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Zusammenfassung

In den letzten Jahren ist die Anzahl der elektronischen Komponenten im Auto stetig

gestiegen. Sowohl für Sicherheitsaspekte als auch für Multimedia-Lösungen wer-

den immer komplexere Systeme eingesetzt. Die Folge dieser Entwicklung sind große

Datenmengen, die mit immer höher werdenden Geschwindigkeiten ausgetauscht wer-

den müssen. Auf der anderen Seite stellt der Trend zur Elektromobilität auch hohe

Herausforderungen für die EMV dar. Zur Sicherstellung deren Funktionalität werden

restriktive EMV-Normen an die elektronischen Komponenten gesetzt. Die EMV-

Simulation hat aufgrund der Fortschritte sowohl auf der Hardware- als auch auf der

Software-Seite in den Produktentstehungsprozess Einzug gehalten. Die hohe Kom-

plexität der Komponenten und die Nachfrage nach immer präziseren Vorhersagen

stellen aber hohe Anforderungen.

Im Rahmen dieser Arbeit wurde die Modellordnungsreduktion (MOR) zur Effizien-

zsteigerung der EMV Simulation eingesetzt. Um den Anforderungen insbesondere

im Hinblick auf eine Kopplung Feld- und Schaltungssimulation gerecht zu werden,

wurde die sogenannte passive Padé Approximation implementiert. Diese Methode

ermöglicht schnelle Berechnungen, ist geeignet für resonante Strukturen und liefert

passive, genaue und kompakte Modelle. MOR wurde in ein Konzept, dessen Kern ein

C++ Code darstellt und, das von der EMV-Vorhersage über die Analyse bis hin zur

Optimierung das gesamte Spektrum der EMV Simulation abdeckt, integriert.

Die passive Padé Approximation wurde um eine online-Fehlerkontrolle ergänzt.

Dies ist zur Aufstellung eines effizienten Abbruchkriteriums unabdingbar. Durch die

Generierung passiver und genauer Makromodelle können Feld- und Schaltungssimula-

tion besser miteinander gekoppelt werden. MOR ermöglicht zusätzlich einen Beschle-

unigungsfaktor von bis zu 30 verglichen zu herkömmlichen Frequenzbereichsmetho-

den. Durch die Parallelisierung kann der Code komplexere Strukturen rechnen und

somit den Modellierungsaufwand reduzieren und dabei die Genauigkeit der Simula-

tion verbessern. Ein reales Beispiel mit 8.106 Unbekannten wurde in 1h30min. auf 48

Prozessoren berechnet, während iterative Löser auf einer 64 GB Maschine nach einer

Woche nicht konvergieren konnten.
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Die Methode zur EMV-Analyse, die auf die Generierung physikalisch bedingter Er-

satzschaltbilder - in Kontrast zu oben genannten Makromodellen, die lediglich eine

mathematische Konstruktion ohne physikalischen Bezug sind -, konnte erfolgreich an

einem ESP (electronic stabilization program) Modell angewandt werden. Sie besteht

darin, die Systeme resultierend aus MOR und aus der Knotenanalyse als rationale

Polynome darzustellen. Die Koeffizienten dieser Polynome werden anschließend durch

Optimierung abgeglichen. So können inkompatible Schaltungen automatisch elim-

iniert und die Werte der vorkommenden Elemente ermittelt werden. Dadurch lassen

sich die Ursachen parasitischer Effekte effizient identifizieren.

Die EMV-Optimierung besteht aus diskreten Maßnahmen, die die Berechnung ver-

schiedener geometrischen Varianten erfordert. Zu diesem Zweck wurde eine Methode,

bei der geometrische Variationen (Versatz von Leitungen oder Bauelementen) direkt

an den Systemmatrizen durchgeführt werden, in Kombination mit einem genetischen

Algorithmus implementiert. So verläuft der Optimierungsprozess autonom und die

Zeit für die Vergitterung (in der Größenordnung von ein paar Minuten pro Iterationss-

chritt für komplexe Systeme) kann gespart werden. Diese Methode konnte erfolgreich

zur Optimierung eines DC-DCWandlers für Anwendung in Hybridmotoren eingesetzt

werden.
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1 Introduction

1.1 Motivation

1.1.1 Introduction to EMC

Electromagnetic compatibility (EMC) is the ability of a device or system to func-

tion without error in its intended electromagnetic environment, without influencing

this environment inadmissibly [1]. This is of great importance as transfer of electro-

magnetic energy induces interferences between electronic devices which could in the

context of e.g. automobile safety lead to severe damages.

EMC standards are set today by international CISPR (comité international spécial

pour les pertubations radioélectriques) recommendations from which European stan-

dards are derived by the European standardization institute for civil applications

CENELEC (comité européen de normalisation electrotechnique). The institute which

is responsible for the national DIN standard in Germany is the DEK (Deutsches Elek-

trotechnisches Komitee) [1].

There are two main trends observed in the last years which enhanced the interest

on EMC in automobiles:

• In order to meet the demand for telecommunication services and improve the

safety standards, faster and more sophisticated electronic systems are provided.

• The implementation of electromobility requires the integration of more elec-

tronic devices.

Summing up, those trends lead to more devices and thus a higher electromagnetic

susceptibility. In order to guarantee the safety while providing more comfort and

possibilities for the passengers, the EMC norms have got more and more restrictive.

This progress has contributed to put EMC engineering in the focus of electronic

product development.
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1 Introduction

For EMC validation, it can be distinguished between electromagnetic emissions of

the device under test (DUT) and its immunity against interferences from its envi-

ronment which are related to external EMC, whereas the interferences of components

within a product or system are related to internal EMC [2]. In the scope of this work,

the focus will be on internal EMC and electromagnetic emissions. For a detailed in-

sight into this topic, refer to [2–5].

1.1.2 EMC Simulation in this Work

EMC simulation has grown in the last years to an indispensable tool for EMC en-

gineering. In fact, it allows a reduction in time and resources in early design stages

as well as later in the development process. Tremendous advances in hardware and

computational methods have contributed to this progress. This interest has increased

the demand on model accuracy which ramped up again computation time and model

complexity. Improving the underlying computational methods is thus of great impor-

tance for a better efficiency of EMC simulations.

The electronic devices analyzed in this work are subdivided into two categories:

• Control units are impregnated in printed circuit boards (PCBs) which are

multi-layered and miniaturized (∼ μm details). These devices become more

and more indispensable especially for transmission control and safety issues in

cars1. In this work we analyzed the board of an electronic stabilization program

(ESP) system.

• DC/DC-Converters have gained interest in the last years due to its appli-

cation in hybrid and electrical cars which constitute the megatrend electro-

mobility. The dimensions of the devices here are larger compared to PCBs

(∼mm).

The numerical modeling of these problem types which contain nonlinear elements2

requires the coupling of three dimensional (3D) field- and circuit simulation. The

high frequency (HF) couplings occurring on the PCB or converter are captured by a

transfer function computed with a field solver. From the transfer function a reduced

model is derived for the circuit simulation, which additionally considers nonlinear

elements.

For the discretization in field solvers, we distinguish between

1They are used for steering, anti-lock bracking, suspension and engine management sys-
tems.

2Nonlinear in system view, e.g. micro controllers, transistors, ...

8



1.1 Motivation

• Surface discretization methods: In this set of methods (e.g. Boundary

element method, BEM [6]), only the conducting structures surfaces inside of

homogeneous bodies and dielectrica are discretized as the wave propagation in

air is compted with help of Green functions.

• Volume discretization methods: These methods limit the number of state

variables by considering only a part of the whole domain as computational

domain in which the field values are solved for nodes defined on a grid. In this

regard, the finite element method (FEM ) approximates the requested functions

of the fields through superpositions e.g. of functions which are each defined on

small areas. The wave equation can be transformed in the following system [7]

(A+
d

dt
D+

d2

dt2
K)e = b, (1.1.1)

where e is the unknown field vector and b the excitation vector. The stiffness

matrix A, the damping matrix D, and the mass matrix K are all sparse. On the

other side, the finite differences (FD) computes the fields on each node where

the partial differential form of Maxwell’s equations is transformed in discrete

differences. The finite integration technique (FIT) which on its part consists on

applying the integral form of the Maxwell’s equations on the the nodes of the

grid can also be seen as part of this group.

In the scope of this work, volume based techniques are more suitable, especially

considering PCBs as volume elements (air, dielectrics, ...) dominate surface elements

(traces, layers, ...). The volume discretization of PCBs yields generally 106 to 107

unknowns whereas only 105 unknowns are needed for converters. We used FIT as

discretization method in this work, but it should be stated that the methods imple-

mented can be easily extended to FEM systems.

After having discretized the DUT, the computation of its transfer function resulting

from the Maxwell equations may be performed with one of the following methods:

• Time domain: This method has a low complexity as only matrix-vector multi-

plications3 are performed. It is appropriate for problems with wide frequency

range but gets less inefficient for resonant structures4 and in presence of a lot

of ports5 [8].

3Only in combination with FIT or FD which allow efficcient explicit time domain methods.
4The energy in the system would decay slower and thus lead to longer computation times.
5The computation time grows linearly with the number of ports, except in combination
with Graphic process units (GPU)

9



1 Introduction

• Frequency domain: The complexity of this method is high as several matrix-

inversions should be performed to determine the transfer function in a wide

frequency range. However, it may get more efficient as time domain in presence

of a lot of ports6 and for narrow band computations.

The main challenges for field computation for EMC purposes can be stated as

follows:

• wide frequency range,

• large model size,

• resonant behavior,

• and large number of ports.

The limits in circuit simulation are:

• accuracy of extracted models,

• number of ports,

• guarantee for passivity and stability.

1.2 MOR

Model order reduction methods (MOR) [9] which consist on computing reduced order

models have been first used in the field of control theory. They have been since then

introduced to systems resulting from nodal analysis and discretization of Maxwell’s

equations. They generally consist on generating a reduced model which captures the

dependance of a function on one or several parameters. By this way, the complexity

of recomputations is lowered and the coupling with other models is made easier.

MORmethods which have already been identified as robust for efficient field simula-

tion [10–12] and especially for EMC simulation [13] present the following advantages:

• fast computation,

• wide frequency range,

• efficient for resonant structures,

6Once the matrix has been inverted, it can be applied at all ports.
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1.2 MOR

· Initial geometry is imported.

· EMC failures are known.

· First guess of parasitics

· EMC-optimized geometry

is proposed.

· Parasitics and sensitive

parameters are identified.

MOR

EMC Computation

EMC AnalysisEMC Optimization

Figure 1.1: Overview of the EMC simulation concept implemented in the scope of

this work

• high accuracy of the macromodels,

• guaranteed passivity of extracted models.

MOR has been implemented in a whole concept from EMC computation (predic-

tion) through EMC analysis to EMC optimization as illustrated in Figure 1.1. This

concept guarantees a better integration of EMC simulation in the development pro-

cess of electronic devices.

EMC Computation

In this step, the EMC behavior of a given structure is predicted through simulation.

It involves the coupling of field and circuit simulation already discussed above. MOR

can be used to compute the transfer function more efficiently and/or to generate

passivity preserving models for a stable circuit simulation if some system currents or

voltages are of interest.

11



1 Introduction

EMC Analysis

If some EMC failures have been predicted in the first step, an analysis is indispens-

able in order to understand their causes and thus derive proper EMC measures for

improvement. In this step, we make use of the exact mathematical expression of the

transfer function with MOR in order to generate equivalent circuits which retrieve

the physics of the considered structure.

EMC Optimization

The EMC measures which typically influence the structure geometry are then param-

eterized and combined with a suitable optimization algorithm to retrieve an EMC-

optimized geometry. Again, the efficiency of MOR can be used to reduce the overall

optimization time.

1.3 Outline

After this introduction, the method FIT will be presented in Chapter 2. First, the

discretization of Maxwell’s equations will be addressed and afterwards, the discretized

models will be derived to state space representations whose system properties are

discussed.

The topic of Chapter 3 is model order reduction. After a brief introduction, different

MOR methods are presented. Especially its passivity preserving variant which has

been implemented in this work will be addressed.

The main contribution of this work is presented in Chapter 4 where the concept

introduced in Section 1.2 is explicitly explained. The main concern in the EMC

computation part is the efficient implementation of MOR. Particularly, an error con-

trol method for a reliable stop criterion is presented. A method for efficient order

reduction in presence of a high number of ports is also proposed. Furthermore, an

appropriate parallelization technique to enable the computation of more complex

structures is introduced. The next section on EMC analysis presents a method to

generate equivalent physical circuits by matching of the polynomial representations

of the transfer functions resulting from MOR to proposed circuits. In the section

related to EMC optimization, the computation of different variants is described along

with the optimization workflow implemented in this work.

In Chapter 5, a method of matrix compression, the so-called Kronecker decompo-

sition, is presented. Differently from parallelization which enables the computation

12



1.3 Outline

of complex structures on several machines, this method allows to compute models of

high order (107 unknwons) on standard computers with less memory requirements.

It should be stated that the method requires cartesian grids and is thus suitable for

FIT. On the other hand, this method has not been implemented in this work, as there

are still some open issues to address on this field.

The methods implemented in this work are applied to solve real-life problems which

are presented in Chapter 6. They consist of a measurement setup of the electronic

stabilization program (ESP), and a DC/DC-converter.

Finally, Chapter 7 gives a conclusion to this work and an outlook to further im-

provements.
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2 Finite Integration Technique

Maxwell’s equations are the constitutive equations for the description of electromag-

netic fields. Therefore, they should be considered for the EMC analysis of electronic

devices. The numerical computation requires the discretization of those equations in

the considered domain. It can be distinguished between surface and volume discretiza-

tion methods. For our purposes, latter have been identified as the most suitable.

Among them, the finite element method, finite differences and the finite integration

are the most popular numerical methods for the solution of Maxwell’s equations.

In this work, we implemented the finite integration technique on orthogonal grids

(hexaeder elements) because of the easiest mesh generation and the possibility to apply

the matrix compression introduced in Chapter 5. Finite element methods have surely

a better convergence behavior since they can make use of basis functions of higher

order, but this comes at cost of a more complex computation. Furthermore while the

ratio of unknowns between orthogonal and unstructured grids for PCB simulations

(details in the order of 100 μm) is very low, it tends to one for structures in power

electronics.

In this chapter we recall first of all the Maxwell’s theory and its discretization

with FIT. As the transfer function is of great interest for EMC analysis, the FIT

systems are presented and analyzed. While the eigenvalue analysis is essential for a

proper handling of the singular differential operators of the wave equation, the system

properties are indispensable for a coupling with transient simulations.

2.1 Maxwell’s Equations

Ampere (1826) and Faraday (1831) put the coupling between electric and magnetic

fields with the Ampere’s and the induction laws in evidence. However, the four

constitutive equations of classical electrodynamics are related to Maxwell because

he revealed the bidirectional coupling of electric and magnetic fields and was the

precursor of the today well known uniform electromagnetic theory [14].

Maxwell’s equations connect the electric field �E, the electric flux density �D, the

15
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2 Finite Integration Technique

density ρ. The first two equations - also called Faraday’s and Ampere’s laws - show

that the time derivative of a flux over a given surface A is equal to the voltage of

its boundary ∂A. Whereas the next two equations show the equivalence between

the charge in a volume V and the flux over its closed boundary ∂V express the

nonexistence of magnetic charge. For more details, we recommend [15]. Assuming

static media, Maxwell’s equations are given the following way∮
∂A

�E(�r, t) · d�s = −
∫
A

∂ �B(�r, t)

∂t
· d �A (2.1.1a)∮

∂A

�H(�r, t) · d�s =
∫
A

(
∂ �D(�r, t)

∂t
+ �J(�r, t)

)
· d �A (2.1.1b)∮

∂V

�D(�r, t) · d �A =

∫
V

ρ(�r, t)dV (2.1.1c)∮
∂V

�B(�r, t) · d �A = 0. (2.1.1d)

The current density in (2.1.1b) is given as the sum

�J(�r, t) = �Je(�r, t) + �Jc(�r, t) + �Jl(�r, t) (2.1.2)

of an externally impressed current density, �Je(�r, t), the conducting current density,
�Jl(�r, t), induced by the conductivity in materials and the convection current density,
�Jc(�r, t), induced by moving charges due to electromagnetic forces.

The Gauss’ and Stokes’ laws allow a transformation of Maxwell’s equations into

their differential form

curl �E(�r, t) = −∂ �B(�r, t)

∂t
, (2.1.3a)

curl �H(�r, t) =
∂ �D(�r, t)

∂t
+ �J(�r, t), (2.1.3b)

div �D(�r, t) = ρ(�r, t), (2.1.3c)

div �B(�r, t) = 0. (2.1.3d)

The vectorial variables need to satisfy the continuity condition at boundaries be-

tween electrically or magnetically different media for the differential form to be cor-

rect. The conditions are given as

�n12 × ( �E1 − �E2) = 0, �n12 × ( �H1 − �H2) = �JF , (2.1.4a)

�n12 · ( �D1 − �D2) = σF , �n12 · ( �B1 − �B2) = 0, (2.1.4b)
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2.2 Discretization of the Maxwell’s Equations

with �n12 being the normal vector to the boundary surface, σF the surface charge

density and �JF the surface current density.

2.1.1 Material Properties

Maxwell’s equations can only be solved when apart from (2.1.1) or (2.1.3) the material

properties which establish the relationship between field strengths and flux densities

are known. For the general, inhomogeneous and anisotropic case, they are given as

�D(�r, t) = ε0 �E(�r, t) + �P ( �E,�r, t), (2.1.5a)

�B(�r, t) = μ0 �H(�r, t) + μ0 �M( �H,�r, t), (2.1.5b)

�Jl(�r, t) = σ �E(�r, t). (2.1.5c)

Thus, the flux consists of a linear dependence on the field strength in vacuum and

a in general complex influence of the material defined through the polarization �P and

the magnetization �M . In this way, dispersive, anisotropic, nonlinear and frequency

dependent effects can be described. In most cases, we can assume linear homogenous

and isotropic materials, so that (2.1.5a) and (2.1.5b) are turned into

�D(�r, t) = ε0εr �E(�r, t), εr ∈ R, (2.1.6a)

�B(�r, t) = μ0μr �H(�r, t), μr ∈ R. (2.1.6b)

2.2 Discretization of the Maxwell’s Equations

Maxwell’s Equations and the material properties described above allow the exact

prediction of the magnetic and electric fields and fluxes assuming all sources are

known. However, analytic solution of these equations is only possible on more or less

trivial structures or after some simplifications.

Numerical methods allow to solve the Maxwell’s equations approximatively by mod-

eling the continuous fields through a given number of state variables. They thus make

it possible to handle real structures. There are two main methods in this respect:

• Volume based techniques: The finite integration technique (FIT) related to

finite differences (FD), and finite element method (FEM) are the most used for

Maxwell’s equations.

• Surface based techniques such as the boundary element method (BEM).
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2 Finite Integration Technique

The finite integration technique (FIT) first presented in 1977 by T. Weiland in [16]

consists of applying the integral form of Maxwell’s equations (2.1.1) directly on the

elements of the meshed computational domain. Thus, the physical properties of the

continuous fields are kept in the discrete form. The following is oriented on [17–20].

2.2.1 Maxwell’s Equations on a Grid

The numerical computation by the FIT is based on an appropriate discretization of

the domain of concern which allows a good approximation of the structure1. For

this purpose, different types of grids may be defined, from general nonorthogonal

grids, tetrahedral grids to Cartesian or cylindrical grids. In this work, we consider

orthogonal Cartesian grids as illustrated in Fig. 2.1.

The domain is first of all discretized in a Cartesian 3D-grid (G).For efficiency

reasons, the cells are numerated following the coordinate directions. With I, J , and

K being the number of points in the 3 directions and i, j, and k the indices, the

Np = I · J ·K grid points are numbered as follows:

n(i, j, k) = i+ (j − 1)I + (k − 1)IJ (2.2.1)

With the electric voltage �ep (p ∈ {u, v, w}) defined as integral of �E over the edge

length Lp and the magnetic flux
�
�

b p as surface integral of �B over the surface Ap,

�ep(i, j, k) =

∫
Lp(i,j,k)

�E · d�s, �
�

b p(i, j, k) =

∫
Ap(i,j,k)

�B · d �A, (2.2.2)

(2.1.1a) applied on the surface Aw(i, j, k) leads to

�eu(i, j, k) +
�ev(i+ 1, j, k)− �eu(i, j + 1, k)− �ev(i, j, k) = − d

dt

�
�

bw(i, j, k) (2.2.3)

This description is exact because of the use of integral values. If �e is the vector

containing all the electric voltages2 and
�
�

b the one containing all the magnetic fluxes

then (2.2.3) can be transformed for all the surfaces in the domain to a system of

equations:

C �e = − d

dt

�
�

b (2.2.4)

The matrix C (3Np×3Np) has the same meaning like the curl−operator in (2.1.3a).

It has only two nonzero elements (1,−1) per row, is highly sparse and singular. As �e

1The fineness of the mesh depends not only on the structure details but also on the
frequency of the fields.

2 �

e has 3Np entries, Np for each direction.
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2.2 Discretization of the Maxwell’s Equations

�

Pn

Vn Aw,n

Lu,n

v1 vJ
u1

uI

w1

wK

�eu(i, j + 1, k)
�eu(i, j, k)

�ev(i+ 1, j, k)

�ev(i, j, k)

�
�

bw(i, j, k)
uw

v

Figure 2.1: Discretization of a structure through a Cartesian grid. Electric voltages

and magnetic flux for the surface Aw(i, j, k)

and
�
�

b in (2.2.4) are sorted from the u-, then v- and at least the w-direction, C has

a band structure. With

[Pu,v,w][p,q] =

⎧⎨⎩
−1 : p = q

1 : p = q + r

0 : else

⎫⎬⎭ (2.2.5)

and Pu : r = 1, Pv : r = I and Pw : r = I · J , C can be written as below:

C =

⎛⎝ 0 −Pw Pv

Pw 0 −Pu

−Pv Pu 0

⎞⎠ . (2.2.6)

Also, (2.1.1d) can be discretized the same way and yields:

S
�
�

b = 0 with S = (Pu, Pv, Pw). (2.2.7)

The matrix S is equivalent to the source − operator in (2.1.1d). The remaining

Maxwell equations are discretized on the so-called dual grid which is orthogonal to

the original one (Fig. 2.2). Each edge of the dual grid intersects at right angle a

surface of the primary grid (and vice-versa) and each cell of one of the two grids

contains a node of the other one.

With the vectors
�

h,
�
�

b,
�
�

j , and q and the corresponding operators C̃ and S̃ we can

define the grid-equations as follows:

C �e = − d

dt

�
�

b, (2.2.8a)

C̃
�

h =
d

dt

�
�

d +
�
�

j , (2.2.8b)

S̃
�
�

d = q, (2.2.8c)

S
�
�

b = 0. (2.2.8d)
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2 Finite Integration Technique

dual grid:
�

h,
�
�

b

grid: �e,
�
�

d

Figure 2.2: Representation of the dual grid relative to the primary grid and the

corresponding voltages and fluxes.

The dual relation CT = C̃ is an essential property of this discretization. As stated

before, the governing analytic relations are available for the discretized system

SC = S̃C̃ = 0 ⇐⇒ div rot ≡ 0 (2.2.9a)

CS̃
T
= C̃S

T
= 0 ⇐⇒ rot grad ≡ 0, (2.2.9b)

which makes this method consistent.

2.2.2 Material Discretization

The definition of the material equations on the grid introduces some approximations

which are unavoidable in numerical methods. They relate the flux and voltage values

with each other and thus the primary and dual grid. Following (2.1.5) and assuming

linear materials with linear polarization, the grid-material equations are given as

�
�

d = Mε
�

e, (2.2.10a)
�
�

j = Mσ
�e +

�
�

j e, (2.2.10b)
�

h = M−1
μ

�
�

b, (2.2.10c)

where
�
�

j e represents the impressed currents. In the case of dual orthogonal grids,

each voltage value is associated to a flux value so that the matrices Mε, Mσ and M−1
μ

are diagonal. Assuming that field strengths and flux densities are constant over the

20
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2.2 Discretization of the Maxwell’s Equations

Mε[p,p] =

∫
Ãp

ε dA

Lp
→ Mε = D̃ADεD

−1
S , (2.2.11a)

Mσ[p,p] =

∫
Ãp

σ dA

Lp
→ Mσ = D̃ADσD

−1
S , (2.2.11b)

M−1
μ[p,p]

=

∫
L̃p

μ−1 ds

Ap
→ M−1

μ = D̃SDνD
−1
A = Mν (2.2.11c)

where DA and DS are metric matrices and Dε and Dν (ν = 1/μ) contain the permit-

tivity and inverse permeability values, respectively. As the mesh cells are homoge-

nously filled, the discretization of structures with fine details may lead to a higher

number of degrees of freedom. However, some improvements have been already made

in this respect with the perfect boundary approximation (PBA) [21] and thin sheet

technique (TST) [22].

2.2.3 Boundary Conditions and Excitations

Boundary conditions are indispensable to describe the fields at the boundaries in

order to model the impact of the region outside of the computational domain. In this

respect, we distinguish between ideal boundaries like electric or magnetic boundaries

where no energy interaction with the region outside is considered and other like open

boundaries and ports.

Electric Boundary Conditions

Electric boundaries assume an infinite electric conductivity so that the tangential

electric voltages and the normal magnetic fluxes vanish. The corresponding sur-

faces become superfluous and the associated lines and columns of C and S can be

eliminated. Alternatively, in order to keep the band structure of the matrices, the cor-

responding entries of the matrices Mε and M−1
μ are set to zero3. Electric boundaries

can be used to simulate structures in conductive housings or as symmetric conditions.

Magnetic Boundary Conditions

Magnetic boundaries assume an infinite magnetic conductivity which lead to vanishing

tangential magnetic voltages and normal electric fluxes. Again this can be achieved

either by not considering the corresponding edges and surfaces for the operators C̃

3It should be stated that matrices are no more invertible. Instead, pseudo-inverses should
be computed where only values different from zero are inverted.
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2 Finite Integration Technique

and S̃ or by setting the associated entries of Mε and M−1
μ to zero. In contrast to

electric boundaries, this condition does not have any physical meaning except for

high permeable materials. It also plays an important role as symmetric condition on

structures with symmetric field distribution.

Open Boundaries

The advent of the so-called perfectly matched layer (PML) boundary condition in 1994

[23] was a turning point in simulating open boundaries. Until then, Mur boundaries

which are indeed easy to implement but are less accurate were used instead [24].

The PML method consists in adding layers of appropriate nonphysical media to the

boundary of the computational domain so that waves can be absorbed with marginal

reflections. Thus, an ideal PML absorber has two main properties:

• Refectionless matching to the computational domain for any wave angle and

frequency,

• attenuation of the waves in the PML medium.

Several PML techniques have been presented so far. The implemented formulation

in this work was first introduced in 1996 [25]: Generalized PML Theory (GT-PML).

The basis of this method lays on Maxwell’s equations for an anisotropic medium

with complex material properties

∇× E = −jωμΛ ·H, (2.2.12a)

∇×H = jωεΛ · E, (2.2.12b)

∇ · (εΛ · E) = 0, (2.2.12c)

∇ · (μΛ · E) = 0. (2.2.12d)

with the complex diagonal matrix

Λ =

⎛⎝ λu 0 0

0 λv 0

0 0 λw

⎞⎠ , (2.2.13)

and E being the field vector. In this work, the system analysis has been performed

in frequency domain where we assume all signals to be harmonic. In this way, the

differentiation d
dt can be replaced by the term jω. The matrix Λ is dimensionless

and causes the spilt of the material properties ε and μ in the PML media in order to
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2.2 Discretization of the Maxwell’s Equations

achieve wave propagation at any incident angle without reflection. The scale matrix

G is introduced in order to derive the dispersion equation for the considered medium,

(G∇)× Ê = −jωμĤ, (2.2.14a)

(G∇)× Ĥ = jωεÊ, (2.2.14b)

(G∇) · (εÊ) = 0, (2.2.14c)

(G∇) · (μĤ) = 0, (2.2.14d)

with

G =

⎛⎜⎜⎝
1√
λvλw

0 0

0 1√
λuλw

0

0 0 1√
λuλv

⎞⎟⎟⎠ , Ê = GE and Ĥ = GH. (2.2.15)

In fact, (2.2.12a) can be derived to (2.2.14a) in cartesian coordinates the following

way:⎛⎜⎜⎝
1√
λuλw

∂
∂v

Ew√
λuλv

− 1√
λuλv

∂
∂w

Ev√
λuλw

1√
λuλv

∂
∂w

Eu√
λvλw

− 1√
λvλw

∂
∂u

Ew√
λuλv

1√
λvλw

∂
∂u

Ev√
λuλw

− 1√
λuλw

∂
∂v

Eu√
λuλv

⎞⎟⎟⎠ = −jωμ

⎛⎜⎜⎝
1√
λvλw

Hu

1√
λuλw

Hv

1√
λuλv

Hw

⎞⎟⎟⎠ ⇒ (2.2.16a)

⎛⎜⎝
∂
∂v

Ew

λu
− ∂

∂w
Ev

λu
∂
∂w

Eu

λv
− ∂

∂u
Ew

λv
∂
∂u

Ev

λw
− ∂

∂v
Eu

λw

⎞⎟⎠ = −jωμH ⇒ (2.2.16b)

∇× E = −jωμΛ ·H. (2.2.16c)

We obtain an equivalence between (2.2.12) and (2.2.14) by doing the same with the

remaining equations.

By considering plane waves, the dispersion equation can be given as

ω2με = (kugu)
2 + (kvgv)

2 + (kwgw)
2, (2.2.17)

where k = (ku, kv, kw) is the wave number and g = (g
u
, g

v
, g

w
) is the diagonal of Λ.

Obviously, this equation is satisfied for plane waves with the following wave vector

k =
ω

c

⎛⎝ g−1
u

sin(θ)cos(φ)

g−1
v

sin(θ)sin(φ)

g−1
w

cos(θ)

⎞⎠ =
ω

c

⎛⎝ g−1
u

g−1
v

g−1
w

⎞⎠ · n, (2.2.18)
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Λ2, ε2, μ2Λ1, ε1, μ1
x

z

y

ni

nr

nt

Figure 2.3: Transition between two planes of anisotropic materials

where n is the normal vector.

In the following the condition for plane wave propagation without reflection through

the transition of two half planes with the interface plane w = 0 (Fig. 2.3) will be

derived.

With the plane wave ansatz, reflection factors for TE4- and TM5-case are given as

follows

RTE =
k1wμ2g

−1
2w

− k2wμ1g
−1
1w

k1wμ2g
−1
2w

+ k2wμ1g
−1
1w

, (2.2.19)

RTM =
k1wε2g

−1
2w

− k2wε1g
−1
1z

k1wε2g
−1
2w

+ k2wε1g
−1
1z

. (2.2.20)

Another condition is given by enforcing the wave numbers to match at the transition

plane:

ω
√
μ1ε1g

−1
1u

sin(θe)cos(φe) = ω
√
μ2ε2g

−1
2u

sin(θe)cos(φe) (2.2.21a)

ω
√
μ1ε1g

−1
1v

sin(θt)sin(φt) = ω
√
μ2ε2g

−1
2v

sin(θt)sin(φt). (2.2.21b)

4transverse electric
5transverse magnetic
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2.2 Discretization of the Maxwell’s Equations

Equations (2.2.21a) and (2.2.21b) request the material coefficients ε, μ, g
u
, and g

v
of the two media to coincide. From this, it can be proven in (2.2.19, 2.2.20) that

no reflection occurs for all incident angles. The following material relations for the

tensors Λ1 and Λ2 can then be derived from g
1u

= g
2u

and g
1v

= g
2v
:

λ1u
λ2u

=
λ1v
λ2v

=
λ2w
λ1w

. (2.2.22)

Typically, a frequency-dependent expression [25]

λ2u = λ2v = λ−1
2w = 1 +

σ

jω
(2.2.23)

is used for the material properties of the PML medium because of its causal property

[26].

Theoretically, the PML medium allows wave penetration without any reflection.

However, this is not guaranteed in the discrete model as reflections may occur at

boundaries of cells with high material gradient due to grid dispersion [27]. In order

to reduce this effect, instead of an homogeneous material, several layers6 with growing

conductivity from layer to layer following an appropriate profile are used. For this

purpose, power functions have been identified as more efficient as geometric ones [23]

σ(ω) = σmax

(
ω

Δω

)q

with σmax = − ε0c

2Δω

q + 1

Nlay
ln(R) (2.2.24)

with the number of layers Nlay, the exponent q and the minimal reflection factor

R = exp
(
2
c

∫ δ

0
σ(ω)dω

)
for a normal incident wave on a medium of penetration

depth δ, c being the velocity of light, and Δω the thickness of each PML layer. The

structure of a typical PML medium with the above presented profile is shown in Fig

2.4.

Excitations

There are two main excitation types, which are waveguide and discrete ports. More

details about waveguide ports which are not considered in this work can be found

in [19, 27, 28]. The discrete port is defined along an edge with an assigned port

impedance7 on which a current or voltage is applied. They are appropriate for exci-

tations within the computational domain.

The excitation occurs through current instead of voltage. The port is thus inte-

grated by choosing an appropriate entry in the vector
�
�

j of (2.2.8b) and (2.1.2).
6Typically the number of layers varies from 4 to 8.
7The smallest element of the domain (edge) is taken in analogy to a dipole of infinitesimal
small length.
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σ

PML mediumComp. domain

PEC boundary

Figure 2.4: 4-layer PML medium with rising conductivity profile σ and electric

boundary

2.2.4 Electrostatic

The constitutive equations of the electrostatic theory in FIT formalism are

C �e = 0 (2.2.25a)

S̃
�
�

d = q. (2.2.25b)

With the well-known potential ansatz which fulfills (2.2.25a)

�E = −grad ϕ ⇐⇒ �e = S̃TΦ, (2.2.26)

(2.2.25b) can be derived to

S̃MεS̃
T︸ ︷︷ ︸

F

Φ = q (2.2.27)

which is the discrete equivalent of the Poisson equation. The matrix F is real, sym-

metric, and is of rank Np, i.e. non singular .

2.3 FIT in System Representation

2.3.1 Curl Formulation

Combining the two first Maxwell’s equations (2.1.3a and 2.1.3b) with the material

properties (2.2.10) leads to the so-called curl-system [10](
Mε 0

0 M−1
μ

)
︸ ︷︷ ︸

M

d

dt

(
�e
�

h

)
= −

(
Mσ −C̃

C 0

)(
�e
�

h

)
+

( �
�

j

0

)
. (2.3.1)
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2.3 FIT in System Representation

This differential system is of first order and the number of degrees of freedom (DOFs)

is N = 6Np = ne + nh (ne and nh are related to the electric and magnetic voltages,

respectively).

Considering the dual relation in Section 2.2.1 (C̃ = CT ), introducing the normal-

ized field strengths8

�e
′
= M

1/2
ε

�e with Mε = M
1/2
ε M

1/2
ε and analogously

�

h
′
= M

1/2
μ

�

h, (2.3.2)

and multiplying (2.3.1) with the inverse matrix M−1 leads to the system matrix A

which is skew-symmetric. Assuming that the investigated structure is excited at m

input ports, we can introduce a coupling matrix R with M
−1/2
ε

�
�

j = M
−1/2
ε Ri = R′i

which relates the current ports, represented through the m-dimensional vector i, to

the current vector
�
�

j . This leads to the following system

d

dt

(
�e
′

�

h
′

)
︸ ︷︷ ︸

ẋ

= −
(

M
−1/2
ε MσM

−1/2
ε −M

−1/2
ε CTM

−1/2
μ

M
−1/2
μ CM

−1/2
ε 0

)
︸ ︷︷ ︸

A

(
�e
′

�

h
′

)
︸ ︷︷ ︸

x

+

(
R′

0

)
︸ ︷︷ ︸

B

i.

(2.3.3)

Analogously, an output coupling matrix can be defined which expresses the voltages

u at the l output ports from the normalized voltage vector �e
′

u =
(

LM
−1/2
ε 0

)
︸ ︷︷ ︸

C

(
�e
′

�

h
′

)
, (2.3.4)

where L is analogous to R in (2.3.3). Combining (2.3.3) and (2.3.4) leads to the

well-known state-space representation

ẋ = −Ax+Bi (2.3.5a)

u = Cx+Di (2.3.5b)

where D = 0 in our case because there is no coupling between input and output.

The matrix A is the n×n system matrix, and x is the n-dimensional state vector. In

the current problem specification, the output and input ports are the same, so that

the input and output coupling matrices have the relationship C = BT and B is of

dimension n×m where m is the number of ports9.

8As the material matrices are of diagonal form, their root can be obtained just by com-
puting the root of their entries.

9C should here not be confounded with the curl operator.
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2 Finite Integration Technique

As we assumed all signals to be harmonic, ẋ can be expressed as jωx, which leads

to the transformed state space representation

(jωI+A)x = Bi (2.3.6a)

u = BTx. (2.3.6b)

In this system, the transfer function and the impedance function

Z(jω) = BT (jωI+A)−1B, (2.3.7)

which are given by eliminating the state vector, are identical. The impedance function

relates the currents and voltages at the different ports with each other as

Z[i,j] =
ui
ij

|ik=0 ∀k �=j . (2.3.8)

The curl system is of first order as it depends only in the first order on the frequency.

2.3.2 Curl-Curl Formulation

By combining the two first Maxwell’s equations (2.1.3a and 2.1.3b) and thus elimi-

nating either electric or magnetic field, we obtain the well known wave equation

ε
∂2 �E

∂t2
+ σ

∂ �E

∂t
+ curl μ−1curl �E =

∂ �J

∂t
, (2.3.9)

which is also called curl-curl system because of the two curl-operators. Analogously,

by retaining �e as unknown vector,we obtain the discrete curl-curl state space repre-

sentation

Mε
d2

dt2
�e +Mσ

d

dt
�e +CTMμ−1C︸ ︷︷ ︸

A′

CC

�e = Ri (2.3.10a)

u = RT �e. (2.3.10b)

The elimination of
�

h leads to a system with 3Np unknowns. By considering CT =

B = M
−1/2
ε R and normalizing the state vector x = M

1/2
ε

�e, we obtain a symmetric

system. With

ACC = M
−1/2
ε A′

CCM
−1/2
ε and K = M

−1/2
ε MσM

−1/2
ε , (2.3.11)
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2.3 FIT in System Representation

the state space representation is given in the frequency domain as(
(jω)2I+ (jω)K+ACC

)
x = (jω)Bi, (2.3.12a)

u = BTx. (2.3.12b)

The impedance function for curl-curl systems can then be expressed as

Z(jω) = (jω)BT
(
(jω)2I+ (jω)K+ACC

)−1
B. (2.3.13)

This system is of second order with respect to the frequency term while it remains

of first order in structures without losses (K = 0) as the term ω2 can be substituted

e.g. by ω′. By introducing an additional variable, the Curl-Curl system can be

transformed to a linear system. With y = q
jωx (q being a given constant), the system

(2.3.12) can be transformed into

jω

(
x

y

)
= −

(
K 1

qACC

−qI 0

)
︸ ︷︷ ︸

Al

(
x

y

)
+

(
B

0

)
i, (2.3.14)

which has the same dynamic behavior as the system in (2.3.3). The matrices Al

and A have the same eigenvalues even though the symmetry properties are not kept.

The constant q is essential in order to avoid a bad conditioned matrix. This goal is

achieved with q =
√

‖ACC‖ as the blocks of Al have then approximatively the same

norm.

2.3.3 System with PML Absorber

PML Absorber of 1. Order

Without lost of generality, we assume the coordinate system u−v−w with the surface

normal of the interface along the w-axis. The material coefficients for the free space

(material 1 according to Fig. 2.3) can be given as:

ε1 = ε0, μ1 = μ0, Λ1 =

⎛⎝ 1 0 0

0 1 0

0 0 1

⎞⎠ (2.3.15)

The w-dependency of the wave propagation in medium 2 is given as follows:

E(w) = E0 · e−jk2ww = E0 · e−j ω
c0

√
λ2uλ2vcos(θ) (2.3.16)
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2 Finite Integration Technique

In order to obtain an attenuation of the wave along the w-axis, we choose expression

(2.2.23). This corresponds to a medium with electric and magnetic losses. From

(2.2.22), we derive the material constant for the w-component as

λ2w = λ−1
2u = λ−1

2v =
1− σw

jω

1 +
(
σw

jω

)2
. (2.3.17)

The negative conductivity indicates the active behavior of the PML on the w-axis.

This non physical property confers the medium a perfect absorption behavior.

Starting from the discretized of the transformed Maxwell equations in (2.2.12),

C
�

e = −jωM−1
μ−1Λ

�

h, (2.3.18a)

CT �

h = jωMεΛ
�

e +
�
�

j s, (2.3.18b)

we can derive the implementation of the PML for FIT systems. In the following, we

only consider (2.3.18a) as the derivation for (2.3.18b) is analogous,

C
�

e = −jωM−1
μ−1

⎛⎜⎝ 1 + σw

jω 0 0

0 1 + σw

jω 0

0 0 1
1+σw

jω

⎞⎟⎠ �

h ⇒

⎛⎜⎜⎜⎜⎜⎝I+
1

jω

⎛⎝ 0 0 0

0 0 0

0 0 σw

⎞⎠
︸ ︷︷ ︸

Mσ1

⎞⎟⎟⎟⎟⎟⎠C
�

e = −M−1
μ−1

⎛⎜⎜⎜⎜⎜⎝jωI+

⎛⎝ σw 0 0

0 σw 0

0 0 0

⎞⎠
︸ ︷︷ ︸

Mσ

⎞⎟⎟⎟⎟⎟⎠
�

h

The two Maxwell equations (2.3.18a and 2.3.18b) are then given as(
I+

1

jω
Mσ1

)
C �e = −M−1

μ−1 (jωI+Mσ)
�

h, (2.3.20a)(
I+

1

jω
Mσ1

)
CT �

h = Mε (jωI+Mσ)
�e +

�
�

j s. (2.3.20b)

They can also be presented in matrix form which yields a second order system

((jω)2I+ jωA1 +A0)x = jωB, (2.3.21a)

u = BTx. (2.3.21b)
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2nd order 3rd order

1st order

Figure 2.5: Higher order PML at the intersection of PML layers.

with the matrices

A0 =

(
0 −M

−1/2
ε Mσ1C

TM
1/2
μ−1

M
1/2
μ−1Mσ1CM

−1/2
ε 0

)
, B =

(
R

0

)
(2.3.22a)

A1 =

(
M

−1/2
ε MσM

−1/2
ε −M

−1/2
ε CTM

1/2
μ−1

M
1/2
μ−1CM

−1/2
ε M

1/2
μ−1MσM

1/2
μ−1

)
, x =

(
M

−1/2
ε

�e

M
1/2
μ−1

�

h

)
(2.3.22b)

As already stated, the implemented PML is then appended to the computational

domain and terminated either with a Perfect Magnetic Condition (PMC) or Perfect

Electric Condition (PEC) boundary. By doing so, the depth of the absorbing material

should be between 4 and 8 grid cells. This depth can be reduced to 2 by terminating

with a first order Mur boundary condition [29]. An incident wave in the absorber

medium is thus attenuated on its way to the termination and back after reflection

before penetrating the computational domain. The reflection factor R0 for a normal

incident wave is a characteristic parameter of the PML boundary condition. The

proper choice of this factor is described more detailed in [30].

PML Absorber of Higher Order

Stringing several PML boundary conditions together leads to new transition condi-

tions and thus to new classes of absorbers. They are of order 1 to 3. PML media

which are directly connected to the computational domain are of first order. Whereas

absorbers of second and third order which are connected to the domain of computa-

tion through a grid point or an edge are the intersection of two PML media of lower

order (Fig. 2.5).

The material properties of these absorbers can also be derived by requiring the

transition planes to be reflectionless. Let us consider medium 2 being the intersection
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2 Finite Integration Technique

Λ1A =

⎛⎝ ω−1
1Au 0 0

0 ω1Au 0

0 0 ω1Au

⎞⎠ (2.3.23a)

Λ1B =

⎛⎝ ω1Bw 0 0

0 ω1Bw 0

0 0 ω−1
1Bw

⎞⎠ , ωi = 1 +
σi
jω

(2.3.23b)

The tensor of the second order absorber is given as follows [30]:

Λ2 =

⎛⎝ ω1Bw

ω1Au
0 0

0 ω1Auω1Bw 0

0 0
ω1Au

ω1Bw
.

⎞⎠ (2.3.24)

By doing the same, the material tensor of an third order absorber is derived as:

Λ3 =

⎛⎜⎝
ωvωw

ωu
0 0

0
ωuωw

ωv
0

0 0
ωuωv

ωw

⎞⎟⎠ (2.3.25)

The system equation with PML of higher order is the same as in (2.3.21), as only the

matrices A0, Mσi and Mσi are changed

A0 =

(
M

−1/2
ε Mσ2M

−1/2
ε −M

−1/2
ε Mσ1C

TM
1/2
μ−1

M
1/2
μ−1Mσ1CM

−1/2
ε M

1/2
μ−1Mσ2M

1/2
μ−1

)
, (2.3.26)

the matrices Mσi and Mσi respectively for the second and third order are given as

M2.ord
σ1 =

⎛⎝ σu 0 0

0 0 0

0 0 σw

⎞⎠ ,M2.ord
σ2 =

⎛⎝ 0 0 0

0 σuσw 0

0 0 0

⎞⎠ ,

M2.ord
σ =

⎛⎝ σw 0 0

0 σu + σw 0

0 0 σu

⎞⎠ , (2.3.27)

M3.ord
σ1 =

⎛⎝ σu 0 0

0 σv 0

0 0 σw

⎞⎠ ,M3.ord
σ2 =

⎛⎝ σvσw 0 0

0 σuσw 0

0 0 σuσv

⎞⎠
M3.ord

σ =

⎛⎝ σv + σw 0 0

0 σu + σw 0

0 0 σu + σv

⎞⎠ . (2.3.28)
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Again, this system can be linearized through the method introduced in (2.3.14).

The system matrices are skew-symmetric as the
�

e- and
�

h-vectors are combined.

Furthermore, the Curl-Curl ansatz is not recommended as merging of the equations

(2.3.20a) and (2.3.20b) would lead to a considerably higher order system.

2.3.4 Scattering Parameters

Whereas the impedance matrices set the generalized port currents and voltages of a

system in relation, the scattering parameters S are related to the wave amplitudes.

S-parameters are of relevance in the high frequency context. This evolves from the

fact that short or open conditions which are essential in determining impedances can

not be properly realized in a measurement setup for microwave frequencies due to

radiations and parasitic effects. Reflectionless terminations which are indispensable

for the measurement of S-parameters can be set up very easily. Another advantage

of S-parameters is the fact that they always exist while impedance matrices can not

be computed for general ports.

The scattering matrix can be directly computed from the impedance matrix. First

of all, the impedance matrix should be normalized with respect to the port-impedance

matrix Z0:

Z = Z
−1/2
0 ZZ

−1/2
0 . (2.3.29)

The scattering matrix is then given as

S = (Z− I)(Z+ I)−1. (2.3.30)

Analogously, the impedance matrix can be computed from the scattering matrix as

follows:

Z = Z
1/2
0 (I+ S)(I− S)Z

1/2
0 . (2.3.31)

Some numerical errors occur by computing the impedance matrix using FIT. It is

thus important to know how this errors are transmitted to the scattering parameters.

In this respect, it has been shown in [10] for the one port case that the relative error

in S is always smaller than in Z. Furthermore, practical tests attest that also for the

multi-port case, the relative error of the scattering parameters is 0.5 to 2 orders lower

than that of Z.

2.4 Eigenvalues of FIT Systems

By considering the curl and curl-curl (2.3.5, 2.3.12) systems without any excitation

(i = 0) and without losses in the curl-curl case, we obtain the eigenvalue problem in

33

the form
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Ax = λx. (2.4.1)

The solutions of this equation are the nontrivial eigenvectors xi �= 0 and the eigen-

values λi.

2.4.1 Curl Formulation

As already stated, the curl system matrix A is skew-symmetric and real. It can be

shown that such matrices have pairs of purely imaginary eigenvalues

λ±i = ∓jω, (2.4.2)

where the number of λ±i is half the dimension of the matrix A. Furthermore, skew-

matrices are diagonalizable.

2.4.2 Curl-Curl Formulation

The matrix of the curl-curl system is real symmetric and has, due to the following

expression as product of two to each other transposed matrices

ACC = M
−1/2
ε A′

CCM
−1/2
ε (2.4.3)

= (M
−1/2
ε CTM

1/2
μ−1)(M

−1/2
ε CTM

1/2
μ−1)

T

purely real and nonnegative eigenvalues

λi = ω2
i ≥ 0. (2.4.4)

Furthermore, the eigenvectors are orthogonal. This confirms the physical property of

lossless structures which have real eigenfrequencies and orthogonal modes.

Multiplying the eigenvalue equation of the Curl-Curl system with the normalized

source operator (S̃M
1/2
ε ) leads to

S̃C̃︸︷︷︸
=0

Mμ−1CM−1
ε x = ω2S̃M

1/2
ε x = ω2S̃

�
�

d = 0. (2.4.5)

This means that the eigenvalues or the divergence of the electric flux density of the

corresponding eigenvectors vanish. They can thus be subdivided in the following

categories [31]:

Static eigenvalues, es: These modes which are called static because ω = 0 can

be represented as gradients of potentials (
�

es = −(−S̃T )φ) and are thus ir-

rotational10. On a grid with Np nodes, without considering nodes with fixed

10rot grad = 0 ( CS̃T = 0).
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potential (PEC bodies or boundaries), i.e. only inner nodes, there are always

less than Np linear independent static modes.

Dynamic eigenvalues, ed: These modes have a non vanishing curl part (ω �= 0) and

are divergence free11. The Curl-Curl systems have ∼ 2Np nonzero eigenvalues.

They correspond to the modes which are propagable in closed structures.

Multiconductor eigenvalues, em: These modes are divergence free and irrota-

tional (ω = 0). They are related to charges on the surface of electric conducting

regions. Assuming m from each other isolated conducting bodies in the com-

putational domain, the number of multi-conductor eigenvalues is m− 1.

Any other, e0: These modes do not have any physical interpretation and can be

interpreted as artifacts. They are related either to ideal conducting edges or to

components pointing outside of the computational domain and are also of static

nature (ω = 0). As they can be easily removed, they will not be considered in

the following.

2.4.3 Regularization

The static eigenvalues do not play any role in the system behavior as only the dy-

namic and multiconductor modes are considered. However, they can cause tremen-

dous mathematical difficulties while solving the eigenvalue problem. In fact, matrices

containing such a huge kernel degrade the convergence performance of any eigensolver.

Thus, a regularization becomes indispensable.

The so-called Tree − Cotree calibration [31] is one of the most efficient methods

to remedy to that. Another one [18] is the grad-div calibration. It consists of adding

a matrix B to the Curl-Curl operator

ACCx = ω2x ⇒ (ACC +B)x = γ2x, (2.4.6)

so that the static eigenvalues can be shifted upwards without having any impact on

the needed dynamic and multi-conductor modes

(ACC +B)xi = γ2i xi ∧ S̃
�
�

di = 0 ⇒ γi = ωi, (2.4.7a)

(ACC +B)xi = γ2i xi ∧ S̃
�
�

di �= 0 ⇒ γi > 0. (2.4.7b)

In order to satisfy the above mentioned requirements, the kernel of the calibration ma-

trix should be equal to the set of multi-conductor and dynamic modes. The grad-div

11div rot = 0.
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operator achieves this condition as its kernel is divergence free and thus corresponds

to the expected modes. So we choose

B = αM
1/2
ε S̃TDS̃M

1/2
ε . (2.4.8)

Note that the grad-div operator has been symmetrized by considering the normalized

fields (x = M
1/2
ε

�e). The regularized Curl-Curl operator is then similar to the Nabla-

square operator

−∇2 = rot rot− grad div. (2.4.9)

Furthermore, the Pi-matrices needed to construct the calibration matrix should be

modified in such a way that no gradient is built for nodes in ideal conduction regions.

As the modification on Pi would destroy the band structure and so the efficient

assembling of B, a different variant has been introduced. It consists on setting the

appropriate entries of D to zero so that the above condition is satisfied.

The then displaced static eigenvalues land inside the spectrum and can be distin-

guished from the dynamic modes since they are divergence free. However they can

worsen the efficiency of the solver if the minimum of the eigenvalues of B (without

considering its kernel) is under the ground mode (smallest nonzero eigenvalue) and/or

the maximum of the eigenvalues of B is above the maximum of the eigenvalues of

ACC . The factor α can thus be adjusted in order to meet those constraints:

αopt =
max(λi(ACC))

max(λj(B))
. (2.4.10)

Alternatively, the grad-div term can be normalized with the matrix DN in the fol-

lowing way [32]

B = αM
1/2
ε S̃T D̃−1

V D̃νD̃
−2
ε︸ ︷︷ ︸

DN

S̃M
1/2
ε , (2.4.11)

so that the relation between ACC and B is set independent from material and geom-

etry properties.

2.5 System Properties

The systems described in Section 2.3 are linear12 and time invariant13 (LTI). Thus,

in the following, we will focus on LTI systems. Any bilinear transform defined as

F (s) =

∫ ∞

0

f(t)e−stdt, (2.5.1)

12The response to a linear combination of two inputs is the linear combination of the two
corresponding outputs with the same coefficients.

13If u(t) is the response to i(t), then u(t− τ) is the output for the delayed input i(t− τ).
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where s = σ + jω can be characterized by its region of convergence (ROC) which

represents the set of s values for which the integral in 2.5.1 converges absolutely.

2.5.1 Causality

The fundamental principle of causability evolves from the real world experience which

states that an effect cannot precede its cause. Let us consider an LTI system defined

by the following equation

yi(t) = h[i,j](t) ∗ xj(t), (2.5.2)

where yi(t) and xj(t) are respectively the jth output and ith input signals, h[i,j](t)

the response and ∗ represents the convolution operation, then this system is causal if

and only if all the elements of its response matrix hi,j(t) are vanishing for t < 0.

This condition is met if and only if the Laplace transform of the response matrix

H(s)

• is defined and analytic in a half-plane Re{s} > σ0,

• grows not faster than a polynomial for Re{s} > σ0,

where σ0 ∈ R. Maxwell’s equations describe field propagations as causal systems and

so does FIT. In the case of PML boundaries, the causality has been proved [10], as

already stated, when using layers following (2.2.23).

2.5.2 Stability

The stability is an important property for electric systems. We distinguish two main

definitions:

• A system is transfer stable or bounded-input,bounded-output (BIBO) stable

if the output is bounded for all bounded inputs. The impulse response should

satisfy the following condition:∫ ∞

−∞
|h(t)|dt ≤ M < ∞. (2.5.3)

• The internal stability is related to the system behavior at t → ∞ for any

arbitrary initial state (x0(t)) without excitation (ẋ(t) = Ax(t)). The system

is asymptotical stable if the state variables decay to zero. It is called marginal

stable if one or several states do not converge against zero but are bounded

(|xi| ≤ Mi < ∞).
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In the Laplace domain, the conditions are given as follows [33]:

• A system is asymptotical stable if the eigenvalues of A have a positive real

part.

• A system is marginal stable if the eigenvalues of A have a real part ≥ 0.

Furthermore, the eigenvalues on the imaginary axis should be unique.

• A system is transfer stable if the eigenvalues of A which can not be reduced in

the polynomial expression of H(s) have a positive real part. This coincides with

the definition of asymptotical stable systems if no eigenvalue can be reduced.

FIT systems without losses in the curl-formulation are marginal stable as there

eigenvalues are purely imaginary. However, they are not transfer stable, i.e. a har-

monic excitation at a resonance frequency on the imaginary axis would lead to an

unbounded output signal.

In the curl-curl formulation, systems without losses have eigenvalues λi ≥ 0. Again,

considering losses would shift the eigenvalues to the right half-plane, so that these

systems are also marginal stable.

2.5.3 Passivity

A system is passive when it can not retrieve more energy than it has absorbed. In

other words, it is unable to generate energy. The energy w(t) should therefore satisfy

the following condition for all t:

w(t) =

∫ t

−∞
uT (τ)i(τ)dτ ≥ 0. (2.5.4)

System passivity is of great importance in transient simulations. As coupling of

passive blocks also leads to a passive system, this property is the necessary con-

dition to avoid numerical instabilities while combining different numerical methods

(linear and nonlinear) in a simulation workflow. As most of the real structures un-

der electromagnetical analysis are passive, it is important for the discrete model and

furthermore, the macromodel of reduced order to keep this property.

The conditions for passivity of the impedance Z(s) in the Laplace domain are the

following [34]:

• Any element of Z(s) is analytic for Re{s} > 0.

• Z(s∗) = Z∗(s) for Re{s} > 0.
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• ZH(s) + Z(s) ≥ 0 for Re{s} > 0.

Matrices which satisfy these three conditions are also called positive real matrices

[35]. The following properties [36] of positive real matrices are of great importance

for the passivity analysis of the FIT systems introduced above:

Theorem 1 If V is a real constant m × n-matrix and G(s) a positive real m ×m-

matrix, then VTG(s)V is also a positive real matrix.

Theorem 2 If F(s) and G(s) are positive real matrices, then F(s) + G(s) is also

positive real.

Theorem 3 If G(s) is positive real and GH(s) + G(s) > 0 for Re{s} > 0, then

G−1(s) exists and is also positive real.

As FIT systems can be represented in the form

Z(s) = BT (Y1(s) +Y2(s) + . . .)−1B, (2.5.5)

passivity can be proved by checking if all Yk are positive real. The first two theorems

are typically fulfilled as only the third one should be analyzed. As already stated, the

material matrices are diagonal and positive semi-definite in FIT systems, furthermore

AH
CC +ACC ≥ 0, AH

l +Al ≥ 0 (2.5.6)

because of their symmetry property, so that the analysis consists on checking for the

passivity of the Laplace variable within the material definition. In the curl-curl case

(2.3.12), we obtain

YH(s) +Y =
(
sI+K+

1

s
ACC

)H

+
(
sI+K+

1

s
ACC

)
(2.5.7a)

= 2
(
σI+K+

σ

σ2 + ω2
ACC

)
≥ 0 for Re(s) > 0. (2.5.7b)

The passivity for PML boundaries of first order can be proven analogously. By

considering second order PML, we obtain a material of type (1 + σu/s)(1 + σw/s)

following (2.3.24). It follows for σ → 0

λ∗uw + λuw = 2− 2σuσw
ω2

, (2.5.8)

which means that the material is passive only for σuσw < ω2. As the values of

the attenuation σ are of the order of ω, active components may occur. Thus, PML

materials are generally non passive.
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Model order reduction methods have been first used in the field of control theory. It

has been since then introduced to systems resulting from nodal analysis and discretiza-

tion of Maxwell’s equations. In this work, MOR is the main enabler to improve the

efficiency of EMC simulation.

In this chapter, we present an overview of different MOR methods which can be

typically divided in truncation and moment-matching methods. The methods of bal-

anced and modal truncation as well as an explicit moment-matching method, AWE

are briefly introduced. The main focus is set on implicit moment-matching methods

related to the Lanczos’ and Arnoldi’s algorithms, with an emphasis on the passive

preserving formulation which has been implemented in this work. Finally different

methods to generate macromodels from the reduced systems are described.

3.1 Introduction

As discussed in Chapter 2, the discretization of the Maxwell’s equations with FIT

leads to a system of high dimension for complex structures. In order to compute

the corresponding transfer function (Z- or S-parameters) in a wide frequency range,

the systems of equations in (2.3.5 and 2.3.12) have typically to be solved at several

frequency samples. This procedure is very expensive as the number of degrees of free-

dom is of order 106. On the other side, narrow-band resonances may not be detected

if the frequency range is coarsely sampled. These narrow-band resonances would also

represent a challenge for time domain computations as the slow energy dissipation

lead to poor convergence behavior. MOR, already applied to solve Maxwell equa-

tions in [10–12] respectively for FIT, FEM and FVM (finite volume method), is a

very robust method to remedy this problem.

Without lost of generality, we can describe the already introduced state space

representation of FIT systems in the following way:

F (s)x = −Ax+G(s)Bi

u = Cx,
(3.1.1)
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where F (s) and G(s) are respectively equivalent to s and 1 in the curl case and to s2

and −s in the curl-curl case without losses as the cases with losses or PML will be

treated separately. For simplicity, we will use the following notation

Σ =

[
A B

C

]
∈ R

(n+m)×(n+m), (3.1.2)

MOR consists in approximating Σ with:

Σp =

[
Ap Bp

Cp

]
∈ R

(p+m)×(p+m), (3.1.3)

where p � n and the approximation error is small.

There are several MOR techniques which can be subdivided in two categories:

• Truncation methods

• Moment matching based methods

Truncation methods, among which balanced truncation [37–40] is the mostly used,

provide error bounds and preserve stability, but are not appropriate for large scale

systems as will be discussed in the following sections. In this work, we will focus

on moment matching-based methods as they are numerically more efficient despite

the fact that they have no global error bounds. In this scope, passivity preserving

methods were implemented in order to guarantee stable circuit simulations involving

nonlinear systems.

3.2 Truncation Methods

There are two sets of truncation methods which are suited for nonlinear (proper

orthogonal decomposition, POD) and linear systems (Hankel-norm approximation,

balanced truncation, singular perturbation) [41]. Before addressing the balanced re-

duction we will first introduce the so-called Hankel norm which plays an indispensable

role for this class of MOR methods.

3.2.1 Hankel Norm

Given a matrix A ∈ Rn×m, its singular value decomposition is defined as follows:

A = ULΣUR,Σ = diag(σ1, · · · , σn) ∈ R
n×m, (3.2.1)
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where σ1(A) ≥ · · · ≥ σn(A) ≥ 0, are the singular values and σ1(A) = ‖A‖2 is

the 2-induced norm of A. Moreover, the left and right singular vectors of A are

orthonormal, UT
RUR = I and UT

LUL = I. Assuming that σk > 0 and σk+1 = 0, the

rank of A is k and the dyadic decomposition of A is given as

A = σ1uL1u
T
R1 + · · ·+ σkuLku

T
Rk. (3.2.2)

The optimal approximation in the 2-norm is described in the following theorem

[41]:

Theorem 4 Provided that σp > σp+1,and minrankX≤p‖A − X‖2 = σp+1, a mini-

mizer Xp is obtained by truncating the dyadic decomposition: X = σ1uL1u
T
R1 + · · ·+

σpuLpu
T
Rp.

The Hankel operator1 H of any system Σ built with the matrix A is known to

be bounded and compact with the Hankel singular values satisfying the following

inequalities

σ1(H) ≥ · · · ≥ σn(H) ≥ 0, (3.2.3)

with σ1 = ‖Σ‖H being the Hankel norm. By the theorem stated above, any approx-

imant Ĥ of rank p < n satisfies:

‖H − Ĥ‖2 ≥ σp+1(H). (3.2.4)

The following holds especially for Hankel operators:

Theorem 5 There exists a unique approximant Hp of rank p, which has Hankel

structure and attains the lower bound: σ1(H−Hp) = σp+1(H).

The Hankel singular values can be computed by solving the Lyapunov equations:

AWO +WOA
T +BBT = 0 (3.2.5a)

ATWC +WCA+CTC = 0, (3.2.5b)

with WO and WC respectively being the observability and the controllability gram-

mians. It can be shown that [9]:

σi(Σ) =
√

λi(WOWC), (3.2.6)

and the error bound for optimal approximants is:

σp+1 ≤ ‖Σ−Σp‖∞ ≤ 2(σp+1 + · · ·+ σn). (3.2.7)

1This operator will be discussed explicitly in Section 3.3.
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3 Model Order Reduction

3.2.2 Balanced Truncation

The principle of balanced truncation is based on the fact that any system can be

transformed to a basis where the states which are difficult to reach are simultaneously

difficult to observe (balanced system). The reduced model is obtained by eliminating

those states. The grammians of a balanced system have the following property:

WC = WO = diag(σ1, · · · , σn). (3.2.8)

A Cholesky decomposition of the system grammians WC = XXT and WO = YYT

where X and Y are lower and their transposes upper triangular matrices and the fol-

lowing singular decomposition XTY = ULΣU
T
R lead to the balancing transformation

matrix

Vbt = XULΣ
−1/2 = (Σ−1/2UT

RY
T )−1. (3.2.9)

Let us consider a balanced system with grammians equal to Σ = diag(Σ1,Σ2), where

Σ1 ∈ Rp×p, and Σ2 contains the small Hankel singular values. The truncation consists

of projecting the original system onto the matrix obtained by eliminating the columns

of Vbt corresponding to the small Hankel values:

Σp =

[
Ap Bp

Cp

]
(3.2.10)

The main advantages of the balanced truncation as already stated are the preserva-

tion of stability and the global error bound. However, the resolution of the Lyapunov

equations and the singular value decomposition which are of order O(n3) makes this

method inefficient for large-scale problems.

3.2.3 Modal Truncation

Whereas the methods presented in Sections 3.2.1 and 3.2.2 are based on the singular

decomposition, modal truncation relies on the eigenvalue decomposition of a system.

By applying it to ACC = VΛVT (V−1 = VT as ACC is the symmetric matrix result-

ing from the curl-curl equation), the transfer function in the curl-curl case without

losses is derived to

H(jω) = BT
(
(jω)2I+VΛVT

)−1
B (3.2.11a)

= BTV
(
(jω)2I+Λ

)−1
VTB. (3.2.11b)
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3.2 Truncation Methods

With the eigenvectors V = [v1,v2, . . . ,vp︸ ︷︷ ︸
V1

,vp+1, . . . ,vN︸ ︷︷ ︸
V2

] and λi = ωi (2.4.4), it fol-

lows

Z(jω) = jω

N∑
i=1

BTviv
T
i B

ω2
i − ω2

(3.2.12a)

= jω

p∑
i=1

BTviv
T
i B

ω2
i − ω2

+ jω

N∑
i=p+1

BTviv
T
i B

ω2
i − ω2︸ ︷︷ ︸

Zcorr

(3.2.12b)

The modal truncation consists thus of considering the first part of the sum in (3.2.12b)

and an approximation Z̃corr of the correction term Zcorr

Zr(jω) = jω

p∑
i=1

BTviv
T
i B

ω2
i − ω2

+ Z̃corr(jω). (3.2.13)

The state space representation of the first part is given as

(VT
1 AV1 + sI)x1 = VT

1 Bi (3.2.14a)

u1 = BTV1x1, (3.2.14b)

where x1 ∈ Rp and u1 ∈ Rm are the state and output variables of the truncated

system without the correction term. A complex derivation of the correction term has

been presented in [42]. By solving for the complementary system, an approximation

of the admittance Yp(jω) = Z−1
p (jω) is computed. The relation between poles and

zeros of admittance and impedance then yields a good approximation of Zcorr(s). A

more simple derivation presented in [31] is based on the exact solution at one or more

frequency samples (ωk). For the modes far away from the concerned frequency range,

the following holds

ωk

ω2
i − ω2

k

≈ ωk

ω2
i

for |ωk| � |ωi|. (3.2.15)

The contribution of the not considered modes can then be derived as a linear function

of the exact correction terms at the chosen samples

Z̃corr(jω) =
ω∑
k ωk

∑
k

Zcorr(jωk). (3.2.16)

The dominant eigenvectors2 are not only contained in the frequency range but may

reside far away. This enhances the number of eigenvalues to be computed and since
2The dominant eigenvectors can be determined by comparing the quotient of the terms
in 3.2.13. Thus, eigenvectors which are almost parallel to the input vectors may be
dominant even though they are far away from the considered frequency interval.
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3 Model Order Reduction

the eigenvalue computation is very time consuming [43], the efficiency of the modal

truncation is tremendously degraded for large scale problems.

3.3 Asymptotic Waveform Evaluation

One of the most popular moment matching based methods for electromagnetic fields is

the asymptotic waveform evaluation (AWE) [44] which is also called explicit moment

matching method. For simplification, we consider the following single-input single-

output (SISO) system:

(sI+A)x = bi (3.3.1a)

u = cx, (3.3.1b)

where A ∈ Rn×n and x, b, c ∈ Rn. This representation is equivalent to the curl

system (2.3.5) and its transfer function

H(s) = c(sI+A)−1b (3.3.2)

is proportional to the curl-curl impedance function (2.3.12) without losses3.

Assuming the following variable transformation

ŝ = s− s0, (3.3.3)

the transfer function (3.3.2) can be derived to

H(ŝ) = c
(
I+ ŝÂ

)−1
b̂, (3.3.4)

with

Â = (A+ s0I)
−1 and b̂ = Âb. (3.3.5)

With the vectors xk obtained from the following iteration

xk = Âkb̂, (3.3.6)

the transfer function can be expressed in geometric series

H(ŝ) =

∞∑
k=0

cxk︸︷︷︸
mk

ŝk, (3.3.7)

3The frequency factor can be obviously changed from s to s2 without loss of generality.
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3.3 Asymptotic Waveform Evaluation

where the moments mk are equivalent to Taylor coefficients with the expansion fre-

quency s0.

AWE consists in approximating H(ŝ) with a transfer function of reduced order

Hp(ŝ), so that the first 2p (p � n) moments of H(ŝ) and Hp(ŝ) are equivalent at the

expansion frequency [44]

H(ŝ) ≈ Hp(ŝ) =

2p−1∑
k=0

mk ŝ
k. (3.3.8)

Taylor series have a convergence radius which is bounded by the poles of the function,

so that this approximation is available only for a very small frequency range. In

other to remedy this constraint, the Taylor series have been combined with the Padé

approximation which is not limited by any pole.

By considering the eigenvalue decomposition of Â = VΛV−1 in (3.3.4), we obtain

H(ŝ) = cV︸︷︷︸
lT

(I+ ŝΛ)−1V−1b̂︸ ︷︷ ︸
r

. (3.3.9)

This expression can easily be transformed in a rational polynomial4

H(ŝ) =

n∑
k=1

lkrk
1 + ŝλk

=
bn−1ŝ

n−1 + · · ·+ b1ŝ+ b0
anŝn + · · ·+ a1ŝ+ 1

. (3.3.10)

The Padé approximation consists in truncating the original system with a polynomial

of reduced order

H(ŝ) ≈ Hp(ŝ) =
bp−1ŝ

p−1 + · · ·+ b1ŝ+ b0
apŝp + · · ·+ a1ŝ+ 1

. (3.3.11)

By setting (3.3.8) and (3.3.4) equal, we obtain a Padé approximation with the first

2p moments being identic to those of the original system. The coefficients a1, · · · , ap
are computed by solving the following system of equations:⎛⎜⎜⎝

m0 m1 · · · mp−1

m1 m2 · · · mp
...

...
. . .

...

mp−1 mp · · · m2p−2

⎞⎟⎟⎠
︸ ︷︷ ︸

Mp

⎛⎜⎜⎝
ap
ap−1
...

a1

⎞⎟⎟⎠ = −

⎛⎜⎜⎝
mp

mp+1
...

m2p−1

⎞⎟⎟⎠ . (3.3.12)

4Note that the order of the numerator polynomial is always smaller than that of the
denominator by one.
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3 Model Order Reduction

Mp is the so-called Hankel operator resulting from the system (3.3.1b). The remaining

coefficients b0, · · · , bp−1 can be obtained with the following recursion

b0 = m0

b1 = m1 + b1m0
... (3.3.13)

bp−1 = mp−1 +

p−1∑
i=1

bimp−i−1.

This method can be also applied to systems which are polynomial in s. Curl-curl

systems with losses or systems with PML boundaries can be expressed as

(s2I+ sA1 +A0)x = sbi (3.3.14a)

u = cx. (3.3.14b)

Again, by substituting s through ŝ, we obtain:

H(ŝ) = c(Â0 + ŝÂ1 + ŝ2Â2)
−1ŝb0, (3.3.15)

with

Â0 = I+ s0A0 + s20A1 (3.3.16a)

Â1 = 2s0I+A1 (3.3.16b)

Â2 = I (3.3.16c)

The moments of the system are then given as

mi = cxi, (3.3.17)

where the xi are computed with the recursion

x0 = Â−1
0 b̂0

x1 = −Â−1
0 Â1x0

x2 = Â−1
0 (−Â1x1 − Â2x0) (3.3.18)

...

xp = Â−1
0 (−Â1xp−1 − Â2xp−2).

Contrary to the classical AWE, no Padé approximation is performed to compute the

reduced system, but the following projection

Hp = cVp

(
2∑

k=0

(s− s0)
kVT

p ÂkVp

)−1

VT
p b̂, (3.3.19)
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3.4 Implicit Moment Matching Methods

where Vp is an orthonormal basis of the space resulting from the iteration (3.3.19),

obtained through QR decomposition

Ṽp = [x̃0, x̃1, . . . , x̃p] = VpU. (3.3.20)

The first p moments of reduced and original systems match together which means

that this reduction process is a Padé-like approximation.

Unfortunately, the convergence rate of this method is satisfying just for values of

p up to 10. Whereas it stagnates for higher values of p. This is due to the fact that

the vectors xi get more and more linear dependent as they tend to the dominant

eigenvector of Â or Â−1
0 Â1 (Mises iteration) [9]. The linear dependence of those

vectors in turn leads to an ill-conditioned matrix Mp and thus worsens the efficiency

of the method.

In order to mitigate this instability, several methods have been proposed such as

the complex frequency hopping (CFH) which consists of approximating the systems

with reduced models at several expansion frequencies [45, 46]. A more efficient way

is to match the moments implicitly instead of computing them explicitly by means

of Krylov methods which increase the numerical stability.

3.4 Implicit Moment Matching Methods

3.4.1 Krylov Space

As already mentioned, Krylov subspaces play a central role in robust MOR techniques.

The Krylov space resulting from the matrix A and the start vector b is given as [47]

Kp(A,b) = span{b,Ab, · · · ,Ap−1b}. (3.4.1)

The rank of Kp is smaller than the rank of A and Krylov spaces are invariant to

matrix scales and shifts:

Kp(tA+ sI,b) = Kp(A,b). (3.4.2)

This definition can be easily extended to MIMO (multiple-input multiple-output)

systems with several start vectors. The so-called Block-Krylov space with B =

[b1, · · · ,bm] is given as follows

Kp(A,B) = span{B,AB, · · · ,Ap−1B}. (3.4.3)
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3 Model Order Reduction

Obviously, this space is equivalent to the vector basis introduced in the AWE itera-

tion (3.3.6). However, in combination with Lanczos and Arnoldi [48, 49] algorithms,

originally introduced to solve linear equation systems or eigenvalue problems, the

instability of this iteration can be efficiently mitigated. As the focus is on passivity

preserving methods, a passive formulation has been implemented. As usual Krylov

spaces cannot consider systems which are polynomial in s, a stable extension of the

iteration (3.3.19) will be considered.

3.4.2 Lanczos and Arnoldi Algorithms

These algorithms have been originally introduced for building an orthogonal basis of

the Krylov space Kp for the solution of large scale equation systems [47] or eigenvalue

problems [43]. They have been introduced in 1994 for model order reduction purposes

[50]. Arnoldi’s method aims to reduce a dense generally non-hermitian matrix into

Hessenberg form. One variant of this algorithms with the modified Gram-Schmidt

method for efficient orthogonalization is given in Algorithm 3.4.1.

Algorithm 3.4.1 Arnoldi’s algorithm

v1 = b/‖b‖2
for j = 1 to p− 1 do

wj = Avj
for i = 1 to j do

hi,j = (wj ,vi)

wj = wj − hi,jvi
end for

hj+1,j = ‖wj‖2
if hj+1,j = 0 then

Stop

end if

wj = wj/hj+1,j

end for

This procedure can be easily extended to the block-case. An important property of

the Arnoldi’s algorithm is illustrated for the general block-iteration in Fig. 3.1. The

matrix Hp is of Hessenberg form and the term Wp is proportional to the residuum

in the scope of linear equations.
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3.4 Implicit Moment Matching Methods

A Vp Vp+m Hp Vp Hp Wp

= = +

Figure 3.1: Arnoldi property.

For symmetric matrices A, the Hessenberg matrix becomes tridiagonal5 and the

Arnoldi’s algorithm can be substituted with the Lanczos’ iteration given in Algorithm

3.4.2 for SISO systems.

Algorithm 3.4.2 Lanczos’ algorithm

v1 = b/‖b‖2
for j = 1 to p− 1 do

wj = Avj
i0 = max(1, j − 2)

for i = i0 to j do

hi,j = (wj ,vi)

wj = wj − hi,jvi
end for

hj+1,j = ‖wj‖2
if hj+1,j = 0 then

Stop

end if

wj = wj/hj+1,j

end for

This iteration guarantees in exact arithmetic that the vectors vi are orthogonal.

The main advantage of this method is the reduced complexity in computation and

storage of the orthogonalization process. In order to make this advantage available to

5This corresponds to a band-matrix with 2m secondary diagonals in the m-block case.
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3 Model Order Reduction

unsymmetric matrices, the Bi-Lanczos algorithm can be applied instead of Arnoldi.

However, it has been shown that exact orthogonality of the vectors is lost at some

point [47]. Despite the efforts to either mitigate this effect or recover the orthogonality

of the vectors [51], the Arnoldi’s algorithm is still the most robust method to generate

orthogonal Krylov spaces, also for symmetric matrices.

Projection

Starting from the shifted transfer function (3.3.4), the reduced model is obtained by

projecting the original system onto the orthogonal basis Vp and Wp (WT
p Vp = Ip)

resulting respectively from the Krylov spaces Kp(Â, b̂) and Kp(Â
T , c):

Hp = cVp

(
WT

p Vp + (s− s0)W
T
p ÂVp

)−1
WT

p b̂ (3.4.4a)

= cp(I+ (s− s0)Tp)
−1bp. (3.4.4b)

This projection method, also called Padé via Lanczos (PVL), was first introduced in

[50] for network analysis purposes. It can easily be proven that the first 2p moments

of the reduced and original systems are identical:

c(−Â)ib̂ = c(−Tp)
ib̂. (3.4.5)

The reduced system is thus a Padé approximation with moment matching. This can

also be extended to MIMO systems where the moments are matched block-wise6.

A very important issue is the choice of the interpolation point s0. This has been

intensively studied in [52]. The reduced systems with imaginary interpolations ap-

proximate first the poles nearest to s0 whereas the approximation of distant poles

needs more iterations. Their main advantage is thus the good local approximation of

the transfer function in the neighborhood of s0. The best choice for the interpolation

point is at the center of gravity of the poles appearing in the frequency interval of

interest. As this information is typically not available a priori, the middle of the

frequency interval represents a good choice.

Real interpolation points allow a fast convergence of poles in the magnitude of s0
and enables a broader but coarser convergence rate. In fact, numerous iterations are

required to find sharp resonances (sharply damped poles) [52].

6The number of matching moments, 2mp (mp = floor(q/m)) depends on the number of
ports m.
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Multi-point Padé

The multi-point Padé approximation, also called rational Krylov [52–55], has been

introduced in order to improve the convergence rate of the method. It consists of

considering several interpolation points for the Padé approximation. The projection

matrix Vp is then given as the orthogonal basis of the union of the Krylov subspaces

at the considered k interpolation points:

Vp ⊂
K⋃
k=1

Kpk((A+ skI)
−1, (A+ skI)

−1B), (3.4.6)

with VT
p Vp = I and p =

K∑
k=1

pk.

The dimension pk can be set to 1 for every sk or adjusted according to the relevance of

the interpolation points. It is obvious that this technique is more time consuming than

the single-point variant as the original matrixA has to be inverted K times. The main

issue for an optimal trade-off between computational complexity and convergence

acceleration is thus the choice of number and location of the interpolation points.

There are two strategies which have been introduced in order to address this point:

• The first consists of setting a priori the interpolation points sk and building

accordingly the projection matrix. This method offers a linear scalability for

parallelization as the different processes are independent from each other. How-

ever, the location of the interpolation points is empiric and the method does

not always guarantee a better efficiency as it leads to numerical problems as

reported in [53].

• The second strategy aims for choosing adaptively the interpolation points after

each pk iterations. An empirical method for adaptive choice as the bisection

search would suffer from the same drawback as the above mentioned strategy.

A more efficient technique is to choose the next expansion point in the region

with the highest approximation error. It is worth to mention that this technique

requires a reliable online error control.

Well-Conditioned AWE

As already stated, PVL can only be applied to linear systems. This implies that lossy

systems as defined in (2.3.12) should be linearized according to (2.3.14) in order to

be reduced. Orthogonalizing the vectors xi in the AWE algorithm (3.3.19) is not
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recommended as the moments would not match anymore. As already stated several

methods have been proposed to improve the performance of this algorithm. Among

them, the well-conditioned AWE (WCAWE) has been shown to be the most robust

one [56].

The WCAWE iteration for the transfer function in (3.3.14) is given for MIMO

systems as follows:

X̃0 = Â−1
0 B̂

X̃1 = −Â−1
0 Â1X0

... (3.4.7)

X̃p = Â−1
0 (−Â1Xp−1 − Â2Xp−2P

−1
U2

(n, 2)Ep−2),

where Ep−2 is a n × 2 matrix with its lower quadrant being the 2 × 2 identity

matrix while all other entries are 0. The matrices Ṽp = [X̃0, X̃1, . . . , X̃p] and

Vp = [X0,X1, . . . ,Xp] and related through the QR decomposition as illustrated in

(3.3.20), where U is an upper triangular matrix. The adjustment terms, as far as U

is nonsingular, are given as follows

PUi
(n,m) =

m∏
t=i

U−1
[t:n−m+t−1,t:n−m+t−1]

, (3.4.8)

where U[α:β,α:β] is a sub-matrix of U with columns and lines from α to β.

Partial Realization

Instead of the Taylor coefficients, the partial realization [57, 58] aims to approximate

the Markov parameters. After a variable change from s to z = 1/s, we obtain the

following expression for the transfer function:

H(z) = zC(I + zA)−1B. (3.4.9)

Again by developing this expression in geometric series as in (3.3.7), we obtain

H(s) =

∞∑
k=0

C(−A)kB︸ ︷︷ ︸
Mk

1

sk
, (3.4.10)

where Mk are the Markov parameters. The reduced system built by applying the

following projection:

Hp(s) = CVp(sW
T
p Vp +WT

p AVp)
−1WT

p B (3.4.11a)

= Cp(sI+Tp)
−1Bp, (3.4.11b)
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3.4 Implicit Moment Matching Methods

where the matricesVp andWp result respectively from the Krylov subspaces Kp(A,B),

and Kp(A
T ,C) is a partial realization of the original system. In fact, it has been

proven in [57] that the first 2mp Markov parameters of Hp and H are identic.

This reduction process is a moment matching at z = 0 (s → ∞). Thus, the

partial realization is a particular case of the Padé approximation with an expansion

point at infinity. The method, implemented in [10], is well suited for FIT systems as

only matrix-vector multiplications are performed in order to build the Krylov space

Kp(A,B). Whereas at least one inversion of the matrix Â is needed in the Padé

approximation. This is made possible by the diagonal form of the material matrices

in FIT.

Applying it to FEM systems will not yield the same benefit, as the mass matrix

(1.1.1) in the FEM state space representation is not of diagonal form. In fact, oper-

ating the same variable change as in (3.4.9) yields

H(z) = zC(I + zE−1A)−1E−1B. (3.4.12)

Thus, the computation of the related Krylov space Kp(E
−1A,E−1B) requires also to

solve a system of the original size.

The main drawback of the partial realization is its slower convergence rate. It is

obvious that interpolating at infinity is not as efficient as choosing the interpolation

point in the frequency of range of interest. This results in Krylov spaces and thus

reduced systems of higher dimension compared to the Padé approximation7. In order

to tackle this point, the so-called two step Lanczos (TSL) was proposed in [10]. It

consists of reducing the original system with less complexity through the partial

realization and applying the Padé approximation to the then obtained systems in

order to compute models of smaller order. In order to keep the storage requirements

low, the Krylov spaces were built following the Bi-Lanczos algorithms.

While this method performs very well for systems of middle complexity (104 to 105

unknowns), it becomes less efficient for systems with more unknowns and resonances

for two reasons:

• As the system is approximated from infinity, more vectors are needed to catch

the resonances lying in the considered frequency range which are essential for

accurate results.
7The dimension of the reduced systems resulting from a partial realization are of factor
higher than 100 compared to those obtained with the Padé approximation according to
the results obtained in [10]
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• As stated in [47], the orthogonality of the Krylov spaces built with the Bi-

Lanczos algorithm is lost due to numerical errors in spaces with hundreds of

vectors. Thus, mitigating the storage requirements by keeping only a few vectors

as in [10] would lead to numerical errors and thus lower convergence rates or

even stagnation.

This strengthens the fact that the Padé approximation is the most suitable method for

very large scale problems even in FIT systems. Furthermore, keeping all the Krylov

space vectors enables the computation of field vectors.

3.5 Passive Reduction

The order reduction through Padé approximation requires the asymmetric projection

of the original system onto the matrices Vp and Wp (3.4.11). The reduced systems

are then no more guaranteed positive real matrices and thus, cannot assure the con-

servation of stability and passivity according to Section 2.5. While these properties

are not of relevance in frequency domain computations, they are indispensable for

time domain calculations. Thus, as already stated, only passive reduced models can

be considered in the scope of time-domain field-circuit simulations.

Several methods for passive model order reduction have been presented in the

past [59–62]. Among them, the so-called passive reduced interconnect macromodeling

algorithm (PRIMA) [59] has emerged as one of the mostly used for the Padé approx-

imation. It consists of projecting the original system onto the orthonormal matrix

Vp resulting from the Krylov space Kp(Â, B̂):

Hp(s) = BTVp(sV
T
p Vp +VT

p AVp)
−1VT

p B (3.5.1a)

= BT
p (sI+Ap)

−1Bp, (3.5.1b)

where we use the fact that in our case, C = BT . The reduced matrix Ap is nei-

ther tridiagonal nor of Hessenberg form as the projection matrix is computed with

the matrix Â. Assuming a real s0, this symmetric projection, also called congru-

ence transformation, guarantees obviously the preservation of passivity. In fact, the

reduced system (3.5.1) is equivalent to the general form (2.5.5) and thus passive as

(sI+Ap) is positive real.

Only the first mp moments of the PRIMA reduced and original systems match

together:

M̂k = BT
p Ǎ

k+1
p Bp with Ǎp = (s0I+Ap)

−1 (3.5.2a)

M̂k = Mk for 0 ≤ k < mp − 1, (3.5.2b)
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3.5 Passive Reduction

port 1

port 2

Figure 3.2: Model for housing concept analysis

as proved in [59, 60]. Thus, the conservation of passivity is guaranteed at cost of

accuracy. However, the number of matching moments gives only an estimation of

the accuracy level so that in some cases doubling the number of moments may not

improve the accuracy in the same order.

In order to illustrate the efficiency of the implemented PRIMA method, the test

structure represented in Fig. 3.2 has been analyzed. It consists of a printed circuit

board (PCB) modeled as a simple two-layer board within its housing. This model

aims to study the impact of different housing concepts on the EMC behavior of the

PCB. For this purpose, two ports were considered:

• The first port which is placed between the trace and the PCB ground represents

the excitation.

• The second port is required to compute the coupling between PCB ground and

metal housing.

The considered frequency interval is from 1 MHz to 4 GHz and the discretization

yields 154,000 unknowns in the curl-curl formulation. This example will be also

considered for following illustrations in this section and in Chapter 4.

Fig. 3.3 shows the comparison of the relative error Ei,j of Z-parameter entries,

defined as follows

E[i,j](s) =
‖Zp[i,j](s)− Z[i,j](s)‖

‖Z[i,j](s)‖
, (3.5.3)

at different dimensions p of the Krylov space (20, 40 and 60) with the expansion

frequency at 1 GHz for Z[1,2], the impedance between the ports 1 and 2. The local
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Figure 3.3: Relative error at Z[1,2] for the PCB-housing model of the PRIMA sys-

tems at dimensions 20, 40 and 60 for PCB-housing model

approximation properties of moment matching methods in general and Padé approxi-

mation with imaginary interpolation point particularly as mentioned in Section 3.4.2

can be observed. In fact, the convergence bandwidth of the reduced system is first

close to the expansion point and grows gradually with increasing Krylov spaces. The

relative error drops to 10−8 in the whole frequency range already with a reduced

dimension of 60.

The results obtained with our MOR code at dimension 56 are compared with those

of Microwave Studio (MWS�) from CST [63] from which we got the material matrices,

Mε and Mμ, in Fig. 3.4. It can be clearly seen that the results obtained from MOR

agree very well with those from MWS�. The high speedup in time of 15 is due to

the fact that only one inversion is required for MOR and 36 for the frequency sweep

of MWS� as the structure is very resonant. This speedup can be even improved to

30 by considering only an accuracy of 10−2 which is achieved with 30 Krylov vectors.

The memory size, the number of inversions, and the solver time are summarized in

Table 3.5.

3.6 Generation of Macromodels

As already stated in Section 2.1, Maxwell’s equations give a general description of

all electromagnetic phenomena even in domains with complex and inhomogeneous
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Figure 3.4: Comparison of S[1,2] for PCB-housing model between MOR and MWS�

(FD evaluation)

MWS� MOR

method FD (frequency sweep) passive Padé

# unknowns 154, 000 154, 000

memory size 520 MB 312 MB

# inversions 36 1

accuracy 10−4 10−4

solver time 13 min. 51s.

Table 3.5.1: Solver comparison between MOR and MWS� for PCB-housing model

material distribution. On the other hand, nodal analysis is a strong abstraction of

Maxwell’s equations based on the currents, voltages and lumped elements. Voltages

and currents are related with each other through constitutive equations like the Ohm’s

law.

Nodal analysis assumes that the elements are smaller than the considered wave-

lengths and connected with perfect conductors with vanishing signal delay. Despite

this coarse approximation, nodal analysis can handle a wide variety of circuits with

sufficient accuracy. Furthermore, it enables the computation of complex and nonlinear

circuits which would go beyond the limits of field simulation.
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3 Model Order Reduction

As effects like cross-talking, electromagnetic radiation, delay and dispersion which

cannot be neglected due to increasing operating frequencies require the consideration

of Maxwell’s equations, coupling of field and circuit simulation is indispensable. A di-

rect coupling in time domain may be inefficient as the ratio between the time stepping

for the field simulation8 and the circuit simulation time9 would lead to high computa-

tion times especially for long field simulations. Therefore, the electromagnetic effects

are described as macromodels which can be plugged into a circuit simulation, i.e

SPICE [64]. This may occur either by direct stamping of the elements of the reduced

models in SPICE circuits or through a Y-parameter description of the macromodels.

Macromodel extraction from measurement or simulation data has been a topic of

intensive research in the past. Several robust methods from the system identification

theory have been proposed [65–68]. The extracted models are however not guaranteed

passive e.g. due to coarse frequency sampling. While finer sampling would tremen-

dously increase the simulation time, passivity enforcement [69, 70] may require some

compromises regarding accuracy. MOR can be considered as an efficient option by

providing accurate and guaranteed passive models.

3.6.1 Modified Nodal Analysis

The modified nodal analysis (MNA) [71] is an extension of the classical nodal analysis

[35] in the sense that it allows to consider independent current and voltage sources

and mutual inductances in a network. Considering a network with predefined nodes

and branches and applying the Kirchoff’s current law (KCL) and branch constitutive

equations, we obtain the following system

(
G+ sC WT

−W sL

)(
v

j

)
=

(
B

0

)
i, (3.6.1)

where v and j are the vectors containing the nodal voltages and the currents at the

inductors, respectively. The matrices G, C and L contain the stamps for resistors,

capacitors and inductors respectively. The matrix W consists of 1, −1 and 0 and B

is the coupling matrix to the port current i. Through the transformation

j =
1

s
L−1Wv, (3.6.2)

8Some ns in structures with small details
9Typically some ms due to slow transients
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3.6 Generation of Macromodels

and elimination of j the state space representation can be reduced to the expression(
1

s
WTL−1W︸ ︷︷ ︸

YL

+G+ sC

)
v = Bi (3.6.3a)

u = BTv, (3.6.3b)

with u being the voltages at the ports. The matrices G, C and YL are symmetric

semi positive definite and diagonal dominant. Their diagonal entries are positive

whereas the other are negative.

3.6.2 Direct Realization

By considering the reduced system from the general state space representation in

(3.3.14)

(sI+Ap1 + 1/sAp0)Xp = Bpi (3.6.4a)

u = CXp, (3.6.4b)

and comparing with the system resulting from MNA (3.6.3), the analogy is obvious.

In fact, I, Ap1, and Ap0 are equivalent to C, G, and YL, respectively. For the

realization in SPICE models, we will distinguish between systems with an without

losses.

Lossless case

In this case, the state space is given as

(sI+ 1/sAp)Xp = Bpi (3.6.5a)

u = BT
pXp. (3.6.5b)

The matrices Ap resulting from the PRIMA process are dense and would thus lead to

a SPICE circuit with the maximum of elements (p(2m+ p)) which is of order O(p2).

The diagonalization is one of the most popular methods to reduce this amount of

circuit elements. After the eigendecomposition Ap = VΛVT , (3.6.6b) can be derived

to

(sI+ 1/sΛ)Xr =

ir︷ ︸︸ ︷
VTBp︸ ︷︷ ︸

Br

i (3.6.6a)

u = BT
pVXp. (3.6.6b)
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i1

Br[1,1]v1

Br[p,1]vp

u1

ir[1,2]ir[1,1] I[1,1]1/Λ[1,1]

v1
. . .

ir[p,2] ir[p,2] I[p,p]1/Λ[p,p]

vp

i2
Br[1,2]v1

Br[p,2]vp

u2

Figure 3.5: SPICE circuit resulting from the diagonalized reduced model

{s + 1
s }Xr i=

Figure 3.6: System after partial realization as second reduction step. The capacitor

matrix is diagonal, the inductor matrix has m secondary diagonals, and

the right hand side has m elements where m is the number of ports

The direct realization of (3.6.6) leads to a circuit with p nodes consisting of an in-

ductor and capacitor in parallel, and the controlled currents ir, and the branches

corresponding to the port voltages as illustrated in Figure 3.5. The number of ele-

ments, p(2m+ 2), is linear in p.

In nodal analysis, the dimension of the matrices is defined by the number of voltage

sources in the circuit. Thus, the systems in (3.6.6) are enlarged by the number of

sources at the port branches. This leads to high computation time especially while

analyzing systems with high dimension and/or number of ports. In order to remedy

to it, partial realization is run as second reduction step. By doing so, the number

of voltages at each port branch is reduced to one and the number circuit elements is

p(2m+ 2)−m2 + 5m+ 2 (Fig. 3.6). In addition, the partial realization reduces the

model further to yield macromodels of even smaller size.

The elements on the off-diagonals in Fig. 3.6 are modeled as inductors between the

corresponding nodes as illustrated in Fig. 3.7. Note that the values of the inductors

may be negative as the reduced matrices do not necessary have the same structure

as MNA matrices. However, this would not affect the accuracy of the results as
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. . .
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Figure 3.7: SPICE circuit resulting from partial realization as second reduction step

Lossy case

In the scope of this section we focussed on losses resulting from materials with finite

conductivity or resistors as PML yield nonsymmetric matrices which are in contra-

diction with the properties of MNA matrices. The reduced systems are then of the

form (3.6.4). Besides the inductor and capcitor matrices already discussed above,

we can recognize the resistor component which stands for losses. Again, the model

extraction can be performed as for cases without losses, except that resistors shall be

considered additionally.

3.6.3 Y-Parameter Description

The Y-parameters of the reduced system can be represented, as already introduced

for the more general transfer function (3.3.10), in rational polynomials

Y[i,j](s) =
bps

p + · · ·+ b1s+ b0
ap−1sp−1 + · · ·+ a1s + 1

, (3.6.7)

where p is the order of reduction. This expression can be directly used in a circuit

simulation in frequency domain whereas a convolution is indispensable for transient

simulation. It consists of transforming the Laplace relationship

I = Y(s)U (3.6.8)
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3 Model Order Reduction

between currents Y and node voltages U into the following integral expression

ij(t) =

m∑
k=1

∫ t

0

yj,k(t− τ)vk(τ)dτ. (3.6.9)

The main drawback of the convolution algorithm resides in its quadratic complexity,

O(T 2) with respect to the number of time points during simulation, T . Therefore,

recursive convolution and time domain Y parameters macromodels which guarantee

a linear complexity were introduced [72, 73]. Even though this method is more ef-

ficient as the direct realization we could not test it as SPICE3f4 [74] in which it is

implemented was not available.
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4 Model Order Reduction for EMC

Purposes

The main focus of this work is the application of MOR on EMC problems, which is the

topic of this chapter. The demand for high qualitative telecommunication and reliable

safety standards in cars have led to more restrictive EMC norms. EMC simulation has

become indispensable in early development phases due to tremendous improvements

both on the hardware and the software side. In order to improve the practicability

of these complex computations, some efficient methods in combination with MOR

will be proposed in this chapter. The outline follows the framework presented in the

introduction:

1. EMC computation in which we will present the error control method imple-

mented in this work as well as a method to reduce the dimension of the reduced

systems in presence of a lot ports. Furthermore, we propose a method for par-

allelization and discuss the efficiency of WCAWE with PML boundaries.

2. EMC analysis enables a derivation of equivalent circuit models in order to de-

termine the causes of deviations from the EMC norm.

3. EMC optimization in which a stand-alone optimization workflow which com-

bines a genetic algorithm and MOR is proposed.

4.1 EMC Computation

In order to predict the EMC properties of an electronic device, several methodologies

may be considered. Either electromagnetic interactions of different parts of the device

should be investigated or signals propagating on electrical circuits are of interest.

In most cases, the combination of both is recommended. In fact, the frequency of

interest limits the accuracy of circuit simulation, whereas the consideration of some

measurement setups and/or nonlinear elements in the implemented electrical circuits

enforce it.

65



4 Model Order Reduction for EMC Purposes

EMC Computation

3D-Geometry Import (MWS)

MOR

Macromodel

SPICE

Voltages, currents, S- or Z-

parameters

E
M
C

fa
il
u
re
s
ar
e
k
n
ow

n
Figure 4.1: Overview of the block EMC computation.

EMC computation may then consist of calculating the transfer function in terms

of Z- or S-parameters or computing relevant current and/or voltages in a circuit

simulation with a macromodel resulting from the field simulation. It has already been

shown in the last chapter that MOR is a robust method to achieve this goal. For

this purpose, a C++ code has been implemented. The discretization is performed

with MWS� which provides the material matrices (Mε, Mμ, and Mκ) and mesh

information necessary for the setup of the FIT system. The output of this code

consists of the S-, Z-parameters, and a SPICE macromodel which can be used in a

circuit simulation. This block allows to identify whether some EMC failures shall be

expected for the structure under test by analyzing predicted voltages, currents or the

transfer function (Figure 4.1).

The efficiency of MOR strongly depends on a reliable error control1. In fact, the

reduced systems should not be too small as the accuracy is no more guaranteed. On

the other hand, the size should not exceed its optimum as the efficiency would be

degraded. Two methods will be presented in this section in order to address this

1An error estimation supposes an error bound which is not defined for the Padé approxi-
mation presented in this work.
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4.1 EMC Computation

issue. It has also been mentioned that the size of the reduced models increases with

the number of ports. Thus, for systems with massive number of ports (> 30 ports)2, a

method which consists of the combination of modal truncation and Padé approxima-

tion is proposed. Furthermore, increasing model order combined with improvements

for cluster solutions require the consideration of parallelization methods.

4.1.1 Error Control

The main inconveniency of moment matching methods is the lack of a strict online

error control. Several methods have been introduced to address this issue [52, 55, 75,

76]. We will mainly focus on convergence monitoring and a residual based method.

Residual-based Method

The residual is an essential stop criterion parameter in iterative linear solvers [47].

Considering the following system of equations

Ax = b, (4.1.1)

the residual at iteration step i with the approximated solution xi is defined as

r = Axi − b. (4.1.2)

The error is related to the residuum as follows

e = xi − x (4.1.3a)

= A−1r. (4.1.3b)

Monitoring the residual over the iteration steps thus gives a trend of the convergence

rate of the solver. In fact, small errors imply small residuals. This knowledge has been

introduced in [52] to derive a stop criterion for Lanczos and Arnoldi related MOR

methods. The residual of reduced models following Arnoldi or Lanczos algorithms is

given as follows

R(s) = (A+ s0I)︸ ︷︷ ︸
As0

(I+ ŝÂ)X̃−B (4.1.4a)

= As0

(
(Vp + ŝÂVp)Xp − B̂

)
, with B̂ = (A+ s0I)

−1B (4.1.4b)

= As0Vp

(
(I+ ŝTp)Xp − B̂p

)︸ ︷︷ ︸
=0

+ŝAs0WpXp. (4.1.4c)

2In ICs (integrated circuits), the number of pins easily exceeds this value.
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4 Model Order Reduction for EMC Purposes

From (4.1.4b) to (4.1.4c) we used the Arnoldi’s property illustrated in Fig. 3.1. The

vector X̃ = VpXp represents the approximated state space variables with

Xp = (Ip + ŝTp)
−1B̂p (4.1.5a)

≈ (Ap + sIp)
−1Bp, (4.1.5b)

being the state space vector in the reduced model. This explains also why the ex-

pression in 4.1.4c is 0. We assume that Xp should be approximatively the same no

matter if the one-side projection has been performed on the original system (3.3.2)

or the shifted in (3.3.4), so the expression for the residual in (4.1.4c) can be used for

models reduced with PRIMA.

As already pointed out in [52], the residual does not provide an estimation of the

error which requires the inversion of the original system (A + sI). Therefore, we

introduce the following expression for the approximated error as defined in (4.1.3b)

Ẽ(s) = ŝBT
p (Ap + sIp)

−1VT
p As0WpXp, (4.1.6)

where the reduced system is inverted instead of the original one3. By doing so, the

computation complexity of the approximated error can be kept very low. On the

other hand, this estimation is not an error bound but yields a good approximation

as illustrated in Figures 4.2, 4.3, and 4.4.

Again, we considered the example introduced in Section 3.5. The relative approxi-

mated error is compared with the exact one at different dimensions (20, 40, and 60).

It can be seen that the residual-based approximated error is mostly above the exact

one. It should be stated that relative errors below 10−12 are no more relevant as they

are beyond numerical accuracy. Even though there is no mathematical proof for this

efficiency, it can be explained as follows:

• The reduced model is an approximation of the original one, thus the higher the

dimension, the better the approximation of the error following (4.1.6).

• The residual is so high in frequency intervals where the reduced model has not

yet converged, so that it dominates the approximated error there.

This error control was indeed differently derived in [75] for PRIMA systems but the

main issue of our derivation is the obvious relation between residual and error, and

thus the consistence of the method. On the other side, we were able to apply it on

Maxwell’s equation systems resulting from FIT discretization.

3(p× p) � (N ×N)
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Figure 4.2: Approximated error vs. exact error over the frequency for the PCB-

housing model at a Krylov dimension of 20

Convergence Monitoring

One of the drawbacks of the error control introduced above is the fact that it can

only be applied on linear systems. Though curl-curl systems with losses reduced

with WCAWE (Section 3.4.2) cannot be addressed. For this purpose, we need a more

general ansatz.

The convergence monitoring consists of approximating the real error E(s) through

Ẽ(s) = Hp(s)−Hq(s), (4.1.7)

where Hp(s) and Hq(s) are systems obtained from two different reduction schemes.

The first variant, introduced in [52], consists of choosing two complementary reduced

systems of the same size Hp(s) andHp⊥(s). The two different approximations assume

that they agree at frequencies where E(s) is small. The complementarity is achieved

by interpolating at different frequencies. Although the results are satisfying, the

increased complexity by computing a LU decomposition at two frequencies instead of

one is not worth.
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Figure 4.3: Approximated error vs. exact error over the frequency for the PCB-

housing model at a Krylov dimension of 40

Another more practicable method has been therefore presented in [76]. For this

purpose, we consider an exact value x which shall be approximated by the sequence

xn. The error en = |xn − x| at any iteration step n can be given in the following

expressions

|xn − x| = |xn − xn−1 + xn−1 − x| ≥ |xn − xn−1| − |xn−1 − x|, (4.1.8a)

= |xn − xn−1 + xn−1 − x| ≤ |xn − xn−1|+ |xn−1 − x|. (4.1.8b)

With ẽn = |xn − xn−1|, the inequalities above can be combined in

|en−1 − en| ≤ ẽn ≤ en−1 + en. (4.1.9)

It has been observed in practice that ẽn can be well approximated by en−1 and thus,

the approximated error is given as

Ẽ(s) = Hp(s)−Hp−1(s). (4.1.10)

Again this expression assumes that if the difference by increasing the dimension of

the Krylov space gets smaller then the reduced system has converged and the error

E(s) is also small.
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Figure 4.4: Approximated error vs. exact error over the frequency for the PCB-

housing model at a Krylov dimension of 60

All these methods suffer from the fact that they are not consistent. In fact, if the

two systems in (4.1.7) have not yet converged, then the error may be wrong. The

same holds for (4.1.10).

Stop Criterion

In order to provide a reliable stop criterion, the error should be approximated at

several frequencies in the considered range. In this work, it has been observed that

the error is well monitored with a value of 100 frequency samples equally spread over

the range. Assuming the estimation is performed in one of the two methods presented

above, the figure of merit for convergence, e, is set as

e =

∑100
i=1max{Ẽ(si)}

100
. (4.1.11)

In this way, the figure of merit is not dominated by error peaks which usually occur

close to resonances but consider the overall convergence. In fact, an accuracy of 1%

in the detection of resonances is good enough in EMC context. At the contrary to
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1 2

Table

Wire

Figure 4.5: Wire model with two ports above a conducting table used to investigate

the efficiency of MOR in presence of PML boundaries.

antenna analysis, the cause of the resonance and not its location with high definition

is of interest.

In practice, the error is not approximated after each iteration, the user sets an

initial dimension for the reduced model and an incremental value after which e is

compared to a threshold value εth. If e < εth, the computation is stopped and the

reduced model is retrieved. A threshold value of εth = 10−4 has been found to be

a good compromise between accuracy and efficiency. It should be stated that even

an accuracy of 10−2 is acceptable for EMC purposes. This threshold may further

improve the efficiency of MOR compared to common frequency sweeps.

4.1.2 MOR with PML

In order to investigate the performance of the implemented MOR method in presence

of PML boundaries, we considered the following setup illustrated in Figure 4.5:

• a 1 m long wire,

• a perfect conducting table 5 cm under the table,

• two ports at the ends of the wire.

Apart from the lower side which is terminated with PEC, the boundaries of the

computational domain have been modeled as 6 PML layers. The minimal reflection

factor has been set to 10−4 and the exponent of the geometric function (2.2.24) is 3.

Furthermore, the discretization leads to 3 · 105 DOFs.

Figure 4.6 shows the comparison of the transmission (S[1,2]) between MWS�4 and

MOR for a Krylov dimension of 1000. It can be clearly seen that the reduced system

4The boundaries properties have been set as for the MOR computation.
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Figure 4.6: S[1,2] of the wire model with PML boundaries obtained from MOR with

a Krylov dimension of 1000 compared to the results from MWS�.

is still far from convergence. As a comparison, a model of the same order without

PML can be reduced to a system of dimension 20. This is due to the fact that PML

layers worsens the condition of the system matrices. It has been showed in [77] that

solving FIT matrices iteratively considering PML requires 600 times more iterations

than without PML.

The Padé approximation can be considered as an iterative method to resolve the

main eigenvalues of the system in the neighborhood of the expansion point. In this

way, the bad condition of the matrix has the same effect on the convergence rate as

in [77]. The condition number can surely be improved by not considering the PML

elements of higher order but there is still a factor 10 in the number of iterations com-

pared to systems without PML as investigated in [77]. Therefore, it is not worthwhile

to apply MOR for systems with PML. It is recommendable to consider Mur bound-

aries which of course are less accurate than PML but do not affect the condition of

the matrices.
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4.1.3 Modal Truncation + Padé

In some applications where ICs are involved, the number of ports related to the pins

under test may get beyond 30. This represents a big challenge for moment matching

methods. Especially for resonant structures where a high number of moments should

be matched for a good accuracy: the size of the reduced model gets so huge that

the term order reduction is no more appropriate. Not only the memory requirements

to store the Krylov vectors grows tremendously but also the computation with the

macromodels gets inefficient.

Several methods have been proposed to address this issue:

• The port correlation can be used in order to reduce the dimension of the Krylov

space. For this purpose a singular value decomposition of the transfer function

H(s) is performed at a given frequency and used to represent the set of ports

as a small-rank approximation (SVD-MOR [78]). The reduction is applied

on this small-rank approximation and then projected to the original system by

using the singular vectors. This approximation can be also frequency-dependent

[79].

• The decentralized MOR [80] aims to split the m × m MIMO systems into

1 ×mp SIMO systems where mp is reduced by eliminating ports with less in-

teraction. The port interactions are quantified by computing the relative gain

array (RGA) of the transfer function. If mp � m, and the number of matched

moments is the same, then the computation of Z-parameters would be less time

and memory consuming.

In the cases considered in this work, the transfer function is of full-rank which degrades

the efficiency of SVD-MOR. Furthermore, the number of matched moments for a

given accuracy of the reduced models depends also on the number of ports. In fact,

increasing the number of ports would require less moments for convergence. This can

be illustrated by considering the analogy to iterative eigenvalue solvers. The more

search vectors are used, the less iterations are needed for satisfying convergence. This

discards decentralized MOR which assumes a constant number of moments for high

efficiency.

Therefore, the combination of modal truncation and Padé approximation was con-

sidered to reduce MIMO systems with a high number of ports, first presented in [81].

Any transfer function can be represented through its poles and zeros. The modal
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(VT
1 AV1 + sI)x1 = VT

1 Bi (4.1.12a)

u1 = BTV1x1, (4.1.12b)

where V1 ∈ RN×p represents the eigenvectors corresponding to the dominant eigen-

values of the system under test.

As already stated in Section 3.2.3, this truncation is inaccurate and should be

enhanced with a correction term. In fact, the modal analysis approximates solely

the poles of the systems. The correction is, unlike presented in Section 3.2.3, com-

puted with a Padé approximation. The matrix V2 which spans the Krylov space

⊂ Kr(Â, ÂB) is then appended to V1 to form the orthonormal projection matrix Vq

Vq = [V1,V2]. (4.1.13)

Afterwards, the reduced system is obtained through projection, while this is achieved

through a two side projection in [81], we chose again the congruence transformation

for guaranteed passive models.

By doing so, the main drawbacks of both methods can be compensated while en-

hancing their respective advantages. The poles of the system which are independent

of the number of ports can be computed with the modal analysis. While the zeros

which are strongly related to the ports are efficiently obtained through Padé approx-

imation. If all poles and their corresponding eigenvectors in the considered frequency

range and its neighborhood are known, then less moments are necessary to reduce

the system with the Padé approximation.

Iterative solvers are the most efficient way to perform modal analysis with methods

such as Jacobi-Davidson or Arnoldi [43]. In order to improve the convergence of those

iterative methods, it is indispensable to regularize the FIT system as discussed in

Section 2.4.3.

This method has been tested on a simple model of 25 conductors with square-

shaped cross-sections. Even though the method proposed in this section requires 1
2

to 1
3 less vectors as the classical passive Padé approximation, it is still not enough to

justify the time consuming eigenvalue computation. However, if the memory capacity

is an issue, then the combination modal analysis and Padé approximation should be

considered as worthwhile alternative.
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4.1.4 Parallelization

Introduction

The simulation of complex structures (> 107 unknowns) needs tremendously high

computation times and may even not be computed on standard personal computers

(PCs) because of high memory requirements. High performance computing has been

introduced for this purpose. In fact, hardware and software resources provided for

parallelization enable faster computation of huge problems.

Parallel computers can be subdivided into the following categories [82]:

• Multi-processor machines have several processors which can access the same

RAM (random access memory) through a memory bus. These so-called shared

memory machines (SMM) enable an easier implementation as the memory man-

agement is mainly hardware-related and provide a reduced latent time for mem-

ory access. However, the number of processors in such systems is limited due to

cost and complexity factors [83]. The main task for the programmer consists of

guaranteeing a data consistence through synchronization of operations as they

are performed on the same RAM. In this context, OpenMP has been established

as the most reliable interface for implementation purposes [84].

• Multi-computer systems consist of several computers with their processors

having their own RAM. Also called distributed memory machines (DMM), they

are connected through a network bus which each other. Computations with

these systems require data transfer within the involved computers and depend-

ing on the network performance, this may be very time consuming. On the

other side, as the memory management is not supported by the hardware, the

software implementation in this environment gets more complex. Nevertheless,

this variant offers the best trade-off between hardware cost and computation

performance due to continuous price fall of computer and network components

coupled with their performance improvement. It is therefore the most widely

used system for parallel computing [85]. In order to enable its implementation,

MPI (message passing interface) has emerged as the most used interface [86].

Nowadays, hybrid models have grown to standards for parallel computing purposes.

They are a combination of the two above presented models and consist of several

multi-processor machines. In order to guarantee a reliable implementation in those

systems, a combination of the interfaces OpenMP and MPI is indispensable.

The most relevant figures of merit of any algorithm are computation time T and

memory requirement in relation to the problem complexity N and the number of
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processors Nπ in the context of parallel computing. Besides enabling the computation

of complex problems which cannot be performed on one machine, the parallelization

aims to reduce the computation time, also known as scalability. Therefore, a figure

of merit for parallel algorithms is their speedup which is defined as follows [87]

S(Nπ, N) =
T (1, N)

T (Nπ, N)
. (4.1.14)

It represents the reduction factor of computation time between sequential (T (1, N))

and parallel implementation (T (Nπ, N)). Another figure of merit for parallel algo-

rithms is the efficiency

ε(Nπ, N) =
T (1, N)

NπT (Nπ, N)
=

S(Nπ, N)

Nπ
, (4.1.15)

which describes the ratio between arithmetic operations and other tasks like data

management and network communication.

Ideally, the optimal value for the speedup is

Sopt = Nπ, (4.1.16)

and therefore for the efficiency

εopt = 1. (4.1.17)

However, some discrepancies can be observed by analyzing explicitly the behavior of

speedup and efficiency dependent on the number of processors under real conditions

as shown in Figure 4.7. In fact, the computation time can be decomposed in a

parallelizable Tp(Nπ, N) and a sequential part Ts(N) which is executed by some or

all in the computation involved processors

T (Nπ, N) = Ts(N) + Tp(Nπ, N). (4.1.18)

Thus, the speedup can not exceed the value of

S∞(N) = lim
Nπ→∞

S(Nπ, N) = 1 +
Tp(1, N)

Ts(N)
(4.1.19)

following the Amdahl’s law [88]. In this theory, the speedup cannot increase linearly

with the number of processors but approaches asymptotically the value in (4.1.19).

The goal should thus be to parallelize any algorithm step for a better efficiency.

Another factor which affects the efficiency of a parallel algorithm is the communi-

cation between the processors. The more data any processor needs from other ones,
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optimal efficiencyideal speedup
S

Nπ

S∞

ε

Nπ

1

Figure 4.7: Speedup (left) and efficiency (right) w. r. t. the number of processors.

Comparison between optimal and real behavior with (dotted line) and

w/o (dashed line) considering the communication and synchronization

task.

the higher the network activity gets. This leads even by using high speed network

solutions to an overhead where less operations are performed as data exchanged. On

the other side, a parallel computation can be as fast as the slowest involved processor.

As a balanced implementation becomes more and more difficult by increased number

of processors, the efficiency is further reduced. These two factors explain the maxi-

mum of the speedup in Figure 4.7 after which it decreases under real conditions. It

is thus essential to determine the maximum number of processors depending on the

problem size, the network activity and the degree of the problem to be balanced for

optimal efficiency. Above this value, the parallelization task could be considered as a

waste of resource.

Parallelization Strategy

The most time consuming parts of the MOR computation are

1. the LU decomposition which is done once before starting to build the Krylov

space,

2. the forward and backward substitution along side with the modified Gram-

Schmidt orthogonalization at each step of the Krylov’s algorithm,

3. and the error estimation for which the computation at the 100 frequency samples

is spread over the processors in presence.
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4.1 EMC Computation

It should be noted that the time needed to set up the system matrices and com-

pute the transfer function (S- and Z-parameters) is negligible compared to the whole

computation time.

An intuitive strategy to parallelize the MOR computation is the multi-point Padé

approximation introduced in Section 3.4.2. The most suitable method for paralleliza-

tion consists of setting a priori the expansion points and building the related Krylov

spaces separately. The spaces are then merged and orthogonalized afterwards be-

fore being used for projection. As each processor would build a different space, this

method offers an almost linear scalability assuming that the dimension of the overall

space is equal or smaller than compared to the one resulting from the single point

variant.

The structure used to test this method is a single wire modeled as a PEC body

5 cm above a PEC table (Figure 4.5). The two considered ports were placed at the

ends of the wire and related to the table. The range of interest is 1 MHz to 4 GHz.

The setups with different number of interpolation points are the following:

1. one interpolation point at 2 GHz,

2. three interpolation points at 0.6 GHz, 2 GHz and 3.3 GHz,

3. eight interpolation points equally spaced.

We investigated the convergence behavior of the reduction process of these setups by

computing their relative error at dimensions 20, 40 and 80. The number of Krylov

space vectors is equally distributed among the number of interpolation points. It

should be noted that the number of vectors for each interpolation point is no more

the same when the result of the division is not an integer. In that case, the rest of

the division is spread over the first assigned processors.

The comparison of the relative error for a reduced system of dimension 20 is il-

lustrated in Figure 4.11 and shows clearly the local convergence of the Padé ap-

proximation. In fact, the minima put in evidence that the transfer function is well

approximated around the interpolation points. The larger convergence region for the

single-point approximation comes from the fact that less vectors are generated for

each expansion frequency in the multi-point variant.

Figure 4.12 shows the relative error in comparison for a reduction to dimension 40.

It can be clearly seen that multi-point Padé approximation enables a more homoge-

neous convergence over the whole frequency range. For eight expansion frequencies,
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Figure 4.8: Comparison of the relative error at Z[1,1] of the wire model for the

reduced system of dimension 20 with 1, 3 and 8 interpolation points.

the relative error is around 10−4 almost for the whole range. Considering 3 frequencies

improves just slightly the convergence of the reduction process. The convergence ra-

dius of the frequencies lying above 2.5 GHz remains small as the amount of resonances

there requires more vectors in order to be resolved.

Enlarging the projection space to 80 vectors degrade the multi-point Padé perfor-

mance while the relative error drops below 10−8 for single point up to 3.75 GHz as can

be seen in Figure 4.10. This confirms the fact the parallel generation of the Krylov

spaces related to the different expansion frequencies results in numerical problems as

mentioned in Section 3.4 [53]. This is basically due to the orthogonalization scheme.

In fact, merging the Krylov spaces at the different frequencies at the end stage is

less efficient than orthogonalizing the vectors gradually like in the modified Gram-

Schmidt method (Algorithm 3.4.1). Therefore, we opted for the single-point variant

in the parallelized version.

Implementation

The cluster on which the computations have to be run is hybrid. It consists of

multi-computers which themselves have several processors. Therefore, we used MPI
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Figure 4.9: Comparison of the relative error at Z[1,1] of the wire model for the

reduced system of dimension 40 with 1, 3 and 8 interpolation points.

as interface for the parallel implementation. In order to reduce the implementation

efforts, we opted for the PETSc library [89] which includes an MPI interface. This

library allows to handle objects like matrices or vectors in an easier way [90]. Fur-

thermore, it relies on libraries for efficient algebra operations (e.g. LAPACK, BLAS

[91]) and enables the integration of external solvers.

An analysis of the different steps of the code reveals that the LU decomposition is

the most time consuming part of the computation. The influence of the generation

of the Krylov space depends on the resonance behavior of the considered structure

and the number of ports5, so that its influence in the whole computation varies.

However, it can be stated that in the structures considered in this work, this part

takes less than 40% of the whole computation time. The computation of the Z- and

S-parameters which takes less than 0.2% of the computation time can be parallelized

in an efficient way, whereas the setup of the system matrices is sequential. It takes

less than 1% of the computation time and thus, represents a negligible limiting factor

for parallelization. Refer to [92] for more details on the implementation of the parallel

MOR code.

5The more resonances a structure has, the more vectors are needed for the approximation.
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Figure 4.10: Comparison of the relative error at Z[1,1] of the wire model for the

reduced system of dimension 80 with 1, 3 and 8 interpolation points.

The models of size 1.4× 106, 3× 106, and 8× 106 DOFs, computed in this section

are represented in Table 4.1.1:

1. Problem 1 is a converter with 6 ports.

2. Problem 2 is a 6 layered PCB model of a transmission control unit with 11

ports.

3. Problem 3 is the same model as problem 2 but finer meshed.

The performance of the MOR parallelization for these problems has been analyzed

by means of speedup and efficiency comparisons. It should be stated that as the

problems 1 and 2 could not be computed on one processor but at least on two, and

four, respectively, the computation time has been extrapolated to one processor by

multiplication6.

6In fact, we assume a linear scalability from the minimum number of processors down to
one as we could not get any computation time for comparison due to the high number
of DOFs.
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Problem 1 Problem 2 Problem 3

# unknowns 1.4× 106 3× 106 8× 106

# ports 7 11 11

# Krylov vectors 28 66 121

Table 4.1.1: Problems computed with the parallelized code. Problem 1 is a converter

whereas problems 2 and 3 model a PCB for a transmission control unit

with different mesh coarseness.

2 proc. 4 proc. 8 proc. 16 proc. 32 proc. 48 proc.

LU 3459 s 1812 s 990 s 557 s 388 s 316 s

Krylov 352 s 253 s 234 s 195 s 168 s 101 s

Error 71 s 34 s 16 s 11 s 10 s 11 s

Table 4.1.2: Computation times of problem 1 with 1.4× 106 DOFs.

Figures 4.11 and 4.12 show the speedup for the different computation stages (LU

decomposition, Krylov space computation and error estimation) of problems 1 and 2

depending on the number of processors whereas the explicit computation times are

presented in Tables 4.1.2 and 4.1.3. It can be clearly seen that the LU decomposition

and the error estimation scale better than the Krylov space generation. In fact as the

frequency samples are spread over all the processors while computing the error, a high

efficiency can be achieved up to 16 processors (problem 1) and 32 processors (problem

2). After this limit, the overhead due to the communication becomes prejudicious.

The LU decomposition scales better than the Krylov space generation because it is

more intensive than the forward and backward substitution which consists solely on

some matrix-vector multiplications.

Furthermore, Figure 4.13 which shows the efficiency of the whole computation for

problems 1 and 2 reveal that the parallelization efficiency decreases from problem

4 proc. 8 proc. 16 proc. 32 proc. 48 proc.

LU 2315 s 1279 s 730 s 518 s 426 s

Krylov 1051 s 1030 s 806 s 729 s 408 s

Error 297 s 147 s 71 s 52 s 50 s

Table 4.1.3: Computation times of problem 2 with 3× 106 DOFs.
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Figure 4.11: Speedup, S, of the overall computation and the different stages (LU

decomposition, Krylov generation, and error estimation) w. r. t. the

number of processors, Nπ for problem 1 with 1.5× 106 DOFs.

1 to 2. In fact, even though the LU decomposition scales better with increasing

problem dimension, the higher proportion of the Krylov generation in the whole

computation time due to the higher number of vectors in problem 2 (66 vs 28) worsens

the whole efficiency. On 48 processors the efficiency is of 37.5% and 35%, respectively

for problems 1 and 2, i.e. an acceleration factor of 18 and 16.8.

High performance computing as part of enabling the computation of complex struc-

tures allows for a faster computation as far as the hardware resources are available.

For the 8×106 DOFs example, the LU decomposition could be computed in 1h30min

with 48 processors whereas the computation on a 64GB machine with an iterative

solver of MWS� in frequency domain could not be performed within a week. The

computation times for 32 and 48 processors are given in Table 4.1.4.
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Figure 4.12: Speedup, S, of the overall computation and the different stages (LU

decomposition, Krylov generation, and error estimation) w. r. t. the

number of processors, Nπ for problem 2 with 3× 106 DOFs.

32 proc. 48 proc.

LU 3806 s 2831 s

Krylov 4117 s 2775 s

Error 180 s 141 s

Table 4.1.4: Computation times of problem 3 with 8 × 106 DOFs on 32 and 48

processors.
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Figure 4.13: Comparison of the efficiency, ε, of the overall computation w. r. t.

the number of processors, Nπ between problem 1 with 1.5×106 DOFs

and problem 2 with 3× 106 DOFs.
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Figure 4.14: Overview of the block EMC analysis.

4.2 EMC Analysis

As already stated, MOR only provides a mathematical description of the behavior

of the structure under test, whereas models which retrieve physical properties are

indispensable for EMC analysis. In fact, such models which involve parasitic elements

enable to understand the cause of the EMC effects detected in the previous step.

Thus, knowing the sensitive parameters, improvement measures can be derived to

retrieve an EMC optimized structure. Figure 4.14 shows in details how this block is

constituted.

We used a semi-automatic method which assumes a set of possible equivalent cir-

cuits provided by the EMC engineer. These circuits consist of both functional and

parasitic elements. The goal is to find the most realistic circuit and determine the

values of its elements. For this purpose, the polynomial expressions from MOR and

the MNA systems of the proposed circuits are fitted through optimization.
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4.2.1 Polynomial Representation

The reduced models from PRIMA can be represented in rational polynomials

Zp[i,j](s) =

∑p−1
k=1 b

ij
kMORs

k∑p
l=1 alMORsl

, (4.2.1)

where the denominator is the same for all elements of the matrix Z as the poles refer

to the whole system, and the numerator is specific to each Z[i,j]. This expression

builds the reference for the identification of the equivalent circuit.

Analogously, the MNA systems of the proposed circuits can be expressed as rational

polynomials

ZMNA[i,j](s) =

∑m
k=1 bikdet(Ykj)

det(Y)
(4.2.2a)

=

∑p−1
k=1 b

ij
kMNAs

k∑p
l=1 alMNAsl

, (4.2.2b)

where Y = 1/sYL+G+ sC is the stamping matrix in (3.6.3) and Ykj are defined as

Ykj =

⎛⎜⎜⎜⎜⎜⎝
y1,1 · · · y1,k−1 b1,j y1k+1 · · · y1,n
...

. . .
...

...
...

. . .
...

yk,1 · · · yk,k−1 bk,j yk,k+1 · · · bk,n
...

. . .
...

...
...

. . .

yn,1 · · · yn,k−1 bn,j yn,k+1 · · · yn,n

⎞⎟⎟⎟⎟⎟⎠ , (4.2.3)

where the kth column and kth line of Y are replaced by the jth column of B.

4.2.2 Identification

After having expressed both the reduced model and the MNA matrices of the differ-

ent circuits as polynomials, a postprocessing step should be performed before iden-

tification. In fact, the frequency range of validity of reduced models obtained from

the 3D discretization is broader than that of systems resulting from nodal analysis7.

Therefore, after having set the frequency range [fmin, fmax] in which the identification

should be performed, only the zeros and poles smaller than fmax are considered

ZMNA[i,j](s) =

∏K
k=1(s− s

[ij]
k )∏L

l=1(s− sl)
. (4.2.4)

7The frequency range of 3D discretization goes typically up to GHz as the nodal analysis
is no more valid for frequencies beyond 200 MHz for the structures under consideration
in this work.
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The following criteria are then used to identify the proper circuit with the values of

its corresponding elements:

1. The first criterion is the number of poles and zeros L and K. The proposed

circuits which do not have the same number of poles in the frequency range of

validity should thus be eliminated.

2. The second criterion of identification is the consistency of the computed

values. In fact, if the proposed circuit is wrong then the values retrieved

by the optimization algorithm, at least for the functional elements, may go

beyond an a-priori set range. This range should thus be treated as optimization

constraints.

3. The last criterion is the accuracy of the minimization function. In fact,

circuits which do not match the physical properties of the structure under test

may not retrieve the transfer function with physical elements within the con-

straint.

The method would surely be more robust by defining the objective function in re-

lation with poles and zeros to avoid some enhanced errors when dealing with badly

conditioned polynomials. However, as the poles and zeros expressions resulting from

the circuit analysis cannot be easily related to the right values from MOR8, the

function to be minimized is the mean of the relative errors of the coefficients in the

formulations (4.2.1) and (4.2.2b)

fopt =

∑m
i=1 |aiMOR − aiMNA|/|aiMOR|+

∑n
i=1 |biMOR − biMNA|/|biMOR|

m+ n
, (4.2.5)

where m and n is the number of all coefficients of the matrix Z. After a first step

of optimization, the poles and zeros can be better related to each other so that they

could be used in a second step, if necessary.

4.3 EMC Optimization

EMC optimization consists of discrete measures, each consisting of different variants,

which can be either considered separately or plugged together in an optimization

setup. Therefore, an efficient computational method of the different variants is nec-

essary. In the scope of this work, we considered variations of position and value of

lumped elements and traces paths.

8The systems considered in this work have typically up to 10 poles and zeros.

89



4 Model Order Reduction for EMC Purposes

4.3.1 Variation Computation

We assume that the variations are of local nature, so that the variations on the system

matrix are of low rank. In this scope we consider variations of lumped elements, and

of trace paths. As the matrix inversion in the reduction process is the main time

consuming operation, we can use the so-called matrix inversion lemma for efficient

computation [93].

Lemma 4.3.1 ∀A ∈ Cn×n nonsingular, U and V ∈ Cn×m with m < n, if

(I+VHA−1U) is nonsingular then the following holds

(A+UVH)−1 = A−1 −A−1U(I+VHA−1U)−1VHA−1 (4.3.1)

A lumped element placed on an edge induces a relation between current and voltage

on the considered edge. Therefore, the curl-curl equation9 introduced in (2.3.12) can

be derived to

(jω)2Mε
�e +A′

CC
�e = −jω(

�
�

j +Y �e), (4.3.2)

where Y is a diagonal matrix with elements jωC and 1
jωL , respectively, for capacitors

and inductors as lumped elements. This leads to

(jω)2(Mε +Ccap)
�e + (A′

CC + L−1
ind)

�e = −jω
�
�

j , (4.3.3)

where Ccap and Lind are the diagonal matrices containing the values of considered

capacitors and inductors, respectively.

Inductor Variations

The position and value variations of inductors imply a modification of the diagonal

entries of ACC , as can be seen in (4.3.3). The modification has rank one, thus U and

V ∈ RN×1.

Capacitor Variations

Capacitor variations lead to a modification of M
−1/2
ε into

M̂
−1/2
ε = M

′−1/2
ε +ΔM

−1/2
ε , (4.3.4)

where M
′−1/2
ε is nothing but M

−1/2
ε with the m′

ε[k,k] being set to zero10 and

Δm−1
ε[k,k]

=
1

mε[k,k] + C
. (4.3.5)

9We consider here the lossless case.
10We assume that the capacitor is placed at position k.
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Thus, the variation of ACC is derived to

M̂
−1/2
ε A′

CCM̂
−1/2
ε = (4.3.6)

ACC +M
′−1/2
ε A′

CCΔM
−1/2
ε +ΔM

−1/2
ε A′

CCM
′−1/2
ε +ΔM

−1/2
ε A′

CCΔM
−1/2
ε︸ ︷︷ ︸

ΔACC=UV
T

,

where ACC = M
′−1/2
ε A′

CCM
′−1/2
ε according to (2.3.11). This corresponds to a 2-

rank modification of ACC as the first and second terms relate to the kth column

and kth line respectively while the third term stands for the diagonal entry. The

matrices U = [U1, . . . ,Ur] and V = [V1, . . . ,Vr] ∈ RN×2r with r being the number

of capacitors can be defined as

Ui =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aCC[1,k]

√
m′

ε[1,1]√
aCC[k,k]mε[k,k]

−aCC[1,k]

√
m′

ε[1,1]√
aCC[k,k]mε[k,k]

...
...

2
√

aCC[k,k]m
′

ε[k,k]

3
√

Δmε[k,k]

−
√

aCC[k,k]m
′

ε[k,k]

3
√

Δmε[k,k]

...
...

aCC[N,k]

√
m′

ε[N,N]√
aCC[k,k]mε[k,k]

−aCC[N,k]

√
m′

ε[N,N]√
aCC[k,k]mε[k,k]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3.7a)

Vi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3aCC[k,1]

√
m′

ε[1,1]√
mε[k,k]

3aCC[k,1]

√
m′

ε[1,1]√
mε[k,k]

...
...

2
√

aCC[k,k]m
′

ε[k,k]√
Δmε[k,k]

√
aCC[k,k]m

′

ε[k,k]√
Δmε[k,k]

...
...

3aCC[k,N]

√
m′

ε[N,N]√
mε[k,k]

3aCC[k,N]

√
m′

ε[N,N]√
mε[k,k]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.3.7b)

in order to guarantee the non-singularity of (I + VHA−1U) as required in Lemma

4.3.1. In fact, it is obvious that Ui and Vi correspond to the expression of ΔACC in

(4.3.6)

UiV
T
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

aCC[l,k]

√
m′

ε[l,l]
/
√

Δmε[k,k], for l = 1, . . . , N and l �= k

aCC[k,l]

√
m′

ε[l,l]
/
√

Δmε[k,k], for l = 1, . . . , N and l �= k

aCC[k,k]m
′
ε[k,k]/Δmε[k,k]

0, else.

(4.3.8)
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4 Model Order Reduction for EMC Purposes

Furthermore, the non-singularity of (I + VTA−1U) can be proved by showing that

VT
i Ui is not singular

11. Obviously, the term

VT
i Ui =

(
vu1 −vu2
vu2 −vu3

)
, (4.3.9)

with

vu1 =
∑
l �=k

3a2CC[l,k]m
′
ε[l,l]

aCC[k,k]m
′
ε[k,k]

+
4aCC[k,k]m

′
ε[k,k]

3Δmε[k,k]
, (4.3.10a)

vu2 = vu1 −
2aCC[k,k]m

′
ε[k,k]

3Δmε[k,k]
, (4.3.10b)

vu3 = vu2 −
aCC[k,k]m

′
ε[k,k]

3Δmε[k,k]
, (4.3.10c)

has similar entries up to the factor
aCC[k,k]m

′

ε[k,k]

3Δmε[k,k]
. Thus the matrix VT

i Ui guarantees

a good conditioned application of the inversion lemma. It should be noted that we

considered the fact that ACC is symmetric in (4.3.10c).

Trace Path Variations

We interpret any trace as a PEC body. They are characterized by their vanishing

electric field. This is modeled by enforcing the relative permittivity to tend to infinity

or its reciprocal to be zero inside and on the surface of PEC materials. Again, we

obtain the following matrices:

Ui =

⎛⎜⎜⎜⎜⎜⎜⎝
− aCC[1,k]√

aCC[k,k]

aCC[1,k]√
aCC[k,k]

...
...

−2
3
√
aCC[k,k]

1
3
√
aCC[k,k]

...
...

− aCC[N,k]√
aCC[k,k]

aCC[N,k]√
aCC[k,k]

⎞⎟⎟⎟⎟⎟⎟⎠ , Vi =

⎛⎜⎜⎜⎜⎜⎜⎝

3aCC[k,1]√
aCC[k,k]

3aCC[k,1]√
aCC[k,k]

...
...

2
√
aCC[k,k]

√
aCC[k,k]

...
...

3aCC[k,N]√
aCC[k,k]

3aCC[N,k]√
aCC[k,k]

⎞⎟⎟⎟⎟⎟⎟⎠
(4.3.11)

which can also be used for thematrix inversion lemma. The entries of the modification

are derived to

UiV
T
i =

⎧⎪⎨⎪⎩
−aCC[l,k], for l = 1, . . . , N and l �= k

−aCC[k,l], for l = 1, . . . , N and l �= k

0, else.

(4.3.12)

11Note that we use the subscript T instead of H because the matrices U and V ∈ R in our
setup.
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4.3 EMC Optimization

which eliminate the corresponding entries in ACC . The term is also non-singular as

VT
i Ui =

(
vu1 −vu2
vu2 −vu3

)
, (4.3.13)

with

vu1 =
∑
l �=k

3a2CC[l,k]

aCC[k,k]
+

4

3
aCC[k,k], (4.3.14a)

vu2 = vu1 − 2

3
aCC[k,k], (4.3.14b)

vu3 = vu2 − 1

3
aCC[k,k], (4.3.14c)

(4.3.14d)

has entries of same order like in (4.3.9).

It is more difficult in this case to set the positions of Mε which should be changed.

In order to simplify this process we defined a way to derive the positions with just

the minimal and maximal node as input values (Fig.4.15).

z

x

y

(ix, iy, iz)min

(ix, iy, iz)max

Figure 4.15: Meshed PEC trace with the 2 identification points

This method is initially limited to pieces of parallelograms as further improvements

are required to consider general structures. Assuming

mx = ixmax − ixmin (4.3.15a)

my = iymax − iymin (4.3.15b)

mz = izmax − izmin, (4.3.15c)
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4 Model Order Reduction for EMC Purposes

it can be proved that the modification rank is

r = 2(mx +my +mz + 2(mxmy +mxmz +mymz) + 3mxmymz). (4.3.16)

4.3.2 Optimization Flow

Although it has been proved to be exact, the method through the matrix inversion

lemma fails unfortunately in practice to be more efficient than the intuitive one. In

fact, we use PARDISO [94]12 to solve the equation at each Krylov iteration step. It

should be stated that SUPERLU was used for parallelization because PARDISO is

applicable only on SMMs and not on DMMs. PARDISO performs two main tasks:

1. numerical LU factorization,

2. forward and backward substitution.

Assuming t1 and t2 as the times required to perform tasks 1 and 2, the condition for

efficiency can be given as follows

(t1 + p · t2)nopt > t1 + nopt · p · r · t2, (4.3.17)

where p is the dimension of the Krylov space, r the rank of modification, and nopt,

the number of optimization iterations. This expression can be derived to

t1(nopt − 1) > nopt · p · t2(r − 1) ⇒
γ =

t1
t2

> p · r, (4.3.18)

by assuming nopt � 1 and r � 1. In practice, the ratio between the two tasks of

PARDISO is of order O(102) as illustrated in Figure 4.16, while the product p · r is at

least 10 times greater for complex systems. Therefore, this method can not be used

for our purposes.

However, the ability to modify the system matrices after each optimization iter-

ation is advantageous. In fact, our optimization flow, as illustrated in Figure 4.17,

requires the mesh data only once from MWS� whereas the main optimization task

is performed as a stand alone process.

After having identified the sensitive EMC measures and set the range for position

and value or length of trace paths and/or lumped elements, the optimization algo-

rithm13 can be started. It is worth noting that the traces which should be modified

12The best currently available LU solver for our applications [95]
13This could be the optimization tool OptiSlang [96].
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Figure 4.16: Ratio of computation time between the two PARDISO tasks (numerical

LU factorization and forward and backward substitution) vs. number

of unknowns.

are not considered in the meshing process. However, the mesh should be fine enough

at the regions where they should be placed in order to perform the modifications in

the optimization process with better accuracy. The objective value can be computed

by considering either the transfer function or currents and voltages after a circuit

simulation14. The optimal parameters can then be retrieved if a given stop criterion

has been reached.

Even though the efficiency could not be improved by using the matrix inversion

lemma, the possibility to modify the system matrices enables an automatic optimiza-

tion without requiring new mesh information after each optimization step. Further-

more, it allows the flexibility to remove or introduce some traces within the optimiza-

tion process which cannot be achieved easily in the MWS� environment15. Again as

can be seen in Figure 4.18 which resumes the task performed in this section, MOR

plays a central role by enabling a faster optimization.

14Generally some resonances should removed or shifted.
15One would have to write some complex macros in VisualBasic in order to make it available.
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Figure 4.17: Optimization workflow.
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Figure 4.18: Overview of the block EMC optimization.
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5 Matrix Compression

In this chapter, the Kronecker decomposition is presented as an efficient way to com-

press matrices arising from FIT systems and thus allow computations with an efficient

memory management. After a short introduction, a brief overview on H-matrices

which have been also introduced for matrix compression is given for comparison. Then,

the Kronecker decomposition is described where particularly the approximation of the

inverse and the so-called Kronecker-Krylov are addressed.

5.1 Introduction

In order to cope with the challenge of growing memory and complexity requirements,

we distinguish two strategies:

• One could try to adapt the hardware to the existing software by solving high

dimensional problems on clusters through parallelization in order to cope with

the storage demand.

• Another goal is to develop software which could enable the computation of such

problems on machines with moderate memory capacity.

For this last option, several methods of matrix compression which allow an almost

linear complexity1 have already been introduced and applied in the past to represent

full matrices arising from integral operators (BEM):

• The multipole method [97]

• Panel-clustering [98]

• H-Matrices [99]

• ACA Matrices [100, 101]

Recently a new method, the so-called Kronecker-decomposition, has been intro-

duced and successfully applied on sparse matrices arising from volume discretization

1almost linear means O(nlogkn) for k ∈ N
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5 Matrix Compression

techniques [102]. The next section presents the theory of H-Matrices in order to

show the difference between the class of methods enumerated above and the main

concern of this chapter: Kronecker-decomposition. It should be stated that we will

only present the potential of the Kronecker-decomposition in the computation of FIT

problems as the implementation of this method goes beyond the focus of this work.

5.2 H-Matrices

H-matrices where H stands for ”hierarchical” were first introduced by Hackbusch

in 1999 [99]. This method close to panel clustering sets a class of matrices which

represent full matrices, e.g. matrices arising from integral operators, in a data-sparse

way.

Let a matrix A be defined as an Rk-matrix if rank(A) ≤ k and let us restrict our

considerations for the following to the case k = 1. The simplest description of an

n × n H-matrix A with n = 2p (p > 0) can be given by the constraint that A has

the block structure

A =

(
A11 A12

A21 A22

)
(5.2.1)

with the n
2 × n

2 H-matrices Aii and the R1-matrices A12, A21. This procedure is

performed down to 1 × 1 H-matrices which are 1 × 1 matrices. In other words,

a H-matrix compresses a full matrix in a non-tensor partitioned block of low-rank

matrices which are decomposed to factors by singular value decomposition (SVD)-like

approximations. The fact that the partitioning is no more tensor-like for p > 1 can

be seen in Figure 5.1.

Any n×m-matrix A of rank ≤ 1 can be written in the form

A = aHb (5.2.2)

with a ∈ Cn, b ∈ Cm and bH being the Hermitian transpose of b. The amount of

storage is n+m, which is O(n +m) for Rk-matrices.

The sum of two R1-matrices has in general rank 2. The SVD helps here to approx-

imate this sum through an R1-matrix (R1-addition). Let A be a n × m-matrix of

rank k. The matrix

A′ = UD′V with D′ := diag{d1, . . . , dk′, 0, . . . , 0} (5.2.3)
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5.3 Kronecker-Decomposition

p = 0 p = 1 p = 2

p = 3

Figure 5.1: Block partitioning following the H-matrix theory

where k′ ∈ [1, k] is the rank k′ approximation of A with smallest Frobenius norm2.

The memory requirement for any n× n H-matrix with n = 2p is

Nmem = 2NR1
(p− 1) + 2Nmem(p− 1) (5.2.4)

= (1 + 2log2n)n (5.2.5)

The complexity of the addition of two n × n H-matrices is O(18nlog2n) and the

matrix-vector multiplication requires 4nlog2n operations.

5.3 Kronecker-Decomposition

This method is based on the multilinear decomposition well known in statistics [103,

104]. It has been first introduced by Ibraghimow [102] for compression of matrices

arising from integral operators on cartesian grids.

5.3.1 Kronecker-Product

The Kronecker-product and its properties build the basis of this decomposition. Let

B ∈ Cn1×n1 and C ∈ Cn2×n2 , then the Kronecker product ⊗ is defined like

B⊗C =

⎛⎝ b[1,1]C · · · b[1,n1 ]C
...

. . .
...

b[n1,1]C · · · b[n1,n1]C

⎞⎠ ∈ C
n1n2×n1n2 . (5.3.1)

2‖A‖F =
√∑

i,j a
2
[i,j]
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5 Matrix Compression

Some of the basic properties of the Kronecker-product are [102]

(B ⊗ C)∗ = (B∗ ⊗ C∗) (5.3.2)

(B ⊗ C)(D ⊗ F ) = (BD ⊗ CF ) (5.3.3)

B ⊗ (C ⊗D) = (B ⊗ C)⊗D (5.3.4)

5.3.2 Decomposition

In the following, we assume N = n1 × · · · × nd to be the dimension of the matrix A.

In our curl-curl case, d = 4 where n1, n2 and n3 represent the number of grid points

for each direction (x, y, and z) and n4 = 3 stands for the vectorial form.

A Kronecker-decomposition of A with Kronecker rank (K-rank(A)) r can be given

as

A =

r∑
l=1

A
(1)
l ⊗ · · · ⊗A

(d)
l , (5.3.5)

A
(p)
l = [aipjpl]

np,np

ip,jp=1.

The compression factor of this method is high (O(drN2/d) [105]) and even sublinear

for 3D problems. It should be noted that this requires r < min{n1, . . . , nd}.

The product of two Kronecker-matrices of rank rA and rB

AB =

rA,rB∑
l,l′=1

(
A

(1)
l B

(1)
l′ ⊗ · · · ⊗A

(d)
l B

(d)
l′

)
(5.3.6)

has an arithmetic complexity of O(drArBN
3/d) which is linear for d = 3 and K-

rank(AB) = rArB.

Analogously, a vector with Kronecker rank rv can be represented as follows:

v =

rv∑
l=1

v
(1)
l ⊗ · · · ⊗ v

(d)
l (5.3.7)

v
(p)
l = [vipl]

np

ip
.

The Kronecker vector-matrix product

Av =

rA,rv∑
l,l′=1

(
A

(1)
l v

(1)
l′ ⊗ · · · ⊗A

(d)
l v

(d)
l′

)
(5.3.8)
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5.3 Kronecker-Decomposition

has a sublinear complexity of O(drArvN
3/d) and K-rank(Av) = rArv.

A more general decomposition schema, the so-called Kronecker − Tucker decom-

position, has been proven in [106] to be more efficient than (5.3.6). In the following,

we will consider the first 3 dimensions without loss of generality as the extension to

the fourth is trivial.

The matrices resulting from the volume discretization can be interpreted as 3D-

tensors:

A1 = [a
(1)
[s1,i1]

] ∈ C
m2m3×m1, a

(1)
[s1,i1]

= a[i1,i2,i3], s1 = i2 + (i3 − 1)m2, (5.3.9a)

A2 = [a
(2)
[s2,i2]

] ∈ C
m3m1×m2, a

(2)
[s2,i2]

= a[i1,i2,i3], s2 = i3 + (i1 − 1)m3, (5.3.9b)

A3 = [a
(3)
[s3,i3]

] ∈ C
m1m2×m3, a

(3)
[s3,i3]

= a[i1,i2,i3], s3 = i1 + (i2 − 1)m1, (5.3.9c)

with mp = n2p. The decomposition is then given as

a[i1,i2,i3] =

r1,r2,r3∑
i′1,i

′

2,i
′

3=1

b
(1)
[i1,i′1]

b
(2)
[i2,i′2]

b
(3)
[i3,i′3]

g[i′1,i′2,i′3], (5.3.10)

where ∀k = 1, 2, 3, Bk = [b[ik,i′k]]
mk,r
[ik,i′k=1]

are the orthonormal Q-factors of the QR-

decompositions of AT
k with rank rk. The coefficients gi′1,i′2,i′3 can be computed the

following way:

g[i′1,i′2,i′3] =

m1,m2,m3∑
i1,i2,i3=1

b
(1)
[i1,i′1]

b
(2)
[i2,i′2]

b
(3)
[i3,i′3]

a[i1,i2,i3]. (5.3.11)

The Kronecker-Tucker-decomposition has an arithmetical complexity of O(m1 +

m2 +m3) and a memory requirement of O(
∑3

p=1 rpn
2
p +

∏3
p=1 rp) [106]. Table 5.3.1

shows the potential of this method on an example with 21× 106 DOFs.

While this method may lead to high compression rates for dense matrices, its

efficiency for sparse matrices resulting from FIT discretization which have already a

linear complexity is low. Therefore, its efficiency can be improved by applying it to

approximate the inverse of the FIT matrices which are dense. This has been made

possible in [105] by means of Newton iteration which are defined as [107]

Pi+1 = 2Pi −PiAPi (5.3.12a)

or Pi+1 = Pi(3I−APi(3I−APi)), (5.3.12b)
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5 Matrix Compression

Speicherplatz

System matrix 7GB

Preconditioner (ILU) n× 7GB(n > 5)

Decomposition with rank 50 0.6GB

Decomposition with rank 100 1.1GB

Decomposition with rank 150 1.7GB

Table 5.3.1: Potential of the Kronecker-decomposition compared to an incomplete

LU decomposition (ILU)

where the start iteration value could be a scaled unity matrix. As the rank of the

matrices Pi may grow tremendously, a low-rank approximation P̃i is computed by

minimizing the error

‖Pi −Pi‖F < ε, (5.3.13)

where ‖·‖F is the Frobenius norm and ε is a given threshold value. It has been proved

in [105] that this method leads to approximated inverses with a very low Kronecker

rank (r � 10) for matrices of order of 106 resulting from Laplace operators.

5.3.3 Kronecker-Krylov

Besides the inversion of the matrix, the storage of the Krylov space represents the

highest limit for the model order reduction process. In [106], Kronecker and Krylov

methods were combined to solve linear systems of equations or eigenvalue problems.

This so-called Kronecker-Krylov method has been extended to reduce the memory

requirement and computational complexity of the Padé approximation. It consists of

approximating the vectors of the Krylov space Vp = span{B,AB, . . . ,Ap−1B} by

vectors of K-rank equal to 1. The generation of the Krylov space is then modified to

[106]:

where α and vj are normalized Kronecker vectors of K-rank equal to 1. The

Cholesky decomposition of Vi, V
∗
iVi = L∗

iLi yields the unitary matrix Qi = ViL
−∗
i

3

which is similar to the Krylov space. This algorithm is similar to the partial realization

presented in Section 3.4.2. It has a linear complexity (O(iN + i3)) and a sublinear

memory requirement for 3D problems (O(iN1/3)).

Table 5.3.2 shows the efficiency of this method compared to the already introduced

partial realization with respect to memory requirement.

3Q∗

iQi = L−1
i V∗

iViL
−∗

i
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5.4 Conclusion

Algorithm 5.3.1 Kronecker-Krylov algorithm

v1 = b/‖b‖2,V1 = [v1]

for i = 2 to m do

vi = bi/‖bi‖2,Vi = [Vi−1,vi]

end for

for j = m+ 1 to p do

rj = AVj−1tj, tj ∈ Cj−1

min‖rj −Vj−1α− βvj‖2; ‖vj‖2 = ‖α‖2 = 1

Vj = [Vj−1,vj ]

end for

Partial realization Kronecker-Krylov

100 vectors 16 GB 700 MB

500 vectors 80 GB 3.5 GB

1000 vectors 160 GB 7 GB

Table 5.3.2: Potential of the Kronecker-Krylov method as order reduction method

compared to partial realization

5.4 Conclusion

The concept of H-matrices and Kronecker-decomposition and their application areas

have been presented. H-matrices are well suited for dense matrices, but the compres-

sion efficiency (almost linear) is poor for sparse matrices. However, H-matrices can

be applied to store the inverse of sparse matrices as they are in general dense. Nowa-

days, they are often used to deal with matrices arising from the Boundary Element

Method (BEM).

The Kronecker-decomposition is not only for dense matrices of great benefit as its

sublinear storage requirement is also efficient for sparse matrices. This method can

also be used to approximate the inverse of matrices. Though, it can only be applied

on rectangular grids (FIT systems) and is suited for problems with low Kronecker-

rank i.e. with a weak dependance among the 3 dimensions in space. In addition,

this decomposition is tensor-like whereas the partitioning of H-matrices is not. Fur-

thermore, the fact that the generation of Krylov vectors could be performed more

efficiently with regards to the memory requirements makes this method promising for

MOR computations on complex systems with more than 107 DOFs .
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6 Results

As the focus of this work is the application of numerical methods for efficient EMC

engineering, some real-life examples have been picked and analyzed with the workflow

introduced in Sections 1 and 4:

1. ESP model: A setup which aims to analyze the common mode induced effects

has been measured in our department and simulated in this work.

2. DC/DC converter: The converter which has also been measured in our depart-

ment has been optimized by means of the method introduced in Section 4.

6.1 ESP Model

6.1.1 Model Description

The main goal of this analysis is to understand the common mode effects occurring

in the measurement setup illustrated in Figure 6.1. It consists of

• a PCB modeled as a two-layer plate for simplicity placed 5 cm above a mea-

surement table,

• two 20 cm wires attached at one end to the PCB ground and at the other to

two ports which are used to monitor the voltages at that end,

• two traces (long and short) are placed on the signal layer of the PCB.

The computational domain is enclosed with PMC boundaries except of the lower

part (table) which is bounded by a PEC body. We do not consider any losses as

all metal bodies are modeled as PEC. The discretization with MWS yields 650, 000

unknowns.

In the measurement setup, the trace1 is excited by an FPGA2 signal. This signal

is modeled as a sequence of pulses with a width of 20 ns and a period of 1 μs. The

1The trace is modeled by the longest path in Figure 6.1.
2Field programmable gate array
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1
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Cables (20 cm)

5 cm

Table

PCB
Traces
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5
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Figure 6.1: Measurement setup model of ESP attached to wires.

distortions caused by common mode effects are then measured at the end of one of

the two cables. The six ports in the model are defined as follows:

• ports 1 and 2 are placed between one end of the wire and ground,

• ports 3 and 5 are used for excitation of the traces,

• and ports 4 and 6 represent the loads of the traces.

In order to consider the FPGA signal, a circuit simulation into which the 6-port

model is plugged (Figure 6.2) is performed. Port 2 is shorted as the second wire is

directly connected to the ground in measurements. As we first consider the longer

trace, ports 3 and 4 are terminated with 50 Ω and 150 Ω loads as the FPGA signal

is applied at port 5. Meanwhile, port 6 is connected to a 150 Ω load.

6.1.2 Computation

As already stated, the EMC prediction in this example comprises two steps:

1. The first one consists of a 3D field simulation after which the transfer function

is computed and a macromodel is extracted.

2. The second step consists of a circuit simulation in which the voltage at port 1

is retrieved.

3D Field Simulation

The frequency range in which the computation is performed is [1 MHz, . . . , 1 GHz].

The expansion frequency of the reduction scheme is set at 0.6 GHz. Furthermore,

the minimum dimension of the reduced model is 36 after what the error estimation

is performed with an increment of 12 vectors.
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Macromodel

1
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2

4 6

3 5
FPGA
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150 Ω150 Ω

50 Ω

Figure 6.2: Circuit simulation setup of ESP example. The macromodel is the SPICE

interpretation resulting from the reduced order model.

Again, we show the comparison between approximated and exact relative error in

Figures 6.3 and 6.4 computed at 100 equally spaced frequency samples, respectively,

for reduced systems of dimension 60 and 72. It can be seen that the residual-based

estimation method introduced in Section 4.1.1 follows well the trend of the error. After

60 vectors, the convergence is not reached according to the approximated e = 0.0023.

This value drops to 8.3 · 10−6 beyond the threshold value εth = 10−4 after 72 vectors.

The computation of the transfer function took 22 min with the MOR code instead

of 3h with MWS, which yields an acceleration factor of 8. This is due to the resonant

behavior of the structure as can be seen in Figure 6.5 which shows the magnitude of

Z[1,1]. It should be stated that the time required for error estimation is 10 s. and thus

less than 1% of the whole computation time. The performance comparison between

MWS and MOR is also reported in Table 6.1.2.

Circuit Simulation

As the FPGA signal is available in frequency domain, we opted for an AC analysis in

SPICE in the frequency range [0 MHz, . . . , 250 MHz]. As already explained in Section

3.6.2, the model obtained above is reduced a second time for SPICE model extraction.

By doing so, we obtain a model of order 36 which is connected as illustrated in Figure

6.2. In Figure 6.6, we compare the spectra of the output voltage at the end of the

wire obtained by measurement and simulation. It shows a good agreement in spite
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Figure 6.3: Approximated error vs. exact error at Z[1,1] of the ESP model for a

reduced system of dimension 60.

MWS� MOR

method FD (frequency sweep) passive Padé

# unknowns 650, 000 650, 000

memory size 5.4 GB 4 GB

# inversions 24 1

accuracy 10−4 10−4

solver time 3 h 22 min

Table 6.1.1: Solver comparison between MOR and MWS for common analysis ex-

ample

6.1.3 Analysis

The voltage at the end of the wire is relatively high and may lead to violation of EMC

norms (CE). In order to improve this point by reducing the common mode signal

magnitude, it is indispensable to analyze and find out the cause of the distortions.

By identifying the sensitive parameters, EMC improving measures can be derived.
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Figure 6.4: Approximated error vs. exact error at Z[1,1] of the ESP model for a

reduced system of dimension 72.

We applied the method of EMC analysis introduced in Section 4.2 and considered

only two ports:

• port 1 at the end of the wire

• port 5 at one end of the long trace,

whereas port 2 is shorted3, and all other ports are open as they are not considered.

The equivalent physical circuit should match with the 3D model up to 300 MHz, and

thus consider the two first poles of the transfer function (Figure 6.5). By truncating

the transfer function of the reduced model, we obtain a rational polynomial with 9

coefficients.

There were 4 proposed circuits which had the functional parts of the model in

common, two inductors for the wires attached to the PCB ground which are coupled,

and one for the signal trace. These differed in the position of parasitic capacitors.

The circuit in Figure 6.7 is the only one which remained after the first selection4. In

3The second wire is connected to the measurement table.
4refer to Section 4.2.2
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Figure 6.5: Z[1,1] of the ESP model computed with MOR.

fact, the transfer function of the other circuits did not have the same number of poles

and zeros as the reference from MOR. Besides the functional elements, the circuit in

Figure 6.7 consists of

• C1 which models the capacitive coupling between PCB ground and table and

also includes the coupling wire-table, enhanced by C4,

• C2 which corresponds to the coupling between the open end of the trace and

PCB ground,

• and C3 which models the capacitive coupling between trace and measurement

table.

This leads to 8 unknowns which were computed through optimization following the

method introduced in Section 4.2.

The result of a heuristic method5 (based on a genetic algorithm performed with

OptiSlang [96]) was set as guess of a gradient search for refinement. The objective

function could be reduced to 0.007 and the transfer function of the circuit obtained

5They are suitable to find global optima, particularly for problems with constraints.
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Figure 6.6: Comparison between measurements and MOR of the voltage at the end

of the wire by an excitation at the long trace.

C4 = 3.2 pF

L1 = 204.8 nH

L2 = 235.3 nH

K = 0.27
port 1

C1 = 6.74 pF

C3 = 7.12 fF

C2 = 2.78 pF

L3 = 2.24 nH

port 2

Figure 6.7: Equivalent physical circuit of the ESP model with main parasitic ele-

ments.

by optimization agree with MOR results as can be seen in Figures 6.8 and 6.9. Fur-

thermore, the values retrieved are physically correct. In fact, L1 and L2 should be in

the range of 200 nH as the wires are 20 cm long. It should be noted that the value

L2 is higher because the second wire is connected to the table via a PEC wall (Figure

6.1). Accordingly, the value of L3 should be much smaller, and as C1 also models

the capacitive coupling between PCB ground and table, its value is greater than C2.

Furthermore, C3 should be much smaller as the two other capacitors.
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Figure 6.8: Magnitude of Z[1,1] resulting from MOR and equivalent circuit for the

ESP model.

With a simple equivalent circuit which retrieves the couplings occurring on the

structure, different sensitivity studies can be performed to identify the cause of the

common mode distortions. In this way, it appeared that C1 builds an LC-oscillator

with L1 and L2 whose variations shift the frequency of the signal peak at 125 MHz in

Figure 6.6 as its magnitude could be reduced by changing the value of the capacitive

coupling between trace and table, C3 which is in the range of fF. As illustrated in

Figure 6.10, considering the short trace for excitation with an FPGA signal, the peak

of the signal at the end of the wire could be reduced by more than 20 dBμV. Another

improvement measure could be to shield the addressed trace.

6.2 DC/DC Converter

6.2.1 Model Description

The second device under test is a DC-DC converter. Its 3D model is illustrated in

Figure 6.11. The whole simulation which is plugged in a SPICE environment should

model a specific measurement setup for conducted emission which consists of

• a line impedance stabilization network (LISN) which is modeled in SPICE,
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Figure 6.9: Magnitude of Z[1,2] resulting from MOR and an equivalent circuit for

the ESP model.

• a wire model which connect the converter to the LISN, also modeled in SPICE

• the converter model with the filter rail which is modeled as 3D structure and

computed with MOR,

• IGBT (insulated gate bipolar transistor) transistors which act as sources for the

analysis,

• and the motor model obtained via measurement together with its connection

cables modeled in SPICE.

The 3D model consists of the filter rail in its housing as the IGBTs are modeled

with SPICE. The first 2 ports are connected to the LISN as the next 2 are linked to

the IGBTs. The filter includes 3 capacitors:

• two Cy connected to the ground, and

• one Cx connecting the two filter rails.

The latter are also modeled as ports and replaced in the SPICE simulation by their

equivalent circuits obtained through identification with measurement. The computa-

tional domain is bounded with PMC as radiation can be neglected6. The dicretization

6The metallic housing encloses the filter.
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Figure 6.10: Comparison of distortion signals at end of wire for excitations at short

and long trace.

Figure 6.11: 3D model of the DC-DC converter. Left: with the housing cap on top.

Right: the filter rail is put on evidence. The 4 ports are placed at the

two connections to the LISN and to the IGBTs.

with MWS result in a system of 1.5 ·106 unknowns. The frequency range for the field

simulation is [1 MHz, 100 MHz].

6.2.2 Computation

The value to be computed is the voltage at the LISN. The computation of the whole

measurement setup is performed in an SPICE environment following the concept
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Figure 6.12: Simulation setup of the whole DC-DC converter system in SPICE

environment.

As all other models are already available, two steps are performed:

• The first step aims to compute the transfer function of the 3D model and extract

a macromodel.

• The second one consists of circuit simulation with consideration of all other

models.

The transfer function computation of the 3D model with the MOR code requires 7.6

GB memory space and 16 min. instead of 43 min. with MWS. This corresponds to an

acceleration factor of more than 2.5. This factor is so low because the transfer function

is smooth in the considered frequency range. The frequency sweep of MWS thus

needs only 7 frequency samples for convergence. The macromodel of order 21 after

a second reduction step is plugged into the circuit simulation. Figure 6.13 shows the

comparison of the voltage at the LISN between measurement and simulation. It can

be seen that simulation agrees well with measurement with up to 10 dB discrepancy

in the range [5 MHz, 20 MHz].

The main concern is the resonance at about 5.5 MHz where the magnitude is above

EMC limits set by the motor client. It can be seen in Figure 6.13 that this resonance is

matched by the simulation. The marginal computation time of the circuit simulation

(3s.) made it possible to perform some coarse variations of the circuit elements in
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Figure 6.13: Comparison of the voltage at the LISN from measurement and simu-

lation of the DC-DC converter.

order to understand the cause of this resonance. It thus appeared that the resonance is

induced by common mode currents which flow through parasitic capacitors mainly on

the motor side and are enhanced by the cable harness. This occurs also in combination

with inductive and capacitive couplings occurring in the filter model. As the motor

and its cable harness cannot be modified, the variation parameters in the optimization

step were chosen in the 3D filter model.

6.2.3 Optimization

The geometry variations which were considered for optimization are

• location of capacitors along the filter rails,

• height of filter rails over housing,

• and distance of rails to each others.

The capacitors are considered as ports which are loaded with equivalent circuits af-

terwards in the SPICE environment. They have solely an influence on the right hand

side matrix B. It should be noted that the capacitors in our optimization setup are

directly linked to the housing and not through a shared metal conductor as in the
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original version. This metal conductor is thus modeled in the optimization setup by

modifying the height of the rails over housing.

Variations of height and distance of filter rails to each other are applied by using the

method introduced in Section 4.3.1. The 6 elements which are required to describe

the rails are modified only in their y- and z-directions as they remain constant on the

x-axis. The rails can get up to 5 mm close to each other and have a variation range

in z of 17 mm. Each rail can have 8 different positions following the discretization

which was set with a mesh length of 2.1 mm. The height varies between 7.5 mm

and 15 mm above the housing with an increment of 1.3 mm. The capacitors are set

according to the position of the rails.

The method we used for optimization is a multi-objective evolutionary algorithm

presented in [108]. Of course any other optimization tool like OptiSlang [96] which

we used for the analysis of the ESP example may be applied. As the goal was to

reduce the magnitude of the voltage around the mentioned resonance, we considered

the following objective function

fopt =
∑
i

|U(fi)|, with fi ∈ [5 MHz, 10 MHz]. (6.2.1)

We set 100 individuals for the start population, and the number of children after

each generation to 2. The computation was stopped after 30 iterations as the results

were not improving any more. The MOR computation was thus repeated 160 times

and required 40 h. Apart from the acceleration factor of more than 2.5 compared to

MWS, our method allows to save the meshing time of 2 min. after each modification

of the 3D model in MWS environment.

The results of the optimization, illustrated in Figure 6.14, show an overall improve-

ment of more than 32 dB. The optimal position of the rails is the lowest7 one; by

setting this height in the original setup we obtain more than 20 dB. This shows that

the inductance of the capacitors connection to the housing is of great relevance. Fur-

ther 10 dB are obtained by placing the capacitors optimally which has also an impact

on capacitive and inductive couplings of the whole system.

7w.r.t. the height of rails above the housing.
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Figure 6.14: Improvement of the voltage at the LISN around 5 MHz after optimiza-

tion.
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7.1 Conclusion

We proposed a method in this work to improve the efficiency of EMC simulation. For

better integration in the development process, we considered the workflow consisting

of EMC computation, analysis and optimization. MOR has been proved to be an

essential part of this workflow.

The discretization with an orthogonal grid is performed for field computation with

FIT, where it should be noted that the methods presented in this work can be ex-

tended to FEM matrices. The systems resulting from FIT preserve the passivity of

the discretized structures except while considering PML boundaries which include

layers with active behavior.

The consideration of MOR to compute the transfer function or generate macro-

models of the discretized structures shows several advantages:

• reduced models,

• fast computation (acceleration factor of up to 30 compared to usual frequency

sweep methods),

• appropriate for resonant structures,

• suitable for wide frequency ranges,

• high accuracy for macromodels,

• preservation of passivity.

The error control allows a reliable stop criterion and thus an optimal balance between

accuracy and model size. Furthermore, the combination of modal truncation and Padé

approximation improves the efficiency of MOR in presence of a high number of ports.

Considering more complex structures for simulation enables to reduce the modeling

effort and to improve the accuracy and details of prediction. This occurs at cost of
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more computation complexity. In order to tackle this limit, a suitable parallelization

technique for MOR has been implemented. It appeared that the multipoint-Padé

approximation is not the best method as it is theoretically the case. In fact, spreading

the generation of reduced models at different frequencies in a network and combining

them afterwards is less efficient due to the poor orthogonalization performance.

The reduction method PRIMA with one interpolation point has thus been paral-

lelized for computation on several processors. For this purpose, we used the library

PETSc which is coupled with MPI and SuperLU as solver. The main computational

bottle-neck, the LU decomposition of SuperLU, presents good scalability properties.

It was possible to compute a complex problem with more than 8 · 106 unknowns on

48 processors in 1h30min. It should be noted that this could not be achieved on

machines with 64 GB even by using iterative solvers after a week. The computation

in time domain didn’t converge also after two days even by using GPU because of the

resonace behavior of the structure.

Another promising method to compute more complex structures has been pre-

sented. The Kronecker decomposition presented in this work is a compression method

of matrices resulting from the discretization on orthogonal grids like FIT. In fact, in

association with partial realization and an inverse approximation it potentially en-

ables to handle systems in the order of 107 unknowns on common machines without

requiring parallelization techniques.

Our proposed method for EMC analysis which consists on the generation of equiv-

alent physical circuits could be successfully tested on the ESP model. It consists on

matching the representations in rational polynomials of the transfer functions result-

ing from the MOR system and from the nodal analysis of some proposed circuits. It

enables to automatically eliminate non-matching circuits among the proposed ones

and compute the element values of the right circuit assuming it has been proposed.

This method is essential for EMC analysis as it allows to identify the cause of parasitic

effects occurring on the DUT.

EMC optimization consists of different measures which require on their turn the

computation of different - mainly - geometric variants. A method to automatically

run an optimization process with MOR in combination with a genetic algorithm was

introduced. For this purpose, geometric variations are performed directly on the

system matrices without requiring an interface to any mesh generator. By this way,

the optimization is autonomous and fluent. On the other hand, we save the mesh

generation time which may be in the range of some minutes per optimization step for
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7.2 Outlook

The workflow consisting of EMC computation, analysis and optimization which

considers MOR has been implemented. This enables to achieve the main goal of

EMC engineering, which aims to provide an EMC optimized geometry in a more

efficient way. This has been successfully applied to solve real-life problems. The

conducted emissions of a DC-DC converter could be improved by 30 dB with our

method.

7.2 Outlook

The parallelization method for MOR presented in this work enables to compute com-

plex structures. Even though it allows faster computations, this solution has tremen-

dous memory requirements which can only be met for models with more than 106

unknowns by using high performance clusters. Those facilities are very costly and

not available to a lot of EMC engineers. The Kronecker decomposition presented in

this work is a promising alternative. However, there is still research work to be done

in order to provide a good approximation of the inverse which is indispensable for a

satisfying convergence behavior of the partial realization method associated with it.

The EMC analysis method presented in this work requires a good guess for the

equivalent circuits and thus relies on the experience of EMC engineers. In order

to make it more reliable and available to a wider community, further works should

enable to generate those circuits automatically. Starting with a given circuit involving

the main functional elements, the method could heuristically add or remove parasitic

elements and at the end retrieve the right circuit with the elements values.

The variations encountered in the EMC optimization part are of low rank. It is

thus of great interest to implement a method which uses this property to fasten the

optimization process. Particularly avoiding the inversion of the matrix after each

modification should be the main task.

Finally, including MOR in well suited partitioning methods would be an optimal

enabler for EMC simulation of CE and RE (radiated emissions). In fact, partitioning

a whole domain would allow to handle the corresponding subdomains with the best

suitable method. For CE measurement setups this could result in computing the

PCB in its housing with MOR, stochastic cable harnesses with TLT (transmission

line theory) methods and combining both together in a SPICE simulation to retrieve

the voltages and currents at the LISN.
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