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Modeling and Forecasting Wholesale Electricity Prices under Consideration of Wind 

and Solar Power 

(Modellierung und Prognose von Großhandelspreisen für Strom unter 

Berücksichtigung von Wind- und Solarenergie) 

Der deutsche Strommarkt unterliegt infolge der Marktliberalisierung und dem zunehmenden 

Anteil der Stromerzeugung aus Erneuerbaren Energien einem fundamentalen Wandel. Einer-

seits müssen aufgrund der technischen Restriktion der Nicht-Speicherbarkeit von Strom sai-

sonale Nachfrageschwankungen stets zeitgleich durch Erzeugungsmengen abgedeckt 

werden. Andererseits orientieren sich vor allem die Erzeugungskapazitäten von Windenergie 

von Photovoltaik nicht am Nachfrageverhalten der Verbraucher. Zudem ist die Stromerzeu-

gung aus Erneuerbaren Energien per Gesetz vorrangig gegenüber konventionellen Energie-

trägern zu behandeln. Daher verdrängen Erneuerbare Energien zunehmend die 

Stromerzeugung auf Basis konventioneller Energieträger. Das steigende Angebot bei langfris-

tig relativ konstantem Nachfrageniveau wirkt sich auf dem Großhandelsmarkt, der dem Handel 

von Strommengen zwischen Erzeugern und Endkundenversorgern dient, preismindernd aus. 

Dieser Zusammenhang wird als Merit-Order Effekt bezeichnet und ist von hoher Relevanz für 

das Verständnis des Strommarktes. Erneuerbare Energien beeinflussen die kurzfristigen 

Preisentwicklungen, ihr Einfluss sollte aber auch bei der Erstellung von Preisprognosen, die 

für die wirtschaftliche Praxis von Bedeutung sind, berücksichtigt werden. 

Im Bereich Preisprognosen auf Strommärkten wurde bereits eine Vielzahl wissenschaftlicher 

Studien, speziell mit dem Fokus auf Zeitreihenmodellen, durchgeführt. Allerdings unterschei-

den sich einerseits die Rahmenbedingungen der Analysen, andererseits sind die Ergebnisse 
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widersprüchlich, wodurch eine Generalisierung der erhaltenen Ergebnisse erschwert wird. Vor 

diesem Hintergrund ist es erstaunlich, dass bisher keine statistisch basierten Auswertungen 

der wissenschaftlichen Literatur zu diesem Thema existieren. Daher wird im Rahmen dieser 

Arbeit ein umfassender Literaturüberblick über 86 wissenschaftliche Studien im Zeitraum von 

2000 bis 2015 zum aktuellen Stand der Forschung im Bereich Zeitreihenanalyse auf Strom-

märkten gegeben. Zentraler Aspekt der Studie, die als Quasi-Meta-Analyse beschrieben wer-

den kann, ist der Vergleich verschiedener Modelltypen hinsichtlich ihrer Prognosegüte. 

Die Ergebnisse der Studie werden in einer nachfolgenden empirischen Analyse für den deut-

schen Strommarkt (inkl. des österreichischen Marktes) über die Jahre 2010 bis 2014 validiert. 

Die Studie dient als Erweiterung zur bereits bestehenden empirischen Literatur und untersucht 

verschiedene Zeitreihenmodelle bei unterschiedlichen Marktbedingungen. Durch eine iterative 

Betrachtung rollierender Kalibrierungs- und Prognosefenster erfolgt die Bewertung in verschie-

denen Marktphasen. Um allgemeingültige Aussagen treffen zu können, werden zudem Daten-

transformationen und die Längen der Kalibrierungs- und Prognosezeiträume variiert. 

Auf Basis der Literaturanalyse und der empirischen Studie werden zwei zentrale Forschungs-

fragen dieser Dissertation beantwortet: 

- Was ist der aktuelle Stand der wissenschaftlichen Forschung im Bereich Zeitrei-

henanalyse auf Großhandelsmärkten für Strom? 

- Welche Zeitreihenmodelle weisen die beste Prognosequalität auf? 

Für deren Beantwortung wird in Kapitel 3 im Rahmen einer Literaturanalyse die Prognosequa-

lität diverser Zeitreihenmodelle untersucht. Als Ergebnis zum aktuellen Stand der Forschung 

wird herausgestellt, dass AR, ARMA oder GARCH Modelle in der wissenschaftlichen Literatur 

jeweils in gleichem Maße verwendet werden. Die gängigsten Datentransformationen sind Lo-

garithmierung und Differenzierung. Die häufigsten Kriterien für die Bewertung von Prognosen 

sind MAE, RMSE und MAPE. Die beste Prognosegüte liefern GARCH(X) Modelle vor 

ARMA(X) Modellen, gefolgt von AR(X) Modellen. Dabei ist die Berücksichtigung von zeitvari-

ablen Strukturen über z.B. Splits von Datensätzen oder Modellierung von Regimewechseln 

vorteilhaft. Unabhängig vom spezifischen Modelltypen trägt die Hinzunahme von Erklärvariab-

len (speziell der Nachfrage) zu deutlichen Prognoseverbesserungen bei. 
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Die darauf folgende empirische Studie zu verschiedenen Zeitreihenmodellen in Kapitel 4 führt 

zu dem Ergebnis, dass ARMA Modelle mit Erklärvariablen zur Stromnachfrage und zur Strom-

erzeugung aus Windenergie und Photovoltaik die beste Prognosegüte liefern. Die Progno-

sefehler sind geringfügig, aber signifikant niedriger als von GARCH Modellen, gefolgt von AR 

Modellen. Der Widerspruch gegenüber der Literaturanalyse lässt sich über die Argumentation 

anderer Literaturquellen begründen

von GARCH Modellen schlechter als von ARMA Modellen  ein Aspekt, der auf diese Studie 

zutrifft. Darüber zeigt sich, dass sich eine Dämpfung von Preisspitzen als grundsätzlich vor-

teilhaft erweist. Durch zahlreiche Variationen sind die Studienergebnisse als robust gegen Ver-

änderungen der Rahmenbedingungen anzusehen. 

Um nun ein Verständnis der preistreibenden Faktoren wie Stromerzeugung aus Wind- und 

Solarenergie zu entwickeln, sollten aber nicht Prognosen, sondern Erklärmodelle betrachtet 

werden. Zahlreiche Studien haben bereits die preismindernden Wirkungen der Stromerzeu-

gung aus Erneuerbaren Energieträgern untersucht. Gängig in wissenschaftlichen Studien ist 

die Anwendung von OLS-Regressionsmodellen. In Abgrenzung zur bestehenden Literatur er-

folgt im zweiten Teil dieser Dissertation eine Modellierung von Strompreisen als fixed-effects 

Panel-Regression. Der Vorteil der Paneldatenanalyse gegenüber einer gepoolten Regression 

ist die Vermeidung eines omitted variable bias aufgrund von unbeobachteter Heterogenität.  

Für das Preismodell wird angenommen, dass eine schwankende Stromerzeugung mit relativ 

höheren Marktpreisen einhergeht als eine konstante Last. Zum anderen wird der Merit-Order 

Effekt quantifiziert unter der Annahme, dass die Marktpreise nicht linear abhängig von der 

Nachfrage sind. Das Modell für den deutschen Strommarkt (inkl. des österreichischen Mark-

tes) über die Jahre 2010 bis 2016 beinhaltet damit Erklärvariablen, welche die Spezifika dieses 

Strommarktes widerspiegeln, dadurch aber auch ein dementsprechend komplexes Design 

aufweisen. Gegenüber anderen Studien ist gerade die Nicht-Linearität von Preisentwicklungen 

besonders hervorzuheben. Dazu fließen Simulationsergebnisse zur aktuellen Zusammenset-

zung des gesamten deutschen Kraftwerksparks hinsichtlich verschiedener Energieträger in 

das Regressionsmodell mit ein. Dadurch können die Preisauswirkungen der Stromerzeugung 

aus Erneuerbaren Energien exakt berechnet werden. Vor dem Hintergrund des generellen 

Fokus dieser Arbeit auf Erneuerbare Energien ermöglicht das beschriebene Modell die fol-

gende, dritte Forschungsfrage zu beantworten: 
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- Welche Preiseffekte hat die Stromerzeugung aus Erneuerbaren Energien auf dem 

Großhandelsmarkt für Strom?  

Die Analyse der Preiseffekte in Kapitel 5 führt zu dem Ergebnis, dass der Merit-Order Effekt 

im Verlauf des analysierten Zeitraums zunächst bis 2013 anstieg, um danach deutlich zu sin-

ken. Dies steht im Zusammenhang zur Entwicklung von Preisen für die Energierohstoffe Kohle 

und Erdgas und für CO2-Emissionszertifikate. Für das Jahr 2016 ergibt sich ein Preisdämp-

Jahr 2013 lag dieser Wert noch be unge-

nauer Prognosen für die Stromerzeugung durch Windkraft- und Photovoltaikanlagen erfolgt, 

resultieren deutliche Preiseffekte, die über den Merit-Order Effekt hinausgehen. Ebenso wirkt 

sich die Volatilität der Nachfrage überproportional auf die Preisvolatilität aus, was dadurch 

entsteht, dass kurzfristige Anpassungen der Erzeugungsmengen zu steigenden Stromerzeu-

gungskosten führen. 

Kapitel 6 fasst die Ergebnisse dieser Arbeit zusammen. 
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te  Error of forecasts of electricity spot prices at point in time t  

te   IID random variable in a GARCH model at a point in time t  

FE   Forecasting error 

fuel_type Fuel type variable gas,coal ,others   

fuel_type_mar_MOC  Fuel type of the marginal power plant identified on the merit-or-
der curve 

t t ig   Function in an E-GARCH process to capture asymmetric effects 

_ tgas price   Gas price at a day t  

i ,tI active   Indicator variable for short period power plant utilization 

d ,i ,tI day   Indicator variable for weekday d   

tI 0   Indicator variable for asymmetric effects in a GJR-GARCH 
model 

fuel _ type,i ,tI fuel   Indicator variable for fuel _ type gas,coal ,others   
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i ,tI inactive   Indicator variable for short period power plant non-utilization 

m,i ,tI month   Indicator variable for month m 

i ,tI steep down  Indicator variable for steep upward ramping 

i ,tI steep up   Indicator variable for steep downward ramping 

y,i ,tI year   Indicator variable for year y   

k   Time parameter with k t   

tL   Actual load at point in time t   

tL̂   Load forecast at point in time t  

l   Length of calibration window 

,tiload   Load in hour i  at day t  

MC   Marginal costs 

tN   Additive noise in an ARIMA process 

P   Order of a seasonal AR process 

tP   Transformed price tp  after applying differencing 

p   Lags according to the Schwert criterion 

p   Level of significance 

p  Order of an AR process 

p  Order of a GARCH process 

COp 2   Price of CO2 emission allowance certificates 

fuelp   Fuel price 

tp   Electricity spot price at point in time t  

tp̂   Electricity spot price forecast at point in time t  

,_ i tPV FI   PV feed-in in hour i  at a day t  

Q   Order of a seasonal MA process 

q   Order of an MA process 

q   Order of an ARCH process 

,i tramping  Power plant ramping in hour i  at a day t  

,_ i tres demand   Residual demand in hour i  at a day t  

S   Length of a cycle in a seasonal process 

,_ i tspot price   Spot price in hour i  at a day t   

T   Total sample length 

t   Point in time 
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yWA _MOE _PV   Weighted Waverage of PV-specific MOE in year y   

_ _ tWA MOE wind   Weighted average of wind-specific MOE in year y   

,_ i twind FI    Wind power feed-in in hour i  at a day t  

x   Constant shift added to prices prior to log-transformation 

COx 2  Amount of CO2 emissions per power plant 

tx   Exogenous input variable in an ARIMAX model 

y   Year 

tY   Log-transformed electricity spot price 

tZ   Random number,  ~  

 

 

i   i-th lag coefficient of an ARCH model 

0  GARCH model constant 

 (•) Regression coefficient 

j   j-th lag coefficient of a GARCH model 

i   E-GARCH model regression coefficient 

i  GJR-GARCH model coefficient capturing asymmetric effects 

  Residuals of a regression model 

  Plant efficiency factor 

j   j-th lag coefficient j ,...,Q1  of a seasonal MA(Q ) process 

S
Q B   Polynomial of seasonal coefficients of an MA(Q ) process 

j   j-th lag coefficient j ,...,q1  of an MA( q ) process 

q B  Polynomial of non-seasonal coefficients of an MA( q ) pro-
cess 

t   Conditional expected value of tp  in t   

  Coefficient of the exogenous variable in an ARIMAX model 

  (Auto-)correlation coefficient 

  Standard deviation of a sequence of residuals t   

2   Variance of a sequence of residuals t  

t
2   Conditional variance of a sequence of residuals t  

i   i-th lag coefficient i ,...,P1   of a seasonal AR(P ) process 
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S
P B  Polynomial of seasonal coefficients of an AR(P ) process 

i   i-th lag coefficient i ,...,p1  of an AR( p ) process 

p B  Polynomial of non-seasonal coefficients of an AR( p ) pro-
cess 

t 1   Set of past time series information at a point in time t   

 

 

d   Differencing operator of order d  

D
s  Seasonal differencing operator of order D  
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ACF Autocorrelation Function 

ADF Test Augmented Dickey-Fuller Test 

AIC Akaike Information Criterion 

aMAPE  Adapted MAPE 

ANN Artificial Neural Networks 

AP-ARCH Asymmetric Power ARCH 

ARA Amsterdam / Rotterdam / Antwerp 

AR(X) Autoregressive (with Exogenous Input) 

ARCH Autoregressive Conditional Heteroscedasticity 

ARFIMA(X) Autoregressive Fractionally Integrated Moving Average (with 
Exogenous Input) 

ARIMA(X) Autoregressive Integrated Moving Average (with Exogenous In-
put) 

ARMA(X) Autoregressive Moving Average (with Exogenous Input) 

ARMA-D ARMA with Demand as Exogenous Input 

ARMA-R ARMA with RES as Exogenous Input 

AT Austria 

AU Australia 

BC Box-Cox Transformation 

BIC Bayes Information Criterion 

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. 

BNetzA Bundesnetzagentur 

BMWI Bundesministerium für Wirtschaft und Energie 

B-VAR Bayesian VAR 

CARBIX Carbon Index 

C-GARCH Component GARCH 

CH Switzerland 

CLSSVM Chaotic Least Squares Support Vector Machine 

CO2 Carbon Dioxide 
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XIV Abbreviations 

CPSO Chaotic Particle Swarm Optimization 

CV-ARIMA Conjectural Variations ARIMA 

CZ Czech Republic 

DA Day-Ahead 

DHR  Dynamic Harmonic Regression 

Diff Differencing 

DIW Deutsches Insititut für Wirtschaftsforschung 

DK Denmark 

DK Standard Errors Driscoll-Kraay Standard Errors 

DMAE Daily Weighted Mean Absolute Error 

dMAPE Daily MAPE 

DM Test Diebold-Mariano Test 

DR Dynamic Regression 

dRMSE Daily RMSE 

D-VAR Dynamic VAR 

EEG Erneuerbare-Energien-Gesetz 

E-GARCH Exponential GARCH 

E-GARCH-M E-GARCH-in-Mean 

EEX European Energy Exchange 

EGIX  European Gas Index 

EPEX European Power Exchange 

ENTSO-E European Network of Transmission System Operators for Elec-
tricity 

EnWG Energiewirtschaftsgesetz 

ES Spain 

EU European Union 

EU-ETS European Union Emission Trading Scheme 

EV Error Variance 

EXAA Energy Exchange Austria 

FE Forecasting Error 

FI Finland 

FM Factor Model 

FR France 

GAMLSS Generalized Additive Models for Location, Scale and Shape 

GARCH(-X) Generalized Autoregressive Conditional Heteroscedasticity 
(with Exogenous Input) 

GARCH-M GARCH-in-Mean 

GER Germany 
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GIGARCH Generalized Fractionally Integrated GARCH 

GJR-GARCH Glosten-Jagannathan-Runkle GARCH 

GM Gaussian Mixture 

GW Gigawatt(s) 

GWh Gigawatt Hour(s) 

GWB Gesetz gegen Wettbewerbsbeschränkungen 

H Hour 

HAR Heterogeneous AR 

Hh Half Hourly 

HU Hungary 

HW Holt-Winters 

ID Intraday 

IHMAR(X) AR(X) with Hsieh-Manski Estimator 

IID Independent and Identically Distributed 

IS In-Sample 

IT Italy 

JD Jump Diffusion 

kW Kilowatt(s) 

kWh Kilowatt Hour(s) 

LM Test Lagrange Multiplier Test 

LPX Leipzig Power Exchange 

LR Linear Regression 

LSSVM Least Squares Support Vector Machine 

LSTR  Logistic Smooth Transition Regression 

MA(X) Moving Average (with Exogenous Input) 

MAE Mean Absolute Error 

MALE Mean Absolute Logarithmic Error 

MAPE Mean Absolute Percentage Error 

MASE Mean Absolute Scaled Error 

maxAE Maximum Absolute Error 

maxAPE Maximum Absolute Percentage Error 

maxdAPE Maximum Daily Absolute Percentage Error 

MDE Mean Daily Error 

Mean Demeaning 

MdAE Median Absolute Error 

MdAPE Median Absolute Percentage Error 

MdALE Median Absolute Logarithmic Error 
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MddAPE Median Daily Absolute Percentage Error 

Mdfb Mean Deviation from the Best 

MdSE Median Square Error 

ME Mean Error 

minAE Minimum Absolute Error 

minAPE Minimum Absolute Percentage Error 

MISO Midwest Independent System Operators 

MMAE Mean of the MAE 

MOE Merit-Order Effect 

MR Mean Reversion 

MRJD(X) Mean Reverting Jump Diffusion (with Exogenous Input) 

MS(X) Markov Regime Switching (with Exogenous Input) 

MSE Mean Square Error 

MSPE Mean Square Prediction Error 

MW  Megawatt(s) 

MWE Mean Weekly Error 

MWh Megawatt Hour(s) 

NA-GARCH Nonlinear Asymmetric GARCH 

N-GARCH Nonlinear GARCH 

NL Netherlands 

NN Neural Networks 

NO Norway 

Norm Normalization 

NYISO New York Independent System Operator 

O Outlier Adjustment 

OLS Ordinary Least Squares 

OS Out-of-Sample 

OTC Over-the-Counter 

Out Outlier Adjustment 

PACF Partial Autocorrelation Function 

P-GARCH Power GARCH 

Phelix Physical Electricity Index 

PJM Pennsylvania-New Jersey-Maryland 

PL Poland 

PP Test Philips-Perron Test 

PRIM Percentage Improvement 

PSO Particle Swarm Optimization 
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PV Photovoltaic 

Q-GARCH Quadratic GARCH 

Real-GARCH Realized Measures GARCH 

RES Renewable Energy Sources 

relMAE Relative MAE 

RLS-AR Recursive Least Squares AR 

RMSE Root Mean Square Error 

RMSSE Root Mean Square Scaled Error 

RRP Reduced Rank Posterior Regression 

RRR Reduced Rank Regression 

RS Regime Switching 

SARFIMA(X) Seasonal ARFIMA(X) 

SARIMA(X) Seasonal ARIMA(X) 

Sd Standard Deviation 

SE Sweden 

Seas Deseasonalization 

SETARX Self-Exciting Threshold Autoregressive with Exogenous Input 

SFMR Structural Finite Mixture Regression 

Sk Skewness 

SL Slovenia 

SNAR(X) AR(X) with Smoothed Nonparametric ML Estimator 

SS Single Series 

StrEG Stromeinspeisungsgesetz 

SVM Support Vector Machine 

SVR Support Vector Regression 

T Ton 

TAR(X) Threshold Autoregressive (with Exogenous Input) 

TARSW TAR Switching 

TF Transfer Function 

T-GARCH Threshold GARCH 

TIC  

TSK Takagi-Sugeno-Kang 

Tvi Time Varying Intercept 

Tvr Time Varying Parameter Regression 

TWh Terawatt Hour(s) 

UK United Kingdom 

U-VAR Unrestricted VAR 
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VAR Vector Autoregressive 

WA Weighted Average 

WMAE Weekly Weighted Mean Absolute Error 

wMAPE Weekly MAPE 

w/o Without 

wRMSE Weekly RMSE 

Wt Wavelet Transform 
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1  

1.1 Problem Definition and Objectives of this Thesis 

Over the past decades, electricity markets have been liberalized and deregulated worldwide. 

Former monopolistic markets have been restructured into competitive systems to break down 

traditional relationships between suppliers and consumers. Simultaneously, both skepticism 

against power generation from conventional energy sources and the interest in renewable en-

ergy sources (RES) has increased. Consequently, the political and economic promotion of a 

transition towards a more sustainable energy supply has set in. 

In Germany, major political steps were taken through the implementation of the Energy Indus-

try Law (Energiewirtschaftsgesetz, or EnWG) in 1998 and the Renewable Energy Act (Erneu-

erbare-Energien-Gesetz, or EEG) in 2000. The EnWG was aimed at stimulating competition 

between participants of the electricity market and initiated the liberalization. During the subse-

quent development, several new players entered the market, and former monopolistic market 

structures receded. Likewise, specific targets regarding the promotion of power generation 

from RES were formulated in the EEG. By 2050, the EEG (in its current version from 2017) 

aims at 80 % of the electricity production being generated by RES. 

In the German power market, the feed-in of electricity from RES into the grid is prioritized 

against other sources. This causes the power supply system to face new challenges, and a 

functioning market is required to offset demand and supply. On the supply side, electricity is 

(economically) non-storable, and for system stability reasons, production must meet consump-

tion at each point in time. Electricity is required to be consumed immediately at the time of its 

generation. On the demand side, consumption is inelastic and is affected by seasonal behavior 
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of consumers. This seasonal pattern corresponds to daily and weekly cycles of activities in 

industry, but also to the consumption behavior of individuals, which requires a flexible power 

plant portfolio. Therefore, electricity markets strongly differ from other (financial) markets, as 

they are subject to technical restrictions. The cyclical demand and the increasing share of RES 

are essential factors in the price formation process in electricity markets. Following the theory 

of supply and demand, an excess power supply leads to decreasing market prices and vice 

versa. Additionally, power plants with high generation costs are squeezed out of the market by 

RES power generation capacities. This is the so-called merit-order effect (MOE).  

The technical constraints determine the price behavior in electricity markets to a great extent 

and can explain the well-known stylized facts of electricity prices. Power markets are highly 

volatile, they exhibit heteroscedasticity, non-stationary behavior, seasonally dependent price 

levels, mean reversion, price spikes, and negative prices. Therefore, through scientific re-

search, it is common to include this information into models when attempting to explain the 

behavior of electricity prices. Furthermore, in business practice, it is in the interest of all market 

participants to minimize their risk by accurately forecasting prices, which requires a deep un-

derstanding of the market. 

Within a future-oriented power risk and portfolio management, short term price forecasts are 

required, for example, to ensure the economic efficiency of power plant operations and sched-

ules. A broad range of scientific studies have focused on price forecasts in the recent past. 

Time series models particularly, are a major field of study in literature. Empirical publications 

on time series modeling and forecasting of electricity prices vary widely regarding the condi-

tions and findings making it difficult to generalize results. However, contradictory findings of 

several studies throughout the forecasting literature raise the question of what the true results 

are. Against this background it is surprising that there is a lack of statistics-based literature 

reviews on forecasting performance when comparing different models. To fill this gap, a com-

prehensive literature analysis is conducted in this thesis. The objective is to provide an over-

view on the state of the art of time series modeling and forecasting of electricity prices. 

However, the key issue of this study is to offer a comparison of different model types and 

modeling conditions regarding their forecasting performance. The findings are based on a 

meta-study style analysis of the forecasting performance of time series models across several 

markets. 
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A subsequent empirical analysis serves to validate the results of the literature review. The 

empirical analysis aims at deeper analyzing the forecasting performance of time series models 

compared to other studies by not only considering different model types but also varying the 

conditions of the study. Day-ahead forecasts are evaluated for different market phases, trans-

formations and time windows to find the best out-of-sample performing time series model. The 

findings are based on the evaluation of forecasts on the German/Austrian (GER/AT) market. 

By the literature analysis and the empirical study, the following key issues on the forecasting 

of electricity prices are addressed in this thesis: 

- What is state of the art in time series modeling of wholesale electricity prices? 

- Which time series models yield the best forecasting performance? 

To reflect the current market situation, the evaluation of standard time series models is con-

ducted taking into consideration the price drivers power consumption, wind power generation 

and solar power generation. 

To achieve a deeper understanding of the price effects of these factors one should not rely on 

the accuracy of forecasts, but on explanatory models. Of course, the price dampening effects 

of power generation from RES have already been investigated in several studies, in which it is 

common to apply OLS (ordinary least squares) regression models. In contrast to the existing 

empirical literature in this area, in the present study a panel data analysis is applied. The ad-

vantage of panel data analysis against standard pooled regression is the avoidance of an 

omitted variables bias caused by unobserved heterogeneity (part of the error term) that is con-

stant over time. More specifically, the so-called fixed effects model is applied according to 

  

The model for the German (and Austrian) power market comprises variables, which, by their 

design, capture the specific characteristics of this market. A noteworthy element of the regres-

sion model is the simulation-based design of a variable indicating the power generation tech-

nology that is price-determining at a certain point in time to model the nonlinear price behavior 

for a varying demand. This supports a precise calculation of the price effects of power gener-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



4 Introduction 

ation from RES. Against the background of the general focus of this thesis on RES the de-

scribed model with its sophisticated structure serves to answer the following third research 

question:  

- What are the effects of RES power generation on electricity prices? 

For this, besides studying the MOE, price changes due to power plant ramping as well as price 

changes due to forecasting errors on wind and solar power generation are quantified. Both 

factors may have impacts on price volatility. Ramping costs are costs which are incurred by 

varying operation capacities of power plants due to a lower efficiency of the power generation 

combined with higher operational costs. Forecasting errors on RES may occur as forecasts 

are frequently adjusted by the actual delivery of the electricity.  

The three research questions raised above provide the superior frame to this thesis, which is 

modeling and forecasting of wholesale electricity in the German power market with considera-

tion of the effects of RES. 

1.2 Course of Investigation 

To analyze the research issues stated above, this thesis is structured as follows. After describ-

ing the German electricity market in general, the forecasting performance of time series models 

is analyzed on a broad literature basis, followed by an empirical forecasting study of time series 

models under varying market conditions in the German (and Austrian) power market. Then, 

the price effects of wind and solar power generation are analyzed by means of a panel data 

regression. 

In chapter 2, the German electricity market is described. This chapter provides a general 

framework regarding the market environment and serves as basic information source for the 

understanding of subsequent analyses of the German electricity market. Section 2.1 gives the 

historical development with a legal background, section 2.2 deals with the current situation on 

the retail market, and section 2.3 describes the functioning of the wholesale market including 
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the market design. Finally, the structure of the power plant portfolio is characterized in sec-

tion 2.4, in which focus is placed on the characteristics and cost structures of different power 

generation technologies. In this context, the MOE is also described, because with the increas-

ing share of feed-ins from RES their price dampening effect is of growing importance to the 

power market. The understanding of the market structure and its conditions is essential, when 

designing adequate price models. 

Chapters 3 and 4 deal with the forecasting of electricity prices with time series models, which 

are common models capturing the price behavior in electricity spot markets. Chapter 3 pro-

vides an extensive literature review on electricity prices forecasting, which is conducted based 

on 86 empirical studies from 2000 to 2015. This quantitative literature review is referred to as 

a quasi-meta-analysis. At first, section 3.1 provides an introduction into the topic. In section 

3.2, the theory of modeling and forecasting electricity spot prices is described, which covers 

model types, data transformation types and the evaluation of forecasts. Section 3.3 presents 

a survey of the empirical literature on electricity spot price modeling and various statistics to 

characterize the existing literature in this area. In section 3.4, the forecasting performance of 

different model types is evaluated, and finally, the findings are summarized in section 3.5. 

Detailed lists of the related literature and definitions of the common time series models are 

provided in the appendix in 3.6. 

Related to the findings of the literature review, in chapter 4 an empirical forecasting study is 

conducted. The forecasting performance of different time series models is analyzed on the 

German (and Austrian) day-ahead market. Section 4.1 presents an introduction into the topic. 

In section 4.2, hypotheses on the forecasting accuracies of different model types are formu-

lated based on the results of other empirical studies. These hypotheses are related to the 

forecasting accuracy, which is subject to varying modeling conditions and the specific model 

selection. After a description of the study setup in sections 4.3 to 4.5, the results of the empir-

ical study are presented and analyzed in section 4.6. A recap in section 4.7 offers a different 

perspective on the obtained results. And finally, the findings of the empirical forecasting study 

are summarized in section 4.8. Results of several model variations are provided in the appen-

dix in 4.9. The current market conditions are reflected by applying time series models, which 

include explanatory variables for power consumption, and wind and solar power generation. 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 Introduction 

After the forecasting studies, in chapter 5 an empirical analysis is conducted to quantify the 

price effects of power generation from wind and solar on the German (and Austrian) power 

market from 2010 to 2016. A regression model with non-linear explanatory variables is de-

signed to analyze the MOE, the price effects of power plant cycling and impacts of wind and 

solar power generation forecasting errors. The model design is more sophisticated compared 

to the time series models applied in chapters 3 and 4. After an introduction into fundamentals 

in section 5.1, section 5.2 presents a summary of the recent literature on the three facets to be 

analyzed. The study setup is described in section 5.3, followed by the empirical results in sec-

tion 5.4. The findings of this study are summarized in 5.5. Full regression tables and robustness 

checks are provided in the appendix in 5.6. 

Chapter 6 concludes this thesis with a summary of the results of the preceding chapters. 
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2  

2.1 Historical Development from a Legal Perspective 

2.1.1 The Market Prior to its Liberalization  

In the late 19th century, the first structures of the power supply infrastructure in Germany 

evolved along with the industrial revolution. The first public energy supply company of Ger-

many (AG Städtische Elektrizitätswerke) was founded in Berlin in 1884. Later, with the foun-

dation of further power supply companies across the country, the German electricity market 

was characterized by regional monopolies. These monopolies were a consequence of demar-

cation agreements concluded between energy supply companies to establish separate supply 

areas. 

Within their supply areas, power supply companies were not exposed to competition. Conces-

sion agreements with municipalities enabled them to build up their power supply infrastructure 

in public areas. In combination with the demarcation agreements, energy supply companies 

were guaranteed a monopoly in their power supply area through the payment of concession 

fees. The power supply companies acted as vertically integrated affiliated enterprises. Their 

business areas included all stages of the value chain: power generation, trade, transmission, 

distribution, and sales. 

The EnWG, which was established in 1935, codified the common practice in the power supply 

sector. The power supply sector  regarded as of public interest  was exempt from competi-

tion. Regional monopolies were laid down in legislation and market entry barriers were erected 

(§ 5 EnWG 1935). However, by law, direct governmental influence on pricing was permitted 
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(§ 7 EnWG 1935). In exchange for guaranteed regional monopolies, power supply companies 

were committed to a secure and cost-efficient power supply to the resident end consumers 

(preamble of EnWG 1935). For a long time, the anti-competitive restrictions were not elimi-

nated by any legislative action. The demarcation agreements between power supply compa-

nies were even excluded from the Act against Restraints on Competition (Gesetz gegen 

Wettbewerbsbeschränkungen, or GWB), which was enacted in 1957. They were explicitly per-

mitted corresponding to § 103 GWB 1957. 

Consequently, by its liberalization in 1998, the electricity market in Germany was characterized 

by vertically integrated utilities on the supply side. 

2.1.2 Amendments of EnWG and Liberalization 

In 1996, the European Union (EU) parliament passed the Electricity Market Directive 96/92/EC 

to establish a competitive European electricity market (§ 2 96/92/EC). In Germany, the di-

rective was transposed into the Law Updating the Legislation on Power Supply, which included 

replacing the EnWG 1935 with the EnWG 1998 and repealing the legal protection of regional 

monopolies according to § 103 GWB 1957. The value chain stages of power generation, trade, 

and sales were opened to a competitive market. The electricity grid infrastructure remained a 

natural monopoly. Power suppliers were advised to separate their businesses into units with 

monopoly status (infrastructure) or units with competitive orientation. This was the so-called 

unbundling of business units induced by the EnWG 1998, which is presented in Figure 2.1. 

The business units operating the (monopolistic) grid infrastructure were obliged to offer non-

discriminatory conditions to competitors and affiliated companies regarding the network ac-

cess. 

 

Figure 2.1: Unbundling in the power supply sector. Own illustration based on Führmann & Schlösser 
(2008)). 
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Following the Acceleration Directive 2003/54/EC of the EU, the regulatory authority Bundes-

netzagentur (BNetzA) was implemented by means of the amendment law EnWG 2005. The 

BNetzA was given power to officially regulate tariffs for network access and monitor non-dis-

criminatory access conditions and the unbundling of the vertically integrated power suppliers. 

The subsequent amendment EnWG 2011 included even stricter regulations for the unbundling 

process.1 

2.1.3 The EEG and its Amendments from 2000 to 2017 

The liberalization of the electricity market coincided with the transition of the energy system 

towards more sustainability, which was forced by several legislative actions during the past 

decades. In Germany, the EEG established the legal basis for the feed-in of power generated 

by RES into the electricity grid. Corresponding to § 3(21) EEG 2017, RES are defined as hy-

dropower, wind power, photovoltaic (PV), biomass and geothermal energy. 

The EEG had its origins in the Electricity Feed-In Act (Stromeinspeisungsgesetz, or StrEG) 

established in 1991, which obliged the grid operators to purchase electricity from renewable 

power plants at guaranteed feed-in tariffs (which were based on the retail price level). In 2000, 

the StrEG was replaced by the EEG, which granted a priority dispatch to power generated from 

RES. The feed-in tariffs to be paid by the grid operators (and passed on to the end consumers 

by means of the so-called EEG apportionment) were set for 20 years. 

The most substantial changes of the first amendment of the EEG in 2004 included the adjust-

ment of the tariff levels to be paid on RES feed-ins. Furthermore, reliefs from the EEG appor-

tionment for electricity-intensive industry sectors were introduced to maintain their degree of 

competitiveness against foreign competitors. 

As a reaction to the increasing share of RES on the total power market, from 2009 on, the 

compensation system for RES feed-ins was modified (amendment law EEG 2009). As an al-

ternative to the granted feed-in tariffs, RES power plant operators were allowed to directly sell 

electricity to the market (§ 17 EEG 2009). The amendment law also introduced a system of 

                                                
1 The EnWG had also been amended in 2003 and 2008. 
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downward compensation rate adjustments for solar power feed-ins if newly installed PV ca-

pacities exceeded certain thresholds (§ 20(2a) EEG 2009). 

Increasing power generation from fluctuating RES wind and PV  being independent of the 

demand  entailed high costs, which might threaten ty. The power 

supply infrastructure had not been designed for high shares of RES.2 To drive the increased 

market integration of RES, the EEG 2012 amendment included a market premium model for 

power plants selling electricity to third parties at market prices (§ 33g EEG 2012). Despite 

reduced feed-in tariffs, the PV sector grew rapidly, which is why in the same year the PV Act 

came into force to further reduce tariffs at higher degression rates. Under EEG 2014, feed-in 

tariffs were again reduced. Furthermore, in contrast to the former system of fixed tariffs, oper-

ators of newly-installed plants with capacities larger than 500 kilowatts (kW) (from 2016 on, 

larger than 100 kW) were obliged to directly market their feed-in volumes. 

In the EEG 2017 amendment, the most substantial adjustment was the implementation of an 

auction system for wind, solar, and biomass power plants. For new-installations larger than 

100 kW, the former compensation system was replaced by public tenders of predetermined 

generation capacities, where the lowest costs bid is accepted (§ 28-39 EEG 2017). 

2.1.4 European Union Emission Trading Scheme 

Besides the extensive German legislative actions to push forward a sustainable power supply, 

in 2005, a market for the trade of greenhouse gases was launched on EU level. The so-called 

European Union Emission Trading Scheme (EU-ETS) was established (based on the EU emis-

sions trading directive 2003/87/EC in follow up to the climate agreement of Kyoto from 1997, 

and in an effort to reduce greenhouse gas emissions. By means of the emission rights, the 

impacts of environmental pollution are economized. Consequently, the EU-ETS serves to in-

ternalize the external effects of carbon dioxide (CO2) emissions. Given a sufficient system of 

controls, the trading scheme ensures reductions of emissions at the lowest macroeconomic 

                                                
2 See Deutscher Bundestag Drucksache 17/6071. 
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costs. As a result, the emission allowances of greenhouse gases are allocated at market 

prices. 

Under the EU-ETS, at first, a capped amount of emission rights is assigned or auctioned to 

operators of plants emitting CO2 or CO2 equivalents. The affected parties include energy-in-

tensive industry plants and incineration plants. After the initial allocation, the emission rights 

may be traded freely. 

So far, the EU-ETS has been divided into three consecutive trading periods: I) 2005-2007, II) 

2008-2013, and III) 2013-2020. During phases I and II, the assignment of emission certificates 

to plant operators followed national allocation plants. Following the directive 2009/29/EC 

(amending the former directive 2003/87/EC), in phase III, the allocation is organized on an EU-

wide basis to improve the EU-ETS. 

For operators of electrical power plants, the certificates pose an additional factor in their cost 

estimations. As CO2 emissions depend on the fuel type used by a power plant, this differently 

affects the marginal costs.3 Taking the average prices for emission allowances in 2011 

(12.96 2) and 2015 (7.68 2) as a basis, the EU-ETS accounted for costs of 

4.04 2011 and 2.40 in 2015 in modern gas-fueled power plants.4 

2.2 The Situation in the Retail Market 

Since the liberalization of the market, several power suppliers have established themselves 

and former regional monopolists have expanded their business territories. In 2016, BNetzA 

recognized 1,238 suppliers in the German retail market. As most suppliers only operate re-

gionally (and not across network areas), on average, end consumers were able to choose from 

115 suppliers in their network area. Still, 32.1 % of all household consumers have a default 

                                                
3 Carbon factors as per ton of CO2 per generated power in megawatt hours (tCO2/MWh) by conventional 

plants: uranium  0 / natural gas  0.1872 / heavy fuel oil  0.2664 / hard coal  0.36 / lignite  0.4 
(see DIW (2014)). 

4 Source: own calculation based on yearly average CO2-prices, efficiency factor of 0.6 and carbon factor 
of 0.1872 for gas fueled plants. 
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contract with their local default supplier. This contract is automatically concluded if end con-

sumers do not select a power supplier themselves. The supplier switching rate in 2015 was 

10.4 % of household consumers (and steadily increasing) and 12.4 % of non-household con-

sumers.5

Figure 2.2 displays the course of household retail prices since the liberalization of the electricity 

market in 1998. After a short drop, prices steadily rose from 0.15 (kilowatt hour) to 

0.25 from 2000 to 2012. Since 2013, prices remained quite stable, close to 0.30

The price increase has been mainly driven by an increasing state share (taxes, duties, appor-

tionments). Starting in 2009, the share of procurement (reflecting the costs of power genera-

tion) and sales declined in absolute terms. In 2017, taxes, duties, apportionments, and network 

charges accounted for 80 % of total household prices.

Figure 2.2: Course of retail electricity prices in Germany from 1998 to 2017. Own illustration, source of data: 
BDEW (Bundesverband der Energie- und Wasserwirtschaft e.V., 2017).

Development of household prices as sum of blue and red bars. Black horizontal lines indicate the price level for
large scale end consumers from industry (70-150 GWh (gigawatt hours) consumption per year). Missing indications 
for industry because data were not available for the whole period.

The figure also shows the price levels for large scale industry consumers. The price differences 

between household and industry consumers are mainly driven by tax, duty, and apportionment 

5 See BNetzA (2016).
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deductions for industry consumers. Average prices ranged between 0.08 

ith a downward tendency during the last few years. 

2.3 The Wholesale Market 

In general, power plant operators sell their generated volumes to power suppliers at the whole-

sale market. These companies supply power to end consumers, which are household or in-

dustrial consumers. Compared to the retail market, the wholesale market is considerably more 

complex. 

2.3.1 Power Exchanges EEX and EPEX 

During the market liberalization in Germany, starting in 2000, two power exchanges, EEX (Eu-

ropean Energy Exchange) and LPX (Leipzig Power Exchange) were founded. In the German 

electricity market, these two power exchanges served as an alternative to over-the-counter 

(OTC) trades between power sellers (e.g., power plant operators) and buyers (retail suppliers). 

In 2002, the EEX AG, seated in Leipzig, Germany, emerged from a merger of the LPX and 

EEX. The EEX AG operates market platforms for the trade of electricity, natural gas, coal, and 

CO2 emission allowances. While the trade of electricity futures and derivatives as well as nat-

ural gas, coal, and CO2, is located in Leipzig, since 2009, the market for spot products is lo-

cated in Paris, France, at the EPEX (European Power Exchange). The EPEX Spot SE is jointly 

owned by the EEX AG and the French Powernext SA. Power futures and spot products cannot 

only be traded for Germany and Austria,6 but also for other European countries. The traded 

volumes for Germany in 2016 amounted to 235 TWh (terawatt hours) on the spot market and 

2,665 TWh (37 % market share) on the futures market.7,8 

                                                
6 Since 2001, the electricity markets of Germany and Austria are a single fully integrated market and 

represent a joint market zone. 

7 See EEX (2017a). 

8 This accounts for 400 % of the total gross power generation in Germany in 2016, which was 648 TWh. 
OTC-trades are not covered by this statistic. 
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14 The German Electricity Market 

Contracts that are traded in the market area of Germany and Austria contain the delivery of a 

constant load for a specified period. The standard periods cover 15-minute-loads (96 contracts 

per day) or 60-minute-loads (24 contracts per day) starting at every full hour (60-minute-con-

tracts) or every quarter hour (15-minute-contracts). Several block contracts are available, the 

most common ones are baseload contracts (including delivery all 24 hours a day), peakload 

contracts (from 8 am to 8 pm), and off-peak contracts (from 8 pm to 8 am).9 

2.3.2 Market Design 

 Day-Ahead Auction Market 

The EPEX Spot day-ahead market serves to trade hourly contracts one day before their phys-

ical delivery. Each day at noon, contracts for the 24 periods (or hours) of the subsequent day 

are auctioned. The purchase of one unit entitles its holder to the physical delivery of a constant 

1 MW (megawatt) load for one hour. Block contracts combining various hourly contracts are 

also available. The minimum trade volume is 0.1 MW. A price minimum/maximum is set 

at -500/3,000 for a constant delivery of 1 MW for one hour. Negative prices have been 

allowed since 2008. 

Pricing is based on a double-sided uniform price auction with sealed bids in a single round. 

This means, after order book closure, the sealed bids for buy and sell are ranked in ascending 

and descending order, respectively. A schematic representation of the pricing is shown in Fig-

ure 2.3. A single market clearing price is determined (with its corresponding trade volume) by 

the point of intersection of the supply and the demand functions. For all winning bids, the same 

price (uniform market price) is paid. 

The average market price level per day is indicated by the Physical Electricity Index (Phelix), 

which reflects the arithmetic mean of the market clearing prices during the delivery period. The 

                                                
9 See EPEX Spot (2017). 
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Phelix Day Base represents the average baseload price and Phelix Day Peak represents the 

average peakload price per day.10

Figure 2.3: Pricing at the German day-ahead market. Own illustration following Konstantin (2017).

In 2014, subsequent to the day-ahead auction, the intraday call auction was introduced as an 

additional trading opportunity. At 3 pm each day, quarter-hourly contracts are auctioned for the 

following day in the style of the day-ahead auction market.

Continuous Intraday Market

By contrast with the auction market, the continuous intraday market allows for permanent trad-

ing and price formation. The trading period starts at 4 pm on the day prior to delivery and ends 

30 minutes prior to the actual delivery. Contract types are hourly, quarter-hourly, or block con-

tracts. Trades are conducted on an open order book, where anonymous orders are visible to 

all market participants. The minimum trade volume is 0.1 MW. A price range be-

tween -9,999 /MWh per delivery of one hour and 9, /MWh is allowed. Negative prices 

have been possible since 2009.

10 See EPEX Spot (2016).
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As continuous trading is possible, in contrast with the day-ahead auction, contracts for the 

same period can obtain different prices. Trades on the continuous intraday market are normally 

conducted to adjust for deviations of forecasts on power consumption or generation.11 

 Futures Market 

Power futures are continuously traded in an open order book at the EEX up to six years in 

advance to the actual delivery. The Phelix Day Base/Peak serves as the underlying index. The 

futures are offered as baseload, peakload and off-peak contracts. The minimum trade volume 

is 1 MW, which includes constant delivery during the period covered by the future contract.  

The available futures maturities are constant delivery during a pre-defined day, weekend, cal-

endar week and calendar month, quarter of a year, or whole calendar year. The maximum 

maturities are the current and next week (day future), two weekends, five weeks (starting the 

current week), ten months (starting the current month), eleven quarters, and six years. Three 

business days prior to their delivery period, year and quarter futures are cascaded. This means 

these contracts are replaced by equivalent positions of future contracts with shorter delivery 

periods. Month and week futures are still tradable during their delivery period. The delivery of 

a future is in cash. A physical delivery is possible for month and week contracts.12  

In addition, options in European style based on the Phelix Base month, quarter, or year future 

can be traded at the EEX. 

 Temporal Sequence of Trading Periods 

The temporal sequence of the trading periods at the EEX futures market and the EPEX spot 

market is shown in Figure 2.4. Future contracts become due at the gate closure of the day-

ahead market at noon one day prior to delivery. Month and week futures are still tradable 

during the current delivery period (symbolized by the dashed line), which in fact might be after 

parts of their physical delivery. 

                                                
11 See Ströbele et al. (2012). 

12 See EEX (2015) and EEX (2017b). 
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After the pricing of the day-ahead contracts at noon, the intraday market starts with the intraday 

auction of hourly contracts at 3 pm. At 4 pm the same day, the continuous intraday market 

starts with a trading period up to 30 minutes before the physical delivery. 

 

Figure 2.4: Futures market (EEX) and spot market (EPEX) in the course of time. Own illustration adapted 
from BMWI (Bundesministerium für Wirtschaft und Energie, 2014) and Ströbele et al. (2012). 

 

2.3.3 Balancing Energy 

The trade of electricity spot market products described above is based on (short term) fore-

casts of demand and supply. Furthermore, these parameters may vary at higher frequencies 

than it can be met by hourly or quarter-hourly contracts. Therefore, despite the attained market 

equilibrium, unexpected changes on the supply side or on the demand side (e.g., change of 

weather conditions or unplanned power plant outages) can lead to an imbalance between 

power generation and consumption. 

As the electricity generation has to meet its consumption at each point in time, imbalances 

 stability, short or excess volumes are quickly 

offset by balancing energy. Therefore, flexible power plant capacities are provided for the point 

in time of the actual delivery. The use of these balancing energy capacities requires compen-

sation payments and is strictly regulated.13 

                                                

13 See Konstantin (2017), who describes the need for balancing energy and its tendering process. 
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2.4 Structure of the Power Plant Portfolio 

2.4.1 Marginal Costs of Power Plants 

Under the assumption that participants of the wholesale market offer their power generation 

capacities at their marginal costs, market prices depend on the prices of underlying energy 

commodities and on the efficiency of the respective power plants. Against this background, at 

first, power plants with the lowest marginal costs will enter the power market, and afterwards 

those plants with higher individual marginal costs will follow. This power plant ranking in as-

cending order is called merit-order. At each point in time, it determines the power plant portfolio 

generating electricity. The merit-order can vary at high frequency as the power generation has 

to follow suit the (seasonal) demand. 

For a specific power plant the marginal costs of the power generation are driven by fuel prices 

fuelp , variable costs O&Mc  on operation and maintenance, and prices COp 2  of emission allow-

ances. Given prices, the individual plant efficiency factor , and the amount COx 2  of CO2 emis-

sions determine the marginal costs MC :14 

fuel
CO CO O&M

p
MC p x c2 2 . (2.1) 

The merit-order represents the short-term supply function in the power market as shown in 

Figure 2.5. Under the assumption of an inelastic demand, power plants are successively acti-

vated until the demand is met  starting with nuclear and lignite, which have the lowest mar-

ginal costs of the conventional energy sources.15 These are followed by coal and gas fired 

power plants. Fuel oil is the most expensive energy source for power generation. The short-

term marginal costs of RES (except for biomass) are almost zero because an additional unit 

                                                
14 E.g., see von Roon & Huck (2010). 

15 The reason for the assumption of an inelastic demand is that in the short run, the electricity demand 
is independent of wholesale prices. 
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of wind or solar power does not incur any costs. At guaranteed feed-in tariffs, their feed-ins are 

prioritized against other sources in the German power market.

The last power plant to meet the demand is the marginal plant. It reveals the marginal costs of 

the whole power plant portfolio for the production of one additional power unit. In the figure, 

the intersection of the demand and supply curves determines the market clearing volume and 

the market clearing price (equal to the marginal costs). This shows that the structure of the 

power plant portfolio being in operation depends on the variation of the demand.

Figure 2.5: Schematic merit-order curve. Own illustration.

The total demand to be met by the production follows a strong seasonal pattern and corre-

sponds to daily and weekly cycles of activities in industry, but also depends on the consump-

tion behavior of individuals. Therefore, demand is low in nighttime, at weekends and on 

holidays. The consumer behavior varies as shown in Figure 2.6: At nighttime, demand is lower

than during daytime. Morning peaks and evening peaks follow the structure of the work life. 

The demand increases during business hours on days from Monday to Friday, as the industry 

activity is larger during daytime and on a lower level at weekends and public holidays. The 

figure shows a highly systematic pattern in the course of the power consumption. As a conse-

quence of the seasonally varying demand, the cost structure at a certain day depends on the 

specific point in time.
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Figure 2.6: Schematic course of electricity consumption in an average week. Own illustration for Germany 
based on data (average values for April 1, 2010 to August 31, 2016) from ENTSO-E (European Network of 
Transmission System Operators for Electricity). 

 

Table 2.1: Technologies and their characteristics on the German power market. Indications following Tveten 
et al. (2013). 

Technology Load Marginal costs Short term regulation 
Nuclear, lignite Base Low/medium Low 
Coal, gas Medium/Peak Medium/high Low/medium 
Oil Peak High Medium/high 
Reservoir hydro Medium/peak Low High 
RES Intermittent Low Intermittent 

 

The characteristics of the different power generation technologies may offer an indication for 

their use under different circumstances. Table 2.1 gives an overview. Nuclear and lignite power 

plants deliver a constant load and only offer small regulation flexibility. They are required to 

meet a permanent baseload. Coal and especially gas fired plants are more flexible and can be 

ramped up and down depending on a varying demand. They are activated to cover demand 

peaks and medium load between base and peak demand. For economic reasons, oil fuel fired 

plants are activated only in peak times when high regulation flexibility is required. 
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2.4.2 Recent Developments 

As described above, in the course of the liberalization, new players entered the electricity mar-

ket. Besides, the energy system transformation considerably affected the structure of the 

power plant portfolio. The development of the (gross) power generation in Germany depending 

on the sources of energy is presented in Table 2.2. The rapid growth of the renewables wind, 

solar and biomass is a remarkable fact. This development was mainly pushed ahead by legis-

lative actions in form of the EEG from the year 2000, which was amended several times in the 

subsequent years (see section 2.1.3). In 2000, RES in total only accounted for less than 7% 

of the total gross power production. By 2015, this share rose to 29%. 

Table 2.2: Gross power generation in TWh in Germany from 1990 to 2015. See AG Energiebilanzen (2017). 

Energy sources 1990 1995 2000 2005 2010 2015 
Lignite 170,9 142,6 148,3 154,1 145,9 154,5 
Nuclear 152,5 154,1 169,6 163,0 140,6 91,8 
Coal 140,8 147,1 143,1 134,1 117,0 117,7 
Gas 35,9 41,1 49,2 72,7 89,3 62,0 
Oil 10,8 9,1 5,9 12,0 8,7 6,2 
RES 19,7 25,1 37,9 62,5 104,2 187,4 

Wind  1,5 9,5 27,2 37,8 79,2 
Hydro (run-of river, reservoir) 19,7 21,6 24,9 19,6 21,0 19,0 

Biomass  0,7 1,6 11,1 28,9 44,6 
Photovoltaic  0 0 1,3 11,7 38,7 

Waste  1,3 1,8 3,3 4,7 5,8 
Others 19,3 17,7 22,6 24,1 26,8 27,3 
Gross power generation 549,9 536,8 576,6 622,6 632,4 646,9 

 

In the same period, power generation from coal and nuclear declined from accumulated 55% 

to 32%. The nuclear phase-out, which was declared in 2011 after the nuclear disaster of 

Fukushima (Japan), had a sudden impact on the structure of the German power plant portfolio. 

In 2011, eight of former 17 (prior to 2011) nuclear power stopped operating. The nuclear 

phase-out will be completed by the year 2022. The relative market share of power from lignite-

fueled plants remained constant over the whole period. The generation by gas-fueled power 

plants increased until 2010 and decreased afterwards. 
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The power consumption did not increase to the same extent as the generation. It accounted 

for 551 TWh in 1990 and 595 TWh in 2015. The difference between generation and

consumption is the export (or import) volume to other European markets.

The large share of (subsidized) RES in the German power market causes the MOE, which is 

visualized in Figure 2.7. As a consequence of increasing power generation from RES, the 

supply curve undergoes a substantial change. As RES plants operate at low marginal costs,

the merit-order curve is shifted to the right. At a given demand, power plants with rather high

marginal costs are squeezed out of the market. The new marginal power plant will be one of 

lower (or equal) marginal costs. Under the assumption that power plant operators offer their 

volumes at their respective marginal costs, the increase of RES leads to decreasing market 

prices. The previous marginal power plants obtain shorter and less operating periods. This 

could be seen in Table 2.2 when comparing the total generating volumes based on different 

energy sources in the course of time. The share of conventional power generation has declined

in relative and absolute terms. As a result, the power plant portfolio has also changed.

Figure 2.7: Schematic representation of the merit-order effect. Own illustration.

Basic merit-order curve on the left-hand side and curve based on a higher share of RES on the right-hand side.
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3.1 Motivation 

Bearing in mind the unique price characteristics of the commodity of electricity, it is an essential 

interest of all market participants to minimize their risk by adequately forecasting prices. Port-

folio managers basing their decisions on accurate forecasts may optimize bidding strategies 

on the power market. However, markets are still evolving; their history is short compared to 

other markets, and political influence on market conditions is high.  

In recent years, a wide range of models has been proposed in the attempt to model the specific 

behavior of electricity spot markets.17 Consequently, modeling electricity prices has become a 

large field of scientific research. Neural network (NN) models and hybrid models, which com-

bine different model types, have become more important, but time series specifications have 

remained relevant in the current literature. In addition, sophisticated variations of time series 

models are frequently presented. 

Recent reviews and survey publications provide an overview of electricity price models to cat-

egorize the models used in the literature. 

Niimura (2006) provides an overview of 103 publications from 1992 to 2006 and classifies them 

as either time series or simulation models. Simulation models include production cost based 

                                                

16 The literature analysis is based on Gürtler & Paulsen (2018a). 

17 It should be noted that the literature on electricity price modeling is generally focused on the hourly 
prices or daily average prices of day-ahead markets (commonly also referred to as spot markets). 
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and game theoretic approaches. Time series models are divided into linear regression (LR) 

and stochastic or nonlinear heuristic methods. Haghi & Tafreshi (2007) classify 40 models from 

1998 to 2006 and use categories game theoretic methods, simulation methods and statistical 

methods, in which time series models are either stationary or non-stationary. Daneshi & Dane-

shi (2008) conduct a bibliographical survey on electricity price forecasting techniques from 

1993 to 2007 and classify over 100 publications as time series, neural network types or other 

forecast techniques.  

The performance evaluation of different electricity price models is normally based on their out-

of-sample forecasting accuracy. Often, (naïve) benchmark forecasts are used to test the ben-

efits of a new model. However, empirical studies vary widely concerning the selection of mod-

els and conditions of estimation and evaluation. Consequently, results and subsequent 

conclusions strongly depend on the conditions of a certain study. The reader should keep this 

in mind when interpreting and generalizing the findings. The following conditions may vary 

between studies: data (including the considered market, applied transformations and time in-

terval), the applied model types and the selection of relevant parameters, exogenous variables 

and measure of forecasting accuracy.  

In the recent literature, some reviews provide an insight into common modeling approaches. 

Higgs & Worthington (2008) review 26 studies from 1992 to 2007 and find that 50 percent of 

all research papers employ univariate GARCH processes, and 38 percent use univariate sto-

chastic techniques. Multivariate analyses are used in 12 percent of studies. Feuerriegel & Neu-

mann (2015) conduct an empirical study on the benefits of including exogenous factors in 

electricity price modeling and give an aggregated overview of the modeling approaches of 23 

publications from 1999 to 2014. Their findings are that most studies focus on hourly spot prices. 

The main exogenous input variable is the load, and only a few studies address wind or solar 

power generation. In addition, the authors conclude that several studies prefer a rolling sample 

scheme without quantifying its benefits against a model with constant parameters. 

The reviews mentioned above do not analyze the results of empirical studies. Other reviews 

also provide a summary of the results. A literature overview by Weron (2006, pp. 101-155) 

includes empirical studies of statistical models such as autoregressive moving average 
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(ARMA), autoregressive conditional heteroscedasticity (ARCH), GARCH, (Markov) regime 

switching and jump diffusions (JD). The results of several studies are explained in detail. 

Aggarwal et al. (2009a) study 37 empirical research papers from 1997 to 2006 with time-series-

based models and computational-intelligence-based models, and classify them depending on 

the c

data inputs and outputs, forecasting horizons and preprocessing and conclude that there is no 

outperforming class of models. Aggarwal et al. (2009b) also do not find clear evidence for the 

outperformance of a certain model class. They compare the forecasting accuracies of different 

studies and the computational speed of the different techniques. 

Hu et al. (2009) give a brief overview of forecasting techniques for electricity prices as artificial 

neural networks (ANN), autoregressive integrated moving average (ARIMA) and least squares 

support vector machine (LSSVM). They conclude that hybrid models, which combine different 

model types, outperform other models. 

Cerjan et al. (2013) aggregate 100 publications from 1999 to 2012 in terms of markets under 

study, model category (statistical, artificial intelligence or hybrid) and a number of input varia-

bles. They conclude that increasing the number of input variables and applying more sophisti-

cated techniques such as hybrid models is useful. 

A review of different models applicable to electricity prices including their benefits and weak-

nesses is provided by Weron (2014). This article includes a comprehensive overview of mod-

eling and evaluation approaches and presents literature from 1989 to 2013. It also provides an 

outlook on future price modeling. 

These reviews offer categorizations for electricity price models and partial conclusions. How-

ever, contradictory findings raise the question of what the true results are. In this context, there 

is a lack of statistics-based literature reviews of empirical studies on the forecasting perfor-

mance of electricity spot price models. To fill this gap, we conduct a comprehensive literature 

analysis. The objective is to provide an overview on the state of the art of time series modeling 

and forecasting of electricity prices. However, the key issue of this study is to offer a compari-

son of different model types and modeling conditions regarding their forecasting performance. 
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Against this background, the results of 86 empirical studies from 2000 to 2015 are analyzed, 

which inevitably depend on specific circumstances. Our approach may be regarded as a quasi-

meta-analysis. Meta-analysis, introduced by Glass (1976) and known in medicine, psychology 

and social sciences, is the statistical analysis of several individual studies to achieve more 

general findings independent of the circumstances of each study. The notion quasi refers to 

the fact that our study is not exactly the same as but is closely related to the methods of a 

meta-analysis. First, the researched empirical studies are analyzed thoroughly. Second, effect 

sizes representing the forecasting performance of a certain model are calculated. However, in 

contrast with a true meta-analysis, due to missing information on the significance of results in 

some papers, individual results are not normalized before aggregating them. The term quasi-

meta-analysis has been used by e.g. Bernes (1993) and Pistolese (1998) for quantitative liter-

ature reviews on psychological and medicinal studies without calculating average effect sizes. 

However, while not fulfilling all requirements of a meta-analysis, our study offers even more in-

depth information than such quasi-meta-analyses. 

During a literature research, in the first step, publications that focus on time series models are 

selected. In the second step, studies are considered only if the forecasting performance is 

evaluated with common accuracy measures in electricity price modeling, such as mean abso-

lute error (MAE), mean absolute percentage error (MAPE) or root mean square error (RMSE). 

Then, the remaining publications are analyzed regarding the conditions of each study and the 

erformance. Finally, the results are aggregated in a quantitative 

manner. 

3.2  of Modeling and Forecasting Electricity Spot 
Prices 
 Theory

The aspects that need to be taken into consideration within the modeling and forecasting pro-

cess are presented in this section. A brief theoretical overview is given on transformations of 

data, model types with a focus on time series models, varying time horizons and the evaluation 

of forecasts. 
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3.2.1 Data Transformation 

Common data transformations are log-transformation, differencing, wavelet decomposition 

and outlier treatment. 

Forming the logarithm of the price is conducive to a variance stationary process. However, the 

logarithm is defined only for positive values, which is not always given in the case of electricity 

prices. By adding a shift, the price minimum of the time series is set greater than zero (e.g., 

Jónsson et al. (2013)). Others define a positive price minimum for all prices below zero (e.g., 

/MWh by Keles et al. (2012)). A consistent predictor results from adding half of the vari-

ance of the residuals before retransforming the log-price forecasts.18 

A trend term in a time series is removed by differencing  that is the value in t 1 is subtracted 

from the value in t .19 The resulting process is an integrated process of order 1. Analogically, 

a cycle of S  periods is adjusted for by subtracting the value in t S  from the value in t . 

Differencing with lags of 1, 24 and/or 168 hours is common in electricity price modeling and 

serves to transform non-stationary stochastic processes into (weakly) stationary processes. 

By means of spike preprocessing, extreme values (outliers) of a dataset are removed or re-

p

which may be problematic in the case of electricity prices as they frequently exhibit positive or 

negative price spikes. There are several options to treat outliers, such as setting fixed or vari-

able thresholds or filters. However, the literature on electricity prices does not agree on how to 

identify and treat spikes or even on whether they should be handled. In this context, Janczura 

et al. (2013) provide an overview and several methods. 

                                                
18 See Wooldridge (2013). 

19 See Brockwell & Davis (2016). 
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Furthermore, in electricity price modeling, less common transformations are wavelet decom-

position20, normalizing prices within a range ,1 1  or subtracting the average price of the 

time series.  

3.2.2 Types of Models 

A variety of models has been developed and applied to electricity price forecasting. Figure 3.1 

presents the general classification of electricity price models.21  

 
Figure 3.1: Classification of electricity price models. 

 

In simulation models, the spot price forecast is simulated when the bidding strategies of market 

participants or the conditions of the transmission network, the data of generation units, the fuel 

prices or the demand are known. These models are based on fundamental price drivers such 

as the behavior of market participants or technical market restrictions.  

                                                
20 See Weron (2006) for application to electricity spot prices. 

21 As the literature does not agree on an unambiguous allocation to a model category, this illustration 
(and subsequent model descriptions) is based on the categories of Niimura (2006), Haghi & Tafreshi 
(2007), Daneshi & Daneshi (2008), Aggarwal et al. (2009a), Aggarwal et al. (2009b), Hu et al. (2009), 
Cerjan et al. (2013) and Weron (2014), who classify different model types. 
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Heuristic methods, such as a moving average of past values, offer a simple opportunity to 

forecast electricity prices and are frequently used as benchmarks to evaluate the accuracy of 

more sophisticated models. Another method is to use a price on a day (or hour) in the past, 

when the market conditions were similar to the current state. Due to the seasonality of seven 

days of electricity prices it is common to base the forecast on the price exactly one week prior. 

These are so-called naïve forecasts. In fact, the one-point-ahead forecast is a random walk (a 

transient Markov chain) with only one possible state. 

Computational or artificial intelligence models include learning algorithms for nonlinear or hid-

den patterns in a dataset, such as NN or data-mining techniques. Complex input-output rela-

tionships, which other model types are not able to capture, are identified by (nonparametric) 

training algorithms. 

Statistical models may be divided into stochastic and time series models. Stochastic Markov 

regime switching (MS) and jump diffusion focus on the distribution of time series data using 

latent variables.  

Time series models include autoregressive (AR), moving average (MA), ARMA and GARCH 

models.22 ARMA- and GARCH-type models are the standard time series processes. In an 

ARMA( p,q ) model, the electricity price is a function of its own p  past values and of q  lagged 

residuals. The ARMA process is assumed to be (weakly) stationary. Otherwise, differencing 

up to degree d  is applied. The resulting integrated process is called ARIMA( p,d,q ), intro-

duced by Box & Jenkins (1970). A seasonal ARIMA process (SARIMA) is modeled by adding 

the seasonal terms P,D,Q  for autoregression, differencing and moving average with a cycle 

length S . Its structure is denoted by Sp,d,q P,D,Q . In an ARFIMA (autoregressive frac-

tionally integrated moving average) model, differencing is applied fractionally. 

                                                

22 The definitions of ARMA and GARCH models and their variations relevant for this study are presented 
in appendix 3.6.1. 
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In a (S)AR(I)MAX model ((S)AR(I)MA with exogenous input), an exogenous (fundamental) 

variable such as the demand for electricity is included in the (S)AR(I)MA model structure. Sev-

eral authors use the notations dynamic regression (DR) and transfer function (TF) instead of 

ARX (AR with exogenous input) or ARMAX, in line with the notation of Box & Jenkins (1970).23 

The application of ARMA-type models is based on the assumption of homoscedasticity. In the 

case of heteroscedastic residuals (of e.g. the ARMA process), Engle (1982) and, in a more 

general approach, Bollerslev (1986) propose an ARCH/GARCH process with the conditional 

variance of residuals being is a function of q  past squared residuals and p  past conditional 

variances. There is a wide range of GARCH extensions in the literature to cover different spe-

cific characteristics of time series. Common GARCH variations in electricity price modeling are 

E-GARCH (exponential GARCH) and GJR-GARCH to take asymmetric effects into account 

(GJR refers to the names of the authors Glosten, Jagannathan & Runkle, see Glosten et al. 

(1993)).24 

Apart from Markov regime switching, regime shifts may also be modeled by means of threshold 

models including observable variables. For threshold models such as TAR(X) (threshold auto-

regressive) and SETAR(X) (self-exciting threshold autoregressive), the dataset is divided into 

periods that are separately modeled by a time series process to cover nonlinearities.  

Finally, in the recent past, hybrid models have become more important. Of course, there is not 

a single model type performing the best under each market condition. Consequently, combin-

ing models may help capture different patterns of the underlying time series process. 

3.2.3 In-Sample and Out-of-Sample Horizon 

The vast majority of publications empirically studying electricity price models and their fore-

casting performance address point forecasts, which are one time unit ahead (usually one day 

                                                
23 See Nogales & Conejo (2006), Weron & Misiorek (2005), Zareipour et al. (2006), Cruz et al. (2011), 

Nogales et al. (2002) and Conejo et al. (2005a). 

24 A comprehensive overview is given by Bollerslev (2009) and Teräsvirta (2009). 
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ahead), based on all current information. In most cases, the out-of-sample performance is of 

interest. 

The different ways of splitting the dataset into an in-sample and an out-of-sample period are 

fixed windows, expanding in-sample datasets, rolling in-sample windows and iterative 

schemes. Forecast accuracy measures are calculated on the basis of differences between 

forecasts and the actual time series. 

In the fixed-windows approach, the dataset is split into a calibration and a test period each of 

a fixed length. The regression coefficients are calibrated once, and forecasts for each point in 

time are based on these constant coefficients. It is important to choose points in time carefully 

subsets each consisting of a calibration and a test period to obtain results for different market 

conditions.  

In an expanding dataset the model coefficients are recalibrated at each point in time t including 

all past values of the time series; therefore, price tp̂ 1  is based on the whole history. 

A rolling sample, or sliding window, is very similar to an expanding dataset, with the only ex-

ception that the length of the calibration period is not extended in each step but constant. 

 

In an iterative re-evaluation, the calibration and test period do not cover the whole dataset. In 

the first step, parameters are calibrated, and forecasts are made for a fixed time horizon (e.g., 

seven days) as in a fixed dataset. In the second and all subsequent steps the calibration win-

dow is moved forward by one time unit yielding the next forecast for the time horizon of the 

same fixed length as before. This is repeated iteratively to obtain several forecasts over a fixed 

time horizon. 
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3.2.4 Forecasting Accuracy Measures 

In the literature on electricity price modeling, it is common to evaluate models on the basis of 

their forecasting performance. In general, the best forecasts are those minimizing the forecast-

ing errors with respect to the actual prices. The type of measure preferred depends on the 

focus of a study. Hyndman & Koehler (2006) categorize accuracy measures as follows: scale-

dependent measures, measures based on percentage errors, measures based on relative er-

rors, relative measures and scaled errors.  

Scale-dependent measures, such as the commonly used MAE and RMSE are calculated in 

the unit of the price forecast and can be interpreted as monetary effect. They are not useful to 

compare values of different scales (different currencies or intervals with high or low prices). 

The MAE represents the absolute errors of a forecast, whereas the RMSE allows emphasizing 

extreme deviations from the actual value and corresponds to common risk measures. The 

error (ME) serves as indication for the bias of the forecast because negative and positive dif-

ferences offset each other.25  

For measures based on percentage errors forecast errors are divided by the current level of 

the price and therefore are not scale dependent. A very common measure for electricity price 

forecasting is the MAPE, which divides absolute errors by the actual prices. However, refer-

ence levels that are close to zero or negative can lead to biased results when calculating the 

mean. Interpretations might be misleading when the ratio becomes negative or infinite. The 

daily MAPE (dMAPE) and the weekly MAPE (wMAPE) address this problem by taking daily or 

weekly average price instead of hourly prices. Voronin et al. (2014) apply the adapted MAPE 

(aMAPE), which uses the average price of the whole period under study. Weron (2006) and 

others also refer to dMAPE and wMAPE as MDE/MWE (mean daily/weekly error), daily/weekly 

cient (TIC) represents a normalized RMSE. Additional information on forecasting accuracy 

                                                
25 As electricity prices are often log-transformed it should be mentioned that calculating a scale-depend-

ent measure on a log-price basis is indeed a measure based on the percentage forecasting error. 
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may be gathered by calculating the error variance (EV or MAPE-EV) or the maximum error 

(maxAE or maxAPE). 

Hyndman & Koehler (2006) propose measures based on scaled errors, the mean absolute 

scaled error (MASE) and the root mean square scaled error (RMSSE), which represent the 

forecasting accuracy in relation to the accuracy of the naïve forecast, which might be equal to 

the price seven days ago. The version of the TIC related to the naïve forecast, which is applied 

by Serinaldi (2011), may also be considered a scaled error measure. 

Measures based on relative errors also serve to avoid scale dependency. The forecasting error 

is divided by the error of a benchmark forecast, which is normally the naïve forecast. For the 

mean deviation from the best (mdfb) in each point in time the best available forecast (e.g., with 

the lowest absolute error) is used as the benchmark forecast. 

For a relative measure (e.g. relative MAE/MAPE/RMSE) the value of the accuracy measure 

for a forecast is divided by the accuracy of the benchmark model. 

To verify the significance of results a test by Diebold & Mariano (1995) may be executed. 

Giacomini & White (2006) provide a generalized form of the Diebold-Mariano (DM) test. 

3.3 Characteristics of the Analyzed Studies 

Empirical studies inevitably differ regarding the conditions of their model selection process, 

their data basis and the evaluation of their results. To characterize the common approaches 

of time series modeling of electricity spot prices, the recent literature from 2000 to 2015 is 

analyzed in this section.  
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First, the aggregated publications are summarized for a general characterization of modeling 

and forecasting electricity spot prices.26 Second, common practices for the use of price data 

and explanatory variables as well as performance measures are presented in detail. 

3.3.1 Characteristics in General 

During the literature research, in the first step, publications that focus on time series models 

are selected. In the second step, only studies that evaluate the forecasting performance with 

common accuracy measures in electricity price modeling are considered. This literature anal-

ysis comprises 86 empirical studies. 

The most research articles have been published in Energy Economics (16 publications) and 

IEEE Transactions on Power System (11). Other journals include Electrical Power and Energy 

Systems (5) and Applied Energy, Electric Power Systems Research, Energy Conversion and 

Management (each 4) and International Journal of Forecasting (3). In addition to working pa-

pers (4) and papers presented on conferences (17), publications in other journals amount to 

18 publications. 

In recent years, due to the total amount of publications, research has been increasing, with 17 

articles from 2000-2005, 26 articles from 2006-2010 and 43 from 2011-2015. A trend towards 

hybrid models can be observed. Interestingly, on average (median), datasets end three years 

before the time of publication. Data from the 2000-2002 and 2008-2012 periods have been 

studied more in depth than others. During the first period in the early 2000s, competitive power 

markets evolved.27 Studies on the Californian and Spanish market mainly focus on data from 

these years. The maximum in the second period results from the increasing number of studies 

over the last five years. 

                                                
26 If information about any step in preprocessing data, specifying the models or analyzing results is not 

provided, we do not mention this in the results of our analysis. If those steps can be interpreted implic-
itly from results, they are taken into consideration for the analysis. 

27 For a timeline of the emergence of power markets during the late 1990s and early 2000s, see Weron 
(2006). 
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The most analyzed markets, covering 88 of 110 studies, are California (17 times), Spain (16 

times), Nord Pool (16 times), Germany/Austria (13 times), PJM (Pennsylvania-New Jersey-

Maryland, 12 times), UK (United Kingdom, eight times) and Italy (six times). 

3.3.2 Frequency and Segmentation of Data 

For the vast majority of scientific papers, the 24 hourly prices of each day (or 48 half-hourly 

prices in the UK) serve as data basis for the model calibration. Approximately 80 % of all 

studies work with hourly prices. In fewer cases, daily or even weekly average prices are em-

ployed. Gianfreda & Grossi (2012a), Maciejowska & Weron (2013) and Raviv et al. (2015) 

include hourly data in daily price models.  

The 

or split into several vectors before modeling. A time series with 24 hourly prices can be repre-

 depending on other criteria (such as weekend vs. 

working day) is also possible. A segmentation or split of the data is useful if time series of 

different hours or days each follow a specific process. More than 80 % of all articles work with 

single-series models.28 This means that varying linear relationships for different hourly price 

series, which are very likely through a 24-hour price cycle, are not covered by segmenting the 

data into 24 single vectors. For the detailed numbers of publications of a certain data frequency 

and the segmentation of the data see Table 3.1. In conclusion, the common approach is a 

single-series model of hourly data. 

Table 3.1: Number of publications depending on frequency and segmentation of used data. 

 Frequency Segmentation 
 

Hourly Daily Weekly Monthly Single series 
Thereof using 

daily or weekly prices 24h 
Split 

(day of week) 
# 68 18 1 1 71 19 18 4 

 

                                                
28 This number includes 19 articles with a lower frequency than hourly prices, which cannot be modeled 
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3.3.3 Data Transformation 

Data transformation is applied to the time series to generate stationary data. Table 3.2 pre-

sents the transformations normally conducted and their number of applications in different pub-

lications. In almost half of all publications a log-transformation is applied to the price data 

before modeling. A trend of using this transformation less often can be observed on the market 

of Germany/Austria, where a negative price minimum was set in 2008 and on the Nordic mar-

ket, where a negative price minimum was set in 2009. Since then, avoiding log-transformation 

has become more common, with an increased occurrence of negative prices. 

Table 3.2: Number of publications for different types of price data transformation. 

Type # Type # Type # 
Log-transformation 41 Wavelet transform 11 Other filters 3 

Differencing 35 Demeaning 4 Box-Cox transformation 1 

No transformation 23 Normalizing [-1,1] 3 Others 3 

Outlier treatment 11 Deseasonalizing 3   

 

Differencing, which serves to adjust for trends or seasonal effects, can be applied once or 

more often to a time series. Differencing of degrees of one or two are the normal cases. In 

more than half of all cases, seasonal effects are adjusted for by a differencing lag correspond-

ing to the seasonal cycle of 24 hours or seven days. Log returns, where log and differencing 

are applied in common, are modeled in 18 studies. Although spikes are often addressed as a 

challenge in the modeling of electricity prices, their particular treatment is indicated only in 11 

studies. In 23 studies, the original data are modeled without any adjustment. 

3.3.4 Types of Models 

In the literature, different types of models are proposed for application for electricity prices. In 

Table 3.3, the common types used in research papers are summarized by their number of 

applications. The table contains the total number of models and the number of publications 

where at least one specification of the respective model type is analyzed. If models are a part 

of hybrids or other combination types, all individual models are counted. In addition, all funda-

mental models that include an autoregressive part (as in Karakatsani & Bunn (2008) and Chen 

& Bunn (2010)) are considered as time series models. The same applies to reduced form 
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models. Mean reversion (MR) models can be interpreted as AR processes. For DR and TF we 

use the notations ARX and ARMAX. Integrated processes are not listed separately. 

In total, 450 model specifications have been studied in 86 publications (on average 5.3 models 

per study). According to the number of single models and the number of publications the most 

widely applied model types for electricity spot prices are AR(X) and ARMA(X), which are com-

bined with changing exogenous variables, with RS, with sophisticated algorithms or modeled 

as a part of hybrid models. (AR(MA)(X)-)GARCH models are also frequently studied, again 

partly in combination with other model types. Regime shift variations also belong to the stand-

ard models for electricity prices, as price characteristics are not constant over time. This cate-

gory includes threshold models (TAR, STAR) and Markov regime switching. In 18 sources, a 

naïve forecast is considered as benchmark for the analysis of the forecasting accuracy.  

Table 3.3: Number of different model types applied in total and number of publications.  

Combinations of two or more model types are assigned to all applicable categories. A total number of publications 
with at least one model in a certain group is indicated (left values). The number of publications using one of the 
more detailed subgroup models is included in brackets. The right values indicate the total number of models under 
study. It should be noted that pure GARCH means the time series itself is modeled instead of the residuals of an 
AR(MA) process. 

Model Thereof # of publications # of model types 

ARMA(X) ARMA/ARMAX/ARFIMAX 49 (31/25/2) (59/43/5) 

AR(X) thereof AR/ARX 44 (24/32) (43/76) 

Regimes MS (and similar)/threshold models/others 21 (11/10/5) (26/15/6) 

(AR(MA)(X)-)GARCH thereof ARMA-/AR-/pure GARCH 30 (16/9/5) (39/14/15) 

MA  7  6 

LR  5  7 

Sophist. algorithms  14  26 

Naïve  18  22 

NN  52  23 

Others  18  25 

 

There is no unanimous standard model for electricity spot prices. A few trends can be identi-

fied. In an effort to find more accurate models, the share of sophisticated models has in-

creased. More interestingly, in the recent past (2008 and later) ARMA(X)-GARCH models have 

been preferred to AR(X)-GARCH models, which was the reverse in earlier years. This also 

applies, though in a less pronounced way, to a shift from AR(X) to ARMA(X) models (if models 

that are not part of a sophisticated model structure or a combined forecast are considered). 
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Furthermore, in recent years, a slight shift can be observed from the application of AR(MA)(X) 

models to GARCH-type models.  

The procedure of identifying an adequate model and model structure, estimating the parame-

ters and checking the resulting models corresponds to the modeling approach of Box & Jenkins 

(1970). In the studies, it is common to use (partial) autocorrelation function (PACF, ACF) plots, 

significance tests on stationarity (e.g., ADF test or PP test) and analysis of the autocorrelation 

of the residuals (e.g., with a Ljung-Box test). Box & ) principle of parsimonious 

modeling to avoid overfitting is complied with by minimizing information criteria (AIC  Akaike 

information criterion, BIC  Bayes information criterion).  

The calibrated models differ regarding their specific lag structures. GARCH models are gener-

ally modeled as GARCH(1,1). AR(MA)(X) are designed in varying ways. It is common to rep-

resent the seasonal structure of electricity prices by incorporating a seasonal lag structure of 

24 hours or seven days for the AR term, the MA term or both. Most models are specified this 

way. All other studies, which do not take into consideration the seasonal price behavior by a 

seasonal lag structure, include exogenous variables determining the seasonality. 

3.3.5 Exogenous Variables 

Sixty publications include one or more explanatory variables in their time series models. Table 

3.4 lists the different types of explanatory variables, including the number of publications in 

which they have been used. 

The demand for electricity, represented by load and consumption, is the most common explan-

atory variable. The demand for electricity determines the price in a market with constant pro-

duction capacities in the short term for a non-storable good. Therefore, demand is expected to 

be the main driver of electricity prices.  

One third of studies incorporate seasonal dummy variables to model seasonal effects of week-

days, holidays, time of year or time of day. Dummies can represent the seasonal effect if a 

demand variable is not included as occurred in 13 studies. They also serve to catch nonlinear 

effects in a time series. In 12 cases seasonal dummies and demand are considered. This is 
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useful if price relations change depending on the level of demand. In the recent past, the share 

of studies incorporating time-dependent dummies has been increasing. The reason might be 

that these variables are easy to create and that they aptly capture the price behavior.  

Table 3.4: Number of publications using different types of exogenous variables.  

The total number of publications incorporating at least one variable type in a certain group is indicated (left values) 
as well as the number of publications using one of the more detailed subgroup variables (right values). 

Type of variable Thereof              # 

Load / consumption  36  

Seasonal dummy variables Hour of day/weekday/holiday/month/season 28 8/23/5/7/3 

Renewable energy Wind/hydro/solar power 9 7/3/2 

Hydro power (fundamentals) Level/inflow of reservoir 4 4/1 

Commodity prices Natural gas/coal/crude oil/CO2 emission cert. 12 10/4/3/3 

Weather (fundamentals) Temperature/precipitation/wind/others 8 7/2/1/2 

Other technical restrictions  11 26 

Prices from other markets  4  

Trend  5  

Seasonality (sine)  3  

Others  9 19 

 

Nine studies incorporate the influence of power generation from RES, of which all were pub-

lished after 2010. This is due to the availability of data, and it shows the increasing influence 

of power generation from renewable sources on electricity prices.  

3.3.6 In-Sample and Out-of-Sample Horizon 

Evaluations of forecasting accuracy are normally conducted on an out-of-sample basis. The 

dataset is divided into a calibrating (in-sample, IS) and testing (out-of-sample, OS) period. 

Twenty-nine studies use a rolling sample approach, and 16 studies use an expanding dataset, 

which means a new model is calibrated each day. Four of these studies iteratively re-evaluate 

forecast performance, and nine studies do not analyze an out-of-sample period. In 45 cases, 

the dataset is divided into IS and OS horizons, each with a fixed length; this is, therefore, the 

most common approach.29 The ratio of applying rolling samples, expanding datasets and fixed 

                                                
29 However, it is possible that this number is slightly lower because the chosen approach is only refer-

enced explicitly in the other cases. 
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windows is constant during the period under study, without exhibiting any trends. With an in-

creasingly available data history in the more recent past, the total time intervals used in the 

studies have also been extended. 

Throughout the scientific literature there is no general consensus regarding how to split a da-

taset into an in-sample and an out-of-sample subset (Hansen & Timmermann (2012)). For all 

analyzed studies, the resulting average ratio of in-sample length vs. total length is 0.7, which 

corresponds to an in-sample-/out-of-sample ratio of approximately 2.3.30 For a fixed dataset 

the ratio is 0.8, for rolling samples 0.6 and for studies with expanding datasets 0.5. 

Table 3.5 shows the in-sample and out-of-sample lengths and their distribution divided into 

subcategories. Most studies use in-sample lengths below one year and are short. A length of 

50 days has been used more often than other lengths; however, this is because three sources 

refer to Conejo et al. (2005b). Studies without out-of-sample testing use clearly longer time 

horizons. 

Table 3.5: Number of publications depending on the length of IS and OS periods. 

Horizons are indicated in days (d) or years (y). Fix/rolling includes all publications from these two categories; only 
IS comprises papers without out-of-sample testing; and expanding is divided into the IS length of the first (shortest) 
and the last (longest) parameter calibration windows. For publications that include several studies with different 
horizons, the maximum values are taken. The values for each horizon are rounded values. 

Horizon 1d 3d 7d 14d 21d 30d 50d 0,25y 0,5y 0,75y 1y 1,5y 2y 3-5y > 

IS 

Fix/rolling   1 4 4 3 11 3 5 5 5 4 6 11 1 

Only IS           4 2 1  3 

Expanding 
(first est.) 

       1 2 7 3  1  2 

Expanding 
(last est.) 

        1 1 1 5 3 1 2 

OS  7 2 25 1 2 5 5 1 6 8 7 1 3 5 1 

 

Horizons of expanding datasets often begin at a length of 0.75 years and end at approximately 

1.5 years, which both are longer than they are for fixed datasets. This is plausible as the use 

of expanding datasets is motivated by maximizing the available in-sample horizons. On aver-

age, the period added to the length at the beginning is below one year. 

                                                
30 This value does not include only in-sample-studies. The ratio for rolling samples is the IS length vs. 

the total OS length, and for expanding datasets, it is the IS length of the first parameter calibration vs. 
the OS length.  
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The calibrated models are evaluated out-of-sample regarding their forecasting performance. 

Clearly, most performance analyses are based on a horizon of one week. This covers one 

pricing cycle of weekly seasonality. Twenty of these 25 publications base their evaluation on 

several one-week-periods instead of using a single horizon to 

for different market conditions or seasons of a year.  

3.3.7 Forecasting Accuracy Measures 

In most cases, the forecasting performance of a model is evaluated by accuracy measures. 

The normally applied measures in electricity price forecasting are listed in Table 3.6. In total, 

226 accuracy measures are used, i.e., an average of 2.6 criteria per publication. The average 

value has been on a trendless level between 2 and 3 in recent years. When comparing the 

forecasting performances of different models, normally the conclusions might be independent 

of the choice of a certain accuracy measure. However, contradictory results can still occur, 

which is a reason to take more than a single criterion. To measure such discrepancies the rank 

correlation coefficients between MAE, MAPE and RMSE in the forecasting studies are calcu-

lated.31 Across all studies the minimum values for the rank correlations are: MAE vs. RMSE: 

0.83, MAE vs. MAPE: 0.81, RMSE vs. MAPE 0.66 (whereas in this case one study with the 

lowest rank correlation has not been taken into consideration). So, the performance measures 

are highly correlated. 

The most common criteria are (d/w/a)MAPE, which are used at least once in two thirds of all 

publications. Furthermore, it turns out that in recent years, there has been no trend indicating 

a less important (hourly) MAPE. This might be expected due to an increasing number of prices 

around or below zero. The other main criteria are RMSE (used in 62 % of all sources) and 

MAE (43 % of all sources), which are scale dependent. In total, scale-dependent measures 

                                                
31 The rank correlation is calculated as follows: Within each study, a model ranking is created based on 

the forecasting accuracies, e.g., first in terms of MAE and, second, in terms of RMSE. If one study 
contains the results for two or more separate forecasting windows, the ranking is created for each 
forecasting window. This means, each rank number may occur several times depending on the number 
of separate forecasting windows. Afterwards, the correlation of both rankings is calculated for the 
whole study. 
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and measures based on percentage errors are the standard criteria. In almost a half of all 

studies, both types of measures are applied in common. 

Table 3.6: Number of publications applying accuracy measures of different types.  

Percentage errors are on the left-hand side and scale-dependent measures are placed in the center of the table. 
Other categories and significance tests are listed on the right-hand side. 

Percentage errors #   Scale dependent # Others # 

(w/d)MAPE 58   RMSE 53 Scaled errors 3 

thereof          MAPE  37  MAE 37 Relative measure 3 

dMAPE  11    Based on rel. er-
rors 2 

wMAPE  16      

aMAPE  1    Significance tests 17 

(w/d)MAPE-EV 6     thereof DM 13 

thereof wMAPE-EV  5  EV 7   

thereof dMAPE-EV  3      

maxAPE 6   maxAE 6   

TIC 7   ME 5   

Others 10   Others 13   

Total 96   Total 121   

 

However, it should be taken into consideration that in 41 publications, price data are log-trans-

formed. In 17 of these studies, forecasting results are not retransformed, of which six apply 

both types of accuracy measures and nine apply a scale dependent one. Then, error measures 

are in fact on a percentage basis. Consequently, we conclude that the majority of evaluations 

regarding forecasting accuracy are based on the evaluation of percentage errors. Measures 

assigned to other categories based on scaled or relative errors and relative measures are less 

common. In the minority of all cases, the results are verified by the application of a significance 

test (e.g. Diebold-Mariano), which means such a test cannot be regarded as a standard pro-

cedure in the evaluation of electricity spot price forecasts. 

3.4 Quasi-Meta-Analysis 

Model types, data transformation, the use of explanatory variables and relevant time horizons 

vary throughout the studies, as described in section 3.3. Most studies compare the forecasting 

performance of different model types, but there are several sources that include variations of 

the modeling conditions in their accuracy assessment. In this section we conduct an evaluation 
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of the forecasting performance of a wide range of modeling variations in the literature. First, 

the methodology is described, followed by the results and a robustness check. 

3.4.1 Methodology 

The applied quasi-meta-analysis works as follows: For each of the 86 publications under study, 

first, the forecasting accuracy of different model types is compared. We compute the relative 

improvement of an accuracy measure if a price forecast is generated by model no. 1 instead 

of no. 2. If more than one criterion is used, we calculate the median improvement. The same 

applies if a publication includes several sub-studies on different markets or points in time. We 

argue the use of the median by high rank correlations of MAE, RMSE and MAPE (see section 

3.3.7) implying that the conclusions regarding the forecasting performance normally are inde-

pendent of the applied measure. 

Second, the average relative improvement is calculated for all studies that compare the same 

models no. 1 and no. 2.32 The same procedure is adopted to determine the effect of including 

explanatory variables, using other data transformations or varying other modeling conditions. 

Third, the results are tested for significance by means of the signed-rank test of Wilcoxon 

(1945), which is used to verify median values significantly larger than zero (1-sided test).33 

In an additional vote count, the number of studies is counted in which model no. 1 performs 

better than no. 2 or vice versa or if the results are neutral. If the difference of the forecasting 

accuracy between two model types is below 1.5 %, we regard this as a neutral result. However, 

we take into consideration, whether the results of the studies have been tested for significance. 

Publications with controversial results for different sub-studies may be counted in both lists. 

We also take into account implicit results, which are not discussed as findings but are men-

tioned in the analysis of the forecasting performance in a study. 

                                                
32 To generalize results, at this point, we have to abstract from the detailed lag-variable structures of the 

models as they differ across studies. 

33 However, when indicating the significance of results, the following needs to be taken into considera-
tion: Only 17 of all studies report statistics of significance tests. In a short survey among the authors 
of the other studies (reply rate: 29 %), only two authors confirmed to apply significance tests. There-
fore, the term statistically significant is avoided when describing the findings. 
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Afterwards, the results are validated by a robustness check. On the one hand, the number of 

relevant studies is either enlarged by treating all sub-studies as single studies instead of ag-

gregating their results or reduced by considering only studies, in which the model performance 

is analyzed on an out-of-sample basis. On the other hand, the average relative improvement 

is calculated differently. Instead of using the median value, the individual results are weighted 

by the total length of the dataset under study or the length of the out-of-sample window. 

3.4.2 Results of Forecasting Performance Evaluation 

The conclusions of all publications under study are summarized in the form of a vote count 

regarding the forecasting performance in Table 3.7, which lists the total number of publications 

outperforming their competitors and the number of publications, in which results have been 

tested for significance. In addition, in Table 3.8 the average relative improvements of forecast-

ing accuracies are quantified when model types are compared with each other. The tables 

contain four categories of comparisons: model types, exogenous variables, model calibration 

and transformations. Based on the aggregated results the following conclusions can be drawn: 

Forecasts of the (AR(MA((X)-)GARCH-type models outperform their AR(MA)(X) counterparts 

by 6 %, which means that modeling conditional heteroscedasticity is the better approach for 

electricity spot prices. A time or market dependent trend could not be observed regarding the 

outperformance of any model.34 Still, the vote count exhibits that GARCH forecasts might be 

outperformed by forecasts of ARMA models under certain circumstances. Compared to ARMA, 

Garcia et al. (2005) and Knittel & Roberts (2005) identify better GARCH forecasts at times of 

high volatility and worse forecasts at low volatility. According to this result, we conclude that 

(AR(MA)(X)-)GARCH models are the most appropriate time series models for electricity spot 

prices. This corresponds to our finding that in our sample in recent years a slight shift can be 

observed from the application of AR(MA)(X) models to GARCH-type models. Nonetheless, 

GARCH models are not applied more often than AR(MA)(X) models. 

                                                
34 This also applies to all subsequent findings regarding the forecasting performance. 
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ARMA(X) models, in turn, yield better forecasts than AR(X) models at approximately 3 %. 

Again, this result corresponds to a prior finding: a small shift from AR(X) to ARMA(X) in recent 

years. The ranking of GARCH, ARMA(X) and AR(X) and the subsequent findings in general 

are independent of the markets under study or the dates of publication of the different studies; 

therefore, they might be considered generally valid. 

Table 3.7: Vote count for comparison of different model types and specifications regarding their forecasting 
performance. 

Publications whose results are in favor of a certain model type or specifications are listed below, including the total 
number of sources. Publications with unambiguous results are listed in the column not clear. Publications with 
controversial results depending on varying constraints may be listed in both type 1 better and type 2 better. The 
number of publications applying a significance tests is included in brackets. A detailed vote count, which also pre-
sents identifiers of the studies assigned to the three categories, is provided in Table 3.12 in appendix 3.6.3. 

Type 1 Type 2 T1 better 
# 

unclear 
# 

T2 better 
# 

GARCH(X) AR(MA)(X) 12 3(1) 4 
ARMA(X)/TF AR(X)/DR 7 4 1 
ARMA MA 2 - - 
AR MA 2 - - 
AR LR 2 - - 
Time series models Naïve 17(4) 1 - 
Sophisticated GARCH types Simple GARCH types 4(2) 4(1) 2 
Sophisticated ARMA types Simple ARMA types 6(1) 3(1) - 
MS - 6 2 2 
Threshold models - 5(1) 3 1(1) 
AR(MA)X Futures models 1 1 - 
NN GARCH 2 - 1 
NN ARMA 7 1 4(1) 
Hybrid models Single models 12 - - 
Combined forecasts Single models 5(3) - - 
Exogenous variables Only spot prices as input 21(5) 4(1) 3 
                  Effects of demand 6 1 - 
                  Effects of temperature - 2 3 
24h, split SS 4 - - 
Multivariate Univariate 3 - 1 
Long calibration window Short calibration window 5 - - 
Rolling sample Fixed in-sample 1 1 1 
Extending Rolling 3 - - 
Increasing number of lags Small number of lags - 2 - 
Spike preprocessing No transformation 3 3 - 
Seasonal adj. No transformation 2 - - 
Log-transformation No transformation - - 1 
Differencing  - - 1 
Wavelets No transformation 6 - 1 

 

Combining ARMA or GARCH models with regime switching approaches and threshold models 

does not generate better forecasts. However, it should be noted, that improvements are con-

siderable at approximately 6 % if regime-shift-type models (regime switching and threshold 

models) are regarded as one model group. Therefore, we regard the inclusion of regime shifts 

into time series models to be useful. 
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Table 3.8: Average forecasting accuracy improvements by using a model of type 1 instead of type 2. 

# indicates the number of studies in which improvements are quantified. The signed-rank test of Wilcoxon (1945) 
is used to verify the medians significantly larger than zero (1-sided test). */**/*** indicate significance levels of 
5 % / 1 % / 0.1 %. 

 Type 1 Type 2 Relative improvement # 
  median sig. mean min/max  
GARCH(X) AR(MA)(X) 6.0% * 11.5% [-32.5% / 77,5%] 18 
ARMA(X) AR(X) 2.6% * 6.6% [-1.6% / 34.3%] 11 
Time series models Naïve 29.8% *** 31.0% [0,8% / 66.9%] 18 
Sophisticated GARCH Simple GARCH 1.0%  4.8% [-19.4% / 54.6%] 9 
Sophisticated ARMA Simple ARMA 6.3% * 23.1% [1.1% / 71.1%] 8 
Regime Switching Linear models 11.8%  13.8% [-4.6% / 57.5%] 7 
Threshold models Linear models 0.3%  6.6% [-1.2% / 26.9%] 8 
Neural Networks GARCH(X) 9.6%  3.3% [-12.8% / 13.2%] 3 
Neural Networks ARMA(X) 4.0%  4.4% [-18.3% / 29.1%] 11 
Hybrid models Single models 38.2% *** 37.9% [2.3% / 80.8%] 11 
Combined forecasts Single models 6.7%  7.2% [3.6% / 11.7%] 4 
Exogenous variables Only spot prices as input 5.6% *** 8.0% [-12.4% / 51.0%] 24 

Effects of demand  5.1% * 17.4% [-0.4% / 51.0%] 7 
Effects of temperature  -4.5%  -5.3% [-12.4% / 12.9%] 4 
24h, split SS 13.0%  12.6% [1.8% / 22.6%] 4 
Multivariate Univariate 7.5%  7.9% [-2.2% / 18.9%] 4 
Spike preprocessing Original data 19.1%  26.4% [0.3% / 67.1%] 4 
Wavelets No transformation 22.2% * 20.3% [-8.9% / 32.8%] 7 

 

Sophisticated GARCH models such as E-GARCH or GJR-GARCH, which have a more com-

plex structure to describe the volatility process and capture asymmetric effects, do not yield 

improved forecasts compared to the standard GARCH process. Sophisticated ARMA struc-

tures with variations in their calibrating procedure, in turn, are clearly favorable to simple ARMA 

models with forecasting improvements by 6 %.  

Forecasts of neural networks (NN) models are more accurate than GARCH(X) or ARMA(X) 

forecasts, but the differences are not significant based on the results of the test of Wilcoxon. 

However, in the case of ARMA(X) models, the vote count results contradict these findings and 

after 2011, there is no study with forecasts by NN models outperforming time series models. 

In general, we conclude that the forecasts of time series models are not outperformed by NN 

with a slight tendency towards NN. 

It is possible that combining models helps capture different patterns of the underlying time 

series processes. These model types can combine the benefits of several individual models. 

When different forecasts are simply combined into one forecast, performance is increased by 

7 %. These forecasts are based on several individual forecasts, and the final forecast is gen-

erated by a selection algorithm or weighting algorithm. 
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Another way to combine models is to generate hybrid models, in which the forecasts of one 

model serve as the input of another model. Hybrid models outperform time series models by 

38 %. This corresponds to the results of the literature reviews of Hu et al. (2009) and Cerjan 

et al. (2013), who propose hybrid models or combined forecasts. However, as this study is 

focused on time series models, we regard hybrid models as one general model category. The 

structure of hybrid models may vary to a high degree, and their performance depends on their 

specific design. Therefore, the results should be interpreted with caution. 

Naïve forecasts are without exception outperformed by time series models with an increased 

forecast accuracy of 30 %. This result can be expected because naïve forecasts only serve as 

a benchmark for other models.  

Adding additional information by (fundamental) explanatory variables or dummy variables for 

hours or days improves forecasting accuracies by approximately 6 %. On the other hand, in 

three of four cases the use of temperature indices, which indirectly affect electricity prices, 

results in worse forecasts (on average -5 %). If the demand is considered the only explanatory 

variable, forecast accuracy is increased by 5 %. Compared to the average improvements by 

incorporating explanatory variables, this means the accuracy of forecasts is increased by add-

ing more information than just the demand. We conclude, that fundamental factors such as 

demand, which immediately affects electricity prices, are more useful. 

The group of explanatory variables is heterogeneous, and the normal case is that more than 

one variable is included in the model. To separate the effects of the individual variables we 

conduct an OLS regression on the relative improvement as dependent variables and dummies 

for the used inputs demand, temperature, time-dependent dummy variable, RES, other funda-

mentals and other markets. The results are listed in Table 3.9. Due to a small sample size, the 

only variables with signifi

The regression results show that the effects 

of demand and other variables are positive on forecasting accuracy and that the effect of tem-

perature is negative. The demand variable, the most common explanatory variable, reveals 

the highest effect size. 
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Table 3.9: Results of OLS regression of average forecast accuracy improvements. 

The OLS regression is conducted on dummy variables that indicate the inclusion of different explanatory variables 
in the respective study. The indicator is set as 1 if the study uses a certain variable and 0 otherwise. Regression 
R1 includes all 86 publications (whereof three vary their explanatory variables). Standard errors are listed below 
the regression coefficients in parentheses. /*/**/*** indicate significance levels of 10 % / 5 % / 1 % / 0.1 %. 

 R1 
Demand 11.6 (2.1) *** 
Temperature -6.2 (3.7)  
Time dependent dummy variables 0.7 (2.6) 
Fundamentals 0.8 (3.2) 
Renewable energy sources 0.7 (3.6) 
Other markets 3.5 (4.9) 
Constant 0.3 (0.8) 
Observations 89 
R² 0.40 
Adjusted R² 0.36 

 

Furthermore, splitting data instead of modeling single series improves forecasts by 13 %. Mul-

tivariate modeling yields increased forecast accuracy, but the reported test statistic is not sig-

nificant due to a too small sample size.  

Considering the benefits of splitting data, regime shifts and time dummies we conclude that 

taking into account time-varying structures yields better forecasts. Nonetheless, for reliable 

forecasts the calibration horizon should be as long as possible to cover different market con-

ditions instead of applying a rolling sample estimation. A longer in-sample period turns out to 

be useful, but studies do not report quantitative values for this finding. Transformations of the 

price series are analyzed in only a few studies. The wavelet transform improves forecasts, and 

others, such as spike preprocessing, log-transformation and seasonal adjustment, have been 

studied in too few cases to draw a conclusion. 

3.4.3 Robustness Check 

Across studies, the results vary widely. Within this literature analysis, it might be critical that 

we use the median as the measure on which the analysis of model performances is based on 

and that the results of different publications are not weighted according to the length of input 

data. Studies including different markets for a long time horizon might be more reliable.  

Therefore, the results are validated with four versions of a robustness check. First, if a publi-

cation contains more than one sub-study on different markets or points in time, all individual 
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studies are taken into consideration for the calculation of the average effects. Therefore, in 

these checks, some publications will be overrepresented in the results. 

Second, to compare the out-of-sample performance of different models, studies that are based 

only on in-sample results are excluded. For both checks, the median serves as the criterion 

for the average difference between the forecasting accuracy of two models. 

The results of each study are, third, either weighted by the total length of the input time series, 

or fourth, weighted by the length of the out-of-sample window. In these cases, the mean value 

is the average accuracy improvement of model no. 1 vs model no. 2. Both steps serve to 

validate that our results are still stable when more extensive studies (which might be more 

reliable) are given more weight. 

The results for the different variations are presented in Table 3.10. In general, the effects are 

stable in terms of sign, significance and magnitude. Considerable changes are mainly ob-

served for effects that have not turned out to be significant. 

Table 3.10: Robustness check of average forecasts improvements. 

   Average improve-
 

Type 1 Type 2 All 
studies 

Incl. 
sub-

studies 
w/o in-sam-
ple studies 

Length 
of  

dataset 
Length OS 

window 

GARCH(X) AR(MA)(X) 6,0% * 11.5% ** 6.0% * 8.0%  5.9% 

ARMA(X) AR(X) 2,6% *  2.2% * 2.7% 
 

7.0%  3.4% 

Time series models Naïve 29,8% *** 30.0% *** 29.8% *** 23.3% 20.4% 

Sophisticated GARCH Simple GARCH 1.0%   1.0%   1.0%   2.5% -1.7% 

Sophisticated ARMA Simple ARMA 6.3% * 5.4% * 6.3% * 9.4% 16.4% 

Regime Switching Linear models 11.8% 
 

11.8% 
 

11.8%   16.9% 10.9% 

Threshold models Linear models 0.3%   0.3%   0.2%   2.8% 0.7% 

Neural Networks GARCH(X) 9.6%   9.6%   9.6%   10.1% 11.5% 

Neural Networks ARMA(X) 4.0%   5.5%   4.0%   1.4% 0.1% 

Hybrid models Single models 38.2% *** 40.6% *** 37.9% *** 42.2% 42.9% 

Combined forecasts Single models 6.7% 
 

8.2% * 6.7% 
 

6.0% 5.7% 

Exogenous variables Only spot prices as input 5.6% *** 4.9% *** 5.5% *** 7.7% 7.5% 

Effects of demand  5.1% * 4.7% ** 18.4%   17.0% 23.7% 

Effects of temperature   -4.5%   -5.5%   -4.5%   -5.6% -2.2% 

24h, split SS 13.0% * 13.0% * 13.0% * 11.7% 5.6% 

Multivariate Univariate 7.5%  7.5%  4.0%  10.2% 9.6% 

Spike preprocessing Original data 19.1%  26.7%  19.1%  19.8% 51.9% 

Wavelets No transformation 22.2% * 22.2% * 23.4% * 14.3% 11.2% 
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Consequently, our results of the forecasting performance evaluation are generally confirmed 

by the robustness check. 

3.5 Interim Results 

This chapter provides a comprehensive literature review of the time series modeling and fore-

casting of electricity prices from 2000 to 2015. We analyze 86 empirical publications with 450 

models regarding their specific constraints. Various statistics offer a characterization of the 

literature in this area. We even quantify the effects of the use of different model types on the 

accuracy of forecasts. Thereby, we fill the gap of missing statistics-based literature reviews 

dealing with the forecasting performance on electricity markets. We refer to our quantitative 

approach of analyzing literature as a quasi-meta-analysis  a type of studies which so far has 

not been applied in the research on electricity markets. 

In our analysis, most studies have been conducted on the markets of California, Spain, the 

Nordic market, Germany, PJM and the UK with an increasing number of publications over the 

time. Sophisticated model architectures have become more important in the recent past. The 

data employed are normally of an hourly frequency and modeled as a single series. 

The standard transformation types are log-prices or differencing. A trend is observed on the 

German/Austrian and Nordic market to avoid log-prices after negative prices were accepted in 

2008/2009 on these markets. Although spikes are often addressed as a challenge in the mod-

eling of electricity prices, the treatment of outliers is not often indicated. In a few studies, it has 

turned out to be useful. 

For the parameter calibration, in most studies a rolling sample or a fixed point in time of the in-

sample data is used. With an increasing data history available, in the more recent past the total 

time intervals used in the studies have been extended. The ratio of applying rolling samples, 

expanding datasets and fixed windows does not exhibit any trends. For out-of-sample fore-

ratio of the in-sample length vs. the total length of the data is 0.7. 
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The most common accuracy measures are (w/d)MAPE, RMSE and MAE. Significance tests of 

the results cannot be regarded as a standard procedure in the evaluation of electricity spot 

price forecasts. 

There is no unanimous standard model for electricity spot prices among AR(X), ARMA(X) and 

GARCH processes. In recent years a slight shift can be observed from the application of 

AR(MA)(X) models to (AR(MA)(X)-)GARCH-type models and within both model structures 

from AR(X) to ARMA(X). 

Studies on AR(X) or ARMA(X) models, which do not cover seasonal price behavior by a sea-

sonal lag structure, include the exogenous variable demand, which determines the price sea-

sonality, or time dependent dummy variables. Instead of dividing the dataset to capture time-

varying or nonlinear relationships, models often include regime shifts or dummy variables. 

The quasi-meta-analysis reveals profound results concerning the forecasting performance of 

several model types and modifications. GARCH(X)-type models outperform their AR(MA)(X) 

counterparts. According to this result, (AR(MA)(X)-)GARCH models are the most appropriate 

time series models for electricity spot prices, which might explain the increasing share of 

GARCH models in the very recent literature in our sample. ARMA(X) models, in turn, yield 

better forecasts than AR(X) models. 

Combining ARMA or GARCH models with regime-switching approaches and threshold models 

generates better forecasts. And considering the benefits of splitting data, regime shifts and 

time dummies we conclude that taking into account time-varying structures yields better fore-

casts.  

Forecasts are improved by using complex ARMA model structures, combined forecasts and 

hybrid models, which corresponds to the results of the literature reviews of Hu et al. (2009) 

and Cerjan et al. (2013), who propose hybrid models or combined forecasts. However, this 

result should be interpreted with caution as this study focuses on time series models, the struc-

ture of hybrid models may vary to a high degree, and their performance depends on their 

specific design. 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



52 Forecasting Performance of Time Series Models: A Quasi-Meta-Analysis 

Sophisticated GARCH models such as E-GARCH or GJR-GARCH, which have a more com-

plex structure to describe the volatility process, only achieve very slightly better forecasts than 

the standard GARCH process.  

The most common (fundamental) explanatory variables are the demand for electricity and sea-

sonal dummy variables (e.g., for hours or days). Some studies include data on renewable en-

ergy, commodity prices or weather. Adding accurate explanatory variables improves 

forecasting accuracies. The best fundamental factors are those that immediately affect the 

electricity price, such as demand. 

On the one hand, this overview of the state of the art offers helpful guidance when conducting 

empirical forecasting studies on electricity spot markets. On the other hand, in future empirical 

forecasting studies  even on model types other than time series models  the benchmark 

forecasting models can be determined based on our results. Due to the wide variety of consid-

ered markets in this study, the obtained results may be a general basis when analyzing the 

electricity markets of different countries. 

Based on the findings of the presented quantitative literature analysis, an empirical analysis is 

conducted for the electricity market of Germany (incl. Austria) in the subsequent chapter 4. 
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3.6 Appendix  

3.6.1 Definitions of ARMA and GARCH models 

 AR 

A stationary (price) time series tp , in which an observation tp  at time t  can be described 

by a linear combination of its i ,...,p1  past observations, is an autoregressive (AR) process 

of order p . The AR( p ) process is defined as 

p

t i t i t
i

p p
1

 . (3.1) 

The residuals t  represent a white noise process with tE 0  and tE 2 2 . The i  are 

constants and t  is uncorrelated with kp  for each k t .35 

 MA 

Relating the observations tp  to lagged residuals t j , j ,...,q1  describes a moving average 

process of order q . The MA( q ) process is defined as 

q

t t j t j
j

p
1

. (3.2) 

The residuals t  represent a white noise process with tE 0  and tE 2 2 . The j  are 

constants.36  

                                                
35 See Brockwell & Davis (2016). 

36 See Brockwell & Davis (2016). 
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 ARMA 

A stationary (price) time series tp  including an autoregressive and a moving average term 

is an ARMA( p,q ) (autoregressive moving average) process. The ARMA( p,q ) process of or-

ders p  and q  is defined as 

p q

t i t i t j t j
i j

p p
1 1

, (3.3) 

where the residuals t  represent a white noise process with the expected value tE 0  and 

tE 2 2 . i  and j  are constants with i 1 for stationarity and i 1 for invertibility of 

the process.37 In an ARMA process, the observation tp  is a function of lagged observations 

and lagged residuals. Forq / p0 0 , the ARMA process represents an AR / MA process.  

Using the notation of the backshift operator b
t t bB p p  or q

t t qB  serves to the rewrite the 

ARMA( p,q ) process as 

p t q tB p B   (3.4) 

or as 

t p q tp B B1  (3.5) 

with p
p pB B ... B11  and q

q qB B ... B11 . The representation (3.5) 

founds the term transfer function which has also been used for ARMA processes by Box & 

Jenkins (1970) and other authors. 

                                                
37 See Brockwell & Davis (2016). 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Forecasting Performance of Time Series Models: A Quasi-Meta-Analysis 55 

 ARIMA 

A generalization of the ARMA process is provided by an ARIMA model. A non-stationary (in-

tegrated) ARMA( p,q ) process tp  with a trend of order d  is an ARIMA( p,d,q ) process if 

d d
t t tP B p p1 , where B  is the backshift operator,  is the differencing operator, and 

d  is a non-negative integer. Then, the ARIMA( p,d,q ) process is defined as 

d
p t q tB p B . (3.6) 

The ARIMA( p,d,q ) process with d 0  represents an ARMA( p,q ) process. 

 Seasonal ARIMA 

Corresponding to the ARIMA( p,d,q ) process of equation (3.6), an ARIMA process of a known 

seasonality S  is 

S D S
P S t Q tB p B . (3.7) 

The polynomials of orders P  and Q  are S S S P
P PB B ... B11  and 

S S S Q
Q QB B ... B11 . SB  is the seasonal backshift operator and D

S  is the sea-

sonal differencing operator. 

Multiplying (3.6) and (3.7) results in a multiplicative SARIMA model of order Sp,d,q P,D,Q  , 

which is defined as38 

S d D S
p P S t q Q tB B p B B  

d D S S
S t p P q Q tp B B B B1 1 . 

(3.8) 

                                                
38 See Box & Jenkins (1970). 
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 Seasonal ARIMA with Exogenous Input 

A (price) time series tp , which is a function of an exogenous input tx , can be written as 

t t tp x N   (3.9) 

with  being a constant coefficient and tN  additive noise independent of tx . If the noise follows 

an ARIMA process  

d
t p q tN B B1 , (3.10) 

equation (3.9) can be represented by39 

d
t t p q tp x B B1 . (3.11) 

If tN  follows a SARIMA process (in the structure of (3.8)) 

d D S S d D
S t p P q Q S tN B B B B1 1 , (3.12) 

the seasonal ARIMAX (SARIMAX) process is written as 

d D d D S S
S t S p P q Q tp B B B B1 1 . (3.13) 

 GARCH and Extensions 

Engle (1982) introduced the ARCH (autoregressive conditional heteroscedasticity) process to 

model a nonconstant conditional variance. 

Let t  be a random variable, which has a mean and a variance being conditional to its own 

past.  

  

                                                
39 See Box & Jenkins (1970). 
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An ARCH model of t  has the properties 

t kE | ,0  k t  

t t kE |2 2 .  
(3.14) 

In an econometric model, t  is defined as t t t tp p  with tp  being an observable random 

variable and t t t tp E p | 1  the conditional mean in t  for a given information set t 1  of 

past residuals k . The conditional variance of the ARCH process is a function of past errors. 

The ARCH( q ) process of order q  is defined as 

t t te   

q

t i t i
i

2 2
0

1

  
(3.15) 

with te  being a sequence of independent and identically distributed (IID) random variables, 

which is assumed to be ~ . A necessary and sufficient condition for a positive condi-

tional variance t
2  is 0 0 , i , i ,...,q0 1 . 

As a modification to the ARCH process, Bollerslev (1986) introduced the generalized ARCH 

(GARCH) process. Besides the ARCH structure, additionally, the conditional variance is rep-

resented by a linear function of its own lags. A GARCH( p,q ) process of orders p  and q  is 

defined as 

t t te   

q p

t i t i j t j
i j

2 2 2
0

1 1

. 
(3.16) 
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The restrictions 0 0 , i , i ,...,q0 1  and j , j ,...,p0 1  serve as a sufficient condition 

for a positive conditional variance. The GARCH process is weakly stationary under the condi-

tion 
q p

i j
i j1 1

1. For  p 0 , the GARCH( p,q ) model corresponds to an ARCH( q ) model. 

The GARCH model also represents an ARCH( ) process of infinite order: 

t t te   

t i t i
i

2 2
0

1

. 
(3.17) 

By its construction, a GARCH process assumes the variance to be independent of the sign of 

predecessing shocks. Glosten et al. (1993) proposed an extension to capture asymmetric ef-

fects in the response to shocks. Their GJR-GARCH model has the form 

t t te   

q p

t i i t i t i j t j
i j

I2 2 2
0

1 1

0  
(3.18) 

with t iI ,0 0 1  being an indicator variable equal to one when t i 0  and zero other-

wise. i  is a constant parameter. Positive or negative t i  differently affect the conditional 

variance. 

The E-GARCH process introduced by Nelson (1991) also serves to cover asymmetric effects. 

Furthermore, it addresses the imposed non-negativity parameter restrictions of GARCH mod-

els. The E-GARCH model is defined as 

t t te   

q p

t i t i j t j
i j

ln g ln2 2
0

1 1

 
(3.19) 

with the function i t i i t i i t i t ig E ,i ,...,q1  capturing asymmetries and 

tln 2  ensuring a positive t
2 . 
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The P-GARCH process by Higgins & Bera (1992) was also proposed to model asymmetric 

effects within a GARCH framework. The P-GARCH has the form 

t t te   

q p
dpdp dp

t i t i j t j
i j

0
1 1

, 
(3.20) 

where the degree of the P-GARCH process dp  is a positive exponent.   
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3.6.2 List of Related Literature 

A specific identifier is assigned to each publication, consisting of the initial letter of the first 

with the same initial letter. E.g., [A4] denotes the fourth 

beginning with an A, which would be Amjady & Hemmati (2008). Literature listed in Table 3.11, 

panel A focuses on single models, and literature listed in panel B deals with hybrid models and 

combined forecasts. 

Table 3.11: Related literature. 

Legend of acronyms not introduced in prior sections: models: AP-ARCH  asymmetric power ARCH, B-VAR  
Bayesian VAR, C-GARCH  component GARCH, CLSSVM  chaotic least squares support vector machine, CPSO 

 chaotic particle swarm optimization, crossed ARMA-tvi  crossed ARMA with time varying intercept, CV-ARIMA 
 conjectural variations ARIMA, DHR  dynamic harmonic regression, D-VAR  diagonal VAR, E-GARCH-M  E-

GARCH-in-mean, FM  factor model, GARCH-M  GARCH-in-mean, GARCH-X  GARCH with exogenous input, 
GIGARCH  generalized fractionally integrated GARCH, GM  Gaussian mixture, HAR  heterogeneous AR, HW 

 Holt-Winters, IHMAR(X)  AR(X) with Hsieh-Manski estimator, LSTR - logistic smooth transition regression, 
MRJD(X)  mean reverting jump diffusion (with exogenous input), MSX  Markov Switching with exogenous input, 
NA-GARCH  nonlinear asymmetric GARCH, N-GARCH  nonlinear GARCH, PSO  particle swarm optimization, 
Q-GARCH  quadratic GARCH, real-GARCH  realized measures GARCH, RLS-AR  recursive least squares AR, 
RRP  reduced rank posterior regression, RRR  reduced rank regression, RS  regime switching, SARFIMA(X)  
seasonal ARFIMA(X), SFMR   structural finite mixture regression, SNAR(X)  AR(X) with smoothed nonparametric 
ML estimator, SVM  support vector machine, SVR  support vector regression, TARSW  threshold autoregressive 
switching, T-GARCH  threshold GARCH, TSK-algorithm  Takagi-Sugeno-Kang algorithm, tvr  time-varying pa-
rameter regression, U-VAR  unrestricted VAR VAR  vector autoregressive; markets: AU  Australia, CH  Swit-
zerland, CZ  Czech Republic, EXAA  Energy Exchange Austria, FI  Finland, FR  France, HU  Hungary, IT  
Italy, MISO  Midwest Independent System operators, NL  Netherlands, NO  Norway, NYISO  New York Inde-
pendent System Operator, PL  Poland, SE  Sweden, SL  Slovenia; frequeny of data: hh  half hourly; transfor-
mations: BC  Box-Cox transformation, diff  differencing, filter  filter application, log  log-transformation, mean 

 demeaning, norm  normalization, out  outlier adjustment, seas  deseasonalization, w/o  without, wt  wavelet 
transform; accuracy measures: dRMSE  daily RMSE, MALE  mean absolut logarithmic error, maxdAPE  maxi-
mum daily absolute percentage error, MdAE  median absolut error, MdAPE  median absolute percentage error, 
MdALE  median absolute logarithmic error, MddAPE  median daily absolute percentage error, MdSE  median 
square error, minAE  minimum absolute error, minAPE  minimum absolute percentage error, MMAE  mean of 
the MAE, MSPE  mean square prediction error, PRIM  percentage improvement, relMAE  relative mean absolute 
error, wRMSE  weekly mean square percentage error.  

 

 

 

 

 

Table to be continued on pages 61 to 72. 

  

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Forecasting Performance of Time Series Models: A Quasi-Meta-Analysis 61 

Panel A: Related literature with focus on single models. 
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Panel B: Related literature with focus on hybrid models and combined forecasts. 
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3.6.3 Detailed Vote Count Table 

Table 3.12: Detailed vote count table. 

Literature list serving as input for vote count in Table 3.7. Publications whose results are in favor of a certain model 
type or specifications are listed below with the identifier as introduced in Table 3.11. Publications with unambiguous 
results are listed in the column not clear. Publications with controversial results depending on varying constraints 
may be listed in both type 1 better and type 2 better. Values in brackets indicate that effects have been tested for 
significance.  

Type 1 Type 2 Literature list 
GARCH(X) AR(MA)(X) A4,C3,G1,G14,H13,K2,K6,L3,P6,S11,T1,Z6 
  (H13),S2,S11 
  B1,K6,M5,S6 
ARMA(X)/TF AR(X)/DR F1,K2,K6,N9,N10,P6,S2 
  M3,N9,W7,Z1 
  C11 
ARMA MA N9,S2 
  - 
  - 
AR MA N9,S2 
  - 
  - 
AR LR C3,V7 
  - 
  - 
Time series models Naïve C11,C12,(C15),F1,F2,(G5),G6,G10,J3,L1,M5,S6,

(T4),V6,W7,Z6,(Z7) 
  K10 
  - 
Sophisticated GARCH types Simple GARCH types B12,(D7),(H8),S7 
  G6,F5,(H8),L5 
  C8,S11 
Sophisticated ARMA types Simple ARMA types F1,(G12),J3,L1,W8,Z4,Z5 
  C16,W8 
  - 
MS - C8,H4,K2,K8,P2,S11 
  N1,S11 
  C7,M5 
Threshold models - (C6),G7,S9,V7,W8 
  M5,S6,W8 
  (C6) 
AR(MA)X Futures models T4 
  K10 
  - 
NN GARCH A4,V6 
  - 
  H11 
NN ARMA A5,B1,C4,H12,S8,V5,Z3 
  F2 
  C11,(C15),L4,T7 
Hybrid models Single models B1,C4,D9,G10,M3,S8,T1,V5,W1,Y1,Y2,Z3 
  - 
  - 
Combined forecasts Single models B11,G2,N11,R2,V6 
  - 
  - 
Exogenous variables Only spot prices as input A4,C11,(C15),(F1),(F2),G1,G5,G10,(G12),K1,K4,

K6,M3,M5,N9,P6,V6,W7,W8,Z1,(Z7) 
  C14,G14,(H13),W8 
  K6,P6,W8 
 
 
Table to be continued on the next page. 

 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



74 Forecasting Performance of Time Series Models: A Quasi-Meta-Analysis 

Type 1 Type 2 Literature list 
                  Effects of demand A4,C11,C16,G1,M3,N9 
 C14 
 - 
                  Effects of temperature - 
 (H13),W8 
 K6,P6,W8 
24h, split SS C15,C16,M1,Z2 
  - 
  - 
Multivariate Univariate H4,C16,R2 
  - 
  Z6 
Long calibration window Short calibration window F2,G2,M5,W7,W8 
  - 
  - 
Rolling sample Fixed in-sample F2 
  S6,W8 
  - 
Extending Rolling M5,S6,W8 
  - 
  - 
Increasing number of lags Small number of lags - 
  K2,P2 
  - 
Spike-preprocessing No transformation G14,S9,W1 
  N1,N12,W8 
  - 
Seasonal adj. No transformation D7,K2 
  - 
  - 
Log-transformation No transformation - 
  C16 
  - 
Differencing  - 
  K2 
  - 
Wavelets No transformation A4,C12,M3,S8,T1,V5 
  - 
  Z6 
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4 
40 

4.1 Motivation 

As already described, over the past few decades electricity markets worldwide have been lib-

eralized and deregulated. Former monopolistic power markets have been restructured into 

competitive systems. Nonetheless, due to technical restrictions electricity markets strongly dif-

fer from other (financial) markets. On the supply side, electricity is (economically) non-storable 

and for system stability reasons production has to meet consumption at each point in time. On 

the demand side, consumption is inelastic and affected by the seasonal behavior of consum-

ers. Electricity consumption varies throughout the day, between different days of the week and 

between seasons of the year. As a consequence, the prices of each day and even of each 

hour have their own characteristics. 

These constraints determine the price behavior in electricity markets to a great extent and can 

explain the well-known stylized facts of electricity prices. Power markets are highly volatile, 

they exhibit heteroscedasticity, an inverse leverage effect, non-stationary behavior, seasonally 

dependent price levels, mean reversion, price spikes and negative prices. 

In recent years a wide range of price models have been proposed in the attempt to capture the 

specific behavior of electricity spot markets. Due to technical restrictions, electricity markets 

strongly differ from other financial markets. On the supply side, electricity is (economically) 

non-storable and for system stability reasons production should perfectly meet consumption 

                                                

40 The forecasting study is based on Gürtler & Paulsen (2018b). 
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at each point in time. On the demand side, consumption is quite inelastic and given by seasonal 

consumer behavior. Consequently, power markets are highly volatile and exhibit heterosce-

dasticity, non-stationary behavior, seasonal dependent price levels, mean reversion and price 

spikes and negative prices.  

Bearing in mind the unique price characteristics of the commodity electricity, it is an essential 

interest of any market participant to minimize their risk by adequately forecasting prices. Con-

sequently, modeling electricity prices has become a large field of scientific research. Although 

NN models and hybrid models, which combine different model types, become more important, 

time series specifications have kept their relevance in the current literature. In an effort to find 

the time series models with the most accurate forecasts, various empirical studies have been 

conducted comparing several types of time series models, such as those mentioned in 

Nogales et al. (2002), Contreras et al. (2003), Cuaresma et al. (2004), Knittel & Roberts (2005), 

Weron & Misiorek (2005), Nogales & Conejo (2006), Keles et al. (2012), Hickey et al. (2012), 

Liu & Shi (2013), Cervone et al. (2014) and Nan et al. (2014). Inevitably, empirical studies vary 

widely concerning the application of models and conditions of their estimation and evaluation. 

Therefore, conclusions regarding the accuracy of models from a certain study can depend on 

its individual constraints. 

This empirical study aims at deeper analyzing the forecasting performance of time series mod-

els compared to other studies by not only considering different model types but also varying 

the conditions of the study. We evaluate day-ahead forecasts for different market phases, 

transformations and time windows to find the best out-of-sample performing time series model. 

The forecasting performance measures are based on the error of forecasts compared to the 

actual electricity prices. By iteratively analyzing forecasting horizons of seven days, we obtain 

a time series of average forecast accuracies. For each seven-day window, we also conduct 

significance tests to validate the outperformance of certain models against others. We base 

our findings on the evaluation of forecasts on the German/Austrian (GER/AT) market for the 

years 2010 to 2014. 
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4.2 Hypotheses 

Several approaches to model time series of electricity spot prices have been analyzed in recent 

studies. Based on the findings of other publications, we develop the following 9 hypotheses 

regarding the out-of-sample performance (in terms of the forecasting error) of different models 

and modeling approaches. Subsequently, these hypotheses are tested on a uniform database. 

4.2.1 Performance of Different Time Series Models 

In Nogales et al. (2002), Knittel & Roberts (2005), Nogales & Conejo (2006), ARMAX (or TF) 

forecasts are more accurate than ARX (also named DR) forecasts. Others, as Conejo et al. 

(2005a), Zareipour et al. (2006) and Keles et al. (2012), find ARMA and AR perform similarly 

in terms of forecasting accuracy. Therefore, we expect 

H1: Forecasts of ARMA(X) models outperform forecasts of AR(X) models. 

In general, during recent years GARCH-type models have increasingly been applied to elec-

tricity spot prices series, preferred over ARIMA models. In several studies, the performance of 

GARCH and ARIMA models are analyzed based on empirical data. In the studies of Guirguis 

& Felder (2004), Li & Zhang (2007) and Bowden & Payne (2008) and Petrella & Sapio (2009) 

(in this case, E-GARCH), GARCH processes yield better spot price forecasts than ARMA mod-

els. Ziel et al. (2015a) propose a VAR-TARCH, of which the forecasts outperform competitors. 

Others, such as Misiorek et al. (2006) and Huurman et al. (2012), find AR/ARIMA(X) models 

outperform GARCH processes.  

Garcia et al. (2005) argue that forecasts by GARCH models are particularly better when vola-

tility and price spikes are present. This is in line with Knittel & Roberts (2005), who find that 

ARMAX outperforms GARCH models (in this case, E-GARCH) in smooth periods at times of 

high volatility. Still, the results of both studies indicate inferior GARCH forecasts during periods 

of low volatility. Against this background, we expect 

H2: GARCH models yield forecasts of equal or better accuracy compared to other time series 

models. 
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The most common GARCH variation is the E-GARCH model, which is applied in the studies 

of Knittel & Roberts (2005), Bowden & Payne (2008), Hickey et al. (2012), and Frömmel et al. 

(2014). In general, nonlinear GARCH models serve to appropriately cover different impacts of 

positive or negative prices shocks on the conditional volatility. 

Bowden & Payne (2008) state that the forecasting performance of an ARIMA-E-GARCH-M 

model outperforms an ARIMA-E-GARCH model. Diongue et al. (2009) evaluate the forecasting 

performance of a GIGARCH model and conclude that GIGARCH forecasts outperform ARIMA-

GARCH. In the study of Hickey et al. (2012), an APARCH (asymmetric power ARCH) model 

performs slightly better than other GARCH types. Frömmel et al. (2014) find that a real-

GARCH, represented by a GARCH considering intraday relationships between prices, and a 

real-E-GARCH yield better forecasts than an E-GARCH process.  

The results of Cifter (2013) contradict these findings, as the forecasts of standard GARCH 

models are better than GJR-GARCH. In the study of Swider & Weber (2007), the performance 

ranking of GARCH variations depends on the market under study. Liu & Shi (2013) conclude 

after their comparison of 10 ARMA-GARCH variations that there are no significant differences 

in the performance of GARCH models and more sophisticated approaches. On average, dif-

ferences in terms of forecasting performance are not significant. Hence, we hypothesize 

H3: Forecasts of sophisticated GARCH models do not outperform forecasts of standard 

GARCH models. 

The consideration of fundamental price determining conditions, such as generation technol-

ogy, outages, transmission restrictions and commodity prices is favorable according to Kian & 

Keyhani (2001), Guirguis & Felder (2004), Zareipour et al. (2006), Karakatsani & Bunn (2008) 

and Gianfreda & Grossi (2012a). It is common to use the electricity demand (represented by 

variables on the load or the power consumption), as it mainly explains the seasonal behavior 

of electricity prices. Taking into consideration the demand improves model accuracies in 

Conejo et al. (2005a), Garcia et al. (2005), Nogales & Conejo (2006) and Amjady & Hemmati 

(2008). 

According to Cruz et al. (2011) and Huurman et al. (2012), forecasts are even more accurate 

when wind generation is included. Power generation from wind (and RES in general) competes 
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with power generation from conventional plants resulting in lower market prices, which is the 

so-called merit-order effect. Based on these literature findings we expect 

H4: Forecasts are more accurate when adequate explanatory variables are included. 

4.2.2 Choice of Data Transformation and Segmentation 

Log-prices and differencing are each employed in about a half of all empirical studies (see 

section 3.3.3). However, the effects of transformations on forecast performance are rarely 

studied. Both log-transformation (Cuaresma et al. (2004)) and differencing (Keles et al. (2012)) 

are found to be unfavorable. Cuaresma et al. (2004) apply AR and ARMA variations, whereas 

there are no clear differences in the performances of models based on log-prices or actual 

prices. Keles et al. (2012) report inferior forecasts by ARIMA models compared to ARMA mod-

els. Against this background, we expect 

H5: The use of differenced price series or log-prices does not yield better forecasts. 

Price spikes can highly affect the calibrated parameters of a regression model. On the one 

hand, the resulting coefficients represent the true regression model. But on the other hand, 

forecasts can be of increased accuracy if outlying values are excluded. In most studies on the 

forecasting of electricity spot prices, spike preprocessing is not applied. However, results of 

Stevenson (2001), Guirguis & Felder (2004) and Weron & Misiorek (2008) show that forecasts 

are improved by spike preprocessing prior to model calibration. Based on these findings, we 

hypothesize 

H6: Applying spike preprocessing to data improves forecasts. 

The common modeling approach is based on a single series of 24 hourly prices per day. How-

ever, forecasts of 24 models  one for each hour of a day  might be more accurate than those 

of single series models. The 24 different vectors can address separately varying linear rela-

tionships between dependent and explanatory variables. Based on Cuaresma et al. (2004), it 

can be concluded that modeling 24 hourly series should be preferred against a single series 

model with one time series for all data. We hypothesize 
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H7: Twenty-four separate models for each hour of a day outperform their single series coun-

terparts. 

4.2.3 Choice of the In-Sample Time Horizon 

In the empirical literature, the length of time horizons has not been analyzed extensively. Gar-

cia-Martos et al. (2007) find an optimal calibration window of 44 weeks. Longer calibration 

datasets generate less accurate forecasts for weekends and do not yield significantly better 

forecasts for weekdays. They consider dataset lengths of 8, 12, 16, 20, 24, 28, 32, 44, 52, and 

80 weeks. Misiorek et al. (2006) state that longer calibration horizons yield better forecasts 

than short datasets. In that study, day-ahead forecasts are based on an expanding calibration 

window with lengths 9-17 months, and using a dataset of 3-11 months led to a 70 % decrease 

in forecasting accuracy. Based on the findings in the literature we hypothesize 

H8: Forecasts based on short calibration horizons of a few weeks are outperformed by those 

based on longer time horizons. 

Lastly, we analyze the use of rolling sample forecasts instead of fixed calibration windows. 

Serinaldi (2011) and Weron & Misiorek (2008) rejected rolling sample estimations in favor of 

expanding datasets due to inferior forecasts. The rolling sample results of Frömmel et al. 

(2014) are quite similar to forecasts of expanding datasets. Under frequently changing market 

conditions it might be useful to base the forecast only on the recent past. Therefore, we hy-

pothesize 

H9: Forecasts based on rolling sample estimations are worse than those based on fixed in-

sample windows. 

4.3 Methodology 

To examine the hypotheses explained in section 4.2, we investigate the forecasting accuracies 

of different model types and modifications. Selection of model types and specifications is 

based on stationarity tests on the used price data and on the inspection of the autocorrelation 
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and of the partial autocorrelation functions. We also take model structures and specifications 

into consideration, in line with other empirical studies. Each model is calibrated with different 

specifications for datasets of 50 days, 91 days (one quarter of a year), 182 days (half a year), 

365 days (one year), and 730 days (two years). These calibration windows are chosen, as they 

are quite common and represent seasonality effects of electricity prices (91/182/365 days). 

The model calibration is applied to actual prices, log-prices, double-differenced prices with lags 

of one day and seven days, and log-returns. Price data are either spike preprocessed or not. 

Additionally, the time series is either a single series or 24 hourly vectors, which require sepa-

rate modeling for each time series. 

A one-day-ahead forecast is made for the next week meaning that the calibrated parameters 

are constant and the forecast is based on all information up to the preceding day. It is common 

to use an out-of-sample horizon of seven days, which covers one cycle of the weekly season-

ality (see section 3.3.6). Afterwards, and in all subsequent steps, the calibration window is 

moved forward by one day yielding the next forecast for the time horizon of seven days.  

The scheme of this iterative estimation and forecasting is presented in Figure 4.1 and has also 

been employed by Cuaresma et al. (2004), Kosater & Mosler (2006) and Ziel et al. (2015a).41 

The respective model parameters are estimated based on actual prices tp  with the point in 

time t ,...,l1  ( l  = length of the calibration window), to generate price forecasts 

p̂ , l ,...,l1 7 . Through this, several forecasts are gathered over a fixed time horizon and 

results are more representative than by only using data of one single period or a few periods. 

With a calibration window of 730 days and a total length of the dataset of 1,522 days, we create 

777 forecasts for the upcoming seven days.42 We validate the results by additionally creating 

14-days-ahead forecasts and 28-days-ahead forecasts.43,44 

                                                
41 For reasons of simplicity, the figure presents a short dataset consisting of only seven observations 

with a calibration window and forecasting window each of three days. 

42 Due to the differencing procedure, the first eight values are missing. 

43 As the ranking, which is based on the forecasting performance, does not change and the share of 
significant differences only slightly changes in favor of better performing models, these results are only 
reported in the appendix. 

44 For reasons of feasibility, we limit the number of iterations in the maximum likelihood estimation pro-
cedure to 25 steps (which is sufficient for most models). We have validated the results by allowing 100 
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Actual Prices p1  p2   p3  p4  p5  p6  p7  p8  p9  

Iterative Scheme p1  p2  p3  p̂4  p̂5  p̂6     

  p2  p3  p4  p̂5  p̂6  p̂7    

   p3  p4  p5  p̂6  p̂7  p̂8   

    p4  p5  p6  p̂7  p̂8  p̂9  

Figure 4.1: Scheme of iteratively estimating and forecasting. 

 

We also generate price forecasts based on rolling sample estimations, where model coeffi-

cients are updated each day to analyze the usefulness of this approach. Varying time horizons 

and rolling samples also serve to check if the results are robust against different market con-

ditions. 

To evaluate the forecasts, we employ standard performance measures in time series modeling 

of electricity prices: MAE, RMSE, and (weekly) MAPE. The MAPE represents a normalized 

deviation and RMSE is the Euclid distance between forecasts and actual prices. The RMSE is 

quite sensitive to large forecasting errors. For MAPE-criteria, we only take into consideration 

the weekly MAPE because results for MAPE and daily MAPE might be affected by prices close 

to zero or below zero.45 

Additionally, we take into consideration the mean error (ME), to measure the bias of forecasts, 

and the maximum absolute error (maxAE), to identify the worst forecast. The performance 

measures are defined in Table 4.1. Based on the price forecast tp̂  and the actual price tp  at 

a point in time t , the error t t tˆe p p  is calculated. For the wMAPE, average prices p168  are 

calculated over one week (or 168 hours). 

We calculate the average forecasting performance of each model by taking the mean of all 

777 values. Next, the DM test is employed to analyze whether the values for the performance 

measures over the seven-day horizon are significantly different. Using this, we test for signifi-

cant differences between the accuracy of two competing forecasts based on a given loss func-

tion (in our case, MAE and MSE). We then present the ratio of DM test results, in which a 

                                                

iterations for the best performing models. As forecasts have differed only marginally, these values are 
not reported. 

45 Hyndman & Koehler (2006) provide a critical survey on accuracy measures. 
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forecast of model 1 significantly outperforms the forecast of model 2, and vice versa. DM tests 

(MAE and MSE) of a rolling sample forecast for all points in time provide additional information 

about the significance of results. 

Table 4.1: Applied accuracy measures. 

Mean Absolute Error tMAE mean e    

Mean Error tME mean e    

Maximum Absolute Error tmax AE max e    

(Root) Mean Square Error tMSE mean e2   RMSE MSE   

Weekly MAPE twMAPE mean e p168    

t ,...,1 777   

The calibration of time series models is sensitive to extremely large or small values. This might 

be problematic in the case of electricity prices, as they frequently exhibit positive or negative 

price spikes. Therefore, the impact on the accuracy of forecasts of a simple spike adjustment 

is analyzed, too. There are several options to identify and treat outliers, e.g., setting fixed or 

variable thresholds.46 We set a maximum or minimum price threshold at the mean price +3 or 

-3 standard deviations of seasonally adjusted prices (price minus mean price, depending on 

the hour of a day). Then, outlying observations (outside this range) are replaced by the thresh-

old price. To avoid masking effects, outlier adjustment is conducted recursively five times. 

These adjustments are only conducted in-sample, which means the out-of-sample perfor-

mance is evaluated based on the actual prices. 

As using log-prices is common in modeling electricity spot prices, we also analyze the perfor-

mance of forecasts made based on log-transformed data. To handle the problem of negative 

prices we add a constant shift to all prices to reach a price minimum of 1 

tively, 100 /MWh. Models are calibrated on a single series (SS) or a 24-hour basis with four 

transformation types (none, log(+1), log(+100), differencing). 

                                                
46 There is not an exact definition of the notion outlier. Grubbs (1969) defines an outlier as an observation 

f the sample in which it occurs.  
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4.4 Data 

Our analysis of the German/Austrian electricity market is based on 36,528 hourly EPEX spot 

prices from April 1, 2010 to May 31, 2014 (source EPEXSPOT.com). Actual load data for Ger-

many and Austria (source: ENTSO-E) and power generation forecasts for wind and solar 

(source: German and Austrian transmission system operators: TenneT TSO, 50hertz, Am-

prion, Transnet BW, and APG (only wind power)) serve as explanatory variables.47  

For RES, we use hourly average values of the provided quarter-hourly data. Our sample of 

hourly data contains 36,528 observations on 1,522 days. 

Descriptive statistics for electricity spot prices, load, and generation from RES are presented 

in Table 4.2 on a yearly basis. In general, spot prices (mean) have decreased through time 

along with an increasing RES feed-in (mean) and a constant load (mean). In total, the dataset 

includes 384 (1.0 %) prices out of the range of the mean price +3 to -3 standard deviations, 

which we regard as outliers. Prices are slightly negatively skewed and the number of negative 

prices and outliers has increased in the recent past. In particular, negative prices have become 

more common in recent years during off-peak hours when low demand meets high RES power 

generation. 

 

Table 4.2: Descriptive statistics. 

2010: months April-December; 2014: months January-May. sd  standard deviation, 
sk - skewness 

Electricity prices RES Load 
 Mean Min Max sd Sk Negative Outliers Mean Mean  

2010 45.62 -20.45 131.79 14.16 -0.07 7 38 5.75 61.29 
2011 51.12 -36.82 117.49 13.60 0.64 15 42 7.59 63.15 
2012 42.60 -221.99 210.00 18.69 -2.64 56 130 8.87 61.31 
2013 37.78 -100.03 130.27 16.46 0.09 64 135 9.34 60.81 

 

                                                

47 By using data on the actual load tL  instead of forecasts tL̂ , we assume perfect forecasts of the load. 

Actual load data are also used by Jónsson et al. (2010) and Ketterer (2014). However, they simulate 

the load forecast as t t t
ˆL L  with the residuals  ~ , where 2  is the variance of the resid-

uals t . The standard deviation is %2 . To avoid a bias in the forecasts of spot prices due to poor 

load forecasts we do not base our analysis on simulated values. In the case of our analysis (unre-
ported) results based on simulated forecasts were nearly unchanged. 
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Figure 4.2 provides an insight into the typical seasonal, demand-driven behavior of electricity 

spot prices. The hourly series of the spot price as well as the load and power generation from 

renewables are plotted for the week of December 23-29, 2013. The figure demonstrates the 

strong dependence of prices on the load. Load means consumed power by installations that 

are connected to the electricity transmission or distribution network (ENTSO-E (2009)). This 

power consumption (or demand) exhibits a strong seasonal pattern for different days of a week 

and hours of each day and drives the spot price behavior. Spot prices and the total consump-

tion minus RES are highly correlated ( 0.80 ). Negative prices (or negative price spikes) 

occur when high RES feed-ins coincide with low-load conditions as during the early hours of 

December 24. During times of high load (midday on December 27), prices are still lower than 

normal, but the price decline is less profound than in the latter case. Lower electricity prices 

are a result of increasing power generation from RES, which crowds out generation from con-

ventional power plants. This is commonly known as the merit-order effect of RES. 

 

 

Figure 4.2: EPEX spot price vs. load and generation from RES. Values for one exemplary week in 2013. 

 

In general, prices are higher during (high load) peak hours from 8 am to 8 pm than during off-

peak hours. The price volatility is also higher during peak hours. Positive price spikes normally 

occur during peak hours and negative price spikes are more likely off-peak.  

A plot of the whole time series of hourly spot prices is presented in Figure 4.3. The mean 

reversion, negative values and (negative) spikes of electricity spot prices are obvious. Addi-

tionally, the time series exhibits volatility clustering with periods of rather high or low volatility. 
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Figure 4.3 /MWh from April 2010 to May 2014. 

4.5 Model Structures and Identification 

We take into consideration standard time series models for electricity prices. The models em-

ployed are (seasonal) ARMA(X), AR(X), MA(X) and ARMAX-GARCH as well as GJR-GARCH, 

E-GARCH and P-GARCH.48 The X indicates that explanatory variables have been incorpo-

rated into the model. The explanatory variable, which is included in the ARMAX model, is the 

demand (ARMA-D), feed-in of RES (ARMA-R), or both (ARMAX). What we denote as GARCH-

type models are in fact ARMAX-GARCH models. The GARCH variations serve to capture non-

linear effects of electricity spot prices. 

As a benchmark, we use the type of naïve forecasts applied by Conejo et al. (2005a), Misiorek 

et al. (2006) and Serinaldi (2011). From Tuesday to Friday, the price forecast equals the actual 

price of the same hour one day before, and from Saturday to Monday, the price forecast equals 

the price seven days (or 168 hours) earlier.49 Another benchmark is an OLS regression. The 

forecasts of our time series models should, at minimum, outperform the naïve and the OLS 

forecasts. 

                                                
48 The definitions of ARMA and GARCH models and their variations relevant for this study have been 

presented in appendix 3.6.1. 

49 This dependence of naïve forecasts on weekdays is because the seasonal pattern of prices differs 
between working days and the weekend. Therefore, e.g., the naïve forecast of a price on Monday is 
not set equal to the price on Sunday. We also tried a naïve forecast, of which the forecast price always 
equals the actual price seven days ago. However, the forecast accuracy was inferior. 
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Theoretically, the best overall forecasting accuracy during a certain time window (consisting of 

several points in time) might be achieved by selecting the best individual forecast (the forecast 

with the lowest forecast error) at each point in time. The price forecasts are therefore not gen-

erated by one single model, but by switching between the models. Such an ex-post selection 

is not a fair benchmark, but it represents the optimum achievable accuracy of the forecasts in 

this study. Combining forecasts following a pre-defined selection algorithm has proven useful 

in the studies of Bordignon et al. (2013) and Nowotarski et al. (2014). However, the forecasting 

ability of combined forecasts is not analyzed in this study, as there was no systematic pattern 

observable in the data. 

For stationarity reasons, common approaches of data preprocessing are log-transformation 

and differencing (lags 1, 24, and/or 168 hours). A trend term in a time series is removed by 

differencing, which means that the value at time t 1 is subtracted from the value at time t :  

t
t t t tp p p B p1 1  where 1  is the differencing operator with lag 1 and B  is the back-

shift operator with t tBp p 1 .50 The result is an integrated process of order 1. A trend with a 

seasonality of e.g. seven days (one week) is eliminated by applying multiplicatively linked 1  

and 7 : t t t t t tp B B p p p p p1 7 7
1 7 81 1 . 

The logarithmic transformation is applied to the time series data to stabilize the variance as 

problems arising from outlying observations can be diminished. As the logarithm is only defined 

for positive values, which are not always given in the case of electricity prices, the transfor-

mation in our case is t tY ln p x  with tmin p x ,1100 , where the shift x  serves to 

set the price minimum of the time series greater than zero.51 We chose a price minimum of 

either 1 /MWh or 100 /MWh. Others, such as Keles et al. (2012) define a positive price 

minimum for all prices below zero. When back-transforming the forecasts adding half of the 

variance of the residuals leads to consistent (but still not unbiased) price predictions.52 

                                                
50 See Brockwell & Davis (2016). 

51 See also Jónsson et al. (2013)). 

52 See Wooldridge (2013). 
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To identify possible model structures price data are analyzed thoroughly. To test the time se-

ries for stationarity, we apply the ADF test and the PP test to all 24 hourly price series. For all 

time series, we can accept the alternative hypothesis of stationarity (ADF: all p-values < 0.05, 

PP: all p-values < 0.001).  

We identify the lag structure of a stationary AR( p ), MA(q ), and ARMA( p,q ) process by in-

specting the autocorrelation function (ACF) and the partial autocorrelation function (PACF). In 

Figure 4.4, the average ACF and PACF of all 24 hourly price vectors are plotted for the actual 

price series. Slowly decaying ACF and PACF curves with increasing lag numbers indicate an 

ARMA( p,q ) process (Box & Jenkins (1970)). In most cases, ACF lags of four weeks are still 

significant. This also applies to PACF lags, but rather for seven days or a multiple of seven 

days. Both curves reveal a strong seasonal pattern of seven days.  

The ACF of the differenced data clearly decays faster, but still exhibits seasonal behavior, 

whereas the PACF decline is more gradual. Using logarithmic prices or log-returns does not 

affect the characteristics of the curves. Autocorrelation has also been checked, taking only 

either Monday to Friday or Saturday to Sunday into account. The curve structures are quite 

similar, but the values are higher for weekends.  

 

 

Figure 4.4: ACF and PACF of spot prices.  

Average values for 24 hourly time series of the actual spot prices. ACF: upper graphic; PACF: lower graphic. 
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For all transformations, the ACF curves and PACF curves vary for different hourly series. 

Therefore, separate modeling of seasonal ARMA processes is useful.53 

Because spot prices and (autoregressive) load data are highly correlated ( .0 80 ), one 

might question if the price time series is driven by its own autoregressive process or by the 

load series, which itself is autocorrelated. Figure 4.5 exhibits a non-decaying ACF curve for 

load data with a seasonality of seven days. It is possible that the AR term does not provide 

additional information on the price series. Besides ARMAX models, we include MAX models 

into our analysis to test if the AR term provides additional information to improve forecasts. We 

measure this effect by using an ARX model with different lags, comparing it to the results of 

an OLS regression. 

 

 

Figure 4.5: ACF of the demand.  

Average values for 24 hourly time series of the actual spot prices. 
 

We also include ARMAX and MAX models with lags of seven or eight days. Huurman et al. 

(2012) use prices from the last seven days and Garcia et al. (2005) include prices from the last 

504 hours (but not all hourly prices). This extension of the number of lags could be argued by 

the slowly decaying ACF curve. In previous years, the ARX(1) was adapted, e.g., by Cuaresma 

et al. (2004) and Mount et al. (2006). We also test this model structure. 

Based on a graphical inspection of the time series (Figure 4.3), we assume the price time 

series to be heteroscedastic, which is confirmed by applying a Lagrange multiplier (LM) test 

on all different times series (p-value < 0.001). Therefore, GARCH-type processes (modeling 

ARMA residuals) might be appropriate for electricity spot prices. To cover nonlinearities, we 

                                                
53 Switching between model types for the combinations depending on the time of day might also be 

taken into consideration, but is out of scope in this study. 
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include E-GARCH, GJR-GARCH, and P-GARCH. It is common practice to model electricity 

spot prices with GARCH processes of type p 1, q 1, which we follow in our study. The 

resulting lag structures applied in this study are listed in Table 4.3.  

For model calibration, both for AR and MA terms, we take maximum lags of / 1,7,8p q  inde-

pendently of the type of data transformation to regress the spot price on the price of the previ-

ous day, previous week, and previous week minus one day.  

Following Box & Jenkins (1970), a seasonal ARMA
Sp,d,q P,D,Q  process of the structure 

ARMA , , , , 7
111 111  is introduced. As an alternative, the seasonal AR term is set to P 0 . The 

formal model description is S S
p P t q Q tB B p B B1 7 . This means a seasonal 

process is multiplicatively linked to the ARMA process, where p B  and q B  are the non-

seasonal operators AR( p ) and MA( q ), and S
P B  and S

Q B  are the seasonal operators 

AR( P ) and MA(Q ). As described above, B  is the backshift operator and 1  and 7  are dif-

ferencing operators. 

Table 4.3: Model lag structures.  

p = number of AR-lags, q = number of MA-lags, P = number of seasonal AR-lags, Q = number of seasonal MA-lags 
with a seasonality of saven days (168 hours). Model types are calibrated as 24 hourly time series. Model types 
marked with an asterisk are also calibrated as single series models. 

Model Lag structures under study 
 I II III IV V 
Seasonal  
ARMA(X) 

p = q = 1  
P = Q = 1 

p = q = 1 
P = 0 / Q = 1     

ARMA(X) *p = q = 1,7 *p = q = 1,7,8 p = q = 1,…,7 p = q = 1,…,8 P = q = 1 
ARX *p = 1,7 *p = 1,7,8 p = 1   
MAX *q = 1,7 *q = 1,7,8 q = 1,…,7 q = 1,…,8 Q = q = 1 
(ARMAX-)  
GARCH *p = q = 1,7 *p = q = 1,7,8 *p = q = 1   

(ARMAX-)  
E-GARCH *p = q = 1,7 *p = q = 1,7,8 *p = q = 1   

(ARMAX-)  
GJR-GARCH *p = q = 1,7 *p = q = 1,7,8 *p = q = 1   

(ARMAX-)  
P-GARCH *p = q = 1,7 *p = q = 1,7,8 *p = q = 1   
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4.6 Forecasting Performance Study 

We rank the models based on their individual out-of-sample forecasting performance in terms 

of MAE, RMSE, and wMAPE and include ME and maxAE. These results are supported by DM 

significance tests. After a general description of the forecasting performance tables, we pre-

sent the findings of the hypotheses tests. 

4.6.1 Performance of Time Series Models 

The best performing models are listed in Table 4.4. The ratios of the respective DM tests are 

presented in Table 4.5, which states the ratios of all tests in which a certain forecast outper-

forms its competitor.54 On average, the best forecasts are yielded by an ARMAX model, which 

reveals an MAE of 4.10. This value is the average of 777 iterations with the MAE ranging 

between 1.93 and 23.07. The ranking does not change if it is based on RMSE or wMAPE. 

ARMAX forecasts significantly outperform the second ranked forecasts (MAX) in 19.2 % of all 

cases and perform significantly worse in 6.4 %. Based on the single test of a rolling sample, 

the ARMAX outperformance is significant at a level of 1 % (MAE) / 5 % (MSE).  

For each model, the best performing structure is chosen out of several transformations and in-

sample time horizons. The best results are achieved based on in-sample periods of 730 days 

applying differencing and spike adjustments in the case of ARMA(X), MAX, and OLS or 365 

days and spike adjustment before calibrating the other models. All forecasts are based on 

models consisting of 24 separate time series. 

All models achieve considerably (and significantly) better forecasts than the benchmarks, 

which are the OLS regression and naïve approach. An optimally (ex-post) combined forecast 

would outperform the best model (ARMAX) by 12.2 %.55 However, we are not able to identify 

                                                
54 Table 4.5 reads as follows: When e.g. the forecasting performance of ARMAX is compared to the one 

of MAX, the cells of the matrix are taken into consideration, in which the line denoted as ARMAX 
crosses the column MAX, and vice versa. 

55 The average relative difference between two forecasts is the mean of the relative differences for MAE 
and RMSE. wMAPE is not taken into consideration because it only normalizes the MAE. In the case 
of combined vs. ARMAX, based on the MAE combined forecasts are 13.7 % better, whereas based 
on the RMSE the difference is 10.8 %. The average difference based on both measures is 12.2 %. 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



92 Forecasting Performance of Time Series Models: Empirical Study 

a systematic pattern in the data to provide an indication for the combination of forecasts. There-

fore, this accuracy is only hypothetical, as for each hourly seven-day-forecast vector, the best 

forecast has been chosen. This accuracy is the optimum to be reached by an adequate com-

bination of the models applied in the present study. 

Table 4.4: Forecasting performance of different time series models. 

MAE, RMSE, wMAPE, and ME are the average values of the 777 times-repeated calculations. MAE, RMSE and 
Minimum and maximum values are included in brackets. In the case of the wMAPE, the eight worst 

results have not been taken into consideration because wMAPE would increase by 20 % for all models. This does 
not affect the ranking. 

Rank Model MAE RMSE wMAPE ME maxAE Lags 
1 ARMAX 4.10  

[1.93 - 23.07] 
5.76 

[2.50 - 55.18] 
0.1072 

[0.04 - 0.41] 
0.27 213.09 (1,1,1)(1,1,1) 

2 MAX 4.15  
[2.07 - 23.15] 

5.81  
[2.57 - 55.17] 

0.1085 
[0.05 - 0.40] 

0.27 214.37 p=1,7,8 

3 E-GARCH 4.21 
[2.15 - 22.68] 

5.91 
[2.75 - 55.07] 

0.1106 
[0.05 - 0.39]  

0.75 215.72 p=q=1,7 

 P-GARCH 4.21 
[2.13 - 22.81] 

5.90 
[2.76 - 55.09] 

0.1106 
[0.05 - 0.39] 

0.74 215.90 p=q=1,7 

 GJR 4.21 
[2.10 - 22.82] 

5.91 
[2.75 - 55.19]  

0.1106 
[0.05 -0.38]  

0.75 215.33 p=q=1,7 

 GARCH 4.21  
2.16 - 22.81] 

5.91  
[2.77 - 55.19] 

0.1107 
[0.05 - 0.39]  

0.75 215.38 p=q=1,7 

7 ARX 4.32 
[2.11 - 22.76]  

6.01  
[2.79 - 55.02] 

0.1136 
[0.05 - 0.41] 

1.15 213.99 p=1,7 

8 ARMA-R 4.59  
[2.15 - 28.46] 

6.40  
[2.82 - 58.85] 

0.1208 
[0.05 - 0.63] 

0.26 221.13 (1,1,1)(1,1,1) 

9 ARMA-D 5.90  
[2.62 - 27.32] 

7.97 
[3.34 - 57.92] 

0.1573 
[0.06 - 0.80] 

0.31 222.15 (1,1,1)(1,1,1) 

10 ARMA 6.34  
[2.75 - 34.28] 

8.58  
[3.57 - 64.07] 

0.1672 
[0.06 - 0.78] 

0.29 239.83 (1,1,1)(1,1,1) 

11 OLS 6.54  
[3.43 - 23.41] 

8.72  
[4.27 - 53.28] 

0.1736 
[0.08 - 0.68] 

0.23 205.29  

12 Naïve 7.84  
[3.47 - 36.42] 

10.84  
[4.29 - 60.46] 

0.2093 
[0.08 - 1.02] 

-0.03 222.99  

 combined 3.54 
[1.74 - 21.48] 

5.14 
[2.31 - 52.82] 

0.0922 
[0.04 - 0.37] 

0.36 222.99  

 

The models have been calibrated with the different lag structures listed in Table 4.3. The rank-

ing does not change if one of the best three ARMAX forecasts, one of the best two MAX fore-

casts, or one of the best fifteen GARCH forecasts (if all GARCH types are regarded as one 

model group) is considered. For the most accurate forecast, only direct predecessors and 

those that represent the seasonal price behavior are required. Model structures including all 

lag terms up to lag 7 or lag 8 do not yield significantly better or poorer forecasts, which means 

they do not contain additional information nor are over-specified. In both cases (ARMAX and 

MAX), omitting the lag of p q 8  days (seven-day seasonality minus one day) yields inferior 
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forecasts. Lag 8 should be included because data have been twice differenced before calibrat-

ing the AR(MAX) model. The differenced value contains information about the price in t , t 1 , 

t 7 , and t 8 . 

Table 4.5: Results of DM tests as average values for MAE and MSE 

Significance level p = 0.05. Values in the matrix indicate the outperformance of models listed in rows against models 
in columns. The numbers are ratios of a total number of comparisons of 777 7-days-
indicate significance levels of 10 % / 5 % / 1 % / 0.1 % for DM tests (MAE/MSE) on rolling sample forecasts for the 
whole dataset.  

 ARMAX MAX E-GARCH P-GARCH GJR GARCH ARX ARMA-R ARMA-D ARMA OLS Naïve Average 

ARMAX  19.2% 
**/* 

21.4% 
***/** 

20.9% 
***/** 

19.8% 
***/** 

21.1% 
***/** 

26.0% 
***/*** 

25.1% 
***/** 

75.1% 
***/*** 

80.8% 
***/*** 

94.1% 
***/*** 

89.8% 
***/*** 

44.8% 

MAX 6.4%  15.2% 
*/  

16.0% 
/  

15.2% 
/  

16.3% 
/  

18.7% 
***/** 

20.3% 
***/*** 

71.9% 
***/*** 

79.0% 
***/*** 

92.4% 
***/*** 

89.5% 
***/*** 

42.2% 

E-GARCH 6.2% 6.0%  11.4% 10.0% 11.0% 19.5% 
***/  

13.8% 
***/* 

65.7% 
***/*** 

70.7% 
***/*** 

90.7% 
***/*** 

88.2% 
***/*** 

37.3% 

P-GARCH 6.2% 6.8% 9.2%  9.5% 11.8% 19.5% 
***/** 

14.6% 
***/** 

65.8% 
***/*** 

70.9% 
***/*** 

90.5 % 
***/*** 

88.1% 
***/*** 

37.3% 

GJR 6.3% 6.6% 11.5% 10.5%  12.0% 
18.4% 

***/*** 
14.5% 

***/** 
65.3% 

***/*** 
70.8% 

***/*** 
90.6% 

***/*** 
88.4% 

***/*** 37.6% 

GARCH 6.5% 6.4% 11.2% 9.0% 9.4%  19.5% 
***/** 

14.5% 
***/** 

65.5% 
***/*** 

71.0% 
***/*** 

90.4% 
***/*** 

88.0% 
***/*** 

37.2% 

ARX 4.1% 4.6% 3.5% 3.6% 3.4% 3.9%  11.4% 
 

58.3% 
***/*** 

65.1% 
***/*** 

91.4% 
***/*** 

86.4% 
***/*** 

30.5% 

ARMA-R 5.4% 6.6% 11.3% 10.8% 10.0% 11.6% 12.4%  
57.7% 

***/*** 
71.0% 

***/*** 
78.7% 

***/*** 
83.0% 

***/*** 34.6% 

ARMA-D 0.1% 0.3% 0.3% 0.3% 0.4% 0.4% 0.3% 1.4%  28.4% 
***/* 

35.1% 
***/  

53.6% 
***/*** 

12.0% 

ARMA 0.5% 0.4% 0.5% 0.5% 0.5% 0.5% 0.6% 0.5% 9.8%  24.6% 
47.2% 

***/*** 8.5% 

OLS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4% 6.4% 8.2%  
22.2% 

***/*** 3.7% 

Naïve 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.1% 2.6%  
 

0.5% 

Average 3.8% 5.0% 7.6% 7.6% 7.1% 8.0% 12.3% 10.6% 49.3% 56.1% 71.0% 74.9% 
 
 

 

 (E-/P-/GJR-)GARCH models perform best with lags p q ,1 7 . Data have not been differ-

enced, which is why lag 8 is not required. Forecasts of ARX models are better if more lags are 

included because a simple AR does not totally reflect the price behavior and, therefore, includ-

ing more lag terms improves the forecasts. The forecasting performance of ARMA models is 

independent of the lag structures we apply in this study.  

The best forecasts are generated by in-sample windows of 730 days (the maximum value in 

this study) in the case of ARMA, ARMAX, and MAX, or 365 days in the case of all GARCH 

models and ARX. For each model type, the forecasting accuracies reported in Table 4.4 are 

based on the individually selected in-sample window with the best accuracy. 

As a robustness check, we split the dataset into subsets. Still, the ranking in Table 4.4 remains 

unchanged. When focusing on certain hourly price forecasts, again, the ranking still remains 

constant. The ARMAX model forecasts are not outperformed by others in any hour. For all 
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hours, the forecast accuracies between the GARCH-type models vary slightly. In relation to 

the ARMAX forecasts, GARCH performs the worst during the early and late peak-hours h8 and 

h19 (minus 7 %). During the off-peak hours between h23 and h3, the outperformance of AR-

MAX forecasts is less than 1-3 %. 

In the following, hypotheses H1 to H4 regarding the performance of different time series mod-

els will be tested based on the forecasting results listed in Table 4.4 and Table 4.5. 

H1: Forecasts of ARMA(X) models outperform AR(X) models. 

In total, the best performing model is an ARMAX model, followed by MAX and GARCH-type 

models. However, their forecasting performance only differs slightly (but still significantly). On 

average, ARMAX is 1.1 % better than MAX and 3.8 % better than GARCH. These findings are 

in line with the statistics of the DM tests. ARMAX forecasts significantly outperform MAX 

(GARCH) forecasts in 19.2 % (21.1 %) of all cases and are significantly worse in 6.4 % (6.5 %). 

This implies that forecasts are not significantly different in most points in time under study. 

Therefore, significance levels based on a rolling sample for the whole dataset are also given. 

In general, there is no change of any result if forecasts are made based on rolling sample 

estimations.56 

Forecasts of the commonly applied ARX models perform 4.9 % worse than ARMAX forecasts 

(average difference based on MAE (5.4 %) and RMSE (4.3 %)). This tendency is supported 

by the results of the significance tests. Consequently, we confirm hypothesis H1 that ARMA(X) 

models outperform AR(X) models. Spot price models should comprise a moving average term 

due to the slowly decaying ACF/ PACF curves. 

It might be surprising that MAX forecasts perform well, only slightly worse than ARMAX fore-

casts. This means adding the autoregressive term is useful for a slightly improved forecast, 

but in an effort to achieve parsimonious models, a MAX structure should not be neglected. 

                                                
56 Results do not change when out-of-sample horizons are extended to 14 or 28 days. The statistics for 

horizons of 14 or 28 days are reported in Table 4.23 to Table 4.26 in appendix 4.9.3. Only the ratios 
of significant vs. non-significant differences (which are reported in Table 4.5) change slightly in favor 
of the better performing models. 
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This is because, as stated in section 4.5, the AR term is covered by including the highly auto-

correlated explanatory variable demand. Still, the OLS regression of the price data to explan-

atory variables yields inferior forecasts to an ARX model, which means the price time series 

also includes other information. 

H2: GARCH models yield forecasts of equal or better accuracy compared to other time series 

models. 

According to the ranking, GARCH types are not the best performing models, which is why we 

do not confirm hypothesis H2. The differences between the best performing models are small. 

This might be surprising as this hypothesis is based on the results of several other studies, 

however, most other studies are based on the forecasting performance for short in-sample and 

out-of-sample time windows. Additionally, Garcia et al. (2005) and Knittel & Roberts (2005) 

state that GARCH forecasts are better than ARMA forecasts at times of high volatility and 

worse at low volatility. As our study covers a long period of time, the dataset represents the 

of high volatility. However, at specific points in time, 

GARCH forecasts are the most accurate in our study. Yet, as our approach is comprehensive, 

this point-in-time view is not sufficient for a generalization.  

H3: Forecasts of sophisticated GARCH models do not outperform standard GARCH models. 

In the case of GARCH processes, more sophisticated model structures do not yield better 

forecasts than standard models. The DM tests back these findings. There is no GARCH model 

type with considerable higher ratios of outperformances against another type. About 80 % of 

all forecasts do not differ significantly (e.g., in the case of GJR vs. GARCH: significant differ-

ences account for 9.4 % + 12 % = 21.4 %). Results based on the rolling sample estimation are 

also not significantly different. Therefore, hypothesis H3 is confirmed: Forecasts of sophisti-

cated GARCH models do not outperform a standard GARCH model forecast. Although these 

models capture asymmetric effects on an in-sample basis, they do not serve to improve out-

of-sample price forecasts. A brief look at the price time series plot in Figure 4.3 plus the fact 

that positive and negative price spikes are possible does not offer any indication of clearly 

pronounced asymmetric effects. 
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H4: Forecasts are more accurate when adequate explanatory variables are included. 

The forecasting accuracies show that it is clearly useful to include explanatory variables on the 

demand and RES, which on average improves forecasts by 34.1 % (ARMAX vs. ARMA). Ex-

tracting the effect of the variable demand reveals an average improvement of forecasts by 

10.4 % (ARMAX vs. ARMA-R), and only considering RES, on average improves forecasts by 

29.1 % (ARMAX vs. ARMA-D). The effect of the factor demand is small, as the seasonality is 

already covered by the autoregressive term of the models. Knowing the forecast data of power 

generation from RES is essential for forecasts on electricity prices. The balance of demand 

and supply is largely pre-determined by these factors. These results confirm hypothesis H4, 

i.e., forecasts improve by incorporating adequate explanatory variables.  

The effect of the explanatory variable demand is analyzed by comparing the forecast accuracy 

of the ARMAX and ARMA-R models. In an additional analysis, we find that during off-peak 

hours, incorporating demand data improves forecasts by less than 5 %, on average, but during 

hours h7-h18, differences are 14-20 %. This means taking the demand into consideration adds 

more information to the price forecasts in peak hours (when demand is generally high) than in 

off-peak hours.  

The effect of RES is quantified by comparing forecasts of the ARMAX model with the ARMA-D 

model. ARMAX forecasts are always even 25-60 % better. The lowest (but still considerable) 

outperformance is during the peak hours h6-h10 and h18-h20. This means the availability of 

wind and solar power data has a larger benefit on the accuracy of forecasts during off-peak-

hours and midday hours than during other time periods. During off-peak and midday, the RES 

share of total power production is relatively high  solar power at midday and (constant) wind 

power when demand decreases at night. In general, based on all measures, the highest fore-

cast errors occur during peak hours h12, h19, and h20 when demand is at its daily peak.  

Some findings were omitted from the previous tables. The forecasting ranking of Table 4.4 

would be different if single series models were the basis of the evaluation. Single series MAX 

forecasts outperform GARCH forecasts, followed by ARMAX model forecasts. Additionally, a 

performance evaluation without the adjustment of spikes would yield inferior GJR/E-GARCH 
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forecasts compared to the standard GARCH. Another finding is the relatively better perfor-

mance of more parsimonious models for shorter in-sample windows, e.g., on a data basis of 

50 days, the best forecasts are achieved by an ARX model. The modeling conditions are to be 

analyzed in sections 4.6.2 and 4.6.3. 

4.6.2 Choice of Data Transformation and Segmentation 

The choice of the most accurate transformation is of high relevance regarding forecasting per-

formance. Table 4.6 presents the evaluation of the forecasting performance after applying data 

transformations in terms of relative improvement.57 First, the relative difference is calculated 

based on MAE and RMSE and, in the second step, the mean of these measures is taken. As 

in section 4.6.1, results are later validated by DM tests. The respective statistics are listed in 

Table 4.7. The tables read as follows: In the case of ARMAX models, forecasts based on outlier 

adjusted data outperform those without an adjustment by 4.1 %. In 32.0 % (2.9 %) of all fore-

casting windows of seven days, forecasts are significantly better (worse). Comparing the rolling 

sample one-day-ahead forecasts for the total out-of-sample period shows that outlier correc-

tion significantly improves forecasts in terms of MAE, but the differences are not significant in 

terms of RMSE. 

Table 4.6: Forecasting performance comparison applying data transformations. 

The values are average (mean) relative improvements when comparing two forecasts either based on the MAE or 
RMSE. Notes: In general, the calculations are made based on the better specification identified in the column dif-
ferencing vs. including a constant. - : relative performance of forecasts after adjustment of outliers/spikes vs. 

- ce of forecasts based on log-transformed 
data (whereas a constant shift has been added to the price time series before setting the price minimum to 100  

-transformed data with a shift to set the price 
minimum to either 100  
single series model. The detailed results for this comparison are provided in Table 4.12 to Table 4.17 in appendix 
4.9.1.The ratios presented below are based on the the absolute numbers shown in the appendix. 

Model o vs. - diff vs. const log100 vs. - log100 vs. log1 24h vs. SS 
ARMAX 4.1%  1.4% -17.3% 4.8% 19.8% 

MAX 5.6%  20.8% -17.2% 5.7% 16.5% 
GJR 9.8% -53.2% -19.6% 6.5%  18.8% 

GARCH 6.0% -34.4% -20.4% 6.1% 16.9% 
ARX 3.7%  -20.2% -18.5% 7.2% 19.4% 

ARMA 0.9%  0.2%  -2.2%  2.6%  18.0% 

                                                
57 For the analysis of sophisticated GARCH models in 6.2 and 6.3, we only take GJR-GARCH into 

consideration, as forecasts of this type outperform E-GARCH and are more common than P-GARCH. 
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Table 4.7: Results of DM tests. 

Average values for all comparisons based on MAE and MSE (significance level p = 0.05) belonging to the statistics 
reported in Table 4.6. The first value of each cell indicates the ratio of significant outperformances of the first type 
and the second value of the second type. The ratios are based on a total number of (MAE and RMSE) comparisons 
of 777 7-days- nificance levels of 10 % / 5 % / 1 % / 0.1 % for DM tests 
(MAE/RMSE) on rolling sample forecasts for the whole dataset. 

Model o vs. - diff vs. const log100 vs. - log100 vs. log1 24h vs. SS 
ARMAX 32.0% - 2.9% 

***/ 
16.4% - 4.7% 

***/* 
0.6% - 50.9% 

***/*** 
47.8% - 1.3% 

***/*** 
59.1% - 0.2% 

***/*** 
MAX 31.7% - 1.4% 

***/ 
51.8% - 0.4% 

***/*** 
2.1% - 48.4% 

***/*** 
52.5% - 0.3% 

***/*** 
50.8% - 0.5% 

***/* 
GJR 52.1% - 0.8% 

***/*** 
0.0% - 82.2% 

***/*** 
0.1% - 51.6% 

***/*** 
39.9% - 3.6% 

***/ 
86.4% - 0.0% 

***/** 
GARCH 43.3% - 1.0% 

***/*** 
0.3% - 56.4% 

***/*** 
0.7% - 53.2% 

***/*** 
59.7% - 0.6% 

***/*** 
86.2% - 0.1% 

***/*** 
ARX 31.7% - 2.9% 

***/*** 
0.3% - 56.3% 

***/*** 
0.7% - 49.7% 

***/*** 
52.5% - 0.8% 

***/*** 
59.1% - 0.8% 

***/*** 
ARMA 16.6% - 4.8% 

*/ 
14.5% - 11.1% 

/ 
3.7% - 18.7% 

**/ 
21.8% - 4.9% 

**/ 
42.5% - 1.0% 

***/** 
 

In the following, hypotheses H5 to H7 regarding the choice of data transformation and seg-

mentation will be tested based on the forecasting results listed in Table 4.6 and Table 4.7. 

H5: The use of differenced price series or log-prices does not yield better forecasts. 

For ARMA(X) models  and considerably in the case of MAX forecasts  differencing the price 

series is highly useful. By contrast, for GARCH and ARX, the price series should not be differ-

enced as their forecasts perform worse than without a transformation application. Therefore, 

regarding differencing, the assessment of hypothesis H5 depends on the model type.  

When evaluating other transformations (all cases apart from diff vs. const in Table 4.6), the 

sign of the (non-)outperformance is always the same independently of the applied model type. 

Applying the log-transformation should not be preferred, as most models that have been cali-

brated on these data yield forecasts being 15-20 % worse than the best forecast. DM statistics 

are also unanimous and support this result. If a log-transformation is applied, it is useful to add 

a large constant shift to the whole price time series. Our comparison between adding a shift to 

generate a minimum of 1 /MWh and 100 /MWh shows that forecasts are clearly better for 

higher price shifts with more obvious results from DM tests. Summarized, the finding for hy-

pothesis H5 is that the application of logarithms yields inferior forecasts.  
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H6: Applying spike preprocessing to data improves forecasts. 

After spike preprocessing, forecasts are 0.9-9.8 % better compared to the use of the original 

data. So, without exception, forecasts based on outlier corrected data outperform forecasts 

without a filter. A smoother in-sample dataset serves to generate more accurate forecasts. 

Interestingly, differences are not significant in the case of ARMAX, MAX and ARMA forecasts 

if only the RMSE criterion is considered because the result value of this measure is driven by 

large forecasting errors. Additionally, the model fit to extreme values is worse if these are fil-

tered out prior to the model calibration. Still, in general, based on the results for MAE and 

RMSE, we confirm hypothesis H6: Applying spike preprocessing to data improves forecasts. 

Again, the result is supported by the ratios of the DM statistic.  

H7: Twenty-four separate models for each hour of a day outperform their single series coun-

terparts.  

Hypothesis H7 is clearly confirmed. Forecasts based on 24 separately calibrated models out-

perform their single series counterparts by more than 15 %. The outperformance is significant 

in a large share of all periods as can be found from the DM statistics. This shows that each 

hourly time series represents a single process. The specific behavior of each single process 

would not be reflected by one general model. 

4.6.3 Choice of the In-Sample Time Horizon 

Results of the forecasting accuracy evaluation may also be affected by the calibration window 

of a certain model. Expanding datasets or rolling-sample estimations are used frequently in 

research studies. The forecasting performances for in-sample time horizons of 730, 365, 182, 

91, and 50 days are listed in Table 4.8. The performance of a rolling sample vs. fixed sample 

is also included. The DM statistics are reported in Table 4.9. The significance tests are con-

ducted the same way as in prior sections and the tables are read in the same way as Table 

4.6 and Table 4.7: ARMAX models calibrated based on an in-sample window of 730 days 

outperform those based on 365 days by 1.3 %, and 730-day-based forecasts are significantly 

better (worse) in 14.2 % (5.0 %). Comparing the rolling sample one-day-ahead forecasts for 
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the total out-of-sample period shows that the different lengths of calibration windows do not 

yield significantly different forecasts in terms of both MAE and RMSE. 

Table 4.8: Forecasting performance comparison for lengths of calibration windows. 

Average relative improvement calculated for MAE and RMSE. Positive values represent the average outperfor-
mance of the respective model calibrated on a 730-day fixed time horizon vs. calibration windows of other lengths. 
The reported values marked with x are based on the medians of the 777 steps for MAE and RMSE, as some 
forecasting errors were large yielding forecasting improvement close to 100 %. The detailed results for this com-
parison are provided in Table 4.18 to Table 4.22 in appendix 4.9.2. The ratios presented below are based on the 
absolute numbers shown in the appendix. 

Model 365 days 182 days 91 days 50 days rolling 
ARMAX 0.5% 2.0% 5.4% 12.4%x -0.1% 

MAX 0.2%  2.5%  16.6% 38.7%x -0.1% 
GJR -1.3% 1.0%x 11.0%x  22.8%x -0.1% 

GARCH -1.2% 0.3%x 13.2%x 46.6%x 0.0% 
ARX -1.9% -2.2%  -1.6%  -0.4%  -0.2% 

ARMA 1.0% 3.4% 6.0% 10.8%x 0.0% 
 

Table 4.9: DM statistics for lengths of calibration windows. 

Results of DM tests as average values for MAE and MSE (significance level p = 0.05). The numbers are comparison 
ratios of 777 7-days-ahead forecasts. The first value of each cell indicates the outperformance ratio by using a time 
window of 730 days and the second value indicates the outperformance by using the time window of the column 
headline. The column rolling contains results for a fixed in-sample window vs. a rolling sample. For this comparison 
the window lengths with 
10 % / 5 % / 1 % / 0.1 % for DM tests (MAE/MSE) on rolling sample forecasts for the whole dataset. 

Model 365 days 182 days 91 days 50 days rolling 
ARMAX 14.2% - 5.0% 

/ 
18.8% - 4.9% 

**/ 
31.8% - 2.8% 

***/** 
52.8% - 0.5% 

***/** 
6.1% - 12.1% 

MAX 13.0% - 8.6% 
/ 

21.6% - 6.2% 
***/ 

53.0% - 1.6% 
***/*** 

75.0% - 0.1% 
***/*** 

5.7% - 11.7% 
 

GJR 11.9% - 19.4% 
**/*** 

19.7% - 9.9% 
***/** 

57.6% - 1.1% 
***/*** 

78.6% - 0.1% 
***/*** 

7.9% - 11.8% 
 

GARCH 11.8% - 18.8% 
***/*** 

21.2% - 10.9% 
***/*** 

69.2% - 0.3% 
***/*** 

85.5% - 0.1% 
***/*** 

7.7% - 11.3% 
 

ARX 6.4% - 30.0% 
*/*** 

7.9% - 23.2% 
***/*** 

11.9% - 19.2% 
**/** 

14.9% - 15.9% 
**/** 

6.7% - 22.1% 
 

ARMA 20.7% - 3.4% 
***/* 

23.8% - 3.2% 
***/  

23.3% - 3.7% 
***/* 

35.1% - 1.5% 
***/*** 

8.5% - 9.2% 
 

 

In the following, hypotheses H8 to H9 regarding the choice of the in-sample time horizon will 

be tested based on the forecasting results listed in Table 4.8 and Table 4.9. 

H8: Forecasts based on short calibration horizons of a few weeks are outperformed by those 

based on longer time horizons. 

In most cases, forecasts of models that are calibrated based on short data sets are outper-

formed by longer time horizons. In the case of GARCH, GJR, and ARX models, windows of 
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365 days yield the best forecasts. For MAX, ARMA, and ARMAX forecasts, the optimal length 

is 730 days. However, only ARMA forecasts are significantly better when extended to more 

than 365 days. The DM statistics in Table 4.9 support these findings, e.g., an ARMAX forecast 

calibrated with a dataset of 730 days outperforms the in-sample window of 50 days by 13.1 % 

and is significantly better in 52.8 % of all cases. 

MAX and especially GARCH forecasts perform extremely poorly when based on short in-sam-

ple windows. For most models, using in-sample horizons below one year generates signifi-

cantly inferior forecasts (see the effect signs in Table 4.8 and the significance statistics in Table 

4.9) because models are over-specified for small datasets. However, the more relevant point 

is that a time window of 365 days (or more) adequately covers each season of a year. This 

cannot be fulfilled by shorter time windows.  

Interestingly, for models that include a constant term (ARX, GARCH, GJR), it is best to choose 

an in-sample window of 365 days. As the average price has considerably declined in recent 

years  i.e., has been non-stationary  the constant term of a non-differenced model over 730 

days might not reflect the true price behavior. Regarding other models, improvements for win-

dows longer than 365 days are marginal. 

In conclusion, we largely confirm hypothesis H8: Forecasts based on horizons of a one-year 

seasonality outperform those of shorter horizons. 

H9: Forecasts based on rolling sample estimations are worse than those of fixed in-sample 

windows. 

Generally, the differences between rolling samples and fixed time horizons are marginal and 

economically not relevant. This corresponds to the findings of Weron & Misiorek (2008) and 

Serinaldi (2011), who test but reject rolling sample calibrations as these approaches do not 

improve forecasts. However, this does not confirm hypothesis H9, in which we assume inferior 

rolling sample forecasts. 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



102 Forecasting Performance of Time Series Models: Empirical Study 

4.7 Recap of the Obtained Results 

The forecasting accuracies for ARMAX, MAX, GARCH (and its variations), and ARX models 

are in line with the results of other studies on time series models on the GER/AT spot market 

listed in Table 4.10. In the present analysis, the average values are MAE  4 /MWh, 

RMSE  6 /MWh  %, in a broad range of 2-23 -55 

4-41 % (wMAPE). Related studies cover 2001 to 2014 and state similar results for MAE and 

RMSE. The values for MAPE are higher in both related studies, but the authors do not use 

wMAPE. 

Table 4.10: Forecasting performance of time series models in related literature. 

Related literature with focus on the GER/AT market. The column specific modeling conditions details differences 
from our study. EXAA = Energy Exchange Austria. 

Reference Models MAE RMSE MAPE Time Specific modeling 
conditions 

Cuaresma et al. (2004) 
AR / 

ARMA 
~3  ~4   2001 

hourly dummy vari-
ables 

Swider & Weber (2007) 
ARMAX / 
GARCH ~4   ~13 % 2002-2004 

in-sample evalua-
tion 

Keles et al. (2012) 
AR(I)MA / 
GARCH 

 8-12  16-21 % 2006-2009 
regime switching 

models 

Frömmel et al. (2014) E-GARCH ~2  ~3   2011-2013 
based on daily av-

erage prices 

Ziel et al. (2015a) AR(X) ~4  ~7   2009-2014 
exogenous varia-
ble: EXAA-prices 

 

When interpreting the results of this study, one aspect limiting their generality should be taken 

into consideration. Based on the DM statistics reported in Table 4.5, Table 4.7, and Table 4.9, 

it should be regarded as generally valid that several models do not significantly outperform 

each other at most points in time. Even the worst performing models (except the benchmark 

models) outperform the best forecasts at a few points in time. Therefore, we recommend in-

creasing the number of analyzed time windows (as conducted in this study) to cover various 

market phases. By means of the iterative approach of comparing forecasting performances, 

we cover as many points in time as possible in the present study. In general, findings do not 

change independently of the applied forecast accuracy measures. 
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4.8 Interim Results 

This chapter provides a comprehensive empirical study on the forecasting performance of time 

series models under varying conditions on the German/Austrian electricity spot market from 

2010-2014. We analyze the forecasting performance of ARMAX, MAX, ARX, and GARCH-

type models when the data preprocessing steps of differencing, log-transformation and spike 

adjustments are applied  lag structures of each model 

are included. Additionally, forecasts of single series models are compared to 24 separate 

hourly vectors. 

To summarize the present forecasting performance study, the results for the hypotheses are 

listed in Table 4.11: Summary of the results of testing the research hypotheses. These conclu-

sions represent the aggregation of the results across the whole study. 

Table 4.11: Summary of the results of testing the research hypotheses. 

Hypo-
thesis Content Expected 

Sign Result Con-
firm 

H1 ARMAX forecasts better than ARX forecasts + +  
H2 GARCH forecasts better than forecasts of other model types  +/  - - 
H3 Sophisticated GARCH better than standard GARCH    
H4 Adequate explanatory variables better than no explanatory variables + +  
H5 Differencing and log-prices better than non-transformed prices  +/ /- - 
H6 Spike preprocessed prices better than non-transformed prices + +  
H7 24h models better than SS models + +  
H8 Longer in-sample window better than short window + +/  ( ) 
H9 Rolling samples better than fixed calibration windows -   - 

 

ARMAX models are the best performing time series models on the German/Austrian market. 

GARCH model forecasts are slightly, yet significantly, less accurate. The economic impact 

might be negligible. Sophisticated GARCH structures represented by E-GARCH, GJR-

GARCH, and P-GARCH in this study, do not yield better forecasts than the standard GARCH. 

This means capturing asymmetric effects does not necessarily generate better forecasts. In-

cluding an explanatory variable for the demand and especially a variable reflecting power gen-

eration from renewable energy generates considerably better forecasts.  

In general, results do not change if the out-of-sample horizon is varied, model lag structures 

are changed and market phases are extracted. However, it can be concluded that results are 

highly dependent on the point in time of the forecasting accuracy analysis 

perform their counterparts at a 
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few points in time. Therefore, we recommend to increase the number of analyzed time win-

dows (as conducted in this study) to cover various market phases. Still, despite contradictory 

results, a systematic pattern could not be identified, which combined forecasts could be based 

on.  

Regarding the usefulness of data transformations, there are unanimous outcomes: The adjust-

ment of extreme values by a simple spike preprocessing procedure leads to more accurate 

forecasts. This implies a smoother in-sample dataset serves to generate more accurate fore-

casts. Differencing should be applied in the case of ARMAX, MAX, and ARMA models, but not 

for ARX and GARCH-types. The common transformation using log-prices does not improve 

forecasts. Additionally, modeling the time series in 24 hourly vectors is preferred against the 

single series approach. The specific behavior of each single process would not be reflected by 

one general model, but rather by regime switching approaches. 

Throughout all models, it can be concluded that an in-sample dataset of at least 365 days 

should be employed to adequately cover one total yearly cycle of seasonal price behavior. 

Forecasts based on shorter in-sample datasets perform worse. 

The results of this study, in general, support the decision-making of electricity spot price mod-

elers or forecasting tools regarding the choice of data transformation, segmentation and the 

specific model selection. However, in this study, only time series models with standard explan-

atory variables are analyzed, which might not be sufficient, when trying to achieve a deep 

understanding of the market behavior and of price drivers. Therefore, in the subsequent chap-

ter 5 an electricity price model is designed which is based on more complex input parameters. 
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4.9 Appendix 

4.9.1 Appendix to Transformation and Segmentation 

In the subsequent tables, MAE, RMSE and wMAPE are the average values of the 777 times 

repeated calculations. In case of the wMAPE the eight worst results have not been taken into 

consideration. This does not affect the ranking. 

Table 4.12: ARMAX: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 4.10 5.76 0.1072 (1,1,1)(1,1,1) 
diff 4.32 5.95 0.1138 (1,1,1)(1,1,1) 

o, const 4.16 5,84 0.1089 (1,1,1)(1,1,1) 
o, log1 5.09 7.03 0.1341 (1,1,1)(1,1,1) 

o, log 100 4.83 6.71 0.1270 1,7,8 
o, diff, SS 5.05 7.26 0.1332 1,7,8 

 

Table 4.13: MAX: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 4.15 5.81 0.1085 1,7,8 
diff 4.44 6.11 0.1167 1,7,8 

o, const 5.41 7.12 0.1455 1,7 
o, log1 5.22 7.15 0.1376 1,7,8 

o, log 100 4.90 6.77 0.1290 1,7,8 
o, diff, SS 4.96 6.97 0.1310 1,7,8 

 

Table 4.14: GARCH: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 5.25 8.53 0.1400 1,7 
const 4.49 6.27 0.1182 1 

o, const 4.21 5.91 0.1107 1,7 
o, const, log1 5.40 7.58 0.1434 1,7 

o, const, log 100 5.05 7.14 0.1337 1,7 
o, const, SS 5.04 7.21 0.1330 1,7,8 

 

Table 4.15: GJR: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 6.23 10.28 0.1590 1,7 
const 4.63 6.11 0.1230 1 

o, const 4.21 5.91 0.1106 1,7 
o, const, log1 5.41 7.52 0.1435 1 

o, const, log 100 5.03 7.08 0.1328 1,7 
o, const, SS 5.10 7.40 0.1340 1,7,8 
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Table 4.16: ARX: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 5.26 7.13 0.1391 1,7,8 
const 4.51 6.20 0.1149 1,7,8 

o, const 4.32 6.01 0.1131 1,7 
o, const, log1 5.52 7-66 0.1460 1,7 

o, const, log 100 5.11 7.12 0.1348 1,7,8 
o, const, SS 5.43 7.35 0.1431 1,7 

 

Table 4.17: ARMA: Forecasting performance depending on the transformation. 

Transformation MAE RMSE wMAPE Lags 
o, diff 6.33 8.57 0.1670 (1,1,1)(0,1,1) 
Diff 6.40 8.62 0.1702 (1,1,1)(0,1,1) 

o, const 6.35 8.58 0.1683 1,7,8 
o, log1 6.65 8.98 0.1765 (1,1,1)(1,1,1) 

o, log 100 6.51 8.82 0.1722 (1,1,1)(1,1,1) 
o, diff, SS 7.66 10.54 0.2032 1,7,8 

 

4.9.2 Ranking for Different In-Sample Periods 

In the subsequent tables, MAE, RMSE and wMAPE are the average values of the 777 times 

repeated calculations. In case of the wMAPE the eight worst results have not been taken into 

consideration. This does not affect the ranking. The right values under each accuracy measure 

indicate the median of the 777 repeated calculations. 

Table 4.18: Forecasting performance for IS = 730 days. 

Model MAE RMSE wMAPE 
ARMAX 4.10 3.78 5.76 4.82 0.1063 0.0974 

MAX 4.15 3.80 5.81 4.89 0.1077 0.0992 
GJR 4.27 3.88 5.99 4.99 0.1109 0.1015 

GARCH 4.26 3.88 5.98 4.98 0.1109 0.1016 
ARX 4.40 3.98 6.11 5.12 0.1154 0.1054 

ARMA 6.34 5.65 8.57 7.36 0.1648 0.1482 
 

Table 4.19: Forecasting performance for IS = 365 days. 

Model MAE RMSE wMAPE 
ARMAX 4.12 3.81 5.79 4.92 0.1071 0.0986 

MAX 4.16 3.85 5.82 4.95 0.1083 0.0995 
GJR 4.21 3.88 5.91 4.98 0.1106 0.1004 

GARCH 4.21 3.89 5.91 4.99 0.1106 0.1003 
ARX 4.32 3.96 6.01 5.10 0.1131 0.1031 

ARMA 6.40 5.75 8.67 7.47 0.1667 0.1502 
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Table 4.20: Forecasting performance for IS = 182 days. 

Model MAE RMSE wMAPE 
ARMAX 4.19 3.86 5.86 4.98 0.1090 0.1005 

MAX 4.26 3.93 5.95 5.02 0.1107 0.1020 
GJR >1000 3.94 >1000 5.01 >1000 0.1027 

GARCH >1000 3.90 >1000 5.06 >1000 0.1028 
ARX 4.31 4.03 5.99 5.11 0.1125 0.1043 

ARMA >1000 5.84 >1000 7.63 0.1709 0.1514 
 

Table 4.21: Forecasting performance for IS = 91 days. 

Model MAE RMSE wMAPE 
ARMAX 4.35 3.97 6.06 5.09 0.1131 0.1024 

MAX 4.91 4.51 7.05 5.93 0.1297 0.1182 
GJR >1000 4.41 >1000 5.55 >1000 0.1199 

GARCH >1000 4.63 >1000 5.69 >1000 0.1311 
ARX 4.33 4.04 6.01 5.15 0.1130 0.1052 

ARMA >1000 6.01 >1000 7.83 >1000 0.1596 
 

Table 4.22: Forecasting performance for IS = 50 days. 

Model MAE RMSE wMAPE 
ARMAX >1000 4.28 >1000 5.54 0.8172 0.1142 

MAX 6.53 5.92 9.83 8.25 0.1751 0.1543 
GJR >1000 5.39 >1000 6.04 >1000 0.1544 

GARCH >1000 12.63 >1000 38.46 >1000 0.5059 
ARX 4.39 4.03 6.09 5.12 0.1147 0.1046 

ARMA >1000 6.33 >1000 8.26 >1000 0.1690 
 

4.9.3 Results for Different Out-of-Sample Periods 

In the subsequent tables, MAE, RMSE and wMAPE are the average values of the 777 times 

repeated calculations. In case of the wMAPE the eight worst results have not been taken into 

consideration. This does not affect the ranking. 

The DM tests are conducted at a significance level p = 0.05. Values in the matrix indicate the 

outperformance of models listed in rows against models in columns. The numbers are ratios 

of a total number of comparisons of 777 seven-days-ahead forecasts, whereas the average 

ratio of the MAE-based and the MSE-  indicate signifi-

cance levels of 10 % /5 % /1 % /0.1 % for DM tests (MAE/MSE) on rolling sample forecasts for 

the whole dataset.  
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Table 4.23: Forecasting performance for OS = 14 days.  

Model MAE RMSE wMAPE 
ARMAX 4.11 5.99 0.1188 

MAX 4.16 6.05 0.1203 
E-GARCH 4.23 6.15 0.1221 
P-GARCH 4.23 6.14 0.1222 

GJR 4.23 6.15 0.1222 
GARCH 4.23 6.15 0.1223 

ARX 4.33 6.25 0.1252 
ARMA-R 4.60 6.67 0.1354 
ARMA-D 5.92 8.27 0.1705 
ARMA 6.36 8.90 0.1845 
OLS 6.55 8.91 0.1856 

 

Table 4.24: Results of DM tests for OS = 14 days. 
 ARMAX MAX E-GARCH P-GARCH GJR GARCH ARX ARMA-R ARMA-D ARMA OLS Naïve Average 

ARMAX  22.0% 24.3% 22.9% 23.3% 23.0% 26.9% 31.5% 90.8% 94.4% 98.5% 96.3% 50.4% 

MAX 3.7%  15.4% 15.1% 14.3% 15.7% 19.5% 24.5% 88.8% 94.6% 97.5% 96.1% 44.1% 

E-GARCH 4.8% 4.8%  10.8% 10.4% 11.5% 20.4% 16.0% 83.2% 90.4% 98.2% 95.8% 40.6% 

P-GARCH 5.1% 5.2% 12.6%  9.4% 11.5% 21.5% 15.4% 83.3% 90.0% 98.4% 95.7% 40.7% 

GJR 5.4% 4.8% 12.3% 9.6%  10.2% 20.6% 15.4% 83.4% 90.4% 98.0% 95.7% 40.5% 

GARCH 5.8% 5.5% 12.9% 9.6% 9.3%  20.9% 16.1% 83.2% 89.9% 98.3% 95.6% 40.6% 

ARX 2.5% 3.2% 2.4% 2.2% 1.8% 2.1%  10.3% 75.8% 85.3% 98.0% 94.3% 34.4% 

ARMA-R 0.9% 1.5% 8.4% 8.3% 8.1% 8.3% 9.2%  65.6% 87.0% 93.9% 93.3% 35.0% 

ARMA-D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5%  32.4% 37.7% 68.3% 12.6% 

ARMA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.5%  20.9% 64.4% 8.7% 

OLS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.8% 6.6%  28.0% 3.5% 

Naïve 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.5%  
0.1% 

 

Average 2.6% 4.3% 8.0% 7.1% 7.0% 7.5% 12.6% 11.8% 60.8% 69.2% 76.4% 84.0%  

 

Table 4.25: Forecasting performance OS = 28 days. 

Model MAE RMSE wMAPE 
ARMAX 4.12 6.26 0.1120 

MAX 4.17 6.31 0.1134 
E-GARCH 4.25 6.43 0.1158 
P-GARCH 4.25 6.42 0.1158 

GJR 4.25 6.43 0.1157 
GARCH 4.25 6.43 0.1158 

ARX 4.36 6.54 0.1189 
ARMA-R 4.61 6.96 0.1262 
ARMA-D 5.94 8.56 0.1615 
ARMA 6.38 9.20 0.1735 
OLS 6.56 9.12 0.1775 
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Table 4.26: Results of DM tests for OS = 28 days. 
 ARMAX MAX E-GARCH P-GARCH GJR GARCH ARX ARMA-R ARMA-D ARMA OLS Naïve Average 

ARMAX  23.7% 30.0% 28.0% 29.1% 28.6% 39.9% 23.2% 98.5% 99.9% 98.1% 97.9% 54.3% 

MAX 0.8%  17.5% 18.3% 16.7% 18.2% 25.5% 32.7% 97.5% 99.8% 98.1% 97.9% 47.5% 

E-GARCH 1.1% 2.7%  13.0% 10.7% 12.5% 24.2% 18.4% 94.7% 99.1% 98.1% 97.9% 42.9% 

P-GARCH 1.6% 3.4% 16.7%  9.3% 10.7% 26.6% 19.2% 94.3% 94.3% 98.1% 97.9% 42.9% 

GJR 1.4% 4.1% 15.7% 10.3%  10.7% 24.8% 19.0% 94.1% 99.2% 98.1% 97.9%% 37.7% 

GARCH 1.5% 3.7% 17.2% 10.5% 9.7%  26.2% 19.4% 94.2% 99.1% 98.1% 97.9% 43.4% 

ARX 0.5% 0.7% 1.4% 1.1% 0.9% 1.4%  12.5% 91.4% 97.5% 98.1% 97.9% 36.7% 

ARMA-R 0.0% 1.0% 8.7% 9.1% 8.6% 9.0% 9.5%  74.0% 95.9% 87.5% 96.6% 36.4% 

ARMA-D 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%  43.0% 40.3% 82.1% 15.0% 

ARMA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 13.5%  18.0% 79.4% 10.1% 

OLS 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.3% 7.5%  47.3% 5.4% 

Naïve 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%  0.0% 

Average 2.6% 4.3% 8.0% 7.1% 7.0% 7.5% 12.6% 11.8% 60.8% 69.2% 76.4% 89.3%  

 
 

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



 

 

5 
58 

5.1 Motivation 

In recent years, European electricity markets have undergone rapid change due to the increas-

ing share of power generation from RES. RES have gradually replaced power generation from 

conventional power plants using coal, gas, lignite, or nuclear energy. This development has a 

distinct effect on electricity prices and has already forced traditional market participants to re-

vise their business models.  

Germany plays a pioneering role in the transition towards a sustainable power supply with 

installed capacities of wind power of 45 gigawatts (GW) and of PV of 39 GW. In total, renewa-

bles (incl. biomass, hydro and waste) account for 29 % of the gross electricity generation in 

Germany.59 

By law, the feed-ins of wind and solar power  which are produced at marginal costs of zero  

are prioritized over other sources. Since the demand for electricity is quasi inelastic, this 

causes considerable changes on the supply side and leads to decreasing prices. This is be-

cause conventional power plants with higher marginal costs are squeezed out of the market. 

This is called the MOE. The MOE has been extensively studied in the recent literature.60 Gen-

erally, several simulation studies and regression analyses have found a substantial price 

                                                

58 The study on the price effects of wind and solar power is based on Gürtler & Paulsen (2018c). 

59 Values have been published officially in the lists of power plants for the year 2016 of the BNetzA and 
by AG Energiebilanzen (2017). 

60 See e.g., Sensfuß et al. (2008). 
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dampening effect of RES. For their empirical analyses of the German market, Würzburg et 

al. (2013) and Cludius et al. (2014) for example, apply pooled OLS regressions with Newey & 

West (1987) standard errors. Others, such as Ketterer (2014) and Benhmad & Percebois 

(2016) employ time series models (in these cases, GARCH, or generalized autoregressive 

conditional heteroscedasticity). 

In contrast to the existing empirical literature in this area, in the present study we apply a panel 

data analysis. The advantage of panel data analysis against standard pooled regression is the 

avoidance of an omitted variables bias caused by unobserved heterogeneity (part of the error 

term) that is constant over time. More specifically, we apply the so-called fixed effects model 

61 We construct 

two panel datasets with day-ahead prices and intraday prices as dependent variables. These 

datasets cover 24 observations each day, from 2010 to 2016. We apply a fixed effects regres-

sion where we apply standard errors of Driscoll & Kraay (1998), which are robust to hetero-

scedasticity, autocorrelation and cross-sectional dependence of the residuals. The model 

structure allows us to identify time dependent effects in the results. Applying the fixed effects 

regression implies that price levels within each hour of a day reveal their own specific effects. 

A noteworthy element of the regression model is the simulation-based design of a variable 

indicating the power generation technology that is price determining at a certain point in time. 

This marginal power generation capacity is just required to exactly meet the current demand. 

Taking the power generation technology into consideration allows us a deeper perspective into 

the MOE, as we assume nonlinear price-load-relationships. For the analysis, we differentiate 

between the fuel types coal, gas, and others. 

Besides studying the MOE, we quantify price changes due to power plant ramping as well as 

price changes due to forecasting errors on wind and solar power generation. Ramping costs 

are costs which are incurred by varying operation capacities of power plants due to a lower 

efficiency of the power generation combined with higher operational costs. As the balance of 

                                                

61 In addition to a fixed effects model, it is also possible to apply a so-called random effects model 
according to which the regression is only partly corrected for unobserved heterogeneity. Without going 
deeper into the specific advantages of the random effects model, it will be shown below that the fixed 
effects model is more suitable for the present study. 
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demand and supply needs to be offset at each point in time, flexibility in the power generation 

is required to cope with a cyclical demand for electricity. Contrasting with other studies, we do 

not only account for the current change of the demand, but we also assume that the residual 

demand (forecast) in subsequent periods of the same day affects current prices. Additionally, 

the hypothesis continues that very short (non-)utilization periods of power generation capaci-

ties and steep demand increases or decreases incur additional generation costs, which reflects 

in the market in the form of higher prices. The identification of these measures is analytically 

 

Despite their name, electricity spot markets are in fact day-ahead markets meaning that the 

pricing is based on available forecasts of demand and supply. Consequently, prices may be 

affected by forecast errors. Residual quantities need to be traded in the subsequent intraday 

market. Focusing on the forecasting errors of RES, this effect on prices has been studied by 

von Roon & Wagner (2009), Hagemann (2015) and Kiesel & Paraschiv (2017), but has not yet 

been studied in relation to the MOE in general. This is where this study raises the research 

issue, of whether the price effects due to forecasting errors are significantly different compared 

to the MOE. To address these additional issues, we extend the regression model by incorpo-

rating the forecasting errors and ramping parameters. 

5.2 Literature Review 

5.2.1 Merit-Order Effect 

A wide range of literature exists on the effects of RES on electricity prices. In general, findings 

are very consistent regarding the conclusion that an increase of power generation from RES 

results in decreasing electricity prices.  

A comprehensive literature overview on the price effects of RES is given by Würzburg et al. 

(2013). Similarly, Table 5.1 summarizes the literature on the quantification of the MOE, focus-

ing on the German market. The presented effects have not necessarily been reported in the 

respective sources. Several of the effect sizes have been normalized to receive the effect as 
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 of feed-ins from RES.62 The applied models can be categorized 

into either simulation-based or regression models, whereas in more recent studies regression 

models are more common. The MOE quantifications reflect the total price effect of RES, the 

wind induced effect or the solar-induced effect. Wind and solar are of specific interest due to 

their fluctuating power generation and their large growth rates during the recent years. 

Table 5.1, panel A shows that the MOE has been quantified in a range from 0.55 to 

2.67 recent regression 

models of Würzburg et al. (2013), Cludius et al. (2014), Benhmad & Percebois (2016) and 

Paschen (2016) are very consistent in their magnitude at approximately 63 Several 

authors assume the MOE to be constant over time. Of those, who analyze longer periods than 

just a single year, Rathmann (2007), vbw (Vereinigung der bayerischen Wirtschaft e.V., 2011), 

Würzburg et al. (2013), Ketterer (2014), Benhmad & Percebois (2016) and Paschen (2016) do 

not try to identify time dependent effects of the MOE. 

The applied methods are divided into simulation studies and regression analyses. For their 

regression analyses, for example, Würzburg et al. (2013) and Cludius et al. (2014) apply 

pooled OLS with Newey-West standard errors. Others, such as Ketterer (2014) and Benhmad 

& Percebois (2016) employ a time series model (in these cases, GARCH). The ingenuity of 

this study is that, in contrast to common literature, a fixed effects panel regression is applied 

on electricity price modeling. 

Table 5.1, panel B presents the total price reductions based on the power generation from 

 in 

2013 (adding up the wind effect and PV effect of Paschen (2016)) with an increasing effect 

size over time. This corresponds to the increasing share of RES on the total power generation 

in Germany. Still, there are extensive variations between the results of the different studies. 

                                                
62 The effect sizes are calculated by dividing the total effects by the average RES feed-ins per year. It 

should be noted that effects are regarded to be linear in this summarized representation. This corre-
sponds to the common measure ratio of Würzburg et al. (2013), however, with slightly deviating values. 

63 In the case of Paschen (2016), if we only take into consideration the instantaneous effect (omitting 
the impact of RES feed-ins on future power prices), the 
1.17  different compared to the values reported in Table 5.1. 
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Few studies have tried to simultaneously extract different price effects of feed-ins of either wind 

or PV. Würzburg et al. (2013) do not find evidence for significant differences between the two 

power sources. However, the authors mention that effects of PV might be greater if they had 

used hourly data instead of daily average values. Cludius et al. (2014) conclude that the PV 

induced MOE is larger than the effect of wind. Paschen (2016) also finds a higher solar-induced 

MOE than the wind MOE. 

Table 5.1: Literature on the merit-order effect. Studies are either focused on RES in total, wind, or PV. * in-
dicates values that are calculated based on the MOE a -in per year in the 
respective publication. ** indicates values that are calculated based on average RES feed-in per year in 
other publications because not all required data have been provided. Publications without any indication 
provide the effects, as they are listed in this table. x indicates that dataset does not cover full year. R  
regression, S  simulation. 

Table 5.1: Panel A   GWh generated by RES. 
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Bode & Groscurth (2006) S X    0,55 - 0,61        

Neubarth et al. (2006) R  x   1,90x 1,90x         

Weber & Woll (2007)* S  x     0,81        

Rathmann (2007)* S X     1,91 1,91 1,91       

Sensfuß et al. (2008)* S X   0,61 0,53 0,82 1,31        

Weigt (2009)* S  x     1,83 2,29 2,61x      

Traber & Kemfert (2009)** S X      0,59        

von Roon & Huck (2010) R  x       2,40      

Traber & Kemfert (2011) S  x      0,76x 0,76x      

vbw (2011)* S X      0,78 0,78 0,78 0,78 0,78    

Frantzen & Hauser (2012)* S   x         2,64   

Würzburg et al. (2013) R  x x        1,00x 1,00 1,00x  

Sensfuß (2013)* S X       0,82 0,74 0,70 0,55 0,75 0,68  

Tveten et al. (2013)* S   x        2,67 2,67x   

Cludius et al. (2014) R  x  
 
x 

     2,27  1,72  
1,15x 
0,84x 

0,97 
0,90 

0,97 
1,37 

 

Ketterer (2014)* R  x     1,16 1,16 1,16 1,16 1,16 1,16 1,16x  

Benhmad & Percebois (2016) R  x        1,23 1,23 1,23 1,23 1,23 
Dillig et al. (2016)** S  x x         0,43 0,52 0,70 

Paschen (2016) R  x 
 

 
x 

       1.71x 

2.38x 
1.71 
2.38 

1.71 
2.38 

1.71x 
2.38x 

                

# of publications     1 2 3 7 6 7 5 8 9 7 3 
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Table 5.1: Panel B   
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Bode & Groscurth (2006)  x    3.28 -3.64        

Neubarth et al. (2006)   x   7.60 7.60         

Weber & Woll (2007)*   x     4.04        

Rathmann (2007)*  x      6.40        

Sensfuß et al. (2008)*  x   1.70 2.50 4.25 7.83        

Weigt (2009)*   x     6.26 10.47 13.13      

Traber & Kemfert (2009)**  x      3.52        

von Roon & Huck (2010)  x        11.00      

Traber & Kemfert (2011)   x      3.70 3.70      

vbw (2011)*  x      8.00 8.00 8.00 8.00 8.00    

Frantzen & Hauser (2012)*    x         5.50   

Würzburg et al. (2013)   x x        7.60 7.60 7.60  

Sensfuß (2013)*  x       5.82 5.83 6.09 5.27 8.72 8.91  

Tveten et al. (2013)*    x        3.90 3.90   

Cludius et al. (2014)   x x      10.80 7.76 6.04 7.67 10.13  

Ketterer (2014)*   x     5.37 5.37 5.37 5.37 5.37 5.37 5.37  

Benhmad & Percebois (2016)   x        6.00 6.00 6.00 6.00 6.00 
Dillig et al. (2016)**   x x         3.23 3.96 5.29 

Paschen (2016)   x 
 

 
x        8.68x 

5.44x  
8.68x 
5.44x 

8.68x 
5.44x 

8.68x 
5.44x 

 

Due to high wind shares, the Spanish market is also of interest in the current research. Saenz 

de Miera et al. (2008), Gil et al. (2012), and Azofra et al. (2014) all confirm the price dampening 

effects of wind power. Gelabert et al. (2011) finds profound effects of RES in general. Focusing 

on the Italian market, Clò et al. (2015) also find empirical evidence of the MOE. An additional 

result of that study is that the total price dampening effects by solar power are stronger than 

those by wind power. The authors argue that this results from the higher market share of solar 

power. 

On the Danish power market (with a generally very high wind penetration), Jónsson et al. 

(2010) find price effects of up to 40 % (depending on the level of wind penetration). O'Mahoney 

& Denny (2011) and Di Cosmo & Magaluzzi Valeri (2012) (both Ireland), and Nieuwenhout & 

Brand (2011) and Mulder & Scholtens (2013) (both based out of the Netherlands), also identify 

lower electricity prices due to increased wind power generation on other markets. 

Outside Europe, Nicholson et al. (2010) and Woo et al. (2011) find lower prices due to wind 

power generation in Texas, USA. Forrest & MacGill (2013) and McConnel et al. (2013) provide 

evidence on the MOE for wind and PV, respectively, in Australia. 
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5.2.2 Ramping Power Plants 

Flexibility in power generation from conventional plants is required to cope with a cyclical de-

mand for electricity and the increasing share of intermittent power generation from wind and 

 in other words start up, shut down, ramp up, ramp down  acceler-

ate the deterioration of power plants, which leads to more frequent forced outages and a re-

duced efficiency, which equals higher fuel costs.64 Additionally, varying operation capacities 

require investments in components enabling power plants to rapidly ramp.65 Demand in-

creases can be met well by gas fueled power plants, as these are highly flexible.66 For gas 

fueled power plants, Kumar et al. (2012) quantify ramping costs at 0.25-1.20 -

1.56 $/MWh). 

Tanaka (2006) considers ramping costs to increase when the rate of the demand change in-

creases. Traber & Kemfert (2011) define ramping costs as a linear function of the load gradient. 

Pape et al. (2016) define a ramping indicator as the difference between current residual de-

mand and the average residual demand during the prior four hours. In a regression model on 

the German day-ahead and intraday market, they find significant ramping costs of 

0.408-0.676  for a demand increase of 1 GW. The price effects at times of a decreasing 

demand are negative, ranging from -0.035 (not significant) to -  

Bertsch et al. (2016) also indicate a difference between the costs of either ramping up or ramp-

ing down a power plant. They arg fficiency decreases for lower loads 

resulting in higher marginal costs which corresponds to a lower ramping price effect. 

This study analyzes whether very short (non-)utilization periods of power generation capacities 

and steep demand increases or decreases incur additional generation costs, which are passed 

through to the market in the form of higher prices. 

                                                
64 See Troy et al. (2010). 

65 See Werner (2014). 

66 See Ulbig & Andersson (2012) and Bertsch et al. (2016). 
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5.2.3 Forecasting Errors on Wind and Solar Feed-Ins 

Most of the studies in the empirical literature described above are based on day-ahead prices. 

Only few studies consider intraday prices. The pricing on day-ahead markets is based on avail-

able forecasts of demand and supply, which also includes forecasts of power generation from 

RES. Consequently, these prices might be affected by RES forecast errors. Residual quantities 

need to be traded in the subsequent intraday market. The forecasting error (FE) is defined as 

FE actual _power_generation forecast_power_generation . 

A positive FE (actual generation is higher than expected) leads to an excess supply in the 

intraday market, which results in decreased prices. Hagemann & Weber (2013) state that RES 

forecast errors are an essential source of intraday liquidity and, therefore, forecasting errors 

can be expected to influence prices. Their study focuses on the effects of forecasting errors 

on the market liquidity. According to von Roon & Wagner (2009), in 2009, a forecasting error 

of wind feed-in of 1 GW affected prices by 1 /MWh. Interestingly, this is similar to the average 

magnitude of the MOE in the literature. 

Kiesel & Paraschiv (2017) find that the bidding behavior of market participants is influenced by 

the forecasting errors of RES. Forecasts of RES higher than actual power generation result in 

an increase in prices (and a decrease in the opposite). Hagemann (2015) compares the intra-

day price effects of forecasting errors of RES and unplanned power plant outages. Positive 

and negative forecasting errors have different influences. Price impacts of forecasting errors 

regarding the feed-in of wind power are always larger than those of outages. Sales due to an 

excess supply of solar power have a similar price effect, but purchases due to insufficient solar 

power have price impacts similar to that of outages. Wind effects are quantified at 2-

per GWh forecasting error. Solar effects are quantified at GWh in positive fore-

casting errors, GWh in negative forecasting errors. 

To extend these literature findings, this study focuses on forecasting errors contrasting their 

price effects to the MOE. We analyze whether short-term adjustments of RES feed-in forecasts 

result in significant price effects. 
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5.3 Model Estimation 

5.3.1 Data and Descriptive Analysis 

This study is based on hourly day-ahead prices, intraday average prices and intraday last 

prices from April 1, 2010 to August 31, 2016 (source EPEXSPOT.com). Additionally, we use 

actual load data (as a proxy for the total demand) from Germany and Austria (source: EN-

TSO-E  European Network of Transmission System Operators for Electricity) and data on the 

power generation from wind and PV (source: German and Austrian transmission system oper-

ators: TenneT TSO, 50hertz, Amprion, Transnet BW and APG (APG-data on PV from 2015 

onwards)). The data on wind and PV include forecasts and extrapolations of the actual val-

ues.67 

The observations of the RES data are hourly average values of the provided quarter-hourly 

frequency. The sample data contains 56,280 hourly observations over 2,345 days. Addition-

ally, we use daily data of fuel prices of coal (ARA, or Amsterdam / Rotterdam / Antwerp month 

ahead coal future, source EPEXSPOT.com), gas (EGIX, or European gas index, source Thom-

sonReuters) and CO2 emission rights (CARBIX, or carbon index, source ThomsonReuters). 

The historical development of electricity prices and their determining factors can be drawn from 

the descriptive statistics in Table 5.2. In general, day-ahead and intraday prices (which are 

highly correlated) have decreased over time, along with an increasing RES feed-in and a con-

stant load.68 A high volatility of intraday average prices can be observed compared to day-

ahead prices. Intraday last prices are even more volatile indicating for an increase of volatility 

with a decrease of time until delivery.  

  

                                                
67 The use of actual load data implies perfect forecasts, which is a matter that will be dealt with in the 

application of robustness checks (see section 5.4.4). An additional point to be studied within the ro-
bustness checks is that ENTSO-E does not fully cover the total load in the German market. The cov-
erage ratio was 91 % until 2013 and 97 % from 2014 on. (see ENTSO-E (2016). For our analysis, we 
upscale the load values to 100 %. 

68 Load means consumed power by installations which are connected to the electricity transmission or 
distribution network (ENTSO-E (2009)). 
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Table 5.2: Descriptive statistics. 

Mean values per year with standard deviations in parentheses. DA (day ahead prices), ID (intraday prices), coal, 
gas 2 CO2; load, wind, PV and FE as per MW. |FE| denotes the average of the absolute 
values of the forecasting errors. 2010: data from April to December, 2016: data from January to August. 

 DA ID ID Load Wind |FE| Wind PV |FE| PV Coal Gas CO2 
  Av. Last    Base Peak Base Peak    

2010 45.62 
(14.16) 

46.65 
(16.46) 

47.06 
(21.34) 

66.71 
(11.48) 

4.32 
(3.55) 

0.81 
(0.83) 

1.43 
(1.98) 

2.79 
(2.02) 

0.30 
(0.53) 

0.58 
(0.63) 

9.11 
(1.05) 

18.67 
(2.74) 

14.78 
(0.67) 

2011 51.12 
(13.60) 

51.23 
(14.45) 

50.42 
(21.56) 

68.64 
(12.79) 

5.36 
(4.37) 

0.83 
(0.89) 

2.23 
(3.31) 

4.37 
(3.55) 

0.31 
(0.55) 

0.59 
(0.66) 

10.87 
(0.38) 

23.55 
(1.46) 

12.96 
(2.88) 

2012 42.60 
(18.69) 

43.78 
(19.40) 

43.88 
(24.09) 

66.61 
(12.86) 

5.71 
(4.39) 

0.82 
(0.77) 

3.16 
(4.77) 

6.17 
(5.21) 

0.39 
(0.71) 

0.75 
(0.86) 

9.13 
(0.47) 

25.05 
(1.60) 

7.36 
(0.71) 

2013 37.78 
(16.46) 

38.58 
(17.48) 

38.22 
(22.44) 

66.05 
(12.05) 

5.89 
(4.81) 

0.81 
(0.78) 

3.45 
(5.40) 

6.74 
(6.03) 

0.43 
(0.81) 

0.84 
(0.99) 

7.77 
(0.47) 

26.79 
(0.67) 

4.48 
(0.67) 

2014 32.77 
(12.77) 

33.14 
(13.39) 

33.26 
(17.30) 

67.33 
(12.04) 

6.49 
(5.38) 

0.79 
(0.72) 

3.82 
(5.77) 

7.47 
(6.29) 

0.41 
(0.79) 

0.80 
(0.96) 

7.03 
(0.29) 

21.60 
(2.92) 

5.96 
(0.70) 

2015 31.62 
(12.67) 

31.70 
(13.98) 

32.03 
(18.04) 

67.41 
(12.00) 

9.09 
(7.24) 

1.10 
(1.10) 

4.18 
(6.33) 

8.16 
(6.93) 

0.40 
(0.75) 

0.78 
(0.92) 

6.39 
(0.47) 

19.91 
(1.78) 

7.68 
(0.58) 

2016 25.54 
(9.70) 

25.55 
(10.95) 

25.82 
(14.08) 

66.75 
(11.91) 

8.96 
(6.41) 

1.12 
(1.06) 

4.71 
(6.56) 

9.15 
(6.79) 

0.40 
(0.66) 

0.76 
(0.78) 

5.54 
(0.62) 

13.24 
(1.15) 

5.44 
(0.80) 

 

The statistics also reveal the characteristic of wind power and PV to be fluctuating RES, as the 

standard deviations of their feed-ins are quite large. In the case of solar, Base reflects the 

overall average and Peak represents the average value from 8 am to 8 pm. 

The continuous decline of electricity prices coincides with a decrease of prices of coal and CO2 

emission allowances in the same period. Gas prices have also declined after peaking in 2013. 

On the one hand, the specific power generation costs have considerably decreased, but on 

the other hand, the residual demand for electricity (load/demand minus RES) has also fallen 

due to an increase of RES. The marginal power generation costs of RES are close to zero, 

followed by (at increasing costs) nuclear, lignite, coal, gas, and fuel oil plants.69 This ranking 

determines the merit-order curve.  

Figure 5.1 empirically visualizes the merit-order curve by a plot of the day-ahead prices vs. the 

respective residual demand (total demand minus feed-ins from wind and PV) from April 2010 

to August 2016. An increase in demand positively affects electricity prices, whereas there 

seems to be a linear relationship between the two in general. Extreme prices are more likely 

to occur on the tails of the distribution of the residual demand. Negative prices are caused by 

high RES feed-ins, and a simultaneously low demand for electricity. In coincidence with must-

run conditions (inflexible plants and system stability reserve), an oversupply leads to a drop in 

                                                
69 See Cludius et al. (2014). 
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market prices.70 The price spikes on the right-hand side occurred in times of tight market con-

ditions when market prices were probably set by fuel oil plants (with higher production costs).  

 

 

Figure 5.1: Plot of spot prices vs. residual demand (from April 2010 to August 2016). 

 

As a general remark, prices during high load (peak) hours  from 8 am to 8 pm  are higher 

than during low load (off-peak) hours. The standard load profile reveals an increase in demand 

during morning hours and a decrease during evening hours. The change of the load requires 

ramping activities of the power plants. This analysis reveals that, on average, the period of 

steepest upward ramping is from 6 am to 8 am, and the period of steepest downward ramping 

is between 11 pm and midnight. 

Table 5.2 additionally shows that the absolute size of forecasting errors of wind and PV in-

creased from 2010 to 2016. However, compared to the total feed-in volumes of wind and PV, 

forecasting errors have decreased, relatively. This means that the specific forecasts of wind 

and PV feed-ins have improved, which was more so in the case of PV than of wind. In total, 

the correlation between the FE and the price difference between spot and intraday average is 

.0 43 , implying a substantial impact of forecasting errors on prices. Furthermore, compar-

ing the columns base and peak in the table shows that the main PV feed-ins (and, thereby, its 

                                                
70 In a study on behalf of the German grid operators, consentec (2016) find a technical minimum pro-

duction of 20 GW. 
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forecasting errors) occur during peak time (as peak time covers 12 hours per day, but almost 

100 % of the feed-ins). 

We test all hourly time series for unit roots using the Fisher test.71 The Fisher test is a panel 

data adaption of the augmented Dickey-Fuller test (ADF test) or alternatively, the Phillips-Per-

ron test (PP test).72 In this context, autocorrelation of the residuals is accounted for by including 

p int T 1 4
12 100  lags according to the Schwert (1989) criterion, where T  is the sample 

length of 2,345 days. The null hypotheses of a unit root in at least one of the 24 panels can be 

rejected for the hourly series of all explanatory variables used in the analysis. 

5.3.2 Model Design 

 Regression Model Structure 

We model the day-ahead price t ,tDA  in hour i  of a day t  as a function of the residual demand 

( i ,tres _demand ), feed-ins from wind power ( i ,twind _FI ), solar power ( i ,tPV _FI ), and a 

ramping parameter ( i ,tramping ).73 The model is defined as: 

i ,t i ,t i ,t i ,t i ,tDA f res _demand ,wind _FI ,PV _FI ,ramping .  (5.1) 

The residual demand in hour i  at day t  is defined as 

i ,t i ,t i ,t i ,tres _demand load wind _FI PV _FI . The model is calibrated by using a fixed ef-

fects regression, in which we control for hour fixed effects. This means that the data is regarded 

as panel data. The reason is that the price formation of the 24 hourly day-ahead prices per day 

takes place simultaneously. The panel dataset includes i , ,...,1 2 24  cross-sectional units, 

and t , ,...,1 2 2345  is the period at a daily frequency. The application of a panel data regres-

                                                
71 See Maddala & Wu (1999) with a comparative study to other panel data unit root tests. 

72 See Dickey & Fuller (1979); Phillips & Perron (1988). 

73 See 5.3.2.3 for the construction of the variable i ,tramping . 
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sion serves to to control for endogeneity due to unobserved heterogeneity. As already men-

tioned, the application of a panel data regression serves to control for unobserved heteroge-

neity. More specifically, we perform a fixed effects model which is superior to a random effects 

model on the basis of the Hausman test.74 

Interactions with yearly dummy variables y ,i ,tI year ,0 1  with y , ,...,2010 2011 2016  are 

included to measure time dependencies of the effects. For example, the dummy y ,i,tI 2016  is 

set to 1 for all observations during the year 2016 and 0 otherwise. A fuel-type-specific indicator 

variable fuel _ type,i ,tI fuel ,0 1 , fuel _ type gas,coal ,others  serves to separate effects of 

different price setting power plant technologies.75 This is motivated by the observation that 

prices on gas and coal behaved differently in the past (as seen in Table 5.2). Therefore, their 

impacts on power prices might also differ. We differentiate between the fuel types gas (1), coal 

(2), and others (3). 

The variable on ramping is interacted with dummy variables i ,tI steep up ,0 1 , 

i ,tI steep down ,0 1  for steep changes of demand, and with i ,tI active ,0 1  as well 

as i ,tI inactive ,0 1  covering short periods of power plant (non-)utilization.76 Additionally, 

daily prices of the commodities gas ( tgas _ price ) and coal ( tcoal _ price ), and prices of CO2 

emission allowances ( tCO _ price2 ) are included. The price model is defined as follows: 

                                                
74 Performing the Hausman test (see Hausman (1978)) clearly indicates fixed effects regression to be 

can be rejected on a level of significance smaller than 0.001. 

75 Due to its complexity, the construction of the indicator variable on fuel types is presented in section 
5.3.2.2. 

76 Due to its complexity, the construction of the indicator variables on ramping is presented in section 
5.3.2.3.  
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i ,t

y ,fuel _ type i ,tfuel _ type,i ,ty fuel _ type y ,i ,t

y ,wind i ,t y ,PV i ,tfuel _ type,i ,ty fuel _ type y ,i ,t

ramp i ,t a

DA
const

I fuel I year res _demand

I fuel I year wind _FI PV _FI

ramping

2016 3

2010 1

2016 3

2010 1

i ,t in i ,ti ,t i ,t

steep up i ,t steep down i ,t

i ,t i ,t

I active ramping I inactive ramping

I steep up ramping I steep down ramping
controls

 (5.2) 

with 

i ,t

fuel _ type t tfuel _ type,i ,t fuel _ type,i ,tfuel _type

fuel _ type,CO tfuel _ type,i ,tfuel _type

year ,y day ,dy dy ,i ,t

controls

I fuel coal _price I fuel gas _price

I fuel CO _price

I year I day

3

1

3

2 21

2016 7

2010 1 month,mm m,i ,td ,i ,t
I month12

1

    

We control for constant seasonal effects by including dummy variables for weekdays, months 

and years.77 Each category has also been tested for joint significance by means of an F-test 

(accepted at p-value < 0.01).78 These dummies are d ,i ,tI day , m,i ,tI month  and y,i ,tI year , 

which obtain the value 1 at a specific day / month / year and 0 otherwise. i ,t  is the error term. 

We estimate the model using the standard errors of Driscoll & Kraay (1998), which are robust 

to heteroscedasticity, autocorrelation and cross-sectional dependence of the residuals. Dris-

coll-Kraay (DK) standard errors are an adaption of the commonly used (heteroscedasticity and 

autocorrelation robust) standard errors of Newey & West (1987), and additionally account for 

correlation across units in a panel dataset. The application of robust standard errors is moti-

vated by the test results regarding heteroscedasticity, autocorrelation and correlation across 

panels of the residuals. 

We test for autocorrelation by means of the test of Cumby and Huizinga (1992) and find de-

pendence of the residuals up to a lag of 14 days ss-sectional 

                                                
77 See also Gelabert et al. (2011). 

78 Imports and exports are not taken into consideration. For this aspect, we refer to Würzburg et al. 
(2013), who do not find significant price effects of the export-import balance. 
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dependence. A test for heteroscedasticity across panels by Greene (2003) rejects homosce-

dasticity. And, finally, heteroscedasticity over t is confirmed by applying a Breusch-Pagan test 

within each panel unit. All test statistics are significant at a level of p-value less then 0.01.

Variable Design: Technology of the Marginal Power Plant

The concept of the merit-order curve implies that the generation costs of the marginal power 

plant, which is exactly what is required to meet the current (residual) demand, determine the 

current electricity price. The generation costs, in turn, depend on the power plant technology 

and on the respective prices of fuel and of CO2 emission allowances. Figure 5.2 visualizes the 

schematic merit-order curve of the market area of Germany and Austria in April 2016. 

Figure 5.2: Merit-order curve for Germany/Austria for April 2016. Own illustration.

The generation capacities are ranked in ascending order with respect to their marginal costs: 

Nuclear is followed by lignite, coal, gas, and fuel oil plants. The slope of the curve differs de-

pending on the fuel type of the marginal plant. Therefore, the curve structure is subject to fuel 

and CO2 costs, as well as the composition of the total generation portfolio.

The technology of the marginal power plant can be derived for a given total residual demand. 

We define the fuel type dummy variable fuel _ type,i ,tI fuel as
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fuel _ type,i ,t

, if fuel _type fuel _type _mar _MOC
I fuel

, else
1

0
 (5.3) 

with fuel _ type gas,coal ,others  and fuel _ type _mar _MOC gas,coal ,others  (fuel 

type of the marginal power plant that has been identified on the merit-order curve). For exam-

ple, the indicator of the fuel gas is set to 1 if the technology of the marginal capacity on the 

merit-order curve is a gas fueled power plant, and 0 otherwise. As gas and coal power plants 

account for 94 % of all marginal generating capacities in our analysis, we focus on these fuel 

types and capture other fuels by means of the type others. In our model, fuel _ type,i ,tI fuel  is 

interacted with the residual demand to measure the price effect of residual demand changes 

with respect to the fuel type. 

The design of the merit-order curve is mainly based on the lists of power plants of the German 

Federal Grid Agency BNetzA79 for the years 2013 to 2016, and information of Oesterreichs 

Energie80 for Austrian power generation capacities, which indicate power plant size and fuel 

type. We combine these sets of capacity data with publicly available information on the effi-

ciency factors of each power plant. Missing information are replaced by estimates reported for 

power plants of different fuel types by DIW (Deutsches Institut für Wirtschaftsforschung, 2014). 

Non-availabilities of power plants reduce the total available capacity and affect the structure of 

the merit-order curve. To cover the non-availabilities, we scale down all capacities according 

to the availability factors listed by VGB PowerTech (2015). We then also account for seasonal 

availability effects, according to DIW (2014). 

Next, technology specific CO2 emission factors and costs for operation and maintenance cor-

responding to DIW (2014) 

are combined with monthly average prices of fuels and CO2 emission allowances. By ranking 

the power plants with respect to their specific costs we derive a dynamically (monthly) chang-

ing merit-order curve.  

                                                
79 For details, see the lists power plants of the BNetzA (see www.bundesnetzagentur.de). 

80 The interest group Oesterreichs Energie represents companies accounting for 90 % of the Austrian 
power generation (see http://oesterreichsenergie.at). 
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As described above, the marginal (price setting) power plant depends on the current residual 

demand reduced by the feed-in from wind and PV. For example, in Figure 5.2, at a residual 

demand of 40,000 MW the price setting power plant might be a coal-fired one. 

 Variable Design: Ramping Effects 

Operating a power plant in a cycling mode entails increasing power generation costs, which is 

why we account for ramping costs in the model. We define the ramping capacity during hour 

i  at a day t  as the change of the residual demand compared to the value in the previous hour 

i 1: 

i ,t i ,t
i ,t

i ,t ,t

res _demand res _demand , if i
ramping

res _demand res _demand ,if i
1

24 1

2

1
.  (5.4) 

The preceding residual demand of the first period each day ( i 1) is the value in the last hour 

( i 24 ) of the previous day. 

The capability of providing flexible ramping capacities depends on the generation technologies 

of the different power plants. However, increased flexibility leads to higher costs. We assume 

that very short operating periods require more flexible (and more expensive) generation ca-

pacities, as these need to be ramped down again after a quite short time window. Conversely, 

very short non-utilizations result in lower prices due to must-run conditions. This effect can be 

clearly observed when negative prices occur. Therefore, we include a dummy variable 

i ,tI active  for capacity activation and a dummy i ,tI inactive  for non-utilization in the model:  

i ,t
i ,t

duration active, if
I active

, else

11

0
 

i ,t
i ,t

duration inactive, if
I inactive

, else

11

0
 

(5.5) 

The determination of the duration  measure is visualized in Figure 5.3, in which activation and 

inactivation periods of one hour (h) are marked. When the residual demand exceeds its current 

magnitude, additional power generating capacities need to be activated. These capacities are 
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utilized until the future point in time when the residual demand drops below its current magni-

tude again. The duration of non-utilization is derived in the same manner, however, for lower 

residual demands than that of the current value. We identify 5,587 events for i ,tI active  and 

5,587 events for i ,tI inactive  in our dataset. The figure shows two peaks and two lows per 

day. In former years, the daily maximum was at 12 pm. However, due to the increasing share 

of power generation from PV peaking at midday, the pattern of the daily curve has changed. 

 

 

Figure 5.3: Average power consumption per hour. 

Values represent the average consumption per hour of the whole dataset. 
denote the periods, in which additional activated power generation capacities are required only for one hour and 
vice versa in case of non-utilized capacities only for one hour. 
 

As can be seen in Figure 5.3, the steepest upward ramping period is between the 6th and the 

8th hour each day and the steepest downward ramping period is between the 23rd and the 

24th hour. We assume that very steep ramping requires more flexible (and more expensive) 

generation capacities resulting in nonlinear price effects. The same assumption applies to the 

downward ramping mode. Therefore, we include dummy variables i ,tI steep up  and 

i ,tI steep down  for nonlinear price effects of steep ramping into the model: 

i ,t
i ,t

, if ramping ,
I steep up

, else
1 5 355

0
 (5.6) 
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i ,t
i ,t

, if ramping ,
I steep down

, else
1 2 785

0
. 

The thresholds for steep upward changes of the residual demand at 5,355 MW and steep 

downwards changes at - threshold 

regression. The concept is to apply the within-transformation, and then minimize the error sum 

of squares by varying the cluster lengths in the regression model. This is equivalent to a max-

imization of the within R² in a fixed effects estimation depending on both threshold variables.81 

We identify 3,406 events of steep increases and 9,517 events of steep decreases. 

 Model Modification: Intraday Prices and Forecasting Errors 

The behavior of market participants on day-ahead markets is based on the information availa-

ble at the time of the bid. Since the day-ahead (or spot) auction is at 12 noon on the day prior 

to the actual consumption (hence, the name day-ahead prices), the pricing is based on fore-

casts for supply and demand on the following day. This means that forecast errors of RES 

inevitably affect the prices on day-ahead markets. Therefore, the analysis is extended to the 

intraday market to measure the price effects of forecasting errors. 

By conducting regression (5.2) under the additional consideration of forecasting errors, we 

validate the empirical results and quantify the specific price impact of forecasting errors. Still, 

as opposed to (5.2), the feed-ins of wind and PV are not interacted with the dummy variables 

indicating the fuel types, to set the average MOE as a basis for the quantification of the price 

effects of forecasting errors. The regression model is as follows: 

                                                
81 In total, we tested 67.836 threshold combinations for steep and steep drop. Also following Hansen 

(1999), we tested other duration periods for i ,tI active  and i ,tI inactive , but the model fit turned 

out to be inferior. 
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i ,t

y ,fuel _type i ,tfuel _type,i ,ty fuel _type y ,i ,t

wind ,y i ,t FE ,wind ,y wind ,i ,t
y ,i ,ty

PV,y i ,t FE ,PV,y PV,i ,t

ID
const

I fuel I year res _demand

wind _FI FE
I year

PV _FI FE

contr

2016 3

2010 1

2016

2010

i ,t i ,tols

 
(5.7) 

with 

i ,t

ramp i ,t a i ,t in i ,ti ,t i ,t

steep up i ,t steep down i ,t

fuel _ type tfuel _ type,i ,t fuel _ t

controls

ramping I active ramping I inactive ramping

I steep up ramping I steep down ramping

I fuel coal _price I fuel type,i ,tfuel _type

fuel _ type,CO tfuel _ type,i ,tfuel _type

year ,y day ,d month,my d m m,i ,td ,i ,ty ,i ,t

gas _price

I fuel CO _price

I year I day I month

3

1

3

2 21

2016 7 12

2010 1 1

   

We employ either the (hourly average) intraday last prices or the quantity weighted hourly 

average intraday prices as dependent variables. Kiesel & Paraschiv (2017) also use intraday 

last prices. Others, such as Hagemann (2015) and Pape et al. (2016), only employ the quantity 

weighted hourly average intraday price. However, problems interpreting the results might arise 

from using average prices and the actual RES feed-ins since the average values are calculated 

across the whole trading period (starting after the day-ahead auction and ending 30 minutes 

prior to the actual delivery). RES forecasts are adjusted frequently after the formation of the 

day-ahead prices and, therefore, will clearly affect the intraday average prices. The actual RES 

feed- To address this issue, we employ both sets of 

price data. 
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5.4 Empirical Results 

5.4.1 Price Effects of Residual Demand Changes 

We apply the regression model (5.2) to five different data (sub-) sets. The calibration of the 

day-ahead (DA) model based on the whole dataset is named model (A). Models (B) and (C) 

are calibrated with either peak or off-peak data, and models (D) and (E) are based on intraday 

average prices (ID) and intraday last prices (ID last), respectively. Models (F) and (G) repre-

sent the model adaption of equation (5.7) with ID average prices and ID last prices as the 

dependent variables.82 

We estimate two models in advance, which only include the seasonal control variables. This 

serves to measure the effect of seasonal patterns on the DA and ID prices. The seasonal effect 

dummy variables can explain 56 % (DA), 50 % (ID average) and 32 % (ID last) of the variance 

of the data. The characteristics of all regressions are presented in Table 5.3.83 The total model 

fit in terms of overall R² is 0.8482 (DA) and 0.7815 (ID average). 

Table 5.3: Regression characteristics. 

Models include the intercept and the following control variables: day dummies, week dummies, year dummies, coal 
price # (fuel = coal), gas price # (fuel = gas), CO2-price # (fuel = coal), CO2-price # (fuel = gas), CO2-price # 
(fuel = others). Model types: A-E  basic as in equation (5.2); F, G  adapted version as in equation (5.7). 

 (A) (B) (C) (D) (E) (F) (G) 
 DA DA peak DA off-peak ID average ID last ID average ID last 
Model type 1 1 1 1 1 2 2 
N 56,279 28,140 28,139 56,279 56,279 56,279 56,279 
Controls  

Time fixed effects weekday, month, year 
Interaction terms coal price # (fuel = coal), gas price # (fuel = gas) 

CO2-price # (fuel = coal), CO2-price # (fuel = gas), CO2-price # (fuel = others) 
Intercept yes 
R² within 0.8095 0.8541 0.7719 0.6964 0.4360 0.7468 0.5169 
R² overall 0.8482 0.8619 0.8234 0.7461 0.5005 0.7883 0.5721 

 

Table 5.4 reports the price effects of the residual demand depending on the fuel type and the 

year for regression (A). The diagonal elements (printed in bold) represent the effect on the 

                                                
82 The results of regressions (A)-(G) are reported in the full regression Table 5.10 in the appendix 5.6.1. 

The effects of all models are very similar. 

83 The empirical results of the regression model type (A) are displayed in Table 5.4, Table 5.5 and Table 
5.7. Table 5.8 displays the regression results of model types (F) and (G). The findings are discussed 
in the following sections. For reasons of a better understanding of the results, one single regression 
table for model (A) is split into the four tables. 
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day-ahead pric f the residual demand in the respective year. In 

the upper part of the table, y ,fuel _ type ,fuel _ type gas  is displayed, and the lower part shows 

y ,fuel _ type ,fuel _ type coal . Consequently, two scenarios are proposed: Whether either if gas 

power plants are price setting or coal power plants are. The other values show the difference 

of effects across time. For example, in 2016, with a gas power plant being the marginal tech-

nology, a change of residual demand induced a price change of 0.52

p < 0.001). This effect size was 0.544  

Table 5.4: Effects of the marginal power generation technology of regression (A). 

 2010 2011 2012 2013 2014 2015 2016 
Res_demand # (fuel_type = gas) # year        
2010 1.069***       
 (0.069)       
2011 -0.254*** 0.816***      
 (0.078) (0.046)      
2012 0.090 0.344+ 1.159***     
 (0.205) (0.205) (0.203)     
2013 0.390*** 0.644*** 0.301 1.460***    
 (0.110) (0.093) (0.214) (0.088)    
2014 0.005 0.302*** -0.042 -0.342*** 1.118***   
 (0.091) (0.073) (0.194) (0.101) (0.068)   
2015 -0.115 0.139* -0.204 -0.505*** -0.163+ 0.955***  
 (0.088) (0.071) (0.212) (0.102) (0.083) (0.063)  
2016 -0.544*** -0.290** -0.633** -0.934*** -0.592*** -0.429*** 0.526*** 
 (0.127) (0.113) (0.233) (0.138) (0.128) (0.123) (0.109) 
Res_demand # (fuel_type = coal) # year        
2010 1.103***       
 (0.063)       
2011 -0.130 0.973***      
 (0.080) (0.061)      
2012 -0.106 0.023 0.996***     
 (0.076) (0.074) (0.055)     
2013 -0.044 0.086 0.063 1.059***    
 (0.078) (0.078) (0.072) (0.060)    
2014 -0.230*** -0.101 -0.124* -0.187** 0.872***   
 (0.069) (0.068) (0.061) (0.065) (0.045)   
2015 -0.306*** -0.176** -0.199*** -0.262*** -0.075 0.797***  
 (0.067) (0.067) (0.060) (0.064) (0.051) (0.041)  
2016 -0.541*** -0.411*** -0.434*** -0.497*** -0.310*** -0.235*** 0.562*** 
 (0.067) (0.067) (0.060) (0.065) (0.051) (0.050) (0.043) 
Res_demand # (fuel_type = coal vs. gas)  
# year 

       

 
0.033 

(0.074) 
0.158* 
(0.066) 

-0.163 
(0.211) 

-0.401*** 
(0.086) 

-0.245*** 
(0.068) 

-0.158* 
(0.056) 

0.036 
(0.098) 

Res_demand # (fuel_type = others vs. gas)  
# year 

       

 0.548*** 
(0.142) 

0.353** 
(0.126) 

0.719** 
(0.265) 

0.049 
(0.474) 

0.165 
(0.209) 

0.0905 
(0.084) 

0.429*** 
(0.079) 

Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Slope parameters for coal peaked in 2010 and for gas in 2013. Following this, both parameters 

significantly dropped until 2016. This corresponds to the price developments of fuel and CO2 

prices in recent years (see the descriptive statistics in Table 5.2). Gas prices decreased from 
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2013, and the coal price decline started in 2011 (but less sharp than gas) coinciding with a 

continuous decline of CO2 prices. 

The different price trends of coal and gas are reflected within the differences of the regression 

ed, price 

effects of changes of residual demand were significantly larger when coal was price-setting 

compared to times when gas was price-setting. From 2013 to 2015, the effect on electricity 

prices induced by gas fuel was significantly larger than the effect induced by coal, as the de-

cline of gas prices set in later. As during peak load times it is more likely that (flexible) gas 

power plants are price setting, in these years price effects of residual demand changes are 

assumed to be more pronounced than during off-peak times when other technologies are price 

setting. This corresponds to the findings of Neubarth et al. (2006), Nicholson et al. (2010), 

Nicolosi (2010), Gelabert et al. (2011), and Di Cosmo & Magaluzzi Valeri (2012), who identify 

a larger MOE in peak load times compared to off-peak times. However, for 2016, with both low 

coal and low gas prices, this tendency is not observable anymore. The fuel type effect is obvi-

ous and comprehensible, and might be an additional facet to be considered in future electricity 

price modeling. To obtain these results, it is essential to identify the price determining technol-

ogy, which  in this case  is based on a simulation of the composition of the power plant 

portfolio. 

In the regression, we control for other fuel types, of which the slope was considerably larger 

This variable captures the most expensive oil-fueled plants 

on the one hand, and on the other hand, nuclear and lignite fueled plants. When nuclear and 

lignite are assumed to be price-setting, this contradicts the theory of the merit-order with a 

steep slope in case of oil plants compared to a slight slope in the case of the remaining fuel 

types (see Figure 5.2). However, this is attributable to must-run conditions, which can induce 

an oversupply of produced electrical power. The relationship between demand and prices has 

already been established in Figure 5.1. Prices are in line with fuel prices at higher loads, but 

under low-load conditions, empirical prices do not comply with the expected merit-order as 

shown in Figure 5.2. This finding is in line with the argumentation of Hagemann (2015), who 

defines the concave part of the merit-
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Focusing on the effects of power generation from RES, Table 5.5 shows the price reductions 

induced by increased PV or wind power feed-ins, whereas these values reflect the difference 

to the magnitudes reported in Table 5.4. A negative value indicates that RES feed-ins have a 

more substantial regular nd. In several cases, the magni-

demand. Due to significant effects in certain years, it seems that the MOE of the fluctuating 

wind feed-in tends to influence electricity prices larger than changes of the residual demand. 

However, it seems that the ability to absorb the fluctuating power generation has been im-

proved during the last few years. 

In the case of solar power, the substantial addition of new generation capacities in recent years 

can be observed in its price effects. In 2010, the MOE was significantly lower than a price 

reduction due to changes of the residual demand. This implies that, due to its low share, solar 

power was not a relevant pricing factor at that time. Afterwards, the differences between wind 

and solar have decreased considerably.84 

Table 5.5: Effects of RES feed-ins . 

 2010 2011 2012 2013 2014 2015 2016 
Wind feed-in # (fuel_type = gas) # year        
 0.101 

(0.112) 
-0.075 
(0.063) 

-0.084 
(0.101) 

-0.629*** 
(0.151) 

-0.231** 
(0.076) 

-0.274*** 
(0.076) 

-0.037 
(0.073) 

Wind feed-in # (fuel_type = coal) # year        
 -0.101 

(0.141) 
-0.256* 
(0.124) 

0.027 
(0.077) 

-0.143 
(0.111) 

-0.139** 
(0.045) 

-0.023 
(0.052) 

0.010 
(0.044) 

Wind feed-in # (fuel_type = others) # year        
 -0.437+ 

(0.256) 
0.104 

(0.545) 
-0.556* 
(0.269) 

-0.599* 
(0.243) 

-0.601*** 
(0.170) 

0.015 
(0.113) 

-0.182 
(0.117) 

PV feed-in # (fuel_type = gas) # year        
 0.458* 

(0.228) 
0.235** 
(0.078) 

0.102 
(0.088) 

0.112 
(0.090) 

0.090 
(0.072) 

0.051 
(0.066) 

0.010 
(0.045) 

PV feed-in # (fuel_type = coal) # year        
 0.776*** 

(0.170) 
0.157 

(0.101) 
0.091+ 
(0.054) 

-0.071 
(0.060) 

-0.087+ 
(0.045) 

-0.076+ 
(0.041) 

-0.068+ 
(0.037) 

PV feed-in # (fuel_type = others) # year        
 2.486*** 

(0.589) 
-0.335 
(0.470) 

0.708 
(0.459) 

-0.437* 
(0.193) 

-0.261 
(0.178) 

0.044 
(0.094) 

-0.324* 
(0.151) 

        
Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

The total MOE per additional GWh of feed-in from RES results from adding up the specific 

(year and price setting fuel technology dependent) effects quantified in Table 5.4 and Table 

                                                
84 Results reported in appendix 5.6.2 show that in 2016 the price effects of solar power generation and 

wind power generation were not significantly different anymore as they used to be in 2010. 
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5.5. The development of the wind-induced MOE from 2010 to 2016 was as follows (coal/gas): 

1.2/1.0  1.2/0.9  1.0/1.2  1.2/2.0  1.0/1.3  0.8/1.2  . The development of 

the PV induced MOE from 2010 to 2016 was (coal/gas): 0.3/0.6  0.8/0.6  0.9/1.1  1.1/1.3  

1.0/1.0  0.9/0.9  . Both the solar and the wind MOE decreased after peaking 

in 2013 despite an increase of the total feed-in. 

Assuming linearity (similar to Würzburg et al. (2013)), we multiply the specific effects by the 

yearly average power generation from wind or PV. These effects are only hypothetical, as their 

magnitude reflects a case in which the price setting technology always would be the same 

(either coal, gas or others). By this, we are able to identify a range between the maximum MOE 

and the minimum MOE induced by either wind or PV.  

When comparing the solar effect to the wind effect, including the off-peak period (during 

nighttime there is no power generation from PV) might be misleading. Therefore, additionally, 

we conduct the same calculation restricted to peak time data. 

The MOE during 2010 to 2016 is presented in Figure 5.4. For each year, four ranges of the 

MOE are provided. The general (base load) MOE is marked in black and the MOE during peak 

load only is indicated by the grey lines. Additionally, the average MOE is given in the figure. 

The weighted average (WA) is calculated as follows: 

y

res,y ,fuel _ type y ,wind i ,ty ,i ,t fuel _ type,i ,tfuel _ type
y

WA _MOE _wind

I year I fuel wind _feed _ in
i T

3

1

1  (5.8) 

y

res,y ,fuel _ type y ,PV i ,ty ,i ,t fuel _ type,i ,tfuel _ type
y

WA _MOE _PV

I year I fuel PV _feed _ in
i T

3

1

1  (5.9) 

yT  represents the number of days during year y . The current price reduction depends on the 

price setting fuel type (gas, coal and others). The identification of the fuel type was described 

in section 5.3.2.2. The resulting effect is referred to as weighted average I.  
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Figure 5.4  to 2016. 

 

The fuel type of the squeezed-out power generating capacities is not necessarily equal to the 

type of the price-determining power plant. Therefore, the weighted average calculated above 

might underestimate the MOE when the squeezed-out capacities have higher marginal costs 

than the price determining plant. To consider this objection we calculate a weighted average 

II. Instead of identifying the price determining power generation technology based on the re-

sidual demand (as described in section 5.3.2.2), it is based on the total demand neglecting the 

feed-ins from wind and PV. Consequently, the observations of the variable 

fuel _ type,i ,tI fuel ,0 1  change. As shown in Figure 5.4, in 2016, for example, the MOE from 

wind power production was in a range between 4.95 

average I = ighted average II =  

The weighted average II will overestimate the true MOE since it reflects a scenario without 

fluctuating power generation from RES although the total power plant portfolio has been 

adapted to the changed market conditions. Therefore, the true MOE will range between both 

weighted averages. 

After a sharp increase, the MOE (weighted average both of wind and of PV) peaked in 2013. 

Subsequently, the wind effect declined and the PV effect remained constant. This development 

was driven by the increase of RES feed-ins on the one hand and the drop of fuel and CO2 

prices on the other hand. One can conclude that relatively low fuel prices during the very recent 
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years resulted in a considerably lower MOE than it could be expected based on constant 

prices. This finding is supported by Sensfuß et al. (2008), who note that the variation of gas 

prices by 20 % leads to a change of the MOE by ca. 30 %. 

To compare the price effects of solar to wind, the MOE ranges during peak time are investi-

gated. In relation to the overall average, wind induced price effects only change slightly during 

peak time. The reason is that wind power generation does not depend on daytime. Of course, 

solar power feed-ins occur from 8 am to 8 pm (peak) resulting in a larger average MOE during 

peak. Compared to the wind induced MOE, the solar MOE has increased relatively over time. 

Still, a t-test reveals that the average solar effect was only larger than the average wind effect 

in 2016 (p-value < 0.001). 

Consequently, we find evidence for a larger solar induced MOE compared to wind power only 

for 2016. On the other hand, a larger solar power effect was indicated by Würzburg et al. 

(2013), Cludius et al. (2014) and Paschen (2016). We conclude that this effect is not attributa-

ble to any specific characteristics of solar power compared to wind power. One cannot argue 

that the reason is that solar power is generated during periods of higher prices, when it 

squeezes out more expensive power plants from the market. The actual reason is that the total 

amount of RES power generation is larger during peak periods, and therefore, the MOE in-

creases. 

The quantification of the total MOE is provided in Table 5.6, which offers an up-to-date exten-

sion of the results of other studies shown in Table 5.1, panel B. The lower value corresponds 

to the weighted average I, and the higher value corresponds to the weighted average II. The 

total price dampening effect of fluctuating renewables has generally increased from roughly 

was ob-

served in 2013, coinciding with high fuel prices. This value corresponds to the effect size of 

Paschen (2016), who reports 

effect. 

Table 5.6: Average merit-order effect from 2010-2016 h. 

First value indicates weighted average I, and second value indicates weighted average II.
 2010 2011 2012 2013 2014 2015 2016 
Wind  4.94-5.04 5.80-5.89 7.13-7.53 9.17-10.17 7.91-8.24 8.66-9.56 5.96-6.55 
PV 1.55-1.64 1.51-2.43 3.40-3.50 4.42-4.98 3.94-4.35 3.78-4.05 3.22-4.61 
Total 6.49-6.68 7.31-8.31 10.53-11.03 13.59-14.96 11.84-12.59 12.45-13.61 9.18-11.15 
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5.4.2 Price Effects of Ramping 

The regression results for the price effects of ramping can be drawn from Table 5.7. Results 

are provided for the model variations (A), (B) and (C). The short-time utilization of an additional 

1,000 MW of generation capacities (active # h1) results in price increases of roug

Conversely, the effect size for non-utilization is less profound (inactive # h1). A possible reason 

is that the described effect of must-run conditions might be counteracted by less efficient 

(therefore, more costly) power generation in a low-load situation. This argumentation is backed 

by the fact that the non-utilization effect is only significant during peak time. During peak time 

the avoidance of cycling a power plant leads to lower prices in the case of non-utilization.  

Table 5.7: Effects of ramping  per demand change of 1,000 MW. 

 (A) (B) (C) 
 DA DA peak DA off-peak 
Ramping -0.126* -0.269*** 0.069 
 (0.051) (0.061) (0.078) 
Active # h1 0.925*** 1.120*** 0.649*** 
 (0.085) (0.099) (0.091) 
Inactive # h1 0.362** 0.883*** -0.0488 
 (0.120) (0.149) (0.180) 
Steep up 0.294*** 0.202*** 0.249*** 
 (0.045) (0.058) (0.061) 
Steep drop 0.433*** 0.468*** 0.248*** 
 (0.044) (0.064) (0.074) 

Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 

 

A steep demand decrease of 1,000 MW compared to the value one hour before reduces prices 

85 Steep upward ramping results in price increases of about 

0.17  that of steep increases 

although the downward ramping variable covers 31 % of all down-ramping situations and the 

upward ramping variable only covers 13 % of the up-ramping situations. However, the differ-

ences between both values are only observable during peak time (see regression (B)). The 

effects seem to be contradicting to the findings of Pape et al. (2016), who find larger price 

changes due to demand increases compared to those induced by demand decreases. How-

ever, this can be argued using additional variables on (non-)utilization of power generating 

                                                
85 This is the combined effect of steep drop and ramping. 
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capacities in this study, which should be considered in the total interpretation. Therefore, a 

short-time demand increase is more costly than a decrease. 

The effect size of the basic ramping variable is somewhat surprising as the sign is negative. 

However, this should be viewed in combination with the other ramping effects, which cover a 

large share of all possible ramping situations. When omitting the variables on steep upward 

and steep downward ramping, this effect becomes significant with the expected positive sign. 

The costs for short-time (non-)utilizations of power plants and steep ramping quantified in 

Table 5.7 could be reduced by smoothing the residual demand. This would induce a lower 

volatility of prices. 

5.4.3 Price Effects of Forecasting Errors 

For the quantification of the price effects of forecasting errors of feed-ins from wind and PV, 

the regression model is modified regarding the interactions between the dummies on fuel types 

and the feed-in of wind or solar power, as presented in equation (5.7). The objective is to 

compare the price effects of forecasting errors to the MOE and, therefore, it is acceptable to 

omit the fuel type in this context.86 The effects of forecasting errors of feed-ins from wind and 

PV are quantified in Table 5.8.  

Table 5.8: Effects of forecasting errors of feed-in of wind power and solar power. 

The dependent variable is either the intraday average price 
or the intraday last prices. 

  2010 2011 2012 2013 2014 2015 2016 
FE_wind_feed-in # year         

Intraday average (F) -4.431*** 
(0.223) 

-2.678*** 
(0.227) 

-2.176*** 
(0.489) 

-2.691*** 
(0.224) 

-2.475*** 
(0.181) 

-2.421*** 
(0.199) 

-1.577*** 
(0.205) 

Intraday last price (G) -5.822*** 
(0.300) 

-4.757*** 
(0.317) 

-4.346*** 
(0.328) 

-4.534*** 
(0.294) 

-3.962*** 
(0.269) 

-3.356*** 
(0.226) 

-2.171*** 
(0.269) 

FE_PV_feed-in # year         

Intraday average (F) -0.194 
(0.475) 

-1.764*** 
(0.282) 

-2.315*** 
(0.265) 

-3.843*** 
(0.371) 

-2.723*** 
(0.203) 

-2.087*** 
(0.194) 

-1.488*** 
(0.244) 

Intraday last price (G) 
-0.367 
(0.640) 

-3.750*** 
(0.496) 

-4.563*** 
(0.418) 

-6.190*** 
(0.794) 

-4.054*** 
(0.332) 

-3.126*** 
(0.328) 

-2.356*** 
(0.299) 

Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

                                                
86 We have also estimated the models when the variables on forecasting errors are interacted with the 

dummy variables on year and fuel type. Results generally confirm our findings. See Table 5.12 in the 
appendix 5.6.3 for the whole regression table. 
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The coefficients show substantial price effects, which are significantly larger than the MOE. 

Taking a look at the intraday average prices in 2016, a forecast of 1 GW lower than the actual 

power generation from wind / solar resulted in a price decrease of 1.577 / 

sults of Kiesel & Paraschiv (2017) have a similar magnitude. 

Each unit of a power shortage requires an intraday adjustment of schedules of power genera-

tion capacities shortly before the point in time of the actual delivery. This incurs additional 

costs. The same applies to excess power due to forecasting errors. Except for the years 2010 

(large) and 2016 (small), results for wind power have been quite constant. The development 

of solar power effects, peaking in 2013/2014 with a subsequent drop, corresponds to the de-

velopment of the MOE. As the intraday market is more volatile than the day-ahead market, it 

can be concluded that forecasting errors have a significant effect on the price volatility. An 

indication is that price effects of forecasting errors are quite large compared to the MOE (all 

differences to the MOE are significant). 

The magnitudes of the regression of intraday last prices are consistently more negative com-

pared to those of intraday average prices. This is plausible, as these prices express the last 

trade to offset the forecasting errors. 

To offer an interpretation of the total economic impact on electricity prices, we multiply the 

effects quantified in Table 5.8 by the yearly average forecasting errors for the years 2010 to 

2016. The forecasting errors (given in Table 5.2) of wind / PV have been in a range between 

0.81-1.12 MW / 0.30-0.43 MW. It is more appropriate to only consider peak hours for the inter-

pretation of the PV effect, in which the average forecasting error has been 0.63-0.84 MW. As 

presented in Table 5.9, in recent years, the price effect of forecasting errors ranged between 

1-  errors induce substantial price changes, especially bear-

ing in mind that, on average, they account for a very small share of the feed-in from RES. 

Nevertheless, in terms of their total impacts, their size is smaller than the MOE. It can be 

concluded that a reduction of forecasting errors would lead to a decreased price volatility. 
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Table 5.9: Average effects of forecasting errors .
 2010 2011 2012 2013 2014 2015 2016 
FE_wind_feed-in        

Intraday average 3.6 2.2 1.8 2.2 2.0 2.7 1.8 
Intraday last price 4.7 3.9 3.6 3.7 3.1 3.7 2.4 

FE_PV_feed-in (peak)        
Intraday average 0.1 1.0 1.7 3.2 2.2 1.6 1.1 

Intraday last price 0.2 2.2 3.4 5.2 3.2 2.4 1.8 

5.4.4 Robustness of Results 

Since the model is based on several assumptions, we conduct different robustness checks to 

validate the results.  

-1- First, the regression is conducted in seven variations, whereas five variations cover models 

A to E and two are models F and G.87 Different points of view are offered by using peak and 

off-peak (variation of price setting technology) prices as well as intraday average and intraday 

last prices (variation of the point in time of pricing). The general findings are not affected by 

the selection of different data subsets.88 In detail, for gas and coal, the largest price effects of 

residual demand changes are measured for 2013. Wind feed-in effects are also consistent 

across the different regressions. The same applies to PV  with the exception of regression 

(C) with off-peak data. However, the off-peak dataset (nighttime) is not useful to reflect solar 

power impacts. Furthermore, the quantifications of the ramping effects do not contradict the 

conclusions drawn before. 

-2- The use of actual load data, which has also been done by Jónsson et al. (2010) and Ketterer 

(2014), implies perfect forecasts. They deal with the lack of forecast data by simulating the 

load forecast tL̂  as t t t
ˆL L . tL  is the actual load and  ~ , where 2  is the variance 

of the residuals t . The standard deviation is chosen as 2%. We incorporate an additional 

characteristic on the forecasting errors into the simulation: We assume t  to be autocorrelated, 

as it is very plausible that a forecast will overestimate the actual demand if it has already over-

estimated the actual demand one hour before. The reason is that forecasting errors result from 

                                                
87 The full regression table is reported in appendix 5.6.1. 

88 For an extended validation of the off-peak results, we split the off-peak dataset into off-peak I (hours 
1-8) and off-peak II (hours 21-24). Still, findings are consistent. 
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an unplanned increase or reduction of demand. The demand, in turn, is highly autocorrelated. 

Corresponding to Lakhan (1981), t  is defined to be an autoregressive process of order 1:  

t t
t

Z1

2 2

1

1
, (5.10) 

where  ~  is a random number and the initial value is defined as Z1 1. We set the 

autocorrelation .0 9659 , which equals the autocorrelation of the total demand. The impacts 

on the modeling set-up are as follows: On the one hand, tL̂  directly affects the variable 

i ,tres _demand . On the other hand, fuel _ type,i ,tI fuel  depends on price setting technology, 

which, in turn, depends on tL̂ . To validate the empirical findings, the same regression based 

on the simulated load forecasts is conducted 5,000 times.89 

-3- The simulation of the power plant portfolio is based on various assumptions regarding effi-

ciency and availability to enhance the existing data. Here, we vary the portfolio structure on a 

yearly basis by downscaling the total capacities of different technologies (gas, coal, others) by 

5 %. The four capacity variations (gas down, coal down, others down, no variation) over seven 

years result in 16,384 variations.90 

-4- The study is based on the power plant portfolio of Germany and Austria. As other studies 

only simulate the German merit-order curve, we test our model on a dataset restricted to Ger-

man power generation capacities and load data.  

For these modifications the results are unchanged regarding the effect signs and reveal con-

stant average effect sizes compared to the results of the standard regression provided in sec-

tions 5.4.1 to 5.4.3. In -4-, effects of residual demand changes are consistently slightly larger 

for the restriction to the German power plant portfolio. This is plausible, as the profiles of de-

                                                
89 The results are reported in Table 5.13 to Table 5.17 in the appendix 5.6.4 and validate the findings of 

the basic regression. 

90 The results are reported in Table 5.18 to Table 5.22 in the appendix 5.6.5 and validate the findings of 
the basic regression. 
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mand and feed-ins from PV and wind are very similar across the entire German/Austrian mar-

ket zone. Only considering a subset of the market results in larger regression coefficients. 

Regarding the significances of effects, we can confirm the conclusions drawn before. 

5.5 Interim Results 

This study analyzes the effects of wind and solar power generation on electricity prices and 

quantifies the MOE from 2010 to 2016. In contrast to the empirical literature in this area, we 

apply a fixed effects panel regression analysis to control for endogeneity due to unobserved 

heterogeneity. The use of robust standard errors by Driscoll & Kraay (1998) is founded analyt-

ically. A main finding of our study is that the price effects of demand changes depend on the 

price levels of different fuel types, which determine the electricity price at a specific point in 

time. The identification of the price determining technology is based on a simulation of the 

composition of the power plant portfolio. As the quantified effects are quite obvious and com-

prehensible, this might be an additional facet to be considered in future electricity price mod-

eling. The MOE peaked in 2012/2013, and then dropped significantly until 2016, which 

corresponds to the price development of fuel and CO2 prices in recent years. Gas prices 

dropped from 2013 onwards and a (less sharp) coal price decline started in 2011, coinciding 

with the continuous decline of CO2 prices. In 2011, when coal prices peaked, price effects of 

changes in residual demand were significantly larger when coal was price-setting compared 

to instances when gas was price-setting. From 2013 to 2015, the effect on electricity prices 

induced by gas fuel was significantly larger than the effects induced by coal prices, as gas 

prices were (relatively) on a higher level. 

In most cases, price reductions as result of an increased wind power generation do not reveal 

demand. Still, the tendency is that the MOE of the fluctuating wind feed-in affects electricity 

prices on a larger scale than changes of the residual demand. However, it seems that the 

ability to absorb the fluctuating power generation has improved in recent years, which is of 

high importance in the further transition process towards a sustainable power supply. From 

2010 to 2016, the development of the wind induced MOE per additional GWh of feed-ins was 
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as follows (coal/gas): 1.2/1.0  1.2/0.9  1.0/1.2  1.2/2.0  1.0/1.3  0.8/1.2  . 

Moreover, the development of the PV induced MOE from 2010 to 2016 was (coal/gas): 0.3/0.6 

 0.8/0.6  0.9/1.1  1.1/1.3  1.0/1.0  0.9/0.9  Wh. 

The total price dampening effect of fluctuating renewables has generally increased from 

 was 

observed for 2013 coinciding with high fuel prices. 

The analysis of operating power plants in cycling modes reveals significant price effects. Rel-

evant indi

We find that short-time utilization of an additional 1,000 MW of generation capacities results in 

However, results for non-utilization are less profound. We assume 

that the effect of must-run conditions might be counteracted by less efficient (therefore more 

costly) power generation in a low-load situation. Price effects of steep demand drops are sig-

nificantly larger than steep demand increases. A steep demand decrease of 1,000 MW com-

pared to an hour before reduces prices by 0.17-

short-time (non-)utilizations of power plants and steep ramping could be reduced by smoothing 

the residual demand. This would induce a lower price volatility. 

Finally, we find substantial price effects of forecasting errors of wind and PV, which are signif-

icantly larger than the MOE. This analysis is based on both intraday average and intraday last 

prices. Each unit of a power shortage requires an intraday adjustment of schedules of power 

generation capacities shortly before the point in time of actual delivery, which incurs additional 

costs. The same applies to excess power due to forecasting errors. The price effect of fore-

casting errors of 1,000 MW has a magnitude of 1- substantial effect, 

especially bearing in mind that, on average, forecasting errors account for a very small share 

of the feed-ins from RES. Nonetheless, in terms of their total impacts, their size is smaller than 

that of the MOE. To conclude, a reduction of forecasting errors would lead to a decreased 

price volatility. 

As the German power market is currently in a long-term transition process away from conven-

tional power generation, the question is whether the market volatility, but also the MOE in 

general, will be affected by a changing market environment. The successful integration of the 
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RES into the energy mix is a major challenge for a functioning future electricity market. On the 

one hand, further installations of fluctuating power generation capacities from RES can be 

expected. Additionally, further increasing flexibility of the existing power generation portfolio 

will reduce the market impacts of ramping or rescheduling power plants due to forecasting 

errors. In this context, our study serves to improve the understanding of the effects of RES on 

electricity prices and price volatility with respect to price trends on energy commodity markets. 
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5.6 Appendix 

5.6.1 Full Regression Table 

Table 5.10: Full regression table. 

Table includes the results for all regressions (A)-(G). 
independent variable. 

 (A) (B) (C) (D) (E) (F) (G) 
 DA DA peak DA off-peak ID average ID last ID ID last 
Regression model (5.2) (5.2) (5.2) (5.2) (5.2) (5.7) (5.7) 
Res_demand # gas # 2010 1.069*** 1.122*** 0.894*** 1.265*** 1.387*** 1.232*** 1.351*** 
 (0.069) (0.077) (0.059) (0.080) (0.103) (0.083) (0.104) 
Res_demand # gas # 2011 0.816*** 0.811*** 0.709*** 0.945*** 1.053*** 0.936*** 1.008*** 
 (0.046) (0.063) (0.047) (0.057) (0.066) (0.053) (0.059) 
Res_demand # gas # 2012 1.159*** 1.166*** 1.055*** 1.412*** 1.471*** 1.356*** 1.331*** 
 (0.203) (0.242) (0.220) (0.255) (0.228) (0.247) (0.231) 
Res_demand # gas # 2013 1.460*** 1.403*** 1.335*** 1.591*** 1.707*** 1.487*** 1.499*** 
 (0.088) (0.105) (0.094) (0.112) (0.154) (0.115) (0.152) 
Res_demand # gas # 2014 1.118*** 1.145*** 0.941*** 1.244*** 1.291*** 1.197*** 1.210*** 
 (0.068) (0.075) (0.082) (0.092) (0.104) (0.080) (0.086) 
Res_demand # gas # 2015 0.955*** 0.882*** 0.808*** 1.059*** 1.122*** 0.999*** 1.045*** 
 (0.063) (0.078) (0.072) (0.075) (0.093) (0.074) (0.089) 
Res_demand # gas # 2016 0.526*** 0.543*** 0.347*** 0.611*** 0.699*** 0.654*** 0.760*** 
 (0.109) (0.147) (0.080) (0.108) (0.103) (0.105) (0.102) 
Res_demand # coal # 2010 1.103*** 0.936*** 1.145*** 1.279*** 1.350*** 1.248*** 1.324*** 
 (0.063) (0.059) (0.086) (0.065) (0.079) (0.059) (0.073) 
Res_demand # coal # 2011 0.973*** 0.955*** 0.895*** 1.142*** 1.264*** 1.108*** 1.216*** 
 (0.061) (0.076) (0.070) (0.066) (0.079) (0.061) (0.070) 
Res_demand # coal # 2012 0.996*** 1.017*** 0.914*** 1.132*** 1.226*** 1.164*** 1.277*** 
 (0.055) (0.072) (0.063) (0.058) (0.074) (0.057) (0.074) 
Res_demand # coal # 2013 1.059*** 1.024*** 0.991*** 1.213*** 1.290*** 1.173*** 1.226*** 
 (0.060) (0.064) (0.075) (0.066) (0.085) (0.061) (0.075) 
Res_demand # coal # 2014 0.872*** 0.852*** 0.811*** 1.027*** 1.104*** 1.011*** 1.086*** 
 (0.045) (0.053) (0.060) (0.062) (0.077) (0.053) (0.065) 
Res_demand # coal # 2015 0.797*** 0.826*** 0.681*** 0.943*** 1.041*** 0.917*** 1.012*** 
 (0.041) (0.045) (0.055) (0.053) (0.061) (0.052) (0.061) 
Res_demand # coal # 2016 0.562*** 0.637*** 0.433*** 0.708*** 0.786*** 0.754*** 0.864*** 
 (0.043) (0.045) (0.057) (0.049) (0.057) (0.045) (0.053) 
Res_demand # others # 2010 1.618*** 1.658*** 0.781 1.787*** 1.992*** 1.841*** 2.139*** 
 (0.152) (0.114) (0.713) (0.236) (0.381) (0.169) (0.277) 
Res_demand # others # 2011 1.168*** 1.244*** 1.144*** 1.509*** 1.699*** 1.435*** 1.564*** 
 (0.143) (0.196) (0.130) (0.132) (0.170) (0.105) (0.132) 
Res_demand # others # 2012 1.878*** 1.899*** 4.841** 2.108*** 2.104*** 2.062*** 2.078*** 
 (0.314) (0.274) (1.542) (0.324) (0.382) (0.306) (0.343) 
Res_demand # others # 2013 1.411** 1.670+ 1.260** 1.165** 0.901 1.485*** 1.447** 
 (0.483) (0.924) (0.441) (0.417) (0.551) (0.420) (0.531) 
Res_demand # others # 2014 1.283*** 1.253*** 1.173*** 1.579*** 1.547*** 1.610*** 1.651*** 
 (0.192) (0.283) (0.307) (0.111) (0.154) (0.095) (0.149) 
Res_demand # others # 2015 1.045*** 0.959*** 1.213*** 1.184*** 1.188*** 1.203*** 1.287*** 
 (0.097) (0.099) (0.112) (0.098) (0.113) (0.103) (0.124) 
Res_demand # others # 2016 0.954*** 0.889*** 0.846*** 1.124*** 1.238*** 1.238*** 1.354*** 
 (0.091) (0.106) (0.061) (0.129) (0.178) (0.122) (0.154) 
Wind # gas # 2010 0.101 0.124 -0.001 0.202 0.270   
 (0.112) (0.138) (0.090) (0.176) (0.238)   
Wind # gas # 2011 -0.075 -0.092 -0.194+ 0.160+ 0.346*   
 (0.066) (0.085) (0.104) (0.097) (0.147)   
Wind # gas # 2012 -0.0840 -0.074 -0.199+ -0.027 0.128   
 (0.101) (0.126) (0.120) (0.138) (0.184)   
Wind # gas # 2013 -0.629*** -0.722*** -0.544** -0.411** -0.146   
 (0.151) (0.162) (0.174) (0.159) (0.209)   
Wind # gas # 2014 -0.231** -0.265** -0.227* 0.129 0.428**   
 (0.076) (0.090) (0.100) (0.111) (0.147)   
Wind # gas # 2015 -0.274*** -0.377*** -0.370*** -0.072 -0.018   
 (0.076) (0.094) (0.093) (0.090) (0.129)   
Wind # gas # 2016 -0.037 -0.066 -0.164** 0.183+ 0.379**   
 (0.073) (0.090) (0.061) (0.099) (0.125)   
        
        
Table to be continued on the next page.       
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 (A) (B) (C) (D) (E) (F) (G) 
 DA DA peak DA off-peak ID average ID last ID ID last 
Regression model (5.2) (5.2) (5.2) (5.2) (5.2) (5.7) (5.7) 
Wind # coal # 2010 -0.101 -0.051 -0.201 -0.138 0.107   
 (0.141) (0.116) (0.187) (0.219) (0.198)   
Wind # coal # 2011 -0.256* -0.272* -0.368* 0.239+ 0.031   
 (0.124) (0.119) (0.159) (0.136) (0.155)   
Wind # coal # 2012 0.027 -0.009 -0.063 0.397*** 0.545***   
 (0.077) (0.076) (0.100) (0.086) (0.108)   
Wind # coal # 2013 -0.143 -0.193+ -0.230+ 0.090 0.217   
 (0.111) (0.115) (0.123) (0.136) (0.171)   
Wind # coal # 2014 -0.139** -0.171** -0.203** 0.122* 0.213**   
 (0.045) (0.060) (0.063) (0.058) (0.071)   
Wind # coal # 2015 -0.023 -0.058 -0.105 0.139* 0.274***   
 (0.052) (0.054) (0.069) (0.056) (0.065)   
Wind # coal # 2016 0.010 0.016 -0.062 0.217*** 0.352***   
 (0.044) (0.044) (0.060) (0.058) (0.069)   
Wind # others # 2010 -0.437+ 0.253 -0.697* -0.570 -0.897   
 (0.256) (0.256) (0.315) (0.780) (1.262)   
Wind # others # 2011 -0.104 0.132 -0.204 0.578 0.845*   
 (0.545) (0.817) (0.525) (0.368) (0.414)   
Wind # others # 2012 -0.556* 0.734* -0.170 0.391 0.466   
 (0.269) (0.315) (0.551) (0.287) (0.411)   
Wind # others # 2013 -0.599* -0.817*** -0.615+ -0.279 -0.264   
 (0.243) (0.215) (0.317) (0.256) (0.374)   
Wind # others # 2014 -0.601*** -0.883* -0.493*** -0.073 -0.139   
 (0.170) (0.401) (0.109) (0.147) (0.204)   
Wind # others # 2015 0.015 -0.069 0.064 0.147 0.154   
 (0.113) (0.163) (0.139) (0.156) (0.223)   
Wind # others # 2016 -0.182 -0.458+ -0.132 -0.068 0.131   
 (0.117) (0.271) (0.086) (0.160) (0.194)   
PV # gas # 2010 0.458* 0.693* -1.746* 0.377 0.0720   
 (0.228) (0.278) (0.818) (0.299) (0.355)   
PV # gas # 2011 0.235** 0.287* 0.032 0.301** 0.239+   
 (0.078) (0.115) (0.436) (0.097) (0.137)   
PV # gas # 2012 0.102 0.188 -0.562* 0.362*** 0.535***   
 (0.088) (0.158) (0.284) (0.103) (0.127)   
PV # gas # 2013 0.112 0.089 -0.784* 0.415*** 0.612**   
 (0.090) (0.130) (0.394) (0.115) (0.187)   
PV # gas # 2014 0.090 0.173 0.030 0.317*** 0.372***   
 (0.072) (0.112) (0.232) (0.087) (0.089)   
PV # gas # 2015 0.051 -0.046 -0.001 0.194** 0.161+   
 (0.066) (0.115) (0.213) (0.074) (0.089)   
PV # gas # 2016 0.010 0.006 0.065 0.138* 0.173**   
 (0.045) (0.093) (0.166) (0.060) (0.067)   
PV # coal # 2010 0.776*** 0.755** -4.850*** 0.931*** 0.690**   
 (0.170) (0.230) (1.075) (0.197) (0.215)   
PV # coal # 2011 0.157 0.044 -0.088 0.313** 0.255+   
 (0.101) (0.130) (0.656) (0.110) (0.136)   
PV # coal # 2012 -0.091+ -0.022 -1.931*** 0.165* 0.287**   
 (0.054) (0.108) (0.335) (0.071) (0.092)   
PV # coal # 2013 -0.071 -0.088 -1.618*** 0.232** 0.243*   
 (0.060) (0.094) (0.388) (0.081) (0.097)   
PV # coal # 2014 -0.087+ -0.051 -0.842*** 0.159** 0.146*   
 (0.045) (0.063) (0.245) (0.060) (0.074)   
PV # coal # 2015 -0.076+ -0.079 -0.981*** 0.153* 0.159*   
 (0.041) (0.067) (0.229) (0.062) (0.067)   
PV # coal # 2016 -0.068+ 0.014 -0.589*** 0.123* 0.141*   
 (0.037) (0.052) (0.176) (0.048) (0.058)   
PV # others # 2010 2.486*** 2.658*** -13.230 1.657 0.943   
 (0.589) (0.316) (9.261) (1.089) (1.565)   
PV # others # 2011 -0.335 0.520 -7.343*** 0.096 0.532   
 (0.470) (0.548) (2.065) (0.649) (0.849)   
PV # others # 2012 0.708 1.162*** 2.184 0.864* 0.841*   
 (0.459) (0.300) (2.013) (0.350) (0.376)   
PV # others # 2013 -0.437* -0.575 -1.821* -0.242 -0.609   
 (0.193) (0.369) (0.816) (0.286) (0.464)   
PV # others # 2014 -0.261 -0.400 -1.300 0.070 -0.170   
 (0.178) (0.387) (0.859) (0.187) (0.273)   
PV # others # 2015 -0.044 -0.058 -1.933** 0.238* 0.035   
 (0.094) (0.203) (0.628) (0.118) (0.180)   
PV # others # 2016 -0.324* -0.371 -1.328*** -0.106 -0.075   
 (0.151) (0.277) (0.183) (0.178) (0.185)   
        
        
Table to be continued on the next page.       
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 (A) (B) (C) (D) (E) (F) (G) 
 DA DA peak DA off-peak ID average ID last ID ID last 
Regression model (5.2) (5.2) (5.2) (5.2) (5.2) (5.7) (5.7) 
Ramping -0.126* -0.269*** 0.069 -0.002 0.136 -0.106* -0.054 
 (0.051) (0.061) (0.078) (0.058) (0.085) (0.054) (0.078) 
Active # h1 0.925*** 1.120*** 0.649*** 0.493*** 0.787*** 0.547*** 0.892*** 
 (0.085) (0.099) (0.091) (0.093) (0.155) (0.092) (0.153) 
Inactive # h1 0.362** 0.883*** -0.048 -0.161 0.529+ 0.088 0.957*** 
 (0.120) (0.149) (0.180) (0.149) (0.288) (0.141) (0.286) 
Steep 0.294*** 0.202*** 0.249*** 0.078 -0.051 0.161*** 0.069 
 (0.045) (0.058) (0.061) (0.055) (0.081) (0.048) (0.071) 
Steep drop 0.433*** 0.468*** 0.248*** 0.388*** 0.506*** 0.335*** 0.439*** 
 (0.044) (0.064) (0.074) (0.054) (0.083) (0.051) (0.077) 
Wind # 2010      -0.168 -0.048 
      (0.126) (0.131) 
Wind # 2011      0.246* 0.235 
      (0.105) (0.148) 
Wind # 2012      0.298** 0.466*** 
      (0.098) (0.126) 
Wind # 2013      0.023 0.215+ 
      (0.109) (0.128) 
Wind # 2014      0.139* 0.293*** 
      (0.056) (0.066) 
Wind # 2015      0.111* 0.244*** 
      (0.052) (0.074) 
Wind # 2016      0.193*** 0.357*** 
      (0.047) (0.058) 
PV # 2010      0.714*** 0.441+ 
      (0.213) (0.247) 
PV # 2011      0.263** 0.129 
      (0.085) (0.104) 
PV # 2012      0.304*** 0.417*** 
      (0.082) (0.100) 
PV # 2013      0.193** 0.177* 
      (0.061) (0.076) 
PV # 2014      0.134* 0.085 
      (0.057) (0.068) 
PV # 2015      0.100* 0.044 
      (0.048) (0.063) 
PV # 2016      0.089 0.093 
      (0.059) (0.068) 
FE wind # 2010      -4.424*** -5.816*** 
      (0.222) (0.299) 
FE wind # 2011      -2.688*** -4.765*** 
      (0.222) (0.316) 
FE wind # 2012      -2.085*** -4.277*** 
      (0.572) (0.331) 
FE wind # 2013      -2.677*** -4.523*** 
      (0.225) (0.297) 
FE wind # 2014      -2.473*** -3.961*** 
      (0.184) (0.271) 
FE wind # 2015      -2.336*** -3.291*** 
      (0.201) (0.228) 
FE wind # 2016      -1.616*** -2.202*** 
      (0.221) (0.283) 
FE PV # 2010      -0.199 -0.370 
      (0.469) (0.636) 
FE PV # 2011      -1.815*** -3.794*** 
      (0.278) (0.494) 
FE PV # 2012      -2.304*** -4.555*** 
      (0.263) (0.414) 
FE PV # 2013      -3.836*** -6.184*** 
      (0.375) (0.798) 
FE PV # 2014      -2.725*** -4.055*** 
      (0.204) (0.333) 
FE PV # 2015      -2.063*** -3.107*** 
      (0.197) (0.330) 
FE PV # 2016      -1.461*** -2.336*** 
      (0.240) (0.295) 

Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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5.6.2 Appendix to 5.4.1 Price Effects of Residual Demand 
Changes 

Table 5.11: Appendix to Table 5.5. 

Appendix with interaction terms PV feed-in # fuel_type # year and wind+PV feed-in # fuel_type # year to measure 
the difference between the effects of wind+PV vs. PV-only. By contrast, in Table 5.5, the effects of wind and PV are 
presented, but not their difference. 

 2010 2011 2012 2013 2014 2015 2016 
Wind+PV feed-in # (fuel_type = gas)  
# year 

       

 0.101 
(0.112) 

-0.075 
(0.066) 

-0.084 
(0.101) 

-0.629*** 
(0.151) 

-0.231** 
(0.076) 

-0.274*** 
(0.076) 

-0.037 
(0.073) 

Wind+PV feed-in # (fuel_type = coal)  
# year 

       

 -0.101 
(0.141) 

-0.256* 
(0.124) 

0.027 
(0.077) 

-0.143 
(0.111) 

-0.139** 
(0.045) 

-0.023 
(0.052) 

0.010 
(0.044) 

Wind+PV feed-in # (fuel_type = others)  
# year 

       

 -0.437+ 
(0.256) 

0.104 
(0.545) 

-0.556* 
(0.269) 

-0.599* 
(0.243) 

-0.601*** 
(0.170) 

0.0147 
(0.113) 

-0.182 
(0.117) 

PV feed-in # (fuel_type = gas)  
# year 

       

 0.357 
(0.241) 

0.310** 
(0.108) 

0.186+  
(0.108) 

0.740*** 
(0.175) 

0.322*** 
(0.095) 

0.325*** 
(0.092) 

0.046 
(0.078) 

PV feed-in # (fuel_type = coal)  
# year 

       

 0.877*** 
(0.247) 

0.413* 
(0.184) 

-0.118 
(0.095) 

0.072 
(0.128) 

0.052 
(0.055) 

-0.053 
(0.055) 

0.077 
(0.050) 

PV feed-in # (fuel_type = others)  
# year 

       

 2.923*** 
(0.539) 

-0.231 
(0.711) 

1.264* 
(0.494) 

0.162 
(0.309) 

0.339+ 
(0.182) 

-0.059 
(0.122) 

-0.141 
(0.116) 

Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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5.6.3 Appendix to 5.4.3 Price Effects of Forecasting Errors 

Table 5.12: Appendix to Table 5.8. 

Appendix with interaction terms FE_wind_feed-in # year # fuel_type and FE_PV_feed-in # year # fuel_type instead 
of wind_feed-in # year and PV_feed-in # year. Effects of forecasting errors of feed-in of wind power and solar power 
on intraday average prices (model (F)) and intraday last prices (model (G)). 

 # 2010 2011 2012 2013 2014 2015 2016 
FE_wind_feed-in # year # 
fuel_type 

        

Intraday average gas -4.117*** 
(0.242) 

-2.446*** 

(0.147) 
-2.701*** 

(0.317) 
-2.371*** 

(0.419) 
-2.569*** 

(0.283) 
-2.014*** 

(0.200) 
-1.916*** 

(0.237) 

 coal -4.516*** 

(0.339) 
-2.774*** 

(0.383) 
-2.402*** 

(0.260) 
-2.579*** 

(0.195) 
-2.295*** 

(0.195) 
-2.103*** 

(0.120) 
-1.462*** 

(0.162) 

 others -5.509*** 

(1.292) 
-6.494** 

(2.025) 
1.649 

(3.674) 
-3.402*** 

(0.771) 
-3.245** 

(1.144) 
-3.941*** 

(0.805) 
-1.846** 

(0.689) 

Intraday last price  gas -5.205*** 

(0.309) 
-4.155*** 

(0.312) 
-4.180*** 

(0.529) 
-4.601*** 

(0.609) 
-4.442*** 

(0.488) 
-3.073*** 

(0.291) 
-2.585*** 

(0.276) 

 coal -5.936*** 

(0.479) 
-5.184*** 

(0.384) 
-4.231*** 

(0.335) 
-4.069*** 

(0.260) 
-3.549*** 

(0.281) 
-2.931*** 

(0.195) 
-1.976*** 

(0.210) 

 others -9.292*** 

(2.315) 
-11.280*** 

(2.908) 
-5.198*** 

(1.322) 
-5.976*** 

(1.069) 
-4.531** 

(1.537) 
-5.499*** 

(0.879) 
-2.639** 

(0.867) 
FE_PV_feed-in # year # 
fuel_type 

        

Intraday average gas -0.285 
(0.646) 

-1.811*** 

(0.325) 
-2.169*** 

(0.320) 
-4.399*** 

(0.760) 
-3.054*** 

(0.444) 
-2.278*** 

(0.328) 
-1.107*** 

(0.307) 

 coal -0.098 
(0.402) 

-2.028*** 

(0.426) 
-2.443*** 

(0.410) 
-3.117*** 

(0.223) 
-2.544*** 

(0.192) 
-2.183*** 

(0.213) 
-1.532*** 

(0.192) 

 others 
2.382 

(2.559) 
0.958 

(1.389) 
-3.342 
(2.109) 

-6.095*** 

(0.802) 
-3.637** 

(1.359) 
-1.350* 

(0.682) 
-2.586* 

(1.218) 

Intraday last price gas -0.572 
(1.067) 

-3.562*** 

(0.481) 
-4.368*** 

(0.494) 
-7.457*** 

(1.602) 
-4.906*** 

(0.773) 
-3.555*** 

(0.621) 
-1.719*** 

(0.420) 

 coal 
-0.197 
(0.439) 

-4.484*** 

(1.206) 
-4.594*** 

(0.610) 
-4.566*** 

(0.380) 
-3.371*** 

(0.263) 
-3.166*** 

(0.300) 
-2.398*** 

(0.300) 

 others 1.251 
(5.134) 

0.011 
(1.427) 

-8.166** 

(2.824) 
-11.260*** 

(1.643) 
-6.303* 

(2.593) 
-2.255* 

(0.885) 
-4.381** 

(1.417) 
Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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5.6.4 Tables of Robustness Check -2- 

Table 5.13: Robustness of the results provided in Table 5.4 for regression (A). 

The coefficients of the years with missing values are taken as the basis. For both coal and gas, the basis years are 
the ones with the minimum and the maximum regression coefficients from Table 5.4. The average coefficients of 
the regressions based on the simulated loads are displayed below the values of the original regression. Additionally, 
the share of coefficients being significantly different from zero after conducting 5,000 regressions is provided. 

  2010 2011 2012 2013 2014 2015 2016 
Res_demand # year gas -0.390*** -0.644*** -0.301 - -0.342*** -0.505*** -0.934*** 

Ø  -0.365 -0.600 -0.279 - -0.337 -0.474 -0.891 
p < 0.05  93.8% 100% 27.5% - 86.0% 98.7% 100% 

 0.1  3.1% 0% 8.4% - 6.2% 1.2% 0% 
Res_demand # year gas 0.544*** 0.290** 0.633** 0.934*** 0.592*** 0.429*** - 

Ø  0.526 0.293 0.613 0.891 0.554 0.417 - 
p < 0.05  93.8% 64.5% 83.6% 100% 95.2% 83.5% - 

 0.1  3.1% 9.4% 9.4% 0% 2.9% 5.7% - 
Res_demand # year coal - -0.130 -0.106 -0.044 -0.230*** -0.306*** -0.541*** 

Ø  - -0.146 -0.125 0.059 -0.246 -0.321 -0.554 
p < 0.05  - 35.9% 18.5% 0.0% 100% 100% 100% 

 0.1  - 27.4% 30.5% 0.6% 0% 0% 0% 
Res_demand # year coal 0.541*** 0.411*** 0.434*** 0.497*** 0.310*** 0.235*** - 

Ø  0.554 0.408 0.429 0.495 0.308 0.233 - 
p < 0.05  100% 100% 100% 100% 100% 100% - 

 0.1  0% 0% 0% 0% 0% 0% - 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 5.14: Robustness of the results provided in Table 5.4 for regression (A). 

Fuel type = gas is taken as the basis. The average coefficients of the regressions based on the simulated loads are 
displayed below the values of the original regression. Additionally, the share of coefficients being significantly dif-
ferent from zero after conducting 5,000 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
Res_demand #  
(fuel_type = coal vs. gas) # year 

0.033 
(0.074) 

0.158* 
(0.066) 

-0.163 
(0.211) 

-0.401*** 
(0.086) 

-0.245*** 
(0.068) 

-0.158* 
(0.056) 

0.036 
(0.098) 

Ø 0.070 0.158 -0.141 -0354 -0.204 -0.143 0.042 
p < 0.05 10.2% 77.0% 0.2% 98.9% 88.5% 68.7% 15.8% 

p < 0.1 8.1% 5.4% 0.3% 0.7% 6.2% 10.3% 5.1% 
Res demand #  
(fuel_type = others vs. gas) # year 

0.548*** 
(0.142) 

0.353** 
(0.126) 

0.719** 
(0.265) 

0.049 
(0.474) 

0.165 
(0.209) 

0.091 
(0.084) 

0.429*** 
(0.079) 

Ø 0.452 0.331 0.671 -0.011 0.156 0.093 0.426 
p < 0.05 77.2% 94.0% 69.3% 1.3% 0.0% 12.4% 99.0% 

p < 0.1 5.2% 3.9% 11.4% 1.7% 0.7% 11.2% 0.9% 
Driscoll-Kraay standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.15: Robustness of the results provided in Table 5.5 for regression (A). 

The average coefficients of the regressions based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
5,000 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
Wind feed-in #  
(fuel_type = gas) # year 0.101 -0.075 -0.084 -0.629*** -0.231** -0.274*** -0.037 

Ø 0.052 -0.113 -0.152 -0.673 -0.289 -0.314 -0.085 
p < 0.05 0.0% 28.0% 26.3% 99.9% 96.9% 99.8% 7.0% 

 0.1 0.7% 22.3% 25.7% 0.1% 1.9% 0.2% 11.0% 
Wind feed-in #  
(fuel_type = coal) # year -0.101 -0.256* 0.0268 -0.143 -0.139** -0.0232 0.010 

Ø -0.117 -0.288 -0.021 -0.183 -0.178 -0.062 -0.030 
p < 0.05 6.0% 80.7% 0.0% 19.8% 99.1% 4.7% 5.1% 

p < 0.1 6.0% 16.9% 0.5% 29.5% 0.6% 10.5% 5.3% 
Wind feed-in #  
(fuel_type = others) # year -0.437+ 0.104 -0.556* -0.599* -0.601*** 0.015 -0.182 

Ø -0.448 -0.245 -0.631 -0.634 -0.634 -0.043 -0.236 
p < 0.05 37.1% 0.1% 73.9% 100% 100% 0% 71.0% 

p < 0.1 15.4% 1.5% 12.4% 0% 0% 0% 0.0% 
PV feed-in #  
(fuel_type = gas) # year 0.458* 0.235** 0.102 0.112 0.090 0.051 0.010 

Ø 0.426 0.191 0.051 0.040 0.026 -0.009 -0.041 
p < 0.05 43.8% 72.4% 0.0% 0.0% 0.2% 0.2% 7.4% 

p < 0.1 17.2% 13.7% 1.8% 0.5% 0.3% 0.6% 8.3% 
PV feed-in #  
(fuel_type = coal) # year 

0.776*** 0.157 0.091+ -0.071 -0.0874+ -0.076+ -0.068+ 

Ø 0.655 0.106 -0.129 -0.107 -0.124 -0.113 -0.103 
p < 0.05 100% 2.1% 66.4% 39.1% 82.7% 80.8% 87.7% 

p < 0.1 0% 7.0% 13.6% 15.3% 7.7% 9.5% 7.1% 
PV feed-in #  
(fuel_type = others) # year 

2.486*** -0.335 0.708 -0.437* -0.261 0.0444 -0.324* 

Ø 1.993 -0.232 0.630 -0.481 -0.304 0.100 -0.379 
p < 0.05 94.8% 3.4% 0.4% 97.3% 15.6% 6.1% 99.1% 

p < 0.1 1.6% 5.0% 10.5% 2.7% 38.7% 9.2% 0.9% 
        

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 5.16: Robustness of the results provided in Table 5.7 for regression (A). 

The average coefficients of the regression based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
5,000 regressions is provided. 

 A 
(DA) 

Ramping -0.126* 
Ø -0.159 

p < 0.05 100% 
 0.1 0% 

Active # h1 0.925*** 
Ø 0.979 

p < 0.05 100% 
 0.1 0% 

Inactive # h1 0.362** 
Ø 0.456 

p < 0.05 100% 
p < 0.1 0% 

Steep up 0.294*** 
Ø 0.323 

p < 0.05 100% 
p < 0.1 0% 

Steep drop 0.433*** 
Ø 0.462 

p < 0.05 100% 
 0.1 0% 

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.17: Robustness of the results provided in Table 5.8 for regression (F). 

The average coefficients of the regressions based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
5,000 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
FE_wind_feed-in # year -4.431*** -2.678*** -2.176*** -2.691*** -2.475*** -2.421*** -1.577*** 

Ø -4.411 -2.682 -2.088 -2.671 -2.491 -2.343 -1.161 
p < 0.05 100% 100% 100% 100% 100% 100% 100% 

 0.1 0% 0% 0% 0% 0% 0% 0% 
FE_PV_feed-in # year -0.194 -1.764*** -2.315*** -3.843*** -2.723*** -2.087*** -1.488*** 

Ø -0.203 -1.830 -2.326 -3.851 -2.739 2.076 1.453 
p < 0.05 0% 100% 100% 100% 100% 100% 100% 

 0.1 0% 0% 0% 0% 0% 0% 0% 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

5.6.5 Tables of Robustness Check -3- 

Table 5.18: Robustness of the results provided in Table 5.4 for regression (A). 

The coefficients of the years with missing values are taken as the basis. For both coal and gas the basis years are 
the ones with the minimum and the maximum regression coefficients. The average coefficients of the regressions 
based on the simulated loads are displayed below the values of the original regression. Additionally, the share of 
coefficients being significantly different from zero after conducting 16,384 regressions is provided. 

  2010 2011 2012 2013 2014 2015 2016 
Res_demand # year gas -0.390*** -0.644*** -0.301 - -0.342*** -0.505*** -0.934*** 

Ø  -0.391 -0.645 -0.337 - -0.343 -0.502 -0.952 
p < 0.05  100% 100% 24.6% - 100% 100% 100% 

p < 0.1  0% 0% 49.2% - 0% 0% 0% 
Res_demand # year gas 0.544*** 0.290** 0.633** 0.934*** 0.592*** 0.429*** - 

Ø  0.561 0.307 0.615 0.952 0.610 0.451 - 
p < 0.05  100% 100% 100% 100% 100% 100% - 

p < 0.1  0% 0% 0% 0% 0% 0% - 
Res_demand # year coal - -0.130 -0.106 -0.044 -0.230*** -0.306*** -0.541*** 

Ø  - -0.136 -0.116 -0.050 -0.241 -0.321 -0.552 
p < 0.05  - 7.6% 0% 0% 100% 100% 100% 

p < 0.1  - 47.0% 28.1% 0% 0% 0% 0% 
Res_demand # year coal 0.541*** 0.411*** 0.434*** 0.497*** 0.310*** 0.235*** - 

Ø  0.552 0.416 0.437 0.502 0.312 0.231 - 
p < 0.05  100% 100% 100% 100% 100% 100% - 

p < 0.1  0% 0% 0% 0% 0% 0% - 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 5.19: Robustness of the results provided in Table 5.4 for regression (A).  

Fuel_type = gas is taken as the basis. The average coefficients of the regressions based on the simulated loads 
are displayed below the values of the original regression. Additionally, the share of coefficients being significantly 
different from zero after conducting 16,384 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
Res_demand #  
(fuel_type = coal vs. gas) # year 

0.033 0.158* -0.163 -0.401*** -0.245*** -0.158* 0.036 

Ø 0.055 0.173 -0.114 -0.386 -0.234 -0.155 0.064 
p < 0.05 0% 100% 0% 100% 100% 100% 0% 

 0.1 0% 0% 100% 0% 0% 0% 100% 
Res_demand #  
(fuel_type = others vs. gas) # year 

0.548*** 0.353** 0.719** 0.049 0.165 0.091 0.429*** 

Ø 0.497 0.346 0.704 -0.030 0.108 0.077 0.437 
p < 0.05 100% 100% 100% 0% 0% 0% 100% 

 0.1 0% 0% 0% 0% 0% 0% 0% 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.20: Robustness of the results provided in Table 5.5 for regression (A).  

The average coefficients of the regression based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
16,384 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
Wind feed-in #  
(fuel_type = gas) # year 0.101 -0.075 -0.084 -0.629*** -0.231** -0.274*** -0.037 

Ø 0.091 -0.066 -0.091 -0.624 -0.235 -0.268 -0.034 
p < 0.05 0% 0% 0% 100% 100% 100% 0% 

 0.1 0% 0% 0% 0% 0% 0% 0% 
Wind feed-in #  
(fuel_type = coal) # year -0.101 -0.256* 0.027 -0.143 -0.139** -0.023 0.010 

Ø -0.101 -0.269 0.026 -0.141 -0.139 -0.022 0.008 
p < 0.05 0% 100% 0% 0% 100% 0% 0% 
0.05  0.1 0% 0% 0% 0% 0% 0% 0% 
Wind feed-in #  
(fuel_type = others) # year -0.437+ 0.104 -0.556* -0.599* -0.601*** 0.015 -0.182 

Ø -0.472 0.157 -0.533 -0.609 -0.611 0.014 -0.185 
p < 0.05 69.7% 0% 51.1% 100% 100% 0% 0% 

 0.1 30.3% 0% 48.9% 0% 0% 0% 0% 
PV_feed-in #  
(fuel_type = gas) # year 0.458* 0.235** 0.102 0.112 0.090 0.051 0.010 

Ø 0.483 0.226 0.091 0.102 0.087 0.053 0.002 
p < 0.05 99.3% 100% 0% 0% 0% 0% 0% 

 0.1 0.7% 0% 0% 0% 0% 0% 0% 
PV_feed-in #  
(fuel_type = coal) # year 

0.776*** 0.157 0.091+ -0.071 -0.087+ -0.076+ -0.068+ 

Ø 0.764 0.158 -0.091 -0.072 -0.089 -0.080 -0.069 
p < 0.05 100% 0% 0% 0% 64.1% 50.0% 0.9% 

 0.1 0% 30.3% 69.2% 0% 35.9% 50.0% 91.9% 
PV_feed-in #  
(fuel_type = others) # year 

2.486*** -0.335 0.708 -0.437* -0.261 0.0444 -0.324* 

Ø 2.292 -0.041 0.744 -0.444 -0.277 -0.048 -0.332 
p < 0.05 100% 0% 0% 100% 0% 0% 100% 

 0.1 0% 0% 1.3% 0% 0% 0% 0% 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 5.21: Robustness of the results provided in Table 5.7 for regression (A). 

The average coefficients of the regression based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
16,384 regressions is provided. 

 (A)  
 DA  

Ramping -0.126*  
Ø -0.123  

p < 0.05 100%  
 0.1 0%  

Active # h1 0.925*** 0.563*** 
Ø 0.923 0.550 

p < 0.05 100% 100% 
0.05 < p < 0.1 0% 0% 
Inactive # h1 0.362**  

Ø 0.373  
p < 0.05 100%  

 0.1 0%  
Steep up 0.294*** -0.139*** 

Ø 0.291 -0.137 
p < 0.05 100% 100% 

 0.1 0% 0% 
Steep drop 0.433***  

Ø 0.429  
p < 0.05 100%  

 0.1 0%  
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5.22: Robustness of the results provided in Table 5.8 for regression (F). 

The average coefficients of the regressions based on the simulated loads are displayed below the values of the 
original regression. Additionally, the share of coefficients being significantly different from zero after conducting 
16,384 regressions is provided. 

 2010 2011 2012 2013 2014 2015 2016 
FE_wind_feed-in # year -4.431*** -2.678*** -2.176*** -2.691*** -2.475*** -2.421*** -1.577*** 

Ø -4.429 -2.692 -2.092 -2.677 -2.473 -2.335 1.616 
p < 0.05 100% 100% 100% 100% 100% 100% 100% 

p < 0.1 0% 0% 0% 0% 0% 0% 0% 
FE_PV_feed-in # year -0.194 -1.764*** -2.315*** -3.843*** -2.723*** -2.087*** -1.488*** 

Ø -0.208 -1.813 -2.307 -3.835 -2.730 -2.060 -1.443 
p < 0.05 0% 100% 100% 100% 100% 100% 100% 

p < 0.1 0% 0% 0% 0% 0% 0% 0% 
+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 
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As pointed out in the beginning of this thesis, due to an increasing share of RES in the German 

power market, the power supply system faces new challenges. Fluctuating feed-ins from RES, 

which are not demand-driven, require an increasing flexibility of conventional power plants to 

offset the fluctuating feed-ins of RES. On the other hand, the demand for electricity has re-

mained rather constant during recent years, which has led to a squeeze-out of conventional 

power generation capacities from the electricity market. These issues should be taken into 

consideration when trying to develop an understanding of the market. Accurate short-term 

price forecasts are required, for example, to ensure the economic efficiency of power plant 

operations and schedules. In the design of explanatory models, the increasing complexity of 

the electricity market also has to be taken into consideration by more sophisticated model 

structures. Against this background, the superior frame of this thesis is modeling and forecast-

ing of wholesale electricity in the German power market with consideration of the effects of 

RES.  

To put focus on the changing market environment, chapter 2 presents the framework of the 

German market including its historical development. The EEG, established in the year 2000, 

and its several amendments are key drivers of the increasing importance of RES for the energy 

mix in Germany. RES power generation is conducted at marginal costs of almost zero (except 

biomass) and accounted for 29% of the power generation in Germany in 2015. Besides, addi-

tional cost drivers were imposed to conventional power generation by means of the EU-ETS, 

which is a pricing scheme for CO2 emissions. For the understanding of price models, it is im-

portant to know that the trade of electricity takes place prior to its actual delivery. Therefore, 

the pricing is always based on forecasts for the power generation and its consumption. Espe-

cially, the fluctuating renewable sources wind and solar power are difficult to forecast. On the 
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wholesale market, power trades cover block contracts for certain future time periods, but also 

hourly contracts or even quarter-hourly contracts. 

After the general description of the German power market, chapter 3 presents a comprehen-

sive literature review of the time series modeling and forecasting of electricity prices from 2000 

to 2015 to give an overview on the state of the art in time series modeling of wholesale elec-

tricity prices. Eighty-six empirical publications with 450 models regarding their specific con-

straints are analyzed with the finding that used data are normally of an hourly frequency and 

are modeled as a single series. It is common to use differenced or log-prices. Although spikes 

are often addressed as a challenge in the modeling of electricity prices, the treatment of outli-

ers is not often indicated. Among AR(X), ARMA(X) and GARCH processes, there is no clear 

standard model to be applied to electricity spot prices. The most common forecast accuracy 

measures are (w/d)MAPE, RMSE and MAE. 

Focusing on the forecasting performance, the analysis shows that GARCH(X)-type models 

outperform their AR(MA)(X) counterparts, and ARMA(X) models, in turn, yield better forecasts 

than AR(X) models. Independently of the model, adding accurate explanatory variables im-

proves forecasting accuracies. Additionally, using complex ARMA model structures, combined 

forecasts, or hybrid models serves to improve forecasts. Sophisticated GARCH models yield 

only slightly better forecasts than the standard GARCH process. 

Based on the findings of the quasi-meta-analysis, in chapter 4 an empirical study is conducted 

on the forecasting performance of time series models on the German (and Austrian) electricity 

market from 2010 to 2014. The forecasting performance of ARMAX, MAX, ARX and GARCH-

types models is analyzed when different data preprocessing steps are applied. These are dif-

ferencing, log-

different lag structures of each model are included. Additionally, models are either calibrated 

based on single series datasets or on 24 separate hourly vectors. 

ARMAX models are the best performing time series models. The forecasts of GARCH models 

are slightly, but significantly less accurate. This might be surprising as it contradicts the results 

of the quasi-meta-analysis. However, several authors state that GARCH forecasts are better 

than ARMA forecasts at times of high volatility and worse at low volatility. As our study covers 
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phases of high volatility.  

Sophisticated GARCH structures (in this study, represented by E-GARCH, GJR-GARCH and 

P-GARCH), in turn, do not yield better forecasts than the standard GARCH. This means, cap-

turing asymmetric effects does not necessarily generate better forecasts. Including an explan-

atory variable for the demand, and especially a variable reflecting the power generation from 

RES, generates considerably better forecasts. The obtained results are robust against varia-

tions of the modeling conditions and are mainly in line with the findings of other empirical stud-

ies. 

After evaluating price forecasts based on standard time series models, in chapter 5 a sophis-

ticated explanatory model is designed to analyze the effects of wind and solar power on elec-

tricity prices. A fixed effects regression is conducted, where Driscoll-Kraay standard errors are 

used, which have so far not been applied in scientific literature on electricity markets. The MOE 

is quantified for the German (and Austrian) electricity market from 2010 to 2016 with respect 

to fuel prices of coal and gas. In 2011, when coal prices peaked, the MOE was relatively large 

in periods when coal power plants were price-setting, compared to periods when gas power 

plants were price-setting. This effect reversed from 2013 to 2015, when gas prices were (rela-

tively) higher. As the fuel price effect on the MOE is quite obvious and comprehensible, it might 

be an additional facet to be considered in future electricity price modeling. The total price 

high fuel prices. 

Regarding the cycling operation of power plants, it is found that short-time utilization of an 

Conversely, results for non-utilization have been less profound. It can be assumed that the 

effect of must-run conditions is counteracted by less efficient (thereby, more costly) power 

generation in a low-load situation. And finally, when focusing on forecasting errors of wind and 

PV feed-ins, a substantial price effect is detected, which is significantly larger than the MOE. 

The reason is that each unit of a power shortage requires an intraday adjustment of schedules 
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of power generation capacities shortly before the point in time of the actual delivery, which 

incurs additional costs. The same applies to excess power due to forecasting errors. 

To conclude, within this thesis several aspects of modeling and forecasting electricity prices 

are covered. A meta-analytic literature overview on the forecasting performance of time series 

models is given, and offers helpful guidance when conducting empirical forecasting studies on 

electricity spot markets. Taking into consideration the findings of the literature review, the fore-

casting performance of different time series models is analyzed in an empirical study. And 

finally, price effects of RES are analyzed from a new perspective including the choice of a 

panel regression.  

An additional facet beyond this thesis might be an integration of the panel-data model into the 

forecasting study, or at least to base the time series models on the sophisticated explanatory 

variables. New research issues might arise about to what extent the created variables can 

contribute to improve accuracies of forecasts.  

In general, the findings of this thesis are representative for the market conditions in the recent 

past. Still, the German power market is in a long-term transition process away from conven-

tional power generation to RES. This raises the question as to what extent prices and their 

characteristics will be affected by a changing market environment in the future. The successful 

integration of the RES into the energy mix is a major challenge for a functioning future elec-

tricity market, as further installations of fluctuating power generation capacities from RES can 

be expected. As changes of the market environment will continue, the increasing share of RES 

will give rise to new research issues. 
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