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Preface

Simulator tools play an indispensable role in the design of electrical networks already
for decades. They allow a beforehand verification of the circuit’s performance without
having it realized as hardware. Hence, redesigns causing immense time and financial
effort are avoided and modifications in design can easily be carried out and tested by
subsequent simulation runs.

The development in fabrication technology of integrated circuits (IC) during the last
years led to an unprecedented increase of functionality of systems on a single chip. Nowa-
days, ICs have hundreds of millions of semiconductor devices which are placed in several
layers and whose feature sizes reach the nanometer range. Besides the integration of
analog and digital circuitry, today’s systems-on-a-chip sometimes also include mechani-
cal parts. The corresponding mixed-technology design causes multi-physical descriptions
of the resulting systems.

At the same time, growing miniaturization and integration density force the modelling of
low-level physical effects such as thermal interaction, crosstalk, or electromagnetic radi-
ation, to guarantee that the signal propagation is not defective. However, mathematical
model descriptions based on differential-algebraic equations (DAE) have almost reached
their limit and cannot model the occuring effects on transistor level accurately enough.

As a consequence, one uses distributed elements such as transistors and transmission
lines which yield supplementary model descriptions based on partial differential equations
(PDE). These do not only incorporate the dependence on time, but also the spatial de-
pendence. The coupling with DAEs, which model the remaining parts of the circuit, then
leads to systems of partial differential-algebraic equations (PDAE). A semidiscretization
with respect to space finally results in systems of differential-algebraic equations of very
large dimension, thus rendering analysis and simulation tasks unacceptably expensive
and time consuming.

For these reasons, model order reduction (MOR) becomes inevitable. Dedicated tech-
niques in various areas of research have been developed among which the most popular
ones are numerical methods taylored for linear systems. Besides these, there also exist
methods for nonlinear systems and, in particular, symbolic methods which allow deeper
insights into functional dependences of the circuit’s behavior on parameters of the sys-
tem. Symbolic in this sense means that besides the system’s variables also its parameters
are given as symbols instead of numerical values. Model order reduction in the symbolic
case is a rather new and still small area of research |[Hen, SomHenEA, SomKraEA,
Wic04|. In this thesis, we develop a framework and tools for coupled symbolic-numerical
model reduction of electrical networks with a given hierarchical structure.
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viii PREFACE

To make this presentation as far as possible self-contained, we include a description of a
large part of the modelling of electrical networks given as netlist or circuit diagram. We
assume that the topological hierarchy of the system is given. This means that, together
with the circuit, we are given a segmentation into suitable subcircuits and a connecting
network describing the hierarchical structure of the system. Hence, the modelling is
closely related to the physical system.

In order to avoid infeasibility of analysis and reduction of systems of ever-growing com-
plexity, new approaches have to be invented for any kind of model reduction. So far
model order reduction did not incorporate the hierarchical structure available on circuit
level. Therefore, the focus of this thesis is the exploitation of the given hierarchy of
highly complex nanoelectronical systems for the use with coupled symbolic-numerical
reduction techniques.

A segmentation of the entire circuit according to its subcircuit structure allows a faster
processing of smaller subproblems. It further offers possibilities for the coupling of both
symbolic and numerical model order reduction techniques, since distinct parts of the
circuit can be reduced by different reduction methods. Moreover, for those subcircuits
that are symbolically reduced, one can take advantage of their parameterization to gain
insights in the circuit’s behavior.

By standard graph theoretical methods such as modified nodal analysis for transforming
a circuit into a describing system of equations, its structural information is lost. In this
thesis, we present a new workflow that allows separate reductions of the single subcir-
cuits. After segmenting the entire circuit into its set of subcircuits, information obtained
from a previous simulation run is used to proceed with the single subcircuits in the re-
duction process. Depending on the complexity and the degree of the aspired insights,
various symbolic and numerical techniques can be applied to the different subsystems
corresponding to the separated subcircuits. Hence, our approach has two new ingredi-
ents: first, taking advantage of the circuit’s hierarchical subsystem structure, and second,
the possibility to couple different reduction techniques of both symbolic and numerical

type.

Further, a new concept of sensitivity analysis of the entire circuit with respect to its
subcircuits is introduced. It measures the influence of the single subcircuits on the
behavior of the entire circuit by keeping track of the error on its output. Since the error
functions used for calculating this error crucially influence the entire reduction process,
a number of different such functions have been created resp. investigated in this thesis.

Based on the concept of sensitivities, a new ranking of subsystem reductions has been
invented. This ranking computes an optimized order of reductions of the circuit’s sub-
systems with the aim of achieving a high degree of reduction for the entire system. Using
the ranking to control the entire hierarchical reduction process, appropriate reductions
of single subcircuits are carried out in order to meet the user-specified accuracy for the
overall reduction. The original subcircuits in the connecting structure finally are replaced
by these reduced models. Thus, one obtains an entirely reduced behavioral model for
the original circuit. This approach clearly affords considerable complexity reductions of
the entire system and facilitates its analysis.



PREFACE ix

The algorithms are implemented in Analog Insydes [Al], a software package developed
by the Fraunhofer ITWM! in Kaiserslautern, Germany. It is based on the computer
algebra system Mathematica |MIMA]. In this thesis, we are interested not only in
academic algorithms, but also in their application to circuits of industrial size. In order
to show their aptitude within this context, the algorithms are successfully applied, with
significant savings in computation time, to an operational amplifier typically used in
industry. A further application of non-hierarchical reduction techniques to the obtained
interim models finally yields reduced systems that are not only up to about 20 times
faster w.r.t. simulation time. They also prove to be very robust with regard to different
inputs such as highly non-smooth pulse excitations. We also compare our results to the
usual non-hierarchical reduction approach. With a similar level of accuracy, the non-
hierarchical approach — depending on the used transistor models — is infeasible or needs
significantly higher computational effort than our new hierarchical approach?.

The work is arranged as follows: In Chapter 1, we give an introduction to the topics
treated in this thesis. After a brief review of different kinds of system analysis, we
motivate the need for model reduction techniques by considering their computational
complexity. Finally, this chapter addresses the aims of this thesis in more detail.

In order to carefully connect mathematics with the modelling of electrical circuits, we pro-
vide extensive fundamental material about these topics in Chapter 2. To make this work
self-contained, we start with a presentation of network analysis techniques for setting up
a describing system of equations. Next, a review of the resulting systems is given. We
mainly deal with differential-algebraic equations (DAE), i.e. sets of differential equations
with additional algebraic constraints, but also partial-differential equations (PDEs) and
partial differential-algebraic equations (PDAFEs) are considered. After describing three
different numerical analysis methods, basic terms and notions from systems and control
theory needed throughout this work are given. Finally, some of the most popular model
order reduction techniques for both the numerical and the symbolic case are surveyed in
more detail.

Chapter 3 illuminates the structure of electrical circuits. We briefly discuss component-
based, coupled, and interconnected systems and further provide short introductions to
the behavioral approach as well as a macromodelling concept.

Chapter 4 contains the main new results of this thesis. In the first place, a new reduction
algorithm is presented which exploits the system’s hierarchical structure by adapting the
macromodelling idea. We start with a motivating example and show that reductions
exploiting a circuit’s hierarchy are very promising and have great potential for large
savings in computational complexity. One of the advantages is a faster processing of
smaller subcircuits. Furthermore, such an approach allows for the coupling of symbolic
and numerical reduction methods for separate subsystems in order to derive a reduced
model of the entire system. Following this, a new workflow for separate subsystem

'Fraunhofer Institute for Industrial Mathematics (Fraunhofer Institut fiir Techno- und Wirtschafts-
mathematik), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany (http://www.itwm.fraunhofer.de).

2All computations in this example are performed symbolically on a nonlinear system of DAEs in
the time domain.
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reduction is presented. Then, our concept of sensitivity analysis of the entire system
with respect to its subsystems is explained. This finally results in the development of
the reduction algorithm exploiting the subsystem structure of the entire system. The
chapter concludes with an application of this algorithm to the example of an operational
amplifier typically used in industrial circuit design.

Chapter 5 provides an overview of the implementations that have been made throughout
this thesis. The corresponding algorithms have been implemented in Analog Insydes |Al],
a symbolic analysis tool based on the computer algebra system Mathematica [MMA].
Analog Insydes is capable to carry out complex symbolic analysis and reduction cal-
culations automatically and in correspondence to a user-specified accuracy. It is being
developed by the department System Analysis, Prognosis and Control at the Fraunhofer
ITWM and is the implementation platform for the algorithms developed in this thesis.
We implemented prototypical versions of large parts of the new hierarchical reduction
approach. Furthermore, new data structures and procedures for their manipulation as
well as suitable error functions have been implemented within this thesis. They are suc-
cessfully used for the hierarchical reduction of the operational amplifier in Section 4.7.
Moreover, the corresponding development environment needed for tests and motivating
examples of the new approach had to be newly implemented.

Chapter 6 finally offers a summary of this thesis and provides an outlook to this field of
research.
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CHAPTER 1

Introduction

This chapter provides an introduction to the topics treated in this thesis. We first mo-
tivate the general need for system analysis and later on focus on electrical networks.
Different methods for system analysis are surveyed and some historical background in-
formation is given especially for symbolic analysis. Using complexity considerations of
problems from electrical engineering, the need for model order reduction techniques is
motivated, for both the symbolic and the numerical case. The research area of reduction
methods is then briefly traced in the fourth section and general ideas for symbolic and
the most popular numerical techniques are outlined. Two application examples from
weather prediction and electrical circuit design are given to further motivate the need
for both types of system analysis in combination with reduction techniques. The chapter
finally concludes with a description of the aims of this work.

1.1. System Analysis

In our today’s technological world, physical processes are mainly described by mathema-
tical models, i.e. dynamical systems whose future behavior depends on their past evolu-
tion. The resulting systems of equations in general consist of differential-algebraic equa-
tions (DAE), since the differential equations coming from the dynamical part of the real
system mostly are restricted by certain physical laws contributing additional algebraic
constraints. Equations containing PDE parts usually are semidiscretized w.r.t. space.
System analysis investigates the behavior of a real system by making use of such ma-
thematical models. The input-output behavior of the real system then corresponds to
solving the mathematical system of equations.

Such mathematical models are employed in versatile areas. Their main application,
however, is for simulation and control in order to predict or modify the behavior of a real
system. Especially for electrical networks, simulator tools play a key role in the design
process already for decades. In the 50’s and 60’s of the last century, electrical circuits
were designed by using discrete components for a prototype realization and a subsequent
adjustment (redesign) by taking measurements. A little later, when integrated circuits
(ICs) with increased integration density were introduced, these techniques had reached
their limits.

On the other hand, using a simulator permits an easy verification of the circuit per-
formance without having it realized as hardware. Advantages such as the possibility
for fast modifications and an easy testing of ideas for design are obvious. Particularly
redesigns of an accidentally deficiently designed electrical circuit, accompanied with im-
mense time and financial costs in the industrial production of modern ICs, can be made

1



2 1. INTRODUCTION

on the computer screen and be verified by a subsequent simulation run. Parasitic effects
caused by measurement setups such as inductances due to cables are avoided and ana-
lysis under very different operating conditions is possible. Therefore, simulator tools are
indispensable in modern industrial circuit design.

1.2. Analysis Methods

For the analysis of a system, there are different methods which will be described and
compared to each other in this section. While the most widely used method, numerical
analysis, can be applied to systems of large size, symbolic analysis allows deeper insights
into functional dependences among system parameters.

Numerical Analysis. The most commonly used method for system analysis is nu-
merical analysis. Here, all parameters in the describing system of equations have to be
given by their numerical values. Then the system is solved and the obtained solution
data can be analyzed and displayed graphically.

In the context of analog circuits, starting from a netlist description of the circuit topology,
numerical simulators are able to automatically generate and subsequently solve a system
of describing equations for the circuit’s behavior. For the numerical calculation, all
parameters of the system have to be given by suitable numerical values, i.e. a complete
dimensioning of the circuit’s components has to be provided.

Using numerical methods for circuit analysis, lots of important characteristics such as
amplification factors of amplifiers are computable. Moreover, numerical analysis is ap-
plicable to systems of large size. On the other hand, particularly for its analog parts
which are usually much smaller than the entire circuit, an accurate prediction of the
fully sized system’s behavior is opposed by no qualitative insights into functional de-
pendences among system parameters and their effects on the system’s behavior. This is
due to the output solely consisting of "tables of numbers" which is a severe drawback
especially for early stages in the design process. For investigations aiming at a deeper
understanding of the circuit functionality, one has to carry out further simulations with
different numerical parameter values, but this still does not guarantee any success.

Hand Analysts. If one is interested in an analytical description, e.g. in order to gain
insights into the system’s behavior, a direct analysis of the system equations is necessary.

Usually the access to "internal" equations of a simulator is not given, so up to around
1970, analytic computations had to be carried out by hand. In order to keep the level
of complexity low, simplified models for the system components were used which omit
all but the most relevant effects, whereas numerical analysis usually uses very precise
models taking almost all possible physical effects into account. The validity of the use
of simplified models was mostly proven afterwards, if ever.

By intuition, it is clear that hand computations are very tedious and error-prone and,
particularly in the context of electrical circuits, need a lot of experience and knowledge
in circuit design. Furthermore, there is no possibility for an error check during the
computations.
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Symbolic Analysis. With the development of computer algebra systems, the ap-
proaches of the symbolic hand analysis could be automated. Around 1970, the first
computer programs for symbolic circuit analysis were introduced in order to capture the
circuit’s behavior analytically and in dependence on its parameters. In this context, sym-
bolic means that not only the variables, but also the parameters are given as symbols
in the corresponding system of equations. Solving the symbolic equations then yields
visible dependences of the system’s behavior on its parameters.

Nevertheless, the limits in efficiency and disc space were reached soon, thus preventing
symbolic methods for the use with problems of practical size. Therefore, interest was lost
for several years. Just at the end of the 1980’s, this area of research became revitalized
by the enormous increase of computer performance and the development of symbolic
reduction methods' that allowed an application to circuit problems of larger size. Since
then it was possible to use symbolic analysis for linear circuits even of industrial size.
Due to this, in the 1990’s one tried to transfer these approaches to nonlinear circuits
[Bor97, Hen|.

Particularly for early stages in the design process of analog circuits, symbolic analysis
tools proved to be useful. Especially when the symbolic equations can be solved ex-
plicitly for its output variables, they provide an automatic generation of mathematical
formulas that express performance characteristics in terms of circuit parameters. Unlike
waveforms produced by numerical simulators, symbolic expressions allow to read off in-
fluences of components on circuit characteristics and, hence, to identify those parameters
that have to be altered in order to meet certain design specifications.

In combination with symbolic reduction methods, symbolic analysis is further used to
automatically derive behavioral models, i.e. parameterized systems of equations describing
the approximated circuit behavior, which can be employed for accelerated simulation and
optimization of analog circuits. Therefore, symbolic analysis is an indispensable tool that
simplifies design, dimensioning, and optimization of analog circuits or, more generally,
nonlinear systems.

1.3. Complexity Considerations

In order to get an impression of the high computational complexity, consider the deve-
lopment of ICs or, more precisely, VLSI circuits |Bec, FelParFar, Reis06, Tis| up to
today; while the Intel 4004 released in 1971 incorporated 2300 components with feature
sizes of ~10 um and an operating frequency of 64 kHz, the Intel Pentium 4 released in
2001 already had about 42 million components with dimensions around 180 nm arranged
in seven layers, an interconnecting structure of 2km length, and an operating frequency
around 2 GHz (see |wikipedia|, Figure 3.1, and Table 3.1 in Chapter 3). The passive
parts modelling the interconnecting structure finally yield systems with n ~ 10° to 10°
equations. Consequently, simulations of the full systems cannot be handled anymore.

'Sometimes one can find the term symbolic approzimation methods in literature. It has to be men-
tioned that these approximations are not meant in the sense of Taylor approzimations or interpolation
polynomials etc.
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The situation is worse yet in the symbolic case. Even for small circuits, the limits of
symbolic circuit analysis, beyond which mathematically exact computations are feasible,
are reached quickly. Considering the number of terms in a linear system’s transfer
function as a measure for its computational complexity, an estimate for this number
shows that symbolic circuit analysis even for linear circuits has an asymptotical order
of complexity in between O(a") (exponential) and O(n") (superexponential), where n
denotes the number of nodes in the circuit [Hen, Moo|. This shows that ezact symbolic
circuit analysis becomes infeasible very quickly. Furthermore, lengthy expressions of
more than one line do not allow qualitative insights and exact results turn out to be
useless.

The above considerations motivate the need for complexity reduction techniques. They
are inevitable not only to avoid the enormous costs of very large systems. Following the
maxim that high precision is less important than physical interpretability, particularly
symbolic reduction methods are designed to neglect all insignificant information from
the describing equations. In this context, from now on we will consider system analysis
with complexity reduction as follows:

System analysis with complexity reduction is the description of a
real physical process by using a suitable system of equations together with
its complexity reduction with the aim of analyzing the system’s
behavior and the generation of behavioral models.

The following section introduces model order reduction, reviews some of its application
areas, and provides some background of its history.

1.4. Model Order Reduction

The general task of model order reduction techniques is the derivation of approximate
models from given large-scale systems which have a significantly lower level of com-
plexity, but still capture the dominant input-output behavior of the original system.
The approximate model should satisfy certain user-specified accuracy requirements and
preserve important system properties such as stability and passivity.

Lots of reduction approaches have been developed in various areas of research such as
electrical and mechanical engineering, control design, computational fluid dynamics, or
biological and chemical engineering, see, e.g., |Ant, BenMehSor, ObiAnd, Rew,
SchVorRom| and references therein. The most popular numerical techniques are tay-
lored for linear systems and rely on projections onto lower dimensional subspaces of the
original system’s state space. The corresponding projection bases can be constructed by
methods based on Krylov subspaces or singular value decompositions (SVD) of appro-
priate system matrices.

Although Krylov methods have certain drawbacks, they are well-suited for applications
with large-scale systems and, therefore, are very popular particularly in electrical engi-
neering. In contrast to this, SVD methods provide error bounds and preserve certain
system properties. But since they cause high numerical costs, their applicability is limi-
ted to systems of medium size.
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Symbolic model order reduction techniques aim at approximating symbolic systems by
models with reduced complexity and increased interpretability. They are indeed costly to
compute, but particularly for nonlinear systems of DAEs they additionally allow deeper
insights into functional relations among the system parameters given symbolically |Hen,
Wic04|. Symbolic methods further allow the generation of parameterized behavioral
models for various uses.

The origin of symbolic analysis of nonlinear systems using symbolic reduction methods
is found in applications of analog circuit design. There, it is mainly used in addition
to numerical simulations as a tool for design, analysis, dimensioning, and optimization
of nonlinear systems. Symbolic reduction methods are hybrid numerical and symbolic
algorithms which are able to automatically reduce the complexity of a given symbolic sys-
tem of equations according to a user-specified accuracy. Starting at a netlist-description
level, the analog circuit is mapped on a symbolic system of DAEs by means of graph-
theoretical methods such as the modified nodal analysis (cf. Section 2.1.5). Subsequently,
comparisons to numerical reference simulations are used to detect the dominant terms of
the system. Neglecting the insignificant ones guarantees the preservation of the system'’s
dominant behavior.

At the Fraunhofer ITWM?, both numerical and particularly symbolic model reduction
techniques for complex systems are being developed and applied. Symbolic reduction
techniques are the core of the software package Analog Insydes |AI] developed by the
ITWM which is an add-on for the computer algebra system Mathematica [MMA|. Ana-
log Insydes is the implementation platform for the algorithms developed in this thesis.

1.5. Motivations for Symbolic and Numerical Methods

This section motivates both symbolic and numerical analysis for dynamical systems by
describing two applications in which such systems of high complexity arise. While the
first example concerns weather prediction and data assimilation, the second is taken from
electrical engineering.

North Sea Wave Surge Forecast. For this paragraph, we follow the notes of |Ant,
Section 2.2.1|. The problem has originally been studied in [HeeVerSeg, Ver].

Since parts of The Netherlands are below sea level, the monitoring of wave surges at river
mouths is important. In case of need, water barriers can be closed in order to prevent a
flooding of the landscape. However, for certain reasons a respective warning has to be
given six hours in advance.

To be able to forecast such wave surges, one uses the shallow water equations® as a PDE
model predicting their evolution. In addition to this, the water level and the movement of
sea currents are measured at various locations. The resulting data assimilation problem
affords a prediction of wave surges based on the model and the measurements.

ZFraunhofer Institute for Industrial Mathematics (Fraunhofer Institut fiir Techno- und Wirtschafts-
mathematik), Kaiserslautern, Germany.
3The average depth of the North Sea is not more than 100 m.
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F1GURE 1.1. Folded-cascode operational amplifier.

A space discretization finally yields about 60,000 equations, whose full computational
costs are a multiple of the six-hour limit. Therefore, reduced-order modelling is in-
evitable. While the complexity of numerical computations is polynomial, for the sym-
bolic case it is at least exponential (cf. Section 1.3). Therefore, it is quite clear that
attempts for symbolic analysis in applications of weather prediction — at least in this
case are hopeless.

Analysis of a Folded-Cascode Operational Amplifier. The example in this
paragraph is partly taken from |[HalWic03| and describes a problem from industrial
circuit design that really occured in 2002. In this case, symbolic model order reduction
was used to improve the original design of the circuit.

Consider the folded-cascode operational amplifier depicted in Figure 1.1. The original
design showed an instability in the amplifier’s small-signal behavior. This was visible as
a resonance peak in the amplifier’s frequency response at a frequency of approximately
10 MHz (cf. Figure 1.2, solid curves) which was caused by a pair of complex conjugate
parasitic poles.

As a classic approach, one would have performed parameter variations and numerical
simulations in a trial-and-error fashion to solve the underlying instability problem. But
due to a fairly high number of parameters, this was not feasible here.

An estimation showed that the exact symbolic transfer function contains more than 5-10
terms. However, symbolic analysis and reduction methods allowed the computation of an
approximate transfer function using a relative error bound of 10%. From this, a symbolic
formula for the dominant pole pair shown in Figure 1.3 could be derived.



1.5. MOTIVATIONS FOR SYMBOLIC AND NUMERICAL METHODS 7

80
60

(dB)

TN

40

Bt

20

T

Magnitude

-20

=\

N\,

S

1.

-50
-100
-150
-200
-250
-300
-350

(deg)

Phase

0EO 1.0E2 1.0E4 1.0E6 1.0E8 1.0E10
Frequency

A 1 S 1 A N 1 1

N
N,

=S
.0EO0 1.0E2 1.0E4 1.0E6 1.0E8 1.0E10
Frequency

FIGURE 1.2. Bode diagram of the amplifier’s frequency response, the orig-
inal design (solid) and with an additional capacitor (dashed).

12 (CCO +CL)

gm$MNG \/Cgs$MP15 gm$MN6 (Cgs$MP15 (CCO + CL)2 gm$MN6 - 4 CC0% CL gm$MP15)

2 CCOCL - 2 CCO Cgs$MP15 CL

FIGURE 1.3. Approximated formula for the dominant pole pair of the
amplifier’s transfer function.
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FIGURE 1.4. Stable behavior (dotted) after redesign of the originally un-
stable behavior (solid).

By interpretation of this formula, it was detected that one of the circuit’s components
had dominant influence with respect to the unstable behavior. Increasing the value of
the gate-source capacitance Cgs$MP15 of the transistor MP15 allowed for decreasing the
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imaginary parts of the pole pair. Hence, by adding an additional capacitor between the
gate and source terminals of this transistor, the original value could be modified and the
resonance could be damped (cf. frequency analysis in Figure 1.2, dashed curves). Thus,
a stable behavior was obtained after a redesign of the amplifier (cf. time-domain analysis
in Figure 1.4, dotted curve).

1.6. Aim of this Thesis

In order to enlarge feasibility of analysis and reduction tasks to electrical circuits of
ever-growing complexity, the focus of this thesis is the exploitation of the hierarchical
subsystem structure of highly complex nanoelectronical systems. A segmentation of the
entire circuit according to its structure then yields a set of interacting subcircuits and
a coupling network. This allows an accelerated processing of separated subcircuits of
smaller size in order to finally recombine a significantly reduced approximate model of
the entire circuit.

Additionally, possibilities for the coupling of symbolic and numerical techniques are
aspired. This allows for treating different parts of the circuit with suitable methods
corresponding to their level of complexity. For example, those parts in a system of
PDAESs that correspond to distributed elements such as transmission lines are modelled
using PDEs. A spatial semidiscretization of these parts usually results in very large
systems of DAEs which then can be processed using appropriate numerical approximation
techniques. On the other hand, the parts yielding smaller systems can be treated by using
symbolic methods. This allows for gaining deeper insight into functional relations and
influences on the circuit’s behavior by taking advantage of their parameterization.

So far model order reduction techniques, particularly in the symbolic case, did not in-
corporate the subsystem structure available on circuit level. Using methods such as the
modified nodal analysis to set up describing equations for the circuit’s behavior, the struc-
tural information is lost. We present a new workflow that allows for reducing subcircuits
separately. After a segmentation of the entire circuit into a suitable set of subcircuits,
their terminals are connected to voltage sources supplying voltage potentials obtained
from a previous simulation run. In a second step, describing sets of equations are set
up for the "closed circuits" formed by the separated subcircuits and the voltage sources.
Depending on the complexity and the degree of the aspired insights, various symbolic
and numerical techniques can be applied to these systems of equations. This affords
an innovative coupling of different symbolic and numerical reduction methods for the
derivation of an entirely reduced behavioral model.

We further introduce a new concept of sensitivity analysis of the entire circuit with
respect to its subcircuits. A given subcircuit in the interconnecting structure is sequen-
tially replaced by appropriate models of reduced complexity. Each time the error on the
output of the entire system is observed in order to measure the subcircuit’s influence on
the overall circuit’s performance. For keeping track of this error, a number of error func-
tions accounting for different system characteristics have been implemented. Then, the
subcircuit’s sensitivity is defined as a vector of tuples containing reduction information
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and the resulting errors on the output. The same procedure is repeated for each of the
remaining subcircuits to finally obtain all their sensitivities.

Ordering the entries in the sensitivity vectors increasingly w.r.t. the resulting error on
the output leads to a new ranking of subsystem reductions. In each step of the entire
reduction process, the reduced model that causes the least error according to the ranking
is used to replace the corresponding subcircuit in the overall circuit. If the accumulated
error does not exceed the user-given error bound, the corresponding entry is deleted
from the ranking. Then the procedure is repeated. Thus, the subsystems are reduced
in an optimized order. This guarantees the user-specified accuracy and a high degree of
reduction for the reduced entire system. This new approach yields considerably reduced
entire systems and, hence, clearly facilitates their analysis.

In order to show its applicability to real systems of current industrial size, the above
algorithms are implemented in Mathematica for the use in Analog Insydes [AI]. As an
endurance test, they are successfully and with significant savings in computation time
applied to an operational amplifier typically used in industry. The obtained models
have very low levels of complexity and proved to be very robust w.r.t. different input
excitations. On the other hand, the computational effort of a usual non-hierarchical
reduction of this amplifier is significantly larger than the costs of the new hierarchical
approach. Note that all computations in this example are performed symbolically on the
corresponding nonlinear systems of DAEs in time domain.






CHAPTER 2

Foundations

This chapter deals with foundations from mathematics and physics, graph theory, elec-
trical engineering, and systems and control theory, which are needed throughout this
thesis. Its sections also serve to provide terms and notions necessary for subsequent
sections and chapters.

In order to make this work self-contained, we start with an introduction to network
analysis including connection graphs, incidence matrices, and the Kirchhoff laws that
finally allow the setting up of a system of equations that describes an electrical circuit’s
behavior mathematically. Next, we review the different categories of systems arising
from this, i.e. DAEs and PDAESs, and take a closer look to some application examples
from the field of electrical engineering. After a brief presentation of three widely used
numerical analysis methods, we install some terms and notions for basic system proper-
ties commonly used in systems and control theory. In the last section, the most popular
numerical model order reduction techniques based on projections are surveyed in some
detail. Moreover, also symbolic reduction methods for both the linear and the nonlinear
case in time domain are reviewed.

2.1. Network Analysis

Network analysis in the context of analog circuits in general means the computation of
voltages and currents in an analog circuit either as a number value or as a parameterized
formula in known variables and magnitudes. In this section, we describe how to obtain
a system of equations from a circuit netlist that serves as a model for the mathematical
description of the circuit behavior. These systems of equations will then be the topic of
Section 2.2.

Abstractly, an electrical circuit is considered as a network of subsystems which are cou-
pled by a certain connecting structure. Each circuit component is modelled by a network
subsystem and its behavior is mathematically modelled by a system of equations descri-
bing the component’s physical effects.

The situation is shown schematically for a voltage-divider circuit in Figure 2.1. In (a), all
the used components Vg, Ry, Ry, Ry, have two interfaces, i.e. "ends", with which they can
be interconnected to the remaining circuit components. The corresponding subsystems
on the more abstract "network of subsystems"-level in (b) have the same number of
interfaces to the connecting structure, of course. Hence, all the subsystems in Figure
2.1(b) have two connections to the block marked "connecting network". A bipolar
junction transistor (BJT), for example, usually has three interfaces called base, collector,
and emitter. From now on we will use the term terminal rather than interface to refer to

11
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Vo
Ry connecting
R, network
Ry
Ry
(a) Voltage-divider circuit. (b) Network model.

FiGURE 2.1. Example for an electrical circuit as a network of
subsystems coupled by a connecting structure.

a component’s or a subsystem’s interconnections to the remaining network components
or the connecting network.

In addition to the equations coming from the mathematical modelling of the circuit
components’ physics, the connecting structure yields further equations that are necessary
to completely describe the circuit behavior mathematically. The following subsection
deals with the derivation of such equations from a circuit that is given by its netlist
description.

2.1.1. Connection Graphs and Incidence Matrices. As already mentioned,
we will consider an analog circuit as a network of subsystems which are coupled by a
connecting structure or topology. In particular, circuit components such as resistors,
capacitors, diodes, transistors etc., but also sources and amplifiers are considered as
subsystems of the circuit.

Since the topology of a circuit can be described well by graphs, we start with some basic
definitions from graph theory |ClaHol|.

DEFINITION 2.1. A (finite) graph G = (V, E) is a tuple of two finite sets, the nonempty
set of vertices V and the set of edges E. An unordered pair of vertices (u,v) €
V' x V is assigned to each edge e € E, denoted by e = (u,v).

e A path in G is a finite sequence w = vy, €e1,v1,..., e, U for an appropriate
k € Ny, whose terms are alternately vertices v; and edges e; with e; = (v;_1,v;).
w is also called a path from vg to vy, where vy is the origin of w and vy, its

terminus'.
e A loop in G is a path w = vy, e1,vq, ..., e, v, in G with k > 1, where vy = vy
and where the edges e; as well as the vertices v;, 1 = 1,..., k, are distinct.

e The graph G is connected if for each pair of vertices (u,v) in G there erists a
path from w to v using edges in E.?

INote that vo and v need not be distinct.
2Equivalently, one can say that there is a path through all edges of E that uses all vertices in V and
where some or all of the edges may be used more than once.



2.1. NETWORK ANALYSIS 13

b
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a d
0
(a) Connection graph of the voltage- (b) A tree, tree branches and link
divider circuit. branches, and fundamental loops.

FIGURE 2.2. The voltage-divider circuit graph in (a) with a
choice of a tree (bold) in (b), the corresponding link branches
(dashed), and the corresponding fundamental loops [y, I (dotted).

e G is directed if all pairs (u,v) € V XV assigned to the edges in E are ordered,
i.e. the graph’s edges are directed®. Then, for a (directed) edge e = (u,v), u is
called the origin of e and v is its terminus.

Graphically, the vertices of a graph are represented by dots, while edges are connection
lines between two of these dots. In case of a directed graph, the connection lines are
replaced by arrows. For example, for an edge e = (u,v) the arrow starts in « and ends
in v. Furthermore, from now on we will use the terms nodes and branches instead of
vertices and edges, and we will consider only connected and directed graphs.

Let the connecting structure of a circuit be given by a finite, directed, and connected
graph G = (V, E). Note that this graph contains information only about the circuit
topology, the information about its components is dumped. Let n := |V| and b := |E]
denote the numbers of nodes and branches, respectively. Since G is connected, one then
has at least n — 1 branches in G, which is the minimum number of branches needed to
connect n nodes with each other. Hence, b > n — 1. To all ¢, € E a branch current
i1 and a branch voltage wu; is assigned, where their positive reference direction is given
by the direction of ej. For the circuit in Figure 2.1 (a), a suitable circuit graph for the
description of its connecting structure is shown in Figure 2.2 (a).

For reasons to appear we will divide the set of branches of a graph into two topological

groups, which are tree branches and link branches. Definitions needed for that are given
as follows [SomHen, SomHenEA|:

DEFINITION 2.2. Let the graph G = (V, E) be connected.

e A spanning tree or complete tree or just a tree of G is a subgraph T =
(V, Er) of G consisting of the same set of nodes, where Ep C E, |Ey| = |V|—1,*
is a subset of the branches of G connecting all nodes in V. The branches in Er
are called tree branches.

3Usually the notation is e = {u,v} = {v,u} for edges in undirected graphs and e = (u,v) # (v, u)
for directed graphs.
4 E| > |V| -1, since G is connected.
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e A fundamental loop in a tree T = (V, Er) of G is a loop which is defined by
adding a single branch of E'\ Er to T. The branches contained in E \ Ep are
called link branches. Hence, by definition, fundamental loops and link branches
are in one-to-one correspondence.

e Starting from G and a choice of a tree T the fundamental loop system is the
set of all |E| — |V|+ 1 fundamental loops corresponding to the same number of
link branches.

REMARK 2.3. Note that by the above definitions a tree of a graph is connected and
does not have any loops®. Moreover, in general a graph contains many different trees,
the number of tree branches, however, is always |V | — 1.

For the voltage-divider circuit in Figure 2.1 (a), a choice of a suitable tree and the corres-
ponding tree and link branches are shown in Figure 2.2 (b). The resulting fundamental
loops then are formed by branches {b, c,a} and {d, c}, respectively.

A proof of the following theorem can be found in the appendix, see Section A, Theorem
A.1. Tt will be important later in this paragraph.

THEOREM 2.4. A fundamental loop system of a graph G = (V, E) is linearly indepen-
dent and spans the space of all its loops. U

In fact, the loops of a graph G including the zero loop and the union of all its branch-
disjoint loops form a vector space. In the proof, the loops are identified by their involved
branches. While the addition of "loop vectors" [; and [, in the graph is given by the
symmetric difference of their branches

llAlg = (ll U lg) \ (ll N 12),
the scalar multiplication is defined using scalars from the field Z, = {0,1}. According
to the theorem, the set of fundamental loops of G can be chosen as a basis. In Figure
2.2 (b), for example, the only other loop in the graph is built by branches {b,d, a} and
simply given by the "sum" [;Al;.
The structure of a graph can also be described easily using matrices and linear alge-

bra. For that purpose in what follows recall that we assume the graph G to be finite,
connected, and directed.

DEFINITION 2.5. Let G = (V, E) be a graph withV = {vy,...,v,} and E = {ey, ..., ep}.
The augmented nodal incidence matriz of G is the n x b-matriz A, = (a;;), where
17 €; = (Ui7y)7
;5 = 07 €; = (fL’,y),
-1, e = (z,v;)

for some x,y € V\ {v;}.

Thus, each row of A, corresponds to a node of G and each column to a branch. Further,
each column of A, contains exactly one entry 1 and one entry —1, since each branch of

In directed graphs, loops are defined as in Definition 2.1, but without regarding the directions of
the involved branches.
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G has exactly one origin and one terminus. The rank of A, is n — 1, a proof of this is
given in the appendix, see Theorem A.2 in Section A. This means that one can omit a
(suitable) row of A, without losing information, since this row is a linear combination
of the remaining ones. One mostly leaves out the row which corresponds to the ground
node in the circuit for which the graph was originally set up. We call the resulting matrix
reduced nodal incidence matriz and simply denote it by A:

DEFINITION 2.6. Let G = (V, E) be a graph with nodes V- = {vy,...,v,} and edges
E = {ey,...,ey}. The reduced nodal incidence matriz of G is the (n — 1) x b-
matriz A obtained from the augmented nodal incidence matriz A, by omitting the row
that corresponds to the ground node of the corresponding circuit.

A similar representation is also possible for the loops of a graph, as the following definition
shows.

DEFINITION 2.7. Let G = (V,E) be a graph with E = {ey,...,ep} and m loops
Li,...,ln. The loop tncidence matriz of G is the m x b-matriz B = (b;;), where

1, e; positively incident with [;,
bij = 0, e; not incident with l;,
—1, e; negatively incident with [;.

In this definition, a branch e; is called positively (negatively) incident with the loop
li if it is directed in the same (opposite) direction as l;. Otherwise l; and e; are not
incident.

For example, in Figure 2.2 (b) the loop [; is positively incident with branches b and c,
negatively incident with branch a, and not incident with branch d.

According to Theorem 2.4, a basis of the loop space of G is given by its b — n + 1
fundamental loops. Hence, the number of independent rows in B is b — n + 1. From
now on we will consider only reduced loop incidence matrices that are built by b —n + 1
independent loops (the fundamental loops, for the sake of simplicity) and denote them
by B as well.

DEFINITION 2.8. Let G = (V, E) be a graph with E = {ey,...,ep} and |V| =n. Let
T be a tree of G and further ly, ... l,_,1 be the fundamental loops of G corresponding
to T. The reduced loop incidence matrix of G w.r.t. T is the (b —n+ 1) X b-matriz
B = (b;;), where
, € positively incident with l;,
bij = 0, e; not incident with l;,

—1, e; negatively incident with [;.

The next section explains how the incidence matrices of a circuit graph are used to obtain
a system of equations describing the circuit’s connecting structure.

2.1.2. The Kirchhoff Laws. The 2b branch currents and voltages in a circuit
cannot be chosen freely, since they must respect the constraints given by the circuit’s
connecting structure. These constraints are known as the Kirchhoff laws. According to
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the Kirchhoff current law (KCL), the sum of all branch currents i in a node v is zero,
whereas the Kirchhoff voltage law (KVL) states that the sum of all branch voltages wuy
in a loop [ is zero. Using Definitions 2.6 and 2.8 from above, these propositions can be
reformulated in terms of the reduced incidence matrices A and B:°

(2.1a) KCL:  A-i=0,
(2.1b) KVL: B-u=0.
Here, i is the vector i = (iy,...,14) of the b branch currents and u is the vector of the b
branch voltages u = (uq, ..., up). Thus, one obtains a system of equations of size (bx 2b):

& oosl L=l

Its solutions satisfy the Kirchhoff laws, i.e. the topological constraints of the connecting
structure, and as the kernel of the left-hand matrix which has full rank b6 form a
b-dimensional subspace of the space of all branch currents and voltages, the so-called
Kirchhoff space.

For the determination of the Kirchhoff space it is helpful to compute a basis of that space.
One property of the (reduced) incidence matrices A and B allows a direct indication of
an appropriate one:

THEOREM AND DEFINITION 2.9. The (reduced) nodal incidence matriz A and the
transpose BT of the (reduced) loop incidence matriz form an exact pair of matrices,
where two real matrices M; € R™* and My, € R¥*™ are called exact if

M, My =0 and rank(M;) + rank(Msy) = k.
]

A proof sketch of the theorem can be found in the appendix in Section A. Note that the
exactness of B and AT follows easily, since BAT = (ABT)”. Thus, one has

A0 BT 0
(2.3 {OBHO AT}—O
and the columns of the right-hand matrix form a basis of the Kirchhoff space. Hence,

the solutions (7, u) of the Kirchhoff laws in (2.1) are linear combinations of the columns
of the matrices BT and A7, respectively:

(2.4) i=BTj and u= Alv.

Note that j and v are unique. The coordinates of the vectors j and v are the coefficients
of these linear combinations. For dimensioning reasons the components of j have to be
currents, while the components of v are voltages. Since j is premultiplied by B and
the columns of this matrix correspond to (fundamental) loops in the circuit graph, the
components jj of j are called loop currents. Similarly, since the columns of AT correspond
to nodes of the circuit graph, the components v, of v are called node voltages or rather
node potentials. Thus, an independent loop current is assigned to each loop in the circuit

6Recall that the rows in A correspond to the nodes in the circuit graph, while the rows in B
correspond to its (fundamental) loops.
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FIGURE 2.3. Branch magnitudes of various circuit components.

graph. Then a branch current, as indicated by (2.4), can be computed by superposing
all "its" loop currents, i.e. all the currents of those loops that it is part of. Similarly, a
branch voltage simply is the difference between the two node potentials of its origin and
terminus.

2.1.3. Current-Voltage Relations of Circuit Components. The so far pre-
sented equations only model the connecting structure of the analog circuit. The relations
between the branch currents and voltages of its components have not yet been treated.
They lead to further restrictions of the Kirchhoff space of solutions to the circuit’s topo-
logical constraints.

For example, for a simple resistor R with two terminals marked 1 and 2 one has
(2-5) fR(i127 U12) =up — R-i12 =0,

where 115 and 715 denote the branch voltage above and the branch current through the
resistor directed from terminal 1 to terminal 2 (cf. Figure 2.3 (a)). Similarly, for a linear
inductor L, an independent voltage source V', and a nonlinear diode D (with terminals
A and C, anode and cathode) one has

(26&) 0= fL(i/u, Ulg) = U112 — L- i/12,
(2.6b) 0= fy(iiz,u12) = 0-d12 4+ 1-ups — U,

(2.6¢) 0 = fpliactiac) = iac — I~ (¥ "¢ = 1),
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Within these equations, i}, denotes the derivative of i;5 with respect to time. Thus,
(2.6a) already gives a hint that we will also have to deal with differential equations for
the mathematical modelling of analog circuits.

A circuit component is called linear if it acts as a linear operator that maps branch
currents and voltages to other branch currents and voltages. Usually, resistors, inductors,
and capacitors are examples for linear circuit components. The corresponding linear
operators are given by R-, L - %, and C' - %,
branch current to its own branch voltage (R, L) or vice versa (C). Other examples for

respectively, and map the component’s

linear components are controlled sources which generate branch currents or voltages that
are steered by other branch currents or voltages. Independent sources such as V' in Figure
2.3 (c) that are given by inhomogeneous linear equations in the involved branch currents
and voltages are also linear components.

Diodes and transistors, for example, are nonlinear components, since the relation be-
tween their involved branch currents and voltages cannot be described by linear operators
or (inhomogeneous) linear equations. Equation (2.6¢) for the diode with terminals A (an-
ode) and C (cathode) is the so-called Shockley equation [Sho|, which models the diode’s
behavior in lower frequencies. While I, = —lim,, . oo iac(uac) = 107775 A is a
(local) instance-dependent parameter’ called the reverse leakage current or saturation
current, the thermal voltage Vi is a global parameter with Vi ~ 0.026 V at room tem-
perature. There is a variety of models available for the diode’s behavior with different
levels of complexity and taking into account different kinds of physical effects of the real
(physical) diode.

The bipolar junction transistor (BJT) @ with three terminals B (base), C' (collector),
and E (emitter), in Figure 2.3 (e) in npn-configuration, is a more complicated nonlinear
circuit component. As for the diode, there is a variety of distinct behavioral models
for a BJT with different levels of complexity. A very basic one is given by the Ebers-
Moll equations |GraMey, VlaSin|, it is valid only for low frequencies, since it neglects
certain physical effects of the semiconductor material in a real BJT. Using the branch
magnitudes from Figure 2.3 (f)8, it is given by

an o= (M) LR )
i+ L, (677 "0 = 1) = LA (e e )

for a BJT in npn-configuration. An appropriate model for a pnp-configuration is obtained
by changing appropriate signs in equation (2.7). The parameters 8, and §; denote the
backward and forward amplification, respectively. [, again is the reverse leakage current
and V7 the thermal voltage. Normally, 3, takes values between 0.5 and 20, typical values
for 8; are in a range from 50 to 500. The magnitude of I, is approximately 107'* A,
while V7 at a temperature 7" = 300.15 K is approximately 26 mV.

"Note that this limit consideration is idealized. In a real physical device, there is a reverse breakdown
if the applied voltage in reverse direction, the so-called reverse bias, is too large, i.e. beyond the peak
inverse voltage (PIV). This causes a large increase of the current in reverse direction and usually the
semiconductor device is damaged permanently.

8Note that these are sufficient to compute the remaining branch magnitudes using the Kirchhoff
laws. For instance, one has ucp = upg — upc-
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If, in addition, higher frequencies are to be taken into account, more precise models such
as the Gummel-Poon equations |GraMey| have to be used.

Finally, the current-voltage relations of all the circuit’s components are collected and
incorporated in its mathematical model. Those branch voltages and currents which satis-
fy the set of current-voltage relations span an affine space, the so-called Ohm space. The
state space obtained by intersecting the Kirchhoff and Ohm spaces consists of all those
branch voltages and currents that satisfy all the constraints on the circuit simultaneously.
For linear, resistive, non-dynamical networks or non-degenerate ones, the state space
dimension is 0.

2.1.4. Sparse Tableau Analysis. [HacBraGus| The most obvious way to derive
describing equations for an analog circuit is collecting all the equations coming from
the current-voltage relations of the circuit’s components and those due to the Kirchhoff
laws, i.e. the circuit’s topological constraints. The resulting equations are called sparse
tableau equations, they are not minimal w.r.t. their number and the number of variables,
but can be automatically set up. Moreover, the sparse tableau equations are suitable for
both numerical and symbolic analysis of the given network.

If one deals with a linear, time-invariant (LTI) network (see Definition 2.15), the current-
voltage relations of the b branches may be written in a form using matrices P, Q € R"*®,

(2.8) P-i+Q u=s,

where s € R is a vector of independent source voltages and currents. In that case, the
state space can be computed by solving the 2b x 2b-system

A0 , 0
(2.9) 0 B -[Z]: 0
P Q b s

This motivates the name sparse tableau analysis (STA) for this method, since (2.9) is a
sparse tableau or sparse matrix” equation.

In general, however, one does not have only linear components in an electrical circuit.
Further, the system parameters’ independence of time usually is not given due to certain
physical effects. So the current-voltage relations of a circuit usually are a collection of
nonlinear vector-valued functions

(2.10) [ u e, 2 1) =0

involving derivatives of branch currents and voltages that describe these relations for the
single circuit components'’. Examples of linear components such as resistors, inductors,
and voltage sources, but also for a nonlinear diode and a BJT of lower complexity have
yet been considered in the previous subsections, see equations (2.5) (2.7) and Figure
2.3. The variables x in equation (2.10) are internal or auxiliary variables which do not

9A sparse matrix is a matrix with only few of its entries being non-zero. A common definition is:
an n X n matrix is sparse if the number of its non-zero entries is O(n).

ONote that a first order representation like the above one is always possible, e.g. by introducing
additional variables.
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correspond to branch magnitudes of the circuit, but sometimes are necessary or useful
to model the behavior of certain components.

As already mentioned, the most obvious method for generating a system of equations
that models the behavior of the circuit is the usage of all branch currents and voltages
as variables of the system. The corresponding equations are set up using the Kirchhoff
laws KCL and KVL and the current-voltage relations

fe, (i u, oz, 2 t)
(2.11) f i u e 2 t) = :

feo (4,7, u, v/, x, al t)
of the k circuit components ¢y, ..., cg. Thus, one obtains a system of 2b+ m equations in
2b 4+ m variables, the sparse tableau equations, where m is the number of all internal
variables used in the k circuit components:

A = 0,
(2.12) B-u 0,

fl, i u o e 2’ t) = 0.

Obvious advantages of this method for setting up the equations are its simplicity and
the fact that there are no limitations on the circuit components; it is applicable to any
circuit independent of its elements. However, the system of equations obtained by this
method usually is very large even for smaller circuits, since at least all the 2b branch
magnitudes are used as variables in the system, thus yielding > 2b equations. Although
these are sparse systems, they are costly to solve because of their size. The following
section provides an alternative that uses the n node potentials of the circuit and only a
few of its branch currents as variables. Consequently, one has to cope with much smaller
systems.

2.1.5. Modified Nodal Analysis. |HoRueBre| The most serious disadvantage
of the sparse tableau formulation is its large size. In order to circumvent this problem
and to obtain more compact systems, the modified nodal analysis (MNA) uses only the
node potentials introduced in equation (2.4) together with certain branch currents as
variables of the system. This guarantees that all branch magnitudes of the system
can be computed from this set of variables. Since the MNA is easy to implement and
applicable to any analog circuit without restrictions of the used components, this method
is most widely used in simulation tools for analog circuits.

As the name already implies, the MNA is a modification of the standard nodal analysis
(cf., e.g., [SomHen, SomHenEA|). The modification rests on the removal of the
restrictions on the circuit components in the latter analysis method, where components
that do not have an admittance formulation are not permitted.

DEFINITION 2.10. If for a circuit component c the current-voltage relation
feli,d' u e 2’ 1) =0
can be expressed as

(2.13) ic = ge(u,u', 2,2/, 1),
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where 1. are the branch currents of c, the latter formulation is called the admaittance
formulation of c.

Thus, for circuit components offering an admittance formulation, the branch currents
can be computed from the branch voltages. Since the branch voltages themselves are
computable from the node potentials by (2.4), it is intuitively clear that there is a more
compact describing set of equations available.

Unfortunately, not all circuit components have an admittance formulation. For example,
the current-voltage relations of an inductance L or an independent voltage source V
are described by fr(i,7,u, v, x,2',t) = up(t) — L -4 (t) and fy (3,7, u, v, x,2',t) =
uy (t) — Up(t), respectively, and do not have an admittance formulation. Hence, by
restricting to circuit components that have an admittance formulation, the entire circuit
can be described mathematically by equations that use only the node potentials as
variables. The corresponding method is called (standard) nodal analysis, see Section
2.1.6.

For a general analog circuit, however, the set of circuit components is divided into two
parts. While the components in the first part do have an admittance formulation, those
in the second part do not. According to this partitioning, the vector of branch currents
i is also divided, w.l.o.g. i = (i,142), such that the circuit’s current-voltage relations are
given by (cf. [Wic04|)

. 1+ g(ig, ih, u, ',z 2 t)
214 / I ,t _ 1 y by Wy by Ly Ly =0.
21 T Bt et ( Bl iy u, o', 3,2/, 1)

Let further the nodal incidence matrix A be divided according to ¢ = (i1, 42). Then due
to the Kirchhoff current law (2.1a) one has

(2.15) 0=A-i=A i1+ Ay -is.

From this, one obtains the modified nodal equations by premultiplying the first block
in (2.14) with A; to eliminate 7; and by using (2.4) to replace the branch voltages u by
the node potentials v:

Ag iy = Ay glia, iy, ATv, ATV z, 2 t)

2.16
( ) 0 = hiy, i, ATv, ATV x, 2/ t).

Let m; be the number of auxiliary variables x and msy be the number of entries in is,
i.e. iy € R™2. Thus, system (2.16) consists of n—1+m;+ms equations in n—14+mq +mo
variables, namely, n — 1 node potentials v, my branch currents 75, and m; auxiliary
variables z. Note that these equations implicitly contain both the Kirchhoff current and
voltage laws.

REMARK 2.11. Converting part of the current-voltage relations into admittance formu-
lation may lead to very complex expressions in g occuring multiple times in the system
of equations because of the multiplication by A;.

Nevertheless, this method has no principal limitations on the circuit’s components and
leads to compact, but usually dense systems of equations. As a further advantage, no
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loop incidence matrix has to be computed. For these reasons, the modified nodal analysis
is used most often to set up the describing system of equations of a circuit.

2.1.6. Further Analysis Methods. There are several other methods to set up
appropriate systems of equations as mathematical models for the circuit’s behavior of
whom we would like to mention the (standard) nodal analysis (NA) and the (standard)
loop analysis (LA ). But since — in contrast to the above presented approaches STA and
MNA  there are certain restrictions on the circuit components, they are used rarely
and, therefore, described rather briefly here.

The nodal analysis, from which the modified nodal analysis is derived, aims at obtaining
a more compact set of equations by using the n — 1 node potentials instead of the 2b
branch voltages and currents. Further, the Kirchhoff laws are used implicitly instead of
adding them explicitly to the current-voltage relations.

As an example, consider a linear time-invariant (LTI) system (cf. Definition 2.15) with
current-voltage relations given by

(2.17) Pit+Q u=s,

where P,Q € R and s € R” is a vector of independent source voltages and currents.
If each of the circuit’s components has an admittance formulation, then P is invertible,
hence

(2.18) L-i+P'Q-u=P"' s

For dimension reasons, P~'() contains only conductances, while P~! - s only consists
of currents. Premultiplication by the nodal incidence matrix A to eliminate the branch
currents ¢ and substitution of the b branch voltages u by the node potentials v using
(2.4) yields

(2.19) APT'QAT v = AP s

Thus, one has n— 1 equations in n— 1 variables v = (vy, ..., v,_1)7 which implicitly con-
tain the two Kirchhoff laws. The described approach is the (standard) nodal analysis
(NA), and the matrix AP7'QAT € R™" on the left is often referred to as the nodal
admittance matriz of the system. It looks complicated, but can easily be set up using
fill-in patterns for respective circuit components.

Analogous to the above approach, one can also use the b —n + 1 loop currents instead
of the 2b branch magnitudes as independent variables in the equations. As an example,
consider again an LTI system with current-voltage relations given by (2.17). This time,
suppose that @ is invertible, i.e. the current-voltage relations of all circuit components
can be solved for the respective branch voltages u. This yields

(2.20) Q'P i+l u=Q " s,

where Q! P solely contains resistances and Q! - s only contains voltages. Premultipli-
cation by the loop incidence matrix B to eliminate u and using (2.4) to substitute the b
branch currents ¢ by the b —n + 1 loop currents j leads to

(2.21) BQ'PB".j=BQ " s.
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This system consists of b—n+1 equations in b—n+ 1 variables j = (ji,...,jy_ns1)? and
implicitly contains the two Kirchhoff laws. The described method for its derivation is
called the (standard) loop analysis (LA ). The loop impedance matriz BQ *PBT €
Rb—nH1xb=n+1 can also be set up using fill-in patterns for the corresponding circuit com-
ponents, but these patterns are more complicated than those for the nodal analysis and
usually lead to rather dense coefficient matrices. Hence, this method is used only rarely
for computer-aided circuit analysis.

2.2. Systems of Equations

The dynamical behavior of real physical systems such as electrical circuits considered in
this thesis usually is modeled by the use of differential equations. If these equations can
be written in the form

(2.22) &= f(z,1),

the rich and well known theory of ordinary differential equations (ODE) is available with
a variety of good numerical solvability concepts.

However, physical systems such as electrical circuits usually are subject to certain con-
straints, thus yielding mathematical equations that are not of the ODE type. This
section provides the necessary theory about systems of equations that arise in elec-
trical network analysis, namely, systems of differential-algebraic equations (DAE) and
systems of partial differential-algebraic equations (PDAE). For DAEs, we mainly follow
|KunMeh| and [Wic04]|. Since the research area of PDAEs is quite young and we could
not find any textbook concerning this topic, we collected some papers [AliBarGueTis,
BodTis, Gue00, Gue01l, LamMarTis, MarBar, Reis05, Reis06| on which the
theory of PDAESs provided here is based. For further information, we refer to these and
the references therein.

The most widely used numerical technique for the numerical solving of systems of PDEs
is the finite element method (FEM), further the finite difference method (FDM), and the
finite volume method (FVM). All these methods basically rely on a semidiscretization
w.r.t. space yielding systems of DAEs that depend on time only. Therefore, in the
subsequent sections and chapters we are focussing on DAEs rather than PDEs or PDAEs.

The section concludes with some examples for systems of DAEs and PDAEs generated
from analog circuits. In the latter case, mainly the PDE part of two circuit devices, a
transmission line and a diode, is discussed, while in the first case describing equations
for the voltage divider from Figure 2.1 (a) and a slightly varied version are set up.

2.2.1. Systems of DAEs. As already mentioned, real physical systems usually are
in some way constrained by, e.g., conservation laws such as the Kirchhoff laws in electrical
networks, thus restricting their solution to a certain subdomain. Therefore, the descri-
bing mathematical systems also contain algebraic equations to model these — explicit
and also implicit — limitations (see also Example 2.18 at the end of this subsection). The
corresponding equations are systems of differential-algebraic equations, they are special
types of (implicit) differential equations and sometimes also called algebro-differential or
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singular systems [KunMeh]. The most general form of a system of DAEs is given by
the following definition.

DEFINITION 2.12. Let F : D, x D; x T — C™ be differentiable with T C R a time
interval and D,,D; C C" open. If the Jacobian DiF' is singular on D, x D; x T, the
system of implicit differential equations

(2.23) F(z,i,t) =0
is called a system of differential-algebraic equations (DAE).

In this definition, one usually has 7 = R>o,R. It further motivates the term singular
system, since for a system of ODEs F' the Jacobian D, F is (locally) reqular. According
to this definition, a system F of purely algebraic equations also is a system of DAEs,
since then D;F = 0. Due to the singularity of the Jacobian for a system of DAEs,
certain effects are present that are not known for ODEs (cf. Example 2.18 and Section
2.2.2).

Note that the meaning of & is ambiguous in (2.23), since on the one hand it denotes
an independent variable in F', and on the other hand it denotes the time derivative of
x considered as a function x : 7 — C". The reason for that is our ambition to find a

differentiable function x : 7 — C" that solves F'(x(t),Z(t),t) =0 for all t € T.

DEFINITION 2.13. Let F': D, x D; x T — C™ be a system of DAFEs in the sense of
Definition 2.12. Let further x : T — C" be differentiable with (x(t), (t)) € D, x D; for
dlteT. If

F(x(t),z(t),t) =0 forall t €T,

then x is called a solution of F.

Note that due to the algebraic constraints not all of the components of x have to be
differentiable.

Similar to systems of ODEs, one also considers initial value problems for DAEs. But
in contrast to the ODE case, the initial value zy cannot be chosen freely because of the
algebraic constraints. Hence, the term consistent initial value has been formed.

DEFINITION 2.14. Let F be a system of DAFEs in the sense of Definition 2.12 and

x: T — C" be a solution of F. Let further ty € T, and xq € R™. If
. _ -

(2.24) F(x(t),@(t),t)=0  for tg <t €T,

(o) = o,

then x is called a solution of the initial value problem (2.24) and xy is called initial
value of the initial value problem. More precisely, it is called consistent initial value
if xo € C™ is chosen such that the initial value problem (2.24) has a solution.

Note that often for analog circuits not the value of x is prescribed at ¢ = ¢y in an initial
value problem, but rather the value of .

Definition 2.12 holds for general rectangular systems with arbitrary n,m. In case of
electrical circuits, one actually deals with quadratic systems (n = m), where the numbers
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of variables and equations coincide. This is due to the methods from Section 2.1 for
setting up the equations which yield only this kind of systems. Hence, from now on we
mostly consider quadratic systems.

The by far best studied and at the same time most basic substructure of systems of
DAEs are linear ones and, in particular, the linear time-invariant (LTI) cases:

DEFINITION 2.15. Let F be a system of DAFEs in the sense of Definition 2.12. If there
exist continuous f T — C" and E,; A : T — C™" such that F' can be written in the
form

(2.25) E(t)t = A(t)x + f(t) forteT,

then it is called a linear time-variant (LTV) system of DAFEs. If E, A are constant
on T, it is called a linear time-invariant (LTI) system of DAFEs.

LTT systems are the simplest kind of DAEs. Nevertheless, many of the special features
of the general nonlinear case are observable by considering linear time-variant systems
of DAEs [BreCamPet, Wic04|.

Linear DAEs arise, for example, in so-called RCL circuits that consist solely of resistors,
capacitors, or inductors. Especially LTI systems, which may be treated using purely
algebraic methods, are well studied and understood for more than one century. Their
basic theory has been established by the fundamental works of Weierstrafs [Wei58,
Wei67| and Kronecker [Kro| on matrix pencils. However, it took until the pioneering
work of Gear [Gea] to show the great importance of the theory of DAEs for modelling
dynamical systems. Before that, implicit systems as in Definition 2.12 usually were
transformed into ordinary differential equations (2.22) either by differentiation of the
algebraic constraints or by solving these constraints analytically in order to eliminate
variables in the dynamical part of the system. But since these approaches are limited to
systems of small size or subject to problems such as numerical solutions drifting away
from the constraint manifold after only a few iteration steps, it is in general preferable
to (develop methods that) directly operate on the given system of DAEs.

Further systems with a special structure are the semi-explicit ones whose variables can

be divided into a static and an explicit dynamical part:

DEFINITION 2.16. Let T C R be a time interval and for D, € C™ and D,,, D; C C™
open, n = mny + ng, let F: D, x Dy x Dy x T — C" be a (quadratic) system of DAEs
such that it can be divided into a differentiable Fy : Dy x Dy x Dy x T — C" and a
continuous Fy : Dy x Dy x T — C™ satisfying

(2.26) Fla,y,i,t) = ( 285% ) ) 0.

If DyFy is regular, then F is called a sema-explicit system.

Thus, semi-explicit systems can be transformed into the form

y - Fvl(x7y7t>
0= Fy(z,y,t).
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Such systems are of some significance particularly for theoretical investigations because
it is already known which of the variables occur with explicit derivatives.

For the purpose of circuit analysis, the so-called quasi-linear systems are of maybe the
highest importance, as this kind of systems usually is obtained from the circuit netlist
by applying the methods from Section 2.1.

DEFINITION 2.17. Let T C R be a time interval, D,,D; C C", and f : D, x T — C"
continuous. Furthermore, let A: D, x T — C"*" be continuous and A(x,t) singular on
D, x T. The system of DAEs F defined by

(2.27) F(z,i,t) = Az, )i + f(z,t) =0  for t €T

18 called a quasi-linear system.

Specially structured systems that will be used in later sections of this thesis are control
problems of the form
Ei(t) = F(x(t), u(t)),

y(t) = G(x(t), u(?)),
where F' and G are vector-valued maps of appropriate dimensions. These systems are
also often referred to by the term state space systems. While the variables u are
considered as #nputs to the system, the variables y and z are its outputs and states,
respectively. The linear case with constant coefficients, often referred to by the term
(linear) descriptor system or linear state space system, is well understood and
can be written in the form

(2.28)

Ei(t) = Ax(t) + Bu(t) + f(t),
y(t) = Cx(t) + Du(t) + g(t)

with £,A € R B € R C € RP*" D e RP*™ f T — R" continuous, and
g : T — RP continuous, where x : 7 — R" represents the states, u : 7 — R™ the
inputs or control, and y : T — RP the outputs of the system. It describes a so-called
multi-input/multi-output (MIMO) system with m inputs and p outputs. If the
system matrices A, B,C, D are constant, i.e. independent of ¢, such systems are also
called linear time-invariant (LTI) state space systems (see also Definition 2.15).

(2.29)

We conclude this subsection with an example that shows that DAEs feature certain
phenomena which do not occur with pure differential or algebraic equations.

EXAMPLE 2.18. |Wic04]
Consider the system of DAEs given by

(2.30a) 0=a1+ 21,
(2.30b) 0= 2229 — 3,
(2.30c) 0=a]+;—1,

where z1,23 € R and x5 > 0 on a time interval 7 C R. While a system of ODEs
& = f(x,t) with € R" can be considered as a vector field V' living on a manifold M
(usually R™) and being tangential to it in any of its points, this situation is more compli-
cated for general systems of DAEs F'(x,d,t) = 0: M is restricted to some subdomain by
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the algebraic constraints, and since not all of the derivatives z; are explicitly given, one
has to cope with a family of vector fields. A solution of the system, however, certainly
lies in the restricted submanifold and, moreover, is an integral curve for a single vector
field in the family.

In (2.30), M obviously is restricted by (2.30c) yielding a new manifold M;, while V'
is described by the family V,(x1, 29, 23) = (—x1,23/x2, a) with an arbitrary parameter
a. Due to V, having to be tangential to M, i.e. grad(M;)LV,, independently of the
parameter a one obtains

(2.31) 0= —a] + 3.

Thus, system (2.30) contains additional hidden implicit constraints further restricting
M, which is now narrowed down to M, given by equations (2.30c), (2.31).

But also V,, becomes limited, since those family members that are not tangential to the
new manifold My can be deleted. So grad(z? — x3) LV, further yields

(2.32) 0=—273 —a

which restricts the family of vector fields V, to a single one given by
V(z1, T, 23) = (—21, 23/ 79, —277).

Finally, a parameterization yields a consistent initial value

11(tg) = Ve, wa(te) =V1—c, w3(ty) =c

for a parameter 0 < ¢ < 1. O

In the above example, the challenges arising with systems of DAEs are observable. While
on the one hand a general system of DAEs underlies hidden constraints which are not
explicitly given, on the other hand the subsequent generation of new algebraic or diffe-
rential equations may lead to derivatives of input magnitudes, thus making particularly
the numerical solving of such systems a badly conditioned problem.

For this reason, the inder of a system of DAEs was introduced. Although there is
a variety of different index concepts available, they have a main purpose in common,
namely, the classification of difficulties that one has to deal with while working with a
given system of DAEs.

2.2.2. Index Concepts. The introduction of an index is motivated by the classifi-
cation of the difficulties that one has to cope with while solving a system of differential-
algebraic equations. In general, the numerical solving of systems with an index higher
than 1 is an ill-posed problem.

A multitude of different index concepts have been invented for general systems of DAEs.
Generally speaking, an index of a system of DAEs measures the integer-valued distance
to a system of ODEs. Currently the so-called differentiation and perturbation indices are
the most widely used concepts in literature. The differentiation index is the minimum
number of differentiations with respect to ¢ that have to be performed on

F(z,i,t) =0
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in order to solve for & as a continuous function in ¢t and x. The motivation for this is
historically based on the approach for solving implicit systems by using transformations
to systems of ODEs, for which the theory is well established.

Since the theory of purely algebraic equations also is well investigated, the strangeness
inder measures the "distance" of a system of DAEs to a decoupled system of ODEs
and purely algebraic equations. Thus, the index of a system of ODEs as well as the
one of a system of purely algebraic equations are equal which is clearly not the case for
the differentiation index. Analog Insydes uses the concepts of the strangeness and the
tractability index to monitor the index of a symbolic system of DAEs during its reduction
process.

However, at this point we abstain from describing further index concepts. Instead,
we refer to |[GueFel, HalWic03, KunMeh, Wic04| and references given therein,
where detailed information and overviews can be found. There further exist some index
concepts for systems of partial differential-algebraic equations (PDAE), see [CamMar,
MarBar| for instance.

2.2.3. Systems of PDAESs. Similar to the concept of differential-algebraic equa-
tions, systems of partial differential equations (PDE) that are constrained by certain
conditions contain additional algebraic equations to model these restrictions. The sys-
tems arising from that are called partial differential-algebraic equations or PDAFEs.

In the context of electrical networks, systems of PDAEs came up in a natural way. Du-
ring the last years, the design of integrated circuits (IC) and particularly the modelling
of nonlinear semiconductor elements became more and more cumbersome. Increasing
integration densities combined with decreasing spatial scales have led to nanoelectronic
structures, i.e. feature sizes of less than 100nm. Physical effects such as thermal in-
teraction among the circuit components, electromagnetic radiation, substrate noise, or
crosstalk cannot be neglected anymore. Ideas to incorporate these effects by using a
higher number of modelling parameters showed that this number seems to increase ex-
ponentially. A more promising approach for taking them into account is the use of model
descriptions based on PDEs, particularly for the precise modelling of semiconductor com-
ponents. This obviously leads to systems combining DAE and PDE parts, a special form
of PDAEs as will be shown in this subsection (cf. Proposition 2.21).

Since partial differential-algebraic equations are a special type of implicit partial diffe-
rential equations, we firstly provide some theory about PDEs. A very general definition
of a PDE is as follows [Jos|:

A partial differential equation is an equation for an unknown function
2: Q0 =R, Q CR? open, d > 2, which contains partial derivatives of z.
Further, each occurrence of z and its partial derivatives is evaluated at the
same point x € €.

In general, €2 is an open subset of a differentiable manifold of dimension d > 2. A more
precise definition is as follows:
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DEFINITION 2.19. A system of tmplicit partial differential equations or implicit
PDE is defined by

(2.33) F(w, 2(w), Dz(w), D*2(w), ..., D*2(w),...) =0,

where for Q C R? open, d > 2, w € Q are independent variables, z: Q — RN are
sufficiently differentiable unknown functions, D*z are the partial derivatives of z of degree
k, and F is an arbitrary function mapping to R™.

An example for a physical process where time derivatives are not sufficient for an ade-
quate modelling is the propagation of a wave that is caused by a drop of water falling on
a water surface. While the time derivative corresponds to the speed of the wave propa-
gation, the spatial derivatives describe the wave’s shape. The corresponding equation is
known as the wave equation. Another example of such a process is the propagation of
heat yielding the heat equation. These and further examples can be found in [Jos].

Definition 2.19 is very general, but this does not mean that arbitrary systems are treated
in the theory of PDEs. One rather studies those kinds of equations that occur in various
applications in physics, technique, or other natural sciences. For various criteria that
allow a classification of the corresponding PDEs we again refer to [Jos].

In the context of electrical networks, one deals with PDEs that involve independent
variables (z,t), where t denotes the time variable and x is a spatial variable for the
position in R, R?, or R3. For simplicity, in the following we denote the partial derivative
with respect to time by

_ 0z
Zi=z = —.
ot
The spatial derivatives are denoted by z,,, in case x is one-dimensional we write
, 0z
2=z, = —.
Ox

As each system of PDEs may be transformed into first order formulation |Jef, MarBar|,
we from now on restrict ourselves to PDEs of the form

(2.34) F(z,2, 2405+, 20y, T, 1) = 0,

where d € {1,2,3}. Moreover, systems arising from electrical networks have a number of
equations that equals the number of dependent variables z, so we only consider "square
systems", i.e. z and F both map to R".

DEFINITION 2.20. Let F: QX T xD, xD; x D, x...x D, — R" be differentiable
w.r.t. z, where z - QxT — R™ is differentiable, Q C R? an open subset with d € {1,2,3},
T C R a time interval, and D,,D;, D, ;... ;D.,, € R" open. Let further z(x,t) € D,,
Z(z,t) € Dy, and 2z, (v,t) € D,, for all (z,t) € QA x T andi=1,...,d.

If the Jacobian D:F is singular on Q x T xD, x D; xD,, x ... X D.,,, the system of
first order implicit partial differential equations

(2.35) F((z,t),2, 2, 2ays - -y 22y) = 0

is called a partial differential-algebraic equation (PDAE) .
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Systems of PDAEs arising in the analysis of electrical networks usually are coupled
systems of DAEs and PDEs. The following proposition shows that, in fact, such systems
are PDAESs in the sense of Definition 2.20.

PROPOSITION 2.21. Systems combined of a DAFE part F' and a PDE part G are PDAFEs
in the sense of Definition 2.20.

PROOF. A system

0= F(w,w,t)
0=G((x,t), 2,2, Zuy, - -+, 2a,)

with z € Q CR% and t € T C R can be written as
ﬁ((w,z), (w, 2), (W, 2) gy -y (w,z)xd,w,t) =0

and, therefore, with (w, z) = Z(w, ), one has

ot
~ D,F 0
Dy = { 0 D.G ] '
F beirLg a system of DAEs yields D, F singular on D,, x D, x 7. The determinant of
D, F is det(Dy F) - det(D:G) which proves the proposition. O

2.2.4. Examples. This subsection is dedicated to the presentation of some small
examples for systems of DAEs and PDAEs set up from electrical circuits. The PDAESs
treated here are coupled systems of DAEs and PDEs, where the PDE part is used to
model certain circuit components linked to the remaining ones at their physical boun-
daries. Therefore, these systems can be considered as a PDE boundary value problem
whose boundaries have to satisfy a DAE constraint [Reis05].

Note that in the following, the dependent variables x and z in a system of DAEs or
PDAEs F(x,2,t) =0 or F((:c, 1)y 2y 2y Zayy e ooy zxd) = 0 have to be considered as current
and voltage variables, since we are in the context of electrical circuits. Further, they also
consist of auxiliary ones for (internal) modelling purposes (compare the above notation
to the one of systems of equations in the section about network analysis).

2.2.4.1. A Voltage-Divider Circuit. As a small example for a system of DAEs
arising in analog circuit analysis we consider the voltage-divider circuit shown in Figure
2.1 (a) on page 12 with four network elements Ry, Ry, Ry, and V4. The vectors of the
corresponding branch currents and voltages are denoted by

. . . . . T T
1= (ZRNZRz)ZRL)ZVo) and u = (URI,URQ,URL,UVO) 5

respectively, and the node voltages at nodes 1 and 2 are denoted by vy, vs. The reduced
nodal incidence matrix A computes to

1 001
A_[—1110]'

The three resistors’ current-voltage characteristics can be expressed in admittance for-
mulation, but not the one of the independent voltage source given by uy, = Uy. Hence,
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i = (i1,19) is separated such that i; consists of the first three entries. Applying the
modified nodal analysis as described in Section 2.1.5 yields the system of DAEs

1

iVO = _R (Ul _U2)7

1

1 1 1
0= —(v; — v3) — =V — =

Rl(vl v2) R2U2 RLUQ,
0:?)1—U0

in three variables 7y, v1, vy as a mathematical model for the voltage divider. Ry, Ry, Ry,
and U, are parameters of the system  which can also work as inputs, e.g. by applying
a certain input voltage U,.

If the sparse tableau analysis instead of the modified nodal approach is used, one ends
up with eight instead of three equations

0= UpR, —|—UR2 — Uy,

0= UR, —|—URL — Uy,

O - iRl +iVO,

O = —iRl +’iRQ +iRL7
Up = uy,

O = R1 'iRl _UR17

O = RQ 'iRz —’UJRQ,

O:RL'iRL_uRL

. . . . T . . . . . T
in eight variables (i,u)" = (iry, iRy, 1Ry s IVis URy s URys URy s Uy) " -
For a second example, consider again the voltage-divider circuit, but this time with the

resistor 27 being replaced by a nonlinear diode D with current-voltage characteristic
given by the Shockley equation [Sho],

o= 1, (5 1)

Its current and voltage ip, up are assumed to be directed from node 1 to node 2 (cf. nota-
tions in Figure 2.1 (a)). The further procedure is the same as before; the reduced nodal
incidence matrix A did not change, of course. Since D obviously has an admittance
formulation, i = (ip,ir,,igr,, %) is divided in i = (i1, 73), where 4; again consists of the
first three entries of 7. Thus, proceeding with the MNA | one finally obtains

ivg = L+ (77T 1),
1y 1 1
0:[5.<V(v1v2)_1>__ oy,
e'r R2U2 RLUQ
0:’111 —Uo.

2.2.4.2. Transmaission Line Equations in Electrical Circuits. As an exam-
ple for a system of PDAEs arising in the analysis of an analog circuit, we consider the
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differential-amplifier circuit shown in Figure 4.1 on page 88. It contains three trans-
mission lines connecting voltage sources with the remaining circuit components. Trans-
mission line effects in electrical circuits appear when interconnections between circuit
elements cannot be modelled as short circuits due to effects like energy loss and time or
phase delay. For further information, we refer to |Gra, Gue00, Gue01, Miri, Reis06,
Ung]|.

In this example, we are actually dealing with a coupled system of DAEs and (hyperbolic)
PDEs, the latter one modelling the transmission lines. The supply voltage sources VCC
and VEE of the amplifier and its input voltage source V1 are connected to the remaining
circuit components via the transmission lines. To model their physical effects in the
interconnection of the circuit, the remaining network equations are coupled with the
so-called telegrapher’s equations

— 0D — R, t) 4 L 2

(2.36) dila.t) d

- = :G’-u(a},t)—l—C’-%’t).
In this system, i(x, t) and u(z,t) denote the current and the voltage at time ¢ and position
x in a single transmission line of length [. The magnitudes R’ = % L' = %, ' = %,
and G' = % are normalized parameters to model the following physical effects of the
considered homogeneous — transmission line; the resistance of such a line is denoted by
R. Further, its self-inductance corresponding to a magnetic field is taken into account
by an inductance L. Finally, the capacitance C simulates the electric field between the
transmission line and the ground, and G corresponds to the corona and leakage currents
along the insulator surfaces [Miri.

Equations (2.36) can be derived from the Mazwell equations (cf. [Gue01] for details).
However, here we will use an equivalent circuit for a small part of length Az of the
transmission line instead which is shown in Figure 2.4. This length is small enough
to consider the currents and voltages at its ends as independent of the position and
dependent only on the concentrated elements R'Ax, L' Az, C'Ax, and G'Awx.

i(x,t) i(x+ Ax,t)
S o W N
R'Ax L'Ax o
= 5]
s G'Azx — (O'Ax <
= — -
s B
IS
oo 8- -
— r+ Ax :
] |

FIGURE 2.4. Equivalent circuit for a small part of length Az of an
electrically long homogeneous transmission line.
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FiGURE 2.5. Connecting the system of PDEs of the telegrapher’s

equations to the remaining network equations by using boundary con-
ditions (2.38).

Using the Kirchhoff laws (2.1) adapted to this circuit, one easily obtains

(2.37a)  0=i(z,t) —i(z + Az, t) — G'Ax - u(z + Az, t) — C'Ax - W’
(2.37b) 0= R'Ax-i(x,t) + L' Az - 3@(;;, ‘) +u(z + Az, t) — u(z, t) = 0.

Dividing by Az and a subsequent limit transition Ax — 0 finally yields the two coupled
partial differential equations (2.36).

Now the telegrapher’s equations can be coupled with the remaining network equations
by the values at the boundary of the transmission line:

u(l,t) = Vu(b), i(l,t) = —1.(t).

Here, V)(t) and V,(t) denote the voltage potentials at time ¢ of the nodes to which the

left respectively right end of the transmission line is connected, whereas [;(¢) and I,.(t)
are the sums of all the remaining incoming currents of these nodes (see Figure 2.5).

(2.38)

Thus, one obtains an initial-boundary value problem for a mixed system of DAEs and
(hyperbolic) PDEs.

2.2.4.3. Drift-Diffusion Model for Semiconductor Devices. The last subsec-
tion is dedicated to a second example for a system of PDAEs in the context of analog
circuit analysis. It arises from circuit netlists that involve semiconductor devices such
as diodes (Figure 2.6) or transistors. The behavior of such devices can be modelled by
the drift-diffusion equations. They are treated rather shortly in this subsection, where
we focus on diodes. For more detailed information we refer to Section B in the appendix
and |GerKneVog, Gue01, MarRinSch, Sel, Tis|. There is also an explanation about
how a diode works provided in the appendix.

The simplest model for the current-voltage relation of a diode is given by the Shockley
equation [Shol
LU,
iD:IS' <€VT D—l),
where 1p and up are the current through and the voltage above the diode D, I, is the
reverse saturation current, and Vr is the thermal voltage which at room temperature is

approximately 0.026 V. This equation is obtained by some simplifying assumptions on
the one-dimensional pn-diode (Figure 2.6, right).
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FIGURE 2.6. The pn-diode; on the left the symbol for the network
component and on the right a sketch of its one-dimensional geometry
including the two positively (1) and negatively (€27) doped regions.

Without these simplifying assumptions one obtains a system of partial differential equa-
tions, the drift-diffusion equations. They are given by

(2.39a) div(egrad V) = q(n — p — N),

(2.39b) div J, = q(0n + R),

(2.39¢) divJ, = ¢(—=0p — R),

(2.39d) Jn = q(D,, gradn — p,ngrad V),
(2.39) Jp = q(—D,gradp — p,pgradV)

in the variables n, p, V, J,, and J, which depend on both the time ¢ and the spatial
position x € QT UQ™ = Q C R4 d = 1,2,3 (cf. Figures 2.6 and B.3 on page 151 in the
appendix). The mathematical operators for the divergence

div(wl, - ,wd) = 61;1(4)1 + ...+ &Edwd

and the gradient
grad(f) = (0u f, .., 0z, f)

are applied only with respect to the spatial variable x, the time variable t is excluded. The
magnitude V' denotes the electrostatic potential, so — grad V' is the electric field caused
by free positive and negative charge carriers, i.e. electrons and holes, in the interior of
the semiconductor device. m and p denote the concentrations of electrons and holes,
respectively. Their current densities are given by J, and J,, while D,,, D,, p,, and p,
are their diffusion coefficients and mobilities. € is the so-called permittivity constant with
an approximate value in silicon of 10_12%. The elementary charge g has a value of
approximately le := 1.60218 - 10~%As. R is the so-called generation-recombination rate
which describes the rate of generation of electron-hole pairs and their disappearance in
case of a neutralization or recombination. N = N(x) on the right side of (2.39a) is the
doping concentration which describes the preconcentration of fixed impurity atoms in the
silicon crystal. N(z) = N} (x) — N () is composed of the doping concentrations N
and N, of donor and acceptor atoms, respectively. This preconcentration determines
the positively and negatively doped regions of the silicon crystal, thus making the drift-
diffusion equations available for the modelling of any semiconductor device (cf. Figure
B.1 on page 147 in the appendix).
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To set up the boundary conditions, two different kinds of bounding parts of the semi-
conductor are distinguished. While the metal (Ohmic) contacts are denoted by I'p, the
insulating remaining part of the boundary is denoted by I'y (see also Figure B.4 on
page 153 in the appendix). Therefore, one has I'p U I'y = 99, I'p N 'y = 0 ', At
the contacts I'p, the space charge given by the right-hand side of (2.39a) vanishes, so
n—p—N =0 for v € T'p. Considering the contacts to be ideal yields n - p = n? for

3

x € I'p, where n; is the intrinsic density (=~ 10" cm~ in silicon at room temperature).

Combining these two relations, one has

(2.40a) n(z,t) = n(x) = % (\/N2(x) +4dn?(z) + N(l‘)),

1
(2.40D) p(x,t) = plx) = 5 (\/NQ(x) + dn?(z) — N(x))
for € I'p. For the electrostatic potential V', one has

(2.41) Vi(z,t) = Vap(t) + Vii(z) for z € I'p,

where Vii(z) = V- In <:,((Z))> =—-Vr-In (5&%), x € I'p, is the so-called built-in voltage
and V,, is the applied voltage potential at the diode’s contacts. Since there is no current
flow at the insulating parts 'y and a zero electric field in its normal direction, one

additionally has

(2.42a) Jp(x,t) - v =0,
(2.42Dh) Jp(z,t) - v =0,
(2.42¢) grad(V)-v =0

for x € I'y, where v is the unit outward normal vector on I'y. Finally, the initial values
of the charge carrier concentrations n and p are prescribed by

(2.43a) n(z,0) = niyit (),
(2.43Db) p(x,0) = pinit (),
where x € (2 is the position in the silicon crystal.

Thus, by equations (2.39) through (2.43) one obtains an initial-boundary value problem
which can be linked to the remaining network equations by

(2.44a) Vap(t) = Vi(t),
(2.44b) Vap2(t) = Vi(2),
(2.44¢) i (t) = —L(t),
(2.44d) in(t) = —I,(t).

Vap,1 and V,, o are the voltage potentials applied to the diode’s left and right contacts I'y
and 'y whose disjoint union is I'y UT'y = I'p (cf. Figure 2.7). V; and V,. are the voltage
potentials of the corresponding left and right connecting nodes n; and n, in the entire
network. The currents I; and I, are the sums of all the remaining incoming currents

The indices are due to the kind of boundary conditions. For the metal contacts I'p, the values of
the corresponding variables are prescribed, so one has Dirichlet boundary conditions. For the insulating
part 'y, one has Neumann boundary conditions because the values of partial derivatives are given.
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F1GURE 2.7. Connecting the drift-diffusion model equations for the
diode to the remaining network equations.

of n; and n,, and finally the currents i;, j = 1,2, are the currents leaving the diode
and flowing through its metal contacts I'y and I'y towards the nodes n; and n,. These
currents are given by

(2.45) i = / (Jo+ Jp — 0, grad V) - v; d,
T

where v; is the unit outward normal vector on I';.

As in the previous subsection about transmission lines, the drift-diffusion model for semi-
conductor devices interconnected to the remaining circuit components yields a coupled
system of PDEs and DAEs. It can be transformed into a system of DAEs by applying a
semidiscretization with respect to the position variable x. Depending on the refinement,
this can increase the system’s dimension drastically.

2.3. Numerical Analysis Methods

In this thesis, for the largest part we are dealing with symbolic analysis including the
generation of symbolic systems of equations with parameters p given as symbols instead of
numerical values. For a simulation, however, one of course needs numerical data to solve
such a system. Hence, one needs to define a design point 7, i.e. a set of numerical values
for the symbolic parameters occuring in the system. To stress the system’s dependence
on the symbolic parameters p, we will denote it by F(z,,t;p) instead of F(x,2,t) in
the following definition. Further, since the most widely used numerical methods for
solving systems of PDEs are based on semidiscretizations w.r.t. the spatial variable z,
as mentioned earlier we focus on systems of DAEs in subsequent sections and chapters.

DEFINITION 2.22. Let F(x,&,t;p) = 0 denote a (parametrized) system of DAFEs with

symbolic parameter vector p = (p1,...,pn) and T C R a time interval. A numerical
realization m = (my,...,7y) of p with m; € R or m; : T — R is called a design point of
F.

In the following subsections, we review three important numerical analysis methods,
i.e. DC analysis, AC analysis, and transient analysis'?>. For any of these methods it
is necessary to consider the system F' as an input-output system. For this, some of
the symbolic parameters p will be tagged to be inputs u = (uq,...,uy,), while the

2Fyrther numerical analysis methods such as noise, pole/zero (cf., e.g., [Hen]), or parametric analysis
will not be treated in this thesis.
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output is a linear combination of (some of) the internal variables z and denoted by
y = (y1,...,yx) = Cx. Therefore, we will use the notation

- ~ F(x,&,t;p)
F . = F . = =
(x>x7y7t7u) (%%y,t,uaﬁ) ( y_C:[ ) O

rather than F'(z,%,t) = 0 to denote the corresponding system throughout this section,
where p are the remaining parameters in p without the tagged ones in w.

The most important numerical analysis method in this thesis is the transient analysis.
However, later on we will denote any of the analysis methods in this section simply by
A. With this notation, y = A(F,u) denotes the output that is obtained by using the
numerical analysis method A for the simulation of a system of equations F' = 0, where
the input and output are u and y, respectively. Note that a suitable design point 7 is
necessary for any of the analysis methods A, however, we will not explicitly mention it
in the following subsections.

2.3.1. Transient Analysis. The transient analysis Airan of a dynamical system
F = 0 aspires the computation of the time-dependent output y(t) = Agan(F,u(t))
corresponding to given time-dependent input signals u(t), t € 7 C R. Mathematically,
the system F'is numerically integrated.

DEFINITION 2.23. Let F(x,&,y,t;u) : D, x Dy x Dy, x T — R™ be a system of DAEs,
where D,,D; C R™ open, D, C R¥ open, T = [to,t1] C R is a time interval, and
u: T — R™ is piecewise continuous. Let further iy € R™ and (z,y) € C*(T,R"**) be a
solution of

0= F(z(to), %0, y(to), to; u(to))
0=F(x(t),z(t),y(t), t;u(t)) forteT.

Then (x,y) is a transient solution of F for the input u. The transient analysis
Airan of F is defined via Appon(Fyu, T) 1= (x,y).

(2.46)

As stated earlier in Section 2.2.1, not the value of x is prescribed at t = ty, but the value
of the derivative Z(t).

2.3.2. DC Analysis. The DC analysis'® Aq. investigates the steady-state system’s
behavior without any dynamical influences, i.e. the system is analysed for ¢ — co apply-
ing a constant excitation. Therefore, the dynamical components of F, i.e. the occuring
derivatives of the system variables, are set to zero which physically means the replace-
ment of, e.g., capacitances by open circuits and inductances by short circuits, since

ic(t) =C- 8tuc(t), 8tuc = 0,
UL(t) =L- atiL(t), 8,;2'L =0.

This leads to a static system Fy.. Then, for constant input signals u the static system
F. is solved.

3D means direct current.
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DEFINITION 2.24. Let F(z,2,y,t;u) : D, x Dy x D, x T — R" be a system of DAFEs,
where D,,D; C R™ open, D, C R* open, T C R is a time interval, and to € T. Let
Fue(z,y;u) : D, x Dy — R™ be defined by

(2.47) Fu(z,y;u) == F(z,0,y,to;u)  for (z,0,y,t) € Dy x Dy x Dy x T .

Then Fy. is the DC system or static system of F at tg. If ug € R™ is given and
(10, y0) € R™* is a solution of

(248) ch(l'o, Yo; U()) = 07

then (xo,y0) is a DC point or operating point of F. The DC analysis A, of F is
defined by Ay (F,uo) := (€0, Yo).

Often one is not only interested in a single operating point, but rather in the behavior
of the static system w.r.t. a certain parameter. This leads to the so-called DC transfer
analysis or DT analysis.

DEFINITION 2.25. Let F(z,&,y,t;u) : Dy x Dy x Dy, x T — R™ be a system of DAEs,
where D,,D; C R™ open, D, C R* open, T C R is a time interval, and to € T. Let
further U C R™ and for u € U let (x,,y,) € R"** be a solution of

ch(l'u, Vs u) = 0.

If (x,y) : U — R is defined by u — (x4,y.), the DC transfer solution or DT
solution of F' and u is given by (x,y). The DC transfer analysis or DT analysis
Ay of F is defined via Ay(F,U) := (x,y).

2.3.3. AC Analysis. The small-signal or AC analysis investigates the linearized
system behavior, where the input is a small sinusoidal signal with a constant frequency.
For this, the system is linearized in a certain linearization point, mostly a beforehand
computed DC operating point. From a mixed electrical engineering and computational
point of view, this corresponds to

e "bringing the system to the linearization point" by using appropriate constant
(DC) sources instead of time-dependent (AC) sources (The "small signals" are
not yet taken into account.)

e and linearizing the system by its tangent (space) in this linearization point.

If, for example, a current-voltage relation i = f(u) and a linearization point uq are given,
one will have a linearization

= Fluo) + (= o) <8’;—?

) + (higher order terms)
u=ug

via a Taylor expansion. The first summand on the right side corresponds to the DC part,
i.e. the linearization point. The second summand is the product of the signal voltage'
u — ug and the differential conductance at uy. The higher order terms are neglected,
since one is interested only in a linearization.

410 general, the signal voltage u — g is small in comparison to the voltage ug of the linearization
point which motivates the term small signal analysis.
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Usually, during linearization the system is transferred to frequency domain by a Fourier
or Laplace transformation. The following definition explains how a general nonlinear
system F' can be linearized to obtain a corresponding AC system F,,.

DEFINITION 2.26. (Linearization)

Let Fx,%,y,t;u) : Dy x Dy x Dy X T — R™ be a system of DAEs, where D, D; C R"
open, D, C R open, u : T — R™, and T C R is a time interval. Further, let
(w0, Z0, Yo, to, up) € REFFHIE™ be g linearization point such that

(2.49) F(x0, 0, Yo, to; uo) = 0.
Define the Jacobians Ay, Ay, As, and B by

Ay := D, F (20, T, Yo, to; up) € ROHI*™,
AZ =D; F(an‘xOvyO)tOvuO)ER(nJrk)Xnv
As —D L, F (20, %0, Yo, to; ug) € RRIXE,
W (

Zo, 5607 Yo, th Uo) € R(n—i—k)xm

(2.50)

Let s denote the Laplace variable and U(s) the Laplace transform of the input u(t).
Then for s € C let

A(s) = (A + 5 - Ay, Ag) € COrFR)x(ntk)

(251) bs) =—B-U(s)  eCm.

Finally, the linear system Fu.(x,y,s) defined by

(2.52) Fao(X, Y, ) = As) - ( - ) — b(s)
is the AC system of F' w.r.t. the input u(t) and the linearization point (zo, o, Yo, to, Uo)-

The procedure in the above definition linearizes a general system of DAEs in the given
linearization point. The following example shows that this procedure accomplishes the
intuitive idea of a linearization.

EXAMPLE 2.27. Consider the system F' : x — u? = 0 in R2. This parabola obviously
has the tangent line

r=2u—1
in p = (uo, o) = (1, 1).

3 4 FIGURE 2.8.
/] ' ‘ Linearization of the
parabola in (1,1).
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Algebraically, one can compute the tangent space T,,F' in p using
T,FLgrad(F)(p),

where grad(F') = (—2u, 1). This leads to the tangent space T),F" being the span of the
vector (1,2) and, hence, T,F' : x —2u = 0. Finally, the linearization of system F in p is
given by

p+T,F=(1,1)+X-(1,2), AeR
=1+AN1+2)), XeR
— ——
or, equivalently, by z = 2u — 1.

Now consider the given system as an input-output system with the input « and the
output y = z. According to our notation in this section, this yields

2
0=F(x,x',y,t;u)=<x b )

y—x

Let p = (w0, %0, Yo, to,u0) = (1,10,1,%p,1) denote the linearization point. With the
notation in Definition 2.26, one obtains

s[4 we (2] e (2] - [3)

hence
1 0 2
ae = w5 ] e
and finally
B X(s) X(s) —2U(s)
F..(X,Y,s) = A(s) ( Y (s) ) ( X(s) + Y (s) ) .
Equating the last expression to zero leads to (U, X) = A (1, 2), the same as T,F above.

O

The following defines the AC analysis of a system of DAEs F w.r.t. a linearization point
p and an input u. It is the solution of the AC system of F' along the imaginary axis.

DEFINITION 2.28. Let Fo.(X,Y,s) = 0 be an AC system in the sense of Definition 2.26
with respect to a linearization point p = (xo, To, Yo, to, o) and an input u : T — R™. If
(X,Y): W — C"* W CR, satisfies

Foo( X (w),Y(w),iw) = A(iw) - ( X(w) ) —b(iw) =0 forweW,

then (X,Y) is the AC solution of F' in W. The AC analysis A,. of F is defined by
Ap(Fyu,p, W) = (X,Y).
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2.4. Systems and Control Theory

In this section, we give some basic definitions and properties from systems and control
theory which will be needed throughout the following sections. It mainly serves to explain
the necessary terms and notions. In general, we follow the notes of [Zer|, however, in
some cases we switch to those of |[Ant, HinPri, JosKel, RasNicLoz, Rew, Wil72|.

Some of the definitions and properties in the following subsections are extendable or
valid for general dynamical systems. Nevertheless, we mostly restrict ourselves to LTI
first order ODEs in state space formulation

& = Ax + Bu,

y=Cz+ Du

with A € R™" B € R™™ (C € RP*" and D € RP*™, outputs y : 7 — RP, inputs
u:T — R™ and states x : T — R”, where T usually is R or R>,.

(2.53)

For the space of admissible input functions Y = {u : T — R™} we further restrict
ourselves to piecewise continuous input functions u(-) such that the state functions z(+)
are piecewise C'. The states x represent the "system’s memory" because if 2y = z(ty) is
known for some ¢y € 7 and u is known on some interval [to, t;] € T, then z and, hence,
y are uniquely determined everywhere in [to, ;] C 7 by

t

to
Thus, provided the future input is given, xo = z(¢y) contains all the information about
the "past" to compute the "future".

The state transition map
(2.55) o {tt) ET? [t >ty x X xU = X, (t,to,x0,u) — @(t, to, T, 1),

where X = {z : T — R"} is the state space of system (2.53), computes the state
z(t) = p(t, to, To, u) at time ¢, where zy is the state at time ¢, and the applied input is
u. More precisely, the value of ¢(t, ¢y, xg, u) is given by equation (2.54). From this, some
properties such as time-invariance can be derived!'®:

(256) @(ta th Zo, U’) = Sp(t - T, to — T, Zo, UTu)v
where o"u(t) = u(t + 7). The state-to-output map
(2.57) n:{(t,te) €ET? [t >t} x X xU =Y, (t,to, m0,u) — n(t, Lo, 20, 1),

where Y = {y: T — RP} is the output space, computes the output of (2.53) at time ¢,
assumed that z( is the state at time £y and the applied input is u. Hence, one has

n(t, to, xo,u) = C - (t, ty, xo,u) + D - u(t)

or, more precisely and in correspondence to equation (2.54),

t
(2.58) n(t, to, zo, u) = Cet=10) gy 4 / Ce"" Bu(7) dr + Du(t).

to

5 Note that system (2.53) is time-invariant, i.e. the system matrices 4, B,C, D are independent of
t € T. For further properties of ¢ we refer to [Zer].
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2.4.1. Reachability. In this subsection, the leading question is the reachability of
a certain state x; starting from another particular state xy by applying a suitable input
function u, i.e. steering system (2.53) from z to x;.

DEFINITION 2.29. Let tyg € T be fized and v, € X.
(1) 1 can be reached from xo € X in time T > 0 if there exists u € U such
that
o(to + 7, to, To, u) = 1.
(2) 1 can be reached from xo € X if (1) holds for at least one 7 > 0.
(3) System (2.53) is completely reachable from xy € X if any r; € X is

reachable from xg.
(4) It is completely reachable if x1 can be reached from xq for all xg,z1 € X.

Note that in this definition the starting time ¢y is not important because of the time-
invariance (2.56) of the state transition map:
o(to + 7, to, To, u) = (7,0, 20, 0).

Thus, for simplicity, one often can choose ty = 0. By

R(7, o) :={ x € X | x is reachable from z; in time 7 },
the set of states that are reachable from xg in time 7 is denoted, further

R = U R(T)
7>0

with R(7) := R(1,zo) denotes the set of states that are reachable from the initial state.
System (2.53) is completely reachable from the initial state z if and only if R = X.

One can show that R, R(7) with 0 < 7 are subspaces of X = {z : T — R" }. Moreover,
R(e) =R for every € > 0. Using this, one can further show that

‘ completely reachable < completely reachable from . ‘

In order to make a statement about reachability in terms of the system matrices A, B,
C, D of (2.53), some further definitions are necessary:

DEFINITION 2.30. The finite reachability Gramian of (2.53) is defined by
to+t .

(2.59) P(t) = / AT BRreA (Tt) gr ¢ R
to

using system matrices A, B. For asymptotically stable systems (see Section 2.4.4), it is
also defined for t = oo and

(260) P = / eA(T—to)BB*eA*(T—to) dr € R7*n

to

is called the (infinite) reachability Gramian. Further,
(2.61) R(A,B)=[B AB A*B ... A"'B] ¢ Rv™™
is the (Kalman) reachability matriz of system (2.53).



2.4. SYSTEMS AND CONTROL THEORY 43

See also Theorem 2.42 and Remark 2.43 on page 50, and (2.78).
Sometimes, the reachability matrix R(A, B) is given by the infinite matrix
R(A,B)=[B AB A’B ... A"B A"™B .|
However, by the Cayley-Hamilton theorem, i.e.
Xa(A) = A"+ ey 1AV At el =0

with x4 the characteristic polynomial of A, the span of the columns of R(A, B) is
determined by the first n terms. We will not distinguish between R(A, B) as a matrix
operator and as a space spanned by its columns.

The following theorem gives a relation between the reachability space R, the reachability
Gramian P(-), and the reachability matrix R(A, B).

THEOREM 2.31. |Zer, Thm. 4.9
Consider system (2.53) and ¢ > 0 arbitrary. One has

R =R(e) =imP(e) =imR(A, B).
Hence, the following are equivalent:

(1) System (2.53) is reachable.
(2) P(e) is non-singular.
(3) R(A, B) has full row rank.

By this theorem, one has

completely reachable < rank R(A, B) = n.

Further, in that case, a (smooth) input function steering the system from the initial state
Zo to x in time € is given by

u(t) = Bre EHoDp ()L (z — e )
because
90(750 + g, th Xo, U)
_ 6A6$0 + L/;ZO+E eA(to+s—T)BB*eA*(t0+e—r)P(€)—1 (1’ _ 6‘46:170) dr
—1
= e + fos eAle=s) BB*eA(e—5) als(fo8 eAsBB*eAs ds> (x — eAgxo)
=z.

Since R(A, B) is built by the system matrices A, B, one also simply says that the matriz
pencil (A, B) is reachable.

2.4.2. Observability. Consider the dynamical system (2.53), whose state trajec-
tory t — x(t) = p(t,to, xo,u) using the state transition map ¢ describes its evolution.
The main problem to discuss in this section is as follows: In a state space system,
the so-called manzifest variables are the input and output variables, while the latent
variables are the states x. In general, the latent variables are auxiliary or artificially
introduced, e.g. in order to transform a system to first order. As a consequence, the
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physical meaning of latent variables may be obscure. Since they normally cannot be
measured directly, the question that arises is about the conclusions that can be drawn
w.r.t. the latent variables of a system where we know the manifest ones. This finally
leads to the term of an observable system that allows the reconstruction of the latent
variables from the manifest ones.

DEFINITION 2.32. Let tg € T be fized.

(1) &1 € X can be distinguished from x5 € X in time T > 0 if there exists
uel and ty <t <ty+ T such that

U(t> tOv €y, U) # T](t7 tO? T2, ’LL)

Then u distinguishes between x1 and x5 in time T.

(2) &1 can be distinguished from xs if (1) holds for at least one 7 > 0.

(3) System (2.53) is observable if for any x1,x9 € X, 11 # xo, the state x1 can be
distinguished from x,.

Also in this definition, the starting time ¢, is not important because of the time-invariance
(2.56) of the state transition map. Therefore, one often chooses t, = 0.

Define the set
J(r,x) :={ 2’ € X | 2’ is indistinguishable from z in time 7 }

and let further
J=[J)
7>0
with J(7) := J (7, z0) denote the set of states that are indistinguishable from the initial
state.

One can show that if x can be distinguished from z, at all, then it can also be dis-
tinguished from zy by the zero input function. Therefore, w.l.o.g. we put u = 0
for the rest of this subsection. Furthermore, J,7(7) with 7 > 0 are subspaces of
X ={xz:T —>R"}and J(¢) = J for every £ > 0. Using the above, it can further be
shown that

System (2.53) is observable << J ={x}.

In order to derive a statement about observability in terms of the system matrices
A, B,C, D, two more definitions are necessary:

DEFINITION 2.33. The finite observability Gramian of system (2.53) is defined by

to+t
(2.62) Qt) = / ATt OOt gy ¢ R

to

Furthermore, for asymptotically stable systems (see Section 2.4.4) the (infinite) ob-
servability Gramian is defined by

(263) Q — / eA*(TitO)C*CeA(T*tO) dT E RHXTL
to
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and further
C
CA
(2.64) O(C,A) = CA? € R
CA1

denotes the (Kalman) observability matriz of (2.53).

See also Theorem 2.42 and Remark 2.43 on page 50, and (2.78).

The following theorem describes the relation among the observability space 7, the ob-
servability matrix O(C, A) ', and the observability Gramian Q(-).

THEOREM 2.34. |Zer, Thm. 6.5
Consider system (2.53) with the zero input function u =0 and € > 0 arbitrary. Then

J =J(e) =ker Q(e) = ker O(C, A).
Hence, the following are equivalent:

(1) The system & = Az, y = Cx is observable,
(2) Q(e) is non-singular,

(3) O(C, A) has full column rank.

By this theorem, one has

observable < rank O(C, A) = n.

Further, in that case, the latent state variables z can be reconstructed via (2.54) and
the initial state xo = 2:(¢y) given by

to+e
Ty = Q(s)_l/ eA*(T_tO)C*y(T) dr,

to
where y(t) = n(t, to, xg, u) is given by (2.58).

Since the observability matrix O(C, A) is built by the system matrices A and C, one
also simply says that the matriz pencil (A, C) is observable, if O(C, A) is so, i.e. if
rank O(C, A) = n.

2.4.3. Passivity. Passivity is a crucial property of dynamical systems which first
was introduced in the network theory literature. Generally speaking, passivity means
that the system internally does not generate "energy"”. A passive component is one that
either dissipates energy or is incapable of power gain such as resistors, diodes, capacitors
etc. Otherwise it is active like, for instance, voltage and current sources. Obviously, an
electrical circuit composed entirely of passive components is passive.

16As in the case of R(A, B), the observability matrix O(C, A) sometimes is denoted as an infinite
matrix, but due to the Cayley-Hamilton theorem the first n terms are sufficient for the determination
of its kernel.
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In the following, let 7, = [ty, 00) for ty € T and, for g € [1, 0], let
L9:=LY(T+,R™) ={f: T, —>R"| fT+ | f(E)]|9dt < o0 }

denote the Lebesgue space of real-valued functions of time t that are g-integrable on
[to, 00). In this notation, || - || is some norm on R™. An extension of L7 is defined by

L= LL (T4, R™) :={v|v, € LINVT >ty },

where

t), tag <t<
w(y={ t P ETST
0, t>T,
is a truncation of v. Passivity can be defined in the internal sense or in the more general
input-output sense for systems with equal numbers of inputs and outputs:

DEFINITION 2.35. |[JosKel]
Let 32 be a dynamical system in state space representation described by

t=F(z,u),

(2.65) X Y= Gl u)

with F,G smooth, states v € X, = {x : T, — R"}, and the same number of inputs
and outputs u,y € L7

ert:

e X is called passive in the input-output sense if there exists a constant 3
such that

(u,y) + B8 >0Vu e L, 7>t

exrty
where (u,y), = [, u*(t)y(t) dt.
e X is called internally passive if there exists a nonnegative storage function
S : X — Ry¢ such that

(u,y)r > S(x(r)) — S(x(ty)) Yu € LL,, 7 > .

Input-output passivity is the more general concept, since it only uses inputs and outputs,
but no states. However, for (finite-dimensional) reachable and observable state space
systems, the above two definitions are equivalent [JosKel|. If one thinks of an electrical
network with m ports, where m voltages are prescribed and serve as the input to the
system, while the corresponding currents are the m outputs of the system, the inner
product (u,y), is exactly the integral over the instantaneous electrical power (energy)
u*(t)y(t) at time ¢. In Definition 2.36, (internal) passivity is generalized to the concept
of dissipativity and the restrictions on the numbers of inputs and outputs are lifted.

In the case of LTI dynamical systems in state space formulation
Ei(t) = Ax(t) + Bul(t),
y(t) = Cx(t) + Du(t)
with E,A € R™", B € R™™, C' € RP*" and D € RP*™, a classical result yields

conditions for the passivity of (2.66) in terms of its transfer function; assume that
the matrix pencil A\E' — A is regular, i.e. det(AE — A) # 0. Then the transfer function

(2.66)
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of (2.66) is given by the p x m matrix-valued function H in the independent complex
frequency variable s

(2.67) H(s) = C(sE—A)"'B+D,

where each of the entries in H is a rational function in s € C. In general, a system’s
transfer function is defined by the Laplace transform of its p x m matrix-valued impulse
response'’ h, i.c.

H(s) = (Lh)(s) = /000 h(t)e™* dt, seC,

and describes its input-output relation Y'(s)/U(s) in the frequency domain, i.e.
Y(s)=H(s)-U(s).

In this notation, U(s) = (Lu)(s) and Y (s) = (Ly)(s) are the Laplace transforms of
the input and output, respectively. The formula in (2.67) is obtained by eliminating
the Laplace transform X(s) = (Lz)(s) of the state trajectory z(-) from the Laplace
transformed system.

It is well known in network theory that a linear time-invariant system of DAEs of the
form (2.66) is passive if and only if its transfer function H is positive real, i.e. H is
analyticin C, = {2 € C| Re(z) >0} and H(s) + H(s)* > 0 for all s € C,.
Dissipativity is a generalization of the passivity concept that uses storage functions as
a generalization of stored "emergy" in a system. More precisely, dissipativeness means
that the system absorbs supplied energy. Typical examples of dissipative systems are
electrical networks where parts of the electrical energy are dissipated, e.g., in resistors
in the form of heat.

For the following definition, assume that the dynamical system X in (2.65) is given
together with a real-valued function w, the supply rate or supply function defined on
U x ). 1t represents something like the power or energy delivered to the system by its
external or manifest variables, i.e. input and output. Assume further that

/tQ w(t)] dt < 0o

t1
for any t; <ty € T, u € U, and y € Y, where w(t) := w(u(t),y(t)), i.e. w is locally
integrable.

DEFINITION 2.36. [Ant, Wil72|
A dynamical system X with supply function w is dissipative if there exists a nonnegative
function S : X — Rxg, the storage function, such that

(2.68) S(as) — S(an) < / ") dt

t1

17Consider an LTI system with m input channels u € U = {w: T — R™} and p output channels
yeY={y:T — RP} as a linear operator S : Y — ) mapping the input space to the output space
by y(t) = [ h(t = T)u(r)dr. The p x m matrix-valued function h : R — RP*™ is called the impulse
response of the system, see, e.g., [Ant].
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for all ty > t1, v1 € X, and uw € U, where xy = p(ta,t1,x1,u) € X and y € Y is the
output of X corresponding to u.

The storage function is something like a generalized energy function for the dissipative
system in question. Thus, the above definition means that the change in internal storage,
i.e. S(x3)—S(x1), cannot exceed the energy that is supplied to the system. The inequality
(2.68) is called dissipation inequality. If equality holds for all t; <ty € T, u € U, and
x1 € X, then X is called lossless.

If one compares the above definition of dissipativity to the definition of internal passivity
in Definition 2.35, the similarities are obvious.

2.4.4. Stability. There exists a variety of stability definitions for dynamical sys-
tems. In general, a stable system has the property that its solution trajectories do not
change too much under small perturbations. Hence, the most general definition for sta-
bility of a dynamical system is in terms of the state trajectories t — x(t) = (¢, to, o, u)
so that it is applicable to a wide class of systems. Here, u is assumed to be fixed and xg
is a distinguished initial state at initial time ¢, of the given dynamical system.

In order to prove that a trajectory y(-) is stable, one has to show that if the initial values
Yo = y(to), Ty = Y(to) of two solutions y(-), J(-) are close to each other, then they remain
close to each other for all t > ty, to € T.

DEFINITION 2.37. (Lyapunov stability)

Let t — y(t) be the solution trajectory of a given dynamical system ¥ with initial time
ty € T, initial value yo = y(to), and (fized) input w € U. 3 is called Lyapunov stable
at time ty € T if for all € > 0 there exists 6 = §(e,tg) > 0 such that

o =5l <o = ly®) =gl <& forallt =1

for any other solution trajectory y(-) of ¥ with initial value y,.

In the linear case, for the time being, consider the LTT state space equations of an ODFE

& = Ax + Bu,
(2.69) y = Cz+ Du.

The following defines stability in terms of the state trajectory z(-).

DEFINITION 2.38. (Stability of state space systems)

Let t — x(t) = @(t, to, xo, u) be the state trajectory of a given dynamical system 3 in the
shape of equation (2.69) with initial time ty € T, initial state xo = x(ty), and (fized)
mput u € U.

e X is called stable if two solution trajectories x1(-), z2(-) belonging to the same
mput u satisfy

lx1(t) — za(t)]| < M for allt € T = [tg, 00)

for some constant M.
o [t is called asymptotically stable if in addition

lim ||z (t) — 22(t)] = 0.
t—r00
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Then, for the corresponding two outputs y,,ys one has
191() = w2(O) || = |C (21 (t) — z2(®)]] < My forallt € T

i the stable case and, mn addition,
tliIIl ||y1(t) y?(t)H 0
—00

i the asymptotically stable case.

In all the above, || - || denotes norms in the corresponding spaces, e.g. the respective
Euclidean ones. The above definitions for linear systems mean that the autonomous or
zero-input dynamical part & = Az of (2.69) in the stable case implies the boundedness
of z(-) on T4. In the asymptotically stable case, one additionally has ||z(t)|| tending to
zero as t tends to infinity.

The definitions of (asymptotic) stability can also be expressed in terms of the eigenvalues
of the system matrices. Considering the autonomous (or homogeneous) part & = Ax of
system (2.69), note that its solution is given by

z(t) = M0, xo = x(to).

PROPOSITION 2.39. |Ant, Zer|
The dynamical system (2.69) is

e asymptotically stable < Re(N\) < 0 for all eigenvalues of A, i.e. for
all X with det(\ — A) =0, and

e stable & Re (M) <0 for all eigenvalues of A and, moreover, each purely
imaginary eigenvalue X is semi-simple, i.e. its geometric mul-
tiplicity equals its algebraic multiplicity. H

In this case, one also says that matriz A is (asymptotically) stable. Further, this
proposition can be extended to linear time-invariant DAFEs, i.e. systems with dynamical
part E2 = Ax + Bu. In that case, one does not consider the eigenvalues of the pencil
(I, A), i.e. the zeroes of det(A\] — A), but the generalized eigenvalues of the pencil
(E, A), i.e. the zeroes of det(A\E — A).'®

PROPOSITION 2.40. Let an LTI system of DAFEs be given by

Ei = Az + Bu,

(2.70) y = Cz + Du.

This system is (asymptotically) stable if the conditions in Proposition 2.39 are satis-
fied for the matriz pencil (E, A) instead of (I, A). O

While the above definitions and propositions rely on systems with fixed inputs u and
are given in the mathematical background of differential equations, there are also some
stability definitions known in engineering and control theory that allow different kinds
of inputs wu.

8Note that & = Az can be expressed by P(4)z = 0, where P(s) = sI — A, and Ei = Az by
Q(4)z =0, where Q(s) = sE — A.
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DEFINITION 2.41. [Ant, HinPri, Rew]
A (general) dynamical state space system X is called internally stable if and only if it
s zero-input asymptotically stable, i.e.

u(t) =0, t >t = x(t) =0 for t — 0.

It is called bounded-input, bounded-output (BIBO) stable if any bounded input u
results in a bounded output y:

U:<’U/1,...,um) GEOO(TJrva) = y:(y17"'7yp) G‘COO(T+JRP)‘

Furthermore, ¥ is input-output stable or LI-stable for some q € [1, 00| if there exist
nonnegative constants B and ~y such that

[yrllce < Allurllee + 5
for all ty < 7 < o0 and all input signals uw € LI, = L1 (T, R™), where

U(t)v 750 S t S T,

tw={v|v, € LIVT > 1y} and vT(t):{()’ Lo

is an extension of L1 and a truncation of v, respectively, and where
1/
I flles = (S, IF @l dt) ™.

Thus, internal stability of an LTI system is exactly asymptotic stability of its au-
tonomous part. The definition of input-output stability means that any input signal
w € LT, R™) is transformed by ¥ into an output signal y € L£(T 4, RP), i.e. also the
L%-norm of y is finite which normally does not have to be the case |[HinPri|.

To close this section, we finally cite some properties and connections between asymptotic
stability of LTI systems (2.69) and Lyapunov equations (see also Subsection 2.5.1.3):

THEOREM 2.42. The following are equivalent:

(1) The matriz A is asymptotically stable.

(2) For every positive semi-definite Q) (written Q) > 0), there exists P > 0 such that
AP + PA* +@Q = 0. This equation is called the (continuous-time) Lyapunov
equation.

(3) There exists P > 0 such that AP + PA* + 1 = 0. O

Here, A is the system matrix which describes the dynamics or the internal evolution of
(the autonomous part of) system (2.69).

REMARK 2.43. If A is asymptotically stable, then the solution P of the Lyapunov
equation 1s uniquely determined by

P = /00 €A(T7tO)Q6A*(T7tO) dr.
to

Hence, if Q = BB*, then P is the infinite reachability Gramian P from (2.60) in Defi-
nition 2.30. See also (2.78).
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2.5. Model Order Reduction

The general task of model order reduction (MOR) is to obtain an approximate model
of a given large-scale system, which is a lot smaller in size and has a noticeably lower
complexity. The model shall still describe the original system’s dominant behavior up to
a certain accuracy, i.e. the input-output behavior of the original system must be main-
tained. Further, relevant system properties such as passivity and stability should be
preserved. Therefore, a good reduction methodology must be accurate, efficient con-
cerning computational and time costs, numerically robust, and it must generate useful
models with respect to stability and passivity.

There have been developed lots of model reduction approaches in a variety of research
areas such as electrical and mechanical engineering, control design, or computational
fluid dynamics (cf. [Ant, SchVorRom]|, for instance). The by far largest group of MOR
algorithms is taylored for linear and, in particular, LTI systems. The most popular
classes within this group are methods based on Hankel norm approximants and truncated
balancing realizations, on Krylov subspaces, or on sampling methods such as the proper
orthogonal decomposition.

Besides these purely numerical MOR techniques, there also exist symbolic ones [Hen,
Wic04| which are indeed costly to compute, but particularly for nonlinear DAEs arising
in electrical circuit design, they additionally allow a deeper insight into the functional
relations between the circuit’s components. "Symbolic" in this sense means that the
system parameters are kept as symbols instead of merely numerical values.

The following subsections provide an overview of the most popular algorithms for model
order reduction in their basic versions. Also symbolic methods for both linear and
nonlinear systems are reviewed.

2.5.1. Numerical MOR. Numerical MOR techniques can be applied in many dif-
ferent settings. Linear or, more precisely, LTI systems are best investigated and, in a
consequence, the largest group of MOR algorithms applies to that kind of dynamical
systems. Often they are Laplace transformed and investigated in frequency domain by
making use of their transfer function.

Within the last years, there were mainly two categories of approaches. The first one
relies on approximating a matrix with one of lower rank by singular value decomposi-
tions which leads to so-called Hankel norm approximants and truncated balancing re-
alizations. These approaches usually lead to very accurate and very small reduced
order systems'’. Furthermore, one has global error bounds and the guarantee of sta-
bility and, under certain conditions, passivity preservation. However, they have very
high numerical cost, since there are Lyapunov or Riccati equations involved whose
solving need O(n?) operations, where n is the dimension of the state space. Recent
advances on these topics have been made though in order to overcome this problem

|Li, LiWhi, RabPed, SidGri, SorAnt, ZhoLiCaiGuo|.

9The order of a system is the dimension of its state space.
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The second category of MOR algorithms is based on Krylov subspaces and constructs
approximations to the original system’s transfer function around specified frequency
points. The widest known methods within this category are the algorithms of Lanc-
zos and Arnoldi. Since the original system matrices are needed only for matrix-vector
multiplications, this class of numerically robust algorithms is suitable for MOR of very
large-scale dynamical systems and works efficiently at low numerical cost. These facts
together with their ease of implementing are mainly responsible for the popularity of
Krylov methods, particularly in electrical engineering. Unfortunately, there is also a
number of drawbacks: they provide only locally good approximations and lack of global
error bounds. Further, there is no guarantee of stability and passivity preservation
which makes post-processing necessary. Recent developments, however, showed that un-
der certain circumstances both can be guaranteed [Ant05, Bai, BaiSloSmiYe, FreFel,
Fre04, Gug03, OdaCelPil, Sor|. There are also some efforts w.r.t. error estimation
[BaiSloSmiYe, Slo|.

There exist further interpolation methods such as vector fitting and tangential interpo-
lation, hamiltonian based concepts, and some hybrid methods. However, these methods
will not be treated here. In literature, one can also find structure-preserving MOR
methods for linear systems of DAEs.

The above techniques are well-established approaches to generate reduced systems in
the linear case. The development of effective and efficient stategies for the reduction
of nonlinear systems, however, remains challenging and relatively open. Attempts to
perform (bi)linearizations or Taylor expansions on a system’s nonlinearities generate
reduced models of only local validity and, due to computational cost, mostly are limited
to quadratic expansions. Therefore, their application is limited to weakly nonlinear
systems. Proper orthogonal decomposition (POD) and the trajectory piecewise-linear
approach (TPWL) are MOR techniques that can be applied also to strongly nonlinear
systems. While the latter one is based on weighted sums of linearizations along a training
state-trajectory of the original system, POD — which is popular also for LTT systems —
is a sampling method that derives a reduced model from a given set of data, i.e. time
snapshots of the original system’s state trajectory.

In all of the above methods the state space of the original system is projected onto a
lower-dimensional one in order to obtain a more compact system. The bottleneck of these
methods is finding the matrices for the projections. It should be noted that the change
of states leads to system variables which in general are not physically interpretable
anymore. Further, during the reduction process the structure of the system matrices
usually is lost by performing the projections. The system structure will be focussed in
Chapter 4 when we exploit the hierarchy of the system in order to derive reduced models
of coupled systems in the context of electrical circuits.

The following subsections present some of the most popular numerical model order re-
duction techniques. For further information, we refer to the references given there. For
ODEs in state space formulation, a brief overview of some different MOR methods is
given, e.g., in [AntSor|.
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2.5.1.1. Projection-based Methods. Model order reduction based on projection
derives simplified models for a given system by projecting the state space of the origi-
nal system onto a lower dimensional subspace. This concept is the basis for the most
widely used approaches for model order reduction of dynamical systems in state space
representation. In a certain way, it is similar to a simple truncation in an appropriate
basis.

The general concept is not limited to linear systems. Therefore, assume that a dynamical
system X is given in state space form by

Ei(t) = F(x(t),u(t)),

y(t) = G(x(t), u(t))
with states x : 7 — R”, inputsu : 7 — R™, and outputs y : 7 — RP. The corresponding
spaces are denoted by X', U, and ). F': R"xR™ — R" and G : R” xR™ — RP in general

are smooth nonlinear functions and £ € R"*" may be singular. Consider a coordinate
transformation

(2.72) 7(t) = Ta(t)

(2.71) ¥

with T € R™ " regular. Partitioning

with Z(t) € R¥, 2(t) € R** V,W € R™*, and the superscript * denoting the trans-
pose?’, one has W*V = I, and, thus, II = VIW* € R™*" in general is an oblique projection
onto the k-dimensional subspace spanned by the columns of V' along the kernel of W*.
If V=W, i.e. the columns of V form an orthonormal set of vectors, II is orthogonal and
called a Galerkin projection. Otherwise, if V # W, 1I is called a Petrov-Galerkin
projection.

Substituting for x in (2.71) by using the change of coordinates (2.72) and premultiplica-
tion of the dynamical part by W* yields

W*E(VZ(t) + Tiz(t)) = W*F(VZ(t) + Ty (t), u(t)),
y(t) = G(VE(t) + Ty (t), u(t)).

Note that these equations are still exact. Assuming that 717 in (2.73) is "small", its ne-

(2.73)

glect performs the actual approximation. This corresponds to restricting or "truncating"
the states x of the original system > by performing the projection II:

r=T'2=Vi+ Tzt~ Vi=VWw=I().
Thus, the resulting reduced order system 5 given by

. Bu(t) = WP(VE(t), ult)),

(2.74) g(t) = G(VE(t), u(t))

with £ = W*EV is a dynamical system that evolves in a subspace of dimension k
which normally is chosen a lot smaller than n. Obviously, the approximant > of X is

20For complex-valued matrices and vectors, the superscript = denotes the conjugate transpose.



54 2. FOUNDATIONS
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FIGURE 2.9. Diagram showing the projections of F and the states x via
II:R" = RF = R, 2+ Wz — VIW*z.

"good" only if the influence of the neglected term 77z is "small" in an appropriate sense.
II(E) := E is called the projected matriz of E. The situation is shown in Figure 2.9.

The MOR approaches in the following subsections make use of the projection concept.
The determination of the projection matrices V, W is made using Krylov spaces or sin-
gular value decompositions of certain matrices.

2.5.1.2. Singular Value Decomposition (SVD). The singular value decomposi-
tion (SVD) is one of the most useful tools in applied linear algebra which can efficiently
be computed. First, we will give a definition of the SVD of a matrix.

DEFINITION 2.44. (Singular value decomposition)
For a matrix M € C""™, n <m, let o0 > ... > 0, > 0 be the nonnegative square roots
of the eigenvalues of M M*, where M* is the conjugate transpose of M. A decomposition

(2.75) M =USV*

with ¥ € R, ¥, = 04, Xi; = 0 for i # j, and unitary matrices U € C"*", V € C™*™
18 called a singular value decomposition of M, and oq,...,0, are the singular
values of M.

Note that the singular values o4, ...,0, of M are unique. Every matrix with entries in
C has a singular value decomposition, it is unique up to simultaneous multiplication of
corresponding columns of U and V' by —1, if all o; have multiplicity 1.

REMARK 2.45. The largest singular value of a matriz M 1s equal to its induced 2-norm.:
[ M|

(2.76) | M ||z = sup = v Az (MM*) = o1 (M).
w0 |17l

Hankel norm approximation, which is not treated here, uses the SVD concept to ob-
tain approximate systems of order k& < n that are optimal w.r.t. the Hankel norm.
This method uses a direct generalization of the Schmidi-Mirsky/Eckart-Young theo-
rem (cf. p. 58 and [Ant, AntSor| for further information) to integral operators resul-
ting from LTI systems, namely, the theorem of Adamjan-Arov-Krein [AdaAroKreT71,
AdaAroKre78|. However, balanced truncation and proper orthogonal decomposition are
two very popular MOR techniques using SVD that will be explained in a basic version
in the following two subsections.
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2.5.1.3. Balanced Truncation (BT). Balanced truncation refers to a whole class
of algorithms for SVD-based model order reduction of LTI dynamical systems. For
simplicity, we treat here a very basic version and consider a first order ODE given in
state space representation by

t(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).
In addition, we assume > to be asymptotically stable, reachable, and observable, i.e.
all the eigenvalues of A have a negative real part and rank R(A, B) = rank O(C, A) = n,

where n is the dimension of the state space (cf. the corresponding subsections in Section
2.4).

The reduction of ¥ is performed by applying a so-called balancing transformation and

(2.77) DE

subsequently truncating the state vector z in an appropriate way. For the reduced
system, stability is preserved and an a priori computable error bound is available. In the
following, we explain the details.

The concept of balancing is strongly connected to the amount of energy (cf. Section
2.4.3) that is needed to steer a stable system from the initial state z, to a state x and
the energy that is produced by observing the output where the initial state is x. Since
certain states of the system have to be removed in order to obtain a reduced system,
the idea is to remove those states that are difficult to reach and those that are difficult
to observe, i.e. those states that need a lot of energy to be reached and yield only little
observing energy.

However, these concepts depend on the chosen basis. Therefore, states that are difficult to
reach in general may not be difficult to observe and vice versa. For that purpose, a basis
for the state space is needed in which states that are difficult to reach simultaneously are
difficult to observe. A transformation satisfying these requirements is called a balancing
transformation.

States that are difficult to reach have a significant component in the span of the eigen-
vectors of the reachability Gramian P corresponding to small eigenvalues. The same
holds for states which are difficult to observe and the observability Gramian Q, where P
and Q are given by the infinite integrals in (2.60), (2.63). They are the unique solutions
of the Lyapunov equations (see Theorem 2.42 and Remark 2.43)

(2.782) 0 = AP + PA* + BB,
(2.78Db) 0=A"Q+ QA+ C*C.
Note that from these equations it follows immediately that P and Q are symmetric
(hermitian). Moreover, since X is (asymptotically) stable, reachable, and observable,
P and Q are positive definite (cf. Theorem 2.42 and [Ant]). By applying appropriate
equivalence transformations

ﬁ _ TPT*, Qv _ (T*)il QTfl
to P and Q, it is achieved that

(2.79) P = Q =diag(oy,...,0,)
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with o; := 0;(X) being the Hankel singular values of 3, i.e. the square roots o; =

VN (PQ) = /AN(PQ) of the eigenvalues of the product PQ of the reachability and

observability Gramians®!. They are input-output invariants of 3. By the transformations
above, it is ensured that states that are difficult to reach simultaneously are difficult
to observe, since P and Q are equal. To obtain a suitable transformation matrix 7T,
Cholesky factorizations P = UU* and Q = LL* and the SVD of U*L = ZSY* are
computed, where S = diag(oy,...,0,). Then, S is used to define the transformation
matrix 1 by
T=5172U" =853V L".

Due to the computation of the SVD of U*L in order to obtain the Hankel singular
values of the system, balanced truncation is called an SVD-based model order reduction
technique.

Applying the same transformation 7' to the system matrices in (2.77), one obtains a
balanced version of ¥
i(t) = TAT *x(t) + T Bu(t),

(2.80) Pl ) = CT=a(t) + Dult).

Clearly, the transformed Gramians P and Q solve the Lyapunov equations (2.78), where
the system matrlces A, B, and C have to be replaced by their balanced equivalents
A= TAT! B =TB, and C := CT-'. Since the gramians P and Q are equal and

given by S = dlag(al, ...,0p), they can be partitioned,
~ = S; 0
pegesa|S 0]

such that, w.l.o.g., S is a k x k matrix and contains the £k largest Hankel singular values
o1 through oy, while SQ contains the n — k smallest ones. According to this partitioning,
the system matrices A B C are partitioned as well:

An 412
Ay Ag
Finally, the system defined by

g () = Auz(t) + Buu(t),

- y(t) = Ciz(t) + Du(t)

is the reduced system of order k obtained from X by balanced truncation. As well as
) itself, > is balanced. Moreover, if the diagonal elements of S; are distinct from those
of Ss, asymptotic stability, reachability, and observabzlzty of 3 are preserved in

s, Furthermore, in this case the error system > — S is bounded by twice the sum of the
neglected Hankel singular values o; [Ant, AntSor, and references therein],

(2.82) ok <12 = Sllie < 2(04s1 + - + 0n).

-~

(2.81)

The H-norm in this bound is given by
Il = 1G5l == sup [[Gi(s)ll2 = sup [|Gs(iw)]l2,
we

Re(s)>0

2'Here, A\, (M) denotes the k-th largest (in magnitude) eigenvalue of M.
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where Gy, := C(sI — A)"'B + D is the transfer function of ¥ given by system matrices
A,B,C, and D as in (2.77). In other words, the H.,-norm describes the maximum of
the highest peak of the system’s frequency response, i.e. the largest singular value of Gy,
evaluated on the imaginary axis.

REMARK 2.46. Usually, the Hankel singular values decay rapidly such that the upper
bound in (2.82) guarantees good approximations even for very small systems 5 of order
k < n. A study on the decay rate of Hankel singular values can be found in |Ant,
Chapter 9.

2.5.1.4. Proper Orthogonal Decomposition (POD). The model order reduc-
tion method of proper orthogonal decomposition (POD) is an application of the SVD
in order to approximate general dynamical systems. This application flexibility relies on
the fact that the reduced system is derived from a given set of data, i.e. measurements
of the state trajectory at certain points of time. For nonlinear systems, the generation
of these time snapshots might be costly due to the required simulation of the original
nonlinear system. Furthermore, in both cases of linear and nonlinear systems the choice
of suitable inputs becomes involved, since the time snapshots clearly depend on the
input-dependent simulation data.

In this subsection, we will consider state space systems of the form given by (2.71). The
data set usually is a collection of time snapshots of the resulting state trajectory x(-)
w.r.t. a certain input function. The snapshots are then arranged in a matrix in order
to compute an SVD. A low-dimensional subspace for the approximation of a (usually
large) data set then is provided by taking into account only those contributions that
correspond to the largest singular values.

Assume that the states x(t) of the dynamical system (2.71) live in R". The goal is to
approximate this state trajectory by one that lives in a lower-dimensional space R* with
k < n. Assume further that for a fized input u(t) applied to the system N snapshots of
the trajectory z(-) are given, i.e. samples or measurements of z(-) at N distinct instances
ty,...,ty of time. Arranging them in a matrix X yields a snapshot matrix

(2.83) X =[x ... a5] = [2(t) ... 2(ty)] € R™V,

Note that usually N > n. In a next step, a singular value decomposition X = USV™*,
S = diag(oy,...,0,) € RN with oy > ... > 0, > 0, is computed. From this a low-
order approximation of the snapshot matrix X can be derived, if the singular values decay
rapidly — which usually is the case — and only the k largest ones contribute significantly.
This becomes more obvious if one writes out the dyadic decomposition, i.e. a sum of n
outer products of rank 1

X =USV* = oqwvf + ... 4+ opupvf, + ... + 0pu, ),

R o] + ..+ oRuRY; = UpSiV},
where U = (uy,...,u,) € R and V = (vy,...,vy) € RV are unitary as in Defini-
tion 2.44, where U, and V} consist of the first & columns of U and V', respectively, and
where Sy = diag(oy,...,0,) € R¥*. Depending on the decay of the singular values,

usually k£ < n.
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By defining U S, V" =: X = (71 ... Ty] € RN the matrix X of the truncated elements
Z; approximates the original data set X optimally in the sense that the 2-induced norm
| X — M|y for matrices M with rank M < k is minimized by X. This is exactly the
theorem of Schmidt-Mirsky/Eckart-Young |[EckYou, Mir, SchE, SteSun| which
states that

_min X = Ms = g (X)

if 0x(X) > o0441(X) and with the notation given here. Therefore, the original data
x; = Z?zl vjiuj with (v;;) :=T = SV* € R™ are approximated optimally in this sense
by the truncated elements x; = Zle Vit

The final step to derive a reduced system is that of a projection. Since U;U, = I, a
Galerkin projection II = U, U} is defined and, thus, one obtains a simplification of the
original system (2.71)

5 Di(t) = UrF(Ua(0), uld)),
7(t) = G(U=(1),u(t),

where E = U;EU, and where the trajectory z = Uz : T — RF evolves in a low-
dimensional subspace of X spanned by the k leading columns of U.

(2.84)

To close this section, we add some
REMARKS 2.47. [Ant, Her]|

e In general, for a matriz A € R"™"™, n < m, its proper orthogonal decompo-
sition is given by a decomposition

Yiroc Yim
A=lay ...apn]=[uy ...u,]- | + . :
Yn1 " Tnm
where U = [u; ... u,) € R™" is a set of orthonormal vectors u;, the principal

directions, and I' = (;;) € R™™ is a coefficient matriz.

e Since the resulting simplified model 5 depends on the input function applied to
the system and the time instances at which the snapshots are taken, the re-
sulting singular values are no system invariants. Hence, one does not obtain
an approximation of the original system, but an approximation of the original
system together with its applied external input. Further phenomena of the system
which are not captured by the snapshots cannot be represented by the reduced
system. Hence, especially at time instances where the dynamics of the system
change rapidly, the sampling rate for the snapshots should be increased.

e A general problem of POD methods for MOR is the determination of the reduced
model’s quality, i.e. the question how well the reduced model approrimates tra-
jectories other than the measured one. However, empirically the reduced system
yields good approximations also for other inputs.

2.5.1.5. Krylov Subspace Methods. In SVD-based approaches such as the ba-
lanced truncation methods or Hankel norm approximations the Gramians P, Q are in-
volved which are solutions to the Lyapunov equations (2.78). Therefore, these methods
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require dense computations of order n® (cf. Section 2.5.1.6), where n is the state space

dimension of the original system. Hence, in their basic versions these methods are ap-
plicable to systems of only moderate complexity.

However, alternatives are given by MOR approaches using concepts based on Krylov
subspaces. These Krylov methods provide iterative algorithms for the computation of
appropriate projection matrices in order to project a system’s state space onto a lower-
dimensional subspace. Although system properties such as passivity and stability in
general are not preserved by Krylov methods, those approaches are most widely used for
the reduction of LTT systems. This is mainly due to significant savings in computational
effort and their applicability to large-scale systems.

A Krylov space of order i is defined by an n x n-matrix M and an n-dimensional vector
v as follows:

(2.85) Ki(M,v) =spancol[v Mv M?v ... M"'w].

In the following, we will not distinguish between the space K;(M,v) and the matrix on
the right hand side. If M is sparse, it can quickly be multiplied to v, hence a basis for
IC;(M,v) can quickly be computed. A generalized form uses an n x m-matrix V' instead
of v, where its m columns are interpreted as vectors. Hence, the generalized Krylov
space is given by

(2.86) K;(M,V)=spancol[v; Muvy ... M oy ... v, Mo, ... Mo, ],

where v; are the columns of V. Krylov spaces are well known in the numerical linear alge-
bra community. In the control systems community, however, K, (A, B) and K, (A*, C*)*
are known as reachability and observability subspaces R(A, B) and O(C, A) (cf. Sections
2.4.1 and 2.4.2). The origin of Krylov methods is found in iterative computations of
eigenvectors and eigenvalues of matrices, but there are also applications to the iterative
solving of matrix equations and to iterative approximation of linear dynamical systems
by matching moments of their transfer functions. In the following, we will focus on the
latter topic.

Assume a linear time-invariant system Y is given in state space form by
Ei(t) = Ax(t) + Bu(t),
y(t) = Ca(t) + Du(t),
where E € R™™ may be singular. The remaining system matrices A € R"*" B € R™*™

C € RP*" and D € RP*™ are as usual. Since X is uniquely determined by its impulse
response h or, equivalently, by its transfer function H which is the Laplace transform

(2.87) >

H(s) = (Lh)(s) = /000 h(t)e *'dt, s e C,

of the impulse response, a possibility to approximate system (2.87) is the approximation
of its transfer function. This can be achieved by matching a number of moments, i.e. co-
efficients, of the Laurent series expansion of H at some points in the complex plane.
Thus, an interpolation of the original system’s transfer function is aspired.

Recall that if the matrix pencil AE — A is regular, i.e. det(AE — A) # 0, the transfer
function of X is given by the p x m matrix-valued function H in the independent complex
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frequency variable s

H(s)=D+C(sE - A)"'B,

where each of the entries in H is a rational function in s € C. If E is regular, i.e. (2.87) is
an ODF, expanding H around infinity by applying the Neumann expansion, one obtains

(2.88) H(s) = D+C(E'B)-s ' +C(E'A)(E'B)-s7?
+C(ETA*E'B) s+ ...

The moments mg = D, m; = C(E~'A)"Y(E~'B), j > 0, are called Markov parameters.

Then an approximation H(s) = Y-, m; s/ of H is aspired such that its first ¥ moments

mj, 7 =20,...,k —1, match the first £ ones of H. This problem is known as the partial
realization problem |Ant, Kall.

If H is expanded in sy € C, det(soEf — A) # 0, one obtains
H(s)=D—C(A—syE)'B
— C(A = 5oE) 'E(A—s0E) 'B - (s — s0)
—C((A—sE) 'E) (A= $0E)'B- (s — 50)° + ...

(2.89)

with shifted moments at the expansion point sy given by
mo=D — C(A— syE)"'B,
m; = —C((A = soE) 'E) (A= sE)"'B, j>0.

Again an approximation is searched for whose first £ moments match those ones of
(2.89). If so = 0, this is known as the Padé approzimation problem [BakGral, while for
a general value of sy this is the problem of rational interpolation |[And Ant].

In general, one can also construct reduced-order models whose transfer functions match
the original one at multiple interpolation points sg, S1,...,5. The corresponding ap-
proximation is called multi-point rational interpolant |GalGriDoo, Gri, LasWil].

In our case here, the described problems can be solved numerically stable and efficient by
applying Arnold: or Lanczos methods which will be explained subsequently. The big
advantage of these methods is that it is guaranteed that the resulting reduced system’s
transfer function has the same moments as the one of the original system up to a certain
number without having to compute these moments ezplicitly. Hence, the matrix inver-
sions and factorizations involved in explicit moment computations are avoided??. To be
more precise, if one considers the span of the first & moments of the original system’s
transfer function H expanded around sy # oo and premultiplied by C~! (D assumed to
be zero), i.e. the Krylov space

Ke(Ag'E,Ag'B) = [Ay'B Ay'EA;'B ... (Ay'E)"'A;'B]

with Ag := A — soFE, then the orthonormalization of K (A, E, A;' B) yields a matrix
V € R™™ guch that for mk < n a Galerkin projection I = VV*, V*V = I,;, in R" is

22Note that in general the computation of the moments is numerically problematic, since the powers
of eigenvalues of A grow exponentially fast.
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Input: matrix M € R™*" vector b € R”, and order k of a Krylov space K, (M, b)
Output: V € R f c R" and H € R*** such that

MV =VH + fey,
with H=V*MV, V*V=1I, V*f=0,

where ey is the k-th unit vector and where H is in upper Hessenberg

form.
V1 = ﬁ
w = Muv,
o) = vjw
Ji=w—aqv;
Vi = [U1]
H, = [061]
for j=1,....k—1do
Bi =114l
Vj+1 = ﬁ

Vj+1 = [Vp Uj+1]
-]
63‘6]‘

w = Muvj;

h =V, w
firn=w=Vinh
Hj = [Hj, D]
end

Algorithm 2.48: The Arnoldi algorithm.

given. This projection then is used to derive a reduced system S defined by

Ex(t) = Az(t) + Bu(t),

(2.90) ok J(t) = Cz(t) + Du(t),

where E = V*EV, A = V*AV, B = V*B, C = CV, and where the states z = V*z
evolve in R™*. The crucial fact now is that the first & moments m; of the reduced
system’s transfer function H = C(SE A) LB + D match those of H |Gril:

ffzj:mj, OS]SI{}—l

The computation of V' can be carried out efficiently and in an iterative way by the
Arnoldi algorithm (cf. Algorithm 2.48) or Arnoldi-type methods, depending on whether
one deals with single-input single-output (SISO) or multi-input multi-output (MIMO)
systems. Similarly, considering the two Krylov spaces

Ke(Ag'E,Ag'B) = [Ay'B Ay'EA;'B ... (Ay'E)"'A;'B],
Ke(Ag*E*, Ay CY) = [Ay*C* AJ*E*AS*C* ... (Ay"E")*'A;+C*]
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with Ag = A — soF and the superscript —+ denoting the transposed inverse, the two-
stded Lanczos iteration or Lanczos-type methods yield two biorthogonal matrices
V,W € R™mk W*V = [, such that a Petrov-Galerkin projection II = VW* is
given. Applying this projection to (2.87), one obtains a reduced system

- WUEVAE) = WAV () + W Bu(t),
(2:91) = J(t) = CV2(t) + Du(t),

whose transfer function has the same moments as H not only up to the first k, but even
up to the first 2k ones:

ﬁlj:mj, O§]§2]€—1

The same numbers of matched moments are achieved if one considers the Markov para-
meters of the corresponding transfer functions, i.e. the coefficients of the Laurent series
expansion at sy = oo. In that case, recall that £ has to be regular. Then one has to
consider the Krylov spaces

Ky E'AE7'B)=[E'B E'AE'B ... (E'AF'E'B]
for Arnoldi-type methods or
KWE'AE™'B)=[E'B E'AE'B ... (E'A*'E'B]
K (ET*A* E7*C*) = [E~*C* EA'E~*C* ... (E*A)'E—*C*]
for Lanczos-type iterations. More information about Lanczos- and Arnoldi-type meth-

ods and algorithms can be found in |Bai, FelFre, Fre03, FreFel, GalGriDoo, Gri,
OdaCelPil|.

For reasons of simplicity, the Arnoldi and two-sided Lanczos algorithms are described
here in Algorithms 2.48 and 2.50 only for SISO systems, i.e. for m = p = 1. Since in
that case the system matrices B, C' actually are vectors in R", the above algorithms are
formulated involving vectors b, c*.

In the Arnoldi iteration, which is mainly a modified Gram-Schmidt orthonormalization,
one takes advantage of the fact that from step to step only the last column and the entry
(k,k — 1) of the projected matrix H, = VMV change. Note that for the two-sided
Lanczos Algorithm 2.50 one has

MV = ViTy, + Brravrraey, MWy = WiTy + Ve Wi €,

where Vi, = (v1 ... v), Wi = (w1 ... wy), and
a1 72
T, = P2
Yk
Br g

REMARK 2.49. The two-sided Lanczos algorithm is a modification of the original Lanc-
208 procedure which is designed only for symmetric matrices M. Thus, the two-sided one
15 more general.
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Input: matrix M € R™*", vectors b, ¢* € R", and order k of Krylov spaces
ICk (M, b) and ,Ck (M, C)
Output: Vi, W, € R™* f. g, € R", and T}, € R*** such that

Tk = W]:M‘/k, V;Wk; = Ik, W]:fk = O, V}:gk =0.

Br=/lbrer|

Y1 = sign(b*c*) B

U1 = 5/51

wy = ¢/

for j=1,...,k do

a; = wiMu,

rj = Muvj — a;v; — U1
5 = M w; — ajw; — Bjw;
Bivi = /lriqll

Vi+1 = sign(rjg;) B
vjt1 = T5/Bj+

Wit = ¢j/ 7+

end

Algorithm 2.50: The two-sided Lanczos algorithm.

Furthermore, for symmetric matrices M the matrices H; in the Arnoldi iteration are
tridiagonal and the Arnoldi algorithm coincides with the Lanczos one |Ant, Remark
10.4.2].

There exists a variety of improved, modified, or generalized methods based on Krylov
spaces such as rational Krylov methods, implicitly restarted versions of the Arnoldi or
Lanczos procedures, algorithms for multiple interpolation points, or rational interpola-
tion [Ant, GalGriDoo, Gri, LasWil|. Krylov-based moment-matching methods can
efficiently be applied to large-scale problems, the dimension of the state space can be up
to millions. On the other hand, the reduced system yields a good approximation only
locally around the expansion point(s) sg respectively sq, ..., s;, whose optimal choice is
an open problem. Furthermore, no global error estimate is known and system proper-
ties such as stability and passivity in general are not preserved, which usually makes
post-processing necessary to realize these properties. However, recent advances on these
topics have been made for standard state space systems and also for structured gene-
ralized ones arising in circuit simulation |[Ant05, Bai, BaiSloSmiYe, FreFel, Fre04,
Gug03, OdaCelPil, Sor|.

2.5.1.6. SVD-Krylov Methods. SVD-Krylov methods aim at the development
of approximation methods that combine the advantages of both the Krylov space and
SVD-based concepts.
While the SVD-based model order reduction methods in the previous subsections pre-
serve system properties such as stability and under certain conditions passivity and
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provide global error bounds for the error system ¥ — i, reduced systems obtained by
Krylov methods might be unstable?®. Global error bounds are in general also not avai-
lable for the latter ones and Lanczos or Arnoldi methods might break down under certain
conditions on the reachability and observability matrices of the corresponding system.

Nevertheless, Krylov methods mostly are preferred which is mainly due to the signifi-
cant savings in computation effort; while solving the Lyapunov equations involved in
SVD-based reduction methods needs O(n?) operations and, therefore, the corresponding
algorithms are applicable to systems with only a few hundred states?!, the computational
cost for Lanczos- or Arnoldi-type iterations amounts to O(k?n) respectively O(kn?) ope-
rations, depending on whether one deals with sparse® or dense systems®®. Thus, Krylov
methods can be applied also to large-scale systems, where n is up to millions. Moreover,
matrix factorizations and inversions necessary in SVD-based approaches are avoided,
since Krylov-based methods involve only matrix-vector multiplications. In addition,
there is no need to compute the transformed n-th order balanced model in order to
subsequently perform a truncation of the state vector.

For the reasons explained above, there are approaches available — model reduction by least
squares |Ant|, for example — that combine (some of) the advantages of both the Krylov-
and SVD-based methods. This is achieved mainly by exploiting certain connections
between the two approximation concepts. For example, the (generalized) reachability
and observability Gramians can be obtained by solving the Sylvester equations, a more
general form of the Lyapunov equations (2.78). Another example is the use of iterative
methods to solve the Lyapunov equations in an approximate way, which yields approxi-
mately balancing transformations. Hence, one obtains reduced systems by approrimately
balanced truncation.

However, we abstain from further describing these methods and refer to [Ant, Chapter
12] instead.

2.5.1.7. The Trajectory Piecewise-Linear (TPWL) Approach. The trajec-
tory piecewise-linear (TPWL) approach |Rew| is a model order reduction method which
is preferentially applicable to nonlinear dynamical systems. It was firstly developed
in [RewWhiO1| by Rewienski and White (see also [RewWhi02, RewWhi03|) and
mainly targets at MOR of systems arising from electrical circuits. The main idea of this
technique relies on the linearization of a nonlinear dynamical system of first order at
multiple points along the state trajectory that corresponds to a training input u. The
linearized models then are reduced by appropriate MOR methods for linear systems to
finally obtain a reduced approximation of the original nonlinear system by a weighted

23A remedy to this are so-called implicitly restarted Krylov methods. See, e.g., [Ant].

24H0wever, recently there have been made advances in the development of methods to overcome
this problem by using approximate Gramian computations [Li, LiWhi, RabPed, SidGri, SorAnt,
ZhoLiCaiGuo|.

25A system is called sparse if the system matrices A, E are sparse. A matrix is said to be sparse if
many of its entries are zero. A common definition is: an n x n matrix M is sparse if the number of its
non-zero entries is O(n).

26Memory costs in both cases are of the order O(kn) [Ant].
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sum of all the reduced linearized models. In the following, the procedure is explained
more detailed.

Since there exists a variety of reduction methods for linear and, in particular, LTI systems
(see the preceding sections), the basic idea behind the TPWL approach is to take advan-
tage of these well known approaches in order to reduce a given nonlinear system. Since
linearizations yield good approximations only locally around the linearization point, mul-
tiple linearizations about suitably selected states are necessary. Hence, a first step in the
TPWTL approach is the choice of appropriate points on the state trajectory x(-) and the
derivation of the corresponding linearized systems. In a next step, the projection bases
V, W for the reduction of these linearized systems have to be constructed and applied.
The TPWL model of the original system finally is a convex combination of the linearized
reduced systems. Subsequently, this subsection follows the notes of [Rew].

Consider a nonlinear system given by

#9(x) = f(z) + B(x)u,

(2.92) > v — Ce.

where x € X = {z : T — R"} are the states, f,g : R” — R" are continuous nonlinear
functions to describe the system’s dynamics, B = B(z) € R™™™ is a state-dependent
input mapping, v € U = {u : T — R™} the fized input, C € RP*" the output
mapping, and y € Y = {y : T — RP} the output of ¥. The output equation, i.e. the
second equation in (2.92), does not change during the following procedures except for
replacing x by a subspace approximation — so we only consider the dynamical part of .

For the time being, assume that s linearization points x; := x(¢;) are chosen, where
1 =0,...,5s — 1. With the setup as above, the first order approximations of f and g,
i.e. their linearizations, in states x; are then given by

gi(z) = gi + Gi(xr — ),
where f; = f(x;), g = g(x;), further F; = Dxf\m and G; = ng|mi denote the Jacobians
of f and g evaluated at x = z;, and where xy = (t,) is the initial state of ¥. Substituting

the linearizations in the dynamical part of ¥ for each 7, one obtains a set of linearized
systems given by

(2.94) DI %(91‘ + Gi(r — l’z)) = fi + Fi(v — ;) + Biu

with B; = B(x;). Then, an approximation of the original system ¥ is constructed from
these linearizations by a weighted combination

295 (oot - n)) = w5+ Fle - ) + ).

where the weights w; are used to switch the linearized models ¥; on and off depending
on the linearization point x; to which the current state x is closest. The weights are
considered real-valued nonnegative and satisfying the condition S°°" @;(x(t)) = 1 for
all t € T. Therefore, this combination is convez.
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The next step is the reduction of the systems 3J; for all ¢ by applying a suitable MOR,
method for linear systems?’. Assuming that n x k projection matrices V, W have already
been computed, a reduced version of (2.95) is given by

(2.96) %(}:mouxwwruv%mvz_%»):
=0
SZ_: w;(V2)(W*f; + WE(Vz — a;) + W*Bju).
=0

In order to further reduce the computational cost of evaluating weight functions that
still depend on n-dimensional states, one may take a new set of weight functions w; that
depend solely on the reduced states z = W*x instead. This yields the reduced order
model

%((iwi(z)@)z + 7) = (2%(2)1@)2 + ¢+ (jz_:wi(z)éi) u,

j=Cx

(2.97)

where
Y= W*(go — Goxo, .., gs—1 — Gs—1$s—1)(wo(2), . ,ws—1(2))*,
o =W*(fo— Foxo, ..., for1 — Fso1ms 1) (wo(2), . .. ,ws1(2))",
G, =W*G,V, EFE=W*FV, B=W*B, C=CV,
and such that -
Zwl(z(t)) =1, w;i(z(t)) >0 VieT.
i=0

System (2.97) is called the TPWL model of 3, it is subsequently denoted by 5. Note
that this system is still nonlinear. The nonlinearities are introduced by the state-
dependent weight functions w;. It is of great importance to have the evaluation of
w; in z computationally efficient and, simultaneously, the reduced system (2.97) pro-
viding a good approximation of ¥. Hence, typically, only one or two of the weigths w;
should be non-zero at a time, depending on the dominant linearized reduced system flj
corresponding to that state z; = W*x; which is nearest to the current state z = W*x.
Weight functions that proved to work effectively in [Rew]| are given by

w;(z) = wi(2)/S(2), i=0,...,5s—1,

where w; = e #4/ma §(z) = Zj;(l) w;(z), d; = ||z — zil|2, and my is the minimum of
all the d;. The larger the (positive) constant (3, the faster the weights w; change from
~ 0 to ~ 1 as z; becomes the state closest to z, and back to ~ 0, if another state z,
k # i, is closer to z. This motivates the term piecewise-linear in the TPWL approach,
although, in a strict sense, S is not piecewise-linear due to the weights w; still being
smooth functions. For smaller 3, the slopes of the weights are rather moderate®®,

2T [Rew], the use of Krylov methods and, in particular, the Arnoldi algorithm is proposed, but
also SVD-based methods such as balanced truncation are in consideration.
Z8A value of 3 = 25 proved to be adequate in [Rew].
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It is neither answered yet how the linearization points z; are selected, nor how projection
bases V, W are constructed. For this, we first add some remarks: Note that each model
Y; in (2.94) and the reduced equivalents 5 provide an adequate approximation of X
only in a certain neighborhood around z;, i.e. for ||z — ;|| < ¢ = e(x;). To avoid the
very inefficient or infeasible covering of the entire state space by such small balls?, it is
instead "covered with models" only along the training trajectory x(-) corresponding
to the fixed training input u(-). To achieve this, a single simulation of the original
system Y] is performed in which the linearization points x; as well as the corresponding
linearized models ¥, are extracted as follows:

(1) linearize ¥ in the initial state zo = (), initialize 1 = 0
(2) simulate ¥ while x is close enough to the already extracted states x;, i.e. while

AT

for some appropriate 6 > 0, z; # 0
(3) construct a new linearized model about z;;, := x and set i := i + 1
(4) if i < s — 1 return to step 2

For the construction of the projection matrices V, W there is a number of possibilities.
They can be generated by taking into account only the linearized model in the initial state
xo, or, alternatively, a union of different bases corresponding to subsequent linearized
models at the linearization points z; can be set up. Clearly, the latter yields more
accurate results at an additional cost of generating multiple projection bases. Since the
simpler case reduces to the application of a reduction method for linear systems to X,
we focus on the second one. Further, in the first case, which is very low-cost, TPWL
models of only low quality are expected for general nonlinear systems Y. For the second
case, however, assuming that Krylov methods are used to generate V., W, the first few
moments of the corresponding transfer functions are matched for all i, which clearly
yields a more promising TPWL model for ¥. Exemplarily applying the Arnoldi method,
V' is constructed as follows:
(1) initialize i = 0, Vg =[]
(2) repeat until the training simulation is completed:
e compute the linearized system X; corresponding to x; and by using the
Arnoldi process with a suitable k; construct the two projection matrices
Vi, V5 such that they span the Krylov spaces

Kki(Fi_lGiv Fi_lBi)a K:ki(Fi_lGiv Fi_l(fi - lel))
e set V;igg = [‘Gggy%y‘/?rri]

(3) orthogonalize V4, using, e.g., SVD and delete all columns that correspond to
singular values o < ¢ for some appropriate € > 0.

The remaining columns in V,,, are set to be the projection basis V. Note also that the
term f; — Fyx; in X; (cf. equation (2.94)) is treated as an additional input, hence there
are two Krylov spaces computed internally.

29The number of such balls grows exponentially with the dimension of the state space.
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The above algorithms require a simulation of the original nonlinear system 3. that might
be costly. A more efficient technique that avoids the computation is also mentioned in
|[Rew|. It uses the reduced linearized systems instead of the full order nonlinear one
for an approximate simulation and extracts all the necessary models and linearization
points on the fly during this process. For further information we refer to |[Rew]|.

With the above TPWL approach, only the parts of the state space along the training
trajectory are "covered with models". It is assumed that for systems whose state trajec-
tories corresponding to certain inputs w lie within a certain region around the training
trajectory, the constructed TPWL model S in (2.97) will adequately approximate their
input-output behavior. This means that although these trajectories stay close to the
linearization points z; ~ Vz;, i = 0,...,s — 1, the corresponding input signals may be
very different from the training input with respect to dynamics or frequency.

In the general case, stability of the original nonlinear system is not preserved for the
reduced TPWL model. However, under certain conditions, there are stability-preserving
weights computable for the reduced TPWL model. For details see [Rew, Chapter 5].
Moreover, under some further conditions, passivity preservation of the reduced TPWL
model can be derived from the stability analysis therein.

Since in the general nonlinear case there is no frequency domain description in terms
of transfer functions available, the time-domain responses of the original and reduced
order systems are compared to each other by computing ||z(t) — V z(t)||2. Under certain
conditions, a posteriori error bounds at discrete time steps are available [Rew, Chapter
4]. Of course, it is assumed thereby that the involved trajectories do not behave patho-
logically between two such time steps. The former algorithms for deriving the TPWL
model are further extended by computing the error bounds on the fly and taking them
into account for the choice of subsequent linearization points. Under certain conditions,
even a global a priori error bound is available that holds for all times t > ¢y, where t; is
the initial time. However, the practical importance of this bound is rather limited, since
it will typically be very conservative.

After providing this overview of popular numerical MOR techniques, in the next section
we discuss the symbolic case.

2.5.2. Symbolic MOR. By symbolic model order reduction, a whole family of hy-
brid symbolic and numerical algorithms for simplifying a system of equations involving
symbolic parameters is referred to. The main task of these methods is the derivation of
an approximate model for the original one that is more compact and has a decreased
level of complexity. Due to the system parameters given as symbols instead of numeri-
cal values such as "R;" for a load resistor value or a transistor parameter "Sr" in
the context of electrical circuits the approximate model allows insights into the func-
tional dependences among the circuit components and an interpretation of the obtained
formulas in a physical sense.

Note that insights and interpretability of the original symbolic system typically are not
given, since computer-aided analysis involving all exact physical effects usually yields
very large expressions and formulas. Hence, symbolic approximation techniques have
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to detect which ones of the parameters and terms in these expressions are dominant
and neglect the remaining ones. This is achieved by manipulations on the system and
subsequent comparisons to a reference solution of the original system which is computed
via numerical reference values assigned to the symbolic parameters.

The general workflow in both the linear and nonlinear case is as follows [HalWic03,
SomHalBro, Wic04|: Usually one has a circuit netlist description that is translated
into a symbolic system of equations F' via standard graph theoretical methods like MNA
or STA from Section 2.1. Thus, F' describes the circuit behavior mathematically. Ac-
cording to one or several inputs u, design points 7, and a numerical analysis A such as
AC, DC, or transient analysis, reference solutions yp = A(F,u, ) for the output of F'
are computed®®. Depending on the analysis task, the reference solution could be given as
numerical transfer function, its poles and zeros, or as solution in time domain. Further,
the user provides an error bound € and an error function®" E (usually some kind of semi-
norm) to guarantee a certain accuracy of the simplified system. The complexity of F'
then is reduced by iteratively applying symbolic reduction techniques such as removing
terms from the equations and comparing the numerical solution yo = A(G, u, ) of the
so far reduced system G to the reference solutions yp. As long as the error E(yr, yq)
is within the given bound e, the performed reduction step is accepted, otherwise it is
rejected.

Thus, the original system F finally is reduced to a simpler form with less equations, less
terms, less derivatives, and so on [Wic04|. The above algorithm assures that the sim-
plified system is a good approximation in the sense that its numerical behavior coincides
with that one of the original system within the user-given error bound for a given nume-
rical analysis task. The simpler form still contains the dominant parameters in symbolic
form such that one can read off the influences of the dominant system parameters on
certain circuit characteristics. This further allows the identification of those parameters
that have to be altered in order to meet certain design specifications. Moreover, the
simplified system represents a behavioral model for F' which can also be translated into
a hardware description language (HDL) and then simulated using a circuit simulator.

In order to obtain a simplified system with minimal complexity, a ranking, i.e. an opti-
mized order of terms to be simplified, is computed (see Section 4.3.1). Since the number
of terms that potentially can be simplified is large, the ranking is a trade-off between
accuracy and computational efficiency that predicts the influence of a term simplification
on the output of the system. Thus, those terms with the least influence on the output
behavior are simplified first, while those term simplifications with a large influence are
avoided.

Symbolic reduction methods are found to be very effective particularly for component-
based systems such as electrical circuits. Usually these systems provide very accurate

30The reference solutions are given by pairs of sampling points and interpolation values, hence the
accuracy in comparison to the exact mathematical solution y depends on the numerical solver’s choice
of the step size.

31See Definition 4.6 in Section 4.6.
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equations for all their components, e.g. modelling all possible operating domains of semi-
conductor devices such as transistors or diodes. However, in general not all those domains
have to be taken into account due to the topology and the input signals of the circuit at
hand which keep a certain instance of the semiconductor device only in a limited number
of its operating domains. Therefore, the corresponding terms can be simplified.

Symbolic reduction methods are able to detect the significant terms of the describing
equations F' automatically. Since the symbolic system parameters are replaced by appro-
priate numerical values corresponding to 7 in order to compute the reference solutions,
they are a hybrid combination of numerical and symbolic algorithms. The following sub-
sections present symbolic reduction methods for both linear and nonlinear systems. They
are implemented in Analog Insydes |[AI], an add-on for the computer-algebra system
Mathematica [MMA|. Analog Insydes is developed by the Fraunhofer ITWM in Kai-
serslautern, Germany. We mainly follow the approach of [Hen, Wic04], a brief overview
of symbolic methods in industrial analog circuit design can be found in [HalWic03|.

2.5.2.1. Symbolic Approximation Methods for Linear Systems. In linear
symbolic analysis, the linear dynamical system usually is Laplace transformed into a
system in frequency domain with the independent complex Laplace variable s € C. The
main object of interest then is the system’s transfer function. By evaluating it on the
imaginary axis s = iw, the system’s frequency response to a sinusoidal input signal with
constant frequency is investigated. Using a Bode diagram (see, e.g., Figure 1.2 on page
7), the frequency response can be depicted in terms of magnitude and phase, where the
frequency f, w = 2nf, is swept over the frequency domain.

Since even for small circuits the exact computation of a system’s symbolic transfer func-
tion quickly leads to exhaustive expressions, in order to obtain meaningful and compact
symbolic expressions by computer, symbolic analysis programs must be able to automa-
tically perform certain approximations. Depending on whether they are applied before,
during, or after the symbolic transfer function is computed, they are categorized in sim-
plification before, during, and after generation methods, SBG, SDG, and SAG, respec-
tively [ChaMcKayWie, DroSomHor, FerRodHue, GieSan, HenTweSom, Kol,
RodEA, SedDegFic, SomHenDroHor, WalGieSan, Wam|. While SBG meth-
ods simplify the matrix equations describing the system’s behavior before its transfer
function is computed, SDG methods perform simplifications during its computation and
SAG methods directly simplify the transfer function itself. In the following, we restrict
ourselves to describing only SAG and SBG methods.

The aim of applying SBG methods is the elimination of as much insignificant information
from a circuit analysis problem as possible before any symbolic operations are performed.
The first fully automated SBG procedure for matrix-based symbolic analyzers is due
to Droge |DroSomHor, SomHenDroHor|. Its basic idea is the identification and
elimination of insignificant terms in the sum-of-products®? form of each system matrix
entry to achieve complexity reductions. Note that these simplifications describe only

32In MNA contributions of components to the system typically are of the form A7 - f(Bx), where A
and B are incidence matrices describing the circuit topology and f is a function describing the behavior
of the corresponding component.
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partial deletions, since no circuit components are actually removed from the circuit
netlist. In the following, assume that the linear system is Laplace transformed into
frequency domain and given by the linear system of equations (cf. Definition 2.26, page

39)
(2.98) Y A(s,p)x(s) = b(u(s), s, p), seC,

in the complex Laplace frequency variable s. Thereby, p is the vector of symbolic parame-
ters and, by abuse of notation, x(s) and u(s) denote the Laplace transforms of the system
variables z(t), v € X = {x : T — R"}, and the input u(t), u e U = {u: T — R™}.
The output y as usual is a linear combination of the system variables x and is not
important for the following considerations.

In [Hen|, Droge’s algorithm is stepwise improved. In a first step, the term in question to
be deleted from a matrix entry is set temporarily to zero. The solution ¥ of the perturbed
system is computed and compared to the reference solution y at certain frequency points.
If the nominal errors in phase and magnitude,

17l — llyll
Iyl
are small enough, the corresponding term is deleted from the system matrix. Otherwise
or if the system becomes singular, the term is left unchanged. Then the procedure is

repeated with the next term candidate.

E€N,abs — ; ENarg = | argy — arg y|7

In order to cancel as many terms as possible and to terminate as soon as the provided
error bound ¢ is violated, those terms that have the least contribution should be removed
first. Therefore, in a second step, the order of term cancellations is optimized by com-
puting a term ranking (cf. Section 4.3.1). This is done by using a low-cost procedure to
estimate the solution ¥ of the system which is perturbed by the removal of exactly one of
all possible terms ¢ from the original system and an afterward ordering of the resulting
list of terms by their nominal errors, i.e. their influence on the reference solution y.

In a third step, the matrix is compressed in order to remove redundant rows and columns
that might have been created by the cancellation of appropriate matrix entries. More-
over, the system of circuit equations typically contains a large amount of unnecessary
information, since lots of variables usually are not needed for the computation of the
output y. This dispensable information can be detected by a graph search algorithm

and then be deleted, which leads to typical reductions in matrix size between 50% and
90% |Hen, Section 2.6|.

From such a reduced system, an approximation of the original symbolic transfer func-
tion can be computed which is reduced w.r.t. complexity and its polynomial order in
s. This expression can further be reduced by SAG methods [HalWic03|. Techniques
developed for computer-aided symbolic analysis due to Walscharts, Gielen, and Sansen
|GieSan, WalGieSan| manipulate the transfer function by removing terms that cause
only negligible deviations. More precisely, assume that the symbolic transfer function in
the single-input single-output (SISO) case is given as a rational expression

(2.99) H(s,p) = =%

> bi(p)st’
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where a;(p) = . a;;(p) and bi(p) = > bi;(p) are functions in the symbolic parameters
p in sum-of-products form. Then those coefficients a;;, b;; are removed from (2.99) that
cause only a small error not exceeding a given error bound. Thus, the complexity of
the symbolic transfer function can further be reduced drastically, however, without any
reductions on the degree w.r.t. s.

2.5.2.2. Symbolic Approximation Methods for Nonlinear Systems. As we
will see in this subsection, the basic ideas of symbolic simplification methods for linear
systems can be transferred to the nonlinear case. However, one cannot generally expect
to obtain explicit and interpretable formulas for the output as in the linear case, but
the presented methods allow an automated generation of behavioral models of reduced
complexity and with a user-specified accuracy for the use in large circuits, e.g. to speed
up their numerical simulation. The research in this area is relatively young and still in
progress [Bor98, PopHarHedBar, WicEA, Wic01].

Starting from a system of DAEs F', symbolic simplification techniques are used to obtain
a new system G of lower complexity whose input-output behavior is approximately the
same as the one of F. Since the interpretation of complexity depends on the particular
application example, we abstain from giving an explicit definition. Intuitive criteria for
the complexity of a system are its number of equations and variables, the number of
derivatives or nonlinear terms, the number of summands in the equations, or combina-
tions thereof. Nevertheless, the reduction of a system F' only makes sense if the obtained
system G has lower complexity.

In order to guarantee that the input-output behavior of GG is a good approximation to
the one of F, the error E(yr,yq) is checked after each reduction step, where G is the
so far reduced system, yp is a reference solution, and y¢ is the corresponding numerical
solution of GG. As long as the user-given error bound ¢ is not exceeded, the corresponding
reductions are considered to be valid.

In the following, four symbolic model order reduction techniques for nonlinear systems
are reviewed |[Wic04|. These methods are taylored for the complexity reduction of
component-based systems such as electrical circuits, gas pipelines, and mechatronical

systems®3.

Algebraic Manipulations. The first technique is a purely algebraic manipulation
and, hence, an ezact reduction method. Certain variables are eliminated and substi-
tuted in the remaining set of equations. Additionally, independent blocks of equations
are removed. As an example, consider the symbolic system of DAEs in time domain
F(x,%,y,t;u,p) = 0 with symbolic parameters p, input u, output y, and internal vari-
ables © = (x1,...,2,). Assume that one of the equations in F' can be solved for z,
then F' can be simplified by replacing x; in the corresponding terms in the remaining

33The analogies to currents, voltages, and the Kirchhoff laws in electrical circuits are given by forces,
displacement, and the law of d’Alembert in mechanics, respectively. In a gas pipeline network the
appropriate magnitudes are mass flows and pressures, while the Kirchhoff current law is substituted by
the law of mass conservation at each node.
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equations and by dropping the equation that defines x;:

0=z — f(Tlém

F:
0 =g(z;p)

= G: | 0=g(f(@),71;p) |,

where z1 = (%9, ..., x,). Obviously, this method is mathematically exact. Nevertheless,
one has to be careful, since its application may lead to equations including a huge number
of terms. If for instance in the above example f(Z;;p) is a sum of a large number of
terms and x; occurs in g with a high exponent, then an even higher number of terms is
produced by substituting x; with f(Z1;p) in g.

Branch Reductions. The second mathematically exact reduction method detects
and subsequently removes unused branches of piecewise-defined functions which occur,
e.g., in the device model equations of transistors in order to model their different ope-
rating regions. Depending on the input signals, usually these components work in only
a single operating region. Therefore, the branches modelling unused operating regions
may be neglected:

fl(xi;p>7 T <a
flxisp) =19 folzisp), a<a; <b = f(xip) = fow; p) for all z;.
fa(zisp), x>0

In this case, f is to be considered as a function contained in at least one term in at least
one of the equations of the system of DAEs F.

Term Reductions. Written in sum-of-products formulation, the system of DAEs F
consists of a set of equations each containing a large number of terms. But the number
of those that significantly contribute to the sum of a single equation often is small and
the remaining terms, therefore, may be neglected, i.e. deleted from the equation. The
following example, where the j-th equation Fj in F'is a sum of terms v; and where the
k-th term vy is cancelled, shows the principle of this technique:

Nj Nj
F;: Zﬁi(:c;p)zo = G, Z Vi(z;p) = 0.
i=1 i=1,itk
Applying term cancellations thus alters the solution z of the original system F' to the
solution x of the so far reduced system G. Therefore, term reductions are approximating
reduction methods. As long as the accumulated error caused by a cancellation does not
exceed the given error bound ¢, the reduction is considered to be valid.

Note that this technique can also be applied to different levels in F', i.e. when a term
contains a function whose arguments themselves are sums-of-products, term reductions
can be applied to the terms of the arguments and so on.

Term Substitutions. Similar to the last reduction technique, term substitutions
replace appropriate terms of the equations in F' by adequate constants, often certain
average values. Hence, term reductions can be considered as a special case of term
substitutions, since cancelling a term from the equations is the same as replacing it by
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0. Like term reductions, this technique can be applied to different levels in the system
of equations as well.

In the following example, the k-th term ¥, in the j-th equation Fj of F'is replaced by
the constant «:

Nj Nj
F; Zﬁi(x;p)zo = Gj: Z V;(z;p) + k= 0.
i=1 i=1, itk
Obviously, this method also is an approzimating reduction technique, since it alters the
solution z of the original set of equations.

The general reduction workflow has to be considered on two levels. On the first level, a
certain symbolic reduction technique is chosen from the four methods above?*. Once this
has been done, one has a variety of possible internal reduction possibilities. For example,
if term reductions are chosen, one usually has a large set of terms in the equations that
are candidates to be deleted. Hence, on this second level, by the choice of a certain term,
the corresponding internal reduction is performed.

REMARK 2.51. [t turned out that the order of the applied symbolic reduction techniques
influences the degree of reduction in dependence on the system that is to be investigated.
Further influencing factors, of course, are the applied input u used during the reduction,
the error function E, and the user-specified mazimum error €. Therefore, the general
reduction workflow could not be completely automated in a satisfying way. While the in-
ternal reductions in the second level are completely automated, the choice of the reduction
technique in the first level is made by the user.

The order of term cancellations and replacements plays a crucial role: If a term is
cancelled or replaced that causes a rather big error w.r.t. the reference solution yp, the
tolerance for further reductions is rather small. In order to cancel or replace such terms
first that cause only a small error, a term ranking estimates the influences of the single
term reductions and substitutions and orders them accordingly. Then in each internal
reduction step the term with currently the smallest ranking value in the list is reduced.

Further, in order to avoid the time-consuming numerical analyses associated with error
checks after each reduction step, a term clustering has been invented in [Wic04|. By
clustering the terms according to their ranking values, the set of all terms is sub-divided

35 on the reference solution

into bundles of terms with more or less the same influence
yr. Then all the terms in an entire cluster are simplified simultaneously and the costly
numerical error check is performed only once afterwards. If the accumulated error caused
by this violates the error bound e, the term simplifications in the entire cluster are
rejected and the cluster is sub-divided. Then the procedure is repeated with the new

clustering.

341t turned out that one can obtain a high degree of reduction by using solely algebraic manipulations
and term reductions.
35For example, one could take the ranking values’ logarithms as a criterion for the clustering.
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The above procedures finally yield a complexity reduced symbolic behavioral model for
the real physical system at hand. In order to guarantee good numerical solvability,
the index of the corresponding system of equations is monitored during the reduction
process. Although there is a variety of different index concepts available (cf. Section
2.2.2), a common property is that the numerical solving of systems with an index higher
than 1 is an ill-posed problem. Since symbolic simplifications of the equations may
increase the index, the monitoring observes possible changes.






CHAPTER 3

Hierarchical Systems

An increasing problem particularly for symbolic model reduction is the continuously
growing size of systems to be analysed. Together with their sizes, also the complezity
of these systems increases very quickly'. According to Moore’s Law (1975), the number
of transistors on a chip — which he took as a measure for complexity — doubles every
two years. While in 1971 the Intel 4004 processor incorporated 2,300 transistors with
dimensions of ~10 um, nowadays one has feature sizes in the Intel Core 2 Extreme (quad-
core) of ~45 nm with 820 million transistors arranged in 9 layers (cf. Figure 3.1 and Table
3.1).

Promising approaches to overcome the complexity problem for analysis and model order
reduction of large systems and, in particular, electrical circuits are their segmentation in
smaller subsystems (macros) and a coupling part. Hence, the smaller parts of lower com-
plexity can be processed separately taking advantage of reduced resources and increased
efficiency in computation time. Finally, after their processing, the resulting subsystems
are "re-coupled" using the same coupling structure.

This approach seems just natural, since an electrical circuit has a hierarchical structure
of components and devices that are coupled by an interconnecting network (see also
Figure 2.1, page 12). As they are composed of various circuit components themselves,
devices such as amplifiers can be considered as subcircuits and can be further subdivided,
thus yielding a hierarchical structure. If standard graph theoretical methods like MNA
or STA are used to set up the describing system of equations, the hierarchy available on

processor technology release number of transistors
Intel 4004 10 pm 1971 2,300
Intel 8086 3 pm 1978 29,000
Intel 386 1 pm 1985 275,000
Intel 486 800 nm 1989 1,200, 000
Intel Pentium P4 180 nm 2000 42,000, 000
I?(Eiladc—(()fl;)erj) e 45nm 2007 arrangeiQiOI; (2)0&3222

TABLE 3.1. Development of Intel processors from 1971 up to today |wikipedial.

IThe complexity of a system shall not be further specified here, one should think of a system’s
complexity rather intuitively.

7
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FIGURE 3.1. Moore’s Law and the development of Intel CPUs (source:
http://upload.wikimedia.org/wikipedia/commons/a/a9/Moore_Law_
diagram_(2004) . jpg)

circuit level is lost. Consequently, we aim at the exploitation of the circuit structure,
i.e. its hierarchy.

The first section explains the modelling of component-based systems such as electrical
circuits as a coupling network of subsystems. In the second section, interconnected and
coupled systems are defined in a physical sense. Some examples and some references for
structure-preserving MOR of interconnected LTI systems in an input-output framework
are reviewed. The third section presents the behavioral approach that uses the concept
of shared variables to model mutual interactions among subsystems. It is further com-
pared to the systems-theoretical framework using inputs, outputs, and output-to-input
assignments to model subsystem interactions. In order to show the differences between
the two concepts, a differential amplifier is briefly investigated. Section four finally deals
with the macromodel concept and provides an idea for MOR of large electrical circuits
exploiting their hierarchical structure on circuit level.

3.1. Component-based Systems

A component-based system is a real physical system which consists of subsystems (com-
ponents) that are coupled by a connecting network. As already mentioned in Section
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2.1, an electrical circuit is considered as a network of subsystems coupled by a certain
connecting structure. While the subsystems correspond to the circuit’s components, the
connecting structure is given by the topology of the circuit graph.

The modelling of such systems is done on two different levels, i.e. the modelling of the
single subsystems and the modelling of the entire system. The single subsystems are
modelled very precisely including all possible physical effects and operating domains,
since their respective importance for the behavior of the entire system is not yet known.
Therefore, parameterized systems of equations are used that describe the subsystems’
exact input-output behavior for all possible applications and uses.

The actually relevant effects and operating domains are defined by the excitation and
the coupling topology of the entire system. This is done in the second modelling level,
the modelling of the entire system. In the context of electrical circuits, the resulting
systems of equations consist of the model equations for the single subsystems and the
Kirchhoff equations (2.1). Together with the applied inputs, this finally determines the
subsystems’ actual operating domains and physical effects of importance for the behavior
of the entire system. Hence, the dynamical behavior of the entire system is determined
only locally by the modelling of the single subsystems, the Kirchhoff equations only
model the connecting structure.

3.2. Coupled and Interconnected Systems

A general definition of coupled or interconnected systems could be given as follows:

Two or more systems are coupled or interconnected, if they are in-
teracting with each other. This does not necessarily mean that they
have physical connections to each other, but one can consider them
to be abstractly connected thus causing them to operate as a unit.
Hence, some "information" from one of them is provided to and influ-
ences the behavior of the others. The "information" is passed among
the systems by their interconnections |Wil97, Wil07, wikipedia|.

The modelling of complex technical or physical systems such as electrical circuits yields
coupled systems in a natural way as they usually are composed of different building
blocks such as current mirrors, amplifying stages, polarization circuits, transmission lines,
etc. physically connected to each other. In Section 3.3 and in the next chapter, we con-
sider a differential amplifier composed of several building blocks which can be considered
as systems themselves. The mathematical models corresponding to the building blocks or
subsystems usually consist of ordinary differential equations, differential-algebraic equa-
tions, or partial differential equations. By interconnecting the real system’s substructures
among each other, these sets of equations also are coupled in a corresponding way.

Further examples for interconnected systems can be found in the design of micro electro-
mechanical systems (MEMS) or very large system integrated (VLSI) chips, for instance
|Bec, FelParFar, Reis06, Tis|. The acceleration sensor [SomHalBro| in Figure 3.2 is
a MEMS which combines components of an electrical circuit with mechanical parts. The
sensor includes three metal plates that form a series connection of two capacitors, where
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FIGURE 3.2.
The acceleration sensor combines
components of electrical circuits

with mechanical parts.

the middle plate is locomotive. Therefore, in case of acceleration the plate is moved
due to inertia thus changing the capacitances of the two capacitors. This results in a
measurable voltage drop from which the acceleration can be read off.

In [VanVDoo|, model order reduction of interconnected linear systems has been studied.
The systems considered there are composed of k subsystems given by linear MIMO
transfer functions, their interconnections are captured by feedback loops and output-
to-input assignments. More precisely, the internal input u; to the j-th subsystem is a
"linear combination" with matriz coefficients K;;, H; of the subsystems’ internal outputs
yr and the external input ue., while the external output y.,; of the entire system is a
"linear combination" with matriz coefficients R; of the subsystems’ internal outputs:

uj:Kj1y1+---+stys+Hjuext7 J=1...s,
Yeaxt = Rlyl +.o.+ Rsysy

where s is the number of subsystems. Then, structure-preserving reduction methods

(3.1)

based on SVD and moment-matching are presented. Structure preservation in that
sense means the preservation of the block structure of the system matrices. This corres-
ponds to separate reductions of the involved subsystems and their subsequent coupling
in accordance with the original interconnecting structure given by (3.1).2

In [ReiSty08], coupled LTI control systems are considered which are coupled by the same
mechanism as in |[VanVDoo| above. Moment-matching approximation and balanced
truncation methods then are used to reduce the order of the closed-loop systems. The
results are compared to structure-preserving versions of the same reduction methods and
some error bounds based on the H,,-norm of the corresponding transfer functions are
given.

Although the linear case is best investigated for dynamical systems, structure-preserving
reduced-order modelling of coupled systems has received attention only recently. In
|Fre08, LiBai, ReiSty07, VilSchSil| we found some further structure-preserving ap-
proaches which are based on Krylov space approximations with a certain shape of the
projecting matrices in order to preserve the structure of the original system in its reduced
equivalent. However, these techniques can only be applied to linear systems.

2H0wever, note that the task is the approximation of the global mapping from ez t0 Yerr and not
the approximation of the internal mappings from w; to y;.
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Nevertheless, in general we are dealing with nonlinear hierarchical systems which are
much less studied, but of great importance. Of course, there exist methods for model or-
der reduction of nonlinear systems, however, we could not find any nonlinear approaches
that explicitly exploit the hierarchy, i.e. the structure of the overall system.

3.3. The Behavioral Approach

Classic systems and control theoretic approaches use inputs, outputs, and signal-flow
graphs for a mathematical description of a system’s behavior. While the inputs are used
to model the influences of the environment on the system, the outputs serve to model
the system’s influence on its environment. Output-to-input assignments such as feedback
loops are used to model interconnections and interactions between its subsystems.

But the physics of the real system merely relate its variables to each other, intercon-
nections between substructures in the real system merely mean the "sharing" of the
corresponding involved variables. Hence, in general it does not make sense to define
which of the variables should be viewed as inputs and which as outputs. When the sub-
systems become part of an interconnecting network, it is the interconnecting structure
that determines which of the variables at the interconnections act as inputs and which
as outputs. As an example, consider the port behavior of an RLC circuit. Since this
network can be viewed both as current- or voltage-controlled, it is not endowed with a
natural signal flow. Modelling it via input-output formulations, however, introduces a
signal flow structure which is not present in the real physical system.

In contrast to this, by taking the behavioral approach [Wil97, Wil07|, i.e. "variable
sharing" and relations on system variables, as a mathematical model for the real physical
system, all system variables are treated equally and none are specially tagged as inputs
or outputs of certain subsystems. Consequently, the corresponding behavioral models can
be employed in higher generality. As an example, consider the hydraulic interconnected
system that consists of two barrels of water interconnected by a pipe. The physical
interconnection just means that the pressures at the "link terminal” of the two barrels
are set equal, while the corresponding flow variables add up to zero®. Hence, the two
subsystems, i.e. the barrels, share the pressure and flow variables at their "link terminals"
as soon as they are interconnected to each other by the pipe. One also could consider
the whole setup as an interconnection of three subsystems, where the third one is the
pipe itself. In this case, one has two interconnections, the interconnection between
the first barrel and the pipe, and the one between the second barrel and the pipe.
The corresponding pressure and flow variables in both cases then are shared among the
participating subsystems. Physically, there is no signal flow from one of the subsystems
to the other one by declaring some pressure or flow variables of one of the subsystems
as its output and, simultaneously, the input to another one.

Nevertheless, input-output considerations are not ill-founded in general. For example,
the reactions of humans or animals to stimuli from their environment, the contraction
of an eye’s iris blinded by light, or the response to any kind of external command can

3The respective flows are assumed to be directed towards the interior of the barrels.
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FIGURE 3.3.
Differential amplifier segmented

into five coupled subcircuits (L1), t—
(L8), (L9), (DUT), and (DUT2). @

well be modelled by using inputs and outputs. Also in the context of electrical circuits,
sometimes a classification into inputs and outputs is inevitable. As an example, consider
an operational amplifier. In an electrical circuit such as the RLC one mentioned above,
there exists a current? and a voltage potential at each of its ports. While one of them
is imposed, the other one is computed. However, this will not be the case for a logic
device such as the operational amplifier, since imposing the amplified output voltage
will not lead to a suitable input voltage. Therefore, as a general methodology to cope
with coupled and interconnected physical systems, the concept of inputs, outputs, and
output-to-input assignments may lead to a deficient way of describing the actual physical
phenomena of the real system.

The behavioral approach, however, does not seem to have met with a lot of acceptance
in control theory. This might be caused by the fact that it is very natural to consider
controlled variables as inputs and measured ones as outputs. Further, one can show that
LTT systems always allow an interpretation as a coupled system of input-output based
subsystems. This might have led to the impression that the input-output framework is
always suitable.

The two different concepts reviewed above lead to different graphical descriptions in the
contexts of circuit and systems theory. As an example, consider the differential amplifier
shown in Figure 3.3 as an interconnected system composed of five subcircuits (the sources
VCC, VEE included in (L8), (L9), respectively). The controlled variable, i.e. the input to
the entire system, is given by the voltage V} of the voltage source V1, while the measured
variable, i.e. the output, is the voltage potential of node 5 in the circuit, which is denoted
by V$5. A graphical description in a circuit-theoretic context on circuit level differs
from that in a systems-theoretic context using the input-output framework as shown
in Figure 3.4. While the graphic in the circuit-theoretic context is obvious and can be
derived immediately from the diagram in Figure 3.3, the graphic for the latter concept
can be explained as follows; at each terminal of one of the five subcircuits, there exists
a voltage potential and a current which is assumed to be directed inwards. While one of
them is imposed, the other one is computed. One thus has one input and one output,
i.e. one incoming and one outgoing arrow for each terminal of the subcircuit. (DUT?2),
for example, has four terminals, hence four input arrows and four output arrows. The

4Assumed to be directed inwards.
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F1GURE 3.4. Graphical descriptions of the differential amplifier as a
coupled system of interacting subcircuits on circuit level (left) and in
the framework of inputs and outputs (right).

fifth output arrow denoted by V$5 corresponds to the external output, i.e. the output of
the entire system.

The three subcircuits (L1), (L8), (L9) are transmission lines and can be described by a
linear system of DAEs. Therefore, the equations for describing the five subcircuits in
the input-output framework could be shaped as follows for suitable states x,, matrices
E., A, B, C,, and functions Fi:

. T
Evri = At + B (v, ey = V1)

3.2 .
( ) 11 = CLll'Lla
Eygi15 = Agris + Bisvs,
3.3 )
( ) 13 = ClgTyg,
(3.4) Elot19=Agx19 + Blovy,

ig=ClorL,
and further, with the currents ig, i7 directed towards the interior of (DUT),

(3.5) 0 = Fput(zouT, £ouT, YouT, t; UpuT, POUT)

(3.6) 0 = Fput2(zpuTe, TouT2, YouT2, t; UDUT2, PDUT2):

where upyt = (ig, i7,49)” and yput = (ve, v7,v9)” and where upyts = (i1, s, vs, v7) and
yout2 = (v1, 08, —ig, —i7, Yert = V$5)T. Note that the choice of the internal inputs and
outputs of the five subcircuits is not completely arbitrary, but there are various different
choices possible. For example, i and vg are interchangeable in the input and output
vectors of (DUT) if they are interchanged in the input and output vectors of (DUT2) as
well.

Let the input and output vectors u and y contain the internal inputs and outputs u; and
y; as components. Arranging them in accordance with the ordering

(L1, L8, L9, DUT, DUT2)
of the subcircuits, i.e.

... .. T

U = ((vla ‘/1)Ta Vg, Vg, (167 17, ZQ)Ta (Zla 18, Vg, v7)T) )
... . . T

Yy = (Zly 18, 19, (U67 U7, U9)T7 (Ula Vg, =16, —17, V$5)T) )
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the coupling coefficient matrices in (3.1) are given by the blocks of

070]0]0 0 0]L 0 0 0 0
olojojo 0o o0loo0o 0 o0 o0
0[0]0[0 0 0]0 1 0 0 0
olojofo 0 1[0 0 0 0 0
0[0]0[0 0 0[]0 0 -1 0 0

K=1|lololojoooloo o -1 0|,
olo|1]o 0 0lo0 0 0 o0
1[0]0[0 0 0]0 0 0 0 0
o[1|o]o 0000 0 0 o
olojo[1 00[00 0 0 o0
olojojo 1 0[00 0 0 o0

H:[\o 1\00\000\0000\]T,

R=|[0]0]0[0 0 0f0 000 1],

1.e.

U = Ky + Hueach Yext = Ry

In the aforementioned references for structure-preserving model order reduction of LTI
systems, the block matrices K, H, and R play an important role.

3.4. The Macromodel Concept

As already mentioned in the introduction of this chapter, large systems and, in particular,
large circuits can be segmented in smaller subsystems (macros) and an interconnecting
network in order to overcome the complexity problem. Thus, the smaller subsystems of
lower complexity can be processed separately with an increased level of efficiency. In the
following, we will focus on the case of electrical circuits only.

The approach using segmentations of large circuits seems just natural because almost all
of them are composed of several building blocks that are coupled by a suitable intercon-
necting structure. Thus, the segmentation of a large electrical circuit is given in a more
or less natural way. And even the subcircuits or macros themselves may be composed of
several components and subcircuits such that a further decomposition might be useful.
Also in view of parallelization aspects these approaches seem to be valuable.

Ideas in that direction for the use in accelerated simulation are not new, see [HsiRab80,
HsiRab82, HsiRabRue, LiNorHsi, RabSanHsi, Spi83, Spi90, YanHajTri|. Even
earlier and more than 30 years ago concepts for macromodelling have been published
[ChuChe, Bra, RabHsi|. In Chapter 4, we want to adapt the macromodelling approach
to MOR of large electrical circuits.

For simplicity, consider an electrical circuit ¥ which is divided only into two subcircuits
P and @ (Figure 3.5). P and @ share the nodes with voltage potentials vy, . . ., v,,, where
m is the number of wires connecting the two macros of 3. According to the Kirchhoff
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FIGURE 3.5. Segmentation of a circuit ¥ into two subcircuits (ma-
cros) P and Q.

laws (2.1), one obviously has
(37) tpj +ig; =0, j=1,...,m.

Notional, one then separates > at the shared nodes vy, ..., v,, and connects the resulting
"open wires" either to voltage sources generating the voltage potentials vy, ..., v,, or to
current sources generating the currents ipy,...,%p, and igi,...,iQm. This is done for
the current source case in Figure 3.6. Thus, one obtains "closed subcircuits" with defined
input-output behavior for P, ) and separate systems of equations can be formulated.
These can be used to simulate or reduce the subsystems corresponding to the macros P,
@ separately by applying different symbolic or numerical reduction methods. A reduced
model for the original circuit > then is obtained by using the same interconnecting
structure as for 3 to couple P and () with each other. This means that the same current
relations (3.7) are used. In this process, the artificially introduced current sources are
deleted.

It is obvious that the described procedure yields big advantages w.r.t. computational
efficiency if the entire circuit is divided into more than two macros. Moreover, if the
macromodel concept is applied in subsequent levels, i.e. repeated recursively for appro-
priate subcircuits, one obviously achieves further improvement. Particularly those sub-
circuits that occur multiple times offer additional potential for further improvements. If
they are operating in similar domains, it may be sufficient to process only some of them

v NP1 1Q1 ~ U
AN oo

Um CZPm iQm C Um

FIGURE 3.6. Separation of P and () by introducing current sources
that generate appropriate currents.



86 3. HIERARCHICAL SYSTEMS

to derive reduced models for the use in each occuring instance. Finally, note that the
entire algorithm can be applied to both linear and nonlinear circuits.

In the general setting of systems and subsystems, a great advantage especially with a
view towards efficiency in computation time for simulations is that only those subsystems
with slow convergence rates need a high number of iteration steps. The well converging
ones only need few steps. According to experience, in large systems there are only few
parts that yield highly flexuous solution curves or have badly converging nonlinearities.
Therefore, using the macromodelling approach, one has to cope with small step sizes and
high numbers of integration steps only for a small number of subsystems. In contrast
to this, in a "regular" simulation of the entire system, the integration step size and the
number of integration steps are steered by the "worst" nonlinearity or the most flexuous
solution of the entire system.

An open problem using the macromodelling approach, however, is the choice of a good
segmentation of the entire system, i.e. the question in how many macros and how many
levels the entire system should be separated. Normally, an optimal or just good seg-
mentation is anything but clear. A segmentation of the entire circuit into too many
subsystems will cause high cost of administration of the interconnecting network. On
the other hand, in the context of electrical circuits the design even nowadays is still made
in a modular way. Hence, a — more or less — good segmentation seems to be given in a
natural way by considering the building blocks used to design the circuit as macros of
the entire circuit.



CHAPTER 4

Hierarchical Model Order Reduction

The model order reduction techniques presented in Section 2.5 are applied to the entire
system and do not make use of the system’s structure. In contrast to this, in this chapter
we want to exploit its topological, hierarchical structure during the reduction process.
One key question is to find methods to obtain an estimate about the "importance" of a
single subsystem in the entire connecting structure of the system.

In the first section, we give a motivating example that compares the usual non-hierar-
chical reduction approach to a technique that exploits the structure on circuit level.
This shows that the latter method is very promising. Compared to the non-hierarchical
approach, we only need a fraction of the computation time to derive a reduced system
with only about half the number of equations, but the same level of accuracy.

In the second section, we present a new workflow for the reduction of subcircuits T’
coming from a hierarchical segmentation on circuit level. By using information obtained
from a previous simulation run of the entire electrical circuit X, appropriate voltage
sources are connected to 7" and the obtained closed circuit is reduced.

The next section introduces the new concept of subsystem sensitivities that measure the
influence of a subcircuit 7" on ¥ similar to the ideas of a term ranking. Therefore, we
subsequently give some detailed information about the idea behind term ranking. Also a
brief review of the clustering strategy is provided in order to give ideas for improvement
of the finally derived hierarchical reduction algorithm in a later section. The subsystem
sensitivity analysis measuring the influence of 7" on the output of ¥ can be exploited to
obtain a ranking of subsystem reductions, i.e. an optimized order of these reductions.

Section 4.4 then deals with an algorithm for the computation of a hierarchically reduced
model ¥ of ¥ by making use of subsystem sensitivities. It uses their ordering w.r.t. the
error caused on the output of X to derive a ranking of subsystem reductions. Then in
each step the subsystem with currently the least ranking value is reduced.

All the considerations from the previous sections finally are combined in the fifth sec-
tion. There, a new reduction algorithm exploiting the hierarchy of the circuit and the
sensitivities of the corresponding subsystems is introduced.

Error functions have crucial influence on a system’s degree of reduction. Depending
on the example under investigation, suitable error functions have to be employed for
controlling the approximation error during the reduction process. Therefore, Section 4.6
provides a general definition as well as a choice of different functions that have been
developed and used in this thesis.

Finally, a sample application is considered in the last section. We apply the new hier-
archical reduction approach to an operational amplifier typically used in industry and
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Differential-amplifier circuit.

compare the results to the usual non-hierarchical reduction. Thereby, symbolic reduction
methods for nonlinear systems and two different error functions come to operation. The
corresponding results are also compared to each other. We then take additional infor-
mation about the subsystems’ number of equations and terms into account and derive
reduced models of even less complexity. Then the obtained interim models are further
reduced by applying non-hierarchical techniques. Compared to the original system, this
yields hybrid reduced models of very low complexity. We show that some of the resul-
ting models do not only have a high level of accuracy. They moreover are very robust
w.r.t. certain input excitations and can be simulated quite a lot faster than the original
system.

4.1. Motivating Example

Let us start with a motivating example and consider the differential-amplifier circuit
introduced in the previous chapter, which is shown in Figure 4.1. The voltage sources
VCC and VEE denote the voltage supply for the amplifier circuit, whereas the voltage
generated by the source V1 defines the input. The output is given by the voltage-
potential of node 5, denoted by Vout. The three sources are connected to the remaining
circuit components via three transmission lines, for which a discretized PDE model of
the telegrapher’s equations (2.36) from page 32 with 20 line segments each is used.

In the following subsections, we perform structure exploiting symbolic techniques using
ideas from the previous chapter to reduce the differential amplifier and compare the
resulting simplified system to the usual approach of reducing the entire circuit without
taking any structure into account. We will see that, compared to the regular approach,
the structure exploiting one offers a large potential to derive simplified models of lower
complexity and at only a fraction of the computational cost.

4.1.1. Symbolic Reduction of the Entire Circuit. Using MNA in node voltage
formulation to set up the describing system of equations for the transient circuit behavior,
we obtain 167 equations with a total number of 645 terms. For the input V1, we choose a
sine-wave voltage excitation ug with a magnitude of 2V and a frequency of 10° Hz. The
supply voltages VCC and VEE are 12V and —12 V| respectively.
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FIGURE 4.2. Left: Solutions of the original (solid) and the reduced
system (dotted) allowing 2% maximum error. Right: The correspon-
ding error plot.
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FIGURE 4.3. Left: Solutions of the original (solid) and the reduced
system (dotted) allowing 10% maximum error. Right: The correspon-
ding error plot.

By using the symbolic reduction techniques for nonlinear systems presented in Section
2.5.2.2 and permitting an error of 2%’ for the output Vout to reduce the entire system, we
obtain a system consisting of 124 equations with 425 terms in total. For the reduction, a
few hours are needed?, in which more than 95% of that time is spent for the computation
of the transient term ranking®. See Section 4.3.1 for more information about the ranking
of terms. Figure 4.2 shows the solution and the error of this reduced system in comparison
to the solution of the original one, i.e. the reference solution. According to these figures,
the reduced system with only about 1% error is a very accurate approximation.

If we allow an error of 10% for the reduction instead of only 2%, we obtain 44 equations
with a total of 284 terms. The time needed is almost the same because of the ranking
computation mentioned above. However, the reduced complexity of the equations has
been achieved at the expense of accuracy (cf. Figure 4.3).

4.1.2. Exploitation of the Hierarchical Structure. What happens if we take
an "intuitive" reconstruction of the hierarchy into account? Therefore, consider certain

T
100

entire time interval 7 = [to, 1] of the analysis: 155 - supsepy, 4,7 lyr (¢)[|. This error is measured using

12% error here means of the maximum amplitude of the reference solution, considered on the

the error function given by (4.9) in Section 4.6.
2The computations were performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM.
3Note that we use full simulations for the ranking of the terms, i.e. the perfect ranking.
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its "intuitive" hierarchy.

structural patterns on circuit level in order to define subcircuits within the differential
amplifier: the differential pair of transistors Q1, )2 together with some resistors in the
upper box on the right side of Figure 4.4 form a subcircuit (DUT2), the current mirror
in the lower right defines (DUT), the three transmission lines in the middle form three
subcircuits (L1), (L8), and (L9), and finally there are the sources on the left.

As mentioned before, by using e.g. MNA to set up the describing equations for the entire
circuit, the hierarchy information is lost, since the system contains equations with mixed
parts from different subcircuits. But if the five subcircuits are considered one by one,
the hierarchy information on circuit level can be transmitted into the describing set of
equations and the subcircuits can be reduced separately. This is done following the ideas
from Section 3.4, an exact description is given in Section 4.2.

For the reduction of the three transmission lines, we translate the describing linear system
of equations into state space formulation and apply Arnoldi’s algorithm (see Section
2.5.1.5). For both the transmission lines (L8-9) we iterate only one step. This provides
sufficient accuracy here, since VCC and VEE are DC sources. For the transmission line
(L1) which is connected to the input voltage V1, we perform three steps in the Arnoldi
iteration. Some experiments with a higher number of iteration steps show that the gain
of additional accuracy in comparison to the size of the larger system is rather marginal
for a number of iterations bigger than five. Due to two additional equations and variables
for internal port modelling, we thus can reduce the transmission line subsystems from
50 down to 8 resp. 4 equations.

The subsystems corresponding to (DUT) and (DUT2) are reduced symbolically using the
nonlinear techniques from Section 2.5.2.2. For both these reductions a 2% error bound
is permitted, but we observe almost no further reductions, if we allow 10% error instead.
Note that these error bounds are not limiting the error of the entire circuit’s output Vout
to the given values, since only the single subsystems are reduced (see Section 4.2 and
Algorithm 4.1 for further details). In case of the current mirror subsystem, the symbolic
simplification yields 9 instead of 16 equations with a total number of 20 instead of 59
terms. For the subsystem with the differential pair, we obtain a reduced system with 13
instead of 22 equations and 50 instead of 91 terms in total. Note that all these reductions
are computed within seconds.
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FIGURE 4.5. Left: Solutions of the hierarchically reduced system

(dotted) and the original one (solid) by applying the 3-step Arnoldi
iteration to (L1). Right: The corresponding error plot.
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FIGURE 4.6. Left: Solutions of the hierarchically reduced system
(dotted) and the original one (solid) by applying the 5-step Arnoldi
iteration to (L1). Right: The corresponding error plot.

Plugging together all the reduced subsystems in order to obtain a simplified model for
the entire differential-amplifier circuit, the results are very accurate as one can see in
Figure 4.5. Instead of 167 equations and a total number of 645 terms, we only have 62
equations with 252 terms altogether. The error of the reduced entire system compared
to the reference solution of the original one is approximately 8%.

A higher dimensional projection space obtained by the Arnoldi iteration provides more
accurate solutions, but of course also leads to larger systems. If, for example, we perform
five Arnoldi iteration steps to reduce the subsystem corresponding to (L1) instead of only
three, we can further improve our result. We then obtain a maximum error of the entire
reduced system of approximately 2% (Figure 4.6). However, in that case the reduced
entire system consists of 66 equations and a total number of 396 terms.

4.1.3. Application of Different Inputs. In order to check whether the simplified
model obtained by the hierarchical reduction approach works fine also for other inputs, we
apply a pulse wave u; with a magnitude of 2V, a sum wusy of three pulses with magnitudes
of 1V, 2V, and 3V, respectively, and a sum of three sine functions

uz(t) =2 sin(27 - 10° - ) + 2 - sin(2r - 2-10° - ) + 1 - sin(27 - 5-10° - ¢)

to V1. The graphs of these functions are shown in Figure 4.7 on the time interval
[0s,107°s].
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FIGURE 4.7. Three other inputs uy, us, and ug for V1 to test the reduced
model of the differential-amplifier circuit.

With these inputs, both the original differential amplifier and the hierarchically reduced
model* are simulated. The graphs of the simulations as well as the corresponding error

plots are shown in Figure 4.8.
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FIGURE 4.8. Left: Simulation results of the original (solid) and the
hierarchically reduced model (dotted) of the differential amplifier, to-
gether with the corresponding input V1 (dashed). Right: The corres-

ponding error plots.

4We choose the more accurate model with 66 equations, see Figure 4.6.
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system orig. non-hier. reduced hier. reduced
equations 167 124 44 66 62
terms 645 425 284 396 252
(perm.) error 2% 10% ~ 2% ~ 8%
Arnoldi steps (5/1) (3/1)
time costs few hours within seconds

simulation performance

input wug 8.2s 3.2s 0.8s 1.5s 1.2s
input 9.45s 1.9s
input us 13.2s 3.1s
input us 12.1s 2.1s

TABLE 4.1. Results of the two different reduction approaches for the
differential-amplifier circuit.

According to these figures, the obtained model works quite well in all the test cases and,
therefore, can be used as a behavioral model of the original differential-amplifier circuit
in a certain domain.

4.1.4. Comparison of the two Approaches. The results of the two different
reduction approaches for the differential-amplifier circuit are listed in Table 4.1. Com-
paring the two approaches, we conclude that the one exploiting the hierarchical structure
is the better choice, since it delivers much better results in less computation time; we
obtained reduced systems with almost the same accuracy in the 2% error case, but only
about half the number of equations for the structure-exploiting approach. Performing
only three steps in the Arnoldi iteration to reduce the transmission line connected to
the input voltage V1, we still obtained a reduced overall system that fits the original
reference solution quite well. On the other hand, the non-hierarchical reduction of the
entire circuit permitting an error of 10% led to a system that fully exploits the error
bound.

As it is further shown in Table 4.1, the speed-up for simulations of the hierarchically
reduced model compared to the original full model is approximately by a factor of 5.

4.2. A Workflow for Subcircuit Reductions

In this section, we present an algorithm for reducing the single subcircuits coming from
the hierarchical segmentation of the entire circuit.

Assume an electrical circuit ¥ that already is hierarchically segmented into a set of
subcircuits 7; and an interconnecting structure S:

(4.1) S=({Tli=1,....,m},S).
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In general, each T; itself could possibly be segmented recursively into a set of subcircuits
and a coupling structure. However, we do not further treat this case here and consider
the segmentation only "on level 0".

In order to maintain the hierarchical structure available on circuit level, one cannot
simply apply methods like MNA to set up describing equations for 3, since this yields
equations involving terms that are mixed from different subcircuits. Instead, we use a
subcircuit reduction workflow that uses the segmentation on circuit level in a similar way
as described in the macromodel concept in Section 3.4. Since we always need a reference
solution to symbolically reduce a system and to keep track of the error, we need a
"closed circuit" with defined input-output behavior. If we simply cut out a subcircuit
from its connecting structure, we do not have a defined input-output behavior at its
"open" terminals, i.e. we have no information about its current-voltage relations at its
terminals. Also numerical reduction techniques rely on an input-output concept acting
on the maxim that either the voltage potential or the (inward) current at a terminal
is prescribed, while the other one is computed. Therefore, we simulate the subcircuit
in question to be reduced, say T, in a test bench, i.e. a simulation test environment.
For example, one could simulate the entire circuit Y itself such that the remaining
subcircuits together with the interconnecting structure S form a test bench for 7'. During
the simulation, the voltage potentials at the terminals of T are recorded. Then T is
connected to voltage sources generating exactly the recorded voltages. Thus, we have a
"closed circuit" C'r with a defined input-output behavior at its terminals. A method such
as the modified nodal analysis is then used to transform C7 into a describing system of
equations® Fr which can be reduced using symbolic or numerical methods from Section
2.5.

b —e sub- T
su L system—

T &

,:E_@ sub- *— test

. —@" system bench
%
C

[ ¢
sub- '_@" b
system +—H

FIGURE 4.9. Schematic illustration of the workflow for subcircuit reductions.

5 Assume we are dealing with systems of DAEs. In case PDEs are involved, apply a semidiscretization
w.r.t. the spatial coordinates.
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The whole procedure is summarized in Algorithm 4.1 and schematically shown in Figure
4.9. Of course, we could as well record the currents and connect current sources to the
terminals of 7. However, the approach using voltage sources seems to be easier, since
no directions of the flowing currents have to be taken into account.

ALGORITHM 4.1. (Reduction of subcircuits)

Let T be a subcircuit in an electrical circuit ¥ = ({T;|i=1,...,m},S5).

a. Connect T to a test bench and record the voltage potentials at its terminals
during a simulation run applying a suitable input.

b. Remouve the test bench and connect grounded voltage sources to the terminals of
T that generate exactly the recorded voltage potentials, thus having T isolated as
a "closed circuit” Cr; further, set up a describing system of equations Fr for

Cr.

c. Reduce Fr by using appropriate symbolic or numerical reduction techniques,
where the voltages at all terminals of Cr are the inputs and the currents (flowing
inwards) are the outputs.

d. Remove all voltage sources after the reduction and finally obtain a reduced sub-
system Frp that serves as a behavioral model of T.

Proceeding in this manner, the terminals of 7" are preserved during the reduction process
and the original subcircuit 7" in the entire circuit X can easily be replaced by the reduced
version Fr of Fr with removed sources and using the same interconnecting structure S.
Repeating the entire procedure for each of the subcircuits 7T; in ¥, we obtain a reduced
version of the overall circuit X.

This workflow has been applied to the five subcircuits of the differential-amplifier example
in Section 4.1 and delivered the results described there.

It should be mentioned here that this approach only controls the errors at the terminals
of the single subcircuits. A priori, one cannot guarantee a certain global error, i.e. the
error on the output of the entire circuit X when replacing the original subcircuits 7; by
reduced models ﬁTi' This could be a point of future investigation (see also Chapter 6).

4.3. Subsystem Sensitivities

In this section, we investigate the influences of the single subcircuits 7; on the behavior
of the entire circuit ¥ = ({7T;|i=1,...,m},S). Therefore, we want to have an esti-
mate of a subcircuit’s sensitivity, i.e. the sensitivity of X with respect to changes in the
corresponding subcircuit’s behavior. This sensitivity is measured by the influences of
subcircuit reductions on the output of X and leads to a ranking of subcircuit reductions,
i.e. a heuristically optimized order of subcircuit reductions.

Before we explain the approach in more detail, we illuminate and review the concepts
of term ranking and clustering used for an optimized order of efficient reductions in the
symbolic case as briefly described in Section 2.5.2. We follow the notes of [Wic04|.
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4.3.1. Term Ranking. A ranking is a method to estimate the influence of certain
magnitudes on others. In general, it is a trade-off between accuracy and efficiency in
computation time. In the case of a term ranking mentioned in Section 2.5.2 it is sup-
posed to estimate the influence of a symbolic term ¥ in a system of equations F' on its
solution yp.

DEFINITION 4.2. Let IC be the index set of all terms 9 in a symbolic system of DAEs I
and let R € {term reduction, term substitution} be an approzimating reduction method.
For k € K, let R(F,k) denote the system of DAEs obtained by applying R on F,
thus reducing the k-th term 9, in F. For an input u and a numerical analysis A,
let y == A(R(F,k),u) and yp := A(F,u) denote the corresponding solutions of the ob-
tained reduced system and the original system F, respectively. Finally, let E be an error
function, ¢ >0, and KK, C K. A function r with r(F, k) € Rs¢ and

(4.2) |r(F k) — E(yp,yr) | < e forallk e K,

18 called an absolute ranking.

In this definition, K, denotes the set of terms for which the ranking r computes a good
prediction of their influence on yp.

Obviously, the larger IC, is and the smaller € can be chosen, the better is the absolute
ranking r. The best estimate clearly is achieved if a full numerical analysis is performed
for each term ¥ in F'. Hence, the corresponding most accurate ranking computing the
exact term influences on yp, the perfect ranking, is obtained by computing the values

r*(F k) :== E(yr, yx)

for all possible terms ¥, occuring in F. With the notation from above one then has
K.~ =K and € = 0.

The computed ranking values for all terms are put in an increasing order thus yielding
a ranking list. This list is an optimized order in which the term reductions on F' should
be executed, since terms that cause rather small deviations from yp are simplified first,
while those ones causing large deviations are processed later or not at all. This approach
leads to a high degree of reduction for the entire system.

However, a general term ranking only estimates the influence of a term 9 on yr and
sometimes fails in predicting the correct order of magnitude. More precisely, for terms
VU with k& € K\ K,, the prediction is wrong. Consequently, the order obtained in
the ranking list might be a little disarranged, since some term influences are over- or
underestimated®. For r(F, k) > E(yp,yx), a so-called type 1 ranking error occured and
the influence of vy is overestimated. Hence, the reduction corresponding to a type 1
ranking error might be executed too late. In case r(F, k) < E(yr,yx), a type 2 ranking
error maybe leads to a reduction which is performed too early, since the influence of ¥,

is underestimated.

6Note that this only influences the order of performed reductions, the correctness of the approxi-
mating reduction method is not affected. However, the more accurate the ranking method estimates
the influences, the higher is the degree of reduction.
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As described above, the choice of the next term to be reduced is steered by the current
minimum of the ranking list. Thus, only the relative relations among the terms are
important for this choice, the absolute ranking values, however, do not play an important
role. The constraint (4.2) in Definition 4.2 therefore can be weakened as follows:

DEFINITION 4.3. Using the notations of Definition 4.2, (4.2) is replaced by
(4.3) r(F k) <r(Fky) < EYr,yr) < E(Yr, yr,) for all ki, ke € K,.

The resulting r is then called a relative ranking.

As before, the quality of the relative ranking r grows with the cardinality of /.. If
ki € K\ K,, a so-called relative ranking error occured, i.e. either

r(F k) <r(F k) and  E(yr,Yr) > E(Yr, Yk,)

or
r(F ki) > r(F k)  and  E(yr,yr) < E(Yr, Yr,)

for some ky € K.

Unfortunately, the perfect ranking r* is far too costly for realistic applications, since with
r*(F,k) = E(yp,yx) and yp = A(R(F, k), u) it requires a full numerical simulation for
each symbolic term ¢ occuring in F'. Moreover, after the first term is reduced and a new
system G = R(F, k) with one term less is created, the ordering of the terms’ influences
might have changed compared to the current ranking list. Therefore, the remaining
|| — 1 terms in G should be processed in a new ranking computation. After the second
reduction step is executed, the entire procedure should be repeated for the remaining
|| — 2 terms and so on.

However, in order to avoid the very time-consuming complete numerical analyses y, =
A(R(F, k), u) necessary for computing the perfect ranking r*, a variety of techniques
exists. Since in general numerical analyses A(G, u) are obtained by approaches such as
Newton’s method, one could for example stop the Newton iteration after a few — or even
after one — steps to obtain an approximate solution gy = yx. Then r(F, k) := E(yr, yx)
defines a ranking r for the terms in F. For an overview of some other methods we refer
to [Wic04|. All of them are trade-offs between accuracy and efficiency in computation
time, such that a faster ranking computation in general coincides with less accuracy of
the resulting ranking list.

Furthermore, it was observed in numerous examples that the ranking list based on the
original system of DAEs I yields sufficiently accurate estimates for the terms’ influences
on yp during the entire reduction, such that repeated ranking computations during
the entire reduction process are not necessary. Therefore, the ranking computation is
performed only once at the very beginning.

4.3.2. Clustering. Normally, the accumulated error on yr has to be checked after
each single reduction step. But this means each time a costly analysis of the so far
reduced system G. To avoid these time-consuming numerical analyses after each single
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reduction step, the terms in F' are clustered according to their ranking values, i.e. the
ranking list R is segmented into a disjoint union of [ subsets or clusters C;:

Then, whole clusters of terms are reduced simultaneously without checking the validity
of each single term reduction. Just after the reduction of a whole cluster of terms a
numerical error analysis is carried out. If the error bound is not violated, the reduction
of the next cluster is executed. Otherwise, all term reductions within the current cluster
have to be rejected, a new cluster subdivision has to be made, and the procedure is
repeated with the first new subcluster of terms. In this process, those clusters that
cause a rather small error, i.e. which contain terms with the smallest ranking values, are
reduced first. Otherwise, if a cluster of terms that cause a large deviation from yp is
reduced first, the tolerance for further reductions would be rather small. Proceeding in
that manner heavily accelerates the entire reduction process.

For more information about the described techniques we refer to [Wic04|. They are
integrated in a reduction algorithm for nonlinear symbolic systems of DAEs that further
include an index-monitor to guarantee that the index of the original system of DAEs F'
is not increased during the reduction process.

4.3.3. Subsystem Sensitivity Analysis. Similar to the ideas of the previous sub-
sections, we would like to know about the importance of a subcircuit in the connecting
structure of the entire circuit . In the term ranking concept, the influence of a term
in the system of equations F' on its solution yp using a certain input wu is estimated.
Similarly, we would like to have an estimate of a subcircuit’s sensitivity or influence on
the behavior of the entire circuit, i.e. the sensitivity of the entire circuit X w.r.t. changes
in the subcircuit’s behavior. In the case of term ranking, this led to an optimized order
of term simplifications to obtain a high degree of reduction. Here, we obtain a ranking
of subsystem reductions, i.e. an optimized order of subsystem reductions that offers
a high degree of reduction for the entire system ¥ by replacing its subcircuits 7; by
corresponding and suitably reduced models ﬁTi (see also Section 4.2 for the notation).

If one speaks about sensitivity analysis in the background of electrical circuits, one
normally thinks of the influences of single components or system parameters on certain
circuit or network variables. The sensitivity of such a variable z with respect to changes
in a certain network parameter p is computed by using partial derivatives:

0z

(44) Sa(zvp) = 8_]7

P=Ppo
is called the absolute sensitivity |Spi90, Zer| and

(4.5) se(z,p) = pg; = p-Sq(2,D)

Pp=Ppo
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the normalized or relative sensitivity of z with respect to p. In these equations, pg is a
nominal value of p. In an approximate way, one can compute s, via
Az z—z

Apl,_,, Do—D

(4.6) Sq(2,p) &

using perturbed values z = z(p) and p of z = z2(p) and p = po. While z = z(pg)
corresponds to a simulation of the describing equations using parameter p = pg, z is
obtained by using the perturbed parameter p of py during the simulation.

One clearly cannot form the derivative of a circuit’s or a system’s output y with respect
to one of its subcircuits or subsystems. Instead, we imitate the "meaning" of equation
(4.6) and replace a single subcircuit 7" of 3 by a "perturbed version T", i.e. by a reduced
model Fy of the describing system of equations for 7. Then we simulate the obtained
entire system and compare the original output y to the perturbed entire system’s output

y.
In the following, we define the sensitivity of a subcircuit 7" in the entire circuit X as
a vector of tuples containing reduction information and the resulting error on the per-
turbed entire system. For simplicity, we will not distinguish between subecircuits and
the corresponding describing subsystems based on equations and denote both of them
simply by T

DEFINITION 4.4. Let ¥ = ({T;|i=1,...,m},S) be an electrical circuit of intercon-
nected subcircuits T; connected by a structure S. Let further T be one of the subcircuits
in 3. The sensitivity of T in X is the vector

(47) ST = ((Tlv E(yv yT;m))v R (TmT’ E(ya yT;TmT>))

that contains tuples of reduction tnformation r; for the subcircuit T' and the resul-
ting error E(y,yr,;) on the output y of X. In this notation, yr,., is the output of the
corresponding reduced entire system

Sre, = ({T7YU{T|i=1,....m}\{T}9),

where T in comparison to the original circuit 3 1s replaced by a reduced model Fp =T"
obtained by reducing T according to ;.

In this definition, 777 denotes the subsystem that is obtained by performing a reduction
on 7" which is defined by 7;. For example, r; could contain information such as "nonlinear
symbolic reduction" and "accepted error 10%" or "Arnoldi method" and "k iteration
steps, projection matrix V". The subsystem reductions are executed using the workflow
from Section 4.2. Note that the sensitivity of T" involves systems Y7, which are the
same as Y itself except for exactly one subsystem replaced by a reduced version. In
the following, the determination of a subsystem’s sensitivity is explained in more detail
by using an example.

Let the entire system ¥ be given by (4.1) and further T; € {T;,i = 1,...,m} be the
subsystem of which we want to investigate the sensitivity in 3. We want to apply
"nonlinear symbolic approximating techniques", e.g. term reductions, to 7; and therefore
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provide a sweep of error bounds
sw = (1,2,5,10,25, 50,80, 100),

where the numbers in sw correspond to percentage values of the accepted error’. The
entries in this sweep are part of the reduction informationin ry, k = 1,...,mg,, mg, = 8.

In the first step, the original subsystem 7j is reduced with the first error bound from the
error sweep sw thus allowing a maximum error of 1%. For the reduction, the workflow
from Section 4.2 is used. This yields a reduced system T]’fl. Then T} in the original
system X is replaced by Tj”. The resulting entire system is denoted by ¥7,.,.,. Finally,
a full numerical analysis is carried out on Xz, in order to obtain yz,.,., = A(ETj;Tl,u)
with the same input u as used for the computation of y = A(3, u).

In the second step, again the original subsystem T is reduced, but now permitting the
second error bound 2% from sw. Hence, we obtain a reduced system T;Z which again
replaces T} in the original system . We thus obtain the partially reduced entire system
37y, 00 which a full numerical analysis is carried out. This yields yr,,, = A(X1;,, u).

Proceeding in this manner for the remaining error bounds b; in sw, we obtain a set
of partially reduced entire systems Xr,.., ¢« = 1,...,8, where the bounds b; € sw
are "hidden" in the reduction information r;. The corresponding numerical analyses
Y1y, = A(X1y,, u) might become less accurate due to the increasing error bounds b;,
while the complexities of the systems X7, decrease for growing b;. Consequently, via
the error on the entire system’s output, we can observe the influence of the original
subsystem 7} on the original circuit ¥ = ({Z;|:=1,...,m},5).

The procedure described up to here is repeated for all subcircuits 7}, in 3 to obtain their
sensitivities. The next section then describes how to use these sensitivities in order to
obtain an optimized order of subsystem reductions for the derivation of a hierarchically
reduced entire system.

4.4. Optimized Order of Subsystem Reductions

In this section, we present a strategy that allows an appropriate reduction of the sub-
systems of ¥ in an optimized order. We call the list of reductions corresponding to that
order a ranking of subsystem reductions. The algorithm presented here uses this
ranking for deriving a hierarchically reduced model of the entire system 3.

For each subsystem 7 in ¥, we define L; as the list containing the entries of sy, that is
increasingly ordered with respect to E(y, Yz, ). In each step of the hierarchical reduction
of 3, we then take the subsystem 7" and the reduction information r that corresponds
to the minimum of the currently first entries in the lists L;.

If the accumulated error on the output y of ¥ exceeds the user-specified error bound
g, the corresponding latest reduced subsystem 7T;, is reset. We assume that no further
reductions on 7;, are possible and, therefore, completely delete the remaining list L;,.

T0Of course, the error depends on the choice of the error function E, see Section 4.6 for further
details.
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Input: segmented electrical circuit X = ({T;|i=1,...,m},S), input u, error
bound ¢
Output: reduced system ¥ = ({17 |i=1,...,m},S), where T/ are suitable
reduced subsystems and with E(y,ys) <€

forall subsystems T; do
L; := order(sr,) w.r.t. E(y, yr,r;)
T =T

end
Lo={Ly,....L}
y = A3, u)
Yi=X
repeat
compute (ri, E(Yy, Y1) i= Z.}?ii&(min(Li)) w.r.t. E(y, yr:r;)
replace T;’“O by T3 *
update(3)
Ys = (2’ u)
Eout = E(y, ys)
if ¢4y < € then

Liy == Li, \ {min(L;,)}

if L;y =0 then L := L\ {L;,}
Ise

reset T7F to ﬂzko

update()

L:=L\{L;}
end
22 until L = ()

© 0 N & Otk W N
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élgorithm 4.5: Algorithm for the computation of hierarchically reduced systems
> using an optimized order of subsystem reductions.

Otherwise only the first entry is deleted from L;,. Then the procedure is repeated with
the minimum of the first entries of all lists L; until all these lists are empty.

Algorithm 4.5 shows the entire process in pseudocode. Note that this algorithm can
further be improved, e.g. by an idea similar to the clustering concept from Section 4.3.2.
If reductions of subsystems that cause a similar error on y are bundled in a cluster,
costly multiple analyses y = .A(i u) of the so far reduced system 3. are avoided. They
are performed only once after a whole cluster of subsystem reductions is executed. In case
the error bound is still not violated, we can continue with the next cluster of subsystem
reductions. Otherwise, however, all reductions in the current cluster have to be rejected
and it has to be subdivided for further processing.

Another idea for further improvements on Algorithm 4.5 is the use of approzimate simu-
lations following the idea of the one-step solver briefly mentioned in Section 4.3.1. Thus,
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we obtain an approximate solution 5% y for the output of the so far reduced system 5
that can be used for the error check E(y,y) < ¢ instead of .

4.5. Reduction Algorithm Exploiting Circuit Hierarchy

This section combines all our thoughts and considerations from the previous sections in
an algorithm for the reduction of the entire electrical circuit exploiting its structure on
circuit level.

Since electrical circuits even nowadays are designed in a modular way using building
blocks of network devices and substructures such as current mirrors and amplifying
stages, assume that an electrical circuit Y is given by a hierarchically segmented netlist
description of interacting subsystems 7; as in (4.1):

S=({Tli=1,....,m},S).

Otherwise, the segmentation has to be made manually or by using pattern matching
approaches to detect substructures in the entire circuit.

In a next step, for each subsystem 71" of ¥ we choose an appropriate symbolic or numerical
reduction technique together with a set of reduction information {r;|i=1,...,mr } and
compute the corresponding sensitivity

ST = ((Tla E(y, yT;n))? SRR (TmT’ E(y, yT;TmT)))'

Based on these sensitivities, an optimized order of subsystem reductions, i.e. a ranking
of subsystem reductions is set up. According to this order, the subsystems in X are
reduced and replace the corresponding original ones in the entire circuit thus yielding a
hierarchically reduced entire system 3.

This process is performed by the algorithm in the previous section. During the compu-
tations, numerical analyses have to be performed to check the error of the so far reduced
entire system on the output of the original system X. If the user-specified error bound is
exceeded, the current subsystem reduction has to be rejected. Otherwise, we can attempt
to further reduce suitable subsystems in order to obtain a higher degree of reduction.

The entire algorithm for the hierarchical reduction of ¥ is schematically shown in Figure
4.10.

Although we only worked on "level 0", i.e. we segmented ¥ into subcircuits 7; without a
further segmentation of a suitable subset thereof, the above algorithm can be recursively
adapted to the more general case of subcircuits and subsystems in different levels of the
resulting circuit hierarchy.

It turns out that error functions have a crucial influence on subsystem sensitivities and
subsequent rankings of subsystem reductions (cf. remarks in Section 4.7). Therefore, the
next section deals with different error functions used in this thesis.

4.6. Error Functions

In the reduction process of a system, it has to be checked several times whether the
performed reduction steps are valid according to the user-given error bound specification.
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circuit netlist

hierarchical netlist

choose reduction methods
for subsystems

reduce subsystems
separately

sensitivity analysis

subsystem ranking

replace subsystem in circuit
by reduced model according

: to subsystem ranking
delete list
of subsystem
error analysis
reset

error okay?
no

delete entry in subsystem list

higher degree
of reduction?

yes

reduced
entire system

FIGURE 4.10. Schematic illustration of the algorithm for hierarchical
model order reduction using sensitivities of subsystems.



104 4. HIERARCHICAL MODEL ORDER REDUCTION

Therefore, error functions are necessary that compare solutions of numerical analyses of
different systems of DAEs to each other.

The choice of a suitable error function is of crucial importance for a system analysis
and reduction problem. As a measure for the error, a variety of different mathematical
criteria also from an electrical-engineering point of view can be taken into account.
Since we never need the properties of a norm or a metric, we define generalized error
functions simply as follows:

DEFINITION 4.6. Let F' and G be systems of DAEs and A a numerical analysis method
from Section 2.3. Let further yp = A(F,u) and yo = A(G,u) denote the solutions of F
and G according to A and an input u. A function E that satisfies E(yr,ya) € Rsq is
called a generalized error function for A.

REMARK 4.7. In [Hen, Section 2.3|, error functions ("Bewertungsfunktionen”) mea-
suring absolute errors are symmetric in ygr,ya by definition. However, we here often
measure relative errors scaled by a mazximum value of yr and, therefore, also have to
deal with non-symmetric error functions. Nevertheless, by slight modifications these
functions often can be turned into symmetric versions.

The result of a system’s reduction heavily depends on the chosen error function. For
example, the result we would have obtained for the transient reduction of the op741
amplifier in Section 4.7 would not have been satisfying if we had taken the same error
function as for the transient reduction of the differential amplifier in Section 4.1. In the
latter case, the error function was simply given by

(4.8) E(yr,yc) = Sup lyr(t) — ya@)|l,

where 7 is the considered time interval. This error function takes the pointwise largest
difference between the two solutions yr = Agan(F, u) and yo = Agran (G, 1) of the original
and the so far reduced systems F' and G on the entire time interval as a measure for the
error. If yp,yq are smooth enough, this error function provides a good measure for the
absolute error.

However, in the op741 amplifier example, yr and yg suddenly jump from one level to
another one similar to step functions (cf. Figure 4.12 (b)). If in the reduced system G
one of these jumps is only a little bit delayed (or too early), let’s say at time ¢4, the value
of the error function (4.8) can be very large; while yg(t4) is still on one level, yp(tq) is
already on the next one (or vice versa). Therefore, we have E(yr, ya) > |lyr(ta) —ya(ta)||
which is a rather large value. Consequently, this error function is not well designed for
the use in the op741 amplifier example in Section 4.7. In the following, we define some
more suitable error functions which were used for diverse reductions in this thesis.

One of the most obvious error functions in the transient case is given by (4.8) and
measures the maximum difference between yr = Agran(F, u) and yg = Agran (G, u) in T
In order to obtain a measure for the relative error, we further divide the right side of
(4.8) by the (non-zero) maximum amplitude

YFmax -= SUp HyF<t>||
teT
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on the considered time interval, thus yielding

(4.9) E(yr,ye) = sup lyr(t) — ya(t)]]
’ teT YF max

However, in Analog Insydes as well as in other MOR and simulation software, yr and
Yo are given as data-based functions, i.e. pairs of sampling points and interpolation
values. We therefore also introduce a discrete variant of (4.9) that chooses ypmax and
the maximum difference between yr and yg from a finite time grid ¢y < ... < t,, instead
of the entire (closed) interval T = [to, t,]:

(4.10) E(yp,yg) = max lyr(t) = yG(ti)H, YFmax ‘= Inax llyr(t)].

1=0,...,n YF,max =0,...,n

Note that due to the scaling the error functions in (4.9) and (4.10) are not symmetric in
yr, Ye- As mentioned in Remark 4.7, a slight modification leads to symmetric versions,
e.g. by replacing ¥z max by %(yﬂmax—f—yc,ma)(). However, we abstain from doing so in order
to scale only by the original maximum amplitude of the reference solution yp.

In order to neglect single peaks of ||yr(t) — ya(t)|, we define another transient error
function. It averages the scaled differences of yp, yg over a time grid ¢ < t; < ... <1,
contained in 7

(4.11) E(yr.yc) =

+ .
n+ 1 YF max YF max

L <||yF(to) — Yo (to) || o Mlye(ta) _yG(tn)H>

Consequently, single peaks of ||yr(t) — yo(t)|| causing large values of the previous error
functions carry almost no weight in this definition. However, a drawback is as follows;
if the difference yp(t) — ye(f) is around zero for large parts of 7 and rather large for
smaller subintervals, the actual error is "hidden" by the averaging error function and

does not coincide with an intuitive impression.

In order to resolve this problem, we present an error function which was finally used for
the reduction of the operational amplifier in Section 4.7. Similar to the one in (4.11),
a time grid tg < t; < ... < t, with [tg,t,] € T is used. For each grid point ¢; we then
provide a small subinterval 7, C T around t;, e.g. T; = (t; — 0,t; + 9) for 0 < § < 1,
and take ¢ € T; such that the difference ||yp(t) — ye(t;)|| is minimized. Finally, we scale
all these differences by ypmax and take the maximum over all ¢ as an estimate for the
error between yr and yg:

miner,

(4.12) Elyr, ye) = max ( yr(t) — yG(tz)H) '

YF max

Note that yg is evaluated at the grid point ¢;, while yg is evaluated at an appropriately
chosen time point ¢ € T,;. For an implementation, we actually take a discrete set of
points {¢;1,...,tm} € T; with a (user-)given m for the choice of ¢ and obtain a discrete
version of (4.12):

(4.13) E(yr,yc) = max

= (miﬂj—l,...,m lyr(tiy) — ya(h)H)

YF,max '
In this definition, §pmayx is defined as in (4.10). The big advantage of (4.12) and (4.13)
for the use in the reduction of the operational amplifier in Section 4.7 is their acceptance
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of mutually delayed jumps of yr and yq if the delays are not too big. Clearly, the
smaller § is chosen, the better ys nestles to yp. Using this error function, single peaks
of |lyr(t) — ye(t)|| with a duration of less than 29 carry no weight. The side effects of
(4.11), however, are avoided.

Further error functions that proved to be suitable for the reduction in Section 4.7 make

use of LP-norms:

_ e —veller _ (rllue(t) = ya(®)? dt) ™

(4.14) Blorve) = =0 (Srllyr(t)7 dt )"

Using a discrete version of this error function with p = 2 instead of (4.12) resp. (4.13)
in Section 4.7, we obtain almost the same results for the reduction of an operational

amplifier.

4.7. Analysis of the Operational Amplifier op741

As an example application of the algorithms in the previous sections of this chapter, we
consider the operational amplifier op741 depicted in Figure 4.11. This type of amplifier
is manufactured at low cost and, therefore, typically used in industry. We briefly de-
scribe the amplifier’s hierarchical structure using interconnected subcircuits and shortly
explain their functionality. Then we specify the settings for the following reductions of
the entire amplifier circuit. We apply our new hierarchical approach as well as the usual
non-hierarchical one that does not exploit the structure of the circuit. Furthermore, we
perform these reductions for two different error functions from Section 4.6 and compare
the corresponding results to each other. Finally, we improve the new approach by addi-
tionally taking the number of terms and equations of the respective reduced subcircuit
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FIGURE 4.11. Operational amplifier op741 with seven subcircuits: a dif-
ferential pair (DP) including a current mirror (CM4), three more current
mirrors (CM1-3), a Darlington pair (DAR), a Level-Shift pair (LS), and a
Push-Pull pair (PP) of transistors.
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models into account. This then leads to hybrid reduced entire systems. By applying
different input excitations to the reduced models, we conclude that the new approach
can be employed with significant savings in time and, at the same time, yields reduced
models of high accuracy. Furthermore, particularly the hybrid reduced models turn out
to be very robust w.r.t. different inputs.

The amplifier can be divided into seven subcircuits according to their functionality,
including some additional linear elements each. A more detailed explanation of the
functionality of certain transistors or parts of the circuit is given in the appendix in
Section C, here it is explained only briefly.

There are three current mirrors (CM1-3) which mirror the current from one side to the
other, as the name already induces. Further, there is a first amplifying stage with the
so-called differential pair (DP) of transistors, in which a fourth current mirror (CM4) is
included. A second amplifying stage is given by a Darlington pair (DAR) of transistors.
The amplifier’s output stage is built by a Level-Shift pair (LS) and a Push-Pull pair (PP)
of transistors. The output of the circuit is defined by the voltage potential V$26 at node
26 on the right of Figure 4.11. The transient input is defined via the voltage source Vid
on the left.

For any of the following transient reductions, we use a sine wave voltage excitation with
0.8V amplitude and a frequency of 1kHz on the time interval 7 = [0s,0.002s] as
input. It is shown in Figure 4.12 together with the corresponding output of the original
amplifier circuit. Furthermore, we use full simulations to compute the term ranking
of the corresponding systems, where the step sizes of the numerical solver are chosen
automatically. As a measure for the error on the output of the amplifier, the £P-norm
error function (4.14) for p = 2 and the newly created error functions (4.12) and (4.13),
respectively, from Section 4.6 come to operation. The latter ones have been designed
such that they accept a small delay in jumps as they occur in the output of the op741
amplifier. For both cases, we will accept an error of 10% on the amplifier’s output V$26.
Finally, the systems of equations in this section are set up by using Gummel-Poon models
for the bipolar junction transistors in the amplifier circuit.

We apply modified nodal analysis in node voltage formulation to set up a system of
DAEs that mathematically describes the behavior of the operational amplifier. This

voltage [V] voltage [V]
0.5 10¢
5,
~ t[s . . . .
Gotos— ogoiooohis  ogozo Gods oodio o005 o000t [
-5
—0.5+
-10
(a) Input used for all reductions of the op741 (b) Output of the original op741 system cor-
amplifier in this section. responding to the input on the left.

FIGURE 4.12. Input and output data of the operational amplifier.
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leads to a system that consists of 215 equations and 1050 terms on level 0. A simulation
with the above input yields the output shown in Figure 4.12 (b). The time costs for the
simulation of the original system are ~26s.

4.7.1. Reduction using the £?-Norm Error Function. First, we apply the
newly developed hierarchical reduction approach to the op741 amplifier. Then, we com-
pare the obtained results to the usual non-hierarchical reduction approach that does not
exploit the structure of the system on circuit level. In Section 4.7.3, we finally use this
example to describe how the algorithm can further be improved.

4.7.1.1. Hierarchical Reduction. For the hierarchical reduction of the amplifier,
we apply the algorithms from the previous sections. Therefore, we firstly simulate the
entire system and record the voltage potentials at the nodes to which the terminals of
the seven subcircuits (CM1-3), (DP), (DAR), (LS), and (PP) are connected. This means
that for each subcircuit the remaining circuit serves as a test bench. Thus, we are able
to apply the workflow from Section 4.2 for separate reductions of the seven subcircuits.

For each subcircuit of the operational amplifier we perform the same symbolic reduction
techniques presented in Section 2.5.2.2, namely, term reductions and algebraic manipu-
lations. In order to compute the subsystem sensitivities of the seven subcircuits, we
provide a sweep of error bounds

sw = {1,2,5,10,20,30,40, 50, 60, 70, 80, 90, 100},

whose elements have to be considered as percentage values. Thus, the reduction infor-
mation r for each subsystem?® is a vector of tuples

r = ("term reductions, algebraic manipulations”,b),

where b is one of the error bounds in sw.

The time needed to compute the 91 = 7-13 reduced models of the seven subcircuits is 1h
and 21 min?. The additional computation time for the sensitivity analysis of the seven
subcircuits is ~38 min. We summarize the results in Table 4.2. While the first entry
is the number of equations of the corresponding reduced subsystem, the second is its
number of terms. The third entry is the error on the output V$26 of the interconnected
system, where exactly one subcircuit is replaced by the corresponding reduced subsystem.
Larger errors sometimes are due to numerical solutions which miss the first "jump" of
the original output. An entry "oo" means that the corresponding system could not be
solved after several attempts'’. In order to avoid very small numbers and since the error
bounds in sw are given as percentage values, the same holds for the errors in Table 4.2.
This allows for reading off the subsystem sensitivities

ST = ((7"17 E(?/a yT;m))v sy (rmT7 E(y, yT;?"mT)))

as given in (4.7), since the errors E(y, yr,,) are given by the corresponding third entries
in the table. Thereby, T is one of the seven subsystems (CM1-3), (DAR), (DP), (LS),

8We do not further distinguish between subcircuits and subsystems in this section.
9The computations are performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM.
10This might be due to an increased index of the corresponding system of DAEs.
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N e Vi M2 M3 DAR DP LS PP
bound
, 20 21 30 33 72 39 42
orig: 77 81 124 143 320 167 190
5 6 10 19 33 18 17
1% 14 18 32 65 182 65 46
0.3075 | 23.6718 | 0.1317| 0.8516 | 1.4563| 1.6781| 0.9580
5 6 10 19 33 16 17
2% 13 18 30 65 178 58 46
2.3093 | 23.6701 | 0.1955| 0.8585 | 1.4487| 1.6918| 0.6310
5 6 9 19 22 15 17
5% 12 18 28 64 75 42 44
1.6930 |  0.3543 | 0.9478 | 0.8460 so | 0.8098 | 1.1075
5 6 8 19 20 13 17
10% 12 18 28 61 68 33 44
1.6930 | 09414 | 1.0130| 0.7565| 0.8579 co | 1.1075
5 6 8 17 20 11 17
20% 12 18 2 46 66 28 43
1.6930 | 03706 | 0.9958| 0.8238| 0.8072| 1.0104| 0.9619
5 6 8 15 21 10 17
30% 12 18 24 37 66 27 43
1.6930 | 0.3560 | 1.1204 | 0.3485| 23.6771| 1.0077| 0.9619
5 6 8 17 18 10 17
40% 12 18 24 43 43 27 43
1.6930 | 09073 | 1.1204| 0.8245 | 141.8790 | 1.0077 | 0.9619
5 6 8 17 19 10 17
50% 12 18 19 43 43 27 43
1.6930 | 0.9474 | 6.4630 | 0.8245 | 141.9140 | 1.0077 | 0.9619
5 6 7 17 19 10 17
60% 10 18 16 37 43 27 43
1.6930 | 0.8608 | 6.4670 | 0.2645 | 141.9150 | 1.0077 | 0.9619
5 6 7 15 18 10 17
70% 10 18 16 36 41 25 43
1.6930 | 0.8586 | 6.4670 | 0.8593 | 141.7710 | 0.9658 | 0.9619
5 6 7 15 18 10 17
80% 10 18 16 34 39 25 43
1.6930 |  0.9088 | 6.4670 | 0.8959 | 141.7710 | 1.0082 | 0.9619
5 6 7 13 18 10 17
90% 10 18 16 29 39 25 43
1.6930 | 03764 | 6.4670 | 0.2229 | 141.7710 | 1.0372| 0.9619
3 3 6 10 18 5 9
100% 0 0 2 6 24 0 11
43.3565 | 100.0000 | 100.0000 | 143.3040 oo | 143.3220 | 100.0000
TABLE 4.2. Separate reduction of the seven subcircuits of the op741. The

table shows the number of equations (1% entry), the number of terms on
level 0 (2" entry), and the error measured by the £2-norm error function

(3™ entry) as a percentage value.

109
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and (PP), and r; contains the reduction information ("term reductions, algebraic mani-
pulations”, b;), where b; is the j-th error bound in the sweep sw.

Numbering the 13 error bounds in sw by $1 = 1% up to $13 = 100% and ordering the
sensitivities of the subsystems w.r.t. the error on V$26 increasingly yields the following
seven lists:

CM1:  ($1, $3-12, $2, $13)

CM2: (83, $6, $5, $12, $10, $9, $7, $11, $4, $8, $2, $1, $13)
CM3:  ($1, $2, $3, $5, $4. $6-7, $8, $9-12, $13)

DAR: ($12, $9, $6, $4, $5, $7-8, $3, $1, $2, $10, $11, $13)
DP:  ($5, $4, $2, $1, $6, $10 and $12, $7, $8, $9)

LS:  ($3, $10, $6-9, $11, $5, $12, $1, $2, $13)

PP: (%2, $1, $5 12, $3 4, $13)

With these ordered lists we can proceed with the reduction process by using Algorithm
4.5. The computation time needed therefor is ~25min. The resulting order of reductions
and the corresponding accumulated errors are listed in Table 4.3. We further included
the development of the number of equations and terms of the so far reduced entire system
in this list. Note that the error bound for the reduction of the entire system is 10%.

Thus, we finally end up with a configuration of reduced subsystems
(4.15) (CM1,CM2,CM3,DAR, DP, LS, PP) = ($2, orig., $8,$11, $1, $2, $3).

where "orig." means that the original subsystem is used for the corresponding subcircuit.
The entire system composed of the above models consists of 166 equations and 565 terms
on level 0. The time costs of its simulation are ~20.3s and the error in comparison to
the original output V$26 is 6.8601% (cf. Figure 4.13).

By taking a closer look at Table 4.3, we see that some of the reduction steps do not seem
to be reasonable, since they "re-increase" the number of equations and terms of the so
far reduced entire system. For example, this is the case for the subsystem reductions
from step 3 to step 4 or from step 9 to step 10. Although we actually come down to a

voltage [V] voltage [V]
10/ 4r
51 2f
o.oTs 0.0710 0.0TS qon0 L1s] o.oﬂrs 0.0010 o.oﬂfs goo0 L18]
-5 _2f
-10 41
(a) Outputs of the original (solid) and the hi- (b) The corresponding error plot.

erarchically reduced model (dotted).

F1GURE 4.13. Comparison of the original and the hierarchically reduced
op741 model in the £2-norm error function case.
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reduction step | eqns. / terms accumulated action
error [%)]
1 CM3 — 81 207 /982 0.1206
2 CM3 — $2 207 /980 0.2003
3 DAR — $12 202 / 896 0.7258
4 DAR — $9 206 / 904 0.3998
5 CM1 — $1 200 / 859 0.8735
6 DAR — $6 198 / 859 0.9680
7 CM2 — $3 192 /814 23.6715 > 10.0
8 CM2 — orig reset CM2, delete list
9 PP — §$2 191 /751 0.6255
10 DAR — $4 195 /775 0.9459
11 DP — $5 167 / 569 1.0940
12 LS —$3 158 /474 1.7760
13 DAR — $5 156 / 459 1.2950
14 DAR — $7 156 / 456 1.2532
15 DAR — $3 158 /477 1.2991
16 DAR — $1 158 /478 1.3137
17 DP — $4 158 / 480 1.3370
18 DAR — $2 158 / 480 1.3370
19 DAR — $10 154 /451 1.9359
20 DAR — $11 154 /449 1.9274
21 CM3 — $3 153 / 447 1.9200
22 PP — $1 153 / 447 1.9346
23 PP — $5 153 /444 1.9258
24 LS — $10 148 / 427 2.3233
25 CM3 — $5 147 / 425 2.2778
26 LS — $6 147 / 427 1.9288
27 LS — $11 147 / 425 2.2377
28 LS — $5 148 / 428 1.9327
29 CM3 — $4 148 / 430 1.9230
30 LS — $12 147 / 427 2.2909
31 PP — $3 147 / 428 2.3725
32 CM3 — $6 147 / 424 2.3798
33 DP — $2 160 / 534 0.9919
34 DP — $1 160 / 538 0.9926
35 LS — 81 168 /578 1.4670
36 LS — $2 166 /571 1.4142
37 CM1 — $3 166 / 569 3.1130
38 CM1 — $2 166 / 570 2.2330
39 CM3 — $8 166 / 565 6.8601
40 CM3 — $9 165 / 562 12.0618 > 10.0
41 CM3 — $8 reset CM3, delete list
42 DP — $6 154 /449 24.5622 > 10.0
43 DP — $1 reset DP, delete list
44 CM1 — $13 164 / 552 oo > 10.0
45 CM1 — $2 reset CM1, delete list
46 PP — $13 158 / 532 100.0000 > 10.0
47 PP — $3 reset PP, delete list
48 DAR — $13 161 /537 103.7530 > 10.0
49 DAR — $11 reset DAR, delete list
50 LS — $13 155 /507 oo > 10.0
51 LS — $2 reset LS, delete list

TABLE 4.3. Hierarchical reduction using subsystem sensitivities, the £2-
norm error function, and Algorithm 4.5.
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voltage [V] Voltage [V]
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FiGure 4.14. Comparison of the original and the non-hierarchically
reduced op741 model in the £2-norm error function case.

system containing 147 equations and 424 terms in step 32, we finally end up in step 39
with 166 equations and 565 terms.

This topic is further discussed in Section 4.7.3. The next section investigates the usual
non-hierarchical reduction of the entire system without taking into account its hierar-
chical structure on circuit level.

4.7.1.2. Non-Hierarchical Reduction. In order to compare our results obtained
by the hierarchical reduction approach to the usual non-hierarchical one, we symbolically
reduce the original entire system containing 215 equations and 1050 terms on level 0. The
reduction settings are as before, i.e. we apply term reductions and algebraic manipulations
allowing an error of 10%.

Performing these two reduction techniques in the given order, we obtain a reduced entire
system containing 97 equations and 593 terms. For the reduction, we need 10h and
25min'!. The time costs for the simulation of this system are ~16.0s instead of ~26.0s
for the original one. Furthermore, the error on V$26 is 2.5124%. In Figure 4.14, the
output of both the original and the non-hierarchically reduced system as well as the
corresponding error plot are shown.

REMARK 4.8. Note that the direct application of the methods presented in Section
2.5.2.2 to the entire system is limited due to complexity reasons. Hence, in general one
might not succeed in applying these techniques to circuits of large size.

4.7.2. Reduction using the New Error Function. We repeat both the hierar-
chical and the non-hierarchical reduction of the operational amplifier with exactly the
same settings and specifications as before except for the choice of the error function. This
time, we use the error function in (4.12) or (4.13), respectively, instead of the £*-norm
error function given by (4.14) for p = 2.

4.7.2.1. Hierarchical Reduction. First, we compute the results for the reduction
approach that exploits the hierarchical structure on circuit level. We proceed in exactly
the same way as before using the algorithms in the previous sections of this chapter.

"The computations are performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM.
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After a simulation of the original system in order to obtain the voltage potentials of
the nodes to which the subcircuits terminals are connected, we compute the 91 =713
reduced models of the seven subcircuits. Thereby, we use the same symbolic reduction
techniques and the same sweep of error bounds sw as before. The computational effort
for this calculation is 1h and 48 min. We need additional ~26 min to compute the seven
subsystem sensitivities. The results of the corresponding error analysis are summarized in
Table 4.4. As in Table 4.2, the first entry is the number of equations of the corresponding
reduced subsystem, the second is its number of terms. The third entry is the error on
the output V$26 of the interconnected system, where exactly one subcircuit is replaced
by the corresponding reduced subsystem. It is given as a percentage value.

From the errors given in Table 4.4 one can read off the subsystem sensitivities. Num-
bering the 13 error bounds in sw by $1 = 1% up to $13 = 100% and ordering the
sensitivities of the subsystems w.r.t. the error increasingly yields the following lists:

CM1: ($3 12, $1 2, $13)

CM2:  ($1 12, $13)

CM3: ($8 9, $1, 96 7, $3 4, $2, $5, $10 12, $13)
DAR: ($1 3, $5 12, $4, $13)

DP:  ($7, $1-2, $3, $9-10, $8, $4-6, $11-12, $13)
LS:  ($1, $4-9, $3, $2, $10-12, $13)

PP:  ($1-6, $7-12, $13)

With these ordered lists, we use Algorithm 4.5 and proceed with the reduction process.
The computation time needed therefor is ~13min. The reduction progress, the accu-
mulated errors, and the development of the number of equations and terms of the so far
reduced entire system are listed in Table 4.5. Also in this case the error bound for the
reduction of the entire system is 10%.

Hence, we finally obtain a configuration of reduced subsystems

(4.16) (CM1,CM2,CM3,DAR, DP, LS, PP) = ($3,$1, $1, orig., $4, orig., $7).
voltage [V] V01t1asge [V]
10} 1.0¢
50 0.5} A
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(a) Outputs of the original (solid) and the hi- (b) The corresponding error plot.

erarchically reduced model (dotted).

F1GURE 4.15. Comparison of the original and the hierarchically reduced
op741 model obtained by using the new error function.
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TOT Mt CM2 CM3 DAR DP LS PP
bound

, 20 21 30 33 72 39 42

orig: 77 81 124 143 320 167 190

5 6 8 18 37 20 23

1% 14 18 30 114 292 130 154

0.0110 | 0.1516 | 0.0916 | 0.0528 | 0.0454 | 0.0109 | 0.0907

5 6 8 18 37 20 23

2% 13 18 29 114 292 130 154

0.0110 | 0.1516 | 0.1014 | 0.0528 | 0.0454 | 0.0497 | 0.0907

5 6 8 18 23 20 23

5% 12 18 2 114 82 130 154

0.0042 | 0.1516 | 0.0999 | 0.0528 | 0.0539 | 0.0232 | 0.0907

5 6 8 10 29 10 23

10% 12 18 2 23 77 27 154

0.0042 | 0.1516 | 0.0999 | 0.1038 | 78.2851 | 0.0121| 0.0907

5 6 8 8 23 10 23

20% 12 18 2 17 76 927 154

0.0042 | 01516 | 0.1153| 0.0547 | 78.2851| 0.0121| 0.0907

5 6 8 8 23 10 23

30% 12 18 24 19 74 27 154

0.0042 | 01516 | 0.0975| 0.0547 | 78.2851| 0.0121| 0.0907

5 6 8 8 29 10 13

40% 12 18 24 19 57 27 34

0.0042 | 01516 | 0.0975 | 0.0547 | 0.0050 | 0.0121| 0.0965

5 6 8 8 29 10 13

50% 12 18 19 19 55 927 34

0.0042 | 0.1516 | 0.0855 | 0.0547 | 14.2948 | 0.0121| 0.0965

5 6 8 8 29 10 13

60% 10 18 19 17 53 927 34

0.0042 | 0.1516 | 0.0855 | 0.0547 | 12.0276 | 0.0121| 0.0965

5 6 7 8 29 9 13

70% 10 18 16 17 53 21 34

0.0042 | 01516 | 4.5805 | 0.0547 | 12.0276 | 3.5716 | 0.0965

5 6 7 8 29 9 13

80% 10 18 16 17 51 21 34

0.0042 | 01516 | 4.5805 | 0.0547 | 190.2050 | 3.5716 | 0.0965

5 6 7 8 29 9 13

90% 10 18 16 17 49 21 34

0.0042 | 0.1516 | 4.5805 | 0.0547 | 190.2050 | 3.5716 | 0.0965

3 3 6 7 18 5 12

100% 0 0 P P 24 0 14

105.0410 | 189.8860 | 189.0700 | 190.9600 o | 190.9830 | 99.9920

TABLE 4.4. Separate reduction of the seven subcircuits of the op741
using the new error function. Contained in this table are the number
of equations (1% entry), the number of terms on level 0 of the reduced
subsystem (2" entry), and the error on V$26 (3 entry).



4.7. ANALYSIS OF THE OPERATIONAL AMPLIFIER OP741 115
reduction step | eqns. / terms accumulated action
error [%]

1 CM1 — $3 209 /1003 0.0042

2 DP — $7 183 /788 0.0051

3 LS — %1 179 /781 78.2851 > 10.0

4 LS — orig reset LS, delete list

5 CM1 — $1 183 /790 0.0256

6 DP — $1 198 /1025 0.0515

7 DAR — $1 198 /1026 0.0202

8 DP — $3 184 /816 0.0583

9 DAR — $5 174 /719 0.0970
10 CM3 — $8 164 / 638 78.3694 > 10.0
11 CM3 — orig reset CM3, delete list
12 PP —$1 173 /719 0.0813
13 PP — $7 163 / 599 0.0871
14 DAR — $4 165 / 605 0.0717
15 CM2 — $1 159 / 560 0.0352
16 DP — $9 158 / 531 11.3933 > 10.0
17 DP —$3 reset DP, delete list
18 PP — $13 158 / 540 99.9920 > 10.0
19 PP — §$7 reset PP, delete list
20 CM1 — $13 157 / 546 oo > 10.0
21 CM1 — $1 reset CM1, delete list
22 CM2 — $13 156 / 542 oo >10.0
23 CM2 — $1 reset CM2, delete list
24 DAR — $13 156 / 539 190.9590 > 10.0
25 DAR — $4 reset DAR, delete list

TABLE 4.5. Hierarchical reduction using subsystem sensitivities and the

new error function (4.12) resp. (4.13).

The reduced entire system composed of these models consists of 159 equations and 560
terms on level 0. The time costs of its simulation are ~23.7s and the error measured by
the new error function and compared to the original output V$26 is 0.0335% (cf. Figure
4.15).

Also in Table 4.5, some of the reduction steps do not seem to be reasonable. For example,
avoiding the steps from 5 to 6 or from 13 to 14 might lead to a reduced entire system
with less equations and a smaller number of terms. We further discuss this in Section
4.7.3.

4.7.2.2. Non-Hierarchical Reduction. In contrast to the above hierarchical re-
duction, we reduce the entire op741 amplifier without taking its hierarchy into account.

In spite of the large size of the operational amplifier (see also Remark 4.8) we succeed in
applying term reductions and algebraic manipulations. Allowing a 10% error bound, we
come down to 80 equations and 405 terms on level 0. The result is a good approximation
of the amplifier’s output V$26, cf. Figure 4.16. This system can be simulated in ~9.5s
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FiGURE 4.16. Comparison of the original and the non-hierarchically
reduced model of the op741 amplifier obtained by using the new error
function defined in (4.12) resp. (4.13).

instead of ~26.0s for the original one. Further, the error on the original output V$26 is
0.3718%.

However, the time effort for the reduction is more than 12h'?. This confirms that the
application of "non-hierarchical symbolic methods" is limited to circuits with not too
many nonlinear components.

4.7.3. Improvement. As already mentioned in the previous subsections, some steps
in the two applications of Algorithm 4.5 do not seem to make sense. Our first attempt
for deriving smaller hierarchically reduced systems is the deletion of inappropriate steps
in the reduction process. In a second approach, we perform hierarchical reductions of
the entire system based on structural information about the reduced models of the seven
subcircuits. Finally, we conclude with a hybrid reduction approach by a further non-
hierarchical reduction of the hierarchically reduced interim system.

4.7.3.1. Avoiding Backwards Steps. Table 4.3 shows that, e.g., from step 3 to
4 or from step 9 to 10 the number of both equations and terms increases. While in the
first case the accumulated error decreases, in the latter it grows. In step 32, we have
the smallest interim system that contains only 147 equations and 424 terms. Further
subsystem replacements beyond step 32, however, increase again the size of the system.

The same holds for the hierarchical reduction process using the new error function. In
Table 4.5, e.g. the steps from 5 to 6 and from 13 to 14 increase the number of terms and
equations and, therefore, should be avoided. Nevertheless, the overall decay rate of the
number of terms and equations in the latter case seems to be more even than in the case
of the £2-norm error function.

Therefore, we might obtain smaller systems by avoiding "backwards steps", i.e. reduction
steps where a subsystem is replaced by one that contains a higher number of equations
or terms. This requires the additional monitoring of the number of equations and terms
in the reduced models.

12The computation is performed on a machine with 8 Quad-core AMD Opteron 8384 "Shanghai" (32
cores in total) with 2.7 GHz and 512 GB RAM on a SuSE Linux 10.1 system.



4.7. ANALYSIS OF THE OPERATIONAL AMPLIFIER OP741 117

By avoiding backwards steps during the reduction processes shown in Tables 4.3 and 4.5,
we obtain smaller systems for both choices of the error function. For the £?-norm error
function the resulting system is composed of the subsystems

(4.17) (CM1,CM2, CM3, DAR, DP, LS, PP) = ($9, orig., $8,$12,$5,$12, $5).

and contains 145 equations and 407 terms. The computational cost for a simulation
is ~15.8s and the error on V$26 is 6.9893%. For the new error function, we obtain a
subsystem configuration

(4.18) (CM1,CM2,CM3,DAR, DP, LS, PP) = ($7,$3, $1, orig., $5, orig., $7).

The corresponding entire system consists of 156 equations and 527 terms on level 0, so
the improvement in this case is rather small. The simulation of the system needs ~20.0s
and the error on V$26 is 0.0335%. The graphs of the output solutions of any of these
systems are similar to the yet shown ones. We therefore relinquish further figures for the
systems above.

Note that the computational cost for deriving the above subsystem configurations is
almost the same as before, since they only rely on an additional check of the number
of equations and terms of the subsystem candidates. Another possibility to include this
idea into the entire reduction process is the consideration of the number of equations
and terms during the setup of the ordered lists from the subsystem sensitivities. If a
reduced subsystem candidate causes a higher number of terms or equations than their
predecessor in the list, it is simply left out. This also reduces the lists’ length such that
the entire reduction process can be accelerated.

However, this approach may also lead to actually feasible subsystem replacements that
do not occur in the lists and, therefore, will never be executed. For example, in (4.16)
and (4.18) we can actually replace (LS) by $4 9, although the check of the accumulated
error in step 3 of Table 4.5 fails, where the original (LS) subcircuit is tried to be replaced
by $4. In this case, this is due to the solution which misses the first "jump" of the
amplifier’s output. This means that the output solution of the so far reduced system did
not start in —13V and directly jumped to +14 V. Instead, it directly started on a level
of +14V, thus causing a rather large error.

In this small example we see that settings such as step sizes of the numerical solver also
play an important role during the entire reduction process.

4.7.3.2. Including Structural Subsystem Information. According to Algori-
thm 4.5, the ordered list of components of a subsystem sensitivity vector is deleted as
soon as the check of the accumulated error caused by a replacement of the corresponding
subsystem fails. This seems to be fatal particularly in those cases, where a subcircuit is
not replaced by any of its reduced models at all.

In order to replace (CM3) and (LS) in the subsystem configurations in (4.16) and (4.18),
respectively, by a suitable reduced subsystem, we consider their structure in terms of the
number of equations and terms. Using this structural information, we are able to derive
systems of smaller size than before. The exact approach is described in the following by
using the new error function.



118

eqns.

4. HIERARCHICAL MODEL ORDER REDUCTION

terms

error [%]

error [%]

(a) Number of equations and terms for (CM1).

eqns. terms
6 18 \

16F
sk

14
4t 12t

10
3L

sk
2t 6

ne
b

s

error [%) TR L L L L L

error [%]

(b) Number of equations and terms for (CM2).

eqns. terms

30
8

27
JL

2
or 21
sh 18
4t 15

12
3L

9
5L

6
Iy 3

error [%] TR L L L L L

15 10 20 30 40 50 60 70 80 90 15 10 20 30 40 50 60 76 86 9‘0 6 error [%]
(¢) Number of equations and terms for (CM3).
eqns. terms
120
R
w0k |
‘\
\
80 \“
\
6o |
‘
™~ |
o 401 \‘
o ‘\
00 T~ S
ol —
‘l‘é 1‘0 Zb 3‘0 4‘0 5‘0 60 7‘0 8‘0 9‘0 160 error [%] 1‘5‘ 1‘0 Zb 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100 error [%]
(d) Number of equations and terms for (DAR).
cqns. terms
40 300 -
361
32\ 250
28F
200
201 \ 150
161
12+ 100 -
g S0 4’77\7*****—**+77
s \
S0 W w0 w0 w0 1 s w0 o O S0 2w w0 w70 w0 w0

(e) Number of equations and terms for (DP).



4.7. ANALYSIS OF THE OPERATIONAL AMPLIFIER OP741 119

Lo 100 -
15 \ \

12F \ B 80 \

L ~— 60 \
ok \ 40t \
|

3F 201

— error [%
o0 [%]

TR L L L L L L L L TR L L L L L L L L error [%]
1510 20 30 40 50 60 70 80 90 1510 20 30 40 50 60 70 80 90 0

(f) Number of equations and terms for (LS).

terms,

160 -

2 140 \
18 120 \

15 100 \
12F T sob

o \
6F 40+ \

201

TR L L L L L L L L L error [%] TR L L L L L L L L L error [%]
1510 20 30 40 50 60 70 80 90 100 1510 20 30 40 50 60 70 80 90 100

(g) Number of equations and terms for (PP).

FIGURE 4.17. Sensitivity diagrams for the seven subsystems of the ope-
rational amplifier op741.

Figure 4.17 shows diagrams of the number of terms and equations of all reduced models
of the seven subsystems which, in general, decrease for growing bounds of the permitted
errors. According to these diagrams, for the second current mirror (CM2) one obviously
obtains always the same reduced model no matter which error bound ecpyp < 90% in sw
is specified. Hence, in the original describing equations of subcircuit (CM2), there are
only terms contained that either have an influence less than 1% or greater than 90% on
the entire circuit’s output V$26. Thus, we can try to replace (CM2) by its reduced model
obtained by allowing any error bound ecpz < 90% from the sweep sw.

For (CM1), the situation is almost the same, although the number of terms drops for a
permitted error between 50% and 60%. Actually, during our manual sensitivity analysis,
we observe that an error bound ecy; > 60% yields a hierarchically reduced entire system,
where the accumulated error is larger than 10%. Consequently, we try to replace (CM1)
by a reduced model corresponding to an error bound 5% < ecy; < 50%.

For (CM3), the number of terms drops for almost every other increase within the val-
ues of the error sweep sw. Nevertheless, the number of equations is the same up to
ecmz = 60%. Our analysis shows that an allowed error ecyz > 70% yields bad results
for the hierarchically reduced entire system. Therefore, we replace (CM3) by the model
obtained by allowing an error of 60%.

According to the diagrams for the Darlington subsystem (DAR), the largest drops in the
number of terms and equations occur for error bounds epar < 20%. If the reduced model
resulting from epar = 20% does not fail the error check on V$26, nor the one resulting
from epar < 90% probably will do so, since there are almost no changes in the number
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subsystem permitted error equations

CM1 5 50% 20— 5

CM2 1-90% 21 - 6

CM3 50 — 60% 30 - 8

DAR 20 - 90% 33 - 8

DP 10 - 40% 72 — 22 (23)
LS 10 - 60% 39 — 10

PP 40 - 90% 42 — 13

TABLE 4.6. Permitted errors for the hierarchical reduction of the opera-
tional amplifier op741 coming from an analysis of the number of terms and
equations of its reduced subsystems. Entire systems composed of reduced
subsystems with an error within the respective regions have an error of
less than 10% compared to the original output V$26.

of equations and terms for higher error bounds. In fact, epar = 90% turns out to be a
suitable choice for a reduced model of (DAR).

For (DP), the biggest drops in the number of equations and terms also occur for error
bounds epp < 5%. Nevertheless, our manual sensitivity analysis shows that even with
epp = 70% one still obtains a satisfying reduced model for (DP). However, the jumps
of the hierarchically reduced system’s output are a little delayed in comparison to the
original circuit’s output. Better results with the same number of equations are obtained
for epp € {10%,40%}, so we restrict ourselves to reduced models of (DP) obtained by
permitting these error bounds.

Finally, for the last two subsystems (LS) and (PP), the intervals 10% < g5 < 60% and
40% < epp < 90% between two respective drops of the numbers of equations and terms
turn out to be the regions for appropriate error bounds to derive reduced models.

Table 4.6 shows a summary of the above discussion and provides the resulting subsys-
tem configurations of suitable hierarchically reduced entire systems. If for any of the
amplifier’s subsystems a respective higher bound from sw is chosen, the resulting hierar-
chically reduced system’s output has a large error of up to 200% compared to the original
system’s output V$26.

Choosing the largest possible error bound for all seven subsystems corresponds to the
subsystem configuration

(4.19) (CM1,CM2,CM3, DAR, DP, LS, PP) = ($7,$8,$12,$9,$12,$9,$12),

thus yielding a system that contains 132 equations and 336 terms only. The error on the
original system’s output V$26 is 0.0828% and the time costs for a simulation are ~13.1s.
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FIGURE 4.18. Outputs of the original (solid) and the hierarchically re-
duced system (dotted) obtained by using information about the subsys-
tems’ number of equations and terms.

Proceeding in a similar way using the £2-norm error function, we obtain a subsystem
configuration

(4.20) (CM1,CM2, CM3, DAR, DP, LS, PP) = ($9,$3, $8, $12, $5, $12, $5).

Note that this is the same as the configuration ($12, $12,$8,$12,$5, $12,$12) (cf. Table
4.2). The corresponding entire system consists of 139 equations and 362 terms on level
0, the error on V$26 is 7.1568%, and the time costs for a simulation are ~11.4s. Figure
4.18 shows that the outputs of the original and the reduced systems still fit quite well in
both cases. Since we computed the two systems completely manually, we relinquish the
indication of time effort.

4.7.4. A Hybrid Reduction Approach. In order to further reduce the complexi-
ty of the obtained systems, i.e. their number of equations and terms, we apply term
reductions and algebraic manipulations in the usual way. Thus, we obtain hybrid hierar-
chically and non-hierarchically reduced entire systems of lower complexity and with less
time effort than using the usual non-hierarchical reduction for simplifying the original
system of equations with 215 equations and 1050 terms.

We already applied the hierarchical reduction to the original system using an error bound
of 10%. Therefore, a further reduction of the interim systems using the same error bound
finally might lead to systems whose error on the original output V$26 is larger than 10%.
In fact, a further reduction by using the above methods and an error bound of 10% in
the case of the system containing 166 equations from Section 4.7.1.1 yields a system
with an error of 11.2945% on the original output. Furthermore, this error is not due to
delayed jumps, but rather to two different top levels of the pulse-shaped output. While
the original output’s top level is around 14V, the simplified system’s output has top
levels of approximately 15.8 V.

However, by using an error bound of 9% instead of 10%, the system mentioned above can
be further reduced and the error on the output even decreases from 6.8601% to 5.2629%.
Nevertheless, for one of the four systems that we consider in this section, this bound is
still not suitable and the overall error bound of 10% is exceeded.
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L%-norm error function new error function
139/362 34/92 132/336 34/93
~11.4s — ~2.28 ~13.1s — ~2.0s
7.1568% 5.6771% 0.0828% 5.3191%
166 /565 68/317 159/560 34/108
~20.3s — ~2.58 ~23.7s — ~0.8s
6.8601% 5.2629% 0.0335% 15.6523%

TABLE 4.7. The hierarchically reduced systems are further reduced non-
hierarchically allowing an error of 9%. Thus, one finally obtains hybrid
reduced models of the original operational amplifier op741. The table con-
tains the corresponding systems’ number of equations and terms (cf. No-
tation 4.9), the time costs of a simulation, and the corresponding error on
the entire system’s output V$26.

Table 4.7 provides an overview of the four systems to which we apply hybrid reductions.
Thereby, the systems are identified by their number of equations and terms.

NOTATION 4.9. In the following, we identify the original system and its different re-
duced counterparts by their number of equations and terms n. and ng, respectively. The
corresponding system then is denoted by "n./n,".

voltage [V] voltage [V]
10} 10} [—\
5t 5t
» 0005 0oio 0.dis o0 18] y 00005 0.oio 0.5 o0 ¢ 18]
3T ST
(a) System "34/92". (b) System "68/317".
voltage [V] voltage [V]
o /—\
5t 51 |
Py 0005 0.oio 0.dis o020 18] B 0.0‘205 0.0410 0.0‘::15 o020 LIS
3T 3T
(c) System "34/93". (d) System "34/108".

FIGURE 4.19. Outputs of the original (solid) and the reduced system
(dotted) obtained by using the hybrid approach.
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Hence, the original system with 215 equations and 1050 terms is denoted by "215/1050".
System "166/565" is the system obtained in Section 4.7.1.1 by using the hierarchical
reduction approach and the £%norm error function, while system "159/560" is the one
from Section 4.7.2.1 using the newly designed error function. Systems "139/362" and
"132/336" correspond to the systems from Section 4.7.3.2, where we used information
about the subsystems’ number of equations and terms to derive hierarchically reduced
entire systems. The table contains entries including the systems’ number of equations
and terms, the time costs for simulations, and the error on V$26 of the original system
given as a percentage value. We did not include the computational effort that is necessary
for the additional non-hierarchical reductions. It depends on the exact settings of the
numerical solver and ranges from several minutes to 1.5h. Usually, more than 90% of
this time is needed for the computation of the transient term ranking.

According to Figure 4.19, the hybrid reduced systems’ outputs fit the original one quite
well except for system "34/108".

4.7.5. Model Quality Check. In order to check the quality of the different reduced
entire systems and, hence, the aptitude for employing them in different application areas,
we apply some other input excitations. Then, we compare the corresponding outputs of
the reduced systems and the original one to each other.

Figure 4.20 shows three different input functions on an extended time interval T oy =
[05,0.008 s ] which will be used for this purpose. The respective output results for both
the original and the reduced systems are also shown. The first input function in Subfigure
(a) is a pulse excitation. The function in Subfigure (c) is a sine wave with a frequency of
3,000 Hz and a maximum amplitude of 0.5V that is slightly shifted in direction of the
positive voltage axis. The function in Subfigure (e) is a sum of three sine waves, namely

sin(27 - 250t) + 0.5sin(27 - 500¢) + 0.5 sin(27 - 2000¢).

The plots in Figure 4.20 correspond to simulations of the hybrid reduced system "34/93".
Since the respective plots of the remaining reduced systems are very similar, we relinquish
the inclusion of further figures.

However, we have not been able to solve all the remaining systems for all of the three
input excitations above (see also Remark 4.11). For example, the non-hierarchically
reduced systems "97/593" and "80/405" as well as the hierarchically reduced system
"166/565" could not be solved if the voltage pulse in Figure 4.20 (a) was applied. More-
over, the hybrid reduced system "34/108" was not solvable for any of the three inputs.
Besides this, for certain input excitations from above, some of the reduced systems need
more time to be solved than the original one. For example, while the original system
"215/1050" needs ~1min44s to be solved if the sum of sine waves in Figure 4.20 (e) is
applied, systems "166/565" and "80/405" need ~1min47s and ~2min 5s, respectively.
Nevertheless, even with a view towards reduced simulation time, the hybrid reduced
systems "68/317", "34/92", and "34/93" yield very good results for all three inputs
above. System "34/92" for example can be simulated up to 19 times faster than the
original one by using the three input functions above (cf. Table 4.8). Also from an
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F1GURE 4.20. Left: Three different input functions for testing the quality
of the reduced models. Right: The corresponding output results of the
original (solid) and the reduced systems (dashed).

accuracy point of view, according to Figure 4.20, the hierarchical and hybrid approaches
yield good models for the op741 amplifier circuit with a much lower level of complexity
than the original circuit.

REMARK 4.10. The obtained hierarchically and hybrid reduced models are not only
better than the non-hierarchically reduced ones w.r.t. simulation time, they are also more
robust w.r.t. other input excitations; although the symbolic reduction was performed by
applying the smooth sine wave excitation from Figure 4.12 (a), these models yield good
approzimations also for the highly non-smooth voltage pulse from Figure 4.20 (a).

REMARK 4.11. (Observation)

The symbolic methods guarantee the user-specified accuracy for the input excitation used
during the reduction process. The applicability of other inputs of the so far reduced
systems, however, has not been a criterion. Therefore, numerical problems may occur
while solving the obtained models for another input. Despite this, we also obtain reduced
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system voltage pulse 3kHz sine wave sum of sine waves
215 /1050 106's 273s 104s
159 /560 55 250s 114s
68 /317 36.5 655 35.9s
34 /92 6.6 14.1s 10.5s

TABLE 4.8. Comparison of the computational cost of simulations of three
selected reduced models and the original system.

models that yield good approximations of the original system for other input excitations.
This suggests that symbolic reduction methods maintain the "important parts” of the
original system.

Furthermore, the time needed for simulations of the so far reduced systems has not been
monitored during the reduction process (which in principle is possible, though). Never-
theless, according to experience, the reduced systems in general can be simulated faster
than the original one (cf. Table 4.8 and Figure 4.21).

4.7.6. Conclusion. Figure 4.21 summarizes the different reduction approaches and
the resulting systems that have been investigated in this section.

Ezplanation of Figure 4.21. The boxes in this figure contain the number of equa-
tions and terms of the corresponding systems, they are used for their identification
(cf. Notation 4.9). Moreover, the corresponding errors on the output V$26 of the origi-
nal op741 amplifier and the simulation time costs are contained in the boxes. Conse-
quently, the topmost box corresponds to the original system, which contains 215 equa-
tions and 1050 terms. Applying the input excitation from Figure 4.12(a), it can be
simulated in ~26.0s. The leftmost branch means that the non-hierarchical reduction
took ~10h 25 min if the £2-norm error function was used. It resulted in a system with
97 equations and 593 terms. The simulation time of this reduced system is ~16.0s with
an error of 2.51% measured by the £2-norm error function. If the new error function is
used, the result is slightly better (box at the rightmost branch).

The best results correspond to the two boxes in the middle of the bottom. During the
hierarchical reduction, we here used additionally structural subsystem information (cf.
Section 4.7.3.2) which is given by the reduced subsystems’ number of equations and
terms. Subsequently, a non-hierarchical symbolic reduction was applied. Therefore, we
call the entire reduction a hybrid reduction. The total time needed therefor ranges from
~2.5h to ~4h and depends on the exact settings of the numerical solver. The resulting
systems are rather small (34 equations, 92 terms) and the simulation time is about 2s
with an error of only 5.68% resp. 5.32%.

According to this figure, the hierarchical and hybrid reduction approaches could be
applied successfully and with significant savings in computational time to the operational
amplifier op741. While the usual non-hierarchical approach needed more than 10 hours,
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FIGURE 4.21.
tained in this section via different reduction approaches. The boxes contain
the number of equations and terms of the reduced models, the time costs
of a simulation using the original sine wave excitation in Figure 4.12 (a),
and the error on the output V$26 of the original operational amplifier
op741.
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the hybrid reduced models could be derived in less than half of that time. Nevertheless,
the accuracy of all reduced models is almost the same except for one case. Furthermore,
the hybrid reduced model "34/93" (cf. Notation 4.9) can be simulated in ~2.0s using
the original sine wave excitation, which is only 8% of the time needed for the original
system. At the same time, the best non-hierarchically reduced model "80/405" needs
~9.5s, which is 37% of the original simulation time of 26.0s.

According to Figure 4.20, the hierarchical and hybrid approaches yield good models for
the op741 amplifier circuit with a much lower complexity than the original circuit'?.
Applying three further test inputs, the hybrid reduced systems "34/92" and "34/93"
turned out to be quite a lot faster to simulate than the non-hierarchically reduced ones.
Moreover, although the symbolic reductions have been performed by applying a smooth
sine wave excitation, the two systems proved to be robust even w.r.t. a highly non-smooth
pulse excitation.

REMARK 4.12. Note that we performed symbolic reduction in the transient case.
Furthermore, we used full simulations for the term ranking, i.e. for measuring the influ-
ence of single terms on the output of the original system. Using approzimate simulations
might accelerate the entire reduction process, in the hierarchical as well as in the non-
hierarchical case.

The corresponding reduced systems for both the new and the £2%norm error functions
are very similar. Moreover, considering the amplifier’s subcircuits (CM1) and (CM2)
(cf. Figure 4.11), the number of equations and terms of the corresponding reduced coun-
terparts are equal for both choices of the error function (see Tables 4.2 and 4.4). For the
subcircuits (CM3) and (LS) they are at least very similar.

Despite this, the op741 example still shows that a good choice of the error function plays
an important role. While the new error function led to errors that either are very small
or rather large, the errors obtained by using the £%-norm error function are more staged.
Hence, for certain subcircuits, using the new error function with different error bounds
sometimes led to the same reduced subsystem. For example, any error bound between
1% and 90% resulted in the same reduced subsystem of the (CM2) subcircuit. For
some subcircuits this led to only a small number of reduced models. As a consequence, a
smaller number of reduced model replacements had to be checked during the hierarchical
reduction process. Therefore, the algorithm needed only 25 steps, while it took 51 steps
using the £%norm error function (cf. Tables 4.3 and 4.5).

However, besides the advantage of a faster processing, this might also lead to subcircuits
that will not be replaced by a reduced subsystem at all. If there is a choice of "many"
reduced subsystems for a subcircuit, the algorithm can find a suitable one "stepwise'.
On the other hand, if there is only a small number of subsystems for a subcircuit, "small
steps" are maybe impossible and the first attempt to replace a subcircuit fails. This
means that the algorithm does not replace the corresponding subcircuit at all. We
therefore conclude that the well-established £?-norm error function is adequate for the

13The resulting plots of the corresponding reduced models are very similar. Therefore, we included
the plots only once.
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more general case, although the new error function is maybe better adjusted to the op741
example at hand and led to smaller systems.

To sum up, the application of the hierarchical reduction approach to the operational
amplifier showed the large potential provided by this approach. If one wants to gain
insight into functional relations among circuit parameters and components only locally,
the remaining parts of the circuit may also be reduced by using numerical methods.
This can highly increase the entire reduction process in several magnitudes as it has
been shown in Section 4.1.



CHAPTER 5

Implementations

In this chapter, we give an overview of the prototypical implementations made within this
thesis and provide brief explanations of the corresponding commands. Basic knowledge
of Mathematica and Analog Insydes is required thereby, we refer to [MMA, AIman|
for an introduction.

Since the new procedures and commands use some of the already existing functionality
implemented in Analog Insydes, most of the options refer to internal calls such as the
NDAESolve-command which solves a system of DAEs.

In the first section of this chapter, we present a new data structure that has been imple-
mented for the use with linear time-invariant systems given in state space formulation.
We further present two new procedures that allow for conversions between this new data
structure and the suitable existing data structures already available in Analog Insydes.
The second section then deals with an implementation of the Arnoldi iteration that ope-
rates on the new data structure. In section three of this chapter, we introduce two models
for transmission line components in a circuit as well as some models for general circuit
components that can be modelled via LTI systems in state space formulation. The new
implementations in the first three sections of this chapter have been used successfully
for the reduction of the differential amplifier in Section 4.1.

Section four then presents implementations that partly realize our hierarchical reduc-
tion approach as described in Chapter 4. They have been applied successfully to the
operational amplifier op741 in Section 4.7. The fifth section finally provides a brief sum-
mary of further implementations such as various error functions from Section 4.6 and
extensive development environments used throughout this thesis. Furthermore, these
environments also contain the manual checks of those parts of the hierarchical reduction
approach that have not yet been implemented.

5.1. GetStateSpace and GetDAE
Symbolic systems of equations in Analog Insydes are encapsulated in a data structure
DAEObject [mode] [{egs, vars}t,{dae options}].

Besides the equations and variables occuring in the system of equations, it contains
information such as design points, reference solutions, initial values, and term rankings.
These specifications are stored in dae_options. Furthermore, mode indicates whether
one deals with a linear (AC), a static (DC), or a transient system.

129
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However, we also want to apply numerical reduction methods such as balanced truncation
or the Arnoldi iteration from Section 2.5 to LTI state space systems

Ei(t) = Az(t) + Bu(t),
y(t) = Cx(t) + Du(t).

Consequently, we need to have a description of the equations in terms of constant ma-
trices £, A, B,C, D. Therefore, the new data structure

(5.1)

StateSpaceQObject[{e, a, b, ¢, d},{in, out, states},{sso options}]
as well as new procedures
GetStateSpaceldae, in, out] and GetDAE[sso, {dae_options}]

for transformations between these two data structures in both directions have been im-
plemented. While e, a, b, ¢, d correspond to the system matrices £, A, B,C, D of (5.1),
in, out, and states correspond to u, y, and x, respectively. sso_ options contains the same
information for the underlying system of equations as dae optionsin the DAEObject data
structure.

GetStateSpacel[dae, in, out] transforms a linear DAEObject in AC or transient mode
into a StateSpaceObject. This is achieved by extracting the system matrices from the
equations encapsulated in dae. Thereby, the input u and the output y of (5.1) have to
be specified by in and out. The resulting state space system is then stored in our new
data structure StateSpaceObject, where the dae_options hidden in dae are copied to
sso__options. Hence, all information such as design points and reference solutions are
available in the new state space object.

Similarly, GetDAE[sso, options] transforms a StateSpaceObject sso into a DAEObject.
Thereby, options are optional and can be used to add or update sso options encapsu-
lated in sso. Finally, the updated sso_ options are added as dae_ options to the resulting
DAEObject.

By using these procedures, linear time-invariant (LTI) systems of equations can be pre-
processed in order to apply reduction methods such as Arnoldi’s algorithm.

5.2. Arnoldi Iteration

In order to reduce a linear time-invariant system of DAEs given in state space formula-
tion (5.1) numerically, a new procedure

ReduceArnoldilsso, ¢, wql

has been implemented for the use in Analog Insydes. The reduction is performed by
applying Arnoldi’s iteration as given in Algorithm 2.48. This yields an orthonormalized
matrix V' which is used to project the system matrices and the states of the LTI system
onto a lower dimensional subspace. Finally, the reduced system together with V is
returned.

ReduceArnoldi is called with three parameters. The first one, sso, contains the LTI
system encapsulated in the new data structure StateSpaceObject. ¢ is the number of
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iteration steps that are carried out in the Arnoldi procedure. sy = i-wq is the expansion
point which defines the shifted moments (cf. page 60).

The procedure firstly extracts the design point 7 and the system matrices £, A, B, C, D
encapsulated in sso. Subsequently, all symbolic parameters in these matrices are re-
placed by the corresponding numerical values specified in 7. By an implicit call of our
implementation of the actual Arnoldi iteration,

Arnoldil[E, A, B, wy, 4ql,

the projection matrix V' is computed. It is the orthonormalization of the Krylov space
Kq((A— soE)'E, (A — soE)"'B) which can be computed using the parameters com-
mitted to Arnoldi.

If the original LTI system has m inputs and the dimension of its state space is n, then
B has size n x m. In that case, the size of V' is n X mgq, since the Arnoldi iteration is
executed ¢ times for each of the m column in B.

By use of the projection matrix V, the reduced state vector z and the reduced sys-
tem matrices are computed as described in Section 2.5.1.5. The corresponding reduced
system is then stored in another StateSpaceObject sso_return. The return value of
ReduceArnoldi finally is given by the tuple

{sso_return, V}.

The return of V' allows for comparisons of the state trajectories x ~ V' z and z to each
other. In this notation, x is the state vector of the original system stored in sso and z is
the state vector of the reduced system which is encapsulated in sso return. Moreover,
this procedure has been successfully applied for the reduction of the transmission lines
involved in the differential-amplifier circuit that is considered in Section 4.1.

5.3. Models for Transmission Lines and LTI State Space Systems

In Analog Insydes, analog electrical circuits are expressed in terms of Circuit, Netlist,
and Model objects. For the representation of flat netlists, the Netlist object is used.
This is a data structure which contains a netlist entry for each element in the circuit.
Hence, all information necessary for the description of a circuit with flat hierarchy can
be stored in a Netlist object.

For hierarchical circuit descriptions using subcircuits, a Circuit object is used. This
is a data structure in which besides a circuit’s netlist all its subcircuits and parameters
can be stored. Finally, the data structures Model and Subcircuit serve for the storing
of such subcircuits.

In this thesis, we also performed calculations that involved the modelling of transmission
lines in an electrical circuit. In order to model these transmission lines as subcircuits,
two Model objects have been implemented for the use in Analog Insydes. The first one
applies to the transient case and is based on a semidiscretization of the telegrapher’s
equations (2.36) w.r.t. one-dimensional space. The second model relies on the state
space formulation (5.1) of LTI systems using matrices £, A, B, C, and D and applies
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FIGURE 5.1. Spatial discretization grids for the voltages and currents in
a transmission line of length [.

to AC, DC, and transient systems. The two Model objects are presented in more detail
in the following.

Using the notation given in Section 2.2.4.2, an equidistant semidiscretization of the
telegrapher’s equations (2.36) w.r.t. one-dimensional space yields

(5.2a) do - (—C"- S, — G- ug) = ipp1 — iy, k=1,...,M—1,
(5.2b) dv- (=L - Z2i, — R i) = wpy—wey, k=1,...,M,

where dx is the length [ of the transmission line divided by the number of grid points
M. We used two distinct discretization grids for the voltage u = u(x,t) and the current
i = i(x,t) that are arranged as in Figure 5.1. Consequently, uy and uy; correspond to
the voltage potentials at the transmission line’s "left" and "right" terminals.

Our first Model object for transmission lines sets up the equations in (5.2). In a Netlist
object, an instance using this model is referenced by

{transLine,
{n1 -> "L", n2 -> "R", ng -> "N"},
Model -> "TransmissionLine",
Selector -> "Transient",
Length -> length,
f8ref -> f ref,

R ->r,
C -> ¢,
G -> g,
L > |,
M ->m

}.

Thereby, transLine is the instance name. The model has three terminals "L", "R", and
"N" for connections to the remaining network at nodes n1, n2, and n%. While "L" and "R"
refer to the "left" and "right" end of the transmission line, "N" usually is connected to
the ground (see also Figure 2.4 on page 32). The entries Model -> "TransmissionLine"
and Selector -> "Transient" uniquely identify our new model as the referenced one.
Thus, transLine becomes an instance of this subcircuit model.

The remaining entries represent parameters for a detailed specification of transLine.
While length defines its length, r, ¢, g, and [ specify the normalized transmission line
parameters R', C', G', and L’ as described in Section 2.2.4.2. The reference frequency
f_refis used to compute the value of L'. It is neglected, if L’ is explicitly given via [
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Finally, m is the number of grid points M and describes the refinement of the spatial
discretization.
Default values for the above parameters are given by

Length -> 4.89,

f$ref -> 5O,

R -> 0.337,

C -> 10.18%"-9,

G -> 0,

L -> 0.358/(2*Pi*f$ref),
M -> 15

in appropriate units, they are based on experiments with landlines'. However, for the
example involving the differential amplifier in Section 4.1 we use the following parame-

ters:
Length -> 5,
R -> 7.5,
C -> 4x~-10,
G -> 2.5%"-3,
L -> 1x~-5,
M -> 20.

Note that the scaling of the above magnitudes of course had to be adjusted. For example
while a length of 4.89 as the default value is measured in kilometers, the transmission
line’s length of 5 for the use in the differential amplifier refers to millimeters. Further,
the frequencies are measured in Hz and the remaining parameter values are scaled in an
appropriate way, thus describing realistic settings in both cases.

Our second model for transmission line components in an electrical circuit also has
three terminals "L", "R", and "N" for connections to the remaining network. As in
the first model, the first two of its terminals correspond to the left and right ends of the
transmission line, while the third one usually is connected to the ground. A transmission
line as a component in a Netlist object using the second model is referenced as follows:

{transLine,
{n1 -> "L", n2 -> "R", ngd -> "N"},
Model -> "TransmissionLine",
Selector -> "StateSpace",
Matrices -> mat

}.

In this model reference, transLine again is the instance name of the circuit component.
Note that there are no parameters explicitly given as in the reference call of the first
model. The entire description of the transmission line and its behavior is encapsulated
and exclusively contained in the system matrices mat which have to be supplied in

Landlines obviously do not belong to the area of micro- and nanoelectronics. Nevertheless, the
modelling principles are the same in both cases.
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appropriate dimensions. The vector of states is then set up correspondingly. The shape
of mat is a list

{e >F,a->A,b->B,c->C,d-> D}

where E, A, B, C, and D are matrices as in (5.1). In Analog Insydes resp. Mathematica,
they are given as lists of lists, i.e. lists of rows, where each row itself is a list of entries.
They may contain numerical entries as well as symbolic ones. In the latter case, however,
appropriate reference values have to be added to the system’s design point.

With the above information, the equations in (5.1) are set up. The input w in this system
of equations is hard-coded as the vector of voltage potentials at the terminals "L", "R",
and "N". Analogously, the output y is hard-coded as the vector of currents at these
terminals directed inwards.

Note that by providing suitable matrices the role of the terminals "L", "R", and "N" can
be arbitrarily interchanged. Furthermore, we generalized the matrix-based model for
the general use with subcircuits that have n terminals and can be described by an LTI
state space system with n inputs and n outputs. Its behavior is modelled exclusively by
providing a suitable set of matrices. In the example below for n = 3, such an "n-gate"
in a Netlist object is referenced by

{nGate,
{n1 -> "X1", n2 -> "X2", nd -> "X3"},
Model -> "StateSpace3Port",
Selector -> selector,
Matrices -> mat
}.
The parameter selector is either "AC", "DC", or "Transient". Depending on this choice,
either

sEx = Ax + Bu, Ax = —Bu, or Fi = Azr + Bu

together with y = Cx + Du is set up. As for the matrix-based model for transmis-
sion lines, v and y are hard-coded as the voltage potentials and currents at the sub-
circuit’s terminals, respectively. This model is currently available for n = 2,...,7,
i.e. there are further "StateSpace2Port", "StateSpace4Port", "StateSpace5Port",
"StateSpace6Port", and "StateSpace7Port" available as model names. In any of
these cases, the terminals are named "X1", "X2", and so on, and the matrices in mat
have to be of appropriate size.

5.4. Subcircuit Reductions

In order to automatize parts of our algorithms for hierarchical reduction, three new
procedures have been prototypically implemented.

RecordNodeVoltages detects the nodes in the entire circuit to which the terminals of its
subcircuits are connected. Then it records the voltage potentials at these nodes during
a simulation of the entire circuit. Its return value is a list containing these nodes and
the corresponding time-dependent functions describing their voltage potentials.
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The second procedure ReduceHelpCircuit then operates on the separated subcircuits to
which voltage sources are connected that generate the corresponding recorded potentials.
Subsequently, the describing system of equations is set up and all reductions specified for
the subcircuit at hand are performed sequentially?. Thereby, each reduction is started
from the original subcircuit. Finally, the reduced subsystems are added to a list which
forms the return value of this procedure.

The third procedure ReduceSubcircuits internally calls the two ones above. First of
all, it detects the subcircuits within the entire circuit and separates them from each
other. Then it calls RecordNodeVoltages in order to get the recorded voltage poten-
tials of all those nodes that have a connection to a subcircuit’s terminal. These are
then used to set up "closed subcircuits" by connecting voltage sources to the separated
subcircuits that generate the recorded potentials. For the reduction of each closed sub-
circuit, ReduceHelpCircuit is used. For each closed subcircuit, a list of reduced models
is returned and appended to the set of models in the entire circuit. Thus, the referenced
model for a given subcircuit instance in the entire circuit can easily be switched among
its reduced models of different levels of complexity.

In the following, the three new procedures are described in more detail.

The new hierarchical reduction approach presented in Chapter 4 can be divided into
several steps. One of the main steps is the separate reduction of single subcircuits.
Therefore, we implemented two procedures that realize the workflow for subcircuit re-
ductions described by Algorithm 4.1 in Section 4.2.

According to that workflow, we need to connect the terminals of the subsystem to voltage
sources that generate suitable voltage potentials obtained from a previous simulation
run in a test bench. Therefore, one of the first steps in the entire hierarchical reduction
process is the recording of the voltage potentials of those nodes in the circuit that are
connected to subcircuit terminals. This is carried out by the new procedure

RecordNodeVoltages [circuit, time_ interval, {sim_ options}].

The first parameter circuit contains the entire Circuit object including the netlist, all
subcircuits and models referenced by circuit elements, and all circuit parameters. By
making use of the netlist’s hierarchical structure, it sets up the list Ng,;, of nodes that are
connected to at least one terminal of a subcircuit. Then the entire circuit is simulated on
the time interval time interval. Tt has the shape of {t start, t end} , where t start
is the starting time and ¢ end is the ending time of the simulation. The optional list
{sim__ options} is used to specify certain simulation options.

Note that in this implementation we simulate the entire circuit. This means that for
each subcircuit the corresponding remaining circuit acts as a test bench.

During the simulation run, the voltage potentials of the nodes in Ny, are recorded
which yields a list of time-dependent interpolating functions. For each of the above

2Currently, there are only symbolic techniques for general nonlinear systems available. First, term
reductions in level 0 are performed as described in Section 2.5.2.2. In a second step, the resulting system
is compressed by applying algebraic manipulations. These two reduction techniques are hard-coded in
this order and usually are sufficient for a significant reduction of a system’s level of complexity.
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nodes n, a rule n -> f, is set up, where f,, is the corresponding interpolating function
that describes the node’s voltage potential on the interval time_interval. The return
value of RecordNodeVoltages finally is a list of all these rules.

The next step then is the reduction of the separated subcircuits whose terminals are
connected to voltage sources that generate suitable potentials. For this purpose, the list
returned by RecordNodeVoltages is used. The rules contained in this list are used to
connect voltage sources to the subcircuits’ terminals that generate the voltage potentials
recorded during the simulation of the entire system. A subcircuit prepared in this way
can then be reduced by applying the second procedure

ReduceHelpCircuit[
help_ cire,
time interval,
{perm__errors},
{add contr wvars},
{sim_ options}
1.
help circ is a Circuit object that contains the subcircuit together with the voltage
sources connected to its terminals. It is simulated on the time interval time interval
and with optional simulation specifications given by {sim options}.

Note that currently this procedure is designed only for the use with symbolic model re-
duction techniques described in Section 2.5.2.2. Therefore, using the notation of Section
2.5.2, {perm__errors} prescribes a list of error bounds ¢ used for symbolic reductions
of help cire, i.e. it defines the accuracy of the reduced subsystems that one wants to
achieve. While the voltage potentials generated by the sources connected to the subcir-
cuit’s terminals act as inputs, the resulting currents at the terminals define the output
of the system. They are controlled by comparisons to a reference solution of the original
subcircuit. Additional variables that have to be controlled during the reduction process
can be specified by {add_ contr vars}.

First, MNA is used to set up the describing equations for the original subcircuit encap-
sulated in help circ. For each error bound € in {perm_ errors}, this system of equations
is symbolically reduced. This finally yields a list of reduced models with different ac-
curacies. For the symbolic reductions, there are currently two methods from Section
2.5.2.2 hard-coded, namely term reductions and algebraic manipulations. At first, term
reductions on level 0 are applied to the original set of equations for each error bound in
{perm errors}. This has the advantage that the costly transient term ranking has to be
computed only once in the very beginning for the original subsystem. For term reduc-
tions of the original subsystem using the different error bounds, it is then still available
in the cache memory. After that, the resulting reduced subsystems are further treated
by algebraic manipulations. Finally, all the reduced subsystems obtained in this way are
arranged in a list which then is returned by ReduceHelpCircuit and can be used for
replacing the original subsystem in the entire circuit by models of different accuracies.

In order to allow an easy switching among the reduced models of the subcircuits, they
are added to the entire circuit as Subcircuit objects. Furthermore, the above two
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procedures have been integrated in a third one, thus automatizing the steps in between.
This third procedure is called via

ReduceSubcircuits[
circuit,
subcire_ specs,
time interval,
{sim_ options}
1.
Thereby, the parameter circuit contains the entire hierarchical Circuit object. This
means that the entries of the Netlist object contained in circuit have a shape of

(5.3) {sub_inst, {conn}, Subcircuit ->name, Selector ->sel name},

where sub_inst is a subcircuit instance name, conn defines the subcircuit’s connection
to the nodes of the circuit, and where Subcircuit ->name and Selector ->sel name
uniquely reference the subcircuit model of which sub_inst is an instance. Of course,
there might also be some single circuit components besides these entries which are not
part of a subcircuit.

Further, the parameters time_interval and {sim_ options} are shaped as before. While
time__interval specifies the time interval on which the entire reduction process is per-
formed, {sim options} is optional.

The parameter subcirc_ specs contains all the information that is necessary to compute
the reduced models of the subcircuits of the entire circuit. It is a list of rules that
assign to each subcircuit instance occuring in circuit a list of error bounds and a list of
additional variables that have to be controlled. Its shape is as follows:

{
sub_instancel -> {{perm_errorsi}, {add_contr wvarsi}},
sub_instance2 -> {{perm_errors2}, {add_contr wvars2}},
sub_instance3 -> {{perm_ errors3}, {add_contr wvars3}},
}.

In this parameter definition, perm_ errorst and add_ contr wvarst are specified in the
same way as the parameters perm_ errors and add_ contr_wars in ReduceHelpCircuit.
Furthermore, the parameters add contr wvarst are only optional.

In the first step, ReduceSubcircuits calls RecordNodeVoltages in order to obtain the
recorded voltage potentials at those nodes of the circuit to which the subcircuits are
connected. Then it separates the subcircuit instances from each other and connects their
terminals to voltage sources that generate the corresponding recorded voltages. This is
done by making use of the return value of RecordNodeVoltages. In the next step, the so
far prepared subcircuit instances are reduced in accordance with the specification given
in subcirc_ specs by using ReduceHelpCircuit. The return value of this procedure is a
list containing all the resulting reduced models for the committed subcircuit. This list
is then added to the subcircuit models contained in circuit.
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Since a subcircuit instance references a model solely by the specification of name and
sel_name in 5.3, our proceeding allows for an easy switching of the occuring subcircuit
instances among the corresponding original and reduced models of different levels of
complexity. Thus, we can quickly create hierarchically reduced entire models of different
accuracies.

5.5. Development Environments and Error Functions

In order to show the aptitude of the algorithms and implementations developed in this
thesis for circuit design problems of current industrial size, we applied them successfully
and with significant savings in computation time to a differential amplifier as well as an
operational amplifier typically used in industry (cf. Chapter 4). For this, we implemented
extensive development environments. They include tests and checks of our algorithms
as well as motivating examples for the hierarchical reduction approach.

Since the choice of an error function used for the reduction of a system is of great
importance, we further implemented most of the error functions presented in Section 4.6.
They have been used for experiments and computations within the above environments.

Furthermore, our manual computation of subsystem sensitivities and their ranking in the
case of the operational amplifier has been performed using the corresponding develop-
ment environment. Finally, also the manual check of Algorithm 4.5 from Section 4.4 for
an optimized order of subsystem reductions using different error functions for measuring
the influence of the subcircuits on the performance of the entire circuit has been made
within these environments.



CHAPTER 6

Summary and Outlook

In order to envision what has been done in this thesis, the content is summarized below.
Furthermore, an outlook to the treated area of research is provided in the second section.

6.1. Summary

In order to cope with the ever increasing size of systems of equations describing the
behavior of electrical circuits, a new model reduction approach has been presented in this
thesis which exploits the hierarchical structure available on circuit level. Besides a faster
processing of smaller subproblems, this further allows for coupling different symbolic
and numerical model reduction techniques. While there exist numerical methods that
can handle systems of very large size, symbolic techniques allow insights into functional
relations and dependences of the circuit’s behavior on the dominant parameters of the
system.

Chapter 1 provided a general introduction to the topics treated in this thesis. Different
methods for system analysis have been presented and a short survey of their historical
development was given. By considering the quickly growing complexity of the systems,
the need for reduction methods has been motivated. Then, model order reduction has
been introduced together with a review of its main application areas and some historical
background, particularly in the symbolic case. By considering two practical examples
from electrical engineering and weather prediction, both symbolic and numerical analysis
for dynamical systems have been motivated. Finally, the aims of this thesis have been
defined in the last section of this chapter.

In order to make this thesis self-contained, foundations needed throughout this thesis
have been illuminated in more detail in Chapter 2. The section about network analysis
showed that the behavior of an electrical circuit is mathematically described by a system
of equations composed of the Kirchhoff laws and the current-voltage relations of the
circuit components. It further has been described how to set up these equations in
an automatized way. Standard techniques such as the sparse tableau analysis or the
most widely used modified nodal analysis have been explained in detail. The thereby
resulting systems of equations have been dealt with in the next section. Besides systems
of DAEs, also systems of PDAEs have been considered. As practical examples of such
systems, we illuminated the telegrapher’s equations and the drift-diffusion equations
in detail. They are used in electrical circuits for the modelling of transmission line
effects and semiconductor devices, respectively. Then, after a description of the most
important numerical analyses to solve systems of DAEs, basic terms and notions from
systems and control theory needed throughout the following sections have been presented.
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This included basic concepts of stability, passivity, reachability, and observability of
dynamical systems.

We then approached the main topic of this thesis, namely, model order reduction. Since
our new hierarchical reduction approach offers a possibility for the coupling of different
reduction techniques, we reviewed the most popular numerical methods for both linear
and nonlinear systems in their basic versions to a large extent. We considered Krylov
methods such as the Arnoldi iteration and the SVD-based technique of balanced trun-
cation. Furthermore, the proper orthogonal decomposition and the trajectory piecewise-
linear approach have been illuminated in detail. But also symbolic techniques for both
linear and nonlinear systems have been surveyed and — since this area of research is
rather new and less well-known — been explained in detail.

Chapter 3 then has focussed on the structure of electrical circuits. First, the general
modelling of component-based systems such as electrical circuits as a network of sub-
systems coupled by a connecting structure has been explained. In this context, the
subsystems in the network correspond to the components of the circuit. Then, the con-
cept of coupled and interconnected systems has been described. Since in general they
are composed of several building blocks such as current mirrors, amplifying stages, or
semiconductor devices that have to be modelled via PDEs, electrical circuits can be
considered as sets of systems that interact with each other. Hence, electrical circuits in
general are interconnected systems. As another example of such systems, an acceleration
sensor has been considered and its functionality has been explained briefly. This micro
electro-mechanical system combines components of an electrical circuit with mechanical
parts and, therefore, is an interconnected system.

Next, a concept for structure-preserving model order reduction of interconnected linear
time-invariant systems has been reviewed. Structure preservation in this context means
the preservation of the block structure of the involved system matrices. However, the
considered method is not suitable for general nonlinear systems. Moreover, it is based
on the systems-theoretical framework of inputs and outputs to model the subsystems’
interaction. In contrast to this, the behavioral approach relies on the sharing of variables
among the respective subsystems rather than declaring some of them as inputs and
others as outputs. This approach has been illuminated in the next section by using some
examples from different areas of physics. We then compared the two different concepts
to each other by using the example of a differential amplifier.

Finally, the last section in this chapter dealt with the macromodel concept. By a segmen-
tation of the entire circuit and by connecting appropriate voltage or current sources to
the "open wires" of the resulting subcircuits, one can take advantage of a faster proces-
sing of smaller subproblems. This technique has been adapted for the separate reduction
of subcircuits of large electrical circuits in the next chapter.

In Chapter 4, we have reached the core of this thesis, namely, model reduction of electri-
cal circuits that exploits the hierarchical structure available on the circuit level. Besides
a faster processing of smaller subsystems, this additionally offers possibilities for the
coupling of different symbolic and numerical reduction methods. First, a motivating ex-
ample has been provided with a view to the great benefits that can be achieved by taking
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the hierarchical structure of a circuit into account. By a coupling of nonlinear symbolic
methods and the Arnoldi iteration for suitable subcircuits, a differential amplifier could
be reduced within seconds instead of several hours. The resulting hierarchically reduced
model only had about half the number of equations of the non-hierarchically reduced
one. It further proved to be very accurate and robust w.r.t. different inputs, even for
pulse-shaped excitations. Moreover, simulations of the hierarchically reduced model have
been accelerated approximately by a factor of 5.

In the next section, we adapted the macromodel concept reviewed in the previous chapter
and presented a new workflow for separate reductions of single subsystems. It uses
simulations in a test bench to generate suitable voltage potentials at the terminals of
the separated subsystems. Then the subsystems prepared in this way can be reduced by
applying the usual non-hierarchical reduction techniques, thus yielding reduced models
of the subsystems. In order to measure the influence of a single subcircuit on the entire
circuit’s behavior, we presented a new algorithm. It sequentially replaces a subcircuit
in the original connecting structure by its corresponding reduced models of different
accuracies. During this process, the resulting error on the entire system’s output has
been monitored. This led to a new concept of subsystem sensitivities. Subsequently, these
sensitivities have been exploited in order to derive a ranking of subsystem reductions. A
new algorithm has been introduced that uses this ranking for deriving a hierarchically
reduced model of the entire circuit by performing suitable subsystem reductions in an
optimized order. At this point, we want to stress again that the occuring subsystems of
the circuit can be reduced by different symbolic and numerical techniques. Hence, the
algorithm finally yields a reduced model of the circuit which is obtained by the coupling
of different reduction methods. Since error functions for measuring deviations from the
reference solutions of a system play a crucial role during the reduction process, a variety
of such functions has been provided and newly created.

To conclude this chapter and to show its aptitude for industrial applications, the new
hierarchical reduction approach has been applied to an operational-amplifier circuit ty-
pically used in industry. Furthermore, the results have been compared to the usual
non-hierarchical reduction approach. By merging certain circuit components to suitable
building blocks, we reconstructed the subcircuit structure of the amplifier. We then
performed symbolic reductions to any of the resulting seven subcircuits by supplying a
sweep of thirteen different error bounds. Furthermore, two different error functions from
the previous section have come to operation during the reduction process. Proceeding
in accordance with the algorithms described above, we obtained hierarchically reduced
entire models of the amplifier of high accuracy. The time costs for this were only a
fraction of the time needed for the usual non-hierarchical reduction approach.

In order to further improve our approach, we additionally took the number of equations
and terms of the reduced subsystem models into account during the hierarchical reduction
process. This led to systems of even smaller size and increased simulation performance,
while the level of accuracy could be maintained. In a second step of improvement, we
then applied further non-hierarchical symbolic reduction methods to the so far obtained
interim models, thus yielding systems of very low complexity. For one of the "best"
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resulting systems, the number of equations could be reduced to 34 (16%) instead of 215,
the number of terms decreased from 1050 to 92 (9%), and the simulation performance
was up to 19 times faster than the original system. Moreover, the corresponding systems
also proved to be very robust w.r.t. different input excitations. Although they have been
reduced by using a smooth sine wave excitation to compute the reference solution, they
even delivered good results for a highly non-smooth pulse-shaped excitation.

Summing up the above, this example together with the motivating example in the begin-
ning of this chapter have shown the enormous capability of hierarchical model reduction
using the coupling of different symbolic and numerical techniques. Furthermore, the new
approach is not limited to academic examples, but also adequate for the use in industrial
environment.

Finally, Chapter 5 has given an overview of the prototypical implementations made
within this thesis. Besides new data structures and procedures for their manipulation,
we also implemented some data objects for the modelling of general linear time-invariant
state space systems and transmission line components in electrical circuits. Large parts
of the newly introduced hierarchical reduction approach have been implemented success-
fully in prototypical versions. Together with implementations of suitable error functions
from Chapter 4, they have come to operation for the hierarchical reduction of the ope-
rational amplifier.

6.2. Outlook

Although we only worked on "level 0" of the electrical circuit at hand, the algorithms
from Chapter 4 can be adapted recursively to its substructures. This means that suitable
subcircuits may also be segmented in accordance with an appropriate interconnecting
structure. Thus, one can take advantage of an increased speed of the processing of even
smaller subproblems. On the other hand, a segmentation of the entire circuit into too
many subsystems increases the cost of administration of the interconnecting network.
Consequently, the detection or reconstruction of suitable subsystems in the entire circuit
is not trivial. First approaches to an automatized detection of subcircuit structures
have been made [CAD], they rely on the concept of pattern matching. The integration
of such algorithms in the hierarchical reduction approach can further automatize the
entire process of structure-exploiting coupled symbolic-numerical model reduction of
electrical circuits. Consequently, one will not be restricted to circuits that are given by
a hierarchical netlist description.

Furthermore, in order to guarantee good numerical solvability (stability) of systems
obtained by the hierarchical reduction approach, an index monitor may be added to
Algorithm 4.5. For example, it could be included somewhere between lines 11 and 13 in
this algorithm after the so far reduced entire system is updated by a new replacement of
an appropriately reduced subsystem. A simple computation of the index of the system
that corresponds to the current subsystem configuration and comparisons to the "old"
one then helps to improve the numerical stability of the resulting hierarchically reduced
entire system. If the index is raised by the new configuration of subsystems, the current
subsystem replacement is rejected and the configuration is reset.



6.2. OUTLOOK 143

Finally, a relation between the global error on the output of the entire system and the
errors of the subsystems in the interconnecting structure could be exploited to obtain
estimates of the errors of the separate subsystems. Thus, the user-specified error bound of
the global error directly yields suitable error bounds for the reductions of the subsystems
in the interconnecting structure.






APPENDIX A

Network Theory

THEOREM A.l. A fundamental loop system of a graph G = (V, E) is linearly indepen-
dent and spans the space of all its loops.

PROOF. First of all, we have to show that the set of loops in a graph has the structure
of a linear vector space. For this, assume that the branches of G are numbered from 1
to b := |E|, hence E = {ey,...,e,}. Identifying a loop in a graph by its participating
branches, one can write it — and hence further identify it — as a b-dimensional vector
v € Z, where the i-th entry v; is 1 if branch e; is contained in the loop and 0 otherwise.

Obviously, Z% with the scalar multiplication over Z, and the "normal" componentwise
addition has the structure of a linear vector space. The corresponding addition for the
set of loops in a graph is given by the symmetric difference

llAlg = (ll U lg) \ (ll N lg)

Furthermore, by the identification above, it is intuitively clear that the symmetric dif-
ference of two loops again is a loop, the branch-disjoint union of two loops, or the zero
loop. Hence, the set of loops of a graph together with the zero loop and the union of
branch-disjoint loops is a linear subspace of Z§. (For a detailed proof see [SwaThul).

Now choose a tree T of G. This defines the set of tree and link branches in G. Then a
fundamental loop in G is uniquely identified by its only link branch f; among the par-
ticipating branches. The link branch f; does not occur in any of the other fundamental
loops, i.e. with the identification from above, the k-th entries in the vectors correspon-
ding to the remaining fundamental loops are 0. Hence, the set of fundamental loops is
linearly independent, since no fundamental loop can be written as a linear combination
of the remaining ones.

It remains to show that any loop in GG can be written as a linear combination of the
fundamental loops. So let [ be a loop in G and let fi,..., f,, be the link branches
contained in [ besides appropriate tree branches. Let [y, ..., [, be the fundamental loops
that are defined by f1,..., f,, and let | = LA ... Al,. We want to show that [ = l.

Since all link branches of [ are contained in [ as well, IAl can only consist of tree branches
or be the zero loop. Since we showed that the loops of a graph form a vector space and
a loop cannot be built only by tree branches, [Al must be zero, which is equivalent to
=1 O

THEOREM A.2. Let G = (V, E) be a connected and directed graph with n := |V| nodes
veV andb:=|E| > n—1 branches e € E. For the (augmented) nodal incidence matriz
A,, one has rank(A4,) =n — 1.
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PROOF. Recall that the rows of A, correspond to the nodes and the columns correspond
to the branches of G. Hence, A, is an n x b-matrix with exactly one entry equal to 1
and one entry equal to —1 in each column. Hence, the sum of all its rows is zero. This
proves that the rows are linearly dependent and, therefore, rank(A4,) < n.

Now consider a spanning tree 7' of G with n — 1 branches ey, ..., e,_1 connecting the n
nodes of G. For each branch e = (u,v) in G there exists a path from u to v in 7" using
< n — 1 branches. Thus, e is a linear combination of the branches e;, ..., e,_1.

If one leaves out one of the branches in T, say e = (u,v), due to its connectedness there
exists a branch e in G — e.g. ¢ itself — which is no linear combination of the branches

€1y y€k_1,Chils---,en_1. Otherwise, the former 7" would have had loops, which is a
contradiction. Thus, eq,...,e,_1 or the corresponding columns in A, form a minimal
generating system. It follows that rank(A4,) =n — 1. ]

THEOREM A.3. The reduced nodal incidence matriz A and the transpose BT of the
reduced loop incidence matriz form an exact pair of matrices, i.e.

A-B"=0 and rank(A) + rank(B") = b.

SKETCH OF PROOF. The second condition for exactness of A and B” is trivial, since
rank A = n — 1 and rank BT = rank B = b — n + 1, hence rank A + rank BT = b.

In order to show that A - BT = 0, consider the i-th row of A corresponding to node v;
and the j-th column of BT, which corresponds to the j-th fundamental loop I;. I; either
contains no branch that has an origin or terminus v;, or exactly two such branches. In
the first case, the scalar product of the corresponding row and column in A and B7
is zero. In the latter case, one has to distinguish four arrangements of /; and the two
involved branches, since each one of them either can be directed in the same or the
opposite direction as [;.

One finally verifies that in any of these cases the scalar product of the corresponding
row and column is zero, hence, A - BT = 0. O



APPENDIX B

Semiconductor Device Modelling —
The Drift-Diffusion Model for the Diode

In the literature, there is a huge amount of books and papers concerning the mo-
delling of semiconductor devices. This section mainly follows [GerKneVog, Gue01,
MarRinSch, Sel, Tis| to give an extensive review of the drift-diffusion equations for
semiconductor devices, a parameterized mathematical model for the electron transport
in a semiconductor. In the references above, also suitable numerical parameter values
for the drift-diffusion equations can be found.

In the case of semi-classical transport completed with balance equations, one obtains the
Boltzmann equation and finally, by further simplifications, the drift-diffusion equations.
As the name of this model already indicates, the currents in semiconductor devices are
mainly steered by drift and diffusion of charge carriers. While the drift current is due to
an electric field E formed by free charge carriers, the diffusion current is caused by their
movement trying to compensate their inhomogeneous concentrations in the interior of
the semiconductor crystal.

We focus on the simplest case of a diode. However, also transistors such as the bipolar
junction transistor (BJT) in Figure B.1 can be modelled using the drift-diffusion equa-
tions. The equations are the same in any case, the type of semiconductor device at hand
only defines the preconcentration of so-called impurity atoms, i.e. the doping profile of
the semiconductor, and the position of its contacts.

B.1. Physics of a Diode

This section explains the physics of a diode or, more generally, a semiconductor device.
We follow the descriptions given in [GerKneVog, MarRinSch|.

FIGURE B.1. A pn-diode (left) and a pnp-transistor (right) with their
2-dimensional geometry including the doping regions Q*, Q= and the
(metal) contacts (black).

147



148 B. THE DRIFT-DIFFUSION MODEL

conduction band

E } bandgap

FIGURE B.2. The valence band and the conduction band in a semi-
conductor are characterized by different ranges of electron energy.

The atoms of a certain semiconductor material have electrons with different levels of
energy contained in their shells. Most of the electrons are valence electrons, they are res-
ponsible for the chemical compound of the material. Conduction electrons are electrons
with a higher level of energy than the valence electrons. They can move freely following
the influence of an electric field, thus generating an electric current. The different energy
levels are depicted in Figure B.2. While conduction electrons have a higher energy po-
tential within the range of the conduction band, the energy potential of valence electrons
is situated in the lower energy range of the valence band. The gap between those two
ranges of electron energy is significantly large for semiconductors and usually referred to
as the bandgap.

The semiconductor crystal, say silicon, is located in the interior of the diode. By diffu-
sion of so-called impurity atoms into the silicon crystal and by their implantation with
an ion beam, donor and acceptor atoms are brought into the interior of the semicon-
ductor. Their concentrations are denoted by N}, and Ny, respectively, and the doping
regions where the corresponding impurity atoms are located by QF ("p-regions") and
Q= ("n-regions", cf. Figure B.1). They are assumed to be fixed in the semiconductor,
which is justified if the impurity concentrations are sufficiently small. Hence, N} and N
are independent of time and given by functions depending only on the position variable
r € R? in the interior of the silicon crystal, where d = 1,2, 3 depends on the modelling
dimension. N(z) := N}, (z) — N, (x) is the impurity or doping profile. The n-regions
Q™ of the crystal, where the preconcentration N, of acceptor atoms predominates, are
characterized by N(x) < 0. Similarly, the p-regions Qt are predominated by donor
atoms such that N(x) > 0 holds. The boundaries between the p- and n-regions, where
N changes its sign, are called p-n junctions.

The number of free charge carriers is responsible for the semiconductor’s conductivity.
While donor atoms try to get rid of the electrons in their outermost atomic shell, ac-
ceptor atoms attract and try to fill their outermost shell with electrons. This causes
different concentrations of free negative and positive charge carriers, i.e., electrons and
holes; when the silicon crystal is electrically neutral, then for each conduction elec-
tron there is a corresponding hole in the valence band to which the positive charge
+q = +1.60218 - 107 As can be assigned. An atom in the semiconductor that lacks
one of its valence electrons may attract an electron in the conduction band from another
atom. Thus, the movement of this electron can be interpreted as the movement of a hole
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in the opposite direction, from one atom to another one. Hence, holes are considered as
positive charge carriers, while electrons are negative ones. Since the bandgap usually is
significantly large for semiconductors, quite a lot of energy is necessary to transfer elec-
trons from the valence band to the conduction band. This process is called generation
of electron-hole pairs, i.e. an electron is generated in the conduction band and a hole in
the valence band. The inverse process, i.e. the transfer of a conduction electron into the
lower energetic valence band, is termed recombination of electron-hole pairs.

As a consequence of the above, there is a large incline of the concentrations of electrons
and holes in opposing directions at the p-n junction of two oppositionally doped parts
of the semiconductor. Conduction electrons in Q1 are attracted by and, hence, diffuse
to 27 in order to equalize the different charge carrier concentrations, while holes in 2~
diffuse to Q. This process only lasts until the electrostatic field caused by these free
charge carriers is strong enough to prevent further diffusion of charge carriers. Then,
there is an equilibrium between the drift current which is due to the electric field and
the diffusion current. In this situation, a depletion region, i.e. a region with almost no
free charge carriers, is formed around the p-n junction and almost no current except for
the very small leakage current flows.

If a potential difference of an appropriate sign is applied, i.e. a difference in the voltage
potentials of the diode’s two contacts, then the depletion region around the p-n junc-
tion, i.e. the semiconductor’s resistance is increased (reverse bias case). Effectively, the
depletion region works as an insulator and prevents currents from flowing. If the applied
potentials at the contacts are vice versa (forward bias case), the depletion region shrinks.
So the semiconductor’s resistance decreases, the free charge carriers tend to neutralize
the semiconductor’s doping concentration, and a current depending on the applied
voltage — flows.

To summarize the above, a diode works similar to a valve only "one-way", i.e. for certain
applied voltages at its contacts it behaves like a conductor and lets a current flow, while
for applied voltages in reverse direction it behaves like an insulator and prevents a current
flow.

B.2. Current Density and Continuity Equations

The electric field £ [%] generated by the free charge carriers in the semiconductor crystal
is responsible for the drift current, the corresponding current densities are given by

(B.1) qunnE  and  qu,pE [%}

for electrons and holes, respectively. n and p [#] are their concentrations and ¢ is the
elementary charge with a value of approximately le := 1.60218 - 10~ As. The electron
and hole mobilities y,, and p,, [%Z] are bounded strictly positive functions depending on
semiconductor material, doping, temperature, and the electric field E. The choice of an
appropriate model for the mobilities depends on the effects one wants to account for.

The densities of the diffusion currents caused by the movement of charge carriers trying
to equalize their differing concentrations in the semiconductor is proportional to the
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gradient of the charge carrier concentration. This yields

(B.2) gDngrad(n) and  —qD,grad(p) [

m?2
for electrons and holes, respectively, where D,, and D, [%1, the charge carrier diffu-
sivities, in general are bounded strictly positive functions depending on semiconductor
material, doping, and temperature. For non-degenerate semiconductors in thermal equi-
librium', the mobilities fi,, yi, and the diffusivities D,,, D, are related to each other by

the Einstein relations

kT kT
(B.3) D, = 7/1” and D, = 7/@,,

where T [K] is the temperature and k = 8.617134-10"°¢V//K is the Boltzmann constant.
(V= % is the thermal voltage.)

Since the electrostatic potential V' [V] and the electric field E are related by
(B.4) E = —grad(V),

summing up all the contributions above, one obtains for the current densities .J,, and J,
of electrons and holes

(B.5a) Jn = —qunongrad(V') + ¢D,, grad(n),

(B.5b) Jp = —qupp grad(V) — gD, grad(p).

They are measured in [%] and depend on the time ¢ and the position z € R?, d = 1,2, 3.

In the case of the application of a magnetic field to the semiconductor, an additional
current has to be taken into account, which, however, usually can be neglected for devices
used in integrated circuits.

The relations between the electron and hole concentrations and the corresponding current
densities are given by the continuity equations describing particle conservation and have
to be added. Therefore, one has

(B.6a) —qom + div J,, = qR,

(B.6b) qOp + div J, = —¢qR,

where R = R(x,t) [m%s} is the rate of generation and recombination of charge carriers;

if an electron is moved from the wvalence band to the higher energetic conduction band
(cf. Figure B.2) under energetic costs, a free electron and a hole are generated simul-
taneously (electron/hole emission). If the opposite happens, i.e., an electron from the
conduction band falls back and recombines with a hole in the valence band, the two
charges are neutralized. The electron’s energy is either transferred to another electron
in the conduction band (electron capture) or to another hole in the valence band (hole
capture).

"If one brings together two different materials, one usually has differing electrostatic potentials.
Hence, electrons and holes of both parts start to diffuse in the respective other part. As soon as this
diffusion process stops, the state obtained is called thermal equilibrium.
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The choice of the model for the generation-recombination rate R also depends on the
effects that one wants to take into account. They are not further specified here, see, e.g.,
[MarRinSch| for an overview.

B.3. The Poisson Equation

Due to the free charge carriers, an electric field E exists in the interior of the semicon-
ductor. To obtain a self-consistent formulation, equations (B.5) and (B.6) are completed
by the third Maxwell equation relating F to the electric charges. Since the local charge
in a semiconductor consists of electrons, holes, and donor and acceptor atoms, by using
equation (B.4), one has the Poisson equation

(B.7) div(—egradV) =¢q(p —n+ N),

where N(z) = N} (z) — N (x) denotes the doping concentration depending only on

the position variable x. ¢ is the so-called permittivity constant, its value in silicon is
—10 As
Vm’

approximately 10
The set of equations (B.5) (B.7) form the drift-diffusion model equations, origi-
nally due to van Roosbroeck [vRoo|, where the unknowns are the electrostatic potential
V = V(x,t), the charge carrier concentrations n = n(z,t) and p = p(z,t), and the cur-
rent densities J, = J,(z,t) and J, = J,(x,t). Since .J, and .J, are given by (B.5),
inserting these in the remaining equations yields a system in the primary variables V/,
n, and p only.

Note that the drift-diffusion model equations are a set of five coupled PDEs, where the

Poisson equation (B.7) is of elliptic type, while the two continuity equations in (B.6) are
of parabolic type |Jos].

B.4. Initial and Boundary Conditions

Many semiconductor devices have metal contacts with low resistance which are called
Ohmic contacts. We will restrict ourselves here to this kind of semiconductors.

Let Q = Q- UQT C RY d = 1,2,3, with doping regions Q= and QF denote the d-
dimensional geometry of a pn-diode. Figure B.3 shows the 2-dimensional case. In gene-
ral, the pn-diode has two types of bounding materials: its contacts to the surrounding
network, denoted by I'y and I'y in Figure B.3, and insulating materials like oxides which

O+
Ly

Iy

F1GURE B.3. The pn-diode as a 2-dimensional model including the
doping regions Q" and Q= and two metal contacts I'; and T's.
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we simply denote by I'y. Hence, one has a disjoint union of the bounding materials
8Q:FNUF1UF2

At the Ohmic contacts, the space charge vanishes, therefore

(B.8) n(x,t) —p(z,t) — N(z) =0 for x € I'; UT'y and for all ¢.

We consider the Ohmic contacts to be ideal, i.e. they have a very high doping of charge
carriers. Thus, with their resistance tending to zero, one has

(B.9) n-p=mn; forx el Ul and for all t

with the intrinsic concentration n; = n;(x) [#} Since n; depends on material and
temperature?, we consider the system to be in thermal equilibrium. This means that the
applied voltages and, thus, also the currents are considered not to be too large. Hence,
using the last two equations, one easily obtains the Dirichlet boundary conditions for n
and p

(B.10a) n(z,t) = n(z) = %(\/Nz(x)+4n§(x)+N(x)>,

(B.10b) p(z,t) = p(x) = % (\/NQ(:B) + 4n?(z) — N(x))

at the Ohmic contacts, i.e. x € I'y U Ty, and for all £. The electrostatic potential V' at
the Ohmic contacts is given by

(B.11) Vi(z,t) = Vap(t) + Woi(z)  for x € I'y U,

where Vii(z) = Vo - In (:&%) = —Vp-ln <5‘(é))>, x € 'y Uy, is the so-called built-in
voltage and V,, is the applied voltage potential. Hence, the boundary values of n, p, and

V for the diode’s Ohmic contacts are given by (B.10) and (B.11).

We also consider the insulating Neumann bounding parts® I'y of the diode to be ideal,
such that there is no current flow and a zero electric field in the normal direction of I'y
(Figure B.4). This is accounted for by the equations

(B.12a) Jn(z,t) v =0,
(B.12b) Jp(x,t) - v =0,
(B.12¢) grad(V) -v =0,

where z € I'y and v is the unit outward normal vector on the Neumann bounding parts
I'y. The equations are obtained as follows: The current I leaving the diode at I'y is
given by

I:/ (Jo+ Jp —eOrgrad V') - v dry,
I'n

2The value of n, in silicon at room temperature is approximately of the order of magnitude 10! cm 3.

3They are called Neumann bounding parts, since they involve partial derivatives of the electrostatic
potential V. The boundary conditions at the metal contacts are of Dirichlet type because the charge
carrier concentrations n and p as well as the electrostatic potential V' (via Vi, and V4;) are prescribed
there.
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FIGURE B.4. The electrostatic field E between the two contacts of a
diode. With £ = — grad(V') and v normal on I'y, one has grad(V') - v = 0.

where J,, and J, are the current densities of electrons and holes, respectively, and
e = —e 0, grad V' is the displacement current density which is due to the electro-
static potential V. Since I'y is an insulator at any point and preventing any current
from passing through, one has

/Jn-ydvz/ Jp-ydvz/ —edygradV -vdy =0
W o0 W

for any vy C I'y arbitrary small. This finally yields (B.12).

Further, the initial values of the charge carrier concentrations n and p are prescribed,
(B.13a) n(z,ty) = Ninit (),

(B.13b) p(x,to) = pinit(2),

where x € () is the position in the interior of the semiconductor and t is the initial time.

The entire initial-boundary value problem for the diode is then given by the drift-diffusion
equations (B.5) — (B.7), the boundary conditions for the charge carrier concentrations
and the electrostatic potential at the Ohmic contacts (B.10) and (B.11) and those for the
current, densities and the electrostatic potential at the insulating parts of the semicon-
ductor (B.12), and finally the initial values for the charge carrier concentrations (B.13)
at initial time ¢;.

B.5. Coupling Conditions

This section shows how to couple the entire initial-boundary value problem with the
remaining network equations.

Let I';, j = 1,2, be the metal (Ohmic) contacts of the diode as shown in Figure B.3. Then
the current i; leaving the diode and flowing through I'; consists of three components,
since there are the currents of electrons and holes and the displacement current which is
due to the electrostatic potential. Integrating the corresponding current densities over
the contact I'; yields

(B.14) i = / (Jo+ Jp —e0rgrad V) - v dr,
F.

J
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I Iy

Ficure B.5. Connecting the drift-diffusion model equations for the
diode to the remaining network equations.

where v is the unit outward normal vector on I';. From equation (B.11) one has
V(z,t) = Vap;(t) + Vii(x) for the electrostatic potential V' with = € I'; and time ¢, where
Vap,j 1s the applied voltage potential at I';. If I'; is connected to node k with potential
vi, in the entire network, then

(B.15) U(t) = Vap,(t)

holds for all t. Denote the sums of all the remaining incoming currents of the nodes
to which the left and right contacts I'y and I's of the diode are connected by I; and I,
(cf. Figure B.5) and their respective voltage potentials by V; and V,.. Then

Vapa(t) = Vi(1), i(t) = —NL(t),
Vapa(t) = Vi(1), is(t) = —1.(t)

are the coupling conditions between the network and the drift-diffusion model for the
diode.

(B.16)



APPENDIX C

The Operational Amplifier op741

In Section 4.7, an example application for the new hierarchical reduction approach is
given. It reduces the describing system of equations for the operational amplifier op741
shown in Figures 4.11 and C.1, respectively, by exploiting its hierarchical structure. Here,
a somewhat more detailed description of the functionalities of the amplifier’s components
and subcircuits is given from an electrical-engineering point of view.

First of all, recall the occuring subcircuits in the operational amplifier. We have four
current mirror subcircuits (CM1-4), a differential pair subcircuit (DP), a Darlington
pair subcircuit (DAR), and finally a Level-Shift and a Push-Pull subcircuit (LS) and
(PP), respectively.

The entire circuit has to be thought of as divided into three stages which are separated
from each other by two vertical lines. The first line has to be drawn dividing (CM2)
into two parts such that (CM1) is completely in the left part of the circuit and (CM3)
completely in the right part. A second vertical line has to be drawn between (CM3) and
(LS). While the third stage on the right is the output stage of the operational amplifier,
the two leftmost stages are amplification stages. The transistors @1 and Q2 form the
actual differential pair of the first amplification stage, i.e. the leftmost stage.

T T T T T
<, CM3 %l %
vid — N QPNP7: QPNP741 P74l ¢
1 - cl I/Q N741 <>

QNPN741 - QNPN741
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F1GURE C.1. Segmented operational amplifier op741 with a differential
pair (DP) including a current mirror (CM4), three more current mirrors
(CM1-3), a Darlington pair (DAR), a Level-Shift pair (LS), and a Push-Pull
pair (PP) of transistors.
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Usually, a current mirror is used to mirror a current from one of its sides to the other
one, as the name already induces. For (CM1-3), one of the involved transistors has its
base terminal short-circuited with either the collector or the emitter terminal. From that
side of the current mirror, the current is mirrored to its other side. Therefore, (CM2),
for example, mirrors a current from the amplifier’s second stage back to the first stage,
from where it runs towards node 3.

However, (CM2) together with (CM1) has a further functionality in the op741 at hand,
since they form a so-called polarization loop which is used to preserve the polarization
of the differential pair Q1 and ()2 in the first stage. The collector terminals of these two
transistors are connected to (CM1) which mirrors the sum of the corresponding currents
to its other "side", where this current, say I, runs to node 3. I and the mirrored current
from (CM2), which has an adjusting effect, are led back to the differential pair passing
by transistors ()3 and (Y4, whose function is explained below. Without the polarization
loop, one would have big changes for the voltages at the differential pair, even for very
small changes in the supply voltages V1 and V2. But with this loop built in the amplifier,
the voltages are stable.

In the lower part of (DP), the transistors @5 and Q6 — together with Q7 which improves
the mirror factor' form another type of a current mirror (CM4). In this case, however,
it works as a load for the differential pair. Thus, the transistors Q1 and Q2 of the
differential pair are able to work by only a small voltage drop.

The function of the transistors Q3 and (4 is to protect the differential pair, e.g. from
connection errors in a laboratory, and stabilizing the above polarization loop. The prin-
cipal reason for having this pair of transistors built in the op741 is as follows: without
that pair, the "load current mirror" (CM4) would have to be placed above the differential
pair. In a consequence, the stage output of the first stage, i.e. the voltage potential at
node 9, would be closer to the positive voltage supply thus forcing the usage of transis-
tors of the pnp-type for the differential pair and the Darlington pair in (DAR) instead of
npn. However, pnp-transistors usually work less well than those of the npn-type.

The output of the amplifier’s first stage is transferred to the second stage via the con-
nection from node 9 to node 18, passing resistor R12. Let the voltage potential at node
18 be denoted by V,. Then the Darlington pair of transistors 16 and Q17 in (DAR)
works as a second amplifying stage,

V:)ut =C- V;’nv
where V,,; denotes the voltage potential at node 17. Similar to (CM4) in (DP), the
current mirror (CM3) thereby works as an active load for (DAR). Furthermore, the role
of the capacitor C1 is compensation; the op741 amplifier works unstably without C1.
The amplified voltage V,,; is then transferred to the third stage, the output stage. The
actual "output" of the op741 amplifier is taken over by the Push-Pull subcircuit (PP),
whose first function is to give current to the [oad, i.e. the component connected to the

op741’s output terminal at node 26. The second function of the (PP) subcircuit is
a second separation between the amplifying stages and the output stage. Thus, it is

IThe mirror factor simply is the ratio of the current and its mirrored counterpart.
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hidden whether the load is connected in parallel or in series to the amplified voltage.
Otherwise the amplification could be "killed".

A first separation of the amplifying stages from the output stage is realized by transistor
(0222 in the Level-Shift subcircuit (LS). The pair of transistors (18 and Q19 together
with resistor R10 prevent the Push-Pull transistors from not working if the transient
output signal is close to 0. Otherwise, since transistors need a certain operating voltage,
an output signal such as a sine wave-like shaped one could get some "dents" in those
regions, where it passes the time axis, i.e. where its value is close to zero.
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stability, 48, 59, 68, 140
asymptotic, 48, 55, 56
bounded-input bounded-output, 50
input-output, 50



INDEX

internal, 50
L9, 50
Lyapunov, 48
numerical, 142
state
space, 19, 41, 131
space system, see system
trajectory, 43, 48, 64, 65, 131
transition map, 41
state-to-output map, 41
SVD-Krylov methods, 63
Sylvester equations, 64
symbolic methods, 5, 127, 139, 140
linear, 70
nonlinear, 72
system
AC, 39, 129
analysis, 139
component-based, 69, 78, 140
coupled, 78, 79, 140
DC, 38, 129
fundamental loop, 14, 145
interconnected, 78, 79, 140
LTI, 19, 22, 25, 46, 49, 51, 55, 78, 82, 84,
129-131, 134, 140, 142
micro electro-mechanical, 79, 140
quasi-linear, 26
semi-explicit, 25
state space, 26, 48, 53, 55, 59, 90, 129-131,
134, 142
transient, 129

telegrapher’s equations, 32, 88, 131, 132, 139
terminal, 11
test bench, 94, 95, 108, 135, 141
thermal equilibrium, 150, 152
thermal voltage, 18, 33
TPWL model, 66
training trajectory, 52, 67, 68
trajectory piecewise-linear approach, 52, 64,
140
transfer function, 4, 6, 46, 51, 59, 67, 69, 70
transient
analysis, 37, 69
system, 129
transmission line, 8, 31, 32, 79, 88, 90, 93, 129,
131 134, 139, 142

voltage potential, see node potential
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