of the QT is 51.9 ± 1.8. The graphs of other QTs created for

the other scenarios are similar in shape as the ones illustrated in Figure 5.2. For this

simulation scheme of no genetic effects, a total of 12 datasets were created. This is

considering the 3 types of populations, the 2 types of QTs (normal and skewed) and

the sample sizes (N=1000 and N=2000).
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Figure 5.2: Distribution of simulated quantitative traits with no genetic effects

(N=1000)

2. QTs with single-locus effect (QTL)

Some datasets were created with QTs affected only by a single locus and a random

error. Table 5.9 shows the different scenarios for this simulation. Again, there are

three types of populations simulated: two homogeneous (PopA and PopB) and one

heterogenous (PopMix). Either locus A or locus B was used in different simulation

set-ups. The generating model was created so that when locus A is used, the genetic

main effect size is 0.20. The model to generate the response variable Yi is:

Yi = 50 + 0.20Gi + 0.80εi (5.3)

where Gi and εi are as previously defined. The normal QTs are produced by specifying

a normal distribution in the independent simulation of the genetic main effect and the

residual, while the skewed QTs are produced by specifying a lognormal distribution

for both genetic main effect and residual. For generating the response variable when

locus B is used, the model is as follows:

Yi = 50 + 0.05Hi + 0.95εi (5.4)
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where Hi in this case is the genetic main effect of locus B which was previously

defined.

The main difference of locus A and locus B are their minor allele frequencies. In

addition, locus A has been used in simulating genetic main effects under a dominant

genetic model and in some cases under a recessive genetic model. Locus B on the

other hand was only used in simulating genetic main effects under the additive genetic

model. While there are two possible genetic models for locus A, locus B only has one.

It is possible to create exactly similar characteristics of locus A and B. However,

it would be more worthwhile to create different scenarios for testing the statistical

method. Table 5.9 shows only 18 types of dataset but considering the 2 sample sizes

(i.e. N = 1000 and N = 2000), a total of 36 types of datasets were created for this

simulation scheme.

Table 5.9: Single-locus effect simulation scenarios

Affecting Genetic Model of Distribution
Population Locus Affecting Locus of the QT
PopA A Dominant normal or skewed

B Additive normal or skewed
A Recessive normal or skewed

PopB A Dominant normal or skewed
B Additive normal or skewed
A Recessive normal or skewed

PopMix A Dominant normal or skewed
B Additive normal or skewed
A Recessive normal or skewed

3. QTs with two-locus effect (QTLL)

Datasets with QTs affected independently by two loci were created. No other covariate

effects were included other than the individual genetic main effects of the two loci.

For locus A, the genetic model was set to either dominant or recessive, while for locus

B, the genetic model was fixed to additive genetic model (see table 5.10). This was

done so as not to complicate too much the simulation scenarios. The βG for locus A
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was set to 0.20 and for locus B, βH was set to 0.05. The other effect on the trait is

attributed to random error (βε = 0.75). The equation used for simulating the Yi is:

Yi = 50 + 0.20Gi + 0.05Hi + 0.75εi (5.5)

Similar to the creation of QTs with single locus effect, QTs which are normally

distributed were simulated by using genetic main effects and residuals sampled from

normal distributions. For skewed QTs, affecting variables were randomly drawn from

lognormal distributions as detailed in previous sections. In this simulation scenario,

there are 24 types of datasets including datasets with different sample sizes.

Table 5.10: Two-locus effect simulation scenarios

Genetic Model Genetic Model Distribution
Population of Locus A of Locus B of the QT
PopA Dominant Additive normal or skewed

Recessive Additive normal or skewed
PopB Dominant Additive normal or skewed

Recessive Additive normal or skewed
PopMix Dominant Additive normal or skewed

Recessive Additive normal or skewed

4. QTs with two-locus effect and epistasis (QTLLI)

This simulation scenario is similar to that of table 5.10 where in the individual genetic

main effects of the two loci contribute to the QT variability. In this case, epistatic

effect additionally contributes to the variability of the QTs. The QTs were created

using modified Equation 5.1. The generating equation for Yi is shown below:

Yi = 50 + 0.20Gi + 0.05Hi + 0.05Ii + 0.70εi (5.6)

The Ii accounts for the ”biological” epistasis or interaction of locus A and B. In

contrast to the usual definition of interaction in statistics, the simulation of Ii (see

page 93) is somewhat ”biologically” inspired and therefore not just derived from simple
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multiplication of individual effects. The value of Ii depends on the genotype of the

offspring on both loci. In addition to the individual locus effect, the epistasis between

the two loci also contributes to the total QT value in this simulation scenario. In this

case, there are also 24 types of datasets simulated.

There may be cases when the genetic main effects are too small to detect and

only the epistatic effect is evident in the data. Therefore, in addition to the above

simulation, another simulation scheme was done where the epistatic effect is much

bigger than the individual genetic main effects. The model used for simulating the

quantitative trait is as follows:

Yi = 50 + 0.01Gi + 0.05Hi + 0.30Ii + 0.64εi (5.7)

where as previous, Gi and Hi are the genetic main effects of locus A and B, respec-

tively, Ii the variable accounting for epistatic effect and εi is the residual.

5. QTs with two-locus effect, epistasis and covariates (QTAll)

Datasets with QTs that include other covariate effects were also created. The co-

variates age, gender-smoking and locus-smoking effects are included having regression

coefficients 0.1, 0.01 and 0.01 respectively. The generating equation for Yi can be

written as:

Yi = 50 + 0.20Gi + 0.05Hi + 0.05Ii + 0.10Eage + 0.01Egender−smoke +

0.01Elocus−smoking + 0.58εi (5.8)

Like in the previous simulation scenarios, normally distributed QTs have Gi, Hi,

Ii and εi drawn from normal distributions. For skewed QTs, they were drawn from a

lognormal distribution. There are also 24 types of dataset created for this simulation

scenario.
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5.2 Statistical tests

The statistical tests were done considering a situation where there are two unlinked,

biallelic loci of interest. As mentioned in the introduction, the objective of the simu-

lation studies is to determine the power and type I error of the GQTDT method in

determining if two candidate genes show genetic main effects and an epistatic effect.

Therefore, the statistical method was used to test both the hypotheses of ”no genetic

main effects” and ”no epistatic effect”. The power and type I error of the GQTDT

were compared to a modified QTDTM. The modified QTDTM is referred here as

QTDTM* and includes a random variable for the mating type indicator instead of

a fixed variable as in the original QTDTM described in chapter 3. The QTDTM* is

theoretically equivalent to the GQTDT when the specified distribution of the response

variable or quantitative trait Yi in the GQTDT analysis has a normal distribution.

The same statistical analysis methods are applied in all types of simulated datasets.

The full model used in the analysis is as follows:

Yi = β0 + βMMi + βGGi + βHHi + βGHGiHi + εi (5.9)

where Yi, i = 1,2,...,N , are the random observations of the response variable which is

the continuous quantitative trait and Mi, Gi and Hi refer to the random explanatory

variables corresponding to the categorical mating type of the parents and genotype

scores of the subject at locus A and at locus B, respectively. No other covariates were

considered in the analyses. The βs are the unknown model parameters that must be

estimated and εi is the error term.

In the GQTDT analysis, the distribution of the response variable Yi is further

defined as follows:

Yi ∼ f(g1(θ1) = t1, g2(θ2) = t2, ..., gp(θp) = tp) (5.10)

where:

f is the distribution of Yi,

(θ1, ..., θp) are the parameters of f ,

g1, ..., gp are the link functions and

t1, ..., tp are the model formulae for the explanatory terms and/or random effects in

the predictors.
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In these simulation studies, the QTDTM* is used in the analysis of normally simu-

lated quantitative traits. The result is the same when a normal distribution is specified

for the response variable in the GQTDT analysis. Specifying a normal distribution in

the GQTDT analysis denotes using an identity and log link for the mean and disper-

sion parameters of the distribution, respectively. For the skewed quantitative traits,

the QTDTM* was applied as is while the GQTDT was applied using the best fitted

distribution. The generalized AIC was used in selecting the best fitted distribution.

For example, in one simulation scenario with skewed QT, the AIC for the fitted t-

family, lognormal and normal distributions are 2809, 3531 and 3615, respectively. The

t-family with the smallest AIC was chosen. The t-family distribution uses the identity

link for the mean, and the log link for both the dispersion and skewness parameters.

In practice, investigators more commonly look first at the individual genetic main

effects of genes before considering testing for interaction of genes. However, some genes

may have weak or no marginal effects but have significant joint or interaction effect.

In these simulation studies, we consider two candidate genes from the same biological

pathway and assume prior information that the genes may probably be associated to

the quantitative trait of interest. To test the null hypothesis of no genetic main effects,

i.e. H0: βG = βH = 0, the generalized likelihood ratio test was used to compare the

global deviances of the model with genetic main effects (β0 + βMMi + βGGi + βHHi)

and the model without genetic main effects (β0 + βMMi). For testing epistasis, i.e.

H0: βGH = 0, the model with epistasis (β0 + βMMi + βGGi + βHHi + βGHGiHi) is

compared to the model without epistasis (β0 + βMMi + βGGi + βHHi). Statistical

testing for detecting genetic main effects and epistatic effect was performed under

three commonly used genetic model assumptions, i.e. dominant, additive or recessive

genetic model was specified as the ”analysis genetic model”. In reality, one does not

know what is the true (in this case simulated) genetic model behind the effect of each

locus of interest, so this needs to be assumed. For simplicity, the same analysis genetic

model is assumed for both loci of interest in the analysis.

All statistical tests were evaluated at a level of significance α = 0.05. For each

simulation scenario, the detection rates of genetic main effects and epistasis were

noted. The number of the types of datasets varies in each simulation scenario but

the total number of replications for each type of dataset used in the analysis was

fixed to 1000. Type I error rates were calculated for the probability of rejecting the

null hypothesis of no genetic main effects and also for the probability of rejecting
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the null hypothesis of no epistasis given that the hypothesis is true. In datasets

where the alternative hypothesis speaks the truth about the data, the power to detect

the simulated effect was computed as the proportion of datasets that gave statistically

significant results (p ≤ 0.05) out of the total number of replications successfully tested.

Comparisons of the power or type I error of the GQTDT in different scenarios are

shown in the result tables.

5.3 Results

Generally, this section is organized according to the type of quantitative traits simu-

lated. Depending on the simulation scenario, power and/or type I error of the statisti-

cal methods (QTDTM* and GQTDT) are shown. The results of the tests for detecting

genetic main effects and epistasis are both presented. The results are tabulated ac-

cording to population type, affecting locus, QT distribution and number of subjects

(N) in the dataset. Results are also arranged according to the analysis genetic model

used in the test. Since there are three genetic model assumptions (i.e. dominant,

additive and recessive) being considered here, there are also three test results for each

type of dataset. They are indicated in the tables under columns Dom, Add and Rec

for dominant, additive and recessive analysis genetic models, respectively. For nor-

mally distributed QTs, only the result columns for QTDTM* have been filled-up since

the results are the same with the GQTDT analysis.

5.3.1 QTs without locus effect (QTN)

Tables 5.11 and 5.12 show the type I errors in detecting genetic main effects and

epistasis in datasets with quantitative traits not affected by any locus. In these

datasets, the proportion of falsely detecting genetic main effects and epistasis in the

analysis of normally distributed QTs using both methods is roughly around 5% to

7%. Slightly elevated false detection rates were noted in the analysis of datasets with

skewed quantitative traits. The error rates for some of these datasets were improved

when the sample sizes were increased from 1000 to 2000 family trios. The use of

the better fitted t-family distribution in the GQTDT analysis of skewed traits also

shows slightly elevated type I errors in detecting genetic main effects and epistasis

in some datasets. The result also shows that the slightly elevated type I error occur
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more often in PopB which has the highest minor allele frequencies among the three

populations. In few cases, the type I error cannot be accurately determined because of

the limited number of test that successfully converged. Convergence is not a problem

in the GQTDT when analyzing a normally distributed dataset. But in other types

of distributions, the problem of convergence may be encountered. In general, in this

simulation, 1% - 6% non-covergence has been observed in the analysis of datasets with

skewed QT. However, extreme number of non-convergence (> 50%) may be observed

in cases when certain genotype frequencies are too few or there is no observed variation

in the genotype. This can usually happen when the assumed genetic model in the

analysis is recessive and the minor allele frequency of the locus investigated is low, as

in the case of PopA (see table 5.12).

Table 5.11: Type I error in detecting genetic main effects in QTs with no-locus effect

Popu- QT Sample Type I error of QTDTM* Type I error of GQTDT
lation Type Size with with f = TF and
Type analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Normal 1000 0.046 0.050 0.059

2000 0.057 0.057 0.052
Skewed 1000 0.062 0.059 0.069 0.050 0.049 0.072

2000 0.057 0.058 0.066 0.071 0.048 0.048
PopB Normal 1000 0.064 0.056 0.056

2000 0.061 0.053 0.057
Skewed 1000 0.057 0.056 0.047 0.081 0.079 0.073

2000 0.060 0.052 0.056 0.081 0.045 0.068
PopMix Normal 1000 0.049 0.052 0.065

2000 0.055 0.065 0.063
Skewed 1000 0.071 0.066 0.068 0.053 0.065 0.046

2000 0.063 0.046 0.056 0.053 0.058 0.071

Population types differ in the minor allele frequencies at the locus of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See page 96);

TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive genetic model,

respectively.
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Table 5.12: Type I error in detecting epistasis in QTs with no-locus effect

Popu- QT Sample Type I error of QTDTM* Type I error of GQTDT
lation Type Size with with f = TF and
Type analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Normal 1000 0.044 0.046 0.072

2000 0.043 0.047 0.050
Skewed 1000 0.061 0.053 0.054 0.064 0.064 -

2000 0.066 0.058 0.046 0.060 0.083 -
PopB Normal 1000 0.050 0.056 0.059

2000 0.055 0.049 0.038
Skewed 1000 0.049 0.061 0.050 0.073 0.079 0.079

2000 0.051 0.057 0.061 0.081 0.083 0.062
PopMix Normal 1000 0.055 0.052 0.039

2000 0.054 0.050 0.037
Skewed 1000 0.045 0.044 0.051 0.023 0.059 0.086

2000 0.054 0.046 0.047 0.061 0.070 0.079

Population types differ in the minor allele frequencies at the locus of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See page 96);

TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive genetic model,

respectively; ”-” Type I error cannot be accurately determined due to limited number of tests that

successfully converged.

5.3.2 QTs with single-locus effect (QTL)

Detection of genetic main effects were compared across different datasets with QTs

affected only by a single locus. The performance of the methods in detecting the

single locus effect (see table 5.13) differ across populations, QT distributional types

and the genetic model used to simulate the locus. The methods showed high power (>

80%) in detecting genetic main effects when the QT is normally distributed and the

correct genetic model is specified in the analysis. It can be noted in some cases that

regardless of the underlying population, if the wrong genetic model is specified, the

power to detect the locus effect is minimal. Take for example the datasets with locus

A simulated under dominant genetic model and with normally distributed QTs (first

row of table 5.13) . The power to detect the genetic main effects when a recessive

genetic model is assumed during statistical testing is only 10.5%.

In the normally distributed QTs, the power under the dominant and additive genetic
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with the dominant genetic model. However, the difference in power between using

dominant and additive genetic model assumptions in the test can be seen when the

locus involved was originally simulated with additive or recessive genetic model. De-

tection rates in datasets with locus effect simulated with the additive genetic model

is not as satisfactory as datasets simulated with the dominant model. This is partly

because the locus with the additive model was simulated with low contribution to the

QT variability. The effect of the allele frequency in the power is also seen especially if

one would look at the results of the analysis of datasets with recessive genetic model

in PopA. Even if the QT is normally distributed and the correct genetic model was

specified, the power could go as low as 26.5% (marked � in table 5.13). The minor al-

lele frequency is lower in the datasets from PopA than those from PopB and PopMix.

The power was improved when the sample size was increased, as seen in the result in

the same table (marked �). The most evident result is the very low power of detecting

genetic main effects when the distribution of the QT is skewed and the QTDTM* or

GQTDT with specified normal distribution was used in the analysis. This is obvious

regardless of the type of population and type of genetic model used to generate the

data. Although increased sample size helped a bit to improve the power of the tests

in most datasets, the same trend of low power for skewed traits is observed in all

the other simulation scenarios. The use of the t-family distribution in the GQTDT

analysis helped improved the power of detecting genetic main effects in skewed traits.

For example, the dataset from PopB whose skewed QT is affected by locus A which

was simulated with recessive genetic model showed improved power when the appro-

priate distribution was used in the GQTDT analysis (See marked † in table 5.13).

The improvement in power is noticeable especially when the correct genetic model is

specified in the analysis (i.e. from 44.6% to 98.7% power under the recessive genetic

model assumption). However, this big improvement is only obvious when the locus

involved contributes a sizeable effect to the variability of the quantitative trait as in

the case of locus A. In the case of locus B which has a smaller contribution to the QT

variability, the power of the GQTDT method in detecting genetic main effects is quite

low. For example, in dataset marked ”‡”, the power are only 10.1%, 10% and 8.5%

under the dominant, additive and recessive genetic model assumptions, respectively.

Tests for epistatic effects were also made to determine false positive detection of

epistasis in QTs affected only by a single locus. The type I errors of both methods
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Table 5.13: Power to detect genetic main effects in QTs with single-locus effect
Popu- Affec- Simu- QT Sam- Power of QTDTM* Power of GQTDT
lation ting lated Type ple with with f = TF and
Type Locus Genetic Size analysis genetic model analysis genetic model

Model Dom Add Rec Dom Add Rec
PopA A Dom Normal 1000 1.000 1.000 0.105

2000 1.000 1.000 0.154
Skewed 1000 0.081 0.083 0.072 0.216 0.191 0.105

2000 0.123 0.110 0.068 0.306 0.321 0.071
B Add Normal 1000 0.272 0.304 0.100

2000 0.487 0.560 0.167
Skewed 1000 0.058 0.050 0.073 0.071 0.079 0.121

2000 0.063 0.061 0.068 0.071 0.084 0.072
A Rec Normal 1000 0.058 0.070 0.265�

2000 0.062 0.098 0.468�

Skewed 1000 0.052 0.058 0.112 0.092 0.087 0.259
2000 0.062 0.070 0.160 0.080 0.111 0.518

PopB A Dom Normal 1000 1.000 1.000 0.222
2000 1.000 1.000 0.407

Skewed 1000 0.084 0.088 0.056 0.364 0.282 0.080
2000 0.141 0.127 0.057 0.682 0.469 0.116

B Add Normal 1000 0.314 0.469 0.242
2000 0.562 0.735 0.418

Skewed 1000 0.054 0.054 0.056 0.101 0.100 0.085 ‡
2000 0.056 0.055 0.056 0.090 0.081 0.099

A Rec Normal 1000 0.086 0.648 0.986
2000 0.102 0.921 1.000

Skewed 1000 0.065 0.200 0.446 0.085 0.632 0.987 †
2000 0.071 0.347 0.747 0.129 0.957 1.000

PopMix A Dom Normal 1000 1.000 1.000 0.164
2000 1.000 1.000 0.277

Skewed 1000 0.091 0.092 0.066 0.255 0.244 0.052
2000 0.117 0.104 0.060 0.548 0.400 0.052

B Add Normal 1000 0.279 0.370 0.182
2000 0.521 0.668 0.304

Skewed 1000 0.075 0.072 0.064 0.070 0.083 0.064
2000 0.057 0.050 0.062 0.087 0.070 0.071

A Rec Normal 1000 0.052 0.324 0.816
2000 0.056 0.562 0.988

Skewed 1000 0.059 0.128 0.268 0.090 0.423 0.899
2000 0.042 0.180 0.467 0.062 0.663 0.996

Population types differ in the minor allele frequencies at the locus of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See page 98);

TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive genetic model,

respectively; �, �, ‡ and † are referred to in the text.
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Table 5.14: Type I error in detecting epistasis in QTs with single-locus effect
Popu- Affec- Simu- QT Sam- Type I error of QTDTM* Type I error of GQTDT
lation ting lated Type ple with with f = TF and
Type Locus Genetic Size analysis genetic model analysis genetic model

Model Dom Add Rec Dom Add Rec
PopA A Dom Normal 1000 0.047 0.052 0.048

2000 0.048 0.050 0.044
Skewed 1000 0.065 0.053 0.054 0.043 0.056 -

2000 0.069 0.060 0.044 0.060 0.072 -
B Add Normal 1000 0.048 0.048 0.064

2000 0.042 0.047 0.057
Skewed 1000 0.064 0.052 0.054 0.049 0.057 -

2000 0.070 0.060 0.044 0.060 0.060 -
A Rec Normal 1000 0.067 0.064 0.063

2000 0.058 0.062 0.057
Skewed 1000 0.050 0.054 0.045 0.056 0.072 -

2000 0.053 0.050 0.052 0.049 0.071 -
PopB A Dom Normal 1000 0.052 0.057 0.051

2000 0.051 0.047 0.033
Skewed 1000 0.046 0.057 0.052 0.071 0.064 0.069

2000 0.053 0.052 0.057 0.073 0.069 0.037
B Add Normal 1000 0.052 0.058 0.055

2000 0.053 0.045 0.037
Skewed 1000 0.047 0.059 0.051 0.069 0.063 0.079

2000 0.054 0.054 0.057 0.063 0.068 0.036
A Rec Normal 1000 0.059 0.062 0.057

2000 0.060 0.066 0.057
Skewed 1000 0.041 0.053 0.060 0.058 0.054 0.076

2000 0.047 0.058 0.051 0.066 0.057 0.077
PopMix A Dom Normal 1000 0.057 0.060 0.031

2000 0.051 0.063 0.031
Skewed 1000 0.049 0.047 0.055 0.052 0.076 0.079

2000 0.054 0.053 0.047 0.070 0.078 0.078
B Add Normal 1000 0.052 0.050 0.045

2000 0.054 0.047 0.039
Skewed 1000 0.049 0.047 0.057 0.063 0.074 0.076

2000 0.054 0.049 0.048 0.070 0.069 0.079
A Rec Normal 1000 0.066 0.068 0.057

2000 0.048 0.065 0.050
Skewed 1000 0.053 0.062 0.060 0.070 0.054 0.067

2000 0.057 0.053 0.050 0.074 0.057 0.054

Population types differ in the minor allele frequencies at the locus of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See page 98);

TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive genetic model,

respectively; ”-” Type I error cannot be accurately determined due to limited number of tests that

successfully converged.

in detecting epistatic effect are shown in table 5.14. The GQTDT method showed

acceptable type I error rates in testing the hypothesis of no epistatic effect. However,

like in the results seen in the datasets with no locus effect, some type I errors are

elevated to 6%-7%.
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5.3.3 QTs with two-locus effect (QTLL)

In datasets with two-locus effect, similar results as the single locus were noted (see

tables 5.15 and 5.16). The results show high power in detecting genetic main effects

when the QT is normally distributed and at least one of the modes of inheritance

or genetic model is correctly specified in the analysis. In cases when one of the

affecting loci was simulated from a recessive genetic model and the other from an

additive genetic model, the power is lower in determining the genetic main effects.

The power of the GQTDT is observed to be higher in datasets with higher minor

allele frequencies. Analysis in PopB and PopMix will usually have higher power

compared to the analysis of similar datasets from PopA which has the lowest minor

allele frequencies among the three types of populations.

In skewed traits, the power of the GQTDT is markedly improved when using the

t-family distribution and when the correct genetic model is assumed. In other simu-

lations, up to 4x or more increase in power is usually observed when a better fitted

distribution and correct genetic model is specified in the analysis. Examples of this

increased power can be seen in results marked ’‡’ in table 5.15.

As to errors in detecting the non-existing epistasis in this simulation scenario, the

performance of the GQTDT is the same as with previous simulation schemes. The

observed type I error in the analysis of normally distributed traits is around 5%-6%

with slight elevation in some cases of up to 7%. Type I error in detecting epistasis

in skewed traits are observed to be slightly higher than type I error in normally

distributed traits. In the mixed population, one dataset with skewed QT was noted

to have the highest type I error (9%) in the simulation. In general, the higher type I

errors (6%-8%) are also observed in other datasets from homogenous populations.
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Table 5.15: Power to detect genetic main effects in QTs with 2-locus effect
Popu- Locus A Locus B QT Sam- Power of QTDTM* Power of GQTDT
lation Genetic Genetic Type ple with with f = TF and
Type Model Model Size analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 1.000 1.000 0.185

2000 1.000 1.000 0.327
Skewed 1000 0.086 0.085 0.073 0.238 0.246 0.112

2000 0.138 0.124 0.071 0.386 0.358 0.084
Rec Add Normal 1000 0.406 0.453 0.370

2000 0.658 0.740 0.661
Skewed 1000 0.055 0.066 0.122 0.130 0.138 0.328

2000 0.067 0.074 0.174 0.084 0.146 0.585
PopB Dom Add Normal 1000 1.000 1.000 0.498

2000 1.000 1.000 0.810
Skewed 1000 0.086 0.098 0.057 0.405 ‡ 0.346 ‡ 0.095

2000 0.159 0.140 0.066 0.727 ‡ 0.545 ‡ 0.098
Rec Add Normal 1000 0.468 0.923 0.994

2000 0.777 0.998 1.000
Skewed 1000 0.072 0.236 0.490 0.108 0.712 ‡ 0.996 ‡

2000 0.072 0.405 0.792 0.146 0.976 ‡ 1.000 ‡
PopMix Dom Add Normal 1000 1.000 1.000 0.359

2000 1.000 1.000 0.611
Skewed 1000 0.096 0.094 0.070 0.329 0.284 0.052

2000 0.137 0.120 0.067 0.586 0.526 0.096
Rec Add Normal 1000 0.416 0.734 0.909

2000 0.713 0.958 0.998
Skewed 1000 0.058 0.137 0.294 0.101 0.475 0.924

2000 0.046 0.206 0.515 0.095 0.744 1.000

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 100); TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive

genetic model, respectively; ‡ is referred to in the text.
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Table 5.16: Type I error in detecting epistasis in QTs with 2-locus effect
Popu- Locus A Locus B QT Sam- Type I error of QTDTM* Type I error of GQTDT
lation Genetic Genetic Type ple with with f = TF and
Type Model Model Size analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 0.047 0.053 0.048

2000 0.048 0.050 0.044
Skewed 1000 0.065 0.053 0.054 0.056 0.049 -

2000 0.069 0.060 0.044 0.060 0.073 -
Rec Add Normal 1000 0.065 0.068 0.054

2000 0.058 0.058 0.060
Skewed 1000 0.049 0.053 0.045 0.057 0.073 -

2000 0.053 0.051 0.052 0.049 0.067 -
PopB Dom Add Normal 1000 0.047 0.057 0.054

2000 0.052 0.050 0.035
Skewed 1000 0.046 0.058 0.052 0.066 0.069 0.077

2000 0.052 0.053 0.057 0.073 0.071 0.037
Rec Add Normal 1000 0.058 0.061 0.054

2000 0.059 0.071 0.053
Skewed 1000 0.040 0.054 0.061 0.059 0.045 0.076

2000 0.047 0.059 0.051 0.061 0.062 0.070
PopMix Dom Add Normal 1000 0.057 0.061 0.035

2000 0.055 0.069 0.031
Skewed 1000 0.049 0.047 0.055 0.059 0.076 0.069

2000 0.054 0.052 0.047 0.069 0.068 0.070
Rec Add Normal 1000 0.066 0.072 0.061

2000 0.048 0.063 0.047
Skewed 1000 0.052 0.061 0.060 0.070 0.051 0.068

2000 0.056 0.053 0.050 0.074 0.094 0.053

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 100); TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive

genetic model, respectively; ”-” Type I error cannot be accurately determined due to limited number of

tests that successfully converged.
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5.3.4 QTs with two-locus effect and epistasis (QTLLI)

The performance of the QTDTM* and the GQTDT when applied to datasets with

both genetic main effects and epistatic effect is tabulated in tables 5.17 and 5.18.

Given a normally distributed trait, the power to detect the genetic main effects in the

GQTDT analysis is fairly high when there is epistasis in the data. This holds true even

if the genetic model is wrongly specified in the analysis. For example, in PopA with

a dominant-additive interacting loci and normal QT (see ‡ in table 5.17), the power

to detect the genetic main effects under a wrongly specified recessive genetic model

is almost double (34%) than in similar dataset (see table 5.15) where the QTs have

no epistatic effect. In the case of skewed traits, the GQTDT performs better than

QTDTM* when the appropriate distribution is used. The improvement in power is

double in some cases when the correct genetic model was specified. Take for example

the case of PopB with simulated recessive-additive interacting loci. Even at a smaller

sample size (see � in table 5.17), the big improvement in power is clearly seen when

the TF distribution is used and the assumed analysis genetic model is the same as any

of the ”true” genetic model of the simulated loci, that is, either recessive or additive

genetic model.

The detection of epistasis has much lower power than the detection of genetic main

effects in both normally distributed and skewed traits (see table 5.18). Considering the

small magnitude of the simulated epistatic effect, the power of both statistical tests

cannot be expected to be high. At a larger sample size, the power to detect epistasis

in the normally distributed traits increased considerably in all types of populations

assuming either the dominant or additive genetic model. Under the recessive model

assumption, the increase in power in both methods to detect epistasis when the sample

size was increased to 2000 is minimal. In the case of the skewed traits, the power to

detect epistasis effect is not satisfactory even at increased sample size. Specifying a

TF distribution for better fit only minimally increased the power of the GQTDT to

detect the epistatic effect.
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Table 5.17: Power to detect genetic main effects in QTs with 2-locus effect and epis-

tasis
Popu- Locus A Locus B QT Sam- Power of QTDTM* Power of GQTDT
lation Genetic Genetic Type ple with with f = TF and
Type Model Model Size analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 1.000 1.000 0.340‡

2000 1.000 1.000 0.628
Skewed 1000 0.114 0.108 0.076 0.397 0.352 0.127

2000 0.213 0.199 0.073 0.624 0.659 0.118
Rec Add Normal 1000 0.925 0.969 0.523

2000 0.999 1.000 0.843
Skewed 1000 0.059 0.078 0.123 0.158 0.188 0.358

2000 0.081 0.110 0.192 0.179 0.309 0.578
PopB Dom Add Normal 1000 1.000 1.000 0.636

2000 1.000 1.000 0.922
Skewed 1000 0.114 0.110 0.059 0.501 0.423 0.131

2000 0.191 0.175 0.075 0.830 0.679 0.132
Rec Add Normal 1000 0.814 0.993 0.997

2000 0.982 1.000 1.000
Skewed 1000 � 0.078 0.278 0.535 0.131 0.740 0.996

2000 0.078 0.465 0.836 0.187 0.986 1.000
PopMix Dom Add Normal 1000 1.000 1.000 0.494

2000 1.000 1.000 0.816
Skewed 1000 0.121 0.121 0.069 0.412 0.448 0.084

2000 0.182 0.172 0.074 0.759 0.664 0.122
Rec Add Normal 1000 0.860 0.981 0.939

2000 0.992 1.000 0.998
Skewed 1000 0.063 0.165 0.323 0.128 0.529 0.922

2000 0.073 0.259 0.567 0.203 0.807 1.000

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 100); TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive

genetic model, respectively; � and ‡ are referred to in the text.
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Table 5.18: Power to detect epistasis in QTs with 2-locus effect and epistasis
Popu- Locus A Locus B QT Sam- Power of QTDTM* Power of GQTDT
lation Genetic Genetic Type ple with with f = TF and
Type Model Model Size analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 0.314 0.287 0.036

2000 0.553 0.516 0.042
Skewed 1000 0.063 0.055 0.054 0.103 0.092 -

2000 0.061 0.062 0.044 0.106 0.107 -
Rec Add Normal 1000 0.330 0.317 0.054

2000 0.558 0.546 0.064
Skewed 1000 0.057 0.055 0.045 0.100 0.120 -

2000 0.062 0.061 0.054 0.108 0.107 -
PopB Dom Add Normal 1000 0.455 0.276 0.090

2000 0.759 0.446 0.116
Skewed 1000 0.062 0.066 0.052 0.113 0.087 0.109

2000 0.061 0.053 0.062 0.169 0.135 0.062
Rec Add Normal 1000 0.468 0.300 0.104

2000 0.760 0.490 0.148
Skewed 1000 0.050 0.054 0.063 0.086 0.049 0.081

2000 0.059 0.065 0.056 0.157 0.106 0.087
PopMix Dom Add Normal 1000 0.449 0.408 0.055

2000 0.726 0.665 0.067
Skewed 1000 0.056 0.050 0.051 0.078 0.116 0.071

2000 0.064 0.069 0.052 0.121 0.103 0.078
Rec Add Normal 1000 0.437 0.301 0.083

2000 0.706 0.501 0.108
Skewed 1000 0.058 0.057 0.061 0.095 0.067 0.065

2000 0.060 0.064 0.048 0.132 0.100 0.092

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 100); TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive

genetic model, respectively; ”-” Type I error cannot be accurately determined due to limited number of

tests that successfully converged.

Additional simulations were done to further check the performance of the GQTDT

in analyzing QTs with simulated genetic main effects and epistasis. A different sta-

tistical model was used to generate the datasets. In this case, the model contains

higher epistatic effect than the individual genetic main effects (See equation 5.7 on

page 101). Tables 5.19 and 5.20 show the results of applying the GQTDT in these

simulated datasets. In determining genetic main effects in the normally distributed

traits, the GQTDT showed consistently high power in all simulation schemes but in

the analysis of the skewed traits with the appropriately fitted distribution, the highest

power observed is only 51%. Compared to the results in determining genetic main
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Table 5.19: Power of the GQTDT to detect genetic main effects in QTs with 2-locus

effect and strong epistasis

Popu- Locus A Locus B QT Sample Power of GQTDT
lation Genetic Genetic Type Size with f = NO or TF and
Type Model Model analysis genetic model

Dom Add Rec
PopA Dom Add Normal 1000 1.000 1.000 0.997

Skewed 1000 0.495 0.509 0.217
Rec Add Normal 1000 1.000 1.000 1.000

Skewed 1000 0.458 0.499 0.221
PopB Dom Add Normal 1000 1.000 1.000 0.999

Skewed 1000 0.186 0.280 0.206
Rec Add Normal 1000 1.000 1.000 0.995

Skewed 1000 0.200 0.293 0.175
PopMix Dom Add Normal 1000 1.000 1.000 0.997

Skewed 1000 0.334 0.370 0.207
Rec Add Normal 1000 1.000 1.000 0.992

Skewed 1000 0.302 0.392 0.220

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 101); NO = normal distribution; TF = t-family distribution used for the analysis of skewed traits;

Dom, Add, and Rec refer to dominant, additive and recessive genetic model, respectively.

effects in skewed QTs in table 5.17, the power for the skewed QTs in this case is

lower. A major factor in this difference is the magnitude of ”true” effect size being

measured. In this situation, locus A was simulated to have only 0.01 effect size. This

decreases the total genetic main effects contributed by the two loci. In the case of the

normally distributed trait, the condition did not diminish the power in determining

genetic main effects. In the analysis under the recessive genetic model, the power was

even improved. The test in the normally distributed QTs possibly gained power from

the higher interaction effect in the simulated dataset.

In determining epistasis, noticeable increase in power was seen in the GQTDT

analysis of both normal and skewed QTs (see table 5.20). This is expected because of

the higher epistatic effect simulated in this scenario. In the normally distributed QTs,

the power to detect epistasis is 100% under both dominant and additive genetic model

regardless whether the population is mixed or not. Under the recessive model, the

power is not as high as the power under the dominant and additive genetic models,
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but the power is observed to be much higher than in the previous simulation scenario

where the ”true” epistatic effect is smaller. The observed power in testing under the

recessive genetic model is not dependent on whether the population is homogenous or

heterogenous. PopB which has the highest minor allele frequencies among the three

populations shows the highest power followed by PopMix. PopA in this case has

uncomputable power due to the high proportion of tests that failed to converge. In

the analysis of the skewed QTs, the power is not as high compared to the result when

the QT is normally distributed. However, compared to the previous scenario, the

power of the GQTDT to determine epistasis is three times higher in general. Again,

this is expected because of the higher epistatic effect simulated in this case.

Table 5.20: Power of the GQTDT to detect epistasis in QTs with 2-locus effect and

strong epistasis

Popu- Locus A Locus B QT Sample Power of GQTDT
lation Genetic Genetic Type Size with f = NO or TF and
Type Model Model analysis genetic model

Dom Add Rec
PopA Dom Add Normal 1000 1.000 1.000 -

Skewed 1000 0.289 0.288 -
Rec Add Normal 1000 1.000 1.000 -

Skewed 1000 0.273 0.275 -
PopB Dom Add Normal 1000 1.000 1.000 0.928

Skewed 1000 0.427 0.287 0.137
Rec Add Normal 1000 1.000 1.000 0.934

Skewed 1000 0.383 0.237 0.153
PopMix Dom Add Normal 1000 1.000 1.000 0.555

Skewed 1000 0.377 0.291 0.155
Rec Add Normal 1000 1.000 1.000 0.613

Skewed 1000 0.359 0.275 0.146

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 100); NO = normal distribution; TF = t-family distribution used for the analysis of skewed traits;

Dom, Add, and Rec refer to dominant, additive and recessive genetic model, respectively; ”-” Type I error

cannot be accurately determined due to limited number of tests that successfully converged.
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5.3.5 QTs with two-locus effect, epistasis and covariates (QTAll)

Datasets with genetic main effects, epistasis and additional covariates were simulated

to determine the behavior of the statistical methods in this situation. The same null

hypotheses of no genetic main effects and no epistasis were tested. Pretending that

there are no additional covariates affecting the quantitative trait, the same statistical

analysis model as in all previous analysis was used. The results show that as long as the

trait is normally distributed and at least one of the genetic model is correctly specified

in the analysis, both QTDTM* and GQTDT show excellent power in detecting genetic

main effects. In cases were one of the loci was simulated with a recessive genetic

model, lower power to detect the genetic main effects was noted when the minor allele

frequency in the population is low. This happens even if the correct genetic model

is specified during statistical testing. However, the power to detect the genetic main

effects in this case was satisfactorily improved when the sample size was increased.

For example, in table 5.21, the result for PopA with recessive-additive genetic model

and normal QT showed only 65.8% power (marked � in the table) when the analysis

was done using recessive genetic model assumption for both loci. At larger sample

size, the power became 93.6%. Comparing the results of populations PopA and PopB,

the power of the tests to determine the genetic main effects is higher (100%; marked
� in table 5.21) in an example dataset from PopB where the minor allele frequency is

high.

In this simulation scenario, there are observed improvements in the power of the

GQTDT to detect the genetic main effects when the QT is not normally distributed.

When using a better fitted distribution and at least one correct genetic model as-

sumption, the power can range from 85% to 100%. This is especially observed when

the minor allele frequencies of the loci of interest is high in the population, as in the

case of PopB (see † in table 5.21). The results in the PopMix datasets are not much

different from the PopB dataset results. The slightly higher power noted in PopB can

be due to the fact that the minor allele frequencies in PopB are higher compared to

PopMix datasets.

Regarding the detection of epistasis, higher powers are observed in the result of

the analysis of QTs affected additionally by other covariates (table 5.22) than QTs

without covariates (table 5.18). The increase in power is appreciable in QTs that are

normally distributed but not in QTs that are skewed.

118



5.3 Results

Table 5.21: Power to detect genetic main effects in QTs with 2-locus, epistasis &

covariates
Popu- Locus A Locus B QT Sam- Power of QTDTM* Power of GQTDT
lation Genetic Genetic Type ple with with f = TF and
Type Model Model Size analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 1.000 1.000 0.422

2000 1.000 1.000 0.777
Skewed 1000 0.149 0.141 0.077 0.493 0.451 0.131

2000 0.273 0.266 0.075 0.843 0.786 0.167
Rec Add Normal 1000 0.974 0.986 0.658�

2000 1.000 1.000 0.936
Skewed 1000 0.066 0.090 0.152 0.173 0.205 0.426

2000 0.092 0.136 0.241 0.214 0.362 0.696
PopB Dom Add Normal 1000 1.000 1.000 0.753

2000 1.000 1.000 0.963
Skewed 1000 0.162 0.149 0.073 0.594 0.500 0.134

2000 0.273 0.239 0.081 0.910 0.848 0.153
Rec Add Normal 1000 0.907 0.997 1.000�

2000 0.999 1.000 1.000
Skewed 1000 0.086 0.378 0.700 0.149 0.848† 1.000†

2000 0.092 0.630 0.938 0.227 0.990† 1.000†
PopMix Dom Add Normal 1000 1.000 1.000 0.609

2000 1.000 1.000 0.905
Skewed 1000 0.148 0.144 0.073 0.526 0.497 0.096

2000 0.268 0.242 0.082 0.904 0.774 0.139
Rec Add Normal 1000 0.945 0.998 0.983

2000 1.000 1.000 1.000
Skewed 1000 0.075 0.206 0.449 0.173 0.618 0.955

2000 0.089 0.348 0.775 0.219 0.914 1.000

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables (See

page 101); TF = t-family distribution; Dom, Add, and Rec refer to dominant, additive and recessive

genetic model, respectively; �, � and † are referred to in the text.
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Table 5.22: Power to detect epistasis in QTs with 2-locus effect, epistasis & covariates
Popu- Locus A Locus B QT Sample Power of QTDTM* Power of GQTDT
lation Genetic Genetic Type Size with with f = TF and
Type Model Model analysis genetic model analysis genetic model

Dom Add Rec Dom Add Rec
PopA Dom Add Normal 1000 0.401 0.350 0.040

2000 0.676 0.623 0.039
Skewed 1000 0.064 0.061 0.051 0.090 0.098 -

2000 0.064 0.059 0.048 0.120 0.155 -
Rec Add Normal 1000 0.415 0.410 0.054

2000 0.686 0.684 0.062
Skewed 1000 0.061 0.054 0.045 0.115 0.099 -

2000 0.061 0.067 0.056 0.138 0.121 -
PopB Dom Add Normal 1000 0.584 0.342 0.088

2000 0.869 0.539 0.138
Skewed 1000 0.066 0.064 0.050 0.110 0.100 0.100

2000 0.078 0.059 0.061 0.143 0.142 0.054
Rec Add Normal 1000 0.587 0.365 0.112

2000 0.857 0.594 0.182
Skewed 1000 0.046 0.059 0.063 0.068 0.081 0.072

2000 0.061 0.067 0.058 0.124 0.120 0.058
PopMix Dom Add Normal 1000 0.561 0.512 0.048

2000 0.829 0.791 0.077
Skewed 1000 0.061 0.051 0.047 0.077 0.109 0.089

2000 0.071 0.072 0.054 0.096 0.121 0.078
Rec Add Normal 1000 0.553 0.389 0.093

2000 0.830 0.603 0.121
Skewed 1000 0.058 0.067 0.065 0.089 0.075 0.068

2000 0.061 0.061 0.049 0.115 0.112 0.083

Population types differ in the minor allele frequencies at the two loci of interest (See page 91); The normal

and skewed QTs were simulated using the same model parameters and explanatory variables. They only

differ in the distribution of some explanatory variables and residuals (See page 101); TF = t-family

distribution; Dom, Add, and Rec refer to dominant, additive and recessive genetic model, respectively; ”-”

Type I error cannot be accurately determined due to limited number of tests that successfully converged.
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5.4 Discussion

The simulation studies showed the powers and type I errors of the GQTDT in different

scenarios. In phenotypes or QTs that are normally distributed, the natural choice

in the GQTDT analysis is to specify a normal distribution which means using an

identitiy link for the mean parameter of the distribution. In this case, the result of

the GQTDT is the same as that of the QTDTM by Gauderman (2003) when the

mating type indicator is considered as a random variable. The observed power is

very good (80% to 100%) in detecting genetic main effects except in cases when the

loci were simulated from a recessive genetic model or the minor allele frequency is

very low. This issue of low power in the case of a recessive genetic model is not

a new or unexplained phenomena in genetic analysis. The condition in a recessive

genetic model that both alleles should be susceptibility alleles before an effect on the

response variable is observed makes it less frequent for the effect to be seen. This

in turn affects the power of any test used to detect genetic effects. In general, the

power the GQTDT is consistently high in detecting genetic main effects in the case

of dominant and additive genetic model. However, low power may also be seen when

analyzing data where the minor allele frequencies are low. This observation is not

unique to the GQTDT and in general also true for other tests that are based on

counting alleles and genotypes.

In detecting epistasis in normally distributed quantitative traits, the power of the

GQTDT can also be considered satisfactory given the small epistatic effect simulated

in the data. It was noted to range from 30% to 86% depending on the simulated loci

and the sample size. The power to detect epistasis improved when the sample size

was increased. In the additional simulation (page 117) where the simulated epistatic

effect of the two loci was increased, the GQTDT as expected showed higher power

in detecting epistasis in both normally distributed and skewed traits. Except in the

case of the recessive genetic model, the power to detect strong epistasis in normally

distributed QTs is 100%. In the skewed QTs, although the power of the GQTDT

is not high, it is considerably higher than the QTDTM*. In simulations where the

”true” epistatic effect is strong, the power of the GQTDT to detect epistasis is higher,

as expected, compared to simulations where the the ”true” epistasis in the data is

weak.

With regard to the results of the analysis of the skewed quantitative traits, several
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detect genetic main effects when one specifies a distribution and a model that fits the

data well. Logically, it can be expected that a test that uses a better fitted model and

distribution will perform much better than a test using an inappropriate model and

distribution. The simulation studies presented here have emphasized the danger of

using regression-based methods without care about the distributional characteristics

of the data. In genetic analysis literature, one will encounter methods for determining

genetic effects that seem to be applicable in general situations. However, these me-

thods must be used with care because many complex traits in genetics have markedly

non-normal distributions. The simulation scenarios here were designed to investigate

only quantitative response variables with normal or skewed to the right distributions.

The response variables were created not from a simple known distribution but from

a mixture of different variables which are normal or non-normally distributed to si-

mulate naturally occurring distributions of complex disease traits. The shape of the

skewed distribution used here is actually based on a measure of radiation sensitivity

among lung cancer patients. The advantage of the GQTDT over existing TDT me-

thods is that it is flexible and can be applied to many different types of distributions.

The method showed good power in determining genetic main effects in cases when

the quantitative response variable fits a normal distribution or a t-family distribution.

Even if the ”true” genetic main effect is small, the observed power to detect genetic

main effect using GQTDT in general is still satisfactory. However, in determining

epistasis, the power of the method can be minimal when the ”true” epistatic effect

being detected is quite small and the quantitative response variable is not normally

distributed. The power of the GQTDT to detect epistasis can be as high as 100%

when the ”true” epistatic effect is considerably large and the response variable is

normally distributed. In skewed traits, the power of the GQTDT to detect epistasis

may be quite low but compared to the QTDTM*, the power is up to three times or

more higher.

The need to assume a genetic model in coding genotypes in the GQTDT and also

in the QTDTM* can be both an advantage and disadvantage. The power of the

statistical tests is definitely higher when the test assumes the correct genetic model.

But in reality, one does not know beforehand the underlying genetic model of the

genes (if a gene is indeed involved) affecting the quantitative trait. Assuming one

type of genetic model can miss the existing genetic effect if what was assumed was

122



5.4 Discussion

the wrong genetic model. However, one can test for several genetic models and get

several results that can lead to the idea of what type of underlying genetic model

plays a role in the genotype-phenotype relationship. Although this testing scheme

can be tedious if one would consider all possible genetic models and more number of

candidate genes to test. This will also have an impact on the p-values as one would

need to adjust for multiple testing.

In terms of the type I error, the GQTDT gave fairly acceptable type I errors. The

false positive detection rates of 5%-7% for both genetic main effects and epistasis are

considerably acceptable. For some datasets with skewed QTs, the type I error can go

slightly higher up to 9% when the fitted distribution in the GQTDT analysis is the

t-family distribution. There are cases when a statistic cannot be computed because

there is no variability in the offspring’s genotype score. Certain mating types give

only one possible type of offspring genotype and some mating types exist in very low

frequency in the population. This can happen most of the times in recessive genetic

models and rare susceptibility alleles. In recessive genetic model, the genotype scoring

is made in such a way that subjects with two susceptibility alleles will have a genotype

score of 1, otherwise the score is zero. If the susceptibility allele of a specific locus is

rare in the population, the chance is high that there will be no subject in the dataset

with a genotype score of 1 and all genotype score for the said locus is zero. This

causes a convergence problem in the analysis of some datasets.

The presence of stratification did not pose any problem in the GQTDT analysis as

seen in the comparable results in datasets from the homogeneous populations (PopA

and PopB) and the heterogenous population (PopMix). This is one main advantage

of family-based analysis methods like the GQTDT over population-based methods

such as case-control analysis. TDT and TDT-like tests are robust to the influence of

population stratification which can cause spurious association in the analysis. There

may be an instance when an extreme result may be observed in the simulation studies

but this is more attributed to random variation rather than population stratification.

Concerning power of the test when there is stratification, no peculiar result was noted.

The power in detecting genetic main effects and epistasis was noticeably affected by

other factors such as the magnitude of the minor allele frequencies in the population

and the type of genetic model simulated in the data rather than stratification. Other

covariates affecting the quantitative response also have an overall effect on the power

of the GQTDT. The power to detect the genetic main effect is better in datasets where
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the QTs were simulated with other covariate effects. This is probably due to the fact

that one covariate was simulated to interact with one of the loci affecting the response

variable. Higher power to detect epistasis is also noted in QTs affected by additional

covariates than QTs without covariate effects. The higher power to detect epistasis

is appreciable in normally distributed QTs but not much in skewed QTs especially

when the ”true” epistatic effect being detected is minimal.

In summary, the simulation studies demonstrated that the GQTDT performs well

in detecting genetic main effects when an appropriately fitted distribution is used and

the correct genetic model assumption is specified. It performs much better than the

QTDTM* in detecting genetic main effects when the quantitative trait is skewed to

the right. The flexibility of the GQTDT to accommodate other types of distribution

is its major advantage over the QTDTM* which is based on linear regression. The

GQTDT also performed satisfactorily in detecting epistasis in normally distributed

traits especially when there is strong epistatic effect in the data. However, when

applied to skewed QTs, the GQTDT did not perform as well as it did in normally

distributed QTs when detecting epistasis. While the power is satisfactory in detecting

genetic main effects even if the trait is skewed, the same cannot be said when detecting

epistasis in skewed QTs. Capturing the ”biological” epistasis is not that easy espe-

cially when the analysis is complicated by a nonnormal distribution of the response

variable. It could be that the ”best” fitted model used in the GQTDT analysis is still

not the best for the particular data.

Although, careful planning was done to simulate naturally occurring complex quan-

titative traits, some of the simulation scenarios created here are likely to be simplified

and idealized compared to real life situations. The allele frequencies in real popu-

lations may be more extreme than what is assumed in the simulations. Out of the

many possible types of gene-gene interactions, the simulated epistatic effects are also

simplified ones and not all types of genetic models are included. In addition, the rela-

tionship of the variables affecting the quantitative trait may be more complex in real

life than what is specified in the simulations. Hence, it would be good to apply the

statistical method to realistic situations. In order to address this issue, the GQTDT

method is applied in real data and in another simulated data based on real situations

in the next chapter.
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In this chapter, the Generalized Quantitative Transmission Disequilibrium Test

(GQTDT) was applied in the analysis of three datasets. The first two datasets are

from the Genetic Analysis Workshop (GAW) 16 which was held in St. Louis, Missouri,

U.S.A. The GAW is a joint effort of genetic epidemiologists worldwide to evaluate and

compare statistical genetic methods. In the recently concluded GAW16, the datasets

used in the workshop which are also used in this thesis are the real data from the

Framingham Heart Study (FHS) and the simulated data by Kraja et al. (2009). The

use of the GAW data has been approved by the local and international ethics commit-

tees after evaluation of the data protection, management and analysis plan of GAW

participants. The other dataset used in this thesis is from the Lung Cancer in the

Young (LUCY) Study, a multicenter study on lung cancer in Germany.

6.1 The FHS real dataset

6.1.1 Description and objectives

The FHS real dataset contains selected data from the the Framingham Heart Study

(FHS) which began in 1948 among adults from the town of Framingham, Mas-

sachusetts. The research is under the direction of the National Heart, Lung, and

Blood Institute (NHLBI) and is now conducted in collaboration with Boston Uni-

versity. The objective of the original study was to identify the common factors or

characteristics that contribute to cardiovascular diseases (CVD) by following-up over

a long period of time group of participants who had not yet developed overt symp-

toms of CVD or suffered a heart attack or stroke. From the list of addresses recorded

for the town of Framingham, two out of every three households were approached for

participation in the study. All household members in the ages 30-60 years old within

each house that was selected for study were recruited as participants. A total of 5,209
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subjects (2,336 men and 2,873 women) between the ages of 29 and 62 have been re-

cruited between the year 1948 and 1953 and comprised the Original Cohort of the

study. Detailed medical history, physical examination, and laboratory tests of the

participants were done at the beginning of the study and every two years thereafter.

After 60 years of follow-up, there remain about 500 participants from the original

group. During the period of 1971 and 1975, the study enrolled a second-generation

group. An additional 5,124 individuals who are children (including their spouses) of

the original cohort participated in the study. This second generation, called Offspring

Cohort has 2,616 participants who are offsprings of spouse pairs from the original

cohort, 34 are stepchildren, 898 are children of the Original Cohort members where

only one parent was a study participant and 1,576 are spouses of the offsprings of the

Original Cohort. The Offspring Cohort has been followed less frequently, that is, every

four years until 2001. Similar protocols as the Original Cohort have been used for

the Offspring Cohort. Between 2002 and 2005, FHS enrolled the Third Generation

(Gen3) of study participants. This time, 4,095 offsprings of the second generation

were recruited but their spouses were not recruited. An additional 103 parents of

this third generation, who did not participate in the second phase of the study were

also recruited at this time. However, this group of parents is not included in the

GAW16 data. The Gen3 group had only one round of examination on file during

GAW16. Genotyping data are not available for all participants since genetic studies

began in the FHS only in the 1990s. The FHS entered a new phase in 2007 with the

conduct of genotyping by Affymetrix for the FHS SHARe (SNP Health Association

Resource) project, using approximately 550,000 SNPs (GeneChip R© Human Mapping

500K Array Set and the 50K Human Gene Focused Panel). The SHARe data are

stored at the National Center for Biotechnology Information database of genotypes

and phenotypes (NCBI dbGaP) (http://www.ncbi.nlm.nih.gov/projects/gap/cgibin/

study.cgi?id=phs000007). Further information on the FHS study can be found at

http://www.nhlbi.nih.gov/about/framingham/index.html.

The objective of the analysis of the FHS real dataset in this thesis is to determine

genetic main effects and epistasis associated with body-mass-index (BMI). The data

used in GAW include those FHS subjects who have consented to anyone’s use of

their information. The data are however anonymized or stripped of any personal

identifier. Files for analysis contain ∼ 550,000 SNP genotype data, a pedigree file

that provides the family structure and files with phenotypic data for each cohort
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(Original, Offspring, Gen3). There are a total of 7130 subjects with phenotype data:

373 Original Cohort, 2760 Offspring Cohort and 3997 Gen3 participants. However,

only 332 pedigrees (17 from the Offspring Cohort and 315 from the Gen3 Cohort)

contain family trios which satisfy the conditions that all trio members (father, mother

and child) are genotyped and that all children have baseline body-mass-index data

in the phenotype file. The BMI which is the quantitative phenotype of interest in

the FHS real dataset has been computed by dividing the weight (in kilograms) of the

”child” study subject with the square of its height (in meters). One family trio per

pedigree was randomly chosen for analysis. Among the children of the sample trios,

there are 139 (42%) males and 193 (58%) females. The average age of these children

is 35.7 ± 8.2 years old. For the analysis of body-mass-index, five candidate SNPs

from SNPedia (http://www.snpedia.com) which have been previously associated with

modification of BMI were selected. The SNPs belong to genes that carry susceptibility

variants previously identified to modify BMI in single-locus studies (Malzahn et al.,

2009). Table 6.1 below shows some information about the SNPs used in the analysis

(Source: http://www.snpedia.com).

Table 6.1: Selected SNPs for BMI analysis

SNP* Gene Located in MAF*

rs Number Chromosome

rs6602024 PFKP 10 0.42

rs1121980 FTO 16 0.48

rs9930506 FTO 16 0.42

rs854560 PON1 7 0.24

rs6971091 FAM71F1 7 0.22

*SNP - Single Nucleotide Polymorphism; MAF - Minor Allele Frequency

The PFKP gene or Phosphofructokinase is involved in the regulation of glycolysis.

The FTO or ’fat mass and obesity associated’ gene has been shown in genomewide

association studies as a type 2 diabetes susceptibility gene. The other gene, PON1 or

Paraoxonase 1 encodes the enzyme arylesterase that hydrolyzes paroxon to produce

p-nitrophenol. Paroxon is a compound that is produced in vivo by oxidation of the
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insecticide parathion. Polymorphisms in this gene were found to be risk factors in

coronary artery disease. The FAM71F1 (family with sequence similarity 71, member

F1) gene, also known as FAM137A gene has been associated with obesity (NCBI,

2010). The SNPs used in the data analysis which belong to the above mentioned

genes were all found associated with BMI in previous single-locus studies. In addition,

significant statistical interaction effects on BMI involving FTO, PON1, and PFKP

genes have been reported by Malzahn et al. (2009).

6.1.2 Analysis method

The GQTDT method was applied in the analysis of the FHS real datasets. Extension

of the statistical model was done to accommodate cohort effect in the data. The

term cohort effect refers to the effect or influence of shared characteristics among

individuals. Cohorts or groups of individuals in a study are often defined by their

entry date in the study, year of birth, or year of exposure to certain disease-causing

agent. In the previous study by Malzahn et al. (2009), a strong cohort effect was

found in the FHS real data (p-value = 0.015). A significant cohort effect has also

been found in this analysis. The cohort effect signals differences in the quantitative

trait (i.e. BMI) across generations. Therefore, the GQTDT model was extended to

adjust for cohort effect and also other known covariates affecting BMI such as sex and

age. The extended two-locus statistical model used is:

Yi = β0 + βMMi + βGGi + βHHi + βGHGiHi + γ1(sex) + γ2(age) + γ3(sex ∗ age)
+δ1(cohort) + δ2(cohort ∗ sex) + δ3(cohort ∗ age) + εi (6.1)

where:

128



6.1 The FHS real dataset

Yi the random observation of a continuous quantitative response

or phenotype (i.e. baseline BMI) of the ith study subject;

i = 1,...,N

Mi explanatory variable representing the parental mating type

Gi the genotype score of the study subject at SNP or locus 1

Hi the genotype score of the study subject at SNP or locus 2

β0 the intercept

βM regression coefficient for the parental mating type

βG, βH , βGH regression coefficients for the effects of locus 1, locus 2

and their interaction

γ1, γ2, γ3 regression coefficients for the effects of sex, age and their interaction

δ1, δ2, δ3 regression coefficients for the effects of cohort, cohort*sex and

cohort*age interactions

εi residual, ∼ N(0, σ2)

The variable age is used as a continuous quantitative covariable. Sex has its usual

two categories: male and female. The variable cohort has also two categories: Off-

spring Cohort and Gen3 Cohort. The genotype scores Gi and Hi is 0 for genotype

code ’aa’, 1 for ’AA’ and 0, 0.5 or 1 for ’Aa’ depending on the assumed model being

recessive, additive or dominant, respectively.

The response variable Yi in the statistical model is distributed as:

Yi ∼ f(g1(θ1) = t1, g2(θ2) = t2, ..., gp(θp) = tp) (6.2)

where:

f is the distribution of Yi,

(θ1, ..., θp) are the parameters of f ,

g1, ..., gp are the link functions and

t1, ..., tp are the model formulae for the explanatory terms in the predictors.

The distribution and QQ plot of the body-mass-index in the FHS real dataset are

shown in figure 6.1. As one can see, the distribution of BMI in the data does not nicely

fit a normal distribution. Therefore, other distributions were tried. The choice of the

distribution in the GQTDT analysis was based on the graphical characteristic of the

data and the result of the generalized AIC criterion after fitting several candidate

distributions. The computed AIC for the model using normal distribution, t-family,

lognormal, and Box-Cox Power Exponential (BCPE) are 1487, 1457, 1453 and 1433,
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respectively. Based on the smallest AIC, the distribution fitted to the data in the

GQTDT analysis is the BCPE. The BCPE is usually used for modeling skewness

combined with kurtosis in continuous data (Rigby and Stasinopoulos, 2005). The QQ

plot after fitting with the BCPE distribution is shown in figure 6.2. Compared with

the fit of the normal distribution in figure 6.1, improvement in the fit is seen when

the BCPE was used.

Figure 6.1: Distribution of baseline BMI in the FHS real dataset, N=332

Figure 6.2: Density estimate and QQ Plot of baseline BMI after fitting BCPE, N=332

Statistical testing was done pairwise or with two loci at a time to determine genetic
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also done in the dataset. In the test for the effect of individual SNPs, there are 6

possible mating types for each biallelic locus in contrast to the 36 possible mating

types when SNPs are analyzed pairwise. The generalized likelihood ratio test was

used to test for the hypothesis of no genetic main effects and the hypothesis of no

epistasis. The genetic main effect of individual SNPs was tested using equation 6.1

without the explanatory variable Hi and the interaction term as a full model. The

likelihood of this model with only one locus and the mating type was compared with

the model with only the mating type to get the genetic main effect of a specific SNP.

A pairwise analysis using two SNPs at a time was also done by comparing the model

with the two SNP main effects (Gi and Hi) and mating type with the model without

the two SNP main effects. For testing epistasis, the likelihood of the full model with

the interaction of the two loci (equation 6.1) was compared against the likelihood

of the null hypothesis model of no locus interaction. The GQTDT was applied to

the data under three different genetic model assumptions, i.e. dominant, additive or

recessive genetic model. The computed p-values were adjusted for multiple testing

using Holm’s (1979) procedure.

6.1.3 Results

On the average, the baseline BMI of children in the analyzed family trios is 25.6 ± 4.9.

Figure 6.3 shows the distribution of parents’ genotype combination or mating types

across different SNP pairs. The mating types are represented by the different segments

of the bars in the figure. Though the graph cannot clearly depict the details of the

mating types in each SNP pair, one can notice that there is no uniform distribution of

mating types. Depending on the SNP pair, some mating types may be more frequent

while other mating types do not occur at all.

In the individual SNP analysis, two out of the five SNPs analyzed showed significant

genetic main effects (p<0.05). The SNP rs1121980 and rs9930506 which showed

significant genetic main effects both belong to the gene FTO. For the pairwise analysis

of the SNPs, the results are summarized in table 6.2. The GQTDT detected genetic

main effects in six out of nine SNP pairs tested but did not detect any significant

epistatic effect under any of the genetic model assumption. Differences in the results

are noted depending on the genetic model specified in the analysis. For instance,
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Figure 6.3: Distribution of mating types in the FHS real dataset

*The shades within the bars represent the different mating types; N = 332

Table 6.2: Results of GQTDT analysis of BMI in the Framingham real dataset

SNP Pairs tested GQTDT p-values*

under assumed analysis genetic model

Dominant Additive Recessive

main inter. main inter. main inter.

rs6602024 rs1121980 <0.001 - <0.001 n.s. 0.027 n.s.

rs9930506 0.008 - <0.001 n.s. <0.001 n.s.

rs854560 n.s. - n.s. n.s. n.s. n.s.

rs6971091 n.s. - n.s. n.s. n.s. n.s.

rs1121980 rs854560 0.023 n.s. n.s. n.s. n.s. 0.065

rs6971091 0.003 n.s. 0.014 n.s. n.s. n.s.

rs9930506 rs854560 n.s. n.s. n.s. n.s. 0.043 n.s.

rs6971091 n.s. n.s. 0.017 n.s. 0.022 n.s.

rs854560 rs6971091 n.s. n.s. n.s. n.s. n.s. n.s.

*Listing only p-values ≤0.1, otherwise marking the test as ’n.s.’ (not significant) or ’-’

where analysis was not possible; main = p-value for genetic main effect; inter. = p-value

for interaction; Fitted distribution is the Box-Cox power exponential

the genetic main effect in testing SNPs rs1121980 and rs854560 was only picked-

up by the test when the assumed genetic model specified is dominant. In the case

of rs9930506 and rs854560, the significant genetic main effect was noted when the
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assumed genetic model is recessive. Some tests for epistatic effect are not computable

under the dominant genetic model assumption and are therefore marked ’-’ in the

table.

The type I errors of the GQTDT were calculated in this dataset using the SNPs

rs1121980 and rs854560. One thousand datasets were created from the original

dataset. Each generated dataset contains permuted BMI data. The permutation

of the BMI trait is to make sure that any relationship (if any) between the trait and

the genotypes are removed. The statistical tests were then applied to the permuted

datasets to determine the type I error. Slightly elevated type I errors (8% - 9%) are

observed with the GQTDT using Box-Cox Exponential Distribution.

6.1.4 Discussion

In the FHS real dataset, the GQTDT detected genetic main effects in the single SNP

and two-SNP analyses. The SNPs rs1121980 and rs9930506 (both belonging to FTO

gene) which showed significant genetic main effects in single SNP analysis are also

involved in the two-SNP analyses with signicant genetic main effects. All SNP pairs

which showed significant genetic main effects involve either of the two SNPs which

showed significant effects in the single SNP analysis. The strongest genetic main effect

was seen when the two mentioned SNPs were tested with rs6602024. The result of

the two-SNP test with rs6602024 showed significant effects in all the analysis genetic

model. In other SNP pairs (e.g. rs9930506 - rs854860), significant genetic main effects

are seen only under one genetic model assumption.

The analysis detected genetic main effects but not epistatic effect. However, one

SNP pair (rs1121980 - rs854560) gave a p-value slightly indicative of epistasis. The

same SNP pair was reported to have significant interaction effect on BMI by Malzahn

et al. (2009) who used the same FHS datasets utilizing longitudinal nonparametric

association test (LNPT) and semiparametric survival analysis methods. They tested

8 gene pairs for epistasis which were also tested in this application. Their two ap-

proaches showed evidence for pairwise interaction between three other genes FTO

(rs1121980 and rs9930506), PON1 (rs854560) and PFKP (rs6602024). These inter-

actions are not seen in the GQTDT results. If indeed epistasis is present in the

mentioned SNPs from the real dataset, one reason that could have contributed to the

GQTDT’s non-detection of epistasis and also genetic main effects in some of the SNP
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pairs is the small sample size. There are only 332 family trios in the GQTDT analyzed

dataset. The given number of family trios may not be enough to detect epistasis if

one is considering loci whose epistatic effect contributes only a very small proportion

in the quantitative trait variability. Based on Gauderman’s (2003) sample size recom-

mendation for a linear regression method, two loci with 20% minor allele frequencies

that are both defined by a dominant genetic model and contributes 2% main effects

to the quantitative trait will need roughly 484 families to reach an 80% power to

detect epistasis. The sample size requirement could get really high if the effects of

the loci are smaller. Considering that Gauderman’s recommended sample size was

computed for a linear regression method, a different sample size requirement may be

expected for other methods like the GQTDT. The study of Malzahn et al. (2009) has

the advantage of having more study subjects since it is population-based. The two

methods in the study used different statistical models which incorporates longitudinal

data. Their LNPT method profited from using phenotypes from several time points

and the survival analysis method used additional information from other time-varying

covariates which are smoking status and cholesterol treatment. The LNPT method is

also a robust method without distributional assumptions. It is applicable to data on

individual subjects but not for families. Methods like the LNPT and survival analy-

sis which is based on longitudinal data might be more difficult to collect in the long

run than collecting observations from family trios at one point in time. Longitudinal

studies face a big risk of loss-to-follow up study subjects and problem in harmonizing

the data especially when observations need to be collected at the same time inter-

vals. In addition, population-based longitudinal methods will also need to adjust for

population stratification. Including the cohort effect as a covariate will be able to

control for differences between generations but not for effects of possible population

stratification. In this case, family-based methods like the GQTDT will have more

advantage. The GQTDT also has the advantage of using the quantitative response

variable as originally defined without worries about categorization. In other methods,

like in the Cox-proportional hazards model (Malzahn et al., 2009), one has to first

adopt a way to logically categorize the quantitative response variable. In some cases,

like in the case of BMI, it is easy because there are already existing standards about

meaningful BMI categories. But in other cases, like in gene expression or radiation

sensitivity, one would have to think of a way how to categorize the response variable.
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6.2 The FHS simulated dataset

6.2.1 Description and objectives

The FHS simulated data (FHSsim) by Kraja et al. (2009) are based on real data.

The basic demographic profile (e.g. sex, age) and family structures are data of the

Framingham Heart Study participants. Only the phenotypes of the participants were

replaced by simulated values. The simulated phenotype in the FHSsim datasets is the

Coronary Artery Calcification (CAC) score which in practice is detected by electron

beam computed tomography that quantifies the coronary artery calcium levels. The

CAC score is computed by assigning a weighted value to the highest density (measured

in Hounsfield units) of calcification in a given coronary artery. The total CAC score

is the sum of the calcium scores of every calcification in each coronary artery for

all of the tomographic slices. The CAC score which can range from zero to several

thousands is a predictor of clinical coronary artery disease (Agatston et al., 1990). The

higher the CAC score, the higher the amount of calcium causing increased coronary

atherosclerotic burden. In the simulated data of Kraja et al. (2009), the CAC was

simulated as a function of total cholesterol, high density lipoprotein and five other

SNPs (τ1 - τ5) having direct effects on its development. Below is the model used by

Kraja et al. (2009) to simulate the CAC score.

CAC = 500 + 20(Chol200)25(HDL53) +ME + PE +Het+ 300(ε) (6.3)

The explanatory variables Chol,HDL,ME,PE and Het are measures of the total

cholesterol, high density lipoprotein, epistasis with main effects, pure epistatic effect

and heterosis (over dominance effect), respectively. The explanatory variables of in-

terest in this analysis are the ME and PE. The ME is a joint genetic effect from an

epistatic interaction between SNPs τ1 and τ2. The SNP τ1 was simulated to display

only a minimal main effect and SNP τ2 has an additional measurable additive main

effect. PE is the joint effect of SNPs τ3 and τ4 which were simulated as a pair of

purely epistatic SNPs. All four SNPs (τ1 - τ4) have minor allele frequencies of around

0.50. The ε in the model is the residual variation not explained by the explanatory

variables in the model. It is 300 times a random draw from a normal distribution
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∼N(0,1). It represents the sum of normal deviations from the mean of each genetic

effects and noise from other unmeasured effects. The mean effects on CAC due to the

ME and PE variables used by Kraja et al. (2009) are shown in tables 6.3 and 6.4.

Table 6.3: Mean effect of ME (τ1 and τ2) on CAC

Genotype at SNP τ2 marginal

2/2 2/4 4/4 effects

Genotype at SNP τ1

2/2 -250 0 250 0

2/4 150 0 -150 0

4/4 -250 0 250 0

marginal effects -100 0 100

Table 6.4: Mean effect of PE (τ3 and τ4) on CAC

Genotype at SNP τ4

1/1 1/2 2/2

Genotype at SNP τ3

2/2 200 -200 200

2/4 -200 200 -200

4/4 200 -200 200

The Chol and HDL explanatory variables were simulated based on complex rela-

tionship of other variables such as age, sex and polygenes. This thesis only focuses

on the analysis of effects of the four SNPs (τ1 - τ4) directly affecting the CAC score.

Therefore, the simulation of the other variables is not anymore detailed here. The

complete information about the simulation of the dataset can be found in the publi-

cation of Kraja et al. (2009). A negative CAC score is not possible in practice, so to

avoid getting a negative CAC, Kraja et al. (2009) conditioned the CAC to be zero if

the generated value was negative. The objective of this analysis is to determine the

power of the GQTDT in detecting the genetic main effects and epistasis in the SNP
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pairs τ1 - τ2 and τ3 - τ4. All the 200 replicates of the FHSsim dataset were used in

the analysis.

6.2.2 Analysis method

The analysis method for the FHSsim dataset is exactly the same as the FHS real

dataset. All the explanatory variables are the same as the FHS real dataset except

for the specific SNP investigated and the response variable which is the CAC score.

The two-locus statistical model used is:

Yi = β0 + βMMi + βGGi + βHHi + βGHGiHi + γ1(sex) + γ2(age) + γ3(sex ∗ age)
+δ1(cohort) + δ2(cohort ∗ sex) + δ3(cohort ∗ age) + εi (6.4)

where:
Yi the random observation of a continuous quantitative response

or phenotype (i.e. CAC score) of the ith study subject;

i = 1,...,N

Mi explanatory variable representing the parental mating type

Gi the genotype score of the study subject at SNP or locus 1

Hi the genotype score of the study subject at SNP or locus 2

β0 the intercept

βM regression coefficient for the parental mating type

βG, βH , βGH regression coefficients for the effects of locus 1, locus 2

and their interaction

γ1, γ2, γ3 regression coefficients for the effects of sex, age and their interaction

δ1, δ2, δ3 regression coefficients for the effects of cohort, cohort*sex and

cohort*age interactions

εi residual, ∼ N(0, σ2)

Like in the FHS real data, the variable age is used as a continuous quantitative

covariable. Sex has its usual two categories: male and female. The variable cohort

has also two categories: Offspring Cohort and Gen3 Cohort. Likely, the genotype

scores Gi and Hi are given the value 0, 0.5 or 1 depending on the assumed genetic

model in the analysis.
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The response variable Yi in the statistical model is distributed as:

Yi ∼ f(g1(θ1) = t1, g2(θ2) = t2, ..., gp(θp) = tp) (6.5)

where:

f is the distribution of Yi,

(θ1, ..., θp) are the parameters of f ,

g1, ..., gp are the link functions and

t1, ..., tp are the model formulae for the explanatory terms in the predictors.

In contrast to the BMI, the distribution of CAC score is skewed to the right with

inflated number of zeros at the left of the distribution (see figure 6.4). On the average,

there are about 57% zero CAC scores in the simulated datasets. The characteristic of

the CAC score entails the use of GQTDT with a distribution that can handle plenty of

zeros in the quantitative response variable. Among the available models for continuous

variables, the zero-adjusted Gaussian (ZAIG; see page 77) distribution is the one most

appropriate for the characteristic of the data. The AIC was not anymore used as a

criteria for model selection in this case because the other types of distributions that

may be used for skewed data (e.g. t-family, lognormal, BCPE) failed when specified

in the GQTDT analysis. The QQ plot of the data after fitting a ZAIG distribution is

presented in figure 6.5. The fit is not perfect but better compared to the fit in figure

6.4 using a normal distribution.

We have here a situation of a SNP pair with weak main effects and another SNP

pair with only epistatic effect. Separate analysis is done for each SNP pair which

are hypothesized to be interacting. The analysis did not looked into individual SNP

genetic effect but on the combined SNP genetic main effects. Again, the generalized

likelihood ratio test was used to test for the hypothesis of no genetic main effect by

comparing the model with the two SNP main effects (Gi and Hi) and other covariates

with the model without the two SNP main effects. The hypothesis of no epistatic ef-

fect was tested by comparing the likelihood of the full model with the loci interaction

(equation 6.4) against the null hypothesis model of no loci interaction. The GQTDT
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Figure 6.4: Distribution of CAC in the FHS simulated dataset, N=323

Figure 6.5: Density estimate and QQ Plot of CAC after fitting ZAIG, N=323

was applied to the data under three different genetic model assumptions, i.e. domi-

nant, additive or recessive genetic model. The power was estimated as percentage of

significant results (p ≤ 0.05) of the test on the 200 FHSsim replicates. The average

number of family trios among the 200 replicates is 323.

Although quite inappropriate for the distribution of the CAC, the QTDTM* was

also applied to the dataset for the purpose of comparing the power of the test with

GQTDT. The same statistical model with the specified explanatory variables was

used.
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6.2.3 Results

The distribution of the FHSsim study subjects is also sparse in some mating types

considering the two pairs of SNPs (figure 6.6). The CAC scores in the datasets ranges

from 0 to more than 1500 with an average of 77. The analysis of the CAC scores

using GQTDT detected the τ1 and τ2 genetic main effects in 54% - 60% of the 200

replicates. This is slightly higher than the observed power (47% - 53%) for detecting

genetic main effects for the τ3 and τ4 SNP set. For the power to detect epistasis, the

GQTDT showed 32% to 45% power for the first SNP set and 26% to 39% power for

the second SNP set (table 6.5). Much lower power was observed when QTDTM* was

used (see table 6.6).

Figure 6.6: Distribution of mating types in the FHS simulated dataset

*The shades within the bars represent the different mating types; N = 323
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Table 6.5: Power of the GQTDT in the simulated Framingham (FHSsim) data

SNPs Power under analysis genetic model

tested Dominant Additive Recessive

main inter. main inter. main inter.

τ1 x τ2 0.597 0.316 0.573 0.450 0.542 0.333

τ3 x τ4 0.469 0.259 0.533 0.391 0.494 0.326

main = genetic main effect; inter. = interaction effect or epistatis

Table 6.6: Power of the QTDTM* in the simulated Framingham (FHSsim) data

SNPs Power under analysis genetic model

tested Dominant Additive Recessive

main inter. main inter. main inter.

τ1 x τ2 0.095 0.075 0.095 0.055 0.080 0.045

τ3 x τ4 0.095 0.080 0.090 0.090 0.070 0.090

main = genetic main effect; inter. = interaction effect or epistatis

6.2.4 Discussion

The high proportion of zero CAC scores in the data created difficulty in finding a fitted

distribution. In the analysis of the two SNP pairs using GQTDT, the highest observed

power to detect the genetic main effect is 60% and the highest observed power to detect

epistasis is 45%. Considering the performance of a traditional linear regression method

such as the QTDTM, the observed result in the GQTDT is much better. Applying

a typical linear regression model using the same explanatory variables to explain

the variability in the CAC score gives only 5% to 10% power in detecting genetic

main effects or epistasis. In detecting genetic main effects, the observed power in the

FHSsim data analysis is not as high as the power in the simulation studies in chapter

5. This can be explained by the different simulation models used in generating the

data. In chapter 5, the simulated datasets which showed 100% power in detecting

genetic main effects have higher ”true” genetic main effects in the data compared to

the FHSsim data. In addition, the response variable, CAC, in the FHSsim dataset

is characterized by inflated number of zeroes which makes it difficult to find a best

fitting distribution. Malzahn et al. (2009) also analyzed the FHSsim data for gene-gene

interaction. They used longitudinal methods to determine the presence of epistatic

effects in the two SNP pairs. They compared longitudinal nonparametric association
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test (LNPT) and survival analysis methods. The LNPT detected both interactions

in SNP pairs τ1 - τ2 and τ3 - τ4 with 100% power using 856 study subjects. Their

survival analysis using Cox model had a power of 94% for τ1 - τ2 interaction and 100%

for τ3 - τ4 interaction with 808 sample size. The survival analysis method benefited

from the cohort effect adjustment which led to an increase of power from 69% to 94%

in testing for interaction between τ1 and τ2. In detecting epistasis, the power of the

GQTDT is lower compared to the power in the methods used in the study of Malzahn

et al. (2009) using the same simulated dataset. The reasons for lower power observed

in the analysis of the FHS simulated datasets are similar to the reasons mentioned for

the FHS real dataset. The limited number of family trios available for analysis is one

factor contributing to the lower power in the FHSsim analysis compared to the power

of the methods in Malzahn et al. (2009). In addition, the GQTDT model did not

consider longitudinal covariates which also contributes to the variation of the CAC

score. The longitudinal approach using case-control data benefited from additional

information, but as previously mentioned it has disadvantages in terms of controlling

for population stratification and applicability when there is incomplete and uneven

follow-up of repeated measurements from the study participants.

Comparing the result of this section with the simulation studies involving two loci

and epistasis in chapter 5, the power for detecting epistasis is slightly higher in this

application. Given a different scenario in this case, one cannot directly compare the

results with the simulation in chapter 5. The testing in FHSsim dataset involve an

extended model with other covariates and a different distribution as well. In addition,

the minor allele frequencies of the SNPs in FHSsim are higher compared to the SNPs

in the simulation studies in chapter 5. Higher minor allele frequencies improves the

chances of detecting genetic effects in the data. However, for the test of genetic

main effects, the results of the simulations in chapter 5 has higher power than the

FHSsim because the simulated genetic main effect in chapter 5 contributes more to

the response variable. In the FHSsim, there is no separate genetic main effect of the

SNPs in addition to their joint effect. In the test for genetic main effects in the ”purely

epistatic” SNPs τ3 and τ4, the test seems to get power from the interaction effects of

the SNPs. The ”purely epistatic” effect created by Kraja et al. (2009) also signals

genetic main effects in the GQTDT test. The differences in means across genotypes

considering one locus has been detected as a genetic main effect. The definition

of ”purely epistatic” is quite artificial in this scenario. If this ”purely epistatic””
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effect exists in nature, the method in detecting epistatic effects using GQTDT and

related methods will not be specific enough to detect this type of epistasis without

falsely detecting a genetic main effect. Compared to the QTDTM*, the GQTDT using

the zero-adjusted Gaussian (ZAIG) distribution showed better power to detect both

genetic main effects and epistasis. In the case of the ”purely epistatic” SNP pairs (τ3

and τ4), both QTDTM* and GQTDT detected genetic main effects. This special case

of epistasis can probably be investigated in future studies.

6.3 The LUCY dataset

6.3.1 Description and objectives

Lung cancer is a major cause of cancer death worldwide resulting to 1.3 million deaths

per year. Based on the number of global deaths, it ranks first in cancer morta-

lity among men and second to breast cancer among women (WHO, 2009a). Given

the global burden of the disease, numerous studies investigate the risk factors re-

lated to the prognosis and treatment of lung cancer. The Lung Cancer in the Young

(LUCY) study is a multi-center study involving 31 major lung clinics all over Ger-

many. The LUCY study forms part of the lung cancer investigation at the Institut

für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie der Ludwig-

Maximilians-Universität München whose main objectives are to identify and replicate

susceptibility genes for lung cancer considering potential effect modifications by the

amount of smoke exposure or radiation susceptibility. Patients diagnosed histologi-

cally or cytologically with primary lung cancer at age 50 or younger were recruited to

the study as well as their families. This was done in cooperation with the Department

of Genetic Epidemiology, University of Göttingen Medical Center.

Almost 800 patients with primary lung cancer and their relatives were recruited in

the LUCY study (Sauter, 2008). Consent forms were signed by all participants before

inclusion in the study. A questionnaire in which detailed information on personal

history, history of lung diseases, family history of cancer and smoking habits was

administered to the patients and participating family members. Blood samples were

taken from all participants for DNA extraction, genotyping and other laboratory

testing. Results of all testing were stored in a DNA data bank. As a sub study to

LUCY, in 309 participants (patients and their relatives) of the LUCY study, radiation
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sensitivity was measured with the single cell gel electrophoresis (also known as comet

assay) which quantifies the DNA fragments that have migrated out of the cell nucleus.

In the LUCY comet assay, an experiment consists of a random sample of up to 200

cells from one blood sample. The cells are fixed in agarose gel and subjected to

electrophoresis under alkaline conditions. In alkaline conditions, the DNA double

helix is denatured and becomes single stranded. The application of electric current

during electrophoresis enables the negatively charged DNA fragments to migrate away

from the cell nucleus toward the anode and spread on the gel. Smaller fragments of

damaged DNA migrate farther. When viewed under a fluorescent microscope, the

DNA looks like a ”comet” with a bright head and a tail (figure 6.7). The length and

intensity of the tail is directly proportional to the amount of DNA damage in the

cell. The image is stained using a DNA-specific fluorescent stain and analysed using a

microscope connected to a computer with image analysis software. In this project, the

Comet Imager Metasystems (Altlussheim, Germany) was used. There are different

measures of radiation sensitivity that can be generated from the comet assay. For

this analysis, the Percent-DNA-in-Tail (%DT), Olive Tail Moment (OTM), and the

difference in the Olive Tail Moments (DOTM) before and after exposure to 4 Gray

radiation are used as quantitative measures of radiation sensitivity. The %DT is the

relative amount of DNA in the tail or body of the comet which is measured by the

image analyzer based on the optical intensity of the tail. The OTM is the product of

the distance of DNA migration in the tail (see label in figure 6.7) and the fraction of

total DNA in the tail. The formula for calculating the Olive Tail Moment is:

OTM = (|CGT − CGH |)(DNAT /100) (6.6)

where:

OTM - Olive Tail Moment

CGT - center of gravity of the comet tail weighted by Gray values

CGH - center of gravity of the comet head weighted by Gray values

DNAT - amount of DNA in the tail

Using the OTM, one can also calculate the DOTM which is the difference between

the Olive Tail Moments of cells exposed and unexposed to radiation. Olive Tail

Moments and Percent-DNA-in-Tail are commonly recommended measures of DNA
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Figure 6.7: Comet assay

Source: Comet assay image is from Enciso et al. (2009)

This analysis focused on genes involved in DNA damage repair. Based on known

or expected functional effects, 7 genes and SNPs were selected by experts in the

LUCY study (see table 6.7 for list of genes and SNPs). XRCC1 and HOGG1 are

Base Excision Repair (BER) pathway genes, while the others are Non Homologous

End Joining (NHEJ) pathway genes. The chosen SNPs are all in Hardy-Weinberg

equilibrium and are not in linkage disequilibrium with each other.

Table 6.7: Selected genes and SNPs for LUCY analysis

Gene Structure Location in the SNP* Alleles MAF*

Chromosome rs Number

XRCC1 17 Exons; 32.25 kb 19q13.2 rs1001581 C>T 0.42

XRCC4 8 Exons; 276.3 kb 5q13-q14 rs10040363 A>G 0.48

LigIV 2 Exons; 7.34 kb 13q33-q34 rs1151403 T>C 0.42

HOGG1 7 Exons; 8.13 kb 3p26.2 rs2072668 C>G 0.24

RAD50 25 Exons; 86.96 kb 5q31 rs2706348 G>A 0.22

MRE11 20 Exons; 76.57 kb 11q21 rs3017077 C>T 0.34

NBS1 16 Exons; 51.34 kb 8q21.3 rs709816 A>G 0.35

*SNP - Single nucleotide polymorphism; MAF - Minor Allele Frequency

Out of 795 lung cancer patients, 156 patients have radiation sensitivity data. In-

cluding the 153 relatives of the patients who have radiation sensitivity data, there
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were a total of 309 participants in the sub-study. However, from the 309 participants,

only 123 individuals form complete family trios (patients with parents). This gives a

total of only 41 family trios with complete phenotyping and genotyping data to deter-

mine if there are genetic main effects and epistatic effects of the SNPs of interest that

contribute to the variation of the radiation sensitivity measures, i.e. %DT, OTM and

DOTM. The type of lung cancer and other factors that may be related to radiation

sensitivity were not included in the analysis.

6.3.2 Analysis method

The GQTDT method as described in the previous chapters was used to analyze the

LUCY data. The statistical model used is:

Yi = β0 + βMMi + βGGi + βHHi + βGHGiHi + εi (6.7)

where:
Yi the random observation of a continuous quantitative response or

phenotype (i.e. %DT, OTM or DOTM) of the ith patient; i = 1,...,n

Mi explanatory variable representing the parental mating type

Gi the genotype score of the study subject at SNP or locus 1

Hi the genotype score of the study subject at SNP or locus 2

β0 the intercept

βM regression coefficient for the parental mating type

βG, βH , βGH regression coefficients for the effects of locus 1, locus 2 and

their interaction

εi residual, ∼ N(0, σ2)

The genotype scores Gi and Hi is 0 for genotype code ’aa’, 1 for ’AA’ and 0, 0.5

or 1 for ’Aa’ depending on the assumed model being recessive, additive or dominant,

respectively.

The response variable Yi in the statistical model is distributed as:

Yi ∼ f(g1(θ1) = t1, g2(θ2) = t2, ..., gp(θp) = tp) (6.8)
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where:

f is the distribution of Yi,

(θ1, ..., θp) are the parameters of f ,

g1, ..., gp are the link functions and

t1, ..., tp are the model formulae for the explanatory terms in the predictors.

In the GQTDT analysis of the %DT and the OTM traits, the distribution fitted to

the data is the inverse Gaussian (IG) distribution. The choice of the distribution was

based on the generalized AIC criterion after fitting candidate distributions. For both

%DT and OTM traits, the lowest AIC was noted with the use of inverse Gaussian

distribution. The AIC for %DT using IG distribution is 212 and using lognormal

the AIC is 223. For the OTM trait, the computed AIC using IG and lognormal

distributions are 38 and 57, respectively. For the DOTM trait, the AICs are 152, 154

and 157 for the normal, lognormal and inverse Gaussian distributions, respectively.

Therefore the normal distribution was used in the GQTDT analysis of the differences

in Olive Tail Moments.

The generalized likelihood ratio test was used to test for the hypothesis of no genetic

main effects and the hypothesis of no epistasis. The genetic main effect was tested

using individual SNPs. This uses equation 6.7 without the explanatory variable Hi

and the interaction term as a full model. The likelihood of this model with only one

locus and the mating type was compared with the model with only the mating type

to get the genetic main effect of a specific SNP. A pairwise analysis using two SNPs at

a time was also done by comparing the model with the two SNP main effects (Gi and

Hi) and mating type with the model without the two SNP main effects. For testing

epistasis, the likelihood of the full model with the interaction of the two loci (equation

6.7) was compared against the null hypothesis model of no locus interaction. The

GQTDT was applied to the data under three different genetic model assumptions, i.e.

dominant, additive or recessive genetic model. The computed p-values were adjusted

for multiple testing using Holm’s (1979) procedure.

6.3.3 Results

The distributions of the three radiation sensitivity measures are shown in figure 6.8.

It can be seen that the baseline %DT and OTM are severely skewed while the DOTM

is approximately normally distributed.
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Figure 6.8: Distributions of radiation sensitivity measures, N=41

Individual SNP analysis showed different significant results in the three radiation

sensitivity measures analyzed. In the analysis of the %DT, only the SNP rs1001581

showed significant (p<0.05) result under the dominant genetic model assumption. In

the OTM trait, four SNPs showed significant genetic main effects (see table 6.8). The

SNP rs1001581 which was found to affect %DT also affects the OTM trait. In the

DOTM trait, none of the SNPs showed significant genetic main effects.

The results of the analysis for the %DT (table 6.9) show that some SNPs and

their interactions have significant (p<0.05) effects on radiation sensitivity among

the families investigated. Six interacting SNP pairs were detected out of the 21

pairs tested using GQTDT. Four of these six pairs show significant epistatic ef-
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Table 6.8: Results of the analysis of genetic effect of individual SNP in the LUCY

data

Trait SNP GQTDT p-values*

under analysis genetic model

Dominant Additive Recessive

%DT rs1001581 (XRCC1) .006 n.s. n.s.

rs10040363 (XRCC4) n.s. n.s. n.s.

rs1151403 (LigIV) n.s. 0.078 0.078

rs2072668 (HOGG1) n.s. n.s. n.s.

rs2706348 (RAD50) n.s. n.s. n.s.

rs3017077 (MRE11) n.s. n.s. n.s.

rs709816 (NBS1) n.s. n.s. n.s.

OTM rs1001581 (XRCC1) .003 .049 0.018

rs10040363 (XRCC4) n.s. n.s. n.s.

rs1151403 (LigIV) n.s. 0.036 0.036

rs2072668 (HOGG1) n.s. n.s. n.s.

rs2706348 (RAD50) 0.017 0.009 0.095

rs3017077 (MRE11) n.s. n.s. n.s.

rs709816 (NBS1) n.s. 0.007 0.003

DOTM rs1001581 (XRCC1) n.s. n.s. n.s.

rs10040363 (XRCC4) n.s. n.s. n.s.

rs1151403 (LigIV) n.s. n.s. n.s.

rs2072668 (HOGG1) n.s. n.s. n.s.

rs2706348 (RAD50) 0.091 0.073 n.s.

rs3017077 (MRE11) n.s. n.s. n.s.

rs709816 (NBS1) n.s. n.s. n.s.
*Listing only p-values ≤0.1, otherwise marking the test as ’n.s.’ (not significant)

fects under the additive and recessive genetic model assumption and one SNP pair

showed epistatic effect under the dominant genetic model. The interacting SNP pairs

are from the following gene pairs: XRCC4-LigIV (rs10040363-rs1151403), XRCC4-

MRE11 (rs10040363-rs3017077), XRCC4-NBS1 (rs10040363-rs709816), HOGG1-

MRE11 (rs2072668-rs3017077), HOGG1-NBS1 (rs2072668-rs709816) and MRE11-

NBS1 (rs3017077-rs709816). The XRCC4-NBS1 and HOGG1-MRE11 pairs showed

epistasis under both additive and recessive genetic model. The other pairs showed

epistasis only under one of the genetic model assumptions.

Genetic main effects are also noted in the pairwise analysis of SNPs. There are also

SNP pairs which did not show interaction but showed genetic main effects such as
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those involving the XRCC1 gene. The results for testing genetic main effects using

GQTDT also differs depending on the assumed genetic model. For example, in testing

SNP pairs involving the gene XRCC1, most of the significant genetic main effects were

noted when the assumed genetic model is dominant.

Table 6.9: Results of the analysis of SNP pairs and the Percent-DNA-in-Tail (%DT)
SNP (Gene) Pair tested GQTDT p-values*

under genetic model
Dominant Additive Recessive
main inter. main inter. main inter.

rs1001581 (XRCC1) rs10040363 (XRCC4) 0.007 n.s. n.s. n.s. n.s. n.s.
rs1151403 (LigIV) <0.001 n.s. 0.009 n.s. n.s. n.s.
rs2072668 (HOGG1) <0.001 - 0.013 n.s. n.s. n.s.
rs2706348 (RAD50) <0.001 n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) 0.088 - 0.088 n.s. n.s. n.s.
rs709816 (NBS1) 0.047 - n.s. 0.089 n.s. n.s.

rs10040363 (XRCC4) rs1151403 (LigIV) n.s. 0.006 n.s. n.s. n.s. 0.052
rs2072668 (HOGG1) n.s. - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. <0.001 n.s. n.s.
rs709816 (NBS1) n.s. - n.s. 0.015 n.s. 0.019

rs1151403 (LigIV) rs2072668 (HOGG1) n.s. - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. n.s.

rs2072668 (HOGG1) rs2706348 (RAD50) n.s. - 0.048 n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. 0.025 n.s. 0.026
rs709816 (NBS1) n.s. - n.s. 0.009 n.s. n.s.

rs2706348 (RAD50) rs3017077 (MRE11) n.s. - n.s. n.s. n.s. -
rs709816 (NBS1) n.s. - n.s. n.s. n.s. -

rs3017077 (MRE11) rs709816 (NBS1) n.s. - n.s. n.s. n.s. 0.043

*Listing only p-values ≤0.1, otherwise marking the test as ’n.s.’ (not significant) or ’-’ where analysis was

not possible; main = p-value for genetic main effect; inter. = p-value for interaction

For the OTM quantitative trait, four interacting SNP pairs were noted (see table

6.10). Two pairs showed epistasis in both additive and recessive genetic models while

the other two pairs showed epistasis only under the recessive genetic model. The inter-

acting SNPs involve the following genes: XRCC1-NBS1 (rs1001581-rs709816), LigIV-

NBS1 (rs1151403-rs709816), HOGG1-MRE11 (rs2072668-rs3017077) and MRE11-

NBS1 (rs3017077-rs709816). The last two interacting pairs are also included in the

interacting pairs detected using the %DT quantitative trait.

Under different genetic model assumptions, different results also come up in testing

for genetic main effects in the OTM trait. In the dominant model, three SNP pairs

showed significant genetic main effects (p<0.05). Under the additive genetic model,
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two SNP pairs showed significant genetic main effects. A similar observation with

the %DT analysis is that no genetic main effects showed up when testing under the

recessive genetic model.

Table 6.10: Results of the analysis of SNP pairs and the Olive Tail Moment (OTM)
SNP (Gene) Pair tested GQTDT p-values*

under genetic model
Dominant Additive Recessive
main inter. main inter. main inter.

rs1001581 (XRCC1) rs10040363 (XRCC4) n.s. n.s. n.s. n.s. n.s. n.s.
rs1151403 (LigIV) 0.003 n.s. n.s. n.s. n.s. n.s.
rs2072668 (HOGG1) <0.001 - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) <0.001 n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) 0.055 - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. 0.002 n.s. 0.004

rs10040363 (XRCC4) rs1151403 (LigIV) 0.072 n.s. n.s. n.s. n.s. n.s.
rs2072668 (HOGG1) n.s. - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. n.s.

rs1151403 (LigIV) rs2072668 (HOGG1) 0.077 - 0.038 n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. 0.003

rs2072668 (HOGG1) rs2706348 (RAD50) 0.056 - 0.011 n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. 0.029 n.s. 0.009
rs709816 (NBS1) n.s. - n.s. n.s. n.s. n.s.

rs2706348 (RAD50) rs3017077 (MRE11) n.s. - 0.094 n.s. n.s. -
rs709816 (NBS1) n.s. - n.s. n.s. n.s. -

rs3017077 (MRE11) rs709816 (NBS1) n.s. - n.s. n.s. n.s. 0.013

*Listing only p-values ≤0.1, otherwise marking the test as ’n.s.’ (not significant) or ’-’ where analysis was

not possible; main = p-value for genetic main effect; inter. = p-value for interaction

Among the three quantitative traits, the DOTM is the only one which is approx-

imately normal in distribution. Using this quantitative trait, only one SNP pair

showed epistasis in the analysis. The significant interaction was noted between SNPs

rs2706348 (RAD50) and rs3017077 (MRE11). This finding is unique in the DOTM

trait for this is not seen in the other two traits. Like in the %DT and OTM analysis,

most of the tests for interaction in the DOTM trait under the dominant model were

not analyzable. In contrast with the individual SNP analysis, the SNP pair analysis

detected significant genetic main effects on the DOTM. There are more similarities

in the results assuming dominant and additive genetic models. Under the recessive

genetic model, there are more significant genetic main effects found. A total of eight

SNP pairs have significant genetic main effects detected using the DOTM quantitative

151



Chapter 6. Applications

trait. Three of these are the same with the result in %DT and one is the same with

the result in OTM. The pair rs2072668 (HOGG1) and rs2706348 (RAD50) was com-

monly identified to have genetic main effect in the three quantitative traits analyzed.

With regard to epistasis, no SNP pair was commonly identified in the analysis of the

three traits.

Table 6.11: Results of the analysis of SNP pairs and the Difference in Olive Tail Mo-

ments (DOTM)
SNP (Gene) Pair tested GQTDT p-values*

under genetic model
Dominant Additive Recessive

main inter. main inter. main inter.
rs1001581 (XRCC1) rs10040363 (XRCC4) n.s. n.s. n.s. n.s. n.s. n.s.

rs1151403 (LigIV) n.s. n.s. n.s. n.s. n.s. n.s.
rs2072668 (HOGG1) n.s. - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. n.s.

rs10040363 (XRCC4) rs1151403 (LigIV) 0.021 n.s. <0.001 n.s. 0.012 n.s.
rs2072668 (HOGG1) n.s. - n.s. n.s. 0.042 n.s.
rs2706348 (RAD50) 0.008 n.s. <0.001 n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. 0.072 0.018 n.s.
rs709816 (NBS1) n.s. - 0.032 n.s. 0.015 n.s.

rs1151403 (LigIV) rs2072668 (HOGG1) n.s. - n.s. n.s. n.s. n.s.
rs2706348 (RAD50) n.s. n.s. n.s. n.s. n.s. -
rs3017077 (MRE11) n.s. - n.s. n.s. n.s. n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. 0.060

rs2072668 (HOGG1) rs2706348 (RAD50) n.s. - n.s. n.s. 0.021 -
rs3017077 (MRE11) n.s. - n.s. n.s. 0.042 n.s.
rs709816 (NBS1) n.s. - n.s. n.s. n.s. n.s.

rs2706348 (RAD50) rs3017077 (MRE11) 0.070 - 0.063 0.002 0.070 -
rs709816 (NBS1) n.s. - n.s. n.s. n.s. -

rs3017077 (MRE11) rs709816 (NBS1) n.s. - n.s. 0.084 0.018 n.s.

*Listing only p-values ≤0.1, otherwise marking the test as ’n.s.’ (not significant) or ’-’ where analysis was

not possible; inter. = p-value for interaction; main = p-value for genetic main effect
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6.3.4 Discussion

It is evident in this analysis that the use of different quantitative measures can lead to

different conclusions about possible genetic factors that can affect radiation sensitivity.

In detecting genetic main effects, the SNPs from the genes HOGG1 and RAD50 were

commonly identified in the analysis of the three radiation sensitivity measures to have

significant genetic main effects. It is not surprising to see a lot of significant genetic

main effects in this analysis because the chosen candidate genes are the ones with

proven biological functions related to DNA damage repair. The GQTDT method has

proven its applicability in real data even if the sample size in the study is very limited.

With regard to epistasis, the results of the analysis differ depending on the radiation

sensitivity measure or trait used. In total, there are nine SNP pairs which showed

epistasis in this statistical analysis. Different SNP pairs showed epistasis in the %DT,

OTM and DOTM traits. Table 6.12 summarizes the result of analyzing epistasis in

the three radiation sensitivity measures.

Table 6.12: Summary of epistatic effects in the LUCY data

SNP (Gene) Pair Radiation Sensitivity Measure

%DT OTM DOTM

rs10040363 (XRCC4) rs1151403 (LigIV) E N N *

rs10040363 (XRCC4) rs3017077 (MRE11) E N N *

rs10040363 (XRCC4) rs709816 (NBS1) E N N

rs2072668 (HOGG1) rs3017077 (MRE11) E E N

rs2072668 (HOGG1) rs709816 (NBS1) E N N

rs3017077 (MRE11) rs709816 (NBS1) E E N *

rs1001581 (XRCC1) rs709816 (NBS1) N E N

rs1151403 (LigIV) rs709816 (NBS1) N E N

rs2706348 (RAD50) rs3017077 (MRE11) N N E *
E - with epistasis; N - no epistasis detected in the GQTDT analysis;

*Reported in the literature with biological or functional interaction; In addition RAD50 and NBS and also

XRCC1 and HOGG1 have been reported to have biological interactions but were not detected in this

analysis.

Some of the SNP pairs with significant epistatic effect in this analysis were also

found to be epistatic in biological studies. A recent article about a biological ex-
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periment on MRE11 by Xie et al. (2009) showed that MRE11 (Meiotic Recombina-

tion 11) has a crucial role in both XRCC4-dependent and XRCC4-independent non-

homologous end joining (NHEJ) in mammalian cells. The interaction effects noted in

the other genes are also supported by experimental data. MRE11, RAD50 and NBS1

were also reported to form a complex in response to double-strand chromosomal breaks

(Lee and Paull, 2005). In the statistical analysis of the LUCY data, there was also sig-

nificant interaction between rs3017077 (MRE11) and rs709816 (NBS1) and between

rs3017077 (MRE11) and rs2706348 (RAD50) but not between rs2706348 (RAD50)

and rs709816 (NBS1). Other known biological interactions that were detected in the

statistical analysis of the LUCY data is the interaction between the DNA double

strand break repair protein XRCC4 and DNA ligase IV which was demonstrated by

several authors (Critchlow et al., 1997; Tseng et al., 2009). The epistasis between

XRCC4 and DNA ligase IV was detected by the GQTDT in the %DT analysis. Some

interactions (e.g. LigIV-NBS1 and HOGG1-MRE11) were detected in the analysis

of the LUCY data but there is no publication yet of their biological interaction in

the literature. On the other hand, the genes XRCC1 and HOGG1 have already been

shown to interact both physically and functionally in biological experiments on DNA

damage repair (Marsin et al., 2003) but their epistasis was not detected in the statis-

tical analysis of the LUCY data.

The agreement of the results of the GQTDT with several studies and biological

findings is a good measure of its applicability in real data. Although some results in

this analysis have no existing publication yet to compare with, it does not necessarily

mean a disadvantage of the statistical method. The two-SNP pairs that are known

to have biological interaction but were not detected by the GQTDT method could

be attributed to factors such as effect size and sample size. In the simulation studies

done in chapter 5, one saw the improvement in the power of the test at larger sample

sizes and in situations when the genetic factor being measured contributes a bigger

effect on the response variable.

The use of a statistical test such as the GQTDT in the analysis of genetic main

effects and epistasis can give important clues on biological mechanisms of genetic

factors affecting diseases. The results of statistical tests can also generate hypothesis

that scientists might wish to pursue in the laboratory. It can also become a basis for

objective decision-making with respect to disease management and treatment. In the

LUCY study for example, one can develop a criteria which includes significant genes
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to guide the doctors whether to recommend radiation therapy or not to a patient. In

the absence of biological evidence, a statistical evidence about radiation sensitivity

can be used as a rough basis.

In the LUCY study, there is still a question which radiation sensitivity measure is

best to use to determine genetic factors related to DNA damage repair. Although

both OTM and %DT are commonly recommended end points in comet assay, some

prefer the %DT more because of its advantage of being ’standardized’ over different

studies. Still others suggest that comparisons of results with different comet assay

end points is useful (Lovell and Omori, 2008). The choice of the response variable is

important as it can lead to different conclusions in the end. As seen in the result of

the LUCY analysis, the three radiation sensitivity measures detected different SNP

pairs with genetic main effects and epistatic effect. As to which response variable

should be labelled as most appropriate in measuring radiation sensitivity is beyond

the scope of this analysis.
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7 Summary and Outlook

Previous studies in the literature and simulation studies in this thesis have shown the

difficulties and issues involved in the statistical analysis of genetic main effects and

epistasis in family-based studies. The existing Transmission Disequilibrium Test and

other related tests have made good contributions to the body of knowledge available

for analyzing genetic effects in family data. However, there is still a need for im-

proved methods that can be applied specifically for quantitative traits. The proposed

Generalized Quantitative Transmission Disequilibrium Test (GQTDT) offers several

advantages in analyzing genetic effects given different distributions of the quantitative

response variable. Being a generalized method, it encompasses other existing methods

because of its flexibility. For example, the QTDTM by Gauderman (2003) would give

the same result as the GQTDT if normal distribution parameter links are specified in

the GQTDT analysis. The power of the GQTDT can be influenced by several factors

such as the minor allele frequencies of the loci or genes being investigated, the analysis

genetic model, the fit of the distribution used in the analysis and the sample size.

Higher power of the GQTDT was observed in the simulation scenarios with higher

minor allele frequencies (MAF). This effect of the MAF on power is not unique to the

GQTDT. It can also be seen in population-based studies. Data with minor allele

frequencies close to 0.50 have the advantage of having enough individuals in the

genotype groups in a reasonably-sized study. This makes it easier for the test to

make comparisons. In data where the minor allele frequencies are small or rare, some

genotypes also appear in small frequencies or may not appear at all in the dataset being

analyzed. Thus, causing decreased power and sometimes problems in convergence of

the test statistic. Slightly higher type I error in detecting genetic main effects and

epistasis were noted more often in some simulation scenarios involving PopB datasets

which has the highest minor allele frequencies among the three simulated populations

in chapter 5. This is however cannot be generalized for all the simulation scenarios.

The assumed genetic model in the analysis is also another factor that affects the
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score depends on the assumed genetic model. Higher power is observed when the

analysis genetic model is the same as the ”true” genetic model of the gene in the

data. In testing two genes at a time, good power is achieved in determining genetic

main effects when at least one of the genes has a correctly assumed genetic model.

In the case of a recessive genetic model, lower power in detecting genetic effects is

expected, especially when the minor allele frequencies of the genes are also low. In a

study by Lettre et al. (2007) on genetic model testing and power of population-based

association studies in quantitative traits, a similar observation was reported. Even if

the study uses unrelated individuals and different statistical methodology, the result

showed a similar result with the GQTDT that maximal power is achieved when one

uses a genetic model that matches the actual underlying mode of inheritance of the

gene.

The use of a fitted distribution gives the GQTDT higher power in detecting ge-

netic main effects and epistasis compared to linear regression based method like the

QTDTM. The higher power in statistical testing is more noticeable in detecting genetic

main effects than in detecting epistatic effects. A major advantage of the GQTDT

is its flexibility to model additional environmental covariates and to adopt different

types of quantitative continuous distributions. The GQTDT model can also be ex-

tended and modified to analyze response variables with mixed distributions and also

for handling non-continuous or discrete variables (e.g. Poisson distributed variables).

In general, the power of the GQTDT increases with increased sample size. What

is not investigated in the simulation studies are scenarios of very small sample sizes.

Based on the sample size recommendation in the study of Gauderman (2003), a sam-

ple size of less than 100 family trios may be used to investigate genetic main effects

or epistasis in certain situations. However, there are no published studies yet inves-

tigating the effect of genes on quantitative traits in line with this type of statistical

method using only 20 or less family trios.

A common advantage of the GQTDT with other family-based analysis is its robust-

ness to population stratification. In terms of power and type I error, the simulation

results of testing in mixed populations show the same trend as that of the homoge-

nous populations. In using a regular linear regression without mating type indicator,

the type I error can go beyond 50% when there is population stratification. This has

been clearly shown in the study of Gauderman (2003). In using the GQTDT, slightly
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elevated type I error (up to 9%) was seen in cases of analyzing simulated skewed

quantitative traits. The result is similarly noted in the PopMix population and in

the homogenous PopA and PopB populations, indicating that this is not peculiar to

datasets with population stratification.

The performance of the GQTDT in determining genetic main effects is satisfactory

both in the normally distributed and skewed quantitative traits. When a fitted distri-

bution is specified in the analysis, higher power can be achieved. In terms of detecting

epistasis, good power is noted when the distribution of the quantitative trait is nor-

mal, but in case of skewed traits the observed power is not as high as that observed

in the normal trait. The measurement of epistasis both biologically and statistically

is not an easy task. The different definitions of the term alone create confusions on

how it can be detected in practice. For statistical testing, we are limited on available

mathematical models in detecting epistasis in genetic data. The way of defining the

model and choosing the correct distribution in using the GQTDT can affect its power

and accuracy. Fitting a distribution that is very inappropriate (e.g. using a normal

distribution for skewed data) can elevate type I errors and reduce the power of the

test.

In this thesis, the application of the GQTDT in real data shows the performance

of the method in realistic scenarios. In the Framingham Heart Study, the method

was able to detect genetic main effects associated with body-mass-index which were

also detected by other methods. However, no significant interaction was detected in

the data. In the simulated data which were also based on the real Framingham data,

epistatic effects were detected by the method in the two SNP pairs analyzed. The

power of the GQTDT in this case is again much higher compared to using QTDTM.

In the lung cancer study, the GQTDT was also able to determine known genetic main

effects and epistasis as proven by the agreement of the results with biological studies

and experiments. Not all known genetic effects were captured by the test in the LUCY

data, but it has performed quite well given a data with only 41 family trios.

The GQTDT has been compared in this thesis with the QTDTM which has been a

benchmark method in determining genetic effects in quantitative traits. The GQTDT

has shown advantages over the QTDTM especially in dealing with skewed quantita-

tive traits. Being a generalized method, the GQTDT transcends the limitations of

the QTDTM when dealing with nonnormally distributed quantitative traits. The

method can also be extended to accommodate more complicated statistical models.
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In comparison with population-based methods, the GQTDT has an advantage when

population stratification is present in the data. It also doesn’t need more complicated

models and longitudinal data as used in the methods of Malzahn et al. (2009). The

method of Malzahn and colleagues showed higher power in detecting epistasis but

also needed more information (e.g. follow-up measurements) which may not be al-

ways easy to collect and requires longer study period. In addition, the methods used

by Malzahn et al. (2009) have not been tested for effects of population stratification

and it cannot be directly compared with the GQTDT method because it is not a

family-based method.

In the simulation studies done here, ideal situations have been assumed where the

complete family data is available and the loci involved are not linked or in linkage

disequilibrium with each other. The proposed GQTDT may be extended to accommo-

date more than two candidate loci and other environmental factors. In some instances,

several marker loci being in linkage disequilibrium with each other are genotyped on

the same gene. It would be a challenge to extend the GQTDT by considering possible

linkage disequilibrium between genetic markers. It is also an open task to evaluate

epistasis between two or more genes when several SNPs in each gene are involved.

It may be straightforward to test which SNPs are interacting, but if one wants to

determine which genes consisting of several SNPs are interacting, further evaluation

method is needed. Moreover, this thesis focused on statistical hypothesis testing but

did not consider effect estimation. The GQTDT method has been applied to few

nonnormal distributions in this study but it cannot generalize about the performance

of the method for all types of parametric and also semi-parametric distributions. The

problem of missing family data would also be interesting to pursue using the method.
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Appendix

Notations

The summary of notations used in this thesis is listed below in the order that they

appeared in the text. The symbols introduced in one chapter is used throughout the

whole thesis unless otherwise specified.

Chapter 2

X independent random variable

(Ar,As) ordered pair of alleles at a given gene or locus where r,s = 1,...,k

(Br,Bs) ordered pair of alleles at another locus where r,s = 1,...,m

pr,ps frequencies of alleles for Ar and As, respectively, where r,s = 1,...,k

qr,qs frequencies of alleles for Br and Bs, respectively, where r,s = 1,...,m

fArAs
penetrance of genotype ArAs where r,s = 1,...,k

Y the outcome variable (e.g. affection status or quantitative trait)

μ population mean

βG regression coefficient for the genotypic effects or covariate G

G genotype or covariate that quantifies the genotype at a locus

Gi genotype or covariate that quantifies the genotype of the ith individual

σ2 residual variance

H polygenic effect due to a large number of small additive genetic factors

E environmental effect which also includes the error term

d degree of dominance

t measure of displacement at the major locus

σ2G variance of the effect of the major locus G

μ0, μ1, μ2 mean effects of genotypes A2A2, A1A2 and A1A1

σ2H variance of the polygenic effect H

σ2E variance of the environmental effect E

σ2c common environmental component of the variance

σ2r random component of the environmental variance

M number of affected offspring

n total number of offsprings
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PD probability of being affected by a disease

N total number of sibship or families

gi represents all possible genotypes of the ith individual

Gif , Gim genotypes of parents of the ith individual

nt total number of individuals in a pedigree

n1 total number of founders in a pedigree

n2 total number of non-founders in a pedigree

ϕ transmission parameter

θ recombination fraction

u number of recombinants

v number of non-recombinants

h0, h1 haplotype frequencies of the current and next generation, respectively

δij coefficient of linkage disequilibrium of alleles Ai and Bj

Q unobservable indicator of subpopulation

D the presence or absence of the disease

Δ the case-control effect

gij genotype values where i,j = 0,1 or 2 refers to the number of susceptibility

alleles at the first and second locus respectively

ai additive effects at locus i

di dominance effects at locus i

iaa additive x additive epistatic effects

iad additive x dominance epistatic effects

ida dominance x additive epistatic effects

idd dominance x dominance epistatic effects

wi, zi dummy variables for the genotype at locus i

β1i regression coefficient for the effect associated with having i susceptibility

alleles at the first locus, where i = 0,1,2

β2j regression coefficient for the effect associated with having j susceptibility

alleles at the second locus, where j = 0,1,2

Chapter 3

Nij number of parents who transmitted i allele and did not transmit j allele

δ coefficient of linkage disequilibrium
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χ2
tdt TDT Chi-square statistic

ZU upper cut-off of on the quantitative phenotype

ZL lower cut-off of on the quantitative phenotype

T absence or presence of transmission of susceptibility allele

X number of susceptibility alleles

μT mean transmission of susceptibility allele

μArAs
mean quantitative phenotype of genotype ArAs, where r,s = 1,...,k

R2 regression coefficient

Y’ observed trait

x minimal sufficient statistic

βX regression coefficient for the number of susceptibility alleles

Lij link function

S, S score statistic and vector of score statistics

ms number of score statistics

V vector of variances of score statistics

E covariates affecting the phenotypic trait

βE regression coefficient for the covariate E

βXE regression coefficient for the interaction of the genotype X and covariate E

Ωi variance-covariance matrix for family i

πijk proportion of alleles shared IBD between siblings j and k in family i

σ2a additive genetic variance of the major gene

σ2s residual sibling resemblance

σ2e residual environmental variance component

βa regression coefficient of the additive genetic effect

b between-family component

w within-family component

βb regression coefficient of the between-family component

βw regression coefficient of the within-family component

εi residual, ∼ N(0, σ2)

Hi genotype of the ith individual at another locus

βH regression coefficient of covariate H
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βGH regression coefficient of the interaction of covariates G and H

αM parental mating type specific intercept

Si minimal sufficient score statistic for the the ith family

Vi ni x ni variance matrix; ni is the number of offsprings in the ith family

Û a score statistic

OM set of possible offspring genotypes for a mating type M∑
X∗

i
summation over all possible offspring genotypes∑

X∗
i ∈O′

M
all possible offspring genotypes that could have been transmitted

given the parental genotypes

Chapter 4

Y t
i transformed value of the phenotype for the ith subject

Φ−1 standard normal quantile (or probit) function

η linear predictor

Θ canonical parameter representing the location in the exponential distribution

Ψ dispersion parameter representing the scale in the exponential distribution

μ the location parameter

σ the scale parameter

ν the skewness parameter

τ the kurtosis parameter

l log-likelihood function of the data

z transformed variable

π∗i probability for a non-zero Yi

X, Z design matrices

β linear parameter

γ random effect

λ hyperparameter
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GQTDT online documentation and programs

The description of the GQTDT method, R programs and applications are available

online in the website http://gqtdt-statistics.int-org.co.cc
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